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Abstract 

To date, meta-omic approaches use high-throughput sequencing technologies, 

which produce a tremendous amount of data, thus challenging modern 

computers. We developed a new open-source pipeline, namely MetaTrans, to 

analyze the structure and functions of active microbial communities using the 

power of multi-threading computers. The pipeline is designed to perform two 

types of RNA-Seq analyses: taxonomic and gene expression. It performs quality-

control assessment, rRNA removal, maps reads against functional databases 

and also handles differential gene expression analysis. Its efficacy was validated 

analyzing data from synthetic mock communities, data generated from a previous 

study on irritable bowel syndrome (IBS), and comparing with a recently published 

metagenomics and metatranscriptomics study. Compared to an existing web 

application server, MetaTrans shows more efficiency in terms of runtime (around 

2 hours per million of transcripts) and presents adapted tools to compare gene 

expression levels. It has been tested with a human gut microbiome database but 

also proposes an option to use a general database in order to analyze other 

ecosystems. For the installation and use of the pipeline, we provide a detailed 

guide at the following website (www.metatrans.org). We next applied this pipeline 

to investigate the taxonomic and functional profilings of the active microbiota of 

patients with Crohn’s disease (CD) and ulcerative colitis (UC), two main forms of 

inflammatory bowel disease (IBD). For this purpose, healthy controls and patients 

with CD and UC provided fecal samples at two time points, from which cDNA 

were generated and sequenced. Our analysis of the sequence data revealed that 

CD and UC presented a distinct active microbiome profile at the taxonomic as 

well as functional level. Furthermore, CD patients showed greater dysbiosis than 

UC patients. Our results also suggested that dysregulations of different pathways 

related to the Short Chain Fatty Acids metabolism and cell survival were 

associated with disease severity. Altogether, our study provides a very 

comprehensive description of the active microbial functions and paves the way 

for future investigations on irritable bowel syndrome and inflammatory bowel 

diseases. 

http://www.metatrans.org/
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Resum 

Fins ara, les aproximacions meta-òmiques utilitzen tecnologies de seqüenciació 

d'alt rendiment, que produeixen una quantitat enorme de dades, desafiant així 

els ordinadors moderns actuals. Hem desenvolupat una nova pipeline (unió de 

diverses eines per realitzar una determinada tasca) de codi obert, que hem 

anomenat MetaTrans, per analitzar l'estructura i les funcions de les comunitats 

microbianes actives utilitzant la potència dels ordinadors multi-fil. La pipeline està 

dissenyada per realitzar dos tipus d'anàlisis de seqüenciació de RNA (RNA-Seq): 

el taxonòmic i el d’expressió gènica. Fa un control de qualitat, elimina l’rRNA, 

alinea lectures de seqüenciació (anomenades reads) contra bases de dades 

funcionals i també dur a terme anàlisis d’expressió gènica diferencial. La seva 

eficàcia va ser validada per mitjà de l'anàlisi de dades de simulacions sintètiques 

de comunitats, dades generades en un altre estudi de la síndrome de l'intestí 

irritable (SII), i comparant amb un estudi, publicat recentment, sobre 

metagenòmica i metatranscriptòmica. En comparació amb un servidor 

d'aplicacions web existent, MetaTrans mostra més eficiència en termes de temps 

d'execució (al voltant de 2 hores per milió de transcripcions) i presenta eines 

adaptades per comparar nivells d'expressió gènica. S'ha provat amb una base 

de dades de microbioma de l'intestí humà, però també proposa una opció per 

utilitzar una base de dades general per tal d'analitzar altres ecosistemes. Per a 

la instal·lació i l'ús de la pipeline, proporcionem una guia detallada a la següent 

pàgina web (www.metatrans.org). A continuació, vam utilitzar aquesta pipeline 

per investigar els perfils taxonòmics i funcionals de la microbiota activa en 

pacients amb la malaltia de Crohn (MC) i colitis ulcerosa (CU), dues formes 

principals de la malaltia inflamatòria intestinal (MII). Per a aquest propòsit, els 

controls sans i els pacients amb MC i CU van proporcionar mostres fecals en dos 

punts de temps, en els quals es va generar el DNA complementari (cDNA) i es 

va seqüenciar. La nostra anàlisi de les dades seqüenciades va revelar que MC i 

la CU presentaven un diferent perfil actiu de microbioma tant a nivell taxonòmic 

com funcional. A més a més, els pacients amb MC van mostrar una major 

disbiosis que els pacients de amb CU. Els nostres resultats també van suggerir 

que la desregulació de diferents vies o rutes metabòliques relacionades amb el 

metabolisme dels àcids grassos de cadena curta i la supervivència cel·lular 
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estava associada amb la gravetat de la malaltia. En conjunt, el nostre estudi 

proporciona una descripció molt completa de les funcions microbianes que són 

actives, i prepara el camí per a futures investigacions sobre la síndrome de 

l'intestí irritable i les malalties inflamatòries intestinals. 
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1 Introduction 

1.1 Microbiota and microbiome 

The definition of the term microbiota was first coined by Lederberg in 2001 

(Lederberg and McCray, 2001; Prescott, 2017)  and refers to the group of 

microorganisms present in a defined environment (Marchesi and Ravel, 2015). 

 

The different body sites are composed of different microbial community 

compositions.  We, as hosts, stablish a close relationship with the microbial 

communities in a symbiotic way since we are born. We live with them, we feed 

them, and we obtain beneficial nutrients and substrates for our organism. Past 

studies have analyzed the bacterial distribution in each body site and found the 

gastrointestinal (GI) tract as the organ harboring the major abundance of 

microbes in the body, which has become one of the most studied ecosystems 

(Peterson et al., 2009; Bokulich et al., 2013). The human microbiota 

encompasses prokaryotes such as bacteria and archaea, eukaryotes such as 

fungi, and viruses (bacteriophages). 

 

Early studies quoted that microbes in our bodies made up 10x the number of 

human cells (estimated to 100 trillion) (Ley, Peterson and Gordon, 2006) and 

encoded up to 150x the number of human genes (Qin et al., 2010). Nevertheless, 

recent articles showed that human:bacteria cells ratio is indeed closed to 1:1, 

their total mass closed to 0.2 kg. (Sender, Fuchs and Milo, 2016), and the number 

of genes encoded by microbes (~9,879,896 genes) is now up to 450x time the 

size of our genome (~22,000 genes) (Collins et al., 2004; Li et al., 2014). The 

human genomes have about 99.9% similarity (Wheeler et al., 2008), however it 

has been shown that all our microbial genes (microbiome) can reach 80-90% 

differences (Turnbaugh et al., 2009). Previous studies of the human gut (Qin et 

al., 2010)  from the European MetaHIT consortium, found between 1,000 and 

1,150 non-redundant and prevalent bacterial species, harboring each individual 

at least 160 taxa. However, other studies less conservatives estimate the number 
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of bacterial species to be up to 15,000-40,000 individual members (Frank and 

Pace, 2008). 

 

The human body is first colonized at birth during the vaginal delivery and has a 

potential impact on human health and disease(Gensollen et al., 2016). When the 

delivery is vaginal, the infant acquires a microbiota more resembling to that of the 

mother’s vagina dominated by genera Lactobacillus and Prevotella, whereas if 

the delivery is c-section the microbiota resembles more that present in the skin, 

dominated by genera Propionibacterium, Staphylococus and Croynebacterium 

(Dominguez-Bello et al., 2010; Jakobsson et al., 2014). In the gut, the microbiota 

is dominated by bacterial phyla such as “Firmicutes” and “Bacteroidetes” which 

are found throughout the intestinal tract with other microbes such as 

archaebacteria, viruses (Breitbart et al., 2008) and eukaryotes like fungi. 

 

The gastrointestinal tract (GI) harbors most of our bacteria, with the colon being 

the area with highest density. The alterations of the GI microbiota can affect many 

parts of the human body as illustrated in the Figure 1.1. 

 

 

Figure 1.1 Alterations of the GI microbiota. 
Factors affecting the human GI microbiota and host functions affected, either directly or indirectly, by the 
GI microbiota (Selber-Hnativ et al., 2017) 
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The bacterial diversity in the human digestive tract was extensively investigated 

in a previous study (Stearns et al., 2011), and they found that the highest bacterial 

richness and phylogenetic diversity was located in the mouth. The phylogenetic 

variability between subjects was higher than there was between sample sites 

from within each gastrointestinal location (e.g. mouth, large intestine). These 

results were coherent with other studies (Caporaso et al., 2011). It has been 

shown that the GI tract is a changing ecosystem where adaptable microbial 

communities are replaced continually by functionally similar communities. These 

observations strengthen the idea that the highest diversity of bacteria found in 

the mouth, which represents the entry point of the GI tract, is “filtered” or selected 

in lower habitats of the GI tract, decreasing the diversity as these organisms pass 

through. 

 

The role of the microbiota is crucial in the human homeostasis, and its 

composition and activity directly affect the metabolism of our organism. Its main 

commitment is to produce a broadly spectrum of metabolites that are not directly 

obtained by the GI tract itself, hence contributing to the human nutrient 

metabolism. They pose a constant threat of invasion owing to their total numbers 

and the large intestinal surface area. The intestinal immune system maintains 

constant homeostatic interactions with the current resident microbiota (Garrett, 

Gordon and Glimcher, 2010; Hooper and MacPherson, 2010) 

 

The microbial community composition varies throughout the life, and is shaped 

by the genetic background of the host, diet and the health status (Ottman et al., 

2012).  

 

The stools or faeces conform the targets of most of the studies of the GI tract due 

to the easy access and the fact that they contain a huge number of microbes, 

facilitating the recovery of microbial nucleic acids molecules for metaomics 
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analyses. The diversity of microbes is lower in high taxonomical ranks (dominated 

by Firmicutes and Bacteroides at phylum level), and higher at lower taxa 

classifications, like species or strains (Grice and Segre, 2012).  

 

Coupled with the term microbiota, the term microbiome  refers to the genes and 

genomes of the microbes forming the microbiota. The microbiome is also referred 

to as our second genome in some studies (Grice and Segre, 2012), and 

represents the “material” used for the study of the microbiota using molecular 

approaches . Each microbiome differs in composition and functions in each body 

site (Peterson et al., 2009) and evolves over the time (Ottman et al., 2012), 

however,  some studies have been able to associate geographical regions and 

lifestyles with the microbiota  of their healthy population (Andersson et al., 2008; 

De Filippo et al., 2010; Claesson et al., 2012; Qin et al., 2012; Yatsunenko et al., 

2012; Tyakht et al., 2013). These studies suggest that regardless of its variability, 

there is stability in terms of composition over periods of life and regional lifestyles. 

As other researchers point out, there is increasing evidence that individuals 

actually share a “core microbiome” rather than “core microbiota” (Ursell et al., 

2012). 

 

The microbial functions play a key role in the digestion of the nutrients we obtain 

from food. Without them many nutrients cannot be broken or discomposed by our 

intestinal tract itself, and thus we could not get benefit of them. Furthermore, the 

gut microbial ecosystem has been implicated in many diseases: related to brain-

gut axis dysfunction (Cryan and Dinan, 2012), obesity (Turnbaugh et al., 2006), 

IBD (Frank et al., 2007; Sokol et al., 2008; Kaser, Zeissig and Blumberg, 2010), 

liver (Chassaing, Etienne-Mesmin and Gewirtz, 2014), diabetes (Qin et al., 2012), 

and atherosclerosis (Koeth et al., 2013) among others.  

 

It is worth to mentioning that the study of the human microbiota is not new, it 

started early in 1680s with Antonie van Leewenhoek, when he found differences 

in microbes between two distinct body habitats. The current novelty consists on 
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the ability to use the new molecular techniques coupled with bioinformatic and 

biostatistical analysis that bring new insights into the mechanisms in which the 

microbial communities are involved in maintaining a healthy status or in the onset 

and/or perpetuation of diseases. (Ursell et al., 2012).  

 

In 2011 the Human Microbiome Project (HMP) analyzed one of the largest 

cohorts of healthy individuals that established an initial characterization of what 

we consider a healthy microbiome in western populations. Distinct body sites (i.e. 

gut, skin, vagina) where analyzed, and they observed that the microbiota differed 

notably in terms of diversity. Within-subject variation was lower than between-

subjects, and the microbial community of everyone was stable over time. 

However, they could not observe a common group of taxa among all body 

habitats. In terms of functions, the metabolic pathways were stable among 

individuals, whereas in terms of taxonomical diversity it was variable 

(Huttenhower et al., 2012). The source of this high diversity is still not clear, but 

it is thought that factors like diet, environment and genetics are implicated.  

 

Over the last decade, the human microbiome has been the focus of important 

international consortia such as the Human Microbiome Project (HMP, 2008-2017) 

and the Integrative Human Microbiome Project (iHMP, 2018 onwards), both a 

NIH (United States National Institutes of Health) initiative, and Metagenomics of 

the Human Intestinal Tract (MetaHIT, 2008-2012), an European consortium. 

These consortia have deposited catalogues of microbial genes in an 

unprecedented amount (Huttenhower et al., 2012; Li et al., 2014). If we pay 

attention to the number of papers mentioning the word “microbiota” or 

“microbiome” in the medical literature within the NCBI-PubMed database, we can 

see as the publications have been increasing exponentially over the last fifteen 

years. 

 

https://hmpdacc.org/
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1.2 Inflammatory Bowel Disease (IBD) 

The inflammatory bowel disease (IBD), refers to a group of chronic intestinal 

diseases that produce inflammation of the gut, and includes two different types: 

Crohn’s Disease (CD) and Ulcerative Colitis (UC). CD involves intestinal 

inflammation that could affect different sites of the entire GI tract, but concerns 

more frequently the terminal ileum and colon (small and large intestine), although 

it can also affect the other parts of the GI tract (i.e. mouth, esophagus, and 

stomach), whereas UC is limited to the mucosa and submucosa of the colon 

(epithelial lining of the gut) (Huang et al., 2014)(see Figure 1.2).  

 

 

Figure 1.2 Parts of the bowel affected in patients with CD or UC  
 

 

The common symptoms of patients with CD and UC are: abdominal pain and 

cramping, bleeding ulcers and recurring diarrhea (Fakhoury et al., 2014).  Both 

types of diseases show a variable course of activity, followed by very few sporadic 

or induced remissions of the intestinal damages and spontaneous relapsing 

attacks (Manichanh et al., 2012) 

 

Inflammatory bowel disease was a very rare disease in the beginning of the last 

century, but during half of the last century its incidence is increasing 

extraordinarily and in 2015 IBD was afflicted an estimate of 3.6 million people in 
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Europe and USA (Meyer et al., 2012; Lee and Maizels, 2014; Kaplan, 2015; Ng 

et al., 2017) and keeps increasing and expanding to other countries (see Figure 

1.3), almost reaching 1% of the population and leading to the assumption that will 

become a worldwide epidemic (Manichanh et al., 2012).  

 

 

Figure 1.3 Prevalence of IBD in 2015 (Kaplan, 2015) 
 

 

Although the aetiology is still uncertain, it has been linked to environmental 

factors (i.e. diet, antibiotic use, social status and microbial exposure among 

others) that may trigger immunological responses that inflame and damage the 

GI (Lee and Maizels, 2014). It is characterized by a dysbiosis or imbalance of the 

microbiota, and increasing evidence suggests that it may be linked to the genetic 

of the host (Meyer et al., 2012). Nonetheless, in other studies they calculated that 

the genetic predisposition of the host in relation to IBD only contributes the 23% 

in CD and 16% in UC (Peloquin et al., 2016). This opens up a window to explore 

other factors that might play an important role in the development of the disease. 

 

The microbiota has been linked with the regulation of the mucosal immune 

system and has been recognized as the main player that leads to chronic 

intestinal inflammation. The complexity of the gut microbiota makes difficult the 
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understanding of the relationships between microbes and their relationship with 

the host.  

 

The microorganisms have been co-living with us since the beginning of our 

species, their importance cannot be neglected since our physiology depends on 

their symbiotic relationship.  In contrast, some bacteria have been implicated in 

the pathogenesis of many inflammatory diseases like IBD. This places the 

microbiota as a key factor for maintaining the homeostasis of the mammalian 

immune system (Hill and Artis, 2010).  

 

The reduction in diversity of bacterial communities in IBD patients compared to 

healthy individuals have been previously described (Manichanh et al., 2006). And 

it is known that this dysbiosis is accompanied by dramatic productions of 

cytokines (proteins involved in cell signaling), T cell (subtype of white blood cell 

playing a central role in immune response) activations, and IgC (immunoglobulin) 

antibody response to intestinal bacteria (Duchmann et al., 1995; Macpherson et 

al., 1996). In another study (Sarrabayrouse et al., 2015), they identified, in 

humans, a mechanism by which the gut microbiota can affect the gut 

homeostasis via the induction of DP8α Tregs (type of T cell). 

 

1.3 Approaches to the study of the microbiome 

A couple of decades ago the advent of new and fast computational advances has 

revolutionized the way we communicate and process data. Computers are now 

present everywhere and are paramount to perform complex tasks. The biology 

field was also impregnated of this revolution, and since the first methods to 

sequence the DNA by chain termination techniques (Sanger sequencing or first 

generation), other techniques like sequencing by DNA synthesis (Next 

Generation Sequencing, High Throughput Sequencing or second generation) 

have had a great impact in the research area. NGS technologies have allowed 

sequencing DNA molecules at a very low-cost and have thus boosted the use of 
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meta-omic1 approaches to study microbial communities. Now, the major 

challenge is to create, develop and standardize bioinformatic tools able to 

process this torrent of data produced by massive parallel reactions, with the use 

of multiprocessing, multithreading, and computer clusters. 

 

The old-school methods to study the microbial populations consisted in a bottom-

up experimentation, a hypothesized “culprit” microorganisms or genes are 

selected as candidates and studied individually, either by culture-based methods 

or by direct observations using imaging technology. This approach uses 

supervised methods of analysis. Now, the “omics” era via high-throughput 

sequencing opens the possibility to perform research top-down by using massive 

molecular content of microbial communities with no prior hypothesis on what/who 

is behind the curtains. This approach uses unsupervised methods. The molecular 

content primarily can be either DNA (metagenomics), RNA 

(metatranscriptomics), proteins (metabolomics) or metabolites (metabolomics)  

(see Figure 1.4) (Huang et al., 2014).  

 

 

1 The “meta-“ suffix refers to the concept of “going further” (i.e. not limited to the study of one organism, 
but to the study of the relationships/interactions of a group of organisms) and the “-omic” suffix indicates 
the possibility to study a large number of biological material (i.e. genes, proteins, transcripts, …); 
metagenomics for instance means the study of the genes of several organisms at once and the 
relationships they might have. Meta-omic approaches help to understand complex microbial communities 
as a whole. 
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Figure 1.4 Molecular approaches to study the microbiome. 
(National Academies of Sciences, Engineering, and Medicine, 2018). The culture-plate picture 
(https://vdsstream.wikispaces.com/ChristinaP) of unknown author is under license CC BY-SA 
(https://creativecommons.org/licenses/by-sa/3.0/) 

 

1.4 NGS Technology 

The first sequencing technologies based on DNA chain termination were 

developed by Frederick Sanger and his colleagues at the end of the seventies. 

That advance changed biology by offering new tools to understand the genes and 

genomes from a molecular point of view. The common term used to reference 

this first generation of sequencing machines was coined as “Sanger sequencing”, 

being Applied Biosystems (ABI) the first company to produce commercial 

sequencers implementing that methodology. The main drawback of these 

sequencers were the expensive cost and the number of sequenced bases per 

run, up to 96,000 bp in the Sanger ABI 3730xl model (Rhoads and Au, 2015); as 

a reference, the human genome is around 3.3 billion bp long (Kchouk, Gibrat and 

Elloumi, 2017). However, by that time there was no other cheaper alternative, 

https://vdsstream.wikispaces.com/ChristinaP
https://vdsstream.wikispaces.com/ChristinaP
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
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and the first generation survived for 30 years. The first genome that could be 

sequenced was the phiX174 enterobacteria phage with a size of 5,374 base pairs 

(bp) (Kchouk, Gibrat and Elloumi, 2017). 

 

Table 1 Sequencing platforms features. 

Method Generation 
Read 

length 
(bp) 

Single 
pass error 

rate (%) 

No. of 
reads 
per 
run 

Time 
per 
run 

Cost per 
million 
bases 
(USD) 

Sanger ABI 
3730×l 

1st 
600-
1000 

0.001 96 0.5-3 h 500 

Ion Torrent 2nd 200 1 
8.2 × 
107 

2-4 h 0.1 

454 (Roche) GS 
FLX+ 

2nd 700 1 1 × 106 23 h 8.57 

Illumina HiSeq 
2500 (High 

Output) 

2nd 2 × 125 0.1 
8 × 109 
(paired) 

7-60 h 0.03 

Illumina HiSeq 
2500 (Rapid 

Run) 

2nd 2 × 250 0.1 
1.2 × 
109 

(paired) 

1-6 
days 

0.04 

SOLiD 5500×l 2nd 2 × 60 5 8 × 108 6 days 0.11 

PacBio RS II: 
P6-C4 

3rd 
1.0-1.5 × 
104 on 

average 
13 

3.5-7.5 
× 104 

0.5-4 h 
0.40-
0.80 

Oxford 
Nanopore 
MinION 

3rd 
2-5 × 

103 on 
average 

38 
1.1-4.7 
× 104 

50 h 
6.44-
17.90 

Performance of different sequencing platforms between generations (Rhoads and Au, 2015) 

 

By means of Sanger sequencing in 2004, and after 15 years of work, the human 

genome was completely sequenced in the Human Genome Project (HGP) 

(Collins et al., 2004; Jaszczyszyn et al., 2014). The efforts in terms of time, costs 

and resources exhibited the evidence that faster, high-throughput and cheaper 

sequencers were required in future projects to overcome the huge limitations of 

these technologies in smaller research groups. General efforts from institutions 

succeeded to reduce the costs, and after ten years, by 2015 the cost was close 

to 1,000$, a reduction of 100-fold compared to the 100 million dollars needed for 



 

40 

the HGP (Schloss, 2008; Jaszczyszyn et al., 2014; Kchouk, Gibrat and Elloumi, 

2017; KA., Wetterstrand, 2018). 

 

That framework empowered companies to develop better sequencers, and the 

second generation appeared in 2005 with the 454 Life Sciences Genome 

Sequencer FLX based on pyrosequencing (a methodology based on “sequencing 

by synthesis”). This was the first of a new variety of sequencers also referred to 

as Next Generation Sequencing (NGS) technologies. They were mainly 

characterized by the increase in the number of sequenced DNA bases per run, 

from thousands of bases in the first generation to millions of parallel reactions 

that increased the sequencing throughput enormously. Another important feature 

was the use of in-vitro DNA amplification (library preparation and PCR) instead 

of the common in-vivo bacterial cloning amplification methods used in Sanger. If 

the sequencing of the human genome took over 15 years in the HGP project, 

using the 454 GS FLX sequencer they required only two months (Kchouk, Gibrat 

and Elloumi, 2017).  The term High-Throughput NGS is also used to denote this 

technology.  

 

The typical NGS workflow consists on the initial extraction of the genomic DNA 

from a single organism or an entire population. This DNA is then chopped into 

small fragments between 50 to 500 nucleotides suitable for the sequencing 

process. The fragments are later required to be attached to adapters in both end 

of the fragments in order to be manipulated by the sequencers. The main purpose 

of the adapter is to stick the fragments in a solid surface and to allow the 

sequencing primers to bind to the sequence to read it. The next step is a PCR 

(Polymerase Chain Reaction) amplification of the sequences, this is required to 

make the “signal” stronger enough to be detectable by the sequencer. Last, the 

sequencer reads each nucleotide and produces the so called “reads” from each 

sample which represent just a conversion of nucleotides into computer files in the 

form of A, C, G or T letters (N in case of ambiguity)(Figure 1.5). 
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The sequencing of the library can be done in one-sense (single-end reads) or in 

both senses of the fragment (pair-end reads). In the later, depending on the 

library preparation kit used for the sequencer only one of the two reads will dictate 

the stranedness. Usually “read1” dictates strand (i.e. ScriptSeq™ from Epicentre; 

employs a directional protocol tag-based), but in some other kits the “read2” might 

be the one dictating (i.e. Illumina® TruSeq® Stranded Total RNA; employs the 

dUTP protocol). See Figure 1.5 and Figure 1.6. 

 

Figure 1.5 Overview of the NGS workflow of basic chemistry and bioinformatic 
steps. 
(A) Library preparation, (B) cluster generation, (C) sequencing, (D) data analysis and alignment of reads 
to reference genome if reads belong to a known organism (Illumina, 2012) 
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The negative counterpart of the NGS technology remains on its limitation to 

sequence small parts of the DNA, i.e. a single molecule cannot be sequenced. 

Thus, the production of millions of short reads needs to be later assembled into 

a genome by using specific algorithms and high computer resources. The only 

way to obtain a higher genome accuracy is to get a higher coverage of DNA 

sections, i.e. produce more reads that may overlap a section and support the 

reliability of the read sequence. All this inherently comes with the requirement of 

high-storage capacity and high-memory consumption. Another limitation that 

comes with NGS is the Polymerase Chain Reaction (PCR) bias introduced during 

the amplification of the library (Jaszczyszyn et al., 2014; Kchouk, Gibrat and 

Elloumi, 2017). 

 

Figure 1.6 Strand-specific libraries.  
The left and right sequencing reads are depicted according to orientations relative to the sense strand of 
a transcript sequence. Four configurations can be used depending on the library type (F, R, FR, RF). The 
“RF” (reverse is the “Read1” and forward the “read2”) corresponds to the “Illumina® TruSeq® Stranded 
Total RNA” library (dUTP second strand protocol) used for RNA-Seq (Haas et al., 2013). 

 

The third generation of sequencing technologies came in 2010 with Pacific 

Biosciences (PacBio RS) promising longer reads ranging from 1,300bp to 

13,500bp at low sequencing costs, eliminating the need for the PCR amplification, 

and at a faster run-time. This increase in read lengths solved the problems of 

NGS with short reads, that made difficult to identify repetitive areas of complex 

genomes, making this generation appropriate to recognize de novo genomes 

without the need of reference genome to perform the assembly. Regardless the 

higher error rates, if NGS had a maximum of 1% of sequencing error, this 

generations comes with around a 15% error rate, they were able to produce 
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consensus assemblies with error rates comparable to the first and second 

generation (Jaszczyszyn et al., 2014; Kchouk, Gibrat and Elloumi, 2017; Mardis, 

2017). 

 

1.5 Metagenomics and Metatranscriptomics 

The microbiota has a direct impact on the health of the environmental niche 

where it resides, a dysbiosis, or microbial imbalance, produced by a modification 

in the diet of the host for instance, could affect drastically the products consumed 

and produced by the community which in turn can be dangerous for the health of 

the host (Foxman and Martin, 2015; Aguiar-pulido et al., 2016). The study of the 

DNA of the microbes residing in the microbiota, cultivated or uncultivated, can be 

studied using metagenomics. This approach relies on the microbial DNA 

sequencers to obtain a picture of the taxonomical and potential functional profile 

of a sample. However, while metagenomics aims to know who is there by 

identifying partially/completely the genome of the microorganisms, or by targeting 

the 16S ribosomal RNA marker gene and using it roughly as a car plate, 

metatranscriptomics focus on the RNA material of the community. This approach 

is able to capture those microorganisms that are “active”, i.e. are transcribing 

genes from DNA to RNA (transcription), by identifying the 16S rRNA gene at RNA 

level instead of DNA (to differentiate the 16S rRNA gene at RNA level from the 

DNA form, the latter is usually referred to as 16S rDNA). This technique allows to 

identify not only the “active” microorganisms but also the “active” functions that 

are being activated in the niche by the different microorganisms, i.e. those genes 

transcribed by means of the RNA polymerase that will be later translated to 

functional gene products (gene expression). If the product is a protein, the 

process is called protein synthesis.  

 

While metatranscriptomics can directly inform upon active functional profile, it 

cannot answer well to the question of which functions or genes are differentially 

expressed between different states. In those situations, the underlying microbial 

community taxa must be taken in consideration. Thus, when a differentially 
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expressed function is met between a two conditions setup, it is difficult to interpret 

biologically that difference, is it due to a change in the expression level of the two 

conditions from the same group of microorganisms (taxa)? Or, since microbes 

compete or cooperate for nutrients, feed, grow  and reproduce, is it due to a 

change in taxa abundance? (Franzosa et al., 2014; Morgan and Huttenhower, 

2014; Aguiar-pulido et al., 2016; Bashiardes, Zilberman-Schapira and Elinav, 

2016; Klingenberg and Meinicke, 2017; Abu-Ali et al., 2018; Mehta et al., 2018). 

Those questions are very difficult to address using only RNA data, it is necessary 

to normalize by the DNA copy number in order to have an unbiased interpretation 

of results, here is where metagenomics becomes necessary, and combined with 

metatranscriptomics will provide a better snapshot of the activated functions 

under certain conditions (Shi et al., 2011; Giannoukos et al., 2012; Morgan and 

Huttenhower, 2014). As it has been shown in a previous study, it is important to 

remark that the metatranscriptomes vary more within individuals than 

metagenomes (Franzosa et al., 2014; Knight et al., 2018). 

 

The following chart (Figure 1.7) clearly illustrates that, despite new research is 

being held every new year, metatranscriptomic analyses still remains poor 

compared to transcriptome analyses of a species or single-cell.  

 

Figure 1.7 Comparison of publications per year in RNA-Seq, metagenomics and 
metatranscriptomics. 
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2 Hypothesis and objectives 

Since complex microbial communities, such as the human gut microbiota, are 

mostly reluctant to culture methods, omics approaches using high-throughput 

sequencing techniques have been very useful as alternatives to characterize their 

composition and functions. However, to date, production of massive data 

challenges the modern computers to effectively process this data and obtain a 

reliable characterization of the microbial communities. 

 

Hypothesis 

The hypothesis of this PhD was based on the assumption that characterizing the 

active functions of the microbiome will help understanding not only the role of the 

gut microbiota in a healthy state but will also unravel its implication in the 

development and perpetuation of intestinal disorders. 

 

Main objective 

Taking advantage of high-throughput sequencing technologies and an in-house 

developed bioinformatic pipeline, will allow to comprehensively determine which 

microbial members and which functions of the gut microbial community are active 

and associated with health, FBD (Functional Bowel Disorders) and IBD 

(Inflammatory Bowel Disorders). 

 

Secondary objectives 

The aim of this dissertation is: 

•  

1. First, the development of a reliable and efficient pipeline to perform 

metatranscriptomic analysis using the power of multi-threading 

computers. Its modular design must allow an easy interchangeability or 

improvement of any of the stages involved in the analyses.  
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2. Then, this pipeline will be applied to characterize the human microbiome 

in health and disease states. 

 

The work produced to achieve the first of the secondary objectives lead to the 

publication of one article in “Nature Scientific Reports” (2016): 

Martinez X, Pozuelo M, Pascal V, et al. MetaTrans: an open-source 

pipeline for metatranscriptomics. Sci Rep. 2016;6:26447. 

doi:10.1038/srep26447. 
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3 Materials and methods 

3.1 Pilot study 

3.1.1 Ethics statement 

The methods were carried out in accordance with the approved guidelines. All 

the experimental protocols were approved by the Institutional Review Board of 

the Vall d’Hebron Hospital (Barcelona, Spain). Subjects provided their written 

informed consent to participate in this study.  

 

3.1.2 Design and samples collection protocol 

The pipeline was designed to perform two types of RNA-Seq analyses, namely 

those addressing 16S rRNA taxonomy and gene expression. To test the present 

metatranscriptomic pipeline, we analyzed synthetic mock communities and 

twelve fecal samples collected from eight individuals obtained from a previous 

study (Manichanh et al., 2013) and from an unpublished one. For four individuals, 

before and after a flatulogenic diet challenge of three days, stool samples were 

collected, and intestinal volume of gas was measured.  

 

To test the pipeline with RNA-Seq newly generated, RNA sequencing was 

performed in two types of experimental designs, named:  

• “total RNA” (eight samples) and  

• “rRNA removal” (four samples) 

experiments from here onwards. 

 

The objective of the “total RNA” sequencing experiment was to recover both the 

functional and taxonomic profile of each active microbial community in an 

unbiased manner. This experiment was performed on eight stool samples from 

four individuals in two time points that were collected in a previous work 

(Manichanh et al., 2013). As shown in previous studies (McNulty et al., 2011; 

Huttenhower et al., 2012; Cotillard et al., 2013; Manichanh et al., 2013; Tap et 
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al., 2015), the diet can have a great impact in the functional response of the 

microbial community. Thus, to detect functional variations for each participant, 

samples were collected before and immediately after three days of a flatulogenic 

diet. In the present study, we believe that combining 16S rDNA, 16S rRNA and 

mRNA data can provide a new perspective of the factors involved in the origin of 

flatulence. 

 

Stools were collected from four participants - two healthy and two diagnosed with 

FBD (Functional Bowel Disorders) and complaining of excessive gas evacuation 

(flatulence). The subjects were instructed to follow their usual diet for 3 days and 

to consume a diet rich in fermentable residues for another 3 days, during which 

each meal (breakfast, lunch, dinner) included at least one portion of the following: 

(a) bread, cereals or pastries made of whole wheat or corn; (b) beans, soya bean, 

corn, broad beans, or peas; (c) brussels sprouts, cauliflower, broccoli, cabbage, 

celery, onion, leek, garlic or artichoke; and (d) banana, fig, peach, grapes or 

prunes. The volume of intestinal gas was measured as previously described 

(Serra et al., 2002; Hernando-Harder et al., 2010). The gas collection tests were 

conducted before and after the flatulogenic diet using a rectal balloon catheter 

(20 F Foley catheter, Bard, Barcelona, Spain) connected via a line without leaks 

to a barostat, and the volume was continuously recorded (Table 2).  

 

Table 2 Volume of intestinal gas. 

Sample 

name 
Before diet (ml) After diet (ml) 

#1 284 446 

#2 410 1621 

#3 167 967 

#4 135 573 

Recorded using a rectal balloon catheter connected via a line without leaks to a barostat. 
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Two methods of taxonomic analysis were compared, one using 16S rRNA 

extracted from the “total RNA” experiment and the other using 16S rDNA V4 

amplicons of the same samples obtained from a previous study (Manichanh et 

al., 2013). 

 

On the other hand, the objective of the “rRNA removal” experiment was to test 

how the rRNA depletion step would increase the recovery of number of expressed 

genes. This experiment was performed on four additional stool samples obtained 

from four individuals. 

 

Stools were collected from four participants - two healthy subjects and two 

patients with CD (Crohn’s Disease) a type of IBD (Inflammatory Bowel Disease). 

The stool collection protocol involved providing participants with an ice bag 

containing an emesis basin (Ref. 104AA200, PRIM S.A, Spain), a 50-mL sterile 

sampling bottle (Deltalab, Spain), a sterile spatula (Deltalab, Spain), and gloves 

during their visit to the laboratory. For the purpose of stool collection, participants 

were instructed to do the following at home: 1) use the emesis basin provided to 

collect the stool; 2) after the deposit, transfer it to the sampling bottle, ensuring 

proper homogenization; and 3) take the sampling bottle to the laboratory within 

the first three hours after deposit or, if not possible, store it in the home freezer (-

20 °C) and take it to the laboratory properly surrounded by frozen gel blocks as 

soon as possible. Once in the laboratory, the samples were stored at -80 °C until 

processed.  

 

3.1.3 Genomic RNA extraction 

Using the twelve collected samples, the total RNA was extracted, performed an 

rRNA removal step in a set of four of them in the “rRNA removal” experiment, and 

prepared cDNA libraries for paired-end sequencing to increase the read fragment 

and improve the read mapping (Li, 2013) by Illumina machines. 
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For the extraction of the total RNA was used the protocol described in a previous 

study (Cardona et al., 2012). Briefly, 250 mg of fecal sample was mixed with 500 

µl of TE buffer, 0.8 g of Zirconia/silica Beads, 50 µl of SDS 10% solution, 50 µl of 

sodium acetate, and 500 µl of acid-phenol. Physical disruption was achieved 

using a FastPrep apparatus (FP120, 101Thermo). Following centrifugation of the 

lysate, nucleic acids were recovered from the aqueous phase and re-extracted 

with chloroform:isoamylalcohol. DNA was selectively digested, and RNA was 

purified using the RNeasy® mini kit (Cat. No. 74104, Qiagen), following the 

manufacturer’s instructions. Total RNA for an equivalent of 1 mg of each fecal 

sample was quantified using a Nanodrop ND-1000 Spectrophotometer (Nucliber) 

while the quality was assessed using a RNA6000 Nano chip (total RNA) in an 

Agilent 2100 Bioanalyzer. RNA quality was determined by the RNA integrity 

number (RIN), which is calculated from the relative height and area of the 16S 

and 23S RNA peaks and follows a numbering system from 1 to 10, 1 being the 

most degraded profile and 10 the most intact. The average RIN number obtained 

was 6.8, with values ranging from 6.3 to 7.4. 

 

3.1.4 rRNA removal and cDNA synthesis and sequencing 

For the “total RNA” experiment, total RNA of eight samples was subjected to 

fragmentation of 50 ng of RNA molecules; after, complementary DNA (cDNA) of 

the RNA was synthesized using the ScriptSeq™ v2 RNA-Seq Library Preparation 

Kit (directional RNA-Seq) from Epicentre (an Illumina® company) with random 

hexamers, and incorporation of Illumina platform-specific 3′ sequencing tag (tag 

based, where Read1 dictates strandedness). The multiplexing index was added 

through 12 cycles of PCR performed using the FailSafe™ PCR Enzyme Mix 

(Epicentre Biotechnologies, #FSE51100) followed by AMPure XP Purification 

(Agencourt, Beckman Coulter). Each library was sequenced as paired-end 76-bp 

reads on the Illumina HiSeq 2000 platform (Centre Nacional d'Anàlisi Genòmica, 

CNAG, Barcelona, Spain) and produced 16 files (8 paired-end), which generated 

a total of 24 Gbp.  
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For the “rRNA removal” experiment, total RNA of four samples was subjected to 

an rRNA depletion procedure using the Ribo-zero Magnetic kit according to the 

manufacturer’s instruction (Epicentre, an Illumina® company). The samples were 

then subjected to fragmentation of the remaining RNA molecules; after, 

complementary DNA (cDNA) of the RNA was synthesized using the TruSeq® 

Stranded mRNA Library Preparation Kit from Illumina® (dUTP based, where 

Read2 dictates strandedness) where the poly-A selection method for ribosomal 

reduction was discarded. Each library was sequenced as paired-end 101-bp 

reads on the Illumina HiSeq 2000 platform (Centre Nacional d'Anàlisi Genòmica, 

CNAG, Barcelona, Spain) and produced 8 files (4 paired-end), which generated 

a total of 22 Gbp.  

 

All sequenced samples are available at NCBI SRA project id: PRJNA295252. 

 

3.1.5 Bioinformatic analysis 

For the computational analysis, a computer server was used with 2 cores of 8 

CPUs each (allowing up to 32 threads enabling Intel® Hyper-Threading 

technology), 128GiB of RAM, 8TiB of free space. The server used a linux 64bits 

operative system Ubuntu 14.04 64-bits LTS (Trusty) with the kernel 3.13.0-100-

generic x86_64. 

 

3.1.5.1 Sequence analysis steps 

From the Illumina platform, we obtained paired-end reads in FASTQ format 

(CASAVA 1.8, Phred + 33) separated into distinct files for each single-end read 

and for each sample. The analysis was performed in four major steps described 

as such in Figure 3.1: filtering, sorting, and functional and taxonomic annotations. 

The backbone of the pipeline was written in POSIX shell and the internal scripts 

were written in POSIX, Python, R and AWK languages. 
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Figure 3.1 Flow diagram of the metatranscriptomic pipeline. 
The raw paired-end reads were subjected to quality control and adjustment using the FastQC tool and 
Kraken pipeline (turquoise boxes). The rRNA/tRNA reads were then separated from the non-rRNA/tRNA 
reads using SortMeRNA software (green boxes), for taxonomic (clear blue boxes) and functional analyses 
(pink boxes), respectively. For the taxonomic analysis, the reads were mapped against the 16S rRNA 
Greengenes v13.5 database using SOAP2. For the functional analysis, the reads were subjected to the 
FragGeneScan to predict putative genes before being mapped against a functional database (MetaHIT-
2014 or M5nr) also using the SOAP2 tool (see methods for details). 

 

3.1.5.2 Trimming and filtering of quality reads 

The raw reads were submitted to the quality control report-tool FastQC (Andrews, 

2010), which allows evaluation of the quality of the reads and selection of the 

most appropriate filtering parameters, such as the per base N content, the read 

length, and the per sequence quality score, for downstream quality control 

analysis of the reads. The Kraken pipeline (Davis et al., 2013) was then used to 

recover quality reads on the basis of the FastQC report. This set of programs is 

based on efficient multi-threading and a complete set of tools structured in an 

independent pipeline. They allow not only common cleaning operations such as 

removal of low-quality reads and filtering of reads with low length, but also Poly-

A trimming, N-masked base trimming, collapsing of reads, maintenance of read-
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pairing along the process, and low-complexity filtering, among other features. 

This pipeline can be adapted to reads obtained from various sequencing 

platforms. We set up the configuration of the Kraken tools to maintain the link 

between paired-end reads during the process and to perform two steps. The first, 

called “reaper”, relied on the call of a fast and flexible tool designed specifically 

for short-read processing to trim or remove adapters, as well as to test all reads 

processed against three criteria: trimming cluster-N regions and removing low 

quality regions (below a Phred score of 10) and reads with a length < 30 nt. The 

main task of the second step, named “filter”, was to discard reads that had no 

counterpart and then collapse all identical reads, i.e. duplicated paired-reads. The 

header of the read was then modified to include the number of copies of each 

collapsed read. Finally, the collapsed reads obtained were again subjected to 

FastQC in order to validate their quality. At this point, if the default quality setting 

does not cover the quality requirements, the parameters can be refined before 

analyzing more samples.  

 

3.1.5.3 Sorting 

After a quality control of reads, to identify those that were clearly non-rRNA/tRNA 

and therefore potential mRNA, we used an efficient and parallel tool, namely 

“SortMeRNA” (Kopylova, Noé and Touzet, 2012), which required rRNA 

databases such as SILVA v115 (Pruesse et al., 2007), Rfam (Burge et al., 2013), 

and the Genomic tRNA database (Chan and Lowe, 2009). Using these three 

databases, reads were grouped into various categories, namely 16S/18S-rRNA, 

23S/28S-rRNA, 5S-rRNA, and tRNA, respectively. As outputs, SortMeRNA 

produced a file for each category, and the unclassified reads were saved in a 

separate file as non-rRNA/tRNA, that is to say, “potential mRNA reads”. 

 

3.1.5.4 Functional annotation 

Paired-end reads were generated for each cDNA fragment. As paired-end reads 

have been shown to recover fewer false positives than single ones (González 

and Joly, 2013) in differential expression studies, we assembled, when possible, 
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the single end reads before performing gene prediction (Figure 3.1). Thus, reads 

classified as “potential mRNA reads” by “SortMeRNA” were first subjected to an 

overlapping step that merged, when possible, the paired-end reads producing a 

longer read length. This step was performed using the Fastq-Join tool (Aronesty, 

2013) with a minimum overlap of 8 bp and a maximum difference of 10%, as 

proposed in the MG-RAST pipeline (Meyer et al., 2008). The potential mRNA 

reads file may still contain a number of undesired sequences that do not provide 

functional information, such as non-coding regions, and should therefore be 

removed in order to decrease computation time in downstream analysis. For this 

step, we used FragGeneScan (v.1.17) (Rho, Tang and Ye, 2010) to predict 

putative genes and discard the rest. This tool was configured with appropriate 

parameters to work properly with relatively short reads such as those of Illumina. 

Predicted genes were then subjected to clustering to further reduce the size of 

the dataset using CD-HIT v4.6 with an identity threshold of > = 95% and a gene 

overlap of > = 90%. Information on cluster size was then included in the header 

of all representative reads. Finally, to recover a functional profile for each sample, 

the potential mRNA reads were mapped against a functional database such as 

the latest MetaHIT gene catalog (Li et al., 2014) using SOAP2 (Li et al., 2009), 

with the first match retained. The MetaHIT-2014 database contains functions that 

were recovered from about 1,250 human gut microbiome samples and that were 

annotated with the EggNOGv3 (evolutionary genealogy of genes: Non-

supervised Orthologous Groups) functional database. In order to use a more 

general database to analyze for instance other ecosystems than the gut 

microbiota, we added to the pipeline another database, M5nr and the possibility 

to use either M5nr or the MetaHIT-2014 database. The (Wilke et al., 2012) 

database is a non-redundant protein database provided by the MG-RAST server 

and contains 15.9 million unique proteins and 5.8 million functional annotations 

from different sources including Integrated Microbial Genomes (IMG), Genbank, 

InterPro, Kyoto Encyclopedia of Genes and Genomes (KEGG), PathoSystems 

Ressource Integration Center (PATRIC), Phage Annotation Tools and Methods 

(Phantome), Reference Sequence (RefSeq), the SEED Project, UniProt 

Knowledgebase (UniProt). An in-house script was used to take into account 

cluster sizes and to discard duplicates. Raw abundance matrices were generated 
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and processed using the DESeq2 package (Love, Huber and Anders, 2014) to 

uncover the most differentially expressed functions. Up- or down-regulated 

functions were further plotted into metabolic pathways using iPath2 (Yamada et 

al., 2011). 

 

3.1.5.5 Taxonomic annotation 

In the “total RNA” experiment from the paired-end read files previously classified 

as rRNA/tRNA, the two single reads from the DNA fragment were overlapped 

using Fastq-Join to increase read lengths and annotation accuracy. From the file 

containing all overlapped reads for each sample, we randomly extracted 100,000 

using a reservoir sampling method without replacement to reduce computational 

time. Next, these sequences were clustered using the UCLUST method (Edgar, 

2010) and mapped by homology using SOAP2 against the 16S rRNA 

Greengenes v13.5 database (McDonald et al., 2012) and only best hits were 

retained for further analysis. An abundance raw-count table was built for the 

seven taxonomical ranks, from phylum to species levels for all samples. In the 

tables we removed all singleton elements (those appearing just once in a sample) 

to avoid false positive assignments and then sorted all elements in descending 

order on the basis of their abundance average using awk and shell scripts. 

 

3.1.6 Synthetic mock communities for validation 

To evaluate MetaTrans predictive accuracy for functional analysis, two synthetic 

mock communities with different expression levels were constituted. Five most 

abundant microbial genomes were selected based on Qin et al. (Qin et al., 2010) 

and were downloaded from the NCBI database: Bacteroides vulgatus ATCC 

8482, Ruminococcus torques L2− 14, Faecalibacterium prausnitzii SL3/3, 

Bacteroides thetaiotaomicron VPI-5482, Parabacteroides distasonis ATCC 8503. 

A subsample of 1000 genes from each of these microorganisms was selected 

randomly without replacement to generate a synthetic mock community (4943 

reads or 5 Mbp). This mock community was then injected into the Polyester tool 

(Frazee et al., 2015) to simulate two groups of samples with differential 
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expression level; with each group containing 50 simulated samples as follow: a 

different expression level has been simulated in one of the two groups, such that 

20% of the genes presented a 4-fold overexpression and 20% a 4-fold 

underexpression. 

 

To test the accuracy of our pipeline for taxonomic assignment, we used one of 

the 16S rDNA synthetic mock communities provided by the study of Jeraldo et al. 

(Jeraldo et al., 2014) that resembles an ecological sample in terms of composition 

and abundance. From this original dataset, we used 2500 unique organisms 

(14800 reads or 21 Mbp) to simulate differential expression with two replicates of 

25 samples each, using Polyester. As for the functional simulation, a different 

expression level was applied in one of the two groups, such that 20% of the genes 

presented a 4-fold overexpression and 20% a 4-fold underexpression. 

 

Polyester produced then an output of two groups of samples with a different 

expression level. To simulate reads with quality scores, we used the ART 

simulator (Huang et al., 2012) to produce an equal number of reads in FASTQ 

format to those produced by Polyester. ART was initially trained with our 8 total 

RNA samples sequenced in a Hi-Seq 2000 Illumina to obtain a quality error 

model. After simulating FASTQ files we then extracted the quality data and bound 

it to the FASTA files generating new FASTQ files.  

 

A total of 100 samples for the functional simulation and 50 samples for the 

taxonomic simulation were then loaded and processed in MetaTrans. To prevent 

overestimates of accuracy based solely on well-known genomes, we removed 

from the MetaHIT database those reads that had more than 90% identity with the 

MetaHIT genes. 

 

To construct ROC curves, we first computed a score (1 – nominal-p-value) for 

each gene, which allowed us to rank the genes in order of significance or 
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evidence for differential expression between two groups. The score was two 

sided, that is, it was not affected by the direction of differential expression 

between the two conditions. Given a threshold value for such a score, we called 

all genes with scores exceeding the threshold DE (differentially expressed), and 

correspondingly all genes with scores below the threshold were called non-DE 

(non-differentially expressed). Considering the genes that were simulated to be 

DE as the true positive group and the remaining genes as the true negative group, 

we computed the false positive rate and the true positive rate for all possible score 

thresholds and constructed a ROC (Receiver Operating Characteristic) curve for 

the method. 
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3.2 IBD analysis 

3.2.1 Ethics statement 

All the experimental protocols were submitted and approved by the local Ethical 

Committee of the University Hospital Vall d’Hebron (Barcelona, Spain). All 

volunteers received information concerning their participation in the study and 

gave a written informed consent.  

 

3.2.2 Design and samples collection protocol 

We selected a subset of subjects from a Spanish cohort that were enrolled in a 

previous study (Pascal et al., 2017). Given that the focus of the study was on 

finding microbiome differences between the two phenotypes of IBD and healthy 

subjects, we included in this study 14 CD patients and 14 healthy, 12 of which 

were first-degree relatives (siblings, children or parents), and 14 UC patients and 

14 healthy, 12 of which were healthy first-degree relatives. 

 

Inclusion criteria for patients included: confirmed diagnosis (by endoscopy and 

histology in the past), clinical remission (for at least 3 months; defined by the 

colitis activity index (CAI) for UC and by the CD activity index (CDAI) scores (Best 

et al., 1976), stable maintenance therapy (either amino-salicylates, azathioprine 

or no drug) and previous history of at least 3 clinical recurrences in the past 5 

years. Clinical recurrence was defined by a value of 4 or higher for CAI and higher 

than 150 for CDAI. Healthy controls (HC, also referenced as healthy relatives, 

HR) were included without previous history of chronic disease. At inclusion and 

during the follow-up (every 3 months), diagnostic data was collected, location and 

behavior of CD, extension of UC, and clinical data including tobacco use and 

medical treatment. 

 

Exclusion criteria included pregnancy or breast-feeding, severe concomitant 

disease involving the liver, heart, lungs or kidneys, and treatment with antibiotics 

during the previous 4 weeks.  
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Patients with CD and UC who showed recurrence during the study also provided 

a stool sample at the time of recurrence. For UC, relapse was defined by clinical 

scores and calprotectin (fecal marker of inflammation). For CD, recurrence was 

defined by endoscopic criteria and by calprotectin. Antibiotic therapy for the 

previous 3 months was excluded. Patients and controls were asked to stop any 

drug intake for 1 week before sampling. 

 

To evaluate differences between relapse and remission, fecal samples from 

patients were collected in two time-points, at baseline and at one year follow up 

unless patients underwent a relapse, in that case the sample was collected at the 

time very close to the beginning of the relapse state.  

 

To assess variability, fecal samples from their healthy relatives were collected 

also at two time-points, at baseline and after 3 months. Fecal samples were 

frozen at -20ºC at volunteers’ home freezer immediately after collection and then 

as soon as possible at -80ºC at the laboratory before analysis. 

 

3.2.3 Genomic RNA extraction 

Fecal samples were processed for total RNA extraction as described earlier in 

the section “Genomic RNA extraction” from the “Pilot study” chapter. 

 

3.2.4 rRNA removal and cDNA synthesis and sequencing 

Total RNA of one hundred and eleven samples were subjected to an rRNA 

removal procedure using the Ribo-zero Magnetic kit according to the 

manufacturer’s instruction TruSeq® Stranded Total RNA-Seq Library Preparation 

Kit from Illumina® (dUTP based, where Read2 dictates strandedness). The 

samples were then subjected to fragmentation of the remaining RNA molecules; 

after, complementary DNA (cDNA) of the RNA was synthesized following the 

same library preparation kit protocol. Each library was sequenced as paired-end 

101-bp reads on the Illumina HiSeq 2000 platform (Centre Nacional d'Anàlisi 
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Genòmica, CNAG, Barcelona, Spain) and produced 222 files (111 paired-end 

files), which generated a total of 592 Gbp (5.86 Billion reads). 

 

The CNAG sequencing facilities produced, additionally, a total of six technical 

duplicates of samples which did not reach a certain threshold. From those 

duplicates, only those with higher base qualities were kept.  

 

3.2.5 Bioinformatic analysis 

The analysis was performed using the same computational resources as for the 

development of the pipeline in the “Pilot study” chapter section “Bioinformatic 

analysis”. 

 

The Illumina platform provided paired-end reads in a FASTQ format (CASAVA 

1.8, Phred + 33) separated into distinct files for each single-end read and for each 

sample. The microbiome analysis of the data was carried out using a modified 

version of the previously developed “MetaTrans 1.0” pipeline (Martinez et al., 

2016) described in “Pilot study” chapter. We further carried out a gene counts 

analysis following the same procedure described in Le Chatelier et al (Le 

Chatelier et al., 2013), who showed that a lower number of gene count was 

associated with obesity. 

 

3.2.5.1 Pipeline modifications for the IBD study 

The metatranscriptomic pipeline, namely MetaTrans, that was initially developed 

in “Pilot study” chapter, was modified to incorporate some updates that were 

required to improve its functionality, performance, and annotation in the analysis 

of IBD samples. Additionally, some bugs were also fixed.  

 

The clustering program USEARCH (v5.2.236) (Edgar, 2010), via its UCLUST 

algorithm, was recommended to be used in the taxonomical analysis. However, 
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this program, in its free version had had inherent limitations (i.e. RAM memory 

was limited to few GB). This limitation can be acceptable for small number of 

samples, but to process the 111 samples of the IBD project, it was not sufficient. 

An alternative clustering program like CD-HIT (Fu et al., 2012) was tested, but 

the program lasted up to many hours per sample and constituted a bottleneck in 

the pipeline. Finally, we decided to use the paid-version of USEARCH 

(v8.1.1861_i86linux64), which outperformed by many folds any previous 

clustering tool we used (see https://drive5.com/usearch/cdhit_versions.html for 

more details) . 

 

The ability to perform differential expression analysis at the 16S rRNA 

taxonomical level was implemented and incorporated in the pipeline. 

 

The normalization process performed by the DESEq2 package (Love, Huber and 

Anders, 2014), based on RLE (Relative Log Expression) (Abbas-

Aghababazadeh, Li and Fridley, 2018), allows the comparison of features (genes, 

transcripts,…) between-samples but not within-samples. As recommended by the 

authors of the package, we scaled by library depth to perform comparisons within 

samples (to account for different number of reads sequenced per sample) and 

feature length (e.g. longer genes will tend to have more sequenced reads). The 

most robust metric accounting for these variations is TPM (Transcripts Per 

Million) (Wagner, Kin and Lynch, 2012) which represents the number of 

transcripts seen per million for a specific feature in a certain sample.  

 

At this point, it is important to remark that a proper accurate normalization of 

metatranscriptomic data, for each sample should be done considering its 

taxonomical composition obtained from the metagenomic data corresponding to 

the same sample. Such normalization is left for a future study combining  

Metagenomic and Metatranscriptomic data (Franzosa et al., 2014, 2018). 

 

https://drive5.com/usearch/cdhit_versions.html
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The MetaHIT-2014 gene catalog, also known as Integrated Gene Catalog (IGC), 

was annotated using the non-supervised, i.e. not manually curated, orthologous 

genes database EggNOG version v3.0, which was launched on November 2011 

(Powell et al., 2012). A newer release v4.5 (Huerta-Cepas et al., 2016) was 

launched on 2015 and accounts for a more accurate annotation and higher 

coverage of orthologous gene families, along with the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways member annotations. To update IGC-

EggNOG annotations we used a script called “eggnog-mapper” to re-map all IGC 

proteins to the new database. From a total annotation of roughly 40% of the IGC 

catalog with EggNOGv3.0, this step allowed a partial update of 66% of the 

EggNOGv3.0 annotated IDs to EggNOGv4.5. 

 

Aside from the EggNOG functional annotation in the IGC gene catalog, the genes 

were also annotated using the last free release of the manually curated 

orthologous groups database KEGG Orthology v.59 (Kanehisa and Goto, 2000; 

Kanehisa et al., 2017). Nevertheless, the functional profiling for this database had 

not yet been implemented. The pipeline is now able to perform abundance 

profiles of KEGG orthologs at the four levels of the KEGG functional hierarchy. 

 

For the visualization of the metabolic pathways expressed or activated in a certain 

condition we used the iPath2 explorer (Letunic et al., 2008; Yamada et al., 2011) 

to produce visual maps of the metabolic pathways activity. This tool was 

introduced in the MetaTrans pipeline programmatically over HTTP to enable 

metabolic pathway plots when necessary. Recently, a new update of the tool, 

iPath3 (Darzi et al., 2018), was released as of 2018 and we made the appropriate 

pipeline modifications to include it. One of the new features included allows 

annotation of EggNOG orthologous IDs v4.5. 

 

Statistical analyses were improved by adding significance tests in the PCA 

(principal component analysis) distance matrices by means of the Permutational 

Multivariate Analysis of Variance (Adonis Test using the Vegan R package 
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(Oksanen et al., 2018)) test using the wrapper QIIME (Caporaso et al., 2010) 

python script “compare_categories.py”. 

 

Along the analysis of the differential expressed features (a.k.a. genes, transcripts, 

orthologous IDs, …) we also introduced several changes to expand statistical 

data and visualization of results using the R package DESeq2 (Love, Huber and 

Anders, 2014). In the analysis of the differences among groups of samples, i.e. 

between-samples or beta-diversity analysis, we added dendrogram plots using 

distance matrices of samples to represent in a tree their similarities. Several 

distance metrics like Euclidean, which considers abundances and Bray-Curtis, 

which accounts for composition as well, were used as input. Further, other 

hierarchical clustering linking methods were also explored like “upgma”, 

“complete”(default), and “ward.d2” (Singh, 2008) in the clustering analyses. The 

alpha-diversity, i.e. within-sample evenness,  analysis was also extended by the 

inclusion of other diversity indices (Chao2, Pielou, Simpson) to check for different 

properties to assess evenness, as there is no clear consensus on which is most 

necessary  (Morgan et al., 2012; Franzosa et al., 2014; Kvalseth, 2015; Oksanen, 

2015; Ricotta, 2017). 

 

To increase the power of significance tests in the differential expression analysis 

(DEA) we incorporated a pre-filtering step to keep only rows having at least ten 

reads in total. As explained by the author, this allows reducing the memory, and 

increases the speed of the transformation and testing functions.  

 

3.2.6 Databases used in this study 

For the functional and taxonomical analysis, we performed comparisons using 

different database annotations. In the case of the functional database we selected 

the two types of annotations available in the integrated MetaHIT14 catalog of 

microbial genes from the human gut (Li et al., 2014), i.e. the curated orthologs 

genes annotation KEGG Orthology v56 (KO) database (Kanehisa and Goto, 



 

69 

2000; Kanehisa et al., 2017, 2019) and the non-curated and automated 

annotation EggNOG v3.0 database (Powell et al., 2012; Huerta-Cepas et al., 

2016). The EggNOG database provides two types of annotation levels, at protein 

family level, or COG functional categories (Tatusov et al., 2001), and at 

orthologous genes level. The KEGG database provides five functional annotation 

levels, four use the KEGG BRITE functional hierarchies (first level more generic, 

last level being more specific), and the last one at KEGG orthologous genes level. 

On the other hand, the taxonomic annotation of genes was performed using the 

Greengenes v135 database ranks (DeSantis et al., 2006). We used the seven 

taxonomical ranks available for the analyses (i.e. Phylum, Class, Order, Family, 

Genus, and Species). 

 

3.2.6.1 Statistics 

Each annotation level was measured as Euclidean distances matrices, necessary 

for downstream analyses. The statistical test used to find differences between 

groups was Adonis (Permutational Multivariate Analysis of Variance or 

PERMANOVA), from the Vegan R package (Oksanen et al., 2018), using the 

QIIME (Caporaso et al., 2010)“compare_categories.py” wrapper script.  

 

To measure alpha-diversity, we employed three of the most used indexes: one 

based on diversity (Shannon index), another to measure evenness (Pielou’s 

Index), and one to measure richness (Chao1 index). Hypothesis testing was 

conducted by means of the non-parametric Mann-Whitney U test. 

 

To perform univariate or bivariate analysis we used the “ggstatsplot” and 

“ggplot2” R packages (Wickham, 2016; Patil and Powell, 2018) within the Jamovi 

statistical platform (R Core Team, 2018; The jamovi Project, 2019). The 

“ggstatsplot” package allows us performing the most suitable statistical test 

according to the nature of the groups being compared (see Figure 3.2).  
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The analysis of the differential expressed genes (DEG) was performed using a 

the “DESeq2” R package (Love, Huber and Anders, 2014), which estimate 

variance-mean dependence in raw gene/functions count data from RNA 

sequencing, and base their differential expression test on a model using the 

negative binomial distribution. This package was added as part of the MetaTrans 

pipeline developed in the first part of the dissertation. 

 

Dendrograms were used to perform hierarchical cluster analysis on samples 

based on sample to sample distances obtained from calculations on relative 

abundances of samples. We used the regularized log transformation of counts 

as suggested by the author of the package “DESeq2” (Love, Huber and Anders, 

2014) used for the detection of differentially expressed features (taxa or 

functions), which minimizes the influence of “low counts”. The data matrix was 

then used as input using the “pvclust” function (Suzuki and Shimodaira, 2015) 

adapted to use Bray-Curtis dissimilarity distances (script by Niel Shanson, 

https://git.io/JeRRD ). The recommended agglomeration method used for the 

hierarchical clustering was “Ward.D2”, which is known to be effective in this type 

of data. This class of dendrograms uses an improved calculation of p-values 

based on multiscale bootstrap resampling (called Approximately Unbiased, or 

AU), which outperforms p-values calculates using normal bootstrap resampling. 

In absence of a statistical test for clustering analysis, though recently a new 

package is on development to address this issue https://git.io/Je0bY, we selected 

the best dendrogram based on their best AU p-values. This type of p-values 

ranges from 0 to 1, being 1 the value indicating that a particular cluster is strongly 

supported by the data. 

 

For the identification of KEGG metabolic pathways significantly over or under 

represented from differentially expressed genes we applied a Fisher’s exact test 

implemented in a perl script within the FMAP tool (Kim et al., 2016). 

 

https://git.io/JeRRD
https://git.io/Je0bY
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Figure 3.2 Available statistical tests in the “ggstatsplot” R package. 
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4 Results 

4.1 Pilot study 

The Illumina sequencer machines produced an average of 22 million paired-end 

reads of short-length (76 bp) per sample which were mapped against functional 

databases. We also compared two methods of taxonomic analysis; one using 

16S rDNA V4 amplicons and the other 16S rRNA extracted from total RNA. 

 

4.1.1 Pipeline validation 

As described in Figure 3.1, the pipeline, consisting of four major steps (filtering, 

sorting, and functional and taxonomic analyses), included tools implemented with 

multi-threading options and used the most updated functional human gut 

database (MetaHIT-2014)(Li et al., 2014). 

 

In order to validate MetaTrans in terms of taxonomic analysis, we compared 

different available methods such as 1) 16S rRNA sequences analyzed with the 

SOAP2 tool (Li et al., 2009) and the Greengenes database (McDonald et al., 

2012); 2) total RNA analyzed with MG-RAST (Wilke et al., 2015); 3) mRNA 

sequences analyzed with the Kraken tool (Wood and Salzberg, 2014); 4) mRNA 

analyzed with SOAP2 and the MetaHIT-2014 database. Kraken is a taxonomic 

sequence classifier that assigns taxonomic labels to short DNA reads. To classify 

a sequence, Kraken maps each k-mer in the sequence to the lowest common 

ancestor (LCA) of the genomes that contain that k-mer in a database (NCBI-

bacterial/archaeal genomes). For rRNA identification, MG-RAST uses a BLAT 

similarity search for the longest cluster representative against the M5rna 

database that includes SILVA, Greengenes and RDP databases. To compare the 

different methods, we used all the sequences of one of our processed fecal 

sample (#1_BF), for which, we generated 39 million paired-end reads. After 

processing the reads by MetaTrans, we recovered 1.6 million of 16S rRNA 

paired-end sequences and 700000 mRNA hit against the MetaHIT-2014 

database that were then used for the methods comparison. As shown in the 
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Figure 4.1, 16S rRNA sequences analyzed with the SOAP2 tool and the 

Greengenes database (rRNA.GG.SOAP2) presented at the phylum level very 

similar results with those of the MG-RAST server and displayed very low 

proportion of unclassified reads (< 5%). mRNA analyzed with Kraken and the 

NCBI bacterial database showed also low proportion of unclassified reads (1%) 

but higher relative abundance of Euryarchaeota than the two previous methods, 

which could be due to the higher copy number of 16S rRNA gene found in 

Bacteria compared to Archeae (Lee et al., 2009). Only mRNA analyzed with 

SOAP2 and the MetaHIT-2014 database (mRNA.MetaHIT) presented a very high 

percentage of unclassified reads. 

 

 

Figure 4.1 Comparison of taxonomic classification methods. 
Taxonomic assignment in terms of abundance for the fecal sample #1_BF using 16S rRNA sequences 
mapped with SOAP2 against Greengenes (rRNA. GG.SOAP2), the whole sample analyzed with MG-
RAST (MG-RAST), mRNA assigned with Kraken (mRNA. Kraken) and mRNA mapped with SOAP2 
against MetaHIT-2014 (mRNA.MetaHIT). This bar plot shows similar taxonomic profiles between 
rRNA.GG.SOAP2 and MG-RAST whereas they differ with mRNA.MetaHIT and mRNA.Kraken. 
Unclassified reads are more abundant in the last method. 

 

To assess the accuracy of MetaTrans for taxonomic profiling, we also constructed 

two synthetic mock communities of 25 samples each. We applied a differential 

expression such that 20% of the genes presented a 4-fold over- expression and 
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20% a 4-fold underexpression between the two communities and the sensitivity 

and specificity of MetaTrans were evaluated using a receiver operating 

characteristic (ROC) curve (see Methods section; Figure 4.2-A). We obtained an 

AUC (area under the curve) of 0.704, which showed a fair accuracy of the 

method. 

 

In order to validate MetaTrans in terms of functional analysis between two 

microbial communities, we also constructed two mock communities of 50 

samples each and simulated a differential gene expression between the two 

communities as described above. Each sample contained 1000 genes randomly 

selected from five microorganisms commonly found in the gut microbiome (see 

in Methods section). As for the simulation of 16S rRNA dataset, we evaluated the 

performance of MetaTrans using a ROC curve (Figure 4.2-B). We obtained an 

AUC of 0.887, which showed a good accuracy of the method. To test our pipeline 

in terms of functional analysis with real metatranscriptomic data, we recovered 

and processed part of the dataset published in a previous study (Leimena et al., 

2013). This dataset consisted of paired-end reads obtained from the content of a 

human small intestine sample (42.2 million sequence reads for both ends). For 

these analyses, our pipeline was adapted to match the reads to the COG 

database (Clusters of Orthologous Groups, containing about 190,000 annotated 

functions and 25 categories of functions) using BLASTP, as performed in 

Leimena et al. We obtained all the 23 functional categories as described in 

Leimena et al. and in similar proportions (Figure 4.3).  
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Figure 4.2 Performance of MetaTrans for analyses of mock community simulations  
ROC curves of (a) taxonomic and (b) functional mock community simulations, with 50 and 100 samples, 
respectively. AUC of 0.704 and of 0.887 were obtained for taxonomic and functional simulations, 
respectively. 

 

 

Figure 4.3 Pipeline validation with another study. 
In order to test whether our pipeline provided similar results to those obtained using a previously reported 
tool, we analyzed part of a published dataset (Leimena et al., 2013) using our pipeline. We obtained similar 
functional categories (left) to those described in Leimena et al. 2013 (right). 

 

4.1.2 Experimental design 

To test our pipeline with RNA-seq newly generated, we performed RNA 

sequencing in two types of experimental designs: “total RNA” and “rRNA removal” 

experiments. The objective of the “total RNA sequencing” experiment was to 

recover both the functional and taxonomic profile of each active microbial 

community in an unbiased manner. We performed this experiment on eight stool 
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samples from four individuals that were collected in a previous study (Manichanh 

et al., 2013). Moreover, in order to detect functional variations for each 

participant, samples were collected before and immediately after three days of a 

flatulogenic diet, as detailed in the Methods section. We then compared the 16S 

rRNA sequences with the 16S rDNA sequences that we recovered from our 

previous study (Manichanh et al., 2013) after PCR amplification of extracted 

genomic DNA of the same samples. We envisaged that this comparison would 

indicate whether the microbes detected by the 16S rDNA gene survey were also 

those functionally active. The objective of the “rRNA removal” experiment was to 

test how the rRNA depletion step would increase the recovery of number of 

expressed genes. This experiment was performed on four additional stool 

samples obtained from four individuals.  

 

As paired-end reads have been shown to recover fewer false positives than single 

ones (González and Joly, 2013), we assembled, when possible, the single end 

reads using the Fastq-Join program before performing gene prediction by 

FragGenScan (Figure 3.1). 

 

4.1.3 Data and output descriptions 

The two experiments generated the following datasets: 318 million paired-end 

reads (76 bp) generated from the “total RNA” experiment (about 20 million paired-

reads per sample; Table 3) and 219 million paired-end reads (76 bp) generated 

from the “rRNA removal” experiment (about 27 million paired-reads per sample; 

Table 4). For the “total RNA” experiment, we recovered an average of 78% high 

quality reads, 74% of rRNA/tRNA and 4.3% of non-rRNA/tRNA (e.g. potential 

mRNA), as expected. For the “rRNA removal” experiment, we obtained 55% of 

high-quality reads, 2.7% of rRNA/ tRNA and 52.3% of potential mRNA. As 

expected, the proportion of potential mRNA recovered from “rRNA removal” 

experiment was 10 fold higher than in the “total RNA” experiment. However, the 

median number of unique orthologous IDs was only 1.27-fold higher in the 

“mRNA removal” experiment (11541 versus 9032). Furthermore, we observed 
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that the overlapping step allowed recovery of a longer read length for 42% of the 

non-rRNA/tRNA reads for the two experiments. 

Table 3 Description of the outputs from each analysis step of the “total RNA” 
experiment. 

 

 

Table 4 Description of the outputs from each analysis step of the “rRNA 
removal” experiment. 

 

 

4.1.4 Computer bottlenecks 

Metatranscriptomic as well as metagenomic approaches are computationally 

very expensive (CPUs and RAM). In order to speed up the analysis, our pipeline 

was optimized by means of multi-threading software. In order to optimize the 

runtime, we tested several aligner tools such as DIAMOND-BLASTP (Buchfink, 

Xie and Huson, 2014), SOAP2 (Li et al., 2009) and BLASTP (Edgar, 2010) to 

map one of our dataset (#1_BF) against the MetaHIT-2014 database, containing 

human gut microbiome genes. The three tools provided very similar number of 

matched eggNOG IDs (Figure 4.4). However, SOAP2 and DIAMOND-BLASTP 
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were 6600 and 480 fold much faster than BLASTP, respectively. We finally 

implemented SOAP2 and DIAMOND-BLASTP in our pipeline. The bottleneck still 

remains in the first steps of the analysis, in particular for the sorting and clustering 

steps. Therefore, to be able to perform these analyses in a reasonable timeframe, 

we recommend a minimum of 10 CPUs and 16 GB of RAM (size of the database 

or the query to be loaded). As an example, to analyze a sample, for which 39 

million paired-end reads were generated and about 1 million of potential genes 

were sorted out, 2 hours and 21 min was required with the following settings: 10 

CPUs and 16 GB of RAM. The cost of a current computer with these features 

could approximate 3000 dollars. 

 

 

Figure 4.4 Mapping comparisons between short-read aligners. 
Similarity in functional mapping between BLASTP, DIAMOND-BLASTP and SOAP2 against the MetaHIT-
2014 database using dataset from sample #1_BF as shown by a Venn diagram (a) and the plot of the 
total number of unique IDs that have a match against the MetaHIT-2014 database (b). 

 

 

4.1.5 Taxonomic analysis 

To describe the active microbial composition of our stool samples from the “total 

RNA” experiment, we mapped the reads labeled as rRNA/tRNA against the 

Greengenes (v13.5) 16S rRNA database. To speed up the taxonomic analysis, 

we randomly selected a reasonably high number of reads, namely 100000, a 

much higher number than most studies performing 16S rRNA gene surveys. At 

the phylum, family, genus and species levels, we identified 7, 29, 49 and 70 

groups of microbes, respectively, with at least 1% of sequences in at least one 
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sample, in order to avoid false positives. Four phyla accounted for 99.3% of the 

dataset: Firmicutes (87%), Bacteroidetes (8.1%), Actinobacteria (1.9%), and 

Proteobacteria (1.8%). At the family level, Lachnospiraceae (52.2%), 

Ruminococcaceae (18%), unknown Clostridiales (11%), Bacteroidaceae (5%), 

Erysipelotrichaceae (1.9%), Clostridiaceae (1.9%), and Porphyromonadaceae 

(1.1%) accounted for 91% of the total relative abundance. Comparative 16S 

rDNA and 16S rRNA sequence analysis indicated significant differences (q-value 

< 0.05, Kruskal-Wallis) between relative mean abundance of the 16S genes 

detected at all phylogenetic levels from phylum to species, suggesting that the 

16S rDNA survey did not provide the profile of the active microbial community. 

Indeed, at RNA level, Firmicutes might be a more dominant part of the 

metabolically active bacteria than suggested at DNA level (average of 87% in 

rRNA vs. 53% in rDNA sequence libraries) (Figure 4.5-A). At the family level, 

Lachnospiraceae (52% for rRNA vs. 26% for rDNA) was a significantly more 

active component than Bacteroidaceae (5.2% for rRNA vs. 28% for rDNA). At the 

genus level, an unknown Lachnospiraceae, Blautia (a Lachnospiraceae genus) 

and an unknown Clostridiales predominated the rRNA libraries, with a total mean 

of 50%. In contrast, in the rDNA libraries, Bacteroides, an unknown 

Ruminococcaceae and an unknown Lachnospiraceae totaled 50%. Interestingly, 

most 16S rDNA surveys and metagenomic approaches previously proposed 

Bacteroidaceae as a major actor in gut function and revealed Lachnospiraceae 

as the most active group of microbes (Human Microbiome Project). Indeed, 

members of the Lachnospiraceae family have been linked to obesity and 

protection against colon cancer in humans. This protective function is mainly due 

to the association of many species within the group with the production of butyric 

acid that is important for both microbial and host epithelial cell growth (Meehan 

and Beiko, 2014). 

 

To compare the number of taxa present at DNA and RNA levels, we first 

normalized the number of sequence reads per library to 1,952 and used the 

Friedman test. We observed that the flatulogenic diet caused an increase in 

Bifidobacteriaceae and more specifically Bifidobacterium longum (P < 0.05), at 
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the RNA level (Figure 4.5-B) but not at the DNA level. As Bifidobacteriaceae is 

well-known as a saccharolytic bacterial group, this result would be consistent with 

a consumption of a flatulogenic diet. 

 

Figure 4.5 Taxonomic analysis at the DNA and RNA levels 
(a) Significant differences between relative mean abundance of the 16S rRNA and 16S rDNA libraries at 
the phylum, family and genus levels (q-value < 0.05). (b) Effect of diet at the RNA level on the increase 
in relative abundance of Bifidobacterium longum (P < 0.05). (c) Correlation between volume of gas and 
relative abundance of Bifidobacterium longum (r = 0.92; P = 0.002; Spearman) 

 

 

To assess the link between a flatulogenic diet and intestinal gas production, we 

correlated the microbiome composition and functions with the volume of gas 
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produced by the subjects and measured before and after the flatulogenic diet. 

The volume of intestinal gas was found, at the DNA level, significantly and 

positively correlated with Blautia (r = 0.83; P = 0.01), a genus belonging to the 

Firmicutes phylum. Interestingly, several species belonging to this genus such as 

Blautia hydrogenotrophica, are capable of metabolizing H2/CO2 to acetate 

(Bernalier et al., 1996). At the RNA level, only Bifidobacterium longum was 

positively correlated with the volume of gas (r = 0.92; P = 0.002; Figure 4.5-C). 

At the level of categories of functions, we observed that the volume of intestinal 

gas was significantly and positively correlated with two functional categories: 

“Inorganic ion transport and metabolism” and “Extracellular structures”; and 

negatively correlated with one functional category: “Cell motility”. Ninety-one 

orthologous IDs such as those involved in amino acids metabolism presented a 

significant positive correlation with the volume of gas, meanwhile 14 orthologous 

IDs such as those involved in energy metabolism were negatively correlated. 

 

4.1.6 Functional analysis 

To characterize the active microbial functions of the eight stool samples from the 

“total RNA” experiment, reads labeled as non-rRNA/tRNA were subjected to 

FragGeneScan to predict putative genes and were then mapped against a known 

protein database, namely MetaHIT-2014 (Integrated Gene Catalog from human 

gut microbiome) (Li et al., 2014). The MetaHIT-2014 database was annotated 

following the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the 

evolutionary genealogy of genes non-supervised orthologous group (eggNOG) 

databases and it contains 9.9 million non-redundant genes identified in the 

human gut. Mapping against MetaHIT-2014 allowed us to assign an average of 

1.85% (731,527 of reads on average) of the high-quality reads to an average of 

206,330 non-redundant MetaHIT IDs or genes (ranging from 85,343 to 288,398) 

and 25 clusters of orthologous groups (COGs) or functional categories per 

subject. Table A 5 shows the distribution of the annotated orthologous groups, 

with carbohydrate transport and metabolism being the most abundant known 

functional group, as expected for the human gut microbiome (Li et al., 2014). 
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Further analyses were performed using the DESeq2 package. To detect 

differentially expressed functions and categories of functions, we applied a 

Principal Component Analysis to the matrix of abundance count generated after 

the mapping step. In terms of global eggNOG IDs, the two samples from each 

subject clustered and were located far from those of the other subjects (PC1 = 

34%; Figure 4.6-A), while in terms of functional categories, samples clustered 

according to the effect of the flatulogenic diet for three of the subjects (PC1 = 

64%; Figure 4.6-B). These results suggested that each individual has a specific 

set of functions and that a flatulogenic diet influenced families of functions. 

 

 

Figure 4.6 PCA analysis of functional databases 
Principal Component analysis of the matrix of eggNOG IDs (a) or COG functional categories (b) showed 
that the two samples, before and after diet, clustered when all functions were taken into account but not 
when categories of functions were considered 

 

To identify differentially regulated functions or categories of functions, we 

computed “FoldChange” on a matrix of raw count functions before and after the 

flatulogenic diet and then tested whether the mean of the log ratios was 

significantly different from zero following false-discovery rate (FDR) correction 

(indicating a pattern of up- or down-regulation of functions). As an effect of diet, 

we observed a significant increase in one category (q-value < 0.01) involved in 

“Defense mechanisms” and three down-regulated categories involved in 

“Translation, ribosomal structure and biogenesis”, “Energy production and 

conversion” and “Carbohydrate transport and metabolism” (Figure 4.7-A). We 

also identified 27 down-regulated orthologous IDs (with a log2FoldChange < − 1; 
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q-value < 0.01) (Figure 4.7-B). These were plotted into a network of metabolic 

pathways using the iPath2 tool (Figure 4.7-C). Among the up-regulated functions, 

the most abundant was found to be involved in bacterial secretion (Type IV 

secretory pathway, VirD4 components). The most abundant down-regulated 

functions were involved in translation (ribosomal protein and GTPases - 

translation elongation factors), glycolysis (GAPDH - Glyceraldehyde- 3-

phosphate dehydrogenase), nucleotide metabolism, vitamin B6 biosynthesis, 

energy metabolism, and CO dehydrogenase/acetyl-CoA synthase. The latter is 

central to the acetate production pathway. 
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Figure 4.7 Effect of a flatulogenic diet on gene expression 
Functional categories (a) that were up and down- regulated and Orthologous IDs (b) that were down-
regulated as an effect of the diet challenge (q-value < 0.05). (c) The down-regulated functions plotted into 
a metabolic pathway network using the iPath2 tool. 
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4.1.7 Comparison with an existing web application server 

In order to compare the results of our pipeline with those of MG-RAST, one of the 

few web application servers for metagenomic and metatranscriptomic anal- ysis, 

we loaded one of our dataset (#1_BF) into the server. The comparison between 

our pipeline and MG-RAST showed that our pipeline provided, after CD-HIT, a 

much higher proportion of mapped queries (69% versus 3.2%), probably due to 

the use of the MetaHIT-2014 database, which only contains genes from the 

human gut microbiome. This result confirms the necessity to use specific 

databases. In terms of runtime, after sending three time our dataset for analysis, 

it took two, three and seven days for MG-RAST to send us back the results, which 

is much longer than our pipeline (around 2–3 hours). Since MG-RAST is a web 

application, the time needed to obtain the results depends on several parameters. 

The Internet connection speed of the users will condition the time needed to 

upload their dataset. Next, the speed of the analysis will depend on the priority 

assigned to the project, the size of the dataset and the current server load (as 

specified by the MG-RAST user manual). Furthermore, the MG-RAST does not 

provide yet any tools for comparing gene expression levels and we believe that 

our pipeline would be also more convenient for large metatranscriptomic projects 

in terms of runtime, providing that the users can handle the analysis through the 

locally installed pipeline. 

 

4.2 IBD analysis 

4.2.1 Study cohort and experimental design 

We enrolled 56 subjects in total, 28 IBD patients, of which 14 were UC and 14 

were CD, and 28 healthy individuals (or healthy controls, HC), most of which were 

relatives of patients. All subjects were recruited at a single site in Spain. Adult 

IBD patients were enrolled in the study with the conditions that they did not take 

antibiotics for at least two months and were under remission. All them were 

included in a follow-up study of two time points: basal status (all patients in 

remission) and final status (all patients in relapse or in remission for one year). 

However, the sample UC.24.0 (basal timepoint) had to be discarded from the 

analysis due to the lack of RNA material during the extraction procedure. Thus, 
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a total of 111 fecal samples finally available for microbiome analysis as described 

in Table 5. 

 

Table 5 Summary of number of samples per health status, and timepoint. 

 

 

Most of the CD patients presented the disease in the ileum (21%) and in the ileo-

colonic region (64%). This study did not include CD patients with colonic disease 

location, being less frequent than the other CD subtypes. Characteristics of the 

CD and UC patients and their healthy relatives are listed in Table 6 and Table 7 

respectively. 

 

Table 6 Description of the characteristics of CD patients and their healthy 
relatives. 

Baseline clinical characteristics CD 
(N=14) 

Healthy relatives 
of CD (N=14) 

Male/Female (%) 5/9 (35.7/64.3) 7/7 (50/50) 

Mean age (SD) at samples collection 32.5(10.5) 48.4 (15.8) 

Median BMI (IQR) 20.2 
(19.6-25.3) 

24.5 
(23.61-28.1) 

Mean duration of disease (SD) at sampling 7.35 (6.5)  

Disease location (Montreal classification)   
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Baseline clinical characteristics CD 
(N=14) 

Healthy relatives 
of CD (N=14) 

L1 ileal (%) 3 (21.4)  

L2 colonic (%) 0  

L3 ileocolonic (%) 9 (64.3)  

L1 + L4 ileal and isolated upper GIT (%) 1 (7.1)  

L3 + L4 ileocolonic and isolated upper GIT (%) 1 (7.1)  

Disease behaviour at surgery  
(Montreal classification) 

  

B1 non-stricturing, non-penetrating (%) 1 (7.1)  

B2 stricturing (%) 8 (57.1)  

B3 penetrating (%) 3 (21.4)  

B1p non-stricturing, non-penetrating  

and perianal disease (%) 

1 

(7.1) 
 

Active smoking at sampling (%) 4 (28.6) 6 (42.9) 

Medication at sampling   

Aminosalicylates (%) 1 (7.1)  

Azathioprine (%) 5 (35.7)  

Corticosteroids (%) 0  

Infliximab/Adalimumab + Azahtioprine (%) 3 (21.4)  

Infliximab/Adalimumab + Corticosteroids + 

 others (%) 

1 

(7.1) 
 

Azathioprine + others (%) 2 (14.3)  

Aminosalicylates + others (%) 1 (7.1)  

Infliximab/Adalimumab + others (%) 1 (7.1)  

CD: Crohn’s disease. 

 

Table 7 Description of the characteristics of UC patients and their healthy 
relatives. 

Baseline clinical characteristics UC 
(N=14) 

Healthy relatives 
of UC (N=14) 

Male/Female (%) 5/9 (35.7/64.3) 8/6 (57.1/42.9) 

Mean age (SD) at samples collection 42 (11.7) 35.2 (15.8) 

Median BMI (IQR) 24.3  
(20.4-27.8) 

24  
(20.4-25.7) 

Mean duration of disease (SD) at sampling 7.1 (6.1)  
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Baseline clinical characteristics UC 
(N=14) 

Healthy relatives 
of UC (N=14) 

Disease behaviour at sampling   

E1 proctitis (%) 3 (21.4)  

E2 left sided colitis (%) 3 (21.4)  

E3 pancolitis (%) 8 (57.1)  

Active smoking at sampling (%) 2 (14.3) 5 (35.7) 

Medication at sampling   

Aminosalicylates (%) 10 (71.4)  

Azathioprine (%) 1 (7.1)  

Aminosalicylates + Corticosteroids (%) 1 (7.1)  

Aminosalicylates + Azathioprine (%) 1 (7.1)  

Cellcept (%) 1 (7.1)  

UC: Ulcerative colitis. 

 

4.2.2 Description of the dataset 

The processing of the cDNA obtained from the 111 fecal samples of the IBD 

cohort using MetaTrans yield a total of 565Gbp (mean=5.17, and s.d.=0.97) and 

recovered 2.84 billion of pair-end reads (mean=25.6 million, and s.d.=4.8 million, 

Figure A 1) of 101 bp in read-length. The processing runtime lasted a total of 

656hours, roughly 27 days (10h/sample on average when running samples in 

parallel using multithreading; 2h/sample when running samples using one thread 

concurrently). We obtained an average of a 12% of rRNA, and  of a 35.2% (s.d.= 

8%) of reads that could be mapped to the MetaHIT-14 gene catalog (Figure A 2). 

 

4.2.3 Dataset analysis 

4.2.3.1 Gene count analysis 

The analysis of the human gut microbial composition was initially reported by first 

studies by means of the number of unique microbial gene counts that were 

associated to gut bacterial richness. Authors like Le Chatelier et al.  (Le Chatelier 

et al., 2013) were able to associate obesity, a low-grade inflammation condition, 

with low microbial gene counts combined with a low microbial diversity. We thus 
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believe that a first insight into this level of analysis can be useful as a first starting 

point to have a primary overview before going into downstream analyses. 

 

We first assessed the stability of the fecal samples during their two collection time 

points (three months apart for healthy subjects, one year apart for patients who 

remained in remission or from baseline until they underwent a relapse). For this 

purpose, we analyzed the raw functional mapped gene counts, i.e. without 

functional annotation, and identified differences between groups by performing 

multiple comparison tests, paired (Mann-Whitney) and independent (Wilcoxon) 

tests, as appropriate  (Figure 4.8, Figure 4.9, Figure 4.10). 

 

 

 

Figure 4.8 Between and within comparison of raw functional genes groups 
Mann-Whitney tests for paired data between timepoints. Wilcoxon tests for the rest of unpaired 
comparisons. H: healthy relatives. CD: Crohn’s Disease. TP0: baseline. LTP: last timepoint. UC: 
Ulcerative Colitis. 
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Based on the number of genes (i.e. based on gene count). All groups (Healthy, 

CD and UC) did not present significant differences over time except for the group 

of CD in remission state at baseline (CD.REM.F.REM.TP0; F.REM stands for 

patients at baseline that remain in remission in the future, in last timepoint) and 

that remained in remission after one year (CD.REM.LTP); this group showed a 

moderate significance instability (p=0.0225, Figure 4.9; p=0.0759 trend, Figure 

4.10). Nevertheless, CD and UC patients presented significant lower gene counts 

than their healthy relatives (Figure 4.8, Figure 4.9); this characteristic being more 

pronounced in CD than in UC. Gene counts of CD were also significantly lower 

than those of UC patients in both functional and taxonomical analysis only at 

basal timepoint, and interestingly higher in those patients that remain in remission 

state in both timepoints. 
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Figure 4.9 Between and within comparison of raw functional genes groups including REM/REL states. 
Mann-Whitney tests for paired data between timepoints. Wilcoxon tests for the rest of unpaired comparisons. 
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Figure 4.10 Between and within comparison of raw taxonomical genes groups including REM/REL states. 
Mann-Whitney tests for paired data between timepoints. Wilcoxon tests for the rest of unpaired comparisons. 
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4.2.3.2 Functional and taxonomical annotation analyses 

The following section makes use of what we called filters to find differences 

among groups. A filter refers to the comparison of two groups of samples 

specifically selected from functional or taxonomical profiling tables for testing a 

certain comparison. Therefore, filters allow selecting samples of interest in 

different scenarios of analysis. Each filter is described in detail in Figure 4.23  (at 

the end of this subsection) and is used as reference for the rest of the analyses. 

Please note that filter numbering is only referenced in case the reader needs to 

view in detail a filter, the comparison of interest is already mentioned within the 

paragraph. 

 

Microbiome stability 

The stability of the microbiome along the two timepoints was analyzed by 

comparing healthy relatives of CD and UC patients (n(HR.CD)=14, 

n(HR.UC)=14) during basal and last timepoint (filter F1 and filter F3 respectively, 

Figure 4.23). The groups didn’t show significant differences at any of the 

annotation levels of the functional and taxonomic databases. Same behavior was 

observed in the gene counts analysis (see previous section) which supports the 

hypothesis of a stable microbiome over time.  

 

We further investigated differences in stability (F2) between groups of healthy 

relatives of CD (n=12) and healthy relatives of UC (n=13), but no statistical 

differences could be found among them. Given that relatives of patients did not 

differ, we could combine both healthy groups to increase power (group size; -

TypeII) when performing new filters. 

 

During the analysis of stability in healthy CD subjects (F1), we found that most 

significant dendrograms did classify perfectly individual clusters of paired 

samples between time points at Genus rank and at Orthids EggNOGv4.5 

functional annotation level, as shown in Figure 4.11.  



Chapter 4. Results 
 

97 

 

At genus rank we obtained the highest overall p-values in the lower edges of the 

tree (AU p-values >0.95, at alpha=95%), which highlights a high clustering of the 

two time-point samples of each individual, and therefore suggests a greater  inter-

individual variability than intra-individual variability. A similar finding was obtained 

at the Orthids EggNOGv4.5 level, which also showed same classification of 

nodes (TruePositiveRate(TPR)=100%) at same significant level (p-values>0.95).  

 

A) 
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B) 

 

Figure 4.11 Dendrograms of healthy CD (H.CD) subjects at low taxa and 
functional annotation levels. 
Comparison of hierarchical classifications of healthy CD subjects in both timepoints at low annotation 
levels (Genus rank in the taxonomical analysis(A) and EggNOGv4.5 orthologous genes(B)) with clusters 
at highest AU (approximately unbiased) p-values > 0.95 and significance alpha level 0.05.  

 

As can be clearly appreciated in the dendrogram figures (Figure 4.11 A and B), 

the healthy CD group resulted in two differentiated groups based on  significant 

differences of their microbiome at functional and taxonomical levels. A clinical 

metadata analysis confirmed these differences among ages (t-test, p=0.02; G1: 

mean=58 and s.d.=11.33, G2: mean=39 and s.d. =14.46), weight (t-test, p=0.02; 

G1: mean=65.7 and s.d. =10.44, G2: mean=85 and s.d. =15.6) and BMI (t-test, 

p=0.046; G1: mean=23.5 and s.d. =2.55, G2: mean=28.8 and s.d. =5.8). Hence, 

group1 conformed by samples CD.PN.6, CD.14, CD.16, CD.22, CD.30, CD.34, 

CD.40 can be described by having lower weight or BMI and higher age with 

respect to group2 identified by CD.42, CD.45, CD.PN.2, CD.27, CD.19, CD.49, 

CD.52.  
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The latter group was characterized by a significant enrichment at the family rank 

in Bacteroidaceae (21%, p-value = 0.0009, false discovery rate(FDR) of 0.004, 

Wald test), Lachnospiraceae (7%; p-value = 0.0002, FDR = 0.001, Wald test), 

Porphyromonadaceae (2%; p-value = 0.008, FDR = 0.025, Wald test) and 

decrease in Methanobacteriaceae (2%; p-value < 0.001, FDR < 0.001), using 

abundance tables normalized by DESeq2 (via the median ratio normalization) 

(Love, Huber and Anders, 2014).  

 

Performing a multivariate analysis of relative abundances at all annotation levels 

using PERMANOVA and Bray-Curtis distances, we did not observe significant 

results. However, an ordination analysis of genes using a Principial Component 

analysis (PCA), was able to separate both groups clearly at Phylum (54% 

variance in principal component 1), and Family ranks (21% variance in PC1) in 

the taxonomical analysis, and at orthologous ids annotation level in the functional 

analysis, “orthids” (29% variance in PC1) and “KEGG.orthids” (60% variance). 

 

Conversely, in the analysis of UC healthy subjects we did not find a strong pattern 

of samples classification neither at a functional or taxonomic level, but we found 

same individual classification of samples between timepoints at low levels like 

species (TPR=93%) or orthologous EggNOGv4.5 (TPR=54%) annotation levels 

(AU p-values > 0.95). This suggests that there are no differentiated groups of UC 

healthy subjects, and samples are fully independent one of each other. 

 

This initial analysis suggests that, in general, to perceive differences of clustering 

between samples we should focus more in lower levels (i.e. orthids, 

orthidsEggNOG4.5, KEGG.orthids,KEGG.funcat.L4, species, genus or family) 

whereas to have a broader picture of taxa/func composition we should use higher 

levels of annotation (i.e.  functional categories, KEGG.L1, phylum, class). 

 

Characterization of the active HEALTHY microbiome 
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To characterize the active microbiome of healthy subjects we selected the entire 

group of healthy subjects (n=55) independently of whether they were relatives of 

CD or UC (filter F4, healthy subjects). Count tables were sum-normalized to 

account for library depth and all features mapped without annotation were 

collapsed as “unknown”. To obtain a better overview of patterns within the 

community, we collapsed all relative abundances lower than a 3% cutoff as 

“Other” category. The taxonomic analysis (appendix figures: Figure A 3-A, Figure 

A 3-C and Figure A 3-E) revealed a predominance of Bacteroidetes phylum (38%) 

over Firmicutes (21%), Actinobacteria (3%), Proteobacteria (1%) and 

Euryarchaeota (1%). Bacteroidetes and Firmicutes, which made up 60% of the 

total community, were therefore the most dominant bacterial division. Unmapped 

reads represented 27% (median, IQR=20%) of the data, with high variability 

between individuals ranging from 11% to 96%, highlighting the importance of 

unidentified bacterial organisms yet to discovered. At genus level (appendix 

figures: Figure A 3-B, Figure A 3-D and Figure A 3-F), we found a reduction of 

14% (mean, s.d.=6%) in assigned taxa due to unknown assignments. The gut 

microbiome was primarily composed of Bacteroidetes (34%), gram-negative 

phylum, which included Bacteroides (24%), Prevotella (6%), Parabacteroides 

(3%), and Paraprevotella (1%), among others. These bacteria are well known to 

degrade food such as sugars (saccharolyticts) for the production of energy. The 

second dominant division, Firmicutes, consisted of Blautia (3%), Ruminococcus 

(2%), Faecalibacterium (2%), and Roseburia (1%), among others. Collinsella 

(1%) and Bifidobacterium (1%), two genera from the Actinobacteria phylum and 

Methanobrevibacter (1%), a genus from the Euryarchaeota phylum, accounted 

for lower proportions.  

 

The functional analysis showed less variability and displayed a higher evenly 

distribution. At the functional categories level (EggNOGv3.0) (appendix figures: 

Figure A 4-A, Figure A 4-C Figure A 4-E), we observed a predominance of 

unknown functions (31%, which includes also uninformative categories “[R] 

General function prediction only” (7%) and “[S] Function unknown” (12%)), 

followed by functions related with carbohydrate transport and metabolism (12%), 
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[C] energy production (8%), [J] translation and ribosomal structure (7%), and [E] 

amino acid transport and metabolism (6%). Another classification of functions 

could be done by means of the curated KEGG functional categories at level2 

(appendix figures: Figure A 4-B, Figure A 4-D, Figure A 4-F) that contain a more 

spread-out classification of functions (46 detected functions compared to 25 in 

EggNOGv3). Again, the unknown category predominated (31%, including Poorly 

characterized (2%)), followed by functions with less than 0.3% of relative 

abundance collapsed into the Other (11%) category,  membrane transport (8%), 

translation (7%), energy metabolism (5%) and carbohydrate metabolism (4%).  

 

Nonetheless, a deeper analysis into the microbiome showed that most abundant 

annotation, functional or taxonomical, was not necessary the most prevalent in 

the group of healthy. The common microbiome core of functions and taxa 

describes more accurately those that are necessary for a bacterial survival, 

house-keeping genes, or for the gut ecosystem homeostasis. We, thus, used the 

relative frequencies to compute the most prevalent features at different relative 

abundances cutoffs, ranging from 0.1% to 10%. Then, we plotted a heatmap 

(appendix figures: Figure A 5) using the microbiome R package (Lahti and Shetty, 

2012)  and a minimum prevalence of 50%. This allowed the identification of core 

sets of taxa and functions that were described in detail in the appendix tables 

Table A 1-4, which are in line of previous studies of healthy population (Qin et al., 

2010; Li et al., 2014; Lloyd-Price, Abu-Ali and Huttenhower, 2016; Rinninella et 

al., 2019) 

 

 Healthy and patients 

To assess statistical differences between healthy and patients, we initially joined 

samples from all healthy relatives of CD and UC and compared them against all 

patient samples of CD and UC (i.e. IBD) at remission (REM) and relapse (REL) 

states (filters F4-F5). Additionally, we also explored differences analyzing 

separately CD and UC samples, but comparing, inside each cohort, different 



PhD Thesis – X. Martínez 
 

102 

combinations of sample groups (at basal/last timepoints and REM/REL status) 

(filters F6 to F21). 

 

Comparison of the microbiome of all healthy relatives combined (n=55) with that 

of all IBD patients (n(UC+CD)=42) at baseline (i.e. under remission) and at 

relapse (REL) state (n(IBD.REL)=13) did not show significant differences at any 

functional or taxonomical levels. 

 

Only a less conservative analysis using PERMANOVA with “rlog” transformation 

showed significance in both comparisons (F4, PERMANOVA, R2=9%, 

FDR=0.003; F5, PERMANOVA, R2=5%, FDR=0.003). An ordination analysis at 

high taxonomical and functional annotation levels showed a slight shift between 

both groups (Figure 4.12  A and B respectively, displaying variances >35% in 

their first principal component). 

 

This lack of strong differences between healthy relatives and IBD patients might 

be explained by distinct microbiome compositions between UC and CD patients. 

Earlier studies have usually addressed comparisons between healthy controls 

and IBD patients as a single group. However, as it has been recently reported 

(Pascal et al., 2017), UC microbiome composition resembles more to that of 

healthy than to CD microbiome. Such evidence could be the cause of an eventual 

interference in statistical signification. In order to obtain a stronger signal, we then 

decided to perform the rest of the analysis separating CD and UC. 
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A) B) 

  

Figure 4.12 Principal component analysis (PCA) between healthy and IBD patients 
at remission state (filter F4). 
Dimensionality reduction of taxonomical phylum annotation level (A) and functional categories annotation 
level (B) using the unsupervised database (EggNOGv3). The PCA was computed using Euclidean distances 
calculated from regularized log transformation counts. 

 

All intragroup comparisons (i.e. baseline versus follow-up time point sample; 

healthy versus patients) of patients with healthy controls (filters F6-F13) did not 

show significant differences at any functional or taxonomical annotation level, 

except for the comparison between CD patients and their healthy relatives at 

baseline (filter F9; n(HR.CD.TP0)=14, n(CD.TP0)=14). This comparison 

presented significant results at functional  (EggNOG[v3,v4.5] and KEGG[L1 to 

L4], with PERMANOVA, 20%  R2  30%, FDRs<0.05) and at gene count levels 

(filter F54, Figure 4.8, FDR= 0.0003, Wilcoxon test). 

 

To perform a within-sample composition analysis (alpha-diversity) we calculated 

the Shannon index (diversity), Chao1 richness estimator, and the Pielou’s 

evenness metric on the data annotated with the KEGG-functional database. The 

Shannon index showed a higher diversity (p=0.00097, Wilcoxon test) and a 

higher evenness (Pielous index, p=0.00042, Wilcoxon test) of the microbiome of 

patients under remission compared to healthy controls (Figure 4.13-B).  These 

findings were similar using data annotated with the EggNOG database. However, 

using a taxonomic database, these differences between patients and healthy 

controls were not observed. 
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A) B)  

   

C) 

 

Figure 4.13 Functional beta and alpha diversity analysis between healthy 
relatives of CD and CD patients at basal timepoint. 
CD patients under remission (REMISSION) are shown in blue. In red, healthy relatives of CD (HEALTHY). 
A) Principal component analysis (PCA) using “rlog” normalization as normalized counts to account for 
Euclidean distances. Ellipses groups samples by the 95% confidence of the population mean  in the 
group. B) Boxplots of alpha-diversity measures calculated using sum-normalized counts (scale 0-1), 
Shannon and Pielou’s indexes respectively. P-values are obtained from a Wilcoxon test between groups. 
Red doted line displays the mean of medians between groups. C) Hierarchical clustering (dendrogram) 
of samples computed using relative abundances and Bray-Curtis dissimilarities from orthologous KEGG 
genes. Green values on the edges indicates p-values computed using normal bootstrap resampling. Red 
values are p-values computed with a better approximation to unbiased p-values (Suzuki and Shimodaira, 
2015). In grey, edge numbering. Red box displays the biggest partition in two groups found (k=2). 
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The clustering analysis (PCA) based on “rlog” distances delineated a consistent 

partition between both groups (Figure 4.13-A, PC1 variance = 35%), as well as 

using the non-parametric approach using Bray-curtis distances (NMDS). 

Additionally, using a hierarchical clustering with Bray-curtis distances we 

identified a clear classification into two distinct groups (Figure 4.13-C, see edges 

#25 and #26) with AU p-values  between 75% and 100% in lower edges. Only 

four samples of CD where misclassified within the HR.CD (HEALTHY) group.  

 

The differential expression analysis allowed us to identify 1,951 differentially 

expressed genes (DEG), with an FDR<0.05 and a log2 fold change (log2FC) 

average of 2 (s.d.=1.4) and -2.4 (s.d.=1.2) for up and down regulation 

respectively. Remission CD patients, compared to healthy controls, presented 

several upregulated functions at KEGG-L2 level that included Metabolism of 

other aminoacids (log2FC=0.5, FDR<0.0001), Immune diseases (log2FC=0.5, 

FDR=0.005), Cardiovascular diseases (log2FC=0.45, FDR=0.03) and Nucleotide 

metabolism (log2FC=0.2, FDR=0.02).  

 

On the other hand, other KEGG-L2 functions were found downregulated in CD 

patients such as: Digestive system (log2FC= -1.2, FDR<0.0001), Endocrine 

system (log2FC=-0.5, FDR=0.004), and Cell motiliy (log2FC=-0.4, FDR=0.002).  

The most up/down regulated functions at KEGG-L2 matched with those 

components with higher and lower eigenvalues from the PCA analysis (Figure 

4.13-A) which reinforced the idea that those functions were directly related with 

the differences between groups. We further investigated correlations at clinical 

level, but no correlations were found between clinical data and microbiome at  

KEGG-L2. 

 

Additionally, this analysis also allowed us to identify significant (p-value<0.05) 

metabolic pathways over and under expressed (Table A 7, Figure 4.14). Top five 

most significative pathways were: Flagellar assembly (map02040, p=2.04e-19), 

Bacterial chemotaxis (map02030, p=8.2e-11), Peptidoglycan biosynthesis 
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(map00550, p=1.12e-9), Methane metabolism (map00680, p=7e-9), and Carbon 

metabolism (p=3.4e-8). 

  

 

Figure 4.14 Barplot of most significant KEGG pathways, over and 
underrepresented, between healthy relatives of CD and CD patients (p<0.05) 
Red and blue represent over and under abundance respectively. 

 

Unlike CD, UC patients presented alterations of their active functions only at the 

level of EggNOG orthologous genes (orthidsEggNOG4.5) compared to their 

healthy relatives at baseline (filter F17; n(HR)=13, n(UC)=14; PERMANOVA, 

R2=10%, FDR=0.032). UC patients also presented lower gene count than their 

healthy relatives (filter F56; p=0.029, Wilcoxon test, Figure 4.8). However, in 

alpha-diversity analysis, we did not find differences in diversity nor evenness, but 

only in richness, being lower in UC patients compared to healthy controls (Chao1 

richness estimator, p=0.006, Wilcoxon test). A non-parametric ordination analysis 

(NMDS) using Bray-curtis dissimilarities did not show clear clusterization of 

groups, though we observed a shift between both groups in opposite directions 

in the first component NMDS1 (around 30% of patient and healthy samples were 

confounded). This observation suggests a weak dysbiosis in the UC microbiome. 
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Figure 4.15 NMDS between healthy and patients of UC 
Non-parametric multidimensional scaling (NMDS) graph using Bray-Curtis dissimilarities and orthologous 
EggNOG4.5 annotations as input. Healthy group is displayed in red. UC patients in blue. Ellipses display 
the 95% confidences ellipses for the population based on standard deviation (group’s spread centroid). 

 

Comparing healthy relatives of UC with UC patients we could identify 2,430 and 

2,649 differentially expressed EggNOG orthologous genes up and down 

regulated respectively (FDR<0.05), with a corresponding log2FC average of 2.9 

(s.d.=1.3) and -2.4 (s.d=0.7). These DEG were further annotated to their 

corresponding 25 functional categories (Tatusov, Koonin and Lipman, 1997) for 

better functional comprehension (Figure 4.16, Table A 8). The five functional 

categories that accounted for highest differential expression were: Cell motility 

(“N”), Cell cycle control, cell division, chromosome partitioning (“D”), Translation, 

ribosomal structure and biogenesis (“J”), Amino acid transport and metabolism 

(“E”) and Nucleotide transport and metabolism (“F”). 
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Figure 4.16 Barplot of differentially expressed EggNOG orthologous genes 
(FDR<0.05) of healthy relatives of UC compared to UC patients. 
Red and blue represent over and under abundance respectively. Genes were annotated to their 
corresponding 25 functional categories according to EggNOG specifications. 

 

When comparing CD with UC patients, we observed differences at species level 

either at baseline or at last timepoint (filters F27, F28 respectively; FDRs=0.081). 

Differences were also encountered at many functional (filter F27, at KEGG and 

EggNOG levels; FDRs < 0.05) and at gene count levels (filters F58, F9; Figure 

4.8), with CD presenting a significant lower gene count than UC both at baseline 

and last time point. 
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Differences between samples (beta-diversity) employing 16S rRNA data between 

CD and UC patients were found higher at baseline (patients under remission; 

filter F27; n(CD)=14, n(UC)=14), compared to last timepoint were half of the 

patients underwent a relapse. The scatterplot visualization of the first two 

principal non-parametric multidimensional scaling (MDS) using Bray-curtis 

dissimilarity method (Figure 4.17-A) showed a concentric pattern fitting of UC 

samples, suggesting that microbial composition is not stronger enough to 

separate variances between groups. We also explored the distance-based tree 

to assess hierarchical clustering, resulting in an arrangement of samples that 

suggested a classification of CD and UC groups. An additional analysis of the 

alpha-diversity showed that diversity in UC patients was higher than CD 

(Shannon index, p=0.027, Wilcoxon test) (Figure 4.17-B) 

 

A) B) 

  

Figure 4.17 Taxonomical alpha and beta diversity plots between CD and UC 
patients at basal timepoint. 
Comparison of 16S rRNA species between CD and UC at basal timepoint (filter F27; n(CD)=14, n(UC)=14). 
CD patients are shown in red. UC patients in blue. A) Non-parametric multidimensional scaling using Bray-
curtis dissimilarities. Ellipses display the 95% confidences ellipses for the population based on standard 
deviation (group’s spread centroid). B) Boxplot of Shanon diversity indices. Red dotted line shows the mean 
of medians in both groups. Significance obtained from Wilcoxon test between groups. 

 

At baseline, the most upgregulated taxa in CD patients was Fusobacterium genus 

(log2FC=5.3, FDR=0.0003, Wald test) (Figure 4.18). This microbe has been 
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previously observed in earlier studies as predominant in CD patients (Pascal et 

al., 2017; Schirmer et al., 2019). Additionally, we found a strong correlation of 

Fusobacterium with the gene CARD9.rs4077515 (rho=0.8, FDR<0.05). Other 

enriched species found were: Ruminococcus gnavus, identified as a prominent 

species in IBD (Hall et al., 2017; Lloyd-Price et al., 2019; Schirmer et al., 2019), 

Blautia producta, associated with ileal CD (Walters, Xu and Knight, 2014), 

Eubacterium dolichum, abundant in non-high fat diet (Brown et al., 2012; Liu, Qin 

and Wang, 2019). We also found a significant increase of Bacteroides, Dorea 

and Prevotella (significant only in the last timepoint, where remission and relapse 

are mixed; log2FC=5.2, FDR<0.0001, Wald test) genera. Dorea  and Bacteroides 

have been observed in healthy subjects (Rinninella et al., 2019), whereas 

Prevotella  has recently been found increased in IBD (Lo Presti et al., 2019). 

 

Conversely, a reduction of genus Eubacterium, Sarcina, Slackia, cc_115, 

Anaerostipes, was identified as part of CD signature (Pascal et al., 2017), 

Bacillus, and two uncultured Paraprevotellaceae and Ruminococcaceae families 

were found in CD patients compared to healthy controls.  
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Figure 4.18 Differentially expressed taxonomy between UC and CD at basal 
timepoint 
Red indicates over-expression, blue under-expression. Significance obtained at FDR<0.05 using the Wald 
test. Taxa annotated at family (f__), genus (g__) and species (s__) ranks. 

 

In the last timepoint (filter F28) where half of the patients of CD and UC developed 

a relapse state, we encountered a depletion of the genus Methanobrevibacter 

(log2FC= -5.1, FDR=0.0001, Wald test) and the family Christensenellaceae 

(log2FC=-4.9, FDR=0.003, Wald test) that were identified as part of the CD 

signature (Pascal et al., 2017). There were also two differentially low abundant 

species linked with depletion in IBD in earlier studies (Hall et al., 2017; Lloyd-

Price et al., 2019): Blautia obeum and Faecalibacterium prausnitzii (known to be 

a butyrate producer (Kostic, Xavier and Gevers, 2014)) respectively. The most 

downregulated was an unclassified member of the family Peptococcaceae 

(log2FC= -7.1, FDR=0.00016, Wald test) and was found upregulated in UC 

patients in another IBD study (Van Der Giessen et al., 2019). Furthermore, we 

also found a positive correlation of Ruminococcus and and uncultered lineage of 

the RF39 order with copies of Akkermansia (rho=1, FDR<0.05), and a negative 

correlation with Blautia obeum (rho=-1, FDR<0.05). 
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Figure 4.19 Differentially expressed taxonomy between UC and CD at last 
timepoint. 
Red indicates over-expression, blue under-expression. Significance obtained at FDR<0.05 using the Wald 
test. Taxa annotated at family (f__), genus (g__) and species (s__) ranks. 

 

At one of the lowest functional annotation KEGG levels, functional 

funcatKEGG.L4, we observed stronger differences between UC and CD patients 

at baseline. The non-parametric MDS ordination using Bray-Curtis dissimilarities 

showed significance in the non-parametric multivariate test (filter F27; 

PERMANOVA, R2=16%, FDR=0.014). A similar approach using the “rlog” 

transformation and Euclidean distances supported also significance at this level, 

capturing a 21% of variance in the first component (Figure 4.20-A). A sample to 

sample heatmap of Euclidean distances using Ward.D2 as agglomeration 

method for linking and “rlog” counts transformation as input, showed a 

clusterization of CD and UC samples, supported by the hierarchical clustering 

analysis displayed on top with same distances (Figure 4.20-B). 
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A) B) 

  

  

Figure 4.20 Beta diversity functional analysis between CD and UC patients at basal 
timepoint. 
A) Principal component analysis (PCA) of regularized-log counts using Euclidean distances. UC patients in 
red. In blue CD patients. B) Heatmap of sample to sample distances from PCA plot. Yellow indicates higher 
distances between samples, black means closer. Most distant samples are clearly displayed in the cross, 
that separates groups, CD patients are mostly placed on the x-axis left, whereas UC are placed on the right. 
On top, dendrogram computed from same distances used in PCA and Heatmap, showing the hierarchical 
clustering. 

 

Functional alpha-diversity indices showed lower diversity in UC patients 

compared to UC (Shannon diversity index, p=0.016, Wilcoxon test), the opposite 

in taxonomical analyses, where higher diversity is an indicator of a healthy 

microbiome. The Pielou’s evenness index was also found significant (p=0.014, 

Wilcoxon test), suggesting that probably differences are not at richness level, but 

related with evenness. 

 

 

Figure 4.21 Functional alpha diversity indices of CD and UC patients at baseline. 
CD is shown in red, UC in blue. Boxplots of Shannon diversity and PIelous’ evenness indices obtained. 
Significance shown from a Wilcoxon test. Red line indicates the mean of medians between groups. 
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The comparison of CD and UC allowed us the identification of 690 and 438 up 

and down regulated genes (FDR<0.05) with a lower log fold change compared to 

previous comparisons (Up, log2FC mean=1.9 (s.d.=1.11); Down, log2FC 

mean=1.6 (s.d.=0.6)).In CD patients we found differentially expressed KEGG 

orthologous genes that allowed the detection of 34 pathways over or under 

abundant (Figure 4.22,Table A 9). The top five most significant were: Flagellar 

assembly (map02040), Bacterial chemotaxis (map02030), Peptidoglycan 

biosynthesis (map00550), Methane metabolism (map00680), and Carbon 

metabolism (map01200). 

 

 

Figure 4.22 Barplot of most significant KEGG pathways, over and 
underrepresented, between UC and CD patients (p<0.05) 
Red and blue represent over and under abundance respectively. 

 

In other comparisons between CD and UC but including their corresponding 

healthy relatives in the comparison group, we observed differences between CD 

and UC, but only at functional levels and at low significance (filters F23, F25,F26; 

FDRs<0.07). 
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We did not observe significant alterations associated with severity of the disease, 

which may be attributed to the low number of relapse subjects (n=7 in each 

disease group). However, in the comparison between relapse and remission 

samples of UC patients we observed a weak significance (filter F34; 

PERMANOVA, R2=8.3%, FDR=0.075) at functional level (KEGG-L4). 
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Figure 4.23 Reference of filters used for comparisons and Adonis test significance. 
TP0 initial timepoint, LTP,last timepoint. First blue row, healthy CD subjects. Second blue row healthy UC subjects. Red row, CD patients; Yellow row, UC patients. Colored 
cells with numbers indicate the number of subjects taken in that set (green and purple cells are used to indicate groups used in the comparison). Statistical significance is 
shown for Adonis using sum-normalized counts and Bray-Curtis dissimilarities, and using “rlog” transformed Euclidean distances. GeneCounts comparisons from Figure 
4.9 and Figure 4.10 are also shown. Statistical significance level defined as:  * is <=0,05 (<=5%) ** is <=0,01 (<=1%) *** is <=0,001 (<=0.1%) 
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4.2.4 MetaTrans evaluation with HUMAnN2 

Recently, in 2018, a new functional profiling tool developed by Eric Franzosa  

(Franzosa et al., 2018) at the Huttenhower Lab (Biostatistics Department at the 

Harvard T.H. Chan School of Public Health) was published with the contribution 

of many top researchers in the metagenomics field such as J. Gregory Caporaso 

(Caporaso et al., 2010), Rob Knight (Knight et al., 2012), Curtis Huttenhower 

(Huttenhower et al., 2012) and Nicola Segata (Segata et al., 2011). This tool, 

namely HMP Unified Metabolic Analysis Network 2, is referred to as HUMAnN2. 

It is a pipeline for efficiently and accurately profiling the presence/absence and 

abundance of microbial pathways in a community from metagenomic or 

metatranscriptomic sequencing data and aims at describing the metabolic 

potential of a microbial community and its members.  

 

This tool is unique as it provides as output not only a feature quantification (i.e. 

gene families, pathways, etc.) of the reads, but also provides a stratification for 

each feature which includes the taxonomical contribution; this is what they call 

“contributional diversity”. 

 

HUMAnN2 performs the analysis of DNA or RNA in two tiers. Briefly, the first tier 

maps reads against a taxonomical database with marker genes (~1M unique 

clade-specific marker genes, identified from ~13K prokaryote genomes among 

others) to classify them into identified well-known organisms. This task is 

performed using MetaPhlan2 (Huttenhower et al., 2015). Once the microbial 

community is pinpointed, the reads are then mapped to a custom functional 

pangenome database named ChocoPhlan which represents all genomes used in 

MetaPhlan2 but annotated functionally using the curated comprehensive protein 

database UniRef50/90 (Suzek et al., 2015). The remaining unmapped reads are 

later annotated using directly the UniRef50/90 protein database in a second tier. 
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The UniProt Reference Clusters databases (UniRef) provides clustered sets of 

sequences to obtain complete coverage of sequence space at several resolutions 

(100%, 90% and 50% identity) while hiding redundant sequences. UniRef90 and 

UniRef50 are built by clustering UniRef100 sequences at the 90% or 50% 

sequence identity levels respectively (Suzek et al., 2015; Uniprot Consortium, 

2019).  

 

We performed a comparison of MetaTrans with HUMAnN2 to evaluate the 

differences. Eight randomly selected samples collected at basal timepoint from 

healthy subjects (n = 4) and Crohn’s disease (CD; n = 4) patients were used for 

this analysis. 

The samples were processed in HUMAnN2 using multithreading (30 threads) in 

a dedicated server with 16 CPU cores and 128GiB of RAM. Each sample 

produced in average 30GiB (s.d.=14GiB) of data and consumed up to 16GiB in 

average (SD=8GiB) of RSS (resident set size) memory. 

 

To fairly compare the functional annotation with MetaTrans (MT) output, we had 

to format the MH14 (MetaHIT-2014 or MH14) human gut gene catalog (Li et al., 

2014) to include it in the HUMAnN2 (HU) pipeline. We then conducted the 

comparison by processing the eight samples carrying out two types of analysis: 

• Functional and taxonomical analysis (abbreviated “FT” analysis) 

• Only functional analysis (abbreviated “F” analysis)  

 

In both cases using these functional reference databases of genes and proteins 

(see Figure 4.24): 

o Gene database: MetaHit14 

o Protein database at 50% identity: UniRef50 (higher sensitivity) 

o Protein database at 90% identity: UniRef90 (higher specificity) 
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Figure 4.24 Comparison tools and database scheme. 
Simple scheme summarizing the tools and databases used in the comparison between HUMAnN2 and 
MetaTrans. Protein database: UniRef50/90. Gene catalog database: MetaHIT14. Curated functional 
annotation database: KEGG Orthology database (KO) (Kanehisa and Goto, 2000; Kanehisa et al., 2017, 
2019). Non-curated and automated annotation database: EggNOG orthologous database (Huerta-Cepas 
et al., 2016). 

 

The percentage of mapping rates in HUMAnN2 outperformed MetaTrans by 16% 

(“MT.MH14” (mean=17.337e+06, and s.d.=7.493e+06) vs “HU.F.MH14” (mean= 

23.173e+06, and s.d. =10.072e+06)) in the functional analysis, and roughly 20% 

(“HU.FT.MH14” (mean=25.498e+06, and s.d. =10.399e+06)) when performing 

an initial taxonomical assignment followed by a functional assignment (see Figure 

4.25). In both cases the maximum achievement was obtained when using the 

MH14 gene catalog database.  

 

We then conducted significance tests using the R package “ggstatsplot” (Patil 

and Powell, 2018). The Friedman test was used to detect significant differences 

between the approaches (p-value < 0.001). The Figure 4.25 illustrates the high 

differences in the percentage of mapping rates across configurations, which is 

appreciated by an effect size (W Kendall), close to one. The post-hoc pairwise 

tests revealed that all comparisons were highly significant (p-value < 0.001) with 
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the exception of those marked as “ns” (non-significant). The significance shows 

a stratification between three differentiated groups, namely those performing an 

initial taxonomical assignment using more sensitive databases (“HU.FT.MH14”, 

“HU.FT.UniRef50”), those using only a functional assignment but using sensitive 

databases or performing taxonomical assignment but using high specific 

database (“HU.F.MH14”, “HU.F.UniRef50”, “HU.FT.UniRef90”), and finally those 

using higher specific databases or higher specific mapping settings 

(“HU.F.UniRef90”, “MT.MH14”). 

 

 

Figure 4.25 Mapping rates. 
Boxplots and Violin plots of percent mapping rates. Significance: ns: non-significant, all pairwise not 
displayed have significance at level ***: p<=.001. Pairwise comparisons Durbin-Conover post-hoc test; 
Adjustment (p-value) Benjamini& Hochberg. Results displayed in subtitle from “Friedman rank sum test 

[2]” (>=3 groups, paired, nonparametric). Red dots and red line show the mean of each group and the 
connection between them. 

 

When we looked at the mean of genes recovered per sample, we observed a 

two-fold increase(x2.03) in HUMAnN2 at the functional analysis level using the 

MetaHIT14 gene catalog (“HU.F.MH14”, “HU.FT.MH14”) compared to MetaTrans 

(“MT.MH14”). Other settings using UniRef protein database achieved similar or a 

smaller number of genes than MetaTrans (Figure 4.26). 
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Figure 4.26 Mean of identified genes per sample. 
Bars display means per sample. Whisker lines indicate standard deviation from the mean. Values next to 
mean values on top of bars indicate the fold change with respect to “MT.MH14” configuration. Dotted 
black line indicates the grand mean. 

 

However, the number of unique genes recovered per configuration showed a 

decrease in fold-change difference (x0.69) between MetaTrans (“MT.MH14”) and 

HUMAnN2 (“HU.F.MH14”, “HU.FT.MH14”). This difference represents an 

increase of 30% in the number of unique genes recovered by HUMAnN2 when 

compared to MetaTrans. Interestingly, the number of unique genes recovered by 

HUMAnN2 performing the taxonomical analysis (“HU.FT.MH14”) was less than 

without performing it (“HU.F.MH14”) (Figure 4.27).  

 

 

Figure 4.27 Number of unique genes recovered in each configuration. 
Bars display the number of total unique genes per configuration. Values next to total values on top of bars 
indicate the fold change with respect to “MT.MH14” configuration. Dotted black line indicates the mean. 

 

One of the main issues encountered when performing the functional analysis was 

the percentage of functionally annotated genes. As Figure 4.28-A and Figure 

4.28-B display, the annotation percentage ranged from 73-10% in KEGG 
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(Kanehisa and Goto, 2000; Kanehisa et al., 2017, 2019)(Figure 4.28-A) and from 

78-31% in EggNOG (Huerta-Cepas et al., 2016) (Figure 4.28-B). The difference 

in percentage of functionally known genes/proteins database is mainly driven by 

two differentiated groups in both figures, those that use the MetaHIT14 gene 

catalog and those using UniRef. We assessed statistically this difference with a 

Mann-Whitney U test to compare two independent non-parametric groups. The 

test indicated that the difference between the two groups was significant at 5% 

significance level (U=0, p-value = 0.05) in Figure 4.28-A, and  almost significant 

(U=0, p-value = 0.057) in.Figure 4.28-B. The mean of percentage growth between 

the two groups when using the MetaHIT14 gene catalog was 48% in Figure 4.28-

A and 33.6% in Figure 4.28-B.The difference observed in HUMAnN2 with respect 

to MetaTrans reflects and increase of the 13% and 24% when performing the 

initial taxonomical mapping in the case of the KEGG annotation database (Figure 

4.28), and an increase of the 15% and 20% when performing the initial 

taxonomical mapping in the case of the EggNOG annotation database (Figure 

4.28-B). 

 

A B 

 

Figure 4.28 Known functional annotation. 
Bars display the percentage of annotated functions per configuration. Dotted black line indicates the 
mean. A Annotation in the curated KEGG Orthology database (KO). B Annotation in the automated (non-
curated) EggNOG orthologous database. 

 

The analysis of the known annotated functions of the genes or proteins in the 

annotation databases highlights the lack of current annotation of almost half of 

entries in each database. The identification of genes or proteins is, therefore, not 
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linked necessary to its known function. This fact reduces much more the pool of 

potential functions that are available to be identified in samples. 

 

 

Figure 4.29 Known/Unknown functional annotation percentages in gene and 
protein databases. 
Unknown functions are considered all annotations with the “unknown” label in the MetaHIT14 gene 
catalog, or with “uncharacterized protein” in the UniRef protein database. 

 

The Figure 4.30, illustrates the runtime improvement achieved in HUMAnN2 

compared to MetaTrans. The most comparable configuration to MetaTrans, 

according to the analysis type and mapping database used, is the “HU.F.MH14”. 

It obtained a decrease of x2.50 fold in terms of runtime, whereas when compared 

to “HU.FT.MH14”, which performed an initial taxonomical assignment, the 

runtime dropped to a fold change of almost four, x3.89.  

 

To further analyze the difference between HUMAnN2 and MetaTrans, we 

assessed the comparison at different annotation levels depending on the 

functional reference database used. A non-parametric analysis (N=8) was 

conducted by means of Spearman's rank correlation coefficient () in each 

comparison. We considered only those configurations where only a functional 

analysis was performed (i.e. “HU.F.MH14”, “HU.F.UniRef90”, “HU.F.UniRef50”), 

and were compared against MetaTrans (“MT.MH14”). Matrices of  values 

obtained for each comparison were represented in heatmaps by mapping  

values (1 to.-1) to colors (1-blue, highest positive correlation, 0-white, no 
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correlation, -1-red, highest negative correlation), and p-values were calculated by 

each coefficient value. Cells were marked with a cross if p-values were not 

significant (p-value<0.05) (see Table 8). 

 

 

Figure 4.30 Runtime fold changes. 
Bars display the runtime fold-change with respect to MetaTrans (“MT.MH14”). Dotted black line 
indicates the mean 

 

The Table 8 depicts all possible annotation configurations (rows) by each 

functional analysis configuration (columns) compared to MetaTrans functional 

analysis. The major patterns of correlation were yield in the HUMAnN2 

configuration using the same functional annotation database (“HU.F.MH14”) as 

MetaTrans, i.e. MetaHIT14 column, where diagonals (comparison of same 

sample) displayed always highest positive correlation values. In general, as the 

annotation level diminish correlation values decrease, this effect is caused by the 

fact that lower functional annotations (either in KEGG or EggNOG) became more 

specific and, therefore, differences were sharpened. When we compared 

between the three configurations, specificity was higher in the protein database 

UniRef90, where correlation values tended to be lower, and diagonals devise 

smoother correlation values. Overall comparisons of healthy to healthy samples 

show higher correlation values than comparisons of patients or healthy to 

patients.  

 

A particular case was observed in the EggNOG annotation database at 

orthologous genes id level (“EggNOG-OG.id”) when comparing between different 
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functional protein databases (“UniRef50”, “UniRef90”). The low and negative 

correlation values (ranging between 0.1    -0.3) indicated a particularity when 

performing annotation of proteins to EggNOG non-supervised orthologous 

groups (NOGs), due to the difference version of EggNOG used in HUMAnN2 and 

MetaHIT14, whereas in the former they used EggNOGv4.5, in MetaHIT14 the  

version 3.0 was used. This difference implied a change in the NOGs ids format, 

and while functions were comparable at higher level (functional categories 

(Tatusov, Koonin and Lipman, 1997), “EggNOG-OG.funcat”) they were not at 

gene orthologous level.(“id” level). Thus, while one sample in HUMAnN2 has 

annotation values for one particular id, the same sample in MetaTrans has zero 

abundance, which explains the negative correlations observed. Therefore, in 

order to remove the bias in annotations, we removed non-common identifiers 

(“EggNOG-OG.shared.ids” row), which generated high positive correlations 

(between 0.8 and 0.9) as expected. 

 

Therefore, we concluded that: 

1. Functional outputs using MetaTrans could be considered comparable to 

HUMAnN at different levels : EggNOG-OG.ids, EggNOG-OG.funcat, 

KEGG-KO.L1 to KEGG-KO.L3, since the analyses showed a correlation 

>= 0.8. 

 

2. At lower functional levels such as KEGG-KO.id and KEGG-KO.L4, 

correlations were between 0.6 and 0.7, therefore interpretations of the 

functional analysis should be taken with caution. 
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Table 8 Heatmaps of correlation matrices. 

 HU.F.UniRef50 HU.F.UniRef90 HU.F.MH14 

EggNOG-

OG.id 

   

EggNOG-

OG.shared.id

s 

  

NA 

EggNOG-

OG.funcat 

   

KEGG-KO.id 

   

KEGG-KO.L1 
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 HU.F.UniRef50 HU.F.UniRef90 HU.F.MH14 

KEGG-KO.L2 

   

KEGG-KO.L3 

   

KEGG-KO.L4 

   
Column and row headers of this table indicate, the HUMAnN2 configurations used to compare against 
MetaTrans and the functional annotation database level that is being compared, respectively. Within 
correlation matrices, rows are HUMAnN2 samples, columns samples analyzed in MetaTrans. Cells are 

marked with a cross if found not significant (p-value < 0.05). Correlation coefficient values () are displayed 
in a color scale (blue = 1, maximum correlation; red = -1, maximum negative correlation; white = 0, no 
correlation). Same scale is applied to cell color squares, higher correlation, bigger square size (either positive 
or negative correlation). 

 

Interestingly, when comparing normalized abundances of functional categories 

(Tatusov, Koonin and Lipman, 1997) from HUMAnN2 using the MetaHIT14 gene 

catalog (“HU.F.MH14”) and MetaTrans, displayed very similar proportions of 

functional assignment (Figure 4.31). This result further validates the use of 

MetaTrans at functional categories level. 
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Figure 4.31 Percent stacked bar chart of EggNOG functional categories 
Proportion of abundances at EggNOG functional categories annotation level from different samples 
analyzed in HUMAnN2 (“HU.F.MH14”) and MetaTrans (“MT.MH14”) using the MetaHIT14 gene catalog 
database. 

 

Assessment based on previously described metrics between all configurations 

demonstrate a superior performance in those configurations mapping against 

MetaHIT14 gene catalog, followed by configurations performing a pre-

taxonomical mapping using UniRef protein database and finally configurations 

performing functional assignment with UniRef. Additionally, assignments using 

UniRef database have slightly higher assignment and annotation with the UniRef-

50, as expected due to the higher sensitivity of this database (Figure 4.32). 
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Figure 4.32 Radar chart summarizing configuration characteristics. 
Summary radar chart reflecting, per configuration, the mean of percentage mapping rates, the mean of 
genes, number of unique genes, proportion of annotated functions in KEGG and EggNOG databases, 
and runtime fold-changes compared with MetaTrans as baseline. Metrics that do not represent 
proportions were scaled up to get relatives values by considering the minimum and maximum values as 
the lower and upper bound in the relative values. The further towards the edge of the spoke a point 
reaches, the higher mapping rates. 
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5 General discussion 

The objectives of this thesis were to address two main aspects. First, the 

development of a bioinformatics pipeline to analyze microbial cDNA sequences 

and, second, to apply this tool to characterize the active microbiome of healthy 

individuals and patients with IBD. 

 

At the time we started this dissertation, we found very few published works 

handling microbial cDNA data obtained from total microbial RNA extracted from 

fecal samples. Most of the published tools addressed the cDNA obtained from 

Eukaryotic cells and therefore, were not appropriate to perform microbial 

taxonomic and functional analyses.  Further, of the few tools we found, like 

HUMAnN (Abubucker et al., 2012), one of the main issues we found was how to 

align roughly 25 million of paired-reads per sample in a reasonable time using 

free aligners (NCBI BLAST was very slow, and the other proposed options were 

paid-alternatives). Other metatranscriptomic analysis pipelines available were 

only available online, like MG-RAST (Meyer et al., 2008) limiting our control over 

the samples and their analysis. Based on a few papers such as Gosalbes et al. 

(Gosalbes et al., 2011) and Leimena et al (Leimena et al., 2013), where  they 

provided their analysis workflow in more or less detail, we designed and 

implemented a bioinformatics pipeline that overcame the aforementioned main 

issues, and focused on the human gut microbiome (Li et al., 2014). 

 

We used two human cohorts to validate (IBS cohort) and to apply (IBD cohort) 

our pipeline. 

 

The results of the 16S rRNA analysis, which characterizes active bacteria, 

contrasted with those of 16S rDNA, thereby indicating that not all microorganisms 

identified at the DNA level play an active role in the gut community. Furthermore, 

active microbes such as Bifidobacteriaceae showed an increase in relative 

abundance as an effect of a flatulogenic/high fiber diet, which supports the link 
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between a fiber-enriched diet and saccharolytic bacteria. The functional analysis 

indicated that a flatulogenic diet significantly up-regulated and down-regulated 

several metabolic pathways. In order to confirm these results, a greater sample 

size may be required in future studies. Unexpectedly, in contrast to a strict fiber 

diet, a flatulogenic diet, which increases the volume of intestinal gas in both 

subjects complaining of excessive gas production (Manichanh et al., 2013), 

appeared to decrease several categories of functions that are involved in 

carbohydrate or energy production. Finally, the observed correlation between 

volume of gas produced and Bifidobacterium longum and several functions and 

categories of functions could be compared in future studies involving strict plant-

based or animal-based diet. For future studies, we recommend combining DNA-

seq with RNA-seq in order to normalize RNA to DNA (i.e. transcripts per gene) 

when calculating differential expression between samples. Furthermore, in order 

to recover both 16S rRNA and mRNA sequences in a non-biased manner and to 

increase the number of potential mRNA reads at a reasonable cost, we 

recommend using the same total RNA-extracted sample in two separate 

experiments: 1) a rRNA removal procedure to enrich mRNA sequences and 

sequencing at a coverage depth of 10–20 million reads per sample; and 2) a 

sequencing step with a much lower coverage (100,000 reads per sample) without 

the rRNA removal step to analyze the active microbial composition in an unbiased 

manner. We then, could implement, and validate a metatranscriptomic pipeline 

by making use of the multi-threading capacity of modern computers and then 

validated its functionality by comparing different methods for taxonomy profiling, 

by analyzing synthetic mock communities, by analyzing published RNA-seq data 

and by generating RNA-seq data from fecal samples. The pipeline was 

implemented on the basis of a constantly changing environment, thus offering the 

possibility to easily integrate third-party tools, improve parts of the pipeline or 

change entire modules as long as the input/output folder structure is preserved. 

The pipeline is available and downloadable from the following webpage: 

www.metatrans.org, which also provides a tutorial for users. 

 

http://www.metatrans.org/
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Along the course of this dissertation, the pipeline has been evolving and adapting 

to new needs according to software updates and analysis requirements. Though 

the maintenances of the tool were possible up to some extent, we were able to 

yet re-validate our tool with a recent published metatatranscriptomics analysis 

tool from the Huttenhower laboratories, HUMAnN2 (Franzosa et al., 2018). The 

comparisons showed that regardless of the runtimes, improved by several folds 

in HUMAnN2, the results we obtained from the evaluation showed very close 

results in microbiome composition and functional database correlations. 

Interestingly, we found that using the MetaHIT14 gene catalog we were able to 

recover more functional annotations than using their default databases. Despite 

the improvement in the number of aligned reads in HUMAnN2, the number of 

unknown reads remained high, roughly 30%. Probably, this ratio is still higher 

since we don’t have a current gold standard to assess the quality of assignments. 

Therefore, it is a matter to set a tradeoff between the sensitivity and specificity by 

choosing a higher or less similarity cut-off in sequence aligners. In MetaTrans we 

used higher strict parameters in sequence similarity when mapping reads to 

databases compared to other pipelines using same sequence aligner (SOAP2, 

(Li et al., 2009)), like MOCAT (Kultima et al., 2016). Using their aligner 

parameters, we recovered around 15% more assignments, illustrating the 

importance of the bias produced when conducting sequence similarities to 

acquire annotation of reads. Besides, the percentage of unknown functions in 

protein or gene databases remains quite high between 40% and 60%.  

 

Although HUMAnN2 paper was published in 2018, we noticed that the default 

UniRef database version used in HUMANN2 was created four years ago 

(v2014_07), currently, UniRef has a new release (v2019_02) that represents 4-

fold the number of annotated proteins compared to the default database. Hence, 

we recommend updating UniRef to the new version before using the tool. 

Unfortunately, time restrictions did not allow us to do a re-analysis of all samples 

with this tool for the time of this writing. Moreover, we detected that the way the 

feature counts summarization were normalized, did not allow us to use those 

tables in downstream differential expression analysis tools like DESeq2 (Love, 
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Huber and Anders, 2014) or EdgeR (Robinson, McCarthy and Smyth, 2009), 

since these tools based on a negative binomial model distribution are better 

suited for raw counts.  

 

After the development and validation of the pipeline, the metatranscriptomic 

analysis applied to IBD yield interesting results at RNA level that were 

comparable to previous publications (Imhann et al., 2018; Lloyd-Price et al., 

2019).  

 

Comparisons of healthy relative subjects of CD and UC could not determine any 

minimal difference between them at any of the timepoints, nor at functional or 

taxonomical or gene count analysis. These findings suggest that the two groups 

of healthy controls could be pooled to increase statistical power for further 

comparisons with each patient group. Comparing healthy controls with IBD 

patients without separating UC from CD did not show significant differences (at 

16S rRNA and mRNA levels), these findings are in agreement with a recent 

previous work (Lloyd-Price et al., 2019). 

 

Using 16S rRNA data, we identified a significant difference between UC and CD, 

indicating that these two disease phenotypes presented a different active 

microbial community composition. In a previous work, using 16S rDNA sequence 

data on a larger IBD cohort, our group identified a microbial signature for CD 

(Pascal et al., 2017). Our findings, at the rRNA level, could detect part of this 

microbial signature at baseline and the last timepoint, where half of the patients 

evolved to relapse. For instance, our rRNA analysis pointed out that the 

Fusobacterium genus, also one of the most relevant genus found in the Crohn’s 

signature at the DNA level, was one of the most over-expressed (up to 5-6 log2FC 

times higher) in CD patients either at baseline or at the last timepoint in  

comparison with UC. Furthermore, this genus was strongly correlated (rho=0.8, 

FDR<0.05) with the CARD9.rs4077515 gene, which was found associated with 

CD and UC in a previous publication (Zhernakova et al., 2008). Interestingly, the 
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CARD9 gene was identified as an intestinal epithelial cell restituent in mice (Sokol 

et al., 2013), but not its SNP variant CARD9.rs4077515, which behaves as pro-

inflammatory, and was established as a risk factor in the development of ileal CD 

(Zhong et al., 2018, 2019) .  

 

Three of the lower abundant genera identified at DNA level in the Crohn’s  

microbial signature, were also relevant at RNA level: Anaerostipes (a butyrate 

producer, only detected at basal comparison), Methanobrevibacter (an obligate 

anaerobe methane producer), Faecalibacterium prausnitzii (a butyrate producer,  

critical short chain fatty acid in maintaining homeostasis in the colon) and 

members of the family Christensenellaceae. Interestingly, the last three genera 

were found only at the last time point, when the disease was more severe, 

suggesting that those actors might play an important role in disease severity.  

 

Additionally, Ruminococus gnavus, a key actor in both UC and CD as described 

in previous studies (Henke et al., 2019; Lloyd-Price et al., 2019; Yilmaz et al., 

2019), was found, in our study using 16S rRNA data, in higher abundance only 

in CD patients (3.6 log2FC times) at both baseline and last-time point, but not in 

UC patients. Yilmaz et al. also pointed Blautia and Faecalibacterium as key 

players in IBD. We found two members of Blautia differentially expressed in our 

analyses: Blautia producta was significantly upregulated at baseline, whereas 

Blautia obeum was found downregulated in the last timepoint. It is also worth 

mentioning that we observed a strong positive association between 

Ruminococcus and Akkermansia, found decreased many fold in CD and UC (Png 

et al., 2010).  

 

Two bacterial groups, at the family level, Paraprevotellaceae and 

Peptococcaceae, were found strongly downregulated in CD, at baseline and at 

the last time-point, respectively. Peptococcaceae was also negatively correlated 

with IL-1β, a proinflammatory cytokine (Regner et al., 2018). Intriguingly, a 

comparison with samples metadata uncovered that only all non-smokers and one 



 

138 
 

ex-smoker UC patients had abundance of Peptococcaceae, and the patient with 

the highest abundance had the longest duration of the disease (23 years), and 

evolved to relapse during the course of the follow-up. Finally, Peptococcaceae 

as well as Christensenellaceae, were significantly decreased (FDR<0.05) in a 

broad study comparing 582 healthy controls and 313 patients with clinical 

phenotype of IBD (Imhann et al., 2018).  

 

The alpha-diversity analysis (Shannon index) in UC and CD patients based 16S 

rRNA data, showed concordance with the 16S rDNA analyses performed in 

previous literature, where bacterial diversity was significantly lower in CD. This 

finding validated, at 16S rRNA level, previous discoveries regarding the loss of 

active microbial species in CD compared to non-CD subjects. 

 

The functional analysis of the putative mRNA from expressed transcripts, showed 

higher differences between healthy relatives (HR) of CD and UC-CD than 

differences   between HR-UC. The latter only exhibited differences when using 

the unsupervised functional database EggNOG. The annotation of genes at 

functional categories allowed us to identify four major functions capturing the 

higher differential expression (log2FC>1, FDR<0.05) in UC: Cell motility ([N]; 

downregulated), Cell cycle control, cell division, chromosome partitioning ([D]; 

upregulated), Translation, ribosomal structure and biogenesis ([J]; upregulated) 

and unknown functions (downregulated). These functions suggest a reduction in 

cell motility, while cell replication and protein synthesis activity were being carried 

out. Oddly, functions related to carbohydrate metabolism ([G]), known to produce 

short chain fatty acids (SCFA) (Venegas et al., 2019), were not reduced (Lloyd-

Price et al., 2019; Venegas et al., 2019) but slightly increased (log2FC=0.5). 

Altogether, these findings might emphasize that differences between UC and 

healthy subjects are weak. 

 

A more significant and consistent functional difference was observed when 

analyzing patients with CD versus non-CD individuals. Notably, in the comparison 
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with healthy relatives, we identified 10 out of 33 pathways differentially expressed 

(p-value<0.05), in agreement with previous findings (Imhann et al., 2018), were 

the authors performed similar comparisons using a much larger cohort of patients 

and 16SrDNA sequence data for bacterial detection and functional prediction. 

The main relevant encoding functions were related to Metabolism and Cell 

motility, though two of them were related to Genetic information processing (tRNA 

and DNA replication). Interestingly, one pathway associated with the production 

of short-chain fatty acids (map00540; propanoate or propionate, contributes to 

glucose synthesis) was found significantly decreased. SCFA are crucial 

metabolites for the digestion and homeostasis of the gastrointestinal tract, and 

are known to have protective effects on intestinal barrier (Scheppach, 1994; 

Vinolo et al., 2011; Liu et al., 2012; Feng et al., 2018; Venegas et al., 2019). 

However, levels of Lipopolysaccharides (LPS), known to be inhibited by SCFA 

(Li et al., 2018) were downregulated, probably due to the remission status of CD 

patients. On the other hand, Peptidoglycan pathway (map00550) was highly 

enriched with upregulated genes in CD patients. It is known to be the target of 

antibiotics like -lactam, as is critical in cell structure. Of note, methane 

metabolism pathway enrichment was diminished in CD patients (He et al., 2017), 

related with energy production, as well the two most significant underexpressed 

pathways related with cell motility. By contrast, the Glutathione metabolism 

pathway was found uniquely enriched in upregulated CD genes, found also in a 

metagenomic study as exhibiting enhanced potential for antioxidant defense (He 

et al., 2017). 

 

Finally, in the last comparison, contrasting patients of UC and CD, we identified 

22 out of 28 detected enriched pathways (differentially expressed genes) as 

significant and shared with the previous comparison with healthy relatives. 

Interestingly, only 4 of the shared set were found in different up/down regulation, 

whereas, in general, highest differences in expression were displayed in CD. This 

suggests that functional differences in UC do not differ greatly from healthy 

subjects, supporting the hypothesis of Pascal et al. (Pascal et al., 2017). Among 

the four pathways that mostly differ, Pyruvvate metabolism (map00620) was 
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found in greatly downregulated in CD when compared to healthy relatives. In 

contrast Carbon metabolism (map01200) was found strongly upregulated when 

CD was compared to UC. The alpha diversity, using functional data, was found 

always higher in CD either comparing with UC or healthy. This finding is 

contradictory to the results found at the taxonomic level, where healthy subjects 

account for a greater compositional diversity.  

 

Overall, we found more differences with patients at basal timepoint (REM; n=14) 

than at last timepoint (REM/REL; n=7) quite probably due to small sample size. 

Any attempt to make comparisons with the severity of the disease (REL, n=7) 

was unsuccessful. If differences between groups are not very strong, the power 

to detect significances is very low with this small cohort. The only way to 

overcome this lack of power effectively relies on trying to obtain higher number 

of samples per condition. Despite this, we could observe that differences between 

HR and CD were more significant than between HR and UC, probably highlighting 

that UC is less dysbiotic than CD compared to HR at the active microbiome level, 

which is also in agreement with previous findings (Lloyd-Price et al., 2019). A 

prediction of relapse (REL) through the analysis of samples collected at the time 

of remission (REM) using machine learning techniques as, for instance, random 

forest, was not possible as we did not obtain enough statistical power to detect 

significant differences between groups. 

 

We have discussed the relevant microbial organisms and functional features 

according to our findings. Nonetheless, all results, discussions and conclusions 

must be put in the context of the limitation of this study, and thus taken with 

caution. The cost of sequencing metatranscriptomic samples were around one 

thousand and five hundred euros at the time we started the pilot study. This cost 

is much higher than for the 16S rDNA analysis that may require less than 150 

euros per sample. Difficulties during RNA extraction are well known, as well as 

its limited lifetime before degradation. Sequencing machines also add error rates 

in sequenced reads that must be treated properly with bioinformatic tools to 
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minimize the risk of low-quality bases. Downstream analyses are also subject to 

constant software updates and different methods of analysis, and still lack of a 

widely settled consensus in methodologies to make other works easily 

comparable, though effort is put in that direction with reproducible research. 

Further, still a high and notorious 50% of functional diversity is still to be 

characterized and linked to taxa. The MetaHIT14 gene catalog, for instance, only 

has annotated 14% of the genes at Genus rank (roughly 20% at Phylum level). 

The new version of the unsupervised functional database EggNOG is now getting 

better annotations, but the old version (like EggNOG3.0) still lacked external and 

more comprehensible functional annotations. We encountered more difficulties 

interpreting results at the functional level using unsupervised databases than 

supervised databases though at risk of having much less annotation rates. 

Validation of these pipelines are not a minor complication either, because of the 

complexity to simulate a mock community that fairly resembles to real microbiome 

compositions, or the limited use of simulated mock communities. Finally, 

metatranscriptomics gives a single snapshot in a particular moment, when it is, 

in fact, a changing and complex interacting environment. After all, if all this is 

taken into consideration, and without new advanced techniques, this work 

provides a better understanding of the functional mechanisms characterizing the 

active gut microbiome. 
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6 Conclusions 

The results obtained in this dissertation allowed us to draw the following 

conclusions: 

1. We developed a metatranscriptomic analysis tool that performs functional 

and taxonomical analysis, taking advantage of multithreading architecture 

of computers. This tool processes samples in a reasonable time and 

generates results comparable to current rRNA analysis tools. 

 

2. The development of this bioinformatics pipeline has allowed us to 

understand our limitations in the metaomics field as well as to gain insights 

into the characterization of the active human gut microbiome. 

 

3. Gene expression analysis validates some hypotheses previously 

proposed at the genomic level. However, taxonomic profiles obtained from 

16S rRNA data contrasted with those obtained with 16S rDNA data, 

indicating that not all microorganisms identified at the DNA level play an 

active role in both IBS and IBD. 

 

4. Our study on IBD cohort revealed that CD and UC presented a distinct 

active microbiome profile at the taxonomic as well as functional level. 

Furthermore, CD patients showed greater dysbiosis than UC patients. 

Altogether, these results validate previous works based on gene content 

analysis. 

 

5. Our results at RNA level also suggested that dysregulations of different 

pathways related to the Short Chain Fatty Acids metabolism and cell 

survival were associated with disease severity. 

 

6. Finally, our study provides a very comprehensive description of the active 

microbial functions and pave the way for future investigations on 

inflammatory bowel diseases. 
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7 Future lines 

At this point, it seems clear that metatranscriptomics is able to unravel insights 

into the most important microbial activities in human diseases such as IBS or IBD, 

located in the gastrointestinal tract with highest bacterial concentrations  (Sender, 

Fuchs and Milo, 2016). As in metagenomics, in metatranscriptomics analysis 

functional genes are still poorly annotated, and we must be cautious about the 

interpretation of the results. At the time of this writing, we are still far from knowing 

with exactitude the number of functions the gut microbiome encodes or 

expresses. In the last release of the human gene catalog (Li et al., 2014) roughly 

fifty percent of the genes had unknown annotated functions. This highlights how 

important still is the unknown category when displaying functional compositions. 

They may be other between-group differences that are hidden in the proportion 

of unknown genes, which might reveal themselves in future re-analyses, 

strengthen by improved gene annotation. One of the most widely used and 

curated metabolic pathways database, KEGG (Kanehisa et al., 2017), became a 

paid-resource some years ago for academic use, and new release are no longer 

free of use. Now, other academic-free data bases like MetaCyc (Caspi et al., 

2018), using a curated multiorganism pathway database, are increasing their 

popularity and it is advisable to use this database in future analysis if paid-

resources are not affordable. However, the use of updated or different pathway 

databases in the human gut gene catalog will require an extra effort to re-

annotate all genes in the catalog. 

 

The RNA abundance normalization through DNA abundance per sample is also 

an important factor to achieve fair results when comparing samples. Yet this step 

requires higher sequencing costs and computational resources. A new 

manuscript focusing on this methodology is under preparation by our group. 

Furthermore, an increase in biological experimental replications is also an 

important issue to properly identify differentially expressed genes, as all statistical 

models underlying these tools rely on biological replicates (Schurch et al., 2016) 

to estimate regulated genes more accurately. 
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The continuous progress in this area of research will require the incorporation of 

more sophisticated and faster bioinformatics tools in the analysis. Therefore, the 

maintenance and the improvement of those tools is a desirable feature to keep 

up to date future analysis with new annotations and improved algorithms. 

 

As it has been commented in the discussion chapter, the increase in sample size 

is mandatory to increase significant levels and to sharpen results, even though 

we are aware of the inherent difficulties to address this issue. 

 

All the results obtained in this work serve as a basis of comparison to identify new 

targets of functions or taxa that can eventually be associated with IBD or IBS in 

future analyses. 
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8 Appendices 

 

8.1 Appendix A - Supporting material for Chapter 4. 

 

 

Figure A 1 Sequencing depth (paired-reads) on Illumina Hi-Seq 2000 
Distribution of the number of paired-end sequencing reads grouped by healthy (H - blue color), and 
patients of CD (red) and UC (yellow). Groups are further classified by their basal (timepoint0) or last 
timepoint (LTP), and by their patient status (REM – remission, REL – relapse). Within the basal timepoint 
the groups of REM are differentiated between those that remain in REM state in the last timepoint (F.REM, 
where F stands for future) and those that fall into REL state (F.REL). Each distribution is characterized 
by a boxplot in the middle and their density distribution along both sides. Median is depicted by a black 
band inside the box, and the mean (µ) by a red dot. Outliers are labeled by their corresponding sample 
ids. Stats on the top of the chart show stats relative to the comparison of all groups (p-value = 0.385, 
Kruskal-Wallis). Stats on the bottom refer to a post-hoc pairwise analysis using FDR correction (no 
statistically significance between groups were found). 
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Figure A 2 Percentage of reads mapped to the MetaHIT-14 gene catalog. 
Distribution of the percentage of reads that were mapped to the MetaHIT-14 gene catalog grouped by 
healthy (H - blue color), and patients of CD (red) and UC (yellow). Groups are further classified by their 
basal (timepoint0) or last timepoint (LTP), and by their patient status (REM – remission, REL – relapse). 
Within the basal timepoint the groups of REM are differentiated between those that remain in REM state 
in the last timepoint (F.REM, where F stands for future) and those that fall into REL state (F.REL). Each 
distribution is characterized by a boxplot in the middle and their density distribution along both sides. 
Median is depicted by a black band inside the box, and the mean (µ) by a red dot. Outliers are labeled by 
their corresponding sample ids. Stats on the top of the chart show stats relative to the comparison of all 
groups (p=0.385, Kruskal-Wallis). Stats on the bottom refer to a post-hoc pairwise analysis using FDR 
correction (no statistically significance between groups were found). 
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F) 

 

Figure A 3 Taxonomical composition of the HEALTHY active microbiome 
All organisms for which their function is unknown are collapsed to the “unknown” category. The remaining 
taxons below 3% cutoff are collapsed to “Other” to improve an overall overview of the composition. A)  
and B) barplots, show the individual relative abundance composition of healthy subjects for the two 
taxonomical annotation ranks, Phylum and Genus. C) and D) display the relative abundance in a heatmap 
chart to better appreciate differences in abundances between samples and taxa. E) and F) show the 
average proportions of taxonomical relative abundances of healthy subjects 
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B)  
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C) D) 

 
 

E)  
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F) 

 

Figure A 4 Functional composition of the HEALTHY active microbiome 
All organisms for which their function is unknown are collapsed to the “unknown” category. The remaining 
functions below 3% cutoff are collapsed to “Other” to improve an overall overview of the composition. A)  
and B) barplots, show the individual relative abundance composition of healthy subjects for the two 
functional annotation databases, EggNOGv3 and KEGG, at their functional categories annotation level 
(KEGG at Level2). C) and D) display the relative abundance in a heatmap chart to better appreciate 
differences in abundances between samples and types of functions. E) and F) show the average 
proportions of functional relative abundances of healthy subjects. 
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A) 

 

B) 
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C) 

 

D) 

 

Figure A 5 Healthy microbiome core 
Core heatmaps displaying prevalence of features (taxa/functional) at different relative abundance 
detection cutoffs (>0.1 - >10%). Prevalence is measured as the rate of relative abundance selected 
among all samples in a 0-1 scale, where 1 represents a 100% prevalence of the feature along all samples. 
Features shown are those identified at a minimum detection of 0.1% of relative abundance and a minimum 
prevalence of 50%. A) and B) display the core microbiome of healthy subjects in the taxonomical analysis 
at their Phylum and Genus rank respectively. C) and D) display the microbiome of healthy subjects in the 
functional analysis using the EggNOGv3 non-supervised functional database and the curated KEGG 
database at level2. 

 

Table A 1 Percentage of top10 most abundant and prevalent taxa at phylum rank  

Top10 most abundant taxa Percentage(%) Most prevalent taxa Percentage(%) 

p__Bacteroidetes 37.86 p__Bacteroidetes 100 

unmapped 35.72 p__Firmicutes 100 

p__Firmicutes 20.8 p__Actinobacteria 100 

p__Actinobacteria 2.78 p__Proteobacteria 100 
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p__Euryarchaeota 1.42 unmapped 100 

p__Proteobacteria 1.19   

p__[Thermi] 0.06   

p__Acidobacteria 0.05   

p__Armatimonadetes 0.05   

p__Chlamydiae 0.04   

 

 

Table A 2 Percentage of top10 most abundant and prevalent taxa at genus rank 

Top10 most abundant taxa Percentage(%) Most prevalent taxa Percentage(%) 

unmapped 35.72 g__Bacteroides 100 

g__Bacteroides 23.93 g__Blautia 100 

g__unknown 13.81 unmapped 100 

g__Prevotella 6.36 g__unknown 100 

g__Parabacteroides 2.67 g__Parabacteroides 98.25 

g__Blautia 2.58 g__Faecalibacterium 98.25 

g__Ruminococcus 1.58 g__Ruminococcus 96.49 

g__Faecalibacterium 1.55 g__Collinsella 92.98 

g__Collinsella 1.25 g__Oscillospira 92.98 

g__Bifidobacterium 1.19 g__Dorea 91.23 
  g__Bifidobacterium 89.47 
  g__Bacillus 89.47 
  g__Coprococcus 89.47 
  g__[Ruminococcus] 82.46 
  g__Odoribacter 82.46 
  g__Sutterella 82.46 
  g__Lachnospira 78.95 
  g__Roseburia 77.19 

 

Table A 3 Percentage of top10 most abundant and prevalent functions at 
functional categories (EggNOGv3.0) annotation level 

Top10 most abundant taxa 
Percent
age(%) 

Most prevalent taxa 
Percent
age(%) 

unknown_funcat_id unknown 15.31 unknown_funcat_id unknown 100 

[G] Carbohydrate transport and 
metabolism 

11.75 
[G] Carbohydrate transport and 
metabolism 

100 

[S] Function unknown 11.63 [S] Function unknown 100 

[C] Energy production and 
conversion 

8.2 
[C] Energy production and 
conversion 

100 

[J] Translation, ribosomal 
structure and biogenesis 

7.43 
[J] Translation, ribosomal 
structure and biogenesis 

100 

[R] General function prediction 
only 

6.96 
[R] General function prediction 
only 

100 
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[E] Amino acid transport and 
metabolism 

5.65 
[E] Amino acid transport and 
metabolism 

100 

[L] Replication, recombination 
and repair 

4.51 
[L] Replication, recombination 
and repair 

100 

[K] Transcription 4.2 [K] Transcription 100 

[O] Posttranslational 
modification, protein turnover, 
chaperones 

4.16 
[O] Posttranslational 
modification, protein turnover, 
chaperones 

100 

  
[M] Cell 
wall/membrane/envelope 
biogenesis 

100 

  [T] Signal transduction 
mechanisms 

100 

  [F] Nucleotide transport and 
metabolism 

100 

  [P] Inorganic ion transport and 
metabolism 

100 

  [H] Coenzyme transport and 
metabolism 

100 

  [I] Lipid transport and metabolism 100 
  [V] Defense mechanisms 100 

  [U] Intracellular trafficking, 
secretion, and vesicular transport 

100 

  [D] Cell cycle control, cell division, 
chromosome partitioning 

100 

  
[Q] Secondary metabolites 
biosynthesis, transport and 
catabolism 

100 

  [N] Cell motility 100 

 

Table A 4 Percentage of top10 most abundant and prevalent functions at KEGG-
L2 functional categories annotation level 

Top10 most abundant 
taxa 

Percentage
(%) 

Most prevalent taxa 
Percentage
(%) 

unknown 28.56 unknown 100 

Membrane transport 8.42 Membrane transport 100 

Translation 7.47 Translation 100 

Energy metabolism 5.3 Energy metabolism 100 

Carbohydrate 
metabolism 

4.12 Carbohydrate metabolism 100 

Replication and repair 3.95 Replication and repair 100 

Metabolism 3.43 Metabolism 100 

Transport and 
catabolism 

3.12 Transport and catabolism 100 

Amino acid metabolism 2.97 Amino acid metabolism 100 

Cellular processes and 
signaling 

2.46 Cellular processes and signaling 100 
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  Poorly characterized 100 
  Cellular community - prokaryotes 100 

  Metabolism of cofactors and 
vitamins 

100 

  Infectious diseases 100 
  Folding, sorting and degradation 100 
  Enzyme families 100 
  Nucleotide metabolism 100 
  Genetic information processing 100 
  Signal transduction 100 
  Transcription 100 
  Drug resistance 100 
  Cell motility 100 

  Glycan biosynthesis and 
metabolism 

100 

  Biosynthesis of other secondary 
metabolites 

100 

  Xenobiotics biodegradation and 
metabolism 

100 

  Metabolism of other amino acids 100 
  Neurodegenerative diseases 100 
  Lipid metabolism 100 

  Metabolism of terpenoids and 
polyketides 

100 

  Cell growth and death 100 
  Aging 100 
  Cancers 100 
  Endocrine and metabolic diseases 100 
  Endocrine system 100 
  Cardiovascular diseases 100 

  Signaling molecules and 
interaction 

100 

  Viral protein family 98.25 
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Table A 5 Number of orthologous IDs for each COG functional categories, after 
mapping the putative genes against the MetaHIT-2014 database 

 

 

Table A 6 Statistical results of PERMANOVA analysis for filters with FDR<0.3 

FILTER DB R2 P-VALUE SIGNIF FDR SIGNIF(FDR) 

COMPARISON: H-H 

-       

COMPARISON: H-IBD (CD+UC) 

F4 funcatKEGG.L3 2.17% 0.072 . 0.261   

F4 funcat 2.38% 0.086 . 0.284   

COMPARISON: H-CD 

F6 Species 5.21% 0.035 * 0.189   

F6 Family 5.35% 0.036 * 0.202   

F6 Class 7.81% 0.026 * 0.251   

F6 Genus 5.20% 0.05 * 0.28   

F9 funcatKEGG.L2.default 23.66% 0.001 *** 0.014 * 

F9 funcatKEGG.L4 21.06% 0.001 *** 0.014 * 

F9 orthidsEggNOG4.5 19.02% 0.001 *** 0.014 * 
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F9 orthidsKEGG 20.83% 0.002 ** 0.021 * 

F9 orthids 19.82% 0.001 *** 0.028 * 

F9 funcatKEGG.L1 29.08% 0.001 *** 0.029 * 

F9 funcatKEGG.L3 22.97% 0.001 *** 0.029 * 

F9 funcat 26.06% 0.003 ** 0.04 * 

F9 funcatEggNOG4.5 25.59% 0.005 ** 0.045 * 

F9 Species 8.39% 0.042 * 0.189   

COMPARISON: H-UC 

F15 funcat 6.31% 0.065 . 0.244   

F17 orthidsEggNOG4.5 9.93% 0.006 ** 0.032 * 

F17 orthids 8.54% 0.022 * 0.123   

F17 orthidsKEGG 8.23% 0.033 * 0.154   

F17 funcatKEGG.L4 8.12% 0.043 * 0.174   

F17 funcat 8.23% 0.104   0.284   

F19 funcat 13.42% 0.033 * 0.165   

F19 funcatKEGG.L4 10.31% 0.048 * 0.174   

F19 funcatKEGG.L2.default 11.43% 0.047 * 0.181   

F19 funcatKEGG.L3 12.02% 0.044 * 0.199   

F19 orthidsKEGG 10.24% 0.057 . 0.2   

F19 funcatKEGG.L1 14.13% 0.062 . 0.257   

F19 orthids 8.57% 0.072 . 0.287   

F21 Genus 9.24% 0.018 * 0.168   

F21 Species 8.20% 0.032 * 0.189   

F21 Family 9.42% 0.031 * 0.202   

F21 Class 12.37% 0.018 * 0.251   

COMPARISON: CD-UC (INCL HEALTHY) 

F22 funcat 2.60% 0.096 . 0.284   

F23 orthidsKEGG 6.49% 0.003 ** 0.021 * 

F23 funcatEggNOG4.5 15.26% 0.001 *** 0.027 * 

F23 orthidsEggNOG4.5 5.80% 0.003 ** 0.027 * 

F23 funcatKEGG.L4 6.45% 0.003 ** 0.029 * 

F23 funcat 9.30% 0.004 ** 0.04 * 

F23 orthids 5.95% 0.007 ** 0.049 * 

F23 funcatKEGG.L2.default 8.60% 0.007 ** 0.061 . 

F23 funcatKEGG.L3 7.68% 0.007 ** 0.068 . 

F23 funcatKEGG.L1 9.66% 0.008 ** 0.077 . 

F25 funcatKEGG.L2.default 6.56% 0.012 * 0.065 . 

F25 funcatKEGG.L1 6.60% 0.02 * 0.116   

F25 funcat 5.63% 0.028 * 0.165   

F25 funcatKEGG.L4 3.80% 0.048 * 0.174   

F25 orthidsKEGG 3.74% 0.045 * 0.18   

F25 Species 4.71% 0.022 * 0.189   

F25 funcatKEGG.L3 4.79% 0.033 * 0.191   

F25 Genus 5.02% 0.028 * 0.196   

F25 Family 4.96% 0.024 * 0.202   

F25 Class 6.81% 0.02 * 0.251   

F25 orthids 3.08% 0.082 . 0.287   
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F26 orthidsKEGG 6.65% 0.003 ** 0.021 * 

F26 funcatKEGG.L4 6.65% 0.004 ** 0.029 * 

F26 orthidsEggNOG4.5 5.58% 0.005 ** 0.032 * 

F26 orthids 6.13% 0.005 ** 0.047 * 

F26 funcatKEGG.L2.default 8.05% 0.009 ** 0.061 . 

F26 funcat 10.34% 0.009 ** 0.067 . 

F26 funcatKEGG.L3 7.25% 0.011 * 0.08 . 

F26 funcatKEGG.L1 9.01% 0.013 * 0.094 . 

F26 funcatEggNOG4.5 8.18% 0.025 * 0.169   

COMPARISON: CD-UC 

F27 funcatKEGG.L2.default 22.20% 0.001 *** 0.014 * 

F27 funcatKEGG.L4 16.06% 0.001 *** 0.014 * 

F27 orthidsEggNOG4.5 13.63% 0.001 *** 0.014 * 

F27 orthidsKEGG 16.02% 0.001 *** 0.021 * 

F27 funcatEggNOG4.5 25.11% 0.002 ** 0.027 * 

F27 orthids 14.57% 0.002 ** 0.028 * 

F27 funcat 20.94% 0.002 ** 0.04 * 

F27 funcatKEGG.L1 25.10% 0.003 ** 0.044 * 

F27 funcatKEGG.L3 19.16% 0.003 ** 0.044 * 

F27 Species 11.72% 0.006 ** 0.081 . 

F27 Genus 11.11% 0.016 * 0.168   

F27 Family 11.08% 0.016 * 0.202   

F28 Species 12.37% 0.003 ** 0.081 . 

F28 Genus 12.00% 0.005 ** 0.14   

F28 Family 12.62% 0.008 ** 0.202   

COMPARISON: CD-CD (REM vs REL) 

 -       

COMPARISON: UC-UC (REM vs REL) 

F32 funcatEggNOG4.5 28.60% 0.066 . 0.297   

F33 funcatEggNOG4.5 27.50% 0.046 * 0.248   

F34 funcatKEGG.L4 8.31% 0.013 * 0.075 . 

F34 orthidsKEGG 8.25% 0.022 * 0.123   

F34 orthids 7.02% 0.028 * 0.131   

F34 funcatKEGG.L2.default 8.55% 0.047 * 0.181   

F34 funcatKEGG.L1 10.01% 0.038 * 0.184   

F34 funcatKEGG.L3 7.79% 0.048 * 0.199   

F34 orthidsEggNOG4.5 6.22% 0.054 . 0.243   

F34 funcat 8.53% 0.059 . 0.244   

COMPARISON: CD PREDICTION 

-  

COMPARISON: UC PREDICTION 

-       

Significance level code:  * is <=0,05 (<=5%) ** is <=0,01 (<=1%) *** is <=0,001 (<=0.1%) 
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Table A 7 Significant enriched KEGG metabolic pathways between healthy 
relatives of CD and CD patients (filter F9; p-values<0.05). 

Pathway Definition Orthology.count Coverage pvalue 

map02040 Flagellar assembly 32 (up:3, down:29) 80.0% 2.03E-19 

map02030 Bacterial chemotaxis 19 (up:4, down:15) 73.1% 8.18E-11 

map00550 Peptidoglycan biosynthesis 26 (up:20, down:6) 53.1% 1.12E-09 

map00680 Methane metabolism 60 (up:12, down:48) 32.3% 7.01E-09 

map01200 Carbon metabolism 94 (up:43, down:51) 26.6% 3.40E-08 

map01230 Biosynthesis of amino acids 67 (up:39, down:28) 28.9% 1.28E-07 

map00620 Pyruvate metabolism 37 (up:14, down:23) 35.9% 2.67E-07 

map00720 Carbon fixation pathways in prokaryotes 35 (up:17, down:18) 34.0% 2.48E-06 

map02020 Two-component system 113 (up:57, down:56) 22.8% 8.23E-06 

map00540 Lipopolysaccharide biosynthesis 22 (up:9, down:13) 37.3% 3.55E-05 

map00640 Propanoate metabolism 32 (up:11, down:21) 29.6% 1.40E-04 

map03030 DNA replication 21 (up:9, down:12) 35.0% 1.53E-04 

map00020 Citrate cycle (TCA cycle) 20 (up:8, down:12) 34.5% 2.75E-04 

map00670 One carbon pool by folate 14 (up:10, down:4) 38.9% 5.63E-04 

map00500 Starch and sucrose metabolism 30 (up:18, down:12) 26.8% 1.42E-03 

map00983 Drug metabolism - other enzymes 12 (up:8, down:4) 37.5% 2.00E-03 

map00400 Phenylalanine, tyrosine and tryptophan biosynthesis 21 (up:8, down:13) 29.2% 2.31E-03 

map00860 Porphyrin and chlorophyll metabolism 32 (up:21, down:11) 24.6% 4.30E-03 

map03430 Mismatch repair 14 (up:9, down:5) 31.8% 5.09E-03 

map00240 Pyrimidine metabolism 25 (up:15, down:10) 25.3% 7.70E-03 

map02026 Biofilm formation - Escherichia coli 17 (up:12, down:5) 27.9% 9.46E-03 

map00230 Purine metabolism 45 (up:30, down:15) 21.6% 1.09E-02 

map00300 Lysine biosynthesis 13 (up:11, down:2) 28.9% 1.61E-02 

map00970 Aminoacyl-tRNA biosynthesis 17 (up:16, down:1) 26.2% 1.80E-02 

map00630 Glyoxylate and dicarboxylate metabolism 24 (up:10, down:14) 23.8% 1.88E-02 

map00450 Selenocompound metabolism 10 (up:8, down:2) 31.3% 1.91E-02 

map00473 D-Alanine metabolism 3 (up:2, down:1) 60.0% 2.90E-02 

map01503 Cationic antimicrobial peptide (CAMP) resistance 14 (up:7, down:7) 25.9% 3.23E-02 

map00633 Nitrotoluene degradation 7 (up:2, down:5) 33.3% 3.35E-02 

map00250 Alanine, aspartate and glutamate metabolism 17 (up:14, down:3) 24.3% 3.57E-02 

map04112 Cell cycle - Caulobacter 9 (up:7, down:2) 29.0% 4.06E-02 

map00480 Glutathione metabolism 13 (up:13) 25.5% 4.34E-02 

map03440 Homologous recombination 17 (up:11, down:6) 23.6% 4.56E-02 

Coverage and Orthology.count refer to KEGG orthologous IDs mapped within the pathway. 

 

Table A 8 Differentially expressed orthologous genes between healthy relatives of 
UC and UC patients classified in functional categories (filter F17; DEG genes at 
FDR<0.05) 

 
Up 

(log2) 
Down 
 (log2) 

[A] RNA processing and modification  
0 0 

[B] Chromatin structure and dynamics  
0 0 
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[C] Energy production and conversion  
7.3 7.2 

[D] Cell cycle control, cell division, chromosome partitioning  
4.6 3.2 

[E] Amino acid transport and metabolism  
7.7 6.8 

[F] Nucleotide transport and metabolism  
6.6 5.7 

[G] Carbohydrate transport and metabolism  
7.7 7.2 

[H] Coenzyme transport and metabolism  
6.3 6.4 

[I] Lipid transport and metabolism  
5.4 5 

[J] Translation, ribosomal structure and biogenesis  
7.6 6.4 

[K] Transcription  
7.5 6.8 

[L] Replication, recombination and repair  
7.2 6.6 

[M] Cell wall/membrane/envelope biogenesis  
7 7.1 

[N] Cell motility  
0 2 

[O] Posttranslational modification, protein turnover, chaperones  
6.4 6.1 

[P] Inorganic ion transport and metabolism  
7 6.5 

[Q] Secondary metabolites biosynthesis, transport and catabolism  
3.9 3.7 

[R] General function prediction only  
0 0 

[S] Function unknown  
9.4 9.8 

[T] Signal transduction mechanisms  
6.2 5.5 

[U] Intracellular trafficking, secretion, and vesicular transport  
4.2 4.5 

[V] Defense mechanisms  
5.7 5.7 

[W] Extracellular structures  
0 0 

[Y] Nuclear structure  
0 0 

[Z] Cytoskeleton  
0 0 

UNKNOWN 
6.5 7.7 

 

Table A 9 Significant enriched KEGG metabolic pathways between UC and CD 
patients (filter F27; p-values<0.05). 

Pathway Definition Orthology.count Coverage pvalue 

map02040* Flagellar assembly 24 (up:3, down:21) 60% 8.68E-16 

map02030* Bacterial chemotaxis 16 (up:5, down:11) 62% 3.46E-11 

map01230* Biosynthesis of amino acids 45 (up:23, down:22) 19% 5.00E-07 

map02020* Two-component system 73 (up:38, down:35) 15% 1.35E-05 

map00620* Pyruvate metabolism 23 (up:12, down:11) 22% 3.12E-05 

map00720* Carbon fixation pathways in prokaryotes 23 (up:15, down:8) 22% 3.12E-05 

map01200* Carbon metabolism 55 (up:41, down:14) 16% 3.22E-05 

map00240* Pyrimidine metabolism 21 (up:16, down:5) 21% 1.49E-04 

map00630* Glyoxylate and dicarboxylate metabolism 21 (up:9, down:12) 21% 2.00E-04 

map00020* Citrate cycle (TCA cycle) 13 (up:9, down:4) 22% 1.54E-03 

map00540* Lipopolysaccharide biosynthesis 13 (up:8, down:5) 22% 1.82E-03 

map00670* One carbon pool by folate 9 (up:6, down:3) 25% 3.66E-03 

map00400* Phenylalanine, tyrosine and tryptophan biosynthesis 14 (up:2, down:12) 19% 4.23E-03 

map00450* Selenocompound metabolism 8 (up:4, down:4) 25% 6.04E-03 

map00010 Glycolysis / Gluconeogenesis 17 (up:13, down:4) 17% 9.71E-03 

map00500* Starch and sucrose metabolism 18 (up:11, down:7) 16% 1.04E-02 

map00230* Purine metabolism 29 (up:21, down:8) 14% 1.10E-02 
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map00860* Porphyrin and chlorophyll metabolism 20 (up:18, down:2) 15% 1.15E-02 

map00710 Carbon fixation in photosynthetic organisms 8 (up:6, down:2) 22% 1.26E-02 

map00640* Propanoate metabolism 17 (up:6, down:11) 16% 1.53E-02 

map02026* Biofilm formation - Escherichia coli 11 (up:7, down:4) 18% 1.84E-02 

map01210 2-Oxocarboxylic acid metabolism 13 (up:6, down:7) 16% 2.98E-02 

map03070 Bacterial secretion system 12 (up:5, down:7) 16% 3.07E-02 

map00480* Glutathione metabolism 9 (up:9) 18% 3.55E-02 

map03430* Mismatch repair 8 (up:5, down:3) 18% 3.94E-02 

map00300* Lysine biosynthesis 8 (up:6, down:2) 18% 4.43E-02 

map00770 Pantothenate and CoA biosynthesis 7 (up:5, down:2) 18% 4.91E-02 

* pathways shared with HR-CD comparison set. 
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