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Abstract

Despite the rapid growth of machine learning in the past decades, deploying automated decision mak-
ing systems in practice remains a challenge for most companies. On an average day, data scientists face
substantial barriers to serving models into production. Production environments are complex ecosys-
tems, still largely based on on-premise technology, where modifications are timely and costly. Given the
rapid pace with which the machine learning environment changes these days, companies struggle to stay
up-to-date with the latest software releases, the changes in regulation and the newest market trends. As
a result, machine learning often fails to deliver according to expectations. And more worryingly, this can
result in unwanted risks for users, for the company itself and even for the society as a whole, insofar the
negative impact of these risks is perpetuated in time. In this context, adaptation is an instrument that
is both necessary and crucial for ensuring a sustainable deployment of industrial machine learning.

This dissertation is devoted to developing theoretical and practical tools to enable adaptation of
machine learning models in company production environments. More precisely, we focus on devising
mechanisms to exploit the knowledge acquired by models to train future generations that are better
fit to meet the stringent demands of a changing ecosystem. We introduce copying as a mechanism to
replicate the decision behaviour of a model using another that presents differential characteristics, in
cases where access to both the models and their training data are restricted. We discuss the theoretical
implications of this methodology and show how it can be performed and evaluated in practice. Under
the conceptual framework of actionable accountability we also explore how copying can be used to ensure
risk mitigation in circumstances where deployment of a machine learning solution results in a negative
impact to individuals or organizations.
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Resum

Malgrat el ràpid creixement que ha experimentat l’ús de l’aprenentatge automàtic, la seva imple-
mentació continua sent un repte per a moltes empreses. Els científics de dades s’enfronten diàriament
a nombroses barreres a l’hora de desplegar els models en els entorns productius. Aquests entorns són
complexos, majoritàriament basats en tecnologies on-premise, on els canvis són costosos. És per això
que les empreses tenen dificultats per a mantenir-se al dia amb les versions de programari, els canvis en
la regulació o les tendències del mercat. Com a conseqüència, el rendiment de l’aprenentatge automàtic
està sovint per sota de les expectatives. I cosa que és més preocupant, això pot derivar en riscos per als
usuaris, per a les pròpies empreses i per a la societat en el seu conjunt, quan l’impacte negatiu d’aquests
riscos es mantingui en el temps. En aquest context, l’adaptació es un element necessari i imprescindible
per a assegurar la sostenibilitat.

Aquest treball està dedicat a desenvolupar les eines teòriques i pràctiques necessàries per a possibilitar
l’adaptació dels models d’aprenentatge automàtic en entorns de producció. En concret, ens centrem en
concebre mecanismes per reutilitzar el coneixement adquirit pels models d’aprenentatge automàtic per a
entrenar futures generacions que satisfaguin les demandes d’un entorn altament canviant. Introduïm la
idea de copiar, com un mecanisme que permet replicar el comportament decisori d’un model incorporant
característiques diferencials, en escenaris on l’accés tant a les dades com al propi model està restringit.
Discutim les implicacions teòriques d’aquesta metodologia i demostrem com les còpies poden ser entre-
nades i avaluades a la pràctica. Sota el marc de la responsabilitat accionable, explorem com les còpies
poden explotar-se per a la mitigació de riscos quan el desplegament d’una solució basada en l’aprenentatge
automàtic pugui tenir un impacte negatiu sobre les persones o les organitzacions.
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Laburpena

Azken urteetan ikaskuntza automatikoa azkar hazi bada ere, erabakiak hartzeko sistema automatizat-
uak ezartzea erronka handia da enpresa askorentzat. Datu-zientzialariek egunero oztopo ugari izaten di-
tuzte modeloak produkzioan zabaltzeko orduan. Produkzio-inguruneak ekosistema konplexuak dira, batez
ere on-premise teknologietan oinarritzen direnak, non aldaketak garestiak diren. Horregatik, enpresek za-
iltasun handiak dituzte softwarearen azken bertsioekin, araudiaren aldaketekin edota merkatuaren joera
berriekin eguneratuta egoteko. Ondorioz, askotan ikaskuntza automatikoaren errendimendua itxarope-
nen oso azpitik dago. Eta are kezkagarriagoa dena, arriskuak ekar ditzake erabiltzaileentzat, enpresentzat
eta gizarte osoarentzat, arrisku horien eragin negatiboa denboran zehar iraunarazten den neurrian. Tes-
tuinguru honetan, ikaskuntza automatikoaren garapen industrialaren jasangarritasuna bermatzeko be-
harrezko eta ezinbesteko elementua da egokitzapena.

Lan honen xedea produkzio-inguruneetan ikaskuntza automatikoa egokitzeko beharrezkoak diren
tresna teoriko eta praktikoak garatzea da. Zehazki, eskaera aldakorrak asetzeko hobeto prestatuta dauden
belaunaldi berriak entrenatu ahal izateko modeloek bereganatutako ezagutza berrerabiltzeko mekanis-
moak garatzean zentratzen gara. Kopiak aurkezten ditugu modelo baten jokabide erabakitzailea errep-
likatzeko aukera ematen duten mekanismo gisa, datuak eta modeloa bera eskuratzeko aukera mugatuta
dagoen agertokietan. Metodologia honen inplikazio teorikoak eztabaidatzen ditugu eta kopiak praktikan
nola entrenatu eta ebaluatu daitezkeen erakusten dugu. Halaber, erantzukizun eragingarriaren espar-
ruan, ikaskuntza automatikoan oinarritutako irtenbide bat hedatzeak pertsonengan edo erakundeetan
eragin negatiboa izan dezakeen kasuetan, kopiak arriskuak arintzeko tresna gisa nola ustiatu daitezkeen
aztertzen dugu.
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Resumen

A pesar del rápido crecimiento del aprendizaje automático en últimas décadas, su implementación
sigue siendo un reto para muchas empresas. Los científicos de datos se enfrentan a diario a numerosas
barreras a la hora de desplegar los modelos en producción. Los entornos de producción son ecosistemas
complejos, a menudo basados en tecnologías on-premise, donde los cambios son costosos. Es por eso que
las empresas tienen serias dificultades para mantenerse al día con las últimas versiones de software, los
cambios en la regulación o las tendencias del mercado. Como consecuencia, el rendimiento del aprendizaje
automático está muy por debajo de las expectativas. Y lo que es más preocupante, esto puede derivar en
riesgos para los usuarios, para las propias empresas e incluso para la sociedad en su conjunto, mientras
el impacto negativo de dichos riesgos se perpetúe en el tiempo. En este contexto, la adaptación se revela
como un elemento necesario e imprescindible para asegurar la sostenibilidad.

Este trabajo está dedicado a desarrollar herramientas que posibiliten la adaptación de los modelos
de aprendizaje automático en entornos de producción. Nos centramos en concebir mecanismos para
reutilizar el conocimiento adquirido por los modelos para entrenar futuras generaciones mejor preparadas
para satisfacer las demandas de un entorno cambiante. Introducimos la copia como un mecanismo para
replicar el comportamiento decisorio de un modelo dotándolo de características diferenciales, en escenarios
con información restringida. Discutimos las implicaciones teóricas de esta metodología y demostramos
como las copias pueden ser entrenadas y evaluadas en la práctica. Bajo el marco de la responsabilidad
accionable, exploramos cómo las copias pueden explotarse para la mitigación de riesgos cuando despliegue
de una solución basada en el aprendizaje automático deriva en un impacto negativo sobre las personas o
las organizaciones.

ix





Acknowledgments

Sentada en la butaca bajo el porche del jardín, con la pose erguida, el traje gris, las uñas de los pies
pintadas de rosa claro y el libro en el regazo, Amama, a sus 90 años y pico, contó el otro día que la vida
se le ha pasado en un soplo. A mi también estos tres años.

My first and deepest words of gratitude go to my supervisors Jordi Nin and Oriol Pujol without whom
this work would not have been possible. I thank them for their direction and their patience along these
years. And above all, for their kindness and friendship. This hasn’t always been an easy path, but has
been a path that I haven’t walked alone.

A special thanks to the whole team at BBVA Data & Analytics. To Elena Alfaro for believing in this
initiative and supporting it along the way. To Roberto and Javi for their warm welcome. To Juan Murillo
for his gentle words of advice and his willingness to contribute. To the whole team in Madrid, to whom I
have always looked up to, even from far far away. And of course, to the people who used to work at the
office in Barcelona and to those who still do. My immense gratitude to all of them. To Alberto Rubio
and Jordi Aranda, to whom I have often turned for guidance and who have always answered my call. To
Axel, with whom I’ve shared part of this journey. And specially, to Jose, who accepted the challenge of
embarking on this project in the middle of the journey and who has been relentless in his effort to anchor
it in reality. I thank him for his wise counsel.

Last but not least, I would like to mention several people that made this work possible with their
support and love. My gratitude goes to all of them. To Gonzalo, Iñaki and Pedro, for giving me the
opportunity to observe. To the people in ESADE, for giving me the impulse to finish and to start again.
To Iñaki, for this learning journey together. To Marc Cuxart, Berta, Genís and Sandra, whose life stories
are also mine. Their struggles, their wins and their losses too. To Marc Mela, who I never meet enough.
To Arnau and Pere, who sang and played for me. To Núria and Bernat, who came back. To Carla, who
never leaves for real. And to Marc Lemus, who has always been at the other side of the line. And above
all, I would to thank my parents and brother, to whom I can always go back to.

Mi viaje a la ciencia de datos empezó durante el verano de 2003, cuando me matriculé a la Udako

xi



Gandias Unibertsitatea, también conocida como la UGU; universidad por la cuál tengo el honor de haber
sido la primera y única egresada. Mis primeros pasos en Python los dí entonces. Siempre de la mano del
profesor Zubillaga, que se esmeró por enseñarme el orden y el buen hacer programador. Años después
estas enseñanzas se extendieron también a la física, disciplina por la que opté como opción universitaria
y de la que me he ido inexorablemente alejando con el tiempo. Además de a muchos otros ámbitos, en
los que he volcado tanto mis alegrias como muchas de mis frustraciones. Por todo ello, no quiero dejar
de agradecerle a Zubi el haberme propuesto un camino que he disfrutado recorriendo y, en ocasiones,
también dejando atrás. Tampoco quiero dejar de esperar que se quede un rato más y ver a dónde nos
lleva todo esto.

xii



Contents

Introduction 1

I Concept 7

1 Differential replication in machine learning 11
1.1 Survival of the fittest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Modelling adaptation to new environments . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Differential replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Differential replication mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Differential replication in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Moving to a different software environment . . . . . . . . . . . . . . . . . . . . . . 20
1.4.2 Adding uncertainty to prediction outputs . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.3 Mitigating the bias learned by trained classifiers . . . . . . . . . . . . . . . . . . . . 21
1.4.4 Evolving from batch to online learning . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.5 Preserving the privacy of deployed models . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.6 Intelligible explanations of non-linear phenomena . . . . . . . . . . . . . . . . . . . 22
1.4.7 Model standardization for auditing purposes . . . . . . . . . . . . . . . . . . . . . . 22

Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II Theory 25

2 Building the conceptual framework 29
2.1 An imitation game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Initial attempts at rule extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xiii



2.3 The notion of Knowledge Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Generating pseudo training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Sample selection in Active learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 An overview of Adversarial learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 A theory for copying 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Copying machine learning classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 The copy hypothesis space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 The need for unlabelled data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Copying under the empirical risk minimization framework . . . . . . . . . . . . . . 52
3.2.4 Solving the copying problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 The single-pass approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.1 Meaningful insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 The dual-pass approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Meaningful insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Experimental validation 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Identifying the sources of error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 UCI classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Experimental set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Further considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

III Practice 85

5 Risk mitigation in machine learning accountability 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Machine learning systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 A model’s environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.2 Potential risks of machine learning systems . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Actionable accountability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.1 Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xiv



5.3.2 Auditability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.3 Risk-based auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.4 Risk mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 The role of copying in risk mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.1 The risk-based auditing stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.2 The risk mitigation stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Use case: Global interpretability in credit risk scoring 105
6.1 The context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 The case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 The scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.1 Scenario 1: Deobfuscation of the attribute preprocessing . . . . . . . . . . . . . . . 108
6.4.2 Scenario 2: Regulatory compliant, high-capacity copies . . . . . . . . . . . . . . . . 109

6.5 The experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6 The results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Use case: Mitigating the bias learned by trained classifiers 119
7.1 The context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 The case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4 The proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5 The experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.6 The results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.6.1 Evaluating the copy performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.6.2 Evaluating bias reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Conclusions 129

Appendices 133

A Comparison of sampling strategies 135

Bibliography 147

xv





List of Tables

Table 4.1 Experimental results for the first 30 UCI datasets. . . . . . . . . . . . . . . . . . . . 78
Table 4.2 Experimental results for the final 30 UCI datasets. . . . . . . . . . . . . . . . . . . . 79

Table 6.1 Complete set of attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 6.2 Reduced set of highly predictive attributes in scenario 1. . . . . . . . . . . . . . . . 110
Table 6.3 Parameters of the gradient boosted tree in scenario 2. . . . . . . . . . . . . . . . . . 111
Table 6.4 Empirical fidelity error over the original and synthetic datasets and copy accuracy

for the 5 different copy architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Table 7.1 Complete set of attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 7.2 Performance metrics averaged over all runs. . . . . . . . . . . . . . . . . . . . . . . 126
Table 7.3 Accuracy by gender groups for original and copy. . . . . . . . . . . . . . . . . . . . 126
Table 7.4 Accuracy by race group for original and copy. . . . . . . . . . . . . . . . . . . . . . 126

Table A.1 Description of the 6 selected datasets from the UCI machine learning repository. . . 142
Table A.2 Parameters settings for the different algorithms. . . . . . . . . . . . . . . . . . . . . 143
Table A.3 Quality checks for the reference sample sets. . . . . . . . . . . . . . . . . . . . . . . 144

xvii





List of Figures

Fig. 1 Diagram of the thesis outline, showing the three parts and the chapters they each
include, together with the main concepts discussed. . . . . . . . . . . . . . . . . . . 4

Fig. 1.1 The problems of (a) transfer learning and environmental adaptation for a case (b)
where the new new feasible set overlaps with the existing hypothesis space and (c)
where there is no such overlap. The gray and red lines and dots correspond to
the set of possible solutions and the obtained optimum for the source and target
domains, respectively. The shaded areas show the defined hypothesis spaces. . . . 15

Fig. 1.2 Inheritance mechanisms in terms of their knowledge of the data and the model
internals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Fig. 2.1 Number of publications per year for each of the four disciplines: rule extraction,
knowledge distillation, active learning and adversarial learning. Numbers corre-
spond to paper references as shown in this document. . . . . . . . . . . . . . . . . 31

Fig. 2.2 Diagram for knowledge distillation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Fig. 2.3 Diagram of the different sampling and sample selection techniques in active learning. 40
Fig. 2.4 Different types of adversarial threads. . . . . . . . . . . . . . . . . . . . . . . . . . 42
Fig. 2.5 Different forms of adversarial learning in terms of the adversary’s level of knowledge. 44

Fig. 3.1 Copying as a projection of a decision function fO onto a new hypothesis space HC .
The optimal copy f∗

C is the projection which is closest to fO. . . . . . . . . . . . . 49
Fig. 3.2 Gaussian training data distribution P (in black), learned decision boundary fO (in

light red) and alternative gaussian distribution for PZ (in red). . . . . . . . . . . . 51
Fig. 3.3 Example of the single-pass copy approach. (a) Training data, model architecture

and resulting decision boundary. (b) Generated synthetic data, copy architecture
and copy decision function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xix



Fig. 3.4 (a) Training dataset. (b) Decision boundary learned by a Gaussian Process classi-
fier. (c) Raw and (d) balanced synthetic datasets generated from a uniform dis-
tribution. (e) Raw and (f) balanced synthetic datasets generated from a uniform
distribution and a standard normal distribution. . . . . . . . . . . . . . . . . . . . 59

Fig. 3.5 Decision boundaries learned by copies with (a) a maximal and (b) an optimal γ.
(c) Empirical risk and generalization error for decreasing values of γ. . . . . . . . 60

Fig. 3.6 Training data for (a) circles, (b) moons, (c) spirals and (d) yin-yang binary classi-
fication problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Fig. 3.7 From top to bottom, original decision functions and decision functions for copies
based on incremental trees using a single iteration and 1000 iterations with a budget
of 100 synthetic data points for (a) circles, (b) moons, (c) spirals and (d) yin-yang
binary classification problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Fig. 3.8 Evolution of the memory storage parameter m with the number of iterations. . . . 66

Fig. 4.1 Original, copy and optimal copy models in relation to the copy hypothesis space.
Both the capacity and the coverage errors are displayed in terms of the distance
they refer to in this space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Fig. 4.2 From top to bottom, distribution of average copy accuracy against original accu-
racy and distribution of average estimated copy accuracy against average true copy
accuracy for all datasets and for copies based on (a) decision trees, (b) logistic
regression and (c) random forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Fig. 5.1 The actionable accountability process. The smaller circles inside correspond to the
risk auditing and mitigation stages. The coloured circles surrounding the centre
correspond to the different risk categories. The whole process is engrained in two
larger structures: governance and auditability. . . . . . . . . . . . . . . . . . . . . . 95

Fig. 6.1 Distribution of copy accuracy for decision tree classifiers that replicate the pre-
processed logistic regression model in scenario 1. Results correspond to 100 inde-
pendent runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Fig. 6.2 Top 10 largest attribute coefficients in average for the copies based on logistic
regression. Bars display absolute valued weights. . . . . . . . . . . . . . . . . . . . 114

Fig. 6.3 Average copy accuracy for increasing copy tree depths. Error bars correspond to
the standard deviation over all runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Fig. 6.4 Decision paths for different tree depths. Plots show decision paths for copies based
on decision tree classifiers with depths (a) 1, (b) 2 and (c) 3. . . . . . . . . . . . . 116

Fig. 7.1 Top ten ranked attributes in terms of their one-to-one correlation coefficient with
(a) gender and (b) race. The ranking is computed taking the absolute value. . . . 125

xx



Fig. 7.2 Confusion matrices for male (left) and female (right) gender groups for (a) and (b)
the original model and (c) and (d) the copy. . . . . . . . . . . . . . . . . . . . . . . 127

Fig. A.1 (a) Training dataset and (b) decision boundary learned by an SVM with a radial
basis function kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Fig. A.2 From top to bottom, synthetic datasets of sizes 50, 250 and 1000 generated using
(a) Random sampling, (b) Boundary sampling, (c) Fast Bayesian sampling, (d)
reoptimized Bayesian sampling and (e) adapted Jacobian sampling. . . . . . . . . . 141

Fig. A.3 Median and 20-80 percentil band. The similarity axis starts from 1/k for k the
number of classes: the expected score for a classifier that has not learned anything.
For ANN2 models, we only show results for 105 samples, due to the high training
times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Fig. A.4 Execution time of the different sampling strategies as a function of dataset size. . . 146

xxi





Introduction

Machine learning is rapidly infiltrating critical areas of society that have a substantial impact on peo-
ple’s lives. The impulse of preliminary experiences during the past decades is now flourishing and has led
to a growing global market for research and application. From financial and insurance markets [132][221]
to autonomous car driving [46][165], the criminal justice system [9] or clinical decision support [92][148],
the tendency has prevailed in recent years to devolve decision making to machine learning models. As
these different areas of application expand, so does our understanding of the challenges we face when
exploiting this technology in practice.

Today, the deployment of machine learning in the industry is far from being sustainable. Company
production environments are highly demanding. In delivering machine learning solutions into production,
data scientists need to account for all the different elements that interact with a model throughout its
lifespan. These include the data and its sources, the choice of software, the technological infrastructure
for production, the existing regulatory framework or the different stakeholders and business areas. Con-
straints imposed on one or several of these elements largely condition how machine learning models are
deployed. As a result, off-the-shelf machine learning techniques often yield sub-optimal results or can
only be exploited during a limited period of time. A situation which requires new solutions. On top of
that, a growing trend in the machine learning community is claiming that improving predictive power
ought not to be the sole purpose of the researchers and organizations developing and deploying these mo-
dels [30][135][205]. Indeed, there exist legitimate concerns about the potential negative impact of reliance
upon this technology [5][34][189][160][212]. In recent years, commercial machine learning models have
been shown to reproduce discriminatory practices [17][23][31][105][129] against disadvantaged groups, for
reasons of gender [33][42], ethnicity [9][41][128][191] or sexual orientation [100]. Concerns have also been
raised regarding the lack of safety [29], interpretability[51][95][206][213] or privacy [84][215][218] of this
technology; a condition which could entail pernicious consequences.

These findings highlight the need to deepen our understanding of machine learning to move towards a
scenario where this technology is not only profitable for companies, but also sustainable and safe for the
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society as a whole. A need, in turn, that poses new questions which require new answers. Notably, Which
are the constraints that prevent a sustainable deployment of machine learning? How can we adapt trained
machine learning solutions to changes in their environment? How is this problem formalized and which
tools do we have at our disposal to solve it? How can we modify models which display potentially dangerous
shortcomings have but which have already been served into production? Which control mechanisms can
be enforced to prevent undesired negative impacts of machine learning? This thesis aims to answer some
of these questions.

Motivation and objectives

The importance of developing a sustainable framework for machine learning has long been recognized by
both the industry and the scientific community. However, most market applications still struggle with
overcoming deployment issues in the long run. Existing models are often not capable of adapting to their
new environment and are therefore rendered obsolete or substituted by newer ones. This incurs in large
economical costs for companies, who need to invest numerous resources on re-building their prediction
pipelines, often from scratch.

This thesis addresses the issue of how machine learning models can learn to adapt to their environment
by reusing the knowledge acquired from generation to generation. In particular, it studies how this
adaptation can be performed in scenarios where there is little to no access to the models or to the data
they were trained with. Of particular interest to us are the practical applications of this approach, which
are discussed in different levels of detail through both general examples and specific business use cases.

The long-term goal of this research is to ensure a sustainable use of machine learning in company
production environments. More specifically, this study seeks to fulfill the following objectives:

• Understand the mechanisms that enable environmental adaptation of machine learning models by
building differential replicas of existing classifiers that display a similar behavior, yet are better fit
to survive in the considered environment.

• Review current and past practices to transfer knowledge from one form of representation to another
and, in doing so, identify those situations where the existing approaches fail to provide a satisfactory
answer.

• Develop the theory behind inheritance by copying in order to understand the practical and the-
oretical consequences of replicating the decision behavior of a model using another that presents
additional features and characteristics in scenarios with limited knowledge.

• Evaluate the feasibility of this technique in practice to ensure actionable accountability of machine
learning against rapidly changing conditions.
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The result of this study is valuable to industry practitioners as well as the scientific community in
general in developing more sustainable practices that ensure a successful deployment of machine learning
in highly demanding, industrial environments.

Contributions and thesis outline

The general outline for this dissertation is shown in Fig. 1. This thesis is presented as a story in three
acts. The first act, Concept, lays the basis for our work and describes the conceptual proposal on which
the remaining ideas are build. The second act, Theory, presents the theoretical and practical background
behind our proposed methodological approach. The present document contains the results of an Industrial
PhD thesis. As such, it is devoted to developing new knowledge that can be transferred to the appropriate
stakeholders to solve pressing real-life problems for specific industrial applications. Hence, the third act,
Practice, discusses practical applications of this approach for the industry. In the following we summarize
the main contributions of each act, or part, separately:

CONCEPT The first part of this thesis discusses the need to provide effective mechanisms to ensure
environmental adaptation of machine learning models in time. Chapter 1 introduces the notion of differ-
ential replication as a technique to reuse the knowledge acquired by a model to train future generations.
This discussion has led to the following scientific publication:

• Unceta, I., Nin, J., and Pujol, O. Environmental adaptation and differential replication in
machine learning. Entropy 22, 10 (2020). doi = 10.3390/e22101122

THEORY The second part of this thesis discusses differential replication in scenarios where access to
either the original model or its training data or both are limited. Chapter 2 provides an overview of
related work. Chapter 3 introduces the notion of inheritance by copying and discusses its mathematical
foundations. Finally, Chapter 4 proposes the empirical fidelity error as a reliable performance metric
and provides empirical proof of the feasibility of copying in practice through different experiments. The
content of these chapters has been published in the form of the following contributions:

• Unceta, I., Nin, J., and Pujol, O. Copying machine learning classifiers. IEEE Access 8, 11
(2020), 160268–160284. doi = 10.1109/ACCESS.2020.3020638

• Unceta, I., Palacios, D., Nin, J., and Pujol, O. Sampling unknown decision functions to
build classifier copies. In Proceedings of 17th International Conference on Modeling Decisions for
Artificial Intelligence (Sant Cugat, Spain, 2020), pp. 192–204. doi: 10.1007/978-3-030-57524-3_16

PRACTICE The third part of this thesis proposes a practical framework to exploit differential repli-
cation through copying as a tool for ensuring that machine learning systems can be deployed safely and
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Fig. 1 Diagram of the thesis outline, showing the three parts and the chapters they each include, together with the main concepts
discussed.

sustainably in company production environments. Chapter 5 introduces the notion of actionable account-
ability as a two-staged process which includes both risk-based auditing and risk mitigation. Chapter 6
and Chapter 7 present two real use cases where this tool is applied in practice. Altogether, these ideas
have been published under the following titles:

• Unceta, I., Nin, J., and Pujol, O. Risk mitigation in algorithmic accountability: The role of
machine learning copies. PlosONE (2020). doi = 10.1371/journal.pone.0241286

• Unceta, I., Nin, J., and Pujol, O. Towards global explanations for credit risk scoring. In
Workshop on Challenges and Opportunities for AI in Financial Services: the Impact of Fairness,
Explainability, Accuracy, and Privacy (FEAP-AI4Fin) (Montreal, Canada, 2018)

• Unceta, I., Nin, J., and Pujol, O. Using copies to remove sensitive data: A case study on
fair superhero alignment prediction. In Pattern Recognition and Image Analysis. IbPRIA 2019.
Lecture Notes in Computer Science (Madrid, Spain, 2019), vol. 11867, Springer, Berlin, Heidelberg,
pp. 182–193. doi: 10.1007/978-3-030-31332-6_16

• Unceta, I., Nin, J., and Pujol, O. From batch to online learning using copies. In Artificial
Intelligence Research and Development. Frontiers in Artificial Intelligence and Applications (2019),
vol. 319, IOS press, Amsterdam, The Netherlands, pp. 125–134. doi: 10.3233/FAIA190115 [Online]
Available from: http://ebooks.iospress.nl/volumearticle/52828
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Other contributions that are out of the main scope of this thesis are listed below:

• Unceta, I., Nin, J., and Pujol, O. Transactional compatible representations for high value client
identification: A financial case study. In Complex Networks XI: Proceedings of the 11th Conference
on Complex Networks CompleNet (Exeter, UK, 2020), Springer, Berlin, Heidelberg, pp. 334–345

The following pages present a journey from the general to the particular. Throughout the document
the reader is presented with different ideas developed at different levels of detail. Each part is designed
to be self-contained. All parts begin with a short introduction and are then divided into the different
chapters. Depending on his or her background, the reader may choose to go through the introductory
sections at the beginning of each chapter or move forward directly to the content. The key findings are
summarized at the end of each chapter. A reader interested in the practical applications of inheritance
by copying to ensure machine learning accountability may profit from this summary to bypass Parts 1
and 2 and focus on Part 3 instead. Alternatively, someone more interested in the mathematics behind
copying should more carefully study Part 2; specially, Chapter 3 and Chapter 4. Finally, a reader who
wishes to obtain a high-level understanding of this thesis, may choose to concentrate efforts on Part 1,
where the notion of differential replication is first introduced. This document ends with a summary of
our conclusions and an outline of future research.
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Part I

Concept





“If during the long course of ages and under varying conditions of life, organic beings vary at all in the
several parts of their organization, [...] I think it would be a most extraordinary fact if no variation ever
had occurred useful to each being’s own welfare, in the same way as so many variations have occurred useful
to man. But if variations useful to any organic being do occur, assuredly individuals thus characterized
will have the best chance of being preserved in the struggle for life; and from the strong principle of
inheritance they will tend to produce offspring similarly characterized. This principle of preservation, I
have called, for the sake of brevity, Natural Selection.”

– Charles Darwin, Origin of the Species

The first part of this thesis presents a general framework for machine learning adaptation in rapidly
changing environments. We introduce the idea of differential replication, which refers to the possibility of
reusing the knowledge acquired by a machine learning model to train subsequent generations of models
that replicate its decision behavior under new environmental constraints. This process of adaptation
ensures model preservation, even in face of hard conditions, and allows for a more sustainable and
efficient deployment of machine learning. In what follows, we formalize the problem of environmental
adaptation and introduce differential replication as a possible solution. We describe some of its practical
applications and provide an overview of the mechanisms available to build differential replicas of machine
learning models. As we will later see, it is one of these mechanisms, copying, that we are most interested
in.





Chapter 1

Differential replication in
machine learning

1.1 Survival of the fittest

The instinct for self-preservation is a powerful primal force that governs the life of all living creatures. Nat-
ural Selection explores how organisms adapt to a changing environment in their struggle for survival [61].
In this context, conditions for survival are intrinsically defined by a complex, generally unknown fitness
function. The closer organisms move towards the optimal value of this function, the better fit they are
to face the hard conditions imposed by their environment and, hence, the better chance they have at
survival. The level of adaptation to the environment therefore plays a key in ensuring preservation.

This predominant role of the environment is not unique to living organisms. It is also present in aspects
of human society, from business to culture, including everything from economic changes, adjustment
of moral and ethical concerns, regulatory revisions or the reframing of societal rules that results from
unexpected global crises or natural catastrophes. In a smaller scale, it also affects machine learning model
deployment. Indeed, the success or failure of a predictive model is largely influenced by its immediate
surroundings. Not in vain did the Gartner Data Science Team Survey [118] find that over 60% of machine
learning models designed and trained in companies during 2018 are never actually served into production,
due mostly to a failure to meet the constraints imposed by their immediate environment. Hence, it seems
reasonable to assume that understanding this environment is a necessary first step when devising any
industrial machine learning solution.

A machine learning model’s environment comprises all the elements that interact with the model
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throughout its lifespan, including the data and their different sources, the deployment infrastructure, the
governance protocol, or the regulatory framework. These elements may be both internal and external to
a company. Internal elements refer to those, such as the feature engineering process or the deployment
infrastructure, that are controlled by the data scientists and which are related, to a certain extent, to
their strategic decisions. External elements, on the other hand, come from outside the company itself
and are therefore generally out of its control. They refer, for example, to the trends of the market, the
behavior of consumers, the relationship with third parties or any other aspect that may affect a machine
learning based product or service. Both internal and external components impose requirements on how
models are designed, trained and served into production. Moreover, these requirements are prone to
change in time A machine learning model’s environment can therefore be understood as a dynamic set
of constraints that evolve throughout a model’s lifespan. To survive in such an environment and ensure
a sustained delivery over time, machine learning models need to adapt to new conditions.

This idea of adaptation has been present in the literature since the early times of machine learning,
as practitioners have had to devise ways in which to adapt theoretical proposals to their everyday-life
scenarios [14][248][134]. As the discipline has evolved, so have the techniques available to this end, giving
rise to new areas of research. Consider, for example, situations where the underlying data distribution
changes resulting in a concept drift. Traditional batch learners are incapable of adapting to such drifts.
Instead, online learning algorithms were devised to iteratively update their knowledge according to such
changes in the data distributions [35]. Another example is that of transfer learning. Studies on this
field focus on cases where learning a given task can be improved through the transfer of knowledge
acquired when learning a related task [182][231][255]. In addition, in cases where the change of task
is accompanied by a change in domain, domain adaptation and domain generalization study how data
labelled in a single [56] or multiple [142] source domains can be leveraged to learn a classifier on unseen
data in another domain. In all these cases, a given machine learning solution needs to be adapted to
a new domain or task. Yet, this adaptation doe snot require the definition of a new model hypothesis
space. There are situations, however, where it is not the data distributions or the problem domain that
change, but the environmental constraints; and, as a consequence, the feasible solution space. This is an
altogether different problem that deserves further attention. Say that one of the original input attributes
is no longer available, that a deployed black-box solution is required to be interpretable or that updated
software licenses require moving our current machine learning system to a new production environment.
These changes generally require the definition of a new model in a different hypothesis space. Say that a
company wants to focus on a new client portfolio. This may require evolving from a binary classification
setting to a multi-class configuration [79]. Another example is that where there is a change in the business
needs. Commercial machine learning applications are designed to answer very specific business objectives
that may evolve in time. Take, for example, fraud detection algorithms [103], which need to be regularly
updated to incorporate new types of fraud that may not be feasible in the original scenario. In all these
cases, structural changes to a model’s environment introduce new operational constraints that cannot
be met by the existing solution or a modified version. Instead, it might be necessary to move to a new
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hypothesis space.
Here, we are concerned with such situations where a drastic change in the demands of a machine

learning environment requires some form of adaptation. In what follows, we study and formalize this
problem of environmental adaptation and discuss possible solutions. A straightforward approach is to
discard the existing model and re-train another in a new space. A main drawback of this approach,
however, is that in discarding the existing solution altogether, we also discard all the knowledge it
acquired. We are therefore left to rebuild and validate the full machine learning stack from scratch. A
process that is usually tiresome as well as costly. Hence, the re-training approach may not always be the
most efficient nor the most effective way for tackling this challenge. Here, we discuss alternative solutions
that imitate the way in which biological systems adapt to changes. In particular, we stress the importance
of reusing the knowledge acquired by the already existing models in order to train a second generation
that can better adapt to the new conditions. We review different strategies to this end and categorize
them under the umbrella of differential replication. Finally, we present examples of real situations where
the differential replication can be used to solve the problem of environmental adaptation in practice.
We begin by providing an overview of how the problem of adaptation has been treated in the machine
learning literature as of late.

1.2 Modelling adaptation to new environments

The most well known research branch for model adaptation is transfer learning. Transfer learning refers
to scenarios where the knowledge acquired when solving one task is recycled to solve a different, yet
related task [182]. In general, the problem of transfer learning can be mathematically framed as follows.
Given source and target domains Ds and Dt and their corresponding tasks Ts and Tt, such that Ds ̸= Dt,
the goal of transfer learning is to build a target conditional distribution P(yt|xt) in Dt for task Tt from the
information obtained when learning Ts in Ds. In general, the difference between Ds and Dt is given by a
change in the data distribution, either in the marginal distribution of x and y or in the joint distribution
of both. Observe that the change in any of those distributions directly affects the objective function of
the optimization problem. This results in a change in the optimization landscape for the target problem.
A graphical illustration of this problem is shown in Fig. 1.1(a), where the gray and red lines correspond
to the source and target optimization objective level sets, respectively; and the shaded red area encloses
the set of possible solutions for the defined hypothesis space. Transferring the knowledge from source to
target requires moving from the original optimum in the source domain to a new optimum in the target
domain. This process is done by exploiting the knowledge of the original solution, i.e. by transferring
the knowledge between both domains. Advantages of this kind of learning when compared with the
traditional scheme are that learning is performed much faster, requiring less data, and even achieving
better accuracy results. Examples of methods addressing these issues are pre-training methods [78, 111]
and warm-start conditioning methods[121, 127].
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In transfer learning, it usually holds that Ts ̸= Tt. There are cases, however, where the task remains
the same for both the source and the target domains. This is the case of domain adaptation [56, 142].
Domain adaptation is a sub-field of transfer learning that studies cases where there is a change in the
data distribution from the source to the target domain. In particular, it deals with learning knowledge
representations for one domain such that they can be transferred to another related target domain. This
changes of domain can be found, for example, in many of the scenarios resulting from the COVID-19
pandemic. In order to minimize interactions with the points of sale, several countries have decided to
extend the limit of transactions where card payments are accepted without requiring cardholders to
introduce their pin-code from 20 to 50 euros. Domain adaptation can be of use here to adapt card fraud
detection algorithms to the new scenario.

Finally, another related branch that deals with model adaptation is that of concept drift [161]. In
concept drift, it is the statistical properties of the target variable that change over time. In general, this
happens in the presence of data streams [152]. Under these circumstances adaptive techniques are usually
used to detect the drift and adjust the model to the new incoming data.

Here, we focus in an altogether different adaptation problem. In our described scenario, the task
remains the same, Ts = Tt, but changes in the environmental conditions render the existing solution
non-apt for the considered task. The new environmental conditions can be formally defined as a set of
constraints, C, that are added to the problem. As a result of these constraints the solution obtained for
the source scenario can lay outside the new feasible set. The adaptation problem consists of finding a
new compatible solution that lies within this set.

We can frame this problem using the former notation as follows. Given a domain D, its corresponding
task T , and the set of original environmental constraints Cs that make the solution of this problem
feasible, we assume a scenario where a hypothesis space Hs has already been defined. In this context,
we want to learn a new solution for the same task and domain, but for a new target scenario defined
by a new set of feasibility constraints Ct, where Ct ̸= Cs. In the most general case, solving this problem
requires the definition of a new hypothesis space Ht. In a concise form and considering an optimization
framework this can be expressed as below, where Scenario I and Scenario II refer to source and target
respectively.

Scenario I
for T in D

maximize
for h∈Hs

P(y|x;h)

subject to Cs

→

Scenario II
for T in D

maximize
for h∈Ht

P(y|x;h)

subject to Ct
We refer to this problem as environmental adaptation. Under the above notation, the initial solution,

the existing optimum, corresponds to a model hs that belongs to the hypothesis space Hs defined for
the first scenario. This is a model that fulfills the constraints Cs and maximizes P(y|x;h) for a training
dataset S = {(x, y)}, defined by task T on the domain D. Adaptation involves transitioning from this
scenario to Scenario II, a process which may be straightforward, although this is not always the case.
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Fig. 1.1 The problems of (a) transfer learning and environmental adaptation for a case (b) where the new new feasible set overlaps
with the existing hypothesis space and (c) where there is no such overlap. The gray and red lines and dots correspond to the set of
possible solutions and the obtained optimum for the source and target domains, respectively. The shaded areas show the defined
hypothesis spaces.
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Take, for example, the two cases displayed in Fig. 1.1(b) and Fig. 1.1(c). In this figure, the optimization
objective level sets defined by the domain and the task are displayed in gray, while the shaded area
corresponds to the defined hypothesis space Hs. The rectangles shown in red refer to the feasible set
defined by new environmental constraints, Ct. Observe that in both figures, the source solution (in
gray) is not feasible for the target scenario. In Fig. 1.1(b) the new feasible set is compatible with the
existing hypothesis space. Hence, environmental adaptation in this case may simply imply finding a
new optimum in this space that complies with Ct. In other cases the whole set of solutions defined by
the source hypothesis space is unfeasible in the target scenario. This happens when there is no overlap
between the feasible set defined by the target constraints and the set of models defined by Hs. An
example of this is shown in Fig. 1.1(c), where the constraints exclude the models in Hs from the set of
possible solutions. In such cases, adaptation requires that we define an altogether new hypothesis space
Ht that is compatible with the new environment and where we can find an optimal solution for the given
domain and task.

Once again, note that this problem is different to that of transfer learning and domain adaptation.
For both these settings, the solution in the source domain, while sub-optimal, is generally still feasible
in the target domain. In environmental adaptation, however, the solution in the source scenario is
often unfeasible in the target scenario. For illustration purposes consider the case of a multivariate
Gaussian kernel support vector machine. Assume that due to changes in the existing regulation, this
model is required to be fully interpretable in the considered application. The new set of constraints is
not compatible with the source scenario and hence we would require a complete change of substrate, i.e.
a new hypothesis space.

In what follows, we introduce the notion of differential replication of machine learning models as an
efficient approach to ensuring environmental adaptation. Differential replication enables model survival in
highly demanding environments, by building on the knowledge acquired by previously trained models in
future generations. This effectively involves solving the optimization problem for Scenario II considering
the solution obtained for Scenario I.

1.3 Differential replication

Under the theory of Natural Selection, environmental adaptation relies on changes in the phenotype of
a species over several generations to guarantee its survival in time. This is sometimes referred to as
differential reproduction. In the same lines, we define differential replication of a machine learning model
as a cloning process in which traits are inherited from generation to generation of models, while at the same
time adding variations that make descendants more suitable for the new environment. More formally,
differential replication refers to the process of finding a solution ht that fulfills the constraints Ct, i.e. it
is a feasible solution, while preserving/inheriting features from hs. In general, P(y|x;ht) ∼ P(y|x;hs), so
that in the best case scenario, we would like to preserve or improve the performance of the source solution
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hs, here referred to as the parent. However, this is a requirement that may not always be achieved. In a
biological simile, requiring a guepard to be able to fly may imply loosing its ability to run fast.

Sometimes, differential replication can straightforwardly be applied by discarding the existing model
and re-training a new one. However, it is worth considering the costs of this approach. In general,
rebuilding a model from scratch (i) implies obtaining the clearance from the legal, business, ethical,
and engineering departments, (ii) does not guarantee that a good or better solution of the objective
function will be achieved1, (iii) requires a whole new iteration of the machine learning pipeline, which
is costly and time-consuming, (iv) assumes full access to the training dataset, which may no longer be
available or require a very complex version control process. Many companies circumvent these issues
by keeping machine learning solutions up-to-date using automated systems that continuously evaluate
and retrain models, a technique known as continuous learning. Note, however, that this may take huge
storage space, due to the need to save all the new incoming information. Hence, in the best case scenario,
re-training is an expensive and difficult approach that assumes a certain level of knowledge that is not
always guaranteed. In what follows we consider other approaches to implement differential replication in
its attempt to solve the problem of environmental adaptation.

1.3.1 Differential replication mechanisms

The notion of differential replication is built on top of two concepts. First, there is some inheritance
mechanism that is able to transfer key aspects from the previous generation to the next. That would
account for the name of replication. Second, the next generation should display new features or traits
not present in their parents. This corresponds to the idea of differential. These new traits should make
the new generation more fit to the environment to enable environmental adaptation of the offspring.

Particularizing to machine learning models, implementing the concept of differential may involve a
fundamental change in the substratum of the given model. This means we might need to define a new
hypothesis space that fulfills the constraints of the new environment Ct. Consider, for example, the case
of a large ensemble of classifiers. In highly time demanding tasks, this model may be too slow to provide
real time predictions when deployed into production. Differential replication enables moving from this
architecture to a simpler, more efficient one, such as that of a shallow neural network [40]. This “child”
network can inherit the decision behavior of its predecessor while at the same time being better adapted
to the new environment. Conversely, replication requires that some behavioral aspect be inherited by the
next generation. Usually, it is the model’s decision behavior that is inherited, so that the next generation
will replicate the parent decision boundary. Replication can be attained in many different ways. As
shown in Fig. 1.2, depending on the amount of knowledge that is assumed about the existing model and
its training data, mechanisms for inheritance can be grouped under different categories.

1The objective function in this scenario corresponds to P(y|x;h).
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Fig. 1.2 Inheritance mechanisms in terms of their knowledge of the data and the model internals.

Inheritance by sharing the dataset Two models trained on the same data are bound to learn similar
decision boundaries. This is the weakest form of inheritance possible, were no actual information is
transferred from source to target. Instead, the decision behavior is reproduced indirectly and mediated
through the data themselves. Re-training falls under this category [18]. This form of inheritance requires
no access to the parent model, but assumes knowledge of its training data. In addition to re-training,
model wrappers can also be used to envelope the existing solutions with an additional learnable layer that
enables adaptation [170][171]2.

Inheritance using edited data Editing is the methodology that allows data selection for training pur-
poses [25][24][176]. Editing can be used to preserve data that are relevant to the decision boundary
learned by the parent solution and use them to train the next generation. Take, for example, the case
where the source hypothesis space corresponds to the family of support vector machines. In training a
differential replica, one could retain only those data points that were identified as support vectors [219].
This mechanism assumes full access to the model internals, as well as to the training data.

Inheritance using model driven enriched data Data enrichment adds new information to the training
dataset through either the features or the labels. In this scenario, each sample in the training set is

2Note that model wrappers may require access to the model internals. In this study we classify them in this category by
considering the most agnostic and general case.
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augmented using information from the parent decision behavior. For example, a sample can be enriched
by adding additional features using the prediction results of a set of classifiers. Alternatively, if instead
of learning hard targets one considers using the output of the parent’s class probability outputs or
logits as soft-targets, this richer information can be exploited to build a new generation that is closer
in behavior to the parent. Under this category fall methods like model distillation [40][112][225][258], as
well as techniques such as label regularization [177][261] and label refinery [13]. In general, this form of
inheritance requires access to the source model and is performed under the assumption of full knowledge
of the training data.

Inheritance by enriched data synthesis A similar scenario is that where the training data are not acces-
sible, but the model internals are open for inspection. In this situation, the use of synthetic datasets has
been explored [40][262]. In some cases, intermediate information about the representations learned by
the source model are also used as a training set for the next generation. This form of inheritance can be
understood as a zero-shot distillation[179].

Inheritance of internals model’s knowledge In some cases, it is possible to access the internal representa-
tions of the parent model, so that more explicit knowledge can be used to build the next generation [4][47].
For example, if both parent and child are neural networks, one can force the mid-layer representations
to be shared among them [239]. Alternatively, one could use the second level rules of a decision tree to
guide the next generation of rule-based decision models.

Inheritance by copying In certain environments access to the training samples or to the model inter-
nals may not be possible. In this context, experience can also be transmitted using synthetic data
points labelled according to the hard predictions of the source model. This has been referred to as
copying [236][240].

Note that on top of a certain level of knowledge about either the data or the model, or both, some
of the techniques listed above often impose additional restrictions. Techniques such as distillation, for
example, assume that the original model can be controlled by the data practitioner, i.e. internals of
the model can be tuned to force specific representations of the given input throughout the adaptation
process. In certain environments this may be possible, but generally it is not.

1.4 Differential replication in practice

In what follows we describe seven different scenarios where differential replication can be exploited to
ensure a devised machine learning solution adapts to changes in its environment. In all seven of them
we assume an initial model has already been trained and served into production. This model and its
characteristics correspond to Scenario 1, as defined above. We describe how the constraints that apply to
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Scenario 2 differ from the original scenario and discuss different techniques and approaches to adapting
the existing solution to the new requirements. Note that, while specific specific examples are given here,
other solutions based on differential replication may also be possible.

1.4.1 Moving to a different software environment

Model deployment is often costly in company environments [212][83][220][265]. Common issues include the
inability to maintain the technological infrastructure up-to-date with latest software releases, conflicting
versions or incompatible research and deployment environments. Indeed, in-company infrastructure is
subject to continuous updates due to the rapid pace with which new software versions are released to the
market. At any given time, changes in the organizational structure of a company may drive the engineering
department to change course. Say, for example, that a company whose products were originally based
on Google’s Tensorflow package [1] makes the strategic decision of moving to Pytorch [187]. In doing so,
they might decide to re-train all models from scratch in the new environment. This is a long and costly
process that can result in a potential loss of performance. Especially if the original data are not available
or the in-house data scientists are new to this framework. Alternatively, using differential replication the
knowledge acquired by the existing solutions could be exploited in the form of hard or soft labels or as
additional data attributes for the new generation.

Equivalently, consider the opposite case, where a company previously relying on other software now
decides to train its neural network models using Tensorflow. Despite the library itself provides detailed
instructions on how to serve models in production [97], this typically requires several third-party compo-
nents for docker orchestration, such as Kubernetes or Elastic Container Service [260], which are seldom
compatible with on-premise software infrastructure. Instead, exploiting the knowledge acquired by the
neural network to train a child model in a less demanding environment may help bridge the gap between
the data science and engineering departments.

1.4.2 Adding uncertainty to prediction outputs

In applications where machine learning models are used to aid in high-stakes decisions, producing accurate
predictions may not always be enough. In those applications information about the risks or confidence
associated with predictions may be required. This is the case, for example, of medical diagnosis [22].
Consider a case where an existing machine learning solution produces only hard predictions. In this
situation, doctors and data practitioners have very little information on what the level of confidence is
behind each output. Yet, a new protocol may require refraining from making predictions in cases of
large uncertainty. To meet this new requirement, a new learnable algorithmic component can be added
to wrap the original solution and endow it with a layer of uncertainty to measure the confidence in
prediction [170][171][163].
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1.4.3 Mitigating the bias learned by trained classifiers

Machine learning models tend to reproduce existing patterns of discrimination [17][105]. Some al-
gorithms have been reported to be biased against people with protected characteristics like ethnic-
ity [9][41][128][191], gender [33][42] or sexual orientation [100]. As a model is tested against new data
throughout its lifespan, some of its learned biases may be made apparent [256]. Consider one of such
scenarios, where a deployed model is found to be biased in terms of a sensitive attribute. Under such
circumstances, one may wish to transit to a new model that inherits predictive performance but which
avoids discriminatory outputs. A possible option is to edit the sensitive attributes to remove any bias,
therefore reducing the disparate impact in the task T , and then training a new model on the edited
dataset [133][208]. Alternatively, in very specific scenarios where the sensitive information is not leaked
through additional features, it is possible to build a copy by removing the protected data variables [235],
as discussed in Chapter 7 of this document. Or even, to redesign the hypothesis space considering a loss
function that accounts for the fairness dimension when training subsequent generations.

1.4.4 Evolving from batch to online learning

In general, companies train and deploy batch learning models. However, these are very rapidly rendered
obsolete by their inability to adapt to a change in the data distribution. When this happens, the most
straightforward solution is to wait until there are enough samples of the new distribution and re-train
the model. Yet, this approach is timely and often expensive. A faster solution to ensure adaptation to
the new data distribution is to use the idea of differential replication to create a new enriched dataset
able to detect the data drift. For example, including the soft targets and a timestamp attribute in the
target domain, Dt. One may then use this enriched dataset to train a new model that replicates the
decision behavior of the existing classifier. To allow this new model to also learn from new incoming data
samples we may additionally incorporate the online requirement in the constraints Ct for the differential
replication process [234].

1.4.5 Preserving the privacy of deployed models

Developing good machine learning models requires abundant data. The more accessible the data, the
more effective a model will be. In real applications, training machine learning models requires collecting a
large volume of data from users, often including sensitive information. When models trained on user data
are released and made accessible through specific APIs, there is a risk of leaking sensitive information.
Differential replication can be used to avoid this issue by training another model, usually a simpler one,
that replicates the learned decision behavior but which preserves the privacy of the original training
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samples by not being directly linked to these data. The use of distillation techniques in the context of
teacher-student networks, for example, has been reported to be successful in this task [44][254].

In order to minimize the risk of leaking personal data through models, the European General Data
Protection Regulation [51] recognizes the principle of data minimization, which dictates that personal
data shall be limited to what is necessary in relation to the purposes for which they are processed.
However, it is often difficult to determine the minimum amount of data required. Differential replication
has been shown to be successful in this task by producing a generalization of the model that reduces the
amount of personal data needed to obtain accurate predictions [93].

1.4.6 Intelligible explanations of non-linear phenomena

A widely established technique in many industrial applications to ensure model remain explainable [74][147]
is to use linear models, such as logistic regression. Model parameters, i.e. the linear coefficients associated
to the different attributes, can then be used to provide explanations to different audiences. Although this
approach works in simple scenarios where the variables do not need to be modified nor pre-processed,
this is seldom the case for real life applications, where variables are usually redesigned before training
and new more complex features are introduced. This is even worse when, in order to improve model
performance, data scientists create a large set of new variables, such as bi-variate ratios or logarithm
scaled variables, to capture non-linear relations between original attributes that linear models cannot
handle during the training phase. This results in new variables being obfuscated and therefore often not
intelligible for humans.

Recent papers have shown that the knowledge acquired by black-box solutions can be transferred to
interpretable models such as trees [21][45][87], rules [102][198] and decision sets [137]. Hence, a possible
solution to the problem above is to replace the whole predictive system, composed by both the pre-
processing/feature engineering step and the machine learning model by a copy that considers both steps
as a single black box model [233]. This option is further developed in Chapter 6 of this document. Doing
this, we are able to deobfuscate model variables by training copies to learn the decision outputs of trained
models directly from the raw data attributes without any pre-processing. Another possible approach is
using wrappers. This is, for example, the case of LIME [197], where a local interpretable proxy model is
learned by perturbing the input in the neighborhood of a prediction and using the original solution as a
query oracle.

1.4.7 Model standardization for auditing purposes

Auditing machine learning models is no easy task. When an auditor wants to audit several models under
the same constraints all models need to fulfill an equivalent set of requirements. Those requirements may
limit the use of certain software libraries, or of certain model architectures. Usually, even within the
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same company, each model is designed and trained on its own basis. As research in machine learning
grows, new models are continuously devised. However, this fast growth in available techniques hinders
the possibility of having a deep understanding of the mechanisms underlying the different options and
makes the assessment of some auditing dimensions a nearly impossible task.

In this scenario, differential replication can be used to establish a small set of canonical models into
which all others can be translated. In this sense, a deep knowledge of these set of canonical models would
be enough to conduct auditing tests. Say, for example, that we define the canonical model to be a deep
learning architecture with a certain configuration. Any other model can be translated into this particular
architecture using differential replication3. The auditing process need then only consider how to probe
the canonical deep network to report impact assessment.

3Provided the capacity of the network is large enough to replicate the given decision boundary.
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Lessons learned

• Machine learning models are often deployed to
highly constrained environments where condi-
tions are liable to change at any time. As
a result, there is a pressing need to devise
mechanisms that ensure adaptation of models
throughout their life-cycle.

• Environmental adaptation is the process
through which knowledge acquired by an exis-
ting model is reused from generation to ge-
neration to extend the useful life of machine
learning models by adapting them to their
changing environment.

• Such adaptation can be mediated by a pro-
jection operator able to translate the decision
behavior of a machine learning model into a

new hypothesis space with different characte-
ristics. As a result, traits of a given classifier
can be inherited by another, more suitable un-
der the new premises. This is what we refer
to as differential replication.

• There exist different inheritance mechanisms
to achieve this goal, depending on specific
knowledge availability scenarios, ranging from
the more permissive inheritance by sharing
the dataset to the more restrictive inheritance
by copying, which is the solution requiring
less knowledge about the parent model and
training data.

• In this work we are primarily interested in
studying the theoretical and practical mecha-
nisms that allow inheritance by copying.
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Part II

Theory





“For imitating is connatural to men from childhood and by it they differ from the other animals,
because man is the most imitative animal and forms his first apprehensions through imitation. It is also
connatural that they all enjoy imitations. A sign of this is what happens in practice: for we enjoy looking
at the most accurate images of things which are themselves painful to look at”

– Aristotle, Poetics

The second part of this thesis is devoted to introducing the notion of copying from a theoretical
perspective. For this purpose, in Chapter 2 we provide a review of the existing literature on knowledge
representation in general, and more particularly on how the knowledge stored in one form of representation
can be transferred to another. Once having introduced this background, in Chapter 3 we present the
mathematical derivation for copying and its implementation through either the single-pass or the dual
optimization approaches. Finally, in Chapter 4 we discuss how copying can be validated in practice.
We introduce a set of performance metrics and conduct extensive experiments on a series of well-known
datasets to demonstrate the feasibility of the described strategies.





Chapter 2

Building the conceptual
framework

2.1 An imitation game

Machine learning is an imitation game. Machine learning models are designed to imitate the behavior
of the unknown function that governs a given data generation process. The use of machine learning is
motivated by the need to transform one form of hypothesis representation, which is usually not accessible
to us, to another, which we can control and which is therefore more suitable under certain circumstances.

The replacement of one model with another is a well-known practice in many scientific disciplines when
the complexity of the phenomena of interest poses severe limitations to the extent to which they may be
understood, studied or interacted with [98][125][216]. Surrogates or meta-models are of special relevance
for simplifying systems or reducing the computational burden of simulations in many engineering tasks
that involve expensive analysis codes, such as most optimization processes [193][217].

In the case of machine learning, this replacement is often twofold. We treat the data mechanisms as
unknown and replace them with models that approximate their behavior [37]. As the complexity of these
models increases, however, they become less accessible to our human mind. Hence, we find ourselves once
again in need of replacing these complex structures with simpler representations that allow us to better
comprehend their inner mechanisms. This need for comprehension, however, is generally the primary
motivation for this replacement, there are also many other reasons why we might want to obtain yet
more refined representations of a given process. These can be related, for example, to a need to increase
utility by reducing the requirements for storage and computation [40, 112]; or more generally to a need
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to adapt models to their changing environment by adding new features and characteristics [237], as
previously discussed. In any event, independently of what the particular reason for this may be, we often
wish to represent a model’s acquired knowledge in a more suitable form.

Conceptually, we often identify the knowledge acquired by a trained model with its learned parameter
values. Given a certain model architecture and its corresponding set of tunable parameters, we assume
the knowledge learned by this model to be engrained into the specific parameter configuration that results
from the learning process. This view assumes that knowledge is dependent of a particular instantiation,
and therefore explicitly represented by its container. A more abstract approach, however, allows us
to decouple content and container, by assuming that the knowledge is instead encoded in the learned
relationship between the input and output dimensions. This idea is in line with studies on knowledge
representation where they propose to solve the knowledge acquisition bottleneck using different methods
that externalise and make explicit the tacit knowledge inside an expert’s head [113]. In particular, we
highlight a modelling technique known as ”mimetism” [26], where an expert is queried to obtain answers
on as many cases as possible and the resulting data is used to train a machine learning model which
imitates the expert’s behaviour.

This broader understanding of what knowledge accounts for in machine learning has allowed the devel-
opment of large areas of research. Fig. 2.1 presents an overview of the scientific publications throughout
the years in some of such areas. These include studies related to extracting rules from trained models
or, more recently, distilling the knowledge of large cumbersome systems to train smaller models to per-
form complex pattern recognition tasks. Other approaches include those involving learners that actively
participate in the learning process or those where malicious adversaries seek to acquire knowledge about
a system to compromise it. The notion of copying also builds on this idea of knowledge to replicate the
behavior of a given model using another.

2.2 Initial attempts at rule extraction

The idea of extracting symbolic representations from trained machine learning models dates back to the
1980s, when the first concept extraction algorithms were proposed and applied in practice [6][88][228].
By then, there was already an increasing awareness of the need to understand the representations learned
by machine learning models. Es pecially in domains such as medical diagnosis where a start was made
at using these systems. Already, it was not enough for models to be accurate. They also needed to be
understood by their human users, if they were to trust them and deem them acceptable [72].

Most studies dated from this time proposed rule-extraction methods that operated on a search-based
basis: a breadth-first search was conducted through a space of conjunctive rules to extract propositional if-
then rules from trained neural networks. In cases where the resulting representations were comprehensible,
they could be made accessible to human review. As a result, users of a given learning system were better
capable of understanding its classification behavior. Ultimately, this enforced trust. A limitation of these
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Fig. 2.1 Number of publications per year for each of the four disciplines: rule extraction, knowledge distillation, active learning
and adversarial learning. Numbers correspond to paper references as shown in this document.

methods, however, was the computational complexity of the search, which increased exponentially with
the number of input features.

Craven et al. presented in 1994 a novel approach to symbolic rule extraction to overcome this limi-
tation. In their proposal, rule extraction was not framed as a search task, but, as a supervised learning
task [52][53] instead. The target concept was the decision function learned by the network and the input
features were the training attributes. Information about the target concept was acquired through oracle-
based query algorithms, a learning technique that had been extensively described in the literature of the
previous decade [7][107][242]. Two different oracles, examples and subset, produced new training samples
and the target network itself was used to answer queries about the concept being learned. This procedure
required less computation than search-based approaches and yet obtained rule sets with a comparable
degree of fidelity.

These early ideas gave rise a few years later to TREPAN, a query algorithm to extract tree-structured
representations of trained neural networks [54]. As before, TREPAN exploited queries to induce a decision
tree that provided a close approximation to the function represented by the network. For this purpose,
it amplified the dataset with new samples, generated by randomly selecting values from the marginal
distribution of each attribute and labeling them according to the predictions of the net.

A particularity of TREPAN was that, contrary to most decision tree algorithms that followed a depth-
first approach, it grew trees in a best-first manner. This ensured that each new split was defined in terms
of the gain in the fidelity of the extracted tree to the considered network. Therefore maximizing this
metric at each step. Moreover, because new data were available at each split, the tree-induction process
did not degrade with depth. In general, the amount of training data available when growing a tree
decreases with depth, so that the quality of a split depends heavily on the depth at which it is located.
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Exploiting the neural net to label new data at each split ensured high quality splits also for the deeper
levels. After a thorough literature review, we consider TREPAN to be the first clear predecessor of a
copying algorithm.

While TREPAN focused primarily on extracting comprehensible outputs from neural networks, other
authors explored concept extraction for different model architectures. In particular, many research from
this time was devoted to approximating ensembles of models. It was around those years that techniques
such as bagging [36], boosting [85], stacking [257] or error-correcting output coding [130] were first
introduced. These approaches consisted on learning several different component classifiers by introducing
variations on either the training data or the learners, and then combining all the individual predictions
to obtain a final classification decision. These methods were very rapidly shown to improve the accuracy
of individual algorithms in many domains. Despite being more accurate and robust, however, they
hardly complied with the time and space requirements of many applications. Hence, on top of the
comprehensibility issue, the appearance of ensembles introduced a need to deal with an increasing demand
for storage and computation. A variety of papers from the late 1990s and early 2000s tackled the issue of
compressing this ensembles into more compact models that nonetheless retained most of the predictive
performance and stayed comprehensible.

Domingos [72] proposed CMM, which used a single base-learner to recover the decision behavior of a
bagged ensemble of the same type of models. This was done by presenting the base-learner with a new
training set, composed of the original training examples plus a large number of data points artificially
created and labelled using the bagged model. CMM used decision rule sets as the base learner. New
training examples were generated by randomly sampling the hyperspace classified by the decision rules.
Another method aimed at approximating the behavior of a given ensemble was proposed by Zeng et
al. [262], who used pseudo training sets based on the distribution of the original data to compress complex
ensemble classifiers into multilayer neural nets that maintained a similar accuracy. Given the complexity
of the hypothesis formed by ensemble classifiers, the authors enriched the original training set with
additional data. These data were generated by sampling the marginal distribution of each individual
attribute and then labelling each sample using the the ensemble as an oracle.

These initial efforts for ensemble compression crystallized in 2006 in a famous paper by Buciluă
et al. [40]. This work explored different methods for generating pseudo training data to transfer the
knowledge acquired by a large, complex ensemble of models to a faster, more compact neural network
architecture.

2.3 The notion of Knowledge Distillation

Most commercial machine learning applications deal with non-trivial problems, such as speech recognition
or computer vision. During training, machine learning models need to extract structure from very large,
generally redundant datasets. A task that usually involves using high capacity models, such as ensembles
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or deep neural networks. This incurs high costs for companies, both in terms of the required computational
resources and the training time, and bears the question of whether simpler models could be deployed
instead. In fact, empirical work has shown that shallower models can approximate decision boundaries
of arbitrary complexity [58]. However, they tend to be more difficult to train than deeper ones, which
have the added benefit of ensuring a generally improved predictive performance on raw data [63][77].

The training stage of any model takes up a great deal of computational and time resources. In contrast,
models are required to operate in almost real time during deployment, a stage when there exist much more
stringent time limitations. Predictions are expected to be fast and efficient. Deployed models therefore
have to provide answers in a matter of seconds. And to do so accurately. When it comes to space, several
constraints also apply. While more powerful infrastructures are available at the training stage, during
deployment machine learning models are often served to limited memory devices, such as mobile phones
or tablets. Hence, additional restrictions appear in terms of the required memory allocation, the available
computational power or the acceptable running time, among others. This gap between the training and
deployment stages has been the subject of a large amount of research. The general belief is that there
exists a complex trade-off between the representational capacity of a model to extract structure from
the data, its complexity, and its requirements for latency and computational resources that can cause
severe bottlenecks at the time of prediction. Overcoming such deployment barriers has been the focus of
extensive research during the past 10 to 15 years.

The seminal work by Buciluă et al [40] showed in 2006 that it is possible to compress the knowledge
acquired by a complex ensemble of models into a single smaller model, better suited to operate under the
demands of a stringent deployment environment. This paper pioneered a vast field of research that later
developed under the more general framework of model distillation [112]. Authors of this paper showed
that it is possible to decouple the training and deployment stages by using different models for each
task. During training, a larger, more complex architecture, such as that of an ensemble, can be used to
recognize the patterns in the data. This architecture can then be exploited to guide a smaller model to
an equivalent solution and use this simpler system at test time. This proposal was evaluated on eight
binary classification problems and it was shown that the loss in performance due to compression was
generally negligible. The more compact models provided results that were almost as accurate as those of
the larger ensembles, while at the same taking 1000 times less space and being 1000 times faster.

These initial findings were borne out by a follow-up paper in 2014 [12]. Authors showed that shallow
neural networks could be trained to perform similarly to more intricate models on the CIFAR-10 image
recognition and TIMIT phoneme recognition tasks. These results were obtained by guiding a simple
model, referred to as the student, to approximate the function learned by a deeper model, the teacher.
To do so, the student model was not trained on the original labels. Instead, it was passed the data
labeled according to the scores produced by the teacher. Assuming that the teacher was a neural net,
these scores were matched to the logits zi, i.e. the inputs to the softmax output layer for each data point
i. The best results where obtained when expressing the learning objective function for the student as a
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regression problem of the form

ℓ =
1

2N

N∑
i=1

||vi(xi;ω,β)− zi||22 (2.1)

for training data D = {(xi, zi)}Ni=1, N the total number of data points, vi(xi;ω,β) the logits of the
student model and ω and β its weight and offset matrices. In the simplest case, the optimal values for ω
and β were obtained by back-propagating the error throughout all the layers of the student and updating
each value using stochastic gradient descent. Results showed that shallow student nets were able to
exploit the knowledge conveyed by the teacher signals to achieve performances that were previously only
achievable by deeper models; thus effectively compressing this knowledge.

The choice of logits as labels was motivated by the belief that using the logits allowed training of the
student to be conducted with greater ease. In a regular neural net architecture, the final softmax layer
transforms the logits zi into class probabilities pi, by comparing each zi with the other logits as

pi =
ezi/T∑
k e

zk/T
(2.2)

for T a temperature value that governs the distribution of the resulting probabilities over classes. This
transformation smoothens the distribution of labels, so that information about the internal configuration
of the teacher is lost when passing through logits to probability space. Using the logits as training
targets ensured that this information could be exploited by the student to better learn the behavior of
the teacher. A year later, Hinton et al. [112] demonstrated that this approach to model compression was
actually a special case of their more general solution: knowledge distillation.

In distillation, class probabilities produced by the teacher are used as ”soft targets”. These soft targets
are obtained by setting the temperature T in (2.2) to a high value. This temperature is such that when
T → ∞ all classes share the same probability, whereas when T → 0 the soft targets collapse into hard
labels. Hence, by choosing a large value for T , Hinton and his collaborators ensured a softer probability
distribution over the different classes to help the student generalize in the same way as the teacher. In
this setting, the cross-entropy distilled loss can be expressed as follows

CD = −
∑
i

pi log(qi) (2.3)

for pi the class probabilities output by the teacher and qi those predicted by the student. Each data
point i then contributes a cross-entropy gradient given by
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∂CD
∂vi

= −
∑
k

pk
∂ log(qk)

∂vi

= − 1

T

∑
k

pk
qk

qk(δki − qi)

=
1

T
(qi − pi)

=
1

T

(
evi/T∑
k e

vk/T
− ezi/T∑

k e
zk/T

)

For high values of T the exponent tends to zero, since the temperature term dominates over the logits.
The expression above can therefore be approximated by the truncated Taylor expansion as

∂CD
∂vi

≈ 1

T

(
1 + vi/T

N +
∑

k vk/T
− 1 + zi/T

N +
∑

k zk/T

)
(2.4)

If we assume the transfer training data to be normalized, then the logits are separately zero-meaned,
so that

∑
k vk =

∑
k zk = 0. As a result, the contribution of each value vi can be written as

∂CD
∂vi

≈ 1

T

(
1 + vi/T

N
− 1 + zi/T

N

)
(2.5)

≈ 1

T

(
1 + vi/T − 1− zi/T

N

)
(2.6)

≈ 1

NT 2
(vi − zi) (2.7)

In the high temperature, regime distillation can be assimilated to minimizing 1/2 (vi − zi)
2, as seen

for model compression in (2.1). In this regime, the teacher can convey useful information to the student
through very positive logit values. By tuning the temperature parameter, distillation can also function
in other regimes. In the case of lower values of this term, for example, large negative logits, which tend
to be noisy, are ignored. In the intermediate temperature regime, some of the knowledge captured by the
relative probabilities of incorrect answers is kept to train the student. The optimal regime is that were a
balanced trade-off is obtained between the different effects. In general, this regime is found empirically.

Hinton and his collaborators observed that, in the optimal regime, distillation significantly improved
results on datasets such as MNIST, by exploiting teacher feedback to guide simple models to solutions
that were not accessible when learning directly from the raw training data. This was a remarkable
observation, since it showed that it is often easier to train a simple model on the real-valued scores
output by a pre-trained complex model than it is by using the actual ground-truth labels as targets.

In general, we can define the student loss as the cross-entropy between the class probability outputs
of the student and the ground truth labels for each data point in the set D . This loss can be expressed
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as follows

CS =

N∑
i=1

ti log(pi) (2.8)

for ti the true labels corresponding to each instance xi and pi the student model trained on the teacher-
labelled set D . Hence, the overall loss of knowledge distillation can be expressed as the joint of the
distilled loss and the student loss

C = αCD + βCS (2.9)

for regularization parameters α and β. The combined architecture of such a problem is shown in Fig. 2.2.

As mentioned before, a major result of distillation is that when comparing the student loss as defined
in (2.8) to that obtained for a model belonging to the same class but trained directly on the ground
truth labels, the former tends to be lower. This is, a student trained on teacher signals can improve the
baseline performance for that model class. In light of this finding, distillation has received increasing
attention from the machine learning community in recent years. Papers in this field have explored
different forms of supervision from the teacher [225], training the same network in generations [90] or
inducing teacher signals with a softened label distribution to convey useful task-dependent information
to students [258]. Distillation has been found to work well across a wide range of applications too,
including mutual learning [264], distributed learning [190], learning from noisy labels [144] or training
stabilization [200]. In a few cases, it has also been extended to other tasks, such as defending from
adversarial attacks [185], data augmentation [140] or data privacy [44][254].

In spite of its success, however, there is still a very limited understanding of the theoretical and
empirical foundations behind knowledge distillation. Early works attributed this success to the encoding
of ”dark knowledge” [112]. This dark knowledge was assumed to be encoded in the class probabilities
assigned by the teacher to the wrongly classified samples. Other authors have also pointed in this same
direction, by stating that soft targets from the teacher may be more informative to the student than the
original hard labels [12]. Partly because the teacher acts as a filter for complexity, by eliminating some
of the errors in the original label set or by smoothing the corresponding distribution. In this regard, rich
information outputs by the teacher can be understood as a form of sample weighting that makes learning
easier for the student [90][227]. Hence, mechanisms related to knowledge distillation can be seen as a
form of regularization that reduces the generalization gap between teacher and student by preventing
overfitting of the latter. Yet, there is still little consensus as to why these mechanisms work [99].

Lopez-Paz et al. [153] related distillation to a form of learning using privileged information, a se-
tting where an intelligent teacher provides additional per-instance information to support the learning
process [244]. Unification of these two techniques, however, is limited to cases where the teacher’s su-
pervision is noise-free. Moreover, this parallelism does not suffice to answer the question of why this
supervision works in the first place. A more recent contribution by Phuong and Lampert has provided
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Fig. 2.2 Diagram for knowledge distillation.

more insights into the inner mechanisms of knowledge distillation in the scenario of linear and deep lin-
ear binary classifiers [188]. Notably, they proof a generalization bound for fast convergence of student
learning and reveal three key factors that determine the success of distillation: (1) data geometry, and
particularly the angular alignment between the data distribution and the teacher signals, (2) optimization
bias, specified as the specific generalization properties of the different learning algorithms, and (3) strong
monotonicity of the student classifier, through which an increased size of the student training set leads to
a better approximation of the teacher’s knowledge. Further, Cheng et al. [47] have proposed interpreting
distillation by studying the visual concepts encoded in the intermediate layers of deep neural networks.
Their results suggest that distillation enables students to learn more visual concepts than when learning
from raw data and that this learning can be done simultaneously. In line with previous findings, authors
of this paper also report that guidance from a teacher ensures a more stable optimization of the student
concept representation.

In absence of a deeper understanding of the mechanisms underlying knowledge distillation, most
authors have studied the impact of specific student and teacher architectures. During the last year,
several articles have been aimed at identifying the characteristics that make a good teacher [48][173].
Results show that a higher accuracy of the teacher does not necessarily ensure a better performance for
the student. Instead, it has been demonstrated that teachers trained to model the true class probability
distribution can significantly aid learning [173]. Conversely, using larger models as teachers may result in
an increased capacity mismatch between teacher and student [48]. In those cases where this mismatch is
substantial it may prevent the student from converging to the desired solution [124]. Proposals to solve
this problem include early-stopping during teacher training [73] or performing knowledge distillation
sequentially in several steps. Mobahi et al [175] circumvent this issue by using student and teacher
models belonging to the same class. In some cases, a very large capacity gap may prevent the student
from reaching a reasonable performance altogether. It has been observed that in problems related to
feature distillation, student models reach their parametric modelling limit before being able to converge
to the appropriate solution [203]. Sometimes performing even worse than baseline. These results suggest
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that certain knowledge distillation strategies may only succeed for specific architectures and training
settings, being non-generalizable to the average learning task.

2.4 Generating pseudo training data

An important degree of freedom in distillation is the so-called transfer set used to train the student.
Traditionally, knowledge transfer has been treated as a standard learning process, where the training
data are relabelled and extended to learn an alternative model [32]. When it comes to the relabelling
step, different methods have been proposed. See, for example, the work by Li et al. where dynamic
importance sampling is used to relabel the original training data according to classes sampled from a
proposal distribution [143]. This method avoids computation of the full matrix multiplication at the
teacher softmax layer, which is generally costly. Instead, it approximates the teacher loss function using
mixture of Laplace distributions. This leads to an important reduction in the required computational
resources to train competitive students.

In general, the original training set is relabelled for distillation, either in its raw form [45][112] or
enriched with additional synthetic data [21][149]. In [149], GANs are used to approximate the training
data and enrich the transfer set with additional data points. Alternatively, Bastani et al. propose an
algorithm that actively samples new points to avoid overfitting when approximating a neural network
with a decision tree [21]. There are also cases where teachers and students with the same task have
different access to training data. See, for example, the case of RDPD settings, where rich multimodal
training data are leveraged to transfer the knowledge from the teacher to a student operating on poor
data [114]. As a result, the student mimics not only the performance but also the behaviour of the
teacher.

Conversely, some authors advocate for the use of unlabelled data, extracted from the estimated density
of the attributes [40][262]. The main reason for using unlabelled sets of synthetic data is that, whereas
the size of the given training set may be small, it is possible to generate as many synthetic samples as
needed. When the teacher is a complex ensemble of classifiers, for example, a large transfer set may
be required for approximating its decision boundary with a simpler model. Hence, in many occasions,
students are trained on large amounts of data. Indeed, in cases where the student has access to a large
pool of unlabelled samples, distillation can be understood as a means of semi-supervised learning [194].
However, generating unlabelled data is a non-trivial task and generally requires access to the training
data distribution.

In [40] three different methods are proposed to this end: RANDOM draws independent samples from
the marginal distribution for each attribute, while NBE and MUNGE sample from an estimate of the
joint attribute density. While RANDOM generates new samples in a task-agnostic manner, both NBE
and MUNGE exploit those areas of the space where the original training data are located. This ensures
a certain coherence in the resulting transfer set and forces the student to focus on the defined regions of
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interest. As a result, performance is significantly improved.
A prior work by Zeng and Martinez used pseudo training sets labeled using class probability vectors

output by a large ensemble of classifiers [262], where each vector component was defined in terms of the
number of votes received from the ensemble for each distinct class label. Points in the pseudo training set
were obtained by sampling the marginal distribution of each individual attribute. For nominal features,
this distribution was directly computed from the original training data. In the case of continuous features,
values were first discretized into equally-sized intervals and then the marginal contribution of each separate
interval was computed. Results on 16 datasets demonstrated success of this approach to approximate
bagging classifiers.

A recent contribution by Heo et al. trains student classifiers on adversarial samples supporting the
decision boundary of the teacher [109]. Authors of this paper assume that a teacher’s knowledge is
embodied in its learned decision boundary. Hence, an adversarial attack is exploited to discover samples
supporting this boundary and then transfer this information to the student. The resulting classifiers
achieve state-of-the-art performance leveraging solely the information conveyed by these samples. As
described in later sections other approaches using a adversarial attacks have also been successful in
retrieving relevant information form trained machine learning classifiers.

Obtaining a reduced set of highly informative samples is expensive as well as complex. Over the
years, different disciplines have evolved in relation to this issue. See, for example, works on machine
teaching, where a human teacher hand-picks as small a training set as possible to train a machine
learning system [267]. Or, alternatively, the numerous contributions to the field of active learning, where
a desired hypothesis is learned by reducing the number of queries to a human oracle [214].

2.5 Sample selection in Active learning

Active learning focuses on developing learning strategies in settings where unlabeled data are abundant,
but there is a high cost associated with labelling. In such cases, a human annotator is used as an oracle to
which a learner may pose queries. Queries in this context are assumed to be costly and, hence, the learner
usually aims at achieving the maximum accuracy using as few labeled instances as possible. Besides, as
opposed to the regular machine learning environment, where the learner remains passive throughout the
learning process, in active learning the learner has some control over the inputs on which it trains [50].
Hence the name active learner. Active learning strategies focus on query optimization to minimize the
cost of sample annotation, while at the same time ensuring the active learner achieves a good performance
in the considered task.

There exist many different scenarios where an active learner may pose queries to an oracle. The three
most common settings are those of membership query synthesis, stream-based selective sampling and
pool-based sampling, as shown in Fig. 2.3. In all three of them, there exists an initial set of labeled data,
which is known and which is used as guidance during learning. The case of pool-based sampling [141], also
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Fig. 2.3 Diagram of the different sampling and sample selection techniques in active learning.

known as batch-mode active learning, is perhaps the most well-known scenario. Here, there exists a small
set of labelled data and a large pool of unlabeled data, a situation that is common to many real-world
problem domains such as text [141][167] and image classification [66][122] or speech recognition [199].
Queries in this setting are selectively drawn from the pool by evaluating their informativeness and added
to the training set. Informativeness is quantified based on a user-selected metric that depends on the
considered application. Stream-based settings work similarly to pool-based scenarios, but here the learner
samples new instances from a stream of data rather than from a data pool.

In membership query synthesis the learner generates new samples sequentially, instead of selecting
them from an existing collection. For each new query, it observes the class label predicted by the
oracle. This approach decreases the amount of time required for learning when compared to pool-based
methods [146]. In membership query synthesis the learner queries the oracle using samples generated
following a given probability distribution [7]. At each step, it constructs a new instance and queries the
oracle to obtain a label. The labelled instance is then incorporated to the training set for subsequent
steps. A main drawback of this approach is that arbitrary queries are often hard to understand for
humans, as demonstrated by Lang and Baum [138]. Especially in highly structured environments, such
as those of image or text. Labelling in this context is hard, even when using more advances methods
such as GANs [94] to generate new instances [116][266]. It has been only recently that advances have
been reported in this regard [211].

In all three scenarios above, a measure of the informativeness is used to select the most appropriate
sample at each step. When using membership queries, this notion of informativeness is embedded into the
probability distribution defined during sampling. This distribution defines how the resulting samples are
distributed throughout the input space and therefore governs the intensity with which the different regions
are explored. In the cases of stream- and pool-based sampling, new samples are individually chosen each
time from an already available set. When using stream data, the learner evaluates samples sequentially to
decide whether to query or to reject them. In pool-based active learning the whole collection is evaluated
before selecting the most suitable sample for querying. Hence, regardless of the particular setting, active
learning tasks require some form of sample selection strategy [11][50].

Most existing sample selection strategies fall under one of the two categories: uncertainty sam-
pling [141] and query by committee [86]. In uncertainty sampling, the learner selects the examples
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to be labelled from those for which the predicted label is most uncertain. Based on this information,
specific regions of interest are defined from which the new samples are drawn or selected for querying.
Many strategies for uncertainty sampling use entropy as an uncertainty measure [259]. Related to this
approach are also additional strategies for margin sampling [210]. See, for example, the work by Tong
et al, who experiment with an uncertainty sampling strategy for support vector machines that involves
querying the instance closest to the linear decision boundary [229].

In general, sample selection through uncertainty sampling relies on the class probability estimations
output by the learner. However, many learning algorithms produce classifiers lacking such class prob-
ability outputs. To overcome this issue, the query by committee approach suggests consulting several
classifiers, instead of using a single learner. Information from the different classifiers is used to evaluate
the uncertainty of each prediction [50][86] and select those samples for which the disagreement is largest.
This idea has also been extended to settings where learning is conducted using single [139] or multiple
teachers [65], so that at each time step the learner can choose which teacher to query. Training special-
ized teachers, each focusing on different aspects of the given task, ensures that the most optimal samples
are chosen each time. An additional approach that circumvents the issue of needing class probability
outputs in committee-based settings uses nearest-neighbor classifiers [89][145], and is often referred to as
memory-based or instance-based learning. Here, each neighbor is allowed to vote on the class label of
a given data point. The proportion of votes for each label is then used to represent the posterior label
probability for each sample.

Finally, a modern approach to active learning proposes to select unlabeled samples at each iteration
based on their overall representativeness [68]. As opposed to informativeness, which measures the un-
certainty reduction that results from incorporating a given sample to the training set, representativeness
is a measure of how well a sample represents the overall structure in the data. Using representative
samples avoids redundancy by reducing the size of the training set, and can highly decrease learning
time. In recent years, several contributions have proposed to combine measures of informativeness and
representativeness to conduct sample selection in active learning settings [115][120].

While the final objective of knowledge distillation and active learning differ from one another, learnings
from one discipline are often relevant to the other. Particularly when it comes to generating a suitable
training set to transfer the knowledge from teacher to student. While this transfer is absent in the active
learning setting, strategies for query selection in this scenario can be applied to guide the student to a
desired solution [253]; as well as to reduce the time required for this process by optimizing training data
generation. A third discipline which also bears similarities to these two is that of adversarial learning,
where a malicious adversary exploits knowledge of a model to compromise it.
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Fig. 2.4 Different types of adversarial threads.

2.6 An overview of Adversarial learning

As the presence of machine learning models increases, so does the incentive for defeating them. Today,
adversaries actively manipulate the data to avoid detection across a wide range of domains. This is the
case, for example, of email spam filtering and detection, where adversaries insert non-spam words into
corrupt emails or break up spam words using spurious punctuation [59]. Failure to detect these attacks can
have severe economic consequences for users unaware of the threat posed by spam. Other domains that
are prone to attacks are those of fraud detection, where perpetrators employ increasingly sophisticated
strategies to circumvent the defenses put in place [132], web search, where adversaries manipulate pages to
improve placement, or counter-terrorism through image and video surveillance, where wrongdoers conceal
their identity by fooling face recognition software. In all cases, the need of renewal is never ending, since
classifiers very rapidly become obsolete as adversaries learn to defeat them.

The field of adversarial learning studies such situations where an external attacker with access to a
system seeks to compromise its security. The objective of any adversarial learning strategy is to gain
a better understanding of potential attacks to adapt to adversaries’ evolving manipulations, in hope of
producing more robust predictive systems [60][155]. In general, external attackers have some short of
access to the target model, either through a query interface or trough direct manipulation, and use this
access to gain information about its behavior. They then exploit this information to take advantage of
the vulnerabilities surrounding the decision boundary to craft targeted attack vectors.

The first credited contribution to the field of adversarial learning appeared in 2004 by Dalvi et al. [60].
This paper suggested possible countermeasures in spam detection scenarios where the attacker had full
knowledge of the system. Results clearly outperformed previous baselines and led to further research
into this issue. A follow-up paper by Lowd and Meek demonstrated in 2005 the feasibility of adversarial
attacks even in cases of partial knowledge [155]. They introduced ACRE, an adversarial classifier reverse
engineering strategy to determine whether an adversary could learn sufficient information about a system
to launch successful attacks against it and design defense protocols accordingly. These findings formed
the basis of research on adversarial learning. More recently, the discovery of adversarial examples against
deep networks in 2014 brought new attention to the field [226]. In their ground-breaking paper Szegedy
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et al. showed that deep neural networks can be easily fooled using samples with minimal perturbations
that are non-discernible to the human observer. On the basis of these initial results, much research has
been conducted in the past decade with a view to understanding the vulnerabilities of classifiers in face
of different forms of adversarial attacks [20]. A diagram with the different forms of attacks is shown in
Fig. 2.4. Studies have mainly focused in two thread types: evasion and poisoning attacks [19].

Evasion attacks consist of manipulating data at test time to produce false negatives. Depending on
the assumptions made on the adversary’s knowledge of the system, different strategies are possible. Those
based on gradient descent, for example, have been demonstrated to effectively mislead classification of
different model architectures, including linear classifiers, support vector machines and neural networks,
in malware detection tasks [27]. Similar techniques have also been successful in fooling systems in other
application domains, such as image classification [67][169]. Poisoning attacks are also aimed at increasing
the number of misclassified samples at test time, but contrary to evasion attacks, they occur at training
time. During this phase, an adversary with access to the input data injects one or more corrupt instances
into the training set to decrease a model’s classification accuracy. Biggio et al. showed that gradient
ascend procedures could significantly increase test error in support vector machines [28] in this manner.
More recently, attacks of this form have been formulated as bilevel optimization problems, where the
outer optimization maximizes the attacker’s objective, while the inner optimization amounts to learning
the classifier on the poisoned training data [168].

In addition to fooling them, attackers may also seek to steal the models. Model extraction attacks
can be particularly harmful in cases where a model is protected by industrial secrecy or when it is
deemed confidential due to the sensitive nature of its training data. Tramèr et al. demonstrated the
efficiency of different extraction attacks against commercial services such as BigML and AWS [232].
They showed that a qualified adversary could steal models by interacting with their prediction APIs
through highly informative queries. Equivalently, Wang and Gong have reported that a similar procedure
can enable adversaries to steal model hyperparameters [253], which are critical to business revenue.
Moreover, extraction attacks have succeeded in retrieving subsets of a model’s training data. Even for
neural networks [218]. This is possible because learning in high capacity models largely relies on data
memorization [263].

Initially, it was assumed that attackers had full access to the targeted system. They knew of the
underlying learning algorithm and could draw samples from the training data distribution. Today, diffe-
rent attack scenarios are defined in terms of the adversary’s level of knowledge [27], as shown in Fig. 2.5.
Perfect-knowledge attacks, also referred to as white-box attacks, correspond to the classical approach,
where the attacker is assumed to know everything. In contrast, in limited-knowledge attacks some level
of restriction is assumed on the knowledge of the adversary. In general, attacks of this form can be clas-
sified into two different types. In gray-box attacks, attackers may know the learning algorithm and have
a certain intuition about the problem’s feature representation. Finally, black-box attacks correspond to
the most restrictive scenario, where the attacker can interact with the model through a query interface,
but lacks any substantial knowledge of the underlying data and parameter distribution.
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Fig. 2.5 Different forms of adversarial learning in terms of the adversary's level of knowledge.

In recent years, a commonly used approach to overcome the knowledge gap in limited-knowledge
attacks has been using surrogate models. Adversarial examples are first crafted for the surrogate classifier
and then transferred to the original system. This approach is often referred to as transferability-based
adversarial learning [183]. The main idea is, even in cases were the adversary has very little information
about a model, it is possible to train a surrogate to perform the same task, craft adversarial examples
against this substitute and then transfer them to the original classifier [226]. . For this purpose, it is
generally assumed that the adversary can query the original system and observe the labels assigned to a
set of synthetically generated inputs [184]. These inputs are generally drawn from regions of the space
close to the decision boundary, so that they can later be used to build a single or multiple local surrogate
models that ensure a good representation of the system’s behavior in those areas.

In trying to stay undetected, the adversary may seek to minimize the number of queries. Hence, in
theory, the problem of learning a surrogate model in this context could be casted as an active learning
problem. However, no such comparison has been formally established to our knowledge. Instead, recent
contributions have studied transferability of different types of adversarial examples. While some articles
have succeeded in performing targeted attacks on large scale models [150], it has been reported that
targeted adversarial examples do not always transfer from the surrogate to the target model [178]. Of
particular interest to our work are decision-based attacks. These attacks differ from the general setting,
where one assumes the adversary has access to the training data, by relying solely on knowledge of the
final model decision [38].

All in all, the three disciplines of distillation, active learning and adversarial learning propose different
approaches to understanding how a machine learning model acquires and represents knowledge. This
understanding is essential to teach another model to learn an equivalent representation, to optimize
the learning process and to prevent adversarial attacks. Lessons from these fields should therefore be
considered when developing any knowledge inheritance technique. In the following chapter we leverage
these insights to introduce copying as a mechanism to build differential replicas of trained classifiers
without making any assumptions on the available information.
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Lessons learned

• Starting from the first works on rule extrac-
tion, many research has been conducted on
the issue of replacing one form of hypothe-
sis representation with another by replicating
a machine learning system’s behavior using a
different structure.

• Particularly successful in this task has been
the extensive research on model distillation,
where the knowledge acquired by a large
cumbersome model, the teacher, is trans-
ferred to a simpler architecture, the student,
which is more suitable under stringent deploy-
ment conditions. For this purpose, a transfer
training set is labelled using the class proba-
bility outputs of the teacher as soft targets.

• In building such a transfer set different ap-
proaches have been assayed with the aim of
obtaining a reduced set of highly informative
samples to train the student.

• Particularly relevant in this regard are the ad-
vances in the field of active learning. Here, the
learner actively selects samples from an avail-
able collection based on their informativeness
and annotated them by making queries to a
human oracle. While such query based learn-
ing has been mostly exploited to accelerate

training of machine learning models, it can
also be employed for malicious purposes.

• Examples of such use are numerous in the field
of adversarial learning, where an external at-
tacker exploits access to model’s query inter-
face to compromise its security. In this con-
text, research has focused on anticipating po-
tential attacks in scenarios were the attacker
has different levels of knowledge on the sys-
tem, in order to design the appropriate coun-
termeasures.

• Altogether, the fields of knowledge distilla-
tion, active learning and adversarial learning
approach the issue of knowledge representa-
tion in machine learning models from different
perspectives and demonstrate the feasibility
of transferring the knowledge from one form
of representation to another.

• In what follows, we build from these findings
to study how the knowledge codified in the
decision behavior of a classifier can be inher-
ited by another, which achieves a similar pre-
dictive performance and which may display
additional characteristics, in situations where
there is no access to the original model’s in-
ternals, nor to its training data. We formalize
this idea under the notion of copying.
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Chapter 3

A theory for copying

3.1 Introduction

Depending on the amount of knowledge available about a system, different inheritance mechanisms are
possible for differential replication. Here, we envisage the most restrictive scenario, where we make the
minimum number of required assumptions about the amount of information that is accessible. We assume
the model internals to be unknown and access to the model to be limited to a membership query interface
that produces only hard predictions. In addition, we also assume the training data to be unknown or,
simply, lost. This is a common scenario in highly regulated environments, such as that of a production
infrastructure where access to the data may only be temporary or require specific permissions and models
may be hosted in external servers.

Inheritance in this context can be understood as a form of zero-knowledge distillation, where the
decision behavior of a larger model is transferred to a simpler one in circumstances where no knowledge
is assumed about the training data or the model internals. Effectively, this corresponds to an scenario
where the larger model is a black-box and distillation is conducted in a data-free way. Here, we refer to
this mechanism as copying. In what follows we develop the theoretical background behind this concept
and discuss how it can be implemented in practice. We begin by introducing the different elements that
conform the copying pipeline.
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3.2 Copying machine learning classifiers

Let us define a machine learning model as a function f : X → T from samples to labels, for X the input
space and T the target space. We introduce the training data as a set D = {(xi, ti)}Mi=1, where xi ∈ X
and ti ∈ T and M refers to the total number of samples. For the remaining of this work, we restrict to
the case where the input space X is such that X = Rd and the target space T is such that T = Zk for k
the number of classes. This is, classification of real-valued attributes. Hence, we define fO as a classifier
trained on this set of labelled data points.

A copy is a new classifier fC(θ) ∈ HC , parameterized by θ, whose decision function mimics fO all over
the sample space X . The copy hypothesis space HC includes all the possible model families the copy can
belong to. As seen in Chapter 1, this new hypothesis space needs not coincide with that of the original
classifier; this is, fO and fC need not belong to the same family of models. On the contrary, they usually
don’t. Yet, ideally, both models should display the same decision behavior.

3.2.1 The copy hypothesis space

The space HC defines a new form of knowledge representation. Copying therefore amounts to finding a
suitable representation of fO in this new space. We can understand this process as projecting the decision
function fO onto HC , as shown in Fig. 3.1. Since HC may contain infinite individual models, there exist
multiple possible projections. We identify the optimal copy f∗

C as the projection, or model, for which the
distance to fO is smallest. This optimal model is such that given a new, unseen sample x∗ it predicts
the output y∗ = fO(x

∗). The problem of copying is therefore characterized by the predictive distribution
P(y∗|fO,x∗). We can marginalize this distribution with respect to the copy parameters θ and write it as

P(y∗|fO,x∗) =

∫
θ∈H̃C

P(y∗|θ, fO,x∗)P(θ|fO,x∗)dθ (3.1)

for H̃C the equivalent hypothesis space corresponding to the copy parameters.
When building the copy, knowledge about the unseen data point x∗ is not available, so that we can

assume that P(θ|fO,x∗) = P (θ|fO). Conversely, once the optimal parameter set θ is obtained, interaction
with fO is no longer required. Hence, we can also assume that P(y∗|θ, fO,x∗) = P(y∗|θ,x∗) and rewrite
(3.1) as follows

P(y∗|fO,x∗) =

∫
θ∈H̃C

P(y∗|θ,x∗)P(θ|fO)dθ (3.2)

The equation above evaluates the probability distribution for all the possible values of θ and, conse-
quently, for all the possible copies fC(θ) ∈ HC . However, we are only interested in the optimal copy f∗

C ,
defined by the optimal parameter set θ∗. We take a winner takes it all approach to force the posterior
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Fig. 3.1 Copying as a projection of a decision function fO onto a new hypothesis space HC . The optimal copy f∗
C is the projection

which is closest to fO .

to have the form of a point mass density P(θ|fO) = δ(θ − θ∗), where δ(.) corresponds to the Dirac delta
function1. When doing so, we force all the probability mass to be placed onto θ∗, so that (3.2) can be
rewritten in terms of the optimal copy parameters as

P(y∗|fO,x∗) = P(y∗|θ∗,x∗) (3.3)

Hence, we can conclude that the problem of copying can be understood as that of finding the optimal
parameter values θ∗ that maximize the posterior probability

θ∗ = argmax
θ

P(θ|fO) (3.4)

The above expression depends solely on the form of the decision function fO. In the most general
scenario, where we make no prior assumptions about the availability of the data or the accessibility of the
model, neither the training set D nor the model internals are known. This means that we have no access to
the training data points nor can we estimate their distribution throughout the input space. Equivalently,
the specific architecture of the learned decision function fO is unknown and our knowledge about its form
only implicit. We can query fO to obtain predictions on new data, but we lack a mathematical expression
to represent it. Under these circumstances, we need to generate new data in order to gain information
about this boundary and explore the decision behavior of fO throughout X .

1The Dirac Delta function is a generalized function that models the density of an idealized point mass. It is formally defined
as

δ(x− x0) =
1

2π

∫ ∞

−∞
eiω(xo−x)dω

This function is equal to zero everywhere except for x = x0, where its value is infinitely large, and its integral over the
entire real line is equal to 1.

49



3.2.2 The need for unlabelled data

We introduce a set of unlabelled data points Z = {zj}Nj=1, such that zj ∈ X and rewrite the expression
(3.4) in terms of this set as follows

θ∗ = argmax
θ

∫
z∼PZ

P(θ|fO(z))dPZ , (3.5)

for an arbitrary generating probability distribution PZ , from which the new samples are independently
drawn.

This distribution defines the spatial support for the copy, i.e. its plausible operational space. In the
considered scenario, neither the training data D nor its distribution P are accessible. Hence, we cannot
match PZ to our estimate of P . This contrasts with most of the situations described in Chapter 2, where
the training data distribution P is usually directly [112] or indirectly [40] known and this information can
be exploited to choose PZ accordingly. Note, however, that even in the absence of this information, it is
still possible to define a suitable form for PZ . Indeed, while this distribution can be chosen to strictly
follow P , this is not always necessary, nor advisable.

Consider, for example, the problem shown in Fig. 3.2. The training distribution P defines a completely
separable binary problem. The data points corresponding to each class are drawn from a Gaussian
distribution and the learned decision boundary lies in a low density area of the space. Assuming we
had full access to both the learned predictive system and its training data, it seems reasonable to define
PZ to be as close to P as possible. This would ensure that Z contains new data points located in the
vicinity of the original samples. Indeed, by forcing PZ = P we ensure that the copy replicates the learned
decision behaviour in those areas where the training data lie. However, the copy may display a completely
different behaviour around the decision boundary itself, where these data are scarce. Alternatively, by
forcing PZ to place a higher density in the area around the boundary, we ensure a better fit in this region.

In general, defining PZ to resemble the form of P ensures that the copy generalizes well in the original
training data domain. However, this can also be achieved by other methods, such as updating the form
of PZ as we gain more information about fO, or forcing PZ to adapt to the form of the copy hypothesis
space. In any event, choosing PZ adequately can be difficult, given that we have no intuition about
which are the regions of interest where the training data are located. A more in depth discussion of how
the generating distribution PZ is chosen is presented in the following sections. Additionally, Appendix A
reports results for a set of experiments with different choices of PZ . For now, let us just say that PZ can
take the form of any arbitrary probability distribution, as long as it allows us to explore the form of fO
over X .

Then, if we assume an arbitrary form for the probability distribution PZ in (3.5) and because maxi-
mizing the posterior is equal to maximizing the log-posterior, we can rewrite this expression as

θ∗ = argmax
θ

[
log
(∫

z∼PZ

P(θ|fO(z))dPZ

)]
(3.6)
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Fig. 3.2 Gaussian training data distribution P (in black), learned decision boundary fO (in light red) and alternative gaussian
distribution for PZ (in red).

We can use Jensen’s inequality2 to move the logarithm inside the integral. When doing so, we obtain
a lower bound3 for θ∗ of the form

θ∗ ≥ argmax
θ

∫
z∼PZ

log
(

P(θ|fO(z))dPZ

)
dPZ (3.7)

For simplicity, we assume equality and apply Bayes’ rule. If we operate then with the terms inside
the integral, we can develop the expression above as

θ∗ = argmax
θ

∫
z∼PZ

log
(

P(fO(z)|θ)P(θ)
P (fO(z))

)
dPZ

= argmax
θ

[ ∫
z∼PZ

logP(fO(z)|θ)dPZ −
∫
z∼PZ

logP(fO(z))dPZ + logP(θ)
]

= argmax
θ

[ ∫
z∼PZ

logP(fO(z)|θ)dPZ + logP(θ)
]

(3.8)

where we drop the term
∫
z∼PZ

logP(fO(z))dPZ , which has no dependence on θ.

2Let f be a convex function, and let X be a random variable. Jensen’s inequality states that

E[f(X)] ≥ f(E[X])

Moreover, if f is strictly convex, then E[f(X)] = f(E[X]) holds true if and only if X = E[X] with probability 1. The
inequality also holds for concave functions f , but with the direction of all the inequalities reversed; so that given a concave
function f , then E[f(X)] ≤ f(E[X]). Specifically, note that the function f(x) = log(x) is a concave function, since
f ′′(x) = −1/x2 < 0 over its domain x ∈ R+.

3Note that even though maximization of the lower bound also maximizes the original function, the optimal value of the
lower bound may be different from that of the original objective function.

51



3.2.3 Copying under the empirical risk minimization framework

The solution to the expression above depends, among other things, on the specific form of the considered
models expressed through the two probability distributions P(fO(z)|θ) and P(θ). In this work, we are
interested in building hard decision copies. We can therefore recover the regularized empirical risk
minimization framework [246] by approximating these two distributions with an exponential family, so
that

P(fO(z)|θ) ∝ e−γ1ℓ1(fC(z,θ),fO(z)); P(θ) ∝ e−γ2ℓ2(θ,θ
+)

for ℓi(a, b) a measure of disagreement between a and b, γ1 and γ2 normalization parameters and θ+ our
prior about θ. Using this approximation we can rewrite (3.8) as

θ∗ = argmin
θ

[ ∫
z∼PZ

γ1ℓ1(fC(z, θ), fO(z))dPZ + γ2ℓ2(θ, θ
+)

]
(3.9)

The first term in this expression is the expected value of the disagreement between the model fO and
the copy fC over the set Z. Under the empirical risk minimization framework, we can identify this first
term as the expected loss particularized to the copying problem and defined it as

RF (fC(z, θ), fO(z)) = Ez∼PZ
[ℓ1(fC(z, θ), fO(z))]

=

∫
z∼PZ

ℓ1(fC(z, θ), fO(z))dPZ (3.10)

over the probability distribution PZ .
We refer to this term as the fidelity error. This error captures all the loss of copying. In its most

general form, it corresponds to the integral
∫
z∼PZ

logP (fO(z)|θ)dPZ in (3.8), i.e. the probability that
the decision behavior of the copy resembles that of the model. To numerically solve this integral we
need to gather knowledge about how fO behaves for any given z ∼ PZ , i.e. for the whole input space.
However, this is not possible in practice, because it requires that we draw an infinite number of samples
from this distribution. Hence, we approximate the term above using the empirical risk instead.

The particularization of the empirical risk to the copying setting is the empirical fidelity error, RF
emp,

which we define to be the empirical version of the fidelity error

RF
emp(fC(z, θ), fO(z)) =

1

N

N∑
j=1

ℓ1(fC(zj , θ), fO(zj)) (3.11)

for N the total number of samples.
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The first term in (3.9) can therefore be approximated by the empirical fidelity error as above. The sec-
ond term, in turn, refers to the fit of the parameters to the prior and can be identified as the regularization
term

Ω(θ) = ℓ2(θ, θ
+) (3.12)

Hence, in the discrete case, we can approximate the optimal copy parameter values by rewriting the
two terms above as follows

(θ∗,Z∗) = arg min
θ,zj∈Z

[
RF

emp(fC(z, θ), fO(z)) + Ω(θ)

]
(3.13)

= arg min
θ,zj∈Z

[
1

N

N∑
j=1

γ1ℓ1(fC(zj , θ), fO(zj)) + γ2ℓ2(θ, θ
+)

]
(3.14)

where we introduce Z∗ = {z∗
j}Nj=1 as an optimal set of artificially generated samples. We label this set

using the predictions of the model fO as hard targets. This is, for each new sample zj we assign a label
that corresponds to the hard prediction output by fO for this point. We refer to the resulting set of
labelled data points Z∗ = {(z∗

j , fO(z
∗
j )}Nj=1 as the synthetic set.

The expression above can be understood as a dual optimization problem, where we simultaneously
optimize the model parameters θ and the synthetic set Z used to explore the decision behavior of fO over
the sample space X . This dual optimization lies at the very core of copying. The same set of samples Z
is used both to build the copy and to evaluate it by measuring how faithfully it replicates the decision
function fO. As a result, copying requires not only that we optimize the parameters θ, but also that we
refine the set Z to ensure a reliable representation of the learned decision behavior.

From the perspective, once again, of regularized empirical risk minimization, we can interpret (3.14)
as a way of applying the concentration of measure inequalities to bound the generalization error in terms
of the empirical risk in the form

RF ≤ RF
emp +O

(√
C

N

)
, (3.15)

for C a parameter that governs the classifier capacity andN the size of the synthetic dataset. Although not
all generalization bounds have this same form, we find this trade-off between a capacity measure and the
number of samples in all of them, including VC-dimension [245][247] or covering numbers approaches [57],
Rademacher complexity frameworks [172], PAC-Bayes bounds on distributions of hypothesis [166] and
compression bounds [10].

Assuming this formulation, the dual optimization in (3.14) can be understood as the scalarization
of a multi-objective optimization function (Remp(),Ω), for γ2 the parameter that controls the trade off
between the empirical risk and the capacity term C ≈ Ω(θ). The solution to this optimization problem
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defines a Pareto’s optimal surface, from which the optimal point is usually chosen using a validation
dataset. Many algorithms, including SVMs, neural networks, boosting or Bayesian models are examples
of problems of this form. In the following, we describe how the specific characteristics of copying can be
exploited to reach the optimal operation point.

3.2.4 Solving the copying problem

When generating the labelled synthetic dataset Z∗, the class membership predictions output by the model
fO define a hard classification boundary. The resulting problem, represented by Z∗ = {(z∗

j , fO(z
∗
j )}Nj=1,

has two important characteristics: (1) it is always separable and (2) we can potentially increase the sample
size N indefinitely. The model fO acts as a form of regularizer that notably simplifies the problem for
the copy. Hence, if we assume a copy with enough capacity it is always possible to achieve zero empirical
fidelity error, so that RF

emp(fC(z, θ), fO(z)) = 0. The error then only depends on the generalization gap
for the synthetic dataset. Plus, because we control the synthetic data generation process, we can have an
infinite stream of samples at our disposal when learning this simplified problem. The generalization error
can therefore be asymptotically reduced to zero. This means that, in theory, copying can be performed
without loss and redefined as an unconstrained optimization problem of the form

minimize
θ,Z

RF
emp(fC(z, θ), fO(z)). (3.16)

Yet, in practice, the synthetic dataset is always finite. Moreover, as the dimensionality of X increases,
the task of obtaining a representative set Z∗ becomes harder. As a result, despite the problem being
separable, we might not reach the optimal operation point given our limited knowledge of its form. It
therefore stands to reason to impose that the copy has small capacity, Ω(θ), and instead rewrite the
copying problem as

minimize
θ,Z

Ω(θ) (3.17)

subject to ∥RF
emp(fC(z, θ), fO(z))−RF

emp(f
†
C(z, θ), fO(z))∥ < ϵ,

for f†
C(z, θ) the solution to the unconstrained problem (3.16) and ϵ a defined tolerance. The term

∥RF
emp(fC , fO) − RF

emp(f
†
C , fO)∥ < ϵ defines a feasible set of parameters. Hence, the solution to (3.17)

achieves the smallest capacity Ω(θ) while keeping RF
emp(fC(z, θ), fO(z)) within a tolerance of the uncon-

strained optimal value of the empirical fidelity error, RF
emp(f

†
C(z, θ), fO(z)). We argue that there exists

a set of parameters θ that fulfill this constraint.
In this definition of copying, the optimal loss value is known in advance. There are also other

classification problems where we find this. Consider, for example, the case of SVMs, where the hinge-loss
value is defined to be zero. However, this is not always true. See, for example, least-square errors in
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classification4 where the global minimum of the error function is not known. Or the cross-entropy loss
in artificial neural networks. In general, when training a model, one does not know what the optimal
values of both the loss and the regularization term are. Copying therefore differs from the standard
multi-objective optimization in a pure learning setting. Instead of having a Pareto’s surface of plausible
optimal solutions, as long as Ω(θ) is convex, the solution to (3.17) is unique.

Moreover, in cases where the capacity is directly modelled, this optimization can be straightforwardly
solved. This holds, for example, for SVMs and neural networks, where we can use a regularization func-
tion, or for Bayesian models, where we can appropriately select the priors. For other model architectures,
such as decision trees, the complexity control must be done by either early stopping or by an external
process, such as post- or pre-pruning of the leaves. Finally, when using techniques such as boosting or
deep learning, which exhibit a delayed overfitting effect [209][181][39], we can exploit this property to our
advantage to directly solve the problem (3.16) instead of (3.17).

3.3 The single-pass approach

Copying involves the dual optimization of the synthetic dataset Z and the copy parameters θ through
(3.17), or its simplified form (3.16). Solving this optimization directly requires that the copy hypothesis
space have certain properties, such as online updating. We study this case in the following section. Here,
we propose a more straightforward solution. We consider the simplest approach to solving the dual
copying problem: the single-pass approach. We formulate this approach in theory and bridge the gap
between theory and practice by providing meaningful insights on how it works in a series of toy examples.

In the single-pass approach we cast the simultaneous optimization problem into one where only a
single iteration of an alternating projection optimization scheme is used. In other words, we effectively
split the problem in two independent sub-problems: (1) finding the optimal synthetic dataset Z∗ and (2)
optimizing for θ∗. The single-pass approach works as follows:

1. Synthetic sample generation. The first step of the single-pass approach involves finding the optimal
set of synthetic data points Z∗. This set is that for which the empirical fidelity error is minimal,

Z∗ = argmin
Z

RF
emp(fC(z, θ), fO(z))

In obtaining this set we can define the optimal synthetic dataset Z∗, by labelling all the samples
using fO.

4Instead of tracking the empirical risk we can track the empirical error, which can be set to zero due to the separability
property.

55



2. Optimal parameter set. Once having defined an optimal set of labelled synthetic data points, we
use it to train the copy. We do so by looking for the optimal parameter set θ∗ that minimizes the
constrained problem

minimize
θ

Ω(θ)

subject to ∥RF
emp(fC(z, θ), fO(z))−RF

emp(f
†
C(z, θ), fO(z))∥ < ϵ,

or its simplified version (3.16), provided that the adequate conditions hold.

An example of the single-pass copy is shown in Fig. 3.3, where the binary decision function learned
by a fully-connected neural network is copied using a decision tree classifier. The tree-based copy learns
from a set of synthetic samples drawn from a uniform distribution and labelled according to the hard
predictions output by the neural net.

3.3.1 Meaningful insights

In order to build an intuition on how the single-pass approach works in practice, we focus on the two
steps described above. We begin by studying the synthetic sample generation process and then discuss
certain properties of the copying framework in a practical setting.

Synthetic sample generation

For the sake of this discussion, let us consider a binary classification problem and let fO(z) ∈ {−1,+1}
and fC(z, θ) ∈ {−1,+1}, for any zj ∈ X stand for the model and copy decision functions, respectively.
Let us also particularize ℓ1 to the 0/1 loss. For this case, the empirical fidelity error in (3.11) can be
rewritten as

RF
emp(fC(z, θ), fO(z)) =

1

2N

N∑
j=1

∣∣∣fO(zj))− fC(zj , θ)
∣∣∣

=
1

2N

N∑
j=1

∣∣∣fO(zj)
∣∣∣∣∣∣1− fC(zj , θ)

fO(zj)

∣∣∣
=

1

2N

N∑
j=1

(
1− fC(zj , θ)

fO(zj)

)

=
1

2N

N∑
j=1

1− 1

2N

N∑
j=1

fC(zj , θ)

fO(zj)
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a

b

Fig. 3.3 Example of the single-pass copy approach. (a) Training data, model architecture and resulting decision boundary. (b)
Generated synthetic data, copy architecture and copy decision function.

=
1

2
− 1

2N

N∑
j=1

fC(zj , θ)fO(zj); z(N) ∼ PZ

Let us now define a partition of the space such that X = X+ ∪ X− and X+ ∩ X− = ∅, where
X+ = {z|z ∈ X , fO(z) = 1} and X− = {z|z ∈ X , fO(z) = −1} are the two sub-spaces defined by the
model. We can rewrite the equation above in terms of this partition as

RF
emp(fC(z, θ), fO(z)) =

1

2
− 1

2N+

N+∑
j=1

fC(zj , θ) +
1

2N−

N−∑
j=1

fC(zj , θ)

for N+ and N− the number of samples lying in X+ and X−, respectively.

We define the probability of a sample lying in X+ as p+ = P(z ∈ X+) and the probability of a sample
lying in X− as p− = P(z ∈ X−). These two probabilities depend on the size of the positive and negative
domains. This is,

p+ =

∫
z∈X+

PZ(z)dz, p− =

∫
z∈X−

PZ(z)dz

so that it holds that N+ = Np+ and N− = Np−. Thus, once again, we can rewrite the empirical fidelity
error for this case as
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RF
emp(fC(z, θ), fO(z)) =

1

2
− 1

2Np+

Np+∑
j=1

fC(zj , θ) +
1

2Np−

Np−∑
j=1

fC(zj , θ).

The minimization of this expression to obtain the optimal set Z∗ explicitly depends on the form of the
generating probability distribution PZ . In the simplest case, we can assume this distribution to be flat
on the domain X , so that z ∼ U(X ). In other words, we can assume the synthetic samples to be drawn
from a uniform probability distribution across the space. Under this assumption, p+ and p− directly
correspond to the fraction of volume for each of the two classes. Then, recalling the form of the error for
the Monte Carlo estimator under this distribution, we can express the standard error associated to the
evaluation of the empirical fidelity error RF

emp as

σ(RF
emp) ∝ O

( 1√
Np+

+
1√
Np−

)
. (3.18)

We use this expression to extract relevant insights for the synthetic sample generation process. First,
we confirm the need to define an attribute representation X . This is a reasonable assumption, since we
need to have an approximate idea of the dynamic range of all variables in order to build meaningful
queries5.

Second, we note that in some situations there might be a mismatch between the decision boundary
achievable by the copy and fO. This issue is related to a capacity gap between both models and can
prevent the copy from being able to converge to the desired solution altogether. As a consequence, a given
synthetic dataset may not perform equally for different copy hypotheses. Consider, for example, a non-
linear decision function and a linear copy hypothesis space. Exploring the twists of the decision boundary
during the synthetic sample generation process may not be relevant in this situation. Hence, in order to
effectively exploit each generated sample, we should consider the specific properties and assumptions of
the copy hypothesis space everytime.

Another important issue that emerges from the derivation above is volume imbalance, which appears
when one or more of the classes occupy a region of the space much smaller than the rest.

The issue of volume imbalance The empirical fidelity error depends on the fraction of volume occupied
by each decision region. If the spatial support of one class is small with respect to the total volume,
it may be difficult to have a meaningful number of samples on that region, which may result in large
approximation errors. Importantly, this issue is independent of the original label distribution, i.e. it is a
different problem from that of learning with unbalanced data.

In Fig. 3.4(a), we show a binary dataset with a balanced label distribution. Despite the number

5Note that even in those cases where this information is not known beforehand, it is still possible to infer it by interacting
with the model’s query interface. In general, most model APIs display a default error message when input queries fall out
of the defined problem domain. Hence, coming up with the appropriate domain is more an issue of time that it is of skill.
Only in adversarial scenarios, where the user may be limited to a given number of queries, might this impose a serious
restriction. Still, there exist ways to circumvent this issue, even in the most stringent scenarios.
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Fig. 3.4 (a) Training dataset. (b) Decision boundary learned by a Gaussian Process classifier. (c) Raw and (d) balanced synthetic
datasets generated from a uniform distribution. (e) Raw and (f) balanced synthetic datasets generated from a uniform distribution
and a standard normal distribution.

of instances per label being equal, there are notable differences in the volume occupied by each of the
classes. While points belonging to one of the classes (in gray) are spread out throughout the space, those
belonging to the other (in black) are concentrated in a very small region. The resulting decision boundary
is displayed in Fig. 3.4(b). The form of this boundary reflects this disparity in the size of both classes.

To copy this model, we assay two different forms for the probability distribution PZ . In a preliminary
approach, we generate samples uniformly at random until we reach the desired number of points. In
Fig. 3.4(c) we plot the resulting set, together with its corresponding label distribution. In addition, we
also generate samples using a standard normal distribution. The resulting set is shown in Fig. 3.4(e). In
both cases, the resulting synthetic datasets, are notably unbalanced: there is one class for which we only
recover a few number points, whereas we generate numerous samples for the other. Again, recall that
this result is unrelated to class distribution: both classes had originally the same number of samples.
Instead, it is related to how the different classes are distributed.

Solving the issue of volume imbalance is no easy task. In scenarios where we can assume a certain
knowledge of the training data distribution, this information can be used to focus sampling on specific
regions of the space. However, in the most restrictive cases, where there exists no access to these data,
this is not possible. Fortunately, the volume imbalance effect can be alleviated by a good choice of PZ .
For example, we can try to infer a sampling distribution that allocates a large amount of the probability
mass around the unknown decision boundary. Or we can continuously update the form of PZ to conduct a
guided search of the space by incorporating new knowledge at each new step. In Appendix A we include a
comparison of different sampling algorithms for the copying setting, including a technique that focuses on
boundary exploration, a Bayesian-based optimizer, a modified version of the Jacobian approach proposed
by [184] and raw random sampling.

Alternatively, we can also alleviate the issue of volume imbalance by imposing that the synthetic set
be balanced with respect to the class labels. This can be done using heuristics that balance a general
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Fig. 3.5 Decision boundaries learned by copies with (a) a maximal and (b) an optimal γ. (c) Empirical risk and generalization
error for decreasing values of γ.

exploration of the space with exploitation around the areas of interest6. In Fig. 3.4(d) and Fig. 3.4(f) we
display the distribution of synthetic data points obtained when forcing the data generator to focus on
those areas where the misrepresented class is located, for both the uniform and the normal distribution.
The resulting label distributions are now balanced. Copies trained on these data are more likely to recover
the original decision boundary.

Optimal parameter set

The second part of the alternating projection scheme in the single-pass approach corresponds to finding
the optimal parameter set for the copy. This set is that for which the copy capacity is minimized while
maintaining the empirical fidelity error reasonably close to the unconstrained value in (3.16). This can
be attained in practice without applying any regularization technique to prevent overfitting of the copy.

For illustration purposes, consider a radial basis function kernel SVM. This model is defined by a
kernel function of the form K(x,x′) = e−γ||x−x′||2 , where ||x−x′||2 corresponds to the squared Euclidean
distance, and γ is the inverse of the radius of influence of the support vectors, i.e. the width of the kernel.
This means, in essence, that γ controls the capacity: the larger its value, the higher the complexity of the
model. Hence, minimizing the model capacity in (3.17) amounts to minimizing γ. In Fig. 3.5 we show
how this can be exploited in practice to copy the neural net in Fig. 3.3 using synthetic samples drawn at
random from a uniform distribution.

6Note that this approach is not guaranteed to provide good results in large input spaces with high dimensionality. In these
cases, the synthetic sample generator might not be able to recover one or more of the classes. Again, in cases where the
training data are known, this knowledge can be used to sample the appropriate regions intensively. For every other case,
finding at least one sample of the minority class can become extremely hard.
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In particular, Fig. 3.5(a) shows the copy decision function for a maximal value of γ, such that the
second term in (3.17) is satisfied and the empirical error is zero. Fig. 3.5(b) shows the decision boundary
for a copy with optimal capacity γ, computed for a tolerance ϵ = 1e − 4. This solution results from
sequentially reducing the value of γ and monitoring the change in accuracy until the error deviation is
greater than ϵ. When comparing both plots we observe the improvement in generalization performance.
This improvement is also seen in Fig. 3.5(c), where train and generalization errors of the copy are shown
for decreasing values of γ. For a bounded value of the empirical error, the generalization error is reduced
as we decrease the capacity of the copy. This result shows that, unlike the classical machine learning
setting, where capacity is optimized during the validation step, in copying it is possible to optimize the
capacity during training. This has a profound impact on how copying is performed, since we may think
of a more effective design of algorithms than using standard machine learning pipelines and assumptions.

Finally, note that the specific choice of copy architecture has a significant impact on performance.
Depending on the chosen hypothesis space, copies may behave very differently when confronted with the
same set of synthetic data points. We measure this effect using the capacity error. In what follows, we
provide an intuition of what the effect of this error is in practice. We refer the reader to Chapter 4 for a
more in-depth discussion.

Capacity error The capacity of a classifier is a measure of its complexity. A mismatch of capacity
between model and copy can lead to poor performance results, even in cases where the synthetic dataset
properly covers the input space. Moreover, this can also hold in cases where the optimal parameter set
θ∗ is obtained. Take the case of a linear logistic regression and a support vector machine. The decision
functions learned by copies based on these two architectures are notably different. Given the same set
of synthetic points, a logistic model may not be able to fully recover the form of the considered decision
boundary if, for example, this is non-linear. This is because in this case the original classifier is not
contained in the new hypothesis space. For the SVM, the mismatch in capacity may presumably not be
so pronounced and therefore the copy decision boundary may be much more precise in this case.

3.4 The dual-pass approach

In the copying setting, learning is mediated by a synthetic dataset specifically generated to represent the
decision behavior of the target model throughout the space. Hence, the adequacy of this dataset is crucial
to ensure a good result. In the single-pass approach optimality of the synthetic dataset is not necessarily
guaranteed. Synthetic data are gathered in a single run and no corrective mechanism is established to
guide sampling in future iterations. In most cases, unless the choice of the distribution PZ is optimal,
chances are that the resulting dataset is in need of further refinement. Moreover, when it comes to the
copy parameters, these are optimized to fit the given synthetic data. Hence, while the copy may satisfy
(3.14), there is no guarantee of a good generalization performance. Unless, of course, we assume we have
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access to an infinite stream of synthetic data. This condition, however, is never met in practice. In cases
where the size of the synthetic dataset is very large, the single-pass can ensure a good fit of the copy.
Yet, there will still be several regions of the space where no synthetic data are generated and where the
copy will need to infer the missing knowledge. If these knowledge gaps are located in areas close to the
decision boundary, this may prevent the copy from reaching a good performance altogether. Moreover,
even in the best case scenario, dealing with a large number of synthetic data may cause memory errors.
This is because the computational resources of any company are finite. Hence, while it provides a valid
approach to solving the dual optimization problem, the single-pass is generally not optimal in practice.

In this section, we move on from the single-pass approach to propose a strategy to tackle the dual
optimization problem in (3.14) directly: the dual-pass. The dual-pass is based on an alternating projection
scheme, where the objective function is optimized first in terms of one set of parameters and then the
other. During each iteration, we first optimize the copy parameters with respect to the synthetic data
and then optimize the generated set of synthetic data points with respect to the copy.

The main idea behind the dual-pass approach is that it is possible to train copies incrementally, by
updating the model parameters step by step as the set of synthetic samples are refined with every new
iteration. For simplicity, let us define PZ to be a uniform distribution throughout the domain and set
the number of iterations to T . Let us also define the error buffer as a set ε, which at any point in time
stores information about the errors of the copy and the set I which stores the iteration t each of these
errors correspond to. We proceed as follows:

1. We begin by drawing a random set of samples of size N and labelling them according to fO. We
identify the resulting set as Z0 and use it to train fC .

2. For every iteration t, we identify those instances in Zt−1 where the copy predicts an incorrect
class label. We store these samples in the set of errors ε = {z ∈ Zt−1|fO(z) ̸= fC(z)} and the
corresponding iteration in the indexing buffer I = {t|fO(z) ̸= fC(z)}. The size of the error set
is governed by a memory parameter m, which governs the number of iterations a given sample is
stored in memory. Samples that exceed this value are removed from ε.

3. We draw a new set of synthetic samples Z new
t of size M = N − |ε|, for |ε| the size of the error

buffer.

4. We update Zt as Zt = Z new
t ∪ ε and use it to update fC .

5. We repeat steps 2 and 4 until all the iterations are complete.

In Alg. 1 we propose a possible algorithm for the dual-pass as described in the methodological proce-
dure above.
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Algorithm 1 Dual-pass(int N , int T , int m, Classifier fO)
1: ε← ∅ ▷ Error buffer
2: I ← ∅ ▷ Iteration buffer
3: fC ← Classifier() ▷ Instantiation of the copy
4: for t = 1 to T do
5: Znew ← ∅
6: M = N - |ε|
7: while |Znew| < M do
8: za ∼ Uniform(X ), ya ← fO(za)
9: Znew ← Znew ∪ {(za, ya)}

10: end while
11: Z ← Znew ∪ ε
12: train_model(fC , Z)
13: for z ∈ Z do
14: if fC(z) ̸= fO(z) then
15: ε← z
16: I ← t
17: end if
18: end for
19: for e, i ∈ ε, I do
20: if t− i > m then
21: ε← ε− e
22: I ← I − i
23: end if
24: end for
25: end for

3.4.1 Meaningful insights

To provide an intuition of how this works in practice, we assay the dual-pass approach in a series of
toy problems that serve as an example of real-world classification systems. In particular, we use the
datasets displayed in Fig. 3.6, where each plot corresponds to the training data for four different binary
classification problems. For each of these problems, we fit a different classifier. We use adaboost to fit
the data in Fig. 3.6(a), a gaussian-kernel svm to fit the data in Fig. 3.6(b), a multilayer perceptron to fit
the data in Fig. 3.6(c) and a random forest to fit the data in Fig. 3.6(d). The decision functions learnt
by these classifiers are shown in the top row of Fig. 3.7.

We copy these classifiers using incremental decision trees, which can be trained in different runs by
adding new samples each time. We set N , the number of synthetic data points for each iteration to 100
and allow a total of 1000 iterations. For simplicity, we use the most straightforward implementation of
the dual-pass approach, where we set the memory parameter m to 1. This means that errors are only
kept in buffer for a single iteration and then the buffer is emptied again.

The middle row of Fig. 3.7 shows the copy decision functions resulting from the first iteration, i.e.
corresponding to copies trained on the initial draw of 100 synthetic samples. We show these results for
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a b c d

Fig. 3.6 Training data for (a) circles, (b) moons, (c) spirals and (d) yin-yang binary classification problems.

a b c d

Fig. 3.7 From top to bottom, original decision functions and decision functions for copies based on incremental trees using a single
iteration and 1000 iterations with a budget of 100 synthetic data points for (a) circles, (b) moons, (c) spirals and (d) yin-yang binary
classification problems.

comparison. Overall, the learned decision functions display the general decision behavior of the target
models shown in the top row. They correctly identify the general area where each of the classes are
located. However, they fail to replicate the fine-grained form of the decision boundaries for each of the
problems.

The copies resulting from the whole 1000 iterations are shown in the bottom row of Fig. 3.7 for the
different datasets. In all cases, copies replicate the original decision boundaries to a high level of accuracy.
This is particularly relevant because these boundaries are based in different classifiers and therefore display
very different forms. Note in particular the cases of Fig. 3.7(b) and Fig. 3.7(c), which corresponds to
a gaussian-kernel svm and a multilayer-perceptron, respectively. In both cases, the resulting decision
functions have a smooth form. Yet, the copy incremental trees are able to recover these forms almost
completely.

This is possible because the dual-pass approach exploits overfitting to ensure the copy fits every point
in the synthetic dataset to perfection. To do so, it exploits access to the original predictions to force the
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copy to focus on those regions where it outputs incorrect labels. Mistakes in one iteration are therefore
rectified in the following iterations. In general, errors are located close to the decision boundary, so that
this method ensures a good coverage around this region. At the same time, adding new samples ensures
that we keep a balance between exploitation of the problematic areas and exploration of the input space.
The trade-off between these two regimes is controlled by the memory storage parameter m, which defines
the maximum number of iterations during which a given sample can be stored in memory.

Tuning the value of this parameter allows us to alternate between exploration and exploitation. The
larger the value of m, the more times the copy is confronted with the same data. In contrast, the lower
the value of m, the more new samples are allowed during each run. In general, the initial iterations should
be oriented to exploring the decision behavior of the model freely. This is because we want the copy to
capture the general behavior of fO. Hence, the value of m should be small or even 0 during this phase.
As the number of iterations increases, however, we want the copy to refine its behavior by focusing on
those regions where there exists a greater disagreement with the original model. Hence, towards the end
of the process, the value of the memory storage parameter should be maximal, to ensure a good fit also
for the hardest samples.

A good choice for the memory parameter is shown in Fig. 3.8, which displays how the value of m
changes with increasing number of iterations. Here, we assume a sigmoid form for m. In the first half of
the process, the memory parameter is kept close to zero. This allows for a proper exploration of the space
to gather general knowledge about how the original model behaves. At approximately 300 iterations the
value of m starts increasing. This is where exploitation starts. After having recovered the general form
of the original decision function, we force the copy to focus on the details, while we keep searching the
space for new data points. At around 700 iterations, the plot collapses. We are now only interested in
those areas where the copy struggles the most. This ensures that we smoothly transition from learning
of the general to focusing on the particular. As a result, we obtain a better fit also in the most difficult
area,s so that the copy decision boundary fully resembles the original function.

The insights here presented correspond to preliminary experiments conducted using the dual-pass
approach. Yet, while the results here discussed are promising, this strategy is still in need of further
refinement. In the following chapters we restrict ourselves to discussing practical implementations of the
single-pass approach exclusively.
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Fig. 3.8 Evolution of the memory storage parameter m with the number of iterations.
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Lessons learned

• Copying refers to the problem of replicating
the decision behavior of one classifier using
another, in conditions where we have no ac-
cess to the original training data nor to the
target model’s internals. This problem can
be understood as the projection of a given de-
cision function onto a new hypothesis space
that defines a set of constraints for the copy.

• In practice, this projection involves a dual op-
timization. On the one hand, we need to
optimize the set of points we use to build
the copy. Given that the training data are
unknown, copying requires that we generate
a set synthetic data points to gain informa-
tion about the decision behavior of the given
model throughout the input space. On the
other hand, we need to obtain the optimal set
of copy parameters that fit these data.

• We present two different approaches to solv-
ing this dual optimization problem. In the
simplest case, we decouple both optimizations
and use a single iteration of an alternating

projection scheme instead. We refer to this
approach as the single-pass. Alternatively, we
also sketch a solution for the dual-pass ap-
proach, where we exploit online capabilities
to iteratively refine the copy decision boun-
dary by guiding sampling towards those ar-
eas where errors are more substantial. This
method, however, is still in need of further
revision.

• In both cases, the problem of copying presents
certain characteristics that we can exploit
at our advantage. In particular, copies can
be built without any regards for over-fitting,
since the original model acts as a form of regu-
larizer and we can generate as many synthetic
samples as needed.

• In the following chapter we explore these and
other specificities of copying in practice. We
introduce a set of experimental metrics for
copy validation and discuss additional insights
of our proposed methodology in a set of well-
known datasets.
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Chapter 4

Experimental validation

4.1 Introduction

In the previous chapter we have developed the mathematical background for copying and discussed several
qualitative insights that can be extracted from it. Here, we are interested in validating this methodology
in practice. Indeed, while the theoretical basis for copying may be known by now, we need to also devise
appropriate mechanisms for evaluation. This evaluation requires, among other things, that we establish
clear and reliable metrics. In doing so, it is vital that we clearly identify all the different sources of error
that may appear along the process. In the case of copying, these sources are related to our choice of
copy hypothesis space, which is usually dependent on external constraints, our devised synthetic sample
generation process, which depends on our knowledge of the data, and the interaction between these two.

This chapter begins with discussing the three most relevant error contributions to the copying loss.
Namely, the capacity error, the coverage error and the interaction error, which are collectively defined by
the fidelity error. Based on this knowledge, we present a series of performance metrics to approximate
these errors in practice and report experimental results for these metrics over a heterogeneous set of
problems. Throughout the next sections, we assume varying levels of knowledge over the different elements
of the copying process and discuss how the available information can be exploited in each particular case.
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4.2 Identifying the sources of error

We begin by studying the different sources of error that emerge during the copying process. In Chapter
3 we introduced the expected loss for the copying problem through (3.10). We refer to this loss as the
fidelity error. The fidelity error captures all the error of the copying process. Effectively, it measures the
overall disagreement between the original decision function fO and the copy fC . As we show below, this
is a theoretical measure that can be divided into different parts.

For simplicity, let us particularize the fidelity error for the 0/1 loss and rewrite it as

RF (fC(z, θ), fO(z)) = P
(
fC(z, θ) ̸= fO(z)

)
(4.1)

= Ez∼PZ
[I{z:fC(z,θ)̸=fO(z)}(z)] (4.2)

for I the indicator function. Without loss of generality, let us also assume a binary classification problem
so that fO(z) ∈ {−1,+1} and fC(z, θ) ∈ {−1,+1}. The fidelity error for this case is given by

RF (fC(z, θ), fO(z)) =
1

2

∫
z∼PZ

|fO(z)− fC(z, θ)|dPZ (4.3)

We can use the expression above to obtain an unbounded measure of the differences in the decision
outputs for fO and fC throughout the whole attribute domain. As before, this would requires full access
to the generating probability distribution PZ . Moreover, to solve this integral directly, the form of both
fO and fC should be explicitly known. Since this is not the case, i.e. we cannot compute the fidelity
error directly, we develop the expression above to gain a better intuition on where this error arises from.

We begin by introducing the optimal copy model, f∗
C , as defined in Section 3.2.1. In Fig. 4.1 we

show a modified version of Fig. 3.1. The shaded region corresponds to the copy hypothesis space, which
encompasses all the possible copy models of the same family. The optimal copy model f∗

C is that which
is closest to the original fO in this space. As opposed to the actual attainable copy fC , which is built on
a finite synthetic set Z of size N , the optimal copy model assumes an infinite stream of synthetic data is
available. Hence, we can refer to this model as the optimal projection of fO in the new hypothesis space.
Notably, when fO belongs to HC , i.e. when original and copy belong to the same family of models, then
fO = f∗

C . Note that this case has been previously discussed in Chapter 1, as displayed in Fig. 1.2(b).

We use the optimal copy model to expand (4.3) as follows
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RF =
1

2

∫
z∼PZ

∣∣∣fO(z) + f∗
C (z, θ)− f∗

C (z, θ)− fC(z, θ)
∣∣∣dPZ (4.4)

=
1

4

∫
z∼PZ

(
fO(z)− f∗

C (z) + f∗
C (z, θ)− fC(z, θ)

)2
dPZ (4.5)

=
1

4

∫
z∼PZ

(
fO(z)− f∗

C (z, θ)
)2

dPZ+ (4.6)

1

4

∫
z∼PZ

(
f∗
C (z, θ)− fC(z, θ)

)2
dPZ+ (4.7)

1

2

∫
z∼PZ

(
fO(z)− f∗

C (z, θ)
)(

f∗
C (z, θ)− fC(z, θ)

)
dPZ (4.8)

where we drop the square root in the first expression, thanks to the co-domain of the functions involved.
Note that, for the sake of simplicity, we here use the shorter form RF and drop the explicit dependence
on both fC(z, θ) and fO(z).

The expression above contains three different contributions to the fidelity error. The first term appears
in (4.6) and corresponds to the error we incur when replacing the original model fO with the optimal
copy model f∗

C , the theoretically attainable copy. This error quantifies the capacity mismatch between
the copy hypothesis space and the original hypothesis space. As mentioned previously in Section 3.3.1
we refer to this mismatch as the capacity error, RC . In Fig. 4.1 it is displayed as the distance between
fO and f∗

C . When fO ∈ HC , this distance is zero.

Mathematically, we can define the capacity error as

RC =
1

2

∫
z∈PZ

∣∣∣fO(z)− f∗
C (z, θ)

∣∣∣dPZ . (4.9)

The second contribution to the fidelity error is shown in (4.7) and arises from the the fact that we are
limited to a finite number of synthetic samples. For a given copy hypothesis space, this error measures
the disagreement between the decision boundary output by the optimal copy model and that obtained
when building a copy based on N samples. We call this source of error coverage error, RCV . Graphically,
we can depict it as the distance between the optimal copy model f∗

C and the copy fC , as show in Fig. 4.1.
We define the coverage error as

RCV =
1

2

∫
z∈PZ

∣∣∣f∗
C (z)− fC(z, θ)

∣∣∣dPZ (4.10)

Finally, there is also a third error term that appears in (4.8). This error accounts for a certain coupling
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Fig. 4.1 Original, copy and optimal copy models in relation to the copy hypothesis space. Both the capacity and the coverage errors
are displayed in terms of the distance they refer to in this space.

between the capacity and coverage errors. We refer to this term as the interaction error, RI , defined as

RI =
1

2

∫
z∈PZ

(
fO(z)− f∞

C (z, θ)
)(

f∞
C (z, θ)− fC(z, θ)

)
dPZ (4.11)

The interaction error has three main properties. First, the only cases in which it is non-zero is when
fO(z) agrees with fC(z, θ), while both differ from f∗

C (z, θ). Whenever this happens, the net effect of the
interaction error is negative, meaning that it acts in the direction of decreasing the total error. This
means that the interaction error is only relevant when we select a copy hypothesis space very distant
from the family of models the original belongs to and at the same time we conduct a poor synthetic
sample generation. Under these circumstances, the interaction term corrects errors due to a mismatch
in capacity when the coverage error is also high. Second, as the number of synthetic samples increases,
N →∞, the copy approaches the optimal model, fC → f∗

C . This reduces the coverage error contribution
and, consequently, also the value of the interaction term. Finally, note that we would generally choose a
large capacity copy, so that ideally either fO is in the copy hypothesis space or f∗

C and fO are close. As
a result, the capacity and interaction terms are usually low and the largest contribution to the fidelity
error is the coverage term.

Altogether, the three error terms above represent all the different sources of error that appear during
the copying process. We can express the fidelity error in terms of the capacity, coverage and interaction
error contributions as

RF (fC(z, θ), fO(z)) = RC +RCV +RI . (4.12)

A main issue with copy evaluation is that, although the different sources of error are known and
understood, they cannot all be measured in practice. In the general setting, for example, the synthetic
dataset is finite. Hence, we do not have access to the optimal copy model. Measuring the capacity and
coverage errors can therefore be tricky. Plus, even if we did have access to this model, we would still need
to devise a reliable evaluation framework. In the next section we present a series of performance metrics
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that can be used to validate the copying process under different assumptions.

4.3 Performance metrics

When evaluating copies in practice, we may ask questions of the form: ”what does the performance on a
synthetic validation set tell us about the generalization of the copy?”, ”does the copy have enough capacity
to replicate the decision function?” or, more generally, ”what metrics should we use to evaluate copies in
terms of the available information?”. In what follows we introduce a set of definitions aimed at answering
these questions. First, we propose a measurable approximation to the empirical fidelity error. Further,
we define a set of performance metrics that serve as sanity checks when the original accuracy or the
original dataset or both are accessible.

Empirical fidelity error in practice

The empirical fidelity error corresponds to the empirical risk in the copying setting, as defined in (3.11).
As we did before for the overall fidelity error, we can particularize the empirical fidelity error for the 0/1

loss as

RF,Z
emp =

1

N

N∑
j=1

I[fO(zj) ̸= fC(zj)] (4.13)

where, again, I refers to the the indicator function. Note the chosen notation. We specify the super-index
Z to highlight the fact that this error is measured over the generated synthetic dataset.

The empirical fidelity error as above defined measures the ratio of the N synthetic data points that
are equally classified by the model fO and the copy fC . How well this error represents the total error
of the copy depends, among other things, on the specific choice of Z , i.e. on the specific choice of PZ .
Following the discussion in Section 3.3.1, we observe that, in resorting to Monte Carlo integration to
explore the original decision behavior we necessarily incur in an approximation error. This error depends
on how representative the set Z is of the original model’s behavior. This is, on the coverage error RCV .
As a result, a low RF,Z

emp is no absolute guarantee of a good copy. For this value to be a valid assessment
of the total error, the synthetic dataset must be large enough to ensure coverage of the input space and
the volume imbalance effect needs to be controlled for. If these conditions are met and RF,Z

emp is still
different from zero, the theoretical sources of error should be considered. The error either arises from
a low capacity of the copy (large capacity error) or because there is a mismatch between the optimal
achievable model and the one obtained (large coverage error). In the first case, we should change the
model to a larger capacity option. In the second, more samples or better quality samples may be needed.
In this sense, we stress that although we cannot measure the coverage, capacity and interaction error
directly, they all contribute to our estimation of the fidelity error through RF,Z

emp .
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In the most general setting, where we assume no access to the training data, the empirical fidelity
error is the only metric we can report when building a copy. Conversely, in cases where the constraints
of the copying scenario are relaxed and the training data D are accessible, we could also evaluate the
empirical fidelity error over this set as

RF,D
emp =

1

M

M∑
i=1

I[fO(xi) ̸= fC(xi)]. (4.14)

for M the total number of data points in that set. Again, the expression above quantifies the ratio of
instances over which the predictions output by fO and fC disagree. But this time, these instances are
those of the original training data.

Usually, the empirical fidelity errors RF,D
emp and RF,Z

emp , computed over the two datasets, yield very
different values. This difference arises mainly from the mismatch between the probability density functions
P and PZ . Depending on the application, the overlap between these two distribution may be smaller or
larger.

Copy accuracy

In cases where the original training data are accessible, we can introduce an additional safety check and
evaluate the copy generalization performance over D . We define the copy accuracy, AC , as the ratio of
original instances that the copy classifies correctly. It can be expressed as follows

AC =
1

M

M∑
i=1

I[ti = fC(xi)], (4.15)

for ti ∈ T the true labels.
Additionally, when the performance of the original model is also known, we can explore this infor-

mation to our advantage. We refer to this value as the original accuracy, AO. Assuming the copying
process is conducted successfully, the original accuracy is an upper bound to the performance the copy
can achieve in the original data environment D . Since we assume all the loss to be captured by the
fidelity error, we can write AC in terms of the original accuracy as

AC = AO(1−RF )

According to this expression, if we are able to achieve a perfect copy, i.e. fidelity error equal to zero,
then it follows that AC = AO. Unfortunately, this is not usually the case. On the contrary, there is
generally a certain error, if negligible. Moreover, since the fidelity error is not directly measurable, we
need to substitute it with the empirical fidelity error. In situations where the original training data are
not known but the original accuracy is, we can obtain an estimation of the copy accuracy as

ÂC = AO(1−RF,Z
emp ) (4.16)
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We refer to this value as the estimated copy accuracy. As ever, this estimation becomes more trust-
worthy, the smaller all the error contributions are. In particular, note that in cases where there is little,
or none, overlap between P and PZ , this value may not provide a good approximation to AC .

In what follows we validate copies in a practical setting and evaluate their performance using the
metrics above. In all cases, we report one metric or the other in terms of the level of knowledge that is
assumed of the system. These experiments allow us to study what the advantages and shortcomings of
copying are in practice and how the latter may be overcome.

4.4 UCI classification

We use 60 datasets from the UCI Machine Learning Repository database [75]. We do so by following [81],
who present a comparison of 122 datasets from this source. We refer the reader to this paper for a specific
description of initial data selection and preprocessing. We discard 62 datasets due to several reasons: we
do not consider those datasets which contain less than 100 samples and remove those with at least one
class label with a frequency smaller than 10% of the total size of the dataset. We also require the number
of inputs to be greater than double the number of attributes. Among the selected datasets 42 correspond
to binary classification problems and 18 are multiclass.

For any given dataset, we train a model using a generic machine learning pipeline. Since this model is
only used as a baseline for copying, we are not interested in optimizing performance at this step. Instead,
we study different model architectures and forms to have a better understanding of how copying works
under different conditions. Even so, we discuss initial model training and accuracy. The real experiment,
however, begins once these models are trained. For each case, we build copies based on three different
model families and discuss the characteristics of each case. Altogether, we build 180 copies with the
methods described below.

4.4.1 Experimental set up

Given the raw data for the 60 UCI dataset, we convert nominal attributes to numerical and re-scale
variables to zero mean and unit variance. We split data into stratified 80/20 training and test sets. We
use 6 state-of-the-art classification algorithms, including adaboost (adaboost), artificial neural networks
(ann), random forest (rfc), linear SVM (linear_svm), a radial basis kernel SVM (rbf_svm) and gradient-
boosted trees (xgboost). We use standard methods from Python’s scikit-learn module to train the original
model for the first 5 algorithms and xgboost library to fit the gradient-boosting trees. To avoid bias
regarding the choice of algorithm for each particular problem, we sort datasets in alphabetical order,
group them in sets of 10 and randomly assign a classifier to each group. A full description of the 60
datasets, including general data attributes and their assigned classifier, can be found in Tables 4.1 and
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4.2.
To further avoid any interference from our part, we build a generic pipeline and train all models

using a cross-validated grid-search over a fixed parameter grid. We do so using a 3-fold cross-validation.
Three classifiers learn decision functions that exclude at least one of the class labels. This occurs for
pittsburg-bridges-REL-L, for which only two of the three classes are learned, and planning and statlog-
australian-credit, for which a single class label is assigned to all data points. Besides, because we use a
fixed pipeline, not all models yield an optimal performance. See, for example, the case of echocardiogram,
where original accuracy is equal to 0.3. We keep this result for two reasons. First, to ensure we get
an optimal understanding of copy performance under different circumstances, we want the experimental
setup to be as agnostic as possible and hence the random pairing of models and datasets. Second, it
reinforces an important idea: a copy can only be as good as the model it aims to replicate. Or in the other
words, the baseline for the copy performance is the original model performance. Non-optimal models lead
to poorly performing copies. We stress, nonetheless, that in a real setting one would be interested in
copying only those models that perform reasonably well.

We generate balanced synthetic sets by sampling the input space of each problem using a uniform
distribution an labelling the resulting samples according to the predictions of the trained classifiers.
We use synthetic sets composed of 1e6 random samples. We identify three cases of volume imbalance:
congressional-voting, ilpd-indian-liver and statlog-image. In all cases, despite the training data being
balanced with respect to class distribution, we only recover a small fraction of samples for one or more
of the labels. As previously mentioned, this could lead to sub-optimal results, given that the copy tends
to wrongly classify points that belong to the subsampled classes. Imposing that the synthetic dataset be
balanced mitigates this issue to a great extent and ensures that the copy treats all labels equally.

To evaluate the impact of heuristics, we assay different copy model hypotheses. We use decision
trees because they provide a rule-based decision path that is generally interpretable1, logistic regression
because it is an easily understandable linear model and random forest as an example of a more intricate
bagging method. We copy using no cross-validation or hyper-parameter tuning: trees are grown until
each leaf contains a single sample and neural networks and boosting methods are trained with no regard
for generalization. For validation purposes, we run each experiment 100 times and report averages over
all repetitions for the true and the estimated copy accuracy. We also report the mean empirical fidelity
error measured over both the training and the synthetic data.

4.4.2 Results

In Fig. 4.2 the averaged performance metrics for all datasets are plotted against each other. In parti-
cular, Fig. 4.2(a), Fig. 4.2(b) and Fig. 4.2(c) show the distribution of the copy accuracy AC against the

1Note the term generally here. While decision trees are widely accepted as interpretable models, this assertion does not
always hold. In the following chapters we explore this issue in greater depth.
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a b c

Fig. 4.2 From top to bottom, distribution of average copy accuracy against original accuracy and distribution of average estimated
copy accuracy against average true copy accuracy for all datasets and for copies based on (a) decision trees, (b) logistic regression and
(c) random forest.

original accuracy AO (top) and the estimated copy accuracy ÂC (bottom) for copies based on decision
trees (decision_tree), logistic regression (logistic_regression) and random forest (rfc), respectively. The
distribution of results for both decision_tree and rfc are mostly scattered around the main diagonal,
whereas copies based on logistic_regression show a greater dispersion; especially when comparing AC

to ÂC . In general, the value of ÂC is smaller than that of AC , which means that the empirical fidelity
error tends to overestimate the real error. This is partly due to the difference between P and PZ . When
measuring RZ

F , we evaluate performance on the space defined by PZ , which is usually bigger than that
of P . As a result, we penalize the copy for errors in regions where there might not be any actual training
data.

The complete summary of results for all problems and copy algorithms is shown in Tables 4.1 and
4.2, where all the relevant results are highlighted. Blank spaces correspond to cases where models learn
a single class label. In most problems, results show the ability of copies to replicate the target decision
behaviour. Overall, copy accuracy is competitive for the proposed synthetic dataset size and the estimated
copy accuracy provides a reliable approximation to the accuracy of the copy in the training data. The
empirical fidelity error over the synthetic dataset generally yields values close to 0, which indicates that
copies are correctly built. And, while there are some exceptions, in general the empirical fidelity error
over the training dataset stays reasonably low too.

Notably, there are several datasets where there is no degradation when using a logistic_regression
to copy higher capacity models such as ann or xgboost. This is the case, for example, for breast-cancer-
wisc and wine, where AC is reasonably close to AO, even while the logistic model can only learn linear
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Table 4.1 Experimental results for the first 30 UCI datasets.
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Â
C

R
DD D F

m
ol

ec
-b

io
l-

sp
li

ce
3

25
52

60
lin

ea
r_

sv
m

0.
84

0.
77

±
0.

01
0.

71
5

±
0.

00
1

0.
17

±
0.

01
0.

77
±

0.
00

0.
78

0
±

0.
00

1
0.

14
±

0.
00

0.
80

±
0.

00
0.

75
9

±
0.

00
4

0.
15

±
0.

00
m

u
sh

ro
om

2
64

99
21

lin
ea

r_
sv

m
0.

98
0.

95
±

0.
02

0.
95

3
±

0.
00

1
0.

03
±

0.
02

0.
98

±
0.

00
0.

97
8

±
0.

00
0

0.
00

±
0.

00
0.

87
±

0.
05

0.
95

5
±

0.
05

4
0.

11
±

0.
06

m
u

sk
-1

2
38

0
16

6
lin

ea
r_

sv
m

0
.8

8
0.

54
±

0.
04

0.
56

2
±

0.
00

1
0.

46
±

0.
05

0.
88

±
0.

00
0.

87
3

±
0.

00
0

0.
01

±
0.

00
0

.6
7

±
0

.0
6

0.
73

2
±

0.
05

8
0.

32
±

0.
04

m
u

sk
-2

2
52

78
16

6
lin

ea
r_

sv
m

0
.9

6
0.

50
±

0.
05

0.
60

1
±

0.
00

1
0.

50
±

0.
05

0.
96

±
0.

00
0.

95
6

±
0.

00
0

0.
00

±
0.

00
0

.5
6

±
0

.0
4

0.
77

5
±

0.
03

8
0.

44
±

0.
04

o
o

cy
te

s_
m

er
l_

n
u

cl
_

4d
2

81
7

41
lin

ea
r_

sv
m

0.
82

0.
47

±
0.

06
0.

64
6

±
0.

00
1

0.
52

±
0.

06
0.

81
±

0.
00

0.
81

4
±

0.
00

0
0.

00
±

0.
00

0.
59

±
0.

03
0.

73
2

±
0.

02
6

0.
38

±
0.

03
o

o
cy

te
s_

tr
is

_
n

u
cl

_
2f

2
72

9
25

lin
ea

r_
sv

m
0.

81
0.

56
±

0.
05

0.
69

5
±

0.
00

1
0.

43
±

0.
07

0.
81

±
0.

00
0.

80
8

±
0.

00
0

0.
00

±
0.

00
0.

63
±

0.
03

0.
75

4
±

0.
03

0
0.

32
±

0.
03

p
ar

k
in

so
n

s
2

15
6

22
lin

ea
r_

sv
m

0.
9

0.
83

±
0.

04
0.

79
9

±
0.

00
1

0.
11

±
0.

06
0.

90
±

0.
00

0.
89

5
±

0.
00

0
0.

00
±

0.
00

0.
89

±
0.

01
0.

85
6

±
0.

01
3

0.
02

±
0.

02
p

im
a

2
61

4
8

lin
ea

r_
sv

m
0.

72
0.

72
±

0.
01

0.
69

7
±

0.
00

1
0.

04
±

0.
01

0.
72

±
0.

00
0.

72
0

±
0.

00
0

0.
00

±
0.

00
0.

71
±

0.
01

0.
71

0
±

0.
00

5
0.

02
±

0.
01

p
it

ts
-b

ri
d

ge
s-

M
A

T
E

R
IA

L
3

84
7

lin
ea

r_
sv

m
0.

91
0.

91
±

0.
00

0.
90

9
±

0.
00

0
0.

00
±

0.
00

0.
91

±
0.

00
0.

89
7

±
0.

00
0

0.
00

±
0.

00
0.

91
±

0.
00

0.
90

9
±

0.
00

0
0.

00
±

0.
00

p
it

ts
-b

ri
d

ge
s-

R
E

L
-L

3
82

7
lin

ea
r_

sv
m

0
.6

7
0.

67
±

0.
00

0.
66

7
±

0.
00

0
0.

00
±

0.
00

0.
67

±
0.

00
0.

66
7

±
0.

00
0

0.
00

±
0.

00
0.

67
±

0.
00

0.
66

7
±

0.
00

0
0.

00
±

0.
00

p
it

ts
-b

ri
d

ge
s-

T
-O

R
-D

2
81

7
rb

f_
sv

m
0.

86
0.

86
±

0.
00

0.
85

2
±

0.
00

0
0.

00
±

0.
00

0.
90

±
0.

00
0.

69
3

±
0.

00
1

0.
24

±
0.

00
0.

86
±

0.
00

0.
85

7
±

0.
00

0
0.

00
±

0.
00

p
la

n
n

in
g

2
14

5
12

rb
f_

sv
m

0
.7

0.
70

±
0.

00
0.

70
3

±
0.

00
0

0.
00

±
0.

00
-

-
-

0.
70

±
0.

00
0.

70
3

±
0.

00
0

0.
00

±
0.

00
ri

n
gn

or
m

2
59

20
18

rb
f_

sv
m

0.
98

0.
88

±
0.

01
0.

79
9

±
0.

00
1

0.
11

±
0.

01
0.

74
±

0.
00

0.
70

5
±

0.
00

0
0.

26
±

0.
00

0.
95

±
0.

00
0.

88
8

±
0.

00
2

0.
05

±
0.

00
se

ed
s

3
16

8
7

rb
f_

sv
m

0.
88

0.
90

±
0.

02
0.

80
1

±
0.

00
1

0.
06

±
0.

03
0.

88
±

0.
00

0.
85

8
±

0.
00

1
0.

00
±

0.
00

0.
92

±
0.

02
0.

84
9

±
0.

01
6

0.
04

±
0.

02
sp

am
b

as
e

2
36

80
57

rb
f_

sv
m

0.
93

0.
45

±
0.

10
0.

76
1

±
0.

00
1

0.
55

±
0.

11
0.

92
±

0.
00

0.
92

3
±

0.
00

0
0.

02
±

0.
00

0.
53

±
0.

08
0.

85
8

±
0.

08
2

0.
48

±
0.

09
st

at
lo

g-
au

st
ra

li
an

-c
re

d
it

2
55

2
14

rb
f_

sv
m

0
.6

8
0.

68
±

0.
00

0.
68

1
±

0.
00

0
0.

00
±

0.
00

-
-

-
0.

68
±

0.
00

0.
68

1
±

0.
00

0
0.

00
±

0.
00

st
at

lo
g-

ge
rm

an
-c

re
d

it
2

80
0

24
rb

f_
sv

m
0.

79
0.

59
±

0.
03

0.
68

2
±

0.
00

1
0.

36
±

0.
04

0.
78

±
0.

00
0.

78
2

±
0.

00
0

0.
02

±
0.

00
0.

76
±

0.
01

0.
73

7
±

0.
01

2
0.

07
±

0.
01

st
at

lo
g-

h
ea

rt
2

21
6

13
rb

f_
sv

m
0.

85
0.

81
±

0.
02

0.
80

5
±

0.
00

1
0.

05
±

0.
01

0.
85

±
0.

00
0.

85
1

±
0.

00
0

0.
00

±
0.

00
0.

81
±

0.
01

0.
82

7
±

0.
00

6
0.

04
±

0.
01

st
at

lo
g-

im
ag

e
7

18
48

18
rb

f_
sv

m
0.

95
0.

74
±

0.
01

0.
83

5
±

0.
00

1
0.

25
±

0.
02

0.
74

±
0.

00
0.

82
2

±
0.

00
1

0.
25

±
0.

00
0.

78
±

0.
01

0.
89

9
±

0.
00

8
0.

21
±

0.
01

st
at

lo
g-

ve
h

ic
le

4
67

6
18

rb
f_

sv
m

0.
85

0.
56

±
0.

05
0.

54
9

±
0.

00
1

0.
40

±
0.

04
0.

66
±

0.
00

0.
66

2
±

0.
00

0
0.

33
±

0.
00

0.
65

±
0.

02
0.

69
7

±
0.

01
9

0.
29

±
0.

02
sy

n
th

et
ic

-c
on

tr
ol

6
48

0
60

xg
bo

os
t

0.
96

0.
75

±
0.

02
0.

65
5

±
0.

00
1

0.
23

±
0.

03
0.

81
±

0.
00

0.
61

0
±

0.
00

1
0.

22
±

0.
00

0.
94

±
0.

01
0.

76
8

±
0.

01
0

0.
02

±
0.

01
te

ac
h

in
g

3
12

0
5

xg
bo

os
t

0.
55

0.
55

±
0.

02
0.

54
8

±
0.

00
0

0.
01

±
0.

01
0.

35
±

0.
00

0.
30

5
±

0.
00

1
0.

65
±

0.
00

0.
55

±
0.

01
0.

54
8

±
0.

01
0

0.
00

±
0.

01
ti

c-
ta

c-
to

e
2

76
6

9
xg

bo
os

t
0.

97
0.

97
±

0.
00

0.
97

4
±

0.
00

0
0.

00
±

0.
00

0.
71

±
0.

00
0.

82
2

±
0.

00
1

0.
26

±
0.

00
0.

97
±

0.
00

0.
97

4
±

0.
00

0
0.

00
±

0.
00

ti
ta

n
ic

2
17

60
3

xg
bo

os
t

0.
78

0.
78

±
0.

00
0.

77
8

±
0.

00
0

0.
00

±
0.

00
0.

76
±

0.
00

0.
58

4
±

0.
00

0
0.

10
±

0.
00

0.
78

±
0.

00
0.

77
8

±
0.

00
0

0.
00

±
0.

00
tw

on
or

m
2

59
20

20
xg

bo
os

t
0.

98
0.

87
±

0.
01

0.
74

5
±

0.
00

1
0.

13
±

0.
01

0.
98

±
0.

00
0.

89
1

±
0.

00
0

0.
02

±
0.

00
0.

96
±

0.
00

0.
88

4
±

0.
00

2
0.

02
±

0.
00

ve
rt

eb
ra

l-
co

lu
m

n
-2

cl
as

es
2

24
8

6
xg

bo
os

t
0.

77
0.

78
±

0.
02

0.
76

7
±

0.
00

1
0.

05
±

0.
02

0.
81

±
0.

01
0.

72
4

±
0.

00
1

0.
14

±
0.

01
0.

80
±

0.
01

0.
76

9
±

0.
00

7
0.

02
±

0.
01

ve
rt

eb
ra

l-
co

lu
m

n
-3

cl
as

es
3

24
8

6
xg

bo
os

t
0.

84
0.

84
±

0.
02

0.
83

8
±

0.
00

0
0.

02
±

0.
01

0.
80

±
0.

00
0.

75
8

±
0.

00
0

0.
10

±
0.

00
0.

84
±

0.
00

0.
83

8
±

0.
00

0
0.

00
±

0.
00

w
av

ef
or

m
3

40
00

21
xg

bo
os

t
0.

84
0.

77
±

0.
01

0.
62

5
±

0.
00

1
0.

18
±

0.
01

0.
85

±
0.

00
0.

70
5

±
0.

00
0

0.
09

±
0.

00
0.

83
±

0.
00

0.
73

2
±

0.
00

4
0.

08
±

0.
00

w
av

ef
or

m
-n

oi
se

3
40

00
40

xg
bo

os
t

0.
84

0.
76

±
0.

01
0.

66
1

±
0.

00
1

0.
19

±
0.

01
0.

87
±

0.
00

0.
70

8
±

0.
00

0
0.

08
±

0.
00

0.
85

±
0.

00
0.

74
2

±
0.

00
4

0.
07

±
0.

00
w

in
e

3
14

2
11

xg
bo

os
t

0
.9

2
0.

92
±

0.
00

0.
91

5
±

0.
00

0
0.

00
±

0.
00

0
.9

4
±

0
.0

0
0.

70
3

±
0.

00
1

0.
08

±
0.

00
0.

92
±

0.
00

0.
91

5
±

0.
00

0
0.

00
±

0.
00

Table 4.2 Experimental results for the final 30 UCI datasets.
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relationships among attributes. We take this to be an indication that the initial classifiers were too
complex for the relatively simple problems considered. Hence, copying here allows us to move to a more
suitable solution, with less parameters and training requirements.

On the other hand, we identify a number of cases where copies based on decision_tree and rfc clearly
outperform logistic_regression. See, for example, energy-y1 and iris. This is because when the decision
function is not linear2, non-linear copies are needed. Here, the capacity error dominates, because the
copy hypothesis space, the logistic family, does not contain fO. Hence, given the same set of synthetic
data points, i.e. similar coverage error, it is this mismatch that dominates the overall fidelity error.

Finally, in some instances the copy hypothesis space is well chosen and yet the empirical fidelity
error is high. See for example musk_1 and musk_2, which are both high dimensional problems where a
linear_svm is copied using a rfc. In both cases, AC is notably lower than AO. This happens in complex
datasets, where 1e6 synthetic data points sampled uniformly at random are probably not enough to
ensure a small coverage error. Increasing the size of the synthetic dataset would probably alleviate this
issue. Alternatively, depending on the topology of the considered problem, other sampling techniques
can also be considered to ensure a suitable exploration of the attribute domain in full. A discussion of
the performance of different such techniques is presented in Appendix A for a subset of the problems here
presented.

4.4.3 Discussion

The different error contributions of the copying process are collectively defined by the fidelity error and
approximated through the empirical fidelity error. However, the condition that empirical fidelity error be
small is necessary, but not sufficient to ensure a good copy. Having significant errors in certain regions and
none in others may lead to a low error, while altogether not ensuring a good generalization performance.
The opposite is also true: a large empirical fidelity error may not lead to a low copy accuracy. Take,
for example, errors distributed around the boundary. This may happen when trying to copy a smooth
function using linear decision cuts. If errors are very substantial, this may be seen as a problem. However,
if the training data are distributed far away from the boundary, errors in this region would have no real
impact. No effective error would therefore be measured when substituting the model with the copy.

To a large extent, copy evaluation depends on the available information. The more information we
have, the more reliable our estimates will be. If the training data were accessible, we could obtain a direct
estimate of copy generalization. Furthermore, assuming this was necessary for the considered application,
we could choose PZ to be as close to P as possible, i.e. redefine the copy operation space to match P . If
the form of the model fO was also known, we could refine the choice of copy hypothesis space. In those
cases where model and copy have similar decision boundary shapes, copying is conducted with greater
ease. That is, when the decision function is formed of cuts perpendicular to the axes, as in the case of

2Despite the training data being linearly separable, the learned decision boundary may be non-linear.
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a random forest classifier, it is easier to copy it with a decision tree than it is with a radial basis kernel
SVM. Conversely, those models with smooth decision functions are better copied using classifiers other
than trees.

At this stage, we may again ask ourselves the question: in case were the training data are available,
why should we copy the given model instead of learning a new classifier? This is a question that was
already posed in Part I, but which is relevant to revisit here. There exist scenarios where a new training
may not be advisable. A new model may display very different behaviour and decision properties.
This is unacceptable in production environments where performance has to be preserved and controlled.
Moreover, training a new classifier with the same training data involves having to take care of the
overfitting effect, whereas when copying we avoid hyper-parameter optimization. Another reason to use
copies is that when training a new model we might not be able to recover the same operation point as
before. In contrast, a copy can help bias the parameter optimization process towards a desired solution
so that we can ensure a smoother transition.

4.5 Further considerations

As discussed in Chapter 1, one of the main benefits of copying is that it enables differential replication
of machine learning models. This means that copying can be used to enhance existing solutions or to
build next generation models that are better fit to meet the requirements of an stringent ecosystem.
Copying can, for example, be used to evolve from batch to online learning schemes [35]. This extends
a model’s lifespan as it enables adaptation to data drifts or performance deviations. Equivalently, when
new class labels appear during a model’s deployment in the wild, copying can account for the new data
points and evolve from binary to multiclass classification settings [79]. More generally, there are numerous
examples were differential replication through copying can be applied to solve specific problems. However,
despite its flexibility and large range of applications, copying has several limitations, for example, when it
comes to dealing with high-dimensional data, or with certain problem environments. In the following, we
describe different real-life applications where copying a model may be challenging and discuss different
approaches to overcoming the identified barriers.

Copying is highly dependent on the synthetic data generation process. The complexity of this process
grows with increasing dimensionality. Hence, while copying remains valid in this context, its performance
may be affected. Mostly because sampling an unknown decision function is hard. More so, because we
have no information about the training data distribution and lack any insight on how the different classes
may be distributed throughout the space. In theory, we could overcome this problem by generating
infinite query points. Yet, this is not tractable in practice, since we are limited by our computational
resources. Assuming all d variables take discrete values among a finite set C, we would need to generate
Cd to cover the complete attribute domain. While this may be possible for low dimensionality spaces, it
rapidly becomes unfeasible for increasing number of attributes and is even worst for the case of continuous
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variables.
In our experience, when considering large dimensionality data it is worth replacing uniform sampling

distributions with normal distributions. The first conduct an arbitrary exploration of the space, whereas
the second better characterize the typicality3 of a standardized dataset. This is because, as the number
of dimensions increases, so do the regions of the space where no data are present. By using a normal
distribution to guide sampling we focus only on those areas that could potentially contain data.

Not only the amount of data but also their structure can be problematic. In structured environments,
such as images or text, data tend to lie on top of a variety, so that finding the optimal synthetic dataset
requires sampling the appropriate manifold. While this may be doable, it is not straightforward. In
general, copying in such domains requires access to the training data to generate synthetic data with
a suitable representation. This could be done, for example, using an autoencoder that preserves image
invariance.

An additional limitation is choosing PZ . As shown above, blindly exploring the input space works
well for simple cases. As the complexity grows, however, so does the intricacy of the decision function
and more ad hoc techniques are needed to appropriately sample the input space. Appendix A shows our
results when assaying different methods to guide sampling when generating synthetic datasets in different
copying problems.

Lastly, many local minima exist. This is because an infinite number of different synthetic sets can be
used to replicate a given decision boundary. In theory, the empirical error is known and equal to zero, so
that all sets should converge to the same result. Due to training variability, however, this is not always
the case.

3The concept of typicality refers to properties holding for the vast majority of cases [250]
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Lessons learned

• The copying loss is theoretically defined by
the fidelity error, which refers to the disagree-
ment between the original and copy model
predictions over the input space.

• This theoretical error can be divided into
three different contributions. The capacity
error refers to loss that arises from a capacity
mismatch between the model and the copy hy-
pothesis spaces. The coverage error refers to
the representativeness of the generated syn-
thetic dataset. Finally, the interaction error
measures a certain coupling between the other
two.

• Collectively, these three terms represent all
the theoretical sources of error in the copy-
ing framework. However, they are not all
measurable in practice given our limited com-
putational tools. Instead, we introduce a set
of performance metrics to evaluate copies in
terms of the available information.

• In the general case, we assume no access to the
training data or the original model internals.
In this context, the empirical fidelity error is
the only metric at our disposal. In cases where
additional information is also available, we
discuss additional checks, including the em-
pirical fidelity error over the training domain,
the copy accuracy or the estimated copy accu-
racy,

• We validate all these checks in practice in a
set of 60 datasets. We show that copying can
be successfully performed in a wide diversity
of problems and for different model architec-
tures. Finally, we also discuss practical con-
siderations of this approach.

• In the next chapters we put these ideas to
practice to present our idea son how inheri-
tance by copying could be exploited to ensure
accountability of machine learning systems in
company production environments.
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Part III

Practice





“I never have, above my signature, announced anything that I did not prove first. That is the reason
why no statement of mine was ever contradicted, and I do not think it will be, because whenever I publish
something I go through it first by experiment, then from experiment I calculate, and when I have the
theory and practice meet I announce the results.”

– Nikola Tesla, Work with Alternating Currents

In the previous chapters we have introduced our theoretical framework. In the following, we de-
scribe our devised applications. We envisage scenarios where machine learning is deployed in company
production environments to deliver a certain product or service to the market. A context in which en-
vironmental adaptation through differential replication has already been discussed. Here, we continue
this discussion and suggest how inheritance by copying can be used to conduct an effective mitigation
of the risks derived from machine learning deployment. We begin by motivating the need for machine
learning accountability. In Chapter 5 we introduce our proposed framework for actionable accountability
and demonstrate the practical utility of copying in this context. In Chapter 6 we suggest two different
approaches to deliver interpretable machine learning solutions that yield a good prediction performance,
while complying with regulatory requirements. In scenario 1, we use copies to ensure the attributes of
a risk scoring model remain intelligible. In scenario 2, we avoid the pre-processing step by exploiting
a high capacity model and then copying it with a simpler yet interpretable one. Finally, in Chapter 7
we discuss how inheritance by copying can be used to mitigate the bias learned by a given classifier in
conditions where this model cannot be modified.
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Chapter 5

Risk mitigation in machine
learning accountability

5.1 Introduction

In recent years, a growing number of voices have publicly denounced the potential negative impact of re-
liance upon machine learning [5][34][189][212][160]. Deployment of commercial machine learning solutions
constitutes a major source of risk for users, who may be affected by discriminatory practices [9][41] or
impacted by decisions which they cannot contest [213] or whose data may be inadvertently leaked [224].
In this sense, they also constitute a risk for the society as a whole. On top of that, there exist ad-
ditional risks for the companies that deploy these models, in terms of unmet legal requirements for
interpretability, unsatisfied performance needs, lack of transparency, non-sustainable deployment or gen-
eral design flaws. The debate around machine learning has therefore increasingly focused on the issue
of accountability [8][43][96]. Many governments have shown their determination to regulate machine
learning [158][157][186][180]. Plus, both companies and researchers are dedicating increasing efforts to
developing tools to identify and measure the shortcomings of machine learning, as well as to mitigate
any potential harm that may be derived from them. Even so, many real problems are still open for
exploration.

In general, there exists a gap between theory and practice [17][162][248] that results in most theoretical
proposals for accountability failing at meeting the requirements of real life scenarios. While the machine
learning community has mainly focused on designing tools for accountability in in-vitro settings, where
both the data and the algorithms are readily accessible, most real-life situations do not conform to this
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ideal. Machine learning models operate in complex environments, subject to a large number of constraints
which tend to change in time. Hence, the potential shortcomings of a machine learning model may not be
apparent from the beginning. On the contrary, ensuring accountability may require a continuous process
of auditing and mitigation. While the protocols for auditing are better understood, tools for mitigation
are more scarce. Partly due to the fact that mitigation is not necessarily tied to a legal requirement,
a situation which can result in a lack of motivation when it comes to removing the risks. As a result,
additional tools are needed that provide a flexible, cost effective approach to accountability.

In this chapter we study machine learning accountability in real-life deployment scenarios. In par-
ticular, we focus on studying the role of differential replication through copying as a risk mitigation
mechanism in company production environments. Here, models are only a part of a larger system [82]
that involves different levels of abstraction, responsibility and knowledge [70][49][156][159][151]. Our pro-
posed accountability framework includes an auditing stage to identify the potential shortcomings of a
model. These shortcomings are understood as risks for either the users of the model, the company or the
society and should be mitigated or removed. We identify situations where copying might be of value to
this end and provide a non-exhaustive list of practical examples. In many cases, additional applications
may exist that we are yet to fully grasp. Nonetheless, we believe there is value to understanding how
these techniques may contribute to a fairer, more sustainable use of machine learning [2].

5.2 Machine learning systems

Accountability refers to a set of protocols to evaluate the conduct of an individual or entity, as well
as an obligation to report or justify one’s actions, especially in cases where these may result in any
wrong doing [69][249]. Accountability is the instrument through which agents can be held accountable
of the consequences of their actions or decisions. Being accountable implies accepting responsibility in
face of possible sanctions. Machine learning accountability is therefore the instrument through which we
ensure criminal or civil liability for any negative impact derived from the use of this technology. While
several contributions have aimed to set the basis for how to enforce machine learning accountability in
practice [69][96], no single widely accepted standard exists today [212][164]. This is mainly because most
legal and computational proposals to enforce machine learning accountability face many challenges when
it comes to their practical implementation in real settings [248].

5.2.1 A model’s environment

The lack of success in implementing these proposals in practice has been often attributed to carelessness
and indifference on the part of data practitioners [14][162]. However, evidence shows that there exist
numerous practical restrictions that prevent such implementation. As discussed in Chapter 1, deployment

90



of commercial machine learning in any big or small corporation is subject to a large number of constraints
and specificities. These limitations collectively conform a machine learning model’s environment, which
includes the following elements, among others.

Business alignment Different business areas may contribute their views on how a machine learning
model should be designed and deployed. Moreover, their demands over the delivery performance of the
system may change as their business needs evolve. Alignment of business objectives with the devised
solutions is a non-trivial task that requires a constant monitoring to prevent performance degradation in
time.

Data sources Data usually come from different sources and need to be enriched along the process. Some
input attributes are inferred or extracted from records of past events and client interactions. When com-
panies lack informative data, they might resort to third parties for data collection or to trusted sources,
such as national statistic agencies, for specific information that might be relevant for the considered
application.

Ethics and business rules Companies often have a set of client or project admission rules that define
the contexts in which they are willing to do business. These may exclude, for example, trading with
companies selling military products, admitting clients below a certain age range or avoiding the use of
non-sustainable raw materials. As a result, companies usually lack data in certain regions of the space.
This generates blind areas in the attribute domain during training of machine learning models.

Globalized markets Nowadays, companies are not restricted to operating in a single place. On the
contrary, they may offer their services and products in multiple geographies simultaneously. Take, for
example, the case of cloud-based organizations. In order to optimize resources, these organizations may
export machine learning models devised for certain geographies to others. However, this generally requires
some form of fine-tuning and the maintenance of several versions running in parallel.

Regulatory constraints Several industries, such as banking or insurance, are subject to great scrutiny
by national and international regulators. In the case of banking, for example, regulators require, among
other things, that internal coefficients of credit scoring models be accessible and in line with human
domain knowledge. This largely limits the type of models that can be used. Given that companies aim
to maximize revenue through model accuracy, dealing with such limitations is often far from trivial.

Local country legislation Apart from global regulatory constraints, companies are also subject to the
local legislation of each of the different countries where they operate. This legislation may introduce
additional safeguards, for example, to eliminate disparate treatment by removing sensible data attributes
from the training process.
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Company disorganization While models are usually trained by data scientists in dedicated departments,
different business areas may claim ownership of the products and services derived from their use. Machine
learning deployment in any big, or even small, corporation requires the interaction of several departments
and the integration of different points of view, goals and strategies.

Technological infrastructure Models are not trained in a single run, but iteratively, and are deployed to
specific production infrastructures through continuous integration. These are designed in terms of the
available budget and the pre-existing software licenses and contract agreements. However, a company
may decide to modify or even redesign its technological infrastructure at any given time.

Deployment barriers In many sectors there exist huge problems with legacy that put strong barriers to
machine learning deployment. Overcoming these barriers involves understanding how deployment itself
works, accepting the need for a unique deployment pipeline, and learning to navigate a messy ecosystem.

Impact Decisions output by commercial machine learning models have a significant impact on customers.
Take, for example, the case of credit risk scoring in the mortgage market. The estimation of mortgage
default risk has a significant impact on the pricing and availability of mortgages. This, in turn, puts a lot
of pressure on consumers, as it affects their disposable income. When designing these models companies
must understand and account for their potential impact.

To overcome these constraints, machine learning models are usually deployed as part of the larger
structure entailed by a machine learning system. A machine learning system comprises all the different
actors, considerations, and elements that have to be taken into account when delivering a solution to the
market. This is, everything from the business understanding to the deployment of a model, including
data identification, collection and pre-processing, model training, evaluation and continuous integration
of one’s own models with third-party black-box components and APIs, and eventually, production de-
ployment or issues regarding legal aspects and specific regulation. Altogether, these elements display
complex interactions that are highly dependent on the considered application. Moreover, while some of
them may be subject to strict supervision, most usually evolve in ways that are out of our control and
can therefore result in unwanted risks for the company or its customers. Identifying and evaluating such
risks is vital to ensuring accountability. In what follows we provide an overview of what they entail and
who they affect.

5.2.2 Potential risks of machine learning systems

A system that fails to perform according to its specified requirements can pose a risk to its users. The
users of a system are the individuals who are impacted by the its decisions. In the case of a credit risk
scoring system, for example, the users are loan applications, who are impacted by the system’s estimation
of their probability of default. When a system is flawed, its users may be affected by its shortcomings.
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Such shortcomings can also pose a risk to the company who is responsible of the system. Consider, for
example, cases where the system does not deliver according to expectations. This can potentially have
an impact on the company’s revenue. In addition, there also exist risks to the customers of the company,
independently of whether they use the considered system or not. Companies use data of past and present
interactions to train predictive models. In the case above, a company may use data about the outcome
of previously granted loans to train credit scoring models. These models may pose a risk to past loan
borrowers, for example, if their personal data are exposed to safety breaches. Finally, the shortcomings
of a system may also pose a risk to the society as a whole. Especially in cases of critical applications
where the misbehavior is perpetuated in time.

Depending on their source, risks can be classified as endogenous or exogenous. A risk is considered
to be exogenous if it arises from outside the system. Alternatively, it is endogenous if it arises from the
system itself. Endogenous risks are related to a system’s architecture, and are therefore largely influenced
by the design and training processes. In contrast, exogenous risks are mostly determined by a system’s
environment. While endogenous risks may be more easily controlled for through carefully defined design
protocols, exogenous risks are largely subject to contingency. Changes in the regulatory framework, the
appearance of new market trends, changes in clients’ behavior or simply the reshaping of a company’s
business model may give rise to exogenous risks.

Independently of who they might affect, managing endogenous and exogenous risks of a machine
learning system requires, first, a framework for identification and surveillance and, second, a remedy
mechanism, to mitigate any potential harm. In line with these ideas, we propose a framework for ac-
tionable accountability. We build on previous contributions [96][70] to make a distinction between the
notions of risk identification, which deals with clearly reporting the potential shortcomings of a machine
learning system, and risk mitigation, which focuses on addressing such shortcomings to reduce the neg-
ative effects that may be derived from them. This second mechanism includes precautionary measures
imposed on systems by design and reactive tools to correct a system’s misconduct, as well as additional
safety measures [104]. In the case of reactive tools, they should be such that they minimize disruption
to the pipeline of the given machine learning system.

5.3 Actionable accountability

Machine learning accountability is intrinsically related to an obligation to report and justify automated
decision making [69]. This implies having knowledge about how a system behaves in face of different
scenarios. In particular, it implies understanding what its behavior will be in those cases that may be
particularly sensitive. Hence, enforcing accountability implies being able to audit a system. Auditing is
the process whereby an external agent objectively examines and evaluates the performance of a system
to ensure no harm is derived from its use. For the auditing to be performed, this agent should have full
access to the system. She should be able to interact with it through queries of varying nature and test
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its response against different assumptions. She should also be able to check that the system complies
with the appropriate architectural safety-guards to guarantee its safety and that of the individuals that
interact with it.

In addition to reporting, the notion of accountability is also tied to a need to accept responsibility. It
is our believe that this need should be understood in a broad sense. This is, beyond discharging duties,
corrective measures should also be taken in cases where potential flaws of a system are identified during
auditing. Such measures can be reactive or preventive or, preferably, both. Under this perspective,
accountability should enable action.

Moreover, accountability cannot be conceived as an outward journey. A machine learning system’s
environment is prone to change multiple times and in multiple ways throughout its life-cycle. Ensuring
accountability in this context therefore requires a continuous process of going back and forth, checking
and updating. As additional information is gathered, this process can and should be enriched to ensure
a fully in-depth inspection every time, as well as to equip data practitioners with tools to take action in
uncertain environments.

With this view in mind, we introduce actionable accountability as the process summarized in Fig. 5.1.
This process consists of two different stages. First, machine learning systems are inspected during the risk-
based auditing phase to identify any potential shortcomings or flaws. These flaws may refer to different
risk dimensions, as described below. Second, each of these shortcomings are addressed individually
during the risk mitigation stage. Finally, for this process to be truly actionable, there exist two enabling
conditions: governance and auditability.

5.3.1 Governance

We consider accountability to be ultimately an issue of trust, of the extent to which we can rely on our
knowledge of a system, in terms of how it works and why it behaves the way it does. Accountability is
therefore related to responsibility in the legal sense. If algorithms themselves cannot be made accountable
of their decisions, there needs to be a clear legal subject or entity who will. This is where the notion of
governance comes in. Governance encompasses all organizational roles and protocols related to outlining
a company’s data strategy and ensuring the social impact of machine learning systems is well understood
and accounted for before deployment. This includes the need to declare the ownership of the different
parts of a system, to properly document the developments, to monitor performance and to define auditing
protocols. In sum, governance defines the responsibility of the different stakeholders and clearly designates
their roles with respect to the considered machine learning solution. Particularly for those obligations
that represent a legal liability.
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Fig. 5.1 The actionable accountability process. The smaller circles inside correspond to the risk auditing and mitigation stages.
The coloured circles surrounding the centre correspond to the different risk categories. The whole process is engrained in two larger
structures: governance and auditability.

5.3.2 Auditability

The other enabling condition for accountability is auditability. Auditability deals with the capability and
possibility of a system to be audited by the general public or by a third party. This may include probing,
understanding or reviewing of a system’s behavior. Auditability is related to issues of confidentiality and
intellectual property. It is an instrumental requirement. In making a system open for auditing, a company
must ensure the inviolability of the solution, the confidentiality of the data, the non-disclosure of sensitive
information and the maintenance of industrial secrecy in critical or strategic business applications. Hence,
we consider auditability to be a necessary condition for the actionable accountability process, i.e. a sine
qua non. Assuming that there exist an appropriate governance framework and that the auditability
condition is satisfied, we envisage actionable accountability as a process composed of two different stages:
risk-based auditing and risk mitigation.

5.3.3 Risk-based auditing

The process of algorithmic auditing can be traced back to audit studies in the social sciences [207],
where different mechanisms were suggested to probe a system’s behavior. In scenarios preceding the
data revolution, learning about a system’s behavior was no easy task. Some of the proposed mechanisms
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included interacting with the system through multiple petitions, posing as potential users or directly
confronting a company to obtain relevant information. All these approaches were largely limited by the
ability to design the different scenarios of study and collect the necessary data. Today, these mechanisms
are mostly automatized and attention has shifted to how and when they should be employed, by whom,
to which end and whether they are deemed enough.

Similar to the case of audit studies, auditing in machine learning delves with system inspection. This
inspection can be conducted by external third-parties or by the company who owns the system. Or,
preferably, by both. In cases where it is the company who performs the auditing, it is usually a dedicated
department who is responsible for this process. Or people with specific roles inside the organizational
chart. When auditing comes from the outside, it can be performed by external agents hired by the
company to this end. Or by institutional representatives. See, for example, the case of the financial
regulator, who audits all credit scoring models.

Irrespective of who performs it, it is important that the auditing be conducted in a continuous manner,
given the changing nature of a machine learning system’s environment. While a system may perform
adequately at the time of its conception, the requirements of its environment may evolve very quickly
towards an scenario where it is no longer fit to satisfy them anymore. An initial auditing at the time
of first deployment may serve identify wide-range shortcomings. However, additional issues may appear
throughout a system’s life cycle. A continuous surveillance is therefore necessary. Moreover, ideally
the process of auditing should encompass the assurance of standards at different levels of abstraction.
Hence, the steep learning curve for potential auditors, who are required to demonstrate different levels
of technical and tacit knowledge, is one of the most relevant challenges in this field.

The purpose of a risk-based auditing is to ensure that a given machine learning system provides the
intended service without unintended consequences or side-effects [49][70]. Much research has been con-
ducted on the topic of algorithmic auditing for several applications [62][174][224][3], including commercial
software [9]. Recently, many well-known articles have audited existing machine learning solutions and
publicly denounced their shortcomings, for example, when it comes to ensuring a faithful representation
of the different phenotypes in face recognition software [41]. Publicly naming a company misconduct may
therefore be one outcome of auditing [195]. More generally, this process should provide a clear overview
of the scenarios where a given system may under-perform and therefore constitute a risk, in terms of a
given dimension of study. In that respect, identifying, measuring, reporting, advising, and acknowledging
the different risk sources should be the final outcome of the risk-based auditing stage.

The risk categories

With regards to a machine learning system, we can identify the following sources of risk [119]: (i) lack
of alignment with business needs [162], (ii) inconsistency with respect to organizational expectations and
requirements, (iii) improper translation of tactical plans from the strategic plans, and (iv) ineffective
governance structures that fail to ensure accountability and responsibility. Altogether, these sources may
give rise to risks of very different natures. Here, we are interested in those that are most commonly
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encountered in commercial machine learning. We group them under the following categories.

Accuracy Accuracy amounts to understanding performance, identifying the sources of error and the
limitations of a solution and considering the quality and reliability of the decisions, as well as their direct
societal impact. This dimension accounts for the risk of a negative impact because of unreliable or low
quality decisions.

Interpretability and explainability The first refers to a measure of the white-boxiness of a model. The
second seeks the verbalization of algorithmic decisions at different levels of abstraction, corresponding to
the different knowledge and needs of stakeholders, regulators and end-users. It accounts for the risks of
ensuring that automated decisions can be contested and reasoned upon1.

Fairness This dimension ensures that automated decisions do not display an unjust or biased behavior
with respect to sensitive factors such as gender, ethnicity or religion. It accounts for the ethical and legal
risk of discrimination against certain collectives or minority groups.

Privacy The privacy dimension aims at preserving data confidentiality [117]. It encompasses the le-
gal risks of re-identification, which considers the probability of identifying an individual in the training
set, data linkage, which concerns the probability of being able of linking/joining records in two different
datasets, and sensible attribute inference, which is concerned with the problem of how a machine learning
system may be used to infer protected information [19][192][230].

The different risk dimensions above capture some of the potential shortcomings of machine learning
systems and may result in harm to different individuals or collectives. For example, they may constitute
a risk for the user of a system (risk of bias in prediction), for the company (risk of misalignment between
business needs and technical solutions) or even for the average customer, independently of whether he or
she is a user of the system (risk of data leakage) and aware of it or not [207].

Auditing in practice

An important characteristic of the risk-based auditing is whether is it partial or total. A partial auditing
focuses on evaluating a system’s performance in terms of a single, or multiple, risk dimensions. This au-
diting is specific to the chosen risk dimension and generally oversees shortcomings related to the others. A
regulator requiring that all credit scoring models be interpretable and all the input attributes understood
might not be concerned with whether these models have been trained on data that is representative of
the company’s client portfolio.

1It is worth mentioning that the idea of explainability often transcends the machine learning models themselves to include
not only the technical but also the human dimension [134]. Nonetheless, in this thesis we approach this notion from a
mostly normative perspective.
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Alternatively, when conducting a total auditing, all the different risk dimensions are considered simul-
taneously. In general, conducting such a total auditing is not feasible in practice. This is because highly
specialized knowledge is usually required for this purpose. Moreover, reasons for conducting the auditing
may diverge from one agent to another. While public institutions may be interested in auditing risks that
affect users of a model, they may not be bothered with ensuring that the model is properly aligned with
a company’s business needs. In contrast, in absence of specific sanctions, a company may lack motivation
to report potential biases in its systems. However, it may very well be invested in identifying issues that
may affect profit. A more realistic approach that requiring a total auditing is assuming the existence of
different auditing stages by different agents. These parallel audits may focus on one risk dimension or
the other so that they collectively account for all of them.

Finally, an additional issue related to auditing is the impossibility of proving a system against every
possible scenario. Understanding a model’s behavior in face of corner cases implies having previously
defined such cases. Something which is not always feasible in practice. Certain risks may stay undetected
until they become relevant. It is because of this, as well as for the reasons discussed above, that the risk-
based auditing phase should accompanied by a risk mitigation stage, during which all the risks identified,
either through auditing or through any other method, can be properly managed. The risk mitigation
stage refers to the process of providing specific countermeasures to the issues identified during risk-based
auditing. This is a key step of the actionable accountability process, since it ensures that there exist tools
to avoid potential harms derived from system shortcomings.

5.3.4 Risk mitigation

ISO 31000:2018 [119] provides a set of generic guidelines for the design, implementation and maintenance
of risk management processes in organizations. Explicitly, it incorporates the following indications: (i)
avoiding risk by deciding not to start or continue with the activity that gives rise to it, (ii) accepting
or increasing the risk in order to pursue an opportunity, (iii) removing the risk source, (iv) changing
the likelihood of risk, (v) changing the consequences, (vi) sharing the risk with another party or parties
(including contracts and risk financing) and (vii) retaining the risk by informed decision. Consider, for
example, the risk derived from a misalignment between business needs and a devised machine learning
solution. In this case, a company who is aware of the existence of this risk may choose to retain it.
Conversely, when faced with a risk of data privacy, a company may be forced to remove this risk. In this
document focus exclusively on risk mitigation from the perspective of points (iii), (iv), and (v).

Risk mitigation can be conducted following an ex-ante approach, by imposing by design principles
upon systems. As more knowledge is gathered about potential situations where a system may be found
lacking, this knowledge can be incorporated into the design process to refine successive iterations. This
is a view that enforces prevention. Alternatively, mitigation can also be conducted ex-post, by applying
reactive measures that tackle the issues reported during auditing. In order to ensure a fast response, this
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measures should be agile. Moreover, in order to motivate companies to take action even in those cases
where they are not compelled by legal liability or reputational reasons, these measures should also be
cost-effective. Both the ex-ante and the ex-post approaches are complementary and depending on the
considered case it will be one or the other that will be more successful in ensuring risks are handled
appropriately. Precautionary measures may and should be in place. Nonetheless, it is often the ability
to provide a quick response that makes the difference.

It is our believe that this response should transcend the exclusive legal framework. In other words,
potential negative impacts of machine learning systems should be addressed independently of whether
they are illegal or not [207]. Very often, however, the absence of a regulatory framework that prohibits
certain conducts, discourages companies from taking action. See, for example, some of the cases alluded
to before. Even when a risk may be properly identified and reported, the lack of reprobation may result in
a company not be willing to mitigate it. Especially if such mitigation is costly. Redesigning a system from
scratch is a complex, tiresome process that delays time-to-market delivery and incurs in large costs for a
company. There are the costs directly linked to employees’ working hours or the use of shared resources.
But there are also costs derived from non-earnings when stopping production. Hence, in absence of any
external motivation, companies tend to oversee certain design or implementation flaws of systems. In
such situations, additional tools need to be devised to provide a cost-effective alternative that guarantees
a reliable, yet agile approach to managing deployment risks. Depending on the level of knowledge about
the considered system, we foresee different such tools.

Risk mitigation mechanisms

When new data are available and one has access to the internals of a system, mitigating a risk may
simply refer to adapting the model and/or the data to be sensitive to the identified risk dimension. This
is effectively done, for example, by changing the training loss to accommodate a dimension-sensible term,
or by modifying the internals of the model to redefine the hypothesis space so that it is compliant with
the level of risk we are willing to assume. Under this category we find most of the literature solutions.
As previously mentioned, however, many elements contribute to a machine learning system, so that
retraining or fine-tuning may not always be an option.

Alternatively, mitigating a risk may involve adding a new component that wraps the original solution
and endows it with a new functionality. Consider once again the example discussed in Chapter 1, where
we want to measure the confidence of a predictions output by a deterministic black-box system. We could
do so by using a wrapper to add a layer of uncertainty to this model [170][171]. In some cases, wrappers
may require access to the internal states of the model or to more informative prediction outputs. Ideally,
however, pure wrappers only have access to inputs and outputs. Hence, as far as these techniques as
concerned, systems can be considered to be black boxes. In contrast, knowledge of the training data is
always required. Wrappers are useful when data are available, but the solution is very complex or we do
not have access to its internals.

Here, we are interested in scenarios where one does not have access to the training data, or the system
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is either very complex or not accessible for inspection. In such cases, neither retraining nor wrappers can
be used. Instead, we explore how differential replication through copying can be exploited during the
risk mitigation stage of the actionable accountability process, when risks identified during the risk-based
auditing stage need to be managed and removed from the system.

5.4 The role of copying in risk mitigation

Let us assume a regular commercial machine learning deployment scenario. Without loss of generality,
we restrict ourselves to the case of classification. In what follows, we describe possible outcomes of the
actionable accountability process, where potential risk are identified during the risk-based auditing phase
and discuss how they could be mitigated through copying.

5.4.1 The risk-based auditing stage

The following is a list of possible scenarios where a machine learning system may fail to pass the risk-
based auditing stage. Because we are primarily interested in understanding the role of copies as a tool
for mitigation, we will not delve into details about how specifically the auditing should be conducted.
Instead, we reflect upon different outcomes of this stage. For this purpose, we propose scenarios where
the auditor can find the machine learning system lacking in one dimension or the other. Note that these
scenarios do not necessarily happen all at once, although we do not exclude the possibility that they do.
Mostly, they represent problems that may arise during the system’s life cycle. Also note that the list
below is non-exhaustive, since we purposely focus on those examples where we believe copying may be of
use:

1. A drawback we may come across during auditing are the confidentiality restrictions related to the
final product. This is common in companies whose business model relies on industrial secrecy and
who require the non-disclosure of the specifics of their data solutions. This is a major issue, since
when the confidentiality is not guaranteed and the model is not made accessible to third parties,
auditability of the system is not guaranteed and the auditing cannot be conducted.

2. When auditing the in-time viability of a machine learning system we may encounter situations
where one of the training attributes is no longer available. Consider, for example, cases where a
certain variable is obtained from an external source and added to the dataset. At some point during
deployment, this external source may stop facilitating this information any more. In this event, the
deployed system would be rendered inoperable therefore posing a risk for the company who relies
on its predictions to go on with business as usual.
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3. In other circumstances, it is the admission policy of a company itself that may be subject to change.
Imagine scenarios where the company wishes to focus on a new portfolio of clients and adapt the
existing products or services to this new collective. The new data that might be generated belong
to areas of the space that where not accessible to the original solution. This may lead to risk of
accuracy due to a decrease in overall performance.

4. Companies may wish to export systems originally devised for certain countries to others. However,
differences in local legislation may prevent them from doing so. Consider the case of a bank that
wishes to reuse a credit scoring model designed for the Mexican market in Spain. Local legislation
differs from one country to the other. Particularly in relation to the use of sensible information
in predictive modelling. Indeed, while a given practice may be legal in Mexico, the Spanish law
requires that sensitive data not be accessible to the model to avoid discriminative outputs. The
use of the gender attribute in credit scoring, for example, is accepted by the Mexican authorities
but it is not allowed by the Spain legislation. Trying to deploy the original solution in Spain would
therefore constitute a major risk to the company, as well as to the eventual users of the system.

5. As mentioned before, eliminating disparate treatment by removing sensitive attributes may not
be enough to avoid that discrimination [96]. Other attributes directly or indirectly related to the
protected dimensions could act as proxies by leaking the sensitive information into the model.
Dealing with this issue is often complex. In applications that exploit personal data, the existence of
such proxies may pose a serious risk of bias, even in cases where disparate treatment is not explicitly
forbidden by law.

6. Often, when evaluating performance of a model we may wish to incorporate measures other than
the error percentage or accuracy itself. Take, for example, the case of customer churn prediction,
where a predictive system is trained to estimate the probability with which individual clients stop
doing business with a company. In this context, measuring the financial impact of each wrongly
predicted instance may be more valuable than simply counting the number of errors. When the
original system does not incorporate this information, for example in the loss function, an internal
auditing might identify a risk of accuracy.

7. For certain applications, the existing regulation imposes explainability requirements on models. In
the case of credit scoring models, this regulation requires that the underlying rules and logic of
a predictive system be properly described, a demand that focuses on alleviating the potentially
negative impact of model inscrutability, as noted by [213].While this requirement does not affect all
models in a bank, it usually applies to the credit area. And even if several voices advocate against
the use of black-box classifier for high-stakes decisions [202], the truth remains that many companies
deploy these type of systems to ensure an improved performance. Systems that do not comply with
this requirement would therefore incur in a risk of opacity.

8. In this context, logistic regression is a commonly used algorithm. A major drawback of this learner,
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however, is that it requires a complex variable preprocessing to obtain a reduced set of highly
predictive attributes. These attributes often lack any meaning by themselves, since they repre-
sent complex combinations of different dimensions. This may give raise to problems, since it can
obfuscate the interrogation of the model [147] and therefore be penalized by auditors.

9. Beyond interpretability, explanaibility is often also a requirement in many disciplines. Recent
regulation in the EU, for example, states that companies and institutions should provide meaningful
information about the logic involved in automated processing systems [186]. While the implications
of this assertion are not yet clear [96][251], the truth remains that companies not complying with
this requirement may face legal actions.

5.4.2 The risk mitigation stage

Finally, having identified different scenarios with negative auditing outcomes, we describe how copies
could be used to mitigate the identified risks. In all cases, we assume that the original training data are
not available to perform a model re-training, nor to add a wrapper to the original structure.

1. When the model internals cannot be fully disclosed for proprietary reasons, it is possible to make
a copy available instead. One of the advantages of copies is that they are agnostic not only to
the original training data, but also to the model structure itself. Thus, publishing a copy instead
of the original model can ensure that no business critical information is disclosed. An additional
advantage of this is that it may encourage companies to make their products available for auditing.
Note, however, that given that the copy would deliberately omit sensitive aspects of the original
model, there might be a trust issue as to whether the copy faithfully represents the most critical
aspects of the model in production. In general, disclosing a copy of a confidential model would
require transparency on the hypothesis space of the model projection.

2. In cases where one of the original variables is no longer available, it is possible to build a copy
that specifically drops this information, while closely replicating the original decision behavior.
This can be done by reducing the dimensionality of the synthetic dataset to remove the missing
attribute [235].

3. If the performance of a model decreases due to a change in the admission policy rules or in the data
themselves, it is possible to move to a copy with online capabilities [234]. This copy can replicate
the learned decision behavior, while incorporating new knowledge from previously unseen regions
of the space.

4. In general, dropping a variable is not sufficient to avoid bias [14][23]. The information of the
protected variable has to be taken into account to actively remove any existing correlation. In
cases where this correlation can be measured, we can ensure that there exists no residual leakage of
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information after removal of the sensitive attribute. When this is not possible, one cannot avoid an
accidental bias, nor the corresponding disparate treatment. A possible solution in this case would
be to include this constraint in the cost function when building a copy.

5. When one or more of the attributes convey sensitive information that leads to biased predictions,
copies have been found to mitigate the bias learned by models [235]. Same as above, we can remove
the sensitive information from the data used to build the copy. This approach is feasible, of course,
provided certain checks are in place. In the next chapter we describe this case in greater depth.

6. When training based on cost-sensitive metrics is necessary, it is possible to substitute the original
solution with a copy based on an updated loss metric. This would be possible, for example, if using
neural nets to build the copies, so that more than one loss function could be simultaneously defined
and optimized for.

7. When there exists a regulatory requirement for interpretability, an existing non-interpretable solu-
tion can be projected into the set of interpretable models. As a result, we would obtain a regulatory
compliant copy, with the same decision behavior. Indeed, previous research has demonstrate the
value of surrogate models to ensure ex-post interpretability [136][102].

8. The case where unintelligible variables obfuscate the interrogation of the model has been previously
studied in detail [233]. Here we can build a model based directly on those attributes in the original
set that remain comprehensible. To this end, both the preprocessing module and the model itself
can be treated as black-boxes and embedded into the copying process.

9. Finally, when the data system is required to be self-explanatory, it may be useful to move to more
flexible model architectures. Copying allows the projection to any desired solution space so that
different approaches can be explored.

The above is a is a representative list of scenarios where copying can be used to mitigate specific
risks derived from the deployment of a machine learning system. While these examples demonstrate that
practical solutions exist to different issues, we note that risk mitigation in certain situations remains
largely unsolved. This is mostly due to the difficulty of this task, which involves complex conflicts and
trade-offs that are often not achievable in practice.
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Lessons learned

• In a world where machine learning models
have an increasing presence in high-stakes de-
cisions, we need to devise mechanisms to en-
sure that they are used safely; and in those
cases where they are not, that their short-
comings can be accounted for and properly
addressed.

• In absence of such mechanisms, the use of ma-
chine learning can pose severe risks to com-
panies, to individuals or to the society as a
whole, who might be inadvertently exposed
to harm derived from flawed systems.

• Ensuring accountability in this context re-
quires understanding all the complex elements
that interact with a machine learning model.
These include the data and the models, but
also the devised production pipeline, the tech-
nological infrastructure for deployment or the
different stakeholders that interact with a so-
lution. Machine learning models are highly
influenced by a volatile environment that
evolves in time and that requires that we
design flexible, agile tools for actionable ac-
countability.

• We define this notion of actionable account-
ability as a process composed of two different

stages. The first one, risk-based auditing,
is oriented to identifying and reporting any
shortcomings of machine learning systems.
The second, risk mitigation, addresses these
shortcomings by providing effective counter-
measures.

• We are primarily interested in the second
stage. In particular, we study how differen-
tial replication can be used to make existing
systems sensible to the identified risk dimen-
sions. Among the different options available,
we focus on inheritance by copying and refer
to scenarios where neither the training data
nor the model internals are known, yet mo-
dels need to be enhanced to meet specific con-
straints.

• We describe different scenarios where an ex-
ternal or internal auditing of a machine learn-
ing system may identify several flaws. For
each of these flaws, we discuss how copying
could be exploited to eliminate the risk of a
potential negative impact. The following two
chapters present a more in depth description
of two of these scenarios in the form of indus-
trial use cases.
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Chapter 6

Use case: Global
interpretability in credit risk
scoring

6.1 The context

On 25 May 2018 the new European regulation for data protection entered into force for all European
Union Member States [51]. Known as the GDPR, this regulation recognized the data subject’s right to be
provided with meaningful information about how his or her data is being collected and used by artificial
decision making systems. This recognition has been the issue of major debate in the legal community, in
relation to whether it effectively creates a data subject’s right to explanation [95, 251]. Independently of
whether this is the case, however, the law’s intent on providing the data subject with tools to vindicate
his of her rights in face of automated decision making is clear [213]. This intent highlights the pressing
importance of human interpretability in machine learning design and deployment.

In recent years, many articles have studied the issue of explaining the outputs of machine learning
models. Especially in high impact applications. Some researchers have proposed tools for achieving inter-
pretability by design [202]. However, the truth remains that data practitioners tend to favour the more
intricate architectures when looking for performance. Hence, much work has been dedicated to extract-
ing local explanations from black-box architectures [197][198]. Given a sample, these explanations are
obtained by building linear surrogates [102][101][204] in its vicinity. Other proposals focus on developing
so-called counterfactual explanations. Counterfactual explanations describe the smallest change to the
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feature values that needs to be enforced in order to modify the prediction to a predefined output [252][243].
While explanations thus obtained may faithfully represent the functioning of a model locally, they do
not account for its global functioning. Moreover, they often fail to meet regulatory requirements in that
they may be based on non-interpretable data attributes that obfuscate explanations.

In this use case, we describe different scenarios where a credit scoring model fails to meet regulatory
requirements and therefore poses a risk to the company or to its potential clients. For each case, we
study how differential replication through copying could be used to mitigate the identified risks. We
discuss a two-fold approach to the problem of delivering high performing, regulatory compliant machine
learning solutions in the context of non-client mortgage loans at BBVA. On the one hand, we remove the
pre-processing step by deploying models that remain intelligible while capturing the non-linear relation-
ships in the data. We copy these models using more flexible structures that comply with the technical
requirements, while retaining a good overall performance. On the other hand, we deobfuscate model
variables by building copies that learn the decision outputs of pre-trained models directly from the raw
data attributes.

6.2 The case

The average ratio of defaults in the Mexican mortgage market for the first, second, third and fourth
quarters during the years 2015, 2016 and 2017 was 2.7% [196]. The average ratio of defaults in non-client
mortgages granted by BBVA during the same period was around ten times bigger. A result that motivates
the need for a refined credit scoring model that better allocates credit resources for non-client mortgage
loan applications.

Failure to keep with loan repayment, otherwise known as credit default, has significant cost implica-
tions for financial institutions. Residential mortgages, being one of the most common type of lending [71],
constitute a major source of risk for any bank. More so when loan applicants are non-clients. This is,
when there exists no previous active contract between lender and borrower at the time of loan application.
In such cases, the bank keeps no previous record on the loan applicants, so that the data used to estimate
the creditworthiness of each claim is not based on objective evidence. Instead, it is generally declared by
the applicants themselves, inferred using indirect methods or provided by trusted external data sources.
As a result, obtaining accurate estimations of the probability of default is far from trivial.

Under such circumstances, huge amounts of money have been dedicated to increase model sophisti-
cation to learn complex problems with a high degree of accuracy. This trend has led to the proliferation
of so-called black-box systems. These are intricate systems that are trained on huge volumes of data and
which generally yield a good performance. A main disadvantage of these models, however, is that they fail
to provide a comprehensible account of how they reach their conclusions. A situation that stands in con-
trast to the growing demand for transparency in automated decision making systems [157][158][186][180].
Especially in the financial industry, where, as mentioned before, loan issuers are often required by law to
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explain the mechanisms behind the risk scoring models that inform decisions about whether to approve or
decline loan applications [51][95]. Failure to provide such explanations could result in legal liability and
therefore constitute a major risk for companies. A condition that largely limits the type of models that
can be used in practice. When a financial institution trains a credit risk model, prediction accuracy is
of paramount importance, i.e. companies aim to maximize revenue through model accuracy. Yet, there
exists a complex trade-off between accuracy and interpretability. In general, it is the most complex mo-
dels, such a deep neural networks, that tend to perform better when compared to the simpler structures,
which are more easily understood by humans.

In the case of credit risk scoring, logistic regression remains the most widely established technique.
Models based on logistic regression, perform relatively well while offering the additional advantage of
a relative ease of interpretation [241]. Moreover, being one of the simplest types of models, logistic
regression is known and understood by most data scientists. A main drawback of logistic models, however,
is that they are linear. To overcome this limitation, non-linear effects are usually modelled during a pre-
processing step, when domain knowledge by experts is exploited to obtain a set of highly predictive
artificially generated attributes. Obtaining this set usually requires a tiresome and costly process of trial
and error by risk analysts. This process can take up to 6 months and delay time-to-market delivery.
Moreover, this practice is against the idea of intelligibility as described in [154] and often results in
non-decomposable [147] machine learning architectures. Conversely, using more complex models, such as
deep artificial neural networks, that capture the non-linearities in the data results in machine learning
solutions that do not comply with the regulatory requirements, because their internals are not open for
inspection. The problem of balancing accuracy and interpretability in credit risk scoring therefore remains
unsolved. In the following lines, we propose differential replication through copying as a way-around this
compromise.

6.3 The data

We use a private dataset consisting of information about 1.328 non-client loan applications recorded
by BBVA during 2015 all over Mexico. At the time of loan application all individuals in this dataset
were considered to be creditworthy and granted the loan. However, only 1025 of them paid it off. This
corresponds to a ratio of defaulted loans of the 23%. Due to proprietary reasons, this dataset is not
publicly available.

The complete dataset consists of the 18 attributes listed in Table 6.1. The data include attributes
related to the characteristics of the loans, such as their total amount and duration, together with
socio-demographic and financial information about the applicants. Some of the attributes, including
the poverty_index or the economy_level are estimations made by the bank. There are also additional
attributes such as the estimated_mila_income which corresponds to an estimate of each individual’s
annual income and which is provided by the Mexican Treasury Ministry.
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Attribute Description

indebtedness Level of indebtedness
credit_amount Amount of credit
property_value Property value
loan_to_value Loan to value
duration Duration of the loan
studies Level of studies
poverty_index Marginalization/poverty index
age Age
est_soc_income Estimated socio-demographic income
value_m2 Value per square meter
est_income Estimated income
installment Monthly installment
n_family_unit Members of the family unit
est_mila_income Estimated income based on MILA model
p_default Ratio of contracts defaulted in the last 4

months from those signed during the previous
12 to 24 months

zip_code ZIP code
municipality Municipality
economy_level Level of economy

Table 6.1 Complete set of attributes.

6.4 The scenarios

We describe two different scenarios for this problem. In the first case, we assume a logistic regression model
is trained on a reduced set of highly predictive attributes that are considered to be obfuscated for the
purpose of providing an explanation. In the second, a higher capacity model is trained directly on the raw
data attributes to obtain more accurate default probability estimations, at the cost of understandability.

6.4.1 Scenario 1: Deobfuscation of the attribute preprocessing

In the first scenario we assume a standard risk modelling production pipeline where the original input
is pre-processed to obtain a reduced set of highly predictive attributes. We build on previous knowledge
on this task to manually craft 6 high predictive variables, based on combinations among the existing
features. We use these attributes to learn a logistic regression model.

In a real setting, a qualified risk analyst would have to conduct a tedious process of trial and error
to obtain this set of predictive variables. This incurs in a large economical cost and a delayed time-to-
market delivery. Even worse, this pre-processing largely reduces the intelligibility of the resulting model.
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This is because the pre-processed variables often reflect complex relations among the data attributes that
cannot be easily explained. Indeed, while the logistic regression itself may be linear, the relationships
encoded by the pre-processed variables are non-linear to ensure that the final model is able to capture
complex patterns in the data. This may pose a serious risk both for the company, who may be ignoring
demands for intelligibility, and for loan applicants, who might not have the level of knowledge required
to understand the provided explanations.

To mitigate these risks, in this scenario we propose to build a copy of the whole predictive system,
composed of both the pre-processing module and the logistic regression, using an interpretable model
that is nonetheless able to capture the non-linearities in the data. This is, we propose to substitute
the original pipeline with a non-linear, yet interpretable model that is directly applied on the raw input
features and which replicates the predictions outputs of the pre-processed logistic model. A benefit of
this approach is that, because the new model is applied directly over the non-processed variables, the
resulting decision path is more easily understandable.

6.4.2 Scenario 2: Regulatory compliant, high-capacity copies

In the second scenario, we assume no attribute pre-processing and train a model with a higher capacity
instead. This can significantly reduce time-to-market delivery by speeding up the training stage. Addi-
tionally, it is expected to yield better performance results. In being too complex, however, this model may
fail to provide an understandable account of its decisions. Hence, when deploying it in highly regulated
markets, such as the European, the bank could face the risk of legal actions. In order to mitigate this
risk, we replicate the decision behavior of the existing model using a copy that complies with regulatory
requirements, while reaching a comparable predictive performance.

On this basis, we also discuss how this approach could be exploited to explore the contours of the
accuracy-interpretability trade-off. In credit risk scoring, there exist different agents that interact with
a machine learning solution. The data scientist fits and fine-tunes the model, the regulator ensures that
the resulting machine learning system complies with the law, the computer engineers deploy the model to
production, and the final client is affected by the decisions output by the system. All of them are entitled
to an explanation, which may be required during the auditing stage. However, they may have different
expectations as to what kind of information an explanation should convey. Additionally, it is reasonable
to assume that they have different levels of technical knowledge. In this scenario, we build copies based
on models of different complexity to explore how this methodology could be used to adapt models to be
understandable to each of the different parties involved.
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6.5 The experimental settings

Due to the sensitive nature of bank data, we anonymize and identify all customers using randomly
generated IDs. In the first scenario, we artificially generate the 4 data attributes shown in Table 6.2. As
mentioned before, these are mostly based in combinations of the rest of the variables. These 4 attributes
were selected from a larger list in terms of their higher predictive value. We use these attributes together
with age and economy_level. In the second scenario, we use all 18 attributes listed in Table 6.1. In
both cases, we convert all nominal attributes to numerical using label encoding for ordinal attributes
and one-hot encoders in the case of cardinal variables. Additionally, we re-scale all attributes to the [0,1]
range.

Attribute Description

zip_code_municipality Bivariate attribute resulting from the
concatenation of features zip_code and
municipality

est_soc_income/est_mila_income Univariate attribute resulting from the
ration between features est_soc_income
and est_mila_income

property_value/installment Univariate attribute resulting from the
ratio between features property_value
and installment

indebtedness/loan_to_value Univariate attribute resulting from the
ratio between features indebtedness and
loan_to_value

Table 6.2 Reduced set of highly predictive attributes in scenario 1.

We perform a 80/20 split to obtain stratified training and test sets. In the first scenario, we use
these data to train a logistic regression model on the pre-processed data attributes. The whole predictive
system composed by both the pre-processing and feature engineering step and the logistic model, yields
an accuracy of 0.77. In the second scenario, we use the raw training set to train a gradient-boosted
decision tree classifier using a double 3-fold cross validation search. In the first iteration, we perform a
broad search and then narrow down the search space for the second iteration. We train the final gradient-
boosted tree with the parameter values listed in Table 6.3. This model yields an accuracy of 0.79. This
value is sensibly higher than that obtained by the pre-processed logistic regression in scenario 1. This
is because the learned decision function is able to capture non-linear relationships among original data
attributes directly.

In both scenarios we assume the training data distribution to be unknown. In the first case, we draw
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Parameter Value

gamma 0.1
learning_rate 0.1
max_depth 4
min_child_weight 5
n_estimators 100

Table 6.3 Parameters of the gradient boosted tree in scenario 2.

samples randomly from a uniform distribution defined over the raw attribute domain. We label these
samples by passing them first through the pre-processing module and then through the logistic model.
In the second case, we define PZ to be a standard normal distribution. We draw samples from this
distribution and label them according to the predictions of the gradient boosted tree model. In both
cases, we build balanced synthetic sets comprised of 106 instances. For validation purposes, we also
generate an additional test set of the same size.

In the first scenario we copy the pre-processed logistic regression model using a decision tree classifier.
In the second scenario, we project the original gradient-boosted tree onto two different model hypothesis
spaces. Initially, we select the set of logistic regression classifiers. Then, we assay decision tree classifiers
of varying depths. In an initial approach we let trees grow until the end (tree_none). We then force more
compact representations by decreasing the depth parameter from three layers (tree_3), to two (tree_2)
and finally one single layer (tree_1). Following the discussion in Chapter 3, we enforce no capacity control
when copying, so that we use misclassification-error as the splitting criteria for the trees. We report all
metrics averaged over 100 independent runs.

6.6 The results

The distribution of results for the copy decision trees in scenario 1 is shown in Fig. 6.1 for the different
runs. The mean copy accuracy is 0.71±0.04. The trees replicate the decision behavior of the pre-processed
logistic model without significant loss of performance. Moreover, in substituting the original solution with
the tree-based copies it is possible to generate explanations based directly on attributes in the original
set, which remain comprehensible in most cases. This ensures that we maintain the decomposability
of both the feature crafting process and the machine learning model itself. Where we had to resort to
complex data combinations before, we can now directly explain the predictions of our model using the
more easily understandable raw attributes.

In Table 6.4 we report the mean values for the empirical fidelity error over the synthetic dataset,
the empirical fidelity error over the original dataset and the copy accuracy for the five different copy
architectures proposed for the second scenario. The first row of results corresponds to the copies based
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Fig. 6.1 Distribution of copy accuracy for decision tree classifiers that replicate the pre-processed logistic regression model in
scenario 1. Results correspond to 100 independent runs.
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on logistic regression. The overall loss in accuracy over the original test data is 0.032. For comparative
purposes, we also train a logistic regression classifier directly on the training data1. This model yields
an accuracy of 0.73, which corresponds to a loss of 0.06 points with respect to the original model and of
0.028 points with respect to the measured copy accuracy. We use this model as a baseline to compare
our results. This comparison is relevant because it shows that the projection of the gradient-boosted tree
onto the logistic family leads to a more optimal solution than direct training on the true data labels.

In addition, the first row of results also shows the values obtained for the empirical fidelity error over
both the synthetic and the original datasets for copies based on logistic regression. These values measure
how similar the decision boundaries learned by the original gradient boosted-tree and the copy logistic
regression are. Results show a reasonably high resemblance. Fig. 6.2 shows the ten attributes with the
largest coefficients assigned by the copy logistic regression and their corresponding absolute valued scores.

Model RF ,ZZZ
emp RF ,DDD

emp AC

logistic 0.1282 ± 0.0001 0.095 ± 0.002 0.758 ± 0.002
tree_1 0.301 ± 0.002 0.291 ± 0.024 0.619 ± 0.028
tree_2 0.233 ± 0.003 0.141 ± 0.004 0.722 ± 0.001
tree_3 0.212 ± 0.006 0.125 ± 0.003 0.717 ± 0.016
tree_none 0.172 ± 0.083 0.105 ± 0.065 0.731 ± 0.042

Table 6.4 Empirical fidelity error over the original and synthetic datasets and
copy accuracy for the 5 different copy architectures.

The next four rows of results in Table 6.4 correspond to projections of the gradient-boosted tree onto
the space of decision tree models. We assay varying tree depths to obtain different representations of
the given solution. The depth of a tree is directly related to its capacity to fit the data, as well as to its
complexity, i.e. the number of decision rules it is composed of. Using shallow trees can be useful, for
example, to provide clients with succinct explanations that remain informative. Our results, however,
show that performance gets better as we let trees grow larger. The average copy accuracy for the smallest
trees is 0.591± 0.003. Conversely, the larger trees yield a mean copy accuracy of 0.76± 0.02. The fidelity
error in each case gives us an intuition of the amount of information lost due to the compression: the
more complex the copy model, the less information we lose and the lower the values of RF,Z

emp and RF,D
emp

are. In contrast, the more faithful the copies are to the original solution, the less useful they become for
the purpose of extracting understandable explanations.

This idea is better depicted in Fig. 6.3. Here we report the change in accuracy for copies based
on decision trees of increasing depths. The shallower trees compact all the information in the original

1We exceptionally use the original training data to train the baseline logistic model. Yet, we stress that these data is not
used when copying.
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Fig. 6.2 Top 10 largest attribute coefficients in average for the copies based on logistic regression. Bars display absolute valued
weights.

solution into a single layer that captures the most variability. As the number of layers increases, so does
the amount of information captured by the copies, which grow richer as more layers are added. Indeed,
the deeper the trees, the better they perform. Equivalently, the more understandable the trees, the
smaller the depth, the higher the loss in accuracy. This plot shows how copies can be used to provide
explanations of varying levels of complexity, while at the same time controlling the associated accuracy
loss. These could be used to provide clients with explanations in cases where they demand so. But
also to provide data scientists or computer engineers with understandable copies to aid in the process of
monitoring a given solution.

The decision paths for example copies with varying depths are shown in Fig. 6.4. Because all decision
trees are built using the misclassification-error splitting criteria, the initial nodes are shared among
the shallower and the deeper trees. As the number of layers increases, copy trees capture additional
information through other attributes to enrich the initial splitting. Equivalently, the richer the trees the
more intricate they get. The decision paths for trees of unbound depth can reach up to 10 levels for this
problem and are therefore not depicted here. When comparing these diagrams with the barplot in Fig. 6.2
we see that the two model families, logistic regression and decision trees, both assign a greater importance
to the same set of variables. We take this to be an indication that the projections are consistent across
the different hypothesis spaces.

Note that the decision paths in Fig. 6.4 provide an explanation of the copy model’s global behav-
ior. The decision rules in the initial nodes provide the more general explanations that capture the most
variance. As we traverse the trees towards the inner most nodes, we can refine these explanations by pro-
viding more detailed information. Moreover, note also that the outermost node refer to attributes which
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Fig. 6.3 Average copy accuracy for increasing copy tree depths. Error bars correspond to the standard deviation over all runs.

carry a great significant in the context of credit scoring. Variables like credit_amount or est_soc_income
appear on the first levels of the trees, which indicates that the resulting explanations are consistent with
the considered problem.

In this second scenario we focus on projecting the original model into a new hypothesis space that
encloses model architectures from which explanations are more easily extracted. This allows us to move
to a new solution that complies with regulatory requirements and which can be presented to the regulator.
Additionally, it also gives us a tool to provide clients with explanations in cases where these are necessary.
Further, we could also envisage ways to aid in the process of monitoring a given solution by providing
data scientists or computer engineers with understandable copies, the form of which would adapt to the
specific needs in each case.
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Fig. 6.4 Decision paths for different tree depths. Plots show decision paths for copies based on decision tree classifiers with depths
(a) 1, (b) 2 and (c) 3.

c
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Lessons learned

• In highly regulated environments, such as
the banking industry, data practitioners often
need to deal with a complex trade-off between
predictive performance and understandability
of deployed solutions.

• In those cases where understandability is im-
posed by the existing regulation, practitioners
often resort to complex pre-processing tech-
niques to ensure a good level of accuracy in
models such as logistic regression, which are
deemed acceptable by regulators.

• This pre-processing is mostly used to model
the non-linearities in the data. Hence, it usu-
ally leads to the creation of new variables
created as combinations of others. These
artificially created variables are often non-
intelligible and obfuscate the resulting mo-
dels.

• In this use case we show that it is possi-
ble to de-obfuscate these models by copy-
ing the whole predictive system composed of

both the pre-processing module and the logis-
tic model using non-linear yet interpretable
models, such as decision trees. As a result,
we can obtain copies that perform almost as
well as the pre-processed logistic regression,
but which are based on the original data at-
tributes, which usually remain comprehensi-
ble.

• In addition, we also demonstrate the feasi-
bility of another approach that circumvents
the need of having to conduct an expensive
and time-consuming pre-processing of the va-
riables. We train a high capacity gradient
boosted tree directly on the raw variables and
copy it with simpler models to ensure inter-
pretability of the final solution.

• In this second scenario we also show how these
approach can be exploited to obtain copies
of varying depths and complexities. This
method allows data practitioners to control
the amount of accuracy they are willing to
give up for the sake of interpretability and
viceversa.
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Chapter 7

Use case: Mitigating the bias
learned by trained classifiers

7.1 The context

The growing use of machine learning is partly explained by the fact that it provides highly accurate
predictions [64] with very limited human intervention. This is particularly critical in contexts that involve
high-stakes decisions, such as those where the life of someone is at stake, those that involve basic human
rights like access to housing or those on which a company’s whole business model relies. There is also a
generalized belief that machine learning models provide an objective evaluation of social problems. Human
decision making follows a clinical approach, which is based on intuition and the subjective processing
of information [123]. In contrast, machine learning models generally fall under the category of actuarial
decision making techniques. They rely on empirically established relations and statistical analyses of the
available data to reach a conclusion. As a result, they are perceived as a reliable alternative to human
cognitive biases.

However, while models may escape prejudices, the data with which they are trained do generally not.
Models can only be as good as the data they are trained with and data are often imperfect [55], so that
even well-intentioned applications might give rise to objectionable results [16]. The data we use to train
machine learning models are a collection of past events influenced by previous human decision-making.
They therefore often reflect historical prejudices and cultural stereotypes enforced by the people charged
with making decisions in the past. Machine learning models that learn from labeled data are susceptible
to inheriting these biases. Even when they are not present in the data per se. Take, for example, datasets
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with a poor representation of the different minority groups. This phenomenon is known as sample size
disparity and can lead to higher error rates for certain collectives, as compared to the majority group [16].

In recent years, many studies have publicly denounced machine biases in terms of ethnicity [9][41][128][191],
gender [33][42] or sexual orientation [100]. Studies on analogy generation using word embeddings, for
example, have demonstrated that the popular Word2Vec space encodes gender biases that are potentially
propagated to systems based on this technology [33]. Similarly, models trained to learn word associations
from written texts have been shown to display problematic attitudes towards ethnicity and gender [42],
including associations between female names and family or male names and career. Moreover, apart from
the biases that arise from the data, there are also those that are produced by a poor training of the
models. These deficiencies can appear either because of technical limitations or due to the nature of the
learning process itself. This process is today mainly based on exploiting correlations among the different
data attributes. Very often, however, such correlations are of spurious nature. Models thus built can
therefore rely on non-causal relationships that can lead to discriminative outcomes. Examples of this are
numerous cases of significant racial disparities in commercial facial recognition software [91][201].

The harmful effects that derive from biased outputs in machine learning systems are generally cat-
egorized depending on whether they result in allocative or representative harm [15]. Allocative harm
refers to the withholding of resources or opportunities from certain groups of people on the basis of
attributes not relevant for the considered task. Take, for example, the case of a financial institution
systematically declining to grant loans to non-Caucasian individuals. Conversely, representative harm is
related to a reinforcement of the subordination of certain collectives in terms on their ethnicity, social
class or gender. A high profile example of this is the Google Photos image classifier, which effectively
denigrated dark-skinned people by tagging them as gorillas [110]. Independently of the form of the harm
they produce, models that reproduce existing patterns of discrimination work as reinforcement loops of
the status quo [17][105]. Biased machine learning models promote a system that unfairly undermines the
rights of individuals belonging to protected minorities by preventing them from accessing products and
services with equality of opportunities. They can, hence, constitute a major risk for users, as well as for
the society as a whole, in so far as such practices exist.

In this use case we explore the potential of differential replication through copying to tackle such issues
in certain environments. We show how, under certain circumstances, copying can be used to mitigate
the bias learned by a machine learning model by removing all the sensitive information. We validate
this proposal experimentally and show that we can maintain most of the original predictive performance.
Even in cases where the original training data are not available.

7.2 The case

We explore how to reduce the bias inherited by a machine learning classifier which has been already
deployed using sensitive information and which cannot be modified. We do so by means of a fictitious
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example that nonetheless represents a use case common to many real scenarios. We use the publicly
accessible superhero dataset [222], which serves as a good proxy to many real problems where the data
contain sensitive information. We choose this public dataset in order to avoid disclosure of private
sensitive data. Also because using publicly available data allows us to freely study how the suggested
modifications affect variables and instances.

The superheroes dataset contains information about a few hundred superheroes in the literature,
including their physical attributes, powers and alignment to good or evil. Among the different attributes
there are those that account for protected group features. This is the case, for example, for attributes
like gender and race. In general, usage of this information is not allowed for high-stakes decision making.
Without the appropriate control, models trained on these attributes could lead to unfair decision outputs.
In this use case, we assume an industrial application where usage of this information is legal. We consider
a machine learning classifier that has been trained using sensitive attributes and which outputs biased
predictions.

In recent years, many works have studied how to remove bias in prediction [17][76][106] as well as to
benchmark discrimination in various contexts. Fairness-aware learning has, as a matter of fact, received
considerable attention in the machine learning community of late, with most solutions being aimed at
introducing new formal metrics for fairness and ensuring that classifiers satisfy the desired levels of
equity under such definitions. Solutions often come in two types. In the first case, an exhaustive data
pre-processing removes the ability to distinguish between group membership by getting rid of the sensible
information in the training data [80]. This amounts to removing the sensitive attributes themselves, but
also to ensuring no residual information is encoded by the remaining data. While simple, this approach
often succeeds in repairing the original disparity. In the second case, unfairness is removed by adding
corrective terms to the optimization function. A fairness metric [76][106] is defined and incorporated to
the training algorithm. Initially biased models are therefore re-trained ensuring that the fairness measure
is optimized together with the defined classification loss.

In stringent company environments, however, the deployed machine learning models usually cannot
be re-trained once served into production. This is partly because of the way in which machine learning
pipelines are conceived. Throughout the stages of deployment, different departments and agents interact
with the model. A well established governance framework ensures that data practitioners have access
only to certain information at each stage. Hence, going back is often not possible, either because the data
are lost or subject to privacy constrains or because the server where the data are hosted is not accessible
any more. Whatever the cause, these restrictions make a model re-training ineffective from an economical
and practical perspective.

Alternatively, when the bias arises from the intervention of humans in the sample collection process,
i.e. the dataset is unbalanced or specific minority groups are not equally represented, several papers have
advocated for either collecting new data points or using advanced data synthesis techniques [108][131],
when this is not possible. Finally, recent proposals suggest moving on from learning based on correlations
to being able to draw causal relationships among the data [126]. This would effectively remove any
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dependence of the model on features non-relevant for the considered task. However, this kind of techniques
are not yet ready for mass adoption.

In what follows, we propose an alternative approach suitable for very stringent environments, where
access to the original training data is not supported and re-training is not a cost-effective alternative. We
explore how differential replication through copying could be exploited to remove traces of the sensitive
information from trained models and show that this can effectively reduce the learned bias in certain
circumstances.

7.3 The data

The superheroes dataset [222] describes characteristics such as demographics, powers, physical attributes
and studio of origin of every superhero in SuperHeroDb [223]. It contains information about 177 attributes
for 660 superheroes. This includes the general information listed in Table 7.1, together with information
about whether different superpowers are present in any given hero. We use these data to define a
binary classification problem choosing superhero alignment as the target attribute. We label as good all
superheroes marked as so and as bad otherwise. The distribution of target labels is slightly unbalanced,
with a third of the dataset set to the positive label, good, and the remaining two thirds labelled as bad.
In terms of gender, a 69% of the superheroes are males and a 27% females. The remaining 4% are listed
as other. The race attribute includes 22 different categories. A 23% of the superheroes are human and
an additional 1% are humans who have been affected by some form of radiation. Mutants account for
10% of the data, while other races, including God/Eternal, Android or Demon, individually account for
less than 1% of the instances.

Attribute Description

name Name or AKA of the superhero
gender Gender of the superhero
eyecolor Color of the eye
race Race of the superhero
haircolor Color of the hair
height Height measured in centimeters
publisher Publisher of the comic where the superhero appears
skincolor Color of the skin
alignment Alignment of the superhero

Table 7.1 Complete set of attributes.
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7.4 The proposal

We assume that the original solution to this binary classification problem incorporates knowledge of both
the race and gender attributes and that this gives rise to biased predictions that affect the different groups
disproportionately. Since this model cannot be modified and the training data are not available for a
re-training, we suggest to mitigate the learned bias copying it with a new model instead.

In the simplest approach, we require the copy to not have access to the sensitive data. As mentioned
before, however, this approach may not be enough to remove the bias. Hence, we also require that the
sensitive information not be leaked to the copy through the remaining attributes. This is, we require
that the sensitive information not be known neither explicitly nor implicitly. In the copying framework
this can be accomplished by changing the operational space of the copy, introduced in Chapter 3 as HC ,
to move to a lower dimensional space that doesn’t include the two problematic variables.

Effectively, this can be achieved by removing the sensitive attributes during the synthetic sample
generation process. To do so, each new sample zj is first generated to match the dimensionality of the
original training instances xi. This is so because the original model used as an oracle only accepts total
queries. Then, once the sample has already been labelled, the sensitive dimensions are removed. This
ensures that the copy has no explicit access to the sensitive information. Further, to ensure no implicit
information remains in the system, we also check whether any correlation exists between the removed
attributes and those still in the synthetic dataset. Because the copy is built to replicate the original
decision behavior, we expect it to re-adjust the learned decision boundary to maximize performance even
in the lack of the sensitive data.

7.5 The experimental settings

We begin by removing all entries with an unknown alignment label. We also discard all attributes for
which the number of missing values exceeds the 20% of the total size of the dataset. For the remaining
columns, we set all missing values to the median for numerical attributes and to other for categorical.
For the latter, we also group under the general category other all values with a count below a defined
threshold. We set this threshold to 1% for variable eye color and to 10% for publisher. In the case
of the race attribute, we group entries under the more general categories of human, mutant, robot and
extraterrestial. All those entries that do not fit any of these categories are and grouped under other.
Additionally, we only retain those superhero powers present in at least a 1% of the entries. Finally,
we convert nominal attributes to numerical by means of one-hot encoding and re-scale all variables to
zero-mean and unit variance. The resulting dataset contains 135 variables.

We split these data into stratified 80/20 training and test sets. We use the former to train a fully-
connected artificial neural network with 4 hidden layers, each consisting of 128, 64, 32 and 16 neurons. We
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use SeLu activations, a drop-out of 0.6 and a softmax cross entropy loss optimized using Adam optimizer
for a learning rate equal to 1e − 3. We train the network from a random initialization of weights and
without any pretraining. We use balanced batches with a fixed size of 32. We use this model as our
baseline.

In order to copy this model, we generate a balanced synthetic dataset consisting of 1e6 labelled data
pairs, from which we extract the two problematic attributes. We generate this set using different sampling
strategies for numerical and categorical attributes. For the first, we directly generate synthetic data points
in the original attribute domain by sampling a random normal distribution with mean 0 and standard
deviation 1. In the case of categorical variables, we sample uniformly at random the original category set.
When generating new synthetic values for superhero powers, we ensure that the relationships among the
original data attributes is kept. To do so, we sample uniformly at random the n_powers variable and then
randomly distribute the total count over the individual power attributes. We use the lower-dimensional
synthetic dataset to learn a new artificial neural network with the same architecture and training protocol
as that of the original model, with a fixed batch size to 512 and no drop-out.

We measure bias in terms of the difference in accuracy between the gender and race groups. We
evaluate copies using the empirical fidelity error over both the synthetic dataset, and the original dataset;
and the copy accuracy. In all cases, we run each experiment 10 times and report metrics averaged over
all repetitions.

7.6 The results

In many real scenarios, systematic bias results in individuals belonging to privileged and unprivileged
groups not having access to the same resources, a reality that could very well be reflected in the remaining
data attributes of each group. Hence, before proceeding with our suggested approach, we ascertain the
feasibility of our proposal: we verify that the removal of the two sensitive attributes will not result in
any residual leakage of information into the copies. This could happen, for example, if the remaining
variables encoded information that could be traced back to gender or race, even in the absence of these
data. Hence, we check that no other variable is correlated with these two.

In Fig. 7.1 we report the top ten ranked attributes in terms of their absolute-valued one-to-one
correlation score with these two variables. At most, this correlation is equal to 0.18 in the case of gender
and to 0.35 in the case of race. This means that the information coded in these two features is not
mirrored elsewhere, i.e. the value of these features cannot be estimated from the remaining information.
Thus, we can safely conclude that there will be no residual information left in the synthetic dataset after
the removal of these attributes.
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Fig. 7.1 Top ten ranked attributes in terms of their one-to-one correlation coefficient with (a) gender and (b) race. The ranking is
computed taking the absolute value.

7.6.1 Evaluating the copy performance

In Table 7.2 we report the averaged results for the empirical fidelity error over both the original and the
synthetic datasets and the copy accuracy for the lower dimensionality copies. The original network yields
an accuracy of of 0.65. The mean copy accuracy is equal to 0.65±0.01, averaged over all runs. This means
that the loss in accuracy we incur when substituting the original with the copy in the original data space
is negligible in most cases. Conversely, the empirical fidelity error measured over the synthetic dataset,
which corresponds to the residual error of learning an optimal copy model for the synthetic data points,
is equal to 0.059 ± 0.003. This means that the second step of the single-pass approach, the parameter
tuning, is properly performed. Finally, the mean empirical fidelity error evaluated over the original test
data is 0.22 ± 0.01. This value corresponds to the level of agreement between original and copy when
generalizing the prediction to new unobserved points in the training data environment. The value of
this last error is specially relevant when understanding how the copy is able to replicate the original
decision function in the absence of sensitive information. Removal of the protected attributes from the
synthetic dataset results in a certain shift in the learned decision function. To better understand how
this shift impacts the classification of individual data points, we further study the value of the reported
performance metrics over the different population groups.
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AO RF ,ZZZ
emp RF ,DDD

emp AC

0.65 0.059± 0.003 0.22± 0.01 0.65± 0.01

Table 7.2 Performance metrics averaged over all runs.

7.6.2 Evaluating bias reduction

In Table 7.3 we report the mean accuracy by gender for original and copy. We observe that there
exist significant differences in the predictive accuracy of the original model across the different gender
populations. In particular, male superheroes are more usually wrongly classified than female. This is a
clear sign of the presence of bias in the trained classifier. Independently of whether the decision relies
on the gender attribute, it does affect the different groups in a disparate form. When compared to the
results obtained by the copy, we observe that the disparity among male and female groups is notably
reduced in the latter. In particular, the difference in accuracy among the groups goes from 0.09 for the
original to 0.03 for the copy. As a result, the decisions output by the copy have a more balanced impact
on individuals in both populations.

Original Copy

female 0.73 0.69
male 0.64 0.66

Table 7.3 Accuracy by gender groups for
original and copy.

Original Copy

human 0.78 0.76
mutant 0.75 0.75
robot 0.67 0.5
extraterrestial 0.25 0.5
other 0.59 0.64

Table 7.4 Accuracy by race group for original and
copy.
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Fig. 7.2 Confusion matrices for male (left) and female (right) gender groups for (a) and (b) the original model and (c) and (d) the
copy.

To better characterize these results, we further provide the confusion matrices for the two gender
groups. Figures 7.2(a), 7.2(b), 7.2(c) and 7.2(d) show the relation between true and false positives and
negatives for data in groups male and female for original and copy, respectively. In the case of the male
group, the number of true positives increases for the copy, while the opposite effect is seen for the case
of female. The net effect of this is the balancing of the predictive accuracy between both groups.

Importantly, these results are also observed for the case of the race attribute, although less strongly.
As shown in Table 7.4, the mean accuracy by group tends to balance for the copy. This is clearly observed
in the two majority classes, namely humans and mutants. In the minority classes we also see the benefits
of our proposed solution for the group extraterrestial, which is more often incorrectly classified by the
original.

We conclude that this simple approach results in a certain mitigation of the bias for the gender
attribute. Equivalently, for the race attribute we also observe a certain improvement. However, given
the higher level of granularity for this case, it is harder to evaluate the actual impact of our proposed
approach on the resulting decision boundary.

127



Lessons learned

• The increasing use of machine learning models
in high-stakes decisions is, to a certain extent,
explained by the belief that this technology
provides an objective mechanism to makes de-
cisions. However, evidence has shown that
because models learn from data that repre-
sents the outcome of previous human deci-
sions, they replicate and sometimes even am-
plify the already existing biases.

• In this use case we discuss how differential
replication through copying can be used to
mitigate the bias learned by a trained classi-
fier by removing the sensitive attributes and
forcing a shift in the learned decision boun-
dary.

• We use a public dataset and train a binary
classifier to predict superhero alignment. This
classifier exploits information about both the
gender and the race of each superhero and
outputs predictions that have a disparate im-
pact on the different groups.

• We mitigate this bias by removing the two
sensitive variables from the synthetic dataset
and building copies that replicate the original
decision behavior while operating in a lower
dimensionality domain.

• This is possible provided that the remain-
ing attributes do not leak sensitive informa-
tion into the copies through unwanted corre-
lations. In absence of such correlations, re-
moval of the protected variables ensures that
the copy does not have access to the sensible
information.

• Our results pave the way for more complex
treatments of the fairness problem by means
of copies. Following our approach, one could,
for example, endow copies with fairness me-
trics such as equity of learning or equality of
odds, so that the resulting classifier retain the
original accuracy while at the same time op-
timizing for this new measures.
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Conclusions

This dissertation is the result of an industrial doctoral thesis. As such, it develops an approach to the
field of machine learning that lies at the intersection of the academy and the industry. Its aim is to derive
new theoretical knowledge that can be transferred to the appropriate stakeholders to provide solutions to
specific needs of the industry. This transference requires methods with a good trade-off between quality
and practicality. Conditions that are often hard to obtain in practice.

In general, there exists a huge gap between the theoretical postulates of machine learning and their
practical implementation. This gap is not exclusive to this field. Yet, it is particularly evident in this
case, given the rapid pace with which machine learning evolves. A pace most companies struggle to keep
up with. Commercial machine learning models are delivered through stringent production infrastructures
and their design and deployment are costly and largely constrained by a rapidly changing environment.
The main consequence of this is the lack of adaptability of both the design processes and the resulting
products or services. As a result of this deficiency, the industrial deployment of machine learning today
is far from being sustainable.

The following are the main contributions of this thesis to tackling this issue from both an academic
and an industrial perspective. At the end of this section, we also present the main lines of work that
follow from the ideas here presented.

Academic contributions

We have formalized the problem of environmental adaptation in machine learning, which refers to situa-
tions where changes in the constraints of a task requires evolving to a new form of knowledge represen-
tation or hypothesis space. We have discussed different approaches to this problem under the framework
of differential replication. This notion delves with ensuring adaptability of a predictive system as it
evolves throughout its lifespan by reusing the knowledge acquired from generation to generation. In
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implementing differential replication in practice, we have provided a preliminary categorization of the
different inheritance mechanisms available and the scenarios they each refer to. In scenarios where access
to the models and their training data are restricted, we have defined inheritance by copying as the process
by which the decision behavior of a trained model can be projected into a new hypothesis space that
meets the requirements of a stringent environment. The main body of work of this thesis has focused on
deriving the mathematical background for copying and discussing the consequences of this formulation
in practice. We have introduced an evaluation framework to measure the performance of copying under
different assumptions and shown its validity through a series of well-established experiments.

Industrial constributions

We have demonstrated the value of copying under the framework of machine learning accountability.
Accountability involves taking the necessary measures to report and justify the shortcomings of machine
learning solutions, as well as to establish the legal liability of the people or organizations who are re-
sponsible from any negative impact derived from them. We have introduced the notion of actionable
accountability, a process composed of two different stages: the risk-based auditing, which refers to an
obligation to report all the potential risks that may be derived from a commercial machine learning
solution; and risk mitigation, which includes mechanisms to mitigate the identified risks and ultimately
remove them from the system. In particular, we have discussed the role of copying as one of such mitiga-
tion mechanisms. Finally, we have demonstrated how copying can be used to mitigate the risks related
to interpretability and fairness in two real industrial machine learning solutions.

Future work

In ensuring sustainability of machine learning deployment, differential replication is a valuable technique
which should be further studied both theoretically and in practice. Differential replication through copy-
ing allows us to enhance systems with higher layers of abstraction. A particularly relevant enhancement
in this sense is adding causality features to regular models. This would enable a deeper comprehension
of the problems at hand to provide more reliable predictions. Another possible enhancement is that
of privacy. Copies could be specifically built to be privacy-preserving with respect to the original data
attributes and instances, so that commercial solutions could more safely be disclosed to the general public
without the risk of data leakage.

When it comes to enhancing the process of copying itself, future work should focus on further devel-
oping the dual approach. In moving on from the single-pass, the performance of copies would largely
benefit from a more refined synthetic sample generation process. In particular, additional experiments are
required to test this strategy in practice against different datasets and prediction tasks. Along these same
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lines, future research should also focus on adapting the copying framework to multilabel environments.
In its current form, differential replication through copying is feasible in both binary and multiclass sce-
narios. Yet extension to multilabel problems would ensure its applicability also to relevant fields such a
that of medical diagnosis.

Finally, additional mechanisms should be devised with the aim of ensuring sustainability in industrial
machine learning deployment. Sustainability implies a cost-effective perspective to develop commercial
applications that are profitable. It also entails a responsible use of human, time and material resources.
Finally, sustainability also delves with safety. A sustainable deployment of machine learning is one where
no harm is derived to companies, users or the society as a whole and which improves previous standards
to improve our overall quality of life.
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Appendix A

Comparison of sampling
strategies

A.1 Methods

We explore different methods for generating synthetic datasets that enable copying in different scenar-
ios. These datasets should be such that the original feature space is adequately explored and the learned
decision boundary well-represented. We propose two sampling techniques: an exploration-exploitation
policy using a Boundary sampling model and a modified fast Bayesian sampling algorithm that uses
Gaussian processes to reduce the uncertainty around the decision function. In what follows we describe
these two approaches. For comparative purposes, we also use a modified Jacobian sampling strategy
based on [184] and random sampling from a uniform distribution defined on original attribute domain.

A.1.1 Boundary sampling

This method combines uniform exploration with a certain amount of exploitation. The main idea is
to conduct a targeted exploration of the space until the decision boundary is found. The area around
the boundary is then exploited by alternatively sampling at both sides. Often, classifiers do not learn a
single decision boundary, but multiple. Hence, different decision regions are to be expected. This process
is therefore repeated several times to ensure a proper coverage of the whole decision space. The detailed
algorithm for Boundary sampling is shown in Alg. 2.

We begin by generating samples uniformly at random until we find a sample whose predicted class
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Algorithm 2 Boundary Sampling(int N , Classifier fO)
1: Z ← ∅
2: while |Z| < N do
3: za ∼ Uniform(X ), ya ← fO(za)
4: repeat ▷ Search samples with different labels
5: zb, yb ← za, ya
6: za ∼ Uniform(X ), ya ← fO(za)
7: Z ← Z ∪ {za, ya)}
8: until ya ̸= yb
9: while ||zb − za||2 ≥ ε do ▷ binary search

10: zc ← (za + zb)/2, yc ← fO(zc)
11: Z ← Z ∪ {(zc, yc)}
12: zb, yb ← zc, yc if yc ̸= ya else za, ya ← zc, yc
13: end while
14: T ← {(zc, yc) : repeated I times}
15: while T ̸= ∅ and for no more than T iterations do
16: (z, y) ∈ T, T ← T \ {(z, y)}
17: u← u/∥u∥2, u ∼ N(0, Id) ▷ random direction
18: for N times do
19: for α ∈ {1, 0.9, · · · ,−0.9,−1} and while fO(z + λv) = y do
20: v ← α · u+ w with w a random vector s.t. w ⊥ u, ||v||2 = 1
21: end for
22: z ← x+ λv, y ← fO(z)
23: Z ← Z ∪ {(z, y)}, u← v
24: every Poiss(λ′) points do T ← T ∪ (z, y)
25: end for
26: end while
27: end while
28: return S

label differs from the others. We then proceed to do a binary search in the line that connects this sample
with the one obtained right before. This binary search is stopped when a pair of points (za, zb) is found
such that ∥za−zb∥2 < ε and fO(za) ̸= fO(zb) for fO the original classifier and ε a given tolerance. This
is, points to which the original classifier assigns different class labels and which are located at a distance
from the boundary no larger than ε. We take one of these two points z as a starting point and draw
samples at a constant step distance λ in the direction of its unitary random vector. We stop when we
obtain a new point z′ such that fO(z) ̸= fO(z

′), and repeat the process.

The number of samples in the binary search increases with the logarithm of 1/ε. The value of ε must
be small compared to the boundary exploration step λ, which determines the Euclidean distance between
two consecutive samples. The higher the value of λ, the faster the boundary will be covered with less
resolution. If λ is small, a large proportion of the boundary may remain unexplored.

The above process results in a set of samples that alternate the two sides of the decision boundary,
with distance to the boundary bounded by λ. These samples define a one-dimensional curve: a thread.
A thread contains a predefined number of steps N , which at any given time depends on the number of
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samples already generated. Threads are stopped when out of range or when no other samples are found in
the given direction. To ensure a good coverage of the space, we allow T threads to be created from each
point z. When this number is reached, a new binary search starts. For high values of T , the boundary
is well sampled in certain areas, but many regions are left uncovered. For lower values of T , we favour
an exploration policy: a larger portion of the boundary is explored, albeit with less intensity.

We allow each individual thread to generate other threads with a frequency modelled by a Poisson
distribution parameterized by λ′. This parameter controls the overall distribution of the different threads.
For higher values of λ′, exploration threads are more dispersed and samples in the vicinity of the boundary
more spread. We perform I independent runs, increasing the maximum number of threads from run to
run. Given a desired number of synthetic samples N , we generate half of them following the Boundary
sampling algorithm and the other half using random sampling. The theoretical computational cost of
this method is O(Nd).

A.1.2 Fast Bayesian sampling

While Boundary sampling ensures a good representation of the boundary neighborhood, it heavily
relies on Random sampling to explore the remaining parts of the space. Hence, in a secondary approach,
we propose Bayesian Sampling. Initially, the rationale behind this mechanism starts assigning a large
uncertainty to the whole sampling domain. When a new sample is generated in a certain region, the
uncertainty in that part of the space is reduced. The goal of this mechanism is to reduce the global
uncertainty by guiding future sampling towards the most uncertain areas.

This method is based on Bayesian optimization, where the function to optimize is assumed to be a
random process and samples are generated maximizing an acquisition function. We start by assigning a
large uncertainty to the whole input space. Everytime we generate a new sample, we aim to reduce the
global uncertainty by guiding future sampling towards the most uncertain areas.

Let us assume a Gaussian Process g ∼ GP(0, kSE) g ∼ GP(0, kSE) with mean 0 and a squared
exponential kernel of the form

kSE(z, z
′) = σ2e−

||z−z′||22
2l2 , (A.1)

for length scale l and variance σ2. Every realization gi of the stochastic process g is such that gi : X → R.
In particular, we treat the original classifier fO as one of such realizations1. Our objective is to find a set
of points Z such that the function ⌊E[gZ ]⌉ 2, where gZ = (g | g(z) = fO(z),∀ z ∈ Z), is similar enough

1The class labels output by fO take only discrete values, whereas a realization of the Gaussian Process defined as above
gives points in the set of real numbers. However, there exist realizations of g as close to fO as desired. Thus, it is reasonable
to consider fO to be a realization of g.

2⌊x⌉ rounds x to the nearest integer.
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Algorithm 3 Bayesian Sampling(int N , Classifier O)
1: while |Z| < N do
2: gZ ← g | g(z) = y ∀ (z, y) ∈ Z ▷ A posteriori Gaussian process
3: x← argmaxz∈D f(gZ , z)
4: y ← fO(z)
5: Z ← Z ∪ (z, y)
6: end while
7: return Z

to fO. With this aim in mind, we propose an acquisition function f : GP × X → R of the form

f(g, z) = Var[g(z)] · [1 + τ · frac(E[g(z)])2(1− frac(E[g(z)]))2], (A.2)

where frac(z) stands for the decimal part of z. The first term involves the variance of the process. When
choosing the next sample, it gives a higher priority to points with a bigger variance, i.e. located in a
region where we have little information about fO. The second term focuses on exploring the boundary. Its
maximum is located at 0.5. This encourages refining areas close to a transition between classes. Parameter
τ governs the trade-off between the two terms. For high values of τ , more samples are generated in the
vicinity of the boundary, when compared with the remaining sampling domain. The algorithm for raw
Bayesian sampling is displayed in Alg. 3.

As it is, finding the a posteriori distribution of the Gaussian Process has a high computational cost
due to the need to compute the mean and the covariance matrix. Moreover, this cost is increased when
optimizing for the maximum of the acquisition function. The total cost is roughly O(dN3). In its raw
form, Bayesian sampling is a very slow process. To overcome this limitation, we propose a faster version,
where we find the a posteriori Gaussian distribution in a single optimization, by limiting the number of
samples used to compute the a posteriori process to b. The lower the value of b, the faster the algorithm
converges, but also the less accurate it is. Indeed, while this approach is notably faster, it is not warranted
to find an optimal solution.

When computing the maximum of the acquisition function, we set the starting point to z0 ∼ Uniform(X )
and the total number of iterations to N , the number of random samples used to compute the first a pos-
teriori distribution. In general, the acquisition function is non-convex, so that we can identify the next
point to sample to be z = argmaxz∈V(z0)⊆D f(gZ , z) for V(z0) a neighbourhood of z0 not necessarily
open. The number of points generated by this Gaussian process is limited by a slowness factor sf , defined
as the inverse of the fraction of samples generated from the gaussian process with respect to those used
to compute the a posteriori, without recalculation. This factor exploits the fact that the optimization of
the acquisition function only finds local minima, i.e. it does not generate the same samples. A low value
makes the algorithm faster, but less precise. Its maximum value is set to b.

These modifications allow us to sample the acquisition function without having to constantly recal-
culate the posterior. This is possible because we find “local” optima. In all cases, the number of points
calculated without reoptimizing the Gaussian process is proportional to the number of samples used to
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Algorithm 4 Fast Bayesian Sampling(int N , Classifier fO)
1: Z ← {(z, fO(z)) | 10× z ∼ Uniform(D)}
2: while |Z| < N do
3: if |Z| ≤ b then
4: Zr ← Z
5: else ▷ Limit to b the number of samples to calculate the posterior distribution
6: Zr ⊆ Z s.t. |Zr| = b
7: end if
8: gZr ← g | g(z) = y ∀(z, y) ∈ Zr ▷ A posteriori Gaussian process
9: T ← ∅

10: repeat
11: z0 ∼ Uniform(D)
12: z ← argmaxz∈V(z0)⊆D f(gZr , z)
13: y ← fO(z)
14: T ← T ∪ (z, y)
15: until |T | = ⌊|Zr|/sf⌉ ▷ sf: slowness factor
16: Z ← Z ∪ T
17: end while
18: return S

optimize the previous Gaussian process. The full algorithm for Fast Bayesian sampling is depicted in
Alg. 4. This method has linear complexity with respect to the number of samples, roughly O(Ndb2).
Unless otherwise specified, we use the term Bayesian sampling to refer to this faster version.

A.1.3 Adapted Jacobian sampling

Finally, we present an adapted version of the Jacobian-based Dataset Augmentation algorithm pro-
posed in [184]. We refer the reader to this reference for an in-depth description of this method. We here
only discuss the main characteristics, as well as our added modifications. Our modified algorithm for
Jacobian sampling is shown in Alg. 5.

The original algorithm starts with a set of samples specifically chosen to be similar to the ones in
the original training set. These samples are used to train a preliminary substitute model with the same
architecture of the original. The heuristics then proceeds by generating new samples in the directions
in which the original model’s outputs vary. These directions are identified by evaluating the sign of
the Jacobian matrix dimension corresponding to the predictions output for different input points. The
substitute model is then re-trained by iteratively applying the data augmentation technique on the initial
samples. Every time new labelled samples are generated, the substitute model is refined thanks to a
better representation of the original decision boundary.

In our case, we allow no access to the training data instances and in turn start with a set of randomly
generated samples. At each iteration, we train a general ANN classifier with the available samples. We
define the architecture of this classifier to match that proposed by [184]. It consists of 4 hidden layers
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Algorithm 5 Jacobian Sampling(int N , Classifier fO

1: Z ← {(z, fO(z)) | 10× z ∼ Uniform(D)} ▷ Initial set of samples
2: while |Z| < N do
3: T ← random subset of Z s.t. |T | = T
4: Z ← Z ∪ Bayesian Sampling(T + I, T, fO)
5: fM ← trained MLP with Z
6: U ← random subset s.t. |U | = max(10, |Z|)/k
7: for z ∈ U and g ∈ {∇p(fO(z) = i) : i ∈ |k| do
8: g ← g

||g|| or
sign(g)

||sign(g)|| if ||g|| ≈ 0

9: if p mod P = 0 then
10: u← z + λ(g +N (0, 0.25))
11: Z ← Z ∪ {(u, fO(u))}
12: end if
13: end for
14: end while
15: return Z

a b

Fig. A.1 (a) Training dataset and (b) decision boundary learned by an SVM with a radial basis function kernel.

with sizes 32, 64, 200 and 200. Once this model is trained, we compute gradients with respect to each
label for every sample. New samples are then taken making a step of length λ in the direction of the
computed gradients from every available point. Parameter λ determines the distance between one sample
and the next. If this value is low, the algorithm is slower in finding the boundary and more samples must
be generated. A high value, however, results in a less precise search of the boundary. In cases where the
norm of a gradient is close to 0, we avoid running into precision problems by using its sign. We also add
Gaussian noise to the steps. The total number of steps is controlled by parameter P, the number of steps
performed with the same initial sample subset. For a fixed number of total samples N , a high value of P
ensures we reach the boundary, but we could leave other regions unexplored.

Finally, to ensure we explore the whole feature space, at each iteration we also include a fix number of
samples I obtained by means of Bayesian sampling. For large values of I, samples are better distributed
across the domain. However, the boundary might be less explored. We generate these samples for a fixed
number of initial samples T for the a posteriori Gaussian process. If the value of T is high, the algorithm
will produce few iterations of a lot of samples, resulting in a poorly covered space. On the contrary, if
its value is low, more iterations are performed while less regions near the boundary are sampled. The
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a b c d e

Fig. A.2 From top to bottom, synthetic datasets of sizes 50, 250 and 1000 generated using (a) Random sampling, (b) Boundary
sampling, (c) Fast Bayesian sampling, (d) reoptimized Bayesian sampling and (e) adapted Jacobian sampling.

theoretical computational cost of this method is O(Ndk).

A.1.4 Intuition

In Fig.A.2 we provide an intuition of how the different methods perform on the toy example shown in
Fig.A.1, for different number of samples. Fig.A.1(a) shows the original training data and Fig.A.1(b) the
decision boundary learned by an ANN with a single hidden layer. Figs. A.2(a), (b), (c), (d) and (e) show
the synthetic datasets generated using random sampling, Boundary sampling, fast Bayesian sampling,
reoptimized Bayesian sampling and adapted Jacobian sampling, respectively.

When comparing results for Boundary sampling in Fig.A.2(d) to the case of exclusive random sampling
in Fig.A.2(c), the boundary is sampled with more emphasis, although a large number of samples is
required to properly cover this region. Indeed, the main advantage of random sampling is that it scatters
the samples across the space with equal probability. However, this method is oblivious to the structures
of interest, i.e. it retains no knowledge about the form of the decision boundary for future sampling
steps.

Samples generated from Bayesian sampling, in Fig.A.2(c), are well distributed, without forming clus-
ters. The importance given to the boundary on the acquisition function is not manifested in a big scale
due to the simplifications. If we let the Gaussian process re-optimize several times, it correctly samples
the boundary as well as the rest of the space, as shown in Fig.A.2(d). Finally, synthetic data points
generated with the adapted Jacobian sampling, in Fig.A.2(e), form diagonal lines due to the use of the
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sign of the gradient.

A.2 Experiments

We compare the different methods above on the 6 UCI datasets described in Table A.1. Overall, these
datasets include a heterogeneous sample of binary and multiclass problems with varying dimensionalities.
In all cases the data are defined over a real feature space. In order to train the original classifiers for each
problem, we assume the data to be normally distributed in all cases and apply a linear transformation
such that, when variables are not correlated, 0.99d samples lay inside the [0, 1]d hypercube. We split
the data into stratified 80/20 training and test sets. We use the training set to learn an artificial neural
network with a single hidden layer of 5 neurons for each problem.

Dataset Features Classes Samples

bank 16 2 3616
ilpd-indian-liver 9 2 466
magic 10 2 15216
miniboone 50 2 104051
seeds 7 3 168
synthetic-control 60 6 480

Table A.1 Description of the 6 selected datasets from the UCI
machine learning repository.

We use the different methods above to generate synthetic sets of size 106 in the restricted input space
[0, 1]d. For comparative purposes, we also use random sampling. The choice of parameters for each
method is specified in Table A.2. Because all algorithms produce new samples in an accumulative way,
we also generate smaller sets by selecting the first j points. Finally, for evaluation purposes, we generate
balanced reference sample sets W = {wi, fO(wi)}Li=1 for each problem. These sets are comprised of
L = 107 data points sampled uniformly at random in the [0, 1]d hypercube.

A.2.1 Evaluation metrics

We evaluate the different sampling strategies in terms of the performance of copies built on the
resulting synthetic data. We build copies based on different architectures, including an ANN with the
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Algorithm Parameters

Boundary
ε = 0.01 λ = 0.05 λ′ = 5 I = round(2 + log(N))
T = round(8 + 4 log(N)) N = 5 + 2.6 log(N)

Bayesian l = 0.5
√
d σ2 = 0.25k2 τ = 10

sf = 20 b = 1000 N = 10
Jacobian I = min(100, round(5 +N/4)

T = 50 λ = 0.05 P = 5

Table A.2 Parameters settings for the different algorithms.

same architecture as above (ANN), a logistic regression (LR), a decision tree classifier (DT) and a deeper
ANN composed of 3 hidden layers with 50 neurons each (ANN2).

To compensate for the potential under-representation of one or more classes in the synthetic datasets,
we measure the balanced empirical fidelity error, RF

emp,b, defined as

RF
emp,b =

1

sk

k∑
j=1

s∑
i=1

I[fO(x
j
i ) = fC(x

j
i )]

for k the number of classes and s the number of samples per class, so that xj
i refers to sample i of class

j.
In addition, we also report the original accuracy AO of the target classifier in each case, as well as the

empirical fidelity error as defined in Chapter 4. We report metrics averaged over 10 repetitions, except for
Bayesian sampling, for which we use 5 repetitions. We also provide the execution times of the different
methods and sample sizes. All experiments are carried out in a single m4.16xlarge Amazon EC2 instance
with 64 cores, 256 GB of RAM and 40 GB of SSD storage.

A.3 Results

In what follows we discuss our main experimental results. We first validate the generated refer-
ence sample set and then discuss the performance of the different methods, as well as their associated
computational cost.

A.3.1 Reference set evaluation

We propose two checks to validate the reference sample sets W . First, we fit the original architecture
to the reference data and compute the balanced empirical fidelity error, RF,W

emp,b. As a complementary
check, we also evaluate the empirical fidelity error over the original set, RF,D

emp,b. Results are shown in
Table A.3. Most values are close to 0, which we take as an indication that the reference sample sets are
a suitable baseline with which to compare our proposed sampling strategies. We note the exception of
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bank ilpd magic miniboone seeds synthetic

RF,W
emp,b 0.023 0.080 0.001 0.009 0.020 0.010

RF,D
emp,b 0.021 0.385 0.001 0.168 0.000 0.000
AO 0.8829 0.6410 0.8562 0.9119 0.8095 0.6750

Table A.3 Quality checks for the reference sample sets.

the ilpd-indian-liver dataset, for which we are not confident enough of our evaluation.

A.3.2 Algorithm evaluation

In Fig.A.3 we report the balanced empirical fidelity error for the different copy architectures, sampling
strategies and datasets, measured on the reference sample sets. Plots show the 20, 50 and 80 percentiles
of the multiple realizations.

Boundary sampling performs well for copies based on LR, since there is a lot of information to find
the optimal decision hyperplane. However, Bayesian sampling performs comparably better with fewer
samples i.e. displays the fastest growth. This is because it focuses on globally reducing the uncertainty
during the first steps. In the case of LR, it learns fast until it reaches its capacity limit. For DTs, random
sampling displays the best behavior. This may be because DTs work well when there is a sample in each
region of the space in order to create the leaves. In high dimensionality, the coverage of X with DTs is
costly, which seems to be in accordance with their slowly increasing score.

Copies based on ANN and especially on ANN2 achieve the best scores in general. We highlight
the cases of bank and ilpd-indian-liver datasets for which the simpler ANN performs significantly worst,
indicating that the use of matching architectures does not guarantee a good performance. This may
happen because the characteristics of the problem change when using the synthetic dataset instead of
the training data. This, together with the fact that the original architecture has just enough degrees of
freedom to replicate the decision boundary, deters the copy from converging to the same solution.

In terms of the aggregated comparison among techniques, the adapted Jacobian sampling seems to
perform the worst. This method generates linear structures which contain a large number of samples.
As a result, it has a wide uncertainty band. For a large number of samples random sampling gathers
the greatest number of victories. Closely behind, Boundary and Bayesian sampling are both reasonably
similar in terms of their averaged performance.

A.3.3 Computational cost

Fig. A.4 shows the computational cost of the different algorithms for copies based on ANN2, i.e.
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Fig. A.3 Median and 20-80 percentil band. The similarity axis starts from 1/k for k the number of classes: the expected score for
a classifier that has not learned anything. For ANN2 models, we only show results for 105 samples, due to the high training times.
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Fig. A.4 Execution time of the different sampling strategies as a function of dataset size.

the worst-case scenario. The execution time is asymptotically linear. Bayesian sampling and Random
sampling are the slowest and the fastest, respectively. A great advantage of random sampling is its
simplicity, and consequently its low cost. Its main drawback is, however, that it samples points with
no regards to the form of the decision function or the resulting class distribution. In high dimensional
problems, Boundary sampling may be a good compromise between time and accuracy. In the absence of
any time constrain, however, Bayesian sampling ensures a more reliable exploration.
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