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Abstract

The Zipf distribution, also known as discrete Pareto distribution, attracts considerable atten-
tion because it helps describe skewed data from many natural as well as man-made systems.
Under the Zipf distribution, the frequency of a given value is a power function of its size.
Consequently, when plotting the frequencies versus the size in log-log scale for data follow-
ing this distribution, one obtains a straight line. Nevertheless, for many data sets the linearity
is only observed in the tail and when this happens, the Zipf is only adjusted for values larger
than a given threshold. This procedure implies a loss of information, and unless one is only
interested in the tail of the distribution, the need to have access to more flexible alternatives
distributions is evidenced.

The work conducted in this thesis revolves around four bi-parametric extensions of the
Zipf distribution. The first two belong to the class of Random Stopped Extreme distributions.
The third extension is the result of applying the concept of Poisson-Stopped-Sum to the
Zipf distribution and, the last one, is obtained by including an additional parameter to the
probability generating function of the Zipf. An interesting characteristic of three of the
models presented is that they allow for a parameter interpretation that gives some insights
about the mechanism that generates the data. In order to analyze the performance of these
models, we have fitted the degree sequences of real networks from different areas as: social
networks, protein interaction networks or collaboration networks. The fits obtained have been
compared with those obtained with other bi-parametric models such as: the Zipf-Mandelbrot,
the discrete Weibull or the negative binomial. To facilitate the use of the models presented,
they have been implemented in the zipfextR package available in the Comprehensive R
Archive Network.
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Introduction

Discrete Power Law (PL) distributions are those families of distributions such that the
probabilities are inversely proportional to a positive power of the value itself. The history
of PLs can be traced back to the late XIX century, where the economist Vilfredo Pareto
developed the Pareto distribution [Mitzenmacher, 2004; Vilfredo, 1896], this is why it is also
known as discrete Pareto distribution. The PL distribution defined in a finite support is well
known by its associated “Pareto rule” or “80-20 rule” that says that 80% of the abundance of
a country is held by 20% of the population, or that 80% of the work is done in 20% of the
workday. Later on, Auerbach [Auerbach, 1913], Estoup [Estoup, 1916] and Zipf [Zipf, 1935,
1949] used particular cases of PL distributions to model variables such as: the population
in cities, the frequency of words in a text or the length of intervals between repetitions in a
Mozart’s concerto. Even though part of the work of Auerbach and Estoup overlaps in some
aspects, with that by Zipf, it is the last one who popularizes the “Zipf’s law” as the law of
“least-effort”. This is because by analyzing the frequency of words in texts, he observed that
usually there are many words that appear very few times and, at the same time, very few
words that appear a very large (sometimes huge) number of times. This results in highly
skewed data sets.

This “least-effort” phenomenon also appears in Network Science, where the Zipf dis-
tribution is usually assumed to be the distribution of the number of connections of a node
in a network. This is because in a real network, there usually exist many nodes exhibiting
very few connections, and very few nodes highly connected, the last ones denoted as hubs. A
network with this characteristic is usually known as an “scale-free network”, see for instance
Csermely [2009] or Barabási and Pósfai [2016].

Network Science, in particular, has been the core motivation of this thesis. Its initial part
was performed in collaboration with the researchers Josep Larriba-Pey and Arnau Prat-Pérez
from the DAMA-UPC research group 1. They pointed out that the PL assumption for the
degree sequence of a real network (the sequence of the number of connections of the nodes)
was not as general as it was thought. They also pointed out that generating graphs similar to

1https://www.dama.upc.edu/

https://www.dama.upc.edu/
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those observed in reality was becoming very important, to be able to synthetically generate
graphs similar to those observed in reality, and that one first step to do so, was to be able to
generate data from distributions more flexible than the Zipf distribution.

Recently the work by Broido and Clauset [2019] has analyzed a large corpus of degree
sequences of graphs coming from many different research areas, and has confirmed that only
an small percentage of those are what they denote as “pure scale free”.

The main reason for the real degree sequences to deviate from PL behavior is that, when
the probabilities of a PL are plotted in log-log scale one obtains a straight line, and degree
sequences of real networks tend to show a top-concave (less frequent top-convex) pattern.
The work by Newman [2005] proposes to face this problem by first determining a cut-off
value, and then by fitting a PL distribution on the tail. The cut-off value determination was
quite arbitrary since it requires a visual inspection. Later on, Clauset et al. [2009] proposed a
methodology to determine a good cut-off value, based on imposing the distance between the
theoretical and the empirical distribution to minimum. This approximation has been applied
in many recent research papers such as, Cho et al. [2011] and Gomez-Lievano et al. [2012].
Nevertheless, this approximation requires the suppression of some observed values that may
contain important information. Thus, unless the person is only interested in modeling the
tail of the distribution, alternatives to the Zipf distribution that allow to model the data in its
entire space are required, and this is the main objective of this thesis.

In this work, the Zipf distribution is the discrete PL family of distributions with support
the integer values strictly larger or equal than one, and four extensions of this family of
distributions are proposed. Two of them allow for top-concavity as well as top-convexity
while maintaining the linearity in the tail. The other two only adapt top-concavity which is the
most common situation. In three of the four models proposed, the parameter interpretation
provides information about the mechanism that generates the data. For all the models,
a mechanism that randomly generates data from the distributions is established, and its
performance is tested by means of the Kolmogorov-Smirnov (KL) test. In order to promote
the use of the models presented, the zipfextR package [Duarte-López and Pérez-Casany,
2020] has been created, and it is available in the Comprehensive R Archive Network (CRAN).
The suitability of the models presented to fit real-world data has been tested, by modeling
degree sequences of networks that come from many different areas.

This thesis is organized as follows. In Chapter 1 the Zipf distribution is introduced as
well as its main characteristics and limitations. Some alternatives that appear in the scientific
literature are also introduced, because they are used to compare the performance of the
models presented in this thesis. We have obtained two new theoretical results that allow to
see the Zipf distribution as a mixture distribution, and those are also included in this Chapter.
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Chapter 2 contains the first two Zipf’s generalizations: the Marshall-Olkin extended
Zipf distribution (MOEZipf) and the Zipf-Poisson Extreme distribution (Zipf-PE). The work
done with respect to the first one has been the continuation of what was done in the master
thesis of Aina Casellas (see Casellas [2013] and Pérez-Casany and Casellas [2013]). This
generalization is the result of applying the Marshall Olkin transformation (MO) to the Zipf
distribution. The MO has been largely used to generalize continuous distributions see, for
instance, Yeh [2004], Ghitany et al. [2005], Ghitany et al. [2007] or Jose [2011]. With
respect to discrete distributions, the paper by Gómez-Déniz [2010] applies it to generalize
the geometric distribution. Given that, the result of applying the MO transformation to
a given random probability distribution is a random stopped extreme distribution with a
geometrical stopping distribution, this drives us to investigate the result of changing the
stopping distribution and to consider a Poisson instead of a geometrical. This gave place to
the Zipf-PE distribution. The results obtained with these two extensions appear in the paper
by Duarte-López et al. [2020a].

Chapter 3 generalizes the Zipf by means of the concept of Poisson-stopped-sum (PSS)
[Johnson et al., 2005], giving place to the Zipf-Poisson-stopped sum distribution (Zipf-PSS).
The PSS mechanism has been widely used for generalizing families of distributions, and
some examples are the negative binomial, the Generalized-Inverse-Gaussian-Poisson or the
Pòlya-Aeppli. Of all the models presented, the Zipf-PSS is the only one that has the zero
value in its domain and thus, in the particular case of Network Analysis, allows to model
networks with isolated nodes. The main results related to the Zipf-PSS are published in the
paper by Duarte-López et al. [2020b].

Chapter 4 is devoted to the Zipf-Polylog extension, which is obtained by adding an
extra parameter to the Zipf probability generating function. After defining it, we saw
that it had already been proposed in the literature with the name of PL distribution with
exponential cutoff, see Clauset et al. [2009], or hybrid geometric/power model, see Visser
[2013]. Nevertheless, apart from using it to fit data, there is not a profound study of its
properties. For that reason, in this chapter we have stated and proved some of its main
characteristics. In particular, this is the only extension that is a two-parameter exponential
family and that has moments of any order regardless of the parameter values. The results
related to this family appear in Valero et al. [2020].

Chapter 5 is devoted to the analysis of the degree sequence of networks coming from
different domains. The fits obtained with the best of our models are compared, whenever
possible, with those obtained with the Zipf distribution by means of the likelihood ratio test
(LRT). By means of the Akaïke’s Information Criterion (AIC) our models are also compared
with the other bi-parametric ones mentioned in Chapter 1.
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We finish the document with the conclusions and the future work.
Appendixes A and B are devoted, respectively, to perform a comparative study of the

models presented, and to introduce the zipfextR package [Duarte-López and Pérez-Casany,
2020]. Both tools are done to facilitate the use of our models to practitioners. Appendix C
contains the plots of the stopping distribution considered in Table 2.2 of Chapter 2. Finally,
Appendix D contains the implementation of the KS test, and the source code necessary to
analyze the data sets presented in Chapter 5.

This thesis has been funded by grants TIN2017-89244-R from MINECO (Ministerio de
Economía, Industria y Competitividad), Spain; the recognition 2017SGR-856 (MACDA)
and 2018_FI_B2_00064 from AGAUR (Generalitat de Catalunya), Spain. It has also been
supported by projects J-01914 (Use of Graph Databases in Industrial Environments) and EU
FP7 (Linked Data Benchmark Council). Borses Ferran Sunyer i Balaguer, from l’Institut
d’Estudis Catalans, funded the one month stay of Ariel Duarte-López at the National Institute
of Biology in Slovenia in 2018.



Chapter 1

The Zipf distribution

This chapter introduces the Zipf distribution [Zipf, 1949], which forms the basis of the work
developed throughout this thesis. We begin by defining the Zipf distribution and analyzing
its main properties. One of the most surprising characteristics of this distribution is its
emergence in dissimilar and unconnected fields, which makes some authors consider it to
be a pervasive distribution [Adamic, 2011, and references therein]. We present two of the
most important Zipf generative models that appear in the literature. In addition, we discuss
the main properties as well as the main limitations of this family of distributions. These
limitations have motivated this thesis, and before introducing our work we would like to
comment on several alternatives already introduced in the literature.
The chapter concludes by stating the first contribution of this thesis: we prove that the Zipf
model is a mixture of geometric distributions as well as a mixture of zero-truncated Poisson
distributions (MZTP). This result relates the Zipf to two classical distributions and points out
that it arises when the parameter of the geometrical and Poisson distributions follow a given
probability distribution. What is more, based on the results that appear in Valero et al. [2010],
we prove that the Zipf distribution is not the zero-truncation of a mixed Poisson distribution
(ZTMP).

1.1 Definitions, properties and applications

Before introducing the Zipf distribution we present a brief overview of a more general family
of distributions, the PL, where the Zipf family is included.
PL distributions are very common in the literature and they can emerge in a large variety
of unrelated scenarios. Maybe one of the particular characteristics of these family of
distributions is that they tend to concentrate the probabilities in the small values in a large
range of its parameter space. The PLs can be defined as continuous or discrete distribution
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families. In a discrete PL distribution the probabilities change inversely as a power of the
values. One of the most used continuous PL is the Pareto Distribution [Mitzenmacher, 2004;
Vilfredo, 1896]. In his work Pareto states that the distribution of the incomes follow a PL,
and define what it is known as the “80/20 rule”, which says that, the 80% of the incomes is
earned by the 20% of the population. The probability density function of this distribution is
defined as follows:

P(X = x) =

α−1
xmin

(
x

xmin

)−α

∀x ≥ xmin

0 otherwise,
(1.1.1)

where α > 1, xmin > 0 and its support is the values such that x ∈ [xmin,+∞).
The discrete version of the Pareto distribution is defined as:

P(X = x) =

 x−α

ζ (α,xmin)
∀x ≥ xmin

0 otherwise,
(1.1.2)

where α > 1, xmin > 0 and ζ (α,xmin) = ∑
+∞

i=xmin
i−α = ∑

+∞

i=0(i+ xmin)
−α is the Hurwitz zeta

function.
For the particular case when xmin = 1 in (1.1.2) the Zipf distribution is obtained. This is

why the Zipf distribution is a particular case of a discrete PL distribution.
Thus, it is said that a random variable (r.v.) X follows a Zipf distribution with parameter

α > 1 if, and only if, its PMF is equal to:

P(X = x) =
x−α

ζ (α)
, x = 1,2, ..., α > 1, (1.1.3)

where ζ (α) = ∑
+∞

i=1 i−α is the Riemann Zeta function. Observe that the parameter space of
the Zipf distribution is the set of values where the Riemann zeta function converges, which is
(1,+∞).

The Zipf distribution is also known as the Zeta distribution and, as proved in Zörnig
and Altmann [1995], it is a particular case of the Lerch distribution. It is a one-parametric
distribution defined on the strictly positive integer numbers, where the probabilities change
inversely to a power of the values. Since it is a markedly skewed distribution, one may
observe in a sample from this model values that sometimes differ by orders of magnitude.
As any PL distribution, it is highly recommended for modeling two types of data: rank and
frequencies of frequency. An example of rank data is, for instance, the list of the world’s
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billionaires 1 provided by Forbes. There the richest people in the world are ranked based
on the fortune that they own. Assuming that n is the counting of objects which belong to a
certain group, r stands for their rank and n(r) is the number of objects of a given group with
rank r, the formulation of the Zipf law establishes that:

n(r) ∝ r−γ ,

where the symbol ∝ denotes proportionality.
For frequencies of frequency data, one understands data that are frequency tables of counts.
For instance, assuming that the number of followers that each Instagram account has is
known, if we group them by the number of followers, and then we count how many accounts
each group has, it gives place to the frequencies of frequency table having in the first column
the category and, in the second column, the amount of accounts of that category.
The data sets considered in Chapter 5 of this thesis are frequencies of frequency data.
Notwithstanding, they could also be analyzed in terms of ranks.
In fact, the works by Adamic and Huberman [2002] and Corral et al. [2019] relates the
exponent of the two data formulations. If α is the exponent when the data are seen as
frequencies of frequency and γ is the exponent when they are seen as ranked data, it is
verified that:

α = 1+
1
γ
.

The reader is encouraged to review the last cited work for a detailed analysis on the
relationship between the two approaches.

In what follows we point out the main characteristics of the Zipf distribution.
By taking logarithm in both sides of (1.1.3) one has that when the probabilities are

plotted in log-log scale they show a straight line with a slope equal to −α and an intercept
equal to log(ζ (α)). Figure 1.1 shows the probabilities of the Zipf for different values of
the α parameter. On the left-hand side the probabilities are shown in standard scale, and
on the right-hand side in log-log scale. Observe that when the α parameter increases, the
probabilities concentrates at the low values.

The survival function (SF) and the cumulative density function (CDF) of the Zipf distri-
bution with parameter α are respectively equal to:

Fα(x) = P(X > x) =
1

ζ (α)

+∞

∑
i=x+1

i−α =
ζ (α,x+1)

ζ (α)
, α > 1, (1.1.4)

1https://www.forbes.com/billionaires/list/;

https://www.forbes.com/billionaires/list/;
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Fig. 1.1 PMFs of the Zipf distribution for α = 1.5,2,3.5 and 5. On the left-hand side: normal
scale. On the right-hand side: log-log scale.

Fα(x) = 1− ζ (α,x+1)
ζ (α)

=
ζ (α)−ζ (α,x+1)

ζ (α)
, α > 1. (1.1.5)

The k-th moment of the Zipf, k ∈ Z+ is equal to:

E[Xk] =
+∞

∑
x=1

xkx−α

ζ (α)
=

ζ (α − k)
ζ (α)

, (1.1.6)

and thus, it is finite if, and only if, α > k+1 because ζ (α − k) needs to be finite.
In particular, the first moment only exists if α > 2 and in that case, it is equal to:

E[X ] =
ζ (α −1)

ζ (α)
, α > 2. (1.1.7)

Since the variance depends on the second moment of the distribution, it is finite if, and
only if, α > 3 and when it exists, it is equal to:

Var[X ] = E[X2]− (E[X ])2 =
ζ (α −2)ζ (α)−ζ (α −1)2

ζ (α)2 ,α > 3. (1.1.8)

Moreover, if x1,x2, . . . ,xn is a sample from an r.v. X with a Zipf(α) distribution, the
likelihood function is equal to:

L (α;x1,x2, . . . ,xn) =
n

∏
i=1

x−α

i
ζ (α)

=
(∏n

i=1 xi)
−α

(ζ (α))n , (1.1.9)
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and its logarithm is equal to:

ℓ(α;x1,x2, . . . ,xn) =−α

n

∑
i=1

log(xi)−n log(ζ (α)). (1.1.10)

Thus, the maximum likelihood estimation (MLE) of α is obtained by solving the equation:

−
n

∑
i=1

log(xi)−n
ζ ′(α)

ζ (α)
= 0, (1.1.11)

and given that ζ ′(α) = ∑
+∞

i=1 i−α log(i), it is equivalent to solve:

E[log(X)] =
1
n

n

∑
i=1

log(xi) = log(x).

Observe that this equation is equivalent to applying the moment-method estimation to the
logarithm of the variable. Applying the logarithm to a Zipf distributed r.v., i.e. considering
the r.v. log(X), it is guaranteed that the transformed variable has moments of any order. This
is a consequence of the fact that the logarithm reduces the data variability. The MLE of the
Zipf distribution when necessary, can be computed numerically.

In Visser [2013], it is proved that the Zipf distribution is the discrete uni-parametric
distribution with support on the strictly positive integer values that has maximum Shanon
entropy, for a fixed value of log(x). The probability distribution with maximum entropy is
assumed to be the best distribution since it is the one maximizing the amount of information
or the uncertainty about what is unknown [Floudas, 2009, p. 1779]. In Chapter 4 is introduced
the Zipf-Polylog distribution which is a two-parameter extension of the Zipf with maximum
Shannon entropy once (x, log(x)) are fixed.

The probability generating function (PGF) of a Zipf distributed r.v., is equal to:

GX(z) = E(zX) =
+∞

∑
x=1

zxx−α

ζ (α)
=

Liα(z)
Liα(1)

, |z|< 1 and α > 1, (1.1.12)

where Liα(z) is the polylogarithm function or Li function of order α , and it is equal to:

Liα(z) =
+∞

∑
x=1

zx

xα
. (1.1.13)

The Li function of order α is defined for any complex number α and any complex number
z, such that |z| < 1. Nevertheless, using analytic prolongation, the Li function is defined
throughout the whole complex plane. For Re(α)> 0, and all z except for z that are real and
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larger or equal than one, the polylogarithm function may be expressed in terms of the integral
of Bose-Einstein distribution as follows:

Liα (z) =
1

Γ(α)

∫
∞

0

tα−1

et

z −1
dt. (1.1.14)

The last equality can be checked by computing the Taylor expansion of the integrand and
integrating termwise Lee [1997]. Concerning to this thesis, in the instances where the Li
function is required, both α and z will only take values in the real line and α > 0.
Important to observe that Liα(1)= ζ (α) and thus, the Li function may be seen as an extension
of the Riemann zeta function. Also if α = 1, one has that Li1(z) =− log(1−z) which justifies
the name of polylogarithm.

There are countless examples where researchers have argued the suitability of the Zipf
distribution for modeling the data associated with their research. After the work by Zipf
[1949] which use it for fitting the frequency of the words in texts, this distribution has keep
being quite popular in linguistics see, for instance, Ferrer-i Cancho and Vitevitch [2018].
Several examples of applications in other areas appear in the work by Newman [2005], who
uses a general PL distribution to fit the tail of data sets related to: the number of copies
of books sold in the US from 1895 to 1965; the populations of US cities; or earthquake
magnitudes among others. Apart from that, others researchers have focus on the application
of this distributions in studies related to the human behavior. For example, the analysis
performed by Gomez-Lievano et al. [2012] suggests that the total number of homicides in
Colombia, Mexico and Brazil can be described by a PL, while Krumme et al. [2013] use
this distribution for predicting consumer visitation patterns. The last work evidences that,
independently of shopper preferences, the Zipf distribution can be used to describe how
frequently a client visits a store. More recently, Ectors et al. [2018] have shown that the Zipf
distribution also emerges in the frequency of occurrence of daily people’s activities; this
contribution can be directly used for validating travel demand models. Other examples from
a completely unrelated area appear in the paper by Manaris et al. [2005] where a large set
of metrics based of the Zipf’s law are used as input in a music classification problem. In
general, these metrics are created to measure the proportion or distribution of several music
parameters, such as: pitch, duration, melody intervals, among others. A total of 40 metrics
are generated and used to feed a neural network aimed to perform various classification tasks
like: author attribution, style identification and pleasantness prediction.

Also, it has been used for automatic detection of regions of interest in digital images
[Caron et al., 2007]. To that aim, the Zipf’s law and the Inverse Zipf’s law (the last one
out of the scope of this thesis) are used to model the frequency of appearance of patterns
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contained in images. These type of models allows to describe the structural complexity of
images textures. At the same time, this measure of complexity suggests a salient region in
the image.

Additional examples from computer science are presented in the review by Mahanti et al.
[2013], where the authors use a PL distribution to adjust several Internet measures such as
YouTube video popularity and web access, among others. A more recent work by Wang
et al. [2017] on user authentication in cybersecurity shows that the “vulnerable portion of
user-chosen passwords" can also be adjusted by this distribution. Also, Malone and Maher
[2012] analyze its suitability for describing the frequency of chosen passwords.

In academia, the distribution has been used in the work by Ausloos et al. [2016] to assess
the quality of peer reviewers process. In particular the data analyzed came from peer review
reports of the Journal of the Serbian Chemical Society. Every report is analyzed considering
the quantity, variation and distribution of the words and compared with respect to the whole
set of reports. The authors state that the Zipf exponent seem to indicate a specific reviewer.

Finally, in Network Analysis, the Zipf distribution is considered a reasonable distribution
for fitting the degree sequence of real network. For example, the work by Adamic and
Huberman [2002] has shown that it provides the best fit to the connections of the Internet
routers as well as the number of links on the Internet sites. For a PL application to model the
degree sequence of a network representation of a stock market, see Boginski et al. [2005].
Usually, in the area of Network Science, researchers assume that the degree sequence of real
networks are PL distributed. The networks whose degree distribution follows a PL are also
known as scale-free networks [Barabási and Pósfai, 2016]. Motivated by its applicability in
this field and for the results obtained in our first work [Duarte-López et al., 2015], all the
examples in Chapter 5 use this type of data for illustrating the suitability of the proposed
models.

We can assume the Zipf distribution as a plausible candidate in scenarios where small
observations take place with a high frequency and large observations are less frequent.
Retaking the example about the links on Internet sites, is evinced the existence of a high
number of sites having a few number of links (i.e. personal or small business websites) and a
few of sites highly linked (i.e. Google, Microsoft, Amazon, etc.).

The work by Zörnig [2015] studies the probability distribution of a rank-frequencies of
random sequences of numbers. The authors define a sufficient fitting criterion that states a
condition under which the right-truncated Zipf distribution properly fits the rank-frequency
vector. Moreover, they prove that when the sequence is generated with the same probability
for all the numbers, the criterion is fulfilled with a high probability. On the contrary, if the
selecting probabilities differ a lot, the probability of verifying the criterion becomes smaller.
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In particular, when generating random texts assuming that the symbols are independent,
and with equal probabilities, it results in a Zipf distribution for the rank-frequency vector.
In previous work by Günther et al. [1996] it is studied the evolutionary model presented by
Schapiro [1994], which has the form of a non-stationary Markov branching process, and it is
used to model evolutionary complex systems. The authors prove that under general transition
probabilities the ranking procedure leads to a Zipf’s law.

Next section introduces two popular mechanisms that explain the emergence of the Zipf’s
law; one is related to the field of Network Analysis and the other one is a general model that
can be applied to any knowledge domain. Thus, it allows to understand the pervasiveness of
the Zipf distribution.

1.2 Genesis

As stated above, Zipf’s law emerges in many unconnected areas, which is why this section
introduces two mechanisms that explain the emergence of this distribution. Even though
there are a wide variety of methods that try to explain how Zipf’s law arises, they are usually
linked to the domain in which the phenomenon takes place [Newman, 2005]. Throughout
this section, we present two mechanisms that induce Zipf’s law. The first one is the Barabási-
Albert model [Barabási and Albert, 1999], which is quite popular in the field of Network
Analysis. The second one is the Random Group Formation (RGF) [Baek et al., 2011], which
proposes a general framework for explaining the origin of Zipf’s law, independently of the
research domain. An introduction to these two mechanisms can be found in the work by
Adamic [2011].

The Barabási-Albert model [Barabási and Albert, 1999] appeared in the late 90’s as a
mechanism for generating random scale-free networks. As Barabási and Pósfai [2016] state
in their book, the idea of scale-free captures the lack of an internal scale, which is caused
by the co-existence of nodes with a large difference in their degrees. That is to say, the
degree of a randomly chosen node in a scale-free network is equal to k = k+σk, with k being
the average degree and σk the standard deviation. Assuming a power law exponent α that
is strictly smaller than 3 implies that the second moment of the distribution diverges (see
1.1.8). Thus, one can expect the largest fluctuation around the average. As a consequence, the
expected degree of the node could be small or arbitrarily large. See Barabási and Bonabeau
[2003] for a review on the characteristics of the scale-free networks.
Before the creation of the Barabási-Albert (BA) model, the most applied methodology for
random network generation was the Erdös-Rényi (ER) model [Erdős and Rényi, 1960].
Formally, the model is defined as GN,p, where N is the number of nodes of the network and p
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is the probability of creating an edge between two nodes. The ER random generation process
randomly selects a pair of nodes, and an edge is created between them with probability p. In
other words, each possible edge is included in the graph with the same probability. Increasing
(decreasing) the probability implies denser (sparser) networks. The degree distribution of the
networks constructed by this methodology are expected to be Poisson distributed, which is
contrary to what one observes in real networks.

One of the advantages of the BA model is its ability to generate networks with a degree
sequence that is distributed similarly to most of those observed in the reality. This method-
ology takes into account two properties of the networks that are not considered in the ER
model: the growth of the network and the preferential attachment principle.

The growth of the network appears naturally in various scenarios, such as the addition
of new followers on Instagram, Facebook or other social platforms. Note that it is not
restricted only to social networks, as it also appears in citations, communications networks,
and generally, in any network that changes with time.
On the other hand, the preferential attachment property considers that the probability of a new
node connecting to existing ones is not constant, meaning that the probability is higher when
connecting to a node that already has large number of connections. Consequently, it evolves
with time. Preferential attachment is a reasonable assumption because highly connected
people have a higher probability of meeting new people in a social event, just as the oldest
and most famous companies are more likely to sign new contracts than are the newest ones.
In the authors’ words, “a rich-get-richer” effect can easily be detected in real networks.

···

m0 = 5 m0 = 5
m = 3

p=3/5
p=2/5

p=1/5
p=1/5

p=1/5

Initial State t = 1

Fig. 1.2 Illustrative example of the firsts steps of the BA model.
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The BA model starts by assuming that the graph initially has a small number of nodes,
denoted by m0, and a small number of edges equal to m0 that are randomly generated with
the same probability. At each step, a new node is added to the graph jointly with m edges,
being m ≤ m0. If i is a node with degree ki, and we denote by p(ki) the probability that the
new node is connected to a node of degree ki, then the BA random graph generator assumes
that:

P(ki) =
ki

∑ j k j
,

which gives a greater probability of connecting to the nodes that already have more connec-
tions. At each step, the procedure stops when m connections are obtained. After t steps, the
total number of nodes will be equal to m0 + t, and the total number of edges will be equal to
m0+m∗t. The authors prove that, independently of the initial m0 value, the system converges
to a stationary state that results in a graph whose degree distribution is a Zipf distribution
with parameter α = 2.9. Figure 1.2 illustrates the initial steps of the BA methodology.

The second methodology presented here is the random group formation (RGF) [Baek
et al., 2011]. By means of this procedure, the authors look for a global explanation of the
PL’s distribution ubiquity. The methodology proposed is based on placing M numbered
objects in N boxes and, thus, it is not tied to any particular domain.

It is said that a box has size k if it has exactly k slots, and kmax denotes the maximum box
size. The model assumes k1 + k2 + · · ·+ kN = M (see Figure 1.3). It also assumes that the
probability of finding a given object in a particular place is constant and independent of the
place, i.e., it is equal to p = 1/M. Denoting by N(k) the number of boxes with size k, the
probability of placing an object in a box of size equal to k is equal to p(k) = N(k)/N. The
information for locating an object with no additional knowledge is Itotal = ln(M) nats. The
objective is to assign the objects to boxes with-in the minimum information cost, which is
defined as: the additional information which on average is required for locating a ball if you
know the box size.

The output of this methodology is a PL distribution with an exponential cut-off (see
Chapter 4). Under certain restrictions placed on M,N and kmax, the distribution becomes a
pure PL.

Several years before the RGF was introduced, Hill and Woodroofe [1975] presented an
approach that proved the Zipf distribution is the limit on the proportion of classes that have
exactly x units in a classification problem of N units in M categories, specifically when the
number of units to be classified tends to infinity.
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M

1 2 . . .  N

k1 k2 kN

k1 + k2 + ··· + kN = M

Fig. 1.3 RGF schema.

The next section states the main limitation of the Zipf distribution when used to fit real
data. In addition, we include some of the popular alternatives found in the literature on this
models.

1.3 Limitations and existing alternatives

Even though Zipf’s law seems to govern multiple natural and man-made systems, it has an
intrinsic limitation: it lacks flexibility, which is a consequence of being a one-parameter
distribution. When the probabilities are plotted in double logarithmic scale, the distribution
always exhibits a straight line. However, real data usually deviate from this type of pattern
and generally show linearity only in the tail. Moreover, for small values, a top-concave
pattern is often observed while a top-convex one is seen less often. Figure 1.4 shows several
plots in log-log scale of the degree distributions of real networks. These plots illustrate a
clear deviation from pure PL behavior. On the upper left-hand side is the in-degree sequence
of a communication network representing emails exchanged in a European institution. The
upper right-hand side shows the degree sequence of the Arabidopsis thaliana comprehensive
knowledge network. Finally, the example at the bottom corresponds to the Facebook network
of the University of California, Santa Cruz in 2005. In Chapter 5, these three data sets are
fitted by means of the Zipf extensions proposed in this thesis.

According to McKelvey et al. [2018], in just a few scenarios the PL pattern appears in
the entire range of values. In most of the cases, this pattern is observed only for values over a
given threshold. This threshold separates two behaviors: the first one tends to be Gaussian;
and the second one, which corresponds to the tail, follows a PL.
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Fig. 1.4 Examples of degree sequences of real networks plotted in log-log scale. On the upper
left-hand side is the in-degree sequence of a communication network representing emails
exchanged in a European institution. The upper right-hand side shows the degree sequence
of the Arabidopsis thaliana comprehensive knowledge network. Finally, the example at the
bottom corresponds to the Facebook network of the University of California, Santa Cruz in
2005.

This implies that fitting a PL to many data sets requires the selection of a plausible cut-off
point, xmin.

As mentioned previously, the work by Newman [2005] shows twelve examples in which
the corresponding data sets follow a PL in at least a part of their range (i.e., word frequency,
copies of books sold, magnitude of earthquakes, etc.). Notwithstanding, the authors believes
that in some of the analyzed cases the PL behavior remains unconfirmed. Since the deviation
from the PL occurs in values below a certain xmin point, the author proposes truncating the
data for those values below xmin. Consequently, it is assumed that P(X = x) = 0 for x < xmin.
The difficulty of this approach is the selection of an appropriate xmin value. Unfortunately,
an approach for selecting the cut-off point is missing in this work, and the value is obtained
through a visual analysis, which may bias the obtained results.
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Note that the main consequence of the visual selection lies in selecting a low value of
xmin, which obtains a bias estimation of α̂ because the procedure will try to fit non-power-law
data. In contrast, choosing a high xmin value discards valuable information.

After choosing the cut-off point, the exponent of the distribution can be calculated by
using the following expression:

α̂ = 1+n
[ n

∑
i=1

ln
xi

xmin

]−1

, (1.3.1)

where n is the sample size, and xmin is the minimum value of x from which the PL holds. For
a complete derivation of the equation, see Appendix B in Newman [2005].

Some years later, Clauset et al. [2009] extended the previous methodology and, instead
of seeking the xmin value through a visual inspection, the authors proposed: “to choose the
value of x̂min that makes the empirical probability distribution and the best-fit PL model as
similar as possible above x̂min”. Basically, the authors are seeking for an xmin that minimizes
the distance between the CDF of the data that includes observations larger than or equal to
xmin and the CDF of the PL that provides the best fit for the data in the range x > xmin.

The KS statistic is the measure used for quantifying the distance between the two
distributions, and (1.3.1) is used for estimating the α̂ parameter. First, the authors compute
the KS0 statistic for the initial sample. Then, they simulate M samples of size n from a
PL with parameters α̂ and ˆxmin. For each synthetic generated sample, the KS statistic is
computed and denoted by KSi, i = 1÷M. The p-value is computed as #KSi/M ≥ KS0. The
hypothesis test is:

H0 : PL

H1 : ¬PL,

and it is performed by rejecting H0 if p-value ≤ 0.1.
Nowadays, Clauset’s methodology is still used for fitting data that shows a PL behavior in
the tail. Recently, the work by Bhattacharya et al. [2020] has proved the consistency of this
method. Notwithstanding, setting a cut-off value results in important information not being
considered, which may bias the analysis. The goal of this thesis is to develop new alternative
distributions that lead to more accurate results without suffering a lack of information.

In what follows, we describe several probability distributions that have proved to be
useful alternatives to the Zipf family. Some of them are extensions of the Zipf distribution or
they contain this distribution for particular values of their parameters. This is the case for:
the Zipf-Mandelbrot, the discrete Gaussian exponential and the double Pareto-Lognormal
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distributions. Others, such as the discrete Weibull and the negative binomial distributions,
are counting distributions that are shown to be appropriate when fitting skewed data.

The Zipf-Mandelbrot distribution (ZM) [Mandelbrot, 1965] is perhaps the most well-
known extension of Zipf’s law. Aware of the difference between Zipf’s law and the first
ranked values in real linguistic data, Mandelbrot related the frequency of the words to its
rank x in such a way that:

P(X = x) =C(V,α)(x+V )−α , x = 1,2, . . . , (1.3.2)

where V ∈ [0,+∞), and C(V,α) is the normalizing constant. Observe that, for the particular
case when V = 0, the Zipf distribution is obtained.

The Discrete Gaussian Exponential distribution (DGX) defined by Bi et al. [2001] is the
discrete version of the log-normal distribution. The work by Mitzenmacher [2004] examines
the intrinsic connection between the PLs and the log-normal families. It is a bi-parametric
distribution defined in the strictly positive integers, where the parameter µ ∈ (−∞;+∞)

represents the mean and the parameter σ > 0 corresponds to the standard deviation. The
authors show that, when µ →−∞, the distribution reduces to Zipf’s law with slope 1−µ/σ2.
The PMF of the DGX distribution is defined as follows:

P(X = x) =
A(µ,σ)

x
e
[
− (ln(x)−µ)2

2σ2

]
, x = 1,2, . . . , (1.3.3)

where A(µ,σ) = {∑
∞
x=1 x−1 e[−

(ln(x)−µ)2

2σ2 ]}−1 is the normalizing constant.
The Discrete Weibull distribution (DW) [Nakagawa and Osaki, 1975] is the discrete

version of the Weibull family. It is a bi-parametric family of distributions with support on the
non-negative integers, which is proposed for modeling failure time when life is measured
by means of blows or revolutions. Even though it does not provide a straightforward
interpretation of its parameters or have closed expressions for the mean and the variance,
some authors have proved that it is useful for modeling phenomena such as the abundance
of proteins [Koziol et al., 2013] or microbial counts in water [Englehardt and Li, 2011]. Its
PMF is equal to:

P(X = x) = qxβ

−q(x+1)β

,x = 0,1,2, . . . , 0 < q < 1 ,β > 0. (1.3.4)

The negative binomial distribution (NB) [Johnson et al., 2005, p. 209] is a counting
distribution that is widely known as the classical over-dispersed two-parameter Poisson
alternative. It is also a PSS distribution, with the log-series(q) as the primary distribution and
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the Poisson with λ =−k log(1−q) as the secondary distribution. The definition of PSS can
be found in Section 3.1 of Chapter 3.
One may find several parametrizations of this distribution in the literature. The one used in
this thesis is the following:

P(X = x) =
(

k+ x−1
k−1

)
qx (1−q)k, x = 0,1,2, . . . ,0 < q < 1, k > 0. (1.3.5)

Another family of distributions that needs to be considered is the Double Pareto-Lognormal
[Reed and Jorgensen, 2004]. It is a four-parametric model, composed of: two PL parameters
representing the left-hand and right-hand PL tails; and two parameters that correspond to
the lognormal distribution. Several researchers have argued in favor of its suitability for
modeling the degree sequence of social networks such as Facebook [Sala et al., 2010] or for
measuring different aspects of a mobile call graph [Seshadri et al., 2008].

In Chapter 5, the fits obtained with the distributions proposed in this thesis are compared
to those obtained by means of the first four mentioned distributions. The last family of
distributions is excluded, since it has four parameters and we focus on analyzing bi-parametric
distributions.

1.4 Our contribution: the Zipf as a mixture distribution

Given a parametric probability distribution, one way to generalize it is by assuming that
one of its parameters follows a given r. v. instead of being constant, which gives place to
what is called a mixture distribution. For example, if one assumes that the p probability
of a Binomial distribution follows a Beta distribution, the resulting mixing distribution is
the Beta-Binomial distribution. Similarly, by assuming that the λ parameter of the Poisson
distribution follows a Gamma distribution one obtains the Negative-Binomial distribution. A
mixing distribution is required, for instance, to adapt the heterogeneity that usually exists
among experimental units. One property of any mixed distribution is that its variance is
always larger than the variance of the initial distribution with the same mean. See Chapter 8
of Johnson et al. [2005] for more information about mixing distributions of discrete r.v.’s. In
what follows we define the general formulation of a mixed Zipf distribution with a continuous
mixing distribution.

Definition 1. A r.v. M follows a mixed Zipf distribution with parameter θ ∈ Θ if, and only if,

P(M = x;θ) =
∫ +∞

1

x−α

ζ (α)
f (α;θ)dα,
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being f (α;θ) the density function of the mixing distribution, which is defined in (1,+∞).

Theorem 1 of Hill and Woodroofe [1975] proves that under certain regularity assumptions, the
Zipf distribution is asymptotically the limit of a mixing geometric distribution for different
mixing distributions. Their result can be explained in terms of a double classification problem
and assumes that the number of objects to be classified tends to infinity. However, their
mixing expression is true only in the tail of the distribution, that is for large values of x.

This section proves that the Zipf distribution is a mixture of geometric distributions. We
also show that it is MZTP distribution. In both cases, the mixing distribution is specified
analytically. As a consequence of being a MZTP distribution, its variance is larger than the
one of a zero-truncated Poisson distribution with the same mean. Important to note that our
results are not asymptotic, and thus do not require a large value of x.
We start by proving that the geometric distribution with support in the integer numbers strictly
larger than one is a MZTP distribution. Also, we want to point out that if Nzt denotes the
zero-truncated version of a r.v. N, then its PGF is equal to:

hNzt (z;θ) =
hN(z;θ)−hN(0;θ)

1−hN(0;θ)
. (1.4.1)

For example, if N is Poisson distributed with λ > 0, given that hN(t) = eλ (t−1), one has
that,

hNzt (z;λ ) =
eλ z −1
eλ −1

. (1.4.2)

As a consequence of the fact that limλ→0 hNzt (z;λ ) = z, it is possible to consider [0,+∞)

as the parameter space of the zero-truncated Poisson distribution, where λ = 0 corresponds
to the degenerate distribution at one.

Proposition 1. The geometric distribution with parameter p ∈ (0,1) and domain {1,2, · · ·}
is an MZTP distribution with mixing distribution:

f (λ ; p) =
p

(1− p)2 e−λ/(1−p)(eλ −1), λ ∈ (0,+∞). (1.4.3)

Proof. The PGF of the geometric(p) distribution, with support in the positive integers that
are equal to or larger than one, is equal to pz/(1− qz), where q = 1− p. Moreover, the
PGF of the zero-truncated Poisson distribution is equal to (1.4.2). Given that the PGF of
a MZTP distribution is the integral, with respect to λ , of the PGF of the zero-truncated
Poisson distribution multiplied by the density function of the mixing distribution, proving
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the proposition is equivalent to see that:

pz
1−qz

=
∫ +∞

0

eλ z −1
eλ −1

f (λ ; p)dλ ,

with f (λ ; p) defined as in (1.4.3). Substituting f (λ ; p) in the previous equation for its
corresponding expression and taking into account that z−1/(1− p)< 0 because z < 1 and
p ∈ (0,1), we have:

∫ +∞

0

eλ z −1
eλ −1

f (λ ; p)dλ =
p

(1− p)2

∫ +∞

0

[
eλ (z−1/(1−p))− e−λ/(1−p)

]
dλ =

=
p

(1− p)2

[
eλ (z−1/(1−p))

z−1/(1− p)

∣∣∣∣+∞

0
+

e−λ/(1−p)

1/(1− p)

∣∣∣∣+∞

0

]
=

=
−p(1− p)
(1− p)2

[
1

z(1− p)−1
+1

]
=

pz
1− (1− p)z

. (1.4.4)

Next two theorems show the Zipf distribution as a mixture distribution.

Theorem 1. The Zipf(α) distribution is a mixture of geometric distributions with domain
{1,2,3, · · ·} and parameter s =−log(1− p), with mixing distribution:

f (s;α) =
sα−1

(es −1)ζ (α)Γ(α)
, s > 0,and α > 1. (1.4.5)

Proof. The PGF of the geometric distribution defined in strictly positive integers, as a
function of the parameter s is equal to:

pz
1−qz

=
(1− e−s)z
1− e−sz

=
(es −1)z

es − z
.

Observe that, with the new parametrization, the parameter space is (0,+∞) instead of
(0,1). Thus, taking into account the integral expression of the Li function that appears in
(1.1.14), its mixture distribution with mixing distribution as defined in (1.4.5) is equal to:

∫ +∞

0

(es −1)z
es − z

sα−1

(es −1)ζ (α)Γ(α)
ds =

z
ζ (α)Γ(α)

∫ +∞

0

sα−1

es − z
ds

=
1

ζ (α)

∫ +∞

0

sα−1

es

z −1
ds =

Liα(z)
Liα(1)

, (1.4.6)
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which is the PGF of the Zipf(α) distribution (see (1.1.12)).

Figure 1.5 contains the plot of the mixing distribution of Theorem 1, as a function of s
(on the left-hand side) and as a function of p (on the right-hand side), for different α values.
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Fig. 1.5 The mixing distribution of Theorem 1, as a function of s (on the left-hand side) and
as a function of p (on the right-hand side), for different α values.

As mentioned in the previous section, Krumme et al. [2013] proves that the Zipf dis-
tribution is useful to describe how frequently a client visits a store. Based on the mixture
interpretation of the Zipf distribution proved in Theorem 1, we can interpret that the number
of customer’s visits to a store follows a geometric distribution with a s value that depends on
the customer and comes from the (1.4.5) distribution. This has sense if one assumes that the
customer goes to the store until she/he gets the desired product.

Theorem 1 of Valero et al. [2010] characterizes the families of distributions with finite
mean that are ZTMP, based on their PGF. The theorem states that a PGF h(z) is the PGF of a
ZTMP distribution if and only if it verifies that:

(a) h(0)=0, h(1) = 1 and h′(1)<+∞;

(b) it is analytical in (−∞,1);

(c) all the coefficients of the series expansion of h(z) around any point z0 ∈ (−∞,1) are
strictly positive, except for the constant term that may be negative or zero; and

(d) limz→−∞ h(z) =−L, with L being a finite strictly positive number.

Theorem 2 of the same paper establishes that the PGFs of MZTP distributions need to verify
the first three conditions of Theorem 1, but not the last one. As a consequence, any ZTMP
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distribution is an MZTP distribution, but not the other way around. The characterizations are
also true if the distribution has no finite mean. The next theorem establishes that the Zipf
belongs to the MZTP class, but not to the ZTMP class.

Theorem 2. The Zipf(α) distribution verifies that:

a) it is an MZTP distribution with mixing distribution equal to:

f (λ ;α) =
(eλ −1)

∫+∞

0 es−λes
sα−1ds

Γ(α)ζ (α)
, λ > 0, (1.4.7)

b) it is not a ZTMP distribution.

Proof. Taking into account (1.1.12), proving a) is equivalent to seeing that

Liα(z)
Liα(1)

=
∫ +∞

0

eλ z −1
eλ −1

f (λ ;α)dλ ,

with f (λ ;α) defined as in (1.4.7). First observe that, as a consequence of Theorem 1, from
(1.4.6) we have:

Liα(z)
Liα(1)

=
∫ +∞

0

(es −1)z
es − z

sα−1

(es −1)ζ (α)Γ(α)
ds. (1.4.8)

Now, rewriting (1.4.4) with the s parametrization we also have:

(es −1)z
es − z

=
∫ +∞

0

eλ z −1
eλ −1

f ∗(λ ;s)dλ , (1.4.9)

where
f ∗(λ ;s) = f (λ ;1− e−s) = es(es −1)e−λes

(eλ −1).

Substituting (1.4.9) in (1.4.8) gives that:

Liα(z)
Liα(1)

=
∫ +∞

0

[∫ +∞

0

eλ z −1
eλ −1

f ∗(λ ;s)dλ

] sα−1

(es −1)ζ (α)Γ(α)
ds

=
∫ +∞

0

eλ z −1
eλ −1

∫ +∞

0

[
f ∗(λ ;s)

sα−1

(es −1)
1

ζ (α)Γ(α)

]
dsdλ

=
∫ +∞

0

eλ z −1
eλ −1

[ eλ −1
ζ (α)Γ(α)

∫ +∞

0
es−λes

sα−1 ds
]

dλ ,
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which proves a). To prove b), it is necessary to see that condition d) of Theorem 1 of Valero
et al. [2010] is not satisfied. But, this is the case since:

lim
z→−∞

Liα(z)
Liα(1)

= lim
z→−∞

z
Γ(α)Liα(1)

∫ +∞

0

tα−1

et − z
dt

= lim
z→−∞

1
Γ(α)ζ (α)

∫ +∞

0

tα−1

et

z −1
=−∞. (1.4.10)

The interpretation of Theorem 2 is as follows: if we take an MP distribution and we
truncate it at zero, in order that it takes values from one to infinity, we will never obtain the
Zipf distribution. However, if we first truncate at zero a Poisson distribution, and then the
parameter of the zero-truncated Poisson is considered to follow the probability distribution
defined at (1.4.7), the result is the Zipf distribution. Applying this reasoning to the context
to model the degree sequence of graphs that do not contain isolated nodes (see Chapter 5
for the definition of the node, degree sequence, and isolated node), it means that if the Zipf
distribution is a suitable distribution to fit a degree sequence, it is because the number of
connections of a node follows a zero-truncated Poisson distribution with a λ parameter that
varies from node to node with probability density function as in (1.4.7).



Chapter 2

Random stopped extreme Zipf extensions

This chapter extends the Zipf distribution by means of the concept Random Stopped Extreme
distribution (RSED), which covers those families defined as the minimum or maximum of a
random number of i.i.d. r.v.’s. The name RSED was introduced by Pérez-Casany et al. [2016]
in the conference ICOSDA 2016. However, these kinds of distributions have been widely
studied in the literature (see, for instance, Cancho et al. [2011]; Kuş [2007] and Ramos et al.
[2019]). We start by reviewing the concept of RSED, and introducing two new properties
related to this class of distribution, of which the later are part of the contribution of this thesis.
Next, we present the notion of regularly varying function (RVF), followed by an analysis of a
particular set of RSED known as the Random Stopped Extreme Zipf Distribution (RSEZipf).
The last two sections are devoted to the analysis of the Marshall-Olkin extended Zipf
(MOEZipf) and the Zipf-Poisson extreme (Zipf-PE) distributions, which are particular cases
of RSEZipf distributions. The MOEZipf distribution was defined by A. Casellas in her
Master’s thesis (see, Casellas [2013]) under the guidance of Prof. M. Pérez-Casany. The
main results obtained in that work appear in Pérez-Casany and Casellas [2013]. In fact, the
work of A. Casellas and M. Pérez-Casany constitutes the starting point of this research work.
With respect to the MOEZipf family of distributions, in this chapter we extend some of the
properties of Pérez-Casany and Casellas [2013] and we prove new ones. The definition and
analysis of the Zipf-PE distribution pertains entirely to this thesis. A more reduced version
of all the work contained in this chapter appears in the paper “Random Stopped Extreme Zipf
Extensions” [Duarte-López et al., 2020a], which has been submitted for publication.

2.1 Background

In this section we start by defining the general concept of RSED and by stating two new
results related to these families of distributions. Later, we introduce the concept of RVF,
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because it is essential to prove some of the properties of the Zipf’s extensions proposed in
this chapter.

2.1.1 Random stopped extreme distributions

In practice, maximums (less often minimums) of i.i.d. copies of an r.v. X are used in the
lifetime and reliability studies of many research areas, such as physics, computer science,
industry, public health, and communications, among others. See for instance Kuş [2007]
where the author introduces the exponential-Poisson distribution as the min(W1,W2, . . . ,WN),
where the i.i.d. r.v.’s W are exponentially distributed, and independent of the r.v. N which
follows a zero-truncated Poisson distribution. Four years latter, Cancho et al. [2011] defined
the Poisson-exponential distribution which, contrary to the first example, it is defined in
terms of maximums, i.e. max(W1,W2, . . . ,WN), where the i.i.d. r.v.’s W follow an exponential
distribution and N is zero-truncated Poisson distributed. The survey by Tahir and Cordeiro
[2016] reviews a large amount of RSEDs. Most of the models considered in their work,
correspond to families where X follows a continuous distribution. The authors denote the
RSEDs as “compound distributions”, but this name is avoided here because some authors use
it to refer to mixture distributions while others used it to refer to stopped-sum distributions.
Thus, the use of this term may give place to some misunderstandings.
In what follows, we formally define the concept of RSED and then, we introduce our firsts
two contributions to this Chapter.

Definition

Let X be an r.v. with parameter vector α and CDF FX(x;α); and let N be a discrete r.v.
defined in the strictly positive integer numbers, independent of X , and with PGF hN(t;θ),
with θ being the parameter vector. The r.v.’s defined as:

Y max
X ;N = max(X1,X2, . . . ,XN) and Y min

X ;N = min(X1,X2, . . . ,XN),

where Xi are i.i.d. copies of X , have CDF and SF, respectively, equal to:

FY max
X ;N

(x;α,θ) = hN(FX(x;α),θ) and SY min
X ;N

= hN(SX(x;α),θ), (2.1.1)

with SX(x;θ) being the SF of X [see, Louzada et al., 2012]. The distribution of Y max
X ;N and

Y min
X ;N are called, by definition, RSEDs, since they are the distribution of a maximum or

minimum (extreme) of a random number of independent copies of X [see, Pérez-Casany
et al., 2016].
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For instance, one may be interested in buying foreign currency only when the price is
lower than a given value. In such a case, Xi will be the price of a currency i that is smaller
than the threshold in a given period of time, and N will be the number of currencies that
have a price smaller than the threshold in that period. It is important to observe that X is
associated with the phenomena under study, in the case of the example the currency price,
while N is related to the number of observations of X that one has in a given period. RSEDs
appear in real situations when one observes only the variable of interest when it is larger
(smaller) than a given upper (lower) bound.

The distributions of the r.v.’s X and N are, respectively, denoted by stopped and stopping
distributions. This allows for a parallelism between RSEDs and Stopped Sum distributions,
i.e., the distributions that appear as a random sum of i.i.d. copies of a given r.v. X (see
Subsection 3.1 of Chapter 3). The stopped distribution of an RSED serves as the secondary
distribution of a stopped sum, while the stopping distribution represents the primary dis-
tribution. Random Stopped Extreme and Stopped-Sum are two mechanisms that allow
us to generalize the distribution of X . Both transformations help us better understand the
mechanism that generates the data. Based on (2.1.1), for RSEDs one compose the PGF of
the stopping distribution with the CDF (maximums) or the SF (minimums) of the stopping
distribution to obtain, respectively, the CDF of the maximum or the SF of the minimum.
By restricting N to being a strictly positive integer r.v., one avoids computing the maximum
(minimum) of the empty set. Thus, one may assume for instance, that N follows either a
strictly positive geometric distribution or a logarithmic series distribution. One may also
consider as a distribution for N, any zero truncation of a positive integer distribution.

Table 2.1 contains the name of five probability distributions that may be considered as
stopping distribution, jointly with its mean and PGF (second and third columns) and their
parameter space (fourth column). The geometric, the one that takes the strictly positive
integer values, and the log-series distributions do not require to be zero-truncated since they
give probability zero at zero. On the contrary, the Poisson, the Hermite, and the negative
binomial distributions require to be zero-truncated. The PFG of the positive Poisson appears
in (1.4.2). With respect to the other two, one has that the PGF of the Hermite distribution is
equal to:

hN(z;θ ,β ) = eθ(z−1)+β (z2−1)
θ ,β > 0,

and the PGF of the negative binomial is equal to:

hN(z;θ ,β ) =
( 1−θ

1−θz

)β

0 < θ < 1, β > 0.
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Applying (1.4.1), one obtains that the PGF of the positive Hermite distribution is equal to:

eθz+β z2 −1
eθ+β −1

and the PGF of the positive negative binomial distribution is equal to:

( 1−θ

1−θz)
β − (1−θ)β

1− (1−θ)β
.

Taking into account (2.1.1) in the case where the zero truncation of N is required, the CDF of
the maximum and the SF of the minimum are equal to:

FY max
X ;N

(x;α,θ) = hNzt (FX(x;α),θ) =
hN(FX(t;α);θ)−hN(0;θ)

1−hN(0;θ)
, (2.1.2)

and
SY min

X ;N
(x;α,θ) = hNzt (SX(x;α),θ) =

hN(SX(t;α);θ)−hN(0;θ)

1−hN(0;θ)
. (2.1.3)

Observe that (2.1.2) and (2.1.3) generalize the two equalities that appear in (2.1.1),
because if N gives probability zero to the zero value, then hN(0;θ) = 0. That is why from
now on we only work with (2.1.2) and (2.1.3).

Two new results on RSED

Here we prove two new theorems related to the general theory of RSEDs. The first one
establishes a condition under which the random stopped extensions contain the family of
distributions of X as a particular case. The second theorem explains how to generate data in
the extended family based on a random data generator of the family of distributions of X .

Theorem 3. If N is defined in the strictly positive integer values and a value θ0 exists in
the parameter space, such that hN(z;θ0) = z, then the distribution of X belongs to both
sets of maximum and minimum stopped extreme distributions. Consequently, the families of
maximums as well as the family of minimums extend the initial family of distributions.

Proof. Given that hN(z;θ0) = z, from (2.1.1) one has that:

FY max
X ;N

(x;α,θ) = hN(FX(x;α),θ0) = FX(x;α),
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N Dist. E[N] hNzt (z;θ) Param. space X Dist.

geometric 1
θ

θz
1−(1−θ)z [0,1] θ = 1

zt. Poisson θ

1−e−θ

 eθz−1
eθ−1 if θ > 0

z if θ = 0
[0,+∞) θ = 0

zt. Hermite θ−2β

1−e−(θ+β )
eθz+β z2−1

eθ+β−1
[0,+∞)× [0,+∞) θ = β = 0

log-series − θ

log(1−θ)(1−θ)
ln(1−θz)
ln(1−θ) (0,1) θ = 0

zt. neg.bin − θ β

(1−θ)θ β

( 1−θ

1−θz )
β−(1−θ)β

1−(1−θ)β
, (0,1)× (0,+∞) θ = 0

Table 2.1 Some possible stopping distributions together with their PGFs, parameter spaces
and the parameter values that gives the family of distributions of X .

and that:

SY min
X ;N

(x;α,θ) = hN(SX(x;α),θ0) = SX(x;α),

which proves the theorem.

Observe that saying hN(z;θ0) = z is equivalent to saying that the family contains the degen-
erate distribution at one, as a particular case. This is the case of the zero-truncated Poisson
distribution as already mentioned, and the rest of stopping distributions considered in the
first column of Table 2.1. The parameter values which allow obtaining the initial family of
distributions appear in the last column of the mentioned table.

The next theorem shows how to generate random numbers from a RSED, based on
knowing how to generate random data from the baseline distribution. This is important,
because one may use any random number generator implemented in any statistical software
for the baseline distribution, and then easily generate data from the extended family. Thus,
even if the CDF of the extended distribution is rather complicated, simulating data from it is
computationally simple.

Theorem 4. Let Y be an r.v. with an RSED. To generate a random value from Y is enough to
follow the next steps and to:

1) uniformly generate a value u in (0,1);

2) compute the value u′ in the following way:

a) if Y is a maximum, then u′ = h−1
N (u(1−hN(0;θ))+hN(0;θ); θ), and
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b) if Y is a minimum, then u′ = 1−h−1
N (1−u(1−hN(0,θ));θ);

3) apply the inversion method to u′ using the distribution of X.

Proof. We first prove the theorem for maximums. Given a value u ∈ (0,1), to apply the
inversion method to the distribution of Y is equivalent to finding the smaller value of x, such
that u ≤ FY (x;α,θ). Taking into account (2.1.2), this is equivalent to finding the minimum
value of x, such that:

u ≤ hN(FX(x;α);θ)−hN(0;θ)

1−hN(0;θ)
,

which, with a little bit of algebra, is equivalent to saying that:

h−1
N (u(1−hN(0;θ))+hN(0;θ); θ)≤ FX(x;α)⇔ u′ ≤ FX(x;α),

with u′ = h−1
N (u(1−hN(0;θ))+hN(0;θ); θ).

To prove the theorem for minimums, one has that u ≤ FY (x;α,θ)⇔ u ≤ 1−SY (x;α,θ),
and by (2.1.3), this is equivalent to saying that:

u ≤ 1−hN(SX(x;α);θ)

1−hN(0;θ)
⇔

u(1−hN(0;θ))≤ 1−hN(SX(x;α);θ)⇔
hN(SX(x;α);θ)≤ 1−u(1−hN(0;θ))⇔

SX(x;α)≤ h−1
N (1−u(1−hN(0;θ));θ)⇔

1−FX(x;α)≤ h−1
N (1−u(1−hN(0;θ));θ)⇔

1−h−1
N (1−u(1−hN(0,θ));θ)≤ FX(x;α)⇔

u′ ≤ FX(x;α),

with u′ = 1−h−1
N (1−u(1−hN(0,θ));θ).

This results has been very useful when implementing the two Zipf extensions of Sections
2.3 and 2.4 of this chapter in the R-package zipfextR [Duarte-López and Pérez-Casany, 2020]
(see Appendix B).

2.1.2 Regularly varying functions

A regularly varying function can roughly be defined as a function that performs asymptotically
as a power function. This concept will be necessary to prove some of the properties of the
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distributions families introduced in this PhD thesis. The formal definitions below can be
found in the book by Gulisashvili [2012, p. 201].

Definition 2. Let f be a positive measurable function on [a, +∞) with a > 0, and let α be a
real number. Then, the function f is a regularly varying function of index α at infinity, if for
any λ > 0,

lim
x→∞

f (λ x)
f (x)

= λ
α . (2.1.4)

The class of all regularly varying functions with index α is denoted by Rα .

Definition 3. A slowly varying function at infinity is a function L which satisfies that for all
λ > 0,

lim
x→∞

L(λ x)
L(x)

= 1. (2.1.5)

The class of slowly varying at infinity functions is denoted by R0. Observe that f ∈ Rα if,
and only if, f (x) = xα L(x), where the function L is slowly varying at infinity.

According to Gulisashvili [2012, p. 220], Pareto-type distributions (and in particular,
the Zipf distribution) are camouflaged versions of regularly varying functions. Basically, a
function f belongs to the class of Pareto-type distribution if it is asymptotically equivalent to
a regularly varying function. This implies that f is also a regularly varying function. Thus,
the Zipf distribution is, by definition, a regularly varying function.

2.2 Random stopped extreme Zipf extensions

By random stopped extreme Zipf distribution (RSEZipf), we denote the RSEDs that emerge
when it is assumed that X follows a Zipf distribution. Table 2.2 contains the CDFs of the
maximums as well as the SFs of the minimums of the RSEZipfs obtained by considering
the stopping distributions that appear in the first column of Table 2.1. They were obtained
by compounding the PGF of the stopping distribution (that appears in the second column
of Table 2.1) with: the CDF of the Zipf (1.1.5) (in the case of maximums); and the SF of
the Zipf (1.1.4) (in the case of minimums). Appendix C contains the figures of the CDF of
maximums, as well as of minimums, associated with the stopping distributions that appear
in Table 2.2. It is observed that independently of the stopping distribution, the cumulative
distribution function of minimums at small values as 4 or 5 is already very close to one. On
the contrary, the support of the r.v’s defined in terms of maximums is much larger as it has
sense to be. In all the cases, for a fixed value of α , the parameter θ controls the growth of
the probabilities in a way that depends on the stopping distribution.
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Stopping distrib. FY max
N

SY min
N

geometric
1− ζ (α,x+1)

ζ (α)

1+( 1
θ
−1) ζ (α,x+1)

ζ (α)

ζ (α,x+1)
ζ (α)

1
θ
+(1− 1

θ
)

ζ (α,x+1)
ζ (α)

log.series
ln(1−θ(1− ζ (α,x+1)

ζ (α)
))

ln(1−θ)

ln(1−θ
ζ (α,x+1)

ζ (α)
)

ln(1−θ)

zero-trunc. Poisson e
θ(1− ζ (α,x+1)

ζ (α)
)
−1

eθ−1
e

θ
ζ (α,x+1)

ζ (α) −1
eθ−1

zero-trunc. neg. bin.
( 1−θ

1−θ(1− ζ (α,x+1)
ζ (α)

)
)β−(1−θ)β

1−(1−θ)β

( 1−θ

1−θ
ζ (α,x+1)

ζ (α)

)β−(1−θ)β

1−(1−θ)β

zero-trunc. Hermite e
θ(1− ζ (α,x+1)

ζ (α)
)+β ((1− ζ (α,x+1)

ζ (α)
))2

−1
eθ+β−1

e
θ

ζ (α,x+1)
ζ (α)

+β (
ζ (α,x+1)

ζ (α)
)2
−1

eθ+β−1
Table 2.2 CDF for the maximum and SF for the minimum of the random extreme Zipf gener-
alizations, considering the following types of stopping distributions: geometric, logarithmic
series, positive Poisson, positive negative binomial, and positive Hermite.

The next theorem states the asymptotically relation of the tails of the Zipf and any
RSEZipf distribution with the same parameter α . The results obtained are a direct conse-
quence of the work by Jessen and Mikosch [2006, p. 187–188], and they hold because the
Zipf is a regularly varying function as mentioned before. Here f (x)∼ g(x) as x →+∞, is
equivalent to saying that f (x)/g(x)−−−−→

x→+∞
1 if g(x) ̸= 0, and it is equivalent to f (x) = o(1)

if g(x) = 0.

Theorem 5. The tail of an r.v Y ∼ RSEZipf(α,β ) is asymptomatically related to the tail of
an r.v. X ∼ Zipf(α). More precisely:

a) if Y is a minimum, then P(Y > x)∼ P(N = n0)[P(X > x)]n0 , where n0 is the smallest
positive integer, such that P(N = n0)> 0,

b) if Y is a maximum and E[N]<+∞, then P(Y > x)∼ E[N]P(X > x).

Proof. The proof is straightforward from results that appear in sections 5.3 and 5.4 of the
work by Jessen and Mikosch [2006, p. 187–188]. An important consequence of Theorem 5
is that any extension of the Zipf distrbution obtained by RSED mechanism has a linear tail,
in log-log scale, if the stopping distribution has support the strictly positive integer numbers.
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This is because in that case n0 = 1, and one has that:

P(Y = x) = P(Y > x−1)−P(Y > x) =

P(N = 1)×P(X = x) if Y is a minimum,

E[N]×P(X = x) if Y is a maximum.

The next two sections are devoted to two particular Zipf’s extensions.

2.3 The Marshall-Olkin extended Zipf distribution

This section focuses on the MOEZipf distribution which is obtained by assuming the geo-
metric as stopping distribution. This family of distributions is also obtained as the result of
applying the Marshall-Olkin transformation (MO) [Marshall and Olkin, 1997] to the Zipf
distribution. As already said, it was originally defined by A. Casellas in her master thesis
[Casellas, 2013] and it constitutes the starting point of this work.

2.3.1 Definition

The MO transformation allows to extend a family of probability distributions by adding an
extra parameter. In their work the authors prove that the extended family is what they call
geometric extreme stable, which means that any of their distributions can be interpreted as the
minimum (maximum) of a geometric number of i.i.d. r.v.’s from the initial family [Marshall
and Olkin, 1997, p. 646]. This is true for a geometric distribution supporting the strictly
positive integer values. The MO transformation is applied to the SF of a given distribution
in the initial family and gives place to the SF of a distribution in the extended family. It is
defined as:

G(x;β ) =
β F(x)

1−β F(x)
,

for β > 0 where β = 1−β . Note that for β = 1 the initial distribution is obtained.
Applying the MO transformation to the SF of the Zipf, that appears in (1.1.4), results in

the SF of the MOEZipf distribution, that it is equal to:

Fα,β (x) =
β Fα(x)

1−β Fα(x)
=

β ζ (α,x+1)

ζ (α)−β ζ (α,x+1)
, α > 1, β > 0. (2.3.1)
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Based on the definition, the MOEZipf distribution has support on the strictly positive
integer values, and its parameters are the α parameter of the Zipf distribution and the β

parameter of the geometric distribution. Thus, the parameter space is (1,+∞) × (0,+∞).
The PMF of the MOEZipf distribution, for any x ≥ 2, can be derived from (2.3.1) by
computing Fα,β (x−1)−Fα,β (x) and it is equal to:

P(Y = x) =
x−α β ζ (α)

[ζ (α)−β ζ (α,x)] [ζ (α)−β ζ (α,x+1)]
, x = 2,3,4, . . . . (2.3.2)

For x = 1 one has that,

P(Y = 1) = 1−Fα,β (1) =
1

ζ (α)−βζ (α,2)
.

Observe that P(Y = 1) is equal to (2.3.2) at x = 1; and thus (2.3.2) is the PMF in the
entire support.

Figure 2.1 shows the PMFs of the MOEZipf distribution for α = 2.1 and different values
of the β parameter. On the left-hand side, the probabilities are at the standard scale and,
on the right-hand side, they are plotted in log-log scale. Observe how the value of the β

parameter influences the top-concavity (top-convexity) of the distribution in log-log scale.
For β values smaller than one, the distribution is top-convex; while for β values larger than
one it is top-concave. When β = 1, the probabilities are equal to those of a Zipf distribution
with the same α parameter.
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Fig. 2.1 PMFs of the MOEZipf distribution for α = 2.1 and β = 0.1,0.5,1,2.5 and 10. On
the left-hand side: normal scale. On the right-hand side: log-log scale.
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2.3.2 Properties

In order to clarify which results are established in the works by Pérez-Casany and Casellas
[2013] and Casellas [2013], and which are part of this PhD thesis, in what follows we
summarize the main results in the aforementioned papers. After defining the distribution they
have proved that:

a) the parameter β is obtained as the limit of the ratio of the MOEZipf and Zipf proba-
bilities at x, when they have the same parameter α . As a consequence, P(Y = x) is
proportional to P(X = x) being β the proportionality constant;

b) for large values of x, log(P(Y = x)) is a linear function of the log(x). Thus, the
extended family is also linear in the tail in log-log scale. At this point, it is necessary
to say that in the original papers this result only was mentioned and illustrated, but it
was not proved analytically. The prove of this result corresponds to Theorem 6 of this
chapter;

c) the k-th moment of the MOEZipf distribution exists if, only if, α > k+1 [see, Casellas,
2013, p. 40–41]. Figure 2.2 illustrates the behavior of the mean as: a function of α for
β = 0.5,1,1.5 and 3 (left-hand side); and as a function of β for α = 2.5,4.8,7.5 and
20 (right-hand side). In the same way, Figure 2.3 shows the behavior of the variance.
On the left-hand side, as a function of α for β = 0.5,1,1.5 and 3; and on the right-hand
side as a function of β for α = 3.5,4.8,7.5 and 20. Observe that both, the E[Y ] and
the VAR[Y ], are decreasing functions of α which decrease faster as β becomes small.
On the contrary, the E[Y ] and the VAR[Y ] are increasing functions of β whose slope
decreases as α increases.

d) the ratio of two consecutive MOEZipf probabilities is greater (smaller) than that of
probabilities coming from a Zipf distribution with the same α , if β > 1(β < 1). For
β = 1 the two distributions are the same and consequently, the two ratios are equal;

e) they compare P(Y = x) with respect to P(X = x) obtaining an inequality between them.
This result has been extended in Proposition 4.

f) two methods are proposed for estimating the value of the parameters α y β given
sequence of values x1,x2, . . . ,xn. The first one corresponds to solve the system of
equations that comes from equating the empirical probability at one to the theoretical
probability at one, and the sample mean to the mean. The second one is the MLE
which is obtained by maximizing the logarithm of the likelihood. The log-likelihood
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and 20.

function for the MOEZipf with parameters α and β is equal to:

ℓ(α,β ;x1,x2, . . . ,xn) = n log(β )+n log(ζ (α))−α

n

∑
i=1

log(xi)

−
n

∑
i=1

log(ζ (α)−βζ (α,xi))−
n

∑
i=1

log(ζ (α)−βζ (α,xi +1));
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In what follows we expose the results obtained on the MOEZipf distribution in this PhD
thesis.

The next proposition establishes the conditions under which a MOEZipf distribution can
be interpreted in terms of maximums or minimums. It also proves that each distribution in
the maximum family has a dual distribution in the minimum family. This proposition is a
consequence of the results that appear in Section 5 of Marshall and Olkin [1997].

Proposition 2. Let Y be a MOEZipf distributed r.v. with parameters (α,β ). Then:

i) If β > 1, Y corresponds to a maximum of i.i.d. Zipf(α) r.v.’s, where the r.v. N follows a
geometric distribution with parameter θ = 1/β .

ii) If β < 1, Y corresponds to a minimum of i.i.d. Zipf(α) r.v.’s, where the r.v. N follows a
geometric distribution with parameter θ = β .

iii) If β = 1, Y follows a Zipf(α) distribution and may be seen as a maximum as well as a
minimum of i.i.d. Zipf(α) r.v.’s, where the r.v. N follows a geometric distribution with
probability at one equal to one, i.e., a degenerate distribution at one.

Proof. From (2.3.1) the CDF of Y is equal to:

Fα,β (x) = 1−Fα,β (x) =
ζ (α)−ζ (α,x+1)

ζ (α)− (1−β )ζ (α,x+1)
=

1− ζ (α,x+1)
ζ (α)

1+(β −1)ζ (α,x+1)
ζ (α)

.

Assuming that β > 1, the middle part of the first row of Table 2.2 shows that this corresponds
to a maximum of i.i.d. Zipf(α) r.v.’s, with a geometric stopping distribution with parameter
θ = 1/β , which proves (i).
By dividing the SF of the MOEZipf(α,β ) that appears in (2.3.1) by ζ (α), one has that:

Fα,β (x) =
β

ζ (α,x+1)
ζ (α)

1− (1−β )ζ (α,x+1)
ζ (α)

=

ζ (α,x+1)
ζ (α)

1
β
+(1− 1

β
)ζ (α,x+1)

ζ (α)

,

which, as we can see at right hand-side of the first row of Table 2.2, corresponds to the
SF of an RSED, with a Zipf(α) distribution as the secondary distribution and a geometric
distribution with parameter θ = β as the primary distribution, which proves (ii).
Using Theorem 3 when β = 1, (2.3.1) is equal to the SF of a Zipf(α) distribution, which
can be interpreted as a maximum as well as a minimum RSED with a geometric distribution
degenerated at one, which proves (iii).
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To better understand the SF of the MOEZipf distribution and, from there, to be able
to deduce further properties of the distribution, the next lemma analyzes the sign and
monotonicity of the function that appears in its denominator of its PMF. For any α > 1 and
β > 0, let us define the function

h(α,β )(x) = ζ (α)− (1−β )ζ (α,x+1), x ≥ 1. (2.3.3)

Lemma 1. The function h(α,β )(x) defined for x ≥ 1 verifies that:

a) If β ∈ (0,1), it is an increasing concave function in [1,+∞) that takes values in the
interval [βζ (α),ζ (α)). Consequently, ∀x ≥ 1, βζ (α)≤ h(α,β )(x)≤ ζ (α).

b) If β > 1, it is a decreasing convex function in [1,+∞) that takes values in the interval
(ζ (α),βζ (α)]. Consequently, ∀x ≥ 1, ζ (α)≤ h(α,β )(x)≤ βζ (α).

c) If β = 1, it is a constant function equal to ζ (α).

Proof. The first two derivatives of the function hα,β (x) are equal to:

h′(α,β )(x) = α(1−β )ζ (α +1,x+1), and

h′′(α,β )(x) =−α(α +1)(1−β )ζ (α +2,x+1). (2.3.4)

Taking into account that ζ (α,x) ≥ 0 ∀α > 0 and x ≥ 1, proving a) merely requires
observing, first, that for β ∈ (0,1), h′(α,β )(x) ≥ 0 and h′′(α,β )(x) ≤ 0 and, second, that
h(α,β )(1) = βζ (α) and limx→+∞ h(α,β )(x) = ζ (α). As an increasing function, the inter-
val where it takes values es equal to [βζ (α),ζ (α)). Proving b), is a matter of observing that
for β > 1, h′(α,β )(x)≤ 0 and h′′(α,β )(x)≥ 0. As a decreasing function, the interval where it
takes values is now equal to: (ζ (α),βζ (α)]. The proof of c) is straightforward.

Figure 2.4 illustrates the results stated in Lemma 1. On the left-hand side the figure contains
the plot of h(α,β )(x) for α = 2.1 and β = 0.76 and, on the right-hand side for α = 2.1 and
β = 3.5.

The next proposition establishes a condition under which the MOEZipf distribution is
log-convex. Note that the log-convexity is sufficient criteria for stating that the distribution is
infinitely divisible [Johnson et al., 2005].

Proposition 3. Let Y be an r.v., such that Y ∼ MOEZipf(α,β ), with β ∈ (0,1]. Then, Y has
a log-convex distribution.
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Fig. 2.4 Function h(α,β )(x) for α = 2.1. On the left-hand side, for β = 0.76 and, on the
right-hand side, for β = 3.5. The function limits are represented by a dash line.

Proof. As stated in Johnson et al. [2005], a discrete distribution is said to be log-convex
when

P(Y = x)P(Y = x+2)
(P(Y = x+1))2 ≥ 1, ∀x. (2.3.5)

Thus, it is necessary to prove that (2.3.5) holds for any β ∈ (0,1]. From (2.3.2), one has
that (2.3.5) is equivalent to:

P(Y = x)P(Y = x+2)
(P(Y = x+1))2 =

(
x(x+2)
(x+1)2

)−α

 hα,β (x+1)
hα,β (x)

hα,β (x+3)
hα,β (x+2)

≥ 1. (2.3.6)

Given that for x ≥ 1 x(x+2)/(x+1)2 < 1, the first term of the product on the right-hand
side of the equality that appears in (2.3.6) is always larger than one. Thus, to prove the
proposition it is enough to prove that the second term is also larger than one. Defining

g(x) =
hα,β (x+1)

hα,β (x)
,
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the second term of the product on the right-hand side of the equality is equal to g(x)/g(x+2).
Observe that by (2.3.3),

g(x) =
ζ (α)−βζ (α,x+2)

ζ (α)−β [(x+1)−α +ζ (α,x+2)]

=
ζ (α)−βζ (α,x+2)

ζ (α)−β (x+1)−α −βζ (α,x+2)]
=

[
1− β (x+1)−α

h(α,β )(x+2)

]−1

.

If β ∈ (0,1), by Lemma 1, one has that (x+1)αh(α,β )(x+2) is an increasing function
of x, and consequently, (

1− β (x+1)−α

h(α,β )(x+2)

)−1

decreases by increasing the value of x. As g(x) is a decreasing function of x, one has that
g(x)/g(x+2)≥ 1, which is what we wanted to see.

Figure 2.5 shows the behavior of the ratio that appears on the left-hand side of equa-
tion (2.3.6) for α = 2.34 (left-hand side) and α = 5 (right-hand side). In both cases
β = 0.1,0.6,2,10 and 22. Observe that, for β < 1, the distribution is log-convex indepen-
dently of the value of β . However, for β > 1, the function can be log-convex or log-concave.
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Fig. 2.5 Behavior of the ratio that appears on the left-hand side of equation (2.3.6). On
the left-hand side, for α = 2.34 and, on the right-hand side, for α = 5. In both cases,
β = 0.1,0.6,2,10 and 22.

The next proposition establishes the relationship between the probability values of a
MOEZipf and a Zipf distribution with the same α parameter. This proposition extends
Proposition 3.3 by Pérez-Casany and Casellas [2013, p. 6], where only the lower bounds are
stated.
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Proposition 4. Let Y and X be two r.v.’s, such that Y ∼ MOEZipf(α,β ) and X ∼ Zipf(α).
Then, ∀x ≥ 1,

a) if β ∈ (0,1), then β P(X = x)≤ P(Y = x)≤ 1
β

P(X = x),

b) if β > 1, then 1
β

P(X = x)≤ P(Y = x)≤ β P(X = x),

c) if β = 1, then P(Y = x) = P(X = x).

Proof. Considering β > 1 according to Lemma 1, one has that h(α,β )(x) is a decreasing
function of x, and that h(α,β )(x)≤ h(α,β )(1) = β ζ (α), ∀x ≥ 1. Thus,

P(Y = x) =
β ζ (α)x−α

h(α,β )(x)h(α,β )(x+1)
≥ β ζ (α)x−α

β 2 ζ 2(α)
=

1
β

P(X = x),

which proves the left-hand side of b); to see the inequality on the right-hand side, it is
necessary to take into account that h(α,β )(x)≥ ζ (α), ∀x ≥ 1, and that

P(Y = x) =
β x−α ζ (α)

h(α,β )(x)h(α,β )(x+1)
≤ β x−α ζ (α)

ζ (α)2 = β P(X = x),

which proves b). Point a) is proved in a similar way using the results of Lemma 1 a). Finally,
c) is a direct consequence of the definition of the MOEZipf distribution.

The next theorem relates the tail of the MOEZipf distribution to the tail of the Zipf
distribution with the same parameter α . It is a consequence of Theorem 5 of Section 2.2.

Theorem 6. Let Y and X be two r.v.’s, such that Y ∼ MOEZipf(α,β ) and X ∼ Zipf(α). The
tail of Y is asymptotically equivalent to β times the tail of X, ∀β > 0.

Proof. If Y is a minimum, given that n0 = 1 and that P(N = 1) = (1−β )n0−1β = β , then,
from Theorem 5 a), one has that:

P(Y > x)∼ P(N = 1)P(X > x) = β P(X > x),

which implies that

P(Y > x−1)−P(Y > x)∼ β [P(X > x−1)−P(X > x)]⇔

P(Y = x)∼ β P(X = x).
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If Y is a maximum, from Proposition 2, one has that E[N] = 1/(1/β ) = β . And thus,
from Theorem 5 b), one has that:

P(Y > x)∼ E[N]P(X > x) = β P(X > x),

which implies that

P(Y > x−1)−P(Y > x)∼ β [P(X > x−1)−P(X > x)]⇔

P(Y = x)∼ β P(X = x).

Figure 2.6 illustrates the results stated in Theorem 6 for α = 2.8 and β = 0.3 (left-hand
side) and α = 2.8 and β = 4.86 (right-hand side). Observe that, for the parameter values
considered, the convergence of the probabilities is faster when the distribution is defined in
terms of minimums.
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Fig. 2.6 Probabilities of the Zipf and the MOEZipf distributions with the same α parameter in
log-log scale, jointly with β times the probability of the Zipf. The MOEZipf on the left-hand
side is defined in terms of minimums and, on the right-hand side, it is defined in terms of
maximums.

The next subsection is devoted to analyze the performance of the random number gen-
erator mechanism stated in Theorem 4, for the MOEZipf distribution. At the beginning of
this PhD thesis, the MOEZipf distribution was implemented in the R-package moezipfR
[Duarte-López et al., 2017] that, in particular, contains the random number functionality.
Later on, a new package with name zipfextR [Duarte-López and Pérez-Casany, 2020] was
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created to include the four extensions defined in this thesis. The functionalities of the package
are described in detail in Appendix B.

2.3.3 Random data generation

Based on Theorem 4 in Section 2.1.1, it is possible to generate data from any MOEZipf
distribution if one knows how to generate data from a Zipf distribution. For the particular case
of the MOEZipf, this theorem takes the form of Proposition 5. Observe that the MOEZipf
distribution does not require distinguishing whether the distribution comes from a maximum
or a minimum. The Zipf random number generator used throughout this thesis is the one
implemented in the R-package tolerance (see Young et al. [2010]).

Proposition 5. Generating random data from a MOEZipf(α,β ) distribution can be done by
applying the inversion method to the Zipf(α) distribution and using the u′ value equal to:

u′ =
uβ

1+u(β −1)
,

regardless of whether the distribution is defined in terms of maximums or minimums, where
u ∈ (0,1) comes from an Uniform distribution.

Proof. Applying the results of Theorem 4 to the particular case of the geometric distribution,
one has the following:

a) if Y comes from a maximum family (β > 1), point 2a) of Theorem 4 give us:

u′ = h−1
N (u(1−hN(0;θ))+hN(0;θ); θ) = h−1

N (u(1−0)+0; θ) = h−1
N (u; β )⇔

u′ =
(

β u
1− (1−β )u

)−1

⇔ β u′

1− (1−β )u′
= u ⇔ β u′ = u− (1−β )uu′ ⇔

u′ =
u

β −u(β −1)
.

b) if Y comes from a minimum family (β < 1), point 2b) of Theorem 4 give us:

u′ = 1−h−1
N (1−u(1−hN(0,θ));θ) = 1−h−1

N (1−u(1−0);θ)⇔

u′ = 1−h−1
N (1−u;θ) = 1−

(
β (1−u)

1− (1−β )u

)−1

⇔ 1− β −β u
u−β u+β

⇔

u′ =
u

β −u(β −1)
,
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which proves the proposition.

The Kolmogorov-Smirnov (KS) test for discrete distributions is used to check the per-
formance of our random number generator. The KS is a non-parametric test for assessing
whether a given sample comes from a particular hypothesized distribution. This test has
been widely used for continuous distributions because the distribution of its statistic does
not depend on the distribution that is tested. Nevertheless, this is not the case when one is
testing a particular discrete distribution. Several papers adapt the KS test for continuous
distributions to the discrete case (see, for instance, Conover [1972] or Arnold and Emerson
[2011]). The version considered in this work is the version implemented in the R-package
dgof, which appears in the paper by Arnold and Emerson [2011].

The hypotheses associated with the test are:

H0 : Fn(x) = F(x)

H1 : Fn(x) ̸= F(x),

where Fn(x) is the empirical cumulative distribution of the observed data, and F(x) is the
hypothesized cumulative distribution. In this section, F(x) is a MOEZipf distribution with
fixed α and β . Later on, the other Zipf generalization introduced in this PhD thesis is
analyzed in a similar way.

In general, this test involves two steps. The first one consists of calculating the test
statistic, and the second one computes the p-value for the associated statistic. The p-value
can be obtained by using either the reference distribution or by simulation.
The KS statistic for the discrete version implemented in the dgof R-package is computed as
follows:

D = sup
x
|Fn(x)−F(x)|= max

i
(|F(xi)−Fn(xi)|, |F(xi − ε)−Fn(xi−1)|),

where ε is a positive value such that the discontinuities in F are more than some distance ε

(see [Arnold and Emerson, 2011, p. 35]).
Thus, to test if our MOEZipf random number generator has a good performance, we have

taken the following steps:

1) We have fixed the values of the parameters to be equal to α = 1.25,2,3.5 and 5, and
β = 0.1,0.25,0.5,1,1.75,2.5,3.5 and 10.

2) For a given combination (α0,β0) ∈ 1.25,2,3.5,5× 0.1,0.25,0.5,1,1.75,2.5,3.5,10,
we have generated 500 samples of size n = 100 and n = 1000, respectively.
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3) For each sample, we have computed the value D and concluded that the sample is
not MOEZipf(α0,β0) distributed when the corresponding p-value is smaller than the
significance level, which is set to be equal to 0.05.

The p-value has been computed in two different ways: first, by means of the classical KS
test; second, by means of simulations. The number of times that the null hypothesis has not
been rejected for each configuration and sample size appears in Table 2.3 for the classical
KS test, while Table 2.4 shows this number after adapting to discrete distributions, which
requires simulations.

Table 2.3 shows that, with the exception of three parameter configurations, the null
hypothesis has not been rejected at least 95% of the times, meaning that the random number
generator performs well. The configurations where the null hypothesis is rejected a number
of times different to the nominal value correspond to β = 3.5 and n = 1000 and β = 10
and the two sample sizes. For those configurations, the probabilities are generally very
small and increase very slowly, which makes difficult to generate the data (observe that
those configurations have less than 500 samples). Also, for α = 1.25, it was not possible to
generate the 500 samples. Since the value of α is close to the lower bound of the parameter
space, we have found some numerical problems: the low increase in the probabilities caused
the generation process to exceed the defined time (30 min) and consequently abort the
generation process.

The results in Table 2.4 show that the classical KS test is more conservative than the one
adapted to discrete distributions, which is known and has been pointed out in many research
papers (see, for instance, Arnold and Emerson [2011]). Nevertheless, with the exception of
the same configurations mentioned above, the null hypothesis is not rejected within the range
of 94% to 100%. In this case, the probability a type I error is in general very close to the
nominal value.

Appendix D.1 contains the R scripts used for generating the random sequences and
computing the computation of the KS test.
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2.4 The Zipf-Poisson extreme distribution

The paper by Ramos et al. [2019] proposes a unified framework for generalizing a family of
distributions, which corresponds to an RSED with a positive Poisson stopping distribution.
The results of this paper intersect with those presented by Pérez-Casany et al. [2016]. In the
applications that appear in the work by Ramos et al. [2019], the authors focus on extending the
following continuous distributions: exponential, Weibull and Generalized Extreme Value. In
this section we focus on extending the Zipf distribution, although others discrete distributions
may similarly be considered.

2.4.1 Definition and properties

The Zipf-PE family of distributions is obtained when the r.v. N is assumed to be a positive
Poisson distribution. The resulting distribution has support on the strictly positive integer
numbers, and its parameters are the α parameter of the Zipf, and a β parameter that when
positive is the positive Poisson parameter, and when is negative, it corresponds to the minus
positive Poisson parameter. Thus, the parameter space is equal to (1,+∞)× (−∞,+∞) .

The following proposition states the conditions under which any Zipf-PE distribution
can be interpreted in terms of maximums or minimums. In addition, it also agrees with the
results shown in Theorem 3 where we prove that each distribution in the maximum family
has a dual distribution in the minimum family.

Proposition 6. Let Y be a Zipf-PE distributed r.v. with parameters α and β . Then:

i) If β > 0, Y corresponds to a maximum of i.i.d Zipf(α) r.v.’s, where N follows a positive
Poisson with parameter β .

ii) If β < 0, Y corresponds to a minimum of i.i.d Zipf(α) r.v.’s, where N follows a positive
Poisson with parameter −β .

iii) If β = 0, Y follows a Zipf(α) r.v.’s and, by Theorem 3, Y belongs to maximum as well
as to the minimum set of stopped extreme distributions, where N is the degenerate
distribution at one.

Proof. Considering Y as an r.v. with a Zipf-PE distribution, the third row of Table 2.2 shows
the CDF of Y . After applying some algebra we have:

Fα,β (x) = 1−Fα,β (x) =
eβ − eβ eβ

ζ (α,x+1)
ζ (α)

eβ −1
=

eβ
ζ (α,x+1)

ζ (α)
−1

eβ −1
,
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which proves a).
In order to prove b) we have that:

Fα,β (x) = 1−Fα,β (x) =
eβ − eβζ (α,x+1)ζ (α)

eβ −1
=

e−β (1−ζ (α,x+1)ζ (α))

e−β −1
.

Point c) is a direct consequence of Theorem 3.

Thus, the CDF of any Zipf-PE is equal to:

F(α ,β )(x) =


e

β

(
ζ (α)−ζ (α,x+1)

ζ (α)

)
−1

eβ−1
, β ∈ R\{0},

1− ζ (α,x+1)
ζ (α,x) , β = 0,

(2.4.1)

where positive values of β correspond to maximums of a positive Po(β ) number of copies,
and negative values correspond to minimums of a positive Po(−β ) number of copies. More-
over, as mentioned in Subsection 1.4 of Chapter 1, the parameter space of the zero-truncated
Poisson distribution includes the zero value that corresponds to the degenerate distribution at
one. That is the reason why the value β = 0 is also included in (2.4.1) and, in this case, Y
follows the baseline distribution, that is, the Zipf(α) distribution.

From (2.4.1) ∀α > 1 and x ≥ 2, one can obtain the PMF of Y as follows:

P(Y = x) = F(α,β )(x)−F(α,β )(x−1) = (2.4.2)

=
eβ

(
ζ (α)−ζ (α,x+1)

ζ (α)

)
− eβ

(
ζ (α)−ζ (α,x)

ζ (α)

)
eβ −1

=


eβ e

−β ζ (α,x)
ζ (α)

(
e

β x−α

ζ (α) −1
)

eβ−1
, β ∈ R\{0},

x−α

ζ (α)
, β = 0.

For x = 1,

P(Y = 1) = F(α,β )(1) =


e

β

ζ (α)−1
eβ−1

, β ∈ R\{0},

1
ζ (α)

, β = 0.
(2.4.3)

Observe that (2.4.3) is equal to (2.4.2) at x = 1. Thus (2.4.3) is the PMF in the entire
support.
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Figure 2.7 shows the PMFs of the Zipf-PE distribution for α = 2.1 and different values of
the β parameter. On the left-hand side, the probabilities are at the standard scale and, on the
right-hand side, they are plotted in log-log scale. Note that the β parameter influences the
top-concavity (top-convexity) at the low values of the distribution. For β > 0, the distribution
is top-concave while, for β < 0, the distribution is top-convex.
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Fig. 2.7 PMFs of the Zipf-PE distribution for α = 2.1 and β =−2,−1,0.1,2.5 and 10. On
the left-hand side, the probabilities are shown at standard scale and, on the right-hand side,
they are plotted in log-log scale.

The next proposition states that the probability at one of an r.v. with a Zipf-PE(α,β )

distribution is always smaller (larger) than the probability at one of a Zipf distribution with the
same parameter α , depending on the sign of β . Negative values of β inflate the probability
at one while positive values deflate it. This is reasonable because β < 0(β > 0) corresponds
to minimums (maximums) and, thus, inflates (deflates) the probabilities of the first values.

Proposition 7. Let Y and X be two r.v.’s, such that Y ∼ Zipf-PE(α,β ) and X ∼ Zip f (α).
Then, P(Y = 1) ≤ (≥)P(X = 1) for all β > 0(β < 0), and the equality holds only when
β = 0.

Proof. If β ̸= 0, taking into account (2.4.3) it is necessary to prove that:

P(Y = 1)≤ (≥)P(X = 1)⇔ e
β

ζ (α) −1
eβ −1

− 1
ζ (α)

≤ (≥)0.

Let us define the function

g(x) =
eβ x −1
eβ −1

− x, ∀x ∈ [0,1].
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Observe that g(x) is a continuous and differentiable function in (0,1), which verifies that
g(0) = g(1) = 0. Applying Bolzano’s theorem [Apostol, 1974, p. 84], we have that it exists
a value x0 ∈ (0,1), such that g′(x0) = 0. Differentiating, one has:

g′(x0) = 0 ⇔ eβ x0 =
eβ −1

β
⇒ x0 =

1
β

log

(
eβ −1

β

)
.

By computing the second derivative of g(x), one has:

g′′(x) =
eβ x β 2

eβ −1
,

which is positive if β > 0, and negative otherwise. Thus, if β > 0, x0 is a minimum,
g(x)≤ 0∀a ∈ [0,1], and, in particular, g( 1

ζ (α)
)≤ 0. In contrast, if β < 0, x0 is a maximum,

g(x)≥ 0∀x ∈ [0,1], and, in particular, g( 1
ζ (α)

)≥ 0.

The following proposition assesses the condition under which the k-th moment of a
Zipf-PE distribution is finite, which is the same as for the Zipf and the MOEZipf family of
distributions.

Proposition 8. The k-th moment of a Zipf-PE distribution exists and is finite if, and only if,
α > k+1.

Proof. Let Y and X be two r.v.’s, such that Y ∼ Zipf-PE(α,β ) and X ∼ Zipf(α). As
mentioned in Section 1.1, the k-th moment of the Zipf distribution converges if, and only if,
α > k+1. Applying the comparison criteria of convergence of series of positive terms, one
has:

lim
x→+∞

P(Y = x)xk

P(X = x)xk = lim
x→∞

eβ e
−β ζ (α,x)

ζ (α)
(

e
β x−α

ζ (α) −1
)

eβ−1
x−α

ζ (α)

=

=
eβ ζ (α)

eβ −1
· lim

x→+∞
e
−βζ (α,x)

ζ (α) · lim
x→+∞

e
β x−α

ζ (α) −1
x−α

.

Given that ζ (α,x) tends to zero when x tends to +∞, limx→+∞ e
−βζ (α,x)

ζ (α) = 1. Moreover,
applying L’Hôpital rule, one has:

lim
x→+∞

e
β x−α

ζ (α) −1
x−α

= lim
x→+∞

e
β x−α

ζ (α)
β

ζ (α)
=

β

ζ (α)
.
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Thus,

lim
x→+∞

P(Y = x)xk

P(X = x)xk =
eβ ζ (α)

eβ −1
β

ζ (α)
=

β

1− e−β
, ̸= 0,+∞.

Since the limit β/(1− e−β ) is a constant value different from zero, the k-th moment
of the Zipf-PE(α,β ) distribution converges if, and only if, the k-th moment of the Zipf(α)

converges, that is, when α > k+1.

Figure 2.8 shows the behavior of the mean as: a function of α for β =−1,−0.5,1.5 and 3
(on the left-hand side); and as a function of β for α = 2.5,4.8,7.5,20 (on the right-hand side).
A similar plot for the variance appears in Figure 2.9: on left-hand side as a function of α for
β =−1,−0.5,1.5 and 3; and on the right-hand side as a function of β for α = 3.5,4.8,7.5
and 20. Note that, on the left-hand side of both figures, the E[Y ] and the VAR[Y ] are not only
decreasing functions of α , but they decrease faster as β becomes smaller. On the right-hand
side of both figures can be observed that the E[Y ] and VAR[Y ] are increasing functions of β ,
with a slope that decreases when α increases.
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Fig. 2.8 Mean values of a Zipf-PE(α,β ) distribution. On the left-hand side: as a function of
α for β =−1,−0.5,1.5 and 3. On the right-hand side: as a function of β for α = 2.5,4.8,7.5
and 20.

Proposition 9. Let Y and X be two r.v.’s, such that Y ∼ Zipf-PE(α,β ) and X ∼ Zipf(α).
Then, the ratio of two consecutive probabilities of Y is equal to:

P(Y = x+1)
P(Y = x)

=
eβ P(X=x+1)−1
1− e−β P(X=x)

.
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Fig. 2.9 Variance values of a Zipf-PE(α,β ) distribution. On the left-hand side: as a function
of α for β = −1,−0.5,1.5 and 3. On the right-hand side: as a function of β for α =
3.5,4.8,7.5 and 20.

Proof. From (2.4.2) one has:

P(Y = x+1)
P(Y = x)

=
eβ e

−βζ (α,x+1)
ζ (α)

(
e

β (x+1)−α

ζ (α) −1
)

eβ e
−βζ (α,x)

ζ (α)
(
e

β x−α

ζ (α) −1
) = e

β x−α

ζ (α)

(
e

β (x+1)−α

ζ (α) −1
)

(
e

β (x)−α

ζ (α) −1
)

=
e

β (x+1)−α

ζ (α) −1

1− e
−β x−α

ζ (α)

=
eβ P(X=x+1)−1
1− e−β P(X=x)

.

Figure 2.10 shows the behavior of this ratio for α = 2.1 and β = −3 and 3. The ratio
of the Zipf(α) is also included in order to facilitate comparison between both distributions.
Note that, when β > 0, the ratio associated with the Zipf-PE(α,β ) converges faster to that of
the Zipf distribution. In contrast, when β < 0, the convergence is not that fast, even though
it also converges to that of the Zipf. In general, the most significant difference occurs at
the initial values of x, which is another manner of observing the flexibility of the Zipf-PE
distribution at the first integer values. In addition, by increasing the value of x, the ratio of
all the distributions tends to one. Moreover, independently of the β value, those values in
the tail of the distribution behave similarly to those of the Zipf distribution, which is proven
in the Theorem 7. This theorem, based on the results stated in Theorem 5, establishes the
relationship between the tail of the Zipf-PE and the tail of the Zipf distributions.
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Fig. 2.10 Ratio of two consecutive Zipf-PE probabilities for α = 2.1, with β =−3 and 3,
respectively.

Theorem 7. The tail of an r.v. Y ∼ Zipf-PE(α,β ) is asymptotically related to the tail of an
r.v. X ∼ Zipf(α), in such a way that:

a) if β < 0, then Y is a minimum and,

P(Y = x)∼ −β eβ

1− eβ
P(X = x),

b) if β > 0, then Y is a maximum and,

P(Y = x)∼ β

(1− eβ )
P(X = x).

Proof. From Theorem 5 one has that, if β < 0, then n0 = 1 and P(N = 1) =−β eβ/(1−eβ ).
Consequently,

P(Y > x)∼ P(N = n0)[P(Y > x)]n0,

is equivalent to:

P(Y > x−1)−P(Y > x)∼ P(N = n0)[P(X > x−1)−P(X > x)]n0 ⇔

P(Y = x)∼ −β eβ

1− eβ
P(X = x),
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Fig. 2.11 The probabilities of the Zipf and Zipf-PE distributions with the same α parameter.
On the left-hand side, jointly with δ =−β eβ/(1− eβ ) times the probability of the Zipf. On
the right-hand side, jointly with γ = β/(1− eβ ) times the probability of the Zipf. In both
plots, the probabilities are shown in log-log scale. On the left hand side: defined in terms of
the minimum family. On the right hand side: in terms of the maximum family.

which proves a). If β > 0, then E[N] = β/(1− e−β ) and, consequently,

P(Y > x)∼ E[N]P(X > x)

is equivalent to:

P(Y > x−1)−P(Y > x)∼ E[N][P(X > x−1)−P(X > x)]⇔

P(Y = x)∼ β

1− e−β
P(X = x),

which proves b).

Figure 2.11 shows the results achieved in the previous Theorem. Observe that for the
parameter values used, the equivalence between the tails of both distributions emerges for
x ≥ 10.

In what follows, we introduces the methodology used for generating random data follow-
ing a Zipf-PE(α,β ) distribution.

2.4.2 Random data generation

The next proposition shows how to generate data from a Zipf-PE distribution. The approach
applied to the Zipf-PE distribution is similar to as the one adopted in Subsection 2.3.3. The
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performance of the proposed methodology is tested later by means of the KS goodness-of-fit
test.

Proposition 10. Generating random data from a Zipf-PE(α,β ) distribution is done by
applying the inversion method to the Zipf(α) distribution using a u′ value equal to:

u′ =
log(u(eβ −1)+1)

β
,

independently of whether the distribution family is defined in terms of maximums or minimums,
and where u ∈ (0,1) has been randomly selected from an Uniform distribution.

Proof. By means of Theorem 4 and the hN that appears in the second row of Table 2.1, we
have the following:

• if the data has to be generated for a distribution in the minimum family β > 0, then,

u′ = h−1
N (u(1−hN(0;θ))+hN(0;θ); θ) = h−1

N (u; θ)

⇔ eβ u′ −1
eβ −1

= u ⇔ eβ u′ = ueβ −u+1 ⇔ u′ =
log(u(eβ −1)+1)

β
;

• if the data has to be generated for a distribution in the minimum family β < 0, then,

u′ = 1−h−1
N (1−u(1−hN(0,θ));θ) = 1−h−1

N (1−u;θ)

⇔ 1− eβ (1−u′)−1
eβ −1

= u ⇔ eβ (1−u′) = ueβ −u+1

⇔ u′ = 1−

(
1− log(u(eβ −1)+1)

β

)
⇔ u′ =

log(u(eβ −1)+1)
β

.

As stated in Proposition 6, the positive Poison parameter is β =−β .

For ensuring the quality of our data generation process, we take a similar approach to
the one followed for the MOEZipf(α,β ) distribution and have generated 500 samples with
sizes 100 and 1000, respectively, using all the possible combinations of the parameter values
α = 1.25,2,3.5 and 5, and β =−5,−2.25,−1,−0.25,0.25,1,2.5 and 5. Then, we applied
the KS test as described in Subsection 2.3.3. Tables 2.5 and 2.6 summarize: the number of
sequences generated for each combination of parameters; and the percentages of them that
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did not reject the null hypothesis that the data come from a Zipf-PE(α,β ), with a significance
level of α = 0.05. The first table mentioned presents the results of the classical KS test and
the second one, those obtained with the discrete version of the test using a Monte Carlo
approach for computing the p-value.

In general, the results in both cases are good, with the classical KS test being, again,
more conservative. The random generation process presents numerical problems only when
α = 1.25 and β = 5. This is a consequence of the fact that, for large β s, the probabilities
increase very slowly.
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Chapter 3

The Zipf Poisson-stopped-sum extension

In this chapter we define and develop the Zipf-Poisson-stopped-sum (Zipf-PSS) family of
distributions which is obtained by extending the Zipf distribution according to the PSS
definition. In the first part of this chapter we review the concept of PSS. The second part
of this chapter is devoted to the definition and the analysis of the main properties of the
Zipf-PSS family of distributions. The results included here appear in the paper: “The Zipf-
Poisson-stopped-sum distribution with an application for modeling the degree sequence of
social networks” [Duarte-López et al., 2020b].

3.1 Poisson-stopped-sum distributions

PSSs [Johnson et al., 2005] appear to be the distribution of an r.v. Y in relation to a branching
process, where we initially assume to have N individuals or experimental units, and that
each individual gives rise to Xi new individuals in a given period of time, whereby the total
number of first-generation individuals is equal to:

Y = X1 +X2 + ...+XN , (3.1.1)

where N is assumed to be a Poisson r.v. and Xi, i = 1, . . . ,n, are i.i.d r.v.’s with a given
distribution that may be either continuous or discrete. It is assumed that when N = 0, Y = 0,
meaning that if there are no initial individuals, then no new ones are generated. If Xi has a
distribution with parameter vector θ and parameter space Θ ⊆ Rn, then the distribution of Y
has parameter space {(λ ,θ)|λ ∈ (0,+∞) and θ ∈ Θ}. The r.v. X is obtained when N = 1,
which takes place with probability λ e−λ , and the Poisson distribution is obtained when Xi

has a degenerate distribution at one. The distributions of N and X are called primary and
secondary distributions, respectively. Denoting by Gx(z) the PGF of X , one has that the PGF
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of Y defined as in (3.1.1) is equal to:

GY (z) = eλ (GX (z)−1), λ > 0, (3.1.2)

and it is defined at least for |z| ≤ 1. Since the PGF of a PSS is the composition of the PGF of
the Poisson and the PGF of the distribution of X , these families are also know as compound
distributions.

A discrete compound Poisson distribution (DCP) is defined as a PSS with a discrete
secondary distribution [Feller, 1971; Zhang and Li, 2016]. The notation for an r.v. with
a DCP distribution is Y ∼ DCP(α1 λ , α2 λ , . . .), with λ being the Poisson parameter and
αi = P(Xi = i). Its approximation of order r, Yr, is defined by approximating the Taylor’s
expansion of GX(z) at z = z0, by the first terms up to order r at a given point z = z0, and its
distribution is denoted by: DCP(α1 λ , α2 λ , . . . , αr λ ).
One of the most studied approximations is the second-order approximation, which is the
Hermite distribution. Several works on the third and fourth approximations can be found
in the literature under the name sttutering Poisson distributions [Patel, 1976] or 3rd and 4th

order Hermite distribution [Puig and Valero, 2007]. In addition, Puig and Valero [2006] have
proved that under certain regularity conditions, a bi-parametric family of discrete distributions
is partially closed under addition if, and only if, it is a PSS. By partially closed under addition
one understands that, the sum of N independent copies of a r.v. X with distribution in a
given family, also belongs to the same family. More recently, Valero et al. [2013] have
characterized those PSS that are also mixed Poisson models.

PSS are widely applied in dissimilar fields. For example, Podur et al. [2010] uses PSS to
model the annual area burned by forest fires in the Canadian province of Ontario; and the
work by Low et al. [2016] compares the performance of several PSS used to model citation
data. For its application to insurance data, see Meng and Gao [2018]. The PSS distributions
appear naturally in many data generation processes. Thus, the parameter estimates provide
important insights about the data generation mechanism.

Next section formally defines the Zipf-PSS family of distributions.

3.2 Definition

The Zipf-PSS model is obtained by assuming that the distribution of the r.v.’s Xi in (3.1.1)
is the Zipf(α) distribution. By substituting (1.1.12) in (3.1.2), the PGF of r.v. Y with a
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Zipf-PSS(α,λ ) distribution is set to be equal to:

GY (z) = eλ

(
Liα (z)
ζ (α)

−1
)
, λ > 0, α > 1, |z| ≤ 1. (3.2.1)

This family of distributions is a bi-parametric model with parameter space equal to
{(α,λ ) ∈ (1,+∞)× (0,+∞)}, and it belongs to the class of DCP distributions with parame-
ters: (

λ

ζ (α)
,

λ

2α ζ (α)
,

λ

3α ζ (α)
, ...

)
.

The probabilities of a Zipf-PSS(α,λ ) distribution may be computed using the generaliza-
tion of the Panjer recursion that appears in Panjer [1981, p. 24-25] and in Sundt and Jewell
[1981, p. 38], which says that:

P(Y = 0) =


1−aP(X=0)

1−a , if a ̸= 0

e−b [1−P(X=0)], if a = 0,
(3.2.2)

and, for x = 1,2, ...

P(Y = x) =
1

1−aP(Y = 0)

x

∑
s=1

(
a+

bs
x

)
P(X = s)P(Y = x− s), (3.2.3)

for given constants a and b. The work of Panjer [1981] also shows that if N has a Poisson
distribution, then a = 0 and b = λ .

Thus, if X ∼ Zip f (α) and Y ∼ Zipf-PSS(α,λ ), from (3.2.2) one has that

P(Y = 0) = e−λ , (3.2.4)

and from (3.2.3) that

P(Y = x) =
λ

ζ (α)x

x

∑
s=1

s1−α P(Y = x− s), x ≥ 1. (3.2.5)

Figure 3.1 shows the probabilities of the Zipf-PSS distribution for different values of α

and λ . On the left-hand side, the plots are in normal scale while on the right-hand side are
shown in log-log scale. The probabilities obtained for α = 2.3 and different values of λ can
be observed on the top-side of the figure, while the bottom-side contain the probabilities for
λ = 5 and different values of α . We observe that the highest probabilities are obtained at the
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initial values when α and λ are small. Additionally, looking at top-right part of the figure, it
is possible to compare the behavior of the Zipf-PSS probabilities with those achieved by a
Zipf distribution with the same α parameter. Note that even though it looks like a straight
line for smaller λ values, the probabilities obtained are different from those of the Zipf. In
comparison, the larger the value of λ becomes, more curvature is shown by the PMF. This
bring us to consider the λ parameter as a measure of departure from the Zipf distribution.
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Fig. 3.1 PMF of the Zipf-PSS(α,λ ) distribution. For α = 2.3 and λ = 0.1,0.5,1,2.5 and 10,
(top-left) in normal scale and (top-right) in log-log scale. For λ = 5 and α = 1.5,2.5,3,5,7,
(bottom-left) in normal scale and (bottom-right) in log-log scale. In normal scale x =
0, . . . ,100, and x = 1, . . . ,100 in log-log scale.

3.3 Properties

3.3.1 Moments and index of dispersion

In Satterthwaite [1942] and Johnson et al. [2005] it is proved that the moments of any PSS
are functions of the moments of the underlying secondary distribution which, in our case, is
the Zipf distribution. These results give rise to the following propositions.

Proposition 11. The k-th moment of the Zipf-PSS(α,λ ) distribution is finite if, and only if,
α > k+1.
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Proof. Let M(t), t ∈ R be the moment generating function (MGF) of the Zipf-PSS distribu-
tion. According to equation (3.2.1), it is equal to:

M(t) = GY (et) = eλ

(
Liα (et )

ζ (α)
−1
)
. (3.3.1)

Given that E[Y k] = M(k)(t)|t=0, the k− th moment depends only on the derivatives of the
PGF of the secondary distribution. Satterthwaite [1942] establishes the relationship between
the moments of any PSS distribution and those of the underlying secondary distribution.
Since the existence of the Zipf-PSS moments depends on the existence of Zipf moments, the
moment of order k of the Zipf-PSS exists if, and only if, α > 1.

In what follows, we obtain the exact values for the mean and the variance.

Proposition 12. The mean and the variance of a Zipf-PSS(α,λ ) distribution are respectively
equal to:

E[Y ] = λ E[X ] = λ
ζ (α −1)

ζ (α)
,α > 2, (3.3.2)

and
Var[Y ] = λ

ζ (α −2)
ζ (α)

,α > 3, (3.3.3)

Proof. The expectation of the Zipf-PSS, as well as its variance expression, can be derived
either by means of the derivatives of the moment generating function or, what is more
straightforward, from the Law of Total Expectation and the Law of Total Variance, which
state that:

E[Y ] = E[N]E[X ], and

Var[Y ] = E[N]Var[X ]+E2[X ]Var[N]. (3.3.4)

Let us take into account that if N is Poisson distributed, E[N] = Var[N] = λ , and that
E[X ] and Var[X ] appear in (1.1.7) and (1.1.8), respectively. Then, in a simple substitution,
we have:

Var[Y ] = λ
ζ (α −2)ζ (α)−ζ (α −1)2

ζ (α)2 +

(
ζ (α −1)

ζ (α)

)2

λ = λ
ζ (α −2)

ζ (α)
.

Figure 3.2 shows the behavior of the mean of the Zipf-PSS distribution. On the left-hand
side as a function of α , for λ = 0.5,1,2.5 and 3; and, on the right-hand side as a function of
λ , for α = 2.5,3,5 and 10. Observe that the expected value of a Zipf-PSS is a decreasing
function of α for any value of λ . This makes sense, since E[Y ] = λ E[X ] and the mean of a
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Zipf distribution is a decreasing function of α because increasing α leads to the probability
concentrating in the first values. On the left-hand side, one can observe that the mean is
an increasing function of λ for any α . This is a consequence of the fact that increasing λ

increases the number of terms in (3.1.1) and, consequently, the value of Y .
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Fig. 3.2 Expected values of a Zipf-PSS(α,λ ) distribution. On the left-hand side as a function
of α , for λ = 0.5,1,2.5 and 3; and, on the right-hand side as a function of λ , for α = 2.5,3,5
and 10.

A similar plot is presented in Figure 3.3 in regard to the variance of the Zipf-PSS
distribution. On the left-hand side as a function of α for several values of λ , and on the
right-hand side as a function of λ for several values of α . The variance of the distribution
behaves quite similar to the mean. The variance is clearly a decreasing function of α , and
it decreases faster as the λ value becomes smaller. From Proposition 12, the mean and the
variance are linear functions of λ with a slope that decreases when α increases, which is
observed on the right-hand side of figures 3.2 and 3.3, respectively.

Taking into account (3.3.2), (3.3.3) and that ζ (α) is a decreasing function of α , one has
that if α > 2, then

ID =
Var[Y ]
E[Y ]

=
ζ (α −2)
ζ (α −1)

> 1.

Consequently, the Zipf-PSS is over-dispersed compared to a Poisson distribution with the
same mean, which is consistent with the relationship between the ID of Y and the ID of X
and N, pointed out in Johnson et al. [2005, p. 386].
In what follows, we provide a condition under which the variance of the Zipf-PSS is larger
than the variance of a Zipf distribution with the same α parameter.
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Fig. 3.3 Variance values of a Zipf-PSS(α,λ ) distribution. On the left-hand side as a function
of α , for λ = 0.5,1.4,2.5 and 3; and, on the right-hand side as a function of λ for α =
3.5,5,7.5 and 20.

Proposition 13. Let Y ∼ Zipf-PSS(α,λ ) and X ∼ Zip f (α). If α > 3, then one has that
Var[Y ]≥Var[X ] if, and only if,

λ ≥ 1− ζ 2(α −1)
ζ (α −2)ζ (α)

.

Proof. From (3.3.4), and given that E[N] =Var[N] = λ , one has that:

Var[Y ] = λ (Var[X ]+E2[X ]).

Thus,

Var[Y ]≥Var[X ]⇔ λ (Var[X ]+E2[X ])≥Var[X ]⇔ λ ≥ Var[X ]

Var[X ]+E2[X ]
=

1

1+ E2[X ]
Var[X ]

.

Taking into account (1.1.7) and (1.1.8), one has that:

1+
E2[X ]

Var[X ]
=

ζ (α −2)ζ (α)

ζ (α −2)ζ (α)−ζ 2(α −1)
,

and thus,

Var[Y ]≥Var[X ]⇔ λ ≥ ζ (α −2)ζ (α)−ζ 2(α −1)
ζ (α −2)ζ (α)

= 1− ζ 2(α −1)
ζ (α −2)ζ (α)

.
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Given that the Riemann zeta function is always positive, then if λ is larger than one
(which is usually the case when fitting real data), the condition is always satisfied and the
Zipf-PSS has a larger variance than the corresponding Zipf distribution.

As already mentioned, according to Puig and Valero [2006, p. 333], all the PSSs distribu-
tions have the property of being partially closed under addition. For the particular case of the
Zipf-PSS family of distributions, this property is established in the following proposition.

Proposition 14. Let Yi, i = 1, . . . ,n be n i.i.d. r.v.’s with a Zipf-PSS(α , λ ) distribution. The
r.v. Y defined as:

Y = Y1 +Y2 + . . .+Yn

Follows a Zipf-PSS(α,nλ ) distribution.

Proof. By (3.2.1) the PGF of the r.v. Y is equal to:

GY (z) = (GYi(z))
n = enλ (

Liα (z)
ζ (α)

−1)
,

which proves the proposition.

This property is specially interesting in order to analyze the evolution of a system, for
instance a graph, over time. Figure 3.4 illustrates this property.

0 1 2 ... n

Zipf-PSS(α, λ) Zipf-PSS(α, λ) Zipf-PSS(α, λ) Zipf-PSS(α, λ)

Zipf-PSS(α, nλ)

Fig. 3.4 Independents Zipf-PSS(α,λ ) distributions with the same λ parameter.

3.3.2 Other important properties

Here, we first show the relationship between the parameters of the distribution and its
modality. Later, we compare the ratio of two consecutive probabilities of a Zipf-PSS(α,λ )
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with the one obtained from a Zipf distribution with the same α parameter. At the end of the
subsection we prove that the Zipf-PSS is a MP distribution.

Proposition 15. If Y ∼ Zipf-PSS(α,λ ) and denoting by λ0 = 2ζ (α)(1−2−α), one has that:

i) if λ ∈ (0,ζ (α)], then the distribution of Y is unimodal with a pseudo-mode at zero,
and it is also log-concave;

ii) if λ ∈ (ζ (α),λ0], then the distribution of Y has a mode at one;

iii) if λ ∈ (λ0,+∞), then the distribution of Y has a mode equal to or larger than two.

Proof. i) It is necessary to see that P(Y = 0)≥ P(Y = 1)

P(Y = 0)≥ P(Y = 1)⇔ e−λ ≥ λ e−λ

ζ (α)
⇔ ζ (α)≥ λ .

Hence, point i) holds when λ ∈ (0,ζ (α)].
ii) Applying (3.2.5) for x = 1 and x = 2, one has that:

P(Y = 2)≥ P(Y = 1)⇔ λ e−λ

2ζ (α)

⌈
λ

ζ (α)
+21−α

⌉
≥ λ e−λ

ζ (α)
(3.3.5)

⇔ 1
2

(
λ

ζ (α)
+21−α

)
≥ 1 ⇔ λ ≥ 2ζ (α)(1−2−α). (3.3.6)

To prove point ii), it is only necessary to see that for λ ∈ (ζ (α),2ζ (α)(1− 2−α)),
P(Y = 1)≥ P(Y = 0) and that P(Y = 1)≤ P(Y = 2). Taking into account that:

P(Y = 0)≤ P(Y = 1)⇔ e−λ ≤ λ e−λ

ζ (α)
⇔ ζ (α)≥ λ , (3.3.7)

and based on (3.3.5), one has that, if λ ∈ (ζ (α), 2ζ (α)(1−2−α)), there is a mode at one.
iii) This is a straightforward consequence of points i) and ii).

Given that, ζ (α)→+∞ when α → 1, and that it tends to 1 when α →+∞, one has that
when α → 1, then λ0 →+∞ and thus the parameter λ must be larger in order to have a mode
larger than one. Also, when α →+∞,λ0 → 2, and thus the distribution has a mode larger
than one for any λ ∈ (2,+∞).

The next proposition establishes the relationship between the ratio of two consecutive
probabilities of the Zipf-PSS(α,λ ) and the Zipf(α) distributions.
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Proposition 16. The ratio of two consecutive probabilities of r.v. Y with a Zipf-PSS(α,λ )

distribution is related to the same ratio of r.v. X with a Zipf(α) distribution by means of:

P(Y = x+1)
P(Y = x)

=
P(X = x+1)

P(X = x)

(
x

x+1

)1−α

h(x;α,λ ),

where h(x;α,λ ) is a ratio of two linear combinations of the probabilities P(Y = i) for
i = 0, . . . ,x.

Proof. From (3.2.5) one has that for x = 1,2, ...

P(Y = x+1) =
λ

ζ (α)(x+1)

x+1

∑
s=1

s1−α P(Y = x+1− s).

Dividing this expression by P(Y = x), as in (3.2.5), one has that:

P(Y = x+1)
P(Y = x)

=
1

x+1
1
x

∑
x+1
s=1 s1−α P(Y = x+1− s)
∑

x
s=1 s1−α P(Y = x− s)

. (3.3.8)

Thus, denoting by h(x;α,λ ) the second ratio on the right-hand side of the equation one
has that:

P(Y = x+1)
P(Y = x)

=
x

x+1
h(x;α,λ ). (3.3.9)

Taking into account that the ratio of two consecutive probabilities of the Zipf(α) distribu-
tion is equal to ( x

x+1)
α , (3.3.9) is equivalent to:

P(Y = x+1)
P(Y = x)

=
P(X = x+1)

P(X = x)

(
x

x+1

)1−α

h(x;α,λ ).

Figure 3.5 shows the behavior of this ratio for α = 2.3 and two different values of the λ

parameter. For comparison to the Zipf distribution, the ratio of the Zipf(α) probabilities is
also included. When the λ value is close to zero, the ratio of the two consecutive probabilities
of the Zipf-PSS(α,λ ) quickly converges to the ratio of the same two consecutive Zipf
probabilities. Otherwise, if the λ parameter is large, the ratio of the probabilities also
converges to that of the Zipf, but the convergence takes longer. Moreover, both ratios tend to
one when x tends to infinity. This implies that h(x;α,λ ) also tends to one when x increases.
In addition, this is another manner of observing the flexibility of the Zipf-PSS distribution,
especially in the first integer values. Observe that increasing the value of x (i.e., considering
those values in the tail of the distribution) leads to similar behavior as in the Zipf distribution,
which is proved by Theorem 9 in the next subsection.
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Fig. 3.5 Ratio of two consecutive Zipf-PSS probabilities for α = 2.3 and λ = 0.8 and 3.
Jointly with the same ratio of probabilities of the Zipf for α = 2.3.

In Theorem 3 of Valero et al. [2013, p. 1833], it is proven that a non-negative integer PSS
distribution with finite mean is an MP if, and only if, the zero-truncation of its secondary
distribution is an MZTP distribution. As a consequence of this theorem, we have the following
result:

Theorem 8. Denoting by Zipf-PSS(α,λ ) the distribution of parameters α and λ in the
Zipf-PSS family, one has that for any α > 1 and λ > 0, the distribution is an MP distribution.

Proof. First observe that, by definition, the Zipf-PSS family has the Zipf as a secondary
family of distributions. Moreover, given that any Zipf distribution does not contain the zero
value in its support, it is equal to its zero-truncation version. Point a) of Theorem 2 in Chapter
1 states that the Zipf is an MZTP. Consequently, the Zipf-PSS has a secondary distribution
that is an MZTP; and, thus, it is an MP, as a consequence of Theorem 3 of Valero et al. [2013,
p. 1833].

It is known that any mixed distribution has a larger variance than the original distribution
(see, Karlis and Xekalaki [2005], Section 2). Thus, this theorem agrees with the result proved
in Section 3.3.1 that says that the ID of r.y. Y with a Zipf-PSS distribution is larger than one
for α > 2.

3.3.3 Linear tail behavior

In order to analyze the tail behavior of the Zipf-PSS distribution we have to use the notion of
RVF introduced in Section 2.1.2 of Chapter 2. In addition, the analysis is based on the result
achieved by Jessen and Mikosch [2006, p. 177] which is stated in the next Lemma.
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Lemma 2. Assuming that X is a regularly varying r.v. with index α > 0, that E[N]<+∞

and that P(N > x) = o(P(X > x)), then as x →+∞,

P(Y > x)∼ E[N]P(X > x). (3.3.10)

In Section 2.1.2 we have shown that the Zipf distribution is a RVF. The second condition
of Lemma 2 holds because N is Poisson distributed. Next two lemmas are required to proof
the third condition of Lemma 2.

Lemma 3. Let f (x) be defined as f (x) = λ x xα

x! , for x > 0, then it verifies that:

a) it is a decreasing function of x for x large enough;

b) limx→+∞ f (x) = 0.

Proof. Given that,

f (x+1)
f (x)

=
λ (x+1) (x+1)α

(x+1)!
x!

λ x xα
=

λ

(x+1)

(
1+

1
x

)α

,

one has that limx→+∞ f (x+ 1)/ f (x) = 0 and thus, for large values of x, f (x+ 1) ≤ f (x),
which proves a).

Taking into account that the Poisson distribution has moments of any order, and denoting
by xαy the integer part of α , we have that for any α ∈ R, and α > 1,

0 ≤
+∞

∑
x=0

λ x xα

x!
≤

+∞

∑
x=0

λ x xxαy+1

x!
<+∞,

and consequently, limx→+∞ f (x) = 0.

For the next Lemma, a regularly varying random variable with index α ≥ 0 is defined as
r.v. X , such that

P(X > x)∼ px−αL(x) and P(X ≤−x)∼ qx−αL(x),

where p+q = 1, and L is a slowly varying function.

Lemma 4. Let N ∼ Po(λ ) and X ∼ Zip f (α), N and X being independent r.v.’s. Then

P(N > x) = o(P(X > x)).
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Proof. We need to prove that P(N > x)/P(X > x) has limit zero at infinity. However, taking
into account point a) of Lemma 3, one has that for x large enough,

0 ≤ P(N > x)
P(X > x)

=
∑
+∞

i=x+1
e−λ λ i

i!

∑
+∞

i=x+1
i−α

ζ (α)

= e−λ
ζ (α)

∑
+∞

i=x+1
λ i iα i−α

i!

∑
+∞

i=x+1 i−α

≤ e−λ
ζ (α)

λ xxα

x!
∑
+∞

i=x+1 i−α

∑
+∞

i=x+1 i−α
≤ e−λ

ζ (α)
λ x xα

x!
.

Taking limits in the inequality, and as a consequence of point b) of Lemma 3, one has that:

0 ≤ lim
x→+∞

P(N > x)
P(X > x)

≤ e−λ
ζ (α) lim

x→+∞

λ x xα

x!
= 0,

which proves the proposition.

Based on Lemma 2 and supported by all the proofs conducted in Lemmas 3 and 4, we
state the following Theorem.

Theorem 9. The tail of r.v. Y with a Zipf-PSS(α,λ ) distribution is asymptotically equivalent
to λ times the tail of r.v. X with a Zipf(α) distribution.

Proof. The proof is a consequence of Lemma 2, where X ∼Zipf(α) and N ∼Po(λ ), and X
and N are independent r.v.’s Thus, we have that P(Y > x)∼ E[N]P(X > x), and given that

P(Y = x) = P(Y > x−1)−P(Y > x),

E[N] = λ , one has that:

P(Y = x)∼ λ [P(X > x−1)−P(X > x)]⇔ P(Y = x)∼ λ P(X = x).

Figure 3.6 illustrates the result stated in Theorem 9. Observe that the larger the λ value
becomes, the larger the x value must be to obtain the equivalence of the tails.

3.4 A limit distribution and approximations

This subsection establishes the conditions under which the Zipf-PSS converges in distribution
to the Poisson. It also studies their DCPs approximations of order r for r = 1,2,3 and 4.
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Fig. 3.6 Probabilities of the Zipf, λZipf, and the Zipf-PSS distributions. On the left-hand
side with the same α parameter for α = 3.1 and λ = 0.5; and, on the right-hand side for
α = 2.3 and λ = 3.

Proposition 17. Let Yn ∼ Zipf-PSS(αn,λ ), for n ≥ 1, and Yi is independent of Yj. Also let
N ∼ Po(λ ), Yi be independent of N ∀i. Then, if αn →+∞ when n →+∞,

Yn
D−−−−→

n→+∞
N.

Proof. Given that, when α →+∞, the Zipf distribution tends towards the degenerate distri-
bution at one, we have that, for large values of α , the Zipf-PSS(α, λ ) distribution is equal to
the sum of N ones, which is equal to N.

These results can be observed in the top right-hand side of Figure 3.1, where for α = 2.3
and λ = 10, the PMF of the Zipf-PSS looks like the PMF of a Poisson.

In Subsection 3.2, we have introduced the approximation of order r of a DCP distribution.
In what follows, we compute the firsts four approximations for the particular case of the
Zipf-PSS.

Proposition 18. The Zipf-PSS(α,λ ) distribution has as:

a) first order approximation, a Poisson distribution, with parameter λ/ζ (α);

b) second order approximation, a Hermite distribution, with parameters a1 = λ/ζ (α)

and a2 = a1/2α ;

c) third order approximation, a 3rd order Hermite distribution, with parameters a1 =

λ/ζ (α), a2 = a1/2α and a3 = a1/3α ;

d) fourth order approximation, a 4th order Hermite distribution, with parameters a1 =

λ/ζ (α), a2 = a1/2α , a3 = a1/3α and a4 = a1/4α .
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Proof. From (3.2.1), the PGF of r.v. Y with a Zipf-PSS(α,λ ) distribution may be written as:

GY (z) = e
λ

ζ (α)
(Liα (z)−ζ (α))

.

Taking into account that,

Liα(z)−ζ (α)

ζ (α)
=

1
ζ (α)

[+∞

∑
k=1

zk

kα
−

+∞

∑
k=1

1
kα

]
=

1
ζ (α)

+∞

∑
k=1

(zk −1)
kα

=
(z−1)
ζ (α)

+
(z2 −1)
2α ζ (α)

+
(z3 −1)
3α ζ (α)

+ . . . ,

the first to fourth order approximations of the PGF of r.v. Y with a Zipf-PSS(α,λ ) distribution
are those mentioned in points a) to d), since they correspond to the Taylor’s approximations
of order one to four of Liα (z)−ζ (α)

ζ (α)
.

Figure 3.7 shows the behavior of the first four approximations. Observe that for small α

values, a large λ value is required to properly approximate the distributions by a lower order
approximation. In contrast, when α increases, the distribution is properly approximated
by the first order approximation independently of the value of λ . Thus, the first order
approximation is acceptable if α is large enough. For small values of α , it is better to
consider the second or higher order approximations.

3.5 Random data generation

To generate data from a Zipf-PSS distribution, the inversion method is directly applied to
the CDF of the distribution family. As it has been done in Chapter 2, some simulations have
been performed in order to test if the Zipf-PSS random data generator works appropriately.

We have generated 500 samples of size 100 and 500 samples of size 1000. This has been
done for all the possible pair of values (α,λ ) obtained from the sequences α = 1.25,2,3.5
and 5, and λ = 0.1,0.25,0.5,1,1.75,2.25,3.5 and 10.

Tables 3.1 and 3.2 contain the total number of generated sequences for each pair of
parameters, and the percentage of them for which the null hypothesis of the KS test has not
been rejected. Important to remark that the same definition of the KS test used with the
MOEZipf and the Zipf-PE distributions has been applied here. Observe that for α = 1.25,
independently of the λ value, we cannot generate all the sequences. In particular, for λ ≥ 1
we could not generate any. This is because, for these configurations the probabilities increase
very slowly. Bear in mind that, as mentioned in the previous chapter, we have established a
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Fig. 3.7 Behavior of the PGF of the higher order approximations of the Zipf-PSS for α =
2.1, λ = 7.5 (top-left), α = 2.6, λ = 8.5 (top-right), α = 3.6, λ = 5.5 (bottom-left) and
α = 4.5, λ = 3.5 (bottom-right).

timeout of 30 minutes for this procedure. However, for the remaining parameter configuration
the results are very good.

For the more conservative KS test, the null hypothesis has not been rejected in a per-
centage that goes from 98% to 100% (see Table 3.1). For the KS test adapted to discrete
distributions it is very close to 95% (see Table 3.2).
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Chapter 4

The Zipf-Polylog extension

In this chapter we introduce what we have called the Zipf-Polylog generalization of the Zipf
distribution, which has been naturally obtained from the PGF of the Zipf distribution by
including an additional parameter. Nevertheless, after defining it, we realized that this family
of distributions already appeared in the scientific literature under other names and other
parameterizations. For instance Fenner et al. [2005], Clauset et al. [2009], and Smolinsky
[2017] refer to it as the PL distribution with an exponential cutoff, and use it as an alternative
to the Zipf distribution that allows to capture situations in which the Zipf exponent is
positive but less than or equal to one. In Visser [2013] it is also mentioned as the hybrid
geometric/power model and the authors prove that it is the two parameter discrete model
defined in 1,2, . . . that has maximum Shannon entropy, once the sample mean and the sample
mean of the logarithm of the observations are fixed. At this point, we would like to mention
that the Visser’s paper contains a lack of precision when says that the additional parameter
can take negative values. The extra parameter in the Visser parametrization can only be
strictly positive, otherwise the odd negative integer values will have negative probabilities,
which has no sense. A part from that, it is important to say that we have not been able to find
in the literature an accurate analysis of the properties of this model, and it is because of that,
that this chapter contains our definition as well as the properties that we have derived from it.

The chapter starts by defining the Zipf-Polylog family of distributions and then, by stating
and proving some of its main properties. At the end we include a section devoted to the
analysis of random data generation from the Zipf-Polylog distribution. Most of the work
presented in this chapter is included in the paper “The Zipf as a Mixture Distribution and Its
Polylogarithm Generalization” [Valero et al., 2020], which at the moment of writing this
PhD thesis is under revision.
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4.1 Definition

An r.v. Y is said to follow a Zipf-Polylog distribution with parameters α ∈ R and β ∈ (0,1)
or α > 1 and β = 1, (from now on denoted by Zipf-Polylog(α,β )), if and only if, for any
z ∈ (−∞,1), its PGF is equal to:

hY (z) =


Liα (β z)
Liα (β )

if β ̸= 1 and α ∈ (−∞,+∞)

Liα (z)
Liα (1)

if β = 1 and α > 1.

(4.1.1)

To see that (4.1.1) defines a real PGF, it is only necessary to prove that: it takes the value
one at one; it is analytical in an interval that contains the zero value; and the coefficients of
the series expansion at zero are all positive. The first condition is true because

hY (1) =
Liα(β )
Liα(β )

= 1.

The second condition is also true because, by (1.1.13), hY (z) is defined by means of
a series expansion centered at zero. Finally, the third condition is true because the n-th
coefficient is equal to (Liα(β ))−1 β nn−α ≥ 0.

The support of a Zipf-Polylog distributed r.v. is the same as that of the Zipf distribution,
i.e., strictly positive integer numbers. This is because

P(Y = 0) = hY (0) = Liα(0)/Liα(β ) = 0.

To obtain the PMF of a Zipf-Polylog distribution, it is enough to see that

hY (z) =
+∞

∑
x=1

β xx−α

Liα(β )
zx,

and, thus, according to the definition of the PGF, the probabilities are equal to:

P(Y = x) = hx
y(z)
∣∣∣∣
z=0

=
β x x−α

Liα(β )
, x = 1,2, . . . . (4.1.2)

Observe that by defining γ =− log(β ), the Zipf-Polylog distribution turns out to be the
discrete version of the PL distribution with exponential cut-off, which appears in the paper by
Clauset et al. [2009]. In the same way the work by Smolinsky [2017] uses the PL distribution
with exponential cut-off in a comparative analysis between the mentioned distribution and
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the Lotka’s law, where both distributions are used to measure the authors productivity in the
chemistry area. In what follows, this result is extended proving that it also contains other
known families of distributions in the interior of its parameter space.

When α = 1, (4.1.2) is the PMF of the logarithmic-series distribution because Li1(β ) =
− log(1−β ), as observed in Section 1.1 of Chapter 1. Moreover, if α = 0 we obtain the
geometric distribution with support {1,2,3, . . .} and probability of success p= 1−β . Finally,
if α =−1, given that Li−1(β ) = β (1−β )−2, (4.1.2) is equal to the PMF of a shifted negative
binomial distribution with r = 2 successes and probability of success p = 1−β . Figure 4.1
contains the parameter space of the Zipf-Polylog family, with the Zipf on the boundary, and
the logarithmic-series; the geometric; and the shifted negative binomial distributions in the
interior of the parameter space.

Zipf(�)

1

1

0

β

α

Zipf-Polylog (�, �)

Log-series(p)Geom(1-�)

-1

1 + NB(2, 1-�)

Fig. 4.1 Parameter space of the Zipf-Polylog family of distributions with the geometric, the
log-series, the Zipf and the shifted negative binomial with r = 2 families as particular cases.

It is important to observe that the three-parametric family of distributions known as Lerch
distribution also contains the Zipf, the logarithmic series and the geometric distributions
as particular cases [see Zörnig and Altmann, 1995]. In what follows we see that the Zipf-
Polylog family is also a particular case of the Lerch family. To that end, we consider
the parametrization of the Lerch family that appears in Kemp [2010], p. 2257. With this
parametrization, a distribution in the Lerch family with support x = 1,2, . . . is the one with
PGF equal to:

G(z) = z
φ(ρ z,c,ν)
φ(ρ,c,ν)

, (4.1.3)

being φ(ρ,c,ν) the Lerch function that is defined for complex ρ,c and ν such that |ρ| <
1,ν ̸= 0,−1,−2, . . . as:

φ(ρ,c,ν) =
+∞

∑
x=0

(ν + x)−c
ρ

x.

Observe that for ρ = β ,c = α and ν = 1, (4.1.3) is equal to Liα(β z)/Liα(β ) that, by
(4.1.1) is the PGF of the Zipf-Polylog(α,β ) distribution.
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As a consequence of (4.1.2), any distribution in the Zipf-Polylog family may be seen
as a weighted version of a distribution in the Zipf family. If α > 1, the Zipf-Poly(α,β )
is the weighted version of the Zipf(α) distribution with weight function w(x;β ) = β x > 0.
For α ∈ (0,1), it is the weighted version of a Zipf(α +1) with weight w(x;β ) = β xx. For
α <−1, it may be seen as a weighted version of a Zipf(−α) distribution with weight function
w(x;β ,α) = β x x−2α . Finally, for α ∈ (−1,0) it is a weighted version of a Zipf(α +2) with
weight function w(x;β ,α) = β x x2.

The concept of weighted distribution first originates in Fisher [1934] and later became
well established by Patil and Rao [1978]. According to these authors, a weighted distribution
is needed when the probability of observing a value x depends on the size of the value.
In our case, if we assume that the data come from an r.v. X with a Zipf(α) distribution, with
a given α > 1, and that

P(Recording x|X = x) = β
x,

then, the sample comes from a Zipf-Polylog(α,β ). As a consequence, the β parameter may
be interpreted as the probability of observing the value 1 when this is the true value. See
Saghir et al. [2017] for a recent review on weighted distributions.

Figure 4.2 shows the probabilities of the Zipf-Polylog(α,β ) for a fixed α and different
values of β . More exactly, α has been taken to be equal to −0.8,−0.5 and 2.3 and β equal to
0.05,0.1,0.3 and 0.7. When α > 1 (bottom part of the plot), the probabilities for β = 1 (Zipf)
are also included. On the left-hand side, the probabilities are shown in the natural scale and,
on the right-hand side, in the log-log scale. In the plot we can observe that, independently
of the α value, the largest probability at one is attained for the smaller value of β . In fact,
the probability at one as a function of β is equal to: f (β ) = β/Liα(β ), and its derivative is
equal to f ′(β ) = Liα(β )−Liα−1(β ) < 0, which proves that this probability decreases by
increasing β . For the remaining values, the probabilities increase by increasing the β value.
We also observe a mode on the interior of the distribution for negative α and sufficiently
large β . Comparing the three parts of the plot reveal that, independently of the value β , the
probabilities tend to concentrate in the first values when α increases.

Figure 4.3 contains the probabilities for β = 0.5 and α =−3,−0.6,0.5,1.5 and 2. Ob-
serve that, with the exception of the initial integer values, the probabilities decrease by
increasing α . One can also see a mode in the interior of the distribution for the lowest value
of α .
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Fig. 4.2 PMF of the Zipf-Polylog(α,β ). At the top are negative values of the α parameter
and different values of β . At the bottom are positive α values and different values of β . Both
cases include, respectively, the plots in normal scale and in log-log scale. The probabilities
of the Zipf distribution are included when α > 1 and β = 1.
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Fig. 4.3 PMF of the Zipf-Polylog(α,β ) for α = −3,−0.6,0.5,1.5,2 and β = 0.5. The
left-hand side shows the probabilities in normal scale; while the right-hand side shows the
same probabilities in log-log scale.

4.2 Properties

This section is devoted to proving the main properties of the presented model. We first
prove that the Zipf-Polylog is a two-parameter exponential family. Then, we show that the
distributions not on the boundary of the parameter space can have moments of any order;
and we describe the ratio of two consecutive probabilities. We end the section by proving a
generalization of Theorems 1 and 2, both of them introduced in Section 1.4 of Chapter 1.

Theorem 10. The Zipf-Polylog is a bi-parametrical exponential family with canonical
parameter θ = (α,− log(β )) and canonical statistic T (x) = (− log(x),−x).

Proof. The Zipf-Polylog distribution may be parametrized in terms of (α,γ), with γ =

− logβ . With the new parametrization, the PGF and PMF are, respectively, equal to:

hY (z) =
Liα(ze−γ)

Liα(e−γ)
, and

P(Y = x) =
x−αe−γx

Liα(e−γ)
=

e−α log(x)−γx

Liα(e−γ)
. (4.2.1)

At the right-hand side of (4.2.1), one has that the Zipf-Polylog is an exponential family of
order two, with canonical parameter θ = (α,γ), parameter space Θ = (−∞,+∞)×(0,+∞)∪
(1,+∞)×{0}, and canonical statistic T (x) = (− log(x),−x).



4.2 Properties 85

Observe that the Zipf-Polylog is not a regular exponential family in its entire space, since
it has the Zipf model at the boundary (γ = 0); but it is regular if one considers the family
defined in the interior of its parameter space. From the general theory of exponential families
[Barndorff-Nielsen, 2014], one has that if x1,x2, . . . ,xn is a sample from an r.v. Y with a
Zipf-Polylog distribution, and one defines log(x) = 1/n∑

n
i=1 log(xi), then t(x) = (x, log(x))

is a minimal and sufficient statistic. Also, the MLE of the parameter vector is the solution of
the following system of equations:

E[Y ] = x

E[log(Y )] = log(x)

}
,

which has a unique solution if t(x) belongs to the interior of the convex hull of t(N ), being
N the space where takes values t(x). Note that from (1.1.11), the second equation to be
solved is the same as the one needed for finding the MLE for the Zipf distribution. The first
equation corresponds to the Gauss Principle [see Teicher, 1961].

Proposition 19. If Y ∼Zipf-Polylog(α,β ) with fixed α ∈R and β ∈ (0,1), then E(Y k)<+∞

for any k ≥ 1.

Proof. Given that the moments of a distribution may be obtained by means of the factorial
moments [Johnson et al., 2005], it is enough to prove that the factorial moments are finite.
Denoting by µ ′

k the factorial moment of order k of Y , we have:

µ
′
k =

∂ k

∂ zk hY (z)
∣∣∣∣
z=1

=
1

Liα(e−γ)
e−k γ Li(k)α (ze−γ)|z=1 <+∞, (4.2.2)

because Liα(ze−γ) is analytical in (−∞,1].

Figure 4.4 shows the behavior of the expected value of the Zipf-Polylog distribution. On
the left-hand side as a function of α , for β = 0.25,0.5,0.75 and 0.9. On the right-hand side
as a function of β , for α =−1.5,−0.5,2 and 3.5. Observe that it is a decreasing function of
α with a slope that increases for large β values. On the contrary, it is an increasing function
of β where the largest values are obtained for small values of α .

In the same way Figure 4.5 illustrates the behavior of the variance of several Zipf-
Polylog(α,β ) distributions. On the left-hand side as a function of α , for β = 0.25,0.5,0.75
and 0.9. On the right-hand side as a function of β , for α =−1.5,−0.5,2 and 3.5. Note that
the variance shows a similar pattern than the one achieved in the previous plots. In general it
seems that the variability decreases as a function of α and increases as a function of β .
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Fig. 4.4 Expected values of a Zipf-Polylog(α,β ) distribution. On the left-hand side as a
function of α , for β = 0.25,0.5,0.75 and 0.9. On the right-hand side as a function of β , for
α =−1.5,−0.5,2 and 3.5.
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Fig. 4.5 Variance values of a Zipf-Polylog(α,β ) distribution. On the left-hand side as a
function of α , for β = 0.25,0.5,0.75 and 0.9. On the right-hand side as a function of β , for
α =−1.5,−0.5,2 and 3.5.

The next proposition explains the relationship between the ratio of two consecutive prob-
abilities of an r.v. with a Zipf-Polylog distribution and the same ratio for a Zipf distribution
with the same α parameter.

Proposition 20. If Y ∼ Zipf-Polylog(α,β ) with α > 1, and X ∼Zipf(α), then the ratio of two
consecutive probabilities of Y is proportional to the ratio of two consecutive probabilities of
X, with β being the constant of proportionality.

Proof. By (4.1.2) we have:

P(Y = x+1)
P(Y = x)

=
(x+1)−αβ x+1

(x)−αβ x = β

(
x+1

x

)−α

= β
P(X = x+1)

P(X = x)
.
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The following result generalizes Theorem 1 of Section 1.4 of Chapter 1, and states that
any Zipf-Polylog with a positive value of α is a mixture of geometric distributions.

Theorem 11. The Zipf-Polylog(α,β ) distribution with α > 0 and β ∈ (0,1) is a mixture of
geometric distributions parametrized by means of s = log(β )− log(1− p) ∈ (log(β ),+∞),
with mixing distribution equal to

f (s;α,β ) =

sα−1

es−β∫+∞

0
tα−1

et−β
dt

=
β

Γ(α)Liα(β )
sα−1

es −β
. (4.2.3)

Proof. The PGF of the geometric distribution parametrized with s = log(β )− log(1− p) is
equal to:

pz
1− (1− p)z

=
(1−βe−s)z
1−βe−sz

=
(es −β )z
es −β z

. (4.2.4)

Thus, to prove the theorem, it is necessary to check that:

hy(z) =
Liα(β z)
Liα(β )

=
∫ +∞

0

(es −β )z
es −β z

f (s;α,β )ds, (4.2.5)

with f (s;α,β ) defined as in (4.2.3). By substituting f (s;α,β ) for its expression and taking
into account (1.1.14), we have:

∫ +∞

0

(es −β )z
es −β z

sα−1

es−β∫+∞

0
tα−1

et−β
dt

ds =
β z

β
∫+∞

0
tα−1

et−β
dt

∫ +∞

0

sα−1

es −β z
ds =

Liα(β z)
Liα(β )

, (4.2.6)

which proves the theorem.

The next theorem generalizes Theorem 2 in Section 1.4 of Chapter 1 for any distribution
in the generalized family.

Theorem 12. The Zipf-Polylog(α,β ) distribution verifies that:

a) if α > 0, it is an MZTP distributions with mixing distribution defined for λ > 0 and
equal to:

f (λ ;α,β ) =
eλ −1

βΓ(α)Liα(β )

∫ +∞

0
sα−1es− λ

β
es

ds, (4.2.7)

and it is not a ZTMP.

b) if α = 0, it is an MZTP distribution and also a ZTMP distribution.
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c) if α < 0, it is neither an MZTP nor a ZTMP.

Proof. To prove the first statement of a), it is necessary to see that

hY (z) =
Liα(β z)
Liα(β )

=
∫ +∞

0

eλ z −1
ez −1

f (λ ;α,β )dλ ,

where f (λ ;α,γ) is defined as in (4.2.7). From Theorem 11 we have

Liα(β z)
Liα(z)

=
∫ +∞

0

(es −β )z
es −β z

β

Γ(α)Liα(β )
sα−1

es −β
ds. (4.2.8)

Moreover, taking into account (4.2.4), by Proposition 1 we have:

(es −β )z
es −β z

=
∫ +∞

0

eλ z −1
eλ −1

f ∗(λ ;s)dλ ,

where
f ∗(λ ;s) = f (λ ;1−βe−s) =

es −β

β 2 e−
λ

β
es
(eλ −1).

Thus, we have:

(es −β )z
es −β z

=
∫ +∞

0

eλ z −1
eλ −1

es −β

β 2 e−
λ

β
es
(eλ −1)dλ .

Now, substituting the last equality in (4.2.8) gives:

Liα(β z)
Liα(z)

=
∫ +∞

0

[∫ +∞

0

eλ z −1
eλ −1

es −β

β 2 e−
λ

β
es
(eλ −1)dλ

]
· β

Γ(α)Liα(β )
sα−1

es −β
ds =

=
∫ +∞

0

eλ z −1
eλ −1

[ eλ −1
β Γ(α)Liα(β )

∫ +∞

0
es− λ

β
es

sα−1 ds
]

dλ =

=
∫ +∞

0

eλ z −1
ez −1

f (λ ;α,β )dλ ,

and thus, any Zipf-Polylog with a positive value of α is an MZTP distribution. To see that it
is not a ZTMP distribution it is enough to see that:

lim
z→−∞

hY (t) = lim
z→−∞

Liα(β z)
Liα(α)

=−∞.

To prove b) it is necessary to remember that when α = 0, the Zipf-Polylog reduces to the
geometric distribution with parameter p = 1−β and, in this case, it is an MZTP distribution,
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as proved in Proposition 1. Moreover, given that

lim
z→−∞

pz
1− (1− p)z

=− p
1− p

,

the Zipf-Polylog is also a ZTMP distribution.
Let us now prove c). To that end, we see that when α < 0, h′Y (z)< 0 at some interval on

the negative real line, this means that condition (c) of Theorem 1 of Valero et al. [2010] is
not verified. To prove that the first derivative of hY (z) is negative, it is enough to see that the
first derivative of the Liα function is also negative. This is proved by distinguishing whether
or not α is a negative integer.

1) Assume that α is a negative integer value. Then, taking into account that the Liα(z)
function for integer values of α verifies:

z
∂Liα(z)

∂ z
= Liα−1(z),

we have that when α =−1,

∂Li−1(z)
∂ z

=
1
z

Li0(z) =
1
z

z
1− z

=
1

1− z
, (4.2.9)

and it is negative when z <−1. For α =−n, by applying (4.2.9) recursively n times,
we have that for certain real values a1,a2, · · · ,an−2,

∂Li−n(z)
∂ z

=
z(zn−1 +an−2zn−2 + · · ·+a1z+1)

(1− z)n ,

from which we have ∀ n Li′−n(0) = 0. Moreover, given that limz→−∞ Li−n(z) = 0, it
must be negative at a certain interval on the negative real line.

2) If α is negative but not an integer number, we also have Liα(0) = 0, and given that

Li′α(z) = 1+
z

2α−1 +
z2

3α−1 +
z3

4α−1 + · · · ,

we have Li′α(0) = 1. Moreover,

lim
z→0−

Liα(z) = lim
u→+∞

Liα(−e−u) =
−uα

Γ(α +1)
= 0,

which proves that, at some interval on the negative real line, Li′α(z)< 0. Consequently,
for negative values of α , the Zipf-Polylog is neither a ZTMP nor an MZTP distribution.
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Figure 4.6 shows representations of the Liα(z) function for α = −0.8,−1,−1.7 and
−2.55, and z ∈ (−∞,0). Observe that the Liα(β ) is decreasing in some interval of the
negative real line defined as defined in the proof of the last theorem.

Fig. 4.6 Plots of the Liα(z) function for α =−0.8,−1,−1.7 and −2.55, and z ∈ (−∞,0)

4.3 Random data generation

The approach used for generating random data from a Zipf-Polylog distribution is similar to
the one used in Chapter 3, that is to apply the inversion method to the CDF of the distribution
family. However, we have introduced a sightly variation in its implementation with the aim
of reducing the computational time required for generating the samples. Thus, the inversion
method is implemented in such a way that it consist in choosing the first x ≥ 1 verifying that:

u ·Liα(β )≤
x

∑
i=0

i−α ·β i,

where u ∈ (0,1) has been randomly selected form an Uniform distribution in (0,1)..
For validating the performance of the inversion method we have used all the pairs of values

(α,β ) obtained from α =−1.3,−0.05,0.85,1.25 and 2, and β = 0.35,0.45,0.55,0.65,0.75,
0.85 and 0.95. For each pair we have generated 500 samples of sizes 100 and 1000, respec-
tively. Observe that we have avoided the use of values of β < 0.35, because for such values
the probabilities basically concentrate in two points, as it can be seen in Table 4.1.

Tables 4.2 and 4.3 summarize the total number of sequences generated for each pair of
parameters as well as the percentage of them that have not rejected the null hypothesis of
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Table 4.1 First ten probabilities of the Zipf-Polylog distribution for several values of α and
small values of β .

α =−1.3α =−1.3α =−1.3

β = 0.1β = 0.1β = 0.1

α =−0.05α =−0.05α =−0.05

β = 0.25β = 0.25β = 0.25

α = 0.85α = 0.85α = 0.85

β = 0.1β = 0.1β = 0.1

α = 1.25α = 1.25α = 1.25

β = 0.25β = 0.25β = 0.25

0.7722 0.7423 0.9436 0.8894

0.1901 0.1921 0.0524 0.0935

0.0322 0.049 0.0037 0.0141

0.0047 0.0124 0.0003 0.0025

0.0006 0.0031 0 0.0005

0.0001 0.0008 0 0.0001

0 0.0002 0 0

0 0.0001 0 0

0 0 0 0

0 0 0 0

the KS test. The definition of the KS test used corresponds to the one explained in Section
2.3.3 of Chapter 2. In particular Table 4.2 contains the results related to the continuous
version of the KS test, while Table 4.3 summarizes the results associated with its discrete
version. As already evinced in previous chapters, the continuous KS test tends to be more
conservative than its discrete version where the p-values are obtained through simulations. In
both scenarios the null hypothesis is not rejected in more than 92% of the cases, and most of
the times is around the nominal value.
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Chapter 5

Applications

This chapter aims to illustrate that real data can be modeled accurately by the Zipf extensions
presented in the previous chapters of this thesis. To that end, we adjust several degree
sequences of real networks in dissimilar and unrelated areas, and we interpret the model
parameters in terms of the data generation mechanism.

In the first subsection, we define the basic concepts related to the graphs required for our
data analysis. Even though the examples presented here are related to the field of Network
Analysis, our contributions may be applied to other scenarios. For that reason, Appendix A
proposes a guide that helps practitioners assess the suitability of our models in their particular
areas of research.

In the next four subsections, we analyze data related to protein interactions, social
networks like Facebook, email interaction networks, and work collaboration networks. The
fits obtained with the best of our models (when possible) are compared with the fits obtained
for the Zipf distribution using the Likelihood Ratio Test (LRT). This test allows us to
determine whether or not the extra parameter is really necessary for a particular data set.
Given that the Zipf distribution pertains to the interior of the parameter space of the MOEZipf
and Zipf-PE distributions, the Likelihood Ratio (LR) statistic under the null hypothesis for
those models will follow a χ2

1 distribution. In the case of the Zipf-Polylog family, the fact
that the Zipf model is placed on the boundary of the parameter space implies that, under the
null hypothesis, the LR statistic follows a 50:50 mixture of χ2

0 and χ2
1 Self and Liang [1987].

We have also found it necessary to compare our fits with the ones obtained from the other
two-parameter families of distributions that are widely used in the literature as alternatives to
the Zipf. The ones that have been considered are: the Zipf-Mandelbrot, DGX, NB and DW,
all of which were introduced in Section 1.3 of Chapter 1. To perform these comparisons, the
AIC and the log-likelihood have been chosen as goodness-of-fit criteria. In some examples,
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the fit obtained with the methodology proposed by Clauset et al. [2009] (also explained in
Chapter 1.3) has also been taken into account.

Finally, when necessary, the Zipf-PSS has been truncated at zero in order to adjust
samples that do not contain the zero value.

5.1 Networks, basic concepts

Since the applicability of the Zipf extension models in the next sections are all related to
the analysis of degree sequences in real networks, it is convenient to introduce some of the
definitions used in this research area. We start by defining what a graph is, followed by some
of its structural properties.

A graph is the mathematical structure used to represent a network or complex system.
It is defined by means of nodes and edges. It is usually denoted by: G = (N,E), where N
comprises the set of nodes and E stands for the set of edges. The relationships among the
nodes in a graph are represented by the edges. It is also said that two nodes are neighbors if
they share at least one edge. Sometimes, the nodes in the graph have extra information about
the objects that they are representing. This extra information is stored in what is known as
the attributes of a node.

Usually a file containing a graph is composed of pairs of nodes indicating which nodes
are related. This is perhaps the most common approach to storing a graph, and it is called
an edge list format. There are other ways to store this structure into a file, such as Graph
Modeling Language (GML) 1 and Pajek 2, among others.

Several definitions that the reader may require in the next sections are:

Degree: Given a node i, its degree is defined as the total number of connections it has with
other nodes. It is equal to its total number of neighbors. In the particular case of
directed networks (graphs where the edges have a direction), the node degree is divided
into three categories:

In-degree: Number of connections pointing a node.

Out-degree: Number of connections from a given node to others.

Total-degree: The sum of the in- and out-degrees of a node.

Graphic degree sequence: A sequence of numbers that can be used for creating a graph.
Several works state the necessary conditions for using a numerical sequence to create a

1https://gephi.org/users/supported-graph-formats/gml-format/
2https://gephi.org/users/supported-graph-formats/pajek-net-format/
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network Tripathi and Vijay [2003]. According to the Fulkerson - Ryser theorem [Kim
et al., 2012], one of the conditions for a sequence being graphic in terms of the directed
network is:

n

∑
i=1

xi =
n

∑
i=1

yi,

where x and y belong to the in- and out-degree sequences, respectively. Most of the
descriptive tables show this in the following examples, since the average of the in- and
out-degree sequences are equal.

Degree sequence: Contains the degrees of all the nodes represented in the network.

Isolated nodes: These types of nodes do not have any connection to any other node or
themselves. According to Bak et al. [1987] and McKelvey et al. [2018], they could
play an important role in the evolution of the network, since a change in the behavior
of isolated nodes could induce considerable changes in the network dynamics. The
analysis of isolated nodes plays a fundamental role in communication networks, where
having nodes in isolation results in information loss. This phenomenon is common in
wireless and sensor networks. Observe that the Zipf-PSS extension is the only one able
to deal with zero-degree nodes. In Section 5.3.2, we show an example of an application
that needs to deal with these types of nodes.

Loops: These indicate nodes with edges connecting themselves.

Multi-edges: Two or more edges connecting the same pair of nodes.

Mean degree: The mean degree is the arithmetic mean of the degree sequence. It can also
be computed as:

Mean =
2∗#E

#N
.

5.2 Protein-Protein interaction networks

Network analysis is also a profitable tool in the field of biology, as it helps model the
interactions of organisms and proteins, among other objects of study. The example analyzed
in this section is related to the research performed by the author of this thesis in the National
Institute of Biology in Slovenia. This example focuses on analyzing the degree distribution
of the Arabidopsis thaliana comprehensive knowledge network (AtCKN), see Ramšak et al.
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[2018]. This network is the result of combining a plant immune signaling model with three
extra layers of information: protein-protein interactions (PPI); transcriptional regulation; and
regulation through microRNA. The resulting network is composed of 20011 nodes and 58901
edges.

Most of the nodes in the network have more than or equal to 30 interacting partners
(19462 proteins; 97.26%), which is double the number of pure protein-protein interaction
networks [Lee et al., 2010]. This can probably be attributed to the fact that AtCKN not only
includes protein-protein type reactions, but also transcriptional regulation (protein to gene)
and regulations through microRNA (miRNA to gene). Proteins with a very large number of
interactions in AtCKN belong to various transcription factor families, which in turn increases
the number of interacting partners.

Table 5.1 contains the main statistics for the AtCKN degree sequence. Note that, the data
show large variability as well as high skewness value, which allows us to hypothesize the
suitability of the proposed models.

Table 5.1 Characteristics of the degree sequence: number of nodes (#N); number of edges
(#E); (Range); (Mean); variance (Var); skewness (Skew).

#N #E Range Mean Var Skew
20011 58901 4688 5.89 143.75 7.16

Table 5.2 contains the maximum likelihood parameter estimation for all the fitted models,
jointly with their 95% confidence intervals. It also contains the values of the log-likelihood at
the maximum likelihood parameters estimations, and the AIC. The AIC value confirms that
the worst models are Zipf and Zipf-Polylog. In contrast, the Zipf-PE distribution provides
the best fit, followed by MOEZipf, the positive Zipf-PSS and the Zipf-Mandelbrot. These
four models have linear tails, which is not the case for the Zipf-Polylog. The DGX gives a
better fit than the Zipf and the Zipf-Polylog, but it is worse than the Zipf-PE, the MOEZipf
and the positive Zipf-PSS. The fit obtained with the Zipf-Mandelbrot is slightly better than
the one of the DGX, but still worse than our first three models.

Figure 5.1 illustrates the fits obtained for each considered model. Observe the Zipf’s
model lack of flexibility in adapting the top-concave pattern. On the other hand, the models
Zipf-PE, MOEZipf, zt-Zipf-PSS, Zipf-Mandelbrot and DGX seem to provide a quite accurate
fit. With respect to the PL methodology, it establishes a cut-off equal to 4, above which the
distribution is fitted. By fixing this cut-off point, the method loses approximately 61% of the
data.

Applying the LRT to compare the Zipf-PE with the Zipf models, that is to compare: H0 :
β = 0 vs. H1 : β ̸= 0, we see that the critical value is equal to χ2

0.95,1 = 3.84, and the likelihood
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Fig. 5.1 Degree sequence of the PPI network and the fit obtained by each considered model.
In addition, the fit obtained using the methodology proposed by Clauset et al. [2009] is also
included.

ratio statistic for this degree sequence is equal to −2 [−53085.17−(−49429.96)] = 7310.42.
By comparing the two values, and given that 7310.42 ≥ 3.84, the null hypothesis is clearly
rejected, and we conclude that the Zipf-PE distribution provides a better fit than the classical
Zipf distribution.

Observe that both RSEDs agree with modeling the data in terms of maximums. Therefore,
it makes sense to assume that a protein must interact with the maximum number of elements
required to produce the biological organism being modeled by the interaction network.

Based on the estimated parameters of the Zipf-PE distribution, we can say that, in average,
a given protein is expected to be active approximately 5 times (Ê[N] = 4.89). In general,
the maximum expected interaction of all the proteins in the network is equal to 6.87 = Ê[Y ].
Moreover, every time a protein is active, we estimate its number of interactions to be with
approximately 3 other proteins (Ê[X ] = 2.62). Conducting the same analysis - but taking
into account the parameters of the MOEZipf distribution - results in: the expected number
of times that a protein is active until it gets connected with a fixed one is around 9 times
(Ê[N] = 9.31); and every time that it is active, the expected number of interactions is about 2
(Ê[X ] = 1.82). Thus, we can expect that, on average, the maximum number of interaction is
approximately 5.81 = Ê[Y ].

According to Grigoriev [2003], the average interacting partners per protein in the pro-
teome of a yeast (Saccharomyces cerevisiae) is about five; the estimates obtained from the
Zipf-PE distribution - the best model - agree with the results of their paper.
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5.3 Social networks

5.3.1 Facebook 100, the University of California, Santa Cruz network

In the work by Traud et al. [2012] is studied the complete Facebook network of 100 universi-
ties and colleges in the United States on a non-specified day in September 2005, with the
aim of comparing homophily and determining its community structure. The comparison was
made using partitions of data that was based on categorical information collected for each
user, such as, gender, major, class year, etc. The authors remark that at the time the data were
collected, it was necessary to have an .edu e-mail address for being able to create a Facebook
profile. A peculiarity of this dataset is that the links between different institutions are ignored,
which allows for unconnected networks, one for each of the different institutions considered.

In this particular example, the degree sequence associated with the University of Cal-
ifornia, Santa Cruz (UCSC) is analyzed. The network comprises a total of 8991 nodes
and 224584 edges. The degree sequence is available through the git-hub repository: https:
//github.com/adbroido/SFAnalysis, mentioned in the paper by Broido and Clauset [2019].
The main statistics associated with the degree sequence can be observed in Table 5.3. Note
that the sequence has a large variability, but, it does not seem to be a skew data set.

Table 5.3 Characteristics of the degree sequence: number of nodes (#N); number of edges
(#E); (Range); (Mean); variance (Var); skewness (Skew).

#N #E Range Mean Var Skew
8991 224584 453 164.0578 6958.8665 0.5285

Table 5.4 contains the results obtained after fitting all the candidate models. In this
case, the Zipf-Polylog family of distributions provides the best fit because it is the one
that gives not only the maximum value of the log-likelihood, but also the minimum value
of the AIC. As can be appreciated in the table, the goodness-of-fit obtained by the DGX
and the MOEZipf models are quite similar, but not as good as that of the Zipf-Polylog.
The worst two-parametric models are clearly the zero-truncated Zipf-PSS and the Zipf-PE
respectively. In addition, the Zipf-Mandelbrot distribution is not included because it gives
place to numerical problems when the MLE is computed.

Figure 5.2 illustrates the performance of each one of the models jointly with the real
observations. Observe that the Zipf-Polylog is the only one able to adjust the frequency of
the smallest degrees. The DGX, the MOEZipf, the zero truncated Zipf-PSS and the Zipf-PE
do not fit the real observations properly, since on the one hand they underestimate the first
integer values and, on the other, they overestimate the middle values. In addition, these

https://github.com/adbroido/SFAnalysis
https://github.com/adbroido/SFAnalysis
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distributions also show a heavier right-hand tail than the Zipf-Polylog, which decays similarly
to the real data.

1 2 5 10 50 200

1
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0
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Facebook 100 − UCSC68 Social Network

Degree
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e
g
re

e
 F
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q
u
e
n
c
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Zipf−Polylog

MOEZipf

DGX

zt−Zipf−PSS

Zipf−PE

Zipf

PL fit

Fig. 5.2 Degree sequence of the Facebook network at UCSC, and the fit obtained by each of
the considered models.

By means of the log-likelihood values of the Zipf and Zipf-Polylog models (see Table
5.4), the likelihood ratio statistic is computed and comes out equal to
−2 [−51935.09− (−44059.68)] = 15750.82, which is clearly larger than the critical value
1.92. Hence, the null hypothesis is rejected with a significance level of 0.05, and β is
significatively different from one.

Given that α̂ ∈ (−1,0), one can assume, for instance, that the data follow a weighted
Zipf(α̂ +2 = 1.94) distribution with weight function w(x;β ) = x2 ·0.98x. Since β̂ = 0.98 is
close to one, we can state that a high number of nodes with degree equal to 1 are being fitted
by the distribution. Based on Theorem 12, this dataset is not fitted by an MZTP because α̂ is
negative.

5.3.2 The Math-Overflow platform

Here we analyze the MathOverflow data set, which appears in a recent paper by Paranjape
et al. [2017]. This data set is available through the SNAP repository [Leskovec and Krevl,
2014] and contains interactions among the members of the MathOverflow platform, which
was developed in 2009 by a group of PhD students and post-docs from Berkeley University.
It is an on-line question-and-answer (Q&A) forum for research mathematicians on the Stack
Overflow network [Keller, 2010].
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In the repository, the synergy among users is divided into three categories: answers to
questions, comments to questions and comments to answers. Here, we only use the category,
answers to questions, where an edge is created between users u and v when user u answers a
question by user v. This gives rise to a directed network, since the origin and final nodes play
different roles. The network comprises a total of 21688 nodes and 107581 edges collected
from September 9, 2009 to March 6, 2016. As a consequence of including the component
time during edge formation, it is possible to have multi-edges between different pairs of
nodes. Moreover, due to the fact that a user can answer their own question, loops are also
possible in the network.

Each annual network was extracted from the global data set. Because these are directed
networks, the degree sequence was split into three sequences: the in-degree, the out-degree
and the total-degree. The in-degree sequence corresponds to situations in which the node
user’s question receives a reply. The out-degree corresponds to situations where the node
user answers a question. Finally, the total-degree corresponds to the sum of the in- and
out-degrees, and it explains the total activity of a user. Observe that the in-degree as well
as the out-degree sequences may have isolated nodes. Thus, it is an appropriate network to
test the Zipf-PSS family. For that reason, the in- and out-degree sequences are fitted with the
Zipf-PSS as well as the NB and the discrete Weibull distributions that also include the zero
value on their support. The total degree sequences are fitted with the same models considered
in the previous examples.

Table 5.5 summarizes the main statistics calculated for each annual network. It contains
the number of nodes (#N), edges (#E), loops (L) and multi-edges (M), and – after splitting the
degree sequence – the number of isolated nodes (I), the range (Range), the mean (Mean), the
variance (Var) and the skewness (Skew) of the total-, in- and out-degree sequences. Observe
that a greater number of zeros occurs in the out-degree sequences, with the exception of the
first year, which is when the community was created and only contains information covering
approximately 4 months. One of the reasons for this may be that many people do not answer
any questions while a few people answer many questions, which turns out to be an in-degree
sequence with fewer nodes that have zero degrees. Observe that the mean values of the
in- and out-degree sequences are equal for all years. This is because each edge involves a
connection from the in- and the out-degree sequences, respectively. Moreover, this is one
of the conditions of a graphical sequence, as stated in the Fulkerson-Ryser’s theorem [Kim
et al., 2012]. The mean values of the first (incomplete) and second year are clearly larger
than the other years (the last year is also incomplete). This provides evidence indicating
that the community was very active when it was created and the activity stabilized as the
time passed. Note the large variance in the sequences, meaning that some users are quite
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active in answering while others answer only few or no questions. The higher skewness value
associated with each sequence leads us to assume that all the degree sequences will show a
pronounced right tail.

Fitting these data with the Zipf-PSS and the NB distributions allows insights into the
network’s data generation mechanism as a direct consequence of the fact that both are PSS.
Thus, in both cases, Ê[N] is interpreted as the average number of times that a user is active
on the network. Each time that a user is active, she or he receives (in-degree) or answers (out-
degree) an expected Ê[Xi] number of questions. In contrast, the DW has no straightforward
parameter interpretation.

The total number of degree sequences fitted is 24, which is obtained by multiplying 8
(years) by 3 (type of sequences). Initial values to find the MLE of the Zipf-PSS model needs
to be found numerically, initial values for each of the parameters are required. These values
are computed as follows:

1) The initial value for α is set to be equal to the α estimate obtained for the Zipf
distribution proposed by Güney et al. [2017].

2) The initial value for λ is set to be equal to 1, because when the mean is λ = 1, we have
just one term in the summation (3.1.1).

Tables 5.6, 5.7, 5.8 and 5.9 summarize the results obtained. The main conclusions are:

a) In 93.75% of the in- and out-degree sequences (15 out of 16), the Zipf-PSS gives the
best fit. In the remaining case, the DW is the best model.

b) The behavior of the NB and the DW is quite similar, independently of the type of
sequence, but the DW is always the best of the two.

c) The values of λ̂ for the out-degree sequences are always smaller than one, while they
are slightly larger than one for the in-degree sequences. It is expected that, over the
course of one year, less than one person is activated to answer the question of a given
node, while the node is active more than once over the same period to answer someone
else’s question(s).

d) Since there are not zeros in the total-degree sequence we consider only families of
distributions with support in the strictly positive numbers and the positive version
of the Zipf-PSS. Note that, the DGX and the Zipf-Mandelbrot provide the best fit to
50% of the sequence respectively. Also, the difference between the fits provide for
both distributions are practically imperceptible, being always the first and the second
distributions for all the total-degree sequences.
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Table 5.5 For each degree sequence: Year of the sequence; number of nodes (#N); number of
edges (#E); number of loops (L); number of multiple-edges (M); type of the sequence; number
of isolated nodes (I) and its percentage; (Range); (Mean); variance (Var) and skewness (Skew)
values.

Year #N #E L M Type I (%) Range Mean Var Skew

2009 1278 7115 1363 188
total - 438 11.1346 807.5355 7.1768
in 41.16 323 5.5673 297.6897 9.3863
out 26.06 209 5.5673 227.2089 6.8121

2010 4648 24799 3120 547
total - 468 10.6708 825.3136 7.2716
in 31.58 304 5.3354 224.1519 8.6873
out 39.57 354 5.3354 335.1896 8.1041

2011 5358 18468 1712 529
total - 590 6.8936 326.6939 11.1849
in 29.23 184 3.4468 70.0781 9.0476
out 46.7 417 3.4468 164.939 11.6483

2012 5687 15954 1485 484
total - 451 5.6107 243.9244 11.6652
in 26.9 225 2.8053 46.555 13.979
out 51.17 372 2.8053 141.5011 12.996

2013 6101 14779 1245 500
total - 313 4.8448 149.4092 9.2134
in 23.85 175 2.4224 27.2381 10.639
out 56.7 194 2.4224 92.1437 9.9783

2014 5556 12574 1074 537
total - 293 4.5263 124.5039 9.9265
in 24.77 193 2.2631 25.4512 15.1054
out 56.17 179 2.2631 75.7392 10.1688

2015 5409 11833 1166 566
total - 355 4.3753 137.6435 12.7604
in 24.7 214 2.1877 33.4409 18.9311
out 55.2 297 2.1877 76.0929 13.3474

2016 1654 2059 83 92
total - 65 2.4897 13.1357 6.8186
in 33.13 23 1.2449 3.2727 5.1725
out 52 46 1.2449 9.0574 6.7078
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Fig. 5.3 Evolution of the α̂ (left-hand side) and the λ̂ (right-hand side), MLE of the parameters
of the Zipf-PSS distribution over the period 2010-2015 for the in-degree (in) and the out-
degree (out) sequences.

Figure 5.3 shows the behavior of the parameter estimates over time. Since the data set
contains only partial information related to the years 2009 and 2016, these years have been
excluded from the figure. On the left-hand side of 5.3, we can observe the evolution of the
system in terms of the α̂ , which increases significantly in the in-degree sequence and slightly
in that of the out-degree. The work of McKelvey et al. [2018], states that exponents of the
PL that are lower than 2 appear in nascent systems, which agrees with our in-degree results,
since a value smaller than two occurs only for the year 2010. The differences between the
in- and out-degree sequence of the Q&A network are shown. While the α̂ of the in-degree
sequences quickly departs from the threshold established in the literature, the α̂ for the
out-degree stabilized at around 2.0, and thus time does not change the number of questions
answered by a member of the community each time that she or he is active. With respect to
the λ̂ behavior (see, the right-hand side of 5.3), it seems to remain constant for the in-degree
from nearly the beginning while it takes more time to stabilize for the out-degree. From this,
it seems that, in all the years analyzed, the users are active in the networks approximately the
same number of times.

It is important to observe that the fact that λ̂ quickly stabilizes over time has a lot of
sense, because all of them correspond to a one year period of time. The α̂ takes longer to
stabilize because it is reasonable that, at the beginning, the questions receive less replies, and
also that people answer less questions, as a consequence of the fact that there is less people
in the platform. After observing this, and given that the Zipf-PSS is partially closed under
addition, as it has been mentioned in Chapter 3, it would has sense to aggregate the years,
and to analyze if the appropriate distribution for fitting such aggregation is the Zipf-PSS with
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the same α parameter and the λ parameter equal to k times the λ corresponding to one year.
This is left as future work and it is mentioned at the end of this thesis.
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Fig. 5.4 In-degree (left-hand side), out-degree (right-hand side) total-degree (bottom) of the
2015 network, jointly with the fit obtained by each of the considered models. It also includes
the estimate of the PL and the cut-off point achieved using the methodology proposed by
Clauset et al. [2009].

Figure 5.4 shows the fits obtained by the models studied using the network’s degree
sequences for the year 2015. The plots also incorporate the fit obtained from the PL distribu-
tion by using the methodology proposed by Clauset et al. [2009], which initially determines
a value xmin (cut-off), from which the PL is fitted. Establishing a cut-off point equal to 6
in the in-degree sequence generates a loss in observations of 92.3 %. In the case of the
out-degree sequence, the cut-off is taken to be equal to 2, which implies that those users
with less than two replies are not considered in the analysis, which accounts for 79.4% of
the nodes in the sequence for the year 2015. Finally, setting a cut-off equal to 2 for the total
degree sequence implies to not considering 48.49% of the information. The Zipf-PSS, the
NB and the DW, avoid lost information by covering the whole range of the degree sequence.
Note that the Zipf-PSS is the only bi-parametric model that can maintain the linearity in
the tail. Comparing the fits of the considered models shows that the NB and DW have a
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more pronounced curvature than the Zipf-PSS; which, together with the earlier decay of their
probabilities, demonstrates a clear deviation from the pattern shown by the data.

Since the Zipf-PSS and the NB are PSS distributions, their estimated parameters capture
some insights into the behavior of the community members. For instance, for 2015 and the
in-degree sequence, the parameter estimates of the Zipf-PSS and the NB are equal to: α̂ =

2.6118, λ̂ = 1.1825 and k̂ = 0.8251, q̂ = 0.7262 (see, Table 5.9) respectively. From this, one
has that the expected number of active users answering someone’s questions is approximately
equal to one (Ê[N] = λ̂ = 1.1828 for the Zipf-PSS and Ê[N] = −k̂ log(1− q̂) = 1.0689
for the NB). Moreover, given that according to (1.1.7) Ê[X ] = 1.732 for the Zipf-PSS, and
Ê[X ] =−q̂/(log(1− q̂)(1− q̂)) = 2.05 for the NB, the expected number of answers provided
by the active user is around 2.

On the other hand, for 2015 and the out-degree sequence, the parameter estimates of
the Zipf-PSS and the NB are equal to: α̂ = 2.0214, λ̂ = 0.5688 and k̂ = 0.223, q̂ = 0.9075
respectively. Thus, the expected number of times that a particular user is active for answering
questions is approximately 0.5 (Ê[N] = 0.5686 for the Zipf-PSS and Ê[N] = 0.5309 for
the NB). Once the user becomes active, the expected number of answered questions is
Ê[X ] = 28.844 for the Zipf-PSS and Ê[X ] = 4.12 for the NB.
Note that the models agree in their estimates for the in-degree activity, but they provide quite
different results for the number of answers in the out-degree. However, even though the
Zipf-PSS is the model that gives the best fit to the data, the estimated number of a user’s
answers (out-degree) may be highly influenced by the large variability observed in the sample
variance of the out-degree, which is larger than that obtained for the in-degree sequence. In
addition, that result might also be a consequence of using the Riemann zeta function with
a parameter close to the lower boundary of its parameter space; according to (1.1.7), its
numerator is ζ (α̂ −1) = ζ (1.0214), which may lead to a less robust result.

5.4 Communication networks

5.4.1 University Rovira i Virgili

In this case study we analyze the degree sequence of the undirected e-mail network at the
University Rovira i Virgili (URV) in the year 2003. This data set was created by researchers
in this institution and it is analyzed in the paper by Guimera et al. [2003], in which the
authors inspect the self-similarity structure of the network. In their words, this is the structure
replication at different levels of the communication network. The network comprises a total
of 1133 nodes, all of them belonging to the giant component; and there are neither loops nor
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multi-edges. In this particular network, an edge is created between two nodes if user A sends
an email to user B and user B sends an email to user A. The number of edges in the network
is 5451. This data set can be downloaded from the network repository KONECT [Kunegis,
2013].

Table 5.10 summarizes the main statistics related to the network and its degree sequence.
The large variability in the sequence may be a symptom of the existence of some nodes
highly connected and others showing only a few number of connections. On the other hand,
the skewness value does not allows to assume a long tight tail.

Table 5.10 Characteristics of the degree sequence: number of nodes (#N); number of edges
(#E); (Range); (Mean); variance (Var); skewness (Skew).

#N #E Range Mean Var Skew
1133 5451 70 9.6222 87.3059 1.7689

Table 5.11 contains the results obtained after fitting the degree sequence of the network
by means of the Zipf distribution, the four extensions of this thesis, the Zipf-Mandelbrot and
the DGX distributions. It can be observed that the best fit is obtained with the Zipf-Polylog
distribution, since this is the one that gives the minimum value of the AIC and the maximum
log-likelihood. Figure 5.5 shows the fits obtained by the each one of the considered models.
Observe not only that the MOEZipf and the zero-truncated Zipf-PSS distributions behave
very similarly, but also that the DGX gives a slightly better fit than the previous two models,
because it shows a larger curvature at the beginning. Nevertheless, the Zipf-Polylog is the
only one that is able to give a probability at one that is pretty close to the real one, and unlike
the other distributions, it does not show a linear pattern for values greater than 10.
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Fig. 5.5 Degree sequence of the URV e-mail network for the year 2003, and the fit obtained
by each of the considered models.
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LRT is performed to compare the fit of the Zipf-Polylog distribution with that of the
Zipf, that is, to test if H0 : β = 1 vs. H1 : β < 1. Given that for the Zipf distribution the
log-likelihood is equal to −4106.629 and for the Zipf-Polylog it is equal to −3632.26, the LR
statistics is equal to −2 [−4106.629− (−3632.26)] = 948.738. Under the null hypothesis,
the LR statistic follows a 50:50 mixture of χ2

0 and χ2
1 as in the example of section 5.3.1.

Thus, the critical value for α = 0.05 is equal to 0.5 χ2
0.95,1 = 0.5 ·3.84 = 1.92. Given that

948.738 ≥ 1.92, we clearly reject the null hypothesis and conclude that the Zipf-Polylog
gives a better fit than the Zipf model.

Observe that the parameter estimates of the Zipf-Polylog do not allow for their direct
interpretation as a weighted version, because α is smaller than one. Nevertheless, by
transforming the model as suggested in Section 4.1 of Chapter 4, defining α∗ = α̂ +1 and
considering the weight function w(x;β ) = x · 0.91x, one can assume that the data follow
a weighted version of a Zipf(1.18) distribution. Parameter β̂ = 0.91 is interpreted as the
probability of observing that the degree of a node is one when it is actually equal to one.
Hence, values of β̂ close to one ensure that almost all the nodes with degree one are observed
to be like they are in reality. On the other hand, as a consequence of Theorem 12, the
Zipf-Polylog(α̂, β̂ ) is an MZTP distribution. Thus, it is possible to say that the number of
connections of the nodes come from a zero-truncated Poisson distribution, although each
node has a different Poisson parameter.

5.4.2 EU institution

In this example we analyze the degree sequence of a communication network that represents
the email traffic of a European Research Institution for a period of 18 months (October 2003 -
May 2005). It has a total of 265214 nodes, representing email accounts, and 420045 directed
edges. In particular, an edge is created between nodes i and j if they have exchanged emails
in either directions; that is, if node i has sent at least one message to node j and vice-versa.
This network was previously analyzed in the work by Leskovec et al. [2007], in which the
authors studied how the densification and average distance of the network behave over time.
The data set is publicly available at the Stanford Network Analysis Project (SNAP) repository
[Leskovec and Krevl, 2014] (http://snap.stanford.edu/data/email-EuAll.html).
Because it is a directed network, the degree sequence needs to be split into three different
sequences: the in-degree, containing the information related to the amount of emails re-
ceived; the out-degree, representing the number of emails sent; and the total-degree, which
corresponds to the total activity of the accounts.

http://snap.stanford.edu/data/email-EuAll.html
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Table 5.12 summarizes the main characteristics of the network. It can be observed that
it contains 1089 loops, meaning that some email accounts have acted as both sender and
receiver of the same email. With respect to the basic statistics of the sequences, note that the
means of the in- and out-degree sequences are equal, as in the Math-Overflow example, which
is one of the conditions required for being a valid degree sequence in a directed network
as pointed out in Section 5.1. The large values for the variance is a frequent characteristic
in real networks because some nodes have very different behaviors, due to the fact that the
degrees of the nodes may differ in orders of magnitude. Finally, the values of the skewness
statistic are huge, because the data distribution has a long right tail in all the three sequences.

Table 5.12 Characteristics of each degree sequence: number of nodes (#N); number of edges
(#E); number of loops (L); number of multi-edges (M); type of sequence (Type); (Range);
(Mean); variance (Var); skewness (Skew).

#N #E L M Type Range Mean Var Skew

265214 420045 1089 0
total 7635 3.17 1810.56 73.45
in 7631 1.58 1334.24 97.55

out 930 1.58 99.68 38.41

Table 5.13 contains the MLE for each distribution considered, jointly with their confidence
intervals. It also contains the log-likelihood at the maximum likelihood estimations, and the
AIC goodness-of-fit measure. Observe that in the three cases, the MOEZipf and the Zipf-PE
distributions behave quite similar and are clearly better than the Zipf model. However, the
Zipf-PE model is the one offering the best fit to the three degree sequences.

Figure 5.6 shows, in log-log scale, the fits obtained for the each one of the sequences.
The reason why this example has been chosen is that it shows a top-convex pattern as it can
be appreciated in this figure. This is not common in real data sets which usually show either
a top-concave pattern or a straight line. Since not all the distributions considered before are
able to fit this type of pattern, the plots include only the fits associated with distributions that
allow for linearity or top-convexity. Observe that the Zipf-Mandelbrot and the Zipf-Polylog
are providing the same fit than Zipf distribution. They parameter values confirm that both
distributions families are in the particular case when they become Zipf. Moreover, the fit
achieved using the methodology by Clauset et al. [2009] is included only in the plot of
the out-degree (right-hand side). Observe that, after setting the cut-off value (vertical line)
97.7% of the observations are left out of the fitted area. The results for the in-degree and the
total-degree are not included in the plot because, after fixing the cut-off value, only 0.04%
and 0.047% of the observations should be considered, respectively, which has no sense.
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Fig. 5.6 Fit associated with the in-degree (left hand side), the out-degree (right hand side) and
the total-degree (centered). It also includes the fit obtained using the methodology proposed
by Clauset et al. [2009].

We perform the LRT to compare the Zipf distribution with the Zipf-PE extension, i.e, to
test H0 : β = 0 vs. H1 : β ̸= 0. Assuming a significance level of α = 0.05, the critical point
is equal to χ2

0.95,1 = 3.84. The likelihood ratio statistic for the in- and out-degree sequences
is equal, respectively, to −2 [−66218.20− (−63246.21)] = 5943.98 and −2 [−156765.21−
(−154287.55)] = 4955.32. Since both statistics are larger than the critical point, the null
hypothesis can be clearly rejected, which ensures that the Zipf-PE provides a better fit that
the Zipf distribution.

The MOEZipf and Zipf-PE models agree, meaning that the data distribution is defined in
both cases in terms of minimums. This is because β̂ < 0 for the Zipf-PE and β̂ ∈ (0,1) for
the MOEZipf.

Considering the parameter estimates for the in-degree sequence, the expected number
of times that users are connected for receiving emails, after being notified by the system, is
Ê[N] = β̂/(1− e−β̂ ) = 4.73 for the Zipf-PE. For the MOEZipf distribution, Ê[N] = 1/β̂ =

4.55 may be interpreted as the number of times that a person checks the email until a particular
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contact sends an email to him/her. We are not able to calculate the expected number of
emails received every time that a user is connected, because the α̂ for both distributions
does not fulfill the condition α̂ > 2, which is the one required in order that the expected
value of the Zipf distribution exists. Since the same requirement is needed for calculating
the expected values of the Zipf-PE and MOEZipf distributions, a global estimation of the
number of received emails cannot be computed for none of these cases. This situation bring
us to interpreted that the number of emails received by the user is huge, close to infinity.

With respect to the out-degree sequence, the expected number of times that the user was
connected for sending emails is Ê[N] = 2.39 for the Zipf-PE distribution. For the MOEZipf,
Ê[N] = 2.56 may be interpreted as the number of times that a user connects to the email
application until he/she reaches a particular contact. Every time that the user is active, the
expected number of emails sent is estimated by Ê[X ] = 4.51 for the Zipf-PE and Ê[X ] = 2.89
for the MOEZipf distribution. The expected number of sent emails in the entire network is,
respectively, Ê[Y ] = 1.68 for the Zipf-PE and Ê[Y ] = 1.61 for the MOEZipf.

5.5 Collaboration networks

Collaboration networks are important because they play an important role in measuring how
knowledge spreads. Furthermore, they allow detecting strategical research collaborations.
The co-authorship network studied in this section was created and analyzed in the paper
by Molontay and Nagy [2019]. Their work is a tribute to the work developed by the
network science community in the last 20 years. During the network construction phase, the
authors used the Web of Science bibliographic database to collect all the network science
papers published in the period 1998-2019. The authors classify a publication as a network
science paper if it cites at least one of the following important papers: Barabási and Albert
[1999], Watts and Strogatz [1998] or Girvan and Newman [2002]. After conducting an
accurate pre-processing step, they obtained a dataset of 29528 different papers leading
to 52406 authors representing nodes in the network. An edge is created between two
authors if they co-authored at least one network science paper. The data set containing this
undirected network is accessible through the git-hub repository: https://github.com/marcessz/
Two-Decades-of-Network-Science.

Table 5.14 summarizes the main statistical properties of the network and its degree
sequence. From the total number of authors, 851 are reported as isolated nodes. This means
that these authors have not shared any publications with the other members of the network.

https://github.com/marcessz/Two-Decades-of-Network-Science
https://github.com/marcessz/Two-Decades-of-Network-Science
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During the analysis of this degree sequence, we considered two approaches. The first
one is devoted to analyzing only the nodes that have at least one connection in the network.
Consequently, this part of the study considered the distributions with support in the strictly
positive numbers. The second approach also considers the 851 isolated nodes, and the degree
sequence is fitted with the distributions that include the zero value in its support.

Table 5.14 Characteristics of the degree sequence: number of nodes (#N); number of edges
(#E); (Range); (Mean); variance (Var); skewness (Skew).

#N #E Range Mean Var Skew
52406 329181 443 12.7701 2310.7120 6.8616

Table 5.15 contains the parameter estimates and their confidence intervals, as well as the
log-likelihood and AIC values for all the considered distributions used in the first part of the
study. Without including the isolated nodes, the Zipf-PE distribution is the one that provides
the best fit to the data, closely followed by the positive Zipf-PSS. Figure 5.7 shows the fits
obtained by each considered distribution. In general, the distribution families with a clear
long right tail are the ones providing the best fit to the real observations. On the other hand,
by applying Clauset’s methodology, the cut-off point is fixed to be equal to 4, which implies
that 43.3% of the authors in the network are not considered.
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e
 F

re
q
u
e
n
c
y

Zipf−PE

zt−Zipf−PSS

MOEZipf

Zipf−Mandelbrot

DGX

Zipf−Polylog

Zipf

PL fit

Fig. 5.7 Degree sequence of the co-authorship network and, the fit obtained by each one of
the considered models.

Based on the parameter interpretation of the Zipf-PE distribution, we can say that an
author published an average of 8.24(Ê[N] = 8.2382) papers in the period 1998-2019. Also,
the average number of co-authors in one author’s publication is around 2.49(Ê[X ] = 2.48779).
Moreover, it is expected that each author has an average of Ê[Y ] = 9.52 co-authors in this
period. Performing the LRT, we can confirm that the Zipf-PE obtains a better fit than that
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of the Zipf, thus ensuring the importance of the extra parameter included in the new model.
As in the previous examples, the significance level considered is α = 0.05, which leads to a
critical point equal to χ2

0.95,1 = 3.84. The LR statistic for this degree sequence is equal to
−2[−165879.1326− (−146709.7874)] = 38338.69, which means that the null hypothesis
of the Zipf distribution is clearly rejected, thus ensuring the superiority of the Zipf-PE in
providing a better fit to the data.

In a similar way, the Zipf-PSS is the distribution that provides the best fit when the
isolated nodes are included in the sequence. Table 5.16 summarizes the statistics obtained
during the fitting process, and Figure 5.7 illustrates the fits obtained by each one of the
distributions used as part of this experiment. Note that the fit of the Zipf-PSS is clearly
better than those obtained with the NB and DW distributions. The cut-off set by Clauset’s
methodology remains equal to 4, but the percentage of nodes not included in the analysis
increases until reaching 55.23%, which is a consequence of adding the isolated nodes.
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Fig. 5.8 Degree sequence of the co-authorship network (including isolated nodes) and, the fit
obtained by each one of the considered models.

An interpretation based on the parameters of the Zipf-PSS suggests that the expected
number of papers published by an author over the analyzed period is equal to 3 (Ê[N] =

3.0084). Observe that this estimate is smaller than the one obtained in the previous scenario.
This may be a consequence of the fact that the sequence contains authors who have not
published with other members of the network, perhaps because these authors have worked in
the field of network science for only a limited amount of time. Also, the average number of
co-authors is set to be equal to 2.68 (Ê[X ] = 2.683409), which agrees with the number of
co-authors estimated above. In general, the results indicate that each author has, on average,
about 8.073(Ê[Y ] = 8.072767) co-authors in this period.
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Conclusions and future work

Ever since the Zipf distribution [Zipf, 1949] was first introduced, it has been widely associated
with the linguistic domain and used extensively to measure the frequency of words appearing
in a given text. In recent years, its applicability has also been extended to the area of Network
Analysis, where the Zipf distribution is used as a model for the degree distribution of real
networks. The use of this distribution is justified mainly because the networks usually
contain a large number of nodes with just a few of connections and few nodes that are highly
connected.

However, the Zipf distribution is not flexible enough to capture the pattern shown by the
degree sequence of many real networks when plotted in log-log scale. In these plots, one
usually observes a top-concave or top-convex pattern that deviates from a perfect straight line
corresponding to the Zipf distribution. This justifies the need to define alternative models
that are more flexible, especially in the first integer values. Several methodologies have been
developed to deal with such phenomena, but the most commonly used ones incur a heavy
loss of information, because valuable data is left out of the analysis. This is not the case of
the four extensions presented in this thesis, which allow to fit the data in its entire range. In
what follows we describe the main results of this work.

From the theoretical point of view:

1. We have proved that the Zipf distribution is a continuous mixture of geometric distri-
butions, and that it is also an MZTP but not a ZTMP distribution.

2. In order to overcome the lack of flexibility in the Zipf distribution, we have focused on
the Zipf extensions that are defined based on their ability to:

a) Fit the data in its entire range by maintaining linearity in the tail, which avoids the
selection of a cut-off point and, consequently, prevents the loss of information.

b) Provide information about the underlying data generation mechanism. In other
words, the interpretation of the proposed model’s parameters can reveal some
insights about the data generation mechanism.
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3. For each one of the four bi-parametric extensions considered, we have performed the
following:

a) The work related to the first extension, the MOEZipf, is a continuation of the
research work begun by A. Casellas during her master’s thesis [Casellas, 2013].
Here, we have obtained new properties related to this distribution family, such as
the asymptotic relationship between the tail of a MOEZipf and a Zipf distribution
with the same α parameter. In addition, we have developed an efficient method-
ology for generating random numbers from a Zipf random number generator.

b) The second and third extensions, the Zipf-PE and the Zipf-PSS, are completely
novel distributions. Therefore, they have been defined during this research work,
with their main properties having been analyzed and included in this thesis.
Both of these families of distributions include the Poisson distribution in their
definition, which results in a natural interpretation of their parameters. The
Zipf-PE allows for top-concavity and top-convexity while the Zipf-PSS only
allows for top-concavity. However, the Zipf-PSS contains the zero value in its
support, which allows fitting real data that contain this value, such as graphs that
contain isolated nodes. Both families of distributions have a linear tail, which
is asymptotically related to the Zipf distribution. Also, we have proposed a
methodology for generating random numbers from these two distributions.

c) Finally, we have introduced the Zipf-Polylog family of distributions, which are
obtained as a natural generalization of the PGF of the Zipf distribution. However,
this family is already present in the literature under the names PL distribution
with an exponential cut-off and hybrid geometric/power model. To the best of
our knowledge, we have proved several properties of this distribution that do not
appear in the literature. Among them, we have demonstrated that: it belongs
to the exponential family; it is unlike the others because it has moments of any
order; and it is a continuous mixture of geometric distributions. Apart from that,
we have set the conditions for it to be ZTMP and/or MZTP. Furthermore, we
have adapted the classical inversion method for efficiently generating random
numbers.

From the practical point of view:

1. We have developed and released the zipefextR R-package, which contains the imple-
mentation of all the Zipf extensions included in this thesis.
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2. We have prepared a guide that helps for distinguishing from among all the models the
most appropriate for fitting a particular data set.

3. This document provides the fittings obtained for 32 degree sequences associated with
real networks. These networks pertain to different research areas such as biology,
social networks, collaboration or communication networks. Most of the sequences
analyzed show a top-concave pattern and they do not contain isolated nodes. However,
others contain the information related to isolated nodes and one exhibits a top-convex
pattern. The outcome of the fitting processes allows stating the significance of the
proposed models compared to the results obtained from the Zipf or from its other
bi-parametric alternatives that are usually used in the literature.

Future Work

In what follows, we describe several ideas that have emerged while developing this thesis,
which we propose as new lines of research that we would like to pursuer in our investigations.

Analysis of the degree distribution of temporal networks

Since the Zipf-PSS distribution has the property of being partially closed under addition, as
mentioned in Section 3.3 of Chapter 3, we propose to study the degree sequence distribution
of temporal networks, also known as time-varying networks. The ability to properly model
the evolution of a network over time is very important, and a good starting point for this is to
ascertain the evolution of the degree sequence. By way of example, it is necessary to know
the evolution of a cloud-hosted social network, in order to predict the resources that it will
require in the coming years.

Using the proposed Zipf extensions in the field of linguistics

The Zipf and the Zipf-Mandelbrot distributions are perhaps the ones most commonly used in
the field of linguistics. Here, we propose to analyze how the Zipf extensions of this thesis
perform when modeling the frequency of words in a given text. In particular, we would like
to begin by considering the books included in the Gutenberg3 Project. The Project Gutenberg
was created in 1971 with the goal of creating an electronic library containing all versions of
the free books for which their U.S copyright has expired. This library contains more than
60000 freely available books in different languages.

3https://www.gutenberg.org/

https://www.gutenberg.org/
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Our objective is to select different books by the same author and compare the fits obtained
by our models with those obtained using other distributions such as the Zipf, Zipf-Mandelbrot,
NB or Inverse-Gaussian Poisson distribution. If any of our models turn out to be appropriate
for this field of study, then it can help extract features about the authors and identify the
otherwise unknown authorship of some texts.

In order to obtain the frequency counts, we propose to use the software developed in the
work by Gerlach and Font-Clos [2018].

Using the proposed Zipf extensions in PPI networks

Thanks to the grant Ferran Sunyer i Balaguer, from the Institut d’Estudis Catalans, which
the author of this thesis received in 2018, it was possible to reach out to the researchers Živa
Ramšak and Kristina Gruden of the National Institute of Biology of Slovenia. During my
one-month stay in this institute, it was possible to begin understanding how PPI networks are
constructed. Some of these networks are composed of three different layers of information:
protein-protein interaction, transcriptional regulation and regulation through microRNA.

The example shown in Section 5.2 of Chapter 5 of this thesis was analyzed during
the research stay. However, we would like to go further and study the evolution of the
Arabidopsis thaliana and the Solanum tuberosum networks every time that a new layer of
information is included. Also, we would like to add a new layer of information resulting from
a link prediction approach. This study requires, on the one hand, developing a methodology
for imputing the missing links in a network and, on the other, measuring changes in the
degree distribution when extra information is added.

Using the proposed Zipf extensions in regression models

A way of continuing the research started in this thesis could be to consider regression models
where the response variable follows one of the Zipf extensions proposed. This idea has an
extra difficulty for the MOEZipf, Zipf-PE, and Zipf-PSS distributions because the expected
value is not defined in all the parameter space. This is not the case for the Zipf-Polylog
distribution which has always moments of any order, and it also belongs to the exponential
family. Hence, in this new research line, we propose to start considering regression models
with the Zipf-Polylog as the distribution of the dependent variable.
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Using the proposed Zipf extensions in generating synthetic graphs

People who work in different areas that require graphs analytics are faced with data privacy
limitations. In most of those cases, the use of personal data prevents the release of real data
sets for research. Thus, it is necessary to create synthetic data sets based on the characteristics
observed in reality. In this future research line, we propose to use random degree sequences
generated from the distributions presented in this thesis, as input parameters of well know
random graphs generators algorithms as, for instance, the one introduced by Aiello et al.
[2000] or DATAGEN [Erling et al., 2015], and to compare the resulting graphs with respect
to the ones observed in reality. For this comparison we can use several of the measures of the
graphs, such diameter, clustering coefficient or number of communities.
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Kuş, C. (2007). A new lifetime distribution. Comput. Statist. Data Anal., 51(9):4497–4509.

Kunegis, J. (2013). Konect: the koblenz network collection. In Proceedings of the 22nd
International Conference on World Wide Web, pages 1343–1350. ACM.

Lee, K., Thorneycroft, D., Achuthan, P., Hermjakob, H., and Ideker, T. (2010). Mapping
plant interactomes using literature curated and predicted protein–protein interaction data
sets. The Plant Cell, 22(4):997–1005.

Lee, M. H. (1997). Polylogarithms and Riemann’s ζ function. Phys. Rev. E, 56:3909–3912.

Leskovec, J., Kleinberg, J., and Faloutsos, C. (2007). Graph evolution: Densification and
shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD),
1(1):2.

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford Large Network Dataset
Collection. http://snap.stanford.edu/data.

Louzada, F., Bereta, E. M., and Franco, M. A. (2012). On the distribution of the minimum or
maximum of a random number of iid lifetime random variables. Applied Mathematics,
3(4):350–353.

Low, W. J., Wilson, P., and Thelwall, M. (2016). Stopped sum models and proposed variants
for citation data. Scientometrics, 107(2):369–384.

Mahanti, A., Carlsson, N., Mahanti, A., Arlitt, M., and Williamson, C. (2013). A tale of the
tails: Power-laws in internet measurements. IEEE Network, 27(1):59–64.

Malone, D. and Maher, K. (2012). Investigating the distribution of password choices. In
Proceedings of the 21st international conference on World Wide Web, pages 301–310.
ACM.

Manaris, B., Romero, J., Machado, P., Krehbiel, D., Hirzel, T., Pharr, W., and Davis, R. B.
(2005). Zipf’s law, music classification, and aesthetics. Computer Music Journal, 29(1):55–
69.

Mandelbrot, B. (1965). Information theory and psycholinguistics. BB Wolman and E.

Marshall, A. W. and Olkin, I. (1997). A new method for adding a parameter to a family
of distributions with application to the exponential and Weibull families. Biometrika,
84(3):641–652.

McKelvey, B. et al. (2018). Using maximum likelihood estimation methods and complexity
science concepts to research power law-distributed phenomena. In Handbook of Research
Methods in Complexity Science. Edward Elgar Publishing.

Meng, S. and Gao, G. (2018). Compound Poisson Claims Reserving Models: Extensions
and Inference. ASTIN Bulletin: The Journal of the IAA, pages 1–20.

Mitzenmacher, M. (2004). A brief history of generative models for power law and lognormal
distributions. Internet mathematics, 1(2):226–251.

http://snap.stanford.edu/data


136 References

Molontay, R. and Nagy, M. (2019). Two Decades of Network Science as seen through the
co-authorship network of network scientists. arXiv preprint arXiv:1908.08478.

Nakagawa, T. and Osaki, S. (1975). The discrete Weibull distribution. IEEE Transactions on
Reliability, 24(5):300–301.

Newman, M. E. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary
physics, 46(5):323–351.

Panjer, H. H. (1981). Recursive evaluation of a family of compound distributions. Astin
Bull., 12(1):22–26.

Paranjape, A., Benson, A. R., and Leskovec, J. (2017). Motifs in temporal networks. In
Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,
pages 601–610. ACM.

Patel, Y. C. (1976). Estimation of the parameters of the triple and quadruple stuttering-Poisson
distributions. Technometrics, 18(1):67–73.

Patil, G. P. and Rao, C. R. (1978). Weighted distributions and size-biased sampling with
applications to wildlife populations and human families. Biometrics, pages 179–189.

Pérez-Casany, M. and Casellas, A. (2013). Marshall-Olkin Extended Zipf Distribution. arXiv
preprint arXiv:1304.4540.

Pérez-Casany, M., Valero, J., and Ginebra, J. (2016). Random-Stopped Extreme distri-
butions. International Conference on Statistical Distributions and Applications. Ni-
agara Falls, Canada. http://people.cst.cmich.edu/lee1c/icosda2016/ProgramBrochure/
ProgramBrochure_ICOSDA2016_10-20-16.pdf#page=52.

Podur, J. J., Martell, D. L., and Stanford, D. (2010). A compound Poisson model for the
annual area burned by forest fires in the province of Ontario. Environmetrics, 21(5):457–
469.

Puig, P. and Valero, J. (2006). Count data distributions: some characterizations with applica-
tions. J. Amer. Statist. Assoc., 101(473):332–340.

Puig, P. and Valero, J. (2007). Characterization of count data distributions involving additivity
and binomial subsampling. Bernoulli, 13(2):544–555.

Ramos, P. L., Dey, D. K., Louzada, F., and Lachos, V. H. (2019). An extended poisson family
of life distribution: A unified approach in competitive and complementary risks. Journal
of Applied Statistics, pages 1–17.

Ramšak, Ž., Coll, A., Stare, T., Tzfadia, O., Baebler, Š., Van de Peer, Y., and Gruden, K.
(2018). Network Modeling Unravels Mechanisms of Crosstalk between Ethylene and
Salicylate Signaling in Potato. Plant physiology, 178(1):488–499.

Reed, W. J. and Jorgensen, M. (2004). The double Pareto-lognormal distribution—a new
parametric model for size distributions. Communications in Statistics-Theory and Methods,
33(8):1733–1753.

http://people.cst.cmich.edu/lee1c/icosda2016/Program Brochure/ProgramBrochure_ICOSDA 2016_10-20-16.pdf#page=52
http://people.cst.cmich.edu/lee1c/icosda2016/Program Brochure/ProgramBrochure_ICOSDA 2016_10-20-16.pdf#page=52


References 137

Saghir, A., Hamedani, G., Tazeem, S., and Khadim, A. (2017). Weighted Distributions: A
Brief Review, Perspective and Characterizations. International Journal of Statistics and
Probability, 6(3):109.

Sala, A., Zheng, H., Zhao, B. Y., Gaito, S., and Rossi, G. P. (2010). Brief announcement:
revisiting the power-law degree distribution for social graph analysis. In Proceedings of
the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, pages
400–401. ACM.

Satterthwaite, F. (1942). Generalized Poisson distribution. The Annals of Mathematical
Statistics, 13(4):410–417.

Schapiro, B. (1994). An approach to the physics of complexity. Chaos, Solitons & Fractals,
4(1):115–123.

Self, S. G. and Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators
and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical
Association, 82(398):605–610.

Seshadri, M., Machiraju, S., Sridharan, A., Bolot, J., Faloutsos, C., and Leskove, J. (2008).
Mobile call graphs: beyond power-law and lognormal distributions. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 596–604. ACM.

Smolinsky, L. (2017). Discrete power law with exponential cutoff and Lotka’s law. Journal
of the Association for Information Science and Technology, 68(7):1792–1795.

Sundt, B. r. and Jewell, W. S. (1981). Further results on recursive evaluation of compound
distributions. Astin Bull., 12(1):27–39.

Tahir, M. H. and Cordeiro, G. M. (2016). Compounding of distributions: a survey and new
generalized classes. Journal of Statistical Distributions and Applications, 3(1):13.

Teicher, H. (1961). Maximum likelihood characterization of distributions. The Annals of
Mathematical Statistics, 32(4):1214–1222.

Traud, A. L., Mucha, P. J., and Porter, M. A. (2012). Social structure of facebook networks.
Physica A: Statistical Mechanics and its Applications, 391(16):4165 – 4180.

Tripathi, A. and Vijay, S. (2003). A note on a theorem of erdős & gallai. Discrete Mathematics,
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Appendix A

Guidalines for choosing the most
appropriate extension for a given data set

The aim of this appendix is to provide a guide that helps the practitioner decide which Zipf
extension is more suitable for a given data set. At the same time, we present a complete
summary of the main properties associated with the distributions families discussed in the
previous chapters.

Before choosing the model, it is important to deeply understand the data from a descriptive
point of view. Additionally, if possible, it is convenient to decide if any of the mechanisms
that generate the proposed extensions fit to their data generation mechanism. Table A.1
explains the mechanism that generates each of the distributions defined in the previous
chapters. As before, Y is an r.v. that follows one of the Zipf extensions defined previously,
and the r.v. X is Zipf distributed.

Table A.1 Mechanisms that generate the presented Zipf extensions.

Distribution Interpretation

MOEZipf(α,β )(α,β )(α,β ) Min(X1,X2, . . . ,XN) or Max(X1,X2, . . . ,XN), where Xi ∼ Zip f (α) and N ∼ Geom(β ) or Geom(1/β )

Zipf-PE(α,β )(α,β )(α,β ) Min(X1,X2, . . . ,XN) or Max(X1,X2, . . . ,XN), where Xi ∼ Zip f (α) and N ∼ zt −Po(|β |)

Zipf-PSS(α,λ )(α,λ )(α,λ ) X1 +X2 + . . .+XN , where Xi ∼ Zip f (α) and N ∼ Po(λ )

Zipf-Polylog(α,β )(α,β )(α,β )


weighted Zip f (α); w(x;β ) = β x > 0, α > 1
weighted Zip f (α +1); w(x;β ) = β xx, α ∈ (0,1)
weighted Zip f (α +2); w(x;β ) = β xx2, α ∈ (−1,0)
weighted Zip f (−α); w(x;β ) = β xx−2α , α <−1

In order to facilitate the comparison, Table A.2 contains the summary of the main
properties of the models introduced in this thesis. Observe that only the most important
properties are included in this table. For example, note that all models allow for top-concavity,
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and only those defined as RSED also allow for top-convexity. With the exception of the
Zipf-PSS that contains the zero value in its support, the rest of them are defined in strictly
positive integer numbers. The first three generalizations have a linear tail proportional to the
tail of the Zipf distribution with the same α value. The Zipf-Polylog distribution is the only
distribution that has moments of any order, when not considering the particular parameter
values for which the distribution is equal to the Zipf.

Figure A.1 shows a flow diagram that helps decide which model may provide a reasonable
fit to the data. In order to follow the diagram, it is necessary to have either frequency of
frequencies data or rank data, plus the log-log plot of such data set. By looking at the tail and
the top-concavity (top-convexity) of the plotted data, it is possible to follow the diagram and
determine if any of the proposed models are suitable for the data set under analysis.



141

Ta
bl

e
A

.2
Su

m
m

ar
y

of
th

e
m

ai
n

pr
op

er
tie

s
as

so
ci

at
ed

w
ith

th
e

fo
ur

Z
ip

fg
en

er
al

iz
at

io
ns

in
cl

ud
ed

in
th

is
th

es
is

.

M
O

E
Z

ip
f

Z
ip

f-
PE

Z
ip

f-
PS

S
Z

ip
f-

Po
ly

lo
g

Ty
pe

of
fa

m
ily

R
SE

D
R

SE
D

PS
S

E
xp

on
en

tia
lF

am
ily

∀β
∈
(0
,1
)

Su
pp

or
t

{1
,2
,3
,.
..
}

{1
,2
,3
,.
..
}

{0
,1
,2
,3
,.
..
}

{1
,2
,3
,.
..
}

Pa
ra

m
et

er
s

α
>

1;
β
>

0
α
>

1;
β
∈
R
\0

α
>

1;
λ
>

0
α
∈
R

;β
∈
(0
,1
)

or
α
>

1;
β
=

1

Z
ip

fD
is

t.

as
pa

rt
ic

ul
ar

ca
se

β
=

1
β
=

0
λ
→

0
α
>

1,
β
=

1

Pa
tt

er
n

in
lo

g-
lo

g
sc

al
e

To
p-

C
on

ca
ve

To
p-

C
on

ve
x

To
p-

C
on

ca
ve

To
p-

C
on

ve
x

To
p-

C
on

ca
ve

To
p-

C
on

ca
ve

E
xi

st
en

ce
of

th
e

k-
th

m
om

en
t

α
>

k
+

1
α
>

k
+

1
α
>

k
+

1
if

β
∈
(0
,1
),

∀α
∈
R

if
β
=

1,
fo

rα
>

k
+

1

Pr
ob

.a
to

ne
P
(Y

=
1)

<
(>

)P
(X

=
1)
,
∀β

>
(<

)1
P
(Y

=
1)

<
(>

)P
(X

=
1)
,
∀β

>
(<

)0
P
(Y

Z
T
=

1)
<

P
(X

=
1)
,
∀λ

>
1

P
(Y

=
1)

≥
P
(X

=
1)
,
∀β

In
fin

ite
D

iv
is

ib
ili

ty
-

-
Y

es
-

M
ix

tu
re

of
Po

is
so

ns
-

-
M

P
if

α
>

0,
M

Z
T

P

if
α
=

0,
Z

T
M

P
an

d
M

Z
T

P

R
at

io
P
(Y

=
x+

1)
P
(Y

=
x)

P
(Y

=
x+

1)
P
(Y

=
x)

P
(Y

=
x+

1)
P
(Y

=
x)

P
(X

=
x+

1)
P
(X

=
x)

·
ζ
(α

)−
β

ζ
(α

,x
)

ζ
(α

)−
β

ζ
(α

,x
+

2)
eβ

P
(X

=
x+

1)
−

1
1−

e−
β

P
(X

=
x)

P
(X

=
x+

1)
P
(X

=
x)

·( x
x+

1

) 1−α
·h
(x
,α

,λ
)

β
P
(X

=
x+

1)
P
(X

=
x)

R
at

io
P
(Y

=
x)

P
(X

=
x)

P
(Y

=
x)

P
(X

=
x)

P
(Y

=
x)

P
(X

=
x)

ζ
(α

)2

[ζ
(α

)−
β

ζ
(α

,x
)]
[ζ
(α

)−
β

ζ
(α

,x
+

1)
]

eβ
e−

β
ζ
(α

,β
)

ζ
(α

)
(e

β
x−

α

ζ
(α

)
−

1)
ζ
(α

)

(e
β
−

1)
x−

α
-

β
x

ζ
(α

)
Li

α
(β

)

Ta
il

P
(Y

>
x)

∼
β

P
(X

>
x)

if
β
<

0,
P
(Y

>
x)

∼
−

β
eβ

1−
eβ

P
(X

>
x)

if
β
>

0,
P
(Y

>
x)

∼
β

1−
eβ

P
(X

>
x)

P
(Y

>
x)

∼
λ

P
(X

>
x)

-

R
an

do
m

D
at

a

u
∼

N
(0
,1
)

u
∼

N
(0
,1
)

u
∼

N
(0
,1
)

In
ve

rs
io

n
m

et
ho

d

of
th

e
Z

ip
fa

pp
lie

d
to

:

u′
=

u
β

1+
u
(β

−
1)

In
ve

rs
io

n
m

et
ho

d

of
th

e
Z

ip
fa

pp
lie

d
to

:

u′
=

lo
g(

u
(e

β
−

1)
+

1)
β

In
ve

rs
io

n
m

et
ho

d

ap
pl

ie
d

di
re

ct
ly

to
th

e
Z

ip
f-

PS
S

Fi
rs

tx
≥

1
ve

ri
fy

in
g

th
at

:

u
·L

i α
(β

)
≤

∑
x i=

1
i−

α
·β

i



142 Guidalines for choosing the most appropriate extension for a given data set

Lo
ad

 d
at

as
et

Zi
pf

 d
is

tr
ib

ut
io

n
D

oe
s 

it 
ha

s
a 

lin
ea

r 
ta

il?

O
th

er
 D

is
tri

bu
tio

ns

Zi
pf

-P
SS

D
oe

s 
it 

H
as

 z
er

os
?

   
   

- M
O

EZ
ip

f
   

   
- Z

ip
f-P

E

D
oe

s 
it 

sh
ow

 
a 

to
p-

co
nc

av
e 

pa
tte

rn
?

D
oe

s 
it 

ha
s

 z
er

os
?

D
oe

s 
it 

sh
ow

 
a 

to
p-

co
nv

ex
 

pa
tte

rn
?

Is
 it

 li
ne

ar
 

at
 lo

w
 

va
lu

es
?

Fi
ni

te
 m

ix
tu

re
 o

f Z
ip

f
di

st
rib

ut
io

ns

Is
 it

 li
ne

ar
in

 lo
g-

lo
g

sc
al

e?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s

O
th

er
 D

is
tri

bu
tio

ns

N
o

O
th

er
 D

is
tri

bu
tio

ns
Zi

pf
-P

ol
yl

og

D
oe

s 
it 

ha
s 

ze
ro

s?
N

o
Ye

s

   
  -

 M
O

EZ
ip

f
   

  -
 Z

ip
f-P

E
   

  -
 z

t Z
ip

f-P
SS

   
  -

 D
G

X

Fi
g.

A
.1

Fl
ow

di
ag

ra
m

fo
rc

ho
os

in
g

th
e

m
os

ta
pp

ro
pr

ia
te

m
od

el
,b

as
ed

on
th

e
ch

ar
ac

te
ri

st
ic

s
of

th
e

da
ta

se
t.



Appendix B

The zipfextR Package

The ubiquity of the Zipf distribution has made it necessary to implement this distribution
in the most popular statistical software, such as R. The readers may find at CRAN several
packages that implement the Zipf distribution or other related families of distributions.
For example, the package VGAM [Yee, 2019] provides a full implementation of the Zipf
family, as does the package tolerance [Young et al., 2010], in which implementations of
Zipf-Mandelbrot and Zeta distributions can also be found. Note that the Zipf random number
generator used in our package is the one implemented in the above mentioned package. In the
same way, zipfR [Evert and Baroni, 2007] implements some Large-Number-of-Rare-Events
models for modeling word frequency distributions. The latest version of the zipfR package is
from October 2019 (see http://zipfr.r-forge.r-project.org/).
Another R-package for dealing with heavy tail distributions is poweRlaw [Gillespie, 2015],
which provides an interface for using the methodology developed by Clauset et al. [2009].
However, for the methodology used in Chapter 5, we have directly used the scripts available
from the author’s web page: http://tuvalu.santafe.edu/~aaronc/powerlaws/plfit.r.

In order to facilitate the use of the Zipf generalizations presented in this thesis to prac-
titioners of different areas of research, we first implemented the MOEZipf distribution in
the moezipfR package [Duarte-López et al., 2017]. Later, we created the R-package zipfextR
[Duarte-López and Pérez-Casany, 2020], which is currently available at CRAN. This package
implements the four extensions presented in this thesis.

Similarly to other distributions implemented in R, the package zipfextR implements the
PMF, CDF, quantile function and a function for generating random numbers. For each family,
a function is included for numerically estimating their parameters via MLE. Appendix D.2
includes the main functions used for estimating the parameter values in the applications that
appear in Chapter 5.

http://zipfr.r-forge.r-project.org/
http://tuvalu.santafe.edu/~aaronc/powerlaws/plfit.r
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The functions are implemented using the R class named S3 [Wickham, 2014, p–102].
As a consequence, the results from a fitting process can directly access functions such as:
summary, print, coef, AIC, BIC, fitted, residuals, and others. The manual Duarte-López and
Pérez-Casany [2020] contains detailed documentation of each function in the package. Table
B.1 summarizes the functions developed for each family of distributions.

Table B.1 Functionalities implemented in the R-package zipfextR.

MOEZipf Zipf-PE Zipf-PSS Zipf-Polylog

PMF dmoezipf dzipfpe dzipfpss dzipfpolylog

CDF pmoezipf pzipfpe pzipfpss pzipfpolylog

Quartile Function qmoezipf qzipfpe qzipfpss qzipfpolylog

Random Number

Generator
rmoezipf rzipfpe rzipfpss rzipfpolylog

Moments moezipfMoments zipfpeMoments zipfpssMoments zipfPolylogMoments

Mean moezipfMean zipfpeMean zipfpssMean zipfpolylogMean

Variance moezipfVariance zipfpeVariance zipfpssVariance zipfpoylogVariance

MLE moezipfFit zipfpeFit zipfpssFit zipfPolylogFit

The package zipfextR was released in March, 2018 and most recently updated in July,
2020. According to the CRAN logs, the package was downloaded 7502 times between
its publication and up until early May 2020. Figure B.1 shows the number of downloads
of the zipfextR package by country. Table B.2 ranks the ten top countries with the largest
numbers of downloads. For the construction of the figure and the table we have excluded the
information on 619 downloads, for which no country data was available.
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Downloads by Country

1 154 444 3386

Fig. B.1 Downloads of the R-package zipfextR by countries.

Table B.2 Ten top countries with the largest number of downloads of the zipfextR package
until May 2020.

Country Downloads

United States of America 3386

Japan 444

Republic of Korea 260

Germany 255

United Kingdom 196

India 195

Switzerland 154

China 145

Canada 141

Spain 108





Appendix C

CDF of maximums and minimums of
randomly stopped extreme Zipf
distributions
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Fig. C.1 CDFs of the RSEZipf distribution with a geometric stopping distribution for α = 2.3
and θ = 0.05,0.2,0.5 and 0.8. On the left-hand side for maximums, and on the right-hand
side for minimums.
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Fig. C.2 CDFs of the RSEZipf distribution with a logarithmic stopping distribution for
α = 2.3 and θ = 0.05,0.2,0.5 and 0.8. On the left-hand side for maximums, and on the
right-hand side for minimums.
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Fig. C.3 CDFs of the RSEZipf distribution with a zero-truncated Poisson stopping distribution
for α = 2.3 and θ = 1,2.5,4 and 7. On the left-hand side for maximums, and on the right-
hand side for minimums.
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Fig. C.4 CDFs of the RSEZipf distribution with a zero-truncated negative binomial stopping
distribution for α = 2.3 and θ = 0.05,0.2,0.5,0.8 and β = 3. On the left-hand side for
maximums, and on the right-hand side for minimums.
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Fig. C.5 CDFs of the RSEZipf distribution with a zero-truncated negative binomial stopping
distribution for α = 2.3 and θ = 0.5 and β = 1,2.5,4 and 7. On the left-hand side for
maximums, and on the right-hand side for minimums.
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Fig. C.6 CDFs of the RSEZipf distribution with a zero-truncated Hermite stopping distribution
for α = 2.3 and θ = 1,2.5,4,7. On the left-hand side for beta = 3, and on the right-hand side
for β = 0.3. On the left-hand side for maximums, and on the right-hand side for minimums.
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Fig. C.7 CDFs of the RSEZipf distribution with a zero-truncated Hermite stopping distribution
for α = 2.3 and θ = 0.5 and β = 1,2.5,4 and 7. On the left-hand side for maximums, and
on the right-hand side for minimums.



Appendix D

Source code

D.1 Source code for the computation of the Kolmogorov-
Smirnov test

D.1.1 Sequence generation

library(zipfextR)

library(foreach)

library(parallel)

library(doParallel)

sampleSize <- c(100, 1000)

samples <- 500

alphas <- c(1.25, 2, 3.5, 5)

betas <- c(0.1, 0.25, 0.5, 1, 1.75, 2.25, 3.5, 10)

dirName <-

'/home/aduarte/work/degree/kolmogorovThesis/sequences/zipfpss/%s/%s'

for (ss in sampleSize) {

for (a in alphas) {

for (b in betas) {

dirN <- sprintf(dirName, ss, sprintf('%s-%s', gsub('.', '_', a, fixed

= T), gsub('-', 'n', gsub('.', '_', b, fixed = T), fixed = T)))

dir.create(dirN, showWarnings = F, recursive = T)

cores <- detectCores(all.tests = FALSE, logical = TRUE)

cl <- parallel::makeCluster(cores-1)
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doParallel::registerDoParallel(cl)

parLapply(cl, 1:samples, function(i, alpha, beta, ss, dirN){i

library(R.utils)

withTimeout({

library(zipfextR)

#data <- rmoezipf(ss, alpha, beta)

data <- rzipfpss(ss, alpha, beta)

#data <- rzipfpe(ss, alpha, beta)

write.table(data, file = sprintf('%s/%s.csv', dirN, i), row.names =

F, quote = F, col.names = F)

}, timeout = 1800, onTimeout = "warning")

}, alpha = a, beta = b, ss = ss, dirN = dirN)

parallel::stopCluster(cl)

}

}

}

D.1.2 KS test computation

library(parallel)

library(doParallel)

args <- commandArgs(TRUE)

seqFolder <- '<sequencesPath>'

model <- as.character(args[1])

sampleSize <- as.numeric(args[2])

simKS <- as.logical(args[3])

if (is.na(simKS)){

stop('Parameter has to be T or F.')

}

print(model)

print(sampleSize)

seqDir <- file.path(seqFolder, model, sampleSize)

seqDirFolders <- list.files(seqDir)

sapply(seqDirFolders, function(x, parentFolder){
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tryCatch({

folderOutput <- unlist(strsplit(x,'-', fixed = T))

#alpha <- as.numeric(gsub('_', '.', folderOutput[1], fixed = T))

alpha <- as.numeric(gsub('_', '.', gsub('n', '-', folderOutput[1], fixed

= T), fixed = T))

beta <- as.numeric(gsub('_', '.', gsub('n', '-', folderOutput[2], fixed

= T), fixed = T))

print(c(alpha, beta))

seqList <- list.files(file.path(parentFolder, x))

cores <- detectCores(all.tests = FALSE, logical = TRUE)

cl <- parallel::makeCluster(cores-1, outfile = sprintf(''))

doParallel::registerDoParallel(cl)

parLapply(cl, seqList, function(i, alpha, beta, seqFolder, model,

sampleSize){

tryCatch({

library(zipfextR)

library(dgof)

data <- read.csv(file.path(seqFolder, i))

spectrum <- table(data)

data_frame <- data.frame(spectrum)

data_frame[, 1] <- as.numeric(levels(data_frame[, 1]))[data_frame[,

1]]

data_frame[, 2] <- as.numeric(data_frame[, 2])

switch (model,

moezipf = {

cdfTheoDist <- pmoezipf(data_frame[,1], alpha, beta)

},

zipfpe = {

cdfTheoDist <- pzipfpe(data_frame[,1], alpha, beta)

},

zipfpss = {

cdfTheoDist <- pzipfpss(data_frame[,1], alpha, beta)

},

zipfpolylog = {

cdfTheoDist <- pzipfpolylog(data_frame[,1], alpha, beta)

},

stop('Incorrect model name.')
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)

theoStepFn <- stepfun(data_frame[,1], c(0, cdfTheoDist))

ksObj <- dgof::ks.test(data[,1], theoStepFn, simulate.p.value = simKS)

csvLine <-data.frame(i, model, alpha, beta, sampleSize,

ksObj$statistic, ksObj$p.value, simKS, ifelse(ksObj$p.value >

0.05, 1, 0))

write.table(csvLine, file='ksResults.csv', sep = ',', eol = '\n',

append = T, row.names = F, col.names = F)

}, error = function(e){

message(e)

print(c(model, sampleSize, alpha, beta, simKS, file.path(seqFolder,

i)))

})

gc()

}, alpha = alpha, beta = beta, seqFolder = file.path(parentFolder, x),

model = model, sampleSize = sampleSize)

parallel::stopCluster(cl)

}, error = function(e){

print(e)

print(file.path(parentFolder, x))

})

}, parentFolder = seqDir)

D.2 Source code for parameter estimation

library(igraph)

library(baselineDistR)

library(zipfextR)

library(tolerance)

library(dplyr)

library(xtable)

set.seed(2019)

getDegreeSequence <- function(g, type, loops = TRUE){

totalDegree <- degree(g, v = V(g), mode = type, loops = loops)

dataProc <- as.data.frame(totalDegree)
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dataProc <- table(dataProc[,1])

dataProc <- as.data.frame(dataProc)

dataProc[,1] <- as.numeric(as.character(dataProc[,1]))

dataProc[,2] <- as.numeric(as.character(dataProc[,2]))

return(dataProc)

}

get_AIC <- function(loglike, K) {

-2*loglike + 2*K

}

fitSequence <- function(numSeq, type = '', includeDeltaAIC = TRUE, ids = '',

initAlphaPoly=0.5, initBetaPoly=-0.01){

dfResults <- data.frame(character(), character(), numeric(), character(),

numeric(), character(), numeric(), character(), numeric(), numeric())

cNames <- c('IDS','SeqType', 'nVals', 'Distribution', 'p1', 'CI_p1', 'p2',

'CI_p2', 'loglik', 'AIC')

colnames(dfResults) <- cNames

nVals <- nrow(numSeq)

if(0 %in% numSeq[,1]){

## Negative Binomial

ztNB <- NULL

tryCatch({

ztNB <- negbinZTFit(numSeq, init_gamma = 0.5, init_p = 0.5)

tempDF <- data.frame(ids, type, nVals, 'Neg. Bin.', coef(ztNB)[1,1],

sprintf('(%s, %s)', round(ztNB$gammaCI[1], 4),

round(ztNB$gammaCI[2], 4)),

coef(ztNB)[2,1],

sprintf('(%s, %s)', round(ztNB$pCI[1], 4),

round(ztNB$pCI[2], 4)),

logLik(ztNB), AIC(ztNB))

colnames(tempDF) <- cNames

dfResults <-rbind(dfResults, tempDF)

}, error = function(e){

print(e)

})
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## Discrete Weibull

ztDW <- NULL

tryCatch({

ztDW <- discWeibullZTFit(numSeq,init_p = 0.5, init_v = 0.5)

tempDF <- data.frame(ids, type, nVals, 'D. Weibull', coef(ztDW)[1,1],

sprintf('(%s, %s)', round(ztDW$pCI[1], 4),

round(ztDW$pCI[2], 4)),

coef(ztDW)[2,1],

sprintf('(%s, %s)', round(ztDW$vCI[1], 4),

round(ztDW$vCI[2], 4)),

logLik(ztDW), AIC(ztDW))

colnames(tempDF) <- cNames

dfResults <-rbind(dfResults, tempDF)

}, error = function(e){

print(e)

})

zipfpssD <- NULL

tryCatch({

zipfpssD <- zipfpssFit(numSeq)

tempDF <- data.frame(ids, type, nVals, 'Zipf-PSS', coef(zipfpssD)[1,1],

sprintf('(%s, %s)', round(zipfpssD$alphaCI[1], 4),

round(zipfpssD$alphaCI[2], 4)),

coef(zipfpssD)[2,1],

sprintf('(%s, %s)', round(zipfpssD$lambdaCI[1], 4),

round(zipfpssD$lambdaCI[2], 4)),

logLik(zipfpssD), AIC(zipfpssD))

colnames(tempDF) <- cNames

dfResults <-rbind(dfResults, tempDF)

}, error = function(e){

print(e)

})

} else {

## Zipf Distribution

zipfD <- NULL

tryCatch({

zipfD <- zipfFit(numSeq, init_alpha = 1.5)

tempDF <- data.frame(ids, type, nVals, 'Zipf', coef(zipfD)[1,1],
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sprintf('(%s, %s)', round(zipfD$alphaCI[1], 4),

round(zipfD$alphaCI[2], 4)),

-1, -1, logLik(zipfD), AIC(zipfD))

colnames(tempDF) <- cNames

dfResults <-rbind(dfResults, tempDF)

}, error = function(e){

print(e)

})

## DGX

dgxD <- NULL

tryCatch({

dgxD <- dgxFit(numSeq, init_mu = 1.2, init_sig = 1.5)

tempDF <- data.frame(ids, type, nVals, 'DGX', coef(dgxD)[1,1],

sprintf('(%s, %s)', round(dgxD$muCI[1], 4),

round(dgxD$muCI[2], 4)),

coef(dgxD)[2,1],

sprintf('(%s, %s)', round(dgxD$sigCI[1], 4),

round(dgxD$sigCI[2], 4)),

logLik(dgxD), AIC(dgxD))

colnames(tempDF) <- cNames

dfResults <-rbind(dfResults, tempDF)

}, error = function(e){

print(e)

})

## MOEZipf

moezipfD <- NULL

tryCatch({

moezipfD <- moezipfFit(numSeq)

tempDF <- data.frame(ids, type, nVals, 'MOEZipf', coef(moezipfD)[1,1],

sprintf('(%s, %s)', round(moezipfD$alphaCI[1], 4),

round(moezipfD$alphaCI[2], 4)),

coef(moezipfD)[2,1],

sprintf('(%s, %s)', round(moezipfD$betaCI[1], 4),

round(moezipfD$betaCI[2], 4)),

logLik(moezipfD), AIC(moezipfD))

colnames(tempDF) <- cNames
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dfResults <-rbind(dfResults, tempDF)

}, error = function(e){

print(e)

})

## Zipf-PE

zipfpeD <- NULL

tryCatch({

zipfpeD <- zipfpeFit(numSeq)

tempDF <- data.frame(ids, type, nVals, 'Zipf-PE', coef(zipfpeD)[1,1],

sprintf('(%s, %s)', round(zipfpeD$alphaCI[1], 4),

round(zipfpeD$alphaCI[2], 4)),

coef(zipfpeD)[2,1],

sprintf('(%s, %s)', round(zipfpeD$betaCI[1], 4),

round(zipfpeD$betaCI[2], 4)),

logLik(zipfpeD), AIC(zipfpeD))

colnames(tempDF) <- cNames

dfResults <-rbind(dfResults, tempDF)

}, error = function(e){

print(e)

})

## Zipf-PSS (zero-truncated)

zipfpssD <- NULL

tryCatch({

zipfpssD <- zipfpssFit(numSeq, isTruncated = T)

tempDF <- data.frame(ids, type, nVals, 'zt-Zipf-PSS',

coef(zipfpssD)[1,1],

sprintf('(%s, %s)', round(zipfpssD$alphaCI[1], 4),

round(zipfpssD$alphaCI[2], 4)),

coef(zipfpssD)[2,1],

sprintf('(%s, %s)', round(zipfpssD$lambdaCI[1], 4),

round(zipfpssD$lambdaCI[2], 4)),

logLik(zipfpssD), AIC(zipfpssD))

colnames(tempDF) <- cNames

dfResults <-rbind(dfResults, tempDF)

}, error = function(e){

print(e)

})
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## Zipf-Mandelbrot

zipfMand <- NULL

tryCatch({

x <- rep(numSeq[,1], numSeq[,2])

x <- table(factor(x, levels = min(x):max(x)))

zipfMand <- zm.ll(x, N = max(numSeq[,1]), dist = "Zipf-Man")

zipfMandSTD <- sqrt(diag(solve(zipfMand@details$hessian)))

tempDF <- data.frame(ids, type, nVals, 'Zipf-Mandelbrot',

zipfMand@details$par[1],

sprintf('(%s, %s)',

round(zipfMand@details$par[1]-stats::qnorm(1-((1-0.95)/2))*zipfMandSTD[1],

4),

round(zipfMand@details$par[1]+stats::qnorm(1-((1-0.95)/2))*zipfMandSTD[1],

4)),

zipfMand@details$par[2],

sprintf('(%s, %s)',

round(zipfMand@details$par[2]-stats::qnorm(1-((1-0.95)/2))*zipfMandSTD[2],

4),

round(zipfMand@details$par[2]+stats::qnorm(1-((1-0.95)/2))*zipfMandSTD[2],

4)),

-1*zipfMand@details$value, get_AIC(-1*zipfMand@details$value, 2))

colnames(tempDF) <- cNames

dfResults <-rbind(dfResults, tempDF)

}, error = function(e){

print(e)

})

zipfPoly <- NULL

tryCatch({

zipfPoly <- zipfPolylogFit(numSeq, init_alpha = initAlphaPoly,

init_beta = initBetaPoly, method="L-BFGS-B", lower=c(-Inf,-Inf),

upper=c(Inf,0))

# zipfPolySTD <- sqrt(diag(solve(zipfPoly$hessian)))

tempDF <- data.frame(ids, type, nVals, 'Zipf-Polylog',

coef(zipfPoly)[1,1],

sprintf('(%s, %s)', round(zipfPoly$alphaCI[1], 4),

round(zipfPoly$alphaCI[2], 4)),
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coef(zipfPoly)[2,1],

sprintf('(%s, %s)', round(zipfPoly$betaCI[1], 4),

round(zipfPoly$betaCI[2], 4)),

logLik(zipfPoly), AIC(zipfPoly))

colnames(tempDF) <- cNames

dfResults <-rbind(dfResults, tempDF)

}, error = function(e){

print(e)

print(ids)

})

}

if(includeDeltaAIC){

dfResults <- dfResults %>%

group_by(IDS) %>%

mutate(DAIC = AIC - min(AIC)) %>%

arrange(DAIC)

}

return(dfResults)

}
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