Erratum of the thesis Lifelike Humans: Detailed Reconstruction of Expressive Human Faces

* Number of pages refers to the PDF page not the book's pages.

Page: 2

Change: Adding ISBN number and copyright to 2021.

Page: 30

Change: Evolution of detailed facial reconstruction \rightarrow Evolution of Detailed Facial Reconstruction

Page: 31

Change: Medium and fine-level detail estimation \rightarrow Medium and Fine-Level Detail Estimation

Page: 33

Changes:

Blendshapes as expression models \rightarrow Blendshapes as Expression Models

Joint framework \rightarrow Joint Framework

Page: 34

Change: Objectives and scope \rightarrow Objectives and Scope

Page: 37

Change: and we detail con we connect \rightarrow , and we detail the connection of

Page: 41

Change: in a fast a concise \rightarrow , in a fast and concise

Page: 42

Change: most of them \rightarrow most of the

Page: 45 Change: en al. → et al.

Page: 47

Changes:

Texture analysis \rightarrow Texture Analysis

Localization and clustering of wrinkle pixels \rightarrow Localization and Clustering of Wrinkle Pixels

Page: 49 Change: Wrinkle modeling \rightarrow Wrinkle Modelling

Page: 52

Change: Synthetic data tests \rightarrow Synthetic Data Tests

Page: 54. Table 2.2 Change: sixth column \rightarrow sixth row

Page: 65.

Change: Individual hair trace \rightarrow Individual Hair Trace

Page: 67 Change: Endpoint labeling → Endpoint Labeling

Page: 69 Change: Hair modelling → Hair Modelling

Page: 71 Change: Adding density \rightarrow Adding Density

Page: 77 Change: Adding small random variations \rightarrow Adding Small Random Variations Page: 73. Table 3.1

Change: Swap rows 3rd and 4th

Page: 74

Changes:

(Tables 3.2 and 3.3) indicating its row and column position \rightarrow indicating its row in the referenced Figure.

See subjects (2,3) and (3,1) on the previous figure \rightarrow see rows 2 and 3 on Figure 3.6.

Subject (5,2) \rightarrow subject on the fifth row on Figure 3.7

Subject (6,1) \rightarrow subject 6 on figure 3.6.

In Fig. 3.8. \rightarrow In Figure 3.8

Page: 81

Change: However, this paper, \rightarrow However, this chapter,

Page: 85

Changes:

Add reference to Algorithm 3. \rightarrow The full pipeline is detailed at Algorithm 3.

From RGB video to 3D Model \rightarrow from RGB Video to 3D Model

Page: 86

Change: Mapping function → Mapping Function

Page: 87

Change: Point subregion classification \rightarrow Point Subregion Classification

Page: 88

Change: Add reference to Figure 4.2. \rightarrow Figure 4.2 depicts the input-output function.

Page: 90
Change: Smoothing energy → Smoothing Energy

Page: 93

Change:

Change order sorting of Figure 4.6 to 4.7 and vice versa.

Page: 100

Changes:

Detailed reconstruction \rightarrow Detailed Reconstruction

Hair recovery and the effect of orientation correction \rightarrow Hair Recovery and the Effect of Orientation Correction

Wrinkle preservation on expression and appending of further expression wrinkles \rightarrow Wrinkle Preservation on Expression and Appending of Further Expression Wrinkles

Page: 101

Change: hair animation on expression \rightarrow Hair Animation on Expression

Page: 102

Change: and har acquisition \rightarrow and hair acquisition

Page: 104

Change: Our approach describes a reliable, fast, and effective alternative to the previous methods. \rightarrow Our approach describes a reliable, fast, and effective alternative to the previous partial methods.

Page: References

Change:

Agudo and F. Moreno-Noguer. Shape basis interpretation for monoculardeformable 3D reconstruction. IEEE Transactions on Multimedia, PP:1–1, 09 2018. \rightarrow A. Agudo and F. Moreno-Noguer. Shape basis interpretation for monocular deformable 3D reconstruction. IEEE Transactions on Multimedia (TMM), 21(4):821–834, 2019.

New references:

A. Agudo and F. Moreno-Noguer. Combining local-physical and global statistical models for sequential deformable shape from motion. International Journal of Computer Vision (IJCV), 122(2):371–387, 2017.

A. Agudo and F. Moreno-Noguer. Force-based representation for non-rigid shape and elastic model estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 40(9):2137–2150, 2018.

Referenced on page: 85. In the last years, this problem has been addressed by non-rigid structure from motion approaches ...