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The Brain – is wider than the Sky –
For – put them side by side –
The one the other will contain
With ease – and you – beside –

The Brain is deeper than the sea –
For – hold them – Blue to Blue –
The one the other will absorb –
As sponges – Buckets – do –

The Brain is just the weight of God –
For – Heft them – Pound for Pound –
And they will differ – if they do –

As Syllable from Sound –

Emily Dickinson, 1862
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Abstract

The sub-cortical brain structures are located beneath the cerebral cortex and in-
clude the thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and ac-
cumbens structures. These bilateral structures – symmetrically located within the
left and right hemispheres – are involved in systematic activities such as emotion,
pleasure, memory and hormone production. Their deviations in volume are associ-
ated with different neurological diseases such as Alzheimer’s disorder, bipolar dis-
order or multiple sclerosis, among others. Manual segmentation of these structures
is a time-consuming task and suffers from rater inter- and intra-variability. There-
fore, developing automated methods for accurately segmenting the sub-cortical brain
structures is important and it is an active research area.

This PhD thesis focuses on the development of deep learning based methods
for accurate segmentation of the sub-cortical brain structures from Magnetic Reso-
nance Images (MRI). This goal has been carried out in several stages. In the first
stage, we have proposed a 2.5D – i.e. three 2D orthogonal planes of a 3D volume –
Convolutional Neural Network (CNN) architecture that combines convolutional and
spatial features. Additionally, we proposed a selective sample selection technique
from structure boundaries. The experimental results demonstrated the effectiveness
of the proposed approach in accurately segmenting all the sub-cortical brain struc-
tures and has shown state-of-the-art performance on well-known publicly available
datasets – Multi-Atlas Labelling Grand Challenge MICCAI 2012 and Internet Brain
Segmentation Repository (IBSR).

In general, CNN’s performance drops when tested with images from a different
domain than the training set. This problem is referred to as the domain shift effect,
where a network trained with MRI volumes with the same properties does not
generalise to other images with different properties such as scanner type, imaging
protocol and resolution. In the next stage of this PhD, we addressed this problem
of domain adaptation using a supervised transfer learning strategy. We showed
the effect of domain shift on the performance of deep learning methods and how
our proposal not only resolves this issue but also drastically reduces the number of
training images and trainable parameters of the network.
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In the following stage, we developed a new approach that did not even require any
manually annotated images for domain adaptation – an unsupervised deep learning
method. In this approach, we proposed to employ a histogram loss to minimise the
effect caused by domain differences directly within the convolutional layers of the
CNN. This approach showed significant (p < 0.001) improvements from baseline
segmentation results, where no domain adaptation was applied, and showed compa-
rable results to unsupervised FIRST method. In order to show its robustness, we
extended our unsupervised domain adaptation method for segmenting brain white
matter hyperintensities. The experimental results showed that adapting the network
in an unsupervised manner improved the baseline and outperformed traditional un-
supervised methods used for this task.

All these completed stages paved the way for achieving an accurate and robust
automated deep learning based method for segmenting all the sub-cortical brain
structures. Moreover, this PhD thesis has been part of research frameworks within
the projects of the ViCOROB group and different collaborating hospital centres.
Furthermore, the methods developed during this PhD thesis were compiled into a
toolbox and made publicly available for the research community.



Resum

Aquesta tesi doctoral es centra en el desenvolupament de mètodes basats en apre-
nentatge profund (Deep Learning) per a la segmentació precisa de les estructures
cerebrals subcorticals en imatges de ressonància magnètica (RM). Aquestes estruc-
tures es troben sota el còrtex cerebral i inclouen el tàlem, el caudat, el putamen,
el pallidum, l’hipocamp, l’amígdala i l’accumbens. Són estructures bilaterals, situ-
ades simètricament dins dels hemisferis esquerre i dret, i participen en activitats
com l’emoció, el plaer, la memòria i la producció d’hormones. Les seves desviacions
de volum s’associen a diferents malalties neurològiques com l’Alzheimer, el trastorn
bipolar o l’esclerosi múltiple, entre d’altres. Tanmateix, la segmentació manual
d’aquestes estructures és una tasca molt costosa i depèn en gran manera de l’expert
que la realitza. Per tant, és important desenvolupar mètodes automatitzats robustos
que permetin segmentar amb precisió aquestes estructures cerebrals subcorticals.

Aquesta tesi es compon de diferents contribucions que van des d’una nova pro-
posta de segmentació basada en l’aprenentatge profund, fins a propostes per millorar
la seva robustesa per a diversos reptes, com ara el problema del canvi de domini.
Així doncs, primerament vam proposar una nova arquitectura de xarxa neuronal
convolutional (CNN) 2.5D (és a dir, que analitza els tres plans ortogonals 2D d’un
volum 3D) que combina característiques convolutives i espacials. A més, vam util-
itzar una tècnica de sampleig de mostres selectives a partir dels contorns de les
estructures a analitzar. Els resultats experimentals van demostrar l’efectivitat del
plantejament proposat per segmentar amb precisió totes les estructures cerebrals
subcorticals i van demostrar un rendiment molt satisfactori en els conjunts de dades
públics i coneguts internacionalment com els Multi-Atlas Labelling Grand Challenge
MICCAI 2012 i Internet Brain Segmentation Repository (IBSR).

En general, el rendiment de les xarxes CNN disminueix quan s’utilitza amb
imatges d’un domini diferent del conjunt d’entrenament. Aquest problema es coneix
com l’efecte del canvi de domini, on una xarxa entrenada amb volums de RM amb
unes propietats determinades, com ara el tipus d’escàner, el protocol d’imatges i la
resolució, no generalitza a altres imatges amb propietats diferents. Així doncs, en
la següent contribució d’aquesta tesi, vam abordar aquest problema d’adaptació del
domini mitjançant una estratègia supervisada d’aprenentatge de transferència. Els
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experiments realitzats van mostrar l’efecte del canvi de domini en el rendiment dels
mètodes d’aprenentatge profund i com l’aprenentatge de transferència proposat, no
només resol aquest problema, sinó que també permet reduir dràsticament el nombre
d’imatges d’entrenament i de paràmetres de la xarxa.

En l’etapa final, vam desenvolupar un nou enfocament per a l’adaptació del
domini que no requeria cap imatge anotada manualment: un mètode d’aprenentatge
profund totalment no supervisat. En la nova proposta es va emprar un anàlisi
dels histogrames dins les pròpies capes convolucionals de la xarxa CNN per tal
de minimitzar l’efecte causat per les diferències de domini directament. Aquesta
contribució va mostrar millores significatives respecte dels resultats de segmentació
basal, on no es va aplicar cap adaptació al domini, i obtenint resultats comparables
al mètode FIRST. Per tal de demostrar la solidesa del mètode, vam testejar el seu ús
en una aplicació diferent, la segmentació d’hiperintensitats dins la substància blanca
cerebral. Els resultats experimentals van demostrar que l’adaptació no supervisada
de la xarxa va millorar la proposta sense adaptació de domini i també el mètode no
supervisat LST.

Les contribucions desenvolupades en aquesta tesi van obrir el camí per assolir
un mètode automatitzat, precís i robust, basat en l’aprenentatge profund, per tal
de segmentar les estructures cerebrals subcorticals. Aquesta tesi doctoral s’ha em-
marcat en diferents projectes de recerca del grup ViCOROB i ha comptat amb la
col·laboració de centres hospitalaris. A més a més, tots els mètodes desenvolupats
durant aquesta tesi doctoral es van recopil·lar en una toolbox pública disponible per
la comunitat científica.



Resumen

Esta tesis doctoral se centra en el desarrollo de métodos basados en el aprendizaje
profundo (Deep Learning) para la segmentación precisa de las estructuras cerebrales
subcorticales en imágenes de resonancia magnética (RM). Estas estructuras se en-
cuentran bajo el córtex cerebral e incluyen el tálamo, el caudado, el putamen, el
pallidum, el hipocampo, la amígdala y el accumbens. Son estructuras bilaterales,
situadas simétricamente dentro de los hemisferios izquierdo y derecho, y participan
en actividades como la emoción, el placer, la memoria y la producción de hormonas.
Sus desviaciones de volumen se asocian a diferentes enfermedades neurológicas como
el Alzheimer, el trastorno bipolar o la esclerosis múltiple, entre otros. Sin embargo,
la segmentación manual de estas estructuras es una tarea muy costosa y depende
en gran medida del experto que la realiza. Por lo tanto, es importante desarrol-
lar métodos automatizados que permitan segmentar con precisión y robustez estas
estructuras cerebrales subcorticales.

Esta tesis se compone de diferentes contribuciones que van desde una nueva
propuesta de segmentación basada en el aprendizaje profundo, hasta propuestas
para mejorar su robustez para varios retos, como el problema del cambio de do-
minio. Así pues, primeramente propusimos una nueva arquitectura de red neuronal
convolutional (CNN) 2.5D (es decir, que analiza los tres planos ortogonales 2D de
un volumen 3D) que combina características convolucionales y espaciales. Además,
utilizamos una técnica de sampleo de muestras selectivas a partir de los contornos
de las estructuras a analizar. Los resultados experimentales demostraron la efec-
tividad del planteamiento propuesto para segmentar con precisión todas las estruc-
turas cerebrales subcorticales y demostraron un rendimiento muy satisfactorio en los
conjuntos de datos públicos y conocidos internacionalmente como el Multi-Atlas La-
belling Grand Challenge MICCAI 2.012 y el Internet Brain Segmentation Repository
(IBSR).

En general, el rendimiento de las redes CNN disminuye cuando se utiliza con
imágenes de un dominio diferente del conjunto de entrenamiento. Este problema
se conoce como el efecto del cambio de dominio, donde una red entrenada con
volúmenes de RM con unas propiedades determinadas, tales como el tipo de es-
cáner, el protocolo de imágenes y la resolución, no generaliza a otras imágenes con
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propiedades diferentes. Así pues, en la siguiente contribución de esta tesis, abor-
damos este problema de adaptación del dominio mediante una estrategia supervisada
de aprendizaje de transferencia. Los experimentos realizados mostraron el efecto del
cambio de dominio en el rendimiento de los métodos de aprendizaje profundo y como
el aprendizaje de transferencia propuesto, no sólo resuelve este problema, sino que
también permite reducir drásticamente el número de imágenes de entrenamiento y
de parámetros de la red.

En la etapa final, desarrollamos un nuevo enfoque para la adaptación del dominio
que no requería ninguna imagen anotada manualmente: un método de aprendizaje
profundo totalmente no supervisado. En la nueva propuesta se empleó un análisis
de los histogramas dentro de las propias capas convolucionales de la red CNN para
minimizar el efecto causado por las diferencias de dominio directamente. Esta con-
tribución mostró mejoras significativas respecto de los resultados de segmentación
basal, donde no se aplicó ninguna adaptación al dominio, obteniendo resultados com-
parables al método FIRST. Con el fin de demostrar la solidez del método, testeamos
su uso en una aplicación diferente, la segmentación de hiperintensidades en la sustan-
cia blanca cerebral. Los resultados experimentales demostraron que la adaptación
no supervisada de la red mejoró la propuesta sin adaptación de dominio y también
el método no supervisado LST.

Las contribuciones desarrolladas en esta tesis abrieron el camino para lograr un
método automatizado, preciso y robusto, basado en el aprendizaje profundo, con
el fin de segmentar las estructuras cerebrales subcorticales. Esta tesis doctoral se
ha enmarcado en diferentes proyectos de investigación del grupo ViCOROB y ha
contado con la colaboración de centros hospitalarios. Además, todos los métodos
desarrollados durante esta tesis doctoral se recopilaron en una toolbox pública para
su uso en la comunidad científica.



Chapter 1

Introduction

In this chapter, we describe the research context for the determined area of investi-
gation of this PhD, justifying the relevance of the topic from the contextual point of
view. Moreover, we list the projects that have been contributed to by the outcomes
of the research accomplished in this thesis and introduce the pre-defined objectives.
Then, the structure with brief descriptions for the remaining chapters are shown to
give the reader a comprehensive outline of the thesis.

1.1 Research context

1.1.1 Sub-cortical brain structures

Segmentation of brain images in Magnetic Resonance Images (MRI) are addressed
in various applications in medical imaging. Depending on the target of interest, seg-
mentation in brain MRI could be performed to delineate brain regions by tissue type
as grey matter (GM), white matter (WM), cerebrospinal fluid (CSF) [1], anatomical
structures [2], or disease specific features caused by a neurological condition such as
multiple sclerosis [3] or brain tumour [4]. In general, segmentation is performed as
an initial step for further interpretation, for example, it could be immediately used
for volumetric or shape analysis, or as a partial feature for a different study such as
detection [5] and prediction [6]. Therefore, segmentation has been an exceptionally
predominating research topic in brain imaging, which is also one of the biggest areas
of investigation in the medical imaging field.

One of the essential research directions in medical brain imaging is segmenta-
tion of the sub-cortical brain structures. These deep grey-matter structures – the
thalamus, putamen, caudate, pallidum, hippocampus, amygdala, accumbens (see
Figure 1.1) – are located beneath the cerebral cortex and involved in complex ac-
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(a) Full view (b) Interior view

Figure 1.1: Sub-cortical brain structures. (a) Full view of the sub-cortical structures
in the brain; (b) Interior structures that are not visible in the full view.

tivities such as memory, emotion, pleasure and hormone production.
Table 1.1 shows the clinical applications related to the sub-cortical brain struc-

tures analysis. As can be seen, the most common abnormalities for the diseases
are related with morphological changes of the structures. Moreover, since these
structures are situated in both hemispheres, changes in volumes relative to its bi-
lateral counterpart can also be the biomarkers for neurological abnormalities such
as Autism and Attention Deficit Hyper-activity Disorder (ADHD). Therefore, dis-
tinguishing the left and right parts of the structures is a prerequisite for automated
segmentation methods.

Table 1.1 also shows that some of the brain structures are related with multi-
ple diseases and also some neurological conditions are linked to several sub-cortical
structures. Accordingly, in mood and behavioural studies, most, if not all the struc-
tures are taken into account. For instance, Schuetze et al. [18] investigated the
shape and volume alterations in thalamus, putamen and pallidum structures in
Autistic patients. Moreover, Hartberg et al. [34] reported that there are differences
as well as similarities in sub-cortical structure relationships between patients with
schizophrenia or bipolar disorder and healthy individuals. Moreover, Lamar et al.
[19] showed that structural changes are associated with cardiovascular risk factors
and Alzheimer’s dementia. Taking this all into account, segmentation of the sub-
cortical structures is essential in analysis of various neurological conditions, not only
individually but also in their entirety.
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Table 1.1: Clinical applications. Brain structure abnormalities associated with var-
ious diseases.

Structure Implied Disease Abnormality
Thalamus Multiple sclerosis Atrophy [7]

Alzheimer’s Atrophy [8]
Schizophrenia Non-conclusive volume difference [9]
Parkinson Reduced volume [10]

Caudate Huntington’s disease Atrophy [11]
Tourette syndrome Reduced volume [12]
Autism Increased right volume [13]
Attention deficit hyperactivity disorder Reduced right volume [14]
Fragile X syndrome Increased volume [15]

Putamen REM sleep behaviour disorder Reduced volume [16]
OCD Volume enlargement [17]

Pallidum Autism Changes in shape [18]
Hypertension Changes in volume [19]

Hippocampus Alzheimer’s Atrophy [20]
Temporal lobe epilepsy Asymmetric atrophy [21]
Posttraumatic stress disorder Reduced volume [22, 23]
Major depression Reduced volume [24]
Schizophrenia Reduced volume [25]
Bipolar disorder Non-conclusive volume difference [26, 27]

Amygdala Schizophrenia Reduced volume [28]
Anxiety disorders Reduced left volume [29]
Bipolar disorder Non-conclusive volume difference [25, 27, 30, 31]

Accumbens Huntington’s disease Atrophy [32]
Apathy in Parkinson’s disease Atrophy [33]

1.1.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is widely used in medical practice and has
become a standard tool for diagnosis, disease follow-up, treatment evaluation and
brain development monitoring [35, 36, 37, 38, 2]. It is a preferred imaging technology
for a range of clinical applications due to its non-intrusiveness, acquisition speed,
provision of good contrast between tissues and painlessness. Moreover, the non-
ionising property of MRI allows the patients to be examined multiple times in a
short period of time. Additionally, MRI scans represent 3D volumes, which keep
spatial alignment of the internal organs in a 3D space. The volumes are studied from
different views, usually from three orthogonal views – axial, sagittal and coronal as
shown in Figure 1.2.

Depending on the image acquisition parameters, specifically, Repetition Time
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(a) 3D volume (b) Axial (c) Sagittal (d) Coronal

Figure 1.2: MRI volume in 3D and orthogonal views. (a) Full volume; (b) Axial
view; (c) Sagittal view; (d) Coronal view.

(a) Sub-cortical struc-
tures

(b) T1 (c) T2 (d) FLAIR

Figure 1.3: Different MRI Sequences. (a) T1-weighted with delineated sub-cortical
structures; (b) T1-weighted; (c) T2-weighted; (d) FLAIR.

(TR) and Time to Echo (TE), different tissue contrasts are achieved in MRI scans.
Short TR and TE produces images with dark CSF, light WM and grey GM, and this
specification is called T1-weighted (T1-w) sequence (Figure 1.3b). In contrast to T1,
by using longer TR and TE, one obtains images with bright CSF, dark-grey WM,
and light GM, which is called T2-weighted (T2-w) sequence (Figure 1.3c). Another
type of sequence, Fluid Attenuated Inversion Recovery (FLAIR) (Figure 1.3d), is
similar to T2-w, but the TR and TE are much longer. In FLAIR sequences, the
CSF, WM and GM appear dark, dark-grey and light-grey, respectively. There are
other types of imaging sequences and different types of acquisition parameters that
can be tuned to achieve certain image contrasts and characteristics [39].

Each of these sequences have their specific purposes, individually or together,
because the tissue properties manifest in different ways. For instance, in multi-
ple sclerosis diagnosis and monitoring, the lesions appear hyperintense (bright) in
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T2 and FLAIR sequences, whereas in T1 images they appear hypointense (dark).
Therefore, T2 and FLAIR sequences are the commonly used sequences in multiple
sclerosis [35]. On the other hand, the brain structures are better distinguishable in
the T1-weighted MR images as shown in Figure 1.3a. Accordingly, volumetric and
shape analysis of the sub-cortical structures are done using the T1-w images.

Another important parameter in MRI scan acquisition is voxel spacing, which
shows how much physical space is captured within a unit sample or voxel in a 3D
volume. The spacing of pixels in a 2D plane of an MR image is referred as the resolu-
tion and the spacing between planes of a 3D volume is named as the slice thickness.
The voxel spacing defines how sharp the details appear in the final output, thus,
it is often preferred to have smaller voxel spacing (e.g. sub-millimetre). However,
the smaller the voxel spacing and the slice thickness, the longer the acquisition
time and the more slices to be acquired. Moreover, larger voxel spacing introduce
more partial volume effect, where different tissue types appear blended together in
a single voxel resulting blurred borders between different brain tissues. Accordingly,
depending on the purpose of the scan, practitioners follow protocols that define a
trade-off between the acquisition time and the image quality. For example, some
common image resolutions include 1 × 1 × 1 mm3 for structural T1-w imaging and
1 × 1 × 3 mm3 for MS T2-lesion imaging.

1.1.3 Segmentation of the sub-cortical structures

Due to the importance of segmenting the sub-cortical structures in clinical practice,
there is a demand for automated accurate segmentation methods because manually
delineating all 14 structures in a 3D volume is a time-consuming and laborious task.
Moreover, unlike the manual annotation of natural images, segmenting the brain
structures has to be done by a trained neuroanatomist or technician. Additionally,
the manual annotation is subject to inter- and intra-variability, which makes the
segmentation outputs inconsistent. For example, the structure boundaries can be
over or under segmented, meaning that quantification of their volumes will be dif-
ferent. This difference could change remarkably when the segmentation is done in
images with low resolution. Taking this into account, we define some prerequisites
for the automated segmentation methods:

• Accuracy – output has to correctly segment the target structures;

• Consistency – all segmentation outputs have to follow similar guidelines such
as over or under segmentation;

• Robustness – the method has to perform similarly in different imaging do-
mains, i.e. different acquisition setups such as voxel spacing, image dimen-
sionality and different MRI scanner.
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Over the past few years, several automated methods have been proposed for the sub-
cortical brain structure segmentation. In the following sections, we describe some
of the traditional approaches that are commonly used in medical practice as well as
their degree of compliance with our defined requirements. Then, we introduce a new
trending topic in medical image segmentation – the use of new Artificial Intelligence
tool based on deep learning for improving image segmentation.

Traditional methods for structure segmentation

One of the well-known state-of-the-art automated methods for brain structure seg-
mentation is FreeSurfer1. This method is designed to segment brain MR images
into 37 anatomical regions including all the sub-cortical structures [40]. The seg-
mentation process is done in several steps: 1) image registration is applied to obtain
a probabilistic atlas for the brain; 2) an anisotropic nonstationary Markov random
field is used to assign labels for every voxel in an MR image; 3) post-processing
is then applied to reclassify the neighbours of each label using a maximum likeli-
hood classifier and removing small segmentation regions to avoid “islands” that are
disconnected from the main segmentation region. FreeSurfer is highly dependent
on registration, which makes the method sensitive to noise and motion artefacts.
Although the method produces modest segmentation results in terms of accuracy
compared to the state-of-the-art, it is consistent and robust to changes in the imag-
ing protocol, voxel resolution and scanner.

Another well-known and commonly used method is FIRST [41] that is distributed
with the FSL package2. This method is based on an active shape and active appear-
ance model, which is used to segment all the brain sub-cortical structures and the
brainstem. As has been shown in [42], the performance of FIRST for images from
different imaging domains is consistent, however, there is still room for improve-
ment in terms of accuracy. Moreover, due to the powerful representation power of
the active shape models, FIRST is highly robust to changes in image acquisition
parameters. In fact, because of this property, FIRST always produces a segmenta-
tion output, even when the image has extreme imaging artefacts such as motion or
noise. Nevertheless, the accuracy in this situation would be questionable, which is
true for any other automated method.

There exist some other traditional methods that are based on multi-atlas segmen-
tation strategies that have to be mentioned. In general, atlas based segmentation
methods share common steps that include registering multiple manually segmented
images to a target image. Then, deformed atlases are combined using label fusion to
obtain the final segmentation for the target. Most common label fusion methods are

1https://surfer.nmr.mgh.harvard.edu
2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

https://surfer.nmr.mgh.harvard.edu
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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based on weighted voting, where each atlas is assigned a weight – either globally [43]
or locally [44] – depending on its similarity to the target, thus, larger weight con-
tributes more to the voting. However, the atlas to target similarities are obtained
individually, which in turn may result in multiple atlases producing similar label
errors. One of the top performing multi-atlas based methods for brain structure
segmentation is PICSL [45], which is also based on weighted label fusion technique.
Unlike other common weighted voting strategies, it considers the possibility of a bias
where multiple atlases may produce correlated segmentation errors. It is solved by
building a pairwise uncertainty model between atlases that estimates the probability
of each pair producing the same error. Then, instead of computing atlas weights
individually, the similarity measure is derived between the target and each pair of
atlases. One of the main drawbacks of this approach is the computational cost that
includes multiple atlas registration, weight estimation and label fusion. This method
was the winner of the MICCAI 2012 multi-atlas labelling grand challenge and has
been used as a comparison standard in one of our proposals (Chapter 2) along with
the previously mentioned tools FreeSurfer and FIRST.

Another traditional technique that has been successfully applied for brain struc-
ture segmentation includes non-local label fusion. In this type of approach, the
label assignment is based on weights defined by similarities of a target voxel and all
the atlas voxels in its neighbourhood. Due to the fact that it explores the neigh-
bourhood of each voxel, the registration does not need to be precise, hence, it is
possible to perform only linear registration instead of non-rigid deformation. An
example of a non-local label fusion method includes the work of Coupé et al. [46],
which introduced atlas preselection approach as an additional step, where the best
atlases are selected depending on their similarity to target. Then, for each voxel, all
dissimilar atlas voxels are discarded that do not contribute to the label fusion. The
remaining voxels contribute to the weighting depending on their intensity similarity
(luminance and contrast).

1.1.4 Deep learning

In general, deep learning is a part of machine learning algorithms that engage Artifi-
cial Neural Networks (ANNs). The ANN is an architectural paradigm that has layers
of interconnected neurons – hence, the name neural network. Unlike the traditional
machine learning methods that use hand-crafted features to train a classifier such
as Support Vector Machine or Random Forest, ANNs learn these features directly
from the training images [47]. Thus, making the features more relevant and specific
to a particular task.

A type of ANN, Convolutional Neural Networks (CNNs), is an effective way of
tackling imaging problems as the convolution operation is a more natural approach
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Figure 1.4: An example of a generic CNN illustrating the main building blocks that
include: input, convolutional, pooling, fully connected and output layers.

for processing 2D and 3D signals. In this scenario, the network consists of convolu-
tional layers that filter inputs with learned kernels. These kernels act in a similar
way as the Gaussian for smoothing or Laplacian for edge detection but the differ-
ence is that they are created (learned) during the training process to produce an
optimised set of features for the analysed problem. Sequential property of the convo-
lutional layers – i.e. the output of one is an input to the next – allows the networks
to model complicated non-linear functions and extract complex features from the
inputs. There are multiple number of kernels per each layer that allows the network
to capture various features at different levels. In fact, when the outputs (or activa-
tion maps) of convolutional layers of a trained CNN are observed, the early layers
represent low level features as edges and blobs, whereas the deep layers produced
more composite features. Figure 1.4 illustrates a generic network architecture that
consists of the main building blocks of a CNN. The following paragraphs describe
the main components for a CNN individually.

Input layer is where the network is fed with data. Depending on the architec-
ture, the input data can be of two or more dimensions.

Convolutional layer consists of a user defined number of kernels. The kernel
size is usually much smaller than the input, which reduces the number of connections
and decreases the computational cost. This property of CNN is referred to as sparse
connectivity [48]. Moreover, the input is filtered by a kernel using a predefined
stride, which implies that one kernel is useful in all locations. This property, known
as parameter sharing [48], allows the network to have less number of parameters.
Additionally, convolutions are shift equivariant, meaning that one learned kernel
remains effective in detecting features that are located in different spatial locations.
Note that convolutions are not equivariant to scaling and rotation.

Pooling layer is usually applied after a convolutional layer and used to sum-
marise the activation maps into a smaller representation. There are different types
of pooling operations such as 1) max-pooling, where a neighbourhood of the acti-
vation map is replaced by the maximum element within that neighbourhood; and
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2) average-pooling, where the area is replaced by the mean of its content. Pooling
layers reduce the number of parameters and decrease memory and computational
costs. Sometimes, pooling layers are substituted by convolutional layers that have
stride size of two, which also reduce dimensionality of the input and at the same
time produce activation maps.

Flattening layer is a commonly used element to reshape the 2D or 3D activa-
tion maps into one-dimensional representation to be further processed by the fully
connected layers.

Fully connected layers are used to mine the features extracted by the previous
layers and can be sequentially connected to each other producing a dense network.

Global Average Pooling layer (GAP) has been introduced to replace the
flatten layer that is also used to obtain one-dimensional output. The difference from
flattening is that instead of only reshaping the input it computes the mean value for
each input feature map and then passes them to the following layers. Sometimes,
the GAP layer replaces all the fully connected layers in the network, thus, reducing
the computational cost and providing better generalisation performance as the fully
connected layers are more prone to overfitting.

Output layer is the same as the fully connected layer but it represents the
final output. The number of neurons in this layer is equal to the number of classes
defined in the problem and shows which class the input belongs. The output can
be single or dense, where the former produces one label per input and the latter
produces a dense classification for a neighbourhood. Dense classification is achieved
by replacing the fully connected and the output layers by convolutional layers with
kernel sizes of one. This type of CNN is referred to as Fully Convolutional Neural
Network (F-CNN). Depending on the problem, one or the other, CNN or F-CNN,
could be more beneficial to achieve a better result.

Activation functions is an important piece that adds non-linearity property to
neural networks. The outputs of each layer, both convolutional and fully connected,
are passed through an activation function that applies transformation that convert
input signals in different ways. There are different types of activation functions
such as sigmoid, tanh, softmax and Rectified Linear Unit (ReLU). For example,
the sigmoid function transforms its input to a value between 0 and 1. Although
the sigmoid and tanh functions are widely used, they suffer from the vanishing
gradient problem, which occurs in large network architectures where the gradients
of these functions become extremely low and make it difficult to which direction
the weights should be updated. On the other hand, the ReLU does not have the
vanishing gradient problem due to its formulation defined as ReLU(x) = max(0, x),
which trims all the negative signals from the input, and its gradient is either 0 or
1. Nowadays the ReLU and its different formulations such as Parametric ReLU and
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LeakyReLU, are one of the commonly used activation functions in literature.
Loss function is defined to determine the performance of the network and opti-

mised during the training process. By formulating the loss function, one establishes
a goal that shows what output should be achieved for a given input. Some of the
common loss functions are mean squared error and mean absolute error, which are
often used for regression, categorical cross-entropy used for classification. One of the
common loss functions is the Dice Similarity Coefficient loss, which is widely used
in F-CNNs for segmentation.

Back-propagation is the workhorse of learning in neural networks. Network
training is done in main two steps: 1) forward pass – the input is forward propagated
from the input to the output layer; and 2) backward pass – the cost from the
loss function is back-propagated from the output to all the layers of the network.
During the backward pass, proportional errors are obtained to define how much each
parameter of the network is contributing to the final cost. Then, their corresponding
gradients are calculated with respect to the loss function to define in which direction
each parameter should be adjusted. This procedure is applied repeatedly to achieve
optimal kernel and fully connected layer weights to represent important features for
the given task [49].

There are different types of optimisation algorithms used during the back-
propagation to make the training process more stable. For example, in stochastic
gradient descent (SGD) the weights are updated for each sample at a time, whereas
a version of SGD, mini-batch gradient descent applies weight updates for a portion
of the whole training set and makes smoother parameter changes.

Regularisation techniques are used to improve the training process and avoid
overfitting. Dropout is one of the well-known regularisation techniques, where ran-
dom fraction of the connections are ignored during training. In doing so, the network
becomes less prone to overfitting. There are other types of regularisation, such as
weight or kernel regularisers that are used to apply penalties on layer parameters.

These are the main building blocks of CNNs, where new developments and pro-
posals are mostly built upon.

Deep learning in medical imaging and its challenges

The success of deep learning methods in various tasks of computer vision and nat-
ural language processing has also influenced the field of medical image processing.
As shown in Figure 1.5, over the past few years, the number of published research
papers in medical imaging that use deep learning has increased drastically. The
dominance of the deep learning approaches over traditional methods have become
obvious as more and more teams have been employing such methods in the inter-
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Figure 1.5: Number of publications in peer-reviewed journals from 2012 to 2020
related with deep learning in medical imaging. The numbers were attained using
the google scholar service with keywords “medical imaging” and “deep learning”.
Also, “-arxiv” and “-biorxiv” was used to exclude popular pre-prints. Queried: 25
April 2020.

national medical imaging challenges. For example, Bakas et al. [50] showed that
in the recent years, deep learning approaches were becoming more popular and also
the winning approaches for brain tumour segmentation.

Despite the fact that deep learning has been remarkably successful in natural
image processing, its pinnacle has not been reached yet in medical image analysis.
There are some challenges of deep learning applications that are specific to the
medical image segmentation. One of the main challenges is the lack of available data
with ground truth. As has been mentioned before, manual segmentation masks have
to be done by trained experts and it is a time demanding work. Neural networks need
a lot of training data to perform well on a given problem. Having more trainable
parameters empowers the network with more representational capability. However,
it becomes more data demanding and failure to do so results in overfitting of the
network. The scarcity of medical images with ground truths makes networks to have
less parameters and shallower than the deep architectures used in natural image
processing.

Achieving a competent generalisation is another challenge in the application of
deep learning in medical imaging. Variations in acquisition protocols in MRI cause
differences in intensity and contrast even for the same type of sequence. Moreover,
MRI machine vendors use their own proprietary reconstruction algorithms, which
make images acquired in different scanners to have differences in appearance. Also,
not all MRI scans have the same resolution and slice thickness. Although it does
not cause any complications to a human expert, these differences are costly to auto-
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mated methods, in particular, for deep learning approaches. An adequately trained
CNN using a set of MRI images with the same characteristics cannot perform sim-
ilarly when tested on a different image from a different scanner and protocol. This
difficulty is known as the domain shift problem and it is a new and active research
topic.

Another challenge is the class imbalance, which is immensely exhibited in the
sub-cortical structure segmentation problem. The ideal scenario in neural network
training is when the number of samples per class is approximately equal – i.e. bal-
anced set. However, it is often not applicable in practice, where a training set has
samples per class that are drastically varying in quantity. Training with imbalanced
set causes the network to overfit to the class with a larger sample pool. Volumes
of the sub-cortical structures vary drastically: the average difference between the
largest (thalamus) and the smallest (accumbens) structures is ≈ 8.5 cm3. This class
imbalance makes segmentation of the sub-cortical structures more challenging.

1.2 Research background

The Computer Vision and Robotics (ViCOROB) institute, operating within the
University of Girona, was established in 1996 and since then has been working on
medical image analysis and robotics fields. The main focus of the medical imaging
team in the early stages was aimed in the segmentation and registration of mam-
mogram images. In 2009, the group started its collaboration with several medical
experts in multiple sclerosis (MS) to develop new tools for brain MRI analysis that
could be transferred for clinical use. The prior experience and effort of the team
working on the new line of research widened the investigation framework which cur-
rently includes image pre-processing, registration, segmentation of MS, WMH and
stroke lesions, tissue segmentation, atrophy analysis, new MS lesion detection, and
brain structure segmentation.

The research line of this PhD is done within the framework of the following
projects:

• [ 2015 - 2017 ] NICOLE: “Herramientas de neuroimagen para mejorar el
dia- gnosis y el seguimiento clínico de los pacientes con Esclerosis Múlti-
ple”. Awarded in 2014 by the Spanish call Retos de investigación 2014. Ref:
TIN2014- 55710-R.

• [ 2015 - 2019 ] BiomarkEM.cat: “New technologies applied to clinical practice
for obtaining biomarkers of atrophy and lesions in magnetic resonance images
of patients with multiple sclerosis”. Awarded in 2015 by the Fundació la Marató
de TV3.
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• [ 2016 - 2019 ] wASSABI: “Automatic brain Structures Segmentation As po-
tential imaging BIomarkers”. Awarded in 2016 by the Ministerio de ciencia y
tecnologia. Ref: TIN2015-73563-JIN

• [ 2018 - 2020 ] EVOLUTION: “Predictive models for multiple sclerosis using
brain magnetic resonance imaging biomarkers”. Awarded in 2017 by Ministerio
de ciencia y tecnologia. RETOS 2017. Ref: DPI2017-86696-R.

1.3 Objectives

Develop new deep learning based methods for brain structure segmentation and
move towards domain adaptation As part of the NICOLE, BiomarkEM.cat, EVO-
LUTION and wASSABI projects, the goal of this thesis is described as the following.

To develop novel, automated methods for automatic brain struc-
ture segmentation in MRI using deep learning and development
of domain adaptation strategies to overcome the repercussions
caused by the domain shift.

In order to fulfil the prerequisites defined for automated methods for sub-cortical
structure segmentation – accuracy, consistency and robustness – the planning for
the thesis has been divided into different sub-objectives that tackle each requirement
step-by-step. Accordingly, to successfully carry out the main target of the thesis the
following sub-objectives were determined:

• To develop a novel method for segmentation of the sub-cortical brain struc-
tures using deep learning that complies with the first essential requirement –
accuracy.

• To improve the consistency and robustness aspects of the proposal described
in the previous sub-objective using supervised domain adaptation techniques
such as transfer learning.

• To minimise the manual effort to maintain the consistency and robustness of
the segmentation method using unsupervised domain adaptation approach.

• To evaluate the proposed algorithms using the international publicly available
and in-house datasets. Also, to compare with the state-of-the-art methods
from the literature.

Throughout the advancement of the settled objectives, as a team that strives for
reproducibility of the findings in the research, we made the source codes publicly
available to the medical imaging community.
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1.4 Document structure

This thesis is done as the compendium of two Q1 SCR journal publications and one
submission to a Q1 SCR journal that cover chapters from 2 to 4. The remaining
part of the thesis are structured as shown below. Also, a graphical presentation of
the document structure linking all the chapter is illustrated in Figure 1.6.

• Chapter 2. Automated sub-cortical brain structure segmentation
combining spatial and deep convolutional features. In this chapter, we
present our proposed deep learning method for brain structure segmentation.
This chapter is based on the paper published in the Medical Image Analysis
journal in 2018.

• Chapter 3. Supervised domain adaptation for automatic sub-cortical
brain structure segmentation with minimal user interaction. This
chapter is a continuation from the previously proposed method to solve the
domain shift problem in MR Images with different imaging characteristics by
reducing the supervision requirement. This chapter is based on the paper
published in the Nature: Scientific Reports journal in 2019.

• Chapter 4. Unsupervised domain adaptation in deep learning for
brain magnetic resonance image segmentation. In this chapter, we
present another way of overcoming the domain shift problem based on an
unsupervised domain adaptation approach. This work is also a continuation
for the previous chapter, however, compared to the transfer learning, this
method does not require manually annotated labels. The work shown in this
chapter has been submitted to the Artificial Intelligence in Medicine journal
in 2020.

• Chapter 5. Results and discussion. This chapter discusses the overall
results and key findings obtained during this PhD thesis.

• Chapter 6. Conclusions and future work. In this chapter, the main
conclusions based on the contributions are presented. Moreover, we discuss on
possible future research directions.
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Figure 1.6: Structure of the PhD thesis. Chapter 1 gives an introduction to the
topic of brain structure segmentation and deep learning. Chapters 2 to 4 introduce
the main contributions published or submitted to international journals. Discussion
on the results and important aspects of the contributions are given in Chapter 5.
Chapter 6 concludes the work done in this PhD thesis and discusses possible im-
provements and directions for future work. The links between the chapters illustrate
the flow and progression of the thesis.





Chapter 2

Automated sub-cortical brain
structure segmentation combining
spatial and deep convolutional
features

In this chapter, we present our proposed deep learning method for automatic seg-
mentation of sub-cortical brain structures on MRI. This approach uses explicit spa-
tial features defined by atlas probabilities and implicit features extracted by the
convolutional neural network. The explicit features are integrated within a CNN
and guides the network to overcome some regions with intensity irregularities and
brain abnormalities. Moreover, the proposed sample selection technique – negative
samples from structure boundaries – showed to be effective in better delineating
the structures borders. The method has shown state-of-the-art performance in two
well-known and publicly available datasets – MICCAI 2012 Challenge and IBSR 18.
The proposal has been published in the following paper:

Paper published in the Medical Image Analysis (MIA) OPEN ACCESS
Volume: 48, Pages: 177–186, Published: June 2018
DOI: 10.1016/j.media.2018.06.006
JCR CSAI IF 8.880, Q1(5/133)
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a b s t r a c t 

Sub-cortical brain structure segmentation in Magnetic Resonance Images (MRI) has attracted the interest 

of the research community for a long time as morphological changes in these structures are related to 

different neurodegenerative disorders. However, manual segmentation of these structures can be tedious 

and prone to variability, highlighting the need for robust automated segmentation methods. In this pa- 

per, we present a novel convolutional neural network based approach for accurate segmentation of the 

sub-cortical brain structures that combines both convolutional and prior spatial features for improving 

the segmentation accuracy. In order to increase the accuracy of the automated segmentation, we propose 

to train the network using a restricted sample selection to force the network to learn the most difficult 

parts of the structures. We evaluate the accuracy of the proposed method on the public MICCAI 2012 

challenge and IBSR 18 datasets, comparing it with different traditional and deep learning state-of-the- 

art methods. On the MICCAI 2012 dataset, our method shows an excellent performance comparable to 

the best participant strategy on the challenge, while performing significantly better than state-of-the-art 

techniques such as FreeSurfer and FIRST. On the IBSR 18 dataset, our method also exhibits a significant 

increase in the performance with respect to not only FreeSurfer and FIRST, but also comparable or better 

results than other recent deep learning approaches. Moreover, our experiments show that both the addi- 

tion of the spatial priors and the restricted sampling strategy have a significant effect on the accuracy of 

the proposed method. In order to encourage the reproducibility and the use of the proposed method, a 

public version of our approach is available to download for the neuroimaging community. 

© 2018 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Brain structure segmentation in Magnetic Resonance Images 

(MRI) is one of the major interests in medical practice due to its 

various applications, including pre-operative evaluation and surgi- 

cal planning, radiotherapy treatment planning, longitudinal mon- 

itoring for disease progression or remission ( Kikinis et al., 1996; 

Phillips et al., 2015; Pitiot et al., 2004 ), etc. The sub-cortical 

structures (i.e. thalamus, caudate, putamen, pallidum, hippocam- 

pus, amygdala, and accumbens) have attracted the interest of the 
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research community for a long time, since their morphological 

changes are frequently associated with psychiatric and neurode- 

generative disorders and could be used as biomarkers of some dis- 

eases ( Debernard et al., 2015; Mak et al., 2014 ). Therefore, segmen- 

tation of sub-cortical brain structures in MRI for quantitative anal- 

ysis has a major clinical application. However, manual segmenta- 

tion of MRI is extremely time consuming and hardly reproducible 

due to inter- and intra- variability among operators, highlighting 

the need for automated accurate segmentation methods. 

Recently, González-Villà et al. (2016) , reviewed different ap- 

proaches for brain structure segmentation in MRI. One of the com- 

monly used automatic brain structure segmentation tools in medi- 

cal practice is FreeSurfer, 2 which uses non-linear registration and 

an atlas-based segmentation approach ( Fischl et al., 2002 ). An- 

other classical approach, also popular in the medical community, 

2 https://surfer.nmr.mgh.harvard.edu/ . 
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is the method proposed by Patenaude et al. (2011) – FIRST, which 

is included into the publicly available software FSL. 3 This method 

uses the principles of Active Shape ( Cootes et al., 1995 ) and Ac- 

tive Appearance Models ( Cootes et al., 2001 ) that are put within a 

Bayesian framework, allowing to use the probabilistic relationship 

between shape and intensity to its full extent. 

In recent years, deep learning methods, in particular, Convolu- 

tional Neural Networks (CNN), have demonstrated a state-of-the- 

art performance in many computer vision tasks such as visual ob- 

ject detection, classification and segmentation ( Krizhevsky et al., 

2012; He et al., 2016; Szegedy et al., 2015; Girshick et al., 2014 ). 

Unlike handcrafted features, CNN methods learn from observed 

data ( LeCun et al., 1998 ) making relevant features to a specific task. 

Naturally, CNNs are also becoming a popular technique applied in 

medical image analysis. There have been many advances in the 

application of deep learning in medical imaging such as expert- 

level performance in skin cancer classification ( Esteva et al., 2017 ), 

high rate detecting cancer metastases ( Liu et al., 2017 ), Alzheimer’s 

disease classification ( Sarraf and Tofighi, 2016 ), and spotting early 

signs of autism ( Hazlett et al., 2017 ). 

Some CNN methods have also been proposed for brain struc- 

ture segmentation. One of the common ways used in the literature 

is patch-based segmentation, where patches of a certain size are 

extracted around each voxel and classified using a CNN. Applica- 

tion of 2D, 3D, 2.5D patches (patches from the three orthogonal 

views of an MRI volume) and their combinations including multi- 

scale patches can be found in the literature for brain structure seg- 

mentation ( Brébisson and Montana, 2015; Bao and Chung, 2016; 

Milletari, 2017; Mehta et al., 2017 ). Combining patches of differ- 

ent views and dimensions is done in a multi-path manner, where 

CNNs consist of different branches corresponding to each patch 

type, i.e. parallel interconnected processing modules analyze each 

of the inputs. In contrast to patch-based CNNs, fully convolutional 

neural networks (FCNN) produce segmentation for a neighborhood 

of an input patch ( Long et al., 2015 ). Shakeri et al. (2016) adapted 

the work of Chen et al. (2016) for semantic segmentation of natu- 

ral images using FCNN. Moreover, 3D FCNNs, which segment a 3D 

neighborhood of an input patch at once, have been investigated 

by Dolz et al. (2018) and Wachinger et al. (2018) . Although FCNNs 

show improvement in segmentation speed due to parallel segmen- 

tation of several voxels, they suffer from a high number of param- 

eters in the network in comparison with patch-based CNNs. 

It is common to apply post-processing methods to refine 

the final segmentation output. Inference of CNN-priors and sta- 

tistical models such as Markov Random Fields and Conditional 

Random Fields ( Lafferty et al., 2001 ) were used in the experi- 

ments of Brébisson and Montana (2015) , Shakeri et al. (2016) , 

and Wachinger et al. (2018) . A modified Random Walker based 

segmentation refinement has been also proposed by Bao and 

Chung (2016) . 

Apart from implicit information that is provided by the ex- 

tracted patches from MRI volumes, explicit characteristics dis- 

tinguishing spatial consistency have been studied. Brébisson and 

Montana (2015) included distances to centroids to their networks. 

Wachinger et al. (2018) used the Euclidean and spectral coordi- 

nates computed from eigenfunctions of a Laplace-Beltrami opera- 

tor of a solid 3D brain mask, to provide a distinctive perception of 

spatial location for every voxel. These kinds of features provide ad- 

ditional spatial information, however, extracting these explicit fea- 

tures from an unannotated MRI volume requires some preliminary 

operations to be attended (e.g. repetitive training of the network 

to compute initial segmentation mask). 

From the reviewed literature, we have observed that most of 

the current deep learning approaches for sub-cortical brain struc- 

3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki . 

ture segmentation focus on segmenting only the large sub-cortical 

structures (thalamus, caudate, putamen, pallidum). However, other 

important small structures (i.e. hippocampus, amygdala, accum- 

bens), which are used for examining neurological disorders such 

as schizophrenia ( Altshuler et al., 1998; Lawrie et al., 2003 ), anxi- 

ety disorder ( Milham et al., 2005 ), bipolar disorder ( Altshuler et al., 

1998 ), Alzheimer ( Fox et al., 1996 ), etc., are not considered. These 

small structures have smaller volume – hence, lower number of 

samples – compared to the other larger structures, which hinders 

training deep learning strategies and makes the segmentation task 

more challenging. In this paper, we present our approach for seg- 

menting the sub-cortical structures: a new 2.5D CNN architecture 

– i.e., the three orthogonal views of a 3D volume – that incor- 

porates probabilistic atlases as spatial features. Although proba- 

bilistic atlases have been used before in deep learning methods 

( Ghafoorian et al., 2017 ), they have never been applied for seg- 

menting the sub-cortical brain structures. Within our research, un- 

like most of the existing deep learning approaches, we address 

segmenting all the sub-cortical structures, including the smallest 

ones. To the best of our knowledge, this is the first deep learn- 

ing method incorporating atlas probabilities into a CNN for sub- 

cortical brain structure segmentation. Moreover, we propose a par- 

ticular sample selection technique, which allows the neural net- 

work to learn to segment the most difficult areas of the struc- 

tures in the images, and also show its importance in achieving 

higher accuracy. We test the proposed strategy in two well-known 

datasets: MICCAI 2012 4 ( Landman and Warfield, 2012 ) and IBSR 

18 5 ; and compare our results with the classical and recent CNN 

strategies for brain structure segmentation. Additionally, we make 

our method publicly available for the community, accessible online 

at https://github.com/NIC- VICOROB/sub- cortical _ segmentation . 

2. Method 

2.1. Input features 

In our method, we employ 2.5D patches to incorporate informa- 

tion from three orthogonal views of a 3D volume. In our case, each 

patch has a size of 32 × 32 pixels. Although 3D patches may pro- 

vide more information of surroundings for the voxel that is being 

classified, they are computationally and memory expensive. Thus, 

by using 2.5D patches, we approximate the information that is pro- 

vided by a 3D patch in computational time and memory efficient 

manner. 

Along with the appearance based features provided by the T1- 

w MRI, we employ spatial features extracted from a structural 

probabilistic atlas. In our experiments, we used the well-known 

Harvard–Oxford ( Caviness et al., 1996 ) atlas template in MNI152 

space distributed with the FSL package, 6 which has been built 

using 47 young adult healthy brains. In our method, first, T1-w 

image of the MNI152 template is affine registered to T1-w im- 

age of the considered datasets using a block matching approach 

( Ourselin et al., 20 0 0 ). Then, non-linear registration of the atlas 

template to subject volume is applied using fast free-form defor- 

mation method ( Modat et al., 2010 ). The deformation field ob- 

tained after the registration is used to move the probabilistic atlas 

into the subject space. Registration processes have been carried out 

using the well known and publicly available tool NiftyReg. 7 After- 

wards, vectors of size 15, corresponding to seven anatomical struc- 

tures with left and right parts separately and background, were 

4 https://masi.vuse.vanderbilt.edu/workshop2012 . 
5 https://www.nitrc.org/projects/ibsr . 
6 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki . 
7 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg . 
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Fig. 1. The proposed 2.5D CNN architecture has three convolutional branches and a 

branch for spatial prior. 2D patches of size 32 × 32 pixels are extracted from three 

orthogonal views of a 3D volume. Spatial prior branch accepts a vector of size 15 

with atlas probabilities for each of the 14 structures and background. 

extracted from probabilistic atlas for every voxel and used as an 

input feature to train the network. 

2.2. CNN architecture 

Fig. 1 illustrates our proposed CNN architecture. It consists of 

three branches to process the patches extracted from axial, coronal, 

and sagittal views of a 3D volume, and one branch corresponding 

to the spatial priors. The branch for the spatial prior accepts a vec- 

tor of size 15 with atlas probabilities for each structure and the 

background. The first three branches have the same organization 

of convolutional and max-pooling layers as shown in Fig. 1 (B). All 

the feature maps of the convolutional layers are passed through 

the Rectified Linear Unit (ReLU) activation function ( Glorot et al., 

2011 ). For all the convolutional layers, kernels of size 3 × 3 are set 

to make the CNN deep without losing in performance and bursting 

the number of parameters as it has been studied in Simonyan and 

Zisserman (2014) . Then, the outputs of the convolutional layers 

are flattened and followed by fully connected (FC) layers with 180 

units each. Next, FC layers of each branch including atlas proba- 

bilities are fully connected to two consecutive FC layers with 540 

and 270 units. The final classification layer has 15 units with the 

softmax activation function. 

The atlas probabilities provide the network with spatial infor- 

mation, i.e. likelihood of an input patch belonging to one of the 

14 classes or background. This information can be added either as 

additional input sequences (i.e. as additional channels to T1-w im- 

age patches) or later in the fully connected layers. However, when 

working with a high number of classes, the former way of atlas in- 

corporation becomes impractical in terms of training/testing time 

due to an increase in number of trainable parameters of the net- 

work as well as a vast increase in memory usage. Accordingly, we 

use the latter approach, where we provide a vector of size 15 with 

each element corresponding to the central pixel’s probability of be- 

longing to one of the classes, which is fused with the output of the 

first fully connected layer after the convolutional part of the net- 

work. 

2.3. CNN training 

For training our network, we extract 2.5D patches from the 

training set and using the provided ground truth labels we opti- 

mize the kernel and fully connected layer unit weights based on 

the loss function. In the proposed network we employ the cate- 

gorical cross-entropy loss function, which is minimized using the 

Adam ( Kingma and Ba, 2014 ) optimization method. This technique 

automatically controls the learning rate and uses moving averages 

of the parameters, which allows the step size to be effectively large 

and converges to optimal step size without tuning it manually. 

When training a CNN, it is important to take into account how 

the training samples are extracted from an image. Random selec- 

tion of certain number of samples from an image is one of the 

common techniques in the literature. However, when it comes to 

the segmentation of the sub-cortical structures, the background 

(negative) samples turn out to be dispersed in the subject volume. 

Hence, it would lead to imperfect segmentation results on the bor- 

ders of the structures, which are the most delicate areas to process 

due to the low contrast between the structure and the background. 

Therefore, we propose to extract the negative samples only from 

the structure boundaries as shown in Fig. 2. In doing so, we force 

the network to learn only from the structure boundaries and dis- 

miss other parts of the background. 

The training sample selection is performed as follows: from all 

the available training images, we first select the positive samples 

from all the voxels from the 14 sub-cortical structures. Then, the 

same number of negative samples are randomly selected from the 

structure boundaries within five voxel distance, forming a balanced 

dataset of sub-cortical and boundary voxels. More details about 

Fig. 2. Negative sample selection from the boundaries of the target structures. (a) T1-w image with a rectangle representing the ROI; (b) T1-w ROI; (c) structure boundaries; 

(d) ground truth labels with boundaries. 



180 K. Kushibar et al. / Medical Image Analysis 48 (2018) 177–186 

(a) (b)

Fig. 3. Two different exam ples of segmentation outputs without using ROI before 

post-processing. Columns: a) T1-w image and segmentation result; b) Segmentation 

output on solid background for better visualization of spurious outputs. ROIs are 

delineated in white. 

batch size and number of epochs of the training process for the 

selected datasets will be given in Section 3 . 

2.4. CNN testing 

To perform the segmentation of a new image volume, we ex- 

tract all the patches from the image and predict class label proba- 

bilities using the trained CNN. Then, we assign a label correspond- 

ing to the maximum a posteriori probability for the central pixel 

of each input patch. Notice that knowing the order of the patch 

extraction is important to be able to reconstruct the final seg- 

mentation output. We also take advantage of the location of the 

sub-cortical structures, which are located in the central part of the 

brain. Due to the knowledge provided by the atlases, regions of in- 

terest (ROI) are automatically defined for all the subject volumes 

to achieve faster training and testing speeds. 

Since the network has been trained with the negative samples 

extracted only from the structure boundaries, it produces spuri- 

ous outputs in unseen areas of the background when segment- 

ing a testing volume. In order to overcome this issue, we apply 

a post-processing step, where for each class only the region with 

the biggest volume within the ROI is preserved. For such post- 

processing, it is important to make sure that the volume and lo- 

cation of the misclassified regions are not larger than the volumes 

of any of the structures nor adjacent to the structure boundaries. 

When segmenting a new image, we send only ROI as an input to 

the network. In doing so, we ensure that the misclassified voxels 

have small size, as most of the input patches correspond to the 

sub-cortical area. Moreover, since the network is well trained to 

classify the boundaries of the structures, there will be no misclas- 

sified voxels adjacent to the structure boundaries. Fig. 3 illustrates 

examples, when all the patches were set as input to the network. 

As it can be observed, the background is well defined around the 

structure borders, and most of the spurious outputs appear outside 

the ROI. 

2.5. Implementation and technical details 

The proposed method has been implemented in the Python 

language, 8 using Lasagne 9 and Theano 10 ( Bergstra et al., 2011 ) li- 

braries. All experiments have been run on a GNU/Linux machine 

box running Ubuntu 16.04, with 32 GB RAM memory. CNN train- 

ing has been carried out on a single TITAN-X GPU (NVIDIA corp, 

United States) with 12 GB RAM memory. The proposed method is 

currently available for downloading at our research website. 11 

3. Results 

This section presents the results obtained by the proposed 

method on two datasets. The first dataset is the one provided 

in the MICCAI Multi-Atlas Labeling challenge 12 ( Landman and 

Warfield, 2012 ) and the second is a publicly available dataset 

from the Internet Brain Segmentation Repository 13 (IBSR). Details 

of these datasets and the corresponding results will be given in 

Sections 3.2 and 3.3 respectively. 

3.1. Evaluation measures 

For evaluating the proposed method, we selected two metrics 

that are commonly used in the literature. These are overlap and 

spatial distance-based metrics, which show similarity and discrep- 

ancy of automatic and manual segmentations. The first measure- 

ment is Dice Similarity Coefficient (DSC) ( Dice, 1945 ) defined as 

the following for automatic segmentation A and manual segmen- 

tation B : 

DSC(A, B ) = 

2 | A ∩ B | 
| A | + | B | . (1) 

DSC measures the overlap of the segmentation with the ground 

truth on a scale between 0 and 1, where the former shows no over- 

lap and the latter represents 100% overlap with the ground truth. 

For the spatial distance based metric, Hausdorff Distance (HD) 

is used in our experiments. This metric is defined as a function of 

the Euclidean distances between the voxels of A and B as: 

HD (A, B ) = max (h (A, B ) , h (B, A )) , 
h (A, B ) = max a ∈ A min b∈ B || a − b|| . (2) 

In other words, HD is the maximum distance from all the mini- 

mum distances between boundaries of segmentation and bound- 

aries of the ground truth. 

Similarly to Wachinger et al. (2018) , we used Wilcoxon signed- 

rank test to test the statistical significance of: 1) the differences in 

DSC and HD between our and state-of-the-art methods; and 2) the 

effect of using spatial features and the proposed sample selection 

technique. 

3.2. MICCAI 2012 dataset 

This dataset consists of 35 T1-w MRI volumes split into 15 

cases for training and 20 cases for testing. Manually segmented 

ground truth for each image is available as well, which contains 

134 structures overall. In our experiments, we extracted 14 classes 

corresponding to seven sub-cortical structures with left and right 

parts separately. All the subject volumes have even voxel spacing 

of 1 mm 

3 with a size of 256 × 256 × 256 voxels in axial, sagittal, 

and coronal views respectively. 

8 https://www.python.org/ . 
9 http://lasagne.readthedocs.io . 

10 http://deeplearning.net/software/theano/ . 
11 https://github.com/NIC- VICOROB/sub- cortical _ segmentation . 
12 https://masi.vuse.vanderbilt.edu/workshop2012 . 
13 https://www.nitrc.org/projects/ibsr . 
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Table 1 

MICCAI 2012 dataset results. Mean DSC ± standard deviation and HD ± standard deviation values for each structure obtained using FreeSurfer, FIRST, PICSL, and our method. 

Structure acronyms are: left thalamus (Tha.L), right thalamus (Tha.R), left caudate (Cau.L), right caudate (Cau.R), left putamen (Put.L), right putamen (Put.R), left pallidum 

(Pal.L), right pallidum (Pal.R), left hippocampus (Hip.L), right hippocampus (Hip.R), left amygdala (Amy.L), right amygdala (Amy.R), left accumbens (Acc.L), right accumbens 

(Acc.R) and average value (Avg.). Highest DSC and HD values for each structure are shown in bold. 

Method FreeSurfer Fischl (2012) FIRST Patenaude et al. (2011) PICSL Wang and Yushkevich (2013) Our method 

Structure DSC HD DSC HD DSC HD DSC HD 

Tha.L 0.830 ± 0.018 4.94 ± 1.01 0.889 ± 0.018 4.65 ± 0.90 0.920 ± 0.013 3.22 ± 0.99 0.921 ± 0.018 3.39 ± 1.13 

Tha.R 0.849 ± 0.021 4.76 ± 0.75 0.890 ± 0.017 4.39 ± 0.92 0.924 ± 0.008 3.11 ± 0.79 0.920 ± 0.016 3.31 ± 1.01 

Cau.L 0.808 ± 0.079 9.89 ± 3.09 0.797 ± 0.046 3.56 ± 1.30 0.885 ± 0.074 3.44 ± 1.89 0.894 ± 0.071 3.32 ± 2.00 

Cau.R 0.801 ± 0.042 10.39 ± 3.09 0.837 ± 0.117 4.16 ± 1.37 0.887 ± 0.065 3.60 ± 1.67 0.892 ± 0.057 3.51 ± 1.67 

Put.L 0.771 ± 0.039 6.31 ± 1.09 0.860 ± 0.060 3.79 ± 1.76 0.909 ± 0.042 3.07 ± 1.40 0.916 ± 0.023 2.63 ± 1.09 

Put.R 0.799 ± 0.026 5.85 ± 0.84 0.876 ± 0.080 3.26 ± 1.23 0.908 ± 0.046 2.91 ± 1.41 0.914 ± 0.031 2.75 ± 0.99 

Pal.L 0.693 ± 0.189 3.89 ± 1.07 0.815 ± 0.088 2.89 ± 0.71 0.873 ± 0.032 2.52 ± 0.54 0.843 ± 0.101 2.38 ± 0.76 

Pal.R 0.792 ± 0.085 3.45 ± 0.98 0.799 ± 0.060 3.18 ± 0.93 0.874 ± 0.047 2.49 ± 0.59 0.861 ± 0.049 2.59 ± 0.61 

Hip.L 0.784 ± 0.054 6.35 ± 1.87 0.809 ± 0.022 5.49 ± 1.66 0.871 ± 0.024 4.34 ± 1.66 0.876 ± 0.020 4.48 ± 2.02 

Hip.R 0.794 ± 0.025 6.19 ± 1.59 0.810 ± 0.140 4.80 ± 1.66 0.869 ± 0.022 4.01 ± 1.45 0.879 ± 0.020 3.76 ± 1.23 

Amy.L 0.585 ± 0.064 5.05 ± 0.97 0.721 ± 0.053 3.54 ± 0.72 0.832 ± 0.026 2.44 ± 0.29 0.833 ± 0.032 2.39 ± 0.39 

Amy.R 0.576 ± 0.076 5.43 ± 0.90 0.707 ± 0.054 4.11 ± 0.75 0.812 ± 0.033 2.72 ± 0.50 0.821 ± 0.027 2.72 ± 0.69 

Acc.L 0.630 ± 0.055 4.28 ± 1.11 0.699 ± 0.089 6.81 ± 8.76 0.790 ± 0.050 2.57 ± 0.67 0.799 ± 0.052 2.39 ± 0.64 

Acc.R 0.443 ± 0.065 5.47 ± 1.02 0.678 ± 0.081 3.93 ± 1.75 0.783 ± 0.058 2.65 ± 0.76 0.791 ± 0.067 2.54 ± 0.65 

Avg. 0.725 ± 0.137 5.87 ± 2.48 0.799 ± 0.094 4.18 ± 2.76 0.867 ± 0.061 3.08 ± 1.27 0.869 ± 0.064 3.01 ± 1.30 

3.2.1. Experimental details 

Skull-stripping was applied to extract the brain and cut out 

other parts appearing in the MRI such as eyes, skull, skin, and fat 

using the BET algorithm ( Smith, 2002 ). The spatial intensity vari- 

ations on the MRI volumes were corrected using a bias field cor- 

rection algorithm – N4ITK ( Tustison et al., 2010 ), which is included 

in the publicly available ITK 

14 toolkit. Both preprocessing methods 

were run with default parameters. 

In our experiments, we trained a single model using the avail- 

able training set of 15 images, while we tested the other 20 im- 

ages as provided in the original MICCAI 2012 Challenge. From the 

training set, we extracted around 1 . 5 M ( 750 K of sub-cortical voxels 

and 750 K of boundary voxels) sample patches of size 32 × 32 pixels 

from three orthogonal views, where around 1 . 1 M (75%) were used 

for training and 400 K samples for validation (25%). The extracted 

patches were passed to the network for training in batches of size 

128. The network was set to train for 200 epochs, yet, we applied 

early stopping of the training process to prevent over-fitting. The 

training process was automatically terminated when the validation 

accuracy did not increase after 20 epochs. 

3.2.2. Comparison with other available methods 

The performance of the proposed approach is compared with 

widely used tools in medical practice – FreeSurfer and FIRST. We 

also compared the performance of our method with the one of 

PICSL ( Wang and Yushkevich, 2013 ) method, which is a multi-atlas 

based segmentation strategy that uses joint fusion technique with 

corrective learning. PICSL was the winner of the MICCAI 2012 Chal- 

lenge for brain structure segmentation and still shows the best re- 

sults on this dataset. We used the default parameters for the meth- 

ods of FreeSurfer and FIRST to produce segmentation masks for the 

testing volumes. Accordingly, the training and testing split matches 

the configuration we used for evaluating the proposed method. We 

have to note that, with this dataset, there were no individually re- 

ported numerical results for each of the sub-cortical structure in 

other CNN based approaches. 

3.2.3. Results 

Table 1 shows overall and per structure mean DSC and HD 

values on the MICCAI 2012 dataset. According to the results, our 

method showed significantly ( p < 0.001) higher DSC of 0.869 than 

FIRST and FreeSurfer which yielded 0.799 and 0.725 overall mean 

14 https://itk.org/ . 

DSC, respectively. Moreover, as it can be observed, the HD val- 

ues showed similar behavior as DSC, where the proposed approach 

significantly outperformed both of these methods ( p < 0.001), in 

average, with a reduction of 1.17 mm and 2.86 mm with re- 

spect to FIRST and FreeSurfer. Also, the DSC and HD results of 

our method with respect to FreeSurfer and FIRST were signifi- 

cantly higher for all the structures individually. Our method did 

not show a significant difference in comparison with PICSL in 

terms of DSC ( p > 0.05), having similar mean of 0.867 and 0.869 for 

PICSL and our method, respectively. However, there was a signifi- 

cant improvement for the left caudate, right putamen, right hip- 

pocampus, and left accumbens structures ( p < 0.05). The average 

HD values of our approach and PICSL also confirmed previous DSC 

numbers, but no significant increase per structure was observed. 

Fig. 4 shows a qualitative comparison of segmentation outputs 

from FreeSurfer, FIRST, PICSL, and our method. As it can be ob- 

served, FreeSurfer provided less accurate segmentation output with 

coarse structure boundaries. FIRST produced smooth segmentation 

on the borders, however, the overlap between the ground truth 

was poor. Our method’s segmentation output was similar to the 

one of PICSL’s and both of the methods had consistent structure 

boundaries, which were not far from the ground truth. Fig. 5 c de- 

picts an example of low DSC score (0.61) produced by our method 

for the right caudate structure. As it can be seen from the T1-w 

image, the intensities above the caudate structure are similar to 

the ones of the actual structure region defined by the manual seg- 

mentation ( Fig. 5 a). This irregularity led to an apparent atlas reg- 

istration error, where a region outside the structure was defined 

with high atlas probabilities ( Fig. 5 b). Even though our network 

takes both – the intensities and the atlas probabilities – into ac- 

count, these kinds of pathological cases may lead to inaccurate 

segmentation results. However, this is also a common issue for 

other methods as seen in Fig. 5 d, where an atlas based method 

(PICSL) also fails in accurately segmenting this structure. 

Apart from having similar results to the best performing 

method on this dataset, our strategy gained a good improvement 

in training and segmentation times. According to Landman and 

Warfield (2012) , PICSL took 330 CPU hours for training 138 classi- 

fiers used for correcting systematic errors. Reported segmentation 

time of PICSL with optimal parameters was more than 50 minutes 

per subject volume ( Wang and Yushkevich, 2013 ). In comparison 

with the above, the execution time of our CNN strategy was around 

8 hours for training and less than 5 min for testing, including the 

atlas registration. 
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Fig. 4. Qualitative comparison of segmentation outputs obtained by FreeSurfer, 

FIRST, PICSL, and our method on MICCAI 2012 dataset. a) T1-w image; b) Ground 

truth; c) FreeSurfer; d) FIRST; e) PICSL; f) Our method. Visible structures on coronal 

view: thalamus, caudate, pallidum, putamen, hippocampus, and amygdala. 

Fig. 5. Example of a segmentation result with a low DSC value for the right cau- 

date structure. a) manual segmentation; b) probabilistic atlas with overlaid manual 

segmentation shown in black; c) our method; d) PICSL. 

3.3. IBSR 18 dataset 

This dataset consists of 18 T1-w subject volumes with 

manually segmented ground truth with 32 classes. Similarly 

to the MICCAI 2012 dataset, we extracted 14 classes corre- 

sponding to seven sub-cortical brain structures with left and 

right parts separately. The subject volumes of this dataset 

have dimensionality of 256 × 256 × 128 and different voxel 

spacings: 0.84 × 0.84 × 1.5 mm 

3 , 0.94 × 0.94 × 1.5 mm 

3 , and 

1.00 × 1.00 × 1.5 mm 

3 . Images in this dataset have lower contrast 

and resolution in comparison with the MICCAI 2012 dataset, which 

makes the segmentation task even more challenging. 

3.3.1. Experimental details 

For the experiments with this dataset, we followed the same 

preprocessing steps as done with the MICCAI 2012 dataset, which 

included skull-stripping and bias field correction. Since there was 

no training and testing split on this dataset, we performed our ex- 

periments using a leave-one-subject-out cross-validation scheme. 

For each 17-1 fold, we extracted around 1 . 1 M patches from each 

of the three orthogonal views, divided into 825 K (75%) training and 

220 K (25%) validation sets. Each model was trained for 200 epochs 

applying also early stopping policy in the training process after 20 

epochs. 

3.3.2. Comparison with other available methods 

For this dataset, our results will be compared against: 1) to 

the commonly used FreeSurfer and FIRST methods including the 

statistical significance test, since the evaluation values for each 

subject volume were computed by us using the corresponding 

tools; and 2) to recent CNN approaches of Shakeri et al. (2016) , 

Mehta et al. (2017) (BrainSegNet), Bao and Chung (2016) (MS-CNN), 

and Dolz et al. (2018) . The results for the recent methods were 

taken from their corresponding papers exactly as they have been 

reported. We have to mention that most of the CNN based meth- 

ods report results only for a specific group of sub-cortical struc- 

tures, but do not show or consider the results for the other, yet 

important, sub-cortical structures. Note also that the comparison 

on HD metric is present only for FreeSurfer, FIRST and our method, 

but not for other considered methods because most of the ap- 

proaches do not report HD values. 

3.3.3. Results 

Table 2 shows the mean DSC and HD values for each of the 

evaluated methods. Our method showed a better performance in 

comparison to both FreeSurfer and FIRST methods for all the sub- 

cortical structures. The overall DSC mean of our method was sig- 

nificantly higher than both of the methods ( p < 0.001), with mean 

DSC of 0.740, 0.808, and 0.843 for FreeSurfer, FIRST and the pro- 

posed strategy, respectively. In terms of HD values, our method 

showed overall mean of 4.49, whereas FreeSurfer and FIRST yielded 

5.21 and 4.50, respectively. The proposed strategy significantly out- 

performed FreeSurfer with ( p < 0.001), however the difference with 

FIRST was not significant ( p > 0.05). As shown in Table 2 , FreeSurfer 

performed worst for almost all the structures, while FIRST and our 

method showed similar performance. On both thalamus structures, 

our method showed lowest score in comparison with the other 

methods, however it yielded better HD for the small structures 

like amygdala, accumbens, and hippocampus. In general, HD metric 

is very sensitive to outliers, hence, a few misclassified voxels can 

cause considerable reduction in performance as seen in the results 

for the thalamus structure in our method. 

Compared to other CNNs, our approach outperformed the 

method proposed by Shakeri et al. (DSC = 0.808) on the eight 

evaluated structures. Similarly, the performance of the proposed 

approach was also superior on the six structures evaluated in 

the work of Mehta et al. (DSC = 0.841). Further, we compare 

our method with MS-CNN, which has reported average DSC val- 

ues for six structures for left and right parts together (overall 

DSC = 0.807). Our method’s mean DSC on these structures was 

0.859, which was higher than the result of MS-CNN (0.807) and 

yielded higher DSC scores for all the structures. Finally, when com- 

pared with the work of Dolz et al., our method showed a compa- 



K. Kushibar et al. / Medical Image Analysis 48 (2018) 177–186 183 

Table 2 

Comparison of our method with the state-of-the-art methods as well as previous CNN approaches on IBSR dataset in terms of DSC, HD, and standard deviation. Structure 

acronyms are: left thalamus (Tha.L), right thalamus (Tha.R), left caudate (Cau.L), right caudate (Cau.R), left putamen (Put.L), right putamen (Put.R), left pallidum (Pal.L), right 

pallidum (Pal.R), left hippocampus (Hip.L), right hippocampus (Hip.R), left amygdala (Amy.L), right amygdala (Amy.R), left accumbens (Acc.L), right accumbens (Acc.R). “–”

represents no results were reported on corresponding structure. The average (Avg.) values show mean DSC for the presented structure DSC scores. Highest DSC and HD 

values for each structure are shown in bold. 

Method FreeSurfer FIRST Shakeri BrainSegNet MS-CNN Dolz Our method 

Struct. DSC HD DSC HD DSC DSC DSC DSC DSC HD 

Tha.L 0.815 ± 0.056 5.367 ± 1.168 0.893 ± 0.017 3.819 ± 0.850 0.866 ± 0.023 0.88 ± 0.050 0.889 0.92 0.910 ± 0.014 7.159 ± 0.402 

Tha.R 0.864 ± 0.022 4.471 ± 1.245 0.885 ± 0.012 4.273 ± 1.137 0.874 ± 0.021 0.90 ± 0.029 0.914 ± 0.016 7.256 ± 0.571 

Cau.L 0.796 ± 0.050 6.435 ± 1.939 0.783 ± 0.044 4.128 ± 1.575 0.778 ± 0.053 0.86 ± 0.047 0.849 0.91 0.896 ± 0.018 4.054 ± 1.412 

Cau.R 0.809 ± 0.048 8.201 ± 2.443 0.870 ± 0.027 3.687 ± 0.791 0.783 ± 0.068 0.88 ± 0.048 0.896 ± 0.020 4.153 ± 1.061 

Put.L 0.789 ± 0.038 5.310 ± 0.923 0.869 ± 0.020 4.421 ± 1.185 0.838 ± 0.026 0.91 ± 0.022 0.875 0.90 0.900 ± 0.014 5.216 ± 1.788 

Put.R 0.829 ± 0.031 4.716 ± 1.189 0.880 ± 0.010 4.725 ± 1.814 0.824 ± 0.039 0.91 ± 0.023 0.904 ± 0.012 4.577 ± 0.410 

Pal.L 0.632 ± 0.171 4.652 ± 1.294 0.810 ± 0.033 3.477 ± 0.572 0.763 ± 0.031 0.81 ± 0.089 0.787 0.86 0.825 ± 0.050 3.849 ± 0.574 

Pal.R 0.774 ± 0.032 3.966 ± 0.793 0.809 ± 0.037 3.990 ± 1.075 0.736 ± 0.055 0.83 ± 0.086 0.829 ± 0.046 3.700 ± 0.576 

Hip.L 0.760 ± 0.036 5.787 ± 1.264 0.806 ± 0.023 5.571 ± 1.592 – 0.81 ± 0.065 0.788 – 0.851 ± 0.024 4.177 ± 1.087 

Hip.R 0.767 ± 0.060 5.615 ± 1.600 0.817 ± 0.023 4.349 ± 0.984 – 0.83 ± 0.071 0.851 ± 0.024 4.124 ± 0.824 

Amy.L 0.661 ± 0.069 5.521 ± 1.517 0.742 ± 0.064 4.648 ± 1.950 – 0.76 ± 0.087 0.654 – 0.763 ± 0.052 4.326 ± 0.822 

Amy.R 0.690 ± 0.067 4.720 ± 1.553 0.757 ± 0.062 4.402 ± 1.493 – 0.71 ± 0.087 0.768 ± 0.058 4.292 ± 1.064 

Acc.L 0.604 ± 0.071 3.634 ± 0.783 0.684 ± 0.098 7.770 ± 8.803 – – – – 0.744 ± 0.053 3.026 ± 0.676 

Acc.R 0.574 ± 0.074 4.507 ± 1.077 0.703 ± 0.076 3.733 ± 1.482 – – 0.752 ± 0.047 2.995 ± 0.609 

Avg. 0.740 ± 0.110 5.207 ± 1.761 0.808 ± 0.080 4.499 ± 2.810 0.808 ± 0.063 0.841 ± 0.064 0.807 0.898 0.843 ± 0.071 4.493 ± 1.533 

Table 3 

Effect of spatial features and the proposed sample selection technique. MICCAI 

2012 dataset. Random sampling – method without using the sample selection from 

boundaries (including the spatial priors). No atlas – method without incorporating 

atlas priors (using the sampling technique). Final method – proposed method that 

includes both the spatial features and the sampling technique. Structure acronyms 

are: left thalamus (Tha.L), right thalamus (Tha.R), left caudate (Cau.L), right caudate 

(Cau.R), left putamen (Put.L), right putamen (Put.R), left pallidum (Pal.L), right pal- 

lidum (Pal.R), left hippocampus (Hip.L), right hippocampus (Hip.R), left amygdala 

(Amy.L), right amygdala (Amy.R), left accumbens (Acc.L), right accumbens (Acc.R). 

The values with an asterisk ( ∗) indicate that the final method obtained significantly 

higher results than that of the strategy without atlas priors. Highest DSC values for 

each structure are shown in bold. 

Method Random sampling No atlas Final method 

Tha.L 0.860 ± 0.013 0.911 ± 0.024 0.921 ± 0.017 ∗

Tha.R 0.862 ± 0.014 0.917 ± 0.017 0.920 ± 0.016 

Cau.L 0.831 ± 0.067 0.880 ± 0.103 0.894 ± 0.071 ∗

Cau.R 0.834 ± 0.048 0.864 ± 0.131 0.892 ± 0.057 

Put.L 0.871 ± 0.024 0.900 ± 0.073 0.916 ± 0.023 ∗

Put.R 0.872 ± 0.027 0.913 ± 0.029 0.914 ± 0.031 

Pal.L 0.784 ± 0.040 0.852 ± 0.086 0.843 ± 0.101 

Pal.R 0.775 ± 0.057 0.833 ± 0.099 0.861 ± 0.049 ∗

Hip.L 0.778 ± 0.034 0.871 ± 0.019 0.876 ± 0.020 ∗

Hip.R 0.770 ± 0.026 0.876 ± 0.018 0.879 ± 0.020 ∗

Amy.L 0.709 ± 0.025 0.824 ± 0.037 0.833 ± 0.032 ∗

Amy.R 0.716 ± 0.054 0.819 ± 0.035 0.821 ± 0.027 

Acc.L 0.744 ± 0.060 0.796 ± 0.052 0.799 ± 0.052 

Acc.R 0.689 ± 0.091 0.753 ± 0.106 0.791 ± 0.067 ∗

Avg. 0.792 ± 0.076 0.858 ± 0.083 0.869 ± 0.064 ∗

rable performance, although this last work showed slightly higher 

averaged DSC values for the four biggest structures. 

3.4. Effect of the spatial priors 

We ran experiments using the proposed method with and with- 

out spatial priors to determine the effect of using such features to 

the segmentation performance on both datasets. For this experi- 

ment, we analyzed the results in terms of DSC on the MICCAI 2012 

dataset. We did not present the results of this experiment for the 

IBSR 18 dataset for simplicity, since it produced a similar outcome. 

In order to test our network without the spatial features, we mod- 

ified the architecture ( Fig. 1 ) by removing the branch of atlas prob- 

abilities and keeping only three branches of convolutional layers. 

Table 3 , shows DSC results of our method with random sam- 

pling, without using spatial features, and the final method. Inclu- 

a)

b)

c)

manual w/o atlas          w/ atlas

Fig. 6. Comparison of segmentation outputs for difficult areas of the (a) pallidum, 

(b) putamen, and (c) accumbens structures in some of the images from MICCAI 

2012 dataset using the proposed method with and without the spatial priors. Re- 

gions of remarkable improvement when employing the atlas priors are indicated 

with arrows. 

sion of the spatial features significantly improved the overall DSC 

( p < 0.001), as well as the results for almost all the structures. The 

segmentation difference can be seen from Fig. 6 , where difficult 

areas of the pallidum, putamen, and accumbens structures were 

segmented better by the method that comprised the spatial fea- 

tures. Hence, the spatial priors helped to overcome difficult areas, 

producing more accurate segmentation for some images that had 

intensity and shape irregularities that could not be observed in 

any of the training images. Although the spatial priors are effec- 

tive to overcome these sort of issues, it could be misleading in 

certain cases, where the irregularity is extremely large - as shown 

in Fig. 6 b, where a hole is present in the left pallidum structure. 

The final method obtained lower score for the left pallidum on this 

subject volume, which downgraded the average DSC for this struc- 

ture ( Table 3 ). On the other hand, our method without the spatial 

priors segmented this area better than the final approach, however, 

the overall difference was not significant (p = 0 . 101) . 
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Fig. 7. Illustration of misclassification occurrence on borders. MICCAI 2012 dataset. 

(a, b) T1-w image and manual segmentation; (c, d) segmentation using random 

sample selection and difference from ground truth; (e, f) segmentation using the 

sample selection from borders and difference from ground truth. 

3.5. Effect of sample selection 

In this section, we show the effect of sample selection from 

structure boundaries using the MICCAI 2012 dataset. For this ex- 

periment, random sample selection from all the brain tissues has 

been used for training the network. For every epoch, we ex- 

tracted the same number of voxels ( 1 . 5 M ), split equally into the 

sub-cortical structures ( 750 K ) and background ( 750 K ). Here, back- 

ground voxels were randomly selected from whole brain volume, 

instead of selecting only from structure boundaries (see Fig. 2 d). 

The network was again trained for 200 epochs using the same con- 

figuration. Spatial features were also included in training. 

Table 3 shows the results corresponding to this experiment. 

Mean DSC obtained with our network without using the sample 

selection technique was 0.792 compared to 0.869 of the final ap- 

proach. Accordingly, the proposed sample selection technique sig- 

nificantly improved the network’s performance in average as well 

as for each of the structures ( p < 0.001). Fig. 7 illustrates the seg- 

mentation results produced by our final approach and without ap- 

plying sampling from borders. As it can be seen from the dif- 

ference between ground truth and segmentation masks, the fi- 

nal strategy produced better segmentation on the boundaries than 

random sample selection method. In fact, the difference of our seg- 

mentation and the ground truth mask was not substantial, but only 

a few voxels. We also can observe that the intensities on the bor- 

der voxels of the structures are mostly confounding. Therefore, as- 

signing these voxels to the structure or background is highly de- 

pendent on ground truth. 

4. Discussion 

In this paper, we have proposed a fully automated 2.5D patch- 

based CNN approach that combines both convolutional and a priori 

spatial features for accurate segmentation of the sub-cortical brain 

structures. In our approach, a structural sub-cortical atlas has been 

registered into the image space to extract the spatial probability 

of each voxel, and, later, fused with the extracted convolutional 

features in the fully connected layers. The inclusion of the spatial 

information increases the execution time by adding atlas registra- 

tion. However, it allows us to filter out misclassified regions that 

have bigger size than the actual structures in the segmentation 

output, which may appear in unobserved areas (i.e. not included 

in the training phase) of the brain as a consequence of applying 

restricted sampling. As seen in all the experiments, the addition 

of the spatial priors and the restricted sampling strategy have a 

significant effect on the accuracy of the proposed method, outper- 

forming or showing a comparable performance to both classic as 

well as other novel deep learning approaches for segmenting the 

sub-cortical structures. 

Compared to other state-of-the-art techniques such as 

FreeSurfer and FIRST, the spatial agreement of the proposed 

method with the manual segmentation is clearly higher in all 

evaluated datasets. As seen in other radiological tasks, this rein- 

forces the effectiveness of CNN techniques when manual expert 

annotations are available. On the MICCAI 2012 dataset, our method 

shows an excellent performance, slightly over-performing the 

best challenge participant strategy – PICSL. Although not directly 

evaluated, our method clearly reduces the training and inference 

time. However, it has to be noted that most of the execution time 

of PICSL is due to highly computational registration processes 

which were carried out on CPU, while our method relies on GPU 

processors to speed-up training. Other CNN methods have also 

been evaluated on the MICCAI 2012 database ( Wachinger et al., 

2018; Mehta et al., 2017 ). However, these works do not report 

exact evaluation values for sub-cortical structures, hence, no direct 

comparison can be established. 

In contrast, different CNN methods that have been evaluated 

using the IBSR 18 dataset have reported exact numerical val- 

ues. When compared to other CNN approaches, our method also 

showed a significant increase in the performance with respect to 

most of them, and a comparable behavior with the method pro- 

posed by Dolz et al. However, as seen in Section 3.3 , previous stud- 

ies do not always deal with all sub-cortical structures, restricting a 

more detailed comparison with respect to our proposal. Addition- 

ally, the training methodology also differed among the strategies. 

In this aspect, although all our experiments were carried out using 

the leave-one-out approach, we also repeated our IBSR 18 exper- 

iments using a six-fold (15 training and three testing) validation 

strategy to perform a fair comparison with some of the consid- 

ered methods. The complete results of the six-fold validation strat- 

egy were not depicted in the paper for simplicity, but, our network 

achieved similar results with only 0.005 of difference in DSC with 

respect to the leave-one-out strategy, showing the robustness of 

the proposed approach to changes in the number of training im- 

ages. 

According to the experimental results, employing the spatial 

features to the CNN significantly improved the performance of 

the network. The atlas priors showed to be useful in guiding the 

network when segmenting the difficult areas. As we have seen 

in Section 3.4 , CNN that leveraged the spatial priors coped with 

these intensity based difficulties. Accordingly, by providing the at- 

las probabilities, we make sure that the anatomical shape and 

structure are taken into account before assigning a label to a 

voxel. Since the sub-cortical structures follow the similar anatom- 

ical structure in all patients, the inclusion of the spatial features 



K. Kushibar et al. / Medical Image Analysis 48 (2018) 177–186 185 

makes the segmentation approach more robust to irregularities in 

intensity based features obtained from T1-w images by providing 

additional location-based information. Despite being prone to the 

inherent errors in image registration and not showing as much DSC 

improvements as in border-selective sampling ( Table 3 ), the addi- 

tion of these a priori spatial class probabilities, or other explicit 

fused problem-specific information, may have other direct bene- 

fits such as reduction of the effect of low contrast, poor resolution, 

presence of noise, and artifacts close to the structure boundaries. 

Some examples of improvements in this regard were illustrated in 

Fig. 6 . 

Our results also showed the importance of sampling and class 

balancing in the training process. By feeding the network with only 

the most difficult negative samples, we ensured that useful sam- 

ples were used in the training process. When compared to the 

rest of CNN approaches, our method without restricted sampling 

yielded a similar performance to other methods such as the one 

of Shakeri et al. (2016) and MS-CNN ( Bao and Chung, 2016 ) even 

if trained on the same conditions, which highlights the effective- 

ness of the used sampling strategy. As a counterpart, these kind of 

approaches tend to generate false positive regions outside the sub- 

cortical space, due to the lack of contextual spatial information of 

the whole brain. Within our proposal, we took advantage of the al- 

ready computed spatial priors to reduce the segmentation to only 

a region of interest containing the sub-cortical structures, which 

reduced remarkably the inference time. Remaining false positive 

voxels were then post-processed by maintaining only the biggest 

region for each class. 

Our study comprises some limitations. Although our analysis 

shows that incorporating a-priori atlas information is effective on 

segmentation of the sub-cortical structures, there is room for fur- 

ther analysis of this approach in other brain segmentation tasks. 

Furthermore, the addition of atlas probabilities requires nonlinear 

registration, which may be tedious and prone to errors if applied 

on extreme cases such as advanced pathological subjects with a 

high degree of atrophy. Additionally, the extrapolation of our sam- 

ple selection technique to other more general brain segmentation 

tasks should also be studied. As part of supervised training strate- 

gies, the accuracy of CNN methods tend to decrease significantly 

in other image domains (i.e. different MRI scanner, image proto- 

col, etc.) than the ones used for training. Nevertheless, there is 

still a little evidence of the capability of CNN methods in radiolog- 

ical tasks with small or none datasets, which highlights the need 

of further studying this issue to increase the accuracy of such ap- 

proaches. With no more evidence in this field, FIRST may be more 

appropriate in these scenarios when few or no training data is 

available. Another constraint involves the applicability of the pro- 

posed method on datasets of images with neurological diseases 

comprising, for instance, white matter lesions, which affect brain 

structure segmentation ( González-Villà et al., 2017 ). 

5. Conclusion 

In this paper, we have presented a novel CNN based deep 

learning approach for accurate and robust segmentation of the 

sub-cortical brain structures that combines both convolutional and 

prior spatial features for improving the segmentation accuracy. In 

order to increase the accuracy of the classifier, we have proposed 

to train the network using a restricted sample selection to force 

the network to learn the most difficult parts of the structures. 

As seen from all the experiments carried out on the public MIC- 

CAI 2012 and IBSR 18 datasets, the addition of the spatial priors 

and the restricted sampling strategy have a significant impact on 

the effectiveness of the proposed method, outperforming or show- 

ing a comparable performance to state-of-the-art methods such as 

FreeSurfer, FIRST and different recently proposed CNN approaches. 

In order to encourage the reproducibility and the use of the pro- 

posed method, a public version is available to download for the 

neuroimaging community at our research website. 
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Chapter 3

Supervised domain adaptation for
automatic sub-cortical brain
structure segmentation with
minimal user interaction

Deep learning based methods require a considerable amount of labelled training
data to perform well on the designated task. When segmenting medical images, a
CNN trained with one set of images does not perform well on another set of scans
that have different characteristics such as acquisition protocol or scanner type. This
issue is known as the ‘domain-shift problem’ and in this chapter, we present our
research on supervised domain adaptation using a transfer learning strategy. Using
our method, we have achieved similar state-of-the-art results obtained with a full
training when using only the half of the training images. Moreover, it was possible
to significantly outperform the well-known traditional tools using only one or just a
few training images. This proposal has been published in the following paper:
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In recent years, some convolutional neural networks (CNNs) have been proposed to segment sub-
cortical brain structures from magnetic resonance images (MRIs). Although these methods provide 
accurate segmentation, there is a reproducibility issue regarding segmenting MRI volumes from 
different image domains – e.g., differences in protocol, scanner, and intensity profile. Thus, the 
network must be retrained from scratch to perform similarly in different imaging domains, limiting the 
applicability of such methods in clinical settings. In this paper, we employ the transfer learning strategy 
to solve the domain shift problem. We reduced the number of training images by leveraging the 
knowledge obtained by a pretrained network, and improved the training speed by reducing the number 
of trainable parameters of the CNN. We tested our method on two publicly available datasets – MICCAI 
2012 and IBSR – and compared them with a commonly used approach: FIRST. Our method showed 
similar results to those obtained by a fully trained CNN, and our method used a remarkably smaller 
number of images from the target domain. Moreover, training the network with only one image from 
MICCAI 2012 and three images from IBSR datasets was sufficient to significantly outperform FIRST with 
(p < 0.001) and (p < 0.05), respectively.

Structural and morphological changes in brain structures are often associated with different neurodegenera-
tive disorders such as bipolar disorder1, Alzheimer’s2, schizophrenia3, Parkinson’s disease4, and multiple scle-
rosis5. Many of these neurological abnormalities are usually diagnosed with careful analysis of the structural, 
T1-weighted (T1-w) magnetic resonance images (MRIs). Analysis of the sub-cortical structures – located beneath 
the cerebral cortex and including thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accum-
bens – is very important. Their deviations in volume over time are considered as biomarkers of the aforemen-
tioned diseases and are used for pre-operative evaluation and surgical planning6, longitudinal monitoring for 
disease progression or remission7,8.

Providing an accurate automated segmentation for the sub-cortical structures is very important because man-
ually labelling an MRI volume is a time-consuming and tedious task9. Well-known, commonly used tools such 
as FIRST10 and FreeSurfer11 are available unsupervised methods. However, the advancement in computational 
technologies, such as graphics processing units (GPUs), has brought a new way to tackle the problem of image 
classification and segmentation using deep learning techniques, particularly, convolutional neural networks 
(CNNs). These approaches showed better results in many computer vision tasks such as image classification12, 
object recognition13 and segmentation14, than the traditional unsupervised methods that leverage hand-crafted 
features because the CNN features are learned directly from the training images15.

In recent years, deep learning has become a popular approach in medical imaging and brain MRI analysis16,17. 
Some methods based on deep learning strategies have also been proposed for brain structure segmentation18–20. 
The results of these approaches were promising; however, these methods were trained and tested in the same 
image domain – i.e., the same protocol, same MRI scanner, resolution and image contrast – and their behaviour 
with image domain change has not been evaluated. This is a common issue in supervised approaches, where a 
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change in image domain causes an unexpected outcome because such methods learn a data distribution solely 
from the training set, making the supervised model less generalisable. Moreover, obtaining a well-trained deep 
CNN model requires a vast amount of training data with ground truth, which currently is a major issue in the 
medical image analysis field. Therefore, the traditional unsupervised methods – FIRST and FreeSurfer – are still 
the preferred tools of choice.

Few studies have proposed different methods to overcome the domain shift difficulty in medical images. These 
methods are often referred to as domain adaptation methods that tackle the problem of domain shift in medical 
images and address the broader statistical issue of out-of-sample generalisation in deep learning. One of the 
recent proposals includes domain adaptation using adversarial networks21. In this approach, a network contains 
an additional domain discriminator branch, which penalises the network when the features extracted from two 
different domains are distinct. In doing so, the network is forced to learn more domain invariant features. The loss 
computation with the discriminator does not require ground truth segmentation; therefore, adversarial domain 
adaptation could be carried out in an unsupervised manner for the target dataset. However, such approaches 
require a subtle parameter tuning and training of the network from scratch for different target domains. Another 
way to address the domain shift problem is via transfer learning, where the weights of an already trained network 
are fine tuned to adapt to a new target domain. This is inspired by the early convolutional layers capturing similar 
low-level features such as edges, curves and blobs. Accordingly, by performing an additional training on a smaller 
target dataset, it is possible to fine tune only some of the deep layers of the network that represent higher level 
features. Recent studies22 have shown that transfer learning and fine tuning decreases the training time drastically 
while demanding fewer training samples than that of full training. Additionally, the behaviour of the transfer 
learning strategy with different set of parameters has been recently analysed, indicating the effectiveness of this 
approach over full training for brain white matter hyperintensity segmentation23. In their work, the authors23 
investigated two datasets containing fluid-attenuated inversion recovery (FLAIR) and magnetisation-prepared 
rapid gradient-echo (MPRAGE). The images of the two datasets were acquired with the same scanner and proto-
col, except for FLAIR images that had different image resolutions.

In this paper, we investigated the transfer learning and fine tuning strategies for domain adaptation on MRI 
volumes acquired with different scanners and protocols to segment sub-cortical brain structures. In our experi-
ments, we employed a state-of-the-art deep learning based method that combines spatial and deep convolutional 
features for sub-cortical structure segmentation19. Within our study, we demonstrated the effect of domain shift 
on the neural network’s performance and analysed an adequate number of MRI volumes to adapt the CNN to a 
new domain and outperform traditional unsupervised methods. Because the sub-cortical structures drastically 
varied in their volumes, structure-wise performance after domain adaptation with different number of training 
images was also evaluated. Additionally, we performed an experiment to show the applicability of this study in 
real-case scenarios by accelerating the initial manual segmentation. Also, the training and testing time complex-
ities were evaluated to examine how transfer learning could speed up the segmentation process compared with 
a fully trained neural network. Moreover, to encourage the reproducibility of our results, we made the source 
code used in training, transfer learning, Dice similarity coefficient (DSC), and statistical test calculations publicly 
available. Additionally, the manually corrected segmentation masks used in our experiments and label map-
pings for the MICCAI 2012 and IBSR datasets were made available for the community at https://github.com/
NIC-VICOROB/sub-cortical_segmentation.

Materials
Datasets. In this work, we used two well-known, publicly available datasets – Internet Brain Segmentation 
Repository (IBSR) and MICCAI Multi-Atlas Labelling challenge (MICCAI 2012)24. More details on these datasets 
and their domain differences are provided in the following sections.

MICCAI 2012 dataset. The MICCAI 2012 dataset contains 35 images in total, which are split into 15 training 
and 20 testing image volumes according to the Multi-Atlas Labelling challenge. The 20 testing images were always 
used only for testing purposes and were never included in the training or validation processes. All images have a 
1 × 1 × 1 mm3 resolution and image size of 256 × 256 × 256. Additionally, all image volumes in this dataset were 
acquired using the same MRI scanner – SIEMENS (1.5T). They were provided with manually annotated ground 
truth masks for 134 structures. We extracted 14 classes corresponding to the seven sub-cortical structures with 
left and right parts each.

IBSR. The IBSR dataset consists of 18 images with and image size of 256 × 256 × 128 and three different resolu-
tions: 0.84 × 0.84 × 1.5 mm3, 0.94 × 0.94 × 1.5 mm3 and 1 × 1 × 1.5 mm3. The subject volumes of the IBSR dataset 
were obtained using two different MRI scanners: GE (1.5T) and SIEMENS (1.5T). Manually segmented ground 
truths for 43 different structures are provided25, and we extracted the 14 labels corresponding to the sub-cortical 
structures for our experiments. The MR brain images in this dataset and their manual segmentations were pro-
vided by the Center for Morphometric Analysis at Massachusetts General Hospital. Additionally, this dataset is a 
part of the Child and Adolescent NeuroDevelopment Initiative26 (CANDI) and was provided under the Creative 
Commons: Attribute license27.

Domain comparison. Proper selection of the datasets for the transfer learning experiments is crucial because 
the domain difference should be present to confirm the method’s robustness. As seen above in the selected data-
sets’ details, they differ in resolution and in MRI scanner type. The intensity distribution only in the brain area 
(i.e., skull-stripped) of these datasets also varies in terms of their profile (Fig. 1). The maximum intensity in the 
MICCAI 2012 volume reaches up to ≈2000 and that for the IBSR image is ≈140. This behaviour in intensity 
distribution is observed among the subjects in both datasets. Because the contrast and the intensity values of the 
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structures of interest are represented from different distributions, pre-processing techniques such as contrast 
enhancement and histogram equalisation applied for each image individually cannot compensate for the imaging 
protocol differences between the datasets (e.g., image resolution). However, MRI volume standardisation across 
datasets using histogram matching could be an interesting line of research and is also analysed in this paper. 
Considering these variations, the datasets of interest perfectly fit the challenge of the domain shift problem.

Moreover, there is within-group variability of the intensity distributions of the subject volumes in the IBSR 
dataset among the three different image resolution groups due to the different MRI machines and various magni-
tudes of the partial volume effect. As shown in Fig. 1, the individual intensity distributions of the images in IBSR 
dataset also vary drastically, whereas the MRI volumes of MICCAI 2012 follow a similar profile. This intensity 
distribution variability in IBSR images makes the domain adaptation more challenging.

Methods
CNN architecture. The CNN architecture used in our experiments is shown in Fig. 2 and consists of three 
paths to process 2D patches of size 32 × 32. Each path is equipped with five convolutional layers, which are fol-
lowed by a fully connected layer. The outputs of these paths are concatenated together with an additional 15 units 
corresponding to atlas probabilities. Finally, two fully connected layers are used to mine and classify the produced 
output by the preceding layers. Three 2D patches are extracted for every voxel from the axial, sagittal and coronal 
views of a 3D volume, making 2.5D patch samples. Next, each orthogonal 2D patch of the 2.5D sample is inputted 
into the three paths of the CNN. Although full 3D patches contain more surrounding information for a voxel, it is 
more memory demanding than using 2D patches. Therefore, employing 2.5D patches is a good trade-off between 
memory and contextual information for the network.

Network training. To train the network, all samples were extracted from the 14 sub-cortical structures, 
and the background (negative) samples were selected only from the structure boundaries, which were obtained 
by dilating the ground truth by five voxels. Extracting the negative samples in this way allows the network to 
learn the most difficult areas of the region of interest that correspond to the structure borders19. Next, the atlas 
probabilities for 14 structures and the background are extracted, corresponding to all training samples and mak-
ing a vector of size 15. These probabilities provide the network with spatial information and guide it to over-
come intensity-based difficulties in some MRI volumes such as imaging artefacts and small tissue changes19. 
All the extracted samples were randomly split into training and validation sets with 75% and 25% proportions, 
respectively.

Once the training samples were extracted along with their atlas probabilities, the training of the network was 
performed in batches of 128 for 200 epochs. An early stopping policy was defined with patience 20 – i.e., the 
training stops if no increase was observed in the validation accuracy for 20 consecutive epochs. Optimisation was 
conducted for the categorical cross-entropy loss function using the Adam28 optimisation method with an initial 
learning rate of 10−2.

transfer learning. The transfer learning and fine tuning procedures were performed as follows. First, the 
network is fully trained from scratch as described above with one dataset, referred to as the source. Next, all the 
convolutional layers were frozen, and the weights of the last classification layer were reset. Accordingly, when the 
network is trained with the images from another dataset, referred to as a target, the weights of the convolutional 
layers are not updated. Additionally, the fully connected layers of the network were fine tuned – i.e., the weights 
were adjusted to better fit the new domain. We trained the softmax layer from scratch because it was used to 

Figure 1. Intensity distributions in the brain area of the MRI volumes of MICCAI 2012 (a) and IBSR (b) 
datasets. The mean histogram is shown in solid red, and the intensity distributions of all images are shown in 
green for MICCAI 2012 and IBSR-GE datasets, and blue for IBSR-Siemens.
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classify the extracted features. Note that the initial learning rate was reduced to 10−4 during transfer learning to 
avoid rapid weight updates because most of the trainable parameters in the network were frozen.

Network testing. To test a trained model, all 2.5D patches and corresponding atlas vectors were extracted 
from an MRI volume. Because the sub-cortical structures are located in the central part of the brain, the patches 
were obtained from a region of interest (ROI) defined by a mask from the dilated atlas probabilities. This helps 
to increase the processing speed and avoid false positives around the sub-cortical region. The network was well 
trained to classify the background only around the structures; therefore, some misclassified voxels may appear 
under the ROI. Those voxels were removed by keeping only the largest volume for each class.

Image pre-processing. Before extracting patch samples from the MRI volumes to train the network, we 
performed some commonly used pre-processing steps:

•	 Brain extraction – i.e., removing non-brain structures, such as the eyes and skull, from an MRI volume. Com-
pared with the previous study on sub-cortical structure segmentation19, we used the ROBEX (v1.2) tool29 
instead of BET (fsl-v5.0)30. This is due to the robustness of the former method over the latter. Additionally, 
ROBEX does not require any parameter tuning compared with BET.

•	 Atlas registration – we performed non-linear registration of a template MRI with a probabilistic atlas to all 
images in the selected datasets. The probabilistic atlases were used in the network as explicit spatial infor-
mation, which helps to improve the segmentation accuracy19. In this study, we used the well-known Har-
vard-Oxford probabilistic atlas31 distributed with the FSL tool (http://www.fmrib.ox.ac.uk/fsl). The non-linear 
registration of the atlas template to the subject volume was applied using the fast free-form deformation 
method32 that was implemented in the NiftyReg tool (http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg).

•	 Intensity normalisation – as the maximum intensity values from both of the datasets differ drastically, all the 
subject volume intensities are normalised to have a zero mean and unit variance before training and testing 
the pipeline.

technical details. The network was implemented using the Keras33 deep learning library. The DSC scores 
were obtained using the Nipype34 data processing framework. The statistical tests were performed using the SciPy 
python package35. The Nibabel36 python package was used to read and write the medical imaging files.

Figure 2. CNN architecture. The weights of all convolutional layers are frozen during transfer learning. The 
fully connected layers are fine-tuned and the last classification layer is trained from scratch.
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experiments and evaluation. We trained our network with one dataset as the source and applied transfer 
learning with the other set as a target. Next, we repeated the same experiment but changed the datasets in the 
opposite order to show the method’s robustness. The target training MRI volumes, randomly chosen in previous 
iterations, are kept in the next iteration of transfer learning to have an unbiased estimate on changes in the results. 
For the sake of brevity, we compared our results with those of FIRST. According to our previous study19, FIRST 
showed better results than FreeSurfer to segment the sub-cortical structures in both selected datasets, and com-
parison of our method only with the former method is sufficient. The following experiments were carried out 
using the two selected datasets to evaluate the performance of domain adaptation using transfer learning.

•	 From IBSR to MICCAI 2012 – All images from IBSR were used as the source, and domain adaptation was 
performed for the target MICCAI 2012 dataset. The results for the MICCAI 2012 dataset are shown for the 20 
testing cases, and images for transfer learning were randomly selected from the 15 training cases.

•	 From MICCAI 2012 to IBSR – All images from MICCAI 2012 were used as the source, and the network was 
adapted to the target IBSR images. Because the IBSR dataset does not have training and testing splits, for 
each iteration of transfer learning, we randomly selected the corresponding number of MRI volumes and 
repeated the iteration with different images – e.g., a single iteration using one training image takes two steps: 
(1) training once with one image; (2) then training again with a different image to obtain an overall score for 
all 18 cases.

•	 Grouping by MRI scanner – The images of the IBSR dataset were split into two sets depending on the MRI 
scanner manufacturer for the IBSR-GE (12 images) and IBSR-Siemens (6 images) groups. The MICCAI 2012 
dataset was used as the source, while the two new groups were set as targets. Due to the smaller number of 
images in the IBSR-Siemens group, transfer learning was performed for three iterations and the source dataset 
remained the same.

•	 Corrected FIRST segmentation as ground truth – Transfer learning was applied using the manually corrected 
segmentation outputs from FIRST as the ground truth. This shows how the initial domain adaptation of the 
network could be accelerated and avoid ground truth preparation from scratch.
Additionally, the results of the first two experiments were also compared with two different approaches that 
could be used to tackle the domain shift problem:

•	 Standardised (normalised) images – The intensities of all images in both datasets were standardised to the 
mean histogram of the MICCAI 2012 using the two-stage method of Nyúl37. This experiment was performed 
to evaluate how intensity normalisation would affect the network’s performance because it has been shown to 
be effective for three classical image segmentation algorithms38.

•	 Mixed datasets – The network was trained from scratch using a mixed dataset containing normalised images 
of all subjects from source and iteratively added target volumes. This is to compare transfer learning with the 
performance of the network when there is more variability in the training data distribution.

Furthermore, the execution times regarding the neural network’s training and testing were evaluated to show 
how transfer learning can accelerate the convergence of the CNN.

We used the Dice similarity coefficient (DSC) to quantitatively analyse the results of our experiments. This 
metric evaluates the overlap of the automatic segmentation mask over the manually segmented ground truth. The 
DSC value varies between 0 (non-overlap) and 1 (full overlap). Because the larger structures contribute to the 
average DSC more than the smaller ones, penalised DSC by the inverse of the volume structure39 could be used 
to evaluate the performance of the method. In doing so, different segmentation approaches can be compared 
without volume bias. Therefore, we also used the weighted DSC to compare and verify the results of different 
experimental setups for consistency. Additionally, in our results, we showed the DSC values for each structure 
independently to demonstrate the evolution of the method’s performance along the iterations of transfer learning. 
Moreover, we used the pairwise non-parametric Wilcoxon signed-rank test (two-sided) to compare the statistical 
significance of our results with respect to the state-of-the-art tools. The results were considered significant for 
(p < 0.05).

Results
From IBSR to MICCAI 2012. In this section, the results for MICCAI 2012 are shown when the IBSR data-
set was used as the source. Initially, the network was fully trained with all the images from IBSR, and transfer 
learning iterations were performed by incrementing the target training set’s size at a time. Table 1 summarises the 
DSC scores for FIRST, the results from full training, and the results when using transfer learning for the MICCAI 
2012 dataset. Fine tuning the network with only one image drastically increased the performance of the network, 
significantly outperforming FIRST (p < 0.001). Incrementally adding an image volume to the target training set 
gradually improved the overall DSC score from 0.834 up to 0.860 (p < 0.001). Additionaly, it was possible to 
obtain a result similar to the fully trained network using only half of the training images. The domain shift effect 
on the trained network could be clearly seen from the results where no transfer learning was applied: an extreme 
performance drop compared with the fully trained network was observed in both, overall and structure-wise 
scores. These low scores were caused by confounding segmentation outputs of the network, where left and right 
parts for some structures were swapped.

Improvement in the DSC values for each structure when increasing the number of target training images 
can be seen in Fig. 3(a). The highest DSC scores were achieved for the large structures such as the thalamus and 
putamen. Additionally, the difference in DSC when using one or seven images for training was not high, indicat-
ing that one image was adequate to obtain accurate segmentation for these structures. Interestingly, substantial 
improvement could be achieved for the smallest structures such as the amygdala and accumbens when the num-
ber of training images for transfer learning was increased.
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Moreover, we observed that transfer learning actually helped to leverage previously acquired knowledge from 
the source dataset. Figure 4(a) illustrates the average DSC results for seven iterations of transfer learning with 
original images, training from scratch, transfer learning with standardised images, mixed set training, and the 
results of FIRST, full training, and the results of testing standardised images without transfer learning. The net-
work performed worse in terms of the overall average DSC when trained from scratch with the same number of 
training images as that of transfer learning. Intensity normalisation definitely helped to improve the performance 
of the network when it was trained with the source and directly tested on the target without adapting the network 
to the new domain. As shown in Fig. 5(a), the standardised image segmentation was better, improving the average 
DSC from 0.608 to 0.787 for the MICCAI 2012 dataset (p < 0.001). However, no substantial improvement was 
observed when the standardised images were used for transfer learning. Additionally, using seven target training 
volumes was significantly less using the standardised images, with a DSC of 0.842 compared with 0.860 using the 
original images (p < 0.001). Additionally, transfer learning showed a better performance than that of the mixed 
dataset results. As illustrated in Fig. 4(a), the DSC values obtained by transfer learning was significantly higher 
for all iterations (p < 0.001). The results in the first three iterations were similar, slightly increasing from 0.806 to 

Str. FIRST FT No TL TL 1 TL 2 TL 3 TL 4 TL 5 TL 6 TL 7

Tha.L 0.889 ± 0.017 0.920 ± 0.017 0.529 ± 0.251 0.905 ± 0.014 0.904 ± 0.017 0.908 ± 0.017 0.909 ± 0.015 0.910 ± 0.015 0.912 ± 0.015 0.913 ± 0.015

Tha.R 0.890 ± 0.018 0.924 ± 0.016 0.418 ± 0.220 0.903 ± 0.012 0.908 ± 0.013 0.912 ± 0.011 0.914 ± 0.011 0.914 ± 0.012 0.912 ± 0.014 0.917 ± 0.012

Cau.L 0.797 ± 0.117 0.885 ± 0.071 0.694 ± 0.090 0.861 ± 0.066 0.867 ± 0.062 0.874 ± 0.063 0.875 ± 0.063 0.878 ± 0.061 0.880 ± 0.062 0.884 ± 0.060

Cau.R 0.837 ± 0.046 0.887 ± 0.057 0.774 ± 0.050 0.870 ± 0.049 0.874 ± 0.051 0.877 ± 0.050 0.883 ± 0.053 0.881 ± 0.053 0.886 ± 0.052 0.885 ± 0.053

Put.L 0.860 ± 0.080 0.909 ± 0.023 0.884 ± 0.023 0.903 ± 0.023 0.910 ± 0.024 0.911 ± 0.025 0.913 ± 0.023 0.914 ± 0.023 0.914 ± 0.023 0.915 ± 0.024

Put.R 0.876 ± 0.060 0.908 ± 0.031 0.884 ± 0.018 0.906 ± 0.024 0.910 ± 0.023 0.912 ± 0.023 0.913 ± 0.023 0.915 ± 0.024 0.913 ± 0.025 0.915 ± 0.024

Pal.L 0.815 ± 0.060 0.873 ± 0.101 0.374 ± 0.269 0.842 ± 0.032 0.856 ± 0.028 0.861 ± 0.028 0.862 ± 0.024 0.865 ± 0.023 0.866 ± 0.024 0.866 ± 0.024

Pal.R 0.799 ± 0.088 0.874 ± 0.049 0.111 ± 0.181 0.839 ± 0.043 0.850 ± 0.041 0.853 ± 0.043 0.857 ± 0.044 0.856 ± 0.048 0.858 ± 0.050 0.862 ± 0.045

Hip.L 0.809 ± 0.014 0.871 ± 0.020 0.808 ± 0.021 0.825 ± 0.034 0.835 ± 0.033 0.846 ± 0.026 0.849 ± 0.026 0.851 ± 0.024 0.854 ± 0.027 0.856 ± 0.026

Hip.R 0.810 ± 0.022 0.869 ± 0.020 0.822 ± 0.019 0.845 ± 0.019 0.841 ± 0.027 0.854 ± 0.020 0.854 ± 0.019 0.858 ± 0.020 0.861 ± 0.020 0.863 ± 0.020

Amy.L 0.721 ± 0.054 0.832 ± 0.032 0.669 ± 0.043 0.740 ± 0.043 0.777 ± 0.032 0.800 ± 0.031 0.809 ± 0.029 0.810 ± 0.030 0.812 ± 0.029 0.812 ± 0.033

Amy.R 0.707 ± 0.052 0.812 ± 0.027 0.613 ± 0.056 0.739 ± 0.047 0.750 ± 0.046 0.766 ± 0.044 0.774 ± 0.049 0.784 ± 0.040 0.788 ± 0.038 0.789 ± 0.042

Acc.L 0.699 ± 0.081 0.790 ± 0.052 0.693 ± 0.055 0.769 ± 0.050 0.779 ± 0.050 0.784 ± 0.055 0.788 ± 0.049 0.786 ± 0.050 0.789 ± 0.041 0.792 ± 0.046

Acc.R 0.678 ± 0.089 0.783 ± 0.067 0.238 ± 0.203 0.722 ± 0.093 0.729 ± 0.091 0.759 ± 0.091 0.763 ± 0.087 0.771 ± 0.090 0.774 ± 0.084 0.765 ± 0.084

Avg. 0.799 ± 0.094 0.867 ± 0.064 0.608 ± 0.272 0.834 ± 0.077 0.842 ± 0.073 0.851 ± 0.068 0.854 ± 0.066 0.857 ± 0.065 0.859 ± 0.063 0.860 ± 0.064

wAvg. 0.706 ± 0.061 0.803 ± 0.040 0.474 ± 0.083 0.754 ± 0.047 0.766 ± 0.046 0.783 ± 0.048 0.788 ± 0.046 0.791 ± 0.047 0.794 ± 0.042 0.792 ± 0.044

Table 1. From IBSR to MICCAI 2012. Mean ± standard deviation DSC values for FIRST, full training and 
transfer learning with an incremental number of training images. FT (Full training) – the network is trained 
from scratch with the MICCAI 2012 dataset. TL X – transfer learning with X number of target volumes. No TL – 
tested directly on the model trained with the IBSR dataset. The structure acronyms are as follows: left thalamus 
(Tha.L), right thalamus (Tha.R), left caudate (Cau.L), right caudate (Cau.R), left putamen (Put.L), right putamen 
(Put.R), left pallidum (Pal.L), right pallidum (Pal.R), left hippocampus (Hip.L), right hippocampus (Hip.R), left 
amygdala (Amy.L), right amygdala (Amy.R), left accumbens (Acc.L), right accumbens (Acc.R), average value 
(Avg.) and weighted average DSC (wAvg.).

Figure 3. Change in the average DSC scores per structure with the increasing number of training images (left 
and right parts of all structures are averaged) for (a) MICCAI 2012 and (b) IBSR datasets as targets. Structure 
acronyms are thalamus (Tha), caudate (Cau), putamen (Put), pallidum (Pal), hippocampus (Hip), amygdala 
(Amy), and accumbens (Acc).
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0.808, and a significant increase starting from the fourth iteration, reaching 0.820 (p < 0.001). However, the per-
formance did not improve any further. The average DSC values for each structure for the image standardisation 
and mixed set experiments are included in Supplementary Tables S1 and S3.

Some qualitative results for the MICCAI 2012 dataset are shown in Fig. 5, where transfer learning with a single 
image produced similar segmentation outputs to the ground truth. FIRST failed to properly segment the smallest 
structure, the accumbens (pointed with red arrow). Additionally, our method produced better segmentation for 
the thalamus structure (pointed with black arrow). Better segmentation using our method can also be observed 

Figure 4. Overall average DSC results for (a) MICCAI 2012 and (b) IBSR datasets. The results are shown 
for seven iterations of transfer learning with original images, training from scratch, transfer learning with 
standardised images, and mixed set training. The horizontal lines correspond to the results of FIRST, full 
training, and the results of testing standardised images without transfer learning. The training volumes in each 
iteration for all cases are the same.

Figure 5. Qualitative results for the MICCAI 2012 dataset. (a) Transfer learning with one image; (b) 
segmentation result from FIRST; (c) ground truth. The results in the top row shown in axial and bottom ones 
shown in coronal views. The arrows indicate the following structures: red → accumbens, black → thalamus, 
blue → hippocampus.
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for the hippocampus (pointed with blue arrow), where the curvature of the structure was preserved similar to the 
ground truth.

From MICCAI 2012 to IBSR. For this experiment, we fully trained the network using all 15 training images 
from the MICCAI 2012 training dataset. Next, similar to the previous case, several transfer learning iterations 
were made using IBSR image volumes as the target and compared with the results of FIRST. Table 2 shows the 
obtained DSC values for FIRST, fully trained network with IBSR images using leave-one-out cross validation, 
and transfer learning results using zero to seven images. Very low DSC scores with high standard deviation in the 
results in No TL (see Table 2) showed the effect of the domain shift problem once again, confirming that this issue 
is present in both ways. The results were significantly improved when applying transfer learning with only one 
image, yielding a DSC value of 0.78 (p < 0.001). However, it was not higher than that of FIRST due to the different 
intensity distributions in MRI volumes of the IBSR dataset (Fig. 1). The results obtained by training the network 
with two images were similar to FIRST and not statistically significant (p > 0.05). A significant growth in average 
was observed when selecting three random images with DSC, reaching up to 0.815 compared with 0.808 with 
FIRST’s (p < 0.05). Increasing the number of target set images from four to seven resulted in similar DSC scores, 
slightly increasing from 0.824 to 0.829 (p > 0.05).

The structure-wise improvement after each iteration of transfer learning for the IBSR dataset when using 
MICCAI 2012 as the source is shown in Fig. 3(b). Because the IBSR dataset comprises MRI volumes with different 
intensity distributions, we observed slight fluctuations in DSC for some structures. More substantial improve-
ments were observed for the smallest sub-cortical structures, such as the pallidum, amygdala and accumbens, 
when the number of training images increased. By contrast, the larger structures were more accurately segmented 
starting from the first iteration of transfer learning and slightly increased through all iterations.

Similar to the previous experiment, we observed a benefit of using transfer learning over training from scratch. 
As shown in Fig. 4(b), transfer learning obtained better overall DSC than the network trained from scratch for 
all the iterations. Image standardisation was also useful in the case when no domain adaptation was applied. As 
shown in Fig. 4(b), using normalisation improved the average DSC from 0.518 to 0.783 (p < 0.001). However, 
similar to the case with the MICCAI 2012 dataset, the improvement throughout the iterations of transfer learn-
ing using the standardised images was not considerable. Additionally, the DSC for the standardised images 
using seven target training subjects (0.807) was significantly lower than that for the original images (0.829) with 
p < 0.001. The comparison of transfer learning and network trained from scratch using the mixed set of normal-
ised images is shown in Fig. 4(b). In the first iteration, mixed set training showed a similar overall DSC of 0.784 
to transfer learning (0.780), but the difference was not significant (p > 0.05). However, with more images, transfer 
learning was always significantly better than mixed set training (p < 0.001). In the case of mixed set training, the 
average DSC was significantly improved when adding more images, resulting in the highest DSC of 0.806 (five 
added images) (p < 0.001). However, it showed no further improvements when more images were added to the 

Str. FIRST LOO No TL TL 1 TL 2 TL 3 TL 4 TL 5 TL 6 TL 7

Tha.L 0.893 ± 0.017 0.910 ± 0.014 0.128 ± 0.226 0.847 ± 0.068 0.887 ± 0.017 0.882 ± 0.026 0.889 ± 0.024 0.890 ± 0.025 0.893 ± 0.016 0.898 ± 0.014

Tha.R 0.885 ± 0.012 0.914 ± 0.016 0.081 ± 0.173 0.837 ± 0.101 0.879 ± 0.031 0.877 ± 0.038 0.892 ± 0.030 0.890 ± 0.029 0.899 ± 0.015 0.906 ± 0.012

Cau.L 0.783 ± 0.044 0.896 ± 0.018 0.440 ± 0.290 0.857 ± 0.030 0.872 ± 0.031 0.890 ± 0.021 0.883 ± 0.022 0.887 ± 0.023 0.890 ± 0.025 0.894 ± 0.018

Cau.R 0.870 ± 0.027 0.896 ± 0.020 0.455 ± 0.306 0.840 ± 0.040 0.861 ± 0.034 0.883 ± 0.020 0.883 ± 0.020 0.889 ± 0.019 0.889 ± 0.021 0.895 ± 0.020

Put.L 0.869 ± 0.020 0.900 ± 0.014 0.845 ± 0.036 0.890 ± 0.028 0.889 ± 0.018 0.891 ± 0.022 0.896 ± 0.020 0.896 ± 0.022 0.895 ± 0.024 0.896 ± 0.020

Put.R 0.880 ± 0.010 0.904 ± 0.012 0.839 ± 0.029 0.886 ± 0.037 0.887 ± 0.025 0.890 ± 0.026 0.893 ± 0.027 0.897 ± 0.022 0.899 ± 0.020 0.894 ± 0.027

Pal.L 0.810 ± 0.033 0.825 ± 0.050 0.651 ± 0.141 0.737 ± 0.092 0.797 ± 0.034 0.801 ± 0.071 0.820 ± 0.033 0.830 ± 0.036 0.824 ± 0.041 0.826 ± 0.040

Pal.R 0.809 ± 0.037 0.829 ± 0.046 0.437 ± 0.243 0.775 ± 0.091 0.784 ± 0.039 0.800 ± 0.054 0.813 ± 0.030 0.824 ± 0.028 0.822 ± 0.029 0.825 ± 0.031

Hip.L 0.806 ± 0.023 0.851 ± 0.024 0.700 ± 0.050 0.811 ± 0.033 0.814 ± 0.031 0.819 ± 0.030 0.831 ± 0.032 0.829 ± 0.033 0.831 ± 0.030 0.834 ± 0.029

Hip.R 0.817 ± 0.023 0.851 ± 0.024 0.716 ± 0.040 0.813 ± 0.033 0.820 ± 0.028 0.814 ± 0.038 0.832 ± 0.029 0.833 ± 0.031 0.833 ± 0.027 0.836 ± 0.028

Amy.L 0.742 ± 0.064 0.763 ± 0.052 0.505 ± 0.147 0.647 ± 0.096 0.654 ± 0.062 0.735 ± 0.052 0.735 ± 0.043 0.729 ± 0.059 0.728 ± 0.052 0.738 ± 0.055

Amy.R 0.757 ± 0.062 0.768 ± 0.058 0.449 ± 0.126 0.659 ± 0.075 0.625 ± 0.075 0.711 ± 0.056 0.719 ± 0.056 0.716 ± 0.058 0.701 ± 0.072 0.711 ± 0.080

Acc.L 0.684 ± 0.098 0.744 ± 0.053 0.576 ± 0.113 0.668 ± 0.104 0.702 ± 0.117 0.710 ± 0.083 0.728 ± 0.070 0.734 ± 0.066 0.747 ± 0.080 0.722 ± 0.102

Acc.R 0.703 ± 0.076 0.752 ± 0.047 0.429 ± 0.107 0.656 ± 0.084 0.685 ± 0.099 0.704 ± 0.066 0.721 ± 0.068 0.720 ± 0.084 0.733 ± 0.063 0.733 ± 0.068

Avg. 0.808 ± 0.080 0.843 ± 0.071 0.518 ± 0.276 0.780 ± 0.111 0.797 ± 0.105 0.815 ± 0.085 0.824 ± 0.078 0.826 ± 0.081 0.828 ± 0.081 0.829 ± 0.085

wAvg. 0.714 ± 0.066 0.762 ± 0.037 0.505 ± 0.085 0.676 ± 0.051 0.704 ± 0.048 0.722 ± 0.047 0.738 ± 0.052 0.741 ± 0.053 0.750 ± 0.051 0.742 ± 0.052

Table 2. From MICCAI 2012 to IBSR. Mean ± standard deviation DSC values for FIRST, full training and 
transfer learning with an incremental number of training images. LOO (Leave one out) – the results of leave one 
out cross validation. TL X – transfer learning with X number of target volumes. No TL – tested directly on the 
model trained with MICCAI 2012 dataset. The structure acronyms are as follows: left thalamus (Tha.L), right 
thalamus (Tha.R), left caudate (Cau.L), right caudate (Cau.R), left putamen (Put.L), right putamen (Put.R), left 
pallidum (Pal.L), right pallidum (Pal.R), left hippocampus (Hip.L), right hippocampus (Hip.R), left amygdala 
(Amy.L), right amygdala (Amy.R), left accumbens (Acc.L), right accumbens (Acc.R), average value (Avg.) and 
weighted average DSC (wAvg.).
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mixed set, instead reaching a plateau. The structure-wise results for the image standardisation and mixed set 
experiments are presented in Supplementary Tables S2 and S4.

Figure 6 illustrates some qualitative results obtained for this experiment. We showed the results of transfer 
learning using three training images because they were significantly better than those of FIRST (p < 0.05). As 
shown in the first row in Fig. 6(a), the segmentation result using transfer learning for the thalamus structure 
(indicated with red arrows) was more similar to the ground truth (Fig. 6c) than that of FIRST. Moreover, some 
spurious outputs could be observed in the boundaries of the adjacent amygdala and hippocampus structures 
(indicated with a white arrow) for the FIRST segmentation.

Grouping by MRI scanner. Table 3 shows the results for the three iterations of transfer learning using the 
IBSR-GE group, the results of FIRST, training from scratch using leave-one-out cross-validation, and when no 
domain adaptation was applied. The average DSC of leave-one-out significantly outperformed FIRST (p < 0.001), 
whereas the transfer learning with two images yielded similar results, with an average DSC of 0.805 compared 
with 0.802 for FIRST. A significantly higher DSC of 0.814 (p < 0.05) could be achieved using only three images for 
domain adaptation than that of FIRST. The average DSC was very low when the images were tested directly on the 
network without domain adaptation, and applying transfer learning using one image improved the average DSC 
from 0.498 to 0.784; however, it was still lower than that of FIRST.

Table 4 shows the results for the IBSR-Siemens dataset using FIRST, training from scratch with leave-one-out 
cross-validation, no domain adaptation, and three iterations of transfer learning. The highest results were achieved 
using leave-one-out with an average DSC of 0.845 significantly outperforming FIRST at 0.818 (p < 0.001). The 
results of testing IBSR-Siemens images without transfer learning showed poor performance, as expected. The 
performance of the CNN was drastically improved using only one image for transfer learning, yielding a DSC 
of 0.826, slightly higher than that of FIRST but not statistically significant (p = 0.08). A significantly higher DSC 
than that of FIRST was obtained using two and three images for domain adaptation, reaching 0.840 and 0.846, 
respectively, with p < 0.001 for both cases. Moreover, the results of the third iteration of transfer learning were 
similar to the one of leave-one-out cross-validation with p = 0.87.

Corrected FIRST segmentation as ground truth. Although the obtained results of the previous experi-
ments are promising, we understand that manually segmenting all 14 sub-cortical structures, even for one image, 
is time consuming compared with, for instance, brain lesion segmentation23, which is a two-class problem. To 
overcome this issue, we also studied the use of the segmentation result of FIRST to train the network. FIRST 
provides a smooth unsupervised segmentation result; however, it does not perform well on small structures and 
structure boundaries. Therefore, in this experiment, we performed transfer learning using corrected FIRST seg-
mentation outputs. The corrections included the following: removing outliers, filling holes and manually correct-
ing some boundaries of the structures. We must note that the manual correction was performed by an operator 
who considered only the structures with good visual contrast from their surroundings. An example of a corrected 
segmentation for the left accumbens and left caudate structure boundaries is shown in Fig. 7. In this experiment, 
we used the IBSR dataset as the source, and two iterations of transfer learning with MICCAI 2012. The result 
when using one image with corrected labels for transfer learning was slightly higher than that of FIRST, yield-
ing a DSC score of 0.805 ± 0.075. However, the difference was not statistically significant (p = 0.74). Significant 

Figure 6. Qualitative results for the IBSR dataset. (a) Transfer learning with three images from three different 
intensity distribution groups; (b) segmentation result from FIRST; (c) ground truth. The results in the top row 
are shown in the axial view and those in the bottom are shown in the coronal views. The arrows indicate the 
following: red → left and right thalamus, white → amygdala and hippocampus structures.
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improvements could be achieved when using two corrected images, obtaining a DSC of 0.817 ± 0.075 (p < 0.001). 
This shows that the output segmentation from FIRST could be used as a starting point for transfer learning and 
avoid manual segmentation of all 14 structures from scratch.

training and testing times. As shown in recent studies22, transfer learning allows the deep neural network 
to converge faster than a CNN trained from scratch. Our studies clearly confirmed this statement, by achieving 
much faster training time for the network. The average training time per epoch using a single training image was 
eight seconds, and it gradually increased when adding more images, reaching 63 seconds per epoch with seven 

Str. FIRST LOO No TL TL 1 TL 2 TL 3

Tha.L 0.894 ± 0.015 0.908 ± 0.014 0.092 ± 0.228 0.849 ± 0.039 0.873 ± 0.031 0.881 ± 0.031

Tha.R 0.882 ± 0.011 0.913 ± 0.017 0.122 ± 0.202 0.845 ± 0.081 0.881 ± 0.027 0.884 ± 0.028

Cau.L 0.771 ± 0.047 0.891 ± 0.017 0.329 ± 0.294 0.854 ± 0.039 0.867 ± 0.029 0.879 ± 0.020

Cau.R 0.806 ± 0.026 0.892 ± 0.022 0.351 ± 0.317 0.862 ± 0.034 0.882 ± 0.024 0.885 ± 0.026

Put.L 0.867 ± 0.023 0.896 ± 0.015 0.835 ± 0.038 0.875 ± 0.025 0.882 ± 0.018 0.887 ± 0.023

Put.R 0.883 ± 0.009 0.901 ± 0.012 0.831 ± 0.031 0.875 ± 0.031 0.883 ± 0.028 0.887 ± 0.024

Pal.L 0.802 ± 0.031 0.809 ± 0.052 0.652 ± 0.149 0.773 ± 0.074 0.798 ± 0.046 0.813 ± 0.033

Pal.R 0.809 ± 0.028 0.816 ± 0.049 0.491 ± 0.268 0.780 ± 0.070 0.782 ± 0.054 0.805 ± 0.047

Hip.L 0.804 ± 0.015 0.854 ± 0.021 0.693 ± 0.046 0.801 ± 0.034 0.812 ± 0.036 0.819 ± 0.031

Hip.R 0.812 ± 0.014 0.851 ± 0.022 0.711 ± 0.041 0.803 ± 0.03 0.814 ± 0.032 0.819 ± 0.037

Amy.L 0.745 ± 0.050 0.756 ± 0.045 0.464 ± 0.163 0.709 ± 0.046 0.719 ± 0.046 0.719 ± 0.062

Amy.R 0.758 ± 0.055 0.758 ± 0.058 0.443 ± 0.143 0.689 ± 0.068 0.736 ± 0.054 0.723 ± 0.059

Acc.L 0.655 ± 0.099 0.739 ± 0.059 0.563 ± 0.109 0.663 ± 0.099 0.669 ± 0.102 0.697 ± 0.065

Acc.R 0.691 ± 0.082 0.743 ± 0.048 0.392 ± 0.100 0.602 ± 0.080 0.673 ± 0.074 0.691 ± 0.061

Avg. 0.802 ± 0.083 0.838 ± 0.073 0.498 ± 0.284 0.784 ± 0.101 0.805 ± 0.089 0.814 ± 0.084

wAvg. 0.696 ± 0.069 0.754 ± 0.038 0.484 ± 0.078 0.657 ± 0.057 0.692 ± 0.063 0.712 ± 0.043

Table 3. From MICCAI 2012 to IBSR-GE. Mean ± standard deviation DSC values for FIRST, full training with 
leave-one-out cross-validation (LOO) and transfer learning with an incremental number of training images. TL 
X – transfer learning with X number of target volumes. S The structure acronyms are as follows: left thalamus 
(Tha.L), right thalamus (Tha.R), left caudate (Cau.L), right caudate (Cau.R), left putamen (Put.L), right putamen 
(Put.R), left pallidum (Pal.L), right pallidum (Pal.R), left hippocampus (Hip.L), right hippocampus (Hip.R), left 
amygdala (Amy.L), right amygdala (Amy.R), left accumbens (Acc.L), right accumbens (Acc.R), average value 
(Avg.) and weighted average DSC (wAvg.).

Str. FIRST LOO No TL TL 1 TL 2 TL 3

Tha.L 0.892 ± 0.022 0.914 ± 0.013 0.201 ± 0.222 0.888 ± 0.019 0.891 ± 0.016 0.900 ± 0.014

Tha.R 0.889 ± 0.014 0.916 ± 0.014 0.000 ± 0.000 0.894 ± 0.015 0.902 ± 0.015 0.904 ± 0.015

Cau.L 0.805 ± 0.028 0.906 ± 0.017 0.663 ± 0.075 0.896 ± 0.021 0.905 ± 0.014 0.905 ± 0.015

Cau.R 0.892 ± 0.016 0.903 ± 0.015 0.663 ± 0.141 0.893 ± 0.014 0.892 ± 0.023 0.885 ± 0.026

Put.L 0.872 ± 0.016 0.909 ± 0.006 0.866 ± 0.021 0.901 ± 0.014 0.902 ± 0.007 0.910 ± 0.009

Put.R 0.875 ± 0.011 0.908 ± 0.010 0.856 ± 0.018 0.905 ± 0.013 0.907 ± 0.011 0.908 ± 0.013

Pal.L 0.827 ± 0.034 0.857 ± 0.028 0.649 ± 0.135 0.866 ± 0.020 0.852 ± 0.043 0.862 ± 0.027

Pal.R 0.808 ± 0.055 0.857 ± 0.024 0.328 ± 0.150 0.836 ± 0.017 0.835 ± 0.037 0.840 ± 0.034

Hip.L 0.811 ± 0.036 0.843 ± 0.030 0.715 ± 0.059 0.818 ± 0.028 0.821 ± 0.034 0.837 ± 0.025

Hip.R 0.826 ± 0.034 0.850 ± 0.031 0.725 ± 0.040 0.812 ± 0.025 0.827 ± 0.029 0.846 ± 0.024

Amy.L 0.736 ± 0.090 0.778 ± 0.067 0.587 ± 0.048 0.751 ± 0.064 0.787 ± 0.048 0.780 ± 0.060

Amy.R 0.756 ± 0.080 0.787 ± 0.057 0.463 ± 0.091 0.725 ± 0.059 0.733 ± 0.072 0.760 ± 0.052

Acc.L 0.742 ± 0.069 0.754 ± 0.041 0.603 ± 0.128 0.705 ± 0.052 0.754 ± 0.041 0.757 ± 0.040

Acc.R 0.725 ± 0.063 0.769 ± 0.044 0.502 ± 0.086 0.668 ± 0.045 0.749 ± 0.057 0.750 ± 0.039

Avg. 0.818 ± 0.073 0.854 ± 0.065 0.559 ± 0.256 0.826 ± 0.085 0.840 ± 0.070 0.846 ± 0.066

wAvg. 0.747 ± 0.044 0.778 ± 0.029 0.548 ± 0.082 0.713 ± 0.028 0.766 ± 0.036 0.769 ± 0.030

Table 4. From MICCAI 2012 to IBSR-Siemens. Mean ± standard deviation DSC values for FIRST, full 
training with leave-one-out cross-validation (LOO) and transfer learning with an incremental number of 
training images. TL X – transfer learning with X number of target volumes. The structure acronyms are as 
follows: left thalamus (Tha.L), right thalamus (Tha.R), left caudate (Cau.L), right caudate (Cau.R), left putamen 
(Put.L), right putamen (Put.R), left pallidum (Pal.L), right pallidum (Pal.R), left hippocampus (Hip.L), 
right hippocampus (Hip.R), left amygdala (Amy.L), right amygdala (Amy.R), left accumbens (Acc.L), right 
accumbens (Acc.R), average value (Avg.) and weighted average DSC (wAvg.).
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training images. Comparison with full training, which took 832 seconds per epoch on average, the training time 
of transfer learning was less by two orders of magnitude when using one image and ten times less when using 
seven training images.

The testing time using our method was 1.3 minutes (run on GPU) + 3.7 minutes (atlas registration, run on 
CPU) per volume in average. On the other hand, FIRST took approximately 10 minutes to test one subject volume 
on average; however, this method does not require any training. All the experiments were run using a machine 
with a 3.40-GHz CPU clock and on a single TITAN-X GPU (NVIDIA corp, United States) with 12 GB of RAM 
memory.

Discussion
Our experiments showed that the weights of the convolutional layers trained with the source dataset could gen-
eralise the features extracted from the target set. However, the domain shift problem requires a fine tuning of the 
way these features are interpreted. Thus, in our approach, we updated the weights of the fully connected layers 
and trained the classification layer from scratch.

In the experimental results, we showed that similar intensity distributions within the dataset helped the net-
work to better generalise and provide a more predictable outcome. This was observed when the MICCAI 2012 
dataset was used as the target, where we could see a smooth increase in the structure-wise DSC (Fig. 3a) and the 
overall average DSC (Table 1) after each iteration of transfer learning. By contrast, when the IBSR dataset was 
used as the target, the within-group variability of the MRI volumes in the dataset affected the results of transfer 
learning. As observed earlier (Table 2), substantial improvement in average DSC occurred in the first three iter-
ations of transfer learning, but the results for the subsequent iterations reached a plateau. This means that the 
added images through the fourth and sevenths iterations did not provide the network with more useful informa-
tion, making the learned weights of the CNN less general. The weights of the convolutional layers remained the 
same during transfer learning, indicating that they are not adapted to fit the new target domain. Therefore, when 
dealing with different intensity distributions, it is better to introduce more representative examples to make the 
fully connected layers better adapt to a new dataset. Additionally, one could notice that the results when using 
seven training images were not close to those using leave-one-out cross-validation. This behaviour was expected 
because in leave-one-out, 17 images were used to segment only one subject volume, which allowed the network 
to learn more variations present in this dataset. The within-group variability of the intensity distributions in the 
IBSR dataset showed unstable results for some structures during transfer learning (Fig. 3b). Additionally, random 
selection of the MRI volumes after every iteration added up to this behaviour because the outcome of the CNN 
relies on the descriptiveness of the training images. However, the overall trend showed an increase in DSC when 
more images were used for training.

Similar behaviour as in the first two experiments were observed when the images of the IBSR dataset were 
grouped into two sets by the MRI scanner type. As shown in Tables 3 and 4, for both new groups, transfer learn-
ing significantly outperformed FIRST using only three and two target training images for the IBSR-GE (p < 0.05) 
and IBSR-Siemens (p < 0.001) datasets, respectively. Ignoring the different number of images in both of these 
groups, it is interesting that the images of IBSR-GE were more difficult to segment for all considered segmenta-
tion approaches, including FIRST, deep learning, and domain adaptation. One cause may be the imaging arte-
facts present in some of the images from the IBSR-GE group. Figure 8 illustrates examples of the images from 
the two groups, indicating there are motion artefacts and more noise present in the IBSR-GE group than in the 
IBSR-Siemens images.

Comparison of transfer learning with training from scratch was also carried out to show the effectiveness of 
transferring knowledge. One could observe, for the case of IBSR (Fig. 4b), that the increase in DSC for transfer 
learning was smoother because the number of training images increased, whereas the results of the CNN trained 
from scratch showed a steep increase in the third iteration. This was due to the within-group variability of the 

Figure 7. Corrected left accumbens and left caudate structures from the FIRST segmentation output. Coronal 
view: (a) FIRST segmentation; (b) corrected segmentation; (c) ground truth. Examples of some of the corrected 
areas are indicated with arrows.
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image volumes in this dataset, and the selected image at this iteration was more representative than the previous 
two MRI scans. Additionally, because the training images for both were the same for each iteration, transfer learn-
ing compensated for the unseen cases and produced better results. A similar comparison (Fig. 4a) for the case of 
MICCAI 2012 dataset showed a gradual increase for both, transfer learning and training from scratch, with the 
former yielding better results in all iterations. Once more, we saw that a similarity in the intensity distributions 
within the target dataset makes a considerable difference.

As shown in the results (Fig. 4), image standardisation for both datasets helped to achieve better results 
even without transfer learning. Interestingly, the outcome of transfer learning using one image with the origi-
nal images was similar to that of normalised images without transfer learning. This means that transfer learn-
ing implicitly performs normalisation by adapting the weights of the fully connected layers to better interpret 
the features extracted by the convolutional layers. As shown in Fig. 9(a), the distributions of the feature vectors 
extracted from the concatenation layer for two datasets have a clear separation when the network is trained with 
the original images. By contrast, these distributions overlap when the network is trained with the standardised 
images (Fig. 9b). Accordingly, when no transfer learning is applied, the features extracted from the target images 
would be similar to the source, and the network produces better results even without initial training of the net-
work. Although the image standardisation is helpful to directly use the network for segmenting images in other 
domains, it involves image intensity interpolation, which could be disadvantageous to obtain a better-adapted 
model using transfer learning.

Moreover, as shown in Fig. 4, training the network with a mixed set of images from different domains resulted 
in a slight increase in overall DSC when up to four images were added to the training set. However, there were 
no improvements observed with more images, but the average DSC stayed within a similar range. This behav-
iour of the network was caused by the interpolation in the IBSR image labels and the differences in the raters. 
According to these observations, domain adaptation using transfer learning would be a better choice than adding 
new images to the training process when there are only a few annotated images available in the target domain.

In the case of MICCAI 2012, all MRI volumes shared a similar intensity distribution, making the fully con-
nected and classification layers of the network able well trained to overcome the results of FIRST using only one 
training image volume. On the other hand, the performance of the network also depends on the source dataset. 
This hypothesis arises due to the observation seen in the results with the IBSR dataset when MICCAI 2012 is used 
as the source. Because MICCAI 2012 images have a similar intensity profile, there are no filters in the convolu-
tional layers that can consider discrepancies in intensity distribution. However, this assumption requires further 

Figure 8. Illustration of some of the images from the (a) IBSR-GE and (b) IBSR-Siemens datasets.

Figure 9. Visualisation of the concatenation layer outputs for the MICCAI 2012 (Red) and IBSR (Blue) datasets 
using original (a) and standardised images (b). 555-Dimensional feature vectors projected into 2-dimensional 
space using the t-SNE algorithm.
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analysis and experiments that should involve other datasets with similar within-dataset dissimilarities as in IBSR. 
This has not been analysed due to a lack of existing datasets that have ground truth segmentation labels for the 
sub-cortical structures. Therefore, we considered it a limitation of this study, and more elaboration is needed 
with more datasets containing intensity distribution dissimilarities to quantitatively analyse their impact on the 
performance of transfer learning.

The results of the weighted and unweighted DSC values had the same trend over the transfer learning iter-
ations. This demonstrates that our method was consistent in terms of segmenting all the structures regardless 
their different sizes. However, subtle differences were observed where a higher DSC for one method was less in 
the weighted DSC. This shows that average DSC score favours high accuracy in the larger structures, whereas the 
impact of the smaller structures is lesser to the overall result. This issue could bring unreliable results in compar-
ing different methods, especially, for evaluating sub-cortical structure segmentation approaches where the imbal-
ance among classes is considerably large. Although the conventional DSC metric is mostly used in the literature, 
we encourage using the weighted DSC to verify the robustness of methods. The weighted average DSC values for 
all the experiments could be found in Supplementary Fig. S1.

As illustrated in the qualitative results (Figs 5 and 6), transfer learning produced segmentation masks that 
were more similar to the ground truth than FIRST. Because FIRST is based on the active shape model strategy, 
it tries to preserve the structure boundaries to the mean structure shape defined in the method itself. Therefore, 
some structural variations in shape may decrease the performance of this method. Moreover, FIRST found it diffi-
cult to properly define the boundaries for the adjacent amygdala and hippocampus structures (Fig. 6) due to their 
similar intensity profiles with no differentiable separation between them. By contrast, our method relies not only 
on local information but also on the surrounding context, considering the brain structural shape in the region.

One of the goals of transfer learning is to adapt a network that performs well in a new domain using only a 
few images for training. However, we have performed the domain adaptation using more target training images 
to confirm that the network does not overfit. According to the experimental results, adding more images did not 
further improve the results but showed similar performance in all the iterations of transfer learning. Therefore, in 
this paper, we have shown the results of only seven iterations where the network has reached the point of stability. 
The results of transfer learning with more than seven images is shown in Supplementary Table S5.

Although transfer learning was shown to be effective to deal with the domain adaptation problem, it still 
requires at least one manually annotated image volume, limiting our method to be used out of the box. However, 
the initial manual segmentation could be carried our more quickly by correcting the segmentation output from 
FIRST as shown earlier. Once the neural network is adapted, it could then be applied continuously with no 
retraining needed. Another limitation of our approach, as in all deep learning methods in general, is the necessity 
for the computational power of GPU. The training and testing times of such approaches will grow when run on 
CPU. Nonetheless, more powerful and affordable GPUs are becoming available.

Conclusions
In this paper, we have demonstrated the application of transfer learning for sub-cortical structure segmentation 
to overcome the domain shift problem. In our experiments we have employed our previously proposed deep 
learning strategy that combines spatial and convolutional features. As shown in the results, we could achieve 
significantly better results than those of the well-known FIRST tool using one and three images for MICCAI 2012 
(p < 0.001) and IBSR (p < 0.05) datasets, respectively. Accordingly, the transfer learning strategy is an excellent 
way to overcome the demand of deep learning methods for a large amount of data, especially in medical image 
analysis, where the ground truth availability is scarce. It allows us to use existing available datasets to bootstrap 
deep learning architectures and adapt the weights to fit to a new domain using much less training set than in full 
training.

We also showed that within-group variability in a dataset has an important effect on the network’s general-
isability, suggesting that domain adaptation performs better when target images share a similar intensity dis-
tribution. Transferring the knowledge obtained from one dataset to another actually helped to achieve better 
performance. This was confirmed in our experiments, where transfer learning yielded superior results over the 
network trained from scratch using the same number of training images. Moreover, transfer learning was shown 
to be a better choice than other alternative solutions to the domain shift problem such as standardising images 
and mixed dataset training. Additionally, as we have seen in the experimental results, great acceleration in the 
training speed of the network could be achieved. Furthermore, we have made the source code of the pipeline 
available to the research community (https://github.com/NIC-VICOROB/sub-cortical_segmentation).
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Chapter 4

Unsupervised domain adaptation
in deep learning for brain
magnetic resonance image
segmentation

In this chapter, we present our approach for unsupervised domain adaptation that
minimises the differences in the CNN activation maps for two different imaging
domains. The proposal has been evaluated in two different brain segmentation
problems: 1) sub-cortical brain structure segmentation; and 2) brain white mat-
ter hyperintensities segmentation. For both of the problems, the proposed domain
adaptation significantly improved the baseline models and showed similar or better
performance than the traditional unsupervised segmentation tools. This work has
been submitted to the following journal:

Submitted to the Knowledge-Based Systems journal (KBS) (Under Review)
JCR CSAI IF: 5.101, Q1(17/133)





Chapter 5

Results and discussions

This thesis encompasses a natural progression of the sub-cortical brain structures
segmentation problem starting from a network architecture proposal using full train-
ing, moving to a transfer learning and unsupervised approaches for the domain adap-
tation problem. In this chapter, we present a comprehensive discussion on the results
and findings obtained in this thesis. The following sections provide a meta-analysis
of the previous chapters, outlining the most important aspects of each proposal on
completing the main objective.

5.1 Network architecture

5.1.1 Implicit convolutional features

In Chapter 2, we introduced our proposed deep learning method for accurate seg-
mentation of the sub-cortical brain structures in MRI. The network architecture
comprised of three convolutional branches that process patch samples representing
the orthogonal – axial, coronal, and sagittal – views of MR images.

The convolutional features are extracted directly from the input patches making
them implicit representations that were learned during training. The derived im-
plicit features appear to be domain dependent, which become distinct for samples
attained from different imaging domains. This has been illustrated in Chapter 3,
where the projection of the convolutional features were clearly separated on the 2D
plane. We addressed this issue in two different domain adaptation methods: 1)
supervised transfer learning also in Chapter 3; and 2) unsupervised domain adapta-
tion in Chapter 4. In the first case, we adapt the fully connected layers to interpret
the implicit features in a new way. In doing so, we are agreeing with the convo-
lutional layer outputs assuming that they are good representations for the input
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patches and forcing the fully connected layers to adapt to it. Since the network has
been pre-trained to solve a similar problem, we could obtain competent results even
when freezing (i.e. not updating) the weights of all the convolutional layers, hence,
optimising for the computational time and number of training images because the
number of trainable parameters were reduced drastically. In the unsupervised do-
main adaptation case, the problem has been approached from a different viewpoint,
where we do not agree with the implicit feature representation and force the con-
volutional layers to adapt to a new domain. By employing the proposed histogram
loss, which is solely based on the activation maps, there was no need for the new
target domain to have the ground truth masks, therefore being an unsupervised
domain adaptation. Moreover, in UDA we are using the cross entropy loss as one
of the terms which is computed using the available labelled source data. Since the
extracted features from the source are changed to match the ones of the target dur-
ing training, the classifier layer has to be retrained to interpret them in a new way
and produce accurate segmentation results. Therefore, the cross entropy loss was
included as one of the terms in the total loss function, which relearns how to classify
the source feature maps after changing them.

5.1.2 Explicit spatial features

The convolutional layers in the network are followed by a concatenation of the
convolutional features with the spatial features, which continued by fully connected
and classification layers. In the proposed architecture, unlike the learned implicit
features, the spatial features provide explicit information, which are extracted from
a probabilistic atlas. The explicit features are domain independent and serve as an
additional guide to the network to perform the segmentation task.

In the sub-cortical brain structure segmentation problem, employing additional
explicit information is an effective way to overcome the lack of available training
images. Accordingly, by using the spatial features, the network was able to reduce
the diversity limitations in the training samples, where specific abnormalities or
imaging artefacts were present only in a small subset of the whole training set.
Moreover, since the explicit features are domain independent, their purpose was
still suitable during the domain adaptation for both supervised and unsupervised
methods.

There are some concerns that could be raised about the possible registration
errors and their effect on the performance of the network. In the best case scenario,
when the registration is done perfectly, the mask labels could be directly propa-
gated to the target image to obtain a segmentation mask. However, we have to
accommodate the registration errors by adding extra features or using more com-
plex pipelines. Examples of such integration were done using multi-atlas techniques
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as majority voting and label fusion. In our proposals, looking from an opposing
perspective to deep learning, leveraging CNN based elements to the pipeline could
be perceived as an addition to an atlas based segmentation. In this case, the CNN
acts as an error correction mechanism to the atlas based segmentation. Moreover,
the atlas probabilities provide advantageous contextual information about spatial
location of an input sample. This is useful in terms of differentiating left and right
sub-cortical structures as well as to which structure the input sample more likely
belongs, even in presence of registration errors. Another example of contextual in-
formation would be the deployment of multi-scale [51] patch samples to provide
global and local information to the network.

Note that the fully connected part of the CNN was able to find a balance between
the implicit and explicit information without inclining towards one single input
feature. In our network, the number of units in each fully connected layer decrease
as it goes deeper. There is no specific guideline on selecting the number of units for
the fully connected layers. However, one can optimise it for the number of training
parameters without compromising the representative capacity of the network.

5.1.3 Sample selection

The selective sample selection technique proposed in this thesis, where the negatives
were collected only from the structure boundaries, was applied for the full training,
and both domain adaptation methods. As it was shown in the ablation study in
Chapter 2, the proposed sample selection scheme showed significant (p < 0.001)
improvements over random sample selection. This actually means that for the sub-
cortical segmentation, the most important and difficult parts are in the structure
boundaries.

As it was introduced in Chapter 1, differences in manual segmentation masks
mostly occur on the structure boundaries, which could be some slight over- or under-
segmentation depending on the rater. This suggests that when applying transfer
learning, we are not only adapting the network to reduce the domain shift effect
but also readjusting boundary delineation process to a new rater. However, when it
comes to the unsupervised domain adaptation, we are unable to accommodate the
segmentation to a different rater and optimising the network only for the reduction of
the domain shift effect. This indicates that during unsupervised domain adaptation
the network performs to the maximum of its pre-trained model capabilities. It
was demonstrated in Chapter 4, where the periventricular WMH lesions were not
segmented in the target images because the network was specifically trained to
segment them as background in accordance with the source ground truth masks. In
order to solve this issue, the network has to be retrained using transfer learning to
accommodate the segmentation protocol differences. Since the operator variability



62 Chapter 5. Results and discussions

often occur systematically, an alternative approach would be to apply a correction
method such as AdaBoost [52].

5.2 Knowledge transfer for domain adaptation

Currently, one of the biggest challenges in deep learning for medical image analysis
is the domain difference in MR images. As it was covered in Chapter 3, transfer
learning was an effective way for adapting the network to a new domain. We have
discussed how in transfer learning the fully connected layers in the network are
retrained to interpret different implicit features of a new domain. In this section, we
discuss the concept of domain adaptation with transfer learning with more details.

5.2.1 Number of training images and trainable parameters

It is a common practice to employ pre-trained networks with weights trained with
a large scale dataset – such as ImageNet [53], which consists of over 15 million
labelled high-resolution natural images. This type of knowledge transfer is useful
when there is not enough training data to train the network from scratch. Such pre-
trained network models are used as feature extractors or fine-tuned with the idea
that the early convolutional layers are kept frozen to reduce the number of trainable
parameters. Using this type of pre-trained models could be insufficient for some tasks
where the network architecture does not fit the problem and the extracted features
do not have enough representative power. In order to improve their performance,
new additional layers are introduced or more layers are retrained. However, this
increases the number of trainable parameters and require more training images.
In our method, we froze all the convolutional layers and fine-tuned only the fully
connected part of the network. Since our pre-trained model weights were trained
to solve the same problem, learning the implicit feature differences were easier,
which allowed to significantly (p < 0.001) outperform the traditional method FIRST
using only one and three training images for the MICCAI 2012 and IBSR datasets,
respectively. Hence, adjusting only the weights of the densely connected layers were
enough, although it still had some limitations.

We observed that applying transfer learning to the network with more images
improved the results, but it reached a plateau when the number of training images
increased further. This happens when the representative power of the trainable part
of the network approaches to its maximum. This means that at some point, the im-
plicit features extracted from the pre-trained convolutional layers cannot generalise
to the new domain and it has its limits. Despite this fact, the original idea of transfer
learning is to obtain better performance with a limited number of training images.
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Therefore, our findings recommend to increase the number of trainable parameters
of the network when more training images are available.

5.2.2 Domain adaptation and image standardisation

In Chapter 3, we compared the performance of the domain adaptation using trans-
fer learning and image standardisation techniques. Image standardisation is an
approach where intensity differences in MRI scans are transformed into a common
space. In our comparison, we registered all the images into the MNI space and
applied Nyúl histogram matching [54]. This transformation allowed to have 1 mm
isotropic resolution and slice thickness for all the MR images and also minimised
the differences in the intensities.

The initial segmentation DSC was improved to 0.787 in comparison to directly
testing the target cases on a network trained with source dataset without image
standardisation, which yielded DSC of 0.608. However, performing transfer learn-
ing using the transformed images did not show promising results. It required four
training images to achieve the closest DSC of 0.837 to the DSC result of 0.834 with
original images when using only one image. Moreover, the network reached the
plateau faster and did not show higher rates of improvement when more training
images were added to the target training set.

This behaviour was observed due to the interpolation in both the T1-w images
and ground truths. The interpolation on T1-w images causes artefacts, which dete-
riorate the image quality, especially in the boundaries that are the most important
areas in the images. The interpolation on ground truth occurs two times. First,
when moving to MNI, where misalignment between the T1-w and ground truth
mask occurs. This in turn affects how the network is trained. Second, when moving
the segmentation output from MNI to the original space, which also reduces the
segmentation accuracy.

Additionally, in the experiment with mixed set of images, it was also shown that
transfer learning is preferred over increasing the diversity in the training dataset.
Mixing images during training could be beneficial in terms of improving the gener-
alising capability of the CNN. However, having manual segmentation masks from
different raters for the images in the mix set is not recommended as they tend to
add more noise and restrict the network from converging into the global minimum.
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5.3 Unsupervised domain adaptation

Transfer learning approach is an extremely effective way for domain adaptation,
however, manually segmenting the brain structures even for a single image requires
a long time and effort, therefore, this approach could be unsuitable in an ad-hoc
situation. In this section, we extend the discussion provided in Chapter 4, where we
introduced our proposed method for unsupervised domain adaptation (UDA from
now on), by merging its key aspects with the concepts of the previous proposals.

5.3.1 Applications of domain adaptation

We have demonstrated the application of UDA for two different segmentation prob-
lems: 1) sub-cortical brain structure segmentation; and 2) brain white matter hy-
perintensities (WMH) segmentation. The experimental results showed that UDA
was useful to reduce the domain shift effect for both of the considered segmenta-
tion tasks. Moreover, it showed the network’s versatility in terms of applicability to
different problems.

Regarding the problem specifications, WMH lesion segmentation is profoundly
different than the brain structure segmentation problem. In healthy cases, the sub-
cortical brain structures are similar for all subjects in terms of location. For instance,
the amygdala structure is always adjacent from an anterior-superior location to
the hippocampus structure. The differences in structures between two subjects
are in their shape and volume. However, the general representative shape of the
sub-cortical structures are the same. For example, the caudate structure always
has the form of a curved droplet with the head and tail oriented from anterior to
posterior, respectively. The segmentation method FIRST actually takes advantage
of this property by using an active shape model algorithm, where the average shape
model is fitted to the structures during the segmentation process. Moreover, our
brain structure segmentation method also leverages this characteristic by employing
spatial information in the form of a probabilistic atlas and the selective sample
selection technique. However, in the WMH segmentation task, the lesions vary
in volume, shape and location, which requires a different approach for solving the
problem. Since we could not benefit from the sample selection method in this
segmentation task, we used a cascaded training concept that has been previously
used in Valverde et al. [55]. In the cascaded training scheme, the network is trained
two times one after another to reduce the number of false positives. During the first
training, we extracted all lesion voxels as positives and randomly selected an equal
number of negative voxels within the brain area. Then, this first trained model used
to produce initial segmentation masks. The second training was done in a similar
way, but all the negative samples were selected from the wrong classified voxels
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in the initial segmentation masks. Accordingly, the number of false positives were
reduced and better WMH lesion segmentation was achieved.

5.3.2 Effect of histogram loss

In contrast to the transfer learning strategy, in our UDA method, the fully con-
nected layers of the network do not agree with the changes in the implicit features
extracted from the convolutional layers. Instead, they are forced to produce sim-
ilar outputs to the target domain. Moreover, due to the required weight updates
in the convolutional layers, unlike in the transfer learning approach, they were set
trainable, i.e. not frozen.

The domain adaptation was achieved using the histogram loss, which was applied
to the deep convolutional layers and all the fully connected layers of the network.
The first two convolutional layers were not included because the activation maps
of the early convolutional layers represent basic features as edges and blobs. Min-
imising the feature map differences for the target and source allowed the network to
adapt to a new domain. As confirmed by the results, it was effectively improving
the performance of the network from the baseline network model, which did not
undergo the domain adaptation. The same behaviour was observed for both of the
segmentation tasks.

For the sub-cortical brain structures segmentation, we were able to reach the
performance of the unsupervised tool FIRST and for the WMH lesion segmentation
our method outperformed the unsupervised LST method, effectively diminishing
the performance decline of the baseline model. However, there are some factors
that should be taken into account. First of all, the adapted model does not accom-
modate to the differences in rater. Meaning that although the domain shift effect
has been reduced, the consistency of the segmentation mask in terms of over- or
under-segmentation will be the same as the rater in the source dataset. Second, the
performance of the adapted model is highly dependent on the pre-trained model. If
the model’s performance before using UDA is low, then it will remain low after the
domain adaptation. This means that UDA cannot learn to better classify the input
patches to the correct category and its performance is limited to the extent of the
pre-trained model.

In our case, the second point above was not the main issue in adapting the
network because the pre-trained model’s performance is among the state-of-the-art.
However, differences in raters between the datasets was one of the main causes that
affected the DSC scores in the experimental results. In fact, this is a prevailing
issue among unsupervised approaches and one of the reasons for the success of the
supervised methods that learn rater specific aspects for a single dataset.
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Furthermore, the histogram loss can be integrated to a network in an end-to-end
trainable fashion without employing any additional complexities. An alternative
approach for UDA is to employ adversarial training method [56, 57], where an extra
branch is used to classify domain differences for the implicit features and penalise
the network if they are distinct. In doing so, the CNN is enforced to learn domain
invariant features. Although the concept of adversarial training is compelling, it
comes with some drawbacks. First of all, one has to build another network archi-
tecture for the discriminator and optimise its number of parameters to the task.
Second, the training could be unstable when either the discriminator or the feature
extractor is trained faster than the other [58]. In order to avoid this, the parame-
ters of the feature extractor and the discriminator networks have to be tuned. In
contrast to the adversarial domain adaptation, in our method, the training process
does not require any subtle parameter tuning.



Chapter 6

Conclusions and future work

In this chapter, we conclude the work accomplished during this PhD, focusing on
the main contributions and takeaway messages. Moreover, we discuss on future
directions as possible paths of improvements and further developments.

6.1 Summary and contributions

Overall, all the work done in this PhD was to achieve the main objective that in-
cluded the development of an automated deep learning based method for sub-cortical
brain structure segmentation that satisfied the following prerequisites – accuracy,
consistency and robustness. In order to achieve this goal, the main objective was di-
vided into several sub-tasks: 1) to develop a method for accurate segmentation of the
sub-cortical brain structures; 2) to increase the method’s consistency and robustness
using supervised domain adaptation; 3) to decrease manual effort of the method to
maintain the consistency and robustness using unsupervised domain adaptation; 4)
to validate the method using international and in-house datasets.

The contributions completed for each of the sub-tasks were published or submit-
ted to high ranking international journals and also were contributed to the involved
projects at ViCOROB research institute, such as NICOLE, BiomarkEM.cat, EVO-
LUTION and wASSABI. Moreover, this PhD thesis has been supported by the FI
Catalan government grant.

In the following paragraphs, we provide the main conclusions and contributions
of this PhD thesis.

• We proposed a novel deep learning method for segmenting all the sub-cortical
structures from MR images. The proposed deep learning architecture pro-
cessed 2.5D patches to extract convolutional features that were combined with
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spatial features. The probabilistic atlas inputs provided the network with ex-
plicit spatial features that were directly integrated within the network and
were trained to be interpreted by the fully connected layers. We have shown
the effectiveness of the spatial features in guiding the CNN to segment the
difficult areas within the brain that included intensity irregularities. More-
over, we proposed a new sample selective technique where the negatives were
extracted from the structure boundaries. This background selection scheme
allowed to significantly improve the segmentation performance of the network
because the structure boundaries are the most difficult parts to classify. The
proposed method showed the best state-of-the-art results in segmenting all
the sub-cortical structures and was published in the top ranking journal in the
area, Medical Image Analysis in June 2018 [JCR CSAI IF 8.880, Q1(5/133)].

• We analysed the effect of domain shift problem on the performance of our deep
learning approach for sub-cortical brain structure segmentation. The result-
ing evidence showed that changes in MRI scanner, imaging protocol such as
resolution, slice thickness, and contrast difference have a considerable impact
on the performance of the network. A well trained CNN with one imaging
domain cannot perform similarly when directly tested with MR images from
a different domain. Therefore, we proposed a transfer learning strategy as a
solution for adapting the CNN to overcome the domain shift effect. In our
proposal, we achieved state-of-the-art results for adapting the network to a
new domain by decreasing the number of trainable parameters of the network
and remarkably reducing the required training images. Our results showed
that using only one and three images from a new target domain were sufficient
to significantly (p < 0.001) outperform the traditional state-of-the-art method
FIRST [41]. Moreover, this study demonstrated that transfer learning was
a preferred solution to image standardisation techniques such as histogram
matching and mixed training the network with images from different domains.
This work accomplished the consistency and robustness requirements of the
main objective and was published in Nature: Scientific Reports journal in May
2019 [JCR MS IF 4.011, Q1(15/69)].

• The previous work of transfer learning was an effective and preferred way for
domain adaptation because it adapts the network not only to a different imag-
ing domain but also to a different rater. However, there is still requirement
for at least one or few annotated training images, which still could be a la-
borious task to delineate all 14 sub-cortical structures. Therefore, in order to
minimise the effort for maintaining the consistency and robustness features
of our method, we proposed a novel unsupervised method for overcoming the
domain shift problem in deep learning. In this proposal, we directly change
the convolutional features while training to minimise the differences of the
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implicit convolutional features between the original and new target domains.
It was achieved by employing the histogram loss that was integrated to the
network. The network was end-to-end trainable and did not require any ex-
haustive hyperparameter tuning. We have tested the proposed method in two
different brain segmentation problems to show its robustness and applicability
for diverse tasks: 1) sub-cortical brain structure segmentation; and 2) brain
White Matter Hyperintensities (WMH) segmentation. For both of the prob-
lems, our unsupervised domain adaptation method showed similar or better
results than the traditional state-of-the-art methods: 1) FIRST [41] for brain
structure; and 2) LST [59] for WMH lesion segmentation. Moreover, it showed
significantly (p < 0.001) better performance than the baseline network, where
the results were obtained without applying domain adaptation. This work has
been submitted to the Knowledge-Based Systems journal and it is currently
under revision [JCR CSAI IF: 5.101, Q1(17/133)].

• Finally, all the research contributions were validated using well-known and
publicly available international datasets, and also the in-house dataset with
MRI scans and manual annotations provided by the Vall d’Hebron Hospital
of Barcelona. For the sub-cortical brain structure segmentation, we used the
International Grand Challenge and Workshop on Multi-Atlas Labelling [60]
MICCAI 2012 and Internet Brain Segmentation Repository 1. Additionally,
the source-code and an easy-to-use application with integrated Graphical User
Interface that incorporates all contributions of this PhD thesis are made pub-
licly available for the research community at our research group github repos-
itory: https://github.com/NIC-VICOROB/sub-cortical_segmentation.

Moreover, throughout the period of this PhD fellowship, various collaborations
have taken place with the other researches of the ViCOROB group. In particular,
a review on deep learning in brain medical image analysis [61] and quantitative
analysis of patch-based networks for brain tissue segmentation [62]. Moreover, con-
tributions in the International MICCAI challenges were done for infant brain tissue
segmentation and adult brain tissue segmentation with presence of multiple sclerosis
lesions [63], where our proposed methods were ranked in top positions. Additionally,
brain structure parcellation was also applied for autism spectrum disorder detection
[5] with machine learning techniques combining structural and functional MRI infor-
mation. As can be seen in Rakić et al. [5], the proposed automated brain structure
segmentation pipeline is the first step for many disease analysis.

1https://www.nitrc.org/projects/ibsr

https://github.com/NIC-VICOROB/sub-cortical_segmentation
https://www.nitrc.org/projects/ibsr
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6.2 Future work

There are some aspects that were not investigated or out of scope of this PhD thesis
and left as future work. In this section, we describe possible research lines that could
be continuations of this topic.

First of all, the immediate step to be taken is the performance analysis of the
deep learning approaches in segmenting the sub-cortical structures in presence of
multiple sclerosis or general white matter hyperintensity lesions. This could be
an interesting study as it has been done for the traditional methods in González-
Villà et al. [64], but was not explored for the deep learning based methods. The
proposed unsupervised domain adaptation method done in this PhD thesis makes
this evaluation possible because the experiments would be done for multiple sites.

In parallel to the previous point, we are currently performing an analysis of lon-
gitudinal changes in volumes of the sub-cortical structures of patients with multiple
sclerosis. The goal of this study is to research their correlations with clinical test
results such as Expanded Disability Status Scale (EDSS) and neuropsychological as-
sessment outcomes that evaluate cognitive impairment, audio-visual attention, task
switching and memory. The final goal is to develop a method for predicting disease
progression over time, which is crucial in attending patients within the risk group.

Other steps could be done for improving the unsupervised domain adaptation
by incorporating the adversarial domain adaptation together with our proposal.
The adversarial loss could be put as an additional term to the histogram loss and
by weighting them accordingly a more stable training process could be achieved.
However, the rater differences between the datasets is one of the main reasons that
make the unsupervised methods perform worse than supervised. This is due to
the supervised methods’ advantage that learn rater specific aspects for a single
dataset. It would be desirable if there was a unified protocol for producing manual
annotations that would make the unsupervised deep learning methods the preferred
option to the traditional approaches as the former approach offers more flexibility
in domain adaptation such as transfer learning.

Another direction that is linked to the domain adaptation would be data aug-
mentation using the Generative Adversarial Networks (GAN) [65, 66]. By employing
the GAN paradigm, we could generate training images for a new imaging domain
without manual ground truths by using the masks of publicly available datasets.
In this way, we could emulate the images of the target domain by having struc-
tural similarities obtained by the existing sub-cortical structure masks and domain
information from the target images.

The final goal of these studies would be to provide applicable tools that could
be used in the clinical practice. The accomplished work in this PhD thesis indeed
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paves the way towards this goal and the described future work could solidify the
concrete to support the use of Artificial Intelligence in Medical Image Analysis.
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