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Abstract

In this thesis, an option price decomposition for local and stochastic volatility jump diffu-
sion models is studied. On the one hand, we generalise and extend the Alos decomposition
to be used in a wide variety of models such as a general stochastic volatility model, a
stochastic volatility jump diffusion model with finite activity or a rough volatility model.
Furthermore, we note that in the case of local volatility models, specifically, spot-dependent
models, a new decomposition formula must be used to obtain good numerical results. In
particular, we study the CEV model. On the other hand, we observe that the approxima-
tion formula can be improved by using the decomposition formula recursively. Using this
decomposition method, the call price can be transformed into a Taylor type formula con-
taining an infinite series with stochastic terms. New approximation formulae are obtained
in the Heston model case, finding better approximations.
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Abstract (Catalan)

En aquesta tesi, s’estudia una descomposici6 del preu d’una opcié per a models de volatil-
itat local i volatilitat estocastica amb salts. D’'una banda, generalitzem i estenem la de-
scomposicio d’Alos per a ser utilitzada en una amplia varietat de models com, per exem-
ple, un model de volatilitat estocastica general, un model volatilitat estocastica amb salts
d’activitat finita o un model de volatilitat ‘rough’. A més a més, veiem que en el cas dels
models de volatilitat local, en particular, els models dependents del ‘spot’, s’ha d’utilitzar
una nova féormula de descomposicié per a obtenir bons resultats numérics. En particular,
estudiem el model CEV. D’altra banda, observem que la férmula d’aproximacié es pot
millorar utilitzant la férmula de descomposicié de forma recursiva. Mitjancant aquesta téc-
nica de descomposicio, el preu d’'una opcié de compra es pot transformar en una férmula
tipus Taylor que conté una série infinita de termes estocastics. S’obtenen noves formules
d’aproximacio6 en el cas del model de Heston, trobant una millor aproximacio.



Abstract (Spanish)

En esta tesis, se estudia una descomposicion del precio de una opcién para los modelos
de volatilidad local y volatilidad estocéstica con saltos. Por un lado, generalizamos y am-
pliamos la descomposicion de Alos para ser utilizada en una amplia variedad de modelos
como, por ejemplo, un modelo de volatilidad estocastica general, un modelo de volatilidad
estocéstica con saltos de actividad finita o un modelo de volatilidad ‘rough’. Ademas, vemos
que en el caso de los modelos de volatilidad local, en particular, los modelos dependientes
del ‘spot’, se debe utilizar una nueva féormula de descomposiciéon para obtener buenos re-
sultados numéricos. En particular, estudiamos el modelo CEV. Por otro lado, observamos
que la formula de aproximacion se puede mejorar utilizando la formula de descomposicion
de forma recursiva. Mediante esta técnica de descomposicion, el precio de una opcion de
compra se puede transformar en una férmula tipo Taylor que contiene una serie infinita de
términos estocasticos. Se obtienen nuevas formulas de aproximacion en el caso del modelo
de Heston, encontrando una mejor aproximacion.
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The irreducible price of learning is realizing that you do not know. One may go further
and point out — as any scientist, or artist, will tell you — that the more you learn, the
less you know; but that means that you have begun to accept, and are even able to
rejoice in, the relentless conundrum of your life.

James Baldwin (Esquire Magazine, October 1st 1980)
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CHAPTER 1

Introduction

1.1 A brief history

Financial market instruments can be divided into two different categories. On the one hand,
we have the ‘prime source’ assets, which we will refer to as ‘underlyings’, and which can be
stocks, bonds, commodities, foreign currencies, etc. On the other hand, their ‘derivative’
contracts, financial claims that promise some payment or delivery in the future, depending
on the behaviour of the underlying.

The most typical financial derivatives are futures (or forwards) and options. A future
(or forward) is a legal agreement to buy or sell a particular asset at a predetermined price
and at a specified time in the future. Meanwhile, an option contract gives the right but not
the obligation to buy (or sell) a particular asset at a predetermined price and at a specified
time in the future.

Many people think that derivative contracts, such as futures and options, are inventions
of the modern economy. However, derivative contracts emerged as soon as humans could
make credible promises. They were the first instruments to guarantee the supply of basic
products, facilitate trade and insure farmers against the loss of crops. The first written
evidence of a derivative contract was in law 48 of the Hammurabi code, roughly between
1782 to 1750 BCE.

One of the first stories related to the speculation of derivatives is due to Thales of
Mileto. Thales made a deposit at the local olive presses. As nobody knew for sure whether
the harvest would be good or bad, Thales purchased the rights to the presses at a relatively
low rate. When the harvest proved to be abundant, the demand for the presses was high,
Thales charged a high price for their use and reaped a considerable profit.

Although the use of financial contracts evolved, for an extended reading see Kummer
and Pauleto (2012), it was not until 1900 that the history of mathematical modelling of
financial markets began. Louis Bachelier introduced the first model in his thesis ‘Théorie
de la spéculation’, Bachelier (1900), being one the cornerstones of modern pricing theory.

On the Bachelier thesis, he realised that there was an equilibrium between buyers and
sellers.
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It seems that the market, the aggregate of speculators, can believe in neither a
market rise nor a market fall, since, for each quoted price, there are as many
buyers as sellers.

In particular, he realised the need to use martingales to describe price movements.
The mathematical expectation of speculators are null.

The method of obtaining option prices is similar to the modern approach. However, the
argument is very different. Bachelier derived the model using an equilibrium argument,
while non-arbitrage arguments are used today.

Despite the modern techniques used by Bachelier in his thesis, it remained unknown for
several decades. Apparently, unaware of Bachelier’s work, in 1953, Kendall, Kendall (1953),
analysed 22 series of prices at weekly intervals with the purpose of finding a model that
would fit the stock data. Before the work went far, he realised that between the intervals,
there were random changes discarding a systematic effect. He was also the first to notice the
time dependence of the empirical variance. A few years later, in 1959, Osborne, Osborne
(1959), found that the logarithm returns follow a Brownian motion.

In the middle of 1950, the statistician Jimmy Savage recovered Bachelier’'s work and
sent it to different friends. Fortunately, one of those postcards came to Paul Samuelson,
who was concerned with problems of valuation of options and warrants. Paul Samuelson
was inspired by Bachelier’s work and related the option pricing with the use of martingales
in Samuelson (1965).

In the year 1973, the world’s first listed options exchange opened in Chicago, the
Chicago Board Options Exchange (CBOE). The same year, the famous Black-Scholes-
Merton model was published using no-arbitrage assumptions, see Black and Scholes (1973)
and Merton (1973).

The Black-Scholes-Merton model is an analytical formula that describes parsimoniously
market option prices. The main drivers are the ratio between the stock price and the
strike, also known as moneyness, the level of interest rates and the constant volatility.
This last feature is the main problem of the Black-Scholes-Merton model. Despite that, in
practice, the Black-Scholes-Merton model is used as a marking model to quote volatilities of
traded options prices. These volatilities are called implied volatilities, i.e. it is the constant
volatility input needed in the Black-Scholes-Merton formula to match a given market price.

Over the following years, new models appeared trying to adapt the Black-Scholes-
Merton model to the observable patterns of stock returns. The Constant Elasticity Vari-
ance model, also known as the CEV model, was presented in an unpublished note in Cox
(1975), see also Beckers (1980). The main purpose of the CEV model was to explain the
inverse relationship between the level of the stock price and the variance of its returns.
The following year, the first Jump Diffusion model was published in Merton (1976). Mer-
ton extended the Black-Scholes-Merton model to stochastic processes with non-continuous
sample paths, explaining possible ‘abnormal’ vibrations in price due to the arrival of im-
portant new information about the stock with a non-marginal effect of the stock price.
Those models were able to introduce skew in the implied volatility.
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On October 19, 1987, also known as Black Friday, one of the biggest financial crisis
occurred. All international markets experienced large losses, the Down Jones lost 22.6%
and a large increase of volatility was observed. Shortly after the collapse, options traders
noted that deep out of the money put options were unusually high compared to put options
closer to the current price. This phenomenon was called the ‘volatility smile’.

Stochastic volatility (SV) models appeared as a useful tool to explain in a self-consistent,
way the volatility surface observed by traders. In Johnson (1979), we find one of the firsts
approaches where variance follows a stochastic process. To obtain a partial differential
equation, a perfect correlation between the asset price and the variance was assumed,
although no solution was found for the option price. Johnson and Shanno (1985), Wiggins
(1987) and Scott (1987) tried several numerical solutions to obtain option prices. Using
a different approach, Hull and White (1987) obtained a price approximation as a Taylor
series expansion when the asset price and the variance are uncorrelated. In Stein and
Stein (1991), a model where the volatility is driven by an arithmetic Ornstein-Ublenbeck
process uncorrelated with the asset price was proposed and a solution based on numerical
integration was obtained to calculate options prices. In 1993, Heston (1993), proposed a
model with an arbitrary correlation between the asset and the volatility process driven by
a CIR process, Cox et al. (1985). He obtained semi-analytical formulae for European plain
vanilla options. The Heston model has become one of the most popular stochastic volatility
models, due to its analytical tractability and its good statistical properties.

The volatility surface not only presents a ‘volatility smile’, but short-term options are
traded with higher implied volatilities. Traders, aware of the possibility of a large market
movement, request higher premiums. Stochastic volatility models are not rich enough to
reproduce these movements in the short term. To improve them, stochastic volatility jump
diffusion (SVJ) models appeared. The first SVJ model is credited to Bates (1996) who
incorporated a stochastic variance process postulated by Heston (1993) alongside Merton
(1976) - style jumps. The variance of stock prices follows a CIR process and the stock
prices themselves are assumed to be of a jump diffusion type with log-normal jump sizes.
In particular, this model should improve the market fit for short-term maturity options,
while the original Heston (1993) approach would often need unrealistically high volatility
of variance parameter to fit the short-term smile reasonably well, see Bayer et al. (2016)
and Mrézek et al. (2016).

An SVJ model with a non-constant interest rate was introduced by Scott (1997). Sev-
eral other authors studied SVJ models which have a different distribution for jump sizes,
for example, Yan and Hanson (2006) utilised log-uniform jump amplitudes, or Kou (2002)
a double exponential jump diffusion. These models can be generalised using an Exponential
Lévy model. Figueroa-Lopez has done extensive work proposing different short-time ex-
pansions: one regarding the volatility smile, Figueroa-Lopez et al. (2012a), and the others
regarding the option price, for example, Figueroa-Lopez et al. (2012b) and Figueroa-Lopez
et al. (2016) among others. Naturally, one can extend SVJ models by adding jumps into
the variance process, see, for example, a model introduced by Duffie et al. (2000). However,
according to several empirical studies, these models tend to overfit market prices and, de-
spite having more parameters than the original Bates (1996) model, they may not provide
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a better fit to market option prices.

Despite the hectic research in stochastic volatility models, adding a stochastic volatility
structure to the Black-Scholes-Merton model complicates the calculation of option prices,
these models need to be calibrated. In other words, find the correct parameters to minimise
the error between the model option prices and the market option prices, which, in general, is
a difficult and complex task. Derman and Kani (1994), Dupire (1994) and Rubinstein (1994)
proposed a different model, the local volatility model. They defined a unique instantaneous
volatility that is a deterministic function of time and the asset price consistent with market
option prices.

Local volatility models are self-consistent, arbitrage-free and can be calibrated precisely
to the whole volatility surface. However, as was pointed out by Hagan et al. (2002), the
dynamic behavior of smiles and skews predicted by these models are exactly contrary to the
behaviour observed on the market, obtaining worse hedges than using the Black-Scholes-
Merton model. In Hagan et al. (2002), the SABR model was introduced a