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Abstract

The determination of a body position, velocity and attitude is the purpose of the navigation techniques.

The most extended navigation systems (INS/GNSS), as any other HW and SW system, provide precise and ac-
curate enough trajectory determinations under the appropriate conditions. However, when those systems acquire
data on non-friendly environments the computed navigation solution suffers from unacceptable errors. Since the
foundation of the Geodesy and Navigation group of the former Institute of Geomatics, now at CTTC, its researchers
have to deal with three fundamental issues: solution performance (precision-accuracy), specially for low-cost systems,
reliability and environmentally independent availability.

The main objective of the research presented on this dissertation is to contribute to the adoption of the geode-
tic method for navigation.The geodetic method is based on a proper problem abstraction, on optimal estimation
criteria, on rigorous mathematical modelling, on the use of sufficiently redundant data and on the use of sufficiently
heterogeneous data. Since rigorous modelling, redundancy and heterogeneous data have been widely used by the
navigation community, this thesis focus on a proper problem abstraction as well as on an optimal estimation criteria.

The first step to prove the geodetic approach suitability has been to design, implement and validate the GEMMA sys-
tem. The GEMMA system is a set of SW modules allowing the validation of new trajectory determination algorithms.
The system is made up of measurement generators, filters and analysers, as well as trajectory generators and analysers
and, as its main component, a generic platform for the optimal determination of trajectories (NAVEGA). The main
purpose of the signal and trajectory generators and filters is to provide data to test and validate new navigation
algorithms. Signal and trajectory analysers are used to characterize the error of data sets. NAVEGA is a software
platform for the optimal determination of trajectories or paths of stochastic dynamical systems driven by observations
and their associated dynamic or static models. The second step has been the design of a new optimal estimation
algorithm that maximise the benefits of redundant systems. Redundancy in the number of available satellites but
also redundancy in the number of sensors. The availability of several sensors allows reducing the noise and detecting
possible outliers. In this thesis, a new bayesian filter implementation, named Simultaneous Prediction and Filtering
(SiPF), providing access to the residuals of redundant measurements is presented. This approach allows to apply all
the quality determination geodetic techniques to the navigation solution determination.

The benefits of the previous tools, together with the extended acceptance of the benefits of redundancy, rigorous
modelling and heterogeneity lead us to conclude that the geodetic approach is a suitable way to face the navigation
problem and to improve its performance, its availability and its reliability.
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Resum

La determinació de la posició, la velocitat i l’actitud d’un objecte o ésser és el propòsit de les tècniques de navegació.

Els sistemes de navegació més estesos (INS/GNSS), com qualsevol altre sistema HW i SW, proporcionen trajectòries
precises i exactes en les condicions adequades. Però quan aquest sistema es fa servir en entorns desfavorable, la solució
pateix errors inacceptables. Des de la fundació del grup de Geodèsia i Navegació de l’antic Institut de Geomàtica,
ara al CTTC, els seus investigadors han hagut de fer front a tres aspectes fonamentals: la qualitat de la solució
(precisió-precisió) per a sistemes de baix cost, la disponibilitat d’una solució en qualsevol entorn i la seva fiabilitat.

L’objectiu d’aquesta tesi, a nivell general, és contribuir a l’adopció del mètode geodèsic per a la navegació. El
mètode geodèsic es basa en una abstracció correcte del problema, en criteris d’estimació òptims, en una modelització
matemàtica rigorosa, en l’ús de dades redundants i en l’ús de dades heterogènies . Atès que la comunitat de navegació
ha utilitzat àmpliament la modelització rigorosa, la redundància i les dades heterogènies, aquesta tesi se centra en
una abstracció adequada del problema, aix́ı com en criteris òptims d’estimació.

El primer pas per demostrar aquesta idonëıtat ha estat dissenyar, implementar i validar el sistema GEMMA. El
sistema GEMMA és un conjunt de mòduls SW que permeten la validació d’algorismes de determinació de la tra-
jectòria. El sistema està format per generadors de mesures, filtres i analitzadors de senyal, aix́ı com generadors i
analitzadors de trajectòries i, com a component principal, una plataforma genèrica per a la determinació òptima de
trajectòries (NAVEGA). El propòsit principal dels generadors i filtres de senyals i trajectòries és proporcionar dades
per provar i validar nous algoritmes de navegació. Els analitzadors de senyals i trajectòries s’utilitzen per caracteritzar
l’error dels conjunts de dades. NAVEGA és una plataforma de programari per a la determinació òptima de trajectòries
impulsades per les observacions i els seus models dinàmics o estàtics associats. El segon pas ha estat el disseny d’un
nou algoritme d’estimació òptim que maximitzi els beneficis dels sistemes redundants. Redundància en el nombre de
satèl·lits disponibles però també redundància en el nombre de sensors. La disponibilitat de diversos sensors permet
reduir el soroll i detectar possibles errors. En aquesta tesi es presenta un nou filtre bayesià anomenat Simultaneous
Prediction and Filtering, que proporciona accés als residus de les mesures redundants. Aquest enfocament permet
aplicar les eines geodèsiques d’análisis de qualitat a la determinació de la solució de navegació.

Els avantatges de les eines anteriors, juntament amb l’acceptació estesa dels beneficis de la redundància, la mod-
elització rigorosa i l’heterogenëıtat, ens permeten concloure que l’enfocament geodèsic és un enfoc adequat per fer
front el problema de la navegació i millorar el seu rendiment, la seva disponibilitat i la seva fiabilitat.
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Resumen

El objetivo de las técnicas de navegación es la determinación de la posición, velocidad y actitud de un objeto o ser.

Los sistemas de navegación más extendidos (INS / GNSS), como cualquier otro sistema HW y SW, proporcio-
nan determinación de trayectorias precisas y exactas cuando adquieren datos en entornos amigables. Sin embargo,
también se introducen errores inaceptables cuando esos entornos no son tan favorables. Desde la fundación del grupo
de Geodesia y Navegación del antiguo Instituto de Geomática, ahora en el CTTC, los investigadores tienen que lidiar
con tres cuestiones fundamentales: la calidad de la solución (precisión-exactitud) especialmente para sistemas de
bajo coste y la disponibilidad y la fiabilidad de los equipos en cualquier entorno.

El objetivo principal de esta investigación es contribuir a la adopción del método geodésico para la navegación.
El método geodésico se basa en una abstracción correcta del problema, en una estimación óptima de la solución , en
rigor matemático, en el uso de datos redundantes y en el uso de datos hetereogéneos. Dado que la comunidad de
navegación ha utilizado ampliamente la modelización rigurosa, la redundancia y los datos heterogéneos, esta tesis se
centra en la abstracción adecuada del problema, aśı como en los criterios de estimación óptimos.

El primer paso para probar esta idoneidad ha sido diseñar, implementar y validar el sistema GEMMA. GEMMA
es un conjunto de módulos SW que permite la validación de nuevos algoritmos de determinación de trayectoria.
El sistema está compuesto por generadores y filtros de señal, generadores y analizadores de trayectorias y, como
componente principal, una plataforma genérica para la determinación óptima de trayectorias (NAVEGA). El objetivo
principal de los generadores y filtros de señal y trayectoria es proporcionar datos para probar y validar nuevos algorit-
mos de navegación. Los analizadores de señal y trayectoria se utilizan para caracterizar el error de los conjuntos de
datos. NAVEGA es una plataforma de software para la determinación óptima de trayectorias o de sistemas dinámicos
estocásticos impulsados por observaciones y sus modelos dinámicos o estáticos asociados.El segundo paso ha sido el
diseño de un nuevo algoritmo de estimación óptimo que maximiza los beneficios de los sistemas redundantes. Redun-
dancia en el número de satélites disponibles, pero también redundancia en el número de sensores. La disponibilidad
de varios sensores permite reducir el ruido y detectar posibles valores at́ıpicos. En esta tesis, se presenta una nueva
implementación de filtro bayesiano, llamado Simultaneous Prediction and Filtering (SiPF), que proporciona acceso
a los residuos de mediciones redundantes. Este enfoque permite aplicar todas las técnicas geodésicas conocidas de
determinación de la calidad a la determinación de la solución de navegación.

Los beneficios de las herramientas anteriores, junto con la aceptación extendida de los beneficios de la redundancia,
el modelado riguroso y la heterogeneidad, nos llevan a concluir que el enfoque geodésico es una manera adecuada de
enfrentar el problema de navegación y mejorar su calidad, disponibilidad y confiabilidad.
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Definitions

The first lesson the author of this thesis learned from navigation and geodetic communities is that a single concept can
be named with several words and, for more entanglement, the same word can be used with quite different meanings
for different scientific communities. This section tries to avoid misunderstandings regarding main thesis concepts.
Thus, hereafter, the reader will find the concept behind each key word of this report.

Attitude is the orientation of a system in relation to a reference frame.

A geodetic coordinate reference frame is a combination of a geodetic reference frame plus a geodetic coor-
dinate system.

A geodetic coordinate reference system is a combination of a geodetic reference system plus a geodetic co-
ordinate system plus a (selected - implicit) geodetic reference frame.

A geodetic coordinate system is a coordinate system used to describe a position on or near the Earth’s sur-
face.

A geodetic reference frame is a realization of a reference system through a set of points whose coordinates
are monumented or otherwise observable in or near the Earth’s surface. In other words it is a “list” of points with
their position and velocity coordinates (e.g. ITRF96 of ITRS.)

A geodetic reference system is a reference system used to define at any time a triad of axes on or near the
Earth’s surface (e.g. ITRS.)

Global Navigation Satellite System (GNSS) is a system of satellites that are continuously transmitting (elec-
tromagnetic) signals that allow the users to determine their position over the Earth surface.

An Inertial Measurement Unit (IMU) is a device composed by one clock, several angular rate sensors (usu-
ally three), several accelerometers (usually three) and a mechanical holding structure plus the needed electronics and
communication systems to provide data. The data provided by an IMU is: time, angular rates (one for each angular
rate sensor) and linear accelerations (one for each accelerometer.)

An Inertial Navigation System (INS) or Inertial Navigation Unit (INU) is a device composed by one IMU
plus a navigation processor. The data provided by an INS is: time, position, velocity and attitude.

Inertial positioning/navigation is positioning/navigation based on inertial sensors.

An inertial sensor is a device such that reacts on the basis of Newton’s laws of motion. There are two types
of motion, translational and rotational motion, thus, there are two types of inertial sensors: accelerometers and
angular rate sensors (such as gyroscopes.) The accelerometers measure the linear accelerations (forces) or the
instantaneous rate of change of velocity suffered by the sensor (translational movement.) The angular rate sensors
measure the instantaneous angular velocities suffered by the sensor (rotational movement.)

Measurement is the assignment of a number to a characteristic of an object.

Model is a mathematical description of a system or a proess.

Navigation is real time positioning.

Observation is a numerical property of a physical system that can be determined by a sequence of phisical or
mathematical operations

17



Position is the place where something or someone is, often in relation to other things.

Positioning is to know a system position, velocity and attitude.

A Redundant Inertial Measurement Unit (RIMU) is a device composed by one clock, several angular rate
sensors (more than three), several accelerometers (more than three) and a mechanical holding structure plus the
needed electronics and communication systems to provide data. The data provided by a RIMU is: time, angular rates
(one for each angular rate sensor) and linear accelerations (one for each accelerometer.)

A reference frame is a realization of a reference system through a set of points whose coordinates are observ-
able.

A reference system is a definition, a set of prescriptions and conventions together with the modelling required
to define at any time a set of axes.

The orientation parameters, orientation elements, transformation or transfer parameters are a set of values which
define the relationship between two reference systems (or frames.)

Velocity is a vector that denotes the change of position within a time rate with a directional component.

18



Notation

The second lesson that the author learned from the above mentioned communities is that there are not a unique
notation to represent navigation related physical and mathematical concepts. In this section the reader will find the
notation used along this dissertation.

Conventions

Vectors are represented by lower-case letters. x

Reference frames. A superscript denote the reference frame in which the vector is represented. xt

First derivative are represented with a dot. ẋt

Second derivative are represented with a double dot. ẍt

Matrices are represented by upper-case letters. R

Rotation matrices. Superscripts and subscripts indicates respectively the ”to” and ”from” frames of rotation
matrices. Rt

s

Angular velocity of the t-frame with respect to the s-frame, expressed in the t-frame may be expressed either
by an angular velocity vector (ωt

st) or by the corresponding skew-symmetric matrix (Ωt
st).

Ωt
st =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



Coordinate Frames

Body frame

A body frame is one directly defined on the object/instrument of interest.

ref. system instrumental system

ref. frame any realization of the system

pos. coord. system cartesian forward, right, down

vel. coord. system cartesian forward, right, down

notation- superscript b-frame

position and velocity vector
(
xb, ẋb

)

19



Local frame

A local frame is one based on the ground, typically near the object/instrument of interest.

ref system local

ref frame any realization of the system

pos. coord. system cartesian North, East, Down

vel. coord. system cartesian North, East, Down

attitude ”from” ref. frame body frame

notation- superscript l-frame

navigation vectors
(
xl, ẋl,Rl

b

)

Inertial frame

An inertial frame is one in which bodies follow the Newton’s laws of motion.

ref system ICRS: International Celestial Reference System

ref frame quasars and stars

pos. and vel. coord. system cartesian

attitude ”from” ref. frame body frame

notation- superscript i-frame

navigation vectors
(
xi, ẋi,Ri

b

)
(pos, vel, att)
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Earth frame

An Earth frame is one based on the Earth.

ref system ITRS: International Terrestrial Reference System

ref frame any of the family of ITRFn

pos. and vel. coord. system cartesian

attitude ”from” ref. frame body frame

notation- superscript e-frame

navigation vectors (xe, ẋe,Re
b)

(pos, vel, att)

Navigation frame

This is a mixed frame useful for navigation/positioning data representation.

Navigation

ref system ITRS: International Terrestrial Reference System

ref frame any of the family of ITRFn

pos. coord. system geodetic

vel. coord. system cartesian

attitude ”from” ref. frame body frame

navigation vectors
(
(λ, ϕ, h)e,Rl

eẋ
e,Rl

b

)

where λe and ϕe are the geodetic latitude and longitude,

Rl
eẋ

e =

 vn
ve
vu


and

Rl
b = Rl

b2(γ)Rb2
b1

(ψ)Rb1
b (ϑ)

where γ, ψ, ϑ are the heading, pitch and roll Euler angles.
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Acronyms

API Application Programming Interface
AV Allan Variance
CTTC Centre Tecnológic de Telecomunicacions de Catalunya
COTS Commercial Off-The-Shelf
DoCTA Doctorat en Ciència i Tecnologia Aeroespacial
EKF Extended Kalman Filter
GEMMA Generic Extensible and Modular Multi-sensor navigation Analysis system
GNSS Global Navigation Satellite System
GPS Global Positioning System
GUI Graphical User Interface
HEPF Hybrid Extended Particle Filter
HW Hardware
ICRS International Celestial Reference System
IEKF Iterated Extended Kalman Filter
IG Institut de Geomàtica
IMU Inertial Measurement Unit
INS Inertial Navigation System
INU Inertial Navigation Unit
ITRF International Terrestrial Reference Frame
ITRF International Terrestrial Reference System
KF Kalman Filter
LS Least Squares
MEMS Microelectromechanical systems
NA Network Approach
PF Particle Filter
PIKF Predictive Iterated Particle Filter
PSD Power spectral Densisty
RF Radio Frequency
RIMU Redundant Inertial Measurement Unit
SiPF Simultaneous Prediction and Filtering
SSA State-Space Approach
SW Software
UAV Unmanned autonomous Vehicle
UKF Unscented Kalman Filter
UPC Universitat Politècnica de Catalunya
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Chapter 1

Introduction

1.1 Motivation

During the last decade navigation and orientation have become an indispensable technology for most of the developed
countries citizens. With the popularization of smartphone devices and location based applications, the technology
becomes not only a pre-requisite for the exploitation of remote sensing but also for the citizens daily needs. Nowa-
days, navigation is applied in such different applications as airborne photogrammetry and remote sensing, airborne
and marine bathymetry, autonomous driving and smart mobility, railway track geometry surveying, motorcycle and
car racing trajectory analysis, stabilization of moving video cameras in sports’ journalism or pedestrian localization.
This heterogeneous demand translated in higher requirements to navigation systems. As stated in [30] and [31], the
positioning community have to deal continuously with new sensors and new performances. Furthermore, citizens and
professionals demand positioning everywhere. But, the widely-used INS/GNSS (Inertial Navigation Systems / Global
Navigation Satellite Systems) solution is not able to provide acceptable trajectories in all environments.

For example, the situation in two completely different applications is the following:

� Low-cost surveying - UAV navigation. Although medium and high altitude autonomous flight is a fact [14],
low-altitude autonomous flights are still a threat for citizens security [56] because navigation integrity for drones
is an open issue. The European Commission, at the ending of H2020 programme, is still funding research and
development projects focused on this topic (e.g. the REALITY project [26]). According to the Commis-
sion [80], in 2050 there will be more than 400000 commercial drones operating on the European Union. Thus,
special attention must be paid to system reliability and to system robustness. Up to now, almost all the efforts
have been devoted to GNSS integrity in any of its approaches [37]: Stellite-Based Augmentation systems,
Ground-based augmentation systems or Vehicle-based Augmentation systems. But infinitely less attention has
been paid to IMU integrity, even when this is the cause of the Ariane 5 [19] or the Long March 3B [62] failures.
Regarding reliability, currently, the main weakness is due to non rigorous functional and stochastic modelling.
As far as IMU modelling is concerned, stochastic modelling of low-cost Inertial Measurement Units (IMUs) is
still an open issue [75] [11]. Robustness problem is mainly related to the lack of enough and complete system
information.

Thus, improvements on system reliability and robustness are still a must.

� Geodetic surveying - Kinematic airborne gravimetry. cm-level GNSS requires worldwide cm-level geoid.
This is an unachievable goal unless aerial measurements are taken. Recent technological advances in INS/GNSS
allow to carry out precise successful geoid determination kinematically [9][40][84]. For those campaigns to be
accurate and precise enough very accurate and precise GNSS trajectory determination is needed. Thus, the
use of Differential GNSS techniques involving observations from static/master and kinematic receivers is still
a must. In non developed countries, were master receivers are not widely spread, this is a requirement difficult
to fulfil.

Therefore, improvements in INS/GNSS accuracy and precision are still a must [84].

And also, the situation in two completely different scenarios is the following:

� Denied environments - Seamless navigation. Actual demands of environmentally independent position solu-
tion highlighted the indoor/outdoor continuity problematic [6]. Indoor navigation accuracy should be consistent
with outdoor GNSS-based positioning. Navigation research groups work with several hybridization approaches,
involving, autonomous and non-autonomous systems, but there is not yet an approach providing fully available,
robust and with an acceptable performance solution for all environments and applications [2].
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To sum up, improvements on availability, robustness and performance are still a must.

� Semi-denied environments - positioning in terrestrial corridors. In semi-denied environments INS/GNSS
hybridization main problem to face up with is the reliability of data [22] [97]. Specifically, the outlier detection
while working with GNSS pseudoranges or positions. Working with simulated data shows promising results,
but simulated data does not take into account the full complexity of GNSS real data. Thus real data presents
several problems not taken into account in the classical methods for INS/GNSS hybridization.

Therefore, improvement in gross error detection are still a must.

An analysis of the previous examples lead us to consider the following navigation challenges for the near future: solution
performance (precision-accuracy) for low-cost systems, environmentally independent availability and reliability.
Although they may seem basic problems they are complex enough to be the research target of tenths of groups
around the world.

1.2 Research objectives and contributions

On the general level, the research presented in this dissertation aims at contributing to the adoption of the geodetic
method for navigation and to its application/validation to navigation.

The geodetic method is based on a properly problem abstraction, on optimal estimation criteria and quality
assessment, be it by internal or external means, on rigorous mathematical modelling, on the use of sufficiently
redundant data and on the use of sufficiently heterogeneous data. General improvement of the navigational
performance, availability and reliability is a consequence thereof.

� Abstraction means the identification of the common traits defining the essence of the information to be deal
with. Once those traits are identified the problem can be modelled as a generic one. The generic approach
allows to analyse all the navigation problems as a single one. This simplification has a direct impact on
algorithms design and facilitates the integration of several solution approaches.

� Optimal estimation, for given optimality criteria, is an algorithmic and numerical issue; namely, a matter of
finding and implementing an algorithm that provides the “optimal” solution. Quality assessment is inevitably
related to the optimality criteria but can go beyond it by further concept elaboration. An example is the
geodetic theory of internal and external reliability, related to regression diagnostics of statistical testing. Other
examples are the observability and controllability concepts of optimal sequential estimation.

� Rigorous modelling refers to the identification of models that approximate the physical reality beyond the
sensitivity of current technology within the appropriate application context. Mathematical modelling must be
both functional and stochastic. They are mutually dependent as correctness in the stochastic aspect uses
to be related to simplicity in the functional formulation. we note here that the closer the model is to raw
measurements, the simpler the modelling. Thus, a general objective, is to build models upon independent
measurements (uncorrelated) that can be stochastically modelled with simple/well known distributions.

� The concept of redundant and heterogeneous data includes a number of principles from the actual redundancy
in measurements, to the geometry of these measurements to the heterogeneity and complementarity of the
measurement devices or sensors.

This work aims to prove that the full geodetic method is a suitable approach to face current navigation challenges.
Since rigorous modelling, redundancy and heterogeneous data have been widely used by the navigation community,
this thesis focus on a proper problem abstraction as well as on optimal estimation criteria and quality assessment.

1.3 Outline of the dissertation

Within this report the reader will firstly find an introductory chapter (chapter 2) describing the fundamentals of
inertial and hybrid GNSS/INS navigation. The chapter, which is not a review of the state of the art, is intended to
help further reading of the rest of the report. The next chapter (chapter 3) is devoted to review works related with this
thesis’ focus, this is, a review on navigation tools and optimal estimation models. Again, this chapter is not a review
of the state of the art of the Kalman filter, but rather an exercise to put in context the work reported in chapters 5
and 6. After that, in (chapter 4) the principles behind the GEMMA system, a system for trajectory determination
algorithms verification and validation are presented. The GEMMA tools have been instrumental in this research.
The two relevant components of GEMMA, the simulation and the trajectory determination tools are described in the
next chapter (chapter 5.) Later on, a new geodetic estimation method, the Simultaneous Prediction and Filtering
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(SiPF) method is described in detail (chapter 6.) The SiPF is the main contribution of this research as it introduces
a novel way to detect outliers in the dynamic measurements —i.e. in the measurements that participate in SDEs—
for the upcoming low-cost and redundant low-cost sensor systems. Subsequently, several case studies on rigorous
modelling, redundancy and hybridisation (chapter 7) are presented. The report ends with a summary of the main
conclusions from the research (chapter 8) and several recommendations for future works are presented (chapter 9.)
In the appendices, the reader will find materialization cases of the previous work, from a list of beneficiary projects
and works to a generic data model which is also a generic data interface model for sequential estimation methods
based on measurements and observation equations. The later is a published journal article.
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Chapter 2

Inertial navigation technology -
Theoretical basics

This chapter presents the theoretical basis of inertial navigation technology. First the navigation principles are
presented, later on, the reader will find the fundamental concepts related to inertial hybridization with other sensors.

2.1 Autonomous navigation

Autonomous navigation is the process of estimating one’s current position based upon a system non depending on
external aiding, this is, all the processed information is collected by the system itself. Some examples of autonomous
navigation systems are altimeters, barometers, odometers or inertial sensors.

Most of the classical autonomous navigation methods are based on dead reckoning methods. This is, processes
of estimating position based upon a previously determined position and advancing that position based upon known
or estimated speeds over elapsed time. A disadvantage of dead reckoning is that since new positions are calculated
solely from previous positions, the errors of the process are cumulative, so the error in the position fix grows with time.

While traditional methods of dead reckoning are no longer considered primary means of navigation, modern In-
ertial Navigation Systems (INS) are widely used.

The INS base their solutions in data provided by inertial sensors. An inertial sensor is a device such that reacts
on the basis of Newton’s laws of motion. There are two types of motion, translational and rotational motion, thus,
there are two types of inertial sensors: accelerometers and angular rate sensors (such as gyroscopes.) The accelerom-
eters measure the linear accelerations (forces) or the instantaneous rate of change of velocity suffered by the sensor
(translational movement.) The angular rate sensors measure the instantaneous angular velocities suffered by the
sensor (rotational movement.)

Typically, a combination of three orthogonally mounted angular rate sensors and three orthogonally mounted ac-
celerometers is used to acquire the data for inertial positioning. These devices use to be quite standard and are
known as Inertial Measurement Units (IMUs). An IMU is composed by one clock, several angular rate sensors (usu-
ally three), several accelerometers (usually three) and a mechanical holding structure, plus the needed electronics
and communication systems to provide data. The data provided by an IMU is: time, angular rates (one for each
angular rate sensor) and linear accelerations (one for each accelerometer.)

From the knowledge of linear accelerations, angular velocities and an initial position, velocity and attitude, it is
possible to compute the position, velocity and attitude of the system in a posterior time.

According to Newton-Euler’s second Law:
ẍ i = f i + gi(x i) (2.1)

where f i are the sensed linear accelerations in an inertial frame, xi is the position and gi is the acceleration due to
the gravitational field at the point xi [14].

But, due to the fact that the measures are referred to the body frame and taking into account coordinate ref-
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erence frames transformation basis, 2.1 is expressed as

ẍ i = Ri
bf

b + gi(x i)

Ṙi
b = Ri

bΩ
b
ib (2.2)

or equivalently:
ẋ i = vi

v̇ i = Ri
bf

b + gi(x i)

Ṙi
b = Ri

bΩ
b
ib

(2.3)

where f b is the sensed linear accelerations, Ωb
ib is the matrix containing the sensed angular velocities, xi is the po-

sition, vi is the velocity, Ri
b is the rotation matrix between the i-frame and the b-frame (parametrized by the angles

heading (γ), pitch (ψ), roll (ϑ)) and gi is the acceleration due to the gravitational field at the point xi [14].

Due to the problem nature, is it clear that the solution will be affected by integration drifts. But this is not
the only error affecting the solution, since he IMU sensor’s data is affected of errors such as white noise, biases or
scale factors, the delivered solution will be also affected by this type of errors.

2.2 Hybridization

In order to determine the IMU sensors drifts and biases the INS solution can be compared with other positioning
sensors solution [90] or with the carrier vehicle dynamic model [41]. This way, once the INS errors are deduced, the
INS solution can be corrected. Thus, the equation 2.3 are modified as follows:

ẋ i = vi

v̇ i = Ri
bf̂

b + gi(x i)

Ṙi
b = Ri

bΩ̂
b
ib

(2.4)

where f̂ b is the linear accelerations obtained after correcting the sensed ones with the estimated errors and Ω̂b
ib is

the matrix containing the corrected sensed angular velocities.

In order to determine the INS error, altimeters and the Global Positioning System (GPS) were the main auxiliary
sensors until the first decade of the XXI century. Recently, due to the appearance of new positioning constellations
and the increasing demand of indoor positioning, GNSS (Global Navigation Satellite Systems), RF (Radio Frequency)
systems and visual-based positioning solutions (like RGB stereocarmeras or LIDARs) are also common tools to solve
INS drifts.

Depending on which auxiliary sensor observation is used to update the solution and how the output parameters
are used to correct input data, we talk about different hybridization levels. Thus, an uncoupled algorithm takes into
account IMU data plus auxiliary sensor computed position, velocity and/or attitude and determines position, velocity
and attitude.(Figure 2.1.) A loosely coupled system also uses IMU data plus auxiliary sensor computed position,
velocity and/or attitude. It computes not only position, velocity and attitude but also IMU systematic errors (Figure
2.2.) A closely coupled system uses IMU data and auxiliary sensor raw data. It also computes position, velocity,
attitude, IMU systematic errors and auxiliary sensor systematic errors (Figure 2.2.).

The most extended approach to merge INS and other sensors solutions is the Bayesian approach [51], in any of
its embodiments. This solution is based on the fact that the navigation problem can be written as:

xk = fk(xk−1, vk−1)
zk = hk(xk, wk)

(2.5)

Where the error model is described by (1) an initial distribution p(x0), (2) a transition equation p(xk|xk−1) and (3)
an initial distribution p(zk|xk). Bayesian theory says that:

E(xk) = E(fk) =

∫ tk

tk−1

fk(xk)p(xk|zk)dxk (2.6)

Independently of the involved sensors and on the hybridization criteria, the navigation problem is as simple
and as complex as being able to properly compute this value.
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Figure 2.1: Hybridization levels: uncoupled.

Figure 2.2: Hybridization levels: loosely (left) and closely (right) coupled.

In the next chapter the reader will find how navigation community has typically faced this problem and in the
following ones the reader will find an abstraction of the overall problem that simplifies model implementation and
development and a new numerical approach to solve this equation taking into account the geodetic principles.

29



30



Chapter 3

Related work

In the previous chapter, a review of the technological basis of navigation technology has been presented. In this
section, some of the most recent advances in the navigation algorithms and methods related to the present reseach
are summarized.

3.1 Navigation problem abstraction and modellization

From a research point of view, multisensor navigation field is not only trajectory determination systems but ancillary
tools such as reference trajectory generators, signal generators and trajectory analysis/validation tools. Currently, a
researcher can find a wide range of helpful tools available both in the ”traditional” market as in the open-source /
free license market. But all those tools are designed as individual tools and are not conceived as a part of a whole.
Thus, for example, we can easily find matlab code for the generation of synthetic trajectories [52]; for IMU measure-
ments generators [53]; we can find high grade software for GNSS signal generation, like the proviedd by IFEN [39];
Open-source GNSS research tools, like the CTTC’s GNSS software defined radio receiver, named GNSS-SDR [18].
Researchers can also find reliable and wordwide trajectory determination and analysis systems like the Applanix or
the Waypoint systems [17]. But, even with this wide range of tools, even in the best of the scenarios, the researcher
would need to deal with interfaces incompatibilities, and when trying to develop new algorithms he/she can even
need to develop a full trajectory determination system by him or herself.

The research presented in this dissertation aims to develop a geodetic-based, generic, useful (modular
and extensible,) and complete chain of tools for multisensor navigation research purposes (see chapter 4.)

Focusing on trajectory determination systems, an overview on current available solutions reveals that the market
for traditional surveying applications is dominated by a few players, mainly: Applanix (Canada), OXTS (UK), IGI
GmbH (Germany), uBLOX (Switzerland), Civitanavi Systems (Italy) and NovAtel (Canada). The first four compa-
nies provide integrated systems, including both HW and SW components that may not be acquired separately. The
software components are, moreover, monolithic real-time navigators or post-mission orientators. NovAtel provides
with integrated HW and SW solutions as well (the SPAN family), but also offers independent SW systems (GrafNav
and Inertial Explorer). Yet, even in this case, these SW components are just navigators/orientators. The market
segment covering new devices like smartphones, car driving assistance or pedestrian navigation is currently dominated
by Garmin (Switzerland), Tom Tom (Netherlands), Magellan (Japan), Broadcom (USA) and Invensense (USA). Once
again, these are closed systems that do not allow the integration of new sensors. The consolidation and evolution
of smartphones paves the way to a new navigation environment. Handheld devices provide the HW and the SW
APIs while SW developers provide tools specifically developed for this kind of systems. The efforts to develop such
a wide range of tools (from professional, to car-oriented or smartphones devices) may be measured in thousands of
person/months for each company, and will keep being like that unless a common platform is developed for all of
them. Beyond the traditional market, it is possible to find now open source tools like RTKlib and GPStoolkit library,
able to provide good solutions for a single specific sensor, the GNSS receiver.

All those systems rely on a Kalman Filter family estimation criteria, they implement what is named a State-Space
Approach (SSA). One of the main research lines of the former Institute of Geomatics was to develop a fully different
approach, the Network Approach (NA), based on geodetic concepts and principles. In the geodesy and geomatics
field, a network is a set of instruments, observations and parameters that are inter-related through mathematical
models. A time-dependent network is a network where some of its parameters are stochastic processes. To solve a
network is to perform an optimal estimation of its parameters in the sense of least-squares. Analogously, to solve a
time-dependent network is to perform an optimal estimation of its parameters which include some stochastic process.
In the network approach, the navigation equations system are considered as a time-dependant network and solve them
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by means of the least-squares method. Similar approaches to NA can be found in other research communities [15].
For example, in the robotics and computer vision community, this approach is known as bundle adjustment or sliding
window bundle adjustment [46].

The main pros and cons of both approximations are presented hereafter.

� State-space approach

– Advantages

* Real-time parameter estimation capability.

* The state vector dominates the scene. That is, there is a clear definition of what the system is.

– Disadvantages

* Connectivity of parameters through static observation equations is not supported.

* Filter divergence.

* Computation of covariance matrices for all the state vectors can not be avoided.

� Network approach

– Advantages

* Support for connectivity of parameters regardless of time.

* Support for both traditional networks and for dynamic systems.

* Possibility to compute the covariance of a limited number of selected parameters.

* Variance component estimation.

– Disadvantages

* Large system of linear equation.

* Real-time parameter estimation not feasible in general.

The research presented in this dissertation aims at demonstrate the validity of the NA philosophy but
within a SSA (see section 5.1 .)

3.2 Optimal estimation criteria and quality assessment

Nowadays, trajectory determination for navigation, geodetic positioning and remote sensing orientation is mainly
based on the Bayesian approach, mainly represented by the Kalman filtering and Smoothing published by R.E.
Kalman [42]. Their methodology is to solve navigation problem by prediction, filtering and smoothing. The optimal
solution to the prediction-filtering smoothing is obtained through one of the recursive algorithms of the Kalman filter
type. In the prediction-filter cycle, the most important entity is the state-vector, in some situation this could represent
a problem, due to problems unobservability. High end systems are commonly implemented using Extended Kalman
Filter (EKF) and Unscented Kalman Filter (UKF). The EKF assumes linear process and measurement models while
UKF generates sigma points using the real mean and standard deviation of data. To overcome these limitations,
a non-parametric filter, the Particle Filter (PF) was proposed lately. The PF can easily deal with non-linearity and
non-Gaussian noises.In [1] Aggarwal et al. propose a Hybrid Extended Particle Filter (HEPF) as an alternative to the
EKF to achieve better navigation data accuracy using low-cost MEMS sensors. HEPF combines the advantages of
Extended Kalman Filter and Extended Particle Filter by alternating between the two filters, based on system dynamic.
In [21], Fang et al. propose the Predictive Iterated Kalman Filter (PIKF). The PIKF estimates the model error by
the PF and uses it to compensate the state estimation.

Although optimal on friendly environments,a weakness of the Kalman filters is its behavior in the presence of outliers.
In such situations the performance of those filter degrades. In INS/GNSS integration, well-known examples of those
outliers are GNSS signals affected by multipath but there are several scenarios, less known, where IMU measurements
are also affected by outliers. For example, the signals outside the dynamic range of the IMU will not be collected
properly. Another example of incorrect measurements will be those signals whose frequency are higher that the IMU
acquisition frequency. A method widely extended to face these situations are the adaptive filters. Adaptive filters
are based on the robust least-squares philosophy. Those filters reweigh the measurements in real time allowing to
down-weight an outlier when it arrives [89]. Adaptive filters have been proven very useful for detection of outlying
measurements involved in the filtering step but not the ones involved in the prediction step.

All those algorithms are real-time oriented, where data is processed sequentially in time. The quality assessment
tools for those algorithms are based on innovation analysis and observability and controllability analysis. They do
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not take full advantage of modern mission configurations, where redundancy and heterogeneity are common. In [15],
Colomina et al. proposed the network approach, a post-processing oriented algorithm where all available data is
processed together in a batch mode and where this information is really taken into account. In this approach the
geodetic analysis tools (internal and external reliability, outlier detection) have been fully exploited and have demon-
strated its suitability to improve solution reliability. Unfortunately, since this is a bath approach, it implies enormous
computational burden.

The research presented in this dissertation aims to develop a new sequential optimal estimation crite-
ria that takes benefits of problem geometry and able to use geodetic analysis tools (see chapter 6).
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Chapter 4

Problem abstraction - A generic,
extensible and modular multi-sensor
navigation analysis system

In this chapter a full navigation research framework named GEMMA (Generic, Extensible and Modular Multi-sensor
navigation Analysis system) is presented. GEMMA is a generic, extensible and modular system that allow to implement
all the navigation research required tools, in particular all the algorithms presented in this research, in a quick and
easy way. GEMMA consist on a set of tools designed and developed under geodetic principles and aimed to simplify
navigation research process. Those tools have been proven useful not only for the development of the work presented
herein but also in a number of projects and research works (see Appendix 1 for a complete list of beneficiaries of
GEMMA).

4.1 GEMMA overview

The architecture (and components) of a framework willing to provide with a useful set of tools and procedures
to facilitate the research tasks related to a specific set of disciplines may obviously vary depending on the actual
experience of the people involved first in its inception and, later on, in its design and implementation stages. From
the author’s point of view the components included in a positioning and navigation research framework should be
able to offer, at least, the following set of features:

� Generation (densification) of realistic trajectories for any kind of platform: from spacecrafts, to aerial, terrestrial
or marine vehicles, or even alive organisms;

� simulation of signals (measurements) for several types of sensors, as, for instance, IMU sensors or GNSS
receivers,

� sequencing of sensor measurements,
� trajectory estimation and
� (trajectory) quality assessment.

Each of the features (and related tools) in the list above is important by itself. For instance, the ability to gener-
ate and densify trajectories avoids having to obtain such trajectories by other methods; when signal (measurement)
generators are available, there is no need to organize data collection campaigns. In short, these tools help to save
time and reduce costs, thus facilitating the work of researchers. However, it is the combination of different subsets
of these features (tools) what reveals the versatility of the concept, and how it responds to different research use
cases (see section 4.2).

Last but not least, data play a central role in such a framework. Impedances derived from the use of different
data formats or even data models must be avoided to facilitate a correct flow of information among the tools avail-
able in the framework. In short, the less file format converters are used, the better; obviously, converters will be
needed to import data collected by other systems—or conversely, to export results to these.

The natural solution to this was to devise, implement and use a common data model (and related interfaces).

Chapter 4 was presented as a conference paper at XXIII ISPRS Congress. Navarro,J.A., Parés,M.E., Colomina,I. ”GEMMA:
a generic, extensible and modular multi-sensor navigation analysis system” , ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Volume III-3, pp. 433-440. XXIII ISPRS Congress, 12-19 July 2016, Prague (Czech
Republic), July 2016.
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This data model, ASTROLABE [61], supports the generic and extensible architecture already implemented in the
aforementioned tools. A full description of this data model can be found in Appendix 2.

GEMMA implements these features, providing a tool for each feature. In particular, it includes four signal gen-
erators, for IMUs, magnetometers, odometers and GNSS receivers.

Figure 4.1 depicts all the features just discussed (implemented as a set of tools in the GEMMA system). Addi-
tionally, all the possible data flows between these are shown. Depending on the actual scenario being tackled (see
section 4.2 for some examples), only a subset of these tools and data flows will be used. For instance, when not
working in a real-time environment, the trajectory estimation tool will not be connected to an acquisition system but
will use either logged (pre-recorded) data (measurements) coming from one or more of the available signal generators.

Figure 4.1: GEMMA: components and work flow.

The following sections describe briefly the different components of the architecture and show how GEMMA
implemented these.

4.1.1 Trajectory generation

The ultimate goal of the trajectory generator tool is to create reference trajectories to compare with when these do
not exist or it is too expensive to obtain them—for instance, flying a real plane. Strictly speaking, this tool is not
about full trajectory generation but about trajectory densification. Given a set of waypoints (time-tagged positions,
and eventually attitudes) an infinite number of trajectories can be derived. The tool should be able to produce a
dense realistic trajectory including not only the previous way points but a much more extensive list of them as well
as related velocities and orientations.

For these trajectories to be as realistic as possible they should be continuous and infinitely derivable. Moreover,
since not all the vehicles follow the same dynamic equations, the tool should be designed in such a way that the
densification of the way points and the related orientation definition follow the user required platform dynamics. This
translates into an extensible piece of software where the densification is independent of the selected vehicle dynamics.

For versatility (and flexibility) reasons, the generator must be able to accept way points generated by different
sources, as for instance, KML files or trajectories output by (realistic) flight simulators—file format converters may
be needed to do so. The parameters controlling the behaviour of the tool (as the output frequency) must be also
configurable by the user.

GEMMA includes a trajectory generation tool complying with the functional requirements discussed above. Specif-
ically, it achieves the infinitely derivable position and orientation by convolving with a C∞ function and later on
interpolating the resulting trajectory at the user selected rate; the realistic orientation for different platforms is ob-
tained from the dynamics formulas of those vehicles [68, 73].
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4.1.2 Signal generators

A (software) signal1 generator simulates the observations that would have been delivered by a sensor if it would have
actually been used in a real campaign.

Signal generators take as input a reference trajectory—however obtained—and use the models defining the be-
haviour of the sensor to be simulated to deliver the simulated observations. Note that these models must include the
errors affecting the sensors, so output data mirrors this defective behaviour.

Instrumental errors behave as a composition of stochastic processes (as random walks, white noise or Gauss-Markov
ones). Additionally, errors may be originated by different sources, beyond the instrument itself, the environment
(temperature, magnetic fields, humidity among many others) or the platform the instrument is mounted on (vehicles,
human or animal carriers). These kinds and sources of errors must be taken into account by a signal generator so
reality is properly mirrored.

Signal generators may be either software or hardware components and the presented architecture makes no dis-
tinctions between these. Software components, apparently, are less prone to obsolescence since it is possible to
include new features just by maintaining the code.

There are different situations where the use of such generators prove to be useful. These are some, among oth-
ers:

� To check how the quality of an estimated trajectory is improved by incorporating a sensor that is not available—
but correctly modelled.

� To select the appropriate quality of a sensor according to the requisites that the estimated navigation solution
must meet. For instance, a tactical-grade GNSS receiver may not be necessary in all situations.

At the moment of writing this paper, GEMMA includes four types of signal generators fully compliant with the
functional description above, namely odometers, magnetometers, GNSS receivers and IMUs (see a detailed description
of this one in chapter 5.) Others may be included in the future when needed. A hardware GNSS simulator, the IFEN
NavX-NCS PROFESSIONAL GNSS simulator [39], is also part of the system.

4.1.3 Sequencer

The goal of the sequencer is to sort a series of heterogeneous observations in ascending time order. In this context,
heterogeneous stands for originating in different kinds of sensors. The need to sort input data is motivated by the fact
that the estimation of the successive values of the states integrating a trajectory is based on the use of observations
that are close in time.

A sequencer takes as input a series of files or TCP / IP socket connections containing or transmitting time-tagged
observations measured by different sensors and outputs a single stream of data including these same observations
conveniently sorted. This output stream may be either written to a file (for local, batch processing) or sent through
a TCP / IP socket connection (remote, real-time processing).

When processing data received through TCP / IP socket connections, the signal sequencer must be able to dis-
card delayed data. A time tolerance parameter to decide if such data is accepted in spite of being too old is a very
convenient feature to have; normally, reading data through network connections imply real-time processing and, in
this situation, some delays or shifts related to time stamps are to be expected. Therefore, such a tolerance parameter
may be used to alleviate these discordances. Obviously, the trajectory estimation tool (see section 4.1.4) must be
able to cope with such non-perfectly time-sorted stream of data for this feature be of any use at all.

GEMMA includes a sequencer tool implementing almost all the features described above. The sequencer’s abil-
ity to send its output through a network opens the way to distributed research, which has been put into practice in
several projects, as ATENEA [22]: observation data is obtained in one place, sequenced there, and sent via sockets
to a second place, where it is processed.

1The words signal, measurement and observation are incorrectly used as synonyms here for the sake of simplicity. For instance,
in some situations, additional processing may be needed to obtain a measurement out of a signal, but such distinction is not made
in this paper.
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4.1.4 Trajectory estimation

The goal of this tool is to estimate trajectories (navigation solution) from of a series of time-sorted, heterogeneous
sensor observations. A detailed description of this tool is presented at chapter 5

4.1.5 Analyzer

The last tool of the system definition is the trajectory analyser. As its name indicates, the aim of the tool is to
perform several quality analysis over an estimated trajectory. The main features it should include are:

� Given a reference trajectory, which is considered as the absolute truth, the system should be able to ”translate”
one trajectory to the other one and to compare them. By ”translation” we mean to apply user requested
offset and boresight matrix. The analyser should be able to compute statistics (like, mean, standard deviation
and RMSE) fully describing the difference between these, which is the cornerstone to assess the quality of the
estimated trajectory.

� Given a reference trajectory, the system should be able not only to compare estimated and reference trajectory
as previously stated but also to check its coherence with the predicted error, and to determine if those last
values are under or overestimated.

� Given the residuals or the innovations of an estimated trajectory the system should be able to determine the
stochastic process beneath them, and to check if it is coherent with the expected one (typically white noise).

GEMMA implement the aforementioned features and additionally, a series of plots depicting some of the statistics
is produced to help to better understand the results produced by the analyser.

Figure 4.2 is an example of one of those plots: In it the reader can see the actual error of an estimated trajec-
tory (comparison between estimated and reference trajectory - in red) and the estimator predicted error standard
deviation (in green). From the figure it can be directly seen that the estimated error does not correspond with the
actual error, thus the trajectory determination system is being optimistic.

Figure 4.2: GEMMA’s trajectory analyser: Example of quality plot.

4.2 GEMMA use cases

A framework such the one presented here may be used, and has already been used (see Appendix 1) in a variety of
research use cases, just combining in different ways the components that integrate it. The most usual use cases are:
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� Technology selection or validation.
� Algorithm verification and validation.
� Navigation and positioning in real-life environments.

The following sections describe these use cases and the role that play the different components of the tool in
each of these situations. All the presented use cases have been successfully addressed with GEMMA.

4.2.1 Use case: technology selection or validation

This use case takes into account two possible situations:

� It is necessary to select a sensor whose quality is good enough—but not necessarily better—to estimate output
trajectories that must match some precision and accuracy requirements. For instance, not all applications
need a navigation-grade IMU, but may be costly enough to determine what is the actual quality level that will
guarantee the required output.

� Assessment of the quality of a single sensor, that is, determining whether it is appropriate for the requisites
affecting the estimated trajectory.

The advantage of using GEMMA in this case is that it is possible to simulate the signals produced by these
sensors and then estimate and evaluate, for each candidate, the respective output trajectories. Needless to say,
proper modelling of the behaviour of the intervening sensors is required.

The components of GEMMA involved in this use case are shown in Figure 4.3. In this figure, those GEMMA
components that do not intervene in the use case are shown in pale grey.

Figure 4.3: GEMMA use case: the technology selection.

The following would be the typical work flow to follow:

� First, a reference trajectory is needed to compare it with the output estimated ones. It may be either synthet-
ically generated by means of the trajectory generator component or taken from any field campaign.

� The signal generator corresponding to the sensor(s) to evaluate would then be used to simulate the signals
(measurements, observations) that would have been produced if the sensor would have actually travelled along
the reference trajectory.

� Then the sequencer would time-sort all the observations produced by the signal generators.
� The trajectory estimator component (NAVEGA) would be used to estimate the output trajectory, and, finally,
� the quality of the aforementioned trajectory would be assessed by the covariance analysis provided by the

analyser component.

When comparing several sensor candidates to select the most appropriate one, the process above should be
repeated for every sensor being evaluated. If the goal is just to determine whether a sensor is good enough to fulfil
the stated goal (trajectory quality) then a single run should suffice.

A real project where this use case was put to the test was GINSEC [60].
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4.2.2 Use case: algorithm verification and validation

It has been stated several times in this chapter that GEMMA is generic and extensible. This means that new sensors
may be included into the system—or those that have been modified easily adapted— at almost no cost.

Including a new sensor means writing the mathematical equations modelling its behaviour and generating a loadable
library including the new model. There is no need to change already existing software to make the new model avail-
able to GEMMA; that is, when adding new sensors there is no need to maintain, change or adapt the existing code
base. The new model will be loaded dynamically upon request—that is, when data related to such model is processed.

As it happens to any kind of algorithm, it is necessary to verify and validate new models in order to guarantee
their correctness (that is, the new code contains no bugs) and performance (the new sensor is correctly modelled).
This is the algorithm verification and validation use case.

Figure 4.4 show the components in the GEMMA system playing a role in this situation (note that, in this figure,
those components not intervening in the process are shown in pale grey).

Figure 4.4: GEMMA use case: algorithm verification and validation.

The sequence of steps to take when verifying and validating a new algorithm is defined below. A reliable ref-
erence trajectory, however, must be generated beforehand. To create such trajectory, a data collection campaign
involving not only a set of trusted sensors—that is, already correctly modelled—but also the new one must take place.

The reference trajectory must be estimated using only trusted sensors, so it is a reliable one to compare with
(note that Figure 4.5 describes this procedure).Data coming from the new sensor is just logged, and will be later
used to verify and validate the new model being developed.

Once the reference trajectory and the new sensor data are available, the procedure to follow is:

1. Using the sequencer tool, data coming from all the sensors involved in the data collecton campaign must be
time-sorted.

2. The sensor mathematical models must be written. This, essentially, means filling the gaps in a template
provided in GEMMA’s developer’s kit; such template adheres to the API (Application Programming I nterface)
defined by the system. In this way, developers need to have no prior knowledge about the internals of GEMMA;
their knowledge may be just limited to sensor modelling

3. A loadable library is then created and included in the GEMMA system.
4. NAVEGA is used to estimate a new trajectory.
5. The trajectory analyser is then used to compare the reference trajectory with the newly estimated one, and the

results is also checked with the estimated covariance thus assessing its quality.

Steps 2 to 5 may have to be repeated several times until the quality of the mathematical model is satisfactory.

Several already concluded projects were clear examples of this use case: GAL [84], ENCORE [16] and ATENEA
[22].
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4.2.3 Use case: navigation and positioning in real-life environments

This is the use case where less components of GEMMA are involved: NAVEGA is used as a standalone tool (see
Figure 4.5). In this situation, NAVEGA is used as a real-time trajectory estimator.

Figure 4.5: GEMMA use case: real-time environments.

Loaded with the appropriate set of models (those characterizing the sensors integrating an external acquisition
system) NAVEGA might be used as a real-time server providing successive position and attitude values to some other
subsystem(s). For instance, an autopilot system might decide to delegate the task of positioning the aircraft to
NAVEGA, feeding this component with data coming from the different sensors on board, instead of performing this
process itself [60].

A variation of the example above would compute position and attitude in real-time but log these data to permanent
storage instead. This situation is typical in post-processing environments, when higher accuracy and precision are
required. Processing the data collected with NAVEGA by means of techniques as PPP (Point Precise Positioning)
would improve the quality of the estimated trajectory to the level required by professional applications (as network
bundle adjustment, for instance) [56].
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Chapter 5

Problem abstraction - Geodetic tools
for trajectory determination and
sensor simulation

This chapter delves into two of the most relevant tools of GEMMA: NAVEGA and the IMU simulator. NAVEGA
is the central engine of the GEMMA system. In this chapter the reader will find the architecture of two innovative
generic, modular and extensible tools (a trajectory determination tool and an IMU signal simulator tool) based on
architectural principles successfully applied by the photogrammetric community [20], [12], [15].

5.1 Trajectory determination tool - NAVEGA

The geodetic principles for SW development, where NAVEGA principles are inspired, rely on the abstraction of
the algorithms in a way that including new elements to the system only requires the development of a toolbox.
The architecture proposed hereafter describe a SW platform for the optimal determination of trajectories or paths
of stochastic dynamical systems driven by observations –or measurements– and their associated dynamic or static
models. The reader will find firstly the requirements of the future Bayesian-based navigation systems, and a brief
snapshot of the navigation algorithm structure. Later on, we present the principles that, from our point of view,
should rule the next generation of navigation system architectures. Finally, we present a particular implementation
of these architectural principles together with a short summary of its performance.

5.1.1 Next generation trajectory determination systems requirements

Although the main requirements (quality and robustness) of navigation systems have not varied significantly since the
appearance of the first tools, the technology available in the market having to comply with these requirements has.
On the other hand, the availability of lower-cost micro-processor and the miniaturization of technology introduce new
requirements to the system (performance, integrability and extensibility.) Finally, the popularization of location-based
applications has also had a large impact on navigation requirements evolution (usability):

� Quality (precision/accuracy). These terms refer to the quality of the solution. Back in the early times of
navigation systems, high quality solutions were expected – in direct correspondence to the high quality of the
measurement systems used by those. Due to the irruption of COTS (Commercial Off-The-Shelf) systems in
recent years, the quality of the solutions must rely more on algorithms and less in the characteristics of sensors.
Thus, more and more sophisticated inference algorithms are needed to obtain similar results with cheaper
sensors.

� Robustness. This requirement is about the system resilience to the presence of outliers, the lack of information
or bad initialization. New users or non-specialized on the field expect for solutions valid in any environment,
and will not be satisfied with system that behave incorrectly due to issues that they are not even aware of,
such as multipath, magnetic fields or satellite occlusions. New systems should consider all this scenarios and
their related problematics.

� Performance. The owners of handheld devices demand navigation systems able to position them in the most
singular places and always in real time. This implies to use a wide range of sensors to be able to provide a

Section 5.1 was presented as a conference paper at ION GNSS+ 2015. Parés, M.E.,Colomina, I., On software Architecture
Concepts for a Unified, Generic and Extensible Trajectory Determination System , in Proceedings of the ION GNSS+, 08-12
September 2015, Tampa, Florida (USA).
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continuous solution but also algorithms with a low computational cost able to deliver results in short time.
Even when dealing with the most sophisticated sensors, users expect to have a solution, computed by a micro-
processor, in real time.

� Integrability. New users also expect that location-based applications have access to location service providers.
The new navigation systems should be easily accessible from external users in order to be easily integrated in
non-geo applications. This translates in clear and manageable interfaces.

� Extensibility. The last requirement, related to the continuous irruption of new technologies, refers to the
capability of the system to integrate new sensors without increasing exponentially the development effort.
Either for professional applications or for mass-market ones, more and/or new sensors are used every year.
New navigation systems should be able to cope with that, focusing only on sensor modelling and not in the
estimation algorithms.

� Usability. The users of navigation system have evolved from airplane or boat crews and photogrammetry
specialists to millions of citizens requesting for geo-located services in their daily routines. These new users have
never received (and will never receive) training on navigation techniques, so the interfaces of navigation systems
should be clear and intuitive. For professional users and researchers, interfaces should allow the modification
of states controlling the behavior of the software as well as a deep interaction with the application. To sum
up, the system should be able to deal with a wide range of users and, at the same time, guarantee the quality
of the solution and its performance.

5.1.2 Next generation systems architecture principles

In order to achieve the current requirements of extensibility and modularity we have revisited the previous algorithm,
which has gone through a process of abstraction and generalization. As stated in [15], simple and extensible software
design requires correct abstraction levels. Abstraction is the process of expressing a quality or characteristic apart from
any specific object or instance. Thus, we have identified the navigation software characteristics apart from its actual
implementations. According to [15] insufficient or needless abstraction leads to complex systems, wrong abstraction
leads to non extensible systems but correct abstract models are, therefore, the key to simple and extensible systems.
Because of this abstraction exercise on navigation systems, we have arrived to some principles that will drive the
definition of our new architecture:

� Separation between estimation and modelling. Bayesian estimation processes ingredients are data (mea-
surements/states), the relations between data and the specific algorithm used to estimate the states [81].
Current navigation systems implementations do not take into account this process conceptual segmentation,
leading to very efficient but hardly reusable SW tools. We propose to define an architecture where estimation
algorithms (procedure) and modelling (data and its relation) are implemented as separated components. The
separation of the “numerical cruncher” and the equations allow a quick extension of the software when new
sensors appear. Roughly speaking, “configuring” the system implies “loading” components related to the spe-
cific navigation sensors and setting a number of mission related states. Still roughly speaking, ”configuring”
the system for a specific instrument has no effect on the computational kernel even if new sensors come into
play. The actual implementation of this concept could take benefit from dynamic libraries. While the common
elements of the state-space approach should be implemented directly in the “number crunching” kernel, the
uncommon ones should be materialized in dynamic libraries. An implementation like this one, has a lot of
benefits such as minimizing the required amount of RAM in run time, since only the needed sensors are loaded;
minimizing the development time, since the inclusion of new sensors imply the development of relatively small
fragments of code and, finally, minimizing the time needed to train developers, since these should only have a
deep knowledge about the sensor but not about Bayesian filters. Furthermore quality performance and robust-
ness will not only not decrease but can even increase since more efforts can be placed on the development of
the “number crunching” kernel.

� Sensor/measurements abstract reference model. Focusing on the information related to the navigation
system, we distinguish four elements: (input) measurements, (input) auxiliary instrument constant values, (out-
put) states and (equations) models relating all those elements. Available technology allows us to have several
sensors providing different kind of observations which purpose is to estimate same states type (e.g. magne-
tometers and star trackers both aims to determine orientation in space). Technology evolution, provide users
with same principle sensors but a wide range of quality performances, the purpose of all this sensors, however,
is to estimate same states type (e.g. navigation-grade to MEMS inertial sensors for position and orientation
estimation). The modelling of the information component in four categories (observation/measurement, state,
model and instrument) avoids code repetition and allows the use of object-oriented modelling, its inheritance,
encapsulation and polymorphism mechanisms [12], [15]. A clear stateization of measurements, states, equa-
tions and auxiliary values elements is a powerful mechanism that allows the simplification of the system and
consequently will help developers to implement quickly new sensor measurement and state models in the SW.
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� Computational strategy object. Navigation solution performance depends not only on the equipment but
also on the environmental conditions [30] [31]. Some years ago, this last factor was not taken into account
in navigation systems, mainly focused on airborne environments. Nowadays, since the number of non-airborne
users is growing exponentially, such systems should include a mechanism able to deal not only with sensors but
also with scenarios, a context awareness strategy object. Users should be able to inform the system about its
environmental context through an options file. In situations where the user is not able to provide with this kind
of information, the strategy object should be capable to determine such context by itself (e.g. the qualitative
analysis of the data provided by inertial sensors mounted in a car should allow the system to determine this
environment by itself). Strategy should also be aware of the environment to be able to add to the system, if
needed, contextual information (e.g. vertical velocity restrictions for terrestrial platforms or sudden direction
changes restrictions in fixed-wing airplanes.) Strategy must also decide at any moment of the process if the
system is able to provide the required solution out of the available information and, if it is not possible, decide
how to proceed. If the object detects that the provided information is not enough to compute a solution, it
must be able to choose between delivering a partial solution or warning the user that the system is not able
to provide an acceptable one and that more information is required. Once again, the software must reflect
the conceptual difference of this object and the estimation and modelling objects; thus, the strategy object
should not be integrated in the “numerical cruncher”, but implemented as a separate component. An approach
like this will allow the use of the same sensor models for several platforms and environments without having
to implement them repeatedly. This implementation have multiple benefits like minimizing the system RAM
requirements and simplifying the development process, since developers can tune its strategies independently
of the estimation process.

� Generic/adaptable user interface. The definition of the interface (be it file or network) of modern navigation
systems shall be funded in the fact that the interface should not complicate the extensibility of the system.
Therefore, the definition of such interfaces should take into account future extensions of the system. An
incorrect interface definition leads to an under-utilization of the capabilities of the system and to an increase
on development efforts. Currently, when integrating new sensors into a navigation system, not only the source
code must be modified but also the user interface definition and layer. As the eyes are the mirror of the
soul, the interface should be the mirror of the system. For this reason, we propose that the definition of the
interface take into account all the abstraction processes presented in previous premises. Analogously to what
has been discussed until this moment, we will separate the user interface –control of the estimation process—
and the data interface –generic description of the rules to provide and read data from the system. [12] —
Nowadays, trajectory SW can be used by such different users like geophysics, photogrammetrists, wedding
recorders or pedestrian shoppers. We can classify trajectory determination SW users in three groups: lab,
workshop, factory [59]. By lab users we refer to the ones that intend to develop new models for new sensors.
They need to have access to all SW configuration states in order to find the best configuration to solve a
specific problem. On the other side, a civilian user that intends to use the navigation system to go for a dinner
in a restaurant is not worried about what are the sensors used by the navigation system or how these have
to be calibrated. Between both users we can find the workshop ones, typically professional navigation system
users that want to get the best available performance of the system. A successful SW should be useful for
all of them. It must be able to deal with several dialects. This translates into the fact that system should be
completely configurable (for lab users) but should allow external interfaces with restricted configuration access
(for factory users). Concerning data interface, it should reflect the abstraction exercise performed in previous
sections and its foundations should be the sensor, measurement, state and model concepts. With a definition
like that, the long-term development costs will be reduced since the interface, once defined, will be suitable to
incorporate any new sensor.

Table 5.1 summarize the contribution of each principle to the fulfilment of the system requirements, through the
traceability matrix confronting requirements and principles. Note that the performance requirement is not specifically
considered by any principle. Since we are proposing an object-oriented implementation it could be stated that
performance will suffer a heavy with respect to the use of sequential programming approaches. This is true but it can
be demonstrated that the penalty to pay for the use of an object-oriented approach is almost negligible. Furthermore,
the strength of new computer processors makes this overhead less significant when compared to the overall system
performance.

5.1.3 Proposed architecture definition

Based on the design principles presented in the above section hereafter we propose an architecture that complies with
that design.
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Estimation Sensors Adaptable Strategy
vs abstract user object

modelling modelling interface

Precision/accuracy X X X
Robustness X X
Performance
Integrability X X X
Extensibility X X X X

Usability X X

Table 5.1: Trajectory determination tool requirements vs architecture principles traceability matrix.

System components and activity diagram

Our system is based on four components (Figure 5.1): computation kernel (or “numerical cruncher”), trajectory (this
component is the one includes modelling and supervisor), interfaces and a driver to control all the process. These
components should be implemented using both static and dynamic libraries -when operative system allows it. Static
libraries should be used to implement the procedure (“number crunching” kernel) while the modelling/strategy should
be resort to dynamic libraries - thus, only the classes related to the requested sensors will be loaded in run time. To
extend the system, incorporating new sensors, is as simple as writing new classes – that should be included in new
dynamic libraries - adhering to the API defined by the system.

The system inputs are not only sensor observations and generic context, as in common trajectory determina-

Figure 5.1: Trajectory determination SW architecture components diagram.

tion tools but also a list of requested states/states, a list of desired models/equations to compute these states and
a specific computation context or strategy. All this information should be collected through the interface layer. The
control component is in charge of loading all the requested objects (the aforementioned dynamic libraries.) The
strategy object should analyse the feasibility of computing the target states from the set of given observations. If
the computation is possible all the data should be sent to the estimation subcomponent to process it; otherwise a
warning message should be sent to the user. There will be situations where only a subset of the desired states can be
computed; should this happen, the strategy object should decide whether to compute what is possible to compute
or to send a warning message. The output of the estimation subcomponent is delivered to the user through the
interface component.

It is important to note here that the process is valid either for forward, backward and smoothing processes. Thus,
a few (and simple) modification of both (1) the (unique) source code implementing this processing algorithm (the
State-Space Approach) and (2) the interface component, make possible to use the same algorithm for either real-time
or post-processing work modes.
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Processing component

The processing component includes not only the driver subcomponent but also the two filtering steps subcompo-
nents: the prediction component (e.g. stochastic dynamical systems solver for Kalman filter family estimators) and
the update component (e.g. correction step for Kalman filter family estimators ). The processing component is
responsible for loading computation options and start the desired trajectory estimation processes (forward, backward
and/or smoothing.) These processes mainly rely on the two numerical estimation subcomponents, prediction and
correction.

The API must allow the inclusion of new numerical methods that may be of interest to the final user (extensi-
bility criterion). In this way, both the prediction and the update components should be able to incorporate any
related numerical method implementation. Through the interface layer, the user should be able to select among
the available methods. Furthermore, it is important to remind that, as stated in previous sections, each of these
implementation should be independent of the actual set of equations to solve; these should be designed to interface
efficiently with the modelling objects (observations, equations, states and constant values) to retrieve values, to
allocate and properly fill in vectors and matrices that will allow state estimation.

Modelling component

We propose a sensor/measurements model like the one presented in [15], where the fundamental reference model
is based on four abstract categories (i.e. classes): instruments, observations, states and mathematical models. It is
important to remark here that when we talk about observations and states we refer not to a unidimensional obser-
vation/state item but a multidimensional one. Every new kind of sensor to be integrated in the system will probably
collect measurements not available for other sensors. These measurements will be related to some unknown states,
probably position or orientation. The relation between the observations and the states, maybe with the participation
of the instrument auxiliary constants, is materialized by the mathematical models (stochastic equations). In order
to extend the system, is necessary to identify the instrument and its characteristic values, to list its related measure-
ments, to identify the states and the mathematical models that relate them. Once this is done, specific classes that
inherit from the fundamental reference model can be reused or newly developed.

EXAMPLE – Magnetometer modelling

� Instrument. The magnetic declination should be taken into account to correct the measurements.
This value can be entered as a constant to the system through the instrument object. Also the
boresight matrix between magnetometer and trajectory reference frames.

� Observation. Magnetic field intensity values.

� States. Attitude parameters at a rotation matrix.

� Model. Rotation matrix that relates magnetometer and trajectory orientation. Note that the model
should take into account that trajectory and magnetometer reference frames could not be the same.

Strategy component

When designing the strategy component three issues arise: context awareness, context conditioning and computation
feasibility.

Context awareness refers to the capability of the system to be aware of the environment and to add constrains
to the system if required. The context awareness can be provided by the user or automatically detected by the SW
itself. In the second case, a qualitative analysis of available data should be performed. Thus, for example if an IMU is
involved in the computation and the signal output by the IMU matches (in a qualitative sense) the typical movement
patterns related to the behaviour of human beings [55], a pedestrian environment can be assumed. This context
awareness analysis should be done periodically to assure correct environmental assumptions during the processing of
the whole trajectory.

Context conditioning refers to the capability of the system to include conditions to the system that depend on
the environment. In our approach, instead of implementing condition equations, we add observation equations to the
system. This reduces computation complexity and allows reusing all the implemented estimation algorithm without
any additional changes. In order to do this, condition equations should be transformed to observation equations by
assuming a reduced noise instead of a ”perfect” condition. The smaller the noise, the most restrictive the condition
will be. For each environment, a set of additional condition equations are defined and added to the intrinsic sensor
observation equations.
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Last issue refers to computation feasibility. In order to decide if the system is able to provide a solution out of
the available information we should check the degree of freedom of the problem and the update observations’ matrix.
If not enough observations are provided, the strategy object checks the suitability of performing a reduced adjustment
with (pre-selected) fundamental states. If this is not possible, computation is finished and control is returned to the
user. On the other hand, it could happen that there are enough measurements but the system is not robust enough
to converge properly. This can be detected by means of covariance matrix analysis. Each strategy object, should
include a set of relevant and non relevant states, with covariance thresholds to determine whether those states can
be estimated or not.

The strategy component should be implemented, if possible, in classes stored in dynamic libraries. These classes are
closely related to the sensors involved in a particular computation. All strategy specific implementation classes will
be derived (inherit) from the same class, so all of them should have the interface. This component is aware of several
strategy issues, highlighting context awareness determination, context conditioning and computation feasibility. In
this way, several strategies (strategy classes) may be implemented and be able to deal, in different ways, with the
same kind of data (e.g. IMU and GNSS), taking into account issues like the quality of the sensors, its performance
or the environment.

EXAMPLE – Strategy for IMU/GNSS/MAGN

� Context awareness. IMU signal qualitative analysis. Fit with predefined patterns to deduce,
pedestrian, terrestrial vehicle or fixed-wing airplane environment.

� Context conditioning. For pedestrian navigation include observation equations to limit maximum
velocity. For terrestrial vehicles include observation equations to limit vertical and lateral velocities.
For fixed-wing airplane include observation equations to avoid backward movement

� Computation feasibility. Initial state estimations will be derived from GNSS (position and veloc-
ity), and magnetometer (orientation). IMU calibration values will be derived form a combination of
magnetometer data and IMU data. Position, velocity and attitude are the fundamental states; the
system will not try to solve IMU calibration values until the standard deviations of the first ones
are below predefined thresholds.

Interface component

The interface component based on three clearly distinguishable concepts: the Application Program Interface, the
Data Interface and the User/Options Interface.

Application Program Interface design is totally driven by the system extensibility requirement. This translates into
object oriented principles, inheritance capability and the use of dynamic libraries for the modelling and strategy com-
ponents. Since the modelling and strategy component classes inherit from five basic classes (instrument, observation,
state, model and strategy) the interfaces are the ones defined by these classes. New classes must completely adhere
to this API. Regarding the platform interface with other systems, its design is as simple as possible. The tool should
executed just with a “go” command and loading a configuration options file (explained at the end of this subsection).

Since the design principle of the Data Interface is based on is adaptability - to incorporate easily and painlessly
new instruments, measurements, models or states - we have defined an interface (equivalent for network TCP/IP
sockets and file interfaces) based on the generic description of observations and models (see Appendix 2). Each
observation is described through a time tag, its value (expectation), its estimated error (standard deviation) and
some auxiliary values that can be useful for computation purposes. When using a file interface – based on the XML
standard - the way to introduce these values in the SW is through the < l > tag shown below:

< l > obscode obsid time a1 . . . an e1 . . . en s1 . . . sn < /l >

where obscode refers to the unique identifier for a specific observation type (for example, GNSS position) and
obsid refers to the sensor identifier. time refers to the acquired data time tag, ai refers to auxiliary values, ei refer
to the acquired set of values and si refer to its standard deviation.

The observation equation to be used relates observations and states. Again, when using the XML file interface,
the way to introduce these values in the SW is through a the < o > tag:
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< o > modelcode time par1 ... parn obs1 . . . obsn < /o >

where modelcode refers to the unique identifier of the model class that relates a certain set of state types with
observation types. Time refers to the time to perform the calculus, pari refers to the identifiers of the states to solve
(the type of this state is known by the model class) and obsi refers to the identifiers of the observations to involve
(again, the type of this observations is known by the model class). This data interface is common (uniform) for the
two different data channels implemented by the system: (disk) files or TCP/IP sockets. This allows for remote (in
the cloud) execution, being possible to capture data in whatever the place providing that a network connection is
available. The advantages of this approach are manifold: perhaps the most important one is ubiquity (data may
be captured everywhere); another advantage to consider is the reduction of the computational power needed by the
processor in charge of computing the navigation solution, since it will not be responsible of managing the sensors
acquiring data. For extended details on the interface definition, see Appendix 1 of this thesis report.

The user/options interface is designed as a two-layer interface. The lower one is based on files and interacts di-
rectly with the platform component. On top of this one, a user oriented interface (generally a command line or a
graphical user interface) is developed. This second interface allows the SW dealer to modify determined configuration
states depending on the user needs. Thus, for example, in a lab environment, the GUI should allow the configuration
of all the computation states, while, in a factory environment, these options should be restricted to the minimum.
In this way the software can be used in lab/research/factory environments by just changing the most external layer,
the GUI.

Architecture strengths and weakness

Since the proposed architecture fully relies on the principles presented in previous sections, we can state that it
satisfies the requirements of the new generation of navigation systems concerning quality assessment, robustness,
performance, extensibility, integrability and usability. In the next section we present an implementation of this archi-
tecture where we have been able to demonstrate empirically that these requirements are fulfilled.

As any other approach, the one proposed in this thesis has some drawbacks. In this case, at the implementa-
tion level. For example, since we want to accommodate an undetermined number of sensors in each execution we
have to take into account that the amount of memory used will change from execution to execution, leading to a high
demand of RAM memory. Moreover, we can not fine-tune the Kalman filter to improve matrix management, since
we do not know their dimensions a priori. Thus, special attention on the computational burden of the algorithms
implemented must be paid.

5.1.4 A sample implementation

We have implemented the aforementioned architecture in a SW system called NAVEGA. It is coded in C++ and
provides real time and post-processing trajectory estimation under Windows and Linux operating system running
in different processor architectures like x86, LEON3 and ARM. Currently the system includes a family of Kalman
filter algorithms and provides with Gaussian states, this is the output are expected values and covariance matrices.
Furthermore, it also provides the user with residuals expected and standard deviation values, suitable for a posteriori
trajectory analysis.

Until this moment, NAVEGA has been proved to be extensible since it has already been used to process data
provided by several types of sensors like IMUS [56], GNSS [83], redundant IMUS [56], LIDAR [57], camera images [4]
and odometers [3]. Since not all the implemented sensor models are available in commercial systems we validate
NAVEGA solutions using indirect methods. Using NAVEGA as positioning provider to remote sensing platforms (like
photogrammetry systems); we compare the NAVEGA georeferenced data with topographic measurements. Up to
now, these comparisons have shown the success of NAVEGA, that is, the predicted state error estimation corresponds
to actual state error, or, in other words, the expected quality is achieved. NAVEGA has also been successfully used
for processing data collected in a wide range of environments: airplanes, helicopters [56] and terrestrial vehicles,
either outdoors and indoors [3].

Regading robustness issues, the implemented analysis tools has been proven able to deal with odometers and
camera outliers. When working with GNSS modelling, the system is able to detect outliers when these affect just
one satellite. At this moment, more than one outlier cannot be properly detected.

NAVEGA has also been proven to be integrable since it has been used in several projects as the location provider of
different services like a mobile mapping system [22] or a GNSS receiver with tight coupling capabilities [82].

With the previous examples we have been able to verify that NAVEGA’s performance is suitable for a wide range of
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platforms. NAVEGA is able to process INS/GNSS solutions at 5000 Hz in Real Time when running on an Odroid-XU3
with a negligible latency.

Last but not least, due to its file interface the system is completely usable either for Kalman filter experts to
unexperienced users, through several GUIs (Graphical User Interface), adapted to theirs knowledge of the problem.

5.2 Inertial sensors simulation tool - IMU simulator

Since 2010, and thanks to the introduction into the market of chip-scale inertial sensors, inertial technology users
have grown exponentially. There are situations where the performance of these new chip-scale IMUs is not suitable
for the requirements of the target applications. The validation of new methods related to inertial technology could
become really expensive. For example, to determine which is the suitable IMU grade for a specific purpose there are
basically two options, to try all available IMUs (which could be extremely expensive), or to do simulations until the
required IMU grade is determined. At any rate, the economical and time efforts needed to perform feasibility analysis
may be reduced with the use of inertial simulators able to reproduce a variety of scenarios.

The main purpose of the work presented in this section was to implement a software tool capable of simulating
the outputs of any IMU, in particular, from navigation grade to MEMS ones. In Figure 5.2 the reader can see a
picture of the CTTC’s IMUs. From left to right: iMAR FJI (navigation grade), IMU-IIe (navigation grade), Northon
Grumman LN200 (tactical grade), ADIS 16488 (MEMS) and EPSON S4E5A0A0A1 (MEMS). These IMUs have been
used to assess the degree of “realism” of the simulation tool (see section 5.2.4.)

Figure 5.2: Image of a set of inertial systems: from navigation-grade to MEMS.

In the simulation process, not only the reference trajectory is relevant; the correct identification of all the involved
error sources allows their proper combination to recreate a complete set of trustable scenarios. Given a specific refer-
ence trajectory, users may simulate the behaviour of as many combinations of sensors, platforms and environmental
factors as needed.

5.2.1 System requirements

The first step to take when developing a software tool is to describe carefully the system requirements. This process
is of the foremost importance to assure a useful and durable tool. Hereafter, a summary of the IMU simulator main
requirements is presented:

� Functionality. Given a set of waypoints, the tool should be able to derive from them a trajectory composed
of positions, velocities, linear accelerations, attitudes or orientations and angular velocities at the user desired
frequency. Linear accelerations and angular velocities (IMU outputs) should include noise corresponding to user
selected IMU model, environment and platform.

� Quality. The simulated data should be realistic. This means that the output signal should not only fit to the
trajectory dynamics but also to the stochastic error signature of each simulated IMU.

Section 5.2 was presented as a conference paper at ISS Gyro Symposium 2015. Parés, M.E., Navarro, J.A., Colomina, I.
”On the generation of realistic simulated inertial measurements”, in Proceedings of the ISS Gyro Symposium, September 2015,
Karlsruhe (Germany)
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� Performance. For a tool like this no real time performance is requested. Even though, the tool should be useful
for feasibility analysis replacing field tests campaigns, thus the input/output ratio should not be excessive.

� Integrability. One of the purposes of the tool is to avoid preliminary field tests when validating new algorithms
and methodologies. This means the system should be able to provide inertial data with the appropriate
interfaces.

� Extensibility. The last requirement, related to the continuous evolution of the technology, refers to the
capability of the system to integrate new error models and environmental features with a moderate development
effort. The simulation system should be able to cope with that.

� Usability. The users of inertial systems have evolved from navigation system developers to specialists in a wide
range of fields like medicine, nursing, Internet of Things, among others. These new users have never received
training on inertial stochastic modelling, so the interfaces of the navigator should be clear and intuitive. For
professional users and researchers, interfaces should allow the modification of states controlling the behavior of
the software as well as a deep interaction with the application. To sum up, the system should be able to deal
with a wide range of users and, at the same time, guarantee the quality of the solution and its performance.

5.2.2 System architecture

The architecture of a software system is a description of the system which comprises components, the main properties
of those components, and the relationships between them. Usually, in order to describe those relations, some standard
models are used. Among others there are the UML Object Model (where the main components and their relationship
are presented) and the UML Activity Model (where the different actions done by the system during an execution are
presented.)

Object Model

The simulator is designed under the Object-Oriented (O-O) paradigm and is coded in the C++ language. The main
reason for choosing the O-O paradigm instead of procedural programming is that allows the system to be modular
and extensible, two basic characteristics for a system whose main purpose is to validate methods.

The tool includes three main components, one for trajectory densification, one for errorless data generation and
a third one for noise data generation.

The design of this last component, the noise data generator, has undergone a rigorous data modelling process,
which has led to the identification of the essential data entities involved in this process. Error data have been thus
classified in platform (vehicle), instrument and environment error data, each of these showing their particular char-
acteristics. Observational data have been classified in two separate entities: accelerometer and gyroscope data.

These entities define the common traits for all observation and error data variations. That is, capture the essence of
such information. Any observation or error data source will adhere to these specifications. This abstraction makes
the system general – that is, able to cope with any kind of observation or error data types.

Particular occurrences of observation or error data are just instances of these basic entities. The use of object
orientation and C++ classes allows for the actual implementation of such instances, adhering, as stated above, to
a common data frame. The use of shared libraries (also known as Dynamic Load Libraries or DLLs in the Microsoft
Windows environments) to implement these different classes (objects) opens the door to extensibility: each time a
new type of data – whatever its, type – is needed, a new shared library is created and included into the system.
Dynamic loading guarantees this automatically.

Figure 5.3 presents the taxonomy of the different aforementioned data entities related to the noise data gener-
ator. It shows, as well, how one of these entities (gyroscope) may be implemented to cope with different, actual
gyroscopes, by means of different C++ classes and shared (dynamically loadable) libraries.

Activity Model

In what concerns the data processing, the simulator reads the waypoints data sequentially and creates a dense
trajectory data set. Once the dense trajectory data set is available (this is, time-tagged positions, velocities and
attitudes) the simulator computes errorless linear accelerations and angular velocities taking into account the planet
gravitational and rotational effects. The last step is to add noise to those signals.
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Figure 5.3: IMU simulator: error components and subcomponents.

Figure 5.4: IMU simulator: UML activity diagram.

Trajectory densification and errorless signal generation

Given a set of waypoints (time-tagged positions, and attitudes) an infinite number of trajectories can be derived. In
order to generate a realistic trajectory, the simulator first densifies a trajectory and then computes angular velocities
and linear accelerations. In order to generate proper linear accelerations a C4 position function is required, that is,
the function defined by positions, as well as its derivatives from first to fifth order, must be continuous functions. An
initial set of waypoints is densified by interpolating positions until the desired output frequency is reached. Later on,
in order to fulfill the requirements, the data set is convolved with a C∞ function, producing a compliant reference
position function. The generation of angular velocities relies on the same premises: a dense set of attitudes is first
generated and later on convolved with a C∞ function.

In order to simulate an errorless signal, the mechanization equations are rewritten in such a way that angular
velocities and linear accelerations are isolated. In the next paragraphs the models used are described.

Angular velocities Given a trajectory, the simulator computes angular velocities for an orthogonal triad of angular
rate sensors. The model implemented is
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Ωb
ib = Cb

n(Ċn
b + Ωn

in) (5.1)

where Ωb
ib is a skew-simmetric matrix relating the body frame (b) with the inertial frame (i) obtained from the angular

local velocities measured by the rate sensors; Ωn
in is a skew-simmetric matrix relating the inertial frame (b) with the

navigation frame (n) and obtained from the position given by the reference trajectory; and Cb
n is a rotation matrix

relating the body frame (b) with the navigation frame (n) and obtained from the attitude values.

For details on equation 5.1, the reader is referred to any textbook on inertial navigation such as [14] or [40].

Note that the matrix Ċb
n can be either computed numerically from Cb

n or analitically after numerically differenti-
ating its components. After analysing the results for both methods, even though both are equally valid, the first one
was selected because of its low computational burden.

Linear Accelerations.Given a trajectory, the simulator computes linear accelerations for an orthogonal triad of
accelerometers. The model implemented is

f b = Cb
n(v̇n + (2Ωn

ie + Ωn
en)vn − gn(xn)) (5.2)

where f b is the vector of linear accelerations in the body frame (b); vn is the vector of velocities of the sensor in
the navigation frame (n); Cb

n is a rotation matrix relating the body frame (b) with the navigation frame (n); Ωn
ie is

a skew-simmetric matrix relating navigation frame (n), inertial frame (i) and terrestrial frame (e); Ωn
en is a skew-

simmetric matrix relating navigation frame (n) and terrestrial frame (e); and gn(xn) is the gravity vector expressed
in the navigation frame (n).

Noise signal generation

There is a wide range of noise sources that interfere in sensors, for example environmental factors (temperature,
radiation, magnetic fields [45]) platform inner vibrations [87] or, of course, the sensor electronics and internal me-
chanics [90]. The solution proposed in this dissertation models error sources as an entity on its own and implement
these as separate, pluggable components. Platforms (vehicles) and environmental factors are treated in the same way.
This concept leads to a modular, generic and extensible tool capable of generating realistic inertial measurements in
a wide range of environments. This approach let users define and use their own models for noise sources, platforms
and environmental factors easily.

Independently of the error source, the errors affecting the data could be additive (bias and white noise), multi-
plicative (scale factor and quantization) or distributive (misalignment). The proposed simulation tool implements
the error according to the following formula:

do = [((R((1 + S) ∗ (di + b) + w))/quant] ∗ quant if d0 ∈ [−Range,Range]
do = Range if d0 ≥ Range (5.3)

do = −Range if d0 ≤ −Range

where S is the scale factor, b the bias, w the white noise, quant the quantization value. Range is the range where
the IMU provide values, di is the ideal simulated signal and do is the output final signal.

Bias refers to the offset in the measurement provided by an inertial sensor. For bias effects, the model used
is

b = bi + bp + be + bd (5.4)

where bi, bp, be and bd are the instrumental, platform, environmental and dynamics biases respectively. The in-
strumental bias uses to be a combination of Gaussian noises [90] (IMU manufacturers provide with its stochastic
properties) platform bias refers to the accelerations and angular velocities induced by the vibrations where the simu-
lated IMU is to be mounted in; the environmental scale factor value is a temperature and pressure dependent value
and the dynamic scale factor is a velocity (linear and angular) dependent value [95].

The scale factor of an inertial sensor is the relation between the output signal and the quantity which is mea-
suring. For scale factor effects, the model used is

S = Si + Se + Sd (5.5)

where Si, Se and Sd are the instrumental, platform, environmental and dynamics scale factors respectively. The
instrumental scale factor uses to be a random constant value (IMU manufacturers provide with its stochastic prop-
erties); the environmental scale factor is a temperature dependent value and the dynamic scale factor is a velocity
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(linear and angular) dependent value.

Misalignment R refers to the errors due to the non-orthogonality of the actual assembly mechanism and are
implemented as a rotation matrix.

In order to add the non-systematic errors, white noise w is added to the signal. IMU manufacturers provide with its
stochastic properties.

The system quantize the signal to simulate the A/D conversers with the following model:

[x/quant] ∗ quant (5.6)

where x is the data to correct, quant is the number of quantization and [.] stands for the integer part of a real
number. The quantization value is also provided by IMU manufacturers.

5.2.3 System verification

An IMU does not deliver the same data twice even in the “same” conditions, so the verification had to be done by
means of indirect methods [38].

In order to verify the errorless signal computed with this tool, static acquisitions across the planet were simulated
firstly. The output of one of those simulations can be seen in Figure 5.5.

Figure 5.5: IMU simulator: Errorless simulated angular velocities for an IMU fixed at 41º lat, 0º lon, 0 m
height.

After checking that the results are the expected ones (according to the Earth’s characteristics) dynamic tests
were performed: from straight lines and circular trajectories to more complex ones such as a typical aerial surveying
trajectories. For the acceptance of these outputs, the generated signal was processed with an INS/GPS navigation
software, as the results were the reference trajectory, the errorless signal generated with the IMU simulator was verified.

As stated previously, IMU simulator add to the errorless signal a combination of errors mainly obtained from different
stochastic processes (constant, random constant, Gauss-Markov, random walks, etc.) See Figure 5.6. The analysis of
the stochastic variables generated by the simulator proves that effectively the processes fit with the requested ones.

5.2.4 System validation

The validation of the system revealed itself as one of the more difficult tasks of the project because of the lack of
references. First step to be able to reproduce real data is to analyze it and properly characterize it. For the validation
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Figure 5.6: IMU simulator: computed stochastic errors.

of the tool we selected four IMUs (a navigation grade IMU - iMAR FJI, a tactical grade one - Northon Grumman
LN200 and two MEMS IMUs - EPSON S4E5A0A0A1 and Invensense MPU6500), two environmental scenarios (con-
stant and changing temperatures) and three platforms (static acquisition, van and small airplane platforms.)

To characterize instrumental error, IMUs were submitted to long periods of static acquisition at different controlled
temperatures. The acquired signal is then analyzed through Allan Variance (AV) techniques to obtain the results
presented in tables 5.2 and 5.3. The Allan Variance of a time series of data is a characterization of the noise and
other processes in the data as a function of averaging time. It is defined as one half of the time average of the
squares of the differences between successive readings of the frequency deviation sampled over the sampling period.
The Allan variance is a functions of the sampled period, as well as the distribution being measured, and it is displayed
as a graph rather than a single number. For more information on AVs refer to [38].

On the other hand, to determine the platform characterization values several acquisitions were performed with
the iMAR FJI in static mode, in a van and in a small airplane with the engines on. It is important to note here
that the IMU selected to acquire this characterization data is the navigation-grade one, since its error are small
enough to not interfere with platform vibrations. In the current approach, the platform signal has been modelled as
sinusoidal vibrations whose main parameters are the frequency and the amplitude. In table 5.4, the characterization
for the three scenarios is presented. In order to properly evaluate this nominal frequency Power Spectral Density
(PSD) analysis of data has been performed. The PSD of a time series of data is a characterization of the noise
and other processes in the data as a function of frequency. The PSD is defined to be the Fourier transform of the
autocorrelation function of the data, where the autocorrelation is the expected value of the data multiplied by itself
delayed. For more information on PSD refer to [38].

Navigation Tactical MEMS MEMS
”FJI” ”LN200” ”EPSON” ”MPU6500”

Bias run-to-run 0.05 º/h 1 º/h 0.5 º/s 5 º/s
Bias instability (º/h) 6 7
Scale factor (ppm) 30 100 - 3%

Gyros Misalignments (º) 0.1 0.02

White Noise (/
√
h) 0.001 0.07 0.2 0.3

Quantization (º/h) 0.0007 157 32 54.9
Range (º/s) ± 450 ± 816 ± 300 ± 500
Bias run-to-run (mGal) 60 300 800 7000
Bias instability (mGal) - - 10 9
Scale factor - 300 ppm - 2%

Accelerometers Misalignments (º) - - 0.1 0.02

White Noise (mGAL/
√
Hz) 8 200 600 300

Quantization (mGal) 1 1200 4.57 6.10
Range (g) ± 5 ± 20.4 ± 3 ± 4

Table 5.2: IMU simulator: instrumental errors.
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Navigation Tactical MEMS MEMS
”FJI” ”LN200” ”EPSON” ”MPU6500”

Temperature - - 0.03(º/s)/ºC 30(º/s)/ºC
Gyros Pressure - - - -

White Magnetic field - - - -
Temperature - - 0.02mG/ºC 1.5mG/ºC

Accelerometers Pressure - - - -
White Magnetic field - - - -

Table 5.3: IMU simulator: environmental errors

Static Van Plane
Gyro Sinusoidal vibration freq. (Hz) 0 10 60

Sinusoidal vibration amplitude (º/h) 0 15 100
Accel Sinusoidal vibration freq.(Hz) 0 10 60

Sinusoidal vibration amplitude (mGal) 0 500 1e5

Table 5.4: IMU simulator: platform errors (PSD)

In order to check that realistic simulations are performed, AV and PSD signal analysis techniques were used. With
this analysis we were able to prove that the spectral characteristics of the simulated data are similar to the real ones.

To validate the system five acquisition campaigns with the real IMUs were carried out: static with and without
temperature changing; van with and without temperature changing and plane with temperature changing. The static
acquisition length is about 6 hours, while for van and airplane tests is around 15 minutes. Later on minimum of twenty
simulations were carried out for each IMU in those scenarios. In all tests quantization noise is perfectly determined;
white noise errors and inertial bias instability is computed with a precision of 10% and the combined analysis of all the
tests proved that the run-to-run bias is coherent with the nominal one. For the non-static acquisitions, in the PSD
analysis of both real and simulated datasets a sinusoidal behavior can be detected with the frequency and amplitude
parameters differing less than 1%. These results lead us to conclude that the tool is properly mimicking IMUs.
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Chapter 6

Optimal estimation criteria and quality
assessment - Simultaneous prediction
and filtering

In this chapter a new optimal estimation criteria is presented. This approach relies on the sequential Least-Squares
(LS) approach [88]. The reader will find here the algorithm as well as how the geodetic tools, commonly applied in
in geodetic estimation problems –geodetic network adjustment— can also be used in the navigation problem. The
verification and validation process of this tool as a navigation tool is also presented here. Note that this validation
process has been carried out by implementing this algorithm in the NAVEGA system presented in the previous chapter.

6.1 Theoretical approach

6.1.1 Considerations on navigation sensors outliers

In the school of geodetic applications, sensor errors can be decomposed in two parts [35]: a deterministic one and
a stochastic (or random) one. The deterministic part can be computed and corrected through laboratory calibration
and, during the trajectory determination, through the calibration process. On the contrary, stochastic errors can not
be removed and the only thing that can be done is to try to minimize their effects. This is done using a correct
stochastic characterization of the sensor data when using it in the trajectory determination filter. Obviously an incor-
rect stochastic model will lead suboptimal to unacceptable solution but, even with a correct model, the appearance
of outliers can threat the filter performance, and even worse, they can threat the system reliability.

In autonomous sensors the outliers are mainly due to an incorrect relation between signal/sensor bandwidth and
dynamic range and also to environmental interferences (see section 2). When speaking about sensors, three kinds
of bandwidths should be taken into account: the sensor bandwidth (this is the sensor spectral response); the noise
bandwidth that depends on the electronics integrated in the sensor and is different from the sensor bandwidth; and
the sampling frequency. In order to reduce the noise level, it is usual to oversample the signal (hundreds or thousands
of Hz in the case of IMUs) and then compute the average of some contiguous samples. This average smoothes the
signal noise and downsamples the data when it is going to be transmitted through the interface. However, it can
be assumed without loss of generality in this case that the sampling frequency is the output data rate. In order
to keep all the sensor features in the acquired signal, it is recommended to follow the Nyquist criterion that says
that the sampling frequency should be the double of the sensor bandwidth. This rule is not always kept, overall
for low cost sensors. The dynamic range is the ratio between the largest and smallest values that the sensor can
assume. Thus, when the signal intensity is higher than the maximum acquirable value, the sensor saturates and,
many times, an outlier appears. Finally it may happen that the sensor is inappropriately used in an environment
for which it is not designed. If, at a certain moment during the acquisition process, the frequency of the signal
to collect is higher than the sensor acquisition frequency or the intensity of the signal is higher than the sensor dy-
namic range or there’s some kind of environmental interference the noise error characterization will be no longer valid.

Examples of the errors presented above are: when an IMU is submitted to a shock, in general, both the dynamic
range and the IMU signal bandwith are not big enough to ”capture” that signal, leading to an erroneous set of
accelerometer measurements that will have a direct impact firstly on the estimated velocity and secondly on the
estimated position. Furthermore, since the error is not detected as a such, the estimated error of the predicted
position would be also erroneous leading to an unreliable system (see Figure 6.1).
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Figure 6.1: SiPF: IMU outliers and their impact on velocity and position estimations.

On the other hand, local magnetic fields affecting magnetometers or slippery roads interfering the normal behaviour
of odometers(see Figure 6.2) are typical examples of environmental interferences.

Figure 6.2: SiPF: OUtlier in odometer data.

6.1.2 Simultaneous Prediction and Filtering theoretical basis

In the Kalman filter and its many versions, in the prediction step, the observations ` of the dynamic models and their
covariance matrices at time t are used to predict estimates of the parameters or states x(t) from x(t−∆t). Once this
is done, the estimated states and their covariance matrices can be used for a new prediction step to obtain x(t+ ∆t)
or can be updated —improved— in a filter step if other observations `s are available. Sometimes, this two steps are
computed simultaneously in what is knowns as one-step Kalman filter [36]. The one-step Kalman filter use simulta-
neously the prediction and the filtering step leading to a filter dynamics written in tems of the state predicted estimate.

Consider the system

x(t+ ∆t) = A(t)x(t) +B(t)u(t) +Gw(t) (6.1)

y(t) = C(t)x(t) + v(t) (6.2)

where x(t) ∈ Rn,u(t) ∈ Rm,w(t) ∈ Rn,v(t) ∈ Rr,y(t) ∈ Rr,u(t) and w(t) are sequences of white, zero mean,
Gaussian noise with zero mean and covariance matrices Q(t) andR(t) respectively. Then, we can estimate x(t+ ∆t)
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like follows:
x(t+ ∆t) = A(t)[I −KC(t)]x(t−∆t) +B(t)u(t) +A(t)Ky(t) (6.3)

with initial condition
x(0) = x0 (6.4)

where,

K = P (t−∆t)C(t)T [C(t)P (t−∆t)C(t)T + r]−1 (6.5)

P (t+ ∆t) = AkP (t−∆t)A(t)T −AKC(t)P (t−∆t)A(t)T +G(t)QG(t)T (6.6)

P (0) = P0 (6.7)

where P (t+∆t) is the predicted error of the state, P (t−∆t) is the estimated error at time t−∆t and I is the Identity
matrix. From a least-squares point of view, in a filter step at time t, there are two types of observations: the predicted
states x(t) and the update observations. The predicted states —we will write them as x(t)−— become, at time t,
observations that are related to the unknown states x(t) through a simple functional model x(t)− + v = x(t) and a
complex stochastic model described by the [full] covariance matrix of the predicted x(t)−. In general, the additional
observations or update measurements `s are related to the unknown states by functional models g(`s + vs, x(t)) that
can be more or less complex and by stochastic models that use to be simple because their covariance matrix uses
to be diagonal or block diagonal. After the filter step, optimal estimates x̂(t) for x(t) are obtained together with
residuals v̂, v̂s for the observations.

An outlier in the measurements `s has the chance to be detected by statistically testing its residual v̂s. Anal-
ogously, an outlier in x(t)− has the chance to be detected through its residual v̂. However, if we assume that
x(t − ∆t) was an error free state, an outlier in x(t)− can only be produced by an outlier in `. Unfortunately, the
observations ` do not receive residuals and therefore, an outlier in ` has no chance to be detected through a residual.
In other words, after the prediction step, the least-squares engine that performs the filtering does not see `. Of course,
since x(t)− is obtained by solving a stochastic differential equation with initial values x(t − ∆t) and observations
`, an outlier in ` will result in an outlier in x(t)−; however, the influence of a single error in ` will be spread into a
multiple error affecting various components of x(t)− which makes error detection and identification a difficult task.

Simultaneous Prediction and Filtering is a natural extension of the one-step Kalman filter that aims at avoiding
the above situation by making ` and `s simultaneously participate in the estimation of the state x(t) without going
through x(t)−. In Figure 6.3 and Figure 6.4 the flowcharts of the classical approach versus the one-step approach
presented in this research are shown.

Hereafter, the prove that the estimated solution of both approaches will be the same is presented. Let us write
the stochastic differential equation that models the evolution of x(t) as

ẋ = f(t, x, `+ v) (6.8)

where ` is the measurements’ or observations’ vector and −v its unknown error. We define now, the transition
function Φ that maps x(t) into x(t+ ∆t)

Φ
F ×Ru ×Rn ×R −→ Ru

(f, x(t), `,∆t) → x(t+ ∆t)
(6.9)

or Φ(∆t)
Φ(∆t)

F ×Ru ×Rn −→ Ru

(f, x(t), `) → x(t+ ∆t)
(6.10)

so we can write
x(t+ ∆t) = Φ(∆t)(f, x(t), `) = Φ(f, x(t), `,∆t). (6.11)

The update of the classical two-step kalman filter at time t+ ∆t can be formulated as a least-squares parameter
estimation problem as follows:

g1 : 0 = x(t+ ∆t)− − x(t+ ∆t)

g2 : 0 = g(x(t+ ∆t), `s + vs) (6.12)

with observations x(t + ∆t)−, `s and unknown parameters or states x(t + ∆t). The covariance matrices of the
observations are Cx(t+∆t)−x(t+∆t)− and Cvsvs . Where

Cx(t+∆t)−x(t+∆t)− =
dΦ

dl
Cv

dΦ

dl

T

+
dΦ

dx(t)
Cx(t)

dΦ

dx(t)

T

(6.13)
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In the same way a simultaneous prediction and filtering step at time t+ ∆t can be formulated as a least-squares
parameter estimation problem as follows:

g1 : 0 = x(t+ ∆t)− Φ(f, x(t) + v, `+ v,∆t)

g2 : 0 = g(x(t+ ∆t), `s + vs) (6.14)

with observations x(t), `, `s and unknown parameters or states x(t+ ∆t). The covariance matrices of the observa-
tions are Cx(t)x(t), Cvv and Cvsvs .

It can be easily proven that applying the least-squares parameter estimation formulation to both systems

x(t+ ∆t) = N−1AT (DCllD
T )−1g

Cx(t+∆t)x(t+∆t) = N−1

N = AT (DCllD
T )−1A (6.15)

where A is dg
dx , D is dg

dl and Cll is the overvations covaiance matrix, results in exactly the same result:

Cx(t+∆t)x(t+∆t) = N−1 =

C−1
x(t+∆t)−x(t+∆t)− +

dg2

dx

T
(
dg2

dvs
Cvsvs

dg2

dvs

T
)−1

dg2

dx

−1

x(t+ ∆t) = N−1

 C−1
x(t+∆t)−x(t+∆t)− 0

0 dg2
dx

T
(

dg2
dvs

Cvsvs
dg2
dvs

T
)−1

 g (6.16)
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Figure 6.3: SiPF: classical prediction-correction flowchart

6.1.3 Considerations on practical implementation

In order to implement the previous idea, it is recommended to use a numerical approximation of the transition matrix.

Two considerations have to be taken into account when stating the problem of the numerical integration of equations:
the first one is related with the numerical method and the second one with the nature of the observations. The
ideal numerical method would be a method of high accuracy, step-size independent and fast. Unfortunately, usually
high accuracy requirements increase the computational burden, making the method slower. Hence, a compromise

60



xk−1

-

-

dynamic
observations

`1

`2

-

-

simultaneous prediction and filtering

static
observations

`3

`4 -

-

xk =Φ(`1, xk, xk−1)

xk =Φ(`2, xk, xk−1)

g3(`
3, xk)=0

g4(`
4, xk)=0

6

Figure 6.4: SiPF: proposed flowchart

between accuracy and velocity is required. For navigation purposes, fourth-order methods are a good compromise
and usually they fulfill the accuracy requirements. A step-size independent method would not be essential if the field
defining the differential equation could be evaluated at any epoch [71]. For example, if the field had an analytical
expression not depending on external observations, this condition would not be necessary. Unfortunately, this is not
the case of the INS mechanization equations. The mechanization equations depends on the inertial measurements
provided by the IMU. Again, step-size independency would not be required if the frequency at which the IMU provides
inertial measurements would be constant (typically IMUs output inertial measurements between 50Hz and 400Hz,
what is enough for integration purposes). But, as said previously, although there is a nominal frequency, the inertial
observations may slightly depart from it; even worse, data gaps might occur. Hence, the method becomes step-size
dependent.

Multistep methods use the approximations x̂k, x̂k+1, ..., x̂k+r−1 to calculate x̂k+r, r ≥ 2. The order of these
methods is strongly related to the number of steps r. Details on its implementation can be found in [71]. It is
important to remark that, in order to start the method, r initial values are needed, that is, r estimations of the
solution. These will not be usually known; just a single initial condition. But this problem is avoidable. To achieve r
initial values, it is worth to start with the Euler method from the initial condition to get a second value. Then, with
this two values, second-order prediction-correction can be used to get a third one, and so on, until r values to start
the rth order Predictor-corrector method are achieved.

We note that the algorithm proposed here implies a heavy computational burden compared with any version of
the Kalman filter. This is mainly due to the propagation of the covariance matrix at high rate, specifically to the
involved matrix inversion. In any case, the strength of new computer processors makes this overhead less significant
when compared to the overall system performance.

6.1.4 Application to integrity monitoring of multi-sensor navigation systems

Generally speaking, multi-sensor navigation systems combine two types of observations; those that are related to
the navigation [and calibration] states through differential equations and those that are related to the states by
non-differential ones. In the previous section we called them dynamic and static observations simultaneously. Thus,
for instance in terrestrial navigation, typically one or more inertial measurement units, baroaltimeters, odometers,
and GNSS receivers are used. In this case, the introduced simultaneous prediction and filtering can be applied to
configurations where there are only dynamic observations, only static ones or combinations of both them.

It can be easily demonstrated that SiPF offers the same parameter estimation performance that the two-step LS
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filtering and that the EKF. The difference lies in in the modeling capability and in the available quality analysis tools.

When considering the estimation as a control problem, the dynamic -control- equations are integrated in time until an
external observation is available. This observation allows to improve parameter estimation by applying restrictions on
this parameter. The user can not apply restriction equations on the measurements controlling the system, only on the
parameters. Considering the problem as a least squares adjustment problem the user can easily include restrictions
over any of the measurements involved in the computation -even over the dynamic ones. This is a specially useful
capability when working with systems involving redundant sensors with known relative positions and attitudes among
them.

The main advantage of considering the previous process as a sequential least squares adjustment instead of a Kalman
filter process is that we can apply the powerful quality analysis tools established by the Dutch geodesist Willem
Baarda after the II World War [8]. Considering the estimation as a least squares adjustment implies having access to
the residuals of all the observations -even the dynamic ones- and allows to apply to them all the quality analysis tools
extensively developed in the geodetic community, not only the ones typically used by the control community. Thus,
in addition to controllability and observability analysis -that allow to understand the parameter’s determinability and
their capability to be influenced- more analysis can be done based on the residuals of the computation. The use of
estimators like variance component or the sigma naught could imply an improvement of the stochastic modeling.
Moreover, the redundancy matrices would allow the evaluation of the system design and geometry and would allow
to perform analysis of suitable mountings for multisensor systems. The analysis of those matrices would also allow to
compute the minimum detectable errors for each sensor and would also allow to know the impact of a malfunction
in each sensor on the solution. Finally, it is important to remark that the LS approach would allow to detect outlier
measurements in systems with redundant sensors - even outliers in dynamic measurements like the ones presented
on section 6.1.1.

6.2 Concept validation

6.2.1 Validation approach

The Simultaneous Prediction and Filtering algorithm has been implemented in the NAVEGA platform (section 5.1.)
It is important to note here that the NAVEGA platform also includes an Extended Kalman filter and a Sequential
Least Squares filter.

The validation process can be divided in three phases:

� Solution correctness. On the first place, the test data sets have been processed with the three approaches
(Kalman Filter, Sequential Least Squares and SiPF) and the results have been compared in order to check that
without outlier detection and exclusion techniques the results are the same.

� After that an analysis of the residuals has been performed. As in any least squares adjustment, the distribution
function of the estimated residuals should correspond to the distribution function of observations noise. If not,
it means that observations error modelling is not correct threatening system reliability. In a classical sequential
least squares adjustment, the residuals analysis could be applied only to the measurements involved in the
updating step, while in a SiPF approach we will have access to the residuals of the measurements involved in
the updating step - they should be the same that in a LS approach- and also to the measurements controlling
the dynamic process.

� After checking that the error of all the measurements involved in the computation are correctly characterized,
geodetic techniques for outlier detection and removal are applied to the LS approach and to the SiPF
approach. Number of outliers correctly detected has been listed and checked.

6.2.2 Validation data sets

The design of the validation data sets aims to cover the situations presented in section 6.1.1 where outliers are
an issue. In this study two system configurations, in a terrestrial scenario including three simulations mode were
envisaged. All data sets consist on simulated measures for a terrestrial trajectory following the path presented in
Figure 6.5. The data sets were prepared using the simulation tools (section 5.2.)

The first system configuration consists on data from a time synchronized system including a GNSS receiver, an
IMU and an odometer. The second one includes data from a time synchronized system including a GNSS receiver,
three IMUs and a magnetometer. The specification of all those sensors are presented in Table 6.1.
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Figure 6.5: SiPF: algorithm’s validation reference trajectory.

For each configuration three modes of simulation have been used: outliers free, punctual outliers and realistic
outliers. The outliers free mode assumes that there are no gross errors in data; in the punctual outliers mode punc-
tual errors have been introduced to the data sets in order to evaluate the algorithm performance; and finally in the
realistic outliers mode errors similar to the ones that may happen in the field are introduced. For the first system
configuration (GNSS/IMU/odo) the punctual outliers mode simulation consists on adding single gross errors in the
odometer data; while the realistic outliers mode consists on adding ”slide” measures in the odometer data. For
the second system configuration (GNSS/RIMU/magneto) the punctual outliers mode simulation consists on adding
single gross errors in one of the IMUs and also in the magnetometer; while the realistic outliers mode consists on
adding ”shock” measures in the RIMU data. Please note, that since the aim of this research is to see the capability
of SiPF to detect ouliers in dynamic observations, no outliers have been introduced in GNSS data sets.

Frequency Data Type of observation Noise

GNSS receiver 10 Hz pos. static 10 cm

IMU-TG1 50 Hz angular vel., linear accel. dynamic 0.3 deg/
√
h,0.034 mg/

√
Hz

IMU-TG2 50 Hz angular vel., linear accel. dynamic 0.4 deg/
√
h,0.064 mg/

√
Hz

Odometer 50 Hz vel. dynamic 2 cm/s
Magnetometer 1 Hz magnetic field intensity static 1e-4 Teslas

Table 6.1: SiPF validation: sensors’ specification.

Sensors Outliers free Punctual outliers Realistic outliers

Conf 1 GNSS, IMU-TG1, odo No gross errors Errors in odometer Sliding odometer

Conf 2 GNSS, magnet No gross errors Errors in one imu and magnet Shocks in IMUS
IMU-TG1(x2), IMU-TG2

Table 6.2: SiPF validation: datasets sum up.
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6.2.3 Validation results

Solution correctness

The outliers free data sets and models were tested with the three processing algorithms leading to the same results.
No difference was observed between KF, sequential LS and SiPF.

Analysis of the residuals

In table 6.3 the standard deviation of the sensors’ residuals in outlier free tests are presented. These residuals are
obtained from SiPF algorithm. In particular, the analysis of the residuals in the SiPF test allow us to check the IMU
data consistency. In both data sets the residuals are distributed as white noise with a distribution coherent with the
simulated data.

GNSS receiver IMU-TG1 Odometer Magnetometer

(cm) (deg/
√
h, mg/

√
Hz ) (cm/s) (Teslas)

Conf 1 8 0.15, 0.020 1.2 -
Conf 2 8 0.12, 0.018 - 8e-3

Table 6.3: SiPF validation: Standard deviation of the residuals of outliers free testing data sets.

Outlier detection

All data sets have been processed with IEKF and SiPF. In order to check improvement on outlier detection and
removal, time windows of 5 seconds centred on the gross errors have been analysed.

For the GNSS/INS/odometer configuration the results are the ones presented in table 6.4. The results demon-
strated that odometer punctual gross errors have been detected and correctly removed. Moreover, it can be seen
that odometer ”slides” are detected but can not be fully removed.

Position Velocity Attitude
cm cm/s deg

Outlier free mode - IEKF 0.1 0.07 0.05 / 0.02 / 0.03
Outlier free mode - SiPF 0.1 0.07 0.05 / 0.02 / 0.03

Punctual outlier mode - IEKF 0.3 0.12 0.05 / 0.02 / 0.03
Punctual outlier mode - SiPF 0.1 0.07 0.05 / 0.02 / 0.03

Realistic outlier mode - IEKF 5.0 3.02 0.05 / 0.02 / 0.03
Realistic outlier mode - SiPF 0.7 0.13 0.05 / 0.02 / 0.03

Table 6.4: SiPF validation: GNSS/INS/odometer solution errors for different modes

For the GNSS/RINS/magnetometer configuration the results are the ones presented in table 6.5. The results demon-
strated that IMU punctual gross errors can be detected but can not be removed with the SiPF approach. Moreover,
it can be seen that IMU ”shocks” can be detected but can not be removed with the SiPF approach. In figure 6.6,
actual versus estimated errors is plotted. It can be seen that using classical filters the outliers lead not only to an
erroneous trajectory estimation, but to ”chitting” the user about the quality of the results. SiPF allows to, at least,
warn the user, about problems in the data set.
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Position Velocity Attitude
cm cm/s deg

Outlier free mode - IEKF 0.2 0.07 0.05 / 0.02 / 0.03
Outlier free mode - SiPF 0.2 0.07 0.05 / 0.02 / 0.03

Punctual outlier mode - IEKF 3.0 0.12 0.07 / 0.05 / 0.06
Punctual outlier mode - SiPEF 0.1 0.05 0.07 / 0.05 / 0.06

Realistic outlier mode - IEKF 3.0 0.12 0.07 / 0.05 / 0.06
Realistic outlier mode - SiPF 0.5 0.08 0.07 / 0.05 / 0.06

Table 6.5: SiPF validation: GNSS/RINS/magnetometer solution errors for different modes

Figure 6.6: SiPF validation: GNSS/RINS/magnetometer solution errors without (left) and with SiPF(right).

6.2.4 Discussion

As it has been theoretically proved in seccion 6, the results proves that there are no difference between KL, sequential
LS and SiPF when working with data sets without gross errors. The tests also prove that SiPF can be used to properly
characterize the error of the IMU measurements. The analysis of the IMU residuals shows that those residuals behaves
properly. In case some inconsistency appear, this would be due to an improper characterization of the residuals. SiPF
has been proven as a useful tool for outlier detection when redundancy in dynamic measurements occur. Thus, when
punctual errors happen with favourable problem geometry (this is, several different sensors) sensors, SiPF is able to
detect and to remove the errors. With unfavourable geometries (several sensors of the same type) errors can only
be detected. The same thing happens with ”real” error, this is, not punctual errors but errors that happen during
short periods of time. SiPF is able to detect them although is not able to remove them. It may seem that this is
not enough, but that’s not true. Being able to detect those problems allow the system to properly characterize the
solution error leading to an improvement on solution reliability and also allowing the system to recover quicker, this
is improving the solution performance earlier.
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Chapter 7

Rigorous modelling, redundancy and
hetereogeneity - Benefits

Although as stated in chapter 1 this thesis does not focuses neither on rigorous modelling, redundancy nor data
hetereogeneity, a brief comment on those topics is presented hereafter in order to highlight the relevance of this
Geodetic pillars in an improved navigation approach. The reader will find here former IG’s and current CTTC’
Geodesy and Navigation group research works, in which the author has been directly involved, and where geodesy
principles are the fundamental driver.

7.1 Modelling and rigorous modelling

While modelling tries to represent something through a description of its properties, rigorous modelling tries to go
a step beyond an to represent it good enough that the only thing that is left is noise. In other words, rigorous
modelling refers both to functional and to stochastical sensor modelling. These models represent the relation of the
data acquired by the sensor and the parameters to be estimated and also the behaviour of sensor errors. In order to
show the relevance of properly modelling these, hereafter, some works in which the author of this thesis has been
involved are presented.

7.1.1 IMU characterization

For the first high grade sensors, classical mechanical calibration methods were designed requiring specialized plat-
forms [90]. For example, the six-position method or the angular rate tests [90]. But these tests required a high cost
specialized platform. Recent works at at CTTC’s group aims to bring the high-grade IMU calibration approach for
low-cost sensors using simple 2 degree-of-freedom platforms. In that frame, a very low cost platform (< 1000e )
has been developed allowing for frequent IMUs characterization, and thus for improved in-lab calibration of low-cost
systems [25].

Another approach for low-grade sensors, involve analytical methods: special discrete parametric models such as
Auto-Regressive (AR) models, Moving Average (MA) models, Mixed AR and MA (ARMA) models or harmonic mod-
els can be used [65]. In this context, Guerrier et al. [32] propose a Mahalanobis distances based complex approach to
detect outliers that takes into account the shape and size of multivariate data. In this topic, the author participated
in a research lead by A. Waegli [93] that proposed to use a statistical method employed for studying the volatility
of financial markets (GARCH). The method was adapted and tested for the usage with inertial redundant data.

Both tools have allowed the researchers to improve the characterization of the available equipment and thus to
be able to 1) generate better simulations and 2) better characterize stochastic models in optminal estimation algo-
rithms.

7.1.2 GNSS’ Clock characterization

GNSS technology relies mainly on clocks, (satellite) atomic clocks and (receiver) quartz oscillators. Although the
modelling of the first ones was precisely done, the second ones were roughly modelled, and their errors have been
typically considered as parameters to be estimated together with receiver position. Lately, with the apparition of
low-cost (< 3000e) atomic clock’s this could change. One of the research lines in which the author has been
involved lately [24] proved that the Chip Scale Atomic Clock (CSAC) makes it possible to estimate position within
specifications even when only three satellites are available. It has also been observed that the impact of reducing
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and simplifying the clock unknown has almost no impact in planimetry performance neither for static nor dynamic
trajectories. However, the results demonstrate that having access to these precise clocks has a relevant impact on
the performance of height estimations in both scenarios.

Again, this research has allowed the researchers to improve the characterization of the available equipment and
thus to be able to 1) generate better simulations and 2) better characterize stochastic models in optminal estimation
algorithms.

7.2 (INS) Redundancy

In 2004 the former Institute of Geomatics presented two new algorithms for the integration of GPS with redundant
IMUs. In the first one the inertial measurements were combined in the observation space to generate a synthetic
set of data which is the integrated with GPS by the standard algorithms. In the second approach, the method of
strapdown navigation was adapted in order to account for the redundant measurements [13] [49]. Then, later on, in
2008 the Ècole Politechnique Fédéral de Lausanne, in close collaboration with the research group where the author of
this thesis belongs, presented the results of an evaluation of the previous algorithms. Both methods were evaluated
in experiments where redundant MEMS-IMUs were fixed in different geometries: orthogonally, redundant and skew-
redundant IMUs. For the latter configuration, the performance improvement using a synthetic IMU was shown to be
30% on the average. the extended mechanization approach provided slightly better results (about 45% improvement)
as the systematic errors of the individual sensors were considered separately rather than their fusion when forming
compound measurements. The maximum errors were shown to be reduced even by a factor of 2 [92].The redundant
approach has been consolidated at our geomatics group in later european projects [56] and internal developments [76]
as a key factor for performance improvement at reduced cost.

The use of redundant IMUs together wth the use of SiPF would allow to reduce outliers impact in navigation
solution and thus, to improve system reliability.

7.3 Hybridization

Research teams of DEIMOS and the former Institute of Geomatics had been working closely on the analysis of the
performance of different INS/GNSS hybridization levels for several years. In 2007 the results achieved using tightly
coupled architectures, also termed deeply coupled, under different scenarios, using aiding and coasting techniques
for Galileo signals were presented [82]. According to this research the superior performance of such architectures is
specially suited for receivers operating in demanding environments; for instance, urban scenarios, where signal block-
age is frequent, and high dynamics, such as accelerating trains. Also important is the contribution in the reduction
of the total error budget and increased robustness of satellite signal tracking, ultimately allowing to explore new
applications and new possibilities of GNSS. The hybrid receiver was implemented in the GRANADA software receiver.
In the patent PCT/PT2007/000021 these results are described in detail.

Both optical and LiDAR sensors are recently used for navigation purposes. This hybridization is generally based
on features analysis. A specific target is localized in consecutive images and the different points of view allow us to
correct the IMU drifts. Multisensor integrated solutions that combine the complementary features of the GPS, laser
scanner feature-based navigation, and inertial navigation for urban scenarios is a solution under investigation at our
group [23], being the preliminar results very promising. Features (such as lines) are extracted from laser scan images
and then used for position and attitude determination [5].

The use of heterogeneus system, properly characterized, together wth the use of SiPF would allow to reduce outliers
impact in navigation solution and thus, to improve system reliability.
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Chapter 8

Conclusions

The main thesis contribution has been to show that all the geodetic pillars: abstraction, optimal estimation, rigorous
modelling, redundancy and data hetereogeneity are keystones in the achievement of precise, accurate, available and
reliable navigation.

Abstraction allows the design, implementation and validation of new trajectory determination algorithms in a
quick and easy way. An inertial-based navigation abstraction model has been defined and implemented success-
fully (GEMMA) proven the benefits of such an approach instead of devoted software and tools.

Optimal estimation. EKF and their multiple variations allow state estimation, some of them propagate the uncer-
tainties with error models more accurate than the Gaussian one and some of them include algorithms that are robust
against outliers in the measurements (updating step) or against mis-modeling of the dynamic process noise. But
in INS/GNSS systems the dynamic processes are controlled by inertial observations and to the authors’ knowledge
none of the current bayesian implementations allow to monitor and thus to protect the system against outliers in
all -dynamic and static- observations. The filter proposed in this dissertation considers the estimation problem not
as a control problem but as a least-squares adjustment problem. Thus, all observations play the same role in the
estimation and all of them could be treated in the same way. The method allows to have access, in updating epochs,
not only to the innovations (and residuals) of the observations used for the updating but also for the ones controlling
the dynamic process. Moreover, there are not a posteriori densities to be considered, an thus the effect of the non-
linearities will be less dramatic. The proposed approach also benefits from the optimized least squares algorithms-
in the computational burden aspect- and allows to work with problems where the number of states varies along the
time. Thus, a direct consequence of using this approach is an improvement on sensor error modelling, end thus leads
to a more reliable solution estimation. This approach is of special interest when working with redundant systems
like the ones available in robust and reliable UAV navigation system [7] or in the robust and reliable medium-cost
terrestrial navigation systems [27].

Rigorous modelling, redundancy and data hetereogeneity have been widely used by the navigation community
beyond the examples provided in this report. This proves its fundamental role in advanced navigation solutions.

8.1 Thesis outcomes

The work carried out in the frame of this thesis results in a series of useful tools, algorithms and methodologies that
proves that the geodetic approach is a suitable approach for the navigation community.

Firstly it has allowed to develop the GEMMA system. GEMMA is currently an essential tool for the research of
the Geodesy and Navigation group of CTTC. In particular the simulator allows, and in fact has already allowed,
feasibility analysis saving initial investment in equipment and campaigns. The tool has already been used in several
European projects to perform feasibility analysis for kinematic airborne gravimetry (GAL project) [84], urban mobile
mapping performance analysis (ATENEA project) [22] and the design of the payload navigation system of a drone
(CLOSE-SEARCH project) [56].

The main component of GEMMA is NAVEGA. NAVEGA is a modular, generic and extensible trajectory deter-
mination tool requiring only dynamic libraries for its extension to new sensors. This approach responds to some
of the modern system design challenges as described in [30] and [31]. The design starting point is the abstraction
of the traditional state-space approach navigation algorithm in two main components: estimation and modelling.
This concept translates into a SW module that allows for fast and incremental modelling of multi-sensor navigation
systems. It is expected that the tool will benefit both navigation and geomatic communities, particularly the Earth
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Observation (EO), mapping and surveying teams that perform primary data acquisition in kinematic mode be it from
airborne, terrestrial and marine manned and unmanned vehicles.

GEMMA also includes an IMU simulation tool that has been proved extremely useful for researchers in the nav-
igation field. The simulator allows, and in fact has already allowed, feasibility analysis saving initial investment in
equipment and campaigns. The tool has already been used in several European projects to perform feasibility anal-
ysis for kinematic airborne gravimetry (GAL project) [84], urban mobile mapping performance analysis (ATENEA
project) [22] and the design of the payload navigation system of a drone (GINSEC project) [60]. Next steps to
be done in the tool development are the improvement of the IMUs characterization instrumental errors in dynamic
conditions, and a fine characterization of platform induced noise.

In its current version, NAVEGA includes a traditional EKF but also a new geodetic oriented algorithm: the Si-
multaneous Prediction and Filtering filter.

8.2 Thesis impact on the design of accurate and reliable navigation
systems

The main lesson learned after the end of this thesis refers to the way of approaching the design of an accurate and
reliable navigation system. Before this work, the main approach would have been to select an IMU fulfilling the
specifications, select the best GNSS available, type an adhoc Kalman filter and done. After this work the author of
this dissertation proposes to do it differently, first step should be to select the a priori most suitable sensors (this
may include one or several IMUS, one or several GNSS receivers and other sensors). Then to carry out a complete
set of simulations based on those sensors performance. Once validated the sensors, the advice is to develop a generic
Kalman-filter based SW that allows to replace the sensors at any moment and even increase the number of them
if needed. Such a SW should include input/output inspectors to ensure solution performance and reliability, and if
several IMUs are available it should include an estimator like SiPF, that take into account all the information provided
by them.
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Chapter 9

Outlook

The thesis presented in this dissertation is only a brick in the path of navigation related research, many more is still
pending to be faced. In this chapter a short overview on this tasks is presented.

In this research a major departure from the mainstream research lines of KF (UKF, PF, ...) has been presented; its
inspiration originating in the methods of geodesy and its motivation in the limited practical use of the mentioned
KF heirs. This departure, the SiPF, allows for the application of the geodetic–a.k.a. residual-based– methods to the
analysis, modelling and, in general, outlier detection and isolation to all measurements participating in the trajectory
determination. An obvious example is the Fault detection, isolation, and recovery of mission critical applications
where SWAP-C (Size, Weight, Power and Cost) matters. Moreover, new technology is being produced and ad-hoc
methods let to cumbersome, intricate software which is difficult, expensive and length to be developed, and then even
much more expensive to be certified. It goes without saying that a thorough, systematic, even massive, empirical
testing is required. Also, the numerical implementation of SiPF needs further investigation:whats the best numerical
integration method or how to compute efficietly the LS among other. All this is worth doing as, for the first time
since the invention of KF, about 60 years ago, we will be able to see te residuals of our dynamic measurements and
this opens new line of research and practical processing.
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Abstract: The constant irruption of new sensors is a challenge for software systems that do not rely
on generic data models able to manage change or innovation. Several data modeling standards
exist. Some of these address the problem from a generic perspective but are far too complex for
the kind of applications targeted by this work, while others focus strictly on specific kinds of
sensors. These approaches pose a problem for the maintainability of software systems dealing with
sensor data. This work presents ASTROLABE, a generic and extensible data model specifically
devised for trajectory determination systems working with sensors whose error distributions may
be fully modeled using means and covariance matrices. A data model relying on four fundamental
entities (observation, state, instrument, mathematical model) and related metadata is described; two
compliant specifications (for file storage and network communications) are presented; a portable
C++ library implementing these specifications is also briefly introduced. ASTROLABE, integrated
in CTTC’s trajectory determination system NAVEGA, has been extensively used since 2009 in
research and production (real-life) projects, coping successfully with a significant variety of sensors.
Such experience helped to improve the data model and validate its suitability for the target problem.
The authors are considering putting ASTROLABE in the public domain.

Keywords: trajectory determination systems; data model; genericity; extensibility

1. Introduction

In the context of this paper, Trajectory Determination Systems (TDS) [1] are software components
that compute trajectories using a variety of sensor measurements as input. The word trajectory usually
refers to the path of a flying object. In this article, we will first generalize its use to the path of any
moving object through the 3D space as a function of time. In addition, we further generalize it to
paths of entities—objects or mathematical abstractions—whose coordinates change with time in some
navigation, state or parameter space N; e.g., the actual 3D path plus the velocity and attitude angles
of a 3D rigid body. Clearly, this concept is closely related to the mathematical one of a stochastic
process since we describe the coordinates of the object as a time-dependent N-valued random variable.
More to the point, a TDS estimates optimal—in some sense—trajectories from sensor measurements
and mathematical models. A TDS may be either a real-time or post-processing tool.

Today, the applications of trajectory determination are becoming increasingly relevant and
demanding: unmanned aircraft navigation [2], precision agriculture [3,4], indoor mapping, indoor
positioning [5], robotics—including autonomous vehicle driving— [6] are blooming examples among
many others. Moreover, the trend is not bounded by the traditional relative small size of the
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professional markets since accurate trajectory determination is also an enabler of mass market
applications [7]. In general, these applications cannot be served by mono-sensor systems due to
the complexity and variety of the navigation environments. In parallel, sensing technology—including
satellite navigation technology—is evolving fast and contributing new sensors either in their very
concept or in their features (size, weight, error properties and other) [8,9]. To leverage their potential
for trajectory determination in the context of extremely competitive markets, the measurements of new
sensors shall be modelled and integrated in TDS as quickly as possible.

The challenges discussed above are not only scientific, but also software engineering ones, both
at internal computational and external interface levels. The described situation, large variety and
rapid evolution of input data, is not particular to TDS but a general condition of modern software
systems. In fact, coping with change and evolution of software systems is an old challenge of software
engineering. Many software development methods like Extreme Programming [10] or, more in general,
the family of agile software development methods [11] were, to a significant extent, motivated and
influenced by the need to cope with unforeseeable change and rapid evolution. Many programming
languages were also shaped by these challenges, one of the most popular being object-oriented
languages [12].

One solution to the problem is to develop systems—TDS in particular—that are easily extensible.
Over the past years we have developed a number of TDS [13–15] that achieved extensibility through
genericity. For this purpose, we designed internal estimation engines and external interface engines,
for a wide class of data and mathematical models in a way that dealing with new data types or new
models neither requires to modify the estimation engines nor the input/output ones [14,15], following
a plug-and-play paradigm. As opposed to the simultaneous approach in [13,14], ASTROLABE targets
sequential estimation and is based on seed concepts anticipated in [15]. More specifically, under
“wide class” we understand an abstraction that supports, in principle, all existing and future sensor
models and data for TDS. A similar approach is reported in [16] for a “Reconfigurable Integration
Filter Engine” (RIFE). While [16] describes a generic TDS, in ASTROLABE we concentrate on a generic
interface independent of the internal navigation engine and target all types of trajectories. A related
article [17] mentions the Unified Aiding Information Drives (UAID) generic sensor interface for RIFE.
However, in [16] the use of a new sensor requires that the sensor type is available in a system library
whereas we pursue a different level of abstraction where new types of sensors can be also integrated
in a plug-and-play fashion.

We note that there are other approaches to the extensibility of TDS. One possibility is to develop,
for each sensor type, a “maximalist” model and interface with the hope that it is general enough.
Another approach is to use sensor replacement models (RPM) [18]. This technique is popular in
small-scale photogrammetry and remote sensing. It is based on general analytical formulations,
usually unrelated to the physics of the sensor, like rational functions (algebraic fractions where both
the numerator and the denominator are polynomials). Its benefits notwithstanding, a RPM is nothing
else than a model that works for a wide variety of imaging sensors. A true generic interface shall allow
for a seamless use of any type of model and entirely leave to the decision of the sensor specialists
which particular model shall be used.

As with software engineering, extensibility is an old issue in geomatics with some early
contributions that had influenced our work: in [19] early attempts to classify geodetic entities under
a common umbrella were made; in [20] a pioneering generic adjustment engine was presented;
in [21] the advantages of the object-oriented approach to generic adjustment systems were discussed;
and in [22,23] the underlying general structure of network adjustment systems was analysed. Though
loosely related to our problem, we acknowledge the research on ISO standards for geomatics as
reported in [24] that have the potential to generate generic interfaces for TDS. These are contributions
from geomatics relevant to TDS as they equally apply to real-time and post-processing tools.

Generally speaking and surprisingly to some extent, the literature on navigation and orientation,
either in broad general surveys like [25] or even for specific generic systems like [26,27] or [28] do not
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tackle generic interfaces. It has been only recently, that the design of plug-and-play systems has made
apparent the need for generic interfaces; automation—e.g., in robotics—and harmonisation—e.g., large
organisations—are drivers of this. Thus, as already referenced, [17] mentions the UAID generic sensor
interface for their universal plug-and-play navigation system. [29] refers to the Defense Advanced
Research Projects Agency (DARPA) All-Source Positioning and Navigation (ASPN) programme and
its set of generic interface documents known as the “ASPN Interface Control Documents (ICDs)”.
ASPN was launched by DARPA in November 2010 with the aim of developing low cost sensor fusion
technologies and achieving a plug-and-play architecture; i.e., that sensors can be added, removed,
or replaced on-the-fly and that their measurements can be included in the input data streams with
minimal delay [30]. The DARPA initiative is an independent confirmation of the relevance of the topic
of this article.

To at least alleviate this problem, this research work proposes a data abstraction. The identification
of the common traits defining the essence of the information provided by sensors leads to a data
model general enough to support such diversity, that is, able to represent any kind of sensor whose
error distributions may be fully modelled by means of a mean and a covariance matrix (see Section 2)
including metadata. Data (values) by themselves are meaningless; a rigorous data model must take care
of including the metadata that unequivocally characterize data if it means to be complete. Ignoring
metadata has been a constant source of problems in the past—and it still is [31]. Unfortunately,
applications in production environments regularly tend to ignore metadata for the sake of performance
(The absence of metadata implies a series of assumptions on default values concerning data, as the
physical units or the expected reference frame and coordinate system used, among others. As a
consequence, it should not be necessary to perform conversion tasks (units, coordinate systems) on
input data, thus reducing the computational effort required to provide a solution and, consequently,
improving performance.).

Standards covering sensor and observation data models already exist [32,33] and efforts to bring
those closer to geomatics also exist [24]. Although these data models would have been powerful
(and general and extensible) enough for the purposes of our work, we focus, however, in a much
narrower field of applications than those targeted by the aforementioned standards; a suitable data model
for TDSs needs to specify a fewer number of characteristics to be sufficient, which leads to a more
concise specification. In short, ASTROLABE may be seen as a subset of [32,33]. Additionally, terseness
is an advantage from several standpoints, as for instance: (1) the amount of information to store when
a TDS is working in real time is noticeably reduced, thus decreasing the time needed to save data;
(2) transmitting such data through a network connection reduces both bandwidth requirements and
transfer time; (3) the burden related to the preparation and management of data and metadata is
significantly reduced in actual production environments and (4) the implementation of an Application
Programming Interface (API) managing such data model is much simpler and compact.

On the other side, standards designed to represent data from specific types of sensors exist and
are widely used. A well known example is the Receiver INdependent EXchange (RINEX) format [34],
specifically designed for GNSS range measurements, and its relatives, the Antenna Exchange (ANTEX)
format, the IONosphere map EXchange (IONEX) format and the Standard Product 3 (SP3) orbit format.
We note that each of these formats are defined independently and that the inclusion of new GNSS
systems requires modification and recompilation of the IO software in most cases. Another popular
example is the LASer file format (LAS) [35] for point clouds derived from laser scanning. The main
advantage of such kinds of standards, being tailored and optimized for specific sensors, is, at the same
time, the reason to avoid them; one of the goals of the research work presented in this paper is to
devise a generic data model able to manage diversity and evolution.

This paper presents ASTROLABE, developed since 2009 at the former Institute of Geomatics (IG)
and since 2014 at the Geomatics Division of the Centre Tecnològic de Telecomunicacions de Catalunya
(CTTC) with the cooperation of GeoNumerics. Its goal is to create a generic, extensible, complete and
efficient data model suitable especifically for TDSs. This work is inspired in the generic data models
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and interface specifications of two generic and extensible network adjustment tools, GeoTeX [13]
and GENA [14]. At the time when the decision to develop the generic standard was made, to the
best knowledge of the authors, there was nothing comparable, academic or industrial. It is true that
the standards defined in [32,33] already existed but, as stated above, these were too ambitious for
our purposes.

ASTROLABE is the generic interface of CTTC’s NAVEGA [15] and GeoNumerics’ NEXA trajectory
determination systems. In the rest of the article, for the sake of clarity and readability, we will use
NAVEGA examples and refer to NAVEGA functions whenever helpful.

This work is structured as follows: Section 2 identifies and introduces the data entities involved
in the process of trajectory estimation; these data entities are the pillars on which the ASTROLABE
data model relies. Section 3 describes such data model in full detail from the conceptual standpoint,
including data and metadata. On Section 4 the ASTROLABE data model is translated into a formal
specification comprising a file and a network interfaces, which are briefly described. An almost
complete C++ library implementing these two interfaces is briefly discussed in Section 5. Some
considerations on the kind of sensors (and related observations) that may be modeled using
ASTROLABE are included in Section 6. To finish, conclusions are presented in Section 7. The interested
reader may find a more detailed description of the ASTROLABE file interface in Appendix A.
An example describing ASTROLABE data and metadata used in a real-life project (GAL) may be found
in Appendix B.

2. The Foundations of the Data Model

Shortly stated, the goal of a TDS is to derive trajectories out of sensor data, whatever these are,
be it in post-processing or real-time mode.

As any other kind of application, a TDS transforms input data into some kind of result using
specialized logic appropriate for the problem to solve. In the particular case of TDSs, these use
observations coming from instruments (sensors) as input, and apply a series of mathematical models
specific for the intervening observations and instruments to compute the states. The computation of
these values in consecutive points of time deliver a time-ordered series of states, the trajectory.

The most common methods used to determine trajectories in TDSs are sequential least-squares
estimators. Kalman filters [36] are the best known among them. Although these filters do not
specifically require Gaussian distributions for errors, they yield the exact conditional probability
estimate when this happens. Further, to fix the ideas, for the data model described hereafter, a
Gaussian distribution of the observation error will be assumed. Nevertheless, the data model can be
used for non-Gaussian situations. In fact, the proposed data model supports a broad range of error
probability distribution functions, namely those for which the first and second moments exist.

Four relevant entities arise from the previous description: states (a.k.a. parameters), observations
(a.k.a. measurements), instruments and mathematical models. The data model is precisely based on
them. In our context, it is convenient to add a “new” one, namely, the observation equation, intended to
identify a particular combination of observations, states, instruments and mathematical models.

Below, a short formal description of these entities is provided to help to focus the discussion.

• (Observable and) Observation. An observable is a numerical property of a physical system that
can be determined by a sequence of physical or mathematical operations. Technically, it is a
random variable. An observation or measurement is one of the values that an observable or
random variable may take; i.e., it is a random sample of a random variable. (For example,
the various repeated measurements between A and B of a distance meter instrument—the
measured distances—are observations and the abstract concept of distance between A and B is
the observable).
It is worth mentioning that for ASTROLABE, and this is a language abuse, an observation is,
in fact, a vector of measurements for a set of observables (an array of observations as defined
just above).
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In the context of TDSs, typical observables are acceleration, temperature, range or angular
speed. Observations for these observables might be −1.3 m/s2, +23.556◦, +12,832.34 m and
−27.42 rad/s respectively.

• State. Similar to observations, a state is a time-dependent random vector whose expectation and
covariance have to be estimated from known observations, instruments and mathematical models.
Note that in simultaneous, least-squares estimation the states are called parameters.
Typical states in TDS environments are position or attitude random vectors.

• Instrument. An instrument (or sensor) is a device used to measure some observable, thus
delivering observations. From the data abstraction point of view, it is an entity which contains the
constants that characterizes an actual instrument.
Within the context of TDSs, inertial measuring units, gyroscopes or GNSS receivers are examples,
among others, of instruments.

• (Mathematical) Model. A mathematical description of a system or process. In the context of
ASTROLABE, it is a stochastic equation or a stochastic differential equation; traditionally, this has
also been described as a functional model plus an stochastic model.

The last data entity in ASTROLABE’s data model is the observation equation which, in our
context, is defined as:

• Observation equation. A materialization of a given mathematical model—stochastic or stochastic
differential equation— for a particular set of measurements, instruments or states.

The last part of the former sentence introduces a new facet in the definition of observation
equations. From the processing standpoint these may be viewed as commands or triggers that tell the
trajectory determination software that the right moment to derive a new state has come (and that
the information to use is the one specified by such equation). A series of observations, all of them
including measurements reported by—probably—different, cooperating sensors, may be held in stock
until the best moment to derive the new state comes. This moment is reported by the observation
equation. This is specially important when working with systems that hybridize a set of sensors to
compute trajectories; some usual examples combine, for instance, GNSS receivers, inertial measuring
units and magnetometers for such purpose. The use of the simultaneous data reported by these sensors
noticeably increases the quality of the solution (see [37]).

Figure 1 depicts graphically an hypothetical observation equation. This example assumes that
there exist j different kinds of models, l kinds of observations, o different kinds of states and z kinds
of instruments. The observation equation in the figure relates the model whose identifier is h, two
observations with identifiers 1 and k respectively, two states, whose identifiers are m and o and, finally,
a single instrument with identifier y.

Figure 1. Example of an observation equation.
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3. The Data Model in Detail

The sections to follow will describe in detail the observation, state, instrument and observation
equation entities just introduced. Such a description takes place from the data and metadata
standpoints; it is the result of the abstraction process that leads to the ASTROLABE data model.
However, before such a description may be detailed, it is necessary to discuss how data and metadata
are identified and cross-referenced. Section 3.1 will introduce the [meta]data identification mechanism
used in ASTROLABE. Sections 3.2–3.5 will then describe both data and metadata.

3.1. On Data Identification and Cross-Referencing: Types, Identifiers and Instance Identifiers

ASTROLABE relies on a hierarchical, three-level mechanism to unequivocally identify and
cross-reference data. Metadata employ two of these levels, namely types and identifiers, while data
complete the identification triplet incorporating instance identifiers.

A type is a code tagging a unique kind of object (be it an observation, state, instrument or model)
with a specific, and also unique, set of properties. An example of such object would be a certain kind of
instrument, e.g., a temperature-compensated barometer. A unique type code would be assigned to this
kind of barometer. Should a different kind of barometer exist, as for instance, one whose measurements
were not compensated by means of temperature, a new, different type code should be used. Examples
of these type codes could be barometer_t_compensated and barometer_basic respectively.

There may exist, nonetheless, many brands and models of barometers that use temperature to
correct their measurements. All these would be incarnations of barometer_t_compensated (instrument)
objects, that, in spite of sharing a common type, might behave differently—e.g., being more or
less accurate or delivering data using different physical units. In other words, even though all the
temperature-compensated barometers may be described by a common set of properties, the actual
values of these properties may differ.

The identifier is used to take these differences into account. An identifier is a unique code used
to tell apart different incarnations of objects (temperature-compensated barometers in the example
above) that, in spite of being characterized by the same set of properties have different values for these.

A tuple composed by a type and an identifier unequivocally identifies any kind of object in
ASTROLABE metadata. Figure A2, lines 01–29, shows the full XML specification of temperature-
compensated barometer observations using the ASTROLABE file interface (Although this section
takes care of describing a data model that may be implemented in many different ways, examples are
presented using the XML syntax defined by ASTROLABE to materialize its file interface. Such file
interface is detailed in Section 4.1.). Note the type/identifier codes in lines 02 and 04 of this example.

Actual data records use the aforementioned identifier to characterize themselves. That is, these
records include the identifier as an extra field pointing to the metadata that will serve to describe them.
Figure 2 depicts the type/identifier hierarchy and shows as well how actual data use the identifier
code to state what kind of information is stored in data records.

The identification schema just depicted is not complete yet from the data (not metadata)
standpoint, since it does not take into account that multiple, identical instruments might be
used simultaneously when collecting data. That is, data originating from two or more identical
instruments—sharing the same type and identifier codes—may be present in a dataset. To solve
this problem, the third element in ASTROLABE’s data identification schema is used. It is the
instance identifier.
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Figure 2. Types, identifier and instance identifier. Cross-referencing from actual data.

The instance identifier is a code used to distinguish between several instances of objects whose
types and codes are identical. It purpose is to allow multiplicity.

Thus, actual data records use a combination of an identifier plus an instance identifier to fully
characterize themselves. The identifier points to metadata (and therefore, to the exhaustive description
of the information the data record contains) while the instance identifier is used to discriminate
between several instances of identical data sources. Figure 2 depicts graphically this situation. Figure 3
shows several actual barometer data records in ASTROLABE XML format including the same metadata
identifier (baro1, see Figure A2) but two different instance identifiers (1 and 2). That is, data from two
identical barometers have been collected at times 124.88 to 124.92 (two readings from barometer 1,
only one from barometer 2).

Note that the values of the instance identifiers may be chosen arbitrarily, providing these are
different for every object instance they represent.

<l id=“baro1” n=“1”> 124.88 23.44 1023.442 0.3 </l>
<l id=“baro1” n=“2”> 124.90 23.45 1023.450 0.3 </l>
<l id=“baro1” n=“1”> 124.92 23.45 1023.443 0.3 </l>

Figure 3. Data: identifier and instance identifiers in barometer data.

3.2. Data: Observations

Observations are one of the main pivots the ASTROLABE data model turns around; not in vain,
observations are the primary source of data used to derive results, either in TDS or in many other
kind of software tools. In fact, many of these tools consider observations as the unique source of
information—often forgetting metadata completely. Therefore, finding a powerful abstraction for
observations is of capital importance for a data model that means to be generic and extensible.

The type of information provided by sensors is—apparently—very different. It is evident that a
barometer will not deliver the same kind of data as with a spectrometer, a gravimeter or a densitometer,
to mention some. Moreover, and now moving to the software realm, the algorithms used to deliver
useful results out of sensor readings are different too. Taking into account, however, how information
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is processed is not the task of a data model; it must deal only with those aspects that are exclusively
intrinsic to data.

In spite of the aforementioned dissimilarities in observations, a common structure, their essence,
may be identified in all of them. The observations that may be modelled by ASTROLABE consists
of a set of expectations (The word expectation in the context of this paper stands for the best estimate
of the expectation of the random variable associated to the measurement.) (the measurements reported by
the device) and an assessment of its quality (the covariance matrix (This is so because ASTROLABE
assumes observations with error distributions fully defined by the first and second moments; therefore,
an observation always consist of an array of expectations plus a covariance matrix.)). No matter what
the observation is, these elements will always be present (Some sensors may not provide actual values
for the covariance matrices that should accompany every measurement. In such situations the nominal
quality values reported by the manufacturer may be used. Such default values may be specified by
means of metadata. For instance, the example in Figure A2 (line 18) provides a default value (1 hPa)
for the standard deviation component of the covariance matrix by means of the <c> tag.).

Of course, the number of values present in each kind of observations will vary; a 3-axial
accelerometer will report three readings (acceleration around the three axes) while a thermometer will
provide just one (the temperature). Even when considering sensors of the same type providing the
same number of readings, the units used to deliver such values may vary: m/s2 or cm/s2 in the case
of accelerometers, for example.

These differences are, however, accidental and may easily modeled through the proper use of
metadata (see Section 3.5). What remains is the fact that every observation will be composed of a set of
expectations and the related covariance matrix.

Therefore, the first approach to define the common structure for observations would state that it
is composed of two elements:

observation: (expectations, covariance matrix)

It is necessary to be able to tell apart different kinds of observations; otherwise, it would be
impossible to interpret the semantics of these measurements: observations from a distancemeter
would be indistinguishable from those coming from an odometer. To do so, the identifier and instance
identifiers defined in Section 3.1 are introduced:

observation: (identifier, instance identifier, expectations, covariance matrix) (Note that the boldfaced
words in definitions are used to denote changes with respect to previous ones.)

The unique identifier will point to the appropriate metadata, where aspects as the dimension of
the vector of expectations or the units used—as well as other accidental properties—will be specified.
The instance identifier, as stated in Section 3.1, will serve to tell apart observations originating from
different instances of equivalent data sources (as for instance, two identical barometers).

Note that the need to identify different kinds of observations responds to the (geodetic) principle
of heterogeneity (Heterogeneity refers to the use of different types of observables for the determination
of the same set or subset of parameters or states. Better systematic error correction is also the goal of
heterogeneity.) on which the ASTROLABE data model relies. The need to identify several instances
of the same kind of observation responds to the (geodetic) principle of redundancy (Redundancy
refers to the repetition of measurements, apparently superfluous and unneeded, with the objective of
mitigating the random dispersion of the observables (random variables) being measured (samples of
the observable). Better outlier detection is also the goal of redundancy.).

Time is a requirement in TDSs because of the nature of their purpose. Observations must therefore
be time-tagged to register the moment when the sensor delivered its readings.

observation: (identifier, instance identifier, time, expectations, covariance matrix)
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Sometimes, it is interesting to keep track of extra data that, although not an intrinsic component
of an observation, helps to complement it. This auxiliary data may be of any kind. For instance,
an accelerometer delivering acceleration measurements may be seriously affected by temperature.
This observable (temperature) is not, from the conceptual standpoint, part of the acceleration
observation; however, ignoring it may lead to incorrect results when used by a TDS. On the contrary,
extending the observation with this information may help the TDS to, for instance, apply a calibration
method to correct the data coming from the accelerometer.

The former is just an example to illustrate why auxiliary information should be a companion of
pure observation data. Auxiliary values are called tags in the context of ASTROLABE. The number of
tags is arbitrary; other accelerometers, for instance, might be affected by other kinds of observables.
Other sensors may need not auxiliary values at all.

Therefore, the ASTROLABE data model makes tags an integral part of its observation data entity;
the number and properties of tags—that may be zero—for each kind of observation is defined by
means of metadata (see <t_spec>, Figure A2, lines 20–28).

observation: (identifier, instance identifier, time, tags, expectations, covariance matrix)

Leaving aside metadata, and from the conceptual—ASTROLABE’s, at least—standpoint, there is
nothing else that an observation should include. There are, however, two more items that the current
observation model has adopted: an extra event tag and an activation flag.

The typical dataset used in trajectory determination (either a file or a network stream, for instance)
will include at least two kinds of data entities: observations and observation equations. Since both
data entities will be merged in datasets, a mechanism to tell apart these entities is necessary. A simple
marker identifying the kind of entity it precedes will suffice for that purpose. ASTROLABE names this
marker as event tag.

The final element composing the observation model is provided just for (processing) convenience
purposes: it is the activation flag. When processing data, some observations may be detected as wrong
ones (for instance, because a magnetometer starts producing invalid readings when approaching
a powerful source of electromagnetic interferences, as power lines). If these observations are not
removed from the computation of the output trajectory the results will be distorted. Of course, it is
possible to eliminate such observations from the input dataset thus removing their harmful effects;
however, this distorts how data was captured, since the original observation will no longer be available
in the input dataset.

The solution to this—apparent—problem is to provide with the aforementioned activation flag.
An observation set to “inactive” by the human operator must be ignored by any TDS just as it would
have never existed.

This leads to the final step in the definition of the observation entity data model as seen by
ASTROLABE:

observation: (event tag, activation flag, identifier, instance identifier, time, tags, expectations,
covariance matrix)

Table 1 summarizes the discussion above.
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Table 1. The observation entity data model.

Item Description

Event tag Identifies the kind of data entity (observation).
Activation flag Enables or disables the observation for processing purposes.
Identifier Defines the kind of observation (points to metadata).
Instance identifier Tells apart multiple occurrences of identical data sources.
Time Time stamp; time when the measurements were made.
Tags Data that is not part of the observation but complements it.
Expectations The observed measurements.
Covariance matrix Estimated error of the expectations.

Figure 4 shows two examples of observations using the ASTROLABE XML syntax. The metadata
describing these of observations may be found in Figure A2. Section 3.5 describes metadata in detail.

It is possible to know that these are observations because of the <l> tag opening (and closing) data
records. This XML tag corresponds to the event tag described above. The active flag is represented as
the “s” (status) attribute, which may take two values: “a” for active or “r” meaning removed or inactive.
Both observations include their identifiers (pointing to the metadata that characterize them) in the “id”
attribute. The first observation states that its identifier is “baro1” while the second one identifies itself
as “imu1”. To link these observations to specific instances of sensors the instance identifier, represented
by the “n” attribute, is used, whose values, for the “baro1” and “imu1” observations are, respectively,
32 and 41.

The next field is the time stamp (124.88 in both observations). In the case of the “baro1/32”
observation, one tag (auxiliary value) has been included (23.44); this is so because the sensor
related to this observation is a temperature-compensated barometer; the tag corresponds to the
temperature reading at the moment when atmospheric pressure was measured. There are no tags for
the “imu1/41” observation.

Then, the measurements themselves are included. In the case of “obs1/32” a single value
(pressure, 1023.44) is provided. The “imu1/41” observation, on the contrary, provides the readings for
three angular velocities and accelerations (0.01 0.02 0.015 0.32 0.43 9.95).

Lines 2 and 5 provide the covariance matrices (a single standard deviation in the case of “obs1/32”)
for these observations respectively.

See Figure A1 for a complete ASTROLABE XML example showing both observations and
observation equations.

1 <l s="a" id="baro1" n="32"> 124.88 23.44 1023.44
2 0.3 </l>
3
4 <l s="r" id="imu1" n="41"> 124.88 0.01 0.02 0.015 0.32 0.43 9.95
5 1e-3 1e-3 1e-3 1e-2 1e-2 1e-2 </l>

Figure 4. Data: examples of observations in XML syntax.

3.3. Data: States, Instruments and Mathematical Models

States and instrument data may be modelled using exactly the same structure just discussed
in Section 3.2, at least in the context of ASTROLABE and its goals (In a trajectory determination
and, in general, in a parameter or state estimation “ecosystem” the role of measurements, states and
instruments uses to commute. In other words and more specifically, an instrument—i.e., its calibration
parameters, time varying or not—could be the result of a trajectory determination exercise. However,
in a next software run, an instrument calibration set of states can be seen as an instrument constant.
Or for example, a GNSS-derived position can be a state of a GNSS trajectory determination based
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on GNSS measurements. However, in a next INS/GNSS loosely-coupled trajectory determination
run, those position states become the position observations. In ASTROLABE a trade off between
the engineering model and the mathematical model is made. We could refer to the measurements,
states and instruments as known or unknown stochastic processes. However, by telling apart the
measurements, from the states, from the instruments we facilitate the use of the standard and the
modelling process. This is why, mathematically and structurally, observations, states and instruments
are alike.). The following are the definitions for state and instrument data (which have been provided
for the sake of completeness, since these are exactly the same as the definition of an observation:)

state: (event tag, activation flag, identifier, instance identifier, time, tags, expectations, covariance matrix)

instrument: (event tag, activation flag, identifier, instance identifier, time, tags, expectations,
covariance matrix)

In the case of observations and states, the coincidence of their definitions should not surprise the
reader; in fact, when working in post-processing environments, TDSs use to compute trajectories in
three steps, the so-called forward, backwards and smoothing ones. The output (trajectories, made
of states) produced by the two first steps become the input of the third one. The role of states is thus
changed to observations at that point.

Observations and states may easily be told apart by the context in which these both entities appear.
Observations will always be included in input files/network streams. States are always the output of
TDSs, so these will always be found in output files/network streams. For an example of states written
in the ASTROLABE XML syntax, the reader may refer to Figure 4, which, in fact, depicts observations.

Instruments, on the other side, are not random variables. That is, time does not affect instrument
data, which is considered constant information. From the structural standpoint, instrument data is,
once more, a set of values and their quality information (that is, the expectations and covariance
matrices found in observations and states). Note that, in the case of instrument (constant) data,
the covariance is considered by ASTROLABE as a mere indication of the quality of the list of values.

Since instruments must also be identified, the three level hierarchy used in observations and states
is adopted here. Tags are provided for the same reason as with observation data; the difference, in the
case of instrument constants, is that these tags are purely informative, and contain their values at the
moment the aforementioned constants were computed—that is, when the instrument was calibrated.

The use of time stamps and activation flags as an integral part of the instrument data needs
some justification. Although purely informative, time stamps are used to keep track of the time when
the instrument constants were calculated. This is very important in the case of unstable instruments
that must be recalibrated often; an explicit calibration time helps to avoid problems due to the use
of outdated information. Note, finally, that the time stamp must use the same reference frame and
coordinate system that those used in observation records.

The presence of the activation flag might seem controversial: if observations from some kind of
instrument are included in a dataset, the constants defining the instrument itself should be included as
well. On the contrary, if the observations contains no data from some kind of instrument, the inclusion
of the instrument data themselves would be superfluous. Therefore, the possibility of activating or
deactivating instruments seems useless. This is true; however, this flag is included for convenience,
purely practical reasons: it allows storing the constants of several instruments in the same single
file. Depending on the sensors (and therefore, observations) used to compute a particular trajectory,
the instruments available in such file may be activated or deactivated correspondingly, and the unique
instruments file reused easily.

Typical examples of instruments constants would be the focal length of a camera or the position
of the center of a GNSS antenna.

The following are two instrument data records that adhere to the definition above but include no
tags. The instrument is described in the metadata file fragment shown in Figure A3, more specifically
in lines 138–171.
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<l id="p0_h0" n="51"> 124.88 1024.01 0.0 </l>
<l id="p0_h0" n="52"> 124.88 1023.99 0.0 </l>

These records show the expected pressure readings (1024.01 and 1023.99 mBar, see the <units> tag
in Figure A3, line 155) for two (instance identifiers 51 and 52 respectively) identical (id = “p0_h0” in
both cases) barometers, while their heights are 0.0 meters (the units are defined in line 166 of Figure A3).
The value of the time tag (informational only) is 124.88 in both records. No covariance matrices have
been included; should these be necessary (just for informational purposes only) then default values
for such matrices may be retrieved from the corresponding metadata (<c> tags in lines 156 and 167 in
Figure A3).

Concerning mathematical models, there are no data for these; in fact, ASTROLABE models are
mathematical equations implemented by TDSs. The only information related to mathematical models
that is included in the data model is their metadata (see Section 3.5 and Figure A4).

3.4. Data: Observation Equations

As already discussed in Section 2 and shown in Figure 1, the observation equation relates
all the intervening data entities needed to derive a new output state (models, observations, states
and instruments).

The first attempt to define the data model for observation equations directly mirrors this definition:

observation equation: (model identifier, list of observation instance identifiers, list of state instance
identifiers, list of instrument instance identifiers)

Note that the identifiers used to refer to states, observations and instruments are instance
identifiers (see Section 3.1). This means that if data coming from different instances of identical sensors
are available, it is possible to refer individually to each of these sensors in the observation equation.

For instance, assuming an observation equation relating one model to two observations and one
state whose respective identifiers were compute_position (the model), GPS and IMU (the observations)
and position (the state), the observation equation would roughly look like this:

(compute_position, GPS + IMU, position, -) (The dash at the end of the equation stands for “no
instrument identifiers”. This example equation includes no instruments.)

If two identical GPS receivers were used to collect data, using directly the metadata identifiers to
characterize the observation equation records would not leave room for multiplicity. On the contrary,
the use of instance identifiers solves this problem. Assuming that the instance identifiers are 20 and 21
(GPS receivers 1 and 2) and 30 (IMU) and 10 (state), the following observation equations would involve,
respectively, the first and second GPS receiver:

(compute_position, 20 + 30, 10, -)
(compute_position, 21 + 30, 10, -)

As seen in the example above, the cardinality of the different lists of instance identifiers may be
zero in some cases. The model identifier must, however, be always present.

Extra items must be added, as it happens to observation, states and instruments themselves.
An event tag, an activation flag and a time stamp must be added to complete the data model for
this entity. Their purpose is described in Section 3.2—although that section talks about observations,
the explanations given there may be applied here so these are not repeated again. In this context,
however, the activation flag may be interpreted as a quick and practical way to avoid the (erroneous)
computation of states when a significant number of the observations involved are clearly wrong.

observation equation: (event tag, activation flag, time, model identifier, list of observation instance
identifiers, list of state instance identifiers, list of instrument instance identifiers)
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Table 2 briefly describes all the elements integrating an observation equation.

Table 2. The observation equation entity data model.

Item Description

Event tag Identifies the kind of data entity (observation equation).
Activation flag Enables or disables the observation equation for processing purposes.
Time Time stamp for the equation.
Model identifier Points to the model to use to deliver new states.
Observation instance ids. List of observations involved in the computation of new states.
State instance ids. List of states involved in the computation of new states.
Instrument instance ids. List of instruments involved in the computation of new states.

The explicit inclusion of the model identifier opens the way to the use of different kinds of models
in structurally identical observation equations. Revisiting the example above, the model used to derive
the new state may be changed while involving exactly the same lists of observations and states:

(compute_position_method_1, 20 + 30, 10, -)
(compute_position_method_2, 20 + 30, 10, -)

...
(compute_position_method_x, 20 + 30, 10, -)

One positive consequence of this feature is that researchers may tests new algorithms simply
changing the model identifier used to derive new states in observation equations.

Figure 5 includes three examples of observation equations in ASTROLABE XML syntax. All these
may be easily identified by the opening tag <o> which represents the observation equation event tag.
The activation flag is materialized by means of the “s” attribute (whose values, “a” and “r” stand for
“active” and “inactive” or “removed” respectively). Note that the equation at line 3 has no explicit
activation tag: it is assumed active by default.

The observation equation identifiers (attribute “id”) point to the respective models involved
in the equation, namely “pva1_d”, “imu1_bias_d” and “height_update”. After these, the time tag
(124.88 in all cases) and the lists of observation, state and instrument instance identifiers are included.
The metadata for these equations may be found in the example in Figure A4 using the model identifiers
(id) shown in Figure 5. (ASTROLABE metadata are discussed in Section 3.5). Such metadata state that,
for example, model “height_update” points to one observation whose identifier is “baro1”, two states
(“baro1” and “pva1”) and just one instrument, (“p0_h0”). This implies that a total of four instance
identifiers must be present in the observation equation, as shown in line 3 of Figure 5: instance
identifier 27 for the observation, 34 and 32 for the states and 51 for the instrument.

See Figure A1 for a complete ASTROLABE XML example showing both observations and
observation equations.

1 <o s="a" id="pva1_d" > 124.88 27 11 41 </o>
2 <o s="r" id="imu1_bias_d" > 124.88 11 17 </o>
3 <o id="height_update"> 124.88 27 34 32 51 </o>

Figure 5. Data: examples of observation equations in XML syntax.

3.5. Metadata

Sections 3.2–3.4 describe the structure of the different data entities involved in ASTROLABE’s
data model. For this definition to be rigorous, some additional aspects related to these entities must be
specified. These aspects constitute the metadata.
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Observations and states share the same metadata structure, that is, the same kind of facets are
specified. For this reason, these will be described below within a common frame. Instruments and
models, on the contrary, are a case apart, so their metadata will be specified separately.

The main items constituting the metadata for observations and states are the following:

• Type and identifier. See Section 3.1 for a detailed explanation on type and identifier codes.
• Toolbox. Name of the software module—typically, a Dynamic Link Library (DLL, Windows

environment) or Shared Library (Linux environment)—including an implementation of the logic
related to the observation or state. The way this name is used by the underlying operating system
to find the library is not defined by ASTROLABE.

• Dimension. Number of elements in the observation/states expectations vector.
• Referencing. The reference frame plus coordinate system to which data refer to is specified here.

Alternatively, it is possible to define a coordinate reference frame instead.
• Units. Specifies the units of the individual elements of the expectations vector for observations

or states.
• Covariance matrix. Default covariance matrix for the expectations vector for observations and

states. The units of the covariance matrix are the same as those provided for the expectations
vector, even in the default case. ASTROLABE accepts “reduced” or “full” covariance matrices.
A reduced covariance matrix consist of just standard deviations—assuming zeros for correlation
values. This is an optional field.

• Scale factors. This optional field contains a list of positive scale factors for the standard deviations
included in the covariance matrix. The number of elements in this list equals the dimension of the
expectations vector. Scale factors values of 1 are assumed when this field is not present.

• Tags (auxiliary values) characterization. Since observations or states may be optionally
accompanied by tags, (Section 3.2), it is necessary to characterize these. The way to do it is
to define:

– The number or tags related to the observation or state (dimension.)
– For each of these tags, provide the referencing data (again, reference frame plus coordinate

system or coordinate reference frame), as well as the units in use.

Figure A2 shows how three different observations are defined (lines 1–29, 30–53 and 54–77),
using the ASTROLABE XML syntax. Note the XML tags used to describe the metadata elements:
<l_spec> starts the definition of an observation; <type> is used to input the observation’s type code.
The identifier is specified by means of the <id> tag—which is embedded in a higher level structure
named <lineage>. Toolbox codes are specified by means of the <toolbox> tag, while reference frames
and coordinate systems are described by means of the (<ref>, <ref_frame_VC>, <coor_system_VC>)
triplet. For units, the <units> tag is used, <c> is for covariance matrices and <s> is for their scale
factors. The tags are characterized by means of the <t_spec> XML tag, which in turn use other ones
already defined.

Figure A3 shows the specification of three states (lines 78–94, 95–119 and 120–137). (This figure
also depicts the specification of an instrument, and it will be discussed below.) Note that, as stated
before, observation and states are equivalent from the structural standpoint, so the XML tags used
to describe these are almost the same. The only difference is the XML tag <p_spec> (opening the
definition of a state).

Instruments are characterized as follows:

• Type, identifier, toolbox. Same meanings as for observation/states metadata. See Section 3.1 for
details on type and identifier codes.

• List of instrument constants. Includes the number of constants defined (the dimension) and the
description of each of these, including:
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– Type. Either scalar or matrix.
– Referencing. Again, either the combination of a reference frame plus a coordinate system or

a single reference coordinate frame may be used.
– Units. Specifies the units of the instrument constant.
– Covariance. Covariance matrix for the instrument constant. Note that covariances in instrument

constants are merely indication of the quality of these. This field is optional.
– Scale factor. Optional. Scale factor for the standard deviations of the covariance matrix.

The value of the scale factor is assumed to be 1 when this field is not present.

Figure A3 includes the definition of an instrument (see lines 138–171). Most of the XML tags used
in this example should now be obvious (as <id>, <toolbox>, <units>, <c> or <s>, already commented
when describing observation and state metadata). Instruments are described by means of the <i_spec>
tag. Once more, their types are input by means of the <type> tag. <c_list> is used to describe the list of
constants; each constant is specified by means of the <item> tag, where units, covariances, scale factor
and referencing information may be detailed.

The following are the most important fields constituting the metadata characterizing a model.

• Type, identifier and toolbox. Same meanings as for observation/state/instrument metadata.
See Section 3.1 for details on type and identifier codes.

• List of observations. The set of identifiers of the observations involved in the model.
• List of states. The set of identifiers of the states involved in the model. The role played by each

state is also specified. These roles may be either free (the TDS will be responsible for estimating
its value) or constant (an input, immutable value will be provided for the state).

• List of instruments. The set of identifiers of the instruments involved in the model. This list is
optional, since some models may work without the need of instrument constants.

• List of sub-models. A model may rely in other models to perform its task. This list includes their
identifiers, which is optional.

In Figure A4 three models are defined (each one starting with an <m_spec> tag). The lists
of observations and states are input by means of the <l_list> and <p_list> tags respectively.
When present—these are optional—instrument and sub-model lists are specified by means of the
<i_list> and <sub-m_list> tags. All lists are made of items (XML tag <item> in all cases) providing the
identifiers (tag: <id>) of the involved observations, states, instruments or sub-models. State items also
describe their role by means of the <role> tag.

It is worth mentioning that the identifiers of observations, states and parameters referenced in
these lists correspond to those found in the examples included in Figures A2 and A3. These, together
with Figure A4 make a complete example of ASTROLABE metadata.

Note that metadata for models describe the model structure and not the logic needed to derive
new states out of the involved inputs—this is the task of TDSs themselves. The model type and
identifier are the pointers which such software must use to ascertain both the specific mathematical
model and the kind of data intervening in the computation of new states.

4. The ASTROLABE Specification

The data model described in Section 3 has been materialized in two different ways:
the ASTROLABE file and network interface specifications. Sections 4.1 and 4.2 describe, respectively,
the fundamental characteristics of these. The full ASTROLABE specification may be found in [38].

4.1. The File Interface

The ASTROLABE file specification completely implements the data/metadata model described
in Sections 3.2–3.5 by means of disk files. These include text and binary formats.

Text files (either data or metadata ones) are written in XML. This language was selected by several
reasons: it can be used to describe information accurately and unambiguously; it is based on a proven
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standard and uses simple text files that make it durable; it is free of legal constraints or threats; XML
may be manipulated programmatically and validated against grammar definition files (schema files).
The early availability (as far as 1999) of an open source library for Java/C++ able to parse and validate
XML files—Apache Xerces/Xerces-C, see [39]—as well as the involvement of some members of the
team in other projects that already used XML-based languages [14], also helped to select XML for
ASTROLABE text files.

Table 3 shows the most important files making the ASTROLABE file interface. Among these,
the most representative are (1) the observation-events—for observation, state and instrument data—and
(2) navigation metadata files, which are described in detail in Appendix A.

Table 3. Summary of the different types of files included in the file interface.

File Type Description

Observation-events * Observations (input) or states (output).
Instrument data * Instruments constant data.
Correlation matrices * Correlation matrices for (1) trajectory observations; (2) trajectory states and

(3) trajectory residuals. One file per type of correlation matrix.
Navigation metadata Metadata information for observations, states, instruments and models.
Directory File listing all other files involved in the computation of the output trajectory, as the

observation-events or metadata files. May be seen as a “project definition” file.
Process options Optional, free format. This file contains the list of options controlling the behaviour

of the TDS producing the output trajectory. Its goal is to keep a record about how
the trajectory was generated.

Process log Optional, free format. List of messages issued by the TDS when computing the
trajectory. For tracking purposes.

* Contain only data, not headers. Use external ASTROLABE header files. See Appendix A.

4.2. The Network Interface

The second materialization of the ASTROLABE data model is the network interface, which relies
on TCP/IP (Transmission Control Protocol/Internet Protocol) sockets [40]. Typically, it will be used in
real-time environments to communicate two processes, one of them sending data (the producer) and
the other one receiving them (the consumer).

The ASTROLABE network interface is far more reduced than its file counterpart. In fact,
only the observation (state) and observation equations data entities have been materialized up to the
moment. Therefore, two processes communicating via this interface must previously agree on all
the facets characterizing data (that is, on their metadata), since there are no mechanisms to transmit
(receive) these.

Only three messages exist to exchange observation-events data:

• Data:

– Observation.
– Observation equation.

• Commands:

– End of transmission (end of data).

The structure of the two data messages (observation, observation equation) faithfully mirrors the
data model defined in Sections 3.2 and 3.4, summarized also in Tables 1 and 2. Minor changes have been
applied to make possible the transmission and reception of data, as the addition of the dimensions of
some of the components of the observation or observation equation messages (for instance, to indicate
how many elements are included in a list of instrument identifiers) so the right amount of data is
transferred. Nonetheless, these changes are implementation-related and in no way change the rationale
behind the data model, so these will not be described here for the sake of simplicity.
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The unique command message, End of transmission, is used by a producer process to tell its
consumer counterpart that the transmission of a dataset has finished. It is defined as follows:

end_of_transmission: (message tag)

The unique component of this command is a tag to distinguish this message from others being
transmitted between the two endpoints. This tag is the equivalent of the event tag described in
Sections 3.2–3.4.

Since the current version of the network interface only allows sending an unique dataset
(observation-events data), this command would not be necessary; closing the socket connection
would have been enough to signal the end of the transmission process. However, it is foreseen that
additional kinds of datasets (as instruments or output parameters) will be transmitted by future
versions of the network interface. The availability of an End of transmission command will then allow
the transmission of several datasets using the same open socket connection; there will be no need to
close and open connections repeatdly to send different datasets. Sending End of transmission messages
between these will be enough.

5. The ASTROLABE C++ Library

The CTTC has implemented a portable object oriented C++ library including reader and writer
(file interface) and sender/receiver (network interface) classes. It offers all the necessary tools to
process ASTROLABE data and metadata.

Specific classes have been provided to manage each available data format (as for instance, text or
binary data files, see Section 4.1), so a client software module may use the specific implementation for
each of these formats if desired. However, the use of external ASTROLABE header files describing how
and where data are to be found, opened the way to a couple of generic classes (a reader or receiver,
a writer or sender) able to manage all the available formats in a completely transparent way.

For instance, the generic reader class uses the information found in the ASTROLABE header file to
ascertain how and where actual data are stored. Once this is determined, it instantiates (transparently)
the appropriate specific reader class. The advantage of using such generic reader lies in the fact that
client modules do not need to be aware of the details concerning how data are stored; thus, code is
simpler and valid for any available format.

Another feature only available in the file interface of the ASTROLABE C++ library is the ability
to read files either in forward or backward directions. This feature has been included since TDSs
working in post-processing mode usually generate trajectories in three steps: (1) computing the output
in forward direction (that is, from its beginning to its end); then (2) in backwards direction and;
finally (3) filtering the two previous results to obtain the final output. Processing backwards implies
the need to read data in backward direction, so adding such kind of feature to the library facilitates the
development of client software modules.

Performance is also an issue that has been addressed in this library. All readers and writers use
a technique known as “buffered reading (writing)” to speed up the process. It is worth to mention
that NAVEGA doubled its performance when the ASTROLABE library was used to substitute the
former readers and writers that did not implement this technique—no other changes were made to the
tool. This is a noticeable improvement, especially when post-processing long datasets covering several
hours of data that might take up to an hour or more of elapsed time to process.

The network interface always transmits binary data for efficiency reasons. However,
the representation (and interpretation) of binary information may differ depending on the architecture
of the processor managing it, more precisely when data are transferred from one computer to another
via a network connection. To avoid such problems, the ASTROLABE library encodes and decodes
all data using the XDR (eXternal Data Representation) standard [41] thus overcoming this issue.
This encoding/decoding processing is performed transparently.
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6. Use Cases. Sensors Supported. Sensors Not Supported

The ASTROLABE data model has been put to the test in real use cases along the years, facing
different situations involving several projects as well as a variety of sensors. Such exposition to real-life
problems made the original data model evolve to what it is now. Obviously, not all the concepts
described in this paper were implemented from the very beginning, as for instance, the proper handling
of metadata.

Up to the moment, the tandem NAVEGA/ASTROLABE has been able to deal with several kinds
of sensors and their related observations. Table 4 summarizes a subset of the projects where NAVEGA
has been used, including the sensors and related observation types that were involved in these projects.
The interested reader will find more details about one of these projects, GAL, in Appendix B.

In general, ASTROLABE will be able to incorporate any kind of sensor providing observations
whose error distributions are fully defined by its first and second moments (see Section 2). This is so
because the structure (model) of an ASTROLABE observation (see Section 3.2) includes an expectations
array plus a covariance matrix, which is all that an observation with such kind of error distribution
needs to be properly modeled.

Table 4. Sensors already tested in ASTROLABE.

Project Purpose Sensors (Observations)

ENCORE
(see [42,43])

Precise positioning for
surveying applications using
multi-frequency GNSS data.

GNSS receiver (GNSS raw data).

IADIRA
(see [44])

Validation of the close +
tight coupling concept.

IMU (accelerations, angular velocities).
GNSS receiver (GNSS raw data).

CLOSE-SEARCH
(see [45])

Robust navigation for UAVs
(real time position and
attitude computation using
close-coupling).

IMU (accelerations, angular velocities).
GNSS receiver (GNSS raw data).
EGNOS signals (EGNOS corrections).
Magnetometer (Magnetic field).
Barometer (pressure).

GAL
(see [46]) Airborne gravimetry. Multiple IMUs (accelerations, angular velocities).

GNSS receiver (x, y, z).

ATENEA
(see [47])

Mobile mapping for
urban cartography.

IMU (accelerations, angular velocities.)
GNSS receiver (x, y, z).
Odometer (time tagged distances,
angular velocities).
Optical camera (coordinates of tie points).
LiDAR (ranges, angles).

This is true at least from the data standpoint, that is, ASTROLABE’s. Obviously, and assuming
that it is possible to model some kind of observation using ASTROLABE’s approach, it will also be
necessary to devise the proper mathematical model(s) for such observation to be useful from the
TDS software’s point of view. In short, it is necessary to provide with the appropriate mathematical
machinery to transform the input observation into output states. This said, it must be clarified that this
is not a problem of the ASTROLABE data model at all, since it takes care of data, not algorithms.

The other side of the coin is that observations with error distributions that cannot be fully defined
by its first two moments may not be modeled using ASTROLABE. For example, map-matching
contexts are usually affected by this kind of problems. See for instance [48] for a description of a
situation where the constraints set by the environment (walls) make observations exhibit other types
of error distributions.
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7. Conclusions and Outlook

The ASTROLABE data model, file and network specifications and successive implementations
of the C++ library have been put to the test for several years now. This includes a variety of
European projects where different kinds of sensors had to be incorporated (see Table 4 for details).
Being conceived as a generic and extensible system, the addition of such new sensors posed no
unsurmountable problems for the devised abstraction. Needless to say, this continuous exposition
to real-life conditions served to improve the data model progressively. It is possible to state,
that ASTROLABE has been, at least up to the moment, able to manage change, evolution and
innovation in the field it is specifically targeted at: data representation in the context of TDSs dealing
with observations whose error distributions are fully charaterized by the first and second moments.
This is of special importance, since the decision of developing a specific data model instead of using
existing, mature ones as those described in [32,33] supposed a non-negligible risk.

The ASTROLABE data model and its two specifications (file and network) opened the path to the
development of a C++ library exposing a very terse API and a high level of abstraction. Third party
software modules accessing ASTROLABE data by means of this library may use very high level code
that is independent on details like how and where data are stored (or transmitted).

The development of the ASTROLABE data model, specifications and library went hand in hand
with the implementation of CTTC’s TDS, NAVEGA. NAVEGA was designed using the same principles
on which ASTROLABE rely, that is, it is a generic and extensible software tool mirroring internally
the concepts present in the data model. This correspondence notably eased its development and,
as expected, reduced to a minimum the maintenance tasks required to cope with change. Other TDSs
may also benefit from the characteristics of the ASTROLABE specification by incorporating the library
and its features related to data input/output and metadata management.

ASTROLABE is not yet complete. Although both the specification and the C++ library are very
close to their final versions, some work remains to be done; for instance, no proper metadata to define
the coordinate reference frame for time stamps exist yet. The foreseen work for the coming months
will serve to address these minor issues.

The CTTC is considering putting the ASTROLABE specification as well as the portable C++ library
in the public domain as soon as the work on these is finished. For more details, contact the authors.
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Appendix A. The File Interface: The Observation-Events and Navigation Metadata Files

This appendix relies on a full example to describe the observation-events and navigation metadata
files, the pillars of the ASTROLABE file interface.

The observation-events (obs-e) file is used to store observations (when used as input) or
trajectories (states, on output) since these two data entities are structurally equivalent.

When used as an input file, it contain a series of time-sorted observations and observation
equations records—as defined in Sections 3.2 and 3.3. When it represents an output trajectory,
only states—also time-sorted—are included.

Figure A1 depicts a complete (although short) observations-event file in text (XML) format used
to store observations and observation equations.
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01 <l id="baro1" n="32"> 124.88 23.44 1023.44
02 0.3 </l>
03 <l id="imu1" n="41"> 124.88 0.01 0.02 0.015 0.32 0.43 9.95
04 1e-3 1e-3 1e-3 1e-2 1e-2 1e-2 </l>
05 <l id="imu1_bias_pn" n="17"> 124.88 0.0 0.0 0.0 0.0 0.0 0.0 </l>
06 <o id="pva1_d" > 124.88 27 11 41 </o>
07 <o id="imu1_bias_d" > 124.88 11 17 </o>
08 <o id="height_update" > 124.88 27 34 32 51 </o>
09
10 <l id="baro1" n="33"> 124.90 23.45 1023.45
11 0.3 </l>
12 <l id="imu1" n="41"> 124.90 0.01 0.01 0.014 0.33 0.44 9.95
13 1e-3 1e-3 1e-3 1e-2 1e-2 1e-2 </l>
14 <l id="imu1_bias_pn" n="17"> 124.90 0.0 0.0 0.0 0.0 0.0 0.0 </l>
15 <o id="pva1_d" > 124.90 27 11 41 </o>
16 <o id="imu1_bias_d" > 124.90 11 17 </o>
17 <o id="height_update" > 124.90 27 35 33 52 </o>
18
19 <l id="baro1" n="32"> 124.92 23.45 1023.45
20 0.3 </l>
21 <l id="imu1" n="41"> 124.92 0.01 0.01 0.013 0.30 0.42 9.95
22 1e-3 1e-3 1e-3 1e-2 1e-2 1e-2 </l>
23 <l id="imu1_bias_pn" n="17"> 124.92 0.0 0.0 0.0 0.0 0.0 0.0 </l>
24 <o id="pva1_d" > 124.92 27 11 41 </o>
25 <o id="imu1_bias_d" > 124.92 11 17 </o>
26 <o id="height_update" > 124.92 27 34 32 51 </o>

Figure A1. An observations-event file in text (XML) format.

In this example all the elements described in Sections 3.2 and 3.3 are shown. In every data record,
the opening XML tag (either of the lowercase letters “l” or “o”) represents the record event tag used
to tell apart observations (tag “<l>”) from observation equations (tag: “<o>”). Identifiers are input
by means of the attribute “id”; the activation flags appear as the attribute “s”. The instance identifier
(in the case of observations only) is written using the “n” attribute.

The remaining values, located between <l> or <o> opening and closing tags, correspond to the rest
of items in the record. To ascertain their meaning, the related metadata are required. These are the time
stamp, the tags (auxiliary values, if any), as well as the expectation vector and its related covariance
matrix—in the case of observations—or the list of instance identifiers needed by observation equations.

The metadata defining the observation and observation equations included in this example may
be found in Figures A2–A4. Line number 03 of Figure A1 contains an observation (<l> tag) data record
whose identifier (<id>) is “imu1”. The example in Figure A2 defines the metadata for this observation
in lines 030–053. More specifically, line 033 includes the identifier sought, “imu1”. The dimension
of the observation array is six (line 037 in the metadata) so it is correct to have exactly six values
(0.01 0.02 0.015 0.32 0.43 9.95) in the observation data record after the first one (124.88) which is the time
stamp. Although metadata provide a default covariance matrix in lines 050–051 (in fact, only standard
deviations in this case), the data record includes its own values for this matrix in line 04. Lines 047–048
in the metadata file also state that the units for the measurements are rad/s, rad/s, rad/s, m/s2, m/s2

and m/s2.
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001 <l_spec s="a">
002 <type> baro </type>
003 <lineage>
004 <id> baro1 </id>
005 <name> Baro measurements </name>
006 </lineage>
007 <toolbox> BAROMETER </toolbox>
008 <dimension> 1 </dimension>
009 <ref>
010 <ref_frame_VC>
011 QNH
012 </ref_frame_VC>
013 <coor_system_VC>
014 cartesian
015 </coor_system_VC>
016 </ref>
017 <units> hPa </units>
018 <c> 1 </c>
019 <s> 1 </s>
020 <t_spec>
021 <dimension> 1 </dimension>
022 <ref>
023 <coor_ref_frame_VC>
024 Celsius
025 </coor_ref_frame_VC>
026 </ref>
027 <units> oC </units>
028 </t_spec>
029 </l_spec>

054 <l_spec s="a">
055 <type> RW_6_PN </type>
056 <lineage>
057 <id> imu1_bias_pn </id>
058 <name> IMU measurements </name>
059 </lineage>
060 <toolbox> INS </toolbox>
061 <dimension> 6 </dimension>
062 <ref>
063 <ref_frame_VC>
064 Bfrd
065 </ref_frame_VC>
066 <coor_system_VC>
067 cartesian
068 </coor_system_VC>
069 </ref>
070 <units>
071 rad/s, rad/s, rad/s,
072 m/s^2, m/s^2, m/s^2
073 </units>
074 <c> 5e-2 5e-2 5e-2
075 1e-1 1e-1 1e-1 </c>
076 <s> 1 </s>
077 </l_spec>

030 <l_spec s="a">
031 <type> imu </type>
032 <lineage>
033 <id> imu1 </id>
034 <name> IMU measurements </name>
035 </lineage>
036 <toolbox> INS </toolbox>
037 <dimension> 6 </dimension>
038 <ref>
039 <ref_frame_VC>
040 Bfrd
041 </ref_frame_VC>
042 <coor_system_VC>
043 cartesian
044 </coor_system_VC>
045 </ref>
046 <units>
047 rad/s, rad/s, rad/s,
048 m/s^2, m/s^2, m/s^2
049 </units>
050 <c> 5e-2 5e-2 5e-2
051 1e-1 1e-1 1e-1 </c>
052 <s> 1 </s>
053 </l_spec>

Figure A2. Metadata: defining observations.
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078 <p_spec s="a">
079 <type> IMU_bias </type>
080 <lineage>
081 <id> imu1_bias</id>
082 <name> Calibration biases (IMU) </name>
083 </lineage>
084 <toolbox> INS </toolbox>
085 <dimension> 6 </dimension>
086 <ref>
087 <ref_frame_VC> Bfrd </ref_frame_VC>
088 <coor_system_VC>
089 cartesian
090 </coor_system_VC>
091 </ref>
092 <units> rad/s, rad/s, rad/s,
093 m/s^2, m/s^2, m/s^2 </units>
094 </p_spec>

120 <p_spec s="a">
121 <type> baro_cal </type>
122 <lineage>
123 <id> baro1_cal </id>
124 <name>
125 Calibration values (barometer)
126 </name>
127 </lineage>
128 <toolbox> BAROMETER </toolbox>
129 <dimension> 1 </dimension>
130 <ref>
131 <ref_frame_VC> QNH </ref_frame_VC>
132 <coor_system_VC>
133 cartesian
134 </coor_system_VC>
135 </ref>
136 <units> hPa </units>
137 </p_spec>

095 <p_spec s="a">
096 <type> pva </type>
097 <lineage>
098 <id> pva1 </id>
099 <name>
100 Position, velocity and
101 attitude in WGS84
102 </name>
103 </lineage>
104 <toolbox> INS </toolbox>
105 <dimension> 9 </dimension>
106 <ref>
107 <ref_frame_VC> WGS84 </ref_frame_VC>
108 <coor_system_VC>
109 geodetic, geodetic, geodetic,
110 Lned, Lned, Lned,
111 Bfrd-Lned, Bfrd-Lned, Bfrd-Lned
112 </coor_system_VC>
113 </ref>
114 <units>
115 rad, rad, m,
116 m/s, m/s, m/s,
117 rad, rad, rad
118 </units>
119 </p_spec>

138 <i_spec s="a">
139 <type> baro_p0_h0 </type>
140 <lineage>
141 <id> p0_h0 </id>
142 <name>Initial pressure+altitude</name>
143 </lineage>
144 <toolbox> BAROMETER </toolbox>
145 <c_list>
146 <dimension> 2 </dimension>
147 <item n="1">
148 <type> scalar </type>
149 <ref>
150 <ref_frame_VC> QNH </ref_frame_VC>
151 <coor_system_VC>
152 pressure
153 </coor_system_VC>
154 </ref>
155 <units> mBar </units>
156 <c> 1.2 </c>
157 <s> 1 </s>
158 </item>
159 <item n="2">
160 <type> scalar </type>
161 <ref>
162 <coor_ref_frame_VC>
163 WGS84-ellipsoidal-height
164 </coor_ref_frame_VC>
165 </ref>
166 <units> m </units>
167 <c> 0.15 </c>
168 <s> 1 </s>
169 </item>
170 </c_list>
171 </i_spec>

Figure A3. Metadata: defining states and instruments.
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172 <m_spec s="a">
173 <type> local_mec_eq_bias_d </type>
174 <lineage>
175 <id> pva1_d </id>
176 <name> Mechanization equations </name>
177 </lineage>
178 <toolbox> INS </toolbox>
179 <l_list>
180 <dimension> 1 </dimension>
181 <item n="1">
182 <id> imu1 </id>
183 </item>
184 </l_list>
185 <p_list>
186 <dimension> 2 </dimension>
187 <item n="1">
188 <id> pva1 </id>
189 <role> free </role>
190 </item>
191 <item n="2">
192 <id> imu1_bias </id>
193 <role> free </role>
194 </item>
195 </p_list>
196 <sub-m_list>
197 <dimension> 1 </dimension>
198 <item n="1">
199 <id> WGS84 </id>
200 </item>
201 </sub-m_list>
202 </m_spec>

224 <m_spec s="a">
225 <type> PVA_baro_U </type>
226 <lineage>
227 <id> height_update </id>
228 <name> Update of height </name>
229 </lineage>
230 <toolbox> BAROMETER </toolbox>
231 <l_list>
232 <dimension> 1 </dimension>
233 <item n="1">
234 <id> baro1 </id>
235 </item>
236 </l_list>
237 <p_list>
238 <dimension> 2 </dimension>
239 <item n="1">
240 <id> pva1 </id>
241 <role> free </role>
242 </item>
243 <item n="2">
244 <id> baro1_cal </id>
245 <role> free </role>
246 </item>
247 </p_list>
248 <i_list>
249 <dimension> 1 </dimension>
250 <item n="1">
251 <id> p0_h0 </id>
252 </item>
253 </i_list>
254 </m_spec>

203 <m_spec s="a">
204 <type> RW_6_d </type>
205 <lineage>
206 <id> imu1_bias_d </id>
207 <name>IMU biases as random walk</name>
208 </lineage>
209 <toolbox> INS </toolbox>
210 <l_list>
211 <dimension> 1 </dimension>
212 <item n="1">
213 <id> imu1_bias_pn </id>
214 </item>
215 </l_list>
216 <p_list>
217 <dimension> 1 </dimension>
218 <item n="1">
219 <id> imu1_bias </id>
220 <role> free </role>
221 </item>
222 </p_list>
223 </m_spec>

Figure A4. Metadata: defining models.
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The observation equation (tag <o>) in line 06 of this example includes the model whose identifier
(<id>) is “pva1_d”. This model is described in the metadata shown in Figure A4, lines 172–202.
The descriptive text in the <name> field states that this model implements the so-called “mechanization
equations”. Looking at the <dimension> tags in lines 180 and 186 it should be clear that this equation
relates 1 observation (whose identifier is “imu1”, line 182) and 2 states (“pva1" and “imu1_bias”,
lines 188 and 192). The list of sub-models (lines 196–201 in this metadata file) states than an additional
sub-model will be required (“WGS84”, line 199). Matching the list of instance identifiers included in the
observation equation data record in Figure A1, line 06 and the aforementioned metadata leads to the
following correspondences: 27 is the instance identifier of an observation whose identifier is “imu1”;
11 and 41 are instance identifiers of states whose identifiers are “pva1” and “imu1_bias” respectively.

Note that data coming from two identical barometers has been acquired (Figure A1, lines 01, 10
and 19). This is made evident by the different instance identifiers used in these three observations
(attribute “n” is 32 in lines 01 and 19 but it is 33 in line 10).

As shown above, all the information in the data file is fully characterized by the metadata files.
Cross-referencing data and metadata files is made by means of the identifiers (see Section 3.1).

An observation-events file used to represent output trajectories (series of states) adheres to the
description above. The only difference with actual observation data files is that no observation
equations are included—there is no need to compute new states since all these have already
been obtained.

Finally, observation-events are pseudo-XML files, since no opening or closing XML headers
or footers are present. Only <l> (and eventually <o>) records are included. Headers are stored in
external ASTROLABE header files.

Figure A5 shows two examples of ASTROLABE header files; the first one points to the text
observations-events data file just described, while the second one shows how an ASTROLABE data
stream is characterized.

No matter what the case is, an ASTROLABE header file will always include the following items:

• The kind of data being stored or transmitted (as an observation-events file or an instruments file).
This is specified by means of the tag “type”—see lines 08 and 20 in Figure A5.

• Where actual (observations or states) data are stored or transmitted. When using the file interface,
data may be stored either in text or binary files. This is specified by means of the attribute “format”
included in the header’s <data> tag (line 08 in Figure A5). In the case of the network interface,
data are sent or received through TCP/IP sockets (see Section 4.2 for details). Line 20 shows how
the “format” tag changes to state that a “socket” is used.

• The parameters used to characterize the data channel. In the case of files, a file name is used
(line 09 in Figure A5) while an optional server plus a port number is required in the case of
network streams (line 21 in the same example).

There are two reasons to separate headers from actual data:

• Uniformity. All kinds of data materializations (binary or text files, network streams) are
characterized in the same way through the use of a separate header. Data (in whatever form)
always contain only <l> and <o> records, and no more.

• Data segmentation. Separating headers from actual data is useful if (data) files are to be split into
chunks for security reasons; a unique header may be therefore attached to a series of successive
data files representing a single data acquisition campaign. Should a failure in the acquisition
system occur, only the last file would be lost, thus minimizing data loss. In fact, the ASTROLABE
data model allows for file segmentation for this specific reason. Data segmentation implies,
of course, a naming scheme for the different data chunks thus generated. ASTROLABE defines
such naming convention, although it is not described here.

The selection of the different data formats available in ASTROLABE will obviously depend on the
user’s criteria and constraints. Text, for instance, is very useful in post-processing tasks, where humans
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may edit easily readable files. Binary versions of these, on the contrary, reduce significantly the
amount of storage needed to keep big amounts of data but are difficult to handle by human personnel.
A well known example of the text/binary implementations tandem are RINEX [34] and BINEX [49]
(BINary EXchange format) respectively. Sockets will be a must in the case of distributed processing.
This is the reason why the ASTROLABE specifications provide with different specifications, trying to
cover a wide range of situations.

The navigation metadata files are the mechanism to store all the metadata (see Section 3.5)
related to the several data entities included in the ASTROLABE data model. These are always text,
XML-based files.

01 <?xml version="1.0" encoding="UTF-8"?>
02 <astrolabe-header_file xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
03 version="1.0" xsi:noNamespaceSchemaLocation="astrolabe-header_file.xsd">
04 <lineage>
05 <id> july_campaign_01 </id>
06 </lineage>
07 <data>
08 <device type = "obs-e_file" format="text_file">
09 july_campaign_data.obs-e
10 </device>
11 </data>
12 </astrolabe-header_file>

13 <?xml version="1.0" encoding="UTF-8"?>
14 <astrolabe-header_file xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
15 version="1.0" xsi:noNamespaceSchemaLocation="astrolabe-header_file.xsd">
16 <lineage>
17 <id> july_campaign_01 </id>
18 </lineage>
19 <data>
20 <device type = "obs-e_file" format="socket">
21 localhost:2000
22 </device>
23 </data>
24 </astrolabe-header_file>

Figure A5. Examples of ASTROLABE XML header files.

01 <?xml version="1.0" encoding="UTF-8"?>
02 <nav_metadata_file xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
03 xsi:noNamespaceSchemaLocation="nav_metadata.xsd">

...

** </nav_metadata_file>

Figure A6. Example of a navigation metadata file’s header and footer.

Figure A6 depicts the header and footer in a navigation metadata file. It has been included for the
sake of completeness. This figure is incomplete. To obtain a fully fledged navigation metadata file,
the contents of Figures A2–A4 should be inserted (no matter the order) in the place of the ellipsis.

Navigation metadata files always include header and footer XML tags, as opposite to data files,
that use the separate ASTROLABE header file.

Note that:

• In lines 02 and ** (the last one) the tag to denote navigation metadata files may be found:
<nav_metadata_file>.
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• In line 03 the name of the validating schema used to check the correctness of the file is specified:
nav_metadata.xsd.

To finish, the whole set of metadata characterizing a dataset may be included either in a single
navigation metadata file or to be spread across several ones.

Appendix B. ASTROLABE in the GAL Project

This appendix describes how the ASTROLABE data model was used in the GAL project, one of
the real-life use cases mentioned in Section 6.

The goal of GAL, or GAlileo for Gravity, is the study and development of a state-of-the-art
methodology for the determination of precise and high-resolution gravity field models. The key
issue is the precise Kinematic Airborne Gravimetry (KAG), with the joint use of most recent techniques
and technologies, such as GPS/Galileo and strapdown Inertial Measurement Units (IMUs), and its
further integration with the global models from the gravimetric mission GOCE.

The main sensors used in the GAL data collection campaigns were one geodetic-grade GNSS
receiver (Javad TR-G3T), one navigation-grade IMU (iMAR iNAV FJI) and one high tactical-grade IMU
(IGI IIe). Table A1 depicts the main characteristics of the IMUs. The Javad TR-G3T is able to receive
GPS (L1/L2/L2C/L5), GLONASS(L1/L2) and Galileo (E1/E5A) signals.

Table A1. Characteristics of the IMUs used in the GAL project.

Characteristic iMAR iNAV FJI IGI IIe

Gyro Drift/Offset 0.01◦/hr 0.03◦/hr
Gyro Random Walk/Q <0.001◦/

√
h <0.005◦/

√
h

Acc. Drift/Offset <100 µg <300 µg
Acc. Random Walk/Q <8 µg/

√
Hz n/a

Gyro Range ±450◦/s ±610◦/s
Acc. Range ±5 g (option 2/g) ±20 g
Gyro Drift/Offset 0.01◦/hr 0.03◦/hr
Gyro Random Walk/Q <0.001◦/

√
h <0.005◦/

√
h

Gyro Scale factor <30 ppm/<10 ppm n/a
Gyro Axis Misalignment <100 µrad n/a
Acc. Drift/Offset <100 µg <300 µg
Acc. Random Walk/Q <8 µg/

√
Hz n/a

Acc. Scale factor <100 ppm/<20 µg/g2 n/a
Acc. Axis Misalignment <100 µrad n/a
Data output rate 1. . .1000 Hz, BW 400 Hz 128, 256, 400 Hz
Size 370× 213× 179 mm 126× 146× 98 mm
Weight 10.2 kg, approx. 2.2 kg, approx.

Two aerial campaigns took place, the first in Lleida and the second over the catalan Pyrenees
(Spain). 5.5 and 1.7 h of data were collected respectively. Figure A7 shows the flight plans for both
campaigns. The selected areas had to fulfill a series of requirements, the most important being that
quality gravimetric ground control points had to exist for verification purposes.

Both IMUs deliver the values of three linear accelerations (ax, ay, az) in m/s2 and three angular
velocities (ωx, ωy, ωz) in rad/s, at 400 Hz. The coordinate reference frame is “body inertial”, that is,
all measurements are referred to the three IMU’s internal x, y and z axes. The set of properties
characterizing these IMUs is the same. Therefore, and since there are no differences from this
standpoint, the two IMUs may be modeled using the same type (See Section 3.1 for information
about types, identifiers and instance identifiers.) of observation. Figure A8 shows the metadata for the
FJI and IIe IMUs. Note that the same type is used, but the identifiers differ.
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Figure A7. Fligh plans for the Lleida (left) and Pyrenees (righ) campaigns.

01 <l_spec>
02 <type> IMU_a_w </type>
03 <lineage>
04 <id> fji </id>
05 <name> IMU (a + w) -
06 iMAR iNAV FJI </name>
07 </lineage>
08 <toolbox> INS </toolbox>
09 <dimension> 6 </dimension>
10 <ref>
11 <coor_ref_frame_VC>
12 inertial
13 </coor_ref_frame_VC>
14 </ref>
15 <units> m*s^-2, m*s^-2, m*s^-2,
16 rad/s, rad/s, rad/s </units>
17 </l_spec>

18 <l_spec>
19 <type> IMU_a_w </type>
20 <lineage>
21 <id> IIe </id>
22 <name> IMU (a + w) -
23 IGI IIe </name>
24 </lineage>
25 <toolbox> INS </toolbox>
26 <dimension> 6 </dimension>
27 <ref>
28 <coor_ref_frame_VC>
39 inertial
30 </coor_ref_frame_VC>
31 </ref>
32 <units> m*s^-2, m*s^-2, m*s^-2,
33 rad/s, rad/s, rad/s </units>
34 </l_spec>

Figure A8. Metadata defining the IMU observations. Left: FJI; right: IIe.

The Javad GNSS receiver provides positions (x, y, z). Units are meters. The coordinate
reference frame is ECEF (Earth-Centered-Earth-Fixed). Figure A9 shows the metadata defining the
Javad observation.

The output trajectory is defined by a series of “position, velocity and attitude” (PVA) states,
which consist of a position (longitude, latitude, height), a velocity (vx, vy, vz) and three attitude angles
(heading, pitch and roll). Such kind of state, with identifier pva1, has already been described in a
former example (see Figure A3, lines 95–119).

Models are needed to transform observations into states. The most important ones used in the
GAL project were (1) PVA prediction, hybridizing the observations originating from the two available
IMUs and generating an output PVA state and (2) PVA update, using the GNSS receiver only and
producing, again, an output PVA state.

The metadata defining the observation equations related to these two models may be found in
Figure A10. Note how the references to the identifiers of the different observations and states involved
in these equations clearly define what kind of data will be used or generated by the models. The first
one, whose identifier is pva_2IMU_1, points to two IMU observations, namely fji (line 11) and IIe
(line 14). The metadata for these two observations may be found in Figure A8. The second model, with
identifier pva_GNSS_1, requires a single javad observation (line 35, Figure A10), which was defined
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in Figure A9. Finally, both models point to the same output state, pva1 (lines 20 and 41, Figure A10),
defined in Figure A3, lines 95–119.

01 <l_spec>
02 <type> GNSS_xyz </type>
03 <lineage>
04 <id> javad </id>
05 <name> GNSS receiver delivering
06 x, y and z </name>
07 </lineage>
08 <toolbox> INS </toolbox>
09 <dimension> 3 </dimension>
10 <ref>
11 <coor_ref_frame_VC>
12 ECEF
14 </coor_ref_frame_VC>
15 </ref>
16 <units> m, m, m </units>
17 </l_spec>

Figure A9. Metadata defining the Javad observations.

01 <m_spec>
02 <type> PVA_from_double_IMU </type>
03 <lineage>
04 <id> pva_2IMU_1 </id>
05 <name> Two IMUs to PVA </name>
06 </lineage>
07 <toolbox> INS </toolbox>
08 <l_list>
09 <dimension> 2 </dimension>
10 <item n="1">
11 <id> fji </id>
12 </item>
13 <item n="2">
14 <id> IIe </id>
15 </item>
16 </l_list>
17 <p_list>
18 <dimension> 1 </dimension>
19 <item n="1">
20 <id> pva1 </id>
21 <role> free </role>
22 </item>
23 </p_list>
24 </m_spec>

25 <m_spec>
26 <type> PVA_from_GNSS </type>
27 <lineage>
28 <id> pva_GNSS_1 </id>
29 <name> GNSS xyz to PVA </name>
30 </lineage>
31 <toolbox> INS </toolbox>
32 <l_list>
33 <dimension> 1 </dimension>
34 <item n="1">
35 <id> javad </id>
36 </item>
37 </l_list>
38 <p_list>
39 <dimension> 1 </dimension>
40 <item n="1">
41 <id> pva1 </id>
42 <role> free </role>
43 </item>
44 </p_list>
45 </m_spec>

Figure A10. Two models from the GAL project.
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1 <l id="fji" n="1"> 474631.000 0.048352247977806 -0.102871215632823 8.98256623212034
2 -0.024930613136148 0.050247523604562 0.006996777810447 </l>
3 <l id="lle" n="1"> 474631.000 -0.23193359375 -0.18310546875 -10.6811523437
4 0.006484985351562 0.011825561523437 -0.010299682617187 </l>
5 <l id="javad" n="1"> 474631.000 4749387.498 228989.265 4237067.382 </l>
6 <o id=pva_2IMU_1> 474631.000 1 1 1 </o>
7 <o id=pva_GNSS_1> 474631.000 1 1 </o>

Figure A11. Actual data from the GAL project (a single epoch).

Having described the relevant metadata, it is possible to see—and understand—actual data from
the GAL project. Figure A11 shows a single epoch (data sharing the same time tag) including an
instance of every observation and observation equation discussed above.

Note the event tags “l” or “o” telling apart observations and equations, the different identifiers
characterizing these (fji, IIe, javad, pva_2IMU_1 and pva_GNSS_1), and the instance identifiers,
which have the same value (1) in all cases. This is not a problem, though.

Since instance identifiers are used to tell apart observations whose identifier is the same, they do
not need to be different when identifiers already differ. In fact, the full identification of observations
in the data realm is achieved by means of the union of identifiers plus instance identifiers: fji + 1,
IIe + 1 and javad + 1 for the three observations in the example. These unions are unique, so there is
no ambiguity.

In the case of observation equations (Figure A11, lines 6–7), it is the position of the instance
identifiers that eliminates the ambiguity. For instance, in the equation in line 6 (identifier pva_2IMU_1)
the first instance identifier points to fji observations, the second to IIe ones and the third to pva1
states (see the corresponding metadata for the observation equation in Figure A10). So, in spite of
the numerical coincidence, there is no doubt about what these instance identifiers are pointing to
(fji + 1, IIe + 1 and pva1+1).

The value of the time tag is 474631.000 in all cases. Lines 1–2 and 3–4 in Figure A11 depict
observations from the FJI and IIe IMUs respectively. These are structurally equivalent (both include
three linear accelerations and angular velocities). Even though the units used are the same,
the corresponding acceleration or angular velocity values do not match, not even approximately.
This is because the IMUs were not mounted in the same position and therefore the axes pointed to
different directions. Line 5 in Figure A11 depicts a Javad (GNSS) observation, including its three
position components (x, y, z).

The covariance matrices have been removed in all cases to simplify the example—these may be
omitted in ASTROLABE data and specified in the metadata defining the observations, if desired.

Finally, lines 6 and 7 in Figure A11 show an example of the two observation equations
corresponding to the two models. As already stated, the first one (pva_2IMU_1) is used to predict a
new PVA state using one observation from each IMU, while the second one (pva_GNSS_1), updates the
PVA state using data originating from the Javad GNSS receiver only.
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