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Abstract

In this thesis, an option price decomposition for local and stochastic volatility jump di�u-
sion models is studied. On the one hand, we generalise and extend the Alòs decomposition
to be used in a wide variety of models such as a general stochastic volatility model, a
stochastic volatility jump di�usion model with �nite activity or a rough volatility model.
Furthermore, we note that in the case of local volatility models, speci�cally, spot-dependent
models, a new decomposition formula must be used to obtain good numerical results. In
particular, we study the CEV model. On the other hand, we observe that the approxima-
tion formula can be improved by using the decomposition formula recursively. Using this
decomposition method, the call price can be transformed into a Taylor type formula con-
taining an in�nite series with stochastic terms. New approximation formulae are obtained
in the Heston model case, �nding better approximations.
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Abstract (Catalan)

En aquesta tesi, s'estudia una descomposició del preu d'una opció per a models de volatil-
itat local i volatilitat estocàstica amb salts. D'una banda, generalitzem i estenem la de-
scomposició d'Alòs per a ser utilitzada en una àmplia varietat de models com, per exem-
ple, un model de volatilitat estocàstica general, un model volatilitat estocàstica amb salts
d'activitat �nita o un model de volatilitat `rough'. A més a més, veiem que en el cas dels
models de volatilitat local, en particular, els models dependents del `spot', s'ha d'utilitzar
una nova fórmula de descomposició per a obtenir bons resultats numèrics. En particular,
estudiem el model CEV. D'altra banda, observem que la fórmula d'aproximació es pot
millorar utilitzant la fórmula de descomposició de forma recursiva. Mitjançant aquesta tèc-
nica de descomposició, el preu d'una opció de compra es pot transformar en una fórmula
tipus Taylor que conté una sèrie in�nita de termes estocàstics. S'obtenen noves fórmules
d'aproximació en el cas del model de Heston, trobant una millor aproximació.

v



Abstract (Spanish)

En esta tesis, se estudia una descomposición del precio de una opción para los modelos
de volatilidad local y volatilidad estocástica con saltos. Por un lado, generalizamos y am-
pliamos la descomposición de Alòs para ser utilizada en una amplia variedad de modelos
como, por ejemplo, un modelo de volatilidad estocástica general, un modelo de volatilidad
estocástica con saltos de actividad �nita o un modelo de volatilidad `rough'. Además, vemos
que en el caso de los modelos de volatilidad local, en particular, los modelos dependientes
del `spot', se debe utilizar una nueva fórmula de descomposición para obtener buenos re-
sultados numéricos. En particular, estudiamos el modelo CEV. Por otro lado, observamos
que la fórmula de aproximación se puede mejorar utilizando la fórmula de descomposición
de forma recursiva. Mediante esta técnica de descomposición, el precio de una opción de
compra se puede transformar en una fórmula tipo Taylor que contiene una serie in�nita de
términos estocásticos. Se obtienen nuevas fórmulas de aproximación en el caso del modelo
de Heston, encontrando una mejor aproximación.
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The irreducible price of learning is realizing that you do not know. One may go further

and point out � as any scientist, or artist, will tell you � that the more you learn, the

less you know; but that means that you have begun to accept, and are even able to

rejoice in, the relentless conundrum of your life.

James Baldwin (Esquire Magazine, October 1st 1980)

Acknowledgements

It has been a very long journey. Years have passed and the person I was when I started is
no longer the person I am today. Like all interesting trips, I have met many people, some
have stayed, some have left but I would like to thank some of those who have contributed
in one way or another to this thesis.

To begin with, I want to thank my supervisor, Josep Vives. Without him, this project
would have been a chimera. Since I started this project, I have been working in the industry
full time. Even so, Josep accepted the challenge of directing my thesis. He understood the
di�culties of combining both and has always supported me in mixing them, even when
my progress was minor or non-existent. From him, I have learned many things. Not only
mathematics, but he has also tried to transfer into me the spirit of research. Always humble,
always available to answer questions or think about possible solutions to a problem, we
have spent many Friday afternoons in his o�ce. Something which I will miss greatly.

I would like to thank Jan Pospí²il. We met a few years ago when he was visiting
Josep. During all this time, we have had many conversations on a variety of topics such as
mathematical �nance, numerical methods, GIT, latex, and life itself. He has always been
incredibly friendly and helpful.

My sincere thanks to Elisa Alòs. The foundations of this thesis arise from one of her
papers. Since I met her, she has always relied on me, which I really appreciate. Thanks
to her, I had the opportunity to teach a class on Financial Derivatives at UPF alongside
her. We changed the entire course program, spending many hours thinking about it, the
students, and the exams. We still do. Being a teacher is harder than people may think!
She has trusted me, supported, and encouraged me and during these years she has given
me very good advices. Moreover, I thank her for introducing me to David Garcia Lorite.
I am very grateful to David, a very easy person to get along with. He has always shared
his knowledge with me. I miss our dinners talking about mathematical �nance, work, and
life. I owe you a visit in Madrid.

Next, I would like to thank Archil Gulisashvili, Marc Lagunas, Tomá² Sobotka and,
Tommy Sottinen. They have been great colleagues and without their collaboration and

ix



insights, this project would not have gotten this far. Additionally, I would like to thank
Giulia Di Nunno for inviting me to come to Oslo for a short stay. It was a great experience
that I will always remember.

I would like to thank Tricia for reading and correcting the English of this thesis without
prior knowledge of the subject. Not the most welcoming text to read for a nonmathemati-
cian!

Being in two worlds, academia and industry, has been tough but enriching. I must thank
my colleagues at VidaCaixa. They have �lled an important role on my life. We have been
through a lot together. The good, the bad and the hard times. It would take more than
one chapter to list everything you have given me over all these years. A special thanks to
Isma, Carles, Pere, David, Ciara - a.k.a. Saina -, Txema, Raúl Temprano, Xavi Ferrando,
Wifredo, Laura Valle, Eugenia - the best Granadina ever -, Mark Micheal, Cristina, Josep
Fontana, Oliver, Olga and the `Polines': Josep Lluis, Jordi, Gerard and José.

I would like to thank Mother Teresa Buixó, Toni Castillo, Jordi Macian and Ruben de
la Rubia. Mother Teresa was my last math teacher at school. She lit the spark in me to
do math. I loved her passion when she taught the class and I wished I had some of that.
Toni Castillo, Jordi Macian and Ruben de la Rubia were fantastic teachers. Although they
teach di�erent subjects, together they make the perfect mix. They tried to expand our
imagination, our creativity and knowledge through books, music, art, and other things. If
I'm overly curious today, they are partly to blame! I only have good memories of those
days.

From a personal point of view, I would like to thank all my friends. They have been
a great support throughout these years. I must give a special thanks to Iñaki. You have
always been there, the drinks in the Michael Collins, the travels, the endless conversations
and, of course, all the music and concerts we have shared together all these years. To Mario,
a great friend, for all the dinners out and the popular races. To Albert, my oldest friend.
We have shared many things together during all these years. Since you left Barcelona, you
have made your home our home. Making a long distance much closer. To Víctor, for all
the walks at night and the drinks, the long conversations about life and the support. To
Alex, Doctora - a.k.a. Dani, Kluivert - a.k.a. Alberto, for your friendship during all these
years where my math adventure started. From classes, starting with Linear Algebra with
`la Miro', and the days on campus to dinners, with a special mention to Ginos restaurant.
For staying there, despite time, distance, and life. To Laura, for being by my side and being
patient with me, even during the times I spent doing research or writing at night.

Finally, but certainly not the least important. To my Mom Esther, my Dad Federico
and my brother Daniel. There are not enough words to express my gratitude. If things
have worked out, it has been because of you. You have always cared for me, supported
me when I needed it, encourage me when I thought I couldn't do it or I didn't want keep
going. You have always been patient with me, believe me, that was not an easy thing to
do sometimes. This thesis is for you because there is no better reward than making you
proud.

x



Contents

Declaration iii

Abstract iv

Abstract (Catalan) v

Abstract (Spanish) vi

Publications viii

Acknowledgements ix

1 Introduction 9
1.1 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Preliminaries 17
2.1 Derivative preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Stochastic Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Itô calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.5 Stochastic di�erential equations . . . . . . . . . . . . . . . . . . . . 29
2.2.6 Volterra Process and Fractional Brownian Motion . . . . . . . . . . 31
2.2.7 Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Models 35
3.1 Black-Scholes-Merton formula . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 The Black-Scholes-Merton framework . . . . . . . . . . . . . . . . . 35
3.1.2 The Black-Scholes-Merton price . . . . . . . . . . . . . . . . . . . . 38
3.1.3 Upper bound for the Black-Scholes-Merton derivatives . . . . . . . 42

3.2 Spot-dependent volatility models . . . . . . . . . . . . . . . . . . . . . . . 43

1



3.2.1 CEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Stochastic volatility models . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Stochastic volatility framework . . . . . . . . . . . . . . . . . . . . 45
3.3.2 The Heston Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 The SABR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.4 General Volterra volatility model . . . . . . . . . . . . . . . . . . . 48
3.3.5 Generic stochastic volatility model . . . . . . . . . . . . . . . . . . 49

3.4 Jump di�usion models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Merton model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2 Bates model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Decomposition formula for stochastic volatility models. 53
4.1 Decomposition formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Approximation formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 The Heston model 67
5.1 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Original approximation formula for the Heston Model . . . . . . . . . . . . 70
5.3 Higher order approximation formulas for the Heston Model . . . . . . . . . 75
5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Jump Di�usion Models 99
6.1 A decomposition formula for SVJ models. . . . . . . . . . . . . . . . . . . 99
6.2 SVJ models of the Heston type . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Approximation of the SVJ models of the Heston type . . . . . . . . 104
6.2.2 Numerical analysis of the SVJ models of the Heston type . . . . . . 105

6.3 The approximated implied volatility surface for SVJ models of the Heston
type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.1 Deriving an approximated implied volatility surface for SVJ models

of the Heston type . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 Deriving an approximated implied volatility surface for Bates model 111
6.3.3 Numerical analysis of the approximation of the implied volatility for

the Bates case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Rough Volterra Stochastic Volatility models 115
7.1 Volterra volatility models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.1 General Volterra volatility model . . . . . . . . . . . . . . . . . . . 115
7.1.2 Exponential Volterra volatility model . . . . . . . . . . . . . . . . . 119
7.1.3 Exponential fractional volatility model . . . . . . . . . . . . . . . . 128

7.2 Numerical comparison of approximation formula . . . . . . . . . . . . . . . 139
7.2.1 On implementation of the approximation formula . . . . . . . . . . 139

2



7.2.2 Sensitivity analysis for rBergomi α = 1 approximation w.r.t. increas-
ing ξ and time to maturity τ . . . . . . . . . . . . . . . . . . . . . . 139

7.2.3 Short-tenor calibration and a hybrid calibration to ATMF backbone 141

8 Decomposition formula for Spot-Dependent Volatility models. 147
8.1 Decomposition Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 Approximation formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9 CEV model 155
9.1 Approximation of the CEV model. . . . . . . . . . . . . . . . . . . . . . . 155
9.2 Numerical analysis of the approximation for the CEV case . . . . . . . . . 161
9.3 The approximated implied volatility surface under CEV model. . . . . . . 163

9.3.1 Deriving an approximated implied volatility surface for the CEV model.164
9.3.2 Numerical analysis of the approximation of the implied volatility for

the CEV case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.4 Calibration of the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.4.1 Calibration using the smile of volatility. . . . . . . . . . . . . . . . . 169
9.4.2 Calibration using ATM implied volatilities. . . . . . . . . . . . . . . 169

10 Conclusion 171
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Appendices 175

A Decomposition formula using Malliavin calculus. 177
A.1 Basic elements of Malliavin Calculus. . . . . . . . . . . . . . . . . . . . . . 177
A.2 Decomposition formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

B An expression of the derivative of the implied volatility 185

Bibliography 189

3



4



List of Figures

2.1 Long future with delivery price 25 euros. . . . . . . . . . . . . . . . . . . . 18
2.2 Call option with strike K=25 euros. . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Put option with strike K=25 euros. . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Simple process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Heston model: Comparison of the three di�erent approximation formulae
and reference prices for ν = 5% and ρ = −0.2. . . . . . . . . . . . . . . . . 90

5.2 Heston model: Comparison of the three di�erent approximation formulae
and reference prices for ρ = −0.8 and ν = 5%. . . . . . . . . . . . . . . . . 91

5.3 Heston model: Comparison of the three di�erent approximation formulae
and reference prices for ρ = −0.2 and ν = 50%. . . . . . . . . . . . . . . . 92

5.4 Heston model: Comparison of the three di�erent approximation formulae
and reference prices for ρ = −0.8 and ν = 50%. . . . . . . . . . . . . . . . 93

5.5 Heston model: Comparison of the two di�erent approximation formulae and
reference prices for ρ = 0 and ν = 5%. . . . . . . . . . . . . . . . . . . . . 94

5.6 Heston model: Comparison of the two di�erent approximation formulae and
reference prices for ρ = 0 and ν = 50%. . . . . . . . . . . . . . . . . . . . . 95

5.7 Heston model: Comparison with other analytical approximation methods. . 97
5.8 Heston model: Comparison with other analytical approximation methods

when ρ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Bates model: Short-time price comparison for low ν and ρ. . . . . . . . . . 106
6.2 Bates model: Short-time price comparison for low ν and high ρ. . . . . . . 106
6.3 Bates model: Price comparison for high ν and ρ. . . . . . . . . . . . . . . . 107
6.4 Bates model: Short-time implied volatility comparison for low ν and ρ. . . 113
6.5 Bates model: Short-time implied volatility comparison for low ν and high ρ. 113
6.6 Bates model: Implied volatility comparison for high ν and ρ. . . . . . . . . 114

7.1 rBegomi Model: Comparison of call option fair values calculated by MC
simulations and by the approximation formula. (Example 7.1.11 with α =
1 and ε = 0. Data and parameter values are: v0 = 8%, ξ = 10%, ρ =
−20%, H = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 rBergomi model: Calibration results for short maturity smiles (Data # 4) . 144

5



7.3 rBergomi model: Calibration results for short maturity smiles (Data # 3) . 145
7.4 rBergomi model: ATMF calibration results when combining the approxima-

tion formula (τ < 0.2) and MC simulations. . . . . . . . . . . . . . . . . . 146

9.1 CEVModel: Error surface between the exact formula and our approximation
for S0 = 100, σ = 20% and r = 5%. . . . . . . . . . . . . . . . . . . . . . . 163

9.2 CEV Model: Comparison of implied volatility approximations for S0 = 100,
σ = 20% and r = 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.3 CEV Model: Comparison of ATM implied volatility approximations for S0 =
100, σ = 20% and r = 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6



List of Tables

5.1 Heston model: E�ciency of the call price approximations . . . . . . . . . . 96

6.1 Bates model: E�ciency of the pricing formulae . . . . . . . . . . . . . . . . 108

7.1 Model / data settings for sensitivity analyses. . . . . . . . . . . . . . . . . 140
7.2 Di�erences in terms of implied volatility . . . . . . . . . . . . . . . . . . . 141
7.3 rBergomi model: Data on AAPL options used in calibration trials . . . . . 142

9.1 CEV Model: Comparison between di�erent price approximations . . . . . . 162
9.2 CEV Model: Statistical analysis of the price approximations . . . . . . . . 163
9.3 CEV Model: Comparison between prices using di�erent implied volatility

approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.4 CEV Model: Statistical analysis of prices using di�erent implied volatility

approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7



8



CHAPTER 1

Introduction

1.1 A brief history

Financial market instruments can be divided into two di�erent categories. On the one hand,
we have the `prime source' assets, which we will refer to as `underlyings', and which can be
stocks, bonds, commodities, foreign currencies, etc. On the other hand, their `derivative'
contracts, �nancial claims that promise some payment or delivery in the future, depending
on the behaviour of the underlying.

The most typical �nancial derivatives are futures (or forwards) and options. A future
(or forward) is a legal agreement to buy or sell a particular asset at a predetermined price
and at a speci�ed time in the future. Meanwhile, an option contract gives the right but not
the obligation to buy (or sell) a particular asset at a predetermined price and at a speci�ed
time in the future.

Many people think that derivative contracts, such as futures and options, are inventions
of the modern economy. However, derivative contracts emerged as soon as humans could
make credible promises. They were the �rst instruments to guarantee the supply of basic
products, facilitate trade and insure farmers against the loss of crops. The �rst written
evidence of a derivative contract was in law 48 of the Hammurabi code, roughly between
1782 to 1750 BCE.

One of the �rst stories related to the speculation of derivatives is due to Thales of
Mileto. Thales made a deposit at the local olive presses. As nobody knew for sure whether
the harvest would be good or bad, Thales purchased the rights to the presses at a relatively
low rate. When the harvest proved to be abundant, the demand for the presses was high,
Thales charged a high price for their use and reaped a considerable pro�t.

Although the use of �nancial contracts evolved, for an extended reading see Kummer
and Pauleto (2012), it was not until 1900 that the history of mathematical modelling of
�nancial markets began. Louis Bachelier introduced the �rst model in his thesis `Théorie
de la spéculation', Bachelier (1900), being one the cornerstones of modern pricing theory.

On the Bachelier thesis, he realised that there was an equilibrium between buyers and
sellers.
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10 A brief history

It seems that the market, the aggregate of speculators, can believe in neither a

market rise nor a market fall, since, for each quoted price, there are as many

buyers as sellers.

In particular, he realised the need to use martingales to describe price movements.

The mathematical expectation of speculators are null.

The method of obtaining option prices is similar to the modern approach. However, the
argument is very di�erent. Bachelier derived the model using an equilibrium argument,
while non-arbitrage arguments are used today.

Despite the modern techniques used by Bachelier in his thesis, it remained unknown for
several decades. Apparently, unaware of Bachelier's work, in 1953, Kendall, Kendall (1953),
analysed 22 series of prices at weekly intervals with the purpose of �nding a model that
would �t the stock data. Before the work went far, he realised that between the intervals,
there were random changes discarding a systematic e�ect. He was also the �rst to notice the
time dependence of the empirical variance. A few years later, in 1959, Osborne, Osborne
(1959), found that the logarithm returns follow a Brownian motion.

In the middle of 1950, the statistician Jimmy Savage recovered Bachelier's work and
sent it to di�erent friends. Fortunately, one of those postcards came to Paul Samuelson,
who was concerned with problems of valuation of options and warrants. Paul Samuelson
was inspired by Bachelier's work and related the option pricing with the use of martingales
in Samuelson (1965).

In the year 1973, the world's �rst listed options exchange opened in Chicago, the
Chicago Board Options Exchange (CBOE). The same year, the famous Black-Scholes-
Merton model was published using no-arbitrage assumptions, see Black and Scholes (1973)
and Merton (1973).

The Black-Scholes-Merton model is an analytical formula that describes parsimoniously
market option prices. The main drivers are the ratio between the stock price and the
strike, also known as moneyness, the level of interest rates and the constant volatility.
This last feature is the main problem of the Black-Scholes-Merton model. Despite that, in
practice, the Black-Scholes-Merton model is used as a marking model to quote volatilities of
traded options prices. These volatilities are called implied volatilities, i.e. it is the constant
volatility input needed in the Black-Scholes-Merton formula to match a given market price.

Over the following years, new models appeared trying to adapt the Black-Scholes-
Merton model to the observable patterns of stock returns. The Constant Elasticity Vari-
ance model, also known as the CEV model, was presented in an unpublished note in Cox
(1975), see also Beckers (1980). The main purpose of the CEV model was to explain the
inverse relationship between the level of the stock price and the variance of its returns.
The following year, the �rst Jump Di�usion model was published in Merton (1976). Mer-
ton extended the Black-Scholes-Merton model to stochastic processes with non-continuous
sample paths, explaining possible `abnormal' vibrations in price due to the arrival of im-
portant new information about the stock with a non-marginal e�ect of the stock price.
Those models were able to introduce skew in the implied volatility.
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On October 19, 1987, also known as Black Friday, one of the biggest �nancial crisis
occurred. All international markets experienced large losses, the Down Jones lost 22.6%
and a large increase of volatility was observed. Shortly after the collapse, options traders
noted that deep out of the money put options were unusually high compared to put options
closer to the current price. This phenomenon was called the `volatility smile'.

Stochastic volatility (SV) models appeared as a useful tool to explain in a self-consistent
way the volatility surface observed by traders. In Johnson (1979), we �nd one of the �rsts
approaches where variance follows a stochastic process. To obtain a partial di�erential
equation, a perfect correlation between the asset price and the variance was assumed,
although no solution was found for the option price. Johnson and Shanno (1985), Wiggins
(1987) and Scott (1987) tried several numerical solutions to obtain option prices. Using
a di�erent approach, Hull and White (1987) obtained a price approximation as a Taylor
series expansion when the asset price and the variance are uncorrelated. In Stein and
Stein (1991), a model where the volatility is driven by an arithmetic Ornstein-Ublenbeck
process uncorrelated with the asset price was proposed and a solution based on numerical
integration was obtained to calculate options prices. In 1993, Heston (1993), proposed a
model with an arbitrary correlation between the asset and the volatility process driven by
a CIR process, Cox et al. (1985). He obtained semi-analytical formulae for European plain
vanilla options. The Heston model has become one of the most popular stochastic volatility
models, due to its analytical tractability and its good statistical properties.

The volatility surface not only presents a `volatility smile', but short-term options are
traded with higher implied volatilities. Traders, aware of the possibility of a large market
movement, request higher premiums. Stochastic volatility models are not rich enough to
reproduce these movements in the short term. To improve them, stochastic volatility jump
di�usion (SVJ) models appeared. The �rst SVJ model is credited to Bates (1996) who
incorporated a stochastic variance process postulated by Heston (1993) alongside Merton
(1976) - style jumps. The variance of stock prices follows a CIR process and the stock
prices themselves are assumed to be of a jump di�usion type with log-normal jump sizes.
In particular, this model should improve the market �t for short-term maturity options,
while the original Heston (1993) approach would often need unrealistically high volatility
of variance parameter to �t the short-term smile reasonably well, see Bayer et al. (2016)
and Mrázek et al. (2016).

An SVJ model with a non-constant interest rate was introduced by Scott (1997). Sev-
eral other authors studied SVJ models which have a di�erent distribution for jump sizes,
for example, Yan and Hanson (2006) utilised log-uniform jump amplitudes, or Kou (2002)
a double exponential jump di�usion. These models can be generalised using an Exponential
Lévy model. Figueroa-López has done extensive work proposing di�erent short-time ex-
pansions: one regarding the volatility smile, Figueroa-López et al. (2012a), and the others
regarding the option price, for example, Figueroa-López et al. (2012b) and Figueroa-López
et al. (2016) among others. Naturally, one can extend SVJ models by adding jumps into
the variance process, see, for example, a model introduced by Du�e et al. (2000). However,
according to several empirical studies, these models tend to over�t market prices and, de-
spite having more parameters than the original Bates (1996) model, they may not provide
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a better �t to market option prices.
Despite the hectic research in stochastic volatility models, adding a stochastic volatility

structure to the Black-Scholes-Merton model complicates the calculation of option prices,
these models need to be calibrated. In other words, �nd the correct parameters to minimise
the error between the model option prices and the market option prices, which, in general, is
a di�cult and complex task. Derman and Kani (1994), Dupire (1994) and Rubinstein (1994)
proposed a di�erent model, the local volatility model. They de�ned a unique instantaneous
volatility that is a deterministic function of time and the asset price consistent with market
option prices.

Local volatility models are self-consistent, arbitrage-free and can be calibrated precisely
to the whole volatility surface. However, as was pointed out by Hagan et al. (2002), the
dynamic behavior of smiles and skews predicted by these models are exactly contrary to the
behaviour observed on the market, obtaining worse hedges than using the Black-Scholes-
Merton model. In Hagan et al. (2002), the SABR model was introduced and it can be
classi�ed as stochastic local volatility model. This model consists of modelling the asset
price with the Constant Elasticity Variance model with an exponential stochastic volatility
process. The main success of Hagan et al. (2002) was to obtain a model able to �t the
`volatility smile' in a parsimonious way, obtaining an easy to implement approximation
formula of the implied volatility. For a general summary, see Gatheral (2006).

Although many SV and SVJ models have been proposed, it seems that none of them
can be considered as the universal best market practice approach. Several models might
perform well for calibration to complex volatility surfaces, but can su�er from over-�tting
or they might not be robust in the sense described by Pospí²il et al. (2018). In addition, a
model with a good �t to implied volatility surface might not be in-line with the observed
time series properties.

The last trend is focused on modelling the volatility with a Volterra process, in particu-
lar, the fractional Brownian motion. Pioneers of the fractional SV models, see for example
Comte and Renault (1998) and also Comte et al. (2012), assumed a long-memory volatil-
ity process. They replaced the Brownian motion by a fractional Brownian motion with
Hurst parameter ranged within H ∈ (1/2, 1) which implies that the spot variance evo-
lution is represented by a persistent process, i.e. it would have a long-memory property.
In Alòs et al. (2007), we observe the �rst approach considering a full range for the Hurst
parameter with a mean reverting fractional stochastic volatility model. The models with
the Hurst parameter H ∈ (0, 1/2) are called rough volatility models. Bayer et al. (2016)
and Gatheral et al. (2018) found a consistency between the realised volatility time series
and the rough fractional volatility. That means that it should be a more consistent model
to price market options. A large number of papers have been published lately about this
approach, for example, in Funahashi and Kijima (2017), a two factor fractional volatility
model, combining a rough term (H < 1

2
) and a persistent one (H > 1

2
), was presented

or in Alòs et al. (2019), an approximation for target-volatility options under log-normal
fractional SABR model was studied using the Malliavin calculus techniques.
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1.2 Objectives

From the beginning of derivative contracts up until today, we have wondered how to price
a derivative product. Although the works of Bachelier and Black-Scholes-Merton are the
cornerstone of the pricing models, unfortunately, the dynamics of these models are not
rich enough to adapt to the market. For this reason, new models have emerged, each with
richer, but also more complex dynamics. The valuation of derivatives under these more
complex models is a more elaborate task compared to the Black-Scholes-Merton model. To
face this challenge, various techniques and numerical methods have been proposed which
is an important mathematical challenge from an academic and practical point of view.

Many authors have introduced semi-closed form formulae using various transforma-
tion techniques of the pricing partial (integro) di�erential equations: Heston (1993), Bates
(1996), Scott (1997), Lewis (2000), Albrecher et al. (2007), Baustian et al. (2017) to name
a few. These pricing methods are typically e�cient tools to evaluate non-path dependent
derivatives.

Some other authors considered approximation techniques that were pioneered by Hull
and White (1987). In recent years, the Hull and White (1987) pricing formula was rein-
vented using techniques of the Malliavin calculus because a future average volatility that
is used in the formula is a non-adapted stochastic process. The main goal was to gener-
alise the Hull and White formula. More precisely, the price of a European option can be
decomposed as the Black-Scholes-Merton option price plus other correction terms. In Alòs
(2006), Alòs et al. (2007) and Alòs et al. (2008), a general jump di�usion model with no
prescribed volatility process is analysed. There have been several extensions thereof, for
example by assuming Lévy processes in Jafari and Vives (2013), see also the survey in
Vives (2016).

In Alòs (2012), a new approach of dealing with the Hull and White formula for the
Heston model has been proposed. Instead of expanding option prices around the Hull and
White term by means of anticipating stochastic calculus, a classical Itô formula is used
to expand the prices around the Black-Scholes-Merton formula. The main idea of this
approach is to use an adapted projection of the future volatility. Using this technique an
exact decomposition formula for call option prices is obtained as well as an approximate
formula. Using the approximate formula, in Alòs et al. (2015) a valuable intuition on the
behaviour of smiles and term structures under the Heston model is derived.

The main objective of this thesis is to study the decomposition formula presented in
Alòs (2012) and extend it to di�erent models. The idea of being able to decompose the price
of a call option by the Black-Scholes-Merton formula plus other corrections dependent on
the Black-Scholes-Merton derivatives is interesting. In practice, the Black-Scholes-Merton
model is a reference model and its derivatives are usually calculated. Therefore, all the
necessary tools to use a decomposition are already available. Furthermore, for years prac-
titioners have been calculating derivatives, having an idea of how they work, so it might
be easier to understand how the price varies from a Black-Scholes-Merton model to a
stochastic volatility model or how the stochastic volatility model works. In addition, the
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decomposition is numerically e�cient in time and accuracy.
As initial research, we had the idea of extending the decomposition formula to a gen-

eral stochastic volatility model, without assuming a lognormal process for the asset price
dynamics. In this case, we saw that the decomposition formula had an extra term. Play-
ing with the decomposition and using the CEV model as a toy model, we realised that
the previous decomposition was numerically not good enough. It was necessary to develop
a new decomposition formula for the case of models with spot-dependent volatility. De-
spite not having constant volatility, the new decomposition has more terms to correct the
Black-Scholes-Merton formula.

Later, we focused on the stochastic volatility jump di�usion models. In this case, we
observed that conditioning on the jump process, we were able to use the previous ideas of
the decomposition formulae to obtain a new decomposition for jumps with �nite activity.
In particular, we realised that the approximation formula error for the Bates model was
of the same magnitude as the Heston model. As in Alòs et al. (2015), we were able to
approximate the implied volatility dynamics.

Over recent years, academic research about fractional volatility models has increased.
A natural step was to try to understand if it was possible to use the decomposition formula
with these models. One of the main complexities is the fact that these types of models are
not Markovian. The rBergomi model is studied. In the case of fractional volatility models,
the numerical e�ort to calculate the decomposition is much higher than in the Brownian
motion models.

Apart from extending the decomposition formula to other models, we notice that using
it recursively we were able to obtain better approximation formulae. This was interesting
because in Alòs et al. (2015) the error term of approximation formula for the Heston model
was quanti�ed by O(ν2 (|ρ|+ ν)2). In the previous expression, ν is the vol-vol parameter
and ρ is the correlation coe�cient in the Heston model. However, in the above-mentioned
approximation formula, some terms of order ν2 were ignored, whereas other terms of the
same order were kept. This may be considered as a drawback in the approximation for-
mula obtained in Alòs et al. (2015). We were able to �nd new approximation formulae
of order O(ν3(|ρ| + ν)) and O(ν4(1 + |ρ|)). In the case of zero correlation, we derived an
approximation formula with an error of order O(ν6).

All the approximation formulae have been tested on practical examples. Therefore the
quality of the decomposition has been contrasted numerically with a reference model.

1.3 Outline

The thesis is organised as follows. In Chapter 2, we introduce the basic framework and
rudiments necessary for the thesis. In Section 2.1, we describe the economic side and in
Section 2.2 we give a brief introduction of the main mathematical concepts needed for the
thesis.

Chapter 3 is devoted to models. First of all, we explain the framework in which the
Black-Scholes-Merton formula can be derived. Then, we give a brief introduction to di�erent
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models used in the thesis. In Section 3.5, we introduce some general notation that we are
going to use throughout the dissertation.

From a conceptual point of view, Chapter 4 is one of the most important. Here, the
decomposition formula is explained as well as a new decomposition formula given for a
general stochastic volatility model. Some examples are given. Furthermore, how to �nd an
approximation formula is demonstrated. No upper-bounds of the error term are calculated
as the stochastic volatility structure is needed.

The Heston model is addressed in Chapter 5. It is proved what the error term is in
the approximation formula from Alòs (2012). This was calculated in Alòs et al. (2015).
Then, we observe how using the decomposition formula recursively can lead us to new
approximations. The error term for this new approximation formula is calculated. In Section
5.4, we perform numerical experiments contrasting the quality of our methodology.

In Chapter 6, we focus on stochastic volatility models with �nite activity jumps. We
observe that applying a conditional expectation over the jump process transforms the model
into a stochastic volatility model. Some examples are given depending on the jump process
in the case that the volatility is of Heston type. Numerical examples about the quality of
the approximation are given. In Section 6.3, following the steps of Alòs et al. (2015), an
approximation of the implied volatility is given. We have also contrasted the quality of the
implied derived calculation with a reference model.

Chapter 7 is the most complex mathematically. On the one hand, the use of a frac-
tional volatility model complicates things, whereas on the other hand, markovianity is lost,
making all the calculations more complex. In the �rst part of the chapter, we develop a
decomposition formula as general as possible for a Volterra process. Then, a fractional
Brownian motion is assumed and an alternative of rBergomi model used. In Section 7.2,
we study the numerical e�ciency of the method. Unfortunately, the method is not robust
for high vol-vol parameters or very large maturities. Despite that, it can be used in a hybrid
calibration jointly with the Bennedsen et al. (2017) MC scheme.

In Chapter 8 a new decomposition formula in the case of spot-dependent volatilities
models is given. We show how the approximation formula should be, but, without specifying
the volatility structure it is not possible to know the error form. In the following chapter,
Chapter 9 , we study the case of the CEV model. An approximation formula is obtained
and an error form of (β − 1)2 found where β is the elasticity parameter. In addition, an
implied volatility approximation is calculated. In Section 9.2, a numerical study about the
performance of the model is conducted. We compare the approximation formula and the
approximation of the implied volatility with di�erent reference models. In Section 9.4, we
observe that if the call option prices are generated by a CEV model, we can recover the
parameters by a quadratic linear regression. Although from a practical point of view it is
unrealistic, it is interesting.

Finally, in Chapter 10, we explain why we have focused on several models and we
summarise the results obtained in the thesis.

There are two appendices to this thesis. These appendices are not directly related to the
thesis, and therefore can be considered as some exercises. In Appendix A, we extend the
decomposition formula using Malliavin calculus for a general stochastic volatility model.
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In Appendix B, an expression of the derivative of the implied derivative ATM is found,
in the Itô sense as well as in the Malliavin sense. These results have not been used in the
thesis.



CHAPTER 2

Preliminaries

In this chapter, we introduce the basic framework and rudiments necessary for the thesis.
The chapter is divided into two distinct sections. In Section 2.1, the basic concepts of
derivatives are explained while in Section 2.2, a summary of the mathematical foundations
are expounded.

2.1 Derivative preliminaries

Often, people need to get into �nancial arrangements to exchange a set of distinct cash-
�ows at di�erent times. These arrangements are �nancial contracts and each person who
enters into the agreement is called a counterparty. For example, when someone needs to
buy a house, they get a mortgage loan where they receive a large sum of money in exchange
for future monthly payments.

When a �nancial contract depends on the evolution of another asset, it is called a
derivative contract. This is because the price of the �nancial contract is `derived' from the
evolution of the asset, also named underlying. We will refer to the underlying price as St.
For example, a derivatives contract would allow us to receive an amount of cash today
in exchange for 50 pounds of rice at a future time. This product can be interesting for
farmers, being able to advance part of the income before harvesting the rice. The simplest
�nancial derivatives are futures or forwards.

De�nition 2.1.1. A futures contract is an agreement where one party promises to buy an
asset from another party at some speci�ed time in the future and at some speci�ed price.
The time when the asset is delivered is called maturity time and is denoted by T . The
speci�ed price is known as the delivery price K. The payo� of the contract is ST −K. The
value of the contract at agreement time is zero.

A futures contract is a zero-sum game, one counterpart earns money and the other loses
it. To price this contract, there is no need of probabilities or models. By the non-arbitrage
hypothesis, it can be proved that a futures contract is fair when the delivery price is the
forward price.

17
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De�nition 2.1.2. The forward price of an asset which current price is St and maturity
date T is

F (t, T ) = Ste
r(T−t)

where r is the risk-free interest rate.

The pro�t and loss of a future is given by the following graphic.
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Figure 2.1: Long future with delivery price 25 euros.

Not all the derivatives contracts can be priced without the use of a model. In fact,
almost none can. For example, when adding the possibility to exercise or not the contract
at maturity time depending on the evolution of the stock, a model must be speci�ed. These
types of products are known as options. The most basic options are European Plain Vanilla
options.

De�nition 2.1.3. A European call option is a legal agreement that gives the holder the
right, but not the obligation, to buy one unit of an underlying asset for a predetermined
strike price K on the maturity date T . If ST is the price of the underlying asset at maturity
T , then the value, or payo�, of a call option is

(ST −K)+ =

{
ST −K if ST > K,

0 if ST ≤ K.
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In an event where the asset price at maturity is greater than the predetermined price,
the holder will exercise the option and obtain a pro�t. Otherwise, if the asset price at
maturity is below the predetermined price, it would be a loss and the holder would decide
not to exercise the option.

The pro�t and loss of a call option is given by the following graphic.
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Figure 2.2: Call option with strike K=25 euros.

De�nition 2.1.4. A European put option is a legal agreement that gives the holder the
right, but not the obligation, to sell one unit of an underlying asset for a predetermined
strike price K on the maturity date T . If ST is the price of the underlying asset at maturity
T , then the value, or payo�, of a put option is

(K − ST )+ =

{
K − ST if ST < K,

0 if ST ≥ K.

Investors would buy a call option if they believe the asset price will increase. The use
of put options is more natural, the investors buy insurance, so therefore, an investor would
buy a put option to obtain protection against a possible market downturn.

The pro�t and loss of a put option is given by the following graphic.
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Figure 2.3: Put option with strike K=25 euros.

The European Plain Vanilla options are the most basic options, but there are other
types more `exotic' types.

• American options: allows the holder of the option to execute it at any time before
the expiration.

• Path-independent: The payo� depends on the value of the asset at maturity. For
example, a Gap option:

(ST −K1)+ =

{
ST −K1 if ST > K2,

0 if ST ≤ K2.

• Path-dependent: The payo� depends on the evolution of the asset price value. For
instance, a Lookback option:(

max
0≤t≤T

St −K
)

+

=

{
max0≤t≤T St −K if max0≤t≤T St > K,

0 if max0≤t≤T St ≤ K.

When options have non-typical features, they are called exotic options. American op-
tions are usually quoted for stocks, but the others are tailormade. When this happens, they
are traded Over The Counter (OTC).
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Options can be classi�ed depending on how the asset price is with respect to the strike
today.

De�nition 2.1.5. An option is

• In the money (that is, ITM) if we would execute the option today, the option would
have a positive value, i.e. St > K.

• At the money (i.e. ATM) when the current asset price St is at the same level as the
strike K, i.e. St = K.

• Out the money (i.e. OTM) if we would execute the option today, the option would
have zero value, i.e. St < K.

Remark 2.1.6. We refer to ATMF when it is measured against the Forward value instead
of the Spot price. For example, an option is ATMF when F (t, T ) = Ste

r(T−t) = K.

De�nition 2.1.7. The moneyness of an option is the ratio between the current asset price
and the strike, i.e. St/K.

The most liquid options are European plain vanilla options for indexes (Standard &
Poor's 500, Eurostoxx, Ibex, ...) and American options for stocks. These options are used
to calibrate the models. Then, once the model is set, we price other exotic derivatives.

This thesis is based on European plain vanilla options.

2.2 Mathematical Preliminaries

In this section, we give a brief introduction to some concepts of stochastic calculus.

2.2.1 Introduction

Let (Ω,F ,P) be a probability space where

• Ω is the sample space,

• F is a collection of subsets of Ω, also known as events.

• P speci�es the probability of each event A ∈ F .

The collection F is a σ-�eld, that it is, Ω ∈ F and F is closed under the operations of
countable union and taking complements. The probability P must satisfy the usual axioms
of probability.
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In order to describe the evolution of market prices, stochastic processes are used to
model the random behavior of the assets.

De�nition 2.2.1. A stochastic process (Xt)t≥0 is a family of real random variables on the
probability space (Ω, F). Usually, index t represents time.

Note that a stochastic process can be also seen as a random map: for each w ∈ Ω, we
can associate the map:

R+ 7→ R
t 7→ Xt(w)

named trajectory of the process. If the trajectories are continuous, then the process is said
to be continuous.

De�nition 2.2.2 (Filtration). A �ltration (Ft)t≥0 is an increasing family of sub-σ-�elds
of F . We say that (Xt) is an adapted process if for all t, Xt is Ft-measurable.

Given a process (Xt)t≥0, we can de�ne the natural �ltration Ft := σ(Xu, 0 ≤ u ≤ t),
for which the process is adapted to. We consider the completion of the �ltration adding
all the P-null sets of Ω. Recall that A is a P-null set if A ⊆ Ω and if exist B ∈ F having
P(B) = 0 and A ⊆ B. We will refer to this �ltration as the one generated by the process
X, without making explicit that it is the completion.

We introduce the concept of martingale which it is the mathematical representation of
a `fair game'.

De�nition 2.2.3 (Martingale). Consider a probability space (Ω,F ,P) and a �ltration
(Ft)t≥0 on this space. A stochastic process (Xt)t≥0 adapted to the �ltration is a martingale
if E [|Xt|] < +∞ ∀t ≥ 0 and E[Xu|Ft] = Xt, for any u ≥ t.

It follows from this de�nition that, if (Xt)t≥0 is a martingale, then E [Xt] = E [X0] for
any t.

2.2.2 Brownian motion

A particular example of stochastic process is the Brownian motion, also known as Wiener
process. It is the core element in most �nancial models.

De�nition 2.2.4 (Brownian motion/Wiener process). A Brownian motion, or Wiener
process, is a stochastic process (Xt)t≥0 with:

1. The sample trajectories t 7→ Xt are continuous with probability 1.

2. For any �nite sequence of times t0 < t1 < · · · < tn, the increments

Xt1 −Xt0 , Xt2 −Xt1 , · · · , Xtn −Xtn−1

are independent.
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3. It has stationary increments. For t1 < t2, Xt2 −Xt1 ∼ Xt2−t1 −X0.

The de�nition of the Brownian motion induces its own distribution.

Theorem 2.2.5. If (Xt)t≥0 is a Brownian motion, then Xt − X0 is a normal random
variable with mean rt and variance σ2t, where r and σ are constant real numbers.

Proof. See proof in Corcuera (2018), Theorem 2.2.1.

De�nition 2.2.6. A standard Brownian motion is a Brownian motion such that X0 = 0
a.s., r = 0 and σ2 = 1. We will refer to standard Brownian motion as (Wt)t≥0.

From now on, we will refer to the Brownian motion as the standard Brownian motion.

Proposition 2.2.7. If (Wt) is a Brownian motion, then (Wt) is a martingale.

Proof. See proof in Lamberton and Lapeyre (1996), Proposition 3.3.3.

2.2.3 Stochastic Integral

When we work with the di�erent stochastic models to express the evolution of an asset,
we would like to use this type of integrals:∫ T

0

f(t) dWt.

Unfortunately, the de�nition of this type of integrals fails because although the paths of
Brownian motion are continuous, they are not of bounded variation.

To de�ne this type of integrals, we will construct a stochastic integral by de�ning it for
a set of the most basic processes, the simple process. Later, we will extend it to a larger
class.

From now on, we consider a �ltered probability space (Ω,F ,F = (Ft),P) and (Wt)t≥0

a F-Brownian motion. We assume that T > 0.

De�nition 2.2.8 (Simple process). A process (Ht)0≤t≤T is called a simple process if it can
be written as

Ht(ω) =

p∑
i=1

ai(ω)1(ti−1,ti](t)

where 0 = t0 < t1 < · · · < tp = T and ai is Fti−1
-measurable and bounded.
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Figure 2.4: Simple process

De�nition 2.2.9 (Stochastic integral). The stochastic integral of a simple process H is a
continuous process (I(H)t)0≤t≤T de�ned for any t ∈ (ti−1, ti] as

I(H)t =
∑

1≤i≤k

ai
(
Wti −Wti−1

)
+ ak+1 (Wt −Wtk) .

The stochastic integral I(H)t can be written as

I(H)t =
∑

1≤i≤p

ai
(
Wti∧t −Wti−1∧t

)
that proves the continuity of t 7→ I(H)t. We write

∫ t
0
HsdWs for I(H)t.

Note that by de�nition∫ T

t

Hs dWs =

∫ T

0

Hs dWs −
∫ t

0

Hs dWs.

We have de�ned the stochastic integral for simple processes. We are going to extend
the concept to a larger class of adapted process. The next lemma helps identify a space of
functions for which we can reasonably extend the de�nition.

Proposition 2.2.10. If (Ht)0≤t≤T is a simple process:

1.
(∫ t

0
Hs dWs

)
0≤t≤T

is a continuous Ft-martingale.

2. (Itô isometry) E
[(∫ t

0
Hs dWs

)2
]

= E
(∫ t

0
H2
s ds

)
.

3. E
[
supt≤T

∣∣∣∫ t0 Hs dWs

∣∣∣2] ≤ 4E
[∫ T

0
H2
s ds

]
.
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Proof. See proof in Lamberton and Lapeyre (1996), Proposition 3.4.2.

We de�ne the class of adapted processes H

H =

{
H = (Ht)0≤t≤T , F-adapted process such that E

[∫ T

0

H2
s ds

]
<∞

}
.

If H is a process in the class H. The integral is de�ned as the L2 limit∫ t

0

Hs ds = lim
n−→∞

∫ t

0

H(n)
s dWs.

where (H(n))n≥1 is a sequence of simple processes such that

lim
n−→∞

‖Hn −H‖2 = lim
n−→∞

∫ t

0

E [Hn
s −Hs]

2 ds = 0.

Theorem 2.2.11. Suppose that (Wt)t≥0 is Brownian motion and let F denote its natural
�ltration. There exist a linear mapping, J , from H to the space of continuous F-martingales
de�ned on [0, T ] such that

1. If (Ht)t≤T is a simple process and t ≤ T ,

J(H)t =

∫ t

0

Hs dWs.

2. If t ≤ T ,

E
[
J(H)2

t

]
=

∫ t

0

E
[
H2
s

]
ds.

3.

E
[

sup
0≤t≤T

J(H)2
t

]
≤ 4

∫ T

0

E
[
H2
s

]
ds.

Proof. See proof in Etheridge (2011), Theorem 4.2.7.

We have de�ned the stochastic integral respect to Brownian motion. It can be extended
to any process (Xt)t≥0 that can be written as Xt = Wt + At where (Wt)t≥0 is a Brownian
motion and (At)t≥0 is a continuous process of bounded variation. In that case, we can
de�ne the integral as the sum of two integrals: one integral with respect to the Brownian
motion and another respect to the bounded variation process. The latter is de�ned in the
classical sense.

De�nition 2.2.12. Suppose that (Mt)t≥0 is a continuous martingale and (At)t≥0 is a
process of bounded variation. Then the process (Xt)t≥0 de�ned by Xt = Mt + At is a
semimartingale.

A semimartingale is any process that can be decomposed in this way. If A0 = 0, then
the decomposition is unique as can be seen in Protter (2004), Chapter II, Theorem 9.
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2.2.4 Itô calculus

In the previous section, we have de�ned a stochastic integral. Itô calculus is the di�erential
calculus based on this types of stochastic integrals. The Itô formula is the stochastic calculus
counterpart of the `chain rule'. We are going to de�ne to which type of processes the Itô
formula is applicable.

De�nition 2.2.13 (Itô Process). An Itô process (Xt)0≤t≤T is a process of type:

Xt = X0 +

∫ t

0

Ks ds+

∫ t

0

Hs dWs,

where for all t ≤ T , we have that

1. X0 is F0-measurable.

2. (Kt) and (Ht) are F-adapted process.

3.
∫ T

0
|Ks| ds <∞ P a.s.

4.
∫ T

0
|Hs|2 ds <∞ P a.s.

In Corcuera (2018), Proposition 2.4.6, we can see that the decomposition of an Itô
process is unique.

The following theorem is known as the Itô formula. It is one of the fundamental theorems
of stochastic calculus.

Theorem 2.2.14 (Itô's formula). Let (Xt)0≤t≤T be an Itô process

Xt = X0 +

∫ t

0

Ks ds+

∫ t

0

Hs dWs,

and f(t, x) ∈ C1,2, then

f(t,Xt) = f(0, X0) +

∫ t

0

∂sf(s,Xs) ds+

∫ t

0

∂xf(s,Xs) dXs

+
1

2

∫ t

0

∂2
xf(s,Xs) d [X,X]s

where

[X,X]t =

∫ t

0

H2
s ds.

Proof. See Protter (2004), Chapter II, Theorem 32.
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Suppose that we want �nd the solution of (St)0≤0≤T for the equation

St = x0 +

∫ t

0

µSs ds+

∫ t

0

σSs dWs. (2.1)

Written in a di�erential form

dSt = St (µ dt+ σ dWt) , S0 = x0. (2.2)

Assuming St is non-negative, we apply Itô formula to f(t, St) = log(St), and we obtain

log(St) = log(S0) +

∫ t

0

(µ ds+ σ dWs) +
1

2

∫ t

0

(
−1

S2
s

)
σ2S2

s ds.

Then, we have that

St = x0 exp

((
µ− σ2

2

)
t+ σWt

)
is a solution of Equation (2.1).

Proposition 2.2.15 (Integration by parts). Let X and Y be two Itô processes such that

Xt = X0 +

∫ t

0

Ks ds+

∫ t

0

Hs dWs

and

Yt = Y0 +

∫ t

0

K̃s ds+

∫ t

0

H̃s dWs.

Then

XtYt = X0Y0 +

∫ t

0

Xs Ys +

∫ t

0

Ys dXs + [X, Y ]t

where

[X, Y ]t :=

∫ t

0

HsH̃s ds.

Proof. See proof in Lamberton and Lapeyre (1996), Proposition 3.4.12.

In this thesis, we are going to model the evolution of the asset price and its volatility
with di�erent random processes. Therefore, the multi-dimensional case is useful.

De�nition 2.2.16 (Multi-dimensional Brownian motion). We call a standard n-dimensional
Brownian motion an Rn-valued process (Wt = (W 1

t , · · · ,W n
t ))t≥0 adapted to F, where all

the (W i
t )t≥0 are independent standard Brownian motions.
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Then, we can de�ne an Itô process in a multi-dimensional framework.

De�nition 2.2.17 (Multi-dimensional Itô process). We call (Xt)0≤t≤T with X = (X1, · · · , Xn)
a multi-dimensional Itô process if

X i
t = X i

0 +

∫ t

0

Ki
s ds+

p∑
j=1

∫ t

0

H i,j
s dW j

s

where for all i, j:

1. Ki
t and all the processes (H i,j

t ) are adapted to the natural �ltration.

2.
∫ T

0
|Ki

s| ds <∞ P a.s.

3.
∫ T

0
(H i,j

s )2 ds <∞ P a.s.

There is a very useful analogue of Itô formula in many dimensions.

Theorem 2.2.18 (Multi-dimensional Itô formula). Let (X1
t , · · · , Xn

t ) be an Itô process

X i
t = X i

0 +

∫ t

0

Ki
s ds+

p∑
j=1

∫ t

0

H i,j
s dW j

s

and f(t, x1, · · · , xn) ∈ C1,2,··· ,2, then

f(t,X1
t , · · · , Xn

t ) = f(0, X1
0 , · · · , Xn

0 ) +

∫ t

0

∂sf(s,X1
s , · · · , Xn

s ) ds

+
n∑
i=1

∫ t

0

∂xif(s,X1
s , · · · , Xn

s ) dX i
s

+
1

2

n∑
i,j=1

∂2
xi,xj

(s,X1
s , · · · , Xn

s ) d
[
X i, Xj

]
s

with

1. dX i
s = Ki

s ds+
∑p

j=1H
i,j
s dW j

s ,

2. d [X i, Xj]s =
∑p

m=1H
i,m
s Hj,m

s ds.

Proof. See Sanz-Solé (2012), Theorem 3.2.
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2.2.5 Stochastic di�erential equations

The evolution of di�erent phenomena is explained by di�erential equations, the most typi-
cal example is the equations of motion. Finance is no exception, but, in particular, to price
�nancial derivatives, its stochastic counterpart is used: the Stochastic Di�erential Equa-
tions (SDE). We will consider the Rn case. We consider the following type of equations:

dXt = a(t,Xt) dt+ b(t,Xt) dWt (2.3)

with the initial condition X0 = x0, where x0 ∈ Rn, W = (W 1
t , · · · ,W

p
t ) is Rp-valued

Brownian motion, the function a : R+ × Rn 7→ Rn is a n-dimensional function, and the
function b : R+ × Rn 7→ Rn is a matrix of dimension n× p .

The existence and uniqueness of a solution of a stochastic di�erential equation is given
by the following theorem.

Theorem 2.2.19. [Existence and uniqueness of SDE] Consider a SDE such (2.3). Suppose
that:

1. The coe�cient functions a(t, x), b(t, x) are Lipschitz with respect to x and uniformly
continuous with respect to t.

2. A constant C>0 exists such that functions a(t, x), b(t, x) satisfy

|a(t, x)|+ |b(t, x)| ≤ C (1 + |x|) .

Then, there exist a unique solution to stochastic di�erential equation.

Proof. The proof for one dimension is in Lamberton and Lapeyre (1996), Theorem 3.5.3.
The multi-dimensional case is in Øksendal (2003), Theorem 5.2.1.

It is important that the solutions of stochastic di�erential equations satisfy the Markov
property. The intuitive meaning of the Markov property is that the future behavior of a
process (Xt)t≥0 after t does only depend on Xt. In other words, the behavior does not
depend on the history of the process before t.

De�nition 2.2.20 (Markov Property). A stochastic process (Xt) satis�es the Markov
property if, for any bounded measurable function f : R 7→ R and any s < t,

E [f(Xt)|Fs] = E [f(Xt)|Xs] . (2.4)

Theorem 2.2.21. Consider a SDE such (2.3) where the coe�cients ful�l Theorem 2.2.19.
Then, the solution of Xt has the Markov property.

In Theorem 2.2.11, it is seen that under certain conditions of a simple function, we can
obtain a F-martingale. The Brownian martingale representation theorem tell us that all
F-martingales can be represented as Itô integrals.
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De�nition 2.2.22. A F-martingale (Mt)t≥0 is said to be square-integrable if E
[
|Mt|2

]
<∞

for each t > 0.

Theorem 2.2.23 (Brownian Martingale Representation). Let F the natural �ltration of a
Brownian motion (Wt)t≥0. Let (Mt)t≥0 be a square-integrable martingale with respect the
�ltration F. Then, there exist an F-predictable process (θ)t≥0 such that with P-probability
one

Mt = M0 +

∫ t

0

θs dWs. (2.5)

Proof. See proof in Etheridge (2011), Theorem 4.6.2.

In order to price and hedge derivatives, we introduce the Girsanov Theorem. This
theorem allow us to change the probability measure. The process of changing the martingale
measure can be viewed as a reweighting of the probabilities under our original measure.

Recall that two probability measures are equivalent if they have the same sets of prob-
ability zero.

Theorem 2.2.24 (Girsanov's Theorem). Let W be a standard d-dimensional Brownian
motion on a �ltered probability space (Ω,F,P). Suppose that θ is an adapted Rd-valued
process such that

E
[
exp

(∫ T

0

θt dWt −
1

2

∫ T

0

θ2
t dt

)]
= 1. (2.6)

De�ne a probability measure P̃ on (Ω,F) equivalent to P by means of the Radon-Nikodym
derivative

dP̃
dP

= exp

(∫ T

0

θt dWt −
1

2

∫ T

0

θ2
t dt

)
(2.7)

P-a.s. Then the process W̃ given by

W̃t = Wt −
∫ t

0

θu du (2.8)

for all t ∈ [0, T ], follows a standard d-dimensional Brownian motion on the space (Ω,F, P̃)

Proof. The proof of the one dimensional case can be found in Protter (2004), Chapter II,
Theorem 42. The multi-dimensional case is in Øksendal (2003), Theorem 8.6.4.

An important statement that we are going to use throughout the thesis is the Feynman-
Kac formula. This formula allows us to express the price of an option as a solution of partial
di�erential equation. This is a consequence of the deep connection between stochastic
di�erential equations and certain parabolic di�erential equations.
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Theorem 2.2.25 (The Feynman-Kac Formula). Consider the partial di�erential equation

∂tu(x, t) + µ(x, t)∂xu(x, t) +
1

2
σ2(x, t)∂2

xu(x, t)− V (x, t)u(x, t) + f(x, t) = 0,

de�ned for all x ∈ R and t ∈ [0, T ], subject to the terminal condition

u(x, T ) = ϕ(x),

where µ, σ, ϕ, V, f are known functions, T is a parameter and u : R × [0, T ] 7→ R is the
unknown solution. Then, the Feynman-Kac formula tells us that the solution can be written
as the conditional expectation

u(x, t) = EQ
[∫ T

t

e−
∫ r
t V (Xτ ,τ)dτf(Xr, r) dr + e−

∫ T
t V (Xτ ,τ) dτϕ(XT )|Xt = x

]
under the probability measure Q such that Xt is an Itô process driven by the equation

dXt = µ(X, t)dt+ σ(X, t)dWQ
t ,

where WQ
t is a Wiener process under Q and the initial condition for Xt is Xt = x.

Proof. See proof in Etheridge (2011), Theorem 4.8.1.

2.2.6 Volterra Process and Fractional Brownian Motion

Volterra Gaussian processes are a generalisation of the Brownian motion. More precisely,
a Volterra Gaussian process is a Wiener integral process with respect to the Brownian
motion.

A Gaussian Volterra process Y = (Yt, t ≥ 0) is de�ned by

Yt =

∫ t

0

K(t, s) dWs, (2.9)

where K(t, s) is a kernel such that for all 0 < s < t ≤ T

T∫
s

K2(t, s) dt <∞,
t∫

0

K2(t, s) ds <∞, (2.10)

and
FYt = FWt . (2.11)

Denote the autocovariance function of process Yt as

r(t, s) := E[YtYs], t, s ≥ 0, (2.12)
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and the variance function, i.e. the second moment, as

r(t) := r(t, t) = E[Y 2
t ], t ≥ 0. (2.13)

Let us now focus on a very important example of Gaussian Volterra processes: the
fractional Brownian motion (fBm), a process with covariance function

r(t, s) := E[BH
t B

H
s ] =

1

2

(
t2H + s2H − |t− s|2H

)
, t, s ≥ 0, (2.14)

and, in particular, with variance

r(t) := r(t, t) = t2H , t ≥ 0. (2.15)

where H ∈ (0, 1) is the Hurst parameter.
One of the �rst applications of fractional Brownian motion is credited to Hurst (1951)

who modelled the long term storage capacity of reservoirs along the Nile river. However,
the origen of this concept goes back to Kolmogorov (1940), who studied Wiener spirals
and some other curves in Hilbert spaces. Later, Lévy (1953) used the Riemann�Liouville
fractional integral to de�ne the process as

B̃H
t :=

1

Γ(H + 1/2)

t∫
0

(t− s)H−1/2 dWs,

whereH may be any positive number. This type of integral turned out to be ill-suited to the
applications of fractional Brownian motion because of its over-emphasis on the origin for
many applications. Mandelbrot and Van Ness (1968) introduced the Weyl's representation
of the fractional Brownian motion

BH
t :=

1

Γ(H + 1/2)

Zt +

t∫
0

(t− s)H−1/2 dWs

 , (2.16)

where

Zt :=

0∫
−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dWs

and Wt is the standard Wiener process. Nowadays, the most widely used representation of
fBm is the one by Molchan and Golosov (1969)

BH
t :=

t∫
0

KH(t, s) dWs, (2.17)

where for H > 1
2

KH(t, s) := CH

[
s

1
2
−H
∫ t

s

uH−
1
2 (u− s)H−

3
2 du

]
(2.18)
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and for H ≤ 1
2

KH(t, s) := CH

[(
t

s

)H− 1
2

(t− s)H−
1
2 −

(
H − 1

2

)
sH−

1
2

∫ t

s

zH−
3
2 (z − s)H−

1
2 dz

]
(2.19)

with

CH :=

√
2HΓ

(
3
2
−H

)
Γ
(
H + 1

2

)
Γ (2− 2H)

.

To understand the connection between Molchan-Golosov and Mandelbrot-Van Ness repre-
sentations of fBm we refer readers to the paper by Jost (2008).

Despite of the aforementioned arguments, Alòs et al. (2000) proposed to consider a
process B̂t =

∫ t
0
(t − s)H−1/2 dWs instead of BH

t in fractional stochastic calculus, since
Zt has absolutely continuous trajectories. Since BH

t is not a semimartingale, the process
B̂t = Γ(H + 1/2)BH

t − Zt is also not a semimartingale. Later on, Thao (2006) introduced
the so called approximate fractional Brownian motion process as

B̂ε
t =

t∫
0

(t− s+ ε)H−1/2 dWs, H ∈ (0, 1), H 6= 1

2
, ε > 0,

and showed that for every ε > 0 the process B̂ε
t is a semimartingale and it converges to B̂t

in L2(Ω) when ε tends to zero. This convergence is uniform with respect to t ∈ [0, T ], see
Theorem 2.1 in Thao (2006).

2.2.7 Poisson process

Frequently, Brownian motion is used to model asset behavior. In these cases, the price is
a continuous function of time. In the market, we sometimes observe abrupt variations in
the price called `jumps'. To model this kind of phenomena, we must introduce the Poisson
process, a discontinuous stochastic process. The Poisson process is a popular process to
model the number of times an event occurs in an interval of time or space. For instance:

• The number of patients arriving in an emergency room between an interval of hours.

• The number of photons hitting a detector in a particular time interval.

De�nition 2.2.26. Let (Ti)i≥1 be a sequence of independent, identically exponentially dis-
tributed random variables with parameter λ. We set τn =

∑n
i=1 Ti. We call Poisson process

with intensity λ the process Nt de�ned by

Nt =
∑
n≥1

1{τn≤t} =
∑
n≥1

n1{τn≤t<τn+1}.
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The distribution of the increments of Poisson process is de�ned in the following propo-
sition.

Proposition 2.2.27. If (Nt)t≥0 is a Poisson process with intensity λ then, for any t > 0,
the random variable Nt follows a Poisson law with parameter λ, that is,

P (Nt = n) = exp (−λt) (λt)n

n!
.

In particular, we have

E [Nt] = λt,

V ar [Nt] = λt.

Moreover, for s > 0,

E
[
sNi
]

= exp (λt(s− 1)) .

Proof. See proof in Lamberton and Lapeyre (1996), Proposition 7.1.3.

The Poisson process satis�es the following conditions.

Proposition 2.2.28. Let (Nt)t≥0 be a Poisson process with intensity λ. The process (Nt)t≥0

is a process with independent and stationary increments.

Proof. See proof in Shreve (2004), Theorem 11.2.3.

De�nition 2.2.29. If (Nt)t≥0 is a Poisson process with intensity λ then the compensated
Poisson process is

(Nt − λt)t∈R+ .

The compensated Poisson process is a martingale. In particular, it has centered increments

E [Nt − λt] = 0.



CHAPTER 3

Models

Since Bachelier's thesis, various models have been introduced in order to price derivatives
and replicate the statistical phenomena observed in the markets. In this thesis, we will use
di�erent types of models. In this chapter, we are going to give a brief summary of the basic
properties of each model.

3.1 Black-Scholes-Merton formula

In 1973, Black-Scholes, Black and Scholes (1973), and Merton, Merton (1973), proposed a
formula to price options. Today it is the most popular formula, becoming the bechmark
model. This is not only for its simplicity, but also for the techniques used to derive the
formula. Using Partial Di�erential Equations and non-arbitrage assumptions, a pricing
formula can be obtained. However, it can also be derived it from the probabilistic side
using Stochastic Di�erential Equations and Martingale properties.

3.1.1 The Black-Scholes-Merton framework

Consider a �xed time T and t ∈ [0, T ]. In a simple �nancial model, we assume there are
two assets: a bank account Bt which is a riskless asset and a risky asset St. The price of
Bt is given by

Bt = ert (3.1)

where r ≥ 0 is the risk-free interest rate. It is the solution of the Ordinary Di�erential
Equation:

dBt = rBt dt. (3.2)

The price of the risky asset St is given by

dSt = µSt dt+ σSt dWt (3.3)

where µ is the growth rate of the asset, σ > 0 is the volatility andWt is a Brownian motion.

35
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As we have seen, using Itô's formula, the stochastic di�erential equation (3.3) has a
closed-form solution given by

St = S0 exp

((
µ− 1

2
σ2

)
dt+ σ dWt

)
(3.4)

where S0 ≥ 0 is the current price.

We are interested in �nd the price today of a contingency at time T , CT . In order to
�nd this price, we seek a self-�nancing portfolio whose value at time T is exactly CT . In the
absence of arbitrage, the value of the claim must be the same as the cost of constructing
the replication portfolio.

An investment strategy can be performed based on the amounts purchased in the bank
account and the risky asset. It can be represented as a random vector ϑ = (ψ, φ) with
values in R2, adapted to the natural �ltration (Ft)0≤t≤T . The value of the portfolio at time
t is given by

Vt(ϑ) = ψtBt + φtSt, V0 = v0.

A self-�nancing strategy is de�ned by an adapted process ϑ where

1.
∫ T

0
|ψt| dt <∞, a.s.

2.
∫ T

0
φ2
t dt <∞ , a.s.

3. Vt = V0 +
∫ t

0
dVs a.s., for all t ∈ [0, T ].

The discounted price of the risky asset it is denoted by S̃t = exp (−rt)St.

Proposition 3.1.1. Let ϑ an adapted process and Ṽt(ϑ) = exp (−rt)Vt(ϑ). The process ϑ
de�nes a self-�nancing strategy if

dṼt(ϑ) = φt dS̃t (3.5)

a.s. for all t ∈ [0, T ].

Proof. See proof in Lamberton and Lapeyre (1996), Proposition 4.1.2.

Note that the price of a portfolio is given by

Ṽt(ϑ) = V0 +

∫ t

0

φt dS̃t. (3.6)

The expected value of the portfolio is

E
[
Ṽt(ϑ)

]
= V0 + E

[∫ t

0

φt dS̃t

]
. (3.7)
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If we were able to �nd a probability measure Q under which the discount asset price S̃t is
martingale, it will be obtained that

EQ [Vt(ϑ)] = V0 + EQ
[∫ t

0

φt dS̃t

]
= V0.

Then, for �nding the price of a discounted contingency, it is only necessary to calculate

EQ
[
C̃T

]
= V0.

Lemma 3.1.2. There is a probability measure Q, equivalent to P, under which the dis-
counted asset price (S̃t)t≥0 is a martingale. Moreover, the Radon-Nikodyn derivative of Q
with respect to P is given by

Lt =
dQ
dP

= exp

(
−θWt −

1

2
θ2t

)
,

where θ = (µ− r)/σ. Then, the discounted asset price is given by

S̃t = S0 exp

(
σXt −

1

2
σ2t

)
where Xt = Wt + 1

σ
(µ− r) t.

Proof. Recall (3.3), so

dS̃t = S̃t (−r dt+ µ dt+ σ dWt) .

Therefore

dS̃t = S̃tσ dXt.

Using the Girsanov Theorem, Theorem 2.2.24, (Xt)t≥0 is a Q-Brownian motion and (S̃t)t≥0

is a Q-martingale. Moreover,

S̃t = S0 exp

(
σXt −

1

2
σ2t

)
.

Remark 3.1.3. We call the quantity µ−r
σ

the market price of the asset risk.

A Fundamental Theorem of Asset Pricing can be developed in the Black-Scholes-Merton
framework.
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Theorem 3.1.4 (Fundamental Theorem of Asset Pricing). Let Q be the measure under
which the discount asset price is a martingale. Suppose that a claim at time T is given
by a non-negative random variable CT adapted to FT . If EQ [C2

T ] < ∞, then the claim is
replicable and the value at time t of any replicating portfolio is given by

Vt = EQ [exp (−r(T − t))CT |Ft] .

In particular, the fair price at time zero for the option is

V0 = EQ [exp (−rT )CT ] = EQ
[
C̃T

]
.

Proof. See Etheridge (2011), Theorem 5.1.5.

3.1.2 The Black-Scholes-Merton price

We have introduced a framework to price options under a risk-neutral measure. In the case
of European options, the price of the option can be obtained explicitly.

Proposition 3.1.5. Let us denote the value of an option at time t as Vt. A European
option whose payment at maturity is CT = f(ST ) has a value that is given by

Vt =
e−r(T−t)√

2π

∫ ∞
−∞

f

(
St exp

((
r − σ2

2

)
(T − t) + σy

√
T − t

))
exp

(
−y

2

2

)
dy.

Proof. From Theorem 3.1.4, we know that the value at time t is

EQt [exp (−r(T − t)) f(ST )] , (3.8)

where Q is the martingale measure. Under this measure

Xt = Wt +
(µ− r) t

σ

is a Brownian motion and

dS̃t = σS̃t dXt.

Solving this equation,

S̃T = S̃t exp

(
σ (Xt −Xt)−

1

2
σ2 (T − t)

)
.

We can substitute into 3.8 to obtain

Vt = EQt
[
e−r(T−t)f

(
Ste

r(T−t) exp

(
σ(XT −Xt)−

1

2
σ2(T − t)

))]
.
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Since under Q, conditional on Ft, XT −Xt is a normally distributed random variable with
mean zero and variance (T − t), we can evaluate this as

Vt =
1√

2π(T − t)

∫ ∞
−∞

e−r(T−t)f

(
Ste

r(T−t) exp

(
σz − 1

2
σ2(T − t)

))
exp

(
− z2

2(T − t)

)
dz

=
e−r(T−t)√

2π

∫ ∞
−∞

f

(
St exp

((
r − 1

2
σ2

)
(T − t) + σy

√
T − t

))
exp

(
−y

2

2

)
dy.

The price of a call option can be calculated explicitly.

Proposition 3.1.6 (European call option). The price of a European call option with payo�
f(ST ) = (ST − z)+ is

CBS (t, T, x, z, r, y) = xΦ(d+)− ze−rτΦ(d−)

where x is the current price, y is the constant volatility, z is the strike price, τ = T−t is the
time to maturity, r is the interest rate, and Φ denotes the cumulative distribution function
of the standard normal law. The symbols d+ and d− stand for the following functions

d± =
ln(x/z) + (r ± y2

2
)(T − t)

y
√
T − t

Proof. Using f(ST ) = (ST − z)+ in Proposition 3.1.5, it is obtained that

CBS (t, T, x, z, r, y) = E
[(
x exp

(
y
√
τZ − y2τ/2

)
− z exp (−rτ)

)
+

]
, (3.9)

where Z ∼ N (0, 1). Finding the values of Z where the integrand is non-zero, it is observed
that

x exp
(
y
√
τZ − y2τ/2

)
> z exp (−rτ)

and it is equivalent to have that

Z >
ln(z/x) + (y

2

2
− r)τ

y
√
τ

.

The integrand in (3.9) is non-zero if Z + d2 ≥ 0. Then

CBS (t, T, x, z, r, y) = E
[(
x exp

(
y
√
τZ − 1

2
y2τ

)
−K exp (−rτ)

)
+

]
= E

[(
x exp

(
y
√
τZ − 1

2
y2τ

)
−K exp (−rτ)

)
1{Z+d2≥0}

]
=

∫ ∞
−d2

(
x exp

(
y
√
τω − 1

2
y2τ

)
−K exp (−rτ)

)
exp

(
−ω

2

2

)
dω

=

∫ d2

−∞

(
x exp

(
−y
√
τω − 1

2
y2τ

)
−K exp (−rτ)

)
exp

(
−ω

2

2

)
dω

= x

∫ d2

−∞
exp

(
−y
√
τω − 1

2
y2τ

)
exp

(
−ω

2

2

)
dω −K exp (−rτ) Φ(d2).
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Substituting w = ω+ y
√
τ in the �rst integral in the last line, the price of a European call

option is obtained .

Remark 3.1.7. The European put option price can be found analogously.

Remark 3.1.8. By convenience, we will focus on a European call option, but all the for-
mulae of the thesis can be applied to European put options.

Notice that the price of a European call options depends just on one unknown param-
eter, the volatility σ. In the Black-Scholes-Merton framework, the volatility is assumed to
be constant. The question is how to estimate the volatility. If we focus on the data, the
volatility estimate is di�erent depending on the length of the sample, or, for example, if
we use a weighted average estimation. To adjust the model to market prices, the most
common approach is to estimate the volatility from quoted market prices. To do this, one
can estimate what is the volatility that adjusts the Black-Scholes-Merton price formula
with the market quote. This is called the implied volatility.

De�nition 3.1.9. Given a market quoted European option C with strike K and maturity
time T , the implied volatility, IV = σ(K,T ), is the volatility we use in the Black-Scholes-
Merton formula to obtain the market price of the option. That is

CMarket = CBS (0, T, S0, K, r, σ(K,T )) (3.10)

where S0 is the asset price at the trading time.

There is a unique solution for the implied volatility. The Black-Scholes-Merton formula
is monotonically increasing in σ, with lower and upper limits depending on if it is a call
option or a put option. Therefore, by the inverse function theorem, for every price there is
an implied volatility.

The empirical implied volatility is not constant over time or strike. This is due to the
shape of the volatility surface. In particular, the volatility skewness and the volatility smile
of the surface.

Despite the popularity of the model, the dynamics of the model does not �t the market
data or the statistical properties of �nancial time series. Some of the drawbacks are

• The assumption of constant volatility is not able to reproduce the volatility surface.
It is possible to observe a volatility smile or skewness.

• The log-returns are normally distributed whereas the empirical time series shows
negative skewness and excess of kurtosis.

• The normal distribution is not able to produce extreme events, i.e. fat tails.

• Empirical observation show an inverse relationship between the level of the stock and
the volatility that the model does not take into account.
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• The simulated path are continuous and have no jumps.

• The model does not produce volatility clustering.

The objective of this thesis is to express the observed price of a European call option
as the Black-Scholes-Merton price plus corrective terms. For that reason, it is convenient
for us to describe the following adaptations of the Black-Scholes-Merton formula.

• Black-Scholes-Merton formula respect to the variance.

CB̂S (t, T, x, z, r, y) = xΦ(d̂+)− ze−rτΦ(d̂−)

where, in this case, y is the constant variance. The symbols d̂+ and d̂− stand for the
following functions

d̂± =
ln(x/z) + (r ± y

2
)(T − t)√

y(T − t)
.

• Black-Scholes-Merton formula respect to the log-price.

CBS (t, T, x, z, r, y) = exΦ(d+)− ze−rτΦ(d−)

where x is the log-price. The symbols d+ and d− stand for the following functions

d± =
x− ln(z) + (r ± y2

2
)(T − t)

y
√
T − t

.

• Black-Scholes-Merton formula respect to the log-price and the variance.

CB̃S (t, T, x, z, r, y) = exΦ(d̃+)− ze−rτΦ(d̃−)

where x is the log-price and y is the constant variance. The symbols d̃+ and d̃− stand
for the following functions

d̃± =
x− ln(z) + (r ± y

2
)(T − t)√

y(T − t)
.

The price is the same in all the formulae, i.e. CBS = CB̂S = CBS = CB̃S. The only
di�erence is the price dependency on the variables.
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3.1.3 Upper bound for the Black-Scholes-Merton derivatives

For the methodology we want to develop, it will be convenient to �nd an upper-bound
estimation of the Black-Scholes-Merton derivatives with respect to the price or the log-
price.

In particular, this lemma is a combination of the lemmas used in Alòs (2012) and
Merino and Vives (2017).

Lemma 3.1.10. The following upper-bounds are valid depending on the version of Black-
Scholes-Merton formula is used:

(i) For any n ≥ 2, and for any positive quantities x, y, p and q, we have

|xp(lnx)qxn∂nxCBS (t, T, x, z, r, y) | ≤ C

(y
√
τ)n−1

where C is a constant that depends on p, q and n.

(ii) For any n ≥ 0 and for any positive quantities x, we have∣∣∂nx (∂2
x − ∂x

)
CBS (t, T, x, z, r, y)

∣∣ ≤ C

(y
√
τ)n+1

.

where C is a constant that depends on x.

Proof. To prove this lemma we are going to use the functional relationship of the variables.

(i) We have that

∂2
xCBS (t, T, x, z, r, y) =

φ(d+)

xy
√
τ
,

therefore

x2∂2
xCBS (t, T, x, z, r, y) =

xφ(d+)

y
√
τ
.

Note that for n ≥ 2, it can be obtained the following expression

∂nxCBS (t, T, x, z, r, y) =
φ(d+)

(xy
√
τ)n−1

Pn−2(d+, y
√
τ)

where Pn−2 is a polynomial of order n− 2. Then,

xn∂nxCBS (t, T, x, z, r, y) =
xφ(d+)

(y
√
τ)n−1

Pn−2(d+, y
√
τ).

The exponential decreasing on x of the Gaussian kernel compensates the possible
increasing of x and lnx and �nd the upper bound

|xp(lnx)qxn∂nxCBS (t, T, x, z, r, y) | ≤ C

(y
√
τ)n−1

where C is a constant that depends on p, q and n.
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(ii) Similarly, we have that

(
∂2
x − ∂x

)
CBS (t, T, x, z, r, y) =

exφ(d+)

y
√
τ

.

In particular,

∂nx
(
∂2
x − ∂x

)
CBS (t, T, x, z, r, y) =

exφ(d+)

(y
√
τ)n+1

Pn(d+, y
√
τ).

As it happens in the former case, the gaussian kernel controls the possible increase
of x, having ∣∣∂nx (∂2

x − ∂x
)
CBS (t, T, x, z, r, y)

∣∣ ≤ C

(y
√
τ)n+1

.

3.2 Spot-dependent volatility models

Despite the success of the Black-Scholes-Merton formula, one of the �rst alternatives was
a model where the volatility was dependent on the level of the asset price.

Let S = {St, t ∈ [0, T ]} be a positive price process under a market chosen risk neutral
measure that follows the model

dSt = rSt dt+ υ(St)St dWt (3.11)

where W is a standard Brownian motion, r is the constant interest rate and υ : [0,∞)→
[0,∞) is a function of C2([0,∞)) such that υ(St) is a square-integrable process adapted to
the �ltration generated by W . The process υ(St) satis�es enough conditions to ensure the
existence and uniqueness of a solution of (3.11).

The Feynman-Kac equation for this model satis�es LyCSD (t, x, r, y) = 0 for any t, x,
y, and r where

LyCSD (t, x, r, y) := ∂t +
1

2
y2∂2

x + rx∂x − r. (3.12)

Changing variables, it can be seen that L̂yCŜD(t, x, r, y) = 0 for any t, x, y, where

LyCŜD (t, x, r, y) := ∂t +
1

2
y∂2

x + rx∂x − r. (3.13)

Remark 3.2.1. Note that in the case of LyCSD, we have that y = υ(St)St. But, in the
case of LyCŜD, we have y = υ2(St)S

2
t .
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3.2.1 CEV

In 1975, John Cox, Cox (1975), developed the �rst alternative model to the Black-Scholes-
Merton price. Instead of using constant volatility, a model where the volatility is a direct
inverse function of the asset price was proposed. The model is able to capture the leverage
e�ect: when the asset price declines, the asset volatility increases. The Constant Elasticity
of Variance, CEV, model, is a di�usion process that under a market chosen risk neutral
measure follows

dSt = rSt dt+ σSβt dWt. (3.14)

The parameter β ≥ 0 is called the elasticity of the volatility and σ ≥ 0 is a scale parameter.
This model is a type of spot dependent volatility model, when the volatility structure is
υ(St) := σSβ−1

t .

In this model, the returns are not necessarily normally distributed. In fact, the distri-
bution of the model depends on the possible values of β. For example

• when β = 1, the model reduces to the Osborne-Samuelson model.

• when β = 0, the model reduces to Bachelier model.

• when β = 1
2
, the model reduces to Cox-Ingersoll-Ross model.

There is a closed-form formula for European Plain Vanilla options, see Cox (1975)
and Emanuel and MacBeth (1982). An Approximation of the implied volatility is given in
Hagan and Woodward (1999).

One di�erence between the Black-Scholes-Merton model and the CEV model is that
the latter is capable of exhibiting a skew in implied volatility. The skew is controlled by
the parameter β.

3.3 Stochastic volatility models

Stochastic volatility models are a natural extension of the Black-Scholes-Merton model. In
this class of models, not only the price is a random variable, also the volatility. Several
models have been proposed, but the most used in the industry are the Heston model,
Heston (1993), and the SABR model, Hagan et al. (2002). Although the latest trend among
academics is to use rough volatility models.

In these models, we consider S = {S(t), t ∈ [0, T ]} be a strictly positive price process
that follows

dSt = µSt dt+ σtSt

(
ρ dWt +

√
1− ρ2 dW̃t

)
(3.15)

whereW and W̃ are independent Brownian motions, ρ ∈ (−1, 1) is the correlation between
the asset price and the volatility, µ is the growth rate, and σt is a square-integrable process
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adapted to the �ltration generated by W . It is assumed that the paths of the process σ are
positive P -a.s. We assume on σ su�cient conditions to ensure the existence and uniqueness
of the solution of (3.15). The Brownian motionsW and W̃ are de�ned on a complete �ltered

probability space (Ω,F ,F = (Ft),P). Denote by FW and FW̃ the �ltrations generated by

W and W̃ , respectively. Set Ft := FW ∨FW̃ . Notice that we we do not assume any concrete
volatility structure.

3.3.1 Stochastic volatility framework

Before introducing the di�erent models with stochastic volatility, we need to set up a
correct environment. We need to �nd a measure where the discounted prices are martingale.
Therefore, if we price any derivative, under that measure, with time to maturity T as

Vt = E [exp (−r(T − t))CT |Ft] ,

there is no-arbitrage opportunity. Then, Vt is the price of the claim.

To construct the equivalent martingale in a general stochastic volatility model, we
rewrite model 3.15 to the following one

dSt = µSt dt+ σtSt dWt,

dσt = • dt+ ◦ dZ̃t,

dZ̃t = ρ dWt +
√

1− ρ2 dZt

where W and Z are independent Brownian motion and σ is a square-integrable process
strictly positive. Note that the parameters of the volatility equation are not speci�ed.
Instead there are the symbols • and ◦. Here, a parameter or a function is allowed, being
only required to ful�l the conditions of existence and uniqueness of a solution.

The presence of two Brownian motions induces the model incompleteness and, as a
consequence, there is a non-unique martingale measure. Suppose that the market imposes
a martingale measure under which the derivative contracts are correctly priced. As we have
seen in Fouque et al. (2000), we can construct an equivalent martingale measure. The �rst
step is to shift the drift of the asset price, as we did in the Black-Scholes-Merton framework,
see Proposition 3.1.5, by de�ning the following Brownian motion

W̃ ∗
t = Wt +

∫ t

0

µ− r
σs

ds.

We have to proceed in a similar way with the volatility process. We de�ne an arbitrary
adapted, square-integrable process (γt), then, the Brownian motion Zt can be transformed
to the form

Z∗t = Zt +

∫ t

0

γs ds.
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Let Qγ be de�ned by

dQγ
dP

= exp

(
−
∫ t

0

µ− r
σs

dWs −
∫ t

0

γs dZs −
1

2

∫ t

0

((
µ− r
σs

)2

+ γ2
s

)
ds

)
.

By Girsanov's theorem, each measure Qγ is a risk neutral measure. The process (γt) is
called the market price of volatility risk. Notice that the process (γt) parametrizes the
space of risk neutral measures.

Under a risk-neutral measure, the asset price dynamics are as follows:

dSt = rSt dt+ σtSt dWt,

dσt =

(
• − ◦

(
ρ
µ− r
σs

+ γt
√

1− ρ2

))
dt+ ◦ dZ̃t,

dZ̃t = ρ dWt +
√

1− ρ2 dZt.

In general, when models are used in practice, the parameters are re-parameterized to
absorb the market risk price. As a result, we can use the generic expression for asset prices
in a stochastic volatility model as

dSt = rSt dt+ σtSt

(
ρ dWt +

√
1− ρ2 dW̃t

)
(3.16)

being W and W̃ two independent Brownian motions.
From now on, we will consider that we are always in a risk-neutral measure.

The Feynman-Kac equation for this model satis�es LyCSV (t, x, r, y) = 0 for any t, x,
y, and r where

LyCSV (t, x, r, y) := ∂t +
1

2
y2∂2

x + rx∂x − r. (3.17)

Changing variables, it can be seen that LyĈSV (t, x, y) = 0 for any t, x, y, where

LyCŜV (t, x, r, y) := ∂t +
1

2
y∂2

x + rx∂x − r. (3.18)

The Feynman-Kac formulas coincidence with (3.12) and (3.13).

Without loss of generality, we can re-write the model (3.16) using the log-price Xt =
log(St) as

dXt =

(
r − 1

2
σ2
t

)
dt+ σt

(
ρ dWt +

√
1− ρ2 dW̃t

)
. (3.19)

After changing the variable from the price process to the log-price process, we obtain
a slightly di�erent Feynman-Kac formula

LyCSV (t, x, r, y) := ∂t +
1

2
y2∂2

x +

(
r − 1

2
y2

)
∂x − r. (3.20)
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where LyCSV (t, x, r, y) = 0 for any t, x, r and y. Analogously,

LyCS̃V (t, x, r, y) := ∂t +
1

2
y∂2

x +

(
r − 1

2
y

)
∂x − r (3.21)

satis�es LyCS̃V (t, x, r, y) = 0 for any t, x, r and y.

Remember that all these di�erent nomenclatures represent the same stochastic volatility
model. It is just a way of writing and how the dependence of the variables with respect to
the option price is represented. For example, using a log-price version makes it easier to
calculate the derivatives with respect to the log-price. This can be interesting and useful.

3.3.2 The Heston Model

The Heston model, Heston (1993), is a stochastic volatility model in which the instanta-
neous variance follows a mean reverting square root process. The model dynamics for the
underlying asset can take into account the asymmetry and the excess of kurtosis observed
in �nancial asset returns as well as �t market prices. It became popular for being able to
capture the `volatility smile' and having semi-analytical closed form.

The price process S satis�es the following system of stochastic di�erential equations

dSt = rSt dt+ σtSt

(
ρ dWt +

√
1− ρ2 dW̃t

)
, (3.22)

dσ2
t = κ

(
θ − σ2

t

)
dt+ ν

√
σ2
t dWt.

Here, the process σ2 models the stochastic variance of the asset price, θ > 0 is the long-run
mean level of the variance, κ > 0 is the rate at which σ2

t reverts to the mean θ, ν > 0 is
the volatility of volatility parameter, and r is the interest rate. The initial conditions for
the volatility process σ and the price process S will be denoted by σ0 > 0 and s0 > 0,
respectively. We will assume that the Feller condition 2κθ ≥ ν2, the non-hitting condition,
is satis�ed. Although the Feller condition is not necessary in the development of the thesis,
it is an essential condition to ensure positivity of σ and necessary to the model to have an
economic explanation.

3.3.3 The SABR Model

The SABR model, Hagan et al. (2002), is a stochastic volatility model in which the asset
price follows the Constant Elasticity Variance model with an exponential stochastic volatil-
ity. The model is able to capture the `volatility smile' in a parsimonious way, obtaining an
easy implementation of the dynamics of the implied volatility. The model produces very
stable hedges. Note that in this model, the volatility increases exponentially for long term
options, so adjusting the entire volatility surface requires time-dependent parameters.
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The price process S satis�es the following system of stochastic di�erential equations

dSt = rSt dt+ σtS
β
t

(
ρ dWt +

√
1− ρ2 dW̃t

)
, (3.23)

dσt = ξσt dWt.

Here, the process σ models the stochastic volatility of the asset price, β is the elasticity
parameter, ξ > 0 is the volatility of volatility parameter, and r is the interest rate. The
initial conditions for the volatility process σ and the price process S will be denoted by
σ0 > 0 and s0 > 0, respectively.

Note that SABR model is usually written in terms of the Forward price which is equiv-
alent to have r = 0.

3.3.4 General Volterra volatility model

The latest trend in volatility modelling is the use of Volterra process. This approach started
in Comte and Renault (1998). Since then, di�erent models have been proposed, most
of them considering the Fractional Brownian motion. At that moment, the research was
focused on the long memory exhibit when H > 1/2. In Alòs et al. (2007), we �nd the �rst
approach considering rough volatility, that is, the case H < 1

2
. In recent years, since the

publication of Bayer et al. (2016) and Gatheral et al. (2018), it seems that rough models
have better properties to �t the volatility surface and reproduce the statistical properties
of volatility time series.

Exponential Volterra volatility model

One of the easiest examples of Volterra volatility model it is the exponential volatility
model, that is the Volterra version of the SABR model.

We assume

σt = g(t, Yt) = σ0 exp

{
ξYt −

1

2
αξ2r(t)

}
, t ≥ 0, (3.24)

where (Yt, t ≥ 0) is a Gaussian Volterra process satisfying assumptions (2.10) and (2.11),
r(t) is its autocovariance function (2.13), and σ0 > 0, ξ > 0 and α ∈ [0, 1] are model
parameters.

Exponential fractional volatility model

Let us now consider the exponential fractional volatility process

σt := σ0 exp

{
ξBH

t −
1

2
αξ2r(t)

}
, t ≥ 0, (3.25)

where (BH
t , t ≥ 0) is one of the above mentioned representations of fBm. We are especially

interested in the `rough' models, i.e. when H < 1/2. In this case, we call the model (3.16)
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with volatility process (3.25) the rough fractional stochastic volatility model (αRFSV).
Note that if α = 1, we get the rBergomi model, see Bayer et al. (2016) and Gatheral et al.
(2018), if α = 0, we get the original exponential fractional volatility model. Values of α
between 0 and 1 give us a new degree of freedom that can be viewed as a weight between
these two models.

3.3.5 Generic stochastic volatility model

We de�ne a general stochastic volatility model where all the other models can be included.
In order to do so, we will de�ne the variance through a function dependent on time, the
asset price and volatility process θ: [0, T ] × R2

+ → R+. We de�ne the price process under
a market chosen risk neutral measure as

dSt = µ(t, St) dt+ θ(t, St, σt)
(
ρ dWt +

√
1− ρ2 dW̃t

)
(3.26)

where µ: [0, T ]× R+ → R is the drift and θ: [0, T ]× R2
+ → R+ is the volatility structure.

We assume on µ, θ and σ su�cient conditions to ensure the existence and uniqueness of
the solution of (3.26). In this model it is not possible to change the price variable for the
log-price variable.

The Feynman-Kac formula for this model satis�es LyCGSV (t, x, r, y) = 0 where

LθCGSV (t, x, r, θ(t, x, y)) := ∂t +
1

2
θ2(t, x, y)∂2

x + µ(t, x)∂x − r (3.27)

for any t, x, r and y. Analogously, LyCG̃SV (t, x, r, y) = 0 where

LyCG̃SV (t, x, r, θ(t, x, y)) := ∂t +
1

2
θ(t, x, y)∂2

x + µ(t, x)∂x − r (3.28)

for any t, x, r and y.

3.4 Jump di�usion models

The volatility surface is di�cult to calibrate. In the long term, the volatility surface is �at,
but in the short term there is not only a smile, but a peak. Traders ask for a premium in
the short term in case large movements on the asset price would happen. In order to obtain
these prices, the implied volatility has to increase. Even considering stochastic volatility
models, these movements can only be obtained by adding a jump process to the model.

Considering a price process, S = {St, t ∈ [0, T ]}, under a market chosen risk neutral
measure, we have

dSt = rSt dt+ σtSt

(
ρ dWt +

√
1− ρ2 dW̃t

)
+ St− dZt, (3.29)
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where

Zt =

∫ t

0

∫
R
(ey − 1)Ñ( ds, dy) (3.30)

where N and Ñ denote the Poisson measure and the compensated Poisson measure, re-
spectively. We can associate to measure N a compound Poisson process J , independent
of W and W̃ , with intensity λ ≥ 0 and jump amplitudes given by random variables Yi,
independent copies of a random variable Y with law given by Q. Recall that this compound
Poisson process can be written as

Jt :=

∫ t

0

∫
R
yN( ds, dy) =

nt∑
i=1

Yi, (3.31)

where nt is a λ− Poisson process. Denote by k := EQ(eY − 1).

As we have been seen previously and, without any loss of generality, it is sometimes
convenient to use as underlying process the log-price process XJ

t = logSt, t ∈ [0, T ], that
satis�es

dXJ
t =

(
r − λk − 1

2
σ2
t

)
dt+ σt

(
ρ dWt +

√
1− ρ2 dW̃t

)
+ dJt. (3.32)

We introduce also the corresponding continuous process,

dXC
t =

(
r − λk − 1

2
σ2
t

)
dt+ σt

(
ρ dWt +

√
1− ρ2 dW̃t

)
. (3.33)

The volatility process σ is a square-integrable process assumed to be adapted to the
�ltration generated byW and J and its trajectories are assumed to be a.s. square integrable,
right continuous with left limits and strictly positive a.e.

Under these type of models, we denote by FW , FW̃ and FN the �ltrations generated by

the independent processes W , W̃ and J respectively. Moreover, we de�ne F := FW ∨FW̃ ∨
FN .

The Feynman-Kac formula for this model has taken into account the jump compensa-
tion, we have then

LyCSV J (t, x, r, y) := ∂t +
1

2
y2∂2

x +

(
r − λk − 1

2
y2

)
∂x − r (3.34)

that satis�es LyCSV J (t, x, r, y) = 0. Analogously,

LyCS̃V J (t, x, r, y) := ∂t +
1

2
y∂2

x +

(
r − λk − 1

2
y

)
∂x − r (3.35)

satis�es LyCS̃V J (t, x, r, y) = 0 for any t, x,r and y.
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3.4.1 Merton model

Robert C. Merton, Merton (1976), was the �rst one to propose a jump di�usion process. He
proposed a mixture of continuous and jump di�usion processes. His work was motivated
because there is an empirical evidence that sometimes we observe changes on the asset
prices of extraordinary magnitude that cannot be considered as outliers.

Merton considered the following jump di�usion constant volatility price process

dSt = (r − λk)St dt+ σSt dWt + St−(eY − 1) dNt, (3.36)

where r and σ are positive constants, N is a standard Poisson process with intensity λ and
Y describes jump sizes according to the log-normal distribution with parameters µJ and

σJ . Note that k = exp{µJ +
σ2
J

2
} − 1.

A price of a European call option with time to maturity T − t can be expressed by

V (t, St) =
∞∑
n=0

e−λ(T−t)(λ (T − t))n

n!
BS(t, S(n), σ(n)), (3.37)

where

S(n) = St exp

{
nµJ +

1

2
nσ2

J − λkτ
}
,

k = exp

{
µJ +

1

2
σ2
J

}
− 1,

σ(n) =

√
σ2 +

nσ2
J

T − t
.

This formula was proposed by Matsuda (2004), see equation (27) on page 21, and it is an
alternative version of the original Merton (1976) formula.

3.4.2 Bates model

The Bates model, Bates (1996), is the �rst stochastic volatility jump di�usion model. He
combined the ideas of Merton, Merton (1976), and Heston, Heston (1993). Under a risk
neutral measure, the model has the following dynamics

dSt = rSt dt+ σtSt

(
ρ dWt +

√
1− ρ2 dW̃t

)
+ St− dZt,

dσ2
t = κ

(
θ − σ2

t

)
dt+ ν

√
σ2
t dWt.
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3.5 General notation

We will use the following notation:

• We use the notation Et[·] := E[·|Ft] for any {Ft, t ≥ 0}.

• Sometimes, to simplify notation, we refer to the time to maturity as τt = T − t.

• We de�ne the operators

� Λ := x∂x,

� Γ := x2∂2
x,

� Γ2 = Γ ◦ Γ

when considering models with respect to the price process.

• We de�ne the operators

� Λ̃ := ∂x,

� Γ̃ := (∂2
x − ∂x),

� Γ̃2 = Γ̃ ◦ Γ̃

when considering models with respect to the log-price process.

• Given two continuous semi-martingales X and Y , we de�ne

L[X, Y ]t := Et
[∫ T

t

σu d[X, Y ]u

]
(3.38)

and

D[X, Y ]t := Et
[∫ T

t

d[X, Y ]u

]
. (3.39)



CHAPTER 4

Decomposition formula for stochastic volatility models.

In Hull and White (1987), a decomposition formula for options prices under uncorrelated
stochastic volatility was presented, but it was not until Willard (1997) and Fouque et al.
(2000) that some techniques for the correlated case were shown. In Alòs (2006), the Hull
and White formula was generalised, including the correlated case, by means of the Malliavin
calculus. It is natural to use the Malliavin calculation due to the fact that the future average
volatility used in the formula is a non-adapted stochastic process. More precisely, the price
of a European option can be decomposed as the Black-Scholes-Merton option price plus
other correction terms. In Alòs et al. (2007) and Alòs et al. (2008), a general jump di�usion
model with no prescribed volatility process is analysed. Some other extensions for Lévy
models were presented in Jafari and Vives (2013), see also the survey in Vives (2016).

In the preprint Alòs (2003), a new approach was developed to decompose the Hull and
White formula using Itô calculus. The paper went unnoticed, even until today, although
it already presented the ideas that were applied later to the particular case of the Heston
model in Alòs (2012). The main ideas of the method is to use the adapted projection of
the average future variance on the Black-Scholes-Merton formula and then apply the Itô
formula to the payo�. As a result, we can decompose the expectation of the option on several
terms. The main term of the decomposition is the alternative Black-Scholes-Merton price
with respect to the adapted projection of the average future variance and some corrections
based on the Black-Scholes-Merton derivatives. These corrections are di�cult to calculate
numerically. Using the Itô formula recursively, the option price can be approximated by
`freezing' the Black-Scholes-Merton derivatives, as a consequence new terms will emerge
that can be considered the error of the approximation.

We follow the ideas developed in Alòs (2012) to extend the decomposition formula
to the general case. An interesting point of this methodology is that we can construct a
decomposition without having to specify the volatility process explicitly, which enables us
to obtain a very �exible decomposition formula. As we mentioned in Chapter 3, we can
consider alternative expressions of the Black-Scholes-Merton formula, for example, using
the price or the log-price process, the variance or the volatility process. We will see how
these small changes in the way we write the formula a�ect to the decomposition formula.

Some of the results of this chapter are already proved. For example, in Merino and Vives
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(2015), a decomposition formula for the Black-Scholes-Merton formula under the model
(3.26). Later on, a generalised decomposition formula for a generic functional respect to
the log-price process, model (3.19), was proved in Merino et al. (2018).

4.1 Decomposition formula

It is known that for uncorrelated stochastic volatility models, i.e. the price and volatility
process are independent, the following formula is valid for a European style call option

Vt = Et[BS(t, St, σ̄t)]. (4.1)

Here, the symbol σ̄2(t) stands for the average future variance de�ned by

σ̄2
t :=

1

T − t

∫ T

t

σ2
s ds. (4.2)

The equality in (4.1) is called the Hull and White formula (see, e.g., Fouque et al. (2000),
page 51). For correlated models, that is, models where ρ 6= 0, there is a generalisation of
the Hull and White formula (see, for example, formula (2.31) in Fouque et al. (2000)).
However, the latter formula is signi�cantly more complicated than the formula in (4.1).

Another way of generalising the Hull and White formula was suggested in Alòs (2006).
The idea used in Alòs (2006) is to obtain an expansion of the random variable Vt with the
leading term equal to Et[BS(t, St, σ̄t)] and extra terms obtained using Malliavin calculus
techniques. In Alòs (2003), and later, in Alòs (2012), a similar formula was found, in which
the leading term contains the adapted projection of the average future variance, that is,
the quantity

v2
t := Et(σ̄2

t ) =
1

T − t

∫ T

t

Et[σ2
s ] ds, (4.3)

instead of the future variance σ̄2. The previous remark illustrates an important idea of
switching from an anticipative process t 7→ σ̄t to a non-anticipative (adapted) process
t 7→ vt. This idea was further elaborated in Alòs (2012) in the case of the Heston model,
which lead to a Hull and White type formula with the leading term equal to BS(t, St, vt)
and two more terms. In Merino and Vives (2015), the latter call price expansion was
generalised to any stochastic volatility model.

We consider the adapted projection of the future variance

a2
t :=

∫ T

t

Et[σ2
u] du, (4.4)

then the average future variance can be re-written as

v2
t =

a2
t

T − t
.
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Let us de�ne

Mt =

∫ T

0

Et
[
σ2
s

]
ds. (4.5)

We can re-write the adapted projection of the average future variance as

v2
t := Et(σ̄2

t ) =
1

T − t

[
Mt −

∫ t

0

σ2
s ds

]
.

Then, it is obtained that

dv2
t =

dt

(T − t)2

[
Mt −

∫ t

0

σ2
s ds

]
+

1

T − t
[

dMt − σ2
t dt
]

=
1

T − t
[

dMt +
(
v2
t − σ2

t

)
dt
]
.

Remark 4.1.1. In order to generalise the decomposition formula, it is assumed that the
maturity, T , the strike, z, and the interest rates, r, are �xed. Therefore, any payo� can
be speci�ed by a function A(t, T, x, z, r, y) = A(t, x, y). The function A(t, x, y) belongs to
the space C1,2,2((0, T )× (0,∞)× (0,∞)) if A is one time di�erentiable with respect to t on
(0, T ) and two times di�erentiable with respect to x and y on (0,∞). It is also assumed
that the derivatives are continuous.

Then we have the following decomposition formula.

Theorem 4.1.2 (Functional decomposition under a SV model). Let St be a price process
de�ned in (3.26), {Bt, t ∈ [0, T ]} be a continuous semi-martingale with respect to the �ltra-
tion FWt , let A(t, x, y) be a continuous function on the space [0, T ]× [0,∞)× [0,∞) such
that A ∈ C1,2,2((0, T ) × (0,∞) × (0,∞)). Let us also assume that LyAĜSV (t, x, r, y) = 0
and v2

t and Mt are as above. Then, for every t ∈ [0, T ], the following formula holds:

Et
[
e−r(T−t)A(T, ST , v

2
T )BT

]
= A(t, St, v

2
t )Bt

+ Et
[∫ T

t

e−r(u−t)∂yA(u, Su, v
2
u)Bu

v2
u − σ2

u

T − u
du

]
+ Et

[∫ T

t

e−r(u−t)A(u, Su, v
2
u) dBu

]
+

1

2
Et
[∫ T

t

e−r(u−t)∂2
xA(u, Su, v

2
u)Bu

(
θ(u, Su, σu)

2 − v2
uS

2
u

)
du

]
+

1

2
Et
[∫ T

t

e−r(u−t)∂2
yA(u, Su, v

2
u)

Bu

(T − u)2
d[M,M ]u

]
+ ρEt

[∫ T

t

e−r(u−t)∂2
x,yA(u, Su, v

2
u)Bu

θ(u, Su, σu)

T − u
d[W,M ]u

]
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+ ρEt
[∫ T

t

e−r(u−t)∂xA(u, Su, v
2
u)θ(u, Su, σu) d[W,B]u

]
+ Et

[∫ T

t

e−r(u−t)∂yA(u, Su, v
2
u)

1

T − u
d[M,B]u

]
.

Proof. Applying the Itô formula to the process e−rtA(t, St, v
2
t )Bt, we obtain:

e−rTA(T, ST , v
2
T )BT = e−rtABS(t, St, v

2
t )Bt

− r

∫ T

t

e−ruA(u, Su, v
2
u)Bu du

+

∫ T

t

e−ru∂uA(u, Su, v
2
u)Bu du

+

∫ T

t

e−ru∂xA(u, Su, v
2
u)Bu dSu

+

∫ T

t

e−ru∂yA(u, Su, v
2
u)Bu dv2

u

+

∫ T

t

e−ruA(u, Su, v
2
u)dBu

+
1

2

∫ T

t

e−ru∂2
xA(u, Su, v

2
u)Bu d[S, S]u

+
1

2

∫ T

t

e−ru∂2
yA(u, Su, v

2
u)Bu d[v2, v2]u

+

∫ T

t

e−ru∂2
x,yA(u, Su, v

2
u)Bu d[S, v2]u

+

∫ T

t

e−ru∂xA(u, Su, v
2
u) d[S,B]u

+

∫ T

t

e−ru∂yA(u, Su, v
2
u) d[v2, B]u.

Developing the co-variations, we see

e−rTA(T, ST , v
2
T )BT = e−rtA(t, St, v

2
t )Bt

− r

∫ T

t

e−ruA(u, Su, v
2
u)Bu du

+

∫ T

t

e−ru∂uA(u, Su, v
2
u)Bu du

+

∫ T

t

e−ru∂xA(u, Su, v
2
u)Buµ(u, Su) du

+ ρ

∫ T

t

e−ru∂xA(u, Su, v
2
u)Buθ(u, Su, σu) dWu
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+
√

1− ρ2

∫ T

t

e−ru∂xA(u, Su, v
2
u)Buθ(u, Su, σu) dW̃u

+

∫ T

t

e−ru∂yA(u, Su, v
2
u)

Bu

T − u
dMu

+

∫ T

t

e−ru∂yA(u, Su, v
2
u)Bu

v2
u − σ2

u

T − u
du

+

∫ T

t

e−ruA(u, Su, v
2
u) dBu

+
1

2

∫ T

t

e−ru∂2
xA(u, Su, v

2
u)Buθ(u, Su, σu)

2 du

+
1

2

∫ T

t

e−ru∂2
yA(u, Su, v

2
u)

Bu

(T − u)2
d[M,M ]u

+ ρ

∫ T

t

e−ru∂2
x,yA(u, Su, v

2
u)
Buθ(u, Su, σu)

T − u
d[W,M ]u

+
√

1− ρ2

∫ T

t

e−ru∂2
x,yA(u, Su, v

2
u)
Buθ(u, Su, σu)

T − u
d[W̃ ,M ]u

+ ρ

∫ T

t

e−ru∂xA(u, Su, v
2
u)θ(u, Su, σu) d[W,B]u

+
√

1− ρ2

∫ T

t

e−ru∂xA(u, Su, v
2
u)θ(u, Su, σu) d[W̃ , B]u

+

∫ T

t

e−ru∂yA(u, Su, v
2
u)

1

T − u
d[M,B]u.

We add and subtract the term

1

2

∫ T

t

e−ruS2
u∂

2
xA(u, Su, v

2
u)Buv

2
u du

having

e−rTA(T, ST , v
2
T )BT = e−rtA(t, St, v

2
t )Bt

− r

∫ T

t

e−ruA(u, Su, v
2
u)Bu du

+

∫ T

t

e−ru∂uA(u, Su, v
2
u)Bu du

+

∫ T

t

e−ru∂xA(u, Su, v
2
u)Buµ(u, Su) du

+ ρ

∫ T

t

e−ru∂xA(u, Su, v
2
u)Buθ(u, Su, σu) dWu

+
√

1− ρ2

∫ T

t

e−ru∂xA(u, Su, v
2
u)Buθ(u, Su, σu) dW̃u
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+

∫ T

t

e−ru∂yA(u, Su, v
2
u)

Bu

T − u
dMu

+

∫ T

t

e−ru∂yA(u, Su, v
2
u)Bu

v2
u − σ2

u

T − u
du

+

∫ T

t

e−ruA(u, Su, v
2
u) dBu

+
1

2

∫ T

t

e−ru∂2
xA(u, Su, v

2
u)Buθ(u, Su, σu)

2 du

+
1

2

∫ T

t

e−ru∂2
yA(u, Su, v

2
u)

Bu

(T − u)2
d[M,M ]u

+ ρ

∫ T

t

e−ru∂2
x,yA(u, Su, v

2
u)Bu

θ(u, Su, σu)

T − u
d[W,M ]u

+ ρ

∫ T

t

e−ru∂xA(u, Su, v
2
u)θ(u, Su, σu) d[W,B]u

+

∫ T

t

e−ru∂yA(u, Su, v
2
u)

1

T − u
d[M,B]u

+
1

2

∫ T

t

e−ru∂2
xA(u, Su, v

2
u)Buv

2
uS

2
u du

− 1

2

∫ T

t

e−ru∂2
xA(u, Su, v

2
u)Buv

2
uS

2
u du.

Grouping the blue terms, the corresponding Feynman-Kac formula LyAĜSV (t, x, r, y) is
obtained so those terms vanish. Multiplying by e−rt and using conditional expectations,
we have that

e−r(T−t)Et
[
A(T, ST , v

2
T )BT

]
= A(t, St, v

2
t )Bt

+ Et
[∫ T

t

e−r(u−t)∂yA(u, Su, v
2
u)Bu

v2
u − σ2

u

T − u
du

]
+ Et

[∫ T

t

e−r(u−t)A(u, Su, v
2
u) dBu

]
+

1

2
Et
[∫ T

t

e−r(u−t)∂2
xA(u, Su, v

2
u)Bu

(
θ(u, Su, σu)

2 − v2
uS

2
u

)
du

]
+

1

2
Et
[∫ T

t

e−r(u−t)∂2
yA(u, Su, v

2
u)

Bu

(T − u)2
d[M,M ]u

]
+ ρEt

[∫ T

t

e−r(u−t)∂2
x,yA(u, Su, v

2
u)Bu

θ(u, Su, σu)

T − u
d[W,M ]u

]
+ ρEt

[∫ T

t

e−r(u−t)∂xA(u, Su, v
2
u)θ(u, Su, σu) d[W,B]u

]



Decomposition formula for stochastic volatility models. 59

+ Et
[∫ T

t

e−r(u−t)∂yA(u, Su, v
2
u)

1

T − u
d[M,B]u

]
.

The following statement can be derived from Theorem 4.1.2.

Corollary 4.1.3. Let function A and process B as in Theorem 4.1.2. Suppose that the
function A satisfy

∂yA(t, x, y) =
1

2
x2∂2

xA(t, x, y)(T − t). (4.6)

Let At := A(t, St, v
2
t ) ∀t ∈ [0, T ]. Then, for every t ∈ [0, T ], the following formula holds:

e−r(T−t)Et [ATBT ] = AtBt

+
1

2
Et
[∫ T

t

e−r(u−t)ΓAuBu

(
v2
u − σ2

u

)
du

]
+ Et

[∫ T

t

e−r(u−t)Au dBu

]
+

1

2
Et
[∫ T

t

e−r(u−t)ΓAuBu

(
θ(u, Su, σu)

2

S2
u

− v2
u

)
du

]
+

1

8
Et
[∫ T

t

e−r(u−t)Γ2AuBu d[M,M ]u

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)∂xΓAuBuθ(u, Su, σu) d[W,M ]u

]
+ ρEt

[∫ T

t

e−r(u−t)ΛAuθ(u, Su, σu) d[W,B]u

]
+

1

2
Et
[∫ T

t

e−r(u−t)ΓAu d[M,B]u

]
.

Proof. Substituting (4.6) in Theorem 4.1.2 and using the de�nitions of Λ and Γ the proof
is straightforward.

Remark 4.1.4. Note that CŜV satis�es all the conditions of Corollary 4.1.3.

Remark 4.1.5. Being CSV (t, St, σt) the price of a call option under the model (3.26),
notice that

VT = CSV (T, ST , σT ) = CB̂S(T, ST , vT ).

Then,

Vt = CSV (t, St, σ) = e−r(T−t)Et
[
CB̂S(T, ST , vT )

]
.



60 Decomposition formula

Assuming that A = CB̂S and B ≡ 1, the price under the model (3.26) has the decomposition

Vt = CBS(t, St, vt)

+
1

2
Et
[∫ T

t

e−r(u−t)ΓCBS(u, Su, vu)
(
v2
u − σ2

u

)
du

]
+

1

2
Et
[∫ T

t

e−r(u−t)ΓCBS(u, Su, vu)

(
θ(u, Su, σu)

2

S2
u

− v2
u

)
du

]
+

1

8
Et
[∫ T

t

e−r(u−t)Γ2CBS(u, Su, vu) d[M,M ]u

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)ΛΓCBS(u, Su, vu)θ(u, Su, σu) d[W,M ]u

]
and it is equal to CSV (t, St, σ). Note that CBS(t, St, vt) = CB̂S(t, St, vt) and this equivalence
is maintained for any derivative with respect to the price.

Example 4.1.6 (Lognormal asset price). If we assume that the asset prices follow a log-
normal distribution as in model (3.16), that is θ(u, Su, σu) = σuSu, then, the following
formula holds:

Vt = CBS(t, St, vt)

+
1

8
Et
[∫ T

t

e−r(u−t)Γ2CBS(u, Su, vu) d[M,M ]u

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)ΛΓCBS(u, Su, vu)σu d[W,M ]u

]
.

Example 4.1.7 (CEV asset price). If we assume a di�erent distribution, for example, that
the asset price follows a CEV model for the asset price, that is θ(u, Su, σu) = σuS

β
u with

β ≥ 0, then, the following formula is obtained

Vt = CBS(t, St, vt)

+
1

2
Et
[∫ T

t

e−r(u−t)ΓCBS(u, Su, vu)
(
S2(β−1)
u − 1

)
σ2
u du

]
+

1

8
Et
[∫ T

t

e−r(u−t)Γ2CBS(u, Su, vu) d[M,M ]u

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)ΛΓCBS(u, Su, vu)σuS
β−1
u d[W,M ]u

]
.

In the case that the volatility follows an exponential volatility process, this is known as the
SABR model.

We have found a decomposition method for a general case without specifying the struc-
ture of the volatility process. The decomposition depends on the Black-Scholes-Merton
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price and its derivatives with respect to the price. It is well known that it is easier to
calculate the derivatives with respect to the log-price. We can try to make a change of
variable of the previous formula, but instead, we do an analogous proof of Theorem 4.1.2.

Corollary 4.1.8 (Functional decomposition under SV model with respect the log-price).
Let Xt be a log-price process de�ned in (3.19), {Bt, t ∈ [0, T ]} be a continuous semi-
martingale with respect to the �ltration FWt , let A(t, x, y) be a continuous function on
the space [0, T ]× [0,∞)× [0,∞) such that A ∈ C1,2,2((0, T )× (0,∞)× (0,∞)). Let us also
assume that LyAS̃V (t, x, r, y) = 0 and v2

t and Mt are as above. Then, for every t ∈ [0, T ],
the following formula holds:

Et
[
e−r(T−t)A(T,XT , v

2
T )BT

]
= A(t,Xt, v

2
t )Bt

+ Et
[∫ T

t

e−r(u−t)∂yA(u,Xu, v
2
u)Bu

1

T − u
(
v2
u − σ2

u

)
du

]
+ Et

[∫ T

t

e−r(u−t)A(u,Xu, v
2
u) dBu

]
+

1

2
Et
[∫ T

t

e−r(u−t)
(
∂2
x − ∂x

)
A(u,Xu, v

2
u)Bu

(
σ2
u − v2

u

)
du

]
+

1

2
Et
[∫ T

t

e−r(u−t)∂2
yA(u,Xu, v

2
u)Bu

1

(T − u)2
d[M,M ]u

]
+ ρEt

[∫ T

t

e−r(u−t)∂2
x,yA(u,Xu, v

2
u)Bu

σu
T − u

d[W,M ]u

]
+ ρEt

[∫ T

t

e−r(u−t)∂xA(u,Xu, v
2
u)σu d[W,B]u

]
+ Et

[∫ T

t

e−r(u−t)∂yA(u,Xu, v
2
u)

1

T − u
d[M,B]u

]
.

Proof. The proof is analogous to Theorem 4.1.2. It is done by using the corresponding
Feynman-Kac formula LyAS̃V (t, x, r, y).

Remark 4.1.9. The drift of the process is always absorbed by the Feynman-Kac formula.
In fact, if the process instead of being Xt as de�ned in (3.19), it is XC

t de�ned in (3.33),
then, the proof is analogous and the decomposition is the same, but instead of assuming
LyAS̃V (t, x, r, y) = 0, it has to be assumed LyAS̃V J(t, x, r, y) = 0. The di�erence between
the two operators is the drift. Note that the Feynman-Kac is always associated to the price
process.

From the previous theorem, the following corollary can be easily derived.

Corollary 4.1.10. Let function A and process B as in Theorem 4.1.3. Suppose that the
function A satisfy

∂yA(t, x, y) =
(T − t)

2

(
∂2
x − ∂x

)
A(t, x, y). (4.7)
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Let At := A(t,Xt, v
2
t ) ∀t ∈ [0, T ]. Then, for every t ∈ [0, T ], the following formula holds:

e−r(T−t)Et [ATBT ] = AtBt

+
ρ

2
Et

[∫ T

t

e−r(u−t)Λ̃Γ̃AuBuσud[W,M ]u

]
+

1

8
Et

[∫ T

t

e−r(u−t)Γ̃2AuBud[M,M ]u

]
+ ρEt

[∫ T

t

e−r(u−t)Λ̃Auσud[W,B]u

]
+

1

2
Et

[∫ T

t

e−r(u−t)Γ̃Aud[M,B]u

]
+ Et

[∫ T

t

e−r(u−t)AudBu

]
.

Proof. Substituting (4.7) in Theorem 4.1.8 and using the de�nitions of Λ̃ and Γ̃ the proof
is straightforward.

Remark 4.1.11. Note that CS̃V satis�es all the conditions of Corollary 4.1.10.

Remark 4.1.12. Being CSV (t, St, σt) the price of a call option under the model (3.19),
notice that

VT = CSV (T, ST , σT ) = CB̃S(T,XT , vT ).

Then,

Vt = CSV (t, St, σ) = e−r(T−t)Et
[
CB̃S(T,XT , vT )

]
.

Assuming that A = CB̃S and B ≡ 1. Therefore, the price under the model (3.26) has the
following decomposition

Vt = CBS(t, St, vt)

+
1

8
Et
[∫ T

t

e−r(u−t)Γ̃2CBS(t,Xt, vt) d[M,M ]u

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃CBS(t,Xt, vt)σu d[W,M ]u

]
.

and it is equal to CSV (t, St, σ). Note that CBS(t,Xt, vt) = CB̃S(t,Xt, vt) and this equivalence
it maintained for any derivative with respects to the price.

Remark 4.1.13. The price decomposition formula under the model (3.19) was proved in
Alòs (2012).
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Remark 4.1.14. There are several di�erences between Alòs (2012) and Alòs (2003). In
Alòs (2012), the decomposition formula is derived with to respect the log-price, the volatility
structure is speci�ed using the Heston model and an approximation method is developed.

Remark 4.1.15. Notice that the decomposition of Example 4.1.6 and Corollary 4.1.12 are
the same. The decomposition is expressed with respect to the log-price or the price. Then,
it can be appreciated the following equivalence:

• ΛCBS(t, St, vt) = Λ̃CBS(t,Xt, vt),

• ΓCBS(t, St, vt) = Γ̃CBS(t,Xt, vt).

One may argue why we need to �nd a decomposition price with respect to the log-price
over the price process. The reasons for this are numerical and practical. On the one hand
it is easier to calculate all the derivatives of the decomposition and on the other hand, the
equivalence (4.7) is commutative with respect to the log-price, while the equivalence (4.6)
is not with respect to the price.

Another argument is why we need to calculate the decomposition with respect to the
variance. It seems strange at �rst sight, especially because the Black-Scholes-Merton for-
mula is expressed with respect to the volatility. If we want to calculate it with respect to
vt,

vt =

√
1

T − t

[
Mt −

∫ t

0

σ2
s ds

]
,

we need to calculate dvt. To do that calculation, we need to use the Itô formula,

dvt =

[
Mt −

∫ t
0
σ2
s ds

]
dt

2vt(T − t)2
+

dMt − σ2
t dt

2vt(T − t)
− d[M,M ]

4v3
t (T − t)2

=
dMt + (v2

t − σ2
t ) dt

2vt(T − t)
− d[M,M ]

4v3
t (T − t)2

.

In this formula, a new terms appears

− d[M,M ]

4v3
t (T − t)2

,

which is not possible to compensate in Theorems 4.1.2 or Corollary 4.1.8. Therefore, an
extra terms appears.

We have found exact decompositions formulae to express the call option price under
a stochastic volatility framework. Despite this, the new conditional expectations are not
possible to evaluate analytically. Consequently, we will have to apply a numerical method
to approximate those terms. For this reason, the decomposition formula with respect to
the volatility process, which has an additional term, may not be a good idea, considering
that we will have to approximate an additional term and that might increase the error of
the approximation formula.
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4.2 Approximation formula

In the previous section, two di�erent decomposition formulas have been obtained; one
concerning the price process, model (3.15), and the other concerning the log-price process,
model (3.19). Unfortunately, although the decomposition formula is very compact, it is
not analytically tractable. Therefore, numerical methods must be applied to calculate it.
Following the ideas of Alòs (2012) and Alòs et al. (2015), an approximation formula can
be constructed by recursively using Corollary 4.1.3 or 4.1.10 for each term. Using it, by Itô
calculus, we can `freeze' the Black-Scholes-Merton derivative and take the derivative out
of the conditional expectation. By doing so, an approximation formula can be obtained,
but to measure the error of the approximation, a volatility structure must be de�ned.

Recall Corollary 4.1.12 (or Example 4.1.6). The following decomposition formula is
obtained for any stochastic volatility model where the price process follows a lognormal
dynamics:

Vt = CBS(t,Xt, vt)

+
1

8
Et
[∫ T

t

e−r(u−t)Γ̃2CBS(u,Xu, vu) d[M,M ]u

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃CBS(u,Xu, vu)σu d[W,M ]u

]
= CBS(t, St, vt) + (I) + (II).

As it has been stated previously, the terms (I) and (II) are not easy to evaluate. If we
can �nd simpler estimates of those terms and control the error, then we will �nd a valid
approximation formula. We show in the following Corollary, how it can be done.

Corollary 4.2.1 (1st Approximation Formula under SV model). Let Xt be the log-price
de�ned in (3.19). Then, the call option fair value Vt can be expressed using the processes
L[X, Y ]t and D[X, Y ]t de�ned by (3.38) and (3.39), respectively. In particular,

Vt = CBS(t, St, vt)

+
1

8
Γ̃2CBS(t,Xt, vt)Et

[∫ T

t

e−r(u−t) d[M,M ]u

]
+

ρ

2
Λ̃Γ̃CBS(t,Xt, vt)Et

[∫ T

t

e−r(u−t)σu d[W,M ]u

]
+ εt

where εt is the error term which is given by

εt =
ρ2

4
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃2CBS(u,Xu, vu)L[W,M ]uσu d[W,M ]u

]
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+
ρ

16
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃3CBS(u,Xu, vu)L[W,M ]u d[M,M ]u

]
+

ρ2

2
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃CBS(u,Xu, vu)σu d[W,L[W,M ]]u

]
+

ρ

4
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃2CBS(u,Xu, vu) d[M,L[W,M ]]u

]
+

ρ

16
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃3CBS(u,Xu, vu)D[M,M ]uσu d[W,M ]u

]
+

1

64
Et
[∫ T

t

e−r(u−t)Γ̃4CBS(u,Xu, vu)D[M,M ]u d[M,M ]u

]
+

ρ

8
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃2CBS(u,Xu, vu)σu d[W,D[M,M ]]u

]
+

1

16
Et
[∫ T

t

e−r(u−t)Γ̃3CBS(u,Xu, vu) d[M,D[M,M ]]u

]
.

that depends on the volatility structure.

Proof. The main idea in the proof is to apply the Corollary 4.1.10 to the terms (I) and (II)
in a smart way.

The term (I) is decomposed using Corollary 4.1.10 with At = Λ̃Γ̃CBS(t,Xt, vt) and
Bt = ρ

2
L[W,M ]t. This gives

(I) =
ρ

2
Λ̃Γ̃CBS(t,Xt, vt)L[W,M ]t (4.8)

+
ρ2

4
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃2CBS(u,Xu, vu)L[W,M ]uσu d[W,M ]u

]
+

ρ

16
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃3CBS(u,Xu, vu)L[W,M ]u d[M,M ]u

]
+

ρ2

2
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃CBS(u,Xu, vu)σu d[W,L[W,M ]]u

]
+

ρ

4
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃2CBS(u,Xu, vu) d[M,L[W,M ]]u

]
.

Applying the same idea to the term (II) and choosing At = Γ2CBS(t,Xt, vt) and Bt =
1
8
D[M,M ]t, we obtain

(II) =
1

8
Γ̃2CBS(t,Xt, vt)D[M,M ]t (4.9)

+
ρ

16
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃3CBS(u,Xu, vu)D[M,M ]uσu d[W,M ]u

]
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+
1

64
Et
[∫ T

t

e−r(u−t)Γ̃4CBS(u,Xu, vu)D[M,M ]u d[M,M ]u

]
+

ρ

8
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃2CBS(u,Xu, vu)σu d[W,D[M,M ]]u

]
+

1

16
Et
[∫ T

t

e−r(u−t)Γ̃3CBS(u,Xu, vu) d[M,D[M,M ]]u

]
.

An analogous representation can be found with respect to the price process. In the
following chapters, as the derivatives with respect to the log-price process are easier to
calculate, we are going to focus on developing formulae with respect to the log-price.



CHAPTER 5

The Heston model

The Heston model, Heston (1993), is an industry-standard model which can explain the
volatility surface observed in the market. This is a stochastic volatility model and therefore
there are two sources of randomness, in contrast to the Black-Scholes-Merton model, where
volatility is constant and there is only one source of randomness. The Heston model stands
out from the class of stochastic volatility models mainly for two reasons. Firstly, the process
for the volatility is mean-reverting, which is what we observe in the markets. Secondly,
there exists a semi-analytical solution for European options. Several methods have been
developed to improve the accuracy and the computational time to compute option prices,
most of them using Fourier transformations. For example: Heston (1993); Lewis (2000);
Kahl and Jäckel (2005); Fang and Oosterlee (2009); Ortiz-Gracia and Oosterlee (2016)
among others. For a summary of methods for pricing and calibrating the Heston model,
see Mrázek and Pospí²il (2017). We are interested in the approach taken by Alòs (2012)
and Alòs et al. (2015).

In Alòs (2012) and Alòs et al. (2015), an approximation formula for option prices
was developed based on the decomposition formulae explained in the previous chapter. In
Gulisashvili et al. (2020), the approximation formulae are expanded in di�erent orders,
improving its numerical e�ciency. The new expression is a Taylor-type formula containing
an in�nite series with stochastic terms. The results obtained are applied to the Heston
model and its numerical e�ciency is studied. We will focus on a decomposition using the
log-price process as was mentioned at the end of the previous chapter.

5.1 Auxiliary lemmas

We will need several results from Alòs et al. (2015) and Gulisashvili et al. (2020) in the
proofs. Recall that the following notation will be used in the sequel:

ϕ(t) :=

∫ T

t

e−κ(z−t) dz =
1

κ

(
1− e−κ(T−t)) .

The next statements, Lemmas 5.1.1-5.1.5, are true under the Heston model. Lemmas
5.1.1-5.1.2 are proven in Alòs et al. (2015) and Lemmas 5.1.3-5.1.5 are straightforward.

67
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Lemma 5.1.1. In the Heston model, the following results are valid

1. If s ≥ t, then

Et(σ2
s) = θ + (σ2

t − θ)e−κ(s−t) = σ2
t e
−κ(s−t) + θ(1− e−κ(s−t)).

In particular, the previous quantity is bounded from below by σ2
t ∧ θ and from above

by σ2
t ∨ θ.

2. Et
(∫ T

t
σ2
s ds

)
= θ (T − t) +

σ2
t−θ
κ

(
1− e−κ(T−t)) .

3. dMt = νσtϕ(t) dWt.

4. ρ
2
L[W,M ]t := ρ

2
Et

(∫ T
t
σsd 〈M,W 〉s

)
= ρ

2
ν
∫ T
t
Et (σ2

s)
(∫ T

s
e−κ(u−s) du

)
ds

=
ρν

2κ2

{
θκ (T − t)− 2θ + σ2

t + e−κ(T−t) (2θ − σ2
t

)
− κ (T − t) e−κ(T−t) (σ2

t − θ
)}
.

5. 1
8
D[M,M ]t := 1

8
Et

(∫ T
t
d 〈M,M〉s

)
= 1

8
ν2
∫ T
t
Et (σ2

s)
(∫ T

s
e−κ(u−s) du

)2

ds

=
ν2

8κ2

{
θ (T − t) +

(σ2
t − θ)
κ

(
1− e−κ(T−t))

−2θ

κ

(
1− e−κ(T−t))− 2

(
σ2
t − θ

)
(T − t) e−κ(T−t)

+
θ

2κ

(
1− e−2κ(T−t))+

(σ2
t − θ)
κ

(
e−κ(T−t) − e−2κ(T−t))} .

6. ρ
2

dL[W,M ]t = ρν2

2

(∫ T
t
e−κ(z−t)ϕ(z) dz

)
σt dWt − ρν

2
ϕ(t)σ2

t dt.

7. 1
8

dD[M,M ]t = ν3

8

(∫ T
t
e−κ(z−t)ϕ(z)2 dz

)
σt dWt − ν2

8
ϕ(t)2σ2

t dt.

In the following statement, lower bounds are provided for the adapted projection of the
future integrated variance.

Lemma 5.1.2. For every s ∈ [0, T ],

(i)
∫ T
s
Es(σ

2
u) du ≥ θκ

2
ϕ(s)2.

(ii)
∫ T
s
Es (σ2

u) du ≥ σ2
sϕ(s).

To improve the approximation formula, we will need the following lemmas.
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Lemma 5.1.3. In the Heston model, the following formulas hold

L[W,L[W,M ]]t = Et
[∫ T

t

σu d[L[W,M ],W ]u

]
= ν2

∫ T

t

Et
[
σ2
u

](∫ T

u

e−κ(z−u)ϕ(z)dz

)
du

=
ν2

2κ3

{
2
[
σ2
t + θ (κτ − 3)

]
+ e−κτ

[
θ
(
κ2τ 2 + 4κτ + 6

)
− σ2

t

(
κ2τ 2 + 2κτ + 2

)]}

and

dL[W,L[W,M ]]t = ν3

[∫ T

t

(∫ T

u

e−κ(z−u)ϕ(z) dz

)
e−κ(u−t) du

]
σt dWt

− ν2

(∫ T

t

e−κ(z−t)ϕ(z) dz

)
σ2
t dt.

Similarly, the next lemma is used to increase the order of the approximation in the
proof of Theorem 5.3.4.

Lemma 5.1.4. The following equalities hold true in the Heston model

D[M,
1

8
D[M,M ]]t =

ν3

8

∫ T

t

Et
[
σ2
u

](∫ T

t

e−κ(z−u)ϕ(z)2 dz

)
du

=
ν3

16κ4

{
θ
[
(2κτ − 7) + 2e−κτ

(
κ2τ 2 + 2κτ + 4

)
− e−2κτ

]
− 2σ2

t e
−κτ
[
κ2τ 2 − 2cosh (κτ) + 2

]}
,

D[M,L[W,M ]]t = ν3

∫ T

t

Et
[
σ2
u

]
ϕ(u)

(∫ T

t

e−κ(z−t)ϕ(z) dz

)
du

=
ν3

4κ4

{
θ
[
2κτe−2κτ + (4κτ − 13)

+ 2e−κτ
(
κ2τ 2 + 6κτ + 4

)
+ 5e−2κτ

]
+ 2σ2

t

[
e−κτ

(
−κ2τ 2 − 4κτ + 2

)
− 2e−2κτ (κτ + 2) + 2

]}
,
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and

L[W,L[W,L[W,M ]]]t = ν3

∫ T

t

Et
[
σ2
u

](∫ T

u

(∫ T

s

e−κ(z−s)ϕ(z) dz

)
e−κ(s−u) ds

)
du

=
ν3e−κτ

6κ4

{
θ
[
6eκτ (κτ − 4) + κ3τ 3 + 6κ2τ 2 + 18κτ + 24

]
+ σ2

t

[
6eκτ − 6− κ3τ 3 − 3κ2τ 2 − 6κτ

]}
.

The statement formulated below is used to prove the decomposition formula when it is
assumed that the correlation coe�cient is equal to zero.

Lemma 5.1.5. The following equality holds in the Heston model

D[M,
1

8
D[M,M ]]t =

ν4

8

∫ T

t

Et
[
σ2
u

]
ϕ(u)

(∫ T

u

e−κ(z−u)ϕ(z)2 dz

)
du

=
ν4

48κ5

{
θ
[
3e−κτ

(
2κ2τ 2 + 6κτ + 5

)
+ 6e−2κτ (κτ + 1) + (6κτ − 22) + e−3κτ

]
+ 3σ2

t

[
e−κτ

(
−2κ2τ 2 − 2κτ + 1

)
− 2e−2κτ (2κτ + 1) + 2− e−3κτ

]}
and

dD[M,
1

8
D[M,M ]]t =

ν5σt
8

dWt

∫ T

t

e−κ(u−t)ϕ(u)

(∫ T

u

e−κ(z−u)ϕ(z)2 dz

)
du

− ν4

8
σ2
tϕ(t)

(∫ T

t

e−κ(z−t)ϕ(z)2 dz

)
dt.

5.2 Original approximation formula for the Heston Model

In Alòs (2012), an approximation formula with a general error term was obtained for call
option prices in the Heston model. This error term was quanti�ed in Alòs et al. (2015),
where it was shown that the error term has the form O(ν2 (|ρ|+ ν)2). In the following
theorem, we prove this upper-bound for the Heston model approximation formula.

Theorem 5.2.1 (1st General Approximation Formula for the Heston Model). Let St be
the price process de�ned in (3.22) and taking into account the change Xt = log(St). Then,
we can express the call option fair value Vt using processes L[X, Y ]t and D[X, Y ]t de�ned
by (3.38) and (3.39), respectively. In particular,

Vt = CBS(t,Xt, vt)
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+
ρ

2
Λ̃Γ̃CBS(u,Xu, vu)L[W,M ]t

+
1

8
Γ̃2CBS(u,Xu, vu)D[M,M ]t

+ εt

where εt is the error term satisfying

|εt| ≤
(
ν2 (|ρ|+ ν)2)(1

r
∧ (T − t)

)
Π(κ, θ),

and Π(κ, θ) is a positive constant depending on κ and θ.

Proof. Using formula (4.8), it is obtained

(I) =
ρν

2
Λ̃Γ̃CBS(t,Xt, vt)

(∫ T

t

Et
(
σ2
s

)
ϕ(s) ds

)
(5.1)

+
ρ2ν2

4
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃2CBS(u,Xu, vu)

(∫ T

u

Eu
(
σ2
s

)
ϕ(s) ds

)
σ2
uϕ(u) du

]
+

ρν3

16
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃3CBS(u,Xu, vu)

(∫ T

u

Eu
(
σ2
s

)
ϕ(s) ds

)
σ2
uϕ(u)2 du

]
+

ρ2ν2

2
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃CBS(u,Xu, vu)

(∫ T

u

e−κ(z−u)ϕ(z) dz

)
σ2
u du

]
+

ρν3

4
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃2CBS(u,Xu, vu)

(∫ T

u

e−κ(z−u)ϕ(z) dz

)
σ2
uϕ(u) du

]
= Λ̃Γ̃CBS(t,Xt, vt)L[W,M ]t + (I.I) + (I.II) + (I.III) + (I.IV ).

Applying Lemma 3.1.10 (ii) and the equivalence au = vu
√
T − u, then∣∣∣∣(I)− ρν

2
Λ̃Γ̃CBS(t,Xt, vt)

(∫ T

t

Et
(
σ2
s

)
ϕ(s) ds

)∣∣∣∣
≤ ρ2ν2

4
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
1

a4
u

)(∫ T

u

Eu
(
σ2
s

)
ϕ(s) ds

)
σ2
uϕ(u) du

]
+
|ρ| ν3

16
Et
[∫ T

t

e−r(u−t)
(

1

a6
u

+
2

a5
u

+
1

a4
u

)(∫ T

u

Eu
(
σ2
s

)
ϕ(s) ds

)
σ2
uϕ(u)2 du

]
+

ρ2ν2

2
Et
[∫ T

t

e−r(u−t)
1

a3
u

(∫ T

u

e−κ(z−u)ϕ(z) dz

)
σ2
u du

]
+
|ρ| ν3

4
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
1

a3
u

)(∫ T

u

e−κ(z−u)ϕ(z) dz

)
σ2
uϕ(u) du

]
.

Using that ϕ(t) is a decreasing function,∣∣∣∣(I)− ρν

2
Λ̃Γ̃CBS(t,Xt, vt)

(∫ T

t

Et
(
σ2
s

)
ϕ(s) ds

)∣∣∣∣
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≤ ρ2ν2

4
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
1

a4
u

)(∫ T

u

Eu
(
σ2
s

)
ds

)
σ2
uϕ(u)2 du

]
+
|ρ| ν3

16
Et
[∫ T

t

e−r(u−t)
(

1

a6
u

+
2

a5
u

+
1

a4
u

)(∫ T

u

Eu
(
σ2
s

)
ds

)
σ2
uϕ(u)3 du

]
+

ρ2ν2

2
Et
[∫ T

t

e−r(u−t)
1

a3
u

ϕ(u)2σ2
u du

]
+
|ρ| ν3

4
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
1

a3
u

)
σ2
uϕ(u)3 du

]
.

Lemma 5.1.2 (ii), gives σ2
t ≤

a2t
ϕ(t)

, therefore∣∣∣∣(I)− ρν

2
Λ̃Γ̃CBS(t,Xt, vt)

(∫ T

t

Et
(
σ2
s

)
ϕ(s) ds

)∣∣∣∣
≤ ρ2ν2

4
Et
[∫ T

t

e−r(u−t)
(

1

au
+ 1

)
ϕ(u) du

]
+
|ρ| ν3

16
Et
[∫ T

t

e−r(u−t)
(

1

a2
u

+
2

au
+ 1

)
ϕ(u)2 du

]
+

ρ2ν2

2
Et
[∫ T

t

e−r(u−t)
1

au
ϕ(u) du

]
+
|ρ| ν3

4
Et
[∫ T

t

e−r(u−t)
(

1

a2
u

+
1

au

)
ϕ(u)3 du

]
.

Moreover, Lemma 5.1.2 (i) implies that that at ≥
√
θκ√
2
ϕ(t) and∣∣∣∣(I)− ρν

2
Λ̃Γ̃CBS

(∫ T

t

Et
(
σ2
s

)
ϕ(s) ds

)∣∣∣∣
≤ ρ2ν2

4

[∫ T

t

e−r(u−t)

(
3
√

2√
θκϕ(u)

+ 1

)
ϕ(u) du

]

+
|ρ| ν3

16

[∫ T

t

e−r(u−t)

(
2 (1 + 4ϕ(u))

θκϕ(u)2
+

2
√

2 (1 + 2ϕ(u))√
θκϕ(u)

+ 1

)
ϕ(u)2 du

]

+
|ρ| ν3

4

[∫ T

t

e−r(u−t)

(
2

θκϕ(u)2
+

√
2√

θκϕ(u)

)
ϕ(u)3 du

]
.

Next, using the estimate ϕ(t) ≤ 1
κ
, we obtain

∣∣∣∣(I)− ρν

2
Λ̃Γ̃CBS(t,Xt, vt)

(∫ T

t

Et
(
σ2
s

)
ϕ(s) ds

)∣∣∣∣
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≤ ρ2ν2

4κ

(
3
√

2κ√
θ

+ 1

)[∫ T

t

e−r(u−t) du

]

+
|ρ| ν3

16κ3

(
2κ(κ+ 4)

θ
+

2
√

2κ(κ+ 2)√
θ

+ κ

)[∫ T

t

e−r(u−t) du

]
.

Following the process with the term (II), using formula (4.9), we see

(II) = Γ̃2CBS(t,Xt, vt)

(∫ T

t

Et
(
σ2
s

)
ϕ(s)2 ds

)
(5.2)

+
ν4

64
Et
[∫ T

t

e−r(u−t)Γ̃4CBS(u,Xu, vu)

(∫ T

u

Eu
(
σ2
s

)
ϕ(s)2 ds

)
σ2
uϕ

2(u) du

]
+

ρν3

16
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃3CBS(u,Xu, vu)

(∫ T

u

Eu
(
σ2
s

)
ϕ(s)2 ds

)
σ2
uϕ(u) du

]
+

ρν3

8
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃2CBS(u,Xu, vu)

(∫ T

u

e−κ(z−u)ϕ(z)2 dz

)
σ2
u du

]
+

ν4

16
Et
[∫ T

t

e−r(u−t)Γ̃3CBS(u,Xu, vu)

(∫ T

u

e−κ(z−u)ϕ(z)2 dz

)
ϕ(u)σ2

u du

]
= Γ̃2CBS(t,Xt, vt)D[M,M ]t + (II.I) + (II.II) + (II.III) + (II.IV ).

Applying Lemma 3.1.10 (ii) and the equivalence au = vu
√
T − u, then∣∣∣∣(II)− Γ̃2CBS(t,Xt, vt)

(∫ T

t

Et
(
σ2
s

)
ϕ(s)2 ds

)∣∣∣∣
≤ ν4

64
Et
[∫ T

t

e−r(u−t)
(

1

a7
u

+
3

a6
u

+
3

a5
u

+
1

a4
u

)(∫ T

u

Eu
(
σ2
s

)
ϕ(s)2 ds

)
σ2
uϕ

2(u) du

]
+
|ρ| ν3

16
Et
[∫ T

t

e−r(u−t)
(

1

a6
u

+
2

a5
u

+
1

a4
u

)(∫ T

u

Eu
(
σ2
s

)
ϕ(s)2 ds

)
σ2
uϕ(u) du

]
+
|ρ| ν3

8
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
1

a3
u

)(∫ T

u

e−κ(z−u)ϕ(z)2 dz

)
σ2
u du

]
+

ν4

16
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
2

a4
u

+
1

a3
u

)(∫ T

u

e−κ(z−u)ϕ(z)2 dz

)
ϕ(u)σ2

u du

]
.

Using that ϕ(t) is a decreasing function,∣∣∣∣(II)− Γ̃2CBS(t,Xt, vt)

(∫ T

t

Et
(
σ2
s

)
ϕ(s)2 ds

)∣∣∣∣
≤ ν4

64
Et
[∫ T

t

e−r(u−t)
(

1

a7
u

+
3

a6
u

+
3

a5
u

+
1

a4
u

)(∫ T

u

Eu
(
σ2
s

)
ds

)
σ2
uϕ(u)4 du

]
+
|ρ| ν3

16
Et
[∫ T

t

e−r(u−t)
(

1

a6
u

+
2

a5
u

+
1

a4
u

)(∫ T

u

Eu
(
σ2
s

)
ds

)
σ2
uϕ(u)3 du

]
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+
|ρ| ν3

8
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
1

a3
u

)
σ2
uϕ(u)3 du

]
+

ν4

16
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
2

a4
u

+
1

a3
u

)
σ2
uϕ(u)4 du

]
.

Lemma 5.1.2 (ii), gives σ2
t ≤

a2t
ϕ(t)

, so∣∣∣∣(II)− Γ̃2CBS(t,Xt, vt)

(∫ T

t

Et
(
σ2
s

)
ϕ(s)2 ds

)∣∣∣∣
≤ ν4

64
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
3

a2
u

+
3

au
+ 1

)
ϕ(u)3 du

]
+
|ρ| ν3

16
Et
[∫ T

t

e−r(u−t)
(

1

a2
u

+
2

au
+ 1

)
ϕ(u)2 du

]
+
|ρ| ν3

8
Et
[∫ T

t

e−r(u−t)
(

1

a2
u

+
1

au

)
ϕ(u)2 du

]
+

ν4

16
Et
[∫ T

t

e−r(u−t)
(

1

a3
u

+
2

a2
u

+
1

au

)
ϕ(u)3 du

]
.

Moreover, Lemma 5.1.2 (i) implies that at ≥
√
θκ√
2
ϕ(t) and∣∣∣∣(II)− Γ2CBS(t,Xt, vt)

(∫ T

t

Et
(
σ2
s

)
ϕ(s)2 ds

)∣∣∣∣
≤ ν4

64

[∫ T

t

e−r(u−t)

(
4
√

2

θ2κ2
√
θκϕ(u)5

+
8
√

2

θκ
√
θκϕ(u)3

+
22

θκϕ(u)2
+

7
√

2√
θκϕ(u)

+ 1

)
ϕ(u)3 du

]

+
|ρ| ν3

16

[∫ T

t

e−r(u−t)

(
6

θκϕ(u)2
+

4
√

2√
θκϕ(u)

+ 1

)
ϕ(u)2 du

]
.

Next, using the estimate ϕ(t) ≤ 1
κ
, we observe∣∣∣∣(II)− Γ̃2CBS(t,Xt, vt)

(∫ T

t

Et
(
σ2
s

)
ϕ(s)2 ds

)∣∣∣∣
≤ ν4

64κ3

(
4κ2
√

2κ

θ2
√
θ

+
8κ
√

2κ

θ
√
θ

+
22κ

θ
+

7
√

2κ√
θ

+ 1

)[∫ T

t

e−r(u−t) du

]

+
|ρ| ν3

16κ2

(
6κ

θ
+

4
√

2κ√
θ

+ 1

)[∫ T

t

e−r(u−t) du

]
.
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Remark 5.2.2. Note the in Alòs (2012), Alòs et al. (2015), and Merino et al. (2018),
the above theorem is written in terms of the processes Ut and Rt. We have the following
equivalence

Ut =
ρ

2
L[W,M ]t and Rt =

1

8
D[M,M ]t. (5.3)

We have to change the notation to be able to generalise the process and improve it.

5.3 Higher order approximation formulas for the Heston

Model

In the above section, we have seen that the error term for the approximation of the Hes-
ton model has the form O(ν2 (|ρ|+ ν)2). However, in the above-mentioned approximation
formula, some terms of order ν2 were ignored, whereas other terms of the same order were
maintained. This may be considered as a drawback of the previous approximation formula.

We can improve this formula using Corollary 4.1.10 recursively to approximate the exact
call price decomposition obtained in Remark 4.1.12 by an in�nite series of stochastic terms.
The �rst two terms in the new expansion are the same as in Theorem 5.2.1. Moreover, our
result is consistent with the one obtained in Alòs et al. (2020), but presented and obtained
in a di�erent way. Using the new general approximation formula in the case of the Heston
model, we add two more signi�cant terms to the above-mentioned expansion, to reach an
error of the form O(ν3(|ρ| + ν)) (see Theorem 5.3.3), and seven more signi�cant terms to
obtain an error estimate of the form O(ν4 (1 + |ρ|ν)) (see Theorem 5.3.4). In the particular
case of zero correlation, we derive an approximation formula with four terms with an error
of order O(ν6).

We will next explain how to get an in�nite expansion of the call price Vt. The starting
point in the construction of an in�nite expansion of Vt is the formula in Corollary 4.1.10.
In the previous section, Corollary 4.1.10 was applied to the main terms of Remark 4.1.12.
Only the main two terms in the expansion were maintained, while the remaining terms were
ignored. The main idea used is to apply Corollary 4.1.10 to each new term, obtaining an
in�nite series with stochastic terms. By selecting which terms to keep in the approximation
formula and which ones to discard, the approximation error can be controlled.

The process described above leads to the following expansion of Vt:

Vt = CBS(t,Xt, vt)

+ Λ̃Γ̃CBS(t,Xt, vt)
(ρ

2
L[W,M ]t

)
+

1

2
Λ̃2Γ̃2CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)2

+ Γ̃2CBS(t,Xt, vt)

(
1

8
D[M,M ]t

)
+

1

2
Γ̃4CBS(t,Xt, vt)

(
1

8
D[M,M ]t

)2

+ Λ̃Γ̃3CBS(t,Xt, vt)
(ρ

2
L[W,M ]t

)(1

8
D[M,M ]t

)
+ . . . (5.4)
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Note that it has some similarity to a Taylor-type formula, but is more complicated due
to the intrinsic stochastic component.

Remark 5.3.1. In Alòs et al. (2020), an exact representation of Vt is given in terms of a
forest of iterated integrals, also called diamonds. The expansion of the call price found in
the present section is equivalent to the one obtained in Alòs et al. (2020).

Remark 5.3.2. As mentioned above, the same representation can be found with respect to
the price process.

Theorem 5.3.3 (2nd order approximation formula). For every t ∈ [0, T ],

Vt = CBS(t,Xt, vt)

+ Γ̃2CBS(t,Xt, vt)

(
1

8
D[M,M ]t

)
+ Λ̃Γ̃CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)
+

1

2
Λ̃2Γ̃2CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)2

+ ρΛ̃2Γ̃CBS(t,Xt, vt)L[W,
ρ

2
L[W,M ]]t

+ εt,

where εt is the error term satisfying

|εt| ≤ ν3
(
|ρ|+ |ρ|3 + ν

)(1

r
∧ (T − t)

)
Π(κ, θ),

and Π(κ, θ) is a positive constant depending on κ and θ.

Proof. The main idea is to apply Corollary 4.1.10 to the call price formula iteratively. We
also apply this corollary to the new terms that appear in the iterative procedure, and
incorporate all the terms of order O(ν3) into the error term.

The starting point are the expressions 5.1 and 5.2.

An upper bound for the term (I).

The idea now is to discard terms of order O(ν3), and apply Corollary 4.1.10 to the
terms of smaller order.

Upper bounds for the terms (I.II) and (I.IV).

First, we note that the terms (I.II) and (I.IV) are of order O(ν3). Therefore, those terms
can be incorporated into the error term. Then,

(I.II) + (I.IV ) =
ρν3

16
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃3CBS(u,Xu, vu)

(∫ T

u

Eu
(
σ2
s

)
ϕ(s) ds

)
σ2
uϕ(u)2 du

]
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+
ρν3

4
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃2CBS(u,Xu, vu)

(∫ T

u

e−κ(z−u)ϕ(z) dz

)
σ2
uϕ(u) du

]
.

Next, using Lemma 3.1.10 (ii), au = vu
√
T − u and the fact that ϕ(t) is a decreasing

function, we obtain

|(I.II) + (I.IV )|

≤ C
ρν3

16
Et
[∫ T

t

e−r(u−t)
(

1

a6
u

+
2

a5
u

+
1

a4
u

)(∫ T

u

Eu
(
σ2
s

)
ds

)
σ2
uϕ(u)3 du

]
+ C

ρν3

4
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
1

a3
u

)
σ2
uϕ

3(u) du

]
.

It follows from Lemma 5.1.2 (ii) that σ2
t ≤

a2t
ϕ(t)

. Hence

|(I.II) + (I.IV )| ≤ C
ρν3

16
Et
[∫ T

t

e−r(u−t)
(

5

a2
u

+
6

au
+ 1

)
ϕ(u)2 du

]
.

Now, Lemma 5.1.2 (i) implies that at ≥
√
θκ√
2
ϕ(t) and

|(I.II) + (I.IV )| ≤ C
ρν3

16

[∫ T

t

e−r(u−t)

(
10

θκ
+

6
√

2ϕ(u)√
θκ

+ ϕ(u)2

)
du

]
.

Finally, using the estimate ϕ(t) ≤ 1
κ
, we see that

|(I.II) + (I.IV )| ≤ C
ρν3

16

(
10

θκ
+

6
√

2

κ
√
θκ

+
1

κ2

)[∫ T

t

e−r(u−t) du

]
.

An upper bound for the term (I.I).

Here, we note that the term (I.I) is of the order O(ν2). Therefore, in order to improve
the approximation, we should apply Corollary 4.1.10 to this term. Choosing

At = Λ2Γ̃2CBS(t,Xt, vt) and B =
1

2

(ρ
2
L[W,M ]t

)2

,

we observe that∣∣∣∣(I.I)− 1

2
Λ̃2Γ̃2CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)2
∣∣∣∣

=
νρ3

16
Et
[∫ T

t

e−r(u−t)Λ̃3Γ̃3CBS(u,Xu, vu)L
2[W,M ]uσ

2
uϕ(u) du

]
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+
ρ2ν2

64
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃4CBS(u,Xu, vu)L
2[W,M ]uσ

2
uϕ

2(u) du

]
+

ρ3ν2

8
Et
[∫ T

t

e−r(u−t)Λ̃3Γ̃2CBS(u,Xu, vu)L[W,M ]uσ
2
u

(∫ T

u

e−κ(z−u)ϕ(z) dz

)
du

]
+

ν3ρ2

16
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃3CBS(u,Xu, vu)L[W,M ]uσ
2
uϕ(u)

(∫ T

u

e−κ(z−u)ϕ(z) dz

)
du

]
+

ρ2ν4

8
Et

[∫ T

t

e−r(u−t)Λ̃2Γ̃2CBS(u,Xu, vu)

(∫ T

u

e−κ(z−u)ϕ(z) dz

)2

σ2
u du

]
.

Note that L[W,M ]t ≤ νa2
tϕ(t). It follows that∣∣∣∣(I.I)− 1

2
Λ̃2Γ̃2CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)2
∣∣∣∣

≤ ν3ρ3

16
Et
[∫ T

t

e−r(u−t)
(
∂7
x − 2∂6

x + ∂5
x

)
Γ̃CBS(u,Xu, vu)a

4
uϕ

3(u)σ2
u du

]
+

ρ2ν4

64
Et
[∫ T

t

e−r(u−t)
(
∂8
x − 3∂7

x + 3∂6
x − ∂5

x

)
Γ̃CBS(u,Xu, vu)a

4
uϕ

4(u)σ2
u du

]
+

ρ3ν3

8
Et
[∫ T

t

e−r(u−t)
(
∂5
x − ∂4

x

)
Γ̃CBS(u,Xu, vu)a

2
uϕ

3(u)σ2
u du

]
+

ν4ρ2

16
Et
[∫ T

t

e−r(u−t)
(
∂6
x − 2∂5

x + ∂4
x

)
Γ̃CBS(u,Xu, vu)a

2
uϕ

4(u)σ2
u du

]
+

ρ2ν4

8
Et
[∫ T

t

e−r(u−t)
(
∂4
x − ∂3

x

)
Γ̃CBS(u,Xu, vu)ϕ

4(u)σ2
u du

]
.

Next, using Lemma 3.1.10 (ii), we see that∣∣∣∣(I.I)− 1

2
Λ̃2Γ̃2CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)2
∣∣∣∣

≤ Cν3ρ3

16
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
2

a3
u

+
1

a2
u

)
ϕ3(u)σ2

u du

]
+

Cρ2ν4

64
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
3

a4
u

+
3

a3
u

+
1

a2
u

)
ϕ4(u)σ2

u du

]
+

Cρ3ν3

8
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
1

a3
u

)
ϕ3(u)σ2

u du

]
+

Cν4ρ2

16
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
2

a4
u

+
1

a3
u

)
ϕ4(u)σ2

u du

]
+

Cρ2ν4

8
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
1

a4
u

)
ϕ4(u)σ2

u du

]
.
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Now, Lemma 5.1.2 (ii) implies that σ2
t ≤

a2t
ϕ(t)

and∣∣∣∣(I.I)− 1

2
Λ̃2Γ̃2CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)2
∣∣∣∣

≤ Cν3ρ3

16
Et
[∫ T

t

e−r(u−t)
(

3

a2
u

+
4

au
+ 1

)
ϕ2(u) du

]
+

Cρ2ν4

64
Et
[∫ T

t

e−r(u−t)
(

13

a3
u

+
19

a2
u

+
7

au
+ 1

)
ϕ3(u) du

]
.

Moreover, Lemma 5.1.2 gives at ≥
√
θκ√
2
ϕ(t) and∣∣∣∣(I.I)− 1

2
Λ̃2Γ̃2CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)2
∣∣∣∣

≤ Cν3ρ3

16

[∫ T

t

e−r(u−t)

(
6

θκ
+

4
√

2ϕ(u)√
θκ

+ ϕ2(u)

)
du

]

+
Cρ2ν4

64

[∫ T

t

e−r(u−t)

(
26
√

2

θκ
√
θκ

+
38ϕ2(u)

θκ
+

7
√

2ϕ2(u)√
θκ

+ ϕ3(u)

)
du

]
.

Finally, using the estimate ϕ(t) ≤ 1
κ
, we obtain∣∣∣∣(I.I)− 1

2
Λ̃2Γ̃2CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)2
∣∣∣∣

≤ Cν3ρ3

16

(
6

θκ
+

4
√

2

κ
√
θκ

+
1

κ2

)[∫ T

t

e−r(u−t) du

]

+
Cρ2ν4

64

(
26
√

2

θκ
√
θκ

+
38

θκ3
+

7
√

2

κ3
√
θκ

+
1

κ3

)[∫ T

t

e−r(u−t) du

]
.

An upper bound for the term (I.III).

The term (I.III) is of order O(ν2), and it has to be taken into account in the approxi-
mation. Here we apply Corollary 4.1.10 with

At = Λ̃2Γ̃CBS(t,Xt, vt) and B = ρL[W,
ρ

2
L[W,M ]]t.

Then, we see that∣∣∣(I.III)− ρΛ̃2Γ̃CBS(t,Xt, vt)L[W,
ρ

2
L[W,M ]]t

∣∣∣
=

ρ3ν

4
Et
[∫ T

t

e−r(u−t)Λ̃3Γ̃2CBS(u,Xu, vu)L[W,L[W,M ]]uσ
2
uϕ(u) du

]
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+
ρ2ν2

16
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃3CBS(u,Xu, vu)L[W,L[W,M ]]uσ
2
uϕ

2(u) du

]
+

ρ3ν3

4
Et
[∫ T

t

e−r(u−t)Λ̃3Γ̃CBS(u,Xu, vu)σ
2
u

(∫ T

u

(∫ T

s

e−κ(z−s)ϕ(z)dz

)
e−κ(s−u) ds

)
du

]
+

ρ2ν4

8
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃2CBS(u,Xu, vu)σ
2
uϕ(u)

(∫ T

u

(∫ T

s

e−κ(z−s)ϕ(z)dz

)
e−κ(s−u) ds

)
du

]
.

It is easy to see that L[W,L[W,M ]]t = ν2a2
tϕ

2(t). It follows that∣∣∣(I.III)− ρΛ̃2Γ̃CBS(t,Xt, vt)L[W,
ρ

2
L[W,M ]]t

∣∣∣
≤ ρ3ν3

4
Et
[∫ T

t

e−r(u−t)
(
∂5
x − ∂3

x

)
Γ̃CBS(u,Xu, vu)a

2
uϕ

3(u)σ2
u du

]
+

ρ2ν4

16
Et
[∫ T

t

e−r(u−t)
(
∂6
x − 2∂5

x + ∂4
x

)
Γ̃CBS(u,Xu, vu)a

2
uϕ

4(u)σ2
u du

]
+

ρ3ν3

4
Et
[∫ T

t

e−r(u−t)∂3
xΓ̃CBS(u,Xu, vu)σ

2
uϕ

3(u) du

]
+

ρ2ν4

8
Et
[∫ T

t

e−r(u−t)
(
∂4
x − ∂3

x

)
Γ̃CBS(u,Xu, vu)σ

2
uϕ

4(u) du

]
.

Next, using Lemma 3.1.10 (ii),∣∣∣(I.III)− ρΛ̃2Γ̃CBS(t,Xt, vt)L[W,
ρ

2
L[W,M ]]t

∣∣∣
≤ Cρ3ν3

4
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
1

a2
u

)
ϕ3(u)σ2

u du

]
+

Cρ2ν4

16
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+ 2
1

a4
u

+
1

a3
u

)
ϕ4(u)σ2

u du

]
+

Cρ3ν3

4
Et
[∫ T

t

e−r(u−t)
1

a4
u

σ2
uϕ

3(u) du

]
+

Cρ2ν4

8
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
1

a4
u

)
σ2
uϕ

4(u) du

]
.

Now, Lemma 5.1.2 (ii), gives σ2
t ≤

a2t
ϕ(t)

and∣∣∣(I.III)− ρΛ̃2Γ̃CBS(t,Xt, vt)L[W,
ρ

2
L[W,M ]]t

∣∣∣
≤ Cρ3ν3

4
Et
[∫ T

t

e−r(u−t)
(

1

a2
u

+ 1

)
ϕ2(u) du

]
+

Cρ2ν4

16
Et
[∫ T

t

e−r(u−t)
(

1

a3
u

+ 2
1

a2
u

+
1

a1
u

)
ϕ3(u) du

]
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+
Cρ3ν3

4
Et
[∫ T

t

e−r(u−t)
1

a2
u

ϕ2(u) du

]
+

Cρ2ν4

8
Et
[∫ T

t

e−r(u−t)
(

1

a3
u

+
1

a2
u

)
ϕ3(u) du

]
.

Moreover, Lemma 5.1.2 (i) implies that at ≥
√
θκ√
2
ϕ(t) and∣∣∣(I.III)− ρΛ̃2Γ̃CBS(t,Xt, vt)L[W,
ρ

2
L[W,M ]]t

∣∣∣
≤ Cρ3ν3

4

[∫ T

t

e−r(u−t)
(

2

θκϕ(u)
+ 1

)
ϕ2(u) du

]
+

Cρ2ν4

16

[∫ T

t

e−r(u−t)

(
2
√

2

θκ
√
θκϕ2(u)

+
4

θκϕ(u)
+

√
2√
θκ

)
ϕ2(u) du

]

+
Cρ3ν3

4

[∫ T

t

e−r(u−t)
2

θκ
du

]
+

Cρ2ν4

8

[∫ T

t

e−r(u−t)

(
2
√

2

θκ
√
θκϕ(u)

+
2

θκ

)
ϕ(u) du

]
.

Next, using the estimate ϕ(t) ≤ 1
κ
, we observe∣∣∣(I.III)− ρΛ̃2Γ̃CBS(t,Xt, vt)L[W,

ρ

2
L[W,M ]]t

∣∣∣
≤ Cρ3ν3

4

[∫ T

t

e−r(u−t)
(

2

θ
+ 1

)
1

κ2
du

]
+

Cρ2ν4

16

[∫ T

t

e−r(u−t)

(
2
√

2κ

θ
√
θ

+
4

θ
+

√
2√
θκ

)
1

κ2
du

]

+
Cρ3ν3

4

[∫ T

t

e−r(u−t)
2

θκ
du

]
+

Cρ2ν4

8

[∫ T

t

e−r(u−t)

(
2
√

2

θ
√
θκ

+
2

θκ

)
1

κ
du

]
.

Therefore ∣∣∣(I.III)− ρΛ̃2Γ̃CBS(t,Xt, vt)L[W,
ρ

2
L[W,M ]]t

∣∣∣
≤ Cρ3ν3

4κ2

(
2κ+ 2

θ
+ 1

)[∫ T

t

e−r(u−t) du

]
+

Cρ2ν4

16κ2

(
6
√

2κ

θ
√
θ

+
8

θ
+

√
2√
θκ

)[∫ T

t

e−r(u−t) du

]
.

An upper bound for the term (II).
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In this case, all the terms can be incorporated into the error term. Using the fact that
ϕ(t) is a decreasing function, then∣∣∣(II)− Γ̃2CBS(t,Xt, vt)D[M,M ]t

∣∣∣
≤ ν4

64
Et
[∫ T

t

e−r(u−t)
(
∂6
x − 3∂5

x + 3∂4
x − ∂3

x

)
Γ̃CBS(u,Xu, vu)a

2
uσ

2
uϕ

4(u) du

]
+

ρν3

16
Et
[∫ T

t

e−r(u−t)
(
∂5
x − 2∂4

x + ∂3
x

)
Γ̃CBS(u,Xu, vu)a

2
uσ

2
uϕ

3(u) du

]
+

ρν3

8
Et
[∫ T

t

e−r(u−t)
(
∂3
x − ∂2

x

)
Γ̃CBS(u,Xu, vu)σ

2
uϕ(u)3 du

]
+

ν4

16
Et
[∫ T

t

e−r(u−t)
(
∂4
x − 2∂3

x + ∂2
x

)
Γ̃CBS(u,Xu, vu)ϕ

4(u)σ2
u du

]
.

Next, using Lemma 3.1.10 (ii) and using au = vu
√
T − u,∣∣∣(II)− Γ̃2CBS(t,Xt, vt)D[M,M ]t

∣∣∣
≤ Cν4

64
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
3

a4
u

+
3

a3
u

+
1

a2
u

)
σ2
uϕ

4(u) du

]
+

Cρν3

16
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
2

a3
u

+
1

a2
u

)
σ2
uϕ

3(u) du

]
+

Cρν3

8
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
1

a3
u

)
σ2
uϕ(u)3 du

]
+

Cν4

16
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
2

a4
u

+
1

a3
u

)
ϕ4(u)σ2

u du

]
.

It follows from Lemma 5.1.2 (ii) that σ2
t ≤

a2t
ϕ(t)

and∣∣∣(II)− Γ̃2CBS(t,Xt, vt)D[M,M ]t

∣∣∣
≤ Cν4

64
Et
[∫ T

t

e−r(u−t)
(

1

a3
u

+
3

a2
u

+
3

au
+ 1

)
ϕ3(u) du

]
+

Cρν3

16
Et
[∫ T

t

e−r(u−t)
(

1

a2
u

+
2

au
+ 1

)
ϕ2(u) du

]
+

Cρν3

8
Et
[∫ T

t

e−r(u−t)
(

1

a2
u

+
1

au

)
ϕ2(u) du

]
+

Cν4

16
Et
[∫ T

t

e−r(u−t)
(

1

a3
u

+
2

a2
u

+
1

au

)
ϕ3(u) du

]
.

Therefore, Lemma 5.1.2 (i) gives at ≥
√
θκ√
2
ϕ(t) and∣∣∣(II)− Γ̃2CBS(t,Xt, vt)D[M,M ]t

∣∣∣



The Heston model 83

≤ Cν4

64

[∫ T

t

e−r(u−t)

(
2
√

2

θκ
√
θκϕ3(u)

+
6

θκϕ2(u)
+

3
√

2√
θκϕ(u)

+ 1

)
ϕ3(u) du

]

+
Cρν3

16

[∫ T

t

e−r(u−t)

(
2

θκϕ2(u)
+

2
√

2√
θκϕ(u)

+ 1

)
ϕ2(u) du

]

+
Cρν3

8

[∫ T

t

e−r(u−t)

(
2

θκϕ(u)
+

√
2√
θκ

)
ϕ(u) du

]

+
Cν4

16

[∫ T

t

e−r(u−t)

(
2
√

2

θκ
√
θκϕ2(u)

+
4

θκϕ(u)
+

√
2√
θκ

)
ϕ2(u) du

]
.

Finally, we observe that the estimate ϕ(t) ≤ 1
κ
implies that∣∣∣(II)− Γ̃2CBS(t,Xt, vt)D[M,M ]t

∣∣∣
≤ Cν4

64κ3

(
2κ
√

2κ(1 + 4κ)

θ
√
θ

+
22κ

θ
+

7
√

2κ√
θ

+ 1

)[∫ T

t

e−r(u−t) du

]

+
Cρν3

16κ2

(
6κ+ 2

√
2κ

θ
+

2
√

2κ√
θ

+ 1

)[∫ T

t

e−r(u−t) du

]
.

This completes the proof of Theorem 5.3.3.

The next assertion contains an approximation formula with the error term of the form
O(ν4(1 + |ρ|).

Theorem 5.3.4 (3rd order approximation formula). For every t ∈ [0, T ],

Vt = CBS(t,Xt, vt)

+ Λ̃Γ̃CBS(t,Xt, vt)
(ρ

2
L[W,M ]t

)
+

1

2
Λ̃2Γ̃2CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)2

+
1

6
Λ̃3Γ̃3CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)3

+ Λ̃Γ̃3CBS(t,Xt, vt)
(ρ

2
L[W,M ]t

)(1

8
D[M,M ]t

)
+ ρΛ̃2Γ̃CBS(t,Xt, vt)L[W,

ρ

2
L[W,M ]]t + ρΛ̃Γ̃2CBS(t,Xt, vt)L[W,

1

8
D[M,M ]]t

+
1

2
Λ̃Γ̃2CBS(t,Xt, vt)D[M,

ρ

2
L[W,M ]]t

+ ρΛ̃3Γ̃2CBS(t,Xt, vt)
ρ

2
L[W,M ]tL[W,

ρ

2
L[W,M ]]t

+ ρΛ̃3Γ̃CBS(t,Xt, vt)L[W, ρL[W,
ρ

2
L[W,M ]]]t

+ Γ̃2CBS(t,Xt, vt)

(
1

8
D[M,M ]t

)
+ εt.
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where εt is the error term satisfying

|εt| ≤ ν4
(
1 + ρ2

(
1 + ρ2

)
+ |ρ| ν

(
1 + ρ2

))(1

r
∧ (T − t)

)
Π(κ, θ),

and Π(κ, θ) is a positive constant depending on κ and θ.

Proof. The proof follows the same arguments as the previous proof. We will next provide
a sketch of the proof and skip the lengthy computations. The main idea employed in the
proof is to keep applying Corollary 4.1.10 to all the terms with order lower than O(ν4),
and to estimate the new terms which appear. Our next goal is to describe the terms that
have to be decomposed.

The term (I.I) is decomposed into a series of new terms. We approximate (I.I) by the
following expression:

At = Λ̃2Γ̃2CBS(t,Xt, vt) and Bt =
1

2

(ρ
2
L[W,M ]t

)2

.

This gives

− ρ2

4
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃2CBS(u,Xu, vu)L[W,M ]uσu d[W,M ]u

]
=

1

2
Λ̃2Γ̃2CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)2

+
ρ3

16
Et
[∫ T

t

e−r(u−t)Λ̃3Γ̃3CBS(u,Xu, vu)L
2[W,M ]uσu d[W,M ]u

]
+

ρ2

64
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃4CBS(u,Xu, vu)L
2[W,M ]u d[M,M ]u

]
+

ρ3

8
Et
[∫ T

t

e−r(u−t)Λ̃3Γ̃2CBS(u,Xu, vu)L[W,M ]uσu d[W,L[W,M ]]u

]
+

ρ2

16
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃3CBS(u,Xu, vu)L[W,M ]u d[M,L[W,M ]]u

]
+

ρ2

8
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃2CBS(u,Xu, vu) d[L[W,M ], L[W,M ]]u

]
=

1

2
Λ̃2Γ̃2CBS(t,Xt, vt)

(ρ
2
L[W,M ]t

)2

+ (I.I.I) + . . .+ (I.I.V ).

The terms (I.II) and (II.I) are approximated by

At = Λ̃Γ̃3CBS(t,Xt, vt) and Bt =
(ρ

2
L[W,M ]t

)(1

8
D[M,M ]t

)
,

while the term (I.III) is approximated by

At = Λ̃2Γ̃CBS(t,Xt, vt) and Bt =
ρ2

2
L[W,L[W,M ]]t.
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It follows that

− ρ2

2
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃CBS(u,Xu, vu)σu d[W,L[W,M ]]u

]
=

ρ2

2
Λ̃2Γ̃CBS(t,Xt, vt)L[W,L[W,M ]]t

+
ρ3

4
Et
[∫ T

t

e−r(u−t)Λ̃3Γ̃2CBS(u,Xu, vu)L[W,L[W,M ]]uσu d[W,M ]u

]
+

ρ2

16
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃3CBS(u,Xu, vu)L[W,L[W,M ]]u d[M,M ]u

]
+

ρ3

2
Et
[∫ T

t

e−r(u−t)Λ̃3Γ̃CBS(u,Xu, vu)σu d[W,L[W,L[W,M ]]]u

]
+

ρ2

4
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃2CBS(u,Xu, vu) d[M,L[W,L[W,M ]]]u

]
= Λ̃2Γ̃CBS(t,Xt, vt)

ρ2

2
L[W,L[W,M ]]t + (I.III.I) + . . . (I.III.IV ).

The term (I.IV) is approximated by

At = Λ̃Γ̃2CBS(t,Xt, vt) and Bt =
ρ

4
D[M,L[W,M ]]t,

while the term (II.III) is approximated by

At = Λ̃Γ̃2CBS(t,Xt, vt) and Bt = ρL[W,
1

8
D[M,M ]]t.

Similarly, the term (I.I.I) is approximated by

At = Λ̃3Γ̃3CBS(t,Xt, vt) and Bt =
1

6

(ρ
2
L[W,M ]t

)3

.

The terms (I.I.III) and (I.III.I) are approximated by the following expressions:

At = Λ̃3Γ̃2CBS(t,Xt, vt) and Bt =
ρ3

4
L[W,M ]tL[W,L[W,M ]]t.

Moreover, the term (I.III.III) is approximated by

At = Λ̃3Γ̃CBS(t,Xt, vt) and Bt =
ρ3

2
L[W,L[W,L[W,M ]]]t.

We estimate each of the new terms appearing in the proof exactly as in the previous
one.

For the uncorrelated Heston model, we obtain a similar expansion with fewer terms and
a better error estimate.
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Theorem 5.3.5. Suppose ρ = 0, then for every t ∈ [0, T ], the following formula holds:

Vt = CBS(t,Xt, vt)

+ Γ̃2CBS(t,Xt, vt)

(
1

8
D[M,M ]t

)
+

1

2
Γ̃4CBS(t,Xt, vt)

(
1

8
D[M,M ]t

)2

+
1

2
Γ̃3CBS(t,Xt, vt)D[M,

1

8
D[M,M ]]t

+ εt

where εt is the error term satisfying

|εt| ≤ ν6

(
1

r
∧ (T − t)

)
Π(κ, θ),

and Π(κ, θ) is positive constant depending on κ and θ.

Proof. It is easy to see that for the uncorrelated Heston model, the model reduces to

Vt = CBS(t,Xt, vt)

+
1

8
Et
[∫ T

t

e−r(u−t)Γ̃2CBS(u,Xu, vu) d[M,M ]u

]
.

Using Corollary 4.1.10, we obtain a special case of formula (4.9). In particular, it is obtained

(II) =
1

8
Γ̃2CBS(t,Xt, vt)D[M,M ]t

+
1

64
Et
[∫ T

t

e−r(u−t)Γ̃4CBS(u,Xu, vu)D[M,M ]u d[M,M ]u

]
+

1

16
Et
[∫ T

t

e−r(u−t)Γ̃3CBS(u,Xu, vu) d[M,D[M,M ]]u

]
= (A) + (B).

An upper bound for (A)

We apply Corollary 4.1.10 to the expression denoted by (A). Choosing

At = Γ̃4CBS(t,Xt, vt) and B =
1

2

(
1

8
D[M,M ]t

)2

,

it follows that

(A) =
1

2
Γ̃4CBS(t,Xt, vt)

(
1

8
D[M,M ]t

)2

+
1

1024
Et
[∫ T

t

e−r(u−t)Γ̃6CBS(u,Xu, vu) (D[M,M ]u)
2 d[M,M ]u

]
.
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In particular, for the Heston model, we obtain

(A) =
1

2
Γ̃4CBS(t,Xt, vt)

(
1

8
D[M,M ]t

)2

+
ν6

1024
Et

[∫ T

t

e−r(u−t)Γ̃6CBS(u,Xu, vu)

(∫ T

u

Eu
(
σ2
s

)
ϕ(s)2 ds

)2

σ2
uϕ

2(u) du

]
.

Next, using Lemma 3.1.10 (ii), applying the equivalence au = vu
√
T − u, and using the

fact that ϕ(t) is a decreasing function, then∣∣∣∣∣(A)− 1

2
Γ̃4CBS(t,Xt, vt)

(
1

8
D[M,M ]t

)2
∣∣∣∣∣

≤ C
ν6

1024
Et
[∫ T

t

e−r(u−t)
(

1

a7
u

+
5

a6
u

+
10

a5
u

+
10

a4
u

+
5

a3
u

+
1

a2
u

)
σ2
uϕ(u)4 du

]
.

It follows from Lemma 5.1.2 (ii) that σ2
t ≤

a2t
ϕ(t)

and∣∣∣∣∣(A)− 1

2
Γ̃4CBS(t,Xt, vt)

(
1

8
D[M,M ]t

)2
∣∣∣∣∣

≤ C
ν6

1024

∫ T

t

e−r(u−t)
(

1

a5
u

+
5

a4
u

+
10

a3
u

+
10

a2
u

+
5

au
+ 1

)
ϕ(u)3 du.

Now, Lemma 5.1.2 (i) implies that at ≥
√
θκ√
2
ϕ(t). Applying the estimate ϕ(t) ≤ 1

κ
, it is

obtained that∣∣∣∣∣(A)− 1

2
Γ̃4CBS(t,Xt, vt)

(
1

8
D[M,M ]t

)2
∣∣∣∣∣

≤ C
ν6

1024κ3

(
4
√

2κ2
√
κ

θ2
√
θ

+
10κ2

θ2
+

20
√

2κ
√
κ

θ
√
θ

+
20κ

θ
+

5
√

2κ√
θκ

+ 1

)∫ T

t

e−r(u−t) du.

An upper bound for (B)

We apply the Corollary 4.1.10 to the expression denoted by (B). Choosing

At = Γ̃3CBS(t,Xt, vt) and B =
1

16
D[M,D[M,M ]]t,

it follows that

(B) =
1

16
Γ̃3CBS(t,Xt, vt)D[M,D[M,M ]]t

+
1

128
Et
[∫ T

t

e−r(u−t)Γ̃5CBS(u,Xu, vu)D[M,D[M,M ]]u d[M,M ]u

]
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+
1

24
Et
[∫ T

t

e−r(u−t)Γ̃4CBS(u,Xu, vu) d[M,D[M,D[M,M ]]]u

]
.

In the case of the Heston model, setting au := vu
√
T − u and using Lemma 3.1.10 (ii) and

the fact that ϕ(t) is a decreasing function, then∣∣∣∣(B)− 1

16
Γ̃3CBS(t,Xt, vt)D[M,D[M,M ]]t

∣∣∣∣
≤ C

ν6

128
Et
[∫ T

t

e−r(u−t)
(

1

a7
u

+
4

a6
u

+
6

a5
u

+
4

a4
u

+
1

a3
u

)
σ2
uϕ(u)6 du

]
+ C

ν6

24
Et
[∫ T

t

e−r(u−t)
(

1

a7
u

+
3

a6
u

+
3

a5
u

+
1

a4
u

)
σ2
uϕ

6(u) du

]
.

Now, Lemma 5.1.2 (ii) implies that σ2
t ≤

a2t
ϕ(t)

and

∣∣∣∣(B)− 1

16
Γ̃3CBS(t,Xt, vt)D[M,D[M,M ]]t

∣∣∣∣
≤ C

ν6

128
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
4

a4
u

+
6

a3
u

+
2

a4
u

+
1

au

)
ϕ(u)5 du

]
+ C

ν6

24
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
3

a4
u

+
3

a3
u

+
1

a2
u

)
ϕ5(u) du

]
.

It follows from Lemma 5.1.2 (i) that at ≥
√
θκ√
2
ϕ(t). In addition, the inequality ϕ(t) ≤ 1

κ

implies that

∣∣∣∣(B)− 1

16
Γ̃3CBS(t,Xt, vt)D[M,D[M,M ]]t

∣∣∣∣
≤ C

ν6

128

(
4
√

2

θ2κ2
√
θκ

+
16

θ2κ3
+

12
√

2

θκ3
√
θκ

+
4

θκ4
+

√
2

κ4
√
θκ

)∫ T

t

e−r(u−t) du

+ C
ν6

24

(
4
√

2

θ2κ2
√
θκ

+
12

θ2κ3
+

6
√

2

θκ3
√
θκ

+
2

θκ4

)∫ T

t

e−r(u−t) du.

Remark 5.3.6. For each approximation formula for call option prices under the Heston
model, we have found a positive constant Π(κ, θ) depending on κ and θ. Although we have
used the same function to specify this constant, it is di�erent for each approximation.
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5.4 Numerical results

In this section, we compare the performance of the call option price approximation formula
proposed in Alòs (2012) and Alòs et al. (2015) with the new approximation formulae
obtained before. To simplify the notation, we call the formula obtained in Alòs (2012) and
Alòs et al. (2015), the formula with error estimate O(ν2), while the two formulae obtained
in the present paper are referred as the formulae with error estimates O(ν3) and O(ν4),
respectively (see Theorems 5.3.3 and 5.3.4). We also make a similar comparison in the
uncorrelated case. Here, we compare the formula with error estimate O(ν4) established in
Alòs (2012) and Alòs et al. (2015) with the new formula with an error estimate O(ν6) found
in the present paper (see Theorem 5.3.5). As a benchmark price, we choose a call option
price obtained using a Fourier transform based pricing formula. This is one of the standard
approaches to pricing European options under stochastic volatility models. In particular,
we use a semi-closed form solution with one numerical integration as a reference price (see
Mrázek and Pospí²il (2017))1. The comparison between approximations is made with two
important aspects in mind: the practical precision of the pricing formula and the e�ciency
of the formula expressed in terms of the computational time needed for particular pricing
tasks.

Analytical approximations of the implied volatility exist in the literature, for example,
in Forde et al. (2012) and Lorig et al. (2017). We will compare these approximations with
the implied volatilities obtained from the approximation formula with error estimate O(ν4)
for the correlated case and the formula with error estimate O(ν6) for the uncorrelated case.

Our next goal is to illustrate the quality of our new approximation formulae for the
call option price in the Heston model for various values of ρ and ν while keeping the other
parameters �xed. Concretely, we choose the following parameters: S0 = 100, r = 0.001,
v0 = 0.25, κ = 1.5, and θ = 0.2. We understand the error in the price as the relative
error in a log10 scale. The blue line illustrates the approximation with an error estimate
O(ν2), the red line is the approximation with an error estimate O(ν3), while the yellow
line corresponds to the approximation with an error estimate O(ν4).

Figure 5.1 shows approximations of the call option price when the vol-vol, ν, and the
absolute value of the correlation, ρ, are both small. In this case, ν = 5% and ρ = −0.2. We
observe that the approximation formula with an error estimate O(ν3), in general, performs
better than the formula with an error estimate O(ν2). However, in some cases, there are
exceptions, such as the ITM options for τ = 3. The call option price approximation with
an error estimate O(ν4) is much better, with an error around 10−7 − 10−10.

1With a slight modi�cation mentioned in Gatheral (2006) in order not to su�er from the "Heston trap"
issues.
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Figure 5.1: Heston model: Comparison of the three di�erent approximation formulae and
reference prices for ν = 5% and ρ = −0.2.

In Figure 5.2, we discuss the case where ν is small while |ρ| is close to one. In this case,
ν = 5% and ρ = −0.8. We observe that the new approximation formulae perform better
than the formula previously known. The approximation error is in the range 10−4 − 10−8

for the formula with an error estimate O(ν3) and 10−7 − 10−10 for the one with an error
estimate O(ν4).
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Figure 5.2: Heston model: Comparison of the three di�erent approximation formulae and
reference prices for ρ = −0.8 and ν = 5%.

Figure 5.3 refers to the case of high vol-vol and low absolute correlation. In this case,
ν = 50% and ρ = −0.2. Here, we note that the three approximation formulae show
similar performance. The approximation formula where the error estimate is O(ν4) seems
to perform a little better, but not signi�cantly.
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Figure 5.3: Heston model: Comparison of the three di�erent approximation formulae and
reference prices for ρ = −0.2 and ν = 50%.

Figure 5.4 illustrates the performance of the formulae when both parameters are not
suitable for the approximation, e.g., when ν = 50% and ρ = −0.8. Here, we observe that the
approximations have a similar quality. The approximation formula with an error estimate
O(ν4) seems to perform better than the other formulae, while the formula with an error
estimate O(ν3) performs better only in the short term.
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Figure 5.4: Heston model: Comparison of the three di�erent approximation formulae and
reference prices for ρ = −0.8 and ν = 50%.

Comparing Figure 5.4 with Figure 5.3, we observe that the new approximation formulae
are more e�cient in the former �gure than in the latter ones. This can be explained by the
fact that most of the terms in the expansion include the parameter ρ. When |ρ| is small,
the new approximations are closer to the known ones than when |ρ| is close to one.

We have already observed that the approximation formulae obtained in the present
paper perform better than the previously known formula when |ρ| is close to one and ν is
small. On the other hand, the improvement in the performance is not signi�cant for large ν.
This can be �xed by adding more terms. As an example, we compare the benchmark prices
with their approximations in the uncorrelated case. In Figures 5.5 and 5.6, the blue line is
the approximation with an error estimate O(ν4), while the red line is the approximation
with an error estimate O(ν6).
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Figure 5.5: Heston model: Comparison of the two di�erent approximation formulae and
reference prices for ρ = 0 and ν = 5%.

In Figure 5.5, we illustrate the case of low vol-vol. In this case, ν = 5% and ρ = 0.
The formulae with error estimates O(ν4) and O(ν6) have a very small error, while the new
approximation behaves much better. Figure 5.6 shows the approximations when ν is large.
In this case, ν = 50% and ρ = 0. We can see that the new approximation behaves better,
especially in the long term.
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Figure 5.6: Heston model: Comparison of the two di�erent approximation formulae and
reference prices for ρ = 0 and ν = 50%.
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One of the main advantages of the proposed option price approximations is its compu-
tational e�ciency. To compare the amount of time each method spent on computations, we
replicate the computational e�ort to perform in di�erent calibration situations with three
pricing tasks. We used a batch of 100 various call options with di�erent strikes and times to
maturity, including OTM, ATM, and ITM options with short-, mid- and long-term times
to maturity. The �rst task was to evaluate the option prices in the batch with respect
to 100 (uniformly) randomly sampled parameter sets. This task has a similar number of
price evaluations to a market calibration task with a very good initial guess. Further on,
we repeated the same trials for 1.000 and 10.000 parameter sets to mimic the number of
evaluations for a typical local-search calibration and a global-search calibration, respec-
tively (for more information about calibration tasks see e.g. Mikhailov and Nögel (2003)
and Mrázek et al. (2016)).

Our results are listed in Table 5.1. The call prices were analytically calculated in all
the cases. We observe that for the trials of 100 and 1.000 sets, the amount of time spent
on computations are rather similar. For the trial of 10.000 sets, the experiment based on
the approximation with an error order of O(ν4) was a little bit slower than the other
experiments.

Table 5.1: Heston model: E�ciency of the call price approximations

Pricing approach Task Time† [sec] Speed-up factor

Heston-Lewis
#1 3.63 -
#2 33.52 -
#3 336.59 -

Approximation of order O(ν2)
#1 0.08 45×
#2 0.76 44×
#3 7.41 45×

Approximation of order O(ν3)
#1 0.08 45×
#2 0.78 43×
#3 7.77 43×

Approximation of order O(ν4)
#1 0.10 36×
#2 0.91 37×
#3 8.87 38×

† The results were obtained on a PC with Intel Core i7-7700HQ CPU @2.80 GHz 2.80GHz and 16 GB

RAM.

The table shows that the approximations, where the error order is O(ν2) or O(ν3) are
around 43-45 times faster than the approximation based on the fast Fourier transform
methodology, while the approximation with the error of order O(ν4) is around 36 times
faster than the latter one. Therefore, the approximations with error order O(ν2) or O(ν3)
are around 1.14-1.25 times less time-consuming than the O(ν4)-approximation.

Our next goal is to compare the approximation formulae presented in this paper with



The Heston model 97

other analytical approximation methods. In Forde et al. (2012), based on saddlepoint meth-
ods, they derive a small-maturity expansion formula for prices that are transformed into a
closed-form implied volatility for the Heston model. In Lorig et al. (2017), they derive an
explicit implied volatility for local-stochastic volatility models, including the Heston case,
using a perturbation technique for parabolic equations. We choose the following values for
the Heston parameters: S0 = 100, r = 0, v0 = 0.20, κ = 1.15, θ = 0.04 , ν = 0.2 and
ρ = −0.4. We understand the error in the implied volatility as the absolute error in a log10

scale. The blue line illustrates the approximation with an error estimate O(ν4), the red line
is the 3rd order approximation of the implied volatility by Lorig et al. (2017), the yellow
line is the 2nd order approximation of the implied volatility by Lorig et al. (2017), while
the purple line corresponds to the approximation by Forde et al. (2012). We compare our
methodology with Forde et al. (2012) only for maturities less than 1 year.

In Figure 5.7, we observe that our approximation is more accurate in almost all the
cases. As it was expected, Forde et al. (2012) approximation is competitive for short-term
maturities, but the error increases with the time to maturity and the 3rd order approxima-
tion of the implied volatility behaves in general better than the 2nd order approximation.
We observe that the results of our approximation are very close to the 3rd order expansion
of the implied volatility by Lorig et al. (2017).
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Figure 5.7: Heston model: Comparison with other analytical approximation methods.

In Figure 5.8, we compare all the approximations when ρ = 0. We observe that the 2nd
order approximation and 3rd order approximation coincide. In general, our approximation
is better than the other methods, especially when the time to maturity increases.
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Figure 5.8: Heston model: Comparison with other analytical approximation methods when
ρ = 0.



CHAPTER 6

Jump Di�usion Models

In Chapter 4, we saw how we can obtain a decomposition formula when the underlying
model is a stochastic volatility model. In the previous chapter, we applied these ideas to
Heston model. Unfortunately, frequently, when we look at the implied volatility market
data, we can see a short-term spike in the volatility that these models cannot produce.
There is a class of �nancial models that can reproduce this phenomenon, and these models
combine the ideas of adding a jump di�usion process with a stochastic volatility structure.
These types of models are stochastic volatility jump di�usion (SVJ) models.

Developing the ideas presented in the previous chapter, the decomposition formula can
be extended to SVJ models with �nite activity jumps. Assuming a Heston type volatility
structure, an approximation price of a European call option can be found. The approxi-
mation is explicit and is numerically e�cient. It is also possible to �nd an approximation
of the implied volatility. To evaluate the precision and e�ciency of this methodology, a
numerical comparison has been made for the Bates model, comparing the approximation
with the Fourier transformation introduced by Baustian et al. (2017). In contrast to Alòs
et al. (2007) and Alòs et al. (2008) where a Hull and White formula is obtained to study
the short-term behaviour of implied volatility, this chapter focuses on how to e�ciently
approach the valuation of European call option prices and the calculation of a parametric
approximation of the surface of implied volatility. The ideas in this chapter are based on
Merino et al. (2018).

6.1 A decomposition formula for SVJ models.

In previous chapters, a generic decomposition formula has been obtained for stochastic
volatility models with continuous sample paths. Now, we need to extend this methodology
for a general jump di�usion model with �nite activity jumps. The main idea is to adapt the
pricing process in such a way as to be able to apply the decomposition technique e�ectively.
In our case, this would translate into conditioning the �nite number of jumps nT . If we
denote Jn =

∑n
i=0 Yi, using the integrability of Black-Scholes-Merton function, we can

obtain the following conditioning formula for European options with payo� at maturity
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T : CB̃S(T,XJ
T , vT ).

Recall the XC
t , de�ned in (3.33), is the continuous counterpart of the stochastic volatil-

ity model de�ned in (3.32).

We de�ne pn(λT ) as the Poisson probability mass function with intensity λT . I.e. pn
takes the following form:

pn(λ(T − t)) :=
e−λ(T−t)(λ(T − t))n

n!
. (6.1)

We can re-write the pricing formula in the following way:

Vt = e−r(T−t)Et
[
CB̃S(T,XJ

T , vT )
]

= e−r(T−t)
∞∑
n=0

pn (λ(T − t))Et

[
CB̃S

(
T,XC

T +

nT∑
i=0

Yi, vT

)∣∣∣nT = n

]

= e−r(T−t)
∞∑
n=0

pn (λ(T − t))Et
[
CB̃S

(
T,XC

T + Jn, vT
)]

= e−r(T−t)
∞∑
n=0

pn (λ(T − t))Et
[
EJn

[
CB̃S(T,XC

T + Jn, vT )
]]

= e−r(T−t)
∞∑
n=0

pn (λ(T − t))Et
[
Gn(T,XC

T , vT )
]

where

Gn(T, X̃J
T , vT ) := EJn

[
CB̃S(T,XC

T + Jn, vT )
]
. (6.2)

Notice that we have gone from a problem with a jump di�usion model with stochastic
volatility to one without jumps. Combining the generic SV decomposition formula, Remark
4.1.12 alongside Remark 4.1.9, and conditioning with respect to the number of jumps, we
obtain the basis for our decomposition formula.

Corollary 6.1.1 (SVJ decomposition formula). Let St be the price process de�ned in
(3.29), considering the change of variables XJ

t = log(St) to obtain the log-price process
de�ned in (3.32), and Gn be the function de�ned in (6.2). Then we can express the call
option fair value Vt using the Poisson mass function pn and a martingale processMt de�ned
by (4.5). In particular,

Vt =
∞∑
n=0

pn (λ(T − t))Gn(t,XC
t , vt) (6.3)

+
1

8

∞∑
n=0

pn (λ(T − t))Et
[∫ T

t

e−r(u−t)Γ̃2Gn(u,XC
u , vu)d[M,M ]u

]
+

ρ

2

∞∑
n=0

pn (λ(T − t))Et
[∫ T

t

e−r(u−t)Λ̃Γ̃Gn(u,XC
u , vu)σud[W,M ]u

]
.
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Proof. Using Remark 4.1.12, taking into account Remark 4.1.9, toA(t,XJ
t , v

2
t ) := Gn(t,XC

t , vt)
and Bt ≡ 1. It can be seen that

∂σ2BS(t, x, σ) =
(T − t)

2

(
∂2
x − ∂x

)
BS(t, x, σ)

and

∂2
σ2BS(t, x, σ) =

(T − t)2

4

(
∂2
x − ∂x

)2
BS(t, x, σ).

Then, the corollary follows immediately.

Remark 6.1.2. For clarity, in the following we will refer to the terms of the previous
decomposition as

Vt =
∞∑
n=0

pn (λ(T − t))Gn(t,XC
t , vt) +

∞∑
n=0

pn (λ(T − t)) [(In) + (IIn)] . (6.4)

Note that if ρ = 0, we have

Vt =
∞∑
n=0

pn (λ(T − t))Gn(t,XC
t , vt) +

∞∑
n=0

pn (λ(T − t)) (In). (6.5)

The term (IIn) is the correction due to the dependence between the stock and volatility
processes meanwhile (In) is the correction of the vol-vol of the volatility model.

As we mentioned in previous chapters, the expression above is elegant and compact, but
it cannot be calculated directly. As with the Heston model, we will apply Remark 4.1.12, in
this case jointly with Remark 4.1.9, recursively to obtain an approximation formula. In this
case, we are going to develop the approximation formula with the same error magnitude as
in Alòs (2012), even though it would be possible to extend the approach to higher orders
as has been done in the Heston model.

Corollary 6.1.3 (Computationally suitable SVJ decomposition). Let St be the price pro-
cess de�ned in (3.29), considering the change of variables XJ

t = log(St) to obtain the
log-price process de�ned in (3.32), and Gn be the function de�ned in (6.2). Then we can
express the call option fair value Vt using the Poisson mass function pn and a martingale
process Mt de�ned by (4.5). In particular,

Vt =
∞∑
n=0

pn (λ(T − t))Gn(t,XC
t , vt) (6.6)

+
∞∑
n=0

pn (λ(T − t)) Λ̃Γ̃Gn(t,XC
t , vt)L[W,M ]t

+
∞∑
n=0

pn (λ(T − t)) Γ̃2Gn(t,XC
t , vt)D[M,M ]t
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+
∞∑
n=0

pn (λ(T − t)) εnt

where εnt are error terms.

Proof. The main idea in the proof is to apply the Remark 4.1.12, considering Remark 4.1.9,
to the terms (In) and (IIn).

The term (In) is decomposed with

A(t,Xt, v
2
t ) := ΛΓGn(t,XC

t , vt) and Bt =
ρ

2
L[W,M ]t.

This gives

ρ

2
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃Gn(u,XC
u , vu)σud[W,M ]u

]
− Λ̃Γ̃Gn(t,XC

t , vt)L [W,M ]t

=
1

8
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃3Gn(u,XC
u , vu)L [W,M ]u d[M,M ]u

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)Λ̃2Γ̃2Gn(u,XC
u , vu)L [W,M ]u σud[W,M ]u

]
+ ρEt

[∫ T

t

e−r(u−t)Λ̃2Γ̃Gn(u,XC
u , vu)σud[W,L [W,M ]]u

]
+

1

2
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃2Gn(u,XC
u , vu)d[M,L [W,M ]]u

]
.

The term (IIn) is decomposed with

A(t,Xt, v
2
t ) := Γ̃2Gn(t,XC

t , vt) and Bt =
1

8
D[M,M ]t.

This gives

1

8
Et
[∫ T

t

e−r(u−t)Γ̃2Gn(u,XC
u , vu)d[M,M ]u

]
− Γ̃2Gn(t,XC

t , vt)D [M,M ]t

=
1

8
Et
[∫ T

t

e−r(u−t)Γ̃4Gn(u,XC
u , vu)D [M,M ]u d[M,M ]u

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)Λ̃Γ̃3Gn(u,XC
u , vu)D [M,M ]u σud[W,M ]u

]
+ ρEt

[∫ T

t

e−r(u−t)Λ̃Γ̃2Gn(u,XC
u , vu)σud[W,D [M,M ]]u

]
+

1

2
Et
[∫ T

t

e−r(u−t)Γ̃3Gn(u,XC
u , vu)d[M,D [M,M ]]u

]
.

and then the statement follows immediately.
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Remark 6.1.4. Note that the Corollary above is very similar to Corollary 4.2.1. The jump
process has been decomposed into a sum of in�nite functions. Numerically, this method is
e�cient because the weight of each function decreases exponentially.

As we have seen in the previous chapter, this formula can be e�ciently evaluated, while
the neglected error terms do not signi�cantly limit a practical use of the formula. The main
ingredients to get SVJ approximate pricing formula are expressions for L[W,M ]t, D[M,M ]t
and Gn(t,XC

t , vt). Now we provide some insight into how the latter term can be expressed
under various jump-di�usion settings.

Remark 6.1.5. In particular, we have a closed formula for a log-normal jump di�usion
model (e.g. Bates SVJ model):

Gn(t,XC
t , vt) = CB̃S

t,XC
t ,

√
v2
t + n

σ2
J

T − t


where we modi�ed the risk-free rate used in the Black-Scholes-Merton formula to

r∗ = r − λ
(
eµJ+ 1

2
σ2
J − 1

)
+ n

µJ + 1
2
σ2
J

T − t
.

A very similar formula for the Merton case is deduced by Hanson (2007). More details will
follow in the next sections. Under general (�nite-activity) jump di�usion settings, we will
need to compute ∫

R
CB̃S

(
t,XC

t + y, vt
)
fJn(y)dy

where fJn = (f ∗nY )(y) is the convolution of the law of n jumps.
Here we provide a list of known results for various popular models.

1. Kou (2002) double exponential model:

f ∗(n)(u) = e−η1u
n∑
k=1

Pn,kη
k
1

1

(k − 1)!
uk−11{u≥0}

+ e−η2u
n∑
k=1

Qn,kη
k
2

1

(k − 1)!
(−u)k−11{u<0}

where

Pn,k =
n−1∑
i=k

(
n− k − 1

i− k

)(
n

i

)(
η1

η1 + η2

)i−k(
η2

η1 + η2

)n−i
piqn−i

for all 1 ≤ k ≤ n− 1, and

Qn,k =
n−1∑
i=k

(
n− k − 1

i− k

)(
n

i

)(
η1

η1 + η2

)n−i(
η2

η1 + η2

)i−k
pn−iqi

for all 1 ≤ k ≤ n− 1. In addition, Pn,n = pn and Qn,n = qn.
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2. Yan and Hanson (2006) model uses log-uniform jump sizes and hence the density is
of the form (Killmann and von Collani, 2001):

f ∗(n)(u) =


∑ñ(n,u)
i=0 (−1)i(ni)(u−na−i(b−a))n−1

(n−1)!(b−a)n
if na ≤ u ≤ nb

0 otherwise.

where ñ(n, u) :=
[
u−na
b−a

]
is the largest integer less than u−na

b−a .

6.2 SVJ models of the Heston type

In this section, we apply the previous generic results to derive a pricing formula for SVJ
models with the Heston variance process. The aim is not to provide pricing solution for all
known/studied models, but rather to detail the derivation for a selected model.

6.2.1 Approximation of the SVJ models of the Heston type

Now we have all the tools needed to introduce the main practical result - the pricing
formula

Corollary 6.2.1 (Heston-type SVJ pricing formula). Let Gn(t,XC
t , vt) takes the expression

as in Remark 6.1.5 for a particular jump-type setting, let L[W,M ]t and D[M,M ]t be de�ned
as in Lemma 5.1.1. Then the European option fair value is expressed as

Vt =
∞∑
n=0

pn(λ (T − t))Gn(t,XC
t , vt)

+
ρ

2

∞∑
n=0

pn(λ (T − t))Λ̃Γ̃Gn(t,XC
t , vt)L[W,M ]t

+
1

8

∞∑
n=0

pn(λ (T − t))Γ̃2Gn(t,XC
t , vt)D[M,M ]t

+
∞∑
n=0

pn(λ (T − t))εnt

where εnt are error terms. The upper bound for any εnt is given by

εnt ≤ ν2(|ρ|+ ν)2

(
1

r
∧ (T − t)

)
Π(κ, θ)

where Π(κ, θ) is a positive function. Therefore, the total error

εt =
∞∑
n=0

pn(λ (T − t))εnt

is bounded by the same constant.
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Proof. We apply the Heston volatility model dynamics into Corollary 6.1.3. Using the
integrability of the Black-Scholes-Merton function, Fubini Theorem and the fact that the
upper bound of Lemma 3.1.10 (ii) does not depend on the log-price, the upper bound can
be used for every Gn function. Using Lemma 5.1.1 and Lemma 5.1.2 we prove the corollary.
The proof is analogous to the Corollary 5.2.1.

Remark 6.2.2 (Approximate fractional SVJ model). For the model introduced by Pospí²il
and Sobotka (2016), one can derive a very similar decomposition as in Corollary 6.2.1.
In fact, only the terms L[W,M ]t and D[M,M ]t have to be changed while the other terms
remain the same.

6.2.2 Numerical analysis of the SVJ models of the Heston type

We compare the newly obtained approximation formula for option prices under Bates model
with the market standard approach for pricing European options under SVJ models - the
Fourier-transform based pricing formula. The comparison is performed with two important
aspects in mind: the practical precision of the pricing formula when neglecting the total
error term ε and the e�ciency of the formula expressed in terms of the computational time
needed for particular pricing tasks.

In particular, we utilise a semi-closed form solution with one numerical integration as
a reference price (Baustian et al., 2017) alongside a classical solution derived by Bates
(1996)1. The numerical integration errors according to Baustian et al. (2017) should typ-
ically be well beyond 10−10, hence we can take the numerically computed prices as the
reference prices for the comparison.

Due to the theoretical properties of the total error term ε, we illustrate the approxima-
tion quality for several values of ρ and ν while keeping other parameters �xed. Concretely,
we choose the following parameters: S0 = 100, r = 0.001, τ = 0.3, v0 = 0.25, κ = 1.5,
θ = 0.2, λ = 0.05, µJ = −0.05 and σJ = 0.5.

1With a slight modi�cation mentioned in Gatheral (2006) to not su�er the "Heston trap" issues.
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Figure 6.1: Bates model: Short-time price comparison for low ν and ρ.

In Figure 6.1, we inspect a mode of low volatility of the spot variance ν and low absolute
value of the instantaneous correlation ρ between the two Brownian motions. In this case,
ν = 5%, ρ = −0.2. The errors for an option price smile that corresponds to τ = 0.3
are within 10−4 − 10−6 range, while slightly better absolute errors were obtained At-The-
Money. Increasing either the absolute value of ρ or volatility ν should, in theory, worsen
the computed error measures. However, if only one of the values is increased, we are still
able to keep the errors below 10−3 in most of the cases, see Figure 6.2 where it is changed
to ρ = −0.8.
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Figure 6.2: Bates model: Short-time price comparison for low ν and high ρ.
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Last but not least, we illustrate the approximation quality for parameters that are not
well-suited to the approximation. This is done by setting ν = 50%, correlation ρ = −0.8
and a smile with respect to τ = 3. The errors obtained are depicted by Figure 6.3. Despite
the values of parameters, the shape of the option price curve remains fairly similar to the
one obtained by a more precise semi-closed formula.

The main advantage of the proposed pricing approximation lies in its computational
e�ciency � which might be advantageous for many tasks in quantitative �nance that need
fast evaluation of derivative prices. To inspect the time consumption, we set up three pricing
tasks. We use a batch of 100 call options with di�erent strikes and times to maturities
that involves all types of options2. In the �rst task, we evaluate prices for the batch with
respect to 100 (uniformly) randomly sampled parameter sets. This should encompass a
similar number of price evaluations as a market calibration task with a very good initial
guess. Further on, we repeat the same trials only for 1.000 and 10.000 parameter sets, to
mimic the number of evaluations for a typical local-search calibration and a global-search
calibration respectively, for more information about calibration tasks see e.g. Mikhailov
and Nögel (2003) and Mrázek et al. (2016).
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Figure 6.3: Bates model: Price comparison for high ν and ρ.

The obtained computational times are listed in Table 6.1. Unlike the formulae with
numerical integration, the proposed approximation has an almost linear dependency of
computational time on the number of evaluated prices. The results also vary based on
the randomly generated parameter values for numerical schemes much more than for the
approximation � this is caused by adaptivity of numerical quadratures that were used3.

2It includes OTM, ATM, ITM options with short-, mid- and long-term times to maturities
3For both Baustian et al. (2017) and Gatheral (2006) formulae we use an adaptive Gauss-Kronrod(7,15)

quadrature.
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The newly proposed approximation is typically 3× faster compared to the classical two
integral pricing formula and the computational time consumption does not depend on the
model- nor on market-parameters.

Table 6.1: Bates model: E�ciency of the pricing formulae

Pricing approach Task Time† [sec] Speed-up factor

Approximation formula
#1 0.97 3.23×
#2 10.03 2.94×
#3 99.67 2.83×

Baustian et al. (2017)
#1 2.09 1.52×
#2 17.28 1.71×
#3 135.95 2.01×

Gatheral (2006)
#1 3.18 -
#2 29.48 -
#3 281.72 -

† The results were obtained on a PC with Intel Core i7-6500U CPU and 8 GB RAM.

6.3 The approximated implied volatility surface for SVJ

models of the Heston type

We have computed a bound for the error between the exact price and the approximated
pricing formula for the SVJ models of the Heston type. Now, we are going to derive an
approximation of the implied volatility surface alongside the corresponding ATM implied
volatility pro�les. These approximations can help us to understand the volatility dynamics
of studied models in a better way. Without any loss of generality, we assume that t = 0.

6.3.1 Deriving an approximated implied volatility surface for SVJ

models of the Heston type

The price of a European call option with strike K and maturity T is an observable quantity
which will be referred to as P obs

0 = P obs(K,T ). Recall that the implied volatility is de�ned
as the value I(T,K) that satis�es

CBS(0, S0, I(T,K)) = P obs
0 .

De�ne v̂0 such that

CBS(0, S0, v̂0) :=
∞∑
n=0

pn(λT )EJn [CBS(0, x+ Jn, v0)] .
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Using the results from the previous section, we are going to derive an approximation
to the implied volatility as in Fouque et al. (2003), using the idea to expand the implied
volatility function I(T,K) with respect to two scales {δk}∞k=0 and {εk}∞k=0 converging to 0.
See also Alòs et al. (2015).

Let ε = ρν and δ = ν2. Then, we expand I(T,K) with respect to these two scales and
v̂0 as

I(T,K) = v̂0 + ρνI1(T,K) + ν2I2(T,K) +O((ρν + ν2)).

We will denote by Î(T,K) = v̂0 + ρνI1(T,K) + ν2I2(T,K) the approximation to the

implied volatility and by V̂ (0, x, v0) the approximation to the option price obtained in
Corollary 6.2.1. According to that:

V̂ (0, x, v0) =
∞∑
n=0

pn(λT )EJn
[
CB̃S(0, x+ Jn, v0)

]
+

ρ

2

∞∑
n=0

pn(λT )EJn
[
Λ̃Γ̃CB̃S(0, x+ Jn, v0)

]
L[W,M ]0

+
1

8

∞∑
n=0

pn(λT )EJn
[
Γ̃2CB̃S(0, x+ Jn, v0)

]
D[M,M ]0.

To simplify the notation, we de�ne

γn :=
d2

+(x, r, σ)− d2
+(x+ Jn, r, σ)

2

and

D1(x, n, σ, T ) := EJn
[
eJn+γn

σT

(
1− d+(x+ Jn, r, σ)

σ
√
T

)]
,

D2(x, n, σ, T ) := EJn
[
eJn+γn

σ3T 2

(
d2

+(x+ Jn, r, σ)

−σd+(x+ Jn, r, σ)
√
T − 1

)]
.

Using the fact that

∂σCBS(t, x, σ) =
exe−d

2
+(σ)/2

√
T − t√

2π
,

we can re-write the approximated price as

V̂ (0, x, v0) =
∞∑
n=0

pn(λT )EJn
[
CB̃S(0, x+ Jn, v0)

]
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+ ∂σCB̃S(v0)
∞∑
n=0

pn(λT )D1(x, n, σ, T )L[W,M ]0

+ ∂σCB̃S(v0)
∞∑
n=0

pn(λT )D2(x, n, v0, T )D[M,M ]0.

We write CBS(v0) as a shorthand for CBS(0, x, v0). Note that the pricing formula ap-

proximation, V̂ (0, x, v0), has a volatility v0, meanwhile I(T,K) depends on v̂0. In order
to conciliate one with the other, we consider the Taylor expansion of CBS(0, x, I(T,K))
around v0:

CBS(0, x, I(T,K)) = CBS(v0) + ∂σCBS(v0)(v̂0 − v0 + ρνI1(T,K) + ν2I2(T,K) + · · · )

+
1

2
∂2
σCBS(v0)(v̂0 − v0 + ρνI1(T,K) + ν2I2(T,K) + · · · )2 + · · ·

= CBS(v0) + ρν∂σCBS(v0)I1(T,K) + ν2∂σCBS(v0)I2(T,K)

+
∞∑
n=1

1

n!
∂σCBS(v0)(v̂0 − v0)n + · · · .

Noticing that

CBS(v̂0) = CBS(v0) +
∞∑
n=1

1

n!
∂σCBS(v0)(v̂0 − v0)n

and equating

V̂ (0, x, v0) = CBS(0, x, Î(T,K)),

we obtain

Î1(T,K) := ρνI1(T,K) =
ρ

2
L[W,M ]0

∞∑
n=0

pn(λT )D1(x, n, v0, T ),

Î2(T,K) := ν2I2(T,K) =
1

8
D[M,M ]0

∞∑
n=0

pn(λT )D2(x, n, v0, T ).

Hence, we have the following approximation of implied volatility

Î(T,K) = v̂0 +
ρ

2
L[W,M ]0

∞∑
n=0

pn(λT )D1(x, n, v0, T )

+
1

8
D[M,M ]0

∞∑
n=0

pn(λT )D2(x, n, v0, T ).

In particular, when we look at the ATM curve, we have that

ÎATM(T ) = v̂0 +
ρ

2
L[W,M ]0

∞∑
n=0

pn(λT )EJn
[
eJn+γn

v0T

(
1

2
− Jn
Tv2

0

)]
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− 1

8
D[M,M ]0

∞∑
n=0

pn(λT )EJn
[
eJn+γn

v0T

(
1

4
+

1

v2T
− J2

n

v4
0T

2

)]
.

Remark 6.3.1. When T converges to 0, the dynamics of the model is the same as in the
Heston model. This is due to the behaviour of the Poisson process when T ↓ 0.

6.3.2 Deriving an approximated implied volatility surface for Bates

model

The Bates model is a particular example of SVJ model of the Heston type. The fact that
jumps are also log-normal makes the model more tractable. In this section, we will adapt
the generic formulae to this particular case. In this model, after each jump, the drift- and
volatility-like parameters will change. We de�ne

ṽ
(n)
0 =

√
v2

0 + n
σ2
J

T

as the new volatility and

r̃n = r − λ
(
eµJ+ 1

2
σ2
J − 1

)
+ n

µJ + 1
2
σ2
J

T

as the new drift. The parameter n is the number of realized jumps, µJ and σJ are the
jump-size parameters and λ is the jump intensity. For simplicity, we denote:

cn := −λ
(
eµJ+ 1

2
σ2
J − 1

)
+ n

µJ + 1
2
σ2
J

T
.

As a consequence, we have that

d±

(
x, r̃n, ṽ

(n)
0

)
=
x− lnK + r̃nT

ṽ
(n)
0

√
T

± ṽ
(n)
0

√
T

2
.

To simplify the notation, we de�ne

γ̃n :=
d2

+

(
x, r, σ

)
−d2

+

(
x, r̃n, ṽ

(n)
0

)
2

.

Following the steps done in the generic formula, we can de�ne the variables

DB,1

(
x, r̃n, ṽ

(n)
0 , T

)
=

eγ̃n

ṽ
(n)
0 T

1−
d+

(
x, r̃n, ṽ

(n)
0

)
ṽ

(n)
0

√
T

 ,

DB,2

(
x, r̃n, ṽ

(n)
0 , T

)
=

eγ̃n(
ṽ

(n)
0

)3

T 2

(
d2

+

(
x, r̃n, ṽ

(n)
0

)
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−ṽ(n)
0 d+

(
x, r̃n, ṽ

(n)
0

)√
T − 1

)
.

It follows that

ÎB,1(T,K) = ρνIB,1(T,K) =
ρ

2
L[W,M ]0

∞∑
n=0

pn(λT )DB,1

(
x, r̃n, ṽ

(n)
0 , T

)
,

ÎB,2(T,K) = ν2IB,2(T,K) =
1

8
D[M,M ]0

∞∑
n=0

pn(λT )DB,2

(
x, r̃n, ṽ

(n)
0 , T

)
.

The approximation of the implied volatility surface has the following shape

ÎB(T,K) = v̂0 +
ρ

2
L[W,M ]0

∞∑
n=0

pn(λT )
eγ̃n

ṽ
(n)
0 T

1−
d+

(
x, r̃n, ṽ

(n)
0

)
ṽ

(n)
0

√
T


+

1

8
D[M,M ]0

∞∑
n=0

pn(λT )
eγ̃n

ṽ
(n)
0 T

d2
+

(
x, r̃n, ṽ

(n)
0

)
− ṽ(n)

0 d+

(
x, r̃n, ṽ

(n)
0

)√
T − 1(

ṽ
(n)
0

)2

T

 .

In particular, the ATM implied volatility curve under the studied model takes the form:

ÎATMB (T ) = v̂0 +
ρ

2
L[W,M ]0

∞∑
n=0

pn(λT )
eγ

ATMBates
n

ṽ
(n)
0 T

1

2
− cn(

ṽ
(n)
0

)2


− 1

8
D[M,M ]0

∞∑
n=0

pn(λT )
eγ

ATMBates
n

ṽ
(n)
0 T

1

4
+

1(
ṽ

(n)
0

)2

T
− c2

n(
ṽ

(n)
0

)4


where

γATMBates
n = −1

2

cnT +
c2
nT(
ṽ

(n)
0

)2

 .

6.3.3 Numerical analysis of the approximation of the implied volatil-

ity for the Bates case

We have compared the approximation and semi-closed form formulae for option prices
under Bates model. For this model, we also illustrate the approximation quality in terms
of implied volatilities.

Because there is no exact closed formula for implied volatilities under the studied model,
we take as a reference price the one obtained by means of the complex Fourier transform
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(Baustian et al., 2017). Once we have computed the prices, we use a numerical inversion
to obtain the desired implied volatilities.

As previously, we start by comparing implied volatilities for well-suited parameter sets.
The illustration in Figure 6.4 is obtained by setting ρ = −0.1, ν = 5% and other parameters
as in Section 6.2.2. Typically, for a well-suited parameter set, the absolute approximation
errors stay within the range 10−5 − 10−7.
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Figure 6.4: Bates model: Short-time implied volatility comparison for low ν and ρ.
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Figure 6.5: Bates model: Short-time implied volatility comparison for low ν and high ρ.
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Even for not entirely well-suited parameters, we are able to obtain reasonable errors
especially for ATM options, see Figures 6.5 and 6.6. In the mode of high volatility ν of the
variance process and high absolute value of the instantaneous correlation ρ, the curvature
of the smile is not fully captured. However, the errors are typically well below 10−2 even
in this adverse setting.
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Figure 6.6: Bates model: Implied volatility comparison for high ν and ρ.



CHAPTER 7

Rough Volterra Stochastic Volatility models

In this chapter, following Merino et al. (2020), we develop a decomposition formula for
European option prices under general Volterra volatility models. We focus on the particu-
lar cases of an exponential Volterra model and exponential fractional volatility model. An
approximation formula is obtained for these two models. We present a version of the rBer-
gomi model, introducing a new parameter α, that we will refer as the α rough fractional
stochastic volatility model, αRFSV. All the result obtained in this chapter, in contrast with
Alòs et al. (2019), have been obtained using the classical Itô calculus. Numerical proper-
ties of the approximation for the rBergomi model are studied and we propose a hybrid
calibration scheme which combines the approximation formula alongside MC simulations.
This scheme can signi�cantly speed up the calibration to �nancial markets as illustrated
in a set of AAPL options.

7.1 Volterra volatility models

7.1.1 General Volterra volatility model

In this section, we apply the generic decomposition formula to model (3.19) with general
Volterra volatility process de�ned in (2.9). Extending the Theorem 3.1 in Sottinen and
Viitasaari (2017) enables us to rephrase the adapted projection of the future squared
volatility.

Theorem 7.1.1 (Prediction law for Gaussian Volterra processes). Let (Yt, t ≥ 0) be the
Gaussian Volterra process (2.9) satisfying assumptions (2.10) and (2.11). Then, the con-
ditional process (Yu|Ft, 0 ≤ t ≤ u) is Gaussian with Fu-measurable mean function

m̂t(u) := Et[Yu] =

∫ t

0

K(u, s) dWs,

and deterministic covariance function

r̂(u1, u2|t) := Et [(Yu1 − m̂t(u1)) (Yu2 − m̂t(u2))]

115
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= r(u1, u2)−
∫ t

0

K(u1, v)K(u2, v) dv

for u1, u2 ≥ t.

Proof. Let 0 ≤ t ≤ u. Then

m̂t(u) = Et[Yu] = E

[∫ u

0

K(u, s) dWs

∣∣∣∣∣FWt
]

=

∫ t

0

K(u, s) dWs

and

r̂(u1, u2|t) = E [(Yu1 − m̂t(u1)) (Yu2 − m̂t(u2))| FWt ]

= E

[(∫ u1

0

K(u1, v1) dWv1 −
∫ t

0

K(u1, v1) dWv1

)

·
(∫ u2

0

K(u2, v2) dWv2 −
∫ t

0

K(u2, v2) dWv2

) ∣∣∣∣∣FWt
]

= E

[∫ u1

t

K(u1, v1) dWv1

∫ u2

t

K(u2, v2) dWv2

∣∣∣∣∣FWt
]

=

∫ u1∧u2

t

K(u1, v)K(u2, v) dv

= r(u1, u2)−
∫ t

0

K(u1, v)K(u2, v) dv.

We will denote r̂(u|t) := r̂(u, u|t).

Under the general volatility process (2.9), we have

v2
t =

1

T − t

∫ T

t

Et
[
g2(u, Yu)

]
du

and the martingale

Mt =

∫ T

0

Et
[
g2(u, Yu)

]
du.

Let us denote
F (t, m̂t(u)) := Et

[
g2(u, Yu)

]
.

In the upcoming lemma, we express the conditional expectation of the future squared
volatility in terms of the mean function m̂t(u).
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Lemma 7.1.2 (Auxiliary terms in the decomposition formula for the general volatility
model). Let 0 ≤ t ≤ u and F (t, m̂t(u)) = Et [g2(u, Yu)], then

dF (t, m̂t(u)) =

(
∂1F (t, m̂t(u)) +

1

2
∂22F (t, m̂t(u))K2(u, t)

)
dt

+ ∂2F (t, m̂t(u)) dm̂t(u), (7.1)

d[M·,W·]t =

∫ T

t

∂2F (t, m̂t(u))K(u, t) du dt, (7.2)

d[M·,M·]t =

∫ T

t

∫ T

t

∂2F (t, m̂t(u1))∂2F (t, m̂t(u2))·

·K(u1, t)K(u2, t) du1 du2 dt. (7.3)

Proof. Let 0 ≤ t ≤ u and
Xt(u) = Et

[
g2(u, Yu)

]
.

Theorem 7.1.1 implies that

Xt(u) =

∫
R
g2(u, z)ϕ̂t(u, z) dz,

where

ϕ̂t(u, z) =
1√

2πr̂(u|t)
exp

{
−1

2

(z − m̂t(u))2

r̂(u|t)

}
(7.4)

is a Gaussian density function with stochastic mean m̂t(u) and deterministic variance
r̂(u|t). To calculate the quadratic variation, we note that

ϕ̂t(u, z) = f(t, m̂t(u)),

where

f(t,m) =
1√

2πr̂(u|t)
exp

{
−1

2

(z −m)2

r̂(u|t)

}
.

Since
d[m̂·(u)]t = K2(u, t) dt,

we retrieve the following expression by Itô's formula,

df(t, m̂t(u)) =

(
∂1f(t, m̂t(u)) +

1

2
∂22f(t, m̂t(u))K2(u, t)

)
dt

+ ∂2f(t, m̂t(u)) dm̂t(u),

and consequently,
d[f(·, m̂·(u))]t = (∂2f(t, m̂t(u))K(u, t))2 dt.

Due to

∂2f(t, m̂t(u)) =
z − m̂t(u)

r̂(u|t)
ϕ̂t(u, z),
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we obtain

d[ϕ̂·(u, z)]t =

(
z − m̂t(u)

r̂(u|t)
ϕ̂t(u, z)K(u, t)

)2

dt.

More generally, we have

d[ϕ̂·(u, z1), ϕ·(u, z2)]t =
(z1 − m̂t(u))(z2 − m̂t(u))

r̂2(u|t)
ϕ̂t(u, z1)ϕ̂t(u, z2)K2(u, t) dt,

and consequently,

d[X·(u)]t = d

[∫
R
g2(u, z1)ϕ̂(u, z1) dz1,

∫
R
g2(u, z2)ϕ̂(u, z2) dz2

]
t

=

∫∫
R2

g2(u, z1)g2(u, z2) d[ϕ̂(u, z1), ϕ̂(u, z2)]t dz1 dz2

=

∫∫
R2

g2(u, z1)g2(u, z2)(m̂t(u)− z1)(m̂t(u)− z2) ·

·ϕ̂t(u, z1)ϕ̂t(u, z2)

(
K(u, t)

r̂(u|t)

)2

dz1 dz2 dt.

Let F = F (t,m) be a C1,2-function of time t and `spot' m = m̂t(u) of the prediction
martingale. Because the the �ltrations are the same, we have, in general,

d[F (·, m̂·(u)),W·]t = ∂2F (t, m̂t(u))K(u, t) dt.

Now we set

F (t, m̂t(u)) = Xt(u) =

∫
R
g2(u, z)ϕ̂t(u, z) dz,

and applying the Itô formula, we obtain (7.1). Moreover,

d[M·,W·]t = d

[∫ T

0

F (·, m̂·(u)) du,W·

]
t

=

∫ T

0

d[F (·, m̂·(u)),W·]t du

=

∫ T

0

∂2F (t, m̂t(u))K(u, t) du dt

=

∫ T

t

∂2F (t, m̂t(u))K(u, t) du dt

and

d[M·,M·]t = d

[∫ T

0

F (·, m̂·(u)) du,

∫ T

0

F (·, m̂·(u)) du

]
t

=

∫ T

0

∫ T

0

d[F (·, m̂·(u1)), F (·, m̂·(u2))]t du1 du2
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=

∫ T

0

∫ T

0

∂2F (t, m̂t(u1))∂2F (t, m̂t(u2))K(u1, t)K(u2, t) du1 du2 dt.

=

∫ T

t

∫ T

t

∂2F (t, m̂t(u1))∂2F (t, m̂t(u2))K(u1, t)K(u2, t) du1 du2 dt.

7.1.2 Exponential Volterra volatility model

Assume now that Xt is the log-price process (3.19) with σt being the exponential Volterra
volatility process de�ned by (3.24).

Lemma 7.1.3 (Auxiliary terms in the decomposition formula for the exponential Volterra
volatility model). Let σt be as in (3.24) and 0 ≤ t ≤ u. Then

F (t, m̂t(u)) = σ2
0 exp

{
2ξm̂t(u) + 2ξ2r̂(u|t)− αξ2r(u)

}
,

∂2F (t, m̂t(u)) = 2ξF (t, m̂t(u)),

d[M·,W·]t = 2σ2
0ξ

∫ T

t

exp
{

2ξm̂t(u) + 2ξ2r̂(u|t)− αξ2r(u)
}
K(u, t) du dt,

d[M·,M·]t = 4σ4
0ξ

2

∫ T

t

∫ T

t

exp {2ξ (m̂t(u1) + m̂t(u2))} ·

· exp
{

2ξ2 (r̂(u1|t) + r̂(u2|t))
}
·

· exp
{
−αξ2 (r(u1) + r(u2))

}
·

·K(u1, t)K(u2, t) du1 du2 dt.

Proof. Let ϕ̂t(u, z) be given by (7.4). Then

F (t, m̂t(u)) =

∫
R
g2(u, z)ϕ̂t(u, z) dz,

= σ2
0e−αξ

2r(u)

∫
R

e2ξz 1√
2πr̂(u|t)

exp

(
−1

2

(z − m̂t(u))2

r̂(u|t)

)
dz.

It is now easy to calculate the partial derivative ∂2F . We get

∂2F (t, m̂t(u)) = σ2
0e−αξ

2r(u)

∫
R

e2ξz 1√
2πr̂(u|t)

exp

(
−1

2

(z − m̂t(u))2

r̂(u|t)

)
z − m̂t(u)

r̂(u|t)
dz.

Changing variables v = z−m̂t(u)√
r̂(u|t)

and dz =
√
r̂(u|t) dv, we obtain

∂2F (t, m̂t(u)) =
σ2

0e−αξ
2r(u)√

r̂(u|t)
e2ξm̂t(u)

∫
R
e2ξ
√
r̂(u|t)vvφ(v) dv
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=
σ2

0e−αξ
2r(u)√

r̂(u|t)
e2ξm̂t(u)E

(
e2ξ
√
r̂(u|t)ZZ

)
,

where Z ∼ N (0, 1). Using formula E[ZeαZ ] = αe
α2

2 , we get

∂2F (t, m̂t(u)) = 2σ2
0ξ exp

{
2ξm̂u(u) + 2ξ2r̂(u|t)− αξ2r(u)

}
= 2ξF (t, m̂t(u)).

The remaining formulae follow accordingly.

Remark 7.1.4. Using that F (t, m̂t(u)) = Et [σ2
u], it is straightforward to see that

dMt = 2ξ

(∫ T

t

Et
[
σ2
u

]
K(u, t) du

)
dWt, (7.5)

d[M·,W·]t = 2ξ

∫ T

t

Et
[
σ2
u

]
K(u, t) du dt, (7.6)

d[M·,M·]t = 4ξ2

∫ T

t

∫ T

t

Et
[
σ2
u1

]
Et
[
σ2
u2

]
K(u1, t)K(u2, t) du1 du2 dt. (7.7)

Lemma 7.1.5. Let σt be as in (3.24) and 0 ≤ t ≤ u. Then, we can re-write F (t, m̂t(u)) as

Et
[
σ2
u

]
= σ2

t exp
{
−αξ2(r(u)− r(t))

+ 2ξ

∫ t

0

(K(u, z)−K(t, z)) dWz + 2ξ2r̂(u|t)
}
. (7.8)

Moreover, we also have the following equalities

Et
[
σ3
u exp

{
2ξ

∫ u

0

(K(s, z)−K(u, z)) dWz

}]
= σ3

t exp
{
−3

2
αξ2 (r(u)− r(t)) + ξ

∫ t

0

(2K(s, z) +K(u, z)− 3K(t, z)) dWz

+
ξ2

2

∫ u

t

(2K(s, z) +K(u, z))2 dz
}

and

Et
[
σ4
u exp

{
2ξ

∫ u

0

(K(s, z) +K(v, z)− 2K(u, z)) dWz

}]
= σ4

t exp
{
−2αξ2 (r(u)− r(t)) + 2ξ

∫ t

0

(K(s, z) +K(v, z)− 2K(t, z)) dWz

+ 2ξ2

∫ u

t

(K(s, z) +K(v, z))2 dz
}
.

Proof. The calculations to obtain these statements are straightforward.
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Proposition 7.1.6 (Terms in the approximation formula for the exponential Volterra
volatility model). Let σt be as in (3.24) and 0 ≤ t ≤ u. Then

ρ

2
L[W,M ]t = ρξσ3

t

∫ T

t

∫ T

u

exp

{
−3

2
αξ2 (r(u)− r(t))

}
· exp

{ξ2

2

∫ u

t

(2K(s, z) +K(u, z))2 dz − αξ2 (r(s)− r(u)) + 2ξ2r̂(s|u)
}

· exp

{
ξ

∫ t

0

(2K(s, z) +K(u, z)− 3K(t, z)) dWz

}
K(s, u) ds du (7.9)

and

1

8
D[M,M ]t =

1

2
ξ2σ4

t

∫ T

t

∫ T

u

∫ T

u

exp
{
−αξ2 (r(s) + r(v)− 2r(t)) + 2ξ2 (r̂(s|u) + r̂(v|u))

+ 2ξ

∫ t

0

(K(s, z) +K(v, z)− 2K(t, z)) dWz + 2ξ2

∫ u

t

(K(s, z) +K(v, z))2 dz
}

·K(s, u)K(v, u) ds dv du. (7.10)

In particular,

ρ

2
L[W,M ]0 = ρξσ3

0

∫ T

0

∫ T

u

exp
{ξ2

2

∫ u

0

[2K(s, z) +K(u, z)]2 dz
}
·

· exp
{

2ξ2r̂(s|u)− 1

2
αξ2r(u)− αξ2r(s)

}
K(s, u) ds du (7.11)

and

1

8
D[M,M ]0 =

1

2
σ4

0ξ
2

∫ T

0

∫ T

u

∫ T

u

exp
{

2ξ2

∫ u

0

[K(s, z) +K(v, z)]2 dz
}
·

· exp
{

2ξ2 (r̂(s|u) + r̂(v|u))− αξ2 (r(s) + r(v))
}
·

·K(s, u)K(v, u) ds dv du. (7.12)

Proof. We have that

ρ

2
L[W,M ]t =

ρ

2
Et
[∫ T

t

σu d[M·,W·]u

]
= ρξ Et

[∫ T

t

σu

(∫ T

u

Eu
[
σ2
s

]
K(s, u) ds

)
du

]
= ρξ

∫ T

t

Et
[
σu

(∫ T

u

Eu
[
σ2
s

]
K(s, u) ds

)]
du

= ρξ

∫ T

t

∫ T

u

Et
[
σ3
u exp

{
−αξ2 (r(s)− r(u))

}
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· exp
{

2ξ

∫ u

0

(K(s, z)−K(u, z)) dWz + 2ξ2r̂(s|u)
}
K(s, u)

]
ds du

= ρξ

∫ T

t

∫ T

u

Et
[
σ3
u exp

{
2ξ

∫ u

0

(K(s, z)−K(u, z)) dWz

}]
· exp

{
−αξ2 (r(s)− r(u)) + 2ξ2r̂(s|u)

}
K(s, u) ds du

= ρξσ3
t

∫ T

t

∫ T

u

exp

{
−3

2
αξ2 (r(u)− r(t))

}
· exp

{
ξ

∫ t

0

(2K(s, z) +K(u, z)− 3K(t, z)) dWz

}
· exp

{ξ2

2

∫ u

t

(2K(s, z) +K(u, z))2 dz − αξ2 (r(s)− r(u)) + 2ξ2r̂(s|u)
}
K(s, u) ds du.

Similarly, we have that

1

8
D[M,M ]t =

1

8
Et
[∫ T

t

d[M·,M·]u

]
=

1

2
ξ2 Et

[∫ T

t

(∫ T

u

Eu
[
σ2
s

]
K(s, u) ds

)2

du

]

=
1

2
ξ2

∫ T

t

Et

[(∫ T

u

Eu
[
σ2
s

]
K(s, u) ds

)2
]

du

=
1

2
ξ2

∫ T

t

Et
[(∫ T

u

∫ T

u

Eu
[
σ2
s

]
Eu
[
σ2
v

]
K(s, u)K(v, u) ds dv

)]
du

=
1

2
ξ2

∫ T

t

Et
[∫ T

u

∫ T

u

σ4
uK(s, u)K(v, u) exp

{
−αξ2(r(s) + r(v)− 2r(u))

+ 2ξ

∫ u

0

(K(s, z) +K(v, z)− 2K(u, z)) dWz + 2ξ2 (r̂(s|u) + r̂(v|u))

}
ds dv

]
du

=
1

2
ξ2

∫ T

t

∫ T

u

∫ T

u

Et
[
σ4
u exp

{
2ξ

∫ u

0

(K(s, z) +K(v, z)− 2K(u, z)) dWz

}]
exp

{
−αξ2(r(s) + r(v)− 2r(u)) + 2ξ2 (r̂(s|u) + r̂(v|u))

}
K(s, u)K(v, u) ds dv du

=
1

2
ξ2σ4

t

∫ T

t

∫ T

u

∫ T

u

exp
{
−αξ2 (r(s) + r(v)− 2r(t)) + 2ξ2 (r̂(s|u) + r̂(v|u))

+ 2ξ

∫ t

0

(K(s, z) +K(v, z)− 2K(t, z)) dWz + 2ξ2

∫ u

t

(K(s, z) +K(v, z))2 dz
}

·K(s, u)K(v, u) ds dv du.

For the exponential Volterra volatility model we can determine an upper error bound
for the price approximation in the following way.
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Theorem 7.1.7 (Upper error bound for the exponential Volterra volatility model). Let Xt

be a log-price process (3.19) with σt being the exponential Volterra volatility process (3.24).
Let the processes D[M,M ]t and L[W,M ]t be as in Corollary 4.2.1. Then we can express
the call option fair value Vt by

Vt = CBS(t,Xt, vt)

+
ρ

2
ΛΓCBS(t,Xt, vt)L[W,M ]t

+
1

8
Γ2CBS(t,Xt, vt)D[M,M ]t

+ εt,

where εt are error terms of order O (ρ (ξ2 + ξ3 + ρ (ξ + ξ2)) + ξ3 + ξ4).

Proof. Note that using (7.5) we have that

d [M,M ]t = 4ξ2

(∫ T

t

Et
[
σ2
u

]
K(u, t) du

)2

dt, (7.13)

d [M,W ]t = 2ξ

(∫ T

t

Et
[
σ2
u

]
K(u, t) du

)
dt. (7.14)

Applying the Jensen's inequality to (7.8), we can see that

a2
t ≥ σ2

t (T − t) exp

{
1

T − t

∫ T

t

[
−αξ2(r(u)− r(t)) + 2ξ (m̂t(u)− m̂t(t)) + 2ξ2r(u|t)

]
du

}
.

Then, it is easy to �nd that

T − t
a2
t

≤ 1

σ2
0

exp
{
−2ξm̂t(t) + αξ2r(t)

− 1

T − t

∫ T

t

[
−αξ2(r(u)− r(t)) + 2ξ (m̂t(u)− m̂t(t)) + 2ξ2r(u|t)

]
du
}

where the exponent

−2ξm̂t(t) + αξ2r(t)− 1

T − t

∫ T

t

[
−αξ2(r(u)− r(t)) + 2ξ (m̂t(u)− m̂t(t)) + 2ξ2r(u|t)

]
du.

is a Gaussian process. Therefore 1
a2t

has �nite moments of all orders.

Using the error terms speci�ed in (4.8) and (4.9) and Lemma 3.1.10 (ii), we �nd the
following decompositions for each term

∣∣∣∣18Et
[∫ T

t

e−r(u−t)Γ2CBS(u,Xu, vu) d [M,M ]u

]
− 1

8
Γ2CBS(t,Xt, vt)D[M,M ]t

∣∣∣∣
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≤ C

8
Et
[∫ T

t

e−r(u−t)
(

1

a7
u

+
3

a6
u

+
3

a5
u

+
1

a4
u

)
1

8
D[M,M ]u d [M,M ]u

]
(7.15)

+
Cρ

2
Et
[∫ T

t

e−r(u−t)
(

1

a6
u

+
2

a5
u

+
1

a4
u

)
1

8
D[M,M ]uσu d [W,M ]u

]
+ CρEt

[∫ T

t

e−r(u−t)
(

1

a4
u

+
1

a3
u

)
σu d

[
W,

1

8
D[M,M ]u

]
u

]
+

C

2
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
2

a4
u

+
1

a3
u

)
d

[
M,

1

8
D[M,M ]u

]
u

]
and ∣∣∣∣ρ2Et

[∫ T

t

e−r(u−t)ΛΓCBS(u,Xu, vu)σu d [W,M ]u

]
− ρ

2
ΛΓCBS(t,Xt, vt)L[W,M ]t

∣∣∣∣
≤ C

8
Et
[∫ T

t

e−r(u−t)
(

1

a6
u

+
2

a5
u

+
1

a4
u

)
ρ

2
L[W,M ]u d [M,M ]u

]
(7.16)

+
Cρ

2
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
1

a4
u

)
ρ

2
L[W,M ]uσu d [W,M ]u

]
+ CρEt

[∫ T

t

e−r(u−t)
1

a3
u

σu d
[
W,

ρ

2
L[W,M ]u

]
u

]
+

C

2
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
1

a3
u

)
d
[
M,

ρ

2
L[W,M ]u

]
u

]
.

Since we have a Gaussian driving process and the kernel is square-integrable by as-
sumption (2.10), the integrals are well-de�ned and the conditional expectations are �-
nite. Substituting the values of d [W,M ]t, d [M,M ]t, D[M,M ]t and L[W,M ]t, equations
(7.14), (7.13), (7.9) and (7.10) respectively, an initial estimate of the error is obtained as
O (ρ (ξ2 + ξ3 + ρ (ξ + ξ2)) + ξ3 + ξ4).

Further, we express di�erentials with respect to the nth-power of the exponential Volterra
volatility process when Yt is a semi-martingale.

Lemma 7.1.8. Let σt be as in (3.24) and Yt a semi-martingale. Let n ≥ 1, we have that

dσnt = σnt K(t, t)
[
nξ dWt +

n

2
ξ2K(t, t) (n− α) dt

]
. (7.17)

Proof. The formula is an immediate consequence of the Itô formula.

Lemma 7.1.9. Let σt be as in (3.24) and Yt is a semi-martingale. We can calculate
dL[M,W ]t and dD[M,M ]t. In order to simplify the notation, we de�ne the two following
functions

ϕ(t, s, x, T ) := exp
{
−3

2
αξ2
(
r(x)− r(t)

)
+ ξ

∫ t

0

(
2K(s, z) +K(x, z)− 3K(t, z)

)
dWz

}
·
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· exp
{ξ2

2

∫ x

t

(
2K(s, z) +K(x, z)

)2

dz − αξ2
(
r(s)− r(x)

)
+ 2ξ2r̂(s|x)

}
,

ψ(t, s, v, x, T ) := exp
{
−αξ2

(
r(s) + r(v)− 2r(t)

)
+ 2ξ2

(
r̂(s|x) + r̂(v|x)

)
+ 2ξ

∫ t

0

(
K(s, z) +K(v, z)− 2K(t, z)

)
dWz

+ 2ξ2

∫ x

t

(
K(s, z) +K(v, z)

)2

dz
}
.

Then

ρ

2
dL[W,M ]t = ρξσ3

tK(t, t)
[
3ξ dWt +

3

2
ξ2K(t, t) (3− α) dt

] ∫ T

t

∫ T

x

ϕ(t, s, x, T )K(s, x) ds dx

− ρξσ3
t

∫ T

0

ϕ(t, s, t, T )K(s, x) ds dt

+ ρξσ3
t

∫ T

t

∫ T

x

ϕ(t, s, x, T )
{3

2
αξ2 dr(t) + ξ

(
2K(s, t) +K(x, t)− 3K(t, t)

)
dWt

+
1

2
ξ2
(

2K(s, t) +K(x, t)− 3K(t, t)
)2

dt− ξ2

2
(2K(s, t) +K(x, t))2 dt

}
·K(s, x) ds dx

and

1

8
dD[M,M ]t =

1

2
ξ2σ4

tK(t, t)
[
4ξ dWt + 2ξ2K(t, t) (4− α) dt

]
∫ T

t

∫ T

x

∫ T

x

Φ(t, s, v, x, T ) ·K(s, x)K(v, x) ds dv dx

− 1

2
ξ2σ4

t

∫ T

0

∫ T

0

Φ(t, s, v, t, T )K(s, t)K(v, t) ds dv dt

+
1

2
ξ2σ4

t

∫ T

t

∫ T

x

∫ T

x

Φ(t, s, v, x, T )K(s, x)K(v, x){
2αξ2 dr(t) + 2ξ

(
K(s, t) +K(v, t)− 2K(t, t)

)
dWt

+ 2ξ2
(
K(s, t) +K(v, t)− 2K(t, t)

)2

dt

− 2ξ2
(
K(s, t) +K(v, t)

)2

dt
}

ds dv dx.

We de�ne the following auxiliary function

ζ(t, T ) :=

∫ T

t

Et
[
σ2
z

]
K(z, t) dz.
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Then, it is easier to see that the covariations are the following

d
[ρ

2
L[W,M ]t,W

]
t

= 3ρξ2σ3
tK(t, t)

∫ T

t

∫ T

x

ϕ(t, s, x, T )K(s, x) ds dx dt

+ ρξ2σ3
t

∫ T

t

∫ T

x

ϕ(t, s, x, T )
(

2K(s, t) +K(x, t)− 3K(t, t)
)

K(s, x) ds dx dt,

d
[ρ

2
L[W,M ]t,M

]
t

= 6ρξ3σ3
tK(t, t)ζ(t, T )

∫ T

t

∫ T

x

ϕ(t, s, x, T )K(s, x) ds dx dt

+ 2ρξ3σ3
t ζ(t, T )

∫ T

t

∫ T

x

ϕ(t, s, x, T )
(

2K(s, t) +K(x, t)− 3K(t, t)
)

K(s, x) ds dx dt,

d

[
1

8
D[M,M ]t,W

]
t

= 2ξ3σ4
tK(t, t)

∫ T

t

∫ T

x

∫ T

x

ψ(t, s, v, x, T ) ·K(s, x)K(v, x) ds dv dx dt

+ ξ3σ4
u

∫ T

u

∫ T

x

∫ T

x

ψ(t, s, v, x, T )K(s, x)K(v, x)(
K(s, u) +K(v, u)− 2K(u, u)

)
ds dv dx dt

and

d

[
1

8
D[M,M ]t,M

]
t

= 4ξ4σ4
tK(t, t)ζ(t, T )

∫ T

t

∫ T

x

∫ T

x

ψ(t, s, v, x, T )

·K(s, x)K(v, x) ds dv dx dt

+ 2ξ4σ4
t ζ(t, T )

∫ T

t

∫ T

x

∫ T

x

ψ(t, s, v, x, T )K(s, x)K(v, x)(
K(s, t) +K(v, t)− 2K(t, t)

)
ds dv dx dt.

Proof. Now, we can re-write ρ
2
L[W,M ]t as

ρ

2
L[W,M ]t = ρξσ3

t

∫ T

t

∫ T

x

ϕ(t, s, x, T )K(s, x) ds dx

and 1
8
D[M,M ]t as

1

8
D[M,M ]t =

1

2
ξ2σ4

t

∫ T

t

∫ T

x

∫ T

x

ψ(t, s, v, x, T ) ·K(s, x)K(v, x) ds dv dx.

We have that

ρ

2
dL[W,M ]t = ρξ dσ3

t

∫ T

t

∫ T

x

ϕ(t, s, x, T )K(s, x) ds dx
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− ρξσ3
t

∫ T

0

ϕ(t, s, t, T )K(s, x) ds dt

+ ρξσ3
t

∫ T

t

∫ T

x

ϕ(t, s, x, T )
{3

2
αξ2 dr(t)

+ ξ
(

2K(s, t) +K(x, t)− 3K(t, t)
)

dWt

+ ξ2
(

2K(s, t) +K(x, t)− 3K(t, t)
)2

dt

− ξ2

2

(
2K(s, t) +K(x, t)

)2

dt
}
K(s, x) ds dx.

Using Lemma 7.1.8, we obtain

ρ

2
dL[W,M ]t = ρξσ3

tK(t, t)
[
3ξ dWt +

3

2
ξ2K(t, t) (3− α) dt

] ∫ T

t

∫ T

x

ϕ(t, s, x, T )K(s, x) ds dx

− ρξσ3
t

∫ T

x

ϕ(t, s, t, T )K(s, x) ds dt

+ ρξσ3
t

∫ T

t

∫ T

x

ϕ(t, s, x, T )
{3

2
αξ2 dr(t) + ξ

(
2K(s, t) +K(x, t)− 3K(t, t)

)
dWt

+
1

2
ξ2
(

2K(s, t) +K(x, t)− 3K(t, t)
)2

dt

− ξ2

2

(
2K(s, t) +K(x, t)

)2

dt
}
K(s, x) ds dx.

We have that

1

8
dD[M,M ]t =

1

2
ξ2 dσ4

t

∫ T

t

∫ T

x

∫ T

x

Φ(t, s, v, x, T ) ·K(s, x)K(v, x) ds dv dx

− 1

2
ξ2σ4

t

∫ T

t

∫ T

t

Φ(t, s, v, t, T )K(s, t)K(v, t) ds dv dt

+
1

2
ξ2σ4

t

∫ T

t

∫ T

x

∫ T

x

Φ(t, s, v, x, T )K(s, x)K(v, x)
{

2αξ2 dr(t)

+ 2ξ
(
K(s, t) +K(v, t)− 2K(t, t)

)
dWt + 2ξ2

(
K(s, t) +K(v, t)− 2K(t, t)

)2

dt

− 2ξ2
(
K(s, t) +K(v, t)

)2

dt
}

ds dv dx.

Using Lemma 7.1.8, we obtain

1

8
dD[M,M ]t =

1

2
ξ2σ4

tK(t, t)
[
4ξ dWt + 2ξ2K(t, t) (4− α) dt

]
∫ T

t

∫ T

x

∫ T

x

Φ(t, s, v, x, T ) ·K(s, x)K(v, x) ds dv dx
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− 1

2
ξ2σ4

t

∫ T

t

∫ T

t

Φ(t, s, v, t, T )K(s, t)K(v, t) ds dv dt

+
1

2
ξ2σ4

t

∫ T

t

∫ T

x

∫ T

x

Φ(t, s, v, x, T )K(s, x)K(v, x){
2αξ2 dr(t) + 2ξ

(
K(s, t) +K(v, t)− 2K(t, t)

)
dWt

+ 2ξ2
(
K(s, t) +K(v, t)− 2K(t, t)

)2

dt

− 2ξ2
(
K(s, t) +K(v, t)

)2

dt
}

ds dv dx.

Remark 7.1.10. If Yt is a semimartingale, terms L[M,W ]t and D[M,M ]t and conse-
quently its covariations can be further speci�ed. Therefore, the error estimation can be

improved to O
(

(ξ2 + ρξ)
2
)
.

7.1.3 Exponential fractional volatility model

Let us now focus on a particularly important example of Gaussian Volterra processes, the
fractional Brownian motion (fBm) de�ned in (3.25).

Example 7.1.11 (Volatility driven by the approximate fractional Brownian motion). Let
us consider model (3.19) with volatility process

σt = σ0 exp

{
ξB̃t −

1

2
αξ2r(t)

}
,

where

B̃t =

∫ t

0

K̃(t, s) dWs

and

K̃(t, s) =
√

2H(t− s+ ε)H−1/2, s ≤ t, ε ≥ 0, H ∈ (0, 1).

Then

r(t, s) =

∫ t∧s

0

K̃(t, v)K̃(s, v) dv,

r(t) =

∫ t

0

K̃2(t, v) dv = 2H

∫ t

0

(t− v + ε)2H−1 dv = (t+ ε)2H − ε2H .

Note that if ε = 0, we get exactly the variance r(t) = t2H , that it is the variance of the
standard fractional Brownian motion. Further we have

r̂(t|u) = r(t)−
∫ u

0

K̃2(t, v) dv = r(t)− 2H

∫ u

0

(t− v + ε)2H−1 dv = (t− u+ ε)2H − ε2H



Rough Volterra Stochastic Volatility models 129

and thus

ρ

2
L[W,M ]0 = ρσ3

0ξ
√

2H

∫ T

0

∫ T

u

exp
{
ξ2H

∫ u

0

[(u− v + ε)H−1/2 + 2(s− v + ε)H−1/2]2 dv
}
·

· exp
{

2ξ2[(s− u+ ε)2H − ε2H ]
}
·

· exp
{
−1

2
αξ2[(u+ ε)2H + 2(s+ ε)2H − 3ε2H ]

}
·

· (s− u+ ε)H−1/2 ds du,

1

8
D[M,M ]0 = σ4

0ξ
2H

∫ T

0

∫ T

u

∫ T

u

exp
{

4ξ2H

∫ u

0

[(t1 − v + ε)H−1/2 + (t2 − v + ε)H−1/2]2 dv
}
·

· exp
{

2ξ2[(t1 − u+ ε)2H + (t2 − u+ ε)2H − 2ε2H ]
}
·

· exp
{
−αξ2[(t1 + ε)2H + (t2 + ε)2H − 2ε2H ]

}
·

· (t1 − u+ ε)H−1/2(t2 − u+ ε)H−1/2 dt1 dt2 du.

Example 7.1.12 (Volatility driven by the standard Wiener process). If in the previous
Example 7.1.11 we take H = 1/2 and ε = 0, we get model (3.19) with exponential Wiener
volatility process

σt = σ0 exp

{
ξW̃t −

1

2
αξ2r(t)

}
, (7.18)

where

W̃t =

∫ t

0

K̃(t, s) dWs

is the standard Wiener process, i.e. where K̃(t, s) = 1{s≤t}. In this case, we have that

v2
t =

σ2
t

(2− α) ξ2(T − t)
[
exp{(2− α) ξ2(T − t)} − 1

]
,

r(t, s) =

∫ t∧s

0

K̃(t, v)K̃(s, v) dv = t ∧ s,

r(t) =

∫ t

0

K̃2(t, v) dv = t.

De�ne

φ(t, T, α) :=

∫ T

t

exp
{

(2− α)ξ2(s− t)
}

ds. (7.19)
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It is easy to see that

dMt = 2ξσ2
t dWtφ(t, T, α),

and thus

ρ

2
L[W,M ]0 = ρσ3

0ξ

∫ T

0

∫ T

0

exp
{1

2
ξ2

∫ u

0

[1{v≤u} + 2 · 1{v≤s}]2 dv
}
·

· exp
{

2ξ2(s− u)− 1

2
αξ2u− αξ2s

}
1{u≤s} ds du

= ρσ3
0ξ

∫ T

0

∫ T

0

exp
{9

2
ξ2u
}

exp
{1

2
ξ2[(4− 2α)s− (4 + α)u]

}
1{u≤s} ds du

=
2ρσ3

0

3(2− α)(3− α)(5− α)ξ3

[
2(2− α) exp

{3

2
ξ2(3− α)T

}
− 3(3− α) exp

{
ξ2(2− α)T

}
+ 5− α

]
(7.20)

and

1

8
D[M,M ]0 =

1

2
σ4

0ξ
2

∫ T

0

∫ T

0

∫ T

0

exp
{

2ξ2

∫ u

0

[1{v≤t1} + 1{v≤t2}]
2 dv

}
·

· exp
{

2ξ2[t1 + t2 − 2u]− αξ2[t1 + t2]
}
1{u≤t1}1{u≤t2} dt1 dt2 du

=
1

2
σ4

0ξ
2

∫ T

0

∫ T

0

∫ T

0

exp
{

8ξ2u
}

exp
{

2ξ2[t1 + t2 − 2u]− αξ2[t1 + t2]
}

1{u≤t1}1{u≤t2} dt1 dt2 du

=
σ4

0

8(2− α)2(4− α)(6− α)ξ4

[
(2− α)2 exp

{
2(4− α)ξ2T

}
− (4− α)(6− α) exp

{
2(2− α)ξ2T

}
+ 8(4− α) exp

{
(2− α)ξ2T

}
− 2(6− α)

]
. (7.21)

For a model without exponential drift (α = 0) these formulae simplify to

ρ

2
L[W,M ]0 =

ρσ3
0

45ξ3

[
4 exp

{9

2
ξ2T
}
− 9 exp

{
2ξ2T

}
+ 5

]
,

1

8
D[M,M ]0 =

σ4
0

192ξ4

[
exp
{

2ξ2T
}
− 1
]3 [

exp
{

2ξ2T
}

+ 3
]

and for the classical Bergomi model (α = 1) we get

ρ

2
L[W,M ]0 =

ρσ3
0

6ξ3

[
exp
{

3ξ2T
}
− 3 exp

{
ξ2T
}

+ 2
]
,
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1

8
D[M,M ]0 =

σ4
0

120ξ4

[
exp
{

6ξ2T
}
− 15 exp

{
2ξ2T

}
+ 24 exp

{
ξ2T
}
− 10

]
.

For matter of convenience, we de�ne the functions

ψ(t, T, α) =

∫ T

t

exp
{

(8− 2α)ξ2(s− t)
} [

exp
{

(2− α)ξ2(T − s)
}
− 1
]2

ds (7.22)

and

ζ(t, T, α) =

∫ T

t

exp

{
1

2
(9− 3α)ξ2(s− t)

}[
exp

{
(2− α)ξ2(T − s)

}
− 1
]

ds. (7.23)

We can re-write ρ
2
L[W,M ]t and

1
8
D[M,M ]t as

ρ

2
L[W,M ]t =

ρσ3
t

(2− α)ξ
ζ(t, T, α) (7.24)

and

1

8
D[M,M ]t =

σ4
t

2(2− α)2ξ2
ψ(t, T, α). (7.25)

It is easy to �nd the ρ
2

dL[W,M ]t and
1
8

dD[M,M ]t,

ρ

2
dL[W,M ]t =

ρ dσ3
t

(2− α)ξ
ζ(t, T, α) +

ρσ3
t

(2− α)ξ
ζ ′(t, T, α) dt

=
ρ
(
3ξσ3

t dWt + 1
2
(18− 3α)ξ2σ3 dt

)
(2− α)ξ

ζ(t, T, α) +
ρσ3

t

(2− α)ξ
ζ ′(t, T, α) dt

and

1

8
dD[M,M ]t =

dσ4
t

2(2− α)2ξ2
ψ(t, T, α) +

σ4
t

2(2− α)2ξ2
ψ′(t, T, α) dt

=
4ξσ4

t dWt + 2(8− α)σ4
t dt

2(2− α)2ξ2
ψ(t, T, α) +

σ4
t

2(2− α)2ξ2
ψ′(t, T, α) dt.

Remark 7.1.13. We can do a Taylor expansion of ρ
2
L[W,M ]0 and 1

8
D[M,M ]0 to under-

stand their dependencies better. By doing that we obtain

ρ

2
L[W,M ]0 ∼ ρξT 2σ3

t

(
1

2
+

1

12
(13− 5α)ξ2T +

1

96
(α(19α− 100) + 133)ξ4T 2

− 1

960
(5α− 13) (α(13α− 70) + 97) ξ6T 3 +O

(
T 4
))
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and

1

8
D[M,M ]0 ∼ ξ2T 3σ4

t

(
−1

6
(α− 2) +

1

24
(α− 2)(5α− 14)ξ2T

− 1

120
(α− 2)

(
17α2 − 96α + 140

)
ξ4T 2 +O

(
T 3
))

.

Theorem 7.1.14 (Decomposition formula for exponential Wiener volatility model). Let
Xt be the log-price process (3.19) with σt being the exponential Wiener volatility process
de�ned in (7.18). Assuming without any loss of generality that the options start at time 0,
then we can express the call option fair value V0 using the processes

ρ
2
L[W,M ]0,

1
8
D[M,M ]0

from (7.20) and (7.21) respectively. In particular,

V0 = CBS(0, X0, v0)

+
ρ

2
ΛΓCBS(0, X0, v0)L[W,M ]0

+
1

8
Γ2CBS(0, X0, v0)D[M,M ]0

+ ε

where ε denotes error terms and for α ≥ 0, |ε| is at most of the order Cξ(
√
T+ρξ2)T 3/2Π(α, T, ξ, ρ).

Proof. We will �nd the upper-bound for terms (I) and (II).

Upper-bound for term (I)
For matter of convenience, we de�ne the function

χ1(t, T, α) :=

∫ T

t

exp

{
1

2
(9− 3α)ξ2(s− t)

}[
exp

{
(2− α)ξ2(T − s)

}
− 1
]

ds.

We can rewrite ρ
2
L[W,M ]t as

ρ

2
L[W,M ]t =

ρσ3
t

(2− α)ξ
χ1(t, T, α).

It is easy to �nd that

d
ρ

2
L[W,M ]t =

ρ dσ3
t

(2− α)ξ
χ1(t, T, α) +

ρσ3
t

(2− α)ξ
χ′1(t, T, α) dt

=
ρ
(
3ξσ3

t dWt + 1
2
(18− 3α)ξ2σ3 dt

)
(2− α)ξ

χ1(t, T, α) +
ρσ3

t

(2− α)ξ
χ′1(t, T, α) dt.

If α ≥ 0, we can �nd an upper-bound for χ1(t, T, α) which is

χ1(t, T, α) ≤
∫ T

t

exp

{
9

2
ξ2(s− t)

}[
exp

{
2ξ2(T − s)

}
− 1
]

ds
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=
2

45ξ2

(
−9 exp

{
2ξ2(T − t)

}
+ 4 exp

{
9

2
ξ2(T − t)

}
+ 5

)
.

We can re-write the decomposition formula as

ρ

2
Et
[∫ T

t

e−r(u−t)ΛΓCBS(u,Xu, vu)σu d [W,M ]u

]
− ΛΓCBS(t,Xt, vt)

ρ

2
L[W,M ]t

=
1

8
Et
[∫ T

t

e−r(u−t)
(
∂5
x − 2∂4

x + ∂3
x

)
ΓCBS(u,Xu, vu)

ρ

2
L[W,M ]u d [M,M ]u

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)
(
∂4
x − ∂3

x

)
ΓCBS(u,Xu, vu)

ρ

2
L[W,M ]uσu d [W,M ]u

]
+ ρEt

[∫ T

t

e−r(u−t)∂2
xΓCBS(u,Xu, vu)σu d

[
W,

ρ

2
L[W,M ]u

]
u

]
+

1

2
Et
[∫ T

t

e−r(u−t)
(
∂3
x − ∂2

x

)
ΓCBS(u,Xu, vu) d

[
M,

ρ

2
L[W,M ]u

]
u

]
.

Applying Lemma 3.1.10 (ii) and using the de�nition of au, we obtain∣∣∣∣ρ2Et
[∫ T

t

e−r(u−t)ΛΓCBS(u,Xu, vu)σu d [W,M ]u

]
− ΛΓCBS(t,Xt, vt)

ρ

2
L[W,M ]t

∣∣∣∣
≤ C

8
Et
[∫ T

t

e−r(u−t)
(

1

a6
u

+
2

a5
u

+
1

a4
u

)
ρ

2
L[W,M ]u d [M,M ]u

]
+

Cρ

2
Et
[∫ T

t

e−r(u−t)
(

1

a5
u

+
1

a4
u

)
ρ

2
L[W,M ]uσu d [W,M ]u

]
+ CρEt

[∫ T

t

e−r(u−t)
1

a3
u

σu d
[
W,

ρ

2
L[W,M ]u

]
u

]
+

C

2
Et
[∫ T

t

e−r(u−t)
(

1

a4
u

+
1

a3
u

)
d
[
M,

ρ

2
L[W,M ]u

]
u

]
.

Noting that au = σuφ
1/2(u, T, α), where φ was de�ned in (7.19),∣∣∣∣ρ2Et

[∫ T

t

e−r(u−t)ΛΓCBS(u,Xu, vu)σu d [W,M ]u

]
− ΛΓCBS(t,Xt, vt)

ρ

2
L[W,M ]t

∣∣∣∣
≤ Cρξ

2(2− α)
Et
[∫ T

t

e−r(u−t)
(

σu
φ(u, T, α)

+
2σ2

u

φ1/2(u, T, α)
+ σ3

u

)
χ1(u, T, α) du

]
+

Cρ2

(2− α)
Et
[∫ T

t

e−r(u−t)
(

σu
φ3/2(u, T, α)

+
σ2
u

φ(u, T, α)

)
χ1(u, T, α) du

]
+

Cρ23

(2− α)
Et
[∫ T

t

e−r(u−t)
σu

φ3/2(u, T, α)
χ1(u, T, α) du

]
+

3Cρξ

(2− α)
Et
[∫ T

t

e−r(u−t)
(

σu
φ(u, T, α)

+
σ2
u

φ1/2(u, T, α)

)
χ1(u, T, α) du

]
.
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Being σu the only stochastic component, we can get the expectation inside. Each power of σu
has a di�erent forward value, and in this case, we can �nd the upper-bound exp

{
9
2
ξ2(u− t)

}
for all the terms. We have that∣∣∣∣ρ2Et

[∫ T

t

e−r(u−t)ΛΓCBS(u,Xu, vu)σu d [W,M ]u

]
− ΛΓCBS(t,Xt, vt)

ρ

2
L[W,M ]t

∣∣∣∣
≤ Cρξ

2(2− α)

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}(
σt

φ(u, T, α)
+

2σ2
t

φ1/2(u, T, α)
+ σ3

t

)
χ1(u, T, α) du

+
Cρ2

(2− α)

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}(
σt

φ3/2(u, T, α)
+

σ2
t

φ(u, T, α)

)
χ1(u, T, α) du

+
Cρ23

(2− α)

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
σt

φ3/2(u, T, α)
χ1(u, T, α) du

+
3Cρξ

(2− α)

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}(
σt

φ(u, T, α)
+

σ2
t

φ1/2(u, T, α)

)
χ1(u, T, α) du.

Substituting φ(u, T, α) and using the upper-bound for χ1(u, T, α) when α ≥ 0, we have∣∣∣∣ρ2Et
[∫ T

t

e−r(u−t)ΛΓCBS(u,Xu, vu)σu d [W,M ]u

]
− ΛΓCBS(t,Xt, vt)

ρ

2
L[W,M ]t

∣∣∣∣
≤ Cρξ

45(2− α)ξ2

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
(
σt

2ξ2

[exp {2ξ2(T − u)} − 1]
+ 2σ2

t

√
2ξ

[exp {(2− α)ξ2(T − u)} − 1]
1
2

+ σ3
t

)
(
−9 exp

{
2ξ2(T − u)

}
+ 4 exp

{
9

2
ξ2(T − u)

}
+ 5

)
du

+
2Cρ2

45(2− α)ξ2

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
(
σt

2
3
2 ξ3

[exp {(2− α)ξ2(T − u)} − 1]
3
2

+ σ2
t

2ξ2

[exp {(2− α)ξ2(T − u)} − 1]

)
(
−9 exp

{
2ξ2(T − u)

}
+ 4 exp

{
9

2
ξ2(T − u)

}
+ 5

)
du

+
6Cρ2

45(2− α)ξ2

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
σt

2
3
2 ξ3

[exp {(2− α)ξ2(T − u)} − 1]
3
2

(
−9 exp

{
2ξ2(T − u)

}
+ 4 exp

{
9

2
ξ2(T − u)

}
+ 5

)
du

+
6Cρξ

45(2− α)ξ2

∫ T

t

e−r(u−t) exp

{
9

2
ξ2(u− t)

}
(
σt

2ξ2

[exp {(2− α)ξ2(T − u)} − 1]
+ σ2

t

√
2ξ

[exp {(2− α)ξ2(T − u)} − 1]
1
2

)
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(
−9 exp

{
2ξ2(T − u)

}
+ 4 exp

{
9

2
ξ2(T − u)

}
+ 5

)
du.

The above upper-bound error is di�cult to interpret. In order to do this, we derive a Taylor
expansion for one of the terms. Then, the following error behaviour is retrieved:

C
ρξ3σtT

3/2

6(α− 2)2

(
32
√

2ρ√
−(α− 2)ξ2

+ 21
√
T

)
.

Upper-bound for term (II) For matter of convenience, we de�ne the function

χ2(t, T, α) :=

∫ T

t

exp
{

(8− 2α)ξ2(s− t)
} [

exp
{

(2− α)ξ2(T − s)
}
− 1
]2

ds.

We can re-write Rt as

1

8
D[M,M ]t =

σ4
t

2(2− α)2ξ2
χ2(t, T, α).

It is easy to �nd that

d
1

8
D[M,M ]t =

dσ4
t

2(2− α)2ξ2
χ2(t, T, α) +

σ4
t

2(2− α)2ξ2
χ′2(t, T, α) dt

=
4ξσ4

t dWt + 2(8− α)σ4
t dt

2(2− α)2ξ2
χ2(t, T, α) +

σ4
t

2(2− α)2ξ2
χ′2(t, T, α) dt.

If α ≥ 0, we can �nd an upper-bound for χ2(t, T, α) which is

χ2(t, T, α) ≤
∫ T

t

exp
{

8ξ2(s− t)
} [

exp
{

2ξ2(T − s)
}
− 1
]2

ds

=
1

24ξ2

(
exp

{
2ξ2(T − t)

}
− 1
)3 (

exp
{

2ξ2(T − t)
}

+ 3
)
.

We can re-write the decomposition formula as

1

8
Et
[∫ T

t

e−r(u−t)Γ2CBS(u,Xu, vu) d [M,M ]u

]
− Γ2CBS(t,Xt, vt)

1

8
D[M,M ]t

=
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+
1

2
Et
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]
.

Applying Lemma 3.1.10 (ii) and using the de�nition of au, we obtain∣∣∣∣18Et
[∫ T

t
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Noting that au = σuφ
1/2(u, T, α), we have∣∣∣∣18Et
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]
.

Being σu the only stochastic component, we can get the expectation inside. Each power of
σu has a di�erent forward value, in this case, we can bound all terms by exp {8ξ2(u− t)}.
We have that∣∣∣∣18Et
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Substituting φ(u, T, α) and using the upper-bound for χ2(u, T, α) when α ≥ 0, we have∣∣∣∣18Et
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(
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The above upper-bound error is di�cult to interpret. In order to this, we do a Taylor
analysis of one term. Then, the following error behaviour is retrieved

C
ξσtT

2

15(α− 2)4

(
5
(

20ρ+
√

2
)

+ 32
√

2
√
T
√
−(α− 2)ξ2

)
.

Remark 7.1.15. It is worth mentioning that the order of the error bound from Theo-
rem 7.1.14 is better than the general estimate from Theorem 7.1.7, where the time depen-
dency is not considered. To get �ner estimates also for the exponential fractional model
(case H 6= 1/2), a proof similar to the Theorem 7.1.14 would have to be performed with
more complicated but still tractable calculations.

Example 7.1.16 (Volatility driven by the standard fractional Brownian motion). Let us
consider a model with volatility process

σt = exp{ξBH
t −

1

2
αξ2r(t)},

where BH
t is the standard fractional Brownian motion as de�ned in (2.17), i.e. with the

Molchan-Golosov kernel (2.18) or (2.19). Then, the formulae for ρ
2
L[W,M ]0 and

1
8
D[M,M ]0

are given in Proposition 7.1.6 with the particular kernel (2.18) or (2.19), autocovariance
function (2.15) and r̂(t, s|u) as in Theorem 7.1.1. In this case, we do not give the formulae
for U0 and R0 after substituting the Molchan-Golosov kernel, due to these formulae being
too long. However, it is worth mentioning that the formulae are explicit and numerical
evaluation requires only the computation of some multiple Gaussian integrals.

Remark 7.1.17. The Molchan-Golosov kernel can be written as

KH(t, s) = CH(t− s)H−
1
2F

(
1

2
−H,H − 1

2
, H +

1

2
, 1− t

s

)
(7.26)

where F (a, b, c, z) is the Gauss hypergeometric function. Then, it is easy to see that

KH(t, s) ≤ C |t− s|H−
1
2 (7.27)

and KH(t, s) is square-integrable function.
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7.2 Numerical comparison of approximation formula

In this section, we focus on numerical aspects of the introduced approximation formula. We
provide details on its numerical implementation and a comparison with the Monte Carlo
(MC) simulation framework introduced by Bennedsen et al. (2017) will be made.

In the second part of this section, we also introduce two interesting outcome analysis
for rBergomi model. In particular, we show how the model can be e�ciently calibrated
using the approximation formula to short maturity smiles. We remark that classical SV
models (e.g. Heston model) might fail to �t the short-term smiles, unless they exploit high
volatility of volatility levels for which they would be typically inconsistent with the long
term skew of the volatility surface.

In what follows, we will inspect the approximation quality for rBergomi model and
time to maturity / volatility of volatility ξ scenarios. Based on the nature of error terms
(see Theorem 7.1.14) those two factors should play prominent roles when it comes to
approximation quality.

7.2.1 On implementation of the approximation formula

We note that for the models studied in this chapter, we have obtained either a semi-
closed form or analytical formula for standard Wiener case (H=0.5). Moreover, for the
class of exponential fractional models, represented by the αRFSV model, we only need to
numerically evaluate multiple integrals in 1

8
D[M,M ]0 and

ρ
2
L[W,M ]0.

In our case, this was done using a trapezoid quadrature routine, not necessarily the
most e�cient approach, but easy to implement. We used a discretisation1 of integrands
such that the numerical error does not a�ect the results in a signi�cant way. I.e. to be
lower than standard MC errors when compared to simulated prices or lower than the
expected approximation error.

For benchmarking, we use a �rst-order hybrid MC scheme introduced by Bennedsen
et al. (2017) alongside 50,000 MC sample paths. Similar to the implementation of the
approximation formula, we remark that this scheme could also be improved as described
in McCrickerd and Pakkanen (2018).

7.2.2 Sensitivity analysis for rBergomi α = 1 approximation w.r.t.

increasing ξ and time to maturity τ

In this section, we illustrate the approximation quality for European call options under
various model regimes / data set properties as described in Table 7.1. We use option
maturities up to 1Y, we are expecting a loss of approximation quality, based on the nature
of the approximation formula. As we utilised a �rst-order approximation arguments with
respect to volatility of volatility, we are also expecting more pronounced di�erences between
MC simulations and the formula for large values of ξ.

1Typically we used from 1,000 up to 27,000 points for 3D integrals.
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Table 7.1: Model / data settings for sensitivity analyses.

Model params Values

ξ {10%, 50%, 100%} and {from 10% to 50% with 10% step}
σ0 8%
ρ -20%
H 0.1

Data set speci�cs Values

Moneyness S/K 70% � 130% with 5% step
Time to maturity τ {1M, 3M, 6M, 1Y}

Underlying spot price S0 100

In Figure 7.1, we illustrate the approximation quality of the rBergomi approximation
for low ξ values. We can observe an expected behaviour: a very good match up to 3M
expiry and almost linear deterioration of the quality with increasing τ . The approximation
formula also provides a similar scale of errors across the tested moneyness.

For di�erent moneyness regimes and 1M time to maturity, we obtained the following
discrepancies between the MC trials and the introduced formula, measured in the relative
option fair value (FV)2:

Di�erences in relative FVs

Spot moneyness ξ = 10% ξ = 50% ξ = 100%

80% 4.5e-04 -8.1e-05 -0.29928
90% 3.9e-04 2.6e-05 -0.02797
100% 2.3e-04 7.2e-04 0.95436
110% -1.5e-05 -7.7e-05 0.09690
120% -1.2e-05 -2.7e-04 -0.46417

In the table above, we can see reasonable approximation error measures which fell below
standard 1 MC error for ξ = 10% and ξ = 50% regimes. Due to the theoretical properties
of the approximation formula, we observe a signi�cant deterioration for high volatility of
volatility regimes. This also depends on the time to maturity of the approximated option,
the shorter maturity we have, the higher ξ is, we can obtain reasonable approximation
errors (i.e. of the order 1e-04 and lower in terms of FV).

In order to have a more detailed comparison between the proposed approximation and
MC simulations, we have also evaluated pricing di�erences in terms of implied volatilities
within a range from 10% to 50 % for parameter ξ. The di�erences are provided in Table 7.2.

We note that for in the money options (80% and 90% spot moneyness), the results
were signi�cantly a�ected by Monte Carlo errors even at 150k simulations. However, for

2Relative FV is the absolute option fair value divided by the initial spot price.
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Figure 7.1: rBegomi Model: Comparison of call option fair values calculated by MC simu-
lations and by the approximation formula. (Example 7.1.11 with α = 1 and ε = 0. Data
and parameter values are: v0 = 8%, ξ = 10%, ρ = −20%, H = 0.1)

Table 7.2: Di�erences in terms of implied volatility

Spot moneyness ξ = 10% ξ = 20% ξ = 30% ξ = 40% ξ = 50%

80% 0.0381 0.0143 0.0289 0.0210 0.0062
90% 0.0037 0.0026 0.0043 0.0038 0.0019
100% 0.0008 4e-05 0.0005 0.0014 0.0057
110% -0.0003 -0.0001 -0.0014 -0.0020 -0.0027
120% -0.0005 -0.0008 -0.0019 -0.0060 -0.0187

other options we have measured a reasonably good match and only a slight deterioration
in approximation quality for increasing ξ.

Although the introduced approximation is typically not suitable for calibrations to the
whole volatility surface due to the deterioration of approximation quality when increasing
time to maturity, we will illustrate how it can signi�cantly speed up MC calibration to the
provided forward At-The-Money (ATMF) backbone.

7.2.3 Short-tenor calibration and a hybrid calibration to ATMF

backbone

Unlike previous analyses which were based on arti�cial data / model parameter values,
we inspect an application for the formula on the calibration to real option market data.
In particular, we utilise four data sets of AAPL options which were analysed in detail by
Pospí²il et al. (2018). Descriptive statistics of the data sets are provided in Table 7.3. The
following calibration test trials will be considered.
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• Calibration to short maturity smiles:

This should illustrate how well the model can �t short maturity smiles using the
introduced approximation formula without exploiting too high volatility of volatility
values (ξ). For each data set, we selected the shortest maturity slice with more than
one traded option. The values were not interpolated by any model, i.e. we calibrated
to discrete close mid-prices of traded options. We also con�rm that both MC simula-
tion and the formula reprice the smile with the �nal calibrated parameters without
signi�cant di�erences.

• Hybrid calibration to the ATMF backbone:

In the second trial, we calibrate to the ATMF backbone for each data set. We note
that because we have only a discrete set of traded options we might not have for
each maturity an option with strike equal to the corresponding forward. Hence, we
take an option with the closest strike to the forward value for each expiry. We use
the proposed approximation formula only for τ < 0.2, for longer time to maturities
we price by MC simulations.

In both cases, the calibration routine was formulated as a standard least-square opti-
mization problem. I.e. to obtain calibrated parameters, we numerically evaluated

Θ̂ = arg min f(Θ) = arg min
N∑
i=1

[Midi − rBergomii(Θ)]2 , (7.28)

where N is the total number of contracts for the calibration, Midi is the mid-price of the
ith option and rBergomii(Θ) represents the corresponding model price based on parameter
set Θ. The model price is either obtained by the approximation formula or by means of
MC simulations otherwise. The optimization is performed using Matlab's local search trust
region optimizer which also needs an initial guess to start with.

Data # 1 Data # 2 Data # 3 Data # 4

Date (all EOD) 1-Apr-2015 15-Apr-2015 1-May-2015 15-May-2015
Moneyness range 34%�157% 45%�154% 31%�151% 33%�151%
Time to maturity [Yrs] 0.12-1.81 0.08�1.77 0.04�1.73 0.02�1.69
Total nb. of contracts 113 158 201 194

Table 7.3: rBergomi model: Data on AAPL options used in calibration trials

All following results will be quoted in relative FV: e.g. rBergomii(Θ)/S0 and also di�er-
ences between market and the calibrated model will be denoted using this measure. For the
calibration to the whole surface of European options, errors in FV below 0.5% are typically
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considered to be acceptable, whereas anything exceeding 1% di�erence is considered as a
signi�cant model inconsistency.

Firstly, we display the results for the short-maturity calibration. In Figure 7.2, we illus-
trate that even with a not well-suited initial guess for Data # 4, we can obtain satisfactory
results (i.e. errors signi�cantly below 0.5% mark). In fact, for all tested data sets, obtained
values of the calibrated parameters were not very sensitive to the initial guess (only a num-
ber of iterations di�ered). This is a desired feature which typically is not present under
classical SV models, see e.g. Mrázek et al. (2016). For two other sets we have obtained
qualitatively similar �tting errors. However for data set # 3, we retrieved 4 errors (out
of 22) with absolute FV di�erence greater than 0.5% and two even greater than 1%, see
Figure 7.3. We conclude that this was partly caused due to high ξ values compared to the
other three calibration trials and also slightly longer maturity, the data set #3 includes
only one option at the shortest maturity, hence the second shortest was used. Still we
can conclude that the obtained errors (also veri�ed by using MC simulations) are overall
acceptable, although they might not be optimal.

We have observed that at least short maturity smiles (< 1M) can be e�ciently calibrated
using the proposed approximation formula, while for expiries greater than 1M, one would
need to stay within a low volatility of volatility regime, otherwise the discrepancies would
lead to a non-optimal solution when recomputed using more precise (but much more costly)
MC simulations. To illustrate the e�ciency of the approximation, we will show how the
approximation can speed up ATMF-backbone calibration.

We will now inspect the hybrid calibration where we switch between the approximation
and a MC pricer based on properties of options being priced. In particular, we focus on data
set from 15th May (Data # 4) and for τ < 0.2 we will use the approximation formula and
MC simulations otherwise. For the calibrated parameters, we will also measure the time
spent computing FVs by each pricer. For completeness, we remark that MC simulations
under the rBergomi model can be performed in a more e�cient way using a scheme in-
troduced by McCrickerd and Pakkanen (2018) and similarly numerical integrations within
the approximation could be performed by an adaptive quadrature and could be vectorized
to improve the computation e�ciency.

In Figure 7.4, we illustrate calibration �t to the ATMF backbone of the option price
surface. We conclude that we have retrieved similar errors for both the prices computed
using the proposed approximation and the longer maturity option prices quanti�ed by
MC simulations. The �nal �t of the calibrated model (recomputed by MC simulations) is
very good, especially considering that the studied model has only 4 parameters. Moreover,
only a fraction of the time spent by MC pricer was needed to compute all FV using the
approximation formula. In particular, 98.43% of the pricing time3 was spent computing
MC simulation estimates of FVs. We also note that 7/9 of total evaluations were computed
by the approximation formula.

3Excluding any data loading / manipulation routines.
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(a) rBergomi model: Comparison of calibrated model and market data (Data # 4)

(b) rBergomi model: Errors with respect to the
initial guess

Calibrated params:

σ0 = 3.41%
ξ = 39.45%
ρ = −98.80%
H = 0.3153

MSE = 0.0883

Figure 7.2: rBergomi model: Calibration results for short maturity smiles (Data # 4)
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(a) rBergomi model: Comparison of calibrated rBergomi and market data (Data # 3)

(b) rBergomi model: Errors with respect to the
initial guess

Calibrated params:

σ0 = 4.57%
ξ = 81.36%
ρ = −98.99%
H = 0.3936

MSE = 13.9538

Figure 7.3: rBergomi model: Calibration results for short maturity smiles (Data # 3)
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Figure 7.4: rBergomi model: ATMF calibration results when combining the approximation
formula (τ < 0.2) and MC simulations.



CHAPTER 8

Decomposition formula for Spot-Dependent Volatility

models.

In the previous chapters, we developed a general decomposition formula for stochastic
volatility models. Afterwards, we explored di�erent applications. In this chapter, we will
use the same type of ideas to develop an approximation of the prices of call options under
a spot-dependent volatility model.

The model used assumes that volatility is a deterministic function of the underlying
stock price, and therefore, there is only one source of randomness in the model. These
models are sometimes called local volatility models in industry and GARCH-type volatility
models in �nancial econometrics. The content of this chapter is based on Merino and Vives
(2017)

8.1 Decomposition Formula

The �rst objective is to �nd a generic decomposition formula for this type of model. Then,
as we did in the case of stochastic volatility models, we will obtain a decomposition formula
based on the Black-Scholes-Merton formula.

Remember that in order to generalise the decomposition formula, conditions on Remark
4.1.1 hold.

Theorem 8.1.1 (Decomposition formula for spot-dependent volatility models). Let St be a
price process de�ned in (3.11), let B(t) a function in C2([0, T ]), let A(t, x, y) be a continuous
function on the space [0, T ]× [0,∞)× [0,∞) such that A ∈ C1,2,2((0, T )× (0,∞)× (0,∞)).
Let us also assume that LyAŜD(t, x, r, y) = 0. Then, for every t ∈ [0, T ], the following
formula holds:

Et
[
e−r(T−t)A(T, ST , υ

2(ST ))B(T )
]

= A(t, St, υ
2(St))B(t)

+ Et
[∫ T

t

e−r(u−t)A(u, Su, υ
2(Su))B

′(u) du

]
147
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+ rEt
[∫ T
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e−r(u−t)∂υ2A(u, Su, υ
2(Su))B(u)(∂Sυ

2(Su))Su du

]
+

1

2
Et
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e−r(u−t)∂υ2A(u, Su, υ
2(Su))B(u)(∂2

Sυ
2(Su))υ

2(Su)S
2
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]
+

1

2
Et
[∫ T
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e−r(u−t)∂2
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(
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2(Su)
)2
υ2(Su)S

2
u du

]
+ Et
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e−r(u−t)∂2
S,υ2A(u, Su, υ

2(Su))B(u)(∂Sυ
2(Su))υ

2(Su)S
2
u du

]
.

Proof. Applying the Itô formula to process e−rtA(t, St, υ
2(St))B(t), we obtain:

e−rTA(T, ST , υ
2(ST ))B(T )

= e−rtA(t, St, υ
2(St))B(t)

− r

∫ T

t

e−ruA(u, Su, υ
2(Su))B(u) du

+

∫ T

t

e−ru∂uA(u, Su, υ
2(Su))B(u) du

+

∫ T

t

e−ru∂SA(u, Su, υ
2(Su))B(u) dSu

+

∫ T

t

e−ru∂υ2A(u, Su, υ
2(Su))B(u) dυ2(Su)

+

∫ T

t

e−ruA(u, Su, υ
2(Su))B

′(u) du

+
1

2

∫ T

t

e−ru∂2
SA(u, Su, υ

2(Su))B(u) d[S, S]u

+
1

2

∫ T

t

e−ru∂2
υ2A(u, Su, υ

2(Su))B(u) d[υ2(S), υ2(S)]u

+

∫ T

t

e−ru∂2
S,υ2A(u, Su, υ

2(Su))B(u) d[S, υ2(S)]u.

Substituting the expression of dSu,

e−rTA(T, ST , υ
2(ST ))B(T )

= e−rtA(t, St, υ
2(St))B(t)

− r

∫ T

t

e−ruA(u, Su, υ
2(Su))B(u) du

+

∫ T

t

e−ru∂uA(u, Su, υ
2(Su))B(u) du

+ r

∫ T

t

e−ru∂SA(u, Su, υ
2(Su))B(u)Su du
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+

∫ T

t

e−ru∂SA(u, Su, υ
2(Su))B(u)υ(Su)Su dWu

+

∫ T

t

e−ru∂υ2A(u, Su, υ
2(Su))B(u) dυ2(Su)

+

∫ T

t

e−ruA(u, Su, υ
2(Su))B

′(u) du

+
1

2

∫ T

t

e−ru∂2
SA(u, Su, υ

2(Su))B(u)υ2(Su)S
2
u du

+
1

2

∫ T

t

e−ru∂2
υ2A(u, Su, υ

2(Su))B(u) d[υ2(S), υ2(S)]u

+

∫ T

t

e−ru∂2
S,υ2A(u, Su, υ

2(Su))B(u) d[S, υ2(S)]u.

Grouping the blue terms, we have the Feynman-Kac formula (3.13), multiplying by ert and
taking conditional expectations, we obtain

Et
[
e−r(T−t)A(T, ST , υ

2(ST ))B(T )
]

= A(t, St, υ
2(St))B(t)

+ Et
[∫ T

t

e−r(u−t)A(u, Su, υ
2(Su))B

′(u) du

]
+ Et

[∫ T

t

e−r(u−t)∂υ2A(u, Su, θ
2(Su))B(u)dυ2(Su)

]
+

1

2
Et
[∫ T

t

e−r(u−t)∂2
υ2A(u, Su, υ

2(Su))B(u) d[υ2(S), υ2(S)]u

]
+ Et

[∫ T

t

e−r(u−t)∂2
S,υ2A(u, Su, υ

2(Su))B(u)υ(Su)Su d[W,υ2(S)]u

]
. (8.1)

On other hand, using Itô calculus rules, it is easy to see that

dυ2(St) = ∂Sυ
2(St)rSt dt+ ∂Sυ

2(St)υ(St)St dWt +
1

2
∂2
Sυ

2(St)υ
2(St)S

2
t dt.

Finally, substituting this expression in (8.1) we �nish the proof.

Now, we can use the decomposition formula to �nd the exact value of a European call
option price under a spot-dependent volatility model. Note that as we have seen before,
the price is a sum of terms, being the main term the Black-Scholes-Merton formula.

Corollary 8.1.2 (Price decomposition under a spot-dependent volatility models). Let St
be a price process de�ned in (3.11). Then, for all t ∈ [0, T ], the following formula holds:

Vt = CBS(t, St, υ(St))
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+
r

2
Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, υ(Su))(T − u)(∂Sυ
2(Su))Su du

]
+

1

4
Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, υ(Su))(T − u)(∂2
Sυ

2(Su))υ
2(Su)S

2
u du

]
+

1

8
Et
[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, υ(Su))(T − u)2
(
∂Sυ

2(Su)
)2
υ2(Su)S

2
u du

]
+

1

2
Et
[∫ T

t

e−r(u−t)ΛΓCB̂S(u, Su, υ(Su))(T − u)(∂Sυ
2(Su))υ

2(Su)Su du

]
.

Proof. Substituting A(t, St, υ
2(St)) := C

ĈEV
(t, St, υ(St)) and B(t) ≡ 1 in Theorem 8.1.1.

Then, apply the following equalities:

∂υ2CB̂S(t, St, υ(St)) =
T − t

2
S2
t ∂

2
SCB̂S(t, St, υ(St))

and

∂2
υ2CB̂S(t, St, υ(St)) =

(T − t)2

4
S2
t ∂

2
S

(
S2
t ∂

2
SCB̂S(t, St, υ(St))

)
.

Note that CB̂S (t, x, y2) = CBS (t, x, y) and this equality holds deriving with respect to
x.

Remark 8.1.3. For simplicity, we will refer to each of the terms of the price decomposition
above as

Vt = CBS(t, St, υ(St)) + (I) + (II) + (III) + (IV).

Looking carefully at this decomposition, one may notice that it is an alternative decom-
position to the example 4.1.7. In the example, the base function was CBS(t, St, vt), whereas
now it is CBS(t, St, υ(St)). The second formula performs better than the �rst one because it
captures the non-linearity of the price formula. Note that the price of being more accurate
is using, in the deterministic volatility case, two terms more.

8.2 Approximation formula

As we have noted in previous chapters, the decomposition formula for European call options
is not numerically manageable. For this reason, we have to �nd an approximation. The main
idea is to use again Theorem 8.1.1 to approximate the price of a call option and to obtain
an estimation of the errors.

Corollary 8.2.1 (Approximation price decomposition under a spot-dependent volatility
models). Let St be a price process de�ned in (3.11). Then, for all t ∈ [0, T ], we can express
the call option price Vt in the following way:

Vt = CBS(t, St, υ(St))
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+
1

4
r(∂Sυ

2(St))StΓCB̂S(t, St, υ(St))(T − t)2

+
1

8
(∂2
Sυ

2(St))υ
2(St)S

2
t ΓCB̂S(t, St, υ(St))(T − t)2

+
1

24

(
∂Sυ

2(St)
)2
υ2(St)S

2
t Γ

2CB̂S(t, St, υ(St))(T − t)3

+
1

4
(∂Sυ

2(St))υ
2(St)StΛΓCB̂S(t, St, υ(St))(T − t)2

+ εt

where εt is an error.

Proof. The main idea is to use iteratively the Theorem 8.1.1 to be able to �nd an approx-
imation formula. The new terms arising will be considered the error of the approximation.

The term (I) is decomposed using Theorem 8.1.1 with

A(t, St, υ
2(St)) = (∂Sυ

2(St))StΓCSD(t, St, υ(St)) and Bt =
r

2

∫ T

t

(T − u) du.

This gives

r

2
Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, υ(Su))τu(∂Sυ
2(Su))Su du

]
− r

4
(∂Sυ

2(St))StΓCB̂S(t, St, υ(St))(T − t)2

=
r2

8
Et
[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, υ(Su))τ
3
u(∂Sυ

2(Su))
2S2

u du

]
+

r

16
Et
[∫ T

t

e−r(u−t)(∂Sυ
2(Su))Γ

2CB̂S(u, Su, υ(Su))τ
3
u(∂2

Sυ
2(Su))υ

2(Su)S
3
u du

]
+

r

32
Et
[∫ T

t

e−r(u−t)Γ3CB̂S(u, Su, υ(Su))τ
4
u

(
∂Sυ

2(Su)
)3
υ2(Su)S

3
u du

]
+

r

8
Et
[∫ T

t

e−r(u−t)Λ
(
(∂Sυ

2(Su))SuΓ
2CB̂S(u, Su, υ(Su))

)
τ 3
u(∂Sυ

2(Su))υ
2(Su)Su du

]
.

The term (II) is decomposed using Theorem 8.1.1 with

A(t, St, υ
2(St)) = (∂2

Sυ
2(St))υ

2(St)S
2
t ΓCB̂S(t, St, υ(St)) and Bt =

1

4

∫ T

t

(T − u)du.

We obtain

1

4
Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, υ(Su))τu(∂
2
Sυ

2(Su))υ
2(Su)S

2
u du

]
− 1

8
(∂2
Sυ

2(St))υ
2(St)S

2
t ΓCB̂S(t, St, υ(St))(T − t)2
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=
r

8
Et
[∫ T

t

e−r(u−t)∂2
Sυ

2(Su)ΓCB̂S(u, Su, υ(Su))τ
2
u(∂Sυ

2(Su))S
3
u du

]
+

r

16
Et
[∫ T

t

e−r(u−t)(∂2
Sυ

2(Su))υ
2(Su)S

3
uΓ

2CB̂S(u, Su, υ(Su))τ
3
u(∂Sυ

2(Su)) du

]
+

1

16
Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, υ(Su))τ
2
u(∂2

Sυ
2(Su))

2υ2(Su)S
4
u du

]
+

1

32
Et
[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, υ(Su))τ
3
u(∂2

Sυ
2(Su))

2υ4(Su)S
4
u du

]
+

1

16
Et
[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, υ(Su))τ
3
u(∂2

Sυ
2(Su))

(
∂Sυ

2(Su)
)2
υ2(Su)S

4
u du

]
+

1

64
Et
[∫ T

t

e−r(u−t)(∂2
Sυ

2(Su))Γ
3CB̂S(u, Su, υ(Su))τ

4
u

(
∂Sυ

2(Su)
)2
υ4(Su)S

4
u du

]
+

1

8
Et
[∫ T

t

e−r(u−t)Λ
(
∂2
Sυ

2(Su)S
2
uΓCB̂S(u, Su, υ(Su))

)
τ 2
u(∂Sυ

2(Su))υ
2(Su)Su du

]
+

1

16
Et
[∫ T

t

e−r(u−t)Λ
(
(∂2
Sυ

2(Su))υ
2(Su)S

2
uΓ

2CB̂S(u, Su, υ(Su))
)
τ 3
u(∂Sυ

2(Su))υ
2(Su)Su du

]
.

The term (III) is decomposed using Theorem 8.1.1 with

A(t, St, υ
2(St)) =

(
∂Sυ

2(St)
)2
υ2(St)S

2
t Γ

2CB̂S(t, St, υ(St)) and Bt =
1

8

∫ T

t

(T − u)2 du.

We have

1

8
Et
[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, υ(Su))τ
2
u

(
∂Sυ

2(Su)
)2
υ2(Su)S

2
u du

]
− 1

24

(
∂Sυ

2(St)
)2
υ2(St)S

2
t Γ

2CB̂S(t, St, υ(St))(T − t)3

=
r

24
Et
[∫ T

t

e−r(u−t)
(
∂Sυ

2(Su)
)2

Γ2CB̂S(u, Su, υ(Su))τ
3
u(∂Sυ

2(Su))S
3
u du

]
+

r

48
Et
[∫ T

t

e−r(u−t)
(
∂Sυ

2(Su)
)2
υ2(Su)Γ

3CB̂S(u, Su, υ(Su))τ
4
u(∂Sυ

2(Su))S
3
u du

]
+

1

48
Et
[∫ T

t

e−r(u−t)
(
∂Sυ

2(Su)
)2

Γ2CB̂S(u, Su, υ(Su))τ
3
u(∂2

Sυ
2(Su))υ

2(Su)S
4
u du

]
+

1

96
Et
[∫ T

t

e−r(u−t)
(
∂Sυ

2(Su)
)2
υ2(Su)Γ

3CB̂S(u, Su, υ(Su))τ
4
u(∂2

Sυ
2(Su))υ

2(Su)S
4
u du

]
+

1

48
Et
[∫ T

t

e−r(u−t)Γ3CB̂S(u, Su, υ(Su))τ
4
u

(
∂Sυ

2(Su)
)4
υ2(Su)S

4
u du

]
+

1

192
Et
[∫ T

t

e−r(u−t)
(
∂Sυ

2(Su)
)2
υ2(Su)Γ

4CB̂S(u, Su, υ(Su))τ
5
u

(
∂Sυ

2(Su)
)2
υ2(Su)S

4
u du

]
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+
1

24
Et
[∫ T

t

e−r(u−t)Λ
((
∂Sυ

2(Su)
)2

Γ2CB̂S(u, Su, υ(Su))
)
τ 3
u(∂Sυ

2(Su))υ
2(Su)S

3
u du

]
+

1

48
Et
[∫ T

t

e−r(u−t)Λ
((
∂Sυ

2(Su)
)2
υ2(Su)Γ

3CB̂S(u, Su, υ(Su))
)
τ 4
u(∂Sυ

2(Su))υ
2(Su)S

3
u du

]
.

The term (IV) is decomposed using Theorem 8.1.1 with

A(t, St, υ
2(St)) = (∂Sυ

2(St))υ
2(St)StΛΓCB̂S(t, St, υ(St)) and Bt =

1

2

∫ T

t

(T − u) du.

This gives

1

2
Et
[∫ T

t

e−r(u−t)ΛΓCB̂S(u, Su, υ(Su))τu(∂Sυ
2(Su))υ

2(Su)Su du

]
− 1

4
(∂Sυ

2(St))υ
2(St)StΛΓCB̂S(t, St, υ(St))(T − t)2

=
r

4
Et
[∫ T

t

e−r(u−t)
(
∂Sυ

2(Su)
)

ΛΓCB̂S(u, Su, υ(Su))τ
2
u(∂Sυ

2(Su))S
2
u du

]
+

r

8
Et
[∫ T

t

e−r(u−t)(∂Sυ
2(Su))υ

2(Su)ΛΓ2CB̂S(u, Su, υ(Su))τ
3
u(∂Sυ

2(Su))S
2
u du

]
+

1

8
Et
[∫ T

t

e−r(u−t)
(
∂Sυ

2(Su)
)

ΛΓCB̂S(u, Su, υ(Su))τ
2
u(∂2

Sυ
2(Su))υ

2(Su)S
3
u du

]
+

1

16
Et
[∫ T

t

e−r(u−t)(∂Sυ
2(Su))υ

2(Su)ΛΓ2CB̂S(u, Su, υ(Su))τ
3
u(∂2

Sυ
2(Su))υ

2(Su)S
3
u du

]
+

1

8
Et
[∫ T

t

e−r(u−t)ΛΓ2CB̂S(u, Su, υ(Su))τ
3
u

(
∂Sυ

2(Su)
)3
υ2(Su)S

3
u du

]
+

1

32
Et
[∫ T

t

e−r(u−t)(∂Sυ
2(Su))υ

2(Su)ΛΓ3CB̂S(u, Su, υ(Su))τ
4
u

(
∂Sυ

2(Su)
)2
υ2(Su)S

3
u du

]
+

1

4
Et
[∫ T

t

e−r(u−t)Λ
((
∂Sυ

2(Su)
)
SuΛΓCB̂S(u, Su, υ(Su))

)
τ 2
u(∂Sυ

2(Su))υ
2(Su)Su du

]
+

1

8
Et
[∫ T

t

e−r(u−t)Λ
(
(∂Sυ

2(Su))υ
2(Su)SuΛΓ2CB̂S(u, Su, υ(Su))

)
τ 3
u(∂Sυ

2(Su))υ
2(Su)Su du

]
.
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CHAPTER 9

CEV model

In this chapter, following the development of a decomposition formula for spot-dependent
volatility models, we will �nd the decomposition of the price as well as an approximation,
of a European call option under the CEV model. As an application of the approximation
price formula, we will obtain two approximations of the implied volatility surface: an ap-
proximation of the at-the-money implied volatility curve as a function of time, and an
approximation of the implied volatility smile as a function of log-moneyness near the expi-
ration date. We will see that we can use these two volatility approximations to retrieve the
model parameters from the CEV model. The content of this chapter is based on Merino
and Vives (2017).

9.1 Approximation of the CEV model.

Applying Corollary 8.2.1 to CEV model, we obtain an exact decomposition formula.

Corollary 9.1.1 (CEV Exact Formula). Let St be a price process de�ned in (3.14). Then,
for all t ∈ [0, T ], we can express the call option fair value Vt by

Vt = CBS(t, St, σS
β−1
t )

+ r(β − 1)Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, σS
β−1
u )(T − u)σ2S

2(β−1)
t du

]
+

(β − 1)(2β − 3)

2
Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, σS
β−1
u )(T − u)σ4S4(β−1)

u du

]
+

(β − 1)2

2
Et
[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, σS
β−1
u )(T − u)2σ6S6(β−1)

u du

]
+ (β − 1)Et

[∫ T

t

e−r(u−t)ΛΓCB̂S(u, Su, σS
β−1
u )(T − u)σ4S4(β−1)

u du

]
.

We will write
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Et
[
e−r(T−t)CB̂S(T, ST , σS

β−1
T )

]
= CBS(t, St, σS

β−1
t ) + (ICEV ) + (IICEV ) + (IIICEV ) + (IVCEV ).

The exact formula can be di�cult to use in practice, so we will need an approximation.

Corollary 9.1.2 (CEV Approximation Formula). Let St be a price process de�ned in
(3.14). Then, for all t ∈ [0, T ], we can approximate the call option fair value Vt by

Vt = CBS(t, St, σS
β−1
t )

+
1

2
(β − 1)rσ2S

2(β−1)
t ΓCB̂S(t, St, σS

β−1
t )(T − t)2

+
1

4
(β − 1)(2β − 3)σ4S

4(β−1)
t ΓCB̂S(t, St, σS

β−1
t )(T − t)2

+
1

6
(β − 1)2σ6S6(β−1)

u Γ2CB̂S(t, St, σS
β−1
t )(T − t)3

+
1

2
(β − 1)σ4S

4(β−1)
t ΛΓCB̂S(t, St, σS

β−1
t )(T − t)2

+ εt

where εt is an error. We have that εt ≤ (β − 1)2Π(t, T, r, σ, β) and Π is an increasing
function on every parameter.

Proof. The proof is a direct consequence of applying Lemma 3.1.10 (i) to (ICEV )−(IVCEV ).

Decomposition of the term ICEV :

r(β − 1)Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, σS
β−1
u ) (T − u)σ2S2(β−1)

u du

]
− 1

2
(β − 1)rσ2S

2(β−1)
t ΓCB̂S(t, St, σS

β−1
t )(T − t)2

=
r2

2
(β − 1)2Et

[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, σS
β−1
u ) (T − u)3 σ4S4(β−1)

u du

]
+

r

4
(β − 1)2(2β − 3)Et

[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, σS
β−1
u ) (T − u)3 σ6S6(β−1)

u du

]
+

r

4
(β − 1)3Et

[∫ T

t

e−r(u−t)Γ3CB̂S(u, Su, σS
β−1
u ) (T − u)4 σ8S8(β−1)

u du

]
+

r

2
(β − 1)2Et

[∫ T

t

e−r(u−t)Λ
(
σ2S2(β−1)

u Γ2CB̂S(u, Su, σS
β−1
u )

)
(T − u)3 σ4S4(β−1)

u du

]
.

Upper-Bound of the term ICEV :∣∣∣r(β − 1)Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, σS
β−1
u )σ2S2(β−1)

u (T − u) du

]
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− 1

2
(β − 1)rσ2S

2(β−1)
t ΓCB̂S(t, St, σS

β−1
t )(T − t)2

∣∣∣
≤ r2

2
C1(β − 1)2σ

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
r

4
C2(β − 1)2(2β − 3)σ3

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
r

4
C3(β − 1)3σ3

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+ C4r(β − 1)3σ3

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
r

2
C5(β − 1)2σ2

∫ T

t

e−r(u−t) (T − u) du

≤ C(β − 1)2Π1(t, r, σ, β)

where Π1(t, T, r, σ, β) is an increasing function for every parameter, Ci (i = 1, . . . , 5) are
some constants and C = max(Ci).

Decomposition of the term IICEV :

1

2
(β − 1)(2β − 3)Et

[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, σS
β−1
T ) (T − u)σ4S4(β−1)

u du

]
− 1

4
(β − 1)(2β − 3)σ4S

4(β−1)
t ΓCB̂S(t, St, σS

β−1
t )(T − t)2

=
r

2
(β − 1)2(2β − 3)Et

[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, σS
β−1
u ) (T − u)2 σ4S4(β−1)

u du

]
+

r

4
(β − 1)2(2β − 3)Et

[∫ T

t

e−r(u−t)σ6S6(β−1)
u Γ2CB̂S(u, Su, σS

β−1
u ) (T − u)3 du

]
+

1

4
(β − 1)2(2β − 3)2Et

[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, σS
β−1
u ) (T − u)2 σ6S6(β−1)

u du

]
+

1

8
(β − 1)2(2β − 3)2Et

[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, σS
β−1
u ) (T − u)3 σ8S8(β−1)

u du

]
+

1

2
(β − 1)3(2β − 3)Et

[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, θ(Su)) (T − u)3 σ8S8(β−1)
u du

]
+

1

8
(2β − 3)(β − 1)3Et

[∫ T

t

e−r(u−t)Γ3CB̂S(u, Su, σS
β−1
u ) (T − u)4 σ10S10(β−1)

u du

]
+

1

2
(β − 1)2(2β − 3)Et

[∫ T

t

e−r(u−t)Λ
(
σ2S2(β−1)

u ΓCB̂S(u, Su, σS
β−1
u )

)
(T − u)2 σ4S4(β−1)

u du

]
+

1

4
(β − 1)2(2β − 3)Et

[∫ T

t

e−r(u−t)Λ
(
σ4S4(β−1)

u Γ2CB̂S(u, Su, σS
β−1
u )

)
(T − u)3 σ4S4(β−1)

u du

]
.
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Upper-Bound of the term IICEV :∣∣∣1
2

(β − 1)(2β − 3)Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, σS
β−1
T ) (T − u)σ4S4(β−1)

u du

]
− 1

4
(β − 1)(2β − 3)σ4S

4(β−1)
t ΓBS(t, St, σS

β−1
t )(T − t)2

∣∣∣
≤ r

2
C1(β − 1)2(2β − 3)σ3

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
r

4
C2(β − 1)2(2β − 3)σ3

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

4
C3(β − 1)2(2β − 3)2σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

8
C4(β − 1)2(2β − 3)2σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

2
C5(β − 1)3(2β − 3)σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

8
C6(2β − 3)(β − 1)3σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+ C7(β − 1)3(2β − 3)σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

2
C8(β − 1)2(2β − 3)σ4

∫ T

t

e−r(u−t) (T − u) du

+ C9(β − 1)3(2β − 3)σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

4
C10(β − 1)2(2β − 3)σ4

∫ T

t

e−r(u−t) (T − u) du

≤ C(β − 1)2Π2(t, r, σ, β)

where Π2(t, T, r, σ, β) is an increasing function for every parameter, Ci (i = 1, . . . , 10) are
some constants and C = max(Ci).

Decomposition of the term IIICEV :

1

2
(β − 1)2Et

[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, σS
β−1
T ) (T − u)2 σ6S6(β−1)

u du

]
− 1

6
(β − 1)2σ6S6(β−1)

u Γ2CB̂S(t, St, σS
β−1
t )(T − t)3

=
r

3
(β − 1)3Et

[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, σS
β−1
u ) (T − u)3 σ6S6(β−1)

u du

]
+

r

6
(β − 1)3Et

[∫ T

t

e−r(u−t)Γ3CB̂S(u, Su, σS
β−1
u ) (T − u)4 σ8S8(β−1)

u du

]
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+
1

6
(β − 1)3(2β − 3)Et

[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, σS
β−1
u ) (T − u)3 σ8S8(β−1)

u du

]
+

1

12
(β − 1)3(2β − 3)Et

[∫ T

t

e−r(u−t)Γ3CB̂S(u, Su, σS
β−1
u ) (T − u)4 σ10S10(β−1)

u du

]
+

1

3
(β − 1)4Et

[∫ T

t

e−r(u−t)Γ3CB̂S(u, Su, θ(Su)) (T − u)4 σ10S10(β−1)
u du

]
+

1

12
(β − 1)4Et

[∫ T

t

e−r(u−t)Γ4CB̂S(u, Su, σS
β−1
u ) (T − u)5 σ12S12(β−1)

u du

]
+

1

3
(β − 1)3Et

[∫ T

t

e−r(u−t)S2
uΛ
(
σ4S4β−6

u Γ2CB̂S(u, Su, σS
β−1
u )

)
(T − u)3 (σ4S4(β−1)

u ) du

]
+

1

6
(β − 1)3Et

[∫ T

t

e−r(u−t)S2
uΛ
(
σ6S6β−8

u Γ3CB̂S(u, Su, σS
β−1
u )

)
(T − u)4 σ4S4(β−1)

u du

]
.

Decomposition of the term IVCEV :

(β − 1)Et
[∫ T

t

e−r(u−t)ΛΓCB̂S(u, Su, σS
β−1
u )σ4S4(β−1)

u (T − u) du

]
− 1

2
(β − 1)σ4S

4(β−1)
t ΛΓCB̂S(t, St, σS

β−1
t )(T − t)2

= r(β − 1)2Et
[∫ T

t

e−r(u−t)ΛΓCB̂S(u, Su, σS
β−1
u ) (T − u)2 σ4S4(β−1)

u du

]
+

r

2
(β − 1)2Et

[∫ T

t

e−r(u−t)ΛΓ2CB̂S(u, Su, σS
β−1
u ) (T − u)3 σ6S6(β−1)

u du

]
+

1

2
(β − 1)2(2β − 3)Et

[∫ T

t

e−r(u−t)ΛΓCB̂S(u, Su, σS
β−1
u ) (T − u)2 σ6S6(β−1)

u du

]
+

1

4
(β − 1)2(2β − 3)Et

[∫ T

t

e−r(u−t)ΛΓ2CB̂S(u, Su, σS
β−1
u ) (T − u)3 σ8S8(β−1)

u du

]
+ (β − 1)3Et

[∫ T

t

e−r(u−t)ΛΓ2CB̂S(u, Su, θ(Su)) (T − u)3 σ8S8(β−1)
u du

]
+

1

4
(β − 1)3Et

[∫ T

t

e−r(u−t)ΛΓ3CB̂S(u, Su, σS
β−1
u ) (T − u)4 σ10S10(β−1)

u du

]
+ (β − 1)2Et

[∫ T

t

e−r(u−t)Λ
(
σ2S2(β−1)

u ΛΓCB̂S(u, Su, σS
β−1
u )

)
(T − u)2 σ4S4(β−1)

u du

]
+

1

2
(β − 1)2Et

[∫ T

t

e−r(u−t)Λ
(
σ4S4(β−1)

u ΛΓ2CB̂S(u, Su, σS
β−1
u )

)
(T − u)3 σ4S4(β−1)

u du

]
.

Upper-Bound of the term IIICEV :∣∣∣1
2

(β − 1)2Et
[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, σS
β−1
T )σ6S6(β−1)

u (T − u)2 du

]



160 Approximation of the CEV model.

− 1

6
(β − 1)2σ6S6(β−1)

u Γ2CB̂S(t, St, σS
β−1
t )(T − t)3

∣∣∣
≤ r

3
C1(β − 1)3σ3

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
r

6
C2(β − 1)3σ3

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

6
C3(β − 1)3(2β − 3)σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

12
C4(β − 1)3(2β − 3)σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

3
C5(β − 1)4σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

12
C6(β − 1)4σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
2

3
C7(β − 1)3(2β − 3)σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

3
C8(β − 1)3σ4

∫ T

t

e−r(u−t) (T − u) du

+
1

3
C9(β − 1)3(3β − 4)σ5

∫ T

t

e−r(u−t)
(√

T − u
)3

du

+
1

6
C10(β − 1)3σ4

∫ T

t

e−r(u−t) (T − u) du

≤ C(β − 1)3Π3(t, r, σ, β)

where Π3(t, T, r, σ, β) is an increasing function for every parameter, Ci (i = 1, . . . , 10) are
some constants and C = max(Ci).

Decomposition of the term IVCEV :∣∣∣(β − 1)Et
[∫ T

t

e−r(u−t)ΛΓCB̂S(u, Su, σS
β−1
u )σ4S4(β−1)

u (T − u) du

]
− 1

2
(β − 1)σ4S

4(β−1)
t ΛΓCB̂S(t, St, σS

β−1
t )(T − t)2

∣∣∣
≤ C1r(β − 1)2σ2

∫ T

t

e−r(u−t) (T − u) du

+
r

2
C2(β − 1)2σ2

∫ T

t

e−r(u−t) (T − u) du

+
1

2
C3(β − 1)2(2β − 3)σ4

∫ T

t

e−r(u−t) (T − u) du

+
1

4
C4(β − 1)2(2β − 3)σ4

∫ T

t

e−r(u−t) (T − u) du
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+ C5(β − 1)3σ4

∫ T

t

e−r(u−t) (T − u) du

+
1

4
C6(β − 1)3σ4

∫ T

t

e−r(u−t) (T − u) du

+ 2C7(β − 1)3σ4

∫ T

t

e−r(u−t) (T − u) du

+ C8(β − 1)2σ3

∫ T

t

e−r(u−t)
√
T − u du

+ 2C9(β − 1)3σ4

∫ T

t

e−r(u−t) (T − u) du

+
1

2
C10(β − 1)2σ3

∫ T

t

e−r(u−t)
√
T − u du

≤ C(β − 1)2Π4(t, r, σ, β)

where Π4(t, T, r, σ, β) is an increasing function for every parameter, Ci (i = 1, . . . , 10) are
some constants and C = max(Ci).

9.2 Numerical analysis of the approximation for the CEV

case

In this section, we compare our numerically approximated price of a European call option
under CEV model with the following di�erent pricing methods:

• The exact formula, see Cox (1975), Emanuel and MacBeth (1982) and Schroder
(1989). The Matlab code is available in Kienitz and Wetterau (2012).

• The Singular Perturbation Technique, see Hagan and Woodward (1999).

The results of a call option with parameters S0 = 100, K = 100, σ = 20% and r = 1%
are as follows.
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T − t β Exact Formula Approximation Error HW Error
0.25

0.25

0.2882882 -1.92 E-07 8.64 E-05
1 1.0103060 -9.78 E-07 2.68 E-04
2.5 2.4709883 -1.04 E-06 1.57 E-04
5 4.8771276 -2.22 E-07 1.77 E-05

0.25

0.5

0.5356736 -2.89 E-06 2.41 E-04
1 1.3886303 -2.26 E-05 1.75E-03
2.5 2.8506826 -8.42 E-05 5.68E-03
5 5.1658348 -2.09 E-04 1.15E-02

0.25

0.75

1.3887209 -2.30 E-05 3.92 E-04
1 3.0389972 -1.83 E-04 3.10 E-03
2.5 5.2954739 -7.13 E-04 1.19 E-02
5 8.2781049 -1.98 E-03 3.22 E-02

0.25

0.90

2.6404164 -2.92 E-05 3.14 E-04
1 5.5191736 -2.32 E-04 2.49 E-03
2.5 9.1446125 -9.03 E-04 9.70 E-03
5 13.5553379 -2.50 E-03 2.67 E-02

Table 9.1: CEV Model: Comparison between di�erent price approximations

Note that the new approximation is more accurate than the approximation obtained in
Hagan and Woodward (1999).

In Figure 9.1, we plot the surface of errors between the exact formula and our approx-
imation.



CEV model 163

0.1
0.2

0.3
0.4

0.5
0.6

0.7

β

0.8
0.9

170

80
K

90

100

110

120

×10-4

1

-1

-0.5

1.5

0.5

0

130

Figure 9.1: CEV Model: Error surface between the exact formula and our approximation
for S0 = 100, σ = 20% and r = 5%.

We calculate also the speed time of execution (in seconds) of every method running the
function timeit of Matlab 1.000 times. The computer used is an Intel Core i7 CPU Q740
@1.73 GHz 1.73GHz with 4GB of RAM with a Windows 10 (x64). The results are:

Measure Exact formula Approximation HW
Average 2.56 E-02 1.73 E-04 1.67 E-04

Standard Deviation 3.03 E-03 2.86 E-05 2.52 E-05
Max 4.68 E-02 3.65 E-04 3.67 E-04
Min 2.42 E-02 1.64 E-04 1.59 E-04

Table 9.2: CEV Model: Statistical analysis of the price approximations

We observe that the singular perturbation method is the fastest method to calculate
the price of CEV call option. The method developed in this work is a little more expensive
in computation time. But to compute the exact price is much more costly than any of the
other two methods. Note that in our method, we are also able to calculate the price and
the Gamma of the log-normal price simultaneously.

9.3 The approximated implied volatility surface under

CEV model.

In the above section, we have computed a bound for the error between the exact and
the approximated pricing formulae for the CEV model. Now, we are going to derive an
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approximated implied volatility surface of second order in the log-moneyness. This approx-
imated implied volatility surface can help us to understand better the volatility dynamics.
Moreover, we obtain an approximation of the ATM implied volatility dynamics.

9.3.1 Deriving an approximated implied volatility surface for the

CEV model.

For simplicity and without losing generality, we assume t = 0.
Expanding the implied volatility function I(T,K) with respect to (β − 1), as we did in

Subsection 6.3.1, we have

I(T,K) = v0 + (β − 1)I1(T,K) + (β − 1)2I2(T,K) +O((β − 1)3)

and the approximation

Î(T,K) = v0 + (β − 1)I1(T,K) + (β − 1)2I2(T,K).

Let be v0 := σSβ−1
0 . Write CBS(v0) as a shorthand for CBS(0, S0, v0). We can re-write

Corollary 9.1.2 as

V̂ (0, S0, v0) = CBS(v0)

+
1

4
(β − 1)Tv0

(
2r + v2

0

[
1− 2d+

v0

√
T

])
∂σCBS(v0)

+
1

6
(β − 1)2v3

0T
([
d2

+ − v0

√
Td+ + 2

])
∂σCBS(v0).

On other hand we can consider the Taylor expansion of CBS(0, S0, I(T,K)) around v0.
We have that

V̂0 = CBS(v0)

+ ∂σCBS(v0)
(
(β − 1)I1(T,K) + (β − 1)2I2(T,K) + · · ·

)
+

1

2
∂2
σCBS(v0)

(
(β − 1)I1(T,K) + (β − 1)2I2(T,K) + · · ·

)2

+ · · ·

and this expression can be rewritten as

CBS(I(T,K)) = CBS(v0)

+ (β − 1)∂σCBS(v0)I1(T,K)

+ (β − 1)2∂σCBS(v0)I2(T,K)

+ O((β − 1)2).

Then, equating this expression to V̂0 we have

I1(T,K) =
Tv0

4

(
2r + v2

0

[
1− 2d+

v0

√
T

])
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and

I2(T,K) =
Tv3

0

6
(d2

+ − v0

√
Td+ + 2).

Note that I1(T,K) is linear with respect to the log-moneyness, while I2(T,K) is quadratic.

Remark 9.3.1. Note that the pricing formula has an error of O((β − 1)2) as we have
proved in Corollary 9.1.2, and this is translated into an error of O((β − 1)2) into our
approximation of the implied volatility. The quadratic term of the volatility shape is not
accurate.

We calculate now the short time behaviour of the approximated implied volatility
Î(T,K). We write the approximated equations in terms of 1 − β, because the case β < 1
is the most interesting, and in terms of the log-moneyness lnK − lnS0.

Lemma 9.3.2. For T close to 0 we have

Î(T,K) ≈ v0 −
v0

2
(1− β)(lnK − lnS0) +

v0

6
(1− β)2 (lnK − lnS0)2 (9.1)

Proof. Note that

lim
T→0

I1(T,K) =
v0

2
(lnK − lnS0)

and

lim
T→0

I2(T,K) = lim
T→0

v3
0T

6

(
d2

+ − v0

√
Td+ + 2

)
=

v0

6
(lnK − lnS0)2 .

Remark 9.3.3. Note that equation (9.1) is a parabolic equation in the log-moneyness. Also,
from the above expression it is easy to see that the slope with respect to lnK is negative

when K < S0exp
(

3
2(1−β)

)
and positive when K > S0exp

(
3

2(1−β)

)
, showing that the implied

volatility from short time to maturity is smile-shaped. This is consistent with the result in
Renault and Touzi (1996). Furthermore, there is a minimum of the implied volatility with

respect to lnK attained at K = S0exp
(

3
2(1−β)

)
.

Remark 9.3.4. Note that, in stochastic volatility models, the implied volatility depends ho-
mogeneously on the pair (S,K), and in fact, it is a function of the log-moneyness ln(S0/K).
As extensively discussed in Renault (1997) and exempli�ed for GARCH option pricing in
Garcia and Renault (1998), this homogeneity property is at odds with any type of GARCH
option pricing. We also found this phenomenon in the quadratic expansion (9.1).

The behaviour of the approximated implied volatility when the option is ATM is easy
to obtain:

Î(T,K) = v0 +

(
v0r(β − 1)

2
+
v3

0(β − 1)2

3

)
T − (β − 1)2v6

0

24
T 2. (9.2)
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9.3.2 Numerical analysis of the approximation of the implied volatil-

ity for the CEV case.

Here, we compare numerically our approximated implied volatilities with the implied
volatilities computed from call option prices calculated with the exact formula and with
the ones obtained using the following formula obtained from Hagan and Woodward (1999):

Î(T,K) =
σ

f 1−β
av

[
1 +

(1− β)(2 + β)

24

(
F0 −K
fav

)2

+
(1− β)2

24

σ2T

f 2−2β
av

]

where fav = 1
2
(F0 −K) and F0 the forward price.

In Figure 9.2, we can see that the implied volatility dynamics behaves well for long
dated maturities and short dated maturities when β is close to 1. When this is not the
case, the formula behaves well at-the-money but the error increases far from the ATM
value. This behaviour is a consequence of the quadratic error in our approximation.
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Figure 9.2: CEV Model: Comparison of implied volatility approximations for S0 = 100,
σ = 20% and r = 5%.

In Figure 9.3, we observe that for ATM options, the approximated implied volatility
surface �ts really well the real implied volatility structure.
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Figure 9.3: CEV Model: Comparison of ATM implied volatility approximations for S0 =
100, σ = 20% and r = 5%.

Now, we put the implied volatility approximation found in (9.1) into Black-Scholes-
Merton formula and compare the obtained results with Hagan and Woodward results. The
results for a call option with parameters β = 0.25, S0 = 100, K = 100, σ = 20% and
r = 1% are in the following table.
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T − t β Exact Formula BS with IV (9.1) error HW error
0.25

0.25

0.2882882 3.51 E-08 8.64 E-05
1 1.0103060 2.36 E-07 2.68 E-04
2.5 2.4709883 2.94 E-07 1.57 E-04
5 4.8771276 6.72 E-08 1.77 E-05

0.25

0.5

0.5356736 4.27 E-07 2.41 E-04
1 1.3886303 3.65 E-06 1.75 E-03
2.5 2.8506826 1.54 E-05 5.68 E-03
5 5.1658348 4.36 E-05 1.15 E-02

0.25

0.75

1.3887209 3.29 E-06 3.92 E-04
1 3.0389972 2.64 E-05 3.10 E-03
2.5 5.2954739 1.05 E-04 1.19 E-02
5 8.2781049 3.01 E-04 3.22 E-02

0.25

0.9

2.6404164 4.17 E-06 3.14 E-04
1 5.5191736 3.31 E-05 2.49 E-03
2.5 9.1446125 1.29 E-04 9.70 E-03
5 13.5553379 3.59 E-04 2.67 E-02

Table 9.3: CEV Model: Comparison between prices using di�erent implied volatility ap-
proximations

Our approximation is better than the Hagan and Woodward one.

We also compare the execution times.

Measure HW BS with IV (9.1)
Average 1.67 E-04 1.66 E-04

Standard Deviation 2.52 E-05 2.37 E-05
Max 3.67 E-04 3.48 E-04
Min 1.59 E-04 1.58 E-04

Table 9.4: CEV Model: Statistical analysis of prices using di�erent implied volatility ap-
proximations

We can observe that both formulae are similar in computation time with the new
approximation formula being a bit faster.

9.4 Calibration of the model.

Following the ideas of Alòs et al. (2015), we propose a method to calibrate the model. This
method will allow us to �nd σ and β using quadratic linear regression. We can recover the
parameters with a set of options of the same maturity with (9.1) or with ATM options of
di�erent maturities (9.2).
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9.4.1 Calibration using the smile of volatility.

Using a set of options with the same maturity and the parameters S0 = 100, σ = 20%,
r = 5%, K = 98 · · · 102. We calculate the price and their implied volatilities with the exact
formula. We do a quadratic regression adjusting a parabola a+bc+cx2 with x = lnK−lnS0

to the implied volatilities. Using (9.1), it is easy to see that β = 2b
a

+ 1 and σ = a
Sβ−1 . We

do the following cases.

• For T = 1 and β = 0.5, , we �nd that

0.000200446x2 − 0.00497683x+ 0.020000611

from which we obtain β = 0.50233 and σ = 19.787%.

• For T = 5 and β = 0.5, we �nd that

−0.001234308x2 − 0.004881387x+ 0.020013633

from which we obtain β = 0.51219 and σ = 18.921%.

• For T = 1 and β = 0.9, we �nd that

0.000382876x2 − 0.006311173x+ 0.126192162

from which we obtain β = 0.89997 and σ = 20.002%.

• For T = 5 and β = 0.9, we �nd that

0.00010393x2 − 0.00628411x+ 0.126198861

from which we obtain β = 0.90041 and σ = 19.963%.

9.4.2 Calibration using ATM implied volatilities.

Using a set of ATM options with the same maturity and parameters S0 = 100, σ = 20%,
r = 5%, we calculate the price and their implied volatilities with the exact formula. Then
we do a quadratic regression adjusting a parabola a+ bc+ cx2 with x = T to the implied
volatilities. Using (9.2), it is easy to see that β = 1 + −3r±

√
9r2+16ab

4a2
and σ = a

Sβ−1 . We do
the following cases.

• For T = 0.3, 0.5, 0.8, 0.9, 1 and β = 0.5

0.0000086x2 − 0.0002577x+ 0.0200020

from which we obtain β = 0.48324 (or β = −185.94 which we can discard) and
σ = 21.607%.
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• For T = 1, 2, 3, 4, 5 and β = 0.5, we �nd that

0.0000024x2 − 0.0002495x+ 0.0199997

from which we obtain β = 0.49970 (or β = −186.0055 which we can discard) and
σ = 20.028%.

• For T = 0.3, 0.5, 0.8, 0.9, 1 and β = 0.9, we �nd that

−0.0000054x2 − 0.0003076x+ 0.1261899

from which we obtain β = 0.90040 (or β = −3.6103 which we can discard) and
σ = 19.963%.

• For T = 1, 2, 3, 4, 5 and β = 0.9, we �nd that

0, 0000006x2 − 0.0003141x+ 0.1261907

from which we obtain β = 0.89822 (or β = −3.6081 which we can discard) and
σ = 20.164%.

We have seen that to do a quadratic regression is enough to recover a good approximation
of the parameters.
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Conclusion

10.1 Conclusion

Albert Einstein once said:

As far as laws of mathematics refer to reality, they are not certain; and as

far as they are certain, they do not refer to reality.

Ever since people have been able to make promises, there have been �nancial derivatives.
Naturally, from its inception, the question has arisen of how to �nd the right price for these
contracts. Over the last century, a lot of research has been conducted to solve this problem.
For example, sometimes studying the behaviour of the market, others the dynamics of
prices and some others in ways of calculating prices numerically, especially quickly and
accurately. Financial mathematics is the constant exercise of modelling reality �nding the
correct model, the one able to assign a probability to rare events. But sadly, there is no
perfect model yet.

This can seem discouraging. In the words of George E.P. Box:

All models are wrong, but some are useful.

For that reason, we are still using a wide variety of pricing models today. Each of them is
capable of explaining a part of reality. For decades, di�erent models have been proposed,
each with di�erent properties and capable of explaining di�erent behaviours observed in
the market. With them, pricing methods have emerged and evolved at the same time as
computers improved. Some of them are very e�ective and accurate, but most of the time,
they are not intuitive to the researcher or practitioner.

This thesis is dedicated to the decomposition of the European Plain Vanilla options
under di�erent models. The most extensive research on the decomposition formula has been
done using Malliavin calculus. However, this thesis is focused on the alternative approach
of using Itô calculus. The methodology introduced by Alòs (2012) allows us to decompose
the price of an option such as the Black-Scholes-Merton formula plus other terms that
correct the e�ects of having a more complex model. Moreover, the corrections depend on
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the derivatives, also named sensitivities or Greeks, of the Black-Scholes-Merton formula.
In some cases, a small correction in the Black-Scholes-Merton formula has to be applied
as we have seen in Chapter 9. Therefore, one of the advantages of this technique is that in
order to price an option in a complex model, it can be expressed by objects well-known to
researchers and practitioners.

In Alòs (2012) and Alòs et al. (2015), the decomposition method is applied to the
Heston model. A decomposition formula and an approximation are found for the Heston
model, and subsequently an implicit volatility approximation. From this research, the idea
to extend the decomposition formula to other models arose. For this, the decomposition
formula is generalised under a general stochastic volatility model for a generic functional.
Furthermore, it can be applied to stochastic volatility jump di�usion models with �nite
activity by conditioning the jump process. As an application, on the one hand, we apply the
decomposition formula and its approximation to the rough volatility model. In particular,
as an alternative to the rBergomi model. On the other hand, we apply the decomposition
formula and its approximation to the Bates model. An approximation of the implied volatil-
ity is found. Additionally, a numerical comparison of the e�ectiveness is performed, by �rst
comparing the option price approximation and then the implied volatility approximation.

In a di�erent direction, we have seen that it is possible to obtain a decomposition
formula for a local volatility model, particularly when the volatility model depends on the
spot. It is interesting to note that in this situation, the decomposition formula seems more
complex than the stochastic volatility case as it has more terms to approximate. As an
application, the decomposition formula for the CEV model is studied, obtaining a price
approximation formula and an approximation of the implicit volatility dynamics when an
option is ATM or close to expiration.

When studying the previous cases, we realised that by applying the decomposition for-
mula recursively, the approximation formula can be improved. In particular, we realised
that the decomposition formula can be transformed into a Taylor type formula containing
an in�nite series with stochastic terms. As an application, we expanded the approxima-
tion formula in the Heston model case by adding several terms. We developed new ap-
proximations, even when there was no correlation between asset and volatility. The new
approximation formulae have an error of order O(ν3(|ρ| + ν)) and O(ν4(1 + |ρ|)). In the
particular case of zero correlation, we derived an approximation formula with an error of
order O(ν6). In addition, for each approximation given, an upper-bound error was given
and a numerical comparison was performed with a di�erent benchmark prices.

10.2 Future research

In this dissertation, we have studied the decomposition formula for a wide variety of mod-
els. In particular, the results on stochastic volatility jump di�usion models only worked
when the jumps were of �nite activity. One possible line of research is extending the de-
composition formula for a general Levy process. See, for example, the preprints of Arai
(2020) and Lagunas and Ortiz-Latorre (2020).
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Another topic of research is the improvement of the decomposition formula for ex-
ponential models. We noticed that for large-time maturities as well as high vol-vol, the
approximation formula is not accurate enough. A possible way to improve this behaviour
is by expanding the approximation formula, but in the rough volatility case it can be hard
as it cannot be calculated explicitly. It can also be applied to the SABR model, where the
CEV is mixed with a stochastic volatility model.

An interesting topic as well is understanding how the Taylor type formula works. This
can help us to develop a more powerful way to calculate the approximations or to develop
a better implied volatility approximation.
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APPENDIX A

Decomposition formula using Malliavin calculus.

In this thesis, we have focused on developing the decomposition formula using the classical
Itô calculus for di�erent models. But, in the �rst approaches, the methodology used was
the Malliavin calculation. The anticipating stochastic calculus is a powerful extension of
the Itô calculus which allows us to work with non-adapted processes. We have been able to
use the Itô calculus because we have changed a non-adapted process like the future average
volatility

σ̄2
t :=

1

T − t

∫ T

t

σ2
s ds

into an adapted process

Et(σ̄2
t ) =

1

T − t

∫ T

t

Et[σ2
s ] ds.

In this appendix, we will present a basic exposition of de�nitions and propositions of Malli-
avin calculus, necessary to �nd a decomposition formula for a general stochastic volatility
model.

A.1 Basic elements of Malliavin Calculus.

In this section, we present a brief introduction to the basic facts of Malliavin calculus. For
more information, see Nualart (1995).

Let W = {W (t), t ∈ [0, T ]} a Brownian motion de�ned on a complete probability space
(Ω,F ,P). Let H = L2([0, T ]) and denote by

W (h) :=

∫ T

0

h(s) dWs,
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the Itô integral of a deterministic function h ∈ H, also known as Wiener integral. Consider
S to be the set of smooth and cylindrical random variables of the form

F = f (W (h1, . . . ,W (hn))

where n ≥ 1, h1, . . . , hn ∈ H and f is di�erentiable bounded function.

De�nition A.1.1. Given a random variable F , we de�ne its Malliavin derivative, DW
t F ,

as the stochastic process given by

DW
t F =

n∑
i=1

∂xif (W (h1), . . . ,W (hn))hi(x), t ∈ [0, T ] .

The derivative operator DW is a closable and unbounded operator de�ned as:

DW : L2(Ω) −→ L2([0, T ]n × Ω)

F = f (W (h1), . . . ,W (hn)) −→ DW
· F =

n∑
i=1

∂xif (W (h1), . . . ,W (hn))hi(·).

We can de�ne the iterated derivative operator DW,n as:

DW,n
t1,...,tn = DW

t1
· · ·DW

tn F.

The iterated derivative operatorDW,n is closable and unbounded from L2(Ω) into L2([0, T ]n×
Ω), for all n ≥ 1.

We denote by Dn,2 the closure of S with respect to the norm de�ned by

‖F‖2
n,2 := ‖F‖2

L2(Ω) +
n∑
k=1

∥∥DW,kF
∥∥2

L2([0,T ]k×Ω)
.

We de�ne δW as the adjoint of derivative operator DW , also referred to as the Skorohod
integral. The domain of δW , DomδW , is the set of elements u ∈ L2([0, T ] × Ω) such that
exist a constant c > 0 satisfying∣∣∣∣E [∫ T

0

DW
t Fut dt

]∣∣∣∣ ≤ c ‖F‖L2(Ω) ,

for all F ∈ S.
If u ∈ DomδW and F ∈ D1,2, δW (u) is an element of L2(Ω) characterized by

E
[
δW (u)F

]
= E

[∫ T

0

DW
t Fut dt

]
.

The operator δ is an extension of the Itô integral in the sense that the set L2
a([0, T ]×Ω) of

square integrable and adapted processes is included in Domδ and the operator δ restricted
to L2

a([0, T ]× Ω) coincides with the Itô stochastic integral.
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For any u ∈ DomδW , we will use the following notation

δW (u) =

∫ T

0

ut dWt.

The space of functions Ln,2W := L2
(
[0, T ];Dn,2

W

)
is contained in the domain of δ for all

n ≥ 1. The variance of the Skorohod integral can be calculated for any process u ∈ L1,2 as
follows:

E
[
δW (u)

]2
= E

[∫ T

0

u2
t dt

]
+ E

[∫ T

0

∫ T

0

DW
s utD

W
t us dt ds

]
.

We will need the following result on the Skorohod integral.

Proposition A.1.2. Let u ∈ DomδW and consider a random variable F ∈ D1,2 such that

E
[
F 2

∫ T

0

u2
t dt

]
<∞.

Then ∫ T

0

Fut dWt = F

∫ T

0

ut dWt −
∫ T

0

(DtF )ut dt,

in the sense that Fu ∈ Domδ if and only if the right-hand side of the above equation is
square integrable.

Proof. See Nualart (1995), Subsection 1.3.1, (4).

Proposition A.1.3. Let u ∈ L2
a([0, T ]× Ω). Then, for all 0 ≤ t < s ≤ T , we have that

Dsut = 0.

Proof. See Nualart (1995), Proposition 1.3.3, (4).

Now, we will present the Itô formula for anticipative processes. This Theorem is the
cornerstone to develop a decomposition formula by means of Malliavin calculus.

Theorem A.1.4. Consider a stochastic process as

Xt = X0 +

∫ t

0

us dWs +

∫ t

0

vs ds,

where X0 is a F0-measurable random variable and u, v ∈ L2
a([0, T ]×Ω). Moreover, consider

a process

Yt =

∫ T

t

θs ds,
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for some θ ∈ L1,2.
Let F : R3 → R be a twice continuously di�erentiable function such that, for all t ∈

[0, T ], F and its derivatives evaluated in (t,Xt, Yt) are bound by a positive constant C.
Then it follows that

F (t,Xt, Yt) = F (0, X0, Y0) +

∫ t

0

∂sF (s,Xs, Ys) ds

+

∫ t

0

∂xF (s,Xs, Ys)dXs

+

∫ t

0

∂yF (s,Xs, Ys)dYs

+

∫ t

0

∂2
x,yF (s,Xs, Ys)(D

−Y )sus ds

+
1

2

∫ t

0

∂2
xF (s,Xs, Ys)u

2
s ds,

where (D−Y )s :=
∫ T
s
DW
s Yr dr.

Proof. See Alòs (2006), Theorem 3.

The next proposition is useful when we want to calculate the Malliavin derivative.

Proposition A.1.5. Consider an Itô process

Xt = X0 +

∫ t

0

Hs dWs +

∫ t

0

Ks ds.

Then, we have

DsXt = Hs exp

(∫ t

s

∂sHs dWs +

∫ t

s

λs ds

)
11[0,t](s).

where λs = [∂sK − 1
2

(∂sH)2]s.

Proof. See Nualart (1995), Section 2.2.

A.2 Decomposition formula.

In this section, we use the Malliavin calculus to extend the call option price decomposition
in an anticipative framework. The idea is to give a general decomposition formula.

Theorem A.2.1 (Functional decomposition under a SV model using Malliavin Calculus).
Let St be a price process de�ned in (3.26), let A(t, x, y) be a continuous function on the
space [0, T ] × [0,∞) × [0,∞) such that A ∈ C1,2,2((0, T ) × (0,∞) × (0,∞)). Let us also
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assume that LyAĜSV (t, x, r, y) = 0 and σ̄2
t as de�ned in (4.2). Then, for every t ∈ [0, T ],

the following formula holds:

e−r(T−t)Et
[
A(T, ST , σ̄

2
T )
]

= A(t, St, σ̄
2
t )

+ Et
[∫ T

t

e−r(u−t)∂yA(u, Su, σ̄
2
u)
v2
u − σ2

u

T − u
du

]
+ Et

[∫ T

t

e−r(u−t)∂2
x,yA(u, Su, σ̄

2
u)(D

−σ2)u
θ(u, Su, σu)

T − u
du

]
+

1

2
Et
[∫ T

t

e−r(u−t)∂2
xA(u, Su, σ̄

2
u)
(
θ2(u, Su, σu)− S2

uv
2
u

)
du

]
.

Proof. Notice that e−rTA(T, S(T ), σ̄2(T )) = e−rTVT . As e
−rtV (t) is a martingale we can

write

e−rtV (t) = Et
(
e−rTV (T )

)
= Et

(
e−rTA(T, S(T ), σ̄2(T ))

)
.

Now we will apply the previous anticipative Itô formula to the process e−rtA(t, St, v
2
t ). It

is obtained

e−rTA(T, ST , σ̄
2
T ) = e−rtA(t, St, σ̄

2
t )

+ r

∫ T

t

e−ruA(u, Su, σ̄
2
u) du

+

∫ T

t

e−ru∂uA(u, Su, σ̄
2
u) du

+

∫ T

t

e−ru∂xA(u, Su, σ̄
2
u) dSu

+

∫ T

t

e−ru∂yA(u, Su, σ̄
2
u) dv2

u

+ ρ

∫ T

t

e−ru∂2
x,yA(u, Su, σ̄

2
u)(D

−v2)uθ(u, Su, σu) du

+
1

2

∫ T

t

e−ru∂2
xA(u, Su, σ̄

2
u) d[S, S]u.

Developing the terms, it can be found

e−rTA(T, ST , σ̄
2
T ) = e−rtA(t, St, σ̄

2
t )

+ r

∫ T

t

e−ruA(u, Su, σ̄
2
u) du

+

∫ T

t

e−ru∂uA(u, Su, σ̄
2
u) du

+

∫ T

t

e−ru∂xA(u, Su, σ̄
2
u)µ(u, Su) du
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+

∫ T

t

e−ru∂xA(u, Su, σ̄
2
u)θ(u, Su, σu)

(
ρ dWu +

√
1− ρ2 dW̃u

)
−

∫ T

t

e−ru∂yA(u, Su, σ̄
2
u)
v2
u − σ2

u

T − u

+ ρ

∫ T

t

e−ru∂2
x,yA(u, Su, σ̄

2
u)(D

−v2)uθ(u, Su, σu) du

+
1

2

∫ T

t

e−ru∂2
xA(u, Su, σ̄

2
u)θ

2(u, Su, σu) du.

We add and subtract the term

1

2

∫ T

t

e−ruS2
u∂

2
xA(u, Su, σ̄

2
u)v

2
u du,

having

e−rTA(T, ST , σ̄
2
T ) = e−rtA(t, St, σ̄

2
t )

− r

∫ T

t

e−ruA(u, Su, σ̄
2
u) du

+

∫ T

t

e−ru∂uA(u, Su, σ̄
2
u) du

+

∫ T

t

e−ru∂xA(u, Su, σ̄
2
u)µ(u, Su) du

+

∫ T

t

e−ru∂xA(u, Su, σ̄
2
u)θ(u, Su, σu)

(
ρ dWu +

√
1− ρ2 dW̃u

)
+

∫ T

t

e−ru∂yA(u, Su, σ̄
2
u)
v2
u − σ2

u

T − u
du

+ ρ

∫ T

t

e−ru∂2
x,yA(u, Su, σ̄

2
u)(D

−v2)uθ(u, Su, σu) du

+
1

2

∫ T

t

e−ru∂2
xA(u, Su, σ̄

2
u)θ

2(u, Su, σu) du

+
1

2

∫ T

t

e−ruS2
u∂

2
xA(u, Su, σ̄

2
u)v

2
u du

− 1

2

∫ T

t

e−ruS2
u∂

2
xA(u, Su, σ̄

2
u)v

2
u du.

Grouping the blue terms, the corresponding Feynman-Kac formula LyAĜSV (t, x, r, y) is
obtained, so those terms vanish. Multiplying by e−rt and using conditional expectations,
we see that

e−r(T−t)Et
[
A(T, ST , σ̄

2
T )
]

= A(t, St, σ̄
2
t )
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+ Et
[∫ T

t

e−r(u−t)∂yA(u, Su, σ̄
2
u)
v2
u − σ2

u

T − u
du

]
+ ρEt

[∫ T

t

e−r(u−t)∂2
x,yA(u, Su, σ̄

2
u)(D

−σ2)u
θ(u, Su, σu)

T − u
du

]
+

1

2
Et
[∫ T

t

e−r(u−t)∂2
xA(u, Su, σ̄

2
u)
(
θ2(u, Su, σu)− S2

uv
2
u

)
du

]
.

The following statement can be derived from Theorem A.2.1.

Corollary A.2.2. Let function A as in Theorem A.2.1. Suppose that the function A sat-
is�es

∂yA(t, x, y) =
1

2
x2∂2

xA(t, x, y)(T − t). (A.1)

Let At := A(t, St, σ̄
2
t ) ∀t ∈ [0, T ]. Then, for every t ∈ [0, T ], the following formula holds:

e−r(T−t)Et
[
A(T, ST , σ̄

2
T )
]

= A(t, St, σ̄
2
t )

+
1

2
Et
[∫ T

t

e−r(u−t)ΓA(u, Su, σ̄
2
u)
(
θ2(u, Su, σu)− σ2

u

)
du

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)ΛΓA(u, Su, σ̄
2
u)(D

−σ2)u
θ(u, Su, σu)

Su
du

]
.

Proof. Substituting (A.1) in Theorem A.2.1 and using the de�nitions of Λ and Γ the proof
is straightforward.

Remark A.2.3. Note that CŜV satis�es all the conditions of Corollary A.2.2.

Remark A.2.4. Being CSV (t, St, σt) the price of a call option under the model (3.26),
notice that

VT = CSV (T, ST , σT ) = CB̂S(T, ST , σ̄T ).

Then,

Vt = CSV (t, St, σ) = e−r(T−t)Et
[
CB̂S(T, ST , σ̄T )

]
.

Assuming that A = CB̂S. Therefore, the price under the model (3.26) can be obtained as
the following decomposition

Vt = CBS(t, St, σ̄t)

+
1

2
Et
[∫ T

t

e−r(u−t)ΓCBS(u, Su, σ̄
2
u)
(
θ2(u, Su, σu)− σ2

u

)
du

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)ΛΓCBS(u, Su, σ̄
2
u)(D

−σ2)u
θ(u, Su, σu)

Su
du

]
.

and it is equal to CSV (t, St, σ). Note that CBS(t, St, σ̄t) = CB̂S(t, St, σ̄t) and this equivalence
is maintained for any derivative with respects to the price.
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Remark A.2.5. When we have a lognormal model, i.e. θ(t, St, σt) = σtSt. Then, we �nd

Vt = CBS(t, St, σ̄t)

+
ρ

2
Et
[∫ T

t

e−r(u−t)ΛΓCBS(u, Su, σ̄u)(D
−σ2)uσu du

]
.

As it was proven in Alòs (2006).

Notice that decomposition formula obtained using the Itô formula, see Example 4.1.6,
has an extra term. This extra term explains the vol-vol impact. In the case of the Malliavin
calculus, this term is embedded in the decomposition.

Example A.2.6 (The Heston model). Assuming that the asset price follows the Heston
model, 3.22, we have the following decomposition formula

V (t) = CBS(t, St, σ̄t)

+
ρ

2
Et
[∫ T

t

e−r(u−t)ΛΓCBS(u, Su, σ̄u)

(∫ T

u

DW
u σ

2
rdr

)
σu du

]
.

where

DW
u σ

2
r = νσu exp

(
ν

2

∫ r

u

1

σs
dWs +

∫ r

u

[
−k − ν2

8σ2
s

]
ds

)
.

For more information, see Alòs and Ewald (2008).

Example A.2.7 (SABR Model). Assuming that the asset prices follows the SABR model,
3.23, we have the following decomposition formula

V (t) = Et [CBS(t, St, σ̄t)]

+
1

2
Et
[∫ T

t

e−r(u−t)ΓCBS(u, Su, σ̄u)σ
2
u

(
S2(β−1)
u − 1

)
du

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)ΛΓCBS(u, Su, σ̄u)

(∫ T

u

DW
u σ

2
r dr

)
σu du

]
.

where

DW
u σ

2
r = 2ασ2

u1[0,r](u).
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An expression of the derivative of the implied volatility

In Alòs et al. (2007), an expression of the derivative of the implied derivative ATM is found.
Following on from those ideas, and combining them with the alternative decomposition
formulae for the Black-Scholes-Merton formula presented in Remark 4.1.5 and A.2.4, we
can obtain a more generic formula.

Let I(St) denote the implied volatility process, which satis�es by de�nition Vt =
CB̂S (t, St, I(St)). We calculate the derivative of the implied volatility.

Proposition B.0.1. Under (3.26), for every �xed t ∈ [0, T ) and assuming that (vt)
−1 <∞

a.s., we notice that

∂SI(S∗t ) =
Et
[∫ T

t
∂SF2(u, S∗u, vu) du

]
∂σCB̂S(t, S∗t , I(S∗t ))

−
Et
[∫ T

t
(F1(u, S∗u, vu) + ∂SF3(u, S∗u, vu)) du

]
2S∂σCB̂S(t, S∗t , I(S∗t ))

.

where

Et
[∫ T

t

F1(u, Su, vu) du

]
=

1

2
Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, vu)

(
θ2(u, Su, σu)

S2
u

− σ2
u

)
du

]
+

1

8
Et
[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, vu) d [M,M ]u

]
+

ρ

2
Et
[∫ T

t

e−r(u−t)
θ(u, Su, σu)

Su
ΛΓCB̂S(u, Su, vu) d [W,M ]u

]
,

Et
[∫ T

t

F2(u, Su, vu) du

]
185
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=
ρ

2
Et
[∫ T

t

e−r(u−t)ΛΓCB̂S(u, Su, vu)
θ(u, Su, σu)

Su
d [W,M ]u

]
and

Et
[∫ T

t

F3(u, Su, vu) du

]
=

1

2
Et
[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, vu)

(
θ2(u, Su, σu)

S2
u

− σ2
u

)
du

]
+

1

8
Et
[∫ T

t

e−r(u−t)Γ2CB̂S(u, Su, vu) d [M,M ]u

]
.

Proof. Taking partial derivatives with respect to St in the expression V (t) = CB̂S(t, St, I(St)),
we obtain

∂SVt = ∂SCB̂S(t, St, I(St)) + ∂σCB̂S(t, St, I(St))∂SI(St). (B.1)

On the other hand, from Remark 4.1.5, we deduce that

Vt = CB̂S(t, St, vt) + Et
[∫ T

t

F1(u, Su, vu) du

]
, (B.2)

which implies that

∂SVt = ∂SBS(t, St, vt) + Et
[∫ T

t

∂SF1(u, Su, vu) du

]
. (B.3)

Using that (vt)
−1 < ∞, we can check that ∂SVt is well-de�ned and �nite a.s. Thus, using

that S∗t = K exp(r(T − t)), (B.1) and (B.3), we obtain

∂SI(S∗t ) =
∂SCB̂S(t, S∗t , vt)− ∂SCB̂S(t, S∗t , I(St))

∂σCB̂S(t, S∗t , I(St))

+
Et
[∫ T

t
∂SF1(u, S∗u, vt) du

]
∂σCB̂S(t, S∗t , I(St))

.

From Renault and Touzi (1996), we know that ∂SI
0
t = 0 at ATM moneyness, where I0

t

is the implied volatility in the case ρ = 0, so

∂SCB̂S(t, S∗t , vt) = ∂SCB̂S(t, S∗t , I
0(St))− Et

[∫ T

t

∂SF3(u, S∗u, vu) du

]
.

Therefore, we note that

∂SI(S∗t ) =
∂SCB̂S(t, S∗t , I

0
t )− ∂SCB̂S(t, S∗t , I(S∗t ))

∂σCB̂S(t, S∗t , I(S∗t ))
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+
Et
[∫ T

t
∂SF2(u, S∗u, vu) du

]
∂σCB̂S(t, S∗t , I(S∗t ))

.

On the other hand, we note that

∂SCB̂S(t, S∗t , vt) = φ(d)

and

CB̂S(t, S∗t , vt) = S (φ(d)− φ(−d))

where φ is the standard Gaussian density. Then

∂SCB̂S(t, S∗t , vt) =
CB̂S(t, S∗t , vt) + S

2S

and

∂SCB̂S(t, S∗t , I
0
t )− ∂SCB̂S(t, S∗t , I(S∗t ))

=
1

2S

(
CB̂S(t, S∗t , I

0
t )− CB̂S(t, S∗t , I(S∗t ))

)
= − 1

2S
Et
[∫ T

t

(F1(u, S∗u, vu) + ∂SF3(u, S∗u, vu)) du

]
.

We can do it analogously using Mallivin calculus and Remark A.2.4. In Alòs et al.
(2007), we �nd a proof when θ(t, St, σt) = σtSt.

Proposition B.0.2. Under (3.26), for every �xed t ∈ [0, T ), (ṽ(t))−1 < ∞ a.s. Then it
follows

∂SI(S∗t ) =
Et
[∫ T

t
∂SF2(u, S∗u, σ̃u) du

]
∂σCB̂S(t, S∗t , I(S∗t ))

−
Et
[∫ T

t
F1(u, S∗u, σ̃u) + ∂SF3(u, S∗u, σ̃u) du

]
2S∂σCB̂S(t, S∗t , I(S∗t ))

.

where

Et
[∫ T

t

F1(u, Su, σ̃u) du

]
=

1

2
Et

[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, σ̃u)

((
θ(u, Su, σu)

Su

)2

− σ2
u

)
du

]
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+
1

2
Et
[∫ T

t

e−r(u−t)ΛΓCB̂S(u, Su, σ̃u)

(∫ T

s

DW
s σ

2
r dr

)
d [W,M ]u

]
,

Et
[∫ T

t

F2(u, Su, σ̃u) du

]
=

1

2
Et
[∫ T

t

e−r(u−t)ΛΓCB̂S(u, Su, σ̃u)

(∫ T

s

DW
s σ

2
r dr

)
d [W,M ]u

]
and

Et
[∫ T

t

F3(u, Su, σ̃u) du

]
=

1

2
Et

[∫ T

t

e−r(u−t)ΓCB̂S(u, Su, σ̃u)

((
θ(u, Su, σu)

Su

)2

− σ2
u

)
du

]
.

Proof. It is similar to the previous proof.
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