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6 CHAPTER 1. INTRODUCTION

General Relativity (GR) has proven to be an extremely successful theory of grav-

ity. This beautiful theory, formulated in a purely geometric language, produces

predictions that have been accurately verified in a plethora of historic experiments.

More recently, and almost precisely a century after the formulation of the theory,

LIGO gave us a confirmation of one of the most spectacular predictions of GR, to-

gether with a brand new way of obtaining valuable information from astrophysical

events: gravitational waves [1]. From a fundamental point of view, we have reasons

to think that GR is incomplete. This means that the theory should cease to be

trustworthy at a large enough energy scale (or small enough length scale), with this

scale being at most the Planck scale.

Black holes are the most basic objects in GR, and a good knowledge of them

seems to be a key to understanding gravity. They are extremely important as as-

trophysical objects, also from the early Universe (primordial black holes), in Math-

ematical Relativity, String Theory and Quantum Gravity, and last but not least, in

many seemingly non-gravitational systems through applied holographic dualities [2]

(AdS/QFT, AdS/QGP, AdS/CMT). Black holes are probably the simplest macro-

scopic objects in Nature, which are completely described by their mass, spin, and

charge. This fact makes them mathematically very appealing and beautiful, allow-

ing us to describe astrophysically sized objects with very simple equations, often

even analytically. Although apparently very simple, we have clues, such as black

hole thermodynamics or the Information Paradox, which are somehow warning us

that there should be a more complex structure underlying the theory of GR. It is

our goal, therefore, to try to find the right theory of quantum gravity. For now, the

most accepted candidates are encapsulated in what we know as String Theory. This

family of theories comes at a cost: we need to formulate them in more than four

dimensions, usually 10 or 11, and they almost certainly require supersymmetry.

In this thesis we will be applying novel approaches and developing new techniques

to touch on a number of issues that are all related to fundamental aspects of modern

gravitational theory and black holes. We will now give a brief preview of the context

for these problems, which we will elaborate on in more detail in subsequent separate

sections of this introduction.

Having a fundamental dimension larger than four is a problem that can be cir-

cumvented by requiring that the extra dimensions are compactified in some
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(D-4)-dimensional manifold, so that physics takes place in an effective 4-dimensional

spacetime at large enough distances. This fact, however, encourages us to explore

the behavior of gravity and black holes in dimensions larger than four. The black

hole physics in higher dimensions is immensely richer than in dimension four: many

of the uniqueness theorems do not hold anymore, thus allowing for a wide variety

of gravitational phenomena. Particularly, you can now have black holes with ex-

tended directions (black strings and black branes), that allow for extended gauge

charges. Extended black holes also display the so-called Gregory-Laflamme (GL) in-

stability [3,4], which causes black strings and black branes to spontaneously develop

non-uniformities that may lead to violations of Weak Cosmic Censorship (WCC),

that is to the formation of naked singularities. Research has been done on violations

of the WCC in the large D approach, i.e., in the limit of a very large number of

dimensions as a 1/D expansion, both in extended and localized black holes. Re-

cently, [5] found evidence of a possible violation of WCC in colliding black holes by

this technique, and there is evidence that this happens in dimensions possibly as low

as D = 6. Research on this hypothesis is still ongoing. Many extensions of this work

are promising, including the endpoint of axisymmetric unstable modes of rotating

(Myers-Perry) black holes, addition of charge, or further analysis of the scattering

problem in large D. It is important to notice that higher dimensional black holes,

when treated in the large D formalism, simplify enormously. Even when numeri-

cal solutions are needed, these are dramatically simpler than the ones required for

general finite D simulations, and are usually run in a regular laptop in a matter of

seconds or minutes.

Moving away from astrophysical scenarios, gravity and black holes can give us

valuable information about strongly coupled Quantum Field Theories (QFTs). This

is made possible through the AdS/CFT correspondence [2], also known as the holo-

graphic principle, in which there is a one-to-one duality between certain types of

conformally invariant QFTs and classical gravity theories. Therefore, relatively

simple gravitational calculations can be used to obtain qualitative, and sometimes

even quantitative information about strongly coupled theories that are extremely

difficult to solve otherwise.

On the other hand, quantum effects may lead to to some modified theory of

classical gravity at low energies, i.e., some deviation from conventional GR. This ex-
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pectation is calling for us to explore which possibilities in the landscape of theories

are good candidates for the description of Nature. Although the space of possible

theories of modified gravity may seem unaffordably wide at first sight, many con-

straints exist, both from observation and from the mathematical structure of the

theories. Since gravity theories are classically described by nonlinear partial differ-

ential equations, one must check whether they satisfy some minimal requirements

that would otherwise render the theory highly suspicious. It is generally expected

that the equations of motion for a sensible theory should be well posed. Also, a

fully nonlinear evolution should not lead to pathologies such as loss of hyperbolicity,

formation of shocks, or violations of causality.

Even in conventional GR itself, there exist some issues that need to be under-

stood in order to be ready for gravity modifications. A common issue is the existence

of solutions which contain Cauchy Horizons (CH), where physics stops being pre-

dictable from asymptotic data, thus violating the Strong Cosmic Censorship (SCC)

conjecture. These solutions are typically eternal and stationary, and so the Cauchy

Horizons are expected to be dynamically destroyed once dynamical effects are taken

into account. However, some configurations have been recently proven to present

stable Cauchy Horizons that can be crossed by an observer with finite tidal defor-

mations. These solutions, although astrophysically not very relevant, could give us

clues about the extreme behavior of GR.

We now proceed to discuss more specifically the problems and approaches that

constitute the bulk of this thesis.

1.1 Large D black branes and black strings

Black p−branes are higher-dimensional black holes that extend along p spatial di-

rections. They are known to exist in D ≥ 5. In the neutral case, they can be easily

obtained from the Schwarzschild-Tangherlini solution as

ds2 = −
(

1−
(r0

r

)n)
dt2 +

dr2

1−
(
r0
r

)n + dzidzi + dΩ2
n+1 (1.1)

with i = 1, ..., p labeling the spatial directions along the brane. dΩ2
n+1 is a (n+1)-

dimensional sphere metric, and n is defined as n = D − p − 3. Typically, the
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brane worldvolume spatial directions zi are compactified in a circle, restricting any

dependence along them to be periodic with a given wavenumber ki = 2π/Li. Black

branes were shown to be unstable [3, 4]. As a consequence of this instability, the

so-called Gregory-Laflamme instability, branes develop non-uniformities along their

extended directions zi. The instability appears at low wavenumbers k, starting from

some threshold value kGL, and follows a dispersion relation Ω(k) that depends only

on n.

Figure 1.1: Left: Dispersion relation Ω(k) of the unstable Gregory-Laflamme mode

for black branes. Right: Dispersion relation for n = 100. (numerical data courtesy

of P. Figueras). Plots taken from Ref. [6]

In this thesis we approach the behavior of black branes in the large-D approxima-

tion, i.e., considering a very large number of spacetime dimensions, as an asymptotic

expansion in 1/D. This approach, developed in [7–9], allows us to obtain a set of

very simple equations that capture many of the physical phenomena in gravity. This

technique uses the fact that the gravitational field around a massive object decays

as 1/rn, and therefore, as one takes the limit n → ∞, it becomes extremely con-

centrated in a thin region of size 1/D around the black hole horizon. In this way,

the horizon can be seen as an effective membrane embedded in an essentially flat

background geometry (see [10] for details). The region where the black hole lives is

in some sense excised from the background spacetime.

Equations for this effective membrane have been derived in recent years in [11–17],

in different formulations and in regimes that overlap but do not entirely coincide.

In particular, ref. [11] obtained fully covariant equations for static black holes, both
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in vacuum (Rµν = 0) and in (Anti-)deSitter (Rµν = ±Λgµν), including leading order

(LO) and next-to leading order (NLO) terms in the 1/D expansion. To leading

order, the effective equations for the dynamics of the black brane can be written as

∂tm− ∂i∂im = −∂ipi ,

∂tpi − ∂j∂jpi = ε∂im− ∂j
(pipj
m

)
. (1.2)

with m being the energy density of the fluid, and pi giving (essentially, see later)

the momentum density of the fluid, hence the local velocity of the flow. The pa-

rameter ε has the value +1 for asymptotically flat (AF) spacetimes, and -1 for

asymptotically Anti-de Sitter (AdS) spacetimes. One can also obtain corrections to

these equations to higher orders in 1/n, which are in fact used (up to 1/n4) for the

case of a black string in Chapter 3.

A basic question is whether the equations of the effective theory can be understood

in terms of familiar physics. We can, in fact, write the equations for the dynamical

evolution of the black brane in hydrodynamic form, but for stationary configurations

they are more naturally viewed as soap-bubble-type equations. These two views

(none of which were manifest in [15]) are complementary in that the same variable

is interpreted, in one case as the energy density of the fluid, in the other case as the

‘height function’ measuring the deformation of an elastic membrane.1 Indeed this

reflects a basic feature of black holes: the same variable that gives their mass also

sets the horizon size.

In Chapter 3, we use these effective equations to investigate the phases and the

stability of black strings at different values of the dimension D and the compact-

ification length L. The case of the black string, i.e., with p = 1, has been widely

studied. Non-uniform black strings were first numerically constructed in D = 6

by [20] and then followed up in [21–26]. The endpoint of the instability depends on

the dimension of spacetime, and on the compactification length. Dynamical evo-

lutions in D = 5 were performed in [27], signaling a violation of Penrose’s Weak

Cosmic Censorship [28]. In these simulations, the instability of the string leads to

1Despite similarities in wording, this is very different from the blackfold effective fluid on an

elastic membrane [18], and also from the usual membrane paradigm [19], which does not possess

these elastic aspects.
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the formation of very thin necks that pinch-off with diverging curvature, producing

an endless cascade of self-similar structures of satellite black holes. In some cases,

the instability of uniform black strings (UBS) can lead to stable non-uniform black

strings (NUBS). The type of symmetry-breaking transition form UBS to NUBS was

shown to change at a critical value of the spacetime dimension D∗ ≈ 13.5 by [29].

Black strings and their stability have been analyzed by using several analytical tech-

niques, such as the so-called blackfold approximation and fluid gravity. We use 1/D

corrections to estimate the value of Sorkin’s critical dimension, which turns out to be

remarkably accurate. In fact, our analytical determination of the critical dimensions

gives quite possibly the most accurate value so far, surpassing currently existing nu-

merical calculations. We use both perturbative analytical solutions and numerical

calculations (using a coefficient fitting spectral algorithm) to obtain thermodynamic

data that we compare with finite-D results in the literature. The comparison shows

that the large-D technique can give accurate analytical results with excellent level

of detail.

Figure 1.2: Non-uniform black string: endpoint of the Gregory-Laflamme instability

on a black string with z ∼ z + 2π
k

boundary conditions as D → ∞. In this case,

k = 0.98kGL. Profile obtained via the nonlinear fitting of 10 Fourier coefficients.

In general, all these issues about the existence and the local and global stability

of solutions depend on the values of the parameters of the system, such as its charges

and the number of dimensions. Typically the linear instability is present only within

certain parameter ranges, but also the non-linear evolution, and its most probable
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endpoint, depend in general on what region of parameter space the initial system

lies in. For black strings and black branes these details are not fully understood;

the non-linear regime requires the numerical solution of Einstein’s equations, both

to find highly non-uniform static phases, and to determine their stability and time-

evolution (see [30–32] for early reviews and [33] for a very recent one).

Studies so far have mostly focused on the properties of neutral, asymptotically

flat black strings in different numbers of dimensions D.2 The latter is possibly the

simplest and most natural parameter that can be varied to explore this problem.

Indeed, since a number D − 3 of the dimensions are fixed in the shape of a SD−3,

the equations reduce to a three-dimensional dynamics where D is a parameter that

can be varied continuously.

We also perform a study of highly non-uniform black strings in increasing num-

ber of dimensions, in order to establish when they can be expected to transition

into localized black holes. This study would be extremely cumbersome and time-

consuming with conventional numerical techniques, due to the increasing difficulty

of these methods as the number of dimensions grows. We do this by a combina-

tion of methods—dynamical evolution leading to large non-uniformities until the

numerical evolution breaks down, and studies of static solutions that develop iden-

tifiable pathologies (specifically, negative tensions) when the non-uniformity grows

too large.3 In dynamical evolutions we aim mostly at qualitative information, for

which NLO effects seem enough4, but in the construction of static solutions we

strive for accuracy comparable to previous studies and thus we include up to 4NLO

corrections (four terms after the leading order).

Besides UBS and NUBS it is also possible to have black holes localized in the

compact circle. Less is known in the literature about these phases, except when they

are either very small and far from merging into a NUBS [36,37], or else at relatively

low values of D [26, 38, 39]. They are expected to be the dominant phase in the

canonical ensemble in the regions below the curves of existence of NUBS. However,

there are also regions of the plane where they coexist with NUBS, and in which they

may dominate thermodynamically over the latter. In particular, this is expected to

2See [34,35] for recent work on non-uniform black membranes.
3Ref. [34] made similar studies to NLO.
4At times we have gone to NNLO, to confirm our conclusions.
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be the case in low dimensions up to values of β and M larger than the threshold for

the GL instability. However, the details of what are the dominant phases, either at

fixed temperature or at fixed mass, can be fairly complicated and require information

about localized black holes that we have not explored. Nevertheless, our study

provides the most complete picture so far of the properties of phases of non-uniform

black strings in arbitrary dimensions, both below and above the critical dimension.

1.2 Weak Cosmic Censorship violation in higher

dimensions

The use of the effective equations 1.2 for the description of black strings already

gives useful insight into the violation of Penrose’s WCC [28], as initially pointed out

by [3,27]. The WCC conjecture states that no naked singularities can be formed by

dynamical evolution of a gravitational system starting from classical initial data. It

can also be defined as the impossibility for distant observers to probe Plank scale

physics (and hence quantum gravity) if the energy of the initial configuration is low

and the system follows the classical gravitational evolution of Einstein’s equations.

WCC has been shown to be violated in different scenarios [27, 40, 41], but some

aspects of WCC violations are still not completely explored. For instance, it is not

clear how generic the initial conditions leading to CC violation can be. Different

gravitational setups can require different amounts of fine-tuning in order to lead

to the formation of naked singularities in a finite evolution time. The presence of

naked singularities is expected to require a theory of quantum gravity to describe

further evolution of the system. In other words, the future of the system ceases to be

predictable from classical gravity. The importance of this loss of predictability, and

the amount of energy transfered to a Plankian density are currently not completely

clear.

Chapter 4 explores possible events of WCC violation in D > 4 black hole colli-

sions. The technique of large D, through the use of the effective equations (1.2),

gives a powerful tool to analyze this type of scenarios that are otherwise very heavy

to approach via numerical finite D simulations [41,42]. It has been recently [43,44]

been shown that localized rotating black holes can actually be described as blobs
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on a black brane in the so-called blob formalism.

The phenomenon of CC violation can be summarized as follows: When two black

holes collide, their event horizons merge and form a single, highly deformed black

hole. At a low enough angular momentum, this resulting horizon will relax through a

Quasinormal Mode (QNM) ringdown to a rotating Myers-Perry stationary solution.

If the angular momentum of the collision lies above a certain threshold, however,

the Myers-Perry black hole is affected by an ultraspinning instability that leads

to the formation of an elongated bar-like object. These black bars are always a

transient phase of the evolution at finite D, due to the emission of gravitational

radiation. They can instead last for a long time, even indefinitely, at large D, since

gravitational waves are strongly suppressed as D becomes very large [8, 45].

The black bar happens to be affected by an instability, which is analogous to the

GL instability [3], that can induce the horizon to form a thin neck in its center.

The resulting object, which we call a dumbbell, can pinch off by evaporation once

the neck reaches a Plank size, and break into two separate (now stable) black holes

that fly apart from each other. The competition between the GL instability growth

rate and the depletion of angular momentum due to gravitational wave emission

(and thus driving the black hole towards stability) will determine whether WCC is

eventually violated.

1.3 Strong Cosmic Censorship in the presence of

a cosmological constant

Cauchy horizons appear in many exact solutions to gravitational systems, partic-

ularly in the Reissner-Nordström (RN) and Kerr solutions. These horizons are a

boundary beyond which GR ceases to be a deterministic theory. Indeed, the future

of an observer that enters the region of spacetime beyond the inner horizon of a RN

black hole cannot be predicted from the outside initial data. The observer will at

this point have a timelike singularity in its null past, and therefore information from

this singularity can affect the fate of the black hole interior.

It is generally believed that the appearence of Cauchy horizons is an artifact that

arises in exact eternal solutions. By constraining the spacetime to be stationary
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we are ruling out the dynamical evolution that would prevent the formation of

such horizons. This idea is encapsulated in Penrose’s Strong Cosmic Censorship

hypothesis. According to this conjecture, external perturbations falling into the

black hole would suffer an infinite blueshift when they arrive to the CH, triggering

an instability. The resulting unstable horizon would then become singular, creating

a terminal boundary of spacetime. This effect was confirmed in asymptotically flat

spacetimes by [46], due to the mass inflation effect. The Misner-Sharp mass was

shown to increase exponentially as one approaches the CH.

The stability of Cauchy horizons depends therefore on the decay of perturbations

in the exterior of the black hole. A scalar field φ perturbation in AF black holes will

decay as a power-law tail given by the well-known Price’s law [47]. This behavior is

enough to guarantee the appearance of mass inflation and thus the validity of SCC.

This scenario, however, changes drastically when a cosmological constant Λ > 0

is present. In this case, φ will instead decay as an exponential law. This fact

has recently motivated [48–55] to put into question the SCC conjecture for nearly-

extremal RN black holes in asymptotically de Sitter spacetimes (RNdS).

In order to go beyond previous studies, Chapter 5 summarizes the results of fully

nonlinear simulations of highly charged RNdS spacetimes. In order to perform such

(spherically symmetric) nonlinear integrations, a novel spectral double-null code

has been developed. Even though the results presented here are far from conclusive,

they do show a dramatic decrease in mass inflation as the charge of the back hole

approaches the threshold derived in [51], to the point where mass inflation is not

observed through the time domain capability of the code.

1.4 Plasma polarization and Love numbers of AdS

black branes

Any continuous system that can be described as a quantum field theory will react

to a change in the geometry it lives in. It will do so by changing the distribution of

the energy density, pressure and stresses. In other words, the system (which we will

call from now on as plasma) polarizes, and its stress energy tensor acquires some

non-trivial expectation values. This effect is in general quite difficult to compute,
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especially if the QFT happens to be strongly coupled. In this case, perturbation

theory is not applicable, and only numerical and lattice computations can be per-

formed.

In this context, the gauge-gravity duality, also known as AdS/CFT correspon-

dence, is extremely useful to extract qualitative valuable information from the sys-

tem [2]. According to this conjecture, strongly-coupled quantum field theories that

are conformally invariant, those called conformal field theories (CFT), are dual to

classical gravity in Anti-de Sitter space in the limit where the rank of their gauge

group is very large (N → ∞). Therefore, there exists a one-to-one correspondence

between classical gravity in (n + 1)-dimensional AdS, and n-dimensional strongly

coupled CFTs (in particular SU(N) Super Yang-Mills theories) living in in the

boundary of AdS. This fact can be used to extract information of the quantum

theory, otherwise extremely difficult to obtain, from calculations in gravity.

Figure 1.3: Fluctuations of the energy of the plasma are represented by deformations

of the bulk geometry.

This technique has been used in the past in both fully-nonlinear numerical cal-

culations and in some particular geometries that allow for analytic results to ex-

ist [56–59]. There is also the possibility to consider linear deformations of the geom-

etry where the plasma lives, which can be represented as Fourier modes. Perturba-

tions of the boundary geometry will produce tidal deformations on the underlying

geometry in the bulk. In order to compute this deformation, we solve the equations
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for a linearized perturbation of the geometry that satisfies an appropriate boundary

condition at infinity. Namely, the metric perturbation must not vanish asymptot-

ically, but instead approach the non-zero value that matches the source, i.e., the

metric perturbation specified at the boundary. This is exactly the goal of Chapter

6. Having a CFT at finite temperature is equivalent to introducing a black hole in

the AdS bulk. In particular, a black brane, whose worldvolume spatial directions

will correspond to the spatial directions of the boundary.

If the perturbations are small, the deformations of the brane are well described

by linear response coefficients, called the Love numbers. These numbers, firstly

introduced to describe deformations on astrophysical objects under external poten-

tials [60,61], encode the information needed for the characterization of the response

of the plasma at a linear level. Furthermore, they are in principle measurable ex-

perimentally. In recent times these Love numbers have been a matter of interest in

this area, since they may be measured from the gravitational wave signal of inspi-

ralling black holes and neutron stars [62, 63]. One can then use them to test the

predictions of General Relativity, and also to extract information about the internal

constitution and equation of state of neutron stars. These Love numbers can be

classified, depending on the transformation properties of the perturbation under ro-

tations, as tensor, vector and scalar-type. They can be determined from linearized

master second order equations first derived in [64], where we use the holographic

coordinate v = 1/r. From these master equations, the Love numbers can be read

in a straightforward manner as coefficients in the near-boundary expansion of the

gauge-invariant quantities Zi(v). The two independent solutions of the master equa-

tions are classified as non-normalizable, and normalizable parts. The former can be

seen as the external source forcing the system, and the later as the linear response

(or vacuum expectation value) of the system to the external forcing. The ratio

between the amplitudes of these two solutions, imposed by regularity at the black

hole horizon, determines the Love numbers. This can be done both numerically, and

analytically as a hydrodynamic expansion (power series in the wavenumber k). A

non-linear calculation of the hydrodynamic response of the plasma to an external

gravitational force was made in [65,66], to lowest order for small k.

The quantum expectation value of the CFT stress tensor is obtained from the

Love numbers [67] as the renormalized quasilocal stress tensor of the bulk geometry.
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Once we know 〈Tαβ〉 as a function of the metric perturbation γρσ, we can easily

obtain the two-point function by functional differentiation

〈TαβTρσ〉 = − 2√
−γ

δ 〈Tαβ〉
δγρσ

. (1.3)

This two-point function gives the geometric polarizability of the plasma. We

will provide a detailed description of how the polarization coefficients are related to

this two-point function and to the Love numbers of the black brane. Finally, as a

natural extension of our study, we also compute the linear-response coefficients of

the electric polarizability of the plasma.5

1.5 Global solutions in Horndeski’s theory

When trying to build extensions to General Relativity, it is natural to consider

the inclusion of new degrees of freedom to describe the gravitational field. It is,

however, desirable for the resulting equations of motion to be at most of second order

type, to guarantee the absence of Ostrogradski ghosts [69], which would potentially

lead to catastrophic instabilities in the theory. If we only allow a metric tensor in

the gravitational part of the Lagrangian, we are left with Lovelock theories. The

richness of possible theories increases drastically if one allows gravity to be describes

both by a metric gµν and a scalar field φ. Thus, the most general scalar-tensor

diffeomorfism-invariant theory that leads to second order equations of motion is

known as Horndeski’s Theory [69–71]. Special cases of this theory have been used

under different names to describe dark energy [72–75] and possible extensions of

GR that could hopefully be detected by gravitational wave signals [76–83]. In the

former front, particular examples include quintessence [84, 85]; kinetic quintessence

or k-essence [86,87] and chameleon/galileon [88,89] theories.

In the later case, strong constraints have indeed been introduced on the spectrum

of allowed theories from the GW170817 detection [90–92]. These constraints are a

result of the comparison of the experimental signals with linearized predictions of

5The literature on AdS black branes deformed by boundary electric fields is too large, and

more importantly, too differently motivated than ours, to properly refer to all of it here. We shall

mention, though, that a linearized perturbation analysis was performed in [68].
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Horndeski’s theories. It is nevertheless important to keep in mind that the pre-

dictions at a linear level do not necessarily agree with the fully nonlinear solution,

even if initial conditions are weak. Some phenomena are intrinsically nonlinear, and

could in principle challenge the linear predictions in case of a disagreement. In the

particular case of Horndeski’s theory, the nonlinear behavior has been analyzed in

the literature [93–95].

Independently of the experimental constraints, it is generally assumed that a

theory that is intended to describe Nature must be well posed [96]. Well posed

theories are those who have a unique solution which depends continuously on initial

and boundary conditions. A theory that is not well posed would arguably fail to

give reliable physical predictions.

Chapter 7 studies a subset of Horndeski’s theories whose equations of motion are

rendered symmetric hyperbolic when a generalized harmonic gauge is used. These

theories are then locally well posed. It is however nontrivial to determine whether

global solutions exist, and if these solutions are sufficiently well-behaved. It is a

useful technique to express the Lagrangian in the so-called Einstein frame, with the

Ricci tensor appearing without any multiplicative factor containing the scalar field.

In the Einstein frame, much of the physics can be extracted from the behavior of

the equation of motion of the scalar field, whose principal part is described in terms

of an effective metric γµν .

This effective metric depends both on the fundamental metric gµν and on the

scalar field φ, and can show a number of pathological behaviors at a non-linear level.

If these phenomena occur outside of horizons, i.e., if they are causally connected to

null infinity, they would render the theory suspicious. It is important to consider

that characteristics for the effective metric do not generally coincide with the light

cones of the fundamental metric, and therefore we can in general find sound horizons

for the scalar and light horizons for the metric. Since gµν and φ are coupled together,

only the innermost horizon will be a true boundary for the causal connection with

infinity. The speed of propagation of the scalar is in fact not bounded from above,

and can even diverge in certain special circumstances.

Another worrisome possibility (which has been confirmed by numerical simu-

lations), is a change of the character of the equation of motion, from hyperbolic

to parabolic, and to elliptic afterwards. This happens when an eigenvalue of γµν
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switches sign. This produces a change on the causal structure of the geometry.



Chapter 2

Large D effective equations

21
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This chapter introduces the notion of the large D expansion of General Relativity,

and in particular the derivation of effective equations for black branes and black

strings at leading order in 1/D. These are derived for both neutral black branes,

and p−brane charged black branes (corresponding to a (p + 2)-form gauge field

strength).

Further analysis shows that the equations admit both a hydrodynamic and an

elastic interpretation, the so-called hydro-elastic complementarity. According to this

view, the black branes at very high dimensions can be dynamically described as a

viscous, compressible fluid. When they settle down, on the other hand, they behave

like an elastic membrane, or a soap bubble. This chapter is based on the research

published in [97].

2.1 Notation and conventions

Many expressions can be given in unified form by introducing a parameter

ε =

+1 for AF ,

−1 for AdS .
(2.1)

For AF black p-branes we define

n = D − p− 3 , (2.2)

and for AdS black branes

n = D − 1 . (2.3)

p will be the finite number of spatial dimensions, out of all of its worldvolume

directions, along which we will allow the brane to fluctuate. We will often use n

as the large parameter instead of D. In order to obtain finite magnitudes in the

effective theory we have scaled by appropriate powers of n the physical magnitudes

of the theory, beginning with (2.17), which indicates that physical length scales

along the brane are 1/
√
n times the corresponding lengths in the effective theory.

The physical magnitudes discussed in this chapter, written with a tilde, are related

to the effective ones as
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ω̃ = ω , k̃i =
√
n ki , (2.4)

∂̃i =
√
n ∂i , ṽi =

vi√
n
, (2.5)

m̃ = nm , P̃ = P , (2.6)

T̃ = nT , s̃ = s , (2.7)

q̃p =
√
n qp , Φ̃p =

Φp√
n
, (2.8)

η̃ = η , κ̃ = nκ . (2.9)

Our length units are r0 = 1, where r0 is measured from the trace of the extrinsic

curvature K of the solution at R→∞ so that

K =
n

r0

+O(n0,R−1) . (2.10)

We use units where 16πG = Ωn+1 = area of the unit Sn+1.1

2.2 The neutral black brane

Let us begin by identifying how to take the large-D limit. This can be inferred from

the properties of static, uniform black branes. In Eddington-Finkelstein coordinates,

the AF black brane metric is2

ds2 = 2dt dr −
(

1− rn0
rn

)
dt2 + δijdσ̃

idσ̃j + r2dΩn+1 , (2.11)

with spatial indices along the brane

i, j = 1, . . . , D − n− 3 = p , (2.12)

and in AdS

ds2 = 2dt dr + r2

(
−
(

1− rn0
rn

)
dt2 + δijdσ̃

idσ̃j
)
, (2.13)

1The fact that G ∼ Ωn+1 ∼ n−n/2 → 0 at large n can be related to the vanishing of the

gravitational field outside the near-horizon region [8, 9].
2We denote by t the ingoing null coordinate. When n is large, dependence on t is the same as

dependence on the asymptotic time that measures time in the effective theory.
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with

i, j = 1, . . . , D − 2 = n− 1 . (2.14)

In the latter, the cosmological constant is set to Λ = −n(n − 1)/2. As D → ∞
we will keep p finite in AF, while in AdS we will assume that the metric functions

depend on only a finite number of coordinates.

The equation of state relating the energy density m̃ = (n + ε)rn0 and pressure P̃

of the branes is (using (2.1))

P̃ = −ε m̃

n+ ε
, (2.15)

so the speed of sound of long-wavelength perturbations is3

cs =

√
∂P̃

∂m̃
=

√
−ε
n+ ε

. (2.16)

Since cs is small when n� 1, we expect the large-n dynamics to be non-relativistic.

This dictates the scalings with n required to capture this physics: we rescale

σ̃i =
σi√
n
, (2.17)

in order to focus on small, O(1/
√
n) lengths along the brane, and in addition consider

worldvolume velocities O(1/
√
n). Thus we take the metric along brane directions

to be4

gtt = O(1) , gij, gti = O(1/n) . (2.18)

Ref. [15] sought solutions in Bondi-type gauge for the AF neutral brane

ds2 = −2
(
utdt+

ui
n
dσi
)
dr − Adt2 − 2

n
Cidσ

idt+
1

n
Gijdσ

idσj + r2dΩn+1 , (2.19)

and the AdS black brane

ds2 = −2
(
utdt+

ui
n
dσi
)
dr + r2

(
−Adt2 − 2

n
Cidσ

idt+
1

n
Gijdσ

idσj
)
. (2.20)

A convenient way to proceed is to integrate over the sphere Ωn+1 in the AF case, and

over the cyclic brane directions in AdS, and obtain theories of gravity in the reduced

finite-dimensional spacetimes with a dilaton field for the size of the compactified

3Imaginary cs for AF black branes corresponds to the GL instability [6, 18].
4As already mentioned, this scaling is not covered by the analysis of [12,17].
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spaces (see e.g., appendix B of [11]). The reduced AF and AdS theories can be

related by analytic continuation in n, so only one of them needs to be explicitly

solved [98,99]. One finds that 1/n terms in Gij must be included for consistency of

the Einstein equations at this order.

The solution found in [15] has ut = −1, ui = 0 (by gauge choice), and

A = 1− m(t, σ)

R
, Ci =

pi(t, σ)

R
, Gij = δij +

1

n

pi(t, σ)pj(t, σ)

m(t, σ)R
, (2.21)

and finite radial coordinate

R = rn . (2.22)

In the AdS solution pi 6= 0 only along the finite number of non-cyclic brane di-

rections. Furthermore, the Einstein equations with a radial index imply that the

collective fields m(t, σ) and pi(t, σ) must satisfy the effective field equations5

∂tm− ∂i∂im = −∂ipi , (2.23)

∂tpi − ∂j∂jpi = ε∂im− ∂j
(pipj
m

)
. (2.24)

Spatial brane indices i, j are raised and lowered with the flat metric δij.

2.2.1 Isothermal fluid

Eqs. (2.23) and (2.24) have the form of continuity equations for m and pi, with∫
dpσm and

∫
dpσ pi being conserved in time. This suggests that we change the

variable pi to vi as

pi = mvi + ∂im. (2.25)

Then (2.23) becomes the continuity equation for mass,

∂tm+ ∂i
(
mvi

)
= 0 , (2.26)

and (2.24) the momentum-stress equation

∂t(mv
i) + ∂j

(
mvivj + τ ij

)
= 0 , (2.27)

5We believe these are the conservation equations of the quasilocal stress-energy tensor at R→∞
(with appropriate subtraction). However, extracting this stress tensor is subtle [11], so we omit it.
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with

τij = −εm δij − 2m∂(ivj) −m∂j∂i lnm. (2.28)

These are the equations of a non-relativistic, compressible fluid with mass density

m, velocity vi, and stress tensor τij. The first two terms in (2.28) correspond,

respectively, to isothermal-gas pressure

P = −εm , (2.29)

and to shear and bulk viscosities

η = m, ζ =
1 + ε

p
η (2.30)

(recall that δii = p is finite for the AF black p-brane, but infinite for the AdS brane).

Together with the entropy density and temperature,

s = 4πm , T =
1

4π
, (2.31)

which satisfy

m = Ts , dm = Tds , (2.32)

these properties reproduce the leading large-n results for AF and AdS black branes

in the fluid/gravity correspondences of [6, 66]. That is, if we take the large-n limit

of the stress-energy tensor of the latter, including up to viscosity terms, and scale

physical quantities as in section 2.1, then we obtain the first two terms in (2.28).

Negative P for ε = +1 gives rise to the Gregory-Laflamme instability [6, 18].

The constitutive relation (2.28) contains one last term beyond the viscous stress.

In fact, since the large-D expansion and the hydrodynamic gradient expansion are

different, one might have expected an infinite number of higher-derivative terms in

τij. Remarkably, the gradient expansion is truncated at a finite order when D →∞.

This implies that an infinite number of higher-order transport coefficients vanish

in this limit [6]. In order to match the last term in (2.28) to the hydrodynamic

second-order coefficients computed in [66] one must focus on the regime where both

expansions agree. Hence we must not only take the large-n limit of [66], but also

regard (2.28) as a perturbative gradient expansion, so that the hydrodynamic equa-

tions at first-derivative order can be used to rewrite the second-order term, with

gradients of m, in terms of velocity gradients.
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In the hydrodynamic interpretation, the last term in τij is associated to creation

or dissipation of density inhomogeneities. But we can also interpret it in other ways.

Let us write its divergence as

∂j
(
m∂j∂i lnm

)
= m∂i

(
∂j∂

jm

m
− ∂jm∂

jm

2m2

)
, (2.33)

i.e., as a term proportional to the gradient of a potential. In this manner we can

view this term as yielding an external gravitational force, proportional to the mass

density, acting on the fluid. However, the origin of the gravitational potential from

second derivatives of m is obscure. Since this rewriting will not be possible for

dynamical charged black branes, we shall not dwell anymore on it.

2.2.2 Hydro-elastic complementarity

The variable m sets the horizon size R = Rh = m in the black brane solutions (2.19),

(2.20), and as such it also determines the radial position of the effective membrane

in the background geometry. Namely, the ‘near-zone’ solutions (2.19), (2.20) are

matched to either the Minkowski background

ds2 = −dt2 +
1

n
δijdσ

idσj + r2dΩn+1 + dr2 , (2.34)

or to the AdS background

ds2 = −r2

(
−dt2 +

1

n
δijdσ

idσj
)

+
dr2

r2
(2.35)

at a ‘membrane surface’ r = r(σ), of the form

rn = m(σ) . (2.36)

When n is large, this is

r = 1 +
lnm(σ)

n
, (2.37)

which describes small, 1/n deformations of a uniform surface at r = 1. Let us

calculate the area A and volume V of this surface. In order to ease a bit the

notation we use the variable

P(σ) = ln (m(σ)) . (2.38)
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When n is large, in the Minkowski background (2.34) we have

A =
Ωn+1

np/2

∫
dt dpσ

(
1 +
P(σ)

n

)n+1(
1 +

1

2n
(∂P)2

)
, (2.39)

V =
Ωn+1

np/2

∫
dt dpσ

1

n+ 2

(
1 +
P(σ)

n

)n+2

, (2.40)

and in the AdS background (2.35),

A = n(1−n)/2

∫
dt dn−1σ

(
1 +
P(σ)

n

)n(
1 +

1

2n
(∂P)2

)
, (2.41)

V = n(1−n)/2

∫
dt dn−1σ

1

n

(
1 +
P(σ)

n

)n
. (2.42)

We compute the trace of the extrinsic curvature K by functional differentiation

K =
δA

δV
=

δA

δP(σ)

/ δV

δP(σ)
. (2.43)

In Minkowski we find

K = n+ 1−
(
P + ∂2P +

1

2
(∂P)2

)
, (2.44)

and in AdS

K = n−
(
∂2P +

1

2
(∂P)2

)
. (2.45)

In AdS there is a non-trivial gravitational redshift on the surface, namely

√
−gtt = 1 +

P(σ)

n
. (2.46)

With these results we obtain

√
−gttK = n+

1 + ε

2
−
(
ε lnm+

∂j∂
jm

m
− ∂jm∂

jm

2m2

)
+O(1/n) . (2.47)

Let us collect the velocity-independent terms in Eq. (2.27), and use (2.33) and (2.47)

to write it as

−m∂i
(√
−gttK

)
= ∂t(mvi) + ∂j

(
mvivj − 2m∂(ivj)

)
. (2.48)
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In addition, if we take the time derivative of (2.47) and use the mass continuity

equation (2.26) we obtain

m∂t
(√
−gttK

)
= ∂i

(
εmvi +m∂i

∂j (mvj)

m

)
. (2.49)

These equations encapsulate the notion of hydro-elastic complementarity in the

neutral black brane effective theory. Instead of the hydrodynamic equations for the

mass and momentum densities of a fluid we can write the elasticity equations (2.48)

and (2.49) for the time and space derivatives of extrinsic curvature of the membrane,

in terms of the radial variable m and a velocity field along the membrane.

The right-hand sides of equations (2.48) and (2.49) still retain a hydrodynamic

flavour. This disappears, however, for configurations with vi = 0, which must be

static and satisfy the Young-Laplace equation

√
−gttK = constant . (2.50)

Stationary, time-independent configurations, can have vi 6= 0 as long as there is no

viscous dissipation, i.e., ∂(avb) = 0, or in other words ∂t + vi∂i is a Killing vector.

In this case, using (2.26) and (2.33), we find that Eq. (2.27) becomes

∂i

(
v2

2
+ ε lnm+

∂j∂
jm

m
− ∂jm∂

jm

2m2

)
= 0 , (2.51)

which, to leading non-trivial order at large n, is equivalent to√
−gtt

(
1− v2

n

)
K = 2κ . (2.52)

with constant κ. It is straightforward to check that the latter is actually the surface

gravity of the horizon in (2.19) and (2.20). In terms of the physical velocity ṽ this

equation is √
−gtt (1− ṽ2)K = 2κ , (2.53)

with equality holding at O(n) and O(1). Thus we have obtained the soap-bubble

(Young-Laplace) equation. It can be viewed as the statement that the surface grav-

ity of the stationary horizon is constant along the brane, even when the horizon itself

is not uniform but has locally-varying extrinsic curvature, and when the time coor-

dinate on the brane is locally redshifted by Lorentz-boost and gravitational factors,

relative to the canonical time of static observers in the background.
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2.2.3 Static string solutions

For completeness and later reference, we review here the analysis in [11] of static

solutions of (2.51), with v = 0, for which m depends on only one spatial coordinate

z. We refer to these as static string configurations.

Define6

P(z) = lnm(z) . (2.54)

From (2.37) we see that P measures the O(1/n) fluctuation of the radius of the

membrane. Eq. (2.51) (with v = 0) can be integrated twice to obtain

1

2
P ′2 + U(P) = E , (2.55)

with

U(P) = ε
(
P +m0 e

−P) . (2.56)

Here E and m0 are integration constants. We can view this as the classical mechanics

of a particle (the undamped Toda oscillator), with position P , time z, potential U ,

and energy E. When m0 > 0 the potential has an extremum at eP = m0.

Trajectories of the particle with P ′ 6= 0 correspond to non-uniform string profiles.

The potential is dominated by the linear term εP for P > 0, and by εm0e
−P for

P < 0. Then, when ε = −1 there cannot be any non-trivial, bounded trajectories

of the particle, and the only solutions correspond to constant P at a maximum of

U where eP = m = m0 > 0. These are uniform AdS black branes.

When ε = +1 and m0 > 0 the potential has a minimum where U = 1 + lnm0.

The solution that stays at the minimum is the uniform AF black string, but now

periodic trajectories also exist (for E > 1 + lnm0), which give non-uniform black

string solutions. Although the equation cannot be integrated exactly, it is easy to

obtain analytical approximations and numerical solutions [11], which match very well

the profiles that result at the end of the time evolution of the dynamical equations

(2.23), (2.24) [15].

6This P is twice the one in [11].
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2.3 Brane-charged black branes

Now we study p-brane solutions of the action

I =

∫
dDx
√
−g
(
R− 1

2(p+ 2)!
H2

[p+2]

)
, (2.57)

which carry p-brane charge under the (p + 2)-form field-strength H[p+2] = dB[p+1].

We keep p fixed as the dimension D = n+ p+ 3 grows large.

In this case we do not consider AdS branes: since their worldvolume has p = D−2

spatial directions, the field-strength H[p+2] would be a top-form, simply amounting

to a renormalization of the cosmological constant.7

2.3.1 Choice of large-n limit

In order to get oriented about how to take the large-n limit, we study first the

static uniform solutions. At any finite n, refs. [100, 101] give their energy density,

pressure, p-brane charge, potential, temperature and entropy density, in terms of

two parameters r0 and α (r0 ≥ 0, |α| <∞), in the form

m̃ = rn0 n

(
1 +N sinh2 α +

1

n

)
, (2.58)

P̃ = −rn0 (1 + nN sinh2 α) , (2.59)

q̃p = rn0
√
Nn sinhα coshα , Φ̃p =

√
N tanhα , (2.60)

T̃ =
n

4πr0

(coshα)−N , s̃ = 4πrn+1
0 (coshα)N , (2.61)

where we have defined

N =
2

p+ 1
+

2

n
. (2.62)

The speed of sound is [101]

c2
s =

(
∂P̃

∂m̃

)
q̃p

= − 1

n+ 1

1 + (2−Nn) sinh2 α

1 +
(
2− Nn

n+1

)
sinh2 α

. (2.63)

7We might consider lower-form fields H[p+2] in AdS, with p finite as D →∞. In general these

introduce anisotropic worldvolume dynamics, which is beyond the scope of this chapter. The

dynamics could be truncated to the isotropic sector, but we shall not study this either.
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Let us now take the large-n limit with α fixed, so q̃p/m̃ and P̃ /m̃ remain O(1).

Then the speed of sound

c2
s =

N sinh2 α

1 + (2−N) sinh2 α
+O(1/n) (2.64)

is always positive, i.e., we never expect a GL instability, even though the p-brane is

in general non-extremal. Moreover, we have cs = O(1) instead of O(1/
√
n), so the

system is relativistic. While there is nothing wrong with this limit, it is a regime of

brane physics different than we are studying in this chapter.

A different large-n limit is obtained for small charge q̃p/m̃ = O(1/
√
n), i.e., set

α =
α̂√
n

(2.65)

and keep α̂ finite. Then

c2
s = −1−Nα̂2

n
(2.66)

is non-relativistic at large n, and can change sign if the charge is large enough.

Therefore, scaling the metric as in (2.18) and the gauge potential B[p+1] as

Btσ1...σp = O
(
n−

p+1
2

)
(2.67)

we expect to capture the physics of hydrodynamic sound and the appearance/disappearance

of the GL instability.

2.3.2 Large D effective theory

Following these arguments, we take the ansatz (2.19) for the metric and

Btσ1...σp = n−
p+1
2 F (t, σ,R) . (2.68)

We find the solution

A = 1−m(t, σ)

R
, Ci =

pi(t, σ)

R
, Gij = δij+

1

n

pi(t, σ)pj(t, σ)− q2
pδij

m(t, σ)R
, (2.69)

F =
qp
R
, (2.70)
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where now qp is constant and we set ut = −1, ui = constant. We may also gauge-

transform B to make it vanish at the horizon R = m. The effective field equations

for m and pi are

∂tm− ∂i∂im = −∂ipi , (2.71)

∂tpi − ∂j∂jpi = ∂im− ∂j
(
pipj − q2

pδij

m

)
=

(
1−

q2
p

m2

)
∂im− ∂j

(pipj
m

)
. (2.72)

2.3.3 Fluid dynamics

The change (2.25) casts these equations into explicitly hydrodynamic form. Besides

the usual mass continuity equation (2.26) from (2.71), Eq. (2.72) gives

∂t(mvi) + ∂j
(
−m

(
1 +

q2
p

m2

)
δij +mvivj − 2m∂(ivj) −m∂i∂j lnm

)
= 0 . (2.73)

The only change in the effective fluid relative to the neutral one is in the pressure,

P = −m
(

1 +
q2
p

m2

)
. (2.74)

This is indeed the large-n limit of the pressure of the black brane discussed above

in sec. 2.3.1, with the appropriate translation between physical and effective mag-

nitudes. The charge qp is a global parameter of the fluid only affecting its pressure,

and not a local degree of freedom. Nevertheless, we can associate to it a ‘local

potential’ [101]

Φp = n
p+1
2 (Btσ1...σp(R→∞)−Btσ1...σp(R→ m)) =

qp
m
. (2.75)

Since in the large-n limit as we have taken it, the entropy density and temperature

of the effective theory are the same as in the neutral fluid (2.31), qp and Φp do not

enter the first and second law of thermodynamics, and the entropy is conserved.

2.3.4 Elastic interpretation

Eq. 2.48 (with gtt = −1) applies again to this system and gives ∂tK, while Eq. (2.73)

can be written in the hydro-elastic form

−m∂i
((

1−
q2
p

2nm2

)
K

)
= ∂t(mvi) + ∂j

(
mvivj − 2m∂(ivj)

)
, (2.76)
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with the extrinsic curvature of the brane embedding in Minkowski being (2.44). For

stationary branes we can write(
1−

q2
p

2nm2
− v2

2n

)
K = 2κ , (2.77)

which expresses how the surface gravity κ remains constant over the entire horizon

of the non-uniform, locally boosted brane.

2.3.5 Sound mode and GL instability

The shear mode is the same as in the absence of charge. Sound modes have frequency

ω± = ±ik
√

1−
q2
p

m2
− ik2 . (2.78)

When qp < m the frequency ω+ presents a GL instability for wavenumber k smaller

than

kGL =

√
1−

q2
p

m2
, (2.79)

that is, if e.g., a string has length L < 2π/kGL, in units where the horizon radius is

r0 = 1, then it is linearly stable.Note that qp = m is not an extremal limit, which

instead corresponds to
√
Nq̃p/m̃ = 1. Since we are taking q̃p/m̃ = O(1/

√
n) we are

always far below this limit. That is, the regime we can access of m < qp �
√
nm is

one of black branes with regular, non-extremal horizons, but stable ones.

Numerical evolution of the non-linear equations (2.71), (2.72) confirms that small

perturbations of uniform black branes with qp < m grow and evolve until a static

non-uniform solution is reached, while if qp > m the brane reverts back to the

uniform state.

2.3.6 Static string solutions

The analysis of sec. 2.2.3 yields in this case the mechanics of a particle in the

potential

U(P) = P +
m2

0 + q2
p

m0

e−P −
q2
p

2
e−2P , (2.80)

with constant m0. Now in order to have a minimum of the potential (where eP = m0)

we need m0 > qp, which means that we are in the range where the uniform string
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is unstable and tends to develop non-uniformities. In this case, the competition

between the terms +e−P and −e−2P makes the oscillations of P take a longer time

near its smallest values — that is, the neck of the non-uniform string, where it is

thinner, becomes longer as qp grows.

As in all subsequent chapters, the discussion of the conclusions of the preceding

study are postponed until the final Conclusions in Chapter 8.
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Chapter 3

Black strings at large D

37
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In this chapter we use the large D formalism developed in Chapter 2 to analyze

the thermodynamical properties of the different phases of neutral black strings at

D ≥ 5 and their stability. In this case, we do not restrict ourselves to the leading

order in 1/D (as in equations (2.23) and (2.24)), but we go instead up to 1/D. This

allows us to extract the different behaviors of the string at different dimensions.

Quite surprisingly, this formalism gives good qualitative (and often quantitative)

results even at low dimensions, and allows us to determine the critical dimension

with remarkable accuracy. This chapter is based on the research published in [102].

UBS

BH

D * β

9 10 11 12 13 14
D0.9

0.92
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D
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Figure 3.1: Range of existence (hatched) of non-uniform black strings in a compact circle

of fixed length, as a function of the spacetime dimension D and the inverse temperature β

or the mass M (results obtained numerically at 4NLO). The vertical axes are normalized

relative to the value for a uniform black string at the threshold of the GL instability, so

the lines β,M = 1 separate UBS into stable above the line, and unstable below the line.

D∗ ' 13.6 is Sorkin’s critical dimension [29], which separates the dimensions in which weak

non-uniformity makes M increase (D < D∗) or decrease (D > D∗). D∗β ' 12.5 plays a

similar role for β. The blue curve marks NUBS that reach zero tension, as a proxy to

the transition to localized black holes (BH). The red curve indicates local maxima of β or

M, reached as the non-uniformity increases when 9 . D < D∗β, D∗. The doubly-hatched

region is a fold in phase space, where two NUBS phases coexist with the same β or the

same M, but differ in their entropies. For D . 10, NUBS branches terminate before any

local maximum of β or M is reached. BH phases (not studied in this paper) coexist and

can dominate thermodynamically over NUBS in regions of β,M > 1 at low D. The blue

curves behave asymptotically at large D like β ∼ D−1/4 and M ∼ D−D/4.
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Fig. 3.1 shows two diagrams for the expected range of existence of NUBS in a

circle of fixed length, in the inverse temperature β (canonical ensemble) and in the

mass M (microcanonical ensemble), as a function of the number of dimensions D.

We normalize β and M relative to their values for a UBS at the threshold of the GL

instability in the same circle. To get oriented, as the value of β, or M, decreases

the UBS become thinner. UBS exist for all values of β and M in all D ≥ 5, and are

locally (GL) stable for β, M > 1 and unstable for β, M < 1.

In the diagram we include all NUBS phases, whether they are stable or not,

either linearly, non-linearly, or thermodynamically. The blue line is a proxy for

the transition of NUBS to localized black holes. This merger point is outside the

applicability of the large-D approach to NUBS, so instead we estimate it as the

point at which NUBS become so inhomogeneous that they develop negative tension.

Therefore, the blue line should only be taken as a semiquantitative boundary. Up

to this caveat, we expect Fig. 3.1 to capture qualitatively and quantitatively the

properties of NUBS in dimensions around the critical value and higher. In particular,

we expect that the asymptotic scaling that we find for the lower boundaries,

βmin ∼ D−1/4 , Mmin ∼ D−D/4 , (3.1)

is robust for very large D. In lower dimensions the quantitative accuracy worsens—

hence we only extend the diagram down to D ≈ 9—, but nevertheless the qualitative

features do not seem to differ.

3.1 Thermodynamics of black strings

We expand the solution in the asymptotic region for 1 � R � en 1. We define

functions m(t, z) and p(t, z) as the monopolar terms in A and C, i.e.,

A = 1− m(t, z) +O (lnR/n)

R
+O

(
R−2
)
,

C =
p(t, z) +O (lnR/n)

R
+O

(
R−2
)
. (3.2)

1The upper bound guarantees that the calculations remain within the large-n near-horizon

zone [8]. The matching to the far-zone is explained in [14].
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These are expanded in powers of 1/n,

m(t, z) =
∞∑
j=0

mj(t, z)

nj
, p(t, z) =

∞∑
j=0

pj(t, z)

nj
. (3.3)

It is now straightforward to compute the quasilocal stress-energy tensor in the

asymptotic region,

Ttt =
Ωn+1

16πG
(n+ 1)

(
m(t, z) +O

(
1

n

))
, (3.4)

Ttz = − Ωn+1

16πG

(
p(t, z)− ∂zm(t, z) +O

(
1

n

))
, (3.5)

Tzz = − Ωn+1

16πG

1

n

(
m(t, z)− p2(t, z)

m(t, z)
+ ∂zp(t, z)− ∂tm(t, z) +O

(
1

n

))
. (3.6)

Note that the terms ∝ lnR/R in the expansion (3.2) only contribute to the stress-

energy tensor at order 1/n and higher.

For time-independent solutions we find convenient to define the mass density

along the string (adequately rescaled to absorb n-dependent prefactors2),

M(z) = − 16πG

(n+ 1)Ωn+1

T tt

= m0(z) +O
(

1

n

)
, (3.7)

and the tension

τ = −16πG

Ωn+1

T zz

= m0(z)− p2
0(z)

m0(z)
+ ∂zp0(z) +O

(
1

n

)
. (3.8)

The tension τ is an intensive magnitude and in equilibrium configurations it

must be uniform over the length of the string, i.e., independent of z. This looks

problematic, since τ in (3.8) does appear to depend on z. However, when there is

no dependence on time eqs. (2.24) take the form

p0(z) = m′0(z) , (3.9)

0 =

(
m′′0(z) +m0(z)− (m′0(z))2

m0(z)

)′
. (3.10)

2Note that in M we factor out (n+ 1), and not just n.
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These imply that ∂zτ = 0. Indeed, this condition is also verified at higher orders in

1/n. In our choice of units, for a UBS (of any length) the constant is τ = 1 to all

orders in 1/n.

Note also that static solutions have zero momentum, Ttz = 0. This also happens,

as expected, to all higher orders.

The horizon of the NUBS is at

R = Rh(z) = m0(z) +O
(

1

n

)
. (3.11)

Bear in mind that the actual area-radius is

rh = R
1/n
h = 1 +

lnm0

n
+O

(
n−2
)
, (3.12)

which shows that in the large-D approach the size of fluctuations of the horizon

radius is O (1/n).

If rh(z) varies along the string between rmin
h and rmax

h , a useful measure of the

non-uniformity is [103]

λ =
1

2

(
rmax
h

rmin
h

− 1

)
. (3.13)

Eq. (3.12) implies that λ ∼ 1/n. Despite this limitation, in our study we will try

to obtain large non-uniformities, approaching O(1), by expanding to high orders in

1/n.

We define a rescaled horizon entropy density, proportional to the area, as

S(z) =

√
n

Ωn+1

Area(z,Rh)

=
√
nG(z,Rh)R

n+1
n

h (z) = m0(z) +O
(

1

n

)
. (3.14)

The densities M(z) and S(z) can be integrated over the length of the string L to

obtain the total mass and entropy,

M =
LnGL
Ln+1

∫ L/2

−L/2
dzM(z) , S =

Ln+1
GL

Ln+2

∫ L/2

−L/2
dz S(z) , (3.15)

where

LGL =
2π

kGL
(3.16)
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is the length of the uniform black string (of unit horizon radius) at the threshold of

the GL instability. We have rescaled M and S by factors of L−(n+1) and L−(n+2),

respectively, so as to render them invariant under changes of units. In other words,

instead of having the units fixed by setting (as above) the horizon radius of the

UBS equal to one, now the units are more sensibly set by the length of the compact

circle L. In addition, we have introduced factors of powers of LGL so that the non-

uniform branches start out at M = 1, S = 1 at all n, since it is practical to normalize

quantities so that their value for the UBS at the GL threshold is equal to one at all

n.

A convenient measure of the tension that is invariant under changes of units

is the so-called “relative binding energy” n (or tension per unit mass and length)

introduced in [104,105],

n =

(
LGL
L

)n
τ

M
. (3.17)

Since the tension τ scales as (length)n, the prefactor L−n makes the relative binding

energy n scale invariant, while LnGL normalizes it so that for the UBS at the GL

threshold we have n = 1 at all n.

Finally, it is straightforward to compute the surface gravity at the horizon, κ,

from which we define a rescaled surface gravity

κ̂ =
2

n
κ

= 1 +
1

n

(
1

2

(
m′(z)

m(z)

)2

− m′′(z)

m(z)
− lnm(z)

)
+O

(
n−2
)
. (3.18)

The zeroth law of black holes requires that when the static equations of motion are

satisfied κ must be uniform over the length of the non-uniform black string. Since

(3.8) and (3.18) satisfy

∂zκ = − 1

2m(z)
∂zτ +O

(
1

n

)
(3.19)

and we have seen that ∂zτ = 0 then the zeroth law is indeed verified at LO. It also

holds at higher orders. For all UBS (of any length), the constant value is κ̂ = 1 at

all n.

The surface gravity is of course proportional to the temperature, and they both

scale like an inverse length. We will find convenient to employ a scale-invariant
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measure of the inverse temperature, which we take to be

β =
LGL
L

κ̂−1 . (3.20)

Again it is normalized so that β = 1 for a UBS at the GL threshold.

Summarizing, the boldfaced quantities M, S, n and β are the mass, entropy,

relative binding energy, and inverse temperature for the NUBS in a unit circle z ∼
z + 1, normalized relative to the values for the UBS at the GL threshold in that

circle. Bearing in mind that the direction z has been rescaled by a factor
√
n, we

recover the physical Mass, Entropy, Tension and Temperature of the NUBS

on a circle of proper physical Length as

Mass = M
(n+ 1)Ωn+1

16πG

(√
n kGL Length

2π

)n
Length , (3.21)

Entropy = S
Ωn+1

4G

(√
n kGL Length

2π

)n+1

Length , (3.22)

Tension = n
Mass

(n+ 1)Length
, (3.23)

Temperature =

√
n

2kGL Length
β−1 , (3.24)

with kGL given by (3.27). The non-uniformity parameter λ does not need any

conversion to proper physical values.

3.2 Perturbative static solutions and static criti-

cal dimension

Our aim now is to construct non-linear NUBS solutions and study their thermody-

namic and stability properties. In this section and in the next one we shall do this

analytically in an expansion for small non-uniformity.

3.2.1 Perturbative NUBS

For now it is convenient to choose our length units so that the horizon is at r = 1 in

the uniform black string solution—later we will set units differently. Now take this
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solution, m0 = 1, p0 = 0, and perturb it slighty in the form

m0 = 1 + δm eΩt+ikz , p0 = δp eΩt+ikz . (3.25)

Linearizing the equations (2.24) in δm and δp we obtain the spectrum

Ω = ±k(1∓ k) . (3.26)

We see that whenever 0 ≤ |k| < 1, the perturbation grows, Ω > 0, so the black

string is unstable. This is the Gregory-Laflamme instability in the large-D limit.

The wavenumber kGL = 1 corresponds to the threshold of the instability, where

Ω = 0. This critical wavenumber can be calculated to higher orders in 1/n using

the effective equations. To 4NLO we find

kGL = 1− 1

2n
+

7

8n2
+
−25

16
+ 2ζ(3)

n3
+

363
128
− 5ζ(3)

n4
. (3.27)

This result was obtained earlier to NNLO using a linear perturbation analysis

in [7], and then extended with similar methods to 4NLO in [106]. We extend now

the linear perturbation analysis (3.25) of the static solution with Ω = 0, k = kGL,

to higher non-linear order in the amplitude of the perturbation. To this effect, we

expand the collective variables as Fourier series of the form

m(z) = 1 +
∞∑
j=1

µj(ε)ε
j cos (jk(ε)z) , p(z) =

∞∑
j=1

νj(ε)ε
j sin (jk(ε)z) , (3.28)

where we allow the length of the compact circle,

L(ε) =
2π

k(ε)
, (3.29)

to vary with the non-uniformity perturbation parameter ε. This is necessary since,

purely for calculational simplicity, we are arbitrarily fixing a length scale by setting

the constant, z-independent Fourier mode in m(z) to be 1 independently of ε. The

boldfaced quantities in the previous section are insensitive to this choice.

At the lowest, linear order in ε, only the threshold static zero-mode, j = 1,

is present. Then, at each higher order in ε a new higher harmonic enters with

j = 2, 3, . . . . At the same time, k is modified as ε grows, i.e., the periodicity is
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corrected. Therefore ε can be regarded as a mode-counting parameter. Bear in

mind that besides the ε expansion, the functions m and p are also expanded in 1/n.

The calculations simplify slightly if we define ε so that

µ1 = 1 (3.30)

for all values of n.

In order to illustrate the construction we solve the first few orders in the ε ex-

pansion for static solutions to leading order in 1/n. Plugging the ansatz (3.28) in

(3.10)3 and successively solving the equations up to order ε3 we obtain

µ2 =
1

6
+O

(
ε2
)
, µ3 =

1

96
+O

(
ε2
)
, (3.31)

k = 1− ε2

24
+O

(
ε4
)
. (3.32)

Thus we obtain a static non-uniform black string solution with

m0(z) = 1 + ε cos kz +
ε2

6
cos 2kz +

ε3

96
cos 3kz +O

(
ε4
)
, (3.33)

p0(z) = −ε
(

1− ε2

24

)
sin kz − ε2

3
sin 2kz − ε3

32
sin 3kz +O

(
ε4
)
. (3.34)

It is straightforward to extend these calculations to higher orders in ε. At the

same time, using the higher order equations we can also include corrections in 1/n.
4

For solutions to leading order in 1/n we can immediately obtain the mass and

entropy as5

M = S = 1− nε2

24
+O

(
ε4
)
, (3.35)

3The second equation admits an obvious first integral, but this is not of much help for solving

perturbatively the equations since the integration constant—the tension τ—is ε-dependent.
4We have found evidence that the power series in ε may have finite convergence radius. The

ratio between successive values of the coefficients µi appears to be close to 1/2, which would imply

that the applicability of the expansion is limited to ε <
√

2.
5Note that this expansion seems to require ε2 � 1/n, which originates in the factors∼ (LGL/L)n

in (3.15). This is not problematic, but instead we could equally well work with, e.g., the mass-

length M1/(n+1) and entropy-length S1/(n+2), which are equal to 1− ε2/24 + . . . and only require

ε� 1.
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and the tension as

τ = 1− ε2

2
+O

(
ε4
)
. (3.36)

With our choice of units, the rescaled surface gravity (3.18) is κ̂ = 1 to leading order

in 1/n independently of the deformation.

The parameter ε is not a very physical measure of the non-uniformity. Instead

we can employ λ in (3.13), which for our solution above is

λ =
1

2

((
m0(0)

m0(π/k)

)1/n

− 1

)
=

1

n

(
ε+

17

92
ε3 +O

(
ε4
))

. (3.37)

The results (3.35), (3.36), (3.37) completely characterize weakly non-uniform

black strings to leading order at large-n. At this order the mass and entropy of

a given NUBS are exactly equal, the temperature is independent of the deforma-

tion, and therefore the thermodynamics of NUBS is rather uninformative. However,

the inclusion of 1/n corrections yields much more interesting results.

3.2.2 Static critical dimensions

With our definitions, a UBS with M = 1 is at the threshold of the GL instability,

while a UBS with M < 1 is unstable, and one with M > 1 is stable. Eq. (3.35) says

that, to leading order at large n, weakly-non-uniform strings have M < 1. Therefore,

at sufficiently large n, for every weakly-unstable UBS there exists, nearby in solution

space, a NUBS of the same mass. It is then possible that the UBS continuously

evolves into a NUBS, in a smooth, second order transition between phases.

Finite n effects can modify this behavior. Including the NLO terms the mass of

a weakly-NUBS is

M = 1− (n− 8)
ε2

24
+O

(
ε4
)
. (3.38)

Therefore, if n < n∗ = 8, i.e.,D < D∗ = 12, the mass is larger than 1: nearby a

weakly-unstable UBS there is no NUBS of the same mass that it could continuously

evolve into, neither by fluctuating in the microcanonical ensemble, nor through

dynamical evolution in which (by axial symmetry) no energy is radiated. The UBS

must then transit in a non-smooth, first order manner to another phase further

separated in solution space. We illustrate the two situations in Fig. 3.2.
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Figure 3.2: Eq. (3.38), and more accurately (3.39), shows that for D < D∗ there are

no weakly non-uniform black strings with mass M < MGL = 1 in the range of unstable

uniform black strings, so the latter cannot evolve smoothly into any of the former (the

transition is then of first order into a phase further away, possibly other NUBS or BH).

For D > D∗ the mass correction is reversed, and there do exist NUBS with M < MGL

that unstable UBS can smoothly evolve into. The calculation of the entropy in (3.43)

shows that in D > D∗ this transition is consistent with the entropy law. Moreover, the

analysis of sec. 3.3 explicitly shows that weakly NUBS are dynamically linearly stable

when D > D∗, and unstable when D < D∗.

The value for the critical dimension can be improved by considering higher orders

in 1/n. For NUBS through 3NLO we obtain

M = 1− nε2

24

(
1− 8

n
− 14

n2
+

6− 20ζ(3)

n3

)
+O

(
ε4
)
. (3.39)

Then, the change between M being smaller or larger than 1 at small non-uniformity

occurs for

n∗ = 9.65 , (3.40)

so that the smooth, continuous classical evolution of an unstable uniform black

string to a weakly non-uniform one is only possible above the critical dimension

D∗ = 13.65 . (3.41)
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This agrees with remarkable accuracy with the numerical value D∗ ' 13.5 obtained

in [29].6 In the large-n expansion it had been obtained earlier in [14] (in a slightly

different calculation to NNLO).

We must verify that the black hole entropy law allows to transit from the weakly-

unstable UBS to a nearby NUBS of the same mass in D > D∗. This calculation

requires a higher order perturbation: the first law of black holes implies that, for

equal masses, the entropies of the UBS and the nearby NUBS are equal to order ε2

(in any D) [103]7. Moreover, to leading order in 1/n the entropy of all the solutions is

the same as their mass [15]. Therefore, in order to see the difference in the entropies

we need the corrections at least at order ε4/n. Furthermore, revealing the reversal

in the difference in entropies at the critical dimension requires at least one higher

order in 1/n.

Bearing in mind that the entropy S of a UBS (not at the GL threshold!) with

mass M is

SUBS = M
n+1
n , (3.42)

we find that the relative entropy difference between NUBS and UBS of the same

mass is

∆S

S
=

S

SUBS

− 1

=

(
1− 7

n
− 22

n2
− 8(1 + 2ζ(3))

n3

)
ε4

96n
+O

(
ε5
)
. (3.43)

This changes sign at the critical dimension n∗ = 9.59, i.e.,

D∗ = 13.59 , (3.44)

in good agreement with (3.41) to 3NLO accuracy. In fact, since it can be proven

[29,103] that the first law of black holes implies (for any n) that

∆S

S
=
n+ 1

2n
δM

(
δβ − 1

n
δM

)
, (3.45)

6Already the leading order result n∗ = 8 provides a surprisingly good approximation. However,

its calculation involves equating the LO and NLO in (3.39), which, strictly speaking, is not legiti-

mate within perturbation theory. Nevertheless, these results for n∗ (and others closely related to

it, as we will see) seem to stand up because the coefficient of the term 1/n gives a value quite

larger than the correction from the term 1/n2, i.e., because 8 � 14/8, and similarly at the next

order. At present, all we can say is that this is a fortunate feature of the large-n expansion.
7More precisely, the leading-order variations satisfy δS = n+1

n δM.
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where δβ and δM are first-order variations (i.e., here the corrections to O (ε2)),

then we see that D∗ must be the same whether we obtain it from δM = 0 or from

∆S/S = 0. Note, however, that the sign of the entropy difference is not determined

by this equation.
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Figure 3.3: Entropy difference (3.43) between NUBS and UBS of the same mass as a

function of non-uniformity λ (3.13). The NUBS in D = 12, 13 < D∗ with ∆S > 0 are

thermodynamically stable even if they are below the critical dimension [23].

Thus the large-D expansion reproduces correctly all aspects of Sorkin’s thermo-

dynamic argument, including the precise value of D∗. As we will see in sec. 3.3.2,
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the large-D expansion also allows to directly establish that the smooth evolution of

unstable UBS to stable NUBS is dynamically possible above the critical dimension

D∗.

We can further verify the presence of thermodynamically stable NUBS in D =

11, 12, which are below the critical dimension, as found in [23]. To this effect, in

Fig. 3.3 we plot the entropy difference as a function of the deformation parameter

λ. We observe that in D = 12, 13 < D∗, there appear NUBS at finite deformation

with positive entropy difference. The resemblance to Fig. 7 of [23] (even fairly

quantitatively) is remarkable.

3.2.3 Critical dimension for temperature

The value we obtain for the inverse temperature

β = 1− ε2

24

(
1− 8

n
− 2

n2
− 20ζ(3)− 6

n3

)
+O

(
ε4, n−4

)
(3.46)

is indeed such that (3.39), (3.43), (3.46) do satisfy (3.45).

Observe that there is a critical dimension

n∗β = 8.49 i .e., D∗β = 12.49 (3.47)

at which the first order variation δβ vanishes. If D < D∗β then β increases as the

non-uniformity appears, and it decreases if D > D∗β.

Notice that D∗β is different than D∗, as required by (3.45). The numerical con-

structions of [23] exhibit the same change in the behavior of β between D = 12 and

D = 13 (see their Fig. 4).

3.2.4 4NLO corrections and non-convergence of the 1/n ex-

pansion

Ref. [106] argued that the large-n expansion is not convergent, but only asymptotic.

Non-perturbative effects that couple the near-horizon region to the far region turn

out to limit the reliability of the perturbative expansion. The size of these effects

is ∼ n−n/2, so they become comparable to perturbative corrections 1/nk at order

k ∼ n/2. Therefore, when calculating the critical dimension n∗ ' 9, we may expect
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that terms from 1/n4 or 1/n5, i.e., 4NLO or 5NLO corrections, begin to show poorer

convergence.

We have found evidence of this. We have managed to extend our results for

weakly-non-uniform black strings up to 4NLO, which adds to (3.39) the term

δ(4)M =
ε2

18n3

(
21 + 2π4 + 30ζ(3)

)
. (3.48)

Then the critical dimension for M is determined by requiring that

n∗ = 8

(
1 +

1.75

n∗
+

2.26

n2
∗

+
42.0

n3
∗

)
. (3.49)

The coefficient of the last term is unusually large, with the effect that it corrects

n∗ by a larger amount than the previous term. More explicitly, at each successive

order we get

n∗ = 8 / 9.48 / 9.65 / 9.93 , (3.50)

which signals a loss of convergence in the last correction. The latter, then, should

not be trusted.

The same breakdown of the expansion is observed, at the same order, in the

calculation of n∗β. At 4NLO we get

δ(4)β = −24

n
δ(4)M , (3.51)

which yields

n∗β = 8 / 8.24 / 8.49 / 8.92 . (3.52)

Again, we deem the last value unreliable.

These results may be taken as suggesting that it would not be useful to try to

obtain higher orders in the expansion. However, bear in mind that this can depend

on the specific quantity that is computed. For instance, it was shown in [106] that

while the 4NLO corrections do not uniformly improve the values for the quasinormal

frequencies of UBS, they nevertheless yield the best approximation to kGL even down

to D = 6, where the accuracy is within 2.4%. We will find in sec. 3.4.1 that 4NLO

results also give excellent agreement for M and S above but also below the critical

dimension. Perhaps in these cases one needs to go to 5NLO to find evidence of

non-convergence in these dimensions—our readers are invited to try their hand at

such calculations.
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3.3 Stability of NUBS and dynamical critical di-

mension

As far as we are aware, no dynamical study of the stability of non-uniform black

strings has been performed yet in any finite number of dimensions.8 The large-D

expansion simplifies the task enormously, even allowing analytical investigation.

3.3.1 Quasinormal modes of NUBS

Let us consider a static solution ms(z), ps(z). We perturb it by adding time-

dependent terms

m(t, z) = ms(z) + eΩtδm(z), p(t, z) = ps(z) + eΩtδp(z), (3.53)

and expand the equations to linear order in δm and δp. If the initial solution is

periodic over an interval of length 2π/k, then the perturbation admits an expansion

as Fourier series9

δm(z) =
∞∑
j=1

δm
(+)
j cos(jkz) + δm

(−)
j sin(jkz),

δp(z) =
∞∑
j=1

δp
(+)
j sin(jkz) + δp

(−)
j cos(jkz).

(3.54)

We consider static solutions that have the symmetry ms(z) = ms(−z), ps(z) =

−ps(−z), and then the spectrum can be split into even (+) and odd (−) modes.

Observe that Ω has dimensions of inverse length, so if we want to measure it, as

we are doing for all other quantities, in units of the length L, then we must use the

scale-invariant frequency

Ω =
L

LGL
Ω , (3.55)

and the corresponding physical frequency will be

Omega =
Ω√

n kGLLength
. (3.56)

8The closest is the study in [23] using local Penrose inequalities.
9We exclude j = 0 since these are exact zero modes that can be absorbed in uniform rescalings

and boosts.
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When we take the static solution to be perturbative in ε and in 1/n, the coeffi-

cients of the time-dependent fluctuation, δm
(±)
j and δp

(±)
j , will also be power series

of ε and 1/n. At the lowest order in both expansions we are perturbing the uniform

black string with k = 1 + O (ε, 1/n). It is clear from our earlier result (3.26) that

the modes with wavenumber jk = j +O (ε, 1/n) have

Ω = −j(j ± 1) +O (ε, 1/n) . (3.57)

Therefore perturbation modes of a weakly-NUBS (small ε) with j > 1 will have

Ω < 0 and so these perturbations are stable. This was of course expected, since

these ‘overtones’ all have wavelengths shorter than the ‘fundamental’ threshold mode

j = 1. While it would be possible to compute corrections in ε and in 1/n to this

result, there appears to be little motivation for it.

It then remains to study perturbations that are dominated by fundamental normal

modes with j = 1, which, at small ε, lie near the stability threshold with Ω = O (ε).

It suffices to focus on even modes (odd ones are simply a translation of them), i.e.,

δm(z) = cos kz +O (ε, 1/n), δp(z) = − sin kz +O (ε, 1/n).

We begin working at leading order in 1/n, and perturb the static solution we

found in section 3.2, with ms(z) and ps(z) given by (3.33) and (3.34), and k by

(3.32). Solving for the coefficients δm
(±)
j , δp

(±)
j perturbatively in ε up to cubic order

we obtain

δm(z) = cos kz + ε
1

3
cos 2kz + ε2

1

32
cos 3kz +O

(
ε3
)
, (3.58)

δp(z) = −
(

1− ε2

8

)
sin kz − ε 2

3
sin 2kz − ε2 3

32
sin 3kz +O

(
ε3
)

(3.59)

with

Ω = − ε
2

12
+O

(
ε3
)
. (3.60)

Since Ω < 0, we conclude that, to this order in small ε, and to leading order for

n → ∞, weakly non-uniform black strings are stable. This LO calculation can be

readily carried over to two higher orders in ε, where we find

Ω(ε) = − ε
2

12

(
1 +

7ε2

16
+

75497ε4

414720

)
+O

(
ε8
)
, (3.61)

so Ω(ε) < 0 persists to this order. This analytical argument for the stability of NUBS

when D →∞ is in perfect agreement with their numerically observed stability under

dynamical evolution of the LO equations (2.24) [15].
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3.3.2 Dynamical critical dimension

It becomes even more interesting when we add the first correction for finite n. In

this case we obtain

Ω = − ε
2

12

(
1− 10

n

)
+O

(
ε4
)
. (3.62)

Here we see the appearance of a “dynamical critical dimension”, n∗ = 10, i.e.,

D∗ = 14, such that for n < n∗ weakly non-uniform black strings are dynamically

unstable, while for n > n∗ they are stable.

This critical dimension is very close to the one we found from the thermodynam-

ical analysis. The agreement improves with the 3NLO result

Ω = − ε
2

12

(
1− 10

n
+

6− 2ζ(2)

n2
− 6− 4π2 + 20ζ(3)

n3

)
+O

(
ε4
)
, (3.63)

so the critical value where Ω changes sign is corrected to

n∗ = 9.62 , (3.64)

i.e.,

D∗ = 13.62 . (3.65)

Now this is the same result (well within the expected accuracy) as obtained in (3.41)

and (3.44) from the thermodynamics of the phase space of static solutions. Going

one order higher the expansion appears not to converge, but this might be expected

from our discussion in sec. 3.2.4.10

The connection between the thermodynamic critical dimension of NUBS and the

change in their dynamical quasinormal stability was expected on general grounds,

but so far it had not been verified explicitly. The 1/D expansion has allowed us to

establish it with excellent accuracy.

3.3.3 Quasinormal stability of NUBS and Poincaré turning

points

We have extended the calculation of the lowest quasinormal frequencies of NUBS

to higher orders in the non-uniformity. The most salient aspect of the result is to

10At 4NLO we find δ(4)Ω = ε2(8 + 5π2 + 49π4/45)/(6n4), which would yield n∗ = 9.96.
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show that large enough non-uniformity can change the stability of NUBS in some

dimensions below the critical value.

In order to illustrate this phenomenon, let us keep only the next-to-leading-order

terms in both ε and in 1/n, and write them as

Ω(ε) = − ε
2

12

(
1 +

7ε2

16

)(
1− 10

n

(
1− 3ε2

20

))
. (3.66)

To leading order in the non-uniformity this is the same as (3.62), which showed that

NUBS in n < n∗ = 10 are unstable. However, when the next non-uniformity order,

ε4, is included, the instability gets weaker. More precisely, a NUBS with ε = ε0,

where

ε0 =

√
2 (n∗ − n)

3
' 0.82

√
n∗ − n , (3.67)

has a zero mode instead of a negative mode, and a NUBS with ε > ε0 would be

dynamically linearly stable even if it is below the critical dimension.

This finding ties in very well with the presence of a turning point at finite non-

uniformity in the mass of NUBS in n < n∗.
11 To see the relation clearly, let us write

the derivative of the mass with respect to non-uniformity as

∂M

∂ε2
= −nM

24

(
1 +

83

144
ε2
)(

1− 8

n

(
1− 23

72
ε2
))

. (3.68)

The last term in brackets reveals that, below the (at this order, in this case) critical

dimension n∗ = 8, the mass reaches a turning point when the non-uniformity is

ε = εtp, with

εtp =

√
9 (n∗ − n)

23
' 0.63

√
n∗ − n . (3.69)

This result is very close to ε0. Indeed, the two results are expected to coincide:

Poincaré’s turning-point method says that a solution at a turning point in phase

space must have one zero mode (for at least one kind of perturbation). Although ε0

and εtp are not exactly the same, they are sufficiently close, within the approxima-

tions we have made, to validate the conclusion that they conform to this argument.12

11This is related to, but not the same as the existence of stable NUBS below the critical dimen-

sion, discussed in [23] and in sec. 3.4.1.
12 In order to make this agreement more precise we would need better accuracy in the non-

uniformity than we have obtained, even more so if we are interested in turning points at integer
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So, once again, we see that the large D expansion is an efficient means of es-

tablishing the links between local thermodynamical stability and linear dynamical

stability that exist in this system.

3.4 Highly non-uniform black strings

In addition to the analytic expansions for small non-uniformity, we have explored

numerically larger non-uniformity in strongly non-linear regimes. We have done this

by finding highly deformed static NUBS, and by time evolution of UBS deep into a

non-linear regime.

The effective large-D equations can be written and solved in two different ways.

The first one is as a sequential set of j + 1 equations, one equation for each term

mj(t, z) of the pertubative expansion of m(t, z), (3.3). The equation for mj(t, z)

involves the solutions at lower orders, mi(t, z), i = 0, . . . , j − 1.13 Crucially, n does

not appear anywhere in these equations: it only enters, as a free parameter, when

we recombine the solutions mj(t, z) into a finite series in 1/D to recover the solution

m(t, z) up to jNLO. Thus, in this approach n remains a continuous, analytically

tractable parameter, not only in the equations but also in the solutions.

The second approach consists of solving an inclusive equation for the total vari-

able m(t, z), (3.3), which includes at once all the corrections up to a given order.

That is, to any order in the 1/n expansion we solve only one equation for m(t, z),

instead of j + 1 equations for mj(t, z) in the sequential approach. The price to pay

is that this single equation now involves n explicitly and therefore, if we want to

integrate it numerically, we must assign a specific value to n. That is, in contrast

to the sequential approach, the integration yields a solution for a specific value of

n, and so we must solve the whole equation anew to obtain the solution for another

value of n.

Both approaches should yield compatible results within a given order of the ex-

values of n < n∗, which lie far from the GL point. Calculations to higher non-uniformity than in

(3.43) would also be needed to verify that around the turning point the solution with Ω < 0 has

larger entropy than the solution with the same mass and Ω > 0, as required by Poincaré’s method.
13If the equations were linear, the lower order solutions would yield sources for mj(t, z). Here

the equations are non-linear, so mi<j(t, z) also appear as coefficients.
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pansion, but we have found each one preferrable for a different problem.

The sequential approach can easily be applied to the solution of the ODEs of the

static system, and this allows to efficiently scan the phase space of static solutions,

including the unstable phases that would not be visible in a dynamical evolution.

Once we obtain solutions for m0(z), m1(z), m2(z), m3(z) and m4(z), the complete

solution m(z) is known to 4NLO for any value of n. The dimensionality of the space

of parameters that one needs to scan numerically is then reduced by one. This

approach has the drawback that for some values of n the solutions are unphysical

(for instance, with negative mass density or tension) and we must identify and

remove them out of the space of static solutions.

The inclusive approach is more useful for the time evolution of the effective equa-

tions. We studied the endpoint of the dynamic evolution starting from a slightly

perturbed unstable black string. We are able to verify stability beyond the linear

analysis, but we find an apparent instability in a regime where the NUBS should

presumably be stable, according to the static results. Already at NLO, there is a

D-dependent limiting thickness, Mlim(D), where the string becomes too inhomo-

geneous and the numerical code breaks down. This indicates the point at which

the non-uniformity of the black string becomes so large that the effective equa-

tions of the 1/D expansion cease to be reliable. There is no true (finite-D) physics

that corresponds to the phenomena that we observe there. Surprisingly, there

seems to be a scaling behavior in the non-uniformity for the large-D breakdown,

as Mlim(D) ∼ D−D/4, similar to the one encountered for the merger point.

To solve the equations we decomposed the functions mj(z) as (truncated) Fourier

series. The Fourier coefficients were then fitted by a Levenberg-Marquardt algorithm

in order to satisfy the effective equations. Additionally, the same results were com-

puted independently up to NLO using a Chebyshev grid, and a Newton-Raphson

relaxation.

3.4.1 Thermodynamic properties of NUBS branches

In our computations of static NUBS using the sequential approach we have chosen

to terminate the branches, in each dimension, when the NUBS reach zero tension.

Although this is an estimate and not an accurate determination of the actual merger
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transition to the BH phase, we will see that it is remarkably close to the endpoints

of the branches obtained through full-numerical solution of the Einstein equations.

In [14] an analytical approximation to the profile of zero-tension solutions was

made. Their shape was found to be fairly close to what one would expect for a BH.

The NNLO horizon position in this case is

Rh(z) ∼ e−z
2/2

(
1− z4

n
+

3z8 − 16

96n2

)
, (3.70)

which indicates that when the BH fills up the length of the compact circle, this

length will scale as L ∼ ∆z ∼ n1/4. From this one can readily estimate that the

(static) merger transition between NUBS and BH occurs for values that scale as

M1/(n+1), β ∼ n−1/4 , (3.71)

since both these quantities are defined to be inversely proportional to L (see (3.15)

and (3.20)).

Our numerical results clearly confirm this scaling behavior, exhibiting its onset

already at dimensions as low as n ≈ 8, i.e.,D ≈ 12, see Fig. 3.4. We denote the

zero-tension values of the NUBS mass as

M = Mmin(D) ∼ D−D/4 . (3.72)

These are the curves shown in blue in figs. 3.1 and 3.4.
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Figure 3.4: Scaling behavior of the zero-tension curve Mmin(D) that we take as a proxy

for the merger transition between static NUBS and BH phases. The curve (obtained at

4NLO) falls off as D−1/4, in excellent agreement with the analytical estimate (3.71).

The following figures 3.5, 3.6, 3.7, 3.8, show our numerically computed branches

of NUBS that are extended until they reach zero tension. We also present the results

of our analytical calculations in the expansion in ε which, as we could expect, are

accurate only as long we do not depart too far from the beginning of the branch.

Furthermore, we include a comparison with the results obtained in [23] in D = 13

and D = 14 (just below and above D∗) through full numerical solution of the

Einstein equations.

Figs. 3.5 and 3.6 show the total mass and entropy of NUBS as functions of the

inverse temperature. We are not presenting diagrams of S vs. M since (as is indeed

apparent by comparing these diagrams) the difference between them is very small

and the curves for NUBS are too close to the curves for UBS to give a useful image.

The figures show that our 4NLO results for the mass and entropy provide an

excellent match to the calculations in [23]. We emphasize that there is no free

parameter in this comparison. The quantitative agreement is remarkable not only

at the GL point but also further along the branches. This is strong evidence that

the large-D expansion, with higher order corrections included, can work well even

for inhomogeneities of order one despite its apparent limitation to inhomogeneities

∼ 1/D. We are particularly surprised by how well the zero-tension condition for the
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termination of the branches appears to agree with the limits found in [23]. This is

presumably due to the fact, already observed in [14], that the zero-tension solution

(3.70) appears to capture well the geometry near the equator of a BH (but not near

the axis where Rh → 0). Then the solution (3.70) reproduces correctly the mass and

area of the BH since at large-D these quantities are dominated by their values near

the equatorial bulge.

The curves for the relative binding energy n in Fig. 3.7 reproduce the main

qualitative features previously found for NUBS. However, they end at n = 0 (zero

tension) while the actual curves for NUBS branches terminate at positive, non-

zero tension, where, at least in D = 5, 6, they merge with black hole phases in

a spiralling way [21, 24, 25]. These spirals are a feature controlled by the critical

self-similar solution at the static merger transition [107], which does not seem to

be captured by the large-D effective equations for black strings. It may be visible,

though, in large-D studies aimed closer to the self-similar solution.

Overall, these diagrams exhibit the main qualitative features of the NUBS branches

of static solutions, both above and below the critical dimension D∗ = 13.6. The

quantitative accuracy is excellent at D = 13 and higher, but worsens as D gets

smaller. Nevertheless, the position of the GL point in all these diagrams is excel-

lently reproduced even down to D = 6 [106].



3.4. HIGHLY NON-UNIFORM BLACK STRINGS 61

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

1.02 1.04 1.06 1.08
β

1.2

1.4

1.6

M
D = 9

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●●

●●
●●
●●●
●●●●●

1.01 1.02 1.03 1.04
β

1.1

1.2

1.3

1.4

M
D = 10

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●●●

●●●●●●
●●●●●
●●

●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●

●●
●●

●●
●●
●●
●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●

1.005 1.010 1.015 1.020 1.025 1.030
β

1.1

1.2

1.3

1.4

M
D = 11

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●

●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.985 0.990 0.995 1.000 1.005
β

0.95

1.00

1.05

1.10

M
D = 12

●
●●
●●
●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●
●●●
●●●
●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.96 0.97 0.98 0.99 1.00
β

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
D = 13

●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0.94 0.96 0.98 1.00
β

0.5

0.6

0.7

0.8

0.9

1.0

M
D = 14

Figure 3.5: Mass M vs. inverse temperature β. Black dots: large-D numerical results

for NUBS. Blue solid: large-D perturbative solution for NUBS. Red dots: finite-D full-

numerical NUBS in [23]. Gray solid: uniform black string (MUBS = βn). From the

branching point at M = β = 1, we see that β increases when D < 12.5 and decreases

when D > 12.5, while M increases when D < 13.6 and decreases when D > 13.6.
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Figure 3.6: Entropy S vs. inverse temperature β. Black dots: large-D numerical results

for NUBS. Blue solid: large-D perturbative solution for NUBS. Red dots: finite-D full-

numerical NUBS in [23]. Gray solid: uniform black string (SUBS = βn+1). From the

branching point at S = β = 1, we see that S increases when D < 13.6 and decreases when

D > 13.6.
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Figure 3.7: Relative binding energy n (tension per unit mass and length) vs. inverse

temperature β. Black dots: large-D numerical results for NUBS. Blue solid: large-D

perturbative solution for NUBS. Red dots: finite-D full-numerical NUBS in [23]. The line

nUBS = 1 corresponds to uniform black strings.
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Figure 3.8: Inverse temperature β vs. deformation parameter λ. Black dots: large-D

numerical results for NUBS. Blue solid: large-D perturbative solution for NUBS. Red

dots: finite-D full-numerical NUBS in [23]
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3.4.2 Dynamics

Ref. [15] exhibited numerical simulations of the evolution of unstable black strings

in the limit D → ∞. They showed that evolution following the LO equations

always ends at stable NUBS. When we incorporate NLO corrections (using the

inclusive approach) the outcome of the evolution depends on the thickness of the

initial uniform black string.

Black strings with M not much below the GL instability proceed directly towards

stable NUBS with the same value of M. However, when we consider lighter strings,

they develop larger inhomogeneity until the evolution breaks down. It would be

appealing to attribute this breakdown to a singular pinch-down to zero size of the

black string horizon, which would be naturally followed by a (non-classical) transi-

tion to a BH configuration. However, we cannot distinguish this effect from a more

banal breakdown of the large-D expansion as the inhomogeneity grows too large.

Indeed, we expect that this is the reason that the evolutions break down when the

mass of the black string is in a range M > Mmin(D), where there exist stable NUBS

that are natural endpoints.

Observe that the breakdown can happen only in the inclusive approach; the

sequential method cannot lead to any such breakdown, only to the appearance of

unphysical solutions that would have negative tension, such as we have constructed

above. That is, time evolution in the sequential approach can be regarded as a

particular relaxation approach to obtain static solutions.

We conclude that the numerical time evolution of black strings in the large-D

expansion can be useful to verify the stability of NUBS when these are not too

light. However, the (inclusive) large-D approach breaks down when the mass M of

the black strings becomes small enough, even within the range of existence of stable

NUBS.
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Chapter 4

Black holes as blobs on a brane:

Collisions and violation of Cosmic

Censorship
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The large D effective equations introduced in Chapter 2 have been shown to

have an unexpected application to the description of localized black holes. In the

approach of [43] to the physics of large-D black holes, these appear as spheroidal

blobs on the horizon of a thin black brane. These blobs not only account correctly

for the mass, entropy, and angular momentum of stationary Myers-Perry (MP) black

holes in the limit D → ∞: they can also be set in linear motion by a boost, and

when perturbed, their vibrations reproduce with accuracy the quasinormal modes

of the black hole, axisymmetric or not. The presence of the thin black brane does

not affect these properties of single black holes, but acts as a regulator when two

black holes either touch or split apart: the horizons never actually merge nor break

up, but are always continuously joined by the thin black brane. This feature allows

us to follow the entire evolution of the system. This chapter is based on the research

published in [5].

These black-hole blobs evolve according to the equations for the large-D effective

dynamics of a neutral black brane. As shown in [15,97], any solution of

∂tm+∇i(mv
i) = 0, ∂t(mv

i) +∇jτ
ij = 0 , (4.1)

where

τij = m(vivj − δij − 2∇(ivj) −∇i∇j lnm) , (4.2)

yields a solution of the Einstein equations to leading order in 1/D describing

a (possibly dynamical) configuration of a black brane horizon. Here m(t, xj) and

vi(t, xj) are the mass (and area) density and the velocity along the brane. Through-

out this chapter we fix the units in the effective theory by normalizing the total

(conserved) mass to M =
∫
d2xm = 1.

MP black holes correspond to gaussian profiles for m, which become broader as

their spin increases (a gaussian describes the area density of a large-dimensional

sphere, see [43]). At low spin all the quasinormal modes of the solutions are stable,

but when the spin reaches a critical value, a ‘bar-mode’ instability appears, similar

to those present in neutron stars, in which the horizon lengthens along one axis and

shrinks along the transverse one. Ref. [43] found an exact non-linear solution of

(4.1) for a stationary rotating black bar (which, as we remarked, does not radiate
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when D → ∞). It also identified zero-mode perturbations of black bars which are

Gregory-Laflamme threshold modes of black strings when the bars are long.

Figure 4.1 shows these stationary phases in the plane of angular velocity Ω vs.

angular momentum J . MP black holes exist for all J but are bar-mode unstable

for J > 2, where black bars exist. With the effective-theory mass M = 1, the

dimensionless ratio of physical spin J to physical mass M is obtained as

J

M
D−2
D−3

' J√
2πeD

(4.3)

(we set 16πG = 1). Bear in mind that this expression is only asymptotically valid

at large D, and not very accurate for moderate D, even for MP black holes.

0.0 0.5 1.0 1.5 2.0 2.5
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0.0
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0.2

0.3
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Figure 4.1: Phase diagram for MP black holes and black bars [43] (dashed and

continuous lines), and final states of the numerical evolution of a collision after

t = 10 (circles and triangles). The vertical axis is the angular velocity of the horizon,

the horizontal axis the total angular momentum for fixed mass. The orange dash-

dotted line at J = 4/
√

3 marks the stability limit for black bars. For J & 2.43 the

intermediate bar configuration breaks, so we omit these values in this plot.
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4.1 Colliding black holes at large D

We set up two gaussian blobs (black holes) on a 2-brane in a collision course, and

follow their evolution by numerically solving (4.1). For simplicity we consider black

holes with equal masses, zero spin, and equal but oppositely oriented velocities.

Before describing our results, let us review some aspects of black hole collisions

at large D [8]. First, whenever D > 4 it is well known that there are no bounded

stable Keplerian orbits; hence there is no inspiral phase. The short range of the

gravitational interaction at large D then requires that the two black holes are aimed

at one another with a sufficiently small impact parameter. This is not a problem

for our purposes since we require J of order one in (4.3), so the angular momenta

and impact parameters are indeed small (in physical mass units). When the two

black holes are within a distance O (r0/D) of each other (where r0 is a characteristic

length of the black hole), their horizons are expected to quickly merge on a time

scale O (r0/D), presumably forming a tube of size O (r0/D) between them. At this

point they will emit a burst of gravitational radiation of frequency ω = O (D/r0).

The horizon then evolves quickly until it enters a regime of slower evolution, on time

scales O (r0) controlled by (4.1).

When we evolve the entire collision using (4.1), all the fast dynamics on time

scales O (r0/D) is smoothed out. Since the thin black brane regulates the collision,

there is properly never an instant in which the black holes merge, and the initial

sharp outburst of high-frequency radiation is not visible. Missing this first part of

the process is not an important shortcoming: we expect that this quick evolution is

almost featureless, as indicated already by the universal nature of quasinormal modes

of high frequencies O (D/r0) [10,108]. The most interesting part of the dynamics is

the one accurately captured by eqns. (4.1) (which provide the non-linear theory of

the “featureful” quasinormal modes of frequency O (1/r0)), i.e., the evolution of the

merged horizon.

We solve numerically the evolution equations by discretizing the spatial directions

in a square domain with periodic boundary conditions. We have used two indepen-

dent codes, with equivalent results: one is written in the Julia language [109] and

the other one in Mathematica. The Julia code uses a two-dimensional Fourier grid

with FFT differentiation in the spatial directions, and the DifferentialEquations.jl
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package [110] for time integration. The Mathematica code uses finite-difference dif-

ferentiation in the spatial directions and a fourth-order Runge-Kutta method in the

time direction.

4.2 Results

We have performed numerical simulations of collisions with different initial velocities

and impact parameters for the colliding black holes. Since there is no gravitational

radiation, the total angular momentum J is conserved throughout the evolution,

which we have checked in our numerics. We have found that, for a large range of

initial velocities and impact parameters, the value of J is enough to predict the

final state of the system, according to the stationary configurations that exist with

that J : rotating MP black hole or black bar, stable or unstable. This is shown in

Figs. 4.1 and 4.2.

That is, for collisions with J < 2 we obtain final states that correspond to MP

black holes, which are the only stationary and stable phases in this range. For

larger J the MP black holes are unstable to bar formation and correspondingly we

do not find these anymore as final states in our simulations. Instead, for 2 < J <

Jc = 4/
√

3 ≈ 2.31 the final states are stable black bars. The critical value Jc is

given by the reflection-symmetric marginal mode of the bars found in [43], which

marks the beginning of the unstable region for the black bars that can be formed

in our simulations. For values of J slightly larger than Jc the bars are long-lived,

and we do not observe their breaking in our numerics. However, for J sufficiently

high, the bars do split—more specifically, we observe this for J & 2.43 for running

times of order t ∼ 10 (in units of M = 1). These bars break after two turns or

less, and the intermediate configurations can resemble more an evolving dumbbell,

whose life-time decreases with J , than a quasi-stationary bar.

In Fig. 4.3 we show snapshots of the time evolution of a collision that yields

CC violation. After the breaking, the two pieces of the bar fly apart and quickly

settle into boosted MP black holes. Going to their rest frame, we observe that their

approach to equilibrium is governed by the lowest-lying quasinormal mode computed

in [43]. The final black holes have the same mass as the initial ones, and non-zero
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Figure 4.2: Longitudinal and transverse (squared) axial lengths `2
‖ and `2

⊥ of the final

states of the numerical evolution of a collision after t = 10 (circles and triangles).

The axial lengths `2
‖ and `2

⊥ for MP black holes and black bars, as defined in [43],

are shown by the continuous and dashed lines.

spin, but the total horizon area does not decrease in the process since when D →∞
the black hole area is not affected by its spin. Let us also note that putting non-zero

intrinsic spin on the initial black holes allows to demonstrate the formation of the

long-lived bar and its subsequent instability in collisions with very small impact

parameter [111].
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Figure 4.3: Snapshots of the time evolution of a collision for J = 2.43. The density

plots show the energy density m, while the arrows depict mvi. Contour lines corre-

sponding to m = 8× 10−4 are drawn to guide the eye. After the black holes merge,

they form a (deformed) bar that lasts for a time of order ∆t ≈ 2.3, until it breaks

apart.
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This chapter takes a first glance at the fully nonlinear behavior of asymptotically

de Sitter charged black holes close to extremality. All results included here are

restricted to spherical symmetry. The simulations seem to be compatible to the

prediction of [51], i.e., that Penrose’s Strong Cosmic Censorship could be violated

in these extreme spacetimes.

The first part of the chapter is devoted to the description of the numerical scheme

that we have used to perform the simulations (Double Null Through Spectral meth-

ods, or DoNuTS) codeThis procedure takes a different approach to previous codes

by introducing spectral methods, thus reducing drastically both the computational

requirements that are needed and the running time. In the second part the main

results are summarized. This chapter is based on the research published in [112].

We consider here an evolving, electrically charged spacetime, modelled by the

Einstein-Maxwell action with a cosmological constant Λ, minimally coupled to a

massive scalar field Φ with mass parameter µ,

S =

∫
d4x
√
−g
(
R− 2Λ− F 2 − 2Φ,αΦ,α − 2µ2Φ2

)
,

where F 2 = FαβF
αβ and Fαβ is the Maxwell tensor. The equations of motion reduce

to

Gµν + Λgµν = 2FµαFν
α − 1

2
gµνF

2

+ 2Φ,µΦ,ν − gµν
(
Φ,αΦ,α + µ2Φ2

)
, (5.1)

�Φ = µ2Φ , dF = d ?F = 0 , (5.2)

where ? is the Hodge dual.

We focus on spherically symmetric spacetimes, written in double null coordinates

as

ds2 = −2e2σ(u,v)dudv + r2(u, v)dΩ2 , (5.3)

F = Fuv(u, v)du ∧ dv , Φ = Φ(u, v) , (5.4)

where u and v are ingoing and outgoing coordinates, respectively. In this framework,

Maxwell’s equations decouple and imply that

Fuvr
2e−2σ = constant = Q , (5.5)

with Q a conserved (electric) charge.
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5.1 Numerical evolutions

To numerically evolve the field equations we specify initial conditions along two null

segments, u = ui and v = vi. We fix the residual gauge freedom as follows:

r(ui, v) = v , r(u, vi) = r0 + uru0 , (5.6)

where ru0 is a constant and r0 = vi. The profile of the scalar field is set as purely

ingoing

Φ(ui, v) = Ae−( v−vcw )
2

, (5.7)

with the outgoing flux being set to zero, Φ,u(u, vi) = 0.

To interpret our results it will be convenient to consider the following alternative

outgoing null coordinates:
◦
v, an Eddington-Finkelstein type coordinate, defined by

integrating (
1− 2M

r
+
Q2

r2
− Λ

3
r2

)
d
◦
v = r,v dv (5.8)

along the event horizon (EH), and t, the affine parameter of an outgoing null

geodesic, obtained by integrating(
1− 2M

r
+
Q2

r2
− Λ

3
r2

)
dt = −r,ur,v dv (5.9)

along a constant u line. In these expressions M stands for the Misner-Sharp mass

function, which we also closely monitor during the integration, given by

M(u, v) =
r

2

(
1 +

Q2

r2
− Λ

3
r2 + 2e−2σr,ur,v

)
. (5.10)

The constant ru0 is thus related to the initial BH mass, M0 ≡ M(ui, vi). Recall

that the blow-up of this scalar signals the breakdown of the field equations [113]

(compare with [114,115]).

To estimate the curvature we compute the Kretschmann scalar K computed from

the field equations (see 5.2; a direct evaluation of this scalar in terms of the metric

was found to lead to important round-off error-related problems).

According to the results in Refs. [48,51], concerning the massless case, we expect

the curvature to blow up for all non-trivial initial data throughout the entire subex-

tremal parameter range. Although it is a potentially interesting nonlinear effect,
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we recall that the blow-up of K, per se, is of little significance: it implies neither

the breakdown of the field equations [116] nor the destruction of macroscopic ob-

servers [117]. Recall that the results in Refs. [52,53] suggest that the introduction of

scalar mass could lead, for appropriate choices of BH parameters, to solutions with

bounded curvature. As we will see below, our results contradict this expectation.

5.2 Numerical procedure

5.2.1 Algorithm

Our equations of motion have the form

r,uv +
r,ur,v
r

+
e2σ

2r

[
1− Q2

r2
−
(
Λ + µ2Φ2

)
r2

]
= 0 , (5.11)

σ,uv −
r,ur,v
r2
− e2σ

2r2

(
1− 2

Q2

r2

)
+ Φ,uΦ,v = 0 , (5.12)

Φ,uv +
1

r
(Φ,ur,v + Φ,vr,u) +

e2σ

2
µ2Φ = 0 , (5.13)

and are subjected to the following constraints

r,uu − 2r,uσ,u + r (Φ,u)
2 = 0 , (5.14)

r,vv − 2r,vσ,v + r (Φ,v)
2 = 0 . (5.15)

These equations must be satisfied by the initial data. Then, by virtue of the Bianchi

identities, they will be satisfied in the whole computational domain provided that

the dynamical equations are accurately satisfied.

To integrate these equations, we start by transforming them into a system of

ODEs. Our procedure is as follows. Let h(u, v) be any evolved quantity r(u, v),

σ(u, v) and Φ(u, v). Defining f(v) = ∂uh(u, v), all dynamical equations, for fixed u,

have the form

f ′(v) + f(v)p(v) = g(v) , (5.16)

where ′ denotes the derivative with respect to v. These equations can be solved by

introducing the integrating factor

λ(v) = exp

(∫ v

vi

p(v′) dv′
)
, λ′(v) = p(v)λ(v) .
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Multiplying Eq. (5.16) by λ(v), we get

f ′(v)λ(v) + f(v)λ′(v) = [f(v)λ(v)]′ = g(v)λ(v)

⇔ f(v) ≡ ∂uh(v) =
1

λ(v)

[
f(vi) +

∫ v

vi

g(v′)λ(v′) dv′
]
,

which are ODEs in u for all values of v. Given initial conditions in the two null

segments u = ui, h(ui, v) ∀v and v = vi, f(vi) ≡ ∂uh(u, vi) ∀u, we can integrate the

equations in a rectangular region ui < u < uf and vi < v < vf .

For our three functions in Eqs. (5.11), (5.12) and (5.13), p(v) and g(v) are the

following:

pr(v) =
r,v
r
,

gr(v) = −e
2σ

2r

[
1− Q2

r2
−
(
Λ + µ2Φ2

)
r2

]
,

pΦ(v) =
r,v
r
,

gΦ(v) = −r,uΦ,v

r
− e2σ

2
µ2Φ ,

pσ(v) = 0 ,

gσ(v) =
r,ur,v
r2

+
e2σ

2r2

(
1− 2

Q2

r2

)
− Φ,uΦ,v .

We integrate these equations using the Double Null Through Spectral methods (DoNuTS)

code written in Julia [109]. To integrate the system within DoNuTS, all functions

are expanded in a Chebyshev basis in the v direction (where all v derivatives and

integrations can be readily performed), and the remaining ODEs in the u direction

are integrated using an adaptive step integrator through the DifferentialEquations.jl

Julia package [110].

To avoid round-off errors we use the expression for the Kretschmann scalar in [118]

(adapted to include a scalar field mass), instead of computing it directly in terms of

the metric:
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K ≡ RαβγδR
αβγδ =

16

r6

[(
M − 3Q2

2r
+

Λ

6
r3

)
+
r

2

(
1− 2M

r
+
Q2

r2
− Λ

3
r2

)(
rΦ,u

r,u

)(
rΦ,v

r,v

)]2

+
16

r6

(
M − Q2

2r
+

Λ

6
r3

)2

+
16

r6

(
M − Q2

r
− r3

3

(
Λ + µ2Φ2

))2

+
4

r4

(
1− 2M

r
+
Q2

r2
− Λ

3
r2

)2(
rΦ,u

r,u

)2(
rΦ,v

r,v

)2

,

where M is the Misner-Sharp mass.

5.2.2 Adaptive gauge

When using the initial gauge, r,u becomes extremely large around the apparent

horizon for large v. Therefore, in order to explore the near-horizon region at late

times, it is convenient to use an adaptive gauge in u during the numerical evolution.

Since the change u → ũ(u) together with σ → σ − 1
2

log
(
dũ
du

)
leaves the equa-

tions invariant, we can change the gauge in u along the integration by choosing

appropriately the initial condition σ,u(u, vi) at each value of u.

To explore the near-horizon geometry, we can choose an Eddington-like gauge

for u, i.e., a gauge that brings the event horizon to u → ∞. A good way to do so,

as described in [119], is to set σ(u, vf ) = log (2r,v(u, vf )) + C, where C can be any

constant. In the DoNuTS code, this is achieved by picking the initial condition for

σ,u(u, vi)

σ,u(u, vi) = −
[
σ(u, vf )− log (2r,v(u, vf )) +

3

2
log 2

]
. (5.17)

The term 3
2

log 2 is chosen so that σ,u(ui, vi) is small when σ(ui, vf ) ≈ −1
2

log 2. With

this condition, σ(u, vf ) is damped towards the desired value log (2r,v(u, vf ))− 3
2

log 2

along the evolution in u. Additionally, in order to satisfy the constraint equation

(5.14), we must introduce an additional ODE for the initial condition r,u(u, vi) at

v = vi,

r,uu(u, vi) = 2r,u(u, vi)σ,u(u, vi) (5.18)

with r,u(ui, vi) = ru0 obtained using the expression (5.10) for the Misner-Sharp mass.

By solving this ODE along with all the others, we get the initial conditions at v = vi

at each value of u along the integration.
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Figure 5.1: Massless scalar field along the event horizon with corresponding “local

power” for a configuration with M0 = 1.0, Q = 0.95, Λ = 0, µ = 0, A = 0.01,

vc = 6.0 and w = 0.25. The power-law decay Φ ∼ v−3 matches to a very good

precision the one expected from linearized analysis [47], and reproduces well previous

nonlinear results [120].

5.2.3 Code tests

As a test of our numerical implementation we have reproduced the late-time decay

of an asymptotically flat configuration with a massless scalar field. For this, it was

crucial to employ the gauge conditions (5.17), (5.18). We also compute the “local

power” of the scalar field decay, defined as −vΦ,v/Φ. These are shown in Fig. 5.1

and are consistent with expected results.

To further test the code, we have analyzed its convergence properties. We thus

evaluate the quantity

δn,m(F ) ≡ max |1− Fn/Fm| (5.19)

for a given function FN obtained with resolution N at a fixed u coordinate, and

where the maximum is evaluated for all values of v. Here, the index m refers to a

reference solution obtained using a large number m of grid points while n denotes

test solutions using a coarser resolution, n < m.

In Fig. 5.2 we show the convergence properties of the Kretschmann scalar for
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Figure 5.2: δN,64(K) at u = 18.2 for configuration B1. 20 domains were employed in

the v direction, where each domain has N points. The plot clearly shows exponential

convergence until N ≈ 40.

configurations B1. The plots show exponential convergence up to N ≈ 40.

Finally, since we use a free-evolution scheme, we have checked that the constraint

equations (5.14) and (5.15) remain satisfied throughout our evolution. We show

typical plots for the corresponding constraint violation in Fig. 5.3.

5.3 Initial conditions

The physical problem is then fully determined upon specifying Q, Λ, µ, M0, A, vc

and w. Since our purpose here is to determine whether the linearized predictions of

Refs. [51, 52] hold in the full nonlinear regime, we focus on M0 = 1, Λ = 0.06 and

use the following configurations:

A: Q = 0.9000, µ = 0, corresponding to Q = 0.890Qmax. In this case, the results in

Ref. [51] (lower left panel of Fig. 3) predict mass inflation.

B: Q = 1.0068, µ = 0, corresponding to Q = 0.996Qmax. Linearized studies provide

evidence in favor of a no mass inflation scenario [51].

C: Q = 1.0068, µ = 1.0. The results of Ref. [51] together with those of Ref. [52] –
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Figure 5.3: Constraint violations during our evolutions of configurations B.

see Fig. 2 – also provide evidence in favor of a no mass inflation scenario. Here we

are considering the superposition of both neutral massless scalar perturbations [51]

and charged massive scalar perturbations [52] as being the most predictive of the

full non-linear evolution. If we just take into account massive scalar perturbations,

then the results in Ref. [52] (see Fig. 2]) and [53] (page 22) suggest that curvature

might also be bounded.

To test the dependence of our results on initial data, we use the following initial

profiles for the scalar field:

1: A = 0.04, w = 0.1 and vc = 3.0;

2: A = 0.08, w = 0.5 and vc = 3.0.

We have evolved the relevant system of equations using the DoNuTS code, de-

scribed briefly in Section 5.2. It is based on the formulation presented in Refs. [120–

122], but the integration technique makes it spectrally accurate in the v-direction

and, correspondingly, runs with trivial memory requirements and orders of magni-

tude faster than previously reported codes.

5.4 Results

It is important to start by noticing that, as widely expected [48,123], our numerics

show that all solutions contain a non-empty CH in their BH interior. This can be

attested by monitoring the radius function – shown in Fig. 5.4 – along null lines
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Figure 5.4: Radius function for constant-u slices in a configuration with M0 = 1.0,

Q = 0.9, Λ = 0.06, µ = 0, A = 0.4, vc = 3.0 and w = 0.25. Dashed-dotted green

lines reach infinity, full blue lines hit the CH and red dashed lines hit the singularity

at r = 0.

u = u1, for u1 > uEH, where u = uEH is the event horizon. In fact, for u1 larger

but close to uEH, the radius converges, in v, to a non-vanishing constant. It is also

interesting to note that, for some initial configurations and large enough u1, the

radius does converge to zero, signaling (in that region) a singularity beyond which

the metric cannot be extended [124].

As is well known the behavior of the scalar field along the event horizon is of

great significance for the structure of the BH interior region. The first notewor-

thy feature of our results is that, as expected, the field decays exponentially (in

v̊), as shown in Fig. 5.6. More surprisingly, we also clearly observe an oscillatory

profile; this might seem odd at first, since it is in contrast with what happens for

Λ = 0 and with the expectation created by the study of sufficiently sub-extremal

BHs with 0 < M2Λ� 1 [125]. However, it turns out that such behavior should be

expected from the linearized analysis of Refs. [51, 52], where it is shown that, for a

configuration resembling our configuration B, there are two modes which dominate

the response: a non-oscillatory “near extremal” (NE) mode with characteristic fre-
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Figure 5.5: Mass function (5.10) and Kretschmann scalar as functions of
◦
v for con-

figurations A1 (red solid line) and A2 (blue dashed line). Thin lines are evaluated

at u = uEH + 1 and thick lines are evaluated at u = uEH + 2. These results are

consistent with the existence of mass inflation leading to a weak singularity.

quency ωNE ∼ −0.081i, and a “photon sphere” (PS) mode with ωPS ∼ 0.096−0.095i

(these numbers are given in the units and time-coordinate of Ref. [51]). Here we

find very good agreement with the PS mode (when translated to our v̊ coordinate)

which is oscillatory in nature. Similar agreement can be found for the remaining

configurations A and C. We also recall that, according to the results in [51], in

the M2Λ � 1 case, the dominant mode is a non-oscillatory “de Sitter” mode, in

agreement with [125].

Our main results (concerning mass and curvature) are summarized in Figs. 5.5-

5.8. Fig. 5.5 shows the evolution of the mass function and the Kretschmann scalar

for configurations A: in these cases mass inflation occurs, and, consequently, the

curvature invariant K diverges. Note that an observer crossing one such region

will be subjected to physical deformations which are not necessarily infinite (see

discussion below). Nonetheless, because there is mass inflation, the singularity is

strong enough to deserve the classification of terminal boundary, since it corresponds

to a locus where the field equations cease to make sense. These conclusions are



86 CHAPTER 5. STRONG COSMIC CENSORSHIP

10 20 30 40 50
v

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

|
Φ
/
v|

A1
A2

10 20 30 40
v

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

|
Φ
/
v|

B1
B2

10 20 30 40
v

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

|
Φ
/
v|

C1
C2

Figure 5.6: Scalar field derivative ∂Φ/∂
◦
v as a function of

◦
v for configurations A (left

plot), B (middle plot), C (right plot) with initial profiles 1 (red solid lines) and 2

(blue dashed lines). ∂Φ/∂
◦
v evaluated at u = uEH.

consistent with the linear results in [51] and the nonlinear results in [48].

The main result of this work concerns Fig. 5.7: we find configurations for which

no mass inflation occurs in the simulation computational domain. This does not

necessarily imply that mass inflation will not appear at later times. In fact, as a

consequence of the “accretion” of the ingoing scalar field pulse, the final parameters

of the black hole are slightly outside the region where (according to [51]) there should

be no mass inflation at all. Clearly, then, the results are still inconclusive. However,

we do observe that the timescale where mass inflation would appear has increased

drastically with respect to configuration A, making these results compatible with the

SCC violation hypothesis. Moreover, as recently predicted [48,51], the CH remains

a curvature singularity, since the curvature scalar K diverges. However, the lack of

mass inflation would make the singularity so “mild” that, in principle, one should

be able to continue the evolution of the space-time metric across it, by solving the

Einstein field equations!

A somewhat unexpected feature (of configuration B) is the oscillatory way in

which the curvature scalar diverges. In hindsight, such behavior could be expected

from the previously discussed oscillatory behavior of the scalar field along the event

horizon. Note that in a no mass inflation situation it is the blow up of Φ,v/r,v that

dominates the behavior of K. This should be contrasted with what happens when

mass inflation occurs: then it is the monotone divergence of the mass that con-

trols the Kretschmann; this last fact provides an explanation for the non-oscillatory

behavior observed for configuration A.
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Figure 5.7: Mass function (5.10) and Kretschmann scalar as functions of
◦
v for

configurations B1 (red solid line) and B2 (blue dashed line). Thin lines are evaluated

at u = uEH + 1 and thick lines are evaluated at u = uEH + 2.

Concerning massive scalars, the results presented in Fig. 5.8 identify configura-

tion C as another configuration not reaching mass inflation in the computational

timescale. Once again we find that the corresponding CH is a “weak” curvature sin-

gularity. In fact, the presence of scalar mass seems to have no attenuation effect on

the growth of K, in contrast with what might be expected from linear analysis [52]

and [53].

We finish this section with some further remarks concerning the blow up of curva-

ture. In configuration A, our results indicate that the Kretschmann scalar blows up

as t−2 (possibly modulated by logarithmic terms), where t is the affine parameter de-

fined in (5.9) with the Cauchy horizon located at t = 0. This might suggest that the

curvature blows up as t−1, but, as noted in [46,117], there are curvature components

that may blow up even faster. In fact, the quantities that determine the blow-up

of the Kretschmann scalar are the square of the (Misner-Sharp) mass M and the

square of the gradient of Φ, which is dominated by (Φ,v/r,v)
2. However, all curvature

components are controlled by M and (Φ,v/r,v)
2 (the origin of the last term can be

traced to the energy-momentum tensor). From the behavior of the Kretschmann
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Figure 5.8: Same as Fig. 5.7, for configurations C1 (red solid) and C2 (blue dashed).

scalar we can then conclude that the components of the curvature blow up at most

as t−2; we also expect inverse logarithmic powers [114, 115, 117] that are hard to

detect numerically. Although divergent, these curvature components should yield

(with the help of the logarithmic terms) a finite “tidal deformation” when integrated

twice with respect to t, in agreement with the picture in [117].

From the equation (see Ref. [118])

M,v =
1

2

(
1− 2M

r
+
Q2

r2
− Λ

3
r2

)(
Φ,v

r,v

)2

r,v (5.20)

we conclude that no mass inflation would be essentially equivalent to the integra-

bility of (Φ,v/r,v)
2, with respect to t1. Moreover, when both occur we immediately

see that the curvature can only give rise to finite “tidal deformations”.

1In fact, there is a mathematical equivalence under the reasonable, in principle generic, assump-

tion that the quantity 1− 2M
r + Q2

r2 −
Λ
3 r

2 does not vanish at the Cauchy horizon.
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In this chapter we use black branes in the context of holographic dualities, gener-

ally known as AdS/CFT correspondences, to compute the behavior of plasma states

of quantum field theories in curved geometries. By defining a (conformally invari-

ant) quantum theory on the boundary of AdS, we can then extract information

about it from gravitation in the bulk. The deformations of the boundary will act as

an external tidal potential that will alter the geometry in the bulk, whose response

we parametrize in terms of the Love numbers. This way, by computing the Love

numbers we can derive the reaction of the CFT to the geometry of the spacetime it

is embedded in. sThis chapter is based on the research published in [126].

6.1 Black branes in AdS

The solution for a neutral black brane in AdSn+1 with cosmological constant Λ =

−n(n−1)
2R2 is

ds2

R2
=
dv2

v2f
+

1

v2
(ηαβ + (1− f)uαuβ) dxαdxβ , (6.1)

where α, β = 1, . . . , n label the field theory directions, uα is a timelike vector with

uαuβη
αβ = −1, and

f = 1− µvn . (6.2)

We denote the bulk radial coordinate as v, such that v = 0 corresponds to the AdS

boundary and v = µ−1/n to the black brane horizon. The parameter µ determines

the temperature T of the configuration through

µ =

(
4πT

n

)n
. (6.3)

When µ 6= 0 one can set µ = 1 without loss of generality. However, for the most part

we will keep µ explicitly in our equations so we can easily recover the AdS vacuum

by setting µ = 0.

The renormalized boundary metric

γαβ = lim
v→0

v2

R2
gαβ (6.4)

in which the dual field theory lives is the flat Minkowski metric ηαβ. We want to

study the response of the field theory to a small deformation of this geometry, which
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we decompose into plane waves,

γαβ = ηαβ + h̄αβe
ikαxα . (6.5)

The h̄αβ are constant numbers that characterize the relative amplitudes of the dif-

ferent metric deformations. We study time-independent perturbations, i.e., with

zero frequency

uαkα = 0 . (6.6)

This means that the perturbations are stationary, but not necessarily static since

we allow non-zero components uαh̄αβ, which include momentum. We also allow

non-zero gravitational potentials uαuβh̄αβ.

Henceforth we partially fix the frame by choosing a time direction t and aligning

kα with a direction z, i.e.,

uα = δαt , kα = k δαz . (6.7)

where k is the wavenumber of the perturbation.

In the gravitational problem we study small deformations of the black brane

geometry that satisfy the Einstein-AdS equations. Fixing a radial gauge where gvv

and gvα remain unchanged,1 the metric is perturbed as

ds2

R2
=
dv2

v2f
+

1

v2

(
−fdt2 + dz2 + δijdx

idxj + hαβ(v)eikzdxαdxβ
)
, (6.8)

where i, j = 1, . . . , n− 2 label the coordinates xi orthogonal to z.

Near the asymptotic boundary we require that (6.5) holds, so

lim
v→0

hαβ(v) = h̄αβ . (6.9)

Then the h̄αβ are interpreted as asymptotic gravitational potentials acting on the

black brane.

1With this, after requiring regularity of the geometry, the horizon position remains at the pole

of gvv at v = µ−1/n.
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6.2 Holographic stress tensor

The Brown-York stress-energy tensor T̂αβ is computed in the AdS boundary with

regularized metric ĝαβ at constant, small v. The renormalized metric is (6.4) and

the renormalized stress-energy tensor is

Tαβ = lim
v→0

(
R

v

)n−2

T̂αβ . (6.10)

We compute it using counterterm subtraction in AdS4 and AdS5 (n = 3, 4) [127],

in which

8πG T̂αβ = Kαβ−Kĝαβ−
n− 1

R
ĝαβ+

R

n− 2
Ĝαβ−

R3

12

(
H1
αβ − 3H2

αβ

)
log(veb), (6.11)

where Gαβ is the Einstein tensor of the boundary metric ĝαβ, and the last two terms,

which enter only in AdS5 due to the conformal anomaly, are

H1
αβ =

1√
−ĝ

δ(
√
−ĝR̂2)

δĝαβ
= 2∇α∇βR̂− 2ĝαβ∇ρ∇ρR̂− 1

2
ĝαβR̂

2 + 2R̂R̂αβ, (6.12)

H2
αβ =

1√
−ĝ

δ(
√
−ĝR̂ρσR̂

ρσ)

δĝαβ
=2∇ρ∇βR̂

ρ
α −∇ρ∇ρR̂αβ −

1

2
ĝαβ∇ρ∇ρR̂

− 1

2
ĝαβR̂ρσR̂

ρσ + 2R̂ρ
αR̂ρβ.

(6.13)

Here all geometric quantities refer to the metric ĝαβ. The constant b in (6.11) is

arbitrary and reflects a renormalization scheme dependence.2 This ambiguity could

be fixed by e.g., imposing supersymmetry on the boundary [128], but this is not

particularly well motivated in our set up.

6.3 Gauge invariant perturbation analysis

Following [64] we decompose the perturbations into scalars, vectors and tensors

with respect to the group O(n− 2) of rotations orthogonal to the z axis (the boost

symmetries are broken at finite temperature). In each of these channels one can find

2Actually one can include finite contributions to the stress tensor (6.11) (and (6.42)) from H1

and H2 with separate coefficients. For simplicity we do not do it, and our choice above is such

that the stress tensor is traceless.
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master variables ZS,V,T (v), in terms of which all the other metric components can

be recovered, up to gauge transformations of the form hαβ → hαβ − 2∇(αξβ), with

ξα = ξα(v)eikz, which leave the Z invariant. Since the equations are linear and we

want the perturbation to be non-zero at the boundary we can fix the normalization

to

ZS,V,T (0) = 1 . (6.14)

For tensors and vectors the metric perturbations and the master variables are

simply related,

hij(v) = h̄Tij ZT (v) , (6.15)

hti(v) = h̄ti ZV (v) , (6.16)

with h̄Tij a constant symmetric traceless tensor and h̄ti a constant vector. For scalars

the relation is

htt(v) +
1

2

(
n

n− 2
− f

)
h(v) = H̄ZS(v) , (6.17)

where

h(v) = δijhij(v) . (6.18)

At the boundary, (6.17) gives

H̄ = h̄tt +
1

n− 2
h̄ . (6.19)

The tensor perturbations correspond to shearing deformations of the background

geometry in planes orthogonal to z, which then induce shear in the plasma. The vec-

tors create a stationary motion in the background, which will drag with it the black

brane and impart momentum to the dual plasma3. The scalars introduce gravita-

tional wells h̄tt and averaged external pressures δijh̄ij, which cause inhomogeneities

in the energy density and local pressure of the plasma.

From the Einstein equations in the bulk we derive the equations for the master

tensor variable,4

Z ′′T (v)− n− f
fv

Z ′T (v)− k2

f
ZT (v) = 0 , (6.20)

3This motion creates vorticity in the plane (xi, z).
4For n = 4 these are the zero-frequency limit of the equations presented in [64].
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vector,

Z ′′V (v)− n− 1

v
Z ′V (v)− k2

f
ZV (v) = 0 , (6.21)

and scalar,

Z ′′S(v) +
1

v

(
1− n(2f − 1)(n− 2)f + n

((n− 2)f + n)f

)
Z ′S(v)

+
1

f

(
(1− f)2(n− 2)n2

((n− 2)f + n)v2
− k2

)
ZS(v) = 0.

(6.22)

Once ZS is obtained, the metric components in the scalar sector can be recovered

using (6.17) and solving the first-order constraint equations

h′(v) =
n(1− f)

2f 2v
htt(v) +

1

f
h′tt(v), (6.23)

and

h′zz(v) =
n(1− f)((3n− 2)f − n) + 4fk2v2

2f 2v((n− 2)f + n)
htt(v)

+
n(f − 1)

((n− 2)f + n)f
h′tt(v)− 2k2v

(n− 2)f + n
h(v).

(6.24)

All the components of the metric perturbation that do not appear here can be

gauge-fixed to zero. The component hzz(v) is partly constrained by the choice of

radial gauge, but since the constraint (6.24) contains h′zz but not hzz there remains

gauge freedom to always set

h̄zz = 0 . (6.25)

In the boundary geometry this is simply achieved by changing z → z + cz e
ikz with

a suitable constant cz = O(h̄αβ).

Of all the other boundary values in the scalar sector, only H̄ (6.19) is physi-

cally meaningful, while h̄tt and h̄ separately are not. A Weyl transformation of the

boundary geometry leaves H̄ invariant, but changes h̄tt and h̄ separately. Thus the

dual conformal field theory is only sensitive to H̄.

This can also be understood from the bulk viewpoint. The functions htt(v) and

h(v) are modified by bulk coordinate changes. In particular, a residual radial gauge

transformation of the form

v → v
(

1 +
cv
2
eikz
√

1− µvn
)

(6.26)
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with constant cv preserves the radial gauge condition at all v, and transforms

htt(v)→ htt(v) +
cv
2

(n− (n− 2)f)
√

1− µvn ,

h(v)→ h(v)− cv(n− 2)
√

1− µvn ,
(6.27)

while ZS(v) and H̄ remain invariant.5 One can now choose cv so that only H̄, and

not h̄ nor h̄tt separately, appears in the perturbed metric. This reflects the fact that

changes in bulk radial gauge result into Weyl transformations at the boundary.

In this manner we can get rid of h̄tt or h̄ (insofar as they do not enter through

H̄), but one should be aware that the transformation (6.26) is not analytic near the

horizon and generates terms in the metric of the form ∼
√

1− µvn. A gauge where

the metric components hαβ(v) are analytic on the horizon may be preferable over

other gauges. In our subsequent calculations we will compute the values of h̄ and

h̄tt that correspond to this analytic gauge. How this is done will be well illustrated

with the hydrodynamic solution to the equations that we present in 6.6. Bear in

mind, however, that this is just a convenience: choosing the analytic gauge does not

confer any separate invariant meaning to h̄tt nor h̄.

6.4 Linear response

When submitted to these external forces, the reaction of the black brane (and the

dual field theory state) is expected to show up in the holographic stress-energy

tensor: in the tensor channel as an induced shear Tij; in the vector channel as a

momentum flow Tti due to the dragging by the geometry; and in the scalar channel

as local fluctuations in the energy density Ttt and averaged pressure δijTij of the

dual plasma.

6.4.1 Love numbers

The gauge-invariant content of the response can be readily extracted from the solu-

tions to the master equations using the standard AdS/CFT dictionary. In all three

5hzz(v) also changes, and keeping hzv = 0 requires an additional transformation z → z +

ξz(v)eikz.
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channels, the indices of the differential equation for the variables Z(v) near v = 0

are 0 and n. Therefore, near the boundary the solutions are expanded as

Z(v) = A(1 + . . . ) +B(vn + . . . ) . (6.28)

A and B are the coefficients of the non-normalizable and normalizable solutions of

the metric perturbation. They depend on k, and as is standard in AdS/CFT they

correspond, respectively, to the external source acting on the system, and to the

expectation value of the operator that the source couples to. In the present case, a

non-zero value of A sources a boundary metric deformation h̄αβ in the corresponding

channel, while B determines the response of the system, i.e., the expectation value

of the field theory stress-energy tensor, δTαβ, generated by the perturbation.

We define the dimensionless Love numbers λT,V,S for each channel as

λ = RnB

A
. (6.29)

With our normalization (6.14) this is simply λ = BRn.

This definition of the Love numbers is in complete analogy to their introduction

in the context of asymptotically flat black holes in [61]. We can make this more

manifest if we change to a radial variable

r =
R2

v
, (6.30)

and consider, for instance, a tensor perturbation. Then the corresponding metric

component is

R2

r2
gij(r, z) = δij + h̄Tije

ikz

(
1 + · · ·+ λT

Rn

rn
+O

(
r−n−1

))
, (6.31)

which can be compared to Eq. (1.1) of [61].

6.4.2 From Love numbers to stress tensor

One of the basic entries of the AdS/CFT dictionary (as explained in this context

in [64], see also [129]) is that knowledge of the λ is tantamount to knowledge of

the expectation values of the two-point correlation functions of the stress-energy

tensor Tαβ. Both are obtained from the terms of order vn in the series around v = 0
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of the metric coefficients. However the relationship between them is not a simple

proportionality. The stress-energy tensor contains contributions besides λ that are

independent of the boundary condition in the bulk, i.e., of the specific state of the

theory. These contributions are renormalization-scheme dependent. We could, for

instance, subtract the vacuum stress-energy out of them, but instead we shall keep

these vacuum terms in the counterterm subtraction method. This allows us to retain

the effects of vacuum polarization.

Note also that in contrast to the calculation in [64], which focused on the quasi-

normal poles of 〈TαβTρσ〉, we are not setting the source A to zero. Furthermore, we

only consider zero-frequency perturbations. Therefore we are investigating proper-

ties of the correlation functions 〈TαβTρσ〉 that do not show up in quasinormal mode

analyses.

The correlators 〈TαβTρσ〉 can be obtained if we know the one-point function 〈Tαβ〉
as a function of the source, i.e., of the metric perturbation δγρσ, since

〈TαβTρσ〉 = − 2√
−γ

δ〈Tαβ〉
δγρσ

. (6.32)

In the gravitational set up 〈Tαβ〉 is the renormalized holographic stress-energy

tensor. For reference, we give its definition in 6.2. In our case the stress-energy

tensor takes the form (henceforth omitting the brackets 〈· · · 〉)

Tαβ = T 0
αβ + δTαβ , (6.33)

where the first term is the stress-energy tensor of the unperturbed, homogeneous

black brane,

T 0
tt =

n− 1

16πG
µ , T 0

ij =
1

16πG
µ δij , (6.34)

and the second term δTαβ contains the inhomogeneities linearly induced by the

metric deformations δγαβ = h̄αβe
ikz. Here the bulk Newton constant G is related to

the dual theory gauge group’s rank N as

N2 ∼ GR−3 in AdS5 , N3/2 ∼ GR−2 in AdS4 , (6.35)

with numerical factors that depend on the specific realization of the duality (e.g., the

volume of the compact space transverse to AdS).
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Once we compute δTαβ the two-point function can be obtained as

〈TαβTρσ〉 = −2
∂Tαβ
∂h̄ρσ

e−ikz . (6.36)

In the following we give the perturbation solutions in a boundary expansion up

to order vn, and the form of the stress-energy tensor in terms of λ. The latter will

be computed in later sections.

It is possible to obtain explicit solutions for any n, but the expressions are cum-

bersome so we only give them for AdS5 and AdS4.

Boundary expansion and stress-energy tensor in AdS5

In AdS5 in the tensor sector there are two independent polarizations of the shear,

which can be taken to be h× = hxy, and h+ = hxx = −hyy. For perturbations in the

scalar sector we have hxx = hyy = h/2. The field theory metric is then

ds2 = γαβdx
αdxβ = ηαβdx

αdxβ + h̄tte
ikzdt2 +

h̄

2
eikz(dx2 + dy2)

+ 2h̄tie
ikzdtdxi + h̄+e

ikz(dx2 − dy2) + 2h̄×e
ikzdxdy .

(6.37)

The boundary expansion of Z in the three sectors is the same up to order v4,

ZT,S,V (v) =1− k2v2

4
+

(
λT,S,V
R4

− k4

16
log v

)
v4 +O

(
v6
)
. (6.38)

The metric components in the tensor and vector channels are obtained from ZT,V

using (6.15) and (6.16), while for the scalars they are obtained from ZS and from

the solutions of the constraints (6.23), (6.24). We find

htt(v) =h̄tt

(
1 +

µ

2
v4
)

+
H̄

6

(
−k2v2 +

(
4λS
R4
− 4µ− k4

4
log v

)
v4

)
+O

(
v6
)
,

(6.39)

h(v) =h̄
(

1− µ

2
v4
)

+
H̄

6

(
−k2v2 +

(
4λS
R4

+ 2µ− k4

4
log v

)
v4

)
+O

(
v6
)
, (6.40)

hzz(v) =h̄zz +

(
h̄tt
2
− H̄

3

)
k2v2 +

h̄tt
2
µv4 +O

(
v6
)
. (6.41)



6.4. LINEAR RESPONSE 99

The stress-energy tensor is

8πGTαβ dx
αdxβ =

(
3dt2 + dx2 + dy2 + dz2

) µ
2

(
1 + h̄tte

ikz
)

+
(
2h̄× dx dy + h̄+(dx2 − dy2)

)
eikz

(
2λT
R4

+
µ

2
− 3k4

32

)
+ 2h̄ti dt dx

i eikz
(

2λV
R4

+
µ

2
− 3k4

32

)
+ H̄dt2eikz

(
4

3

(
λS
R4
− µ

)
− k4

16

)
+ H̄

(
dx2 + dy2

)
eikz

(
2λS
3R4
− µ

6
− k4

32

)
+ dz2 µ

2
h̄tte

ikz .

(6.42)

The k4 terms here are renormalization-scheme dependent, and in general are mod-

ified to k4 → k4(1 − 4b/3), where the arbitrary constant b is the coefficient of the

finite counterterms in (6.11). In the following we fix b = 0 for simplicity, but the

existence of this ambiguity should be borne in mind.

The gauge-invariant boundary scalar is

H̄ = h̄tt +
h̄

2
. (6.43)

As we discussed in the previous section, in the scalar sector only this parameter is

physically meaningful, while h̄tt and h̄ separately are not: the coordinate transfor-

mations (6.26) change them. Consistently with this, observe that if we rescale

µ→ µ
(
1− h̄tteikz

)
, (6.44)

and also perform a rescaling of z (which makes h̄zz 6= 0), then we can make h̄tt

disappear from (6.42). In other words, the apparent spatial dependence of the

plasma temperature does not have any invariant meaning for a CFT. Even if (6.44)

suggests that the perturbation makes the horizon position z-dependent, this is a

gauge effect. In particular it is easy to see that the surface gravity remains uniform

over the horizon, as required by the zeroth law.

We can also write the stress-energy tensor in a way that separates its different

contributions and connects more directly to the hydrodynamic expansion at small
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k. Define a boundary velocity field uα as

ut = 1 +
eikz

2
h̄tt, ui = −

(
λV
R4µ

+ 1− 3k4

64µ

)
eikzh̄ti , (6.45)

which is unit-normalized, γαβuαuβ = −1, and choose

h̄tt = −H̄
(

4

9

(
λS
R4µ

− 1

)
− k4

48µ

)
. (6.46)

Then the stress-energy tensor takes a ‘Landau frame’ form

Tαβ =
µ

16πG
(γαβ + 4uαuβ) + T

(1)
αβ , (6.47)

in which the first term has the form of a perfect-fluid stress-energy tensor (with

conformal equation of state) and the second term is purely spatial, orthogonal to

uα,

uαT
(1)
αβ = 0 . (6.48)

It is given by

8πGT
(1)
αβ dx

αdxβ =
(
2h̄× dx dy + h̄+(dx2 − dy2)

)
eikz

(
2λT
R4
− 3k4

32

)
+ H̄

(
dx2 + dy2 − 2dz2

)
eikz

(
2

9

(
λS
R4
− µ

)
− k4

96

)
.

(6.49)

When the stress-energy tensor is written in this way, the first part can be regarded

as capturing how the plasma adapts to the deformed geometry γαβ and to a velocity

flow uα while maintaining its perfect-fluid form. The choice of u and of h̄tt is indeed

such that the vector-channel polarization, and the scalar-channel polarization in

the tt direction, are all encoded in this term. The second term, T
(1)
αβ , measures the

polarization effects away from the perfect-fluid form. Bear in mind, though, that

both terms in (6.47) contain physical polarizations of the uniform plasma.

We will see that when k → 0 we have

λT → 0, λV → −µR4, λS → µR4 . (6.50)

This implies that in the limit that the perturbation is homogeneous we have uα → δαt

and T
(1)
µν → 0, and hence there does not remain any physical polarization effect.
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Boundary expansion and stress-energy tensor in AdS4

In AdS4 there are no tensor perturbations. In the scalar sector, h(v) = hxx(v). The

field theory metric is

ds2 = γαβdx
αdxβ = ηαβdx

αdxβ + h̄tte
ikzdt2 + 2h̄txe

ikzdtdx+ h̄xxe
ikzdx2 . (6.51)

The boundary expansion for Z is

ZV,S(v) =1− k2v2

2
+
λV,S
R3

v3 +O
(
v4
)
, (6.52)

and the stress tensor

8πGTαβdx
αdxβ =

(
2dt2 + dx2 + dz2

) µ
2

(
1 +

h̄tt
2
eikz
)

+ 2h̄ti dt dx
i eikz

3

2

(
λV
R3

+
µ

3

)
+ H̄dt2eikz

3

4

(
λS
R3
− µ

2

)
+ H̄dx2eikz

3

4

(
λS
R3

+
µ

6

)
+ dz2 µ

2
h̄tte

ikz .

(6.53)

Now the gauge-invariant boundary scalar is

H̄ = h̄tt + h̄xx , (6.54)

and the metric functions are

hxx(v) =h̄xx

(
1− µ

2
v3
)

+
H̄

4

(
−k2v2 +

(
2λS
R3

+ µ

)
v3

)
+O

(
v4
)
, (6.55)

htt(v) =h̄tt +
H̄

4

(
−k2v2 +

(
2λS
R3
− µ

)
v3

)
+O

(
v4
)
, (6.56)

hzz(v) =h̄zz +

(
h̄tt
2
− H̄

4

)
k2v2 +

h̄tt
2
µv3 +O

(
v4
)
. (6.57)

Similar remarks as in AdS5 apply about the elimination of h̄tt.

The ‘Landau frame’ expression of the stress-energy tensor is

Tαβ =
µ

16πG
(γαβ + 3uαuβ) + T

(1)
αβ , (6.58)
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with

ut = 1 +
eikz

2
h̄tt, ui = −

(
λV
R3µ

+ 1

)
eikzh̄ti , (6.59)

h̄tt = −H̄
2

(
λS
R3µ

− 1

2

)
, (6.60)

and

8πGT
(1)
αβ dx

αdxβ =
3H̄

8
(dx2 − dz2)eikz

(
λS
R3
− µ

2

)
. (6.61)

Again, when k → 0 we will find

λV → −µR3, λS →
µR3

2
, (6.62)

which cancel the zero-momentum offsets in uα and T
(1)
µν .

6.5 Vacuum polarization

Let us now turn to the explicit calculation of the Love numbers.

It is instructive to begin with the polarization of the vacuum, since it can be solved

exactly in all channels, for all k, and in all dimensions. These Love numbers can be

regarded as representing Casimir-like stress-energies of the field theory vacuum.

In the vacuum state, with µ = 0, the equations in the three channels become the

same,

Z ′′(v)− n− 1

v
Z ′(v)− k2Z(v) = 0. (6.63)

This equation is solved in terms of modified Bessel functions. The solution that

remains finite at the Poincaré horizon, v →∞, is

Z(v) = vn/2Kn/2(kv) . (6.64)

Expanding this solution in series around v = 0 we obtain the vacuum Love numbers,

λvac(k) =


(
Hn/2 − 2γ − 2 log

(
kR
2

)) (−1)n/2

(n/2− 1)! (n/2)! 2n
(kR)n n even

Γ(−n/2)

Γ(n/2) 2n
(kR)n n odd

(6.65)

where γ is the Euler-Mascheroni constant and Hn =
∑n

p=1 p
−1 are the harmonic

numbers.
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Observe that: (i) the dependence ∼ (kR)n is the one expected for the vacuum

energy density of a conformal field theory in n dimensions; (ii) the logarithmic

term in even n comes from the conformal anomaly and makes the terms Hn/2 − 2γ

scheme dependent; (iii) the sign of the Love numbers (at large enough k) alternates

as n → n + 2. This dimension-dependence of the sign of the polarization response

is the same as for the Casimir energy on a spherical space [130].

In the specific cases of interest to us here,

λvac(k) =
(kR)3

3
in AdS4 , (6.66)

λvac(k) = −(kR)4

16

(
log

(
kR

2

)
+ γ − 3

4

)
in AdS5 . (6.67)

For large k the perturbations probe the ultraviolet, short-distance structure of

the field theory and the results should be asymptotically independent of whether the

state is at finite or zero temperature. In other words, for k � T the perturbations

concentrate in the bulk around 0 ≤ v . 1/k and are largely insensitive to the

presence or absence of the brane. It then follows that the Love numbers at large k

should always asymptote to their conformal vacuum values, and in particular

λ(k) ∼ (−1)bn/2c+1(kR)n . (6.68)

Finally, note that when µ = 0 the gauge transformations (6.26) do not introduce

any non-analytic behavior in the bulk. The gauge is analytic for any arbitrary choice

of h̄tt.

6.6 Polarization of the finite-temperature plasma

At finite temperature the perturbation equations do not admit exact solutions. We

solve them in two ways: in a long-wavelength, hydrodynamic expansion for small k,

and numerically for a range of k, up until the large-k asymptotic behavior (6.68) is

established.

6.6.1 Long-wavelength expansion: AdS5

The following are the solutions obtained in a power series expansion in k. They are

valid for all 0 < v ≤ 1. We set for simplicity µ = 1. For the case of AdS5, we have
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ZT (v) =1− 1

4
log
(
1 + v2

)
k2 +

1

128

(
π2 − 4(log 2)2 + 8 log

(
2

1− v2

)
log
(
1 + v2

)
+ 8 log 2 log

(
1− v4

)
− 8Li2

(
1 + v2

2

)
− 2Li2

(
1− v4

))
k4 +O

(
k6
)
,

(6.69)

ZV (v) =1− v4 − 1

4
v2
(
1− v2

)
k2

+
1

32

(
v2(1− v2)− 2v4 log v −

(
1− v4

)
log
(
1 + v2

))
k4 +O

(
k6
)
,

(6.70)

ZS(v) = 1 + v4 +
1

12

(
−4v2

(
1 + v2

)
+
(
1 + v4

)
log
(
1 + v2

))
k2 +O

(
k4
)
. (6.71)

These are all finite and indeed analytic functions at v = 1.

The solutions of the constraint equations are

htt(v) = C
√

1− v4
(
1 + v4

)
+
H̄

6

(
1− v2

) (
1− v4

)
k2 +O

(
k4
)

(6.72)

h(v) = 2H̄ − 2C
√

1− v4 +
H̄

6

(
log
(
1 + v2

)
− 2

(
1 + v2

))
k2 +O

(
k4
)

(6.73)

hzz(v) =h̄zz + C
(

1−
√

1− v4
)

− H̄

6

(
v2 + log

(
1 + v2

)
− 6C arcsin(v2)

)
k2 +O

(
k4
)
.

(6.74)

Observe here the presence of an integration constant C, which corresponds to

C = h̄tt −
H̄

6
k2 +O

(
k4
)
. (6.75)

This constant corresponds to the gauge freedom discussed in (6.26), (6.27). The

gauge-invariant function ZS(v) is independent of it, but when C 6= 0 the metric

functions htt, h, hzz are not analytic at the horizon position v = 1. Therefore if

we choose a gauge where the metric is analytic on the horizon, this implies that

(restoring now µ, and adding the next order in k)

h̄tt =
H̄

6

(
k2

√
µ

+
k4

24µ
(π − 12 + 6 log 2)

)
+O

(
k6
)
. (6.76)

The Love numbers that we find are
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λT (k)

R4
=
k2√µ

8
+
k4

64
(3− 4 log 2)− k6

768
√
µ

(
π2 − 12 (log 2)2)+O(k8), (6.77)

λV (k)

R4
= −µ+

k2√µ
4
− k

4

64
+

k6

128
√
µ

(1− 2 log 2)− k8

6144µ

(
π2 + 6− 24 log 2

)
+O(k10),

(6.78)
λS(k)

R4
= µ−

3k2√µ
8

+
k4

64
(11− 4 log 2) +O(k6). (6.79)

6.6.2 Long-wavelength expansion: AdS4

Similarly, for AdS4 (again, setting momentarily µ = 1), we have

ZV (v) =1− v3 − 1

2
(1− v)v2k2

− 1

108

(
9v(1− v)(2 + v) + 2

√
3
(
1− v3

)(
π − 6 arctan

(
1 + 2v√

3

)))
k4 +O

(
k6
)

(6.80)

ZS(v) = 1 +
v3

2
− v2k2

2
+

1

216

(
36v

(
1 + v2

)
+
√

3
(
2 + v3

)(
π − 6 arctan

(
1 + 2v√

3

))

− 9
(
2 + v3

)
log
(
1 + v + v2

))
k4 +O(k6) ,

(6.81)

with metric functions

htt(v) =
H̄

24
k2

(
− 4v2(1− v3) +

(2 + v3)
√
π(1− v3) Γ

(
5
3

)
Γ
(

7
6

)
+ v2

(
−2 + v3 + v6

)
2F1

(
1,

7

6
;
5

3
; v3

))
+O

(
k4
)
,

(6.82)

hxx(v) = H̄

(
1− k2

12

(√
π(1− v3) Γ

(
5
3

)
Γ
(

7
6

) + v2

(
4−

(
1− v3

)
2F1

(
1,

7

6
;
5

3
; v3

))))
+O

(
k4
)
,

(6.83)
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hzz(v) = h̄zz+H̄

(√
π
(
1−
√

1− v3
)

Γ
(

5
3

)
12Γ

(
7
6

) − 1

40
v2

(
10 + v3

2F1

(
1,

7

6
;
8

3
; v3

)))
k2+O

(
k4
)
.

(6.84)

Since the expressions are cumbersome, here we have already chosen the analytic

gauge, which determines (now with µ restored)

h̄tt(k) = H̄

(
k2

µ2/3

√
π Γ
(

5
3

)
12Γ

(
7
6

) − k4

9µ4/3

(
1−

√
3π3/2

9Γ
(

2
3

)
Γ
(

5
6

)))+O(k6). (6.85)

The Love numbers are, then

λV (k)

R3
= −µ+

k2µ1/3

2
+

k4

12µ1/3
+

k6

72µ

(√
3π − 9 + 3 log 3

)
+O(k8), (6.86)

λS(k)

R3
=
µ

2
+

2k4

9µ1/3
− k6

27µ
+O(k8). (6.87)

Some comments are in order. First, observe that since this is a small k expansion

in k/T ∼ k/µ1/n � 1, we do not expect to recover the large-k asymptotic behavior

(6.68) of the vacuum.

Second, as anticipated in (6.50) and (6.62), we find non-zero values of the vector

and scalar Love numbers at very long wavelengths, k → 0. These are such that the

physical polarization effects vanish in this limit.

Finally, let us compare these results with those in [65, 66] for the gravitational

forcing on the AdS black brane in the hydrodynamic limit. Refs. [65,66] give

Tαβ =
µ

16πG
(γαβ + nuαuβ) +

µ
n−2
n

8πG
Cαγβδu

γuδ . (6.88)

Here Cαµβν is the Weyl tensor of the field theory metric γαβ, and the velocity vector

uα is chosen in the Landau frame. This result is valid to two-derivative order in the

boundary theory, hence to order k2 in the linearized approximation. It is straight-

forward to compare the Weyl term against our result (6.49) up to this order, and

verify the agreement between the two calculations in AdS5. In AdS4 the boundary

Weyl tensor is identically zero, so T
(1)
αβ vanishes at order k2. This is in agreement

with the absence of a k2 term in λS in (6.87).6

6Refs. [65, 66] work in Eddington-Finkelstein coordinates which are regular at the horizon. In
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6.6.3 Numerical results

Now we solve the equations by numerical integration. After setting, without loss of

generality, µ = 1, we impose regularity on the horizon at v = 1 by demanding that

the gauge invariant function Z(v) is analytic there. Then we solve the equations

in powers of (1 − v) to a high order (without any arbitrary constants other than

the overall normalization of Z), and proceed to integrate them numerically towards

the boundary, where we extract the Love numbers (6.29). We do the integrations

with the NDSolve function from Mathematica, which uses a fourth-order Runge-

Kutta procedure with adaptive step. The equations are very well behaved so the

calculation is unproblematic.

The results are shown in figs. 6.1, 6.2, where we compare them with the hydro-

dynamic expansion at small k and with the large-k vacuum limit. In 6.8 we give the

values of h̄tt(k) that result when we choose a gauge in which htt(v) (and then also

h(v) and hzz(v)) is analytic at the horizon.

Overall, we see that the small-k hydrodynamic expansion and the large-k values

from the vacuum provide together a good approximation to the numerical calcula-

tions. It seems likely that Padé approximants can interpolate efficiently at interme-

diate values of k, but we have not attempted this.

Observe that the Love numbers can change sign as k increases, i.e., the plasma

appears to polarize in opposite ways at small and large wavelengths. This must be

interpreted with care, given that the zero-momentum offsets in λ, (6.50) and (6.62),

disappear in the stress-energy tensor in Landau frame. The latter may be more

appropriate to study the sign of the response. Then we see, for instance, that the

anisotropic, transverse pressure induced in the scalar channel, T
(1)
xx +T

(1)
yy , is negative

for all k in AdS5, and positive for all k in AdS4. The (gauge-dependent) term h̄tt

which, in Landau frame, reflects the perfect-fluid response in the scalar sector, has

opposite signs in AdS5 and AdS4, but in each case it retains the same sign for all k.

On the other hand, the vector-channel velocity ui induced in AdS5 changes sign as

k is increased, while in AdS4 it keeps the same orientation at all k.

our calculations, in AdS5 the analytic gauge choice (6.76) coincides up to order k2 with the Landau

gauge (6.46). In AdS4 the Landau gauge (6.60) does not coincide with the analytic gauge (6.85) at

order k2. However, it seems that this could be remedied if in (6.58) we redefined µ→ µ(1 + c eikz)

with suitably chosen c = O(h̄αβ , k
2).
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Figure 6.1: Love numbers λT,V,S for black branes in AdS5 as a function of the wavenumber

k. Solid blue: numerical results. Dashed red: perturbative expansions in powers of k,

eqs. (6.77), (6.78), (6.79). Dotted green: large-k limit (6.67). We set R = 1, the Love

numbers λT,V,S are dimensionless, and k is measured in units of µ1/4 = πT .

Perhaps the most salient feature is that the response coefficients in AdS4 show a

mostly featureless monotonicity in k, while in AdS5 the behavior differs significantly

at large and small k. This occurs even for the vacuum polarization, (6.67), but in

this case it is the log k in the Love number, and not a power of k, that effects the

change.

As is familiar from the Casimir effect, the sign of quantum polarization effects is

often difficult to anticipate on intuitive grounds. Nevertheless, it may be interesting

to investigate further the possible meaning of these results. The exploration of

further models might hint at universal features of the geometric polarization.
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Figure 6.2: Love numbers λV,S for black branes in AdS4 as a function of the wavenumber

k, in units µ = 1. Solid blue: numerical results. Dashed red: perturbative expansions in

powers of k, eqs. (6.86), (6.87). Dotted green: large-k limit (6.66). The Love numbers

λV,S are dimensionless and k is measured in units of µ1/3 = 4πT/3.

6.7 Electric polarization

Now we consider the polarizing effect on the black brane of a small static electric

field in the z direction, with electric potential At(v)eikz. The dual plasma, initially

neutral, polarizes into an inhomogeneous distribution of positive and negative charge

densities due to the presence of an external chemical potential. We denote the

amplitude of the chemical potential by

Āt = At(0) , (6.89)

and, like in our previous analysis, we introduce the variable ZE by

At(v) = Āt ZE(v) . (6.90)

6.7.1 Linear response theory

The Maxwell equations in the black brane background are

Z ′′E(v)− n− 3

v
Z ′E(v)− k2

f
ZE(v) = 0 . (6.91)

The boundary expansion of the solutions takes the form

ZE(v) = A(1 + . . . ) +B(vn−2 + . . . ) , (6.92)
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and the polarization response is determined by the coefficient

λE = Rn−2B

A
. (6.93)

This coefficient determines the expectation value of the charge density J t. In or-

der to find the precise relation, following the standard AdS/CFT prescription we

differentiate the Maxwell action with respect to the boundary electric potential to

get

〈J t〉 = −1

2

√
−ĝ nµF µt , (6.94)

where nµ is the unit normal to the boundary at small v with induced metric ĝαβ.

The charge density at the boundary is then given by the electric field in the normal

direction.

In AdS4 the boundary expansion of the solution to (6.91) is

ZE(v) = 1 +
λE
R
v +O(v2) (6.95)

which yields

〈J t〉 = Āte
ikz λE

2R
. (6.96)

In AdS5 there is a logarithmic term

ZE(v) = 1 +

(
λE
R2

+
k2

2
log v

)
v2 +O(v3) . (6.97)

This results in a divergence that is cancelled by adding a boundary counterterm to

the action of the form Ict ∼ log v
∫
d4x
√
−ĝFαβFαβ. Then

〈J t〉 = Āte
ikz

(
λE
R2

+
k2

4

)
(6.98)

(again, the term k2 is renormalization-scheme dependent).

The two-point correlation function is obtained as

〈J tJ t〉 =
δ〈J t〉
δĀt

e−ikz . (6.99)
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6.7.2 Polarization coefficients

In the zero-temperature vacuum, µ = 0, Eq. (6.91) becomes

Z ′′E(v)− n− 3

v
Z ′E(v)− k2ZE(v) = 0, (6.100)

which is the same as the one for gravitational perturbations if we change n →
n − 2. Therefore, the electric polarization of the vacuum can be determined from

the gravitational vacuum Love numbers as

λ
(n)
E,vac(k) = λ(n−2)

vac (k) (6.101)

and the latter were computed in (6.65). This gives

λE,vac =− kR in AdS4 ,

λE,vac =− (kR)2

2

(
log

(
kR

2

)
+ γ − 1

2

)
in AdS5 .

(6.102)

At finite temperature, the long-wavelength hydrodynamic expansion yields

ZE(v) = 1− v2 +
1

4

(
2v2 log (2v)−

(
1 + v2

)
log
(
1 + v2

))
k2 +O

(
k6
)
,

λE(k)

R2
= −√µ+

k2

4
(2 log 2− 1) +

k4

96
√
µ

(
π2 − 12(log 2)2

)
+O(k6) in AdS5 ,

(6.103)

and

ZE(v) = 1− v +
k2

2

(
2(2v + 1)√

3
arctan

(
2v + 1√

3

)
− π(5v + 1)

3
√

3

+ v log 3− log
(
v2 + v + 1

))
+O(k4) ,

λE(k)

R
= −µ1/3 +

k2

6µ1/3

(
3 log 3−

√
3π
)

+O(k4) in AdS4 . (6.104)

The results of the numerical and hydrodynamic evaluations of λE(k) are presented

in Fig. 6.3.



112 CHAPTER 6. PLASMA POLARIZATION AND LOVE NUMBERS

Figure 6.3: Electric polarization response of black branes in AdS5 and AdS4 as a function

of wavenumber k, in units µ = 1. Solid blue: numerical results. Dashed red: perturbative

expansions in powers of k, eqs. (6.103), (6.104). Dotted green: large-k limit (6.102).

Observe that as k → 0 the electric polarization λE and the charge density 〈J t〉
take non-zero values. This is indeed expected: this is a uniform perturbation of the

black brane that adds a uniform charge distribution to it. What we then have is the

Reissner-Nordstrom AdS black brane in the limit of small, linearized charge density

(which does not backreact on the geometry).

Of course this uniform charge is not a polarization effect. The way to remove

it is simple. Rather than a charge density induced by an electric potential, the

actual polarization effect is the charge separation in the neutral plasma, i.e., the

appearance of a dipole distribution

Dz = ∂zJ
t = Re(ikJ t) (6.105)

induced as a response to an external electric field

Ez = ∂zAt = Re(ikAt) . (6.106)

Then when k → 0 the dipole polarization vanishes.

Notice that a similar remark could be applied to the geometric polarization: like

in the Casimir effect, the measurable effect of the polarization is not so much the

energy itself but the force that arises when the geometrical set up varies.
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6.8 Analytic gauge

We have discussed that certain choices of the radial coordinate v lead to metric

functions htt(v), h(v), hzz(v) that behave like ∼
√

1− µvn near the horizon at

v = µ−1/n. This non-analyticity is inconvenient for showing that the horizon is

regular. For instance, if one changes (t, v) → (x+, v) where the latter are ingoing

Eddington-Finkelstein coordinates, then if the v-gauge is not analytic the metric in

these coordinates is singular at the horizon. Proving horizon regularity requires to

first perform a change of the type (6.26) to an analytic radial gauge. Nevertheless,

invariants such as the surface gravity can be computed in any radial gauge.

The transformations (6.26) alter h̄tt. Fig. 6.4 gives the values of h̄tt(k) that

result when taking the analytic gauge. We compare them with the hydrodynamic

calculations of 6.6.

Figure 6.4: Values of h̄tt(k) in the analytic gauge, for AdS5 and AdS4. Solid blue:

numerical results. Dashed red: perturbative expansions in powers of k, eqs. (6.76), (6.85).
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This chapter explores some mathematical properties of Horndeski’s theories as

extensions of General relativity. Namely, the well-psedness of the equations of mo-

tion and the existence and uniqueness of global solutions. We do so by focusing

on the subset of Horndeski’s theories that are known to lead to symmetric hyper-

bolic equations of motion in a generalized harmonic gauge. We analyze, in some

examples, the advantages of using the Einstein frame for the action. We use fully

numerical time evolutions of one particular subclass of theories to exemplify some

of the pathologies that may arise. This chapter is based on the research published

in [131].

Horndeski’s theories describe gravitational interactions in terms of a metric tensor

gab and a scalar field φ. Their equations of motion are determined from the action,

S =
1

16πG

∫
d4x
√
−g(Σ5

i=1 Li) (7.1)

where,

L1 = R +X − V (φ) , (7.2)

L2 = G2(φ,X) , (7.3)

L3 = G3(φ,X)�φ , (7.4)

L4 = G4(φ,X)R + ∂XG4(φ,X)δacbd∇a∇bφ∇c∇dφ , (7.5)

L5 = G5(φ,X)Gab∇a∇bφ− 1

6
∂XG5(φ,X)δacebdf∇a∇bφ∇c∇dφ∇e∇gφ . (7.6)

with X = −1/2∇aφ∇aφ, Gab the Einstein tensor, Gi are functions of the scalars

{φ,X}, V is a potential and δb1..bna1..an
is the generalized Kronecker delta symbol.

A thorough analysis of hyperbolicity properties of the resulting equations of mo-

tion, given the complexity of the PDE system, is naturally a difficult task. One such

study has been presented recently in [93] (see also [94]). Here, following steps taken

to establish local well posedness of Einstein equations [132], –whereby the intro-

duction of harmonic coordinates renders Einstein equations manifestly symmetric

hyperbolic– a judicious coordinate choice is found to guarantee strong hyperbolicity.

Within this context, it is shown that only a special subset of Horndeski’s theories

leads to strong hyperbolicity in harmonic gauge in the nonlinear regime.

This subset is given by the action,
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S =
1

16π

∫
d4x
√
−g [(1 + G4(φ))R +X − V (φ) + G2(φ,X)] , (7.7)

Notice the action above corresponds to the so called Jordan frame (as the Ricci

scalar appears multiplied by a non-trivial function of φ). The equations of motion

obtained from this action can be found in [93]. A conformal transformation, of the

form g̃ab = Ω2gab with Ω =
√

1 + G4(φ)), can be exploited to obtain the equations

in the Einstein frame. We assume that the conformal factor Ω never vanishes,

which ensures that the transformation is well-defined and the two formulations of

the theory are equivalent. It allows one to rewrite the above action as,

S =
1

16π

∫
d4x
√
−g̃

{
R̃ +

1

(1 + G4(φ))2

[(
3[G ′4(φ)]2 + 1 + G4(φ)

)
X̃

−V (φ) + G2

(
φ, (1 + G4(φ))X̃

)]}
, (7.8)

where X̃ = −1/2∇̃cφ ∇̃cφ. From this action, the equations of motion are

G̃ab =

[
3[G ′4(φ)]2 + 1 + G4(φ)

2(1 + G4(φ))2
X̃ +

−V (φ) + G2(φ,X)

2(1 + G4(φ))2

]
g̃ab

+

[
3[G ′4(φ)]2

2(1 + G4(φ))2
+

1 + ∂XG2(φ,X)

2(1 + G4(φ))

]
∇̃aφ∇̃bφ , (7.9)

[
g̃ab − (1 + G4(φ))2∂2

XXG2(φ,X)

3[G ′4(φ)]2 + (1 + G4(φ))(1 + ∂XG2(φ,X))
∇̃aφ∇̃bφ

]
∇̃a∇̃bφ

=
1

3[G ′4(φ)]2 + (1 + G4(φ))(1 + ∂XG2(φ,X))

{
V ′(φ)− ∂φG2(φ,X)− 2G ′4(φ)

V (φ)− G2(φ,X)

1 + G4(φ)

+

[
2(1 + G4(φ))∂2

φXG2(φ,X) + G ′4(φ)
(

6G ′′4 (φ)− 1− 3∂XG2(φ,X)− 6
[G ′4(φ)]2

1 + G4(φ)

)]
X̃

+ 2G ′4(φ)(1 + G4(φ))∂2
XXG2(φ,X)X̃2

}
. (7.10)

In order to write the scalar field equation in the convenient form (7.10), we have di-

vided it by the overall factor 3[G ′4(φ)]2 + (1 + G4(φ))(1 + ∂XG2(φ,X)) (1 + G4(φ))−2.

In the following, we will assume that this factor is non-zero. Notice that neither
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of the right hand sides in eqns (7.9)-(7.10) involve second order derivatives of the

relevant fields (metric or scalar), and, the hyperbolic properties of the system can

be assessed independently for gab and φ. In the case of the metric tensor, such

properties only depend on the metric tensor itself and we can draw from the vast

knowledge about properties of Einstein equations (see e.g. [133]). In particular, we

recall that they can be straightforwardly rendered into symmetric hyperbolic form.

Indeed, following again [132], one can introduce harmonic coordinates (Γ̃a = 0),

and equation (7.9) becomes symmetric hyperbolic. Further, we recall the speed

of propagation of perturbations is independent of the metric tensor itself (thus the

equation is linearly degenerate and no shocks can arise from smooth initial data).

Importantly, the observations above with regards to well posedness (at least locally)

and linear degeneracy are certainly valid for other gauges. As we shall discuss below,

regardless of the gauge choice, the scalar field equation has particular ‘worrisome’

properties.

The principal part of the scalar field equation depends on {gab, φ, ∂aφ}. Indeed,

the principal part of the equation for φ, equation (7.10), is given by a wave equation

of a modified metric

γab = g̃ab − (1 + G4(φ))2∂2
XXG2(φ,X)

3[G ′4(φ)]2 + (1 + G4(φ))(1 + ∂XG2(φ,X))
∇̃aφ∇̃bφ . (7.11)

Thus, propagation speeds of scalar field perturbations depend on the state of the

field and its gradient. As a consequence, shocks can develop from smooth initial

data, at which point uniqueness of the solution is lost and with it, well posedness 1.

Another potential problem is that the equation itself might change character point-

wise in the spacetime. Indeed the character of this equation, i.e., hyperbolic, elliptic

or parabolic, is determined by the eigenvalues of γab. Namely, if no eigenvalue is zero,

and the sign of only one of them is opposite to the others the equation is hyperbolic 2

(with + signature it would be one negative). If all signs are the same the equation

is elliptic and if at least one eigenvalue is zero parabolic. For a well defined initial

value problem describing a small departure from General Relativity, the equation

would be hyperbolic. Notice that at the linear level, equation (7.10) is symmetric

hyperbolic, linearly degenerate and the scalar field perturbations propagate at the

1To recover it, further conditions would need to be imposed, see discussions in [134,135].
2If more than one is of opposite sign, the equation would be ultra-hyperbolic in character.
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speed of light of the metric g̃ab. However, at the non-linear level –even with smooth

initial data– if dispersion does not win and gradients grow (assuming ∂XXG2 6= 0) the

character of the equation can change and, by continuity, it would do so by turning

–locally– to parabolic and then elliptic. Thus either through a change of character,

or by loss of uniqueness due to shocks well posedness could be lost.

Interestingly, a change in character in spherically symmetric non-linear studies in

subclasses of Horndeski’s theories has been identified, for instance in k-essence [136]

and Einstein-Dilaton-Gauss-Bonnet [137]. The theories studied in these references

are seemingly different from Eq. (7.7), but they can be linked to a Horndeski theory

through the following mappings. In the former case, only the kinetic term G2(X)

is present, while in the latter we only have G5(φ,X) = −λ ln |X| where λ is the

coupling constant 3.

Notice however that the potential change in character or the development of

shocks might be absent in special cases. To assess this, consider the following trans-

formation for the scalar field

φ̃ =

∫
3[G ′4(φ)]2 + (1 + G4(φ))(1 + ∂XG2(φ,X))

(1 + G4(φ))2
dφ . (7.12)

The scalar equation of motion becomes

g̃ab∇̃a∇̃bφ̃ =
1

(1 + G4(φ))2

{
V ′(φ)− ∂φG2(φ,X)− 2G ′4(φ)

V (φ)− G2(φ,X)

1 + G4(φ)

− G ′4(φ)

[
6G ′′4 (φ)− 1 + ∂XG2(φ,X)− 6

[G ′4(φ)]2

1 + G4(φ)

]
X̃

}
,

(7.13)

where φ is to be understood as a function of φ̃: φ(φ̃), provided the relation (7.12)

is invertible. Then, the scalar field φ̃ obeys a wave equation of the original metric

g̃ab, and no pathologies would arise (unless g̃ab itself becomes singular). However,

the equivalence between the new scalar field and the old one is a nontrivial ques-

tion, as the transformation (7.12) may not always be well defined. In particular, the

requirement that the newly defined scalar field should verify ∇̃[µ∇̃ν]φ̃ = 0 further

3Although such a function G5 is not smooth at X = 0, the equations of motion are well defined

everywhere [138].
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implies that ∇̃[µ

(
X̃ ∂ν]φ

)
= 0, thus X̃∂aφ is twist-free. Such condition could be

regarded as an external constraint to ensure well posedness. In the simple example

of Sec 7.1.1, we perform a similar redefinition of the scalar field which is always well

defined as it does not depend on X. As an illustration, we show in the nonlinear

example of Sec. 7.2 how the twist evolves for several representative cases.

Notice that by working in the Einstein frame, we have straightforwardly recovered

the conclusions from [93], i.e., local well posedness of this class of Horndeski’s theories

by virtue of the equations of motion for gab and φ being symmetric hyperbolic. The

question of global solutions to this theory is, naturally, far more involved which is not

unexpected as this is already a complex question in General Relativity! Nevertheless,

some relevant conclusions can be drawn. Namely,

• At the nonlinear level for weak data, the equation satisfies Klainerman’s null

condition [139] if G is at least order X (∝ X̃). Consequently, together with

stability of Minkowski results [140] or the weak null energy condition satisfac-

tion by Einstein equations [141], together with contributions of φ satisfying

Strauss’ conjecture [142] would imply the (subclass) of Horndeski’s theories

considered has a global solution in the small data case. Beyond the weak case

however, little is known; though, as mentioned, the propagation speed depen-

dence on the field and its gradient implies a high likelihood of shocks arising

and/or a change in character. Would such issues arise and be “invisible” to far

observers? It would depend on whether they generically form inside a black

hole. In such case, pathological issues might be shielded from problematic

consequences at the classical level. A priori this seems far from guaranteed;

indeed, in the context of ref [137], a change in character of the equations is

encountered prior to a black hole being formed. We will also illustrate such a

behavior in section 7.2.

• Since the speed of propagation of (perturbations of) metric tensor and scalar

field can be different, black holes are defined by the fastest outward propaga-

tion speeds. Additionally, gravitational Cherenkov radiation would be possi-

ble and high energy cosmic rays can help to draw constraints on this process

(e.g. [143]).
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Last, we can also check what we can draw from adopting the harmonic gauge in

the Einstein frame and its implication in the Jordan frame. For starters, it is trivial

to determine that Γ̃a = Ω−2 (Γa−2∇a ln Ω). Thus, in the Jordan frame the harmonic

condition from the Einstein frame calls for adopting coordinates that satisfy instead

Γa = 2∇a ln Ω. Which implies

Γa =
G ′4

1 + G4

∇aφ (7.14)

which is precisely the condition derived in [93] in the Jordan frame to obtain a

strongly hyperbolic system of equations and establish local well posedness.

7.1 Illustration in specific cases

7.1.1 Jordan and Einstein frames equations of motion.

Hyperbolicity and implications

Within the class of Horndeski’s theories, one of the simplest ones is given by,

S =
1

16π

∫
d4x
√
−g
[
φR− ω

φ
gαβ∇αφ∇βφ

]
, (7.15)

where ω is a function of φ only. A comparison with Horndeski’s Lagrangian implies,

G2 =
(2ω − φ)

φ
X , G4 = φ− 1 ;

with all the other functions (including the potential) set to zero. From our previous

discussion, since ∂XXG2 = 0, it is clear that in the Einstein frame characteristics of

both metric tensor and scalar field are determined by the metric. This theory has

recently been the subject of fully non-linear studies in the context of binary black

neutron star mergers [77, 144, 145]. In such scenarios global solutions describing

several orbits, merger and aftermath have been successfully achieved. This suggests

an underlying robustness of the equations of motion which can be understood at the

analytical level rather simply. To fix ideas, let us consider the vacuum case. The

field equations derived from the (Jordan frame) action (7.15) are

Rµν −
1

2
gµνR =

ω

φ2

(
∇µφ∇νφ−

1

2
gµν∇αφ∇αφ

)
+

1

φ
(∇µ∇νφ− gµν�φ) , (7.16)
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�φ = −φR
2ω

+

(
1

2φ
− ω′

2ω

)
(∇φ)2 . (7.17)

Upon replacing the Ricci scalar one re-expresses equation (7.17) as,

�φ = − ω′

3 + 2ω
(∇φ)2 . (7.18)

which satisfies the null condition in the weak case. However, a non-trivial coupling

–at the level of the principal part– is present in equation (7.16). Furthermore, notice

the right hand side of this equation contains second derivatives of the scalar field

–thus such terms do belong to the principal part of the system. As well, because of

such terms, the right hand side does not seemingly satisfy the null energy condition.

Both these observations indicate it is not a priori clear that solutions obtained from

this system are well behaved.

However, through the conformal transformation [146],

gµν −→ g̃µν = φ gµν , (7.19)

and the scalar field redefinition

φ −→ φ̃ =

∫
(3 + 2ω)1/2

φ
dφ , (7.20)

one recasts the theory in the Einstein frame. In this frame, the theory is defined by

the standard Einstein-Hilbert action with an extra field,

S =

∫
d4x
√
−g̃

[
R̃

16π
− 1

2
g̃µν∇̃µφ̃∇̃νφ̃

]
. (7.21)

The field equations are the usual Einstein equations with the scalar field as a source

together with a rather trivial equation for the scalar field itself,

R̃µν −
1

2
g̃µνR̃ = 8π

(
∇̃µφ̃∇̃νφ̃−

1

2
g̃µν∇̃αφ̃∇̃αφ̃

)
, (7.22)

�̃φ̃ = 0 . (7.23)

The equation for the (conformal) metric g̃ab is amenable to the standard analysis

of well posedness in Einstein equations (e.g. [133]). In particular, adopting harmonic

coordinates (Γ̃a = 0) the principal part of equation (7.21) becomes just ten wave
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equations. Further, the right hand side now obeys the null energy condition. Thus,

in the Einstein frame it follows that at least a local in time solution will exist and

standard geometrical arguments can be exploited to assess general features of the

spacetime behavior.

What does this imply in the Jordan frame? Here, since, Γ̃a = φ−2 (φΓa −∇aφ),

the discussion above suggests adopting coordinates satisfying Γa = φ−1∇aφ. With

this choice, the equations of motion in the Jordan frame can be re-expressed in the

following way. Beginning with

Rab =
ω

φ2
∇aφ∇bφ+

1

2φ
gab�φ+

1

φ
∇a∇bφ , (7.24)

we then define R̂ab + ∇(aΓb) ≡ Rab (i. e. taking out the covariant derivative of

the trace of the Christoffels). Now, replacing in such a term the condition on the

coordinates, we obtain

R̂ab =
ω + 1

φ2
∇aφ∇bφ+

1

2
gabφ

−1�φ . (7.25)

A priori we still have second order derivatives in the right hand side of the above

equation, but –on shell– we can use the equation for the field φ still. Recall,

�φ = − ω′

(3 + 2ω)
(∇φ)2 . (7.26)

Thus, the metric equation results in

R̂ab =
(1 + ω)

φ2
∇aφ∇bφ−

ω′

2φ(3 + 2ω)
gab(∇φ)2 . (7.27)

And it is evident the right hand side can satisfy the null energy condition for w ≥ 1.

7.2 Exploring the non-linear behavior

We now turn our attention to Horndeski’s theories with a nonlinear kinetic term

G2(φ,X) = −gX2, with all other functions, as well as the potential, set to zero for

simplicity. This choice, similar to those adopted in [136], can be thought of as the

first nonlinear term in a Taylor expansion of the kinetic term in a k-essence theory,

S =

∫
d4x
√
−g
[
R +X − gX2

]
. (7.28)
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Our goal is to study the nonlinear behavior of the theory and explore the possible

phenomenology that can arise. While we are restricting to a rather special case, as

we shall see, a number of possible pitfalls can appear which are likely to manifest

in more general cases. To simplify the treatment and presentation, we concentrate

on spherically symmetric scenarios and present several cases defined by different

initial conditions as well as the value of the coupling g. For simplicity we adopt

Schwarzschild coordinates where the metric can be written as,

ds2 = −α2dt2 + a2dr2 + r2dΩ2 . (7.29)

Thus the only dynamical metric functions are the lapse function α(t, r) and a(t, r).

Recall that these coordinates become singular when a horizon forms. Such scenario

takes place when lµ∇µr = 0, where lµ is a null vector [136]. In the gauge (7.29),

this is simply α = 0. Consequently, with our current implementation we can explore

up to black hole formation. Despite this limitation, as we shall see below, one can

identify several problematic scenarios arising either outside the black hole or even

prior to its formation. Thus, severe restrictions to well posedness arise which are

not cloaked by a horizon for asymptotic observers.

To simplify the discussion and the numerical implementation, we introduce stan-

dard first order variables as used in [40],

Φ ≡ φ′ , Π ≡ a

α
φ̇ , (7.30)

using the notation ḟ = ∂tf and f ′ = ∂rf . In the special case of G2(φ,X) = G2(X),

as in (7.28), equations (7.9) and (7.10), respectively, take the form

Rµν −
1

2
gµνR =

[
X + G2(X)

2

]
gµν +

[
1 + ∂XG2(X)

2

]
∇µφ∇νφ , (7.31)

[
gµν − ∂2

XXG2(X)

1 + ∂XG2(X)
∇µφ∇νφ

]
∇µ∇νφ = 0 (7.32)

where the effective inverse metric γµν , as in equation (7.11), is given by

γµν = gµν − ∂2
XXG2(X)

1 + ∂XG2(X)
∇µφ∇νφ . (7.33)

Now, in order to monitor the character of the equation of motion for the scalar

field (7.32), the eigenvalues of the effective inverse metric must be computed. In
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particular we extract at any given time the two eigenvalues, here labeled as λ± for

every spatial point. Since we are mainly interested in one of the eigenvalues going

to zero, the relevant quantities will be min(λ+) and max(λ−), where min(·) and

max(·) refer to the minimum and maximum in the spatial (radial) direction, at any

given time. It is important to keep in mind that although λ+ > 0 and λ− < 0

for φ = 0, this is not necessarily the case for arbitrary configurations. In fact, the

equations will change character when these conditions cease to be satisfied. The two

eigenvalues can be expressed as

λ± =
γtt + γrr

2
±

√(
γtt + γrr

2

)2

− γttγrr + (γtr)2

=
γtt + γrr

2
±

√(
γtt + γrr

2

)2

− det(γµν) . (7.34)

It is evident that the system will become parabolic when det(γµν) = 0, as ex-

pected. Additionally, it is important to keep track of the characteristic speeds,

or propagation velocities, of the scalar field. This can be done by extracting the

eigenvalues, here labeled as V±, of the principal part of the (first order) equations

of motion for Φ and Π. These eigenvalues determine the shape of the light cones

for the scalar field, and can be used to identify features such as sound horizons

(horizons for the scalar field [136]). With our conventions, asymptotically V+ → 1

while V− → −1 describing, respectively, the incoming and outgoing modes of the

field. A sound horizon –with respect to asymptotic observers– will appear4 when

V− = 0, V+ ≥ 0. Again, as in the case of the effective metric, we are interested in

min(V+) and max(V−).

V± = −γ
tr

γtt
±

√(
γtr

γtt

)2

− γrr

γtt
= −γ

tr

γtt
±

√
−det(γµν)

(γtt)2
. (7.35)

As mentioned, when det(γµν) = 0 the equation changes character. However, the

rate at which (γtt)2 → 0 distinguishes two important cases with respect of the type of

change. Recall that mixed character equations can often be classified in comparison

4Naturally the opposite condition still defines a local sound horizon, cloaking some local region

from being reached by scalar field perturbations.
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to two standard equations ( [147]). These are the Tricomi equation

∂2
yu(x, y) + y∂2

xu(x, y) = 0 , (7.36)

where the characteristic speeds, ±y1/2, go to zero at the character transition line

y = 0, and the Keldysh equation

∂2
yu(x, y) +

1

y
∂2
xu(x, y) = 0 , (7.37)

where the speed ±y−1/2 diverges at the transition line.

Notice that the discriminant between the two characteristic speeds (7.35) turns

out to be proportional to − det(γµν). Therefore, as long as (γtt)2 → 0 slower than

det(γµν)→ 0, the characteristic speeds V+, V− will coincide and the scalar field light

cone becomes degenerate. Thus, there must exist some instant of time, before the

system becomes –at least locally– parabolic, when either V+ or V− is zero (the latter

case implying a sound horizon) indicative of a Tricomi-type transition. On the other

hand, if (γtt)2 → 0 faster than det(γµν) → 0 the characteristic speeds diverge indi-

cating a transition of Keldysh type. This case is more delicate to tract numerically

as the diverging speeds imply the time-step should be adjusted to decrease inversely

with the maximum speed with an explicit integration algorithm. (Note: an implicit

update could be implemented to bypass this issue, but at the expense of missing

physics taking place at smaller scales than the time-step adopted).

Interestingly, in [147], only a Tricomi-type behavior is observed. Anticipating our

results, we observe both cases depending on the value of the coupling g: Tricomi-

like for g < 0 and Keldysh-type transitions g > 0. The well posedness of Tri-

comi equation has been explored in [148, 149] and, as discussed in [147] the ini-

tial/boundary conditions to ensure well posedness would be rather unnatural from

a time-development point of view.

7.2.1 Implementation details

In the first order variables (7.30) we can extract from the rr and tt components of

equation (7.31), respectively, the first order constraint equations

α′ =
α

8r

[
4(a2 − 1) + r2(Φ2 + Π2)

]
− g rα

16a2

[
(Φ2 + Π2)2 − 4Φ4

]
, (7.38)
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a′ =
a

8r

[
4(1− a2) + r2(Φ2 + Π2)

]
+ g

r

16a

[
(Φ2 + Π2)2 − 4Π4

]
. (7.39)

Equation (7.32), in terms of the first order variables, is given by

Π̇ =
1

r2

(
r2α

a
Φ
)′

+
2g

a2 + g (Φ2 − 3Π2)

α

a

[
(Φ2 + Π2)Φ′ − 2ΦΠΠ′

+

(
r

4
Π2 − a′

a

)(
Φ2 − Π2

)
Φ +

gr

4a2

(
Φ2 − Π2

)2
ΦΠ2 +

2

r
ΦΠ2

]
, (7.40)

together with the condition that ∂t∂rφ = ∂r∂tφ, namely

Φ̇ =
(α
a

Π
)′
. (7.41)

The effective inverse metric from equation (7.33) reads

γtt = − 1

α2

(
1− g 2Π2

a2 + g (Φ2 − Π2)

)
, γrr =

1

a2

(
1 + g

2Φ2

a2 + g (Φ2 − Π2)

)
,

(7.42)

γtr = −g 2ΠΦ

aα (a2 + g (Φ2 − Π2))
, (7.43)

and the matrix defining the principal part of equations (7.40) and (7.41) is,

M =

(
0 α

a

−aγrr

αγtt
−2γ

tr

γtt

)
=
α

a

(
0 1

1 + 2g Φ2+Π2

a2+g(Φ2−3Π2)
−4g ΠΦ

a2+g(Φ2−3Π2)

)
. (7.44)

The equations of motion are solved in a constrained evolution scheme. Both

α(t, r) and a(t, r) are obtained through a spatial integration while the scalar field

is integrated in time through a Runge Kutta 4th order time integrator. At each

time step (intermediate or full), given a spatial profile for the fields Φ and Π, the

constraint equations (7.38) and (7.39) are integrated in space using also a Runge-

Kutta 4th order method (RK4). First, a is integrated radially outwards from r = 0 to

r = rmax with the initial condition a(r = 0) = 1. This condition ensures regularity

at (α′ = a′ = 0) at the origin. Then, α is integrated radially inwards with the
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condition α(rmax) = 1/a(rmax). Notice that, as these integrations are carried out,

the fields Φ and Π which are needed at ‘virtual radial points’ in between grid points

are obtained through fourth order (second order near the spatial boundaries) spatial

interpolations at any given time step.

Evolution of Φ and Π forward in time is carried out via the method of lines

with a RK4 integration using equations (7.40) and (7.41). Spatial derivatives are

computed with second order (first order near the boundaries) finite-difference oper-

ators satisfying summation by parts. Regularity at the origin is addressed by using

l’Hôpital’s rule at r = 0 to regularize the equation, and we defined totally outgoing

boundary conditions at the outer radial boundary. A small amount of fourth order

(second order near the boundaries) artificial dissipation is added for convenience as

described. For further details see [150–152].

The numerical results displayed in this chapter are performed in a spatial domain

ranging from r = 0 to r = rmax = 100, and a spatial resolution of ∆r = 1/80.

(though convergence and consistency of the solutions obtained is checked with reso-

lutions of ∆r = 1/20 and ∆r = 1/40). The Courant number is initially taken to be

C = 1/10, and therefore ∆t = C∆r = 1/800. Numerical output is produced every

40 time steps. For cases displaying very fast changes, or a high speed of propagation

of the scalar field, we switch to a Courant parameter of C = 1/100 (∆t = 1/8000)

in the last part of the simulation, and we produce output of the solution every 4

time steps. The instants of time where this happens are listed in TABLE 7.1.

Parameter Set A- B- C- A+ B+ C+

Refinement Time Never t = 56.5 Never Never t = 54.0 t = 68.0

Table 7.1: Instants in time where resolution is increased.

Further, we compute the order of convergence of solutions Q as

2Q =
|S∆/2 − S∆|
|S∆/4 − S∆/2|

. (7.45)

In Fig. 7.1 the order of convergence is shown as a function of time for the four grid

functions, indicating convergence with the expected rate.
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Figure 7.1: Order of convergence Q for the four grid functions α (red solid), a (green

dashed), Φ (Blue, dash-dotted) and Π (black dotted).

7.2.2 Initial conditions and coupling parameters

As mentioned, our goal is to explore the possible phenomenology that can arise

in this theory. We have performed extensive studies to try and isolate different

scenarios and, for concreteness in our presentation, we present three representative

cases for positive and negative coupling values. In particular, we adopt initial data

for the (first order variables of the) scalar field given by:

Φ(t = 0, r) = A exp

(
−(r − r0)2

σ2

)
cos
( π

10
r
)
, Π(t = 0, r) = 0 . (7.46)

with r0 = 55. The three cases, labeled A, B and C, are defined by the following

parameters:

• Case A: A = 0.02, σ = 15.0
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• Case B: A = 0.14, σ = 1.5

• Case C: A = 0.045, σ = 15.0

For each of these parameter sets, we have obtained solutions for g = +1 (labeled

A+, B+ and C+) and for g = −1 (A-, B- and C-). Naturally, the scale over

which a non-trivial physical behavior occurs depends on: (i) the initial location

and amplitude of the pulse –as it travels towards the origin in spherical symmetry,

his associated energy density naturally grows– and (ii) the strength of the coupling

parameter g.

7.2.3 Negative coupling constant: g = −1

Setting g = −1, we observe three different outcomes depending on the initial con-

ditions of the wave pulse as illustrated in Fig. 7.2. If the data is weak enough, case

A-, the ingoing pulse reaches the origin, bounces off it and disperses as it propagates

to infinity. For configuration B-, the eigenvalue λ+ of the effective inverse metric

crosses zero at t ≈ 56.63, r ≈ 1.75 while the lapse remains bounded from below by

α ≈ 0.62. This indicates the system has become parabolic before a light horizon

forms. Further, as predicted by equation (7.35), the characteristic speeds of the

scalar field merge together as λ+ → 0 and acquire an imaginary part after that.

Before the transition point, the eigenvalue V− crosses zero at t ≈ 56.52, r ≈ 1.90,

and therefore a sound horizon is indeed produced. However, since the lapse function

α is positive everywhere, there is no light horizon and perturbations of the metric

tensor can still propagate through the sound horizon, thus the transition point is

not disconnected from outside observers. This is not the only possible outcome for

strong enough initial data, as in configuration C- a light horizon does form, together

with a sound horizon at r ≈ 6.5, without any change in character of the scalar field

equation. In Fig. 7.2 C-, the final state at and outside this region is described by a

black hole with an outwards propagating field. As mentioned, we can not comment

on what takes place inside the horizon. Interestingly, case B- displays characteristic

speeds going to zero before going imaginary where the equation changes character

to parabolic. This, as discussed in [147], is an indication that the equation is of

Tricomi type.
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Figure 7.2: Eigenvalues for g = −1, in cases A- (left), B- (center) and C- (right).

The upper three plots show the (max/min of) eigenvalues λ± of the effective inverse

metric γµν and the minimum of α. The lower three plots show the eigenvalues V± of

the principal part of the scalar field equations, corresponding to the characteristic

speeds of propagation of the scalar. In each plot, the upper red curves correspond to

the spatial maximum (red dashed) and minimum (red solid) values of the λ+ and V+,

while the lower blue curves depict the spatial maximum (blue solid) and minimum

(blue dashed) of λ− and V−. The thick black solid line is the lapse function α, used

to identify the formation of a black hole. A gray line at 0 is added as a guide to the

eye.

7.2.4 Positive coupling constant: g = +1

For g = +1, delicate features in the solution for the same initial conditions developed

in a more marked way and, arguably, more violently. The obtained behavior is

illustrated in Fig. 7.3. Naturally, there is not much qualitative difference in A+

configuration. This is to be expected since for weak enough data, the impact of the

scalar field is considerably suppressed. In cases B+ and C+, however, λ− crosses

zero and the system becomes parabolic in a rather sharp, abrupt way. The transition

occurs at t ≈ 54.82, r ≈ 1.70 for case B+, and at t ≈ 68.63, r ≈ 0 for case C+.

In contrast to the previous case, cases B+, C+ display fastly growing character-

istic speeds right before becoming imaginary where the equation changes character
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to parabolic. This, as discussed in [147], is an indication that the equation is of

Keldysh type. Moreover, this implies these regimes have a natural causal horizon

significantly larger than that of light (e.g. [153]). Nevertheless, the change of char-

acter in the equation signals well-behaved solutions can only be obtained within

a finite range of time. Furthemore, this change of character –for both values of

coupling– takes place prior to a shock being formed.
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Figure 7.3: Eigenvalues for g = +1, in cases A+ (left), B+ (center) and C+ (right).

The upper three plots show the (max/min of) eigenvalues λ± of the effective inverse

metric γµν and the minimum of α. The lower three plots show the eigenvalues V± of

the principal part of the scalar field equations, corresponding to the characteristic

speeds of propagation of the scalar. In each plot, the upper red curves correspond to

the spatial maximum (red dashed) and minimum (red solid) values of the λ+ and V+,

while the lower blue curves depict the spatial maximum (blue solid) and minimum

(blue dashed) of λ− and V−. The thick black solid line is the lapse function α, used

to identify the formation of a black hole. A gray line at 0 is added as a guide to the

eye.

Finally, we illustrate the behavior of the (only non-trivial) component, τtr, of the

twist

τµν = ∇[µ(X∂ν]φ) , (7.47)

in figures 7.4, 7.5 for the negative and positive couplings adopted. As it is evident

in the figures, in the weak cases (A-,A+), the twist remains bounded and relatively
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small throughout the evolution. In contrast, in all but the C- cases the twist grows

without bound. In case C-, however, the twist remains bounded since the large value

of a at the horizon causes X = a−2(Π2 − Φ2)/2 to approach zero.
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Figure 7.4: max |τtr| for cases A- (left), B- (center) and C- (right).

0 50 100
t

10 9

10 7

10 5

10 3

tr

A+

0 20 40
t

10 8

10 6

10 4

10 2

100

102

tr

B+

0 20 40 60
t

10 6

10 4

10 2

100

tr
C+

Figure 7.5: max |τtr| for cases A+ (left), B+ (center) and C+ (right).
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8.1 Large D approach to gravity and black holes

The main part of this thesis is focused on the large D expansion of classical gravity

as an extremely powerful technique to describe a variety of apparently disconnected

physical systems. The description of black branes as an effective membrane, which

is characterized by its mass density and momenta, results in a set of very simple

parabolic equations that can be treated numerically, and even analytically, with re-

markable results. Chapter 2 of this thesis focuses on the derivation of these effective

equations, and their possible interpretations. As it turns out, the black branes at

large D can be seen as hydrodynamic systems, but also as elastic membranes when

they reach equilibrium configurations, giving rise to the concept of hydro-elastic

complementarity.

Hydro-elastic complementarity is the manifestation in the limit D →∞ of what

is arguably one of the most basic properties of a black hole, namely, that the same

quantity doubles its role as the geometric size and as the mass. In the large-D

effective theory of black branes, we can view m(t, σ) as the local, fluctuating mass

density of a fluid, or as the local radius of an elastic soap bubble embedded in the

background spacetime. The effective dynamics can then be alternatively regarded

as hydrodynamics, like in (2.26) and (2.27), or as elasticity, like in (2.48), (2.49) and

(2.53).

As a first application of the large D effective equations, we analyze in a fair

amount of detail the dynamics and phases of black strings. We do so not only at

leading order in 1/D as introduced in Chapter 2, but as long as 1/D4. This allows us

to treat the spacetime dimension D as a free parameter, allowing a great increment

of the range of phenomena that we can describe. Even at this very high order, the

equations become easily solved (even though very lengthy), and conceptually no

different than the leading order. There are no constraints to be solved, and issues

such as gauge invariance and gauge fixing are absent—they are dealt with once and

for all when the effective equations are derived. A second, even more substantial

advantage, lies in the possibility of using a sequential construction (sec. 3.4) in

which, once the corrections to a given order are computed, then one can combine

them to directly generate solutions where D is a continuous parameter that can be

freely varied.
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It is remarkable that, despite a qualitative change at a finite, critical dimension—

often an impassable barrier to a perturbative series—, the large-D expansion is able

to correctly capture physics at and even below this dimension. In particular, we

have been able to compute D∗ analytically as it is manifested in several different

magnitudes, with all the 3NLO results (3.41), (3.44) and (3.65) converging on the

value

D∗ = 13.6 . (8.1)

A natural question is whether some of the rich structure observed in the time evo-

lutions in D = 5 in [27], in particular the cascading behavior at late times, may be

reproduced by evolving the effective large-D equations, which are computationally

relatively simple to solve. After all, as we have seen, when sufficiently high-order

corrections are included these equations appear to correctly capture many qualita-

tive properties of NUBS in D < D∗. Unfortunately, we have found that the time

evolution breaks down too early in the development of inhomogeneity to see this.

Our simulations do not exhibit any sign of these cascading structures, nor of the

self-similar shrinking of the thin tubes that connect the larger blobs on the string

in [27]. Indeed, this behavior seems to depend crucially on scaling and homogeneity

properties of the equations that are washed away when taking D →∞. So all those

detailed features may be inaccessible to the large-D expansion.

Lacking so far in our investigation of black objects in a Kaluza-Klein circle are

the phases of localized black holes. The reason is that, like with numerical analyses,

the presence of “exposed” sections of the symmetry axis that are not covered by a

horizon requires an approach different than for black string phases. Nevertheless, we

expect that the large-D expansion can be a useful means for their investigation. It is

straightforward to construct, via a large-D matched asymptotic expansion, solutions

for localized black holes of increasing size up until they almost fill up the axis of the

compact circle, except for a fraction ∼ 1/D of it.1 Black holes that fill up a larger

fraction of the axis and then reach up to the merger configurations,2 where conifold

structures of the type studied in [107,154,155] appear, also seem to be accessible in

a large-D expansion. Putting together all these pieces of information, it might then

1This is a large-D version of the constructions in [36,37].
2These have been numerically studied at finite, low D, in [26,38,39]
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be possible to obtain a complete characterization of the phases of black objects in a

Kaluza-Klein circle across the entire range of dimensions.

Quite surprisingly, the effective large D equations that were initially designed to

describe black branes can be used to explore the dynamics of localized black holes.

This comes as a consequence of the endpoint of the Gregory-Laflamme instability at

infinite dimension, which creates Gaussian blobs on the brane. These blobs are only

joined by exponentially thin membranes, and can move independently and interact

with each other. It was recently found [43] that the blobs reproduce many of the

features of localized black holes, thus opening a whole new world of possibilities

to describe higher-dimensional objects (as long as gravitational radiation can be

ignored).

In Chapter 4 we show that the resulting object (a black bar) from a black hole

collision at large enough J forms a neck that quickly pinches down. Although our

methods only allow to follow the evolution into regions of curvature smaller than

O (D), the evidence from [27,102], and indeed what our simulations suggest, is that

the horizon pinches off to zero size, leading to a violation of CC.

Note, however, that our proposal for the breakup, namely, evaporation of a

Planck-size neck, is actually independent of this, and we do not claim that the

regulated large-D evolution is evidence for it. Indeed, the presence of the regulator

is irrelevant for the main outcome of our simulations, which is the formation of an

intermediate bar-like configuration that becomes unstable. This convincingly shows

that the system is driven towards a situation where CC will be violated, but the

detailed features of the singularity and its formation are beyond the reach of our

methods, and so are left to future studies.

Another caveat is that the size of the region of the horizon that is captured in

the effective theory of (4.1) is only O
(

1/
√
D
)

. However, as shown very effectively

in [102], this range can be enlarged by incorporating 1/D corrections until the

method reproduces accurately the detailed features of black holes and black strings

at finite D (including below the critical dimension). We do not see any apparent

reason why perturbative 1/D corrections should lead to qualitative, instead of merely

quantitative, changes in our picture.

More important are the consequences of non-perturbative corrections in 1/D. Of

these, the loss of angular momentum through the emission of gravitational radiation
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is the main mechanism that opposes the instability: if the rate at which the angular

momentum of the bar is shed off is faster than the instability growth, then the

black bar may spin down to a stable MP black hole before the neck has time to

form and pinch down. We have used the D-dimensional quadrupole formula [45] to

estimate the characteristic time scale τrad = ∂t ln(J/M) of the radiative spin-down

of a rotating ellipsoidal bar. We have then compared it to the shortest characteristic

time τinst for the growth of the Gregory-Laflamme instability of a black string of the

same mass as the black bar. The radiation damping time is longer at large D by a

strong factor,

τrad

τinst

∼ DD , (8.2)

indeed so much so that our more accurate estimate suggests that already when

D ' 7 the spin-down may be much too slow to prevent the contraction of the

neck [111].

Intermediate black bar states are in fact plausible only in D ≥ 6, since only in

these dimensions does the MP black hole have linear bar-mode instabilities [156]

(however, see [157]). These bar-modes have been followed non-linearly in D =

6, 7, 8 and they return back to a stable black hole through radiation emission [158].

However, their long lifetime suggests that their angular momentum is not large

enough to reach the unstable regime of black bars (moreover, the horizons in [158] do

not result from a collision merger). Our estimates are uncertain, but the suppression

of radiation with increasing D is so strong that we find it hard to envisage how the

spin-down could be efficient in, say, D ≈ 10 and possibly even lower dimensions.

At any rate, although at present it is difficult to obtain a more precise estimate,

we are confident that our analysis supports the conclusion that the violation of CC

proposed here will be present in a high but finite D.

8.2 Strong Cosmic Censorship in the presence of

a cosmological constant

In Chapter 5 we leave Weak Cosmic Censorship to address its twin sister conjecture:

Strong Cosmic Censorship, in this case at D = 4. The main motivation for this study
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was to understand whether nonlinear effects could trigger mass inflation, even when

the linearized analysis suggests otherwise [51].

We found that nonlinear effects seem not to be strong enough to change the

picture. Within a nonlinear evolution, the precise linearized results are difficult

to reproduce (for instance, the final spacetime parameters depend on the initial

parameters and on the size of the initial data). The linearized analysis of Ref. [51]

suggests that no mass inflation should occur for BH charge above a threshold Q∗ '
0.995. As a consequence of the accretion of the scalar field pulse, the mass of

the black hole increases slightly, thus decreasing the extremality of the black hole.

Because of the limitations of the numerical code, a large enough pulse is needed

to trigger nonlinear effects, such as the blowup of the Kretschmann scalar, in the

integration timescale. This in fact drives the black hole below the threshold of

extremality Q∗. Clearly, then, the results are still inconclusive. However, we do see

an evident and dramatic decrease in mass inflation as we increase the extremality,

which seems to suggest that nonlinear effects are not likely to preserve SCC.

The (numerical) solutions presented here are the first solutions of this kind arising

from the full nonlinear evolution of exterior data. They contain a Cauchy horizon

in their BH interior region that can be seen as (“weakly”) singular, due to the di-

vergence of curvature invariants. However, these divergent tidal forces are not nec-

essarily strong enough to lead to a divergent tidal deformation and the consequent

unequivocal destruction of all macroscopic objects [117]. Even more problematic,

the extrapolated lack of mass inflation indicates that these Cauchy horizons should

maintain enough regularity as to allow the field equations to determine (classically),

in a highly non-unique way, the evolution of the metric to their future. This corre-

sponds to a potential severe violation of SCC.

Our results concern spherically symmetric spacetimes. The picture is unlikely

to change even with asymmetric initial conditions [51]. Thus, from the conceptual

point of view [52], our results show that SCC is not enforced by the field equations.

In the meantime, interesting suggestions to remedy SCC, in the presence of a

positive cosmological constant, have been put forward: these include enlarging the

allowed set of initial data by weakening their regularity [159], or restricting the

scope of SCC to the uncharged BH setting [160]. It thus seems plausible that the

astrophysical interpretation of SCC remains valid, once other fields and realistic BH
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charges are considered.

8.3 Holographic plasma polarization and Love num-

bers of black branes

Chapter 6 is an example of a simple yet very insightful calculation in the context

of AdS/CFT holography. The calculations can be done mostly analytically, with

some very simple numerical integrations of ordinary differential equations. Clearly

we have only taken a first step. There is still further work ahead if one wants to test

a holographic calculation of the polarization response against results from real-world

systems. In particular the holographic modelling must be made more sophisticated.

But we have identified the basic features of the phenomenon, and the extension to

other models developed in AdS/CMT is possible.

In this thesis the initial unperturbed geometry for the field theory has always

been Minkowski space, and correspondingly we have worked in the Poincaré patch

of AdS in the bulk. But it is also possible and interesting to study the electric

and gravitational polarization of black holes in global AdS—in dual terms, the po-

larization of the plasma on a spherical space. Indeed, the fully non-linear effects

of electric polarization for these black holes have been studied numerically already

in [161,162], see also [163–165]. The analysis in global AdS is technically more com-

plicated (spherical harmonics instead of plane waves) and presumably less relevant

to systems in the lab, so we have not attempted it here.

8.4 Horndeski’s Theory

In Chapter 7 we explore the subset of Horndeski’s theories identified as being able to

define locally well posed problems. The analysis we build upon, described in [93,94],

relied on identifying and exploiting a specific gauge. Such a choice might a priori be

regarded as restrictive, however when seen from the Einstein frame point of view, it

can be argued as being quite natural. Further, note the discussion –and problems

identified that can arise– for the dynamics of the scalar field holds regardless of the

gauge chosen to consider the evolution for the metric sector. In particular, one can
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argue for the existence of global well behaved solutions in the weak data case. Be-

yond this regime, however the truly non-linear character of the equations can induce

phenomenology which present serious roadblocks. Avoiding such issues requires sat-

isfying a twist-free condition, but such a case might be too restrictive depending

on the application and context of interest. In the general case, the strong possibil-

ity of a change in character of the equation –from hyperbolic to elliptic through a

parabolic stage– as well as the loss of uniqueness through the appearance of shocks

further question the ability to define well-posed problems with these theories. (In

simplified settings, similar deficiencies have been identified [166–168]). We men-

tion in passing that since the effective metric depends on the gradient of the scalar

field, the transition to parabolic/elliptic regimes is likely to take prior to the forma-

tion of shocks in generic situations (also highlihgted in [137]). Hence, considering

Horndeski’s theories as the leading order in a gradient expansion, problems might

arise still within the a priori assumed regime of applicability. The timescale for the

identified pathologies to arise depends, naturally, on the coupling value considered

and the initial data adopted. Due to these difficulties, the extent to which global

solutions obtained within the linearized regime and the information one can draw

from them with respect to the original action can be regarded as suspect.

This observation, which is arguably in tension with interesting observations drawn

at linearized levels in the cosmological context, perhaps calls for a different philos-

ophy with respect to Horndeski’s theories. For instance, to use the linearized equa-

tions of motion as a starting point to build a new one free of the (many) problems

identified at the nonlinear level through the addition of further suitable operators

(for a related discussion, see [169]). However, it might come at the expense of higher

derivatives being introduced. A complementary or alternative approach would be

to identify the set of behaviors which can be considered physical and, armed with a

suitable justification, modify the non-linear equations of motion to control unphys-

ical pathologies (e.g. [135,170]).
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La Relativitat General ha demostrat ser una teoria de la gravetat extremada-

ment exitosa. Aquesta teoria, formulada en un llenguatge purament geomètric,

produeix prediccions que s’han verificat amb molta precisió en una gran quantitat

d’experiments històrics. Més recentment, i gairebé precisament un segle després de

la formulació de la teoria, LIGO ens va donar una confirmació d’una de les predic-

cions més espectaculars de la Relativitat General, juntament amb una nova forma

d’obtenir informació valuosa a partir d’esdeveniments astrof́ısics: les ones gravita-

cionals. Això no obstant, d’un punt de vista fonamental, tenim motius per pensar

que la Relativitat General està incompleta. Creiem que la teoria hauria de deixar de

ser fiable a una escala d’energia prou gran (o a una escala de longitud prou petita).

Aquesta escala ha de ser, com a màxim, l’escala de Planck.

Els forats negres són els objectes més bàsics de la Relativitat General, i posseir-ne

un bon coneixement sembla ser clau per comprendre la gravetat. Són extremada-

ment importants com a objectes astrof́ısics, també de l’univers primerenc (forats

negres primordials), en relativitat matemàtica, en teoria de cordes i en gravetat

quàntica. També en molts sistemes aparentment no gravitacionals mitjançant dual-

itats hologràfiques aplicades (AdS / QFT, AdS / QGP, AdS / CMT ...). Els forats

negres són probablement els objectes macroscòpics més senzills de la Natura, que

es descriuen completament per la seva massa, moment angular i càrrega elèctrica.

Aquest fet els fa matemàticament molt atractius i elegants: ens permet descriure ob-

jectes de mida astrof́ısica amb equacions molt simples, sovint fins i tot anaĺıticament.

Tot i que semblen molt senzills, tenim pistes, com la termodinàmica dels forats ne-

gres o la Paradoxa de la Informació, que ens indiquen que la Relativitat General

està fonamentada per una estructura més complexa. És, per tant, el nostre objectiu

intentar trobar la teoria adequada de la gravetat quàntica. Ara per ara, els can-

didats més acceptats estan agrupats en el que es coneix com la teoria de cordes.

Adoptar aquesta famı́lia de teories té un cost: hem de formular-les en més de quatre

dimensions, normalment 10 o 11, i gairebé segur que requereixen supersimetria.

En aquesta tesi aplicarem nous enfocaments i desenvoluparem noves tècniques

per tractar diversos temes relacionats amb aspectes fonamentals de la teoria gra-

vitacional moderna i els forats negres. Tenir una dimensió fonamental superior a

quatre és un problema que es pot esquivar exigint que les dimensions addicionals

es compactin en una varietat diferenciable de dimensió D − 4. D’aquesta manera,
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la f́ısica a escales de longitud suficientment llargues es desenvolupa de forma efec-

tiva en un espaitemps de dimensió 4. Aquest fet, però, ens anima a explorar el

comportament de la gravetat i els forats negres en dimensions superiors a quatre.

La f́ısica dels forats negres en dimensions altes és immensament més rica que en

dimensió quatre: molts dels teoremes d’unicitat no es mantenen, permetent aix́ı una

gran varietat de fenòmens gravitacionals. En particular, existeixen forats negres

amb direccions extenses (cordes negres i branes negres). Els forats negres exten-

sos també presenten l’anomenada inestabilitat de Gregory-Laflamme, que fa que

les cordes negres i les branes negres desenvolupin espontàniament deformacions que

poden acabar produint una violació de la conjectura de la Censura Còsmica Feble.

9.1 Branes i cordes negres en dimensions altes

En aquesta tesi estudiem el comportament de les branes negres en l’aproximació large

D, és a dir, considerem un espaitemps amb un nombre molt gran de dimensions.

Al Caṕıtol 2, aquest enfocament ens permet obtenir un conjunt d’equacions molt

simples que recullen molts dels fenòmens f́ısics de la gravetat. Aquesta tècnica

utilitza el fet que el camp gravitatori al voltant d’un objecte massiu decau més

ràpidament com més alta és la dimensió, i per tant, quan es pren el ĺımit D → ∞,

queda concentrat en una regió molt fina de mida 1/D al voltant de l’horitzó del

forat negre. D’aquesta manera, l’horitzó es pot veure com una membrana suspesa

en una geometria de fons essencialment plana. La regió on viu el forat negre està

(en certa manera) exclosa de l’espaitemps de fons.

Una pregunta bàsica que ens podem fer és si les equacions de la teoria efectiva

es poden entendre en termes de la f́ısica quotidiana. En efecte, podem descriure

l’evolució dinàmica de la brana negra com un fluid, mentre que per a configuracions

estacionàries és més natural veure-la com una membrana elàstica o una bombolla

de sabó.

Al Caṕıtol 3 utilitzem les equacions efectives large D per investigar les fases i

l’estabilitat de les cordes negres a diferents valors de la dimensió D i de la longitud

de compactificació L. En alguns casos, la inestabilitat de Gregory-Laflamme de

les cordes negres uniformes pot conduir a cordes negres no uniformes estables. El

tipus transició canvia a un cert valor cŕıtic de la dimensió d’espaitemps D∗ ≈ 13, 5.
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Utilitzem correccions 1/D per estimar el valor de la dimensió cŕıtica, que resulta

ser molt precisa. De fet, la nostra determinació anaĺıtica de les dimensions cŕıtiques

proporciona possiblement el valor més exacte fins ara, superant els càlculs numèrics

actuals. Utilitzem tant solucions anaĺıtiques pertorbatives com càlculs numèrics

per obtenir dades termodinàmiques que comparem amb resultats a D finita de la

literatura. La comparació mostra que la tècnica large D pot donar resultats anaĺıtics

amb gran precisió.

També realitzem un estudi de cordes negres altament deformades en un nombre

creixent de dimensions, per tal de determinar el punt de transició a forats negres

localitzats. Aquest estudi seria extremadament feixuc i requeriria molt de temps

amb tècniques numèriques convencionals, a causa de la creixent dificultat d’aquests

mètodes a mesura que augmenta el nombre de dimensions. Ho fem mitjançant

una combinació de mètodes — a través de l’evolució dinàmica de les equacions, i

a través estudis de solucions estàtiques que desenvolupen patologies identificables

(espećıficament, tensions negatives) quan la deformació és massa gran.

9.2 Col·lisions i Censura Còsmica Feble

La conjectura de Censura Còsmica Feble de Penrose afirma que no es poden formar

singularitats nues a través de l’evolució dinàmica d’un sistema gravitacional a partir

de dades inicials clàssiques. També es podria definir com la impossibilitat per a

observadors llunyans d’observar la f́ısica a l’escala de Plank (i per tant la gravetat

quàntica) si l’energia de la configuració inicial és baixa i el sistema segueix l’evolució

gravitatòria clàssica de les equacions d’Einstein.

El Caṕıtol 4 explora possibles esdeveniments de violació de la Censura Còsmica en

col·lisions de forats negres a D > 4. La tècnica de large D, mitjançant les equacions

efectives, proporciona una eina potent per analitzar aquest tipus d’escenaris que

d’altra manera serien molt complicats d’abordar mitjançant simulacions numèriques

a D finita. Recentment s’ha demostrat que els forats negres en rotació es poden

descriure com protuberàncies sobre una brana negra.

El fenomen de la violació de la Censura Còsmica es pot resumir de la manera

següent: Quan dos forats negres xoquen, els seus horitzons d’esdeveniments es fu-

sionen i formen un únic forat negre molt deformat. Si el moment angular és prou
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baix, l’horitzó resultant es relaxarà mitjançant vibracions dels modes quasinormals

fins arribar a una solució estacionària de Myers-Perry en rotació. En canvi, si el

moment angular de la col·lisió està per sobre d’un determinat llindar, el forat negre

esdevindrà un objecte allargat en forma de barra.

La barra negra es veu afectada per una inestabilitat, anàloga a la inestabilitat de

Gregory-Laflamme, que fa que l’horitzó formi un coll prim al seu centre. L’objecte

resultant es pot trencar un cop aquest coll és suficientment prim, i separar-se en dos

forats negres (ara estables) que són llançats en direccions diferents. La competició

entre la velocitat de creixement de la inestabilitat de Gregory-Laflamme i la pèrdua

de moment angular a causa de l’emissió d’ones gravitacionals determinarà si es

produeix finalment la violació de la Censura Còsmica Feble.

9.3 Censura Còsmica Forta

Els horitzons de Cauchy apareixen en moltes solucions exactes per a sistemes grav-

itacionals, particularment en les solucions de Reissner-Nordström i de Kerr. Aquests

horitzons són un ĺımit més enllà del qual la Relativitat General deixa de ser una teo-

ria determinista. De fet, el futur d’un observador que entri a la regió de l’espaitemps

més enllà de l’horitzó intern d’un forat negre de Reissner-Nordström no es pot predir

a partir de les dades inicials externes. L’observador tindrà en aquest moment una

singularitat de tipus temps en el seu passat nul, i per tant la informació d’aquesta

singularitat pot afectar el futur de l’interior del forat negre.

Generalment es creu que la presència dels horitzons de Cauchy és un artefacte que

sorgeix en solucions eternes exactes. En exigir que l’espaitemps sigui estacionari,

estem impedint l’evolució dinàmica que evitaria la formació d’aquests horitzons.

Aquesta idea queda recollida en la conjectura de Censura Còsmica Forta de Penrose.

Segons aquesta hipòtesi, les pertorbacions externes que cauen al forat negre patirien

un desplaçament cap al blau infinit en arribar a l’horitzó de Cauchy, provocant

aix́ı una inestabilitat. L’horitzó inestable resultant esdevindria singular, creant un

acabament de l’espaitemps.

L’estabilitat dels horitzons de Cauchy depèn per tant del decäıment de les per-

torbacions a l’exterior del forat negre. Una pertorbació d’un camp escalar φ en un

forat negre asimptòticament pla decaurà com una llei de potència donada per la
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coneguda llei de Price. Aquest comportament és suficient per garantir el fenomen

d’inflació de massa, i per tant la validesa de la Censura Còsmica Forta. Aquest

escenari, però, canvia dràsticament quan hi afegim una constant cosmològica Λ > 0.

En aquest cas, φ decaurà seguint una llei exponencial. Aquest fet ha fet que recent-

ment es posi en dubte la conjectura de Censura Còsmica Forta per a forats negres de

Reissner-Nordström altament carregats en espaitemps asimptòticament de Sitter.

Per anar més enllà dels estudis anteriors, el Caṕıtol 5 resumeix els resultats de

simulacions completament no lineals de Reissner-Nordström altament carregats. Per

tal de realitzar les integracions no lineals (esfèricament simètriques), s’ha desenvolu-

pat un nou codi espectral en coordenades doblement nul·les. Tot i que els resultats

presentats aqúı són lluny de ser concloents, mostren una disminució dramàtica de la

inflació de massa quan la càrrega del forat s’aproxima al llindar predit a la literatura,

fins al punt on no s’observa la inflació de massa dins del domini computacional del

codi.

9.4 Polarització de plasmes i nombres de Love

Qualsevol sistema continu que es pugui descriure com una teoria quàntica de camps

reaccionarà davant un canvi en la geometria on està situat. Ho farà canviant la

distribució de la densitat d’energia, la pressió i el tensor d’esforços. És a dir, el

sistema (que anomenarem plasma) es polaritza, i el seu tensor d’energia-moment

adquireix un valor esperat quàntic no trivial. En general, aquest efecte és bastant

dif́ıcil de calcular, sobretot si la teoria de camps està fortament acoblada. En aquest

cas, la teoria de pertorbacions no és aplicable i només es poden realitzar càlculs

numèrics.

En aquest context, la dualitat hologràfica, també coneguda com a correspondència

AdS/CFT, és extremadament útil per extreure informació qualitativa i valuosa del

sistema. D’acord amb aquesta conjectura, les teories quàntiques de camps fortament

acoblades amb invariància conforme (CFT), són duals a la gravetat clàssica dins

l’espaitemps Anti-de Sitter (AdS). Per tant, hi ha una correspondència entre la

gravetat clàssica en AdS en dimensió n+1 i les teories conformes fortament acoblades

en dimensió n (en particular, les teories Super Yang-Mills amb grup de galga SU(N))

situades a la frontera d’AdS. Aquest fet es pot utilitzar per extreure informació de
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la teoria quàntica, altrament molt dif́ıcil d’obtenir, a partir de càlculs de gravetat.

Les pertorbacions en la geometria de la frontera d’AdS produiran deformacions

de marea en la geometria de l’interior. Per calcular aquesta deformació, resolem

les equacions per a una pertorbació linealitzada de la geometria que satisfà una

condició de contorn adequada a l’infinit. Aquest és exactament l’objectiu del Caṕıtol

6. Tenir una teoria quàntica a temperatura finita equival a introduir un forat negre

a l’interior d’AdS. En particular, una brana negra, les direccions espacials de la qual

corresponen a les direccions espacials de la frontera.

Si les pertorbacions són prou petites, les deformacions de la brana es descriuen

bé mitjançant coeficients de resposta lineal, anomenats nombres de Love. El valor

esperat quàntic del tensor d’energia moment s’obté a partir dels nombres de Love.

9.5 Teories de Horndeski

Quan s’intenten construir extensions a la Relativitat General, és natural considerar

la inclusió de nous graus de llibertat per descriure el camp gravitatori. És important,

però, que les equacions de moviment resultants siguin com a màxim de segon ordre,

per garantir l’absència de fantasmes d’Ostrogradski, que potencialment conduirien

a inestabilitats catastròfiques de la teoria. La riquesa de possibles teories augmenta

dràsticament si es permet que la gravetat estigui descrita tant per una mètrica gµν

com per un camp escalar φ. Aix́ı, la teoria més general que conté una mètrica i un

camp escalar, que és invariant sota difeomorfismes, i que condueix a equacions de

moviment de segon ordre és coneguda com la teoria de Horndeski.

Independentment de les dades experimentals, generalment se suposa que una

teoria que pretén descriure la Natura ha de ser matemàticament ben plantejada.

Les teories ben plantejades són aquelles que tenen una solució única que depèn de

forma cont́ınua de les condicions inicials i de contorn. Una teoria que no està ben

plantejada no pot donar cap predicció f́ısica fiable.

El Caṕıtol 7 estudia un subconjunt de les teories de Horndeski les equacions del

moviment de les quals són localment ben plantejades. Tot i això, cal determinar si

existeixen solucions globals i si aquestes solucions són prou ben comportades. És

important tenir en compte que, en aquest cas, la velocitat de propagació del camp

escalar no coincideix en general amb la “velocitat de la llum” i, per tant, podem
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trobar horizons de so per al camp escalar i horitzons de llum per a la mètrica. Atès

que gµν i φ estan acoblats, només l’horitzó més intern serà un veritable ĺımit per a la

connexió causal amb l’infinit. La velocitat de propagació de l’escalar no està fitada

superiorment i, fins i tot, pot divergir en determinades circumstàncies especials.

Una altra possibilitat preocupant (que s’ha confirmat amb simulacions numèriques),

és un canvi del caràcter de l’equació de moviment, d’hiperbòlica a parabòlica i fi-

nalment a el·ĺıptica. Això produeix un canvi en l’estructura causal de la geometria.
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