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Abstract

Following-up on patient evolution by reacquiring the same measure-
ments over time (longitudinal data) is a crucial component in clinical
care dynamics, as it creates opportunity for timely decision making
in preventing adverse outcome. It is thus important that clinicians
have proper longitudinal analysis tools at their service. Nonetheless,
most traditional longitudinal analysis tools have limited applicability
if data are (1) not highly standardized or (2) very heterogeneous
(e.g. images, signal, continuous and categorical variables) and/or
high-dimensional. These limitations are extremely relevant, as both
scenarios are prevalent in routine clinical practice.

The aim of this thesis is the development of tools that facilitate
the integration and interpretation of complex and nonstandardized
longitudinal clinical data. Specifically, we explore approaches based on
unsupervised dimensionality reduction, which allow the integration of
complex longitudinal data and their representation as low-dimensional
yet clinically interpretable trajectories.

We showcase the potential of the proposed approach in the contexts
of two specific clinical problems with different scopes and challenges:
(1) nonstandardized stress echocardiography and (2) labour monitoring
and decision making.

In the first application, the proposed approach proved to help in
the identification of normal and abnormal patterns in cardiac response
to stress and in the understanding of the underlying pathophysiologi-
cal mechanisms, in a context of nonstandardized longitudinal data
collection involving heterogeneous data streams. In the second appli-
cation, we showed how the proposed approach could be used as the
central concept of a personalized labour monitoring and decision sup-
port system, outperforming the current reference labour monitoring
and decision support tool.

Overall, we believe that this thesis validates unsupervised dimen-
sionality reduction as a promising approach to the analysis of complex
and nonstandardized clinical longitudinal data.
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Resumen

El seguimiento de la evolución de un paciente tomando las mismas
medidas en diferentes instantes temporales (datos longitudinales) es
un componente crucial en la dinámica de los cuidados médicos, ya
que permite tomar decisiones correctas en el momento idóneo para
prevenir eventos adversos. Es entonces importante que los médicos
tengan a su disposicion herramientas para analizar datos de carácter
longitudinal. Sin embargo, la mayoŕıa de las herramientas que actual-
mente existen tienen una aplicabilidad limitada si los datos (1) no
están suficientemente estandarizados o (2) son muy heterogéneos (eg:
imágenes, señales, variables continuas y categóricas) y/o tienen una al-
ta dimensionalidad. Estas limitaciones son tremendamente relevantes,
ya que ambos casos son prevalentes en la practica cĺınica habitual.

El objetivo de esta tesis es el desarrollo de herramientas que facili-
tan la integración e interpretación de datos cĺınicos longitudinales que
son complejos y no están estandarizados. Espećıficamente, exploramos
enfoques basados en la reducción de dimensionalidad no supervisada,
que permite integrar datos longitudinales complejos y su represen-
tación como una trayectoria de baja dimensión que es cĺınicamente
interpretable.

Mostramos el potencial del enfoque propuesto en el contexto de
dos problemas cĺınicos en diferentes ámbitos y con diferentes desaf́ıos:
(1) ecocardiograf́ıa de estrés no estandarizada y (2) monitoreo de
parto y toma de decisiones.

En la primera aplicación, el enfoque propuesto ha mostrado ser de
ayuda en la identificación de patrones normales y anormales en la res-
puesta cardiaca al estrés y en entender los mecanismos patofisiologicos
subyacentes, en el contexto de una adquisición de datos longitudinales
no estandarizados que contiene un flujo de datos heterogéneo. En la
segunda aplicación, mostramos como el enfoque propuesto puede ser
el concepto central de un sistema de monitoreo del parto y soporte a
la decisión personalizado, superando el sistema actual de referencia.

En conclusión, creemos que esta tesis muestra que la reducción
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de dimensión no supervisada es un prometedor enfoque para analizar
datos cĺınicos longitudinales complejos y no estandarizados.
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Chapter 1

INTRODUCTION

1.1. Context and Motivation

1.1.1. Overall

Keeping up with patients’ health status by performing repeated
measurements over time is a common practice in clinical care that
can be crucial for preventing adverse outcome, by allowing the clin-
ician to make timely decisions in that sense. A diagram depicting
the typical decision-making process in clinical practice is shown in
Figure 1.1. A first set of data are acquired, which are descriptors
of the patient’s state. The clinician then has the task of integrating
the data and comparing them with those of previous patients, in
order to position the current patient in the disease spectrum, while
taking into account the uncertainty and reliability associated with the
available information. After all these considerations, the clinician can
decide that (1) the available information is insufficient and request the
acquisition of complementary data, (2) an intervention is necessary
or (3) no further action is currently necessary – but paying careful
attention to patient evolution. In all cases, the decision most often
implies posterior re-acquisitions of data to monitor natural evolution
or response to intervention, and the loop in Figure 1.1 is restarted.

1
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Figure 1.1: Decision making in clinical practice.

In clinical trials, every aspect of this chain of events, from inclusion
to data acquisition, treatment and follow-up is strictly protocolized
and standardized. On the contrary, clinical routine is highly nonstan-
dardized: patients are heterogeneous in demographics and medical
backgrounds, and come in with variable symptoms; the way each
patient is handled upon arrival (e.g. hospitalization, data acquisition)
is highly dependent on local practice and resources; the decision of
the clinician in terms of treatment is greatly influenced by experience,
and timings of follow-ups are also not standardized. The standardized
nature of clinical trials largely simplifies the data analysis process
in the sense of answering a specific research question. Trying to
answer the same question becomes a much more complicated task in
settings that are closer to clinical routine. A diagram highlighting
the differences in standardization between clinical trials and clinical
routine is depicted in Figure 1.2.

Nowadays, longitudinal data can be very rich, high-dimensional,
and comprise very heterogeneous types of temporally changing data
(continuous or categorical variables, curves, images, etc.). Integrating

2
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Figure 1.2: Standardized nature of clinical trials versus nonstandardized
nature of clinical routine.

and making sense of all this information can already represent a
challenge for the clinician. Indeed, because of this difficulty, a common
approach is to extract established simplified measurements from the
complex original data and base the analysis on the former. However, by
doing so, the clinician is likely losing valuable information. If, on top
of high-dimensional and/or heterogeneous, data are nonstandardized,
the task becomes all the more challenging. Traditional longitudinal
analysis methods are not prepared to handle such complex data, and
clinicians lack the tools to assist them in taking proper advantage of
their potential.

In this thesis, we aim to develop alternative tools that facilitate the
integration and interpretation of this type of data. Specifically, we ex-
plore the potential of tools centered on unsupervised multiview dimen-
sionality reduction, which allow us to operate on lower-dimensional yet
interpretable representations of the data (Figure 1.3). The objective
of this thesis is to describe and showcase the potential of this type of
approach while addressing two specific clinical problems with different

3
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scopes and challenges: (1) non-standardized stress echocardiography
and (2) labour monitoring and decision making.

Herein, the two clinical problems to be addressed are briefly intro-
duced.
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Uncertainty
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interpretable 
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Figure 1.3: Scope of this thesis’ work in the context of the flowchart in
Figure 1.1 – facilitating integration and interpretation of data through the
development of tools that build upon lower-dimensional yet interpretable
representations.

1.1.2. Application I: Nonstandardized stress echo-
cardiography

Stress echocardiography plays an important role in the screening
and study of cardiovascular disease. During a stress test, the heart
is put under some type of stress and is expected to develop stress-
specific adaptation mechanisms in the cardiac cycle that correspond
to a healthy response. One test typically spans resting, build up,
peak stress, and recovery periods, and cardiac imaging and signal
data are acquired throughout in order to assess whether response is
healthy or abnormal. The most common stress inducers in clinical
practice are exercise (e.g. using a treadmill) or pharmacological
agents such as dobutamine [Voigt, 2003, Davidavicius et al., 2003].

4
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In classical exercise and pharmacological protocols, stress levels are
relatively easy to quantify and control, which is very convenient in
the sense that it makes them highly standardizeable: a few stress
levels can be chosen beforehand, and the same protocol can be used
to test all subjects. This allows comparisons to be made in a rather
direct and quantitative way, based only on data corresponding to a
few representative heartbeats out of the whole test. However, both
exercise and pharmacological protocols involve high costs, as they
require highly-skilled staff and expensive equipment, and are rather
time-consuming, which ultimately translates into limited applicability.

Aiming for large-scale applicability would imply simpler, relatively
inexpensive, practical and low-risk protocols. For this reason, efforts
have been directed towards exploring less typical protocols as potential
alternatives, such as the handgrip or cold pressor tests [Helfant et al.,
1971, Velasco et al., 1997]. There is, however, one inconvenience when
transitioning to these types of protocols – they require a change of
paradigm regarding the way stress echocardiography data is analysed,
as they are not standardizeable, i.e., quantifying and controlling stress
levels is no longer straightforward. This calls for an approach that
relies on the identification of patterns and trends within the spectrum
of stress levels that make up the full acquisition. The clinician is
then left with the task of identifying such patterns and trends while
integrating information coming from multiple heterogeneous data
channels and spanning dozens of cardiac cycles.

In the context of this application, the goal of this thesis is the de-
velopment of tools to assist the clinician in the processes of integration,
visualization, and interpretation of this type of data.

1.1.3. Application II: Labour monitoring and de-
cision making

The majority of pregnancy-related deaths and morbidities have
origin around the time of childbirth [Oladapo et al., 2015]. Quality
of care during labour is thus of critical importance, and a continu-

5
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ous monitoring process is essential to allow timely decision-making
in order to prevent adverse outcomes. However, there is still much
uncertainty regarding which is the optimal approach to labour moni-
toring and decision-making [Robson et al., 2015]. Decades ago, the
World Health Organization (WHO) introduced the partograph in
an effort to standardize practice. In the partograph, the healthcare
provider writes down and tracks the evolution of multiple fetal and
maternal measurements over time (in nonstandardized intervals) and
evaluates whether they are progressing as expected or not, in which
case the reinforcement of monitoring or actual intervention might
be necessary. The pace of cervical dilatation is given a central role
in the partograph as an indicator of normality or abnormality in
labour progress, building upon Friedman’s “1 cm/h rule”, which sets
a lower-limit for a normal dilatation progress at 1 cm/h as of the onset
of 4 cm [Friedman, 1954]. However, multiple studies have demon-
strated that the concept of “normal” spontaneous labour can vary
depending on the particular characteristics of the pregnant woman
(e.g. demographics, previous pregnancy history, and others), and the
partograph’s one-fits-all approach to the diagnosis of abnormal labour
progress has received much criticism [Souza et al., 2015]. Furthermore,
there is lacking evidence on the positive impact of its use [Souza et al.,
2015]. These are some of the reasons, among others, as to why the
partograph has effectively failed to be fully incorporated in clinical
practice and thus to achieve its ultimate objective to standardize it.
Currently, not only is practice (and outcome) very heterogeneous, but
there is a global increase in rates of interventions, such as caesarean
sections, which bear risks for the mother and child – a concerning
trend that is all the more worrying in settings where resources are
limited and intervention-associated risks are amplified [Betrán et al.,
2018, Boatin et al., 2018].

In this context, the WHO has identified the need for the devel-
opment of novel labour management tools that identify abnormal
labour progress, risk of adverse outcome and need for intervention, in
a personalized and evidence-based way [Oladapo et al., 2015, Souza

6
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et al., 2015].
Within the scope of this application, the objective of this thesis

is the formulation of a methodological pipeline designed to address
such need, its evaluation, and its integration into a prototype of a
user-oriented tool designed to be deployed in a real-world clinical
setting.

1.2. Proposed approach

While the nature, scope, and challenges of the addressed clinical
problems are very different, there is a common need for simplifying
the integration and understanding of complex longitudinal data, and
a lack of available tools to respond to it. In this thesis, we address
this methodological gap that affects these and many other clinical
problems.

Analysing simplified, lower-dimensional latent representations is a
common strategy to cope with high-dimensional and complex data.
Nonetheless, when it comes to longitudinal data, it is a rather under-
explored practice. In this thesis, we explore the potential of this
approach to the analysis of complex longitudinal data.

In the latent space, complex longitudinal data can be visualized
as low-dimensional yet clinically interpretable trajectories. Our hy-
pothesis is that moving the analysis process to this simplified space
can help in the identification of normal and abnormal evolution pat-
terns and underlying causes. The way in which the lower-dimensional
space information is processed and used, posterior to the dimension-
ality reduction step, is more scope-dependent and, thus, approached
in an application-specific way, which is described in detail in the
corresponding chapters.

The analysis tools developed in this thesis build upon a specific
dimensionality reduction algorithm: unsupervised multiple kernel
learning (MKL) [Lin YY, 2011, Sanchez-Martinez et al., 2017]. MKL
allows the integration of heterogeneous features by first mapping all

7
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of them into a unified representation – similarity matrices. After this
step, data can be easily combined. The similarity information from the
different features is then merged in order to learn a projection model
to a lower-dimensional space where distance relations are dictated by
similarity relations in the input feature space.

The choice for this algorithm was tied with our objective of devel-
oping an approach that would (1) be able to easily accommodate and
integrate numerous and very heterogeneous views of data (multiview
data), making it flexible enough to be applicable to any clinical prob-
lem, (2) have the latent representation of the data be learned in an
unsupervised way, thus free of constraints imposed by labellings that
are often inaccurate, biased, or misrepresentative of the variability
of the target variable and (3) have it instead be dictated by patient
similarity, which allows for an interpretation process that is very close
to clinical practice.

An illustration of the approach is depicted in Figure 1.4.

Ultrasound Data

Clinical Data

Phenotyping/prognosis

Temporal follow-up and interventions

Pathophysiological Insight

Figure 1.4: Illustration of the proposed approach.

1.3. Thesis outline

This thesis is composed of three main, self-contained chapters, that
are presented in the form of research/implementation papers. One of

8
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the chapters refers to the work developed in the aim of application
I, while that developed in the aim of application II is split into two
chapters, one dedicated to the formulation and evaluation of the
proposed methodology, and another dedicated to the description of
its materialization into a functional prototype of a real-world clinical
setting tool. The remainder of this manuscript is thus organized as
follows:

Chapter 2. A methodological framework is developed for the
analysis of nonstandardized stress echocardiography sequences.
For illustration and evaluation purposes, the proposed frame-
work is applied to the comparative analysis of handgrip test
sequences of a cohort composed of healthy controls and Ade-
nine Nucleotide Translocator-1 (ANT1)-associated mutation
patients.

Chapter 3. A methodological framework is developed for
labour monitoring and decision support. For illustration and
evaluation purposes, the proposed framework is applied in the
prediction of intervention and outcome in WHO’s Simplified,
Effective, Labour Monitoring-to-Action (SELMA) dataset.

Chapter 4. Description of the integration of the methodological
framework developed in Chapter 3 in a functional prototype
of a user-oriented tool designed to be deployed in a real-world
clinical setting.

Conclusion. Summary of the main contributions of the pre-
sented work, limitations, and future directions.

9
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Chapter 2

ANALYSIS OF

NONSTANDARDIZED STRESS

ECHOCARDIOGRAPHY

SEQUENCES USING

MULTIVIEW

DIMENSIONALITY

REDUCTION

This chapter is adapted from: M. Nogueira, M. De Craene, S. Sanchez-
Martinez, D. Chowdhury, B. Bijnens, G. Piella. Analysis of nonstandardized stress
echocardiography sequences using multiview dimensionality reduction. Medical
Image Analysis, 60:101594.
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2.1. Introduction

2.1.1. Clinical Context and Motivation

Stress echocardiography can unveil early-stage cardiovascular-
pathology signatures that are not expressed at baseline condition, thus
being a valuable tool for screening purposes. Current stress echocardio-
graphy protocols, based on exercise or pharmacological stress [Voigt,
2003, Davidavicius et al., 2003], are standardized, meaning that the
control of the stress levels over the test is very rigorous (based on
dose, heart rate, time, etc.), allowing the evaluation of response to
stress to be performed based on the comparison of measurements
collected at a few discrete timepoints (corresponding to very precise
stress levels). However, this standardization comes at the cost of
cumbersome protocols, being time-consuming as well as requiring
highly-trained staff and specialized equipment. All this translates into
high costs, which limit the application of current protocols to a fairly
lesser extent than desired, and thus making them unsuited for large-
scale screening purposes. Moreover, by getting data at pre-determined
intervals and timings, one might be missing pertinent information, as
the disregarded dynamic data potentially contain additional valuable
information concerning the patient’s physiological state.

Other less standard forms of stress, such as the cold pressor test [Ve-
lasco et al., 1997] and handgrip exercise [Strauss et al., 2013, Kivowitz
et al., 1971, Helfant et al., 1971], were already reported to trigger
cardiovascular responses that could unmask differential responses
to stress by healthy and pathological patients. These protocols are
cheap and practical, come with low risks to the patient, and involve
little patient motion, making imaging an easier task. As such, they
hold great potential for screening, overcoming the main limitations
of current protocols. Besides their potential for screening, they also
represent an alternative for patients that are physically unable to
undergo a classical exercise test. However, there is one main drawback:
the level of exercise is hard to quantify and control, and the timings

12
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and magnitudes of events are unpredictable; in other words, they are
nonstandardizable. In practice, this implies continuously analyzing
the complete acquisition, and focusing on trends/patterns of response
rather than on a discrete set of values. The analysis, of these long,
dynamic, heterogeneous sequences, which also implies integration of
multiple features, is not trivial, and clinicians lack tools to assist
them in this task. On the other hand, this type of analysis may be
advantageous: by allowing the identification of variations in exercise
performance throughout the dynamic range (versus at discrete points
in time), it may be more informative of the patients physiological
state, and thus have a higher predictive value of adverse outcomes.

Currently, machine learning is being established as one of the
preferred tools for the analysis of patterns in functional and high-
dimensional data, and has become remarkably popular within the
biomedical field. It has already been applied to the study of car-
diac response to stress, based on multiple heterogeneous descriptors,
such as the velocity profiles of different myocardial segments and
timings of key events in the cardiac cycle [Sanchez-Martinez et al.,
2017, Sanchez-Martinez et al., 2018]. However, to the best of our
knowledge, it has not yet been used to explore nonstandardized con-
tinuous echocardiographic recordings. In this paper, we propose an
analysis framework that explicitly addresses the practical challenges
this kind of sequences pose, and illustrate its potential in a specific
group of cardiac patients.

2.1.2. Technical Context

In biomedical research, there is an emergent need for machine
learning algorithms able to learn from multiple concurrent data sources
(e.g. imaging, signal, patient metadata). This type of learning is
commonly referred to as multiview learning [Xu et al., 2013]. In the
cardiac domain, both supervised and unsupervised multiview learning
algorithms have been recently applied in the analysis of cardiac mo-
tion patterns for numerous applications, e.g. in the identification of

13
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dilated cardiomyopathy [Puyol-Antón et al., 2019], in cardiac resyn-
chronisation therapy response prediction [Peressutti et al., 2017] or
in the study of heart failure with preserved ejection fraction (HF-
PEF) [Sanchez-Martinez et al., 2017, Sanchez-Martinez et al., 2018].

In this work, we integrate information coming from multiple het-
erogeneous features (i.e., heart rate and velocity traces from echocar-
diographic images) to evaluate patterns of response to stress. Since
nonstandardized sequences typically last 60-120 cardiac cycles (equiv-
alent to thousands of images), we propose unsupervised multiview
dimensionality reduction to obtain a compact representation of the
patterns of response over time. This low-dimensional representation
can be used to obtain the principal modes of variation – which de-
scribe how the features change – and the temporal trajectories – which
encode the timings and intensity of such changes.

Unsupervised multiview dimensionality reduction is an active
field of research, including canonical correlation analysis [Hotelling,
1936], partial least squares [Wold, 1985], multiple kernel learning
(MKL) [Lin YY, 2011] or multi-modal autoencoders [Li et al., 2018]
as some of the most popular algorithms. Our choice for MKL was
based on (1) its ability to address inherent nonlinearities of the data
and any number of desired input features, without strong assump-
tions on their correlations, and (2) its good performance in similar
applications, while providing a fairly simpler, very flexible, potentially
more intuitive/interpretable framework than other types of machine
learning.

Once a low-dimensional embedding is estimated, the main modes
of variation in the data can be reconstructed using multiscale kernel
regression (MKR) [Bermanis et al., 2013, Duchateau et al., 2013]. A
combined analysis using MKL and MKR was successfully explored
before by [Sanchez-Martinez et al., 2017, Sanchez-Martinez et al.,
2018] to characterize functional responses to semi-supine bicycle exer-
cise of controls and patients with HFPEF, based on left-ventricular
velocity patterns. This work dealt, however, with only two-timepoint
(rest/stress) information for each patient, acquired during a standard-
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ized exercise stress test.
We propose a technical framework that extends this analysis to

the challenging context of nonstandardized stress echo datasets.

2.1.3. Proposed Approach

Our framework uses MKL to project heterogeneous data collected
at each cardiac cycle throughout the stress test onto a low-dimensional
space where the main variations in the data are encoded. In this
space, the response to stress of each subject can be seen as a trajectory
and, based on the similarity among trajectories, subjects can be
grouped in clusters that reflect differential patterns of response. The
physiological interpretation of the results is decoded through MKR,
which allows reconstructing the input signals along any path over the
low-dimensional output space.

A preliminary version of the framework was previously proposed
[Nogueira et al., 2017]. The present paper extends the work in sev-
eral aspects: we test the framework against a real dataset including
healthy and pathological cases, whereas previously the cases had been
generated synthetically; we explore other physiological features, using
velocity traces at the basal septum of the left ventricle instead of
the global longitudinal strain; we reformulate the clustering analy-
sis in the trajectory space by exploring a more sophisticated way
of computing distances among trajectories, involving dynamic time
warping (DTW) [Bemdt and Clifford, 1994]. In addition, we enrich
the analysis by exploring and interpreting the spatial configurations
of the distributions of the control and diseased population samples in
the output space.

2.1.4. ANT1 mutation

To illustrate the framework, we apply it to the discriminative
analysis between the dynamics of response to stress in patients with
Adenine Nucleotide Translocator-1 (ANT1) deficiency (due to a mu-
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tation in an encoding gene) and controls, during handgrip exercise
challenges. In patients with ANT1 mutation there is a lack of adenine
nucleotide transferase, which converts ADP to ATP. The decreased
availability of ATP to the muscles causes lactic acidosis. These pa-
tients present with shortness of breath with exercise at a very young
age. Within the scope of this paper, they can be considered as extreme
cases of HFPEF.

2.2. Methods

A diagram illustrating the main blocks of the framework is depicted
in Figure 2.1. The first block corresponds to the automated processing
and extraction of features from the sequence data (Section 2.2.2). The
second block refers to the application of MKL to obtain a low-dimen-
sional representation of the data (Section 2.2.3). Finally, the third
block corresponds to the analysis of this low-dimensional representa-
tion, focusing on the discrimination between groups of response and
the understanding of the underlying pathophysiological mechanisms
(Section 2.2.4).

2.2.1. Data

This study includes 15 subjects, 10 controls (average age 24± 14
years) and 5 ANT1 mutation patients (average age 21± 7 years). The
echocardiographic acquisitions were performed using a Vivid Q system
(GE Healthcare). For each subject, a Doppler myocardial velocity
imaging (DMI) sequence of the apical 4-chamber view was acquired
(average sampling rate 115 ± 43 Hz) during handgrip exercise. All
sequences comprise the start of exercise, a phase of sustained exercise
and recovery (average heart rate 92± 18 bpm for controls; 118± 23
bpm for ANT1 patients). The durations of each phase vary across
subjects. When the 15 subjects are considered, our dataset amounts
to a total of 1377 cardiac cycles (average sequence length 92 ± 26
cardiac cycles).
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Figure 2.2: Extraction of velocity sequence data. (a) Example of a frame
from a DTI sequence from an ANT1 patient. The yellow circle over the
basal septum is the region of interest used to monitor the velocity over
the whole sequence. (b) Top: example of a full-length velocity trace.
Bottom: isolated rest (left), peak-stress (middle) and recovery (right)
cycles, extracted from the corresponding annotated regions in the top plot.

2.2.2. Feature Extraction

In our dataset, we have an average of about 70 DMI frames per car-
diac cycle. As such, 1377 cycles contain a considerably large amount
of data, calling for integration and simplification. The first simplifica-
tion comes with feature extraction, i.e., collecting relevant descriptors
of cardiac function throughout the acquisition, while ensuring their
robustness to noise and artifacts in the data (e.g. due to breathing
or transducer motion). Features should be easy to obtain in clinical
practice and, ideally, in an automated manner (manually processing
these many cardiac cycles would be impractical).

We selected the left-ventricular basal-septum velocity profile and
heart rate (HR) as the features of interest to monitor during the
stress protocol. These were automatically extracted with the aid
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of the ECG as temporal reference: the full-length velocity traces
were extracted from the DMI sequences using a commercial software
(EchoPAC, v.113, GE Healthcare), by manually placing a region of
interest (default dimensions) at the basal septal region (see Figure 2.2a;
the actual trace is computed and exported through the software). The
cycle-wise traces were obtained by slicing the full-length profiles at the
R-peak positions of the simultaneously acquired ECG and the HR was
obtained from the timings of the R peaks (whole process illustrated
in stage I of Figure 2.1). Examples of a full-length velocity trace and
sliced cycles (time-normalized for cycle duration as explained in 2.2.3)
are featured in Figure 2.2b.

Finally, we fed a set of 1377 multiview samples (corresponding to
all cardiac cycles of all 15 subjects) to the MKL algorithm, describing
each cardiac cycle of each patient by a velocity curve and a HR value
(see stage II of Figure 2.1).

2.2.3. Computation of the low-dimensional space
using MKL

Given a high-dimensional dataset with N samples X = {xi ∈
Rd}Ni=1, graph embedding aims at finding a low-dimensional projection
Y = {yi ∈ Rk}Ni=1, k < d, that preserves the main topology and
variability of the data while removing noisy contributions. To achieve
this, a similarity matrix W defined over the pairs of input samples is
used to weight the optimization problem which, under appropriate
constraints, can be generically expressed as

min
Y

∑
ij

‖yi − yj‖2Wij . (2.1)

In this way, to minimize the product ‖yi − yj‖2Wij, close samples
in the input space (high Wij) are enforced to remain close in the
output space (small ‖yi− yj‖), while distant samples have little or no
influence on each other’s optimal projection.
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Based on this graph embedding framework, Lin et al. [Lin YY,
2011] generalized the concept of MKL, originally formulated within
the support vector machine framework [Bach et al., 2004, Hearst
et al., 1998] for classification/regression, to (supervised and unsuper-
vised) dimensionality reduction. By combining multiple kernels, each
one based on a specific data descriptor, MKL fuses heterogeneous
information and provides the contribution of each feature to the low-
dimensional output representation. The unsupervised formulation,
adopted in this work, can be summarized as follows.

Let the input dataset, composed of N samples with M descrip-
tors each, be defined as X = {xi}Ni=1, xi = {xmi ∈ Rdm}Mm=1 where xmi
represents the descriptor m associated with sample i and of dimension-
ality dm. The projection of a sample is parametrized by a projection
matrix A ∈ RN×k (where k refers to the selected dimensionality of the
output space, k ∈ [1, N − 1]) and a vector β ∈ RM that determines
the normalized weight of each feature in the mapping. A unified
mapping based on heterogeneous descriptors is made possible as A
and β operate on kernelized data rather than on their raw content. For
each feature, a kernel matrix Km is defined, encoding the similarities
over the pairs of samples, based on kernel functions km, i.e.,

Km ∈ RN×N with Km(i, j) = km(xmi , x
m
j ) . (2.2)

In this work, km is a Gaussian kernel (with Euclidean distance) whose
bandwidth σm is computed as the average of the pairwise Euclidean
distances between each descriptor xmi and its K nearest neighbors
{xmij}Kj=1[Sanchez-Martinez et al., 2017]. The input descriptors we
consider here are the HR (i.e. x1i ∈ R) and the longitudinal velocity
values along each cycle. As the dimension of the latter varies over
cycles, all cycles were resampled along the temporal axis so that
x2i ∈ Rd2 (we set d2 = 65).

Based on {Km}Mm=1, a set of sample-wise matrices {Ki}Ni=1 is
defined. Each Ki encodes the similarity of sample i to the other
samples taking into account the different descriptors. In practice, Ki

is built from stacking the ith columns of all kernel matrices {Km}Mm=1.

20



“output” — 2020/7/16 — 10:52 — page 21 — #43

Formally, the projection of sample i is expressed as

yi = ATKiβ . (2.3)

Plugging (2.3) into (2.1), the optimization problem becomes

min
A,β

∑
i,j

‖ATKiβ − ATKjβ‖2Wij (2.4)

s.t.
∑
i

‖ATKiβ‖2Dii = 1, (2.5)

βm ≥ 0,
∑
m

βm = 1 (2.6)

where W is the multiview generalization of W in (2.1), a global affinity
matrix computed by combining all the individual kernel matrices (in
this paper we used W = 1

M

∑
mKm, with kernel matrices {Km}Mm=1

being normalized across features prior to the summation through a
variance-based method, described by [Sanchez-Martinez et al., 2017]).
The constraint in (3.7), with Dii =

∑
j Wij, removes an arbitrary

scaling factor in the output embedding.
Minimizers A∗ and β∗ are obtained by an iterative two-step op-

timization strategy [Lin YY, 2011]. At each iteration, A and β are
alternately fixed to the value of last-step’s solution and the problem is
solved for the other. Iterations stop once a convergence criterion is met
(e.g. maximum number of iterations or stable value of cost function).
Solving (3.8) for A amounts to a generalized eigenvalue problem:
the columns of the optimal A are the corresponding eigenvectors.
Solving (3.8) for β, on the other hand, corresponds to a nonconvex
quadratically constrained quadratic programming problem. To obtain
a low-dimensional representation, one can choose the columns of A
associated to the k lowest eigenvalues, yielding A ∈ RN×k and thus
yi ∈ Rk, i = 1, ..., N .

Once A and β have been learnt, the projections of the training
samples can be computed using (2.3). Moreover, a new sample z can
be mapped into the low-dimensional space by
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yz = ATKzβ , (2.7)

Kz ∈ RN×M and Kz(n,m) = km(xn, z).
Thus, the projection of new samples is determined by the simi-

larities of their input-space features with those of the samples in the
training set.

2.2.4. Discriminative analysis and physiological
interpretation

In the low-dimensional space, the spatial distribution of the pro-
jected cycles is learned in an unsupervised way, solely based on their
input-space similarities and not taking into account any label (i.e.
control/ANT1) information. Our aim is to explore this simplified rep-
resentation towards the identification of distinctive clusters of response
by the two populations, and the unraveling of the pathophysiological
mechanisms behind such differences.

We perform two levels of analysis (see stage III of Figure 2.1):
one that is based on the overall spatial distribution of samples of
each population in the output space (i.e., not distinguishing subjects),
and another where we cluster the subjects based on the trajectories
defined by their sequences in the output space.

2.2.4.1. Cycle-wise analysis: population signatures

To obtain the predominant patterns of response of each population,
we i) draw a path passing through the regions of higher density of
both healthy and diseased populations, and ii) sample the path at
multiple points and adopt a multiscale adaptation of kernel regression
(MKR) [Bermanis et al., 2013, Duchateau et al., 2013] to backproject
them to input-space patterns. We hypothesize that analyzing the
evolution of input features along this path will highlight discriminative
characteristics of the diseased population.
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Each such point q is backprojected based on an interpolation/re-
gression from the known Y and X. A Gaussian kernel k is used to
evaluate its similarity k(q, yi) with each {yi}Ni=1 ∈ Y ; its reconstruction
in the space of feature m, here denoted as fm(q), is based on the
known input-space representations Xm = {xmi }Ni=1 and weighted by
such similarities:

fm(q) =
N∑
i

k(q, yi)bmi (2.8)

where bmi stands for the ith column of matrix

Bm =

(
K +

1

γm
I

)−1
Xm (2.9)

with K = [k(yi, yj)], γm a regularization weight and I the identity
matrix. A multiscale approach is adopted where fm is updated
in an iterative coarse-to-fine process, with the kernel bandwidth
halved at each step, from the maximum to the average output-space
neighborhood size (details in [Duchateau et al., 2013]).

2.2.4.2. Sequence-wise analysis: subjects’ trajectories

The idea behind the trajectory-based analysis is that the trajecto-
ries defined by the projected cycles of each subject (in temporal order)
can be considered physiological descriptors of response to stress, and,
as such, performing cluster analysis in the trajectory space can help
us identify how all the subjects are organized in groups of response.

For each subject p, the trajectory defined by the projected data
consists of a multidimensional Cp × k matrix, where Cp is the num-
ber of cycles of subject p’s sequence. An element (c, dim), c =
1, ..., Cp, dim = 1, ..., k, tells us how the mode of variation associ-
ated with dimension dim is being expressed at cycle c. Intuitively,
the whole trajectory matrix encodes a weighted combination of the
k modes of variation at each cycle of the sequence. Our hypothesis
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is that there will be differences in the trajectory matrices of the two
populations, specific to the ANT1 pathology.

To cluster trajectories, as each subject’s sequence has a differ-
ent length, and different ratios of baseline/stress/recovery durations,
standard distance metrics cannot be applied. For that reason, the
DTW algorithm is used. This algorithm allows aligning two multi-
dimensional time series by stretching sections in the temporal axis
(one-to-many correspondence) in such way that some distance metric
(Euclidean in our case) between the aligned time series is minimized
[Bemdt and Clifford, 1994]. Prior to the DTW alignments, trajectories
are slightly smoothed using total variation denoising [Rudin et al.,
1992] (denoising weight λ = 0.01), to reduce noisy oscillations while
preserving sharp transitions corresponding to state changes (rest-
stress-recovery). Finally, a distance matrix is built from the pairwise
distances and fed to a hierarchical clustering algorithm [Ward Jr.,
1963], and the results are compared with the known labels.

2.3. Experiments and Results

2.3.1. Parameterization

Experiments were ran with several parameterizations. Alterna-
tively to the standard iterative optimization process described in
Section 2.2.3, having β ∈ R2 and

∑
i βi = 1, βi > 0, we sim-

ply performed a grid search on a discrete set of vectors obeying
β = [β1, 1 − β1]

T , 0 < β1 < 1, used them for initialization, and
solved the corresponding generalized eigenvalue problem for the pro-
jection matrix A. In other words, we ran one single iteration of the
standard optimization process for different initializations of the weight
vector β.

Table 2.1 lists the parameterization corresponding to the results
shown and discussed in this section. We denote by kσ and ksparse the
number of neighbors used in the estimation of the kernel bandwidths
and in a sparsing step of the global affinity matrix, respectively (refer
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to [Sanchez-Martinez et al., 2017, Nogueira et al., 2017] for further
details).

From our experiments, we found that the results presented a
relatively low sensitivity to the values of β, ksparse (except for very
small values), and higher sensitivity to the value of kσ. Lower kernel
bandwidths mean higher sensitivity to variations in the data, and
vice-versa. We heuristically tuned the value of kσ having in sight a
good trade-off between the spread and the spatial smoothness of the
output-space data distribution.

For the MKR, we decided to use the first 6 dimensions of the
projected data, since including further dimensions had little influence
in the reconstructed modes (higher dimensions encode more noisy
variability). The value of γm in (2.9) was tuned to minimize the
average curve reconstruction error over 150 fixed samples (10 of each
subject).

Table 2.1: Parameterization details. Feature weight vector defined as
β = [βHR, βvelocity]

T .

Data
N 1377
M 2

MKL
kσ 0.05×N
ksparse 0.25×N
β [0.5, 0.5]T

MKR
dimensionality k 6
γm 0.1

2.3.2. Population-wise analysis: representative sig-
natures

We computed the low-dimensional representation of the data using
MKL, with the parameterization in Table 2.1.
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Figure 2.3: Probability density function for the control and ANT1 sample
distributions, considering pairs of the first dimensions of the projected
data.
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Figure 2.4: First two dimensions of projected data colored according to
control (blue) and ANT1 (red) labeling (left). Separated distributions of
control (middle) and ANT1 patient (right) samples, colormapped according
to a stress score, consisting of the normalized HR sequence of each subject,
mapped to the [0,1] interval.
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Figure 2.3 displays the probability density functions learned from
the distributions of control (blue) and ANT1 patient (red) samples,
considering the pairwise combinations of dimensions 1-4, obtained us-
ing the non-parametric method of kernel density estimation [Epanech-
nikov, 1969]. We focused the analysis on the two first dimensions
(column 1), as including further dimensions did not add any addi-
tional insight from a physiological perspective (see in 2.A an analogous
analysis including dimension 3).

A scatter plot of the projected data, using the first two dimensions,
is shown in Figure 2.4-left. In this plot, each point refers to a cardiac
cycle of a subject, and is colored according to the control/ANT1
(blue/red) label. In the middle and right columns of the same Figure,
we isolate each population’s distribution of output-space samples
and color them according to a stress score (computed as the HR
value normalized by the minimal and maximal HR values of the
corresponding patient). In both, the trend is to gradually transition
from white (baseline/recovery) to dark blue/red (peak stress) in the
counterclockwise direction. In fact, there is a continuum of response
defined by the two distributions, where the ANT1 distribution is
positively shifted in that same direction with respect to the control’s.

To interpret the physiological implications of this spatial shift
between distributions, we drew a path over the higher density regions
and used MKR to reconstruct the velocity curves along such path. The
path and points to backproject are shown in Figure 2.5-left, whereas
the reconstructed mode of variation is shown in Figure 2.5-right.

Focusing on the evolution of the velocity curves from baseline to
peak stress for the control population (see annotations in Figure 2.5-
left), we observe a relative systolic lengthening, with the systolic
peak happening later in the cycle, and a gradually shorter diastole,
reaching some degree of E-A merging at peak stress. These are typical
signatures of a normal response to exercise. Looking at the velocity
patterns corresponding to the ANT1 baseline region (annotated in
Figure 2.5), it is evident that ANT1 patients start off with some of
these exercise signatures (e.g. shorter diastole); on the other hand,
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Figure 2.5: Distribution-based modes of variation. Left: Path over the
distributions of control and ANT1 patients that were used for the estimation
of the distribution-based modes of variation. The plotted points were the
inputs for MKR. Right: MKR results, with color correspondence with
the plotted path points in the left plot; the curves corresponding to the 4
annotated points are plotted with thicker linewidths.

Figure 2.6: Systole dynamics. Left: velocity curves of Figure 2.5-right,
non-normalized for HR. Middle: corresponding displacement curves. A
marker is plotted on the systolic peak for each curve. Right: analysis of
the timing and total displacement at the systolic peak, throughout the
path drawn in Figure 2.5-left.

they also show a more accentuated augmentation of these signatures
at peak stress (e.g. reaching complete E-A fusion), together with some
additional shape changes in the velocity profile (especially noticeable
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(a) (b)

Figure 2.7: Trajectory clustering based on DTW distance matrix (for
these results, only the first dimension of the trajectories was considered).
(a) 2D scatter plot of the subjects with MDS. (b) Hierarchical clustering
(subjects 0-9 correspond to controls and subjects 10-14 correspond to ANT1
patients).

during systole). Focusing on systolic function in particular, we inte-
grated the velocity curves to obtain the corresponding displacement
profiles (Figure 2.6-middle), and plotted the timing of end-systole
against the corresponding displacement (Figure 2.6-right). In these
plots, the timing is not normalized for HR. It is observed that, as
HR goes up, controls increase the peak contraction and, while the
absolute ejection time reduces, the relative duration of systole with
respect to the cycle length increases; on the contrary, ANT1 patients
fail to modulate timings of events and contractility in the same man-
ner, as they reach peak stress. The findings are in agreement with
the results of [Sanchez-Martinez et al., 2017], that linked E-A fusion
and reduction of contractility to exercise response in HFPEF, in a
standard exercise context.
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2.3.3. Sequence-wise analysis: subjects’ trajecto-
ries

The trajectory defined by the projected samples of each particular
subject in the output space (Figure 2.5-left) carries information re-
garding how that subject responds in terms of the patterns recovered
in Figure 2.5-right. Thus, we took such trajectories as descriptors of
response to stress, and used them to cluster the subjects into groups
of response. For that, we computed the pairwise distances among
all subject trajectories (using DTW, as described in 2.2.4.2), and
used them as inputs to a hierarchical clustering algorithm. Other
than this hard clustering, we used multidimensional scaling (MDS)
to visualize a 2D scatter plot representation of the subjects, based
on the same pairwise distances. Good clustering results were ob-
tained even considering only the first dimension of the trajectories –
in Figure 2.7a, the two clusters are even linearly separable, although
there is a very subtle transition between them (MDS distributions
accounting for more dimensions can be found in 2.A). In this scenario,
the hierarchical clustering had perfect accuracy in the separation of
healthy and diseased subjects (Figure 2.7b).

2.4. Discussion

We proposed an analysis framework for complex datasets com-
posed of continuous multiview data sequences extracted from stress
echo acquisitions, with the main objectives of i) discriminating healthy
and pathological clusters of response and ii) understanding the un-
derlying pathophysiological mechanisms. The framework extends the
previous work by [Sanchez-Martinez et al., 2017] to nonstandardized
stress echocardiography. Transitioning from standardized to nonstan-
dardized data implies that each subject is no longer represented by a
single point in the MKL output space, but by a variable number of
points (with an associated time order). The main contribution of the
proposed framework lies in the concept of studying low-dimensional

30



“output” — 2020/7/16 — 10:52 — page 31 — #53

trajectories for clinical interpretation, an under-explored way to look
at multiview clinical time series.

The discriminative power of the framework was first confirmed in
Figure 2.3, where distinctive regions of higher control/ANT1 sample
density were identified. It was again confirmed in Figures 2.7a and
2.7b, where a cluster analysis based on the subject trajectories in the
output space accurately grouped them according to the diagnostic
label.

Although there were distinctive regions of higher data density
from the two populations, the two distributions were organized in a
continuum of data. Such continuum was observed to be correlated
with the stress level (Figure 2.4), and the ANT1 population data
seemed to be positively shifted in the stress direction, when compared
to the control distribution. In other words, the physiological patterns
of the ANT1 population, at baseline conditions, are comparable to
those found in controls during mild exercise.

To provide an idea of the variability found in trajectories (thus,
signature intensities) within both control and ANT1 populations, we
display the subject-wise projections in Figure 2.12 in 2.C.

While the studied populations used to illustrate the framework
are distinctively different and easy to clinically discriminate based
on heart failure symptoms at even the least exercise, our analysis
can potentially provide novel insight in the physiology of this genetic
mutation. However, the modest number of patients in the study
precludes from any final conclusion when it comes to more in-depth
pathophysiology analysis. On the other hand, the rarity of this
mutation impedes the gathering of large datasets.

Among the main challenges of dealing with nonstandardized
echocardiography sequences were those related to data processing and
feature extraction, due to the complex nature of the data. Some recur-
rent problems that were especially likely to occur during stress were:
noisy ECG, as in some cases the R peak became indiscernible and
automated segmentation was not possible; out-of-plane heart motion
resulting in an absence of Doppler signal, and significant breathing
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motion relative to the defined region of interest. However, the final
mapping to the low-dimensional space was found to be fairly robust
to outliers (i.e. the obtained modes of variation/projections were not
overfitting the outliers, e.g. cycles with saturation peaks, cycles with
no velocity signal, badly segmented cycles due to bad quality ECG
regions – which also gave origin to unphysiological values of HR, etc.),
so there was no need to perform a preselection of cardiac cycles based
on signal quality. This would probably not be the case if we did not
have a fairly large (≈ 1400 samples) dataset. The poor-quality cycles
could be in most cases recognized based on the projection values in
the output space (e.g. an overall poor-quality acquisition of subject
13 explains its considerable distance from the other subjects in the
MDS plot (Figure 2.7a).

A high correlation between HR and the first dimension of the out-
put space was found (0.81). To discard the possibility of HR strongly
biasing the results, we repeated the whole experiments without feed-
ing any HR information to the MKL algorithm (i.e. using only the
velocity feature). After this, the correlation between HR and the first
dimension of the output space remained high (0.67), with the main
configuration of the two distributions and the corresponding modes
of variation remaining similar (2.B). While the need of a multiview
instead of a single-view dimensionality reduction algorithm could be
arguable for this particular case, we still believe that taking HR as a
feature to estimate the low-dimensional representation of the data can
provide additional insight regarding the physiological interpretation
and, in a scenario like ours, merging the two correlated features can
add robustness when compared to pursuing a single-view approach
on the velocity. Using more input features (e.g. velocity traces at
other locations than the basal septum) would potentially allow a more
specific characterization of the ANT1 response. Moreover, besides
extending this analysis to velocity traces at other locations in the
left and right heart chambers, one could also consider analyzing flow
changes.

Despite the listed limitations, we demonstrated that the proposed
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framework was able to reveal the progression of the pattern of response
from the control to the pathological domain. The size of the dataset
would not have permitted to come up with this pattern by visual
inspection of the data.

The proposed framework can be flexibly adapted to the study
of any given pathology, keeping in mind that the definition of the
relevant set of features should be, naturally, carefully thought in a
pathology-dependent manner.

2.5. Conclusion

We have proposed a framework for the analysis of nonstandard-
ized stress echocardiography sequence data. It uses unsupervised
multiple kernel learning to merge myocardial velocity and heart rate
information and obtain a low-dimensional representation of the data.
The analysis is then performed in the new space, with multiscale
kernel regression bridging the two spaces for interpretability. The
framework is illustrated on handgrip exercise sequences acquired on
a population of healthy controls and ANT1 mutation patients. The
results show that the framework is able to detect distinctive clusters
of response and provide insight into the underlying pathophysiological
mechanisms, demonstrating its ability to handle this complex type
of datasets, and the potential of nonstandardized protocols such as
handgrip exercise for unmasking differential response mechanisms.
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Appendices

2.A. Results for other combinations of output-
space dimensions

Here, we show the sample-wise analysis when using dimensions
1 and 3 of the low-dimensional representation (Figure 2.8a), and 2
and 3 (Figure 2.9a). We also show the clustering of trajectories when
using more than one dimension (Figure 2.10, middle and right).
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Figure 2.8: Analysis plots for the combination of output-space dimensions 1
and 3. (a) Regions of baseline, stress and recovery for the two populations;
(b) velocity patterns reconstructed from the distribution.
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Figure 2.9: Analysis plots for the combination of output-space dimensions 2
and 3. (a) Regions of baseline, stress and recovery for the two populations;
(b) velocity patterns reconstructed from the distribution.

Figure 2.10: Changes in the MDS plots when considering more dimensions
of the subject trajectories.
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2.B. Experiments without HR

In this appendix we show the results of the sample-wise analysis
using only velocity data (i.e. no HR data) as input to the MKL
framework (Figure 2.11).

Figure 2.11: Experiments without considering HR as input feature of MKL:
projected data and reconstructed mode of variation of the velocity feature.

2.C. Individual sequence lengths and projections

Herein, we detail individual sequence lengths and display the
individual projections of the 15 subjects onto the 2d MKL space
(Figure 2.12).

38



“output” — 2020/7/16 — 10:52 — page 39 — #61

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 0

; C
ON

TR
OL

; 3
0y

o

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 1

; C
ON

TR
OL

; 7
yo

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 2

; C
ON

TR
OL

; 1
2y

o

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 3

; C
ON

TR
OL

; 1
7y

o

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 4

; C
ON

TR
OL

; 1
5y

o

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 5

; C
ON

TR
OL

; 1
2y

o

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 6

; C
ON

TR
OL

; 2
7y

o

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 7

; C
ON

TR
OL

; 1
5y

o

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 8

; C
ON

TR
OL

; 4
7y

o

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 9

; C
ON

TR
OL

; 3
6y

o

0.
02

0.
01

0.
00

0.
01

0.
02

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 1

0;
 A

NT
1;

 2
0y

o

0.
02

0.
01

0.
00

0.
01

0.
02

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 1

1;
 A

NT
1;

 3
3y

o

0.
02

0.
01

0.
00

0.
01

0.
02

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 1

2;
 A

NT
1;

 1
7y

o

0.
02

0.
01

0.
00

0.
01

0.
02

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 1

3;
 A

NT
1;

 1
9y

o

0.
02

0.
01

0.
00

0.
01

0.
02

0.
01

0.
00

0.
01

0.
02Su

bj
ec

t #
 1

4;
 A

NT
1;

 1
5y

o

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
ig

u
re

2.
12

:
2D

M
K

L
p
ro

je
ct

io
n

of
th

e
fu

ll
d
at

as
et

(d
ar

k
gr

ee
n
),

su
p

er
im

p
os

ed
b
y

ea
ch

su
b

je
ct

’s
in

d
iv

id
u
al

p
ro

je
ct

io
n
,

co
lo

r-
m

a
p

p
ed

b
a
se

d
o
n

la
b

el
(b

lu
e

-
co

n
tr

o
ls

;
re

d
-

A
N

T
1
)

a
n

d
co

lo
r-

co
d

ed
b

a
se

d
o
n

st
re

ss
sc

or
e,

as
p
re

v
io

u
sl

y
d
on

e
in

F
ig

u
re

2.
4.

S
u
b

je
ct

se
q
u
en

ce
le

n
gt

h
s

(f
ro

m
to

p
le

ft
to

b
ot

to
m

ri
gh

t)
:

74
,

14
3,

6
4,

1
18

,
64

,
89

,
63

,
10

2,
6
7,

5
8,

9
5,

8
8,

1
10

,
13

7,
10

5.

39



“output” — 2020/7/16 — 10:52 — page 40 — #62



“output” — 2020/7/16 — 10:52 — page 41 — #63

Chapter 3

A PERSONALISED APPROACH

FOR EFFECTIVE LABOUR

MONITORING BASED ON

MACHINE LEARNING

ASSESSING WOMEN’S

SIMILARITY AND OPTIMAL

TEMPORAL PROGRESSION

This chapter is adapted from: M. Nogueira, G. Piella, M. De Craene, C.
Yagüe, S. Sanchez-Martinez, P. Mart́ı, M. Bonet, O.T. Oladapo, B. Bijnens. A
personalised approach for effective labour monitoring based on machine learning
assessing women’s similarity and optimal temporal progression. Submitted to
Nature Methods.
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3.1. Introduction

Infant as well as maternal death rates are still unacceptably high,
especially in low-income countries [World Health Organization, 2015,
Oladapo et al., 2015, Souza et al., 2015, Yang et al., 2017]. Although
early fetal or late neonatal mortality occur, most deaths and severe
morbidities have origin around the time of childbirth, making quality
of care during this period critical for a positive outcome [Oladapo
et al., 2015]. However, there is still little consensus on what are
the best approaches to labour monitoring and decision making, and
actual practice is very diverse [Robson et al., 2015]. Within this
diversity, some worrisome patterns have been identified. On the
one hand, there is a seemingly unjustified global escalation of rates
of labour intervention, especially caesarean sections (CSs) [World
Health Organization, ]. CSs bear risks for the mother, baby, and
future pregnancies, which are intensified in women with low access
to adequate care [Betrán et al., 2015]. On the other hand, in low-
resource environments, interventions can be limited to suboptimal
rates. In general, there are inequalities in intervention rates among
and within countries – which correlate with economic inequalities –
with some women receiving too little intervention when needed, and
others receiving too much [Boatin et al., 2018].

An ideal standardized practice would always have as first objective
the minimization of adverse outcome, while also avoiding unnecessary
interventions, as a way to minimize risks and optimize the management
of resources.

The closest to a reference labour monitoring and decision support
tool has been World Health Organization (WHO)’s partograph, where
the healthcare providers plot the evolution of multiple maternal and
fetal measurements over the course of labour, against predefined ranges
of “normality”. A central feature of the partograph is the cervicograph,
which plots cervical dilatation over time against recommended “alert”
and “action” lines. The latter were designed to guide healthcare
providers in decision making when cervical dilatation progresses at
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a slower pace than a reference value (1 cm/h), after the onset of 4
cm (up until recently interpreted as the onset of the active phase
of labour). However, almost three decades after the issuance of the
partograph, there is (1) increasing scepticism regarding the use of
alert and action lines as reference for all labours, regardless of women
characteristics (e.g. age, ethnicity, socioeconomic context), obstetric
history (e.g. previous pregnancies, previous CS) and other factors
that could redefine “normality” in spontaneous labour progression,
(2) lacking evidence of positive impact of its use on outcome, and (3)
disappointingly low rates of appropriate use [Oladapo et al., 2015].

Recent studies have put effort in evaluating the predictive value
of different partograph variables regarding severe maternal and fetal
adverse outcomes [Bonet et al., 2019, Robson et al., 2015, Souza
et al., 2018, Oladapo et al., 2018], essentially by assessing how the
crossing of predefined thresholds, including the alert and action lines
of the cervicograph, correlated with those outcomes. In some cases,
customized versions of the alert and action lines were used for different
obstetric groups, such as based on the Robson’s 10-group classifica-
tion [Robson et al., 2015, Souza et al., 2018, Oladapo et al., 2018].
The reported predictive performance was considered poor in all cases,
suggesting that a univariate, transversal approach to the partograph
is not effective in the prediction of severe adverse outcome.

As more complete datasets and more sophisticated data analysis
tools become available, developing data-driven monitoring and de-
cision support systems (DSSs) becomes an appealing option. The
WHO itself expressed an interest in exploring evidence-based alter-
natives with the Simplified, Effective, Labour Monitoring-to-Action
(SELMA) [Souza et al., 2015] project.

Most of the proposed DSSs in clinical medicine have been devel-
oped using data collected in a well controlled setting, with a stan-
dardised data acquisition protocol, and often specific interventions
with clear indications. However, in a realistic clinical setting, given
the complex nature of labour monitoring with non-standardised in-
tervention decision making and the need to detect crucial problems
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that only rarely occur, the task becomes quite challenging. Some of
the biggest challenges for a DSS are: (1) the wide variety in initial
presentation of the pregnant women in the hospital, followed by the
temporally varying progress, makes the direct application of typical
learning techniques challenging, and the fact that temporal samples
are recorded at nonstandardized timings complicates any analysis
further; (2) intervention and outcome data reflect a site- and study-
specific practice, which does not necessarily align with the one that
minimizes adverse outcome and unnecessary intervention; (3) very
low rates of adverse clinical outcomes generate severely imbalanced
data, which complicates predictive learning.

Few data-driven frameworks for labour monitoring and decision
support have yet been proposed. Most research effort went into the spe-
cific subproblem of prediction of CS, towards decision support [Souza
et al., 2019, Burke et al., 2017, Chen et al., 2004, Campillo-Artero
et al., 2018, Levine et al., 2018, Janssen et al., 2017, Harper et al.,
2013]. In most cases, multivariate prediction models are built using
logistic regression (supervised learning). The majority of models use
admission-time data only [Souza et al., 2019], providing an initial
estimate of risk of CS that is not dynamically updated.

Souza et al. [Souza et al., 2019] compared the predictive perfor-
mance of (1) admission-time models, (2) “interval” models – the 6
hours after the onset of 4 cm of cervical dilatation were divided in
2-hour intervals, and a different model was learned with updated
intrapartum measurements of each interval – and (3) maximum score
models – trained with the “maximum scores” of the dynamic descrip-
tors (extreme values achieved throughout the whole course of labour
or, in some cases, final values). The WHO’s SELMA dataset [Souza
et al., 2015] was used in all cases. The maximum score models
outperformed all others; however, they were trained and tested on
information transversal to the whole labour duration, and how they
would perform in a real-time scenario is unknown. The admission-time
models were the least performing, and the interval models increased
their performance from first to last interval, in between the admission-
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time and maximum-score model performances. This is a somewhat
intuitive result: updates in intrapartum data are relevant for the
decision. However, the fact that total sample size decreases from first
to last interval, while CS is more likely in later stages, should not
be overlooked when interpreting the results. Of all models, only the
interval models could support real-time decision-making. A foreseen
challenge in the integration of these models in a decision support
tool is the management of the interval prediction by the healthcare
provider. At each interval, the models provide a binary prediction
(or a probability) of CS; thus, if the model predicts a CS, how to
temporally handle the true positive is not obvious, since each interval
model learned if CSs occurred, regardless of the interval in which they
actually occurred, not being able to relate their prediction with a time
of decision/incision. On the other hand, the significant differences in
the models’ performances at each interval make it even more challeng-
ing (for the healthcare provider) to manage the probability/prediction
information.

To the best of our knowledge, the real-time monitoring component
has not been the priority in recent research. Indeed, little effort has
been made towards simplifying the visualization and interpretation
of what can be an overwhelming amount of dynamic information
required for healthcare providers’ decision-making, along with any
evidence-based suggestions for prognosis and interventions.

The objectives of this paper are (1) to present a novel framework
for labour monitoring based on interpretable machine learning and
(2) to showcase its potential as a basis for a decision support system.

With regard to objective (1), we aim to provide a personalized
dynamic labour monitoring-to-action-tool that (i) accounts for all
variables and their interactions, (ii) defines “normality” in labour pro-
gression in a personalized manner, and (iii) also provides personalized
prognosis of intervention and outcome, and their most likely timing,
based on study-specific evidence. This way, we address the limitations
of the current univariate, generic approach to the implementation
of the partograph, and enrich its value with study-based knowledge,
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while maintaining clinical familiarity and interpretability.
With regard to objective (2), a preliminary assessment of the

framework’s potential as basis for a DSS is performed. For validation,
we compare performance with the current state of the art – the
partograph and the prediction models of Souza et al. [Souza et al.,
2019]. In all cases, the SELMA dataset is used for illustration and
performance comparison. Lastly, under the premise that practice
can be rather heterogeneous, we additionally perform “subgroup”
analyses, in order to assess whether prediction is an easier task for some
subgroups of the population than others. The first subgroup analysis
addresses a specific result of recent observational studies linking
admissions in the active phase of labour (using 4 cm as onset cut-
off) with lower likelihoods of labour interventions, without increasing
maternal or perinatal morbidity – suggesting that early admission
per se increases the chance of intervention [Holmes et al., 2001, Neal
et al., 2014, Bailit et al., 2005, Mikolajczyk et al., 2016, Chuma et al.,
2014]. In an attempt to reduce the excess of intervention in early-
admission groups, the WHO has recently updated the definitions of
latent and active phases of labour, now recommending 5 cm as a
more appropriate cut-off. However, this happened after the SELMA
study was conducted. A second subgroup analysis explores practice
differences in a more unsupervised way by dividing the population in
several clusters of similar women based on admission characteristics.

3.2. Methods

3.2.1. Data and Preprocessing

The WHO’s SELMA dataset was used to illustrate the proposed
framework. It comprises information from 9995 deliveries across 13
different facilities across Nigeria and Uganda. A very complete set
of features including demographics, medical history and previous
pregnancy information are collected at admission, followed by the first
(baseline) maternal and fetal assessments that are to be monitored
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during the course of labour. Intrapartum updates of these values are
available at non-standardized time intervals. A detailed set of intra-
and post-partum complications, interventions and outcomes is also
available. We refer to the features that remain unchanged during
labour (e.g. demographics and medical history) as static features, and
those to be monitored continuously as dynamic features.

We used 52 features (33 static and 19 dynamic) to characterize
women in labour at any time point. Some of them were directly
taken from the original SELMA dataset, whereas others result from
the combination of several of the original features. The features are
described in Tables 3.5 and 3.6 of Appendix 3.A, with those which
were in some way engineered having their names emphasized in bold.

Often, some values were missing from different features/follow-ups
of each woman. At admission, missing values in features regarding
history of lung disease, emotional and painful distress were interpreted
as absence of abnormality, and missing data on axillary temperature
and number and duration of contractions were imputed with the value
of the first follow-up (after admission). In the case of temperature, if
the first-follow-up value was also missing, the average temperature
at admission was assumed. After these operations, 549 women still
presented important missing admission data and were discarded from
the analysis. Another 876 women were removed from the analysis due
to time inconsistencies. For the remaining 8470 women, missing data
among follow-ups was dealt with through previous (follow-up) value
propagation. The way the SELMA dataset is used to illustrate and
evaluate the proposed framework is detailed in Section 3.2.3.

3.2.2. Framework

Figure 3.1 illustrates the proposed approach, from evidence data
to DSS. We first use manifold learning to represent multivariate
study data in a lower-dimensional, interpretable space, where sub-
jects are positioned based on their similarities, and temporal data
are visualized as low-dimensional trajectories. New subject infor-
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mation is handled by (1) projecting updated subject data to this
space, (2) retrieving “similar” study subjects, i.e., those confined to
a close neighborhood, (3) taking those who underwent spontaneous,
complication-free labours to estimate a normal/expected progression
and to calculate the subject’s deviation from it, and (4) taking the
ratios of different interventions/outcomes among all retrieved neigh-
bours as estimates of chance of occurrence. We thus “personalize”
monitoring and decision support by redefining “normality” and risk
estimates based on the labour progress, intervention and outcome
data of “peers” (i.e. similar subjects within the study population).

The core objective of this paper is to present our framework as this
high-level pipeline, leaving room for flexibility in implementation. In
this section, we describe a possible implementation, which we use for
the purposes of illustration and evaluation with the SELMA dataset.

To obtain the similarity-ruled space, we use unsupervised multi-
ple kernel learning (MKL) [Lin YY, 2011, Sanchez-Martinez et al.,
2017, Sanchez-Martinez et al., 2018, Nogueira et al., 2020a], an al-
gorithm that allows representing heterogeneous features in a unified
manner and subsequently merging their information to learn a lower-
dimensional embedding of the data where samples are spatially ordered
by similarity.

3.2.2.1. Learning the Projection Model and Precomputing
Projections Database

A necessary first step of the framework is learning a projection
model to a similarity-ruled space from the study data and using the
newfound projection model to precompute a database of projections
(Figure 3.1, top). In this paper, this is achieved using an unsupervised
MKL algorithm.
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Individuals positioned based 
on information similarity

New
subject
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progress compare?
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Projected 
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Figure 3.1: High-level illustration of the proposed framework. Stage I -
learning a similarity-based projection model and precomputing a database
of projections from study data. Stage II - peer-based monitoring and
decision support.
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Overview of MKL

Let us consider N data samples, each described by M uni- or
multidimensional features. An MKL projection to a D-dimensional
space is parameterized by a projection matrix A ∈ RN×D and a vector
β ∈ RM that contains the weight of each feature in the mapping.
Instead of operating directly on the raw data, A and β operate
on kernelized (similarity) data. Let xmi denote the data associated
with the mth feature of the ith data sample, with i = 1, ..., N and
m = 1, ...,M . In this paper, all features are unidimensional, so xmi ∈ R.
Additionally, let us use the simplified notations xm ∈ RN for the vector
of values of feature m for all N samples, xm = (xm1 , ..., x

m
N )T , and xi ∈

RM for the vector of M feature values of sample i, xi = (x1i , ..., x
M
i )T .

Different data types may be associated with different notions of
similarity. In this paper, we adopt the kernel functions proposed in
[Daemen and De Moor, 2009] for clinical data. Let km denote the
kernel function associated with feature m. For continuous/ordinal
variables, the similarity between input samples i and j is measured by

km(xmi , x
m
j ) = 1−

|xmi − xmj |
maxxm −minxm

, (3.1)

whereas for nominal variables,

km(xmi , x
m
j ) = δ(xmi − xmj ) , (3.2)

with δ the Kronecker delta function.
Let K ∈ RN×N×M denote the three-dimensional matrix whose

entries are Kijm = km(xmi , x
m
j ). with i, j = 1, ..., N and m = 1, ...,M .

Let Ki ∈ RN×M denote the ith slice of K along the first dimension,

Ki =

k1(x11, x
1
i ) ... kM(xM1 , x

M
i )

... ... ...
k1(x1N , x

1
i ) ... kM(xMN , x

M
i )

 , (3.3)

and Km ∈ RN×N the mth slice along the third dimension
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Km =

km(xm1 , x
m
1 ) ... km(xm1 , x

m
N)

... ... ...
km(xmN , x

m
1 ) ... km(xmN , x

m
N)

 . (3.4)

In short, Ki encodes the similarity coefficients among sample i and
all other samples (rows), in terms of all M features (columns). On
the other hand, Km is a symmetric matrix that encodes the pairwise
similarities of all N samples according to feature m.

In our unsupervised MKL model, the projection yi ∈ RD of xi ∈
RM , with D ≤M , becomes a function of Ki:

yi = ATKiβ . (3.5)

The MKL problem is then formulated as

min
y

∑
i,j

‖yi − yj‖2Wij , (3.6)

s.t.
∑
i

‖yi‖2W ′
ii = 1 , (3.7)

where W is an affinity matrix, computed as a (linear or non-
linear) combination of all {Km}Mm=1. Thus, each entry Wij encodes
the similarity between samples i and j based on contributions from
all features. In this paper, W is computed as the average of all
Km. The minimization imposes that samples that are similar in the
input space (high Wij) are mapped to close positions in the output
space. Constraint (3.7) removes an arbitrary scaling factor in the
output embedding and eliminates trivial solutions, with W ′

ii =
∑

jWij .
Plugging (3.5) into (3.6) and (3.7) the problem translates into finding
A and β such that

min
A,β

∑
i,j

‖ATKiβ − ATKjβ‖2Wij , (3.8)

s.t.
∑
i

‖ATKiβ‖2W ′
ii = 1 . (3.9)
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In practice, A and β are found by iteratively solving a generalized
eigenvalue problem for A, and a semidefinite programming problem for
β [Lin YY, 2011]. Once the model parameters (A, β) are estimated,
the projection yu ∈ RD of a new sample xu ∈ RM amounts to a
generalization of eq. (3.5):

yu = ATKuβ , (3.10)

where Ku ∈ RN×M and Kium = km(xmi , x
m
u ), with i = 1, ..., N and

m = 1, ...,M .

Application to our problem

We use the unsupervised MKL to learn the projection model of
the study dataset. Let us consider our database consists of admission
and follow up data of P subjects. That is, each subject p (with
p = 1, ..., P ) has a sequence of time points f = 0, ..., Fp, Fp being the
number of follow-ups of subject p and f = 0 corresponding to the
first assessment (admission). Let tpf denote the timing of follow-up f
of subject p, computed as the absolute time in hours since admission
(tp0 = 0 hours), xp,tpf the corresponding data sample, and yp,tpf the

corresponding MKL projection.

3.2.2.2. Monitoring a New Subject

Here, we describe how the model and projections computed in
Section 3.2.2.1 are used in the dynamic monitoring of a new subject
(Figure 3.1, bottom). Given a new subject q at follow-up f :

1. Update subject. That is, project the data sample xq,tqf ∈ RM

to yq,tqf ∈ RD using eq. (3.10), i.e., yq,tqf = ATKq,tqf
β.

2. Find peers. Peers are defined as the study subjects whose
projections at time tqf are within a limited neighborhood of yq,tqf . In
practice,
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For each subject p = 1, ..., P , retrieve the projection at time tqf ,
yp,tqf . Since many study subjects will not have follow-up data

specifically at tqf , the value of yp,tqf is obtained for each subject

by linear interpolation on the precomputed yp,tpf , f = 0, ..., Fp.

Study subject p is considered a peer of q at time tqf if

L∑
d=1

(
ydp,tqf
− ydq,tqf

)2
≤ R2, L ≤ D, (3.11)

i.e., if the projection of subject p is contained within a hyper-
sphere of dimensionality L and radius R centered on that of
subject q. To account for scaling differences among dimensions
d, condition (3.11) is computed on a standardized form (zero
mean and unit standard deviation for all dimensions) of the
projection data.

3. Estimate deviation from ideal progression Let H denote
the set of peers of subject q at time tqf , i.e. the subset of study
subjects obeying (3.11). Additionally, let S represent the subset of
the P subjects whose labour progressed spontaneously towards ideal
outcome, i.e. without any complications or interventions.

The tqf update of the estimate of normal progress for time t > tqf ,
Etqf (t), is given by

Etqf (t) =
1

|C(t)|
∑
p∈C(t)

yp,t, C(t) = {p | (p ∈ H ∩ S) ∧ (tpFp ≥ t)}

(3.12)
corresponding to the mean of the projections of all peers with
normal labour at time t (provided they exist or can be interpo-
lated for such timing). The corresponding standard deviation
σtqf (t) is computed as an estimate of “normal” variability.
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In the next follow-up, at time tqf+1, we can verify how much
the projection yq,tqf+1

deviates from the predicted “normal” po-

sition, Etqf (tqf+1). Specifically, for each dimension d, we quantify

deviation from normality as the z-score

zdtqf+1
=
yd
q,tqf+1

− Ed
tqf

(tqf+1)

σd
tqf

(tqf+1)
. (3.13)

4. Predict (timings) of interventions/outcomes Let us refer
to interventions and outcomes as events. Let e denote an event of
interest, E the set of study subjects that experienced that event and
tp,e the timing of such event for subject p ∈ E.

The chance of e, at time tqf , is updated as

πetqf
=
|G|
|H|

, G = {p | (p ∈ H ∩ E) ∧ (tp,e ≥ tqf )} (3.14)

i.e., the ratio of peers that experienced e at t ≥ tqf .

Moreover, a probability density function can be fitted to the
distribution of all tp,e, p ∈ G, so as to obtain an estimate of the
probability of e with respect to time, πe

tqf
(t), t ≥ tqf .

3.2.3. Performance evaluation

We evaluate whether the proposed framework is capable of cap-
turing relevant information in terms of predictive value regarding the
occurrence of events of interest. To this end, we apply our framework
to the SELMA study and assess the predictive performances of simple
and intuitive descriptors.

In this paper, the evaluation is focused on the prediction of CS and
severe adverse (bad) outcome (BO), the most represented challenges
in the literature. However, the framework can be used for any event
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of interest. Uncomplicated labour was defined as those with no
occurrences of amniotomy, labour augmentation, CS or BO. BO
was defined consistently with BO definitions in previous literature
regarding the SELMA study [Souza et al., 2018, Oladapo et al.,
2018, Bonet et al., 2019], as the composite of: stillbirth, intra-hospital
early neonatal death, neonatal use of anticonvulsants, neonatal cardio-
pulmonary resuscitation, Apgar score below 6 at 5 minutes, uterine
rupture, maternal death or organ dysfunction preceded by dystocia.

Given a subject q, three predictors were defined per targeted event
e ∈ {CS,BO}:

1. Chance estimate (as compared to the occurrence in the SELMA
study) :

veπ = max
f

πetqf
, f = 1, ..., Fq. (3.15)

2. Combination of chance estimate with deviation from normality
as calculated by our framework:

veπz = max
f

[
πetqf
∗max

d
|zdtqf |

]
, f = 1, ..., Fq, d = 1, ..., D.

(3.16)

3. Combination of chance estimate with deviation from normality
and time since admission:

veπzt = max
f

[
πetqf
∗max

d
|zdtqf | ∗ t

q
f

]
, f = 1, ..., Fq, d = 1, ..., D.

(3.17)

After the preprocessing steps described in 3.2.1, the remaining
study subjects (n = 8470) were randomly assigned to a training
(n = 6349) and testing set (n = 2121) (step 1 in Figure 3.2). The
rates of occurrence of events of interest were verified to be balanced
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between the two sets and representative of the whole population’s
(≈ 13% for CS and ≈ 2% for BO). The admission-time data of the
training set were used in the learning of the MKL projection model
(step 2), and the model was used to project all training and testing
data (step 3).

The projected training set was further divided in three folds,
and the framework was run three times in cross-validation style, i.e.
each time with two of the folds simulating the projection database
and the remaining fold simulating “new subjects” (step 4). The
predictors {vCSk } and {vBOk }, k ∈ {π, πz, πzt}, were then collected for
all the “new subjects” of each experiment. For each descriptor-label
combination, a receiver operating characteristic curve was plotted and
its area (AUC) computed. The predictor cut-off values that maximized
the joint entropy of the sensitivity (SE) and specificity (SP) were
selected, so as to favor balanced solutions. Other performance metrics
such as the positive and negative predictive values (PPV/NPV) were
also computed for the selected cut-off values. A different cut-off
might be chosen in a clinical DSS depending on the targeted focus on
reducing false negative or positive prediction.

The framework was then run with the full training set simulating
the projections database and the testing set simulating “new subjects”
(step 6). The threshold values learned in the cross-validation stage
were applied to the set of descriptors collected for the women in the
testing set, to infer about generalizability (step 7).

As previously referred, for validation, performance was compared
to those of the partograph’s alert and action lines. The alert and action
lines are cut-offs by definition, and their predictions are based on
them being crossed or not. Specifically, if cervical dilatation between
4 cm and 10 cm happens at a slower pace than 1 cm/h, the alert line
is crossed. The action line is parallel to the alert line, only shifted 4
h to the right [Souza et al., 2018, Oladapo et al., 2018]. In the case
of the CS prediction problem, performance was also compared with
those of the prediction models by Souza et al. [Souza et al., 2019].
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Figure 3.2: Evaluation of the proposed framework using the SELMA
dataset. 1 – train/test partition; 2 – learning the MKL projection model
with the admission-time features of the training set; 3 – projecting all
training and testing data; 4 – three-fold cross-validation and predictor
extraction with the training set; 5 – extraction of cut-off values for the
predictors; 6 – framework application and predictor extraction with the
testing set; 7 – application of learned cut-offs in the testing set predictors.
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Lastly, the subgroup analyses were performed. For the first, the
population was split into early- and late-admission subgroups. For
the second, the population was divided in several subgroups of women
with similar admission characteristics.

3.3. Results

Results hereby shown correspond to experiments ran for M = 52
features, D = 10 dimensions, L = 4 dimensions and R = 0.5µ0, where
µ0 denotes the average pairwise subject projection distance in the
database at t = 0 (a grid search was performed over D, L and R
to tune values based on performance). These values alone, however,
are not very informative regarding the actual number of peers that
each test subject is being compared to. To gain some insight on this
matter, let us consider the final experiment (step 6 of Figure 3.2),
where the framework is ran for 2121 test subjects, with 6349 subjects
in the projections database. We plot the histogram of the numbers of
peers of all test subjects (Figure 3.3) at t = 0 (left) and considering
all follow-ups (right). At t = 0, a test subject is compared, on average,
to 573 subjects, corresponding to 9% of all available training subjects.
When all follow-ups of all test subjects are accounted for, the average
value drops to 370 subjects. This is an expected effect given that the
number of available training subjects decreases as time advances.

3.3.1. The similarity-ruled space and clinical in-
terpretability

Figure 3.4 illustrates the similarity-based spatial ordering in the
MKL space obtained for the SELMA dataset and the clinical inter-
pretability of the obtained projections. The plots depict the projec-
tions of the samples used to learn the MKL model, i.e. the admission-
time data samples of the training set subjects. Each scatter point thus
corresponds to one subject, and the whole scatter plot is a snapshot of
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Figure 3.3: Distribution of neighbourhood sizes for step 6 of Figure 3.2.
Left: at t = 0, in terms of percentage of the total number of subjects of
the training set. Right: considering all follow-ups, in absolute number.

the projections of the training subjects at t = 0. As time advances and
subject data is updated, the scatter points (subjects) move around in
the space, defining low-dimensional trajectories.

Given that we are dealing with a multidimensional, nonlinear
mapping, similarity-ordering in the MKL space can follow complex
patterns. For the sake of example, we illustrate cases where clinical
variables appear highly ordered along a single dimension of the MKL
space. As criterion for selection, we used the Pearson correlation
coefficient between the (MKL) space dimension and (input) feature.
The values for all such pairs are available in Figure 3.12 of Appendix
3.C. Herein, we discuss the highest correlation cases. For instance, the
first dimension of the obtained space (Figure 3.4, top row) appears to
be highly correlated with cervical dilatation, duration of contractions
and, inversely, with the time between contractions. Thus, in this
dimension, women in similar stages of labour are closely positioned,
with the leftmost and rightmost regions of the scatter plots mostly
populated with women that, at admission-time, were in earlier and
later labour stages, respectively. It is then expected that subjects
move towards the right, in the scatter plot, as labour advances. This
trend is illustrated by Figures 3.5a and 3.5b. Figure 3.5a overlays
the trajectories defined by some of the subjects of the training set
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on the admission-time scatter plot of dimension 1 vs. dimension 2.
Each sequence of connected triangles corresponds to the trajectory
of one individual, with each triangle corresponding to a follow-up
and colored by the follow-up timing normalized by delivery timing.
An heterogeneity in initial positioning (i.e. admission-time labour
stage) is observed. Nonetheless, as expected, all individuals define a
rightwards trajectory as labour progresses. In Figure 3.5b, the E1

0(t)
(±σ1

0(t)) curve is plotted for a subject whose initial projection lies
on the leftmost region of the scatter plot. As expected, with time,
projection values in dimension 1 increase. An initially larger slope
gradually decreases, a pattern that is explained by the fact that in
the first few hours both slower and faster deliveries are weighing in on
the curve estimation, whereas for later timings only slower deliveries
are, pushing the mean curve down.

The position in the lower-dimensional space is not only dictated by
dynamic labour variables. In the bottom row of Figure 3.4, we can ob-
serve that position in dimension 2 has some correlation with the coun-
try variable. Interestingly, it also correlates with cervix consistency,
suggesting some association between country and admission-time as-
sessment of cervix consistency. The leftmost scatter plot suggests
that experiencing emotional distress is translated into a downwards
displacement in dimension 6.

Figures 3.4 and 3.5 show some intuitive examples of similarity-
ordering and clinical interpretability in the MKL space. However, as
previously mentioned, similarity-ordering does not always happen in
such obvious ways for all features/dimensions.

This interpretability of the MKL space can facilitate the identi-
fication of patterns regarding the occurrence of target events. For
example, in Figure 3.6, analogous scatter plots are generated, this
time colored by the (non)occurrence of our outcomes of interest, CS
and BO. Figure 3.6-left seems to showcase a higher density of CS cases
in subjects on the leftmost region, which we have seen to correspond
to earlier-stage labours. This trend is confirmed in Figure 3.6-right.
In the case of BO, there is a less evident pattern. Figure 3.11 in
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Appendix 3.B extends this analysis to the practice of amniotomy and
labour augmentation, with the resulting patterns suggesting some
correlation between the incidence of these interventions and subject
positioning along dimension 2 (Figure 3.11-right). Given the correla-
tion of dimension 2 with country observed in Figure 3.4, this pattern
suggests a higher incidence of both interventions within Nigeria’s
facilities.
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Figure 3.5: Interpreting trajectories in the MKL space. (a) Examples
of trajectories defined by training set subjects in the first 2 dimensions
of the MKL space. Each sequence of connected triangles corresponds to
the trajectory of one subject; the triangles correspond to follow-ups and
are colored by respective follow-up timing normalized by delivery timing
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p,0(t), cropped at the timing where |C(t)| is halved. Bottom
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E1
p,0(t), |C(t)|.
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Figure 3.6: Spatial distribution of outcomes of interest in the admission-
time MKL space. Right: CS and BO rates of occurrence throughout
dimension 1, obtained by dividing scatter points in 20 bins along dimension
1 and computing each bin’s occurrence rate.
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3.3.2. Evaluation

The lack of a standardized reference for labour monitoring and
decision making can lead to heterogeneous practice. To explore
practice differences within our dataset, additionally to evaluating the
framework from a global perspective, we also engage in subgroup-level
analysis.

Global performance

Table 3.1 contains the results of the CS prediction experiments for
the complete training and testing populations (columns styled in bold).
Regarding the cross-validation stage, {vCSk }, k ∈ {π, πz, πzt}, showed
similar performances, with vCSπzt performing marginally better. The
AUC values, ranging from 0.746 to 0.767, suggest a reasonably good
predictive power. In what regards the other performance metrics, it
is observed that, with the selected cut-offs, the framework evaluation
predictors largely outperformed the classical alert and action lines,
achieving a much better trade-off between metrics related to the
positive (SE, PPV) and negative (SP, NPV) class, with vCSπzt achieving
SE and SP ≈ 0.7, ≈ 0.26 and NPV ≈ 0.94. The alert and action lines
present relatively good specificity, at the expense of poor sensitivity.
When applying the learned cut-offs to the testing set, performances
did not significantly change, suggesting a good generalizability.

Table 3.2 shows the results of the BO prediction experiments.
Again, {vBOk }, k ∈ {π, πz, πzt}, showed similar performances, this
time with vBOπ performing slightly better. Compared to the CS pre-
diction experiments, predictive performances were significantly lower.
Despite AUC values (ranging between 0.561 and 0.594) being only
slightly better than that of the random classifier, results of random
permutation tests suggest that this improvement is statistically sig-
nificant (p-values ≤ 0.0008). With the selected cut-offs, the defined
predictors again achieved a better trade-off between metrics related
to the positive and negative class, with SE and SP above 0.56, PPV
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Table 3.1: CS prediction results. n = sample size; nCS = number of
positive cases; Th = threshold/cut-off; SE = sensitivity; SP = specificity;
PPV = positive predictive value; NPV = negative predictive value; AUC
= area under the receiver operating characteristic; p-value = fraction of
random permutation tests for which AUC ≥ AUCobserved (total of 10000).

Train (n = 6349; nCS = 817)

Th SE SP PPV NPV AUC (p-value)
Alert line - 0.540 0.728 0.227 0.915 -
Action line - 0.290 0.889 0.278 0.894 -

vCSπ 0.221 0.699 0.700 0.256 0.940 0.763 (< 0.0001)
vCSπz 0.422 0.683 0.684 0.242 0.936 0.746 (< 0.0001)
vCSπzt 2.038 0.706 0.707 0.263 0.942 0.767 (< 0.0001)

Test (n = 2121; nCS = 279)

Th SE SP PPV NPV AUC (p-value)
Alert line - 0.548 0.731 0.236 0.914 -
Action line - 0.290 0.891 0.288 0.892 -

vCSπ 0.221 0.674 0.696 0.251 0.934 -
vCSπz 0.422 0.659 0.712 0.258 0.932 -
vCSπzt 2.038 0.703 0.712 0.270 0.941 -

≈ 0.03 and NPV ≈ 0.98, whereas the alert and action lines again
favored specificity over sensitivity. When applying the learned cut-offs
to the testing set, the SE-SP balance decreased in the cases of vBOπ
and vBOπz . On the other hand, vBOπzt showed good generalizability.

Subgroup performances I: the four-centimeter threshold
The results of the first subgroup analysis are shown in Table 3.3.
Note that (as expected given the patterns observed in Figure 3.6) the
CS rates are significantly larger for the “less than 4 cm” subgroups,
which might have a direct effect on PPV and NPV. Before looking
at specific cut-offs, there is already an evident difference between
the average AUC values of the two groups (with AUC↑ and AUC↓

reaching a maximum of 0.67 and 0.81, respectively). This gap reflects
on the remaining performance metrics, obtained with the recomputed
cut-offs. Having the global-level experiments as reference, in the case
of the “less than 4 cm” subgroup, cut-off values adapt by increasing,
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Table 3.2: BO prediction results. n = sample size; nBO = number of
positive cases; Th = threshold/cut-off; SE = sensitivity; SP = specificity;
PPV = positive predictive value; NPV = negative predictive value; AUC
= area under the receiver operating characteristic; p-value = fraction of
random permutation tests for which AUC ≥ AUCobserved (total of 10000).

Train (n = 6349; nBO = 155)

Th SE SP PPV NPV AUC (p-value)
Alert line - 0.419 0.697 0.033 0.980 -
Action line - 0.174 0.867 0.032 0.977 -

vBOπ 0.036 0.594 0.594 0.035 0.983 0.612 (< 0.0001)
vBOπz 0.069 0.561 0.567 0.031 0.981 0.581 (0.0008)
vBOπzt 0.283 0.568 0.573 0.032 0.981 0.595 (< 0.0001)

Test (n = 2121; nBO = 44)

Th SE SP PPV NPV AUC (p-value)
Alert line - 0.455 0.698 0.031 0.984 -
Action line - 0.205 0.869 0.032 0.981 -

vBOπ 0.036 0.523 0.635 0.029 0.984 -
vBOπz 0.069 0.500 0.605 0.026 0.983 -
vBOπzt 0.283 0.568 0.557 0.026 0.984 -

and the opposite happens in the complementary subgroup. Figure 3.7
shows how performances are being optimized for both subgroups
by using adaptive cut-offs, as opposed to a globally estimated one.
Performances of the alert and action lines were again significantly
inferior to those of the framework evaluation predictors.

Figure 3.8 compares the performance of our framework evaluation
predictor vCSπzt with those of the admission-time and earliest interval
(0-2 h after onset of 4 cm of cervical dilatation) models by Souza et
al. [Souza et al., 2019] (referred to as Model 1 and Model 2 in said
publication, respectively), demonstrating that we achieve comparable
performances to those of their prediction models.

When doing the same evaluation for the BO prediction task,
performances were poor for both subgroups (Table 3.4).
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Figure 3.7: Illustration of cut-off value adaptation to optimize performances
at the subgroup level. SE and SP pair for the predictor vCSπzt in the “less than
4 cm” (left) and “4 cm and over” (right) subgroups, when the estimated
global and subgroup cut-offs are used.

Figure 3.8: Comparison of obtained performances with those of admission-
time (Model 1) and earliest interval (Model 2) models by Souza et al. [Souza
et al., 2019].
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Subgroup performances II: finer granularity

In the previous analyses we observed that performances can be
improved by estimating subgroup cut-offs for our predictors. So
far, we have considered only two subgroups: cervical dilatation less
than/greater or equal than 4 cm upon arrival. Herein, we increase
the granularity of the analysis, and look at smaller subgroups of
the population. The subgroups are defined as equally sized regions
of the admission-time MKL space (dimension 1 vs. dimension 2).
Figures 3.9 and 3.10 illustrate the partitioning of the space in said
regions for the training (left) and testing (right) set subjects. In the
top row plots, the predictor among {vek}, k ∈ {π, πz, πzt}, with the
best performance in testing (measured as the maximum value for
min(SE, SP )) is identified for each region, along with the selected
cut-off and corresponding performance metrics (Figures 3.9a and
3.10a). In the bottom row plots, the same process is repeated for the
alert and action lines (Figures 3.9c and 3.10c). When each regional
cut-off is applied to the corresponding partition of the testing set, the
performances are those highlighted in Figures 3.9b, 3.10b, 3.9d and
3.10d. All scatter plots are colored by the regional minimum between
SE and SP.

The color patterns in Figures 3.9 and 3.10 suggest that, consistently
with the results of the global analysis, (1) the framework evaluation
predictors present overall superior performances to the partograph
predictors, and (2) the CS predictive performances are significantly
higher than those regarding BO.

Figure 3.9a reveals a gradient in performance that is roughly
organized in rightward orientation, suggesting that the prediction of
CS is more effective for subgroups corresponding to later labour stages
at admission time. On the other hand, the optimal cut-off values
decrease as we move to the right. These effects are consistent with
the results of the previous analysis based on the admission-time 4 cm
threshold. The vCSπ predictor appears 6 out of 9 times as that with
the best performance in testing, among the three candidates. In most
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cases, performances in the testing set (Figure 3.9b) are comparable
to those in the training set. The regional performances of the alert
and action lines (Figures 3.9c and 3.9d) range from comparable to
significantly worse than those of the framework evaluation predictors,
depending on the subject subgroup at hand. It is observed that they
perform best in partitions where Uganda is the dominant country (see
Figure 3.4).

When it comes to BO prediction, regional analysis was done at
a coarser level due to the scarcity of positive cases. Regional perfor-
mances of the framework evaluation predictors (Figures 3.10a and
3.10b) were more or less in line with the global counterpart (Table 3.2),
except for two partitions where performance levels were significantly
worse. In the 4 remaining partitions, the value of min(SE, SP ) was
above 0.56 in both training and testing, with a prevalence of the
vBOπzt predictor over the two other candidates. There is no apparent
organized spatial pattern in performance. The regional performances
of the partograph predictors (Figures 3.10c and 3.10d) were either
comparable the framework evaluation predictors, or (most often) sig-
nificantly worse than the framework evaluation predictors – only in
1 out of 6 partitions both SE and SP values surpassed 0.5 in both
training and testing; moreover, in 4 out of 5 partitions there was a
very poor SE-SP trade-off (again in favour of specificity).
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3.4. Discussion

We presented a novel approach for personalized temporal labour
monitoring and decision support. The proposed framework dynam-
ically identifies peers (from a cohort study) of the mother to be
monitored, based on similarity of the different input variables. Peer
labour progress, intervention and outcome data are then used to eval-
uate divergence from ideal progress and to provide estimates of risk
of adverse outcome or intervention recommendations. The proposed
labour monitoring framework thus addresses the main limitations of
the partograph (univariate, one-fits-all) approach and enriches it with
reference practice data. Besides describing the proposed algorithm,
we evaluated its performance (when used in a simple decision support
system) to predict adverse fetal/maternal labour outcome and cae-
sarean section. For validation, we compared performances with the
current state of the art: the current recommended monitoring tool
(the partograph) and some of the most recent and best performing
CS prediction models, presented by Souza et al. [Souza et al., 2019].
Additionally, in order to explore the potential of the framework in
the identification and learning of different practices, we performed
subgroup analyses.

While being a machine learning approach, the proposed frame-
work uses a fully interpretable paradigm that relies on non-supervised
information similarity to calculate distances of subjects based on a
complex and comprehensive data. This similarity is used to posi-
tion subjects within a lower-dimensional space that can easily be
interpreted in regards to the input data. To illustrate this clinical
interpretability, we calculated the Pearson correlation of the resulting
distribution with the input information and provided a labeled visu-
alisation, showing which variables predominately identify peers of a
given mother. This visualisation provides meaningful insight into the
cohort data, and their interactions, used for training; for example, in
case of the SELMA study, it highlights the different practice in the
participating countries. Additionally, when using temporally varying
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dynamic information, labour progress can be interpreted from the
trajectory within the lower-dimensional space, and different subjects
can be compared amongst each other or to available cohort data. An
additional advantage of the proposed framework is that it naturally
follows the paradigm of the parthograph while addressing some of its
shortcomings. The underlying idea of the partograph is to visually
provide feedback on the dynamics of an extended set of variables and
compare this continuously to progress that is perceived as leading
to desired outcome. When this comparison deviates from normality
(i.e. crosses the alert or action line), an indication for intensified
monitoring or corrective actions is provided. Our approach uses a
similar paradigm but additionally personalises and continuously up-
dates the information an individual is compared to, in order to make
it more pertinent for that individual, and it allows using knowledge
from cohort or clinical studies to suggest the likelihood of a specific
intervention.

The performance evaluation results show that our framework
significantly outperformed the partograph’s alert and action lines in
the prediction of both CS and BO (Tables 3.1 and 3.2; Figures 3.9 and
3.10). The predictive performances were significantly higher for CS.
The lower rates for predicting BO were expected given the very low
occurrence (only about 2%) as well as the fact that interventions such
as CS are performed exactly to prevent BO when this is suspected
during labour progress. The diversity in etiologies, as well as the
inclusion of postpartum events, when available monitoring data ends
at delivery, further complicate the prediction task.

Subgroup analysis allowed us to detect differences in CS practice
among groups of individuals with different admission-time character-
istics, and adapt cut-offs to maximize subgroup-level performances.
This type of analysis let us understand, for example, that CS practice
was more aligned with the alert and action lines in Ugandan than
in Nigerian facilities; nonetheless, our approach was able to “learn”
both countries’ practices with comparable performances. We observed
that CS was significantly more prevalent among women with lower
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admission-time dilatations, a result that is consistent with evidence
from previous observational studies [Holmes et al., 2001, Neal et al.,
2014, Bailit et al., 2005, Mikolajczyk et al., 2016, Chuma et al., 2014].
However, the achieved local performances with adapted cut-offs were
far superior for late-admission subgroups. In other words, CSs were
performed in significantly larger amounts, but seemingly in a less
consistent/predictable manner. Overall, subgroup predictive analysis
demonstrates high potential in the identification of practice differ-
ences/biases and in the subgroup-level optimization of predictive
performance. In the case of BO, the previously enumerated challeng-
ing aspects of BO prediction are the same that limit our ability to
discover subgroup patterns.

It was observed that combining cohort-based occurrence estimates
with distance from normality and timing information added predictive
value in multiple occasions, in both CS and BO prediction tasks.
Using a more complex combination of predictors or calculation of
distance might improve the results.

Previous approaches to decision support in terms of CS consisted
mostly of supervised training models to learn study-specific practice
from a subset of the study and testing predictive performance on a
different subset of the same study. It is thus important to clarify that
good predictive performances suggest that they succeed at learning
“what was done”, which does not always align with “what should have
been done”. This is specifically the case for CS where the clinical
decision is based on a combination of true clinical need and local
practice/preference. This requires that risk estimates obtained from
these models, albeit useful, should be handled with caution and ideally
always as a complement to other risk estimates. Because there is
no ground truth data on “what should have been done”, “what was
done” is commonly used to evaluate systems, which is why we also
evaluated our framework for this problem. Our approach differs from
others in that it is not explicitly developed and trained to maximize
performance in this one (and only) specific task. We rather include
study-specific chance estimates as one of the elements to weigh in on
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risk assessment, which happens to be the component that is possible to
evaluate with existing data. Additionally we provide an independent
quantification of how the progress of an individual deviates from peers
that went through uneventful labours. The value of this can only be
fully evaluated in a wider prognostic evaluation.

Recently Souza et al. [Souza et al., 2019] presented an optimised
supervised logistic regression model for the prediction of CS. Instead
of one single model, they suggested to use a combination of a labour
admission model, interval models, and a maximum score model. Our
framework performed comparably to the admission model (Figure 3.8).
Their interval models require having an assessment made at a cervical
dilatation of 4 cm, which inherently limits their clinical use to women
with cervical dilatations of 4 cm and under upon admission. In the
case of SELMA dataset, that information was only present in less than
30% of the individuals. Our system (useful in everyone irrespective of
admission dilatation or labour phase) showed similar performance for
their proposed [0-2 hours]-interval model (Figure 3.8), while at the
same time providing a much more intuitive approach towards decision
making. The reported improved performance in the later-interval
models is difficult to compare with our results given that they can only
be used in 15% (for the 4 hours-model) or 5% (for the 6 hours model)
of individuals. Their maximum score model does outperform our
predictors. However, this model is based on a post-hoc analysis of the
data throughout labour progression, thus making it impossible to use
for decision support in a real-time scenario where at each time point a
decision regarding a possible intervention needs to be taken. Addition-
ally, it should be recalled that we are comparing the performance of a
minimal implementation of our proposed framework, assessed based
on simple individual predictors, with that of multivariate prediction
models specifically trained for this prediction task.
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3.5. Limitations

The main limitations of the current paper are related to: (1) the
specific implementation choices for each stage of the framework –
current methodologies behind the different steps can be replaced with
more suited/sophisticated techniques; and (2) the evaluation scheme
– the naively defined predictors and evaluation scheme are unlikely
those which maximize performance. Nonetheless, the results clearly
show the power of the novel proposed paradigm.

The fact that the learning of the MKL model is completely unsu-
pervised gives us limited control over which features will be dominant
in the ordering of data in the space. In some cases, this might be
seen as a limitation. For example, features with very rare occurrences
of abnormal values, even if correlated with outcome, might end up
underrepresented. One can gain some control over the obtained space,
by relaxing the “unsupervised” constraint. For example, the model
could be learned supervised by outcome, thus favoring features that
are discriminatory with regard to that outcome. Another alternative
would be to have prior clinical knowledge on which features are more
important in contributing to the model estimation, a solution that,
although not completely unsupervised, would be less dependent on
the outcome of a particular study.

On the other hand, the main contribution of the current paper
is the design of a monitoring framework that is flexible both in
implementation and in application (i.e. easily translatable to other
clinical monitoring and decision support problems).

3.6. Conclusions

We proposed a labour monitoring framework that addresses some
of the main limitations of the current reference tool, the partograph,
as well as of logistic regression models optimised for predicting certain
events.
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A similarity-based dimensionality reduction step enables a sim-
plified interpretable representation of high-dimensional data. This
representation might help, first, in the identification of complex pat-
terns of interaction among clinical variables that are hard to perceive
by the classical visualization of the partograph. Then, this represen-
tation is key for our formulation of a peer-based personalization of
labour monitoring. Under the premise of a precomputed database
of projected labour data with known interventions and outcomes,
the framework dynamically evaluates “normality” in labour progress
and also provides insight on what would be study practice in similar
scenarios.

Experiments with the SELMA study illustrate the clinical inter-
pretability of the framework and its superiority compared to the par-
tograph’s alert and action lines in the prediction of clinically relevant
events. Additionally, it is shown that, with a minimal implementation
and an evaluation based on simple and intuitive descriptors, it per-
forms comparably to state-of-the-art multivariate prediction models,
while tackling some of their limitations in terms of integration in a
clinical environment.

Overall, we believe that the current paper showcases the proposed
framework as a promising alternative way of looking at the problem
of labour monitoring and allows extension to any decision-making
or prognosis task in the setting of clinical reality where subjects
show a very heterogeneous initial presentation, are monitored in non-
standardised intervals and are evaluated towards complex outcomes.
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Appendices

3.A. Static and Dynamic Features

Table 3.5: Admission-only / static features.

NAME NOTES

1 Country code Country code: Uganda/Nigeria (1/0)

2 Ethnicity Ethnicity: [NIGERIA] 1 - Ibo; 2 - Yoruba; 3 - Hausa; 4 -
Fulani; 5 - TIV; 6 - Kanuri; 7 - Other Nigerian; 8 - Non
Nigerian; [UGANDA] 9 - Muganda/Musoga/Mugisu;
10 - Munyakore/Mukiga/Munyoro/Mutoro; 11 -
Acholi/Langi/Alur; 12 - Iteso/Karamojong; 13 -
Lugbara/Madi; 14 - Other Ugandan; 15 - Non-Ugandan

3 Facility code 1-13

4 Age years

5 Height cm

6 Foot length cm

7 Current weight kg

8 Marital status Marital status: 0 - Single / Separated / Divorced / Wid-
owed; 1 - Married / Cohabitating

81



“output” — 2020/7/16 — 10:52 — page 82 — #104

9 Education
level

Education level: 0 - No education; 1 - Other (e.g.
Quranic / Nomadic education only; 2 - Pre-primary ed-
ucation; 3 - Incomplete primary education; 4 - Com-
plete primary education; 5 - Incomplete secondary educa-
tion; 6 - Complete secondary education; 7 - Incomplete
post-secondary/tertiary education; 8 - Complete post-
secondary/tertiary education)

10 Gainful occupa-
tion

Gainful occupation: 0 - No; 1 - Yes

11 Parity Number of previous births

12 Previous
abortions or
stillbirths

Previous abortions or stillbirths: 0 - No; 1 - Yes

13 Previous
uterine
surgery

Previous uterine surgery (includes previous c-sections or
other uterine surgeries): 0 - None; 1 - One; 2 - More than
one

14 Best estimate of
gestation

weeks

15 Mode of
labour onset
and refer-
ral (or not)
from another
health facility

Mode of labour onset and referral (or not) from another
health facility: 0 - spontaneous onset, not referred from
another facility; 1 - induced, not referred; 2 - spontaneous,
referred; 3 - induced, referred

16 Fetal move-
ments in the
last 2h

Fetal movements in the last 2h: 0 - reduced or absent; 1 -
no changes/increased

17 Preterm rup-
ture of mem-
branes

Preterm rupture of membranes: 0 - No; 1 - Yes

18 Obstetric
haemorrhage

Placenta praevia, accreata increta percreta, placentae
abruption or other obstetric haemorrhage: 0 - No; 1 - Yes

19 Pre-
eclampsia
or eclampsia

Pre-eclampsia or eclampsia: 0 - No; 1 - Yes
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20 Cervix efface-
ment

Cervix effacement: 0 - Thick (less than 30% effaced); 1 -
Medium (up to 50% effaced); 2 - Thin (up to 80% effaced);
3 - Very thin / paper-thin (more than 80% effaced)

21 Cervix position Cervix position: 0 - Anterior; 1 - Central; 2 - Posterior

22 Cervix consis-
tency

Cervix consistency: 0 - Soft; 1 - Medium; 2 - Firm

23 Symphysis fun-
dal height

cm

24 Sacral promon-
tory reached

Sacral promontory reached: 0 - No; 1 - Yes; 2 - Not
assessed

25 Ischial spines
prominent

Ischial spines prominent: 0 - No; 1 - Yes; 2 - Not assessed

26 Pubic angle ad-
mits less than
two fingers

Pubic angle admits less than two fingers: 0 - No; 1 - Yes;
2 - Not assessed

27 Cardiovascular
condition

Chronic hypertension, heart disease, obesity, or chronic -
anaemia: 0 - No; 1 - Yes

28 Immunity
condition

HIV or AIDS: 0 - No; 1 - Yes

29 Diabetes Diabetes or gestational diabetes: 0 - No; 1 - Yes

30 Renal condi-
tion

Pyelonephritis or renal disease: 0 - No; 1 - Yes

31 Lung disease Lung disease: 0 - No; 1 - Yes

32 Anaemia Anaemia: 0 - No; 1 - Yes

33 Other condi-
tion

Other chronic disease, other pregnancy complications,
malaria: 0 - No; 1 - Yes
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Table 3.6: Follow-up / dynamic features.

NAME NOTES

1 Contraction ON
time

Duration of uterine contractions (seconds)

2 Contraction
OFF time

Time between contractions (seconds)

3 Cervical dilata-
tion

cm

4 Maternal Heart
Rate

bpm

5 Systolic Blood
Pressure

mmHg

6 Diastolic Blood
Pressure

mmHg

7 Axillary Tem-
perature

oC

8 Amniotic mem-
branes status

Amniotic membranes status: 0 - Intact; 1 - Ruptured
without meconium; 2 - Ruptured with stale meconium; 3
- Ruptured with fresh meconium

9 Emotional sta-
tus

Since the last assessment, how much the woman has been
bothered by emotional problems such as fear, anxiety,
depression, irritability, or sadness? 0 - Not at all; 1 -
Slightly; 2 - Moderately; 3 - Quite a bit; 4 - Extremely

10 Labour pain Since the last assessment, how much the woman has been
bothered by labour pain? 0 - Not at all; 1 - Slightly; 2 -
Moderately; 3 - Quite a bit; 4 - Extremely

11 Labour Com-
panionship

Labour Companionship: 0 - No; 1 - Yes

12 Fetal Heart
Rate

bpm

13 Fetal move-
ments

Fetal movements observed/felt: 0 - No; 1 - Yes
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14 Fetal presenta-
tion

Fetal presentation: 0 - Cephalic; 1 - Breech; 2 - Transverse
lie / compound / other

15 Fetal station Fetal station: 0 - Above ischial spine; 1 - At ischial spine;
2 - Below ischial spine

16 Position of fetal
head

Position of fetal head: 0 - Occiput Anterior (includes right
and left); 1 - Occiput transverse; 2 - Occiput posterior; 3
- Other

17 Caput Succeda-
neum

Caput Succedaneum: 0 - None; 1 - Mild; 2 - Moderate; 3
- Severe

18 Moulding Moulding: 0 - None; 1 - First degree; 2 - Second degree;
3 - Third degree

19 Maternal posi-
tion

Predominant maternal position between assessments: 0
- Upright, sitting, standing, walking, kneeing, squatting,
all-4; 1 - Recumbent, semi-recumbent, lateral, supine

3.B. Other interventions in the MKL space
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Figure 3.11: Spatial distribution of other interventions in the admission-
time MKL space. Right: amniotomy and labour augmentation rates of
occurrence throughout dimension 2, obtained by dividing scatter points in
20 bins along dimension 2 and computing each bin’s occurrence rate.

85



“output” — 2020/7/16 — 10:52 — page 86 — #108

3.C. Dimension-variable correlation coefficients
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Figure 3.12: Pearson correlation coefficients of the 10 vs. 52 dimension-
variable pairs, in the training data admission-time MKL space.
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Chapter 4

BCN-SELMA: A SIMPLIFIED,

EFFECTIVE, LABOUR

MONITORING-TO-ACTION

TOOL, BASED ON

INTERPRETABLE MACHINE

LEARNING

This chapter is adapted from: M. Nogueira, C. Yagüe, G. Piella, M. De
Craene, S. Sanchez-Martinez, P. Mart́ı, M. Bonet, O.T. Oladapo, B. Bijnens.
BCN-SELMA: A Simplified, Effective, Labour Monitoring-to-Action tool, based
on Interpretable Machine Learning. In preparation.
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4.1. Background

4.1.1. SELMA

The World Health Organization (WHO)’s project for the de-
velopment of a Simplified, Effective, Labour Monitoring-to-Action
(SELMA) tool has as primary objectives [Souza et al., 2015]:

“To identify the essential elements of intrapartum monitoring
that trigger the decision to use interventions aimed at preventing
poor labour outcomes”;

“To develop a simplified, monitoring-to-action algorithm for
labour management”;

“To compare the diagnostic performance of SELMA and parto-
graph algorithms as tools to identify women who are likely to
develop poor labour-related outcomes”.

To this end, a large database covering approximately 10.000 de-
liveries has been collected in a multicentric study, with a rich set of
features being collected at first presentation, during different stages of
labour and after delivery. Although the study provides a unique source
of knowledge to address the anticipated objectives, there are two ma-
jor obstacles to easily translate the study into a monitoring-to-action
algorithm. Firstly, the incidence of adverse outcome in the study is
low (≈ 2%), which poses severe imbalance problems for any learning
tool that uses this label for predictions. Secondly, and even more
problematic for interpretation and learning, the study did not rigidly
define what course of actions to be taken during labour using hard
decision criteria/timings, but rather suggested to use best practice
as implemented locally and recommended by the WHO. Although
this obviously closely relates to routine clinical practice, it makes
that the link between initial presentation and final outcome is not
straightforward, given that, at the clinicians discretion, interventions
have been done during labour that might have been unnecessary to
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prevent adverse outcome. Therefore, any algorithm proposed to act
as a backbone for a decision support system (DSS) should take this
nonstandardised decision making during the study data collection
into account.

4.1.2. Machine learning in a clinical setting

In personalized medicine, the treatment of each specific patient is
tailored towards their specific needs, based on the available data and
relevant information previously learned from clinical trials and cohorts.
This requires the detailed characterisation of the patient and the
determination of what can be referred to as their “phenotype” [Cikes
et al., 2019]. Many clinical conditions are observed to manifest
heterogeneously among different patients, when a thorough data
collection is carried out. Additionally, not only will a patient show a
particular phenotype at first presentation to the clinician, but over
time and with different interventions performed, data will continuously
change (reflecting improvements or worsening of their condition).

Machine learning (ML) approaches have been applied in attempts
to ease the implementation of personalised medicine, specifically in the
fields of diagnosis, classification, prognosis and treatment selection
of many conditions. Supervised ML uses algorithms that “learn”
from large (accurately) labelled training datasets. However, many of
the proposed approaches are difficult to explain with regards to the
(clinical) reasoning that is used. On the other hand, unsupervised ML
does not aim at providing an answer to the specific learned question
(diagnostic label, prognosis, etc.) but instead groups individuals based
on their characteristics as described by the available (heterogeneous
and rich) input data. Through this grouping, clusters of similar
patients can be identified, and common characteristics/“phenotypes”
can be described and linked to diagnostics, treatment response, and
so forth.

Recently, ML, especially “deep learning”, has shown to be very
successful at tasks where there is a clear “ground truth” for learning,
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such as the identification of objects (e.g. cats, fruits) from pictures
and, in medicine, the segmentation of well-defined structures (such
as the cardiac cavities from medical images). However, when used
for decision-making in clinical practice, ML can be more problematic.
A well-known example is that of risk assessment and prognosis in
pneumonia, where ML algorithms classify patients with asthma as
being of low-risk and not needing interventions, while this finding
was based on the fact that, in the learning dataset, asthma patients
with suspected pneumonia were treated much more aggressively at
presentation, thus effectively lowering their risk when compared to
non-asthmatics [Ambrosino et al., 1995]. As ML predictions can rely
on or reveal important biases in the population, one needs to interpret
results prior to applying it within clinical workflows.

There are two approaches that can ensure that ML does not lead
to unwanted results/increased risk for the patient. On the one hand,
explicitly intelligible models can be used that allow interpretation
and removal of unwanted effects [Caruana et al., 2015] and, on the
other hand, a more intuitive approach can be used where patients are
compared to one another and the computed similarity is subsequently
presented to the clinician and used for prognosis and therapy predic-
tions [Cikes et al., 2019]. In both cases, in order to end up with a tool
that can be deployed in a real-world clinical setting, it is crucial that
it is not a stand-alone black-box system, but that it integrates well in
the framework of decision-making by clinicians/is interpretable as a
sequence of clinically meaningful criteria. Figure 4.1 illustrates this
(as example in a cardiology setting) and compares ML approaches to
what experienced clinicians would do in clinical practice. Clinicians
would explore all available data of a given patient and use experience
to compare the whole of this data to those of patients they have seen
before or were trained to recognise. After positioning the individual
with regards to “normality” and typical cases, the course of action
is defined based on previous experience regarding treatment results.
Given that this is an “eminence-based” subjective approach that only
works well for experienced clinicians, many professional organisations
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(including the WHO) have provided guidelines that, based on what
was observed in large cohorts or clinical trials, make recommenda-
tions for patient management. Although these recommendations have
proven to standardise medical care in a better way, there are still issues
and room for improvement. Most importantly, the current process
of formulating guidelines is not guaranteed to make the best use of
the original data from trials and studies it is based on. Here, two
aspects are relevant: firstly, the fact that studies often skip a thorough
analysis of the complex original data (e.g. when images, physiological
measurements or lab-analysis, are available) and start off from estab-
lished derived simplified measures; secondly, clinical practice is often
much more complex and varied than clinical trials, where well-selected
patients are included to be managed by well-defined protocols of care.
In clinical reality, patients often present outside the narrow selection
criteria of trials (e.g. regarding co-morbidities, ethnicity, gender, age,
lifestyle) or at a different stage of disease/condition; they might have
been treated before using different protocols; the acquisition of certain
types of data might not be feasible owing to lack of resources, and so
forth.

Given the power of contemporary ML for other applications, one
can wonder how it can be helpful in providing a monitoring-to-action
tool to support the clinician in decision making with real-world pa-
tients, or to aid in the extraction/reformulation of “best practice”,
through learning from full datasets of trials/cohorts or even the com-
bination of different datasets.

As mentioned above, the blind application of ML on large datasets
without in-depth knowledge of exactly what it clinically represents,
which bias might be embedded, and which approach to decision-
making was used, can lead to unwanted results, being potentially
dangerous for the patient. A more promising approach is based on
data dimensionality reduction, where all complex data is first used
in an agnostic way to identify the most relevant features to describe
a population, and after which all individuals are ordered according
to similarity of these features. In this new ordering, individuals are
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Figure 4.1: Machine learning in clinical decision making (adapted
from [Cikes et al., 2019]).

close to each other if they clinically present in a similar way and far
from each other otherwise. While this can be used for diagnostic
labelling with different gradations of normality-abnormality, it also
provides an intuitive approach towards the assessment of therapies
and interventions, given that these are aimed to transition an in-
dividual towards increased “normality”, while taking into account
demographics, clinical history, and others.

We have recently shown that an unsupervised approach imple-
menting this idea, based on multiple kernel learning (MKL), can
provide useful insight in (large) complex patient populations [Sanchez-
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Martinez et al., 2018, Nogueira et al., 2020a]. Additionally, this
approach can be used to study temporally dynamic phenomena where
the condition of a patient changes over a (short or long) period of
time as a result of an “intervention” [Nogueira et al., 2020a].

In this report, we describe BCN-SELMA, our implementation of a
Simplified, Effective, Labour Monitoring-to-Action tool based on this
idea of similarity-based dimensionality reduction.

4.2. Methods

4.2.1. Cohort

The proposed approach, as well as its validation, is based on the
SELMA project [Souza et al., 2015], a multicentre (9 major hospi-
tals in Nigeria and 4 in Uganda) study conducted by the WHO and
aimed at providing insight and new tools towards the reduction of
labour-associated maternal, fetal and neonatal mortality and mor-
bidity. The study included the collection of a prospective cohort of
9995 women, with data being collected at admission to the centre,
throughout labour and after birth [Souza et al., 2015]. Intrapartum
care was provided based on standard clinical guidelines for good
obstetric care practices [National Institute for Health and Clinical
Excellence., 2007, World Health Organization., 2014] and by skilled
professionals with free access to labour intervention (caesarean sec-
tion (CS), augmentation, assisted vaginal delivery, etc.) resources.
An aggregated bad outcome (BO) was defined as the composite of
stillbirth, intra-hospital early neonatal death, neonatal use of anticon-
vulsants, neonatal cardio-pulmonary resuscitation, Apgar score below
6 at 5 minutes, uterine rupture, maternal death or organ dysfunction
preceded by dystocia.

Table 4.1 summarises the outcome and main interventions per-
formed in this cohort.
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Table 4.1: Summary of outcome and main interventions in SELMA study.
BO = Bad Outcome; CS = Caesarean Section.

Number of patients
(out of total 9995) (%)

Total 2.23
BO Fetal/Neonatal 2.01

Maternal 0.26

CS 13.31

Augmentation 35.08

4.2.2. ML Approach

4.2.2.1. Overall approach

As discussed in 4.1.1, given that the data show a severe imbalance
in BO, a large diversity in admission variables (e.g. women enter the
study in different stages of labour), and that the temporal monitoring
is totally dyssynchronous, it is clear that there is no “straightforward”
ML-based tool to predict the adverse outcome from the admission
data. Additionally, given that the interventions are performed to
prevent adverse outcome, but without clear decision criteria, there is
no unique and well-defined path for each patient from admission to
final outcome.

As discussed in 4.1.2 , it is important that the chosen approach is
intrinsically integrated in the traditional workflow to manage labour.
The latter is illustrated in Figure 4.2.

When a woman presents to the facility to give birth, admission
information is obtained, including maternal characteristics and a first
assessment of the stage of labour and the fetus. Next, an iterative
process is started where mother and fetus are assessed. In each
iteration, either the timing of the next reassessment is chosen or, if
determined appropriate, an intervention is performed to adjust labour
progress. This process continues until birth (and potentially further
on until discharge from the facility). In BCN-SELMA, we have chosen
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Figure 4.2: The overall approach for ML-based management of labour.

the following approach (Figure 4.3):

build a low-dimensional space, positioning individuals based on
the similarity in their admission data using the MKL algorithm.
In practice, a partition of the SELMA dataset was used to
calculate the admission-based low-dimensional space.

the dynamic data is projected onto the learned space, and
temporal trajectories of each individual are quantified and linked
to performed interventions and final outcome.

when a new mother presents, she is first positioned in this space
based on admission data.

during labour, her temporal trajectory is continuously updated
and compared to those from known peers to determine “de-
viation from normality”, as well as to calculate the chance of
intervention based on what was done in the SELMA training
set.

Herein, we briefly summarise the processes of building the MKL space
with the baseline SELMA data and dynamic data analysis. For a more
detailed description, we refer the reader to [Nogueira et al., 2020b].
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Figure 4.3: Illustration of the algorithm on behind BCN-SELMA.

4.2.2.2. Building the MKL space with baseline data

The building of the MKL space with baseline data involved three
main steps: (1) data preprocessing and partitioning, (2) preparation
of MKL algorithm for high performance computing, and (3) actual
learning of the space.

I. Data preprocessing and partition. From the numerous vari-
ables available from the study, the most relevant features for an initial
positioning of patients with regards to each other were identified,
in cooperation with clinical experts. A selection of 52 features was
used to characterize each patient, at any time point. Of those 52
features, 33 corresponded to parameters that were acquired only at
admission, and are mostly related with patient demographics, medical
background and other characteristics that remain unchanged during
the course of labour (see Table 4.5 of Appendix 4.A). The remaining
19 features were followed-up during the process of labour, in non-
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standardised intervals (see Table 4.6 of Appendix 4.A). Some of the
features were directly used in their original SELMA dataset form,
whereas others result from some type of processing/combination of
several others. Those that do not appear in their original form have
their names emphasized in bold.

As previously referred, the original dataset consists of 9995 patients.
Often, values were missing from different features/follow-ups of each
patient. Missing data was mainly dealt with by previous (follow-up)
value propagation. Cases with important missing admission data were
discarded from the analysis. A total of 9446 patients remained. They
were divided into training (75%) and testing (25%) partitions. The
incidence of the main labour-associated interventions and adverse
outcome was verified to be identical in the two partitions.

The MKL projection model was learnt from the admission/first
assessment data of the training portion (7085 patients), and the testing
portion (2361 patients) was used to simulate the occurrence of new
cases.

II. Parallelisation and execution using high performance com-
puting. In MKL, as in other kernel-based methods, scalability is
an issue: as data size increases, memory and time requirements
quickly become intractable. With the current available implemen-
tations [Sanchez-Martinez et al., ], running the algorithm with a
dataset of this size would imply several days for a single iteration.
To improve scalability, parallelisation strategies addressing the most
computationally expensive steps were developed, combining message
passing interface (MPI) [Gropp et al., 1996] and open multi-processing
(OpenMP) [Dagum and Menon, 1998].

The computations were performed on the NORD III supercom-
puter of the Barcelona Supercomputing Center [Barcelona Supercom-
puting Center, ], using up to 17 computing nodes (IBM dx360 M4),
with 16 cores each (2x Intel SandyBridge-EP E5–2670 2.6GHz cache
20MB 8-core). Each node is equipped with a total RAM of 128GB
(8x 16G DDR3–1600 DIMMs (8GB/core)) and 500GB of disk storage
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Figure 4.4: High-level illustration of the MKL implementation. One full
iteration corresponds to a two-step optimization, the first step consisting
of a generalized eigenvalue problem (GEP) – to solve for projection ma-
trix A – and the second step consisting of a semidefinite programming
problem (SDP) – to solve for feature weight vector β. We divided it in
5 blocks/standalone jobs: 1 - computing the matrix pair of the GEP; 2 -
solving the GEP; 3 - computing the input matrices of the SDP; 4 - solving
the SDP; and 5 - computing the energy. For matrix notation and detailed
job descriptions see [Nogueira et al., 2020a, Lin YY, 2011].

The 5 main steps that make up one iteration of MKL were im-
plemented as standalone jobs with specific inputs and outputs (see
high-level illustration in Figure 4.4). A monitor application is respon-
sible for submitting job k+1 only after job k is successfully completed,
assessing convergence at the end of job 5, and either stopping exe-
cution or resuming with job 1 for the next iteration. Data exchange
between consecutive jobs is handled via storing and reading of binary
files. The monitor application was developed in C++, as well as jobs
1, 3 and 5. The C++ Eigen library [Guennebaud et al., 2010] was

98



“output” — 2020/7/16 — 10:52 — page 99 — #121

chosen for handling matrix operations. As for jobs 2 and 4, open
source solvers are currently being used – Python scipy ’s eig [Virtanen
et al., 2020] and the C library CSDP [Borchers, 1999]. These 2 jobs
execute relatively fast, so we focused our efforts in the parallelisation
of jobs 1, 3 and 5, the real bottlenecks of the algorithm. A hybrid
MPI-OpenMP strategy was utilized. All 3 jobs perform a set of
≈ N×N

2
(with N = number of cases) independent operations whose

results are summed, the result of interest being the global sum. We
used the MPI protocol to distribute the computations across 16 nodes:
the master node reads and broadcasts the necessary input data to the
other nodes; then, each of the nodes computes a partial sum. After
all nodes return their partial sums, the master performs the global
sum. Within each node, OpenMP threads are used to distribute the
partial sums by the available cores.

III. Building the MKL space. Using this implementation, the
baseline variables were finally converted into coordinates in the low-
dimensional representation. MKL represents all features in a unified
manner (through kernel/similarity matrices), and all further opera-
tions are performed on the kernelized (instead of raw) data. A global
similarity matrix, which results of a combination of all features’ in-
dividual similarity matrices, dictates how overall (dis)similar each
two patients are, which ultimately dictates their distancing in the
low-dimensional space. The projection model consists of a projection
matrix A and a feature weight vector β, and can be straightforwardly
used to project new data (i.e. “unseen” in the learning). The ap-
proach is illustrated in Figure 4.5 and described in detail in [Lin YY,
2011, Sanchez-Martinez et al., 2017].

4.2.2.3. Dynamic data analysis

After learning the coordinates of the baseline data of the “training”
individuals in the training set, the MKL projection model can be
used to project their follow-up data. After this step, each individual
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Figure 4.5: From the relevant baseline variables, similarity matrices are
computed quantifying pairwise similarity of individuals for each feature.
Using MKL, a low dimensional space is constructed positioning each
individual with regards to each other based on similarity measures of the
baseline variables.

is associated with low-dimensional trajectory (Figure 4.6a). Likewise,
any new data, from individuals that were not used to train the model,
can also be projected onto the MKL space.

The management of new individuals starts with their positioning
in the low-dimensional space based on admission variables. At each
follow-up, their positions are updated. Each time a patient’s position
changes in the low-dimensional space, the “training” patients whose
projections lie in a close neighbourhood (peers) are retrieved and
used to estimate the “ideal” future trajectory (the average trajectory
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among peers with complication- and intervention-free labours, see
Figure 4.6b). This way, individual trajectories can be compared and
interpreted with regards to deviation from “normality”. Additionally,
information on the interventions that were performed among peers
can be used to estimate a chance/risk of intervention.

Therefore, at each point in time, we can identify how labour is
progressing with respect to “normality” and what type of interventions
are recommended to prevent adverse outcome according to SELMA
practice. The methodology for dynamic data analysis is described in
more detail in [Nogueira et al., 2020b].

4.2.3. Decision Support Tool

4.2.3.1. Overall approach

The ultimate objective of this work is to materialize the previous
methodological pipeline into a DSS that is deployable in a clinical
environment. Once a database of low-dimensional trajectories of
“training” patients is available, in order to handle the management
of a new patient, the DSS would require 6 main components, each
associated with one of the following tasks:

1. To capture the admission data, the follow-up information while
labour progresses, intervention and outcome information.

2. To position (=project) the new patient within the low-dimensional
space, learned from the training data.

3. To calculate the expected trajectory for the new patient during
labour, as well as to compare the trajectory of the new patient
to the ideal one.

4. To provide an estimate of the chance of adverse outcome.

5. To provide an estimate of the need for a certain intervention,
that could reverse deviation from the predicted optimal path,
at a certain time point in the future during labour progress.
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Figure 4.6: Trajectories of individuals in the low dimensional space during
labour. (a) Individual trajectories from admission until delivery. (b)
Estimation of the expected path for an individual based on peers with an
uncomplicated delivery (top) and the number of uncomplicated peers used
for this estimate as a function of time (bottom).

6. To dynamically update the position of the new patient within
the low-dimensional space when new measurements become
available during labour.
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4.2.3.2. Implementation

Each of these components have been implemented in a web- and
cloud-based prototype of the BCN-SELMA DSS.

Component 1. Data entry is performed over a spreadsheet-like
form (Figure 4.7– right side). This sheet has three tabs: one for en-
tering the admission variables, one for entering the dynamic variables
during labour progress, and a third one for entering intervention and
outcome information. When data are entered, they are stored in the
database of the system. In order to speed up data entry, if there
are variables that are very likely to show specific initial values, they
are pre-filled with such values as soon as data is entered in one of
the obligatory fields. Suggested information is displayed in orange,
whereas effectively entered data is shown in green. Additionally, there
is a range check for the variables based on the expected values from
the SELMA study, with out-of-range data being shown in red.

BCN-SELMA

Admission data 
collection Expected 

delivery 
progression

Ideal 
delivery 

time

Intervention 
prediction 
and timing

Figure 4.7: Initial view for admission data entry and a first estimate of
trajectory over time, as well as interventions to be performed.
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Figure 4.8: Detail of the prediction panels of the web interface.

Component 2. As soon as the required admission information
has been entered, the system is triggered to project this information
into the learned MKL space. This is performed by the cloud-based
computation engine (discussed ahead). In the initial prototype, this
is based on MATLAB code that is executed in a Docker environment.

Component 3. Once the projection of the patient is known,
the computation engine will calculate their “ideal” labour progress
trajectory , again by executing MATLAB code inside a Docker con-
tainer. The peers from the training set in a certain (multidimensional)
neighbourhood of the position of the new patient (see [Nogueira
et al., 2020b] for details) are determined and split into uncomplicated
births versus those with interventions or adverse outcomes. Then,
the average trajectory and corresponding standard-deviation, for the
uncomplicated peers, are calculated. The results are visualised in the
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left (upper) panel of the web-interface, as illustrated in Figure 4.7.
Given that this is a trajectory in a high-dimensional space, the di-
mension that is displayed in the interface (versus time) is the one for
which the patient currently deviates the most.

As soon as the ideal trajectory is known, the prognosis estimation
for time of birth, adverse outcome, and all possible interventions, can
be performed (components 4 and 5). These estimates are visualised
in the prediction field (lower left panel) of the web-interface (Figure 4.7,
detailed in Figure 4.8). All backend calculations of components 4
and 5 are also executed within a “MATLAB Docker”.

Component 4. The top bar shows the distance of the current
patient to the “ideal” trajectory at each time-point. The second bar
plots the distribution of the time of delivery of the uncomplicated
births. Additionally, the chance of a fully uncomplicated birth is
calculated as the percentage of peers that had one, and it is used to
set the bar’s background colour (green for low chance and red for high
chance). The actual value is printed to the side of the bar. Together,
these two bars (distance from the normal trajectory and chance of
an uncomplicated delivery) provide an estimate of risk of adverse
outcome.

Component 5. The next bars of the web-interface are used to
visualise the chance of a certain intervention (in this prototype: am-
niotomy, cervical ripening, induction of labour, labour augmentation,
and caesarean section) and most likely timings. The chance/risk of
performing the intervention is estimated as the incidence rate among
peers, sets the background colour of the bar and is printed on the
side. Again, 0% chance maps to green and 100% chance maps to red.
The temporal distribution of the intervention among peers is plotted
in a lighter colour (Figure 4.8).

Component 6. Dynamic data are similarly entered in the ap-
propriate tab (Figure 4.9). Each time a new value is entered (after
a certain time period of the previous one), a new time-point (=col-
umn in the spreadsheet) is created and timestamped. Here, for most
variables, the value of the previous capture is copied to speed up
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data entry and ensure completeness. Once the required variables
are available, a “MATLAB Docker” recalculates the position of the
patient in the MKL space.

As soon as the new position is available, all elements of the left
panels (trajectory plot and intervention/outcome bars) are updated.
Figures 4.7-4.11 illustrate this dynamic process for a patient that
finally underwent a CS.

BCN-SELMA
Labour 

progress data 
collection 

Labour 
progression 
compared to 

peers

Updated 
expected 

delivery time

Intervention 
prediction 
and timing

Figure 4.9: Once a new set of dynamic data becomes available, an update
of trajectory and estimations is shown.

106



“output” — 2020/7/16 — 10:52 — page 107 — #129
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Labour 

progress data 
collection 

Progress 
deviation 

compared to 
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Intervention 
prediction 
and timing

Figure 4.10: In this example, at this stage of labour, the distance from the
normal trajectory is large, most peers would have given birth already and
the system predicts CS with the highest probability.

BCN-SELMA
Outcome/ 

interventional 
data collection 

Figure 4.11: In this example, a CS was effectively performed, and all
outcome and intervention data is recorded in the appropriate tab.
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4.2.3.3. Infrastructure

As previously mentioned, the prototype of the BCN-SELMA DSS
is implemented as a web- and cloud-based platform. The current im-
plementation is made of the components and interactions illustrated
in Figure 4.12. The platform is based on virtual servers on a pri-
vate Kubernetes cloud, where the different independent components
(Dockers) are managed. The main components are:

The computation engine: the part of the platform in charge of
executing the patient specific projections and predictions.

Databases: where (anonymised) patient data, as well as the
learned MKL space and parameters relevant for the executions,
are stored.

Application programming interfaces (APIs): the communication
interfaces between the web client (user) and the platform. These
components allow the user to save and get data from databases
and execute the predictions.

Third parties: the current prototype uses the Google authen-
tication approach to provide safe access to the platform and
identify the different users (allowing to store all individual trans-
action/access information for auditing the system).

Proxy: the technology in charge to expose the APIs to the
internet using a DNS or URL.

In order to guarantee optimal data security, all the data in the
platform are pseudo-anonymised, with real ID’s and vulnerable infor-
mation remaining in the original source, where the care is provided,
and not in the platform. Once the user accesses the platform, all
the communication between the computer and the cloud platform is
done using an encrypted HTTPS channel. The platform uses two
authentication strategies before accessing any data, Google Auth and
JWT authentication.
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Figure 4.12: The infrastructure on which the prototype of BCN-SELMA is
implemented.
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The platform can be accessed through a standard web browser and
is implemented in JavaScript (for the user-interface and interaction,
as well as the backbone of the platform), whereas the projection and
prediction parts are based on dockerised MATLAB code.

4.2.4. Evaluation

As described above, the SELMA dataset was subdivided in training
and testing sets. The training set is used to calculate the MKL space,
the estimated trajectories and interventions to be performed. For
each of the test individuals, the above DSS is executed during the
whole labour progress (illustration in Figure 4.13). The ability of
the system to predict adverse outcome, as well as CS (as example of
intervention) is subsequently evaluated.

Current
mother

Individuals positioned based 
on information similarity at 

admission

Find peers

Study data
(BOLD)

E valuation
Individuals positioned based 
on information similarity at 

admission

Find peers

“Train” partition
(75 %, n = 7085) 

“Test” partition
(25 %, n = 2361) 

Concept

Study data
(BOLD)

v
v

v
v

Figure 4.13: Evaluation of the performance of the BCN-SELMA prototype.

The different parameters used for prediction were:

vπ: the chance that a certain event/intervention happened
amongst peers of the individual to evaluate.
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vπz: the chance of an event/intervention combined with maximal
distance from normality of the temporal trajectory.

vπzt: the chance of an event/intervention, combined with the
maximal distance from normality as well as the time elapsed
since admission.

Decision thresholds were learned for each parameter, using a cross-
validation scheme on the training set (illustration in Figure 4.14).
A more detailed description of the evaluation pipeline can be found
in [Nogueira et al., 2020b].

Training set Testing set

Best- 
performing
thresholds

Predict

Extracting
simple

descriptors

Threshold-based 
prediction 

experiments

Predictors Predictors

Figure 4.14: The approach to determine the prediction thresholds from
the training data.

4.3. Results

MKL calculation. As can be seen in Table 4.2, we managed to
achieve an average full-iteration time of under 1 day and a half.
The algorithm ran for 20 iterations, taking a little over 28 days to
completion.
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Decision support system. The performance of the DSS is doc-
umented in more detail in [Nogueira et al., 2020b]. Tables 4.3 and
4.4, respectively, show the performance to predict CS and adverse
outcome using different decision approaches and as compared to the
partograph.

Table 4.2: Average execution time (in hours) for each job for one MKL
iteration, one full iteration and total time.

JOB 1 JOB 2 JOB 3 JOB 4 JOB 5

3.25 ± 0.09 0.98 ± 0.06 28.4 ± 0.04 0.0012 ± 0.0007 1.1644 ± 0.1106

Full iteration 20 Iterations

33.8 ± 0.14 676.3 (≈ 28 days)

Table 4.3: The performance of the BCN-SELMA prototype to predict
caesarean section. n = sample size; nCS = number of positive cases; Th
= threshold/cut-off; SE = sensitivity; SP = specificity; PPV = positive
predictive value; NPV = negative predictive value; AUC = area under the
receiver operating characteristic; p-value = fraction of random permutation
tests for which AUC ≥ AUCobserved (total of 10000).

Train (n = 6349; nCS = 817)

Th SE SP PPV NPV AUC (p-value)
Alert line - 0.540 0.728 0.227 0.915 -
Action line - 0.290 0.889 0.278 0.894 -

vCSπ 0.221 0.699 0.700 0.256 0.940 0.763 (< 0.0001)
vCSπz 0.422 0.683 0.684 0.242 0.936 0.746 (< 0.0001)
vCSπzt 2.038 0.706 0.707 0.263 0.942 0.767 (< 0.0001)

Test (n = 2121; nCS = 279)

Th SE SP PPV NPV AUC (p-value)
Alert line - 0.548 0.731 0.236 0.914 -
Action line - 0.290 0.891 0.288 0.892 -

vCSπ 0.221 0.674 0.696 0.251 0.934 -
vCSπz 0.422 0.659 0.712 0.258 0.932 -
vCSπzt 2.038 0.703 0.712 0.270 0.941 -
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Table 4.4: The performance of the BCN-SELMA prototype to predict
adverse outcome. n = sample size; nBO = number of positive cases; Th
= threshold/cut-off; SE = sensitivity; SP = specificity; PPV = positive
predictive value; NPV = negative predictive value; AUC = area under the
receiver operating characteristic; p-value = fraction of random permutation
tests for which AUC ≥ AUCobserved (total of 10000).

Train (n = 6349; nBO = 155)

Th SE SP PPV NPV AUC (p-value)
Alert line - 0.419 0.697 0.033 0.980 -
Action line - 0.174 0.867 0.032 0.977 -

vBOπ 0.036 0.594 0.594 0.035 0.983 0.612 (< 0.0001)
vBOπz 0.069 0.561 0.567 0.031 0.981 0.581 (0.0008)
vBOπzt 0.283 0.568 0.573 0.032 0.981 0.595 (< 0.0001)

Test (n = 2121; nBO = 44)

Th SE SP PPV NPV AUC (p-value)
Alert line - 0.455 0.698 0.031 0.984 -
Action line - 0.205 0.869 0.032 0.981 -

vBOπ 0.036 0.523 0.635 0.029 0.984 -
vBOπz 0.069 0.500 0.605 0.026 0.983 -
vBOπzt 0.283 0.568 0.557 0.026 0.984 -

4.4. Conclusion

In this project we have created a prototype of a Simplified, Effec-
tive, Labour Monitoring-to-Action tool, based on Interpretable Machine
Learning, centered on the idea of dynamically identifying peers of
the individual to monitor and using the available peer information
regarding evolution, interventions and outcome to provide a person-
alised monitoring and dynamic estimate of need for intervention/risk
of adverse outcome.

The prototype was implemented in a web- and cloud-based en-
vironment with an intuitive user-interface that has a look-and-feel
similar to a personalised partograph that can be dynamically used to
manage a new delivery.

We have performed a classical performance evaluation to predict
adverse outcome as well as CS and have shown that the proposed
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approach leads to a higher, as well as a more balanced, sensitivity
and specificity as compared to the partograph.

The proposed BCN-SELMA prototype can thus be seen as the
basis for as a personalised, evidence-based, labour monitoring tool,
that has an intuitive user-interface, enabling fast visual assessment
of labour progress. The approach allows customization based on
local data, incorporating local guidelines and practice. The proposed
implementation as a web- and cloud-based platform allows scalability
and flexible deployment as well as update of the underlying algorithms.
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Appendices

4.A. Static and Dynamic Features

Table 4.5: Admission-only / static features.

NAME NOTES

1 Country code Country code: Uganda/Nigeria (1/0)

2 Ethnicity Ethnicity: [NIGERIA] 1 - Ibo; 2 - Yoruba; 3 - Hausa; 4 -
Fulani; 5 - TIV; 6 - Kanuri; 7 - Other Nigerian; 8 - Non
Nigerian; [UGANDA] 9 - Muganda/Musoga/Mugisu;
10 - Munyakore/Mukiga/Munyoro/Mutoro; 11 -
Acholi/Langi/Alur; 12 - Iteso/Karamojong; 13 -
Lugbara/Madi; 14 - Other Ugandan; 15 - Non-Ugandan

3 Facility code 1-13

4 Age years

5 Height cm

6 Foot length cm

7 Current weight kg

8 Marital status Marital status: 0 - Single / Separated / Divorced / Wid-
owed; 1 - Married / Cohabitating
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9 Education
level

Education level: 0 - No education; 1 - Other (e.g.
Quranic / Nomadic education only; 2 - Pre-primary ed-
ucation; 3 - Incomplete primary education; 4 - Com-
plete primary education; 5 - Incomplete secondary educa-
tion; 6 - Complete secondary education; 7 - Incomplete
post-secondary/tertiary education; 8 - Complete post-
secondary/tertiary education)

10 Gainful occupa-
tion

Gainful occupation: 0 - No; 1 - Yes

11 Parity Number of previous births

12 Previous
abortions or
stillbirths

Previous abortions or stillbirths: 0 - No; 1 - Yes

13 Previous
uterine
surgery

Previous uterine surgery (includes previous c-sections or
other uterine surgeries): 0 - None; 1 - One; 2 - More than
one

14 Best estimate of
gestation

weeks

15 Mode of
labour onset
and refer-
ral (or not)
from another
health facility

Mode of labour onset and referral (or not) from another
health facility: 0 - spontaneous onset, not referred from
another facility; 1 - induced, not referred; 2 - spontaneous,
referred; 3 - induced, referred

16 Fetal move-
ments in the
last 2h

Fetal movements in the last 2h: 0 - reduced or absent; 1 -
no changes/increased

17 Preterm rup-
ture of mem-
branes

Preterm rupture of membranes: 0 - No; 1 - Yes

18 Obstetric
haemorrhage

Placenta praevia, accreata increta percreta, placentae
abruption or other obstetric haemorrhage: 0 - No; 1 - Yes

19 Pre-
eclampsia
or eclampsia

Pre-eclampsia or eclampsia: 0 - No; 1 - Yes
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20 Cervix efface-
ment

Cervix effacement: 0 - Thick (less than 30% effaced); 1 -
Medium (up to 50% effaced); 2 - Thin (up to 80% effaced);
3 - Very thin / paper-thin (more than 80% effaced)

21 Cervix position Cervix position: 0 - Anterior; 1 - Central; 2 - Posterior

22 Cervix consis-
tency

Cervix consistency: 0 - Soft; 1 - Medium; 2 - Firm

23 Symphysis fun-
dal height

cm

24 Sacral promon-
tory reached

Sacral promontory reached: 0 - No; 1 - Yes; 2 - Not
assessed

25 Ischial spines
prominent

Ischial spines prominent: 0 - No; 1 - Yes; 2 - Not assessed

26 Pubic angle ad-
mits less than
two fingers

Pubic angle admits less than two fingers: 0 - No; 1 - Yes;
2 - Not assessed

27 Cardiovascular
condition

Chronic hypertension, heart disease, obesity, or chronic -
anaemia: 0 - No; 1 - Yes

28 Immunity
condition

HIV or AIDS: 0 - No; 1 - Yes

29 Diabetes Diabetes or gestational diabetes: 0 - No; 1 - Yes

30 Renal condi-
tion

Pyelonephritis or renal disease: 0 - No; 1 - Yes

31 Lung disease Lung disease: 0 - No; 1 - Yes

32 Anaemia Anaemia: 0 - No; 1 - Yes

33 Other condi-
tion

Other chronic disease, other pregnancy complications,
malaria: 0 - No; 1 - Yes
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Table 4.6: Follow-up / dynamic features.

NAME NOTES

1 Contraction ON
time

Duration of uterine contractions (seconds)

2 Contraction
OFF time

Time between contractions (seconds)

3 Cervical dilata-
tion

cm

4 Maternal Heart
Rate

bpm

5 Systolic Blood
Pressure

mmHg

6 Diastolic Blood
Pressure

mmHg

7 Axillary Tem-
perature

oC

8 Amniotic mem-
branes status

Amniotic membranes status: 0 - Intact; 1 - Ruptured
without meconium; 2 - Ruptured with stale meconium; 3
- Ruptured with fresh meconium

9 Emotional sta-
tus

Since the last assessment, how much the woman has been
bothered by emotional problems such as fear, anxiety,
depression, irritability, or sadness? 0 - Not at all; 1 -
Slightly; 2 - Moderately; 3 - Quite a bit; 4 - Extremely

10 Labour pain Since the last assessment, how much the woman has been
bothered by labour pain? 0 - Not at all; 1 - Slightly; 2 -
Moderately; 3 - Quite a bit; 4 - Extremely

11 Labour Com-
panionship

Labour Companionship: 0 - No; 1 - Yes

12 Fetal Heart
Rate

bpm

13 Fetal move-
ments

Fetal movements observed/felt: 0 - No; 1 - Yes
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14 Fetal presenta-
tion

Fetal presentation: 0 - Cephalic; 1 - Breech; 2 - Transverse
lie / compound / other

15 Fetal station Fetal station: 0 - Above ischial spine; 1 - At ischial spine;
2 - Below ischial spine

16 Position of fetal
head

Position of fetal head: 0 - Occiput Anterior (includes right
and left); 1 - Occiput transverse; 2 - Occiput posterior; 3
- Other

17 Caput Succeda-
neum

Caput Succedaneum: 0 - None; 1 - Mild; 2 - Moderate; 3
- Severe

18 Moulding Moulding: 0 - None; 1 - First degree; 2 - Second degree;
3 - Third degree

19 Maternal posi-
tion

Predominant maternal position between assessments: 0
- Upright, sitting, standing, walking, kneeing, squatting,
all-4; 1 - Recumbent, semi-recumbent, lateral, supine
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Chapter 5

CONCLUSION

In this thesis, we have developed tools for the analysis of “real-
world” longitudinal clinical data while addressing concrete clinical
problems. Herein, we summarise the main contributions, limitations
and potential future directions, in application-specific and global
perspectives.

5.1. Application I: Nonstandardized stress

echocardiography

Despite the theoretical benefits of nonstandardized protocols such
as the handgrip test in terms of “scalability”, a lack of suited analysis
tools currently disincentivizes the exploration of their potential. In
this application, we illustrated how unsupervised multiview dimension-
ality reduction (in particular, unsupervised multiple kernel learning
(MKL)) could be used towards the analysis of nonstandardized stress
echocardiography, while privileging clinical interpretability. The pro-
posed approach allowed to identify normal and abnormal trajectories
in response to stress and to relate them with specific changes in the
original clinical features. A noteworthy result was the similarity-based
positioning of (supposedly) healthy controls and diseased patients in
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a spectrum of (ab)normality, rather than in well-separated clusters.
This result illustrates why learning based on hard diagnostic labellings
might sometimes not be the best approach. In sum, the main contri-
butions of this work are three-fold: (1) the clinical insight regarding
the specific data/populations at hand (the characterization of healthy
and pathological response patterns), (2) the validation of the proposed
methodology as a potential analysis tool for this complex type of data,
and (3) the validation of the potential of nonstandardized protocols
(in this case, the handgrip test) as alternatives to those currently
carried out in clinical practice.

This work also presents some limitations. The fact that only two
clinical features were considered to evaluate response at each time
point (heart rate and basal septal velocity curve) limits the response
characterization to these features. The low number of subjects in
the study, owing in part to the rare nature of the disease, also limits
the scope of the characterization of response. For a better/more
detailed characterization, more features should be accounted for (e.g.
regional deformation/velocity curves, flow information, etc.), as well
as more cases. Furthermore, for a better assessment of the value of
the proposed methodology and nonstandardized protocols, different
populations, with different diseases in varying degrees should be
considered. Nonetheless, despite these limitations, we believe that this
work serves the purpose of illustrating the potential of the proposed
methodology and nonstandardized stress testing.

5.2. Application II: Labour monitoring

and decision making.

In a context of lacking evidence of positive impact of the current
reference labour monitoring and decision support tool – the partograph
– on outcome, and scepticism regarding the accuracy and generaliz-
ability of its central elements for diagnosis of (ab)normality in labour
progression, the World Health Organization (WHO) has identified the
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need to develop new evidence-based, personalized Simplified, Effective,
Labour Monitoring-to-Action tools. In this application, we showed
how unsupervised multiview dimensionality reduction (in particular,
unsupervised MKL) could serve as the backbone of such a system.
For the monitoring of a new patient, at each follow-up, the group of
most similar “training” subjects (peers) is retrieved, and knowledge
on their labour progress, interventions and outcomes is used to update
the concept of “normal” labour progression and estimates of risk of
intervention (and most likely timings). All these operations build
upon a low-dimensional yet interpretable representation of the original
data.

The main contribution of this work is the formulation of a new
labour monitoring and decision support framework that overcomes the
main limitations of the partograph and outperforms it in the prediction
of meaningful labour events, while preserving interpretability, and its
integration in a functional, scalable, web- and cloud-based prototype
of a user-friendly clinical software tool (BCN-SELMA). The proposed
approach also showed potential in the identification and understanding
of practice differences/biases.

There is, however, room for improvement. On the one hand,
the performance levels are still not ideal. Many steps, from data
imputation to the estimation of the “normal” trajectory and risk
estimates, were based on fairly simple methods that are likely not
optimal. Future work should thus include the optimization of each
step of the framework by exploring more sophisticated methodologies.
On the other hand, validation is extremely challenging in terms of the
prediction of actual risk of adverse outcome/“necessary” interventions,
as with the currently available data we only have knowledge on
what interventions were performed and the resulting outcomes, but
no guarantee of causality. A better assessment of the value of the
framework implies a wider prognostic evaluation. Future work should
include the evaluation of our tool based on multiple studies/databases,
as well as by clinicians. Regarding the implementation of the software
prototype, the current priorities would be improving interpretability
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(iterating over clinicians’ feedback) and online performance.
Despite being based on a minimal implementation, and the valida-

tion limitations posed by the nature of the data, we believe that this
work illustrates the potential of the proposed approach as basis for a
monitoring and decision support tool.

5.3. Overall

We have developed tools based on unsupervised multiview dimen-
sionality reduction (in particular, unsupervised MKL) for the analysis
of “real-world” clinical longitudinal data, and illustrated how they
could be used to: obtain simplified, interpretable representations of
the data; discriminate between normal and abnormal trajectories and
understand underlying pathophysiological mechanisms; and provide a
basis for a personalized monitoring and decision support system.

This was demonstrated while addressing two specific clinical prob-
lems – analysis of nonstandardized stress echocardiography and moni-
toring and decision support during labour. In both cases, this work has
made valuable contributions, as described in 5.1 and 5.2. Nonetheless,
for a better assessment of the value of the developed methodologies,
further evaluations should be conducted with other studies/databases,
and by clinicians.

We also presented a preliminary effort envisaging effective inte-
gration of the developed tools in a clinical environment – the web-
and cloud-based prototype of BCN-SELMA. A necessary next step
would be extensive evaluation and testing by clinicians, and feedback-
based optimization of usability and interpretability. Technically, the
priorities would be maturing the methodology (e.g. exploring more so-
phisticated implementations) towards better predictive performances
and ensuring proper scalability and online (computational) perfor-
mance.

Although applied to specific clinical problems, the developed tools
– including the choice of MKL as the central algorithm – were designed
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in a generic enough way to easily adapt to any other clinical problem
(e.g. natural progression, therapy assessment, etc.) involving any
type of data, provided there is an adequate way to express similarity
through kernel functions, thereby expanding the scope of this thesis’
contributions. With regard to MKL, optimizing the developed tools
would also imply optimizing the choice of kernel types for the different
types of data, a topic that was not exhaustively explored in this
thesis. On the other hand, computational complexity of MKL is still a
relevant limitation, and future research should include the development
of methodologies to speed up computations. Future research should
also include exploring different dimensionality reduction algorithms.

Despite the limitations listed across this chapter, we believe that
the current work succeeds to showcase the potential of this type of
approach in the analysis of “real-world” longitudinal clinical data.
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