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INTRODUCTION

In 1915 Albert Einstein published his theory of General Relativity (GR),
setting the beginning of a new branch of astronomy, modern cosmology. Un-
der the assumption known as Cosmological Principle, where the universe is
equivalent in every position, known as homogeneity, and the same regard-
less of the direction, known as isotropy, GR provides a framework to explain
the origin, evolution and fate of the universe given its energy-matter compo-
nents are understood. Nowadays, the standard model of cosmology is the so
called Lambda-CDM (ACDM), which describes remarkably well a wide range
of galactic and extragalactic observations, but only after including two major
components called dark matter and dark energy. Dark energy is an hypotheti-
cal form of energy that tends to accelerate the expansion of the universe, while
dark matter is a form of matter different from common (baryonic) observable
matter, also of unknown origin. Under this paradigm, the best recent mea-
surements find that the universe energy content is 68% dark energy, 27% dark
matter and only 5% luminous ordinary matter and energy, which means the
nature of most of the matter-energy content of the universe is currently not
well understood.

Galaxy surveys have become an excellent source of information to study
the evolution and formation history of the universe. These are maps of the
position and redshift of galaxies which measure the large scale structure of the
universe and probe its geometry and composition, and ultimately its evolution
and fate. Since the first survey of galaxies, namely the CfA redshift survey
which dates from 1977 and measured a few thousand galaxies, we have arrived
to the current era of massive surveys with over a hundred million galaxies
detected, a number that will be further extended by the next generation of
future ground and space missions that will start this next decade. Redshift
surveys can be broadly classified between spectroscopic and photometric. The
former disperse the light of a galaxy to obtain the flux intensity as a function
of wavelength, and the redshift is determined by the location of emission and
absorption lines while the latter images galaxies by placing different colored
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filters at different wavelengths. Spectroscopy is more accurate but has lower
efficiency at obtaining the redshift of objects while imaging surveys obtain mea-
surement for many objects at the same time but with lower spectral resolution.
The main focus of this thesis is the measurement of photometric redshifts using
imaging galaxy surveys and its applications to extract cosmological informa-
tion. The first part of this thesis sets the cosmological framework and describes
the main techniques and galaxy survey data used in this thesis.

Galaxy clustering is one of the most powerful probes of the cosmic ex-
pansion and its growth history and it is relatively easy to obtain, since only
the positions and redshift of galaxies have to be observed. A 3D distribution
map of galaxies at different redshifts (epochs) contains crucial information on
the evolution of the universe, but galaxies are not unbiased tracers of the to-
tal matter density of the universe, which is mostly composed by dark matter.
Redshift space distortions produced by the galaxies peculiar velocities break
the degeneracy between this galaxy bias and the growth rate of structures in
the universe. However, since we can only observe one single realization of the
universe, measurements on large scales are limited by cosmic variance, and
measurements of a smaller angular line of sight will be affected by the cosmic
large scale structure, known as sample variance. Using multiple tracers over
the same area with different galaxy bias allows to cancel this sample variance
and increase the amount of information one can extract from these surveys.

In the second part of this thesis we forecast the cosmological and growth
history constraints for a redshift survey with high redshift precision, which can
come either from spectroscopy or from many narrow band images. Instead
of using a 3D clustering measurement, we divide the survey into a series of
thin redshift slices where the radial information is measured from the cross
correlations between different redshift bins. This allows to naturally combine
these measurements with weak lensing analysis. In particular, we explore how
splitting the survey into two overlapping subsamples with different bias can
cancel the sample variance improve the cosmological information that one could
extract.

Physics of the Accelerating Universe survey (PAUS) is a unique imaging
redshift survey with a set of 40 narrow band filters of 12.5nm FWHM. Hav-
ing such high spectral sampling allows to obtain a much better photometric
redshift precision than typical imaging broad band surveys. Obtaining red-
shift measurements for this singular data is the topic of the third chapter. We
develop two photometric redshift estimation algorithms that linearly combine
templates of the galaxy spectral energy distribution to properly model the con-
tinuum and emission line flux of each galaxy. The first photo-z method includes
a minimization algorithm that finds the maximum likelihood parameters for
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each model, while in the second one we develop an algorithm that finds the
Bayesian integral over all parameter combinations. We create a mock galaxy
catalog with simulated narrow band fluxes and introduce several effects from
real data like noise levels or observed systematic errors in the data. The mock
catalog is used to establish the expected photo-z precision under ideal con-
ditions, validate different methods to remove systematic effects and compare
the performance of different photo-z algorithms. The measurement of highly
precise redshifts enables the science of PAUS and can also be used to calibrate
the redshift distribution of lensing surveys.

One of the leading systematic effects in current and future lensing sur-
veys is the uncertainty in the redshift distribution of the source galaxies. Weak
gravitational lensing measures the small distortions present in the shapes of
millions of background galaxies, which is produced by foreground matter de-
flecting the light traveling from these sources to us. This observational probe
contains significant cosmological information, since it measures the foreground
mass distribution and the geometry of the universe, but it is also very sensi-
tive to any biases in the mean redshift of the sample. Photometric redshifts
in lensing surveys are typically estimated either from the color information of
the galaxies or by performing a cross correlation of the positions of the sample
with an overlapping tracer with reliable redshift information. Galaxy colors
can be compared to those from models of spectral energy distribution at dif-
ferent redshifts or be related to spectroscopic measurements from calibration
samples. Clustering redshifts use a tracer sample with either spectroscopic red-
shifts or high precision redshifts (like photometric luminous red galaxies), and
estimate the global redshift distribution of a sample by measuring the relative
correlation signal at different redshift bins of the tracer. These to main sources
of redshift information have been used independently to obtain two redshift
distributions which are used as a cross check or combined using a parameteri-
zation of the redshift distribution. In the fourth part of this thesis we present
a methodology that naturally combines the information from colors and clus-
tering in a hierarchical bayesian model. We will test this method in the public
MICE N-body simulation, a simulation with over 200 million galaxies over a
full octant of the sky that contains realistic clustering and galaxy properties.

We conclude at the end with a summary of the main results of the thesis
and its implications for the future.






Part 1

PRELIMINARS

This first part contains the material needed in order to set the thesis in
context, starting with the cosmological framework and motivation,
followed by some of the main techniques used to probe cosmology in
imaging galaxy surveys and a presentation of the Physics of the

Accelerating Universe Survey.






Chapter 1

PRELIMINARS

1.1 COSMOLOGICAL BACKGROUND

Newton’s Principia provided the first theoretical framework of gravity
which described what humans had observed for a long time, an attractive force
that pulled bodies together and explained a large variety of terrestrial and ce-
lestial phenomena. At the beginning of last century, after Einstein’s theory of
special relativity in 1905, it became clear that the idea that gravity was an in-
stantaneous force that acted between bodies had to be formally incorrect since
special relativity showed that simultaneity was different in different inertial
frames. A few years later, in 1915, Einstein published the theory of General
Relativity (GR), which superseded Newton’s universal law of gravity and gave
us a new understanding over space and time. Newton’s law was replaced by a
geometrical interpretation where massive bodies changed the curvature of the
spacetime fabric. In other words, gravity was geometry. General Relativity
was able to successfully predict the anomalous precession of Mercury’s peri-
helion that Newton’s gravity could not explain. A few years later, in 1919,
Eddington’s experiment famously confirmed the deflection of light from stars
surrounding the Sun during a total solar eclipse, as a consequence of the cur-
vature of spacetime around Sun, an effect known as gravitational lens. The
era of modern cosmology had started with a testable theory of the universe.

The first cosmological model introduced by Einstein in 1917 included a
matter dominated universe. To compensate the effect of gravity and recover a
static universe, which was the most accepted model at the time, he introduced
an extra constant term in the GR equations which would have a repulsive grav-
ity, known as the cosmological constant, usually denoted as A. In the 1920s,
Friedmann and Lemaitre derived an exact solution to Einstein’s equations for
either an expanding or contracting universe, assuming the universe was homo-
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PRELIMINARS

geneous and isotropic, a simplification which becomes approximately true on
large cosmological scales, known as the cosmological principle. In 1929, 5 years
after discovering nebulaes were not part of the Milky Way but were galaxies
on their own, Hubble combined distance observations of nearby galaxies using
Cepheid variable stars with Slipher measurements of the redshift velocities of
these galaxies and found a direct proportionality: galaxies further apart where
moving further away from us. This observation was direct evidence for an
expanding universe, which vanished the need for a cosmological constant that
made the universe static, since Friedmann and Lemaitre solutions to Einstein
equations already naturally explained an expanding universe.

The observation that the universe was expanding lead to the idea that,
going back in time, the universe would have been very small at some point
and possibly had an origin in time. If the universe was static, infinite and
homogeneously filled by stars the night sky would be bright, while the most
simple astronomical observation shows that the night sky is dark. This is
known as Olbers’ paradox, which indicates at least one of the statements above
must be false. An expanding universe with an origin would mean the universe
had a finite age, meaning stars had not always been there, hence why the sky
is dark. A dynamical universe with a hot origin, commonly known as Big
Bang, was reinforced by the discovery of the cosmic microwave background
(CMB, 1965), an isotropic relic radiation consistent with a black body emission
that had been redshifted by the expansion of the universe to peak at the
microwave region of the spectrum. This radiation is the oldest observable
radiation, which happened right at the end of the recombination epoch, an
epoch when matter and radiation interacted so heavily that photons could not
travel freely, until the universe cooled down with the expansion and became
transparent, generating a surface of last scattering, the CMB.

Einstein’s gravitational field equations allow to predict the evolution of
the universe knowing its matter-energy content. In 1930s, Zwicky found study-
ing the velocities of galaxies of the Coma Cluster that the mass measured from
luminous matter was not enough to explain the quick motion of galaxies at the
edge of the cluster. He inferred there had to be a hidden dark matter which
accounted for most of the cluster mass to explain why the galaxies were held
together with that speed. Although dark matter has not been directly detected
yet, there is overwhelming indirect observational evidence of its existence as a
major component of the universe. From the shape of galaxy rotation curves,
to the abundance of galaxy clusters of a given mass, the shape of the CMB
anisotropies and gravitational lensing; all evidence points towards the presence
of a dark matter which is several times more abundant than luminous matter
but has very weak interaction other than gravitational.

8



1.1 COSMOLOGICAL BACKGROUND

Through the 1980s and during the 1990s evidence begun to accumulate
from the CMB anisotropy map and in observations from large scale structure
clustering of the flatness of the universe through a process named inflation and
of the relatively low matter density present in the universe (15 — 40%). This
suggested a new energy density component was missing to reconcile with the
observations and the idea of a cosmological constant was recovered. At the
end of 1990s two independent groups lead by Riess and Perlmutter carrying
observations of type Ia supernovae (SN Ia) arrived to the same extraordinary
conclusion that the universe was under a late time accelerated expansion. This
Nobel Prize discovery brought definitely back the idea that the cosmological
constant was not zero, but indeed had to be positive. Nowadays, we refer as
dark energy to this component of the universe that is driving the late time
accelerated expansion. The most obvious choice for dark energy is a cosmo-
logical constant, but a negative pressure fluid that evolved over time is still
not ruled out by evidence, among other modifications of gravity. We call a
universe with Lambda-Cold Dark Matter (ACDM) the standard cosmological
model. This model has been so far very successful explaining a large range
of observations made over the last decades, including the shape of the CMB
anisotropies, the distribution of galaxies in the universe known as large scale
structure, the redshift-distance positions of type Ia SN or the abundance of
light elements.

The current best measurements of the matter-energy density content of
the universe in early epochs from the CMB indicate that about 68% of the
total energy density comes from dark energy, 26% from dark matter and only
5% comes from baryonic matter. In order to study the evolution and formation
history of the universe a large astronomical effort has undergone in the form
of galaxy redshift surveys, which probe the late time universe as opposed to
the early CMB universe. If dark energy was measured to have a different
value which had evolved over time it would rule the cosmological constant.
A redshift survey is a portion of the sky where the redshift of galaxies and
other objects like clusters or quasars are measured to be able to reconstruct
the 3D matter distribution. The first redshift survey dates from 1977, the CfA
Redshift survey, which initially measured the redshift for 2200 galaxies. Since
then, the number of galaxies measured has risen enormously, in part thanks to
recent technical developments in observational astronomy. From the thousands
of galaxies from CfA we went to over 200,000 galaxies from the 2dF Galaxy
Redshift Survey in 2003, over a million galaxies in the Sloan Digital Sky Survey
in 2012 to over a hundred million galaxies in the Dark Energy Survey by 2019,
to name a few surveys. Future planned surveys such as Euclid, LSST, DESI
or WFIRST and will extend the amount of galaxies even further.

9
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Redshift surveys like 2dF, WiggleZ, BOSS, VVDS, or eBOSS use spec-
troscopy to obtain very accurate redshifts which allow to map the 3D distri-
bution of galaxies and recover the large scale sctructure of the universe. This
enables an accurate reconstruction of the acoustic peak from Baryon Acous-
tic Oscillations and allows to use information from redshift space distortions
produced by galaxies peculiar velocities. However such surveys are shallow
or small and suffer from inhomogeneous sampling of the survey area. On the
other hand, imaging surveys like SDSS, CFHT, KiDS or DES collect light us-
ing a limited amount of filter passbands, measuring a large amount of objects
o a greater depth and high completeness. Instead of obtaining the full high
resolution spectra of an object one obtains photometry in different wavelength
ranges, which translates into lower precision redshift estimation. High quality
images allow to measure shapes of millions of objects, which enables the use
of weak gravitational lensing as another powerful probe for cosmology. Galaxy
shapes are distorted when their light path travels near massive objects and
regions in the universe, which allows to map and trace the amount of total
matter as a function of line of sight position.

An special type of imaging surveys are those with multiband photometry
like ALHAMBRA, COSMOS or PAUS. These include a combination of typical
broad bands with several narrower filters. Among them, Physics of the Accel-
erating Universe survey (PAUS) is a unique example since it has a set of 40
narrow band filters (12.5nm FWHM) which is mapping four contiguous areas
of 20 deg?, each with great photometric redshift precision. PAUS represents
a bridge between small and deep pencil beam spectroscopic surveys and shal-
lower wider ones, providing an unprecedented amount of subpercent precision
photometric redshifts with imaging techniques that deliver greater depth and
area.

1.1.1 ACCELERATING UNIVERSE

Einstein’s General Relativity field equations read! (see for example Wein-
berg 1972; Tanabashi et al. 2018)

1
Ry = 59 = $7G N Ty, + Mgy, (L)

where the left hand side terms describe the geometry of space and time, in-
cluding the metric g, and the Ricci tensor and scalar I, and R. The right
hand side includes the matter-energy terms, like the stress-energy tensor Ty,

'Here and unless otherwise specified we assume natural units, which are defined as ¢ =
h=kp =1 (speed of light, Planck constant and Boltzmann constant).

10



1.1 COSMOLOGICAL BACKGROUND

and the cosmological constant A term which is interpreted an effective energy
term. The assumption that the universe is homogeneous and isotropic, known
as the cosmological principle, allows to find a simple solution to the fields equa-
tion (Eq. 1.1) using the Friedmann - Lemaitre - Robertson - Walker (FLRW)
metric, described by the line element

ds? = gdatde’ = dt? — a®(t) [dxz + Sz(x)dQQ] , (1.2)

which describes an expanding (or contracting) universe with scale factor a(t)
which is a function of time, where dt is the time coordinate, dy the radial
comoving coordinate and df) the solid angle spatial coordinates. The metric
also depends on the geometry of the space, which only affects the angles, where
the function SZ(x) = (sinyx, x,sinhx) for a universe which is (closed, flat,
open). The scale factor a(t) relates the physical distance dr with a comoving
distance that does not depend on time dy as dr(t) = a(t)dyx. Since a(t) does
not have units we set its current value to 1, ag = a(tp) = 1. Assuming a stress-
energy tensor for a perfect fluid, which is a common assumption for describing
the universe components,

T,uzz = —DP Gu + (p + p)uuuua (1'3>

where g, is the spacetime metric from Eq. 1.2, u, = (1,0,0,0), p is the
isotropic pressure and p the energy density. Using the perfect fluid with FLRW
metric and Einstein equations leads to the Friedmann equations, which describe
the evolution of the scale factor a(t),

H*(t) = (a>2 _ 8nGpla) _ & (1.4)

a 3 a?’

O T a), (1)
where k is the curvature of the universe, currently measured to be very close to
zero. The parameter H (t) is the Hubble parameter and measures the expansion
rate of the universe. A third useful equation can be derived from Egs. 1.4 and

1.5,

p+3H(p+p) =0, (1.6)

which we can use to find the density evolution of each component through
his pressure. Matter can be approximated by a pressureless gas p,, = 0 —
pm o a3, radiation by p, = p./3 — p, o< a=* the cosmological constant by
pA =0 — ppr = —pp while a general dark energy fluid with pressure parameter

11
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w has ppp = wppr — pPpE X a—3(+w), Therefore,

pla) = pra™ + pma™> + pra=? + pa (1.7)

where here p, refers to the current energy value (since ap = 1). For a flat

FLRW universe (which is consistent with observations) we define the critical
2

density as the present density, pcrit = %. It is common to redefine the current

densities relative to the critical density, €2, = p”"’?t, which leads to

H%(a) = H [QTa_4 + Qa3 4+ Qa2 + ] = H2E(a) (1.8)

These energy values €2, represent the content of the universe nowadays and

determine the evolution of the expansion rate. The Hubble rate is usually
km

Mpc-s*®

expressed as a function of a reduced hubble constant h, Hy = 100 h

1.1.2 REDSHIFT

Redshift is a direct observable property of a photon defined as the wave-
length difference between its emission and observation

>\0bs - )\em

- (1.9)

N
Il

There are three main causes of redshift in cosmology, the Doppler effect, gravi-
tational redshift and the cosmological redshift. When objects move apart with
a relative velocity v, they create a redshift in the observed photons

1+wv/e

1 =
e 1—wv/e

(1.10)

which for nonrelativistic velocities v < ¢ becomes z ~ v/c. The second one is
a general relativistic effect produced by strong gravitational fields. The third
one is the cosmological redshift, produced by the expansion of the universe.
Since the comoving wavelength of a traveling light ray must remain constant
with the expansion, the physical wavelength between time ¢, a(t) and now o,
ap = 1 changes by the ratio of the scale factors

1
l+2= s (1.11)

12



1.1 COSMOLOGICAL BACKGROUND

1.1.3 DISTANCES

A light ray traveling between two points in space satisfies ds®> = 0 —
—c dt = a dx. Integrating we find the comoving distance between those points

b dt 9% e da c ? dz
= [ €9 _ - 1.12
X(2) /t2 a(t) w Ha?> Hyl)y E(2) ( )

A very useful distance is the luminosity distance Dy which is defined as the
ratio between the luminosity L at emission and the observed apparent flux Fy,

L X

=2 = (1 ) 1.13
or = S =xt+2) (113)
which relates to the comoving distance. Note how for low redshift, Dy, ~ %7

which is the lineal Hubble law.

DLE

1.1.4 CoOSMIC MICROWAVE BACKGROUND

One of the fundamental observations that support the standard cosmo-
logical model was the discovery of a quasi isotropic and homogeneous radiation,
Penzias & Wilson (1965). Since the discovery of the expansion of the universe
from Hubble in 1929, if one projected backwards in time arrived to the con-
clusion that the universe must have been hot, dense and small in the past. In
fact, since radiation temperature is inversely proportional to its wavelength,
which gets redshifted by the expansion, the evolution of radiation temperature
goes as

_To
_CL

T (1.14)

where Ty is the current temperature. Note how in the past the scale factor is
smaller, and the temperature rises. In a hot enough universe, photons, protons
and electrons would have enough energy to be in thermal equilibrium and be
constantly interacting with each other. With the expansion and cooling of
the universe, photons stop having enough energy to ionize hidrogen atoms,
which start to form, an epoch known as recombination. The universe became
transparent and photons could travel free, generating a very isotropic and
homogeneous radiation in all directions that has been traveling (and cooling
down) since then. It is known as the cosmic microwave radiation (CMB) due
to the redshift of the original wavelength, which now peaks in the wavelength
range of radio. The CMB has the nearest black body spectrum measured in
nature, since it was generated from a plasma in thermal equilibrium.

13
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Figure 1.1: Planck 2018 map of the temperature anisotropies of the CMB, extracted using
the SMICA method. The gray outline shows the extent of the confidence mask.

The COBE satellite, in 1992, measured the black body spectrum of the
CMB and provided definitive evidence for a hot Big Bang universe. Later, two
more satellites, WMAP (2003) and Planck (2013), have significantly improved
the measurement of the CMB spectrum. Now we know the CMB originated
at z ~ 1100 and has a temperature of T' = 2.72548 4+ 0.00057K (Fixsen 2009).
While the spectrum is significantly isotropic (once removing a dipole generated
by a Doppler shift from our movement in and with the Milky Way), there are
small anisotropies at the level of 107°. Fig. 1.1 shows the anisotropy tem-
perature map measured by Planck (Planck Collaboration et al. 2018). These
anisotropies are the result of perturbations from the density in the early uni-
verse, which have been projected into the surface of last scattering (or CMB).
They contain significant information about the conditions in the early uinverse,
and provide the best constraints of the ACDM model. Fig. 1.2 shows the angu-
lar power spectra of the CMB measured by Planck (2018) and a best fit model
to temperature using the ACDM model, showing extraordinary agreement.

1.2 PHOTOMETRY

Photometry is a technique that measures the flux of an object that goes
through a passband or filter that blocks light except for a wavelength region.
We define the flux of a galaxy measure through a filter with response R in the
AB system (Oke & Gunn 1983) as

[ IRw)  [DARNRM)
- degVT(V)R(V) [ AAG(RO)

f (1.15)
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Figure 1.2: The Planck 2018 angular temperature power spectra of the CMB (TT). The blue
line is a best-fit model to temperature data using ACDM model.

where f,(v) is the energy density per unit area, unit time and unit frequency of
the object, and g, () = 3631Jy is a reference hypothetical source with constant
frequency emission that defines the AB system zero point. The response is
assumed to be in photon transmission units, which is why the extra v term
is needed to change the units form energy to photon counts. Since sources
have very variable amount of energy density, astronomers have usually used
a logarithmic scale to label galaxies, calling them magnitudes. The apparent
magnitude m of an object is defined as

Ay R
= —2.5logy | LV "w W) (1.16)
fdl/g"T(V)R v

The apparent magnitude m is defined as the observed absolute magnitude an
object at redshift z would have if it were at a distance of 10pc (parsecs),

m(z) = M + 5log; (28;?) (1.17)

The difference m — M is the distance modulus,

D
DM = 5logy, ( 18;?) . (1.18)

In general, for a filter R and @ the relation includes the K-correction,
mR:MQ+DM+KQR (1.19)

To identify if a galaxy is bluer or redder we define colors as magnitude differ-
ences.
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1.3 BAYESIAN STATISTICS

Bayesian statistics is an interpretation of the concept of probability as
the state of knowledge over some logical statement, rather than the frequency
of a phenomenon (see Berger (1985); Jaynes & Bretthorst (2003); Ghahramani
(2012); Knuth et al. (2014)). We call the current state of knowledge our prior
information, which can arise from previous experiments, scientific hypothe-
sis or personal belief. Bayesian inference can be used to update the current
knowledge in the light of new evidence by writing its conditional implication.

There are two main rules in Bayesian probability, the sum and the prod-
uct rules. Let z and y be random events. The sum rule states that if the
joint probability of # and y is known, then the marginal probability of either
of them can be obtained by summing over all values of the other,

P(z) =) P(x,y). (1.20)

The product rule states that the joint probability of x and y can be decomposed
into the marginal probability of x times the conditional probability of y given
x, and viceversa,

(1.21)
P(z,y) = P(x|y)P(y)
Equating both expressions and rearranging one finds Bayes theorem,
P(ylz)P(x)
Pxly) = ———F——— 1.22

We define models as an approximate representation of reality, and a plausible
explanation of our data. Let the parameters of the model M be 6 (usually
a vector). We assume our model can forecast data, P(D|#, M), which we
call the likelihood of the parameters . We can obtain the posterior on the
parameters given some new data became available from the likelihood using
Bayes theorem,

P(D|0, M)P(6)M)
P(D|M)

P(6|D, M) = , (1.23)

where P(6|M) is the prior probability of the parameters of the model. Tt is
important to note that the model is not well defined if the prior is not specified.
The term dividing is a normalization called the evidence, the probabilty that
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our data might have come from a given model. Using the sum and product
rule,

P(D|M) :/P(D,&\M)d@:/P(D[@, M)P(6|M)df, (1.24)

The evidence is usually ignored in parameter estimation, since it is a normal-
ization. However, for model comparison or model selection it becomes very
relevant, since the posterior probability of a model given the data is

P(D|M)P(M)
P(D)

Let M7 and Ms belong to the group H of hypothesis or models to be considered.
The most likely model between the two will be the one with larger posterior

P(M|D) = (1.25)

probability, therefore we look at the ratio of the posteriors

P(M,|D,H) _ P(D|M,,H)P(M;|H) (1.26)
P(My|D,H)  P(D|Ms, H)P(M;|H)’ '

where P(M|H) represents the a priori probability of each model. When these
are equal then the posterior ratio equals the ratio of the evidences, also called
Bayes factor or odds ratio

P(D|M,,H)

B factor = .
ayes factor P(D| My, H)

(1.27)

An important property of the Bayesian evidence, Eq. 1.24, is that it carries a
preference for simpler models, which is known as the Bayesian Occam’s Razor.
Fig. 1.3 illustrates this effect, inspired by a figure from Ghahramani (2012). A
more complex model, with more parameters, has the ability to forecast more
datasets like D, but since the evidence P(D|M) is a probability and must
sum to unity, then a more complex model spreads its probability over more
datasets. In non Bayesian statistics a more complex model could overfit the
data and deceive us into thinking it is the most likely, but in Bayesian statistics
there is no fitting and no optimization.

1.4 PHYSICS OF THE ACCELERATING UNIVERSE SURVEY
(PAUS)

Physics of the Accelerating Universe Survey (PAUS) is an ongoing imag-
ing survey using a unique instrument, PAUCam (Padilla et al. 2019), which
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Bayesian Occam’s Razor

—— Too simple
—— About right
—— Too complex

P(D|M)

RN
[ T

All possible datasets like D

Figure 1.3: Illustration of Bayesian Occam’s Razor, inspired by a figure from Ghahramani
(2012). The blue line shows that a too simple model can only explain a small subset of
possible datasets and will not properly explain D. On the contrary, the green line shows
that a too complex model will spread its probability over many more datasets than needed,
since probabilities must sum to one, reducing its evidence for a particular dataset D. Both
would get rejected against the orange model, which can explain the data without more
sophistication. This normalization effect is known as the Bayesian Occam’s Razor.
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carries a set of 40 narrow band (NB) filters (12.5nm FWHM) that span the
wavelength range from 450nm to 850nm (Fig. 1.4) along with the usual ugrizY
broad band filters. Such an exquisite wavelength sampling results in subper-
cent photometric redshift precision down to magnitude iap = 22.5, and as
good as g, ~ 0.0035(1 + z) for half of such galaxy sample after selecting with
a quality parameter (Marti et al. (2014); Eriksen et al. (2019)).

Wide field galaxy surveys are typically divided into two categories: spec-
troscopic surveys and imaging surveys. The former obtains a high resolution
spectra of the object within some wavelength coverage, which is used to iden-
tify sharp features like emission and absorption lines to nail the redshift of the
object with very high precision. However, these are expensive to obtain: they
require knowing the position of the object beforehand and a large exposure
time, which makes it observationally inefficient to observe deep objects over
a large area. Such surveys also suffer from incompleteness both because not
all objects in the field are targeted and also since a fraction of the measured
spectra fail to provide an accurate redshift, for example when only one line is
observed or when there is a line confusion.

In contrast, imaging surveys are able to obtain measurements of every
object at the same time from a set of bandpass filtered images, which allows to
cover large areas faster and to a greater depth. This happens at the expense of
getting flux measurements with very poor spectral resolution since the width
of typical broad band filters is larger than 100nm, which makes the redshift
determination much less precise and easily biased. In this context, PAUS fills
a gap between large and wide broad band imaging surveys such as KiDS, DES,
Euclid or LSST with limited line of sight resolution, and pencil beam surveys
with spectroscopic data but with a very small area covered. Fig. 1.7 shows a
comparison between PAUS and different spectroscopic surveys. PAUS will be
a few magnitudes deeper (over 10 times denser) than current completed large
area flux limited surveys (such as GAMA) and 10 times larger than current
completed deep flux limited surveys (such as VVDS/VIPERS/DEEP2). Fig.
1.5 illustrates the effect typical broad band photo-z have on the line of sight
resolution compared to a PAUS-like redshift resolution using narrow bands.

This unique combination of area, depth and redshift resolution enables
new analysis. Studies on the role of environment in structure formation are
limited by poor redshift precision in broad band surveys and by tiny area cover-
age or very low density in spectroscopic surveys, while PAUS allows to sample
with high density several galaxy populations over a much larger area and with
sub-percent photo-z accuracy, and in a luminosity-redshift regime unexplored
by shallower completed surveys like GAMA, closing up the gap with future
surveys like Euclid. It is ideal to study the range of intermediate scales (below
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Figure 1.4: PAUS instrument PAUCam carries a set of 40 narrow band filters of 12.5nm
FWHM that span the wavelength range of 450nm to 850nm. This figure shows the final
filter transmission of each of the narrow band filters taking into account the atmospheric
transmission, the quantum efficiency of the CCDs and the telescope throughput.

10—20 Mpc), the weakly non-linear regime, where the statistical signal-to-noise
ratio of cosmological surveys is largest, a range usually avoided in cosmolog-
ical analysis as the modeling of nonlinear bias or the impact of baryonic and
environment effects in structure formation are not well understood.

PAUS observation fields overlap with deep, high quality shape measure-
ments from broad band surveys as CFHT and KiDS, which will provide sub-
stantial constraints on galaxy-shape alignment models, for samples of crucial
interest for future surveys like Euclid and LSST. Intrinsic alignments show the
interaction between galaxy evolution and the large scale structure of the Uni-
verse, but will also become an important astrophysical systematic in cosmology
analysis.
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Narrow band photo-z Broad band photo-z
o, =0.0035(1 + 2) 0. =0.05(1+z)

True redshift
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Figure 1.5: Effect of the photo-z in the positions of simulated galaxies from the public MICE2

simulations.

PAUS Footprint
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Figure 1.6: PAU Survey fields of observation: COSMOS and CFHTLS W1, W2, W3 and

W4. The cyan line represents the Galactic plane.
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Figure 1.7: Adapted from Le Févre et al. (2013). Comparison of the covered area (top)
and the number of measured spectroscopic redshifts (bottom) versus depth expressed as the
equivalent i-band limiting magnitude, between the PAUS and different spectroscopic redshift
surveys. The PAUS numbers are projected quantities expected by the end of the survey.
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Part 11

SAMPLE VARIANCE
CANCELLATION FORECAST WITH
ACCURATE REDSHIFTS

In this part we use the Fisher matrixz formalism to study the expansion
and growth history of the Universe using galaxy clustering with 2D
angular cross-correlation tomography in spectroscopic or high resolution
photometric redshift surveys. We show how multiple tracers with
redshift space distortions cancel sample variance using this formalism
where the radial information is contained in the cross-correlations

between narrow redshift bins.
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Chapter 2

COSMOLOGICAL CONSTRAINTS FROM MULTIPLE
TRACERS IN SPECTROSCOPIC SURVEYS

2.1 INTRODUCTION

One of the most exciting and enigmatic discoveries in the recent years
is the late time accelerated expansion of the Universe, confirmed in late 1990s
from Type Ia supernovae (Riess et al. 1998, Perlmutter et al. 1999). During
the last decade a wide range of observations (see Weinberg et al. 2013) has
provided robust evidence for cosmic acceleration, consistent with a ACDM
model dominated by a new component called dark emergy, which properties
and origin remain unknown.

Cosmic expansion is parametrized by 2(a) and the DE equation of state
w(a) = wotwq(1—a) (Chevallier & Polarski (2001), Linder (2003)) while cosmic
growth is parametrized by v, which gives the growth rate as f(z) = Q(2)7.
For General Relativity (GR) v ~ 0.55, while Modified Gravity models can
give different values of 7 for the same expansion history (e.g. Gaztanaga &
Lobo 2001, Lue, Scoccimarro & Starkman 2004, Huterer et al. 2015). Here we
study the dark energy equation of state w(z) and growth rate 7 constraints
using galaxy clustering in spectroscopic surveys. Galaxy clustering is able to
probe the expansion and growth history almost independently, unlike weak
lensing surveys alone, which are limited to projected, 2D information (see
Gaztanaga et al. 2012, Weinberg et al. 2013). Galaxies are easy to observe and
by accurately measuring their redshift one can reconstruct the 3D clustering
information.

Unfortunately, the relation between galaxy and dark matter is not straight-
forward, and in the linear regime, for large scales, it can be modeled by a fac-
tor called linear bias b(k, z), such that 64(k, z) = b(k, )0, (k, z), where §, and
0 are galaxy and dark matter fluctuations. An independent measurement
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is needed to break the degeneracy between bias and ~, as galaxy clustering
alone cannot (e.g. see Eq.2.2 below). One can break this degeneracy using
cross-correlation with lensing surveys (e.g. Gaztanaga et al. 2012, Weinberg
et al. 2013), but in this chapter we will focus on spectroscopic surveys or high
resolution photometric surveys (Marti et al. 2014). In this case, to determine
bias one can measure the redshift space distortion parameter 5 = f(z)/b(z).
Redshift space distortions (RSD) in the linear regime (Kaiser 1987) enhance
clustering in the line of sight by a factor (1 + f) due to local infall of bodies as
a result of gravity. Measuring with different angles relative to the line of sight
one can determine f(z). However, the random nature of fluctuations (sampling
variance) limits the accuracy with which one can determine P(k), and with
only one tracer that propagates to 8 and cosmological parameters. McDon-
ald & Seljak (2009) proposed to use multiple tracers of the same underlying
distribution to beat this limit measuring along many directions and improve
the constraints canceling sampling variance with RSD. Sampling variance can-
cellation can also be achieved with other observables (e.g. Pen 2004, Seljak
2009). This technique has been explored in recent literature (e.g. White, Song
& Percival 2009, Gil-Marin et al. 2010, Bernstein & Cai 2011, Abramo 2012,
Abramo, Secco & Loureiro 2016), also for photometric surveys (Asorey, Crocce
& Gaztanaga 2014) and combining lensing and spectroscopic surveys (Cai &
Bernstein 2012, Eriksen & Gaztanaga 2015a).

We use 2D angular correlations Cy (see §2.2.2) to avoid assuming a cos-
mology and avoid overcounting overlapping modes without including the full
covariance between them (Eriksen & Gaztanaga 2015b). We forecast spectro-
scopic surveys with narrow redshift bins (Az = 0.01(1+z)) such that the radial
linear modes will be in the cross correlations between redshift bins. In the fidu-
cial forecast we will compute the correlations using redshift space distortions
(RSD) and we include baryon acoustic oscillation measurements (BAO). In
this chapter we will study the constraints from single spectroscopic tracers
as compared to splitting one population into two tracers. The single tracers
are denoted as B1 and B2 and the multiple tracer survey as B1xB2. Note this
differs from our series of previous studies (Eriksen & Gaztanaga 2015b and oth-
ers) where we included one Bright and one Faint population as opposed to two
Bright populations. The cosmological parameter error estimation is done using
the Fisher matrix formalism described in §2.2.3, and we quantify the relative
strength of the surveys through the Figures of Merit (FoMs) defined in §2.2.4,
which focus on measuring the expansion and growth history simultaneously.
In subsection 2.2.5 we present our fiducial forecast assumptions.

This chapter is organized as follows. In section 2 we present our mod-
eling and fiducial forecast assumptions. Section 3 discusses sample variance
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cancellation in surveys with multiple tracers and explores the effect of the
relative bias amplitude between two tracers and the dependence on galaxy
density. In section 4 we model galaxy bias using a conditional luminosity func-
tion (CLF) and halo model to build an apparent limited survey to study the
tradeoff between galaxy bias and galaxy density when we split a survey into
two subsamples. Section 5 investigates the impact of having partly overlap-
ping redshift bins between two tracers in a multi tracer survey and how this
affects the constraints. Moreover, it studies radial resolution by increasing the
number of redshift bins. In section 6 we present our conclusions. Appendix A
studies the importance of RSD and BAO in the constraints and the degeneracy
with cosmological parameters. Appendix 2.B shows the dependence that the
constraints have on the bias evolution in redshift.

In this chapter we have produced the results with the forecast framework
developed for Gaztanaga et al. (2012), Eriksen & Gaztanaga (2015b), Eriksen
& Gaztanaga (2015a), Eriksen & Gaztanaga (2015c) and Eriksen & Gaztanaga
(2015d).

2.2 MODELING AND FORECAST ASSUMPTIONS

2.2.1 GALAXY BIAS

In the local bias model (Fry & Gaztanaga 1993), where fluctuations are small,
one can approximate the relation between galaxy overdensities J, to matter
overdensities J,, through

5q(k, 2) = b(k, 2)0m(k, 2) (2.1)

where b(z, k) is the galaxy bias, which can in general depend on the scale and
redshift. It also varies between different galaxy populations (galaxies hosted
by more massive haloes tend to be more biased, eg. Scoccimarro et al. 2001).
Then, for scale independent bias b(z) = b(k, z) the angular correlations {44 =
(0494) we have that

€gg(0,2) = b%(2) &mm (0, 2) o b°(2) D?(2) (2.2)

Galaxy bias can also include an stochastic component r, see also Eq. 2.27,
which is also a common measure of non-linearity

r= 7697'1 (2.3)

V fgg fmm ‘
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In Gaztanaga et al. (2012) it was shown that it can be treated as a re-
normalisation of bias in large scales and here it is fixed to » = 1. In addition,
non local bias can also modify the galaxy correlation function, but this is a
smaller effect (Chan, Scoccimarro & Sheth 2012).

We include redshift space distortions (RSD, redshift displacement of
galaxies due to their peculiar velocities with respect to the comoving expan-
sion) using linear theory, Kaiser (1987), assuming no velocity bias

5,(k, 1) = (b+ f1i2) 5(k). (2.4)

where = (2 - k)/k = kj/k. We define 8 = f/b as the term with specific

angular dependence p in redshift space.

2.2.2 ANGULAR CORRELATION FUNCTION AND POWER SPECTRUM

Consider the projection of spatial galaxy fluctuations 5;(:13,2) along a given
direction in the sky =

5 () = / dz i(2) 6 (7,7, 2), (2.5)

where ¢'(z) is the radial selection function for the i-th redshift bin of a given
tracer. We define the angular correlation between galaxy density fluctuations
as

wij(0) = (5L(r) 67 (r + ). (2.6)

Expanding the projected density in terms of spherical harmonics we have

L
O(F) =D D ahYom(P) (27)

>0 m=—/{

where Yy, are the spherical harmonics. The coefficients aém have zero mean
(ab,) = 0, as (6') = 0 by construction, and their variance form the angular

power spectrum 4 N
<a2maz/m,> = Oppr Omm Céj (2.8)

which can be related to the angular correlations with
20+1 iy
wi;(0) = % —— Lu(cos) cy (2.9)
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where Ly(cosf) are the Legendre polynomials of order ¢. The Czj can be
expressed in Fourier space (Crocce, Cabré & Gaztanaga 2011) as

c) = 2%2 Ark?*dk P(k) ¥y (k) (k) (2.10)
where P(k) is the matter power spectrum and v} (k) is the kernel for the i-th
redshift bin of a given population. For the matter power spectrum P(k) we use
the linear power spectrum from Eisenstein & Hu 1998 for linear scales, which
accounts for baryon acoustic oscillations (BAO). In real space (no redshift
space distortions), taking into account only the intrinsic component of galaxy
number counts, this kernel is (Eriksen & Gaztanaga 2015b)

i) = [ d=i(:) D) b, ) gl (2) (211)
where b(z, k) is the galaxy bias, Eq. 2.1. When including RSD, one has to add

an extra term that in linear theory is given by (Kaiser 1987, Fisher, Scharf &
Lahav 1994, Fisher et al. 1995, Taylor & Heavens 1995)

Welk) =t + =P
RSP = / dz £(2) 6(2) D(2) [Lo(£) je(kr) (2.12)
+L1(0) jo—a(kr) + La(£) joyo(kr)]

where f(z) is the growth rate and

(2 +20-1)
L) = Grsei—

_ (-1
L) = - (20—1)(2¢+ 1) (2.13)
Lo(t) = (L+1)(+2)

20+ 1)(20 + 3)

The fiducial modeling includes RSD in the kernel and BAO in the power spec-
trum, but we will also forecast removing one or both of these effects.

COVARIANCE

Angular cross correlations between a redshift bin ¢ and redshift bin j corre-
spond to the variance of spherical harmonic coefficients ag, (Eq. 2.8). Assum-
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ing that a@m are Gaussianly distributed and in a full sky situation, one can
then estimate each ¢ angular power spectrum using the 2¢+ 1 available modes,

l
~ s 1 . .

m=—

which yields Eq. 2.10. However, in a more realistic situation, we only have
partial coverage of the sky so that the different modes ¢ become correlated.
Following the approach of Cabré et al. (2007), we bin the ¢ x ¢ covariance
with a sufficiently large band width Af such that it becomes band diagonal,
and scale it with 1/ fgk, (where fsy, is the survey fractional sky). Then, the
covariance becomes

Cov [Cf,CFY = N~H0)(CikCJ' + CLCI™). (2.15)

where N(f) = fsiy(2¢ + 1)Al, and the correlation C includes observational
noise

o - 1
Cz‘j = Céj + (Sij — (2.16)

g
where n, = % is the galaxy density per solid angle. The first term in Eq.

2.16 is signal and contains sample variance information, while the second is
shot-noise. Then, we can define the y? as

= Z (Céj({)\k}) — C”éj) (COV?l)z,Z’,i,j
ot (2.17)

< (it - ¢F)

where C’éj ({Ax}) depend on the parameters that we are looking for.,C’éj are
the observed C;”’s and Cov the covariance matrix between the C)’s. C/
include both auto and cross correlations between different redshift bins and

also possibly between different tracers if there was more than one.

NONLINEARITIES

As we are working in the linear regime we have to limit the scales that we
include in the forecast. We restrict the forecast to scales between 10 < ¢ < 300.
In addition we apply a further cut in [,,4:
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lrnaz = Kmaz 7(2i) — 0.5, (2.18)

for which correlations to include, as these are the scales contributing to C(¥)
for a given narrow redshift bin z; (Eriksen & Gaztanaga (2015b)). In the
forecast we use the Eisenstein-Hu power spectrum and the MICE cosmology
with a maximum scale k4, of (see Eriksen & Gaztanaga 2015c¢)

kmaz(2) = exp (—2.29 + 0.88z2). (2.19)

2.2.3 FISHER MATRIX FORMALISM

Even if we don’t have any data, we can tell how x*({\,}) will vary in the pa-
rameters space defined by {\,}. Expanding x? in the Gaussian approximation
around its minimum the Fisher matrix is (Fisher 1935, Dodelson 2003)

acy . oc
F.U‘V = Z Z 8)\# (COV )l,l’ TAV’ (220)
LU igmn
and it follows that
Cov [Au, ] = [F_I]W. (2.21)

The parameters included in the Fisher matrix forecast are (Eriksen & Gaz-
tanaga 2015c)

{A\u} = wo,wa, by ng, U, Qy, QpE, 08,7, Galaxy bias. (2.22)

The forecast use one galaxy bias parameter per redshift bin and population,
with no scale dependence. Less bias parameters and other bias parameteri-
zation give similar results (see Fig. 2.6 or Eriksen & Gaztanaga 2015d). We
include all cross-correlations between redshift bins and different populations.
We use Planck priors for all parameters except for v and galaxy bias.

2.2.4 FIGURE OF MERIT (FOM)
The Figure of Merit (FoM) for a certain parameter subspace S is defined as

1
FoMg= ——— 2.23
= et [P, (2:23)

marginalizing over parameters not in S. This is a good estimator of the error for
different dimensional subspaces S. For one parameter, then this is the inverse
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error (Eq. 2.21) of the parameter. For two parameters it is proportional to the
inverse area included within 1-sigma error ellipse. For three parameters it is
the inverse volume within 1-sigma error ellipsoid, and so on. In this work we
focus in the figures of merit defined in (Eriksen & Gaztanaga 2015¢):

e FoMpgrr. S = (wo, we). Dark Energy Task Force (DETF) Figure of
Merit (Albrecht et al. 2006). Inversely proportional to the error ellipse
of (wo, wq). The growth factor ~ is fixed.

e FoM,, : Equivalent to FoMpgTr, but instead of v = 0.55 from GR, 7 is
considered a free parameter and is marginalized over.

e FoM,. S = (). Corresponds to the inverse error of the growth param-
eter 7. Therefore, FoM, = 10, 100 corresponds to 10%, 1% expected
error on . The dark energy equation of state parameters (wo,wa) are
fixed.

e FoM,,. S = (wo, wq, 7). Combined figure of merit for wp, w, and ~.

It is important to note that, when not including priors, the different FoMs
scale with area A in the following way

FoMpgtr o A,
FoM,, o< A,
FoM,, AY 2
FoM,,, A3/2,

(2.24)

Doubling the area would give a factor ~ 2.83 higher FoM.,,,.

2.2.5 FIDUCIAL GALAXY SAMPLE

We define two galaxy populations based on the following fiducial spec-
troscopic (Bright!, B) population. We define a magnitude limited survey, with
iap < 22.5 as the fiducial flux limit in the i-band. The fiducial survey area
is 14000 deg?. The fiducial redshift range is 0.1 < z < 1.25, and the number
of redshift bins is 71, with a narrow bin width of 0.01(1 + z). Spectroscopic
surveys usually have great redshift determination, so we define a Gaussian

'This population definition is in correspondence with previous work such as Gaztafiaga
et al. (2012) and Eriksen & Gaztanaga (2015c)
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Area [deg?] 14,000
Magnitude limit 1A < 22.5
Redshift range 0.1 <2z<1.25
Redshift uncertainty 0.001(1 + 2)
zBin width 0.01(1 + =)
Number of zbins 71
Bias: b(z) 2+2(z-0.5)
Density [gal/arcmin?| 0.4
n(z) - zo 0.702
n(z) - « 1.083
n(z) - B 2.628

Table 2.1: Parameters that describe our fiducial spectroscopic survey.

spectroscopic redshift uncertainty of ogg = 0.001(1 + z), much lower than the
bin width.

The fiducial bias is interpolated within 4 redshift pivot points, z =
0.25,0.43,0.66, 1.0, which scale with redshift in the following way,

bp(z) =2+2(z —0.5). (2.25)

Recall that there is one bias parameter per redshift bin and population. The
fiducial redshift distribution of galaxies is characterized with the number den-
sity of objects per solid angle and redshift as

d(ggz - N <;>aexp <— <;>B> (2.26)

and is constructed by fitting a Smail type n(z) (Efstathiou et al. 1991) to
the public COSMOs photo-z sample (Ilbert et al. 2010). The values for a,
B and zp in Eq. 2.26 correspond exactly to the values in Gaztanaga et al.
2012: zg = 0.702, a = 1.083 and 8 = 2.628. The normalization N sets the
density of galaxies per solid angle, being the fiducial density for this work

ng = 0.4 gal/ arcmin®. Table 2.1 summarizes the parameters that characterize
our fiducial spectroscopic survey.
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2.3 SAMPLE VARIANCE CANCELLATION

When two populations in a survey overlap in the same volume (B1xB2)
one gets additional cross-correlations and covariance between them. If one is
able to split one galaxy sample into two galaxy overdensities in the same area
by some observable (i.e. luminosity, color), the resulting subsamples become
correlated as they trace the same underlying dark matter fluctuations. As a
result, using multiple tracers allow for sampling variance cancellation and can
considerably improve the constraints. This multi-tracer technique was first
introduced in McDonald & Seljak (2009).

Assume B1 and B2 are two galaxy populations, one with bias b and the
other with bias ab. Their density perturbation equations in redshift space (Eq.
2.4) and in the linear regime are

Spi(k) = (b+ fu?) (k) + 1, (2.27)

and
dpa(k) = (ab+ fu?) 8(k) + e, (2.28)

where p = kj/k is defined to be the cosine of the angle between the line of
sight and the wavevector l%, and ¢; are stochasticity parameters that can refer
to a standard shot-noise or to other random component.

Even when having an infinite galaxy sample, there will be cosmic variance
as each mode 0(k) is a random realization of a Gaussian field. However, if we
have two tracers sampling the field we can average over many modes and cancel
the sampling variance. To illustrate this we divide Eq.2.28 over Eq.2.27 (with
no stochasticity) and obtain

opa _ af ™t + P

G T T 220

where 8 = f/b, which has explicit angular dependence, but no dependence on
the random field §, which allows to extract o and [ separately, and determine
exactly in the absence of shot-noise. In McDonald & Seljak (2009) the authors
compute an analytical example considering a pair of transverse and radial
modes (¢ = 1 and g = 0), and already found that can arbitrarily improve
the determination of 5 with respect to the single galaxy in the limit of zero
shot-noise.

Splitting one spectroscopic sample into two over the same area increases
the number of observables available but also increases the number of nuisance
parameters and adds shot-noise to the observables. The cosmological informa-

34



2.3 SAMPLE VARIANCE CANCELLATION

tion coming from two overlapping tracers is correlated as well as their nuisance
parameters, which manages to reduce the error on cosmological parameters
(Eriksen & Gaztanaga (2015a)). Decisively, splitting optimizes the constraints
by canceling the random nature in the amplitude of the modes (see Eq. 2.29).

The way these mentioned effects propagate into the FoMs is the object
of study in Section 3. In the following subsections we show the impact in our
forecast of the relative bias amplitude (subsection 2.3.1) and the dependence
on galaxy density (subsection 2.3.3) for the single and multi tracer surveys. In
subsection 2.3.2 we show the FoMs for o = 0.5, which is the fiducial relative
bias amplitude value for subsection 2.3.3, section 2.5 and Appendix 2.A.

2.3.1 RELATIVE BIAS AMPLITUDE («)

In Fig. 2.1 we show FoM,,, (§2.2.4) (for other FoM see Fig. 2.11) for
the two single tracers (Bl and B2) defined in Eqgs. 2.27 and 2.28, without
stochasticity, as function of the relative bias amplitude a (Eq. 2.28). They
both follow the fiducial configuration from Table 2.1 except for the o param-
eter. B2 is shown with the fiducial density and with four times less density.
Furthermore, we show what happens if we merge both single tracers into one
overlapping survey B1xB2, for the two density cases of B2. B1xB2 equals B1 +
B2 constraints + extra correlations + extra covariance, and includes all cross
redshift and cross population correlations. All lines are normalized to the Bl
FoM, which does not depend on «a.

In the example considering a pair of transverse and radial modes from
McDonald & Seljak (2009), the authors find that the improvement measuring
B is proportional to

ag(l tracer) (o —1)2
2 Y

2.30
0’%(2 tracers) . (2:30)

which is minimum at @« = 1. When doing the full analysis in Fig. 2.1 we
take into account the whole range of p, and our results for 2 tracers (B1xB2)
also show a minimum when the bias amplitudes are equal (o = 1). Note that
we do not expect B1xB2 ratio to Bl to be 1 at a = 1 as B1xB2 has twice its
total density and extra correlations and covariance between tracers. To remind
this and avoid confusion we write the total density in parenthesis next to the
population in gal/arcmin?: B1xB2(0.8), B1(0.4), B2(0.4).

When increasing the bias ratio, a # 1, we cancel sample variance and we
quickly improve our constraints up to a factor 4 from B1(0.4) to B1xB2(0.8). If
we reduce four times the density of B2(0.4) the improvement between B1(0.1)
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Figure 2.1: FoM,. dependence on the relative bias amplitude « (Eq.2.28) for the fiducial
density (circles) compared to when B2 density is four times lower, 0.1 gal/arcmin®, (trian-
gles). The blue dotted lines correspond to B1xB2(0.8 or 0.5), the green dashed to B2(0.4
or 0.1) and the red solid to B1(0.4), where the values inside parenthesis indicate the total
density of each population in gal/arcmin®. All lines are normalized to the B1(0.4) forecast.

and B1xB2(0.5) is a factor ~ 2.3, which is lower because shot-noise is higher.
For B2(0.4) the constraints are similar for v < 1 (lower bias amplitude), and get
worse with & > 1 (more bias). Here two effects overlap: RSD effect becomes
more important with lower bias which has a great impact in v constraints,
whereas a higher bias increases the amplitude of the correlations, which weak-
ens the impact of shot noise, and in particular improves the w constraints. For
this reason, reducing B2 density has a larger impact on lower bias both in B2
and B1xB2 as it mitigates the benefits from RSD, and also as the signal from
correlations is lower then shot noise is more predominant.

For a detailed study of the impact of RSD and BAO with bias and « in
all FoMs see §2.A.1 to 2.A.3.
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Fiducial xBias No RSD No BAO No RSD-xBias No BAO-xBias

. B1xB2 13.7 117 1.61 9.25 41.4 64.2
1073 FoM yw: B2 5.88 36.1 0.62 4.37 16.7 24.7
B1 5.53 45.4 1.45 3.78 37.9 31.6

B1xB2 62 190 9.9 58 105 143

FoM ~: B2 51 152 7.6 49 78 121

B1 38 147 9.6 38 102 133

B1xB2 221 615 163 160 395 450

FoM w: B2 116 238 82 90 212 204

B1 147 310 152 100 373 238

B1xB2 237 875 209 171 841 787

FoM DETF: B2 129 513 106 104 479 422
B1 180 801 196 137 797 696

Table 2.2: Sample variance cancellation for multitracing B1xB2(0.8) of two spectroscopic
populations, B1(0.4) and B2(0.4), where the values inside parenthesis indicate the total
density of each population in gal/arcmin®. The relative bias amplitude between both popu-
lations is set to @ = 0.5. Each column show the impact of removing different effects, while
rows show the single and overlapping population cases.

2.3.2 FIDUCIAL MODEL (a = 0.5)

In this subsection we study several effects fixing a = 0.5, which will be
the fiducial value for the relative bias amplitude in the following subsections,
except for section 2.4. Table 2.2 presents four tabulars, one for each FoM,
with the two single population cases (B1(0.4), B2(0.4)) and the multitracer
case (B1xB2(0.8)) for the rows. In the columns we present the fiducial case
(labeled ‘Fiducial’) and the impact of some physical effects, like fixing bias
(‘xBias’), computing correlations in real space (‘No RSD’), not including BAO
wiggles (‘No BAQO’) and combinations of these.

Looking first at the ‘Fiducial’ column, one sees how the multitracer case
has better constraints than the single tracer cases, for all FoMs, due to sample
variance cancellations. Comparing to the best single tracer, there is a 133%
improvement for FoM.,,, 23% for FoM.,, 50% for FoM,, and 32% for FoMpgTF.

Galaxy bias can be fixed from lensing surveys and its cross-correlations
with galaxy clustering (see Bernstein & Cai 2011, Cai & Bernstein 2012, Gaz-
tanaga et al. 2012, Eriksen & Gaztanaga 2015¢). Fixing bias greatly improves
the constraints as it breaks strong degeneracies, but the gains from sample vari-
ance cancellations are still present, which shows that they are not caused by
measuring bias. RSD allow to measure galaxy bias and the growth separately,
but not the random nature of the fluctuations, so fixing bias will not break the
degeneracy with the rms amplitude of fluctuations, but multiple tracers will.
When removing redshift space distortions (‘No RSD’), sample variance cancel-
lations are no longer possible, and the gain for B1xB2(0.8)/B1(0.4) is much
lower. Also, without RSD, our ability to measure v drops, which translates
in a much lower FoMs. Not including BAO measurements reduce the FoMs,
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Figure 2.2: Impact of spectroscopic galaxy density on the constraints. The relative bias
amplitude is fixed at « = 0.5. The red dotted B1(0.4) and green dot-dashed B2(0.4) lines
correspond to the single tracers. B1xB2(0.8) (blue dashed line) is the overlapping survey of
merging B1(0.4) and B2(0.4), and thus has double the density of each alone. B1xB2(0.4)
(black solid) has the same total density as B1(0.4) or B2(0.4) and is identical to B1xB2(0.8)
except its tracers have halve the density. The cyan dots show B1xB2(0.4) without cross
correlations between B1(0.2) and B2(0.2), which is equivalent to adding the auto correlations
from each B1(0.2) and B2(0.2) population alone plus the covariance between them. The

vertical line shows the fiducial density, 0.4 gal/ arcmin?.
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affecting more the w constraints while having little impact on FoM, (see §2.A
for a discussion of the impact of RSD and BAO). We have also checked the
effect of weak lensing magnification using the magnification slopes given in
Eriksen & Gaztanaga (2015c). We find that they contribute less than 0.5%.

2.3.3 GALAXY DENSITY

The auto-correlations for a redshift bin include a shot-noise term (see
§2.2.2) due to the discrete nature of the observable (galaxy counts), which
depend on the galaxy density. Previously in the introduction of section §2.3
we have discussed that multiple tracers in redshift space can cancel sampling
variance, and then our ability to improve our constraints is only limited to
the signal-to-noise of the tracers (except when including bias stochasticity).
Therefore, if there is no bias stochasticity, by increasing the survey density we
can improve our cosmology constraints as much as we want. However, surveys
usually have a fixed exposure time, so increasing survey density requires going
deeper (longer exposures), which results in a smaller survey area. In this
subsection we do not study this trade off between galaxy density and area, but
increase galaxy densities for a fixed area. Moreover, spectroscopic surveys are
characterized by having very good redshift determination since it has spectra
where one can locate the emission lines, but it requires to take longer exposure
times which results into lower densities.

Fig. 2.2 shows how FoM,, and FoM, depend on galaxy density. B1(0.4)
and B2(0.4) correspond to the single tracer surveys. The blue line B1xB2(0.8)
is a multiple tracer survey which merges the single tracer surveys B1(0.4) and
B2(0.4) over the same area, as the multitracer surveys studied in Fig. 2.1 and
Table 2.2. Therefore, it has double of the density of one single tracer alone, and
the x-axis refers to the density of one of the subsamples of the survey. On the
other hand, the black line B1xB2(0.4) studies the constraints when splitting
one single tracer like B1(0.4) into two, keeping the total density, and thus the
density of each subsample is reduced by half. Therefore, when comparing to
the single tracers the black line addresses the gains from covariance and cross-
correlations but adding shot-noise in the subsamples, and the blue line adds
the gains from extra density from merging B1(0.4) with B2(0.4). Note that
in a real survey we are interested in the gains coming from splitting into two
subsamples like B1xB2(0.4), while B1xB2(0.8) shows the combined constraints
the way B1(0.4) and B2(0.4) are fiducially defined.

As expected, the single tracer results flatten out at the high density limit
and saturate. For multiple tracers there is sample variance cancellation and the
constraints improve beyond the single tracer noiseless limit. At lower densities
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we observe that B1xB2(0.4) and B1(0.4) lines cross. When shot-noise is already
high we do not expect further splitting to improve the constraints. Moreover,
B1xB2(0.8) shows better constraints than B1xB2(0.4) as the higher density
reduces shot-noise. For the single tracers, in FoM, the constraints are similar
for B1(0.4) and B2(0.4) at low densities, while we observe a clear difference
(due to bias) between them on the noiseless limit. Lower bias populations (B2)
get better constraints because in FoM, RSD is vital for breaking degeneracies
and is enhanced with a lower bias amplitude (see §2.A.1 for details), but when
shot noise becomes dominant then this effect disappears. On the other hand, in
FoM,,,, we observe that B1(0.4) and B2(0.4) lines cross, as for the w constraints
a lower bias gives lower constraints in general, but this effect is more noticeable
with high noise, as in that case having more signal is more relevant, while in the
noiseless limit the constraints are similar for different bias (see, for example,
right panel in Fig. 2.15).

The cyan dots correspond to removing cross correlations between B1(0.2)
and B2(0.2) in B1xB2(0.4). This is equivalent to adding the correlations (trans-
verse and radial within redshift bins), of each population B1(0.4) and B2(0.4)
(B1+B2) plus the same sky covariance. It shows the relative importance of
covariance between the tracers and the additional cross correlations in the
gains that we are observing. We find that there is only a tiny contribution
from cross-correlations (< 2% at high density), which shows that the multiple
tracer improvement comes mainly from sample variance cancellations.

From now on we only show the multitracer B1xB2 with the same total
density as the single tracers.

FIXING BIAS

Fig. 2.3 shows the constraints from B1xB2(0.4), B1(0.4) and B2(0.4)
when fixing bias compared to the free bias case (free bias means marginalizing
over the bias parameters). When we fix bias we break strong degeneracies
and the constraints improve by an order of magnitude. We find that not all
improvement comes from measuring bias, as we find similar relative gains with
the fixed and free bias cases. The fact that for B1xB2(0.4) the free and fixed
bias lines approach comes from the v constraints, while for the w constraints
the difference is rather flat (not shown). Note that some extreme density values
are shown, which are included to study the potential gains from a theoretical
point of view.
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Figure 2.3: Shows the constraints of FoM,,, for the free and fixed bias case, for the B1(0.4),
B2(0.4) and B1xB2(0.4) surveys. Free bias means marginalizing over the bias parameters,
and corresponds to the fiducial forecast (Labeled as ’Fiducial’).
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2.4 RELATION BETWEEN BIAS AND DENSITY

In the last subsections we have studied the constraints dependence on
galaxy density and relative bias amplitude when splitting one spectroscopic
population into two. When splitting by luminosity or absolute magnitude,
brighter galaxies tend to live in more massive haloes, which tend to be more
biased and less abundant. Therefore, there is a relation between galaxy density
and bias. In the other sections we fix @ = 0.5 and ignore this relation to un-
derstand different physical effects from a theoretical point. To account for this
effect, in this subsection we model galaxy bias using a conditional luminosity
function (CLF) fitted to SDSS data from Cacciato et al. (2013) combined with
a halo model (HM). The CLF determines how galaxies with a given luminosity
populate dark matter haloes of different mass, ®(L|M ), while the HM set the
abundance of dark matter haloes of a certain mass, n(M, z). Using this mod-
eling we define a magnitude limited survey 18 < r4p < 23 and we are able to
determine the abundance of galaxies and galaxy bias as a function of redshift,
halo mass or galaxy luminosity. To define the apparent limited survey we only
consider luminosities in redshift such that rap(L, z) € [18,23], since Cacciato
et al. (2013) fit the HOD model using the SDSS r-band data.

2.4.1 CONDITIONAL LUMINOSITY FUNCTION

The conditional luminosity function from Cacciato et al. (2013) has two
separate descriptions for the central and satellite galaxies:

(I)(L‘M) = (I)C(L|M) + ®S(L’M)7

loge . [ (log L — log LC)T dL
= X — —_—,

Voro, P 202 L (2.31)

L L\ L\?| dL
O (LIM)dL = ¢ <L*> exp [— <L*> ] I

where log is the 10-based logarithm and L., o., ¢%, as and L} are all function
of halo mass M,

O, (L|M)dL

M Ml 71
Le(M) = Lo 1 +((M//M1))]71—72 :
Li(M)=0.562 L.(M), (2.32)
as(M) = as,
log [¢5(M)] = by + b1 (log My2) + by(log Mi2)*.
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For the total set of CLF parameters we use the median of the marginalized
posterior distribution given in Cacciato et al. (2013) for their fiducial model.

2.4.2 HALO MODEL

The comoving number density of haloes per unit halo mass can be well
described (Press & Schechter 1974, Sheth & Tormen 1999) by

%—f( )pm dlno=!
dM M? dln M’

(2.33)

where p,, is the mean density of the universe and o2(M, z) the density variance
smoothed in a top hat sphere at some radius R(M) = (3M /4mpm)'/3,

oM, z) = 22 /dk K2 P(R) W (kR)[?, (2.34)

where W (x) = 3j1(x)/x. For the differential mass function f(o, z) we use the
fit to the MICE simulation from Crocce et al. (2010),

Fo,2) = A(z) [o79® b(z)} exp [—c((;)] (2.35)

with A(z) = 0.58(1 + 2)7%13, a(z) = 1.37(1 + 2) 7015, b(2) = 0.3(1 + 2)~0-084
c(z) = 1. 036(1 + 2)79024 We define the halo mass function in arcmin? units
as

np(M, z)

(2). (2.36)

th/dM_< 77 )2 cx?(z) dny,
dQdz — \10800/ H(z) dM

To model halo bias function we use the fitting function from Tinker et al.
(2010),

- A(z) v

bh(Mv Z) =
Va(z) _|_ 52"(3)

+ B(2)v*®) + C(z)p® (2.37)

where v = 6./0(M, z), 0. ~ 1.686 is the linear density collapse, and where we
use the parameter values from Table 2 with A = 200 from the same paper (see
also Hoffmann, Bel & Gaztanaga 2015 for other values).
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2.4.3 SPLITTING METHODS

Once the halo mass function and the halo bias function are specified we can
determine the galaxy number density and galaxy bias for an apparent limited
survey. The average number of galaxies of a given halo mass with L1 < L < Lo
is

LQ(Z)
®(M, 2) = / &(L|M)dL, (2.38)
Li(2)

and the number density of galaxies per unit redshift is

Mmax
n(z):/M | O(M,z)np(M, z)dM, (2.39)

while the corresponding mean galaxy bias is
B(z) = / AM bu(M, 2) B(M, ) (M, 2) /7y (2). (2.40)

Here we define Li(z) and La(z) such that rap(L2(z)) = 18 and rap(Li1(z)) =
23. We integrate between M, = 10 and M,y,q, = 15 in log [M /Mgh~!] units
and consider ®(L|M) = 0 outside of this boundaries. To split the survey into
two subsamples we consider two methods:

e Splitting by halo mass: split the spectroscopic sample introducing a M
in Egs. 2.39-2.40 which defines two populations, B1 with M,,;, < M <
My and B2 with Moy < M < Mgy

e Splitting by apparent magnitude: split the spectroscopic sample intro-
ducing an L.y (z) in Eq.2.38 which defines two populations, B1 with
L1 < L < Ley and B2 with Loy < L < Lo. Notice that rap(Lew(2)) =

Teut-

Within this two methods we consider two cases, one in which the cutting
variable (Mey: and rey) is the same for all redshifts. The another case fix the
density ratio (i.e. m1(z)/n2(z) = const.) as a function of redshift by fitting
the Myt(z) and 7eyt(2) which produces the corresponding density ratio. This
results in a total of four different forecasts. Notice that fixing the density
ratio cutting in apparent magnitude ¢, (2) or absolute magnitude (luminosity)
Leyi(2) is the same.

Fig. 2.5 shows the four cases that have just been described for FoM.,,
in the left panels and FoM, in the right panels. Two density cases are studied,
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Figure 2.4: Density versus bias ratios between the two subsamples. The top panel shows the
split with halo mass, Mc;.:, while the bottom panel shows a split with r-band magnitude,
Teut. Each line corresponds to a given Mcyt/reut, which value is indicated in a box next to
the start of each. The colorbar shows the redshift evolution for each line. There are 5 dots
in each line indicating the position of z = 0.1, 0.4, 0.7, 1.0, 1.25. The dashed line shows the
case where FoM.,, is maximum (see the details in the text).
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Figure 2.5: FoM,,, (left panels) and FoM,,, (right panels) when using a CLF ®(L|M) and
HM models to build an r-band limited magnitude survey, rap = [18,23]. Two splitting
methods are shown, splitting in halo mass, My, and splitting in r-band, 7cy:. Two cases
are studied for each method, splitting with constant My /7yt in redshift and splitting with
constant density ratio in redshift, 7i1(z)/fi2(z) < const. The top panels have a total density
of 0.4 gal/arcmin?, while the bottom panels have 40 gal/arcmin®. The x-axis shows the
density ratio between the two subsamples, and the two twin axis show the correspondence
of this ratio to a given constant Mc,: and rey¢ in redshift. All lines are normalized to the
FoM when not splitting the galaxy sample.
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0.4 gal/arcmin? (top panels) and 40 gal/arcmin? (bottom panels). The x-axis
shows the density ratio between the two subsamples for each case, while the two
twin axis show the correspondence of this density ratio to the cutting variable
(halo mass and apparent r-band magnitude) for the two cases in which the
cutting variable is constant in redshift. All lines have been normalized to the
FoM when not splitting the galaxy sample.

Fig. 2.5 shows that a split of galaxies using the halo mass gives a better
improvement in the constraints than splitting with apparent magnitude. Split-
ting with halo mass improves up to a factor 1.27 in FoM.,,, with low density
(top left panel) while splitting with an r-band cut gives a factor 1.05. The
peaks are found at halo mass M.,; ~ 13.5 (log [M/Mch™']) and re ~ 21.3.
Forcing the density ratio between the subsamples to be the same in redshift
(labelled as cut with constant density in Fig. 2.5) slightly improves the con-
straints to a factor 1.29 for a cut in halo mass and leaves it near the same for an
r-band split. When using a denser population (bottom left) the improvement
raises to a factor 9.2 in FoM,,, for a halo mass split and a factor 2.7 for r-band
split. When fixing the density ratio the factors are 9.6 and 3.0, respectively.
The maximum gains are obtained for nj/ny ~ 7 when cutting in r-band and
n1 /M2 ~ 30 when cutting in mass. In practice, one does not need to know the
mass or the r-band, but only to have an observational proxy that allows to
rank the galaxies to allow the sample split (e.g., richness in the case of halo
mass). For FoM, and low density (top right) the factors are 1.11 and 1.02
for My =~ 13.5 and 7y ~ 19.4, although for the r-band cut the maximum
would be found at brighter cuts which were numerically unstable. For a denser
survey (bottom right), when fixing the density ratio, the constraints improve
up to a factor 3.43 for halo mass and 1.79 for r-band.

When splitting a population into two subsamples one want to maximize
the bias difference in redshift between them while keeping their densities as
similar as possible in order to maximize the FoM. To do so, we would like
to have a quantity that increase monotonically with bias with small scatter.
Halo mass is such a quantity and so it maximizes the FoM. Splitting in appar-
ent magnitude gives a distribution in halo mass, ®(L|M), reducing the bias
difference.

Fig. 2.4 shows the density-bias ratio evolution in redshift for different cut
values when cutting in halo mass (top panel) and r-band magnitude (bottom
panel). The dots in the figure show the position of the 5 ticks from the colorbar
(z=0.1, 0.4, 0.7, 1.0, 1.25). For a halo mass cut the bias difference is low when
splitting at low halo masses as bias evolves linearly in that regime and the
abundance of galaxies overweights that region in front of the high biased one.
Cutting at higher masses results into an increasingly greater bias difference,
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but also makes a more uneven density split. The maximum in FoM,,, is found
at My ~ 13.5, which has a similar density ratio in redshift nq/fio = 40 ~ 50
and a bias difference of o = 131/132 =0.3~0.4.

When splitting with apparent magnitude (Fig. 2.4, lower panel) the
density ratios quickly span over large ranges in redshift when the bias difference
increases, which limits the amount of improvement. For most magnitude cuts
an important part of the distribution is very unevenly splitted, which increase
the shot-noise. Furthermore, at a density ratio of 40 ~ 50, (i.e. the peak
with a halo mass cut in Fig.2.5), there is no magnitude cut at any redshift
which produces an « < 0.55, which is a factor 1.4 ~ 1.8 less bias difference
than in the halo mass situation. In the high density case we are not shot-noise
dominated and thus the improvement goes from a marginal 5% to a 3 times
better FoM,,,.

In addition, Fig. 2.5 shows a relative minimum at M., ~ 12.6 and a
relative maximum at M, ~ 12.1 for the halo mass cuts at lower density cases,
in both FoM,,, and FoM,,. Fig. 2.4 shows that although M_.,; ~ 12.6 has a
10% ~ 15% greater bias difference depending on redshift it has a more uneven
density split. A cut in Mg, ~ 12.1 gives a density ratio in redshift which
extends over n/na ~ [0.1,16], with some cuts in redshift being close/equal to
a density ratio of unity, which maximally reduces shot noise, whereas a cut in
Myt ~ 12.6 results in 7g /fig ~ [1.3,20]. The increment in bias difference does
not compensate the induced shot noise. With higher density (Fig. 2.5 lower
panels) shot-noise has a lower impact and the relative minimum disappears
resulting in a flattened region instead.

Moreover, we have split in absolute magnitude (not shown) by fixing
the luminosity cut Ley as a function of redshift. The FoM were worse than
with an apparent magnitude cut, and in most cases worse than not splitting
the sample at all. Having a magnitude limited survey gives an incompletness
of luminosity in redshift, meaning that several redshift ranges have very few
galaxies or no galaxies at all, which introduces large amounts of shot-noise.

2.5 PARTLY OVERLAPPING REDSHIFT BINS

In Fig. 2.6 we show the effect of having partly overlapping redshift
bins between two spectroscopic populations (B1xB2) by shifting the beginning
of the redshift range zp;, of one of the populations (B1) while keeping the
other fixed. This shifts all the B1 redshift bins with respect to the B2 ones
and determines the amount of overlap between them. The total density of
both the multitracer and single tracers is equal to 0.4 gal/arcmin®. In Fig.
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2.6, the panels on the left show the FoM normalized to the fully overlapping
bins value (i.e. normalized to the Bl z,;, = 0.1 or 0 Az shift value of the
FoMs) for FoM,,,, FoM, and FoM,,, while the panels on the right show the
absolute values. The fiducial forecast line (red solid) shows oscillations that
are minimum at the edges of the fiducial binning (marked by vertical grey lines
on the plots) and are maximum when the redshift bins half overlap with each
other (when B1 bins start in the middle of a B2 bin and viceversa). In the
fiducial forecast we parametrize bias with one parameter per redshift bin and
tracer. The black dashed lines show an alternative bias parameterization which
parametrize the bias with four redshift pivot points z; € [0.25, 0.43, 0.66, 1.0]
and linearly interpolate between them. We find similar constraints from both
bias parameterizations and this shows that the gain does not artificially come
from the choice of bias parameterization.

When bins half overlap with each other (when B1 bins start in the middle
of a B2 bin and viceversa) the gain is maximum, a factor 1.33 for FoM,,,
1.06 for FoM,, 1.26 for FoM,, and 1.33 for FoMpgrr (not shown). Having
partially overlapping bins induces an effective thinner binning that allows to
probe smaller scales which improve constraints. Most of this improvement
comes from the cross correlations between both populations, as the smaller
scales information comes mostly from cross-correlating with the shifted bins.
When removing them (red solid to pink dash-dash-dot line) the gain factors
at the peaks reduce to 1.07 for FoM,,,, 1.00 for FoM,, 1.07 for FoM,, and
1.12 for FoMpgtr, and for FoM, (center left panel) shifting bins even leads to
worse constraints. When B1 z,,;, starts exactly at the second bin of B2 the
constraints drop as all bins perfectly overlap again, but with the forecast having
one less bin the FoMs are slightly lower compared to the fiducial forecast. The
effect of removing the first bins does not reduce much the FoMs as the first
bins are often removed from cutting in k£, but the FoMs eventually start to
drop when removing more bins.

When fixing bias (blue dotted line) the absolute constraints greatly im-
prove, as expected from breaking degeneracies. FoM, shows substantially
relative lower oscillations (bottom left panel), which means that part of the
improvement came form better measuring bias, while FoM, shows greater os-
cillations when bias is fixed. FoM,, combines these effects and improves a
factor 1.2 at the peak when fixing bias (10% lower than the fiducial). When
removing RSD (purple dot-dashed), the constraints for v reduce considerably
and look flat in the absolute values (center right panel). FoM, shows higher
oscillations (center left panel), but now these come from measuring v directly
from the growth rate in front of the power spectrum, and not from RSD. In
FoM,, the constraints are worse, but the relative gains are very similar.
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Figure 2.6: Effect of having partly overlapping redshift bins when combining two spectro-
scopic surveys (B1xB2). The start zmin of the Bl redshift range determines the overlap
between the redshift bins of both populations. The x-axis shows the B1 z,,i, shift in z-bin
width units, Az. The panels on the left show the FoM normalized to the fully overlapping
bins value (i.e. Bl zmin = 0.1 or shift = 0) for FoM,.,, FoM, and FoM,,, while the panels
on the right show the absolute values. The black (dashed) line uses 4 redshift pivot points
z; € [0.25, 0.43, 0.66, 1.0] to parametrize bias instead of the fiducial 1 parameter per red-
shift bin and population. The pink dash-dash-dot line does not include cross correlations
between Bl and B2. The blue dotted line is the fixed bias case, the purple dot-dashed line
corresponds to removing RSD, and the green dash-dot-dot line combines fixed bias and no
RSD. The grey vertical lines show the fiducial (B2) redshift bin edges.
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Figure 2.7: Amplitude of the oscillations when having partly overlapping bins between two
populations, for different bin widths. For Az = w(1 + z), the lines correspond to: red solid,
w = 0.01 (fiducial value); blue dashed, w = 0.0075; green dotted, w = 0.0125. All lines are
normalized to their respective values at Bl z,,:, = 0.1. The vertical lines show the position
of the bin edges for each case.

Fig. 2.7 shows the impact of the redshift bin width on the oscillations in
FoM,,,. We parametrize the bin width as Az = w(1+z). The lines correspond
to: w = 0.01 (red solid, fiducial value), w = 0.0075 (blue dashed) and w =
0.0125 (green dotted). All lines are normalized to their respective values at
B1 2., = 0.1. It shows that redshift bin width has an important impact on
the relative gains. For the thinner binning the relative improvement is only
of a factor 1.2, while for the thick binning is ~1.5 (the fiducial is 1.33). This
shows that if the binning is narrower the relative gain is lower as the radial
resolution is better, but recall that the maximum resolution is limited by only
using linear scales (kpqz)-

Fig. 2.8 shows B1xB2 as function of the relative bias amplitude for
different B1 z,,,;,, shift values, which shows the impact of partially overlapping
bins from having full overlap (B1 z,, shift = 0.0 Az, red solid line) to almost
half overlap (B1 2z, shift = 0.45 Az, blue dashed). In FoM,, (top right panel)
increasing the partial overlap has several effects. When bias amplitudes are
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Figure 2.8: Effect of partially overlapping bins in B1xB2 as function of the relative bias
amplitude between both populations (a). The lines correspond to Bl zmin = 0.1 (red solid),
0.10125 (green dash-dot), 0.1025 (black dotted), 0.10375 (purple dash-dot-dot), 0.105 (blue
dashed).

similar there is more gain from partial overlap, while when the bias amplitude
grows this gain decreases until the point that shifting bins leads to worse
constraints. Also, for half overlapping bins FoM, flattens for o > 1. For FoM,,
and FoMpgrp there is always gain from partial overlap. The different lines
are closer for lower o where the gain is minimum, which increases until o = 1.
From that point the lines are quite parallel. When there is full overlap we
have the minimum at o = 1 (same bias case) and the FoMs increase with
the bias difference, but when there is half overlap between the redshift bins of
both populations B1xB2 behaves like a single tracer, in the sense that FoM,
decreases with bias while FoM,,, FoOMpgrr increase with bias (see Fig. 2.11).
On the other hand, FoM,, combines the effects from FoM, and FoM,, and
keeps the minimum, increasing the FoM for higher partial overlap, meaning
the gain is higher when bias is similar.
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2.5.1 RADIAL RESOLUTION

In this subsection we study the impact of increasing the number of spec-
troscopic redshift bins. In the fiducial forecast we use spectroscopic surveys
with 71 narrow redshift bins, such that at each bin we mainly account for
transverse modes from angular spectra, while the radial information (modes)
is contained in the cross correlations between redshift bins. This tomography
study can approximately recover the full 3D clustering information when the
comoving redshift bin separation, Ar = ¢Az/H(z), corresponds approximately

to the minimum linear 3D scale \30 = ki:z’ (Asorey et al. 2012). As we are
limited by the linear regime, including more bins would eventually lead to in-
clude nonlinear modes, which would require modeling the nonlinear angular

power spectrum. The bin width Az = w(1+ z) is set by the number of redshift

Na[1 + Zmag
= — -1 2.41
v V 1+ 2 ’ ( )

which divide the interval [z0, Zmqz] into N, redshift bins (see Eriksen & Gaz-
tanaga 2015¢).

Fig. 2.9 shows how the constraints improve when increasing the number
of redshift bins for FoM,,,. The lines show B1 (blue dotted), B2 (green dot-
dash), B1xB2 increasing both B1 and B2 redshift bins (red solid), and B1xB2
keeping fixed B1 number of redshift bins to 71 (black dashed). Both single pop-
ulations and combined surveys improve when increasing the number of bins.

bins,

There are several effects when we increase the number of redshift bins N, (see
Asorey et al. 2012). As the redshift bin width corresponds approximately with
the minimum scale, increasing the number of redshift bins in the same red-
shift range allows for probing smaller scales, which gives more independent
modes and improve constraints. The signal to noise at each bin remains nearly
constant as the auto power spectrum has higher clustering from having more
close pairs while the density per bin is lower, increasing both signal and shot
noise. Therefore, increasing N, increase the number of transverse modes with-
out lowering their signal to noise, which improve constraints. Eventually, the
redshift bins will become correlated and this gain will saturate (see Eriksen &
Gaztanaga 2015c). In addition, when increasing N, we also add more cross-
correlations between redshift bins, which is very important as RSD depends
on the relation between radial and transverse modes (u = k| /k).

In Fig. 2.9 we also study the effect of fixing the bins of one of the popu-
lations in the overlapping survey. The black dashed line refers to B1xB2 with

93



COSMOLOGICAL CONSTRAINTS FROM MULTIPLE TRACERS IN
SPECTROSCOPIC SURVEYS

104
4.0 : : : , , , ,

B1xB2 (B1 bins=71) |
B1
| oo B2

0.0 i i i i i N N
40 60 80 100 120 140 160 180 200

Number of redshift bins

Figure 2.9: Effect of increasing the number of spectroscopic redshift bins in FoM,.,. The
lines correspond to: B1xB2 (red solid), B1xB2 with B1 bins fixed to 71 (black dashed), B1
(blue dotted) and B2 (green dot-dashed).
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the B1 redshift bins fixed to 71, while the number of B2 bins vary. This results
in a flatter improvement than when increasing the bins for both populations as
we are adding less redshift bins. An interesting behavior happens when B1 and
B2 have similar (but different) number of redshift bins (zoomed region). As
we have previously discussed, having two populations with partly overlapping
bins improve the constraints. FoM,, improves by a factor 1.2 (1.25) when
using one less (more) redshift bins in B2. This gain is equivalent to be using
~ 80 redshift bins for both populations instead of the fiducial 71.

SAMPLE VARIANCE CANCELLATION IN PHOTOMETRIC SURVEYS

Using thicker redshift bins we can model the loss of radial information
and study the impact of sample variance cancellation in photometric surveys.
Fig. 2.10 shows FoM,,, with (a = 0.5, 2.0) and without (o = 1.0) cancellation
for a smaller number of redshift bins (recall that with a = 1 cancellation
is no longer possible). We show the effect for typical photometric surveys
such as DES or EUCLID (5 ~ 10 bins), for narrow photometric surveys like
PAU (~ 40 bins) and compare it to spectroscopic-like surveys (fiducial 71
bins). The top panel shows that FoM,,, improves strongly when increasing the
radial resolution, specially in the free bias case where it improves 3 orders of
magnitude from 5 to 100 bins as opposed to 2 orders in the fixed bias case.
Radial cross-correlations are more important in a free bias forecast, which
leads to more radial dependence. Bottom panel shows the sample variance
cancellation effect in photometric surveys in the ratio between o = 2.0 and
o = 1.0. We find that the contribution from sample variance cancellation has
a larger or at least similar effect in photometric surveys for both free and fixed
bias. Note how density (e.g. compare to Fig. 2.2) is as important as redshift
accuracy in that it can also change FoM,,, by 3 orders of magnitude.

Table 2.3 shows there is a strong density dependence in the ratio, spe-
cially in surveys with less number of redshift bins. While for spectroscopic
surveys (e.g. 71 bins and 0.4 gal/arcmin?) the ratios are 2.2 and 2.4 for free
and fixed bias, for photo-z surveys (e.g. 5 bins and 8.0 gal /arcmin?) the ratios
become 19.5 and 5.32. Surveys with a low number of redshift bins are more
dominated by radial auto-correlations, which are affected by shot-noise, so they
become more density dependent, as shown in Table 2.3. For a survey density
of 0.4 gal/arcmin? auto-correlations contribute up to 72% for a survey with
10 redshift bins with free bias, while only 29% and 10% for 40 and 71 bins.
This high density dependence explains the turnover in the free bias ratio for
low number of bins in Fig. 2.10, where shot-noise limits the gains from sample
variance cancellations, and also produces very large gains for higher densities
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Bias, DI 5 i 10 bins 40 bins 71 bins
(gal/arcmin®)
0.4 2.03 327 247 220
Free 8.0 195 162 881  6.94
80.0 133 934 661 384
0.4 1.85 261  3.40 243
Fixed 8.0 532 710 880  5.29
80.0 134 152 293 213

Table 2.3: Ratio between FoM,,[a = 2/a = 1], which shows the relative contribution of
sample variance cancellation (see the text). On the columns there are 4 different binnings
(5, 10, 40 and 71 redshift bins), while on the rows there are 3 different total survey densities
for free and fixed bias.

as shown in Table 2.3.

Concerning absolute FoMs for photo-z and spec-z surveys, the loss of
radial resolution from photometric uncertainties is in some part compensated
by a gain in density in photometric surveys. The combined figures of merit
FoM,,, for a survey without split take the values of 7.19 and 5453 for photo-z
(5 bins and 8.0 gal /arcmin?) and spec-z (71 bins and 0.4 gal /arcmin?) surveys.
Using the fiducial configuration (o = 0.5) with sample variance cancellation
leads to a FoM,, of 138 and 8979, reducing the ratio between the FoM between
both surveys by a factor ~ 12 (compare blue and green lines in Fig. 2.10).

2.6 DISCUSSION

In this chapter we have estimated dark energy (wp, w,) and growth rate
(7) constraints of multiple tracers in spectroscopic surveys using the Fisher
matrix formalism. In the fiducial forecast we use galaxy clustering from 2D
angular correlations in 71 narrow redshift bins which include baryon acoustic
oscillation (BAO) in the linear Eisenstein-Hu power spectrum (Eisenstein & Hu
1998) and the linear Kaiser effect (Kaiser 1987) to account for redshift space
distortions (RSD). To compress the information of our constraining power
in one number we define four Figures of Merit: FoM.,,,, FoM,, FoM, and
FoMpgrr (§2.2.4). Details of the modelling and fiducial forecast assumptions
can be found in section 2.2.

Section 2.3 studied how multiple tracers in the same region of the sky
can break degeneracies and improve the constraints on dark energy and growth
rate. We split one spectroscopic survey into two populations (named Bl and
B2) by some galaxy property such that there is a relative bias amplitude («)
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between both populations. This allows for multi-tracing the same underly-
ing matter distribution, which cancels the random nature (sample variance) of
fluctuations in redshift space. Using redshift space distortions and two popu-
lations as multiple tracers we quickly improve the constraints when increasing
the bias difference between the tracers, with no or very little improvement with
no bias difference (Fig. 2.1). Fixing the bias ratio to = 0.5, we increased
the galaxy density and showed that B1xB2 FoMs outperform the single tracers
by beating the sampling variance limit in the noiseless limit (Fig. 2.2). We
showed that this improvement comes from sample variance cancellation and
not from additional cross-correlations between B1 and B2, which contribute
less than 2%. Also, Fig. 2.3 showed that not all improvement was coming from
measuring bias.

In section 2.4 we have set up an r-band limited survey with a CLF and
HM to model galaxy bias. We have split the survey into two subsamples cutting
in halo mass and r-band magnitude, computing the galaxy bias and galaxy
density of each subsample in redshift. In this way, we account for the relation
between galaxy bias and galaxy density. We showed that for a cut in halo
mass we can improve FoM,,, up to a factor 1.3 as compared to doing no split.
Splitting in r-band magnitude lead to a factor 1.05 improvement as magnitude
scatter halo mass which reduced the bias difference. When increasing the total
density of the survey we found huge improvements for both split methods,
giving a factor 9.6 and 3.0 in FoM,,, for halo mass and r-band cut, respectively.

In section 2.5 we have studied the effect of having partially overlapping
redshift bins in a multiple tracer survey. We have shown that as a result of
the overlap the FoMs improve (Fig. 2.6), having a peak when the redshift
bins are shifted half of the bin width. At the peak the FoMs improve a factor
1.33 for FoM,, 1.06 for FoM,, 1.26 for FoM,, and 1.33 for FoMpgrr. We
have shown that the gain is not artificially produced by the particular bias
parameterization, but it is rather coming from the cross-correlations between
B1 and B2. We have also shown that the gain is a factor ~ 1.5 in FoM,,, when
using a 25% thicker binning, while a factor ~ 1.2 when using a 25% thinner
binning (Fig. 2.7). Fig. 2.8 showed how FoMs improve from partly overlapping
bins for different « values, indicating that there is more improvement when
relative bias difference is small, and low or no improvement when there is
more bias difference between populations. In Fig. 2.9 we showed how FoMs
improve when increasing the number of redshift bins. When using one more
or less redshift bin in one of the populations, the improvement in FoM,,, is
equivalent to having 80 redshift bins in both populations compared to the 71
from the fiducial forecast. In section 2.5.1 we find that the multi-tracer gains
are larger for photometric samples, specially when we increase the density. In
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fact, having a larger density can compensate the loss in resolution (see Fig.
2.10).

In §2.A.1 to 2.A.3 we have studied the impact of RSD and BAO effects
in the FoMs. In Fig. 2.11 we show the improvement from B1xB2 for different
bias difference in the four FoMs. The constraints quickly improve in all FoMs,
up to a factor 4 in FoM,,,. In real space (no RSD, Fig. 2.12) sample variance
cancellations are no longer possible and the improvements are less than a factor
1.5 in FoM,,,, having almost no gain in FoM, (less than 2%). In Fig. 2.13 we
have shown that RSD is very important in v constraints as it breaks degeneracy
between galaxy bias and f(z). For FoM, the B1xB2 ratio RSD/No RSD is
4 ~ 9, while the ratio BAO/No BAO is lower than 1.08. For dark energy
constraints it happens the opposite, in FoM,, the BAO/No BAO rate is 1.4 ~
1.5 while RSD/No RSD is ~ 1.0 when bias amplitudes are similar, but up to
~ 1.5 when there is more bias difference. The w constraints depend more on
the shape of the power spectrum and then are enhanced more from including
BAO wiggles.

In §2.A.4 we have fixed cosmological parameters to study possible de-
generacies. We find that multiple tracers help breaking degeneracies in the
dark energy constraints, specially at high densities. In §2.B we studied the
impact of a different bias evolution slope in redshift (Fig. 2.15). It shows a
dependence for the B1 population, but the B1xB2 forecast is insensitive to the
bias slope.

The trends found in Section 3 are in good agreement with a number of
studies such as McDonald & Seljak (2009), White, Song & Percival (2009), Gil-
Marin et al. (2010), Bernstein & Cai (2011). Direct quantitative comparison is
hard to make due to very different survey configurations, along with different
modeling and observables. Gil-Marin et al. (2010) suggested that cuts other
than halo mass such as peak-height v might be more competitive for a dark
matter haloes split, as they find a ~ 10% improvement at low redshift with a
cut in halo mass. In section 2.4 we have stressed that these gains are highly
density dependent and that the split for galaxies can be optimized by looking
at the bias-density relation of the tracers.

In this analysis we have assumed a number of idealizations, such as linear
theory, deterministic bias, no stochasticity between tracers nor nonlinearities.
Several studies indicate that linear theory (Kaiser 1987) start to break down at
scales as large as kg > 0.02 hl\/[pc_1 (Okumura & Jing 2011, Bianchi et al.
2012), specially at low mass haloes, and that scale dependence in (3 varies
between tracers. As shown in Gil-Marin et al. (2010) even small amounts of
nonlinearity can degrade your FoM down to 50%, which emphasize the need for
more realistic models for galaxies and nonlinear RSD (e.g. Reid & White 2011,

99



COSMOLOGICAL CONSTRAINTS FROM MULTIPLE TRACERS IN
SPECTROSCOPIC SURVEYS

Okumura et al. 2015). Lately, a number of techniques have been developed
to reduce shot-noise and stochasticity under the Poisson level by optimally
weighting the tracers (see Seljak, Hamaus & Desjacques 2009, Hamaus et al.
2010, Cai, Bernstein & Sheth 2011, Pearson, Samushia & Gagrani 2016) which
become of most interest in combination with multi-tracer surveys and could
further improve the FoMs.

In summary, our results suggest that we can improve FoM significantly
and break degeneracies in cosmological inference if we split the samples by a
density ratio of 1 /g ~ 7 using apparent magnitude as ranking or 717 /ng ~ 30
using a mass halo proxy ranking (e.g., richness). Using another proxy for
bias (such as local density, see Pujol et al. 2015, or color) to split the sample,
will give similar benefits. Splitting volume limited samples does not provide
significant improvements. Our analysis also shows that when doing angular
clustering tomography is optimal to use overlapping bins for cross-correlation.
These finding can be applied to future redshift surveys such as DESI or Euclid
and will also work for photometric samples (see Fig. 2.10), such as DES and
LSST and its cross-correlations (as shown in Eriksen & Gaztanaga 2015¢). We
also show large improvement on the FoM with increasing galaxy density. This
can be used as a trade-off to compensate a possible loss of radial resolution
when using high resolution photometric redshifts (Marti et al. 2014) instead of
spectroscopic redshifts.

2.A RSD AND BAO EFFECTS IN SAMPLE VARIANCE CANEL-
LATION AND DEGENERACIES

2.A.1 REDSHIFT SPACE

In Fig. 2.11 we present our results for the four FoMs. The blue (dotted)
lines corresponds to the same sky case (B1xB2), the green (dashed) lines to B2
and the red (solid) lines to B1, with all lines being normalized to the B1 lines.
Recall from Eqs. 2.27-2.28 that a change in « modifies the B2 bias but leaves
the B1 bias equal to the fiducial. Focusing first on the B1xB2 lines, the four
FoMs show an improvement compared to the single tracer cases, as expected,
due to sample variance cancellations. We can see how the improvement for
B1xB2 increases with the bias difference and is minimum when B1 and B2
have the same bias, as then we cannot cancel sample variance. FoM,,, shows
the biggest gains (factor of 4 and 3 at a ~ 0.1 and « ~ 2) as it combines the
gains from FoM,, (factor of 2) and FoM,, (factor of 2). Part of the gain comes
from B1xB2 doubling the density of the single tracers, as we have merged both
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Figure 2.11: FoM dependence on the relative bias amplitude () in redshift space. The blue
(dotted) line correspond to the same sky case (B1xB2), the green (dashed) line to B2 and
the red (solid) line to B1. All lines are normalized to the B1 FoM value (which is constant).
The vertical lines indicate the same bias amplitude case (o = 1).

single tracers and it reduces shot-noise. To see the effect of splitting Bl into
B1xB2 to keep the shot-noise level see Fig. 2.2.

The B2 lines show the impact that bias amplitude has on the single
survey case. FoM, shows that - constraints improve for lower bias. This is in
the line of Asorey, Crocce & Gaztanaga (2014), where the authors find similar
results for the dependence of + constraints on bias for a photometric survey.
This is because lower bias gives larger relative importance to RSD, which turns
into a better measurement of f(z) and thus v. On the contrary, w constraints
improve with larger bias, as shown in FoM,, and FoMpgrr. This is due larger
bias increasing the signal of correlations and thus reducing the relative impact
of shot noise (see Fig. 2.15 bottom right panel for similar trends).

2.A.2 REAL SPACE

In Fig. 2.12 we have removed redshift space distortions (RSD). It in-
cludes a purple (dashed, flat) line which shows the ratio RSD/No RSD for BI.
Looking at the B1xB2 line we see how all FoMs now grow with bias ratio,
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Figure 2.12: FoM dependence on the relative bias amplitude (a) in real space. The blue
(dotted) line correspond to the same sky case (B1xB2), the green (dashed with dots) line to
B2 and the red (solid) line to B1. All lines are normalized to the B1 FoM value (which is
constant). The purple (dashed) line shows the ratio RSD/No RSD for the fiducial bias (B1).
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while the characteristic minimum and big improvements from sample variance
cancellation have vanished (factor of 1.5 for FoM,,, now, as opposed to 4 with
RSD).

In real space the density perturbation equation is Eq.2.1, which does
not have specific angular dependence and does not allow to cancel sampling
variance anymore. The auto correlations for a redshift bin ¢ will then be
proportional to b?, while the cross correlations between a bin ¢ and a bin j is
proportional to b;b;. Therefore, signal will increase as bias does. Moreover,

when o — 0 then FoM|B1xB2| ~ FoM|B1],

(2.42)
when a > 1 then FoM[B1xB2| ~ FoM|[B2].

This is a result of B1 correlations dominating over B2 ones at o ~ 0, and
viceversa for a > 1. Also, the B2 FoMs have a steeper slope than B1xB2, as
we are only changing the B2 bias, which only affects a subset of correlations
on B1xB2. While FoM,, improves up to a 40% at a = 2, the gain in FoM, is
marginal, and part of it comes from B1xB2 having more density and reducing
shot-noise.

The purple (dashed flat) line shows the ratio between the normalizations
when computing the correlations in redshift space and in real space. This
shows the overall impact of removing RSD in each FoM. As can be seen in the
top-right panel, FoM,, is about 4 times lower, as RSD are crucial for breaking
degeneracies between f(z) and b(z), which affect the  constraints. For the
w constraints, the normalizations are similar. However, as we have discussed,
including RSD is still very important as it allows to cancel sampling variance
and improve the w constraints.

2.A.3 RELATIVE IMPACT OF RSD AND BAO

In Fig. 2.13 we explore the effect that removing RSD and BAO has
on the absolute value of the FoMs, for different relative bias amplitudes («).
We show the ratios ‘RSD/No RSD’ (left panels) and ‘BAO/No BAO’ (right
panels), where ‘RSD’ and ‘BAQO’ refers to the fiducial forecast that includes
both RSD and BAO effects. The left/right panels correspond to removing
RSD/BAO for B1xB2 (blue solid), B2 (green dashed) and B1 (red dotted).

The trends in FoM,, (center panels) show how RSD has a strong relative
importance in vy constraints, while BAO in comparison has very little impact.
On the other hand, FoM,, (bottom panels) shows how BAO is more important
to measure w than RSD. This happens because measuring v depends more
on determining the amplitude of the power spectrum P(k), which is enhanced
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Figure 2.13: Impact of removing BAO and RSD effects on the constraints, for different
relative bias amplitudes («). The left/right panels correspond to removing the RSD/BAO
effect for B1xB2 (blue solid), B2 (green dashed) and Bl (red dotted). All the lines show
the ratio between the Fiducial forecast where RSD and BAO effects are included and when
removing one of the effects. There is no further normalization.
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by RSD as it breaks degeneracies between bias and the growth factor, while
w(z) measurements comes more from measuring its shape and thus including
BAO wiggles measurements improves it. In addition, for FoM,,, B1xB2 ( solid)
shows a peak at a = 1 in BAO/No BAO ratio, because the BAO contribution
is relatively higher when RSD is less important. On the other hand, for FoM,
the BAO contribution in B1xB2 gets enhanced with a better RSD signal. The
impact of RSD in B1xB2 is higher for more bias difference in all FoMs, as
previously discussed (see §2.A.1), due to sample variance cancellations.

For a single tracer (see B2 in Fig 2.13), the impact of RSD increases very
fast at low bias (decreasing «) in all FoMs, because RSD include an additional
term such that the signal of the correlations does not drop when bias tend
to zero (as happens when we do not have RSD, see B2 in Fig. 2.12). On
the contrary, in FoM,, the impact of BAO improves with more bias because
shot-noise has less effect, while in FoM, is the opposite and for o > 1 it has
a negative effect, although the effect is tiny. FoM,,, (top panels) combines the
effects from + and w constraints, and shows that RSD has a bigger effect in
the constraints than BAO.

2.A.4 FIXING COSMOLOGICAL PARAMETERS

In this subsection we investigate how fixing one cosmological parameter
affects the forecast by breaking degeneracies. Fig. 2.14 shows the relative gain
from fixing each parameter for B1xB2 (left panels) and B1 (right panels), for
FoM,,, and FoM, on the rows, as a function of survey density. For FoM.,,,
in B1xB2 there are strong gains (a factor 2~3) when fixing Q,,,, Qpg,  or
h, which constrains the cosmic expansion history, while when fixing og and
ns FoM,,, only improves by a factor 1.2~1.3. Comparing to the single tracer,
in FoM,,, multiple tracers help breaking degeneracies for €2,,,, %, Q1pr and h
parameters, specially at the noiseless limit where the relative gains lower from
a factor 3.5 ~ 4 in Bl to a factor 2 in B1xB2. For B1xB2 in FoM,, the gains
are quite low (< 10%) when fixing any parameter, with og and ns the most
relevant at low density, whereas at high density the gain from og drops and
Q, Qpr and h become more important. For Bl we find a similar level of
degeneracy in FoM.,.

2.B BIAS EVOLUTION

In this section we study the impact that different bias evolution has on
the constraints. For concreteness, we parametrize the bias evolution in redshift
as
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Figure 2.14: Relative gains when fixing a parameter for B1xB2 (left panels) and B1 (right
panels), for FoM,, and FoM, on the rows, as a function of survey density. All lines are
normalized to the respective fiducial forecast values.
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bpi(z) =1+ kz, (2.43)

where k = 2 corresponds to the fiducial forecast value, while we keep o = 0.5.
Fig. 2.15 shows the FoMs for B1xB2 (left panels) and B1 (right panels) in the
columns and FoM,,, (top), FoM, (center) and FoM,, (bottom) for the rows,
for different slope values, x € [0.0,0.5,1.0,1.5,2.0] (red, green, blue, black,
purple). FoMpgrr is very similar to FoM,, and therefore not shown.

Looking at the multitracer panels (B1xB2) (Fig. 2.15, left panels) it is
clear that the constraints are not much affected by the bias evolution history.
This shows that for the multi tracer it is much more relevant the relative bias
amplitude between the populations rather than the bias evolution in redshift
or the bias amplitude itself. Only at low densities we see some gains for higher
bias, coming from the w constraints, while the  constraints remain very similar
for the different bias evolutions at all densities. In other words, the constraining
power of B1xB2 does not rely on how biased are the samples themselves, but
on the contrast between its subsamples.

For the single tracer (Bl) there is instead a clear dependence on the
bias evolution in redshift (right panels). In FoM, the constraints are much
more affected by the different bias slopes at the noiseless limit, leading to
better constraints for lower slope (and thus lower bias), as then RSD has more
relative importance. For higher shot-noise the relative gains from RSD are
lower as shot-noise dominates and the lines converge. The opposite happens
in FoM,,, the dependence on bias slope is clear when shot-noise is big, while at
the noiseless limit the constraints flatten and tend to the same value. As we
have previosly remarked, dark energy constraints benefit from higher bias as
this increases signal and reduces the relative impact of noise. This is observed
clearly in this figures, as the FoMs benefit from higher bias at low densities,
while with high densities they tend to the same value as the relative impact
of noise is already small. FoM,, combines these effects and we see how all
lines cross with each other, leading to better constraints for higher bias at low
densities and viceversa at high densities. This results agree with Fig. 2.11 and
Fig. 2.2. In addition, a complete unbiased tracer (i.e. x = 0) has the best
constraints at the noiseless limit for all FoMs.

67



COSMOLOGICAL CONSTRAINTS FROM MULTIPLE TRACERS IN
SPECTROSCOPIC SURVEYS

B1

‘B1x82‘ 1.9 v

103 ‘ ‘ ‘ ‘ 6.5 x10*

10

x10?

103}

FoM,,

102}

al | | | < | | . |
1072 10°Y 10° 10 10> 10®* 1072 10°' 10 10 10> 108
n, [gal/arcmin?] n, [gal/arcmin?]

Figure 2.15: FoM dependence on the bias slope k (bp1(z) = 1 + kz), with a = 0.5 fixed.
The panels on the left (right) shows the FoMs for B1xB2 (B1). On the rows we show FoM,,,
(top), FoM, (center) and FoM,, (bottom), with FoMpgrr very similar to FoM,, and therefore
not included. The lines correspond to x = 0.0 (red dotted), k = 0.5 (green dashed), x = 1.0
(blue dash-dot), k = 1.5 (black thicker dash-dot ), k = 2.0 (purple solid).
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Part 111

PHOTOMETRIC REDSHIFT
ESTIMATION WITH NARROW
BANDS IN PAU SURVEY

In this part we estimate the redshift of galaxies using narrow band
fluzes observed with PAU Survey. We create simulations with narrow
band fluzes and add several systematic effects observed in real data.
New statistical tools are develop which model the SED as a combination
of emission line and continuum fluzes using libraries of synthetic
templates. We test the methodology in simulations and finally compare

the estimated redshift in real data with spectroscopic measurements.
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Chapter 3

TEMPLATE BASED PHOTOMETRIC REDSHIFT
ESTIMATION WITH NARROW BANDS FROM PAU
SURVEY

3.1 INTRODUCTION

Imaging galaxy surveys yield filtered images of the sky using a set of
band-pass filters. This allows to cover larger areas with greater depth sac-
rificing spectral resolution, which results in a poorer line of sight, and red-
shift, resolution. Sharp spectral features accessible in spectroscopic surveys
get smoothed out in the filtered bands making their location in the spectra
much harder. Instead, photometric redshift focus on the colors of the galaxy,
comparing the fluxes of the galaxy accross the bands. PAU Survey lies in be-
tween with a set of 40 narrow band (NB) filters in the range A € [4500, 8500]A
in steps of 100A, which allows for a high resolution photometric spectra mea-
surement that contains both clear information of the sharp features and a
calibrated continuum.

Many photometric redshift estimation techniques have been developed
over the recent years, but they can be broadly classified between template
based and machine learning techniques. Machine learning codes like SKYNET
(Bonnett 2015), ANNz2 (Sadeh, Abdalla & Lahav 2016) or DNF (De Vicente,
Sanchez & Sevilla-Noarbe 2016) try to learn the relation between the colors
and redshift of galaxies through a calibration sample where both colors and
spectroscopic redshifts are available. Template based codes like BPZ (Benitez
2000) and LePHARE (Arnouts & Ilbert 2011) predict the flux of each band as
a function of redshift by redshifting a library of restframe template SEDs and
comparing to the observation.

Machine learning codes suffer from the incompleteness of the calibration
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spectroscopic samples, which are shallower and cover small areas. These se-
lection effects and the sample variance from a tiny area can generate biases in
the final redshift estimate. On the other hand, template based codes rely on
libraries of templates. Templates can be obtained from real galaxies through
spectra, but the continuum can be hard to calibrate (Brown et al. 2014) and
these also experience the spectroscopic survey selection effects. Many template
based codes use synthetic templates instead, created with stellar population
synthesis and evolution models, like Bruzual & Charlot (2003); Polletta et al.
(2007). Using different stellar parameters such as the initial mass function
(IMF), the star formation rate (SFR), metalicity, age or dust one can gener-
ate a wide variety of restframe galaxy spectra. However, the physics of the
formation and evolution of galaxies are still not perfectly known, and if par-
ticular galaxy populations or properties are missing in the library it can lead
to a redshift biased estimate. Additionally, template based methods require a
zero point offset calibration of each band with respect to the templates, while
machine learning self calibrate any possible zero point remaining offset in the
training step.

A narrow band survey like PAUS is able to resolve emission lines to a
much better accuracy than typical broad band surveys, making the modeling
of emission lines a key aspect. These can be already included in the templates
like in BPZ or be added following empirical recipes like LePHARE. However,
none of these codes present a flexible enough way of incorporating them. In
particular, each galaxy has a different amount of flux coming from the emis-
sion lines compared to its continuum, and while in a broad band this would
represent a small amount of the total flux, in a narrow band this is often the
main contribution. For these codes one would need to generate a large grid
of templates with a variable relative amount of emission line flux and evalu-
ate for each galaxy and (redshift, template, emision line) step the likelihood,
which would largely increase the running time. Instead, we have developed
a template based photo-z code, BCNZ2 (Eriksen et al. 2019), which uses a
nonnegative linear interpolation of templates to fit the observations. In this
way, templates can adapt to each galaxy and find the best combination of
continuum and emisson line flux.

Template codes like BPZ and LePHARE have a list of baseline templates,
but to improve the sampling of the color space they generate extra linearly in-
terpolated templates between adjacent SEDs in color space (Coe et al. 2006;
Ilbert et al. 2009). This gets naturally included in our nonnegative interpo-
lation scheme by including more than one continuum template. Additionally,
one can also model the SED of galaxies with very variable bulge to disk col-
ors, for example galaxies that have older stellar populations in the center and

72



3.2 DATA

star forming regions on the outskirt disk, or galaxies hosting an active galactic
nuclei (AGN) in the center.

The amount of information, i.e. the number of flux observations for each
galaxy, is limited. If we feed the linear interpolation fitting scheme with too
many models, by for example allowing many continuum SEDs at the same
time and modeling each emission line individually, one can easily overfit and
degrade the photo-z performance. A Bayesian way of measuring if extra models
are required to explain the data is the Bayesian evidence. Computing the Bayes
factor (see Eq. 1.27), the ratio between the Bayesian evidence of two sets of
models, we can decide, for example, if emission lines or AGN templates need
to be added in a particular galaxy SED. It also properly weights each theory or
models if we want to marginalize over them to obtain the redshift estimation.

To compare between different SED template model choices and statistical
frameworks, we have develop a narrow band galaxy simulated catalog based on
simulated galaxies from the public MICE2 simulations (Carretero et al. 2015;
Fosalba et al. 2015a; Crocce et al. 2015; Fosalba et al. 2015b). We add several
effects from the data, including measured photometric noise and anticipated
systematic biases, to try to mimic the data from one of PAUS calibration
fields, COSMOS (see Fig. 1.6). We will use the simulations to compare to the
expected photo-z performance in an ideal situation where the synthetic models
are complete and truly representative of the data, since they have been used
to create the observed simulated galaxies.

3.2 DATA

In this section we describe the data products we are going to use for the
redshift determination and validation.

3.2.1 PAUCAM DATA

PAUS collaboration is building an optical 40 narrow band survey using
PAUCam (Padilla et al. 2019) at the William Herschel Telescope (WHT).
PAUS has been actively collecting data since 2015 in a set of different runs
imaging 5 different fields: COSMOS and the CFHT W1, W2, W3 and W4
fields (see Fig. 1.6). The CFHT fields are larger and represent the main survey,
which wishes to obtain a total of 100 deg? in four fields, while the COSMOS
field (~ 1 deg?) has been targeted as a calibration field since many photometric
observations exist, ranging from ultraviolet all the way to far infrared, as well
as spectroscopic surveys with relatively high completeness and depth. In this
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thesis we will focus on data collected in the COSMOS field between 2015 and
2017.

At the end of each observing night, the data taken at WHT is directly
sent to Port d’Informacié Cientifica (PIC) for its storage, orchestration and
processing (Tonello et al. 2019). The data reduction process starts with initial
de-trending, where a numer of signatures from the instrument are removed
from the images, using the NIGHTLY pipeline (see Serrano In prep.; Castander
In prep. for details). This includes removing electronic bias with an overscan
subtraction, correcting the gain from the different amplifiers and compensation
from readout patterns using zero exposure bias frames. A master flat is created
from 10s exposures of the dome with homogeneous illumination that are taken
every afternoon before the observation, that is then divided on the images to
remove the vignetting of the telescope corrector, among other effects such as
dead and hot pixels. Each CCD has a different narrow band filter on top,
instead of a unique broad band that covers all the focal plane, which produces
scattered light at the edges of the images. An intervention of the camera in
2016 significantly reduced this effect, which is partly removed by the pipeline
by using a low pass filtering with sigma clipping. Cosmic rays are identified
using a Laplacian edge detection (van Dokkum 2001) and masked from the
image.

An astrometric solution is added to align the different exposures using
SCAMP (Bertin 2011) by comparing to GAIA DR1 (Gaia Collaboration et al.
2016). The point spread function (PSF) is modeled using PSFEX (Bertin
2011) using stars that have been identified with morphology from space obser-
vations with the COSMOS Advanced Camera for Surveys (ACS) (Leauthaud
et al. 2007; Koekemoer et al. 2007). Photometric calibration follows using
Sloan Digital Sky Survey (SDSS) stars that have been previously calibrated
(Castander In prep.). Each star brighter than iag < 21 is fitted to obtain a
best fit SED from the Pickles stellar library (Pickles 1998) using the u,g,r,i
and z broad bands (Smith et al. 2002). We generate synthetic narrow band
observations from that best SED and the best fit amplitude and compare to
the observations to obtain the zero point. All measurements are combined to
obtain one zero point per image and narrow band. This procedure effectively
corrects for Milky Way extinction.

Narrow band photometry is obtained using the MEMBA pipeline (Serrano
In prep.; Gaztanaga In prep.). We rely on deep overlapping observations from
lensing surveys to provide a detection catalog with high quality shape measure-
ments to perform a forced aperture photometry. In COSMOS positions and
shape measurements from ACS were used. The half light radius, r5g, is used
along with ellipticity measurements from Sargent et al. (2007) and the PSF
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FWHM to determine the aperture size and shape to target for the 62.5% of the
light. A flux measurement is obtained for each individual exposure using this
aperture measurement and a background subtraction estimated from a fixed
annulus of 30 to 45 pixels around the source, where sources falling in the an-
nulus get sigma clipped. Fluxes measured in different exposures are corrected
with the estimated image zeropoints and get combined with a weighted aver-
age to produce a narrow band coadded flux measurement. The data reduction
pipeline propagates flags for each individual exposure and object, and flagged
measurements are not included in the weighted average.

3.2.2 EXTERNAL COSMOS DATA

Along with the narrow band data described in the previous section, we
add broad band data from the COSMOS2015 catalogue. We includes u* band
data from the Canada-France Hawaii Telescope (MegaCam) and B, V', g, r, i,
27T broad band data from Subaru, obtained as part of the COSMOS20 survey
(Taniguchi et al. 2015). Figure 3.1 shows the broad band transmission curves.
We use the 3”7”7 diameter PSF homogenised flux measurements available in the
catalogue release and apply several corrections as described and provided in
COSMOS2015. The Milky Way interstellar dust reddens the observed spec-
trum of background galaxies. As described in the previous subsection, PAUS
data are corrected for dust extinction in the calibration. Therefore we need to
do the same for COSMOS data. Each galaxy has an E(B — V) value from a
dust map (Schlegel, Finkbeiner & Davis 1998), and Laigle et al. (2016) pro-
vide an effective factor F, for each filter x according to Allen (1976). For each
galaxy the corrected magnitudes are

Magcorrected = Maguncorrected — E(B — V') % F), (3.1)

3.2.3 SPECTROSCOPIC DATA

To determine the accuracy of the photometric redshift estimation using
PAUS, we compare to zCOSMOS DR3 bright spectroscopic data, which has
a pure magnitude selection in the range 15 < izp < 22.5 (Lilly et al. 2007).
This selection yields a sample mainly covering the redshift range 0.1 < 2 < 1.2
in 1.7 deg? of the COSMOS field (149.47deg < o < 150.77 deg,1.62deg <
d < 2.83deg, Knobel et al. 2012). This dataset contains 16885 objects of
which 10801 remain after removing less reliable redshifts based on a provided
confidence class (3 < CLASS < 5 Lilly et al. (2007)). This sample covers
most of the redshift and magnitude range for PAUS, which makes it especially
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Figure 3.1: Filter curves for v* band data from the Canada-France Hawaii Telescope (Mega-
Cam) and B, V, g, r, i, 27 broad band data from Subaru.

interesting for validating the photometric redshift precision. The spectroscopic
completeness is shown in Figure 3.2 for the full sample and two subsamples
that force a moderately and a highly secure redshift sample by selecting on
provided spectroscopic confidence.

3.3 MODELING

3.3.1 REDSHIFT DISTRIBUTION

We want to obtain the redshift probability distribution of a galaxy given
some feature vector, typically fluxes, has been observed: P(z|f). We introduce
a set of template models that describe the spectral energy distribution (SED)
of the galaxy at rest frame. By redshifting the SED and convolving with a
filter band we can predict what the observed fluxes would look like at that
redshift and ask what is the probability our data could be observed if that was
the true SED ¢ and redshift z: P(f|z,t). We can relate both using Bayes rules
(see section 1.3),

P(z|f) =) P(ztf) =) P(flz,t)P(z1) (3.2)

where P(z,t) is the prior probability that SED and redshift could be observed.

As mentioned in section 3.1, emission lines are variable from galaxy to
galaxy, both in absolute amplitude with respect to the continuum flux, but
also the relative flux of each emission line. Therefore, a flexible enough model
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Figure 3.2: Spectroscopic completenes of the zZCOSMOS DR3 spectroscopic survey for the
full sample (solid line), a moderately secure redshift sample (dashed line) defined by the
classes: 3.x, 4.x, 2.5, 2.4, 1.5, 9.5, 9.4, 9.3, 18.5, 18.3 and a highly secure redshift sample
(dash-dotted) defined only by the classes 3 and 4.

is required. To this end, we treat the continuum and emission line part of the
SED as separate models that can be linearly added. Rather than having one
fixed SED we allow for the best combination of continuum and emission line
models at each redshift, by defining our model T" at a given redshift as

n
T(z) =Y oj(2)t(2); (3.3)
J
where o« are the parameters that combine each SED t¢. Then, the redshift
distribution reads

Pz|f) =) P(zTIf)= ) P(fl2.T)P(=T) (3-4)
TeH TeH
where T' € H means the model T defined as in Eq. 3.3 is among those hy-
pothesis H to be considered. A common approach to obtain the likelihood
P(f|z,T) is to fit for the maximum likelihood values of the parameters, in this
case o,

P(f|2,T) o< exp (—0.5x%[2, Qtmin]) (3.5)

where we assume Gaussian noise in the fluxes and oy, are the best fit pa-
rameters of model T that minimize the y? at redshift z. Negative amplitudes
are regarded as non physical and we forbid them, so we restrict to a; > 0.
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The minimum of Eq. 3.5 would have an analytical solution without the non-
negativity constraint, instead we have implemented within BCNZ2 a non-
negative quadratic programming algorithm based on Sha et al. (2007) that
will iteratively find the minimum. The algorithm is described in section 3.A.1.

A more statistically correct way to estimate the probability from Eq. 3.5

is to compute the evidence, marginalizing over the parameters. Following Eq.
1.24 we have

P(f|2,T) = /P(f, G|z, T)dd = /P(f\o?,z,T)P(@’]z,T)do?, (3.6)

We can write the Gaussian likelihood P(f|&, z,T) as

2
d abs

1
\/?H fobs exp _2; fobs Jz: fobs
(3.7)

where d is the number of bands, n; is the number of templates in the ith model
T from the hypothesis list. Integrating Eq. 3.7 also has an analytic solution

P(fla,z,T) =

but in Eq. 3.6 there is also a prior on the parameters, P(&@|z,T). This prior
will include the non-negativity constraint, and can also include information
from the templates, like luminosity functions. We have implemented a code
that can efficiently find this integral, based on an Gaussian integral algorithm
from Genz (1992). Details of the algorithm are explained in section 3.A.2. Our
default choice for the parameters prior will be a top hat function, which can
be considered the most 'uninformative’,

P(a]z,T) = H(AE_) [T06 - ap0if —ar. (3

where ©(z) is the Heaviside step function and (A; — A;’) the width of the

prior for each parameter aj. The normalization —————
[I;(A7-A7)

the Bayesian Occam’s Razor effect (see section 1.3 and Fig. 1.3).

is responsible for

Fig. 3.3 shows an illustration of the Bayesian evidence for a model T
with three templates: a Spiral, a Starburst and an Emission Line template.
Each contour shows the 1 and 2 sigma contour of the likelihood (Eq. 3.7) for
different redshift (blue: low redshift, red: high redshift) for a simulated galaxy
with true redshift around the green area. We want to choose a prior that avoids
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Figure 3.3: Illustration of the Bayesian evidence algorithm. It shows the likelihood (Eq.
3.7) for a simulated galaxy and a model with three templates: a Spiral, a Starburst and an
Emission Line template. The galaxy has the true parameter values of [asp, asB, ®EmLine] =
0.5,0.5,8 and true redshift z = 0.5 (green-ish area contours). The contours show the 1 and
2 sigma of the likelihood for different redshifts (blue: z = 0, red:z = 1.2. Note the height of
the likelihood (i.e. how well did it fit) is not shown in this plot.

unphysical regions with negative amplitudes, but otherwise we want to include
all the likelihood. To achieve that we choose a prior with Af = ug£50%, where
i and oy, are the central value and width of the likelihood for parameter oy,
which can be obtained analytically. We clip A, to have a minimum value of
zero. When Az is found to be zero for some parameter we assign it a value of
10. It is very likely the evidence for that model will be very low.

3.3.2 SED MODELING

In this section we describe the pieces that build our SED model. For the
continuum flux we choose an SED library that combines synthetic templates
from Bruzual & Charlot (2003) and Polletta et al. (2007) libraries similar to
Laigle et al. (2016), which include a wide range of elliptical, spiral and starburst
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galaxies, with different stellar histories, ages and metallicities. Fig. 3.4 shows
a subsample of SEDs from this libraries.

Galaxies have a variable amount internal extinction due to light scatter-
ing with the dust inside the galaxy. Since the continuum SED libraries are
dust free we model this wavelength dependent effect with an extinction curve
kE(X) and a color excess E(B — V') that adds this effect to the template,

Fobserved()\) = Fno dust()\)lO_OAE(B_V) k(/\)' (3~9)

Since this is a multiplicative effect, and the formalism described in the
previous section only allows linear combinations of templates, we include this
effect by modifying our restframe templates and generating new ones with
different amount of dust attenuation. For the starburst galaxies we will use
the extinction law from Calzetti et al. (2000), while for redder galaxies like
spirals we will model using the Prevot et al. (1984) law. We will not add
further extinction to the reddest galaxy templates, like ellipticals. Fig 3.9
shows both extinction curves, with an additional bump around 2175A with
two different amplitudes for the Calzetti law. We generate a grid of templates
with different E(B — V') values ranging from 0.05 to 0.5 in steps of 0.05.

Like mentioned previously, having a flexible model that can estimate a
different amplitude for the emission line flux in each galaxy is necessary to
achieve a good photo-z. We treat the emission line flux as a separate part of
the SED, and we compute the flux by modeling the emission lines with a delta
function centered around the values from Table 3.1. Since modeling all the
emission lines independently would overfit we choose by default to tie each line
amplitude to the [OII] line flux with the ratios appearing in Table 3.1, which
are obtained from Ilbert et al. (2009). We have found in the data that leaving
the [OIII] doublet free as an extra template improves the photo-z in data, so
we also consider this setup.

When the likelihood is obtained from the minimization algorithm, we will
split our large pool of templates in smaller groups, which will be our models
T in Eq. 3.5, to avoid overfitting. This choice has an implicit prior that other
choices are not reasonable and we assume they have a zero prior probability
(see section 1.3). Also we do not allow in the same model templates with
different extinction values or curves. Table 3.2 summarizes the list of models
we include in the minimization algorithm. Note we do not allow emission lines
in the reddest elliptical templates, since this are not expected a priori.

In the Bayesian evidence algorithm we will let the evidence guide us
on which combinations have a larger evidence. Thanks to its preference for
simpler models (Bayesian Occam’s Razor) models with a lot of templates will
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Line AA] Ratio
OIl 37268 1.0
OIll; 4959  0.09
OIll; 5007  0.27
H, 65628 1.77
Hg 4861  0.61
NII; 6548  0.19
NI, 6583  0.62
SII; 6716.44 0.35
SII, 6730.82 0.35

Table 3.1: List of emission lines included in the SED modeling. The lines are modeled with a
delta function centered around the values shown in the second column. In the third column
we show the emission ratios of each line relative to the [OII] line emission that are used by
default. Leaving the [OIII] doublet free from the other lines is also considered.

Model # Lines Ext Law

SED list

1 False None

2 False None

3 True None

4 True None

5-14 True Prevot

15-14 True Calzetti

25-34 True Calzetti+Bump 1

Elll, Eli2, E1I3, Ell4, ElI5, E1I6
Ell6, Ell7, S0, Sa, Sb, Sc

Sec, Sd, Sdm, SBO, SB1, SB2

SB2, SB3, SB4, SB5, SB6, SB7, SBS, SB9,SB10, SB11
Sec, Sd, Sdm, SBO, SB1, SB2, SB3

SB4, SB5, SB6, SB7, SBS, SBY, SB10, SB11

SB4, SB5, SB6, SB7, SBS, SBY, SB10, SB11

35-44 True Calzetti+Bump 2 SB4, SB5, SB6, SB7, SB8, SB9, SB10, SB11

Table 3.2: List of models allowed in the minimization algorithm.

SED list Lines options

Ext Law allowed

Elll, Ell4  None
Ell4, EII7  None
Ell7, Sc None

None
None
None

Sc, SBO {None, All, All+[OIII| free} {None, Prevot}
SBO, SB4  {None, All, All+[OIII| free} {None, Prevot}
SB4, SB8  {None, All, All+|OIII| free} {None, Calzetti, Calzetti+Bumpl, Calzetti+Bump2}
SB8, SB11 {None, All, All+|OIII] free} {None, Calzetti, Calzetti+Bumpl, Calzetti+Bump2}

Table 3.3: List of models allowed in the Bayesian evidence algorithm.
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Figure 3.4: Synthetic set of template SEDs including several elliptical (Ell1...Ell7) and spiral
(S0...Sdm) templates from Polletta et al. (2007) and starburst (SB0...SB11) from Bruzual &
Charlot (2003).
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Figure 3.5: Internal extinction curves from Calzetti et al. (2000) and Prevot et al. (1984).

The Calzetti are typically applied to starburst galaxies, while the Prevot are applied to spiral
galaxies.
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be assigned a low evidence, and finally a low probability. We group the tem-
plates in groups of 2 such that they keep the interpolation effect across the
color-space, and include emission lines and extinction as in the minimization
algorithm. Table 3.3 summarizes the list of models included. Note that for the
same pair of templates we add a models with different emission line treatment
(including no emission lines at all), and we will let the evidence weight them.
We find that adding a third continuum template in between the pair of tem-
plates leads to very low evidence and contribute very little to the final redshift
distribution, so we ignore such combinations.

3.3.3 POPULATION PRIOR

For the model to be complete, we also need to specify the prior on the
global redshift distribution and the models T, P(z,T) (see Eq. 3.4). This
prior can include information about the population typical redshift and type
distributions and include the expected impact of the selection effects that define
the galaxy sample of interest (flux limited, color-color selection, etc). In a
more general approach, the population prior can also be regarded as part
of the redshift problem and be estimated jointly with the individual redshift
distributions of each galaxy in a hierarchical bayesian model. We will either
use a flat prior or a prior self informed from the data itself.

The population prior is also important to properly balance model choices.
For example, in section 3.3.2 we are generating a grid of templates with different
extinction E(B — V) values ranging from 0.05 to 0.5 in steps of 0.05. If one
increased the number of steps of E(B — V) values within the same range
where models are generated and kept using a flat population prior, one would
overweight the templates with dust extinction in comparison to the templates
without extinction. Another example is when we add a bump to the extinction
law (Fig. 3.5), which is not observable at all redshifts in the filter set. To be
robust against such model choices, we introduce a prior calibration scheme that
compares the observed color space occupation of all models T' to the galaxy
sample occupation in the same observed color space. Since the color space
occupation is fixed by the galaxy sample, if one adds more models with the
same observable color space, the prior scheme will appropriately downweight
them.

For the prior calibration scheme we will only use broad band colors.
The prior calibration works as follows. We introduce a latent variable, the
observable colors a galaxy can have ¢,

P(Z,T)_/dap(z,T,a)_/dap<z,T\ap(a) (3.10)
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Instead of integrating over all this space, one can take an approximation by
binning the color space and summing over those bins,

P(z2,T) =Y P(2,T,¢) =Y P(2,T|é) P(&) (3.11)
J J

The term P(¢j) is the prior probability of observing the colors defined by c;
and can be directly estimated by the number counts of observed galaxies that
fall in that bin. The term P(z,T|¢;) can be empirically estimated by drawing
mock galaxies from each z,T with some rate P(z,7T") and assigning them to a
bin defined by ¢; to estimate P(cj|z,T). Then we can use Bayes theorem,

 P@ET)PET)
P(z.TIE) = J
& T16) = = @R TP T)

(3.12)

Note that the rate P(z,T) is the current knowledge we have about this pop-
ulation prior, which we update through a comparison of the color space oc-
cupation of the data and the models. In this work we will assume we know
nothing about these models and assign a flat rate P(z,7"). To draw galaxies
and estimate P(cj|z,T) we use

P2 T) = [ dd P(e.al=T) = [ da P@a = TIP@T) (3.3

which means drawing mock galaxies given model T' at redshift z with param-
eters @ given some prior probabilities P(d|z,T) and assigning them to a bin
C; to estimate P(c;|d, z,T). We will use a flat prior for P(@|z,T), like in the
data, by drawing numbers between [0, 1] (the normalization does not matter
since we use colors). However, we discard models where any broad band flux
contains more than a 20% of flux from emission lines, since we regard these as
not physical.

To bin the color space and obtain ¢; we will use a self organizing map. A
self organizing map (or SOM) is an unsupervised machine learning technique
which projects data from a high dimensional space into a lower dimensional
grid. The process preserves the topology of the higher dimensional data, which
means that objects that were close in the original space will also be closer in
the lower dimensional grid. We will use the same method from Masters et al.
(2015), where they use a two dimensional grid to generate the SOM.
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3.3.4 COMBINING NARROW BANDS AND BROAD BANDS

As highlighted in section 3.2, we will add broad bands measurements
from deep high quality lensing surveys. While PAUS data obtains the flux
measurement from a variable aperture that targets 62.5% of the galaxy light,
adapting to the galaxy apparent size and taking into account the PSF of the
image, COSMOS broad band data has a fixed aperture of 3” on PSF homog-
enized images, which means they measure a different fraction of the light, but
also that this fraction will be different for galaxies of different size. COSMOS
additionally recalibrates their fluxes from aperture to total by averaging the
aperture and total fluxes they obtain across several optical and near infrared
bands, to try to minimize this effect. Hence, narrow bands and broad bands
are in different photometric systems, and this could be variable form galaxy to
galaxy. To deal with this effect, we have developed a self calibration algorithm
that benefits from the overlap of the Subaru r-band with the narrow bands,
with the idea that since they overlap they should yield compatible flux mea-
surements. We introduce a synthetic Subaru r-band flux, defined as a linear
combination of narrow band flux measurements.

Let Wg(A) = A 'Tg(A\) be a broad band filter that we want to build
from a linear combination of 40 narrow band filter Wy (i, \) = A" 1Tn(N),
where T'(\) are the filter responses. We need to solve for coefficients ¢(i) such
that

=40

Wa(\) = e(i) Wy(i,\) (3.14)
i=1

where A is the wavelength which we will bin in integer values. We introduce
the notation < ... > which means inner product over wavelength:

<WpWp >=1 :/ dAWEN) =) W)
A (3.15)

<WyNWy >=1= / AR =D W)
A

which just indicates the transmission curves norm are normalized to unity. We
can then define 40 elements of broad-narrow projection vector:

BN (j) =< WpWn(j) >= /d)\ Wi(MWnx (4, \) (3.16)
and a 40x40 narrow band overlap matrix
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Figure 3.6: Subaru r-band transmission curve compared to a synthetic Subaru r-band built
from PAU narrow bands. The overlapping region between narrow bands provides extra
resolution (peaks) compared to the center of the filters. The synthetic filter oscillates around
the true filter.

NN(i, j) =< Wi (i) Wy (j) >= /d)\ Wi (i, AW (G, V). (3.17)
If we multiply Eq.3.14 by Wx(j, \) and then integrate we get
BN(j) =Y c(i) NN(,j). (3.18)

i

As NN (i,7) is invertible, the unique solution is

e(i) =) NN7'(i,j)BN(j)
J
_ (3.19)
= Z/d)\ We(A\Wy (4, \) [/dAWN(i,A)WN(J} A) 1
J

We can use the c(7) values from Eq. 3.19 to build a synthetic broad band filter
from the 40 narrow bands. Fig. 3.6 compares the synthetic filter to the true
one. We can also use the ¢(i) values to compute the synthetic broad band flux
for each object given the measured 40 narrow band fluxes.

an =D cl) f° (3.20)

7
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Figure 3.7: Ratio between the Subaru r-band flux and the synthetic Subaru r-band obtained
from the narrow band fluxes (using c(7) values from Eq. 3.19) given different SED models
(color coded) at different redshifts (x-axis).

Comparing the synthetic broad band with the measured broad band we cal-
ibrate the distance between the narrow band and broad band photometric
systems. For a given SED the synthetic broad band flux does not completely
match the actual broad band flux but it is biased depending on the SED and
redshift. This effect can be interpreted as a consequence of the difference be-
tween the recovered and true filter from Fig. 3.6. Fig. 3.7 shows this effect with
the ratio between the synthetic broad band and the true broad band for dif-
ferent SEDs at different redshifts, showing some oscillations around 1, smaller
than 1%. Similarly, Fig. 3.8 shows the flux predicted from the synthetic band
and the flux from the Subaru r-band for the emission line model. When the
emission line falls where two narrow bands overlap the synthetic r-band flux
is larger than the true, and when it falls in the center of a narrow band, the
synthetic flux is smaller than the true. Therefore, it is important to add this
effect into the modeling by correcting the templates for each SED and redshift
by this expected bias.

3.3.5 ZERO POINT SYSTEMATICS

A common approach in the literature is to allow for a recalibration of rel-
ative zeropoints between different bands before running the photo-z algorithm
(Benitez 2000; Coe et al. 2006; Hildebrandt et al. 2012a; Laigle et al. 2016). A
zero point bias doesn’t need to come from zero point estimation itself, but can
also be caused by incorrect PSF modeling (Hildebrandt et al. 2012a). A way
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Figure 3.8: Similar to Fig. 3.7 for the Emission line model. It shows the flux contribution
in Subaru r-band coming from the emission line model alone, compared to the one found in
the synthetic r-band. The flux is in arbitrary units.

to calibrate this zero point shifts is to stack the residual differences between
the best fit model and the observations at the true redshift of each galaxy for a
subsample of galaxies with spectroscopic redshifts. Once the residual distribu-
tion is obtained for each band one can use different statistics to get an estimate
of the zero point shift and apply it to the data, and recalibrate again itera-
tively until the sequence converges. The assumption is that the observations
are Gaussian samples of each best model, so the residual distribution should
be centered at 0.

One statistic is minimize the sum of the squared differences between the
best model and the data divided by the error,

wifi— T2 .
B =S PRI = min )] 621
i J v

where the sum is over the spectroscopic galaxies, T; is the best model at the
true redshift and & is the zero point factor for band j. To avoid outliers biasing
the minimum one can clip galaxies with a very bad fit, or sigma clip residuals
larger than some value. An alternative statistic more robust to outliers is the
median of the ratio between the model and observations

T;
kj = median [N} (3.22)

i

or the inverse of the median ratio between observations and model
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Sy -1
Kj = (median [;j]) (3.23)

which has the advantage of not having a noisy quantity dividing. We will

test the three zero point calibration statistics with simulations and then apply
them to data.

3.4 SIMULATED NARROW BAND CATALOG

We want to test the methodology described in section 3.3 with simu-
lations where the conditions are ideal and the true models and redshifts are
known. For this purpose, we have generated a narrow band mock galaxy cat-
alog based on the MICE2 simulated galaxies. The MICE2 simulation is based
on a dark matter N-body simulation and contains many galaxy and lensing
properties that have been thoroughly validated in Carretero et al. (2015); Fos-
alba et al. (2015a); Crocce et al. (2015); Fosalba et al. (2015b). The MICE2
cosmology is defined by €,, = 0.25, Q0 = 0.044, h = 0.7, ns = 0.95, Qp = 0.75,
og = 0.8 and w = —1. Galaxy SEDs in MICE2 were assigned from the COS-
MOS galaxy template library (Ilbert et al. 2009) such that they reproduced
observed magnitude and color relations as well as observed clustering proper-
ties as a function of luminosity and color.

While the MICE2 simulation spans a full octant of the sky up to red-
shift 1.4, we take a small patch defined by the cuts 3 < RA[deg] < 4, 44 <
DEC|[deg] < 45, ipps < 23.5 and z < 1.1. We take the galaxy positions, RA
and DEC, the true redshift and apparent magnitude in the DES i-band, the
true COSMOS SED id that defines the continuum of the galaxy, the extinc-
tion law id that was used to add the dust attenuation and the amount of dust
attenuation parameter E(B — V). The continuum templates and extinction
law curves used in MICE are the same shown in Fig 3.4 and Fig. 3.5. Using
the continuum template, redshift and extinction we generate narrow band con-
tinuum fluxes for every galaxy, as well as continuum broad band fluxes with
the filter curves from Fig. 1.4 and Fig. 3.1. We adjust the fluxes such that
the Subaru i-band has the same apparent magnitude as the DES i-band from
MICE2.

To add emission line fluxes we use the recipe from Ilbert et al. (2009),
where the flux from the [OII] line is predicted from the UV luminosity of the
NUV broad band from GALEX using the Kennicutt (1998) calibration laws,
and the remaining line fluxes are tied to the [OII] flux with a set of ratios.
From Kennicutt (1998), the UV luminosity at 2300A can be related to the star
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Figure 3.9: Systematic zero point added to the narrow and broad bands of the PAUS mock
catalog to mimic the similar effect observed in real data.

formation rate (SFR), SFR(Mayr—!) = 1.4 x 1072 L, (erg s~ 'Hz '), and the
SFR translated to an [OII] emission flux using SFR(Muyr—!) = (1.4 £0.4) x
10_41[/[011] (erg s71), which leads to

log(Florn)lerg s~' em™?] = —0.4(Myy + DM(z)) — 6.445 (3.24)

where both log(Flo;y)) and Myy are dust free, Myy is the absolute UV mag-
nitude and DM (z) the distance modulus. Using Eq. 3.24 and the emission line
ratios from Table 3.1, obtained also from Ilbert et al. (2009), we add emission
lines to the continuum fluxes. When the galaxy has nonzero extinction we
correct the emission line ratios with the extinction law and attenuation value.

We follow by assigning an error to each narrow and broad band by fitting
a line to the relation between magnitude and log;y(S/N) obtained in each
band from real data in the COSMOS field. We add to the error budget a
systematic error of 3% the true flux, which in real data usually appears to
account for systematic errors missed by the data reduction pipeline. We make
a Gaussian sampling using the true flux and the assigned error to assign a
measured simulated flux. We produce a systematic free catalog that only
contains pure Gaussian noise.

Based on this clean catalog, we add the systematic effects described in
subsections 3.3.4 and 3.3.5. We first add a systematic zeropoint factor to
each band, similar to one observed in real data. All galaxies get their fluxes
modified by dividing the factors shown in Fig. 3.9. Then we add a systematic
shift between the narrow and broad bands by multiplying each galaxy by a
value drawn from a Gaussian centered at 1/0.625 and a width of 0.3. We
produce two catalogs, one with only the zero point systematic, and a second
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Figure 3.10: Photo-z precision measured with ogs and outlier rate for a clean simulated
galaxy catalog with no systematic effects. The errors are measured using 1000 boostrap
realizations in each magnitude bin.

adding the narrow and broad band offset on top of the zero point systematic.

3.5 RESULTS

In this section we describe the results found in the simulations from
section 3.4 and the results found in the data catalogs described in section
3.2. We define our photo-z point estimate zphot as the mode of the posterior
redshift distribution of each galaxy p(z|f) (Eq. 3.4). We will generally use
two metrics to asses the photo-z precision, the dispersion ogg of the A, =
(Zphot — Ztrue)/ (1 + Ztrue) distribution defined as

P[86] — P[16]

o = (3.25)

where P[z] is the value of the distribution for the percentile x, that is more
robust to outliers than the standard deviation. We will also measure the outlier
rate as the fraction of outlier galaxies defining as an outlier galaxies that fulfill

o ‘thot - Ztrue|

Outlier = 2P0t —Ztruel o 3 5. (3.26)

1+ Ztrue

3.5.1 SIMULATIONS

We want to find what is the expected photo-z performance when the con-
ditions are ideal, when the data has been generated from the models and so the
models are representative of the data, and the noise is perfectly estimated. We
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Figure 3.11: Bias between the narrow and broad band photometric systems measured in the
simulations. The left panel shows the distribution of biases input to the simulated galaxies
(blue) and the recovered distribution in a simulation with band to band zero points shifts
(orange) and a simulation without (green). The right panel shows the distribution of ratios
between recovered and true bias between NB and BB for each galaxy, showing that when the
correction is performed with a catalog that has band to band systematic zero points there
is a bias in the recovery (blue distribution compared to orange, that is unbiased). This bias
can be corrected afterwards in the band to band zero point calibration.

take the minimization and Bayesian evidence algorithms described in section
3.3 and we run over the clean simulated catalog using a redshift grid between
redshift 0 and 1.1 in steps of 0.001. We use a random subsample of 8500 ob-
jects with magnitude ¢ < 22.5. Fig. 3.10 shows the photo-z precision and
outlier rate obtained for each algorithm as a function of Subaru i-band bins.
The errors are found using 1000 boostrap realizations in each magnitude bin.
We use a flat prior for the population prior p(z,T). The ogg grows at fainter
magnitudes since the signal to noise decreases. The photometric redshift pre-
cision at bright magnitudes is extremely good and quasi spectroscopic. The
outlier rate is between 8% — 13% at all magnitudes, but seems to grow around
magnitude 21.5. For a Gaussian distribution only 0.3% of objects would be ex-
pected beyond 3o. While both algorithms produce good results, the Bayesian
evidence algorithm recovers a tighter distribution at fainter magnitudes and
has a slightly lower outlier rate.

We test the method to calibrate between the NB and BB systems with
a synthetic broad band using the simulated catalogs with systematics, which
include a band to band bias in the zero point (Fig. 3.9) and a bias between the
NB and BB systems. Fig. 3.11 shows the bias between photometric systems
measured as the ratio between the observed Subaru r-band and the estimated
synthetic Subaru r-band from the narrow bands described in section 3.3.4. We
run this estimate in two catalogs, one which has zero point shifts and a catalog
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Figure 3.12: Relative zero point recovery measured in a simulation with a systematic zero
points between bands and a bias between the narrow and broad band photometric systems.
It shows the ratio between the recovered zero point of the bands and the true zero point
from Fig. 3.9 including the bias effect measured in Fig. 3.11. We show results for the two
photo-z algorithms, Bayesian evidence (red lines) and minimization algorithm (yellow lines),
using the three zero point calibration methods (see Egs. 3.21- 3.23). For reference we add
a case where instead of picking the model with a statistical method we use the true model
used to generate each galaxy (black line).

that does not. When there are no zero point shifts the estimator recovers an
unbiased estimate, while in the presence of zero points biases the estimator
gets also a bias. However, this last effect is a global shift that can be corrected
later in the zero point calibration between bands. We have found no correlation
between the synthetic correction and magnitude nor color.

The last step in the calibration is to measure if there are any residual zero
point shifts. We apply the iterative method described in section 3.3.5 on the
simulated catalog that has both zero point systematics and a NB to BB bias.
The galaxies are previously corrected for the NB to BB bias using the synthetic
broad band estimate from Fig. 3.11. Fig. 3.12 shows the recovered zero points
relative to the true ones from Fig. 3.9 and the median bias measured from the
shift in the right panel of Fig. 3.11. We show results for the two algorithms
that are used to select the most likely model for the residual measurement,
minimization (yellow lines) and Bayesian evidence (red), for the three zero
point methods described in the modeling section, using the x?, the median
and the inverse median of the residual distribution at each step (Egs. 3.21-
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Figure 3.13: Photo-z performance in a simulation with systematic effects which include a
band to band zero point shift and a bias between narrow band and broad bands. The
systematic calibration procedure has been applied before measuring redshifts. The results are
relative to the Bayesian evidence results found with the ideal simulation free of systematics
(orange lines in Fig. 3.11), to show the degradation due to systematics. The orange line
shows the best case of the zero point recovery algorithm from Fig. 3.12 (Bayesian evidence
and x? method), while the blue line shows the opposite end with the worst zero point recovery
(Minimization and median method).

3.23). For reference, we include a zero point calibration which fixes the best
model to the true model used to generate each galaxy (black line). All lines
are normalized with respect to the r-band, since zero point corrections are only
sensitive to colors (or flux ratios), not individual fluxes. Using the true model
delivers the nearest result to perfect recovery as expected, and the methods
that obtain the best recovery are using the Bayesian evidence either with the
x? or the inverse median method. We find using the median method estimate,
which has the observations dividing (Eq. 3.22), generates a bias towards bluer
bands. The reason is that bluer bands, especially the narrow bands, have very
small decreasing signal to noise . The minimization algorithm always finds an
answer that creates a red color trend.

Fig. 3.13 shows the photo-z impact from applying the systematic calibra-
tion. The results are shown relative to the values obtained from the Bayesian
evidence algorithm in the clean simulation (orange lines in Fig. 3.11). The
orange line shows a run with the best case scenario from the Bayesian evi-
dence algorithm with the 2 method for zero point calibration. We only find
a b ~ 10% degradation from the precision found in the ideal simulations free
of systematics in the faint end. In contrast, the blue line shows the worst
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Figure 3.14: Population prior probability of the bayesian evidence models, p(T|m) =
>, p(2,T|m), in simulations. The prior is self calibrated comparing the color space oc-
cupation of all observed galaxies in the simulation to the occupation of all the models T
Only the broad bands are used. It is presented in four magnitude bins with equal number of
galaxies.The five extinction laws (including no extinction) are separated by the vertical lines.
Within one extinction law the models are sorted from lower to larger value of extinction.
There are three models for the same extinction law and extinciton value which include three
different emission line models: no emission line, emission line with fixed ratios and emission
line with fixed ratios except for the [OIII] doublet. There are a total of 60 models for each
extinction law, except for no extinciton where there are 10.

case from the zero point recovery, using the minimization algorithm with the
median zero point calibration. In this case, the photo-z precision becomes a
15 ~ 25% worse at the faint end. Unlike the precision, the outlier rate seems to
be similar than in the ideal situation, but note that this is defined with respect
to the ogg of the distribution, which has grown, so the distribution tails are
larger in absolute amount.

The population prior scheme p(z,7") from section 3.3.3 calibrates the
observed color space occupation of the data by comparing it to the occupation
from the models, using the broad bands. We only use the marginal information
on the models of this prior, by summing over redshift p(T') = ), p(2,T). Fig.
3.14 shows the prior distribution on the models of the bayesian evidence in four
magnitude bins which split the galaxies evenly. Note how the red Elliptical
galaxies, which do not allow for extra dust reddening, are upweighted with
respect to the models with extinction, since there are several models with
extinction that have similar observed colors. Also, note how the red models
and Prevot extinction law models loose weight for fainter galaxies, as expected.
To break color-redshift degeneracies in the prior, we add a population redshift
prior p(z) from running the photo-z code first with a flat priors and smoothing
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Figure 3.15: Photo-z performance in a simulation with systematic effects, adding a popula-
tion prior p(z,T|m) self calibrated from the data. We approximate the prior as p(z,T|m) =
p(z|m)p(T|m), where the model prior is found from a self calibration with the broad bands,
by comparing the color space occupation of the data and all the models (see Fig. 3.14). The
redshift prior p(z|m) is found from running the photo-z algorithm with a flat prior p(z, T'|m),
and smoothing the posterior redshift distribution with a top hat function with a width of
0.1 in redshift.

the posterior redshift distribution of the population with a top-hat filter of size
0.1 in redshift, p(z,T|m) = p(z|m)p(T|m). Fig. 3.15 shows the effect of the
population prior in the photo-z. We find the population prior has a very small
effect in the photo-z, indicating the data is much more informative than the
prior for the redshift determination.

When running the photo-z code we do not only get information on the
redshift, but also on the models T'. Fig. 3.16 shows the true distribution of ex-
tinction values E(B — V') used in the simulation, compared to the distribution
found after running the photo-z algorithms. We find all algorithms and zero
point calibrations differ slightly from the true extinction distribution. Adding
population priors increases the amount of galaxies with no extinction and re-
duces the amount that have very high extinction, but also changes the shape
of the extinction values betwen 0.05 and 0.4, creating a peak around 0.3. We
show what is the impact in the extinction of a color trend coming from the zero
point recovery by comparing the distribution from Bayesian evidence and y?
method with the minimization algorithm using the median method (see Fig.
3.12). We find this creates an excess of galaxies at the largest extinction value,
shifts galaxies towards larger extinction values and increases the amount of
galaxies with no extinction.
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Figure 3.16: Most likely E(B — V) extinction value, where the most likely value for each
galaxy is estimated from the mode of the posterior distribution, marginalizing over redshift.
We show the true distribution of extinction used to generate the data (blue) compared to
the distribution found with the best photo-z configuration (orange, Bayesian evidence and
x* method for zero point calibration). The effect of adding a population prior p(z, T|m)
is shown (green), which leads to a better recovery of red elliptical galaxies (no extinction),
reduces the amount of high extinction galaxies (E(B — V') > 0.4) and creates a peak around
extinction of 0.3. We compare to the worst photo-z configuration, which introduces a red
color trend, finding it shifts the distribution towards larger extinction, and increases both
the amount of red and very high extinction galaxies.
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Figure 3.17: Relative zero point recovery measured in real data, using the 40 narrow band
data from PAUS in the COSMOS field and the 6 broad band data from COSMOS survey
(u,B,V,r,i and z). All lines are shown relative to the r-band, since the zero point calibration
can only calibrate colors (or flux ratios). We show results for the two photo-z algorithms,
Bayesian evidence (red lines) and minimization algorithm (yellow lines), using the three zero
point calibration methods (see Egs. 3.21- 3.23). Data has been corrected for a bias between
narrow band and broad band data using a synthetic broad band.

3.5.2 DATA

Now we present the results obtained using real data. We will use the
same methods tested in simulations and compare the results between simu-
lated and real data. We use the 40 narrow band data from PAUS and the 6
broad bands from COSMOS survey and compare the photo-z estimates against
the zZCOSMOS DRS3 spectroscopic redshifts. We only use high quality spectro-
scopic redshifts to minimize spectroscopic failures and remove any masked ob-
jects either from PAUS or COSMOS catalogs (see section 3.2 for details about
the data reduction and other selections). The three catalogs are matched in
sky position by requiring objects to be closer than one arcsecond. To test the
photo-z we only use objects with measured flux in all bands, which leads to a
total of 7804 objects. Similar to the simulation, we also add a systematic error
of 3% the measured flux to account for errors missed in the data reduction
pipeline and model uncertainty. We measure the bias between narrow band
and broad band data comparing a synthetic broad band with the measured
r-band (see section 3.3.4).

Fig. 3.17 shows the zero point recovery in data, showing both photo-
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Figure 3.18: Photo-z performance in real data using the 40 narrow band data from PAUS
in the COSMOS field and the 6 broad band data from COSMOS survey (u,B,V,r,i and
z), compared to the spectroscopic redshift estimate from zCOSMOS DR3 spectroscopic
survey. Data has been corrected for a bias between narrow band and broad band data
using a synthetic broad band. Zero point corrections are applied using the x? method. The
minimization algorithm (solid, blue) and the Bayesian evidence algorithm (dashed, orange)
are compared.

z algorithms (Bayesian evidence and minimization) for the three zero point
models (see Eqgs. 3.21- 3.23). We find a significant blue color trend both in
narrow band and broad band data when using the more reliable zero point
methods (x? and inverse median). The median zero point method, which we
know from simulations is biased and creates a red color trend, compensates
the intrinsic blue color trend present in the data. The minimization algorithm
delivers a redder zero point than the bayesian evidence for the same zero point
method, except for the x? where they look similar. The y? method was the
best method in simulations, but could be more sensitive to outliers in the data,
therefore the results can differ slightly form the ones found in simulations (see
Fig. 3.12). The blue color trend found in the data could be due to some missed
effect in the data calibration step and is currently under investigation.

Fig. 3.18 shows a comparison between the photo-z performance of the
minimization and bayesian evidence algorithms, using the y? as the zero point
correction. We use one less bin above magnitude 21.5 since the amount of
spectroscopic data significantly decreases (see Fig. 3.2). Similar to the simu-
lation, we find the Bayesian evidence algorithm performs better, specially at
faint magnitudes, finding a better precision and lower outlier rate. We find the
minimization algorithm performs a little better at magnitudes brighter than
1 < 21. The ogg is a factor 2 ~ 3 times larger in the data than in the simulation
at magnitudes brighter than ¢ < 21.5, and a factor 1.4 larger in the faintest
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Figure 3.19: Photo-z performance in real data, showing the effect of adding a population
prior and removing models with the Prevot extinction law. Removing models with the Prevot
extinction law leads to a 10 ~ 25% improvement in ogs at faint magnitudes. The population
prior tends to weight the Calzetti models over the Prevot models, which can explain why
the prior has a larger impact in data than in simulations. The fact that the prior has a small
effect when the Prevot models are discarded reinforces this conclusion.

magnitude bin. The outlier rate is found to be similar between simulatons and
data, around 0.08 ~ 0.12, except for the bright magntiudes where it is smaller
in data. We also find a similar trend where the outlier rate grows and peaks
around magnitude 21.

The fact the photo-z dispersion is larger hints that several assumptions
made in the simulations could be too optimistic. On the one hand, the SED
modeling choices could not be completely representative of all the data, since
some populations could be missing or the emission line modeling, where one
fixes most of the ratios to one value, could be too naive. On the other hand,
outliers and spurious measurements are present in the data and could add extra
noise to the redshift estimation process. PAUS images have variable amount
of scatter light around the edges in some filter bands and uncorrected negative
cross talk happening between different CCDs, which can produce such suprious
measurements. The data reduction is constantly improving and these effects
will have a smaller impact or be removed in future data releases.

We compute a population prior following the same approach showed in
simulations, but using real data. Fig. 3.19 presents the effect of the prior using
the Bayesian evidence algorithm with the y? zero point method. We find the
prior improves the photo-z precision by 5 ~ 10% at magnitudes fainter than
¢ > 20, unlike in the simulations where we found very marginal gains. We
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Figure 3.20: Photo-z performance in real data. Comparison without priors between the
three zero point recovery methods: the x?, the median and inverse median methods (see
Eqgs. 3.21- 3.23).

have noted that removing models with the Prevot extinction law (see Fig. 3.5)
improves the precision by 10 ~ 25% at magnitudes fainter than i > 20. We
have found the population prior downweights the probability of selecting the
Prevot extinction law, both in simulations and data (not shown). We conclude
that the population prior is improving the precision in the presence of the
Prevot models due to this effect. Adding priors when the Prevot models have
been discarded leads to marginal gains again. The outlier rate does not change
when adding priors, but it increases for the brightest galaxies when removing
the Prevot templates.

We compare the impact in the photo-z precision of using different zero
point recovery methods. Fig. 3.20 shows the photo-z precision for the Bayesian
evidence algorithm for the x?, the median and inverse median methods (see
Egs. 3.21- 3.23), without priors. Fig. 3.21 shows the same but removing
models that use the Prevot extinction law and adding population priors. We
see the differences between all cases are very small, despite the zero point
recoveries being variable. Even using the median zero point method, that we
know is biased by construction in our data, and has a very different zero point,
leads to a similar (if not slightly better) photo-z result.

Figs. 3.22 and 3.23 show the estimated extinction value E(B — V') dis-
tribution without using priors and with a population prior, respectively. In

real data we do not have the true extinction value of a galaxy. However, we
approximate it with COSMOS 30 band data from Laigle et al. (2016), since
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Figure 3.21: Similar to Fig. 3.20 but using population priors and disregarding models with
the Prevot extinction law.
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Figure 3.22: Extinction values F(B — V) distribution found in real data. Results from
COSMOS 30 band data (Laigle et al. 2016) are used as an approximation to the true values,
since this dataset contains data ranging from far ultraviolet until far infrared, providing
a more accurate measurement of the galaxy extinction. Distributions are shown for the
Bayesian evidence algorithm comparing the three zero point recovery methods. While zero
point color trends do not affect the photo-z precision, it can change the recovered extinction
values of the galaxy. We find similar results compared to simulations. The median zero point
method (which tends to create a red color trend) finds a very large excess of large extinction
values (E(B — V) > 0.4).
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Figure 3.23: Extinction values E(B — V) distribution in real data. Similar to Fig. 3.22 but
using population priors. The prior has a similar effect as in the simulations, increasing the
amount of galaxies with no extinction and shifting the extinction of galaxies towards larger
values.
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it contains data spanning from far ultraviolet to far infrared, which allows
to constrain extinction models with much better accuracy. Similar to simula-
tions, we find a lack of objects with no extinction and an extinction distribution
shifted towards larger extinction values. Adding priors increases the amount of
objects without extinction but shifts the remaining of the distribution even fur-
ther to larger extinction values. We find using the median zero point method
delivers an extinction distribution extremely biased towards high extincton
(E(B —V) > 0.4). The inverse median method recovers a distribution closer
to COSMOS 30 band compared to the distribution from the x? zero point
method. This could be as a result of this method being more robust to model
inaccuracies or outliers in the data.

3.6 DISCUSSION

In this chapter we have used data from the Physics of the Accelerating
Universe Survey (PAUS) to measure photometric redshifts. PAU Survey is a
new survey which features a unique instrument, PAUCam, which contains a
novel set of 40 narrow band filters of 12.5nm FWHM, spaced by 10nm in the
range between 4500A —8500A. We have used data taken in the COSMOS field,
a small area of ~ 1.5deg? which was targeted for calibration purposes between
2015 and 2017. The COSMOS field contain many observations, including a
multi band survey, the COSMOS survey, which has photometry in over 30
bands, containing mainly intermediate and broad bands, but also two narrow
bands, which span from ultraviolet to infrared wavelength. A spectroscopic
survey called zCOSMOS bright overlaps in the same area and provides red-
shifts for galaxies until 1ap < 22.5, which we can use to validate our photo-z
precision.

One of the main challenges to obtain photometric redshift estimates was
to properly calibrate the zero point offsets between bands, by comparing models
to data. Especially, the zero point between the narrow bands and the external
broad band flux measurements, which used different photometry extraction
strategies. We developed mock fluxes based on galaxy properties from the
public MICE2 N-body simulations which contained the same 40 narrow bands
and 6 broad bands from the COSMOS field. We added the observed signal
to noise from the data to generate measured fluxes and artificially included
zero point offsets and a bias between the narrow and broad band system, as
observed in data.

To correct a bias between the narrow and broad band system we devel-
oped a self calibration method building a synthetic broad band from a com-
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bination of narrow band measurements. Then, the zero point offsets can be
corrected by using an iterative algorithm that compares measurements against
a best model prediction using a subset of galaxies with spectroscopy. We have
tested in simulations that both methods work and obtain a photo-z precision
which is only 5% — 10% larger than in a ideal setup with no systematics at all.

We have developed two photometric redshift algorithms that rely on a
linear combination of galaxy SED models. Then, emission lines can be prop-
erly modeled for each galaxy, since these can have a very different amplitude
with respect to the galaxy continuum flux. One method finds the best model
parameters using a minimization algorithm which restricts to non negative val-
ues. This code is called BCNZ2 and has been used in Eriksen et al. (2019) in an
early demonstration of PAUS photo-z, and is similar to EAZY (Brammer, van
Dokkum & Coppi 2008), although we have a different treatment for galaxy
internal extinction and emission lines. We have developed another photo-z
code which instead of finding the best parameters integrate over all possible
combinations within some prior distribution which includes the non negativ-
ity constraint. This integral is the Bayesian evidence, and we found it gives
an increasingly better photo-z precision at fainter magnitudes, both in data
and simulations. The photo-z precision found in data is exceptional compared
to typical photo-z surveys. For high signal to noise galaxies we obtain quasi
spectroscopic precision thanks to the fine spectral resolution from the narrow
bands, while for the fainter objects with ixg = 22 — 22.5 we obtain a 1.4%
precision, despite the decreasing signal to noise of the observations.

The photo-z dispersion in data was larger than in simulations. The
simulation mimics the same noise levels and some of the known systematic
effects from data, but does not contain all the richness and complexity of
galaxy SEDs that real data can have. In particular, the results in simulations
are found using the same models used to generate the data. In this sense, in the
simulations the models are a complete representative set of the observations,
while in real data this will likely be different. Some galaxy populations can be
missing and the emission line modeling, where the line fluxes were fixed by a
ratio, is rather simple. Moreover, data is not perfect and also shows outliers
from uncorrected imaging effects such as scatterlight or negative crosstalk,
which can severely bias a measurement. However, we are hopeful that with
better modeling and improved data reduction we can obtain a photo-z precision
in data closer to simulations.
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3.A ALGORITHMS

In this section we present details of the two photo-z algorithms that are
used in this chapter.

3.A.1 MINIMIZATION ALGORITHM

To minimize the likelihood defined in Eq. 3.5 we restrict to non-negative
parameters to avoid unphysical solutions. Also a combination of negative emis-
sion lines could fit spurious data coming from negative cross-talk between dif-
ferent CCDs. We have implemented a non-negative quadratic programming
iterative algorithm based on Sha et al. (2007), which defines

z Y
Aa:y = Z flo-fl

2

: bxzzfixf, (3.27)

g

for templates x and y, where the sum is over the bands and fl and o; are the
flux and flux error. The amplitudes «, get updated iteratively using

Zy Agyay’

In the implementation the minimum is estimated at the same time for a set of

My Oy — Myl (3.28)

galaxies, for all the different redshift bins.

3.A.2 BAYESIAN EVIDENCE INTEGRAL ALGORITHM

To compute the Bayesian evidence we need to integrate Eq. 3.6. Let
us redefine the following terms from Eq. 3.7, fr = £ /o (fe%) and My, =
tik/o(f20%). Then we can write the exponent in Eq. 3.7 as

2
ni

d d d n
SHUA-D oM | =D f2-2>> froy M+
k J k kg

- (3.29)

d

YD) ooy Mg My,
kgL

=f.-f—2B-a+a’Aa

where in the second step we have defined the matrix A;, = Z‘,f M, My, and
vector Bj = Zz fxMji. Then, Eq. 3.7 becomes
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and assuming the prior from Eq. 3.8 then Eq. 3.6 becomes

Ay A"z 1 ~ —
P(f|z,T) x A/ / d"‘aexp[ 5@ avtAda +B~d} (3.31)

where we have dropped the constants that do not depend on the model. Eq.
3.31 means integrating an uncentered multivariate normal distribution, which
we can center with the following change of variable
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= D A — A — i,
= 76)([)( i-B) / e . / e exp [—1§TA9_] d"o
[1;4; _ _ 2

M1 Hn,;

<

N[ =

where § = (@—f) and i = A™1B corresponds to the peak vector of the distri-
bution (unconstrained maximum likelihood point). The Alan Genz approach
(Genz 1992) consists in three transformations that make the numerical integra-
tion of Eq. 3.32 more efficient. Following Genz (1992), we define the integral
of a Gaussian as function F' of its integration limits @ and 5,

N 1 bl bn Lgr A =
F(a@, b) = / / e 29" 4%4g. (3.33)
[ A= (2m)m T an

Then our integral becomes

xp(3i - B)y/|A~1|(2m)"

P(fl2,T) o A,

F({—uit {Aj — pi}) (3.34)

The transformations and code for estimating F'(a, E) in Eq. 3.33 are described
in the following section 3.A.3. Eq. 3.34 can be interpreted as the total volume
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under the multivariate Gaussian (Eq. 3.35) times the fraction of that Gaussian
inside the top hat prior limits (Eq. 3.33) divided by the prior hypercube volume
(IT; Aj), since

1 - N & 1. —
exp (51 B) la-teny = [~ x| jatda s Bea|ava 39)

3.A.3 ALAN GENZ GAUSSIAN INTEGRAL

In this subsection we reproduce the algorithm from Genz (1992) used for
the integration of Eq. 3.33 using 3 transformations. The first transformation
will use the Cholesky decomposition of CCT = A_l, 6 = C’gj’ In this case
0TAG = 7§ and df = |fl*1|%d17. Note also how for this decomposition the
new integration limits will be:

i<f=Cy<b
= ZCijyj < b (3.36)
: .
a; = (a; — Zcijyj)/cii <yi < (b — ZCZJyJ i =bi
G0 J#

Note that if C is the lower triangular, C;; = 0 for ¢ < j. Hence,

F(@, b) = / ' / o / N (3.37)
a, e 2ay. .
\/7 dn(y17~~~,yn71)

Now, the second transformation, y; = ®~1(z;), where

S CTCA R R
D (z) = V2 erf 12z — 1)

then dz; = f _Eyz?dyi, SO

Zl) <D(Bn((I’il(zl)wwq)il(znfl)))
/ / N / iz (3.39)
(Zl) <1>(a2 @(&n(q)*l(Zl),...,‘:b*l(znfl)))
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Finally, the third transformation, z; = d; + w;(e; — d;),

1 1 1
F@ 5) = (e1 - dl)/o (es — do) . /O (en — dn)/o dii (3.40)

where
di = [ |ai—Y Cy® ' (dj +wile; —dy))| /Cii
L (3.41)
ei=0 | [bi— Y Ci®7'(d; +wj(ej — d;)) | /Ci
JF
Note how for some parameters where either a; = —oo or b; = oo then d; = 0

and e; = 1, respectfully. Now we describe the algorithm to find the integral
(Genz 1992).

1. Input &, I;, A, Npas.
2. Compute Cholesky decomposition C for AL,

3. Initialize Intsum = 0, N =0, di = CI>(a1/Cl71), e = (I)(bl/CLl), fi=
€1 — dl.

4. Repeat until N = Nyqz

(a) Generate uniform random wy, ws, ..., wm—1 € [0, 1].

(b) Fori=2,3,...,mset y;_1 = ® 1 (d;_1 +w;_1(e;_1 — di_1)), di =
O((ai — Y02y 4;Cij) [ Cid), e = B((bi — 35 y;Ciy) /Cia), fi = (ei —
di) fi-1-

(c) Set N =N+1, 8= (fm — Intsum)/N, Intsum = Intsum + 6.

5. Output = Intsum
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Part 1V

REDSHIFT INFERENCE FROM THE
COMBINATION OF GALAXY
COLORS AND CLUSTERING IN A
HIERARCHICAL BAYESIAN MODEL

In this part we estimate the redshift distribution of a galaxy sample for
a broad band survey like DES. We tmplement a hierarchical bayesian
model that incorporates the information of colors and clustering and

test it in the MICE2 N-body simulations.
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Chapter 4

REDSHIFT INFERENCE FROM THE COMBINATION
OF GALAXY COLORS AND CLUSTERING IN A
HIERARCHICAL BAYESIAN MODEL

4.1 INTRODUCTION

Cosmological analysis using imaging surveys need to estimate the redshift
distribution of galaxies n(z) = dn/dzdA very accurately. Any unaccounted
errors in its estimation can lead to a systematic bias of the cosmological pa-
rameters (Hildebrandt et al., 2012b; Bonnett et al., 2016; Hoyle et al., 2018;
Hildebrandt et al., 2017). Several redshift estimation techniques have been de-
veloped in the last decades, which can be broadly separated between template
fitting techniques like BPZ (Benitez 2000), LePHARE (Arnouts & Ilbert 2011)
or EAZY (Brammer, van Dokkum & Coppi 2008) which compare theoretical
colors assuming a restframe spectral energy distribution for the galaxy and
machine learning methods like SKYNET (Bonnett 2015), ANNz2 (Sadeh, Ab-
dalla & Lahav 2016) or DNF (De Vicente, Sanchez & Sevilla-Noarbe 2016) that
learn the color redshift relation with a calibration sample. A recent method
has been develop that instead of using galaxy colors uses the galaxy posi-
tions, by cross correlating them with the positions of a sample with known
redshifts (Newman (2008); Ménard et al. (2013); Schmidt et al. (2013)). Re-
cently, lensing surveys like KiDS (Hildebrandt et al. 2017) and DES (Hoyle
et al. 2018; Gatti et al. 2018; Davis et al. 2017; Abbott et al. 2018) have used a
combination of such methods to either cross check their redshift inferences or
combine them under some parametrizations of the redshift distribution. The
third source of information is the prior distribution of redshift and type for the
population of galaxies, which is usually calibrated using small patches with
either spectroscopic or highly precise photometric redshifts.
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Sanchez & Bernstein (2019) presented a framework that combined this
three pieces of information (photometry, clustering and prior) in a principled
way using a hierarchical bayesian model (see also Leistedt, Mortlock & Peiris
2016) which yielded samples of the redshift distribution constrained by all
sources of information. In this work we extend the method so that it can be
applied to galaxy surveys. We apply the methodology to the public MICE2
N-body simulations and develop a clustering estimator based on a density field
produced with a kernel density estimator from a subsample of galaxy positions
with known redshifts. We show how to map the density relation from the
estimator to the actual density distribution of the unknown galaxies, obtaining
priors for a relation and marginalizing over mapping parameters.

This chapter is organized as follows. In section 4.2 we present the
methodology and phenotype approach. Section 4.3 describes the simulated
galaxy catalog used to test the methodology. We follow with a description of
the density estimation used to incorporate the clustering information in section
4.4. We describe the Gibbs sampling steps used to sample the posterior on all
the model parameters in section 4.5. Section 4.6 shows the results for a prior
which comes from a small patch with sample variance and three cases where
this prior is biased inspired in real data situations.

4.2 FRAMEWORK

In this chapter, we apply the method of SB18 to more realistic simu-
lations. For that, we develop some new key extensions to the methodology,
especially in the treatment of galaxy clustering (section 4.4), but we work
under the framework presented there. In that approach, galaxy "types”’ are
defined by observed properties rather than rest-frame properties, and we call
them phenotypes. On one hand, the colors of individual galaxies ¢ are seen as
being drawn from a pool of possible phenotypes t;, redshifts z;, and angular
positions #; with some latent intrinsic mean density n(t, z) on the sky. On the
other hand, observations yield a noisy set of observable features which will be
denoted as F;. The clustering information is included by considering that the
galaxy densities at redshift z are modulated by some factor 1 + §.(6), where
the density estimates d,(6) are come from a galaxy population drawn from the
same latent density distribution (up to some bias factor). Our notation will be
that the vector quantities F', ¢, z, and @ denote the full set of properties of all
selected galaxies, i.e., F = {Fy,Fy,...,Fx} (a summary of all the notation
can be found in Table 4.1).
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4.2.1 GENERATIVE MODEL

As in SB18, the fundamental assumption of the method is that galaxies
are drawn from a Coz process (Cox, 1955) or doubly stochastic Poisson process,
i.e., we assume that each galaxy is Poisson sampled from a latent, stochastic
density field. The problem simplifies when considering the redshift z as an
integer indexing a set of finite-width redshift bins, where each bin has an
independent density fluctuation field §,(0), i.e., (d.,(0)d,(0)) = 0 for z; # z;.
We will also assume that we have a finite set of phenotypes indexed by integer
t. Each phenotype has a mean sky density of n! = nf;, where we place n as
the total density of all detectable galaxy phenotypes, and f; = p(t) being the
fraction of the population in each type, with ), fy = 1 as a constraint. Then
the redshift distribution of type ¢ will be p(z|t) = f!, and we will also denote

fr = p(2,t) = p(2|t)p(t) = fLfi. (4.1)

In this case, we are considering the sky is populated with galaxies of
different (but finite) redshifts and phenotypes, where phenotypes specifiy a
galaxy’s noiseless, observed appearance. We assume there is some selection
function s with the probability of a galaxy being selected, possibly depending
on sky position, specified as a selection function p(s|@). We will always assume
that we know nothing about the non-selected galaxies, not even that they exist;
the observed data are the positions 6 and features F' of the selected galaxies.
All galaxies of phenotype t observed under the same conditions are assumed to
have the same selection function p(s|t,6) and the same probability p(F, s|t,0)
of being selected and measured to have image features F'. Finally, we will allow
for some biasing function, B., depending on both redshift and phenotype, to
relate the galaxies’ spatial distribution to the underlying density fluctuation
d,. Now the selected galaxies can be considered as being a Poisson sampling
of the following density field:

p(z,0,tIn, f,B,8) = nfe.B. [6.(0)] p(slt, 0). (4.2)

In that expression, the last two terms describe the spatial variation of the ex-
pected detection rate due to density fluctuations and variable observing con-
ditions, respectively.

With knowledge of the survey noise properties and the noiseless appear-
ance of phenotype ¢, we can determine the likelihood p(F), s|t, 0, z) of a galaxy
of phenotype t at location 0, z being selected and measured with features F'.
Note this likelihood will not depend on z since the phenotype’s observables are
independent of z, by construction. Therefore, for each observed galaxy ¢ and
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phenotype ¢, we can assign a feature/selection likelihood
Ly = p(F;, s|ti, 0;). (4.3)

This function will depend on the quality of the observations at sky position
0; and the measurement and selection algorithms. We will assume that this
likelihood is known a priori, e.g., by the result of analizing the injection of
artificial copies of the phenotype into the real survey images (Suchyta et al.,
2016).

Then the probability of selecting a set of galaxies i € {1... N} at po-
sitions @ with features F', types tand redshifts z takes the standard Poisson
form:

p(F,0,t,z|n, f,B,8) = exp |—n Y _ f,A'(f',B",6) (4.4)
t

X H‘Citnftizz‘gzi [521' (‘91)] .

The exponentiated quantity is, as required for Poisson distributions, the ex-
pected number of detections (N) for the entire sample, which can be deter-
mined from knowledge of the survey properties.

In order to provide the full generative model for the data we must also
specify the process p(d|ms) generating the stochastic density fluctuation fields
given some hyperparameters ms. For instance, that could be a log-normal
distribution where 75 specifies the power spectrum. We also require priors
p(B) and p(n), plus any prior information on p(f) aside from the constraint

that D, fi. = 1.

4.2.2 REDSHIFT INFERENCE

The principal quantity of interest is the underlying redshift distribution
TL(Z) = antz (4.5)
t

In most aplications of redshift inference we are only concerned with the shape,
not the normalization, of n(z), and therefore we will focus here on the fractions
f, rather than n. In addition, in many applications it is also useful to know
the individual redshifts of galaxies z, and in order to enable a Gibbs sampling
scheme we will need to keep B and ¢ as conditional variables. We can use
Bayes’ theorem to write down the posterior joint probability of these variables
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Table 4.1: Summary of the notation used throughout this chapter.

F galaxy set of observed features
t galaxy phenotype (or simply type)

z galaxy redshift

0 galaxy angular position in the sky

s indicator of successful detection/selection

Lt probability of measuring galaxy i with F; given ¢
Ft,z,0 set of properties for all galaxies in the sample

N number of galaxies in the sample

Ny number of types

N, number of redshifts

A effective area of the survey for source detection

n mean galaxy density per unit solid angle

n(z) mean galaxy density per unit solid angle per z
0.(0)  density fluctuation at a given z and 6

Ty density fluctuation field hyperparameters

) set of §,(0) for all redshifts and positions

bt linear galaxy bias for type ¢ at redshift z

B set of bt for all types and redshifts

St joint type and redshift probability p(z,t)

f set of f,; for all types and redshifts

Ny number of sources assigned to redshift z and type ¢

N set of IV,; for all redshifts and types

M number of sources in the prior at redshift z and type ¢
M set of M, for all redshifts and types

Az difference between the means of

estimated and true n(z)’s
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of interest:
p(f,z,B,t|F,0,ms) x /dnd5 (4.6)
p(F,0,t,2In, f,B,8) p(d|ms) p(n) p(f) p(B).

We have already derived the first term under the integral in Equation Equa-
tion (4.4). In this chapter, as in SB18, we will work with the approximation
that we can replace the stochastic density fluctuation d,(f) with some deter-
minsitc estimator 4., (0) of the realization of the density fields in the generative
probability of Equation (4.4). Under that approximation, and performing the
marginalization over n assuming the effective area of the survey is independent
of phenotype (see SB18 for the details), the posterior distribution for redshift
and phenotype information in Equation (4.6) becomes

p(f,z,t, B|F,0) o< p(f) H Lit; ftiz B, (S'LZZ) ) (4.7)

8iz = 0:(0)). (4.8)

The roles of the main three sources of information in redshift estimation
are clearly present and differentiated in the posterior of Equation (4.7). First,
there is a term for the prior probability that any galaxy is of phenotype t
and redshift z, f;,. Second, the photometric information for a galaxy is in
L, which is the likelihood of galaxy ¢ resembling phenotype t and passing
selection. Third, clustering information enters as the last term, describing the
modification of the probability by (our estimator for) the density fluctuation
field.

4.2.3 REALISTIC SET UP: SOM IMPLEMENTATION

For the data implementation of this method to a general galaxy sur-
vey, we propose to use a combination of wide and deep survey observations
and self-organizing maps (SOMs). Deep observations are often available for
surveys like the Dark Energy Survey via SNe observations, and these provide
essentially noiseless photometric measurements and observations in additional
filter bands for galaxies in specific fields (henceforth deep fields, or simply DFs),
and provide an empirical sampling of the distribution of galaxies in feature (F')
space. In turn, SOMs provide a data-driven way of mapping and discretizing
that feature space, so that we can use the cells in a SOM trained in deep pho-
tometry as the definition of our galaxy phenotypes t. In that scheme, each cell
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¢ of the so-called deep SOM cell constitute a phenotype t.

Another term that we will need in the data application is the noise or
measurement likelihood, L;; = p(Fj, s|ti, 0;). We follow the approach of Buchs
et al. (2019) and construct the measurement likelihood by training another
SOM on wide-field data of the galaxy survey of interest; we will refer to this
one as the wide SOM and its cells, ¢, map the space of wide-field observations
in a survey (every galaxy observed will be assigned to a wide cell, ¢). Crucially,
it is possible to inject artificial copies of galaxies with deep photometry, and
hence well specified phenotypes, into the real images of the survey, and measure
their wide-field properties (Suchyta et al., 2016). Then, for a set of galaxies,
we will know both the cells in the deep and wide SOMs (¢ and ¢), so that we
can construct the mapping between deep and wide SOMs which corresponds
to our measurement likelihood:

Lit = p(Fi, slti, 0;) = p(&, s|ci, 0;) (4.9)

One other major part in the application of the method to data is the
addition of clustering information, that is, the construction of the density field
estimator using a tracer opulation and the treatment of a biasing function
relating that estimate to the true underlying density fluctuation field of the
selected galaxies. This part will be treated in full detail in Section 4.

4.3 SIMULATIONS

We now present a demonstration of the methodology on simulations of
galaxy survey data. In the previous work about this method (SB18), a demon-
stration was performed on a simple toy-model simulation with idealized galaxy
properties and noise distributions, and perfect knowledge of the density fluc-
tuation field. Now, instead, we test our methodology on the public MICE2
simulation®, a mock galaxy catalog created from a lightcone of a dark matter
only N-body simulation that contains ~200 million galaxies over an octant
(~ 5000 deg?) and up to z = 1.4. Several important differences with respect
to the toy model simulation used in SB18 make this analysis more realistic and
allow the method described in here to be applicable to real data analysis.

On one hand, the MICE2 simulation has realistic clustering properties
given by a ACDM cosmology wth parameters 2, = 0.25, , = 0.044, h = 0.7,
ns = 0.95, Qp = 0.75, 0g = 0.8 and w = —1. In addition, we do not assume
true knowledge of the density field but rather infer the clustering information

'The data can be downloaded from CosmoHub (Carretero et al., 2017), https://
cosmohub.pic.es/.
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from a set of galaxy tracers, described below. On the other hand, galaxies
have realistic spectral energy distributions (SED) assigned from the COSMOS
catalog (Ilbert et al. 2009) that preserve the observed color-magnitude distri-
bution as well as clustering observations as a function of colors and luminosity
(see Crocce et al. (2015) for more details). Once the galaxy SED is known,
mangnitudes are computed based on the luminosity and redshift of the galaxy.
The galaxy properties, clustering and lensing in the simulation have been thor-
oughly validated in Carretero et al. (2015); Fosalba et al. (2015a); Crocce et al.
(2015); Fosalba et al. (2015D).

4.3.1 SAMPLE SELECTION

In particular, we select a galaxy sample with a square footprint defined
by the cuts 30 < RA[deg] < 60 and 0 < Dec[deg| < 35, representing an area
of around 1000 sq. deg., with the redshift range 0.2 < z < 1.2 and a magni-
tude limit ipps < 24. For computing efficiency in this test, we downsample
the true galaxy SEDs to simplify the color space and obtain an equally tight
color-redshift relation without the need of a higher resolution deep SOM. This
procedure removes ~ 50% of the sample and allows us to significantly reduce
the runtime. The downsampling keeps a representative amount of populations
(Elliptical, Spiral, Starburst) and dust attenuation laws and values present in
the simulation.?

The tracer sample is randomly drawn from the full population to have a
constant comoving density similar to the RedMagic DES Y1 galaxy sample in
the first three lens bins (Elvin-Poole et al. 2018). This is achieved by taking the
number of galaxies and redshift range of the third redshift lens bin, assuming
it has a top-hat redshift distribution, and converting it into a comoving density
assuming MICE cosmology. The target sample is defined as the galaxies that
are not selected as part of the tracer sample. The upper panel of Fig. 4.1 shows
the redshift distributions of both samples. The redshift binning is chosen to
have 20 bins equally spaced in comoving distance between the redshift limits
of the catalog, which makes the tracer sample to also have a constant angular
density.

4.3.2 THE PHENOTYPE APPROACH: DEEP AND WIDE SOMS

The phenotype method described in section 4.2 is then applied to the
simulation. As stated in §4.2.2, the approach can benefit from a sample with

2The selection is defined as sed cos=c€0,1,2,5,6,7,10,11,12,
15,16,17,21,22, 23,24, 25,29, 30, 35, 36, 37, 38, 39, 41, 42, 43.
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Figure 4.1: (Upper panel:) Redshift distribution of the target and tracer samples. The
target sample contains the galaxies for which we want to find a redshift distribution. The
tracer sample contains galaxies with known redshifts that are used to add the clustering
information into the redshift estimation. (Lower panel:) Redshift distribution of tomographic
bins defined as in §4.3.3.
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Deep SOM Comparison

005 010 015 020
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Figure 4.2: Mean redshift and redshift dispersion of cells in deep and wide SOMs described
in §4.3.2. The left and central columns show the SOM maps populated with these quantities,
while the plots in the right column show the comparison of these distributions. These show
how the deep SOM better samples the redshift space of the simulation test, with a lower
redshift scatter per cell.
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deep photometry and extra bands to define galaxy phenotypes, and then it
can have a wide sample with noisier photometry and only a subset of optical
bands as observations. We choose among the available bands in MICE2 the
DES g,r,i,z bands for both samples and the additional CFHT w, DES Y and
VHS J,H,K bands for the deep sample. For the deep sample, we stick to
noiseless true fluxes from the simulation, while for the wide sample we add
Gaussian noise to the fluxes by fitting a linear relation between magnitude and
logarithmic magnitude error for each band using observed noise from the Dark
Energy Survey Year 1 public data3. We produce deep and wide photometries
for all galaxies of the target sample. We finally select only galaxies that have
a signal to noise above 5 in each wide band, g,r, 4, z. To avoid throwing away
too many galaxies, we have shifted by —1.2 magnitudes every galaxy.

Following §4.2.2, we create two self-organizing maps (SOMs) on a squared
grid with periodic boundary conditions, similar to the SOM in Masters et al.
(2015). The deep SOM is trained with eight colors, defined as mag — i, where
mag = {u,g,r,2,Y,J, H, K}, in a 32 x 32 grid. The wide SOM is trained with
one magnitude, ¢, and three colors, g —%, r—i and z—1, in a 26 x 26 grid. Each
color is renormalized to span the range [0, 1], while the magnitude spans the
range [0,0.1], i.e., , we give colors 10 more weight than magnitudes in creating
the wide SOM. Also, to train the wide SOM we only use galaxies with a S/N
above 10 in all bands to avoid noise in the map. Once both maps are trained,
every galaxy in the target sample gets a best matching unit (bmu) for both
the deep and wide SOMs, which is used to accurately calibrate the likelihood
probability between the SOMs, P(c, ¢), where c and ¢ are the labels of the deep
and wide SOM cells, respectively.

Figure 4.2 shows the mean redshift and redshift dispersion of the cells
in the deep and wide SOMs described above (left and central columns). From
the plots, one can note the higher redshift smoothness and the lower redshift
dispersion in the deep SOM compared to the wide SOM. This is even more
evident from the comparison plots in the right column of Fig. 4.2: the dis-
tribution of the mean redshift per cell in the deep SOM is more uniform and
samples better the redshift space of the simulation (0.2 < z < 1.2), and the
redshift dispersion per cell in the deep SOM is significantly lower (median o(z)
of 0.030 for the deep SOM vs. 0.086 for the wide SOM).

4.3.3 TOMOGRAPHIC BINS

To create tomographic redshift bins we group wide SOM cells together
by their mean redshift value. First, we find the redshift probability distribution

Shttps://des.ncsa.illinois.edu/releases/ylal/key-catalogs/key-mof
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of each wide SOM cell by summing over the deep SOM cells,
P(z]¢) =Y P(z|e)P(cle), (4.10)

where P(z|c) is also estimated using all galaxies in the target sample. We sort
the wide SOM cells by their zmean = [ dz 2 P(2|¢), and group them creating
5 redshift bins with equal number of galaxies. The true redshift distribution
of each tomographic bin is shown in the lower panel of Fig. 4.1. The method
presented in this work can be applied to an arbitrary galaxy selection, including
any of these tomographic bins. For this work, however, we will focus on Bin
3 and ignore the others. For this reason and to avoid any selection effects in
our probabilities, we retrain the wide and deep SOMSs using only galaxies from
this bin. This choice does not affect the methodology of the work presented
here, but makes the results more concise and clear.

4.4 ADDING THE CLUSTERING INFORMATION

Clustering information can be used in redshift inference when having
an overlapping population of galaxies with reliably known redshifts, either
from spectroscopic or high-quality photo-z estimates (we call that the tracer
population). Section 4.2 describes the formalism used in this work, where
clustering information enters in the form of the density field from which galaxies
are assumed to be drawn from. We will work under the approximation that
we can replace that density field with a deterministic density field estimate
discretized in redshift space as a set of redshift bins, 32(0), obtained from a
tracer population that has been drawn from the same generative model up to
some biasing relation.

4.4.1 DENSITY ESTIMATION

Now we describe the way we estimate the density field in this work. The
tracer population, described in 4.3.1, is split in 20 redshift bins equally spaced
in comoving distance in the range z € [0.2, 1.2] using the true redshift from the
simulation. The redshift bins are wider than the typical redshift uncertainty
of photometric survey tracers, o, ~ 0.015(1 + z) (Rozo et al. 2016; Vakili
et al. 2019)), and also wide enough to make them nearly independent from
each other. We will defer any attempt to include photo-z errors in the tracer
sample to a future study.

Several methods exist to reconstruct the surface density of galaxies cen-
tered at the position of those galaxies (e.g. see Cautun & van de Weygaert
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(2011); Darvish et al. (2015)). In this work we will use a kernel density esti-
mator (KDE) to estimate the density field at any position of the field, based
on counting weighted pairs from a tracer sample and a random sample that
describes the selection function of the tracer sample, in the same spirit as con-
ventional clustering—z redshift techniques. We assume that our density field
estimate only depends on the distance between a galaxy and tracers (6,7) and
random points (0,r) and define it as

LYy KBr)
L K0r)

where np is the total number of tracers and ng is the total number of unclus-

o.(z) =

(4.11)

tered random points. We only use tracers from the same redshift bin since we
assume each redshift bin is independent. We presume ngr > np such that the
dividing term can be considered a measure of the area surrounding z, taking
into account the selection function and mask effects.

Choosing the shape and extent of the KDE is important. Figure 4.3
shows the effect that different KDE shapes has on the field estimate. The top
left panel shows a top hat KDE of size rmax = 30Mpe. Such a large kernel
smooths the density field too much and cannot resolve well large structures,
overestimating the density in underdense regions and underestimating the den-
sity in crowded places. On the contrary, the top right panel shows a small top
hat KDE with rp.x = 3Mpc. This KDE can resolve better denser structures,
although it will still underestimate high density regions, is more affected by
shot noise and has no information about the surrounding environment, which
can lead to high overdense estimations in underdense regions.

Many cosmological applications of redshift inference will also include the
tracer sample as part of their analysis. Allowing large scales in the density
estimation can improve its estimation, but will also correlate with the observ-
ables of such analyses, and using only very small scales (< 3Mpc) lowers the
signal to noise of the estimation and can create noise biases. We set by default
rmax = 10Mpc, which is a good compromise between both extremes, although
we also explore mpax = 10Mpc for comparison (cosmological analyses of galaxy
surveys such as DES set their minimum scales around 8-12 Mpc). High den-
sity structures are smaller than 15Mpc, so a flat kernel of this size would still
smooth them, keeping us from accessing most of the information from the
tracer sample. The bottom left panel shows a power law KDE o %8, in-
spired in the shape of galaxy correlation functions, which obtains information
from smaller scales by weighting them more aggressively but still keeps the
knowledge of its environment.
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Figure 4.3: Density field estimation using different kernel density estimators from a tracer
sample population. Shows the field estimate for a small patch in the highest redshift bin.
The black dots show the position of the tracer galaxies, and the background colors show the
estimated value of the density field at different positions. The top panels show a flat kernel
with a large size (rmax = 30Mpc, left) and a small size (rmax = 3Mpc, right). The bottom
left panel shows the density with a power law kernel that resolves better the structures. The
bottom right panel shows a field estimated with an optimized kernel, which is our default
density field estimate.
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4.4.2 BIASING RELATION

Clearly, different KDE shapes deliver different density field estimates.
One way to find if a recovered density field is on average an unbiased estimate
of a particular target sample is to estimate the relative abundance of target
galaxies and randomly distributed points at each value of the field. When we
estimate & ~ 0, we expect to find about the same amount of target galaxies
and random points (relative to the length of their catalogs), while for 6~ 1we
would expect to find twice more targets than randoms. Figure 4.5 shows, for
each redshift bin (color coded), the relation between the average abundance of
targets over randoms as a function of a density field estimated with a power
law KDE with rp.x = 10Mpce. If the KDE estimate delivered a perfectly
unbiased field estimation this would yield the dashed line. In general, the
KDE estimate will not deliver such an estimate, both because the KDE yields
a biased estimate and because the tracer will be a biased tracer of the target
galaxies. However, we will assume such relation exists, i.e. there is a functional
form or mapping B that relates the estimated KDE field 5, from the tracers
and the true probability p(f|z) of a target galaxy being at position 6; and
redshift z,

p(Hz"Z) = 8(82(91')7 {bzz})v (4.12)

where {07} are the parameters of B at redshift z. This is an approximation
of a more general approach where the density field is updated locally by the
targets as part of the hierarchical model. The parameters {b7} are part of the
framework parameters (see section 4.2) and they will be sampled along with
the other parameters in the HBM (see section 4.5). We choose a polynomial
of degree four as our mapping function B, such that

4

log1o(p(6]2)) = bf log(1.1+4.)", (4.13)
k=0

with the additional constraints that [p(f|z)dfd = 1 and that the derivative
must always be positive. Note the arbitrary choice of coordinates in (1.1449,),
instead of the typical (1 + 0,), to avoid problems with the logarithm.

4.4.3 OPTIMIZING THE ESTIMATOR

We can go one step further and try to optimize the shape of the KDE
assuming we have a small calibration patch where the redshift of the target
galaxies is known. For this purpose we define a KDE with shape
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Figure 4.4: Comparison between a power law KDE and a KDE with a power law that
truncates at some scale r*. Such truncation reduces the impact of shot noise in smaller
scales and naturally adds a small exclusion region around the positions of tracers.

KDE o 7% exp [— <L)7} , (4.14)

T*

which combines a power law with exponent o and an exponential truncation
of the power law at scale 7* with width parameter . Figure 4.4 compares this
KDE shape with a power law. The motivation for allowing a truncation at
small scales is to minimize the effect of shot noise, since tracer samples with
lower density will sparsely populate smaller scales. Underdense regions will
suffer from this effect at larger scales, while really overdense regions would not
have this problem until really small scales. However, we will not try to opti-
mize the KDE shape as a function of environment, but rather find an average
optimal KDE shape. Moreover, the truncation naturally adds an exclusion
region around the position of a known galaxy from the tracer sample.

The optimization of the KDE works as follows. We write the probability

of the optimized KDE parameters for redshift z as

p(az, TZ7'.YZ‘97 Z) o8 p(@\z, a27 7’:, 72) p(a?«’? T:a ’72|Z) (415)

where the last term is the prior on the parameters. Given a sample of targets

with known redshifts from a calibration field,

p(9|zaazﬂ":7’}/z) X Hp(ei‘z7azvrz77z) (4-16>
€2

where p(60;|z, az,7%,7.) is the probability of the ith galaxy at redshift z from
the calibration sample. We obtain this probability by correcting the KDE
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Figure 4.5: (Upper panel): Ratio between the abundance of target galaxies and random
points as a function of estimated KDE density, for a power law KDE r o 77 %% and ryax =
10Mpc. The different redshift bins are color coded. If the KDE delivered a perfectly unbiased
field estimate of the target galaxies, we would expect to find the dashed line relation. All
galaxies have been used without tomographic bin selection to obtain a better estimate. The
true redshift of all the target galaxies was used, while in a real data scenario one could only
estimate this relation in the smaller calibration fields. (Lower panel): Same as upper panel,
but using an optimized KDE with rmax = 15Mpc. The KDE is optimized from a function
that combines a power law and an exponential truncation at small scales to deal with shot
noise effects (see Fig. 4.4). The optimal parameters are found from a calibration field from
~ 3.5deg? where redshifts for the target galaxies are known. It shows a more linear relation,
closer to the perfect estimate (dashed line), since the area is larger and the KDE has been
optimized.
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estimate 52(91-) using an abundance vs KDE density relation similar to Fig.
4.5 but estimated using only the galaxies from the calibration sample.

We use a small patch of ~ 3.5deg? as the calibration field. We take
the average of the parameters across all redshift bins as an estimate for the
optimized KDE, since the constraining power in each redshift bin is small. We
use top hat priors defined in the range o, € [—2,—-0.5], 7} € [0.001,0.1] and
v: € [—10,—2]. We find that we are not very sensitive to the v parameter so
we fix it to its mean value of v = —4 and run again. For a KDE limited to
max = 10Mpc we find < a, >= —1.15 and < r} >= 0.018Mpc. For a KDE
limited to rmax = 10Mpc we find < a, >= —1.0 and < 7} >= 0.010Mpc.
Note how a more aggressive power law is preferred when the size of the KDE is
larger. Since we have more area we want to avoid increasing the smoothing of
structures, and at the same time we are allowed to weight more close by pairs
since we have more tracers at reach from which to get the density estimate.
Figure 4.5 (lower panel) shows the mapping relation (using again all galaxies)
for an optimized kernel with rpax = 15Mpce, which compared to the upper
panel is much more close to the ideal relation. This is both consequence of
having a larger area (2.25 times more area) and having optimized the KDE.
The bottom right panel of Fig. 4.3 shows the density field estimated with an
optimized KDE with rp,x = 15Mpc, which is our default density field.

The shape of the optimal KDE and the shape of the mapping relation
(Fig. 4.5) depend on the tracer sample angular density, among other factors.
Here we choose a tracer sample with constant angular density, which mini-
mizes the variation from this effect across redshift. In general, a low density
tracer sample will result in an understimation of underdense regions, which by
definition are already sparse, and will reduce the smaller scale we can include
in the kernel. In the limit where the tracer density was very low there would
be a range of low 5§ with a very flat mapping relation near ~ 1, which is the
value the probability p(6|z) takes in absence of density information. Such a
tracer population would still add information on the higher density regions
that it would be able to sample. In our case we assume a density similar to the
lower luminosity redshift RedMagic bins (see section 4.3), which is enough to
sample relatively well most of the density regions, since we see Fig. 4.5 shows
relatively linear relation for most 6 values that is not too far from the ideal
relation.
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4.5 SAMPLING

Now we turn to the problem of sampling over the redshift and type
probability distributions of populations of galaxies and their individual con-
stituents, in the framework of the hierarchical Bayesian model described in the
previous sections. It is complicated to simultaneously sample all variables from
the joint posterior p(f, z,t, B|F, 0) in Equation (Equation (4.7)). We will show,
however, that it is feasible to draw samples from this posterior using a three-
step Gibbs sampler, because the conditional posterior distributions of interest
can be easily written and sampled. In the previous work about this method
(SB18), the true values of the density field at each position were known, and
hence there was no need to sample over the biasing function relating the esti-
mated density field with the truth, making it possible to perform the sampling
with a two-step Gibbs sampler. In this work, we will not make that simplifi-
cation, and we will sample, and marginalize over, the biasing relation between
the estimated and true density fields, studied in detail in Section 4.4. This
will require the full three-step Gibbs sampler, and it will demonstrate the full
implementation of the sampling method, including the development of some
key sampling strategies that will enable a future application to real data.

In performing the sampling described above, we will be using information
from all galaxies in the sample to constrain the redshift and type probability
distributions of the galaxy population. Additionally, the fully Bayesian nature
of this scheme allows us to make use of prior information on the relevant
quantities, when available. In this work, we will assume that we have access to
a subset of galaxies with known z, ¢, e.g., from a complete spectroscopic survey
of a random subsample of targets in a limited, small region of the sky. We will
assume such subsample contains a tracer population, with the same selection
as the corresponding tracers in the full sample. As we will describe next, this
subsample will pose an informative prior on the coefficients f, and it will also
be important in sampling over the biasing function parameters described in
4.4.

4.5.1 THREE-STEP GIBBS SAMPLER

Each iteration of the Gibbs sampler comprises three steps which are
(i) drawing a sample of f from p(f|z,t, B, F,0), (ii) drawing pairs of z;,t;
for each galaxy i from p(z;,t;|f, B, F;, 6;) using the newly drawn f, and (iii)
drawing a sample of the biasing functions B for each redshift bin given the z;
assignments in step (ii). The conditional distributions can be derived from the
joint distribution in Equation (4.7), but next we detail the expressions used in
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each of the three steps. The first two steps of the sampler are as in SB18 and
hence we will skip the full derivation for brevity (see SB18 for more details),
and the third step is new and will be considered in more detail.

(i) The conditional posterior on f depends on the counts of sources of z and

(iii)

t (in the last iteration), N = {N,;} where N, is the number of sources
assigned to redshift z and phenotype ¢, and it also depends on the prior
information on f, p(f):

p(flz,t, B, F,0) o p(f H fh (4.17)

The prior condition that > f,; = 1, and 0 < f,; < 1, allows us to write
the conditional posterior on f as a Dirichlet distribution. Following the
derivation in SB18, if M = {M,;} are the counts of the prior sample
found at each z,t pair, then the prior distribution of f follows a Dirichlet
distribution with parameters M, and hence the conditional posterior fol-
lows a Dirichlet on the data counts from the last iteration plus the prior
counts:

p(f|N) ~ Dir(N + M), (4.18)

with Dir(N) = (N + N, N, — 1)!ép (1 - Zfzt))
zt
N. N

IO

z=1t=1
(4.19)

For each galaxy, the posterior for the z;,t; pair conditioned on fand Bis

p(ziy tl’f: Bu Fi) 92) X 'Citi ftizi Bz <S7,zz> (420)

where apart from using the f obtained in the first step of the sampler
(i), we make use of the measurement likelihood and the clustering terms
discussed above. The sampling in this step (ii) will produce pairs of z,t
for each galaxy that constitute the next realization of N = {N}, to be
used in the step (i) of the next iteration of the Gibbs sampler.

After we have z assignments for all galaxies in the sample from step
(i), we can now separate galaxies into redshift bins according to those
assignments. Then, for each redshift bin, the posterior on the biasing

132



4.6 RESULTS

function of that bin conditioned on all other variables looks like:
p(Bz‘fv z,t, F, 0) = p(BZ|Z, 9)
« ] (Bz(&zi(eg))) . (4.21)

Zg€Z

According to this expression, different biasing function parameters, as
described in Equation (4.13), will yield different posterior probability for
each Gibbs step. In order to explore the biasing functions parameter
space and yield samples of this posterior, we use a Markov Chain Monte
Carlo (MCMC) sampler for each redshift bin and each step of the Gibbs
sampler. In each case, we run 1000 iterations of the MCMC, and the pro-
posal distribution for each case is given by the steps of an MCMC chain
run on the prior sample described above in this section. Using the prior
chain steps with equal probability on the proposal distribution effectively
uses the prior information and enables an informed sampling without the
need to blindly tweak the proposal distribution or the parameter limits
of the MCMC chains.

4.6 RESULTS

Now we present the results for the third tomographic bin which contains
~ 3.3 x 10% objects. We define a calibration sample where redshift and type are
known from one healpy pixel with nside=2°, which has an area of ~ 3.5deg?.
We apply the same tomographic bin selection to the calibration sample, which
leaves a total of 10758 objects. These objects are used to estimate the prior
probability p(z,c) and obtain the sampled prior on the mapping function pa-
rameters B({b;}) (see section 4.5 for details about the sampling).

The HBM method yields samples of the individual redshift and type
posterior for each galaxy, the redshift and type posterior of the population and
samples of the posterior of the mapping function parameters. In this work
we focus on the redshift population posterior, marginalizing over all other
parameters, since this is what is usually used in photometric cosmological
analysis. Current and future weak lensing analysis are very sensitive to small
biases in the mean redshift of the distribution, which can become the leading
systematic uncertainty. Therefore, we define as a metric the difference between
the mean of each sample j of our redshift posterior and the true mean from all
the target galaxies,

AZj = <Zest,j> - <Ztrue> . (422)
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Figure 4.6: Posterior redshift probability distribution, marginalized over type and when in-
cluding clustering marginalizing over mapping function parameters. The prior is obtained
from a small calibration patch with 10758 objects over an area of ~ 3.5deg?®. The distri-
butions are obtained from an HBM with photometry only, F', an HBM with photometry
and clustering F' + § and a distribution from samples drawn from the prior. Panel: Shows
violin plots for each distribution compared to the true redshift distribution. Panel: Shows
the posterior distribution on redshift bias A, values. Panel: Shows the distribution of Kull-
back—Leibler divergence (Dx1,) between each sample and the true redshift distribution. The
HBM (F) removes most of the redshift bias, since in this case the bias is tightly related to
a bias in the type density p(¢), due to the sample variance of the calibration patch. The
addition of clustering sharpens the distribution and improves the overall shape, reducing the
Dk, divergence.

Since we draw samples of the full redshift posterior f, another useful metric
that is sensitive to the distribution shape is the Kullback—Leibler divergence
(Dx1,) between each sample and the true redshift distribution,

est

Dr (415 = 3 o log [ 223 (4.23)
z

ftrue
z

This is a measurement of the relative entropy between the true distribution and
the recovered distribution, and can be used to see how much information the
photometry and density estimates are adding with respect to the prior knowl-
edge. We will show results for samples drawn from the prior, from an HBM
that only includes photometry information and from an HBM that includes
both photometry and clustering information, marginalizing over the mapping
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relation parameters. We denote the HBM with photometry as F' (feature) and
the HBM with photometry and clustering as F' + §.

We show one case where the p(z, t) probability comes from the calibration
sample, and three cases where the prior is modified and biased. For each case,
we show a violin plot of the posterior redshift distribution compared to the
true distribution, the distribution of Az; differences, the distribution of Dxki,
divergences and a plot showing Az; as a function of iteration steps.

4.6.1 PRIOR p(z,t) WITH SAMPLE VARIANCE

Since the prior p(z,t) is estimated from a patch with a small angular
size it has a larger sample variance than the full population, which changes the
relative density of galaxies at given redshift and type. This effect is larger at
lower redshifts, where the volume is smaller. Sample variance mostly affects
the density of types p(t), where p(z,t) = p(z|t)p(t), since the same phenotype
should yield the same redshift regardless of where it is observed. However,
we have seen in Fig. 4.2 that there is a tail of deep cells where the redshift
distribution is wider, mostly due to color-redshift degeneracies. As a result,
the redshift distribution p(z|t) of these cells is also affected by sample variance.
The Dirichlet sampling of the prior neglects sample variance uncertainty, but
we expect it to have a small impact on the results since the target population
is much larger than the prior sample. Moreover, poor sampling in any of the
cells can lead to a noise bias of p(z|t).

Fig. 4.6 compares the posterior from running an HBM with photometry
alone (F', yellow), an HBM with photometry and clustering (F + §, red) and
samples drawn from the prior p(z,t). The prior p(z,t¢) has a mean redshift
bias of A, = (—1.0 £ 0.1) x 1072, while when running the HBM we find
a bias of A, = (—6.1 £ 4.2) x 10~* with photometry alone and a bias of
A, = (—6.7£3.2) x 107* when adding clustering. An HBM with photometry
alone can correct redshift biases that come from a biased type probability
p(t). Since sample variance mostly changes p(t), having feature information
is enough to remove most of the redshift bias. We find adding the clustering
further tightens the A, posterior distribution and also improves the shape of
the redshift posterior, leading to a smaller Dkt divergence.

4.6.2 PRIOR p(z,t) WITH A REDSHIFT BIAS

So far we have assumed our prior is perfectly estimated from the cali-
bration patch. In this section we will add a systematic redshift bias for each
type/deep cell p(z|t). We multiply each conditional redshift probability by a
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Figure 4.7: Similar to Fig. 4.6. The prior, which is obtained from the same small calibration
patch, is systematically biased in the conditional redshift probability of each type p(z|t)
towards low redshift. This is achieved by weighting p(z|t) with a straight line that has a
value of 20 and 1 in the first and last redshift bin, respectively. The HBM with photometry
alone reduces the redshift bias by the same amount as in Fig. 4.6, since it only corrects
redshift biases produced by a bias in p(t). The remaining bias can only be corrected with
the addition of clustering, which further reduces this bias and improves the redshift posterior
shape.

136



4.6 RESULTS

..q0¢ Prior from patch + high-z eff. drop

. F+d

Prior [
1.00 . F ]r

L f

0.00 e LN
0.2 0.4 0.6 0.8 1.0 1.2
x102 Redshift

- 50

7

0.0 p—t
006 —005 —-004 -003 —002 -0.01 000

Az

0 L . ) |
4.0 45 50 55 6.0
log10 Dy (Samples||Truth)

Figure 4.8: Similar to Fig. 4.6. The prior mimics an hypothetical spectroscopic efficiency
drop above redshift z > 0.8 by reweighting the prior with a factor 0.2 in the last 7 redshift
bins. The HBM with photometry is able to correct the redshift posterior in redshift bins far
away from z ~ 0.8, where the drop happens, by changing the density of deep cells whose
redshift probability p(z|t) does not cross z ~ 0.8. It increasingly fails to correct the redshift
distribution around z ~ 0.8 since it cannot modify p(z|¢). Adding clustering significantly
improves the redshift distribution, removing most of the redshift bias and largely improving
the redshift distribution shape.

straight line with a value of 20 and 1 in the first and last redshift bin, respec-
tively. Therefore, the prior p(z,t) = p(z|t)p(t) now has the effect from sample
variance and a systematic bias towards low redshift.

Fig. 4.7 shows the HBM results for such prior, which has a mean redshift
bias of A, = (=1.4 4 0.1) x 1072, The HBM with only photometry has a
mean posterior redshift bias of A, = (—4.440.4) x 1073, while an HBM with
photometry and clustering yields A, = (—1.840.3) x10~3. Note how the HBM
(F) has corrected the same amount of redshift bias as with the sample variance
prior (~ 0.01 in redshift), which was related to a bias in the types, but cannot
correct any of the systematic bias introduced in p(z|t). The HBM (F + 4) can
use the clustering information to further improve the p(z|t) probability and
reduce the total redshift bias. It also reduces the Dki, divergence, improving
the overall shape.
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4.6.3 PRIOR p(z,t) WITH A REDSHIFT EFFICIENCY DROP

Spectroscopic surveys usually present sharp selection effects in redshift
due to their limited wavelength coverage of the spectra. Using such survey to
estimate the prior probability can bias the whole posterior redshift distribution
of the weak lensing samples. In this section we use a prior p(z,t) from an
hypothetical spectroscopic survey with an efficiency drop above redshift z > 0.8
(the last 7 redshift bins). We assume only 20% of the galaxies in the last 7
redshift bins have been measured, which we implement by multiplying by 0.2
the prior p(z,t) in those bins.

Fig. 4.8 shows that this efficiency drop creates a huge redshift bias in
the prior of A, = (—5.3 £ 0.1) x 1072. For the HBM (F) we find a redshift
bias of A, = (—9.940.4) x 1073, while for the HBM (F +§) we find a value of
A, = (-2.6+£0.4) x1073. The HBM (F) is able to successfully correct redshift
bins which are far away from where the efficiency drop happens (z ~ 0.8) since
there are many deep cells with a very tight redshift-type relation. However, it
finds it increasingly hard to recover the redshift distribution closer to the drop,
since it cannot update p(z|t). Adding the clustering significantly improves the
recovered shape, finding a much better Dgy, divergence, and solves most of the
redshift bias from the prior.

4.6.4 PRIOR p(z,t) WITH DEGRADED z—t CORRELATION AND BIASED

So far we have assumed we have a calibration field with spectroscopic
data that provides a tight redshift-color relation. Now we explore what happens
if we loose this assumption and pretend the redshift information comes from
a hypothetical photometric redshift sample. To this effect, we convolve the
conditional redshift probability for each type p(z|t) with a top hat function
with size 7 redshift bins, which smooths the redshift probability. The median
redshift dispersion of the deep cells goes from o(z) = 0.025 to o(z) = 0.1,
significantly reducing the correlation between types and redshift. Furthermore,
we add the same systematic redshift bias to each p(z|t) than in section 4.6.2.
Note the sample variance in p(t) is left unchanged.

Fig. 4.9 shows the broadening effect in the prior, which now has a
redshift bias of A, = (—=3.9+0.1) x 1072, The HBM with photometry alone,
which can only modify the density of types, is barely able to change the redshift
distribution since the correlation between redshift and type has been degraded,
finding a redshift bias of A, = (—3.1540.07) x 1072, and a very similar Dk,
divergence. In contrast, adding the clustering remarkably improves the redshift
bias and shape, leading to a very large decrease in both Dk, and A, metrics.
In this case, we find a redshift bias of A, = (—3.44-0.3) x 10~3. This shows that
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Figure 4.9: Similar to Fig. 4.6. The prior is smoothed by convolving p(z|t) with a top
hat function of size 7 redshift bins, increasing the median redshift dispersion of the deep
cells goes from o(z) = 0.025 to o(z) = 0.1, which reduces the correlation between type and
redshift for all deep cells. In this case the HBM with photometry alone can barely modify the
redshift distribution, since there is little correlation between type and redshift. In contrast,
adding the clustering information remarkably improves the redshift distribution recovery and
reduces most of the redshift bias. This shows that photometric redshift surveys with wider
p(z|t) estimation can be used instead of spectroscopic surveys when clustering is available.
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photometric redshift estimates can be more safely used instead of spectroscopic
measurements when the clustering is also available, even if such estimates are
not so precise and are systematically biased.

4.7 DISCUSSION

Sanchez & Bernstein (2018) presented a hierarchical Bayesian model
which can naturally combine the three main sources of information for esti-
mating the redshift probability distributions of galaxies and samples of galaxies
in a wide-field survey. These three main sources of information are, namely,
prior information, which comes from a subset of galaxies with well measured
photometric and (typically) spectroscopic properties, broad-band photometry
for the galaxies in the wide-field sample, and the clustering of such against a
tracer population with precise and well-characterized redshift estimates. All
these sources of information have been used separately in the past, but this is
the first method to combine them in a unified and consistent way. In SB18,
the method was demonstrated on a simple set of simulations, and was lacking
some important pieces that are needed for its application to real data.

In this work, we have expanded the method presented in Sanchez & Bern-
stein (2018) to include the additional methods needed for its application to a
galaxy survey. The method consists of a hierarchical Bayesian model which
enables the joint sampling of the redshift distribution of a galaxy sample and
its individual constituents. Assuming that the galaxies come from a Poisson
sampling of a density field, we propose to characterize that field using a ker-
nel density estimator from the positions of a tracer galaxy population. This
approximation enables a sampling process but requires to define a biasing re-
lation, generally redshift dependent, to relate the tracer’s spatial distribution
to the underlying galaxy density fluctuation. We have detailed here how such
biasing function can be constructed, and how we can sample and marginalize
over it using prior information.

As opposed to the simple set of simulations used in SB18, we have now
tested the methodology on the public MICE2 simulation, a mock galaxy catalog
created from a lightcone of a dark matter only N-body simulation with around
200 million galaxies over an octant of the sky. This simulation features realistic
galaxy clustering, which we characterize using a limited tracer population, and
realistic galaxy properties following observations in the COSMOS catalog. In
particular, the realistic set up of the simulations allows us to work in a set
up where we can fully employ the phenotype approach proposed in SB18.
Under that approach, we assume we have a sample with deep photometry
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and extra bands to define galaxy phenotypes, and a wide sample with noisier
photometry and only a subset of optical bands as observations. We use two
self-organizing maps (SOMs) to characterize the properties of these samples,
and we use galaxies with best matching cells in both SOMs to accurately
calibrate the likelihood probability that relates observations and phenotypes, as
we would do in real data. With this scheme, we construct a set of tomographic
bin selections, and choose one of them, at intermediate redshifts, to test the
methodology.

In applying the method to the simulation, we always assume there is a
small region of the sky (of about 3 sq. deg.) for which the galaxy properties,
phenotype and redshift, are well known. We use this set of galaxies as a
prior, both for the phenotype and redshift probability distribution and for
the biasing function needed for the addition of clustering information from a
tracer population. With this setup, we apply the methodology under different
cases, comparing the results obtained with and without clustering information
in the method and those from just the prior information. As metrics, we use
the difference in the mean of the derived and true redshift distributions for
the sample, as well as the Kullback-Leibler divergence, which measures the
differences in the shapes of the true and recovered redshift distributions.

We perform different tests using different assumptions on the prior sam-
ple. When this is just coming from a small patch of the sky but with perfect
knowledge, i.e., just including sample variance, the HBM method both with
and without clustering information perform similarly well in terms of the mean
redshift of the population. This is expected, also consistent with SB18, as
sample variance mostly changes the phenotype distribution, and that can be
recovered in the HBM without the need of clustering information. The shape
of the redshift distribution, however, is better recovered when using clustering
information. If a redshift bias is present in the prior, then the HBM method
with clustering is able to improve the non-clustering inference in both the mean
and the shape of redshift distributions. Additionally, if the prior has some effi-
ciency drop at high redshift, like it may happen in spectroscopic surveys, then
this improvement is even more important. Finally, we also test the case where
the redshift information in the prior is more uncertain, like in the case of pho-
tometric redshift being used, and show the clustering addition to be able to
correct for the corresponding broadening in the prior redshift distribution.

The tests performed in this work provide demonstration that the method
depicted in SB18 can be used in realistic conditions, and it can still be very
powerful at resolving biases that are potentially present in prior samples, even
after marginalizing over biasing functions in the addition of clustering infor-
mation. The method does not guarantee an unbiased posterior, but it uses all
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the information at hand to reduce prior biases, and even in all tests performed
here, some of which are extreme cases of biased priors, the final biases in the
posterior are of order 1072 in the mean of redshift distributions, which is the
most important quantity for weak lensing analyses. The success of this method
in estimating redshift distributions to the accuracy needed for large cosmolog-
ical surveys will still depend on the details of the survey, but we now have the
full methodology to harness all of the available information and the results in
this work show the potential to be a solution to the redshift estimation problem
in future photometric galaxy surveys.
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In this thesis we have studied the measurement and applications to cos-
mology analysis of higher resolution photometric redshifts. In chapter 2 we
have presented a forecast of cosmological parameters for a redshift survey with
very precise redshift estimates, either from spectroscopy or many narrow band
images. We have modeled galaxy clustering in thin redshift slices where the
radial information is contained in the cross correlations. This study focused
in the use of multiple tracers to cancel sample variance in this 2D projected
framework, which improves the survey’s constraining power and makes it suit-
able to combine with other projected cosmological analysis, as weak lensing.
We modeled realistic sample density and bias after splitting the survey into
two using conditional luminosity functions from SDSS observations. We found
a split using a halo mass proxy is more optimal than a luminosity split. This
technique can be applied to PAUS data, which can produce overlapping sam-
ples with high precision redshift measurements while still delivering a large
density. Another application would be the upcoming DESI spectroscopic sur-
vey, which will measure luminous red galaxies and emission line galaxies over
14,000 deg?, which are population with very different galaxy bias.

In chapter 3 we have presented a study of photometric redshifts in PAUS
narrow band survey. Using data from a calibration field where multiband
photometry and spectroscopic data exists we have measured the photometric
redshift precision this unique survey can achieve. We have developed two new
photo-z algorithms which linearly combine templates of galaxies to properly
model the continuum and emission line flux observable with the narrow band
filter set. We developed simulated fluxes from an N-body simulation to validate
our methods, which include calibration of several systematic effects of the data
prior to the photo-z estimation. The photometric redshift precision found is
quasi spectroscopic for the brighter galaxies, and grows with fainter galaxies up
to 1.5% dispersion at iag = 22 —22.5. This quality photo-z estimations enable
the science cases of PAUS, which include galaxy evolution studies, multiple
tracers analysis, intrinsic alignments and galaxy clustering measurements in
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intermediate scales or calibration of redshift distributions of lensing surveys.
The photo-z framework developed here is also suitable to properly include
more complex modeling of galaxies, like combinations with quasar templates
or more sophisticated emission line modeling, which can improve the photo-z
estimation in future studies.

Finally, in chapter 4 we have presented a novel method which combines
information from colors and clustering in a hierachicale bayesian model to
estimate the redshift distribution of a lensing survey. This two main sources
of information have historically been used separately and combined later ad
hoc, whereas they get naturally combined in this framework. This work shows
in complex N-body simulations how clustering information can correct large
redshift biases from systematically biased priors or priors affected by sample
variance. This method can be applied to current lensing surveys like DES or
KiDS and future ones like LSST or Euclid, improving the robustness of the
estimated redshift distribution of galaxies. The prior for such surveys can be
estimated from photometric redshifts from PAUS data, which provides great
photo-z precision for a unique combination of area and depth.
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