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Institució Catalana de Recerca
i Estudis Avançats (ICREA)
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Abstract

In the recent years, intriguing hints of New Physics have been accumulated in semileptonic

B-meson decays, mostly involving neutral-current transitions b → s``. The LHCb collaboration,

other collaborations at the LHC and the Belle experiment have reported deviations from the Stan-

dard Model expectations in several observables measuring the aforementioned transition. These

are commonly referred to in the literature as B-anomalies. Not surprisingly, some of these mea-

surements show deviations from the SM predictions by a few standard deviations. More interesting

is the fact that several of these deviations from the SM appear to be “in the same direction”, in

such a way that when quantified by a global fit the discrepancy with the SM is over the 5σ level.

In order to assess the significance of these anomalies and to treat them consistently, we pro-

pose a model-independent analysis based on an Effective Hamiltonian encoding the dynamics of

the underlying quark level transition. This has the advantage of providing a simple systematic

framework where all possible processes, mediated by the same transition, can be described with the

same set of parameters, allowing for global fits of large numbers of observables defined in several

channels.

This Thesis presents our most updated global analyses of b→ s`` data. First, we describe the

general framework used to compute the different types of observables, paying special attention to

the treatment of the uncertainties involved. And then, we discuss both our analytical approach

and the implications of the most significant results obtained from our fits.
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Introduction

The discovery of the Higgs boson marked the completion of the Standard Model (SM) of particle

physics, which describes the elementary constituents of matter and their interactions (strong, elec-

tromagnetic and weak) as a quantum field theory. This has led to precise predictions for measurable

quantities tested experimentally with a high accuracy. However, there are compelling arguments

claiming the existence of New Physics (NP) beyond the SM. Examples of these arguments are the

observational evidence for the existence of dark matter and the fact that neutrinos have masses.

Therefore, we know that the SM must be extended but, since the SM provides precise deter-

minations in most sectors, there are no obvious signals to be searched for. In this context, the

field of rare decays will be a crucial tool to help us envisage effects at very high energies, which

we cannot yet access at colliders, as it probes physics occurring at higher energies.

Over the last few years, many observables related to the flavour-changing neutral-current

transitions b → s`` have exhibited deviations from SM expectations, constituting one of the first

solid evidences of NP. On the one hand, the b → sµµ flavour-changing neutral current is loop

suppressed in the SM and it has been measured by several experiments, showing a collection of

deviations from the SM in angular observables and branching ratios. Moreover, the comparison of

b→ sµµ and b→ see through the measurements of the observables RK and RK∗ , for several values

of the dilepton invariant mass, suggest a significant violation of Lepton Flavour Universality (LFU).

All these deviations can be explained in a model-independent approach by NP contributions to

Wilson coefficients associated with the effective operators describing b→ sµµ transitions, providing

a consistent description of the observed pattern. More in detail, our recent combined analysis of

these observables indeed singles out some NP scenarios preferred over the SM with a significance

at the 5σ level, confirming the scenarios already highlighted in earlier analyses in the field.

The main goal of this Thesis is to provide a coherent and self-consistent description of all the

techniques and methods needed for performing model-independent global fits to b→ s`` data. To

this end, this thesis can be formally divided into three parts:

I Part I (Chapters 1 to 5), where the main theoretical framework is described.

I Part II (Chapters 6 to 7), where we analyse in detail the different sources of hadronic un-

certainties and construct a new basis of angular observables designed to test lepton flavour

universality violating (LFUV) NP effects, without pollution coming from hadronic uncer-

tainties in the SM.

I Part III (Chapters 8 to 9), where we present the latest results of our global fits, with a

detailed anatomy of their composition and analytical strategies, and their implications

1



2 Contents

More in detail, we start by reviewing the fundamental theoretical framework used to com-

pute the relevant observables within effective field theories, both at leading order and including

higher-order QCD corrections. In Chapter 1 we describe how to construct effective field theo-

ries when different and highly hierarchised scales are involved in the physical phenomena under

study. Particularly important is going to be the concept of effective Hamiltonian, which allows

us to consistently treat physics at high and low energy scales. The former effects are encoded

in Wilson coefficients, while effective operators contain the latter. Particularly relevant are the

matrix elements of these effective operators, since they constitute one of the majors sources of

uncertainty in our theory predictions. At leading order the aforementioned matrix elements can

be parametrised in terms of form factors, which we discuss in Chapter 2. On the other hand,

computing QCD corrections to the amplitude of our relevant processes is a major endeavour, as

some of these corrections cannot be treated in perturbation theory at the typical energy scales

of B-decays. However, in Chapter 3 we show, in the context of non-leptonic decays, that a sys-

tematic way of computing these corrections emerges from well-suited approximations. This very

same framework is put into work for the semileptonic B → K∗`+`− mode in Chapter 4, where a

general description of the dynamics of this decay is presented. We conclude this part in Chapter 5

by introducing the definitions and properties of the most relevant observables in our fits, both for

B → K∗`+`− and the other channels involved. In this context, we will show that observables with

optimal properties regarding their sensitivity to form factors at leading order can be constructed

in the large recoil limit.

As we mentioned above, some of the QCD corrections to the amplitude admit a computation

within the context of certain well-suited effective theories, but some others (often referred to as

hadronic uncertainties) cannot be computed from first principles and one has to rely on partial

calculations and phenomenological models. These hadronic uncertainties will set the main theme

of Part II. First, following our article Ref. [1], in Chapter 6 we discuss the state-of-the-art treat-

ment of these corrections and we critically reassess other frameworks where hadronic uncertainties

are predicted to be particularly enhanced, showing that they are disfavoured as explanations for

the observed anomalies. Second, we discuss how to construct a set of observables with optimal

capabilities to test LFUV-NP and minimal sensitivity to hadronic uncertainties in the SM. This

work was originally presented in our article Ref. [2], which we use as a reference for Chapter 7.

Finally, in Part III we discuss at length our global fits. In Chapter 8 we dissect the composition

of our analyses, review the basic statistical framework used and showcase our most-updated results.

Based on the structure of these results, we further investigate their potential implications for model-

building and the inner tensions of the global fit itself. One of the aforementioned model-building

implications precisely bridges the gap between the anomalies in the neutral-current transitions

b → s`+`− and the tensions observed in the charged-current transitions b → cτν. As we show in

Chapter 9, such a connection implies huge enhancements of b → sττ mediated channels, which

could be at reach of the current experiments at the LHC. Whereas Chapter 8 is a blend of the

most important results of three of our papers [], Chapter 9 mostly follows the discussion in Ref. [3].
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Basic Theoretical Framework
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Chapter 1

Effective Hamiltonians

Weak decays of heavy mesons are characterized by three different energy scales, namely: the scale

of QCD interactions ΛQCD, the characteristic energy of process (usually determined by the mass of

the decaying heavy quark mQ) and finally, since we study electroweak processes, the typical scale

of weak interactions given by the mass of the W boson MW .

The order of magnitude of the above-mentioned scales is the following

O(ΛQCD) ∼ 0.2 GeV O(mQ) ∼ 5 GeV (regarding b quarks) O(MW ) ∼ 90 GeV (1.0.1)

Thus, there is a strong scale hierarchy, ΛQCD � mQ �MW , meaning that processes mediated by

the interactions above are mostly independent inside the meson decay. Hence, in order to study

B-mesons decays, it is not necessary to use the full theory, it is enough to construct an effective

field theory that allows an encapsulation all the physical phenomena at a certain scale.

1.1 Weak Effective Hamiltonian in the Standard Model

Due to the fact that W and Z bosons are very massive, weak meson decays (whose energy E is of

the order of the meson’s mass and thus E � MW,Z) proceed at very small distances of the order

of O(1/MW ). Then, following the ideas of the previous section, the dynamical degrees of freedom

that mediate these processes1 can be integrated out of the Standard Model (SM) Lagrangian to

define the Weak Effective Hamiltonian (WEH) for the given decay. Formally, this has the structure

of an Operator Product Expansion (OPE) [4–6]

Heff =
GF√

2

∑

i

Ci(µ)Oi, (1.1.1)

where Oi is a set of local effective operators, µ is the renormalisation scale and Ci(µ) are the

corresponding Wilson coefficient functions.

In this context, the amplitude of a generic meson transition M1 → M2 described by (1.1.1)

admits the following decomposition

A(M1 →M2) = 〈M2|Heff |M1〉 =
GF√

2

∑

i

Ci(µ) 〈M2| Oi(µ) |M1〉 ≡
GF√

2

∑

i

Ci(µ) 〈Oi(µ)〉 , (1.1.2)

1These include the electroweak gauge bosons (W± and Z), the Higgs field and the top quark.

5



6 Chapter 1. Effective Hamiltonians

where both the initial and final state mesons M1 and M2 may contain more than only one meson

in them (i.e. B → ππ).

Wilson coefficients contain the contributions from physical processes with characteristic scales

higher than the renormalisation scale µ. These are perturbatively calculable functions as long as

the scale µ is large enough. Therefore, the Ci include contributions from quantum fluctuations

involving the high frequency modes of the theory that we integrated out: top quarks, W and Z

bosons and the Higgs, in the SM. If we assume a particular ultraviolet completion of the SM, the

new heavy degrees of freedom will also be integrated out of the Lagrangian, provided that they

are sufficiently heavy, and thus will contribute to the Wilson coefficients. Consequently, Ci(µ)

typically depend on mt, mW , mH and the mass scales of the heavy modes of any SM extension

considered. These dependencies are identified by computing the penguin and box diagrams with

fully propagating top, W , Z, Higgs and new heavy mediators exchanges. It is important to stress

that also short distance QCD effects are properly taken into account in the computation of Wilson

coefficients, these being the ones that introduce the µ scale dependence through the running of the

QCD coupling constant αs.

On the contrary, the matrix elements 〈Oi(µ)〉 summarise the contributions to the amplitude

A(M1 →M2) from scales lower than µ. Then, since they involve long distance interactions, it is not

possible to compute them in perturbation theory and one must resort to non-perturbative methods

for their assessment. Examples of such non-perturbative tools include lattice gauge theory, the

1/Nc expansion (where Nc is the number of colours), QCD sum rules, light-cone sum rules, chiral

perturbation theory, etc. In B meson decays, we will see in Chapter 3 that certain dynamical

conditions that emerge from Heavy Quark Effective Theory (HQET) and Large Energy Effective

Theory (LEET) allow for systematic computations of these matrix elements.

Constructing an Effective Hamiltonian involves computing its corresponding Wilson coeffi-

cients and identifying its relevant local effective operators. Notice that all this can be fully done

in perturbation theory. All physical information about the inner structure of the mesons in the

decay is irrelevant for this construction and it will only become relevant when computing the ma-

trix element of the decay, through the evaluation of the matrix elements discussed above. Thus,

the Wilson coefficients, being objects that only depend on the underlying quark transition and

the perturbative interactions they experience, are independent of the particular decay considered

in the same way as the usual couplings of gauge theories are universal and process-independent

parameters.

Precisely, the biggest advantage of this framework is that it allows to separate the problem of

computing the amplitude A(M1 →M2) into two distinct parts: the short-distance (perturbative)

calculation of the effective couplings Ci and the long-distance (non-perturbative) computation of the

matrix elements 〈Oi〉. As we discussed above, the scale µ separates out short-distance contributions

to the amplitude from the long-distance ones. Actually, this separation is somewhat arbitrary, since

there is certain freedom in assigning which contribution is absorbed into the Wilson coefficients

and which other is encoded within the matrix elements. Indeed, the only effect of changing the

scale µ is to reshuffle terms from the matrix elements 〈Oi〉 into the Wilson coefficients Ci, hence

there is no information loss in shifting from one scale to another. At the same time, this has the

important implication that the scale dependence of the matrix elements cancels the unphysical

scale dependence of the Wilson coefficients, and the other way around, so the amplitude is a

physically meaningful quantity.



1.1. Weak Effective Hamiltonian in the Standard Model 7

This completes our remarks about the main features of the WEH formalism and its building

blocks. Now, from a more practical perspective, we review the standard procedure for obtaining

the corresponding effective Hamiltonian to a given process (see Refs. [7–10] for more detailed

discussions):

I Given a process M1 → M2, compute the amplitude A(M1 → M2) in the full theory up to

certain order in αs. As a result of Feynman diagrams with one or more loops, divergences will

appear during the computations, which can be treated using usual renormalisation techniques

by introducing a high scale µ0 ∼MW . At this scale αs is small, so perturbation theory works

well.

I Once the computation of the amplitude is performed in the full theory and at the high scale

µ0, one can identify the effective operators {Oi}. With the operators known, the OPE for

the effective Hamiltonian can be written.

I Calculate the matrix elements 〈Oi〉 of the operators at the high scale µ0 and at the same

order in αs. Perturbation theory still applies at this scale and because QCD corrections are

included, divergences will arise again. Some of them can be absorbed through field renor-

malisation, however in general the resulting expressions will still be divergent. Therefore

an additional multiplicative renormalisation, the so-called operator renormalisation, is nec-

essary. This method typically introduces mixing between different operators in the OPE

that carry the same quantum numbers, in such a way that even new operators which were

not present at tree level may arise. Moreover, since these matrix elements 〈Oi〉 must be

computed within a renormalisation scheme, this introduces a certain scheme dependence on

the Wilson coefficients, so the overall scheme depend cancels at the amplitude level.

I Having computed the amplitude A(M1 → M2) in the full theory and the matrix elements

〈Oi〉 of the operators in the OPE, at the same order in Perturbation Theory and at the

scale µ0, the Wilson coefficients Ci(µ0) can be obtained via (1.1.1). This procedure is called

matching the full theory onto the effective theory.

I Finally, renormalisation group evolution techniques must be used to obtain the value of the

Wilson coefficients at the low scale µ. As we discussed, the µ scale is arbitrary, allowing us

to choose what belongs to Ci(µ) and what to 〈Oi(µ)〉. However, it is customary to choose

µ of the order of the mass of the decaying meson, which for B decays means µ = µb ∼ mb.

So µ has to be run down from µ0 ∼ MW to µb ∼ mb. Then, the matching conditions for

the Wilson coefficients develop large logarithms ln(M2
W /µ

2
b) that break their computation in

a perturbative expansion. Solving for this requires the use of Renormalisation Group (RG)

Improved Perturbation Theory [8, 11], which we will discuss in the following section.

As a last note, it is important to stress that the description provided by a weak effective Hamil-

tonian is only valid up to the order in the 1/MW expansion used for building the OPE and to the

order in αs in which the matching conditions of the effective theory are based on.

1.1.1 Renormalisation Group Evolution of Wilson coefficients

As we noticed above, the matching conditions for the Wilson coefficients present an important

problem: the expansion parameter αs/π ∼ 0.1 (at the µb ∼ mb scale) is always accompanied by
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consistent powers of ln(M2
W /µ

2
b), establishing (αs/π) ln(M2

W /µ
2
b) ∼ 0.8 as the de facto expansion

parameter and spoiling the perturbative expansion. This is actually a generic problem of renormal-

isable quantum field theories with vastly different characteristic scales: perturbative expansions

organise in powers of αs ln(M2/µ2) rather than αs.

In order to solve the problem of these large logarithms, they must be resummed to all orders

by means of (RG)-evolution equations in Renormalisation Group Improved Perturbation Theory.

This framework provides a reorganisation of perturbation theory where αs ln(M2/µ2) works as the

O(1) parameter in the expansion. Then, at leading order all terms of the form (αs ln(M2/µ2))n

(with n = 0, . . . ,∞) are resummed, contributing to the Wilson coefficients at order O(1). Next-

to-leading order contributions are obtained by resumming terms of the form αs(αs ln(M2/µ2))n,

which correspondingly count as O(αs) in the expansion.

Great references where RG-Improved Perturbation Theory is discussed at length, alongside

many other relevant topics for the study of Effective Theories, are Refs. [9, 12]. The discussion

below borrows some of its elements from these two references.

Now we will explicitly show how large logarithms must be resumed up to leading order. Con-

sider a complete set of effective operators

{Oi(µ)} , (with i = 1, . . . , n) (1.1.3)

allowed by the symmetries of the theory. Since arbitrary changes of the renormalisation scale µ

does not affect the physical value of the amplitude

A =
∑

i

Ci(µ) 〈Oi(µ)〉 =
∑

i

Ci(µ+ δµ) 〈Oi(µ+ δµ)〉 (1.1.4)

=
∑

i

[
Ci(µ) 〈Oi(µ)〉+

(
d

dµ
Ci(µ) 〈Oi(µ)〉+ Ci(µ)

d

dµ
〈Oi(µ)〉

)
δµ+ . . .

]
, (1.1.5)

implying that

d

d lnµ

∑

i

Ci(µ) 〈Oi(µ)〉 = 0. (1.1.6)

Being the basis of operators complete, we can write the derivative of every matrix element in terms

of the other matrix elements in the set,

d

d lnµ
〈Oi(µ)〉 = −

∑

j

γij(µ) 〈Oj(µ)〉 , (1.1.7)

where γij is usually referred to as the anomalous dimension matrix and it measures how much the

matrix element changes under scale variations. It is important to stress that no large logarithms

are contained in this matrix. Clearly, if there is more than one operator in the basis, in general

γij will cause operators to mix when the scale is changed. Expanding the derivative in Eq. (1.1.6)

and using Eq. (1.1.7), we obtain

∑

i


 d

dµ
Ci(µ)−

∑

j

Cj(µ)γji(µ)


 〈Oi(µ)〉 = 0 (1.1.8)
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Therefore, because the operators are linearly independent, Eq. (1.1.8) necessarily implies the fol-

lowing renormalisation group equation for the Wilson coefficients

d

dµ
Ci(µ)−

∑

j

Cj(µ)γji(µ) = 0, (1.1.9)

which can be rewritten in matrix form as

d

dµ
C(µ) = γ̂T (µ)C(µ), (1.1.10)

Because the anomalous dimension matrix controls the scale variation of the matrix elements and

scale dependence gets introduced in them as a result of QCD corrections, γ̂ depends on the scale

µ only through the running of the αs(µ) coupling constant. Then, we can change variables from µ

to αs in Eq. (1.1.10) to find

d

dαs(µ)
C(µ) =

γ̂T (αs(µ))

β(αs(µ))
C(µ), (1.1.11)

where β ≡ dαs(µ)/d lnµ is the QCD beta function. Eqs. (1.1.10) and (1.1.11) are differential

equations controlling the running of the Wilson coefficients with initial conditions set by the values

of the Wilson coefficients at the high scale, i.e. C(MW ).

Notice that Eq. (1.1.11) is formally identical to the Heisenberg equation of motion for time-

dependent operators, with the anomalous dimension matrix playing the role of the Hamiltonian.

Therefore, the general solution to equation Eq. (1.1.11) with the aforementioned initial conditions

reads

C(µ) = Tα exp

[∫ αs(µ)

αs(MW )
dαs

γ̂T (αs(µ))

β(αs(µ))

]
C(MW ), (1.1.12)

with the formal definition of the exponential above given by its Taylor expansion and Tα being an

operator that organises the powers of γ̂T (αs) such that those terms evaluated at larger values of αs

stand to the left of those with smaller values of αs. Keeping a well-defined ordering of the powers

of γ̂T (αs) is needed since, in general, two realisations of γ̂T at different αs will not commute.

Now we apply Eq. (1.1.12) to the simplified case of having a theory with only one Wilson

coefficient (i.e. no mixing), this will explicitly show how resummation of large logarithms works.

First, we write the perturbative expansion of the relevant quantities in the RG-evolution

C(MW ) = 1 +O(αs), (1.1.13)

γ(αs) = γ0
αs
4π

+O(α2
s), (1.1.14)

β(αs) = −2αs

(
β0
αs
4π

+O(α2
s)
)
, (1.1.15)

where we have assumed the effective operator we are dealing with is such that it represents a

process operating at leading order in the full theory, hence C(MW ) = 1. Notice that none of these

quantities are afflicted by large logarithms.

Then, we find the leading order result
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C(µ) =

(
αs(µ)

αs(MW )

)− γ0
2β0 C(MW ) =

(
αs(µ)

αs(MW )

)− γ0
2β0
(

1 +O(αs)
)
. (1.1.16)

The resummation of the large logarithm can be made explicit by expanding the evolution factor

in the equation above,

(
αs(µ)

αs(MW )

)− γ0
2β0 ≈

(
1 + β0

αs
4π

ln
M2
W

µ2

)− γ0
2β0

= 1− γ0

2

αs
4π

ln
M2
W

µ2
+O

(
α2
s ln2 M

2
W

µ2

)
. (1.1.17)

Hence, in RG-Improved Perturbation Theory the characteristic large logarithms that appear in

the running of Wilson coefficients are encapsulated in ratios comparing the strength of QCD

interactions between the high and low scales through the QCD β-function.

If one wants to compute similar expressions for the RG-evolution of Wilson coefficients at

higher orders (i.e. next-to-leading order and beyond), it is enough to write consistent perturbative

expansions for C(µ), γ(αs) and β(αs),

C(MW ) = 1 +

∞∑

n=1

cn

(
αs(MW )

4π

)n
, (1.1.18)

γ(αs) =
∞∑

n=0

γn

(αs
4π

)n+1
, (1.1.19)

β(αs) = −2αs

∞∑

n=0

βn

(αs
4π

)n+1
, (1.1.20)

up to the desired order in αs and proceed as detailed above. Generalisations of this procedure to

cases with more than one operator, where mixing between operators is expected, can be found in

Ref. [13].

1.2 The Weak Effective Hamiltonian Beyond The Standard Model

Current available knowledge on possible New Physics (NP) seems to suggest that such phenomena

must be expected at very high scales of the order of ΛNP ∼ few TeV. In this regard, the SM

may be understood as an effective field theory of a more general theory describing the physics at

energies around ΛNP. Therefore, the effective field theory formalism can be used to introduce NP

contributions into our description in a general and model independent way.

Once NP operators are added to the effective Hamiltonian (1.1.1), the value of the Wilson

coefficients will be shifted away form their SM values when matching the full theory onto the

effective theory. This is crucial since, if it is possible to obtain precise determinations of the values

of the Wilson coefficient from experiments, it allows us to test the presence of NP and to constrain

its contributions. This type of analyses, applied to the most updated experimental data on rare

B meson decays mediated by the flavour changing neutral current (FCNC) transition b→ s`+`−,

constitute the most important results of this Thesis and will be discussed in Chapter 8.

In principle, the effective Hamiltonian HNP
eff that keeps track of the presence of NP might

contain an infinite set of operators. However, the complexity of HNP
eff is reduced once the next

requirements and assumptions are imposed.
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I The building blocks of the effective operators in HNP
eff are necessarily the relevant SM fields

to the process considered. Recall that the low energy degrees of freedom are the SM particles

with masses below MW .

I For the same reason, all the operators must be invariant under SU(3)C ⊗ SU(2)L ⊗ U(1)Y,

the gauge group of the SM. Moreover, other global symmetries might be imposed to preserve

certain phenomenological facts (i.e. avoid proton decay, etc).

I There are still an infinite set of operators satisfying (i) and (ii), so a prescription to cut this

infinite set is in order. This prescription consists in dropping the operators with very high

dimensions. A suppression factor ΛD−6
NP is added to the NP effective Hamiltonian so that

the larger the dimension D of the operator becomes, the smaller are the coupling constants

C[D]
i /ΛD−6

NP . Since ΛNP is very large, this prescription provides indeed a good constraint on

the operators that are relevant in HNP
eff .

According to the previous points, the most general form for the NP effective Hamiltonian should

be cast as

HNP
eff =

∞∑

D=7

∑

i

C[D]
i

ΛD−6
NP

O[D]
i . (1.2.1)

Even though this top-down prescription drastically simplifies the description of NP in the form of

an effective Hamiltonian, the number of operators in Eq. (1.2.1) is still too large for most of its

applications. Therefore, bottom-up procedures are usually followed in most NP studies. These

consist in writing down a model or a family of models, which formally are represented by the

addition of a new piece δLSM to the SM Lagrangian consistent with the symmetries assumed,

integrating out the heavy modes (both coming from the SM and NP) and using the corresponding

set of Wilson coefficients and effective operators obtained to perform phenomenological analyses

with experimental data. In this thesis, only NP effects proceeding through SM-like and chirally-

flipped operators will be considered.

1.3 Introduction to Heavy-Quark Effective Theory

Hadronic systems with a heavy-quark constituent are naturally characterised by two relevant energy

scales: the heavy-quark mass mQ and the scale of hadronic physics ΛQCD, defined by the typical

momenta of gluons exchanged in a bound state. These two scales are clearly hierarchised ΛQCD �
mQ and thus allow for a description of heavy-quark systems within the Effective Field Theory

formalism discussed above, with the resulting theory being called Heavy-Quark Effective Theory

(HQET) [14–21]. Educational lectures on this topic can be found in Refs. [8, 11, 12].

More in detail, HQET provides a simplified description of physical processes involving the in-

teraction of a heavy-quark (mQ →∞) with light degrees of freedom (light-quarks and/or antiquarks

and gluons) predominantly through the exchange of soft (low energy) gluons. This underlying as-

sumption on the nature of gluon exchanges between heavy and light degrees of freedom is usually

known as soft dominance. At energy scales of the order of mQ or higher (i.e. short-distances),

the QCD coupling constant is small and strong interactions can be computed in a perturbative
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expansion. On the other hand, at scales below the heavy-quark mass (i.e. long distances), QCD

becomes strongly coupled due to confinement, rendering no perturbative computation as reliable.

Precisely, the main purpose of HQET is to provide a reliable theoretical framework for these scales.

As it is standard with effective theories, short- and long-distance effects are separated by intro-

ducing a separation scale µ such that ΛQCD � µ � mQ. Then, HQET is constructed in such

a way that it is equivalent to QCD in the long-distance region, i.e. scales below µ. As a result,

this framework will fail at explaining short-distance interactions, since all heavy modes have been

integrated out. But we can deal with these contributions consistently by using the renormalisation

group techniques in Section 1.1.1.

Since ΛQCD/mQ ∼ 0.1 � 1 for heavy quarks (Q = c, b), this defines a good expansion pa-

rameter for an OPE-type of structure. However, because in heavy-quark physics we are interested

in the properties of the heavy-quark, the heavy-quark degrees of freedom cannot be completely

removed from the theory in HQET, as the heavy-quark is not virtual and carries flavour charge. In

this sense, it is not fair to regard HQET as a proper OPE. Instead, what deserves to be eliminated

from the theory are the quantum numbers of the heavy-quark that cannot be resolved by the light

degrees of freedom.

Now we will derive the basics of HQET following Refs. [8, 11]. It is convenient to start by

writing down the QCD Lagrangian

LQCD = q̄(x)
(
i /Ds −mq

)
q(x), (1.3.1)

with Dµ
s ≡ ∂µ−igT aAa,µs (x) the covariant derivative (being g the QCD coupling constant and a the

colour indices), T a the SU(3)C generators, Aa,µs (x) the soft gluon field and mq the corresponding

mass term of the quark field q(x). Notice that the covariant derivative contains only the soft gluon

field since we have already integrated out all contributions coming from hard gluons. We purposely

do not include the gluon field kinetic term as we are only interested in processes with quarks in

the initial and final states.

A softly interacting heavy-quark in a heavy-meson2 is nearly on-shell, as it carries most of the

hadron’s momentum. Therefore, its momentum can be decomposed as

pµQ = mQv
µ + kµ, (1.3.2)

where vµ is the velocity of the meson (recall that v2 = 1 for any four-velocity), mQ is the heavy-

quark mass and kµ is the so-called residual momentum, accounting for the fluctuations in the

heavy-quark momentum stemming from its interactions with the rest of the meson. Assuming we

work from a reference frame where v ∼ O(1) (i.e. the meson rest frame), then kµ must be of the

order of the scale of light interactions k ∼ ΛQCD, which implies that changes in the heavy-quark

velocity vanish as ΛQCD/mQ → 0.

Being Q(x) the heavy-quark field in the QCD Lagrangian, we define the large- and small-

component fields hv(x) and Hv(x) as

hv(x) ≡ eimQv·xP+Q(x), Hv(x) ≡ eimQv·xP−Q(x), (1.3.3)

2This actually also applies for baryons, we restrict ourselves to mesons since in this Thesis we will mostly work

with mesons. Then, by heavy-hadron we understand a hadron that is composed by a heavy-quark and light-quarks

only. We do not consider here the case where two or more heavy-quarks take part in the same hadronic state.
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where the projection operators P± read3

P± =
1± /v

2
. (1.3.4)

Using the definitions in (1.3.3), the heavy-quark field takes the form

Q(x) = e−imQv·x [hv(x) +Hv(x)] . (1.3.5)

Notice that hv(x) and Hv(x) correspond to the two upper and two lower components of the heavy-

quark spinor Q(x). This is transparent in the rest frame of the heavy-quark, where v = (1, 0, 0, 0).

In this frame, using the Dirac representation of the gamma matrices, /v = γ0 and thus P+ (P−)

leaves the two upper (lower) components of Q(x) untouched, while it cancels the lower (upper)

ones. Moreover, although it may look like an arbitrary choice, the phase factor eimQv·x in hv(x)

and Hv(x) has been introduced in order to remove the high-frequency modes of the x-dependence

in Q(x) coming from the large momentum mv. As a result, the residual x-dependence of hv(x)

and Hv(x) is attached to the residual momentum k, so derivatives acting on both fields count as

O(ΛQCD).

Following the QCD Lagrangian in Eq. (1.3.1), the equation of motion describing the dynamics

of the heavy-quark reads

(
i /Ds −mQ

)
Q(x) = 0, (1.3.6)

which can be rewritten in the following way by means of Eq. (1.3.5)

e−imQv·x
[
i /Ds − (1− /v)mQ

]
[hv(x) +Hv(x)] = 0, (1.3.7)

with even further rearrangements possible due to the properties of the large and small component

fields /vhv = hv and /vHv = −Hv,

i /Dshv(x) + (i /Ds − 2mQ)Hv(x) = 0. (1.3.8)

The anticommutation relations defining the Dirac algebra {γµ, γν} = 2gµν imply

/v /Ds = γµγνvµDsν = (2gµν − γνγµ)vµDsν = 2v ·Ds − /Ds/v, (1.3.9)

leading to the useful property

P± /Ds = /DsP∓ ± v ·Ds. (1.3.10)

Now, acting over Eq. (1.3.8) with P± by the left and using the relations in Eqs. (1.3.10), yields

the following coupled system of equations

iv ·Dshv(x) = −i /Ds⊥Hv(x), (1.3.11)

(iv ·Ds + 2mQ)Hv(x) = i /Ds⊥hv(x), (1.3.12)

3Recall that P± being projection operators, they fulfill the following properties: P 2
± = 1, P±P∓ = 0 and

P+ + P− = 1.
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where the so-called spatial derivative /Ds⊥ stands for

Dµ
s⊥ ≡ Dµ

s − vµv ·Ds. (1.3.13)

Looking at the derivative terms in Eqs. (1.3.11) and (1.3.12), their interpretation is that the field

hv describes a massless fermion, while the spinor field Hv encodes the dynamics of a fermion with

mass 2mQ. These two modes are not independent and they mix through their interactions, as it

is explicit from the right-hand side of Eqs. (1.3.11) and (1.3.12).

Solving the classical equation of motion for the field Hv we obtain

Hv(x) =
i /Ds⊥hv

iv ·Ds + 2mQ
, (1.3.14)

where one can clearly observe that Hv(x) = O(ΛQCD/mQ)hv(x), as the numerator of Eq. (1.3.14)

contains a derivative of the hv(x) field while there is a mass term mQ in the denominator. Hence

Hv(x) is suppressed with respect to hv(x), in the heavy-quark limit. This motivated the use of the

terms large- and small-component fields for hv(x) and Hv(x).

Finally, inserting Eq. (1.3.1) in the QCD Lagrangian and removingHv(x) by means of Eq. (1.3.14),

we obtain the HQET effective Lagrangian

LHQET = h̄v(x) iv ·Ds hv(x) + h̄v(x)i /Ds⊥
1

iv ·Ds + 2mQ
i /Ds⊥hv(x) (1.3.15)

The second term on the right-hand side contains the non-local operator (iv · Ds + 2mQ)−1. In

order to obtain a local theory, this operator must be expanded in powers of ΛQCD/mQ

LHQET = h̄v(x) iv ·Ds hv(x) +
1

2mQ

∞∑

n=0

h̄v(x)i /Ds⊥

(
− iv ·Ds

2mQ

)n
i /Ds⊥hv(x). (1.3.16)

Considering only the first term in the expansion and using the identity

P+i /Ds⊥i /Ds⊥P+ = P+

[
(iDs⊥)2 +

gs
2
σµνG

µν
]
P+, (1.3.17)

with σµν =
i

2
[γµ, γν ] and the gluon field-strength tensor i[Dµ

s , Dν
s ] = gsG

µν
s , the effective La-

grangian LHQET at order O(Λ2
QCD/m

2
Q) becomes

LHQET = h̄v(x) iv ·Ds hv(x) +
1

2mQ
h̄v(x) (iDs⊥)2 hv(x) +

gs
4mQ

h̄v(x)σµνG
µν
s hv(x) +O

(
Λ2

QCD

m2
Q

)

(1.3.18)

To conclude, we use the HQET Lagrangian for discussing some of its most important features.

I At leading order in the heavy-quark expansion, the HQET reads

LHQET = h̄v(x) iv ·Ds hv(x) +O

(
ΛQCD

mQ

)
. (1.3.19)

This Lagrangian describes the ”residual” heavy-quark QCD dynamics, once the kinematic

dependence on its mass is removed. Since by construction Eq. (1.3.19) does not depend

on the heavy-quark mass, the HQET Lagrangian is flavour symmetric at leading order.
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Furthermore, no gamma-matrices are present in the operator v · Ds, therefore the leading

order term in HQET is also spin symmetric. From a physical perspective, this means that the

properties of hadronic systems containing a heavy quark do not depend neither on the flavour

nor the spin of the heavy quark, in the limit mQ →∞. These two properties constitute the

spin-flavour symmetries of HQET, which lead to several relations among heavy-meson form

factors and give rise to important concepts such as the Isgur-Wise function [22, 23]. It is

important to stress that spin-flavour symmetries only hold at leading order, as higher order

corrections in ΛQCD/mQ break these symmetries.

I Explicitly writing the covariant derivative in Eq. (1.3.19)

h̄v(x) iv ·Ds hv(x) = h̄v(x)ivµ∂µhv(x) + gsh̄v(x)T avµAas µ(x)hv(x), (1.3.20)

one can extract the HQET Feynman rules, as displayed in Fig. 1.1.

Figure 1.1: HQET Feynman rules (i, j are color indices) [12]. Double lines represent a heavy-quark

with velocity v. The residual momentum k is defined in Eq. (1.3.2).

I Weak currents can be easily written in terms of HQET fields and thus it provides a good

framework for the study of weak interactions. For instance, a generic heavy-to-light weak

transition current q̄(x)ΓQ(x), usually appearing in semileptonic decays, can be written as

q̄(x)ΓQ(x) = q̄(x)Γhv(x) +O

(
ΛQCD

mQ

)
, (1.3.21)

where the heavy-quark fieldQ(x) has been replaced by the HQET field hv(x) using Eq. (1.3.5).

1.4 Introduction to Large Energy Effective Theory

The defining property of heavy-to-light meson transitions is the large energy E transmitted by the

parent meson to the daughter, in almost the whole physical phase space [24]. This is certainly

the case of some of the main channels studied in this Thesis, for instance B → K(∗)`+`− at large

recoil (see Section 2.1.4 for a definition of this term). Then, the final active quark is very energetic

(in the rest frame of the parent meson) and it can be assumed to predominantly interact with the

light degrees of freedom of the recoiling meson via soft gluon exchanges. This is another instance

of the soft dominance assumption already used in the construction of HQET. Within this context,

the recoiling quark carries most of the momentum of the emission light meson and thus the fast
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degrees of freedom become essentially classical [24]. Again, this resembles the HQET case, where

the heavy-quark carries almost all the heavy-meson momentum due to its large mass. Following

these ideas, the Large Energy Effective Theory (LEET) was introduced in Ref. [25], which provides

a framework for studying heavy-to-light processes with fast recoiling emission mesons as an OPE

using 1/E as the expansion parameter.

Therefore, in order to study heavy meson decays into energetic light mesons, one needs the

combined framework of HQET and LEET. The former being used for describing the dynamics of the

parent meson and the latter accounting for the behaviour of the energetic emission meson. Similarly

to the symmetry relations that emerge among heavy-meson form factors in HQET through the

Isgur-Wise function, this approach applied to B meson decays of the type B → V and B → P

(with V and P vector and pseudoscalar mesons, respectively) yields a set of relations between the

relevant form factors in these decay channels at order 1/M and 1/E that reduce all form factors

to just a few scalar functions called soft form factors [24]. This is going to be discussed more in

detail in Section 2.1.4.

The relevant energy scales here are the energy of the recoiling light meson E, as seen from

the heavy meson rest frame, and the low scale of strong interactions ΛQCD. If E is large enough,

then ΛQCD/E � 1, which allows for an OPE expansion of the full theory in powers of this

parameter. Hard momenta, with virtualities between the separation scale µ introduced and E,

will be integrated out, whereas soft contributions, with characteristic scales below µ, will be

incorporated in the matrix elements of the LEET operators.

The formal development of the LEET shares a lot of similarities with the construction of the

HQET. Its basis relies on the heavy-quark limit for the initial meson and the large energy limit

for the final one

{ΛQCD, m} � {M, E} , (1.4.1)

being m and E the mass and energy of the light meson and M the mass of the heavy meson.

The momentum of the heavy meson is taken as

Pµ = Mvµ. (1.4.2)

On the other hand, the light meson is recoiling really fast and almost all its energy is actually

kinetic energy, so its 4-momentum pµ must satisfy the condition p2 ' 0. Therefore, by defining an

almost light-like vector nµ (n2 ' 0), the momentum of the light meson can be written as pµ = Enµ.

Moreover, the direction vector nµ also fulfils the identity v · n = 1. So, the energy of the light

meson reads

E = v · p. (1.4.3)

The energetic quark in the emission light-meson is assumed to interact with the soft degrees of

freedom of the meson only via soft QCD processes, hence its momentum pµq aligns with the mo-

mentum of the whole light meson plus some small corrections k ∼ ΛQCD due to the aforementioned

soft interactions

pµq = Enµ + kµ. (1.4.4)

Following the HQET spirit, two auxiliary fields qn(x) and Qn(x), based on the energetic light

quark field q`(x), constitute the fundamental building blocks of the effective theory
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qn(x) ≡ eiEn·xP+q`(x), Qn(x) ≡ eiEn·xP−q`(x), (1.4.5)

with the the following definitions for the projection operators P±,

P+ ≡
/n/v

2
, P− ≡

/v/n

2
, (1.4.6)

One can easily show that these operators follow the characteristic properties of projection opera-

tors, i.e. P 2
± = 1, P+P− = 0 and P+ + P− = 1. To this end, the relations below prove useful

v2 = 1, v · n = 1, n2 ' 0. (1.4.7)

In terms of qn(x) and Qn(x), the energetic light quark field reads

q`(x) = e−iEn·x[qn(x) +Qn(x)]. (1.4.8)

It is worth noticing that the phase eiEn·x in Eq. (1.4.8) cancels the high frequency terms of the

exponential coming from the space-time evolution of q`(x), since e−ipq ·x = e−iEn·xe−ik·x. Conse-

quently, the x-dependence of qn(x) and Qn(x) is reduced to the small residual momentum kµ, so

derivatives acting on both fields count as O(ΛQCD).

Now we start building the LEET Lagrangian. Take the equation of motion for a light energetic

quark, which is the same as Eq. (1.3.6) but replacing Q(x) by q`(x) and mQ by mq (light quark

mass), and write q`(x) in terms of qn(x) and Qn(x) by means of Eq. (1.4.8). Then

e−iEn·x
[
i /Ds −mq + E/n

]
[qn(x) +Qn(x)] = 0. (1.4.9)

Since4 /n2 ' 0, one trivially concludes that /nqn(x) = 0. So, using this property, we can re-express

the previous equation as

[
i /Ds −mq

]
qn(x) +

[
i /Ds −mq + E/n

]
Qn(x) = 0. (1.4.10)

Using the anticommutation properties of the gamma matrices, very much in the same fashion as

in the proof of Eq. (1.3.9), it can be shown that

P± /Ds = ±v ·Ds/n∓ n ·Ds/v + /DsP±. (1.4.11)

Now, projecting the equation of motion Eq. (1.4.10) onto the subspace defined by P± and per-

forming some simplifications, one obtains the following coupled system of equations. By virtue of

Eq. (1.4.11) and the kinematic conditions /n2 = 0 and /v2 = 1

i/vn ·Dsqn(x) + [i /Ds −mq − /v(2iv ·Ds − in ·Ds)]Qn(x) = 0, (1.4.12)

(i /Ds −mq − i/vn ·Ds)qn(x) + /v(2E + 2iv ·Ds − in ·Ds)Qn(x) = 0. (1.4.13)

Thus, the second equation can be formally solved to give an expression for Qn(x) in terms of qn(x)

Qn(x) = /v
i /Ds −mq − i/vn ·Ds

2E + 2iv ·Ds − in ·Ds
qn(x). (1.4.14)

4Recall that /a2 = a2 1 = a2, ∀aµ.
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Observe that Qn(x) ∼ O(ΛQCD/E)qn(x), since the numerator in Eq. (1.4.14) contains a derivative

while the denominator has a factor E. This implies that, in the high energy limit E →∞, the field

component Qn(x) gets suppressed with respect to qn(x). In the rest frame of the heavy meson,

where vµ = (1, 0, 0, 0) and nµ = (1, 0, 0 − 1) (assuming the z-axis as the propagation direction),

the projection operators read P± = ±γ3γ0. Then, if q`(x) is a Dirac spinor with positive energy,

Qn(x) corresponds to its negative energy counterpart.

Finally, introducing the energetic light quark field decomposition of Eq. (1.4.8) in the QCD

Lagrangian of Eq. (1.3.1) (and exploiting Eq. (1.4.14) in order to write all dependencies on Qn(x)

in terms of qn(x) fields) and expanding up to O(ΛQCD/E), we obtain the leading order LEET

Lagrangian [24]

LLEET = q̄n(x) i/vn ·Ds qn(x) +O

(
ΛQCD

E

)
. (1.4.15)

Note that there is no mass term in the LEET Lagrangian for the qn(x) field, however no assumption

has been made on the mass of the light quark in deriving Eq. (1.4.15). The mass term q̄nmqqn

just vanishes because of the action of the projector P+. Building the LEET only requires a strong

hierarchy between the light quark and recoiling meson masses and the energy of the meson, i.e.

mq � E and m′ � E with m′ the mass of the emission meson.

Some additional final remarks about the LEET are in order here:

I LEET and HQET provide the basic framework for the study of weak heavy-to-light quark

decays (mainly b → u, d, s), as long as the assumption of soft QCD interactions remains

true. The joint theory admits perturbative corrections to all orders in αs, accounting for

the short-distance QCD interactions between heavy/energetic quarks and the soft degrees

of freedom within the meson, while non-perturbative contributions come from higher order

terms in the expansions in ΛQCD/mQ and ΛQCD/E.

I Since LLEET has no mass dependence, it is flavour symmetric. Unlike the HQET effective

Lagrangian, Eq. (1.4.15) is not SU(2) spin symmetric because of the presence of gamma

matrices in LLEET. But, since these gamma matrices are not dynamical (not coupled to the

covariant derivative Dµ), LEET is invariant under chiral transformations

qn(x)→ eiαγ
5/2qn(x). (1.4.16)

Actually, it can be proved that the LEET symmetry group is in fact larger than U(1)chiral,

turning out that LLEET possesses a global SU(2) symmetry [24, 25].

I Writing the covariant derivative explicitly, we can find the corresponding Feynman rules to

the LEET Lagrangian

q̄n(x) i/vn ·Ds qn(x) = q̄n(x) i/vnµ∂µ qn(x) + gsq̄n(x)/vT anµAas µ(x)qn(x), (1.4.17)

where we have only written the soft-gluon field for the same reasons argued in Section 1.3.

Therefore,



1.4. Introduction to Large Energy Effective Theory 19

LEET quark propagator:
i/v

n · k
/n/v

2
δji (1.4.18)

LEET quark-gluon vertex: igs/v (Ta)ji n
α (1.4.19)



Chapter 2

Non-perturbative Elements

As we discussed in Chapter 1, Effective Field Theories are characterised by a given factorisation

scale that separates short- and long-distance contributions. The former are encoded in the Wilson

coefficients of the theory, which formally admit a computation in perturbation theory, while the

latter are pushed into the matrix elements of the effective operators. These are non-perturbative

objects whose determination is crucial for obtaining precise theory determinations of relevant

physical observables. Therefore, we need systematic methods able to generate reliable predictions

for the matrix elements.

Usually, one simplifies the complex structure of the aforementioned matrix elements by identi-

fying the Lorentz structures in them and parametrising the unknown energy-dependent functions

weighting these structures as so-called form factors. This has the advantage of reducing the com-

plexity of the matrix elements to just a few scalar functions, which usually appear in different

although related matrix elements. Currently, the most successful theoretical approaches for com-

puting form factors include the likes of lattice gauge theory and QCD sum rules (either pure

SVZ-like types of sum rules or light-cone sum rules). Good reviews of the latter non-perturbative

computational methods can be found in the lectures [26–28].

Here we will not discuss at length any of these paradigms, but rather we present an anatomy

of the relevant form factors in B meson decays to pseudoscalar and vectors mesons. Plus, we

discuss the relations between form factors due to the symmetries that emerge in the heavy quark

and large energy limits.

2.1 Meson Form Factors

2.1.1 Fundamentals

A form factor is a function of scalar variables that appears in the most general decomposition of

the matrix element of a current that is consistent with Lorentz and gauge invariance. In the context

of weak heavy-to-light meson decays, form factors are naturally required when decomposing the

matrix elements of the weak current mediating the transition from a heavy meson H into a lighter

one L. They can be understood as a measure of the overlap between the initial and final states of

the decay:

〈L| q̄ ΓQ |H〉 ∼ eFH→L . (2.1.1)

20
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Here, q and Q stand for the fields of the weakly produced light quark in the emitted meson L

and the initial heavy quark in H, respectively. On the other hand, Γ represents an irreducible

representation of the Dirac algebra component describing the Lorentz quantum numbers of the

process, once the indices of the weak vertex have been contracted into a local one. And FH→L is

the form factor.

The term form factor is reminiscent of the functions used for parametrising the inner structure

of the proton in scattering processes, since those actually contain information about the ”form” of

the proton. This physical interpretation is not representative in our case and we should understand

the form factors along the ideas above. For this reason, in the context of weak decays it is common

to use the most accurate term transition form factor.

Quarks in the initial and final state mesons of a decay interact among themselves via gluon

exchanges. These include in general high- and low-energy exchanges, but for heavy meson de-

cays (i.e. heavy-to-heavy and heavy-to-light transitions) the leading contribution comes from soft

gluons. Therefore, form factors enter our computations as a non-perturbative input.

2.1.2 B → P Form Factors

Here P means any pseudoscalar meson. The following decomposition of bilinear quark matrix

elements define the relevant form factors for this type of B meson decays [29]

κ 〈P (p′)| q̄γµb |B̄(p)〉 =

[
(p+ p′)µ −

m2
B −m2

P

q2
qµ

]
f+(q2) +

m2
B −m2

P

q2
qµf0(q2), (2.1.2)

κ 〈P (p′)| q̄σµνqνb |B(p)〉 =
i

mB +mK

[
q2(p+ p′)µ − (m2

B −m2
P )qµ

]
fT (q2), (2.1.3)

with mB and p the mass and momentum of the B meson, mP and p′ the mass and momentum of

the pseudoscalar meson in the final state and q = p − p′. The three q2-structures f+,0,T (q2) are

the B → P form factors.

Using the equations of motion for the s and b quarks, one can transform Eq. (2.1.2) and obtain

the following useful relation

κ 〈P (p′)| q̄b |B(p)〉 =
m2
B −m2

P

mb −mq
f0(q2), (2.1.4)

being mq the mass of the q quark in the current.

2.1.3 B → V Form Factors

The relevant form factors for B → V transitions (where V stands for any vector meson) can be

defined through the following matrix elements 1 [29]

1The sign convention used for the Levi-Civita symbol is such that ε0123 = −ε0123 = −1. Then γ5 =
i

4!
εµνρσγ

µγνγργσ = iγ0γ1γ2γ3.
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κ 〈V (p′, ε∗)| q̄γµb |B̄(p)〉 =
2iV (q2)

mB +mV
εµνρσε

∗νp′ρpσ, (2.1.5)

κ 〈V (p′, ε∗)| q̄γµγ5b |B̄(p)〉 = 2mVA0(q2)
ε∗ · q
q2

qµ + (mB +mV )A1(q2)

[
ε∗µ −

ε∗ · q
q2

qµ

]

−A2(q2)
ε∗ · q

mB +mV

[
(p+ p′)µ −

m2
B −m2

V

q2
qµ

]
, (2.1.6)

κ 〈V (p′, ε∗)| q̄σµνqνb |B̄(p)〉 = −2T1(q2)εµνρσε
∗νp′ρpσ, (2.1.7)

κ 〈V (p′, ε∗)| q̄σµνqνγ5b |B̄(p)〉 = −iT2(q2)
[
(m2

B −m2
V )ε∗µ − (ε∗ · q)(p+ p′)µ

]

− iT3(q2)(ε∗ · q)
[
qµ −

q2

m2
B −m2

V

(p+ p′)µ

]
, (2.1.8)

where mV , p′µ and εµ are the mass, the 4-momentum and the polarization vector of the vector

meson V in the final state, mB and pµ are the mass and the 4-momentum of the B meson and

qµ = pµ− p′µ is the momentum transfer. The constant κ is defined such that it takes the value
√

2

for ρ0, while it is equal to 1 for all the other mesons. Finally, the seven independent q2-functions

V , A0,1,2 and T1,2,3 are the corresponding form factors.

It is important to notice that while V and A1,2,3 are scale-independent quantities, T1,2,3 have

a scale dependence [30, 31]. This is because non-factorisable corrections to the amplitude of the

decay B → K∗γ∗, with γ∗ off-shell, enter the amplitude precisely through the form factors T1,2,3

(more details on this can be found in Section 4.4).

Eqs. (2.1.5) and (2.1.8) can be combined in order to obtain expressions for the matrix elements

of the typical bilinear quark currents

κ 〈V (p′, ε∗)| q̄γµPL,R b |B̄(p)〉 = ε∗ν

{
− iενµρσp′ρqσ

V (q2)

mB +mV
∓ 1

2

[
2mV

q2
qνqµA0(q2)

+ (mB +mV )

(
gνµ −

qνqµ
q2

)
A1(q2)

− qν
mB +mV

(
(2p′ + q)µ −

m2
B −m2

V

q2
qµ

)
A2(q2)

]}
,

(2.1.9)

κ 〈V (p′, ε∗)| q̄ iσµνqνPL,R b |B̄(p)〉 = ε∗ν

{
iενµρσp

′ρqσT1(q2)

± 1

2

[(
(m2

B −m2
V )gνµ − qν(2p′ + q)µ

)
T2(q2)

+ qν

(
qµ −

q2

m2
B −m2

V

(2p′ + q)µ

)
T3(q2)

]}
, (2.1.10)

where the chirality projectors are defined as usual by PL,R ≡
1

2
(1∓ γ5).

To conclude the section, we shall present the derivation of two additional matrix elements,

which will prove to be useful later on. Let’s start by multiplying both sides of Eq. (2.1.9) by qµ,
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κ 〈V (p′, ε∗)| q̄ /qPL,R b |B̄(p)〉 = ε∗ν
{
∓mV qνA0(q2)

}
. (2.1.11)

Now, taking advantage of the fact that γ5 anticommutes with all the other Dirac matrices,

{γµ, γ5} = 0, and using the equations of motion for the b quark and for the q̄ antiquark, one

transforms the quark current in Eq. (2.1.11) into

(/p−mb) b = 0

q̄ (/p′ −mq) = 0

}
⇒ q̄ /qPL,R b = mb q̄ PR,L b−mq q̄ PL,R b. (2.1.12)

In the heavy-quark limit, the b quark is assumed to be much heavier than the emission quark

q (mq � mb), hence terms of the order of mq/mb can be neglected. Then, using the results in

Eqs. (2.1.11) and (2.1.12), it follows that

κ 〈V (p′, ε∗)| q̄ PL,R b |B̄(p)〉 ' ε∗ν
{
±mV

mb
qνA0(q2)

}
. (2.1.13)

Finally, we also take Eqs. (2.13)-(2.14) from [32] and rearranange them into

κ 〈V (p′, ε∗)| q̄ σµνγ5 b |B̄(p)〉 =
1

2
iεµνρσε

ρσ
αβ

{
ε∗α(2p′ + q)βT1(q2)

− m2
B −m2

V

q2
ε∗αqβ[T1(q2)− T2(q2)]

+
2(ε∗ · q)
q2

p′αqβ
[
T1(q2)− T2(q2)− q2

m2
B −m2

V

T3(q2)

]}
, (2.1.14)

which, by means of the identity σµνγ5 = − i
2
εµναβσ

αβ, can be recast as

κ 〈V (p′, ε∗)| q̄ σµν b |B̄(p)〉 = ε∗ρ

{
− εµνρβ(2p′ + q)βT1(q2)

+ εµνρβ q
βm

2
B −m2

V

q2
[T1(q2)− T2(q2)]

− qρ εµναβ p′αqβ
2

q2

[
T1(q2)− T2(q2)− q2

m2
B −m2

V

T3(q2)

]}
. (2.1.15)

Eqs. (2.1.11), (2.1.12), (2.1.13) and (2.1.15) are important as they characterise the decomposition

of the matrix elements of the most relevant operators in the b→ s`+`− effective Hamiltonian.

2.1.4 Heavy-to-light Form Factors in HQET/LEET: Soft Form Factors

In b → q transitions where the final quark q can be considered light with respect to the b quark

(i.e. q = u, d, s), the initial b and final q quarks will interact with the spectator quark inside

the B meson2 and the other light degrees of freedom mainly via soft-gluon exchanges. This is a

consequence of the b quark being heavy and the recoiling quark very energetic. Therefore, HQET

can be used to described the dynamics of the b quark and the LEET formalism applies to the

2The quark in the B meson that does not undergo a weak transition during the whole process.
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light energetic quark. Following Eqs. (1.4.2) and (1.4.4), neglecting the residual momentum kµ,

the relevant dynamical variables of the process read

pµ = mBv
µ, p′µq = Eqn

µ, (2.1.16)

with pµ the momentum of the B meson and p′µq and Eq the momentum and energy of the energetic

light quark. Recall that the vectors vµ and nµ fulfil the properties in Eq. (1.4.7).

Since almost all the energy of the light meson E is carried by the quark created in the weak

decay vertex (the spectator quark is soft), then Eq ' E and the momentum of the light-meson p′µ

reads

p′µ = Enµ, (2.1.17)

allowing us to write the momentum transfer in the following terms

qµ = pµ − p′µ = mBv
µ − Enµ. (2.1.18)

Therefore,

q2 = m2
B − 2mBE +m2 ⇐⇒ E =

mB

2

(
1− q2

m2
B

+
m2

m2
B

)
(2.1.19)

where m stands for the mass of the final meson.

In the large recoil limit, the kinematic region where the energy of the final state meson scales

with the heavy quark mass in the heavy-quark limit, the light meson is required to have an energy

of order O(mB/2) or, equivalently, the momentum transfer must be such that q2 � m2
B. Thus, we

have that E ∼ mB ∼ mb � ΛQCD, so all the errors that arise due to the HQET and LEET double

expansion in ΛQCD/mb and ΛQCD/EK∗ can be grouped together in a single O(ΛQCD/mb) term.

The LEET in Section 1.4 can be applied only to those light mesons in which the quark

emitted during the weak decay of the b quark carries almost all of the meson’s momentum: this

dynamical configuration is known as soft or Feynman mechanism. The preferred configuration for

hadronisation is the one where constituent quarks in the outgoing meson have nearly the same

momentum, thus the very asymmetric momentum distribution we are assuming here is an atypical

one, implying that the probability for the quark-antiquark pair to hadronise into a light meson

will be a function of its energy. For this reason, the heavy-to-light form factors at large recoil,

commonly known as soft form factors, will be functions of the energy of the recoiling light meson

ξ(E) with unknown absolute normalization.

In this thesis, the explicit derivation of the large recoil soft form factors is not provided. For

detailed descriptions of their construction, we refer to Refs. [24, 29]. The three relevant B → P

form factors defined in Eqs. (2.1.2) and (2.1.3) reduce to a single soft form factor ξP (E), while the

seven independent B → V form factors defined through Eqs. (2.1.5)-(2.1.8) are all related to only

two soft form factors, ξ⊥(E) and ξ‖(E). The subscripts ⊥ and ‖ are related to the polarization

of the V vector meson, with ξ⊥(E) (ξ‖(E)) being the only contribution to the form factor for a

transversely (longitudinally) polarized V .

Neglecting somem2
V /m

2
B terms that must be neglected at leading order in 1/mb for consistency,

the aforementioned relations between form factors read [24, 29]



2.1. Meson Form Factors 25

〈P (p′)| q̄γµb |B̄(p)〉 = 2EξP (E)nµ, (2.1.20)

〈P (p′)| q̄σµνqνb |B̄(p)〉 = 2iEξP (E) [(mB − E)nµ −mBv
µ] , (2.1.21)

for B meson decays to pseudoscalars, and

κ 〈V (p′, ε∗)| q̄γµb |B̄(p)〉 = 2iE ξ⊥(E)εµνρσε∗ν nρvσ (2.1.22)

κ 〈V (p′, ε∗)| q̄γµγ5b |B̄(p)〉 = 2E [ξ⊥(E)(ε∗µ − ε∗ · v nµ) + ξ‖(E)ε∗ · v nµ] (2.1.23)

κ 〈V (p′, ε∗)| q̄σµνqνb |B̄(p)〉 = 2EmB ξ⊥(E)εµνρσε∗ν vρ nσ (2.1.24)

κ 〈V (p′, ε∗)| q̄σµνγ5qνb |B̄(p)〉 = −2iE
{
ξ⊥(E)(ε∗µ − ε∗ · v nµ) (2.1.25)

+ ξ‖(E) ε∗ · v[(mB − E)nµ −mBv
µ]
}

for decays to vector mesons. Finally, comparing Eqs. (2.1.2)-(2.1.3) with Eqs. (2.1.20)-(2.1.21) the

following symmetry relations between form factors emerge

f+(q2) =
mB

2E
f0(q2) =

mB

mB +mP
fT (q2) = ξP (E) (2.1.26)

for pseudoscalars. Correspondingly comparing Eqs. (2.1.5)-(2.1.8) with Eqs. (2.1.22)-(2.1.25) one

finds

mB

mB +mV
V (q2) =

mB +mV

2E
A1(q2) = T1(q2) =

mB

2E
T2(q2) = ξ⊥(E) (2.1.27)

mV

E
A0(q2) =

mB +mV

2E
A1(q2)− mB −mV

mB
A2(q2) =

mB

2E
T2(q2)− T3(q2) = ξ‖(E) (2.1.28)

for decays into vector mesons.

These relations are only valid for the soft contribution to the form factor at large recoil,

neglecting corrections of order ΛQCD/mb and αs.

2.1.5 O(αs) symmetry breaking corrections

Corrections to the form factors of order O(ΛQCD/mb), although naive dimensional estimates assign

a 10% size for them, cannot yet be computed from first principles within any of the theoretical

frameworks available. Whereas, the status of O(αs) corrections to the form factors is rather

different. There are two sources of these corrections: hard-vertex corrections and hard-spectator

scattering [29, 33]. High energy contributions of the first type are accounted for by multiplicative

renormalising the current [q̄Γb]eff in the effective theory, following the usual techniques of operator

renormalisation in the construction of effective field theories [7]. Soft hard-vertex corrections

cannot be treated following the same strategy, since these are contributions from soft collinear

gluons to the light quark and therefore cannot be computed in perturbation theory. However,

soft hard-vertex contributions respect the symmetries that emerge in the HQET/LEET, so it is

possible to absorb them in the definition of the soft form factors [29]. The second type of O(αs)

corrections are, from a physical perspective, generated by gluon exchanges between a heavy or

energetic quark and the spectator quark in the meson. Hence they allow mesons to transition

into states where the momenta of their valence quarks is symmetrically distributed, being this the
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preferred configuration for a meson. These latter corrections can be computed within the theory

of hard-scattering exclusive processes, which we review in Chapter 3.

The qualitative statement above can be mathematically synthesised into the following schematic

expression

F (q2) = Dξa(E) + ΦB ⊗ TH ⊗ Φa, (2.1.29)

where F stands for any full QCD form factor, a runs over the possible light mesons in the final state

a = P, V ⊥, V ‖, TH is the so-called hard-scattering kernel, which can be computed in perturbation

theory, ΦB,a are the light-cone distribution amplitudes for a B meson and a light meson respectively

and D = 1 + O(αs) is a factor accounting for the hard-vertex corrections. As we will discuss in

forthcoming chapters, Eq. (2.1.29) holds to all orders in O(αs) but is only valid at leading order

in ΛQCD/mb, since it draws from the simplifications available in the context of the HQET/LEET.

2.2 Meson Decay Constants

Meson decay constants are fundamental hadronic parameters where information about the interac-

tion strength between the valence quark q of the meson and its associated antiquark q̄′ is encoded

[34]. Alternatively, it measures how likely it is for q and q̄′ to be at the same space-time point and

thus annihilate. As a consequence, a meson decay constant is a natural parameter to appear when

computing the transition amplitude from an initial meson state to a final non-hadronic state,

〈0| q̄′Γq |M〉 ∼ fM (2.2.1)

where Γ represents the irreducible Dirac matrix describing the transition process and fM is the

corresponding meson decay constant.

For a pseudoscalar meson P with momentum p′, its decay constant is defined in terms of the

following matrix element [29]

κ 〈P (p′)| q̄γµγ5q
′ |0〉 = −ifP p′µ, (2.2.2)

On the other hand, the longitudinal fV,‖ and transverse fV,⊥ decay constants of a vector meson

V with momentum p′µ and polarization vector ε∗µ are defined as [29]

〈V (p′, ε∗)| q̄γµq′ |0〉 = −ifV,‖mV ε
∗
µ, (2.2.3)

〈V (p′, ε∗)| q̄σµνq′ |0〉 = fV,⊥(µh)(p′µε
∗
ν − p′νε∗µ). (2.2.4)

Traditionally meson decay constants have been computed from two-point QCDSRs (see Refs. [27,

28]), yet nowadays some of the best computations for these quantities are obtained through Lattice

QCD, because of its progress during the last few years.



Chapter 3

Fundamentals of QCD Factorization

In the context of exclusive hadronic decays of B mesons, factorisation is a concept that applies

to matrix elements of the effective operators. For purely leptonic and strict semileptonic two

body decays (i.e. B → µµ, for the former, and B → Dτν, for the latter), the amplitude of the

process can be decomposed (factorised) into products of matrix elements of leptonic and quark

currents. These are precisely the currents that originate from the 4-fermion operators in the

effective Hamiltonian. The factorisation of the matrix elements for this type of decays is easy to

understand because gluons cannot connect leptonic and quark currents. Thinking about Feynman

diagrams, it is possible to cut the W boson line connecting the quark and leptonic parts of the

decay and treat them separately.

However, for non-leptonic decays, since the products of the decay can interact via strong effects,

”non-factorisable”1 contributions, that is corrections to the amplitude that cannot be written as

products of currents, must be also taken into account. Gluon exchanges with virtualities above

the mb scale are already included in the process-independent Wilson coefficients of the effective

theory, as we discussed in Chapter 1. So, it is the soft QCD interactions that arise during the

dynamics of the decay the ones that generate the aforementioned ”non-factorisable” contributions.

Moreover, these long-distance corrections are crucial for accounting for how the quark content of a

given process organizes into hadron final states through the mechanism of rescattering. Therefore

is crucial to have a systematic and model-independent treatment of two-body heavy meson decays

capable of providing a consistent description of the non-perturbative input stemming from these

matrix elements while allowing, at the same time, a perturbative treatment of the high-energy

QCD effects.

In this section, we are going to first review one of the first attempts at computing matrix

elements of two-body meson decays: the so-called naive factorisation approach [35, 36] and some

of its extensions. Which will lead us to the technique of QCD factorisation (QCDf) [37], one of

the theoretical frameworks able to deal with these objects with the characteristics described in

the paragraph above. The collection of results we will qualitatively describe in this section will

be used later on for computing radiative corrections to exclusive radiative B meson decays in the

heavy quark limit, as it was shown in [29, 30]. An interested reader can find a more exhaustive

review of the factorisation concept in non-leptonic decays in [38] and [39], plus Refs. [40, 41] also

provide excellent discussions on QCDf from a more quantitative point of view.

1See footnote number 2 on page 31 for a precise definition of the meaning of the term non-factorisable between

quotation marks.

27
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3.1 Naive factorisation

For illustrative purposes, let’s examine the weak decay of a B meson into two light mesons M1 and

M2. The dynamics of this decays is governed by the weak effective Hamiltonian Heff describing

the underlying quark transition with the right quantum numbers. Therefore, the amplitude of the

process B̄ →M1M2 can be written as

〈M1M2|Heff |B̄〉 ∼
∑

i

Ci(µ) 〈M1M2| Oi |B̄〉 (µ), (3.1.1)

where Ci are the Wilson coefficients of the effective theory and Oi the corresponding effective

operators. Now we will focus on the matrix elements 〈M1M2| Oi |B̄〉 without, at least in the

beginning, thinking too much about its scale dependence.

From a field theory perspective, a meson state M2 is generated by a quark current carrying

the right flavour and Lorentz quantum numbers. For example, if M2 is a pseudoscalar, one needs

a current q̄1γ
µγ5q2 to create a state with the adequate quantum numbers. Assume that Oi is such

that one of its currents is able to generate M2 from the vacuum, if this operator also contains a

current, say q̄γµb, with the quantum numbers of a B̄ →M1 transition, this will contribute to the

B̄ → M1M2 decay amplitude. In the naive factorisation approach [35, 36], it is assumed that the

matrix element of the aforementioned effective operator can be decomposed (factorised) into the

product of the matrix elements of the two currents,

〈M1M2| (q̄1γ
µγ5q2)(q̄γµb) |B̄q〉 ' 〈M2| q̄1γ

µγ5q2 |0〉 〈M1| q̄γµb |B̄q〉 = fM2 · F B̄q→M1 . (3.1.2)

So the matrix element, with two mesons in the final state, under the naive factorisation assumption,

simplifies to the product of a decay constant fM2 and a transition form factor F B̄q→M1 . These two

quantities can be computed using elaborate techniques capable of dealing with non-perturbative

quantities, like LCSRs or lattice gauge theories. Hence, this approach provides a simple prescription

for estimating complicated matrix elements in terms of better known quantities.

In the previous expression, color indices are not explicitly written but understood to be

summed over. Notice that, since hadrons only live in colour singlet states, naive factorisation

requires both currents into which the full operator is decomposed to be colour singlets.

In general, the weak effective Hamiltonian will contain pairs of operators with the same flavour

and Lorentz structures but different colour arrangements,

Oi = (q̄1αΓ1q2α)(q̄βΓ2bβ), (3.1.3)

Oj = (q̄1αΓ1q2β)(q̄βΓ2bα), (3.1.4)

where α, β are the colour indices of the quark fields and Γ1, Γ2 the Lorentz structures of the

currents. Usually, the operators above are referred to as the colour singlet and colour triplet

operators. However, these are not the only forms one can write the two operators above. Using a

Fierz transformation these operators can be rewritten as,

O′i = (q̄αΓ′1q2β)(q̄1βΓ′2bα), (3.1.5)

O′j = (q̄αΓ′1q2α)(q̄1βΓ′2bβ), (3.1.6)
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with Lorentz structures Γ′1, Γ′2 generally different from Γ1, Γ2. Since Oi and O′j are colour singlet

structures with the same overall flavour content but different arrangement in terms of currents,

it is possible for the operators participating in the decay to be decomposed in the form Oi (as

sketched in (3.1.2)), in the newly ordered form O′j or in both forms. In the latter case, according

to the principles of Quantum Mechanics one must consider the two possible contributions, as

they represent different ways of rearranging the quark content into hadrons. Then, we define the

factorised matrix elements by

〈Oi〉F = 〈M2| q̄1Γ1q2 |0〉 〈M1| q̄Γ2b |B̄q〉+ 〈M1| q̄1Γ1q2 |0〉 〈M2| q̄Γ2b |B̄q〉 , (3.1.7)

〈O′j〉F = 〈M2| q̄Γ′1q2 |0〉 〈M1| q̄1Γ′2b |B̄q〉+ 〈M1| q̄Γ′1q2 |0〉 〈M2| q̄1Γ′2b |B̄q〉 . (3.1.8)

If Oi and Oj (or equivalently O′i and O′j) are the only relevant operators for the decay, we can

write the effective Hamiltonian as

Heff = CiOi + CjOj = CiO′i + CjO′j . (3.1.9)

However, in order to introduce factorisation, we cannot work with the effective Hamiltonian above,

as both Oj and O′i do not admit a decomposition in terms of two separate colourless bilinear

currents. Hence one should investigate the structure of these two operators. For that matter, it is

convenient to work in the singlet-octet basis for the operators. Take the colour octet operator,

O8 = (q̄1αT
a
αβΓ1q2β)(q̄γT

a
γδΓ2bδ). (3.1.10)

by means of the following relation between the generators of the Lie algebra of SU(3),

T aαβT
a
γδ =

1

2

[
δαδδβγ −

1

Nc
δαβδγδ

]
, (3.1.11)

one can re-express the octet operator in terms of the singlet and triplet operators,

2O8 = Oj −
1

Nc
Oi. (3.1.12)

This shows that the triplet operator Oj is colour suppressed with respect to the singlet. Plus, it is

clear that for O8 to be able to contribute to the decay amplitude through factorisation, there must

be gluon exchanges between the quarks in the operator, implying that contributions from these

operators enter at order O(αs). The same conclusions can be obtained for the Fierz transformed

operator O′i, with the correspondingly transformed octet operator O′8. So one can schematically

write

CjOj =
1

Nc
CjOi +O(αs) and CiO′i =

1

Nc
CiO′j +O(αs). (3.1.13)

Therefore, the naive factorisation approach finally yields the following decomposition of the am-

plitude of the process,

〈M1M2|Heff |B̄〉 = ai(µ) 〈Oi〉F + aj(µ) 〈O′j〉F , (3.1.14)

where the dressings a1,2(µ) are defined as,
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ai,j(µ) = Ci,j(µ) +
1

Nc
Cj,i(µ). (3.1.15)

The application of the naive factorisation ansatz can be actually justified in highly energetic two-

body decays. In this case, the mesons produced in the decay hadronise2 when they are far apart

from each other and thus the ”factorisable”3 part of the amplitude is expected to give the dominant

contribution. Then, since quarks have already organized into colour singlet states, soft gluons

cannot alter their arrangement. This dynamical condition is known as the colour transparency

hypothesis [42]. One cannot strictly derive colour transparency from QCD [25] but it can be

explained in a systematic and model-independent way within the combined framework of HQET

and LEET [43]. Soft gluon exchanges between a fast recoiling meson produced in a point-like

source, i.e. an operator in an effective field theory, and the other hadronic parts in a meson

decay are very suppressed. Then, it is possible to study this soft-gluon interactions by means of a

multipole expansion, being the first term the colour dipole. It can be seen that this contribution

is suppressed by a ΛQCD/mb factor and so it vanishes in the heavy-quark limit.

As mentioned before, (3.1.14) implicitly means that ”non-factorisable” corrections are ne-

glected. The exchange of soft gluons between the mesons in final state is forbidden, making the

physical phenomena of rescattering and the generation of strong phase shifts between amplitudes

out of reach of this description.

However, the most obvious drawback of the naive factorisation approach has to do with the

different scaling behaviour ai,j(µ) and the factorised matrix elements 〈O(′)
i,j〉F enjoy. The renormal-

isation scale dependent matrix element 〈O(′)
i,j〉 (µ) is ultimately reduced to a decay constant times a

transition form factor, which are scale independent quantities. Therefore, all the scale dependence

cancellations between the Wilson coefficients and matrix elements of the operators of the effective

theory is lost in naive factorisation, consequently rendering an unphysical amplitude. Rather than

interpreting the factorised amplitude as a physically meaningful object, one might want to take it

as a proxy for the amplitude valid only within a suitable factorisation scale µf . No information on

this scale is available from the principles of this prescription but one usually assumes this scale to

be around O(mc) or O(mb), for D and B decays respectively.

More problems affect naive factorisation results beyond the leading logarithm contribution.

At this order in the expansion, the Wilson coefficients become renormalisation scheme dependent

quantities. In the ”full” effective theory, the matrix elements are also scheme dependent quantities

so that the overall scheme dependence cancels, however the factorised form of the matrix elements

spoils this cancellation. Of course, this is unphysical too.

3.1.1 Generalised factorisation

These issues are addressed, more or less effectively, in various so-called generalised factorisation

approaches [34, 44–49]. These models generalise the naive factorisation prescription by introducing

2By hadronisation one understands those strongly mediated interactions by which free quarks assemble in order

to create hadron states.
3We will use the term ”factorisable”, between quotation marks, for referring to those contributions to the matrix

elements that can be decomposed following naive factorisation, i.e. into the product of a transition form factor and

a decay constant. Similarly, ”non-factorisable” corrections are those which do not accept such a decomposition. We

introduce this notation as in the next section, when discussing the elements of QCDf, factorisable and non-factorisable

contributions will have a different meaning.
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new parameters that account for the ”non-factorisable” contributions, in an effort to cancel the

scale and scheme dependence of the Wilson coefficients.

In Ref. [34] a more flexible approach is introduced where, instead of a fixed factorisation scale

µf = mb (for B decays), one introduces the scale as a process dependent parameter. Assume the

amplitude of the decay B̄ → M1M2, given its dynamics and quantum numbers, can be described

by the factorisation of Oi only, and not O′j . Using Fierz rearrangements, one can write the effective

Hamiltonian for this process in terms of two colour single currents and two colour octet currents,

Heff ∼
(
Ci +

1

Nc
Cj
)
Oi + 2CjO8. (3.1.16)

One can introduce two process dependent non-perturbative hadronic parameters, ε1(µ) and ε8(µ),

to account for the ”non-factorisable” contribution that are neglected in naive factorisation

ε1(µ) ≡ 〈Oi〉〈Oi〉F
− 1, ε8(µ) ≡ 2

〈O8〉
〈Oi〉F

. (3.1.17)

Whereas the naive factorisation decomposition Ci 〈Oi〉+ Cj 〈Oj〉 = ai(µ) 〈Oi〉F is only valid up to

O(αs) corrections, the factorisation structure can be made exact with the aid of the parameters

ε1(µ) and ε8(µ) in Eq. (3.1.17),

Ci 〈Oi〉+ Cj 〈Oj〉 =

[(
Ci(µ) +

1

Nc
Cj(µ)

)
[1 + ε1(µ)] + Cj(µ)ε8(µ)

]
〈Oi〉F . (3.1.18)

The same can be argued for a decay proceeding through the decomposition of the operator O′j . In

this case, one finds that

Ci 〈O′i〉+ Cj 〈O′j〉 =

[(
Cj(µ) +

1

Nc
Ci(µ)

)[
1 + ε′1(µ)

]
+ Ci(µ)ε′8(µ)

]
〈O′j〉F , (3.1.19)

where the hadronic parameters ε′1(µ) and ε′8(µ) follow the definitions in Eq. (3.1.17) with the re-

placementsOi → O′j andO8 → O′8. In terms of these new parameters, the decay amplitude (3.1.14)

can be recast as

〈M1M2|Heff |B̄〉 = aeff
i 〈Oi〉F + aeff

i 〈O′j〉F , (3.1.20)

with the coefficients a1 and a2 being replaced by the effective coefficients

aeff
i =

(
Ci(µ) +

1

Nc
Cj(µ)

)
[1 + ε1(µ)] + Cj(µ)ε8(µ), (3.1.21)

aeff
j =

(
Cj(µ) +

1

Nc
Ci(µ)

)[
1 + ε′1(µ)

]
+ Ci(µ)ε′8(µ). (3.1.22)

Clearly, since the colour transparency hypothesis is a sound physical depiction when ”non-factorisable”

contributions can be safely neglected, any faithful generalisation of the naive factorisation approach

should aim at providing a framework that reduces to (3.1.14) when ”non-factorisable” corrections

are put to zero. This is the case of the parametrisation presented above, as one can see taking the

limit ε
(′)
1,8 → 0 in Eqs. (3.1.21) and (3.1.22).

The introduction of the hadronic parameters ε
(′)
i (µ) (i = 1, 8) comes without any loss of

generality and, since the factorised matrix elements do not depend on the scale, all of the scale
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dependence is contained inside the Wilson coefficients and the parameters ε
(′)
i (µ). Therefore, as

the amplitude is a physical and hence µ-independent quantity, the hadronic parameters ε
(′)
i (µ)

restore the correct µ-dependence of the matrix elements, which is lost in naive factorisation.

Even if the generalised factorisation presented in [34] manages to consistently treat the differ-

ences in the scale dependence of the Wilson coefficients and the factorised matrix elements, it is

still affected by a major theoretical problem. The scheme dependence of the Wilson coefficients at

next-to-leading order in the renormalisation group improved perturbation theory makes it possible

to find, for any factorisation scale, a particular scheme where the hadronic parameters ε
(′)
1,8 vanish

simultaneously [49]. This leads us back to the naive factorisation result and shows the inadequacy

of this generalisation for properly accounting for the ”non-factorisable” contributions to the matrix

elements.

Another approach to combining the principles of factorisation while achieving results with the

right scale and scheme dependence can be found in [45, 47, 48, 50]. For matching the effective

theory to the full theory when building the effective Hamiltonian, one needs to eliminate the

divergences that appear in the matrix elements of the effective operators through renormalisation

of the constituent fields plus the so-called operator renormalisation (see Chapter 1 and [7] for more

details). Therefore, since any O(µ) in the effective Hamiltonian is a four-quark (current-current)

operator renormalised at the scale µ, its matrix element can be schematically written in terms of

its corresponding tree-level amplitude

C(µ) 〈O(µ)〉 = C(µ)g(µ) 〈O〉tree , (3.1.23)

with [45]

g(µ) ∼ 1 + αs(µ)

(
γ ln

µ2

−p2
+ c

)
, (3.1.24)

where p is the off-shell momentum of the external quark lines, γ the anomalous dimension and c a

momentum-independent constant term. Then, one can redefine the contribution of this operator

to the amplitude,

C(µ)g(µ) 〈O〉tree = Ceff 〈O〉tree , (3.1.25)

so that the effective coefficient Ceff is scale and scheme independent. Thus, coming back to our

customary system described by the Hamiltonian in (3.1.16), one finds

Ci 〈Oi〉+ Cj 〈Oj〉 = Ceff
i 〈Oi〉tree + Ceff

j 〈Oj〉tree (3.1.26)

Now it is, in principle, possible to safely apply naive factorisation to the ”tree-level” matrix ele-

ments, as all scale and scheme dependence is encapsulated in the effective coefficients. Ultimately,

as in Eq. (3.1.20), this procedure leads to a factorisation prescription that absorbs the ”non-

factorisable” contributions into some parameters aeff
i,j ,

aeff
i,j = Ceff

i,j +
1

N eff
Ceff
j,i , (3.1.27)

where N eff is a ”non-factorisable” parameter representing the effective colour suppression that

each different channel feels. Notice that, despite N eff being in general a process dependent, this

parameter is expected to be process-independent for energetic two body B-decays [45].
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This last approach also has, however, its own drawbacks. As shown in [49], the perturbative

evaluation of scheme-dependent finite contributions to the matrix elements makes the effective

Wilson coefficients gauge dependent quantities and induces some infrared singularities. Of course,

this makes the parametrisation in (3.1.27) unphysical and diminishes its predictive power.

Finally, some theoretical frameworks able to properly treat ”non-factorisable” contributions

emerged [51–54], where all the shortcomings discussed above are solved. In the remaining of this

chapter we will focus on the computational method introduced by Beneke, Buchalla, Neubert

and Sachrajda: the so-called QCD factorisation approach (QCDf), also known as BBNS after its

authors. Originally this framework was devised for the analysis of the B → ππ decay [37] and

later it was extended and generalised to non-leptonic [55–57] and radiative decays [30, 33, 58].

3.2 QCD Factorisation

QCD factorisation is a theoretical framework for computing transition matrix elements of effective

operators that relies on the usual factorisation sense used in most QCD applications: what it is

factorised are the long-distance dynamical effects in the matrix elements from all those contribu-

tions that depend on the characteristic large scale of the underlying physical process. These ideas

were already widely used in the 70s and 80s for the description of hadron scattering with large

momentum transfer, i.e. deep inelastic scattering (DIS). In this last particular case, the amplitude

for a process e+A→ e+X (where A denotes a given hadron and X anything else) [59, 60]

Wµν(p, q) =
1

4π

∫
d4y eiq·y 〈A(p)| jµ(y) |X〉 〈X| jν(0) |A(p)〉 , (3.2.1)

where jµ(y) is the electromagnetic current, can be written in a very compact form, following the

factorisation theorem

Wµν(p, q) =
∑

a

∫ 1

x

dξ

ξ
fa/A(ξ, µ)Hµν

a (q, ξp, µ, αs(µ)) + power corrections of O

(
1

Q2

)
. (3.2.2)

In the expression above, p is the momentum of the incoming hadron A, q the momentum trans-

fer, Q2 = −q2 and the index a runs over all partons composing the incoming hadron (a =

gluon, u, ū, d, d̄, . . .). The hard-scattering functions Hµν
a contain the short-distance contributions,

which can be computed perturbatively as an expansion in αs(
√
Q2). Whereas, the so-called parton

distribution functions fa/A(ξ, µ) encode the long-distance phenomena and thus must be computed

by means of non-perturbative methods or estimated experimentally. One must read fa/A(ξ, µ)dξ

as the probability of finding a given parton a in the hadron A carrying a fraction ξ of its total

momentum. The benefit of employing this decomposition is that generally the non-perturbative

objects involved, that is the parton distribution functions in this case, are substantially simpler in

structure with respect to the full amplitude and/or they are process independent.

In the QCDf context, the same idea applies. As in (3.2.2), QCDf factorises a given transition

matrix element as a convolution of long- and short-distance structures. Again, long-distance

contributions must be assessed with the aid of non-perturbative analytical tools, while the short-

distance pieces can be computed in perturbation theory with αs(mb) as the expansion parameter.

Clearly, the factorisation properties of non-leptonic decay amplitudes must depend on the

mesons in the final state. It is thus necessary to make distinctions between types of mesons and,
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Figure 3.1: Graphical representation of the factorisation formula for B meson decays to two light

mesons [55].

since mb sets the QCDf factorisation scale, this distinction has to be expressed in meaningful

terms within the heavy-quark limit. In this sense, we will call a meson ”light”, if its mass can be

considered as finite in the heavy-quark limit. Alternatively, a meson is going to be ”heavy”, if its

mass m scales with mB in the same limit, so that m/mB stays fixed.

3.2.1 The factorisation formula

The subsequent discussion contains a review of the general elements and concepts involved in QCDf

mainly following [55]. We consider non-leptonic B → M1M2 decays mediated by an underlying

weak transition in the heavy-quark limit and distinguish those cases in which both mesons in the

final state are light from those where one of the mesons is heavy and the other light. Up to power

corrections of order ΛQCD/mb, the QCDf factorisation formula for the transition matrix element

of an effective operator Oi in the WEH reads [55]

〈L1L2| Oi |B̄〉 =
∑

j

FB→L1
j (m2

2)

∫ 1

0
du T I

ij(u)ΦL2(u)

+
∑

k

FB→L2
k (m2

1)

∫ 1

0
dv T I

ik(v)ΦL1(v) (3.2.3)

+

∫ 1

0
dξ du dv T II

i (ξ, u, v)ΦB(ξ)ΦL1(u)ΦL2(v),

〈H1L2| Oi |B̄〉 =
∑

j

FB→H1
j (m2

2)

∫ 1

0
du T I

ij(u)ΦL2(u). (3.2.4)

Eq. (3.2.3), stating the factorisation of a matrix element of a B meson decay to two light mesons,

is diagrammatically depicted in Fig. 3.1. On the one hand, the non-perturbative content of the

factorisation formula is encoded in the form factors F
B→L1,2

j (m2
2,1) modelling B →M1,2 transitions

and the light-cone distribution amplitudes (LCDAs) ΦX(u) for the quark-antiquark Fock state of

meson X. We provide a description of the non-perturbative inputs in QCDf below. On the

other hand, the hard-scattering functions T I
ij(u) and T II

i (ξ, u, v) (also known as hard-scattering

kernels) are perturbatively calculable functions of the light-cone momentum fractions u, v and ξ

of the quarks inside the final state mesons and the B meson respectively. There are two types of
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hard-scattering kernels: ”type I” and ”type II”, accounting for ”hard vertex” and ”hard-spectator”

contributions. Both LCDAs and hard-scattering kernels are scale and scheme dependent functions,

this is not explicitly written above for the sake of keeping a simple notation. And, finally, m1,2

denote the meson masses.

Hard interactions always enter at order O(αs), therefore the third term in Eq. (3.2.3) does

not contribute at O(α0
s). The hard-scattering kernels T I

i,j are independent of u and v at this order

too, so the convolution in the factorisation formula yields the product of a form factor and a

decay constant, reproducing naive factorisation. This corresponds to the lowest order topology in

the effective theory (see Fig. 3.2). Hence, now we have a formalism that naturally explains the

naive factorisation result at leading order while it allows us, at the same time, to systematically

compute radiative corrections to this result at all orders. Additionally, this solves all the problems

regarding the different scale and scheme dependencies between the different objects in generalised

factorisation prescriptions.

Figure 3.2: Leading order topology contributing to the decay of a B meson to two mesons. Here

the black square represents the four-quark operator through which the decay proceeds [55].

In B meson decays to two light mesons, the spectator quark in the B meson can go to either of

the two light mesons. This is accounted for in the first two lines of Eq. (3.2.3), each of them being

one possibility. The third term in this equation contains the contributions to the matrix element

coming from hard scattering interactions with the spectator quark. The two topologies in Fig. 3.3

are examples of hard-spectator scattering interactions.

The structure of the factorisation formula simplifies greatly when dealing with decays where

the spectator quark goes to a heavy meson. In such a context, hard-spectator interactions (those

in the third term in Eq. (3.2.3)) can be safely neglected as these contributions turn out to be

power suppressed in the heavy-quark limit. Notice that it could also happen that the spectator

quark goes to the light meson, while the other meson is heavy. However, in this setting QCDf

does not apply because the heavy meson is neither fast nor small for it to be factorised from

the decay’s weak quark current. This does not pose a threat, though, since such amplitudes are

power suppressed in the heavy quark limit with respect to the contributions where the spectator is

captured by the heavy meson while the other is light. As a final remark, one should observe that

annihilation topologies in Fig. 3.4 are not included in the factorisation formula, the reason being

that these are corrections that do not contribute at leading order in the heavy-quark expansion.

Because the form factors and distribution amplitudes are all real quantities, strong phases

generated via rescattering effects, of great importance in the hadronisation of mesons, must be

hidden inside the perturbative hard-scattering functions or contained in the order ΛQCD/mb power

corrections to the factorisation formula.
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Figure 3.3: Hard-spectator scattering diagrams in the effective field theory [55].

The other great achievement of QCDf relies on its usefulness. Computing the full matrix

element 〈M1M2| Oi |B̄〉 is a grand theoretical endeavour, however form factors and LCDAs enjoy a

significantly simpler structure and they have been at the reach of many non-perturbative techniques

(LCSRs, QCDSRs, lattice gauge theories, etc) since a long time already.

Figure 3.4: Weak annihilation topologies [55].

3.2.2 Power counting rules

Identifying which terms are leading and which are suppressed at leading power in ΛQCD/mb and

at a given order in αs is rather important in the QCDf framework. For that matter, one needs to

understand the typical energy scales of the gluon exchanges between the constituent quarks inside

a meson and between the quarks of the different mesons involved in the dynamics of the decay

process.

For mesons, or more in general hadrons, to stay as a bound state, there must be a constant

gluon exchange between the valence quarks. In the case of a heavy quark, as most of the meson’s

momentum is aligned with that of the heavy quark constituent, both gluon exchanges between

valence quarks and the momentum of the spectator quark are soft and thus of order q2
soft ∼ Λ2

QCD.

The decay of a heavy quark is a highly energetic process, so hard-collinear gluon exchanges are

expected, these being of the energy scale of the heavy quark q2
hard-collinear ∼ m2

b . Finally, there is

one last interaction possibility, which is the gluon exchange from a heavy or a fast-recoiling quark

to the spectator of the heavy meson (assumed to be slow and soft), i.e. hard-spectator scattering.

Typical energy scales for this type of interactions are q2
hard-spectator ∼ ΛQCDmb.

3.2.3 The non-perturbative quantities in QCDf

In this subsection we want to present some of the characteristics and properties of the non-

perturbative inputs in the factorisation formula: form factors and light-cone distribution am-
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plitudes.

Transition form factors

As we already discussed in Chapter 2, the general notion of a transition form factor arises in the

decomposition of matrix elements of the form

〈M | q̄Γb |B̄〉 , (3.2.5)

where q̄ and b are Dirac quark fields and Γ a given irreducible Lorentz structure linked to the

vertex responsible of the b → q transition. For example, the matrix element of a vector current

mediating a B → P transition can be parametrised in terms of two scalar form factors

〈P (p′)| q̄γµb |B̄(p)〉 = FB→P+ (q2)(pµ + p′µ) +
[
FB→P0 (q2)− FB→P+ (q2)

] m2
B −m2

P

q2
, (3.2.6)

with q = p− p′. Here mP is the mass of the P meson and mB the mass of the B meson.

One can look at the form factors in the factorisation formula in a twofold way. First, one

can understand that only soft contributions are accounted for in the FB→H1,L1
j parametrising

the meson transition in the factorisation formula. In this framework hard corrections to the

form factors are taken to be part of the hard-scattering kernels T I
i,j and T II

i . Of course, this

interpretation has implicit one’s ability to distinguish between soft and hard contributions. Recall

that ”physical” form factors4 contain both soft and hard contributions to the underlying transition.

This separation is possible for B meson decays to a heavy and a light meson since one can define

form factors containing only soft contributions within HQET, which can later be matched to the

physical form factors. However, there is no solid procedure for doing the same for decays to

two light mesons. A second approach is to equate the non-perturbative functions FB→H1,L1
j to

”physical” form factors. Then, as both soft and hard contributions are included in the ”physical”

form factors, hard contributions have to be omitted from type II hard-scattering kernels T II
i and

consistently subtracted from type I kernels T II
i,j , beginning at two-loop order [55].

Light mesons light-cone distribution amplitudes

Given any four-vector kµ = (k0, k1, k2, k3), one can define its light-cone components (along the

z-axis) by

k± =
k0 ± k3

√
2

. (3.2.7)

Using these components it is possible to rewrite the previous four-vector as

kµ = (k+, k−,k⊥), (3.2.8)

where k⊥ refers to the components of k = (k1, k2, k2) orthogonal to the axis used to define the

light-cone components k±. Clearly, these coordinates are highly dependent on the axis choice

used for their definition but they provide a very powerful language for describing ultra-relativistic

4By ”physical” form factors we understand the form factors in which we decompose transition matrix elements,

i.e. FB→P+,0 in (3.2.6) and all of the form factors discussed in Chapter 2.
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phenomena where it is possible to identify a preferred axis. This is certainly the case of hard-

scattering processes, being the preferred axis the collision axis. The main motivation for the use

of light-cone components is their very simple transformation laws under boosts along the preferred

axis (the z-axis in our case):

kµ = (k+, k−,k⊥)
z−boost−−−−−→ k′µ = (k+eψ, k−e−ψ,k⊥) (3.2.9)

with ψ an hyperbolic angle such that v = tanhψ is the velocity of the boost. See [61] for a rather

comprehensive review on the properties of light-cone components.

LCDAs play for hard-scattering processes the same role the parton distribution functions play

for high-energy inclusive processes. These are universal non-perturbative objects that encode the

long distance dynamics of the meson (or, more generally, hadron) considered when probed at large

momentum transfer. Physically they represent the probability of finding the valence quark and

antiquark inside the meson in a certain dynamical configuration.

Let us construct a light-pseudoscalar meson state out of its on-shell constituent quark compo-

nents within a spin singlet-state with no net transverse momentum [55]

|P (k)〉 =

∫
dv√
vv̄

d2`⊥
16π3

ψ(v, `⊥)
1√
2Nc

(
a†`q↑b

†
`q̄↓ − a

†
`q↓b

†
`q̄↑

)
|0〉 . (3.2.10)

Here a†`↑ (b†`↑) is a creation operator whose vacuum excitations are (anti)quarks with momentum `

and spin up, with its colour indices not explicitly stated. This is clearly a leading order represen-

tation of the quantum state of a pseudoscalar meson. The wave-function ψ(v, `⊥) measures the

probability for the meson to be composed of an on-shell quark and antiquark with longitudinal

momentum fractions v and v̄ and transverse momentum `⊥, which averages out to zero between

the two quarks. The on-shell momenta of the quarks (`2q,q̄ = 0) are given by [55]

`q = vk + `⊥ +
`2
⊥

4vE
n−, `q̄ = v̄k − `⊥ +

`2
⊥

4v̄E
n−, (3.2.11)

with k = E(1, 0, 0, 1) the pseudoscalar momentum, being E = pB · k/mB its energy expressed in

a Lorentz invariant fashion assuming the pseudoscalar is generated in the decay of a B meson,

and n± = (1, 0, 0,±1) the light-cone basis vectors (along the z-axis). Notice that, as the quark’s

transverse momentum `⊥ is only related to the meson soft contributions, `⊥ ∼ ΛQCD for power-

counting purposes. It is also interesting to observe that the quar-antiquark invariant mass (`q +

`q̄)
2 = `2

⊥/vv̄ is of order Λ2
QCD and thus irrelevant in the heavy quark limit.

LCDAs are defined via hadron-vacuum matrix elements of non-local operators composed by a

given number of quark and gluon fields with a certain helicity structure at light-like separations.

Non-local operators with different structures give rise to different LCDAs. These LCDAs are clas-

sified according to the so-called twist5 of their corresponding operator. The lowest twist operator

one can imagine for a pseudoscalar meson is the operator associated with its lowest Fock state.

Then, explicitly using the spinorial form of the quark fields, we can write the vacuum-to-hadron

matrix element defining the leading twist LCDA

5Roughly speaking, the twist of an operator is defined as the difference between its dimension and spin. It

turns out that this quantity, rather than the dimension of the operator alone, is a more relevant quantity when

classifying a given operator in an expansion near the light-cone [62, 63]. In our case, the operator with the lowest

dimension compatible with gauge and Lorentz invariant follows the structure q′i(z)αq̄j(0)β . Since this is an operator

of dimension three and spin one, the lowest or leading twist order is twist-2.
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〈P (k)| q′i(z)αq̄j(0)β |0〉z2=0 =
ifP
4κ

δij (γ5/k)αβ

∫ 1

0
dv eiv̄k·zΦP (v), (3.2.12)

where fP is the pseudoscalar meson decay constant, κ =
√

2 (κ = 1) for π0 and ρ0 (for other

mesons) and i, j and α, β are colour and spinor indices, respectively. As we mentioned earlier,

LCDAs are actually probability distributions so they are normalised to unity
∫ 1

0 dv ΦP (v) = 1.

Hence, the meson wave-function ψ(v, `⊥) in Eq. (3.2.10) is related to the leading twist pseudoscalar

LCDA ΦP (v) by integrating out its transverse momentum dependence

∫
d2`⊥
16π3

1√
2Nc

ψ(v, `⊥) = − ifP
4κ

ΦP (v). (3.2.13)

Similarly, vector-meson LCDAs are defined through the following matrix elements, where ηµ is the

polarization vector of the vector meson V [32, 64]

〈V (k, η)| q′i(z)αq̄j(0)β |0〉z2=0 = −f
⊥
V

8κ
δij
[
/η, /k
]
αβ

∫ 1

0
dv eiv̄k·zΦ⊥V (v)

− f
‖
VmV

4κ
δij

[
i /kαβ η · z

∫ 1

0
dv eiv̄k·zΦ

‖
V (v) (3.2.14)

+ /ηαβ

∫ 1

0
dv eiv̄k·zg

⊥(v)
V (v)

− 1

4
(εµνρσηµkνzργσγ5)

∫ 1

0
dv eiv̄k·zg

⊥(a)
V (v)

]
,

with
[
/η, /k
]

= /η/k − /k/η a regular commutator. The functions Φ⊥V (v) and Φ
‖
V (v) fix the leading-

twist probability for a quark (or an antiquark) to carry a fraction of the total momentum v inside

transversely and longitudinally polarised vector mesons, respectively. The functions g
⊥(v)
V (v) and

g
⊥(a)
V (v) describe transverse polarisations of quarks in longitudinally polarized mesons. The latter

functions, receive contributions from both matrix elements of twist-2 and twist-3 operators and

their twist-2 contributions are related to the longitudinal LCDA by [64, 65]

g
⊥(v),twist−2
V (v) =

1

2

[∫ v

0
du

Φ
‖
V (u)

ū
+

∫ 1

v
du

Φ
‖
V (u)

u

]
, (3.2.15)

g
⊥(a),twist−2
V (v) = 2

[
v̄

∫ v

0
du

Φ
‖
V (u)

ū
+ v

∫ 1

v
du

Φ
‖
V (u)

u

]
. (3.2.16)

As explicitly stated in Eqs. (3.2.12)- (3.2.14), the space-time separation between quarks is taken to

be light-like (z2 = 0). The leading contributions to these matrix elements, defined on the light-cone,

contain ultra-violet divergences. In order to deal with these divergences, one can regularise the

aforementioned divergences, which yields non-trivial scale dependencies on these quantities that

can be described by means of well-established renormalisation group methods [64, 66, 67]. The

conformal symmetry of massless QCD at tree level has the important consequence that operators

with different conformal spin6 do not mix at leading logarithm [27, 64]. This can be used for

expanding the LCDAs in conformal partial waves [68]

6This is how one usually refers to the quantum number associated to conformal symmetry.
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Φ
⊥,‖
V (v) = 6v(1− v)


1 +

∑

n=2,4,...

a⊥,‖n (µ)C3/2
n (2v − 1)


 , (3.2.17)

where
{
Cλn(x)

}
is a family of orthogonal polynomials known as Gegenbauer polynomials

Cλn(x) =

(
n+ 2λ− 1

n

) n∑

k=0

(
n
k

)
(2λ+ n)k(
λ+

1

2

)

k

(
x− 1

2

)k
, (3.2.18)

with the definition for the symbol (a)k = a · (a+ 1) · (a+ 2) · . . . · (a+ k − 1). For a good review

on the definition and properties of these polynomials we refer to Ref. [69].

Aside from the prefactor in Eq. (3.2.17), all the dependence of the LCDA on the longitudi-

nal momentum fraction v is contained in the Gegenbauer polynomails C
3/2
n , while the transverse

momentum dependence (the scale dependence) is placed in the an(µ) coefficients, which are mul-

tiplicatively renormalisable quantities to leading logarithm accuracy [64]

a⊥,‖n (µ) = a⊥,‖n (µlow)

(
αs(µ)

αs(µlow)

)(γ
⊥,‖
n −γ⊥,‖0 )/(2β0)

, (3.2.19)

being β0 the leading term of the QCD β-function and the one-loop anomalous dimensions [70, 71]

γ‖n =
8

3


1− 2

(n+ 1)(n+ 2)
+ 4

n+1∑

j=2

1

j


 , (3.2.20)

γ⊥n =
8

3


1 + 4

n+1∑

j=2

1

j


 . (3.2.21)

The combinations of anomalous dimensions in (3.2.19) are always positive and monotonically

increase with n, therefore at sufficiently large scales µ only the first few terms in the Gegenbauer

expansion are relevant. Usually, for applications in B physics, the expansion is truncated at n = 2.

Furthermore, this guarantees that an(µ)→ 0 as µ→∞, due to the asymptotical freedom of QCD,

which renders the following very simple expression for the asymptotic form of LCDAs:

Φ
⊥,‖
V (v)

µ→∞
= 6vv̄. (3.2.22)

Notice that all of the results shown here correspond to vector meson LCDAs. For pseudoscalar

LCDAs, the same results apply except that different anomalous dimension coefficients are required

for the renormalisation of the coefficients in the conformal waves expansion (see [27] for the cor-

responding results for Φπ(v)). Indeed, the asymptotic formula ΦX(v)
µ→∞

= 6vv̄ applies both for

X = P, V .

It is important to have a solid understanding of the behaviour of the LCDAs in the endpoint

region. This dynamical configuration is defined as the region where v or v̄ is of order ΛQCD/mb,

such that the quark or antiquark momentum is of order ΛQCD. Contributions to the factorisation

formula coming from this region, known as endpoint contributions, are dangerous because while

one might be able to show the infrared safety of the hard-scattering kernels T I
i,j(v) and T II

i (ξ, u, v)

for generic longitudinal momentum fractions and without any regards on the shape of the meson
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distribution functions, for v → 0 or v → 1 at least one of the quark propagators that were assumed

to be far off-shell approaches its mass-shell. If such contributions are of leading power, perturbative

computations of the hard-scattering functions are not going to be reliable.

For estimating the LCDAs endpoint structure, one can use the fact that distribution amplitudes

enter the factorisation formula already at a renormalisation scale of order mb, so it is a safe

approximation to use their asymptotic form. Using (3.2.22), we count [55]

ΦX(v) ∼
{

1; for v away from the endpoint,

ΛQCD/mb; for v, v̄ ∼ ΛQCD/mb,
(3.2.23)

with X = P, V ⊥, V ‖. So, for a generic longitudinal momentum fraction v ≈ 1 the LCDA has a

non-negligible contribution to the convolution integral, with well-behaved hard-scattering kernels.

In the endpoint region, v and v̄ ∼ ΛQCD/mb then the outgoing meson momentum k is of O(ΛQCD),

putting its constituent quark and antiquark in a configuration dangerously close to their mass-shell.

However, being the endpoint size of order ΛQCD/mb, contributions from this region are suppressed

by a factor ∼ (ΛQCD/mb)
2. Therefore, although this suppression has to be weighted by the

possible enhancements in the amplitude due to propagators near their mass-shell, contributions

to the convolution integral coming from this region are expected to be very subleading. The

physical interpretation of the aforementioned suppression has to do with the fact that there is a

high probability for the outgoing meson to leave the decay region already hadronised, if its valence

quarks are in an endpoint-like configuration, which means that the LCDA must be very suppressed

(as we have indeed observed).

B mesons light-cone distribution amplitudes

Light-cone distribution amplitudes of B mesons only appear in the hard-spectator scattering term

of the factorisation formula for decays to two light mesons. The need for light meson LCDAs

as functions encoding the soft physics inside the mesons conforms to our intuition, however for

B mesons it is less evident. Because the b quark carries most of the B meson’s momentum p,

p+
b = ξ̄p+ ≈ p+, the spectator quark momentum ` must be of order ΛQCD, `+ = ξp+ with

ξ ∼ O(ΛQCD/mb) and ξ̄ = 1 − ξ. Therefore, the heaviness of the b quark implies a very different

internal dynamics for B mesons with respect to light mesons. Despite this fact, hard gluons

connecting any of the highly energetic quarks in a fast recoiling emission meson with the spectator

quark can probe the momentum distribution of the B meson, warranting the use of B mesons

LCDAs for taking into account these contributions.

The most general decomposition of the B meson LCDA at leading power in 1/mb uses the

fact that, at the B meson rest frame, only the upper two components of the b quark field are

large, whereas there is no restriction on the components of the spectator quark due to it being

neither heavy nor energetic. Then, the B meson LCDA can be parametrised in terms of two scalar

functions [55]

〈0| q̄i(z)α[. . .]bj(0)β |B̄d(p)〉z+,⊥=0 =− ifB
4
δij
[
(/p+mb)γ5

]
βγ

(3.2.24)

×
∫ 1

0
dξ e−iξp+z−

[
ΦB1(ξ) + /n−ΦB2(ξ)

]
γα
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where the ”dots” denote a path ordered exponential connecting the two quark fields (which is

required for ensuring the gauge invariance of the matrix element), n− = (1, 0, 0,−1) and the

following normalisation conditions apply

∫ 1

0
dξ ΦB1(ξ) = 1,

∫ 1

0
dξ ΦB1(ξ) = 0. (3.2.25)

While light meson distribution amplitudes are broadly understood, state-of-the-art knowledge on

B meson LCDAs is still rather limited, even from the theoretical perspective. Naively, one expects

B mesons to behave like light mesons at scales much larger than mb, so B meson LCDAs should

then approach the characteristic symmetric structure of light meson LCDAs. On the contrary, at

scales of the order of mb and smaller, distribution amplitudes are expected to be largely asymmetric

with ξ ∼ O(ΛQCD/mb).

At leading order in αs, the hard-spectator scattering amplitudes only depend on ΦB1 (cf. Eqs.

(28) and (29) from (3.2.3)). More precisely, it enters the computations through its first inverse

moment [37],

∫ 1

0

dξ

ξ
ΦB1(ξ) ≡ mB

λB
. (3.2.26)

Although, the moment λB is well-known to be a soft quantity of order ΛQCD, it remains uncertain

by a large margin with estimates ranging from 200+50
−00 Mev, as favoured for non-leptonic decays [57,

72], up to 460± 110 MeV, as predicted from QCD sum rules [73]. Measurements of the radiative

decay B → γ`ν` with high statistics, an achievement particularly at reach of the BELLE II

experiment, could prove to be instrumental in further constraining the value of λB [74].

For B meson LCDAs the asymptotic form, like Eq. (3.2.22) for light meson distributions, can-

not be used for inferring the counting rules of these distributions in the endpoint region, since the

scale of a B meson is already at mb no large suppression of the parameters in the Gegenbauer ex-

pansion is obtained by setting µ→∞. Instead, we use the first normalisation condition in (3.2.25)

to obtain the following counting:

ΦB1(ξ) ∼
{

0; for ξ ∼ 1,

mb/ΛQCD; for ξ ∼ ΛQCD/mb.
(3.2.27)

The physical picture this is depicting has to do with the very low probability of finding the spectator

quark with momentum of the same order as the b quark inside a B meson. This could only happen

through a quantum fluctuation leading to a large momentum transfer from the b quark to the

spectator, but this is very unlikely as all virtual gluon exchanges between the heavy quark and the

spectator become soft in the heavy quark limit.

3.3 Strengths and limitations of QCDf

The QCDf prescription for the factorisation of non-leptonic B meson decay amplitudes is of

great theoretical importance. Whereas naive factorisation and subsequent generalised factorisa-

tion frameworks heavily relied on phenomenological models, QCDf provides a model-independent

paradigm for the analysis and computation of these amplitudes in an expansion in powers and

logarithms of ΛQCD/mb. At leading power, but to all orders in αs, the decay amplitudes can be
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decomposed according to Eqs. (3.2.3) and (3.2.4) [55, 75]. Therefore, QCDf is a well-defined limit

of general QCD, based on power counting in ΛQCD/mb, which allows to include O(αs) contributions

to the amplitudes in a systematic and rigorous fashion.

Figure 3.5: Penguin diagram with a charm-quark loop contributing to the amplitude of a non-

leptonic decay B → M1M2. The curly line connecting the charm-quark loop to the q̄γq current

in the final state can either be a gluon or a photon, depending on whether we are dealing with a

chromomagnetic or electromagnetic penguin [76].

Since the factorisation formula admits the computation of O(αs) corrections to the naive fac-

torisation decomposition, which are leading terms in the heavy quark limit, from first principles in

QCD, the evolution of matrix elements follows the usual renormalisation group techniques. Hence,

cancellation of scale and scheme dependencies between matrix elements and Wilson coefficients is

naturally achieved in this framework. This is probably the greatest strenght of QCDf.

Despite its successes, this approach is not free of shortcomings. First, there is no proof of

the factorisation formula to all orders in αs, and first leading power in ΛQCD/mb. Ref. [55] only

provides a proof of QCDf up to order O(α2
s). For that matter, rather than using the HQET/LEET

framework, it is better to work within an effective theory specifically designed for pinning down

the physical infrared degrees of freedom, so that a more straightforward power counting of infrared

divergences is available. Such a theoretical framework can be found in the so-called Soft-Collinear

Effective Theory [77, 78].

Second, there is the issue of the ”charming penguins” [79]. These are topologies, like Fig. 3.5,

where the quark current in a four-quark operator containing no initial states is closed in a qq̄ loop

(q = u, c), which is later attached to a gluon (or a photon) to produce a final state quark current.

Similar topologies for semileptonic radiative decays will be the main object of discussion in a

forthcoming chapter. uū loops enter the convolution integral weighted by the LCDAs close to the

endpoint region, so they are very suppressed. However, cc̄ loops, due to their mass squared being

rather large ∼ 4m2
c , induce contributions that live in the middle of the distribution amplitudes,

so they must be taken into account. Plus, no perturbative computation must be trusted for

these objects as αs(2mc) is already large. Although, following the usual power counting, formally

these contributions are of order O(ΛQCD/mb), it has been argued that they might be larger than

expected [78–80]. In Ref. [80] an enhancement of the cc̄ corrections was signaled as a possible

explanation for the values of the decay B(B → Kπ), while [78] suggested that these contributions

could enter already at LO in the computation of B(B → π0π0) within SCET. The latter claims

were proven inaccurate in [76, 81], where a factor (ΛQCD/mb)
2 was found to be missing in the

arguments given in [78] plus charm-penguin diagrams were proven to be always parametrically

suppressed in non-leptonic B →M1M2 decays in the heavy quark limit.
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Finally, all computations in QCDf have an intrinsic error of order O(ΛQCD/mb). This is

expected because QCDf is based on the theoretical frameworks of HQET and LEET, which are

effective descriptions that emerge as LO terms in a ΛQCD/mb expansion. Hence, in order to have a

consistent power counting, all computations involved in a QCDf result must be expanded in 1/mb

and only order O(1) terms must be kept, of course this applies for both hard-scattering kernels

and meson LCDAs. This has the advantage of greatly simplifying our computations at the cost

of yielding a tower of power corrections, starting at O(ΛQCD/mb), with no systematic theoretical

tools for calculating them within QCDf. In this case, one usually resorts to assigning these power

corrections a flat uncertainty of the size of the naive estimate for ΛQCD/mb ≈ 10% [43]. We will

comment further on these corrections and the way of parametrising them later on in this thesis,

but for semileptonic B decays.



Chapter 4

Reviewing B → K∗`` at tree level and

including O(αs) corrections

The most important decay channel in our analyses of processes with an underlying b→ s transition

is the semileptonic B meson decay B̄ → K̄∗(→ Kπ)`+`−. This rare decay represents the bulk of

experimentally available data on b → s`+`−, plus some of the most important anomalies involve

characteristic elements of this channel. More in detail, these anomalies are found in the kinematic

regime where K∗ meson recoils with high energy and will be extensively covered in Chapter 8.

In this section we discuss the formalism used for describing B̄ → K̄∗`+`− in the aforemen-

tioned energy region of the decay. To this end, we present an anatomy of the effective Hamiltonian

governing the dynamics of b → s`+`−, and comment on possible ways of extending it for consis-

tently including New Physics effects in the same framework, derive the structure of the relevant

decay matrix element at tree level and schematically review the construction of its angular distri-

bution. This discussion will also cover the computation of O(αs) corrections to the leading order

amplitude in the effective theory. Since we are mostly interested in the kinematical region where

the K∗ meson is rapidly recoiling, the principles of QCDf apply and will be extensively used for

this matter. Central works and papers where most of these issues were discussed for the the first

time include Refs. [29], [30], [82], [33], [83], [84], [31] and [85] (in chronological order).

4.1 The Weak Effective b→ s `+`− Hamiltonian

As we discussed in Chapter 1, the natural language for studying weak decays of heavy mesons is

given by the Effective Field Theory formalism. In particular, for b→ s`+`− mediated transitions,

the effective Hamiltonian reads [31, 83–85]

Heff = −4GF√
2

(
λ

(s)
t H

(t)
eff + λ(s)

u H(u)
eff

)
+ h.c. (4.1.1)

with the CKM combinations λ
(s)
q ≡ VqbV ∗qs. In principle, a contribution to 4.1.1 proportional to the

CKM factor λ
(s)
c is also expected in (4.1.1), however under the assumption that the CKM matrix

is unitary even within the influence of NP, the CKM triangle holds λ
(s)
u +λ

(s)
c +λ

(s)
t = 0 so one can

always reabsorb this contribution inside the other two terms of the Hamiltonian. The two flavour

45
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specific structures H(u)
eff and H(t)

eff read [31, 33, 82]

H(t)
eff = C1(µ)Oc1 + C2(µ)Oc2 +

6∑

i=3

Ci(µ)Oi +
10∑

i=7

(
Ci(µ)Oi + Ci′(µ)Oi′

)

+
∑

i=S,PS

(
Ci(µ)Oi + Ci′(µ)Oi′

)
+

∑

i=T,PT

Ci(µ)Oi, (4.1.2)

H(u)
eff = C1(µ)(Oc1 −Ou1 ) + C2(µ)(Oc2 −Ou2 ). (4.1.3)

In terms of the Branco and Lavoura improved Wolfenstein parametrisation of the CKM matrix

[86], the CKM combinations λ
(s)
q (q = u, t) can be written as

λ(s)
u = Aλ4(ρ+ iη), (4.1.4)

λ
(s)
t = Aλ2

[
−1 + λ2

(
1

2
− ρ− iη

)]
+O(λ6). (4.1.5)

Due to the enhanced dependence on the small parameter λ of λ
(s)
u with respect to λ

(s)
t , contributions

coming from H(u)
eff are very suppressed (indeed H(u)

eff is doubly Cabibbo-suppressed) relative to that

of H(t)
eff . However, H(u)

eff is an important source of weak phases in the SM, so it is relevant for

assessing CP-violation. Thus, even though H(t)
eff will be our main focus of attention, we will also

discuss effects coming from H(u)
eff .

4.1.1 Basis of operators in the SM

Here, the operator basis we will use is the one introduced in [87–89], also known as CMM after its

authors. This basis is an irreducible set of all dimension six operators with the quantum numbers of

a b→ s`+`− transition, compatible with Lorentz and the underlying gauge symmetries. The term

irreducible here means that none of the operators in the basis can be transformed into combinations

of the other operators in the basis through the use of equations of motion [39, 41]. Main advantage

of using this basis is γ5 not being part of the explicit Lorentz structure of the effective operators,

which avoids the appearance of γ5 in the effective theory diagrams [88] and allows to take γ5 as

fully anticommuting when computing the matching conditions. Explicitly, the relevant operators

for the study presented in this thesis are

Ou1 = (s̄γµT
aPLu) (ūγµT aPLb) , (4.1.6)

Ou2 = (s̄γµPLu) (ūγµPLb) , (4.1.7)

Oc1 = (s̄γµT
aPLc) (c̄γµT aPLb) , (4.1.8)

Oc2 = (s̄γµPLc) (c̄γµPLb) , (4.1.9)

O3 = (s̄γµPLb)
∑

q

(q̄γµq) , (4.1.10)

O4 = (s̄γµT
aPLb)

∑

q

(q̄γµT aq) , (4.1.11)
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O5 = (s̄γµγνγρPLb)
∑

q

(q̄γµγνγρq) , (4.1.12)

O6 = (s̄γµγνγρT
aPLb)

∑

q

(q̄γµγνγρT aq) , (4.1.13)

O7 =
e

16π2
mb(s̄σµνPRb)F

µν , (4.1.14)

O9 =
e2

16π2
(s̄γµPLb)(¯̀γµ`), (4.1.15)

O10 =
e2

16π2
(s̄γµPLb)(¯̀γµγ5`), (4.1.16)

where colour indices have been actively omitted, PL,R ≡ 1
2(1 ∓ γ5) are the chirality projection

operators, Fµν ≡ ∂µAν − ∂νAµ is the field strength tensor (Aµ(x) being the photon field), σµν =
i

2
[γµ, γν ] and mb = mb(µb) denotes the running of the b quark mass in the MS scheme. To

next-to-leading order, the relation between the b-quark M̄S and pole masses is given by

mb(µ) = mb,pole

[
1− CFαs(µ)

4π

(
4− 3 ln

m2
b,pole

µ2

)
+O(α2

s)

]
. (4.1.17)

A common prescription used in computations where the b quark is nearly on-shell (with large

infrared already removed) is to replace the b quark pole mass by the so-called PS scheme [90, 91],

mb,PS(µ) = mb,pole −
CFαs
π

µ+O(α2
s), (4.1.18)

where CF is a colour factor.

Turning our attention to the Wilson coefficients, their specific numerical values in the SM were

computed in [85], following Ref. [92] for performing the matching at the high-scale µ0 ∼MW and

Ref. [84] for running down the values of the Wilson coefficients from the high-scale µ0 to the relevant

physical scale µb = mb = 4.8 GeV. This computation produced results for the Wilson coefficients

at next-to-next-to-leading logarithmic order. We display the numerical values corresponding to

this determination in Table 4.1.

Electromagnetic corrections can be accounted for through the introduction of five additional

operators O3,4,5,6Q and Ob, as discussed in [93–96]. This introduces mixing among all the operators

in Eqs. (4.1.6)-(4.1.16) with the same quantum numbers, leading to the introduction of two effective

coefficients [87]

Ceff
7 ≡ C7 −

1

3
C3 −

4

9
C4 −

20

3
C5 −

80

9
C6, (4.1.19)

Ceff
8 ≡ C8 + C3 −

1

6
C4 + 20C5 −

10

3
C6, (4.1.20)

as the Wilson coefficients C7 and C8 always enter the matrix elements in these particular combina-

tions of coefficients.

One can also construct an effective C9 coefficient with an structure such that its is both scale-

and scheme-independent [97]

Ceff
9 (q2) = C9 + Y (q2), (4.1.21)
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C1(µb) C2(µb) C3(µb) C4(µb) C5(µb) C6(µb) Ceff
7 (µb) Ceff

8 (µb) C9(µb) C10(µb)

-0.2632 1.0111 -0.0055 -0.0806 0.0004 0.0009 -0.2923 -0.1663 4.0749 -4.3085

Table 4.1: NNLO Wilson coefficients in the SM and at the scale µb = 4.8 GeV [85].

where q2 is the invariant mass squared of the lepton pair `+`− and Y (q2) contains contributions

from one-loop topologies of the four-quark operators O1-O6 in the effective theory [82]. The new

effective coefficient Ceff
9 (q2) indeed behaves better than the C9 coefficient alone. The RGE evolution

of C9 from the high-scale µ0 to the low-scale µb generates a large logarithm in C9, which turns out

to be of order O(1/αs). Hence, in order to obtain an order O(1) value for C9 it is mandatory to

go to next-to-leading logarithmic (NLL) order and build a combination of terms that cancel this

logarithm. The specific combination given by the function Y (q2) accomplishes that mission

Y (t)(q2) = h(q2,mc)

(
4

3
C1 + C2 + 6C3 + 60C5

)

− 1

2
h(q2,mb)

(
7C3 +

4

3
C4 + 76C5 +

64

3
C6

)

− 1

2
h(q2, 0)

(
C3 +

4

3
C4 + 16C5 +

64

3
C6

)

+
4

3
C3 +

64

9
C5 +

64

27
C6, (4.1.22)

and

Y (u)(q2) =

(
4

3
C1 + C2

)[
h(q2,mc)− h(q2, 0)

]
. (4.1.23)

Actually, writing h(q2, 0) is a slightly abuse of notation, since what this really means is h(q2,mu),

but mu is so small that one can set its value to 0.

The function h(q2,mq) in (4.1.22) has the following structure

h(q2,mq) = −4

9

[
ln

(
m2
q

µ2

)
− 2

3
− z
]
− 4

9
(2 + z)

√
|z − 1|





arctan
1√
z − 1

; z > 1,

ln
1 +
√

1− z√
z

− iπ

2
; z ≤ 1,

(4.1.24)

with z ≡
4m2

q

q2
.

The µ dependence contained in h(q2,mq) comes from the scale-dependence of the calculations

of the aforementioned one-loop topologies with insertions of the operators O1−6. Precisely, the

logarithm in h(q2,mq) is the one that cancels the large logarithm in C9 at the low-scale. At

higher orders in perturbation theory, Wilson coefficients of other operators also develop potentially

harmful logaritms. In order to cancel those, one must evaluate matrix elements of four quark-

operators beyond the two-loop level [98].

Also, observe that Y (i)(q2) (i = u, t) has an absorptive component, i.e. has a non-zero imag-

inary part. This comes either from the limit mq → 0 in the evaluation of h(q2, 0) and also from
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the branch of this function when q2 ≥ 4m2
c , so this last part is related with non-factorisable (po-

tentially rescattering) effects in the open-charm region. Since imaginary phases are important in

studying CP-violation, this effects must be taken into account when computing observables testing

CP.

4.1.2 Basis of operators beyond the SM

Apart from the operators with a SM-like structure, given in Eqs. (4.1.6)-(4.1.16), one can imagine

new operators encoding the dynamics of physical processes with conceptually different structures

with respect to the SM. These are also dimension six operators consistent with Lorentz invariance

but with gauge couplings of different nature. First we consider operators with different chirality,

the so-called chirally-flipped operators or right-handed currents

O7′ =
e

16π2
mb(s̄σµνPLb)F

µν , (4.1.25)

O9′ =
e2

16π2
(s̄γµPRb)(¯̀γµ`), (4.1.26)

O10′ =
e2

16π2
(s̄γµPRb)(¯̀γµγ5`). (4.1.27)

Actually, not all chirally-flipped are entirely forbidden in the SM but they are very suppressed (or

vanish). More in detail,

CSM
7′ =

ms

mb
CSM

7 , CSM
9′,10′ = 0. (4.1.28)

Second, there are operators with scalar signatures (both left-handed and chirally-flipped) [31]

OS =
e2

16π2
mb(s̄PRb)(¯̀̀ ), OS′ =

e2

16π2
mb(s̄PLb)(¯̀̀ ), (4.1.29)

OPS =
e2

16π2
mb(s̄PRb)(¯̀γ5`), OPS′ =

e2

16π2
mb(s̄PLb)(¯̀γ5`), (4.1.30)

and finally we can also have tensor and pseudotensor operators [99]

OT =
e

16π2
(s̄σµνb)(¯̀σµν`), (4.1.31)

OPT =
e2

16π2
εµνρσ(s̄σµνb)(¯̀σρσ`). (4.1.32)

New Physics can enter the amplitude not only through the appearance of exotic operators, but

also through new quantum excitations at very high scales but with NP couplings, such that they

enter as shifts of the actual numerical values of the SM Wilson coefficients in Table 4.1. However,

this possibility is only thought to be feasible for the operators O7,9,10. This idea will be explored

in Chapter 8, where our global analyses of b → s`` data are discussed. This is not only because

these operators are the dominant ones at the amplitude level for b → s`+`− processes, but also

because Wilson coefficients of the QCD penguin operators O1−6 show a strong dependence on the

value of C2(MW ). Thus, changes on the values of the corresponding Wilson coefficients of the

aforementioned operators would most likely mean large NP contributions to C2(MW ), but this is

disfavoured by data on two-body purely leptonic B meson decays.
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4.2 Differential Decay Distribution and Spin Amplitudes

4.2.1 Matrix Element and Differential Decay Distribution

At tree level in the effective theory, the matrix element of the effective Hamiltonian (4.1.1) for the

decay B̄ → K̄∗(→ Kπ)`+`− can be written, in naive factorization1 as [31, 83, 84]

M =
GFα√

2π
λ

(s)
t

{[
〈Kπ| s̄γµ(Ceff

9 PL + Ceff
9′ PR)b |B̄〉

− 2mb

q2
〈Kπ| s̄i σµνqν

[(
Ceff

7 +
ms

mb
Ceff

7′

)
PR +

(
ms

mb
Ceff

7 + Ceff
7′

)
PL

]
b |B̄〉

]
〈`+`−| ¯̀γµ` |0〉

+ 〈Kπ| s̄γµ(C10PL + C10′PR)b |B̄〉 〈`+`−| ¯̀γµγ5` |0〉
+ 〈Kπ| s̄ (CSPR + CS′PL) b |B〉 〈`+`−| ¯̀̀ |0〉+ 〈Kπ| s̄ (CPSPR + CPS′PL) b |B〉 〈`+`−| ¯̀γ5` |0〉

+ CT 〈Kπ| s̄σµνb |B̄〉 〈`+`−| ¯̀σµν` |0〉+ iCPT εµνρσ 〈Kπ| s̄σµνb |B̄〉 〈`+`−| ¯̀σρσ` |0〉
}
, (4.2.1)

where α ≡ e2

4π
is the fine-structure constant and all contributions from H(u)

eff have been ignored for

the moment.

The matrix element above is expressed in terms of B̄ → Kπ matrix elements, however form

factors in Eqs. (2.1.9), (2.1.10), (2.1.13) and (2.1.15) are defined for B → V (V being a vector

meson) transitions. Thus, we need to rewrite the matrix elements 〈Kπ| Oi |B̄〉 in terms of B → V

form factors. In order to do so, one possibility is to assume the K∗ to be produced resonantly,

which warrants the use of the narrow width approximation for describing the K∗ → Kπ transition.

In this approximation, the full K∗ propagator simplifies to

1

(p2
K∗ −m2

K∗)
2 + (mK∗ΓK∗)2

ΓK∗�mK∗−−−−−−−→ π

mK∗ΓK∗
δ(k2 −m2

K∗). (4.2.2)

This allows us to disentangle the form factors from the K∗Kπ coupling gK∗Kπ [99, 100], because

it cancels between the vertex factor and the width

ΓK∗ =
g2
K∗Kπ

48π
mK∗β

3, (4.2.3)

being λ(a, b, c) ≡ a2 + b2 + c2 − 2(ab+ bc+ ac) the triangle function and the β factor is defined as

[31]

β ≡ 1

m2
K∗
λ1/2(m2

K∗ ,m
2
K ,m

2
π). (4.2.4)

The matrix elements in equations (2.1.9) and (2.1.10), except for the K∗ polarization vector, can

be written in the following compact form

〈K̄∗(pK∗)| Jµ |B̄(p)〉 = ε∗νAνµ. (4.2.5)

1Here using naive factorisation for decomposing the matrix elements of the electromagnetic operator O7 and

the semileptonic operators O9,10 into products of matrix elements of currents is entirely justified. Because for all

these operators one current is hadronic and the other leptonic or electromagnetic, no ”non-factorisable” (in the

naive-factorisation sense, see Section 3.1) interactions between final states can occur.
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The Aνµ element in the previous equation is a tensor encapsulating all the form factors. Then,

the corresponding B → Kπ matrix element reads

〈K̄(pK)π(pπ)| Jµ |B̄(p)〉 = −DK∗(p
2
K∗)W

νAνµ, (4.2.6)

where [100]

|DK∗(p
2
K∗)|2 = g2

K∗Kπ
π

mK∗ΓK∗
δ(p2

K∗ −m2
K∗) =

48π2

β3m2
K∗
δ(p2

K∗ −m2
K∗), (4.2.7)

W ν ≡
(
gνµ − pνK∗p

µ
K∗

m2
K∗

)
(pπ − pK)µ = QνπK −

m2
K −m2

π

p2
K∗

pµK∗ , QµπK = pµK − pµπ. (4.2.8)

Assuming that K∗ is produced on-shell, only four independent kinematical variables are needed

to fully characterize all the quantities in the decay: the dilepton mass squared q2 and the angles

θK∗ , θ` and φ (all of them defined in Appendix A). Squaring the matrix element, summing over

spins of the final states and taking advantage of several kinematics identities (see Appendix A),

one obtains the full angular distribution of the B̄0 → K̄∗0(→ K+π−)`+`−,

d4Γ

dq2d cos θ`d cos θK∗dφ
=

9

32π
J(q2, θ`, θK∗ , φ), (4.2.9)

where

J(q2, θ`, θK∗ , φ) = J1s sin2 θK∗ + J1c cos2 θK∗ + (J2s sin2 θK∗ + J2c cos2 θK∗) cos 2θ`

+ J3 sin2 θK∗ sin2 θ` cos 2φ+ J4 sin 2θK∗ sin 2θ` cosφ

+ J5 sin 2θK∗ sin θ` cosφ

+ (J6s sin2 θK∗ + J6c cos2 θK∗) cos θ` + J7 sin 2θK∗ sin θ` sinφ

+ J8 sin 2θK∗ sin 2θ` sinφ+ J9 sin2 θK∗ sin2 θ` sin 2φ. (4.2.10)

In a similar way, the differential angular distribution of the CP-conjugate mode B0
d → K∗0(→

K−π+)`+`− is obtained

d4Γ̄

dq2d cos θ`d cos θK∗dφ
=

9

32π
J̄(q2, θ`, θK∗ , φ), (4.2.11)

with J̄(q2, θ`, θK∗) having the same structure as J(q2, θ`, θK∗) but replacing [100]

J1s,1c,2s,2c,3,4,7 −→ J̄1s,1c,2s,2c,3,4,7, J5,6s,6c,8,9 −→ −J̄5,6s,6c,8,9, (4.2.12)

where J̄i equals Ji but with all weak phases conjugated. The extra minus sign in (4.2.12) is due

to the kinematical convention used in the definition of the angles.

The angular coefficients Ji, which are functions of q2 only, are usually expressed in term of the

K∗ transversity amplitudes. In the remaining of this section, we are going to define these so-called

transversity amplitudes and show their relations with the angular coefficients.
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4.2.2 Transversity Amplitudes

A particular context that allows for a natural introduction of the transversity amplitudes is the

study of the decay B̄ → K̄∗V ∗, where the K̄∗0 is assumed to be on-shell while V ∗ is a virtual

gauge boson (either a γ∗ or a Z0). Then, as in Eq. (4.2.5), the amplitude for the process takes the

form [31]

M(m,n)(B → K∗V ∗) = ε∗µK∗(m)Mµνε
∗ν
V ∗(n), (4.2.13)

where Mµν is the tensor associated to the hadronic current, εµV ∗ is the polarization vector of the

virtual gauge boson and εµK∗ is the K∗ polarization vector.

The V ∗ is an off-shell gauge boson, so it has 3 (spin 1) polarisations plus an extra time-like

(spin 0) polarisation. The three spin 1 components (n = ±, 0) are orthogonal to the momentum qµ

transferred to V ∗ during the B meson decay, i.e. qµ ε
µ
V ∗(n) = 0, while the spin 0 component (n = t)

is proportional to qµ, i.e. εµV ∗(t) = qµ/
√
q2. The set {εµV ∗(±), εµV ∗(0), εµV ∗(t)} of independent

polarisation vectors constitutes a basis on the polarisation space of V ∗. Assuming that the gauge

boson V ∗ propagates along the z-axis,

qµ = (q0, 0, 0, qz), (4.2.14)

in the B meson rest frame, then the four polarisation vectors of this basis may be written as

[99, 101]

εµV ∗(±) =
1√
2

(0, 1,∓i, 0), (4.2.15)

εµV ∗(0) =
1√
q2

(−qz, 0, 0,−q0), (4.2.16)

εµV ∗(t) =
1√
q2

(q0, 0, 0, qz). (4.2.17)

It can be proved that the polarization vectors in Eqs. (4.2.15)-(4.2.17) satisfy the following or-

thonormality and completeness relations

ε∗µV ∗(n) εV ∗µ(n′) = gnn′ , (4.2.18)
∑

n,n′

ε∗µV ∗(n) ενV ∗(n
′)gnn′ = gµν , (4.2.19)

with n = ±, 0, t and gnn′ = diag(+,−,−,−, ).
On a different note, the K∗ is on-shell, thus it has only 3 possible polarisations available and

all of them are orthogonal with respect to the momentum pµK∗ = (k0, 0, 0, kz) carried by the meson.

Again, in the B meson rest frame, these polarisation vectors read

εµV ∗(±) =
1√
2

(0, 1,±i, 0), (4.2.20)

εµV ∗(0) =
1

mK∗
(kz, 0, 0, k0), (4.2.21)

(4.2.22)
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and satisfy the relations

ε∗µK∗(n) εK∗µ(n′) = −δmm′ , (4.2.23)

∑

m,m′

ε∗µK∗(m) ενK∗(m
′)δmm′ = −gµν +

pµK∗p
ν
K∗

m2
K∗

. (4.2.24)

The K∗ helicity amplitudes H0, H+1 and H−1 can now be projected out from Mµν by contracting

it with the explicit polarization vectors in (4.2.33), obtaining [31, 101]

H±1 = ε∗νK∗(±) ε∗µV ∗(±)Mνµ, (4.2.25)

H0 = ε∗νK∗(0) ε∗µV ∗(0)Mνµ, (4.2.26)

which are called helicity amplitudes as they are attached to a specific helicity value of m. Using a

more compact notation

Hm =M(m,m)(B → K∗V ∗), m = 0,+1,−1 (4.2.27)

Alternatively, one can work within a different framework provided by combinations of helicity Hm

amplitudes, which we call transversity amplitudes [31, 83]:

A⊥,‖ ≡
1√
2

(H+1 ∓H−1), A0 ≡ H0. (4.2.28)

However, not all the information available is contained in A±,0. In B → K∗V ∗ with V ∗ being

virtual there is yet another possible contraction of the hadronic tensor Mµν with the polarization

vectors in (4.2.33)

At = ε∗νK∗(0) ε∗µV ∗(t)Mνµ =M(0,t)(B → K∗V ∗). (4.2.29)

This transversity amplitude has no counterpart in the K∗ helicity basis, however it may be regarded

to a K∗ polarization vector which is longitudinal in the K∗ rest frame and simultaneously time-like

in the V ∗ rest frame.

Consider now that the V ∗ decays into a lepton-antilepton pair, then the amplitude becomes

M(B → K∗V ∗(→ `+`−))(m) ∝ ε∗νK∗(m)Mνµ

∑

n,n′

ε∗µV ∗(n)ερV ∗(n
′)gnn′

(
¯̀γρ, PL,R`

)
, (4.2.30)

where the V → `+`− coupling has been omitted, explaining the proportionality sign.

This amplitude admits a decomposition in terms of six transversity amplitudes AL⊥,‖,0 and

AR⊥,‖,0, the L and R superindices refer to the chirality of the leptonic current, and also the seventh

transversity amplitude At. This last At amplitude cannot be split into left- and right-handed

parts since the polarization vector needed to project At is εµ(t) = qµ/
√
q2 and, because of current

conservation, one has that

qµ
(
¯̀γµ`

)
= 0, (4.2.31)

qµ
(
¯̀γµγ5`

)
= 2im`

(
¯̀γ5`

)
. (4.2.32)
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Thus, the time-like component of V ∗ only couples to axial vectors but not to vectors. At the same

time, this proves that At must vanish in the limit of massless leptons.

As we have shown, this formalism incorporates all contributions to the amplitude of the decay

B̄ → K̄∗V ∗(→ ``) with vector and axial-vector currents. Therefore, contributions coming from

effective operators O(′)
7,9,10, including their chirally-flipped counterparts, are accounted for in the

transversity amplitudes parametrising the decay.

Notice that pseudoscalar currents can be transformed into axial-vectors currents by means of

the equation of motion for these currents in Eq. (4.2.32). Therefore, pseudoscalar contributions

to the amplitude can be reabsorbed in the time-like transversity amplitude At. Unfortunately,

this does not apply to the scalar contributions and need to be embedded in a new amplitude

AS . Finally, accounting for tensor and pseudotensor contributions require the addition of more

transversity amplitudes (up to six new amplitudes as argued in [102]).

In summary, we have shown that the amplitude of the decay B → K∗V ∗(→ `+`−) can be

unambiguously characterised by means of seven transversity amplitudes AL,R⊥,‖,0 and At. If tensor

and pseudotensor contributions can be neglected, then the most general framework also involves

an eight amplitude accounting for scalar operators.

Given the matrix element in equation (4.2.1), the explicit form of the transversity amplitudes,

up to corrections of order O(αs) and O(ΛQCD/mb), reads [31, 83]

AL,R⊥ = N
√

2λ1/2

{[(
Ceff

9 + Ceff
9′

)
∓ (C10 + C10′)

] V (q2)

mB +mK∗

+
2mb

q2

(
Ceff

7 + Ceff
7′

)
T1(q2)

}
, (4.2.33)

AL,R‖ = −N
√

2
(
m2
B −m2

K∗
)
{[(

Ceff
9 − Ceff

9′

)
∓ (C10 − C10′)

] A1(q2)

mB −mK∗

+
2mb

q2

(
Ceff

7 − Ceff
7′

)
T2(q2)

}
, (4.2.34)

AL,R0 = − N

2mK∗
√
q2

{[(
Ceff

9 − Ceff
9′

)
∓ (C10 − C10′)

]

[
(m2

B −m2
K∗ − q2)(mB +mK∗)A1(q2)− λ A2(q2)

mB +mK∗

]

+ 2mb

(
Ceff

7 − Ceff
7′

)[
(m2

B + 3m2
K∗ − q2)T2(q2)− λ

m2
B −m2

K∗
T3(q2)

]}
, (4.2.35)

At =
N√
q2
λ1/2

[
2(C10 − C10′) +

q2

m`
(CPS − CPS′)

]
A0(q2), (4.2.36)

AS = −2Nλ1/2(CS − CS′)A0(q2), (4.2.37)

where

N = VtbV
∗
ts

[
G2
Fα

2

3 · 210π5m3
B

q2λ1/2β`

]1/2

, (4.2.38)
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with the triangle function λ ≡ λ(m2
B,m

2
K∗ , q

2) and β` ≡
√

1− 4m2
`

q2 .

It is important to stress that the amplitudes in Eqs. (4.2.33)-(4.2.37) are not physical. First,

AL,R⊥ , AL,R‖ and AL,R0 contain the Ceff
9 coefficient and it has complex contributions, which makes

impossible for these amplitudes to be physical objects. Secondly, since At has no direct helicity

amplitude counterpart, it cannot be physical either.

4.2.3 Transversity Amplitudes at Large Recoil

As stated in [83], the transversity amplitudes take a particularly simple form in the heavy quark

and large energy limit. Exploiting the form factor relations in (2.1.27) and (2.1.28), up to leading

order in 1/mb and αs, one obtains [31, 83, 103]

AL,R⊥ '
√

2NmB (1− ŝ)
[(
Ceff

9 + Ceff
9′

)
∓ (C10 + C10′) +

2m̂b

ŝ

(
Ceff

7 + Ceff
7′

)]
ξ⊥(EK∗), (4.2.39)

AL,R‖ ' −
√

2NmB (1− ŝ)
[(
Ceff

9 − Ceff
9′

)
∓ (C10 − C10′) +

2m̂b

ŝ

(
Ceff

7 − Ceff
7′

)]
ξ⊥(EK∗), (4.2.40)

AL,R0 ' − NmB

2m̂K∗
√
ŝ

(1− ŝ)2
[ (
Ceff

9 − Ceff
9′

)
∓ (C10 − C10′) + 2m̂b

(
Ceff

7 − Ceff
7′

) ]
ξ‖(EK∗), (4.2.41)

At ' N
mB

2m̂K∗
√
ŝ

(1− ŝ)2

[
2(C10 − C10′) +

q2

m`
(CPS − CPS′)

]
ξ‖(EK∗), (4.2.42)

AS ' −N
m2
B

m̂K∗
(1− ŝ)2(CS − CS′) ξ‖(EK∗), (4.2.43)

with the definitions ŝ ≡ s/m2
B (s ≡ q2) and m̂i = mi/mB. When writing Eqs. (4.2.39)-(4.2.43)

terms of O(m̂2
K∗) have been dropped in order to be consistent with the expansions performed to

obtain the form factor relations (2.1.27) and (2.1.28).

It is important to notice that in the large recoil limit each of the transversity amplitudes

depends on just one soft form factor: either ξ⊥(EK∗) or ξ‖(EK∗).

4.3 Angular Coefficients

With the seven transversity amplitudes defined in the preceding section, the angular coefficients

Ji in (4.2.41) can be written as

J1s =
(2 + β2

` )

4

[
|AL⊥|2 + |AL‖ |2 + (L→ R)

]
+

4m2
`

q2
Re
(
AL⊥A

R∗
⊥ +AL‖A

R∗
‖

)
, (4.3.1)

J1c = |AL0 |2 + |AR0 |2 +
4m2

`

q2

[
|At|2 + 2Re(AL0A

R∗
0 )
]
, (4.3.2)

J2s =
β2
`

4

[
|AL⊥|2 + |AL‖ |2 + (L→ R)

]
, J2c = −β2

`

[
|AL0 |2 + (L→ R)

]
, (4.3.3)

J3 =
β2
`

2

[
|AL⊥|2 − |AL‖ |2 + (L→ R)

]
, J4 =

β2

√̀
2

[
Re(AL0A

L∗
‖ ) + (L→ R)

]
, (4.3.4)
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J5 =
√

2β`

[
Re(AL0A

L∗
⊥ )− (L→ R)

]
, J6s = 2β`

[
Re(AL‖A

L∗
⊥ )− (L→ R)

]
, J6c = 0, (4.3.5)

J7 =
√

2β`

[
Im(AL0A

L∗
‖ )−(L→ R)

]
, J8 =

β2

√̀
2

[
Im(AL0A

L∗
⊥ )+(L→ R)

]
, J9 = β2

`

[
Im(AL∗‖ A

L
⊥+(L→ R)

]
.

(4.3.6)

The angular coefficients, in contrast to the transversity amplitudes, are physical observables. In-

deed, as they parametrise the full angular distribution, they contain all the relevant physical

information that can be extracted from the decay. Ultimately, every observable can be written

as a combination of the angular coefficients Ji(q
2). In particular, we will show in Chapter 5 how

these coefficients can be combined in order to obtain observables with very limited sensitivity to

form factors.

Certain relations between angular coefficients arise in the limit of massless leptons. For in-

stance, we have J1s = 3J2s and J1c = −J2c in this limit. Also, J6c = 0 only holds if scalar operators

can be dismissed and lepton masses neglected.

4.4 Next-to-leading order αs corrections from QCD factorisation

Having very precise determinations of the form factors involved in the theoretical description of

a given exclusive decay is not enough. In the context of exclusive, radiative decays there exist

non-factorisable2 strong contributions to the decay amplitude that cannot be accounted for in the

form factors. As it was outlined in Section 3.2, QCD factorisation [37, 55] establishes, by means of

a consistent power counting in the heavy quark limit and general factorisation arguments for hard-

scattering processes, a systematic framework for the computation of order αs corrections to the

matrix elements of two-body non-leptonic B meson decays. For radiative decays of the type B →
K∗γ(∗)(→ `+`−), both factorisable and non-factorisable corrections3 can also be computed within

QCDf [30, 33, 58]. In this section, we will discuss how the aforementioned O(αs) contributions can

be accounted for within QCDf, since these contributions take an important part in the computation

of our state-of-the-art predictions for the relevant observables in b → s`` analyses, and we will

provide some of the relevant formulae.

Good references for this matter are the seminal papers [29, 30, 33], plus a wonderful review of

the main results can be found in the Thesis [39]. Most discussion below is based on these works.

4.4.1 The factorisation formula: a decomposition in hadronic amplitudes

Using (2.1.9), the matrix elements of the effective vector and axial semi-leptonic operators O9,10

can be written in terms of the seven B → K∗ transition form factors. Therefore, non-factorisable

contributions to the decay amplitude can only be produced through the emission of a virtual

2Here the term non-factorisable has similar meaning to that of the same term in Section 3.1, where it was defined.
3By factorisable contributions we mean all those corrections that can be absorbed in the form factors via appropri-

ate redefinitions. Whereas non-factorisable corrections are those strong interaction effects that cannot be absorbed

into the form factors. The former are mainly due to hard-vertex interactions, while the latter come from topologies

involving purely hadronic effective operators Oi=1,...,6,8g in Heff with insertions of a virtual photon line.
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photon, which subsequently produces the lepton pair in the final state. Hence, neglecting CKM-

suppressed and ms/mb terms, the amplitude of the radiative decay B → K∗γ∗ in the SM reads,

〈γ∗(q, µ)K̄∗(p′, ε∗)|H(t)
eff |B̄(p)〉 =

e

4π2
(−2mb)ε

∗ν

{
i ενµρσp

′ρqσT (t)
1 (q2)

+
1

2

[
(
(m2

B −m2
K∗)gνµ − qν(2p′ + q)µ

)
T (t)

2 (q2) (4.4.1)

+ qν

(
qµ −

q2

m2
B −m2

K∗
(2p′ + q)µ

)
T (t)

3 (q2)

]}
.

where mb refers to the b quark pole mass. This equation closely resembles Eq. (6) from [30]

but, for it to present the same structure as (2.1.10) (the matrix element controlling the form

factor decomposition of the matrix elements of the electromagnetic operator O7), the following

modifications have been performed: the factor (−GF /
√

2)V ∗tsVtb in Eq. (6) of Ref. [30] has been

removed as it is factored out in the definition of Heff in (4.1.2), there an addition factor of 4 in the

numerator of (4.4.1) for compensating the different normalisation factor between Eqs. (4.1.14)-

(4.1.16) and Eqs. (3)-(4) in [30], the notation e for the electromagnetic coupling (with e = |e| the

electron charge) is used instead of −gem, contrary to Eq. (6) in Ref. [30] momentum conservation

p = p′+q is employed for writing (4.4.1) only in terms of final state momenta p′ and q and last some

indices have also been rearranged, by means of the cyclic properties of the Levi-Civita symbol.

The superscript (t) explicitly states that contributions to (4.4.1) come entirely from non-CKM

suppressed terms in the effective Hamiltonian.

The hadronic amplitudes T (t)
i that parametrise the matrix element are non-perturbative func-

tions that contain all contributions calculable in QCDf (both factorisable and non-factorisable).

At leading order, the only contribution to the matrix element 〈γ∗(q, µ)K̄∗(p′, ε∗)|H(t)
eff |B̄(p)〉 comes

from the electromagnetic dipole operator O7. The T (t)
i amplitudes parametrising the decompo-

sition in (4.4.1) must account for this fact and thus they follow the schematic structure T (t)
i =

C7Ti(q
2) + . . . , where Ti(q

2) are the form factors defined in (2.1.9). Including also the contribu-

tions of four-quark operators, but momentarily neglecting weak annihilation, the leading logarithm

expressions for the amplitudes T (t)
i are [104]

T (t)
1 (q2) = Ceff

7 T1(q2) + Y (q2)
q2

2mb(mB +mK∗)
V (q2), (4.4.2)

T (t)
2 (q2) = Ceff

7 T2(q2) + Y (q2)
q2

2mb(mB +mK∗)
A1(q2), (4.4.3)

T (t)
3 (q2) = Ceff

7 T3(q2) + Y (q2)

[
mB −mK∗

2mb
A2(q2)− mB +mK∗

2mb
A1(q2)

]
, (4.4.4)

with Ceff
7 as defined in (4.1.19).

The relevant form factors in the region where the energy of the final state meson scales with

the heavy quark mass in the heavy quark limit are not those defined in the usual transversity

basis (V , Ai, Ti), but rather the soft form factors that emerge due to the symmetries that apply

in this kinematic limit (ξ⊥, ξ‖). Then, the various form factors involved in the decay are related

according to the symmetries in Eqs. (2.1.27)-(2.1.28), allowing us to introduce a new set of hadronic

amplitudes that align with the soft form factors [30]
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T (t)
1 (q2) ≡ T (t)

⊥ (q2) = ξ⊥(q2)

[
Ceff

7 δ1 +
q2

2mbmB
Y (q2)

]
, (4.4.5)

T (t)
2 (q2) =

2E

mB
T (t)
⊥ , (4.4.6)

T (t)
3 (q2)− mB

2E
T (t)

2 (q2) ≡ T (t)
‖ = −ξ‖(q2)

[
Ceff

7 δ2 +
mB

2mb
Y (q2)δ3

]
, (4.4.7)

where E = (m2
B−q2)/2mB is the energy of the recoiling K∗ meson, ξ⊥,‖ denote the soft form factors

in the heavy quark and large energy limits, as defined in (2.1.27)-(2.1.28), and δi = 1 + O(αs)

are factors encapsulating the αs corrections. The T (t)
⊥,‖ functions represent the amplitude for a

decay to occur through the production of a transversely and longitudinally polarised vector meson,

respectively.

Using this new basis for the hadronic amplitudes, one can rewrite the B → K∗γ∗ amplitude

in a more suitable form for analysing the physics of the decay in the heavy quark and large energy

limits,

〈γ∗(q, µ)K̄∗(p′, ε∗)|H(t)
eff |B̄(p)〉 =

e

4π2
(−2mb)ε

∗ν

{
i ενµρσp

′ρqσT (t)
⊥ (q2)

+
[
EK∗mBgνµ − p′µqν

]
T (t)
⊥ (q2) (4.4.8)

+
1

2
qν

[
qµ −

q2

m2
B

(2p′ + q)µ

]
T (t)
‖ (q2)

}
.

In the SM (and all its extensions that preserve the left-handed nature of the theory), only

two independent structures (i.e. T (t)
⊥,‖ and ξ⊥,‖) are needed for describing the amplitude at large

recoil because of the chirality of weak interactions and helicity conservation. So, this picture is not

expected to change with the inclusion of next-to-leading order corrections [29, 105]. Therefore, the

hadronic amplitudes T (t)
⊥,‖ can be factorised in the same fashion as Eq. (2.1.29)

T (t)
a (q2) = C(t)

a ξa(q
2) + ΦB ⊗ T (t)

a ⊗ ΦK∗ , (4.4.9)

with a =⊥, ‖. As in the factorisation theorem for non-leptonic two-body decays, the factorisation

formula above is valid to all orders in αs but only up to leading-order in ΛQCD/mb. Thus, the

amplitudes T (t)
a receive two contributions: one coming from hard-vertex corrections, encoded in

the C(t)
a coefficients (not to be confused with Wilson coefficients), weighted by the soft form factor

ξa(q
2) and another coming from the hard-kernel functions T

(t)
a , generated through hard-spectator

scattering, convoluted with both B meson and K∗ LCDAs, accounting for the soft physics inside

the meson states.

Following the discussion in 3.2, both hard-vertex corrections and hard-scattering kernels are

perturbatively calculable functions, as they are related to hard processes happening at high scales.

Thus, they can be written in an expansion in αs

C(t)
a = C(0,t)

a +
αsCF

4π
C(1,t)
a + . . . , (4.4.10)

T
(t)
a,±(u, ω) = T

(0,t)
a,± (u, ω) +

αsCF
4π

T
(1,t)
a,± (u, ω) + . . . . (4.4.11)
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Here CF is a colour factor CF = (N2
c − 1)/2Nc = 4/3 and u (ω) is the longitudinal momentum

fraction of the b-quark (s-quark) within the B meson (K∗ meson).

The soft form factors ξa(q
2) and LCDAs ΦB,K∗ represent the non-perturbative input of the

factorisation formula in Eq. (4.4.9). The properties of these objects have been discussed at length

in Section 3.2.3, with the sole exception that one needs to use the large recoil symmetries for

extracting the soft form factors from the usual full form factors.

4.4.2 Processes contributing to the factorisation formula

Topologies contributing to leading order in αs

Leading order contributions O(α0
s) to the amplitude of a b→ s`` process come through insertions of

a virtual photon line to purely hadronic diagrams in the effective theory. Therefore, there are three

different topologies contributing at this order. First, one has the diagram with an insertion of the

electromagnetic effective operator O7, with its photon attached to the lepton current in the final

state. Second, we have topologies involving four-quark operators with a qq̄ loop, where the virtual

photon is attached. These can be generated by both operators O(u,c)
1,2 and O3−6. Finally, four-quark

operators O3−6 can also contribute through weak annihilation topologies, with the virtual photon

attached to any of the four fermion legs. Diagramatic representations of these contributions can

be found in Fig. 4.1.

Figure 4.1: Topologies contributing to 〈γ∗K̄∗|Heff |B̄〉 at leading order in αs and ΛQCD/mb. The

crossed circles denote the points in the diagrams where a virtual photon line (later producing a

lepton-antilepton pair) could be inserted. The spectator quark line in (a) and (b) has been omitted,

being these two topologies factorisable [30].

Diagrams (a) and (b) in Fig. 4.1 are factorisable and hence they contribute to the soft form

factors ξ⊥(E) and ξ‖(E). The first one actually defines the tensor form factors Ti and contributes

to the amplitude with a factor ξaC7, while the second gives rise to the Y (q2) function term in

Eqs. (4.4.5) and (4.4.7). As observed in Section 3.2, the four weak annihilation topologies in (c)

are expected to contribute at next-to-leading order in the heavy quark expansion, and hence to be

suppressed. However, the diagram in (c), where the virtual photon is attached to the spectator

quark in the B meson, turns out to be leading in ΛQCD/mb [30], because this allows the quark

propagator to be off-shell by an amount of order mbΛQCD. So these will also contribute to the

hard-scattering kernel T
(t)
a at order O(αs).

Since the K∗ meson is produced at very high energies in the heavy-quark and large energy

limits, one of the light-cone components of its momentum is going to be very light-like. We

take the convention that the K∗ meson momentum is nearly light-like in the minus light-cone
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direction. Then, the only hard-scattering kernel that will be different from zero is going to be the

one projected along the minus component of the spectator quark momentum, i.e. T
(0,t)
‖,− .

Topologies contributing to next-to-leading order in αs

Processes contributing to the amplitude at next-to-leading order in αs are hard-vertex corrections

and hard-spectator scattering, plus radiative corrections to weak annihilation topologies. These

are shown in Fig. 4.2: (a) and (b) correspond to the latter and (c), (d) and (e) to the former type

of O(αs) corrections.

Hard-vertex interactions renormalise the b → s current in the effective theory. Since interac-

tions between the heavy (or the energetic quark in the emission meson) and the spectator quark

proceed through soft gluon exchanges, these contributions are proportional to the soft form factors

ξa at the amplitude level, being responsible for the O(αs) corrections to the hard-vertex coefficients

C(t)
a in Eq. (4.4.10). Amplitudes for these processes emerge from diagrams where a high-momentum

gluon is emitted by the chromomagnetic effective operator O8 (diagram (c) in Fig. 4.2) and from

topologies involving four-quark operators O1−6, with gluon exchanges between the external quark

lines and the qq̄ loop or inside the quark-antiquark loop (diagrams (d) and (e) in Fig. 4.2).

Topologies (a) and (b) in Fig. 4.2 correspond to hard-spectator scattering interactions. These

processes involve a large momentum transfer from the heavy or energetic quark to the spectator

quark, which is expected to be soft. Therefore, these gluon exchanges modify the distribution

of quark momenta inside the meson and rearrange them into a more symmetric configuration,

which favours hadronisation. Hence, these contributions will enter the amplitude through the

convolution of the hard-scattering kernel T
(t)
a,± with the B and K∗ meson distribution amplitudes

ΦB,K∗ . The O(αs) corrections to the hard-scattering kernel in (4.4.11) are precisely coming from

the aforementioned hard-gluon exchange topologies.

Figure 4.2: Hard-vertex factorisable contributions and hard-spectator scattering non-factorisable

contributions to the amplitude 〈γ∗K̄∗|Heff |B̄〉. Hard-vertex topologies are depicted without ex-

plicitly drawing the spectator line for simplicity [30].

Finally, radiative QCD corrections to weak-annihilation topologies can be found in Fig. 4.3.

Although contrary to the usual power counting in QCDf, weak annihilation diagrams contribute at
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leading order in ΛQCD/mb, making the amplitudes in Fig. 4.3 to enter the 〈γ∗K̄∗|Heff |B̄〉 amplitude

at O(αs) and not O(αsΛQCD/mb). However, these amplitudes are still very suppressed in b → s

transitions. There are three main reasons for this suppression: the small value of the strong

coupling constant αs(µ) at the scale µ ∼ mb, the suppression of the longitudinal transversity

amplitudes in the decay rate at the low q2 (see Eq. (4.4.8)) region and the numerically small

Wilson coefficients of QCD penguin operators O3−6 (see Table 4.1) [30]. Moreover, O(αsΛQCD/mb)

corrections of the same type with endpoint divergences in the convolution integral were also shown

to be small in [31]. In conclusion, order O(αs) weak annihilation contributions to the factorisation

of the hadronic amplitudes can, and will be, safely neglected in our computations.

4.4.3 Leading and next-to-leading order results for the amplitudes T (i)
⊥,‖

An interlude about the CKM suppressed contributions

As we argued in Section 4.1, H(u)
eff in the full effective Hamiltonian Heff is largely Cabibbo-

suppressed with respect to H(t)
eff , because of the relatively large CKM factor λ

(s)
t with respect

to λ
(s)
u . For this reason, effects coming from the (u) part of the Hamiltonian have been neglected

in most of our results so far, including the discussion in this section about O(αs) corrections to

the matrix elements.

However, λ
(s)
u constitutes a source of weak phases in the SM, so its impact is non-trivial when

studying processes probing CP-violation. This is also the case of b → d transitions, since λ
(d)
t

cannot be neglected in front of λ
(d)
u . None of these two topics is going to be covered in this Thesis,

but it warrants a brief discussion on how to include these contributions in a consistent way within

the formalism developed above.

Figure 4.3: Vertex corrections to the annihilation amplitudes depicted in diagrams (c) Fig. 4.1 [30].

The extension of the factorisation formulae for including CKM suppressed terms in the effective

Hamiltonian is discussed in [33]. In this reference, these contributions are put on the same footing

as the ”CKM allowed” terms within a unified framework. Eqs. (4.4.1), (4.4.9), (4.4.10) and (4.4.10)

used for defining the relevant (t) structures, also define their (u) counterparts. This connection

between the CKM allowed and suppressed modes is only formal, in general quantities wiht a (t)

index will not be the same as the ones with a (u). The interested reader can find all the structures
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for both (t) and (u) channels in appendices A. 1 and A. 2 of [33] and [106]. Hence, from now on,

we will use the notation T (i)
⊥,‖, with i = t, u.

Leading order result

At leading order, the explicit QCDf convolutions for the amplitudes T (i)
⊥ and T (i)

‖ are written

by [30]

T (i)
a (q2) = C(0,i)

a ξa(q
2)

+
π2

Nc

fBfK∗,a
mB

Ξa
∑

±

∫ ∞

0

dω

ω
ΦB,±(ω)

∫ 1

0
du ΦK∗,a(u)T

(0,i)
a,± (u, ω), (4.4.12)

where fK∗,‖ is the usual K∗ meson decay constant, fK∗,⊥ = fK∗,⊥(µ) denotes the scale-dependent

transverse decay constant (defined by the matrix element of the tensor current), u (ω) is the

longitudinal momentum fraction of the b-quark (s-quark) within the B meson (K∗ meson), Nc

is the number of colours (Nc = 3) and the Ξa parameters are defined such that Ξ⊥ = 1 and

Ξ‖ = mK∗/EK∗ .

Leading order hard-vertex coefficients C(0,i)
a stem from topologies (a) and (b) in 4.1. Explicit

expressions for these the coefficients can be found by comparing (4.4.12) with Eqs. (4.4.5)-(4.4.7),

setting δi = 1 for consistency,

C(0,t)
⊥ = −

(
Ceff

7 +
mB

2mb
Y (t)(q2)

)
, C(0,u)

⊥ = −mB

2mb
Y (u)(q2), (4.4.13)

C(0,t)
‖ = Ceff

7 +
q2

2mbmB
Y (t)(q2), C(0,u)

‖ =
q2

2mbmB
Y (u)(q2). (4.4.14)

To complete the result at leading order, one needs to compute the weak annihilation amplitude

of 4.1 (c), with a virtual photon insertion attached to the spectator quark in the B meson. This is

the only process contributing to the hard-scattering kernels at leading order. Here we will stick to

the convention introduced in the previous subsection, where the K∗ meson momentum is taken as

nearly light-like in the minus light-cone direction. To compute these contributions, the amplitude

is projected onto the B meson and K∗ meson LCDAs, as shown in [29]. The result reads [30]

T
(0,i)
⊥,+ (u, ω) = T

(0,i)
⊥,− (u, ω) = T

(0,i)
‖,+ (u, ω) = 0 (4.4.15)

T
(0,t)
‖,− (u, ω) = −eq

mBω

mBω − q2 − iε
4mB

mb

(
C3 +

4

3
(C4 + 12C5 + 16C6)

)
, (4.4.16)

T
(0,u)
‖,− (u, ω) = eq

mBω

mBω − q2 − iε
4mB

mb
3δquC2, (4.4.17)

with eq the electric charge of the spectator quark, so eq = 1/3 for the B̄0 → K̄∗0`+`− decay mode

whereas eq = −1/3 for the corresponding CP conjugate channel.

At leading order, weak annihilation topologies are produced via insertions of penguin opera-

tors with numerically small Wilson coefficients (C3−6(µb) ≈ 0), therefore these contributions are

expected to be small with respect to the dominant leading order terms. This suppression of weak

annihilation contributions is even stronger in B → K∗γ, since T (t)
‖ (q2) does not actually contribute

to 〈γ∗(q, µ)K̄∗(p′, ε∗)|H(t)
eff |B̄(p)〉 in the q2 → 0 limit, as one can see by examining Eq. (4.4.8).
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It is important to emphasise that our previous discussion about weak annihilation refers only

to its leading order contribution in ΛQCD/mb. It is indeed a remarkable aspect of B → K∗γ∗(→ ``)

that this process does not vanish at first order in the heavy quark limit (if q2 ∼ mbΛQCD), giving

rise to a non-zero contribution to the hard-scattering kernel. We will later discuss power suppressed

contributions coming from this same type of topologies.

Next-to-leading order result

At next-to-leading order, the expression of T (i)
⊥ and T (i)

‖ follow [30]

T (i)
a (q2) =

(
C(0,i)
a +

αsCF
4π
C(1,i)
a

)
ξa(q

2) (4.4.18)

+
π2

Nc

fBfK∗,a
mB

Ξa
∑

±

∫ ∞

0

dω

ω
ΦB,±(ω)

∫ 1

0
du ΦK∗,a(u)

[
T

(0,i)
a,± (u, ω) +

αsCF
4π

T
(1,i)
a,± (u, ω)

]
,

being CF the same colour factor defined below Eqs. (4.4.10) and (4.4.11) and again a =⊥, ‖.
The O(αs) corrections to the hard-vertex coefficients C(1,i)

a and hard-scattering kernels T
(1,i)
a,± are

complicated functions that can be decomposed into the sum of a factorisable and a non-factorisable

part

C(1,i)
a = C(f,i)

a + C(nf,i)
a , (4.4.19)

T
(1,i)
a,± = T

(f,i)
a,± + T

(nf,i)
a,± , (4.4.20)

where the superscript f stands for factorisable while nf does so for non-factorisable.

Factorisable next-to-leading order corrections to the hard-vertex coefficients C(f,i)
a originate

from re-expressing the full QCD form factors in (4.4.2)-(4.4.4) in terms of soft form factors [30].

These contributions have been encoded in the δi terms in Eqs. (4.4.5)-(4.4.7) above. For the

hard-vertex coefficients we have [30, 33]

C(f,t)
⊥ = Ceff

7

(
ln
m2
b

µ2
− L+ ∆M

)
, C(f,u)

⊥ = 0, (4.4.21)

C(f,t)
‖ = −Ceff

7

(
ln
m2
b

µ2
+ 2L+ ∆M

)
, C(f,u)

‖ = 0, (4.4.22)

with the quantities L [30] and ∆M [33] defined as

L ≡ −m
2
b − q2

q2
ln

(
1− q2

m2
b

)
, ∆M ≡ 3 ln

m2
b

µ2
− 4

(
1− µh

mb

)
, (4.4.23)

where mb in the two expressions above refers to the b-quark pole mass and µh is a factorisation

scale. ∆M depends on the renormalisation convention for the overall mb factor in the ampli-

tude 〈γ∗(q, µ)K̄∗(p′, ε∗)|H(t)
eff |B̄(p)〉, in [33] the authors’ choice was to use the PS scheme (see

Eq. (4.1.18)) and hence ∆M in Eq. (4.4.23) is written accordingly.

Hard-vertex non-factorisable corrections are obtained by computing diagrams (c)-(e) in Fig. 4.2,

which correspond to matrix elements of four-quark operators and the chromomagnetic dipole op-

erator with hard gluon exchanges. These matrix elements require to calculate two-loop diagrams

with several mass scales. The non-factorisable functions presented in [30, 33] are based on the com-

putations in [107] for topologies with the operators O1,2 and O8. Results for the corresponding
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diagrams with QCD penguin operators were not included in [30, 33] since there was no computation

available, but this is expected to be a good approximation to the full results as these contributions

should be small. The aforementioned corrections have the following form [30, 33]

CF C(nf,t)
⊥ = −C̄2F

(7)
2 − Ceff

8 F
(7)
8

− q2

2mbmB

[
C̄2F

(9)
2 + 2C̄1

(
F

(9)
1 +

1

6
F

(9)
2

)
+ Ceff

8 F
(9)
8

]
, (4.4.24)

CF C(nf,t)
‖ = C̄2F

(7)
2 + Ceff

8 F
(7)
8

+
mB

2mb

[
C̄2F

(9)
2 + 2C̄1

(
F

(9)
1 +

1

6
F

(9)
2

)
+ Ceff

8 F
(9)
8

]
. (4.4.25)

The ”barred” coefficients C̄i=1−6 are linear combinations of the Wilson coefficients and their defi-

nitions are given in Appendix A of [30]. Also Ceff
8 stands for a combination of Wilson coefficients,

as it is shown in Eq. (4.1.20). The functions F
(7,9)
1,2 can be found in Appendix B of [30] or, in

an expanded form, in [107]. Corresponding expressions for C(nf,u)
a are obtained by using the same

expressions above with the replacements F
(7,9)
8 → 0 and F

(7,9)
1,2 → F

(7,9)
1,2 − F (7,9)

1,2,u , with F
(7,9)
1,2,u given

in [106].

The factorisable part of the next-to-leading order hard scattering functions T
(f,i)
a,± also originates

from re-expressing the full QCD form factors in terms of soft form factors [30]. In this case, we

have [30, 33]

T
(f,t)
⊥,+(u, ω) = Ceff

7

2mB

ūEK∗
, (4.4.26)

T
(f,t)
‖,+ (u, ω) = Ceff

7

4mB

ūEK∗
, (4.4.27)

T
(f,t)
⊥,−(u, ω) = T

(f,t)
‖,− (u, ω) = T

(f,u)
a,± (u, ω) = 0. (4.4.28)

Non-factorisable corrections to the hard-scattering kernels are obtained by performing the

explicit evaluation of diagrams (a) and (b) in Fig. 4.2. These graphs correspond to the physical

processes by which the spectator quark receives a hard gluon, either directly from the effective

operator O8 or from the quark-antiquark loop one can generate with insertions of the four-quark

operatorsO1−6. The results of such computations are later projected on the meson LCDAs, keeping

only the leading term in the heavy quark limit and expanding the amplitude in powers of the

spectator quark momentum whenever it is permitted by power counting. Then, one obtains [30, 33]

T
(nf),t
⊥,+ (u, ω) = − 4ed Ceff

8

u+ ūq2/m2
B

+
mB

2mb

[
eut⊥(u,mc)(C̄2 + C̄4 − C̄6)

+ edt⊥(u,mb)

(
C̄3 + C̄4 − C̄6 −

4mb

mB
C̄5

)
+ edt⊥(u, 0) C̄3

]
, (4.4.29)

T
(nf,t)
⊥,− (u, ω) = 0, (4.4.30)

T
(nf),t
‖,+ (u, ω) =

mB

mb

[
eut‖(u,mc)(C̄2 + C̄4 − C̄6) + edt‖(u,mb)(C̄3 + C̄4 − C̄6)

+ edt‖(u, 0) C̄3

]
, (4.4.31)

T
(nf),t
‖,− (u, ω) = eq

mBω

mBω − q2 − iε

[
8 Ceff

8

ū+ uq2/m2
B
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+
6mB

mb

(
h(ūm2

B + uq2,mc)(C̄2 + C̄4 + C̄6) + h(ūm2
B + uq2,mb)(C̄3 + C̄4 + C̄6)

+ h(ūm2
B + uq2, 0)(C̄3 + 3C̄4 + 3C̄6)− 8

27
(C̄3 − C̄5 − 15C̄6)

)]
, (4.4.32)

where eu = 2/3 and ed = −1/3 are the charges of the u and d quarks, eq refers to the charge of the

spectator quark in the B meson and the function h(s,mq) is given in Eq. (4.1.24). The functions

ta(u,mq) emerge from the two loop diagrams in Fig. 4.2 (b) in which the virtual photon line is

attached to the internal quark loop. They present the following structure [30]

t⊥(u,mq) =
2mB

ūEK∗
I1(mq) +

q2

ū2E2
K∗

(
B0(ūm2

B + uq2,mq)−B0(q2,mq)
)
, (4.4.33)

t‖(u,mq) =
2mB

ūEK∗
I1(mq) +

ūm2
B + uq2

ū2E2
K∗

(
B0(ūm2

B + uq2,mq)−B0(q2,mq)
)
, (4.4.34)

and the functions B0(q2,mq) and I1(mq) are also defined in [30].

The corresponding non-factorisable kernels stemming from the CKM-suppressed terms in the

Hamiltonian read [33]

T
(nf,t)
⊥,+ (u, ω) = eu

mB

2mb

(
C2 −

1

6
C1

)
(t⊥(u,mc)− t⊥(u, 0)), (4.4.35)

T
(nf,t)
‖,+ (u, ω) = eu

mB

mb

(
C2 −

1

6
C1

)
(t‖(u,mc)− t‖(u, 0)), (4.4.36)

T
(nf,t)
‖,+ (u, ω) = eq

mBω

mBω − q2 − iε
6mB

mb

×
(
C2 −

1

6
C1

)(
h(ūm2

B + uq2,mc)− h(ūm2
B + uq2, 0)

)
, (4.4.37)

with T nf,u
⊥,−(u, ω) = 0 and ta(u,mq) are the functions discussed above.

There is an important remark worth mentioning here. In all the computations above, the

Wilson coefficients must be evaluated at the scale µb (as this is the scale we stop running down

the four-quark operators from the high scale ∼MW ). Also the QCD coupling is understood to be

evaluated at µb when multiplying the hard-vertex coefficients C(i)
a , however one needs to compute

αs at the scale µh '
√
mbΛQCD when it weights the T

(1,i)
a,± kernels, since virtualities of gluon

exchanges in hard-scattering process are expected to be of order O(mbΛQCD) (see Section 3.2.2 for

more information).

Finally, observe that all leading order and next-to-leading order results (except the weak

annihilation contribution in Eqs. (4.4.15)-(4.4.17)) depend on which QCD form factors have been

chosen to define the soft form factor ξa. The full form factor choice used for writing the soft form

factors defines a so-called soft form factor scheme. We will comment on that at the end of this

chapter and this subject will be extensively covered in Chapter 6.

Comments on scale- and scheme-dependence

Since the virtual photon in 〈γ∗(q, µ)K̄∗(p′, ε∗)|H(t)
eff |B̄(p)〉 is off-shell, this matrix element cannot

be scale- and scheme-independent (it would only be scale- and scheme-independent if the photon
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was taken on-shell, for which case the whole formalism developed above still applies). Therefore, it

follows that the hadronic amplitudes T (i)
⊥,‖ are neither scale- nor scheme-independent. However, we

can build three relevant quantities that are independent of the conventions chosen to renormalise

the effective Hamiltonian [30],

C̃7 ≡
T⊥(0)

ξ⊥(0)
= Ceff

7 + . . . , (4.4.38)

C9,⊥(q2) ≡ C9 +
2mbmB

q2

T⊥(q2)

ξ⊥(q2)
= Ceff

9 (q2) +
2mbmB

q2
Ceff

7 + . . . , (4.4.39)

C9,‖(q
2) ≡ C9 −

2mb

mB

T‖(q2)

ξ‖(q2)
= Ceff

9 (q2) +
2mb

mB
Ceff

7 − eq
4mB

mb
(C̄3 + 3C̄4)

× π2

Nc

fBfK∗

mB(EK∗/mK∗)ξ‖(q2)

∫
dω

mBΦB,−(ω)

mBω − q2 − iω + . . . , (4.4.40)

where the effective, q2-dependent coefficient Ceff
9 is the same we defined in Eq. (4.1.21). The ellipses

denote the O(αs) corrections defined in Eq. (4.4.12), which we have discussed at lenght in this

section. Notice that C̃7, C9,⊥(q2) and C9,‖(q
2) depend on the soft form factor scheme chosen for our

calculations, as the structure of the ratios T⊥,‖/ξ⊥,‖ changes for different definitions of the soft form

factors at order O(αs) or higher. Moreover, C̃7 also depends on the b quark mass renormalisation

scheme, but mb C̃7 does not.

In particular, the coefficients C̃7, C9,⊥(q2) and C9,‖(q
2) can be proven to be scale independent

up to order O(α2
s, αs C3−6) [30], this being the order up to which the computations above hold.

For consistency, when order αs terms are explicitly included in Eqs. (4.4.43)-(4.4.40), the next-to-

leading logarithmic expression for Ceff
7 [87] must also be used. However, C9 is already needed at

next-to-next-to-leading logarithmic order, since C9 ∼ ln(MW /µ) ∼ 1/αs at leading order.

4.4.4 Power suppressed corrections to the amplitudes T (i)
⊥,‖

Power corrections of order 1/mb might play an important role in certain cases. On one hand, in

B meson decays to charged ρ mesons power corrections to weak annihilation amplitudes should

be taken into account, because they are enhanced by the large Wilson coefficient C2. On the

other hand, since the transverse hadronic amplitude T (i)
⊥ does not depend on the charge of the

spectator quark eq, power corrections to this amplitude are expected to be a relevant source of

isospin breaking. This is entirely not the case for the longitudinal amplitude T (i)
‖ , as it manifestly

depends on eq, therefore we will assume the power corrections to this amplitude to be negligible [33].

Denoting by ∆T (i)
⊥ the power-suppressed contributions to T (i)

⊥ , weak annihilation O(α0
s) cor-

rections read [33]

∆T (t)
⊥

∣∣∣
ann

= −eq
4π2

3

fBfK∗,⊥
mbmB

(
C3 +

4

3
(C4 + 3C5 + 4C6)

∫ 1

0
du

ΦK∗,⊥(u)

ū+ uŝ

)

+ eq
2π2

3

fBfK∗,‖

mbmB

mK∗

(1− ŝ)λB,+(q2)

(
C3 +

4

3
(C4 + 12C5 + 16C6)

)
(4.4.41)

∆T (u)
⊥

∣∣∣
ann

= −eq
2π2

3

fBfK∗,‖

mbmB

mK∗

(1− ŝ)λB,+(q2)
3δquC2, (4.4.42)
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with the reduced kinematic variable ŝ = q2/m2
B and λB,± are the inverse moments of the B meson

distribution amplitudes ΦB,±(ω), defined in [30]. This result generalises the corresponding results

of [108, 109].

Hard-spectator interactions enter the amplitude at order O(αs), hence leading power correc-

tions to this amplitudes will contribute at O(αsΛQCD/mb) [33, 108, 109]

∆T (t)
⊥

∣∣∣
hsa

= eq
αsCF

4π

π2fB
NcmbmB

[
12Ceff

8

mb

mB
fK∗,⊥X⊥(ŝ)

+ 8fK∗,⊥

∫ 1

0
du

ΦK∗,⊥(u)

ū+ uŝ
F

(t)
K∗(ūm

2
B + uq2)

−
4mK∗fK∗,‖

(1− ŝ)λB,+(q2)

∫ 1

0
du

∫ u

0
dv

ΦK∗,‖(v)

v̄
F

(t)
K∗(ūm

2
B + uq2). (4.4.43)

Here we have used the four-quark loop function F
(t)
K∗ [109]

F
(t)
K∗(x) =

3

4

[
h(x,mc)

(
−1

6
C1 + C2 + C4 + 10C6

)
+ h(x,mb)

(
C3 +

5

6
C4 + 16C5 +

22

3
C6

)

+ h(x, 0)

(
C3 +

17

6
C4 + 16C5 +

82

3
C6

)
− 8

27

(
−15

2
C4 + 12C5 − 32C6

)]
(4.4.44)

and the integral [109]

X⊥(ŝ) =
1

3

[∫ 1

0
du

ΦK∗,⊥(u)

1− u+ uŝ
+

∫ 1

0
du

ΦK∗,⊥(u)

(1− u+ uŝ)2

]
(4.4.45)

This integral develops a logarithmic endpoint singularity as u → 1, signaling a breakdown of

factorisation in this kinematic regime. One way of treating this singularity is by introducing an

infrared cutoff [109].

The corresponding (u) contribution from hard-scattering power corrections, which we denote

by ∆T (t)
⊥

∣∣∣
hsa

is obtained by Ceff
8 → 0 and F

(t)
K∗(s)→ F

(u)
K∗ (s), where

F
(u)
K∗ (s) =

3

4

(
C2 −

1

6
C1

)
[h(s,mc)− h(s, 0)] . (4.4.46)

4.4.5 Summary of results for T (i)
⊥,‖

Combining the next-to-leading order factorisation formula (4.4.12) with the results for power sup-

pressed contributions ∆T (i)
⊥

∣∣∣
ann

and ∆T (i)
⊥

∣∣∣
hsa

given in Eqs. (4.4.41), (4.4.42) and (4.4.43), we

obtain a complete description for the amplitudes T (i)
⊥,‖ at order O(αs,ΛQCD/mb),

T (t),full
⊥ = T (t)

⊥ + ∆T (t)
⊥

∣∣∣
ann

+ ∆T (t)
⊥

∣∣∣
hsa
, T (u),full
⊥ = T (u)

⊥ + ∆T (u)
⊥

∣∣∣
ann

+ ∆T (u)
⊥

∣∣∣
hsa
, (4.4.47)

which enter the amplitude according to structure of the b→ s`+`− effective Hamiltonian

T (t),full
⊥ + λ̂(s)

u T (u),full
⊥ , (4.4.48)

T (t)
‖ + λ̂(s)

u T (u)
‖ , (4.4.49)

with λ̂
(s)
u = λ

(s)
u /λ

(s)
t , being λ

(s)
u and λ

(s)
t as defined in (4.1.1).
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4.4.6 An explicit observation about the choice of soft form factors

Soft form factors emerge from the relations between full QCD form factors in the heavy quark

and large energy limits (see Eqs. (2.1.27)-(2.1.28)). These relations allow many different possible

definitions for the soft form factors in terms of full form factors. Each choice sets a factorisation

scheme by which one imposes the relations defining the soft form factors to hold to all orders in

perturbation theory. Several conventions have been used in the literature but general consensus

has been reached around the scheme defined in [33]. Clearly, physical quantities cannot depend

on the particular scheme used in the calculations, however the choice of scheme certainly affects

the structure of some of the functions in the factorisation formula of Eq. (4.4.18).

For instance, by choosing the scheme adopted in [29, 30], we have

ξ⊥(q2) ≡ mB
mB+mK∗

V (q2)

ξ‖(q
2) ≡ mK∗

EK∗
A0(q2)




⇒





C(f,t)
‖ = −Ceff

7

(
4 ln

m2
b

µ2 − 6− 4L
)

+ mB
mb
Y (t)(q2)(1− L),

T
(f,t)
‖,+ (u, ω) =

(
Ceff

7 +
q2

2mbmB
Y (t)(q2)

)
2m2

B

ūE2
K∗
,

(4.4.50)

while fixing the scheme to the most common convention [33] leads into

ξ⊥(q2) ≡ mB
mB+mK∗

V (q2)

ξ‖(q
2) ≡ mB+mK∗

2EK∗
A1(q2)− mB−mK∗

mB
A2(q2)




⇒





C(f,t)
‖ = −Ceff

7

(
ln

m2
b

µ2 + 2L+ ∆M
)
,

T
(f,t)
‖,+ (u, ω) = Ceff

7
4mB
ūEK∗

,

(4.4.51)

In this section, we have always implicitly assumed the scheme of Ref. [33]. So, all the results

presented and discussed here conform to this choice. For corresponding expressions in the scheme

of Eq. (4.4.50) we refer to [30].

4.5 Transversity Amplitudes at order O(αs)

In order to include the O(αs, αsΛQCD/mb) corrections computed within QCDf to the transversity

amplitudes in Eqs. (4.2.33)-(4.2.37), we follow the prescription introduced in [83, 84]. Removing

the perturbative quark-loop function Y (t)(q2) from Ceff
9 and attaching it to Ceff

7
4, one can perform

the following replacements

Ceff
9 → C9, (Ceff

7 + Ceff
7′ )Ti → T

(t)+
i , (Ceff

7 − Ceff
7′ )Ti → T

(t)−
i , (i = 1, 2, 3) (4.5.1)

where the superscripts +,− in T (t)
i stand for the substitution of Ceff

7 → Ceff
7 + Ceff

7′ and Ceff
7 →

Ceff
7 − Ceff

7′ , respectively. Instead of using the basis above for the hadronic amplitudes, we will use

the more natural language of Eqs. (4.4.5)-(4.4.7) and use the substitutions [84]

T (t)
1,± = T (t)

⊥,±, T (t)
2,− =

2EK∗

mB
T (t)
⊥,−, T (t)

3,− = T (t)
⊥,− + T (t)

‖,− (4.5.2)

4This can always be done, as both the electromagnetic dipole operator O7 and the semileptonic operator O9 have

a vectorial structure.
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Including the CKM-suppressed (u) contributions is an even simpler task, since the effective

Hamiltonian H(u)
eff in Eq. (4.1.3) does not contain any operator entering the matrix element of

Eq. (4.2.1) at leading order. Then, these terms can be directly incorporated into the matrix

element.

According to these instructions, the combination of hadronic functions in Eqs. (4.4.48)-(4.4.49)

can be inserted in the transversity amplitudes in Eqs. (4.2.33)-(4.2.37) to obtain:

AL,R⊥ = N
√

2λ1/2

{[(
Ceff

9 + Ceff
9′

)
∓ (C10 + C10′)

] V (q2)

mB +mK∗

+
2mb

q2

(
T (t),full
⊥,+ + λ̂(s)

u T (u),full
⊥

)}
, (4.5.3)

AL,R‖ = −N
√

2
(
m2
B −m2

K∗
)
{[(

Ceff
9 − Ceff

9′

)
∓ (C10 − C10′)

] A1(q2)

mB −mK∗

+
2mb

q2

[
2EK∗

mb

(
T (t),full
⊥,− + λ̂(s)

u T (u),full
⊥

)]}
, (4.5.4)

AL,R0 = − N

2mK∗
√
q2

{[(
Ceff

9 − Ceff
9′

)
∓ (C10 − C10′)

]

[
(m2

B −m2
K∗ − q2)(mB +mK∗)A1(q2)− λ A2(q2)

mB +mK∗

]

+ 2mb

[(
(m2

B + 3m2
K∗ − q2)

2EK∗

mB
− λ

m2
B −m2

K∗

)(
T (t),full
⊥,− + λ̂(s)

u T (u),full
⊥

)]

− λ

m2
B −m2

K∗

(
T (t)
‖,− + λ̂(s)

u T (u)
‖

)
, (4.5.5)

At =
N√
q2
λ1/2

[
2(C10 − C10′) +

q2

mµ
(CPS − CPS′)

]
A0(q2), (4.5.6)

AS = −2Nλ1/2(CS − CS′)A0(q2), (4.5.7)

where the normalisation constant N is the same as in Eq. (1.3.10) and λ is the triangle function.

Although Eqs. (4.5.3)-(4.5.7) are the result of a direct application of the prescription discussed

above, these are not the final result as they contain O(m2
K∗/m

2
B) terms which need to be eliminated

in order to be consistent with QCDf. At leading order in an expansion in m2
K∗/m

2
B, the transversity

amplitudes can be simplified to
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AL,R⊥ ' N
√

2(m2
B − q2)

{[(
Ceff

9 + Ceff
9′

)
∓ (C10 + C10′)

]V (q2)

mB

+
2mb

q2

(
T (t),full
⊥,+ + λ̂(s)

u T (u),full
⊥

)}
, (4.5.8)

AL,R‖ ' −N
√

2

{[(
Ceff

9 − Ceff
9′

)
∓ (C10 − C10′)

]
(mB −mK∗)A1(q2)

+
2mb

q2

[
(m2

B − q2)
(
T (t),full
⊥,− + λ̂(s)

u T (u),full
⊥

)]}
, (4.5.9)

AL,R0 = −Nm2
B − q2

2
√
q2

{[(
Ceff

9 − Ceff
9′

)
∓ (C10 − C10′)

][(
1 +

mB

mK∗

)
A1(q2)

− mB

mK∗

(
1− q2

mB‘2

)
A2(q2)

]
− 2mb

mK∗

(
1− q2

mB‘2

)(
T (t)
‖,− + λ̂(s)

u T (u)
‖

)}
, (4.5.10)

At '
N√
q2

(m2
B − q2)

[
2(C10 − C10′) +

q2

mµ
(CPS − CPS′)

]
A0(q2), (4.5.11)

AS = −2N(m2
B − q2)(CS − CS′)A0(q2), (4.5.12)

Finally, one needs to write the full QCD form factors in Eqs. (4.5.8)-(4.5.12) in terms of soft form

factors. Because the equations for the transversity amplitudes above include O(αs) corrections

coming from QCDf, for the sake of a meaningful result one must include the O(αs) corrections to

the soft form factors (as defined in Eq. (2.1.29)) too. Using the scheme defined in [29]

V (q2) ≡ mB +m∗K
mB

ξ⊥(q2), A0(q2) ≡ EK∗

mK∗
ξ‖(q

2), (4.5.13)

and taking into account Eqs. (32)-(33) and Eqs. (59)-(60) in [29], one obtains

A1(q2) =
2EK∗

mB +mK∗
ξ⊥(q2), (4.5.14)

A2(q2) =
mB

mB −mK∗

(
ξ⊥(q2)− ξ‖(q2)

)

+
αs
3π

2mB

mB −mK∗

[
(1− L)ξ‖(q

2) +
mK∗

EK∗

mB(mB − 2EK∗)

E2
K∗

π2fBfK∗,‖

NcmB
λ−1
B,+

∫ 1

0
du

ΦK∗,‖(u)

ū

]
,

(4.5.15)

in which L is a function of q2 already defined in Eq. (4.4.23).



Chapter 5

Observables in b→ s``(γ)

Phenomenological analyses pretend to determine, or at least constrain, fundamental theory param-

eters from experimental results. The common ground where theory and experiment meet is the

observable level. By observables we understand experimentally accessible quantities that admit

predictions within different theoretical models in terms of their fundamental parameters. From

the theory side, one aims at designing observables with maximal sensitivity to the physics we

want to study and providing predictions for them with competitive uncertainties. The task of the

experiments, on the other hand, is to perform precise measurements of the observables with the

data obtained in particle colliders.

In this chapter we will describe all the different types of observables that are included in

our global analyses of processes with underlying b → s`` and b → sγ transitions, paying spe-

cial attention to the concept of optimised observable. In this regard, a complete presentation of

the guidelines used to construct such observables will be provided and their general properties

discussed.

5.1 B → K∗`+`−: Symmetries and Optimised Observables

The main goal of this section is to provide a complete description of the four-body angular dis-

tribution of the B → K∗`+`− decay (see Eq. (4.2.9)) in terms of optimised observables. In this

context, an observable is said to be optimised (or optimal), if it has a very limited sensitivity to

uncertainties of hadronic origin throughout the relevant q2 range of the decay. Then, since these

observables are defined to depend as little as possible on the long-distance physics, they present

an enhanced sensitivity to short-distance effects and thus provide excellent probes of NP.

Observables of this type have been traditionally referred to in the literature as clean observ-

ables. Indeed, clean observables are not new and some of them have already been known for nearly

two decades now. Examples are the zero of the forward-backward asymmetry (AFB) [30], as this

only depends on a combination of Wilson coefficients with no form factor input, and the so-called

A
(2)
T observable [100], which was precisely built in order to have the same properties as the zero of

the AFB but for all the B → K∗`+`− large recoil region.

A systematic procedure for the construction of optimised observables can be formulated in two

steps:

I Identify the irreducible building blocks from which all observables can be built by means of

71
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the symmetries of the decay distribution (see the subsection below).

I Use effective theories (i.e. HQET/LEET at low-q2 [24, 30] and HQET at high-q2 [110]) to

build simple combinations of the aforementioned building blocks where the soft form factors

cancel at leading order in the effective theory.

Complete descriptions of the theoretical formalism used to construct the above-mentioned

optimised observables and thorough reviews of their properties, both in the SM and in several

well-motivated NP scenarios, can be found in Refs. [103, 111–113].

5.1.1 Symmetry formalism for massless leptons

All experimental information available in the B → K∗`+`− decay is contained in the decay dis-

tribution, therefore the number of experimental degrees of freedom is determined by the number

of angular coefficients Ji in Eq. (4.2.9). On the other hand, since all theory computations can

be written in terms of transversity amplitudes in Eqs. (4.2.33)-(4.2.37), the theoretical degrees

of freedom are given by the transversity amplitudes Aj . Clearly, for consistency, theoretical and

experimental degrees of freedom have to match. There are two effects to consider for this: different

values of the amplitudes Aj can give rise to the same differential distribution (4.2.9), being im-

possible to distinguish one from another (continuous symmetries), but also it is possible that not

all angular coefficients Ji are independent, so that not all arbitrary values of the Ji are actually

possible. Hence, for the theoretical and experimental degrees of freedom to match, the following

is required [111]

nc − nd = 2nA − ns, (5.1.1)

where nc is the number of coefficients in the differential distribution (number of Ji), nd the number

of dependencies between the different coefficients, nA is the number of spin amplitudes (since the

amplitudes Aj are complex quantities, each of them carry 2 degrees of freedom) and ns is the

number of continuous symmetries.

Since the combination nc−nd accounts for the number of degrees of freedom that are available

from the angular analysis, we can define the experimental number of degrees of freedom as [111]

nexp ≡ nc − nd = 2nA − ns, (5.1.2)

Notice that nexp also measures the number of independent observables required to extract all the

information contained in the distribution [103]. Therefore, once a set of nexp independent observ-

ables consistent with the symmetries is fixed, any angular observable can be written in terms of

these observables, so the aforementioned set has the properties of a basis [103, 112]. Different sce-

narios (i.e. massless leptons, massless leptons including scalar contributions, etc) require different

sets of transversity amplitudes, resulting in different number of independent observables. In this

thesis we will only consider the massless lepton case, because the vast majority of our applications

will only involve muons or electrons in the final state, for which the massless approximation is

justified.

In this case, one has 12 angular coefficients and 6 different Aj amplitudes (with the scalar

amplitude AS → 0). Considering an infinitesimal transformations of the differential distribution

(4.2.9) [111], one can show that there are ns = 4 continuous transformations between the AL,Ri that

leave the angular distribution invariant. Two of these are just phase transformations (ALi → eiφLALi
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and ARi → eiφRARi ), while the other two mix L and R amplitudes (see [111] and Appendix A of

Ref. [103]). Thus, by means of Eq. (4.2.41), there must be nexp = 8 independent observables in

this case. At the same time, the previous observation implies that there should be 4 relationships

among the 12 angular coefficients Ji(q
2). Three of them are transparent from the Eqs. (4.3.1)-

(4.3.6) in Section 4.3: J6c = 0, J1s = 3J2s and J1c = −J2c. On the other hand, using the symmetry

formalism in [111] and [103], it can be proved that the fourth relation reads

J2c = −2
(2J2s + J3)(4J2

4 + β2
` J

2
7 ) + (2J2s − J3)(β2

` J
2
5 + 4J2

8 )

16J2
2s − (J2

3 + β2
` J

2
6s + 4J2

9 )

+ 4
β2
` J6s(J4J5 + J7J8) + J9(β2

` J5J7 − 4J4J8)

16J2
2s − (J2

3 + β2
` J

2
6s + 4J2

9 )
, (5.1.3)

where one must recall that β` = 1 in the massless case (with β` defined under Eq. (4.2.38)).

5.1.2 Optimised Observables Pi

Not any observable constructed from the transversity amplitudes can be obtained from the angular

distribution [103]. To this end, a well-defined observable must respect the symmetries of the

angular distribution, i.e. must be formally invariant under the transformations of the transversity

amplitudes. Below, we explicitly review how to construct observables with these properties in a

systematic way.

First, define the following complex vectors [103, 111]

n‖ =

(
AL‖
AR∗‖

)
, n⊥ =

(
AL⊥
−AR∗⊥

)
, n0 =

(
AL0
AR∗0

)
. (5.1.4)

Using these vectors, one can build the products |ni|2 = n†ini and n†inj

|n‖|2 = |AL‖ |2 + |AR‖ |2 =
2J2s − J3

β`
, n†⊥n‖ = AL∗⊥ A

L
‖ −AR⊥AR∗‖ =

β`J6s − 2iJ9

2β2
`

, (5.1.5)

|n2
⊥| = |AL⊥|2 + |AR⊥|2 =

2J2s + J3

β`
, n†0n‖ = AL∗0 AL‖ +AR0 A

R∗
‖ =

2J4 − iβ`J7√
2β2

`

, (5.1.6)

|n2
0| = |AL0 |2 + |AR0 |2 = −J2c

β2
`

, n†0n⊥ = AL∗0 AL⊥ −AR0 AR∗⊥ =
β`J5 − 2iJ8√

2β2
`

. (5.1.7)

These quantities are manifestly invariant under the symmetry transformations of the transversity

amplitudes, since they can be written in terms of angular coefficients. The previous equations,

considering real and imaginary parts, contain nine real quantities, in which all the information of

the angular distribution is codified. Their combinations provide all the possible observables con-

sistent with the underlying symmetry. Nevertheless, these nine quantities are not all independent

[103, 111],

|(n†‖n⊥)|n0|2 − (n†‖n0)(n†0n⊥)|2 = (|n0|2|n‖|2 − |n†0n‖|2)(|n0|2|n⊥|2 − |n†0n⊥|2), (5.1.8)

which leads to Eq. (5.1.3), when translated into Ji language. Therefore, Eqs. (5.1.5)-(5.1.7) effec-

tively represent eight real independent quantities, as it is required by the observation above that

nexp = 8.
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This formalism guarantees that every observable constructed from products of the ni vectors

above will respect the symmetries of the decay distribution. Now we focus on obtaining combina-

tions where the hadronic form factors cancel. At large recoil, the transversity amplitudes can be

schematically written as [112]

AL,R⊥ = XL,R
⊥ ξ⊥(q2) +O(αs,ΛQCD/mb), (5.1.9)

AL,R‖ = XL,R
‖ ξ⊥(q2) +O(αs,ΛQCD/mb), (5.1.10)

AL,R0 = XL,R
0 ξ‖(q

2) +O(αs,ΛQCD/mb), (5.1.11)

where XL,R
i (i =⊥, ‖, 0) are functions of the short-distance physics (Wilson coefficients, etc)

and ξ⊥,‖ are the soft-form factors defined in Eqs. (2.1.27)-(2.1.28). Notice that these equations

are only a suitable and compact way of rewriting Eqs. (4.2.39)-(4.2.43). The fact that L and R

transversity amplitudes are proportional to the same soft-form factor allows for the construction

of several form factor independent (FFI) observables by taking corresponding ratios of the angular

coefficients [103, 112].

Before discussing FFI observables, we need to make one more observation. Out of the eight

independent quantities in Eq. (5.1.5)-(5.1.7), the soft form factors may be regarded as two irre-

ducible normalisation factors in the products n†inj . Hence, it is impossible to construct eight fully

form factor independent combinations. Best-case scenario, one can build up to six clean observ-

ables, with two additional observables containing the information on the soft form factors (i.e.

form factor dependent (FFD) observables).

The FFD observables we choose are the angular-integrated differential decay rate dΓ/dq2 and

the forward-backward asymmetry AFB [103]

dΓ

dq2
=

∫
d cos θ` d cos θK∗ dφ

d4Γ

dq2 d cos θK∗ d cos θ` dφ
=

1

4
(3J1c + 6J1s − J2c − 2J2s), (5.1.12)

AFB =
1

dΓ/dq2

[∫ 0

−1
−
∫ 1

0

]
d cos θ`

d2Γ

dq2 d cos θ`
= − 3J6s

3J1c + 6J1s − J2c − 2J2s
. (5.1.13)

In the massless case, due to the relations between angular coefficients, the expressions above reduce

to dΓ/dq2 = J1c + 4J2s and AFB = −3J6s/[4(J1c + 4J2s)].
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One possible choice of (clean) FFI observables is [103]

P1 =
|n⊥|2 − |n‖|2
|n⊥|2 + |n‖|2

=
J3

2J2s
(5.1.14)

P2 =
Re(n†⊥n‖)

|n⊥|2 + |n‖|2
=
β`
8

J6s

J2s
(5.1.15)

P3 =
Im(n†⊥n‖)

|n⊥|2 + |n‖|2
= − J9

4J2s
(5.1.16)

P4 =
Re(n†0n‖)√
|n‖|2|n0|2

=

√
2J4√

−J2c(2J2s − J3)
(5.1.17)

P5 =
Re(n†0n⊥)√
|n⊥|2|n0|2

=
β`J5√

−J2c(2J2s + J3)
(5.1.18)

P6 =
Im(n†0n‖)√
|n‖|2|n0|2

= − β`J7√
−J2c(2J2s − J3)

(5.1.19)

Then, the complete basis of observables for massless leptons above-defined reads

Om`=0 =
{ dΓ

dq2
, AFB, P1,2,3,4,5,6

}
. (5.1.20)

It is important to stress that different configurations leading to complete sets of clean observables

are possible. Actually, as we will discuss in the following section, the choice above is not the

most optimal and, unless otherwise stated, we will always use the new basis defined there in our

analyses.

Apart from the general principles described at the beginning of this section, the optimised

observables Pi are defined so that:

I They are simple ratios of the quantities in Eqs. (5.1.5)-(5.1.7) (where the form factors ξ⊥,‖

cancel).

I They take values in the range [−1, 1].

I They show excellent sensitivity to NP [103, 112].

5.1.3 Limitations of Optimised Observables

As it follows from the procedure we used for their construction, optimised observables Pi are only

independent of the form factor input at leading order in αs and ΛQCD/mb. The exact cancellation

of the soft-form factors is broken by higher-order corrections, so a residual form factor dependence

is induced on the optimised observables when subleading contributions are taken into account. We

can distinguish two different types of such contributions: perturbative corrections (usually from

hard-gluon exchanges) and non-perturbative effects (coming from higher order ΛQCD/mb power

corrections). The theoretical framework we use for dealing with these issues will be discussed at

length in Chapter 6.

Furthermore, we should stress that leading order cancellation of form factors in optimised

observables is only fully realised in the low-q2 region. In general, these observables are not protected

from form factor uncertainties at high-q2 [112].
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5.1.4 Further Optimising the Basis of Observables

Instead of the observable basis in Eq. (5.1.20), in our analyses we will use a slightly different one,

which represents a better compromise between theoretical cleanliness and optimal experimental

accessibility [103, 112, 114, 115]

Oopt
m`=0 =

{ dΓ

dq2
, AFB or FL, P1,2,3, P

(′)
4,5,6

}
, (5.1.21)

where FL is the longitudinal polarisation. See the discussion below for an explicit definition of this

observable.

The unprimed basis Om`=0 is experimentally more challenging because of the difficulties these

observables pose for their extraction from the angular distribution. While P
(′)
4,5 are obtained from

the decay distribution by fixing FT (transverse polarisation), P4,5 require both the measurement

of FT and P1, consequently reducing its discriminating power [112]. For this reason, we consider

the new basis in Eq. (5.1.21) the optimal one.

There is another experimental effect we must also take into account: current experimental

measurements are performed by fitting q2-binned angular distributions (either for B → K∗`+`−

or any other relevant decay channel). So, for a meaningful comparison of theory calculations and

experimental measurements, one needs to integrate theory predictions over the kinematic ranges

fixed by the experimental q2 bins. Therefore, we define CP-averaged and CP-violating observables1,

〈Pi〉bin and 〈PCP
i 〉bin, by [112]

〈P1〉bin =
1

2

∫
bin dq

2[J3 + J̄3]∫
bin dq

2[J2s + J̄2s]
, 〈PCP

1 〉bin =
1

2

∫
bin dq

2[J3 − J̄3]∫
bin dq

2[J2s + J̄2s]
, (5.1.22)

〈P2〉bin =
1

8

∫
bin dq

2[J6s + J̄6s]∫
bin dq

2[J2s + J̄2s]
, 〈PCP

2 〉bin =
1

8

∫
bin dq

2[J6s − J̄6s]∫
bin dq

2[J2s + J̄2s]
(5.1.23)

〈P3〉bin = −1

4

∫
bin dq

2[J9 + J̄9]∫
bin dq

2[J2s + J̄2s]
, 〈PCP

3 〉bin = −1

4

∫
bin dq

2[J9 − J̄9]∫
bin dq

2[J2s + J̄2s]
, (5.1.24)

〈P ′4〉bin =
1

N ′bin

∫

bin
dq2[J4 + J̄4], 〈P ′4

CP〉bin =
1

N ′bin

∫

bin
dq2[J4 − J̄4], (5.1.25)

〈P ′5〉bin =
1

2N ′bin

∫

bin
dq2[J5 + J̄5], 〈P ′5

CP〉bin =
1

2N ′bin

∫

bin
dq2[J5 − J̄5], (5.1.26)

〈P ′6〉bin =
−1

2N ′bin

∫

bin
dq2[J7 + J̄7] , 〈P ′6

CP〉bin =
−1

2N ′bin

∫

bin
dq2[J7 − J̄7], (5.1.27)

where J̄i are the CP-conjugate angular coefficients and the normalization N ′bin is defined as

N ′bin =

√
−
∫

bin
dq2[J2s + J̄2s]

∫

bin
dq2[J2c + J̄2c]. (5.1.28)

An exhaustive characterisation of the q2-binned angular distribution needs to add another observ-

able to the basis Oopt
m`=0. This observable is called P ′8 and it was defined in Ref. [115], with the

1Our analyses do not explicitly test CP-violation in the various b → s`` decay channels, so we will only work

with CP-averaged observables. However, for completeness, here we also define their CP-violating counterparts.
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following structure (in CP-averaged and CP-violating form)

〈P ′8〉bin =
−1

N ′bin

∫

bin
dq2[J8 + J̄8] , 〈P ′8

CP〉bin =
−1

N ′bin

∫

bin
dq2[J8 − J̄8] . (5.1.29)

Indeed, this observable is redundant in the continuum, as it can be written in terms of the other

observables in the Oopt
m`=0 basis [115]. However, the binning procedure breaks this redundancy.

Analogous definitions for the q2-bin integrated unprimed observables 〈PiCP〉bin (with i =

4, 5, 6, 8) can be found in Appendix A of Ref. [112].

It is important to stress here that these definitions are general and also hold for the massive

case (m` 6= 0) and in presence of scalar and tensor contributions. In the infinitesimal binning

limit, the observables 〈P (′)
1,...,6〉bin

in Eqs. (5.1.22)-(5.1.27) reduce to their definitions as continuous

functions of q2, with only some small differences related to lepton mass effects (such as the case of

P2 [115]).

Finally, there are some important FFD observables that should be discussed. These are the

CP-averaged branching ratio B(B → K∗`+`−), the CP asymmetry ACP , both the CP-averaged

and CP-violating forward-backward asymmetry and the longitudinal polarisation fraction2 FL of

the K∗ meson (again in CP-averaged and CP-violating forms).

〈AFB〉 = −3

4

∫
dq2 [J6s + J̄6s]

〈dΓ/dq2〉+ 〈dΓ̄/dq2〉 , 〈ACP
FB〉 = −3

4

∫
dq2 [J6s − J̄6s]

〈dΓ/dq2〉+ 〈dΓ̄/dq2〉 , (5.1.30)

〈FL〉 = −
∫
dq2 [J2c + J̄2c]

〈dΓ/dq2〉+ 〈dΓ̄/dq2〉 , 〈FCP
L 〉 = −

∫
dq2 [J2c − J̄2c]

〈dΓ/dq2〉+ 〈dΓ̄/dq2〉 , (5.1.31)

〈
dB
dq2

〉
= τB

〈dΓ/dq2〉+ 〈dΓ̄/dq2〉
2

, 〈ACP〉 =
〈dΓ/dq2〉 − 〈dΓ̄/dq2〉
〈dΓ/dq2〉+ 〈dΓ̄/dq2〉 , (5.1.32)

where τB denotes the lifetime of the given B meson involved in the decay and it is to be understood

that q2-averages are taken within suitable q2-bins fixed by experiments. Usually, we will not use the

notation 〈dB/dq2〉 for the branching ratio of a given process, but rather simply B(B → K∗`+`−)

(changing the process in parenthesis when necessary). Also, following Eq. (5.1.12), we define

〈
dΓ

dq2

〉
=

1

4

∫
dq2[3J1c + 6J1s − J2c − 2J2s]. (5.1.33)

5.1.5 CP-averages and CP-asymmetries: Si and Ai

Other B → K∗`+`− analyses are based on descriptions of the angular distribution with different

observables [31, 116]. A very accessible basis from the experimental point of view can be defined

by means of the CP-averaged angular coefficients Si and the CP-asymmetries Ai [31]

〈Si〉 =

∫
dq2 [Ji + J̄i]

〈dΓ/dq2〉+ 〈dΓ̄/dq2〉 , 〈Ai〉 =

∫
dq2 [Ji − J̄i]

〈dΓ/dq2〉+ 〈dΓ̄/dq2〉 . (5.1.34)

These observables clearly conform with the symmetries of the angular distribution, as they are

defined in terms of angular coefficients. Despite their normalisation to the CP-averaged angular

distribution, which may achieve some cancellations and reduce both theoretical and experimental

uncertainties, these observables are not clean (unlike the optimised observables Pi). Indeed, they

2The transverse polarisation fraction FT can be defined in terms of FL as FT = 1− FL.
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are not constructed to exploit the form factor simplifications emerging at large recoil, so no exact

cancellation of form factors is possible within them and consequently they show strong sensitivity

to the choice of soft form factors. Therefore, this basis is less competitive for NP searches than

descriptions based on optimised observables. See Refs. [112] and [113] for in-depth comparative

studies of the properties of these two bases.

5.1.6 Theory vs LHCb conventions

As it was observed in Ref. [113], standard theory conventions [31, 103, 112] used to define the

angles of the B → K∗`+`− decay distribution differ from the ones used by the experimental

collaborations [117] (LHCb in particular). Our particular definition of the decay distribution

follows the one introduced in Ref. [31]. Comparing with Refs. [118, 119], where the authors

provided a dictionary connecting both theory and LHCb conventions, we find that our definition

of angles is related to that of the LCHb by [113]

θLHCb
K∗ = θK∗ , θLHCb

` = π − θ`, φLHCb = −φ, (5.1.35)

leading to the following relative signs at the level of the Si observables

SLHCb
4,6c,6s,8,9 = −S4,6c,6s,8,9, (5.1.36)

with the other CP-averaged angular coefficients unaffected. Regarding the optimised observables

Pi, relative signs have to be combined with the fact that LHCb uses different numerical factors

to define some of the Pi observables. Taking these two effects together, one obtains the following

dictionary [113]

PLHCb
1 = P1, PLHCb

2 = −P2, PLHCb
3 = P3, (5.1.37)

P ′LHCb
4 = −(1/2)P ′4, P ′LHCb

5 = P ′5, P ′LHCb
6 = P ′6, P ′LHCb

8 = −(1/2)P ′8. (5.1.38)

5.2 Bs → φ`+`−: tagging degeneracy and time-integrated observ-

ables

Unlike B → K∗`+`− decays with neutral B mesons, Bs → φ`+`− processes very predominantly

decay into CP-eigenstates3. Indeed, the current most precise experimental determination of this

mode was obtained by the LHCb by measuring the Bs → φ(→ K+K−)µ+µ− angular distribu-

tion [121]. Thus, the main difference between this decay and B → K∗`+`− is that the former is not

self-tagging, that is, the final state does not contain enough information to discriminate whether

the initial state was a Bs or its CP-conjugate B̄s.

Because of the aforementioned absence of self-flavour tagging in Bs → φ(→ K+K−)µ+µ−,

and under the assumption of equal production of Bs and B̄s mesons, what is actually measured

at the experiments is dΓ(Bs → φ(→ K+K−)µ+µ−) + dΓ(B̄s → φ(→ K+K−)µ+µ−). Therefore,

because of the relative signs between Ji and J̄i (see Eq. (4.2.12)), these measurements only have

access to the following CP-combinations of angular coefficients Ji [122, 123]

〈Ji + J̄i〉 for i = 1s, 1c, 2s, 2c, 3, 4, 7, (5.2.1)

〈Ji − J̄i〉 for i = 5, 6s, 6c, 8, 9, (5.2.2)

3Notice that φ decays to K+K− and K0
SK

0
L make up to more than 80% of its total decay width [120].
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where Ji and J̄i have the same structure in terms of transversity amplitudes as for flavour-specific

decays, Eqs. (4.3.1)-(4.3.6). The experimental analysis of Ref. [121] provided measurements of

the CP-averaged angular coefficients S3,4,7 and the CP-asymmetries A5,6,8,9, where all these mea-

surements correspond to time-integrated quantities (see the discussion below). Since we are not

evaluating CP-violation in our analyses, only the first ones will be relevant for our global fits in

Chapter 8, which we will recast as P1, P ′4 and P ′6 using the covariance matrix in Ref. [121].

As hinted above, in Bs → φ(→ K+K−)µ+µ− the final state can be produced by both the decay

of a Bs or B̄s meson, so Bs− B̄s mixing and the direct decay interfere, from a quantum mechanical

point of view. This induces additional time-dependent contributions to the decay amplitude, and

hence to the angular distribution. Time dependent effects can be accounted for by introducing

time-dependent transversity amplitudes AX(t) [122, 124], where X = L 0, R 0, L ⊥, R ⊥, L ‖, R ‖.
Then, one can write the decay distribution in terms of time-dependent angular coefficients, which

are obtained by replacing the usual transversity amplitudes by time-dependent ones [122–124]

Ji(t) = Ji(AX → AX(t)), J̄i(t) = J̄i(AX → AX(t)). (5.2.3)

These time-dependent angular coefficients can be written as functions of the (non time-dependent)

coefficients Ji and J̃i
4, which we can determine from flavour-specific decays, and two extra angular

observables si and hi [122]

Ji(t) + J̃i(t) = e−Γst
[
(Ji + J̃i) cosh(yΓst)− hi sinh(yΓst)

]
, (5.2.4)

Ji(t)− J̃i(t) = e−Γst
[
(Ji − J̃i) cosh(yΓst)− si sinh(yΓst)

]
, (5.2.5)

where Γs ≡ (ΓLs + ΓHs)/2, x ≡ ∆ms/Γs (with ∆ms = mHs − mLs) and y ≡ ∆Γs/(2Γs) (with

∆Γs ≡ ΓLs − ΓHs), being ΓLs (ΓHs) and mHs (mLs) the width and mass of the lighter (heavier)

mass eigenstate [124].

Using this formalism, theoretically accounting for measurements of time-integrated observables

in hadronic experiments (like LHCb) amounts to including O(∆Γs/Γs) corrections to the analogous

B → K∗`` expressions [122]

〈Ji(t) + J̃i(t)〉t =
1

Γs

[
1

1− y2
(Ji + J̃i)−

y

1− y2
hi

]
, (5.2.6)

〈Ji(t)− J̃i(t)〉t =
1

Γs

[
1

1− y2
(Ji − J̃i)−

y

1− y2
si

]
, (5.2.7)

with the notation 〈.〉t here meaning time-averaged quantities, not to be confused with the usual

brackets 〈.〉 denoting q2-averages. Hence, the same complete basis of optimised observables that

fully characterises the B → K∗`+`− mode can be constructed for Bs → φ`+`− by means of the

corresponding replacements

Ji + J̃i −→ 〈Ji(t) + J̃i(t)〉t , (5.2.8)

Ji − J̃i −→ 〈Ji(t)− J̃i(t)〉t . (5.2.9)

in the definitions of the observables in Section 5.1.4 .

4The angular coefficients J̃i are defined such that J̃i = ζiJ̄i, where the symbol ζi follows that ζi = 1 for i =

1s, 1c, 2s, 2c, 3, 4, 7, and ζi = −1 for i = 5, 6s, 6c, 8, 9 [122].
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5.3 B → K`+`−: Decay Distribution and Observables

The semileptonic decay B → K`+`− also allows for important tests of the SM. Indeed, some of the

most important anomalies involve observables defined within this decay channel, as we will discuss

in Chapter 8. In this section, we will provide a general description of the dynamics governing the

aforementioned decay and we will introduce its most relevant observables.

Since both B → K`+`− and B → K∗`+`− are processes driven by the same underlying b→ s

transition, the effective Hamiltonian of Eq. (4.1.1) can be used for their description. Therefore,

proceeding as in Section 4.2.1, but now using the corresponding form factors defined in Eqs. (2.1.2)-

(2.1.2), the matrix element of the B → K`+`− decay can be written as [125]

M(B̄ → K`¯̀) = 〈`(p−)¯̀(p+)K(k)|Heff |B̄(p)〉

=
GFα√

2π
V ∗tsVtb

{
FS(¯̀̀ ) + FP (¯̀γ5`) + FV pµ(¯̀γµ`) + FApµ(¯̀γµγ5`)

}
, (5.3.1)

where p, k, p− and p+ are the momenta of the B meson, kaon K, lepton and anti-lepton, re-

spectively. Correspondingly, mB, mK and m` will denote their masses. The Lorentz-invariant

structure functions FS,P,V,A contain contributions coming from scalar, pseudo-scalar, vector and

axial-vector operators. In general, tensor operators can also contribute to the matrix element,

however no further consideration will be given to them here. These structure functions present

the following form [125],

FS =
1

2
(m2

B −m2
K)f0(q2)

(CSmb + C′Sms

mb −ms

)
, (5.3.2)

FP = −m`C10

{
f+(q2)− m2

B −m2
K

q2

(
f0(q2)− f+(q2)

)}

+
1

2
(m2

B −m2
K)f0(q2)

(CPmb + C′Pms

mb −ms

)
, (5.3.3)

FA = C10f+(q2), (5.3.4)

FV = Ceff
9 f+(q2) + 2Ceff

7 mb
fT (q2)

mB +mK
, (5.3.5)

with q2 = (p+ + p−)2 the invariant mass of the dilepton pair and Ceff
9 encoding both the short dis-

tance C9 coefficient and the leading-order four-quark loop function Y (q2), as defined in Eq. (4.1.21).

The B → K`+`− process gives access to a double decay distribution with respect to the

dilepton mass squared q2 and the angle θ` between the B meson and the `− line of flight, as mea-

sured from the dilepton rest frame. In the literature, the spectrum of this process is parametrised

as [126–128]
1

Γ`

dΓ`
d cos θ`

=
3

4
(1− F `H)(1− cos2 θ`) +

1

2
F `H +A`FB cos θ`. (5.3.6)

Note that the distribution above is determined by two quantities: a flat term F `H and a linear

term in cos θ`, containing the forward-backward asymmetry A`FB. While these two observables

are negligible for electrons and muons in the SM (indeed A` SM
FB = 0 and F `SM

H ∝ m2
` ), they are

sensitive to the presence of scalar/pseudoscalar and tensor operators. We make the lepton flavour

` explicit in all quantities as they can correspond to different leptons in the final state (` = e, µ
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or τ). Actually, combinations of observables with different lepton flavours can be constructed to

test whether physics is the same for all flavours (as predicted by the SM) or not. Even though it

was not specifically mentioned in Section 5.1, clearly B → K∗`+`− observables are lepton flavour

dependent and they can also be used to test differences between flavours, as we will thoroughly

investigate in Chapter 7.

On the other hand, from the theory perspective, the decay distribution can be computed from

the matrix element of the process. Squaring Eq. (5.3.1), averaging over all lepton polarisations

and introducing the corresponding phase space factors one finds [126]

d2Γ`
dq2d cos θ`

= a`(q
2) + b`(q

2) cos θ` + c`(q
2) cos2 θ`, (5.3.7)

where the a`, b` and c` coefficients have been defined as [126]

a`(q
2)

Γ0λ1/2β`
= q2

(
β2
` |FS |2 + |FP |2

)
+
λ

4

(
|FA|2 + |FV |2

)

+ (m2
B −m2

K + q2)Re [FPF
∗
A] + 4m2

`m
2
B|FA|2, (5.3.8)

b`(q
2)

Γ0λ1/2β`
= 2m`λ

1/2β`Re [FSF
∗
V ] , (5.3.9)

c`(q
2)

Γ0λ1/2β`
= −λ

4
β2
`

(
|FA|2 + |FV |2

)
, (5.3.10)

with

Γ0 =
G2
Fα

2
EM

29π5m3
B

|VtbV ∗ts| , (5.3.11)

and the functions λ = λ(m2
B,m

2
K , q

2) and β` can be found under Eq. (4.2.38).

For a complete treatment of the B → K`+`− decay, where expressions for a`, b` and c`

including contributions from tensor operators are given, we refer the interested reader to Refs. [126,

128]. Since in the SM scalar and pseudoscalar operators are suppressed by terms of the order of

m`mb,s/M
2
W [125], the structure function FP in Eq. (5.3.3) simplifies considerably and FS = 0 in

the SM. Then, it follows that bSM
` = 0 and also aSM

` = −cSM
` , the latter holding only in the limit

of massless leptons m` → 0.

The angular distribution is measured in integrated q2 bins, therefore theory computations

must be averaged over q2 accordingly [126]

〈
d2Γ`

dq2d cos θ`

〉

bin

= 〈a`〉bin + 〈b`〉bin cos θ` + 〈c`〉bin cos2 θ`, (5.3.12)

with the phase space boundaries

4m2
` ≤ q2 ≤ (mB −mK)2, −1 ≤ cos θ` ≤ 1, (5.3.13)

and the q2-integrated coefficients defined as [126]

〈a`〉bin =

∫

bin
dq2 a`(q

2), 〈b`〉bin =

∫

bin
dq2 b`(q

2), 〈c`〉bin =

∫

bin
dq2 c`(q

2). (5.3.14)
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Using the quantities in Eq. (5.3.14), we can write the integrated branching ratio and the normalised

forward-backward asymmetry as follows [126]

B(B → K`+`−) = τB

〈
dΓ`
dq2

〉
= 2τB

(
〈a`〉+

1

3
〈c`〉
)
, (5.3.15)

〈A`FB〉 ≡
1

〈dΓ`/dq2〉

[∫ 1

0
−
∫ 0

−1

]
d cos θ`

〈
d2Γ`

dq2d cos θ`

〉
=

〈b`〉
〈dΓ`/dq2〉 , (5.3.16)

where τB is the B meson lifetime and the ”bin” subscripts have been dropped for simplicity.

Moreover, requiring the decay distribution in Eq. (5.3.7) to agree with the parametrisation in

Eq. (5.3.6), one finds the structure of the flat term [126]

〈F `H〉 =
2

〈dΓ`/dq2〉 (〈a`〉+ 〈c`〉) . (5.3.17)

Observables 〈A`FB〉 and 〈F `H〉 are expected to have reduced uncertainties with respect to the branch-

ing ratio B(B → K`+`−), as a result of the cancellations between the numerator in Eqs. (5.3.16)

and (5.3.17) and the integrated total decay rate 〈dΓ`/dq
2〉 in the denominator.

Finally, we introduce a very important observable in B → K`+`−: the lepton flavour uni-

versality ratio RK
5. This observable probes lepton flavour universality effects in and beyond the

SM [126, 129]

〈RK〉 ≡
B(B → Kµ+µ−)

B(B → Ke+e−)
=

∫

bin
dq2 dΓµ

dq2

/∫

bin
dq2 dΓe

dq2
=
〈dΓµ/dq

2〉 〈FµH〉 − 4/3 〈cµ〉
〈dΓe/dq2〉 . (5.3.18)

If lepton masses are neglected, the SM predicts the same decay rate for processes with muons and

electrons in the final state. This can be explicitly seen in branching ratios for q2 bins such that

q2
bin, min ≥ 1 GeV (since m2

`/q
2 ' 0 for ` = µ and e). Hence, RSM

K = 1 and any deviation of RK

from one will signal to NP effects with different couplings to muons and electrons (i.e. NP with

non-universal lepton couplings).

One can see that 〈RK〉 and 〈F `H〉 are model-independently related [126]

〈RK〉
(
1− 〈FµH〉 −∆

)
= 1, (5.3.19)

with

∆ =
4

3

〈ce〉 − 〈cµ〉
〈dΓµ/dq2〉 −

〈F eH〉
〈RK〉

. (5.3.20)

Observe that the structure of ∆ simplifies to ∆ ∝ m2
µ, if chirally flipped couplings to electrons

can be neglected (and in the approximation me ' 0), as 〈F eH〉 = 0 and 〈dΓe/dq
2〉 = −4/3 〈ce〉 in

this context. Therefore, in the SM and NP extensions that do not involve electronic right-handed

currents, the relation between 〈RK〉 and 〈F `H〉 is proportional to lepton mass effects.

5.4 Other decay channels

To conclude, we briefly review several other important observables involving exclusive and inclusive

b → s decay modes. Some of them will prove very relevant for our global analyses in Chapter 8,

as they pose stringent constraints on a limited number of Wilson coefficients.

5Here we use 〈RK〉 for denoting the q2-binned version of this observable. However, in a slight abuse of notation,

it is also common to use RK instead of 〈RK〉 for its q2-average.
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a(0,0) = 3.36 δa = 0.23 a(0,7) = −14.81 a(7,7) = 16.68 a(0,7′) = −0.23

Table 5.1: Coefficients describing the dependence of B(B → Xsγ) on C7 and C7′ [85, 113].

5.4.1 B → Xsγ and B → Xsµ
+µ−

The electromagnetic and semileptonic inclusive decays B → Xsγ and B → Xsµ
+µ− provide

important constraints on the electromagnetic dipole and semileptonic operators O7(′) and O9(′),10(′) .

In our analyses, we consider the branching ratio of both channels, B(B → Xsγ)Eγ≥1.6 GeV and

B(B → Xsµ
+µ−)[1,6], with the former being the observable rendering the strongest bound on the

electromagnetic Wilson coefficients C7(′) [85, 113, 130].

We use the following parametrisation for B(B → Xsγ)Eγ≥1.6 GeV [85]

B(B → Xsγ)Eγ≥1.6 GeV =
[
a(0,0) ± δa + a(0,7)δC7 + a(0,7′)δC7′ (5.4.1)

+ a(7,7)

(
δC2

7 + δC2
7′
) ]
× 10−4, (5.4.2)

where δCi = Ci − CSM
i and the values of the parameters a(i,j), with (i, j) = (0, 0), (0, 7), (0, 7′),

are collected in Table 5.1. This expression was first introduced in Ref. [85], based on the next-

to-next-to-leading order SM computations of Refs. [92, 131, 132]. Note that a(0,0) and δa encode

the SM prediction of the aforementioned observable. An update of these results was provided

in Ref. [133], including all QCD corrections up to O(α2
s) and new estimates of the relevant non-

perturbative effects. This induced a shift on the central value of the SM prediction, which is

reflected in the corresponding change on the value of a(0,0) with respect to that of Ref. [85].

On the other hand, the branching ratio B(B → Xsµ
+µ−) of the inclusive semileptonic decay

at low-q2 (from 1 to 6 GeV2) takes following form [85]

B(B → Xsµ
+µ−)[1,6] =


 ∑

i,j=0,7(′),9(′),10(′)

b(i,j)δCiδCj ± δb


× 10−7, (5.4.3)

with the definition δC0 = 1. All non-zero b(i,j) parameters can be found in Table 5.2. This

parametrisation was obtained in terms of the computations in Refs [93] and [134], for further

discussions on the details of its derivation we refer to Appendix B.4 of Ref [85]. Since the terms

based on interferences between SM and chirally flipped operators are extracted from the O(α0
s)

calculations of Ref. [134], the error estimate presented in Table 5.2 for the central value of B(B →
Xsµ

+µ−)[1,6] accounts both for the variation of fundamental input parameters and the 5% error

assignment proposed in Ref [93] for the unknown ΛQCD/mb power corrections. It is important to

stress that, in our current analysis, contributions to B → Xsµ
+µ− coming from logarithmically

enhanced electromagnetic corrections [135] are also included.

In both cases, while the SM parameters of these observables are modified accordingly to

account for the changes in their theory predictions, NP contributions have been left untouched.

This is justified as NP contributions to these observables are expected to be small [113], so there

is no need to include higher order contributions to these effects considering the current level of

accuracy.
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b(0,0) = 15.86 δb = 1.51

b(0,7) = −0.517 b(0,9) = 2.663 b(0,10) = −4.679

b(0,7′) = −0.680 b(0,9′) = −0.049 b(0,10′) = 0.061

b(7,7) = b(7′,7′) = 27.776 b(9,9) = b(9′,9′) = 0.534 b(10,10) = b(10′,10′) = 0.543

b(7,7′) = −0.399 b(9,9′) = −0.014 b(10,10′) = −0.014

b(7,9) = b(7′,9′) = 4.920 b(7,9′) = b(7′,9) = −0.113

Table 5.2: Coefficients describing the dependence of B(B → Xsµ
+µ−) on C7,9,10 and C7′,9′,10′ [85,

113].

c = 4.11% δc = 2.52%

d0 = 1 d1 = −2.51757

e(0,0) = 1 e(1,0) = −5.0165

e(0,1) = −0.0919061 e(2,0) = 6.30856

e(0,2) = 7.49847

Table 5.3: Coefficients describing the dependence of AI(B → K∗γ) on C7 and C7′ [85].

5.4.2 Exclusive b→ sγ decays

Several exclusive radiative b → sγ decays are included in our analyses. The branching ratios of

the decays B → Kγ, B → K∗γ and B → φγ are treated by using the same framework developed

for studying the analogous semileptonic decays, taking the limit q2 → 0 [136]. Other b → sγ

observables, that deserve further theory considerations, are also included: the isospin asymmetry

AI(B → K∗γ) and the B → K∗γ time-dependent CP asymmetry parameter SK∗γ .

The isospin asymmetry AI(B → K∗γ) vanishes within the SM in the naive factorisation

limit [85]. Hence, all non-negligible SM contributions to this observable originate from non-

factorisable contributions to the amplitude of the process, particularly from topologies where a

photon is emitted from the spectator quark line. As a result, the observable AI(B → K∗γ),

being dominated by O(ΛQCD/mb) contributions, is expected to be very sensitive to hadronic un-

certainties. This could be used as a discrimination criterion for not including the aforementioned

observable in our analyses, however it gives direct access to the electromagnetic coefficients C7(′) ,

with no interference from semileptonic operators, and thus it is a good probe for NP in these

operators [85].

The corresponding numerical expression used for AI(B → K∗γ) reads [85]

AI(B → K∗γ) = c×
∑

k dk δCk7∑
k,l e(k,l) δCk7 δCl7′

± δc, (5.4.4)

where k, l = 0, 1, 2 and the non-zero dk and e(k,l) coefficients are displayed in Table 5.3.
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f = −0.0297336

δuf = 0.0089893

δdf = 0.0089767

g(0,1) = +152.774 h(0,0) = +39.9999

g(1,0) = −3.17764 h(0,1) = −4.51218

g(1,1) = −415.441 h(1,0) = −214.866

g(0,2) = +8.63917 h(0,2) = +290.553

g(2,0) = +8.63917 h(2,0) = +290.553

Table 5.4: Coefficients describing the dependence of SK∗γ on C7 and C7′ [85].

More interesting is the CP structure of the B → K∗γ decay. Because of the left-handed

structure of weak interactions in the SM, transitions involving a b quark will predominantly require

the emission of a left-handed photon, while transitions with a b̄ quark will demand a right-handed

photon [85]. More in detail, looking at the structure of the effective operator O7 in Eq. (4.1.14), one

can see that b→ sγ decays with a right-handed photon are suppressed by a factor ms/mb
6. This

suppression can be alleviated within several NP scenarios, therefore observables characterising CP

violation in B → K∗γ are particularly interesting for testing NP in C7′ .

In our analyses, these effects are accounted for by including the parameter SK∗γ in the time-

dependent CP asymmetry ACP (B0 → K∗0γ) [137, 138]

ACP (B0 → K∗0γ) =
Γ(B̄0(t)→ K̄∗0γ)− Γ(B0(t)→ K∗0γ)

Γ(B̄0(t)→ K̄∗0γ) + Γ(B0(t)→ K∗0γ)
= SK∗γ sin(∆mBt)−CK∗γ cos(∆mBt),

(5.4.5)

with both K∗0 and K̄∗0 subsequently decaying into the CP-eigenstate KSπ
0, and the mixing

parameter ∆mB being defined following ∆ms in Eqs. (5.2.4) and (5.2.5). Due to the aforementioned

SM suppression of right-handed photons in B → K∗γ, ACP (B0 → K∗0γ) is mostly dominated by

the B0 meson mixing, with reduced sensitivity to hadronic uncertainties. So, it can be used as a

null-test of the SM [85, 137, 138].

Finally, we present a suitable parametrisation for SK∗γ , consistent with the inputs of our

analysis [85]

SK∗γ = f
+δuf
−δdf

+

∑
k,l g(k,l) δCk7 δCl7′∑
k,l h(k,l) δCk7 δCl7′

, (5.4.6)

where f stands for its central value SM prediction, with δuf (δdf ) the associated upper (lower) error

bar. Additionally, the coefficients g(k,l) and h(k,l) can be found in Table 5.4.

5.4.3 Bs → µ+µ−

One of the most stringent constraints on axial, scalar and pseudoscalar types of NP (i.e. C10(′)

and CS(′),PS(′)) is given by the measurement of the branching ratio of the purely leptonic decay

Bs → µ+µ−. This process is strongly helicity suppressed in the SM, so it has long been considered

6This explains the suppression of C7′ with respect to C7 in the SM, as we noted in Eq. (4.1.28)
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one of the standard candles of NP in B meson decays, consequently attracting a lot of interest

both from the theory and the experimental sides.

At leading order, within a generic NP model including axial, scalar and pseudoscalar contri-

butions, the branching ratio is given by [31]

B(Bs → µ+µ−) = τBsf
2
BsmBs

α2G2
F

16π3
|VtbV ∗ts|

√
1−

4m2
µ

mBs

[
|S|2

(
1−

4m2
µ

m2
Bs

)
+ |P |2

]
, (5.4.7)

with α being the electromagnetic coupling constant, τBs the Bs lifetime, mBs its mass and the

parameters S and P defined as [31]

S =
m2
Bs

2
(CS − CS′) , P =

m2
Bs

2
(CPS − CPS′) +mµ (C10 − C10′) . (5.4.8)

Current most precise SM predictions of this observable include next-to-next-to-leading order QCD

and next-to-leading order electroweak corrections [139–141], which induce a shift on both the

central value and uncertainty associated to the expression in Eq. (5.4.7). Our approach for taking

these corrections into account is the same used for the inclusive channels B → Xsγ and B →
Xsµ

+µ−: we rescale Eq. (5.4.7) so that its central value and uncertainties reproduce the updated

SM predictions, but we leave those parts of Eq. (5.4.7) that depend on the NP contributions to

the coefficients Ci untouched. Recent computations of QED and QCD corrections to the SM value

of the Bs → µ+µ− decay [142, 143] are not included in our expressions, as they are significantly

small compared to both the experimental accuracy available and the errors associated to our

determinations of the Wilson coefficients.



Part II

Hadronic Uncertainties and LFUV

87





Chapter 6

General Theoretical Framework and

Hadronic Uncertainties

In Chapter 4 we described the leading contributions to the B → K∗`+`− decay distribution and

discussed in detail how O(αs) corrections should be accounted for within the QCDf framework.

These computations have an intrinsic error of order ΛQCD/mb, usually referred to as hadronic

uncertainties in the literature, which arise from power corrections to the factorisation formula.

Developing a proper theoretical treatment of these corrections is important for achieving precise

theory predictions able to match the accuracy of experimental measurements, which is particularly

relevant since obtaining reliable determinations of short-distance Wilson coefficients through global

analyses of data depends on this premise. Factorisable hadronic corrections can be estimated

by combining QCDf computations with well-grounded parametrisations, however non-factorisable

contributions cannot be computed from first principles and one has to rely on partial calculations

and phenomenological models for their assessment. This has motivated certain analyses to advocate

for unexpectedly large hadronic effects as explanations for some of the b→ s`` anomalies [144–146].

Here we will review the treatment of hadronic uncertainties, which completes the description

of our theoretical framework together with a short discussion about the large-q2 region, provide a

detailed anatomy of them and collect robust arguments showing that factorisable power corrections

cannot account for the observed anomalies and that an explanation through long-distance charm

contributions is disfavoured.

6.1 An overview of the computation of B → K∗`+`− observables

In this section, we present an overview of the general approach followed for the computation of

observables in Chapter 5. This includes a complete depiction of our treatment of the various

sources of uncertainties and their interplay with the computations and techniques explained in

Chapter 4. This framework will be applied, e.g., in the global fit in Chapter 8. The basis of our

computations highly depends on which kinematic regime of the decay we are exploring: the large

recoil region (q2 . 7− 8 GeV) or the low recoil region (15 . q2 . 19 GeV). Therefore we discuss

them separately.

Whereas the B → K∗`+`− decay channel and its observables will be our default context for

the following discussion, at the end of the section we will comment on how these developments

translate to Bs → φ`+`− and Bs → K`+`−

89
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6.1.1 Theoretical framework at low-q2

The theoretical treatment used to describe the decay B → K∗`+`− at low squared invariant

dilepton masses q2 (where the most significant tensions with the SM are found) is based on QCDf

supplemented by a sophisticated estimate of the power corrections of order ΛQCD/mB. This

framework is called improved QCDf [113, 147], where the term ”improved” stands for the fact that

O(ΛQCD/mB) corrections that go beyond QCDf are also included as uncertainty estimates in our

predictions.

The use of effective theories [24, 29] allows one to relate the different B → K∗ form factors at

leading order in ΛQCD/mB and ΛQCD/E, where E is the energy of the K∗. As we mentioned in

Section 2.1.4, this procedure reduces the required hadronic input from seven to two independent

soft form factors ξ⊥, ξ‖, which in the region of low q2 can be calculated using LCSRs.

Two different types of LCSR form factors can be found in the literature, depending on the

method adopted for their computation. On the one hand, there are form factors based on LCSRs

with B-meson distribution amplitudes. Currently two form factor parametrisations of this kind are

available: the calculation of form factors in [148] (KMPW), where up to leading-twist two-particle

contributions were included, and the recent parametrisation presented in Ref. [149], where the

leading-twist contributions are extended up to twist four. On the other hand, one can also use

LCSRs with K∗-meson distribution amplitudes, which lead to results with smaller uncertainties be-

cause of the current better knowledge of light-meson LCDAs. The so-called BSZ form factors [150]

were computed within the aforementioned approach, with a prevalent application of equations of

motion. For in-depth analyses of the implications of using these different form factor parametrisa-

tions for the computation of relevant observables in B → K∗`+`− and related channels, we refer

the interested reader to Refs. [113, 147]. Our default predictions rely on KMPW form factors

which have larger uncertainties and thus lead to more conservative predictions for observables.

By construction, the choice of the set of form factors has a relatively low impact on optimized

observables but it has a large impact on the error size of form-factor sensitive observables, such as

the longitudinal polarisation FL or the CP-averaged angular coefficients Si.

The large-recoil symmetry limit is enlightening as it allows us to understand the main be-

haviour of optimized observables P
(′)
i [103, 112] (see also Section 5.1.2 of this Thesis) in presence

of New Physics in a form-factor independent way. However, for precise predictions of these ob-

servables it has to be complemented with different kinds of corrections, separated in two classes:

factorisable and non-factorisable corrections. Improved QCDf provides a systematic formalism to

include the different corrections as a decomposition of the amplitude in the following form [30]:

〈`+`−K̄∗i |Heff |B̄〉 =
∑

a,±
Ci,aξa + ΦB,± ⊗ Ti,a,± ⊗ ΦK∗,a +O

(
ΛQCD

mB

)
, (6.1.1)

where i = 0,⊥, ‖ and a =⊥, ‖. The equation above is formally related to the the factorisation

ansatz of the hadronic form factors in Eq. (4.4.9) and all its elements have the same meaning as

the ones defined there.

Factorisable power corrections

Factorisable corrections are the corrections that can be absorbed into the (full) form factors F by

means of a redefinition at higher orders in αs and ΛQCD/mB:
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F (q2) = F∞(ξ⊥(q2), ξ‖(q
2)) + ∆Fαs(q2) + ∆FΛ(q2). (6.1.2)

The two types of corrections to the leading-order form factor F∞(ξ⊥, ξ‖) are factorisable αs-

corrections ∆Fαs and factorisable O(ΛQCD/mB) corrections ∆FΛ. While the former can be com-

puted within QCDf and are related to the prefactors Ca,i of Eq. (6.1.1), the latter, representing

part of the O(ΛQCD/mb) terms of Eq. (6.1.1) that QCDf cannot predict, can be parametrised as

an expansion in q2/m2
B following [151]

∆FΛ(q2) = aF + bF
q2

m2
B

+ cF
q4

m4
B

+ . . . . (6.1.3)

Whereas these corrections are expected to be small, one cannot simply neglect them as they break

the symmetry relations that protect the optimised observables at leading order and reintroduce

a form factor dependence at O(αs,ΛQCD/mb) in them. Therefore it is of paramount importance

to have these ∆FΛ corrections under good theoretical control. Notice that the decomposition

in Eq. (6.1.2) is not unique, due to the symmetry relations in Eqs. (2.1.27) and (2.1.28) (and

Eq. (2.1.26) for pseudoscalars) one can always redefine ξ⊥,‖ such that some of these corrections

are partly absorbed. At the practical level, in order to unambiguously define the soft form factors

one needs to fix a renormalisation scheme, i.e. a specific definition for ξ⊥,‖ in terms of full QCD

form factors. No a priory restrictions exist for the definition of a particular scheme, as long as it

conforms with the symmetry relations among form factors at large recoil.

Our implementation of these corrections makes particular emphasis in two aspects [147]:

I For a realistic estimation of the errors, one must consider all correlations among the parame-

ters aF , bF and cF in Eq. (6.1.3). This includes all kinematic constraints among form factors

at maximum recoil (i.e. T1(0) = T2(0)) and correlations that naturally arise from the choice

of scheme.

I It is relevant to choose an appropriate scheme. Fixing a scheme determines which corrections

ofO(αs,ΛQCD/mb) are absorbed into the definition of the soft form factors F∞(ξ⊥(q2), ξ‖(q
2))

and which remain as ∆Fαs(q2) and ∆FΛ(q2) symmetry breaking corrections. The ∆Fαs(q2)

can be computed within QCDf, but ∆FΛ(q2) power corrections need to be determined

through the decomposition in Eq. (6.1.2). Hence, this introduces a scheme dependence at

O(ΛQCD/mb) in the computation of the observables. In Sec. 6.2 we will further discuss the

dependence of improved QCDf predictions on the scheme and we will argue that an appro-

priate scheme must be such that it naturally minimizes the sensitivity to power corrections

in the relevant observables like P ′5. Additionally, we will also derive explicit formulae for the

contribution from factorisable power corrections to the most important observables P ′5, P2

and P1, which will allow us to confirm in an analytic way the numerical findings of Ref. [147].

In our approach we first determine the parameters aF , bF , cF so that our decomposition reproduces

the central values of the full QCD form factors. This has the important implication that central

values of our predictions present no scheme dependence, only errors are affected. To this end,

once a scheme is fixed, we fit the subsequent parametrisation to the full form factors and keep

the (non-zero) correlated estimates of the parameters (âF , b̂F , ĉF ) as central values. Explicit
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âF b̂F ĉF

A0(KMPW) 0.002± 0.000 0.590± 0.125 1.473± 0.251

A1(KMPW) −0.013± 0.025 −0.056± 0.018 0.158± 0.021

A2(KMPW) −0.018± 0.023 −0.105± 0.022 0.192± 0.028

T1(KMPW) −0.006± 0.031 −0.012± 0.054 −0.034± 0.095

T2(KMPW) −0.005± 0.031 0.153± 0.043 0.544± 0.061

T3(KMPW) −0.002± 0.022 0.308± 0.059 0.786± 0.093

Table 6.1: Fit results for the power-correction parameters in the case of scheme 1 as defined in

Section 6.2. The label KMPW refers to LCSR input from ref. [148]. In this scheme, V receives no

power corrections and therefore the corresponding parameters vanish.

values of these estimates obtained by fitting to the full form factors in the KMPW parametrisation

can be found in Table 6.1. Interestingly, this procedure yields results of typically (5 − 10)% × F
in size, as expected from naive power counting. We take an uncorrelated 10% error assignment

to the factorisable power corrections ∆âF , ∆b̂F , ∆ĉF ∼ F × O(ΛQCD/mb) ∼ 0.1F around the

central values [147], which corresponds to an error of order 100% with respect to the central values

obtained through the fit. Finally, for the computation of observables the parameters are varied

within the range âF −∆âF ≤ aF ≤ âF + ∆âF , and the same for bF and cF [147].

Notice that our assumption on the error size of power corrections is only based on dimensional

arguments and, even though there is no rigorous way to validate this assignment, it was shown in

Ref. [147] that this error estimation of 10% for power corrections is conservative with respect to

the central values of KMPW form factors. In Sec. 6.2 we will perform the same analysis but now

to extract the amount of power corrections (including errors) contained in the form factors from

Ref. [150], finding them of the typical order of magnitude of 10%, in agreement with dimensional

arguments.

Non-factorisable power corrections

Non-factorisable corrections refer to corrections that cannot be absorbed into the definition of the

form factors due to their different structure. Thus, these corrections pose a conceptually different

problem with respect to our previous discussion: even if all sources of factorisable corrections

were precisely known, we would still have to deal with hadronic uncertainties of non-factorisable

origin. One can identify two types of such corrections. On one side, non-factorisable αs-corrections

originating from hard-gluon exchange in diagrams with insertions of four-quark operators O1−6

and the chromomagnetic operator O8. And, on the other side, there are non-factorisable power

corrections involving long-distance cc̄ loops. First we will describe the non-factorisable power

corrections associated with hard-gluon exchanges and later we will address the charm loop.

As we saw in Section 4.4, non-factorisable contributions come from four-quark and chromo-

magnetic operators where the dilepton is generated via the insertion of a virtual photon line. At

small q2 and at leading order in ΛQCD/mb, the factorisation formula in Eq. (4.4.18) allows for their

computation in terms of hard-vertex coefficients, hard-scattering kernels and the corresponding

distribution amplitudes [30, 33]. However, at order ΛQCD/mb unknown non-perturbative power

corrections appear. These are precisely the non-factorisable power corrections we mentioned above.
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These contributions are estimated by means of a parametrisation that originally was designed

to jointly account for both factorisable and non-factorisable power corrections. This approach

is based on a set of complex functions that multiply each transversity amplitude [111, 152], with

characteristic absolute values of the order of 10%, which again follows from dimensional arguments.

Error estimates for the transversity amplitudes around singular points are usually underestimated

within this framework, but it turns out to provide reasonable errors at the observable level due to

interferences between the transversity amplitudes [147].

One possibility would be to use the same technique but only for the non-factorisable correc-

tions, indeed factorisable corrections have already been taken into account with the procedure

detailed above. However, this would clearly overestimate the effect as contributions that are not

affected by non-factorisable power corrections, i.e. those generated by operators O(′)
9,10, would be

artificially inflated.

Our procedure is based on the same idea but applied to the hadronic form factors Ti (generically

defined through the factorisation formula in Eq. (4.4.18)) that parametrise the matrix element

〈γ∗K̄∗|Heff |B̄〉 [30]. First, we single out the contributions of purely hadronic origin in Ti by taking

the limit T had
i = Ti|C(′)

7 →0
and then we multiply each of these amplitudes, that will serve as a

normalisation factor, by a complex q2-dependent function

T had
i → (1 + ri(q

2)) T had
i , (6.1.4)

where

ri(q
2) = rai eiφ

a
i + rbi e

iφbi

(
q2

m2
B

)
+ rci e

iφci

(
q2

m2
B

)2

. (6.1.5)

We define the central values as the ones with ri(q
2) ≡ 0 and estimate the uncertainties from non-

factorisable power corrections by varying ra,b,ci ∈ [0, 0.1] and φa,b,ci ∈ [−π, π] independently, which

corresponds to a ∼ 10% error assignment with arbitrary phase.

On the other hand, power corrections that involve long-distance cc̄-loops correspond to one-

loop contributions from the operator O2, which can be recast as a contribution to C9 depending

on the squared dilepton invariant mass q2, the transversity amplitudes AL,Rj (j = 0,⊥, ||) and the

hadronic states (as opposed to a universal contribution from New Physics). These complicated

objects are included as an additional source of uncertainty, estimated on the basis of the only

existing computation [148] of soft-gluon emission from four-quark operators involving cc̄ currents.

The calculation in Ref. [148] was done in the framework of LCSRs with B-meson distribution

amplitudes and makes use of an hadronic dispersion relation to obtain results in the whole large-

recoil region. It is important to notice that, taken at face value, the resulting correction would

increase the anomaly [153]. The phenomenological model used in Ref. [148] for estimating this

effect includes the perturbative leading order contribution (also coming from an insertion of the O2

operator). Therefore, as we are only interested in the long distance charm-loop effect, we subtract

the aforementioned contribution, and proceed to shift the value of mc according to the instructions

given in Ref. [148] in order to be consistent with the value used in our analyses. Then, we introduce

two parametrisations for the contribution to the transverse amplitudes [113, 147]

δC⊥9 (q2) =
a⊥ + b⊥q2(c⊥ − q2)

q2(c⊥ − q2)
, δC‖9(q2) =

a|| + b||q2(c|| − q2)

q2(c|| − q2)
, (6.1.6)
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and similarly for the longitudinal amplitude (with no pole at q2 = 0, as expected)

δC0
9(q2) =

a0 + b0(q2 + s0)(c0 − q2)

(q2 + s0)(c0 − q2)
, (6.1.7)

being s0 = 1 GeV2. These parameters are fixed in order to cover the results from Ref. [148] in the

q2-region from 1 to 9 GeV2. Following this approach, one obtains [113]

a⊥, a|| = 9.25± 2.25, a0 = 33± 7 , (6.1.8)

b⊥, b|| = −0.5± 0.3, b0 = −0.9± 0.5 , (6.1.9)

c⊥, c|| = 9.35± 0.25, c0 = 10.35± 0.55 , (6.1.10)

where all parameters are taken as uncorrelated. For the sake of being as conservative as possible in

our estimate for this effect, since the sign of these contributions can be debated, for each correction

to the three transversity amplitudes we introduce prefactors si that are scanned from −1 to +1.

Finally, the prescription used in our theory predictions to account for the long-distance charm loop

reads

AL,Ri : Ceff
9 (q2)→ Ceff

9 (q2) + Ccc̄9 i(q2), i =⊥, ‖, 0, (6.1.11)

with the last piece defined as

Ccc̄9 i = siδCi9. (6.1.12)

It is interesting to note that our conservative approach typically leads to larger uncertainties for

observables as compared to other estimates in the literature [150, 151].

6.1.2 The large-q2 region: lattice results and duality violation estimates

For the low-recoil region [154–156], one can perform a similar analysis based on Operator Product

Expansion and Heavy-Quark Effective Theory, or using directly form factors provided by lattice

QCD simulations. In the following, we will use the latter approach for the computation of the

observables at low recoil. In this region, one has also to deal with resonances such as those observed

by LHCb in the data of the partner channel B+ → K+µ+µ−. This observation prevents one from

taking small bins afflicted by the resonance structures. In Ref. [157] a quantitative estimate of

duality violation is given. Unavoidably, one needs to use a model for this estimate, still the result

is that the low recoil bin, integrated over a large energy range, gets a duality-violation impact of a

few percent at the level of the branching ratio (estimated to 5% in Ref. [110] or 2% in Ref. [157]).

It remains to be determined if this estimate also applies for angular observables in B → K∗µµ.

Moreover, the exact definition of the ends of the single large bin has some impact on the analysis

in the framework of the effective Hamiltonian [158]. In order to take into account such effect of

duality violation for angular observables and the sensitivity to the position of the ends of the bin,

we add a contribution of O(10%) (with an arbitrary phase) to the term proportional to Ceff
9 for

each transversity amplitude. We notice that for all exclusive processes at low recoil, we include

the next-to-next-to-leading logarithm corrections for b→ s`` processes as described in Ref. [159].
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6.2 Anatomy of factorisable power corrections

In the region of large recoil of the K∗ meson, the non-perturbative form factors needed for the

prediction of B → K∗µ+µ− are available from three different LCSR calculations in Refs. [148]

(KMPW), [150] (BSZ) and [149]. However, our discussion here will focus only on the KMPW

and BSZ parametrisations. In Ref. [150], the set of form factors has been provided together with

the corresponding correlations, essential for the cancellation of the form factors at leading order in

optimized observables. Instead of using the results provided in Ref. [150], the dominant correlations

can alternatively be assessed from first principles, by means of large-recoil symmetries which relate

the seven form factors among each other. Among the advantages of this second method, the

correlations are free from the model assumptions entering the particular LCSR calculation and

the method can be applied also to sets of form factors for which the correlations have not been

specified, e.g., Ref. [148]. As a drawback, these correlations are obtained only at leading order,

and symmetry-breaking corrections of order O(Λ/mB) have to be estimated using the techniques

of Section 6.1.1, implying a scheme dependence of the predictions at O(Λ/mB). We will discuss

this scheme dependence in the following.

6.2.1 Scheme dependence

Theoretical predictions for the decay B → K∗`+`− depend on seven hadronic form factors usually

denoted as V,A0, A1, A2, T1, T2, T3. For small invariant dilepton masses q2 � m2
B (large-recoil

limit), and at leading order in αs and ΛQCD/mB, the set of form factors becomes linearly de-

pendent [24, 29, 30, 160] and thus reduces to two soft form factors ξ⊥ and ξ‖ (see Eqs. (2.1.27)

and (2.1.28) in Section 2.1.4). Then, the full set of form factors V , A0, A1, A2, T1, T2, T3 can be

obtained as linear combinations of ξ⊥, ξ‖.

Eqs. (2.1.27) and (2.1.28) allow us to construct observables in which the form factors cancel

at leading order. For an illustration, let us focus at q2 = 0, where the first relation in Eq. (2.1.27)

implies

A1(0)

T1(0)
=
T1(0)

V (0)
=

V (0)

A1(0)
= 1 +O(αs,Λ/mB), (6.2.1)

while T1(0)/T2(0) = 1 holds exactly due to a kinematic identity from the definition of T1 and T2.

Observables involving ratios like the ones in Eq. (6.2.1) are independent of the form factor input up

to effects of O(αs,Λ/mB), and the optimized observables P
(′)
i are defined following this philosophy.

The reduced sensitivity to the hadronic form factor input renders these observables sensitive to

subleading sources of uncertainties, i.e. to effects of O(αs) and O(Λ/mB). As we discussed in the

previous section, while O(αs) corrections to Eqs. (2.1.27)-(2.1.28) can be included in the framework

of QCDf, the so-called factorisable power corrections of O(Λ/mB) are not computable in QCDf.

Accurate QCDf predictions rely in an essential way on quantifying the uncertainty due to

power-suppressed ΛQCD/mB effects. This is typically done by assigning uncorrelated errors of the

size δ ∼ 10% to Eqs. (2.1.27)-(2.1.28) (and thus to the ratios in Eq. (6.2.1)). Note, however, that

this cannot be done in a unique way. Let us, for instance, assume that the errors on A1(0)/T1(0)

and T1(0)/V (0) are given by δ1 and δ2, respectively:
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A1(0)

T1(0)
= 1± δ1,

T1(0)

V (0)
= 1± δ2. (6.2.2)

The error δ3 on the ratio A1(0)/V (0) is then fixed by

1± δ3 =
A1(0)

V (0)
=
A1(0)

T1(0)

T1(0)

V (0)
=





1±
√
δ2

1 + δ2
2 , quadratic error propagation

1± (δ1 + δ2), linear error propagation
, (6.2.3)

depending on how uncertainties are propagated. The assumption of a universal error size δ1 =

δ2 ≡ δ for the first two ratios thus leads to an error δ3 =
√

2δ or δ3 = 2δ for the third one, although

in principle the three ratios should be treated on an equal footing.

The same phenomenon can be understood also from a different point of view. In the QCDf

approach, predictions of observables depend on the two soft form factors ξ⊥ and ξ‖ for which

hadronic input (from LCSR) is needed. According to Eqs. (2.1.27)-(2.1.28), there are various

possibilities to select the input among the seven full factors V , A1, A2, A0, T1, T2, T3, and the

choice defines an input scheme. One possible choice would consist for example in defining

ξ⊥(q2) =
mB

mB +mV
V (q2),

ξ‖(q
2) =

mB +mV

2E
A1(q2)− mB −mV

mB
A2(q2) (scheme 1). (6.2.4)

A different choice would consist in identifying

ξ⊥(q2) = T1(q2), ξ‖(q
2) =

mV

E
A0(q2) (scheme 2). (6.2.5)

By definition, the form factors (or linear combinations of form factors) taken as input are exactly

known to all orders in αs and Λ/mB. The remaining form factors are then determined from

the symmetry relations in Eqs. (2.1.27)-(2.1.28) upon including O(αs) corrections via QCDf and

assigning an error estimate to unknown O(Λ/mB) corrections. Taking, for instance, as in scheme

2, T1(0) = TLCSR
1 (0) as input for ξ⊥(0) leads to

V (0) = TLCSR
1 (0) + aαsV + aΛ

V + ..., A1(0) = TLCSR
1 (0) + aαsA1

+ aΛ
A1

+ ..., (6.2.6)

where aαsV , a
αs
A1

and aΛ
V , a

Λ
A1

are αs and ΛQCD/mB corrections to the symmetry relations in Eqs.

(2.1.27)-(2.1.28) for each form factor, and the ellipsis represents terms of higher orders. If Eq. (6.2.6)

was determined to all orders in αs and ΛQCD/mB, predictions for observables would not depend on

the chosen input scheme. In practice, QCD corrections are known in QCDf up to O(α2
s) [161, 162]

while ΛQCD/mB corrections can only be estimated, implying a scheme dependence in the compu-

tation of the observables at O(ΛQCD/mB) and O(α3
s).

While the form factors taken as input inherit their uncertainties directly from the LCSR

calculation, the remaining form factors receive an additional error for the unknown ΛQCD/mB

corrections aΛ. In the example above (scheme 2), we have

T1(0) = TLCSR
1 (0)±∆TLCSR

1 (0), (6.2.7)
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with ∆TLCSR
1 (0) denoting the uncertainty of the LCSR calculation, and

V (0) =(TLCSR
1 (0) + aαsV + aΛ

V ) ± (∆TLCSR
1 (0) + ∆aαsV + ∆aΛ

V ), (6.2.8)

A1(0) =(TLCSR
1 (0) + aαsA1

+ aΛ
A1

) ± (∆TLCSR
1 (0) + ∆aαsA1

+ ∆aΛ
A1

). (6.2.9)

In this case, V (0) and A1(0) are subject to two main sources of uncertainties, namely the error

∆TLCSR
1 (0) of the LCSR calculation and the uncertainties ∆aΛ

V,A1
from unknown power corrections

(we neglect the uncertainty ∆aαsV,A1
from the perturbative contribution). On the other hand, if

we had chosen V (0) or A1(0) directly as input for the soft form factor ξ⊥(0), the only source of

error for V (0) or A1(0) would have been the respective LCSR error ∆V LCSR(0) or ∆ALCSR
1 (0).

The choice of scheme thus defines the precision to which the various full form factors are known,

keeping those taken as input free from a pollution by power corrections.

The freedom to choose between different input schemes is equivalent to the ambiguity in

implementing the 10% requirement on the symmetry-breaking corrections to Eqs. (2.1.27)-(2.1.28)

and (6.2.1). In the scheme 2, the uncertainties on the form factor ratios are:

A1(0)

T1(0)
= 1±

∆aΛ
A1

TLCSR
1

,
T1(0)

V (0)
= 1± ∆aΛ

V

TLCSR
1

, (6.2.10)

A1(0)

V (0)
=





1±

√√√√
(

∆aΛ
A1

TLCSR
1

)2

+

(
∆aΛ

V

TLCSR
1

)2

, quadratic error propagation

1±
(

∆aΛ
A1

TLCSR
1

+
∆aΛ

V

TLCSR
1

)
, linear error propagation

. (6.2.11)

In this expressions we have kept only the errors of O(ΛQCD/mB) and we have neglected uncer-

tainties suppressed by additional powers of αs or Λ/mB. Note that the LCSR error ∆TLCSR
1 (0)

cancels in this approximation. Identifying δ1 = ∆aΛ
A1
/TLCSR

1 and δ2 = ∆aΛ
V /T

LCSR
1 , we find that

the resulting errors are in agreement with Eqs. (6.2.2) and (6.2.3).

How can the ambiguity from the scheme dependence be solved? To answer this question,

let us first have a look at the decay B → K∗γ. The prediction of this branching ratio depends

on the single form factor T1(0) and the natural choice thus consists in taking its LCSR value

directly as input for the theory predictions 1. Of course, one could take as input any other form

factor to which T1 is related through the symmetry relations in Eqs. (2.1.27)-(2.1.28), e.g. V .

Unlike T1, the choice of V would generate power corrections of O(ΛQCD/mB) in the prediction for

B → K∗γ, reflecting the fact that the identification V = T1 is only an approximation, valid up to

O(ΛQCD/mB), and that the “wrong” form factor, V , has been used for the prediction instead of

the “correct” one, T1. The corresponding increase in the uncertainties is thus caused artificially by

an inappropriate choice of the input scheme. This becomes even more obvious in the hypothetical

limit where the errors of the LCSR calculation go to zero: In this case, the prediction for B → K∗γ

would be free from any form factor uncertainty (as it should be) when T1 is taken as input, while

1This decay also receives a contribution from charm loops. For the sake of the argument presented in this section,

we will neglect this effect, which should however be included in an actual computation of this branching ratio,

contrary to the approach of Ref. [151]. We will include this contribution when discussing the fits to cc̄ contributions,

see Sec. 6.3.2 and in particular Tab. 6.7.



98 Chapter 6. General Theoretical Framework and Hadronic Uncertainties

the wrong central value would be obtained when V is used, together with an irreducible error of

order O(|V LCSR − TLCSR
1 |).

The example of B → K∗γ clearly illustrates the fact that an inappropriate choice of scheme

can artificially increase the uncertainty of the theory prediction. The situation is less obvious in the

case of B → K∗µ+µ−, where typically all seven form factors enter the prediction of the observables.

Ignoring the form factor A0, whose contribution is suppressed by the lepton mass, we observe that

the form factors V,A1, A2 enter the amplitudes together with the Wilson coefficients C(′)
9,10, whereas

T1, T2, T3 enter the amplitudes together with the coefficient C(′)
7 . In the SM, Ceff

7 � Re(Ceff
9 ) (where

the effective coefficients Ceff
7,9 include effects from perturbative qq̄ loops), e.g. Ceff

7 (q2
0) = −0.29 and

Re(Ceff
9 )(q2

0) = 4.7 at q2
0 = 6 GeV2. Hence the (axial-)vector form factors V,A1, A2 are in general

more relevant than the tensor form factors T1, T2, T3, except for the very low q2-region where the

C7 contribution can be enhanced by the 1/q2 pole from the photon propagator. In particular in

the anomalous bins of the observable P ′5 (4 ≤ q2 ≤ 8 GeV2), we find that the impact from C7 is

strongly suppressed compared to the impact from C9. This can be seen by setting some of the

Wilson coefficients to zero and determining the resulting change in the predictions: one gets a shift

of ∆P ′5(C7 = 0)[4,6] = −0.19 when C7 is switched off, compared to ∆P ′5(C9 = 0)[4,6] = +1.34 when

C9 is switched off. With respect to the soft form factor ξ⊥, the observable P ′5 is thus dominated

by the ratio A1/V suggesting the form factor V , or alternatively A1, as a natural input for ξ⊥.

Defining ξ⊥ from T1, as done in Refs. [146, 151], on the other hand represents an inadequate choice:

to a good approximation, the prediction of P ′5 in the anomalous bins does not depend on this form

factor, due to a suppression by |C7/C9| � 1.

Together with the linear propagation of errors applied in Refs. [146, 151], the choice of T1 as

input leads to an artificial inflation of the uncertainty by a factor of 2 in the anomalous bins of

P ′5, as we demonstrated in Eqs. (6.2.3) and (6.2.11). In other words, we conclude that the results

on P ′5 obtained in Ref. [146] correspond to an implicit assumption of 20% power corrections 2

because this is the size of symmetry breaking implicitly assumed for the dominant form factor

ratio A1/V
3. The situation is different for observables that vanish in the limit C7 → 0, i.e. that

depend on C7 already at leading order in C7/C9, like the observable P2. In this case, it is not clear a

priory whether the observable is more sensitive to the (axial-)vector or to the tensor form factors,

and the answer to this question requires a closer inspection (see Sec. 6.2.3).

In summary, in the soft-form factor approach, we expect the uncertainties of our predictions

to be scheme dependent. An inappropriate choice of definition for the soft form factors will inflate

the errors on the predictions. For each observable, we should thus choose a scheme as appropriate

as possible to avoid an overestimation of the uncertainties.

2This is in contradiction with the assumption initially stated in Ref. [146] that a 10% power correction is used

for all the form factors.
3This provides only a partial explanation to the larger uncertainties in Ref. [151]. Apart from a factor of two in

the error assigned to factorisable power corrections that we have just discussed, Ref. [151] also states much larger

parametric errors compared to Ref. [147] and Refs. [163, 164]. This is surprising, given the fact that the uncertainties

assumed for the key parameters like mc are compatible, while the errors for the form factors are even significantly

smaller in Ref. [151] due to the extraction of T1(0) using experimental data (see also Appendix A of [1].
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aF bF cF r(0 GeV2) r(4 GeV2) r(8 GeV2)

A0 0.000± 0.000 0.054± 0.033 0.197± 0.203 0.000± 0.000 0.026± 0.020 0.055± 0.047

± 0.000 ± 0.054 ± 0.112 ± 0.000 ± 0.020 ± 0.038

A1 0.020± 0.011 0.036± 0.025 0.037± 0.049 0.071± 0.043 0.086± 0.045 0.102± 0.054

± 0.029 ± 0.017 ± 0.022 ± 0.100 ± 0.100 ± 0.100

A2 0.028± 0.016 0.079± 0.038 0.131± 0.079 0.116± 0.070 0.147± 0.078 0.188± 0.099

± 0.041 ± 0.048 ± 0.056 ± 0.165 ± 0.174 ± 0.182

T1 −0.017± 0.013 −0.017± 0.009 −0.037± 0.023 0.061± 0.045 0.057± 0.038 0.054± 0.030

± 0.031 ± 0.043 ± 0.090 ± 0.100 ± 0.100 ± 0.100

T2 −0.017± 0.012 0.007± 0.027 0.025± 0.053 0.061± 0.045 0.050± 0.045 0.036± 0.053

± 0.031 ± 0.016 ± 0.027 ± 0.100 ± 0.100 ± 0.100

T3 −0.007± 0.021 0.014± 0.041 0.061± 0.208 0.037± 0.111 0.013± 0.132 0.016± 0.176

± 0.018 ± 0.019 ± 0.026 ± 0.100 ± 0.100 ± 0.100

Table 6.2: Results for the fit of the power-correction parameters aF , bF , cF to the B → K∗ form

factors from Ref. [150], using the input scheme 1 in the transversity basis. Furthermore, the

relative size r(q2) with which the power corrections contribute to the full form factors is shown for

q2 = 0, 4, 8 GeV2. In the first line of each entry, the central value and the error obtained from the

fit are given. In the second line, the estimate ∆FΛ = 10%× FLCSR is displayed for comparison.

6.2.2 Correlated fit of power corrections to form factors

Having clarified the issue of the scheme dependence, we can turn to the question of the actual

size δ of the symmetry breaking corrections. Both Refs. [147] and [146] use δ = 10% as an error

estimate. It is instructive to study how this ad-hoc value compares to the size of power corrections

present in specific LCSR calculations. As we discussed in Section 6.1.1, within our standard

theoretical framework, the parameters characterising the factorisable power corrections (with a

scheme choice according scheme 1 in the subsection above) are extracted from the LCSR form

factors in Ref. [148] (KMPW). In Ref. [147], these results were tested against the corresponding

estimates one can obtain from the LCSR form factors in Ref. [165] (BZ). Here, we will discuss the

results from Ref. [150] in a similar way, checking the robustness of this extraction.

The form factors F are parametrised according to Eq. (6.1.2). Following the standard method

described in the beginning of this chapter, for a specific set of LCSR form factors {FLCSR(q2)}, the

power corrections ∆FΛ(q2) can then be determined as the difference between the full FLCSR(q2)

and the large-recoil result F∞(q2) upon including αs-corrections ∆Fαs(q2) from QCDf. In practice

we fit the coefficients aF , bF , cF of the parametrisation in Eq. (6.1.3) to the central value of the

LCSR results. In Tab. 6.2 we show the results obtained within this approach applied to the form

factors from Ref. [150].

In contrast to previous LCSR calculations, Ref. [150] for the first time provided the correlations

among the form factors, enabling us to fit not only the central values of the parameters aF , bF , cF

but also their uncertainties according to the correlation matrix of the form factors, which will serve

us to illustrate the good control of our method of factorisable power corrections. Tab. 6.2 displays

the results for the input scheme 1, defined in Eq. (6.2.4), and parametrising power corrections in the

transversity basis {V,A1, A2, A0, T1, T2, T3} (this corresponds to the default choice in Ref. [147]).

The relative size of power corrections,



100 Chapter 6. General Theoretical Framework and Hadronic Uncertainties

0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1.0

q2HGeV2L

A
1�

V

5%
10%

20%

0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1.0

q2HGeV2L

A
1�

V

Figure 6.1: Ratio of form factors A1/V applying the full and soft form factor approaches to the

results of Ref. [150]. Left: error band according to the LCSR calculation from Ref. [150]. Right:

error bands following the soft form factor approach with δ = 5%, 10%, 20% power corrections.

r(q2) =

∣∣∣∣∣∣

aF + bF
q2

m2
B

+ cF
q4

m4
B

F (q2)

∣∣∣∣∣∣
, (6.2.12)

is displayed on the right-hand side of Tab. 6.2 for different invariant masses q2 = 0 GeV2, 4 GeV2,

8 GeV2 of the lepton pair. Typically, the central values of the power corrections are within the

range of (5− 10)%, with uncertainties below 5%.These findings are in line with the results for the

central values of the form factors from Refs. [165] (BZ) and [148] (KMPW) obtained in Ref. [147].

Exceptions occur at large q2 for the form factors A2 and T3, which are calculated as linear combi-

nation of two functions in Ref. [150]. In the case of A2, the central values of the power corrections

reach up to 19%, while the respective uncertainties still do not exceed 10%. Note that in scheme

1, the power corrections to A2 are not an independent function, but they are fixed from the ones

to A1 as detailed in Ref. [147]. In the case of T3, the central values are quite small but come

with uncertainties that grow up to 18%. It turns out that the power corrections to these two form

factors have no impact on the key observables P ′5, P1 and P2 as can be seen from the analytic

formulae in Sec. 6.2.3, where these terms are either absent or numerically suppressed.

For comparison, Tab. 6.2 also features the estimate of power corrections by a generic size of

δ = 10% following the approach of Ref. [147] to estimate the uncertainties on aF , bF , cF in the

absence of information on the correlations among form factors. By definition, the ratio r(q2) yields

10% for these estimates for all form factors, except for A0 and A2 where the power corrections

are not independent but follow from correlations among form factors. The comparison with the

results from the fit shows that the estimate of power corrections by a generic size of δ = 10% in

Refs. [147] is conservative compared to the procedure followed in Refs. [144, 145, 163, 164, 166]

consisting in a direct extraction of the errors from the uncertainties given in Ref. [150]. This is

further illustrated in Fig. 6.1, where the form factor ratio A1/V dominating the observable P ′5
is shown, comparing the direct error assessment from Ref. [150] (left plot) and our results from

uncertainty assignments of δ = 5%, 10%, 20% power corrections.

Let us now illustrate how the treatment of power corrections affects the uncertainties of relevant



6.2. Anatomy of factorisable power corrections 101

〈P ′5〉[4.0,6.0] scheme 1 scheme 2

a −0.72± 0.05 −0.72± 0.15

b −0.72± 0.03 −0.72± 0.04

c −0.72± 0.03 −0.72± 0.03

full BSZ −0.72± 0.03

Table 6.3: SM prediction for P ′5 in the anomalous bin [4, 6] GeV2 together with the error from soft

form factors and factorisable power corrections (all other sources of errors have been switched off).

Results are shown for the three different options for the treatment of power corrections and for

the two different input schemes discussed in the text. The last row contains the prediction from a

direct use of the full form factors from Ref. [150].

B → K∗`` observables. Taking the above results, and following a similar procedure for the scheme

2 defined in Sec. 6.2.1, we can compute the SM prediction for P ′5 in the anomalous bin [4, 6] GeV2

together with the error from soft form factors and factorisable power corrections (all other sources

of errors have been switched off). The results are given in Tab. 6.3 for the two schemes, with three

different options for the treatment of power corrections:

a) Estimating the error size of aF , bF , cF as ∼ 10%×FLCSR and including only the correlations

dictated by the large-recoil symmetries. LCSR input is only used to extract the soft form

factors ξ⊥ and ξ‖ which are considered as uncorrelated.

b) Determining the errors of aF , bF , cF from the fit to the form factors from Ref. [150] but

including only the correlations dictated by the large-recoil symmetries exactly as in the

previous case.

c) Determining the errors of aF , bF , cF from a correlated fit to the form factors from Ref. [150]

and including the correlations between the aF , bF , cF and the soft form factors ξ⊥, ξ‖ as

extracted from the correlation matrix in Ref. [150].

The error estimate in option a) is mainly based on the fundamental large-recoil symmetries and

thus to a large extent independent of the details of the particular LCSR calculation [150]. When

going over option b) to c), we include in each step more information from Ref. [150] (the actual

size of power corrections for option b), and the correlations for option c)). With option c) the

full information from the particular LCSR form factors is used, implying that the result must be

independent of the input scheme (apart from a residual scheme dependence from non-factorisable

power corrections) and that it must coincide with the one obtained by a direct use of the correlated

full form factors (displayed in the last row of Tab. 6.3). The numerical confirmation of this corre-

spondence provides a consistency check for our implementation of the fit of the power corrections

and the various methods.

In Tab. 6.3, the errors obtained in option b) are very similar to the ones using option c).

From this observation we conclude that the correlations among the power correction parameters

aF , bF , cF and the ones among the soft form factors ξ⊥, ξ‖ have very little impact and that the

dominant form factor correlations are indeed the ones from the large-recoil symmetries. The
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difference in the errors for option a) between scheme 1 and scheme 2 is easily understood: while

the LCSR results of Ref. [150] end up with about δ ∼ 5% power corrections, a generic size of

δ = 10% is assumed for option a). In scheme 1, this leads to the expected increase of the errors

by roughly a factor 2. On the other hand, in scheme 2, we find an increase of the errors by more

than a factor 4, in accordance with the discussion in the previous section. As argued there, the

implementation of option a) in scheme 2 actually corresponds to the assumption of δ = 20% power

corrections for the relevant form factor ratio A1/V .

6.2.3 Analytic formulae for factorisable power corrections to optimised observ-

ables

We have considered a particular observable and demonstrated numerically that the prediction for

observables depends on the scheme chosen for the soft form factors ξ⊥,‖. In this section we illustrate

this scheme dependence more explicitly by giving analytic formulae for the power corrections to

the observables P ′5, P1 and P2, both in the transversity and in the helicity basis. The two bases

are related to each other via the relations given in Eq. (31) of Ref. [151]. In both cases we

parametrise the power corrections according to Eq. (6.1.3). The formulae are given without fixing

a particular scheme, i.e., before power corrections are partially absorbed into the non-perturbative

input parameters ξ⊥ and ξ‖.

In the helicity basis, the formula for P ′5 reads

P ′5 = P ′5|∞
(

1 +
2aV− − 2aT−

ξ⊥

Ceff
7 (C9,⊥C9,‖ − C2

10)

(C9,⊥ + C9,‖)(C2
9,⊥ + C2

10)

mbmB

q2

− 2aV+

ξ⊥

C9,‖

C9,⊥ + C9,‖
+

2aV0 − 2aT0

ξ̃‖

Ceff
7 (C9,⊥C9,‖ − C2

10)

(C9,⊥ + C9,‖)(C2
9,‖ + C2

10)

mb

mB

+ nonlocal terms

)
+O

(
mK∗

mB
,

Λ2

m2
B

,
q2

m2
B

)
, (6.2.13)

where ξ̃‖ = (EK∗/mK∗) ξ‖ and following Ref. [146], we have defined

C9,⊥ = Ceff
9 +

2mbmB

q2
Ceff

7 , C9,‖ = Ceff
9 +

2mb

mB
Ceff

7 . (6.2.14)

We denote the large-recoil expression as P ′5|∞ and leave aside non-local terms, corresponding to

non-factorisable corrections. Our result agrees with Eq. (25) of Ref. [146] for the terms propor-

tional to aV− , aT− , aV0 , aT0 , but we find an additional term proportional to aV+ . We would like to

stress that precisely this term, which is hidden in “further terms” and not discussed in Ref. [146],

dominates the power corrections in the anomalous region around q2
0 ∼ 6 GeV2, as can be seen from

the numerical evaluation of Eq. (6.2.13):

P ′5(6 GeV2) = P ′5|∞(6 GeV2)

(
1 + 0.18

2aV− − 2aT−
ξ⊥

− 0.73
2aV+

ξ⊥
+ 0.02

2aV0 − 2aT0

ξ̃‖

+ nonlocal terms

)
+O

(
mK∗

mB
,

Λ2

m2
B

,
q2

m2
B

)
. (6.2.15)
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This means that the discussion on the scheme dependence of P ′5 in Ref. [146] only takes into

account numerically subleading contributions. Converted into the transversity basis, Eq. (6.2.13)

becomes

P ′5 = P ′5|∞
(

1 +
aA1 + aV − 2aT1

ξ⊥

Ceff
7 (C9,⊥C9,‖ − C2

10)

(C9,⊥ + C9,‖)(C2
9,⊥ + C2

10)

mbmB

q2

− aA1 − aV
ξ⊥

C9,‖

C9,⊥ + C9,‖
− aT1 − aT3

ξ̃‖

Ceff
7 (C9,⊥C9,‖ − C2

10)

(C9,⊥ + C9,‖)(C2
9,‖ + C2

10)

mb

mK∗
(6.2.16)

+ nonlocal terms

)
+O

(
mK∗

mB
,

Λ2

m2
B

)
,

with the dominant term being proportional to the combination aA1 − aV of power correction

parameters. If A1 or V is chosen as input for ξ⊥, the corresponding parameter aA1 or aV vanishes

identically. On the other hand, if T1 is taken as input, both aA1 or aV survive and their independent

variation leads to an increase of the errors associated to power corrections. This behaviour explains

part of the inflated errors in Ref. [151] and it is analytically pinned down in Eqs. (6.2.13) and

(6.2.19). The formulae support the numerical analysis reported in Fig. 2 of Ref. [147], where the

binned predictions for P1, P2, P
′
4, P

′
5 were given in the two schemes with ξ⊥ defined from V or

T1, respectively. Without any further assumption on the correlations between the parameters aF ,

Eqs. (6.2.13) and (6.2.19) manifest an explicit scheme dependence whose origin and interpretation

was discussed in detail in Sec. 6.2.1.

For the observable P1, which vanishes in the large-recoil limit, we find in the helicity basis

P1 = −2aV+

ξ⊥

(Ceff
9 C9,⊥ + C2

10)

C2
9,⊥ + C2

10

− 2bT+

ξ⊥

2Ceff
7 C9,⊥

C2
9,⊥ + C2

10

mb

mB

+nonlocal terms +O

(
mK∗

mB
,

Λ2

m2
B

,
q2

m2
B

)
, (6.2.17)

turning in the transversity basis into

P1 = −aA1 − aV
ξ⊥

(Ceff
9 C9,⊥ + C2

10)

C2
9,⊥ + C2

10

− bT2 − bT1

ξ⊥

2Ceff
7 C9,⊥

C2
9,⊥ + C2

10

mb

mB

+nonlocal terms +O

(
mK∗

mB
,

Λ2

m2
B

,
q2

m2
B

)
. (6.2.18)

Our result, Eq. (6.2.17), fully agrees with Eq. (26) of Ref. [146]. The authors of Ref. [146] used

this result to argue that P1 should be much cleaner than P ′5 because it only involves one soft

form factor and a lower number of power correction parameters aF . However, the total number of

power correction parameters is not the relevant criterion to decide whether an observable is clean:

as seen before, in the case of P ′5 the coefficients in front of the power correction parameters exhibit

a strong hierarchy, so that in practice only one term becomes relevant. As a matter of fact, the

leading power corrections for both P ′5 and P1 stem from aV+ and the respective coefficients are of

the same size, as seen when comparing the evaluation of Eq. (6.2.17) for q2
0 = 6 GeV2,

P1(6 GeV2) =− 1.21
2aV+

ξ⊥
+ 0.05

2bT+

ξ⊥
+ nonlocal terms +O

(
mK∗

mB
,

Λ2

m2
B

,
q2

m2
B

)
, (6.2.19)
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with the corresponding one for P ′5 from Eq. (6.2.15). Therefore, P1 and P ′5 are on an equal footing

with respect to power corrections, and all statements above, regarding the scheme dependence

of P ′5, also apply to P1. Like P ′5, P1 suffers from an increase of power corrections when ξ⊥ is

defined from T1 instead of from V , as already demonstrated numerically in Fig. 2 of Ref. [147] and

analytically in Eq.(6.2.18).

Turning finally to the observable P2, we find in the helicity basis

P2 = P2|∞
(

1 +
2aV− − 2aT−

ξ⊥

Ceff
7 (C2

9,⊥ − C2
10)

C9,⊥(C2
9,⊥ + C2

10)

mbmB

q2
+ nonlocal terms

)

+O

(
mK∗

mB
,

Λ2

m2
B

,
q2

m2
B

)
, (6.2.20)

which translates into

P2 = P2|∞
(

1 +
aV + aA1 − aT1 − aT2

ξ⊥

Ceff
7 (C2

9,⊥ − C2
10)

C9,⊥(C2
9,⊥ + C2

10)

mbmB

q2
+ nonlocal terms

)

+O

(
mK∗

mB
,

Λ2

m2
B

,
q2

m2
B

)
, (6.2.21)

in the transversity basis, with P2|∞ = C9,⊥C10/(C2
9,⊥ + C2

10). Unlike P1 and P ′5, the leading term

in P2 involves both (axial-)vector and tensor power corrections, and at first sight it seems that

there is no preference whether to define ξ⊥ from V or from T1. Note, however, that the kinematic

relation T1(0) = T2(0) implies aT1 = aT2 and that a definition from T1 hence absorbs both aT1 and

aT2 and leads to smaller uncertainties from corrections. Again, this is confirmed by the numerical

results in Fig. 2 of Ref. [147].

We see that the scheme dependence of the angular observables can be explicitly worked out

by studying the analytic dependence on the power correction parameters. Our results agree with

Ref. [146] for P1, but we have shown that the formula for P ′5 in Ref. [146] actually misses the

dominant and manifestly scheme-dependent term. Our analytic formulae allow us to understand

how different schemes can yield significantly different uncertainties if one treats power corrections

as uncorrelated, in perfect agreement with the numerical discussion in Ref. [147]. We can spot

the relevant form factor(s) whose power corrections are going to have the main impact on each

observable, and thus identify appropriate schemes to compute each observable accurately.

6.3 Reassessing the reappraisal of long-distance charm loops

We now turn to the second main source of hadronic uncertainties: non-factorisable ΛQCD/mB

corrections associated with non-perturbative cc̄ loops. Notice that Eq. (6.1.11) suggests that these

contributions formally enter C9 on the same footing as possible short-distance NP effects, so they

could potentially mimic a NP contribution to C9. Hence, disentangling one contribution from the

other is of utmost importance for NP searches in b → s`` decays. While the latter would induce

a q2-independent C9, universal for the three different transversities i =⊥, ‖, 0, non-factorisable

long-distance effects from cc̄ loops in general introduce a q2- and transversity dependence that

can be cast into effective coefficient functions Ccc̄9 i(q2). A promising strategy thus consists in
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investigating whether the B → K∗µ+µ− data points towards a q2-dependent effect. To this end

the authors of Refs. [144, 145] performed a fit of the functions Ccc̄9 i(q2) to the data using a polynomial

parametrisation. In Sec. 6.3.1 we comment on the results, before presenting in Sec. 6.3.2 our own

analysis based on a different, frequentist, statistical framework.

6.3.1 A thorough interpretation of charm estimates in the literature

The analysis in Refs. [144, 145] introduces for each helicity λ = 0,±1 a second-order polynomial

in q2:

hλ = h
(0)
λ +

q2

1 GeV2h
(1)
λ +

q4

1 GeV4h
(2)
λ . (6.3.1)

The functions hλ, with a total number of 18 real parameters, then enter the B → K∗µ+µ−

transversity amplitudes as follows:

A0
L,R = A0

L,R(si = 0) +
N

q2

(
q2

1 GeV2h
(1)
0 +

q4

1 GeV4h
(2)
0

)
,

A
‖
L,R = A

‖
L,R(si = 0)

+
N√
2q2

[
(h

(0)
+ + h

(0)
− ) +

q2

1 GeV2 (h
(1)
+ + h

(1)
− ) +

q4

1 GeV4 (h
(2)
+ + h

(2)
− )

]
,

A⊥L,R = A⊥L,R(si = 0)

+
N√
2q2

[
(h

(0)
+ − h

(0)
− ) +

q2

1 GeV2 (h
(1)
+ − h

(1)
− ) +

q4

1 GeV4 (h
(2)
+ − h

(2)
− )

]
, (6.3.2)

with the normalisation

N = VtbV
∗
ts

m
3/2
B GFα

√
q2

√
3π

λ1/4(m2
B,m

2
K∗ , q

2)

(
1− 4m2

`

q2

)1/4

. (6.3.3)

Here, si = 0 indicates that only the perturbative quark-loop contribution Y (q2) has been included

in the amplitudes AλL,R(si = 0) while any long-distance contribution as the one calculated in

Ref. [148], which we include in our general theoretical framework [113], is switched off.

The coefficients h
(i)
λ parametrise the q2-expansion of the charm-loop contribution to the various

helicity amplitudes, but can also (partially) be mimicked by NP contributions to the Wilson

coefficients C7 and C9. Note that a NP contribution to C7 would yield a pole at q2 = 0 and

thus contribute to h
(0)
λ and higher orders, whereas a NP contribution to C9 would contribute only

starting from h
(1)
λ and higher orders. Let us stress that both kinds of NP contributions would also

contribute to h
(2)
λ , since they enter the transversity amplitudes as a Wilson coefficient multiplied

by a q2-dependent form factor 4. Contrary to Refs. [144, 145], we have set h
(0)
0 = 0 in order to

avoid an unphysical pole at q2 = 0 in A0
L,R (which for instance would result in a divergence in

B(B → K∗γ)).

For a proper interpretation of the results obtained in Ref. [144], it is important to note that

the authors study two different hypotheses:

4It is thus not correct to state that h(2) and higher coefficients can arise only due to long-distance physics as

suggested in Ref. [144, 145]. Even though the form factors do not vary strongly with q2, the presence of NP

contributions to Wilson coefficients would generate terms corresponding to (small) contributions to higher orders in

the polynomial expansion.
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n 0 1 2 3

χ
2(n)
min 70.00 52.70 51.50 51.20

χ
2(n−1)
min − χ2(n)

min 1.64 (0.5 σ) 17.30 (3.4 σ) 1.14 (0.3 σ) 0.35 (0.1 σ)

h
(0)
+ 0.17+1.15

−0.62 (0.3 σ) 2.22+1.07
−1.13 (2.0 σ) 1.28+1.45

−0.40 (3.2 σ) 1.19+1.32
−0.62 (1.9 σ)

h
(1)
+ −2.37+1.42

−0.57 (1.7 σ) −1.66+1.43
−1.03 (1.2 σ) −1.31+0.83

−1.21 (1.6 σ)

h
(2)
+ −0.11+0.19

−0.14 (0.6 σ) −0.09+0.11
−0.11 (0.8 σ)

h
(3)
+ −0.00+0.01

−0.00 (0.2 σ)

h
(0)
− 1.30+1.47

−1.07 (1.2 σ) 2.62+1.58
−2.69 (1.0 σ) 2.30+1.68

−1.76 (1.3 σ) 1.85+1.93
−1.09 (1.7 σ)

h
(1)
− −0.34+0.90

−0.53 (0.4 σ) −1.24+1.53
−0.21 (0.8 σ) −0.94+1.19

−0.64 (0.8 σ)

h
(2)
− 0.13+0.06

−0.19 (0.7 σ) 0.11+0.12
−0.18 (0.6 σ)

h
(3)
− 0.00+0.00

−0.01 (0.0 σ)

h
(1)
0 −1.00+1.69

−0.89 (0.6 σ) −1.35+1.70
−1.14 (0.8 σ) −0.96+1.01

−1.45 (0.9 σ)

h
(2)
0 0.10+0.12

−0.10 (1.0 σ) 0.11+0.11
−0.17 (0.6 σ)

h
(3)
0 −0.00+0.01

−0.00 (0.2 σ)

Table 6.4: Fit to B → K∗µ+µ− only, with CNP
9µ = 0, using LCSR from Ref. [148] in the soft-form-

factor approach employed by Ref. [113]. All coefficients are given in units of 10−4. Different orders

n of the polynomial parametrisation of the long-distance charm-loop contribution are considered.

If this contribution is set to zero, the fit yields χ2
min;h=0 = 71.60 for Ndof = 59.

I Hypothesis 1: No constraint is imposed on the long-distance charm-loop contribution rep-

resented by the coefficients h
(i)
λ , and the results of the LCSR computation in Ref. [148] are

not used in the fit. Instead, after fitting the functions hλ(q2) to the B → K∗µ+µ− data

they are compared with the functions g̃Mi calculated in Ref. [148]. We have checked the

relation between the functions g̃Mi and the long-distance charm-loop contributions hλ, given

by Eq. (2.7) in Ref. [144] (up to the correction C1 → C2 noticed in Ref. [145]). Rewriting the

amplitudes M1,2,3 in Ref. [148] in terms of helicity amplitudes leads to 5:

Re g̃M1 = − 1

2C2

16m3
B(mB +mK∗)π

2

√
λ(q2)V (q2)q2

(
Reh−(q2)− Reh+(q2)

)
,

Re g̃M2 = − 1

2C2

16m3
Bπ

2

(mB +mK∗)A1(q2)q2

(
Reh−(q2) + Reh+(q2)

)
,

Re g̃M3 =
1

2C2

64π2m3
BmK∗

√
q2(mB +mK∗)

λ(q2)A2(q2)q2
[Reh0(q2)

− 16m3
Bπ

2(mB +mK∗)(m
2
B − q2 −m2

K∗)

λ(q2)A2(q2)q2

(
Reh−(q2) + Reh+(q2)

)
]. (6.3.4)

It is interesting to observe that the results of the fit in Ref. [144] for g̃Mi seem to agree well with

the LCSR estimates of Ref. [148] if in all amplitudes approximately the same q2-independent

shift is added to the LCSR result. This observation is in line with the conclusions from global

fits [113, 163, 164], bearing in mind that in Ref. [144, 145] basically only B → K∗µ+µ− data

is used and that the authors interpret this constant shift as being of hadronic origin. Notice

that such a q2-independent shift (very similar for all helicity amplitudes) is at odds with a q2-

and helicity-dependent contribution expected in the case of an hadronic effect, in particular

if it is attributed to tails of resonances. Note, however, that a firm conclusion can only be

5Even though Eq. (6.3.4) is also valid for the imaginary part of the functions, we only consider the real part of

the g̃Mi here, as the authors of Ref. [148] consider these contributions to be real in the region of interest within their

approximations.
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drawn by comparing the quality of a fit for a q2-independent contribution with the one for

q2-dependent functions, a task that was not carried out in Refs. [144, 145] and that will be

performed in Sec. 6.3.2. In any case, one should keep in mind that a universal shift in C9µ due

to NP can also explain the deviations in Bs → φµ+µ− and the violation of lepton-flavour

universality suggested by RK and Q5 = Pµ5
′ − P e5 ′ (see Chapter 7 for more details on Qi

observables), which is not the case for hadronic cc̄ contributions.

I Hypothesis 2: In a second analysis, the authors of Ref. [144] impose an additional constraint

to the fit: they assume that the results of Ref. [148] hold exactly for q2 ≤ 1 GeV2, while

they do not make any assumptions for q2 > 1 GeV2 and again set all the Wilson coefficients

to their SM value. The results obtained in this second approach have to be interpreted with

great care:

i) The authors of Ref. [144] decide to take the results of Ref. [148] as exact in the region

q2 < 1 GeV2 but to discard them for larger q2: this choice of range is rather arbitrary,

as the LCSR approach yields a computation valid up to 2 GeV2 according to Ref. [148],

and the extrapolation via the dispersion relation is deemed appropriate up to 4 GeV2

by the authors of Ref. [144] themselves.

ii) The additional constraint artificially tilts the fit by forcing it to follow a behaviour at

q2 . 1 GeV2 against the trend of data (which would prefer to have a constant shift

CNP
9 , as discussed in Refs. [113, 163, 164, 167], corresponding to non-vanishing h

(1)
λ in

the framework of Ref. [144]). This is compensated by a spurious q4-dependence with

h
(2)
λ 6= 0, which is then interpreted in Refs. [144, 145] as an indication of non-local

hadronic effects.

iii) In the region below 1 GeV2, the treatment of the distribution by LHCb means that

the data correspond to slightly different observables from the optimized observables

defined in Ref. [103, 112], as discussed in Sec. 2.3.1 in Ref. [113] and in the previous

section. This effect, which can be taken into account by a redefinition of the optimized

observables, is not considered in Ref. [144, 145] and can affect the outcome of the

analysis.

iv) Finally, the LCSR computation of Ref. [148] does not take into account all non-local

effects but is an estimate of the soft gluon part with respect to the leading-order fac-

torisable contribution, from which the imaginary part is still missing. In this sense it is

not consistent to compare the absolute value of the fitted g̃Mi obtained from data with

the computation of Ref. [148], and if one still insists in doing so (ignoring all previous

issues), at least one should compare their real parts rather than the absolute values.

We conclude that a fit under the second hypothesis cannot indicate whether a q2-dependent

effect is favoured over a constant one, since it artificially creates a q2-dependence by putting a

constraint on one side (below q2 = 1 GeV2). A fit under the first hypothesis can be an appropriate

method, but requires to compare the quality of the fits obtained in both cases under consideration

of the number of free parameters. We will address this issue in the following.
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n 0 1 2 3

χ
2(n)
min 62.10 51.60 50.50 50.00

χ
2(n−1)
min − χ2(n)

min 1.23 (0.3 σ) 10.50 (2.4 σ) 1.14 (0.3 σ) 0.53 (0.1 σ)

h
(0)
+ 0.66+1.06

−0.55 (1.2 σ) 1.97+1.32
−0.51 (3.8 σ) 1.62+1.22

−1.00 (1.6 σ) 1.43+1.13
−0.80 (1.8 σ)

h
(1)
+ −1.92+0.81

−0.76 (2.4 σ) −1.29+1.70
−1.75 (0.8 σ) −1.45+1.40

−0.74 (1.0 σ)

h
(2)
+ −0.16+0.24

−0.09 (0.7 σ) −0.09+0.08
−0.16 (1.2 σ)

h
(3)
+ 0.00+0.01

−0.00 (0.0 σ)

h
(0)
− −0.14+1.43

−0.93 (0.1 σ) 1.90+1.99
−1.64 (1.2 σ) 1.87+2.71

−1.31 (1.4 σ) 1.93+1.93
−0.93 (2.1 σ)

h
(1)
− −0.81+0.68

−0.43 (1.2 σ) −0.56+0.48
−1.32 (1.2 σ) −0.65+0.59

−0.82 (1.1 σ)

h
(2)
− −0.04+0.22

−0.07 (0.2 σ) −0.02+0.14
−0.10 (0.1 σ)

h
(3)
− −0.00+0.00

−0.00 (0.2 σ)

h
(1)
0 −1.28+1.17

−1.24 (1.1 σ) −2.24+1.64
−1.43 (1.4 σ) −2.08+0.90

−1.38 (2.3 σ)

h
(2)
0 0.08+0.17

−0.07 (1.1 σ) 0.16+0.17
−0.12 (1.3 σ)

h
(3)
0 −0.00+0.01

−0.00 (0.5 σ)

Table 6.5: Fit to B → K∗µ+µ− only, with CNP
9µ = −1.1, using LCSR from Ref. [148] in the

soft-form-factor approach employed by Ref. [113]. All coefficients are given in units of 10−4.

Different orders n of the polynomial parametrisation of the long-distance charm-loop contribution

are considered. If this contribution is set to zero, the fit yields χ2
min;h=0 = 63.30 for Ndof = 59.

6.3.2 A frequentist fit

We are going to perform fits using the general approach described in Section 6.1, taking LHCb data

on B → K∗µµ as data. We follow this theoretical framework for the predictions of the observables,

but modify it slightly to remain as close as possible to the fits shown in Refs. [144, 145]: we will

not use the computation of long-distance charm effects in Ref. [148]. In practice, this amounts to

keeping only the perturbative function Y (q2) while setting all three si = 0. We treat the form

factors using the soft-form-factor approach with the inputs of Ref. [148], and employ the same

parametrisation Eq. (6.3.2) as Refs. [144, 145] for the long-distance charm contribution, extending

it in a straightforward way to the order q6 by introducing the parameters h
(3)
λ . We take all

coefficients of the expansion as real, following Ref. [148]. Note that the results of Ref. [144, 145]

favour mostly real values for h+ and h0, but not necessarily for h−.

Our fits differ from the ones in Refs. [144, 145] with respect to the statistical framework. We

use a frequentist approach and in particular do not assume any a-priory range for the fit parameters

h
(i)
λ , contrary to the Bayesian approach in Refs. [144, 145] where (flat or Gaussian) priors are used

for the polynomial parameters. Keeping in mind that the functions hλ(q2) are expansions in q2,

we perform fits allowing for h
(i)
λ with i ≤ n, increasing progressively the degree of the polynomials

n. At each order, we determine the minimum χ2
min as well as the difference between the χ2

min

with polynomial degrees n− 1 and n, and the pull of the hypothesis h
(n)
0,+,− = 0. This information

indicates the improvement of the fit obtained by increasing the degree of the polynomial expansion.

In Tabs. 6.4 and 6.5, we provide the results in the SM case and in the NP scenario CNP
9 = −1.1,

respectively, using only B → K∗µ+µ− data. We see that in both cases, the fit clearly improves

when increasing the degree of the polynomial from n = 0 to n = 1 (the addition of the parameters

h
(1)
λ leads to a q2 dependence similar to that of a NP contribution to the Wilson coefficient C9). On

the other hand, including quadratic or cubic terms does not provide any significant improvement.

This implies that the fit does not hint at a q2-dependence beyond the one generated by the Wilson
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n 0 1 2

χ
2(n)
min 65.50 52.70 52.40

χ
2(n−1)
min − χ2(n)

min 4.31 (1.2 σ) 12.80 (2.8 σ) 0.26 (0.0 σ)

h
(0)
+ 0.05+1.21

−0.71 (0.1 σ) 1.40+1.12
−0.69 (2.0 σ) 1.10+1.66

−0.40 (2.8 σ)

h
(1)
+ −0.82+0.76

−0.41 (1.1 σ) 0.09+0.49
−1.22 (0.1 σ)

h
(2)
+ −0.16+0.32

−0.06 (0.5 σ)

h
(0)
− 1.24+1.04

−0.55 (2.2 σ) 0.53+1.00
−0.75 (0.7 σ) 0.78+0.80

−0.60 (1.3 σ)

h
(1)
− 0.43+0.46

−0.26 (1.6 σ) 0.19+0.66
−0.78 (0.2 σ)

h
(2)
− 0.04+0.16

−0.07 (0.6 σ)

h
(1)
0 0.31+1.03

−0.43 (0.7 σ) 0.66+1.97
−0.60 (1.1 σ)

h
(2)
0 −0.07+0.15

−0.10 (0.5 σ)

Table 6.6: Fit to B → K∗µ+µ− only, with CNP
9µ = 0, using LCSR results from Ref. [150] in the

full-form-factor approach. All coefficients are given in units of 10−4. Different orders n of the

polynomial parametrisation of the long-distance charm-loop contribution are considered. If this

contribution is set to zero, the fit yields χ2
min;h=0 = 69.80 for Ndof = 59.

coefficients C7 and C9.

In Refs. [144, 145] a different q2-dependence was advocated referring to the parameter h
(2)
−

which showed a . 2σ deviation from h
(2)
− = 0. We would like to emphasize that it is impossible to

draw conclusions from a single parameter and that a global assessment of the whole fit is required.

For instance, from our tables one can see that increasing the order of the expansion can lead to a

reshuffling of the overall deviation from zero of the functions hλ(q2) among the various expansion

parameters, even in the case that no significant improvement of the fit is obtained. For instance,

in the SM fit (Tab. 6.4) the parameter h
(0)
+ deviates from zero by 1.3σ at the order n = 2, but

by 2.8σ at n = 3. We would expect a similar analysis to be possible in the Bayesian framework

proposed in Ref. [144], by comparing the information criteria for the two hypotheses “no constraint

for q2 ≤ 1 GeV2 and h
(2)
λ left free” and “no constraint for q2 ≤ 1 GeV2 and h

(2)
λ = 0”, which is

unfortunately not provided in Ref. [144].

In the SM fit we find the pattern

h
(0)
+ ≥ 0, h

(0)
− ≥ 0, h

(1)
0 ' 0, h

(1)
+ ≤ 0, h

(1)
− ' 0, (6.3.5)

while higher orders are compatible with zero. These findings are in rough agreement with Refs. [144,

145] for the λ = 0,+ helicities. The differences can be attributed to the different treatment and

input for the form factors and to the differences in the statistical approach. The comparison

cannot be done easily for the λ = − helicity, as large phases were found in Ref. [144] whereas we

considered only real cc̄ contributions.

Setting Cµ,NP
9 = −1.1 improves the χ2

min significantly without modifying the above conclusions

(see Tab. 6.5). As mentioned before, it is not strictly equivalent to modify h(1) or C9 since the

latter is multiplied by a q2-dependent form factor. Therefore the results of the fits are not exactly

identical, both for the χ2
min and the values of the expansion coefficients h(n) (this explains why

the addition of h(1) still brings some improvement to the fit with Cµ,NP
9 = −1.1, although more

modestly than in the SM case). In Tab. 6.6, we present the same fit as in Tab. 6.4 (B → K∗µ+µ−

only, no NP contributions to the Wilson coefficients), taking the LCSR results from Ref. [150]

within the full-form factor approach. As can be seen from the comparison of the two tables, the
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n 0 1 2

χ
2(n)
min 96.50 75.50 75.50

χ
2(n−1)
min − χ2(n)

min 1.53 (0.4 σ) 20.90 (3.9 σ) 0.10 (0.0 σ)

h
(0)
+ 0.39+1.00

−0.52 (0.7 σ) 1.19+1.29
−0.42 (2.8 σ) 1.16+1.04

−0.27 (4.3 σ)

h
(1)
+ −0.45+0.66

−0.48 (0.7 σ) −0.29+0.83
−0.94 (0.4 σ)

h
(2)
+ 0.02+0.17

−0.17 (0.1 σ)

h
(0)
− 0.72+1.12

−0.67 (1.1 σ) −0.21+1.05
−0.37 (0.2 σ) 0.19+0.87

−0.60 (0.3 σ)

h
(1)
− 0.29+0.53

−0.17 (1.7 σ) −0.58+1.18
−0.17 (0.5 σ)

h
(2)
− 0.12+0.06

−0.13 (1.0 σ)

h
(1)
0 1.54+0.75

−0.48 (3.2 σ) 1.66+0.50
−1.08 (1.5 σ)

h
(2)
0 0.01+0.13

−0.08 (0.1 σ)

Table 6.7: Fit to exclusive b → se+e− and b → sµ+µ− observables with CNP
9µ = 0, using the

same approach as in Ref. [113]. All coefficients are given in units of 10−4. Different orders n of

the polynomial parametrisation of the long-distance charm-loop contribution for B → V `+`− are

considered. If this contribution is set to zero, the fit yields χ2
min;h=0 = 98.00 for Ndof = 81.

same conclusions hold independently of the specific input for the form factors.

We also performed another fit (Tab. 6.7) where we consider the SM case but include all the

exclusive b → se+e− and b → sµ+µ− observables discussed in Ref. [113]. We take the same

parameters for the charm-loop contributions in Bs → φ`+`− and B → K∗`+`− (i.e., we assume an

SU(3) flavour symmetry for this long-distance contribution), but we neglect the effect of charm

loops in B → K`+`− (in agreement with Ref. [148]). We see again that there is no strong for

quadratic h terms: h
(2)
− prefers to be slightly different from zero (positive), but the data can also

be described equivalently well using only constant and linear contributions.

At this stage, we see that the data require constant and linear contributions, as expected

also from Ref. [148]. On the other hand, the data do not require additional quadratic or cubic

contributions, contrary to the claim made in Ref. [144]. This claim was later amended in Ref. [145],

indicating that a solution with h(2) = 0 also leads to acceptable Bayesian fits. Our own fits indicate

that the current data do not show signs of a large and unaccounted for hadronic contribution from

charm loops.
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Observables without charm

The B → K∗µµ decay exhibits deviations with respect to Standard Model expectations and the

measurement of the ratio RK hints at a violation of lepton-flavour universality in B → K`` tran-

sitions. Both effects can be understood in model-independent fits as a short-distance contribution

to the Wilson coefficient C9µ, with some room for similar contributions in other Wilson coefficients

for b→ sµµ transitions. We discuss how a full angular analysis of B → K∗ee and its comparison

with B → K∗µµ could improve our understanding of these anomalies and help confirming their

interpretation in terms of short-distance New Physics. We discuss several observables of interest in

this context and provide predictions for them within the Standard Model as well as within several

New Physics benchmark scenarios. We pay special attention to the sensitivity of these observables

to hadronic uncertainties from SM contributions with charm loops.

7.1 B → K∗`` observables assessing lepton flavour universality

Global analyses of the deviations in b→ s`` transitions point towards a large additional contribu-

tion to the Wilson coefficient C9µ of the semileptonic operator in the effective Hamiltonian [30] for

b → sµµ, as initially discussed in Ref. [153] and later confirmed by several works [113, 163, 164,

166, 168, 169]. Even though such a contribution to C9µ in b→ sµµ appears as a rather economical

way of explaining a large set of deviations with respect to SM expectations, theory predictions

for some b → sµµ observables may also get a better agreement with data once additional contri-

butions are allowed in other Wilson coefficients (such as C9′µ or C10µ) [113]. On the other hand,

B → K∗ee observables and the RK ratio suggest that b → see transitions agree well with the

SM [170], pointing to explanations with New Physics (NP) models with a maximal violation of

LFU, affecting only muon and not electron modes.

As discussed in several works [110, 144, 148, 157, 171, 172], long-distance SM contributions

from diagrams involving charm loops enter the computation of b→ s`` processes, acting as addi-

tional contributions to the Wilson coefficient C9. These contributions are process-dependent and

they must be estimated through different theoretical methods according to the dilepton invariant

mass q2. The latest estimates of these contributions [148, 157] have been included in the global

fits for B → K∗µµ [113, 164, 166], providing the consistent picture described above. In particular,

bin-by-bin fits indicate that the data agrees well with a single, process-independent contribution

to C9µ, independent of the dimuon invariant mass, and present only in muon modes, as expected

from a short-distance (NP) flavour-non-universal contribution. In order to confirm this pattern, it

111
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would be very desirable to design observables probing:

I only the short-distance part of C9`,

I other Wilson coefficients, such as C10`, which do not receive long-distance contributions from

the SM,

I the amount of lepton-flavour non-universality between electron and muon modes.

In all cases, hadronic uncertainties should remain controlled: while non-universality is a smoking-

gun-signal of NP (the SM predictions being very precise), the measurement of the effect is affected

by the same hadronic uncertainties as the individual b→ s`` modes.

The purpose of this chapter is to investigate which observables can be built that match these

criteria, once a full angular analysis of B → K∗ee, with an accuracy comparable to that of

B → K∗µµ, is available. If the most obvious quantity consists in comparing branching ratios

though the ratio RK∗ (similar to RK) (see Ref. [113] for predictions for these ratios for different

NP scenarios), it is also interesting to consider other ratios probing the violation of LFU using

the angular coefficients Ji describing the whole angular kinematics of these decays. In this note,

we will discuss observables that can measure LFUV in B → K∗``. Some of them are variations

around the basis of optimised observables introduced in Refs. [103, 115] and others can be built

directly by combining angular coefficients from muon and electron modes. We will discuss the

advantages of these observables in the context of hadronic uncertainties, and provide predictions

in the SM and in several benchmark scenarios corresponding to the best-fit points obtained in our

recent global analysis of b→ s`` modes [113].

We begin with a presentation of the observables of interest in Section 7.1. In addition to

observables naturally derived from the angular coefficients Ji and the optimised observables P
(′)
i ,

we consider other observables, namely Bi and M (and B̃i, M̃) which have a reduced sensitivity

to charm contributions in some NP scenarios. In Section 7.2 we present our predictions in the

SM and in several NP benchmark points, illustrating how these observables can help in discerning

among NP scenarios and how (in)sensitive they are with respect to hadronic uncertainties. We

present our conclusions in Section 4. In the appendices we discuss the dependence of M and M̃

observables on charm contributions, we recall the definition of binned observables, and we provide

further predictions for the various observables within the different benchmark scenarios.

7.1.1 Observables derived from Ji, Pi and Si

We want to exploit the angular analyses of both B → K∗µµ and B → K∗ee decays in order to

build observables that will probe the violation of LFU, the short-distance part of C9µ and/or the

other Wilson coefficients, with limited hadronic uncertainties. Natural combinations are 1

QFL = FµL − F eL , Qi = Pµi − P ei , Ti =
Sµi − Sei
Sµi + Sei

, Bi =
Jµi
Jei
− 1 , B̃i =

β2
e

β2
µ

Jµi
Jek
− 1 , (7.1.1)

where Pi should be replaced by P ′i for Qi=4,5,6,8. Bi and B̃i differ mostly at very low q2 and become

almost identical for large q2, where β` =
√

1− 4m2
`/q

2 ' 1 for both electrons and muons. The

optimised observables P
(′)
i have already a limited sensitivity to hadronic uncertainties [103, 112,

1In the following, we always consider quantities obtained by combining CP-averaged angular coefficients.
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113, 115, 147], contrary to the angular averages Si [31, 103, 115, 146, 147, 151]. We thus expect the

Qi observables to exhibit a correspondingly low sensitivity to hadronic uncertainties. 2 Moreover,

these observables are protected from long-distance charm-loop contributions in the SM.

A measurement of Qi different from zero would point to NP in an unambiguous way, confirming

the violation of LFU observed in RK . A second step would then consist in identifying the pattern

of NP, which requires to separate the residual hadronic uncertainties (in particular, charm-loop

contributions) from the NP contributions. The set of observables Qi, Ti and Bk (B̃k) can be

particularly instrumental at this second stage, with a sensitivity to the various Wilson coefficients

depending on the particular angular coefficients considered.

We have already investigated this sensitivity [112, 113, 147], but we would like to highlight the

difference of behaviour in the case of two of the relevant observables P ′4 and P ′5, directly related to

Q4 and Q5 respectively. Both LHCb and Belle collaborations [176–178] observed the same pattern,

i.e., a significant deviation from the SM for P ′5 for q2 between 4 and 8 GeV2 and a result consistent

with the SM within errors for P ′4. This behaviour is expected in the presence of NP in the Wilson

coefficient C9. From the large-recoil expressions of AL,R⊥,‖,0 (see Eqs. (3.8)-(3.10) of Ref. [83]) one

finds that the right-handed amplitudes |AR0,⊥,||| ∝ (Ceff
9 + C10) + ... are suppressed compared to the

left-handed ones in the SM, due to the approximated cancellation Ceff
9 +C10 ' 0. This cancellation

is not so effective in the presence of a negative NP contribution to C9, and AR0,‖, |AR⊥| increase while

|AL0,‖|, AL⊥ decrease. Both effects add up coherently in the numerator of P ′5 ∝ Re(AL0A
L∗
⊥ −AR0 AR∗⊥ )

due to the relative minus sign, and the effect is to reduce the value of |P ′5| in the region far up from

the photon pole, in agreement with the experimental observation. In P ′4 ∝ Re(AL0A
L∗
‖ + AR0 A

R∗
‖ ),

however, an increase in the right-handed amplitudes will compensate a decrease in the left-handed

ones, due to the relative positive sign. For this reason, no deviation is expected in P ′4 in the

presence of NP in C9 (but in the absence of right-handed currents). The same mechanism is at

work for Q4 and Q5.

As discussed in Sec 2.3.1 of Ref. [113], LHCb currently determines the polarisation fraction

FT and FL using a simplified description of the angular kinematics. This means that these two

quantities are actually measured from J1c rather than J2s and J2c respectively. Both determinations

are equivalent in the massless limit, and therefore this only has a limited impact, apart from the

first bin [0.1,0.98]. In order to interpret the actual measurements more precisely, we define the P̂i

observables involving F̂T and F̂L, as measured currently by LHC:

FL =
−J2c

dΓ/dq2
→ F̂L =

J1c

dΓ/dq2
FT =

4J2s

dΓ/dq2
→ F̂T = 1− F̂L (7.1.2)

P1 =
J3

2J2s
→ P̂1 =

J3

2Ĵ2s

P2 =
J6s

8J2s
→ P̂2 =

J6s

8Ĵ2s

(7.1.3)

P3 = − J9

4J2s
→ P̂3 = − J9

4Ĵ2s

P ′4 =
J4√−J2sJ2c

→ P̂ ′4 =
J4√
Ĵ2sJ1c

(7.1.4)

P ′5 =
J5

2
√−J2sJ2c

→ P̂ ′5 =
J5

2
√
Ĵ2sJ1c

P ′6 = − J7

2
√−J2sJ2c

→ P̂ ′6 = − J7

2
√
Ĵ2sJ1c

(7.1.5)

P ′8 = − J8√−J2sJ2c
→ P̂ ′8 = − J8√

Ĵ2sJ1c

with Ĵ2s =
1

16
(6J1s − J1c − 2J2s − J2c)(7.1.6)

and we will provide predictions for both Qi and Q̂i observables, in order to illustrate the differences

in the first bin, as well as the insensitivity of the effect in higher bins.

2We also expect a reduced sensitivity to Kπ S-wave contributions (see e.g. [173–175]).
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In the case of the Si, the consideration of the Ti ratio is also natural, but unfortunately these

quantities are quite sensitive to hadronic uncertainties. They depend on soft form factors even in

the large recoil limit due to lepton mass effects at very low q2, related to differences between muon

and electron contributions in the normalization. Finally, the ratios Bi that are soft-form-factor

independent at leading order in the large-recoil limit will be shown to complement the observables

Qi in an interesting way.

7.1.2 Observables with reduced sensitivity to charm effects

In the presence of NP, all observables Qi, Ti and Bi are in principle affected by long-distance charm

loop contributions in C9, both transversity-independent and transversity-dependent. We define

these two terms in the following way: transversity-independent long-distance charm corresponds to

an identical contribution to all B → K∗`` transversity amplitudes, whereas transversity-dependent

contributions differ for each amplitude. Both of them are expected to exhibit a q2-dependence

in general. The explicit computation of charm-loop contributions performed in Ref. [148] using

light-cone sum rules indicates that they are transversity-dependent, in agreement with general

expectations that such hadronic contributions are different for different external hadronic states

(including different K∗ helicities). It is interesting to investigate these issues by considering spe-

cific observables with different sensitivity to transversity-dependent and independent long-distance

charm contributions, as well as to LFUV New Physics.

One can think of exploiting the angular coefficients in electron and muon modes in order to

build observables only sensitive to some of the Wilson coefficients, and in some cases, insensitive

to transversity-independent long-distance charm contributions. It is easy to check that in the

large-recoil limit and in the absence of right-handed or scalar operators, four angular coefficients

exhibit a linear sensitivity to C9. Taking the results from Refs. [83, 103] we have:

β`J6s − 2iJ9 = 16β2
`N

2m2
B(1− ŝ)2C10`

[
2C7

m̂b

ŝ
+ C9`

]
ξ2
⊥ + . . . (7.1.7)

β`J5 − 2iJ8 = 8β2
`N

2m2
B(1− ŝ)3 m̂K∗√

ŝ
C10`

[
C7m̂b

(
1

ŝ
+ 1

)
+ C9`

]
ξ⊥ξ|| + . . . (7.1.8)

where ŝ = q2/m2
B and m̂b = mb/mB, ξ⊥ and ξ|| correspond to the soft form factors [30], and the

ellipses indicate terms suppressed in the large-recoil limit (including terms of order m2
`/q

2). If we

limit ourselves to real NP contributions, it is interesting to consider B5 and B6s (and B̃5 and B̃6s)

in Eq. (7.1.1), as well as a combination of them in the form 3

M =
(Jµ5 − Je5)(Jµ6s − Je6s)

Jµ6sJ
e
5 − Je6sJµ5

, M̃ =
(β2
eJ

µ
5 − β2

µJ
e
5)(β2

eJ
µ
6s − β2

µJ
e
6s)

β2
eβ

2
µ(Jµ6sJ

e
5 − Je6sJµ5 )

. (7.1.9)

By construction, B5 and B̃5 have a pole at the position of the zero of Je5 in the SM (around

q2 = 2 GeV2) and B6s, B̃6s have a pole at the position of the zero of AFB in the SM (around

q2 = 4 GeV2). We expect large uncertainties for these observables in the corresponding bins.

On the contrary, M is well behaved in the same bins, but it will have large uncertainties when

B5 ' B6s. In this sense, the observable M is well suited for NP scenarios and energy regions that

3The definitions of B5,6s (B̃5,6s) and M (M̃) could be adapted to the imaginary contributions J8,9. However the

latter vanish in the case of real NP contributions. Since current data does not indicate any need for complex NP

contributions, we will not include these additional observables here.
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yield very different contributions to B5 and B6s. While the Bi have a value in the SM slightly

different from zero (specially the first bin) due to βµ/βe kinematic effects, the B̃i observables vanish

by construction in the SM. 4

Even more interesting is the case of M̃ , constructed in the same spirit as B̃i, i.e. to cancel

the dependence of the angular coefficients on β`. Its first bin can be accurately predicted even in

the presence of NP, while its M counterpart suffers from large uncertainties in that bin. In the

next section we will discuss some NP scenarios and show how these set of observables can become

instrumental to disentangle them.

Let us write Cie = Ci and Ciµ = Ci + δCi for i 6= 9, so that δCi measure the LFU violation,

whereas Cie can include LFU-NP effects. Furthermore, for i = 9 we take C9e = C9 + ∆C9 and

C9µ = C9 + δC9 + ∆C9 where ∆C9 is a long-distance charm contribution. In order to illustrate

the relevant aspects of the various observables, within this Section we will give analytic formulas

assuming the contribution ∆C9 is transversity independent and neglecting imaginary parts. But all

our numerical evaluations will be based on complete expressions, as computed in Ref. [113] where

transversity-dependent charm contributions are included following Ref. [148], and imaginary parts

are properly accounted for. We see that δC7,7′ = 0 5 and δC9 are directly related to short-distance

physics, while ∆C9 comes from long-distance contributions from cc̄ loops where the lepton pair is

created by an electromagnetic current, and thus identical for C9e and C9µ. Any δCi 6= 0 indicates

the presence of LFUV New Physics.

In the large-recoil limit and in the absence of right-handed or scalar operators, we have:

B5 =
β2
µ − β2

e

β2
e

+
β2
µ

β2
e

δC10

C10
+
β2
µ

β2
e

(C10 + δC10)δC9ŝ

C10(C7m̂b(1 + ŝ) + (C9 + ∆C9)ŝ)
+ . . . (7.1.10)

B6s =
β2
µ − β2

e

β2
e

+
β2
µ

β2
e

δC10

C10
+
β2
µ

β2
e

(C10 + δC10)δC9ŝ

C10(2C7m̂b + (C9 + ∆C9)ŝ)
+ . . . (7.1.11)

M = M̃ + ∆M +A∆C9 + B∆C2
9 + . . . (7.1.12)

M̃ = M̃0 +A′δC10∆C9 + B′δC2
10∆C2

9 + . . . (7.1.13)

where M̃0, ∆M , A(′) and B(′) are defined in App. B, and the ellipsis denote again terms neglected

in Eqs. (7.1.7) and (7.1.8) and suppressed in the large-recoil limit. The difference between the

muon and electron masses relative to q2, induces a non-vanishing SM value for the Bi observables

at low q2. B̃i are exactly zero in the SM, and can be obtained from Eqs. (7.1.10), (7.1.11) in the

limit β` → 1. Note that the Bi observables always have a residual charm dependence ∆C9 in the

denominator in the presence of NP.

From Eq. (7.1.12), M appears sensitive to the muon-electron mass difference via ∆M , A and

B, and the last two terms introduce a sensitivity to charm effects through ∆C9. Moreover, the first

bin of M is very sensitive to this mass difference and will be affected by very large uncertainties

in some NP scenarios. On the contrary, M̃ is blind to such mass effects. In addition, if there is no

NP in δC10 then M̃ becomes also insensitive to transversity-independent charm effects at leading

order and at large recoil. This means that M̃ is particularly clean at low q2 (where large-recoil

expressions are relevant), especially in the presence of NP in δC9. For larger values of q2 and/or in

the presence of NP in C10, subleading charm effects are present and will enlarge the uncertainties,

4 The measurement of B̃i requires the measurement of the quantities 〈J`i /β2
` 〉. Experimentally, this can be done

by assigning a β2
` factor to the data on an event-by-event basis.

5C7 includes both the SM Ceff
7 plus possible LFU-NP (the same applies to C9).



116 Chapter 7. Observables without charm

even though the impact of NP on this observable remains very large. M̃ at low q2 will turn out to

be very efficient to disentangle NP scenarios.

We have the following behaviour for δC9 = 0:

B5 = B6s =
β2
µ − β2

e

β2
e

+
β2
µ

β2
e

δC10

C10
. (7.1.14)

For B5 and B6s, the limit of very small q2 is equivalent to δC9 = 0, and M is not well predicted

in this limit (subleading effects dominate the computation). This is however not a problem in the

current context where global analyses point towards a large NP contribution to C9. On the other

hand, if δC10 = 0, we have 6

B5 =
β2
µ − β2

e

β2
e

+
β2
µ

β2
e

δC9ŝ

(C7m̂b(1 + ŝ) + (C9 + ∆C9)ŝ)
+ . . . (7.1.15)

B6s =
β2
µ − β2

e

β2
e

+
β2
µ

β2
e

δC9ŝ

(2C7m̂b + (C9 + ∆C9)ŝ)
+ . . . (7.1.16)

M̃ = − δC9ŝ

C7m̂b(1− ŝ)
+ . . . (7.1.17)

B5 and B6s contain then a residual charm sensitivity through ∆C9, while M̃ is totally free from this

transversity-independent long-distance charm at leading order. This is a very specific property of

M̃ which is independent of transversity-independent charm contributions in the presence of New

Physics in C9 only. Transversity-dependent charm effects are kinematically suppressed at very low

q2 in these observables as it will be shown later on.

In the case where both δC9 and δC10 are non-zero, a precise interpretation of these observables

requires a more detailed study (including an assessment of all cc̄ contributions to C9). We see

therefore that some of these observables will have a limited sensitivity to charm-loop contributions

in some cases (SM, NP only in C9µ), but not in other cases (NP also in C10,µ for instance).

As a conclusion, the behaviour of B5 (B̃5), B6s (B̃6s) and M (M̃) in specific q2-regions should

provide powerful tests of physics beyond the SM, with a limited sensitivity to hadronic uncertain-

ties.

7.2 Predictions in the SM and in typical NP benchmark scenarios

7.2.1 Observables and scenarios

The above discussion assumed that one can determine exactly the value of the angular coefficients

Ji differentially in q2. This is in principle possible using the method of amplitudes in Ref. [179] even

if for electrons it could be particularly difficult. The other methods (likelihood fit and method

of moments) lead to binned observables, where the cancellations advocated above hold only in

an approximate way, for bins small enough so that the angular coefficients do not exhibit steep

variations. The modifications due to binning for the predictions of observables were described in

detail in Ref. [112], and are also recalled in App. B for the observables described above. They

will obviously have an impact on the previous discussion concerning the cancellation of hadronic

uncertainties, which will then be only approximate.

6 The corresponding expressions for B̃5,6s when δC10 = 0 can be easily obtained from Eqs.(7.1.15)-(7.1.16) by

taking β → 1 and the one of M can be obtained from App.B.
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In order to illustrate the interest of the various observables, in addition to the SM, we consider

several NP benchmark scenarios corresponding to the best-fit points for hypotheses with a large

pull in the global analysis of Ref. [113] (with NP contributions in b → sµµ but not in b → see).

We follow the same approach as in Ref. [113] and compute the various observables following the

definition of binned observables in App. C. The results are shown in App. D and in Figs. 7.1-7.8.

In the SM, Qi, Ti and Bi are expected to be close to zero, as shown in App. D. The binned

observables B5 and B6s are actually different from zero due to the kinematic factors β2
µ and β2

e

in the transversity amplitudes – one could imagine measuring the binned values of J `5,6s/β
2
` and

checking that the values for both lepton flavours are indeed identical. The difference between βµ

and βe becomes less relevant for large q2 (above 2.5 GeV2), leading to B5 and B6s decreasing in

magnitude and getting closer to each other. In the same region, M becomes larger as it involves

the difference B5 − B6s in the denominator. In the presence of NP affecting differently C9µ and

C9e, B5 and B6s are different over the whole kinematic range. In the SM, the binned version of

M is charm dependent due to βµ/βe terms. In the presence of LFUV in C9, it is interesting to

focus instead on the observable M̃ , which is not affected by lepton-mass effects and is essentially

charm independent at very low-q2. If there are NP contributions in other Wilson coefficients, the

situation becomes more complicated concerning the charm dependence of the observables. In the

remainder of this Section we will identify patterns based on the set of Qi and Q̂i, and we will

describe a very promising test based on B5, B6s and M .

The observables Q̂i (see Figs. 7.1-7.8) show specific patterns for the different scenarios consid-

ered here:

• Scenario 1: CNP
9µ = −1.1. Both Q̂2 and Q̂5 are affected significantly, especially the latter.

The most interesting region is q2 & 6GeV2, taking into account that these observables receive

essentially no charm contributions in the SM. No deviation should be observed in Q̂1 or Q̂4

in the same region within this scenario (see the discussion in Section 7.1 concerning the

sensitivity of P ′4 to C9).

• Scenario 2: CNP
9µ = −CNP

10µ = −0.65. Within this scenario Q̂2 and Q̂5 show milder deviations,

especially in the bin 6-8 GeV2 where they are expected to be SM-like (contrary to Scenario

1). Indeed, the constraint from Bs → µµ on C10µ reduces the allowed size of the deviation in

C9µ in this particular scenario. On the contrary, Q̂4 could be particularly interesting in the

region below 6 GeV2 with a q2-dependence rather different from Scenario 1. No deviation is

expected in Q̂1.

• Scenarios 3 and 4: CNP
9µ = −C′9µ = −1.07 and CNP

9µ = C′9µ = −1.18, CNP
10µ = C′10µ = 0.38

respectively. Both scenarios are quite difficult to distinguish using these observables. They

have implications in all four relevant observables Q̂1,2,4,5. The behaviour of Q̂2 and Q̂5 is

similar to Scenario 1, making the three scenarios difficult to disentangle when looking only

to these observables. Q̂1, which is designed to test the presence of right-handed currents, is

affected significantly. Finally, Q̂4 both at very low- and large-q2 (but within the large recoil

region) could be useful if accurate measurements are obtained. In particular, above 6 GeV2

this observable is only sensitive to right handed currents.

The same discussion applies to the observables Qi. We note that Q̂i (Qi) in the bin [6-8],

which have no charm uncertainties in the SM, may play a central role in disentangling the first
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Figure 7.1: Scenario 1. SM predictions (grey boxes) and NP predictions (red boxes), assuming

CNP
9µ = −1.11.
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Figure 7.2: Scenario 1. SM predictions (grey boxes) and NP predictions (red boxes), assuming

CNP
9µ = −1.11.
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Figure 7.3: Scenario 2. SM predictions (grey boxes) and NP predictions (red boxes), assuming

CNP
9µ = −CNP

10µ = −0.65.
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Figure 7.4: Scenario 2. SM predictions (grey boxes) and NP predictions (red boxes), assuming

CNP
9µ = −CNP

10µ = −0.65.
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Figure 7.5: Scenario 3. SM predictions (grey boxes) and NP predictions (red boxes), assuming

CNP
9µ = −CNP

9′µ = −1.07
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Figure 7.6: Scenario 3. SM predictions (grey boxes) and NP predictions (red boxes), assuming

CNP
9µ = −CNP

9′µ = −1.07
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Figure 7.7: Scenario 4. SM predictions (grey boxes) and NP predictions (red boxes), assuming

CNP
9µ = −CNP

9′µ = −1.18 and CNP
10µ = CNP

10′µ = 0.38
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Figure 7.8: Scenario 4. SM predictions (grey boxes) and NP predictions (red boxes), assuming

CNP
9µ = −CNP

9′µ = −1.18 and CNP
10µ = CNP

10′µ = 0.38
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two scenarios.

These observables are quite complementary toRK∗ , for which we provide predictions in App. D.

Indeed, the value of RK∗ is very similar (within uncertainties) in the first two scenarios, whereas

a larger suppression is expected for the other scenarios at moderately large q2, illustrating the

complementarity with the Q̂i (Qi) observables. For completeness we also present predictions for

the observables Ti in the same appendix.

7.2.2 B and B̃ observables

We also give predictions for the Bi observables in App. D and in Figs. 7.1-7.8 within each scenario.

In the plots we have not shown the predictions in the bins where B5 or B6s have a pole ([1.1,2.5]

for B5, [2.5,4] and [4,6] for B6s) and cannot be predicted accurately. All scenarios give very similar

predictions, apart from the first bin of B5 and the two first bins of B6s.

The first bin of these observables is predicted accurately both in the SM and in the presence of

NP. Not only it is insensitive to form factors in the large-recoil limit at leading order, but it is also

protected from long-distance charm contributions due to a kinematical suppression of the charm-

dependent contribution at low q2 (see also Ref. [1]). The analysis of this bin in the SM and in the

scenarios presented above is particularly interesting. As explained in the previous section, the SM

predictions BSM
5 = −0.155± 0.003 and BSM

6s = −0.121± 0.001 are only different from zero due to

βµ/βe effects integrated over the bin. This can be checked through the corresponding prediction

for the B̃i observables, which are free from these effects and equal to zero in the SM. In the case

of a negative NP contribution to C9µ, both B5 and B6s receive a positive contribution that pushes

them towards zero in the first bin. If there is a positive NP contribution in C10µ, the contribution

to both observables is negative and large (of size CNP
10µ/C10µ). In summary, a contribution close

to zero will favour a scenario with NP only in C9µ < 0, whereas values of B5 and B6s lower than

the SM will signal NP in C10µ (NP in C9µ is better discriminated by other observables). In both

cases B5 and B6s are almost equal, while a contribution to C′10µ would break this degeneracy. The

second bin of B6s exhibits a similar pattern (above the SM in Scenario 1, below in Scenario 2).

The same discussion applies to B̃i, which have a similar behaviour in those bins, the only

difference being that they are centered around zero (SM prediction). For instance, the first bin of

B̃5 and B̃6s in the Scenario 1 (Scenario 2) receives a positive (negative) contribution. The second

bin of B̃6s follows the same rules as B6s.

The low-recoil behaviour of the Bi and B̃i observables is particularly interesting because it

points to large deviations that cannot be seen easily in the Qi observables. Unfortunately, they are

not useful in distinguishing Scenarios 1 and 2, except if compared together with the corresponding

Qi at low recoil, which show a slightly different behaviour in that region.

7.2.3 M and M̃ observables

M is also an interesting observable to get information on the existence of NP contributions and

identifying their nature. This can be seen from the results in App. C and Figs. 7.1-7.8 by looking

at the third bin, where it can be noted that this observable can help to disentangle Scenario 2

from Scenarios 1 and 3, thus testing for the presence of NP in C10µ.

However in the first bin, where B5 ' B6s, M is poorly predicted. In these region it proves

instead very useful to exploit the alternative observable M̃ , where effects related to β` are removed.
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This observable then gives additional information in discerning between Scenario 2 and Scenarios

1 and 3. The effects in this first bin can also be confirmed by looking at the second bin (notice

that M̃ is well defined in its second bin even if B̃5 has a pole in its second bin).

7.2.4 LFUV observables and hadronic uncertainties

The observables presented here, specially Qi, Bi and B̃i, are built to be very accurate in the SM,

and almost insensitive to long-distance charm contributions. Moreover, whether NP is present or

not, these observables are built to have no dependence on soft form factors at leading order in the

large-recoil limit. In the presence of NP, these observables become again sensitive to charm-loop

contributions, but in a very specific way that we discuss now.

Let us first recall that we introduced the observables Q̂i in order to provide predictions taking

into account how LHC measures FL currently. Here the cancellation of soft form factors between

numerator and denominator is not fully operative and these observables are thus sensitive to soft

form factors arising in J1c but suppressed by powers of m2
`/q

2. This explains why the errors of Q̂i

are larger (but still small in most of the bins) than for Qi. The observables Ti exhibit a residual

sensitivity to soft form factors in most of the bins. Finally, the observable M suffers from large

uncertainties when B5 ' B6s, even though it is designed to have no dependence on soft form

factors at leading order in the large-recoil limit.

Concerning long-distance charm-loop contributions, the most interesting observables are Bi

(B̃i) and M (M̃). In the analytic expressions provided in Section 7.1.2, we have assumed that the

charm contribution ∆C9 entered all transversity amplitudes in the same way. One can generalize

the expressions for B5,6s and M̃ in Eqs. (7.1.10,7.1.11) and allow for transversity-dependent charm

contributions ∆C⊥,‖,09 (q2) associated to each amplitude:

B5 =
β2
µ − β2

e

β2
e

+
β2
µ

β2
e

δC10

C10
+
β2
µ

β2
e

2(C10 + δC10)δC9ŝ

C10 (2C7m̂b(1 + ŝ) + (2C9 + ∆C9,0 + ∆C9,⊥)ŝ)
(7.2.1)

B6s =
β2
µ − β2

e

β2
e

+
β2
µ

β2
e

δC10

C10
+
β2
µ

β2
e

2(C10 + δC10)δC9ŝ

C10

(
4C7m̂b + (2C9 + ∆C9,⊥ + ∆C9,‖)ŝ

) (7.2.2)

M̃ =
(2C10δC9ŝ+ δC10 (2C7m̂b(1 + ŝ) + (2C9 + 2δC9 + ∆C9,⊥ + ∆C9,0)ŝ))

2C10(C10 + δC10)δC9

(
2C7m̂b(ŝ− 1) + (∆C9,0 −∆C9,‖)ŝ

)
ŝ

×
(
2C10δC9ŝ+ δC10

(
4C7m̂b + (2C9 + 2δC9 + ∆C9,⊥ + ∆C9,‖)ŝ

))
(7.2.3)

The corresponding expressions for the B̃5,6s are obtained in the limit β` → 1. In the case of

NP only in δC9 they simplify to

B5 =
β2
µ − β2

e

β2
e

+
β2
µ

β2
e

δC9ŝ

(C7m̂b(1 + ŝ) + (C9 + (∆C0
9 + ∆C⊥9 )/2)ŝ)

+ . . . (7.2.4)

B6s =
β2
µ − β2

e

β2
e

+
β2
µ

β2
e

δC9ŝ

(2C7m̂b + (C9 + (∆C‖9 + ∆C⊥9 )/2)ŝ)
+ . . . (7.2.5)

M̃ = − δC9ŝ

C7m̂b(1− ŝ)− (∆C0
9 −∆C‖9)ŝ/2

+ . . . (7.2.6)
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The observable M̃ was designed to cancel exactly a transversity-independent charm contribution

∆C9 at leading order in the large recoil limit, which occurs in the denominator of the Bi observables.

The above expressions indicate that for Bi, all the long-distance charm dependence is contained in

the denominator, and its numerical impact is somehow reduced by a large C9, which explains their

reduced sensitivity to ∆C9 (this is even more efficient at very low q2 due to the photon pole). In the

case of M̃ , C9 cancels, leaving only the photon pole to tame the sensitivity to transversity-dependent

charm-loop contributions. For this reason at higher q2 values, where the photon pole contribution

is smaller, the sensitivity to this transversity-dependent charm contribution is maximal in M̃ as

can be seen in App. D and in Figs. 7.1-7.8. In addition, looking at Eq. (7.2.3), it is interesting

to note that M̃ is sensitive to charm contributions only if a) there is LFUV New Physics in C10

or right handed operators, or b) there are transversity-dependent charm-loop contributions (such

that ∆C0
9 6= ∆C‖9).

We should finally comment on the fact that our predictions do not include any evaluation of

Bremsstrahlung effects. Naively one expects these effects to be of order α log(m2
e/m

2
µ) ∼ 8% [180].

Part of these effects are taken into account at the level of the experimental analysis by means

of a Montecarlo simulation with PHOTOS [181], which accounts for soft-photon emission from

the leptons. Other contributions (e.g., real emission from the mesons, virtual photons) should

still be estimated by separating in the theoretical computations the radiative corrections already

implemented experimentally and those to be estimated theoretically (see Refs. [182, 183] for a

discussion of this issue in the context of K`4 decays). Such a work goes far beyond the present

note, but the impact of such effects should be expected to be of a few percent.
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Chapter 8

Global Fits to the B Anomalies

Over the last few years, many observables related to b → s`` flavour-changing neutral-current

transitions have exhibited deviations from SM expectations. Due to their suppression within the

SM, these transitions are well known to have a high sensitivity to potential NP contributions. In

order to evaluate the significance and coherence of these deviations, a global model-independent

fit is the most efficient tool to determine if they contain patterns explained by NP in a consistent

way.

The present situation is exceptional in the sense that we have found that the observed devia-

tions form coherent patterns within the model-independent approach of the effective Hamiltonian

governing the b→ s`` transitions. Already in 2013 first hints of this consistency were pointed out

in Ref. [153] (using only B → K∗µ+µ−) and later on in Ref. [113] (with all LHCb data available at

that time) showing that a very economical mechanism, namely a negative contribution of the order

of −25% to the short-distance coefficient of the effective operator O9µ in Eq. (4.1.15), is sufficient

to alleviate all above-mentioned tensions, whereas the data allowed for NP contributions to other

operators. This picture was later confirmed by other global analyses [163, 166] using different

observables, hadronic inputs and theory approaches for their computations. Recent experiment

results have shown additional hints of NP, indicating a violation of Lepton Flavour Universality

(LFU) between b→ see and b→ sµµ processes.

In this chapter we will discuss our most recent global analyses, including the most updated

experimental and theoretical information on b → s`` processes. Additionally, model-building

implications of the most significant results of our global fits and the potential of LFUV observables

to disentangle scenarios will be also discussed.

8.1 Review of the experimental situation

We start by briefly discussing the recent experimental activity concerning b→ s`` transitions. In

2013, using the 1 fb−1 dataset, the LHCb experiment measured the basis of optimised observables

defined in Section 5.1.4 for B → K∗µ+µ− [176], observing the so-called P ′5 anomaly [153], i.e.

a sizeable 3.7σ discrepancy between the measurement and the SM prediction in one bin of the

aforementioned angular observable [115]. In 2015, using the 3 fb−1 dataset, LHCb confirmed this

discrepancy and reported a 3σ deviation in each of two adjacent bins at large K∗ recoil [184].

LHCb also observed a systematic deficit with respect to SM predictions for the branching ratios

of several decays [121, 185]. In 2016, the Belle experiment presented an independent analysis of
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P ′5 [178, 186] confirming the LHCb measurements in a very different experimental setting.

A conceptually new element arose when a discrepancy in the LFUV ratio RK (see Section 5.3)

was also observed by LHCb [187], hinting at NP signals with a LFUV signature such that it

predominantly affects b → sµ+µ− transitions but not b → se+e− ones. Complementary LFUV

tests were also presented by Belle, being the first experiment to measure the observables Q4,5,

proposed in Ref. [2] and reviewed in the previous chapter. Even if not yet statistically significant,

these results point towards LFUV in Q5, consistently with the deviation in RK .

Further tests of the angular distribution of the B → K∗µ+µ− mode were performed by the

ATLAS and CMS collaborations: the former measured the whole set of angular observables as well

as FL at large K∗ recoil [188], whereas the latter presented results only for P1 and P ′5 at low and

large recoils [189]. These results show a good (but not perfect) overall agreement with the LHCb

results.

In 2017, the LHCb updated the B → K∗µ+µ− differential branching ratio [190] and released

a striking new measurement of the LFUV ratio RK∗ = B(B → K∗µ+µ−) /B(B → K∗e+e−) at

large K∗ recoil [191], exhibiting significant deviations from SM expectations. LFUV ratios are

particularly interesting due to their lack of sensitivity to hadronic uncertainties in the SM, making

any significant deviation from their SM value a clear sign of NP [192, 193]. Moreover, the tensions

in RK∗ denote that hadronic uncertainties in the theoretical predictions are not sufficient to explain

all the anomalies observed in b → s`+`− transitions, and that alternative explanations must be

searched for.

This was the experimental situation as of mid 2017, which led to our global analysis of

Ref. [136]. More recently, the LHCb collaboration announced a new measurement of RK [194]

using part of the full Run-2 data set. The average of the former Run-1 measurement and the new

result moves the central value of the combination closer to the standard model prediction but, as

the error has experienced a significant reduction too, only a minimal change in the significance can

be observed: 2.5σ instead of the previous 2.6σ below the SM.

Finally, new Belle measurements on the LFUV ratios RK and RK∗ have also been released

earlier this year in several q2 bins [195, 196]. However, these measurements have a very limited

impact on the global fits, as their associated errors are still large.

8.2 Global analyses of b→ s`` data

In order to combine all measurements and evaluate their impact, importance and consistency,

one has to perform a global fit to all available data. Global analyses discussed here follow the

guidelines of previous fits performed within the same framework [113, 115]. In this section we will

review the general statistical framework used, including a description of both our fit strategy and

the statistical measures we employ for the characterisation of our estimates, and we will present

the main results of our most updated state-of-the-art global analyses [197], stating the relevant

differences between them and our previous fits in Refs. [113, 136].

The starting point of our analyses is the effective Hamiltonian of Eq. (4.1.1) in which heavy

degrees of freedom (the top quark, the W and Z bosons, the Higgs and any potential heavy

new particles) have been integrated out in short-distance Wilson coefficients Ci. In the SM, the

Hamiltonian contains 10 main operators with specific chiralities due to the V − A structure of

the weak interactions, as discussed in Section 4.1.1. In presence of NP, additional operators may
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become of importance (see Eqs (4.1.29)-(4.1.32)). For the processes considered here, we will focus

our attention only on the operators O7(′) , O9(′)` and O10(′)` (being ` = e or µ), with their associated

Wilson coefficients C7, C9(′)`, C10(′)`. These Wilson coefficients are equal for muons and electrons in

the SM but NP can add very different contributions in muons compared to electrons. In order to

estimate the aforementioned NP contributions to the Wilson coefficients, we parametrise them by

splitting their SM and NP contributions

Ci` = CSM
i` + CNP

i` , (8.2.1)

where i = 7(′), 9(′), 10(′), being the SM contributions to chirally-flipped operators negligible. This

defines one possible basis for assessing the impact of NP on the relevant Wilson coefficients of the

underlying effective theory, but this choice is not unique. Indeed, we will show that interesting

patterns can also be unveiled using a different basis based on a parametrisation in terms of LFU

and LFUV-NP contributions to the Wilson coefficients, instead of NP contributions with a spe-

cific flavour attached. Fit results corresponding to the first NP parametrisation can be found in

Section 8.2.1, while the second is explored in Section 8.2.2.

The full fit includes all available results for the following decay channels1:

I B(0,+) → K∗(0,+)µ+µ−, B(0,+) → K∗(0,+)e+e−, B(0,+) → K∗(0,+)γ,

I B(0,+) → K(0,+)µ+µ−, B+ → K+e+e−,

I Bs → φµ+µ−, Bs → φγ,

I B → Xsµ
+µ−, B → Xsγ and Bs → µ+µ−.

More specifically, for the angular observables in B → K∗µ+µ−, B → K∗e+e− and Bs → φµ+µ−,

we use the optimised observables P
(′)
i obtained from LHCb’s likelihood fit [184]. Concerning the q2

binning we use the finest bins at large recoil (below the J/ψ), including the first bin in the low-q2

region and the [6, 8] GeV2 bin, but the widest bins in the low-recoil region to ensure quark-hadron

duality (see the discussion in 6.1.2). For the b → sγ radiative decays, we include in our fit the

whole set of observables discussed in Section 5.4.2.

Although experimental data on the baryonic decay Λb → Λµ+µ− is available, it is not included

in the fit because for the low-q2 region QCDf is poorly understood in this channel [198], while at

high-q2, where a recent determination of the Λb → Λ form factors from lattice QCD [199] reduces

theory uncertainties, experimental errors are large [200]. Further considerations about this decay

channel can be found in Refs. [113, 201]).

In addition, and following the discussion of the previous section, we add to the fit all the new

measurements made available since Ref. [113]:

I The B0 → K?0µ+µ− differential branching fraction measured by LHCb [190] based on the

full Run 1 dataset, superseding the results in Ref. [117]. We use the most recent update of

Ref. [190] that led to a reduction of the branching ratio by about 20% in magnitude.

1See Appendix E for the full list of the 180 observables included in the global fit, with both their SM predictions

and their associated most updated experimental measurements.
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I The Belle measurements [186] for the isospin-averaged but lepton flavour dependent B →
K?`+`− observables P ′ e4,5 and P ′µ4,5. The isospin average is given by the following expression,

P ′ `i = σ+ P
′ `
i (B+) + (1− σ+)P ′ `i (B̄0). (8.2.2)

Since σ+ describing the relative weight of each isospin component in the average is not public,

we treat it as a nuisance parameter σ+ = 0.5± 0.5. This will not have a significant effect in

our results, since the isospin breaking in the SM is small (but accounted for in our analysis),

and we do not consider NP contributions to four-quark operators.

I The ATLAS measurements [188] of the angular observables P1, P ′4,5,6,8 in B0 → K∗0µ+µ−

as well as FL in the large recoil region.

I The CMS measurements [189] of the angular observables P1 and P ′5 in B0 → K∗0µ+µ−,

both at large and low recoils (we consider only the long bin at low recoil). We take FL

and AFB from an earlier analysis [202] and we also include the data from an earlier analysis

at 7 TeV [203]. A very welcome check of the stability of the CMS results would consist in

performing a simultaneous extraction of FL, P1 and P ′5, using the same folding distribution

as ATLAS, LHCb and Belle.

I The 2017 measurement of the lepton-flavour non-universality ratio RK∗ in two large recoil

bins by the LHCb collaboration [191]. The likelihood of these measurements is asymmetric,

and dominated by statistical uncertainties. We thus take the two measurements as uncor-

related, and for each of the two bins, we take a symmetric Gaussian error that is the larger

of the two asymmetric uncertainties (while keeping the central value unchanged). This ap-

proach will underestimate the impact of these measurements on our fit, but we prefer to

remain conservative on this point until the likelihood is known in detail.

I The new ATLAS result for the branching ratio of the leptonic decay Bs → µ+µ− [204],

combined with previous CMS [205] and LHCb [206] measurements. Two likelihood-based

combinations can be found in the literature [207, 208], with similar results. We quote the

first one for definiteness

B(Bs → µ+µ−) =
(
2.67+0.45

−0.35

)
× 10−9 (with B(B0 → µ+µ−) profiled), (8.2.3)

B(Bs → µ+µ−) =
(
2.67+0.45

−0.35

)
× 10−9 (with B(B0 → µ+µ−) SM-like) (8.2.4)

These combinations are based on a composition of the experimental two-dimensional likeli-

hoods without accounting for the asymmetries in parameter space caused by the fact that

both ATLAS and LHCb have only been able to provide upper bounds on B(B0 → µ+µ−).

Therefore, unlike the analyses of Refs. [207, 208] and until the likelihoods of these measure-

ments are better understood, we prefer to take a more conservative approach and use a naive

weighted average [197]

B(Bs → µ+µ−) = (2.94± 0.43)× 10−9. (8.2.5)

I The average of the two LHCb measurements of the LFUV ratio RK in the long large recoil

q2 bin [1, 6] GeV2 [194]. Corresponding measurements of this observable performed by the

Belle collaboration are also included [195].
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I The Belle update of the RK∗ observable [196]. Similarly to the case of P ′ `4,5, Belle measured

RK∗ as an isospin average of the neutral B → K∗0 and charged B → K∗+ channels. Hence,

following Eq. (8.2.2), we introduce the following model for this observable in order to account

for isospin breaking effects

RK∗ = σ+RK∗(B
+) + (1− σ+)RK∗(B̄

0), (8.2.6)

where σ+ denotes a new nuisance parameter, which we assume to be uncorrelated with

respect to the same parameter quantifying isospin breaking in P ′ `4,5. Again, isospin effects

are expected to be negligible for this observable.

Regarding the theory computation of all observables, we work within the framework described

between Chapters 4 and 6, taking into account the theoretical updates for the branching ratios

of B → Xsγ, B → Xsµµ and Bs → µµ described in Section 5.4. Furthermore, we update the

value of the theory prediction for the leptonic branching ratio B(Bs → µµ) with the most recent

lattice result for fBs obtained from simulations with Nf = 2 + 1 + 1 flavours [209]. As we already

discussed in previous chapters, for the B → K∗ form factors at large recoil we use the calculation

in Ref. [148], which has more conservative uncertainties than the ones in Ref. [150], obtained with

a different method. Since the corresponding calculation is not available for Bs → φ, we thus use

Ref. [150]. This leads to smaller hadronic uncertainties quoted for Bs → φ`` (see the corresponding

branching ratios in Appendix E), but we stress that this is only due to the choice of input.

8.2.1 Fits results in presence of LFUV-NP

First, we consider fits to NP scenarios which affect muon modes only. In Tables 8.1 and 8.2, we give

the fit results for several one- or two-dimensional hypothesis for NP contributions to the various

operators, with two different datasets: either we include all available data from muon and electron

channels presented in the previous section (column “All”, 180 measurements), or we include only

LFUV observables, i.e. RK and RK∗ from LHCb and Belle and Qi (i = 4, 5) from Belle (column

“LFUV”, 22 measurements). In both cases, we include also the b → sγ observables, as well as

B(B → Xsµ
+µ−) and B(Bs → µ+µ−). The SM point yields a χ2 corresponding to a p-value of

11.0% for the fit “All” and 8.0% for the fit “LFUV” [197].

All LFUV

1D Hyp. Best fit 1 σ/2 σ PullSM p-value Best fit 1 σ/ 2 σ PullSM p-value

CNP
9µ -0.98

[−1.15,−0.81]
5.6 65.4 % -0.89

[−1.23,−0.59]
3.3 52.2 %

[−1.31,−0.64] [−1.60,−0.32]

CNP
9µ = −CNP

10µ -0.46
[−0.56,−0.37]

5.2 55.6 % -0.40
[−0.53,−0.29]

4.0 74.0 %
[−0.66,−0.28] [−0.63,−0.18]

CNP
9µ = −C9′µ -0.99

[−1.15,−0.82]
5.5 62.9 % -1.61

[−2.13,−0.96]
3.0 42.5 %

[−1.31,−0.64] [−2.54,−0.41]

CNP
9µ = −3CNP

9e -0.87
[−1.03,−0.71]

5.5 61.9 % -0.66
[−0.90,−0.44]

3.3 52.2 %
[−1.19,−0.55] [−1.17,−0.24]

Table 8.1: Most prominent 1D patterns of NP in b→ sµ+µ−. PullSM is quoted in units of standard

deviation.
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Figure 8.1: From left to right: Allowed regions in the (CNP
9µ , CNP

10µ), (CNP
9µ , C9′µ) and (CNP

9µ , CNP
9e )

planes for the corresponding two-dimensional hypotheses, using all available data (fit “All”). We

also show the 3 σ regions for the data subsets corresponding to specific experiments. Constraints

from b→ sγ observables, B(B → Xsµµ) and B(Bs → µµ) are included in each case (see text).

We start by discussing NP hypotheses for the fit “All”. New available experimental data have

further increased the significance of already prominent hypotheses in previous studies, namely,

the first three hypotheses (CNP
9µ , CNP

9µ = −CNP
10µ and CNP

9µ = −C9′µ) already identified in Refs. [113,

153]. The PullSM of current estimates exceeds 5σ in each case, however hypotheses can hardly be

distinguished on this criterion, and as we will discuss in Section 8.5, the Qi observables will be

very powerful tools to lift this quasi-degeneracy. We do not observe any significant differences in

the 1D scenarios with “All” data compared to our previous analysis in Ref. [136].

Further scrutiny of the differences between our current most updated fits and the results from

our earlier analysis [136], reveals that the scenario CNP
9µ = −C9′µ, which would predict RK = 1

and RK∗ < 1 [113, 192, 193, 211, 212], has an increased significance in the “All” fit. Also, the

best-fit point for the scenario CNP
9µ now coincides in the “All” and LFUV fits, as opposed to our

previous conclusions in Ref. [136]. On the other hand, NP solutions based on CNP
10µ only show a

significance in the “All” fit at the level of 4.0σ (3.9σ for the LFUV fit), which explains its absence

from Tab. 8.1 as in Ref. [136].

Besides providing the results for “simple” one- and two-dimensional hypotheses, we discuss

five additional illustrative examples of NP hypotheses with specific chiral structures, leading to

correlated shifts in Wilson coefficients. These hypotheses are:

1. (CNP
9µ = −C9′µ, CNP

10µ = C10′µ),

2. (CNP
9µ = −C9′µ, CNP

10µ = −C10′µ),

3. (CNP
9µ = −CNP

10µ, C9′µ = C10′µ),

4. (CNP
9µ = −CNP

10µ, C9′µ = −C10′µ),

5. (CNP
9µ , C9′µ = −C10′µ).

Concerning the 2D scenarios collected in Tab. 8.2, no significant changes can be be identified with

respect to Ref. [136]. Nevertheless, with an RK value closer to one, scenarios with right-handed

currents (RHC) seem to emerge. Indeed, hypothesis 5 has now the highest PullSM, indicating that
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small contributions to RHC are slightly favoured (C9′µ > 0, C10′µ < 0) 2. Note that these RHC

contributions tend to increase the value of RK while CNP
9µ < 0 tend to decrease it. From a model-

independent point of view, the also very competitive Hypothesis 1 is particularly interesting to yield

a low value for RK∗ (especially if a contribution CNP
7 > 0 is allowed). Taking CNP

10µ = −C10′µ (i.e.

Hypothesis 2) reduces the significance from 5.9σ to 5.3σ, similarly to Hypotheses 3 and 4 with the

signature structure CNP
9µ = −CNP

10µ (irrespective of the relative sign taken to constrain C9′µ = ±C10′µ).

Finally, the comparison between Hyps. 4 and 5 shows that the scenario C9′µ = −C10′µ (left-handed

lepton coupling for right-handed quarks) prefers to be associated with CNP
9µ (vector lepton coupling

for left-handed quarks) rather than CNP
9µ = −CNP

10µ (left-handed lepton coupling for left-handed

quarks).

Up to now, we have discussed scenarios where NP contributions occur only in b → sµµ

transitions. It is also interesting to consider scenarios with NP in both muon and electron channels,

in particular (CNP
9µ , CNP

9e ), with a SM pull of 5.3σ and a p-value of 66.2%. While CNP
9µ ∼ −1 is

preferred over the SM with a significance around 5σ, C9e is compatible with the SM already at

1σ, in agreement with the LFUV data included in the fit. New data included in our updated

analysis [197] has induced a change on the central value of C9e: whereas the fit of Ref. [136]

suggested a pattern C9e > 0, now we observe C9e . 0.

All LFUV

2D Hyp. Best fit PullSM p-value Best fit PullSM p-value

(CNP
9µ , CNP

10µ) (-0.91,0.18) 5.4 68.7 % (-0.16,0.56) 3.4 76.9 %

(CNP
9µ , C7′) (-1.00,0.02) 5.4 67.9 % (-0.90,-0.04) 2.9 55.1 %

(CNP
9µ , C9′µ) (-1.10,0.55) 5.7 75.1 % (-1.79,1.14) 3.4 76.1 %

(CNP
9µ , C10′µ) (-1.14,-0.35) 5.9 78.6 % (-1.88,-0.62) 3.8 91.3 %

(CNP
9µ , CNP

9e ) (-1.05,-0.23) 5.3 66.2 % (-0.73,0.16) 2.8 52.3 %

Hyp. 1 (-1.06,0.26) 5.7 75.7 % (-1.62,0.29) 3.4 77.6 %

Hyp. 2 (-0.97,0.09) 5.3 65.2 % (-1.95,0.25) 3.2 66.6 %

Hyp. 3 (-0.47,0.06) 4.8 55.7 % (-0.39,-0.13) 3.4 76.2 %

Hyp. 4 (-0.49,0.12) 5.0 59.3 % (-0.48,0.17) 3.6 84.3 %

Hyp. 5 (-1.14,0.24) 5.9 78.7 % (-2.07,0.52) 3.9 92.5 %

Table 8.2: Most prominent 2D patterns of NP in b → sµ+µ−. The last five rows correspond

to Hypothesis 1: (CNP
9µ = −C9′µ, CNP

10µ = C10′µ), 2: (CNP
9µ = −C9′µ, CNP

10µ = −C10′µ), 3: (CNP
9µ =

−CNP
10µ, C9′µ = C10′µ), 4: (CNP

9µ = −CNP
10µ, C9′µ = −C10′µ) and 5: (CNP

9µ , C9′µ = −C10′µ).

In Fig. 8.1 we show the corresponding constraints for the fit “All” under the three hypotheses

(CNP
9µ , CNP

10µ), (CNP
9µ , C9µ′) and (CNP

9µ , CNP
9e ), as well as the 3σ regions according to the results from

individual experiments (for each region, we add the constraints from b→ sγ observables, B(B →
Xsµ

+µ−) and the average for B(Bs → µ+µ−)). As expected, the LHCb results drive most of the

effect, with a clear exclusion of the origin, i.e. the SM point.

We can now move to the LFUV fit in Fig. 8.2, where we consider the same hypotheses favoured

by global analyses. Note that this restricted subset of observables excludes the SM point with a

higher significance, even though the p-value of the SM has increased with respect to Ref. [136]

as a result of including new data points with little resolution (Belle measurements of RK and

2Interestingly, these small contributions also reduce slightly the mild tension between P ′5 at large and low recoils

pointed out in Ref. [212] compared to the scenario with only CNP
9µ .
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Figure 8.2: From left to right: Allowed regions in the (CNP
9µ , CNP

10µ), (CNP
9µ , C9′µ) and (CNP

9µ , CNP
9e ) planes

for the corresponding two-dimensional hypotheses, using only LFUV observables (fit “LFUV”).

Constraints from b → sγ observables, B(B → Xsµµ) and B(Bs → µµ) are included in each case

(see text).

RK∗). Contrarily, the p-value of the SM for the fit “All” has not followed the same trend and

currently stays at the same level as in 2017, hence no overall improvement of the SM in describing

current data. While the same pattern of hierarchies is observed for this fit compared to our 2017

analysis [136], the PullsSM for some of 1D fits get reduced by half a standard deviation. It is

important to stress that this fit favours regions similar to the fit “All” dominated by different

b→ sµµ-related observables (B → K∗µµ optimised angular observables as well as low- and large-

recoil branching ratios for B → Kµµ, B → K∗µµ and Bs → φµµ). This is also shown in Tabs. 8.1

and 8.2, where the scenarios with the highest pulls are confirmed with significances between 3 and

4σ, but get harder to distinguish on the basis of their significance.

CNP
7 CNP

9µ CNP
10µ C7′ C9′µ C10′µ

Best fit +0.01 -1.10 +0.15 +0.02 +0.36 -0.16

1σ [−0.01,+0.05] [−1.28,−0.90] [−0.00,+0.36] [−0.00,+0.05] [−0.14,+0.87] [−0.39,+0.13]

2σ [−0.03,+0.06] [−1.44,−0.68] [−0.12,+0.56] [−0.02,+0.06] [−0.49,+1.23] [−0.58,+0.33]

Table 8.3: 1 and 2σ confidence intervals for the NP contributions to Wilson coefficients in the 6D

hypothesis allowing for NP in b→ sµ+µ− operators dominant in the SM and their chirally-flipped

counterparts, for the fit “All”. The PullSM is 5.1 σ and the p-value is 81.6%.

Finally, we extend our analyses to include a six-dimensional fit allowing for NP contributions

to all relevant Wilson coefficients C7(′),9(′)µ,10(′)µ. The associated SM pull to this fit has shifted

from 3.6σ in Ref. [113] to 5.1 σ, if one considers the fit “All” described above. Corresponding 1

and 2σ CL intervals are given in Tab. 8.3, with the pattern:

CNP
7 & 0, CNP

9µ < 0, CNP
10µ > 0, C7′ & 0, C9′µ > 0, C10′µ . 0 (8.2.7)

where C9µ is compatible with the SM beyond 3σ and all the other coefficients at 1σ. No significant

changes are observed in the updated 6D fit with respect to the result of the same fit in Ref. [136],

except for a slight increase in the PullSM and the preference for a negative C10′µ.
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Scenario Best-fit point 1σ 2σ PullSM p-value

Scenario 5

CV
9µ −0.36 [−0.86,+0.10] [−1.41,+0.52]

5.2 71.2 %CV
10µ +0.67 [+0.24,+1.03] [−1.73,+1.36]

CU
9 = CU

10 −0.59 [−0.90,−0.12] [−1.13,+0.68]

Scenario 6
CV

9µ = −CV
10µ −0.50 [−0.61,−0.38] [−0.72,−0.28]

5.5 71.0 %CU
9 = CU

10 −0.38 [−0.52,−0.22] [−0.64,−0.06]

Scenario 7
CV

9µ −0.78 [−1.11,−0.47] [−1.45,−0.18]
5.3 66.2 %CU

9 −0.20 [−0.57,+0.18] [−0.92,+0.55]

Scenario 8
CV

9µ = −CV
10µ −0.30 [−0.42,−0.20] [−0.53,−0.10]

5.7 75.2 %CU
9 −0.74 [−0.96,−0.51] [−1.15,−0.25]

Scenario 9
CV

9µ = −CV
10µ −0.57 [−0.73,−0.41] [−0.87,−0.28]

5.0 60.2 %CU
10 −0.34 [−0.60,−0.07] [−0.84,+0.18]

Scenario 10
CV

9µ −0.95 [−1.13,−0.76] [−1.30,−0.57]
5.5 69.5 %CU

10 +0.27 [0.08, 0.47] [−0.09, 0.66]

Scenario 11
CV

9µ −1.03 [−1.22,−0.84] [−1.38,−0.65]
5.6 73.6 %CU

10′ −0.29 [−0.47,−0.12] [−0.63, 0.05]

Scenario 12
CV

9′µ −0.03 [−0.22, 0.15] [−0.40, 0.32]
1.6 15.7 %CU

10 +0.41 [0.21, 0.63] [0.02, 0.83]

Scenario 13

CV
9µ −1.11 [−1.28,−0.91] [−1.41,−0.71]

5.4 78.7 %
CV

9′µ +0.53 [0.24, 0.83] [−0.10, 1.11]

CU
10 +0.24 [0.01, 0.48] [−0.21, 0.69]

CU
10′ −0.04 [−0.28, 0.20] [−0.48, 0.42]

Table 8.4: Most prominent patterns for LFU and LFUV-NP contributions from Fit “All”. Sce-

narios 5 to 8 were introduced in Ref. [211]. Scenarios 9 (motivated by 2HDMs [213]) and 10 to 13

(motivated by Z ′ models with vector-like quarks [214]) are new.

8.2.2 Fits results in presence of LFUV and LFU-NP

Our previous global analyses assumed different NP contributions for muons and electrons, as

the parametrisation in Eq. (8.2.1) suggests. Hence, all above-mentioned NP determinations were

performed under the implicit hypothesis of LFUV-NP. In Ref. [211], assuming that hadronic con-

tributions are properly assessed [1, 215], we considered for the first time the possibility that short-

distance Wilson coefficients could receive NP contributions that are not only LFUV, but also lepton

flavour universal or LFU. Indeed, whereas LFUV-NP contributions are mandatory to explain RK

and RK∗ , b → s`` processes are not restricted to such NP contributions alone. This idea was

implemented by allowing two NP contributions inside the semileptonic Wilson coefficients [211]:

CNP
i` = CV

i` + CU
i (8.2.8)

with ` = e, µ, τ and where CV
i` stands for LFUV-NP and CU

i for LFU-NP contributions. We

distinguish the two contributions by imposing that CV
ie = 03. It is important at this point to

emphasize the difference between simply allowing the presence of NP in both muons and electrons

or allowing for LFU and LFUV-NP contributions. The case of simply allowing NP in the electron

channel has been discussed quite extensively in Refs. [208, 216] (see also Refs. [217, 218] for a

smaller subset of scenarios with and without including low-recoil observables), but no further

3There is no loss of generality here, since this term can always be absorbed in such a way that CV
iµ can be

interpreted as the difference of NP contributions to muons and electrons.
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structure emerged from these analyses. On the contrary, our approach provides a concrete NP

structure, namely, that the b → s`` transitions get a common Lepton Flavour Universal (LFU)

NP contribution for all charged leptons (electrons, muons and tau leptons), opening new ideas

for model building and extending the possible interpretations of our global fits. Performing fits

with this new setting [197], we recovered our previous results in Ref. [136] but also obtained new

scenarios different from Refs. [208, 216–218]. This can be seen by translating LFU and LFUV

contributions into NP contributions to muons and electrons (leaving τ aside at this stage)

CNP
9µ = CV

9µ + CU
9 , CNP

10µ = CV
10µ + CU

10, CNP
9e = CU

9 , CNP
10e = CU

10 . (8.2.9)

This seemingly innocuous redefinition yields interesting consequences, as it provides new perspec-

tives to explain with different mechanisms the anomalies coming purely from the muon sector (like

〈P ′5〉[4,6]) and the ones describing the violation of lepton flavour universality (like 〈RK〉[1.1,6]). It

is important to stress that this approach is different from all the analyses including NP in elec-

trons [208, 216–219] where the muonic NP contribution is not correlated in any way with the

electronic one.
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Figure 8.3: Updated plots of Ref. [211] corresponding to Scenarios 6,7,8 and the new Scenario 9.

In this section, we will discuss the update of the results in [211] with the new data made

available since then. Furthermore, motivated by the results of the previous section, we extend the

aforementioned analysis by allowing for LFUV and LFU-NP solutions with RHC, with particular

emphasis on scenarios that could be easily obtained in NP models (see Section 8.3 for a discussion on

the model-building implications). New fit results within this framework can be found in Table 8.4.

With the updated experimental inputs, we confirm our earlier observation [211] that a LFUV

left-handed lepton coupling structure (corresponding to CV
9 = −CV

10 and preferred from a model-
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building point of view) yields a better description of data with the addition of LFU-NP in the

coefficients C9,10, as shown by scenarios 6 and 8 in Tab. 8.4 with p-values larger than 70%. On the

other hand, we note a very slight decrease in significance for the scenarios 5–7, with the exception of

scenario 8 which exhibits one of the most significant pulls with respect to the SM. The comparison

of scenarios 10 and 12 illustrates that CV
9µ plays an important role in LFU-NP scenarios and cannot

be swapped for its chirally-flipped counterpart without consequences.

Finally, updated plots of the 2D LFU-LFUV scenarios discussed in Ref. [211] are shown in

Fig. 8.3, with the allowed regions for the newly proposed LFU scenarios also being displayed in

Fig. 8.4.
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Figure 8.4: Updated plots of Ref. [211] corresponding to the new Scenarios 10,11,12.

8.2.3 Correlations among fit parameters

In addition to confidence intervals and regions, we provide the correlation matrices for the most

interesting NP scenarios considered in our fits.

Correlation Matrices of Fits to LFUV-NP

First, we present the correlations between fit parameters of the NP scenarios defined in Tab. II and

Tab. III. These are all NP solutions whose parameters assess LFUV-NP. By order of appearance

in Tab. II, the correlations between the coefficients of all 2D scenarios with PullSM & 5.3σ are,

Corr(CNP
9µ , CNP

10µ) =

(
1.00 0.30

0.30 1.00

)

Corr(CNP
9µ , C9′µ) =

(
1.00 −0.39

−0.39 1.00

)

Corr(CNP
9µ , C10′µ) =

(
1.00 0.33

0.33 1.00

)

Corr(CNP
9µ , CNP

9e ) =

(
1.00 0.51

0.51 1.00

)

Corr(CNP
9µ = −C9′µ, CNP

10µ = C10′µ) =

(
1.00 −0.17

−0.17 1.00

)
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Corr(CNP
9µ , C9′µ = −C10′µ) =

(
1.00 −0.34

−0.34 1.00

)

The last two matrices correspond to Hyp. 1 and Hyp. 5 as defined in Tab. II. Despite the high

PullSM of the 2D scenario {CNP
9µ , C7′} (5.4σ), its correlation matrix is not collected here due to the

central value of C7′ being negligible, with small errors.

Regarding the 6D fit of Tab. III,

Corr6D =




1.00 −0.34 −0.07 0.06 0.02 −0.03

−0.34 1.00 0.24 −0.06 0.04 0.24

−0.07 0.24 1.00 −0.13 0.61 0.59

0.06 −0.06 −0.13 1.00 −0.13 −0.08

0.02 0.04 0.61 −0.13 1.00 0.85

−0.03 0.24 0.59 −0.08 0.85 1.00




where the columns are ordered as {CNP
7 , CNP

9µ , CNP
10µ, C7′ , C9′µ, C10′µ}.

Interesting information can be extracted from Corr6D. Most of the coefficients do not show

particularly strong correlations with the others except for the pairs {CNP
10µ, C9′µ}, {CNP

10µ, C10′µ} and

{C9′µ, C10′µ}, being the latter the highest in correlation. While CNP
9µ and C9′µ show a non-negligible

correlation in the fit to these coefficients only, in the 6D fit the aforementioned parameters are

uncorrelated to a large extent. On the contrary, the correlation between CNP
9µ and CNP

10µ is very

similar for both the global 6D and the 2D fit to these parameters alone.

Correlation Matrices of Fits to LFUV-LFU NP

Second, the correlations between fit parameters of scenarios with both LFUV and LFU-NP have

also been considered. Below one can find the correlation matrices of scenarios 5 to 11, in that

order.

Corr(CV
9µ, CU

9 = CU
10, CV

10µ) =




1.00 −0.93 0.91

−0.93 1.00 −0.94

0.91 −0.94 1.00




Corr(CV
9µ = −CV

10µ, CU
9 = CU

10) =

(
1.00 0.17

0.17 1.00

)

Corr(CV
9µ, CU

9 ) =

(
1.00 −0.85

−0.85 1.00

)

Corr(CV
9µ = −CV

10µ, CU
9 ) =

(
1.00 −0.44

−0.44 1.00

)

Corr(CV
9µ = −CV

10µ, CU
10) =

(
1.00 0.69

0.69 1.00

)

Corr(CV
9µ, CU

10) =

(
1.00 0.05

0.05 1.00

)

Corr(CV
9µ, CU

10′) =

(
1.00 0.20

0.20 1.00

)
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No significant changes can be observed when comparing with the results in App. 2 of Ref. [211].

As expected, CV
9µ and CU

9 are highly anti-correlated, with its nominal value somewhat smaller

than in [211]. Fit estimates of the parameters in scenario {CV
9µ = −CV

10µ, CU
9 = CU

10} are now

slightly correlated, while before their correlation was negligible. Interestingly, however, we find the

parameters of the new scenario {CV
9µ, CU

10} statistically independent to a large extent.

8.3 Implications for models

Our most updated model-independent fits to available b → s`` and b → sγ data in Ref. [197]

strongly favour several patterns of NP, with either purely LFUV or LFU and LFUV signatures.

As it was already identified in previous analyses [113, 115, 136], the strongest signal of NP takes

the form of an LFUV contribution to the coefficient C9 affecting mainly b → sµµ transitions.

However, more complex NP solutions with additional structures, involving either LFU types of

NP or RHC, seem to emerge from the most recent data. This has important implications for some

popular ultraviolet-complete models which we briefly discuss.

I LFUV: Given that leptoquarks (LQs) should posses very small couplings to electrons in

order to avoid dangerous effects in µ→ eγ, they naturally violate LFU. While Z ′ models can

easily accommodate LFUV data [220], variants based on the assumption of LFU [221, 222]

are now disfavoured. The same is true if one aims at explaining P ′5 via NP in four-quark

operators leading to a NP (q2-dependent) contribution from charm loops [223].

I CNP
9µ : Z ′ models with fundamental (gauge) couplings to leptons preferably yield CNP

9µ -like

solutions in order to avoid gauge anomalies. In this context, Lµ − Lτ models [224–227]

are popular since they do not generate effects in electron channels. The new fit including

RK∗ is also very favourable to models predicting CNP
9µ = −3CNP

9e [228]. Interestingly, such a

symmetry pattern is in good agreement with the structure of the PMNS matrix. Concerning

LQs, a CNP
9µ -like solution can only be generated by adding two scalar (an SU(2)L triplet and

an SU(2)L doublet with Y = 7/6) or two vector representations (an SU(2)L singlet with

Y = 2/3 and an SU(2)L doublet with Y = 5/6).

I CNP
9µ = −CNP

10µ: This pattern can be achieved in Z ′ models with loop-induced couplings [229]

or in Z ′ models with heavy vector-like fermions [180, 230] which posses also LFUV. Con-

cerning LQs, here a single representation (the scalar SU(2)L triplet or the vector SU(2)L

singlet with Y = 2/3) can generate a C9µ = −C10µ like solution [231–237] and this pat-

tern can also be obtained in models with loop contributions from three heavy new scalars

and fermions [238–240]. Composite Higgs models are also able to achieve this pattern of

deviations [241].

I RHC: with an RK value closer to one, scenarios with right-handed currents, namely CNP
9µ =

−C9′µ, (CNP
9µ , C9′µ) and (CNP

9µ , C10′µ), seem to emerge. The first two scenarios are naturally

generated in Z ′ models with certain assumptions on its couplings to right-handed and left-

handed quarks, as it was shown in Ref. [224] within the context of a gauged Lµ−Lτ symmetry

with vector-like quarks. One could also obtain CNP
9µ = −C9′µ by adding a third Higgs doublet

to the model of Ref. [226] with opposite U(1) charge. On the other hand, generating the
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aforementioned contribution in LQ models requires one to add four scalar representations or

three vector ones.

I CV9µ = −CV10µ & CU9 : Scenario 8 of Ref. [211] can be realized via off-shell photon pen-

guins [242] in a leptoquark model explaining also b→ cτν data (we will return to this point

below).

I CU10(′): The new scenarios 9–13 are characterized by a CU
10(′) contribution. This arises natu-

rally in models with modified Z couplings (to a good approximation CU
9(′) can be neglected).

The pattern of scenario 9 occurs in Two-Higgs-Doublet models where this flavour universal

effect can be supplemented by a CV
9 = −CV

10 effect [213].

I More LFU-LFUV: In case of scenarios 11 to 13, one can invoke models with vector-like

quarks where modified Z couplings are even induced at tree level. The LFU effect in CU
10(′)

can be accompanied by a CV
9,10(′) effect from Z ′ exchanges [214]. Vector-like quarks with

the quantum numbers of right-handed down quarks (left-handed quarks doublets) generate

effects in CU
10 and CV

9′ (CU
10(′) and CV

9 ) for a Z ′ boson with vector couplings to muons [214].

Concerning Hyps. 1 to 5 of Tab. 8.2, only two of them (2 and 4) can be explained within a

Z ′ model, while hypotheses 1 and 3 violate the relationship CNP
9µ × C10′µ = CNP

10µ × C9′µ [113] that

minimal Z ′ models should obey. One would have to turn to other models (like LQs with a sufficient

number of representations) to explain the hypothesis with the highest pull (Hyp. 1).

8.3.1 Model-independent connection to b→ c`ν

We close our discussion of models by commenting on the model-independent connection between

the anomalies in b→ s`` neutral currents and those in b→ cτν charged currents (i.e. RD and RD∗),

which are now at the 3.1σ level [243]. Such a connection, however, requires further hypotheses.

A solution of the RD(∗) anomaly can naturally be achieved with a NP contribution to the SM

operator (c̄γµPLb) (τ̄ γµPLν), as it complies with the Bc lifetime [244] and q2 distributions [245–

247]. Assuming SU(2) invariance, the effect in RD(∗) is correlated to b→ s`` and/or to b→ sνν̄,

following the pattern C9µ = −C10µ. From model-independent arguments, b → sττ must then

be significantly enhanced, as we will discuss at length in Chapter 9. Indeed, since b → c`ν

processes are mediated already at tree level in the SM, one needs large NP contributions in order

to explain the anomalies in RD and RD∗ . In principle, these large NP effects would also generate

large contributions to b → sνν̄ processes, due to SU(2) invariance, however contributions to this

channel are strongly constrained by B → K(∗)νν̄. A possible way to bypass this problem is to

impose a coupling structure that is mainly aligned to the third generation, but this disagrees with

direct LHC searches [248] and electroweak precision observables [249]. Another alternative, which

yields no effects in b→ sνν̄ processes, arises from the Standard Model Effective Theory (SMEFT)

scenario where C(1) = C(3) expressed in terms of gauge-invariant dimension-6 operators [3, 250, 251].

The operator involving-third generation leptons explains RD(∗) and the one involving the second

generation gives a LFUV effect in b → sµµ processes. Form a model-building perspective, this

scenario stems naturally from models with an SU(2) singlet vector LQ [234, 235, 252] or with a

combination of two scalar LQs [253]. Both the two aforementioned models are predicted to induce

large effects in b→ sττ (of the order of 10−3 for Bs → τ+τ−) [253, 254].
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Figure 8.5: Preferred regions at the 1, 2 and 3σ level (green) in the (CV
9µ = −CV

10µ, CU
9 ) plane from

b → s`+`− data. The red contour lines show the corresponding regions once RD(∗) is included in

the fit (for Λ = 2 TeV). The horizontal blue (vertical yellow) band is consistent with RD(∗) (RK)

at the 2σ level and the contour lines show the predicted values for these ratios.

Assuming that the coupling to the second generation is sizeable in order to avoid the bounds

from direct LHC searches and electroweak precision observables one finds

C9(10)τ ≈ CSM9(10) − (+)2
π

α

Vcb
V ∗ts

(√
RD(∗)

RSM
D(∗)

− 1

)
. (8.3.1)

Notice that our discussion above, implicitly assumes LFUV-NP contributions to b → sµµ, as we

only consider effects modifying the muonic Wilson coefficients through C9µ = −C10µ. However,

the same SMEFT C(1) = C(3) scenario also provides an interpretation of Scenario 8 in Table 8.4,

based on both LFU and LFUV types of NP, that jointly accounts for the anomalies in b → sµµ

and b→ cτν. As we mentioned, the constraint from b→ cτν and SU(2) invariance generally leads

to large contributions to the operator (s̄γµPLb) (τ̄ γµPLτ), which enhances b→ sττ processes (see

Chapter 9), but also mixes into O9 and generates CU
9 at µ = mb [242]. Note that not all models

addressing the charged and neutral current anomalies simultaneously have an anarchic flavour

structure. In fact, in the case of alignment in the down-sector [255, 256] one does not find large

effects in b→ sττ or CU
9 .

Therefore, Scenario 8 is reproduced in this setup with an additional correlation between CU
9 and

RD(∗) . Assuming a generic flavour structure so that small CKM elements can be neglected [3, 242],

we get

CU
9 ≈7.5

(
1−

√
RD(∗)

RD(∗)SM

)(
1 +

log(Λ2/(1TeV2))

10.5

)
. (8.3.2)

Realizations of this scenario in specific NP models also usually yield an effect in C7 [242]. However,

since this effect is model dependent (and in fact small in some UV complete models [257, 258]), we

neglect it here, leading to the plot in Fig. 8.5, where we include the recent update of Ref. [259] to
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draw the band for RD(∗) . Note that this scenario has a pull of 7.0σ due to the inclusion of RD(∗) ,

which increases our ∆χ2 by ∼ 20.

In addition to the above-mentioned effects, in LQ models able to generate the effects described

one expects sizeable branching ratios for b→ sτµ processes, reaching the level of 10−5 [253].

8.4 Inner tensions of the global fit

In Section 8.2, we have seen that different NP scenarios involving CNP
9µ (or its LFU-LFUV variant

CV
9µ) lead to a much better description of the data than the SM, with fits reaching p-values around

60-80% (the SM being around 10%) and providing pulls with respect to the SM above 5σ. The

overall agreement is thus already very good within these NP scenarios and from a purely statistical

point of view, it should be expected that these fits exhibit slight tensions. It is however interesting

to look at these remaining tensions in more detail in order to determine where statistical fluctu-

ations may be reduced with more data or where improved measurements might help to lift the

degeneracy among NP scenarios. We focus on three main tensions that we consider particularly

relevant in the current global fit.

8.4.1 RK∗ in the first bin

A first tension related to RK∗ occurs in the global fit and it proves interesting to consider both

RK∗ and B(B → K∗µ+µ−) as measured by LHCb in order to understand its nature (see Fig. 8.6).

Let us first consider the second bin (from 1 to 6 GeV2) for RK∗ . Even though the deficit could

be consistent with an excess in the electron channel with respect to the muon one, the study of the

corresponding bins of B(B → K∗µ+µ−) points towards a deficit of muons. The mechanism that

explains the deviation with respect to the SM in the long second bin of RK∗ is consistent with all

the deviations that have been observed in other channels and different invariant di-lepton mass

square regions.

The situation is different for the first bin of RK∗ , where B(B → K∗µ+µ−) is clearly compatible

with the SM (see Fig. 8.6). An excess in the electron channel would then be needed in order to

explain the observed deficit in 〈RK∗〉[1.1,6]. This difference of mechanism between the first and the

second bins of RK∗ can be understood in two ways: i) a specific NP effect [260, 261] localised at

very low q2 and able to compete with the dominant Wilson coefficient C7 (well determined to be

in agreement with the SM expectations from B(B → Xsγ)) [85, 92, 131, 136, 197, 262]; ii) some

experimental issue in measuring di-electron pairs at very small invariant mass, close to the photon

pole. It would be very interesting that LHCb keep on their efforts to understand the systematics in

this bin. Interestingly the recent Belle measurement [195] indicates also a low central value in the

same bin, even though the large uncertainty affecting the measurement prevents us from drawing

any definite conclusion and makes it compatible also with the SM.

Another approach to slightly reduce the tension between data and SM in the first bin of

RK∗ through a NP explanation consists in including NP contributions to the b→ see channel, in

particular, considering right-handed currents affecting electrons, as discussed in Ref. [219]. In the

scenarios S8-S11 (using the notation of Ref. [219]) the prediction of 〈RK∗〉[0.045,1.1] is found to be

within ∼ 1σ range of the current measurement. This could open a new window to explore the

existence of right-handed currents and to explain some of the tensions found, even though more
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Figure 8.6: RK∗ (left panel) and B(B → K∗µ+µ−) (right panel) measured by LHCb. Figures

extracted from Refs. [191] and [190] respectively.

data is required in order to be conclusive.

8.4.2 Bs → φµ+µ− versus B → K∗µ+µ−

Another tension in the fit concerns the branching ratio for Bs → φµ+µ−, in particular when

compared with the related decay B → K∗µ+µ−.

The prediction for the branching ratio B(B → K∗µ+µ−) involves hadronic form factors to

be determined using different theoretical approaches, depending on the di-lepton invariant mass

region analysed: at large recoil, one can use light-cone sum-rules based on light-meson distribution

amplitudes [150], while lattice form factors are available at low recoil. Due to the difficulty to

assess precisely the uncertainties attached to light-cone sum rules, we perform our computations

using the more conservative framework described in Chapter 6. We checked that our results are

compatible with those obtained in Ref. [150] and that the two approaches yield very similar results

for the fits [113, 136, 263, 264].

Contrary to the case of B(B → K∗µ+µ−), there are no computations available using the B-

meson light cone sum rules of Refs. [148, 149] for Bs → φµ+µ−, and one must rely on the estimates

given in Ref. [150]. One can see in Fig. 8.7 that at low recoil, where lattice form factors are used,

the prediction for B(B → K∗µ+µ−) is expected to be slightly larger than B(Bs → φµ+µ−) and

indeed data (with large error bars) follows the same trend. On the contrary, in the large-recoil

region where the light-cone sum rules results of Ref. [150] are used, the SM predictions lead to

a larger value for B(Bs → φµ+µ−) than for B(B → K∗µ+µ−). Surprisingly, data shows the

opposite trend, which may come from a statistical fluctuation of the data leading to an inversion

of the experimental measurements of both modes at large recoil. Alternatively, this issue may

signal a problem in the theoretical prediction of the form factors of Ref. [150]. Firstly, these

predictions are obtained by combining results in different kinematic regions (light-cone sum rules

and lattice QCD) which do not fully agree with each other when they are extrapolated: the fit to

a common parametrisation over the whole kinematic space leads to a fit with uncertainties that

may be artificially small due to these incompatibilities of the inputs. Moreover, the choice of the

z parametrisation [148, 150] used to describe the form factors over the whole kinematic range

has interesting properties of convergence, but it may in some cases lead to potential unitarity

violations [265].

Finally, another issue that specifically affects B(Bs → φµ+µ−) is the Bs-B̄s mixing. As we
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Figure 8.7: Theoretical predictions for B(Bs → φµ+µ−) and B(B → K∗µ+µ−) within the SM along

with their corresponding experimental measurement. The results at large recoil are presented here

only for illustrative purposes and are based on the form factors presented in Ref. [150] (these

results are not used in our global analyses). The results at low recoil are indeed used in Ref. [113]

and are based on available lattice QCD inputs for the form factors.

discussed in Section 5.2, the neat effect of the evolution between the two mass states on the time-

integrated branching ratio is a correction of O(∆Γs/Γs) in the relation between its theoretical

computation and its measurement at LHCb [122, 266–268]. This effect is taken into account in the

global fit [113] as an additional source of uncertainty for the theoretical estimate of the branching

ratios.

The experimental efficiencies should also be corrected for this effect, which depend on the

CP-asymmetry A∆Γ that can also be affected by NP contributions. It should thus be kept free

within a large range in the absence of measurements. Neglecting this effect and assuming a SM

value for this asymmetry may lead to an underestimation of some systematics on the efficiencies.

For instance, Ref. [269] showed that this issue can lead to an additional systematic effect of 10%

in the Bs → µ+µ− systematics. The impact on efficiencies from NP effects was indeed considered

in Ref. [121] for Bs → φµ+µ− by varying C9µ in the underlying physics model used to compute

signal efficiencies, leading to a much smaller effect in this case (of a few percent, in line with

back-of-the-envelope estimates).

8.4.3 Tensions between large and low recoil in angular observables

We discuss for the first time here a rather different type of tension, concerning the B → K∗µ+µ−

angular observables at large and low recoil. On the one hand, we observe that branching ratios
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exhibit the same discrepancy pattern between theory and experiment at low and large recoil 4. On

the other hand, the current deviations at LHCb in P ′5 require NP contributions with opposite sign

in the two kinematic regions. Indeed, the pull between the SM value and the LHCb experimental

measurement in 〈P ′5〉[15,19] has the opposite sign (albeit the significance is only 1.2σ) w.r.t. its

large-recoil bins, in particular 〈P ′5〉[4,6] and 〈P ′5〉[6,8]. This very slight tension is not there in the

case of the Belle data where same-sign deviations are observed, even though the error bars are

rather large in this case.

For the purposes of illustration, let us consider the NP scenario where there is no LFU con-

tribution and NP occurs only in CV
9µ and CV

10µ. This is illustrated in Fig. 8.8 where the constraints

for these observables (as well as other relevant observables that will be listed below) are shown at

68.3% (left) and 95% (right) CL. One can notice their milder sensitivity to CV
10µ. 〈P ′5〉[4,6] (blue

region) would prefer a negative CV
9µ while 〈P ′5〉[15,19] (green region) would favour a positive CV

9µ at

68.3% CL.

Black dots indicate the particular solutions (−1.02, 0) and (−0.45, 0.45) corresponding to the

best-fit points of the 1D scenarios CV
9µ and CV

9µ = −CV
10µ in Ref. [197], where 2017 data was used for

our analyses. We also indicate the constraints from 〈P2〉[4,6], 〈P2〉[15,19], and 〈RK〉[1.1,6] 〈B(B0 →
K∗0µ+µ−)〉[15,19] since we believe that they are representative of the set of observables driving

our global fit 5. The former pair of observables (〈P2〉[4,6], 〈P2〉[15,19]) has a large overlap region

compatible with the SM while the latter one (〈RK〉[1.1,6], 〈B(B0 → K∗0µ+µ−)〉[15,19]) overlaps far

from the SM point. While P ′5 and RK strongly constrain NP solutions, the P2 bins are weakly

constraining. Finally, the yellow region in the right panel in Fig. 8.8 is the overlap of the regions

from the five observables obtained after considering the data regions at 95% CL.

In summary, an interesting tension between low- and large-recoil regions for P ′5 is observed

at the 2-sigma level, favouring C9µ contributions of different signs in the two kinematic regions.

Although not statistically significant, this inner tension seems to require either different sources of

NP or a shift in the data once more statistics is added.

8.5 Assessing the potential of RK (and Q5) to disentangle NP

hypotheses

The goal of this final section is to scrutinize the results of the fit from a different perspective to

prepare the next step, i.e. to discriminate the most relevant NP scenario among the ones already

favoured, complementing the results of our global analyses. Currently, the most significant patterns

identified exhibit a pull w.r.t. the SM very close to each other (within a range of half a σ). We

explore strategies to disentangle different scenarios and to identify the impact of a more precise

measurement of RK . We then combine information on RK and Q5 in order to illustrate that RK

by itself will not be sufficient to disentangle clearly one or a small subset of scenarios, but that a

combination of RK and Q5 can be useful, depending on the (future) measured value

More precisely, here we discuss the potential impact of prospective new measurements of

〈RK〉[1.1,6] and 〈Q5〉[1.1,6] on the global fits in order to distinguish NP hypotheses. We perform the

4This is true for all b → s`` modes, apart from the decay Λ0
b → Λµ+µ−, where the experimental errors at low

recoil are very large and the normalisation chosen prevents further interpretation [200, 270].
5P1 and P ′4 observables are known to behave in a more SM like way than the ones selected here, thus providing

weaker constraints.
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Figure 8.8: 68.3% (left) and 95% (right) CL solutions regions for the observables discussed in the

main text in the (CV
9µ, CV

10µ) plane. The yellow region corresponds to the overlap region. 〈P2〉[15,19]

is only shown in the left panel.

following illustrative exercise: we vary the experimental values of 〈RK〉[1.1,6] and 〈Q5〉[1.1,6] within

suitable ranges, and we perform fits according to these values taken as actual measurements.

First only 〈RK〉[1.1,6] is allowed to vary before we consider the combined impact of 〈RK〉[1.1,6] and

〈Q5〉[1.1,6]. The “pseudo-data” for 〈RK〉[1.1,6] takes into account the expected increase in statistics

soon available for this observable. For this exercise we assume a reduction by a factor
√

2 on the

statistical error of 〈RK〉[1.1,6] [194]. Indeed, according to the latter reference, this would amount

to the inclusion of the data sets of 2017 and 2018 which are said to have the same statistical power

as the combined data set of Run 1, 2015 and 2016.

For each fit (corresponding to a given hypothesis and set of data), both the pull of the hypoth-

esis w.r.t. the SM (PullSM) and the best-fit-point (b.f.p) are computed, which we plot as functions

of either 〈RK〉[1.1,6] or 〈Q5〉[1.1,6]. However, in this Thesis, we will only show plots of the PullSM for

the different hypotheses considered with the value of the aforementioned observables, as this is the

most relevant information. We refer the interested reader to our article in Ref. [212] for analogous

plots for the b.f.p.s.

Before discussing the results of our analysis, we first state our assumptions:

I We follow the same approach described in Section 8.2 regarding the statistical framework

and anatomy of our fits.

I We consider two different kinds of fits with different subsets of observables: on one side, the

global fit (or Fit “All”, as we called it above, to all available observables) and on the other

one, the LFUV fit. When several experiments have measured the same observable, we do

not average the results but we include all these measurements in the χ2 taking into account

their (theoretical) correlations.
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I Any variation of the experimental value of 〈RK〉[1.1,6] could manifest itself also in a change in

the branching ratios B(B+ → K+µ+µ−) and/or B(B+ → K+e+e−). However, the update

of 〈RK〉[1.1,6] in Ref. [194] has not led to significant changes in these branching ratios, and

we will assume that this will also occur in the forthcoming updates, so that we modify only

the value of 〈RK〉[1.1,6]

I 〈RK〉[1.1,6] is freely varied within a 2σ range from its current experimental value. It represents

a good compromise between a high coverage of the true value and a span compatible with

our computational means. 〈Q5〉[1.1,6] is varied within the range [−0.5, 1.0] in order to ensure

that we scan over values corresponding to the most relevant NP scenarios (see Fig. 2 of

Ref. [211]).

I With the increased statistics available at Run 2, it will be possible for experiments to provide

more precise determinations of key observables. Therefore, besides the reduction in the error

of 〈RK〉[1.1,6], we assume a guesstimated uncertainty of order 0.1 for 〈Q5〉[1.1,6].

In this study, we take the most relevant 1D and 2D scenarios with purely LFUV-NP contributions

and also allowing for LFU-NP, as suggested by our global fits of Section 8.2. When translated

from one language to the other, these scenarios become, for the purely LFUV cases:

[Hyp. I] {CV
9µ} → {CNP

9µ }
[Hyp. II] {CV

9µ = −CV
10µ} → {CNP

9µ = −CNP
10µ}

[Hyp. III] {CV
9µ = −CV

9′µ} → {CNP
9µ = −CNP

9′µ}
[Hyp. IV] {CV

9µ, CV
10µ} → {CNP

9µ , CNP
10µ}

[Hyp. V] {CV
9µ, CV

9′µ} → {CNP
9µ , CNP

9′µ}
[Hyp. VI] {CV

9µ, CV
10′µ} → {CNP

9µ , CNP
10′µ}

[Hyp. VII] {CV
9µ = −CV

9′µ, CV
10µ = CV

10′µ} → {CNP
9µ = −C9′µ, CNP

10µ = C10′µ}
[Hyp. VIII] {CV

9µ, CV
9′µ = −CV

10′µ} → {CNP
9µ , CNP

9′µ = −C10′µ} (8.5.1)

and the scenarios allowing both LFUV and LFU contributions

[Hyp.IX] {CV
9µ = −CV

10µ, CU
9 = CU

10} → {CNP
9µ = −CNP

10µ + 2CNP
9e , CNP

9e = CNP
10e}

[Hyp.X] {CV
9µ, CU

9 } → {CNP
9µ , CNP

9e }
[Hyp.XI] {CV

9µ = −CV
10µ, CU

9 } → {CNP
9µ = −CNP

10µ + CNP
9e , CNP

10µ, CNP
9e }

[Hyp.XII] {CV
9µ = −CV

10µ, CU
10} → {CNP

9µ , CNP
10µ = −CNP

9µ + CNP
10e, CNP

10e}
[Hyp.XIII] {CV

9µ, CU
10} → {CNP

9µ , CNP
10µ = CNP

10e}
[Hyp.XIV] {CV

9µ, CU
10′} → {CNP

9µ , CNP
10′µ = CNP

10′e} (8.5.2)

Hypotheses VII and VIII correspond to Hypotheses 1 and 5 first defined in Refs. [136]. Hypotheses

IX to XIV correspond to Scenarios 6 to 11 in Ref. [211] (Scenarios 5 and 13 are also interesting

in terms of their ability to explain the deviations observed, but they require three or four free

parameters and will not be considered in the following).

The purpose of this analysis is not to provide precise determinations of the pull of the SM and

the b.f.p.s for different values of 〈RK〉[1.1,6] and 〈Q5〉[1.1,6] but rather to gain qualitative knowledge

on how experimental measurements of these two observables will drive the analyses.
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Figure 8.9: Global fit: Impact of the central value of 〈RK〉[1.1,6] on the PullSM of the NP scenarios

under consideration.

8.5.1 Global Fits

Figure 8.9 displays the outcome of the global fit (or fit “All”, involving 178 observables) for the

pulls with respect of the SM, assuming different experimental central values of 〈RK〉[1.1,6] and

different NP hypotheses varied according to the procedure described above. The shaded vertical

band in the plots of Figures 8.9 highlights the current experimental 1σ confidence interval for the

LHCb average of 〈RK〉[1.1,6].

Figure 8.9 illustrates the relevance of 〈RK〉[1.1,6] on the global fits. For all the NP scenarios

considered, except for Hyp. III, CV
9µ = −CV

9′µ, we observe that their corresponding PullSM undergoes

a ∼ 3−4σ variation from one end of the range of variation of 〈RK〉[1.1,6] to the other. If we restrict

the variation of 〈RK〉[1.1,6] to only 1σ, one can see differences of ∼ 2σ between the two extremes,

as expected from the linearity of PullSM on 〈RK〉[1.1,6] seen in the plots.

The flatness of the PullSM under the hypothesis III, CV
9µ = −CV

9′µ, can be easily understood.

The theoretical prediction of 〈RK〉[1.1,6] is insensitive to the value of CV
9µ = −CV

9′µ, so that it
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remains constant and equal to 1 to a very high accuracy. Therefore the difference between the

theoretical and experimental values of 〈RK〉[1.1,6] does not play any role in the minimisation of

the χ2 function. As a consequence, the b.f.p. is determined using the other observables of the fit,

regardless of the experimental value for 〈RK〉[1.1,6], and the contribution of 〈RK〉[1.1,6] cancels in

the ∆χ2 = χ2
SM − χ2

min statistic. This explains the observed flat curve for the PullSM, up to small

variations linked to the numerical minimisation of the χ2 function.

The results in Figure 8.9 show that, for most of the values of 〈RK〉[1.1,6] scanned, it is not

possible to fully disentangle all the NP scenarios, with the exception of Hyp III: CV
9µ = −CV

9′µ.

However, large values of 〈RK〉[1.1,6] (around 0.90 or above) provide the potential to disentangle

some of the LFUV-NP scenarios. Many scenarios get their significances down to the range ∼
3.8σ − 4.8σ, apart from scenarios with right-handed currents like Hyps. V, VII, VIII. Indeed, if a

new measurement of 〈RK〉[1.1,6] is found in better agreement with its SM prediction, this favours

right-handed currents for CV
9′µ cancelling the contribution for CV

9µ, but there is still an important

number of other tensions (i.e. RK∗ , P
′
5µ and B(Bs → φµ+µ−)) that require NP contributions

in order to be explained. Large values of 〈RK〉[1.1,6] would help also to distinguish among NP

scenarios featuring both LFUV and LFU NP, separating Hyps. X and XI from the others).



154 Chapter 8. Global Fits to the B Anomalies

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00
〈Q5〉[1.1,6]

3

4

5

6

7

8

P
u

ll
S

M
(σ

)
Global Fits 〈RK〉[1.1,6] = 0.789 (−1σ)

I: C NP
9µ

II: C NP
9µ = −C NP

10µ

III: C NP
9µ = −C9′µ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00
〈Q5〉[1.1,6]

4

5

6

7

8

P
u

ll
S

M
(σ

)

Global Fits 〈RK〉[1.1,6] = 0.789 (−1σ)

IV:
(
C NP

9µ , C NP
10µ

)

V:
(
C NP

9µ , C9′µ
)

VI:
(
C NP

9µ , C10′µ
)

VII:
(
C NP

9µ = −C9′µ, C NP
10µ = C10′µ

)

VIII:
(
C NP

9µ , C9′µ = −C10′µ
)

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00
〈Q5〉[1.1,6]

3

4

5

6

7

8

P
u

ll
S

M
(σ

)

Global Fits 〈RK〉[1.1,6] = 0.846 (0σ)

I: C NP
9µ

II: C NP
9µ = −C NP

10µ

III: C NP
9µ = −C9′µ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00
〈Q5〉[1.1,6]

4

5

6

7

8
P

u
ll

S
M

(σ
)

Global Fits 〈RK〉[1.1,6] = 0.846 (0σ)

IV:
(
C NP

9µ , C NP
10µ

)

V:
(
C NP

9µ , C9′µ
)

VI:
(
C NP

9µ , C10′µ
)

VII:
(
C NP

9µ = −C9′µ, C NP
10µ = C10′µ

)

VIII:
(
C NP

9µ , C9′µ = −C10′µ
)

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00
〈Q5〉[1.1,6]

3

4

5

6

7

8

P
u

ll
S

M
(σ

)

Global Fits 〈RK〉[1.1,6] = 0.908 (+1σ)

I: C NP
9µ

II: C NP
9µ = −C NP

10µ

III: C NP
9µ = −C9′µ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00
〈Q5〉[1.1,6]

3

4

5

6

7

8

P
u

ll
S

M
(σ

)

Global Fits 〈RK〉[1.1,6] = 0.908 (+1σ)

IV:
(
C NP

9µ , C NP
10µ

)

V:
(
C NP

9µ , C9′µ
)

VI:
(
C NP

9µ , C10′µ
)

VII:
(
C NP

9µ = −C9′µ, C NP
10µ = C10′µ

)

VIII:
(
C NP

9µ , C9′µ = −C10′µ
)

Figure 8.10: Global fit: Impact of 〈Q5〉[1.1,6] on the PullSM of the NP scenarios under consideration

for different values of 〈RK〉[1.1,6].
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Figure 8.11: Global fit: Impact of 〈Q5〉[1.1,6] on the PullSM of the NP scenarios under consideration

for different values of 〈RK〉[1.1,6].
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We then study the combined influence of 〈RK〉[1.1,6] and 〈Q5〉[1.1,6]. The value of 〈Q5〉[1.1,6] is

varied as explained above and we repeat the analysis for three different values of 〈RK〉[1.1,6]: its

current experimental value and the ends of its 1σ range. Figs. 8.10 and 8.11 show how the PullSM

varies with different experimental values of 〈Q5〉[1.1,6] and 〈RK〉[1.1,6].

We observe that most of the hypotheses see their PullSM increase for larger values of 〈Q5〉[1.1,6].

One can separate the discussion according to the value of 〈RK〉[1.1,6]

I 〈RK〉[1.1,6] ' 0.8: The pulls are larger than in the current case. The rather low value of RK

disfavours in general scenarios with right-handed currents with respect to scenarios involving

only SM vector operators. A large value of 〈Q5〉[1.1,6] (close to 1) favours CNP
9µ , whereas a low

value supports NP in both CNP
9µ and CNP

10µ either from LFUV NP only (Hyps. II, IV) or from

a combination of LFU and LFUV-NP (Hyp. XI).

I 〈RK〉[1.1,6] ' 0.85: The new determination of 〈RK〉[1.1,6] is then nominally close to its current

experimental value but with smaller errors. Therefore, the values for the b.f.p.s are numer-

ically similar to the b.f.p.s reported in Ref. [136, 197]. On one hand, low and large values

of 〈Q5〉[1.1,6] provide both a rather clear separation between Hyps. II, IX, X, XI and Hyps.

I, III, XIII, XIV. On the other hand, it does not help to separate a set of hypotheses with

LFUV NP only (IV to VIII).

I 〈RK〉[1.1,6] ' 0.9: The pulls are lower with respect to their present values. Large values of

〈Q5〉[1.1,6] allow one to disfavour Hyp II, and low and large values of 〈Q5〉[1.1,6] provide still

both a rather clear separation among hypotheses combining LFU and LFUV-NP (Hyps. IX,

X, XI on one hand and Hyps. XIII, XIV on the other). However, it does not help to separate

a set of hypotheses with LFUV NP only (IV to VIII).

In summary, if the update of 〈RK〉[1.1,6] is larger than its current value, it can help distin-

guishing among various NP hypotheses, with a preference for hypotheses involving right-handed

currents in CV
9′µ. A value of 〈RK〉[1.1,6] similar or smaller than the current value would clearly

disfavour the hypothesis CV
9µ = −CV

9′µ, but many other NP hypotheses (with LFUV only or with

a combination of LFU and LFUV) cannot be separated. The observable 〈Q5〉[1.1,6] is an excellent

candidate to separate among some of these possibilities. Depending on the situation, low and/or

large values of this observables provide a good separation in terms of pulls.

8.5.2 LFUV fits

It is also interesting to address the impact of the observables 〈RK〉[1.1,6] and 〈Q5〉[1.1,6] on the

LFUV fits. For them, we follow the same guidelines as for the global fits.

Most of the features observed in the global fit are also observed in the LFUV fit, although with

lower pulls, so we refrain from showing the corresponding plots here (one can find these plots in

Ref. [212]). For different values of 〈RK〉[1.1,6], the separation among hypotheses can be improved

if one measures either low or large values of 〈Q5〉[1.1,6]. One can in particular notice that the

separation between the LFUV NP hypotheses (IV to VIII) seems easier for low values of 〈Q5〉[1.1,6]

compared to the fit “All”. This means that the observables in the LFUV fit are more sensitive to

details of this scenario, but this gets compensated by other observables in the fit “All” so that the

sensitivity is reduced in the more complete fit.
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LFUV fits lead us to draw similar conclusions to the ones extracted from the global fits. How-

ever they exhibit a stronger clustering of the pulls, especially if only 〈RK〉[1.1,6] is used to discrimi-

nate them. Moreover, if we take a given hypothesis with LFUV-NP only, and consider hypotheses

obtained by adding further LFU-NP contributions, we obtain very similar pulls. Therefore, the

only way to distinguish among different LFU-NP hypotheses consists in performing the global fits

and having access to both muonic and electronic branching ratios. The addition of 〈Q5〉[1.1,6] allows

for strategies that enable the discrimination of various scenarios in a similar way to the case of the

global fits.



Chapter 9

Exploring NP in processes with τ

leptons

Measurements of the b→ c`ν` charged current have also shown interesting patterns of deviations,

even though these are tree-level processes in the SM which are in general less sensitive to NP.

As we mentioned in Chapter 8, the ratios RD(∗) , which measure LFU violation in the charged

current by comparing the tau mode to light lepton (e, µ) modes, differ from their SM predictions

by a combined significance of approximately 3.1σ [243]. The effect related to tau leptons in

RD(∗) corresponds to an O(10%) effect at the amplitude level, assuming its interference with the

SM. Recently, LHCb released results for the ratio RJ/ψ [271] which measures LFU violation in

b → c`−ν̄` as well. Again, even though the error is large, the experimental central value exceeds

the SM prediction in agreement with the expectations from RD(∗) [272–275].

9.1 Implications for b→ sττ

Taking into account the above-mentioned hints for NP, we might expect to have a large LFU

violation in the neutral current involving tau leptons, i.e. b → sτ+τ− transitions. In fact, it

has been shown in Refs. [234, 253, 257] that one can expect an enhancement of up to three

orders of magnitude compared to the SM predictions in b → sτ+τ− processes if one aims at

explaining the central value of RD(∗) . So far, among the possible processes, only LHCb searched

for Bs → τ+τ− [276]

Br
(
Bs → τ+τ−

)
EXP
≤ 6.8× 10−3 , (9.1.1)

and BaBar performed an analysis of B → Kτ+τ− [277]

Br
(
B → Kτ+τ−

)
EXP
≤ 2.25× 10−3 . (9.1.2)

A search for B → K(∗)τ+τ− or Bs → φτ+τ− should be possible at LHCb: compared to the case

of Bs → τ+τ−, these analyses involve more tracks (originating from the K, K∗ or φ mesons) that

can be reconstructed. In addition, the Belle experiment has not analysed their data for b→ sτ+τ−

transitions yet and the upcoming Belle II experiment should be able to improve significantly on

the measurement of B → K(∗)τ+τ− decays: an e+e− experiment such as Belle II can be expected

to be more efficient in reconstructing B decays to tau leptons than LHCb. Since Belle II is

expected to run at the Υ(4S) resonance, it will not study Bs → τ+τ− whereas B → K(∗)τ+τ−

158
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are golden modes for finding NP at this facility. There are thus good experimental prospects for

these transitions in the coming years.

On the theory side, b→ sτ+τ− processes have received a limited attention so far. Within the

SM, the Bs → τ+τ− branching ratio is known very precisely [139, 278]

Br
(
Bs → τ+τ−

)
SM

= (7.73± 0.49)× 10−7 , (9.1.3)

whereas the b → sτ+τ− processes B → K∗τ+τ−, B → Kτ+τ− and Bs → φτ+τ− have not been

considered in detail until recently, especially concerning the impact of NP contributions. Only the

branching ratio for B → Kτ+τ− was estimated in Ref. [279] including NP effects. Recently, an

analysis of branching ratios and tau polarisations in b → sτ+τ− was performed to determine the

sensitivity to NP contributions to the Wilson coefficients [280].

Within the SM, the branching ratios for B → K∗τ+τ− and Bs → φτ+τ− are known to

be of O(10−7) [280–282] and the inclusive B → Xsτ
+τ− process was assessed in Refs. [134, 279].

Ref. [279] also studied the indirect constraints on b→ sτ+τ− operators, finding that the constraints

on NP contributions are very loose once the effects in b→ sτ+τ− and b→ dτ+τ− transitions are

correlated such that the stringent bounds from ∆Γs/∆Γd are avoided. Interestingly, sizable effects

in analogous b → dτ+τ− operators [283] could help solving the long-standing anomaly in the

like-sign dimuon asymmetry measured by the DØ experiment [284, 285].

In this chapter we look in detail at the b → sτ+τ− processes Bs → τ+τ−, B → K∗τ+τ−,

B → Kτ+τ− and Bs → φτ+τ−. We will express their branching ratios in terms of the Wilson

coefficients C9(′) and C10(′) . In order to compute these processes we will use the same approach as

in Chapters 4, 5 and 6 to compute b→ sµµ observables, substituting muons by taus and taking the

relevant form factors in the q2-region for the τ+τ− invariant mass where these decays are allowed

kinematically. Since the mass of the tau leptons cannot be neglected compared to the B meson,

this region is much smaller than for decays to light leptons and we will consider the branching

ratios only in the equivalent of the high-q2 region (or low recoil) for lighter leptons.

9.2 EFT approach

In this section we express the branching ratios for our b → sτ+τ− processes as functions of Cττ
9(′)

and Cττ
10(′) and calculate the SM predictions. We define our effective Hamiltonian in the following

way, focusing on the relevant operators for our discussion

Heff(b→ sττ) = −4GF√
2
VtbV

∗
ts

∑

a

CaOa , (9.2.1)

Oττ9(10) =
α

4π
[s̄γµPLb] [τ̄ γµ(γ5)τ ] , (9.2.2)

Oττ9′(10′) =
α

4π
[s̄γµPRb] [τ̄ γµ(γ5)τ ] , (9.2.3)

where CSM
9 ≈ 4.1 and CSM

10 ≈ −4.3 at the scale µ = 4.8 GeV [85, 89, 93], PL,R = (1 ∓ γ5)/2, and

the chirality-flipped coefficients have negligible contributions in the SM.

Besides Br (Bs → τ+τ−)SM given in Eq. (9.1.3) we use the approach and inputs of Chapter 6

(see also Refs. [112, 113, 136, 147]) to compute the other processes of interest. Averaging over the
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charged and the neutral modes for B → K(∗)τ+τ− we find

Br
(
B → Kτ+τ−

)[15,22]

SM
= (1.20± 0.12)× 10−7 , (9.2.4)

Br
(
B → K∗τ+τ−

)[15,19]

SM
= (0.98± 0.10)× 10−7 , (9.2.5)

Br
(
Bs → φτ+τ−

)[15,18.8]

SM
= (0.86± 0.06)× 10−7 (9.2.6)

The superscript denotes the q2-range for the dilepton invariant mass. This broad bin is chosen

to leave out the ψ(2S) resonance allowing the use of quark-hadron duality. As discussed in our

previous works, our error budget includes in particular a conservative estimate of 10% for duality

violation effects, while estimates based on resonance models [157] yield violations around 2%.

In order to assess the structure of the branching ratios including beyond the SM effects, we

parametrise both the central value and uncertainty of the branching ratio in each channel as

quadratic polynomials in CNP
9 , CNP

10 , C9′ and C10′ . The values of the polynomial coefficients are

estimated by performing a fit to our theoretical predictions computed on an evenly spaced grid

in the parameter space
{
CNP

9 , CNP
10 , C9′ , C10′

}
, with 300 points each in the ranges [-2,2], [-2,2], [-1,1]

and [-0.2,0.2], respectively.

107 × Br
(
B → Kτ+τ−

)[15,22]
=

(
1.20 + 0.15 CNP

9 − 0.42 CNP
10 + 0.15 C′9 − 0.42 C′10 + 0.04 CNP

9 C′9
+0.10 CNP

10 C′10 + 0.02 CNP 2
9 + 0.05 CNP 2

10 + 0.02 C′ 29 + 0.05 C′ 210

)

±
(
0.12 + 0.02 CNP

9 − 0.04 CNP
10 + 0.01 C′9 − 0.04 C′10

+0.01 CNP
10 C′10 + 0.01 CNP 2

10 + 0.08 C′ 210

)
, (9.2.7)

107 × Br
(
B → K∗τ+τ−

)[15,19]
=

(
0.98 + 0.38 CNP

9 − 0.14 CNP
10 − 0.30 C′9 + 0.12 C′10 − 0.08 CNP

9 C′9
−0.03 CNP

10 C′10 + 0.05 CNP 2
9 + 0.02 CNP 2

10 + 0.05 C′ 29 + 0.02 C′ 210

)

±
(
0.09 + 0.03 CNP

9 − 0.01 CNP
10 − 0.03 C′9 − 0.01 CNP

9 C′9
−0.01 C′9C′10 + 0.01 C′ 29 − 0.01 C′ 210

)
, (9.2.8)

107 × Br
(
Bs → φτ+τ−

)[15,18.8]
=

(
0.86 + 0.34 CNP

9 − 0.11 CNP
10 − 0.28 C′9 + 0.10 C′10 − 0.08 CNP

9 C′9
−0.02 CNP

10 C′10 + 0.05 CNP 2
9 + 0.01 CNP 2

10 + 0.05 C′ 29 + 0.01 C′ 210

)

±
(
0.06 + 0.02 CNP

9 − 0.02 C′9 + 0.02 C′ 210

)
(9.2.9)

As expected, there is a limited dependence of the uncertainties on the values of the Wilson coeffi-

cients. In order to shorten the equations, we dropped the superscript ττ in the Wilson coefficients

here. Comparing our results with Ref. [280], we find slightly lower central values for the SM

(Eqs. (9.2.4)-(9.2.6)). On the other hand, we obtain the same dependence of the central values on

the NP contributions to the Wilson coefficients (Eqs. (9.2.7)-(9.2.9)).

In this analysis we neglect the effects of scalar and tensor operators. This is justified since the

current global analyses of b → s`+`− anomalies do not favour such contributions [113, 153, 164,

166]. Moreover, the indirect bounds on the Wilson coefficients of scalar operators from Bs → τ+τ−

are much stronger than for C9(′) and C10(′) [279] and therefore they cannot lead to comparably large

and observable effects in B → K(∗)τ+τ− or Bs → φτ+τ−. We also neglect tensor operators since

they are not generated at the dimension-6 level for b→ s`+`−[286, 287].

9.3 Correlation with RD(∗) and RJ/ψ

It is interesting to correlate these results with the tree-level b→ cτ−ν̄τ transition. A solution of
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the ∼ 3σ anomaly in RD(∗) and RJ/ψ requires a NP contribution of O(20%) to the branching ratio

of B → D(∗)τ−ν̄τ , which is rather large given that these decays are mediated in the SM already at

tree level. In order to comply with the Bc lifetime [244] and the q2 distribution of RD(∗) [245–247],

a contribution to the SM operator [c̄γµPLb][τ̄ γµPLντ ] is favoured such that there is interference

with the SM. In principle, these constraints can be avoided with right-handed couplings (including

possibly right-handed neutrinos [288]). However, no interference with the SM appears for such

solutions, which require very large couplings close to the perturbativity limit, and we will not

consider such solutions any further.

Since a NP contribution to the Wilson coefficient of the SM V −A operator amounts only to

changing the normalisation of the Fermi constant for b → sτ+τ− transitions, one predicts in this

case:

RJ/ψ/R
SM
J/ψ = RD/R

SM
D = RD∗/R

SM
D∗ , (9.3.1)

which agrees well with the current measurements.

If NP generates this contribution from a scale much larger than the electroweak symmetry

breaking scale [250, 289], the semileptonic decays involving only left-handed quarks and leptons

are described by the two SU(2)L-invariant operators

O(1)
ijkl = [Q̄iγµQj ][L̄kγ

µLl],

O(3)
ijkl = [Q̄iγµσ

IQj ][L̄kγ
µσILl], (9.3.2)

where the Pauli matrices σI act on the weak-isospin components of the quark (lepton) doublets

Q (L). Note that there are no further dimension-six operators involving only left-handed fields

and that dimension-eight operators can be neglected for NP around the TeV scale. This approach

has been used to correlate Wilson coefficients of the effective Hamiltonian for both charged- and

neutral-current transitions in various broad classes of NP models (some examples are found in

Refs. [234, 235, 251, 290]).

After electroweak symmetry breaking, these operators contribute to semileptonic b → c(s)

decays involving charged tau leptons and tau neutrinos. Working in the down basis when writing

the SU(2) components of the operators in Eq. (9.3.2) (i.e., in the field basis with diagonal down

quark mass matrices) we obtain

C(1)O(1) → C(1)
23 ([s̄LγµbL][τ̄Lγ

µτL] + [s̄LγµbL][ν̄τγ
µντ ]) , (9.3.3)

C(3)O(3) → C(3)
23 (2Vcs[c̄LγµbL][τ̄Lγ

µντ ] + [s̄LγµbL][τ̄Lγ
µτL]

−[s̄LγµbL][ν̄τγ
µντ ]) + C(3)

33 (2Vcb[c̄LγµbL][τ̄Lγ
µντ ]) . (9.3.4)

where C(n)
ij denote the Wilson coefficients for O(n)

ij33.

We neglect the effect of C(3)
13 which would enter b→ cτντ processes with a factor proportional

to Vcd. But it would contribute even more dominantly to b → dττ and b → uτντ processes such

as B− → τ−ν̄τ , where no deviation from the SM is observed [291, 292]. We will thus not consider

this contribution any more.

As a consequence, we see that b→ cτντ processes receive a NP contribution from C(3)
33 also in

scenarios with a flavour-diagonal alignment to the third generation, which would avoid any effects

in down-quark FCNCs. However, due to the CKM suppression of this contribution, a solution
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Figure 9.1: Predictions of the branching ratios of the b→ sτ+τ− processes (including uncertainties)

as a function of RX/R
SM
X .

of the RD(∗) anomaly via this contribution requires a rather large C(3)
33 coming into conflict with

bounds from electroweak precision data [249] and direct LHC searches for τ+τ− final states [248].

The RD(∗) anomaly can thus only be solved via C(1,3)
23 which then must generate huge contribu-

tions to b → sττ and/or b → sντ ν̄τ processes. The severe bounds on NP from B → K(∗)νν̄ (e.g.,

Ref. [293]) rule out large effects in b → sνν̄ and they can only be accommodated if the contribu-

tion from C(3)
23 is approximately cancelled by the one from C(1)

23 , implying C(1)
23 ≈ C23(3) [290]. Such

a situation can for instance be realized by a vector leptoquark singlet [234, 235, 256, 257, 294]

or by combining two scalar leptoquarks [253]. Neglecting small CKM factors, the assumption

C
(1)
23 ≈ C

(3)
23 implies that contributions to b→ cτ−ν̄τ and b→ sτ+τ− are generated together in the

combination

[c̄LγµbL][τ̄Lγ
µντ ] + [s̄LγµbL][τ̄Lγ

µτL]. (9.3.5)

This correlation means that effects in b → sττ are of the same order as the ones required to

explain RD(∗) , i.e., of the order of a tree-level SM process. We may neglect Cabibbo-suppressed

contributions and assume that the NP contribution to b→ cτντ is small compared to the SM one,

so that we keep only the SM contribution and the SM-NP interference terms in b → cτντ decay

rates. We find the relation

Cττ9(10) ≈ CSM
9(10) − (+)∆ , (9.3.6)

with

∆ =
2π

α

Vcb
VtbV

∗
ts

(√
RX

RSM
X

− 1

)
. (9.3.7)

In our framework, ∆ is independent of the exclusive b→ c`−ν̄` channel chosen X, see Eq. (9.3.1).

Note that this prediction for the Wilson coefficients Cττ9 and Cττ10 is model independent, in the sense

that the only ingredients in the derivation are the assumptions that NP only affects left-handed
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quarks and leptons and that it couples significantly to the second generation in such a way that

experimental constraints can be avoided.

We stress that the factor multiplying the bracket in Eq. (9.3.7) is very large (around 860).

Using the current values for RD(∗) , we obtain a positive (respectively negative) NP contribution

to the Wilson coefficient Cττ9 (respectively Cττ10 ) parametrised by ∆ = O(100) which overwhelms

completely the SM contribution to these Wilson coefficients. Such large values of the Wilson

coefficients are not in contradiction with the constraints obtained in Ref. [279] (when comparing

with the results of this reference, one must be aware of the different normalisations of the operators

in the effective Hamiltonian).

In view of these huge coefficients, we provide predictions for the relevant decay rates assuming

that they are completely dominated by the NP contribution ∆, and thus neglecting both short-

and long-distance SM contributions. We obtain the branching ratios of the various b → sτ+τ−

channels

Br
(
Bs → τ+τ−

)
=

(
∆

CSM
10

)2

Br
(
Bs → τ+τ−

)
SM

(9.3.8)

Br
(
B → Kτ+τ−

)
= (8.8± 0.8)× 10−9∆2 , (9.3.9)

Br
(
B → K∗τ+τ−

)
= (10.1± 0.8)× 10−9∆2 , (9.3.10)

Br
(
Bs → φτ+τ−

)
= (9.1± 0.5)× 10−9∆2 , (9.3.11)

where the last three branching ratios are considered over the whole kinematic range for the lepton

pair invariant mass q2 (i.e., from 4m2
τ up to the low-recoil endpoint). We neglect the contributions

only due to the SM. In the above expressions, the uncertainties quoted come from hadronic con-

tributions multiplied by the short-distance NP contribution ∆. A naive estimate suggests that the

contribution of the ψ(2S) resonance to this branching ratio amounts to 2×10−6, which is negligible

in the limit of very large NP contributions considered here. We thus may calculate the branching

ratios for the whole kinematically allowed q2 region, from the vicinity of the ψ(2S) resonance up to

the low-recoil endpoint, assuming that the result is completely dominated by the NP contribution.

Since we neglected all errors related to the SM contribution for the semileptonic processes, we

should do the same for Bs → τ+τ−. For Br (Bs → τ+τ−)SM in Eq. (9.3.8), we should only consider

the uncertainties coming from the Bs decay constant and decay width as well as the different scales

used to compute the Wilson coefficients here and in Ref. [139], leading to a relative uncertainty of

4.7% (to be compared with the larger 6.4% uncertainty in Eq. (9.1.3) that includes other sources

of uncertainties irrelevant under our current assumptions).

In Fig. 9.1, we indicate the corresponding predictions as a function of RX/R
SM
X (assumed to be

independent of the b→ c`ν` hadronic decay channel X in our approach). We have also indicated

the current experimental range for RX/R
SM
X , obtained by performing the weighted average of RD,

RD∗ and RJ/ψ without taking into account correlations. We see that the branching ratios for

semileptonic decays can easily reach 3× 10−4, whereas Bs → τ+τ− can be increased up to 10−3.

Up to now, we have discussed the correlation between NP in b → cτ ν̄τ and b → sττ under a

limited set of assumptions that are fairly model independent. A comment is in order concerning

the implications of these assumptions for b → sµµ. If we assume that the same mechanism is

at work for muons and taus, we obtain also a correlation between b → sµµ and b → cµνµ: the

O(25%) shift needed in Cµµ9 and Cµµ10 to describe b→ sµ+µ− data [136] translates into a very small
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positive ∆ and a decrease of b→ cµνµ decay rates compared to the SM by a negligible amount of

only a few per mille, so that there would be no measurable differences between electron and muon

semileptonic decays.



Conclusions

Over the last years, a very interesting pattern of deviations has emerged in b → s`` transitions.

After the initial P ′5 anomaly identified in B → K∗µµ by the LHCb experiment, several systematic

deviations have been observed in various branching ratios. At the same time, new observables

comparing electron and muon modes have been measured at LHCb (RK) and Belle (Q4,5) hinting

at a violation of lepton flavour universality. Global analyses of all these deviations find a preference

for NP solutions with respect to the SM with high significances (above 5σ) with distinctive features:

i) the dominant NP contribution enters the semileptonic operator O9µ, ii) NP affects b → sµµ

transitions much more noticeably than b → see ones and iii) strong consistency between the

pattern of deviations in b→ sµµ and LFUV observables.

In Part I we have discussed the basics needed for performing global analyses of b→ s`` data.

These include the use of an effective Hamiltonian for the description of the underlying b→ s quark

level transition, the leading order parametrisation of matrix elements in terms of form factors, the

development of a factorisation formula for the computation of O(αs) corrections to the amplitude

in a systematic way (which emerges from the simplified dynamics one obtains at the heavy quark

and large energy limits) and the construction of a basis of optimised observables where most of

hadronic information cancels at leading order.

On the theoretical side, we have seen in Chapter 6 that hadronic uncertainties conform to

theoretical expectations and unexpectedly large effects (power corrections to form factors, charm-

loop contributions) are disfavoured, in particular by the significant amount of LFUV observed.

However, it would be very useful to have more determinations of the form factors involved, both

at low and large meson recoils, as well as refined estimates of charm-loop contributions, in order

to improve the accuracy of theoretical predictions.

In Chapter 7 we have discussed how angular analyses of B → K∗ee and B → K∗µµ decay

modes can be combined to understand better the pattern of anomalies observed and to get a

solid handle on the size of some SM long-distance contributions.We have proposed different sets of

observables comparing B → K∗ee and B → K∗µµ, discussing their respective merits. A first set

of observables is obtained directly from the observables that have been introduced for B → K∗µµ,

namely Qi (related to the optimised observables Pi), Ti (related to the angular averages Si) and

Bi (related to the angular coefficients Ji), measuring in each case the differences between muon

and electron modes.

As the analysis in Chapter 8 demonstrates, recent experimental updates (RK , RK∗ and B(Bs →
µ+µ−)) yield a very similar picture to the one previously found in Refs. [136, 211] for the various

NP scenarios of interest with some important peculiarities. In presence of LFUV NP contributions

only, the 1D fits to “All” observables remain basically unchanged showing the preference for CNP
9µ

scenario over CNP
9µ = −CNP

10µ. If only LFUV observables are considered the situation is reversed, as

165
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already found in Ref. [136], but now with an increased gap between the significances. This difference

between the preferred hypotheses, depending on the data set used, can be solved introducing LFU

NP contributions [211].

The main differences arise for the 2D scenarios: the cases including RHC, (CNP
9µ , C10′µ), (CNP

9µ , C9′µ)

or (CNP
9µ , C9′µ = −C10′µ), can accommodate better the recent updates, which enhances the signifi-

cance of these scenarios compared to Ref. [136], pointing to new patterns including RHC. A more

precise experimental measurement of the observable P1[83, 103] would be very useful to confirm

or not the presence of RHC NP encoded in C9′µ and C10′µ.

We also observe interesting changes in the 2D fits in the presence of LFU NP, where new

scenarios (not considered in Ref. [211]) give a good fit to data with CU
10(′) and additional LFUV

contributions. For example scenario 11 (CV
9µ, C10′µ) can accommodate b → s`+`− data very well,

at the same level as scenario 8. Scenarios including LFU NP in left-handed currents (discussed in

Ref. [211]) stay practically unchanged but with some preference for scenarios 6 and 8, which have a

(V −A) structure for the LFUV-NP and a V or (V +A) structure for the LFU-NP. Furthermore, we

have included additional scenarios 9 and 10 that exhibit a significance of 5.0σ and 5.5σ respectively.

We note that the amount of LFU NP is sensitive to the structure of the LFUV component.

For instance, in scenario 7 (CV
9µ and CU

9 ) the LFU component is negligible at its best fit point.

On the contrary, if the LFUV-NP has a (V −A) structure, the LFU-NP component (CU
9 ) is large,

as illustrated by scenarios 6, 8 and 9. Scenarios with NP in RHC (either LFU or LFUV) prefer

such contributions at the 2σ level (see scenarios 11 and 13) with the exception of scenario 12 with

negligible CV
9′µ. The new values of RK and RK∗ seem thus to open a window for RHC contributions

while the new B(Bs → µµ) update (theory and experiment) helps only marginally scenarios with

CNP
10µ.

Then, we have discussed the impact of forthcoming measurements of 〈RK〉[1.1,6] and 〈Q5〉[1.1,6]

to disentangle NP hypotheses. We considered various central values for these two measurements

and we assumed some reduction in the experimental uncertainties in order to study how pulls

w.r.t. SM and best-fit points would evolve. 〈RK〉[1.1,6] alone proves to have only a limited ability

to separate the various NP hypotheses: CV
9µ = −CV

9′µ is the only hypothesis strongly affected. On

the other hand, the combination of 〈RK〉[1.1,6] and 〈Q5〉[1.1,6] proves much more efficient to separate

various favoured hypotheses, either with only LFUV-NP contributions or with both LFUV and

LFU contributions.

Finally, in Chapter 9 we have also analysed the correlation between NP contributions to

b→ sτ+τ− and b→ cτ−ν̄τ under general assumptions in agreement with experimental indications:

the deviations in b→ cτ−ν̄τ decays come from a NP contribution to the left-handed four-fermion

vector operator, this NP contribution is due to physics coming from a scale significantly larger

than the electroweak scale, and the resulting contribution to b → sντ ν̄τ is suppressed. Under

these assumptions, an explanation of RD(∗) requires an enhancement of all b → sτ+τ− processes

by approximately three orders of magnitude compared to the SM, confirming the potential of

b → sτ+τ− decays to look for NP in the context of the measurements searching for violation of

LFU in semileptonic b-decays.

Therefore, we consider our analyses in solid grounds, both from a theoretical perspective

and from the point of view of our data analysis strategies, being our approach characterised for

always using the most conservative estimation of errors. Hence, if new data from LHCb and, more

importantly, results from a completely independent experiment such as Belle II, confirm the same
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picture we have already observed, there are arguments enough for taking the B-anomalies as the

new guideline to follow in the short- and mid-term future in the research field of fundamental

Particle Physics. In this context, the B-anomalies can potentially play the role of the Higgs boson

during the LEP to LHC transition for the new experiments to come.



Appendix A

Some kinematics for B → K∗`+`−

This appendix is a compilation of the most relevant definitions and results concerning the kine-

matics of four-body decays. Our notation is going to be general (X → Y (→ ab)Z(→ cd)), so that

it can be applied to any decay, but at the end of the appendix you can also find a translation table

between the notation used here and the one in Chapter 3 for the B → K∗(→ Kπ)`+`− mode.

The dimension of the four-body phase space is 4 × 4. However, because of the on-shell and

4-momentum conservation conditions (four constraints each), the dimension is reduced to 4 × 2.

Moreover, exploiting isotropic symmetry, one can fix three Euler angles and ends up with 5 physical

degrees of freedom. Following [295], the typical five independent kinematical degrees of freedom

are portrayed by

I m2
ab, the effective mass squared of the ab system, ma +mb < mab < mX −mc −md.

I m2
cd, the effective mass squared of the cd system, mc +md < mab < mX −ma −mb.

I θY , the angle of the a particle in the C.M. system of the particles a and b with respect to

the direction of flight of (a, b) in the X rest system (0 < θY < π).

I θZ , the angle of the c particle in the C.M. system of the particles c and d with respect to the

direction of flight of (c, d) in the X rest system (0 < θY < π).

I θX , the angle between the plane formed by the decay products (a, b) and the corresponding

plane of (c, d) in the X rest frame (−π < θX < π).

More than the individual momenta of each of the particles, it is usual to work with the following

combinations

Pab = pa + pb, Qab = pa − pb,

Pcd = pc + pd, Qcd = pc − pd,

Then, the diparticle masses read

P 2
ab = m2

ab P 2
cd = m2

cd (A.0.1)
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The three kinematical angles introduced before can be expressed in terms of momenta in the

following way

cos θY = − Qab ·Pcd

|Qab||Pcd|
, cos θZ = − Qcd ·Pab

|Qcd||Pab|
(A.1)

sin θX =
(Pab ×Qab)× (Pcd ×Qcd)

|Pab ×Qab||Pcd ×Qcd|
(A.2)

where all these quantities must be evaluated, respectively, at the Y , Z and X rest frames.

Using the five independent variables θX , θY , θZ , m2
ab and m2

cd, the invariant products of the

vectors Pab, Pcd, Qab and Qcd write as [31]

PabQab = m2
a −m2

b ,

Pab Pcd = p̄,

PabQcd =
m2
c −m2

d

m2
cd

p̄+
2

m2
cd

σσcd cos θZ ,

QabQab =
1

m2
abm

2
cd

[(m2
a −m2

b)(m
2
c −m2

d)p̄

+ 2σσab(m
2
c −m2

d) cos θY

+ 2σσcd(m
2
a −m2

b) cos θZ

+ 4σabσcdp̄ cos θY cos θZ

+ 4σabσcdmabmcd sin θY sin θZ cos θX ],

εαβγδP
α
abQ

β
abP

γ
cdQ

δ
cd = −4σσabσcd

mabmcd
sin θY sin θZ sin θX

with the quantities

p̄ =
1

2
(M2

X −m2
ab −m2

cd),

σ =
√
p̄2 −m2

abm
2
cd,

p̄ab =
1

2
(m2

ab −m2
a −m2

b)

σab =
√
p̄2
ab −m2

a −m2
b
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General B → K∗(→ Kπ)`+`−

(ab) (Kπ)

(cd) (`+`−)

mab mK∗

mcd

√
q2

σX φ

σY θK∗

σZ θ`

σ2
ab m4

K∗β
2/4

σ2
cd q4β2

` /4

σ2 λ/4

p̄ (pK∗ · q)

Table A.1: Translation table between the general X → Y (→ ab)Z(→ cd) variables and the

particular notation used for the decay B → K∗(→ Kπ)`+`− in chapter 3.



Appendix B

Large-recoil expressions for M and M̃

Under the notation and hypotheses in Section 7.1.2, we can separate the charm contributions from

the rest of the M̃ observable

M̃ = M̃0 +A′δC10∆C9 + B′δC2
10∆C2

9 (B.0.1)

with

M̃0 =
(2C7δC10m̂b + δC9C10ŝ+ δC10(C9 + δC9)ŝ)

C7δC9C10(C10 + δC10)m̂b(ŝ− 1)ŝ
(B.0.2)

× (C7δC10m̂b + δC9C10ŝ+ δC10(C7m̂b + C9 + δC9)ŝ)

A′ =
2δC9C10ŝ+ δC10 (2(C9 + δC9)ŝ+ C7m̂b(3 + ŝ))

C7δC9C10(C10 + δC10)m̂b(ŝ− 1)
(B.0.3)

B′ =
ŝ

C7δC9C10(C10 + δC10)m̂b(ŝ− 1)
(B.0.4)

M can be expressed in terms of M̃ and considering all the lepton mass effects coming from

β` =
√

1− 4m2
`/s in the large recoil limit and up to leading order

M = M̃ + ∆M +A∆C9 + B∆C2
9 (B.0.5)

∆M = −
β2
e − β2

µ

β2
eβ

2
µ

1

C7δC9C10(C10 + δC10)m̂b(ŝ− 1)ŝ

×
[
− C2

10(2C7m̂b + C9ŝ)(C9ŝ+ C7m̂b(1 + ŝ))β2
e (B.0.6)

+(C10 + δC10)2 (2C7m̂b + (C9 + δC9)ŝ) ((C9 + δC9)ŝ+ C7m̂b(1 + ŝ))β2
µ

]

A =
β2
e − β2

µ

β2
eβ

2
µ

1

C7δC9C10(C10 + δC10)m̂b(ŝ− 1)
(B.0.7)

×
[
C2

10 (2C9ŝ+ C7m̂b(3 + ŝ))β2
e − (C10 + δC10)2 (2(C9 + δC9)ŝ+ C7m̂b(3 + ŝ))β2

µ

]

B =
β2
e − β2

µ

β2
eβ

2
µ

ŝ
(
C2

10β
2
e − (C10 + δC10)2β2

µ

)

C7δC9C10(C10 + δC10)m̂b(ŝ− 1)
(B.0.8)
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Appendix C

Definition of binned observables

The binned observables are defined following the same rules as in Ref. [112]:

〈Qi〉 = 〈Pµi 〉 − 〈P ei 〉 〈Q̂i〉 = 〈P̂µi 〉 − 〈P̂ ei 〉 〈Ti〉 =
〈Sµi 〉 − 〈Sei 〉
〈Sµi 〉+ 〈Sei 〉

(C.0.1)

〈Bi〉 =
〈Jµi 〉
〈Jei 〉

− 1 〈B̃i〉 =
〈Jµi /β2

µ〉
〈Jei /β2

e 〉
− 1 (C.0.2)

〈M〉 =
(〈Jµ5 〉 − 〈Je5〉) (〈Jµ6s〉 − 〈Je6s〉)
〈Jµ6s〉〈Je5〉 − 〈Je6s〉〈Jµ5 〉

(C.0.3)

〈M̃〉 =

(
〈Jµ5 /β2

µ〉 − 〈Je5/β2
e 〉
) (
〈Jµ6s/β2

µ〉 − 〈Je6s/β2
e 〉
)

〈Jµ6s/β2
µ〉〈Je5/β2

e 〉 − 〈Je6s/β2
e 〉〈Jµ5 /β2

µ〉
(C.0.4)

where 〈P `i 〉 and 〈S`i 〉 correspond to the observables defined in Ref. [112] with ` = e or µ. Similarly,

the 〈P̂ `i 〉 are obtained from Eqs. (7.1.2)-(7.1.6), substituting J `i → 〈J `i 〉.
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Appendix D

Predictions for the observables in

various benchmark scenarios

Our predictions are obtained following Ref. [113]. We quote two uncertainties, the second corre-

sponding to the charm contributions, the first to all other sources of uncertainties. Bars denote

predictions affected by a very large uncertainty (presence of a pole).

D.1 SM

Bin QFL
Q1 Q2 Q3

[0.1, 0.98] −0.041± 0.044± 0.010 −0.001± 0.001± 0.001 0.019± 0.003± 0.001 0.000± 0.000± 0.000

[1.1, 2.5] −0.027± 0.014± 0.001 −0.000± 0.000± 0.000 0.007± 0.000± 0.000 0.000± 0.000± 0.000

[2.5, 4.] −0.016± 0.009± 0.000 0.000± 0.000± 0.000 0.001± 0.001± 0.000 0.000± 0.000± 0.000

[4., 6.] −0.010± 0.008± 0.000 0.000± 0.000± 0.000 −0.001± 0.000± 0.000 0.000± 0.000± 0.000

[6., 8.] −0.006± 0.006± 0.000 0.000± 0.000± 0.000 −0.001± 0.000± 0.000 0.000± 0.000± 0.000

[15., 19.] −0.001± 0.000± 0.000 −0.000± 0.000± 0.000 −0.000± 0.000± 0.000 0.000± 0.000± 0.000

Bin Q4 Q5 Q6 Q8

[0.1, 0.98] 0.005± 0.002± 0.004 0.047± 0.003± 0.008 −0.005± 0.002± 0.001 0.001± 0.000± 0.000

[1.1, 2.5] 0.002± 0.000± 0.000 0.001± 0.002± 0.001 −0.001± 0.000± 0.000 0.000± 0.000± 0.000

[2.5, 4.] 0.000± 0.000± 0.000 −0.004± 0.001± 0.000 −0.000± 0.000± 0.000 −0.000± 0.000± 0.000

[4., 6.] 0.000± 0.000± 0.000 −0.004± 0.000± 0.000 −0.000± 0.000± 0.000 0.000± 0.000± 0.000

[6., 8.] 0.000± 0.000± 0.000 −0.003± 0.000± 0.000 −0.000± 0.000± 0.000 0.000± 0.000± 0.000

[15., 19.] 0.000± 0.000± 0.000 −0.001± 0.000± 0.000 0.000± 0.000± 0.000 0.000± 0.000± 0.000
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Bin Q̂FL
Q̂1 Q̂2 Q̂3

[0.1, 0.98] 0.018± 0.017± 0.004 −0.007± 0.006± 0.018 −0.008± 0.004± 0.001 0.000± 0.001± 0.001

[1.1, 2.5] 0.014± 0.002± 0.000 −0.000± 0.003± 0.000 0.013± 0.032± 0.002 0.000± 0.000± 0.000

[2.5, 4.] 0.010± 0.002± 0.000 0.000± 0.003± 0.000 0.010± 0.025± 0.001 0.000± 0.001± 0.000

[4., 6.] 0.008± 0.001± 0.000 0.001± 0.006± 0.000 −0.004± 0.005± 0.000 0.000± 0.000± 0.000

[6., 8.] 0.006± 0.002± 0.000 0.000± 0.003± 0.000 −0.004± 0.007± 0.000 0.000± 0.000± 0.000

[15., 19.] 0.001± 0.000± 0.000 0.001± 0.000± 0.000 −0.000± 0.000± 0.000 0.000± 0.000± 0.000

Bin Q̂4 Q̂5 Q̂6 Q̂8

[0.1, 0.98] 0.111± 0.007± 0.037 −0.097± 0.013± 0.019 0.008± 0.003± 0.001 −0.004± 0.004± 0.003

[1.1, 2.5] 0.003± 0.005± 0.002 −0.003± 0.007± 0.001 0.001± 0.003± 0.000 −0.001± 0.002± 0.000

[2.5, 4.] 0.001± 0.016± 0.001 −0.005± 0.017± 0.001 −0.001± 0.003± 0.000 0.000± 0.002± 0.000

[4., 6.] −0.002± 0.015± 0.000 −0.002± 0.017± 0.000 −0.000± 0.001± 0.000 −0.000± 0.001± 0.000

[6., 8.] −0.005± 0.009± 0.001 0.002± 0.010± 0.000 0.000± 0.000± 0.000 −0.000± 0.000± 0.000

[15., 19.] −0.003± 0.000± 0.000 0.001± 0.000± 0.000 0.000± 0.000± 0.000 0.000± 0.000± 0.000

Bin T3 T4 T5

[0.1, 0.98] −− −0.116± 0.002± 0.005 −0.075± 0.003± 0.001

[1.1, 2.5] −− −− −0.017± 0.004± 0.001

[2.5, 4.] −− −0.010± 0.003± 0.000 −0.006± 0.003± 0.000

[4., 6.] −0.007± 0.006± 0.000 −0.007± 0.003± 0.000 −0.004± 0.003± 0.000

[6., 8.] −0.005± 0.004± 0.060 −0.005± 0.002± 0.000 −0.003± 0.002± 0.000

[15., 19.] −0.001± 0.000± 0.000 −0.001± 0.000± 0.000 −0.000± 0.000± 0.000

Bin T7 T8 T9

[0.1, 0.98] −0.067± 0.003± 0.000 −0.081± 0.025± 0.051 −−
[1.1, 2.5] −0.013± 0.003± 0.000 −0.020± 0.003± 0.000 −−
[2.5, 4.] −0.007± 0.003± 0.000 −0.010± 0.003± 0.000 −0.010± 0.027± 0.000

[4., 6.] −0.005± 0.003± 0.000 −0.007± 0.003± 0.000 −0.007± 0.003± 0.000

[6., 8.] −0.003± 0.002± 0.000 −0.005± 0.002± 0.000 −0.005± 0.004± 0.000

[15., 19.] −0.000± 0.000± 0.000 −0.001± 0.001± 0.004 −0.001± 0.002± 0.001

Bin B5 B6s M

[0.1, 0.98] −0.155± 0.002± 0.002 −0.121± 0.001± 0.000 0.548± 0.021± 0.024

[1.1, 2.5] −0.034± 0.005± 0.002 −0.027± 0.000± 0.000 0.150± 0.071± 0.037

[2.5, 4.] −0.013± 0.000± 0.000 −0.015± 0.001± 0.000 −0.095± 0.033± 0.007

[4., 6.] −0.009± 0.000± 0.000 −0.008± 0.021± 0.000 0.149± 0.122± 0.019

[6., 8.] −0.006± 0.000± 0.000 −0.006± 0.000± 0.000 0.617± 0.253± 0.204

[15., 19.] −0.003± 0.000± 0.000 −0.003± 0.000± 0.000 −−

Bin B̃5 B̃6s M̃

[0.1, 0.98] 0.000± 0.000± 0.000 0.000± 0.000± 0.000 0.000± 0.000± 0.000

[1.1, 2.5] 0.000± 0.000± 0.000 0.000± 0.000± 0.000 0.000± 0.000± 0.000

[2.5, 4.] 0.000± 0.000± 0.000 0.000± 0.000± 0.000 0.000± 0.000± 0.000

[4., 6.] 0.000± 0.000± 0.000 0.000± 0.000± 0.000 0.000± 0.000± 0.000

[6., 8.] 0.000± 0.000± 0.000 0.000± 0.000± 0.000 0.000± 0.000± 0.000

[15., 19.] 0.000± 0.000± 0.000 0.000± 0.000± 0.000 0.000± 0.000± 0.000
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D.2 Scenario 1: CNP
9µ = −1.11

Bin QFL
Q1 Q2 Q3

[0.1, 0.98] −0.085± 0.073± 0.021 −0.001± 0.002± 0.003 0.017± 0.002± 0.001 0.000± 0.000± 0.000

[1.1, 2.5] −0.122± 0.032± 0.001 0.001± 0.008± 0.003 −0.008± 0.010± 0.001 −0.000± 0.001± 0.000

[2.5, 4.] −0.086± 0.037± 0.002 −0.013± 0.026± 0.007 0.174± 0.058± 0.006 −0.001± 0.002± 0.000

[4., 6.] −0.051± 0.016± 0.002 −0.022± 0.038± 0.010 0.246± 0.009± 0.002 −0.000± 0.001± 0.000

[6., 8.] −0.027± 0.008± 0.003 −0.017± 0.028± 0.009 0.184± 0.036± 0.009 0.000± 0.000± 0.000

[15., 19.] −0.002± 0.000± 0.003 0.002± 0.001± 0.004 0.051± 0.004± 0.010 0.000± 0.000± 0.003

Bin Q4 Q5 Q6 Q8

[0.1, 0.98] 0.136± 0.011± 0.049 0.172± 0.004± 0.016 −0.011± 0.004± 0.001 −0.012± 0.004± 0.003

[1.1, 2.5] 0.087± 0.033± 0.019 0.241± 0.021± 0.013 −0.002± 0.001± 0.000 −0.018± 0.007± 0.001

[2.5, 4.] −0.037± 0.035± 0.010 0.370± 0.017± 0.014 −0.003± 0.001± 0.000 −0.014± 0.007± 0.001

[4., 6.] −0.041± 0.008± 0.008 0.312± 0.044± 0.017 −0.006± 0.002± 0.000 −0.006± 0.004± 0.000

[6., 8.] −0.020± 0.005± 0.010 0.212± 0.056± 0.029 −0.004± 0.003± 0.000 −0.002± 0.002± 0.001

[15., 19.] −0.001± 0.000± 0.002 0.073± 0.007± 0.013 −0.001± 0.000± 0.020 −0.001± 0.000± 0.004

Bin Q̂FL
Q̂1 Q̂2 Q̂3

[0.1, 0.98] −0.037± 0.022± 0.011 −0.007± 0.007± 0.019 −0.009± 0.003± 0.000 0.000± 0.001± 0.001

[1.1, 2.5] −0.086± 0.049± 0.001 0.001± 0.008± 0.003 −0.010± 0.019± 0.002 −0.000± 0.001± 0.000

[2.5, 4.] −0.060± 0.046± 0.002 −0.014± 0.026± 0.007 0.183± 0.048± 0.006 −0.001± 0.002± 0.000

[4., 6.] −0.033± 0.021± 0.002 −0.021± 0.036± 0.011 0.247± 0.011± 0.002 −0.000± 0.001± 0.000

[6., 8.] −0.015± 0.008± 0.003 −0.017± 0.026± 0.009 0.182± 0.035± 0.009 0.000± 0.000± 0.000

[15., 19.] −0.001± 0.000± 0.002 0.002± 0.001± 0.004 0.051± 0.004± 0.010 0.000± 0.000± 0.003

Bin Q̂4 Q̂5 Q̂6 Q̂8

[0.1, 0.98] 0.214± 0.008± 0.010 −0.000± 0.011± 0.014 0.003± 0.001± 0.001 −0.014± 0.007± 0.001

[1.1, 2.5] 0.086± 0.035± 0.016 0.227± 0.021± 0.010 0.000± 0.002± 0.001 −0.019± 0.007± 0.001

[2.5, 4.] −0.040± 0.042± 0.009 0.370± 0.017± 0.013 −0.003± 0.002± 0.000 −0.014± 0.006± 0.001

[4., 6.] −0.045± 0.016± 0.008 0.314± 0.043± 0.017 −0.005± 0.003± 0.000 −0.006± 0.004± 0.000

[6., 8.] −0.025± 0.007± 0.009 0.216± 0.054± 0.029 −0.004± 0.003± 0.000 −0.002± 0.002± 0.001

[15., 19.] −0.003± 0.000± 0.002 0.074± 0.007± 0.013 −0.001± 0.000± 0.020 −0.001± 0.000± 0.004
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Bin T3 T4 T5

[0.1, 0.98] −− −− −0.026± 0.038± 0.011

[1.1, 2.5] −− −− 0.402± 0.152± 0.076

[2.5, 4.] −− 0.005± 0.072± 0.008 −0.608± 0.295± 0.121

[4., 6.] −− −0.010± 0.031± 0.004 −0.224± 0.061± 0.026

[6., 8.] −− −0.009± 0.014± 0.004 −0.126± 0.042± 0.025

[15., 19.] −0.001± 0.001± 0.004 −0.002± 0.000± 0.001 −0.069± 0.006± 0.015

Bin T7 T8 T9

[0.1, 0.98] −0.056± 0.038± 0.011 −− −−
[1.1, 2.5] 0.029± 0.071± 0.010 −0.244± 0.137± 0.073 −−
[2.5, 4.] 0.065± 0.050± 0.005 −0.143± 0.075± 0.023 −−
[4., 6.] 0.087± 0.028± 0.003 −0.091± 0.050± 0.016 −−
[6., 8.] 0.102± 0.015± 0.004 −0.067± 0.083± 0.025 −−
[15., 19.] 0.118± 0.001± 0.003 −− −−

Bin B5 B6s M

[0.1, 0.98] −0.087± 0.008± 0.004 −0.084± 0.005± 0.001 −−
[1.1, 2.5] −− 0.172± 0.047± 0.006 −0.203± 0.049± 0.012

[2.5, 4.] −0.785± 0.181± 0.078 −− −0.459± 0.106± 0.026

[4., 6.] −0.472± 0.051± 0.026 −− −0.736± 0.188± 0.062

[6., 8.] −0.372± 0.040± 0.027 −0.569± 0.150± 0.032 −1.101± 0.328± 0.242

[15., 19.] −0.316± 0.007± 0.018 −0.324± 0.008± 0.019 −−

Bin B̃5 B̃6s M̃

[0.1, 0.98] 0.075± 0.010± 0.006 0.040± 0.006± 0.001 −0.083± 0.017± 0.006

[1.1, 2.5] −− 0.204± 0.048± 0.006 −0.247± 0.049± 0.015

[2.5, 4.] −0.783± 0.184± 0.079 −− −0.463± 0.102± 0.027

[4., 6.] −0.467± 0.051± 0.026 −− −0.723± 0.182± 0.061

[6., 8.] −0.368± 0.040± 0.027 −0.566± 0.151± 0.032 −1.077± 0.319± 0.238

[15., 19.] −0.314± 0.007± 0.018 −0.322± 0.008± 0.019 −−

D.3 Scenario 2: CNP
9µ = −CNP

10µ = −0.65

Bin QFL
Q1 Q2 Q3

[0.1, 0.98] −0.096± 0.081± 0.013 −0.001± 0.001± 0.002 0.001± 0.000± 0.000 0.000± 0.000± 0.000

[1.1, 2.5] −0.107± 0.027± 0.007 −0.002± 0.008± 0.002 −0.032± 0.015± 0.002 −0.000± 0.001± 0.000

[2.5, 4.] −0.043± 0.014± 0.003 −0.017± 0.039± 0.008 0.148± 0.037± 0.003 0.000± 0.001± 0.000

[4., 6.] −0.009± 0.012± 0.002 −0.011± 0.027± 0.005 0.134± 0.029± 0.006 0.001± 0.001± 0.000

[6., 8.] 0.003± 0.011± 0.003 −0.001± 0.008± 0.001 0.059± 0.029± 0.007 0.001± 0.001± 0.000

[15., 19.] 0.001± 0.000± 0.003 −0.002± 0.001± 0.005 0.005± 0.001± 0.003 0.000± 0.000± 0.003

Bin Q4 Q5 Q6 Q8

[0.1, 0.98] −0.003± 0.007± 0.027 0.078± 0.007± 0.029 −0.005± 0.002± 0.002 −0.005± 0.001± 0.003

[1.1, 2.5] −0.102± 0.028± 0.014 0.136± 0.017± 0.012 −0.000± 0.001± 0.001 −0.005± 0.002± 0.001

[2.5, 4.] −0.152± 0.013± 0.010 0.188± 0.021± 0.010 −0.007± 0.002± 0.001 0.002± 0.003± 0.001

[4., 6.] −0.078± 0.031± 0.009 0.096± 0.032± 0.010 −0.008± 0.004± 0.000 0.005± 0.004± 0.000

[6., 8.] −0.031± 0.021± 0.009 0.033± 0.021± 0.011 −0.004± 0.003± 0.000 0.004± 0.003± 0.001
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[15., 19.] 0.000± 0.000± 0.002 0.007± 0.001± 0.006 −0.001± 0.000± 0.015 −0.001± 0.001± 0.005

Bin Q̂FL
Q̂1 Q̂2 Q̂3

[0.1, 0.98] −0.051± 0.031± 0.003 −0.007± 0.006± 0.019 −0.022± 0.004± 0.001 0.000± 0.001± 0.001

[1.1, 2.5] −0.071± 0.043± 0.008 −0.002± 0.008± 0.002 −0.034± 0.020± 0.003 −0.000± 0.001± 0.000

[2.5, 4.] −0.017± 0.020± 0.003 −0.017± 0.040± 0.008 0.159± 0.028± 0.003 0.000± 0.001± 0.000

[4., 6.] 0.009± 0.007± 0.002 −0.011± 0.024± 0.005 0.133± 0.032± 0.006 0.001± 0.002± 0.000

[6., 8.] 0.016± 0.006± 0.003 −0.000± 0.005± 0.001 0.056± 0.027± 0.007 0.001± 0.002± 0.000

[15., 19.] 0.002± 0.001± 0.004 −0.001± 0.001± 0.005 0.006± 0.001± 0.003 0.000± 0.000± 0.003

Bin Q̂4 Q̂5 Q̂6 Q̂8

[0.1, 0.98] 0.107± 0.007± 0.015 −0.075± 0.008± 0.005 0.008± 0.003± 0.000 −0.008± 0.004± 0.001

[1.1, 2.5] −0.097± 0.030± 0.012 0.126± 0.017± 0.009 0.002± 0.002± 0.000 −0.006± 0.002± 0.001

[2.5, 4.] −0.154± 0.009± 0.010 0.189± 0.022± 0.010 −0.007± 0.003± 0.001 0.002± 0.003± 0.001

[4., 6.] −0.079± 0.023± 0.008 0.098± 0.030± 0.010 −0.008± 0.004± 0.000 0.005± 0.004± 0.000

[6., 8.] −0.035± 0.015± 0.008 0.037± 0.021± 0.011 −0.004± 0.003± 0.000 0.004± 0.003± 0.001

[15., 19.] −0.003± 0.000± 0.002 0.009± 0.001± 0.006 −0.001± 0.000± 0.015 −0.001± 0.001± 0.005

Bin T3 T4 T5

[0.1, 0.98] −− −0.158± 0.050± 0.043 −0.101± 0.046± 0.005

[1.1, 2.5] −− −− 0.276± 0.131± 0.056

[2.5, 4.] −− −0.156± 0.118± 0.023 −0.234± 0.100± 0.039

[4., 6.] −− −0.057± 0.033± 0.008 −0.070± 0.022± 0.008

[6., 8.] −− −0.026± 0.023± 0.007 −0.026± 0.015± 0.005

[15., 19.] −0.001± 0.001± 0.005 −0.000± 0.000± 0.001 −0.007± 0.002± 0.006

Bin T7 T8 T9

[0.1, 0.98] −0.116± 0.047± 0.005 −− −−
[1.1, 2.5] 0.015± 0.056± 0.002 −0.050± 0.084± 0.029 −−
[2.5, 4.] 0.069± 0.014± 0.003 0.037± 0.029± 0.006 −−
[4., 6.] 0.089± 0.008± 0.003 0.073± 0.022± 0.003 −−
[6., 8.] 0.095± 0.012± 0.006 0.138± 0.042± 0.005 −−
[15., 19.] 0.094± 0.002± 0.004 −− −−

Bin B5 B6s M

[0.1, 0.98] −0.248± 0.003± 0.002 −0.235± 0.002± 0.001 −−
[1.1, 2.5] −− −0.075± 0.023± 0.003 0.062± 0.011± 0.004

[2.5, 4.] −0.546± 0.090± 0.039 −− −0.231± 0.126± 0.015

[4., 6.] −0.389± 0.025± 0.013 −− −0.750± 0.280± 0.061

[6., 8.] −0.338± 0.020± 0.013 −0.436± 0.074± 0.016 −1.550± 0.570± 0.305

[15., 19.] −0.309± 0.003± 0.009 −0.313± 0.004± 0.009 −−

Bin B̃5 B̃6s M̃

[0.1, 0.98] −0.113± 0.005± 0.003 −0.131± 0.003± 0.001 −0.845± 0.182± 0.136

[1.1, 2.5] −− −0.049± 0.024± 0.003 0.044± 0.016± 0.002

[2.5, 4.] −0.540± 0.091± 0.039 −− −0.236± 0.120± 0.014

[4., 6.] −0.383± 0.025± 0.013 −− −0.731± 0.269± 0.059

[6., 8.] −0.334± 0.020± 0.013 −0.432± 0.075± 0.016 −1.508± 0.551± 0.297

[15., 19.] −0.307± 0.003± 0.009 −0.311± 0.004± 0.009 −−
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D.4 Scenario 3: CNP
9µ = −CNP

9′µ = −1.07

Bin QFL
Q1 Q2 Q3

[0.1, 0.98] −0.109± 0.094± 0.034 −0.055± 0.009± 0.003 0.017± 0.002± 0.001 0.002± 0.001± 0.000

[1.1, 2.5] −0.164± 0.044± 0.007 −0.204± 0.024± 0.005 −0.014± 0.007± 0.002 0.009± 0.004± 0.001

[2.5, 4.] −0.133± 0.060± 0.003 −0.186± 0.050± 0.005 0.148± 0.062± 0.006 0.013± 0.006± 0.000

[4., 6.] −0.106± 0.037± 0.004 −0.045± 0.083± 0.012 0.232± 0.011± 0.001 0.011± 0.006± 0.000

[6., 8.] −0.089± 0.021± 0.007 0.074± 0.072± 0.015 0.190± 0.032± 0.008 0.007± 0.005± 0.000

[15., 19.] −0.022± 0.003± 0.009 0.136± 0.013± 0.007 0.016± 0.007± 0.016 −0.017± 0.007± 0.007

Bin Q4 Q5 Q6 Q8

[0.1, 0.98] 0.295± 0.023± 0.107 0.246± 0.003± 0.017 −0.017± 0.007± 0.002 −0.025± 0.009± 0.006

[1.1, 2.5] 0.233± 0.050± 0.045 0.271± 0.016± 0.013 −0.008± 0.004± 0.001 −0.030± 0.012± 0.003

[2.5, 4.] 0.031± 0.068± 0.021 0.347± 0.021± 0.017 −0.007± 0.003± 0.001 −0.025± 0.013± 0.001

[4., 6.] −0.052± 0.035± 0.014 0.267± 0.054± 0.021 −0.008± 0.003± 0.000 −0.015± 0.010± 0.001

[6., 8.] −0.082± 0.022± 0.017 0.153± 0.071± 0.038 −0.006± 0.003± 0.000 −0.008± 0.008± 0.001

[15., 19.] −0.055± 0.006± 0.003 −0.009± 0.008± 0.021 −0.002± 0.001± 0.034 0.027± 0.011± 0.011

Bin Q̂FL
Q̂1 Q̂2 Q̂3

[0.1, 0.98] −0.067± 0.046± 0.027 −0.048± 0.011± 0.019 −0.010± 0.003± 0.000 0.002± 0.001± 0.001

[1.1, 2.5] −0.130± 0.062± 0.006 −0.202± 0.021± 0.005 −0.018± 0.015± 0.002 0.009± 0.004± 0.001

[2.5, 4.] −0.108± 0.070± 0.003 −0.189± 0.055± 0.005 0.154± 0.053± 0.006 0.013± 0.006± 0.000

[4., 6.] −0.089± 0.045± 0.004 −0.045± 0.083± 0.012 0.233± 0.008± 0.001 0.011± 0.006± 0.000

[6., 8.] −0.076± 0.025± 0.007 0.075± 0.071± 0.015 0.189± 0.031± 0.008 0.007± 0.006± 0.000

[15., 19.] −0.022± 0.003± 0.008 0.136± 0.013± 0.007 0.016± 0.007± 0.016 −0.017± 0.007± 0.007

Bin Q̂4 Q̂5 Q̂6 Q̂8

[0.1, 0.98] 0.340± 0.015± 0.052 0.056± 0.012± 0.031 −0.002± 0.002± 0.003 −0.024± 0.011± 0.002

[1.1, 2.5] 0.227± 0.053± 0.041 0.255± 0.015± 0.010 −0.006± 0.004± 0.001 −0.031± 0.013± 0.003

[2.5, 4.] 0.025± 0.074± 0.020 0.348± 0.021± 0.017 −0.007± 0.003± 0.001 −0.025± 0.013± 0.001

[4., 6.] −0.058± 0.040± 0.014 0.271± 0.052± 0.021 −0.008± 0.003± 0.000 −0.015± 0.010± 0.001

[6., 8.] −0.089± 0.024± 0.016 0.159± 0.069± 0.038 −0.006± 0.003± 0.000 −0.009± 0.008± 0.001

[15., 19.] −0.057± 0.006± 0.003 −0.008± 0.008± 0.021 −0.002± 0.001± 0.033 0.027± 0.011± 0.011

Bin T3 T4 T5

[0.1, 0.98] −− −− −0.007± 0.061± 0.021

[1.1, 2.5] −− −− 0.436± 0.158± 0.080

[2.5, 4.] −− 0.091± 0.149± 0.012 −0.528± 0.296± 0.122

[4., 6.] −− 0.004± 0.087± 0.006 −0.161± 0.090± 0.029

[6., 8.] −− −0.031± 0.066± 0.006 −0.074± 0.075± 0.032

[15., 19.] −0.103± 0.021± 0.011 −0.031± 0.004± 0.003 −0.002± 0.008± 0.017

Bin T7 T8 T9

[0.1, 0.98] −0.036± 0.062± 0.021 −− −−
[1.1, 2.5] 0.081± 0.105± 0.021 −0.514± 0.246± 0.198 −−
[2.5, 4.] 0.121± 0.086± 0.011 −0.322± 0.117± 0.059 0.830± 0.290± 0.082

[4., 6.] 0.136± 0.069± 0.008 −0.283± 0.112± 0.045 0.791± 0.276± 0.080

[6., 8.] 0.144± 0.058± 0.012 −0.304± 0.312± 0.100 −−
[15., 19.] 0.177± 0.005± 0.009 −− −−
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Bin B5 B6s M

[0.1, 0.98] −0.089± 0.008± 0.004 −0.086± 0.005± 0.001 −−
[1.1, 2.5] −− 0.165± 0.045± 0.006 −0.194± 0.047± 0.011

[2.5, 4.] −0.758± 0.175± 0.075 −− −0.443± 0.102± 0.026

[4., 6.] −0.455± 0.049± 0.025 −− −0.710± 0.182± 0.060

[6., 8.] −0.359± 0.039± 0.026 −0.549± 0.145± 0.031 −1.063± 0.317± 0.234

[15., 19.] −0.305± 0.007± 0.017 −0.312± 0.007± 0.018 −−

Bin B̃5 B̃6s M̃

[0.1, 0.98] 0.072± 0.010± 0.005 0.038± 0.006± 0.001 −0.080± 0.016± 0.006

[1.1, 2.5] −− 0.197± 0.046± 0.006 −0.238± 0.047± 0.015

[2.5, 4.] −0.755± 0.177± 0.076 −− −0.447± 0.098± 0.026

[4., 6.] −0.450± 0.050± 0.025 −− −0.697± 0.176± 0.059

[6., 8.] −0.355± 0.039± 0.026 −0.546± 0.146± 0.031 −1.038± 0.308± 0.229

[15., 19.] −0.303± 0.007± 0.018 −0.310± 0.007± 0.018 −−

D.5 Scenario 4: CNP
9µ = −CNP

9′µ = −1.18 , CNP
10µ = CNP

10′µ = 0.38

Bin QFL
Q1 Q2 Q3

[0.1, 0.98] −0.113± 0.097± 0.037 −0.063± 0.010± 0.004 0.006± 0.001± 0.001 0.002± 0.001± 0.000

[1.1, 2.5] −0.167± 0.044± 0.009 −0.280± 0.037± 0.006 −0.044± 0.009± 0.003 0.010± 0.004± 0.001

[2.5, 4.] −0.120± 0.052± 0.004 −0.371± 0.045± 0.005 0.146± 0.071± 0.007 0.016± 0.007± 0.000

[4., 6.] −0.084± 0.027± 0.005 −0.236± 0.092± 0.013 0.230± 0.014± 0.004 0.014± 0.008± 0.000

[6., 8.] −0.064± 0.014± 0.009 −0.078± 0.087± 0.018 0.175± 0.033± 0.008 0.009± 0.007± 0.000

[15., 19.] −0.013± 0.002± 0.010 0.068± 0.008± 0.011 0.024± 0.006± 0.015 −0.020± 0.009± 0.008

Bin Q4 Q5 Q6 Q8

[0.1, 0.98] 0.336± 0.025± 0.118 0.271± 0.005± 0.026 −0.018± 0.007± 0.003 −0.028± 0.010± 0.007

[1.1, 2.5] 0.276± 0.052± 0.052 0.337± 0.022± 0.006 −0.011± 0.005± 0.002 −0.034± 0.014± 0.003

[2.5, 4.] 0.089± 0.066± 0.025 0.430± 0.021± 0.013 −0.012± 0.004± 0.001 −0.026± 0.014± 0.002

[4., 6.] 0.018± 0.035± 0.017 0.324± 0.059± 0.019 −0.012± 0.005± 0.000 −0.016± 0.011± 0.001

[6., 8.] −0.016± 0.028± 0.021 0.187± 0.074± 0.035 −0.008± 0.005± 0.000 −0.009± 0.009± 0.001

[15., 19.] −0.027± 0.004± 0.004 0.017± 0.008± 0.020 −0.002± 0.001± 0.039 0.031± 0.013± 0.013

Bin Q̂FL
Q̂1 Q̂2 Q̂3

[0.1, 0.98] −0.072± 0.051± 0.031 −0.055± 0.012± 0.020 −0.018± 0.003± 0.001 0.002± 0.001± 0.001

[1.1, 2.5] −0.133± 0.062± 0.009 −0.277± 0.034± 0.006 −0.048± 0.014± 0.003 0.010± 0.004± 0.001

[2.5, 4.] −0.094± 0.062± 0.004 −0.378± 0.054± 0.005 0.153± 0.062± 0.007 0.016± 0.008± 0.000

[4., 6.] −0.065± 0.034± 0.005 −0.239± 0.097± 0.013 0.231± 0.010± 0.004 0.014± 0.008± 0.000

[6., 8.] −0.051± 0.017± 0.009 −0.079± 0.087± 0.018 0.173± 0.032± 0.008 0.009± 0.007± 0.000

[15., 19.] −0.013± 0.002± 0.010 0.068± 0.009± 0.011 0.024± 0.006± 0.015 −0.020± 0.009± 0.008

Bin Q̂4 Q̂5 Q̂6 Q̂8

[0.1, 0.98] 0.372± 0.016± 0.060 0.076± 0.014± 0.041 −0.002± 0.002± 0.003 −0.027± 0.012± 0.003

[1.1, 2.5] 0.269± 0.055± 0.047 0.319± 0.023± 0.006 −0.008± 0.005± 0.002 −0.034± 0.014± 0.003

[2.5, 4.] 0.083± 0.072± 0.024 0.431± 0.020± 0.013 −0.011± 0.005± 0.001 −0.027± 0.014± 0.002

[4., 6.] 0.012± 0.040± 0.017 0.327± 0.056± 0.019 −0.012± 0.005± 0.000 −0.016± 0.011± 0.001

[6., 8.] −0.023± 0.030± 0.021 0.192± 0.072± 0.034 −0.008± 0.005± 0.000 −0.009± 0.009± 0.001

[15., 19.] −0.029± 0.004± 0.004 0.018± 0.008± 0.020 −0.002± 0.001± 0.039 0.031± 0.013± 0.013
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Bin T3 T4 T5

[0.1, 0.98] −− −− 0.002± 0.065± 0.027

[1.1, 2.5] 0.991± 0.188± 0.182 −− 0.488± 0.162± 0.090

[2.5, 4.] 1.010± 0.231± 0.028 0.133± 0.149± 0.012 −0.809± 0.524± 0.177

[4., 6.] −− 0.040± 0.074± 0.007 −0.222± 0.085± 0.032

[6., 8.] −− 0.002± 0.050± 0.008 −0.101± 0.063± 0.030

[15., 19.] −0.047± 0.010± 0.014 −0.016± 0.002± 0.004 −0.021± 0.007± 0.017

Bin T7 T8 T9

[0.1, 0.98] −0.034± 0.066± 0.023 −− −−
[1.1, 2.5] 0.094± 0.107± 0.023 −0.614± 0.296± 0.250 0.974± 0.486± 0.234

[2.5, 4.] 0.146± 0.076± 0.012 −0.371± 0.120± 0.072 0.849± 0.264± 0.074

[4., 6.] 0.170± 0.053± 0.009 −0.319± 0.112± 0.055 0.817± 0.252± 0.071

[6., 8.] 0.183± 0.040± 0.013 −0.346± 0.371± 0.126 −−
[15., 19.] 0.205± 0.004± 0.011 −− −−

Bin B5 B6s M

[0.1, 0.98] −0.075± 0.010± 0.009 −0.166± 0.009± 0.003 −0.138± 0.031± 0.031

[1.1, 2.5] −− 0.059± 0.048± 0.005 −0.062± 0.051± 0.006

[2.5, 4.] −0.916± 0.202± 0.077 −− −0.446± 0.163± 0.022

[4., 6.] −0.552± 0.052± 0.024 −− −1.009± 0.337± 0.079

[6., 8.] −0.439± 0.038± 0.021 −0.577± 0.119± 0.028 −1.888± 0.668± 0.376

[15., 19.] −0.369± 0.007± 0.016 −0.374± 0.007± 0.017 −−

Bin B̃5 B̃6s M̃

[0.1, 0.98] 0.088± 0.013± 0.012 −0.054± 0.011± 0.003 0.033± 0.003± 0.002

[1.1, 2.5] −− 0.088± 0.050± 0.006 −0.094± 0.054± 0.007

[2.5, 4.] −0.916± 0.205± 0.078 −− −0.453± 0.159± 0.023

[4., 6.] −0.548± 0.053± 0.024 −− −0.994± 0.328± 0.078

[6., 8.] −0.436± 0.038± 0.021 −0.575± 0.119± 0.028 −1.851± 0.651± 0.369

[15., 19.] −0.367± 0.007± 0.016 −0.372± 0.007± 0.017 −−

D.6 RK∗

RK∗

Bin [0.1, 2] [2, 4.3] [4.3, 8.68] [16., 19.]

SM 0.988± 0.007± 0.001 1.000± 0.006± 0.000 1.000± 0.005± 0.000 0.998± 0.000± 0.000

Scen.1 0.951± 0.096± 0.021 0.871± 0.093± 0.009 0.813± 0.026± 0.029 0.786± 0.001± 0.004

Scen.2 0.889± 0.102± 0.008 0.737± 0.028± 0.005 0.701± 0.016± 0.045 0.701± 0.003± 0.006

Scen.3 0.898± 0.142± 0.039 0.780± 0.142± 0.018 0.747± 0.090± 0.045 0.692± 0.006± 0.013

Scen.4 0.890± 0.149± 0.043 0.742± 0.123± 0.019 0.690± 0.059± 0.052 0.655± 0.005± 0.015
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Full list of observables used in the fit

Fit to All Data

107 ×BR(B+ → K+µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 0.98] 0.31± 0.10 0.29± 0.02 +0.2

[1.1, 2] 0.32± 0.10 0.21± 0.02 +1.1

[2, 3] 0.35± 0.11 0.28± 0.02 +0.6

[3, 4] 0.35± 0.11 0.25± 0.02 +0.8

[4, 5] 0.34± 0.11 0.22± 0.02 +1.1

[5, 6] 0.34± 0.12 0.23± 0.02 +0.9

[6, 7] 0.34± 0.12 0.25± 0.02 +0.8

[7, 8] 0.34± 0.13 0.23± 0.02 +0.8

[15, 22] 0.97± 0.13 0.85± 0.05 +0.9

107 ×BR(B0 → K0µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 2] 0.62± 0.19 0.23± 0.11 +1.8

[2, 4] 0.64± 0.20 0.37± 0.11 +1.2

[4, 6] 0.63± 0.21 0.35± 0.10 +1.2

[6, 8] 0.63± 0.23 0.54± 0.12 +0.3

[15, 22] 0.90± 0.12 0.67± 0.12 +1.4

107 ×BR(B0 → K∗0µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 0.98] 0.90± 0.83 0.89± 0.09 +0.0

[1.1, 2.5] 0.54± 0.34 0.46± 0.06 +0.2

[2.5, 4] 0.62± 0.43 0.50± 0.06 +0.3

[4, 6] 0.88± 0.65 0.71± 0.07 +0.3

[6, 8] 1.09± 0.89 0.86± 0.08 +0.3

[15, 19] 2.40± 0.23 1.74± 0.14 +2.4

107 ×BR(B+ → K∗+µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 2] 1.36± 1.10 1.12± 0.27 +0.2

[2, 4] 0.81± 0.55 1.12± 0.32 −0.5

[4, 6] 0.96± 0.71 0.50± 0.20 +0.6
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[6, 8] 1.18± 0.96 0.66± 0.22 +0.5

[15, 19] 2.59± 0.25 1.60± 0.32 +2.4

107 ×BR(Bs → φµ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 2.] 1.55± 0.34 1.11± 0.16 +1.2

[2., 5.] 1.55± 0.32 0.77± 0.14 +2.3

[5., 8.] 1.88± 0.39 0.96± 0.15 +2.2

[15, 18.8] 2.20± 0.17 1.62± 0.20 +2.2

FL(B → K∗µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 0.98] 0.22± 0.24 0.26± 0.05 −0.2

[1.1, 2.5] 0.67± 0.28 0.66± 0.09 +0.0

[2.5, 4] 0.76± 0.24 0.88± 0.11 −0.4

[4, 6] 0.71± 0.29 0.61± 0.06 +0.3

[6, 8] 0.62± 0.33 0.58± 0.05 +0.1

[15, 19] 0.34± 0.03 0.34± 0.03 −0.1

P1(B → K∗µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 0.98] 0.03± 0.08 −0.10± 0.17 +0.7

[1.1, 2.5] −0.00± 0.06 −0.45± 0.64 +0.7

[2.5, 4] 0.00± 0.06 0.57± 2.40 −0.2

[4, 6] 0.02± 0.12 0.18± 0.37 −0.4

[6, 8] 0.02± 0.13 −0.20± 0.28 +0.7

[15, 19] −0.64± 0.06 −0.50± 0.11 −1.2

P2(B → K∗µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 0.98] 0.12± 0.02 0.00± 0.05 +2.1

[1.1, 2.5] 0.44± 0.02 0.37± 0.20 +0.3

[2.5, 4] 0.20± 0.12 0.64± 1.74 −0.2

[4, 6] −0.19± 0.10 −0.04± 0.09 −1.1

[6, 8] −0.38± 0.06 −0.24± 0.06 −1.5

[15, 19] −0.36± 0.02 −0.36± 0.03 −0.0

P3(B → K∗µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 0.98] −0.00± 0.00 −0.11± 0.08 +1.4

[1.1, 2.5] 0.00± 0.00 −0.35± 0.33 +1.1

[2.5, 4] 0.00± 0.01 −0.75± 2.59 +0.3

[4, 6] 0.00± 0.01 −0.08± 0.19 +0.5

[6, 8] 0.00± 0.00 −0.06± 0.15 +0.4

[15, 19] 0.00± 0.02 −0.08± 0.06 +1.3

P ′4(B → K∗µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 0.98] −0.49± 0.17 −0.37± 0.32 −0.3

[1.1, 2.5] −0.06± 0.16 0.33± 0.48 −0.8

[2.5, 4] 0.55± 0.20 1.43± 2.61 −0.3
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[4, 6] 0.82± 0.14 0.90± 0.35 −0.2

[6, 8] 0.93± 0.11 1.20± 0.27 −0.9

[15, 19] 1.28± 0.02 1.19± 0.17 +0.5

P ′5(B → K∗µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 0.98] 0.67± 0.14 0.39± 0.14 +1.4

[1.1, 2.5] 0.19± 0.12 0.29± 0.22 −0.4

[2.5, 4] −0.49± 0.11 −0.07± 0.36 −1.1

[4, 6] −0.82± 0.08 −0.30± 0.16 −2.9

[6, 8] −0.94± 0.08 −0.51± 0.12 −3.0

[15, 19] −0.57± 0.05 −0.68± 0.08 +1.2

P ′6(B → K∗µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 0.98] −0.06± 0.02 0.03± 0.14 −0.7

[1.1, 2.5] −0.07± 0.03 −0.46± 0.22 +1.8

[2.5, 4] −0.06± 0.03 0.21± 0.96 −0.3

[4, 6] −0.04± 0.02 −0.03± 0.17 −0.0

[6, 8] −0.02± 0.01 −0.10± 0.17 +0.4

[15, 19] −0.00± 0.07 0.10± 0.09 −0.9

P ′8(B → K∗µ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 0.98] 0.02± 0.02 −0.36± 0.35 +1.1

[1.1, 2.5] 0.04± 0.03 0.42± 0.54 −0.7

[2.5, 4] 0.04± 0.02 −0.18± 1.30 +0.2

[4, 6] 0.03± 0.02 −0.68± 0.38 +1.9

[6, 8] 0.02± 0.01 0.34± 0.29 −1.1

[15, 19] −0.00± 0.03 −0.12± 0.19 +0.6

P1(Bs → φµ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 2.] 0.11± 0.08 −0.13± 0.33 +0.7

[2., 5.] −0.11± 0.10 −0.38± 1.47 +0.2

[5., 8.] −0.21± 0.11 −0.44± 1.27 +0.2

[15, 18.8] −0.69± 0.03 −0.25± 0.34 −1.3

P ′4(Bs → φµ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 2.] −0.28± 0.14 −1.35± 1.46 +0.7

[2., 5.] 0.81± 0.11 2.02± 1.84 −0.7

[5., 8.] 1.06± 0.06 0.40± 0.72 +0.9

[15, 18.8] 1.30± 0.01 0.62± 0.49 +1.4

P ′6(Bs → φµ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 2.] −0.07± 0.02 0.10± 0.30 −0.6

[2., 5.] −0.05± 0.02 −0.06± 0.49 +0.0

[5., 8.] −0.02± 0.01 0.08± 0.40 −0.2

[15, 18.8] −0.00± 0.07 0.29± 0.24 −1.1
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FL(Bs → φµ+µ−)[LHCb] Standard Model Experiment Pull

[0.1, 2.] 0.43± 0.09 0.20± 0.09 +1.8

[2., 5.] 0.77± 0.05 0.68± 0.16 +0.5

[5., 8.] 0.61± 0.06 0.54± 0.10 +0.6

[15, 18.8] 0.36± 0.02 0.29± 0.07 +0.9

B0 → K∗0e+e−[LHCb] Standard Model Experiment Pull

FL[0.0020, 1.120] 0.11± 0.16 0.16± 0.07 −0.3

P1[0.0020, 1.120] 0.03± 0.08 −0.23± 0.24 +1.0

P2[0.0020, 1.120] 0.03± 0.00 0.05± 0.09 −0.2

P3[0.0020, 1.120] −0.00± 0.00 −0.07± 0.11 +0.6

RK [LHCb Average] Standard Model Experiment Pull

[1.1, 6.0] 1.00± 0.00 0.85± 0.06 +2.5

RK [Belle] Standard Model Experiment Pull

[1.0, 6.0] 1.00± 0.00 0.98± 0.28 +0.1

[14.18, 22.90] 1.00± 0.00 1.11± 0.30 −0.4

RK∗ [LHCb] Standard Model Experiment Pull

[0.045, 1.1] 0.91± 0.02 0.66± 0.11 +2.2

[1.1, 6.0] 1.00± 0.01 0.69± 0.12 +2.6

RK∗ [Belle] Standard Model Experiment Pull

[0.045, 1.1] 0.92± 0.02 0.52± 0.36 +1.1

[1.1, 6.0] 1.00± 0.01 0.96± 0.46 +0.1

[15, 19] 1.00± 0.00 1.18± 0.53 −0.5

P ′4(B → K∗e+e−)[Belle] Standard Model Experiment Pull

[0.1, 4.] −0.09± 0.15 −0.68± 0.93 +0.6

[4., 8.] 0.88± 0.12 1.04± 0.48 −0.3

[14.18, 19.] 1.26± 0.03 0.30± 0.82 +1.2

P ′4(B → K∗µ+µ−)[Belle] Standard Model Experiment Pull

[0.1, 4.] −0.05± 0.16 0.76± 1.03 −0.8

[4., 8.] 0.88± 0.12 0.14± 0.66 +1.1

[14.18, 19.] 1.26± 0.03 0.20± 0.79 +1.3

P ′5(B → K∗e+e−)[Belle] Standard Model Experiment Pull

[0.1, 4.] 0.18± 0.09 0.51± 0.47 −0.7

[4., 8.] −0.88± 0.07 −0.52± 0.28 −1.3

[14.18, 19.] −0.60± 0.05 −0.91± 0.36 +0.8

P ′5(B → K∗µ+µ−)[Belle] Standard Model Experiment Pull

[0.1, 4.] 0.17± 0.10 0.42± 0.41 −0.6

[4., 8.] −0.89± 0.07 −0.03± 0.32 −2.7
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[14.18, 19.] −0.60± 0.05 −0.13± 0.39 −1.3

FL(B → K∗µ+µ−)[ATLAS] Standard Model Experiment Pull

[0.04, 2.] 0.35± 0.31 0.44± 0.11 −0.3

[2., 4.] 0.75± 0.24 0.64± 0.12 +0.4

[4., 6.] 0.71± 0.29 0.42± 0.18 +0.8

P1(B → K∗µ+µ−)[ATLAS] Standard Model Experiment Pull

[0.04, 2.] 0.02± 0.08 −0.06± 0.32 +0.2

[2., 4.] −0.00± 0.05 −0.78± 0.66 +1.2

[4., 6.] 0.02± 0.12 0.00± 0.54 +0.0

P ′4(B → K∗µ+µ−)[ATLAS] Standard Model Experiment Pull

[0.04, 2.] −0.35± 0.15 −0.78± 1.14 +0.4

[2., 4.] 0.44± 0.20 1.92± 0.94 −1.5

[4., 6.] 0.82± 0.14 −1.62± 0.97 +2.5

P ′5(B → K∗µ+µ−)[ATLAS] Standard Model Experiment Pull

[0.04, 2.] 0.50± 0.10 0.67± 0.31 −0.5

[2., 4.] −0.36± 0.12 −0.33± 0.34 −0.1

[4., 6.] −0.82± 0.08 0.26± 0.39 −2.7

P ′6(B → K∗µ+µ−)[ATLAS] Standard Model Experiment Pull

[0.04, 2.] −0.06± 0.02 −0.18± 0.21 +0.6

[2., 4.] −0.06± 0.03 0.31± 0.34 −1.1

[4., 6.] −0.04± 0.02 0.06± 0.30 −0.3

P ′8(B → K∗µ+µ−)[ATLAS] Standard Model Experiment Pull

[0.04, 2.] 0.03± 0.02 0.44± 0.81 −0.5

[2., 4.] 0.05± 0.02 −1.68± 0.89 +1.9

[4., 6.] 0.03± 0.02 0.38± 0.67 −0.5

P1(B → K∗µ+µ−)[CMS 8 TeV] Standard Model Experiment Pull

[1., 2.] 0.00± 0.06 0.12± 0.47 −0.3

[2., 4.3] 0.00± 0.05 −0.69± 0.59 +1.2

[4.3, 6.] 0.02± 0.12 0.53± 0.38 −1.3

[6., 8.68] 0.01± 0.14 −0.47± 0.30 +1.5

[16., 19.] −0.69± 0.05 −0.53± 0.23 −0.7

P ′5(B → K∗µ+µ−)[CMS 8 TeV] Standard Model Experiment Pull

[1., 2.] 0.33± 0.11 0.10± 0.34 +0.6

[2., 4.3] −0.41± 0.12 −0.57± 0.37 +0.4

[4.3, 6.] −0.84± 0.07 −0.96± 0.27 +0.4

[6., 8.68] −0.95± 0.08 −0.64± 0.24 −1.2

[16., 19.] −0.53± 0.04 −0.56± 0.14 +0.2
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FL(B → K∗µ+µ−)[CMS 8 TeV] Standard Model Experiment Pull

[1., 2.] 0.62± 0.30 0.64± 0.12 −0.1

[2., 4.3] 0.75± 0.24 0.80± 0.10 −0.2

[4.3, 6.] 0.70± 0.30 0.62± 0.12 +0.2

[6., 8.68] 0.61± 0.33 0.50± 0.08 +0.3

[16., 19.] 0.34± 0.03 0.38± 0.07 −0.6

AFB(B → K∗µ+µ−)[CMS 8 TeV] Standard Model Experiment Pull

[1., 2.] −0.20± 0.19 −0.27± 0.41 +0.2

[2., 4.3] −0.08± 0.08 −0.12± 0.18 +0.2

[4.3, 6.] 0.10± 0.12 0.01± 0.15 +0.4

[6., 8.68] 0.23± 0.21 0.03± 0.10 +0.8

[16., 19.] 0.34± 0.03 0.35± 0.07 −0.1

107 ×BR(B → K∗µ+µ−)[CMS 8 TeV] Standard Model Experiment Pull

[1., 2.] 0.40± 0.26 0.46± 0.08 −0.2

[2., 4.3] 0.86± 0.59 0.76± 0.12 +0.2

[4.3, 6.] 0.84± 0.63 0.58± 0.10 +0.4

[6., 8.68] 1.52± 1.26 1.26± 0.13 +0.2

[16., 19.] 1.65± 0.15 1.26± 0.13 +2.0

FL(B → K∗µ+µ−)[CMS 7 TeV] Standard Model Experiment Pull

[1., 2.] 0.62± 0.30 0.60± 0.34 +0.1

[2., 4.3] 0.75± 0.24 0.65± 0.17 +0.3

[4.3, 8.68] 0.63± 0.33 0.81± 0.14 −0.5

[16., 19.] 0.34± 0.03 0.44± 0.08 −1.3

AFB(B → K∗µ+µ−)[CMS 7 TeV] Standard Model Experiment Pull

[1., 2.] −0.20± 0.19 −0.29± 0.41 +0.2

[2., 4.3] −0.08± 0.08 −0.07± 0.20 −0.1

[4.3, 8.68] 0.19± 0.19 −0.01± 0.11 +0.9

[16., 19.] 0.34± 0.03 0.41± 0.06 −1.1

107 ×BR(B → K∗µ+µ−)[CMS 7 TeV] Standard Model Experiment Pull

[1., 2.] 0.40± 0.26 0.48± 0.15 −0.3

[2., 4.3] 0.86± 0.59 0.87± 0.18 −0.0

[4.3, 8.68] 2.60± 2.74 1.62± 0.35 +0.4

[16., 19.] 1.65± 0.15 1.56± 0.23 +0.3

105 ×BR(B0 → K∗0γ)[PDG] Standard Model Experiment Pull

4.53± 5.51 4.33± 0.15 +0.0

105 ×BR(B+ → K∗+γ)[PDG] Standard Model Experiment Pull

4.50± 5.70 4.21± 0.18 +0.1

105 ×BR(Bs → φγ)[PDG] Standard Model Experiment Pull
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4.66± 1.29 3.50± 0.40 +0.9
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