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Introduction

In the following thesis I study how innovation affects labor markets: how it originates
and what are its consequences for the labor force. In the first two chapters the source
of an increase in productivity and innovative activity are co-worker networks. I explore
their role in boosting firms’ performance and facilitating knowledge transmission. The
third chapter focuses on automation, which itself is a product of an increase in innova-
tive activity. In that chapter I study how automation affects employment structure, with
particular emphasis on displaced workers: their occupational choices and human capital.

In Chapter 1 of this thesis, To work or to network? - a study of firm hiring decisions, I
investigate the effect of social network on firm performance. It is estimated that between
30% and 60% of all jobs are obtained through social connections with around 71% of
firms having introduced a formal referral program. Workers benefit from social connec-
tions (e.g. Cingano and Rosolia (2012), Dustmann et al. (2016)), however, the motives
behind employers’ reliance on informal links remain largely unexplored. What renders
informal contacts attractive to employers? Does firm’s social network simply speed up
the hiring process or it additionally facilitates selection of high-skilled individuals?

Using matched employer-employee data from Veneto, an industrial region in northern
Italy, this chapter studies the role of co-worker links in firms’ hiring decisions and its con-
sequences for productivity and output. Novel empirical findings show that the hires from
firm’s own co-worker network increase significantly its productivity. I conclude that 10%
surge in connected hires increases productivity by approximately 1%. The event study
analysis reveals that the effect lasts up to three years following the hire. The evidence
points that the co-worker links increase firm productivity mainly through industry-specific
skills, which suggests that employers may use informal contacts to poach high-skilled
workers. I also show that informal ties play a larger role in job transitions within in-
dustrial clusters. Hence, social networks might facilitate the transmission of job-specific
skills and knowledge diffusion.

In Chapter 2, Inventors’ Coworker Networks and Innovation (joint with Sabrina Di
Addario and Michel Serafinelli), we build on the previous chapter by studying the role
of coworker network in plants’ innovative activity and knowledge diffusion. We focus
on the patenting activity of inventors and their coworker networks. This chapter presents
direct evidence showing the extent to which plants’ innovation is affected by access to
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knowledgeable labor connected through the co-worker network.
We use a unique dataset that matches administrative employer-employee records from

north-central Italy, a region with many successful industry clusters, to patent data for
the period 1987-2008. Displacements of inventors due to plant closures generate labor
supply shocks to plants that employ their previous co-workers. We estimate (a) event-
study models where the treatment is the displacement of a connected inventor and (b) IV
specifications where we use the displacement of a connected inventor as instrument for
the hire of a connected inventor. Estimates indicate that the improved capacity to employ
inventors within their employees’ network increases plants’ patenting activity. We also
present the evidence that the additional output is a combination of patents authored by
the newly hired connected inventors (either solo-authored or with co-authors outside the
receiving plant) and patents resulting from a collaboration among the hired connected
inventors and other workers within the receiving plants. Interestingly, we also observe an
increase in patents authored by the other workers within the new plants (without the hired
connected inventors), a sign of either peer pressure or knowledge transfer.

In Chapter 3, Job Automation and Worker Reallocation, I study the effects of job
automation on labor markets and displaced workers. Several works document labor-
displacing nature of job automation (e.g. Acemoglu and Restrepo (2017a), Bessen et al.
(2019)), however, we know surprisingly little about its consequences for the employment
distribution. How does job automation affect reallocation decisions of displaced workers?

I show that stagnant occupational mobility rates reported since 1990s are the result of
a composition effect: positive trend for occupations with high risk of automation is offset
by the decline in mobility among low risk occupations. Displaced workers with high ex-
posure to automation have on average 10 percentage points higher probability of changing
their broad occupational category, a pattern that has increased significantly over the past
two decades. The mobility rates within high exposure occupations are monotone, point-
ing that low earners switch their occupations more frequently. Furthermore, the direction
of mobility is downward: individuals at risk of automation switch into occupations with
lower average wages.

To evaluate the role of job automation in the evolution of occupational mobility, this
chapter proposes a search and matching model with technological acceleration and hu-
man capital accumulation. The reallocation decision of unemployed individuals depends
on their human capital level and skill transferability between two occupations. The re-
sults show that the response of the economy to automation shock follows closely patterns
observed in the data between 1996 and 2012. Job automation accounts for 79 percent of
the increase in mobility gap. This in turn leads to output losses due to skill transferability
mechanism and the fact that human capital is not fully transferable across occupations.
Policy counterfactuals indicate that off-the-job training for workers at risk of automation
can reduce the output loss by nearly 20 percent.
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Chapter 1

To work or to network? - a study of
firm hiring decisions

1.1 Introduction

The percentage of jobs obtained through referrals varies between 30 and 60%, depending
on the country and profession.1 The popularity of employee referral programs rises, as
novel techniques of referral recruitment are being introduced. It is estimated that around
71% of private companies, typically large employers, have a formal referral program.2

Firms that already implemented employee referral programs claim that its main objective
is to ‘Increase Quality’ (93% point that answer), novel recruitment techniques include a
third party referral tools and beyond ‘employees’ referral programs.3 The literature doc-
uments that referred workers, compared with those who applied without any referral, are
not only more likely to be hired, but also enjoy an initial wage premium.4 The conse-
quences of using informal links for employers and the motives behind reliance on social
network remain, however, largely unexplored. Existing literature attributes the use of

1Montgomery (1991) presents a summary of the labor surveys collected by Myers and Schultz (1951),
Rees and Schultz (1970), Granovetter (1974) or Corcoran (1981), where the percentage of jobs found using
friends and relatives is documented for various occupational and demographic groups. The largest survey
by Corcoran (1981) finds that around 52% of White males got their job through referrals, compared to 47%
of White females, 58% of Black males and 43% of Black females.

2Meritage Talent Solutions conducted a survey of 100 recruiting organizations and reports the trends
in employee referral programs. They document that 86% of firms with more than 50,000 employees have
formal referral programs, whereas only 59% of companies with fewer than 500 workers claim to use those.
Higher popularity of referral programs for large firms may be surprising, intuitively we associate referrals
with small or medium firms, however one has to remember about the prevalence of strong ties within those
structures.

3Remaining options are ‘Increase Quantity’ (61%), ‘Decrease Time to Hire’ (58%), ‘Increase Retention’
(49%), ‘Increase Diversity’ (32%) or ‘Other’ (9%). In 2014 around 14% of firms participating in employee
referral programs used third party referral tools, whereas 27% of firms planning to launch a program con-
sidered to do so with third party tools. Those are typically companies that scan workers social network and
provide the recruiting firm the best match based on the available information. Beyond employee programs
are based on ties provided by alumni, customers, social media connections, etc.

4See e.g. Dustmann et al. (2016), Brown et al. (2016) or Cappellari and Tatsiramos (2015)
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informal contacts to information frictions at the hiring stage.5

The main goal of this paper is to measure the impact of socially connected hires on
firm performance and revisit the existing hypotheses on why do firms rely on their social
network at the hiring stage.6 To the best of my knowledge this work is the first to ex-
amine the impact of connected hires on firm productivity using the structural approach to
production function estimation and detailed administrative records. The strategy of dis-
tinguishing socially connected hires follows the co-worker network approach proposed by
Hensvik and Skans (2016). I first distinguish socially connected hires using former co-
worker links in the matched employer-employee dataset from Veneto, the industrial region
in northern Italy. Then, I measure the effect of connected hires on firm productivity and
output, employing labor supply shocks generated by mass-layoffs. The remaining part
of the analysis explores the geographical dimension of socially connected hires within
industrial clusters and transmission of industry-specific skills.

The existing empirical literature (e.g. Hensvik and Skans (2016)) identifies socially
connected hires in the large administrative datasets with the use of co-worker links. I build
on this literature by i) constructing matched employer-employee panel of firms that hire
through co-worker links and ii) measuring their performance given the detailed balance
sheet data. The matched employer-employee dataset is constructed using Veneto Workers
Histories (hereafter VWH) and Bureau van Dijk AIDA datasets. New hires are denoted as
socially connected (or more precisely: linked) if they share work history with at least one
of the incumbent workers. The share of connected hires in the Veneto dataset matches
findings of previous studies (11.2 percent of all hires, opposed to 12 percent in Hensvik
and Skans (2016)). The estimates of hiring probability, initial wage premium and job
tenure of connected hires follow closely previous findings. Controlling for job-to-job
transition and the same industry link reveals that in fact, the effect of co-worker links is
largely driven by transmission of job- or industry-specific skills.

The core analysis employs time-varying, structural productivity estimation framework
introduced by Olley and Pakes (1996). The estimates reveal significant and positive im-
pact of linked hires on firm productivity and output that can last up to 3 years following
the hire. The increase of linked hires by 10% increases firm productivity by approxi-
mately 1%. Interestingly, surge in productivity happens mainly due to linked, same in-
dustry hires, suggesting the role of co-worker links in the transmission of job-specific
skills. Similar results are found for the firm output. To address the issue of potential
endogeneity of firm hiring decisions I construct instrumental variable based on firm’s co-
worker network and mass displacements of workers. The former is defined as all former
co-workers of incumbent employees within past five years, whereas displacements were

5For the detailed description of existing empirical evidence and micro theories on the usage of social
connections by firms look at Section 1.2.

6Detailed description of existing theories of firms’ motives behing the use of social connections is pro-
vided by Section 1.2
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part of the mass-layoffs in industry different than the firm of interest. In other words, in-
strumental variable captures the exogenous labor supply shock among workers connected
to the firm. The results of instrumental variable confirm the baseline findings.

Finally, following the findings on the importance of same-industry connected hires, I
explore the geographical dimension with the use of industrial districts, a clusters of firms
with particular economic specialization in distinctive geographical areas. I document
higher frequency of connected hires within industrial districts. Linked hires within in-
dustrial clusters experience 5.4% wage premium, compared with 3% of non-linked ones.7

The study of worker flows suggests that firms attract employees via informal channels
from high productivity firms. The findings is in line with the adverse selection hypothe-
sis of firms poaching skilled employees thanks to social connections. It elicits potential
role of co-worker links in transmission of job-specific skills and facilitation of knowledge
diffusion.

The main contribution of this paper is documenting the differences in productivity that
stem from firms’ reliance on social network and emphasising the role of co-worker links
in transmission of job-specific skills. Another contribution of the work is the distinction
of heterogeneity within connected hires, highlighting the relevance of social network in
job transitions within specialized industrial districts, so far absent in the literature.

The paper proceeds with the brief review of the existing literature and hypotheses
on firms’ reliance on referrals in Section 1.2. Methodology and empirical strategy are de-
scribed in Section 1.3, followed by information on the data, merger and summary statistics
in Section 1.4. The results, robustness checks and extensions are provided by Section 1.5.
Section 1.6 concludes, whereas all additional statistics, results and placebo checks are
reported in the Appendix A.

1.2 Related Literature and Theoretical Background

The existing literature on referrals is dominated by theoretical papers. In their seminal
works Calvó-Armengol and Jackson (2004, 2007) study the spread of information in the
network and its consequences. The main finding of Calvó-Armengol and Jackson (2004)
states that in the unique steady-state, employment statuses of any path-connected agents
are positively correlated across time. One of the first attempts to incorporate the weak
ties into formal matching model was pursued by Calvó-Armengol and Zenou (2005),
where agents were allowed to search for a job through official and informal channels.
The network size was a key object in this framework, providing advantage in job finding
probability. Galenianos (2014) investigates the social planner’s problem for a matching
model with information transmission and finds that the equilibrium is inefficient in terms
of matching accuracy. In his earlier work, Galenianos (2013) considers firm heterogeneity

7The reference group are non-linked outside industrial cluster hires.
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and shows that smaller firms rely more on the informal channels of information spread, a
finding that gained some empirical support.8

The empirical literature uses firm level data, labor force surveys or the administrative
records in order to quantify the effect of referrals on individual job performance. Stylized
facts document the advantage of referred workers in hiring probability, initial wage pre-
mium and longer job tenure (e.g. Dustmann et al. (2016), Brown et al. (2016), Glitz and
Vejlin (2019)). Higher cognitive skills of referred employees were reported by Hensvik
and Skans (2016), with the use of armed-force test. Several works show significant, pos-
itive correlation between network employment rate and the probability of finding a job
(e.g. Cingano and Rosolia (2012), Saygin et al. (2014), Glitz (2017)).9 Referral recipients
are not the only ones who benefit from the match, Heath (2018) claims that the wages
of the recipient-provider pairs are positively correlated over tenure. Rebien et al. (2017)
document that small and medium firms use referrals to higher extent.

The firm side of referral usage is yet absent in the literature, with few exceptions
that focus on solely on firm hiring decisions. There are two main hypotheses on why do
firms use referrals: adverse selection and moral hazard problem. The former comprises a
wide range of theories that assume that the whole problem boils down to signalling game
between employer and job candidate. Referrals provide more accurate signal on candidate
abilities, since employers (apart from the interview) have a valuable insight from a referee.
Theoretical search framework with referral signal accuracy was first introduced by Simon
and Warner (1992), later developed by e.g. Galenianos (2014), Dustmann et al. (2016)
and Glitz and Vejlin (2019). Glitz and Vejlin (2019) structurally estimate the model and
find that the noise of the signal about worker’s ability is 14.5 percent lower for referred
hires than for the non-referred ones. Firms are absent in the aforementioned models, they
could potentially benefit from referrals by saving vacancy costs (as suggested by Eliason
et al. (2018a)).10 Montgomery (1991) goes even further and claims that firms not only
use referrals to omit signalling problem but also to poach high skilled workers. Following
this argument, firms should experience surge in productivity, since referrals provide better
skilled workers than formal markets.

The moral hazard hypothesis was originated by Heath (2018) and focuses on pairs
of workers established by referral - its recipient and provider. By creating such pairs
employers may exert higher effort from the recipients. The presence of the provider at the
workplace may additionally induce the recipient to perform better and as a result wages
of the pair may be positively correlated. Referred workers tend to be in this framework of

8Rebien et al. (2017) investigate the referrals from firms’ perspective and find the negative correlation
between firm size and the use of weak ties. For other matching or dyad models with social network see e.g.
Fontaine (2003, 2008), Zaharieva (2013, 2015), Zenou (2015).

9Social network is there defined as all former co-workers of the unemployed within last 5 years. Unem-
ployment spell is preceded by firm closure.

10Their model, however, does not explicitly assume adverse selection problem on the firm side. Relying
on social network is just a form of saving the costs, without any heterogeneity of workers.
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lower quality, however, higher effort exerted by them may improve firm output. On the
other hand, in case of low output, firms can punish both provider and recipient, hence the
overall effect remains ambiguous. Heath (2018) tests model predictions using a household
survey of the workers of garment factories in Bangladesh.11

Most closely related with this paper is the recent work by Eliason et al. (2018a), who
use Swedish administrative records to uncover how the displacement shocks affect firms’
hiring decisions and social connections. The impact on firm productivity is not their pri-
mary focus, it is measured using revenue per worker. The following work differs with that
respect as it proposes structural productivity estimation using detailed firm balance sheet
data. It also explores the dynamics of the effect of connected hires on firm productivity
using event study framework. The findings of this work lean towards the adverse selec-
tion hypothesis of firms poaching high skilled workers with the use of referrals. Thanks
to co-worker links firms experience the surge in productivity, there is also a suggestive ev-
idence of employers poaching new hires from higher-productivity companies. Modelling
hiring decisions and outcomes as well as the analysis of potential role of social network
in knowledge diffusion are one of the main challenges in the literature.

1.3 Methodology

1.3.1 Referral Identification

Following the approach proposed by Hensvik and Skans (2016) (hereafter HS), this paper
distinguishes referred hires with the use of co-worker links. More precisely, if a new
hire shares working history with any of the incumbents within last 5 years, I denote her
as a connected hire. The idea of co-worker links relates to the classical approach of
Montgomery (1991), who argued that the process of hiring through referral consists of
two stages: first, newly hired workers reveal their type, and second, employers ask the
high types to refer new workers from their social network. Observed inbreeding of social
network increases the probability of hiring worker of a high type through referrals.

Given the matched data from Veneto region, the co-worker links are distinguished in
the same manner as in HS, with the precision to weeks. Incumbents are defined as those
who entered the establishment at least 3 weeks before a new hire, whereas the latter need
necessarily to enter the firm for the first time in their career. Only firms with less than
500 workers are taken into account. Employees in large establishments may not have a

11The empirical analysis is performed in low-skill occupations, what may rise some concerns. The
additional analysis of entrant-incumbent pairs conveyed for the purpose of this work reveals similar patterns
of substantial inbreeding of provider-recipient pairs as well as significant, positive correlation of their wages
over tenure. It proves the existence of moral hazard not only within low-skilled workers. The additional
results are not included in the Appendix, since they are not the main focus of the paper. Provider-recipient
pair analysis is available upon request.
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chance to establish a link, social networks do not always overlap. The employment spells
of incumbents and hires in the past establishment have to be longer than 3 weeks and need
to overlap by at least one week. Other possible challenge for the measure posed by the
administrative data are firm mergers. To address this issue, entrants who arrive from the
same firm in groups of more than 5 are excluded.

1.3.2 Empirical Strategy

Referral Heterogeneity

In the first part of the analysis I study heterogeneity of connected hires and its impact on
job performance. The source of heterogeneity is the length of unemployment spell before
the hire. I distinguish two types: i) job-to-job transitions and ii) hires that experienced
unemployment spell. Number of studies document growing training requirements in EE
transitions.12 Linked job-to-job hires are potentially those contacted by the employer due
to their job- or industry-specific skills. Part time or seasonal jobs are excluded. Connected
hire heterogeneity is examined with respect to entry wage premium, job tenure and hiring
probability after firm closure. Remaining details on the empirical strategy of the worker
side analysis are provided in the Appendix A.1.

The relation between entry wage and entrant characteristics is captured by the equa-
tion:

log(wEij) = α0 + α1 Connectedi + α2 Jtji+α3 Connectedi × Jtji
+ α4Xi + α5Wj + ηj + ρt + εij ,

(1.1)

where i and j index respectively workers and firms, Connectedi denotes connected hire,
Jtji accounts for job-to-job transition, Xi captures worker and Wj firm characteristics,
ηj is firm fixed effect and ρt time fixed effect. Each wage regression includes number of
incumbents with whom the entrant is linked.

Firm Productivity

Let’s consider firms that produce according to the following production function:

Yj = f(Kj, Lj,Mj) = Aj[K
βK
j LβLj M

βM
j ]α ,

where K, L, M are standard input factors (respectively capital, labor and raw materials),
firms produce with diminishing returns to scale thanks to managerial component α <

1 (in line with Lucas (1978)). Aj is firm-specific productivity which may be further

12See e.g. Cairo (2013a)
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decomposed further into:
Aj = Dje

βC log(Cj) .

Now, Cj denotes the part of productivity attributed to connected workers, whereas Dj is
the part of TFP due to factors other than Cj . The above production function leads to the
following empirical specification:

yjslt = β0 +βK kjt +βL ljt +βM mjt +βC cjt−1 +X δ+ ηst +µlt + θj + ξjslt , (1.2)

lower case letters denote logarithms of production inputs and outputs, ηst industry-time
fixed effects, µlt local labor market (hereafter LLM)-time fixed effects and θj firm specific
productivity.13 Note that the model includes lag of log connected hires, assuming that the
effect on output and productivity does not appear instantaneously. To attenuate selec-
tion bias, the panel includes only firms that hire at least one worker in year t − 1. One
of the major concerns relates to possible selection of connected workers, as potentially
only high productivity firms use co-worker network to high extent, or connected workers
were particularly high skilled. The other caveat stresses the urge for time-varying pro-
ductivity. To address the former, I include instrumental variable for the number of linked
hires (cjt−1). Olly-Pakes productivity analysis should target the latter, as it allows for
the time-varying component of firm productivity. The analysis of informal links and firm
time-varying productivity is performed in two stages: first, time-varying firm productivity
(tfpjst) is estimated using OP structural approach and then regressed on the log number
of connected workers:14

tfpjst = γ cjt−1 +Wjt δ + ηst + µlt + θj + ξjst , (1.3)

where ηst, µlt and θj are the same as in equation 1.2 and Wjt includes firm control vari-
ables. Both output and productivity models control for the log number of hires in t− 1.

Instrumental Variable

To address the possible endogeneity bias, I extend the analysis using instrumental variable
approach. The major concern is that the hiring decision of each firm is endogenous. An-
other possibility is that firms that hire at least one worker in any given year are more pro-

13Note that equation ( 1.2) is the final form of the initial log transformation yjslt = β0 + βKkjt +
βLljt + βMmjt + βCcjt−1 + ζjslt, where β0 and ζjslt are elements of ln(Dj) denoting respectively the
mean efficiency of firms across all industries and deviation from the mean of firm j in industry s, LLM l and
time t. It can be further decomposed into productivity and random noise component ζjslt = ω∗jslt + vjslt =
ηst + µlt + ωjslt + vjslt. In ( 1.2), θj describes firm time-invariant productivity and ξjslt contains both
time-varying productivity and random noise.

14Where the model specification contains main production inputs and investment as a proxy for the TFP:
yjslt = βKkjt +βLljt +βMmjt +ω∗it + ξjslt, where ω∗it is time-varying unobserved firm productivity. OP
method uses semiparametric methods to estimate unobserved productivity, where TFP is proxied by firm
level investment decisions. For more information on the estimaton and moments see Appendix.
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ductive and use referrals more frequently, what suggests the threat of pre-existing patterns
in hiring.15 Instrumental variable design exploits exogenous labor supply shocks within
firm’s own network generated by mass-layoffs. Our instrumental variable is defined as a
number of workers from firm’s co-worker network that were displaced by mass-layoff at
t − 1 in the industry different than firm j. The displaced workers are connected to the
firm, what in turn can increase the chances of hiring through informal contacts.

Firm co-worker network is a collection of all former co-workers of incumbent em-
ployees. It is dynamic, as the set of incumbents and their former co-workers changes
every year. Incumbent employees are defined as employees working in a given firm in
the first week of January. Former co-workers are distinguished for past 5 years of in-
cumbent’s employment history. They need to have worked in the same establishment as
incumbents (other than the current one), have employment spells longer than 3 weeks and
spell overlap of at least one week.

Mass-layoffs provide exogenous shock in labor supply and are defined following Ja-
cobson et al. (1993) and von Wachter et al. (2009).16 Industry is defined on 2-digit level
and social network of the firm at time t comprises employees’ former co-workers that
were employed at t − 1.17 Long-term unemployed, retired or missing records for co-
worker network were discarded. Alternative specification of the instrumental variable
defines it as a share of firm network size.18 The log number of workers is more infor-
mative than the percentage, it brings also the information about the volume of the hires,
crucial while studying output or productivity. Besides technical issues described in Sec-
tion 1.5.4, the alternative instrumental variable does not change the results, which are
provided in the Appendix A.6.

Event Study

In order to examine the dynamics of connected hires and its impact on firm productivity,
I follow the approach proposed by Kline (2011). The regression is given by:

yjslt = α +
∑
τ

βτD
τ
jt + βwWjt + Trendst + Trendlt + θj + λt + ξjslt , (1.4)

where the dependent variable is the log of productivity ( ln (tfpjslt)) or output of firm j

that produces in industry s at time t in the local labor market l. Matrix of firm charac-

15If we assume that firms first observe worker productivity and, provided that she is of high skilled, ask
her to refer some of her weak ties, the probability of a job opening/vacancy being referred through social
network increases with the firm size.

16Mass layoffs take place if endogenous separation rate exceeds 0.33 in firms with more then 10 workers.
Endogenous separation rate denotes the ratio of workers who were fired or quit during a quarter to the total
amount of workers at the establishment at the beginning of the quarter.

17Different digit levels of variable ATECO91 were distinguished, results remain valid for all of them.
18The total number of former co-workers of incumbent employees in past 5 years. All employees working

in the first week of the given year are taken into account.
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teristics (Wjt) includes its size, co-worker network, average wage and firm age, whereas
remaining time-invariant features are captured by the firm fixed effect θj . Trendst and
Trendlt are respectively industry- and LLM-specific time trends. The event study with
output as a dependent variable additionally includes input factors (capital, labor, raw ma-
terials) as a control variables. Dτ

jt are "event time" dummies that take value 1 if the
connected hire event is tau years away, defined as:

Dτ
jt ≡ I[t− ej = τ ] , (1.5)

where I[·] is an indicator function and ej is the year of the event. In the estimation I
examine three types of events, described in detail in Section 1.5.2. Given the equation 1.5,
the coefficients βτ capture the time path of productivity or output relative to the date of the
event. In the estimation τ ∈ [−3, 4], where all observations more than 3 years before the
event are assigned into time indicator "-3". Similarly, all observations more than 4 years
after the event are assigned into time indicator "+4". Relatively small number of time
indicators stems from the fact that our estimation sample contains observations between
1997 and 2001. Note that due to the binning of time indicators, discussing the treatment
effect I focus on the "event time" coefficients τ ∈ [0, 3]. I normalize β−1 to zero, so that
all post-treatment coefficients can be thought of as treatment effects.

1.4 Data Description

1.4.1 Primary Data Sources

The analysis employs the administrative records from two provinces of Veneto, industrial
region in northern Italy, obtained from Veneto Workers Histories (hereafter VWH) dataset.
It contains yearly employer-employee observations and covers the period 1975-2001.19 In
case of migration into the other parts of Italy, the dataset keeps track of workers job perfor-
mance. VWH provides information about the entire population of employed individuals
and the entire population of firms in the two Veneto provinces with weekly frequency,
and follows them in case of entry to establishments outside those two provinces. Besides
information on total earnings, weeks worked, position or type of contract, VWH contains
worker (gender, age, etc.) and firm characteristics (location, industry, closure, tax code,
etc.). The industry is classified using 5-digit ATECO-91 code, set at the national level.
Final worker sample contains private sector firm entrants in years 1995 - 2001 in the
aforementioned provinces, part time or seasonal contracts are excluded, as well as hires

19VWH was kindly provided by Fondazione Roberto DeBenedetti.. VWH comprises the records for two
Veneto provinces: Vicenza and Treviso. In case of change of the job outside those two provinces, VWH
keeps the records, however one cannot retrieve the whole firm-employee population outside Treviso and
Vicenza.
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younger than 16 or older than 65.
The firm financial data AIDA, provided by Bureau van Dijk, contains records from

the standardized reports that firms are obliged to submit annually to Italian Chamber of
Commerce. It covers the years 1997 - 2001 for the whole population of firms in Vicenza
and Treviso that hire between 2 and 600 employees and report annual sales above 500,000
euros. The variables describe balance sheet data: revenue, employment size, profit/loss,
total assets, total value of production, total production cost, raw materials, wages, operat-
ing margin, value added and tax code.

1.4.2 Employer - Employee Matched Data

The merger of worker and firm financial datasets follows the strategy described by Card
et al. (2014) with the tax code as the merge variable. The VWH and AIDA datasets
overlap for 4 years between 1997 and 2001. The merge statistics are similar to Card et al.
(2014): match rate of AIDA firms is 91% for the raw data and 96% for firms employing
more than 15 workers.20 Outliers in capital per worker and value added per worker were
eliminated (at the 1st and 99th percentile level). Both datasets contain information on
annual employment count in each firm. To avoid measurement errors, observations where
the difference in employment level between two datasets exceeds 100 employees were
discarded.21 Correlation of the overlapping variables (employment size and wages) can
be interpreted as a measure of validity of the merge. For the merge with firms that employ
more then 15 workers they are 0.96 and 0.95 respectively.22 For additional statistics and
information on the matched dataset see Appendix A.2.1.

1.4.3 Sample Statistics

Connected Hires

The entire sample of hired workers contains 281,209 observations, whereas the produc-
tivity estimation sample includes 4,307 firm records. Table 1.1 presents characteristics of
employees (Panel A) and firm hires (Panel B). Connected hires are on average older than
non-connected ones, the share of female is smaller in the former group. Linked hires have
on average higher entry wages, a sign of potential wage premium, documented previously
in the literature. According to Panel B, around 11% of new hires were connected with

20The threshold is set as the firms with employment above 15 are exempt from many labor regulation
regarding employment protection and trade unions (see e.g. Schivardi and Torrini (2008)).

21The number of observations with employment difference exceeding 100 is 108, 0.6% of the initial
AIDA sample.

22For the sample of all merged firms the correlations are 0.96 and 0.32 for employment size and wages
respectively. Wages in VWH dataset are measured annually, yearly employment size comprises all workers
that worked in firm at the given year at least one week. The low correlation of wages for the whole sample
may stem from the fact that in AIDA dataset the variable on wages contains also some overhead expenses.
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Table 1.1: Basic characteristics of sample of entrants, years 1995-2001

Panel A: Incubents and Hires

Incumbents Hires Connected Hires

Worker characteristics: Mean SD Mean SD Mean SD

Age 33.6 10.1 30.4 9.39 32.7 9.47

Female 0.42 0.49 0.32 0.47 0.30 0.46

Wage (log, weekly) 6.43 0.50 6.35 0.38 6.42 0.39

N 756,148 281,209 39,369

Panel B: Hires - Firm Side

Connected (%) Job-to-job (%) J-t-j Connected (%)

Firms: Mean SD Mean SD Mean SD

All 11.18 21.25 46.99 35.54 07.81 17.84

>100 workers 19.30 18.01 52.87 23.25 13.57 15.01

∈(20,100] workers 12.73 20.76 48.33 31.79 08.97 17.59

≤20 workers 08.37 21.67 44.75 40.20 05.74 18.15

Large Cities 10.36 22.13 46.33 37.45 06.99 18.59

Medium Cities 10.41 20.69 46.63 36.59 07.61 18.10

Small Cities 11.48 21.30 47.15 35.03 07.95 17.69

Industrial Districts 14.67 23.77 48.29 35.57 10.81 20.98

Manufacturing 12.04 21.17 47.48 34.21 08.46 17.87

Services 09.43 20.26 48.95 37.33 06.82 17.66

N 1,479 3,400 1,165

NOTE: Panel A presents characeristics of population of workers, whereas Panel B presents characteristics
of hires for the population of firms (N = 4, 307). The N in Panel A displays number of individuals, not
obervations, since one individual can be a hire more than once over the period 1995-2001. The city types
were distinguished based on the distribution of number of inhabitants in the sample. Large cities are the ones
above 80,000 inhibitants, medium comprise cities between 20,000 and 80,000 inhabitants, whereas small
ones have less than 20,000 citizens. Variable N in Panel B describes number of firms with positive number
of hires in each respective category.

any of the incumbents, the number that corresponds to previous findings (HS claim that
12% of entrants were linked, Eliason et al. (2018a) find 10.7%).

Some interesting patterns are revealed by Panel B of Table 1.1. The share of job-to-
job transitions among linked hires is higher than in the entire population of hires (70%
compared with 47% in the entire sample of hires). The linked hires prevail in large es-
tablishments, accounting for nearly 20 percent of all hires. Similarly for job-to-job and
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Table 1.2: Basic characteristics of employer-employee matched dataset, years 1997-2001

All Non-connected At least one >20% Hires >50% Jtj

connected connected connected

Size 44.94 32.41 68.58 61.73 65.21
(53.63) (30.53) (72.44) (71.23) (74.68)

Firm age 13.37 13.01 14.05 13.91 14.34
(8.02) (7.87) (8.24) (8.34) (8.39)

Avg. wage 14.35 14.22 14.61 14.56 14.81
(annual, in 1,000 euro) (5.53) (5.08) (6.28) (5.54) (5.82)

Revenue/Worker (log) 04.89 04.92 04.83 04.85 04.89
(0.72) (0.74) (0.68) (0.69) (0.69)

Profit/TotalAsset 00.02 0 0.02 00.02 00.02 00.02
(0.05) (0.05) (0.06) (0.05) (0.05)

Profit/Worker 02.66 02.64 02.69 02.80 03.01
(8.93) (9.34) (8.11) (8.16) (8.72)

N 4,307 2,828 1,479 1,034 804

NOTE: The above table provides statistics for the merged employer-employee dataset. All samples contain
firms that in the given year hired at least one worker. Among them non-linked denotes only those firm-year
observations where none of the new hires was linked, third sample includes observations where among new
hires at least one was linked. Similarly the fourth column contains obs. where at least 20% of new hires were
linked, the last sample considers obs. there more than 50% of new hires were job-to-job linked.

connected job-to-job hires. When it comes to the geography of connected hires there are
no substantial differences depending on the size of the city. The differences arise for the
industrial districts, defined as the clusters of firms with particular economic specialization
in distinctive geographical areas. Higher incidence of connected hires within industial
clusters serves as a motivation for the study of the role of co-worker connections within
industrial clusters.

Productivity and Hiring Patterns

The final sample contains only ’hiring’ firms. The hiring is an endogenous decision, hence
it is important to study the firm-level characteristics (employment, firm age, productivity)
and check for any pre-existing patterns. Table 1.2 provides firm characteristics of hiring
firms, depending on the extent to which firms exploit informal contacts in hiring decisions.
For most of the financial variables, such as revenue per worker and the share of profits in
total assets, one can distinguish small differences between the samples. The differences
in revenue per worker do not exceed 9 log points, with lower values reported by the firms
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with higher share of socially connected hires. The average wage increases with the use
of co-worker links, however it is a consequence of surge in the firm size. Profits per
worker follow similar pattern, however scatter plots in Appendix A.2.1 show no clear
relationship between percentage of linked hires and pre-existing financial balance sheet
characteristics. Positive relationship between firm size and the use of referrals contrasts
with findings of Rebien et al. (2017). Note however, that our final sample does not include
firms with less than 15 workers, what may explain the differences.

1.5 Empirical Results

1.5.1 Referral Heterogeneity

The estimates presented in Table 1.3 indicate the advantage of job-to-job linked hires both
in entry wage premium (Panel A) and the length of job tenure (Panel B). Entrants who
shared working history in past 5 years with any of the incumbents have on average 2.9%

higher initial salary, what corresponds to the initial wage premium of linked hires of 3.6%
reported by HS. Job-to-job transitions provide advantage of 9.4%, hence job-to-job linked
entrants receive higher entry wages than any of the reference groups.23 The advantage of
job-to-job linked hires appears also in job tenure duration analysis (Panel B of Table 1.3).
They are less likely to exit the firm than any other reference group. Additionaly, high
number of former co-workers among incumbents induces longer tenure, a sign of a peer
pressure of the network.

The analysis of firm closures confirms that linked job-to-job workers in the exiting
firm have higher probability of finding a job within first 26 weeks after displacement
(Table A11). The results are robust to different model specifications and inclusion of
instruments and control variables. All of these suggests the importance of job-to-job
transition for linked hires, pointing at possible transmission of job- or industry-specific
skills.

1.5.2 Firm Productivity

Baseline Analysis

Using the identification strategy described in Section 1.3.2, I examine the impact of the
share of connected hires on firm output and productivity. Table 1.4 presents the main
results, both for the output model of equation 1.2 and two stage productivity estimation
with the use of OP semiparametric model, as in formula 1.3. For now we are interested
only in one year lag of linked hires, further part will examine the dynamics of the effect

23Reference groups are linked job-to-job (12.3% higher initial weekly wage), linked with unemployment
spell (2.9% advantage), non-linked job-to-job (9.4% advantage) and non-linked with unemployment spell.
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Table 1.3: Entry wage regression and job duration (Cox Proportional Hazard Model), VWH
1995-2001.

(1) (2) (3) (4)

Panel A. Entry wage

Connected 0.029*** 0.029*** 0.028*** 0.055**0
(0.002) (0.003) (0.002) (0.025)

No. of connections 0.000000 0.000000 0.000000 0.000000
(0.000) (0.000) (0.000) (0.000)

Jtj 0.094*** 0.094*** 0.114*** 0.114***
(0.001) (0.001) (0.001) (0.002)

Jtj × Connected 0.000000 -0.026000
(0.003) (0.025)

Short spell 0.044*** 0.044***
(0.002) (0.002)

Short spell × Connected -0.027000
(0.025)

R2 0.58 0.58 0.58 0.58

Panel B. Cox Proportional Hazard Model

Connected 0.86*** 0.88*** 0.86*** 0.88***
(0.014) (0.021) (0.014) (0.027)

No. of connections 0.99*** 0.99*** 0.99*** 0.99***
(0.001) (0.001) (0.001) (0.002)

Jtj 0.65*** 0.65*** 0.56*** 0.57***
(0.007) (0.007) (0.007) (0.007)

Jtj × Connected 0.95*00 0.95000
(0.030) (0.035)

Short spell 0.72*** 0.72***
(0.101) (0.011)

Short spell × Connected 1.03000
(0.048)

NOTE: Sample is of the size: N = 281,209. Control variables contain age, age2, gender, residence,
position on the worker side; province, size, firm and industry-year fixed effects. Column (4) includes
additionally interaction term Long spell × Connected for identification purposes. Dep. variable log(wEij)

is winsorized at 1st and 99th percentiles. Panel B. does not include firm fixed effects and industry-year
fixed effects, controlling only for industry. Proportional Hazard model is right censored. Job tenure is
measured in weeks. *p < 0.1, ** p < 0.05,*** p < 0.01.

of connected hires on firm productivity and output. Table 1.4 includes three model spec-
ifications: the baseline (denoted as OLS), first difference and the instrumental variable.
Connected and Hires are lagged variables describing log of inflow of linked workers and
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Table 1.4: Productivity and output analysis, 1997-2001.

Productivity Output

Model: OLS ∆ IV OLS ∆ IV

Connected−1 00.061** 00.046* 0.100* 0.057**0 0.045* 0.120**
(0.027) (0.026) (0.054) (0.026) (0.025) (0.073)

Hires−1 00.013** 00.009* 000.023*** 0.014*** 0.010* 00.025***
(0.005) (0.005) (0.008) (0.005) (0.005) (0.008)

Connected−1 ×Hires−1 -0.019** -0.014 -0.060*0 -0.019**00 -0.0140 -0.070**0
(0.009) (0.009) (0.034) (0.009) (0.009) (0.033)

log(K) 0.14***0 0.10*** 0.13***
(0.019) (0.021) (0.021)

log(L) 0.18***0 0.21*** 0.22***
(0.022) (0.024) (0.024)

log(M) 0.39***0 0.37*** 0.38***
(0.014) (0.015) (0.014)

F-stat 1st stage 445.3 444.9

R2 0.93 0.07 0.93 0.98 0.46 0.98

NOTE: Estimates taken from specification of form given in Equation (1.3) where the dependent variable is either
ln(tfpjilst) (Productivity) or ln(yjilst) (Output). Size of the sample for OLS and IV analysis is 4,307, for ∆ n = 1, 705.
The model ∆ denotes the OLS regression of the output or productivity yearly differences, measuring their surge due
to referrals. The model includes differences of input factors, connected hires, hires, their interaction, LLM-year and
industry-year fixed effects. Remaining models include all of the aforementioned fixed effects as well as production
inputs (in Output), firm fixed effects and firm characteristics (employment count, average wage, firm age, co-worker
network size). Variable Connected−1 denotes log number of connected hires at t − 1. *p < 0.1, ** p < 0.05,***
p < 0.01.

all hires.
Indeed, the hire of linked workers has positive impact on firms productivity and out-

put. More precisely, 10% increase in the number of linked hires increases firm’s produc-
tivity by approximately 1%.24 Similar effect can be found for the output. The negative
sign of interaction term is quite surprising, relating possibly to positive employment shock
that may resolve after firm’s activity suspension or periods following mass employment
reduction. Reassuringly, the IV results are close to those of OLS in terms of the magni-
tude. The first stage F − statistics and R2 indicate strong correlation between number
of linked workers hires at time t and the number of employees former co-workers who
experienced mass-layoff at time t− 1. Similar relationship between displacement of con-
nected workers and connected hires can be established using event study model, similar
to the one introduced in equation 1.4. In this case our dependent variable is the number of

24The calculations follow the formula log
(E[y|X1=x1,X2=1.10x2]

E[y|X1=x1,X2=x2]

)
with mean value of Hires of 1.14.
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Table 1.5: Impact of number of connected hires on firms’ productivity and output
- event study.

Panel A: Productivity

Event: τ ∈ [0, 1] τ ∈ [2, 3] τ ∈ [0, 3]

Baseline 0.038** 0.045 0.042*
(0.017) (0.029) (0.022)

Connected Hire Shock 0.033* 0.041 0.037*
(0.019) (0.030) (0.022)

Connected Worker Displacement 0.075*** 0.152*** 0.113***
(0.019) (0.038) (0.028)

Panel B: Output

Event: τ ∈ [0, 1] τ ∈ [2, 3] τ ∈ [0, 3]

Baseline 0.016*** 0.024*** 0.020***
(0.004) (0.007) (0.005)

Connected Hire Shock 0.011** 0.014* 0.013**
(0.006) (0.008) (0.007)

Connected Worker Displacement 0.028*** 0.052*** 0.040***
(0.005) (0.009) (0.006)

NOTE: Note: Estimates taken from specification of form given in Equation (1.4) where the
dependent variable is the number of patents applications. The sample size is 4, 676 (1, 364
firms). Sample includes only firms with more than 2 observations. The model includes year and
firm fixed effects, industry trends and LLM trends, network size, number of hired workers, firm
size, average wage and firm age. Numbers in parentheses are standard errors clustered at the
LLM level. τ = [a, b] refers to the average of the coefficients between period τ = a and period
τ = b. *p < 0.1, ** p < 0.05,*** p < 0.01.

connected hires, whereas the event is the first time someone from firm’s network becomes
displaced during mass-layoff. The results are presented in Figure A6. There is no clear
trend prior to the event for both connected and market hires. At the year of displacement
there is a significant increase in connected hires with no effect on market hires. There is
no "crowding-out" effect of connected hires on the market ones. Firms are using increased
capacity to hire through their own co-worker network.
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Event Study

Table 1.5 presents the dynamics of the impact of connected hires on firm productivity us-
ing the framework described in Section 1.3.2. Three events are considered: i) Connected
Hire (Baseline) ii) Connected Hire Shock and iii) Connected Worker Displacement. The
first event denotes the year in which for the first time in the sample firms hire a connected
worker. The second event marks a year in which annual increase of employment exceeds
20% and at least 20% of the new hires were connected. The third event happens when for
the first time within firm co-worker network there is a positive number of displaced work-
ers. In other words, it is the first time at which firm has at its disposal connected, displaced
worker. It uses labor supply shock and hence can be treated as an IV-type of event, where
event marks "intention" to treat. The estimation sample contains both treated and never-
treated groups that are observed for at least two years. Note that the estimation sample of
event study changes with respect to baseline one. In a pursue to gain more information, I
include also observations for the years when the firms didn’t hire any worker.

To increase statistical power Table 1.5 tests the hypothesis about the average of βτ co-
efficients for particular time intervals. Note that the matched dataset is a short panel, what
limits the study of long-run effects of the event. The event time indicators are binned at "-
3" and "+4" level. Therefore, Table 1.5 uses only the estimates between 0 and 3 years after
the event. As expected from the baseline analysis, the estimates for the contemporaneous
effect (τ ∈ [0, 1]) are significant for all types of events. The short-run effect (τ ∈ [2, 3])
differs between the events, however the average effect (τ ∈ [0, 3]) remains significant.
The third row of Table 1.5 corresponds to Figure 1.1 (b). The estimated average increase
over the first three years after the event 0.113 and significantly different than zero. Such
surge in productivity is equivalent to a 0.29-standard-deviation increase.25 As expected,
the effect on output (Panel B) is much stronger for all event types and does not wane in
the short run.

Figure 1.1 displays the estimates of the event study analysis for Connected Hire and
Connected Worker Displacement event. For both event types there is no clear trend prior
to the event data, the estimates remain close to zero. The effect of connected hires on
productivity is the highest in the year following the event, whereas for the connected
worker displacement reaches the peak is in the third year after the event. The reason
for that shift lies in the dynamics of hiring process: the first event measures directly the
year of hire (at time 0), whereas the latter captures the labor supply shock within firm’s
network, an "intention" to treat. From Figure A6 we know that increase in displaced
connected workers leads into the surge of connected hires, however, the latter may be
lagged with respect to the displacement event by several months, shifting the time path to
the right. The dynamics of the effect of connected hires on productivity and the estimates

25Standard deviation in the sample of never-treated in thirs event is 0.386
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Figure 1.1: Firms’ Productivity, Relative to the Year of a Connected Hire and Connected
Worker Displacement.

(a) Connected Hire

(b) Connected Worker Displacement

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-3" set to 1 for periods up to and including 3 periods prior to the event and
0 otherwise. Event time indicator "+4" set to 1 for all periods 4 periods after the event and 0 otherwise.
The omitted category is one period prior to the event. The bands around the point estimates are 95 percent
robust confidence intervals.

at the year of the event may help to explain why Eliason et al. (2018a) do not find any
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contemporaneous effect.
Connected Worker Displacement event uses the exogenous labor supply shocks, how-

ever, to obtain instrumental variable estimates I modify the design of the event study. I
introduce the dummy variable that takes value one in each year after the connected hire
event and then instrument it with the dummy variable that takes value one each year after
the connected worker displacement event and zero otherwise.26 The connected hire and
connected worker displacement dummies take value 1 only within 4 years after the event.
Table A22 displays the 2SLS estimates of the model. As expected, the first stage estimates
remain significant at 1 percent level, similarly for the estimates of connected hire.

1.5.3 Industrial Districts

Veneto is a highly industrialized region (textile, furniture, machine and leather produc-
tion) with a number of industrial districts, clusters of firms with particular economic spe-
cialization in distinctive geographical areas. The geographic and industrial proximity may
facilitate the diffusion of information and networking, leading to increased reliance on in-
formal hiring channels. Connected hires within industrial districts additionally transmit
industry-specific human capital what may have an effect on firm productivity. Istat, based
on local labor markets (Sistemi Locali del Lavoro) and survey of economic units, distin-
guishes 141 industrial districts in Italy. In total, industrial districts account for nearly a
quarter of employment (24.5%), two most industrialized regions of Lombardy and Veneto
employ 60.4% of industrial district workforce (respectively 33.7% and 26.7%).27

The region of Veneto has 22 Industrial Districts, 9 of them are in the provinces of
our interest - Treviso and Vicenza. Employment in those industrial clusters accounts for
on average 9.71% of employment in Treviso and Vicenza provinces over in years 1997-
2001, 10.26% of all hires in those two provinces are generated by firms within industrial
districts. Table A6 presents basic characteristics of industrial districts in Veneto. Inter-
estingly, in the local labor markets containing industrial districts the percentage of linked
transitions is almost the same as on average (11.23% compared to 11.18% in the entire
sample), whereas 14.67% hires of firms in industrial clusters are connected. The share of
linked hires increases further for the flows within industrial clusters (both previous and
new firm are within the same industrial district), where even 25.63% of firm entrants are
connected. The higher numbers within industrial districts support the intuition of higher
reliance on informal contacts while hiring in specialized clusters of firms.28 The within

26Formally, the model takes form yjslt = α+βh Connected Hirejt +βw Wjt +Trendst +Trendlt +
θj+λt+ξjslt., whereConnected Hirejt is a dummy variable that takes value one within 4 years following
the connected hire event. I instrument it with Displacedjt - a variable that equals one within the first 4
years after the connected worker displacement event.

27For the formal definition of industrial districts and basic statistics look at Istat website: https://www.
istat.it/it/files//2015/02/EN_Industrial-districts.pdf

28This claim was also checked formally using logit model.
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industrial districts hires are 35.69% of hires in those clusters and 3.66% of all hires in two
provinces of Veneto region. Along with co-worker links, the percentage of job-to-job and
linked job-to-job transitions increases significantly among within industrial district hires.
Increase of EE and linked transitions may indicate that firms within industrial clusters to
higher extent use referrals to attract more productive workers.

To test that conjecture, I first focus on the worker side. The job transitions within
industry clusters are defined as those where both previous and current firms are in the
same industrial district and transition didn’t involve a change of industry. Table 1.6 Panel
A reports the entry wage results using the specification outlined by equation 1.1. The
fact that hire took place in local labor market with industrial district does not impact the
wage of hires. What is important is the fact that the hire was within industrial cluster.
Firm entrants that come from the same industrial districts and industry have 2.7% higher
entry wage, whereas linked firm entrants within industrial cluster hires experience 5.4%
wage premium with respect to the reference group: non-linked outside industrial district
hires. More interestingly, this effect comes from job-to-job linked transitions. Column
(5) of Panel A indicates that connected, within industrial district, job-to-job hires have
around 14.8% wage premium, whereas those who were connected, transitioned within
the cluster and experienced unemployment spell have significantly lower entry wage than
their connected counterparts from the outside of the industrial cluster (0.2% compared to
2.7% wage premium).29 Comparing with more general results of Section 1.5.1, not only
job-to-job linked hires are more frequent in those areas, but also entry wage premium is
around 2.5 p.p. higher than outside industrial clusters.

Connected hires within industrial districts may bring to the new firm some industry-
specific human capital. As the frequency of such transitions is significantly higher within
industrial cluster hires, they may have impact the firm output and productivity. Firm
productivity framework introduced in Section 1.3.2 allows to distinguish additional effect
for within industrial district hires by including in models ( 1.2) and ( 1.3) log number
of connected hires within the same industrial cluster at t − 1. Limiting the sample only
to firms operating in industrial clusters narrows it to 498 observations, too few to obtain
reliable estimates. Table A24 does not find any additional effect for linked hires within
industrial clusters both for output and productivity. One should however interpret that
with caution given limited number of establishments within industrial clusters in two
provinces of Veneto. The issue requires larger sample of firms, ideally from the whole
Veneto region.

29Keep in mind that the reference point of Panel A column (5) are non-linked, non-jtj, outside industrial
district hires.
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Table 1.6: Entry wage regression - Industrial Districts and Industry-Specific Human Capital, 1995-
2001

Dep variable:
(1) (2) (3) (4) (5)

log(wEij)

Panel A: Industrial Districts

Connected 0.029*** 0.026*** 0.026*** 0.027*** 0.027***
(0.002) (0.003) (0.003) (0.003) (0.003)

Jtj 0.094*** 0.094*** 0.094*** 0.094*** 0.094***
(0.001) (0.001) (0.001) (0.001) (0.001)

Ind. District 0.060 0.051 0.051 0.051
(0.067) (0.061) (0.067) (0.067)

Within Ind. District 0.027*** 0.030*** 0.027***
(0.004) (0.004) (0.006)

With. Ind. Distr × Connected -0.013* -0.025**
(0.007) (0.012)

With. Ind. Distr × Connected × Jtj 0.018
(0.014)

R2 0.58 0.58 0.58 0.58 0.58

Panel B: Industry-specific Human Capital

Connected 0.029*** 0.025*** 0.019*** 0.022*** 0.025***
(0.002) (0.002) (0.003) (0.002) (0.002)

Jtj 0.094*** 0.092*** 0.092*** 0.091*** 0.091***
(0.001) (0.001) (0.001) (0.001) (0.001)

Same industry 0.039*** 0.038***
(1-digit) (0.001) (0.001)

Same industry× Connected 0.008**
(1-digit) (0.004)

Same industry 0.053*** 0.054***
(3-digit) (0.001) (0.001)

Same industry× Connected -0.006*
(3-digit) (0.003)

R2 0.58 0.58 0.58 0.58 0.58

NOTE: Estimates taken from specification of form given in Equation (1.1) Sample is of the size: n = 281,209. Control
variables contain age,age2, gender, residence, position on the worker side; province, size and firm fixed effects. Dep.
variable log(wE

ij) is winsorized at 1st and 99th percentiles. Reference group for Panel A column (4) are non-within
cluster, non-link hires, whereas in Panel A column (5) those are non-within ind. distr, non-link and non-jtj hires. For
identification purposes regression in A column (5) contains also Within Ind. Distr× Jtj variable, not reported in the
table. *p < 0.1, ** p < 0.05,*** p < 0.01.
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1.5.4 Extensions

Industry-Specific Human Capital

One of the threats to identification of the co-worker network effect is the industry-specific
human capital. By not including the controls for the same industry job transition, the con-
nected hire variable may account for the former effect. Sharing employment history with
any of the incumbent workers increases probability that the hires worked previously in the
same industry as the one of the firm which they enter and hence the variable Connected

may account for industry-specific skills of workers. To test that hypothesis I modify the
entry wage framework from Section 1.3.2 by including dummy variable that takes value
one if the industries of the origin and entry firm are the same (at either 1-digit or 3-digit
levels) and its interaction with number of connected hires. Statistics presented by Ta-
ble A4 confirm the intuition - connected hires more often come from the same industry
than non-linked ones, both on 1- and 3-digit levels. Moreover, they have significantly
more labor market and industry experience (at 1-4 digit levels).30 Panel B of Table 1.6
presents the estimates. As expected, not accounting for industry-specific skills overes-
timates the impact of co-worker links, however the bias is not large. In the most con-
servative specification (column (3)), the estimates of wage premium of connected hires
are 1 p.p. lower than in the baseline case (column (1)). Workers from the same industry
on more detailed level (3-digit) receive higher entry wage premium than in more general
specification (column (3)). Interestingly, on 1-digit industry level there is premium for
linked workers from the same industry. Effect of co-worker links remains robust in all of
the cases, hence entry wage premium for connected workers does not come entirely from
industry-specific human capital.

Similarly to the case of Industrial Districts, I study the impact of same-industry linked
hires on firm productivity and output. Including log number of connected same-industry
hires in Table A24 changes the baseline productivity results. As a result, Connected ×
Same Ind. seizes the estimates of Connected, leaving the latter insignificant. It indicates
the channel through which referrals give surge to firm productivity - industry-specific
human capital. Firms may use co-worker links to target workers with more industry
experience and increase significantly their output and productivity. Both sample statistics
and firm side analysis support that conjecture.

Other Specifications

One of the caveats of productivity model specification is the measure of connected hires.
The main advantages of log number of linked workers used in previous section is its
simplicity and the fact that it captures the number of linked hires and skills or knowledge

30For more statistics on same industry hires see Table A5
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that they bring. The alternative measure of connected hires, defined as their share among
all hires at time t−1 does not identify the volume effect. Depending on the size of worker
inflow, even small number of linked hires can account for a significant share of new hires
if the number of entrants to the firm is small. Conversely, if some year employer decides
to increase number of workers by significant amount, however referred ones constitute
only a small fraction, we loose their impact, regardless of their comparative advantage.
The measure would be valid provided that connected workers affect firm’s productivity
only if they account for a large fraction among new hies. The alternative approach looks
at the share of newly hired connected workers in firm’s total employment. To omit the
collinearity problem the log employment is excluded from the model and the dependent
variable defined as an output per worker. Having dependent and independent variable
as a function of the same variable infringes model validity. Remember, however, that
in the matched data one can observe the employment both in worker and firm data. To
restore the validity of the model I use the firm side employment to compute output per
worker and VWH firm size to construct share of newly hired linked entrants in firm’s total
employment.31 I attribute each variable of interest, the employment from their original
dataset.32 The results of productivity analysis presented in Table A9 show that under
previously describes specification main findings remain unchanged.

1.5.5 Placebo and Robustness Checks

Placebo

One could argue that given the baseline specification ( 1.3), firms with high employ-
ment have large former co-worker network, what leads to higher number of displaced
employees among them. At the same time large firms are typically more productive ones.
The correlation between firm size and co-worker network is not strong, takes value of
0.42. Additionally, the inclusion of firm fixed effects eliminates unobserved heterogene-
ity within them. The unobservables may include also match specific elements that relate
to new hires. Imagine that thanks to e.g. innovations and technology, unemployed and
employed workers who search on-the-job have better information about particular po-
sition they apply for. Then the rise in firm productivity may not be driven solely by a
distinctive features of connected workers, but reflect better worker-firm matches. Despite
including in the model log number of lagged hires, number of linked workers may convey
the effect of increased match quality.

To test that possibility, in the spirit of Balsvik (2011) I include log number of non-

31Formally equation (3) takes form ỹjslt = βKkjslt+βMmjslt+βRc̃jt−1+β0+Xδ+ηst+µlt+θj+ξjslt
with ỹjslt =

yjslt

l1jslt
and c̃jt−1 =

cjt−1

l2jslt
, where l1jslt is log employment size of firm j at time t taken from

AIDA dataset, whereas l2jslt denotes log employment derived from VWH.
32Both revenue and l1 come from AIDA dataset, whereas r and l2 come from VWH.
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linked new hires at t − 1 along with linked ones in the model 1.2 and 1.3. The results
(see Table A7) show that the number of non-linked workers does not impact the results
and the findings of the baseline model remain valid, regardless of the specification.33

Second type of placebo test checks the log number of lagged non-linked new hires as a
substitute for the linked ones.34 If in fact workers and firms are better match non-linked,
new hires should also contribute to firm productivity. Table A8 shows that that’s not the
case. The third placebo check relates to event study framework. The Connected Hire and
Connected Hire Shock events are replaced by Non-Connected Hire and Non-Connected
Hire Shock events. Neither of the checks show any impact of non-connected hires on firm
productivity (see Table A10 and Figure A3).

Robustness

To examine the robustness of the results, all models are subject to the validity checks that
either use subsamples of the estimation sample or add some additional control variables.
The estimation sample is grouped with respect to gender, industry, occupation and tenure
for worker side. Additional control variables include worker and firm characteristics as
well as displacement shock in the same year, province and province× industry. In case of
productivity analysis the samples are chosen according to industry, employment size, gen-
der proportions, firm age, location and percentage of blue collar workers. Furthermore,
productivity gains are distinguished only for good firms, where the latter are defined using
standard AKM fixed effects. In all of the settings main results remain valid, despite some
differences in magnitude. All results are presented in Appendix A.6.

1.6 Conclusion

Growing number of works in network and referral literature report how co-worker net-
work facilitates job transitions and provides the advantage at a hiring stage. It is widely
documented that workers who obtained job thanks to informal contacts have initially
higher wages and lower turnover, what complies with seminal work of Montgomery
(1991), who claims that referred workers are mostly high productivity ones, as a result
of network inbreeding. In this framework referrals are not only a way of omitting adverse
selection problem at the hiring stage, but potentially contribute to firm productivity and
output.

This paper is the empirical attempt to answer the questions of socially connected hires
heterogeneity and the consequences of using informal contacts for the hiring firms. For
that purpose, I construct matched employer-employee data from the region in northern

33Although usually with positive sign. For the results see Appendix A.3
34The model specification is yjslt = βKkjt+βLljt+βMmjt+βRncjt−1+βHhjt−1+ηst+µlt+θj+ξjslt,

where nc is number of non-linked and h number of all hires at time t− 1.
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Italy and use co-worker links as a proxy for referrals. Heterogeneity within connected
hires originates from the unemployment spell before a job entry. Connected job-to-job
hires are advantaged at every stage of their tenures, compared with linked hires who
experienced unemployment spells. Detailed firm financial data allows to estimate the
impact of connected hires using structural productivity estimation model. I find that the
lagged number of connected hires increases significantly firm productivity and the effect
may last up to three years following the hire. Connected hires inflate firm productivity
through transfers within the same industry, suggesting that firm co-worker network may
facilitate the transmission of job- or industry-specific knowledge. The findings are robust
to subsequent checks and the instrumental variable that employs firms’ co-worker network
and labor supply shocks generated by mass displacements. The findings open a discussion
about the role of co-worker networks in transmisson of skills or knowledge diffusion, a
topic that deserves further study.
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Chapter 2

Inventors’ Coworker Networks and
Innovation

written jointly with Sabrina Di Addario and Michel Serafinelli

2.1 Introduction

A prominent feature of the labor market in many developed countries is the tendency
for firms to hire using social connections (Pellizzari, 2010; Burks et al., 2015; Dustmann
et al., 2016; Hoffman, 2017). Nevertheless, we have limited knowledge regarding the
extent to which available connections impact plants’ innovation.

This is the first paper to present direct evidence on the extent to which plants’ in-
novation is affected by access to knowledgeable labor connected through the co-worker
network. In confronting the non-trivial measurement challenges involved, we take ad-
vantage of a unique dataset that matches administrative employer-employee records from
north-central Italy to patent data.

While the mechanisms we document may apply to other workers and other outcomes
as well, we focus here on inventors and patenting because innovation is considered to fea-
ture especially sizable positive social spillovers and is generally regarded as a key driver
of economic growth (Bloom et al., 2013; Bell et al., 2019). Moreover, albeit inventors are
not the only workers who may transfer relevant information from one plant to another,
they undoubtedly have large potential to do so.

Our empirical strategy exploits plant closures where displaced inventors are connected
to other plants because of former co-workers. The co-workers connections generate a
plant-specific shock to the supply of knowledgable labor, by directing the supply of dis-
placed inventors toward the connected plants. The outcome of interest is plants’ innova-
tive activity; therefore we take a patent application as a signal of the presence of some
innovative output (Lotti et al., 2005). We provide two sets of estimates. First, we esti-
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mate event-study models where the treatment is the displacement of a connected inventor.
We estimate our econometric model with and without the never treated plants; in the lat-
ter case identification comes from the differential timing of treatment onset among the
treated plants. 1 Second, we estimates IV specifications where we use the displacement
of a connected inventor as instrument for the hire of a connected inventor. This analysis
assumes that the whole impact of the displacement of a connected inventor is mediated by
a connected inventor hire. A potential identification concern arises if the directed shocks
to the supply of knowledgeable labor also pick up market-level supply shocks or demand
shocks. 2 We do not expect this to be a major factor in our context. The sample com-
prises mostly closures of small to medium-size plants for which the market effects are
likely to be small - the median closing plant has around 100 employees. To explore this
possibility further we control for displacements in the same local labor market x industry.
We also perform a ”placebo”-type analysis, exploiting the displacement of inventors with
connections to plants in same local labor market x industry.

Even though the issues analyzed in this paper are of general interest, the specific case
of north-central Italy is also important. The macro-region we analyse (which includes
Emilia-Romagna, Friuli-Venezia Giulia, Marche, Toscana, Trentino-Alto Adige, Veneto)
is an economic area where specialized producers, frequently organized in districts, have
been effective in promoting and adapting to technological change during the past four
decades. This so called ‘Third Italy’ has received a good deal of attention by researchers,
both in Europe and in the United States. (Brusco, 1983; Piore and Sabel, 1984; Trigilia,
1990; Whitford, 2001; Piore, 2009). Given Third Italy industry mix, discussed in Section
2.2, our findings are particularly relevant for manufacturing regions such as Germany’s
Baden-Wuerttemberg and the British Motor Valley.

Our empirical evidence can be summarised as follows. We document that follow-
ing displacements within a plant’s network there is a significant increase in the hiring of
connected inventors. Moreover, and most importantly, the improved capacity to employ
knowledgeable workers increases plants’ patenting activity. Specifically, in the event-
study, the estimated average change over the four years starting with the year of the con-
nected inventor displacement is an increase between 0.17 and 0.22 standard-deviations.

The IV estimates indicated the the effect of the hire of a connected inventor is an
increase in patents application of 0.5, equivalent to a 1.56-standard-deviation increase.
The hire of a connected inventor is a major event for these plants, and we find this implied
shift large but not unrealistic. Further, a decomposition of the patent increase suggests that
the additional output is a combination of patents authored by the newly hired connected
inventors (either solo-authored or with co-authors outside the receiving plant), patents
resulting from a collaboration among the hired connected inventors and other workers

1Our identification strategy draws on the one in Eliason et al. (2018a).
2See Gathmann et al. (2020) and Cestone et al. (2016)
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within the receiving plants, and patents authored by the other workers within the new
plants (without the hired connected inventors).

Our work is linked to several literatures. First, our paper is linked to studies of infor-
mation transmission through networks (De Giorgi et al., 2020; Schmutte, 2015; Battisti
et al., 2016; Caldwell and Harmon, 2019), and in particular of co-worker networks in the
context of displacements: Cingano and Rosolia (2012), Glitz (2017), Saygin et al. (2019),
Dalla-Zuanna (2020), all document, for instance, a significant, positive relation between
network employment rate and the probability of finding a new job.3 Closely related is
the study of Eliason et al. (2018a) who, using Swedish register data, document a posi-
tive effect of social connections on firm’s total hires, job separations, and production. In
a similar vein, Korchowiec (2019) shows that hires from a firm’s own network increase
significantly its productivity.4

Our study also contributes to the body of work analysing R&D spillovers, and in par-
ticular the consequences of mobility of R&D personnel.5 For instance, Fons-Rosen (2013)
finds that foreign direct investment has a greater impact on the host economy in terms of
knowledge diffusion when firms reallocate inventors from the already established R&D
labs in their home country to the newly developed ones in the host country. Maliranta
et al. (2009) find that firms involved in non-R&D activities hiring workers from R&D
-intensive firms tend to perform better.6

More generally, the paper expands what is known empirically about knowledge trans-
fer through plant-to-plant labor mobility (Fons-Rosen et al., 2017; Balsvik, 2011; Stoy-
anov and Zubanov, 2012; Parrotta and Pozzoli, 2012), and labor market-based knowledge
spillovers.7 In addition, our study adds to the literature on agglomeration advantages,
recently reviewed by Combes and Gobillon (2015), and in particular on the microfounda-
tions of such advantages based on learning.8

3A related body of work uses matched employer-employee datasets to explore network effects in the
labor market. Dustmann et al. (2016) and Glitz (2017) document larger initial wage premium and longer
job tenure for referred workers. Using the armed-force test, Hensvik and Skans (2016) report that firms
workers with higher cognitive skills when hiring previous colleagues of current employees. Kramarz and
Skans (2014) show that family ties are an important determinant for where young workers find their first
job. Eliason et al. (2018a) assess the impact of social connections on the sorting of workers to firms.

4Burks et al. (2015) document that in call centers and trucking, referred workers yield substantially
higher profits per worker than nonreferred ones, while Kramarz and Thesmar (2013) find that social net-
works strongly affect board composition in French public firms and are detrimental to corporate governance.
Friebel et al. (2019) document that having an employee referral program reduces attrition and decreases firm
labor costs.

5For instance Bloom et al. (2013) develop a methodology that allows to separate the impact of technol-
ogy spillovers from the product market rivalry effects of R&D. They apply this approach to a 20-year panel
of U.S. firms and shows that knowledge spillovers quantitatively dominate product market spillovers.

6In a similar vein Kaiser et al. (2015) show that the mobility of R&D personnel enhanced the patenting
productivity of Danish firms during the period 1999-2004. Other papers combine register data with patents
data and study features of the work history of inventors. See for instance Depalo and Di Addario (2014)
and Kline et al. (2019)

7Serafinelli (2019) and Abebe et al. (2019).
8Rosenthal and Strange (2003),Moretti (2004),Kantor and Whalley (2014),Guiso et al. (2015), Ganguli
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Another related body of work analyzes peer effects in the workplace induced by
knowledge spillovers and finds mixed evidence. On one hand, for instance Waldinger
(2010) finds that faculty quality is a very important determinant of PhD student outcomes.
On the other hand, Cornelissen et al. (2016) find only small peer effects in wages in high
skilled occupations.

Furthermore, our study is related to papers investigating network effects in science.
For instance, Mohnen (2018) shows that network position is crucial in determining sci-
entific production by facilitating access to other scientists’ non-redundant knowledge
through coauthorship links.9 A final set of related studies focus on the mobility of im-
migrant scientists. For instance, Moser et al. (2014) focus on chemical inventions and
compare the changes in US patenting by US inventors in research fields of German Jewish
emigres with changes in US patenting by US inventors in fields of other German chemists.
They provide evidence that the U.S. patenting activity has increased in the research fields
of German-Jewish refugees after 1933.

2.2 Data and Descriptive Statistics

2.2.1 Overview

The data used in this paper covers Emilia-Romagna, Friuli-Venezia Giulia, Marche, Toscana,
Trentino-Alto Adige, Veneto. A distinctive feature of this macro-region in northern-
central Italy is the large presence of flexible producers frequently organized in districts.10

Manufacturing firms in the districts of Third Italy specialize in metal, mechanic and elec-
trical engineering, goldsmithing, plastics, furniture, ceramics, musical instruments, toys,
fashion-wear.

Our data set covers the period 1987-2008 and pools two sources of information:
the employer-employee matched data from the Italian Social Security Institute (Istituto
Nazionale di Previdenza Sociale, INPS) and Patstat, the European Patent Office (EPO)
Worldwide Patent Statistical Database.11

Information on local labor markets (sistemi locali del lavoro) is obtained from the
National Institute of Statistics (ISTAT). The local labor markets (LLMs) are territorial
groupings of municipalities characterized by a certain degree of working-day commuting
by the resident population. In 1991 the municipalities or comuni in our 6 administrative

et al. (2020) and Tabellini and Serafinelli (2020). A related body of work studies the determinants of local
innovation (Fons-Rosen et al., 2016; Huang et al., 2020)

9More generally, a number of studies explore co-author relationships (Jaravel et al., 2018; Azoulay et al.,
2019; Zacchia, 2019).

10Several of such clusters feature some leading plants, especially in Veneto. See (Whitford, 2001) for a
discussion.

11These two sources, combined for the period 1987-2006, are used in the study on inventors’ returns to
patents by Depalo and Di Addario (2014).
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regions are grouped into 163 LLMs.

2.2.2 Administrative Records and Patent Data

INPS dataset follows all private-sector workers and firms over time. The available infor-
mation at the individual level includes age, gender, municipality of residence and munic-
ipality of birth, work status (blue collar; white collar; manager; other), type of contract
(full-time versus part-time) and gross yearly earnings. The information on plants includes:
average gross yearly earnings, yearly number of employees, industry, plant location (at
the municipality level), date of plant opening and closure.

From Patstat we obtain the universe of patent applications and grants presented at the
EPO by any Italian "applicant" (i.e. the firm submitting a patent application and retaining
the relative property rights). The database provides a detailed description of each patent
submission, including its title, abstract and technological field, the name and address
of all its inventors and applicants, the dates of application filing, publication and grant
obtainment and the citations received.

Inventor status is defined based on the date of the first patent application. More pre-
cisely, we define a worker as being an inventor in year m if she is observed submitting a
patent application in t≤m.

Patstat does not have a plant identifier. Therefore a matching procedure was needed
in order to merge the information to the INPS dataset (on the basis of the applicant name
and location).12 The resulting dataset includes the full work history of the inventors, i.e.
Social Security info for all the plants at which an inventor has worked during her career,
covering also plant-year observations before inventor’s first patent application. For these
plant-year observations we also observe the co-workers of the inventors.

2.2.3 Co-worker Network

We construct the plant’s network using co-worker links, reconstructed from the employ-
ment history of each worker. More precisely, the employee’s network comprises all for-
mer co-workers (employed in the same plant, other than the current one). The plant’s
network is a collection of co-worker networks of each incumbent employee.

The co-worker network is constructed for every plant in the sample for each year
over the period of interest. In the first step, each year we distinguish incumbents as the
workers who are employed in the first week of January. Next, for each incumbent we take

12The datasets were merged in several steps. We first attributed VAT codes to Patstat applicants on the
basis of the name and location. We verified the code using four alternative datasets (Cebi, Infocamere,
INPS, Orbis). Then INPS staff linked Patstat applicants to all possible INPS plants that had the same VAT
identifier/same name and location (at the municipality level). Finally, INPS verified in its records that the
inventors appearing in each patent submission were actually employed in the corresponding applicant (from
Patstat).
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Table 2.1: Characteristics of the sample of inventor hires (1992-2008)

Connected Displaced
Connected and

Displaced

Share of inventor hires (%) 44.73 2.73 0.84

her employment history within past 5 years and build a network that comprises former
co-workers.13 Only plants where the number of workers is less than 500 are included in
the sample. We exclude these very large plants, where the chances of establishing a link
with every worker are low, to reduce the incidence of imprecise connections.

2.2.4 Plant Closures and Displaced Inventors

Our empirical strategy employs plant closures to identify the supply shock of knowledge-
able workers within plant’s own network. The INPS dataset includes the information on
the date of plant closure; given the five year interval necessary to distinguish the plant’s
network, we are interested in closures between 1992 and 2008.

In order to identify "true" plant closures, i.e. the ones that are not a result of a merger,
a change of tax identifier or a spin-off, we analyse worker flows from exiting plants and
denote a closure as "true" whenever the maximum cluster of outflow from the closing
plant to any other plant is below 50% of the workforce at the exiting one.14 Only closing
plants with more than 3 workers are subject to this procedure. The closures of plants with
less than 4 employees are always classified as a "true" ones.

Using the information on plant closures, we are able to distinguish all employees who
are subject to displacement, both inventors and non-inventors. We denote a worker as dis-
placed if she loses the job in the year of plant closure. Inventors account for approximately
0.50% of all workers displaced due to plant closures in our data.15

2.2.5 Descriptives

Displacements and Connected Inventor Hires

Table 2.1 indicates that the percentage of connected inventor hires in our sample is almost
45 percent. This is larger than the share reported in other studies using a representative

13Only employment spells longer than 3 weeks are taken into account, whereas the spells of incumbents
and former co-workers in past plants need to overlap by at least one week.

14Estimates are qualitatively similar if a 30% threshold is used
15The information on worker’s contract end allows to perform additional checks of displaced employees.

We select only those workers for whom the year of contract end and the plant closure coincide. Around
64% of displaced workers terminate their contract in the quarter preceding the closure. For the month and
week preceding the closure the shares are respectively 51% and 45%.
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Table 2.2: Summary statistics for estimation sample (1992-2008).

Mean SD Min Max

No. of Patent Applications 0.035 0.322 0 20

Citation-weighted Patent Count 0.034 0.756 0 56

Displaced Inventors conn. 0.008 0.170 0 35

Displaced Non-Inventors conn. 3.317 15.280 0 670

Inventor Hire conn. 0.008 0.100 0 7

Inventor Hire non−conn. 0.004 0.083 0 11

Employment Size 106.102 111.916 5 496

Plant Network 849.039 1180.871 1 22 197

Note: Sample size contains 80, 310 observations for 7, 301 plants. No of Patent Citations describes average
sum of patent applications by the submission year. Displaced Inventorsconn. is the number of connected
inventors who are displaced in a given year, Inventor Hireall. is the number of all inventor hires, Inventor
Hireconn. is the number of connected inventor hires, Plant Network is the number of former co-workers of
current employees, as described in Section 2.2.3.

sample of workers and establishment (10-15 percent), pointing to stronger network effects
for inventors than for the typical worker (see Figure B1 for the evolution over time in the
share of connected inventor hires).

Estimation Sample

Our main sample consists of observations of plants that employ at least one inventor
between 1992 and 2008. The outcome of interest is plants’ innovative activity, therefore
we take a patent application as a signal of the presence of some innovative output (Lotti
et al., 2005). The panel includes 80, 310 observations for 7, 301 plants, and its main
characteristics are summarized in Table 2.2.16

2.3 Econometric Framework

Our empirical analyses exploit plant closures for identification, in the spirit of Eliason
et al. (2018a). The underlying idea is that plant p’s ability to hire through the network
is affected by displacements (at some other plant j) of inventors connected to p’s current
workers. We estimate (a) event-study models where the treatment is the displacement
of a connected inventor and (b) IV specifications where we use the displacement of a
connected inventor as instrument for the hire of a connected inventor.

16The average time between patent application and receiving a grant in our sample is 4.37 years.
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2.3.1 Event-Study

We use an "event-study" research design as in Kline (2011) whose exposition we follow
here. This design allows us to test for the presence of plants-specific pre-trends in inno-
vation and to recover any dynamics of the effect of interest. Specifically, the regression
equation is:

ln(Ypilt) = β0 +
∑
τ

βτD
τ
pt + βnNpt + βdDisplacedilt+Trendit + Trendlt

+ λp + αt + upilt ,

(2.1)

where the dependent variable is the number of patent applications; p references plant, i
industry, l local labor market (LLM) and t year. The Dτ

pt are a sequence of "event-time"
dummies that equal one when the displacement of a connected inventor is τ years away.
Formally:

Dτ
pt ≡ I[t− ep = τ ],

where I[.] is an indicator function for the expression in brackets being true, and ep is
the year of the displacement. Therefore the βτ coefficients characterize the time path of
innovation relative to the date of the event.

We include year dummies (αt), and allow for permanent differences across plants
(λp), industry-specific and LLM-specific trends (Trendit and Trendlt). We also control
for controls for the the network size (Npt)

A potential identification concern arises if the directed shocks to the supply of knowl-
edgeable labor also pick up market-level supply shocks or demand shocks. We do not
expect this to be a major factor in our context. The sample comprises mostly closures
of small to medium-size plants for which the market effects are likely to be small - the
median closing plant has around 100 employees. To explore this possibility further, we
control for displacements in the LLM x industry (Displacedilt).17

The results are obtained by estimating Equation (2.1) by OLS, adding a set of event-
time dummies prior to and after the event, together with the controls. The event time
indicator "-4" is set to 1 for periods up to and including 4 periods prior to the event and
0 otherwise. The event time indicator "+5" is set to 1 for all periods 5 periods after
the event and 0 otherwise.18 These endpoint coefficients give different weight to plants
experiencing the treatment early or late in the sample period.19 Therefore, in discussing
the treatment effects, we concentrate on the event-time coefficients falling within τ = 0

and τ = 3 that are identified off of a nearly balanced panel of plants. We normalize β−1
to zero, so that all post-treatment coefficients can be thought of as treatment effects. We

17In Section B.1.1, we also perform a ”placebo”-type analysis, exploiting the displacement of inventors
with connections to plants in same LLM X industry.

18This constraint aids to diminish some of the collinearity between the year and event-time dummies.
19Notice that the sample of treated plants is unbalanced in event time.
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cluster standard errors at LLM level.

2.3.2 IV Estimation

We consider 2SLS estimates where the displacement of a connected inventor is used as
instrument for the hire of a connected inventor. This analysis assumes that the whole
impact of the connected displacement of an inventor is mediated by a connected inventor
hire. Specifically, denote with Inventor Hireconn. a dummy equal to one in the five years
starting with the year of the hire of a connected inventor. The causal relation of interest
is:

ln(Ypilt) = βhInventor Hireconn.pt + βnNpt + βdDisplacedilt + Trendit + Trendlt

+ λp + αt + upilt.

(2.2)

We instrument Inventor Hireconn. with Displ. Inventorconn., i.e. a dummy equal to one
in the five years starting with the year of the displacement of a connected inventor.

2.4 Evidence

2.4.1 Connected Inventor Displacements and Innovation: Event-Study
Estimates

Figure 2.1 plots the baseline βτ coefficients from estimating Equation (2.1), comparing
changes in patent applications of plants that experience the displacement of a connected
inventor both to plants that have not yet experienced such event and plants that will never
do during our sample period. We distinguish 555 events over the period of interest. The
Figure has two important features. First, there is no pretreatment trend in the coefficients,
lending support to the validity of the research design. This support is reinforced by the
lack of pre-trend in hires of inventors (connected or unconnected) documented in Figure
2.3 (discussed below). The second important feature of Figure 2.1 is that there is a upward
shift in plant’s innovation after the displacement of a connected inventor. In Figure 2.2
we drop the never treated plants, and therefore identification comes from the differential
timing of treatment onset among the treated plants.

While the general pattern in Figure 2.1 and 2.2 is quite clear (and broadly similar),
the individual βτ coefficients are not estimated very precisely. We therefore offer more
formal tests of the null hypothesis that the displacement of a connected inventor has no
impact on plants’ innovation. To increase statistical power we test hypotheses about the
average of the βτ coefficients over various time intervals (Table 1.5). The first row corre-
sponds to Figure 2.1: the estimated average increase over the four years starting with the
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Figure 2.1: Plants’ Innovation, Relative to the Year of a Connected Inventor Displace-
ment.

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-4" set to 1 for periods up to and including 4 periods prior to the event and
0 otherwise. Event time indicator "+5" set to 1 for all periods 5 periods after the event and 0 otherwise.
The omitted category is one period prior to the event. The bands around the point estimates are 95 percent
cluster-robust confidence intervals (the clustering level is LLM).

year of the event is 0.045 and statistically distinguishable from zero at conventional level.
An increase in patent applications of 0.045 is equivalent to a 0.17-standard-deviation in-
crease.20 The second row of in Table 2.3 corresponds to Figure 2.1: the average increase
is equivalent to 0.22 standard deviations.

2.4.2 Recruitments of Connected Inventors

How does the hiring of connected inventors evolve before and after displacements? To in-
vestigate this important aspect we estimate Equation (2.1) using as the dependent variable
a dummy equal to one if a connected inventor is hired. Panel A of Figure 2.3 shows that
the frequency of connected inventors hires has a clear top at the time of the displacement
of a connected inventor. This is consistent with the hypothesis that plants take advantage
of the displacement of a connected inventor to recruit connected knowledgeable labor.
Panel B of Figure 2.3 shows that non-connected inventor hires do not exhibit any partic-
ular patterns with respect to the event of interest.

20The standard deviation in the sample of never treated plants is 0.26.
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Figure 2.2: Plants’ Innovation, Relative to the Year of a Connected Inventor Displace-
ment. Treated Plants Only.

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-4" set to 1 for periods up to and including 4 periods prior to the event and
0 otherwise. Event time indicator "+5" set to 1 for all periods 5 periods after the event and 0 otherwise.
The omitted category is one period prior to the event. The bands around the point estimates are 95 percent
cluster-robust confidence intervals (the clustering level is LLM).

Table 2.3: Impact of Connected Inventor Displacements on Plants’ Innovation -
Event Study.

τ = 0 τ ∈ [1, 2] τ ∈ [3, 4] τ ∈ [0, 4]

Baseline Sample -0.012 0.074*** 0.045** 0.045**
(0.021) (0.029) (0.020) (0.019)

Treated Only -0.006 0.083** 0.063** 0.057**
(0.021) (0.035) (0.029) (0.026)

Note: Estimates taken from specification of form given in Equation (2.1) where the dependent
variable is the number of patents applications. The sample size for Baseline Sample is 80, 310
(7, 301 plants), whereas for Treated only it is 6, 954 (551 plants). Sample includes only plants
with more than 5 observations in the period of interest. The model includes year and plant
fixed effects, industry trends and LLM trends, network size, number of displaced workers in the
LLM×industry×year. Numbers in parentheses are standard errors clustered at the LLM level.
τ ∈ [a, b] refers to the average of the coefficients between period τ = a and period τ = b.
*p < 0.1, ** p < 0.05,*** p < 0.01.
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Figure 2.3: The effect of network displacements on connected and market inventor hires
- event study (1992-2008)

(a) Connected inventor hires

(b) Market inventor hires

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-4" set to 1 for periods up to and including 4 periods prior to the event and
0 otherwise. Event time indicator "+5" set to 1 for all periods 5 periods after the event and 0 otherwise.
The omitted category is one period prior to the event. The bands around the point estimates are 95 percent
cluster-robust confidence intervals (the clustering level is LLM).
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Table 2.4: IV Estimates of the Effect of Connected Inventor Hires on Innovation

Dependent Variable
(1) (2) (3)

No patent applt

Panel A: 2SLS Estimates

Inventor Hireconn. 0.478*** 0.446*** 0.502***
(0.156) (0.170) (0.194)

F-stat, 1st stage 22.39 18.12 14.04

N 80,310 80,310 80,310

Displacedilt - + +

Industry and Time Trends - - +

Panel B: First stage estimates

Displ. Inventorconn. 0.057*** 0.053*** 0.048***
(0.012) (0.012) (0.013)

Panel C: Reduced form estimates

Displ. Inventorconn. 0.027*** 0.027*** 0.024***
(0.008) (0.008) (0.007)

NOTE: Estimates taken from specification of form given in Equation (2.2) where the dependent
variable is the number of patents applications. Final sample includes only plants with more than 5
observations in the period of interest. Numbers in parentheses are standard errors clustered at the
LLM level. Network size, plant and time fixed effects always included. Displacedilt : number of
displaced workers in the same LLM×industry×year. *p < 0.1, ** p < 0.05,*** p < 0.01.

2.4.3 Connected Inventor Hires and Innovation: IV Estimates

Table 2.4 displays the IV results. The coefficient on the dummy indicating the hire of a
connected inventor is significant at 1 percent level. The effect is an increase in patents
application of 0.5. To put the magnitude of the estimated effect in perspective, we cal-
culate the fraction of overall variation in innovation explained by the hire of a connected
inventor. A change of 0.5 is equivalent to a 1.56-standard-deviation increase.21 The hire
of a connected inventor is a major event for these plants, and we find this implied shift
large but not unrealistic.

21The standard deviation in the estimation sample is 0.32. See Table 2.2.
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Table 2.5: Citation-weighted Patent Counts, Poisson and Placebo Estimates

Panel A: Placebo

Dep. Var.:
τ = 0 τ ∈ [1, 2] τ ∈ [3, 4] τ ∈ [0, 4]

No Patent Applications

0.006 0.009 -0.002 0.004
(0.009) (0.011) (0.013) (0.010)

Panel B: Citation-Weighted Patent Counts

Dep. Var.:
τ = 0 τ ∈ [1, 2] τ ∈ [3, 4] τ ∈ [0, 4]

No Patent Citations

-0.055 0.174** 0.060 0.083*
(0.045) (0.090) (0.100) (0.043)

Panel C: Poisson

Dep. Var.:
τ = 0 τ ∈ [1, 2] τ ∈ [3, 4] τ ∈ [0, 4]

No Patent Applications

-0.085 0.517** 0.389* 0.345*
(0.201) (0.233) (0.202) (0.188)

Note: Estimates taken from specification of form given in Equation (2.1). Panels A and C: the dependent
variable is number of patent applications. Panel B: the dependent variable is Citation-Weighted Patent Count.
The sample size is 49, 176 (4, 709 plants) in Panel A, 80, 310 (7, 301 plants) in Panel B and 9, 486 (707
plants) in Panel C. Sample in Panel C is smaller because plants with all zero outcomes are discarded in
the estimation routine (Stata xtpoisson). The differences in sample size in placebo stem from the fact that
more firms experience multiple placebo effect and hence were discarded from the sample. Final sample
includes only plants with more than 5 observations. The model includes year and plant fixed effects, industry
trends and LLM trends, network size, number of displaced workers in the LLM×industry×year. Numbers in
parentheses are standard errors clustered at the LLM level. τ ∈ [a, b] refers to the average of the coefficients
between period τ = a and period τ = b. *p < 0.1, ** p < 0.05,*** p < 0.01.

2.4.4 Validity and Robustness

Displacements with Connections to Plants in the same LLM x Industry (Placebo)

To further explore the possibility that the directed shocks to the supply of knowledgeable
labor also pick up market-level supply shocks or demand shocks, we perform a ”placebo”-
type analysis. Specifically we investigate the extent to which innovation at plant p reacts to
displacement of inventors who are connected to other plants in the same LLM x industry
but not p. The estimates, shown in Figure B2 and Table 2.5 indicate that the the estimated
average change over the four years starting with the year of the placebo event is very
small (an order of magnitude smaller than in the main estimates) and insignificant. These
results suggest that the effect identified above is genuine to the improved capacity to
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Figure 2.4: Citation-weighted Patent Counts, Relative to the Year of a Connected Inventor
Displacement.

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-4" set to 1 for periods up to and including 4 periods prior to the event and
0 otherwise. Event time indicator "+5" set to 1 for all periods 5 periods after the event and 0 otherwise.
The omitted category is one period prior to the event. The bands around the point estimates are 95 percent
cluster-robust confidence intervals (the clustering level is LLM).

employ connected inventors, and does not reflect market-level supply shocks or demand
shocks.

Citation-weighted Patent Counts

The baseline analysis uses simple patent counts. We explore the sensitivity of our results
when we citation-weighted patent counts. In constructing this dependent variable, we
employ the truncation correction weights devised by Hall et al. (2001) to correct for the
fact that earlier patents will have more years during which they can receive citations. The
estimates, shown in Figure 2.4 and Panel B of Table 2.5 are consistent with the main
findings. Specifically the estimated average increase over the four years starting with
the year of the event is statistically distinguishable from zero at 10 percent level and
equivalent to a 0.13-standard-deviation increase.

Poisson Estimates

The estimation framework in Section 2.3.1 has several advantages. OLS is the best lin-
ear unbiased estimator and its consistency properties are transparent. Nevertheless, we
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Figure 2.5: Plants’ Innovation, Relative to the Year of a Connected Inventor Displace-
ment, Poisson

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-4" set to 1 for periods up to and including 4 periods prior to the event and
0 otherwise. Event time indicator "+5" set to 1 for all periods 5 periods after the event and 0 otherwise.
The omitted category is one period prior to the event. The bands around the point estimates are 95 percent
cluster-robust confidence intervals (the clustering level is LLM).

explore the robustness of our conclusion when using quasi-maximum likelihood fixed-
effects Poisson estimates (QMLE Poisson), which address the count data characteristics
of patents. The estimates, reported in Figure 2.5 and Panel B of Table 2.5, are consistent
with the main findings. Specifically, the average increase over the four years starting with
the year of the event is 41.2 percent.22

Event-study with linked, displaced inventor hires

The event-study in Section 2.4.1 is based on the displacement of a connected inventor.
It is instructive to consider the event of the hire of a displaced connected inventor. The
results are displayed in Figure B3 and Table B2: the estimated average increase over the
five years starting with the year of the event is 0.28 and statistically distinguishable from
zero at 10 percent level. An increase in patents application of 0.28 is equivalent to a
0.78-standard-deviation increase.23

22The percentage change is calculated as (exp(0.345)-1)*100=41.2.
23The standard deviation in the sample of never treated plants is 0.36.
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2.5 Patent Increase Decomposition

Which workers are driving the increase in innovation after a hire of connected inventor,
documented in Section 2.4.3? For instance, is the surge in innovation driven by cooper-
ation between the connected inventor and the new colleagues? Or knowledge spillovers
that poised the new coworkers of the hired inventor to increase patenting activity? Or peer
effects? To explore these issues, we now turn to a decomposition of the patent increase.

2.5.1 Joiners and Experienced Employees

We define Joiners, as an inventors that joined a plant within five years prior to patent
application. Connected Joiner is an inventor who entered to a plant no sooner than five
years before the application and was a connected hire. All employees that didn’t enter a
plant within past five years are denoted as Experienced Employees. Note that Experienced

Employees include both inventors and employees without any patent applications yet.
We further define two main groups of patent applications: i) Connected Joiners Ap-

plications and ii) Remaining Employees Applications. The first group includes all patent
applications where at least one of the authors was a Connected Joiner in a plant of in-
terest. Within this group we distinguish two subsets of patent applications, depending
on the origin of the co-authors. If all of the co-authors of connected joiner are from the
outside of a plant or the application is single-authored, we denote it as a Single or Out-

side Co-Author group. Otherwise, i.e. if the application is a collaboration of a connected
joiner with co-workers in the new plant, we call it Within Plant Co-Author. The second
major group of patents (Remaining Employees) comprises applications where none of the
co-authors was a Connected Joiner. The remaining employees can be either Experienced

ones or a Non-Connected Joiners. The three aforementioned groups provide clear distinc-
tion between the patenting activity brought by the connected hire, her collaboration with
colleagues in a new plant and the activity of remaining employees at a new employer.

2.5.2 Results

Panel (b) of Figure B5 plots the share of all three considered patent categories over the
period of interest. The share of Connected Joiners’ collaboration outside of the plant
and solo applications has decreased, whereas their joint patents with co-authors within
a new plant remained on the same level. Similar patterns can be observed for the en-
tire population of Joiners (Panel (a)) - decrease in collaboration outside of a plant and
growing number of Experienced Employees applications. Note, however, that the latter
effect might be propelled by the steady increase of inventor hires (Figure B1), and, as a
consequence, inflow into Experienced Employees category.
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Table 2.6: IV Estimates of the Effect of Connected Inventor Hires on Innovation

Patent Applications
Connected Joiners Connected Joiners Remaining Employees

(single/outside co-author) (within co-author)

Panel A: 2SLS Estimates

Inventor Hireconn. 0.265** 0.217* 0.784**
(0.121) (0.124) (0.402)

F-stat, 1st stage 15.21 15.21 15.21

N 80,310 80,310 80,310

Displacedilt + + +

Industry and Time Trends + + +

Panel B: First stage estimates

Displ. Inventorconn. 0.049*** 0.049*** 0.049***
(0.013) (0.013) (0.013)

Panel C: Reduced form estimates

Displ. Inventorconn. 0.013** 0.011** 0.039**
(0.006) (0.005) (0.016)

NOTE: Estimates taken from specification of form given in Equation (2.2) where the dependent variable is either of the three
groups of patent applications displayed in the top row. Final sample includes only plants with more than 5 observations in
the period of interest. Numbers in parentheses are standard errors clustered at the LLM level. Network size, number of hires,
plant and time fixed effects always included. Displacedilt : number of displaced workers in the same LLM×industry×year.
*p < 0.1, ** p < 0.05,*** p < 0.01.

In the decomposition exercise we use the econometric framework proposed by Equa-
tion 2.2 and the three aforementioned groups of patent applications as a dependent vari-
able. The five year window in the definition of Joiners allows to distinguish the patenting
activity of connected inventor hires, since the plants with multiple events are excluded
from the estimation sample. The reference point for the results of decomposition pre-
sented in Table 2.6 are the findings of column (3) in Table 2.4.

Two main effects emerge from the decomposition analysis (Table 2.6): surge in the
number of patents that Joiners pursue either alone or co-author with outside inventors,
and an increase in patenting activity of the remaining employees. While the former is a
signal of the knowledge and co-author network brought to the new plant by Connected

Joiner, the latter indicates either a peer pressure or a transfer of knowledge caused by the
entry of connected inventor. Interestingly, the effect of connected inventor hire on her
collaboration with new co-workers (Within Plant Author) is relatively weak.

The event study analysis of patent count decomposition (Table B3) brings additional
insight on the dynamics of the increase in plants’ innovative activity and potential chan-
nels of knowledge diffusion. The increase in Connected Joiners’ single and outside plant
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co-author applications is the strongest right after the displacement event and fades in the
later years. The impact on the applications of Remaining Employees appears the strongest
in the long run.

2.6 Concluding Remarks and Future Work

The central empirical goal of the paper is to measure the extent to which access to con-
nected knowledgeable workers impacts plants’ innovation. Our identification strategy
exploits the shocks that displacements of inventors generate to the connected supply of
knowledgeable labor of plants with employees that are former coworkers of the displaced.
Estimates from event-study and IV models indicate that the improved capacity to employ
connected inventors increases plants’ patenting activity. In the future, we plan to provide
further evidence on extent and nature of knowledge diffusion through the network, since
we have just scratched the surface in this regard. For instance, using info on citations in
the patents data, we plan to study whether the hiring plants are more likely to build on the
knowledge of previous colleagues of connected displaced inventors.
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Chapter 3

Job Automation and Worker
Reallocation

3.1 Introduction

Job automation is most commonly defined as the process in which a particular set of
tasks within an occupation can be performed by industrial or service robots. The current
pace of implementation of industrial robots is unprecedented and poised to accelerate
in the upcoming decade, as installation costs are expected to drop in some industries
by 22%, leaving around 47% of US employment in danger of automation.1 Acemoglu
and Restrepo (2017a) (hereafter AR) report that the increase in industrial robot usage
has a significant impact on local labor markets and claim that the automation is a labor-
displacing force. They find that one more robot in a commuting zone reduces employment
by 6.2 workers and decreases average wage by 0.73%.2 While most of the existing works
document the labor-displacing effect of automation, we know suprisingly little on whether
(and how) it affects displaced workers. Empirical analysis of AR suggests that workers
hit by automation are more likely to stay out of labor force. A recent study of Bessen
et al. (2019) also finds that automation increases separation probability, leading to longer
non-employment spells of workers displaced by the robots.

The main purpose of this paper is to study the effects of job automation on workers’
occupational mobility. The contribution of the work is twofold: first, I uncover novel

1Formally job automation is defined as workers being replaced by "automatically controlled, repro-
grammable, multipurpose machines that do not need human operator" (International Federation of Robotics
definition). The largest purchasers of industrial robots are China, South Korea, Japan, United States and
Germany, representing 73% of robot sales volume in 2016. For further details and statistics on industrial
and service robots see IFR World Robotics reports https://ifr.org/downloads/press/Executive_Summary_
WR_2017_Industrial_Robots.pdf. The estimates are based on Boston et al. (2015) report and Frey and
Osborne (2017).

2Compared to commuting zone with no exposure to robot. They name this the displacement effect. It is
countered by productivity gains of firms that implement robots, which can lead to employment gains. AR
find that the former effect dominates.
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empirical regularities regarding characteristics of occupations that are at risk of automa-
tion and mobility patterns of displaced workers. Second, I build a search and matching
model with technological acceleration, human capital accumulation and skill transfer-
ability to understand how much of the observed differences in occupational mobility can
be explained by job automation. The model can be used to evaluate policies that offset
the wage loss caused by automation and incentivise workers at risk of it to search more
actively while non-employed.

In the empirical part of the paper I develop a measure of occupational-level exposure
to job automation with the use of industry level data on the stock of robots and distribu-
tion of employment across industries within each occupation. Those ranked above 66th
percentile of the exposure index (denoted interchangeably as jobs with high exposure or
high risk of automation) are manual task-intensive, manufacturing jobs such as machine
operators, assemblers, etc.3 They have on average lower training requirements and em-
ploy individuals with lower educational attainment levels than the jobs with lower risk
of automation.4 Then, using the panel of individual employment histories from Survey
of Income and Program Participation (SIPP), I show that job automation is an important
factor driving occupational mobility decisions of displaced workers, along with learning
about own abilities and business cycle.5 Three key findings emerge from the analysis.

First, I uncover the composition effect of fairly stable occupational mobility rates
documented over the past two decades: significant increase in mobility of high expo-
sure occupations was offset by the decline among low-risk occupations. Non-employed
workers with high exposure to automation have on average 10 percentage points higher
probability of changing broad occupational category (1-digit occupational classification)
than their counterparts with low risk. The results hold for every level of occupational clas-
sification. Prior to implementation of the first industrial robots (early 90s), occupations
did not differ significantly in mobility levels depending on their exposure to automation.
Second, the mobility of exposed workers is not U-shaped: mainly low earners within
occupations at risk of automation tend to reallocate. Third, conditional on occupational
mobility, exposed workers face significantly lower probability of moving into jobs with
higher average wage. Only those above 90th percentile of wage distribution within prior
occupation tend to switch into jobs with higher average wage and higher cognitive skill
intensity. As a result, earnings of workers employed prior to displacement in occupation
with high exposure recover slower than of their counterparts with low risk.

3These results are, however, somewhat mechanical given the data used in the study. To the best of my
knowledge, the only available dataset on the usage of robots contains information on the stock of industrial
robots, leaving service ones undocumented. Bessen et al. (2019) document however, that the job automation
has the largest effect on manufacturing, what may justify the focus on industrial robots.

4Training requirements is an index ∈ (0, 1), based on O*NET Job Zone measure of how much prepara-
tion (e.g. education, on-the-job training, etc.) each occupation requires.

5For more on the key factors driving occupational mobility see e.g. Kambourov and Manovskii (2008),
Papageorgiou (2014) or Groes et al. (2015).
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The second contribution of the paper is to offer a theoretical framework that studies
the mobility patterns caused by job automation at the presence of labor market frictions.
Based on the empirical findings, I develop an equilibrium search and matching model with
technological acceleration, human capital accumulation and segmented labor markets. It
builds on the technological obsolescence literature (e.g. Violante (2002), Postel-Vinay
(2002) and Michelacci and Lopez-Salido (2007)), where acceleration in equipment tech-
nology increases productivity differentials across machines. In this framework workers
are matched with jobs that represent certain technology or machines that age with tenure.
The key feature of the model is technological distance between two machines of different
tenure, defined by the speed of technical change. The island structure of the model allows
for the reallocation of unemployed workers across occupations, depending on their hu-
man capital and skill transferability. The latter is a key mechanism of mobility decision
that determines the loss of human capital once reallocating between different occupations.
More precisely, it is designed as the probability that unemployed workers will start with
lower human capital level in the new occupation. The probability of human capital loss
depends on the proximity between two occupations. Unemployed workers face a trade-
off between costly reallocation and job search in a slack labor market. In order to account
for other factors behind occupational mobility, the model also allows for the exogenous
reallocation of unemployed workers.

In the calibration exercise, I measure the technological speed (or speed of labor-
displacing technology) as the change in stock of robots in particular occupations. The
underlying assumption is that occupations with high risk of automation are the ones with
larger technological distance between matches with different job tenure. In other words,
matches in occupations with high risk of automation become technologically obsolete
faster than in other jobs, what may lead to match destruction. The calibration of the
model matches salient features of the economy and generates three facts documented in
the empirical part of the paper. In the initial steady state calibrated to the 1996 US econ-
omy, the endogenous reallocation decisions account for around one fifth of all mobility.
The response of the economy to an automation shock follows the patterns observed in the
data: increase of mobility and wage loss of workers at risk of automation with magnitudes
similar to changes between 1996 and 2012. The occupational mobility gap increases by
37%, what accounts for 79% of the total surge. Due to the increase in mobility and skill
transferability mechanism rooted in the reallocation decision, the average level of human
capital depreciates. This in turn leads to output loss, as human capital is not fully trans-
ferable between two occupations and exposed workers start switching to more distant
occupations. To address this issue I propose policy counterfactuals that aim at providing
off-the-job training to unemployed workers at risk of automation. A training that corre-
sponds to one year of education in new occupation will reduce the loss of output by nearly
20%.
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This work is most closely related to papers by Acemoglu and Restrepo (2017b,a,
2018d,b,c,a) who study the impact of job automation on US local labor markets. The
effects of technological change on labor demand in Europe were described by Gregory
et al. (2019), who document that the routinization led to positive net labor demand in 27
European coutries between 1990 and 2010. Graetz and Michaels (2018) report that indus-
trial robots increased labor productivity and value added. Opposed to most of the papers
on automation that use the International Federation of Robotics (hereafter IFR) data on
the stock of industrial robots, Green Leigh and Kraft (2018) develop a novel proxy for
automation - density of robot installers in metropolitan areas. The alternative measure of
exposure to robots introduced in Section 3.2.1 is based on the work of Frey and Osborne
(2017) who, using machine learning, classify each occupation according to how suscep-
tible it is to automation. In their recent paper Bessen et al. (2019), employing Dutch
administrative records and balance sheet data on costs of automation, find that in fact,
increase in automation at the firm level leads to surge in separation probability, lengthens
the non-emplyment periods of displaced workers and generates wage loss that amounts
to 11% of annual earnings over the 5 years following the automation event. Not surpris-
ingly, workers displaced by automation shock are more likely to retire earlier and receive
welfare payments, however, only 13% of wage loss is offset by unemployment benefits.
The impact of industrial robots in the decades to come is the focus of e.g. Brynjolfsson
and McAfee (2014), Ford (2015) or Boston et al. (2015). Growing number of works dis-
tinguishes automation and demographic changes as the trends that may have a profound
macroeconomic consequences over the next decades (see e.g. Acemoglu and Restrepo
(2018a), Basso and Jimeno (2020), Jimeno (2019)) The number of papers that study the
worker, rather than aggregate effects of technological progress, is rather limited, with no-
table exception of Battisti et al. (2017) who study retraining among workers subject to
routinization.

The importance of occupation specific human capital for reallocation decisions was
raised by Kambourov and Manovskii (2009). Learning about own abilities as a key driv-
ing force of occupational mobility was studied previously by Papageorgiou (2014) with
the use of a matching model. Groes et al. (2015) document the U-shape of occupational
mobility and the direction of the switch using Danish administrative records. Carrillo-
Tudela and Visschers (2020) stress the role of business cycle in mobility decisions: during
economic downturn displaced workers find it less profitable to switch their occupation.
As a result, the unemployment spell lengthens and job finding rate decreases. The role
of worker heterogeneity across labor markets was documented empirically by Barnichon
and Figura (2013). Wiczer (2015) and Carrillo-Tudela and Visschers (2020) develop job
search models to study the impact of aggregate productivity, occupation-wide shocks and
cyclicality on workers’ mobility decisions. The theoretical framework in this paper builds
on the technological obsolescence models developed by the job search literature: Violante
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(2002), Postel-Vinay (2002) and Michelacci and Lopez-Salido (2007).
The paper proceeds as follows: Section 3.2 provides a description of the data, de-

sign of the measure of exposure to automation and statistics of the final sample. Sec-
tion 3.3 presents novel empirical findings, followed by theoretical framework outlined in
Section 3.4. Quantitative analysis and policy implications are described respectively in
Section 3.5 and 3.6, whereas Section 3.7 concludes. All additional findings, materials
and robustness checks that are not the main focus of the paper are documented in the
Appendix.

3.2 Data

The empirical findings of this paper can be replicated using various datasets that allow
to study employment decisions of displaced workers (e.g. linked CPS, ASEC, etc.). The
empirical analysis employs only one selected database, leaving the results from alternative
sources to the Appendix. I have chosen Survey of Income and Program Participation
(SIPP) as the most comprehensive and widely used source of information on occupational
mobility and employment history.

3.2.1 Automation

Job automation is most commonly defined as a replacement of particular task or set of
tasks within a job by industrial robots. One of the major obstacles in the literature is a
measure of industrial robot implementation on individual or firm level. Some works (e.g.
AR) define the exposure to robots for each Commuting Zone based on industry-level data
of International Federation of Robotics. Others like Green Leigh and Kraft (2018) use
the concentration of industrial robot installers as a proxy for geographical intensity of
automation.6 Only recently Bessen et al. (2019) use administrative records on automation
costs on the firm level to identify the automation shock. In this work I introduce three
measures of exposure to automation on the occupational level. The baseline index follows
the strategy similar to AR in order to distinguish a risk of automation for each occupation
defined as in Census occupational classification. The first alternative measure is based
on the work of Frey and Osborne (2017), whereas the second explores the information of
major applications of industrial robots and the detailed description of occupational tasks.

6although Green Leigh and Kraft (2018) are able do distinguish number of installers for particular
metropolitan areas, their analysis does not cover the whole US territory. Moreover it does not allow to
study exposure on industry or occupational level.
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Baseline Measure

The baseline measure of exposure to automation of each occupation is based on the IFR
(International Federation of Robotics) data - stock of industrial robots by year, country
and industry, based on annual surveys of robot suppliers. The data is available for 50
countries over the years 1993 - 2017, however the information on robots prior to 2000s
is avaliable only for a small subset of them.7 The records on stock of robots in the US
start in 2004. IFR reports the stock of robots in 7 broad industry categories (agriculture,
forestry and fishing; mining and quarrying; manufacturing; utilities; construction; edu-
cation, research and development; other non-manufacturing). Within manufacturing it
distinguishes more detailed categories: food and beverages, textiles, wood and furniture,
paper, plastic and chemicals, glass and ceramics, basic metals, metal products, indus-
trial machinery, metal unspecified, electrical and electronics, automotive, other vehicles,
other manufacturing. To construct the measure of robots per thousand of workers I use
the annual employment counts for each of the aforementioned industries in the countries
of interest provided by EU KLEMS (Jäger (2017)) database. The strategy of computing
the measure follows closely AR, statistics for each industry between 1993 and 2017 are
provided in the Appendix C.1.1.

The baseline measure of exposure to automation uses the stock of robots in 9 European
countries to first, account for the change in stock between 1993 and 2004, and second to
use it as exogenous exposure to robots.8 More precisely, the exposure of occupation
o = 1, 2, ..., O to industrial robots between t and t+ τ is defined as:

Exposureo,t,t+τ =
∑
i∈I

l1990io

(
p30
(Ri,t+τ

Li,1990

)
− p30

( Ri,t

Li,1990

))
(3.1)

where l1990io is the employment share of industry i in occupation o in 1990 Census and
p30(·) is the 30th percentile of robots per thousand of workers among nine European
countries. AR use 1970 Census to distinguish employment shares, however the occu-
pational categories change every decade and necessity of using crosswalks makes 1990
shares more appealing. Occupations are distinguished following Census 1990 3-digit
classification. Table 3.1 clusters occupations into one of 13 main Census 1990 occupa-
tion categories. Not surprisingly, the occupation categories that have the highest exposure
to automation are low-skill production occupations such as machine operators, assem-
blers, precision production, material movers, handlers, etc. Interestingly, five categories
with the highest exposure to robots account for approximately one third of labor force
(31.7% of employment as of 1990, intensive margin). It corresponds to findings of Frey

7Those are 9 European countries: Denmark, Finland, France, Germany, Italy, Norway, Spain, Sweden
and United Kingdom.

8Note that construction of the baseline exposure measure is the only time I use the data from European
countries. All remaining analysis focuses solely on the US.

57



Table 3.1: Robot adoption by occupational group, 1993 - 2016.

EXPOSURE TO ROBOTS

Employment 1993- 1993- 1993- 1993-
share1990 2000 2007 2012 2016

Executive Admin, Managerial 13.87 0.181 0.631 0.793 0.904

Professional Speciality 13.53 0.112 0.387 0.469 0.519

Technicians and Related Support 03.72 0.203 0.783 0.933 1.018

Sales 11.03 0.049 0.172 0.216 0.248

Admin. Support, incl Clerical 14.70 0.140 0.480 0.604 0.697

Private Household 00.59 0.005 0.021 0.029 0.036

Protective Services 01.85 0.049 0.180 0.229 0.266

Service, except Protective - HH 07.91 0.043 0.145 0.189 0.226

Farm, Forestry and Fishing 02.94 0.064 0.165 0.210 0.246

Precision Production, Craft, Repair 12.33 0.353 1.293 1.714 2.027

Machine Operators, Assemblers, Insp 07.59 0.862 3.102 4.035 4.709

Transportation and Material Moving 04.55 0.198 0.712 0.946 1.137

Handlers, Equip, Cleaners, Helpers, Lab 03.46 0.299 1.041 1.378 1.630

NOTE: All occupational groups are distinguished following the Census 1990 1-digit occupational classification (broad
occupational categories). Employment shares are computed from 1990 Census sample.

and Osborne (2017), who claim that nearly 50% of US employment is susceptible to au-
tomation. Throughout the paper I use the notion of high and low exposure to automation.
High exposure of occupation o is denoted when its value of the index defined by 3.1 is
among top 33 percentile of exposure distribution, whereas low exposure means that is it
in bottom 33 percentile.

Figure 3.1 illustrates the relationship between the share of college graduates and ex-
posure to automation for all considered occupations and clusters them into broad occu-
pational categories. The relationship between the share of college graduares employed
within occupation and exposure to automation is negative. Individuals employed in oc-
cupations with high risk of automation have on average lower education attainment than
all remaining groups. One of the shortcomings of proposed measure of exposure is the
fact that is doesn’t take into account task-specificity of each occupation. As a result, some
jobs with high skill requirements employed largely in manufacturing (e.g. technicians or
engineers) are among most susceptible to automation. To illustrate the issue, Table C2
lists 10 occupations with highest and lowest exposure index. In all specifications chem-
ical engineers are among occupations with the highest exposure to automation, as they
are employed in industries with highest usage of robots (plastic and chemical products,
basic metals, etc.). I correct that by examining only occupations with high manual task
intensity. The index of manual task intensity is constructed from the O*NET database
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Figure 3.1: Exposure to automation and share of college graduates by occupation cate-
gories, IFR and SIPP 1993-2016.

and follows standard principal component analysis widely used in the literature.9 I denote
occupation as manual if it’s index of manual task intensity is above the median. The base-
line measure assigns high exposure to automation to high-skill jobs such as executives,
managers, clerks and other professional specialities, whereas the measure with manual
task-intensity corrects for that (Appendix C.1.1) and attributes high risk to manual tasks
intensive occupations (e.g. machine operators, assemblers, etc.). Full exposure by occu-
pational category with manual task intensity correction is presented by Table C3.

Alternative Measures

Two alternative measures are distinguished to check the consistency of the baseline index
and use the richness of IFR database. First alternative measure employs the detailed de-
scription of robot application provided in the IFR robot data, whereas the latter uses the
work of Frey and Osborne (2017) who classify each occupation according to how suscep-
tible it is to automation. The IFR data provides description of robot application that can be
classified into five main categories: handling operations, welding and soldering, dispens-
ing, processing and assembling. Within those broad categories there are 33 descriptors of
particular task performed by a robot (e.g. palletizing, arc welding, laser cutting, etc.). The
application categories are then matched with occupational task descriptors documented in

9Manual tasks are distinguished following Autor et al. (2003).
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the first edition of O*NET database (1998 issue).10 It distinguishes around 12,000 task
descriptions, with average of 10 tasks per occupation. Detailed information on matching
procedure is provided in Appendix C.1.2. Having identified the tasks within each occupa-
tion (3-digit classification) that can be commissioned to industrial robots, I develop two
measures of exposure to automation that look at i) share of tasks that can be automated
and ii) share of tasks weighted by the change in exposure of each application. In some
occupations the share of tasks that can get automated reaches 75%, what suggests the
main difference between routinization and automation - the scope of task replacement.
Main occupational categories at risk of automation overlap with the baseline measure -
machine operators and production workers. Task-based measure delivers similar findings
on occupational mobility as the baseline one. Results are presented in Appendix C.1.2.

Second alternative measure is based on the work of Frey and Osborne (2017) who
measure susceptibility of each occupation to job automation. They distinguish major
bottlenecks for automation and identify them for each occupation with the help of task
intensity measures from O*NET occupational database.11 Using Gaussian process and
machine learning each SOC occupation has assigned probability of being computerized.
Authors argue that occupations with probability higher than 70% are likely to be auto-
mated. Such approach might be criticized as too simplistic and not fully capturing the
complex nature of automation and artificial intelligence, it has however certain advan-
tages useful for my analysis. First of all the probability of being automated is set once, as
of the technological progress in 2017. By identifying the bottlenecks for computerization
it is forward-looking, what may be a threat to the analysis that goes back to 1990s. Within
the set of occupations marked as highly automatable, the majority consists of machine
operators, manual labour and cashiers, jobs that since 2000s are subject to intensified au-
tomation. Moreover, the measure of Frey and Osborne (2017) captures occupations for
which the demand decreased not only due to implementation of industrial robots but also
growing digitalization, such as payroll clerks, data entry keyers or insurance underwrit-
ers. Another interesting feature of proposed approach is that it’s not only constrained to
particular manufacturing industries. IFR reports show that in recent years we can observe
intensified usage of robots in industries other than manufacturing, such as services.

Following Frey and Osborne (2017), I classify each of SOC occupations as highly

10The reason for using the earliest issue of O*NET is motivated by the fact that I want to distinguish tasks
within occupation that later on were subject to automation. Next steps of the project assume distinguishing
task measure using fourth edition of Dictionary of Occupational Titles (DOT).

11More precisely they define three major bottlenecks inhibiting engineering from computerization: per-
ception and manipulation (PM), creative intelligence (CI) and social intelligence (SI) tasks. The first group
of tasks refers to working in difficult conditions, unstructured work conditions, handling irregular objects,
etc.; the creative intelligence comprises set of tasks such as creating ideas, artistic creativity, etc.; social
intelligence is a wide range of skills usually requiring negotiation, persuasion and care. Each of the bot-
tlenecks is identified in the O*NET database under following task variables: finger and manual dexterity,
cramped work space, awkward positions (for PM), originality and fine arts (for CI), social perceptiveness,
negotiation, persuasion, assisting and caring for others (for SI).
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Table 3.2: Exposure to robots, training requirements and education, SIPP 1996-2013

Training % of Higher % of High School
Requirements Education Graduates

Baseline Manual Baseline Manual Baseline Manual

High Exposure 0.49 0.47 25.96 20.73 84.03 82.60

Middle Exposure 0.50 0.51 29.32 31.42 89.93 88.67

Low Exposure 0.59 0.59 29.08 32.23 83.20 84.99

NOTE: First two columns present training requirements using occupation data. Each occupation (one of 384) has attributed
value of training requirement index and is weighted by its employment share. Training requirement index is taken from
O*NET Job Zone index (1-5) and scaled between 0 and 1. It describes how much preparation (education, job training, etc.)
each occ. requires. Remaining columns present education attainment from the final sample.

exposed to automation if the probability of being automated exceeds 70%. To validate
this measure I perform number of comparisons and replicate empirical findings of AR,
all of which are presented in Appendix C.1. Indeed, the results with the new measure of
exposure to automation are close to Acemoglu and Restrepo (2017a). The key issue that
needs to be addressed is the relationship between exposure to automation and routinness
of occupations. One of the most important questions in the literature of job automation
is whether those are two different phenomena. It is not however the aim of the paper to
take clear stand in this discussion. The data suggests that the major difference consists
in the skill distribution of each measure. Literature on skill-biased technological change
identifies routine tasks in the middle of skill distribution. The statistics provided by Ap-
pendix C.1 show that the alternative measure follows the baseline index. Occupations
with high exposure to automation are concentrated not only in the middle but also among
low skilled occupations.

3.2.2 Displaced Workers

The final sample of workers experiencing non-employment period is distinguished using
panels 1996 - 2008 of Survey of Income and Program Participation (SIPP). The reason
for omitting panels prior to 1996 is the change of methodology of denoting the current
employer and employer change in 1996 panel, that could affect the distinction of job tran-
sitions. SIPP provides the panels of nationally-representative sample of US inhabitants
tracked over the period of 4 years. It has an advantage over other datasets in two key
aspects: i) it is a reliable and widely used source of information on occupational mobility
of workers that ii) follows them in case of domestic migration.12 Constructing the sample
I first distinguish workers that experience non-employment spell and then aggregate into

12See Carrillo-Tudela and Visschers (2020) for occupation mobility and Kaplan and Schulhofer-Wohl
(2018), Molloy et al. (2014) for interstate migration.
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quarterly data. For more details on either stage see Appendix C.2.
The final sample includes private sector workers aged 25-60, who experienced period

of non-employment that lasted more than 3 weeks.13 It contains 24,601 job transitions
that involved period of non-employment. Alternative strategies of measuring occupa-
tional mobility using SIPP (e.g. Carrillo-Tudela and Visschers (2020)) yield similar re-
sults (see Appendix C.2). The findings on occupational mobility from the baseline sample
are confronted with alternative samples constructed from linked Current Population Sur-
vey (CPS) and Annual Social and Economic supplement (ASEC) to CPS data. Both of the
alternative samples are constructed using fairly similar strategy: contain job transitions of
private sector workers aged 25-60 between 1995 and 2018.14 The major drawback of
linked CPS is it’s limited panel structure - individuals are followed twice in 4 consecu-
tive months with 8 month break between the interviews. As a result, it does not capture
the long-term unemployed workers or unemployment spells within 8 months between the
interviews. Results of linked CPS and ASEC are presented in the Appendix.

3.2.3 Sample Statistics

Occupations exposed to automation are typically manual task intensive (machine opera-
tors, assemblers, etc.) and require lower educational attainment. Table 3.2 displays the
training requirement and education level in occupations with high, middle and low expo-
sure to automation. Training requirements are based on O*NET database Job Zone index
and indicate (on the scale 0 to 1) how much preparation (education, job training, etc.)
each occupation requires. Jobs with high exposure to automation have significantly lower
training requirements compared with any other category. Similarly for education: only
around one fifth of workers employed in occupations with high exposure to automation
have college degree, whereas for the remaining categories the percentage is around one
third. Basic characteristics of the restricted sample are provided by Table 3.3. The mean
unemployment spells are longer than in the literature since the sample includes only spells
of more than 3 weeks. By including job-to-job transitions the average unemployment spell
drops to 12.1 weeks. The mobility patterns in the final sample follow the stylized facts
of the literature: higher occupational mobility for young and college educated workers.15

The share of workers with high exposure to automation declines slightly between 1996
and 2012.

13By non-employment period I denote both unemployment and staying out of labor force. Job transitions
taken into account are E-U-E, E-�E-E and their variations.

14Prior to 1995 CPS does not include information on the change of employer. The size of final sample
is 107, 056. CPS does not follow individuals in case on migration and hence cannot be used to study
geographical mobility of displaced workers.

15Note that the higher occupational mobility of young workers (aged 25-35) corresponds to one of the
driving forces of the mobility: learning about own abilities. Young workers have a noisy signal on their
own skills, as it updates with tenure, they may decide to change the current occupation.
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Table 3.3: Sample statistics, SIPP 1996 - 2013

All
PANEL

1996 2001 2004 2008

Occupation mobility (1-digit) 53.05 53.57 54.51 52.17 52.57

Young 55.69 56.27 58.02 53.00 56.04

Prime Age 50.78 50.89 51.75 51.45 49.73

Male 54.20 53.49 53.96 54.30 54.68

Female 51.93 53.64 55.04 50.06 50.21

High School 51.66 52.90 52.60 51.07 50.31

College 54.14 54.29 56.28 52.91 53.98

Share of exposed to automation (%) 37.13 36.96 36.73 38.17 36.73

Unempl. duration (mean, weeks) 25.65 23.61 21.93 22.17 31.48

High exposure 24.40 20.73 20.38 20.74 31.79

Low exposure 26.95 26.03 23.53 24.18 31.08

N 24,601 6,732 3,852 5,891 8,126

NOTE: The sample includes non-employed individuals aged 25 - 60 working in a private sector. All non-
employment spells shorter than 4 weeks were excluded. Age category ‘Young’ contains individuals with no
more than 35 years old, whereas category ‘Prime’ includes workers between 35 and 60 y.o. Demographic
group ‘High School’ represents those with high school diploma or less, ‘College’ individuals hold at least
college degree or have some college experience. All individuals are weighted by respective SIPP weights.

Second part of Table 3.3 sheds more light on the unemployment spell of workers ex-
posed to automation. Initially they experience significantly lower non-employment spells,
however, in panel 2008 the difference has vanished. Between 1996 and 2008 panels, the
non-employment spell of workers exposed to automation increased by nearly 3 months,
compared to 1.5 month for the remaining non-employed individuals. Naturally, some
part of the increase may be caused by the Great Recession. The aggregate occupation
mobility reveals moderate downward trend prior and rebounce after the Great Recession.
Figure 3.2 presents quarterly rate of occupational mobility (moving average) for all Cen-
sus 1990 classification digit levels. The panel structure of the data is clearly visible on the
graph, panels are separated by the vertical dashed line. They also mark the discontinuities
in the quarterly data. The sample of workers is aggregated to months and then quarters,
discarding months without all rotation groups results in missing quarters between panels.
The change in occupation classification in 2004 may additionally drive the sharp disconti-
nuity between 2001 and 2004 panel. One of the things that motivate the displaced workers
with high exposure to switch their occupations is the shift in demand for those jobs. In
3.2b it becomes clear that employment share of occupations imperilled by automation
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Figure 3.2: Employment share of occupations with high/low automation exposure and
occupational mobility of all groups, SIPP 1996-2012

(a) Occupational mobility, all occ. (b) Employment share

shrinks steadily from 1990s. Moreover, net mobility in those occupations is negative,
what means that the inflow does not offset the outflow from those occupations.16

3.2.4 Automation and Routinization

One potential concern regarding the measure of exposure to automation and the process
itself is its relation to technological change known as skill-biased or routinization. When
it comes to the nature of the process, the two phenomena are similar, there are however
important empirical differences that should be addressed. Both automation and routiniza-
tion require some tasks or their parts being commissioned to either computers, robots
or some other forms of capital. The difference between the two consist in the scope of
activities that can be replaced within a job. Recall from Autor et al. (2003) that routiniza-
tion was mainly due to the increase in the number of computers that were performing
tasks done previously by clerical or administrative workers. Automation encompasses
the use of industrial robots: machines that can perform sequence of complex tasks with-
out human operator. The latter requirement is the key to the difference between the two
processes: computers could not complete all tasks within a job, whereas multipurpose
and reprogrammable machines that do not need human operator can. The threat of some
occupations disappearing is hence higher in case of automation. In other words, automa-
tion is more labor-displacing phenomenon that routinization, as hinted by Bessen et al.
(2019). The alternative task-based measure points that in extreme cases, up to 75% of
job activities may be replaced by industrial robots. Statistics presented in Section 3.2.3
show that the workers exposed to automation are typically low-skilled with significantly
lower educational attainment than their counterparts with low risk of automation. On the

16Net mobility is defined as in Kambourov and Manovskii (2008), presented in Appendix C.4.
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contrary, jobs that were subject to routinization were mostly clerical and manufacturing
ones from the middle of skill distribution (Figure C2). The difference also stems from
the particular industries and occupations that were part of both processes. As already
noted, routinization prevailed mostly among clerical occupations, whereas automation,
by definition, is heavily concentrated in manufacturing occupations (machine operators,
production workers, handlers, etc.). All those differences lead to very weak correlation of
the automation and routine indices: 0.1.

3.3 Empirical Motivation

In this section I discuss the empirical regularities that motivate the paper. All of them
are novel findings, that can be categorized into two main sections: occupational mobility
during non-employment and wage profile after re-employment. The first subsection un-
covers that non-employed workers with high exposure to automation are in fact switching
their occupations with higher frequency than remaining groups, with positive and signifi-
cant trend over the period of study. The increase in mobility is mostly concentrated at the
bottom of wage distribution within prior occupation. Upon mobility and re-employment,
wages of individuals employed prior to non-employment in occupations with high risk
recover slower than of their counterparts with low exposure. The findings are robust to
different model and sample specifications as well as exposure measure, the additional
checks are presented in the Appendix C.4.

3.3.1 Occupational Mobility

The main focus of the paper is the mobility of workers in the occupations threatened by
technological progress. Figure 3.3 presents the aggregate, quarterly evolution of occu-
pational mobility of non-employed workers, depending on their occupation prior to the
non-employment period. Digit levels are distinguished for Census occupation classifi-
cation, SOC class digits yield very similar results. Figure 3.3 unveils two main facts
that characterize the level and trend of occupational mobility of non-employed workers.
First, individuals employed prior to displacement in occupations with high exposure have
noticeably higher mobility levels in each digit classification. Second, there is clear and
significant upward trend in mobility of workers exposed to automation. Workers in oc-
cupations that decrease employment share due to technological change may be pushed
out of their occupation and forced to seek employment opportunities in other jobs. As a
result, technological change may lead to involuntary occupational mobility. At the same
time workers with low exposure to automation do not reveal any clear trend. One of the
possible explanations for the observed mobility of workers exposed to automation might
be the already mentioned lower demand for those jobs. Displaced individuals face tight
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Figure 3.3: Occupational mobility by digit level. SIPP 1996-2013

NOTE: Vertical dashed lines mark distinct SIPP panels. HP is the Hodrick-Prescott filter.

labor market and decide to change their occupation as an outside option to extending the
unemployment spell. On the other hand, they may anticipate that eventually their jobs will
be replaced by robots and decide to switch the occupation beforehand. Other category of
jobs that are influenced by technological change are routine occupations.17 Appendix C.4
documents occupational mobility of workers in routine occupations (Figure C5). There is
difference in level of mobility between routine and non-routine individuals that becomes
negligible for 1-digit level. Moreover, there is no clear trend for either of occupation
categories.

Table 3.4 confirms previous findings: displaced workers in occupations exposed to au-
tomation have significantly higher mobility on all digit levels. The probability of switch-
ing the broad occupation category (1-digit level), conditional on non-employment period,
is 9.9 p.p. higher for those who prior to the spell worked in occupation susceptible to
automation. Moreover, in all cases there is significant upward trend. The results for oc-

17Automation and routinness differ in several aspects. The latter impacts mostly jobs in the middle of
skill distribution that are subject to computerization (clerical, administrative support, etc.), whereas the
former, defined as industrial robots, refers to manual task-intensive jobs in the bottom of skill distribution.
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Table 3.4: Occupational mobility and exposure to robots - (SIPP 1996-2013, E�EE spells)

Dep. variable: 1 - digit 2 - digit 3 - digit

Occ. Mobility (1) (2) (3) (4) (5) (6)

Exposed 0.145 0.099 0.122 0.093 0.086 0.062
(0.008) (0.015) (0.007) (0.014) (0.007) (0.013)

Time -0.004 -0.006 -0.005 -0.007 -0.005 -0.006
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Exposed × Time 0.005 0.003 0.003
(0.001) (0.001) (0.001)

NOTE: Sample size N = 17, 731, it contains the cross-section of E�EE transitions. The dependent vari-
able takes value one if worker changed her occupation during non-employment spell and zero otherwise.
Control variables include gender, age, its square, duration of non-employment spell, education level (less
than high school, high school, some college and graduate degree), state of residence, interaction of time
and age, education level. All observations are weighted by the longitudinal weight.

cupational mobility are robust to econometric checks within education, gender or unem-
ployment spell groups as well as additional controls. Similar patterns can be distinguished
in other datasets, e.g. Linked CPS. Robustness checks and results from other datasets are
presented in Appendix C.4. One of the threats posed to the findings is that the occupa-
tions with high risk of automation may have traditionally high mobility of workers and
the exposure measure accounts for persistent mobility patterns rather than automation.
The level of reallocation by broad occupational categories (Table C7) indicates that the
clerical, sales workers and managers are the biggest contributors to mobility among the
displaced workers. Final sample is conditional on the change of employer and panels
prior to 1996, due to different methodology of denoting the employer change, are not
suitable for the mobility analysis. Similarly, neither linked CPS allows for longer time
series, the variable describing change of employer was introduced in 1994. To extend
the time series and check if in 70s and 80s there were similar patterns, I use linked CPS
without conditioning on the change of employer.18 From Figure C14 it becomes clear that
the difference between the mobility of high and low exposure workers started growing in
the mid-1990s (or beginning od 1990 for 1-digit level). Prior to that there is no significant
difference between the two considered groups of workers. The widening of the gap in the
90s coincides with introduction of the first industrial robots in selected industries.19

18The strategy is similar to Carrillo-Tudela and Visschers (2020), who look at the sample of non-
employment spells where prior to re-employment individual experienced a month of unemployment. Linked
CPS allows to distinguish monthly non-employment periods, however, the structure of the interviews (4
months of interviews - 8 months of break and 4 months of interviews) does not allow to measure complete
spells.

19The IRF data on the stock of industrial robots starts in 1993 for selected European countries, however
in 1993 some industries had already substantial usage of the machines. In particular, the 30th percentile of
robots per thousand of workers in 9 European countries was 8.64 in automotive and 4.1 in metal machinery
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Figure 3.4: Occupational mobility by wage distribution within occupation and age, 1996-
2012 SIPP

(a) Wage Distribution (b) Age

Occupations exposed to automation are typically concentrated at the bottom of skill
distribution and in the middle of wage distribution. The literature on occupational mobil-
ity (e.g. Groes et al. (2015)) reports the U-shape of occupational mobility as a function
of wage prior to transition. This poses a question if in fact the mobility at the bottom
of wage distribution is caused by the workers in occupations exposed to automation. To
assess the scale of involuntary mobility driven by technological progress, Figure 3.4 plots
the occupational mobility for percentiles of wage prior to non-employment (within occu-
pation and year) using kernel smoothed local regression approach with bandwidth of 5
percentiles. First striking feature of 3.4a is the lack of U-shaped mobility. Note however,
that our sample contains occupation switches conditional on the non-employment period
and the change of employer. Without those two restrictions, SIPP data is able to replicate
the U-shape. Within occupation and year, higher occupational mobility of occupations
exposed to automation is driven mainly by the workers at the bottom of wage distribution
prior to non-employment period. The gap widens for lower digit levels. The automation
may thus work similarly to the ‘cleansing’ effect of business cycle in standard matching
framework described by Mortensen and Pissarides (1994): it destroys bad matches. As
already mentioned, one of the driving forces occupational mobility is learning about own
abilities. It explains the life-cycle effect: higher mobility of young workers. To exam-
ine whether the excessive mobility is not caused by learning, Figure 3.4b plots the life
cycle of occupational mobility using local regression approach. Indeed, both for high
and low exposure displaced workers the life-cycle effect is preserved, however, at any
age those imperilled by automation have higher levels. Interestingly, the gap widens for
young workers and those close to the retirement, suggesting the role of both mechanisms:

industry. For more details look at Table C1.
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Figure 3.5: Probability of switching into occupation with higher average wage than the oc-
cupation prior to non-employment period and wage profiles of displaced workers. 1996-
2012 SIPP

(a) Direction of Mobility (b) Wage Profile

learning and automation among labor market entrants.
Note that so far, all of the presented findings are conditional not only on the change

of employer by also on the non-employment period longer than 3 weeks. What happens
once we include the EE transitions in the sample? First, let’s look at the occurrence of job-
to-job transitions for low and high automation risk workers (Figure C15). Both high and
low exposure workers have similar share of EE transition, suggesting that the former do
not anticipate the automation and do not strategically switch employers or occupations.
Focusing only on the EE transitions (Figure C8), the main findings of the section are
not confirmed. In other words, not only the exposed workers do not switch employers
more frequently, but also their mobility is conditional on the non-employment period,
suggesting the involuntary reallocation. The results for both EE and E�EE transitions
remain in line with main findings, for more details see Appendix C.4.

3.3.2 Wage Profile and Direction of Mobility

The occupational mobility is a costly decision that may distort wage profile of displaced
workers. Groes et al. (2015) document that even in the fifth year following the mobility,
wages of workers who switched to lower ranking occupation hardly reach 0.95 of the
wages of workers who stayed in their prior occupations. In the following subsection I
first document the direction of mobility depending on the exposure to automation and
later focus on the wage profiles of displaced workers.
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Direction of Mobility

Unlike in the case of routinization in 80s and 90s, workers exposed to automation do
not switch to any particular occupational category. The higher incidence of switches
into machine operators, precision production or handlers, and lower incidence of sales,
managers or clerical occupational categories suggest that workers in occupations with
high risk of automation tend to remain in the categories close to their former. To study the
direction of the switch in greater detail I first classify the occupations by average wages
and then compare the rank of occupations prior and after the non-employment spell for
high and low exposure workers.

Figure 3.5a plots the probability of switching to the occupation with higher average
wage in the similar local regression fashion as in previous section. Thanks to (Groes
et al., 2015) we know that the probability of moving up the wage ladder is increasing
with the wage percentile prior to the non-employment. The distinction of high and low
exposure workers reveals striking difference in probability of going up the wage ladder.
Individuals displaced from occupations with high risk of automation have significantly
lower probability of switching to occupation with higher average wage than their previous
one. The difference persists for each wage percentile. Only the exposed workers from
the top 10th percentile have the probability higher than 50%. They may be the group
identified previously by Battisti et al. (2017) (hereafter BDS) in the context of skill-biased
technological change. Using the German administrative records BDS show that some part
of workers subject of routinization retrain and are able to move to jobs with more abstract
skill content.

The share of those who retrain and move to occupations with higher cognitive re-
quirements may be also identified in the case of automation. Figure C14 compares the
cognitive and manual task intensity of occupations prior and after the non-employment
spell for the considered sample of transitions. In general, workers exposed to automation
tend to downgrade in both dimensions: they switch into occupations with lower cognitive
and manual skill intensities. Despite the downward mobility pattern, exposed workers
in top 20th percentile of wage distribution tend to move to the jobs with higher cogni-
tive requirements, the automation counterparts of workers identified by BDS. Share of
the workers who upgrade in cognitive dimension is relatively small, what may reveal the
nature of automation: large differences in training requirements between jobs displaced
and created by industrial robots.20 The analysis of mobility direction reveals potentially
alarming patterns: workers from the bottom of skill distribution tend to go down the wage
ladder and switch from middle wage occupations to low wage ones.

20An illustrative example may be machine operators in automotive industry: jobs created by introducing
industrial robots in the plant require skills in robot installing and programming. The latter are the usual
STEM occupations, hardly available for untrained machine operator.
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Wage Profile

Equally important to direction of mobility are the wage profiles and the persistent distor-
tions in earnings profiles of displaced workers. To determine the wage profiles of workers
depending on their level of exposure to automation, I distinguish two types of individ-
uals: i) stayers and ii) movers. The former are the employed workers who in year t
didn’t change their employer nor experience non-employment period, whereas the latter
are individuals who experienced non-employment period and eventually got re-employed
at time t. For each year t I distinguish panel of stayers’ and movers’ earnings with the
follow up in t+ 1, t+ 2 and t+ 3 (for longer SIPP panels). Earnings are then aggregated
by occupation and time from the event using as weight the share of each occupation in
the panel of transitions. Figure 3.5b compares the average weekly real wages of movers
and stayers within each occupation for high and low exposure occupations. Workers em-
ployed prior to non-employment period in occupations with high risk of automation were
not only switching to occupations with lower average wage, but also earning significantly
less than their counterparts in low exposure occupations in all periods following the re-
employment. Their wages didn’t recover after 3 years, being on average 0.72 of the wages
of those who stayed in the occupation. Moreover, the difference between high and low
exposure workers recovery kept increasing. Looking into hourly wages or distinguishing
balanced vs. unbalanced panel does not change the results.21

3.3.3 Alternative Measures

The alternative measures of exposure to automation deliver fairly similar results as the
baseline specification. All of the results are presented in Appendix C.4.1. The measure
based on Frey and Osborne (2017) departs from findings of previous sections as the dis-
placed workers with high exposure do not have initially higher mobility levels. The lack
of difference in level may stem from the differences in the occupation categories that pre-
vail in both measures. The alternative measure is more forward-looking and comprises
selected service occupations. The positive and significant trend remains unchanged.

3.4 Theoretical Framework

The following section outlines the discrete time random search and matching model with
technological acceleration, segmented labor markets and human capital accumulation.
The importance of non-employment periods, stressed in the empirical findings, motivates

21SIPP panels allow to construct maximum 4-year panels, hence, within each SIPP panel, the last possible
period after re-employment is t + 3. The balanced panels are those where we can observe earnings from t
to t + 3 in all panels from 1996 to 2008. The unbalanced panels mix the cohorts, taking both cohorts that
can be observed in 3, 2 and 1 year following the re-employment.
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the use of model with labor market frictions. I build on the technological obsolescence
approach proposed by Violante (2002), Postel-Vinay (2002) and later developed by e.g.
Michelacci and Lopez-Salido (2007). It studies the technological progress in the economy
with labor frictions. Risk-neutral workers are matched with jobs that resemble certain
technology or machines that age with tenure. Key ingredient of the model is techno-
logical distance between two machines of different vintage. It depends on the speed of
technology growth, usually represented by the relative price of equipment. The following
model departs from previous literature with respect to the measure of technological speed
and proposes average change of stock of industrial robot as a proxy for technical accel-
eration. The logic is the following: matches in occupations with large increase in stock
of robots are the ones with larger technological distance between two vintages. They
become technologically obsolete faster than other jobs, what may lead to match destruc-
tion due to negative surplus of a match. In other words, the average yearly growth of
stock of robots measures the rate of labor-displacing technology growth, key ingredient
of unemployment shock. Upon displacement, workers face the decision whether to stay
in their occupation or not. The reallocation decision is costly, as they lose part of their
accumulated human capital and are forced to stay unemployed at least one period more.

3.4.1 The Economy

Time is discrete. The economy consists of finite number of islands (occupations) O =

{1, 2, ..., O}. Within each occupation o ∈ O there is a mass of risk-neutral workers
and firms. Workers can die (retire) each period with certain probability ξ. Jobs within
an occupation and given human capital level, formed at the same period are identical.
The match technology is set at the time of establishing it and is fixed. Workers are ex-
ante homogeneous, however while employed they accumulate occupation specific human
capital. Match output is a function of match technology and human capital of a worker.

Match Technology. In each occupation o ∈ O, technology grows at some con-
stant rate γo > 0. The frontier technology in occupation o at time t is denoted as
zot = (1 + γo) zot−1. The technology of a match established τ periods ago (or alterna-
tively: of tenure τ ) is defined as zot−τ . For simplicity, I assume that firms cannot update
their technology, endogenous decision on match technology will be modelled in the next
stage of the project. The technological gap is defined as the difference between frontier
and match technology:

z̃oτ = zot − zot−τ = (1 + γo)zt−1 − zot−τ = [(1 + γo)τ − 1]zot−τ

where τ is job tenure. Note that technological gap grows faster in the occupations with
higher γo, i.e. where job replacing technology advances more rapidly.

Human Capital. Workers differ with respect to their occupation-specific human cap-
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ital. They accumulate human capital hx by learning-by-doing. The set of possible levels
of human capital is discrete, hx, x ∈ X = {1, 2, ..., X} where X < ∞. Each period
employed worker increases her human capital with probability ϕo. The probability of
increasing the level of human capital by one step is occupation specific and defined as
ϕo(hx+1|hx) = 1 − ϕo(hx|hx). During unemployment spell human capital depreciates
at rate ζ . Unemployed workers are assigned to their occupation prior to displacement
with the unchanged level of human capital. In this simple framework the accumulation
of human capital does not differ across different levels of human capital, in other words
returns to occupational experience are linear. Imposing non-linear returns to occupational
experience (known from the empirical literature) is an interesting extension for the future
steps.22

Task transferability is a key feature of the model determining the wage profile of a
worker who decides to reallocate. Upon change of occupation, workers loose some part
of their human capital. The distance function doo′(hx) governs the loss of human capital
while reallocating from occupation o to o′ 6= o with the human capital level hx in the
former. The new level of human capital after the mobility is h̃ = doo′(hx). One can think
of doo′(·) as a step function which tells if, upon reallocation, human capital depreciates
by one step while changing from occupation o to o′. The details of the distance function
are presented in the Appendix C.5.3. For the simplicity, the distance matrix that measures
the proximity between each pair o and o′ (where o 6= o′) is symmetric, i.e. switching to
occupation o′ with higher skill requirements is as costly as switching from o′ to occupation
o with lower requirements.

Match Output. Each agent - firm match produces output which depends on two main
factors: i) technological gap of a match with tenure τ in occupation o and ii) the level of
worker’s human capital (hx):

qo(τ, hx) = (1 + γo)−τ (l + hx) , (3.2)

where l = 1 is a unit of human labor. The first term of 3.2 is a ‘penalty’ for technological
obsolescence. The older is the match, the higher is technological gap which is reflected in
the output. On the other hand, the force that can counter the output loss associated with
technological gap is the human capital accumulation. Given the probability of increasing
human capital level, ϕo(hx+1|hx), individuals stochastically increase their human capital
in finite number of periods. The interaction between the two will determine the loss/gain
in output with tenure. At the extreme, it can lead to endogenous separation of worker and
firm if the value of the match falls below the outside option of the agents (respectively
unemployment and vacancy).

22E.g. Kambourov and Manovskii (2009) document that returns to occupational tenure are non-linear.
Higher powers of occupational tenure variable (in this case 2nd and 3rd power) have significant coefficients
both in the baseline and IV model.
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Matching. Labor market in each island is segmented into finite number of submar-
kets, one for each pair (o, hx), where o ∈ O = {1, 2, ..., O}, hx x ∈ X = {1, 2, ..., X}
andX <∞. Each labor market (o, hx) resembles standard Diamond-Mortensen-Pissarides
model, with constant returns to scale matching function m(uohx , v

o
hx

). All labor markets
have the same matching technology. In each of these markets there is free-entry condition
with the cost of posting a vacancy given by κ. The tightness of market (o, hx) - θohx is
defined as the ratio of vacancies (vohx) and unemployed (uohx) in this market. The match-
ing probabilities for workers and firms are respectively λ(θohx) = m(uohx , v

o
hx

)/uohx and
φ(θohx) = m(uohx , v

o
hx

)/vohx , where uohx and vohx are the mass of respectively unemployed
and vacancies in labor market (o, hx).

3.4.2 Agent’s Decisions

Worker’s Problem. First, let’s consider a worker employed in occupation o after τ peri-
ods of job tenure with the level of human capital hx. The wage wo(τ, hx) is a function of
worker’s human capital in occupation o and technological gap given τ periods of tenure.
The model abstracts from search on-the-job, workers and firms can be separated with
exogenous probability δ. The reason behind not including on-the-job search is that in
the data I do not observe increase in EE transitions for workers exposed to automation,
conditional on job-to-job switch they do not change their occupations more frequently
than workers with low exposure. In that sense, exposed workers do not behave strategi-
cally, they do not learn about their occupation’s exposure to robots. The value function of
employed worker at the production stage is then:

W o
t (τ, hx) =wo(τ, hx) + β (1− ξ) E

hx′

[
(1− δ) (1− ψo(τ ′, hx′))

max
{
W o
t+1(τ

′, hx′), U
o
t+1(hx′)

}
+ [(1− δ) ψo(τ ′, hx′) + δ] U o

t+1(hx′)
]

,

(3.3)

where β is a discount factor, (1 − ξ) a probability of surviving to the next period, x′ ∈
{x, x + 1} and tenure evolves deterministically τ ′ = τ + 1. Job destruction caused by
technological progress is captured by ψo(τ ′, hx′). It is an indicator defined as ψo(τ, hx) =

1{Sot (τ, hx) ≤ 0}, where Sot (τ, hx) = W o
t (τ, hx)−U o

t (hx)+Jot (τ, hx) is a match surplus.
Next period, if the match is not destroyed by exogenous forces, workers observe their
human capital hx′ , and choose whether to stay in their current job with the utility level
W o
t+1(τ

′, hx′) or become unemployed in their occupation o and receive U o
t+1(hx′). Given

the realization of hx′ workers and firms can endogenously separate if their match value
falls below the outside option. Given the possible endogenous separation let’s define the
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policy function IW :

IW (τ, hx) =

1 if W (τ, hx) < U(hx)

0 otherwise
(3.4)

Once unemployed, the worker has two possible choices: i) either stay in her occupa-
tion o and search for a job or ii) change the occupation to some o′ 6= o. In the latter case I
assume that individuals cannot change the occupation and search for a job in the same pe-
riod. First, they spend one period unemployed in the new occupation and in the following
period search for a job. It can be interpreted as the additional cost of occupational mo-
bility. The unemployed worker receives some unemployment insurance b. Additionally,
I distinguish both endogenous and exogenous reallocation across islands. The latter cap-
tures the flows that originate from motives and productivity differentials not captured by
the model (e.g. learning about own abilities). The value function of unemployed worker
is:

U o
t (hx) = b+ β (1− ξ) E

hx′

[∑
o′ 6=o

soo′
(
πoo′ U

o′(hx′−1) + (1− πoo′) U o′(hx′)
)

+
(
1−

∑
o′ 6=o

soo′
)

max
{
Rt+1(hx′) , λ(θohx′ ) max {W o

t+1(0, hx′), U
o
t+1(hx′)}

+ (1− λ(θohx′ )) U
o
t+1(hx′)

}]
(3.5)

where, upon survival, x′ ∈ {x− 1, x} depending on the realization of human capital that
depreciates while unemployed with probability ζ . Unemployed workers can be reallo-
cated exogenously to occupation o′ with probability soo′ . The loss of human capital while
reallocating from island o to o′ is governed by the parameter πoo′ . It is the probability
that after switching island o to o′ worker’s human capital depreciates by one step. With
probability (1 − πoo′) they stay at the same level of human capital in new occupation o′.
The second term in the brackets is the value for those who weren’t exogenously reallo-
cated. They can decide whether to search for a job in their own island or reallocate to
other occupation. The value upon reallocation is defined using the reallocation function
Rt+1(hx). It is defined as:

Rt(hx) = max
o′ 6=o
{πoo′ U o′(hx−1) + (1− πoo′) U o′(hx)} (3.6)

where workers still face probability of loosing human capital during reallocation - πoo′ . I
assume that the workers have knowledge on the market tightness in all of the remaining
submarkets. Given the human capital loss probabilities Π = {π12, ..., πoo′ , ..., πOO−1}
and the probability of human capital depreciation while unemployed (ζ), human capital
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can depreciate up to two steps while reallocating from island o to o′. Note that in case
the unemployed worker stays on the same island, receives an offer in her submarket and
decides to form a match, the technological gap is set to zero (as τ = 0). Similarly to
employed worker case, the policy function I R(hx) can summarize the decision of un-
employed worker whether to stay in her occupation or move to the one that maximizes
her unemployment value, whereas I U(hx) determines whether, conditional on receiving
a job offer, individuals choose to establish a match.

Firm’s Problem. Consider firm in occupation o with a job filled by a worker with hu-
man capital level h in a match established τ periods ago. It’s expected lifetime discounted
profit is:

Jot (τ, hx) = qo(τ, hx)−wo(τ, hx)+β E
hx′

[
(1−δ)(1−ψo(τ ′, hx′)) max{Jot+1(τ

′, hx′), 0}
]

(3.7)
where δ is exogenous job separation probability. The first two terms on right hand side
of ( 3.7) describe firm’s profit: output (qo(τ, hx)) net of worker’s wage (wo(τ, hx)). If the
match is not subject to job destruction (captured by ψo(τ ′, hx′) and exogenous separation
probability δ), and due to realization of hx′ the match value falls below its outside option,
the firm decides to separate. Similarly to workers, we can define firm’s policy function
I J(τ, hx):

I J(τ, hx) =

1 if J(τ, hx) < 0

0 otherwise
(3.8)

Once match is destroyed, firms decide to post a vacancy. A vacant firm posting the offer
on the submarket (o, hx) has the expected utility:

V o
t (hx) = max

{
− κ+ β φ(θohx) max{Jot+1(0, hx), 0}, 0

}
(3.9)

where κ is a cost of posting a vacancy, φ(θohx) is a probability of finding a worker in
occupation o with human capital level hx. If the match is established, the technological
gap is 0, hence τ = 0.

Wages. I assume that wages are determined by Nash Bargaining. Consider a match
(τ, hx) in occupation o. Then, the wage wo(τ, hx) is the solution of:

(1− α)
[
W o
t (τ, hx)− U o

t (hx)
]

= α Jot (τ, hx) (3.10)

where α ∈ (0, 1) the exogenous bargaining power of a worker, whose outside option is
U(hx). Wages are re-negotiated each period after realization of human capital hx. The
match surplus is defined as Sot (τ, hx) = W o

t (τ, hx) + Jot (τ, hx)− U o
t (hx).

Timing. After the realization of human capital, the model is divided into four stages:
i) separation ii) reallocation iii) search and iv) production. At the beginning of each
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period both employed and unemployed workers first update their human capital. Upon
observing the new human capital level hx′ , matched workers and firms re-negotiate the
wage wo(τ, hx′) given the Nash bargaining rule ( 3.10). If the outside option for worker is
higher than the value of continuation of the match, they decide to separate. If the match
is preserved, it produces output qo(τ, hx′).

3.4.3 Equilibrium Conditions

Equilibrium consists of value functions {W (τ, hx), U(hx), J(τ, hx)}, worker’s policy func-
tions {IW (τ, hx),I R(hx) and I U(hx)} (i.e. separation , reallocation and employment
decisions), firm’s policy function {I J(τ, hx)} (layoff decision), laws of motion of {hx},
law of motion of the distribution of unemployed and employed workers, vector of market
tightness {θ = (θ1, ..., θo, ..., θO)}, vector of wages {w(τ ,h)}, such that:

(i) Value functions and decision rules follow from the firm’s and worker’s problems
described by ( 3.3),( 3.4),( 3.5), ( 3.7) and ( 3.8).

(ii) Free-entry condition holds.

(iii) Wages w(τ, hx) solve Nash bargaining formula given by ( 3.10):

wo(τ, hx) = α qo(τ, hx) + (1− α) b− (1− α) β
[
E
hx′

U o
t+1(hx′)− Co(h̃x)

]
,

where Co(h̃x) is a function of future unemployment given the reallocation function
R(hx) and tightness on the market (o, hx).23

(iv) Law of motion of employed and unemployed workers is described by ( C.3), ( C.4)
and ( C.5).

3.5 Quantitative Analysis

The following section outlines the calibration strategy, moments used in the estimation
and the results of the first, preliminary calibration of the model. The quantitative analysis
is currently main challenge of the project and will be subject to changes in the near future.

3.5.1 Calibration Strategy

In the first, simplified version of the model, there are six islands (i.e. o ∈ {1, ..., 6})
that resemble main occupational category groups: Professionals (1), Clerks (2), Sales (3),

23More precisely, Co(h̃x) is given by the formula Co(h̃) = max{ Rt+1(hx) −
c, λ(θohx

) max{W o
t+1(0, hx), Uo

t+1(hx)}+ (1− λ(θohx
))Uo

t+1(hx)}.
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Table 3.5: Targeted moments

Avg. job finding rate (ÛE) Returns to job tenure:

Avg. separation rate (ÊU) - 0-5 years

Occ. mob.oo′ ( ˆU oU o′) - 5-10 years

Elasticity of job finding rate (η̂) - 10-15 years

Home production (b̂) Vacancy cost (κ̂)

Returns to occ. experience Wage loss of occ. mobility

NOTE: The moments for occupational mobility are computed for all mobility flows between occu-
pations o and o′, where o 6= o′. In total there are 30 moments for occupational mobility between 6
occupations. Returns to occupational experience are a vector with 6 elements, similarly to wage loss
while unemployed. Wage loss of occupational mobility is the ratio of the wage of occupational ‘stayers’
and ‘movers’ one year after re-employment of the latter.

Services (4), Production (5), Transport and Handlers (6). Period of the model is half of
the year with maximum age of the technology corresponding to 15 years.24 The death
rate ξ is set to 0.0125, to match the average labor market experience of 40 years. There
are three levels of human capital, h = {h1, h2, h3} where h3 < ∞. The probability of
increase in human capital, ϕo is a vector of 6 parameters, estimated in the calibration. The
probability of skill loss while reallocating, πoo′ , is governed by the occupational distance
matrix, computed from O*NET database. The distance between occupation o and o′

is defined as the average difference in manual and cognitive task intensity between the
islands and ranges between 0 and 1. For more detailed description of the distance matrix
see Appendix C.5.3. Human capital may depreciate while unemployed, the depreciation
rate, ζ , is estimated in the calibration. Unit of human labor l equals 1 and discount rate is
set to match yearly interest rate of 4%. Matching function has a Cobb-Douglas structure
with two parameters: m(u, v) = χuηv1−η. Following Pissarides and Petrongolo (2001),
bargaining power (α) is set to 0.5, additional condition requires that the bargaining power
must be equal to elasticity of job finding rate η.25 Finally, the growth rates of technology
are computed from IFR data. More precisely, the growth rate of technology is the average
yearly growth in stock of robots in particular occupation. Occupations are divided into
High (island 5,6), Medium (island 1,2) and Low (island 3,4) exposure to job-displacing
technology, based on their growth rates. The period of interest is 1993-1996 and the
rates are respectively γH = 0.0399, γM = 0.0208 and γL = 0.0051 (i.e. island H is

24International Federation of Robotics estimates the average life span of the technology (in this case
industrial robot) is 15 years. This assumption is based on the results of the UNECE/IFR panel study carried
out in 2000 among major robot companies.

25Condition 1 − α = η in the simple matching model is known as Hosios (1990) condition. It forces
firms to post the efficient number of vacancies in the submarkets set by occupation and human capital.
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Table 3.6: Calibration parameters

Parameter Description Value

δ Exogenous separation probability 0.0286
χ Matching function parameter 0.5108
η Elasticity of job finding rate 0.5640
κ Cost of vacancy posting 0.2326
b Home production 0.2546
h1 Human capital, 0-5 years of experience 1.3024
h2 Human capital, 5-10 years of experience 1.2434
h3 Human capital, 10-15 years of experience 1.7294
ϕ1 Human capital increase proba., occ. group 1 0.0323
ϕ2 Human capital increase proba., occ. group 2 0.0297
ϕ3 Human capital increase proba., occ. group 3 0.0279
ϕ4 Human capital increase proba., occ. group 4 0.0289
ϕ5 Human capital increase proba., occ. group 5 0.0599
ϕ6 Human capital increase proba., occ. group 6 0.0395
ζ Human capital depreciation rate 0.0193

occupation with high risk of automation, etc.).26 Parameters are normalized with respect
to match output (qo(τ, h)). The set of parameters is Θ = {δ, χ, η, κ, b, h1, h2, h3, s, ζ,ϕ}
where ϕ is a vector with 6 parameters and s is a matrix of 30 parameters, resulting in 45
parameters to estimate. To do so I minimise the sum of squared distances between set of
moments and their counterparts in the data.

Targeted Moments. Given SIPP panel 1996 I construct a set of moments that ex-
actly identify the vector of parameters Θ and characterize the labor market in the pre- or
early-robot era. Table 3.5 describes moments distinguished to calibrate the model. The
exogenous separation probability δ is matched with the average EU flow rate. The match-
ing function parameter χ is informed by the job finding rate (remember that given the
matching function, λ̂ = χθη). Parameter η is matched with the elasticity of job finding
rate from the literature (following Pissarides and Petrongolo (2001) η̂ = 0.5). Two fur-
ther parameters, κ and b, are identified using the approach of Hall and Milgrom (2008).
The cost of posting a vacancy, κ, is informed by κ̂ defined as κ̂ = φ(θ) × C, where φ(θ)

is weighted average vacancy filling rate and C is the cost of hire. The cost of hire C is
set according to Abowd and Kramarz (2003) and amounts to 14% of half-year pay per
hire.27 Home production b is captured by b̂ equal to 25% of the average wage in the

26The rates of technology growth for each island are: γ1 = 0.0191, γ2 = 0.0225, γ3 = 0.0025,
γ4 = 0.0076, γ5 = 0.0489, γ6 = 0.0309.

27Note that Abowd and Kramarz (2003) find that cost of hire equals 14% of quarterly pay per hire. In
this calibration, for sake of simplicity I assume that the same holds for the model period - half of the year.
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Table 3.7: Calibrated economy

Targeted moment Data Model Targeted moment Data Model

Avg. job find. rate (ÛE) 0.788 0.789 Ret. to occ. ex. (o = 1) 0.145 0.145

Avg. separation rate (ÊU) 0.061 0.062 Ret. to occ. ex. (o = 2) 0.092 0.093

Elast. of job find. rate (η̂) 0.500 0.564 Ret. to occ. ex. (o = 3) 0.190 0.190

Home production (b̂) 0.250 0.252 Ret. to occ. ex. (o = 4) 0.130 0.132

Returns to job tenure (h1) 0.805 0.923 Ret. to occ. ex. (o = 5) 0.112 0.112

Returns to job tenure (h2) 1.020 1.010 Ret. to occ. ex. (o = 6) 0.111 0.112

Returns to job tenure (h3) 1.175 1.090 Wage loss of occ. mobility 0.669 0.604

Vacancy cost (κ̂) 0.233 0.233

NOTE: the occupational mobility is conditional on the unemployment. The moment for home production (b̂) is
defined as in Hall and Milgrom (2008) as a ratio of home production b and average wage in the economy. Returns
to job tenure are relative to the average wage in the economy, whereas returns to occupational experience are
computed following Kambourov and Manovskii (2009). Moment for the wage loss of occupational mobility is
computed from the simulation of the calibrated model.

economy. Further, I use the returns to job tenure to discipline the levels of human capi-
tal (h1, h2, h3). The human capital levels correspond to respectively 0-5, 5-10 and 10-15
years of job tenure. The vector of human capital increase probabilities,ϕ, is matched with
returns to occupational experience for each occupational group o. Moments are computed
similarly to Kambourov and Manovskii (2009). Moment for the rates of human capital
depreciation while unemployed, ζ is the wage loss that originates from occupational mo-
bility. In the similar style as in Section 3.3.2, I compute the ratio of wages of occupational
‘stayers’ and ‘movers’ one year after occupational mobility of the latter. The details of
derivation of returns to occupational experience are presented in Appendix C.5.3. Keep
in mind that given limited number of islands and the fact that mobility describes move-
ments between islands, mobility moments from the data have lower values than the ones
presented in Section 3.3. The estimated parameters are reported by Table 3.6. The human
capital levels {h1, h2, h3} are much higher than the one estimated by Carrillo-Tudela and
Visschers (2020), however, keep in mind the differences in matched moments, period and
skill transferability between the two models.

3.5.2 Fit of the Model

Table 3.7 reports the fit of the initial calibration of the model. All moments, apart from
returns to job tenure, occupational experience and income loss, are computed across oc-
cupations and human capital levels using respective weights. Returns to job tenure are
computed across occupations for given level of human capital. The initial model fits
fairly good, especially for the moments describing average job finding rate, average sep-
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Figure 3.6: The comparison of the findings: Data vs. Model moments (Facts 2 and 3).
Model simulation.

(a) Fact 2. (b) Fact 3.

aration rate, vacancy cost and returns to occupational experience. Relative wages reveal
increasing returns to job tenure, in line with the data. The fit of returns to occupational
experience is particularly close to the data. Moments for flow between occupation groups
are reported in Table C13 and match the data well. This simple version of the model,
with rate of technological growth and various pace of human capital accumulation as the
only forces driving productivity differentials across islands, is able to produce substantial
share of endogenous separation rates. They account for 19% of all separations. The non-
targeted moments are displayed in Table C14. The wage patterns are quite consistent with
the data.

In order to study the income loss caused by automation I simulate the model. Fig-
ure 3.6 presents the results of 100 simulations of panel of employment history of 10,000
workers. The targeted moments from the simulation match well the ones from the model
(see Appendix C.5.3). More interestingly, the life-cycle characteristics of unemployment,
mobility rate, UE flows and (to lesser extent) EU flows are preserved. Figure 3.6a shows
two key findings: the mobility gap between high and low exposure occupations (Fact 1.)
and the lack of U-shape of the mobility (Fact 2.). The wage loss upon the displacement
presented by Figure 3.6b documents the third key finding of the empirical part: slower
income recovery of workers that are at risk of automation (in the model: occupational
groups 5 and 6). The wage profiles were constructed in the same fashion as in the empiri-
cal part: by comparing the annual earnings of occupational stayers and movers, where the
former were employed in the same occupation throughout the study period, whereas the
latter changed occupation at year t.
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Table 3.8: Calibrated economy - automation shock

Moment Data2012 Model2012 Change1996−2012

Data Model

Occ. mob.H / Occ. mob.L 1.509 1.384 ↑ 47% ↑ 37%

Occ. mob.H 0.549 0.606 ↑ 14% ↑ 16%

WageH / WageL 0.867 0.825 ↓ 4% ↓ 1%

Average Output - - - ↓ 2%

NOTE: the occupational mobility is conditional on the unemployment. All data moments are computed
from the 2008 panel of SIPP and comprise the data for years 2009-2013. The change is computed with
respect to initial steady state (pre-robot period).

3.5.3 Automation Shock

In this simple exercise I simulate the response of the economy to automation shock. All
of the parameters, except from the rates of labor-displacing technology growth, remain
the same as in the initial calibration. The rates of technology growth take the values for
the years 2012-2016, period characterized by high stock of robots in occupations 5 and
6 and steadily increasing implementation on all islands. The rates in the subgroups were
γH = 0.0869, γM = 0.0230 and γL = 0.0101.28 Table 3.8 compares both steady states
for the relevant moments (i.e. initial calibration and new equilibrium for the new set of
labor-displacing technology growth rates). As a response to the automation shock, the
ratio of occupational mobility increases in the model less than in the data (47% compared
with 37%), what happens mainly due insufficient decrease in mobility of the unemployed
on the islands with low exposure to labor-displacing technology. The mobility on islands
at risk of automation increases by similar amount (14% compared with 16%).

The response of relative wages resembles the pattern observed in the data - workers at
risk of labor-displacing technology not only reallocate more frequently and have higher
EU flows, automation shock reduces their wages by around 1%. The number corresponds
to the findings of Acemoglu and Restrepo (2017a), keep in mind however they estimate it
for the panel of commuting zones, not workers employment history. The average match
output falls by 2 percent, as a result of increase in occupational mobility and skill trans-
ferability mechanism. Unemployed workers in occupations with high risk of automation
are forced to switch into more distant ones, facing higher probability of human capital
loss. In other words they reallocate towards occupations where they are less productive,

28The rates of technology growth for each island are: γ1 = 0.0212, γ2 = 0.0248, γ3 = 0.0093,
γ4 = 0.0108, γ5 = 0.1159, γ6 = 0.0579.
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what lowers average match output.29 As a result of increase in mobility of workers with
high exposure to automation, the average level of human capital drops. The culprit is
skill transferability rooted in the reallocation mechanism - while changing an occupa-
tion, unemployed workers face probability of loosing part of their human capital. Upon
reallocation unemployed workers can loose up to two levels of human capital.

3.6 Policy Implications

One of the most interesting findings of automation shock counterfactual is the loss of
average match output due to job automation. Unemployed workers at risk of automation
reallocate to different occupations, however due to large drop in human capital they are
less productive in the new occupation. Skills they have accumulated in the old job are
no longer needed. Hence, the focal point of the following section is the design of benefit
or retraining system that would target the output loss and facilitate mobility of displaced
workers.

The possible policies include variety of proposals, e.g. various off-the-job trainings,
unemployment insurance that depends on the exposure to automation or reduction in mo-
bility costs for displaced workers. Shall we provide them training to reduce the human
capital loss, design incentives for displaced workers with high exposure to find a better
match (e.g. higher unemployment benefits) or induce them to limit their unemployment
spell? Other possible set of policy proposals concerns the transferability of human capital.
Off-the job training provided to unemployed workers may contribute to task transferabil-
ity of human capital. In other words, re-trained workers may be able to find a better match
once unemployed. The subsequent policy proposal may target the workers with low level
of human capital (potentially young ones) and facilitate mobility into more distant occu-
pations that won’t be at risk of automation in the near future. This exercise would prevent
young workers to continue switching into close occupations that sool will be subject to
automation. All of the aforementioned proposals will be subject of the analysis in the
following section.

3.6.1 Off-the-Job Training

First let’s examine the policy that would provide re-training opportunities for the dis-
placed workers that are at risk of automation. The unemployed workers become more
productive in other occupations, what in turn may attenuate the output loss. The key to
training proposal is skill transferability mechanism. In the following exercise I first relate

29It becomes clear once you look at the equation 3.2. Match output is a function of human capital. As the
automation shock happens, unemployed workers switch to more distant occupations (probability of human
capital loss πoo′ is higher), what results in larger reduction of human capital. The loss is big enough to
dominate the lower rates of technology growth γo

′
< γo.
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Table 3.9: Calibrated economy - automation shock and policy couterfactuals

Baseline1996−2012 Off-the-job Training

Data Model Quarter Half year Year

Occ. mob.H / Occ. mob.L ↑ 47% ↑ 45% ↑ 46% ↑ 47% ↑ 49%

WageH / WageL ↓ 4% ↓ 1.4% ↓ 0.3% ↓ 0.6% ↓ 1%

WageH ↓ 2% ↓ 4% ↓ 4.3% ↓ 4.4% ↓ 4.7%

Match output - ↓ 1.6% ↓ 1.5% ↓ 1.4% ↓ 1.3%

NOTE: the occupational mobility is conditional on the unemployment. All data moments are computed from the
2008 panel of SIPP. The change is computed with respect to initial steady state (pre-robot period). The Baseline
automation shock differ from Table 3.8 as a result of different skill transferability matrix. Off-the-job training
corresponds to limiting the distance in educational requirements between two occupations by quarter, half-year and
year respectively.

the probability of human capital loss to the training and educational distance between two
occupations. The proposed policies reduce the educational distance between two occu-
pations that correspond to quarter, half-year and a year of off-the-job training. Given the
new skill transferability matrices that correspond to providing off-the-job training to dis-
placed workers at risk of automation, I perform the automation shock counterfactual and
compare it to baseline results.

The new distance matrix is constructed given the educational requirements in partic-
ular occupations. Section C.5.3 discusses in detail the method of deriving the distance
matrix. It is defined as the difference in educational requirements (in years) between oc-
cupations o and o’, standardized so that doo′ ∈ (0, 1). Give the new distance matrix I
recalibrate the model and perform baseline automation shock counterfactual. For the pol-
icy counterfactual I perform the automation shock exercise using the skill transferability
matrix that limits the educational distance between high risk and remaining occupations
by respectively a quarter, half-year and year. Note that in that case the distance matrix is
no longer symmetric, as doo′ 6= do′o if o ∈ {H} or o′ ∈ {H}.

Table 3.9 compares the results of policy counterfactuals with the baseline one. The
results of the baseline automation shock differ from the ones presented in Table 3.8 since
they are based on new distance matrix. The findings do not change much, if enything the
model explains larger share of increase in mobility gap (around 96%). Non surprisingly,
displaced workers with longer off-the-job training increase their occupational mobility.
The human capital loss becomes smaller and they find it more profitable to reallocate.
What may seem counter-intuitive is the wage loss in high-risk occupations for the longer
trainings. This is just the concentration effect, as the workers with higher levels of human
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capital leave first. More importantly, the output loss decreases with the level of off-the-
job training. Providing a training that corresponds to one year of education in the new
occupation reduces the output loss by nearly 20%. One can however argue that the most
probable level of retraining is the quarterly one, in which case the reduction of output loss
is modest.

3.7 Conclusion and Next Steps

To the best of my knowledge, this paper is the first attempt to describe the relationship
between job automation and worker reallocation. The empirical analysis aims at studying
the role of automation in labor market frictions. Key factor is the pace of implementing
industrial robots - significantly higher than during computerization process in 90’s. Jobs
created and replaced by automation require different set of skills. As a result, workers dis-
placed due to automation face limited job opportunities and may decide to change their
occupation. From the existing literature we know that job automation increases the share
of exits out of labor force, leading to the drop in employment-to-population ratio and aver-
age wages. Novel empirical regularities presented in this work suggest that workers at risk
of automation experiencing non-employment spell increase their occupational mobility.
Moreover, conditional on mobility, their wages recover slower than of their counterparts
with low exposure to automation.

In an attempt to quantify the effect of job automation on occupational mobility, I de-
velop an equilibrium search and matching model with technological acceleration, human
capital accumulation and occupational mobility. The key mechanism of the mobility deci-
sions is skill transferability that specifies the level of human capital in the new occupation.
The initial calibration matches salient features of the economy with substantial share of
endogenous reallocations. In the automation shock exercise, the response of the economy
follows patterns observed in the data between 1996 and 2012 with similar magnitudes.
The mobility rate of high exposure workers increases by 16% (compared with 14% re-
ported in the data), leading to 1% drop of wages in occupations that experience large
increase in the implementation of industrial robots.

The next steps of the project involve further development of the theoretical framework
and policy proposals that would offset the wage loss of exposed workers after mobility.
The endogenous updating of match technology is one of the major changes worth imple-
menting, along with increase of the number of occupations (e.g. to match 1-digit Census
1990 classification) and human capital levels. The policy proposals will concentrate on
the reduction of mobility costs for displaced workers at risk of automation, that stem from
skill transferability mechanism and prolonged unemployment spells.
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Chapter A

Appendix to Chapter 1

A.1 Empirical Strategy - Worker Side

A.1.1 Job Tenure

One of the stylized facts of referrals reveals that the referred workers have lower turnover
and hence longer job tenure than non-referred employees.1 Job tenure is often perceived
as a sign of match quality. The following exercise aims not only at replicating the findings
in the VWH sample, but checking the behavior of linked job-to-job switchers, as the ones
with potentially higher skills, higher initial wage and lower turnover. Following empirical
literature, I propose Proportional Hazard model with the conditional hazard function. In
my model, the conditional hazard function is given by:

h(t,x) = λ(t) exp(x′β)

where λ(t) is so called baseline hazard function and x is a matrix of control variables that
include worker- and firm-specific characteristics. The model is censored on the right, as
some observations end in 2001, tenures are measured in weeks.

A.1.2 Hiring Probability

Social networks may impact individual labor outcomes of workers experiencing exoge-
nous employment shocks. Cingano and Rosolia (2012) find that one standard deviation
increase in network employment at the time of a shock reduces unemployment duration
by 8%, similarly Glitz (2017) claims that 10 p.p. increase in the one’s network employ-
ment rate increases re-employment chances by 7.5%. Both works proxied social network
with former co-workers and measured employee performance when faced with firm clo-

1E.g. Dustmann et al. (2016), Brown et al. (2016).
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sure, without distinguishing linked hires. In the spirit of Cingano and Rosolia (2012)
and Glitz (2017) in the following part I examine referral heterogeneity at the time of firm
closure.2 The VWH dataset contains precise information on the date of the firm closure,
hence first I distinguish establishments that are shut down between 1995 and 2001 and
identify workers who lost their jobs due to the closure. I denote a worker as displaced
due to firm closure if she lost the job within one year prior to the event. Otherwise, there
exists a threat of selection bias, as some of the workers may be better informed about firm
condition or have any kind of insight regarding the closure, and leave the company weeks
prior to the formal closure. The model is given by:

Empl Probai = δ0 + δ1 Connectedi + δ2 Empl. Ratei + δ3(Connectedi × Empl. Ratei)

+ δ4 Jtji + δ5(Connectedi × Jtji) + δ5 Xi + δ6 Wi + εi

where all of the variables Connectedi and Jtji describe if individual i was connected or
transitioned job-to-job at the entry to the firm that was later subject to closure. Empl Probai
is an indicator variable that takes value 1 is individual found a job within 26 weeks fol-
lowing the firm closure. To check robustness of the results, the model includes variables
describing employment rate within one’s network and instrumental variable defined as in
Cingano and Rosolia (2012) and Glitz (2017).

2Heterogeneity distinguished prior to displacement.
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A.2 Additional summary statistics

A.2.1 Employer - Employee Matched Data

Table A1: Basic characteristics of analysed sample, years 1997-2001

VWH AIDA AIDA VWH-AIDA

(raw) (cleaned) (raw) (clean 1) (clean 2) (cl1, cont.) (cl2, cont.)

Firms
No. firms 48,555 7,537 3,889 6,635 6,467 3,651 4,650 2,379

No. employees 15.5 30.9 55.3 31.8 30.5 51.4 26.2 48.6
(66.7) (51.8) (63.6) (50.6) (45.5) (54.1) (43.1) (55.6)

Revenue 7,023 10,847 7,032 6824 9,989 5,846 9,427
(1000’s Euros) (14,413) (17,710) (14,146) (13,012) (15,333) (12,011) (15,654)
Revenue per worker 409 194 374 359 194 361 185
(1000’s Euros) (784) (168) (697) (500) (169) (525) (157)
Added Value 1,509 2,513 1,529 1,466 2,309 1,248 2,171
(1000’s Euros) (3,538) (3,672) (3,379) (2,966) (3,130) (2,765) (3,270)
Added Value per worker 66 43 63 59 43 60 42
(1000’s Euros) (286) (16) (76) (54) (16) (56) (16)
Total Assets 5,931 8,643 5,790 5,278 7,837 4,491 7,432
(1000’s Euros) (20,895) (15,580) (21,127) (12,175) (13,153) (10,768) (13,888)
Total Assets per worker 335 144 274 238 142 240 137
(1000’s Euros) (1,308) (102) (895) (253) (100) (258) (98)
Profit/loss 125 169 119 108 157 84 148
(1000’s Euros) (2,705) (831) (2,743) (1,099) (766) (1,187) (855)
Wages 453 613 1,069 634 600 982 514 922
(1000’s Euros) (3,317) (1,131) (1,442) (1,106) (981) (1,188) (919) (1,227)
N 199,232 20,100 9,539 18,128 17,478 9,012 11,864 5,220

NOTE: The above table provides statistics averaged over years of interest. Clean 1 refers to merger of firm financial data without value
added per worker or capital per worker outliers, observations with difference in firm employment larger than two are discarded. Clean
2 is basically Clean 1 with firms that hire more than 15 workers. Cont. denotes firm-year observations without any discontinuities.
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Table A2: Basic characteristics of analysed sample, years 1997-2001

Correlation AIDA match Empl. difference

Merger No. employed Wages (% y-f obs.) (no. obs)

Raw 0.86 0.34 90 -
Cleaned 1 0.96 0.32 91 108
Cleaned 2 0.96 0.95 96 124
Cleaned 1 + cont. 0.96 0.95 - -
Cleaned 2 + cont. 0.96 0.95 - -

NOTE: The column AIDA match displays the share of year-firm observations from AIDA dataset that
were matched with VWH. Empl. difference is the number of obserations in the merged dataset where
the difference in employment counts between VWH and AIDA exceeds 100 employees. Clean 1 refers to
merger of firm financial data without value added per worker or capital per worker outliers, observations
with difference in firm employment larger than two are discarded. Clean 2 is basically Clean 1 with firms
that hire more than 15 workers. Cont. denotes firm-year observations without any discontinuities.
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Figure A1: Linked hires and firm productivity

Figure A2: On-the-job linked hires and firm productivity
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A.2.2 Industrial Districts

Table A4: Share of same industry and industrial cluster hires, 1995-2001

Same industry Industrial cluster

Hires 1-digit 3-digit 1-digit 3-digit

All 61.47% 28.85% 77.90% 37.64%
Linked 66.32% 31.45% 77.24% 41.01%

NOTE: The above table provides statistics averaged over years of interest. Sample size includes
4, 324 firm-year observations.

Table A5: Basic characteristics of the sample of same-industry hires, years 1995-2001.

Same Industry Hires

All Linked Linked× Jtj

Mean SD Mean SD Mean SD

Age 32.1 9.92 33.7 9.79 33.8 9.36
Female 0.32 0.47 0.31 0.46 0.30 0.46
Wage (weekly) 6.40 0.39 6.45 0.41 6.53 0.38
Unempl. spell 8.44 15.47 6.71 13.97 - -
Experience (years) 11.26 8.16 12.81 7.96 13.35 7.78
Industry Experience (1-digit) 6.51 6.71 7.97 7.09 8.73 7.21
Industry Experience (2-digit) 5.57 6.23 6.77 6.64 7.29 6.76
Industry Experience (3-digit) 4.69 5.96 5.80 6.45 6.27 6.64
Industry Experience (4-digit) 3.33 5.36 4.13 5.91 4.44 6.12
Linked 0.20 0.40 - - - -

NOTE: The above table provides statistics for samples of different size: All: N = 94,736 (78,518 individuals), Linked: N =
18,799, Linked × Jtj: N = 12,058. Wages are in log, winsorized at 1st and 99th percentiles.
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A.3 Placebo Checks

Table A7: Placebo check - output and productivity analysis

Dep. var: Outputt Productivityt

Model: OLS OLS IV OLS OLS IV

Non− Linkst−1 -0.001 -0.002 -0.020 -0.008 0.006 -0.021
(0.006) (0.006) (0.013) (0.018) (0.020) (0.013)

Linkst−1 0.058** 0.026 0.031** 0.048 0.033 0.027**
(0.026) (0.031) (0.013) (0.033) (0.035) (0.013)

Hirest−1 0.012** 0.028*** 0.042*** 0.021 0.023 0.042***
(0.006) (0.011) (0.014) (0.018) (0.018) (0.014)

Linkst−1 ×Hirest−1 -0.019** -0.006 -0.015* -0.015 -0.007 -0.012
(0.009) (0.012) (0.008) (0.011) (0.012) (0.008)

Non− Linkst−1 ×Hirest−1 -0.008* -0.008
(0.004) (0.005)

log(Kt) 0.124*** 0.125*** 0.134***
(0.019) (0.019) (0.020)

log(Lt) 0.224*** 0.226*** 0.0222***
(0.026) (0.026) (0.023)

log(Mt) 0.385*** 0.385*** 0.381***
(0.014) (0.014) (0.014)

R2 0.986 0.986 0.986 0.974 0.975 0.933
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Table A8: Placebo check - number of non-referred workers, Output

Dep. var:
Baseline Olley - Pakes IV

log(Output)ijst

Non−Referred -0.008 0.046 0.036
(0.015) (0.037) (0.028)

log(Hires) 0.04*** -0.02 0.38*
(0.013) (0.035) (0.019)

Non−Referred× log(Hires) -0.01** -0.01 -0.025
(0.005) (0.010) (0.017)

log(K) 0.13*** 0.07 0.13**
(0.019) (0.094) (0.061)

log(L) 0.22*** 0.15*** 0.22***
(0.023) (0.029) (0.049)

log(M) 0.39*** 0.29*** 0.38***
(0.014) (0.029) (0.066)

R2 0.98 0.98
N 4,325 1,714 4,307

Table A9: Placebo check - output and productivity analysis

Dep. var: Outputt Productivityt

(1) (2) (3) (4)

Connected hires (%) 0.018*** 0.018*** 0.025*** 0.025***
(0.007) (0.007) (0.008) (0.008)

Hirest−1 0.003 -0.001
(0.06) (0.007)

log(Kt) 0.016 0.015
(0.025) (0.025)

log(Mt) 0.303*** 0.303***
(0.018) (0.018)

R2 0.957 0.957 0.946 0.946

NOTE: Size of the sampleN = 4, 325. Connected hires is a percentage of linked entrants as a share of
all hires. The model includes differences of input factors, referrals, hires, their interaction, LLM-year
and industry-year fixed effects. Remaining models include all of the aforementioned fixed effects as
well as production inputs (in Output) and firm fixed effects. *p < 0.1, ** p < 0.05,*** p < 0.01.
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Table A10: Impact of number of connected hires on firms’ productivity and
output - PLACEBO event study.

Panel A: Productivity

Event: τ ∈ [0, 1] τ ∈ [2, 3] τ ∈ [0, 3]

Non-Connected Hire 0.006 0.056 0.031
(0.093) (0.123) (0.108)

Non-Connected Hire Shock 0.043 0 .059 0.051
(0.028) (0.038) (0.031)

Panel B: Output

Event: τ ∈ [0, 1] τ ∈ [2, 3] τ ∈ [0, 3]

Non-Connected Hire 0.008 0.038 0.023
(0.015) (0.023) (0.019)

Non-Connected Hire Shock 0.012** 0.018** 0.015**
(0.006) (0.007) (0.006)

NOTE: Note: Estimates taken from specification of form given in Equation (1.4) where the
dependent variable is the number of patents applications. The sample size is 4, 380 (1, 275
firms), it includes ony firms with at least one year after the event. Sample includes only firms
with more than 2 observations. The model includes year and firm fixed effects, industry trends
and LLM trends, network size, number of hired workers, firm size, average wage and firm age.
Numbers in parentheses are standard errors clustered at the LLM level. τ = [a, b] refers to the
average of the coefficients between period τ = a and period τ = b. *p < 0.1, ** p < 0.05,***
p < 0.01.
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Figure A3: Firms’ Productivity and Output, Relative to Year of a Connected Worker
Displacement - PLACEBO Event Study (Non-Connected Hire)

(a) Productivity (b) Output

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-3" set to 1 for periods up to and including 3 periods prior to the event and 0
otherwise. Event time indicator "+4" set to 1 for all periods 4 periods after the event and 0 otherwise. The
omitted category is one period prior to the event. Sample includes only firms with at least one observation
following the event. The bands around the point estimates are 95 percent robust confidence intervals.

Figure A4: Firms’ Productivity and Output, Relative to Year of a Connected Worker
Displacement - PLACEBO Event Study (Non-Connected Hire Shock)

(a) Productivity (b) Output

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-3" set to 1 for periods up to and including 3 periods prior to the event and 0
otherwise. Event time indicator "+4" set to 1 for all periods 4 periods after the event and 0 otherwise. The
omitted category is one period prior to the event. Sample includes only firms with at least one observation
following the event. The bands around the point estimates are 95 percent robust confidence intervals.

108



A.4 Referral Heterogeneity

Entry wage. The panel structure of VWH data allows to distinguish the firm entry stage
of workers as well as track them throughout whole job tenure and examine performance
while facing exogenous employment shocks such as firm closure (if occurs). In fact, the
analysis proves the advantage of job-to-job linked entrants while employed and higher
employment probability given firm closures. In the co-worker link literature (HS), linked
firm entrants have initial wage advantage of 3.6%. Table 1.3 presents the results of en-
try wage regression with firm and industry-year fixed effects. The basic specification
shown in column (1) is fairly close to results of Swedish authors. Distinguishing short
and long unemployment spell and their interaction with links, column (4) allows to gauge
the decreasing advantage of linked and non-linked entrants.3 Linked employees who ex-
perienced long unemployment spell are those who potentially used informal contacts in
order to exit unemployment spell as it lengthened. Social network served as the insur-
ance against unemployment spell. Interpreting column (4) one has to remember that the
reference group in this case are non-linked entrants with long unemployment spell.

Surprisingly, in none of the specifications the number of links among incumbents in
the destination firm has any impact on the entry wage. It seems that the size of the network
(proxied by variable Nr links) doesn’t matter for the entry wage. What matters is the fact
of being linked or type of employment transition. One of the concerns while measuring
the impact of unemployment spell of the linked worker on entry wage is that in above
analysis the only requirement for the incumbent is to be employed in the destination
firm at least 3 weeks before the transition. It does not measure if our link was already
employed in the firm when we entered unemployment. Taking that into account may
allow to identify workers who use referrals as insurance and contact their links only when
the unemployment spell lengthens. Appendix A.5 corrects for that and finds significant
negative effect for linked workers with long unemployment spell. Brief description of the
exercise and results are shown in Table A12.

Returns to tenure. For the purpose of investigating the returns to tenure and spell
length among referred workers, I track the job spells of the entrants and construct panel
of wage profiles. Recall that the raw data suggests the convergence of linked and job-
to-job linked workers to non-linked and job-to-job employees respectively. I use returns
to tenure framework, introduced by Altonji and Shakotko (1985), Panel (b) of Figure A5
plots the results. As expected, linked workers have lower returns to employer than non-
linked ones. Distinguishing further job-to-job transition, Figure A5b displays returns
to employer for 4 considered groups. The baseline group are non-linked workers who
experienced unemployment spell longer than three weeks. The wage evolution between

3Short unemployment spells last between 3 weeks and median unemployment spell - 11 weeks, long
spells denote those above 11 weeks.

109



(a) Wage profile, returns to employer (b) Wage profile, returns to employer

Figure A5: Wage characteristics of entrants, years 1995 - 2001

job-to-job and non-jtj hires seems similar - explaining convergence observed in the raw
data.

Turnover. The advantage of job-to-job linked workers once again appears in the
tenure duration analysis. Panel B of Table 1.3 reports the results of Proporitional Hazard
model. In line with previous literature referred workers have longer tenures, job-to-job
linked ones have additional advantage in job spells (Table 1.3 column (2)).4 Interestingly,
high number of former co-workers in the destination firm induces longer tenure, sign of a
peer pressure of the network.

Firm closure. The remaining part of the referral heterogeneity analysis focuses on
the exogenous employment shocks. Both Cingano and Rosolia (2012) and Glitz (2017)
find that the network quality (defined as share of employed in one’s network) reduces
unemployment duration after firm closure. The main idea of the following exercise is
that network employment rate is not the only thing that matters during unemployment
spell, linked workers may perform better during mass reductions as they are potentially
more skilled workers. For that purpose I construct indicator variable for unemployment
spells no longer than 26 weeks.5 To prove the robustness of effect for linked workers,
Table A11 includes network employment rate and instrumental variable from previous
literature. The IV for employment rate is a percentage of former co-workers hit by ex-
ogenous mass-layoffs, constructed as in Glitz (2017). The variables Connected and Jtj

in Table A11 denote workers who originally were connected or transitioned job-to-job.
Given column (1) it becomes clear that linked and job-to-job linked workers have higher
probability of exiting unemployment before 26 weeks. The results are not disturbed by
introduction of network employment rate (column (3)). The interaction term in column

4E.g. Brown et al. (2016) or Dustmann et al. (2016) report lower turnover of referred workers
5Considered unemployment spells are shorter than those in Glitz (2017), however given the distribution

of the unemployment duration such specification makes more sense.
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Table A11: Firm closure - employment probability

Dep variable: OLS IV

Empl. proba. (1) (2) (3) (4) (5)

Connected 0.021** 0.017*00 0.020**0 -0.091**0 0.018000
(0.008) (0.009) (0.008) (0.044) (0.078)

Empl. rate 0.050*** 0.033*00 0.181**0
(0.018) (0.019) (0.084)

Empl. rate × Connected 0.129*** 0.001000
(0.051) (0.090)

Jtj 0.044*** 0.029*** 0.044*** 0.044*** 0.042***
(0.005) (0.005) (0.005) (0.004) (0.005)

Jtj × Connected -0.014000 -0.009000 -0.014000 -0.019000 -0.013000
(0.011) (0.012) (0.011) (0.011) (0.011)

Firm f.e. - + - - -

NOTE: Size of the sample N = 14,237. IV model uses co-worker network employment rate defined as in Glitz
(2017). Control variables include age, age2, gender, residence and position on the worker side; province, size, urban
area on the firm side and Industry × time and Firm fixed effects. Empl. rate variable defined as in Cignano and
Rosolia(2012). IV model uses instrument for Empl. rate defined as in Glitz (2017). *p < 0.1,** p < 0.05,***
p < 0.01.

(4) changes the sign of Connected variable, offseted by the former for high values of net-
work employment rates. In instrumental variable regression linked workers are no longer
privileged facing firm closure, former job-to-job entrants remain their advantage. The IV
analysis confirms the results of Glitz (2017) in terms of sign and significance of the coef-
ficient, the difference in volume may resolve from the different sample or Empl. proba.

variable specification.

A.5 Unemployment duration dependence

Link employment at the beginning of entrant’s unemployment spell.
One of possible extensions includes distinguishing entrants who use referrals as insurance
against the unemployment. For that purpose I distinguish referred entrants whose links
were employed at the entry firm in the starting week of unemployment spell. If any of
former co-workers of worker already have worked at the destination firm when he became
unemployed and the unemployed worker still experiences long unemployment spell, he
might have contacted his link only to exit the spell. He used the relationship as the unem-
ployment spell lengthened, not as an opportunity for better-paid job. Variable Provider

empl. takes value 1 if any of the links were employed at the future firm when entrant
started his unemployment spell prior to hire. Intuitively one should observe decline in
entry wage for those with Provider empl. equal to one and long unemployment spell.
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As expected, long unemployed workers whose links worked at entry firm at the beginning
of unempl. spell have significantly lower wages (see Panel A.). If instead of unemploy-
ment duration one uses indicators of short and long spells, similar effect can be seen only
for the former. Interpreting variable Provider empl. is pointless, as for instance in Panel
A. it captures partly the effect of job-to-job transitions.
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Table A12: Entry wage regression, referred workers, years 1995-200

Dep variable:
(1) (2) (3)

log(wEij)

Panel A

Provider empl. -0.002000 0.035*** 0.035***
(0.007) (0.009) (0.009)

Unempl. duration -0.002*** -0.001*** -0.001***
(0.000) (0.000) (0.000)

Provider empl. × Unempl. dur. -0.002*** -0.002***
(0.000) (0.000)

R2 0.69 0.69 0.69

Panel B

Provider empl. -0.003000 0.029000 0.026000
(0.006) (0.028) (0.028)

Jtj 0.103*** 0.079*** 0.081***
(0.005) (0.027) (0.027)

Short spell 0.036*** 0.074*** 0.074***
(0.006) (0.013) (0.013)

Short spell × Provider empl. -0.067**0 -0.063**0
(0.030) (0.030)

Long spell × Provider empl. -0.019000 -0.017000
(0.028) (0.028)

R2 0.69 0.68 0.69

Firm f.e. + + +
Industry × year f.e. - - +

NOTE: Sample is of the size: n = 38,683. Control variables contain age, age2, gender,
residence, position on the worker side; province, size, firm and industry-year fixed effects.
Variable Provider empl. denotes whether any of the links were employed at the entry firm
when entrant stared his unemployment spell. Dep. variable log(wE

ij)is winsorized at 1st and
99th percentiles. *p < 0.1, ** p < 0.05,*** p < 0.01.
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A.6 Robustness checks

Table A13: Entry wage regression, years 1995-2001

(1) (2) (3) (4) (5) (6)

A. All entrants
Connected 0.029*** 0.026*** 0.028*** 0.052**0 0.026*** 0.051**0

(0.002) (0.003) (0.002) (0.025) (0.003) (0.025)

Nr links 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Jtj 0.094*** 0.094*** 0.114*** 0.114*** 0.094*** 0.114***
(0.001) (0.001) (0.001) (0.002) (0.001) (0.002)

Jtj × Connected -0.002000 -0.027000 -0.002000 -0.026000
(0.003) (0.025) (0.003) (0.025)

Short spell 0.044*** 0.044*** 0.044***
(0.002) (0.002) (0.002)

Short spell × Connected -0.029000 -0.027000
(0.025) (0.025)

Office worker 0.257*** 0.254*** 0.257*** 0.253*** 0.254*** 0.254***
(0.002) (0.002) (0.002) (0.002) (0.004) (0.002)

Director 0.839*** 0.849*** 0.838*** 0.848*** 0.849*** 0.849***
(0.006) (0.007) (0.006) (0.007) (0.007) (0.007)

Office worker × Connected 0.025*** 0.025*** 0.025*** 0.024***
(0.004) (0.004) (0.004) (0.004)

Director × Connected -0.060*** -0.059*** -0.062*** -0.061***
(0.016) (0.016) (0.016) (0.016)

R2 0.58 0.58 0.58 0.58 0.58 0.58
Firm f.e. + + + + + +
Industry × year f.e. - - - - + +

B. Connected entrants
Nr links 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Jtj 0.085*** 0.102*** 0.085*** 0.102*** 0.071*** 0.115***
(0.004) (0.005) (0.004) (0.005) (0.011) (0.015)

Short spell 0.035*** 0.035*** 0.082***
(0.005) (0.005) (0.018)

R2 0.69 0.69 0.69 0.69 0.81 0.81
Firm f.e. + + + + + +
Industry × year f.e. - - + + + +
Sample All All All All Position Position

NOTE: Samples are of the size: All entrants - n = 281,209; Connected entrants - n = 38,683; Connected entrants with higher
position - n = 6,550. Control variables contain age, age2, gender, residence on the worker size; province, size, firm and industry-
year fixed effects. Columns (4) and (6) include additionally interaction term Long spell × Link for identification purposes. Dep.
variable log(wE

ij) is winsorized at 1st and 99th percentiles. *p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A14: Entry wage of entrants, robustness check, years 1995-2001

Dep. variable:
Men

Manufacturing, Office worker, Tenure ≥ 49
log(wEij) services director weeks

Connected 0.031*** 0.032*** 0.030*** 0.028*** 0.018*** 0.014*00 0.024*** 0.025***
(0.002) (0.003) (0.002) (0.003) (0.004) (0.008) (0.002) (0.003)

Nr links 0.000*00 0.000*000 0.000000 0.000000 -0.000*000 -0.000000 0.000000 0.000000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Jtj 0.098*** 0.098*** 0.102*** 0.102*** 0.086*** 0.085*** 0.073*** 0.074***
(0.001) (0.002) (0.001) (0.001) (0.003) (0.003) (0.001) (0.002)

Jtj × Connected -0.004000 -0.002000 0.008000 -0.010**00
(0.004) (0.004) (0.009) (0.004)

Office worker 0.309*** 0.306*** 0.280*** 0.276*** 0.237*** 0.232***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Director 0.844*** 0.856*** 0.857*** 0.868*** 0.410*** 0.418*** 0.790*** 0.798***
(0.007) (0.007) (0.007) (0.008) (0.007) (0.007) (0.006) (0.007)

Office worker × Connected 0.020*** 0.028*** 0.039***
(0.006) (0.005) (0.005)

Director × Connected -0.073*** -0.063*** -0.048*** -0.050***
(0.002) (0.018) (0.017) (0.016)

R2 0.60 0.60 0.59 0.59 0.71 0.71 0.69 0.69
N 193,562 193,562 207,248 207,248 54,065 54,065 140,894 140,894

NOTE: Sample containing entrants with entry job tenure greater or equal to 49 was chosen arbitrary, as median job duration is 49.
Control variables contain age, age2, gender, residence on the worker side; province and employment size on the firm side and firm
fixed effects. Dep. variable log(wEij).*p < 0.1, ** p < 0.05, *** p < 0.01.

Table A15: Cox Proportional Hazard Model, robustness check

Dep variable: Men Manufacturing, Office worker, Tenure > 49
Tenurei services director weeks

Connected 0.88*** 0.89*** 0.85*** 0.86*** 0.88*** 0.88* 0.11*** 0.19***
(0.017) (0.025) (0.016) (0.025) (0.034) (0.062) (0.017) (0.044)

Jtj 0.61*** 0.61*** 0.64*** 0.64*** 0.87*** 0.87*** 1.26*** 1.28***
(0.008) (0.008) (0.008) (0.008) (0.020) (0.021) (0.053) (0.055)

Jtj × Connected 0.96 0.98 0.99 0.48**
(0.036) (0.037) (0.080) (0.138)

Office worker 0.96*** 0.96*** 0.97*** 0.97*** 1.29*** 1.29***
(0.017) (0.018) (0.016) (0.016) (0.060) (0.060)

Director 0.84*** 0.84*** 0.81*** 0.81*** 0.79*** 0.79*** 1.19 1.19
(0.048) (0.048) (0.049) (0.049) (0.046) (0.046) (0.175) (0.174)

N 193,562 193,562 207,248 207,248 54,065 54,065 140,894 140,894

NOTE: Sample containing entrants with entry job tenure greater or equal to 49 was chosen arbitrary, as median job
duration is 49. Control variables include age, age2, gender, residence on the worker side; province, size, urban area,
industry on the firm side. Proportional Hazard model is right censored. Job tenure is measured in weeks. *p < 0.1,
** p < 0.05,*** p < 0.01.
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Table A16: Referral probability, logit

Dep variable:
Whole

Manufacturing,
Men

Office worker,
Pr(Connectedi = 1) services director

Age 0.072*** 0.046*** 0.075*** 0.046*** 0.068*** 0.041*** 0.128*** 0.093***
Age2 -0.001*** -0.001*** -0.001*** -0.001*** -0.001*** -0.001*** -0.001*** -0.001***
Age × Jtj 0.028*** 0.030*** 0.025*** 0.034***
Age2 × Jtj -0.001*** -0.001*** -0.001*** -0.001***
Blue collar 0.431*** 0.390*** 0.425*** 0.375*** 0.432*** 0.382***
Office worker 0.147*** 0.058** 0.113*** 0.016*** 0.282*** 0.185***
Director 0.080 -0.020 0.146** 0.038 0.092 -0.019 -0.220*** -0.229***
Size 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003***

N 281,209 281,209 207,248 207,248 193,562 193,562 54,065 54,065

NOTE:Control variables include gender, position, province of residence from worker side; urban area, province and industry
from the firm side as well as time fixed effects. *p < 0.1, ** p < 0.05, *** p < 0.01.

Table A17: Firm closure - unemployment duration and future referral probability

Dep variable: Duration Future referral

Empl. proba. (1) (2) (3) (4) (5) (6)

Connected 1.09**0 1.09**0 0.74000 0.019*0 0.019* 0.044
(0.039) (0.039) (0.143) (0.011) (0.011) (0.058)

Empl. rate 1.59*** 1.49*** -0.058** -0.055**
(0.122) (0.122) (0.024) (0.026)

Empl. rate × Connected 1.57000 -0.029000
(0.344) (0.067)

Jtj 1.23*** 1.22*** 1.22*** -0.013*** -0.012** -0.012**
(0.024) (0.024) (0.024) (0.006) (0.006) (0.006)

Jtj × Connected 0.97000 0.96000 0.95000 0.00400 0.00500 0.00600
(0.044) (0.044) (0.043) (0.014) (0.014) (0.014)

NOTE: Size of the sample N = 14,237. Duration analysis uses uncensored Proportional Hazard model. Future referral
uses OLS. Control variables include age, age2, gender, residence and position on the worker side; province, size, urban
area, industry and local labor market on the firm side. Variable Empl. rate is a fraction of former co-workers employed in
the week of job loss. Unemployment spell is measured in weeks. *p < 0.1, ** p < 0.05,*** p < 0.01.
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Figure A6: The effect of network displacements on connected and market inventor hires
-event study

(a) Connected Hires

(b) Market Hires

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-3" set to 1 for periods up to and including 3 periods prior to the event and
0 otherwise. Event time indicator "+4" set to 1 for all periods 4 periods after the event and 0 otherwise.
The omitted category is one period prior to the event. The bands around the point estimates are 95 percent
robust confidence intervals.
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Table A18: Robustness check - additional controls

Dep. var: ln(Output)ijst lnTFPojst

(1) (2) (3) (4) (5) (6) (7) (8)

Connectedt−1 0.057** 0.058** 0.057** 0.060** 0.057** 0.058** 0.058** 0.060**
(0.026) (0.026) (0.026) (0.028) (0.026) (0.026) (0.026) (0.028)

Connectedt−2 0.037* 0.041*
(0.022) (0.022)

Connectedt−3 -0.044 -0.025
(0.035) (0.036)

Connectedt−4 -0.009 0.001
(0.071) (0.071)

log(Hires) 0.01** 0.01** 0.01** 0.01** 0.01** 0.01** 0.01** 0.014**
(0.005) (0.005) (0.005) (0.006) (0.005) (0.005) (0.005) (0.006)

Connected× log(Hires) -0.019** -0.019** -0.019** -0.021** -0.018* -0.018* -0.018* -0.020*
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

log(K) 0.12*** 0.12*** 0.12*** 0.12***
(0.020) (0.020) (0.020) (0.020)

log(L) 0.22*** 0.22*** 0.22*** 0.022***
(0.024) (0.024) (0.024) (0.023)

log(M) 0.39*** 0.39*** 0.39*** 0.039***
(0.014) (0.014) (0.014) (0.014)

Avg_age + + + + + + + +
Female_share + + + + + + + +
Position_share + + + + + +
Part_time_share + + + +
R2 0.98 0.98 0.98 0.98 0.93 0.93 0.93 0.93
N 4,325 4,325 4,325 4,325 4,325 4,325 4,325 4,325
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Table A19: Extension - Firm Closure IV

Dep. var: Outputt Productivityt

(1) (2) (3) (4)

Connected hires 0.013* 0.013* 0.013* 0.012*
(0.007) (0.007) (0.008) (0.007)

Hirest−1 0.014*** 0.013*** 0.016** 0.014**
(0.005) (0.005) (0.005) (0.005)

Avg wage 0.005*** 0.004***
(0.001) (0.001)

log(Kt) 0.143*** 0.131***
(0.020) (0.020)

log(Lt) 0.179*** 0.218***
(0.022) (0.023)

log(Mt) 0.386*** 0.382***
(0.014) (0.014)

R2 0.986 0.986 0.932 0.933

NOTE: Size of the sample N = 4, 325. Connected hires is a log number of linked entrants.
The model includes differences of input factors, referrals, hires, their interaction, LLM-
year and industry-year fixed effects. Remaining models include all of the aforementioned
fixed effects as well as production inputs (in Output) and firm fixed effects. *p < 0.1, **
p < 0.05,*** p < 0.01.
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Table A20: Robustness check - good firms and annual hires

Dep. var.: log(Output)ijst logTFPijst

Top 75% Top 25% Annual Top 75% Top 25% Annual

f.e. f.e. hires f.e. f.e. hires

Connected 0.065*** 0.059** 0.113*** 0.070*** 0.070** 0.109***
(0.007) (0.039) (0.003) (0.007) (0.025) (0.004)

Hires 0.008 0.009 0.029*** 0.010* 0.015 0.031***
(0.121) (0.285) (0.002) (0.093) (0.134) (0.001)

Connected × Hires -0.021** -0.015 -0.037*** -0.022** -0.023** -0.034**
(0.017) (0.117) (0.008) (0.019) (0.033) (0.014)

log(K) 0.020 -0.003 0.122***
(0.375) (0.934) (0.000)

log(L) 0.163*** 0.140*** 0.184**
(0.000) (0.003) (0.000)

log(M) 0.565*** 0.619*** 0.396***
(0.000) (0.000) (0.000)

Observations 3,244 1,082 2,419 3,244 1,082 2,419
R2 0.99 0.99 0.99 0.98 0.99 0.99
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Table A21: Robustness check - impact on Output and productivity by groups. Matched
employer-employee data, 1997-2001.

Non-Agric. Empl. > 15 Female % Old firms Non urban Blur-collar
Sectors < 0.4 > 7 y. > 50 %

(1) (2) (3) (4) (5) (6)

Panel A. Output

Connected 0.057** 0.057** 0.076** 0.070** 0.050* 0.057**
(0.029) (0.023) (0.017) (0.016) (0.060) (0.040)

Hires 0.013** 0.009* 0.008 0.012** 0.013** 0.013**
(0.012) (0.078) (0.204) (0.040) (0.010) (0.017)

Connected × Hires -0.019** -0.018* -0.024** -0.025** -0.017* -0.020**
(0.047) (0.058) (0.045) (0.016) (0.088) (0.046)

R2 0.99 0.99 0.99 0.99 0.99 0.99

log(K) 0.121*** 0.114*** 0.083*** 0.118*** 0.124*** 0.067***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.002)

log(L) 0.222*** 0.194*** 0.190*** 0.236*** 0.220*** 0.204***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

log(M) 0.386*** 0.367*** 0.478*** 0.393*** 0.379*** 0.416***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel B. Productivity

Connected 0.057** 0.055** 0.086*** 0.073** 0.049* 0.056**
(0.033) (0.027) (0.009) (0.014) (0.065) (0.046)

Hires 0.014*** 0.009* 0.012* 0.014** 0.014*** 0.014**
(0.007) (0.079) (0.070) (0.022) (0.006) (0.012)

Connected × Hires -0.018* -0.016* -0.026** -0.025** -0.016 -0.020*
(0.071) (0.077) (0.033) (0.019) (0.116) (0.057)

Avg. wage 0.004*** 0.005*** 0.004*** 0.004*** 0.004*** 0.003***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.002)

R2 0.97 0.98 0.97 0.98 0.97 0.97

Observations 4194 3596 3102 3233 3991 3353
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Table A22: IV Estimates of the Effect of Connected Hires on Productivity

Productivity Output

Dependent Variable (1) (2) (3) (4)

Panel A: 2SLS Estimates

Connected Hire 0.143*** 0.151*** 0.037*** 0.037***
(0.042) (0.042) (0.010) (0.010)

F-stat, 1st stage 225.37 215.74 226.77 215.97

N 4,647 4,647 4,647 4,647

Firm Characteristics + + + +

Industry and Time Trends - + - +

Panel B: First stage estimates

Displ. Workersconn. 0.254*** 0.246*** 0.253*** 0.246***
(0.017) (0.017) (0.017) (0.017)

Panel C: Reduced form estimates

Displ. Workersconn. 0.036*** 0.037*** 0.009*** 0.009***
(0.011) (0.010) (0.003) (0.002)

NOTE: Estimates taken from specification of form given in Equation (1.4) where the dependent
variable is firm productivity (col. (1)-(2)) or firm output (col. (3)-(4)). Final sample includes only
plants with more than 2 observations in the period of interest. Numbers in parentheses are a robust
standard errors. Network size, firm and time fixed effects always included. Firm Characteristics
: employment, network size, age, average wage. *p < 0.1, ** p < 0.05,*** p < 0.01.
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Table A23: Impact of number of connected hires on firms’ productivity and
output - event study.

Panel A: Productivity

Event: τ ∈ [0, 1] τ ∈ [2, 3] τ ∈ [0, 3]

Baseline 0.035*** 0.033* 0.034**
(0.012) (0.019) (0.015)

Connected Hire Shock 0.092*** 0.098** 0.095***
(0.033) (0.043) (0.037)

Connected Worker Displacement 0.103*** 0.194*** 0.149***
(0.021) (0.043) (0.032)

Panel B: Output

Event: τ ∈ [0, 1] τ ∈ [2, 3] τ ∈ [0, 3]

Baseline 0.016*** 0.019*** 0.018***
(0.004) (0.007) (0.006)

Connected Hire Shock 0.020*** 0.022** 0.021***
(0.007) (0.009) (0.008)

Connected Worker Displacement 0.032*** 0.059*** 0.046***
(0.005) (0.010) (0.007)

NOTE: Note: Estimates taken from specification of form given in Equation (1.4) where the
dependent variable is the number of patents applications. The sample size is 4, 380 (1, 275
firms), it includes ony firms with at least one year after the event. Sample includes only firms
with more than 2 observations. The model includes year and firm fixed effects, industry trends
and LLM trends, network size, number of hired workers, firm size, average wage and firm age.
Numbers in parentheses are standard errors clustered at the LLM level. τ = [a, b] refers to the
average of the coefficients between period τ = a and period τ = b. *p < 0.1, ** p < 0.05,***
p < 0.01.
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Figure A7: Firms’ Output, Relative to Year of a Connected Hire and Connected Worker
Displacement

(a) Baseline (b) Connected Worker Displacement

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-3" set to 1 for periods up to and including 3 periods prior to the event and
0 otherwise. Event time indicator "+4" set to 1 for all periods 4 periods after the event and 0 otherwise.
The omitted category is one period prior to the event. The bands around the point estimates are 95 percent
robust confidence intervals.

Figure A8: Firms’ Productivity and Output, Relative to Year of a Connected Hire Shock

(a) Productivity (b) Output

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-3" set to 1 for periods up to and including 3 periods prior to the event and
0 otherwise. Event time indicator "+4" set to 1 for all periods 4 periods after the event and 0 otherwise.
The omitted category is one period prior to the event. The bands around the point estimates are 95 percent
robust confidence intervals.
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Figure A9: Firms’ Productivity and Output, Relative to Year of a Connected Hire - Lim-
ited Sample

(a) Productivity (b) Output

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-3" set to 1 for periods up to and including 3 periods prior to the event and 0
otherwise. Event time indicator "+4" set to 1 for all periods 4 periods after the event and 0 otherwise. The
omitted category is one period prior to the event. Sample includes only firms with at least one observation
following the event. The bands around the point estimates are 95 percent robust confidence intervals.

Figure A10: Firms’ Productivity and Output, Relative to Year of a Connected Hire Shock
- Limited Sample

(a) Productivity (b) Output

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-3" set to 1 for periods up to and including 3 periods prior to the event and 0
otherwise. Event time indicator "+4" set to 1 for all periods 4 periods after the event and 0 otherwise. The
omitted category is one period prior to the event. Sample includes only firms with at least one observation
following the event. The bands around the point estimates are 95 percent robust confidence intervals.
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Figure A11: Firms’ Productivity and Output, Relative to Year of a Connected Worker
Displacement - Limited Sample

(a) Productivity (b) Output

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-3" set to 1 for periods up to and including 3 periods prior to the event and 0
otherwise. Event time indicator "+4" set to 1 for all periods 4 periods after the event and 0 otherwise. The
omitted category is one period prior to the event. Sample includes only firms with at least one observation
following the event. The bands around the point estimates are 95 percent robust confidence intervals.
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Chapter B

Appendix to Chapter 2

B.1 Additional Results

Figure B1: Share of connected inventor hires (1992-2008)
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B.1.1 Placebo

Table B1: Impact of Connected Inventor Displacements on Plants’ Innovation -
Placebo Event Study.

τ = 0 τ ∈ [1, 2] τ ∈ [3, 4] τ ∈ [0, 4]

Baseline Sample 0.006 0.009 -0.002 0.004
(0.009) (0.011) (0.013) (0.010)

Note: Estimates taken from specification of form given in Equation (2.1) where the dependent
variable is the number of patents applications. The sample size for Baseline Sample is 49, 176
(4, 709 plants), whereas for Treated only it is 13, 754 (1, 266 plants). The differences in estima-
tion sample size between baseline event study and the placebo stem from the fact that i) more
firms experience multiple placebo effects ii) Treated group is larger in placebo event study.
Sample includes only plants with more than 5 observations in the period of interest. The model
includes year and plant fixed effects, industry trends and LLM trends, network size, number
of displaced workers in the LLM×industry×year. Numbers in parentheses are standard errors
clustered at the LLM level. τ ∈ [a, b] refers to the average of the coefficients between period
τ = a and period τ = b. *p < 0.1, ** p < 0.05,*** p < 0.01.

Figure B2: Plants’ Innovation, Relative to the Year of a Connected Inventor Displacement
- Placebo

Note: The figure plots point estimates for leading and lagging indicators for the placebo displacement of
a connected inventor. Event time indicator "-4" set to 1 for periods up to and including 4 periods prior to
the event and 0 otherwise. Event time indicator "+5" set to 1 for all periods 5 periods after the event and 0
otherwise. The omitted category is one period prior to the event. The bands around the point estimates are
95 percent cluster-robust confidence intervals (the clustering level is LLM).
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B.1.2 Connected, Displaced Inventor Hire

Table B2: Impact of number of connected, displaced inventor hires on plants’ innovative
activity - event study.

Dep. Var.
τ = 0 τ ∈ [1, 2] τ ∈ [3, 4] τ ∈ [0, 4]

No Patent Applications

Baseline Sample 0.320 0.396* 0.134 0.276*
(0.248) (0.232) (0.095) (0.166)

NOTE: Note: Estimates taken from specification of form given in Equation (2.1) where the dependent
variable is the number of patents applications. The sample size is 81, 477 (7, 385 plants). Sample includes
only plants with more than 5 observations. The model includes year and plant fixed effects, industry
trends and LLM trends, network size, number of displaced workers in the LLM×industry×year. Numbers
in parentheses are standard errors clustered at the LLM level. τ = [a, b] refers to the average of the
coefficients between period τ = a and period τ = b. *p < 0.1, ** p < 0.05,*** p < 0.01.

Figure B3: Linked, displaced inventor hires - event study

Note: The figure plots point estimates for leading and lagging indicators for the displacement of a connected
inventor. Event time indicator "-4" set to 1 for periods up to and including 4 periods prior to the event and
0 otherwise. Event time indicator "+4" set to 1 for all periods 4 periods after the event and 0 otherwise.
The omitted category is one period prior to the event. The bands around the point estimates are 95 percent
cluster-robust confidence intervals (the clustering level is LLM).
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B.2 Patent Decomposition

B.2.1 Statistics

Figure B4: Number of patent applications and average number of authors, 1994-2008.
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Figure B5: Patent Decomposition - share of patent types, 1994-2008.

(a) Joiners vs. Remaining Employees Applications

(b) Connected Joiners vs. Remaining Employees Applications

Note: Sample of patents is 3, 474. Hires are inventors that entered the plant within past 3 years. ’Old’
inventors are remaining co-authors. The hire collaborated patents include applications where hires co-
authored with ’old’ inventors. In panrl (b) hires are further decomposed into connected and non-connected
ones. All of the distinguished categories are mutually exclusive.
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B.2.2 Event Study Decomposition

Table B3: Impact of Connected Inventor Displacements on Plants’ Innovation - Event Study
Decomposition (5-year window).

Dependent var.: τ = 0 τ ∈ [1, 2] τ ∈ [3, 4] τ ∈ [0, 4]

Connected Joiners Applications

Single and Outside Co-Author 0.015* 0.020** 0.004 0.013
(0.008) (0.010) (0.009) (0.008)

Within Plant Co-Author 0.003 0.013** 0.012 0.011*
(0.004) (0.006) (0.009) (0.006)

Remaining Employees Applications

Single and Multi-Author -0.024 0.051* 0.038** 0.031*
(0.017) (0.029) (0.018) (0.018)

Note: Estimates taken from specification of form given in Equation (2.1) where the dependent vari-
able is the number of patents applications. The sample size is 80, 310 (7, 301 plants). Sample includes
only plants with more than 5 observations in the period of interest. The variable Connected Joiners Ap-
plications (Multi-Author) is the number of patent applications where at least one of the co-authors is a
connected joiner and remaining co-authors are either all from the same plant (Within) or mixed (Outside).
The model includes year and plant fixed effects, industry trends and LLM trends, network size, number
of displaced workers in the LLM×industry×year. Numbers in parentheses are standard errors clustered
at the LLM level. τ ∈ [a, b] refers to the average of the coefficients between period τ = a and period
τ = b. *p < 0.1, ** p < 0.05,*** p < 0.01.
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Figure B6: Event Study Decomposition - Connected Joiners Applications (5-year win-
dow)

(a) Single and Outside Co-Author

(b) Within Plant Co-Author

Note: The figure plots point estimates for leading and lagging indicators for the placebo displacement of
a connected inventor. Event time indicator "-4" set to 1 for periods up to and including 4 periods prior to
the event and 0 otherwise. Event time indicator "+5" set to 1 for all periods 5 periods after the event and 0
otherwise. The omitted category is one period prior to the event. The bands around the point estimates are
95 percent cluster-robust confidence intervals (the clustering level is LLM).
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Figure B7: Event Study Decomposition - Remaining Inventors Applications (5-year
window)

Note: The figure plots point estimates for leading and lagging indicators for the placebo displacement of
a connected inventor. Event time indicator "-4" set to 1 for periods up to and including 4 periods prior to
the event and 0 otherwise. Event time indicator "+5" set to 1 for all periods 5 periods after the event and 0
otherwise. The omitted category is one period prior to the event. The bands around the point estimates are
95 percent cluster-robust confidence intervals (the clustering level is LLM).
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Chapter C

Appendix to Chapter 3

C.1 Measure of Job Automation

C.1.1 Baseline measure

Table C1 presents the statistics on the number of industrial robots per thousand of work-
ers in Europe and US using IFR data. European countries comprise nine countries with
stock of robots available since 1993: Denmark, Finland, France, Germany, Italy, Norway,
Spain, Sweden and United Kingdom. The number of robots that are not classified in any
of the major industry categories accounts for approximately 30% of the stock. Unlike AR,
I do not allocate them to industries using their shares from classified robots, hence the mi-
nor differences between Table C1 and Table A1 in AR. EU KLEMS does not provide the
employment data for Norway, the respective employment counts for Norway were con-
structed using the industry distribution of employment in remaining Scandinavian coun-
tries (Denmark, Sweden and Finland) and the labor force participation in Norway.

C.1.2 Alternative measure

Task measure. As already noted in the paper, the IFR data distinguishes 33 distinct ap-
plications of the robots which are later matched to task descriptions provided by O*NET
98. Each occupation is summarized by number of sentences describing detailed tasks
required within a job. Key words are then matched with application description. There
are more than 12,000 task descriptions, with average of 10 descriptions per occupation.
Matching word by word poses several dangers that relate to either opposed meaning (e.g.
‘design palletizing (...)’ instead of ‘palletizing’) or repairing tasks, that cannot be per-
formed by industrial robots. To provide better fit also the synonyms of the matched words
are checked (e.g. ‘position’ and ‘remove’ for application ‘packaging, picking and plac-
ing’). Having matched applications with task descriptions, I develop two main measures
based on:
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Table C3: Robot adoption by occupation group, 1993 - 2016.

EXPOSURE TO ROBOTS BY OCC GROUPS

empl.
share

1993-
2000

2000-
2007

2007-
2012

2012-
2016

1993-
2000

1993-
2007

1993-
2012

1993-
2016

Executive Admin, Managerial 13.87 0.181 0.450 0.163 0.111 0.181 0.631 0.793 0.904

Professional Speciality 13.53 0.112 0.276 0.082 0.050 0.112 0.387 0.469 0.519

Technicians and Related Support 3.72 0.203 0.580 0.150 0.086 0.203 0.783 0.933 1.018

Sales 11.03 0.049 0.124 0.044 0.032 0.049 0.172 0.216 0.248

Admin. Support, incl Clerical 14.70 0.140 0.340 0.124 0.093 0.140 0.480 0.604 0.697

Private Household 0.59 0.005 0.015 0.009 0.007 0.005 0.021 0.029 0.036

Protective Services 1.85 0.049 0.131 0.050 0.037 0.049 0.180 0.229 0.266

Service, except Protective - HH 7.91 0.043 0.102 0.044 0.037 0.043 0.145 0.189 0.226

Farm, Forestry and Fishing 2.94 0.064 0.101 0.044 0.036 0.064 0.165 0.210 0.246

Precision Production, Craft, Repair 12.33 0.353 0.940 0.421 0.313 0.353 1.293 1.714 2.027

Machine Operators, Assemblers, Insp 7.59 0.862 2.240 0.933 0.674 0.862 3.102 4.035 4.709

Transportation and Material Moving 4.55 0.198 0.514 0.235 0.191 0.198 0.712 0.946 1.137

Handlers, Equip, Cleaners, Helpers, Lab 3.46 0.299 0.742 0.337 0.252 0.299 1.041 1.378 1.630

1. Share of applications (tasks/activities) that can be automated

2. Share of tasks that can be automated weighted by the change in robot usage in
particular application

The second exposure measure of occupation o = {1, 2, ...O} between t and t+τ is defined
as:

Exposureo,t,t+τ =
∑
a∈A

`ao

(Ra,t+τ −Ra,t

Ra,t

)
,

where `ao is the share of applications that can be automated within occupation o and the
second term is the change or robot usage in application a between t and t + τ (In this
case between 1993 and 2012). Then I distinguish high exposure if the index is above 0
and low exposure otherwise. Threshold of 0 corresponds to 75th percentile of the index.
Given that only limited number of occupations in this framework has positive measure, I
am not able to distinguish high vs. low exposure in the same fashion as for the baseline
measure. Table C5 reports results of both measures and simple dummy equal to one if
the index is positive and 0 otherwise. In fact, occupations exposed to automation have
higher occupational mobility than those with low risk. The effect is smaller than for
baseline measure, the difference stems from the fact that in task based measure I am able
to distinguish only high exposure and all remaining occupations, whereas in the baseline
measure it is possible to mark high, middle and low exposure occupations.

Second measure. The second alternative measure of the level of automatability for
each occupation is based on the work of Frey and Osborne (2017), who classify each
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Table C4: Robot adoption by occupation group in Europe and United States

EXPOSURE TO ROBOTS BY OCC GROUPS

empl.
share

1993-
2000

2000-
2007

2007-
2012

2012-
2016

1993-
2000

1993-
2007

1993-
2012

1993-
2016

Panel A: Manual Occupations

Professional Speciality 1.10 0.012 0.030 -0.002 0.004 0.012 0.042 0.040 0.044

Technicians and Related Support 4.40 0.119 0.351 0.061 0.041 0.119 0.470 0.531 0.572

Admin. Support, incl Clerical 1.78 0.026 0.061 0.023 0.019 0.026 0.087 0.111 0.129

Private Household 1.74 0.006 0.020 0.011 0.009 0.006 0.027 0.037 0.046

Protective Services 2.75 0.005 0.020 0.009 0.006 0.005 0.025 0.034 0.040

Service, except Protective - Household 1.89 0.004 0.008 0.004 0.003 0.004 0.012 0.016 0.019

Farm, Forestry and Fishing 8.34 0.065 0.101 0.043 0.036 0.065 0.166 0.210 0.245

Precision Production, Craft, Repair 35.40 0.357 0.953 0.421 0.317 0.357 1.310 1.731 2.049

Machine Operators, Assemblers, Insp 19.68 0.797 2.073 0.867 0.638 0.797 2.870 3.736 4.374

Transportation and Material Moving 13.22 0.199 0.519 0.241 0.195 0.199 0.718 0.959 1.154

Handlers, Equip, Cleaners, Helpers, Lab 9.71 0.317 0.795 0.352 0.267 0.317 1.112 1.464 1.730

Panel B: Non-manual Occupations

Executive Admin, Managerial 21.74 0.190 0.475 0.172 0.118 0.190 0.665 0.837 0.955

Professional Speciality 20.62 0.102 0.254 0.087 0.047 0.102 0.356 0.443 0.490

Technicians and Related Support 3.47 0.093 0.256 0.097 0.051 0.093 0.349 0.446 0.497

Sales 17.29 0.058 0.147 0.051 0.037 0.058 0.204 0.256 0.293

Admin. Support, incl Clerical 22.07 0.126 0.314 0.114 0.082 0.126 0.440 0.553 0.636

Protective Services 1.42 0.047 0.122 0.045 0.033 0.047 0.168 0.214 0.247

Service, except Protective - Household 11.38 0.046 0.115 0.049 0.041 0.046 0.162 0.211 0.252

Farm, Forestry and Fishing 0.13 0.001 0.004 0.002 0.001 0.001 0.005 0.007 0.009

Precision Production, Craft, Repair 0.31 0.002 0.008 0.008 0.003 0.002 0.010 0.018 0.021

Machine Operators, Assemblers, Insp 1.32 0.078 0.231 0.096 0.058 0.078 0.309 0.404 0.463

Transportation and Material Moving 0.04 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.001

Handlers, Equip, Cleaners, Helpers, Lab 0.21 0.009 0.034 0.020 0.013 0.009 0.043 0.063 0.076

SOC occupation according to how susceptible it is to automation. The following section
presents complementary results and robustness check of the aforementioned measure of
automatability.

First check. First, let’s compare two measures: exposure to automation proposed by
Acemoglu and Restrepo (2017a) and the one used in this paper. Figure C1 juxtaposes
those two measures on the US territory using Commuting Zones (CZ). First, 722 CZs
are distinguished following Autor and Dorn (2013). Panel C1a is taken from Acemoglu
and Restrepo (2017a) and measures robot intensity (number of robots per thousand of
workers) in each Commuting Zone. Panel C1b presents the share of employment exposed
to automation (intensive margin). The grid is for counties, however colors are marked for
CZs. Both panels are quite similar, with highest level of automation in the Rust Belt and
manufacturing states of the East Heartland (Tennessee, Kentucky, Alabama). The share
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Table C5: Occupational mobility and exposure to robots - SIPP 1996-2012

1 - digit 2 - digit 3 - digit

(1) (2) (3) (4) (5) (6)

Panel A: High exposure - dummy

exposureH 0.039*** 0.023** 0.021*** 0.028** 0.028*** 0.006
(0.007) (0.013) (0.006) (0.012) (0.006) (0.011)

time -0.004 -0.005 -0.005* -0.004 -0.002 -0.004
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

exposureH×time 0.002 -0.001 0.003**
(0.001) (0.001) (0.001)

Panel B: Share of automated tasks

sh tasks automated 0.097*** 0.037** 0.066*** 0.034*** 0.048*** 0.043***
(0.009) (0.017) (0.009) (0.016) (0.008) (0.015)

time -0.003 -0.005* -0.004* -0.005* -0.002 -0.002
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

sh tasks automated×time 0.007*** 0.000 0.001
(0.002) (0.002) (0.001)

Panel C: With change in robots

exposure 0.038*** 0.031*** 0.020*** 0.025*** 0.014*** 0.019***
(0.003) (0.004) (0.003) (0.004) (0.003) (0.004)

time -0.003 -0.004 -0.004 -0.004 -0.002 -0.002
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

exposure×time 0.001** -0.001* -0.001**
(0.000) (0.000) (0.000)

NOTE: Sample size of the respective panels are 17, 731 (panel A) and 6, 556 (panel B). Control variables
include gender, age, its square, duration of non-employment spell, education level (less than high school, high
school, some college and graduate degree), state of residence, interaction of time. and age, education level.
All observations are weighted by the longitudinal weight. *p < 0.1, ** p < 0.05,*** p < 0.01.

of employment is computed from 2010 ACS sample.
Replication. As a next step I replicate the empirical results of Acemoglu and Re-

strepo (2017a) using my measure of exposure of automation instead the of one proposed
by AR. The analysis spans between 1990 and 2007, the regressor of interest is the share
of employment exposed to automation in 1990, dependent variables are change in em-
ployment to population ratio and log wages (hourly and weekly) between 1990 and 2007.
The unit of analysis are Commuting Zones. Table C6 presents the results of long differ-
ences model, control variables include demographic characteristics of each Commuting
Zone (population, share of female, share of population with college degree, share of Black

141



Figure C1: Comparison of two measures of exposure to automation, by Commuting Zone

(a) Exogenous exposure to robots 1993-2007,
Acemoglu and Restrepo (2017)

(b) Share of occupations exposed to automation
2010

and Asians), share of employment in particular industries (manufacturing, durable man-
ufacturing and construction) and exposure to Chinese imports. The covariates are distin-
guished from 1990 Census and 2007 American Community Survey samples. Results of
Table C6 suggest that despite differences in construction, my measure captures the effect
observed by AR. The magnitude of the effect is smaller than in AR (compare with Table
A3 in AR), however the significant in most of the model specifications.

Worker characteristics. First let’s focus on the characteristics of the workers in occu-
pations exposed to automation. The immediate comparison group are routine occupations
that were subject to computerization in 90s. It is well documented that those occupations
are concentrated in the middle of skill distribution (see Autor et al. (2003)). First let’s
divide occupations into 3 parts: low, middle and high, depending on the skills required
in each type of job. Low skill occupations include health and personal services, cleaning
and protection services, machine operators and laborers. Middle skilled occupations com-
prise production, office and administrative jobs, and sales, whereas highly skilled involve
technicians, professionals and managers. The analysed sample doesn’t change, includes
29,659 job transitions between 1996 and 2013. Routinness is computed following Autor
et al. (2003), occupations above 66th percentile of routinization index are denoted as rou-
tine. Routinnes and exposure to automations overlap, especially among middle-skilled
workers, however the correlation between indicators of both characteristics is low, around
0.08.
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Table C6: Exposure to robots and changes in employment and wages (1990 - 2007 diff.), replica-
tion of Acemoglu and Restrepo (2017)

EMPLOYMENT AND WAGE ESTIMATES FOR 1990 - 2007

(1) (2) (3)

Panel A: Private employment to population ratio

Automation exposure -0.33*** -0.17*** -0.09
Routine - - +

Panel B: Log wages (hourly)

Automation exposure -0.29** -0.35*** -0.28*
Routine - - +

Panel C: Log wages (weekly)

Automation exposure -0.63*** -0.69*** -0.32*
Routine - - +

N 722 722 722

NOTE: Long-differences estimates of the impact exposure of robots on employment and log wages. Ex-
posure to robots is defined as a share of employment in occupations with high exposure to automation
(following Frey and Osborne (2017)). Control variable include demographics (share of female, share of
population with college degree, share of Black and Asians), industry shares and exposure to imports from
China. All observations are weighted by commuting zone population. *p < 0.1, ** p < 0.05,*** p < 0.01.
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C.2 Data Construction

Job Transitions and Occupational Mobility. The sample of individuals used in the anal-
ysis contains 29,659 job transitions over the years 1996 - 2013. The methodology departs
significantly from Carrillo-Tudela and Visschers (2020). The major difference consists in
the definition on job transition. Only transitions with non-employment period longer than
3 weeks were taken into account. Hence, all transitions of a type E − (∗) − U − E or
E − (∗)−N − E were permitted. Non-employment period is based on weekly employ-
ment status rkwesr. The worker is considered as employed if she is 1) With job/business -
working, 2) With job/business - not on layoff, absent without pay or 3) With job/business
- on layoff, absent without pay. Reemployment date is set from the variable tsjdate

whereas employer characteristics are obtained from eeno, the cross-wave, person specific
number of employer. Some works on SIPP data claim that the job beginning date is more
reliable than the variable asking if the individual is still working with the same employer
as in previous wave (estlemp). Only complete non-employment spells are included in
the sample, in case of either left or right censoring the spell was discarded. Spells with
missing information between displacement and reemployment were also deleted. The
SIPP sample design implies than within each panel, first three months have records for
less than 4 rotation groups, sample size is smaller. For that reason I only consider months
with all 4 rotation gropus in the sample. SIPP data shows the presence the ‘seam bias’,
since individuals are interviewed every 4 months and the effects are stronger between
waves. To avoid the ‘seam bias’, I average the value over 4 months that involve the bias.

I further limit the sample to those employed prior the displacement in private sector,
excluding government employees and armed forces. It only includes individuals aged 25-
60. SIPP provides information on up to 2 employers, eliminating those with more than
3 jobs prior to non-employment spell does not change the results. Aggregating the data
into quarters I first compute monthly occupational mobility and migration rate separately
for individuals displaced from jobs with high and low exposure to automation. Monthly
values are then aggregated into quarters, missing quarters are not interpolated. As a ro-
bustness check I use the methodology proposed by Carrillo-Tudela and Visschers (2020)
(hereafter CTV), who construct their sample by looking at monthly employment status.
They depart from the methodology described above mainly by approximating monthly
employment status by the status declared in the second week of each month and by focus-
ing only on unemployment spells. More precisely, they discard all the non-employment
spells where in the month preceding the re-employment, individual declared being out of
labor force. For more details on the construction of their final sample look at the Supple-
mentary Appendix A.1 in CTV.
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C.3 Automation and Routinization

The following subsection studies the relationship between routinization and automation
on the occupational level. The routinization index for 1990 Census occupation classifica-
tion was taken from David Dorn’s webpage.1

Figure C2: Share of college educated and routinness by occupational categories, SIPP
1996-2013

Figure C3: Correlation between routine and automation occupations.

1For more on the construction of the measure and available data look at Autor and Dorn (2013) of David
Dorn’s webpage: https://www.ddorn.net/data.htm.
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C.4 Robustness Checks and Additional Material

Table C7: Proportional contribution and direction of occupational mobility, SIPP 1996 -
2013

Occupational Mobility

Contribution Direction

All High exp. Low exp.

Executive Admin, Managerial 11.09 8.04 4.36 9.06

Professional Speciality 8.6 6.93 6.08 7.7

Technicians and Related Support 2.35 3.11 2.93 2.86

Sales 12.43 14.51 13.76 14.16

Admin. Support, incl Clerical 17.25 16.17 15 21.61

Private Household 0.5 1.91 1.55 2.67

Protective Services 1.24 1.49 1.64 1.17

Service, except Protective - HH 14.82 15.11 14.95 15.59

Farm, Forestry and Fishing 1.53 1.65 2.34 1.05

Precision Production, Craft, Repair 10.7 7.91 9.6 5.41

Machine Operators, Assemblers, Insp 8.04 8.2 10.25 6.28

Transportation and Material Moving 4.27 5.68 6.67 4.29

Handlers, Equip, Cleaners, Helpers, Lab 7.17 9.28 10.88 8.16
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Figure C4: Occupational mobility by digit level, only manual occupations. SIPP 1996-
2013
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Figure C5: Occupational mobility of routine and non-routine workers - level. SIPP 1996-
2013, quarterly.

Figure C6: Occupational mobility by digit level. Linked CPS 1976-2017
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Figure C7: Share of EE transitions among non-employed workers, SIPP 1996-2013.

Figure C8: Occupational mobility by digit level- EE transitions. SIPP 1996-2013
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Figure C9: Occupational mobility along wage percentile - EE and E�EE transitions. SIPP
1996-2013

Figure C10: Occupational mobility and life cycle - EE and E�EE transitions. SIPP 1996-
2013
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Figure C11: Probability of moving into occupation with higher average wage, conditional
on mobility - EE and E�EE transitions. SIPP 1996-2013

Figure C12: Wage profile of workers who changed occupation as a ratio of stayers’ wage,
baseline measure. SIPP 1996-2012, average monthly wage

(a) Unbalanced (b) Balanced
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Figure C13: Wage profile of workers who changed occupation as a ratio of stayers’ wage,
baseline measure. SIPP 1996-2012, average weekly wage

(a) Unbalanced (b) Balanced

Figure C14: Distance of occupational mobility, SIPP 1996-2012.

(a) Cognitive (b) Manual

Figure C15: Distance of occupational mobility, absolute value, SIPP 1996-2012.

(a) Cognitive (b) Manual
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C.4.1 Results With Alternative Measure

Figure C16: Occupational mobility of workers with high and low exposure to automation
(alternative measure). SIPP 1996 - 2013, quarterly.

C.4.2 Occupational Mobility

The first empirical fact is subject to the following econometric model:

occ_mobit = α1 · exposureHi + α2 · exposureLi +β · timet + γ · exposureHi × timet
+Xδ + εit

(C.1)

where occ_mobit is discrete variable measuring change of occupation conditional on
non-employment spell (1-3 digit level), exposureki equals one if a worker prior to non-
employment period had a job with high exposure (k = H) or low exposure (k = L),
exposureHi × timet is a time trend for workers in occupation exposed to automation.
Controls X contain worker characteristics as gender, age, education, non-employment
spell state of residence, their time trends, etc. All observations are weighted with the use
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of longitudinal weights. Subscript t denotes year. Figure ?? presents time coefficients
γ(t) and β(t) for all digit levels with their confidence intervals. Remaining graphs plot
results of Model C.1 for various education, gender and unemployment spell groups.

Figure C17: Occupational Mobility - age and education groups, SIPP 3-digit level.
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Figure C18: Occupational Mobility - age and education groups, SIPP 1-digit level.
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Table C8: Occupational mobility and exposure to robots - SIPP 1996-2012

1 - digit 2 - digit 3 - digit

(1) (2) (3) (4) (5) (6)

Panel A: Baseline

exposureH 0.145*** 0.099*** 0.122*** 0.093*** 0.086*** 0.062***
(0.008) (0.015) (0.007) (0.014) (0.007) (0.013)

time -0.004 -0.006 -0.005* -0.007** -0.005 -0.006*
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

exposureH×time 0.005*** 0.003** 0.003**
(0.001) (0.001) (0.001)

Panel B: Manual occupations

exposureH 0.217*** 0.211*** 0.157*** 0.127*** 0.132*** 0.086***
(0.016) (0.029) (0.015) (0.027) (0.014) (0.026)

time 0.003 0.002 -0.003 -0.005 -0.002 -0.006
(0.005) (0.006) (0.005) (0.005) (0.005) (0.005)

exposureH×time 0.001 0.004 0.006**
(0.003) (0.003) (0.003)

NOTE: Sample size of the respective panels are 17, 731 (panel A) and 6, 556 (panel B). Control variables
include gender, age, its square, duration of non-employment spell, education level (less than high school, high
school, some college and graduate degree), state of residence, interaction of time. and age, education level.
All observations are weighted by the longitudinal weight. *p < 0.1, ** p < 0.05,*** p < 0.01.
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Table C9: Occupational mobility and exposure to robots - SIPP 1996-2012

1 - digit 2 - digit 3 - digit

(1) (2) (3) (4) (5) (6)

Panel A: Age < 35

exposureH 0.109*** 0.109*** 0.109*** 0.109*** 0.101*** 0.075***
(0.022) (0.022) (0.020) (0.020) (0.010) (0.019)

time -0.017 -0.017 -0.008 -0.008 -0.008 -0.009
(0.012) (0.012) (0.010) (0.010) (0.010) (0.010)

exposureH×time 0.008*** 0.004** 0.003*
(0.002) (0.002) (0.002)

Panel B: Age ≥ 35

exposureH 0.117*** 0.094*** 0.104*** 0.084*** 0.074*** 0.053***
(0.010) (0.020) (0.010) (0.019) (0.009) (0.018)

time 0.007 0.006 0.002 0.001 -0.003 -0.004
(0.007) (0.007) (0.006) (0.006) (0.006) (0.006)

exposureH×time 0.003 0.002 0.002
(0.002) (0.002) (0.002)

Panel C: High school or less

exposureH 0.186*** 0.142*** 0.144*** 0.121*** 0.111*** 0.087***
(0.012) (0.021) (0.011) (0.019) (0.010) (0.018)

time -0.011** -0.011** -0.007 -0.004 -0.006 -0.004
(0.005) (0.004) (0.004) (0.004) (0.004) (0.004)

exposureH×time 0.005*** 0.003 0.003
(0.002) (0.002) (0.002)

Panel D: Higher education

exposureH 0.075*** 0.028 0.099*** 0.043 0.061*** 0.014
(0.015) (0.031) (0.014) (0.028) (0.013) (0.026)

time 0.004 0.002 0.002 -0.001 0.003 0.001
(0.006) (0.006) (0.005) (0.005) (0.005) (0.005)

exposureH×time 0.005* 0.006** 0.005**
(0.003) (0.006) (0.002)

NOTE: Sample size of the respective panels are 7, 267 (panel A), 10, 464 (panel B), 8, 143 (panel C) and 4, 830

(panel D). Control variables include gender, age, its square, duration of non-employment spell, education level
(less than high school, high school, some college and graduate degree), state of residence, interaction of time.
and age, education level. All observations are weighted by the longitudinal weight. *p < 0.1, ** p < 0.05,***
p < 0.01.
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C.4.3 CPS data

Figure C19: Occupational mobility of baseline exposure measure, CPS 1996-2012.
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Figure C20: Occupational mobility of manual exposure measure, CPS 1996-2012.
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Figure C21: Occupational mobility of workers with high and low exposure to automation
(alternative measure). ASEC 1994-2017.

C.5 Model and Calibration Details

C.5.1 Model

Wage Equation. Wages in the models are set through Nash bargaining with α as a bar-
gaining power. They are re-bargained each period given the realization of human capital
level. Wage of a match in occupation owith human capital level hx and tenure τ = 1, ..., T

is given:

wo(τ, hx) = α qo(τ, hx) + (1− α)
(
1− β (1− ξ) [ 1(hx<hX)(1− ϕ) + 1(hx=hX) ]

)
− 1(hx<hX) (1− α) β (1− ξ) ϕ U o(hx′)

(C.2)

where 1(hx<hX) is an indicator function equal to one if human capital is lower than the
maximum possible level, ξ is the probability of death (retirement).
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Worker Flows. The following equations summarize the evolution of number of workers.
The number of unemployed workers in the submarket (o, hx) in the beginning of the
period is defined as:

u′(o, hx) = 1{x=1} ξ
[ T∑

τ=1

e(τ, o, hx) + u(o, hx)
]

+ (1− ξ)
[
(1− 1{x>1} ϕ

o) e(T, o, hx)

+ 1{x>1} ϕ
o e(T, o, hx−1)

]
+ (1− ξ)

T∑
τ=1

[(1− δ) ψ(τ, o, hx) + δ]
(

(1− ϕo)e(τ, o, hx)

+ 1x>1 ϕ
o e(τ, o, hx−1)

)
+ (1− ξ) (1−

∑
o′ 6=o

soo′) (1−I R(o, hx)) (1− λohx)×

×
(

(1− 1{x>1}ζ) u(o, hx) + 1{x<X} ζ u(o, hx+1)
)

+ (1− ξ)
∑
o′′ 6=o

(
1−

∑
o′′ 6=o

so′′o
)
×

×
(

(1− 1{x>1} ζ) I R(o′′, hx) (1− πo′′o) u(o′′, hx) + 1{x<X} (1− ζ) πo′′o u(o′′, hx+1)

+ 1{x<X−1} ζ πo′′o u(o′′, hx+2)
)

+ (1− ξ)
∑
o′′ 6=o

(
(1− 1{x>1} ζ) so′′o (1− πo′′o) u(o′′, hx)

+ 1{x<X}(ζ so′′o (1− πo′′o) + (1− ζ) so′′o πo′′o) u(o′′, hx+1) + 1{x<X−1}ζ so′′o πo′′o×

× u(o′′, hx+2)
)

(C.3)

where e(τ, o, hx) is a measure of matches with tenure τ in the submarket (o, hx), ψ(τ, o, hx)

equals to one if a match of tenure τ is destroyed due to technological progress and 1{x=1}

is an indicator function equal to one if x = 1. The expression C.3 consists of six major
flows. The first one is the share of workers who died (retired) in previous period and
were reborn. I assume that the newly born start with the lowest possible level of human
capital. The second inflow to unemployment are the workers who in previous period were
employed in the maximum tenure T . Matches older than T are destroyed with prob-
ability one, workers become unemployed, whereas firms can decide to post a vacancy.
The third term in C.3 is the measure of workers employed in period t − 1 at submarket
(o, hx) who were displaced or individuals from (o, hx−1) who increased their human cap-
ital level, however after its realization were subject to either exogenous or technological
displacement. The fourth group consists of workers who were unemployed before and
neither reallocated of have found a job. The two remaining groups are the workers who
reallocated from island o′′ to o respectively endogenously or exogenously. The number of
newly employed workers in the submarket (o, hx) (hor whom τ = 1) in the beginning of
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the period is given by:

e′(1, o, hx) = (1− ξ)
(
1−

∑
o′ 6=o

soo′
)

(1−I R(o, hx)) λ
o
hx

(
(1− 1{x>1} ζ) ×

× u(o, hx) + 1{x<X} ζ u(o, hx+1)
) (C.4)

where new matches (τ = 1) are formed from unemployed in submarket (o, hx) who
didn’t reallocate and those in (o, hx+1) whose human capital depreciated. The measure of
employed individuals with matches of tenure τ > 1 is defined as:

e′(τ, o, hx) = (1− ξ) (1− δ)
(

(1− 1{x>1} ϕ
o) (1− ψ(τ − 1, o, hx)) e(τ − 1, o, hx)

+ 1{x>1} ϕ
o (1− ψ(τ − 1, o, hx)) e(τ − 1, o, hx−1)

)
.

(C.5)

Matches can either continue in the same human capital level or increase their human
capital level with probability ϕo.

C.5.2 Calibration

Step Function. The function doo′(h) is a key element describing skill transferability
between island o and o′ given current level of human capital in occupation o: h ∈
{h1, h2, h3}. In the first step I construct the matrix that descries the distance between
two distinct occupations. The distance is computed from two common indices of task
intensity: cognitive and manual. Following the literature they are distinguished from the
O*NET database. More precisely, the distance between occupation o and o′ is defined as:

doo′ =
|cogn. idx.o − cogn. idx.o′|+ |manu. idx.o −manu. idx.o′ |

2
, (C.6)

where cogn. idx. is index of cognitive tasks intensity, whereas manu. idx. is the manual
tasks intensity index. The distance is normalized to that it ranges between 0 and 1, where
the higher values of doo′ mean higher distance between two occupations. The transition
matrix is then:
Upon the mobility from occupation o to o′, the new level of human capital in occupation
o′ can be defined with the step function that uses the distance matrix. The new level of
human capital for the displaced workers with h3 in their old jobs is:

h̃ = hx−s x ∈ {2, 3}, (C.7)

where for x = 3:

• s = 0 if doo′ ∈ [0, 0.33)
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Table C10: Distance between occupations

o\o′ 1 2 3 4 5 6

1 0 0.33 0.39 0.63 0.89 1

2 0.33 0 0.12 0.29 0.56 0.67

3 0.39 0.12 0 0.24 0.50 0.61

4 0.63 0.29 0.24 0 0.26 0.37

5 0.89 0.56 0.50 0.26 0 0.16

6 1 0.67 0.61 0.37 0.16 0

• s = 1 if doo′ ∈ [0.33, 0.66)

• s = 2 if doo′ ∈ [0.66, 1]

whereas if x = 2:

• s = 0 if doo′ ∈ [0, 0.33)

• s = 1 if doo′ ∈ [0.33, 1)

The reallocation from initial level of human capital h1 does not incurr any loss of human
capital, I assume that the workers start with h1 in new occupation.

Returns to occupational mobility. Returns to tenure are measured with the use of model
in style of Altonji and Shakotko (1987), used widely in the labor literature (e.g. Kam-
bourov and Manovskii (2009)). It distinguishes returns to total, tenure, occupational and
industrial experience for the panel of employment spells. The econometric model with
dependent variable of log real wage takes the form:

ln(wijmnt) = δ0Emp_Tenijt + δ1Old_Jobijt + δ2Occ_Tenimt

+ δ3Ind_Tenint + δ4Work_Experit + θit
(C.8)

where Emp_Tenijt, Occ_Tenimt, Ind_Tenint, Experit are respectively tenures with the
current employer, occupation, industry and labor market. Old_Jobijt is dummy variable
equal one from the second year of employment onward. Given ( C.8) there is threat of en-
dogeneity, as the residual θit may be correlated with unobserved individual characteristics
that may be decomposed into four components:

θit = µi + ξij + υin + εit
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where µi is and individual component, ξij a firm component, υin an industry-match com-
ponent and εit is an error term. Clearly, the OLS estimation is biased, hence I adopt the
instrumental variable approach proposed by Altonji and Shakotko (1987). The instrumen-
tal variable X̃imt = Ximt − X̄im, where subscript m is the tenure of interest and X̄ is the
average spell (mean of the spell) in tenure m. Squared and cubed instrumental variables
are of the form X̃2

imt = X2
imt − X̄2

im and X̃3
imt = X3

imt − X̄3
im respectively.

The sample of employment histories is constructed from the 1996 panel of SIPP. It in-
cludes individuals aged 25-60 working in the private sector. SIPP panels are quite short
and include 3 or 4 year time intervals. The occupational tenure is distinguished using
the information in variable eocctim that reports length of time in current occupation (in
months). It helps with employment spells truncated from the left or individuals who at
the time of entry to the sample (first wave) were older than 25 years. Employment tenure
in the spells truncated from the left is cumputed with the use of tsjdate - a variable that
denotes starting year and month of the current job. Unfortunately, in the SIPP data it is
impossible to distinguish industry tenure, keep in mind however, that in Kambourov and
Manovskii (2009) returns to industry tenure didn’t bring much information. As a control
variables I use age, its square, gender,industry-, occupation- and time-fixed effects. The
final sample contains 94,939 observations for 32,022 distinct employment spells.
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Table C11: Returns to occupational tenure - results

dep. variable: Occupational groups

ln(wijmnt) All (1) (2) (3) (4) (5) (6)

Employer tenure 0.0079*** 0.0036 0.0180*** -0.0028 0.0117*** 0.0037 -0.0030
(0.0013) (0.0024) (0.0029) (0.0048) (0.0044) (0.0027) (0.0051)

Emp. ten.2 × 100 -0.0203*** 0.0061 -0.0409*** 0.0028 0.0340*** -0.0308*** 0.0219*
(0.0000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Occupation tenure 0.0282*** 0.0316*** 0.0184*** 0.0438*** 0.0318*** 0.0245*** 0.0223***
(0.0018) (0.0037) (0.0038) (0.0060) (0.0056) (0.0035) (0.0059)

Occ. ten.2 × 100 -0.0494*** -0.0494** -0.0504 -0.1235*** -0.1235*** -0.0439** 0.0347
(0.0001) (0.0002) (0.0002) (0.0004) (0.0004) (0.0002) (0.0004)

Occ. ten.3 × 100 0.0002 -0.0001 -0.0002 0.0012* 0.0016** 0.0001 0.0001
(0.0002) (0.0003) (0.0003) (0.0001) (0.0001) (0.0000) (0.0000)

Old Job 0.6247*** 0.0910 0.3308 1.3588*** 1.5328*** 1.2165*** 1.8007***
(0.0986) (0.1760) (0.2210) (0.3687) (0.3078) (0.2088) (0.3865)

Total Experience -0.0178*** -0.0243*** 0.0005 -0.0055 -0.0118 -0.0033 0.0183
(0.0026) (0.0046) (0.0064) (0.0099) (0.0082) (0.0063) (0.0227)

Experience2 × 100 -8.7760*** -9.7544*** -12.5005*** -15.8646*** 2.0341 -8.1881*** -8.6336***
(0.0026) (0.0106) (0.0134) (0.0207) (0.0164) (0.0126) (0.0227)

Experience3 × 100 4.6500*** 4.2623*** 5.5405*** 8.4068*** 0.7031 3.1407*** 3.7713***
(0.0035) (0.0073) (0.0087) (0.0125) (0.0095) (0.0075) (0.0131)

N 94,252 30,844 18,167 8,846 10,315 17,416 7,186

Individuals 25,476 8,501 5,412 2,749 3,089 4,979 2,245
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Additional Parameters

Table C12: Remaining parameters - soo′

o\o′ 1 2 3 4 5 6

1 0 0.2160 0.1325 0.0364 0.0450 0.0444

2 0.1410 0 0.1294 0.0010 0.0664 0.0534

3 0.1095 0.1793 0 0.1269 0.0827 0.0673

4 0.0512 0.0952 0.1209 0 0.1113 0.0872

5 0.0233 0.0826 0.0649 0.0000 0 0.1696

6 0.0383 0.0686 0.0667 0.0467 0.2342 0

NOTE: the diagonal values are not a parameters.

Additional Moments

Table C13: Occupational mobility across islands - DATA/MODEL

o\o′ 1 2 3 4 5 6

1 0.471/0.470 0.216/0.216 0.132/0.132 0.092/0.093 0.045/0.045 0.044/0.044

2 0.140/0.141 0.515/0.512 0.129/0.129 0.097/0.098 0.066/0.066 0.053/0.053

3 0.110/0.110 0.179/0.179 0.435/0.433 0.127/0.127 0.082/0.083 0.067/0.067

4 0.051/0.051 0.096/0.095 0.121/0.121 0.534/0.534 0.111/0.111 0.087/0.087

5 0.038/0.038 0.082/0.083 0.065/0.065 0.109/0.108 0.537/0.537 0.169/0.170

6 0.038/0.038 0.069/0.069 0.077/0.076 0.119/0.119 0.234/0.234 0.464/0.463
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Table C14: Calibration - additional moments

non-targeted
Data SS

non-targeted
Data SS

moment moment

ÛE
H

0.762 0.506 ÊU
H

0.064 0.089

ÛE
M

0.822 0.664 ÊU
M

0.048 0.061

ÛE
L

0.779 0.934 ÊU
L

0.073 0.051

ÛE
h1 0.773 0.810 ÊU

h1 0.079 0.055

ÛE
h2 0.784 0.733 ÊU

h2 0.037 0.079

ÛE
h3 0.795 0.937 ÊU

h3 0.029 0.063

wageo∈H

wageo∈L 0.949 0.887 occ.mob.o∈H 0.513 0.521

wageo∈H

wageo∈M 0.696 0.969 occ.mob.o∈M 0.506 0.509

wageo∈L

wageo∈M 0.733 1.093 occ.mob.o∈L 0.499 0.501

unempl 0.046 0.071 %of endog. sep.- 34%

C.5.3 Policy Proposals

Off-the-Job Training. To perform policy counterfactual I first construct new distance
matrix that relates human capital loss to difference in training and educational require-
ments between two occupations. I use the information on training and education require-
ments for each occupation from O*NET and SIPP. The latter dataset contains only the
information on the education requirements (average educational attainment of individuals
employed in particular occupation). To check the importance of training and educational
differences on wage loss during occupational mobility I construct the following model:

wageE�E E
o′ /wageE�E E

o = β0 + β1|Dist.Edu.oo′ |+ β2|Dist.Exper.oo′|

+ β3|Dist.Otj.T r.oo′ |+ β4|Dist.P lant Tr.oo′|+ εoo′

(C.9)

where wageE�E E
o′ /wageE�E E

o is average wage loss from moving from occupation o to
o’ and the regressors are the absolute distance in education, experience, on-the-job and
plant training respectively. Table C15 presents the results from measures derived from
O*NET and SIPP datasets. The findings suggest that only the difference in educational
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Table C15: Impact of training and educational differences on wage loss during occupa-
tional mobility, O*NET and SIPP.

Dependent variable O*NET SIPP

wageE�E E
o′ /wageE�E E

o (1) (2) (3) (4)

Distance

Education -0.234** 0.145 -0.026** -0.030***
(0.121) (0.106) (0.011) (0.011)

Experience -0.156 0.227**
(0.110) (0.106)

On-the-job training 0.093 0.354
(0.222) (0.251)

Plant training -0.038 0.002
(0.257) (0.270)

N 824 824 824 824
Fixed Effects + +

requirements matters for the wage loss during occupational mobility of non-employed
workers. The larger the absolute distance in educational requirements between o and o’,
the larger is the wage loss from mobility. Hence, the distance matrix was constructed as
the difference in educational requirements (in years), standardized so that doo′ ∈ (0, 1).
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