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Abstract 

 

Background: There is evidence suggesting that body weight is 

associated with lung function, but results are contradictory and suffer 

from important limitations. We aimed to assess the association of 

body weight and composition with lung function growth and decline, 

overcoming some of the limitations of previous research.   

 

Methods: We used data from three population-based cohorts: the 

Spanish INfancia y Medio Ambiente (‘Environment and 

Childhood’), the UK Avon Longitudinal Study of Parents and 

Children and the European Community Respiratory Health Survey. 

Lung function was measured by spirometry. Body weight was 

assessed using body mass index (BMI). Body composition (lean body 

mass and fat mass) was measured using a dual-energy X-ray 

absorptiometry scanner. We calculated changes over time and group-

based trajectories of BMI, lean body mass and/or fat mass. 

 

Results: (1) Independently of birth size, accelerated BMI gain from 

birth to four years was associated with higher lung function at seven 

years but also with airflow limitation. In contrast, children with lower 

birth size and slower BMI gain in early childhood had lower lung 

function at seven years. (2) Higher lean body mass from nine to 

fifteen years related to higher lung function at fifteen years in boys 

and girls. In addition, higher fat mass was associated with lower lung 

function in boys, and with airflow limitation in boys and girls. (3) 

The association of higher fat mass with airflow limitation at fifteen 

years was partly (20%) mediated by insulin resistance, but not by C-
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reactive protein. (4) Moderate and high weight gain during adulthood 

were associated with accelerated lung function decline, while weight 

loss was related to its attenuation.  

 

Conclusions: Excess body weight and fat mass have deleterious 

effects on lung function over life span, while higher lean body mass 

benefits lung function growth. The effects of body weight on lung 

function seem reversible. This thesis highlights the importance of 

assessing body composition when studying the effects of body 

weight on respiratory health and of promoting body weight and fat 

mass control in order to reduce respiratory morbidity at all ages.  
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Resumen 

 

Antecedentes: El peso corporal se ha asociado con la función 

pulmonar, pero hasta ahora los resultados han sido contradictorios y 

presentan limitaciones importantes. Nuestro objetivo fue evaluar la 

asociación del peso y la composición corporal con el desarrollo y el 

declive de la función pulmonar, superando algunas de las 

limitaciones de los estudios previos. 

 

Métodos: Utilizamos datos de tres cohortes de base poblacional: 

INfancia y Medio Ambiente, en España, Avon Longitudinal Study of 

Parents and Children, en Inglaterra, y European Community 

Respiratory Health Survey. La función pulmonar se midió mediante 

espirometría. El peso corporal se evaluó utilizando el índice de masa 

corporal (IMC). La composición corporal (masa magra y masa grasa) 

se midió utilizando un escáner de absorciometría de rayos X de 

energía dual. Calculamos cambios en el tiempo y trayectorias 

grupales de IMC, masa magra y/o masa grasa. 

 

Resultados: (1) Independientemente del peso al nacer, el aumento 

acelerado del IMC desde el nacimiento hasta los cuatro años se asoció 

con una mayor función pulmonar a los siete años, pero también con 

una limitación del flujo aéreo. En cambio, los niños con un peso al 

nacer más bajo y un aumento del IMC más lento mostraron una 

menor función pulmonar a los siete años. (2) Un mayor nivel de masa 

magra desde los nueve hasta los quince años se asoció con una mayor 

función pulmonar a los quince años en niños y niñas. Además, un 

mayor nivel de masa grasa se asoció con una menor función 



viii 

 

pulmonar en niños y con una limitación del flujo aéreo en niños y 

niñas. (3) La asociación entre un mayor nivel de masa grasa y la 

limitación del flujo aéreo a los quince años fue mediada en parte 

(20%) por la resistencia a la insulina, pero no por la proteína C-

reactiva. (4) El aumento de peso moderado y alto en la edad adulta se 

asoció con un declive acelerado de la función pulmonar, mientras que 

la pérdida de peso se relacionó con su atenuación. 

 

Conclusiones: El exceso de peso y masa grasa tienen efectos nocivos 

sobre la función pulmonar a lo largo de la vida. En cambio, un mayor 

nivel de masa magra beneficia el desarrollo de la función pulmonar. 

Los efectos del peso sobre la función pulmonar parecen reversibles. 

Esta tesis resalta la importancia de evaluar la composición corporal 

al estudiar los efectos del peso sobre la salud respiratoria y de 

promover el control del peso y el nivel de masa grasa para reducir la 

morbilidad respiratoria en todas las edades. 
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Resum 

 

Antecedents: El pes corporal s'ha associat amb la funció pulmonar, 

però fins ara els resultats han sigut contradictoris i presenten 

limitacions importants. El nostre objectiu va ser avaluar l'associació 

del pes i la composició corporal amb el desenvolupament i el declivi 

de la funció pulmonar, superant algunes de les limitacions dels 

estudis previs. 

 

Mètodes: Utilitzàrem dades de tres cohorts de base poblacional: 

INfància i Medi Ambient, a Espanya, Avon Longitudinal Study of 

Parents and Children, a Anglaterra, i European Community 

Respiratory Health Survey. La funció pulmonar es mesurà mitjançant 

espirometria. El pes corporal s’avaluà utilitzant l'índex de massa 

corporal (IMC). La composició corporal (massa magra i greix) es 

mesurà utilitzant un escàner de absorciometria de raigs X d'energia 

dual. Calculàrem canvis al llarg del temps i trajectòries grupals 

d'IMC, massa magra i/o massa greix. 

 

Resultats: (1) Independentment del pes al néixer, l'augment accelerat 

de l'IMC des del naixement fins als quatre anys va associar-se amb 

una major funció pulmonar als set anys, però també amb una 

limitació del flux aeri. En canvi, els nens amb un pes al néixer més 

baix i un augment de l'IMC més lent mostraren una menor funció 

pulmonar als set anys. (2) Un major nivell de massa magra des dels 

nou fins als quinze anys va associar-se amb una major funció 

pulmonar als quinze anys en nens i nenes. A més, un major nivell de 

greix va associar-se amb una menor funció pulmonar en nens i amb 
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una limitació del flux aeri en nens i nenes. (3) L'associació entre un 

major nivell de greix i la limitació del flux aeri als quinze anys va ser 

mitjançada en part (20%) per la resistència a la insulina, però no per 

la proteïna C-reactiva. (4) L'augment de pes moderat i alt en l'edat 

adulta va associar-se amb un declivi accelerat de la funció pulmonar, 

mentre que la pèrdua de pes va relacionar-se amb la seva atenuació. 

 

Conclusions: L'excés de pes i greix tenen efectes nocius sobre la 

funció pulmonar al llarg de la vida. En canvi, un major nivell de 

massa magra beneficia el desenvolupament de la funció pulmonar. 

Els efectes del pes sobre la funció pulmonar semblen reversibles. 

Aquesta tesi ressalta la importància d'avaluar la composició corporal 

a l'estudiar els efectes del pes sobre la salut respiratòria i de promoure 

el control del pes i els nivells de greix per reduir la morbiditat 

respiratòria en totes les edats. 
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Preface 

 

The present thesis was written at the Barcelona Institute for Global 

Health (ISGlobal) between June 2016 and April 2020 and was 

supervised by Dr. Judith Garcia Aymerich. It is an accumulative 

thesis, consisting of four scientific articles of which the candidate was 

the first author. The thesis complies with the procedures and 

regulations of the Biomedicine PhD Program of the Department of 

Experimental and Health Sciences of the Universitat Pompeu Fabra. 

 

This thesis book is structured into eight sections, including a general 

introduction, the thesis’s rationale and objectives, an overview of the 

methods, the research results (four original papers, two of them 

published, one under review and one in preparation), a global 

discussion, final conclusions and several annexes. The first paper was 

conducted as part of the INfancia y Medio Ambiente (INMA, 

‘Environment and Childhood’) Project, a network of prospective 

population-based birth cohorts in Spain that aim to study the role of 

environmental exposures during pregnancy and early childhood in 

relation to child growth, health and development. The three remaining 

papers were carried out under the framework of the Ageing Lung in 

European Cohorts (ALEC) project (EU H2020 633212), which 

aimed to improve our understanding of the determinants and risk 

factors for low lung function, respiratory disability and the 

development of chronic obstructive lung disease (COPD), through 

exploitation of information held within existing cohorts. Out of the 

cohorts included in the ALEC project, the present thesis used data 
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and Children (ALSPAC) birth cohort and from the multicentre 

population-based European Community Respiratory Health Survey 

(ECRHS). 
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meetings and participating in the writing of project reports. Finally, 
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1. INTRODUCTION 

 

1.1 Lung function evolution through life 

Lung function (how well the lungs work during exhalation) is a 

powerful marker of overall health and a strong predictor of morbidity 

and all-cause mortality in the general population [1,2]. Lung function 

can be measured using a variety of tests. The most basic test and the 

most generally used in respiratory research is spirometry, which 

measures the air that is expired and inspired [3,4]. The primary 

variables obtained from a spirometry test are the forced vital capacity 

(FVC) and forced expiratory volume in one second (FEV1). The FVC 

represents the maximum volume of air exhaled in a maximal forced 

expiratory manoeuvre, initiated after a full inspiration (expressed in 

litres). The FEV1 corresponds to the maximal volume of air exhaled 

in the first second of the FVC manoeuvre (expressed also in litres). 

In turn, the FEV1/FVC ratio shows the relation between both 

parameters and is usually used as a measure of airflow limitation. In 

addition to these parameters, spirometry also measures flow rate 

variables. The most widely used is the mid forced expiratory flow 

(FEF25%–75%), which is defined as the flow measured between 25% 

and 75% of the FVC manoeuvre (expressed in litres per second) [4]. 

 

Over the lifespan, lung function progresses through different phases 

(Figure 1). First, there is a grow phase in which lung function 

increases while lungs complete their development. This growth phase 

reaches a peak at early adulthood (20-25 years). There is then a 
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plateau phase that last for few years and is followed by a decline 

phase due to physiological lung ageing [5]. 

 

 

Figure 1. Development of lung function through life 

 

 

Several genetic and environmental factors can alter any of these 

phases, resulting in an abnormal lung function growth and/or decline 

and increasing the risk of poor lung function in adult life. Poor lung 

function relates to respiratory disability, loss of productive life and 

loss of active independence [6–8]. At the severe end of the spectrum 

poor lung function is commonly associated with a diagnosis of 

chronic obstructive pulmonary disease (COPD), which is a major 

cause of disability and death worldwide [9,10]. Understanding the 

determinants of lung function is of relevance because the 
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demographic pattern is changing around the globe and the prevalence 

of respiratory disability, low lung function and COPD is expected to 

increase as population ages [11]. 

 

1.1.1 Determinants of lung function growth  

 

Lung development starts in the foetus and comprises five 

developmental stages: embryonic, pseudoglandular, canalicular, 

saccular and alveolar [12]. The most substantial structural 

developments occur during foetal life and the first year after birth, 

but alveolarisation progresses until early adulthood [12,13]. Since 

lung development is a continuum process, any alteration of the 

developmental stages may result in altered lung function and/or in 

increased risk of respiratory morbidity in later life. Several genetic 

and environmental factors can affect normal lung function growth 

and, in consequence, prevent a full growth to maximal lung function 

in early adulthood.  

 

Genetic factors 

Genetic background has been recognised as an important factor for 

lung function development. Polymorphisms in genes involved in 

lung growth have been associated with lower lung function levels in 

childhood as well as with increased risk of wheezing and airway 

resistance in infancy independently of tobacco smoke exposure 

[14,15]. Several studies have also reported that genetic alterations in 

different genes may contribute to genetic predisposition of some 

individuals to adverse effects of environmental factors such as 
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tobacco smoke [16]. In addition, a recent genome-wide association 

study (GWAS) that used data from the UK Biobank concluded that 

the number of independent genetic associations associated with three 

lung function parameters (FVC, FEV1 and FEV1/FVC) is now 97, 

representing loci across the whole genome. The total heritability 

explained by these 97 signals was estimated to 9.6% for FEV1, 6.4 

for FVC and 5.2% for FEV1/FVC. Importantly, most of the identified 

single-nucleotide polymorphisms (SNPs) in this study seem to 

influence lung function both in children and adults [17].  

 

Tobacco smoke exposure  

Maternal smoking during pregnancy is a well-established risk factor 

for impaired lung function growth. Animal studies have shown that 

exposure to nicotine in utero is associated with smaller lungs in 

offspring, which have fewer, larger alveoli and a low capillary 

density [18]. Epidemiological studies have reported that maternal 

smoking during pregnancy is associated with poor lung function, at 

birth, during childhood and in early adulthood [19–21].. Similar 

effects on lung function have been reported for postnatal exposure to 

tobacco smoke [22], which also persists until adult life [23]. In 

addition, active smoking during adolescence has also been associated 

with slowed lung function growth, especially in girls [24]. 

 

Premature birth  

Premature birth (<37 weeks of gestations) is the most common cause 

of abnormal lung development. The lungs of preterm children are not 

fully developed and therefore they are susceptible to suboptimal 
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further development and to lung injury due to artificial ventilation, 

oxygen therapy and other perinatal factors [25,26]. Despite advances 

in neonatal care, the prevalence of bronchopulmonary dysplasia 

(BPD), a neonatal chronic lung disease, has remained high over time 

and continues to be among the most common diseases in premature 

children [27,28]. The burden of respiratory problems associated with 

this chronic disease are high and go far beyond the neonatal period 

[29]. Longitudinal studies have shown that premature survivors, with 

or without BPD, have three times higher risk of wheezing disorders 

and have lower lung functions values than children born at term 

[30,31]. Other studies also showed that preterm birth is associated 

with significant lung function deficits at least up to adolescence, 

particularly for airflow limitations measures [32,33]. In addition, 

premature birth is an important contributing factor to increased 

susceptibility to injury by environmental factors [12]. 

 

Diet and physical activity 

Inadequate availability of nutrients during foetal development has 

been linked with intrauterine growth retardation and structural 

alterations in the lungs [34,35]. In particular, vitamin D has been 

shown to play a key role in lung development [36], and maternal 

deficiency has been reported to be associated with impaired lung 

development in school-aged offspring [37,38]. Postnatal nutrition 

also plays an important role on lung function growth. Children who 

are breastfeed have higher lung function volumes than children that 

are formula-fed in early life [39,40]. Consumption of fresh fruit 

during childhood has also been associated with higher lung function 
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values in childhood [41,42]. Finally, in the last years, several cross-

sectional and longitudinal studies have also shown that physical 

activity is associated with higher lung function values in childhood, 

adolescence and early adulthood [43–47].  

 

Environmental pollution 

The developing lungs are highly susceptible to damage from 

exposure to environmental pollutants, including oxidant gases (e.g. 

ozone), traffic-related emissions and particular matter from biomass 

fuel combustion [48]. Ozone exposure in children has been linked to 

several respiratory-related responses in children, including 

decrements in lung function, shortness of breath and respiratory 

symptoms such as wheeze and cough [49,50]. Exposure to traffic-

related air pollution during pregnancy and childhood has been 

negatively associated with lung growth and lung function in children 

and young adults in several studies [51–54]. Finally, childhood 

exposure to biomass fuels combustion, the main source of indoor air 

pollution in developing countries, has been clearly linked to 

respiratory morbidity and mortality [55]. 

 

Lower respiratory tract infections and asthma 

It is well stablished that children with severe lower tract respiratory 

infections (LRTI) during early infancy are at risk for later respiratory 

symptoms and/or lung function impairment. Several studies have 

reported that both a history of bronchiolitis and wheezing illness are 

associated with lower lung function in infancy [56–58]. Other 

longitudinal studies also showed that wheezing and asthma 
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symptoms during the first years of life are associated with impaired 

lung function in later childhood [59–61]. In addition, children that 

develop recurrent wheeze or asthma after a LRTI in infancy are more 

susceptible to later noxious environmental exposures [62,63] and 

have an increased risk of low lung function at peak [64]. 

 

1.1.2 Determinants of lung function decline  

 

Ageing is accompanied by changes in lung function due to factors 

such as loss of lung elasticity, weakened muscles of respiration and 

decreased surface area for alveolar gas exchange [65,66]. This 

‘natural’ age-related decline can be enhanced by several behavioural 

and environmental factors, most of which take place during 

adulthood.  

 

Early life factors 

In recent years, epidemiological studies have suggested that early life 

factors (e.g. tobacco exposure, premature birth or LRTI during 

infancy ) may have a direct influence on accelerated lung function 

decline in adult life, for example by increasing susceptibility to the 

effects of adult life exposures [67–69]. These and other studies 

[70,71] have provided strong evidence that lung function deficits 

established in childhood may track into adult life and increase the risk 

of respiratory morbidity and COPD.      
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Smoking 

Smoking is one of the major risk factors for lung function decline 

[72]. In the 1970s, Fletcher and colleagues reported that lung function 

decline was more accelerated in smokers than in non-smokers, and 

that in a subgroup of ‘susceptible smokers’ this acceleration lead to 

development of COPD [73]. Since that, several epidemiological 

studies have replicated this association in different study populations, 

showing also that the negative effects of smoking depend on its 

intensity and duration [74,75]. Other studies have also showed that 

smoking cessation is associated with reduced loss of pulmonary 

function [76]. In addition, there is also evidence that the negative 

effects of personal smoking are increased in individuals born from 

mothers that smoked during pregnancy [73].  

 

Diet and physical activity 

Several epidemiological studies have studied the effects of diet on 

adult lung function. Cross-sectional and longitudinal studies have 

reported a positive association between higher fruit and flavonoid 

intake and higher lung function levels in middle-aged and elderly 

adults [77,78]. Similarly, longitudinal studies have showed that a 

higher intake of fruits and antioxidant nutrients is associated in 

attenuated lung function decline [79–81]. In addition, a longitudinal 

study that followed male smokers over a twenty-years periods found 

that vitamin D deficiency was associated with lower lung function 

and more rapid decline in smokers [82].  
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Physical activity has also been investigated in relation to lung 

function decline. Longitudinal studies have shown that higher 

physical activity is associated with less lung function decline among 

smokers [83,84] and adults with asthma [85]. Similarly, another 

longitudinal study reported that achieving increased fitness from 

young adulthood to middle age was associated with reduced lung 

function decline over time [86].  

 

Environmental pollution  

There is consistent evidence showing that acute and long-term 

exposure to outdoor air pollution are associated with decreased lung 

function values in adults [87,88]. Out of the regulated pollutants, 

particular matter (PM) has been one of the most extensively studied 

in relation with lung function decline [89]. Two population-based 

studies with over a ten-year follow-up showed that exposure to higher 

long-term concentrations of PM is associated with a meaningful lung 

function decline in healthy adults [90,91], even if PM concentrations 

are moderate [90]. There is also evidence showing an association 

between improvement of air quality (i.e. reduction of PM 

concentrations) and decreased rate of annual lung function decline 

[92]. 

 

Longitudinal studies have reported that occupational exposures, 

mainly vapours, gases, dust, fumes and pesticides, are a risk factor 

for accelerated lung function decline [93–96]. More recently, a 

population-based study reported that adults exposed to aromatic 

solvents and metals have greater lung function decline, compared 
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with those without exposure [97]. Similarly, another study suggested 

that women cleaning at homer or working as occupational cleaners 

have accelerated decline in lung function [98].  

 

Other factors 

Asthma is a well stablish risk factor for accelerated lung function 

decline, independently of smoking [99–101]. Recently, longitudinal 

studies have shown that menopausal status and use of hormonal 

replacement therapy in menopause are associated with the rate of 

lung function decline in women, independently of smoking status 

[102,103]. Other longitudinal population-based studies have also 

suggested that frequent snoring [104] and exposure to mould [105] 

can increase the risk of accelerated lung function decline. Finally, 

there is also evidence that some genetic risk factors (such as the α1 

antitrypsin type) are associated with the rate of lung function decline 

in adulthood [106].  

 

1.2 The link of body weight and composition with 
lung function 

1.2.1 Body weight and body composition  

 

Body weight is a key characteristic to individual’s health. It is defined 

as a person’s mass or weight and is composed of lean body mass, fat 

mass, bone mass and water. The distinction of the components of 

body weight, specifically of lean body mass and fat mass, is of 

relevance because different components have different physiological 

functions and may play a different role on health outcomes [107]. 
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Body weight that is higher than what is considered normal or healthy 

for a given height and age is described as overweight or obesity and 

is usually attributed to an excessive accumulation of fat mass 

[108,109].  

 

The effects of body weight on health are commonly assessed by 

means of the body mass index (BMI), calculated by dividing body 

weight (kg) by height (m) squared. BMI is also commonly used as an 

indirect measure of body composition, specifically of fat mass as, in 

general, persons with high BMI tend to have higher levels of fat mass 

[110]. Fat mass can also be assessed using other indirect measures 

such as skinfolds, body weight circumferences and bioelectric 

impedance [111]. In addition, there are also direct measures of body 

composition such as dual-energy X-ray absorptiometry (DXA), 

which in addition to fat mass also provides measures for lean body 

mass, bone mass and water [111].  

 

Body weight and composition change over time. Body weight 

increases steadily until young adulthood, period in which it tends to 

stabilize [112]. From mid-childhood onwards, annual increases in 

body weight are largely due to increases in lean body mass rather 

than to increases in fat mass [113], but there are important differences 

by sex [114] The age-related increase in lean body mass is steeper in 

boys than in girls, especially during puberty [114,115]. In contrast, 

during late childhood and adolescence, girls exhibit a higher age-

related increase in fat mass than boys [114]. In addition, boys and 

girls differ in terms of the distribution of fat mass. Girls have 
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considerably more peripheral fat, while boys tend to accumulate fat 

in the abdominal area [116]. These differences increase with sexual 

maturation and persist until adulthood [116]. In late adulthood and 

elderly there are also important changes in terms of body 

composition. As individuals age, lean body mass decreases while fat 

mass increases, mainly in the abdominal area [117,118].  

 

Several genetic and environmental factors influence body weight and 

composition [119,120]. In the last decades, a shift towards a more 

sedentary lifestyle and a change in dietary patterns has led to a 

steadily increase of mean body weight [121]. Nowadays, the 

prevalence of overweight and obesity in children and adults has 

reached pandemic levels globally [120,121], which is of major 

concern as these factors are associated with serious health effects. 

Childhood overweight is associated with lifelong overweight and 

obesity [122] and with early onset of chronic conditions [123,124]. 

In addition, overweight and obesity are major risk factors for 

noncommunicable diseases including cardiovascular diseases, cancer 

and diabetes mellitus [125]. Obesity is also associated with decreased 

life expectancy and might lead to reduced quality of life, 

unemployment, lower productivity and social disadvantages 

[126,127].  
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1.2.2 Body weight and composition and lung function 

growth 

 

Birth weight is an important determinant of lung function growth. 

Several longitudinal studies have reported that low birth weight 

(<2,500 grams) is associated with reduced lung function levels in 

infancy, childhood and adulthood independently of other risk factors 

such as maternal smoking during pregnancy [128–132]. In the last 

years, several studies have also assessed the association of post-natal 

growth characteristics and lung function in childhood (mostly 

measured by means FVC, FEV1 and the FEV1/FVC ratio). The 

majority of these studies have suggested that accelerated weight 

growth during infancy and early childhood is associated with higher 

FEV1 and FVC but lower FEV1/FVC ratio (i.e. higher risk of airflow 

limitation) [33,133–135]. However, these previous studies are 

limited by their definition of weight growth. Some studies calculated 

the difference between only two time points [134,136], which does 

not fully capture weight growth. Other studies derived complex 

growth patterns (e.g. peak weight and height velocity) [135] that are 

difficult to interpret and apply in clinical settings.  

 

Overweight and obesity, as measured by BMI, during childhood and 

adolescence have also been associated with lung function. Although 

most of the studies have reported an association between higher BMI 

and lower FEV1/FVC [137–146], the association with FVC and FEV1 

has been inconsistent. Some studies have reported an association 

between higher BMI and higher FEV1 and/or FVC 

[137,139,140,142,144], whereas other studies have shown that higher 



14 

 

BMI is negatively associated with these lung function parameters 

[138,143,146]. An important limitation of these studies is the use of 

BMI to define overweight and obesity, which did not allow the 

distinction of lean body mass and fat mass. The few studies that have 

examined body composition in relation to lung function have 

generally reported than lean body mass is associated with increased 

lung function levels while fat mass is associated with decreased lung 

function [147–154]. However, these studies were all cross-sectional 

and most focused on specific populations (cystic fibrosis, obese 

children or children with asthma). In addition, most of these studies 

did not consider relevant potential confounders such as pubertal 

status, physical activity or diet.  

 

1.2.3 Body weight and composition and lung function 

decline 

 

There is consistent evidence showing that overweight and obesity are 

detrimental for adult lung function, mainly described by FEV1 and 

FVC [137,155]. Several population-based and occupational cohort 

studies have shown that excessive weight gain in adult life is 

associated with lower lung function levels and with accelerated lung 

function decline independently of age and smoking status [156–162]. 

Similarly, another population-based study analysing the effects of 

changes in obesity status on lung function reported that remaining of 

becoming obese accelerated lung function decline over an eight-year 

period, while becoming non-obese was related to its attenuation 

[163]. All these previous studies have been limited to relatively short 
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follow-up periods (up to 10 years) and most of them investigated this 

link only up to 50 years of age. This precludes a more comprehensive 

understanding of the role of weight change on lung function decline 

and evidences the need for further studies with longer follow-up 

periods extending into late adult life.   

 

Some cross-sectional studies have also examined the association of 

body composition and lung function levels in adulthood. These 

studies have reported that higher lean body mass is associated with 

higher lung function levels, while higher fat mass is associated with 

lower lung function [164–171]. However, so far only one study has 

assessed the association of body composition with lung function 

decline. In a longitudinal study of 77 elderly subjects (mean age at 

baseline 72 years), it was reported that loss of lean mass and gain of 

abdominal fat mass were associated with accelerated lung function 

decline, and that subjects developing both abdominal fat mass gain 

and lean body mass loss showed the highest probability of developing 

worsening in lung function [172].     

 

1.2.4 Mechanism underlying the association of body 

weight and composition with lung function 

 

Body weight can influence lung function through several 

mechanisms, which may be specific for each body component:  

 

Lean body mass 

Lean body mass is likely to be associated with lung function by 

means of muscle strength, as higher lean body mass may reflect 
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increased strength of the diaphragm and chest wall during expansion 

and contraction during breathing. This hypothesis is supported by 

several studies showing an association between higher muscle 

strength (measured mainly using handgrip strength) and higher lung 

function values in children, adolescents and adults [173–176]. Also, 

there is evidence showing that respiratory muscle training can 

improve lung function in adults with chronic conditions [177,178]. 

In addition, it has been shown that age-related loss of lean body mass 

is associated with accelerated lung function decline in elderly [172].  

 

Fat mass 

Fat mass can affect lung function through mechanical effects on 

lungs. Abdominal and thoracic fat mass can cause a reduction of the 

expiratory reserve volume, with an associated reduction in functional 

residual capacity (FRC) from changes in elastic properties of the 

chest wall [155,179]. The reduction of FRC may lead to a reduction 

of airway calibre and to an increase of airway resistance [180]. In 

addition, fat mass has been associated with a reduction in respiratory 

system compliance and with and increased work of breathing 

[180,181].  

 

Fat mass can also impair lung function by inflammatory processes, 

as adipose tissue is a source of inflammatory mediators [182,183] that 

can damage lung tissue and reduce airway diameter [184]. There is 

evidence showing that obese subjects have increased levels of various 

inflammatory mediators such as interleukin-6 (IL-6), tumour necrosis 

factor-alpha (TNF-α) or C-reactive protein (CRP) [185]. 

Epidemiological studies have reported that systemic inflammation 
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(measured mainly using CRP) is associated with reduced lung 

function levels in the general population [186–188]. In addition, fat 

mass is strongly associated with metabolic alterations [189,190], 

which can also induce systemic inflammation [191]. In the last years, 

several large studies have reported an association between metabolic 

syndrome and lung function impairment in children and adults 

[191,192]. Finally, higher levels of fat mass are also associated with 

dysregulation of leptin and adiponectin, hormones produced by the 

adipose tissue, which may have metabolic effects on the lungs and 

affect lung function [191].  
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2. RATIONALE  

 

Lifetime lung function is related with quality of life and all-cause 

mortality in the general population. Over the lifespan, lung function 

progresses through phases of growth and decline, which can be 

disrupted by several genetic and environmental factors resulting in 

abnormal lung function growth and/or decline. Considering the 

steadily increase of mean body weight and the pandemic levels of 

overweight and obesity around the globe, several studies have 

assessed the effects of body weight on lung function. There is some 

evidence showing that post-natal weight growth characteristic can 

affect lung function in childhood. Childhood overweight and obesity 

have also been related to lung function levels in childhood and 

adolescence, but the reported associations remain inconsistent. In 

addition, overweight and obesity, as well as excessive weight gain, 

during adult life have been suggested to be detrimental to lung 

function and to increase the risk of accelerated lung function decline.  

 

However, all these previous studies have important limitations that 

preclude a comprehensive understanding of the role of body weight 

on lung function over life span. First, the effects of overweight and 

obesity have been assessed mainly using body mass index (BMI), 

which does not allow to distinguish the different effects of lean body 

mass and fat mass on lung function. Second, there is scarce data on 

the potential mechanisms underlying the association between body 

weight components and lung function. Finally, the studies on the 
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effects of weight change over time on lung function have limited 

interpretation and applicability.  

 

Consequently, there is a strong need for further longitudinal studies 

on the role of body weight and composition on lifetime lung function 

that overcome the limitations of previous research.  
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3. OBJECTIVES  

 

The general objective of this thesis is to assess the association of body 

weight and composition with lung function growth and decline.  

 

The specific research objectives are:  

 

1. To assess the association of body mass index (BMI) 

trajectories from birth to four years with lung function at 

seven years using data from the population-based INfancia y 

Medio Ambiente (INMA, ‘Environment and Childhood’) 

birth cohort in Spain. 

 

2. To assess the association of body weight and composition 

trajectories, defined using repeated anthropometric and dual-

energy X-ray absorptiometry (DXA) scanner measures taken 

from age seven to fifteen years, with lung function at fifteen 

years and lung function growth between eight and fifteen 

years, using data from the UK population-based Avon 

Longitudinal Study of Parents and Children (ALSPAC) birth 

cohort.  

 

3. To assess whether C-reactive protein (CRP) levels and/or 

insulin resistance mediate (at least in part) the association of  

mid-childhood fat mass and FEV1/FVC at fifteen years in the 

ALSPAC birth cohort.  
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4. To assess the lung function trajectories of adults of the 

population-based European Community Respiratory Health 

Survey (ECRHS) study according to different weight change 

profiles over a twenty-year period. 
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4. METHODS 

 

This section provides a brief overview of the methods used in the 

thesis. Further methodological details can be found in the methods 

section of each paper, included in the results section of this thesis. 

4.1 Study population  

Objective 1 was carried out within the INfancia y Medio Ambiente 

(INMA, ‘Environment and Childhood’) Project 

(www.proyectoinma.org), which is a network of population-based 

birth cohorts in Spain that aim to study the role of environmental 

exposures during pregnancy and early childhood in relation to child 

growth, health and development [193]. The analysis presented in this 

thesis is based on data of three regions of the INMA Project 

(Sabadell, Gipuzkoa and Valencia). In these regions, 2,270 pregnant 

women were recruited at prenatal visits at public health care centres 

or referral hospitals, from 2004 to 2008. After recruitment women 

were followed up during the pregnancy, and their offspring were 

evaluated at different timepoints during infancy and childhood.  

 

Objectives 2, 3 and 4 were carried out within the Ageing Lung in 

European Cohorts (ALEC) Project (www.alecstudy.org), which 

aimed to improve our understanding of risk factors for low lung 

function, respiratory disability and the development of chronic 

obstructive lung disease (COPD), by using information held within 

existing cohort studies. The ALEC project put together data form 

several international birth and adult population-based cohorts. For 

http://www.proyectoinma.org/
http://www.alecstudy.org/
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objectives 2 and 3, we used data from the UK population-based Avon 

Longitudinal Study of Parents and Children (ALSPAC) birth 

cohort. ALSPAC recruited 14,541 pregnant women residents in 

Avon, UK, with expected dates of delivery between the April 1991 

and the December 1992. After birth, children have been assessed 

repeatedly during childhood, adolescence and early adulthood 

[194,195]. For objective 4, we used data from the multicentre 

population-based European Community Respiratory Health 

Survey (ECRHS). ECRHS started in 1991–1993 (ECRHS I), when 

over 18,000 young adults aged 20-44 years were randomly recruited 

from available population-based registers (population-based arm), 

with an oversampling of asthmatics (symptomatic arm). Participants 

were followed-up in 1999-2003 (ECRHS II) and 2010-2014 (ECRHS 

III) [196–198]. 

4.2 Lung function  

Lung function was measured by spirometry according to the 

American Thoracic Society and/or the European Respiratory Society 

guidelines [199,200], depending on each cohort. Forced vital 

capacity (FVC), forced expiratory volume in one second (FEV1) and 

the FEV1/FVC ratio were the main outcome variables. For objective 

2, we also assessed the forced expiratory flow at 25-75% of the FVC 

(FEF25-75) as outcome variable and, for objective 3, we only 

considered the FEV1/FVC ratio (based on results of objective 2).  
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4.3 Body weight and composition  

For objectives 1 and 4, we used body mass index (BMI), calculated 

by dividing measured weight (kg) by measured height (m) squared, 

as the main measure of body weight. Weight change over time was 

addressed in objective 1, using BMI trajectories previously defined 

using latent class growth analysis [201], and in objective 4, 

computing weight change over the follow-up period and classifying 

it in weight change categories (weight loss, stable weight, moderate 

weight gain, high weight gain). For objectives 2 and 3, in addition to 

BMI, we also assessed body composition (total lean body mass and 

total fat mass), which was measured using a dual-energy X-ray 

absorptiometry (DXA) scanner [202]. We calculated lean body mass 

index (LBMI) and fat mass index (FMI) by dividing total lean body 

mass and total fat mass (kg) by height (m) squared, respectively.  

4.4 Statistical analyses  

For each research objective, we used appropriate statistical methods 

to assess the association of body weight and/or composition with lung 

function measures. For objective 1, we used multivariable mixed 

linear regression models with random intercepts for participants 

nested within regions. For objective 2, we used Group-Based 

Trajectory Modeling for identifying body weight and body 

composition trajectories, and then multivariable linear regression 

models to assess the association of these trajectories with lung 

function. For objective 3, we performed a mediation analysis using 

the ‘mediation’ package in ‘R’. Finally, for objective 4, we estimated 

trajectories of lung function over time as a function of weight change 
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profiles using population-averaged generalised estimating equations. 

All analyses were adjusted for relevant potential confounders as 

described in the papers. 
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5. RESULTS 
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Esplugues A, González S, Roda C, Santa Marina L, Sunyer J, 
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associated with lung function at seven years: a prospective 
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‘Take home’ message: Independently of birth size, children with 

accelerated BMI gain in early childhood had higher lung function at 

7 years but showed airflow limitation. Children with lower birth 

size and slower BMI gain in early childhood had lower lung 

function at 7 years. 
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ABSTRACT 

Previous studies have related early postnatal growth with later lung 

function but their interpretation is limited. We aimed to assess the 

association of early childhood growth, measured by body mass 

index (BMI) trajectories up to four years, with lung function at 

seven years.  

 

We included 1,257 children from the Spanish Infancia y Medio 

Ambiente population-based birth cohort. Early childhood growth 

was classified in five categories based on BMI trajectories up to 

four years previously identified using latent class growth analysis. 

These trajectories differed in birth size (‘lower’, ‘average’, ‘higher’) 

and in BMI gain velocity (‘slower’, ‘accelerated’). We related these 

trajectories with lung function (forced expiratory volume in one 

second (FEV1), forced vital capacity (FVC), FEV1/FVC and forced 

expiratory flow at 25-75% (FEF25-75)) at seven years, using 

multivariable mixed regression.  

 

Compared to children with average birth size and slower BMI gain 

(reference), children with higher birth size and accelerated BMI 

gain had higher percent predicted FVC (3.3% [95% CI: 1.0; 5.6]) 

and lower percent predicted FEV1/FVC (-1.5% [-2.9; -0.1]) at seven 

years. Similar associations were observed for children with lower 

birth size and accelerated BMI gain. Children with lower birth size 

and slower BMI gain had lower percent predicted FVC at seven 

years. No association was found for FEF25-75.  
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Independently of birth size, children with accelerated BMI gain in 

early childhood had higher lung function at seven years but showed 

airflow limitation. Children with lower birth size and slower BMI 

gain in early childhood had lower lung function at seven years. 

 

Keywords: children, epidemiology, INMA, lung function, postnatal 

growth 

 

  



35 

 

BACKGROUND  

Early childhood is a critical period for lung function growth [1–3]. 

The respiratory system starts to develop in utero but the airways, 

particularly the alveoli, continue to develop until early adulthood 

[1,3,4]. Therefore, early life events can affect normal lung growth 

and increase the risk of respiratory morbidity in later life [5]. In the 

last years, several studies have assessed the association between 

early growth characteristics and lung function in childhood. There is 

consistent evidence showing that low birth weight is associated with 

poor lung function (mostly measured by means of forced vital 

capacity (FVC) and forced expiratory volume in 1 second (FEV1)) 

in childhood [6–11]. In addition, previous studies suggested that 

accelerated weight gain during infancy and childhood is associated 

with higher FEV1 and FVC levels but lower FEV1/FVC ratio, i.e., 

higher risk of airflow limitation [10–13].  

 

These previous studies are limited by the methods used to assess 

weight growth. Some studies calculated the differences between 

only two time points [6,11], which does not fully capture the growth 

of the infant. Other studies derived complex growth patterns (e.g. 

peak height and weight growth velocity)[13] and are therefore 

difficult to interpret and apply in clinical settings. Other analytical 

strategies that integrate repeated weight information and are, at the 

same time, easy to interpret for paediatricians and the general 

public, have not yet been tested in relation to lung function.  
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In the present study we aimed to assess the association of body 

mass index (BMI) trajectories from birth to four years with lung 

function at seven years using data from the population-based 

INfancia y Medio Ambiente (INMA, “Environment and 

Childhood”) birth cohort in Spain. We previously identified BMI z-

score trajectories from birth to four years based on repeated 

measures of weight and height during early childhood from routine 

paediatric charts [14], which allow for an accurate assessment of 

early childhood growth and easier interpretation. 

 

METHODS 

Study population 

Pregnant women (n=2,270) were recruited at prenatal visits at 

public health care centres or referral hospitals, from 2004 to 2008, 

in three regions (Sabadell, Valencia and Gipuzkoa) participating in 

the Spanish INMA birth cohort [15]. Inclusion criteria were: ≥16 

years of age, singleton pregnancy, intention to deliver at reference 

hospital, and no assisted conception or communication issues. In the 

present study, we included children who had available information 

for the identification of BMI z-score trajectories from birth to four 

years and lung function data at seven years (Figure S1). 

 

The study was approved by the hospital and institutional Ethics 

Committees in each region. All mothers signed a written consent for 

themselves and their child’s participation. 
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BMI z-score trajectories  

Repeated measurements of child height and weight from birth until 

four years were extracted from routine paediatric charts (mean [SD] 

number of measurements per child 11 [3.4]). We calculated BMI by 

dividing weight in kilograms by height squared in centimetres, and 

age and sex specific BMI z-scores by using the WHO Child Growth 

Standards [16]. We previously identified five BMI z-score 

trajectories (hereon referred to as BMI trajectories) using latent 

class growth analysis [14,17]. These trajectories differed in birth 

size (labelled for comparison as ‘lower’, ‘average’ or ‘higher’) and 

in BMI gain velocity (labelled as ‘slower’ or ‘accelerated’) (Figure 

1). We used the trajectory with average birth size and slower BMI 

gain as the reference category in our analysis. The distribution of 

weight and length/height according to the BMI trajectories in our 

study sample is presented in Table S1. 

 

Lung function  

At seven years, trained nurses measured lung function by 

spirometry according to American Thoracic Society and the 

European Respiratory Society guidelines [18]. FVC, FEV1 and 

forced expiratory flow 25-75% of the FVC (FEF25-75) were 

measured, and the FEV1/FVC ratio was calculated. All children 

included in the present study had at least one acceptable manoeuvre. 

We calculated percent predicted lung function parameters by using 

the Global Lung Function Initiative 2012 prediction equations [19], 

and we used these variables as the main outcome of the analysis.  

 



 

Figure 1. Body mass index (BMI) z-score trajectories from birth to four years 

Adapted from Montazeri P., et al. Obesity 2018. † Reference category 
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Other relevant characteristics 

We obtained the following additional information: maternal 

characteristics (age at delivery, pre-pregnancy BMI, smoking status, 

educational level and history of allergy-related disease [at least one 

of the following: allergic asthma, atopic dermatitis, eczema or 

allergic rhinitis]) using questionnaires during pregnancy; child birth 

characteristics (sex, gestational age and weight at birth) from 

medical records; child exposures (duration of any breastfeeding and 

lower respiratory tract infections) during the first year by postnatal 

questionnaires; asthma at seven years through questionnaires 

completed by parents and defined as previously agreed in the 

MeDALL (Mechanisms of the Development of Allergy) project 

(see online supplement) [20]; and height at seven years by trained 

nurses.  

 

Statistical analysis 

We assessed the association of BMI trajectories from birth to four 

years with lung function (FVC, FEV1, FEV1/FVC and FEF25-75) at 

seven years using multivariable mixed linear regression models 

with random intercepts for participants nested within regions 

(Sabadell, Valencia and Gipuzkoa). All models were adjusted for 

maternal age at delivery, pre-pregnancy BMI, history of allergy-

related disease, educational level, smoking during pregnancy, and 

child’s gestational age, duration of any breastfeeding and lower 

respiratory tract infections during the first year. We selected 

covariates based on previous research [10–13] and on subject matter 

knowledge. We used Direct Acyclic Graphs to identify the 
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minimum set of covariables required to adjust our models (Figure 

S2). 

 

To assess whether associations differed by sex, we tested for 

interaction and stratified models by this variable. We performed 

several sensitivity analyses to assess the robustness of results to 

various assumptions regarding inclusion of susceptible subgroups 

(e.g. children born prematurely or with asthma) and quality of lung 

function measures (see the online supplement).  

 

Missing data accounted for 4.9% of total observations. We used a 

complete case strategy and reported missing data in the Table 1 

footnotes. All analyses were conducted in Stata/SE 14.0 (StataCorp, 

College Station, TX, USA). Statistical significance was set at p-

value<0.05 for multivariate analyses, and at p-value<0.2 for 

interaction tests. 

 

RESULTS 

Sample description 

We included 1,257 children in the present analysis. Mothers of 

these children were older at pregnancy, had higher educational level 

and breastfed for a longer period than mothers of children not 

included in the present analysis (Table S2). Table 1 shows the main 

characteristics of the study sample. Approximately 17% of mothers 

reported that they smoked during pregnancy and 37% of them had a 

high educational level (university). Approximately 5% of the 

children had low birth weight (<2500 g) and 38% of them were 



41 

 

classified in the BMI trajectory with average birth size and slower 

BMI gain (reference category). 

 

Table 1. Characteristics of the study sample (n=1,257) *  

 
n (%), mean (SD) or  

median (P25-P75) 

Maternal characteristics  

Age at delivery (years) 30.9 (0.1) 

Pre-pregnancy BMI (kg/m2) 22.6 (20.8 to 25.2) 

History of allergy-related disease †  335 (26.7) 

Smoking during pregnancy  

Never smoker 573 (46.2) 

Smoking before pregnancy 458 (37.0) 

Smoking during pregnancy 208 (16.8) 

Educational level  

Primary or less 263 (21.2) 

Secondary 515 (41.4) 

University 465 (37.4) 

Child characteristics   

Sex: girl 622 (49.5) 

Birth weight (g) 3,258 (458) 

Low birth weight (<2,500 g) 65 (5.2) 

Gestational age (weeks) 39.9 (38.9 to 40.7) 

Preterm birth (<37 weeks) 48 (3.8) 

Duration of any breastfeeding (weeks) 25.9 (10.7 to 43.4) 

LRTI during the first year 438 (35.4) 

Age at 7 years (years) 7.5 (7.0 to 7.8) 

Height at 7 years (cm) 124.7 (6.3) 

Asthma at 7 years ** 115 (9.2) 

 (Continued) 
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*Some variables had missing values: Maternal characteristics: 6 in age at 

delivery, 8 in pre-pregnancy BMI, 1 in allergy-related disease, 18 in smoking, 14 

in educational level; Child characteristics: 3 in birth weight, 17 in duration of 

any breastfeeding, 18 in lower respiratory tract infections during the first year, 3 

in asthma at 7 years, 2 in FEF25-75 at 7 years. 
†Defined as reporting at least one of the following: allergic asthma, atopic 

dermatitis, eczema or allergic rhinitis. 
**Asthma was defined as previously agreed in the MeDALL (Mechanisms of the 

Development of Allergy) project. 
ǂ Calculated by using Global Lung Function Initiative (GLI) 2012 prediction 

equations. 

Abbreviations: BMI: body mass index; FEV1: forced expiratory volume in 1 

second; FEF25-75: forced expiratory flow at 25-75% of the pulmonary volume; 

FVC: forced vital capacity; LRTI: lower respiratory tract infections; Ref.: 

reference. 

  

Table 1. (Continued)  

 
n (%), mean (SD) or  

median (P25-P75) 

BMI trajectories from birth to four years  

Higher birth size – accelerated BMI gain 137 (10.9) 

Lower birth size – accelerated BMI gain 145 (11.5) 

Higher birth size – slower BMI gain 332 (26.4) 

Average birth size – slower BMI gain (Ref.) 483 (38.4) 

Lower birth size – slower BMI gain 160 (12.7) 

Lung function at 7 years ǂ  

Percent predicted FVC (%) 101.8 (12.0) 

Percent predicted FEV1 (%)   104.8 (11.9) 

Percent predicted FEV1/FVC (%) 96.7 (7.5) 

Percent predicted FEF25-75 (%) 95.1 (23.8) 
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Associations of early childhood BMI trajectories with lung 

function at seven years 

Figure 2 and Table S3 show the adjusted associations between BMI 

trajectories up to four years and lung function at seven years. 

Compared to children with average birth size and slower BMI gain 

(reference), children with higher birth size and accelerated BMI 

gain had higher percent predicted FVC (3.3% [95% CI: 1.0 to 5.6]) 

and lower percent predicted FEV1/FVC ratio (-1.5% [-2.9 to -0.1]) 

at seven years. Similarly, children with lower birth size and 

accelerated BMI gain had higher percent predicted FVC (2.8% [0.5 

to 5.0]) and tended to have lower percent predicted FEV1/FVC ratio 

(-1.3% [-2.7 to 0.1]) than children in the reference category. In 

contrast, children with lower birth size and slower BMI gain had 

lower percent predicted FVC (-3.1% [-5.2 to -0.9]) and tended to 

have lower FEV1 (-1.9% [-4.1 to 0.3]), but higher percent predicted 

FEV1/FVC (1.1% [-0.2 to 2.4]) than children at the reference 

category. Finally, children with higher birth size and slower BMI 

gain did not differ from the reference category in lung function 

values. We found no significant associations of BMI trajectories 

with FEF25-75. 

 

We observed a statistically significant interaction by sex of the 

association between accelerated BMI gain and higher FEV1, which 

was only present in girls (p=0.075, Table S4). The association of 

accelerated BMI gain with FVC was stronger in girls than in boys, 

while the association with FEV1/FVC was stronger in boys, without 

presence of statistical interaction. 
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Figure 2. Adjusted associations of early childhood body mass index 

(BMI) trajectories and lung function at seven years. 

All models were adjusted for maternal age at delivery, pre-pregnancy BMI, 

history of allergy-related disease, educational level, smoking during pregnancy, 

and child’s gestational age, duration of any breastfeeding and lower respiratory 

tract infections during the first year. Abbreviations: FEF25-75: forced expiratory 

flow 25-75%; FEV1: Forced expiratory volume in 1 second; FVC: forced vital 

capacity; Coef: regression coefficient; 95% CI: 95% confidence intervals.   
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The direction of the observed associations remained stable in all 

sensitivity analyses (Tables S5 to S9). However, exclusion of 

children with extreme lung function values resulted in the 

attenuation of some FEV1/FVC effect estimates (Table S7). Also, 

models restricted to children with at least two acceptable 

manoeuvres reproducible within 150 mL showed increased effect 

estimates for the group with higher birth size and accelerated BMI 

gain (Table S9). 

 

DISCUSSION 

Main findings 

In this prospective population-based study we found that BMI 

trajectories from birth to four years relate to lung function at seven 

years. Specifically, we found that: (i) children with accelerated BMI 

gain had higher FVC and lower FEV1/FVC ratio at seven years 

either if they departed from lower or higher birth size, (ii) children 

with lower birth size and slower BMI gain had lower FVC and 

FEV1, but higher FEV1/FVC ratio at seven years (although the 

effect estimates for FEV1 and FEV1/FVC were imprecise), and (iii) 

we found no associations of BMI trajectories with FEF25-75 at seven 

years.  

 

Comparison with previous studies 

Our finding that accelerated BMI gain in the first four years of life 

is associated with higher FVC and lower FEV1/FVC ratio at seven 

years is in line with previous longitudinal studies [10–13], which 

measured early childhood growth using different parameters. The 
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most recent study using data from the Generation R Study showed 

that peak weight velocity and BMI at adiposity peak, derived from 

individual growth trajectories in the first three years of life, were 

associated with higher FVC and FEV1 but lower FEV1/FVC ratio at 

ten years [13]. Peak weight velocity and BMI at adiposity peak 

represent accelerated BMI gain particularly in the first year of life, 

which is the period of fastest growth, as reflected in our trajectories 

(Figure 1). Similarly, another study using data from the same cohort 

found that accelerated foetal growth followed by accelerated infant 

weight growth up to one year (defined as growth percentile change 

between time periods) were associated with higher FVC and lower 

FEV1/FVC ratio at ten years [12]. An important contribution from 

our study is that, because we distinguished two patterns of 

accelerated BMI gain (departing from higher and lower birth size), 

we were able to demonstrate that the effects of accelerated weight 

gain on lung function do not depend on birth size. Specifically, we 

observed that accelerated BMI gain was associated with higher 

FVC at 7 years even if children departed from low birth size. This 

finding is in line with a previous study showing that children with 

intrauterine growth restriction who showed weight catch-up growth 

in the first nine years of life (calculated as the difference between 

two time points) had higher spirometry measures at age nine years 

than those without catch-up [6]. Another study also showed that 

weight gain during the first year of life (defined as the difference 

between two time points) was associated with higher adult lung 

function independently of birth weight [21].  
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We also found that children in the trajectory with lower birth size 

and slower BMI gain had lower FVC and FEV1 at seven years than 

the reference trajectory (although the estimate for FEV1 was 

imprecise), which is consistent with existing literature. Previous 

studies have reported that children with low birth weight or smaller 

birth size have decreased lung function compared to children with 

normal birth weight in childhood [6–11]. In addition, these children 

had higher FEV1/FVC ratio at seven years (although the estimate 

was imprecise), which is in line with previous research reporting an 

association between smaller birth size and higher ratio in childhood 

[10,11]. 

 

We found no association between early childhood growth and 

FEF25-75 at seven years. This finding is in contrast with a previous 

study showing that rapid weight gain during the first three months 

of life (derived from individual growth trajectories) was associated 

with a decreased FEF25-75 at eight years [10]. This discrepancy may 

be attributed to different definitions of childhood growth and 

different exposure assessment periods (i.e. first three months vs. 

first four years), as well as to differences in sample size. 

 

Interpretation of results 

There are three potential mechanisms to explain the associations of 

accelerated BMI gain in early childhood with higher FVC and lower 

FEV1/FVC in later childhood. First, it is possible that accelerated 

BMI gain during early childhood has greater influence on lung 

volume than airway growth. This phenomenon is known as 
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dysanapsis and reflects an incongruence between (faster) growth in 

lung volume and airway length, and (slower) increase in airway 

calibre [22,23]. Dysanapsis has been linked with clinical alterations 

in children with asthma [23] and may be a risk factor for respiratory 

diseases in later life. Second, it is plausible that accelerated BMI 

gain is accompanied by accumulation of adipose tissue, which could 

lead to airflow limitation (as measured by a lower FEV1/FVC) by 

means of inflammatory processes. Adipose tissue is a source of pro-

inflammatory factors, which can have local effects on the lungs 

causing structural alterations of the airways [24–26]. This 

inflammatory hypothesis is supported by a previous longitudinal 

study showing that higher fat mass during childhood was associated 

with lower FEV1/FVC levels in adolescence [27], and by another 

study showing that subjects with higher BMI had higher adipose 

tissue and inflammatory cells within the airway wall [26]. Finally, 

we cannot rule out the possibility that the association of accelerated 

BMI gain with lower FEV1/FVC ratio is due to mathematical 

artefact, since accelerated BMI gain was more strongly associated 

with FVC than with FEV1 in the present study. Further studies with 

available measures of early growth, inflammatory markers, adipose 

tissue levels and lung structure are needed to understand the 

potential underlying mechanisms of this association. 

 

A potential explanation for the association of lower birth size and 

slower BMI gain with lower FVC and FEV1 at seven years is 

restricted foetal growth since it may be a common cause of both 

lower birth size and disrupted lung function. Although the 
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respiratory system continues developing until early adulthood, the 

majority of airway and alveoli development takes place in utero 

[3,28]. Several animal studies have reported that restricted foetal 

growth affects normal lung development causing structural 

alterations [29,30], which may affect lung function in childhood. In 

contrast to children with lower birth size and accelerated BMI gain, 

children with lower birth size and slower BMI gain may not be able 

to compensate for these lung alterations during the first years of life. 

 

Implications 

The findings of the present study have important implications for 

research and public health. Our study shows that early childhood 

BMI trajectories are a useful tool to identify growth patterns 

associated with poor respiratory health. BMI trajectories, which can 

be estimated using information collected routinely in medical 

records, represent an accurate way to study early growth that can be 

easily interpreted for paediatricians and the general public. In 

addition, our findings, together with existing literature, support that 

early childhood growth impacts lung function development, and 

therefore may affect future respiratory health. Since weight growth 

is affected by modifiable factors, public health interventions 

promoting healthy lifestyles (e.g. healthy eating and physical 

activity) in early childhood may help to improve lung function and 

reduce respiratory morbidity in adulthood. 
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Strengths and limitations  

Strengths of the present study are the longitudinal design and the 

population-based nature of the INMA cohort. Also, the availability 

of BMI trajectories from birth to four years allowed us to estimate 

the association of early growth with lung function accounting 

simultaneously for birth size and BMI gain. In addition, by using 

BMI trajectories as a marker of early growth we took into account 

weight and height changes during the first years of life 

simultaneously, while most of previous studies have focused only 

on weight growth [11,12], or have analysed weight and height 

separately [10,13].  

 

Our study also has some limitations, which include the potential 

selection bias due to the fact that mothers of children included in the 

study were older at pregnancy and had a higher educational level 

than mothers of children not included but participated in the INMA 

birth cohort. Although we were able to account for a wide range of 

potential confounders (including gestational age), residual 

confounding may be a concern as we did not have information on 

physical activity or diet before four years nor on non-allergic 

maternal asthma, all of which could be related to BMI growth and 

lung function. Another potential limitation of this study is the 

regional basis of the sample which may not allow the 

generalizability of our results to populations with different 

environmental and lifestyle factors. Finally, we used BMI as a 

marker of body growth but BMI is limited by its inability to 

distinguish between muscle and fat mass, which have different 
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effects on lung function [27]. Although BMI trajectories in early 

childhood could be a good predictor of later body composition [31], 

further research using detailed measures of body composition is 

needed to provide insight into the effect of body composition during 

early childhood on later respiratory health.  

 

Conclusion  

In conclusion, we found that, independently of birth size, children 

with accelerated BMI gain in early childhood had higher lung 

function at seven years but also showed airflow limitation. In 

contrast, children with lower birth size and slower BMI gain in 

early childhood had lower lung function at seven years. This study 

shows that BMI trajectories during the first years of life can identify 

growth patterns associated with poor respiratory health in later 

childhood. Our results, together with existing literature, support that 

early postnatal growth is likely to play a role in lung function 

development during childhood, and therefore can affect respiratory 

health in later life. Public health strategies aiming to reduce 

respiratory health problems may need to target early weight growth.  
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Definition of asthma at 7 years 

Information on asthma at seven years was collected through 

questionnaires completed by parents. As done in the MeDALL 

(Mechanisms of the Development of Allergy) project, we defined 

current asthma based on a positive answer to at least two of the 

following questions: 1) ‘Has your child ever been diagnosed by a 

doctor as having asthma?’; 2) ‘Has your child taken any medicines 

for asthma (including inhalers, nebulizers, tablets or liquid 

medicines) or breathing difficulties (chest tightness, shortness of 

breath) in the last 12 months?’; 3) Has your child had wheezing or 

whistling in the chest at any time in the last 12 months?’[1].  

Reference:  

1  Hohmann C, Keller T, Gehring U, et al. Sex-specific incidence of 

asthma, rhinitis and respiratory multimorbidity before and after 

puberty onset: individual participant meta-analysis of five birth 

cohorts collaborating in MeDALL. BMJ Open Resp Res 

2019;6:460. doi:10.1136/bmjresp-2019-000460 

 

Methods: Sensitivity analyses 

To assess the robustness of our results we performed several 

sensitivity analyses. We excluded children with current asthma at 

seven years, children from mothers who smoked during pregnancy, 

children with extreme lung function values (below percentile one 

and above percentile 99) and children born prematurely in separate 

analyses to assess whether the observed associations were 
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influenced by these subsamples. We also restricted models to 

children with at least two acceptable manoeuvres reproducible 

within 150 mL to account for potential misclassification in lung 

function.  

 

  



62 

 

 

 

Figure S1. Flowchart of the study sample 

Abbreviations: BMI, body mass index; FEV1: forced expiratory volume in 

1 second; FEF25-75: forced expiratory flow at 25-75% of the pulmonary 

volume; FVC: forced vital capacity 

 



Figure S2. Directed acyclic graph of hypothesised associations between study variables 

Variables with black squares represent the minimal adjustment set of covariables required to study the association of BMI trajectories from 

birth to four years with lung function at seven years. Abbreviations: BMI, body mass index; LRTI, lower respiratory tract infections   



Table S1. Distribution of weight and length/height at birth and at one and four years according to BMI trajectories 

 

n Higher birth 

size, accelerated 

BMI gain 

 

n = 137 (10.9%) 

Higher birth 

size, slower BMI 

gain 

 

n= 145 (11.5%) 

Lower birth size, 

accelerated BMI 

gain 

 

n = 332 (26.4%) 

Average birth 

size, slower BMI 

gain 

 

n = 483 (38.4%) 

Lower birth size, 

slower BMI gain 

 

 

n = 160 (12.7%) 

Overall 

 

 

 

n = 1,257 (100%) 

Weight        
Birth weight 

(kg) 

1,254 3.5 (0.5) 3.4 (0.4) 3.1 (0.4) 3.2 (0.4) 3.0 (0.5) 3.3 (0.5) 

Weight at 1 

year (kg) 

1,143 11.5 (1.1) 10.3 (0.9) 11.0 (1.1) 9.7 (0.9) 9.1 (0.9) 10.1 (1.2) 

Weight at 4 

years (kg) 

1,200 20.7 (2.9) 18.2 (2.1) 20.2 (3.1) 17.6 (2.1) 16.1 (1.9) 18.2 (2.7) 

  
      

Height  
      

Birth length 

(cm) 

1,224 49.8 (2.0) 49.9 (1.9) 49.1 (2.4) 49.6 (2.1) 49.0 (2.6) 49.6 (2.2) 

Height at 1 

year (cm) 

1,143 77.7 (3.0) 76.7 (2.9) 77.2 (3.3) 76.4 (2.9) 76.3 (3.0) 76.7 (3.0) 

Height at 4 

years (cm) 

1,200 106.7 (4.4) 105.2 (4.3) 107.2 (4.7) 105.5 (4) 104.6 (4.4) 105.6 (4.3) 

Values are means and standard deviations. Abbreviations: BMI: body mass index 
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† Defined as reporting at least one of the following: allergic asthma, atopic 

dermatitis, eczema or allergic rhinitis. 

* p-value for chi-squared, t-test or U-Mann Witney tests  

Abbreviations: BMI: body mass index; LRTI: lower respiratory tract infections 

 

Table S2. Characteristics of included and non-included participants  

 

Participants 

(n=1,257) 

n (%), mean (SD) or 

median (P25-P75) 

Non-participants 

(n=1,013) 

n (%), mean (SD) or 

median (P25-P75) 

p-value* 

Maternal 

characteristics 

   

Age at delivery 

(years) 

30.9 (0.1) 29.7 (0.2) <0.001 

Pre-pregnancy BMI 

(kg/m2) 

22.6 (20.8 to 25.2) 22.5 (20.7 to 25.1) 0.559 

History of allergy-

related disease †  

335 (26.7) 246 (25.2) 0.417 

Smoking during 

pregnancy 

   

Never smoker 573 (46.2) 361 (41.6) 0.061 

Smoking before 

pregnancy 

458 (37.0) 334 (38.5)  

Smoking during 

pregnancy 

208 (16.8) 173 (20.0)  

Educational level    

Primary or less 263 (21.2) 312 (33.4) <0.001 

Secondary 515 (41.4) 376 (40.3)  

University 465 (37.4) 245 (26.3)  

Child 

characteristics  

   

Sex: girls 622 (49.5) 415 (47.2) 0.302 

Birth weight (grams) 3,258 (458) 3,256 (521) 0.764 

Low birth weight 

(<2,500 g) 

65 (5.2) 45 (5.2) 0.994 

Gestational age 

(weeks) 

39.9 (38.9 to 40.7) 39.9 (38.9 to 40.6) 0.959 

Preterm birth (<37 

weeks gestation) 

48 (3.8) 40 (4.6) 0.390 

Duration of any 

breastfeeding (weeks) 

25.9 (10.7 to 43.4) 21.8 (5.7 to 39) 0.001 

LRTI during the first 

year  

438 (35.4) 240 (34.3) 0.637 



 

 

Table S3. Adjusted associations of early childhood BMI trajectories with lung function at seven years 
 

Percent predicted  

FVC (%) 

Percent predicted  

FEV1 (%) 

Percent predicted  

FEV1/FVC (%) 

Percent predicted  

FEF25-75 (%) 

BMI trajectories Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value 

n 1,195  1,195  1,195  1,193  

Average birth size - 

Slower BMI gain 

Reference 
 

Reference 
 

Reference 
 

Reference 
 

Higher birth size - 

Accelerated BMI gain 

3.3 (1.0 to 5.6) 0.005 1.5 (-0.9 to 3.8) 0.215 -1.5 (-2.9 to -0.1) 0.031 -2.8 (-7.4 to 1.7) 0.222 

Higher birth size - 

Slower BMI gain  

0.6 (-1.1 to 2.3) 0.480 1.1 (-0.6 to 2.8) 0.214 0.4 (-0.6 to 1.5) 0.407 1.7 (-1.7 to 5.1) 0.325 

Lower birth size - 

Accelerated BMI gain 

2.8 (0.5 to 5.0) 0.016 1.2 (-1.1 to 3.5) 0.315 -1.3 (-2.7 to 0.1) 0.064 -1.9 (-6.4 to 2.6) 0.417 

Lower birth size - 

Slower BMI gain 

-3.1 (-5.2 to -0.9) 0.006 -1.9 (-4.1 to 0.3) 0.098 1.1 (-0.2 to 2.4) 0.096 0.4 (-3.9 to 4.7) 0.858 

All models were adjusted for maternal age at delivery, pre-pregnancy BMI, history of allergy-related disease, educational level, smoking 

during pregnancy, and child’s gestational age, duration of any breastfeeding and lower respiratory tract infections during the first year 

Abbreviations: BMI: body mass index; FEF25-75, forced expiratory flow 25-75%; FEV1: Forced expiratory volume in 1 second; FVC: forced 

vital capacity; Coef: regression coefficient: 95% CI; 95% confidence interval 

 

 



 

Table S4. Adjusted associations of early childhood BMI trajectories with lung function at seven years - Stratified by sex   
 

Percent predicted  

FVC (%) 

Percent predicted  

FEV1 (%) 

Percent predicted  

FEV1/FVC (%) 

Percent predicted  

FEF25-75 (%) 

BMI trajectories Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value 

Girls         

n 590  590  590  588  

Average birth size - 

Slower BMI gain 

Reference  Reference  Reference  Reference  

Higher birth size - 

Accelerated BMI gain 

5.6 (2.2 to 8.9) 0.001 4.5 (1.2 to 7.7) 0.007 -0.9 (-2.8 to 1.0) 0.370 0.3 (-5.9 to 6.5) 0.928 

Higher birth size - 

Slower BMI gain  

1.9 (-0.5 to 4.3) 0.120 1.6 (-0.8 to 4) 0.186 -0.2 (-1.6 to 1.2) 0.806 0.8 (-3.7 to 5.3) 0.732 

Lower birth size - 

Accelerated BMI gain 

4.5 (1.2 to 7.8) 0.007 3.2 (0 to 6.5) 0.051 -1.0 (-2.9 to 0.9) 0.316 0.5 (-5.7 to 6.7) 0.883 

Lower birth size - 

Slower BMI gain 

-3.3 (-6.6 to -0.1) 0.045 -2.1 (-5.4 to 1.1) 0.193 1.4 (-0.4 to 3.3) 0.134 -0.9 (-7.1 to 5.2) 0.768 

Boys         

n 605  605  605  605  

Average birth size - 

Slower BMI gain 

Reference  Reference  Reference  Reference  

Higher birth size - 

Accelerated BMI gain 

1.3 (-1.8 to 4.4) 0.420 -1.4 (-4.7 to 1.9) 0.395 -2.3 (-4.4 to -0.3) 0.025 -6.3 (-13 to 0.3) 0.062 

   
  

  (Continued) 



 

Table S4. (Continued) 

 Percent predicted  

FVC (%) 

Percent predicted  

FEV1 (%) 

Percent predicted  

FEV1/FVC (%) 

Percent predicted  

FEF25-75 (%) 

BMI trajectories Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value 

Higher birth size - 

Slower BMI gain  

-0.3 (-2.7 to 2.1) 0.803 0.8 (-1.7 to 3.2) 0.543 1.0 (-0.5 to 2.6) 0.190 2.4 (-2.6 to 7.4) 0.340 

Lower birth size - 

Accelerated BMI gain 

1.3 (-1.7 to 4.4) 0.388 -0.6 (-3.8 to 2.6) 0.727 -1.5 (-3.5 to 0.5) 0.146 -3.9 (-10.4 to 2.6) 0.239 

Lower birth size - 

Slower BMI gain 

-3.2 (-6.1 to -0.3) 0.030 -2.3 (-5.3 to 0.8) 0.148 0.7 (-1.2 to 2.6) 0.471 -0.2 (-6.3 to 6.0) 0.957 

         

p-value for sex 

interaction 

 0.216  0.075  0.385  0.410 

All models were adjusted for maternal age at pregnancy, pre-pregnancy BMI, history of allergy-related disease, educational level, smoking 

during pregnancy, and child’s gestational age, duration of any breastfeeding and lower respiratory tract infections during the first year  

Abbreviations: BMI: body mass index; FEF25-75, forced expiratory flow 25-75%; FEV1: Forced expiratory volume in 1 second; FVC: forced 

vital capacity; Coef: regression coefficient: 95% CI; 95% confidence interval 

  



 

 

All models were adjusted for maternal age at pregnancy, pre-pregnancy BMI, history of allergy-related disease, educational level, smoking 

during pregnancy, and child’s gestational age, duration of any breastfeeding and lower respiratory tract infections during the first year 

Abbreviations: BMI: body mass index; FEF25-75, forced expiratory flow 25-75%; FEV1: Forced expiratory volume in 1 second; FVC: forced 

vital capacity; Coef: regression coefficient: 95% CI; 95% confidence interval 

  

Table S5. Adjusted associations early childhood BMI trajectories with lung function at seven years – Excluding children with current 

asthma at seven years  
Percent predicted  

FVC (%) 

Percent predicted  

FEV1 (%) 

Percent predicted  

FEV1/FVC (%) 

Percent predicted  

FEF25-75 (%) 

BMI trajectories Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value 

n 1,087 
 

1,087 
 

1,087 
 

1,085 
 

Average birth size - 

Slower BMI gain 

Reference 
 

Reference 
 

Reference 
 

Reference 
 

Higher birth size - 

Accelerated BMI gain 

3.6 (1.2 to 5.9) 0.003 1.8 (-0.6 to 4.2) 0.149 -1.5 (-3.0 to -0.1) 0.038 -3.0 (-7.7 to 1.7) 0.214 

Higher birth size - 

Slower BMI gain  

0.9 (-0.9 to 2.6) 0.323 1.1 (-0.6 to 2.9) 0.209 0.2 (-0.8 to 1.3) 0.662 1.3 (-2.2 to 4.8) 0.466 

Lower birth size - 

Accelerated BMI gain 

3.1 (0.8 to 5.4) 0.009 1.5 (-0.9 to 3.9) 0.215 -1.3 (-2.7 to 0.1) 0.069 -1.8 (-6.5 to 2.9) 0.453 

Lower birth size - 

Slower BMI gain 

-2.7 (-4.9 to -0.4) 0.020 -1.9 (-4.2 to 0.4) 0.108 0.7 (-0.7 to 2.1) 0.307 -0.4 (-5.0 to 4.1) 0.846 



 

 

All models were adjusted for maternal age at pregnancy, pre-pregnancy BMI, history of allergy-related disease, educational level, smoking 

during pregnancy, and child’s gestational age, duration of any breastfeeding and lower respiratory tract infections during the first year 

Abbreviations: BMI: body mass index; FEF25-75, forced expiratory flow 25-75%; FEV1: Forced expiratory volume in 1 second; FVC: forced 

vital capacity; Coef: regression coefficient: 95% CI; 95% confidence interval 

  

Table S6. Adjusted associations of early childhood BMI trajectories with lung function at seven years – Excluding children from 

mothers who smoked during pregnancy  
Percent predicted  

FVC (%) 

Percent predicted  

FEV1 (%) 

Percent predicted  

FEV1/FVC (%) 

Percent predicted  

FEF25-75 (%) 

BMI trajectories Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value 

n 995  995  995  993  

Average birth size - 

Slower BMI gain 

Reference 
 

Reference 
 

Reference 
 

Reference 
 

Higher birth size - 

Accelerated BMI gain 

2.7 (0.2 to 5.3) 0.036 1.0 (-1.6 to 3.6) 0.448 -1.5 (-3.0 to 0.1) 0.064 -3.0 (-8.1 to 2.1) 0.247 

Higher birth size - 

Slower BMI gain  

0.6 (-1.2 to 2.5) 0.511 0.9 (-1.0 to 2.8) 0.352 0.2 (-0.9 to 1.4) 0.683 0.8 (-2.9 to 4.5) 0.664 

Lower birth size - 

Accelerated BMI gain 

2.4 (-0.1 to 5.0) 0.064 1.6 (-1.0 to 4.2) 0.228 -0.7 (-2.2 to 0.9) 0.402 -0.4 (-5.4 to 4.7) 0.886 

Lower birth size - 

Slower BMI gain 

-2.8 (-5.1 to -0.4) 0.020 -1.4 (-3.8 to 0.9) 0.236 1.2 (-0.2 to 2.6) 0.086 1.2 (-3.4 to 5.8) 0.615 



 

 

All models were adjusted for maternal age at pregnancy, pre-pregnancy BMI, history of allergy-related disease, educational level, smoking 

during pregnancy, and child’s gestational age, duration of any breastfeeding and lower respiratory tract infections during the first year 

Abbreviations: BMI: body mass index; FEF 25-75, forced expiratory flow 25-75%; FEV1: Forced expiratory volume in 1 second; FVC: forced 

vital capacity; Coef: regression coefficient: 95% CI; 95% confidence intervals 

  

Table S7. Adjusted associations of early childhood BMI trajectories with lung function at seven years – Excluding children with 

extreme lung function values (<p1 & >p99)  
Percent predicted  

FVC (%) 

Percent predicted  

FEV1 (%) 

Percent predicted  

FEV1/FVC (%) 

Percent predicted  

FEF25-75 (%) 

BMI trajectories Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value 

n 1,172  1,171  1,174  1,172  

Average birth size - 

Slower BMI gain 

Reference 
 

Reference 
 

Reference 
 

Reference 
 

Higher birth size - 

Accelerated BMI gain 

2.7 (0.6 to 4.8) 0.013 1.3 (-0.9 to 3.4) 0.247 -0.8 (-2.1 to 0.5) 0.230 -0.9 (-5.3 to 3.4) 0.672 

Higher birth size - 

Slower BMI gain  

0.2 (-1.4 to 1.7) 0.825 0.8 (-0.7 to 2.4) 0.293 0.6 (-0.4 to 1.5) 0.218 1.0 (-2.2 to 4.2) 0.534 

Lower birth size - 

Accelerated BMI gain 

2.7 (0.6 to 4.8) 0.011 1.6 (-0.5 to 3.7) 0.136 -0.9 (-2.2 to 0.4) 0.157 -0.3 (-4.6 to 4.0) 0.889 

Lower birth size - 

Slower BMI gain 

-2.8 (-4.8 to -0.8) 0.007 -1.6 (-3.6 to 0.4) 0.107 1.3 (0.1 to 2.6) 0.033 1.0 (-3.1 to 5.1) 0.637 



 

 

All models were adjusted for maternal age at pregnancy, pre-pregnancy BMI, history of allergy-related disease, educational level, smoking 

during pregnancy, and child’s gestational age, duration of any breastfeeding and lower respiratory tract infections during the first year  

Abbreviations: BMI: body mass index; FEF25-75, forced expiratory flow 25-75%; FEV1: Forced expiratory volume in 1 second; FVC: forced 

vital capacity; Coef: regression coefficient: 95% CI; 95% confidence interval 

  

Table S8. Adjusted associations of early childhood BMI trajectories with lung function at seven years – Excluding preterm children 
 

Percent predicted  

FVC (%) 

Percent predicted  

FEV1 (%) 

Percent predicted  

FEV1/FVC (%) 

Percent predicted  

FEF25-75 (%) 

BMI trajectories Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value 

n 1,151  1,151  1,151  1,149  

Average birth size - 

Slower BMI gain 

Reference 
 

Reference 
 

Reference 
 

Reference 
 

Higher birth size - 

Accelerated BMI gain 

2.8 (0.5 to 5.1) 0.015 1.1 (-1.2 to 3.5) 0.335 -1.4 (-2.8 to 0.0) 0.046 -2.8 (-7.4 to 1.7) 0.222 

Higher birth size - 

Slower BMI gain  

0.6 (-1.1 to 2.3) 0.495 1.2 (-0.5 to 2.9) 0.181 0.5 (-0.5 to 1.6) 0.315 2.1 (-1.3 to 5.4) 0.235 

Lower birth size - 

Accelerated BMI gain 

2.8 (0.5 to 5.1) 0.017 1.4 (-1.0 to 3.7) 0.257 -1.2 (-2.6 to 0.2) 0.103 -1.4 (-6.0 to 3.2) 0.546 

Lower birth size - 

Slower BMI gain 

-3.0 (-5.2 to -0.8) 0.008 -1.6 (-3.9 to 0.6) 0.161 1.3 (-0.1 to 2.6) 0.064 1.2 (-3.2 to 5.7) 0.581 



 

All models were adjusted for maternal age at pregnancy, pre-pregnancy BMI, history of allergy-related disease, educational level, smoking 

during pregnancy, and child’s gestational age, duration of any breastfeeding and lower respiratory tract infections during the first year  

Abbreviations: BMI: body mass index; FEF 25-75, forced expiratory flow 25-75%; FEV1: Forced expiratory volume in 1 second; FVC: forced 

vital capacity; Coef: regression coefficient: 95% CI; 95% confidence interval 

  

Table S9. Adjusted associations of early childhood BMI trajectories with lung function at seven years – Restricting models to children 

with at least two acceptable manoeuvres reproducible within 150 mL  
Percent predicted  

FVC (%) 

Percent predicted  

FEV1 (%) 

Percent predicted  

FEV1/FVC (%) 

Percent predicted  

FEF25-75 (%) 

BMI trajectories Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value Coef (95% CI) p-value 

n 939  939  939  939  

Average birth size - 

Slower BMI gain 

Reference 
 

Reference 
 

Reference 
 

Reference 
 

Higher birth size - 

Accelerated BMI gain 

4.9 (2.4 to 7.4) <0.001 2.7 (0.2 to 5.2) 0.033 -1.9 (-3.4 to -0.4) 0.014 -2.4 (-7.4 to 2.6) 0.354 

Higher birth size - 

Slower BMI gain  

0.0 (-1.8 to 1.8) 0.994 0.2 (-1.6 to 2.0) 0.809 0.2 (-0.9 to 1.3) 0.711 0.7 (-2.9 to 4.2) 0.701 

Lower birth size - 

Accelerated BMI gain 

2.4 (0.0 to 4.8) 0.046 0.9 (-1.5 to 3.3) 0.453 -1.4 (-2.8 to 0.1) 0.062 -2.6 (-7.4 to 2.2) 0.280 

Lower birth size - 

Slower BMI gain 

-2.6 (-4.9 to -0.3) 0.025 -1.7 (-3.9 to 0.6) 0.154 0.9 (-0.5 to 2.2) 0.210 0.0 (-4.6 to 4.6) 0.997 
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Abstract

Rationale: Body composition changes throughout life may explain
the inconsistent associations reported between body mass index and
lung function in children.

Objectives: To assess the associations of body weight and
composition trajectories from 7 to 15 years with lung function at
15 years and lung function growth between 8 and 15 years.

Methods: Sex-specific body mass index, lean body mass index, and
fat mass index trajectories were developed using Group-Based
TrajectoryModeling on data collected at least twice between 7 and 15
years from 6,964 children (49% boys) in the UK Avon Longitudinal
Study of Parents and Children birth cohort. Associations of these
trajectories with post-bronchodilation lung function parameters at
15 years and with lung function growth rates from 8 to 15 years were
assessed using multivariable linear regression models, stratified by
sex, in a subgroup with lung function data (n = 3,575).

Measurements andMain Results: For all bodymass measures we
identified parallel trajectories that increased with age. There was no
consistent evidence of an association between the body mass index
trajectories and lung function measures. Higher lean body mass
index trajectories were associated with higher levels and growth rates
of FVC, FEV1, and forced expiratory flow, midexpiratory phase in
both sexes (e.g., boys in the highest lean body mass index trajectory
had on average a 0.62 L [95% confidence interval, 0.44–0.79; P
trend, 0.0001]higherFVCat15yr thanboys in the lowest trajectory).
Increasing fat mass index trajectories were associated with lower levels
and growth rates of FEV1 and forced expiratory flow, midexpiratory
phase only in boys and lower levels of FEV1/FVC in both sexes.

Conclusions: Higher lean body mass during childhood and
adolescence is consistently associated with higher lung function at
15 years in both sexes, whereas higher fat mass is associated with
lower levels of only some lung function parameters.
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Lung function is a powerful marker of overall
health and a significant predictor of future
morbidity and mortality in the general
population (1). Because lung function levels
in childhood predict adult lung function,
identifying factors that influence the
development of lung function in childhood
is important. Given the current global

increase of childhood overweight and
obesity, several studies have assessed their
associations with lung function, but findings
are inconsistent. Some studies report a
positive association of overweight and
obesity, as measured by body mass index
(BMI), with lung function, whereas others
show a negative association (2–8). An
important limitation of these studies is that
they did not distinguish between lean body
mass and fat mass, both of which contribute
to the composite measure BMI.

Some studies have examined body
composition measures in relation to lung
function, but they were all cross-sectional, most
focused on specific populations (cystic fibrosis,
obese children, or children with asthma) and
most did not consider pubertal status, physical
activity, or diet as relevant confounders (9–16).
Furthermore, they only considered
measurements at a single time point, and did
not capture changes in the proportion of the
different components of body weight (e.g., fat
mass, lean body mass, bone mass) that occur
over time and vary with sex (17).

Here we assess the association of body
weight and composition trajectories, defined
using repeated anthropometric and dual-
energy X-ray absorptiometry scanner measures
taken from age 7 to 15 years, with lung function
at 15 years and lung function growth between
8 and 15 years, using data from the UK
population-based Avon Longitudinal Study of
Parents and Children (ALSPAC) birth cohort.
This approach overcomes the limitations of
previous research.

Some of the results of this study have
been previously reported in the form of an
abstract to the European Respiratory Society
annual congress (18).

Methods

Complete details are provided in the online
supplement.

Study Population
We used data from the 14,305 singleton births
recruited in the population-basedUKALSPAC
birth cohort, previously described (19, 20).
For the identification of body weight and
composition trajectories, we included children
with at least two repeated measures of body
weight and composition between the ages of
7 and 15 years (n= 6,964). Children who
additionally had lung function measures at age
15 years were used to evaluate associations of
body weight and composition trajectories with

lung function measures at 15 years (n= 3,575)
(see Figure E1 in the online supplement).

The ALSPAC Ethics and Law
Committee and the Local Research Ethics
Committees gave ethical approval. All
participants and their parents/guardians
provided written informed consent.

Measures
Body weight, height, and composition were
assessed following standardized procedures
(21). Weight and height were measured every
year from age 7 to 15 years. Body composition
(total lean body mass, total fat mass, and total
bone mass) was measured using a Lunar
Prodigy dual-energy X-ray absorptiometry
scanner at age 9, 11, 13, and 15 years. BMI,
lean body mass index (LBMI), and fat mass
index (FMI) were calculated by dividing body
weight, total lean body mass, and total fat
mass (kg) by height (m) squared, respectively.

Lung function was measured by
spirometry at 8 and 15 years (Vitalograph
2120; Vitalograph) according to American
Thoracic Society standards (22). At 15 years,
lung function was measured before and after
bronchodilation with salbutamol. FVC, FEV1,
and forced expiratory flow, midexpiratory
phase (FEF25–75) were obtained and the
FEV1/FVC ratio was calculated. The outcomes
of the analysis were: post-bronchodilation
lung function measures at 15 years and rate of
lung function growth from age 8 to 15 years
(calculated as [prebronchodilation lung
function at 15 yr – prebronchodilation lung
function at 8 yr]/time of follow-up in yr).

We collected information, at different
time points, on maternal social class,
birthweight, gestational age, breastfeeding,
tobacco exposure (during pregnancy,
childhood, and first hand), total dietary energy
intake, physical activity (by accelerometer),
asthma doctor-diagnosis, and pubertal status.

Statistical Analysis
We conducted all analyses stratified by sex
as body weight and composition as well as
lung function have been found to differ
across sexes.

We identified BMI trajectories by
applying a Group-Based Trajectory
Modeling approach (23) using yearly data
from ages 7 to 15 years, and LBMI and FMI
trajectories using data from ages 9, 11, 13,
and 15 years. Because the distribution of
BMI and FMI was right-skewed, we applied
the natural log-transformation to all body
weight and composition measures before
the identification of the trajectories. The

At a Glance Commentary

Scientific Knowledge on the
Subject: Previous studies have shown
inconsistent results regarding the
association of overweight/obesity
with lung function in children and
adolescents, likely because most have
defined overweight/obesity using the
body mass index. However, the body
mass index does not distinguish
between different components of body
weight (e.g., fat mass and lean body
mass). The few studies that have
assessed the role of body composition
on lung function in children and
adolescents are all cross-sectional and
based on specific populations (subjects
with asthma, obese children, cystic
fibrosis), and most did not consider the
role of relevant confounders, such as
previous lung function levels, pubertal
status, physical activity, and diet.

What This Study Adds to the
Field: This longitudinal study uses
data from a large population-based
birth cohort with repeated objective
measures of body composition and
information on numerous relevant
confounders to show that higher lean
body mass during childhood and
adolescence is associated with higher
levels of FEV1, FVC, and forced
expiratory flow, midexpiratory phase
at 15 years and with higher growth
rates of these parameters from 8 to 15
years. Higher fat mass was associated
with lower levels and growth rates of
FEV1 and forced expiratory flow,
midexpiratory phase only in boys and
lower levels of FEV1/FVC in both
sexes. Our study highlights the
importance of assessing body
composition, and not just body mass
index, when studying the respiratory
health effects of body weight in
children and adolescents.
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assigned trajectory was used as the
exposure variable in all subsequent
analyses.

Associations of body weight and
composition trajectories with post-
bronchodilation lung function measures at
age 15 years and lung function growth rates
from age 8 to 15 years were examined using
multivariable linear regression. The final
multivariable models included adjustments
for maternal social class, maternal smoking
during pregnancy, birth weight, any
breastfeeding, pubertal status, and age and
height at 15 years. We additionally adjusted
all models for lung function levels at 8 years
to reduce potential reverse causality. The
models for the LBMI and FMI trajectories
were also mutually adjusted.

We conducted several sensitivity
analyses to assess the sensitivity of our
estimates to varying assumptions regarding
selection bias, information bias, and
confounding (see online supplement).

All analyses were conducted using
Stata/SE version 12.0 (StataCorp).

Results

Characteristics of Study Sample
We included 6,964 children (49.0% boys) in
the identification of the body weight and
composition trajectories. These children
were more likely to be girls, have a higher
socioeconomic status, a higher birth weight,
a higher proportion of breastfeeding, and
lower maternal smoking exposure than the
children not included in the present analysis
but participating in ALSPAC. Additionally,
boys had lower LBMI and girls had lower
BMI at 9 years when compared with the
children not included in our analysis (see
Table E1). A subset of the included children
with available spirometry was used to
analyze the associations of body weight and
composition trajectories with lung function
at 15 years (n = 3,575; 47.2% boys). The
children in this subgroup were more likely
to be girls and have a higher socioeconomic
status, a higher proportion of breastfeeding,
and lower maternal smoking exposure than
those not included, but they did not differ
in terms of body weight and composition
trajectories or in baseline lung function
measures (see Table E2).

Table 1 shows the main characteristics of
the sample subset used in the association
analysis with lung function. Approximately
half of the mothers had a high social class and

around 16% smoked during pregnancy. Boys
had significantly higher lung function levels
(FVC, FEV1, and FEF25–75) at 8 and 15 years
and higher lung function growth between 8
and 15 years than girls. Figure 1 and Table 2
show the body weight and composition
characteristics of the children across ages.
Body weight was composed mainly of lean
body mass at all ages for both boys and girls.
The amount of lean body mass and fat mass
changed over time, although this pattern
differed by sex. Boys had lower BMI and
FMI, but higher LBMI, than girls at all ages.

Body Weight and Composition
Trajectories
In both boys and girls, we identified four
parallel BMI trajectories from 7 to 15 years.
For both sexes, BMI increased with age
(Figure 2; see Table E3). According to the
World Health Organization reference
cutoffs (24), we labeled these trajectories
as “normal-low,” “normal-high,”
“overweight,” and “obese.” In boys, the
median BMI increased from 14.6 kg/m2 at
age 7 years to 18.3 kg/m2 at age 15 years in
the “normal-low” BMI trajectory and from
20.1 kg/m2 at age 7 years to 27.7 kg/m2 at
age 15 years in the “obese” BMI trajectory
(see Table E3).

For LBMI, we identified four parallel
trajectories from age 9 to 15 in both sexes
(Figure 2; see Table E4). According to
reference curves for body composition in
children (25), we labeled these trajectories
as “low,” “medium-low,” “medium-high,”
and “high.” Median LBMIs were
consistently greater in boys than girls for all
trajectories. Also, the increase per year of
LBMI was steeper in boys than girls,
specifically between age 11 and 15 years.

For FMI, we identified four parallel
trajectories from age 9 to 15 in both sexes,
which we labeled “low,” “medium-low,”
“medium-high,” and “high” (Figure 2;
see Table E5) (25). Median FMIs were
consistently greater in girls than boys for all
trajectories. In boys, FMI levels consistently
increased from age 9 to 11 years and then
slightly declined from age 11 years onward.
In girls, FMI consistently increased up to
15 years in all trajectories.

Associations of Body Weight and
Composition Trajectories with Post-
bronchodilation Lung Function at
15 Years
Adjusted associations between the BMI
trajectories and post-bronchodilation lung

function measures at age 15 years were
inconsistent. Significant associations were
only apparent for some trajectories and
some lung function parameters (Figure 3;
see Table E6).

Both boys and girls in the highest LBMI
trajectories had higher FVC, FEV1, and
FEF25–75. The association between the
LBMI trajectories and these lung function
variables exhibited a linear dose–response
pattern (e.g., boys in the “medium-low,”
“medium-high,” and “high” LBMI
trajectory groups had on average a 0.24 L
95% confidence interval [0.09–0.39], 0.44 L
[0.29–0.59], and a 0.62 L [0.44–0.79] higher
FVC respectively than boys in the “low”
LBMI trajectory [P-trend, 0.0001]). We
did not find any statistically significant
association between the LBMI trajectories
and the FEV1/FVC ratio for either sex
(Figure 3; see Table E6).

Boys in the “high” FMI trajectory had
lower FEV1 (20.14 L [20.26 to 20.01];
P = 0.032) than boys in the “low” FMI
trajectory and there was a trend toward
lower FEF25–75 with higher FMI trajectories
(P-trend = 0.028). We did not find any
statistically significant association between
FMI trajectories and FEV1 or FEF25–75 in
girls, nor between FMI trajectories and
FVC in boys or girls. Both boys and girls
who were in the highest FMI trajectory
exhibited lower FEV1/FVC ratios (Figure 3;
see Table E6).

All sensitivity analyses showed very
similar results for LBMI (see Tables E8–E13),
even after additional adjustment for physical
activity and total energy intake (see Table
E8). For the FMI trajectories, the association
between a higher FMI trajectory and a lower
FEV1/FVC ratio was maintained in all
sensitivity analysis, but the associations with
the other lung function parameters were
more instable: first, the magnitude of the
associations of FMI with FEV1 and FEF25–75
(observed only in boys in the main analysis)
was attenuated in some of the analyses and
second, an association appeared between
the “high” FMI trajectory and post-
bronchodilation FVC in girls only in some
of the models.

Associations of Body Weight and
Composition Trajectories with
Prebronchodilation Lung Function
Growth Rates from Age 8 to 15 Years
After adjusting for relevant confounders,
there was no evidence of a consistent
association between BMI trajectories and
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Table 1. Characteristics of the Participants Used to Assess Associations of Body Weight and Composition Trajectories with Lung
Function at 15 Years

Total (n = 3,575) Boys (n = 1,687) Girls (n = 1,888) P Value

Potential confounders
Maternal social class 2,941

Professional and intermediate 1,322 639 (46.2) 683 (43.8) 0.712
Skilled nonmanual 1,179 554 (40.1) 625 (40.1)
Skilled manual, partly skilled, and unskilled 440 190 (13.7) 250 (16.1)

Maternal smoking during pregnancy 3,278 260 (16.8) 290 (16.7) 0.930
Birth weight, g 3,381 3,485 (3,160 to 3,860) 3,402 (3,120 to 3,700) <0.0001
Birth weight, z-score* 3,366 0.5 (1.1) 0.5 (1.0) 0.686
Gestation, wk 3,425 40 (39 to 41) 40 (39 to 41) <0.0001
Ever breastfed 3,335 1,385 (88.1) 1,521 (86.3) 0.137
Total energy intake at 7 yr, kcal 3,004 1,758 (1,586 to 1,973) 1,630 (1,457 to 1,819) <0.0001
Wear-time in MVPA at 11 yr, min 2,955 24.4 (15.4 to 36.5) 15.6 (9.4 to 24.7) <0.0001
Smoking at 14 yr 2,790 42 (3.4) 109 (7.0) <0.0001
Age at 15 yr, yr 3,575 15.3 (15.3 to 15.5) 15.3 (15.3 to 15.5) 0.015
Height at 15 yr, cm 3,538 174.4 (169.4 to 179.2) 164.4 (160.6 to 168.6) <0.0001
Height at 15 yr, z-score† 3,538 0.4 (1.0) 0.4 (0.9) 0.017
Lifetime doctor-diagnosed asthma 3,573 443 (26.3) 422 (22.4) 0.006
Pubertal status

Age at menarche, yr 1,701 — 12.7 (11.8 to 13.6) —
Voice break status at age 15 yr 1,649
Not yet started 218 218 (13.2) — —
Starting to break 505 505 (30.6) — —
Completely broken 926 926 (56.2) — —

Lung function measures (raw data)
8 yr (prebronchodilation)

FVC, L 3,078 2.0 (0.3) 1.8 (0.3) <0.0001
FEV1, L 3,045 1.7 (0.3) 1.6 (0.3) <0.0001
FEF25–75, L/s 3,078 2.0 (0.5) 2.1 (0.5) 0.017
FEV1/FVC, % 3,045 87.3 (6.8) 89.4 (6.0) <0.0001

15 yr (post-bronchodilation)
FVC, L 3,567 4.2 (0.9) 3.3 (0.6) <0.0001
FEV1, L 3,433 3.8 (0.8) 3.1 (0.6) <0.0001
FEF25–75, L/s 3,575 4.7 (1.2) 4.0 (1.0) <0.0001
FEV1/FVC, % 3,433 91.1 (6.6) 93.0 (6.3) <0.0001

Lung function measures, z-scores‡

8 yr (prebronchodilation)
FVC, L 2,807 20.04 (1.1) 20.03 (1.0) 0.853
FEV1, L 2,775 20.03 (1.0) 0.02 (1.0) 0.173
FEF25–75, L/s 2,807 20.11 (1.1) 20.13 (1.0) 0.736
FEV1/FVC, % 2,775 0.03 (1.1) 0.07 (1.0) 0.322

15 yr (post-bronchodilation)
FVC, L 3,245 20.87 (1.3) 20.97 (1.3) 0.024
FEV1, L 3,123 20.34 (1.3) 20.58 (1.3) <0.0001
FEF25–75, L/s 3,253 0.16 (1.1) 0.08 (1.2) 0.033
FEV1/FVC, % 3,123 0.91 (1.1) 0.76 (1.1) 0.0002

Prebronchodilation lung function growth rates from
age 8 to 15 yrx

FVC, ml/yr 3,073 325.5 (105.8) 214.4 (72.7) <0.0001
FEV1, ml/yr 3,013 293.8 (94.3) 200.7 (66.4) <0.0001
FEF25–75, (ml/s) $ yr 3,070 327.4 (139.8) 234.2 (115.4) <0.0001

Definition of abbreviations: FEF25–75 = forced expiratory flow, midexpiratory phase; MVPA =moderate to vigorous physical activity.
Data are shown as mean (SD), median (25th–75th percentiles), or n (%). Em dashes indicate “not relevant.”
P values were determined by the chi-square test, Student’s t test, or Mann-Whitney test comparing distributions across sexes. Bold values indicate
P, 0.05.
*Derived using the International Fetal and New-born Growth Consortium for the 21st Century standards. Note that 15 children had missing values for birth
weight z-score because they did not have information for gestational age, which should be included in the equation.
†Derived using the World Health Organization Child Growth Standards.
‡Derived using the Global Lung Initiative equations.
xRate of lung function growth for each parameter was calculated as: (prebronchodilation lung function measure at 15 yr2 prebronchodilation lung
function measure at 8 yr)/time of follow-up in years.
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lung function growth rate (Figure 4; see
Table E7).

Increasing LBMI was consistently
associated with higher growth rates of FVC,

FEV1, and FEF25–75 in both sexes, and
this association exhibited a linear
dose–response pattern (e.g., in boys
included in the “high” LBMI trajectory

FVC increased 90.3 ml/yr 95% confidence
interval [65.0–115.7] higher than in boys in
the “low” LBMI trajectory [P-trend,
0.0001]).

Boys in the “high” (but not “medium-
low” or “medium-high”) FMI trajectory
exhibited a lower growth rate of FEV1

(223.2 ml/yr, 95% confidence interval
[240.7 to 25.8]; P value = 0.009) than boys
in the “low” FMI and there was a trend
toward lower FEF25–75 with higher FMI
trajectories (P-trend = 0.045). We did
not find any association between FMI
trajectories and growth rate of FEV1 or
FEF25–75 in girls, nor between FMI and
growth rate of FVC in boys or girls.

All sensitivity analyses showed very
similar results for LBMI (see Tables
E14–E18). For the FMI trajectories, the
magnitude of the associations with the
growth rate of FEV1 and FEF25–75 (observed
only in boys in the main analysis) was
attenuated in some of the analyses (see
Tables E14–E18) and there was a statistically
significant linear trend between FMI
trajectories and the growth rate of FVC in
girls when we used z-scores (see Table E18).

Discussion

To our knowledge, this is the first study to
show that body composition trajectories
from childhood to adolescence relate to lung
function levels at 15 years and lung function
growth rates from age 8 to 15 years in a large
population-based birth cohort. Specifically,
we found that higher LBMI was associated
with higher levels and growth rates of FVC,
FEV1, and FEF25–75 in both sexes, and
higher FMI was related to lower levels and
growth rates of FEV1 and FEF25–75 in boys
and to a lower FEV1/FVC ratio in both
sexes.

Our finding that a higher lean body
mass is related to higher lung function is
consistent with observations from previous
cross-sectional studies in children and
adolescents (9, 14, 15). We show this
association longitudinally, reducing the
potential for reverse causation, and after
adjustment for relevant confounders, such
as physical activity, diet, and pubertal
status. High lean body mass may reflect
increased strength of the diaphragm
and chest wall during expansion and
contraction during breathing (26), which
could produce a greater FVC, FEV1, and
FEF25–75 (27). Physical activity (leading to
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Figure 1. Distribution of body weight components from age 9 to 15 years, stratified by sex. Body
weight components were measured using a dual-energy X-ray absorptiometry scanner. The
presented values are the median of total lean body mass, total fat mass, and total bone mass.

Table 2. Descriptive Statistics of Body Weight and Composition Measures of the
Participants Used to Assess Associations of Body Weight and Composition
Trajectories with Lung Function at 15 Years

n (N = 3,575)
Boys (n = 1,687)

[Median (P25–P75)]
Girls (n = 1,888)

[Median (P25–P75)] P Value

Body weight
measures

BMI, kg/m2

7 yr 3,261 15.8 (14.9–16.8) 15.9 (14.9–17.3) 0.007
8 yr 2,981 16.5 (15.5–17.9) 16.8 (15.5–18.5) 0.007
9 yr 3,323 16.8 (15.6–18.6) 17.3 (15.8–19.2) <0.0001
10 yr 3,363 17.3 (15.9–19.3) 17.7 (16.1–19.9) 0.002
11 yr 3,389 18.0 (16.5–20.4) 18.6 (16.8–21.0) <0.0001
12 yr 3,325 18.7 (17.1–21.0) 19.4 (17.6–21.8) <0.0001
13 yr 3,326 19.3 (17.7–21.5) 20.1 (18.4–22.4) <0.0001
15 yr 3,533 20.4 (18.8–22.5) 21.1 (19.4–23.4) <0.0001

Body composition
measures

LBMI, kg/m2

9 yr 3,197 13.0 (12.4–13.6) 12.1 (11.5–12.7) <0.0001
11 yr 3,361 13.3 (12.6–14.0) 12.7 (11.9–13.5) <0.0001
13 yr 3,293 14.9 (13.9–16.0) 13.4 (12.7–14.2) <0.0001
15 yr 3,516 16.3 (15.3–17.3) 13.6 (12.8–14.3) <0.0001

FMI, kg/m2

9 yr 3,197 3.0 (2.1–4.6) 4.3 (3.1–6.1) <0.0001
11 yr 3,361 3.7 (2.5–5.9) 4.9 (3.5–7.0) <0.0001
13 yr 3,293 3.1 (2.1–5.2) 5.7 (4.2–7.6) <0.0001
15 yr 3,516 2.8 (1.9–4.6) 6.5 (5.0–8.4) <0.0001

Definition of abbreviations: BMI = body mass index; FMI = fat mass index; LBMI = lean body mass
index; P25–P75 = 25th–75th percentiles.
P values were determined by the Mann-Whitney test comparing distributions across sexes. Bold
values indicate P, 0.05.
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higher levels of lean body mass) (28) could
be the ultimate driver of higher lung
function measures, but all associations
remained stable after adjustment for
physical activity (measured by
accelerometer). Consequently, other
mechanisms are likely to play a role.

Our study is the first to show an
association between higher fat mass and

increased airflow limitation (as measured by
a lower FEV1/FVC ratio) in both sexes. This
association is difficult to interpret given the
inconsistency of the associations between
the fat mass trajectories and each of FEV1

and FVC. Similar inconsistencies have
been observed in studies on children
that have used BMI as a measure of
overweight/obesity; higher BMI seems to be

consistently related to a lower FEV1/FVC
ratio (4, 7), but the direction of the
associations between BMI with FEV1 and
FVC varies by study. One explanation
could be that the fat mass component is the
one that is contributing to the inconsistent
results observed for BMI. We also
hypothesize a mediating role of
inflammation, which could explain the
stronger effect of fat mass on airway caliber
than on lung capacity. Because adipose
tissue is a source of inflammatory
mediators (29), local effects of
inflammation on lung tissues could lead to
reductions in airway diameter. A similar
mechanism has also been proposed to
explain the link between obesity and
asthma (30).

Higher FMI trajectories also were
related, only in boys, to lower FEV1 and
FEF25–75. A previous cross-sectional study
also reported an association between body
adiposity (assessed through bioelectrical
impedance) and FEV1 and FVC only in
boys (15). One explanation could be related
to sex differences in fat distribution. Boys,
unlike girls, tend to accumulate fat in
the abdominal region (31), which via
mechanics, may reduce the expiratory
reserve volume, in turn leading to
expiratory flow limitation (32).

The results of the present study have
important research and public health
implications. First, our study highlights the
importance of assessing body composition,
and not just BMI, when studying the health
effects of body weight in children and
adolescents. Failure to do this has likely
contributed to the conflicting findings from
multiple studies that have reported
associations between overweight/obesity
and lung function in children and
adolescents (2–8). BMI, a measure based
simply on height and total body mass, is
unable to distinguish between lean body
mass and fat mass, and their relative
proportions that vary greatly by age and sex
during adolescence as a consequence of
puberty (17). In fact, we found important
sex differences in the levels and changes
over time of lean body mass and fat mass
(Figures 1 and 2). Compared with boys,
girls had higher levels of fat mass at all ages
and showed a higher age-related increase of
FMI for all trajectories. In contrast, boys
had higher levels of lean body mass at all
ages and their age-related increase in LBMI
was steeper than in girls. Second, our study
shows that body composition in childhood
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and adolescence influences the
development of lung function and,
consequently, may affect future respiratory
health. Because body composition tracks
from childhood to adulthood (17) and is
affected by modifiable lifestyle factors, such
as physical activity and diet (21, 28, 33),
public health strategies promoting healthy
lifestyles in early childhood may improve
lung function and reduce respiratory
morbidity in adult life.

A limitation of the present study is the
potential selection bias produced by the fact
that children included in the study were
more likely to be girls, have a higher
socioeconomic status, a higher birth weight,

a higher proportion of breastfeeding, and
lower maternal smoking exposure than
those excluded. Because these factors have
been previously associated with lung
function, our associations could be
underestimates of the true associations in
the general population. However, because
most of the attrition occurred between birth
and age 7 years, the observed associations
(which are based largely on data collected
from 7 to 15 yr) are less likely to be affected
by the loss to follow-up. Also, the regional
basis of the ALSPAC cohort may not allow
the generalizability of our results to
populations with more ethnic variability.
Finally, it is possible that using group-based

trajectory modeling for identifying
trajectories of body weight and composition
may have smoothened the data.

Important strengths of the present
research are the large sample size and the
longitudinal design, which, together with
the adjustment for baseline lung function
(both for levels of lung function and lung
function growth rates), reduces the
possibility of reverse causation. Importantly,
we measured body composition using dual-
energy X-ray absorptiometry, which is
substantially more valid than other methods
(e.g., bioelectrical impedance or skinfolds).
Finally, we had detailed information of
several covariates from both the children
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Figure 3. Sex-specific associations of body weight and composition trajectories with post-bronchodilation lung function measures at age 15 years.
Models are adjusted for maternal social class, maternal smoking during pregnancy, birth weight, breastfeeding, lung function measures at 8 years,
pubertal status (age at menarche for girls and voice break status at age 15 yr for boys), and age and height at 15 years. Models for fat mass index and lean
body mass index are also mutually adjusted. b = estimate of regression coefficient; BMI = body mass index; CI = confidence interval; FEF25–75 = forced
expiratory flow, midexpiratory phase; FMI = fat mass index; LBMI = lean body mass index.
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and their parents, which allowed us to
account for a wide range of potential
confounders, including physical activity,
diet, and baseline lung function.

In conclusion, this cohort study shows
that body composition in childhood and
adolescence is associated with lung function
in adolescence, and consequently, it may
also influence respiratory health in later life.

Specifically, we found that lean body mass
during childhood and adolescence relates
to higher lung function in adolescent
boys and girls, whereas fat mass relates to
lower lung function in boys only. This study
shows that public health policies aiming to
reduce respiratory morbidity should target
body composition in addition to body
weight. n
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Figure 4. Sex-specific associations of body weight and composition trajectories with prebronchodilation lung function growth rates from age 8 to 15
years. Models are adjusted for maternal social class, maternal smoking during pregnancy, birth weight, breastfeeding, lung function measures at 8 years,
pubertal status (age at menarche for girls and voice break status at age 15 yr for boys), and age and height at 15 years. Models for fat mass index and lean
body mass index are also mutually adjusted. For definition of abbreviations, see Figure 3.
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Study population  

ALSPAC recruited 14,541 pregnant women residents in Avon, UK, 

with expected dates of delivery between the 1st of April, 1991, and 

the 31st of December 1992. 14,541 is the initial number of 

pregnancies for which the mother enrolled in the ALSPAC study 

and had either returned at least one questionnaire or attended a 

“Children in Focus” clinic by 19/07/99. Of these initial pregnancies, 

there was a total of 14,676 fetuses, resulting in 14,062 live births 

and 13,988 children who were alive at 1 year of age.  

When the oldest children were approximately 7 years of age, an 

attempt was made to bolster the initial sample with eligible cases 

who had failed to join the study originally. As a result, when 

considering variables collected from the age of seven onwards (and 

potentially abstracted from obstetric notes) there are data available 

for more than the 14,541 pregnancies mentioned above. The 

number of new pregnancies not in the initial sample (known as 

Phase I enrolment) that are currently represented on the built files 

and reflecting enrolment status at the age of 18 is 706 (452 and 254 

recruited during Phases II and III respectively), resulting in an 

additional 713 children being enrolled. The phases of enrolment are 

described in more detail in the cohort profile paper (E1, E2). 

The total sample size for analyses using any data collected after the 

age of seven is therefore 15,247 pregnancies, resulting in 15,458 

fetuses. Of this total sample of 15,458 fetuses, 14,775 were live 
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births and 14,701 (including 14,305 singleton births) were alive at 1 

year of age.  

The study website contains details of all the data that are available 

through a fully searchable data dictionary at 

www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/. 

The ALSPAC Ethics and Law Committee and the Local Research 

Ethics Committees gave ethical approval. A list of the Research 

Ethics Committee approval references for each of the visits can be 

found at http://www.bristol.ac.uk/media-

library/sites/alspac/documents/governance/Research%20Ethics%20

Committee%20approval%20references.pdf.  

All participants and their parents/guardians provided written 

informed consent. 

Body weight and composition  

From age 7 to 15 years, weight and height were measured at annual 

clinic visits. Standing height was measured to 0.1 cm using the 

Harpenden Stadiometer (Holtain, Crymych, Pembs, UK) with shoes 

and socks removed. Weight was measured to 0.1 kg using the 

Tanita THF 300GS body fat analyser (Tanita UK Ltd, Yewsley, 

Middlesex, UK), with clothes largely removed. BMI was calculated 

by dividing weight (kg) by height (m) squared.  

 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
http://www.bristol.ac.uk/media-library/sites/alspac/documents/governance/Research%20Ethics%20Committee%20approval%20references.pdf
http://www.bristol.ac.uk/media-library/sites/alspac/documents/governance/Research%20Ethics%20Committee%20approval%20references.pdf
http://www.bristol.ac.uk/media-library/sites/alspac/documents/governance/Research%20Ethics%20Committee%20approval%20references.pdf
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Body composition was measured at the clinic visits at age 9, 11, 13, 

and 15 years. Total lean body mass, total fat mass, and total bone 

mass were derived using a Lunar Prodigy DXA scanner (GE 

Medical Systems Lunar, Madison, WI, USA) following 

standardized procedures previously described (E3). We calculated a 

lean body mass index (LBMI) and a fat mass index (FMI) by 

dividing total lean body mass and total fat mass by height squared, 

respectively. 

Lung function 

Lung function was measured by spirometry at 8 and 15 years 

(Vitalograph 2120; Vitalograph, Maids Moreton, United Kingdom) 

according to American Thoracic Society standards (E4), as 

previously reported (E5). At 15 years, lung function was measured 

before and after bronchodilation with salbutamol (inhalation of a 

standard dose of 400 µg) (E6). All flow-volume curves were 

inspected post-hoc to ensure that acceptability criteria were met. 

Results were obtained from the best of three technically acceptable 

flow-volume curves repeatable within 200 mL of forced vital 

capacity (FVC), according to the criteria at that time. The 

parameters FVC, forced expiratory volume in 1 s (FEV1), and 

forced expiratory flow at 25 and 75% of FVC (FEF25-75) were 

obtained and the FEV1/FVC ratio was calculated. The outcomes of 

the analysis were: post-bronchodilation lung function measures at 

15 years and rate of lung function growth from age 8 to 15 years 

(calculated as (pre-bronchodilation lung function at 15 years – pre-
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bronchodilation lung function at 8 years)/time of follow-up in 

years).   

Other variables 

We collected information on sociodemographic and lifestyle factors 

at different time points to describe the sample or as potential 

confounding variables from diverse sources at different time points.  

At 32 weeks of gestation, the mother recorded her occupation using 

a self-completed questionnaire, which was used to allocate her to a 

social class (professional and intermediate, skilled non-manual, 

skilled manual, partly skilled, and unskilled manual workers) based 

on the 1991 Office of Population, Censuses and Surveys 

classifications. Smoking during pregnancy was assessed at 18 and 

32 weeks of gestation using self-completed questionnaires and a 

dichotomous variable was created for any smoking during 

pregnancy. Birthweight, gestational age and sex were obtained from 

birth records. Information about breastfeeding was obtained at age 

15 months from maternal self-completed questionnaires. 

Environmental tobacco exposure at age 3 years was recorded by the 

mother using a self-completed questionnaire. From the 7 years 

questionnaire, we obtained data on total energy intake of the child 

based on a 3-day report. At 11 years, physical activity was 

measured by accelerometer (Actigraph LLC, Fort Walton Beach, 

FL, USA) and the wear-time spent in moderate to vigorous physical 

activity (MVPA) (E7) was obtained. Smoking habits at age 14 years 

were reported by the children themselves using a self-completed 

questionnaire. At 15 years, children reported if a doctor had ever 
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diagnosed them with asthma. Finally, pubertal status (age at 

menarche for girls and state of voice break for boys at 15 years) was 

obtained from a puberty questionnaire completed by the parents 

or/and children from age 8 to 15 years. We used the first reported 

age at onset of menarche, as this report should be least affected by 

recall bias.  

Identification of body weight and composition trajectories  

We identified BMI trajectories, using data at ages 7, 8, 9, 10, 11, 12, 

13 and 15 years, as well as LBMI and FMI trajectories, using data 

at ages 9, 11, 13 and 15 years. As the distribution of BMI and FMI 

was right-skewed, we applied the natural log-transformation to all 

body weight and composition measures prior to the identification of 

the trajectories. The trajectories were defined by applying a Group-

Based Trajectory Modeling approach (E8, E9) using the Stata plug-

in Traj (E10). This approach has been previously used to identify 

anthropometric trajectories both in children (E11- E13) and adults 

(E14-E16).  

Group-Based Trajectory Modeling, a specialized form of finite 

mixture modeling, uses the trajectory groups as a statistical device 

for approximating the unknown distribution of trajectories across 

population members employing a maximum likelihood approach 

(E9). The detailed steps of model selection have been previously 

described (E17). We computed a series of models with 

progressively more trajectory groups (from two to ten) and 

determined the most appropriate number of groups based on the 
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Bayesian Information Criterion and the proportion of participants 

assigned to each trajectory (a priori defined to contain  at least 5% 

of the sample). We first fitted the models assuming a cubic 

relationship and then tested quadratic or linear relationships for any 

non-significant polynomial term. We selected the final models 

according to model fit and plausibility of the observed trajectories 

according to previous research on distribution of body weight and 

composition in children and adolescents (E18, E19). Finally, 

individuals were assigned to one trajectory group based on the 

highest estimated group-membership probability. To further assess 

model adequacy, we ensured that: (i) we obtained, for each 

trajectory, a close correspondence between the estimated probability 

group membership and the proportion assigned to that group based 

on the posterior probability of group membership; (ii) the average 

of the posterior probabilities of group membership for individuals 

assigned to each trajectory exceeded a minimum threshold of 0.7; 

and (iii) the odds of correct classification based on the posterior 

probabilities of group membership exceeded a minimum threshold 

of 5 (E8, E9). The assigned trajectory was used as the exposure 

variable (i.e., body weight or composition trajectory) in all 

subsequent analyses. 

Analysis of the associations between body weight and 

composition trajectories and post-bronchodilation lung function 

at 15 years  

Associations of body weight and composition trajectories with post-

bronchodilation lung function measures at age 15 years and lung 

function growth rates from age 8 to 15 years were examined using 
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multivariable linear regression. We considered as potential 

confounders: (i) factors related to both the exposure and the 

outcome in bivariate analyses (p<0·20); (ii) factors that modified 

(>10% change in regression coefficient) the estimate of the 

exposure variable; and (iii) factors deemed relevant in the scientific 

literature. The final multivariable models included adjustments for 

maternal social class, maternal smoking during pregnancy, birth 

weight, any breastfeeding, pubertal status as well as age and height 

at 15 years. We additionally adjusted all models for lung function 

levels at 8 years to reduce potential reverse causality. The models 

for the LBMI and FMI trajectories were also mutually adjusted.  

We tested multicollinearity of the models using the variance 

inflation factor. The p-values for the trend test were obtained by 

treating the body weight and composition trajectories as continuous 

variables.   

We conducted several sensitivity analyses: (i) additionally adjusting 

the models by wear-time spent in MVPA at 11 years and total 

energy intake at 7 years in the subsample with this information 

available; (ii) excluding children with any lifetime history of 

doctor-diagnosed asthma; (iii) excluding children with spirometry 

measures below the first percentile (<P1) or above the highest 

percentile (>P99); (iv) using pre-bronchodilation lung function 

measures at 15 years (only for the analysis of post-bronchodilation 

lung function levels at 15 years), (v) not adjusting the models for 

lung function at 8 years and (vi) using standard deviation scores (z-
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scores) derived using the Global Lung Initiative equations (E20) 

instead of absolute lung function values. 

All analyses were conducted using Stata/SE 12·0 (StataCorp, 

College Station, TX, USA). Results are expressed as regression 

coefficients with 95% confidence intervals (95% CI) 
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Figure E1. Flow chart of study participants 

Definition of abbreviations: BMI, body mass index; FMI, fat mass index; FVC, 

forced vital capacity; LBMI, lean body mass index 
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Some variables had missing values in both the included children (1,664 for 

maternal social class, 648 for maternal smoking during pregnancy, 338 for 

gestation, 421 for birthweight and 553 for ever breastfed) and excluded children 

(3,299 for maternal social class, 1,489 for maternal smoking during pregnancy, 

354 for gestation, 442 for birthweight and 1,722 for ever breastfed) 

Data are shown as median (P25-P75) or n (%). Definition of abbreviations: P25-

P75, 25th and 75th percentiles. p-value for the Chi-squared, Mann-Whitney, or 

Student’s t-test. Bold: p-value <0.05 
  

Table E1. Characteristics of the children included and excluded from the 

analysis identifying the body weight and composition trajectories 

 Included 

(n=6,964) 

Excluded  

(n=7,341) 

p-value 

Mother characteristics    

Maternal social class    

Professional and 

intermediate  
2,124 (40.1) 1,185 (29.3) <0.0001 

Skilled non-manual  2,214 (41.7) 1,750 (43.3)  

Skilled manual, partly, 

and unskilled 
962 (18.2) 1,107 (27.4)  

Maternal smoking during 

pregnancy 

1,191 (18.9) 2,276 (38.9) <0.0001 

Children characteristics    

Sex. Girls 3,550 (51.0) 3,425 (46.7) <0.0001 

Gestation (weeks)  40 (39-41) 40 (39-41) 0.185 

Birth weight (Kg)  3.5 (3.1-3.8) 3.4 (3.1-3.7) <0.0001 

Ever breastfed 5,424 (84.6) 3,873 (68.9) <0.0001 

Spirometry measures at 8 

years in boys 

   

FVC (L) 2.0 (0.3) 2.0 (0.3) 0.766 

FEV1 (L) 1.7 (0.3) 1.7 (0.3) 0.933 

FEF25-75 (L/s)  2.0 (0.5) 2.0 (0.5) 0.536 

FEV1/FVC (%) 87.5 (6.8) 87.3 (6.7) 0.653 

Spirometry measures at 8 

years in girls 

   

FVC (L) 1.8 (0.3) 1.9 (0.4) 0.010 

FEV1 (L) 1.6 (0.3) 1.7 (0.3) 0.037 

FEF25-75 (L/s)  2.1 (0.5) 2.1 (0.5) 0.755 

FEV1/FVC (%) 89.4 (6.1) 89.0 (6.1) 0.128 

Body weight and 

composition at 9 years in 

boys 

   

BMI (kg/m2) 16.8 (15.6-18.7) 16.9 (15.7-19.1) 0.212 

LBMI (kg/m2) 12.9 (12.4-13.5) 13.1 (12.5-13.7) 0.038 

FMI (kg/m2) 3.0 (2.1-4.7) 3.1 (2.1-5.1) 0.581 

Body weight and 

composition at 9 years in 

girls 

   

BMI (kg/m2) 17.3 (15.8-19.4) 17.5 (15.9-19.9) 0.008 

LBMI (kg/m2) 12.1 (11.5-12.7) 12.2 (11.5-12.8) 0.053 

FMI (kg/m2) 4.4 (3.1-6.2) 4.6 (3.2-6.6) 0.059 
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Table E2. Characteristics of the children included and excluded from the 

analysis examining associations of body weight and composition trajectories 

with post-bronchodilation lung function measures at 15 years 

 Included 

(n=3,575) 

Excluded 

(n=3,389) 

p-value 

Mother characteristics    

Maternal social class    

   Professional and 

intermediate 
1,223 (43.5) 901 (36.2) <0.0001 

   Skilled non-manual  1,114 (39.7) 1,100 (44.2)  

Skilled manual, partly, and 

unskilled 
473 (16.8) 489 (19.6)  

Maternal smoking during 

pregnancy 

550 (16.8) 641 (21.1) <0.0001 

Children characteristics    

Sex. Girls 1,888 (52.8) 1,662 (49.0) 0.002 

Gestation (weeks)  40 (39-41) 40 (39-41) 0.368 

Birth weight (grams)  3460 (3140-

3760) 

3443 (3140-

3760) 

0.746 

Ever breastfed 2,906 (87.1) 2,518 (81.9) <0.0001 

Spirometry measures at 8 

years in boys 

   

FVC (L) 2.0 (0.3) 2.0 (0.3) 0.250 

FEV1 (L) 1.7 (0.3) 1.7 (0.3) 0.897 

FEF25-75 (L/s)  2.0 (0.5) 2.1 (0.5) 0.415 

FEV1/FVC (%) 87.3 (6.8) 87.6 (6.8) 0.215 

Spirometry measures at 8 

years in girls 

   

FVC (L) 1.8 (0.3) 1.8 (0.3) 0.988 

FEV1 (L) 1.6 (0.3) 1.6 (0.3) 0.958 

FEF25-75 (L/s)  2.1 (0.5) 2.1 (0.5) 0.833 

FEV1/FVC (%) 89.4 (6.0) 89.4 (6.1) 0.813 

BMI trajectories in boys    

Normal-low 562 (32.5) 537 (31.8) 0.922 

Normal-high 670 (38.8) 650 (38.5)  

Overweight 347 (20.1) 354 (21.0)  

Obese 148 (8.6) 146 (8.7)  

BMI trajectories in girls    

Normal-low 435 (26.2) 490 (26.0) 0.871 

Normal-high 656 (39.5) 770 (40.8)  

Overweight 432 (26.0) 475 (25.2)  

Obese 139 (8.4) 153 (8.1)  

LBMI trajectories in boys    

Low 164 (9.5) 148 (8.8) 0.343 

Medium-low 668 (38.7) 625 (37.1)  

Medium-high 685 (39.7) 678 (40.2)  

High 210 (12.2) 236 (14.0)  

  (Continued)  
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Some variables had missing values in both the included children (765 for 

maternal social class, 297 for maternal smoking during pregnancy, 150 for 

gestation, 194 for birthweight and 240 for ever breastfed) and excluded children 

(899 for maternal social class, 351 for maternal smoking during pregnancy, 188 

for gestation, 227 for birthweight and 313 for ever breastfed) 

Data are shown as median (P25-P75) or n (%) 

Definition of abbreviations: BMI, body mass index; FMI, fat mass index; LBMI, 

lean body mass index; P25-P75, 25th and 75th percentiles 

p-value for the Chi-squared, Mann-Whitney, or Student’s t-test 

Bold: p-value <0.05 

 

Table E2. Continued     

 Included 

(n=3,575) 

Excluded 

(n=3,389) 

p-value 

LBMI trajectories in girls    

Low 229 (13.8) 234 (12.4) 0.201 

Medium-low 664 (40.0) 728 (38.6)  

Medium-high 583 (35.1) 725 (38.4)  

High 186 (11.2) 201 (10.7)  

FMI trajectories in boys    

Low 416 (24.1) 406 (24.1) 0.850 

Medium-low 633 (36.7) 641 (38.0)  

Medium-high 452 (26.2) 427 (25.3)  

High 226 (13.1) 213 (12.6)  

FMI trajectories in girls    

Low 265 (15.9) 288 (15.3) 0.369 

Medium-low 564 (33.9) 664 (35.2)  

Medium-high 536 (32.3) 634 (33.6)  

High 297 (17.9) 302 (16.0)  



 

Data are shown as median (P25-P75). Definition of abbreviations: BMI, body mass index; P25-P75, 25th and 75th percentiles 

p-value for the Kruskal-Wallis test. Bold: p-value <0.05  

Table E3. Distribution of BMI according to BMI trajectory 

 Boys Girls 

BMI 

(Kg/m2)  

Normal-low 

n= 1,099 

(32.2%) 

Normal-

high 

n= 1,320 

(38.7%) 

Overweight 

n=701 

(20.5%) 

Obese 

n= 294 

(8.6%) 

p-value Normal-

low 

n= 925 

(26.0%) 

Normal-

high 

n= 1,426 

(40.2%) 

Overweight 

n=907 

(25.6%) 

Obese 

n= 292 

(8.2%) 

p-value 

7 years 14.6 (14.1-

15.1) 

15.8 (15.4-

16.4) 

17.2 (16.4-

18.0) 

20.1 (18.7-

21.5) 

0.0001 14.4 (13.9-

14.9) 

15.8 (15.2-

16.4) 

17.5 (16.7-

18.4) 

20.8 (19.4-

22.4) 

0.0001 

8 years 15.1 (14.7-

15.6) 

16.6 (16.1-

17.1) 

18.3 (17.6-

19.3) 

22.0 (20.6-

23.4) 

0.0001 14.9 (14.4-

15.4) 

16.6 (16.0-

17.2) 

18.9 (18.1-

19.8) 

22.6 (21.5-

24.2) 

0.0001 

9 years 15.2 (14.6-

15.7) 

16.9 (16.4-

17.5) 

19.4 (18.5-

20.4) 

23.4 (22.2-

25.0) 

0.0001 15.0 (14.4-

15.5) 

17.0 (16.3-

17.8) 

19.9 (18.9-

21.1) 

24.0 (22.7-

25.7) 

0.0001 

10 years 15.4 (14.9-

15.9) 

17.4 (16.8-

18.1) 

20.3 (19.4-

21.4) 

24.4 (23.2-

26.1) 

0.0001 15.2 (14.7-

15.8) 

17.4 (16.7-

18.3) 

20.7 (19.6-

21.7) 

25.1 (23.7-

26.7) 

0.0001 

11 years 15.9 (15.3-

16.5) 

18.1 (17.5-

19.0) 

21.4 (20.4-

22.4) 

25.9 (24.7-

27.7) 

0.0001 15.8 (15.1-

16.4) 

18.3 (17.5-

19.2) 

21.8 (20.7-

23.1) 

26.6 (25.2-

28.4) 

0.0001 

12 years 16.5 (15.8-

17.1) 

18.8 (18.1-

19.8) 

22.0 (20.9-

23.3) 

26.7 (25.1-

28.6) 

0.0001 16.6 (15.8-

17.3) 

19.2 (18.3-

20.2) 

22.6 (21.5-

23.9) 

27.6 (26.2-

29.4) 

0.0001 

13 years 17.1 (16.4-

17.8) 

19.4 (18.6-

20.2) 

22.4 (21.3-

23.8) 

27.1 (25.4-

29.2) 

0.0001 17.3 (16.5-

18.1) 

19.8 (19-

20.8) 

23.2 (21.9-

24.5) 

28.2 (26.6-

30.3) 

0.0001 

15 years 18.3 (17.5-

19.0) 

20.5 (19.6-

21.4) 

23.2 (22.0-

24.7) 

27.7 (25.5-

30.3) 

0.0001 18.4 (17.5-

19.4) 

20.9 (20.0-

22.0) 

23.9 (22.5-

25.5) 

29.4 (27.0-

31.7) 

0.0001 



 

Table E4. Distribution of LBMI according to LBMI trajectory 
 

Boys Girls 

LBMI 

(Kg/m2) 

 

Low 

 

n=312 

(9.1%) 

Medium-

low 

n=1,363 

(37.9%) 

Medium-

high 

n=1,293 

(39.9%) 

High 

 

n=446 

(13.1%) 

p-value Low 

 

n=463 

(13.0%) 

Medium-

low 

n=1,392 

(39.2%) 

Medium-

high 

n=1,308 

(36.9%) 

High 

 

n=387 

(10.9%) 

p-value 

9 years 11.8 (11.4-

12.0) 

12.5 (12.2-

12.9) 

13.3 (12.9-

13.7) 

14.2 (13.8-

14.7) 

0.0001 10.9 (10.7-

11.2) 

11.7 (11.4-

12.0) 

12.5 (12.2-

12.8) 

13.6 (13.2-

14.0) 

0.0001 

11 years 11.8 (11.4-

12.1) 

12.7 (12.4-

13.1) 

13.7 (13.4-

14.1) 

14.9 (14.6-

15.5) 

0.0001 11.2 (10.8-

11.4) 

12.2 (11.8-

12.5) 

13.3 (12.9-

13.7) 

14.6 (14.2-

15.1) 

0.0001 

13 years 12.5 (12.2-

13.0) 

14.0 (13.5-

14.5) 

15.6 (15.0-

16.1) 

17.3 (16.8-

17.8) 

0.0001 11.9 (11.6-

12.1) 

12.9 (12.6-

13.2) 

13.9 (13.6-

14.4) 

15.2 (14.8-

15.7) 

0.0001 

15 years 13.9 (13.3-

14.4) 

15.4 (15-

15.9) 

16.9 (16.4-

17.4) 

18.5 (18.1-

19.0) 

0.0001 12.1 (11.8-

12.4) 

13.1 (12.8-

13.5) 

14.2 (13.8-

14.6) 

15.5 (14.9-

16.0) 

0.0001 

Data are shown as median (P25-P75). Definition of abbreviations: LBMI, lean body mass index; P25-P75, 25th and 75th percentiles 

p-value for the Kruskal-Wallis test 

Bold: p-value <0.05  



 

Table E5. Distribution of FMI according to FMI trajectory 
 

Boys Girls 

FMI 

(Kg/m2) 

 

Low 

 

n=822 

(24.1%) 

Medium-

low 

n=1,274 

(37.3%) 

Medium-

high 

n=879 

(25.7%) 

High 

 

n=439 

(12.9%) 

p-value Low 

 

n=553 

(15.6%) 

Medium-

low 

n=1,228 

(34.6%) 

Medium-

high 

n=1,170 

(32.9%) 

High 

 

n=599 

(16.9%) 

p-value 

9 years 1.7 (1.4-

2.0) 

2.7 (2.3-

3.2) 

4.5 (3.7-

5.4) 

7.7 (6.5-

9.3) 

0.0001 2.3 (2.0-

2.6) 

3.5 (3.1-

4.1) 

5.4 (4.7-

6.2) 

8.5 (7.3-9.8) 0.0001 

11 years 2.0 (1.7-

2.3) 

3.4 (2.9-

4.0) 

5.8 (4.9-

6.9) 

9.5 (8.1-

11.0) 

0.0001 2.6 (2.3-

3.0) 

4.0 (3.5-

4.5) 

6.2 (5.4-

7.2) 

9.8 (8.7-11.1) 0.0001 

13 years 1.7 (1.4-

2.0) 

2.8 (2.3-

3.3) 

5.2 (4.2-

6.2) 

9.3 (8.0-

11.0) 

0.0001 3.1 (2.7-

3.5) 

4.7 (4.1-

5.3) 

7.0 (6.1-

7.8) 

10.5 (9.3-

12.3) 

0.0001 

15 years 1.6 (1.3-

1.8) 

2.5 (2.1-

3.0) 

4.4 (3.6-

5.7) 

8.9 (7.3-

11.0) 

0.0001 3.8 (3.2-

4.4) 

5.5 (4.8-

6.2) 

7.5 (6.7-

8.5) 

11.4 (10.0-

13.6) 

0.0001 

Data are shown as median (P25-P75). Definition of abbreviations: FMI, fat mass index; P25-P75, 25th and 75th percentiles 

p-value for the Kruskal-Wallis test 

Bold: p-value <0.05 

  



 

Table E6. Adjusted associations of body weight and composition trajectories with post-bronchodilation lung function measures at 

age 15 years  
  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  Adjusted β 

[95% CI]  

p-value Adjusted β 

[95% CI]  
p-value Adjusted β  

[95% CI]  

p-value Adjusted β 

[95% CI]  

p-value 

BOYS          

BMI  Normal-low (Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 0.11 [0.02; 0.21] 0.017 0.11 [0.03; 0.2] 0.008 0.16 [0.03; 0.30] 0.019 -0.05 [-0.89; 0.79] 0.910 

 Overweight 0.15 [0.04; 0.27] 0.007 0.12 [0.02; 0.22] 0.018 0.14 [-0.03; 0.30] 0.099 -0.84 [-1.83; 0.16] 0.100 

 Obese 0.11 [-0.05; 0.27] 0.161 0.01 [-0.13; 0.15] 0.854 -0.13 [-0.36; 0.10] 0.261 -1.82 [-3.22; -0.42] 0.011 

  p-trend 0.014 p-trend 0.165 p-trend 0.890 p-trend 0.007 

LBMI Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.24 [0.09; 0.39] 0.001 0.22 [0.08; 0.35] 0.002 0.24 [0.01; 0.46] 0.039 -0.46 [-1.86; 0.94] 0.516 

 Medium-high  0.44 [0.29; 0.59] <0.0001 0.40 [0.26; 0.54] <0.0001 0.43 [0.21; 0.66] <0.0001 -0.42 [-1.83; 0.99] 0.560 

 High  0.62 [0.44; 0.79] <0.0001 0.53 [0.38; 0.69] <0.0001 0.53 [0.27; 0.80] <0.0001 -0.79 [-2.42; 0.83] 0.339 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 p-trend 0.408 

FMI   Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.04 [-0.06; 0.13] 0.440 0.07 [-0.01; 0.16] 0.102 0.18 [0.04; 0.32] 0.014 0.77 [-0.12; 1.66] 0.089 

 Medium-high  0.02 [-0.09; 0.12] 0.743 -0.01 [-0.11; 0.09] 0.854 -0.03 [-0.19; 0.13] 0.710 -0.80 [-1.79; 0.19] 0.111 

 High -0.09 [-0.22; 0.05] 0.210 -0.14 [-0.26; -0.01] 0.032 -0.20 [-0.4; 0.01] 0.059 -1.44 [-2.70; -0.18] 0.025 

  p-trend 0.355 p-trend 0.035 p-trend 0.028 p-trend 0.003 

GIRLS          

BMI  Normal-low (Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 0.08 [0.01; 0.16] 0.026 0.06 [-0.01; 0.13] 0.107 0.11 [-0.02; 0.24] 0.098 -0.84 [-1.78; 0.10] 0.080 

        (Continued)  



 

Definition of abbreviations: BMI, body mass index; FEF25-75 forced expiratory flow at 25-75%; FEV1, volume expired in the first second; 

FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body mass index; 95% CI, 95% confidence intervals; β, estimate of regression 

coefficient. Models are adjusted for maternal social class, maternal smoking during pregnancy, birth weight, breastfeeding, lung function 

measures at 8 years, pubertal status (age at menarche for girls and voice break status at age 15 years for boys), as well as age and height at 

15 years. Models for FMI and LBMI are also mutually adjusted. Bold: p-value <0.05 

 

Table E6. Continued  

  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  Adjusted β 

[95% CI]  

p-value Adjusted β 

[95% CI]  

p-value Adjusted β  

[95% CI]  

p-value Adjusted β 

[95% CI]  

p-value 

 Overweight 0.12 [0.03; 0.21] 0.007 0.08 [-0.01; 0.17] 0.071 0.09 [-0.07; 0.24] 0.277 -1.60 [-2.70; -0.50] 0.004 

 Obese 0.22 [0.09; 0.35] 0.001 0.12 [0.00; 0.25] 0.060 0.08 [-0.15; 0.31] 0.488 -2.85 [-4.47; -1.23] 0.001 

  p-trend <0.0001 p-trend 0.033 p-trend 0.349 p-trend <0.0001 

LBMI Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.17 [0.08; 0.27] <0.0001 0.18 [0.09; 0.28] <0.0001 0.29 [0.12; 0.46] 0.001 0.53 [-0.68; 1.75] 0.388 

 Medium-high  0.28 [0.18; 0.38] <0.0001 0.28 [0.18; 0.38] <0.0001 0.38 [0.2; 0.55] <0.0001 0.09 [-1.16; 1.34] 0.884 

 High  0.37 [0.23; 0.50] <0.0001 0.30 [0.17; 0.43] <0.0001 0.35 [0.12; 0.58] 0.003 -1.13 [-2.76; 0.51] 0.176 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.001 p-trend 0.140 

FMI   Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.02 [-0.07; 0.11] 0.704 0.01 [-0.08; 0.09] 0.898 0.10 [-0.06; 0.26] 0.218 -0.68 [-1.81; 0.45] 0.236 

 Medium-high  0.03 [-0.06; 0.12] 0.525 0.00 [-0.09; 0.09] 0.934 0.03 [-0.13; 0.19] 0.730 -1.25 [-2.41; -0.08] 0.036 

 High 0.09 [-0.03; 0.20] 0.141 0.02 [-0.09; 0.13] 0.718 0.03 [-0.18; 0.23] 0.793 -2.05 [-3.49; -0.6] 0.005 

  p-trend 0.189 p-trend 0.921 p-trend 0.684 p-trend 0.002 



 

Table E7. Adjusted associations of body weight and composition trajectories with pre-bronchodilation lung function growth rates 

from age 8 to 15 years  
  FVC change (mL/year)  FEV1 change (mL/year)  FEF25-75 change (mL/s·year)  

  Adjusted β [95% CI]  p-value Adjusted β  [95% CI]  p-value Adjusted β [95% CI]  p-value 

BOYS        

BMI  
Normal-low (Reference)  (Reference)  (Reference)  

 
Normal-high 23.3 [9.7; 36.8] 0.001 21.5 [9.6; 33.4] <0.0001 24.1 [5.2; 43.0] 0.012 

 
Overweight 27.4 [11.2; 43.5] 0.001 20.3 [6.1; 34.5] 0.005 18.5 [-3.9; 40.9] 0.105 

 
Obese 15.2 [-7.8; 38.1] 0.195 -0.6 [-20.6; 19.3] 0.952 -14.8 [-46.5; 16.9] 0.360 

 
 p-trend 0.007 p-trend 0.148 p-trend 0.802 

LBMI 
Low  (Reference)  (Reference)  (Reference)  

 
Medium-low  33.3 [11.8; 54.8] 0.002 30.3 [11.2; 49.4] 0.002 31.2 [0.5; 62.0] 0.047 

 
Medium-high  67.2 [45.6; 88.9] <0.0001 58.7 [39.4; 77.9] <0.0001 54.0 [23.1; 84.9] 0.001 

 
High  90.3 [65.0; 115.7] <0.0001 75.6 [53.2; 98.0] <0.0001 68.3 [32.3; 104.4] <0.0001 

 
 p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 

FMI   
Low  (Reference)  (Reference)  (Reference)  

 
Medium-low  7.2 [-6.7; 21.1] 0.310 9.8 [-2.4; 22.1] 0.114 19.8 [-0.1; 39.7] 0.051 

 
Medium-high  4.2 [-11.3; 19.6] 0.597 -1.5 [-15.1; 12.1] 0.828 -5.0 [-27.0; 17.1] 0.659 

 
High -14.6 [-34.5; 5.3] 0.151 -23.2 [-40.7; -5.8] 0.009 -25.0 [-53.3; 3.3] 0.084 

  p-trend 0.315 p-trend 0.015 p-trend 0.045 

GIRLS        

BMI  
Normal-low (Reference)  (Reference)  (Reference)  

 
Normal-high 7.6 [-2.9; 18.1] 0.155 4.0 [-5.8; 13.8] 0.426 -0.4 [-17.4; 16.5] 0.960 

 
     (Continued)  



 

Rate of lung function growth for each parameter was calculated as: (pre-bronchodilation lung function measure at 15 years - pre-

bronchodilation lung function measure at 8 years)/time follow-up. Definition of abbreviations: BMI, body mass index; FEF25-75 forced 

expiratory flow at 25-75%; FEV1, volume expired in the first second; FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body 

mass index; 95% CI, 95% confidence intervals; β, estimate of regression coefficient. Models are adjusted for maternal social class, maternal 

smoking during pregnancy, birth weight, breastfeeding, lung function measures at 8 years, pubertal status (age at menarche for girls and 

voice break status at age 15 years for boys), as well as age and height at 15 years. Models for FMI and LBMI are also mutually adjusted. 

Bold: p-value <0.05 

Table E7. Continued 

 
 FVC change (mL/year)  FEV1 change (mL/year)  FEF25-75 change (mL/s·year)  

 
 

Adjusted β [95% CI]  p-value Adjusted β [95% CI]  p-value Adjusted β [95% CI]  p-value 

 
Overweight 17.3 [4.9; 29.7] 0.006 7.8 [-3.8; 19.3] 0.186 -2.3 [-22.2; 17.5] 0.818 

 
Obese 28.0 [9.4; 46.6] 0.003 8.8 [-8.4; 26.0] 0.315 -4.7 [-34.4; 25.0] 0.756 

  p-trend 0.001 p-trend 0.165 p-trend 0.734 

LBMI Low  
(Reference)  (Reference)  (Reference)  

 Medium-low  
25.9 [12.6; 39.2] <0.0001 23.6 [11; 36.2] <0.0001 31.2 [9.3; 53.1] 0.005 

 Medium-high  
43.0 [28.9; 57.0] <0.0001 35.7 [22.5; 48.9] <0.0001 37.8 [15.1; 60.5] 0.001 

 High  
55.8 [37.1; 74.5] <0.0001 41.9 [24.3; 59.4] <0.0001 47.5 [17.2; 77.8] 0.002 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.002 

FMI   Low  
(Reference)  (Reference)  (Reference)  

 Medium-low  
-2.8 [-15.1; 9.5] 0.655 -3.3 [-14.9; 8.2] 0.574 -3.8 [-24.1; 16.5] 0.716 

 Medium-high  
0.3 [-12.5; 13.2] 0.959 -3.5 [-15.5; 8.5] 0.563 -9.7 [-30.8; 11.5] 0.370 

 High 
4.9 [-11.1; 20.8] 0.550 -5.7 [-20.5; 9.2] 0.456 -17.7 [-43.9; 8.6] 0.187 

  p-trend 0.516 p-trend 0.403 p-trend 0.117 



 

Table E8. Adjusted associations of body weight and composition trajectories with post-bronchodilation lung function measures at 

age 15 years: Models additionally adjusted for wear-time spent in MVPA and total energy intake   
  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  Adjusted β  

[95% CI]  

p-value Adjusted β 
 [95% CI]  

p-value Adjusted β  

[95% CI]  

p-value Adjusted β  

[95% CI]  

p-value 

BOYS 
         

BMI  Normal-low (Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 0.17 [0.06; 0.27] 0.003 0.15 [0.05; 0.25] 0.003 0.20 [0.04; 0.36] 0.015 -0.17 [-1.14; 0.81] 0.733 

 Overweight 0.21 [0.07; 0.34] 0.002 0.16 [0.04; 0.28] 0.011 0.17 [-0.03; 0.36] 0.092 -0.69 [-1.87; 0.50] 0.257 

 Obese 0.19 [-0.01; 0.39] 0.067 0.09 [-0.09; 0.27] 0.334 -0.05 [-0.34; 0.24] 0.738 -1.44 [-3.23; 0.34] 0.112 

  p-trend 0.003 p-trend 0.035 p-trend 0.421 p-trend 0.09 

LBMI Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.28 [0.11; 0.45] 0.001 0.25 [0.10; 0.41] 0.002 0.26 [0.00; 0.51] 0.046 -0.19 [-1.79; 1.41] 0.817 

 Medium-high  0.47 [0.3; 0.64] <0.0001 0.43 [0.28; 0.59] <0.0001 0.46 [0.20; 0.71] <0.0001 -0.02 [-1.62; 1.59] 0.984 

 High  0.65 [0.45; 0.85] <0.0001 0.56 [0.38; 0.74] <0.0001 0.55 [0.26; 0.85] <0.0001 -0.58 [-2.42; 1.27] 0.539 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 p-trend 0.728 

FMI   Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.04 [-0.07; 0.15] 0.452 0.07 [-0.03; 0.18] 0.155 0.18 [0.01; 0.35] 0.035 0.68 [-0.36; 1.72] 0.198 

 Medium-high  0.05 [-0.08; 0.18] 0.436 0.01 [-0.11; 0.13] 0.859 -0.01 [-0.20; 0.18] 0.945 -0.84 [-2.02; 0.34] 0.162 

 High -0.02 [-0.19; 0.15] 0.805 -0.08 [-0.24; 0.07] 0.304 -0.15 [-0.41; 0.10] 0.246 -1.32 [-2.89; 0.25] 0.099 

  p-trend 0.903 p-trend 0.342 p-trend 0.198 p-trend 0.025 

GIRLS          

BMI  Normal-low (Reference)  (Reference)  (Reference)  (Reference)  

 
Normal-high 0.07 [-0.02; 0.15] 0.127 0.04 [-0.04; 0.13] 0.308 0.07 [-0.08; 0.23] 0.357 -0.85 [-1.92; 0.23] 0.123 

 
       (Continued)  



 

Definition of abbreviations: BMI, body mass index; FEF25-75 forced expiratory flow at 25-75%; FEV1, volume expired in the first second; 

FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body mass index; 95% CI, 95% confidence intervals; β, estimate of regression 

coefficient. Models are adjusted for maternal social class, maternal smoking during pregnancy, birth weight, breastfeeding, total energy 

intake at 7 years, lung function measures at 8 years, wear-time spent in MVPA at 11 years, pubertal status (age at menarche for girls and 

voice break status at age 15 years for boys), as well as age and height at 15 years. Models for FMI and LBMI are also mutually adjusted. 

Bold: p-value <0.05 

 

Table E8. Continued 

 
 FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

 

 

Adjusted β  

[95% CI]  

p-value Adjusted β 
 [95% CI]  

p-value Adjusted β  

[95% CI]  

p-value Adjusted β  

[95% CI]  

p-value 

 
Overweight 0.11 [0.01; 0.22] 0.032 0.07 [-0.03; 0.17] 0.193 0.07 [-0.11; 0.25] 0.462 -1.67 [-2.93; -0.41] 0.009 

 
Obese 0.18 [0.03; 0.34] 0.020 0.10 [-0.05; 0.25] 0.211 0.06 [-0.21; 0.33] 0.660 -2.56 [-4.43; -0.69] 0.007 

 
 p-trend 0.008 p-trend 0.134 p-trend 0.523 p-trend 0.001 

LBMI Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.19 [0.08; 0.30] 0.001 0.21 [0.10; 0.32] <0.0001 0.34 [0.14; 0.54] 0.001 0.61 [-0.77; 2.00] 0.384 

 Medium-high  0.31 [0.19; 0.42] <0.0001 0.30 [0.19; 0.41] <0.0001 0.44 [0.23; 0.64] <0.0001 0.04 [-1.39; 1.46] 0.960 

 High  0.36 [0.21; 0.52] <0.0001 0.29 [0.14; 0.44] <0.0001 0.34 [0.06; 0.61] 0.015 -1.4 [-3.27; 0.47] 0.142 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.004 p-trend 0.092 

FMI   Low  (Reference)  (Reference)  [Reference]  (Reference)  

 
Medium-low  0.03 [-0.07; 0.14] 0.501 0.03 [-0.07; 0.13] 0.525 0.12 [-0.06; 0.30] 0.191 -0.44 [-1.72; 0.84] 0.496 

 
Medium-high  0.02 [-0.09; 0.13] 0.696 0.00 [-0.10; 0.11] 0.931 0.01 [-0.19; 0.20] 0.959 -1.05 [-2.38; 0.28] 0.122 

 
High 0.09 [-0.04; 0.23] 0.185 0.04 [-0.09; 0.17] 0.535 0.04 [-0.20; 0.28] 0.730 -1.53 [-3.21; 0.15] 0.074 

  p-trend 0.392 p-trend 0.970 p-trend 0.561 p-trend 0.026 



 

Table E9. Adjusted associations of body weight and composition trajectories with post-bronchodilation lung function measures at 

age 15 years: Excluding children with lifetime doctor-diagnosed asthma (n=865)   
  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  Adjusted β  

[95% CI]  
p-value Adjusted β 

 [95% CI]  
p-value Adjusted β  

[95% CI]  
p-value Adjusted β  

[95% CI]  
p-value 

BOYS          

BMI  Normal-low 
(Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 
0.15 [0.04; 0.26] 0.009 0.13 [0.03; 0.23] 0.011 0.18 [0.01; 0.34] 0.037 -0.28 [-1.23; 0.68] 0.572 

 Overweight 
0.17 [0.04; 0.31] 0.009 0.14 [0.01; 0.26] 0.029 0.19 [-0.01; 0.38] 0.059 -0.99 [-2.12; 0.15] 0.089 

 Obese 
0.07 [-0.12; 0.27] 0.447 -0.06 [-0.23; 0.12] 0.512 -0.22 [-0.5; 0.06] 0.130 -2.55 [-4.2; -0.90] 0.002 

  p-trend 0.052 p-trend 0.453 p-trend 0.942 p-trend 0.003 

LBMI Low  
(Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  
0.24 [0.06; 0.43] 0.009 0.19 [0.02; 0.36] 0.027 0.17 [-0.11; 0.45] 0.232 -1.05 [-2.71; 0.60] 0.213 

 Medium-high  
0.48 [0.3; 0.67] <0.0001 0.42 [0.24; 0.59] <0.0001 0.41 [0.13; 0.69] 0.004 -0.85 [-2.52; 0.81] 0.314 

 High  
0.66 [0.44; 0.88] <0.0001 0.51 [0.31; 0.72] <0.0001 0.44 [0.1; 0.77] 0.010 -1.98 [-3.92; -0.03] 0.046 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 p-trend 0.140 

FMI   Low  
(Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  
0.03 [-0.09; 0.14] 0.637 0.07 [-0.04; 0.17] 0.202 0.21 [0.04; 0.39] 0.015 0.93 [-0.08; 1.93] 0.072 

 Medium-high  
0.01 [-0.11; 0.14] 0.844 0.00 [-0.11; 0.12] 0.961 0.06 [-0.13; 0.26] 0.510 -0.47 [-1.60; 0.65] 0.409 

 High 
-0.12 [-0.29; 0.04] 0.134 -0.18 [-0.33; -0.04] 0.015 -0.24 [-0.48; 0.01] 0.061 -1.75 [-3.19; -0.32] 0.017 

  p-trend 0.269 p-trend 0.038 p-trend 0.117 p-trend 0.008 

GIRLS  
        

BMI  Normal-low 
(Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 
0.09 [0.00; 0.17] 0.042 0.05 [-0.03; 0.13] 0.254 0.12 [-0.03; 0.27] 0.117 -0.98 [-2.04; 0.08] 0.071 

  
        



 

Definition of abbreviations: BMI, body mass index; FEF25-75 forced expiratory flow at 25-75%; FEV1, volume expired in the first second; 

FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body mass index; 95% CI, 95% confidence intervals; β, estimate of regression 

coefficient. Models are adjusted for maternal social class, maternal smoking during pregnancy, birth weight, breastfeeding, lung function 

measures at 8 years, pubertal status (age at menarche for girls and voice break status at age 15 years for boys), as well as age and height at 

15 years. Models for FMI and LBMI are also mutually adjusted. Bold: p-value <0.05 

 

Table E9. Continued 

  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  Adjusted β  

[95% CI]  

p-value Adjusted β 
 [95% CI]  

p-value Adjusted β  

[95% CI]  

p-value Adjusted β  

[95% CI]  

p-value 

 Overweight 
0.13 [0.03; 0.23] 0.014 0.08 [-0.02; 0.18] 0.132 0.06 [-0.11; 0.24] 0.487 -1.94 [-3.21; -0.67] 0.003 

 Obese 
0.26 [0.09; 0.42] 0.002 0.18 [0.02; 0.34] 0.028 0.18 [-0.11; 0.47] 0.227 -2.68 [-4.72; -0.65] 0.010 

  p-trend 0.001 p-trend 0.028 p-trend 0.279 p-trend 0.001 

LBMI Low  
(Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  
0.21 [0.10; 0.31] <0.0001 0.21 [0.10; 0.31] <0.0001 0.29 [0.10; 0.48] 0.003 0.42 [-0.94; 1.79] 0.542 

 Medium-high  
0.28 [0.17; 0.39] <0.0001 0.28 [0.17; 0.39] <0.0001 0.40 [0.21; 0.60] <0.0001 0.22 [-1.20; 1.63] 0.764 

 High  
0.40 [0.25; 0.56] <0.0001 0.34 [0.19; 0.49] <0.0001 0.41 [0.14; 0.68] 0.003 -1.14 [-3.06; 0.79] 0.248 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 p-trend 0.349 

FMI   Low  
(Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  
0.01 [-0.09; 0.11] 0.807 -0.02 [-0.12; 0.08] 0.707 0.08 [-0.10; 0.25] 0.401 -0.96 [-2.24; 0.32] 0.140 

 Medium-high  
0.03 [-0.07; 0.14] 0.547 -0.02 [-0.12; 0.09] 0.770 -0.01 [-0.19; 0.17] 0.913 -1.82 [-3.14; -0.50] 0.007 

 High 
0.11 [-0.03; 0.24] 0.112 0.04 [-0.09; 0.17] 0.531 0.00 [-0.24; 0.24] 0.979 -2.31 [-4.01; -0.60] 0.008 

  p-trend 0.139 p-trend 0.679 p-trend 0.534 p-trend 0.001 



 

Table E10. Adjusted associations of body weight and composition trajectories with post-bronchodilation lung function measures at 

age 15 years: Excluding children with extreme lung function measures (<p1 and p>99) at age 15 years   
  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  Adjusted β  

[95% CI]  

p-value Adjusted β   

[95% CI]  
p-value Adjusted β  

[95% CI]  

p-value Adjusted β  

[95% CI]  

p-value 

BOYS  
        

BMI  Normal-low (Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 0.11 [0.03; 0.20] 0.010 0.10 [0.02; 0.18] 0.014 0.15 [0.02; 0.28] 0.020 -0.01 [-0.80; 0.79] 0.987 

 Overweight 0.19 [0.09; 0.29] <0.0001 0.15 [0.05; 0.24] 0.002 0.09 [-0.07; 0.24] 0.263 -0.82 [-1.76; 0.13] 0.091 

 Obese 0.15 [0.00; 0.30] 0.044 0.03 [-0.1; 0.16] 0.618 -0.12 [-0.33; 0.10] 0.291 -1.94 [-3.28; -0.6] 0.005 

  p-trend 0.001 p-trend 0.042 p-trend 0.894 p-trend 0.004 

LBMI Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.22 [0.08; 0.36] 0.002 0.20 [0.07; 0.32] 0.003 0.22 [0.02; 0.43] 0.036 -0.47 [-1.78; 0.84] 0.484 

 Medium-high  0.44 [0.30; 0.58] <0.0001 0.40 [0.27; 0.53] <0.0001 0.46 [0.25; 0.67] <0.0001 -0.47 [-1.79; 0.85] 0.486 

 High  0.57 [0.40; 0.73] <0.0001 0.50 [0.35; 0.65] <0.0001 0.49 [0.25; 0.74] <0.0001 -0.74 [-2.27; 0.80] 0.345 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 p-trend 0.418 

FMI   Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.02 [-0.07; 0.11] 0.681 0.05 [-0.03; 0.13] 0.228 0.13 [0.00; 0.27] 0.050 0.73 [-0.11; 1.57] 0.089 

 Medium-high  0.05 [-0.05; 0.15] 0.334 0.01 [-0.08; 0.10] 0.823 -0.06 [-0.20; 0.09] 0.471 -0.79 [-1.73; 0.14] 0.097 

 High -0.01 [-0.14; 0.11] 0.820 -0.10 [-0.22; 0.01] 0.076 -0.23 [-0.42; -0.04] 0.018 -1.37 [-2.57; -0.17] 0.025 

  p-trend 0.791 p-trend 0.131 p-trend 0.008 p-trend 0.003 

GIRLS          

BMI  Normal-low (Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 0.07 [0.01; 0.14] 0.035 0.05 [-0.01; 0.12] 0.129 0.15 [0.03; 0.28] 0.016 -0.96 [-1.81; -0.11] 0.027 

  
      (Continued)  



 

 Definition of abbreviations: BMI, body mass index; FEF25-75 forced expiratory flow at 25-75%; FEV1, volume expired in the first second; 

FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body mass index; 95% CI, 95% confidence intervals; β, estimate of regression 

coefficient. Models are adjusted for maternal social class, maternal smoking during pregnancy, birth weight, breastfeeding, lung function 

measures at 8 years, pubertal status (age at menarche for girls and voice break status at age 15 years for boys), as well as age and height at 

15 years. Models for FMI and LBMI are also mutually adjusted. Number of observations deleted from the adjusted models: FVC 

(boys/girls):32/36; FEV1: 32/33; FEF25-75:32/36; ratio FEV1/FVC: 60/113. Bold: p-value <0.05 

  

Table E10. Continued 

  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  Adjusted β  

[95% CI]  

p-value Adjusted β   

[95% CI]  

p-value Adjusted β  

[95% CI]  

p-value Adjusted β  

[95% CI]  

p-value 

 Overweight 0.12 [0.04; 0.20] 0.003 0.07 [-0.01; 0.15] 0.078 0.09 [-0.06; 0.23] 0.243 -1.95 [-2.94; -0.96] <0.0001 

 Obese 0.19 [0.07; 0.31] 0.002 0.11 [-0.01; 0.22] 0.075 0.04 [-0.18; 0.27] 0.695 -2.66 [-4.10; -1.22] <0.0001 

  p-trend <0.0001 p-trend 0.039 p-trend 0.468 p-trend  

LBMI Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.14 [0.05; 0.23] 0.002 0.13 [0.05; 0.22] 0.002 0.24 [0.08; 0.41] 0.003 0.39 [-0.71; 1.49] 0.489 

 Medium-high  0.26 [0.16; 0.35] <0.0001 0.23 [0.14; 0.32] <0.0001 0.34 [0.17; 0.50] <0.0001 -0.17 [-1.31; 0.96] 0.764 

 High  0.27 [0.15; 0.39] <0.0001 0.21 [0.10; 0.33] <0.0001 0.32 [0.09; 0.54] 0.006 -1.44 [-2.94; 0.07] 0.061 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.002 p-trend 0.032 

FMI   Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.03 [-0.06; 0.11] 0.536 0.02 [-0.06; 0.10] 0.668 0.08 [-0.07; 0.23] 0.304 -0.89 [-1.92; 0.13] 0.088 

 Medium-high  0.04 [-0.04; 0.13] 0.329 0.00 [-0.08; 0.08] 0.973 0.03 [-0.12; 0.19] 0.698 -1.55 [-2.60; -0.49] 0.004 

 High 0.11 [0.00; 0.21] 0.041 0.03 [-0.07; 0.13] 0.564 -0.03 [-0.22; 0.17] 0.781 -2.18 [-3.48; -0.87] 0.001 

  p-trend 0.067 p-trend 0.916 p-trend 0.502 p-trend <0.0001 



 

Table E11. Adjusted associations of body weight and composition trajectories with pre-bronchodilation lung function measures at 

age 15 years  
  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  Adjusted β 

[95% CI] 

p-value Adjusted β 

[95% CI] 

p-value Adjusted β 

[95% CI] 

p-value Adjusted β 

[95% CI] 

p-value 

BOYS          

BMI  Normal-low 
(Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 
0.16 [0.07; 0.25] 0.001 0.15 [0.07; 0.23] <0.0001 0.16 [0.04; 0.29] 0.012 -0.16 [-1.08; 0.76] 0.735 

 Overweight 
0.18 [0.07; 0.29] 0.001 0.13 [0.04; 0.23] 0.007 0.11 [-0.04; 0.27] 0.143 -0.82 [-1.91; 0.27] 0.139 

 Obese 
0.10 [-0.05; 0.26] 0.202 -0.01 [-0.15; 0.12] 0.880 -0.11 [-0.32; 0.11] 0.322 -1.65 [-3.18; -0.11] 0.036 

  p-trend 0.008 p-trend 0.190 p-trend 0.917 p-trend 0.023 

LBMI Low  
(Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  
0.23 [0.09; 0.38] 0.002 0.21 [0.08; 0.34] 0.001 0.23 [0.02; 0.43] 0.035 0.17 [-1.35; 1.69] 0.830 

 Medium-high  
0.47 [0.32; 0.61] <0.0001 0.41 [0.28; 0.54] <0.0001 0.38 [0.17; 0.59] <0.0001 -0.21 [-1.74; 1.32] 0.788 

 High  
0.63 [0.46; 0.80] <0.0001 0.53 [0.38; 0.68] <0.0001 0.49 [0.24; 0.73] <0.0001 -0.42 [-2.19; 1.36] 0.644 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 p-trend 0.362 

FMI   Low  
(Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  
0.05 [-0.04; 0.15] 0.278 0.07 [-0.01; 0.15] 0.106 0.13 [0.00; 0.27] 0.057 0.22 [-0.75; 1.20] 0.653 

 Medium-high  
0.03 [-0.07; 0.13] 0.567 -0.01 [-0.10; 0.08] 0.821 -0.04 [-0.19; 0.11] 0.614 -1.07 [-2.15; 0.01] 0.051 

 High 
-0.10 [-0.24; 0.03] 0.131 -0.17 [-0.28; -0.05] 0.006 -0.18 [-0.38; 0.01] 0.060 -1.4 [-2.78; -0.02] 0.047 

  p-trend 0.294 p-trend 0.010 p-trend 0.032 p-trend 0.007 

GIRLS  
        

BMI  Normal-low 
(Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 
0.05 [-0.02; 0.12] 0.146 0.03 [-0.04; 0.09] 0.448 -0.01 [-0.12; 0.11] 0.906 -0.92 [-1.85; 0.02] 0.055 

  
      (Continued)  



 

Definition of abbreviations: BMI, body mass index; FEF25-75 forced expiratory flow at 25-75%; FEV1, volume expired in the first second; 

FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body mass index; 95% CI, 95% confidence intervals; β, estimate of regression 

coefficient. Models are adjusted for maternal social class, maternal smoking during pregnancy, birth weight, breastfeeding, lung function 

measures at 8 years, pubertal status (age at menarche for girls and voice break status at age 15 years for boys), as well as age and height at 

15 years. Models for FMI and LBMI are also mutually adjusted. Bold: p-value <0.05 
 

Table E11. Continued 

  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  Adjusted β 

[95% CI] 

p-value Adjusted β 

[95% CI] 

p-value Adjusted β 

[95% CI] 

p-value Adjusted β 

[95% CI] 

p-value 

 Overweight 
0.12 [0.04; 0.21] 0.005 0.05 [-0.03; 0.13] 0.190 -0.02 [-0.16; 0.12] 0.764 -1.73 [-2.83; -0.62] 0.002 

 Obese 
0.20 [0.08; 0.33] 0.002 0.06 [-0.05; 0.18] 0.279 -0.03 [-0.24; 0.17] 0.750 -3.25 [-4.88; -1.63] <0.0001 

  p-trend <0.0001 p-trend 0.151 p-trend 0.702 p-trend <0.0001 

LBMI Low  
(Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  
0.17 [0.08; 0.26] <0.0001 0.16 [0.07; 0.25] <0.0001 0.21 [0.06; 0.36] 0.005 -0.18 [-1.40; 1.04] 0.772 

 Medium-high  
0.29 [0.20; 0.39] <0.0001 0.24 [0.15; 0.33] <0.0001 0.26 [0.10; 0.41] 0.001 -0.62 [-1.88; 0.64] 0.333 

 High  
0.38 [0.25; 0.51] <0.0001 0.29 [0.17; 0.41] <0.0001 0.33 [0.12; 0.53] 0.002 -1.45 [-3.11; 0.22] 0.088 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.002 p-trend 0.040 

FMI   Low  
(Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  
-0.02 [-0.10; 0.06] 0.628 -0.02 [-0.10; 0.06] 0.557 -0.03 [-0.17; 0.11] 0.658 -0.64 [-1.75; 0.48] 0.264 

 Medium-high  
0.00 [-0.09; 0.09] 0.971 -0.03 [-0.11; 0.06] 0.530 -0.07 [-0.22; 0.07] 0.318 -1.13 [-2.29; 0.04] 0.058 

 High 
0.04 [-0.07; 0.15] 0.495 -0.04 [-0.14; 0.06] 0.466 -0.13 [-0.31; 0.05] 0.166 -2.34 [-3.79; -0.9] 0.002 

  p-trend 0.462 p-trend 0.405 p-trend 0.101 p-trend 0.001 



 

Table E12. Adjusted associations of body weight and composition trajectories with post-bronchodilation lung function measures at 

age 15 years: Without adjustment for lung function at 8 years  
  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  Adjusted β  

[95% CI]  

p-value Adjusted β   

[95% CI]  
p-value Adjusted β 

 [95% CI]  

p-value Adjusted β  

[95% CI]  

p-value 

BOYS  
        

BMI  Normal-low (Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 0.18 [0.09; 0.28] <0.0001 0.15 [0.07; 0.24] <0.0001 0.20 [0.06; 0.35] 0.007 -0.43 [-1.30; 0.45] 0.338 

 Overweight 0.29 [0.18; 0.39] <0.0001 0.21 [0.12; 0.31] <0.0001 0.24 [0.07; 0.41] 0.007 -1.18 [-2.21; -0.16] 0.024 

 Obese 0.26 [0.10; 0.41] 0.001 0.09 [-0.05; 0.22] 0.212 -0.10 [-0.34; 0.14] 0.421 -2.68 [-4.12; -1.24] <0.0001 

  p-trend <0.0001 p-trend 0.001 p-trend 0.336 p-trend <0.0001 

LBMI Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.23 [0.09; 0.37] 0.002 0.18 [0.05; 0.31] 0.008 0.17 [-0.06; 0.40] 0.143 -0.67 [-2.08; 0.74] 0.352 

 Medium-high  0.47 [0.33; 0.62] <0.0001 0.39 [0.26; 0.53] <0.0001 0.43 [0.20; 0.66] <0.0001 -0.76 [-2.18; 0.66] 0.295 

 High  0.73 [0.56; 0.90] <0.0001 0.59 [0.44; 0.74] <0.0001 0.59 [0.32; 0.86] <0.0001 -1.27 [-2.91; 0.37] 0.128 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 p-trend 0.111 

FMI   Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.05 [-0.05; 0.15] 0.312 0.09 [0.00; 0.17] 0.049 0.2 [0.05; 0.36] 0.010 0.91 [-0.02; 1.84] 0.055 

 Medium-high  0.04 [-0.06; 0.15] 0.410 0.02 [-0.07; 0.12] 0.649 0.03 [-0.14; 0.20] 0.755 -0.67 [-1.70; 0.36] 0.201 

 High 0.00 [-0.13; 0.14] 0.982 -0.09 [-0.21; 0.03] 0.129 -0.20 [-0.42; 0.01] 0.066 -2.02 [-3.31; -0.73] 0.002 

  p-trend 0.796 p-trend 0.171 p-trend 0.067 p-trend <0.0001 

GIRLS          

BMI  Normal-low (Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 0.16 [0.08; 0.23] <0.0001 0.11 [0.04; 0.19] 0.003 0.13 [-0.01; 0.26] 0.066 -1.11 [-2.02; -0.20] 0.017 

        (Continued)  



 

Definition of abbreviations: BMI, body mass index; FEF25-75 forced expiratory flow at 25-75%; FEV1, volume expired in the first second; 

FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body mass index; 95% CI, 95% confidence intervals; β, estimate of regression 

coefficient. Models are adjusted for maternal social class, maternal smoking during pregnancy, birth weight, breastfeeding, pubertal status 

(age at menarche for girls and voice break status at age 15 years for boys), as well as age and height at 15 years. Models for FMI and LBMI 

are also mutually adjusted. Bold: p-value <0.05 

 

Table E12. Continued 

  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  

Adjusted β  

[95% CI]  

p-value Adjusted β   

[95% CI]  

p-value Adjusted β 

 [95% CI]  

p-value Adjusted β  

[95% CI]  

p-value 

 Overweight 0.26 [0.17; 0.35] <0.0001 0.16 [0.07; 0.24] <0.0001 0.08 [-0.08; 0.24] 0.324 -2.43 [-3.49; -1.37] <0.0001 

 Obese 0.42 [0.28; 0.55] <0.0001 0.25 [0.13; 0.38] <0.0001 0.09 [-0.15; 0.32] 0.470 -3.88 [-5.43; -2.32] <0.0001 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.404 p-trend <0.0001 

LBMI Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.23 [0.14; 0.33] <0.0001 0.23 [0.13; 0.32] <0.0001 0.34 [0.17; 0.52] <0.0001 0.65 [-0.52; 1.82] 0.277 

 Medium-high  0.42 [0.32; 0.52] <0.0001 0.37 [0.27; 0.47] <0.0001 0.43 [0.25; 0.61] <0.0001 -0.22 [-1.43; 0.99] 0.719 

 High  0.57 [0.43; 0.70] <0.0001 0.45 [0.33; 0.58] <0.0001 0.44 [0.20; 0.68] <0.0001 -1.43 [-3.02; 0.17] 0.079 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 p-trend 0.013 

FMI   Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.06 [-0.03; 0.15] 0.182 0.04 [-0.05; 0.12] 0.400 0.11 [-0.05; 0.27] 0.189 -0.85 [-1.94; 0.24] 0.127 

 Medium-high  0.10 [0.01; 0.20] 0.030 0.05 [-0.04; 0.14] 0.296 0.05 [-0.12; 0.21] 0.591 -1.66 [-2.78; -0.54] 0.004 

 High 0.15 [0.04; 0.27] 0.010 0.05 [-0.06; 0.16] 0.387 -0.02 [-0.23; 0.19] 0.865 -2.69 [-4.08; -1.31] <0.0001 

  p-trend 0.007 p-trend 0.450 p-trend 0.489 p-trend <0.0001 



 

Table E13. Adjusted associations of body weight and composition trajectories with post-bronchodilation lung function measures at 

age 15 years: Using lung function measures as standard deviation scores derived using the Global Lung Initiative equations  
  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  Adjusted β 

 [95% CI]  

p-value Adjusted β   

[95% CI]  
p-value Adjusted β 

 [95% CI]  

p-value Adjusted β 

 [95% CI]  

p-value 

BOYS  
        

BMI  Normal-low (Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 0.36 [0.18; 0.54] <0.0001 0.38 [0.2; 0.56] <0.0001 0.25 [0.11; 0.39] 0.001 0.01 [-0.15; 0.16] 0.935 

 Overweight 0.51 [0.29; 0.73] <0.0001 0.42 [0.2; 0.63] <0.0001 0.18 [0.01; 0.36] 0.037 -0.18 [-0.37; 0.01] 0.058 

 Obese 0.61 [0.31; 0.92] <0.0001 0.44 [0.13; 0.75] 0.006 0.12 [-0.13; 0.37] 0.335 -0.30 [-0.56; -0.04] 0.025 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.070 p-trend 0.009 

LBMI Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.56 [0.27; 0.84] <0.0001 0.55 [0.26; 0.85] <0.0001 0.27 [0.04; 0.50] 0.024 -0.10 [-0.36; 0.15] 0.433 

 Medium-high  0.95 [0.66; 1.23] <0.0001 0.99 [0.69; 1.28] <0.0001 0.53 [0.30; 0.76] <0.0001 -0.04 [-0.29; 0.22] 0.763 

 High  1.32 [0.99; 1.65] <0.0001 1.28 [0.94; 1.62] <0.0001 0.64 [0.37; 0.91] <0.0001 -0.17 [-0.46; 0.12] 0.247 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 p-trend 0.614 

FMI   Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.13 [-0.06; 0.31] 0.176 0.19 [0.00; 0.38] 0.045 0.19 [0.04; 0.34] 0.011 0.13 [-0.03; 0.29] 0.110 

 Medium-high  0.17 [-0.04; 0.38] 0.107 0.06 [-0.15; 0.27] 0.549 -0.01 [-0.18; 0.16] 0.917 -0.18 [-0.37; 0.00] 0.046 

 High 0.10 [-0.18; 0.37] 0.487 -0.07 [-0.34; 0.21] 0.637 -0.12 [-0.34; 0.10] 0.302 -0.27 [-0.51; -0.03] 0.025 

  p-trend 0.255 p-trend 0.633 p-trend 0.174 p-trend 0.002 

GIRLS          

BMI  Normal-low (Reference)  (Reference)  (Reference)  (Reference)  

 Normal-high 0.34 [0.16; 0.51] <0.0001 0.33 [0.14; 0.52] 0.001 0.25 [0.08; 0.41] 0.003 -0.07 [-0.23; 0.10] 0.425 

          



 

Definition of abbreviations: BMI, body mass index; FEF25-75 forced expiratory flow at 25-75%; FEV1, volume expired in the first second; 

FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body mass index; 95% CI, 95% confidence intervals; β, estimate of regression 

coefficient. Models are adjusted for maternal social class, maternal smoking during pregnancy, birth weight, breastfeeding, lung function 

measures at 8 years and pubertal status (age at menarche for girls and voice break for boys status at age 15 years for boys). Models for FMI 

and LBMI are also mutually adjusted. Bold: p-value <0.05 

 

Table E13. Continued 

  FVC (L)  FEV1 (L)  FEF25-75 (L/s)  FEV1/FVC (%)  

  

Adjusted β 

 [95% CI]  

p-value Adjusted β   

[95% CI]  

p-value Adjusted β 

 [95% CI]  

p-value Adjusted β 

 [95% CI]  

p-value 

 Overweight 0.59 [0.4; 0.78] <0.0001 0.54 [0.32; 0.75] <0.0001 0.26 [0.07; 0.44] 0.007 -0.25 [-0.44; -0.07] 0.008 

 Obese 0.94 [0.65; 1.23] <0.0001 0.79 [0.47; 1.11] <0.0001 0.35 [0.07; 0.63] 0.014 -0.48 [-0.76; -0.20] 0.001 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.003 p-trend <0.0001 

LBMI Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.44 [0.22; 0.65] <0.0001 0.50 [0.25; 0.74] <0.0001 0.40 [0.19; 0.61] <0.0001 0.07 [-0.14; 0.29] 0.503 

 Medium-high  0.71 [0.48; 0.94] <0.0001 0.78 [0.53; 1.03] <0.0001 0.56 [0.34; 0.78] <0.0001 0.02 [-0.20; 0.24] 0.839 

 High  1.13 [0.83; 1.43] <0.0001 1.04 [0.71; 1.37] <0.0001 0.55 [0.26; 0.83] <0.0001 -0.26 [-0.55; 0.03] 0.076 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 p-trend 0.069 

FMI   Low  (Reference)  (Reference)  (Reference)  (Reference)  

 Medium-low  0.17 [-0.04; 0.37] 0.105 0.19 [-0.04; 0.42] 0.103 0.20 [0.00; 0.39] 0.052 -0.02 [-0.22; 0.18] 0.862 

 Medium-high  0.26 [0.05; 0.47] 0.014 0.25 [0.02; 0.48] 0.030 0.11 [-0.09; 0.31] 0.266 -0.13 [-0.33; 0.08] 0.216 

 High 0.45 [0.19; 0.71] 0.001 0.37 [0.08; 0.65] 0.011 0.15 [-0.10; 0.40] 0.230 -0.29 [-0.55; -0.04] 0.023 

  p-trend <0.0001 p-trend 0.013 p-trend 0.603 p-trend 0.006 



 

Table E14. Adjusted associations of body weight and composition trajectories with pre-bronchodilation lung function growth rates 

from age 8 to 15 years: Models additionally adjusted for wear-time spent in MVPA and total energy intake   
  FVC change 

(mL/year) 

 FEV1 change 

(mL/year) 

 FEF25-75 change 

(mL/s·year) 

 

  Adjusted β [95% CI]  p-value Adjusted β  [95% CI]  p-value Adjusted β [95% CI]  p-value 

BOYS  
      

BMI  Normal-low (Reference)  (Reference)  (Reference)  

 Normal-high 28.7 [13.0; 44.5] <0.0001 25.7 [11.7; 39.7] <0.0001 26.5 [4.1; 48.9] 0.021 

 Overweight 36.2 [16.9; 55.5] <0.0001 26.6 [9.5; 43.7] 0.002 23.1 [-4.0; 50.3] 0.095 

 Obese 20.5 [-8.7; 49.6] 0.168 6.0 [-19.7; 31.6] 0.647 -9.6 [-50.6; 31.4] 0.646 

  p-trend 0.002 p-trend 0.036 p-trend 0.473 

LBMI Low  (Reference)  (Reference)  (Reference)  

 Medium-low  40.0 [15.4; 64.7] 0.002 34.6 [12.4; 56.8] 0.002 36.8 [0.9; 72.8] 0.044 

 Medium-high  72.2 [47.4; 97.1] <0.0001 63.4 [41.1; 85.7] <0.0001 59.9 [23.9; 96.0] 0.001 

 High  95.0 [66.1; 124] <0.0001 79.3 [53.4; 105.1] <0.0001 73.9 [32.1; 115.7] 0.001 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 

FMI   Low  (Reference)  (Reference)  (Reference)  

 Medium-low  6.0 [-10.3; 22.3] 0.470 7.4 [-7.1; 21.9] 0.318 17.2 [-6.5; 40.8] 0.155 

 Medium-high  8.1 [-10.5; 26.6] 0.393 0.5 [-15.9; 17.0] 0.948 -0.6 [-27.5; 26.3] 0.963 

 High -10.1 [-35.0; 14.9] 0.429 -21.0 [-43.1; 1.0] 0.062 -22.2 [-58.2; 13.8] 0.226 

  p-trend 0.832 p-trend 0.132 p-trend 0.235 

GIRLS        

BMI  Normal-low (Reference)  (Reference)  (Reference)  

 Normal-high 2.8 [-9.4; 14.9] 0.654 -0.5 [-11.8; 10.8] 0.933 -10.9 [-30.6; 8.9] 0.282 

      (Continued)  



 

Rate of lung function growth for each parameter was calculated as: (pre-bronchodilation lung function measure at 15 years - pre-

bronchodilation lung function measure at 8 years)/time follow-up. Definition of abbreviations: BMI, body mass index; FEF25-75 forced 

expiratory flow at 25-75%; FEV1, volume expired in the first second; FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body 

mass index; 95% CI, 95% confidence intervals; β, estimate of regression coefficient. Models are adjusted for maternal social class, maternal 

smoking during pregnancy, birth weight, breastfeeding, total energy intake at 7 years, lung function measures at 8 years, wear-time spent in 

MVPA at 11 years, pubertal status (age at menarche for girls and voice break status at age 15 years for boys), as well as age and height at 

15 years. Models for FMI and LBMI are also mutually adjusted. Bold: p-value <0.05 

Table E14. Continued  

  

FVC change 

(mL/year) 

 FEV1 change 

(mL/year) 

 FEF25-75 change 

(mL/s·year) 

 

  
Adjusted β [95% CI]  p-value Adjusted β  [95% CI]  p-value Adjusted β [95% CI]  p-value 

 Overweight 11.9 [-2.4; 26.2] 0.103 3.4 [-9.9; 16.7] 0.615 -13.7 [-36.8; 9.4] 0.244 

 Obese 20.8 [-0.8; 42.4] 0.059 3.9 [-16.2; 23.9] 0.706 -11.4 [-46.3; 23.5] 0.520 

  p-trend 0.028 p-trend 0.558 p-trend 0.301 

LBMI Low  (Reference)  (Reference)  (Reference)  

 Medium-low  27.4 [12.1; 42.7] <0.0001 25.3 [10.9; 39.8] 0.001 33.0 [7.7; 58.3] 0.011 

 Medium-high  43.5 [27.4; 59.6] <0.0001 35.5 [20.4; 50.6] <0.0001 33.9 [7.5; 60.2] 0.012 

 High  50.7 [29.4; 72] <0.0001 36.6 [16.7; 56.5] <0.0001 34.6 [-0.2; 69.4] 0.052 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.056 

FMI   Low  (Reference)  (Reference)  (Reference)  

 Medium-low  -3.9 [-18.0; 10.2] 0.588 -2.8 [-16.1; 10.5] 0.676 -4.0 [-27.5; 19.5] 0.738 

 Medium-high  -4.7 [-19.5; 10.1] 0.534 -7.1 [-20.9; 6.7] 0.316 -16.9 [-41.4; 7.6] 0.177 

 High 2.5 [-16.1; 21.2] 0.792 -5.1 [-22.6; 12.4] 0.569 -16.5 [-47.4; 14.5] 0.296 

  p-trend 0.973 p-trend 0.295 p-trend 0.098 



 

Table E15. Adjusted associations of body weight and composition trajectories with pre-bronchodilation lung function growth rates 

from age 8 to 15 years: Excluding children with lifetime doctor-diagnosed asthma (n=865)    

  FVC change (mL/year)  FEV1 change (mL/year)  FEF25-75 change (mL/s·year)  

  Adjusted β [95% CI]  p-value Adjusted β  [95% CI]  p-value Adjusted β [95% CI]  p-value 

BOYS  
      

BMI  Normal-low (Reference)  (Reference)  (Reference)  

 Normal-high 26.8 [10.7; 42.9] 0.001 23.5 [9.2; 37.7] 0.001 27.5 [5.2; 49.7] 0.016 

 Overweight 30.8 [11.5; 50.0] 0.002 21.4 [4.2; 38.6] 0.015 20.2 [-6.2; 46.6] 0.134 

 Obese 10.9 [-17.1; 38.8] 0.446 -8.8 [-33.4; 15.8] 0.482 -24.4 [-62.8; 14.0] 0.212 

  p-trend 0.026 p-trend 0.404 p-trend 0.985 

LBMI Low  (Reference)  (Reference)  (Reference)  

 Medium-low  33.1 [6.4; 59.7] 0.015 27.8 [3.5; 52.0] 0.025 26.0 [-12.0; 64.0] 0.179 

 Medium-high  71.5 [44.6; 98.3] <0.0001 58.4 [34.0; 82.8] <0.0001 49.5 [11.3; 87.7] 0.011 

 High  98.7 [66.9; 130.4] <0.0001 77.3 [48.6; 106.0] <0.0001 67.3 [22.3; 112.3] 0.003 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 

FMI   Low  (Reference)  (Reference)  (Reference)  

 Medium-low  7.5 [-8.9; 23.9] 0.369 12.6 [-2.0; 27.2] 0.092 29.1 [5.7; 52.4] 0.015 

 Medium-high  6.2 [-12.1; 24.5] 0.505 2.8 [-13.5; 19.2] 0.736 5.7 [-20.4; 31.7] 0.669 

 High -17.5 [-41.0; 6.0] 0.144 -28.5 [-49.3; -7.7] 0.007 -32.0 [-65.3; 1.3] 0.059 

  p-trend 0.368 p-trend 0.030 p-trend 0.088 

GIRLS        

BMI  Normal-low (Reference)  (Reference)  (Reference)  

 Normal-high 7.1 [-4.7; 18.9] 0.237 1.7 [-9.3; 12.8] 0.757 -1.9 [-20.5; 16.8] 0.844 

      (Continued)  



 

Rate of lung function growth for each parameter was calculated as: (pre-bronchodilation lung function measure at 15 years - pre-

bronchodilation lung function measure at 8 years)/time follow-up. Definition of abbreviations: BMI, body mass index; FEF25-75 forced 

expiratory flow at 25-75%; FEV1, volume expired in the first second; FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body 

mass index; 95% CI, 95% confidence intervals; β, estimate of regression coefficient. Models are adjusted for maternal social class, maternal 

smoking during pregnancy, birth weight, breastfeeding, lung function measures at 8 years, pubertal status (age at menarche for girls and 

voice break status at age 15 years for boys), as well as age and height at 15 years. Models for FMI and LBMI are also mutually adjusted. 

Bold: p-value <0.05 

Table E15. Continued 

  
FVC change (mL/year)  FEV1 change (mL/year)  FEF25-75 change (mL/s·year)  

  
Adjusted β [95% CI]  p-value Adjusted β [95% CI]  p-value Adjusted β [95% CI]  p-value 

 Overweight 16.5 [2.3; 30.7] 0.023 6.6 [-6.6; 19.9] 0.327 -2.3 [-24.6; 20.0] 0.839 

 Obese 30.4 [7.3; 53.4] 0.010 13.6 [-7.7; 34.9] 0.210 10.3 [-26.0; 46.5] 0.578 

  p-trend 0.003 p-trend 0.169 p-trend 0.846 

LBMI Low  (Reference)  (Reference)  (Reference)  

 Medium-low  29.5 [14.7; 44.3] <0.0001 24.8 [10.7; 38.8] 0.001 28.5 [4.8; 52.2] 0.018 

 Medium-high  43.5 [27.7; 59.2] <0.0001 36.3 [21.5; 51.2] <0.0001 42.6 [17.9; 67.3] 0.001 

 High  58.2 [36.7; 79.8] <0.0001 43.7 [23.4; 64.0] <0.0001 50.5 [16.3; 84.6] 0.004 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.001 

FMI   Low  (Reference)  (Reference)  (Reference)  

 Medium-low  -3.6 [-17.5; 10.3] 0.613 -5.7 [-18.8; 7.3] 0.387 -6.4 [-28.8; 16.0] 0.576 

 Medium-high  0.7 [-13.8; 15.1] 0.928 -4.8 [-18.3; 8.7] 0.487 -12.5 [-35.7; 10.8] 0.294 

 High 5.6 [-13.1; 24.3] 0.559 -3.8 [-21.3; 13.6] 0.668 -16.0 [-46.1; 14.2] 0.299 

  p-trend 0.484 p-trend 0.651 p-trend 0.194 



 

Table E16. Adjusted associations of body weight and composition trajectories with pre-bronchodilation lung function growth rates 

from age 8 to 15 years: Excluding children with extreme lung function growth rates (<p1 and p>99)  
  FVC change  

(mL/year) 

 FEV1 change 

(mL/year) 

 FEF25-75 change 

(mL/s·year) 

 

  Adjusted β [95% CI]  p-value Adjusted β  [95% CI]  p-value Adjusted β [95% CI]  p-value 

BOYS  
      

BMI  Normal-low (Reference)  (Reference)  (Reference)  

 Normal-high 22.0 [9.5; 34.4] 0.001 17.8 [6.8; 28.8] 0.002 22.8 [4.5; 41.1] 0.015 

 Overweight 30.2 [15.4; 45.0] <0.0001 21.9 [8.6; 35.1] 0.001 24.8 [2.9; 46.7] 0.026 

 Obese 24.9 [3.5; 46.2] 0.023 1.5 [-17.0; 20.0] 0.876 -13.7 [-44.4; 17.0] 0.381 

  p-trend <0.0001 p-trend 0.06 p-trend 0.523 

LBMI Low  (Reference)  (Reference)  (Reference)  

 Medium-low  28.9 [9.1; 48.7] 0.004 28.2 [10.5; 45.8] 0.002 25.7 [4.9; 46.5] 0.016 

 Medium-high  63.6 [43.7; 83.6] <0.0001 57.4 [39.6; 75.2] <0.0001 34.0 [12.5; 55.5] 0.002 

 High  83.0 [59.5; 106.4] <0.0001 70.4 [49.6; 91.2] <0.0001 42.1 [13.8; 70.4] 0.004 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.003 

FMI   Low  (Reference)  (Reference)  (Reference)  

 Medium-low  4.9 [-7.9; 17.7] 0.450 3.3 [-8.0; 14.6] 0.566 6.1 [-12.7; 25.0] 0.523 

 Medium-high  4.7 [-9.5; 18.9] 0.518 -2.8 [-15.4; 9.8] 0.659 -4.0 [-23.6; 15.6] 0.688 

 High -5.3 [-23.8; 13.2] 0.572 -21.4 [-37.6; -5.3] 0.009 -13.3 [-37.5; 10.9] 0.281 

  p-trend 0.814 p-trend 0.018 p-trend 0.127 

GIRLS        

BMI  Normal-low (Reference)  (Reference)  (Reference)  

 Normal-high 7.1 [-2.3; 16.6] 0.140 4.7 [-4.1; 13.5] 0.297 -0.1 [-16.0; 15.8] 0.990 

      (Continued)  



 

Rate of lung function growth for each parameter was calculated as: (pre-bronchodilation lung function measure at 15 years - pre-

bronchodilation lung function measure at 8 years)/time follow-up. Definition of abbreviations: BMI, body mass index; FEF25-75 forced 

expiratory flow at 25-75%; FEV1, volume expired in the first second; FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body 

mass index; 95% CI, 95% confidence intervals; β, estimate of regression coefficient. Models are adjusted for maternal social class, maternal 

smoking during pregnancy, birth weight, breastfeeding, lung function measures at 8 years, pubertal status (age at menarche for girls and 

voice break status at age 15 years for boys), as well as age and height at 15 years. Models for FMI and LBMI are also mutually adjusted. 

Number of observations deleted from the adjusted models: FVC (boys/girls):262/303; FEV1: 282/340; FEF25-75:263/304. Bold: p-value 

<0.05 

Table E16. Continued 

  

FVC change  

(mL/year) 

 FEV1 change 

(mL/year) 

 FEF25-75 change 

(mL/s·year) 

 

  
Adjusted β [95% CI]  p-value Adjusted β [95% CI]  p-value Adjusted β [95% CI]  p-value 

 Overweight 14.5 [3.3; 25.7] 0.011 6.5 [-3.9; 16.8] 0.219 -3.2 [-21.7; 15.3] 0.734 

 Obese 25.4 [8.5; 42.3] 0.003 9.9 [-5.8; 25.6] 0.215 -0.4 [-28.3; 27.5] 0.979 

  p-trend 0.001 p-trend 0.148 p-trend 0.810 

LBMI Low  (Reference)  (Reference)  (Reference)  

 Medium-low  18.6 [6.5; 30.7] 0.003 18.7 [7.3; 30.1] 0.001 31.3 [10.9; 51.6] 0.003 

 Medium-high  35.0 [22.2; 47.8] <0.0001 30.2 [18.3; 42.1] <0.0001 33.5 [12.4; 54.7] 0.002 

 High  43.8 [26.8; 60.9] <0.0001 32.5 [16.6; 48.4] <0.0001 43.9 [15.6; 72.1] 0.002 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.005 

FMI   Low  (Reference)  (Reference)  (Reference)  

 Medium-low  -0.9 [-12.0; 10.2] 0.875 1.4 [-9.0; 11.8] 0.793 0.6 [-18.3; 19.5] 0.950 

 Medium-high  0.3 [-11.3; 12.0] 0.955 -0.7 [-11.5; 10.1] 0.897 -4.6 [-24.2; 15.1] 0.649 

 High 6.2 [-8.3; 20.7] 0.399 -1.7 [-15.2; 11.7] 0.801 -9.3 [-33.8; 15.2] 0.455 

  p-trend 0.462 p-trend 0.573 p-trend 0.303 



 

Table E17. Adjusted associations of body weight and composition trajectories with pre-bronchodilation lung function growth rates 

from age 8 to 15 years: Without adjustment for lung function at 8 years 

  FVC change 

 (mL/year) 

 FEV1 change  

(mL/year) 

 FEF25-75 change  

(mL/s·year) 

 

  Adjusted β [95% CI]  p-value Adjusted β  [95% CI]  p-value Adjusted β [95% CI]  p-value 

BOYS  
      

BMI  Normal-low (Reference)  (Reference)  (Reference)  

 Normal-high 21.4 [8.0; 34.9] 0.002 20.6 [8.8; 32.4] 0.001 24.9 [6.0; 43.7] 0.010 

 Overweight 24.3 [8.3; 40.2] 0.003 18.7 [4.7; 32.7] 0.009 19.7 [-2.6; 42.1] 0.083 

 Obese 10.8 [-11.8; 33.4] 0.349 -2.4 [-22.2; 17.4] 0.812 -14.1 [-45.9; 17.6] 0.382 

  p-trend 0.022 p-trend 0.209 p-trend 0.728 

LBMI Low  (Reference)  (Reference)  (Reference)  

 Medium-low  32.9 [11.3; 54.4] 0.003 30.3 [11.2; 49.5] 0.002 31.0 [0.2; 61.7] 0.048 

 Medium-high  64.9 [43.2; 86.6] <0.0001 57.6 [38.4; 76.9] <0.0001 54.7 [23.7; 85.6] 0.001 

 High  86.0 [60.8; 111.3] <0.0001 73.8 [51.5; 96.1] <0.0001 69.3 [33.3; 105.3] <0.0001 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 

FMI   Low  (Reference)  (Reference)  (Reference)  

 Medium-low  7.0 [-7.0; 20.9] 0.326 9.6 [-2.6; 21.9] 0.122 20.1 [0.2; 40.1] 0.047 

 Medium-high  3.4 [-12.1; 18.9] 0.666 -1.9 [-15.5; 11.7] 0.782 -4.9 [-26.9; 17.2] 0.665 

 High -17.6 [-37.5; 2.2] 0.082 -24.7 [-42.0; -7.3] 0.005 -24.5 [-52.9; 3.8] 0.090 

  p-trend 0.195 p-trend 0.009 p-trend 0.048 

GIRLS        

BMI  Normal-low (Reference)  (Reference)  (Reference)  

 Normal-high 7.0 [-3.4; 17.4] 0.186 4.1 [-5.7; 13.9] 0.411 -0.5 [-17.4; 16.5] 0.959 

      (Continued)  



 

Rate of lung function growth for each parameter was calculated as: (pre-bronchodilation lung function measure at 15 years - pre-

bronchodilation lung function measure at 8 years)/time follow-up Definition of abbreviations: BMI, body mass index; FEF25-75 forced 

expiratory flow at 25-75%; FEV1, volume expired in the first second; FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body 

mass index; 95% CI, 95% confidence intervals; β, estimate of regression coefficient. Models are adjusted for maternal social class, maternal 

smoking during pregnancy, birth weight, breastfeeding, pubertal status (age at menarche for girls and voice break status at age 15 years for 

boys), as well as age and height at 15 years. Models for FMI and LBMI are also mutually adjusted. Bold: p-value <0.05 

Table E17. Continued  

  

FVC change 

 (mL/year) 

 FEV1 change  

(mL/year) 

 FEF25-75 change  

(mL/s·year) 

 

  
Adjusted β [95% CI]  p-value Adjusted β [95% CI]  p-value Adjusted β [95% CI]  p-value 

 Overweight 16.2 [4.1; 28.4] 0.009 7.9 [-3.5; 19.4] 0.173 -2.2 [-22.1; 17.7] 0.829 

 Obese 26.3 [8.1; 44.5] 0.005 9.2 [-7.8; 26.1] 0.290 -5.7 [-35.4; 24.0] 0.707 

  p-trend 0.001 p-trend 0.146 p-trend 0.710 

LBMI Low  (Reference)  (Reference)  (Reference)  

 Medium-low  24.5 [11.2; 37.8] <0.0001 23.2 [10.6; 35.7] <0.0001 30.6 [8.7; 52.5] 0.006 

 Medium-high  40.0 [26.3; 53.8] <0.0001 34.9 [21.9; 47.9] <0.0001 36.9 [14.2; 59.6] 0.001 

 High  51.6 [33.3; 69.9] <0.0001 40.6 [23.4; 57.7] <0.0001 45.1 [15.0; 75.2] 0.003 

  p-trend <0.0001 p-trend  p-trend 0.003 

FMI   Low  (Reference)  (Reference)  (Reference)  

 Medium-low  -3.7 [-16.1; 8.6] 0.550 -3.6 [-15.1; 8.0] 0.545 -3.9 [-24.2; 16.4] 0.706 

 Medium-high  -1.2 [-14; 11.6] 0.850 -3.9 [-15.8; 8.1] 0.527 -9.4 [-30.5; 11.8] 0.386 

 High 3.4 [-12.6; 19.3] 0.679 -5.9 [-20.8; 9.0] 0.436 -17.1 [-43.3; 9.2] 0.202 

  p-trend 0.669 p-trend 0.381 p-trend 0.131 



 

Table E18. Adjusted associations of body weight and composition trajectories with pre-bronchodilation lung function growth rates 

from age 8 to 15 years: Using lung function measures as standard deviation scores derived using the Global Lung Initiative equations 

  FVC change 

(mL/year) 

 FEV1 change 

(mL/year) 

 FEF25-75 change 

(mL/s·year) 

 

  Adjusted β [95% CI]  p-value Adjusted β  [95% CI]  p-value Adjusted β [95% CI]  p-value 

BOYS  
      

BMI  Normal-low (Reference)  (Reference)  (Reference)  

 Normal-high 50.9 [26.4; 75.5] <0.0001 51.6 [27.7; 75.5] <0.0001 33.8 [13.9; 53.7] 0.001 

 Overweight 71.9 [42.8; 101.0] <0.0001 60.1 [31.7; 88.5] <0.0001 36.2 [12.6; 59.9] 0.003 

 Obese 54.6 [13.6; 95.7] 0.009 31.9 [-7.8; 71.7] 0.115 26.0 [-7.3; 59.3] 0.125 

  p-trend <0.0001 p-trend 0.001 p-trend 0.008 

LBMI Low  (Reference)  (Reference)  (Reference)  

 Medium-low  61.4 [21.5; 101.2] 0.003 60.7 [21.5; 99.8] 0.002 32.2 [-0.6; 65.1] 0.055 

 Medium-high  124.7 [84.5; 164.8] <0.0001 120.5 [81.1; 160.0] <0.0001 58.3 [25.3; 91.3] 0.001 

 High  170.8 [124.3; 217.3] <0.0001 157.8 [112.4; 203.3] <0.0001 75.3 [37.2; 113.5] <0.0001 

  p-trend <0.0001 p-trend <0.0001 p-trend <0.0001 

FMI   Low  (Reference)  (Reference)  (Reference)  

 Medium-low  18.7 [-6.8; 44.1] 0.150 23.3 [-1.4; 48.1] 0.065 24.7 [3.7; 45.8] 0.021 

 Medium-high  26.6 [-1.7; 54.8] 0.065 12.1 [-15.4; 39.7] 0.387 9.3 [-14; 32.6] 0.433 

 High -6.4 [-42.7; 30.0] 0.731 -23.6 [-58.9; 11.7] 0.189 4.5 [-25.6; 34.5] 0.771 

  p-trend 0.629 p-trend 0.369 p-trend 0.882 

GIRLS        

BMI  Normal-low (Reference)  (Reference)  (Reference)  

 Normal-high 24.0 [0.1; 47.9] 0.049 16.5 [-8.2; 41.1] 0.189 3.7 [-17.1; 24.5] 0.727 

      (Continued)  



 

Rate of lung function growth for each parameter was calculated as: (pre-bronchodilation lung function measure at 15 years - pre-

bronchodilation lung function measure at 8 years)/time follow-up Definition of abbreviations: BMI, body mass index; FEF25-75 forced 

expiratory flow at 25-75%; FEV1, volume expired in the first second; FMI, fat mass index; FVC, forced vital capacity; LBMI, lean body 

mass index; 95% CI, 95% confidence intervals; β, estimate of regression coefficient. Models are adjusted for maternal social class, maternal 

smoking during pregnancy, birth weight, breastfeeding, lung function measures at 8 years and pubertal status (age at menarche for girls and 

voice break for boys status at age 15 years for boys). Models for FMI and LBMI are also mutually adjusted. Bold: p-value <0.05 

Table E18. Continued 

  

FVC change 

(mL/year) 

 FEV1 change 

(mL/year) 

 FEF25-75 change 

(mL/s·year) 

 

  
Adjusted β [95% CI]  p-value Adjusted β [95% CI]  p-value Adjusted β [95% CI]  p-value 

 Overweight 59.2 [31.1; 87.3] <0.0001 40.0 [11.1; 68.9] 0.007 11.2 [-13.3; 35.6] 0.371 

 Obese 95.2 [53.3; 137.1] <0.0001 61.9 [19; 104.8] 0.005 22.6 [-13.9; 59.1] 0.224 

  p-trend 0.369 p-trend 0.001 p-trend 0.192 

LBMI Low  (Reference)  (Reference)  (Reference)  

 Medium-low  58.1 [27.9; 88.4] <0.0001 55.7 [24.2; 87.2] 0.001 34.4 [7.8; 61.1] 0.011 

 Medium-high  95.0 [63.1; 126.9] <0.0001 86.4 [53.5; 119.3] <0.0001 45.9 [18.2; 73.6] 0.001 

 High  139.5 [96.9; 182.2] <0.0001 120.3 [76.2; 164.3] <0.0001 63.0 [25.8; 100.3] 0.001 

  p-trend <0.0001 p-trend <0.0001 p-trend 0.001 

FMI   Low  (Reference)  (Reference)  (Reference)  

 Medium-low  -1.9 [-30.1; 26.2] 0.892 -0.7 [-29.8; 28.4] 0.962 6.4 [-18.5; 31.4] 0.613 

 Medium-high  11.8 [-17.6; 41.1] 0.431 4.8 [-25.4; 35.0] 0.756 2.6 [-23.4; 28.6] 0.842 

 High 34.2 [-1.9; 70.4] 0.063 14.1 [-23.2; 51.4] 0.458 5.1 [-27.0; 37.1] 0.755 

  p-trend 0.040 p-trend 0.448 p-trend 0.951 
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ABSTRACT 

Background: We previously reported an association of high fat mass 

levels from age 9 to 15 years with lower forced expiratory flow in 

one second (FEV1)/forced vital capacity (FVC) ratio (i.e. increased 

risk of airflow limitation) at 15 years. Here we aimed to assess 

whether C-reactive protein (CRP) or/and insulin resistance at 15 

years mediate (at least in part) this association.  

Methods: We included 2,263 children from the UK Avon 

Longitudinal Study of Parents and Children birth cohort. Four fat 

mass index (FMI) trajectories (‘low’, ‘medium-low’, ‘medium-high’, 

‘high’) from 9 to 15 years were previously identified using Group-

based Trajectory Modelling. Data on CRP, glucose, insulin and 

FEV1/FVC were available at 15 years. We defined insulin resistance 

by means the homeostasis model assessment-estimated insulin 

resistance (HOMA-IR) index. We used adjusted linear regression 

models and the ‘mediate’ package in ‘R’ to assess the presence of 

mediation.  

Results: There was no evidence for a role of CRP levels in the 

association between FMI trajectories and FEV1/FVC. HOMA-IR 

appeared to mediate 20% of the association between fat mass and 

FEV1/FVC in the ‘medium-high’ and ‘high’ trajectories (indirect 

effect [95%CI]: -0.17% [-0.35 to -0.01] and -0.38% [-0.72 to -0.04], 

per one standard deviation increase in HOMA-IR, respectively) 

compared to the ‘low’ FMI trajectory. 
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Conclusion: The association of mid-childhood fat mass with the 

FEV1/FVC ratio at 15 years may be mediated in part by insulin 

resistance. We found no evidence of mediation by CRP. 

Keywords: ALSPAC, CRP, epidemiology, insulin resistance, 

mediation 
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BACKGROUND 

Obesity is a major public health problem associated with several 

adverse health outcomes, including detrimental effects on respiratory 

health [1,2]. In children and adolescents, obesity (as measured by 

body mass index (BMI), waist circumference or fat mass) has been 

related with the levels of lung function (forced expiratory volume in 

one second (FEV1), forced vital capacity (FVC) and the ratio between 

them) [3–7]. Although results for FEV1 and FVC vary depending on 

the measures used, a consistent association has been reported 

between obesity and the FEV1/FVC ratio, the primary index of 

airflow limitation. Systemic inflammation, induced by fat mass, has 

been proposed as a potential mechanism underlying this association. 

Several studies have reported positive associations between body fat 

mass and levels of C-reactive protein levels (CRP), a commonly 

systemic inflammation marker, in children and adolescents [8–10]. 

Higher CRP levels have also been associated with impaired lung 

function [11–13]. In addition, in the last years several studies have 

suggested that obesity may impair lung function also by means of 

metabolic derangements [14]. There is growing evidence that insulin 

resistance, a common consequence of childhood obesity [9,15], is 

associated with reduced lung function levels and asthma-like 

symptoms in children [16–18]. However, despite this evidence, no 

previous study has explicitly assessed whether childhood obesity 

leads to lower FEV1/FVC via CRP or insulin resistance. 

We previously reported an association of high fat mass levels from 

age 9 to 15 years with lower FEV1/FVC at 15 years in children 
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participating in the UK population-based Avon Longitudinal study of 

Parents and Children (ALSPAC) birth cohort [6]. Here we aimed to 

explore the underlying mechanisms of this association. Specifically, 

we assessed whether CRP levels and/or insulin resistance at 15 years 

mediate (at least in part) the association of fat mass and FEV1/FVC, 

using a casual mediation analysis approach. Identifying the 

biological underlying mechanisms is of utmost importance to 

strengthen causal inference between obesity and respiratory health.  

 

METHODS 

Study population 

We used data from the UK ALSPAC birth cohort, previously 

described [19,20]. Briefly, ALSPAC recruited 14,541 pregnant 

women residents in Avon, UK, with expected dates of delivery 

between the 1st of April 1991, and the 31st of December 1992. Since 

age 7, surviving offspring has attended to regular follow-up clinic 

visits. The present analysis was restricted to children from singleton 

births with available information for the identification of fat mass 

index trajectories from 9 to 15 years and with lung function, CRP and 

insulin resistance data at 15 years (Figure S1). The ALSPAC Ethics 

and Law Committee and the Local Research Ethics Committees gave 

ethical approval.  

All participants and their parents/guardians provided written 

informed consent. 
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Fat mass index trajectories  

Body composition and height were measured at clinic visits at age 9, 

11, 13 and 15 years. Total fat mass was derived using a Lunar Prodigy 

DXA scanner (GE Medical Systems Lunar, Madison, WI, USA) 

following standardized procedures previously described [21]. We 

calculated fat mass index (FMI) by diving total body fat mass (kg) by 

height squared (m). We previously identified four FMI trajectories 

from 9 to 15 years (‘low’, ‘medium-low’, ‘medium-high’ and ‘high’) 

using a Group-Based Trajectory Modelling approach [6] (Figure 1). 

We used these trajectories as the exposure variable.  

Lung function  

Lung function was measured by spirometry at 8 and 15 years 

(Vitalograph 2120; Vitalograph, Maids Moreton, UK) according to 

American Thoracic Society standards [22], as described previously 

[23]. At 15 years, lung function was measured before and after 

bronchodilation with salbutamol. Forced vital capacity (FVC) and 

forced expiratory volume in 1 second (FEV1) were obtained and the 

FEV1/FVC ratio was calculated. We used post-bronchodilation 

FEV1/FVC at 15 years as the main outcome variable. We also 

calculated FEV1/FVC standard deviation score (z-score) using the 

Global Lung Initiative (GLI) equation references, [24] and used this 

variable in sensitivity analyses. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sex-specific FMI trajectories from 9 to 15 years.  

The y-axis represents the natural log-transformed levels of FMI (the equivalent raw value can be calculated by exponentiation of the log 

transformed value). Abbreviations: FMI: fat mass index. Adapted from Peralta GP, et al. Am J Respir Crit Care Med. 2019;200(1):75-83. 
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CRP and insulin resistance  

Blood samples were obtained during the 15 years clinic visit. 

Participants fasted overnight before attending the clinic visit if seen 

in the morning, or at least for 6 h if seen in the afternoon. Blood 

samples were immediately frozen and stored at -80 ºC, which were 

assayed three to nine months after blood sampling with not freeze-

thaw cycles in between. High sensitivity CRP was measured by 

automated particle-enhanced immunoturbidimetric assay (Roche 

UK, Welwyn Garden City, UK). Insulin was measured with an 

enzyme linked immunosorbent assay (ELISA) (Mercodia, Uppsala, 

Sweden) that does not cross-react with proinsulin, and plasma 

glucose was measured with an auto-mated assay. Insulin resistance 

was calculated as a continuous measure from insulin and glucose by 

using the homeostasis model assessment-estimated insulin resistance 

(HOMA-IR), which is calculated by multiplying fasting plasma 

glucose (mmol/L) and fasting serum insulin (mU/L) and dividing by 

22.5 [18,25]. As CRP and HOMA-IR data did not follow a normal 

distribution, we applied the natural log-transformation to these 

variables and used log-transformed CRP and HOMA-IR in mediation 

analysis.     

Other relevant characteristics 

We collected data on sociodemographic and lifestyle factors at 

different time points. Information on maternal social class and 

smoking status was obtained using questionnaires during pregnancy. 

Birthweight, gestational age and sex were obtained from birth 

records. Data on breastfeeding, total energy intake of the child at 7 
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years and environmental tobacco exposure at 8 years were obtained 

using questionnaires. At 11 years, physical activity was measured by 

accelerometer and the wear-time spent in moderate to vigorous 

physical activity (MVPA) [21] was obtained. At 15 years, children 

reported if a doctor had ever diagnosed them with asthma and if they 

had had chest infection, upper respiratory tract infection (URTI) or 

cold with fever in past three weeks before the spirometry test. Finally, 

puberty at 15 years was assessed using self-completed Tanner 

questionnaires. We defined pubertal status based on pubic hair 

development stage for boys and girls.  Full details on how these 

variables were measured are provided in the online supplement.  

Statistical analysis 

To assess the potential mediating role of CRP and HOMA-IR on the 

association of FMI trajectories with FEV1/FVC at 15 years we used 

a causal inference analysis approach, which is based on a 

counterfactual framework [26]. We performed the mediation analysis 

following several steps. First, we fit two mediator models, where 

CRP and HOMA-IR levels were modelled as a function of FMI 

trajectories in separate models, after adjusting for relevant 

confounders (maternal social class and smoking during pregnancy, 

and child’s sex, age, height and pubertal status at 15 years). Then, we 

built the outcome model, which model FEV1/FVC as a function of 

CRP and HOMA-IR, in separate models, including FMI trajectories 

and the same covariates used in the mediator models plus FEV1/FVC 

at 8 years. We used linear regression models to estimate both the 

mediator and outcome models.  



145 
 

The mediator and outcome models were then incorporated into the 

‘mediation’ package in the statistical program ‘R’ (version 3.6.3), 

which estimates the amount of the association between FMI 

trajectories and FEV1/FVC that occurs through changes in CRP or 

HOMA-IR. Using previously developed algorithms [26], the 

‘mediation’ package provides three effect estimates: the indirect 

effect (the population average causal mediation effect that is 

occurring through the mediator, i.e. through changing CRP or 

HOMA-IR levels), the direct effect (the remaining population 

average effect that is not occurring through changes in CRP or 

HOMA-IR) and the total effect (the sum of the indirect and direct 

effects). Confidence intervals around these effect estimates are 

calculated using a quasi-Bayesian Monte Carlo method based on 

normal approximation. Further details of the statistical procedures 

have been published elsewhere [27].  

We performed several sensitivity analyses. Children who reported 

lifetime doctor-diagnosed asthma, those with chest infection, URTI 

or cold with fever in past three weeks before spirometry and those 

with CRP/HOMA-IR levels equal or above the 95th percentile were 

excluded in separate analyses. We also repeated the analysis 

additionally adjusting mediator and outcome models for child’s 

energy intake at 7 years, environmental tobacco exposure at 8 years 

and wear-time spent in MVPA at 11years. In addition, we repeated 

models using FEV1/FVC z-score instead of the absolute value as 

outcome variable. Finally, we tested the robustness of the indirect 

effects to violation of the sequential ignorability assumption (i.e. 
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unmeasured residual confounding) using the ‘medsens’ function of 

the ‘mediation’ package [27].  

 

RESULTS 

Sample description  

We included 2,263 children in the present analysis. Mother of these 

children were older at pregnancy, had higher educational level, were 

less likely to smoke during pregnancy and more likely to breastfed 

than mothers of children not included in the analysis (Table S1). In 

addition, included children had higher birth weight and gestational 

age and lower FEV1/FVC at 8 years than children not included. Table 

1 shows the main characteristics of the study sample. Approximately 

46% of the mothers had a high social class (professional and 

intermediate) and 17% smoked during pregnancy. Approximately 

24% of the children reports lifetime doctor-diagnosed asthma and 

19% of them were classified in the ‘low’ FMI trajectory. 
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Table 1. Characteristics of the study sample (n=2,263) * 

 
n (%), mean (SD) 

or median (P25-P75) 

Maternal characteristics  

Age at delivery (years) 29.2 (4.5) 

Social class   

Professional and intermediate  815 (45.6) 

Skilled nonmanual 672 (37.6) 

Skilled manual, partly skilled and unskilled 299 (16.7) 

Smoking during pregnancy: yes 343 (16.6) 

Child characteristics  

Sex: girl 1,144 (50.6) 

Birth weight (grams)  3,466 (515)  

Gestation (weeks) 39.6 (1.7) 

Pre-term delivery (<37 weeks gestation) 80 (3.7) 

Ever breastfed: yes  1,865 (88.5) 

Total energy intake (kcal) at 7 years  1,733 (306) 

Wear-time in MVPA (minutes) at 11 years 19.5 (11.7 - 30.7) 

Lifetime doctor-diagnosed asthma: yes 534 (23.6) 

Age at 15 years (years) 15.4 (0.3) 

Height at 15 years (metres) 1.7 (0.1) 

Pubertal status 15 years: Tanner stage for pubic 

hair 
 

Stage 1-3 105 (5.2) 

Stage 4 918 (45.4) 

Stage 5 1,001 (49.4) 

FMI trajectories from 9 to 15 years  

Low 422 (18.7) 

Medium-low 835 (36.9) 

Medium-high 686 (30.3) 

High 320 (14.1) 

CRP (mg/L)15 years 0.4 (0.2 - 0.9) 

Log CRP 15 years -0.7 (1.1) 

HOMA-IR 15 years 2.1 (1.5 - 2.8) 

Log HOMA-IR 15 years 0.7 (0.5) 

 (Continued) 
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Table 1. Continued n (%), mean (SD) 

or median (P25-P75) 

Lung function measures   

8 years (pre-bronchodilation)  

FVC (L) 1.9 (0.3) 

FEV1 (L) 1.7 (0.3) 

FEV1/FVC (%) 88.1 (6.5) 

15 years (post -bronchodilation)  

FVC (L) 3.8 (0.9) 

FEV1 (L) 3.5 (0.8) 

FEV1/FVC (%) 92.1 (6.5) 

* Some variables had missing values: Maternal characteristics: 477 in maternal 

social class, 191 in smoking during pregnancy, 93 in age at delivery; Child 

characteristics: 93 in gestational age, 121 in birthweight, 155 in ever breastfed, 

348 in total energy intake at 7 years, 376 in wear-time in MVPA at 11 years, 20 in 

height at 15 years, 239 in pubertal status, 307 in FVC at 8 years, 328 in FEV1 at 8 

years and 328 in FEV1/FVC at 8 years. 

Abbreviations: CRP: C-reactive protein; CSE: certificate of secondary education; 

FEV1: forced expiratory volume in one second; FMI: fat mass index; FVC: forced 

vital capacity; HOMA-IR: homeostasis model assessment-estimated insulin 

resistance; MVPA: moderate to vigorous physical activity; P25-P75, 25th and 75th 

percentiles. 
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Mediating role of CRP and HOMA-IR on the association 

between FMI trajectories and FEV1/FVC at 15 years  

FMI trajectories were positively associated with CRP and HOMA-IR 

levels at 15 years (Table S2). CRP was not associated with 

FEV1/FVC at 15 years (estimate coefficient and 95% confidence 

intervals: -0.16% [-0.46 to 0.14]; p-value: 0.309, per one standard 

deviation increase in log-CRP), while HOMA-IR levels were 

negatively associated with FEV1/FVC (-0.74% [-1.40 to -0.08]; p-

value: 0.029, per one standard deviation increase in log-HOMA-IR).  

Compared to children in the ‘low’ FMI trajectory, children in the 

‘medium-high’ and ‘high’ FMI trajectories had lower FEV1/FVC at 

15 years (although the effect estimate for the ‘medium-high’ 

trajectory was imprecise). There was no evidence for a role of CRP 

levels in this association (Table 2). In contrast, HOMA-IR appeared 

to mediate 20% of the total effect of fat mass on FEV1/FVC in these 

trajectories (Table 3). The effect mediated via HOMA-IR (i.e. 

indirect effect) was -0.17% [-0.35 to -0.01] and -0.38% [-0.72 to -

0.04], per one standard deviation increase in log HOMA-IR, for the 

‘medium-high’ and ‘high’ trajectories, respectively. 

Sensitivity analyses yielded similar findings for a null role of CRP 

(Table S3 to S7) and a mediating role of HOMA-IR (Table S8 to 

S12). However, the effect mediated via HOMA-IR was imprecise 

when excluding children with HOMA-IR values equal of above the 

95th percentile (Table S10) and when models were additionally 

adjusted for child’s energy intake, environmental tobacco exposure 

and physical activity in a subsample (Table S11). Finally, the analysis 
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assessing the sequential ignorability assumption suggested that an 

unmeasured confounder that is correlated by -0.1 with both HOMA-

IR and FEV1/FVC could explain away the observed indirect effects.  

 

Table 2. Mediating role of log-CRP on the association between FMI 

trajectories and FEV1/FVC (%) at 15 years (n=1,404) 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 

Indirect 

(via CRP) 
-0.03 [-0.11 to 0.03] 0.320 

Direct 

(not via CRP) 
0.11 [-0.72 to 1.03] 0.840 

Total 0.08 [-0.78 to 0.99] 0.890 

Proportion 

mediated 
-0.02 [-1.00 to 1.23] 0.920 

Medium-

high vs. low 

Indirect 

(via CRP) 
-0.08 [-0.24 to 0.08] 0.310 

Direct 

(not via CRP) 
-0.73 [-1.66 to 0.17] 0.128 

Total -0.81 [-1.72 to 0.08] 0.078 

Proportion 

mediated 
0.09 [-0.51 to 0.99] 0.368 

High vs. low Indirect 

(via CRP) 
-0.18 [-0.51 to 0.17] 0.310 

Direct 

(not via CRP) 
-1.69 [-2.84 to -0.43] 0.006 

Total -1.87 [-2.98 to -0.65] 0.004 

Proportion 

mediated 
0.10 [-0.10 to 0.41] 0.310 

Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s sex, age, height and pubertal status at 15 years. The outcome model is 

additionally adjusted for FEV1/FVC at 8 years.  

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; CRP: C-

reactive protein; FEV1: forced expiratory volume in one second, FMI: fat mass 

index: FVC: forced vital capacity.   
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Table 3. Mediating role of log-HOMA-IR index on the association 

between FMI trajectories and FEV1/FVC (%) at 15 years (n=1,404) 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 
Indirect 

(via HOMA-IR) 
-0.05 [-0.13 to 0.01] 0.082 

Direct 

(not via HOMA-IR) 
0.13 [-0.70 to 1.05] 0.820 

Total 0.08 [-0.77 to 0.98] 0.888 

Proportion 

mediated 
-0.03 [-1.46 to 1.59] 0.890 

Medium-high 

vs. low 
Indirect 

(via HOMA-IR) 
-0.17 [-0.35 to -0.01] 0.032 

Direct 

(not via HOMA-IR) 
-0.63 [-1.55 to 0.27] 0.180 

Total -0.81 [-1.74 to 0.07] 0.084 

Proportion 

mediated 
0.20 [-1.14 to 1.70] 0.112 

High vs. low Indirect 

(via HOMA-IR) 
-0.38 [-0.72 to -0.04] 0.032 

Direct 

(not via HOMA-IR) 
-1.47 [-2.62 to -0.20] 0.018 

Total -1.85 [-2.96 to -0.62] 0.004 

Proportion 

mediated 
0.20 [0.02 to 0.69] 0.036 

Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s sex, age, height and pubertal status at 15 years. The outcome model is 

additionally adjusted for FEV1/FVC at 8 years.  

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; FEV1: 

forced expiratory volume in one second, FMI: fat mass index: FVC: forced vital 

capacity; HOMA-IR: homeostasis model assessment-estimated insulin resistance   
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DISCUSSION 

To our knowledge, this is the first study to examine the potential 

mediating role of CRP and insulin resistance on the association 

between high fat mass levels in mid-childhood and lower FEV1/FVC 

ratio at 15 years. Our study suggests that insulin resistance at 15 years 

may mediate part of this association, but we found no evidence of a 

mediating role of CRP.  

Interpretation  

Our finding that insulin resistance mediates part of the association 

between fat mass and FEV1/FVC is biologically plausible. Obesity is 

one of the most important risk factors for insulin resistance in 

childhood [15]. Insulin receptors are expressed in the lung and there 

is evidence that insulin can influence lung structure and function at 

different stages of life [28]. Previous research has also suggested that 

insulin has a direct effect on human airways by influencing airway 

smooth muscle and airway epithelial cells [14]. Results from a three-

year randomized control trial on the safety and direct effects of 

inhaled human insulin showed that those receiving the drug were 

more likely to exhibit respiratory symptoms and reduced lung 

function [29]. Similarly, a previous cross-sectional study found that 

insulin resistance (measured also using the HOMA-IR index) was 

associated with significant worsened lung function in 

overweight/obese adolescents [18].  

Although previous studies have reported an association between 

higher CRP levels and decreased lung function [11–13], we found no 
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evidence of a role of CRP on the association between mid-childhood 

fat mass and FEV1/FVC at 15 years. There are two potential 

explanations for this negative finding. First, it is possible that CRP 

affects in a similar magnitude FVC and FEV1, leading 

mathematically to a null effect on the ratio of these two parameters. 

This would be consistent with all previous studies on the topic, which 

have reported an association of CRP levels with FEV1 and/or FVC, 

but not with FEV1/FVC. Second, it is possible that CRP levels are so 

low in adolescence, that even those with higher levels would not have 

levels high enough to affect lung function. This is plausible because 

adolescents have been reported to have lower levels of CRP than 

adults [30] and all previous research on the association of CRP with 

lung function has been studied in adult samples only. In fact, our 

finding is in line with a previous study that reported no association 

between BMI status and airway inflammation (measured by FENO) at 

16 years [5]. Further research is needed to replicate our finding in 

other populations and to explore if CRP levels in other periods of 

childhood and adolescence could affect FEV1/FVC. 

Implications 

The results of the present study have important implications for 

future research. Since the adipose tissue is involved in the secretion 

of several proinflammatory markers other than CRP [31], future 

research should also consider other biomarkers of systemic 

inflammation such as interleukin-6 (IL-6) or tumour necrosis factor 

alpha (TNF-α), which have also been linked to lung function [11,32]. 

In addition, our study suggested that the association of high fat mass 
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with airflow limitation at 15 years is mediated by insulin resistance 

only in part (20% of the total effect). Therefore, future studies that 

also examine other potential mechanisms, such as the mechanical 

effects of fat mass on lungs [33], are needed to fully understand how 

fat mass affects lung function in adolescence A better understanding 

of the underlying biological mechanisms will help to strengthen 

causal inference between obesity and respiratory health. In turn, this 

will be of relevance for the development of public health strategies 

aiming to reduce respiratory morbidity, as determining that an 

association is causal indicates the possibility for interventions [31].  

Strengths and limitations 

Important strengths of this study are the population-based nature of 

the ALSPAC birth cohort and the availability of metabolic and 

inflammatory biomarkers, which allow us to examine two potential 

mechanisms for the association between fat mass and FEV1/FVC.  

A limitation of the present study is that the associations of CRP and 

insulin resistance with FEV1/FVC were assessed cross-sectionally 

and therefore are subject to potential reverse causation. However, it 

is unlikely that lung function levels affect CRP levels/insulin 

resistance. Another limitation is the potential selection bias produced 

by the fact that children included had a higher socioeconomic status, 

a higher birth weight, a higher gestational age, a higher proportion of 

breastfeeding and lower maternal smoking exposure than those 

excluded. In addition, the regional basis of the ALSPAC cohort may 

not allow the generalizability of our finding to populations with more 

ethnic variability and with different environmental and lifestyle 
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factors. Finally, although we account for a wide range of potential 

confounders, we cannot exclude residual confounding by 

unmeasured (e.g. genetic factors) or insufficiently measured 

confounders.  

Conclusion  

In conclusion, in this population-based study we found that insulin 

resistance may mediate part of the association between mid-

childhood fat mass and the FEV1/FVC ratio in adolescence, but we 

found no evidence of a role of CRP levels. Further longitudinal 

studies that evaluate other biomarkers of systemic inflammation and 

examine other potential mechanisms are needed to better understand 

the pathways linking obesity and respiratory health in adolescence.   
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Study population  

ALSPAC recruited 14,541 pregnant women residents in Avon, UK, 

with expected dates of delivery between the 1st of April, 1991, and 

the 31st of December 1992. 14,541 is the initial number of 

pregnancies for which the mother enrolled in the ALSPAC study and 

had either returned at least one questionnaire or attended a “Children 

in Focus” clinic by 19/07/99. Of these initial pregnancies, there was 

a total of 14,676 fetuses, resulting in 14,062 live births and 13,988 

children who were alive at 1 year of age.  

When the oldest children were approximately 7 years of age, an 

attempt was made to bolster the initial sample with eligible cases who 

had failed to join the study originally. As a result, when considering 

variables collected from the age of seven onwards (and potentially 

abstracted from obstetric notes) there are data available for more than 

the 14,541 pregnancies mentioned above. The number of new 

pregnancies not in the initial sample (known as Phase I enrolment) 

that are currently represented on the built files and reflecting 

enrolment status at the age of 18 is 706 (452 and 254 recruited during 

Phases II and III respectively), resulting in an additional 713 children 

being enrolled. The phases of enrolment are described in more detail 

in the cohort profile paper 1,2.  

The total sample size for analyses using any data collected after the 

age of seven is therefore 15,247 pregnancies, resulting in 15,458 

fetuses. Of this total sample of 15,458 fetuses, 14,775 were live births 

and 14,701 (including 14,305 singleton births) were alive at 1 year of 

age.  
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The study website contains details of all the data that are available 

through a fully searchable data dictionary at 

www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/. 

The ALSPAC Ethics and Law Committee and the Local Research 

Ethics Committees gave ethical approval. A list of the Research 

Ethics Committee approval references for each of the visits can be 

found at http://www.bristol.ac.uk/media-

library/sites/alspac/documents/governance/Research%20Ethics%20

Committee%20approval%20references.pdf. All participants and 

their parents/guardians provided written informed consent. 

Other relevant characteristics  

We collected data on sociodemographic and lifestyle factors at 

different time points from diverse sources. At 32 weeks of gestation, 

the mother recorded her occupation using a self- completed 

questionnaire, which was used to allocate her to a social class 

(professional and intermediate, skilled non-manual, skilled manual, 

partly skilled, and unskilled manual workers) based on the 1991 

Office of Population, Censuses and Surveys classifications. Smoking 

during pregnancy was assessed at 18 and 32 weeks of gestation using 

self-completed questionnaires and a dichotomous variable was 

created for any smoking during pregnancy. Birthweight, gestational 

age and sex were obtained from birth records. Information about 

breastfeeding was obtained at age 15 months from maternal self-

completed questionnaires. From the 7 years questionnaire, we 

obtained data on total energy intake of the child based on a 3-day 

report. Environmental tobacco exposure at age 8 years was recorded 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
http://www.bristol.ac.uk/media-library/sites/alspac/documents/governance/Research%20Ethics%20Committee%20approval%20references.pdf
http://www.bristol.ac.uk/media-library/sites/alspac/documents/governance/Research%20Ethics%20Committee%20approval%20references.pdf
http://www.bristol.ac.uk/media-library/sites/alspac/documents/governance/Research%20Ethics%20Committee%20approval%20references.pdf
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by the mother using a self-completed questionnaire. At 11 years, 

physical activity was measured by accelerometer (Actigraph LLC, 

Fort Walton Beach, FL, USA) and the wear-time spent in moderate 

to vigorous physical activity (MVPA)3 was obtained. At 15 years, 

children reported if a doctor had ever diagnosed them with asthma 

and if they had had chest infection, upper respiratory tract infection 

or cold with fever within three weeks before the spirometry test. 

Finally, puberty at 15 years was assessed using self-completed 

Tanner questionnaires. We defined pubertal status based on pubic 

hair development stage for boys and girls.  
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Figure S1. Flowchart of study participants  

Abbreviations: CRP: C-reactive protein; FMI: fat mass index; FEV1: 

forced expiratory volume in one second; FVC: forced vital capacity; post-

BD: post-bronchodilator  
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Values are n (%), mean (SD) or median (P25-P75). p-value for the Chi-squared, 

Mann-Whitney, or Student’s t-test. 

* Some variables had missing values in both the included (148 in maternal 

educational level, 191 in maternal smoking during pregnancy, 93 in maternal age 

at delivery, 93 in gestational age, 121 in birthweight, 155 in ever breastfed, 307 in 

FVC at 8 years, 328 in FEV1 at 8 years and 328 in FEV1/FVC at 8 years) and 

excluded children (4,484 in maternal educational level, 1,949 in maternal smoking 

during pregnancy, 599 in maternal age at delivery, 599 in gestational age, 742 in 

birthweight, 2,119 in ever breastfed, 7,181 in FVC at 8 years, 7,261 in FEV1 at 8 

years and 7,261 in FEV1/FVC at 8 years). 

Abbreviations: CSE: certificate of secondary education; FEV1: forced expiratory 

volume in one second; FVC: forced vital capacity. 

  

Table S1. Characteristics of children included and excluded from the 

analysis*  

 
Included 

(n=2,263) 

Excluded 

(n=12,039) 

p-

value 

Maternal characteristics    

Age at delivery (years) 29.2 (4.5) 27.7 (5.0) <0.001 

Social class     

Professional and 

intermediate 

815 (45.6) 2,612 (33.2) <0.001 

Skilled nonmanual 672 (37.6) 3,3409 (43.4)  

Skilled manual, partly 

skilled and unskilled 

299 (16.7) 1,837 (23.4)  

Smoking during 

pregnancy: yes 

343 (16.6) 3,119 (30.9) <0.001 

Child characteristics    

Sex: girl 1,144 (50.6) 5,830 (48.4) 0.063 

Birth weight (grams) 3,466 (515) 3404 (544) <0.001 

Gestation (weeks) 39.6 (1.7) 39.4 (1.9) 0.001 

Pre-term delivery (<37 

weeks gestation) 

80 (3.7) 605 (5.3) 0.002 

Ever breastfed: yes 1,865 (88.5) 7,431 (74.9) <0.001 

Lung function measures 8 

years 

   

FVC (L) 1.9 (0.3) 1.9 (0.3) 0.093 

FEV1 (L) 1.7 (0.3) 1.7 (0.3) 0.541 

FEV1/FVC (%) 88.1 (6.5) 88.5 (6.5) 0.029 
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Table S2. Adjusted associations between FMI trajectories and log-CRP 

and log-HOMA-IR at 15 years 
 log-CRP  log-HOMA-IR 

FMI 

trajectories 
Coef. [95%CI] p-value  Coef. [95%CI] p-value 

Low Reference 
  

Reference 
 

Medium-

low 

0.21 [0.06 to 0.36] 0.006 
 

0.07 [0.00 to 0.14] 0.058 

Medium-

high 

0.51 [0.35 to0.67] <0.001 
 

0.23 [0.16 to 0.30] <0.001 

High 1.11 [0.91 to 1.31] <0.001 
 

0.51 [0.42 to 0.60] <0.001 

Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s sex, age, height and pubertal status at 15 years. 

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; CRP: C-

reactive protein; HOMA-IR: homeostasis model assessment-estimated insulin 

resistance. 
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Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s sex, age, height and pubertal status at 15 years. The outcome model is 

additionally adjusted for FEV1/FVC at 8 years.  

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; CRP: C-

reactive protein; FEV1: forced expiratory volume in one second, FMI: fat mass 

index: FVC: forced vital capacity. 

 

Table S3. Mediating role of CRP index on the association between 

FMI trajectories and FEV1/FVC (%) at 15 years: Excluding children 

with ever doctor-diagnosed asthma (n=1,071) 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 

Indirect 

(via CRP) 
-0.03 [-0.11 to 0.03] 0.380 

Direct 

(not via CRP) 
0.06 [-0.88 to 1.11] 0.930 

Total 0.04 [-0.95 to 1.09] 0.960 

Proportion 

mediated 
0.00 [-1.33 to 0.76] 0.940 

    

Medium-

high vs. low 

Indirect 

(via CRP) 
-0.08 [-0.25 to 0.08] 0.300 

Direct 

(not via CRP) 
-0.81 [-1.88 to 0.22] 0.130 

Total -0.89 [-1.94 to 0.14] 0.096 

Proportion 

mediated 
0.08 [-0.63 to 0.8] 0.376 

    

High vs. low Indirect 

(via CRP) 
-0.21 [-0.60 to 0.19] 0.300 

Direct 

(not via CRP) 
-1.75 [-3.09 to -0.28] 0.014 

Total -1.96 [-3.25 to -0.55] 0.004 

Proportion 

mediated 
0.11 [-0.11 to 0.53] 0.300 



171 
 

Table S4. Mediating role of CRP index on the association between 

FMI trajectories and FEV1/FVC (%) at 15 years: Excluding children 

with chest infection/URTI/cold with fever in past 3 weeks before the 

spirometry test (n=1,319) 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 

Indirect 

(via CRP) 
-0.04 [-0.12 to 0.03] 0.260 

Direct 

(not via CRP) 
0.17 [-0.67 to 1.11] 0.740 

Total 0.14 [-0.74 to 1.07] 0.800 

Proportion 

mediated 
-0.03 [-1.43 to 1.46] 0.830 

    

Medium-

high vs. low 

Indirect 

(via CRP) 
-0.09 [-0.26 to 0.06] 0.250 

Direct 

(not via CRP) 
-0.62 [-1.58 to 0.30] 0.200 

Total -0.72 [-1.66 to 0.19] 0.130 

Proportion 

mediated 
0.11 [-0.84 to 1.22] 0.360 

    

High vs. low Indirect 

(via CRP) 
-0.21 [-0.55 to 0.15] 0.248 

Direct 

(not via CRP) 
-1.71 [-2.89 to -0.41] 0.008 

Total -1.92 [-3.06 to -0.66] 0.004 

Proportion 

mediated 
0.11 [-0.08 to 0.44] 0.248 

Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s sex, age, height and pubertal status at 15 years. The outcome model is 

additionally adjusted for FEV1/FVC at 8 years.  

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; CRP: C-

reactive protein; FEV1: forced expiratory volume in one second, FMI: fat mass 

index: FVC: forced vital capacity; URTI: upper respiratory tract infection.    
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Table S5. Mediating role of CRP index on the association between 

FMI trajectories and FEV1/FVC (%) at 15 years: Excluding children 

with log-CRP ≥ percentile 95th (n=1,338) 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 

Indirect 

(via CRP) 
-0.06 [-0.15 to 0.03] 0.180 

Direct 

(not via CRP) 
0.01 [-0.83 to 0.94] 0.990 

Total -0.05 [-0.91 to 0.87] 0.900 

Proportion 

mediated 
0.02 [-2.25 to 1.91] 0.930 

    

Medium-

high vs. low 

Indirect 

(via CRP) 
-0.13 [-0.31 to 0.06] 0.180 

Direct 

(not via CRP) 
-0.59 [-1.55 to 0.34] 0.250 

Total -0.71 [-1.65 to 0.18] 0.130 

Proportion 

mediated 
0.15 [-1.14 to 1.61] 0.290 

    

High vs. low Indirect 

(via CRP) 
-0.27 [-0.66 to 0.14] 0.176 

Direct 

(not via CRP) 
-1.36 [-2.57 to -0.05] 0.040 

Total -1.64 [-2.79 to -0.37] 0.006 

Proportion 

mediated 
0.16 [-0.09 to 0.86] 0.182 

Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s sex, age, height and pubertal status at 15 years. The outcome model is 

additionally adjusted for FEV1/FVCat 8 years.  

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; CRP: C-

reactive protein; FEV1: forced expiratory volume in one second, FMI: fat mass 

index: FVC: forced vital capacity.  
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Table S6. Mediating role of CRP index on the association between 

FMI trajectories and FEV1/FVC (%) at 15 years: Models 

additionally adjusted for energy intake, physical activity and 

environmental tobacco exposure (n=1,048) 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 

Indirect 

(via CRP) 
-0.05 [-0.15 to 0.02] 0.160 

Direct 

(not via CRP) 
0.10 [-0.95 to 1.00] 0.830 

Total 0.05 [-1.04 to 0.95] 0.890 

Proportion 

mediated 
-0.02 [-1.63 to 1.18] 0.910 

    

Medium-

high vs. low 

Indirect 

(via CRP) 
-0.14 [-0.34 to 0.04] 0.130 

Direct 

(not via CRP) 
-0.72 [-1.82 to 0.32] 0.170 

Total -0.86 [-1.97 to 0.16] 0.110 

Proportion 

mediated 
0.14 [-1.13 to 1.22] 0.230 

    

High vs. low Indirect 

(via CRP) 
-0.29 [-0.66 to 0.08] 0.126 

Direct 

(not via CRP) 
-1.55 [-3.01 to -0.07] 0.038 

Total -1.84 [-3.23 to -0.44] 0.012 

Proportion 

mediated 
0.16 [-0.06 to 0.73] 0.138 

Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s sex, energy intake at 7 years, environmental tobacco exposure at 8 years, 

physical activity at 11 years and age, height and pubertal status at 15 years. The 

outcome model is additionally adjusted for FEV1/FVC at 8 years.  

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; CRP: C-

reactive protein; FEV1: forced expiratory volume in one second, FMI: fat mass 

index: FVC: forced vital capacity.  
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Table S7. Mediating role of CRP index on the association between 

FMI trajectories and FEV1/FVC at 15 years: Using FEV1/FVC z-

score* as outcome variable 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 

Indirect 

(via CRP) 
-0.01 [-0.02 to 0.01] 0.350 

Direct 

(not via CRP) 
0.03 [-0.12 to 0.18] 0.650 

Total 0.03 [-0.12 to 0.18] 0.690 

Proportion 

mediated 
-0.02 [-1.45 to 0.99] 0.820 

    

Medium-

high vs. low 

Indirect 

(via CRP) 
-0.01 [-0.04 to 0.01] 0.348 

Direct 

(not via CRP) 
-0.18 [-0.33 to -0.03] 0.016 

Total -0.19 [-0.34 to -0.03] 0.008 

Proportion 

mediated 
0.07 [-0.09 to 0.43] 0.356 

    

High vs. low Indirect 

(via CRP) 
-0.03 [-0.09 to 0.03] 0.350 

Direct 

(not via CRP) 
-0.33 [-0.52 to -0.13] <0.001 

Total -0.36 [-0.55 to -0.16] <0.001 

Proportion 

mediated 
0.08 [-0.09 to 0.30] 0.350 

* Calculated using Global Lung Initiative equation references 2012. 

Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s pubertal status at 15 years. The outcome model is additionally adjusted for 

FEV1/FVC z-score at 8 years.  

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; CRP: C-

reactive protein; FEV1: forced expiratory volume in one second, FMI: fat mass 

index: FVC: forced vital capacity. 
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Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s sex, age, height and pubertal status at 15 years. The outcome model is 

additionally adjusted for FEV1/FVCat 8 years.  

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; FEV1: 

forced expiratory volume in one second, FMI: fat mass index: FVC: forced vital 

capacity; HOMA-IR: homeostasis model assessment-estimated insulin resistance. 

 

Table S8. Mediating role of HOMA-IR index on the association 

between FMI trajectories and FEV1/FVC (%) at 15 years: Excluding 

children with lifetime doctor-diagnosed asthma (n=1,071) 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 

Indirect 

(via HOMA-IR) 
-0.05 [-0.16 to 0.03] 0.200 

Direct 

(not via HOMA-IR) 
0.09 [-0.86 to 1.14] 0.890 

Total 0.04 [-0.94 to 1.07] 0.950 

Proportion 

mediated 
-0.01 [-1.76 to 1.29] 0.960 

    

Medium-

high vs. low 

Indirect 

(via HOMA-IR) 
-0.22 [-0.43 to -0.04] 0.024 

Direct 

(not via HOMA-IR) 
-0.67 [-1.73 to 0.37] 0.220 

Total -0.89 [-1.95 to 0.12] 0.100 

Proportion 

mediated 
0.22 [-1.74 to 1.75] 0.120 

    

High vs. low Indirect 

(via HOMA-IR) 
-0.47 [-0.88 to -0.07] 0.024 

Direct 

(not via HOMA-IR) 
-1.48 [-2.8 to -0.03] 0.046 

Total -1.95 [-3.26 to -0.54] 0.004 

Proportion 

mediated 
0.24 [0.03 to 0.95] 0.028 
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Table S9. Mediating role of HOMA-IR index on the association 

between FMI trajectories and FEV1/FVC (%) at 15 years: Excluding 

children with chest infection/URTI/cold with fever in past 3 weeks 

before the spirometry test (n=1,319) 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 

Indirect 

(via HOMA-IR) 
-0.04 [-0.13 to 0.01] 0.130 

Direct 

(not via HOMA-IR) 
0.18 [-0.67 to 1.11] 0.720 

Total 0.14 [-0.73 to 1.06] 0.790 

Proportion 

mediated 
-0.03 [-1.97 to 1.37] 0.810 

    

Medium-

high vs. low 

Indirect 

(via HOMA-IR) 
-0.17 [-0.35 to 0.00] 0.048 

Direct 

(not via HOMA-IR) 
-0.54 [-1.48 to 0.39] 0.280 

Total -0.71 [-1.67 to 0.19] 0.138 

Proportion 

mediated 
0.21 [-1.41 to 1.91] 0.178 

    

High vs. low Indirect 

(via HOMA-IR) 
-0.36 [-0.70 to -0.01] 0.048 

Direct 

(not via HOMA-IR) 
-1.55 [-2.74 to -0.26] 0.014 

Total -1.91 [-3.06 to -0.65] 0.004 

Proportion 

mediated 
0.18 [0.00 to 0.63] 0.052 

Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s sex, age, height and pubertal status at 15 years. The outcome model is 

additionally adjusted for FEV1/FVC at 8 years.  

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; FEV1: 

forced expiratory volume in one second, FMI: fat mass index: FVC: forced vital 

capacity; HOMA-IR: homeostasis model assessment-estimated insulin resistance; 

URTI: upper respiratory tract infection. 
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Table S10. Mediating role of HOMA-IR index on the association 

between FMI trajectories and FEV1/FVC (%) at 15 years: Excluding 

children with log-HOMA-IR ≥ percentile 95th (n=1,338) 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 

Indirect 

(via HOMA-IR) 
-0.04 [-0.12 to 0.01] 0.130 

Direct 

(not via HOMA-IR) 
0.27 [-0.56 to 1.19] 0.540 

Total 0.23 [-0.62 to 1.14] 0.610 

Proportion 

mediated 
-0.04 [-1.89 to 1.33] 0.650 

    

Medium-

high vs. low 

Indirect 

(via HOMA-IR) 
-0.13 [-0.30 to 0.02] 0.094 

Direct 

(not via HOMA-IR) 
-0.70 [-1.63 to 0.21] 0.138 

Total -0.83 [-1.78 to 0.06] 0.072 

Proportion 

mediated 
0.15 [-0.25 to 1.40] 0.158 

    

High vs. low Indirect 

(via HOMA-IR) 
-0.24 [-0.54 to 0.04] 0.094 

Direct 

(not via HOMA-IR) 
-1.54 [-2.72 to -0.23] 0.014 

Total -1.78 [-2.96 to -0.48] 0.004 

Proportion 

mediated 
0.13 [-0.03 to 0.57] 0.098 

Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s sex, age, height and pubertal status at 15 years. The outcome model is 

additionally adjusted for FEV1/FVC at 8 years.  

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; FEV1: 

forced expiratory volume in one second, FMI: fat mass index: FVC: forced vital 

capacity; HOMA-IR: homeostasis model assessment-estimated insulin resistance.  
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Table S11. Mediating role of HOMA-IR index on the association 

between FMI trajectories and FEV1/FVC (%) at 15 years: Models 

additionally adjusted for energy intake, physical activity and 

environmental tobacco exposure (n=1,048) 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 

Indirect 

(via HOMA-IR) 
-0.03 [-0.12 to 0.03] 0.340 

Direct 

(not via HOMA-IR) 
0.09 [-0.96 to 0.98] 0.850 

Total 0.05 [-1.02 to 0.97] 0.880 

Proportion 

mediated 
0.00 [-0.85 to 0.79] 0.940 

    

Medium-

high vs. low 

Indirect 

(via HOMA-IR) 
-0.13 [-0.29 to 0.01] 0.080 

Direct 

(not via HOMA-IR) 
-0.72 [-1.82 to 0.32] 0.180 

Total -0.85 [-1.96 to 0.19] 0.110 

Proportion 

mediated 
0.13 [-0.98 to 1.11] 0.190 

    

High vs. low Indirect 

(via HOMA-IR) 
-0.33 [-0.71 to 0.03] 0.080 

Direct 

(not via HOMA-IR) 
-1.49 [-2.97 to 0.04] 0.052 

Total -1.82 [-3.22 to -0.45] 0.012 

Proportion 

mediated 
0.19 [-0.03 to 0.81] 0.092 

Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s sex, energy intake at 7 years, environmental tobacco exposure at 8 years, 

physical activity at 11 years and age, height and pubertal status at 15 years. The 

outcome model is additionally adjusted for FEV1/FVC at 8 years.  

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; FEV1: 

forced expiratory volume in one second, FMI: fat mass index: FVC: forced vital 

capacity; HOMA-IR: homeostasis model assessment-estimated insulin resistance. 
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Table S12. Mediating role of HOMA-IR index on the association 

between FMI trajectories and FEV1/FVC at 15 years: Using 

FEV1/FVC z-score* as outcome variable 

FMI 

trajectories 

Effect Coef. [95% CI] p-value 

Medium-low 

vs. Low 

Indirect 

(via HOMA-IR) 
-0.01 [-0.02 to 0.00] 0.120 

Direct 

(not via HOMA-IR) 
0.04 [-0.11 to 0.18] 0.610 

Total 0.03 [-0.12 to 0.18] 0.670 

Proportion 

mediated 
-0.03 [-1.24 to 1.27] 0.730 

    

Medium-

high vs. low 

Indirect 

(via HOMA-IR) 
-0.03 [-0.06 to 0.00] 0.044 

Direct 

(not via HOMA-IR) 
-0.16 [-0.32 to -0.01] 0.038 

Total -0.19 [-0.33 to -0.04] 0.014 

Proportion 

mediated 
0.13 [0.00 to 0.77] 0.058 

    

High vs. low Indirect 

(via HOMA-IR) 
-0.06 [-0.12 to 0.00] 0.044 

Direct 

(not via HOMA-IR) 
-0.29 [-0.49 to -0.09] 0.002 

Total -0.35 [-0.54 to -0.16] <0.001 

Proportion 

mediated 
0.17 [0.00 to 0.49] 0.044 

* Calculated using Global Lung Initiative equation references 2012. 

Models are adjusted for maternal social class and smoking during pregnancy, and 

child’s pubertal status at 15 years. The outcome model is additionally adjusted for 

FEV1/FVC z-score at 8 years.   

Abbreviations: CI: confidence intervals; Coef.: regression coefficient; FEV1: 

forced expiratory volume in one second, FMI: fat mass index: FVC: forced vital 

capacity; HOMA-IR: homeostasis model assessment-estimated insulin resistance. 
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Abstract
Background  Previous studies have reported an 
association between weight increase and excess lung 
function decline in young adults followed for short 
periods. We aimed to estimate lung function trajectories 
during adulthood from 20-year weight change profiles 
using data from the population-based European 
Community Respiratory Health Survey (ECRHS).
Methods  We included 3673 participants recruited 
at age 20–44 years with repeated measurements of 
weight and lung function (forced vital capacity (FVC), 
forced expiratory volume in 1 s (FEV1)) in three study 
waves (1991–93, 1999–2003, 2010–14) until they were 
39–67 years of age. We classified subjects into weight 
change profiles according to baseline body mass index 
(BMI) categories and weight change over 20 years. We 
estimated trajectories of lung function over time as a 
function of weight change profiles using population-
averaged generalised estimating equations.
Results  In individuals with normal BMI, overweight 
and obesity at baseline, moderate (0.25–1 kg/year) and 
high weight gain (>1 kg/year) during follow-up were 
associated with accelerated FVC and FEV1 declines. 
Compared with participants with baseline normal BMI 
and stable weight (±0.25 kg/year), obese individuals 
with high weight gain during follow-up had −1011 mL 
(95% CI −1.259 to −763) lower estimated FVC at 
65 years despite similar estimated FVC levels at 25 
years. Obese individuals at baseline who lost weight 
(<−0.25 kg/year) exhibited an attenuation of FVC and 
FEV1 declines. We found no association between weight 
change profiles and FEV1/FVC decline.
Conclusion  Moderate and high weight gain over 
20 years was associated with accelerated lung function 
decline, while weight loss was related to its attenuation. 
Control of weight gain is important for maintaining good 
lung function in adult life.

Background
Lung function is a significant predictor of future 
morbidity and mortality in the general population.1 
Maintaining good lung function across adult life is 
important to prevent chronic respiratory diseases, 
which nowadays represent a serious public health 
problem around the world.2 There is consistent 
evidence showing that overweight, obesity and 
weight gain in adulthood are detrimental to lung 
function, as described by the forced vital capacity 
(FVC) and/or forced expiratory volume in 1 s 
(FEV1). Previous population-based and occupa-
tional cohort studies have shown that excessive 
weight gain in adulthood is associated with lower 
lung function levels and with an increased rate of 
lung function decline independently of age and 

Key questions

What is the key question?
►► Is weight change over a 20-year period 
associated with lung function trajectories in 
adult life?

What is the bottom line?
►► Moderate and high weight gain over a 20-year 
period was associated with accelerated FVC 
and FEV1 decline, while weight loss was related 
to its attenuation.

Why read on?
►► This study, which is based on data collected 
as part of the multicentre prospective ECRHS 
study, reinforces the public health message that 
overweight and obesity have deleterious effects 
on respiratory health. However, these negative 
effects can be reversed by weight loss even 
later in adult life.
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smoking status.3–8 Another longitudinal study in healthy young 
adults (age range at baseline 18–30 years) showed that lung func-
tion was lower both with higher baseline body mass index (BMI) 
and with increasing BMI over a 10-year period.9 Similarly, a 
population-based study of young adults (mean age at baseline 41 
years) analysing the effects of changes in obesity status on lung 
function found that remaining or becoming obese accelerated 
lung function decline over an 8-year follow-up, while becoming 
non-obese was related to its attenuation.10

All these previous studies have had relatively short follow-up 
periods (up to 10 years) and most investigated this link only up 
to 50 years of age. This precludes a more comprehensive under-
standing of the role of weight change on lung function during 
adulthood and older life and supports the need for further 
studies with longer follow-up periods extending into late adult 
life. Understanding the effects of weight changes on lung func-
tion during adult life is of utmost importance given the epidemic 
levels of overweight and obesity globally.11

The European Community Respiratory Health Survey 
(ECRHS) is a large multicentre population-based study with 
available measures of weight, height and lung function at three 
time points over a 20-year period, as well as detailed informa-
tion of sociodemographic and lifestyle factors from adults living 
across Europe and Australia.12–14 Under the framework of the 
Ageing Lungs in European Cohorts (ALEC) consortium (​www.​
alecstudy.​org), we aimed to assess the lung function trajectories 
of adults of the ECRHS study according to different weight 
change profiles that combined BMI at baseline and weight 
change over a 20-year period.

Methods
Study population
The ECRHS started in 1991–1993 (ECRHS I), when over 
18 000 young adults aged 20–44 years were randomly recruited 
from available population-based registers (population-based 
arm), with an oversampling of asthmatics (symptomatic arm). 
Participants were followed up in 1999–2003 (ECRHS II) and 
2010–2014 (ECRHS III) when they were aged 27–57 and 39–67 
years, respectively. More details of the study design are available 
elsewhere.12–14 In this analysis we included participants who had 
weight at ECRHS I and III and lung function and base covariates 
(sex, age, height and smoking status) at all three surveys (3673 
participants from 26 centres in 12 countries) (see online supple-
mentary figure S1).

Ethical approval was obtained from the ethics committees 
of all participating institutions and all participants provided 
informed written consent.

Lung function
Lung function was measured by spirometry at ECRHS I, II 
and III. Centres used different spirometers at ECRHS I and II, 
but almost all centres used the same spirometer at ECRHS III 
(see online supplementary table S1). In the three examinations, 
forced vital capacity (FVC) and forced expiratory volume in 1 s 
(FEV1), repeatable to 150 mL from at least two of a maximum 
of five correct manoeuvres that met the American Thoracic 
Society and European Respiratory Society recommendations,15 
were used as the primary outcomes. The FEV1/FVC ratio was 
also analysed. In the present analysis, we used lung function 
measurements collected pre-bronchodilator. We also calculated 
lung function SD scores (z-scores) using the Global Lung Initia-
tive (GLI) equation references,16 and used these variables as 
secondary outcomes.

Weight change profiles
BMI was calculated by dividing measured weight (kg) by measured 
height (m) squared. We defined categories of BMI at ECRHS I 
(baseline) as ‘underweight’ (BMI <20 kg/m2), ‘normal weight’ 
(20 kg/m2≤BMI<25 kg/m2), ‘overweight’ (25 kg/m2≤BMI 
<30 kg/m2) and ‘obese’ (BMI ≥30 kg/m2), as in previous ECRHS 
studies.8 We computed weight change during follow-up as the 
difference between weight measured at ECRHS III and ECRHS 
I divided by the total time of follow-up (in years) and catego-
rised it into stable weight, weight loss and weight gain. Since 
there are no standard references for weight change in adults, we 
used similar weight change categories as in a recent longitudinal 
long-term population-based study17: ‘weight loss’ (<−0.25 kg/
year), ‘stable weight' (±0.25 kg/year), ‘moderate weight gain’ 
(>0.25 to ≤1 kg/year) and ‘high weight gain’ (>1 kg/year). We 
combined baseline BMI categories with weight change categories 
to classify participants in weight change profiles. This combined 
variable was used as the main exposure variable in the analysis.

Other relevant variables
Sociodemographic and other health data were collected using 
questionnaires. These included sex, age, age completed full-
time education (<17 years; 17–20 years;>20 years), smoking 
status (never smoker; ex-smoker; current smoker), secondhand 
smoke exposure (yes; no) and asthma (yes; no). Current asthma 
was defined as having reported physician-diagnosed asthma and 
at least one of the following: asthma-like symptoms (wheeze, 
nocturnal chest tightness, attacks of breathlessness after activity/
at rest/at night-time), asthma attacks, use of inhaled/oral medi-
cines for breathing problems (in the last 12 months), or current 
use of inhalers, aerosols or tablets for asthma. Leisure-time 
vigorous physical activity was assessed at ECRHS II by asking 
participants how often and for how many hours per week they 
usually exercised so much that they got out of breath or sweaty. 
Participants were categorised as being active if they exercised 
with a frequency of two or more times a week and with a dura-
tion of about 1 hour a week or more, and non-active otherwise.18 
Finally, at ECRHS II participants reported if they presented any 
of the following long-term limiting illnesses: hypertension, heart 
disease, diabetes, cancer or stroke.

Statistical analysis
We used population-averaged generalised estimating equations 
(GEE) to estimate lung function trajectories from age 20 to 67 
years (the full age range of the study sample) as a function of 
weight change profiles. Prior to stratifying models by weight 
change profiles, we tested the interaction between age, BMI at 
baseline and weight change, and we found that it was statistically 
significant for all lung function parameters (p value <0.01 for 
all models). All GEE models had the individuals as the clustering 
factor (to account for repeated lung function measurements at 
ECRHS I, II and III) and an unstructured within-cluster correla-
tion. GEE models had FVC, FEV1 or FEV1/FVC as the outcome 
variables. Interaction terms between age (or age squared) and 
weight change profiles were entered to allow for different 
trajectories of lung function with ageing across weight change 
profiles. We entered sex as a fixed covariate and height, age, 
age squared, smoking status, current asthma and spirometer 
type as time-specific covariates. We also included an interaction 
term between smoking status and age (to account for a faster 
decline over time in smokers). We centred continuous variables 
at the mean (over the data from the three examinations) before 
modelling. Adjusted lung function over age was calculated by 
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Table 1  Characteristics of the study sample*

Characteristics

ECRHS I ECRHS II ECRHS III

N (%) or mean 
(SD)

N (%) or mean 
(SD)

N (%) or mean 
(SD)

Symptomatic study arm 544 (14.8) – –

Women 1956 (53.3) – –

Age in years 34.3 (7.1) 43.0 (7.0) 54.3 (7.1)

Height in cm 170.6 (9.4) 170.3 (9.4) 169.4 (9.5)

Weight in kg 69.5 (13.5) 74.0 (15.1) 77.9 (16.1)

BMI

 � Continuous, in kg/m2 23.8 (3.7) 25.4 (4.3) 27.1 (4.9)

 � Underweight 453 (12.3) 222 (6.1) 119 (3.2)

 � Normal weight 2097 (57.1) 1676 (45.8) 1224 (33.3)

 � Overweight 892 (24.3) 1298 (35.5) 1481 (40.3)

 � Obese 231 (6.3) 461 (12.6) 849 (23.1)

Smoking status

 � Non-smoker 1651 (45.0) 1576 (42.9) 1518 (41.3)

 � Ex-smoker 818 (22.3) 1119 (30.5) 1500 (40.8)

 � Current smoker 1204 (32.8) 978 (26.6) 655 (17.8)

Secondhand smoke exposure, yes 1939 (52.9) 1321 (36.1) 680 (18.6)

Current asthma, yes† 378 (10.5) 491 (13.8) 570 (16.2)

Age completed full-time education

 � <17 years 675 (21.5) – –

 � 17–20 years 1205 (38.4) – –

 � >20 years 1256 (40.1) – –

Physical activity. Active status‡ – 1363 (52.2) –

Any long-term limiting illness, yes§ – 405 (17.1) –

Lung function

 � FVC (mL) 4516 (988) 4354 (980) 3964 (948)

 � FEV1 (mL) 3702 (798) 3485 (790) 3006 (753)

 � FEV1/FVC (%) 82.3 (6.9) 80.3 (6.5) 75.8 (6.5)

Lung function (z-scores)¶

 � FVC z-score 0.01 (0.95) 0.02 (1.00) −0.08 (0.94)

 � FEV1 z-score −0.01 (1.06) −0.03 (1.08) −0.34 (1.04)

 � FEV1/FVC z-score −0.06 (1.03) −0.10 (1.00) −0.48 (0.89)

*Some variables had missing values. Number of missing values for ECRHS I: 10 in secondhand smoke 
exposure, 78 in current asthma, and 537 in age completed full-time education. Number of missing 
values for ECRHS II: 18 in secondhand smoke exposure, 118 in current asthma, 1062 in physical activity 
and 1300 in any long-term limiting illness. Number of missing values for ECRHS III: 14 in secondhand 
smoke exposure and 163 in current asthma.
†Current asthma was defined as having reported physician-diagnosed asthma and at least one of the 
following: asthma-like symptoms (wheeze, nocturnal chest tightness, attacks of breathlessness after 
activity/at rest/at night-time), asthma attacks, use of inhaled/oral medicines for breathing problems (in 
the last 12 months), or current use of inhalers, aerosols or tablets for asthma.
‡Individuals were categorised as being active if they exercised with a frequency of two or more times a 
week and with a duration of about 1 hour a week or more.
§The following illnesses were considered: hypertension, heart disease, diabetes, cancer or stroke.
¶Lung function z-scores were derived using Global Lung Initiative 2012 equations.
BMI, body mass index; FEV1, volume expired in the first second; FVC, forced vital capacity.

setting continuous and categorical variables equal to the mean 
and proportion, respectively (calculated over the study sample).

In a secondary analysis we repeated the models using lung 
function z-scores instead of absolute lung function values. To 
assess whether estimated lung function trajectories differed by 
sex we tested for sex interactions (by including an interaction 
term between sex and weight change profiles) and we stratified 
final models by sex. We performed several sensitivity analyses 
to assess the robustness of the estimated lung function trajecto-
ries to various assumptions regarding confounding, change of 
spirometry devices or weight change categorisation (see online 
supplementary file).

All analyses were conducted following a complete case 
approach in Stata/SE 14.0 (StataCorp, College Station, Texas, 
USA).

Results
Characteristics of the study sample
Compared with those not included in the present analysis 
(n=12 909), individuals who were included were slightly older, 
less likely to be current smokers, be exposed to secondhand 
smoke and had higher educational levels at ECRHS I, but they 
did not differ in terms of weight, BMI and lung function (see 
online supplementary table S2). Table 1 shows the main char-
acteristics of the study sample (n=3673). Mean (SD) age of the 
study sample was 34.3 (7.1) years at baseline and 54.3 (7.1) 
years at the last follow-up. Approximately half of the study 
sample were women (53.3%) and 40% had completed full-time 
education when they were 20 years of age or older.

At baseline, 12% of the sample was underweight, 57% normal 
weight, 24% overweight and 6% obese. During follow-up 
almost 4% of the sample lost weight, 34% had stable weight, 
53% had a moderate weight gain and 9% had a high weight 
gain. Table  2 shows descriptive statistics of the 16 weight 
change profiles identified. Almost 20% of the sample was clas-
sified in the weight change profile with baseline normal BMI 
and stable weight during follow-up. Out of the groups who lost 
weight during follow-up, obese participants at baseline were 
those who lost more weight over time (median −0.6 kg/year, 
P25–P75 −0.9 to −0.4), while among those who experienced a 
moderate increase in weight, median weight gain was the same 
in the different categories of baseline BMI. Among those with 
high weight gain during follow-up, overweight and obese partic-
ipants at baseline were those who gained more weight. Under-
weight participants who lost weight or had a high weight gain 
represented less than 1% of the study sample and therefore were 
excluded from further analyses.

Associations between weight change profiles and lung 
function trajectories
To facilitate interpretation of results, the estimated trajectories of 
lung function by weight change profiles are presented separately 
for normal BMI, overweight and obese categories at baseline 
(figures  1–3). Among adults with baseline normal BMI, over-
weight and obesity, those with moderate and high weight gain 
during follow-up exhibited significantly steeper FVC decline 
than those with stable weight (Panels A, B and C in figure 1). 
Estimated differences in FVC at 25 and 65 years by weight 
change profiles (see online supplementary table S3) show that, 
in comparison with participants with baseline normal BMI and 
stable weight, baseline overweight and obese participants with 
high weight gain had lower estimated FVC at 65 years (−677 mL 
(95% CI −841 to −512); p<0.001 and −1.011 mL (−1.259 to 

−763); p<0.001, respectively) despite similar estimated FVC 
levels at age 25 (see online supplementary table S3).

In contrast to weight gain, obese (but not overweight or 
normal BMI) adults at baseline who lost weight during follow-up 
exhibited an attenuation of FVC decline (panel C in figure 1). 
We estimated that, at age 25 years, obese participants had lower 
FVC levels than normal BMI participants. However, obese indi-
viduals who lost weight during follow-up were estimated to have 
not significantly different FVC values at age 65 years than partic-
ipants with baseline normal BMI and stable weight (see online 
supplementary table S3).
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Table 2  Descriptive statistics of weight change profiles

Weight change profiles* N (%)
Weight ECRHS I (kg)
Median (P25; P75)

Weight ECRHS III (kg)
Median (P25; P75)

Weight change during follow-up (kg/year)
Median (P25; P75)

Underweight Weight loss 2 (0.1)† 55.5 (54; 57) 48.5 (45; 52) −0.3 (−0.4; −0.3)

Stable weight 167 (4.6) 53 (50; 56) 55 (51; 59) 0.1 (0; 0.2)

Moderate weight gain 259 (7.1) 53 (50; 58) 65.3 (60; 70.4) 0.5 (0.4; 0.7)

High weight gain 25 (0.7)† 52 (50; 57) 78 (74; 85) 1.2 (1.1; 1.5)

Normal BMI Weight loss 38 (1) 63.5 (60; 74) 55 (52; 65) −0.4 (−0.4; −0.3)

Stable weight 715 (19.5) 64 (59; 72) 65.8 (60; 74) 0.1 (0.0; 0.2)

Moderate weight gain 1164 (31.7) 65 (60; 72) 76 (70; 84) 0.5 (0.4; 0.7)

High weight gain 180 (4.9) 66 (60; 72) 92.4 (86; 98) 1.2 (1.1; 1.4)

Overweight Weight loss 52 (1.4) 80 (76; 87) 71 (66; 75.8) −0.4 (−0.6; −0.3)

Stable weight 291 (7.9) 79 (73; 85) 80 (73; 86.8) 0.1 (−0.1; 0.2)

Moderate weight gain 454 (12.4) 80 (73; 86) 90.9 (84; 97.1) 0.5 (0.4; 0.7)

High weight gain 95 (2.6) 79 (70; 85) 103 (96.4; 113.9) 1.3 (1.1; 1.5)

Obese Weight loss 46 (1.3) 95 (87; 105) 85 (72; 93) −0.6 (−0.9; −0.4)

Stable weight 65 (1.8) 90 (85; 100) 92 (85; 101) 0.1 (−0.1; 0.1)

Moderate weight gain 85 (2.3) 93 (87; 103) 105 (97.1; 114) 0.5 (0.4; 0.7)

High weight gain 35 (1) 95 (85; 109) 125 (112; 135) 1.3 (1.1; 1.8)

Overall  �  3673 (100) 68 (59; 78) 76 (66; 87.3) 0.4 (0.1; 0.7)

*Weight change profiles were defined combining BMI at baseline and weight change during follow-up. BMI categories at baseline: underweight: BMI <20 kg/m2; normal weight: 
20 kg/m2≤BMI<25 kg/m2; overweight: 25 kg/m2 ≤BMI <30 kg/m2; obese: BMI ≥30 kg/m2. Weight change was computed as the difference between weight measured at ECRHS 
III and ECRHS I divided by the total duration follow-up (in years). Weight change categories: weight loss: <−0.25 kg/year; stable: within ±0.25 kg/year; moderate weight gain: 
0.25–1 kg/year; high weight gain: >1 kg/year.
†Not analysed further because of small sample size.

Figure 1  Estimated trajectories of FVC (in mL) decline by weight change profiles. The figure shows estimated FVC values and their corresponding 
95% CI. Models are adjusted for sex, height, age, age squared, smoking status, an interaction term between smoking status and age, current asthma 
and spirometer type. Reference category: normal BMI at baseline and stable weight during follow-up. All graphs are presented with a ‘jitter’ (0.05) to 
avoid overlap of CI bars. BMI, body mass index; FVC, forced vital capacity.

Supplementary figure S2 shows lung function trajectories for 
subjects with baseline underweight. In young adulthood, partic-
ipants with baseline underweight had lower estimated FVC 
values than baseline normal BMI participants (see online supple-
mentary figure S2). However, baseline underweight participants 
with stable weight during follow-up were estimated to have very 
similar FVC values at age 65 to participants with baseline normal 
BMI and stable weight.

We found very similar results for estimated FEV1 trajecto-
ries (figure  2, online supplementary figure S2 and table S4). 
We found no evidence that FEV1/FVC ratio trajectories were 

different by weight change profiles, except for two groups. 
Subjects with baseline underweight who had stable weight or 
moderate weight gain showed a steeper decline in FEV1/FVC 
ratio than participants with baseline normal BMI and stable 
weight during follow-up (figure 3, online supplementary figure 
S2 and table S5).

Secondary analysis using lung function z-scores instead of 
absolute lung function showed similar results to the main 
analysis for all lung function parameters (see online supple-
mentary figure S3). Stratification by sex showed that FVC and 
FEV1 decline was steeper in men who gained weight than in 
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Figure 2  Estimated trajectories of FEV1 (mL) decline by weight change profiles. The figure shows estimated FEV1 values and their corresponding 
95% CI. Models are adjusted for sex, height, age, age squared, smoking status, an interaction term between smoking status and age, current asthma 
and spirometer type. Reference category: normal BMI at baseline and stable weight during follow-up. All graphs are presented with a ‘jitter’ (0.05) to 
avoid overlap of CI bars. BMI, body mass index; FEV1, forced expiratory volume in 1 s.

Figure 3  Estimated trajectories of FEV1/FVC (%) decline by weight change profiles. The figure shows estimated FEV1/FVC values and their 
corresponding 95% CI. Models are adjusted for sex, height, age, age squared, smoking status, an interaction term between smoking status and age, 
current asthma and spirometer type. Reference category: normal BMI at baseline and stable weight during follow-up. All graphs are presented with a 
‘jitter’ (0.05) to avoid overlap of CI bars. BMI, body mass index; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity.

their female counterparts, particularly in the obese category 
(see online supplementary figure S4 and S5), but there was no 
difference with regard to the FEV1/FVC ratio (see online supple-
mentary figure S6). All sensitivity analyses showed very similar 
results (see online supplementary figure S7–S12). However, the 
lung function differences between the reference category and 
some overweight/obese weight change profiles were attenuated 
when the analyses were restricted to participants who reported 
to be non-smokers at all examinations and when additionally 
adjusting for physical activity, educational level and any long-
term limiting illness.

Discussion
In this population-based study we found that weight change 
over a 20-year period was associated with the rate of lung func-
tion decline in adulthood. Specifically, we found that: (1) in 
participants with baseline normal BMI, overweight and obesity 
in young adulthood, moderate and high weight gain during 
follow-up were associated with accelerated FVC and FEV1 

decline; (2) in participants with obesity in young adulthood, 
weight loss during follow-up was associated with attenuated 
FVC and FEV1 decline; (3) in underweight participants in young 
adulthood, stable weight during follow-up was associated with 
an attenuation of FVC and FEV1 decline; and (4) we found no 
evidence of an association between weight change and FEV1/
FVC ratio decline, with the exception of underweight partici-
pants with either stable weight or moderate weight gain, both 
of whom exhibited accelerated FEV1/FVC ratio decline over 
follow-up.

Interpretation
Our findings that moderate and high weight gain acceler-
ates FVC and FEV1 decline and that weight loss attenuates it 
are consistent with previous research in young adults.3–10 This 
demonstrates how weight changes can affect lung function until 
late adulthood. Our approach of combining baseline BMI cate-
gories with weight change over time let us distinguish the effects 
of different weight change profiles on lung function throughout 
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adult life. Two potential mechanisms have been proposed to 
explain the association of weight gain with accelerated lung 
function decline. First, weight gain can affect lung function 
through mechanical effects on lungs. Abdominal and thoracic 
fat mass are likely to reduce vital capacity by limiting the room 
for lung expansion during inspiration, in turn leading to expira-
tory flow limitation.19 These mechanical effects may also explain 
the observed sex differences in relation to lung function decline, 
consistent with previous studies,4 8 20 as men tend to accumu-
late more fat mass in the abdominal area than women.21 Second, 
weight gain can impair lung function by inflammatory processes, 
as adipose tissue is a source of inflammatory mediators22 23 that 
can damage lung tissue and reduce airway diameter.24 Unfortu-
nately, we did not have measures of chest compliance or markers 
of systemic inflammation related to obesity, and therefore we 
could not disentangle the mechanical effects of body mass on 
lung function from the inflammatory effects.

There are some potential mechanisms that can explain the 
association between weight loss and attenuation of lung func-
tion decline in obese subjects. First, it is possible that weight 
loss reverses the mechanical effects of overweight/obesity on 
the respiratory system allowing the recovery of lung function. 
Second, weight loss may relate to a reduction of inflammatory 
processes in the lung which in turn can help to attenuate lung 
function decline related to excessive weight. This hypothesis 
is supported by previous research showing that lung function 
decline associated with air pollution, which likely affects lung 
function via inflammation, could be attenuated with improve-
ment of air quality.25 Third, weight loss may be accompanied 
by improvement of metabolic alterations related to excess body 
weight, such as insulin dysregulation, high fasting glucose levels, 
hyperlipidaemia or systemic hypertension, which are also related 
to impaired lung function.26 27 Fourth, the observed association 
between weight loss and attenuated lung function decline could 
be related to confounding by changes in lifestyle (eg, increasing 
physical activity or changing diet) that can follow awareness 
of the harmful effects of overweight/obesity. Indeed, quitting 
smoking and becoming physically active in adulthood has been 
related to better lung function levels and/or attenuated lung 
function decline.8 18 28 29 Although we accounted for changes in 
smoking status during follow-up, levels of physical activity and 
presence of long-term limiting illness that could be accompanied 
by metabolic alterations (hypertension, heart disease, diabetes, 
cancer or stroke) at ECRHS II in sensitivity analyses, we did not 
have information on physical activity or diet at baseline. Further 
studies with repeated measures of lifestyle factors and indicators 
of metabolic dysregulation associated with weight changes are 
needed to disentangle the mechanisms underlying the associa-
tion of weight loss and attenuated lung function decline.

We also found that stable weight during follow-up in indi-
viduals underweight in young adulthood was associated with 
attenuated FVC and FEV1 decline, while those with baseline 
underweight and moderate weight gain had a parallel FVC and 
FEV1 decline to individuals with baseline normal BMI in late 
adulthood. These findings contrast with results of a previous 
longitudinal study showing that increasing BMI in initially thin 
adults (aged 18–30) was associated with lung function improve-
ment over 10 years.9 This inconsistency could be related to differ-
ences in the definition of weight gain (ie, the use of BMI gain vs 
weight change) and to a different baseline age range. The rela-
tionship between weight change and lung function has received 
little attention in healthy underweight individuals, so further 
research is needed to understand the effects of weight change in 
underweight individuals and their underlying mechanisms.

In the present analysis we did not observe statistically different 
FEV1/FVC ratio trajectories by weight change profiles, except 
for underweight subjects with either stable weight or moderate 
weight gain during follow-up, both of whom exhibited a faster 
FEV1/FVC decline over follow-up. The observed associations in 
underweight subjects are in line with findings of one previous 
study in healthy adults9 and allow us to hypothesise that under-
weight subjects could be more susceptible to the development of 
airflow limitation with ageing. Also, the lack of association of 
weight gain with the FEV1/FVC ratio in the present analysis is 
in line with previous studies showing that the FEV1/FVC ratio is 
normal in overweight and obese individuals.19 The lack of associ-
ation of weight gain with the FEV1/FVC ratio could be attributed 
to the fact that both FVC and FEV1 declines were accelerated 
with weight gain, which could lead to a null net effect on the 
ratio of these two measures (as both denominator and numer-
ator were equally affected). This pattern suggests that weight 
gain is likely to be related to a restrictive pattern characterised by 
a reduction of lung volumes with no effect on airflow limitation. 
This hypothesis is supported by previous evidence showing that 
obesity is more likely to be associated with a restrictive ventila-
tory pattern than an obstructive one.30

Strengths and limitations
A strength of the current study is the long follow-up (up to 20 
years) and the width of age distribution covering early to late 
adulthood. The population-based nature of the ECRHS and 
broad geographical representation of participants (26 centres in 
12 countries in Europe and Australia) support external validity of 
our results. Finally, we had lung function measures at three time 
points, which allowed us to estimate lung function trajectories.

A limitation of this study is the use of total body weight as the 
main exposure. Although total body weight has been largely used 
in epidemiological studies as a marker of overweight and obesity, it 
is limited by its inability to distinguish between fat and muscle mass, 
which vary with age and sex31 32 and could have different effects on 
lung function, as previously shown in children.33 Also, we defined 
weight change categories using only weight measures at baseline 
and last follow-up to capture ‘stable’ weight change patterns and 
facilitate the interpretability of our results. Of note, the correlation 
between individual weight change per year (taking into account 
three weight measurements) and the weight change variable used 
in our analysis was 0.998, which justifies our approach. However, 
we recognise that our approach precludes us from determining 
how long it takes for a change in weight to affect lung function 
decline. Given the lack of standard references for weight change in 
adults, we categorised weight change based on a previous longitu-
dinal study,17 limiting the interpretation of our findings to our defi-
nition of ‘stable weight’ (±0.25 kg/year). However, the results were 
very similar when repeating our analysis using a wider category 
for ‘stable weight’ (±0.50 kg/year), suggesting that our findings 
are robust even with a less restrictive definition of ‘stable weight’. 
Our results may also be affected by selection bias, as participants 
were more likely to be highly educated and less likely to be current 
smokers or to be exposed to secondhand smoke than those lost 
to follow-up. Because these factors have been previously associ-
ated with lung function, our associations could be underestimates 
of the true associations in the general population. Although we 
accounted for a wide range of confounders, our results could be 
affected by potential residual confounding by, for example, dietary 
intake, which affects both body weight and lung function, as the 
available data on diet were limited to a small subset of the study 
sample at ECRHS II and III. Moreover, the spirometers used for 
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lung function assessment were changed in some centres, which 
could have led to systematic differences inherent in lung function 
measurement that may differ by age and height.34 However, when 
we adjusted our analysis for spirometer type and when we repli-
cated the analyses using lung function values corrected for change 
in spirometer we obtained consistent results. Finally, we used three 
repeated measures of lung function from a sample aged 20–44 
years (mean (SD) age 34.3 (7.1) years) at baseline and 39–67 years 
(mean (SD) age 54.3 (7.1) years) at the last follow-up to estimate 
lung function trajectories throughout adulthood. However, few 
participants were aged around 20 years at baseline and around 67 
years at the last follow-up, and in consequence the models had 
fewer observations at the age ends than between 30 and 60 years, 
where most of the observations were.

Conclusion
In conclusion, this prospective population-based study shows that 
moderate and high weight gain over a 20-year period was associ-
ated with accelerated lung function decline in adulthood, while 
weight loss was related to its attenuation. Our findings, together 
with the existing literature, reinforce the public health message 
that overweight and obesity have deleterious effects on health, 
including respiratory health. However, the negative effects of over-
weight and obesity on lung function can be reversed by weight 
loss even later in adult life. Therefore, public health policies that 
promote healthy lifestyles and body weight may be important for 
maintaining good lung function in adult life.
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Methods: sensitivity analyses  

To assess the robustness of our results, we performed several 

sensitivity analyses. First, we excluded subjects with asthma and 

subjects from the symptomatic arm of the ECRHS in separate 

analyses to assess whether results were sensitive to the exclusion of 

these subsamples. Second, we restricted the final models to 

participants who reported being non-smokers at the three 

examinations to account for potential residual confounding by 

smoking and weight change related to change in smoking status. 

Third, we additionally adjusted models for educational level, 

physical activity and presence of any long-term limiting illness to 

rule out potential residual confounding. These variables were not 

included in the main models because they reduced the statistical 

power without substantially altering the results. Fourth, to account 

for potential misclassification in lung function due to change in 

spirometers over time we replicated our models using lung function 

values corrected for change in spirometer. These corrected values 

were derived using a similar methodology as previously described for 

another similar adult cohort.[1] Finally, we repeated our analysis 

defining ‘stable weight’ as change over time ±0.50kg/year [2] to 

account for potential misclassification in weight change categories 

(i.e., using a less restrictive definition of change ‘stable weight’). 

References:  

1  Bridevaux P-O, Dupuis-Lozeron E, Schindler C, et al. Spirometer 

Replacement and Serial Lung Function Measurements in Population 

Studies: Results From the SAPALDIA Study. Am J Epidemiol 

2015;181:752–61.  
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2  Nanri A, Mizoue T, Takahashi Y, et al. Weight change and all-

cause, cancer and cardiovascular disease mortality in Japanese men 

and women: The Japan Public Health Center-Based Prospective 

Study. Int J Obes 2010;34:348–56.  
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Figure S1. Flowchart of the study sample 

Abbreviations: BMI, body mass index; FEV1, forced expiratory volume in 1 

second; FVC, forced vital capacity  



 

Table S1. Instruments used at spirometry examinations in the ECRHS 

Study centre Instrument used at ECRHS I Instrument used at ECRHS II Instrument used at ECRHS III 

Albacete  Biomedin spiro Biomedin spiro NDD 

Anterwep City  SensorMedics displacement Jaeger pneum NDD 

Anterwep South  SensorMedics displacement Jaeger pneum NDD 

Barcelona  Biomedin spiro Biomedin spiro NDD 

Basel  SensorMedics hot wire SensorMedics hot wire NDD 

Bergen  SensorMedics displacement SensorMedics displacement NDD 

Bordeaux  Vitalograph spiro Vitalograph spiro NDD 

Erfurt  Jaeger pneum Jaeger pneum NDD 

Galdakao  Biomedin spiro Biomedin spiro NDD 

Gothenburg  SensorMedics displacement SensorMedics displacement NDD 

Grenoble  Biomedin spiro Biomedin spiro NDD 

Hamburg  Jaeger pneum Jaeger pneum NDD 

Huelva  Biomedin spiro Biomedin spiro NDD 

Ipswich  Biomedin spiro Biomedin spiro NDD 

Melbourne  Fleisch pneumotach SensorMedics displacement NDD 

Montpellier  Biomedin spiro Biomedin spiro NDD 

Norwich  Biomedin spiro Biomedin spiro NDD 

Oviedo  Biomedin spiro Biomedin spiro NDD 

Paris  Biomedin spiro Biomedin spiro NDD 

   (Continued) 



 

 

 

Table S1. Continued 

Study centre Instrument used at ECRHS I Instrument used at ECRHS II Instrument used at ECRHS III 

Pavia  Biomedin spiro Biomedin spiro NDD 

Reykjavik  SensorMedics displacement SensorMedics displacement NDD 

Tartu Jaeger pneum Jaeger pneum NDD 

Turin  Biomedin spiro Biomedin spiro Biomedin spiro 

Umea  SensorMedics displacement SensorMedics displacement NDD 

Uppsala  SensorMedics displacement SensorMedics displacement NDD 

Verona  Biomedin spiro Biomedin spiro Biomedin spiro 
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Table S2. Baseline (ECRHS I) characteristics of participants 

included and excluded of the analysis 

Characteristics Included 

(n=3,673) 

n (%) or mean 

(SD)  

Excluded 

(n=12,909) 

n (%) or mean 

(SD) 

p-value 

Symptomatic study arm  544 (14.8) 1,842 (14.3) 0.409 

Sex. Women 1,956 (53.3) 6,6694 (51.9) 0.134 

Age in years  34.3 (7.1) 33.4 (7.2) <0.001 

Height in cm 170.6 (9.4) 170.7 (9.7) 0.557 

Weight in kg 69.5 (13.5) 69.5 (13.9) 0.842 

BMI     

Continuous, in kg/m2   23.8 (3.7) 23.8 (3.9) 0.864 

Underweight 453 (12.3) 1,412 (13.3) 0.512 

Normal weight 2,097 (57.1) 5,987 (56.2)  

Overweight 892 (24.3) 2,562 (24.1)  

Obese 231 (6.3) 684 (6.4)  

Smoking status    

Non-smoker 1,651 (45.0) 5,199 (40.3) <0.001 

Ex-smoker  818 (22.3) 2,545 (19.7)  

Current smoker 1,204 (32.8) 5,149 (39.9)  

Second-hand smoke 

exposure. Yes 

1,939 (52.9) 7,526 (58.6) <0.001 

Current asthma*. Yes 378 (10.5) 1,329 (10.6) 0.880 

Age completed full time 

education  

   

<17 years 675 (21.5) 2,644 (24.3) <0.001 

17-20 years 1,205 (38.4) 4,514 (41.5)  

>20 years 1,256 (40.1) 3,709 (34.1)  

  (Continued)  
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*Current asthma was defined as having reported physician-diagnosed asthma and 

at least one of the following: asthma-like symptoms (wheeze, nocturnal chest 

tightness, attacks of breathlessness after activity/at rest/at night-time), asthma 

attacks, use of inhaled/oral medicines for breathing problems (in the last 12 

months), or current use of inhalers, aerosols or tablets for asthma 

Abbreviations: BMI, body mass index; FEV1, volume expired in the first second; 

FVC, forced vital capacity; SD, standard deviation 

 

  

Table S2. Continued 

Characteristics Included 

(n=3,673) 

n (%) or mean 

(SD)  

Excluded 

(n=12,909) 

n (%) or mean 

(SD) 

p-value 

Lung function     

FVC (ml) 4,516 (988) 4,517 (1,038) 0.957 

FEV1 (ml) 3,702 (798) 3,716 (845) 0.360 

FEV1/FVC (%) 82.3 (6.9) 82.5 (7.5) 0.080 



Figure S2. Estimated trajectories of FVC (first panel), FEV1

(second panel) and FEV1/FVC (third panel) decline in baseline
underweight participants with stable weight and moderate weight
gain during follow-up. Models are adjusted for the same variables than
main models (see Figures 1 to 3).
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Coefficients represent the estimated differences of FVC (mL) for each one of the weight change profiles compared to individuals with baseline 

normal BMI and stable weight during follow-up. Models are adjusted for sex, height, age, age squared, smoking status, an interaction term 

between smoking status and age, current asthma and spirometer type.  
† Underweight who lost weight and underweight with high weight gain were excluded from multivariate analyses because of small sample size. 

Abbreviations: FVC, forced vital capacity; 95% CI, 95% confidence interval  

Table S3. Estimated FVC (mL) differences among weight change profiles at age 25 years and 65 years 

 25 years  65 years 

Weight change profiles Coef (95% CI) p-value  Coef (95% CI) p-value 

Normal BMI Stable weight Reference   Reference  

Underweight † 
Stable weight -236 [-354 to -118] <0.001  9 [-117 to 134] 0.891 

Moderate weight gain -228 [-318 to -138] <0.001  -167 [-285 to -50] 0.005 

Normal BMI 

Weight loss 6 [-204 to 216] 0.957  36 [-223 to 294] 0.788 

Moderate weight gain 47 [-17 to 112] 0.150  -182 [-249 to -115] <0.001 

High weight gain -2 [-106 to 102] 0.971  -528 [-658 to -398] <0.001 

Overweight  

Weight loss 40 [-176 to 256] 0.716  53 [-132 to 238] 0.574 

Stable weight -5 [-107 to 98] 0.930  -84 [-176 to 8] 0.073 

Moderate weight 79 [-9 to 166] 0.077  -342 [-423 to -260] <0.001 

High weight gain 100 [-39 to 239] 0.158  -677 [-841 to -512] <0.001 

Obese 

Weight loss -320 [-552 to -87] 0.007  -84 [-274 to 107] 0.389 

Stable weight -189 [-396 to 18] 0.074  -338 [-502 to -174] <0.001 

Moderate weight -58 [-238 to 122] 0.529  -429 [-576 to -282] <0.001 

High weight gain -58 [-296 to 180] 0.632  -1,011 [-1,259 to -763] <0.001 



 

Coefficients represent the estimated differences of FEV1 (mL) for each one of the weight change profiles compared to individuals with baseline 

normal BMI and stable weight during follow-up. Models are adjusted for sex, height, age, age squared, smoking status, an interaction term 

between smoking status and age, current asthma and spirometer type.   
† Underweight who lost weight and underweight with high weight gain were excluded from multivariate analyses because of small sample size. 

Abbreviations: FEV1, volume expired in the first second; 95% CI, 95% confidence interval.  

Table S4. Estimated FEV1 (mL) differences among weight change profiles at age 25 years and 65 years 

 25 years  65 years 

Weight change profiles Coef (95% CI) p-value  Coef (95% CI) p-value 

Normal BMI Stable weight Reference   Reference  

Underweight † 
Stable weight -222 [-324 to -120] <0.001  -70 [-178 to 39] 0.208 

Moderate weight gain -119 [-197 to -41] 0.003  -146 [-247 to -45] 0.005 

Normal BMI 

Weight loss 7 [-175 to 189] 0.940  87 [-136 to 309] 0.445 

Moderate weight gain 53 [-3 to 108] 0.064  -105 [-163 to -47] <0.001 

High weight gain 19 [-72 to 109] 0.688  -313 [-424 to -201] <0.001 

Overweight  

Weight loss 12 [-174 to 199] 0.899  19 [-141 to 179] 0.817 

Stable weight -44 [-133 to 44] 0.327  -57 [-136 to 22] 0.159 

Moderate weight -7 [-82 to 69] 0.861  -222 [-293 to -152] <0.001 

High weight gain 25 [-96 to 145] 0.687  -413 [-554 to -271] <0.001 

Obese 

Weight loss -412 [-612 to -211] <0.001  -41 [-205 to 124] 0.628 

Stable weight -308 [-487 to -130] 0.001  -257 [-399 to -115] <0.001 

Moderate weight -181 [-337 to -26] 0.022  -254 [-381 to -127] <0.001 

High weight gain -245 [-451 to -40] 0.019  -839 [-1,053 to -626] <0.001 



 

Coefficients represent the estimated differences of FEV1/FVC (%) for each one of the weight change profiles compared to individuals with 

baseline normal BMI and stable weight during follow-up.  Models are adjusted for sex, height, age, age squared, smoking status, an interaction 

term between smoking status and age, current asthma and spirometer type.  
† Underweight who lost weight and underweight with high weight gain were excluded from multivariate analyses because of small sample size. 

Abbreviations: FEV1, volume expired in the first second; FVC, forced vital capacity; 95% CI, 95% confidence interval.  

Table S5. Estimated FEV1/FVC (%) differences among weight change profiles at age 25 years and 65 years 

 25 years  65 years 

Weight change profiles Coef (95% CI) p-value  Coef (95% CI) p-value 

Normal BMI Stable weight Reference   Reference  

Underweight†  
Stable weight -0.1 [-1.6 to 1.3] 0.872  -3 [-4.5 to -1.4] 0.000 

Moderate weight gain 2.1 [1 to 3.2] 0.000  -1.7 [-3.2 to -0.2] 0.028 

Normal BMI 

Weight loss 

 0.7 [-1.9 to 3.2] 0.617  1.5 [-1.8 to 4.8] 0.364 

Moderate weight gain 0.3 [-0.5 to 1.1] 0.440  0.9 [0.1 to 1.8] 0.028 

High weight gain 0.5 [-0.8 to 1.8] 0.432  1.6 [0.0 to 3.2] 0.055 

Overweight  

Weight loss -0.9 [-3.6 to 1.8] 0.509  -0.7 [-3 to 1.5] 0.527 

Stable weight -1.2 [-2.5 to 0.1] 0.063  0.5 [-0.7 to 1.6] 0.425 

Moderate weight -2 [-3.1 to -0.9] 0.000  1.1 [0.1 to 2.2] 0.026 

High weight gain -1.1 [-2.8 to 0.6] 0.221  2.1 [0.0 to 4.1] 0.051 

Obese 

Weight loss -3.9 [-6.8 to -0.9] 0.010  -0.4 [-2.7 to 1.9] 0.726 

Stable weight -3.5 [-6.1 to -0.9] 0.009  -0.2 [-2.2 to 1.7] 0.807 

Moderate weight -3.2 [-5.5 to -0.9] 0.006  1.8 [0.0 to 3.6] 0.053 

High weight gain -4.4 [-7.4 to -1.5] 0.003  -3 [-6.1 to 0.1] 0.055 
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Figure S3. Estimated trajectories of FVC (first panel), FEV1 (second panel) and FEV1/FVC (third panel) decline by weight
change profiles– Using lung function standard deviation score (z-score) as outcome variable. Models are adjusted for the same
variables as in the main models, except sex and height (see Figures 1 to 3).
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Figure S4. Estimated trajectories of FVC (mL) decline by weight change profiles – Stratified by sex
Models are adjusted for the same variables as in the main models, except sex (see Figure 1). P-value for sex interaction: 0.124
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Figure S5. Estimated trajectories of FEV1 (mL) decline by weight change profiles– Stratified by sex
Models are adjusted for the same variables as in the main models, except sex (see Figure 2). P-value for sex interaction: 0.006
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Figure S6. Estimated trajectories of FEV1/FVC (%) decline by weight change profiles– Stratified by sex. 
Models are adjusted for the same variables as in the main models, except sex (see Figure 3). P-value for sex interaction: 0.247
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Figure S7. Estimated trajectories of FVC (first panel), FEV1 (second panel) and FEV1/FVC (third panel) decline by weight
change profiles– Excluding participants with current asthma at any visit (n= 709). Models are adjusted for the same variables as in
the main models (see Figures 1 to 3).
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Figure S8. Estimated trajectories of FVC (first panel), FEV1 (second panel) and FEV1/FVC (third panel) decline by weight
change profiles– Excluding the symptomatic arm of ECRHS (n=536). Models are adjusted for the same variables as in the main
models (see Figures 1 to 3).
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Figure S9. Estimated trajectories of FVC (first panel), FEV1 (second panel) and FEV1/FVC (third panel) decline by weight
change profiles–Restricting models to participants who reported to be non-smokers at all visits (n=1,491). Models are adjusted for
the same variables as in the main models (see Figures 1 to 3).

A) Normal BMI at ECRHS I B) Overweight at ECRHS I C) Obese at ECRHS I



1000

2000

3000

4000

5000

F
V

C
 (

m
L

) 
[9

5
%

 C
I]

20 30 40 50 60 67
Age (years)

1000

2000

3000

4000

5000

F
V

C
 (

m
L

) 
[9

5
%

 C
I]

20 30 40 50 60 67
Age (years)

1000

2000

3000

4000

5000

F
V

C
 (

m
L

) 
[9

5
%

 C
I]

20 30 40 50 60 67
Age (years)

Reference (Normal BMI - stable weight) Weight loss

Stable weight Moderate weight gain

High weight gain

1000

1500

2000

2500

3000

3500

4000

4500

F
E

V
1 

(m
L

) 
[9

5
%

 C
I]

20 30 40 50 60 67
Age (years)

1000

1500

2000

2500

3000

3500

4000

4500

F
E

V
1 

(m
L

) 
[9

5
%

 C
I]

20 30 40 50 60 67
Age (years)

1000

1500

2000

2500

3000

3500

4000

4500

F
E

V
1 

(m
L

) 
[9

5
%

 C
I]

20 30 40 50 60 67
Age (years)

60

70

80

90

F
E

V
1/

F
V

C
 (

%
) 

[9
5%

 C
I]

20 30 40 50 60 67
Age (years)

60

70

80

90

F
E

V
1/

F
V

C
 (

%
) 

[9
5%

 C
I]

20 30 40 50 60 67
Age (years)

60

70

80

90

F
E

V
1/

F
V

C
 (

%
) 

[9
5%

 C
I]

20 30 40 50 60 67
Age (years)

Figure S10. Estimated trajectories of FVC (first panel), FEV1 (second panel) and FEV1/FVC (third panel) decline by weight
change profiles–Models additionally adjusted for educational level at ECRHS I and physical activity and any long-term limiting
illness (hypertension/heart disease/diabetes/cancer/stroke) at ECRHS II (n=1,525). Models are adjusted for the same variables as in
the main models (see Figures 1 to 3).
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Figure S11. Estimated trajectories of FVC (first panel), FEV1 (second panel) and FEV1/FVC (third panel) decline by weight
change profiles–Using lung function values corrected for change in spirometer. Models are adjusted for the same variables as in the
main models, except for spirometer type (see Figures 1 to 3). Lung function trajectories start at age 25 years because corrected values
were calculated only for subjects aged ≥25 year at baseline.
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Figure S12. Estimated trajectories of FVC (first panel), FEV1 (second panel) and FEV1/FVC (third panel) decline by weight
change profiles–Using alternative categories for weight change (weight loss: <-0.5 kg/year; stable weight ±0.5 kg/year; moderate
weight gain: 0.5 to 1 kg/year; high weight gain: >1kg/year). Models are adjusted for the same variables as in the main models (see
Figures 1 to 3). Normal BMI and overweight subjects who lost weight were excluded due to small sample size.
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6. DISCUSSION  

 

The results of the four papers included in this thesis have been 

discussed in depth in the corresponding section of each paper. This 

section aims to complement previous discussion sections by 

expanding on two of the main contributions of this thesis: the 

potential reversibility of the effects of body weight on lung function 

and the assessment and interpretation of body composition in 

epidemiological research. This section also reflects on the 

implications of this thesis for future research and public health and 

provides a global discussion of the strengths and limitations of the 

thesis.      

6.1 Reversibility of the effects of body weight on 
lung function 

One of the key findings of this thesis is that the effects of body weight 

on lung function seem to be reversible both in early childhood and in 

adulthood (Papers I and IV, respectively). These findings are relevant 

as they help to reinforce causality between body weight and 

respiratory health and may open the door for public health 

interventions over the life course.    

 

In Paper I, we found that accelerated BMI gain in early childhood 

was associated with higher FVC at seven years even if children 

departed from low birth size. In contrast, children with low birth size 

and slow BMI gain in early childhood had lower FVC and FEV1 at 

seven years. Low birth size is likely to be a consequence of 

intrauterine growth retardation, which in turn can lead to abnormal 
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lung and airway development [203,204]. However, as alveolar 

development continues after birth [205], it is possible that postnatal 

growth could help to overcome previously reduced lung growth. This 

hypothesis is supported by previous longitudinal research showing 

that children with intrauterine growth restriction who showed weight 

catch-up growth in childhood had higher spirometry measures at age 

nine years than those without catch-up [136]. Similarly, another 

longitudinal study showed a positive contribution of catch-up growth 

in early life to adult lung function [145]. Overall, results of Paper I, 

as well as previous research, suggest that the effects of low birth 

weight on lung function are not fixed, and that may be reverted by 

postnatal growth. However, it is important to highlight that we found 

that children with accelerated BMI gain in early childhood also 

showed lower FEV1/FVC at seven years, which is line with previous 

research [33,133–135]. Although we cannot rule out the possibility 

that this association is due to a mathematical artefact (due to a higher 

effect on FVC than on FEV1), it may also indicate that accelerated 

weight gain relates to later airflow limitation. Further research into 

the biological mechanisms is needed to understand the opposite 

effects of accelerated weight gain on FVC and FEV1/FVC. 

 

In Paper II, we aimed also to consider body weight and composition 

changes over mid-childhood and adolescence in relation to lung 

function growth, however it was not possible because our analytical 

approach did not identify changing patterns but parallel trajectories 

only. It is likely that changes in body weight and the proportion of 

body weight components during these periods are not heterogeneous 

enough to allow the identification of changing patterns at a 
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population-level. Further studies using other analytical approaches 

should examine if changes in body weight and composition affect 

lung function growth during adolescence.  

 

In Paper IV, we found that in participants with obesity in young 

adulthood, weight loss during a twenty-year period was associated 

with attenuated FVC and FEV1 decline, which is consistent with 

previous research [156–163]. It possible that these associations are 

explained by an reduction of abdominal fat mass, which in turn may 

reverse the mechanical effects of fat mass on the respiratory system 

[206]. In addition, weight loss may relate to reduction of 

inflammatory processes and metabolic alterations related to obesity, 

both of which have been associated with decreased lung function in 

adults [186,191]. In fact, there is evidence showing that weight loss 

also relates to improvement of asthma status [207] and cardiovascular 

outcomes [208,209], conditions in which inflammation and/or 

metabolic derangements are also likely to play an important role. 

Finally, the association of weight loss with attenuated lung function 

decline could be due to confounding by changes in physical activity 

and/or diet, which can affect both body weight and lung function 

[79,83,210]. There is evidence that lifestyle interventions targeting 

physical activity and/or diet are effective for weight reduction 

[208,211], and that these interventions may be also effective to 

reduce premature mortality in adults with obesity [208]. Despite 

further research is needed to elucidate the mechanisms underlying the 

association between weight loss and lung function, results of Paper 

IV, as well as previous research, suggest that public health policies 
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promoting healthy lifestyles and body weight may be important for 

reducing respiratory morbidity in adult life.    

6.2 Assessment and interpretation of body 
composition in epidemiological research 

One of the main contributions of this thesis is elucidating a potential 

reason why previous research assessing the association between 

overweigh/obesity, as measured by BMI, and lung function in 

children and adolescents had reported conflicting findings. BMI 

considers total body weight only and is unable to distinguish between 

lean body mass and fat mass, which, as we shown, have different 

effects on lung function. Specifically, we found that higher lean body 

mass from nine to fifteen years were associated with higher levels 

and growth rates of FVC, FEV1 and FEF25-75 in both sexes at fifteen 

years, while higher fat mass levels were associated with lower FEV1 

and FEF25-75 in boys and to lower FEV1/FVC in both sexes (Paper 

II). Similarly, other epidemiological studies have consistently shown 

that lung function is positively related to lean mass but negatively 

related to fat mass in adulthood and elderly [165,166,168–170,172]. 

Overall, these results show that body composition relates to lung 

function over the life span and that lean body mass and fat mass have 

opposite effects. This highlights the importance of assessing the 

different components of body weight (i.e. body composition) when 

studying the effects of body weight on respiratory health.  

 

The assessment of body composition in epidemiological research 

requires to take into consideration some important factors. Body 

composition can be measured by a variety of methods, which vary in 



225 

 

their accuracy, feasibility and cost. Dual energy X-ray 

absorptiometry (DXA) and magnetic resonance imaging (MRI) are 

considered to be among the most accurate methods to measure body 

composition as they allow to obtain separate measures of fat and lean 

tissues, as well as regional estimates of these tissues [111,212]. 

However, these methods require large expensive equipment and 

specialized technicians [213], which limit their use in large 

epidemiological studies. In contrast, bioelectrical impedance analysis 

(BIA) is a relatively simple method to measure body composition and 

requires inexpensive portable equipment, characteristics that have 

made it really appealing in epidemiological research [214]. BIA 

provides indirect measures of body composition by measuring the 

body resistance to a small electrical current, from which total fat-free 

mass (FFM, all non-fat tissues) can be calculated. Then, fat mass can 

by derived as the subtraction of FFM to total body weight. A potential 

limitation of BIA is that the calculation of FFM requires population 

specific equations, which are useful only for those populations with 

characteristics similar to those of the reference population [111,214]. 

In addition, BIA relies on constant body hydration and thus may be 

affected by clinical conditions, levels of physical activity, hormonal 

status and levels of obesity [214,215]. Finally, indirect measures of 

body composition can also be obtained using anthropometric 

measures such as skinfolds and body circumferences. These methods 

are simple and inexpensive, but have some important limitations 

including large measurement error due to lack of agreement on the 

optimal site for measurement and the lack of accuracy in subjects 

with severe obesity [216]. Researchers should consider the 
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limitations of available methods and select the best suited according 

to the research question and to the context of the study.  

 

Apart from difficulties in the assessment, body composition results 

in (generally) healthy populations are often difficult to interpret 

because of limited availability of reference values [217]. Over the last 

decades, several studies have derived references values for different 

methods both for paediatric [217] and adult populations [218–220]. 

However, there are several factors that need to be considered when 

using these references. Body composition measures can be compared 

only to those obtained with the same method, and preferably with the 

equipment of the same manufacturer, as there are important 

variations in the theorical assumptions used to calculate final values 

[111]. In addition, it is important to consider that body composition 

levels vary greatly by ethnic background [221,222], and that may also 

be affected by environmental factors [217]. Thus, the comparison of 

reference values is population specific. Finally, existing reference 

values have been derived for specific age ranges and, although some 

of them include both childhood and adulthood, there are periods of 

life that have not been examined yet, especially in early childhood 

and elderly.  

 

Overall, the interpretation of body composition results in the general 

population is still challenged by the diversity in assessment methods 

and scarcity of reference values. This challenge is likely more 

relevant for prevalence than for inference studies. In any case, 

researchers may consider combining different equations, internal 
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validation substudies and/or sensitivity analyses in order to increase 

internal and external validity of their results. 

6.3 Implications for future research and public 
health 

The findings presented in this thesis have substantial implications 

both for future research and public health. First, our findings increase 

the knowledge on the association between body weight and lung 

function over the life course and reinforce the public health message 

that obesity has deleterious effects on health, including respiratory 

health. Importantly, the findings presented in Paper IV, show that the 

negative effects of obesity on lung function can be reversed by weight 

loss even later in adult life. Therefore, public health policies that 

promote healthy lifestyles and body weight control may be important 

for maintaining good lung function over life span.  

 

A relevant message for future research is the importance of assessing 

body composition when studying the health effects of body weight 

on respiratory health. As shown in Paper II, lean body mass and fat 

mass have different effects on lung function, and measures that 

consider total body weight only, such as BMI, are unable to 

distinguish these differences and can lead to conflicting findings. In 

addition, since there is research suggesting that abdominal fat mass 

may drive the association of obesity with lung function 

[165,166,223], future research should also include regional measures 

of body composition. Our findings also suggest that public health 

policies and clinical interventions aiming to reduce respiratory 

morbidity should target body composition in addition of body weight. 



228 

 

In fact, there is evidence showing that respiratory muscle training 

interventions can improve lung function [177,178]. However, 

previous research has been limited to adults with chronic conditions 

and there is a lack of research on the potential benefits of gaining lean 

body mass for lung function in healthy populations. More research is 

needed to understand the independent effects of gaining lean body 

mass and losing fat mass on respiratory outcomes.  

 

The results presented in this thesis also evidence the need of future 

studies that examine the biological mechanism underlying the 

association of body weight and composition with lung function. 

These studies will help to strengthen causal inference between 

obesity and respiratory health and to identify intermediate treatment 

targets for interventions aiming to reduce respiratory morbidity. In 

Paper III, we examine for the first time the potential mediating role 

of systemic inflammation (measured by CRP levels) and insulin 

resistance in the association between high fat mass and airflow 

limitation in adolescence. We found that insulin resistance may 

mediate part of this association, but no evidence of a role of CRP. 

Future research should confirm our results and examine other 

inflammatory markers as well as other potential mechanisms (e.g. 

mechanical effects or structural alterations of fat mass on the 

respiratory system). In addition, we strongly recommend that future 

research includes detailed information on physical activity and diet, 

as they are related both with body weight/composition and lung 

function. This will help to elucidate the independent contribution of 

weight change and lifestyles factors to improvement in respiratory 
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health, and to design informed and effective public health 

interventions. 

6.4 Strengths and limitations 

An important strength of the present thesis is the population-based 

nature of the INMA, ALSPAC and ECRHS cohorts, which ensures 

external validity of our findings. The long follow-up of these cohorts 

allowed us to study the effects of not only levels of body weight and 

composition but also changes over time. Similarly, the availability of 

repeated measures of lung function allowed us to assess not only 

levels but also growth and decline of lung function. In addition, 

accounting for baseline lung function, together with the longitudinal 

design of the studies, reduced the possibility of reverse causation in 

the association of body weight and composition with lung function. 

Moreover, the availability of detailed information on several 

sociodemographic and environmental factors made possible to 

control for a wide range of potential confounders of the studied 

associations. Finally, the use of body composition measurements 

obtained using dual-energy X-ray absorptiometry (DXA) is also an 

important strength of this thesis. DXA is substantially more accurate 

than other methods used in previous research, such as bioelectric 

impedance or skinfolds, and therefore it reduces the possibility of 

misclassification of the exposure variables.  

 

Although the limitations of the studies included in this thesis are 

detailed in each paper, certain limitations deserve to be highlighted 

also in this section. In Papers I and IV, we assessed body weight 

change using BMI and therefore we could not consider changes in 
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the proportion of lean body mass and fat mass over time neither 

distinguish the different effects of these body weight components on 

lung function. In addition, the findings of this thesis may be affected 

by selection bias as, in general, participants included in the four 

studies tended to have a higher socioeconomic status than those 

excluded. Also, the regional basis of the INMA and ALSPAC cohorts 

may not allow the generalizability of the findings of Papers I, II and 

III to populations with more ethnic variability and different lifestyles 

and environmental exposures. Finally, the findings of Paper III may 

be subject to potential reverse causation as the associations of CRP 

and insulin resistance with airflow limitation were assessed cross-

sectionally. However, it is unlikely that lung function levels affect 

CRP levels/insulin resistance.  
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7. CONCLUSIONS  

 

The results presented in this thesis show that excess body weight and 

fat mass have deleterious effects on lung function over life span, 

while higher lean body mass benefits lung function growth. The 

effects of body weight on lung function seem reversible. This thesis 

highlights the importance of assessing body composition when 

studying the effects of body weight on respiratory health and of 

promoting body weight and fat mass control in order to reduce 

respiratory morbidity at all ages. 

 

More in detail, the specific conclusions of each of the manuscripts of 

this doctoral thesis are:  

 

1. Independently of birth size, children with accelerated BMI 

gain in early childhood had higher lung function at seven 

years but also showed airflow limitation. In contrast, children 

with lower birth size and slower BMI gain in early childhood 

had lower lung function at seven years 

 

2. Higher lean body mass during childhood and adolescence was 

consistently associated with higher lung function at fifteen 

years in both sexes, whereas higher fat mass was associated 

with lower levels of only some lung function parameters.  

 

3. Insulin resistance may mediate part of the association 

between mid-childhood fat mass and the FEV1/FVC ratio in 

adolescence, but we found no evidence of mediation by CRP. 
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4. Moderate and high weight gain over a 20-year period was 

associated with accelerated lung function decline in 

adulthood, while weight loss was related to its attenuation. 
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