
“thesis-FedFranz” — 2021/2/4 — 11:30 — page i — #1

Emancipation of the Bitcoin Outcasts

Addressing Overlooked Elements of the Bitcoin
Network for Improving Security and Efficiency

Federico Franzoni

TESI DOCTORAL UPF / Year 2021

THESIS SUPERVISOR
Vanesa Daza
Department Information and Communication Technologies

“thesis-FedFranz” — 2021/2/4 — 11:30 — page ii — #2

“thesis-FedFranz” — 2021/2/4 — 11:30 — page iii — #3

To my family and friends.

iii

“thesis-FedFranz” — 2021/2/4 — 11:30 — page iv — #4

“thesis-FedFranz” — 2021/2/4 — 11:30 — page v — #5

Thanks
I would like to express my immense gratitude to Vanesa Daza for her valuable

advise. Her constant support and optimism have been of great help for overcoming
the difficult moments of my doctoral adventure. Special thanks also to Roberto
Di Pietro and Flavio Lombardi for initiating me to research and giving me the
opportunity of doing my PhD in Barcelona.

I would also like to thank Lydia, Montse, and all the people from the secretary
for helping me fight the bureaucratic machine with professionalism and a touch of
good mood.

A big thanks to all my friends and colleagues, who made this journey more
pleasant and entertaining. They are the real achievement of my career. A special
mention for Maria, Olga, and Cecilia who added a sparkle of joy and happiness to
the working environment, helping make a community out of our department.

Special thanks to all the people of room 55.210, both past and new, who kept
me good company during all these years. In particular, I want to thank Pablo,
Geordie, Federico, Javi, Zaira, Rasoul, Xavi, Arantxa, Alex, Conor, Sergi and
Marta, who have been more like a family than simple colleagues.

A loving thought for Zaira, who with her lively friendship and tender affection
won over my hearth and ended up being my wonderful companion of life.

Lastly, I want to give thanks to my family, who made me what I am today, and
in special way to my caring mother, who gave me all I needed and taught me the
value of knowledge and critical thinking.

v

“thesis-FedFranz” — 2021/2/4 — 11:30 — page vi — #6

“thesis-FedFranz” — 2021/2/4 — 11:30 — page vii — #7

Abstract

During the last decade, cryptocurrencies have revolutionized the financial indus-
try. In these systems, participants communicate by means of a peer-to-peer proto-
col. Today, many of such protocols take Bitcoin as a reference model, making its
study particularly important.

This thesis explores some important aspects of the Bitcoin network, related
to its security and efficiency, that received limited coverage in research. Firstly,
properties of the Testnet network are explored, showing they can be exploited
for malicious activities. Secondly, security aspects of an open network topology
are studied, arguing against the current obfuscated approach, and designing a vi-
able monitoring system. Then, unreachable nodes are considered, showing their
relevance in the network, and proposing changes to the protocol that improve ef-
ficiency and security. Finally, a new transaction relay protocol is proposed, which
improves anonymity.

The results obtained show that the aspects we analyze are not sufficiently cov-
ered in research and deserve more deep investigation.

Resum

En l’última decada, les criptomonedes han revolucionat el món de les finançes
globals. En aquestes xarxes, els participants comuniquen a través de un protocol
peer-to-peer. Molts d’aquests protocols fan servir Bitcoin com punt de referencia,
fent el seu estudi especialment important.

Aquesta tesi explora alguns aspectes rellevants per la seguretat i eficiencia de
la xarxa Bitcoin que han estat poc endreçats a la recerca. En primer lloc, analitzem
la xarxa Testnet, mostrant com les seves proprietats poden ser explotades per acti-
vitats malicioses. A continuació, estudiem la seguretat de la topologia de la xarxa
Bitcoin, promovent la seva accessibilitat i dissenyant un sistema de monitoratge.
Finalment, mostrem la importància dels nodes unreachable a la xarxa i dissenyem
nous protocols de propagació per protegir l’anonimitat de les transaccions.

Els resultats obtinguts demonstren que els aspectes analitzats no reben sufici-
ent atenció a la recerca i mereixen ser investigats més a fons.

vii

“thesis-FedFranz” — 2021/2/4 — 11:30 — page viii — #8

“thesis-FedFranz” — 2021/2/4 — 11:30 — page ix — #9

Contents

List of figures xiii

List of tables xv

1 INTRODUCTION 1
1.1 Contributions . 3
1.2 Thesis Outline . 5

2 PRELIMINARIES 7
2.1 Blockchain . 7

2.1.1 Data Structures . 8
2.1.2 Consensus and Mining 8
2.1.3 Properties . 9
2.1.4 Types . 10
2.1.5 Uses . 10

2.2 Bitcoin . 10
2.2.1 Application Layer . 11
2.2.2 Consensus Layer . 15
2.2.3 Network Layer . 19

2.3 The Bitcoin P2P Network Protocol 21
2.3.1 Peer Management . 21
2.3.2 Data Propagation . 25

3 EFFICIENCY AND SECURITY OF THE BITCOIN NETWORK 27
3.1 Network Structure . 27
3.2 Data Propagation . 28

3.2.1 The Scalability Problem 28
3.3 Security of the Bitcoin Network 29

3.3.1 Blockchain-level Attacks 30
3.3.2 Network-level Attacks 32

ix

“thesis-FedFranz” — 2021/2/4 — 11:30 — page x — #10

4 TESTNET: MORE THAN A TEST NETWORK 41
4.1 Leveraging Testnet for Bidirectional Botnet

Command and Control Systems 41
4.2 Background . 42

4.2.1 Botnets and C&C . 42
4.2.2 Testnet . 43

4.3 Related Work . 44
4.4 Our C&C Protocol . 46

4.4.1 Communication . 46
4.4.2 Bot Registration . 48
4.4.3 Commands and Responses 49

4.5 Analysis . 50
4.5.1 Costs . 50
4.5.2 Architecture . 51
4.5.3 Security . 52

4.6 Experimental Results . 54
4.6.1 Non-standard transactions and fees 54
4.6.2 Proof of Concept . 54

5 NETWORK TOPOLOGY:
OPPORTUNITIES BEYOND THE THREAT 57
5.1 Active Topology Monitoring for the Bitcoin Peer-to-Peer Network 57
5.2 On the Open Topology . 58

5.2.1 Threats of Open Topology 59
5.2.2 Benefits of Open Topology 61

5.3 Related Work . 62
5.4 The AToM Protocol . 62

5.4.1 Overview . 62
5.4.2 Design . 64

5.5 Analysis . 69
5.5.1 Correctness . 70
5.5.2 Security . 70
5.5.3 Accuracy . 71
5.5.4 Overhead . 72

5.6 Experimental Results . 73
5.6.1 Proof of Concept . 73
5.6.2 Evaluation . 73

x

“thesis-FedFranz” — 2021/2/4 — 11:30 — page xi — #11

6 UNREACHABLE NODES:
THE INVISIBLE BEDROCK OF BLOCKCHAIN NETWORKS 75
6.1 Improving Bitcoin Transaction Propagation by Leveraging Un-

reachable Nodes . 75
6.2 Unreachable Nodes in the Bitcoin Network 76
6.3 Background . 77

6.3.1 NAT and P2P networks 78
6.3.2 Transaction Propagation and Anonymity 78

6.4 Related Work . 79
6.5 Modifications to the Protocol . 79

6.5.1 Network Changes . 80
6.6 The ReAP Protocol . 81

6.6.1 Network and Adversary Model 81
6.6.2 Design . 82

6.7 Analysis of the ReAP Protocol 85

7 TRANSACTION PROPAGATION:
RAISING THE BAR OF BITCOIN ANONYMITY 87
7.1 Anonymous Transaction Propagation for the Bitcoin P2P Network 88
7.2 The Clover protocol . 88

7.2.1 Adversary Model . 88
7.2.2 Protocol Overview . 89
7.2.3 Protocol Design . 90

7.3 Analysis . 92
7.3.1 Security . 93
7.3.2 Efficiency . 97
7.3.3 Comparison to Dandelion 97

7.4 Experimental Results . 98
7.4.1 Proof of Concept . 98
7.4.2 Simulation Results . 99

8 CONCLUSIONS AND FUTURE WORK 101
8.1 Future Work . 104
8.2 Final Remarks . 105

xi

“thesis-FedFranz” — 2021/2/4 — 11:30 — page xii — #12

“thesis-FedFranz” — 2021/2/4 — 11:30 — page xiii — #13

List of Figures

2.1 Blockchain Structure . 8
2.2 Relationship between private key, public key, and Bitcoin address 12
2.3 Bitcoin Transaction Structure . 14
2.4 Bitcoin Block Structure . 16
2.5 Bitcoin: Connection establishment 22
2.6 Bitcoin: 3-step transaction transmission 26

5.1 AToM: Scenario . 63
5.2 AToM: Proof of Connection overview 64
5.3 AToM accuracy . 74

6.1 View of the Bitcoin Network . 82

7.1 Clover relay protocol . 90
7.2 Deanonymization precision against Clover 100

xiii

“thesis-FedFranz” — 2021/2/4 — 11:30 — page xiv — #14

“thesis-FedFranz” — 2021/2/4 — 11:30 — page xv — #15

List of Tables

4.1 Testnet Botnet: transaction relay fees 51

xv

“thesis-FedFranz” — 2021/2/4 — 11:30 — page xvi — #16

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 1 — #17

Chapter 1

INTRODUCTION

Over the last decade we entered the fourth industrial revolution (a.k.a. Industry
4.0), with major innovations like cloud computing, big data, machine learning,
AI, 5G, IoT, and blockchain [1]. All these technologies are converging and mix-
ing into a global, interconnected network. At the same time, the number of devices
connected to the Internet is also growing exponentially [2]. Not surprisingly, aca-
demic and industrial research is playing an essential role in this new context [3],
and is attracting a constantly increasing amount of resources [4].

While the potential benefits of Industry 4.0 are immense, so are the risks con-
nected to it. As noted in [5], new technologies have to face both traditional issues
and new, unique security and privacy challenges. Properly addressing these chal-
lenges is of paramount importance for achieving the true potential of this revolu-
tion.

This thesis answers to this tacit call to arms for cybersecurity research by fo-
cusing on one of the biggest innovations of this century: blockchain. Thanks
to its capacity of decentralizing trust and improving asset management, block-
chain is being applied to a variety of use cases, including cryptocurrency, health-
care, advertising, insurance, copyright protection, energy, and governance [6]. In
an effort to respond to different functional requirements, numerous variations of
blockchain emerged. Nevertheless, all implementations share a common element
at their core: an interconnected network of devices. More specifically, most block-
chains work on top a peer-to-peer (P2P) network.

P2P networks are not new, and have been extensively addressed in research
[7, 8, 9]. However, the characteristics of blockchain networks are fundamentally
different from classic P2P implementations [10]. As such, new, specialized re-
search is needed to shed light on the fundamental properties these networks have,
so as to enable the design of adequate security measures. With this thesis we give
our contribution to the study of blockchain networks by addressing some of the
topics, related the security and efficiency of the Bitcoin protocol, that received

1

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 2 — #18

little attention in the literature.
Published in 2008 under the pseudonym of Satoshi Nakamoto, Bitcoin [11]

is a digital currency (or cryptocurrency) and the first example of blockchain net-
work. In the original white paper, this cryptocurrency is described as a pure P2P
system, which allows parties to send money each other directly. As the most inno-
vative feature, Bitcoin solves the problem of double-spending (i.e., the use of the
same coins for two different transactions) without the need of trusted third parties.
In particular, the system leverages a distributed record of transactions (the ledger),
stored as a chain of blocks (or blockchain), which can be extended, but not mod-
ified. Alterations to the blockchain are prevented by requiring a proof of work
in each block. This system allows to secure the ledger as long as the majority of
computing power is held by honest parties.

The first Bitcoin implementation [12] appeared in 2009, and rapidly gained
worldwide popularity [13], attracting massive amounts of capital [14]. Since then,
thousands of other cryptocurrencies, have appeared [15], sharing similar goals
and characteristics. Many of these alternative systems are directly derived from
Bitcoin by tweaking its source code to meet different features or criteria. However,
in most cases, the underlying P2P protocol has been adopted with little or no
modification [10]. In other words, a vast number of cryptocurrencies implement
the same network layer as Bitcoin.

This fact is of utmost importance, as numerous studies have highlighted how
issues in this layer can affect the security and efficiency of the whole system [16,
17, 18, 19]. In particular, several attacks are possible at this level, that ultimately
allow adversaries to subvert the protocol by performing denial-of-service, double-
spending or even to tamper with the blockchain. Furthermore, these attacks be
used to detect the source of a transaction in the network, thus leading to user
deanonymization.

While tackling these problems per se is not trivial, this task is made even
harder by the lack of solid theoretical background. In fact, as previously men-
tioned, these networks are fundamentally different from other P2P networks, due
to the differences in their goal and requirements. As a result, a twofold limitation
is present, with respect to the related literature. Firstly, state-of-the-art research
on P2P systems does not cover some topics that are relevant to cryptocurrency
networks. Secondly, previous results for P2P networks might not be valid in this
new context.

In this thesis, we try to narrow the gap by exploring aspects of the Bitcoin net-
work that have little or no coverage in previous research. We particularly focus on
security concerns at different levels of the protocol. Although specific to Bitcoin,
most results obtained in this work can be generalized for all the blockchains that
adopt a similar network protocol. Therefore, our results can serve as a basis for
further discussion and, hopefully, lead to a general improvement of the efficiency

2

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 3 — #19

and security of blockchain networks.

1.1 Contributions
We tackle different concerns of the Bitcoin network layer, such as the Testnet
network, the openness of the Bitcoin network topology, the role of unreachable
nodes, and the anonymity of transaction propagation. In the following we review
our contributions for each of these topics.

TESTNET The first topic addressed by our work is the Testnet network. Testnet
is a network used by Bitcoin developers to test new features or software. Despite,
being designed as a simple testing environment, Testnet runs the same protocol
as the main Bitcoin network, with small, but relevant, differences that makes it a
unique blockchain.

We show that Testnet can have its own, unique, and potentially malicious, use
cases, by designing a communication protocol for a botnet. Our results demon-
strate that Testnet deserves more careful attention by developers and researchers.

More specifically, we make the following contributions:

• We analyze the characteristics of Testnet as a blockchain, stressing its dif-
ferences from Bitcoin Mainnet;

• We show how Testnet can be misused for botnet communications and what
advantages it provides;

• We design and implement a practical botnet Command and Control proto-
col that allows the registration and management of infected devices to the
botnet, and enables bidirectional, encrypted communication with high re-
siliency and virtually no cost.

The above contributions led to the following conference publication:

F. Franzoni, I. Abellan, V. Daza. Leveraging Bitcoin Testnet for Bidi-
rectional Botnet Command and Control Systems. In: International
Conference on Financial Cryptography and Data Security, 2020 [20].

NETWORK TOPOLOGY The second topic we study in this thesis is the network
topology. In particular we look at the security concerns related to its knowledge.
In fact, the current Bitcoin protocol implements measures to hinder obtaining this
information. However, no solid proof has been given to support this approach.
Additionally, the obfuscation of the topology hinders accurate measurements of
the network, thus preventing to detect structural problems that affect efficiency
and security [21].

3

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 4 — #20

We argue that the risks of making the topology public are limited, while its
knowledge has a potentially beneficial impact on the maintenance of the network.
Although several inferring techniques have been proposed in the past, no reliable
system has ever been proposed to obtain Bitcoin topology information in a reliable
way. We then propose a viable system that allows a set of semi-trusted monitors
to reliably infer the network topology and monitor changes over time.

More specifically, we make the following contributions:

• We empirically review the security issues, as found in research, that are
related to the knowledge of network topology;

• We highlight the potential benefits of a publicly-discoverable topology and
mention favorable opinions in the literature;

• We design AToM, a viable protocol for inferring and continuously monitor-
ing the topology of the Bitcoin network;

• We theoretically analyze the proposed protocol, and evaluate its effective-
ness through experiments.

The above contributions led to the following manuscript, currently submitted and
under review:

F. Franzoni, X. Salleras, V. Daza. AToM: Active Topology Monitor-
ing for the Bitcoin P2P Network.

UNREACHABLE NODES Another subject we address in this thesis is that of un-
reachable nodes. These are nodes that cannot accept incoming connections, typi-
cally due to being behind NAT or firewall. Because of the inability of monitoring
tools to reach all of them, the vast majority of research studies in the literature do
not take them into account. However, it has been shown that they count up to 90%
of the whole network [22].

We stress the relevance of unreachable nodes for the network, and propose
targeted protocol changes to improve efficiency and security. Additionally, we de-
sign a transaction propagation protocol that explicitly leverage unreachable nodes
to protect user anonymity.

In particular, we make the following contributions:

• We study the importance of unreachable nodes in the Bitcoin network;
• We show their role is underestimated and overlooked in research;
• We propose simple changes to the protocol that could improve the efficiency

of the network;
• We highlight how unreachable nodes are inherently protected from certain

attacks;
• We design and analyze ReAP, a transaction relay protocol that leverage this

property to protect anonymity.

4

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 5 — #21

The above contributions led to the following conference publication:

F. Franzoni, V. Daza. Improving Bitcoin Transaction Propagation by
Leveraging Unreachable Nodes. In: 3rd IEEE International Confer-
ence on Blockchain, 2020 [23].

TRANSACTION PROPAGATION The last topic we cover in this thesis is the
anonymity of transaction propagation. Recent studies [24] showed that gossip
propagation protocols leak information about the source of transactions. To solve
this issue, a new protocol has been proposed [25] that breaks the symmetry of the
initial broadcast to hinder deanonymization. To date, this is the only example of
such an alternative protocol.

In this thesis, we show that alternative designs are possible. An example of
this is the ReAP protocol, mentioned above. We then generalize and improve
this protocol while formally and experimentally proving its effectiveness against
deanonymization attacks.

In particular, we make the following contributions:

• We propose a new, improved version of the ReaP protocol, called Clover
which simplifies the design while improving anonymity;

• We formally analyze the new protocol against an eavesdropper adversary;
• We provide a proof-of-concept implementation and evaluate its performance

in a simulated environment;
• We compare it to the Diffusion protocol and show it reduces the deanonym-

ization precision of the adversary up to ten times.

The above contributions led to the following manuscript, currently submitted and
under review:

F. Franzoni, V. Daza. Clover: an Anonymous Transaction Relay Pro-
tocol for the Bitcoin P2P Network.

1.2 Thesis Outline
In Chapter 2, we explain the building blocks of this work: the blockchain and the
Bitcoin protocol. In Chapter 3, we highlight some relevant aspects on the effi-
ciency of the Bitcoin network, and we review state-of-the-art research on Bitcoin
network security.

Chapter 4 explores important features of Bitcoin Testnet and show how it can
be used to implement a powerful and resilient communication channel for botnets.
Chapter 5 tackles the problem of topology inference and proposes a monitoring

5

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 6 — #22

system for the Bitcoin network. Chapter 6 highlight the importance of unreach-
able nodes and proposes targeted changes to the network protocol aimed at im-
proving efficiency and security. Chapter 7 describes and evaluate Clover, a new
propagation protocol that protects transaction anonymity.

Finally, in Chapter 8, we indicate possible paths for future work and conclude.

6

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 7 — #23

Chapter 2

PRELIMINARIES

In this chapter, we give a comprehensive overview over Bitcoin and its main se-
curity concerns. We first provide a brief introduction to blockchain technologies.
Then we explain the details of the Bitcoin protocol, with particular emphasis on
the underlying P2P network and its communication protocol. Finally we review
the most relevant security issues and known attacks.

2.1 Blockchain

A blockchain [26, 27] is a continuously-growing distributed database, or ledger,
containing a list of transactions, and shared among nodes of a peer-to-peer net-
work. Transactions and ledger are validated by all nodes independently, without
using any central authority. In particular, nodes agree on the content of the ledger
by running a consensus protocol, and use such content to validate new transac-
tions.

Transactions represent changes in the global status of the system, like the
change of ownership of an asset or a modification to some variable. When a
new transaction is created, it is broadcast to all nodes in the network.

To be added to the ledger, transactions have to be validated and included in a
new block to append to the blockchain. This operation is done by special nodes
called validators, or miners. Similarly to transactions, when new blocks are cre-
ated, they are broadcast to all nodes in the network.

Each node stores a local copy of the ledger, and updates it with new blocks
received from the network, according to the protocol rules.

7

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 8 — #24

2.1.1 Data Structures

Although the content of transactions and blocks strongly depends on the protocol,
some characteristics are common to all blockchains.

TRANSACTIONS Transactions are the basic data unit of a blockchain. A trans-
action usually contains a timestamp and the digital signature of the user that cre-
ated it. This signature guarantees the authenticity of a transaction and allows other
nodes to verify the validity of the operation. Moreover, it ensures non-repudiation,
meaning that the creator cannot deny being the author of the transaction.

LEDGER Technically speaking, the blockchain is a linked list of blocks, each
containing a list of transaction records. Each block also contains a timestamp and
the hash of the previous block in the chain. This hash field represents the link of
the block to its parent. Each block is linked to exactly one parent block. The first
block in a blockchain, known as the genesis block, is created when bootstrapping
the network, and has no parent block. A depiction of the blockchain data structure
is shown in Figure 2.1.

Hash of block 0

Timestamp Nonce

TX 1 TX 2 TX n…

Hash of block i-1

Timestamp Nonce

TX 1 TX 2 TX n…

Hash of block i

Timestamp Nonce

TX 1 TX 2 TX n…

Hash of block i+1

Timestamp Nonce

TX 1 TX 2 TX n…

…

Genesis block Block i Block i+1 Block i+2

Figure 2.1: Blockchain Structure [28]

2.1.2 Consensus and Mining

In blockchain networks, blocks are distributed over the network on a best-effort
basis [11]. This means that propagation delays and packet loss can occur [29]. In
particular, each message can reach nodes at different times and in variable order
[30]. Additionally, as in other distributed systems, network communications can
be interrupted, and nodes can crash or behave maliciously.

Due to these facts, the local copies of the ledger, held by different nodes can
be inconsistent with each other [16]. To solve this issue, a fault-tolerant consensus
protocol [31] is used, which allows nodes to agree on a common, unique, version
of the ledger. Specifically, nodes agree on which blocks are included in the ledger
and in which order.

8

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 9 — #25

FORKS Although each block has only one parent, it can occur that multiple
blocks are created, which are linked to the same parent. When this happens, par-
allel chain branches, known as forks, can grow.

Forks can be accidental or intentional. Accidental forks happen when two min-
ers create a block approximately at the same time [32]. Since only one branch can
be valid, this type of fork lasts for a limited period of time, and is resolved when
the network eventually agrees on one of the two branches. This phenomenon is
called eventual consistency. Blocks in the discarded branch are known as orphan
blocks, and are not considered part of the ledger.

Intentional forks correspond to changes in the protocol and can be distin-
guished in hard forks and soft forks [33]. Hard forks occur when, after a protocol
update, a part of the network follows a different set of rules than the rest of the net-
work. In this case, the two chains can keep evolving independently, thus creating
a new, separate, blockchain.

Soft forks occur when a protocol update is forward-compatible, meaning that
blocks created under the new rules are also considered valid under the old rules.
This term was introduced to indicate protocol changes that do not force obsolete
nodes out of consensus. However, no real fork is generated in the blockchain.

2.1.3 Properties

Blockchain systems allow decentralized storage and verification of virtually any
kind of transaction. Additionally, its design provides a number of useful proper-
ties, the most relevant of which are immutability and auditability [28].

Records in a blockchain are considered to be immutable, or more precisely,
hard to modify [34]. In fact, since each block contains the hash of the previous
one, it is not possible to alter or delete records in a block without having to change
all subsequent blocks. In particular, the more the blocks added after some record,
the harder this is to modify. This property is common to all blockchains, with very
few exceptions [35], and it is considered to be a cornerstone characteristic of such
systems.

Public verifiability, or auditability, is another fundamental property of block-
chains. In fact, all users in a blockchain network have access to the ledger, and
can verify the authenticity and validity of each record, since transactions are times-
tamped and digital signed. Nonetheless, the level of transparency and privacy can
vary among different systems [36].

Depending on the protocol, properties like decentralization, openness, trans-
parency, anonymity, and traceability, can be fine-tuned to adapt to specific use
cases [37].

9

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 10 — #26

2.1.4 Types
At a macroscopic level, blockchains can be divided into three categories: permis-
sionless, permissioned, and private blockchains [36].

Permissionless, or public, blockchains are completely open and distributed.
Everyone is allowed to freely join and leave the network at any time. Similarly,
any node can validate and maintain the ledger by running the consensus protocol.
Being so, these systems operate under unknown and untrusted nodes, and need to
be resistant to misbehaving or malicious nodes. Bitcoin and Ethereum [38] are
the most known example of permissionless blockchain.

Permissioned blockchains are a hybrid between public and private. They al-
low to incorporate many parties, but the main nodes are selected at the beginning.
This kind of blockchain is suitable for semi-closed systems, usually consisting
of a consortium of enterprises. Joining the network is usually conditioned by
access-control. Nonetheless, given their relatively openness, these systems nor-
mally have some degree of fault tolerance. Hyperledger Fabric [39] and Ripple
[40] are examples of permissioned blockchains.

Private blockchains are closed, trusted environments, where nodes need to
be authorized by a central authority in order to join the network. Similarly, the
ledger is validated by a predefined group of nodes. These kind blockchains have
very low decentralization and no transparency, but are generally more efficient
and more secure.

2.1.5 Uses
Being originally developed for money transfer, blockchain is still widely used for
cryptocurrencies, like Bitcoin [41], or Monero [42].

Nevertheless, over time, blockchain evolved into a general-purpose framework
which can be applied to a variety of contexts [43], such as Smart Contracts and
Decentralized Applications, asset trading, supply-chain management, healthcare,
electronic voting, and countless more.

2.2 Bitcoin

Bitcoin is the first and most widespread cryptocurrency [44]. It is a permissionless
blockchain, that is, users can freely join the network by using any compatible
software running the Bitcoin protocol [45].

Although some documentation can be found online [46], the full Bitcoin pro-
tocol is only described by the source code of the reference client implementation,
Bitcoin Core [47]. In particular, it is worth noting that many details of the proto-

10

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 11 — #27

col can only be deducted by studying its sources, greatly hindering its study and
analysis.

In this section, we give an outline of the Bitcoin protocol, as described by both
online sources and the reference implementation. Following the example in [48],
we divide the protocol in three layers: application, consensus, and network. Note
however that no such separation is defined in the protocol itself, and many of the
aspects described can be transversal to these three layers.

2.2.1 Application Layer

Bitcoin allows users to send and receive coins, called bitcoins (BTC), directly to
each other. Transfers are made by means of transactions, typically using a wallet
software.

Ownership of bitcoins is established by means of addresses and keys. Each
user can create one or more addresses, each controlled by a unique key, and use
them to receive coins. When coins are sent to a specific address, they can only be
spent by using the corresponding key. In particular, this key is used to digitally
sign the transaction spending such coins.

To ease the management, users make use of wallet software, which store keys
and automate the creation of transactions. In the following we explain in detail
how this works.

2.2.1.1 Addresses and Keys

To create an address, a pair of asymmetric cryptographic keys is generated, which
are stored by the wallet software. The private key is used to digitally sign trans-
actions, while the public key is used to generate the corresponding address. More
specifically, the address is created by passing the public key through a crypto-
graphic hash function. Bitcoin addresses are strings of numbers and letters, start-
ing with the digit ”1”, like 1J7mdg5rbQyUHENY dx39WVWK7fsLpEoXZy.

KEY GENERATION To create the cryptographic key pair, first the private part is
generated at random. Then, the public part is calculated from the private key using
elliptic curve scalar multiplication. Elliptic curve is an asymmetric cryptographic
scheme based on the discrete logarithm problem, expressed by operations on the
points of an elliptic curve. To obtain the public key, the private key is multiplied
with a constant point known as generator, which is publicly known. The relation-
ship between private key, public key, and Bitcoin address is shown in Figure 2.2.
Note that both the elliptic curve scalar multiplication and the cryptographic hash
are one-way functions, which means it is computationally infeasible to calculate

11

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 12 — #28

from the output the input that generated it. This makes it virtually impossible to
find the private key from a Bitcoin address.

Figure 2.2: Relationship between private key, public key, and Bitcoin address [33]

The generation of the keys is completely independent from the Bitcoin proto-
col, and can be done by using any compatible tool, without any knowledge of the
blockchain or existing addresses. Typically, the wallet software is used for this
purpose.

PAY-TO-SCRIPT HASH (P2SH) In 2012, a new type of address, known as pay-
to-script hash (P2SH), was introduced to expand the functionality of the address
field. Differently from traditional Bitcoin addresses, P2SH addresses begin with
the digit ”3”, and are generated from a transaction script, instead of a private key.
Such a script defines who can spend the coins sent to the corresponding address. In
contrast to P2SH, traditional addresses are also known as pay-to-public-key-hash
(P2PKH).

The most common use of P2SH is the multi-signature address, which requires
multiple digital signatures in the transaction in order to spend some coins. Specif-
ically, the script is designed to require M signatures out of N keys (this scheme
is known as M-of-N multi-sig).

2.2.1.2 Transactions

Transactions are the basic operation in Bitcoin, describing coin transfers among
users.

LIFECYCLE When a user wants to make a transfer, it creates a transaction indi-
cating what coins he wants to spend and the address of the recipient user. He then
digitally sign the transaction (to prove he actually owns them) and sends it to its
peers in the network. Each node validates and propagates the transaction until it
reaches all nodes in the network. Eventually, it is verified by some validator node,
known as miner, and included in a new block of the blockchain.

12

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 13 — #29

CONFIRMATIONS Once included in a block, a transaction is said to be con-
firmed, meaning that it has been considered valid by the network and added to the
ledger. Each new block appended on top of such a block implicitly accept it as
valid, thus adding an extra confirmation to the transaction. The higher the number
of confirmations, the harder it is for a transaction to be reverted. In other words,
once the transaction reaches an enough number of confirmations, it is considered
to be permanently part of the ledger. In Bitcoin, 6 confirmations are typically
considered the minimum number to safely consider a transaction as accepted.

SPENDING A TRANSACTION Technically speaking, a transaction does not send
bitcoins. Instead, it locks them with the address (i.e., the public key) of the recip-
ient, making them spendable only by using the corresponding private key.

As a consequence, to spend some coins, they first have to be unlocked. This
is done by adding a digital signature, which proves the knowledge of the private
key, and hence the right to spend these coins.

STRUCTURE The transaction data structure contains all the necessary data to
unlock some funds and lock them with a new public key.

In particular, it lists one or more inputs and one or more outputs. Each input
consists of a previous (unspent) transaction output and the digital signature to
unlock it. On the contrary, each output consists of an amount value and a locking
script the Bitcoin address of the recipient.

A depiction of the Bitcoin transaction data structure is shown in Figure 2.3.
Transferred amounts are indicated in satoshis. The satoshi (sat) is the smallest
fraction of a Bitcoin that can be spent, and corresponds to 0.00000001 BTC.

It is worth noting that transactions are uniquely identified by their hash.

VALIDATION In order to be valid, transactions must meet three conditions:

1. The unlocking script of each input must return true (i.e., the digital signature
is valid);

2. The sum of the values of the outputs must be equal or smaller than the sum
of the values of the inputs;

3. All inputs have to correspond to unspent outputs of previously accepted
transactions, also known as Unspent Transaction Outputs (UTXOs).

Condition 3 allows to determine, in any moment, the set of all spendable outputs,
which is known as UTXO Set.

Bitcoin nodes verify transaction inputs by combining their unlocking script
with the locking script of the corresponding UTXO. The resulting script is then

13

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 14 — #30

Figure 2.3: Bitcoin Transaction Structure [49]

executed during the verification process. If the execution raises errors or returns a
non-true result, the transaction is considered invalid and rejected.

CHANGE OUTPUTS AND FEES Given the fact that UTXOs can only be spent
once, they are an indivisible unit. In other words, UTXOs are like banknotes: they
can only be spent entirely.

If only a fraction of an UTXO has to be transferred, a so-called change output
can be included in the transaction, which transfers the remaining coins back to
the sender. To that purpose, an existing address can be used or a new one can
be created. For privacy reasons, Bitcoin wallets typically generate, if needed, a
change address for each transaction.

Note that, given the validation rules, it is always possible to send an amount
which is smaller than the sum of the inputs. However, the difference between the
input amount and the output amount is considered to be a fee for the miner that
includes the transaction to the blockchain (see Section 2.2.2.2). Consequently, if
no change output is included, the whole remainder will be given to the miner. As
such, a typical Bitcoin transaction will include a change output that correspond to
the remainder of the transferred amount, minus the fee the user is willing to pay.

DUST OUTPUTS When including transactions to a new block, miners tend to
give priority to those paying higher fees, as this means more profit for them. For

14

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 15 — #31

this reason, although fees are not mandatory by protocol, they are usually included
in every transaction. In fact, most nodes will refuse to propagate transactions that
do not include a high enough fee (or no fee at all).

In particular, a minimum fee is required by most nodes to accept and propagate
a transaction, which is equal to 546 satoshis [50]. This amount is calculated as the
fee required to spend a basic transaction with one input and one output.

As a consequence, outputs that are less than 546 are considered as uneconomic
dust, because they are too small to be spent in a following transaction. Dust
outputs are not considered as valid in Bitcoin and thus transactions including them
are rejected by the network.

ORPHAN TRANSACTIONS As described above, each transaction input corre-
sponds to an output in a previous transaction. In particular, each transaction is vir-
tually linked to (at least) a parent transaction and a child transaction, thus forming
a chain.

Nonetheless, given the asynchronous nature of the network, it is sometimes
possible that a child transaction is received before its parent, thus impeding its
validation. Such a transaction is known as orphan transaction.

Instead of being rejected, orphan transactions are collected by nodes and vali-
dated as soon as their parents are received.

OP RETURN Since 2014, it is possible to embed a small amount of data in-
side a transaction, using the OP RETURN opcode [51]. This possibility was in-
troduced to discourage other wasteful methods of embedding data, such as using
non-existing transaction output addresses. The new opcode allows adding a non-
spendable output, which carries up to 80 bytes of arbitrary data. OP RETURN
is often used to implement asset exchange protocols on top of Bitcoin or to add
valuable data in the blockchain [52].

2.2.2 Consensus Layer
Nodes in the Bitcoin network implement the Proof-of-Work (PoW) consensus pro-
tocol to agree on a common version of the blockain. In this section we first de-
scribe the block data structure used in Bitcoin and then explain PoW consensu.

2.2.2.1 Blockchain

The Bitcoin blockchain structure is not very different to the one described in Sec-
tion 2.1, containing the creation timestamp and the hash of the parent block. Ad-
ditionally, the Bitcoin block has two important field:

15

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 16 — #32

Block 11

Prev_Hash

Tx_Root

Timestamp

Nonce

Block 10

Prev_Hash

Tx_Root

Timestamp

Nonce

Block 12

Prev_Hash

Tx_Root

Timestamp

Nonce

Hash01 Hash23

Hash0 Hash1 Hash2 Hash3

Tx0 Tx1 Tx2 Tx3

Figure 2.4: Bitcoin Block Structure [54]

• The nonce: this field contains the solution to the PoW problem and it shows
the miner performed a certain amount of computation to create the block
(see Section 2.2.2.2);

• The Merkle root [53]: this is the root of a binary hash tree having as leaves
the transactions contained in the block, while inner nodes contain the hash
of their children. As the root of the tree depends on all leaves, this field is
used to efficiently summarize and verify all transactions in the block.

A depiction of the Bitcoin block structure, including the transactions Merkle
tree, is shown in Figure 2.4.

Similarly to transactions, blocks are uniquely identified by their hash. In par-
ticular the block identifier is obtained by hashing the block header (which contains
all data except transactions) twice using the SHA256 algorithm. Another way to
identify a block is by its position in the blockchain (where the Genesis block has
position 0). The Bitcoin blockchain is sometimes represented as a vertical stack,
resulting in the use of the term height to indicate the block number. Similarly, the
terms tip or top are used to indicate the most recently added block in the chain.

2.2.2.2 Mining and Consensus

In Bitcoin, the process of creating new blocks is known as mining. Mining has
a twofold effect: first, it creates new coins; second, it secure the ledger against
invalid transactions and double spending.

Bitcoin mining is based on proof-of-work (PoW): validator nodes, called min-
ers, dedicate their processing power to create new blocks in exchange of coins. In
turn, other nodes agree on the chain of blocks that required more computation to
be created. In the following, we describe in detail how this works.

16

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 17 — #33

PROOF-OF-WORK In order to create a block, miners have to solve a crypto-
graphic problem based on cryptographic hashing and whose solution depends on
the block contents. Specifically, a value, called nonce, has to be found, which,
hashed with the rest of the block, outputs a number smaller than a certain target.

Since a lower value implies a smaller number of possible solutions, the smaller
the target the harder it is to find a suitable nonce. Additionally, as cryptographic
hash functions are unpredictable (the only way to know the output for a given
input is to execute the hash function), miners can only find a solution by brute-
forcing. That is, all possible values have to be tried until the output is below the
target. As a result, creating a block necessarily requires a significant computing
effort. For this reason, the nonce value in a block is also called a proof of work.

DIFFICULTY Since the hash output has a fixed number of digits, the target value
is usually expressed as the minimum number of trailing zeroes that the nonce
must have. In fact, the more the number of trailing zeros, the lower the value; for
instance, 0002f is smaller than 00a62.

The target is automatically adjusted over time to create, on average, one block
every 10 minutes: if, over a time slot, this average is below 10 minutes, the target
the number of trailing zeroes is increased (i.e., mining is made harder); on the
contrary, if the average is over 10 minutes, this number is decreased (i.e., mining
is made easier).

COMPETITION AND REWARDS Miners compete against each other to create
new blocks. The competition makes it unpredictable to determine in advance
which miner will create the next block. This effectively randomizes block cre-
ation, securing the ledger from possible manipulations.

To incentivize competition, rewards are assigned to miners creating new blocks
(if accepted to the main chain). Two types of rewards exist. In first place, miners
are given the coins generated by the new block (this is known as block reward).
The number of new coins per block started as 50 BTC and is halved every 210.000
blocks, corresponding to approximately 4 years. This number is currently equal
to 6.25 BTC.

Besides the block reward, miners collect the fees of all transactions in the
block. As described in Section 2.2.1.2, although fees are not strictly mandatory,
a minimum amount is usually required to have transactions spread and mined.
Additionally, as block rewards decrease, fees become increasingly important. In
particular, when all coins will be issued (this is expected to happen after the year
2140), miners will only earn from transaction fees.

For this reason, when deciding which transactions to include in a block (this
number is limited by the maximum size of the block, which is currently 1 MB),

17

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 18 — #34

miners usually give priority to those paying higher fees. As a consequence, trans-
action fees are constantly increasing over time.

CONSENSUS Since miners compete to create blocks, it is possible that two
blocks of the same height (i.e., at the same position in the blockchain) are cre-
ated. This happens when two blocks are mined approximately at the same time.

When this happens, two competing blocks will be spread through the network,
generating a fork (see Section 2.1). To decide which chain to consider as the valid
one, Bitcoin nodes (including miners) always choose the longest one known.

The intuition behind this behavior is that a longer chain requires a bigger
amount of computation to be created. Assuming the majority of computing power
is controlled by honest miners, choosing the longest chain ensures that dishonest
miners cannot subvert the blockchain. In fact, to do so, a malicious actor should
be able to produce blocks faster than the others. As long as this is not true, the
honest chain will always be longer than the malicious one.

Note that, at the same time, each node in the network independently verifies all
transactions and all blocks, thus guaranteeing that only valid block can be added
to the blockchain.

ORPHAN BLOCKS Similarly to transactions, the asynchronous propagation of
blocks in the network can make some block reach a node before its parent. These
blocks, known as orphan blocks, are usually kept by nodes for some time, in case
their parent is received and they get to be part of the main chain.

MINING POOLS Due to the competitive nature of mining, processors used for
proof-of-work have become more and more specialized over time. As a result,
not every node is able to participate to the competition. Instead, only those using
specialized hardware can currently mine a block in Bitcoin.

Given the costs of the mining process and the low chances of winning the race
of producing a new block, working alone is hardly profitable. For this reason,
miners join their forces by creating pools.

In a mining pool, several miners work in parallel to solve the PoW for the next
block. If any of them succeeds and the produced block is added to the main chain,
the rewards are split among all miners in the pool. This mechanism allows to
amortize the risks, thus making profits more stable over time. Currently, joining a
pool is the only way for a miner to make its activity profitable.

18

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 19 — #35

2.2.3 Network Layer

The P2P network is the backbone of all communications in Bitcoin. Information
is propagated by all nodes and distributed to (almost) the entire network. This
includes transactions, blocks, and all auxiliary data used to build and maintain the
network itself. For this reason, the network layer is a core component of the whole
system.

2.2.3.1 Node Types

Nodes are usually distinguished between full nodes and lightweight nodes.
Full nodes store and maintain an up-to-date copy of the full blockchain. This

allows them to independently verify all transactions and blocks. By replicating
the whole ledger, these nodes contribute to the overall security of the network.
Full nodes may or may not implement wallet functionalities, depending on the
user needs.

Lightweight nodes implement wallet functionalities but do not maintain a full
copy of the blockchain. Instead, they download all block headers but not the
transactions included in each block. By not storing the full ledger, these nodes
can be run by resource-constrained devices, such as mobile phones. However,
lightweight nodes cannot independently verify transactions and rely on full nodes
to receive relevant parts of the blockchain. Transactions are verified using a
method called Simple Payment Verification (SPV). For this reason, they are also
known as SPV nodes. SPV allows to verify the presence of a transaction in a block
by checking the branch of the Merkle tree that contains it.

SPV nodes can thus verify a transaction of interest is being included in the
blockchain, and how many times it has been confirmed. Nonetheless, they can-
not ensure that a double-spending transaction of the same UTXO exists because
they have no access to the full ledger. Despite this vulnerability, SPV nodes are
secure enough for most practical purposes and provide the right balance between
practicality and security.

2.2.3.2 Node Connectivity

Independently from their functionality (Full or SPV), nodes can also be catego-
rized by their network-level characteristics. Currently, three types of network
addresses are supported in Bitcoin: IPv4, IPv6, and OnionCat [55].

Unsurprisingly, IPv4 nodes are by far the most common in the network, ac-
counting for roughly the 70% of the network [56]. In contrast, IPv6 nodes are
the least common, representing only the 10% of the network. OnionCat addresses
correspond to nodes using Tor [57] and account for the 20% of the network.

19

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 20 — #36

UNREACHABLE NODES A further categorization of Bitcoin nodes is based on
their reachability, that is, the ability of other nodes to open an outgoing connection
towards them. When a node is able to accept incoming connections it is said to be
reachable. Otherwise, it is called unreachable.

Although nodes can explicitly reject incoming connections, the most common
reason for the unreachability of a node is its position in the network. In particular,
if the node resides behind a firewall or in a NAT network [58], it is not possible
for other nodes to reach them directly.

For this reason, most unreachable nodes have IPv4 addresses. In fact, IPv6 is
specifically designed to avoid the use of NATs. At the same time, OnionCat nodes
run Tor hidden services [59], which makes them reachable even when behind NAT.

Differently from other nodes (see Section 2.3.1.1), unreachable nodes only
establish outgoing connections. This has an influence on different aspects, such
as network topology (Section 3.1) and data propagation.

Nevertheless, Bitcoin does not explicitly distinguish between reachable and
unreachable nodes at the protocol level. In Chapter 6, we show how unreachable
nodes impact the efficiency and security of the Bitcoin network, and, by explicitly
differentiating their behavior, we propose targeted improvements to the protocol.

2.2.3.3 Testnet

Bitcoin Testnet is a network for testing purposes. It is completely separate from
the main network (called Mainnet), thus making it an ideal environment for testing
new features and running experiments.

Unlike Mainet, Testnet coins (tBTC) have no value in the real world. In fact,
they can be obtained for free through online services, known as faucets.

Mining is also easier in Testnet, which makes the production of blocks much
faster. This helps experimenting with the blockchain more efficiently. Trans-
actions are also confirmed more quickly, making them quickly usable for new
experiments.

From a more technical perspective, Testnet runs the same protocol as Mainnet.
However, some restrictions are ignored to allow developers to test edge cases. In
particular, differently from Mainnet, non-standard transactions are allowed, thus
being relayed and mined by the network.

In Chapter 4, we will see these differences in detail and show their implications
from a security perspective. Our findings show Testnet is not just a simple test
network but a full-fledged blockchain with potential applications.

20

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 21 — #37

2.3 The Bitcoin P2P Network Protocol

In the previous section, we gave a general overview over the Bitcoin protocol. In
this section, we describe the network protocol in detail, which will be the focus
of this thesis. Given the complexity of the protocol, only the most relevant parts
are described. While most information has been taken from [60] and [33], many
implementation details are extracted from research papers and the source code of
Bitcoin Core [47].

PROTOCOL MESSAGES Several network messages are used in the Bitcoin net-
work protocol. We here give a reference list of those mentioned in this section.
Their use will be further explained later.

• version: exchanged to establish a new connection, it contains informa-
tion about the client, such as protocol version, services, IP addresses, and
so on;

• verack (version Ack): sent in response to the version;
• ping/pong: exchanged to keep the connection alive;
• getaddr (get address): it requests a list of known active peers;
• addr (address): it contains a list of IP:port tuples (maximum 1000 ad-

dresses), corresponding to known nodes. It can be unsolicited or sent in
response to getaddr;

• inv (inventory): announces known transactions or blocks, it contains a list
of hashes (not the actual data);

• getdata: requests the data of a single block or transaction by hash;
• tx (transaction): sent in response to getdata, it contains a single trans-

action data;
• block: sent in response to getdata, it contains a single block data;

2.3.1 Peer Management

Being a decentralized network, peer management is a crucial aspect of the Bitcoin
protocol.

2.3.1.1 Connection Management

The first thing a node has to do to join the network is finding other nodes. This
phase is knonw as bootstrapping and is especially tricky when running a node for
the first time, as no previous connections have been done.

21

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 22 — #38

Figure 2.5: Connection establishment [33]

PEER DISCOVERY Upon the first execution, the Bitcoin client tries different
methods to locate nodes in the network.

First, DNS seeds are used. These are standard DNS servers run by known
members of the Bitcoin community. When queried, these servers return a list of
IP addresses where a node is currently running. The servers usually run crawlers
to discover new nodes and maintain their lists updated. In case the DNS method
fails, the client program has an hard-coded list of addresses pointing to known
stable nodes.

When connecting to a node, more addresses are requested using a getaddr
message. When the client is closed, the list of known nodes is stored to a file.
Following executions will load addresses from this file to join the network.

ESTABLISHING CONNECTIONS Once the list of potential nodes has been loaded,
the client select 8 nodes at random and establishes a connection to each of them.

To establish a connection, a three-way handshake is done. Let us assume node
A wants to connect to node B. The following sequence of messages is exchanged:

1. Node A sends version to Node B;

2. Node B sends verack and version to Node B;

3. Node A sends verack to Node B.

The initial handshake is shown in Figure 2.5.

22

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 23 — #39

INBOUND AND OUTBOUND Although all connections are bidirectional, Bit-
coin distinguishes between outbound connections, which are established by a
node towards its peers and inbound connections, which are established by peers
towards the node. Similarly, peers called inbound and outbound, depending on
the type of connection.

Each node connects to 8 outbound peers and accepts up to 117 inbound con-
nections, for a total maximum of 125 peers. Note that while outbound connec-
tions are always established (i.e., all nodes establish 8 outgoing connections), the
number of inbound connections depend on the reachability of the node (see Sec-
tion 2.2.3.2) and its stability over time.

CONNECTION MANAGEMENT After establishing the connection, the nodes
send a ping/pong messages every 30 minutes to check if the peer is still active.
If no message is received over 90 minutes, the peer is considered inactive, and the
connection is closed.

Additionally, as an anti-DoS protection, nodes implement a reputation system
for their peers. Specifically, for each peer a penalty score is maintained. When
a malformed message is received from a peer, its reputation is decreased. If the
score reaches the value of 100, the peer is marked as misbehaving and banned for
24 hours.

Whenever an outbound connection is closed, a new one is established. The
candidate node is chosen among entries in the local database of known addresses
(see Section 2.3.1.2). Peers are selected using a pseudorandom procedure to give
the network more dynamism and a more randomized structure. In this procedure,
fresh peers (i.e., recently discovered addresses) are preferred over old ones. Gen-
erally speaking, the selection of new connection depends on how addresses are
stored and managed. In the next section, we explore this aspect in more detail.

2.3.1.2 Address Management

As previously mentioned, connection management and, hence, the network con-
nectivity are heavily dependent on how addresses are managed. In the following,
we describe how addresses are advertised through the network and how they are
managed by nodes.

ADDRESS PROPAGATION AND DISCOVERY When connecting to a peer for the
first time, most nodes advertise their own address with an addr message. At the
same time a list of known peer addresses is asked to the new peer, by sending a
getaddr message. The list is then received via addr messages and stored into
an address database (see Section 2.3.1.2). This database is used both to answer

23

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 24 — #40

getaddr requests and to establish new outbound connections (e.g., because a peer
disconnected).

When replying to a getaddr message, up to the 23% of the addresses stored
in the database is sent, but no more than 2500 addresses. On the other hand, when
an addr message is received, the node decides for each address whether to for-
ward it to its peers or not. This decision depends on the number of addresses
received and the their timestamp (addresses that are older than 10 minutes are not
forwarded). When forwarding, reachable addresses are forwarded to two neigh-
bors, while unreachable ones are forwarded to one neighbor only. In this context,
the reachability of an address is simply determined by its network family (see
Section 2.2.3.2). Specifically, a node considers an address reachable if they both
belong to the same family, and unreachable otherwise.

For each peer, the node remembers which addresses have been forwarded, so
as to avoid repeating the transmission. This history is kept for each connection
(i.e., per session, not per IP) and it is cleared every 24 hours.

THE ADDRESS DATABASE: TABLES AND BUCKETS The address database
store IP:port tuples together with a timestamp that helps to evaluate the freshness
of an address.

The database is divided into two tables: the tried table, which stores ad-
dresses to which the node has previously connected to, and the new table, which
contains addresses advertised by other peers (i.e., received via addr messages)
or received from DNS seeds.

Tables are further organized in groups, called buckets. The tried table con-
sists of 64 buckets, each containing up to 64 addresses. Each address is mapped to
a bucket by hashing it with a random number, and its subnet, or group, that is, the
/16 prefix for IPv4, /32 prefix for IPv6, or the first 4 bits for OnionCat addresses.
In particular, every address is mapped to a single bucket, and each group maps to
up to four buckets.

When a node connects to a new peer, its address is added to the tried table.
If the designated bucket is full, eviction is used: four random addresses from the
bucket are selected, and the oldest one is replaced with the new peer’s address.
The replaced address is moved to the new table.

The new table consists of 256 buckets, each containing up to 64 addresses.
The assignment of the bucket for each address depends on the both its group, as
defined for the tried table, and its source group, that is, the group of the IP
address of the peer or DNS seed from which the node learned the new address.
Each (group, source group) pair maps to a single bucket, while each group maps
to up to 32 buckets. If a bucket is full, then a terrible address is selected to be
replaced. An address is called terrible if: (1) its timestamp is more than 30 days

24

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 25 — #41

old or more than 10 minutes in the future, (2) has 3 consecutive failed connection
attempts. If no terrible addresses are in the bucket, then eviction is used, this time
discarding the replaced address. Note that the same address can be mapped to
different buckets is advertised by different peers.

The total number of addresses a Bitcoin peer can store is limited by 20480.

SELECTING NEW PEERS When a new outbound connections has to be estab-
lished, an address is selected from the database according to a probability function
that depends on the the number of current number of outbound peers and the ratio
between the size of the new table and the tried table. In particular, the new peer
is more likely to be selected from tried if there are few outgoing connections
and the tried table is large. Moreover, fresh addresses have more probability to
be selected.

2.3.2 Data Propagation

In Section 2.2.3, we mentioned how the distribution of information in the Bitcoin
network is essential for a correct functioning of the protocol. In this section, we
describe in detail how core data (transaction and blocks) is propagated through
the network.

Bitcoin uses a gossip-like protocol [61] where new data is spread through the
network by flooding nodes. In other words, as soon as a node receives a new
transaction or block, it transmits it to all its neighbors.

3-STEP TRANSMISSION To avoid transmitting the same data to a node that
already knows it, nodes use a 3-step process. First, the transaction or block is
announced by sending an inv message containing its hash. The receiver checks
whether the hash is known, and, if not, it requests the corresponding data with a
getdada message. Finally, the transaction or block data is transmitted using a
tx or block message, respectively. This process (for a transaction) is shown in
Figure 2.6.

TRANSACTIONS PROPAGATION PROTOCOL Earlier, we said that data is prop-
agated as soon as it is received. However, this is not the case for transactions,
whose actual transmission is randomized for security reasons (see Section 3.3.1.2).
In particular, nodes maintain a queue for each peer, containing the transactions to
be forwarded. A loop is then executed to periodically flush these queues (i.e., to
send all transactions that are in the queue). This step follows a specific protocol,
as described in the following.

25

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 26 — #42

Node A Node B

inv (h(txi))

getdata (h(txi))

tx (txi)

TIM
E

Figure 2.6: 3-step transaction transmission [33]

Until 2015, the Trickle protocol was used. In this protocol, at each loop exe-
cution a random node is selected, called trickle node and its queue is flushed.

Starting from 2015, Bitcoin switched to the Diffusion protocol. In this pro-
tocol, the queue for each node is flushed with an independent, exponential delay
based on a Poisson distribution [62].

Note that for similar security concerns, the same protocol is used for propa-
gating nodes addresses (see Section 2.3.1.2).

BLOCKCHAIN SYNCHRONIZATION When a node joins the network for the
first time or it rejoins it after leaving for some time, it will have its ledger out of
sync. To synchronize the ledger among peers, when a new connection is estab-
lished, the currently known tip of the blockchain is exchanged. The one with the
lower tip then sends a getblocks message, requesting all missing blocks, to
which the peer replies with an inv message containing the corresponding block
hashes. Finally, the node requests blocks data, one by one, using getdata mes-
sages.

This procedure is done at every connection so as to have all nodes synchro-
nized. Once synced, nodes will request and forward new blocks as they are an-
nounced by its peers.

26

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 27 — #43

Chapter 3

EFFICIENCY AND SECURITY OF
THE BITCOIN NETWORK

In this thesis, we aim at improving security and efficiency aspects of the Bitcoin
P2P network. In particular, we do it by taking a different look at some of the
components that have been poorly covered by state-of-the-art research. In this
chapter, we give review the most relevant studies concerning the Bitcoin network,
mentioning some of the shortcomings we address in our work.

3.1 Network Structure

The Bitcoin network is one of the largest in terms of number of nodes [63], count-
ing for a daily average of approximately 11.000 reachable nodes [56]. Its topology
has been extensively studied in research [16, 64, 65, 21]. These studies also show
the presence of a massive amount of unreachable nodes (see Section 2.2.3.2) in the
network, whose number is still unknown. The above-mentioned analyses hardly
give a precise account, since they do not distinguish between offline nodes and
nodes that are actually out of reach. However, results show that the number of
unreachable nodes is much greater than reachable ones. In particular, estimates
go from 10 [66] to 30 times more [22]. This means unreachable nodes count for
approximately 90% of the whole network.

Technically speaking, Bitcoin is an unstructured P2P network [67] designed to
have a random topology, so as to maximize decentralization. Each node establish
the same number of outgoing connections (see Section 2.3), selecting at random
among known peers. However, this number is not enforced by any means, which
means that nodes can potentially have any number of connections. In fact, it
has been shown that supernodes actually maintain a number of connections way
beyond the limit [21, 66]. Similarly, measuring tools are able to connect to all

27

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 28 — #44

reachable nodes of the network.
Furthermore, given the high number of unreachable nodes, which cannot ac-

cept incoming connections, the topology of the Bitcoin network is relatively cen-
tralized in its reachable portion, with 10% of the nodes accounting for the totality
of incoming connections. Due to this fact, the reachable part of the network is
central to communications in Bitcoin and is generally considered more relevant
for data propagation.

As a side effect, despite representing the 90% of the network, unreachable
nodes are left at the margins of research studies ([23]). In Chapter 6, we show how
these nodes can and should be a relevant part of the network, explicitly levraging
them involving to improve the efficiency and security of transaction propagation.

3.2 Data Propagation

Data propagation is of utmost importance in a distributed network like Bitcoin,
and its efficiency can be decisive for the security of the system. While not the main
focus of this thesis, network efficiency will be a relevant part of our discussion.
We here give a brief resume of important aspects regarding the network.

3.2.1 The Scalability Problem

One of the most relevant issues related to data propagation is the so-called scal-
ability problem [68]. Specifically, this issue is related to the time needed for a
block to propagate to all nodes in the network. This time determines the window
of opportunity for forks to occur. In fact, the probability of forking directly de-
pends on the ration between block propagation time and block production rate. In
particular, the higher the propagation time the higher the probability of forking.

Currently, Bitcoin supports around 3 transactions per second (TPS), which is
far inferior to centralized currency transaction rates [69]. To increase the TPS
value two strategies are possible: (1) increase the block production rate, and (2)
increase the block size to store more transactions. However, in the first case, more
blocks are produced during the propagation window, leading to a higher number of
forks. In the other case, an increase in the block size means a longer propagation
time (because more data has to be verified and transmitted), leading again to more
forks.

For instance, increasing the block size by 100 to obtain 300 TPS would likely
make the propagation time longer than the interval between blocks. In such a
situation, forks would occur at a higher rate than blocks themselves, resulting in
the consensus to break.

28

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 29 — #45

Several mitigations have been proposed to the scalability problem [70], among
which: sharding [71], relay networks [72], and payment channels [73]. However,
none of these seem to definitely solve the problem [74]. In this perspective, it
should be clear that data propagation plays a key role for the scalability of the
network.

RELAY NETWORKS Relay networks are among the first attempts to mitigate
the scalability problem. The basic idea is to improve block propagation among
miners by tightly connecting them to each other in fast networks.

The first proposal has been the Bitcoin Relay Network [75] which consisted
of 9 nodes strategically distributed around the globe. Miners could connect to
the geographically-closest relay nodes to improve transmission and reception of
blocks. The main downside of this network was his high centralization, since it
was controlled by a single person.

The Bitcoin Relay Network was replaced by the more decentralized FIBRE
(Fast Internet Bitcoin Relay Engine) [76], which redesigned the relay protocol to
reduce the impact of packet loss. Statistics show that FIBRE transmission rates
are nearly as fast as the speed of light.

Falcon [77] is another alternative developed at Cornell University. Its design
speeds up block transmission by relay the IP packets it is composed of before
verifying the validity of the whole block. In other words, instead of waiting for the
whole block to be received, verified and retransmitted at each hop, Falcon nodes
forward packages as soon as they are received. This leaves space for dishonest
miners to take advantage of the missing verification step to inject invalid packages
only to waste competitor resources. To mitigate this risk, gatekeepers are used,
thus introducing a point of centralization.

3.3 Security of the Bitcoin Network

All attacks in Bitcoin are aimed at one of the following objectives:

• Denial of Service (DoS): the goal is to disrupt the ability of using Bitcoin;
it can be aimed at a single node, a subset, or the whole network;

• Double spending: the goal is to use the same coins more than once, which
means either creating money out of thin air, or deceiving a victim into ac-
cepting, in exchange of goods, money that he will never actually receive;
this is one of the core issues that Bitcoin, as a digital currency, is designed
to solve;

• Deanonymization: the goal is to determine which person or entity owns
a specific amount of coins or performed a specific transaction; although

29

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 30 — #46

Bitcoin uses random pseudonyms, methods exist to trace back money to
real identities;

• Profit: this goal is specific to mining attacks, where a miner tries to cheat in
order to gain more than the other miners; this kind of attack harms concur-
rency, which is a vital feature of PoW systems.

In this section, we divide Bitcoin attacks into two categories: blockchain-level
and network-level. We give a general overview of blockchain-level attacks, while
describing network-level attacks in greater detail, as this will be the main focus of
this thesis.

3.3.1 Blockchain-level Attacks
These attacks can be grouped into two types: consensus attacks, aimed at cheat-
ing the consensus protocol, and deanonymization attacks, aimed at unveiling real
users identity.

3.3.1.1 Consensus attacks

These attacks work by deviating from the PoW protocol with the goal of gaining
control over the blockchain or increasing profit.

SYBIL ATTACKS In a general distributed setting, the Sybil attack [78] consists
in forging multiple identities so as to act like different identities.

In the context of Bitcoin, identities are represented by addresses. Since each
user can create addresses at will, with no cost, it is actually trivial to perform a
Sybil attack. Nonetheless, Bitcoin avoid risks by means of PoW: since the creation
of blocks is linked to computational power, the attacker has no gain in forging
multiple identities.

However, at the network level, as we will see in Section 3.3.2, other, more
effective forms of Sybil attacks are possible.

51% ATTACK This is the best known and feared attack against PoW consensus,
since it breaks the original assumption of an honest majority of computing power
[11].

In other words, the 51% attacks simply consists in controlling the majority
of mining capacity. In fact, with such a power, an attacker could produce blocks
at a faster rate than the rest of the network, thus being able to create a longer
blockchain (which would be accepted by nodes as the right one).

This way, it would be possible for the attacker to modify a past block, thus
breaking the immutability property. In particular, this ability could be used to

30

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 31 — #47

exclude a transaction from the ledger (DoS), or to double spend by reverting a
previous transaction.

Such an attack is also possible with less than the 50% of computing power,
but the success rate will be below 100%. For instance, with 40% of the mining
capacity it is possible to overcome a 6-deep confirmed transaction with a 50%
success rate [79].

Note however that even controlling a majority of computing power it is not
possible to produce invalid blocks (e.g. containing a double-spending transaction),
since nodes would not accept them in their ledger. This means that, to double
spend, the attacker have to first spend a transaction, then modify the blockchain
to revert it, and then spend it again.

Bitcoin (partially) protects from 51% attacks by using checkpoints [80], that
is, blocks that are hardcoded into the reference client as safe points in the block-
chain. In particular, nodes will not accept blocks at a lower height than the last
checkpoint, even if a whole longer chain is received.

Given the difficulty and cost (mining consumes power energy), and the rel-
atively small benefits, 51% attacks are considered to be not very profitable and
hence unlikely to happen [81].

SELFISH MINING First reported by Eyal and Sirer [82], selfish mining is a dis-
honest strategy where one or more colluding miners deviate from the protocol to
increase their profit.

The strategy works as follows: when the selfish miner finds a new block, it
keeps it private instead of publishing it, thus effectively creating a secret fork. The
miner then keeps working on its private branch while honest miners work on the
public chain. If the private fork becomes longer than the public chain, the miner
keeps it secret. Conversely, when the length of the public chain is approaching the
private one, the selfish miner reveals it to the network. Since the newly published
fork is longer than the main chain, nodes will immediately switch to it, this giving
all the relative rewards to the selfish miner.

This has a twofold effect. First, it gives selfish miners a share of revenues that
exceeds their proportion of mining power. Second, it wastes all the computational
effort made by honest miners.

This attack proved that Bitcoin is vulnerable to attacks by a miner (or pool)
controlling only 1/3 of the total mining power, a portion substantially lower than
the theoretical 50% assumption.

The selfish mining strategy can be generalized and combined with network-
level attacks to further increase gains [83]. Furthermore, the competitiveness of a
selfish pool can lure honest miners to join it, thus leading to a possible 51% attack.

31

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 32 — #48

3.3.1.2 Anonymity attacks

The goal of these attacks is to link one or more transactions in the blockchain to
real-world identities. In fact, despite common belief, Bitcoin is not anonymous.
A certain degree of privacy is provided by the pseudonymity of Bitcoin identities,
which can be created at will and even changed at each transaction. However,
every transaction in the blockchain is publicly accessible and traceable. As such,
identifying the owner of one address is sufficient to reveal the whole transaction
history of an user.

TRANSACTION GRAPH ANALYSIS The most typical approach to deanonymiz-
ing user identities is to analyze the blockchain content, clustering addresses ac-
cording to their relation to each other. In fact, as explained in Section 2.2.1.2, all
transaction inputs correspond to outputs in previous transactions, thus forming a
unique chain.

Based on this property, it is possible to build a transaction graph [84], where
all transactions in the blockchain are linked to each other by analyzing inputs
and outputs. Then, different heuristics can be used to cluster addresses together
[85]. For instance, all inputs in a transaction are considered to belong to the same
user [86, 87, 88]. Another simple heuristic is to considered a previously-unused
address in the output as the change address (see Section 2.2.1.2) [87, 89].

Such clusters can be joined with external information on how certain addresses
were used (e.g. to buy goods) to extract the whole transaction history of a given
user [89, 86].

MIXING SERVICES After the first deanonymization techniques were disclosed,
online anonymization services emerged, called mixing services or tumblers [90].

Using these services, Bitcoin users can mix, shuffle, and redistribute their
coins so as to break their traceability. In other words, mixers break the link be-
tween some coins and the users who purchased them. Numerous mixing services
are currently available in the wild [91].

3.3.2 Network-level Attacks
In this section, we describe in detail the most relevant and well-known attacks
targeting the Bitcoin network protocol.

3.3.2.1 Sybil Attacks

In P2P networks, a sybil attack consists in the use of multiple nodes (or more
specifically, IP:port tuples) by the same adversary [91]. This is actually a specific

32

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 33 — #49

case of Byzantine nodes [92] cooperating against a common target.
Bitcoin, as a permissionless blockchain network, is especially vulnerable to

this kind of attack [18]. In particular, an attacker can (1) deploy an arbitrary
number of nodes, and (2) open multiple connections from a single node towards
the same node. Sybil attacks are functional to other network-level attacks, such
as deanonymization (see Section 3.3.2.6), partitioning (see Section 3.3.2.3), and
eclipse (see Section 3.3.2.5).

In most cases, the practical objective of a sybil attack is to control the con-
nections of one or more target peer. In this respect, there is an important dif-
ference between incoming and outgoing connections. In fact, in a P2P network
the attacker can easily open an arbitrary number of connections towards a known,
reachable target. However, she cannot control which nodes the target connects to.
To increase the chances of a target opening a connection towards her, the attacker
needs to deploy several different nodes [59].

For this reason, incoming connections are less trustworthy than outgoing con-
nections [18], and are thus treated differently in Bitcoin. Nonetheless, apart from
this differentiation, very few countermeasures are implemented in Bitcoin, to mit-
igate the risk of sybil attacks. One of these countermeasures is to limit the num-
ber of connections towards addresses in the same IP range [18]. The reason for
this approach lies in the assumption that a single adversary is unlikely to control
IPs from many different ranges. Based on the same assumption, bucketing (see
Section 2.3.1.2) is used to divide the addresses used to establish new outbound
connections.

3.3.2.2 Double Spending

As explained at the beginning of this section, double spending is one of the possi-
ble targets of any attack in Bitcoin.

At the network level, this can be obtained by sending a transaction to a target
node while broadcasting another one, spending the same coins, to the rest of the
network. In fact, a node receiving two transaction spending the same output,
will accept the first one to be received, and reject the other one. The attacker
succeeds if she manages to make the victim accept a transaction in exchange for
goods, while having the rest of the network accept (and mine) the double-spending
transaction.

A typical setting for this kind of attack is that of fast-payments scenarios,
where the time between the acceptance of a transaction and the transfer of goods
is short (e.g. in a shop). Note that in this scenario, the victim needs accept zero-
confirmation transactions (i.e. a transaction without any confirmation), because
confirmation times in Bitcoin are too long (10 minutes, on average for the first
one). In other words, the victim only relies on just receiving the transaction from

33

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 34 — #50

the network, which typically occurs within few seconds from it was sent. This
event is supposed to prove that the transaction has been broadcast to the network
and thus considered sufficient by the victim to believe the transaction has been
made.

Let us denote the victim’s transaction with txV and the double-spending one
with txA. Two conditions have to be met for the attack to succeed: (1) the target
node has to receive txV before txA, (2) txA is accepted into the blockchain. It is
easy to see that a requirement for the attacker is to know the IP (or at least the
network) of the victim’s node.

The first example of this attack was showed by Karame et al. [93]. There,
the attacker connects directly to the (reachable) victim and use helper nodes to
broadcast the double-spending transaction. She then sends txV to the victim and,
after a short time, txA to the helper nodes. To ensure the victim receives txA af-
ter txV , helper nodes does not connect to the victim. Furthermore, to help txV

spread faster (which, in turn, increase the probability of having it added to the
blockchain), the attacker can increase the number of helper nodes or the number
of peers connected to them. Their results show that the probability of success de-
creases as the time between the spread of the two transactions increase. This is
due to the fact that delaying the broadcast of txA allows txV to reach more nodes,
thus increasing its probability of being accepted to the blockchain. In particular,
if this time is 1 second and 2 helpers are used, the attack is almost guaranteed
to succeed. The victim can protect himself by connecting to more nodes, and
adopting a listening period to check whether a double-spending transaction is re-
ceived. However, the authors claim these countermeasures can be circumvented
and that additional measures are needed, such as having nodes alerting peers about
double-spending transactions.

More effective countermeasures are proposed by Bamert et al. [94], such as
having vendors not accept incoming connections or not relay transactions, that
reduce the success rate of the previous attack to just the 0.09%.

Among other factors that influence the success rate of double-spending fast
payments, information propagation speed is among the most relevant [16, 18].
On the other side, double-spending attacks can be made more effective by lever-
aging other attacks, such as partitioning (see Section 3.3.2.3) and eclipse (see
Section 3.3.2.5), which enable the attacker to hide information from the victim
node.

Generally speaking, the only secure way to avoid double spending is to wait
for a transaction to be confirmed [91].

34

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 35 — #51

3.3.2.3 Partitioning Attacks

A partitioning attack consists in trying to split the network so as to prevent com-
munications between two isolated group of nodes.

This attack on the Bitcoin network was first studied in [95]. The authors con-
sider an adversary controlling a powerful botnet with Distributed DoS (DDoS)
capabilities. Their attack consists of two phases. In the first phase, the botnet
nodes join the network, behaving conforming to the protocol. Bots only advertise
addresses belonging to the botnet, allowing to reduce the number of connections
between honest nodes, which makes the attack easier. In the second phase, the
attacker stops forwarding transactions and blocks, and, at the same time, performs
a DDoS attack against the nodes in the minimum vertex cut, that is, the smallest
set of nodes whose removal causes the network to split. To do so, the attacker
needs knowledge of the network topology (see Section 3.3.2.7). Their analysis
showed that the Bitcoin network can resists an attack lasting several hours against
an adversary controlling a botnet as large as the network itself. Nonetheless, more
powerful adversaries should be considered.

Partitioning attacks can be used as for DoS or simply to create distrust in the
system (e.g., for speculation on the bitcoin value). Furthermore, it can be used to
split miners, thus generating forks in the blockchain. In turn, this can be used to
perform double spending or selfish mining. Note, however, that isolating miners
is made harder by the existence of relay networks (see Section 3.2.1), which are
separate from the P2P network.

3.3.2.4 Routing Attacks

While most network attacks consider adversaries at the node level, more powerful
adversaries can exist at the AS-level. Several factors make Bitcoin particularly
vulnerable to such an adversary. First, most nodes and miners are concentrated
in just a few ASs [96, 97]. Second, the BGP routing protocol [98] can be easily
hijacked [99] (that is, network traffic can be rerouted through a different AS). Fi-
nally, as communications in Bitcoin are not encrypted, an AS-level adversary can
perform any MitM attacks (eavesdrop, drop, modify, inject, or delay messages).

Apostolaki et al. [96] are the first to study an AS-level adversary. In particular,
they show how such an adversary can partition the network by diverting the traffic
via BGP hijacking. She then uses MitM inspection to drop packets coming from
and going to the target partition. Their attack does not require knowledge of the
topology except the IP addresses of the target nodes.

In [100], a stealthier version of the attack is presented, which shows analogous
capabilities without making any route manipulation. The attack targets reachable
nodes and is particularly dangerous since it is hardly detected and leaves no traces.

35

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 36 — #52

As shown in [96] and later confirmed by Saad et al. [97], BGP routing attacks
can not only be used for double spending but also to perform selfish mining and
generate forks in the blockchain. To avoid such a risk, Apostolaki et al. [101]
proposed SABRE, a secure and scalable relay network (see Section 3.2.1) that is
resilient to routing attacks.

3.3.2.5 Eclipse Attacks

An eclipse attack [102] is a special case of partitioning attack in which a single
node is targeted. The adversary aims at controlling, or colluding with, all the
victim’s peers so as to control all communication from and towards the node. In
particular, information from the network can be completely hidden to the target
(hence the name ”eclipse”).

Similarly to partitioning attacks, the eclipse attack can be used for double
spending, selfish mining, or even to make 51% attacks easier [103]. Furthermore,
it has been shown how combining selfish mining with an eclipse attack can further
increase gains for the dishonest miner [83].

In [103], Heilman et al. show a practical attack against the Bitcoin reference
client that allows monopolizing all the connections of a reachable node. To do so,
they connect to the victim, fill its new table with bogus addresses and its tried
table with addresses controlled by the adversary. Upon restart, the victim will then
establish all 8 outbound connections (see Section 2.3.1.1) with high probability.
At this point, the adversary occupies all inbound connections to completely isolate
the target.

Their attack exploits the eviction mechanism of the address database (see Sec-
tion 2.3.1.2) and the fact that nodes accept unsolicited addr messages. To per-
form this attack, the adversary needs a large number of IP addresses, which can be
obtained by using a botnet. Their results showed it was possible to eclipse a node
with at least 85% probability using a small botnet of 4600 bots and that the attack
often succeeded even with just few hundred adversarial nodes. Nevertheless, if
the victim stores enough legitimate addresses, it cannot be eclipsed regardless of
the number of IPs controlled by the adversary.

3.3.2.6 Deanonymization Attacks

As mentioned in Section 3.3.1.2, Bitcoin transactions can be linked to real world
identities by inspecting the blockchain and crossing it with publicly-available in-
formation. Similarly, at the network level, it is possible to deanonymize a trans-
action by detecting the node of the network that generated it. In fact, knowing the
IP address of the device where a transaction was created often means identifying
who did it. While this is nearly impossible with past transactions, an adversary

36

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 37 — #53

can perform real-time monitoring to determine the source of a specific transaction
message.

The attack can be directed against a single node or it can be generalized. In the
first case, the adversary aims at determining which transactions have been created
by the chosen target. This can be done trivially (with respect to the deanonymiza-
tion part) by eclipsing the node and intercepting all the transactions it sends.

Conversely, network-wide deanonymization, which aims at determining the
source of all new transactions, requires more complex strategies. The first such
strategy was proposed by Dan Kaminsky [104] and it is based on the observation
that the node that creates a transaction will be the first one to announce it. Based on
this fact, an adversary that connects to all nodes can simply monitor all transaction
announcements (i.e., inv messages) and then associate each transaction to the
first node to announce it. By implementing this approach, Koshy et al. [105] were
able to deanonymize several hundred transactions. Nevertheless, in most cases,
this was only possible thanks to anomalies in the relay pattern, while normally-
relayed transactions proved to be hard to deanonymize. Neudecker et al. [106]
also combine observations of the message propagation with address clustering
techniques (see Section 3.3.1.2). However, their results show that, for the vast
majority of users, this information does not facilitate deanonymization.

This basic approach was generalized and expanded in [24]. In this work, the
eavesdropper adversary is defined, which not only connects to all reachable nodes,
but also maintains multiple connections for each node, which increases the prob-
ability of receiving a transaction from its source. To determine the origin of each
transaction, an estimator functions are used. The first one, called first-timestamp
or first-spy follows the strategy, described above, of linking each transaction to
the first node that relays it. The second one, called maximum-likelihood esti-
mator generalizes the previous strategy based on the so-called rumor-centrality
[107, 108] of gossip networks: as transactions are spread symmetrically (broad-
cast) by each node to its peers, nodes that are close to the source of a transaction
will relay it before those that are far from it.

As such, if the structure of the network graph (i.e., the topology) is known, it is
possible to determine the source of a transaction by observing the order in which
nodes announce it. Based on this information, the maximum-likelihood estimator
determines which node is the most likely to be the source for a given transaction.

Using this adversarial model, the authors analyze the security of the Trickle
and Diffusion protocols (see Section 2.3.2), showing that both provide poor an-
onymity guarantees. The reason for this lies in the symmetry of the transaction
relay pattern.To solve this issue, a new protocol, called Dandelion [25, 109] has
been proposed, which, by breaking this symmetry, offers near-optimal anonymity
guarantees. In their protocol, new transactions are relayed over a single path of
nodes for few hops, until they get broadcast. To increase anonymity, the relay path

37

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 38 — #54

is built among all nodes as a network-wide boolean circuit.
Note that the works discussed so far only focus on reachable nodes. This is

because unreachable nodes, by definition, are safe against adversaries that need to
connect to all target nodes. In fact, the only known deanonymization attack that
targets unreachable nodes is the one by Biryukov et al. [110]. In this attack, the
eavesdropper adversary is able to distinguish unreachable nodes with the same IP
address (i.e., nodes behind the same NAT) by the set of their (reachable) peers.
In particular, this is obtained using a fingerprinting technique that exploits the
rumor centrality of the address propagation (see Section 2.3.1.2). Since this attack
only works during a single session, Mastan et al. [111] propose a method that
exploits block requests patterns to identify unreachable nodes over consecutive
sessions. However, their technique can only be used in conjunction with other
deanonymization techniques.

In Chapter 6 we propose a countermeasure that prevents the fingerprinting of
unreachable nodes based on address propagation, and leverage their safer posi-
tion in the network to design a new transaction relay protocol, that, like Dande-
lion, breaks the symmetry of propagation to improve anonymity. Furthermore, in
Chapter 7, we generalize this approach to design a simpler but safer protocol.

TOR NODES ANONYMITY While Tor is specifically designed to protect the an-
onymity of its users, a work by Biryukov et al. [59] shows that this is not the
case for Bitcoin. On the contrary, combining Bitcoin and Tor creates a vector
for a man-in-the-middle attack. In turn, such an attack allows for easy deano-
nymization, and enables capabilities analogous to partitioning and eclipse attacks.
Additionally, the attacker can fingerprint Tor nodes so as to recognize them when
they decide to connect to the Bitcoin network directly.

3.3.2.7 Topology Inference Attacks

Differently from classic P2P networks, knowledge of topology in Bitcoin is partic-
ularly important for its security implications [21, 18]. In fact, many of the attacks
described in this section are somehow related to the connectivity of nodes.

Dishonest miners can use topology information to gain advantage in the propa-
gation of blocks and perform selfish mining [82]. Double-spending attacks can be
facilitated by knowing the neighbors of the target node [112]. Partitioning attacks
that target the minimum vertex cut would be made easier with a complete view of
the network graph structure. In an eclipse attack, if the attacker knew the peers
of a target node, she could try to disrupt their connections instead of waiting for
the target to restart. Even deanonymization, in the case of rumor-centrality-based
heuristics are enabled by the knowledge of the topology.

38

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 39 — #55

For the above reasons, although topology hiding is not a design goal, the Bit-
coin protocol explicitly hinders the ability to discover connections among nodes.
Nonetheless, several methods have been found over the years that allow to infer
connections by leveraging information leakage in the protocol.

The first such method was proposed in [110] and allowed to determine the
outbound connections of a node based on addr messages: as nodes advertise
their own address when connecting to a new peer, and such messages are for-
warded to other peers, it was possible to detect the target’s peers by connecting
to all nodes and analyzing received addresses. In [21], a network-wide technique
was proposed, called AddressProbe, that allowed to infer all connections among
reachable nodes. Their technique exploited the timestamp attached to each entry
of addr messages: since the address of each outbound peer was updated every
time a message was received, it was possible to determine which entries in the
addr message corresponded to outbound peers by looking at their timestamp.
Both techniques were made ineffective by a targeted change1 in the reference
client [113].

A more generic technique was proposed by Neudecker et al. [114], based
on the rumor-centrality of gossip propagation. Assuming the source of a specific
message is known and that the adversary is connected to all nodes, it is possible to
infer connection by observing the time at which nodes propagate the information.
Their technique was made ineffective by the switch from Trickle to Diffusion (see
Section 2.3.2).

In [115], Grundmann et al. propose two different methods. The first one
exploits the fact that nodes accumulate transactions before announcing them to
their peers. In particular, an inv message contains all transactions received since
the last inv message was sent. Based on this fact, the adversary creates marker
transactions for all peers and observe inv messages to infer links. This technique
shows high precision (more than 90%) but has very low recall (10%), and is hardly
practical in real life. The second targets a single node, and exploits the fact that
nodes do not relay double-spending transaction. To infer the target’s peers, the
adversary sends a different double-spending transaction to each node, except the
target. Then observes which transaction the target relays and deduce a link with
the node to which that transaction was sent. Although this technique has very high
precision (97%) and good recall (60%), no countermeasures were introduced to
date.

The most recently disclosed technique for topology inferring is TxProbe [66].
Similarly to the previous example, this technique leverages marker messages, this
time based on orphan transactions (see Section 2.2.1.2). Despite its high precision

1Reduce fingerprinting through timestamps in ’addr’ messages -
https://github.com/bitcoin/bitcoin/pull/5860

39

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 40 — #56

and recall (more than 90%), this method is rather invasive and can interfere with
the ordinary transaction propagation. Again, the technique was invalidated by a
recent update in the reference client 2.

The number of techniques disclosed (and fixed) over time poses the question
of whether topology-hiding is a valid approach for protecting the Bitcoin network,
given the fact that knowing the topology is not a threat per-se and it hinders mea-
surements and analysis that could be essential to improve the network efficiency
and security. In Chapter 5, we advocate for an open topology and propose a viable
protocol to discover connections among reachable nodes.

2Select orphan transaction uniformly for eviction - https://github.com/bitcoin/bitcoin/pull/14626

40

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 41 — #57

Chapter 4

TESTNET: MORE THAN A TEST
NETWORK

Despite being designed as a simple testing environment for Bitcoin, Testnet (see
Section 2.2.3.3) has its own, unique characteristics that makes it different from
the main network. At the same time, Testnet is a full-fledged blockchain network,
with potential applications in the real world. In this chapter, we show how its
peculiarities, if properly exploited, could serve as a basis for large-scale malicious
activities. We observe that such features are the result of a careless design, which
stemmed from a superficial consideration of Testnet as a real blockchain.

4.1 Leveraging Testnet for Bidirectional Botnet
Command and Control Systems

With the growth of the Internet of Things, millions of insecure systems have been
deployed worldwide [116, 117]. Botnets benefited from this rise to increase their
size and the magnitude of their attacks [118]. Recent attacks from the infamous
Mirai botnet [119] showed the potential of this threat, with DDoS attacks of up
to 1.1 Tbps [120]. A lot of research has been done to help detect and disrupt
botnets [121], most of which focus on what is notoriously their weak spot: the
Command & Control (C&C) communication channel. In fact, C&C systems are
either based on centralized services or require a complex infrastructure to avoid
disruption [122].

Blockchain technologies may give botnets a powerful tool to increase their
resilience. Recent research showed how blockchains can be leveraged to imple-
ment the command and control (C&C) system of a botnet [123, 124]. In fact,
using public blockchains like Bitcoin as the communication channel has several
advantages for a botnet. First of all, as other P2P networks, they provide robust-

41

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 42 — #58

ness and efficiency. Secondly, they are not regulated by any authority, making
them censorship-resistant, that is, no specific content or user can be banned. Fur-
thermore, they privilege privacy, by making use of pseudonyms and hindering the
association between a transaction and the device that generated it. As such, al-
though possible (see Section 3.3.2.6), it is not trivial to detect nodes participating
in a botnet. More importantly, it is hard to identify the botmaster. All these prop-
erties are ideal for botnets [125], as they allow to operate over a long period of
time, with virtually no risk of having communications disrupted.

State-of-the-art solution on Bitcoin make use of transactions as the main C&C
vector, following different strategies to embed messages. However, these propos-
als have important limitations. First of all, transactions have a cost, as they have
to spend a minimum amount of coins and are required to include a fee (see Sec-
tion 2.2.1.2). As such, sending messages can be expensive, and the actual cost
can fluctuate according to the current coin value. Secondly, transaction-based
communications are only used to send commands from the botmaster, delegating
replies to external, typically server-based, channels. Finally, messages are very
limited in size and are sent in clear, as cryptography is only implemented on the
external channel. All these limitations make this approach rather impractical for
a real-world botnet implementation.

In this chapter, we show that, using Testnet, it is possible to overcome all
these limitations and implement a cost-free, bidirectional, encrypted botnet C&C
system. We propose a communication protocol and analyze its viability in real
life. Our results show that this approach would enable a botmaster to build a
robust and hard-to-disrupt C&C system that is both practical and economical.
We believe such a system represents a realistic threat, for which countermeasures
should be devised.

4.2 Background

4.2.1 Botnets and C&C
A botnet is a network of infected devices, called bots, collectively controlled by a
single actor, called the botmaster. Botnets have been a major threat on the Internet
for a long time [126], as they are used for a variety of malicious activities, like
spamming, credentials stealing, and Distributed Denial of Service (DDoS) attacks
[127].

C&C COMMUNICATION In order for a botnet to operate, a communication
channel is needed between botmaster and bots. The infrastructure used for that
purpose is known as the Command & Control (C&C) system. This is a crucial

42

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 43 — #59

component for a botnet, as it is the only means to keep control over the bots. As
such, it is has to be designed carefully, in order to avoid being disrupted. In other
words, the C&C system should allow controlling the botnet as long as possible,
providing stealthy and efficient communication between botmaster and bots.

Strategies to implement C&C changed over the years, following the evolu-
tion of available technologies and the ability of authorities to counter existing ap-
proaches [122]. First-generation botnets leverage hardcoded Internet Relay Chat
(IRC) channels, where bots connect to receive instructions from the botmaster.
This system is simple and cheap but is also easy to detect and take down [128,
129]. Second-generation botnets make use of HTTP, with hardcoded web do-
mains, periodically contacted by the bots to download instructions. This approach
allows to effectively blend messages into legitimate Internet traffic. Nonetheless,
effective techniques exist to detect botnet communications [130, 131], allowing to
quickly shutdown malicious domains [132].

Early botnets relied on a client-server model, thus having a central point of
failure, which can always be detected and shut down by the authorities. Last
generation botnets overcome this issue by adopting a P2P model. Bots and C&C
server connect as peers to the same network, making it difficult to distinguish the
source of the commands [133]. This architecture makes the botnet much more
robust and hard to shut down. Nonetheless, it is still possible to detect P2P-botnet
traffic using advanced techniques [134, 135]. Moreover, to join the network, bots
need hardcoded addresses, which can be easily blocked by authorities if detected.
Modern botnets tend to use a mix of techniques, such as P2P network with HTTP
C&C server, or leverage cloud-based services and social media as rendezvous
points [122]. Although these services are easy to setup and access, providers can
promptly block any detected malicious account.

4.2.2 Testnet
As explained in Section 2.2.3.3, Bitcoin Testnet has some important differences
from Mainnet. In particular:

• Testnet coins have no value in real life. For this reason, they can be easily
obtained for free through online services called faucets [136].

• Mining is much easier, since the PoW difficulty is set to a lower value. As a
consequence, unlike Mainnet, it is feasible to run a solo miner [137] to earn
coins.

• The Testnet network and blockchain are about ten times smaller than Main-
net [66]. This makes clients synchronize faster and consume less resources.

• Non-standard transactions are validated and relayed by the network. This
feature enables the following characteristics:

43

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 44 — #60

– OP RETURN can be bigger than 80 bytes. In fact, there is no explicit
limit to the amount of data that can be actually embedded;

– Transactions can have multiple outputs with the same address as well
as multiple OP RETURNs;

– Transaction outputs can be below the dust limit (see Section 2.2.1.2);
– Transaction size can be greater than the maximum (which is around

100kB).

All these properties give numerous benefits for the implementation of a botnet.
First of all, the botmaster can easily obtain the necessary amount of coins to run
its botnet, either by using faucets or running a miner. Secondly, the reduced size
of Testnet blockchain and network make bots less resource-demanding, allowing
them to hinder detection and even to run on low-resource devices. Finally, non-
standard transactions give the ability to send bigger and more complex messages.

These features allow overcoming all the main drawbacks of previous Bitcoin-
based proposals: botnet communications have no cost thanks to the fact that Test-
net coins have no real value; bidirectional communication can be implemented
thanks to the great number of coins that can be obtained for free; encryption can
be implemented thanks to the larger amount of data that can be embedded in each
transaction.

4.3 Related Work

ZombieCoin [123] was the first paper to propose Bitcoin as a means for C&C
communications. Bots embed the botmaster public key and decode transactions
coming from the corresponding address. To embed commands, the OP RETURN
opcode is used, which allows to carry up to 80 bytes of data. In [138] the same
authors propose enhancements such as transaction-chaining to embed longer mes-
sages and external upstream communication by means of periodical rendezvous-
point announcements. The main limitations of this proposal are the server-based
upstream communication and the cost of messages sent on the blockchain. The
authors claim that it would be impractical and economically prohibitive to imple-
ment upstream communication on top of the blockchain. We show that this is not
true when leveraging Testnet.

ChainChannels [124] proposes a more generic approach, which can be used
on different blockchains as it does not leverage Bitcoin-specific features. The au-
thors describe a method to insert hidden data into transaction signature, which can
be later decoded with the private key used for the signature. For this purpose, the
authors propose a key-leakage scheme that allows bots to decipher messages at a
later time. This is a very portable approach, since virtually all blockchains em-

44

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 45 — #61

ploy digitally-signed transactions with a compatible signature scheme. Nonethe-
less, this approach suffers from the same limitations as ZombieCoin: messages
are costly and limited in size; communication is unidirectional and unencrypted.
Furthermore, bots can only decrypt messages in a second moment, assuming they
execute commands altogether after these have been issued, something that might
not be realistic.

Differently from other blockchain-based solutions, DUSTBot [139] have nodes
connect and communicate directly to each other, like in a classic P2P botnet. Spe-
cial bots, called sensors, are delegated to collect responses and send them to the
botmaster via OP RETURN transactions, for which a number of UTXOs are avail-
able on the blockchain (see Section 2.2.1.2). To reduce costs, bots communicate
via Testnet. However, only standard transactions are used, thus limiting the com-
munication capacity of the botnet. Additionally, nodes have to connect to multiple
networks and suffer the burdens of standard P2P botnets (bootstrapping, peer list
exchange, message propagation, and so on), which other blockchain-based solu-
tion avoid.

In [140], an hybrid botnet is proposed, called LNBot, which leverages the
Lightning Network (LN), a popular off-chain payment channel network for Bit-
coin. In LNBot, the botmaster sends commands to a set of C&C servers via
using payments over LN. In particular, covert channels are used to embed data
into transactions. Each server controls a separate mini-botnet, each using its own
architecture and communication channel (IRC, P2P, and so on). This hybrid ar-
chitecture allows a good scalability but adds the extra complexity of managing
multiple botnets. Moreover, each C&C server constitutes a single point of failure
for the corresponding botnet. Finally, upstream communication is not considered.
Our solution is purely blockchain-based and allows bidirectional communication.

Yin et al. [141] propose to use blockchain explorers and url shorteners to have
bots retrieve commands. In particular, a URL generation algorithm is used to
know the next link where to retrieve the transaction containing the command. The
main drawbacks of this solution is that it is centralized (block explorers and URL
shortener services are both server-based) and that new URLs can be predicted
and blocked in advance, if a bot is compromised. Our solution does not use any
centralized service nor generation algorithms to be stopped.

In [142], the authors propose an approach based on Whisper, a communica-
tion protocol that runs on top of the Ethereum network. This approach does not
use transactions and thus has no cost. It also provides a good level of privacy
and allows for two-way communication. Moreover, as messages are not in trans-
actions, they are not added to the blockchain, making their backward analysis
harder. However, Whisper, which is still in a PoC stage, it is not enabled by
default on the standard Ethereum client (geth) and there are no known statistics
about how many nodes currently run the protocol. Consequently, its reliability is

45

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 46 — #62

unknown, making it unlikely to be actually used by a botnet as of today.
Similarly to the previous solution, Oliveira et al. [143] makes use of Ethereum

for C&C communication. In their system, smart contracts are used. In particular
the botmaster deploys a smart contract containing the command instruction, while
the bots can run a function on the contract to retrieve such instruction. The bot-
master can also run a function to update the instruction. The authors make use of
a private implementation of the Ethereum network, where only bots participate.
However, such a network allows to easily detect all participating bots and can be
easily disrupted by authorities. On the other hand, using the public blockchain
makes running the botnet costly. Like other solutions, this proposal do not take
upstream communication into account.

For what concerns detection, [144] shows that it is indeed possible to distin-
guish bot-produced transactions from legitimate ones. Nonetheless, blockchain
systems are very unlikely to adopt any censorship measure to block such trans-
actions, since this would contradict one the main goals of blockchains. Instead,
preventive measures should be taken to hinder botmasters from taking advantage
of blockchain networks.

4.4 Our C&C Protocol

We propose a viable communication protocol for Testnet, based on non-standard
transactions, that provides a bidirectional and encrypted C&C channel at zero cost.

As in previous works, we assume there exists an infection mechanism that
takes control of devices and downloads the bot client. The botnet is composed
by a C&C server node, directly controlled by the botmaster, and a number of bot
nodes. We assume the C&C server is not resource-constrained and runs a full
node. On the other side, bots run an SPV node to consume less resources and
hinder detection.

In the rest of this section, we explain how the communication works (trans-
actions, fees and encryption) and describe the different phases of the protocol
(registration, commands and responses).

4.4.1 Communication

All communications between the botmaster and the bots happen through transac-
tions. Note that, by using this mechanism, bots do not need to connect to each
other, nor to deal with the propagation of messages. Instead, being embedded into
transactions, messages are relayed by all nodes in the network, thus reaching all
bots.

46

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 47 — #63

DATA EMBEDDING AND FEES We use OP RETURN outputs to embed mes-
sages inside transactions. As previously mentioned, this operator has no explicit
limits of size on Testnet. As such, the amount of data that can be embedded is
only limited by the maximum size of a transaction, which, again, is not explicitly
limited on Testnet. This makes the theoretical size limit bound by the size of a
block (around 1 MB). However, a practical limit to this amount is given by the
minimum fee needed to have the transaction relayed by other peers. This value is
known as the minimum relay fee (MRF). MRF does not differ between Mainnet
and Testnet and is proportional to the size of the transaction itself. This means
that, although sending very large messages is possible, this can be excessively ex-
pensive in terms of fees. We will see more details about MRF later in Sections 4.6
and 4.5.

In our protocol, all transactions spend a fee equivalent to the corresponding
MRF. To this respect, it is important to notice that using low fees might make the
transaction mined later. However, from the botnet perspective, it is not important
if and when messages are added to the blockchain, but only if they travel across
the network and reach the C&C server.

ENCRYPTION AND AUTHENTICATION In order to protect communications,
we use encryption in both directions. To obtain the best compromise between
security and efficiency, we make use of an hybrid approach.

We assume the botmaster creates an asymmetric key pair, called botmaster
keys before the creation of the botnet and hardcode bots with the public key. This
key pair is completely unrelated to the address used to send commands, which in
fact, can change at every message. Additionally, a symmetric key is also embed-
ded in the bots, called botnet key.

For the sake of clarity, we distinguish between downlink encryption, used from
the botmaster to the bots, and uplink encryption, used by the bots to communicate
with the botmaster.

Downlink encryption works this way: when the botmaster wants to send a
command, it encrypts it with the botnet key and signs it with its private key; when
bots receive a transaction with an OP RETURN, they check the signature using
the botmaster public key. If the signature is valid, they decrypt the message with
the botnet key and execute the command. This scheme allows the bots to recog-
nize transactions from the botmaster even without knowing its address. Moreover,
thanks to the signature, bots are assured about the authenticity of the source.

For uplink encryption, each bot creates a private symmetric key, called the bot
key, which is sent to the botmaster at the time of registration, encrypted with the
botmaster public key. When sending messages, bots encrypt data with their bot
key. Furthermore, bots use a new address for each message, which corresponds to

47

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 48 — #64

the change address of the previous transaction. In order to recognize and decrypt
bots messages, the botmaster keeps track of the current address of each bot and
the corresponding encryption key.

TRANSACTIONS We have the following types of transactions: quotas, registra-
tions, fundings, and messages. Quotas have one input and several outputs (the
quotas), which are used as input for the registration transactions. Registration
transactions have one input (a quota) and one OP RETURN output. The quota
equals the MRF for the registration message, so no change output is required.
Funding transactions have one input and one output, which equals the input value
minus the MRF. Messages (commands and responses) always have two outputs,
one with the OP RETURN carrying the message and the other sending the change
(minus the MRF) to another address belonging to the sender (i.e. the change ad-
dress).

4.4.2 Bot Registration
When a new bot joins the network, the first thing it needs is to get some funds to
send transactions. As the bot cannot obtain funds autonomously (like the botmas-
ter does), it needs to ask the botmaster to provide some. However, at the same
time, the botmaster needs to know the address of the bot in order to send such
funds.

We solve this problem by having all bots sharing a common private key, that
gives access to all transactions of an address called the shared account. The bot-
master periodically puts funds on the account, while new bots use such funds
to register to the botnet. They do so by sending a registration message which
contains their own address and encryption key. Since SPV clients do not store
the UTXO set (the set of unspent transactions), they ask their peers about any
available fund on the account. The botmaster monitors transactions sent from the
shared account and when it detects one, it stores the information about the new
bot and sends it some funds. After the registration, bots will only receive funds
directly from the botmaster.

If more bots try to register at the same time, there might be a conflict between
their transactions (i.e. a double spend). In order to minimize this risk, the bot-
master puts on the account several transactions, called quotas, containing just the
right amount of coins needed to send the registration message. Furthermore, to
reduce concurrency, it always sends multiple quotas at the same time. When a
new bot wants to register, it picks a random quota and tries to send the message.
It then sets a timeout for receiving the funding from the botmaster. If the timeout
expires, the bot picks another quota and repeats the process. The same happens if
its transaction gets rejected by peers or if another transaction spending the same

48

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 49 — #65

quota is detected. At any time, the botmaster makes sure there are enough quotas
on the shared account, according to the rate at which new bots are joining.

Since the registration transaction comes from a shared account and only has an
OP RETURN output, neither the botmaster address nor the bot one are revealed.

It is worth noting that creating quotas would not be possible on Mainnet, as
they would be considered as dust outputs and rejected by the network.

4.4.3 Commands and Responses

We distinguish between commands, that are messages sent by the botmaster, and
responses, that bots send after executing a command. Bots can execute three types
of commands: hardcoded, shell and script.

Hardcoded commands are functions that are already implemented by the bot
code. They can be executed once or repeated over a period of time. Examples of
hardcoded commands include a DoS function to attack a target or a keylogger to
steal credentials. The botmaster can send parameters such as interval and number
of iterations, or make the function run indefinitely until it sends a stop command.

Shell commands are command-line instructions that the bot directly execute
on the infected machine. When the bot receives such command, it runs it and
converts the output into a hexadecimal string to be sent as a response.

Script commands work similarly, but they use code stored on the blockchain.
In particular, the code to execute is embedded by the botmaster in a previous
transaction, called script transaction, and encrypted with a symmetric key, which
is unknown to the bots. The command includes the transaction ID of the script
transaction and the key to decrypt. When bots receive these commands, they
retrieve the data, decrypt the payload and execute the code. They then convert the
output into a hexadecimal string and send it the botmaster. In order to ensure all
bots can send their response, the botmaster checks current funds of each bot before
sending the command. If any bot does not have sufficient funds, the botmaster
sends them more coins.

This approach takes advantage of the larger storage capacity of transactions on
Testnet, which allow storing kilobytes of code on the blockchain. Additionally,
this technique enables the botmaster to reuse the same code several times, saving
coins and reducing its traffic. By using shell and script commands, bots are not
limited to the functions their code implements, but are able to perform a variety
of attacks, making it harder to estimate their real capacity.

49

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 50 — #66

4.5 Analysis

In this section, we analyze the sustainability of our protocol in terms of the amount
of coins needed to run a botnet, as well as the robustness of its architecture and
the security of its design.

4.5.1 Costs

FUNDING THE BOTNET At the time of writing, we were able to find six active
faucets on the web. The amount of coins obtained per request varies from 0.0001
to 0.089 tBTC, with an average of 0.05 tBTC per request. By making a single
request per faucet, we obtained approximately 0.12 tBTC. Requests are usually
limited by faucets to one per day, for each given IP address. However, it is not hard
to bypass the limit by using VPNs or proxy services. Furthermore, as previously
discussed, a botmaster could run a miner to obtain a much greater amount of coins,
without any restriction.

As such, we consider the estimate of 0.1 tBTC per day as a conservative lower
bound of the funds that a botmaster can obtain to operate its botnet. In a real-
life context, it is likely feasible to obtain ten to hundred times more than such an
amount.

PROTOCOL MESSAGES COST As discussed in Section 4.4, all messages sent
by the botnet spend the minimum relay fee (MRF), which is directly proportional
to the size of the message and calculated as 1 satoshi per virtual byte.

In our protocol, transactions can have a fixed size, like quotas, registrations,
and fundings, or variable size, like commands, responses, and scripts. Table 4.1
shows the MRFs for all transactions used in our protocol. For a quota batch trans-
action, which has 11 outputs, a MRF of 454 sats is needed. Registration trans-
actions have a payload of 256-byte long, corresponding to a MRF of 373 sats.
Fundings, which have 2 outputs, can be sent with 166 sats. Commands payload
size is the smallest multiple of the AES block size (16 bytes), plus the IV (16
bytes). To simplify things, we assume hardcoded commands are short enough to
fit into 2 blocks (32 bytes), which adds up to 48 bytes, with the addition of the IV.
To send such a transaction, a fee of 161 sats is needed. We also assume shell com-
mands are smaller than 100 bytes, with bigger instruction sent as scripts. Since the
minimum size is 17 bytes (1-byte command plus the IV), the MRF varies from 133
to 230 sats. Script commands have a 3-byte command plus a 32-byte transaction
ID, a 32-byte script encryption key and the IV. This sums up to 83 bytes, requir-
ing a MRF of 197 sat. We assume the maximum size of script transactions and
responses is 50kB. For what concerns our non-hardcoded commands, we have the

50

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 51 — #67

Message OP RETURN (Bytes) Fee (Satoshis)
Quotas Batch N/A 454

Registration (quota) 256 373
Funding N/A 166

Hardcoded Command 48 161
Shell Command 17 - 116 133 - 230
Script Command 83 197

Script (Transaction) 117 - 51200 231 - 51349
Response 17 - 51200 133 - 51349

Table 4.1: Minimum relay fees for our protocol transactions.

following values. The encrypted screenshot script, along with the IV, is 128-byte
long, corresponding to a MRF of 242 sats. To send the response (50kB), 51349
sats were needed. To send the output of lswh (12kB), 12860 sats were needed.

RUNNING THE BOTNET To have 1000 bots registered, 100 quota batches are
needed, corresponding to 373000 sats. Considering the fees for the batch transac-
tions (45400 sats), this sums up to 418400 sats (0.004184 tBTC), which is then the
amount required to register 1000 bots. To fund the same number of bots, assum-
ing an initial funding of 0.0001 tBTC each, and considering fees for the funding
transactions (166000 sats), we have a total of 0.10166 tBTC. This means that 0.1
tBTC (our estimated lower bound) are enough to register and fund 1000 bots per
day.

For what concerns daily operations, assuming a specific behavior is hard, as
C&C communications for real botnets can be very diverse. As such we will focus
on the number of bytes that can be sent per day by a 1000-bot botnet, assuming it
is funded with 0.1 tBTC per day. To simplify things, we assume 1 sat is needed to
send 1 byte of data. This way, 0.1 tBTC is enough to send around 10MB per day,
which translates to 10kB per bot in our example, which is likely to be insufficient
for a modern botnet, according to available statistics [145].

However, by analyzing the Testnet blockchain, it is easy to see that a solo
miner could obtain an average budget of as much as 4 tBTC per day, which would
allow the botmaster to run, for instance, a spamming botnet, or use this channel
as a component of a larger hybrid botnet.

4.5.2 Architecture

TESTNET Despite being a testing network, Testnet is a very solid blockchain, as
it constitutes a fundamental component of the Bitcoin ecosystem. In fact, it allows

51

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 52 — #68

developers to test changes to the protocol and new applications without wasting
money or messing the real chain. Specifically, being released in 2012, the current
version of the network (Testnet3) is one of the longest-running blockchains in
the wild. Although a new version might be introduced, this would affect a lot of
ongoing projects and protocol improvements development, making it unlikely to
happen soon. As such, Testnet is a very stable backbone for a botnet C&C system.

A possible drawback of leveraging Testnet for a botnet might be its reduced
network size, as fewer nodes might ease detection. However, the botmaster could
mitigate this by deploying more nodes.

FAUCETS Faucets are a vital service for Testnet, as they allow developers to
easily obtain the coins they need tu run their tests. In their absence, developers
would need to run a miner, making their job both harder and more expensive. As
such, it is unlikely that such services will cease to work.

BANDWIDTH Despite the use of non-standard transactions in our protocol al-
lows transmitting bigger amounts of data, message size is still limited compared
to the traditional client-server model. However, this system gains in terms of ro-
bustness, as communications are very hard to disrupt.

Given the above, it is possible that a real botnet would adopt a hybrid ap-
proach, with commands and responses happening on the blockchain, and larger
data transmission being sent to a server, whose address changes periodically and
gets updated via transactions.

4.5.3 Security

STEALTHINESS As communications happen via transactions, botnet messages
will be permanently stored on the blockchain, creating an accessible evidence of
past botnet activities and facilitating their analysis. Furthermore, the use of non-
standard transactions makes it easier to recognize botnet messages. To mitigate
this risk, the botmaster can limit their usage to only a part of the communications,
trying to make other messages more similar to regular transactions.

ENCRYPTION All communications in our protocol are encrypted. However,
if a bot is compromised, the adversary can learn both the botmaster public key
and the botnet key, enabling the monitoring of all the messages coming from the
botmaster. While this can help fighting the botnet activities, it does not prevent
other bots from receiving and executing commands, thus being irrelevant to their
operation.

52

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 53 — #69

To prevent this risk, the botmaster could encrypt and send messages individu-
ally for each bot. This would make the protocol more expensive and less scalable
but it might still be feasible if the botmaster were able to obtain coins at a fast rate.

SHARED ACCOUNT In case a bot is compromised an adversary can also learn
the private key of the shared account and try to drain all the funds, preventing new
bots from registering.

A possible solution for the botmaster would be to employ a backup registra-
tion system, such as an external channel where new bots can post their encrypted
registration message. To avoid disruption, the botmaster can regularly change it
and communicate the updated info via transaction1.

Another way the adversary can steal funds is to register fake bots to get the
corresponding coins sent by the botmaster. This would increase the cost of the
botnet and possibly make it infeasible to sustain. The botmaster, however, can
monitor and test bots to detect and ban misbehaving ones. As an additional pre-
caution, the botmaster could initially send a smaller amount of coins, and only
send more if the bot behaves as expected.

Another issue, related to the shared account, is that it allows to compute the
size of the botnet in terms of spent quotas. To mitigate this risk, the botmaster
could periodically spend quotas at a random rate. Although this would make the
system slightly more expensive, it would effectively conceal the real number of
bot registrations.

COUNTERMEASURES As previously mentioned, the non-standard nature of the
transactions used in our protocol allows to detect many of the botnet messages.
Additionally, if a bot is compromised, it is possible to monitor and decrypt all
messages from the botmaster. Furthermore, new bots can be prevented (or at least
hindered) from registering.

Nonetheless, blocking botnet communications is hard as they are embedded
into valid transactions. If a botnet is detected, messages coming from the botmas-
ter could be prevented from spreading. However, this would be in sheer contrast
with the anti-censorship principle at the base of the Bitcoin blockchain.

The most effective way to limit botnet communications would be to disallow
non-standard transactions. However, it is unclear how this would affect the regular
operations of Bitcoin developers.

1Note that bots are able to receive messages from the botmaster regardless of their registration
status.

53

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 54 — #70

4.6 Experimental Results
We created a PoC botnet that implements our protocol, and then, we simulated its
basic activities. In particular, we verified the ability to send, receive, execute and
reply to commands. We then calculated the necessary amounts of coins needed
for each type of transaction we use. Our results show that the proposed protocol
is both viable and sustainable.

4.6.1 Non-standard transactions and fees
As a preliminary step, we verified the ability to send non-standard transactions on
the network. We also tested the limits we could reach while still having transac-
tions relayed.

As stated in Section 4.2.2, non-standard transactions allow us to do the fol-
lowing:

• send OP RETURN outputs that are larger than 80 bytes,
• send repeated outputs, both OP RETURN and addresses,
• send dust outputs,
• send transactions larger than 100 kB.

We used Bitcoin Core v0.18.0 to perform our tests, patching its code to allow
creating transactions with repeated outputs (OP RETURN or address). All other
tests were possible without any modification.

For what concerns OP RETURN size, we successfully sent transactions car-
rying as much as 50 kB of data. All transactions got immediately relayed and,
after some time, mined. Although theoretically possible to send more, we were
not able to send transactions carrying more data due to a limitation on the size
of the argument that can be passed through the Linux command line2. As such
we were not able to verify the ability to send transactions bigger than 100kB.
However, we are confident this is actually possible, as this limit is not enforced
for non-standard transactions. Transactions with repeated outputs, both addresses
and OP RETURN , were also accepted and relayed by all peers. As for dust out-
puts, we successfully sent transactions with as little as 0 satoshis, having them
relayed and mined.

4.6.2 Proof of Concept
We implemented the C&C server with our patched version of Bitcoin Core, while
bots run an SPV node using bitcoinj, which did not need any modification to

2This is a known limitation of the Linux kernel; the actual argument size limit depends on the
stack size of the system [146].

54

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 55 — #71

use our protocol. Both bots and the C&C server run on a Linux operating system.

ENCRYPTION For asymmetric encryption and digital signature, we use RSA
with a 2048-bit key and OAEP padding, which generates outputs of 256 bytes.
This allows bots to send up to 214 bytes of encrypted data to the botmaster.

For symmetric encryption we use AES with 256-bit keys, using CRC block
mode and PKCS5 padding. This encryption mode requires a random 128-bit IV
(Initialization Vector), which is also needed for decryption. As the IV does not
need to be secret, we send it in clear along with the cyphertext.

FEES The default MRF value on Bitcoin Core clients is set to a value of 1000
satoshis (sats) per kB. However, with the introduction of the so-called Segregated
Witness (BIP141), transaction fees became dependent on what is known as virtual
size, which is a function of the actual transaction size 3. More specifically, the
current MRF is calculated as 1 sat/vB, where vB stands for virtual Byte.

In our implementation, we make use of the embedded functions of the clients
to calculate this value for each transaction.

TRANSACTIONS As stated in Section 4.4, we have the following types of trans-
action: quotas, registration, fundings, commands and responses. All transactions
in our protocol have only one input.

Quotas transactions have 11 outputs, corresponding to batches of 10 quotas
plus the change address. Each quota corresponds to the MRF of a registration
message.

Registration messages have a quota as the input and 1 OP RETURN output
containing the payload. The payload contains a 36-byte-long Testnet address and
a 32-byte-long AES key, encrypted with the public RSA key of the botmaster,
which generates an output of 256 bytes.

Fundings contain two outputs: the bot address, receiving the funds, and the
change address of the botmaster.

Commands and responses have 1 OP RETURN output, plus the change ad-
dress of the sender. Hardcoded commands have 3 bytes for the command plus the
arguments (e.g. a target). The payload is encrypted with AES, so their output size
corresponds to the size of the payload, padded to fit the block size (16 bytes), plus
the IV (16 bytes). So, for example, an instruction like dos www.domain.com,
which is 19-byte long, will have a data output of 32 bytes. Adding the IV we
have 48 bytes. The script command has the following format: scr TXID KEY,

3The virtual size v is computed as v = (w + 3·s)/4, where w is the size of the transaction and
s is the size of the corresponding base transaction (without the witness). In case of non-SegWit
transaction, the virtual size is the actual size.

55

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 56 — #72

where TXID is a 32-byte-long transaction ID and the key is a 32-byte AES key.
The corresponding IV is stored alongside the script itself.

COMMANDS We implemented the following commands: dos and stop as hard-
coded commands, lshw as shell command, and one script command called screen-
shot. After executing shell and script commands, bots convert the output to a hex
string and send it as a response message. To convert outputs into hex they use the
following command: $(CMD) | tr -d ’\n’ | xxd -r -p, where CMD
stands for the command they are executing. The dos command makes the bot
attack a specific target, which is sent as a parameter. The DoS attack is performed
using hping3 and can be interrupted by a stop command. This command has
no output. The lshw shell instruction makes the bot gather information about the
hardware of the infected machine. On our bot machine, this command generates
approximately 12 kB of data. The screenshot script is shown in Listing 4.1.

i m p o r t −window r o o t s c r e e n s h o t . png
c o n v e r t − q u a l i t y 5 s c r e e n s h o t . png s c r e e n s h o t . j p g
c a t s c r e e n s h o t . j p g

Listing 4.1: The screenshot script

This script takes a screenshot in PNG format, which is around 500 kB, then
compresses it to JPEG format, reducing its quality to fit into 50 kB of data. The
cat command dumps the content of the file to produce the output to send as a
response.

56

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 57 — #73

Chapter 5

NETWORK TOPOLOGY:
OPPORTUNITIES BEYOND THE
THREAT

In Section 3.3.2.7, we showed the arms race between the Bitcoin community, try-
ing to conceal the topology of the network for security purposes, and researchers
revealing methods to infer this information from side channels. In this chapter, we
try to answer two questions:

1. What is the actual risk of revealing the network topology?

2. Can we make this information available in a reliable and trustworthy way?

We address the first question by empirically studying all the known attacks men-
tioned in research as aided by topology inference. As for the second question,
we propose a viable protocol for inferring and monitoring the topology of the
reachable network.

5.1 Active Topology Monitoring for the Bitcoin Peer-
to-Peer Network

In Section 3.3.2, we described a variety of attacks on the Bitcoin P2P network,
such as partitioning [95], eclipse [103], and deanonymization [110, 105]. These
attacks are often mentioned as the main reasons that led developers to actively
conceal information on the network topology. More specifically, while nodes in
the network are publicly known [56], connections among them are are kept hid-
den.

57

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 58 — #74

This security-by-obscurity-like approach is meant to hinder adversaries from
performing the above-mentioned attacks. However, as showed in Section 3.3.2.7,
several techniques have been devised over the years that allow inferring the topol-
ogy from side channels [21, 114], or by exploiting peculiarities of the proto-
col [66]. Although Bitcoin developers promptly react by fixing the protocol to
make such techniques ineffective, it is hard to prevent attackers from using undis-
closed methods or devising new ones. On the other hand, a side effect of this
approach is that it impedes measurements and analyses of the network [21, 66],
as well as an accurate definition of network models [95, 147]. In turn, these lim-
itations hinder the improvement of the efficiency and security of the network. In
contrast, having a reliable source of topology information could enable the design
of a safer and more performing network.

In this chapter, we empirically show the limited effectiveness of topology con-
cealment as a protection from known network-level attacks. We argue that the
benefits of an open topology potentially outweigh its risks, and propose a proto-
col to reliably infer and monitor links among reachable nodes of the network.

We analyze the potential impact of our protocol on the Bitcoin network and
experimentally evaluate its performance in a simulated environment, as well as its
resilience to malicious nodes. Results show that our system has little impact on
the network and can reach over 90% accuracy while being resilient up to a 30%
of malicious nodes. Furthermore, although designed for Bitcoin, our solution can
be implemented on any P2P network.

The contributions of this chapter include:

• we study the potential benefits of an open network topology for the Bitcoin
P2P network;

• we show that most attacks mentioned in literature as related to topology
information are actually independent from such knowledge;

• we design a simple protocol to prove the connection between two peers, and
based on that, we propose a system to compute and monitor the complete
network topology;

• we implement a proof of concept and evaluate the accuracy of our solution
through simulations.

5.2 On the Open Topology

In this section we investigate on the threats and benefits of an open Bitcoin topol-
ogy. In particular, we review state-of-the-art research to analyze the actual risks
related to the knowledge of the topology and to highlight the advantages of mak-
ing this information public.

58

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 59 — #75

5.2.1 Threats of Open Topology

As described in Section 3.3.2.7, the main reason to keep the topology hidden is
to avoid the risk of network-level attacks and deanonymization [21, 148, 66]. We
here analyze known threats and evaluate their relation to topology knowledge.

5.2.1.1 Network-level attacks

Network attacks commonly related to topology information include double spend-
ing, selfish mining, partitioning, and eclipse attacks.

DOUBLE SPENDING ATTACKS Double spending in fast payment transactions
(see Section 3.3.2.2) was one of the first attacks correlated with topology. In
particular, the work by Karame et al. [93] is often cited as a reference. However,
the attack described does not make use of any topological information beyond
the IP address of the victim, which is publicly available. On the other side, the
probability of success decreases exponentially in the number of connections of
the victim. As such, by monitoring the network topology, we could make nodes
cooperate to ensure all peers have a sufficient number of connections.

Knowledge of the topology might indeed ease the attack when the victim is
only connected to few, reachable, peers [112]. However, this situation is typical of
unreachable nodes, which are out of the scope of our protocol. Furthermore, the
time frame in which this attack can succeed is so short that the victim only needs
to wait a couple of seconds to be safe. Additionally, the improvements made in
the network propagation delays [149] likely made this frame even shorter.

MINING ATTACKS Mining attacks (see Section 3.3.1.1) could also benefit from
the knowledge of the topology. In particular, miners could take advantage of net-
work information to improve the propagation of their own blocks or to slow down
competing ones [21, 83]. However, this is true if only a fraction of miners have
such knowledge. Instead, if all miners had access to topology information, they
could all leverage highly connected nodes to speed up block propagation, with no
advantage of one over the other. Additionally, nowadays, miners often connect
to each other through high-speed relay networks (see Section 3.2.1), which are
separate from the main network.

PARTITIONING ATTACKS Partitioning attacks (see Section 3.3.2.3) are also a
commonly cited as concern. In fact, knowing the topology, an attacker could
easily identify target cuts in the network. However, the reference study on the
topic [95] shows how the network can resist attacks lasting several hours even

59

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 60 — #76

against a powerful adversary controlling a botnet as large as the Bitcoin network
itself.

Either way, since our protocol only focuses on reachable nodes, the attacker
could not calculate a full cut of the network. In fact, all unreachable nodes would
be missing, which, given their large number, would likely keep any two partitions
connected. For instance, let us consider a public topology containing a cut C
between portions P1 and P2 of the network. By looking at it the attacker might
think that taking down C, P1 and P2 would be disconnected (i.e., partitioned);
however, the attacker does not see any of the unreachable nodes that might be
connected to both P1 and P2.

Furthermore, active monitoring the network graph would also have a twofold
benefit. On the one hand, it would allow to detect these attacks in real time, and
promptly react. On the other hand, using an adaptive, topology-aware protocol, it
would be possible to maximize the number of nodes in the minimum vertex cut to
increase the resilience of the network.

ECLIPSE ATTACKS Another attack typically mentioned as related to network
topology is the eclipse attack (see Section 3.3.2.5). However, despite being cited
by virtually all state-of-the-art papers as one of the attacks that justifies hiding
the topology, the eclipse attack does not make use of any topology information.
Instead, the only information needed to perform the attack is the IP address of
the victim. In fact, this attack is mostly related to address management and the
mechanism used to establish new connections. Furthermore, a number of defen-
sive mechanisms have been introduced in the Bitcoin reference client to avoid
such attacks1. Additionally, miners further protect themselves by running highly-
connected gateway nodes [21] and propagating blocks via relay networks.

5.2.1.2 Deanonymization

The second major concern commonly linked to the knowledge of the network
topology is transaction anonymity. However, as showed in Section 3.3.2.6, al-
though it might improve the heuristics used to link transactions to their source
node, topology information is hardly a requirement to deanonymize a transaction.
The only exception to this is [110], where unreachable nodes are deanonymized
by identifying the set of their peers. Note however that such a technique does
not work in the current protocol. Either way, our protocol does not reveal the
connections of unreachable nodes, and is thus irrelevant in this case.

A part from the above-mentioned workd, none of the state-of-the-art tech-
niques use topology information, proving how these attacks are loosely related to

1For instance, see https://github.com/bitcoin/bitcoin/blob/v0.10.1/doc/release-notes.md .

60

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 61 — #77

it. Instead, as pointed out by Fanti et al. [150], the problem with anonymity lies in
the transaction propagation algorithm, and should be addressed by adopting alter-
native approaches, like [25, 109] (we also contribute in this respect by proposing
alternative propagation protocols in Chapter 6 and Chapter 7).

5.2.2 Benefits of Open Topology

The relevance of the topology for blockchain networks has been clearly shown by
state-of-the-art research.

Kiayais et al. [151] show how the efficiency of information propagation is di-
rectly influenced by the network topology. Propagation delay can also be greatly
affected by the number of connections that nodes have [152]. Furthermore, all
unstructured P2P networks, like blockchain ones, are known to suffer from the
so-called topology mismatch problem (i.e., the incoherence between logical and
physical links), which causes inefficiency in the transmission of data [153, 154].
As for security, it has been shown how the Bitcoin network topology is far from
being a random graph as designed (see Section 3.1), presenting nodes communi-
ties [66] and high levels of centralization [21]. Knowledge of the network topol-
ogy can also improve the propagation of transactions and blocks, which in turn
reduces the ability of performing double spending and selfish mining [155] (see
Section 3.3). All these aspects could be addressed in real time if nodes had access
to topology information.

On the other hand, as stated by Delgado et al. [66], hiding the topology pre-
vents network analysis and measurement, further complicating the solution of ex-
isting issues. Similarly, Miller et al. [21] point out that understanding topology
allows identifying structural faults in the network that might hinder broadcast op-
timization, and support the idea that monitoring the network can help quickly
detect and react to attacks and mistakes. Authors of [156] also state it is crucial
to acquire the knowledge of topology to accurately manage the network, optimize
its performances, and ensure that it works well.

Monitoring the network topology could allow the introduction of mechanisms
to avoid centralization and increase connectivity among nodes, as well as to detect
weak spots that can be exploited to perform network-level attacks. With this work,
we aim at taking a first step towards this direction. We do this by showing that an
open topology should not be considered a security concern, and by proposing an
effective protocol to reliably monitor the state of the network. In particular, we
focus on reachable nodes, as they represent the core of the whole network.

61

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 62 — #78

5.3 Related Work
To the best of our knowledge, there are no known algorithms for discovering the
topology of a P2P network. While this might seem surprising, a possible expla-
nation resides in the fact that topology information is not as relevant in other P2P
networks as it is for cryptocurrencies, where network attacks might lead to mone-
tary profit. In fact, it has been shown that cryptocurrencies face different security
issues compared to other P2P networks [10].

The closest-related works are on location-aware topology studies [157, 158]
and routing protocols [159, 160]. The first group aims at improving propagation
efficiency by leveraging geographical information. In particular, they have nodes
choose their peers based on geographical proximity. The second group deals with
search and retrieval of information within the network (as unlike blockchains,
information is not duplicated by all nodes). However, none ot these works pro-
vide means for obtaining information on the global topology. Most notably, the
only known topology-inferring techniques are those aimed at the Bitcoin network,
which we described in Section 3.3.2.7.

As common denominator, all such techniques focus on the reachable part, re-
quire the adversary to connect to the whole network, and infer link by observing
data propagation either in a passive way or by actively introducing marker mes-
sages. In the next section, we will leverage these concepts to design our topology-
inferring protocol.

5.4 The AToM Protocol
We propose a dynamic topology monitoring algorithm for the Bitcoin P2P net-
work called AToM (Active Topology Monitor). In this section, we give an over-
view of our topology-computation protocol and explain its operating principles.
We then go through the design choices that led to our dynamic and secure monitor.

5.4.1 Overview
Our view of the Bitcoin network is depicted in Figure 5.1: monitor nodes connect
to all reachable nodes in the network, and run the protocol to compute and main-
tain a continuously up-to-date state of the topology. We assume monitors know
all public nodes by running a crawler, or, alternatively, by having nodes register
themselves when joining the network.

SCOPE Monitors only watch over the reachable part of the network. Several
reasons motivate this choice. First of all, as shown in Section 3.1, reachable nodes

62

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 63 — #79

M

Unreachable

network

Reachable

network
N1

N2

N5

N6N4

N3

U2

U3

U4

U5

U1

Figure 5.1: Our scenario: monitor nodes (M), connect to all reachable nodes (N),
excluding unreachable ones (U).

constitutes the backbone of the network, since they maintain the greatest majority
of connections and are involved in most data propagation. This makes the reach-
able part of the network arguably the most important to protect and optimize.

From a practical point of view, this part is also more convenient to monitor,
as it is much smaller than the unreachable one [22], and its nodes show more sta-
bility in terms of number and connections [56, 161]. On the other hand, it is also
harder to include unreachable nodes in the protocol. In fact, since such nodes do
not have a public address, monitors cannot connect to them and, additionally, are
not be able to uniquely identify them, thus making it hard to ensure they do not
misbehave. Additionally, as unreachable nodes only connect to reachable nodes,
they could compute their own topology by retrieving the public part from a mon-
itor and adding their connections. This way, they would be able to autonomously
decide the best peers to connect to.

Given the above, this restriction should be considered a feature of the protocol,
rather than a limitation. In the rest of the paper, when talking about nodes, we will
always refer to reachable ones.

APPROACH Similarly to some topology-inferring techniques described in Sec-
tion 5.3, monitors in our solution connect to all nodes and leverage markers to
prove connections. In order to minimize the overhead, we focus on outbound
connections. It is easy to see that verifying outbound connections for every node
means verifying all connections in the network: inbound connections are just the
symmetric view of outbound connections. Furthermore, this approach allows us
to limit our view to reachable nodes without being affected by the presence of
unreachable ones in the network. In fact, by probing reachable nodes only and

63

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 64 — #80

1

2

3

A B
marker

M

markermarker

Figure 5.2: PoC overview: a monitor M verifies A→B by sending a marker
message to A and receiving it from B. Red arrows show the route of the marker.

monitoring their outbound connections, it is easy to see that no unreachable node
can possibly be involved in the inferred topology.

To verify a connection, monitors have a unique marker message go through it,
so as to prove the two nodes actually communicate. By making the marker random
and unpredictable, monitors ensure the only way a node can know it, is to have
received it from the peer to which it was originally sent. Differently from inferring
techniques, which typically make use of side channels, we have node actively
participate in the protocol. This makes the result more reliable, but presents a
downside: if nodes misbehave, because faulty or malicious, it is hard to prove or
disprove a connection without making use of trusted solutions like certificates or
trusted execution environments. We address this by assuming nodes have a list
of semi-trusted monitors, which are well-known (and thus partially trusted) nodes
in the network that can potentially misbehave. This means not any node of the
network can act as a monitor. Instead, this should be agreed on by the Bitcoin
community. At a practical level, this can be obtained by leveraging existing semi-
trusted entities of the Bitcoin network, such as the hardcoded list of peers in the
reference client [12], or the DNS servers used for node bootstrapping.

5.4.2 Design

At a high level, the monitor computes the topology of the network by running, for
each node, a protocol called Proof of Connection (PoC).

The PoC protocol for a target node N and a monitor M , and works this way:
(1) M sends N a marker message, containing a random value r; (2) N forwards
the marker to its outbound peers P1, P2, ...; (3) each peer Pi forwards the marker
back to M ; (5) when M receives a marker from Pi, it checks r and, if correct,
adds the connection N→P to the topology.

64

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 65 — #81

We call a single execution of this protocol a PoC round. Figure 5.2 depicts a
PoC round verifying the connection of a connection A→B.

HANDLING NETWORK CHANGES By running a PoC round for every node we
obtain a snapshot of the full network topology. However, since changes in the
network can occur at any time, this snapshot can contain errors, making it an ap-
proximation of the actual topology. The relative stability of the reachable network
makes the number of errors in a single snapshot very limited. In fact, all known
topology-inferring techniques implicitly make the same kind of approximation.
Nonetheless, to monitor the network, we need to keep this snapshot up to date
over time.

The easiest way to do it is to repeat the network scan at a certain frequency so
as to always have an updated snapshot. However, there are a few limitations with
this approach. Firstly, short-lived connections established within two consecutive
scans would remain undetected. This can be exploited by an adversary to com-
pletely hide a node from the monitor. In the second place, setting a scan frequency
for the whole network will hardly adapt to all nodes, as each one will experience
changes at different rates and times. This can affect both efficiency and accuracy.

Therefore, instead of repeatedly scan the network, we adopt a continuous-
monitoring approach, where each node is scanned individually at a certain fre-
quency, which is dynamically adjusted according to the stability of its connections
(i.e., the number of changes per unit of time). This way, highly dynamic nodes
are scanned at a higher rate than stable ones. This allows us to improve accuracy,
as the scanning process adapts to the variability of single nodes, and reduce the
impact on the network, as protocol messages are not exchanged all at once, but
spread over time.

HANDLING MISBEHAVING NODES Misbehaving nodes can deviate from pro-
tocol, either accidentally (if faulty) or intentionally (if malicious), and produce
errors in the result. While faulty nodes do not behave consistently, adversary-
controlled ones, can act to deceive a monitor. As such, we will focus on malicious
nodes, although the proposed solutions work for all misbehaving nodes.

We consider an adversary that control an arbitrary number of nodes in the net-
work. With respect to our protocol, this adversary can have three possible goals:
to hide a node, to hide a connection, or to fake one. In order to hide a node, this
should refuse all connections from the monitors. However, monitors can be easily
bypass this limitation, by connecting from a different address. Consequently, the
only way for a node to hide is to reject all inbound connections. Nonetheless, this
behavior would make the node unreachable, thus falling out of the scope of our
protocol.

65

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 66 — #82

As for the other two objectives, the adversary can use one or multiple nodes.
Note that a pair of cooperating nodes can easily hide a connection among each
other, or fake one by using external channels or other malicious nodes. This is
virtually impossible to avoid, as we cannot prevent malicious nodes from cooper-
ating. Nonetheless, the usefulness of these attacks for the adversary appears to be
limited. We then focus on the cases where at least one node is honest.

When deviating from the protocol, malicious nodes can: (1) forward a marker
to an inbound peer; (2) forward a marker to a node that is not a direct peer, through
another malicious node; (3) resend a valid marker used in a previous PoC round
(replay attack); (4) tamper with a marker; (5) drop a marker received from the
monitor (for one or more peers); (6) drop a marker received from a peer.

Case (1) is easily solved by having honest nodes accept markers from inbound
peers only. Case (2) would make an honest node send a marker to the monitor
despite not being a peer of the target, resulting in the monitor inferring a wrong
connection. We address this by including in the marker the identity of the target
(i.e. its address) and by making honest nodes accept markers only when they come
from the expected source. Replay attacks (case 3) can be used to fake a previously-
existing connection. We exclude this possibility by having monitors accept only
markers of the current PoC round, for which the random value r acts as identifier.
In case (4), any modification to the marker would result in the monitor deeming
the marker invalid. As such, this case is equivalent to dropping the message.

In cases (5) and (6), the attacker can successfully hide a connection from the
monitor. As we cannot prevent a malicious node from dropping a message, we
introduce a peer reputation system. Specifically, we make monitors send to each
node the list of its verified peers at the end of each PoC round. Honest nodes use
such lists to feed a reputation system for their peers. If the reputation for a peer
goes beyond a certain threshold, it gets disconnected.

This mechanism has a twofold effect. On one side, it discourages malicious
nodes with the risk of being disconnected. On the other, it allows us to fix the
error in the snapshot computed by the affected monitor. In fact, while the snapshot
is initially incorrect, for excluding an existing connection, it becomes consistent
when the connection ceases to exist. We refer to this phenomenon as eventual
consistency.

HANDLING MAN-IN-THE-MIDDLE ATTACKS As connections in Bitcoin are
unencrypted, it is possible for an adversary to hijack them. This adversary can
drop, modify, and forge messages. We eliminate the risk of forgery and modifi-
cation by including in the marker the digital signature of the monitor. With this
change, all the attacker can do is to cause a connection to be dropped (by dropping
or tampering with markers), i.e. a DoS attack. Although this can be a threat, it

66

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 67 — #83

is worth noting that it is not desirable for the attacker to lose the connection he
controls. At the same time, it is desirable for the victim to drop a connection that
has been hijacked. As such, we believe the risk of such an attack is low.

5.4.2.1 Protocol Procedures

In this section, we detail the PoC protocol and use it to build our Active Topology
Monitoring (AToM) algorithm. We describe our solution in terms of the proce-
dures executed by nodes and monitors.

NOTATION We denote a generic node by N=addrN , where addrN is the IP
address accepting incoming connections. We indicate a peer as P=(addrP , out),
where out is true if P is an outbound peer, and false if it is an inbound peer. We
denote an outbound connection from N to P with N→P .

We represent the network as a directed graphG=(V,E), where V={N1, ..., Nl}
and E={(N,P) : N→P}. Finally, we use M to denote the monitor running the
protocol, and GM=(VM , EM) to indicate its local topology snapshot.

PROTOCOL MESSAGES We introduce the following new messages:

• marker = (target,monitor,value): sent by a monitor M to a
node N , with target = N , monitor =M and a random value;

• verified = (Ln): sent by a monitor M to a node N , where LN is the
list of currently verified peers of N .

THE POC PROTOCOL To run the PoC protocol, monitors execute the PoC
procedure, shown in Algorithm 1. This procedure generates a random number r
and sends N a marker message with the following payload:

marker := (target:N,monitor:M,value:r)

. A timeout t is set to wait for incoming markers from other nodes. This is needed
to avoid indefinite waits and to mark the end of the PoC round. When marker is
received back from P , it is checked against the one sent to N . If it matches, P is
added to the list of verified peers of N , LN . When the timeout t expires, the PoC
round ends, and the procedure outputs LN .

Upom receiving a marker message, nodes execute the HandleMarker pro-
cedure, shown in Algorithm 2. This procedure first checks the source of the mes-
sage (pfrom): if pfrom is the monitor M , marker is forwarded to all outbound
peers; if pfrom is an inbound peer and corresponds to the target N , marker is
sent back to M .

67

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 68 — #84

Algorithm 1 PoC
PoC(N):
1: r← rand()
2: marker = (N,M,r)
3: send(N, marker)
4: t← getT imeout(N)
5: while (now < t) do:
6: receive(P, marker)
7: if (marker == (N,M,r)):
8: LN := LN ∪ {P}
9: output LN

Algorithm 2 HandleMarker
Env: L = {P : P.out = true}

HandleMarker(pfrom,marker) :
1: (N,M,r) = marker
2: if (pfrom == M):
3: for each P in L do:
4: send(P, marker)
5: if (pfrom == N):
6: if (pfrom.out == false):
7: send(M, marker)

THE ATOM PROCEDURES To build and maintain a snapshot of the topology
(GM), monitors run the AToM procedure, shown in Algorithm 3. This executes a
loop for each node N . At each iteration, the PoC procedure is run, and the output
LN is used to update the snapshot GM (updateTopology()). The verified
message is then sent to N with the list of the verified peers, that is LN plus all
known inbound peers verified by other PoC procedures (getPeers()). Note that
peer lists do not change between PoC rounds, which means that a connection stays
in GM until a PoC execution fails to verify it.

Before waiting for the next PoC round, the scan frequency is adjusted by
adjustFrequency(). This function maintains a counter which is increased for
every round with changes and decreased for every round without changes. If the
counter goes over or below a certain threshold, the scan frequency is increased or
decreased, respectively. This mechanism allows our system to be more resilient
to sudden and isolated pikes in the peer set. Once the frequency is adjusted, the
loop waits until the next PoC round.

If N disconnects, it is removed from VM , and all its connections are removed
from EM (removeNode()). Again, we assume new nodes are automatically con-
nected to M and added to VM . When this happens, the corresponding PoC round
loop is executed.

THE PEER REPUTATION SYSTEM When nodes receive the verified mes-
sage, they process it by running the HandleV erified procedure, shown in Algo-
rithm 4.

For every peer, a per-monitor reputation is maintained, called M-reputation
(rep[M]). The M-reputation ranges from 0 to a value Max, which is set when
the node starts. The total peer reputation repP is obtained by summing all M-
reputation values. If repP goes below a threshold Thr, P is disconnected. At
the beginning of a connection, the M-reputation is set to Max for all monitors,
which means the initial reputation of a peer is Max·NumM , where NumM is the

68

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 69 — #85

Algorithm 3 AToM procedure
Env: GM = (VM , EM)

AToM():
1: for each N in VM :
2: while (isOnline(N)) do:
3: LN ← PoC(N)
4: updateTopology(EM , LN)
5: verified = getPeers(N,EM)
6: send(N, verified)
7: adjustFrequency(N,LN)
8: waitNext(N.freq)
9: done

10: remove(N)

Algorithm 4 HandleVerified
Env: L, Max<Thr<=Max·NumM

HandleV erified(M,verified) :
1: LN = verified
2: for each P in L do:
3: if P in LN :
4: P.rep[M] = Max
5: else:
6: P.rep[M]−−

7: repP ← sum(P.rep[])
8: if (repP < Thr)
9: disconnect(P)

10: done

number of monitors. When HandleV erified is executed, each peer is checked
against the list LN contained in verified. If a peer P is not in LN , its M-
reputation is decreased by 1. Conversely, if P is verified, its M-reputation is
restored to Max.

The value of Thr must be betweenMax andMax·NumM . This means P has
to be verified by at least one monitor to be considered honest. However, it is pos-
sible to adjust the system to a target level of security and resiliency. For instance,
if Thr=Max·NumM , P is disconnected even if one monitor does not confirm it.
However, by setting Thr=Max·NumM/2, we trust a peer if confirmed by half
of the monitors. Similarly, we can set Max to allow a target number of failed
rounds. For instance, with Max = 2 we allow peers to temporarily disconnect
from all monitors during one round or, equivalently, to disconnect from half mon-
itors during two rounds without being disconnected. This can be used to handle
disconnections and delays.

Finally, we consider as a full, trusted snapshot of the topology, the union of
the current snapshots of all monitors. Formally, we consider

GAToM =

NumM⋃
i=1

GM .

5.5 Analysis

In this section, we study the correctness and accuracy of our protocol, both in an
honest setting and in the presence of misbehaving nodes. Finally, we analyze the
overhead for participating nodes in terms of the number of messages exchanged.

69

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 70 — #86

5.5.1 Correctness
It is relatively straightforward to show the correctness of the PoC and AToM al-
gorithms in a trusted environment. In particular, we can easily prove that if a
connection N→P exists, than it is added to the topology snapshot EM within a
finite amount of time.

We consider a network G=(V,E), and a monitor M . Without loss of gener-
ality, we assume M∈V and (M,N)∈E for every N in V , but do not show them
in G. As M is not included in GM , this does not affect our analysis. We analyze
PoC and AToM by means of Algorithm 1 and 3, respectively.

POC We prove that if a connection N→P exists, then P will be in the peers list
of N (LN) at the end of the procedure.

We give a formal proof for a network G=(V,E), and two nodes N,P in V .

Theorem 1. If (N,P)∈E, then PoC(N) outputs LN , such that P∈LN .

Proof. Let us assume (N,P)∈E, M executes PoC(N), and N and P execute
HandleMarker().

The following sequence of events happens:
(1) M runs PoC(N) and creates marker=(N,M, r); (2) M sends marker to
N ; (2) N receives marker from M ; (3) as pfrom= M , N sends marker to
every outbound peer, which by assumption, includes P ; (4) P receives marker
from N ; (5) as pfrom= N , P sends marker to M ; (6) M receives marker
from P ; (7) as marker=(N,M, r), M adds P to LN .

ATOM We prove that if a connection N→P exists in G, than it is added to the
snapshot GM by the procedure.

Theorem 2. If (N,P)∈E then AToM(V) will add (N,P) to EM .

Proof. The proof is trivial: since PoC() is executed for all nodes in V , this in-
cludes PoC(N). As (N,P)∈E, by Theorem 1, PoC(N) outputs LN , such that
P∈LN . Consequently, updateTopology(EM , LN) will add (N,P) to EM .

5.5.2 Security
In this section, we show how the snapshot GAToM computed by a monitor is guar-
anteed to be correct even in the presence of misbehaving nodes. We refer to the
malicious behaviors listed in Section 5.4.2.

We consider a malicious node N and an honest peer P . For cases (1) to (3),
we show that (N,P)∈EM only if (N,P)∈E. For cases (4) to (6), we show that a

70

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 71 — #87

mismatch betweenE andEAToM can only occur for a limited time frame (eventual
consistency).

Case (1): let us assume N sends a marker message to an inbound peer P ;
since pfrom.out is true, P does not send marker to M , which then does not
add (N,P) to EM .

Case (2): let us assume N sends, through other nodes, the marker to non-
peer node P ; as pfrom is different from N , P does not send marker to M ,
which then does not add (N,P) to EM .

Case (3): let us assume N sends a marker received in a previous round; as
value changes at every round, M does not consider it valid for this round and
then does not add (N,P) to EM .

Cases (4),(5) and (6): let us assume N modifies or drops a marker message
for a connection (N,P) (the case in which P is malicious is symmetric); in this
case, M does not add (N,P) to EM . Consequently, N is not included in the
verified message sent to P at the end of the PoC round, making P decreas-
ing repN . Now, two cases are possible: either N lets at least one monitor verify
(N,P), or it hides it from all monitors. In the first case, there is at least one M for
which (N,P)∈EM , which implies (N,P)∈EAToM . In the latter case, the follow-
ing happens: as repN is initially set to Max·NumM , and Thr < Max·NumM ,
after a finite number of PoC rounds, repN will be less than Thr, and then N will
be disconnected from P . When this happens, (N,P)/∈E and (N,P)/∈EAToM . In
both cases, the snapshot GAToM becomes correct after a finite number of rounds,
either by verifying (N,P) and adding it to EAToM , or by having (N,P) removed
from G.

5.5.3 Accuracy
In this section, we discuss the accuracy of AToM in a dynamic network.

As previously discussed, changes in the network can produce a mismatch be-
tween the local snapshot GM and the real topology G. In particular, at any time,
one of the following changes can occur: (1) a new node N joins the network
(V := V ∪ {N}), (2) a node N leaves the network (V := V − {N}), (3) a new
connection N→P is formed (E := E ∪ {(N,P)}), (4) a connection N→P is
closed (E := E − {(N,P)}).

Note that case (1) implies case (3), since, by definition, a node with no con-
nections is not part of the network. Similarly, case (2) implies case (4) for all the
connections of the disconnected node. As such, without loss of generality, we can
focus on cases (3) and (4).

For both cases, if the change involves an outbound connection of N and it
occurs before executing PoC(N), it is trivial to show that such change will be
reflected in the result. Similarly, if a connection N→P is closed during the ex-

71

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 72 — #88

ecution of PoC(N), M will not receive marker, and correctly exclude (N,P)
from EM . Given the above, two cases produce a mismatch: (1) when a connec-
tion N→P is dropped after PoC(N) completes: in this case, we have a false pos-
itive ((N,P)∈EM but (N,P)/∈E); (2) when a connection N→P is established
after PoC(N) has started: in this case we have false negative ((N,P)∈E but
(N,P)/∈EM). As both mismatches are solved at the next execution of PoC(N),
we can say that errors in EM for each connection (N,P) in E are limited to the
time frame between two consecutive executions of PoC(N), which depends on
the scan frequency for N . As such, it is possible to reduce errors for a node by
reducing its scan frequency. In that respect, the adaptiveness of AToM (set via the
variable adjustFrequency) is meant to balance the error rate with the scalability
of the protocol by reducing the mentioned time frame for nodes showing faster
changes in their topology.

Note that the variability of the Bitcoin network with regard to reachable nodes
is relatively low, with an average of 3 changes per minute2. This allows a monitor
to obtain highly accurate snapshots even at low monitoring frequencies.

5.5.4 Overhead
In this section, we analyze the impact of AToM in terms of number of messages.
In particular, we calculate the average number of messages exchanged by a single
node in a complete PoC round, by which we mean the execution of PoC for all its
peers, both inbound and outbound.

During a complete round, nodes receive, from each monitor, a marker, which
is sent to all outbound peers, plus a verified message. Additionally, they re-
ceive a marker from each inbound peer, which is sent to the monitor. As such,
for a complete round, MsgM=(Po + 2·Pi + 1) messages per monitor are ex-
changed, where Po and Pi are the number of outbound and inbound peers, respec-
tively.

As, on average, Bitcoin nodes experience around one change per hour in their
outbound connections [161], monitors will need to run, for each node, approx-
imately one PoC round per hour. Hence, each node will exchange, for each
monitor, around MsgM messages per hour. As mentioned in Section 2.3.1.1,
connections for a node are usually limited 8 outbound and 117 inbound. Al-
though, this value can actually be diverse in real life, with most nodes never
reaching the limit [16, 66] and few others exceeding this number [21], we can
set Po=8 and Pi=117 as average values. As such, a node would exchange around
Po + 2·Pi = 8 + 2·117 + 1 = 243 messages per hour, for each monitor.

If we run, for instance, 10 monitors, each node would exchange around 2430

2This value has been obtained from data available on Bitnodes [56]

72

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 73 — #89

extra messages per hour, that is, less than 1 message per second. Following the
same reasoning, we could run as many as 50 monitors with only 3 extra messages
per second for each node. Considering a Bitcoin node currently exchanges around
50 messages per second [162], we can say AToM has relatively little impact on
nodes. Moreover, this can be further adjusted to reach the best compromise be-
tween accuracy and overhead.

5.6 Experimental Results

To evaluate our solution, we implemented a proof of concept and performed ex-
periments in a simulated environment. We here give details and show the results
of our experiments.

5.6.1 Proof of Concept
We implemented AToM using Bitcoin Core. Since inbound peers are assigned a
random port, it is impossible to distinguish two different nodes connecting from
the same IP. As such, we identify nodes by their IP address only, limiting our
compatibility to 1 node per IP address. Considering that virtually all public nodes
run from a different IP, we consider this a minor issue.

The average PoC round frequency (f) is adjusted as follows: after 3 consecu-
tive PoC rounds with changes, f is increased by 1 second; after 3 consecutive PoC
rounds without changes, f is decreased by 1 second. The PoC round scheduling is
randomized following a Poisson distribution over f . This further spread messages
over time and also makes it harder for an adversary to predict PoC round timings,
thus reducing its ability to hide a connection. The PoC round timeout was set at
the beginning of the next round, making a marker valid until a new one is created.
As for the reputation system, Max was set to 10, and Thr to Max·NumM/2.

We also implemented malicious nodes that deviate from the protocol to hide
existing connections and fake non-existing ones. In particular, all markers re-
ceived from honest peers are dropped, thus concealing the connection from the
monitor. On the other hand, when a marker is received from the monitor it is only
forwarded to other malicious nodes, which, in turn, forward it to the monitor, thus
making it infer a wrong connection. Note that such a behavior corresponds to the
worst-case scenario for our protocol.

5.6.2 Evaluation
We simulated a small-scale Bitcoin network with 4 monitors and 50 nodes, ran-
domly connected to each other. Each node establishes at least 3 outbound con-

73

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 74 — #90

0 10 20 30

Malicious nodes (%)

75

80

85

90

95

100

A
c
c
u
ra

c
y
 (

%
)

3 secs

5 secs

7 secs

Figure 5.3: AToM accuracy for a network with variability of 3, 5, and 7 seconds.

nections to random peers of the network. Changes in the network (i.e., nodes
connecting/disconnecting) happen with a predefined average frequency, referred
to as network variability. To cope with the scale of the simulation, we use a higher
variability than the real Bitcoin network (see Section 5.5.3). In particular, we per-
formed three series of experiments, setting the variability at 3, 5, and 7 seconds.
These values were chosen to be respectively lower, equal, and higher than the
default AToM scan frequency, which was set to 5 seconds.

In each series, we performed 4 runs, varying the percentage of malicious nodes
in the network, from 0% (i.e., with all honest nodes), to 30%. Each simulation
has been run for 5 minutes, probing monitors every 10 seconds. Accuracy was
calculated as the percentage of correct links in the snapshot against the ground-
truth topology (both incorrect and missing connections were counted).

Results are shown in Figure 5.3. In a fully honest setting, accuracy is around
97%, independently from the network variability, showing that AToM well adapts
to changes in the network. As expected, the presence of malicious nodes affects
accuracy, especially with higher variability values. Nonetheless, when the vari-
ability is lower than the default scan frequency, we obtained over 90% accuracy,
even with 30% of malicious nodes. This shows our monitor is highly resilient to
misbehaving nodes as long as its scan frequency is close to the network variability.
Furthermore, in any of our experiment accuracy went below 80%.

Note that results with high concentrations of malicious nodes (20% and 30%)
are somewhat incoherent. We attribute this phenomenon to the fact that such
nodes were randomly connected to each other, thus introducing a certain level of
unpredictability.

74

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 75 — #91

Chapter 6

UNREACHABLE NODES:
THE INVISIBLE BEDROCK OF
BLOCKCHAIN NETWORKS

In Section 2.2.3.2, we saw that unreachable nodes are different from other nodes
in that they only maintain outbound connections (see Section 2.3.1.1). In Sec-
tion 3.1, we also saw that these nodes constitute the 90% of the whole Bitcoin
P2P network. However, most research focuses exclusively on reachable nodes,
which are considered more influential and thus more worthy of being studied.

In this chapter, we study the importance of unreachable nodes with special
regard to the propagation of messages. In particular, we show how increasing the
participation of these node can be beneficial to the whole network. We propose
minor protocol changes targeting unreachable nodes, which can improve the ef-
ficiency of data propagation. Furthermore, we propose a novel transaction relay
protocol that leverages unreachable nodes to improve anonymity.

6.1 Improving Bitcoin Transaction Propagation by
Leveraging Unreachable Nodes

Many works in the literature studied the characteristics, efficiency and security of
the Bitcoin network by focusing exclusively on its reachable portion [64, 21, 147,
163]. It is implicitly assumed that reachable nodes are more important for the
connectivity of the network. Indeed, as noted in [18], these nodes are essentials in
a permissionless blockchain like Bitcoin as they allow anyone to join the system.
In particular, the number of reachable nodes is an indicator of the openness of the
network. Moreover, given the centrality of these nodes in the topology, they are
likely to be a core element of data propagation.

75

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 76 — #92

For all these reasons, the importance of the reachable part of the network is
sufficient to not question the validity of the results obtained in the literature. Nev-
ertheless, this portion only accounts for 10% of the whole network. As such, it is
undeniable that unreachable nodes are somewhat overlooked, and that the sheer
number of such nodes should be an indicator of their relevance in the network.

In this chapter, we analyze the role of unreachable nodes in the propagation
of messages and show how their participation can be beneficial to the network. In
particular, we study the characteristics of these nodes, as emerged from state-of-
the-art research, and identify some of their strengths and weaknesses compared to
reachable nodes. We then propose changes to the protocol to improve the connec-
tivity of the network and the efficiency of message propagation.

Additionally, we show that unreachable nodes are inherently protected from
a certain type of adversaries. Based on this characteristic, we design ReAP, a
novel transaction propagation protocol that potentially improves security against
deanonymization attacks. Our solution explicitly involves unreachable nodes in
the propagation pattern and exploits their position in the network to conceal the
source of the message. We thoroughly justify our design choices and study the se-
curity of our protocol against an eavesdropper adversary [150]. Our solutions are
simple to implement and can effectively bring immediate benefits to the Bitcoin
network.

6.2 Unreachable Nodes in the Bitcoin Network

In the Bitcoin literature, reachable and unreachable nodes are often named servers
and clients, respectively. This naming recalls the ability of ones to accept connec-
tions and the fact that the others connect to them. However, as nodes of the same
P2P network, there is no actual client-server relationship among them. Moreover,
there is no distinction between the two types of nodes in the Bitcoin protocol.
A more precise classification, commonly used in other P2P-related papers, dis-
tinguishes between routable and non-routable peers, and calls unreachable those
peers that are routable but cannot be contacted (e.g., because they are offline or
only accept connections from known peers) [65, 164]. In this thesis, we use the
terms reachable and unreachable to indicate routable and non-routable. Further-
more, in this chapter, we will also denote reachable and unreachable nodes by R
nodes and U nodes, respectively.

As previously mentioned, U nodes have been marginally covered by state-of-
the-art research. In fact, most network-wide analyses [16, 64, 65, 21] leave U
nodes out of scope. The reason for this is that in order to observe the network
behavior at a global level, measuring tools connect to all nodes at the same time.
However, this is not possible with U nodes, which only establish outgoing con-

76

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 77 — #93

nections. Therefore, the only way to study U nodes, at a global scale, is to deploy
numerous R nodes and have U nodes connect to them. By adopting this approach,
Wang et al. [22] were able to study U nodes in detail. As of today, their work is
the only known network-wide analysis of U nodes.

Besides it, the only papers focusing on U nodes are those targeting them for
deanonymization [110, 111]. The specificity of these attacks stems from the dif-
ficulty of targeting U nodes with standard approaches, where the adversary con-
nects to all nodes and observe the propagation of transaction messages. In fact,
like measuring tools, the adversary is unable to include U nodes in its scope. Fur-
thermore, NATted nodes are also hard to distinguish, since they can share the
same IP address. This is why deanonymization attacks targeting U nodes usually
require fingerprinting techniques [110, 111].

For these reason, U nodes are hard to target in observation-based attacks [150]
and unsolicited-message-based attacks [165]. Similarly, U nodes are excluded
from many network-level attacks, such as eclipse attacks [103], topology-inferring
attacks [21], and partitioning attacks [100].

On the other hand, U nodes are very susceptible to deanonymization attacks
when they directly connect to the adversary [22]. At the same, studies showed that
regular Bitcoin users tend to use U nodes [147, 22], meaning that the majority
of transactions is actually generated by U nodes. As such, it is fundamental to
improve their security and efficiency.

Additionally, we argue that addressing unreachable nodes also helps improv-
ing the robustness of the whole network. In fact, as noted in [18], U nodes increase
connectivity and are harder to attack for adversaries without access to core infras-
tructure. An example of this was given in the previous chapter with reference to
partitioning attacks (see Section 5.2.1.1): by being invisible to the adversary, U
nodes make these attacks much harder to succeed.

In this chapter, we leverage the specificities of unreachable nodes to improve
the efficiency and security properties of the whole Bitcoin network.

6.3 Background

There are different reasons for a node to be unreachable. In some cases, nodes
purposely choose not to accept incoming connections. This can be the case of
measuring tools or nodes run by mining pools [114]. However, the most com-
mon reason is that the device running the node is behind some sort of barrier that
prevents outer entities from reaching the device. This barrier can be a firewall, a
proxy server or, most commonly, a NAT device.

Unreachable nodes are typically associated with NATs. In fact, Carrier-Grade
NATs (CG-NATs) are the primary cause for the unreachability of a node, as most

77

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 78 — #94

ISPs use this technology to grant access to a larger number of devices. In this sec-
tion, we provide more details about NAT and describe the current Bitcoin transac-
tions propagation protocol, which we will modify to provide better anonymity.

6.3.1 NAT and P2P networks
Network Address Translation (NAT) [58] is a method to map IP addresses between
incompatible networks. The most common type, known as Network Address and
Port Translation (NAPT), is often used to connect private networks to the Inter-
net without the need to assign a unique address to each device. NAPT is often
regarded as a solution to the IPv4 address exhaustion problem [166], since it al-
lows a large number of devices to connect through a shared IP address. As a side
effect, such devices cannot be reached from the Internet, unless they first open a
connection.

While this is not a problem in a client-server setting, it is a serious limitation
for P2P networks. Notably, it prevents NATted nodes from connecting to each
other. To overcome this limitation, NAT traversal techniques have been devised
[167].

The Bitcoin reference client implements Universal Plug-and-Play (UPnP),
which, however, is incompatible with CG-NATs, as it needs direct access from
the host. Furthermore, the UPnP option is disabled by default due to a known
vulnerability in the protocol. As a consequence, NATted nodes only establish
outbound connections, which in the reference client are limited to just 8.

6.3.2 Transaction Propagation and Anonymity
In Section 2.3.2 we described how transactions are propagated through the net-
work. The propagation pattern of each transaction is determined by the relay
step. In the diffusion protocol, used in Bitcoin, nodes relay transactions to each
neighbor with an independent, exponential delay. The same protocol is used by
the source node of a transaction to begin its propagation. In other words, new
transactions are transmitted the same way as relayed ones.

As we showed in Section 3.3.2.6, the pattern generated by this protocol leads
to possible deanonymization attacks. In particular, Fanti et al. [24] showed that,
by connecting to all reachable nodes, an eavesdropper adversary can reach very
high levels of accuracy. Furthermore, this is true even when the adversary adopts
a naive strategy like the first-spy estimator, which simply links a transaction to the
first node that relays it. The reason at the base of such a poor anonymity lies in
the symmetry of propagation from each node to its peers. Similarly to [109], in
this chapter, we propose an asymmetric propagation protocol to enhance transac-
tion anonymity. In particular, we do this by leveraging the inherent protection of

78

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 79 — #95

unreachable nodes.

6.4 Related Work

Unreachable nodes have been extensively studied by Wang et al. [22]. In order to
perform their analyses, they deployed around 100 nodes, through which they col-
lected information on more than 100 K unreachable peers, which generated more
than 2 M transactions. Their findings show that most connections last for less
than 60 seconds, while, at the same time, most transaction propagations are sent
over long-lived connections (more than 100 seconds), showing a high degree of
centrality. Finally, they show a method to deanonymize transactions coming from
unreachable peers, with the help of an external listener node. Their results show
that unreachable nodes are also susceptible to the first-spy estimator attack. In
Section 6.6, we propose a new protocol that makes this attack much less effective,
by having unreachable nodes relay new transactions to a single peer and mix their
messages from those received from other peers.

In relation to transaction anonymity, which was extensively discussed in Sec-
tion 3.3.2.6, it is worth mentioning that our protocol is partially influenced by
Dandelion[25, 109], especially in the ideas breaking the symmetry of propagation
and transaction mixing. However, while their protocol has some relevant com-
plexity and only applies to R nodes, our design is simple and applies to the whole
network.

Another attack targeting U nodes is the one by Byriukov et al. [110]. Their
attack target U nodes at a global level by making use of a fingerprinting technique
based on the propagation of addr messages. In Section 6.5.1.3, we propose a
change to the protocol that effectively makes such a technique ineffective.

6.5 Modifications to the Protocol

We propose some changes to the network protocol, which leverage the specificity
of unreachable nodes to improve the efficiency and security of the network. In
particular, we propose the following changes:

• Explicitly distinguish reachable and unreachable nodes;
• Increase connections from unreachable nodes;
• Disable advertisement of unreachable addresses;
• Adopt the ReAP propagation protocol described in Section 5.4.2.1.

79

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 80 — #96

6.5.1 Network Changes
We first describe the changes to basic network protocol behavior that allow us to
improve security and efficiency.

6.5.1.1 Explicitly distinguish between R and U nodes

Although there is some difference in the behavior of R nodes and U nodes in the
reference client, the Bitcoin network protocol does not make any explicit distinc-
tion between them. However, our solution is based on the different characteristics
shown by the two types of node, as shown in Section 6.2. As such, explicitly
distinguish between R nodes and U nodes is a necessary step.

Different strategies can be followed by a node to determine its reachability.
A naive approach would be to verify if the client accepts incoming connections.
However, it might be the case that a node is accepting connections but its address
is unreachable from the outside. A better approach is to have the node connect
to its own address, as seen by its peers, and set itself reachable, if the attempt
succeeds, and unreachable, otherwise.

6.5.1.2 Increase U nodes connections

The second modification we propose is to increase the number of outbound con-
nections of U nodes. This change has several effects. Firstly, it helps leveling
the imbalance of connectivity between R and U nodes. In fact, while R nodes
can reach 125 connections, U nodes only maintain up to 8, corresponding to their
outbound peers. On the other hand, inbound slots are often underutilized by R
nodes [16], which means they can handle a higher number of connections.

Secondly, increasing the number of peers means receiving, and relaying, more
transactions per amount of time. Given the great number of U nodes, even a
small increase in their connections might produce a significant improvement in
the propagation speed of transactions and blocks.

Furthermore, from a security perspective, it has been shown how increas-
ing the number of outbound connections can improve resistance against DoS at-
tacks [18], eclipse attacks [103], and isolation attacks [96].

Finally, a higher number of connections for U nodes can be beneficial for the
anonymity of our propagation protocol, as we will show in Section 5.4.2.1.

6.5.1.3 Do not advertise U nodes addresses

In the current protocol, U nodes, like R nodes, advertise their public address to
their peers. These addresses represent 90% of those being spread through the
network [22, 21]. However, being unreachable, these addresses are of no use to

80

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 81 — #97

any other node. At the same time, they increase network traffic [110] and likely
produce a high number of failed connection attempts. Additionally, they poten-
tially reduce the availability of reachable addresses, since new (often unreachable)
addresses replace old ones in the node database when the address pool is full.

From a security perspective, these addresses enable fingerprinting techniques,
which allow for deanonymization attacks [110, 59]. Disabling their advertisement
to outbound peers would effectively hinder deanonymization of U nodes.

6.6 The ReAP Protocol

In the following, we discuss and describe our new Reachability-based Anonymous
Propagation (ReAP) protocol design. The protocol explicitly leverages U nodes
to improve resiliency against deanonymization. Similarly to Dandelion [25, 109],
we include two essential concepts in our design: proxied broadcast and trans-
action mixing. Proxied broadcast consists in delegating the diffusion of a new
transaction to another node (called proxy), allowing to hide the real origin of the
transaction. Mixing consists in sending to the proxy other new (proxied) transac-
tions, received from other peers. This makes it hard for the proxy to distinguish
between transactions generated by the sender and others relayed by the sender,
but generated by other nodes.

Given what said about U nodes in Section 6.2, we want to leverage their pro-
tected position in the network to conceal the origin of a transaction. The core
idea is to make R nodes, which are more susceptible to deanonymization, use U
nodes as proxies for their transactions. This way, such transactions will look as
generated by their proxies instead of the actual source. Additionally, we hinder
proxies from distinguishing such transactions by mixing them with transactions
from other nodes.

Before detailing the propagation protocol, we define our adversary model and
motivate our design choices.

6.6.1 Network and Adversary Model
To describe our protocol, we model the Bitcoin network as in Figure 6.1. We
call O the R node running the protocol and generating new transactions. Other
nodes are denoted by Ri, if reachable and Ui, if unreachable, for i = 1, 2, The
adversary A aims at deanonymizing transactions generated by O and can control
various nodes, both reachable and unreachable, which we denote by RA

i and UA
i ,

respectively. A can connect to all reachable nodes and also create multiple con-
nections to the same node (including O). Nonetheless, A cannot directly connect
to other U nodes. To that respect, A can only deploy multiple R nodes to increase

81

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 82 — #98

O U3

Reachable

Unreachable

R1

R2 R3

RA
1

U1

U2 UA
1

Figure 6.1: Our view of the Bitcoin network: the origin O of a transaction is
connected to R and U nodes. The adversary (colored in red) deploy both R and U
nodes and connect to all reachable nodes.

the chance of having honest U nodes connecting to it. Additionally, the adversary
can create and transmit transactions, as well as relay or retain others received from
its peers.

6.6.2 Design
In the ReAP protocol, R nodes leverage U nodes as proxies and use transactions
coming from other U peers for mixing. Instead, U nodes use R nodes as proxies
and mix new transactions with those coming from other R peers.

This scheme allows protecting both R and U nodes. In fact, U nodes cannot
distinguish between transactions generated by their R peers and those proxied by
such peers but generated by other U nodes. Similarly, U-generated transactions are
indistinguishable to R nodes from those generated by other R nodes and proxied
by their U peers.

However, a naive design could lead to easy deanonymization attacks, and also
to an ineffective propagation of new transactions through the network. Therefore,
we need to define (1) which peers are used for proxying and (2) which transactions
are used for mixing.

As for point (1), an R node can select one, all, or a subset of its U peers.
Note that an adversary can control a large subset of U peers of R nodes. This
increases her probability of being selected as the first proxy for many R-generated
transactions, allowing an effective use of the first-spy estimator. At the same
time, if we send all transactions to a single proxy, it will be easy for this one to
narrow down the set of transactions possibly generated by the sender. As such,

82

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 83 — #99

we first select a subset of peers to be used as proxy and pick a random one within
this subset for every proxy operation. We call this subset the proxy set. In order to
distribute transactions among all nodes and minimize the risk of a proxy collecting
all new transactions from a node, we change the proxy set at a certain rate. We
call epoch the time frame in which a proxy set is used.

As for point (2), we first need to identify which transactions are suitable for
mixing. Note that transactions received by an R node from other R peers following
our protocol have already been diffused, making them unsuitable for mixing (since
the adversary might already know them). Similarly, transactions diffused by U
peers might have already been received by the adversary. On the other hand, it
is easy to see that proxied transactions are the least likely to be known to the
adversary, and thus best suite for mixing.

Therefore, we need to identify which transactions are being proxied and which
are being diffused. To do so, we mark proxied transactions and distinguish be-
tween two propagation phases: the proxying phase and the diffusion phase. We
call transactions in the proxying phase proxy transactions. When a new transac-
tion is created is marked as proxying and sent to a node of the proxy set. As for
mixing, nodes use proxy transactions coming from their peers. We call the set of
proxy transactions used for mixing, the mixing set of a node. Transactions in the
mixing set are relayed through the same path as newly-generated ones so as to
make them indistinguishable from each other.

Ideally, we would like the mixing set to be as large as possible. However, if we
used all incoming proxy transactions, they would never be diffused. Instead, we
include only a fraction of such transactions in the mixing set, and diffuse the rest.
To do so, we need to decide which transactions to diffuse and which to relay. A
possible strategy is to select some peers in each epoch, and only use transactions
coming from them. However, if an adversary controls many of these peers and
also the selected proxy, she could track most transactions in the mixing set of
the target, leading to an easy deanonymization. To avoid such a risk, we select
proxy transactions from all of our peers and probabilistically include them in our
mixing set. In particular, for each proxy transaction, we keep proxying it with
a certain probability p and diffuse it otherwise. This way, despite being able to
track or inject proxy transactions for a specific node, an adversary cannot affect
the number of honest transactions included in its mixing set. A correct choice of
p will be fundamental for the effectiveness and efficiency of our protocol.

To further protect R nodes from adversaries controlling many inbound con-
nections, we adopt the bucketing strategy used in Bitcoin Core for managing
addresses. This mechanism is used to prevent an adversary from filling up the
address database with malicious IPs, and it is based on the assumption that the
attacker only controls nodes from a limited address space [95]. In particular, each
bucket contains addresses from a different subnet. Similarly, we make R nodes se-

83

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 84 — #100

Algorithm 5 ReaP: Proxy procedure
1: procedure PROXY(Transaction tx)
2: Pick a random peer P from the proxy set
3: Send tx to P and set a timeout t
4: When t expires:
5: if The majority of outbound peers advertised tx then Return
6: elseRepeat

Algorithm 6 ReaP: Propagation Rules for R nodes
1: Divide time into epochs
2: if New epoch begins then
3: Select subset S from U peers uniformly at random from different buckets
4: Set S as the proxy set
5: if Create new transaction tx then
6: Mark tx as proxying
7: Run PROXY(tx)
8: if Receive a proxying transaction txm from a U peer then
9: with probability p, run PROXY(txm)

10: otherwise, run DIFFUSE(tx)

lect proxies and transactions for the mixing set uniformly at random among peers
from different buckets.

Finally, to cope with the risk of a transaction not being diffused, due to a
DoS attack by a proxy or to an excessively long proxying phase, each node sets
a timeout t for every proxied transaction. When t expires, the node verifies if the
transaction has been diffused by checking if the majority of outbound peers have
advertised it back to us. We choose to monitor outbound peers to minimize the risk
of an adversary deceiving an R node by relaying proxied transactions from other
adversary-controlled U peers. The same rule is applied to both new and relayed
transactions, so as to avoid deanonymization due to rebroadcast. In the current
protocol, in fact, a rebroadcast is only done by the source of the transaction, and
can thus reveal its origin [105]. In our protocol, instead, rebroadcast applies to all
proxied transactions, thus leaking no new information.

PROTOCOL RULES To detail the propagation rules of the ReaP protocol, we
first define the proxy operation on a transaction tx as in Algorithm 5. Next, we
define the propagation rules for R nodes as in Algorithm 6. U nodes follow the
same rules, except they use R peers instead of U peers and do not use buckets.

84

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 85 — #101

6.7 Analysis of the ReAP Protocol

6.7.0.1 Limitations

The ReAP protocol requires R nodes to have U peers connected to them. However,
newly-joined R nodes usually have to wait some time to have other peers connect
to them. We address this limitation by having new R nodes using the Diffusion
protocol until they have a sufficient number of U peers. Additionally, to prevent
an adversary from taking advantage from this situation (by filling up all inbound
slots), we also adopt the bucketing strategy. Specifically, we make R nodes use
our protocol only when enough U peers from different buckets are connected.

6.7.0.2 Propagation and anonymity

To better understand our protocol it is useful to depict the propagation pattern of
a transaction.

Let us consider an R node O generating a transaction tx. The following se-
quence of events happens:

1. R selects a proxy P among its proxy set, mark tx as proxying and sends it
to P ;

2. P receives tx and proxy it with probability p, or diffuses it otherwise;

3. If proxying tx, P selects a node R from its proxy set S and sends it tx;

Proxying transactions are relayed through a sequence of R and U nodes until it gets
diffused. Diffusion can happen at any step, except for the first one. Propagation
from an U node follows a similar pattern.

A major risk of proxied broadcast is that a transaction might take too long
to diffuse, or not be diffused at all. As for diffusion time, we can statistically
guarantee to diffuse every transaction within a reasonable time. Since at every
hop, the transaction tx is diffused with probability p, it is possible to tune this
value to obtain a target number of hops through which tx is proxied on average.
The use of timeouts allows dealing with a transaction not being diffused.

With respect to anonymity, ReaP is designed to be resistant against a first-spy
estimator. This type of adversary connects to all R nodes and links each transac-
tion to the first node from which it has been received. As demonstrated in [24],
this strategy is very effective with the current propagation model. However, the
changes introduced by our protocol make it very unlikely for a node to first receive
a transaction from its source. On the contrary, most of the times, transactions will
be received by a node different from the origin, thanks to proxying. Furthermore,
each transaction is mixed with many others generated by nodes in the proxying

85

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 86 — #102

path, which are indistinguishable from each other to the receiving node. This
means that any claim about the origin of a transaction can be easily denied.

Note that ReaP is designed to resist against very powerful adversaries control-
ling several nodes and maintaining multiple connections to all reachable nodes.
The adversary can combine information from all of its nodes and coordinate them
to influence or track the mixing set of a target node. However, we showed in
the previous section how such an adversary has limited capabilities to affect the
security of the protocol.

6.7.0.3 Ephimerality of U nodes

A possible issue in our design is the short time of connection of many U nodes.
In fact, while R nodes are relatively stable [161], U nodes often experience very
short-lived connections [22]. This behavior might affect the efficiency of the pro-
tocol. However, the timeout mechanism is also meant to deal with this kind of
problems and can be fine-tuned independently by each node, depending on the
experienced churn.

Moreover, the presence of short-lived proxy nodes, if properly exploited, might
serve as an added value to the anonymity level of our protocol, as it makes it harder
to track back a transaction to its origin.

6.7.0.4 NAT adoption

Another potential limitation of our solution is that it is based on the unreachability
of NATted nodes. However, if IPv6 gets adopted by the majority of nodes, it is
possible that NATs will cease to be used. The introduction of IPv6, in fact, was
mainly intended to deal with the IPv4 address exhaustion problem and remove the
need for NATting [168].

Although growing, the adoption rate of IPv6 seems to be variable [169] and
not uniform worldwide, with statistics strongly dependent on the adopted metrics
[170]. As for the Bitcoin network, Neudecker et al. [147] showed that, unlike
IPv4, IPv6 connections have not grown over the past two years.

Either way, most optimistic estimates predict a complete adoption within 7-
8 years [171]. In this perspective, the ReaP protocol should be considered as a
medium-term solution, likely able to work for the next decade.

86

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 87 — #103

Chapter 7

TRANSACTION PROPAGATION:
RAISING THE BAR OF BITCOIN
ANONYMITY

In Section 3.3.2.6 we saw that the current Bitcoin transaction propagation protocol
is vulnerable against deanonymization attacks. In particular, a work by Fanti et al.
[24] demonstrated that transaction broadcast inherently leaks information about
the source of a transaction to a network-wide observer. The reason behind this
issue is the fact that new transactions are transmitted by the source to all connected
peers. This allows an adversary that connects to all nodes to determine the source
of a transaction by simply observing the first node to announce it.

The Dandelion protocol [25, 109] solves this issue by splitting transaction
spread in two phases: the stem phase, in which the transaction is spread linearly,
and the fluff phase, where the transaction is spread using Diffusion. In other
words, nodes in the propagation line of the stem phase act as proxies: new trans-
actions are not broadcast by their source but one of the nodes in the line.

In the previous chapter, we proposed an alternative protocol that leverages
unreachable nodes to prevent an adversary from observing the spreading pattern of
new transactions. In particular, reachable nodes proxy their transactions through
unreachable nodes, and viceversa.

However, there are some flaws in its design. First of all, the presence of un-
reachable nodes depends on the use of NAT, which could eventually be com-
pletely replaced by IPv6. Secondly, when reachable nodes have too few unreach-
able peers (for example, right after joining the network), they are prevented from
adopting the protocol. Finally, reachable peers are exposed to an adversary using
unreachable nodes. In particular, this adversary can open multiple connections
towards a target node to increase the chances of being selected as the first proxy.
Additionally, the more inbound connections she controls, the more transactions

87

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 88 — #104

she can track in the proxy set of the target, thus narrowing down the its deano-
nymization set.

At the base of all these flaws there is the use of inbound connections for the
relay of new transactions. In this chapter, we generalize the ideas of the previously
proposed protocol and simplify its design to improve its efficiency and security.

7.1 Anonymous Transaction Propagation for the Bit-
coin P2P Network

We propose a new transaction propagation protocol, called Clover, that breaks the
symmetry in the relay pattern to protect the anonymity of the source. Our new
protocol does not require determining the reachability of a peer and drastically
reduces the probability of selecting an adversarial node as a proxy for new trans-
actions. In particular, Clover eliminates the ability of eavesdropper adversaries to
gain an advantage by opening multiple connections towards the same node. This
is obtained by by separating the relay paths of inbound and outbound connections
thus preventing the use of inbound peers as proxy nodes for new transactions. In
other words, when a new transaction is created it is always relayed through an out-
bound peer. At the same time, we keep spreading proxied transactions by relaying
messages from inbound peers to other inbound peers.

This approach is both secure and straightforward to implement. We evaluate
it experimentally by using a Proof-of-Concept implementation in a simulated en-
vironment. Our results show that compared to Diffusion, our protocol reduces the
lower-bound precision of an eavesdropper adversary applying the first-spy esti-
mator from 0.6 to just 0.05, in the best case scenario, and from 0.7 to 0.3 in the
worst case scenario.

7.2 The Clover protocol

This section describes our protocol, detailing and motivating its design with ref-
erence to the adversary model.

7.2.1 Adversary Model

We consider the eavesdropper adversary defined in [24], which is based on practi-
cal attacks such as [110] and [105]. This adversary makes use of a supernode that
connects to all reachable nodes in the network. For each node, multiple connec-
tions can be established by using different IP:port addresses, making them look as

88

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 89 — #105

coming from different entities. In particular, the adversary can fill up all unused
inbound slots of a target node.

The supernode listens to all the messages relayed by connected nodes, logging
all contents and timestamps. Additionally, we extend this adversary to deploy
reachable nodes in order to get peers of the network open connections toward
them. This extension better represents the capabilities of the adversary against
our protocol.

The goal of the adversary is to determine, for each transaction, its source in
the network. We call deanonymization set the set of transactions known to the
adversary that can be possibly generated by a specific node.

SOURCE ESTIMATION Different strategies can be employed to estimate the
source of a transaction. We consider the so-called first-spy estimator, which has
been shown to have high levels of accuracy against the Diffusion protocol [24].

This estimator follows a simple, yet effective, strategy: it associates each
transaction to the first node that announces it. The effectiveness of this strategy is
based on the network-wide observation of the adversary on the network: since the
supernode is connected to all nodes, and since nodes announce new transactions
to all of their peers, it is likely for the adversary to first receive a transaction from
the node that originates it. Additionally, having multiple connections to each node
further increases this probability.

7.2.2 Protocol Overview

Similarly to previous solutions [25], our protocol is based on two core features:
proxied broadcast and transaction mixing. By proxied broadcast we mean the act
of delegating the initial diffusion (broadcast) of a transaction to another node. The
goal of proxying is to move the origin of the spreading process from the source of
the transaction to a different node in the network.

A major risk in this approach is the ability of the proxy node to distinguish
proxied transactions from diffused ones, which in turn allows for easy deanonym-
ization. To mitigate this risk, we employ transaction mixing, which consists in
having nodes sending transactions originated by other peers along with their own
ones. This strategy allows to reduce the precision of the adversary when using
the first-spy estimator. In particular, the more the transactions used for mixing,
the lower the precision of the adversary. We call transactions used by a node for
mixing its mixing set. In order to have transactions for the mixing set, we use
multi-hop proxying, with each transaction relayed through multiple nodes before
being broadcast. As a result, transactions are propagated in two phases: first, they
are relayed through a number of proxy nodes, and then they are broadcast using

89

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 90 — #106

N4N3

N1 N2

O

Figure 7.1: Clover relay

Diffusion. We call proxying phase the part of the propagation in which a transac-
tion is relayed and diffusing phase the other part. A transaction in the proxying
phase is called a proxy transaction.

To maximize the mixing property, we explicitly distinguish transactions in the
proxying phase from those already diffused. This choice is based on the assump-
tion that the eavesdropper adversary has knowledge about transactions that have
already been diffused. Consequently, mixing proxy transactions with diffused
ones can actually lower the quality of mixing, increasing the adversary precision.
On the other hand, proxy transactions are likely unknown to the adversary, thus
making them indistinguishable from those generated by the node that relays them.
Moreover, by knowing which transactions are being proxied, it is possible to op-
timize their management for mixing, thus maximizing its effectiveness.

To further protect nodes, we only use outbound peers as proxies. This ap-
proach is motivated by the fact that the adversary can control an arbitrary number
of inbound connections. For the same reason, we include in the mixing set only
transactions received from outbound peers. In fact, an adversary controlling many
inbound connections of a node can track all the transactions relayed to it, thus
effectively reducing the actual size of the mixing set of the target. Instead, we
relay proxy transactions from inbound peers to other inbound peers, thus allowing
a correct propagation.

In summary, when a proxy transaction is received from an outbound peer, it
is relayed to another outbound peer; instead, when a proxy transaction is received
from an inbound peer, it is relayed to another inbound peer. We depict this scheme
in 7.1. The name clover has been chosen to remind the four-way pattern of our
scheme.

7.2.3 Protocol Design
Each transaction is created in the proxying phase and relayed to an outbound
peer. At each hop, during this phase, the transaction is either broadcasted (via

90

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 91 — #107

Diffusion) or relayed to another node. In particular, when a node N receives a
proxy transaction t, it behaves like follows: if t is received from an outbound
peer, N relays it to a random outbound peer; if t is received from an inbound peer,
N broadcasts it with probability p; otherwise, it relays it to a random inbound
peer. When a transaction gets broadcast, it enters the diffusion phase and follows
the standard Diffusion relay protocol.

Note that the broadcast step is only possible when t is received from inbound
peers. This is done to ensure all transactions received from outbound peers are
used for mixing.

PROXY TRANSACTIONS Proxy transactions are transmitted through a new pro-
tocol message, called ptx. This message contains the full transaction data, like
the tx message.

Unlike the Diffusion protocol, we do not employ the three-step transmission
via inv messages. In fact, these messages are meant to avoid sending a transac-
tion to nodes that already have it. However, this is rarely supposed to happen in
Clover. Instead, the receiver is always expected not to know the transaction being
sent. This modification allows us to substantially reduce the delay introduced by
the proxying phase, as each relay operation only requires one message instead of
three.

TIMEOUT To deal with the risk of a transaction not being diffused, due to a DoS
attack or an excessively long proxying phase, nodes set a timeout for each prox-
ied transaction. To verify if a transaction has been diffused, nodes monitor inv
messages from their outbound peers. If, before the timeout expires, the majority
of the outbound peers has advertised the transaction, it is considered as correctly
diffused. Otherwise, the transaction is broadcasted using Diffusion.

Again, we exclusively use outbound peers because they are the least likely
to be controlled by the adversary. On the other hand, relying on inbound peers
would allow an adversary controlling many of them to pretend the diffusion of a
transaction by simply advertising it, thus generating a denial of service.

Note that the timeout-induced broadcast is applied to both own transactions
and relayed ones so that the adversary is unable to distinguish which ones were
created by the sender.

A default value for the timeout should be defined through experiments. How-
ever, each node might choose its own value.

PROPAGATION RULES We first define the proxy operation on a transaction tx
and as in Algorithm 7.

91

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 92 — #108

Algorithm 7 Proxy procedure
ENV: t; NodeSetOutPeers

1: procedure PROXY(Transaction tx, NodeSet set)
2: proxyNode = pickRandomNode(set)
3: Send ptx(tx) to proxyNode

4: wait(t)
5: if (|OutPeers|/2) + 1 outbound peers announced tx then
6: Mark tx as diffused
7: else
8: DIFFUSE(tx)

This operation consists in picking a random node from a set of peers and
sending it a ptx message containing tx. If the message is being relayed, its
sender is excluded from the candidates (to avoid sending a message back).

After sending the message, a timeout t is set. While t is not expired, the node
collects inv messages from its outbound peers. When t expires, the node checks
if the majority of outbound peers has announced tx. If not, the transaction is
diffused.

Next, we define the following propagation rules:

• when a new transaction tx is created, run Proxy(tx, outbound);
• when a transaction tx is received from an outbound peer, run
Proxy(tx, OutPeers);

• when a transaction tx is received from an inbound peer, run Diffuse(tx)
with probability p, otherwise run Proxy(tx, InPeers).

The pseudocode of the Clover protocol is shown in Algorithm 8.

7.3 Analysis

In this section, we study the anonymity properties of the Clover protocol against
an eavesdropper adversary using the first-spy estimator.

TERMINOLOGY We use R to denote the set of reachable nodes in the network,
and A, to denote the subset of reachable nodes controlled by the adversary. With-
out loss of generality, we let I and O represent the average set of inbound and
outbound peers of a node in the network.

92

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 93 — #109

Algorithm 8 Clover Propagation Rules
1: ENV: Probability p; NodeSet OutPeers,InPeers
2: if Create new transaction tx then
3: Proxy(tx, outbound)

4: if Receive ptx(tx) from node sender then
5: if sender is outbound then
6: Proxy(tx, OutPeers)
7: else
8: d = getRandProb()
9: if d < p then

10: Diffuse(tx)
11: else
12: Proxy(tx, OutPeers)

7.3.1 Security
We first consider the eavesdropper adversary described in Section 7.2.1. As we
will show, the adversary gains no advantage by connecting to all nodes, nor by
establishing multiple connections towards the same node. In fact, in our protocol,
new transactions are only relayed through outbound peers, making all inbound
connections to the adversary useless for deanonymization. Instead, our adversary
gains precision by deploying more reachable nodes, as this increases its chances
of being selected as a proxy node for new transactions.

As such, two important aspects must be studied. First, we want to know the
probability of selecting an adversarial node as proxy for new transactions. Then,
we want to determine the size of the average mixing set for each node.

Using these values, we can calculate the precision of the adversary in de-
anonymizing proxy transactions, as well as its overall precision against all trans-
actions in the network. Note that our adversary will mainly target proxy transac-
tions, as the first-spy estimator will unlikely to be announced by its source.

PROXY SELECTION Assuming each reachable node has the same probabil-
ity of being selected as outbound peer when a new node joins the network1, we
compute the probability of selecting an adversarial node as a proxy for a single
transaction as follows:

Lemma 1. Let PAdvProxy be the probability of selecting a node in A as a proxy
for a new transaction. Then:

1Although this assumption is theoretically sound, in the real Bitcoin network, well-established
nodes tend to have more connections, especially compared to newly-joined nodes.

93

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 94 — #110

PAdvProxy =
|A|
|R|

Proof. As each node establishes |O| = 8 outbound connections, the probability
of selecting a node inR as an outbound peer is 8/|R|. Given the adversary control
|A| nodes in R, the probability of selecting a node in A as an outbound peer is
8|A|/|R|.

Since new transactions are sent to a random node in O, the probability of
selecting a node in A for a single new transaction is:

PAdvProxy =
1

8
·8|A|
|R|

=
|A|
|R|

.

As such, in the current Bitcoin network, where |R| ≈ 10.000, a single-node
adversary would have 1/10000 = 0.0001 probability of being selected as a proxy.
Similarly, a powerful adversary controlling 1000 nodes (10% of the reachable
network) would have 0.1 probability of being selected for each new transaction
being sent in the network.

TRANSACTION MIXING To ease the analysis, we study the mixing property of
a node over a period of time T .

We want to calculate the average size of the mixing set of a node, which is the
number of ptx messages received from nodes in O. In the following we will use
the word transaction as a synonym of ptx message.

We use ρi and σi to denote the average number of transactions received from
and sent to each node in I , respectively. Similarly, we use ρo and σo for nodes in
O.

We study the size of the average mixing set MIX for a node having a adver-
sarial outbound peers. Note that, when no adversaries are connected, the mixing
set contains all transactions received from outbound peers (i.e., |MIX| = ρo|O|).
However, if the adversary controls an outbound peer, the transactions received
from such peer does not actually contribute to the mixing property, since they are
known to the adversary. Therefore, the number of transactions in the mixing set
is |MIX| = ρo(|O| − a). Given the above, we have the following:

Lemma 2. The cardinality of MIX is:

|MIX| = g(1− p)
p

· |O| − a
|O|

.

94

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 95 — #111

Proof. We consider the mixing set in the presence of a adversarial nodes among
the outbound peers: |MIX| = ρo(|O| − a). By definition, ρo = σi. Given
the rules defined in Algorithm 8, transactions received from nodes in I (αi) are
relayed, with probability 1 − p, uniformly at random among nodes in I . As such
we have:

σi = (αi|I|(1− p))/|I| = αi(1− p).

By definition, αi = σo. Let us assume each node generates an average of
g transactions during T . Given that each node sends to nodes in O all of its
transactions along with those received by other nodes in O, we have: σo = (g +
ρo|O|)/|O|

Given that ρo = σi and αi = σo, we have:

σo =
(g + σo(1− p)|O|

|O|
.

Isolating σo, we get

σo =
g

|O|p

On the other hand, as ρo = σi = αi(1− p) = σo(1− p), we obtain:

|MIX| = ρo(|O| − a)
= σo(1− p)(|O| − a)

=
g

|O|p
(1− p)(|O| − a)

=
g(1− p)

p
· |O|
|O| − a

Note that the size of the mixing set is inversely proportional to p. In fact, the
smaller this value, the longer a transaction will be relayed before getting diffused.
In turn, the more a transaction is relayed, the more it contributes to the mixing of
the other nodes.

DEANONYMIZATION PRECISION As previously mentioned, we expect the ad-
versary to exclusively target proxy transactions, since it will be highly unlikely for
him to receive diffused transactions from their source. Therefore, we first study
the precision of the adversary against proxy transactions only, that is, the ones he
receives. Afterwards, we compute the overall accuracy considering all transac-
tions.

95

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 96 — #112

First, let us consider the precision against proxy transactions coming from
a single node. Note that this only applies to nodes that opened a connections
towards an adversarial peer.

LetDproxy be the average precision of the adversary against proxy transactions
coming from a single node. Then:

Lemma 3. The average precision against proxy transactions for a single node is:

Dproxy =
p

1− a(1−p)
|O|

Proof. We consider a node n generating g transactions, and being connected to
a outbound peers controlled by the adversary. As both new and relayed transac-
tions are distributed among nodes in O, each such node receives on average g/|O|
new transactions plus |MIX|/|O| mixing transactions. Since the adversary asso-
ciates all transactions to n, he will get g/|O| correct guesses over (g + |MIX|)
transactions received.

By Lemma 2, we get:

Dproxy = (g/|O|)/((g + |MIX|)/|O|)
= g/(g + |MIX|)

= g/(g + g
1− p
p

|O| − a
|O|

)

=
p

1− a(1−p)
|O|

To calculate the overall precision, we consider a network of |N | nodes, |R| of
which are reachable. Let Doverall be the overall precision of the adversary against
transactions generated by nodes in N . We have:

Lemma 4. The overall precision is:

Doverall =
|A|
|R|

Proof. Let us consider all transactions generated by nodes in N , that is gN .
By Lemma 1, each transaction is sent to an adversarial proxy with probability
|A|/|R|. As such, the adversary will receive gN(|A|/|R|) transactions from their
source (thus guessing them correctly). Dividing correct guesses over the total
amount of transactions, we have:

96

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 97 — #113

N · |A||R|g
gN

=
|A|
|R|

.

Therefore, the overall precision only depends on the portion of reachable
nodes controlled by the adversary.

7.3.2 Efficiency
Like other similar solutions, the Clover protocol introduces a delay in the broad-
cast of a transaction. Specifically, this delay is determined by the hops through
which transactions go during the proxying phase.

In this respect, two factors must be considered: the number of messages
needed for each hop, and the number of hops.

HOP DELAY As described in Section 2.3.2, in the Bitcoin protocol, each trans-
action propagation hop requires three messages: inv, getdata, and tx. This
strategy is used in Diffusion to avoid sending transaction data to nodes that already
have it.

In Clover, this is not needed, since proxy transactions are normally unknown
to the recipient. Instead, transaction data is transmitted directly with a single ptx
message. This allows saving two extra messages for each hop, allowing for a
larger number of hops without incurring into an excessive delay. In particular,
three hops in the proxying phase roughly equal 1 hop in Diffusion.

PROXY HOPS As previously stated, a higher number of relays for each trans-
action corresponds to a higher mixing property for nodes in the network. Never-
theless, if this number is too high, it can produce an excessive propagation delay.
Therefore, it is essential to choose a target value that seeks a compromise between
efficiency and effectiveness.

Note that the average number of hops directly depends on the probability p. In
particular, the lower this value, the higher the number of hops. Therefore, we can
choose p to obtain a target number of hops (h).

In Section 7.4, we calculate the precise relation between p and h, and experi-
mentally evaluate the best target number of hops.

7.3.3 Comparison to Dandelion
Similarly to Clover, the Dandelion protocol [25] and [109] consists of two phases:
a first relay phase and a second broadcasting phase using Diffusion. Specifically,

97

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 98 — #114

the relay phase follow a random line and require nodes to always relay transac-
tions over the same path to obtain mixing. To that purpose, a network-wide relay
graph needs to be constructed among all network nodes. The construction of such
graph is not trivial, and gives space to potential attack vectors. For instance, if
the adversary learns the relay graph, it can deanonymize transactions with high
precision. For this reason, the graph needs to be changed periodically.

In Clover, there is no need to build this graph, since mixing is obtained by
using all incoming transactions. This makes its design much simpler, thus easing
implementation and analysis.

Propagation delay is also improved, thanks to the use of ptx messages, which
allow to transmit proxied transactions directly, instead of using the 3-step propa-
gation. As such, the delay of one hop in Clover is roughly one third of the delay
of one hop in Dandelion. This allows for longer relay phases, without incurring
into excessive propagation time.

7.4 Experimental Results

7.4.1 Proof of Concept
We implemented our protocol by modifying the reference client (Bitcoin Core)
and tested it on a simulated network. Clients were run in Regtest mode, using
Docker containers. For comparison, simulations were also run against Diffusion,
using unmodified clients.

SIMULATION SETTINGS Each test run on a network of 100 reachable nodes
randomly connected among each other. Transactions are produced randomly for
10 minutes. In each run, we produce an average of 3 transactions per node (300
transactions in total). For each setting, we run 3 simulations and then computed
the average.

Although unreachable nodes are theoretically relevant in Diffusion, studies
[22] show how their involvement in the transaction propagation is extremely low
compared to their number, with as little as the 0.001% of nodes sending transac-
tion messages. We speculate that the vast majority of transactions is generated by
reachable nodes and thus focus experiments on this part of the network. Note that
this might slightly affect the results for the Diffusion protocol but has no relevance
for Clover, since we showed in Section 7.3 how precision exclusively depends on
reachable nodes.

ADVERSARY We varied the number of adversarial nodes from 1 to 30, which
corresponds to a range between 1% and 30% of the reachable network. These

98

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 99 — #115

nodes are chosen randomly among the ones already deployed, so that they are
well connected to the rest of the network. Note that this is the worst-case scenario
since it assumes the adversary controls well-established nodes in the network.
Additionally, when testing against Diffusion, each node connects to all reachable
peers.

All adversarial nodes log incoming inv and ptx messages. At the end of the
simulation, these logs are merged and ordered by timestamp. Then, the first-spy
estimator is applied, linking each transaction to the first peer that advertised or
transmitted it to any of the controlled nodes.

TIMEOUT Diffusion timeout has been set to fit to the local simulation environ-
ment, where transactions are produced and spread much more rapidly than the
real network. In particular, verification timeout has been set to 1 minute.

7.4.2 Simulation Results

We evaluated precision against adversaries controlling 1%, 2%, 5%, 10%, 20%,
and 30% of the network. Each adversary is tested against Diffusion, as well as
Clover, for probability p equal to 0.2, 0.3, and 0.4. Overall precision is calculated
as the average among all tests with the corresponding adversarial power. Results
are shown in Figure 7.2.

Precision against Diffusion showed to be very high even for a very small num-
ber of adversarial nodes. In particular, controlling from 1% to 5% of the reachable
network, the adversary has precision as high as 0.6. This value raise to 0.7 when
the number of adversarial nodes reaches the 20% of the network.

On the other side, precision against Clover, although growing faster in the
number of adversarial nodes, showed to be much lower than Diffusion. Specifi-
cally, overall precision is from 10 times smaller (0.05) for adversaries controlling
from 1% to 5% of the network to 3 times smaller (0.33) for adversaries controlling
from 10% to 30% of the network.

For what concerns precision against proxy transactions, we have, as expected,
better results for lower values of p. In particular, experiments with p = 0.2 obtain
the best results, with an average precision of 0.14 when the adversary controls
1-5%, up to 0.35 when he control 30% of the nodes. For p = 0.3, precision range
from 0.16 to 0.4, while for p = 0.4 it ranges from 0.23 to 0.46.

Note that the increase in the precision against proxy transactions when the
adversary controls a high percentage of the network is due to the fact that it is
more likely for nodes to connect to more than 1 adversarial outbound peers.

Notably, in no case, the precision against Clover exceeded the one against
Diffusion. This means that Clover against the strongest adversary controlling 30%

99

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 100 — #116

0 5 10 15 20 25 30

|A|/|R| (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

Deanonymization Precision

Diffusion
ProxyTx (p=0.4)
ProxyTx (p=0.3)
ProxyTx (p=0.2) .
Clover (overall)

Figure 7.2: Deanonymization precision against Clover

of the network outperforms Diffusion against the weakest adversary controlling
1% of the network.

A major result of our experiments is that it shows how attacking our protocol
would be extremely more expensive for the adversary, compared to Diffusion,
without even reaching the same levels of accuracy.

HOPS According to our experimental results, the average number of hops is
inversely proportional to the probability p. In particular, we found the following
relation to hold:

h ≈ (1− p)
0.15

.

We believe the best compromise between efficiency and efficacy is to have around
6 hops.

100

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 101 — #117

Chapter 8

CONCLUSIONS AND FUTURE
WORK

Over the past decade, blockchain networks have revolutionized the world of dis-
tributed systems. Although sharing structural and functional concepts with clas-
sic P2P networks, blockchains show fundamental characteristics that radically set
them aside. This is mainly due to the goals they pursue, which demands different
and new requirements. This is particularly true with respect to security aspects
of network-layer communications. For this reason, targeted studies are needed to
understand the properties of this new ecosystem.

As the first and most popular cryptocurrency, Bitcoin serves as the prototype
for countless other permissionless blockchains. In particular, its network-layer
protocol is often replicated by other cryptocurrencies with little or no modifica-
tion. It is then not surprising that most network-level research on blockchain
focuses on the Bitcoin P2P protocol.

Numerous investigations allowed to shed light upon many of the relevant se-
curity and efficiency properties of the Bitcoin network. Their results allowed to
uncover and fix issues in the protocol, leading to major improvements for the net-
work. Nevertheless, some topics still lack full comprehension and thus require
further analyses.

With this thesis, we gave our contribution by exploring some of the aspects
that had little coverage in the literature. We approached problems from a different
perspective, trying not to be influenced by mainstream opinion but building our
reasoning upon facts, as emerged from empirical observation and state-of-the-art
research.

TESTNET In Chapter 4, we gave a deeper view of the Testnet network. We high-
lighted its differences from the Mainnet and showed how its peculiarities make it
a suitable environment for real-world applications. We proved this by designing a

101

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 102 — #118

viable protocol for botnet Command & Control on top of Testnet.
Our design allows bots to be registered, funded, and controlled anonymously

from any place. By leveraging non-standard transactions, the botnet is provided
with advanced functionalities, such as encryption, authentication, bidirectional
communication, and script storage. The proposed system is practical and eco-
nomically affordable even for a low-resource attacker. Additionally, it is highly
resilient to disruption and deanonymization, both appealing features for botmas-
ters.

According to our estimates and experimental results, such a system could be
used in real life to run a small spamming botnet or as a resilient component of a
larger hybrid botnet. This calls for an effort in either limiting the possibility of
misusing Bitcoin Testnet or devising appropriate countermeasures.

Furthermore, the existence of a similar threat demonstrates the fact that Testnet
should not be considered as just an experimental environment but as a full-fledged
blockchain with its own potential applications. As such, a more careful design of
Testnet is needed, as well as broader and deeper analyses of its properties.

TOPOLOGY In Chapter 5, we tackled the problem of topology knowledge in
Bitcoin. Specifically, we questioned the general agreement on the fact that the
Bitcoin topology should be hidden. In fact, it is common belief that such infor-
mation represents a security concern with relation to a number of network-level
threats.

However, state-of-the-art research proved that the protective measures adopted
in the protocol are can be often bypassed, allowing inferring the topology through
side channels or by making observations on the information spreading.

At the same time, researchers pointed out how a closed topology prevents
measurements that could help identifying weak points and thus improve efficiency
and security. It is then licit to ask whether such measures are actually necessary.
To answer this question, we empirically studied all the attacks typically related to
topology knowledge. Our investigation showed that most of them do not actually
depend on such knowledge, or have limited risk in practice.

In light of this, we argued for an open topology and proposed a protocol to
reliably compute the topology of the network and monitor its changes over time.
Our approach makes use of semi-trusted monitors and actively involves nodes in
the protocol. We mitigate the risk of misbehaving actors with a reputation system
based on feedback information from the monitors.

We experimentally evaluated our protocol through simulations, and showed
it has high levels of accuracy (over 90%) with little overhead. Additionally, our
results show high resilience against malicious nodes, even in high concentrations
(up to 30%). Our scheme can be employed in any blockchain P2P network, with-

102

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 103 — #119

out modifications. Given the above, we endorse an open topology and the use
of active monitoring for real-time protection and analysis of the network. We
believe this approach would help designing a more efficient and provably-secure
cryptocurrency.

UNREACHABLE NODES In Chapter 6, we took unreachable nodes into consid-
eration. We showed how, despite being often overlooked in research, these nodes
constitute a relevant part of the Bitcoin network. We argued that, by differentiat-
ing reachable and unreachable nodes in the protocol, it is possible to improve the
robustness and efficiency of the network.

In that perspective, we proposed targeted modifications to the protocol such as
increasing the number of outbound connections and disabling the advertisement
of their address to peers. Both changes are trivial to implement and potentially
bring benefits to the whole network, without introducing any overhead.

Furthermore, we observed how unreachable nodes are inherently protected
from adversaries that need to actively open connections to their targets. Based
on that, we designed a new transaction propagation protocol, called ReAP, that
helps protecting user anonymity. We theoretically analyzed the security of our
proposal against powerful adversaries and discussed the possible limitations of
our approach. Our results show that ReAP potentially reduces the ability of an
adversary to determine the source of a transaction.

TRANSACTION ANONYMITY In Chapter 7, we addressed the limitations of the
transaction propagation protocol proposed in the previous chapter. More specif-
ically, we aimed at reducing the attack surface to further improve the anonymity
guarantees.

As a result, we proposed an alternative approach based on the separation be-
tween inbound and outbound connections. This new protocol, called Clover, has a
simpler and more intuitive design that eases both its implementation and analysis.

We then gave theoretical proof of its anonymity properties and experimentally
evaluated its effectiveness using a proof-of-concept implementation in a simu-
lated environment. Experimental results showed that the overall precision of an
eavesdropper adversary adopting the first-spy estimator drops from 0.6-0.7% to
0.05-0.3%, depending on the number of colluding nodes.

We believe our solution can be adopted in real cryptocurrency networks and
serve as a basis for future developments in the field.

103

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 104 — #120

8.1 Future Work

As previously mentioned, the topics we explored in this thesis have not been ex-
tensively covered in research. As such, there are numerous directions that can
be followed as a continuation of the results obtained. We here review the most
relevant and immediate ones for each of the topic addressed.

TESTNET As demonstrated by our Testnet botnet, the use of non-standard trans-
actions can an impact on the network. To date, there are no statistics on the use
and characteristics of such transactions on Testnet. A targeted analysis would
help understand whether they are used in practice and, if so, in which manner.
Similarly, it would allow devising methods for detecting potentially dangerous or
malicious activities. At the same time, a study on the impact that a system like the
one we proposed could have on the functionality of the Testnet network.

As for the adversarial side, many aspects leave space for improvements. For
instance, detectability is one of the main weaknesses of blockchain-based botnets.
An improved version of our protocol could hinder detection by employing more
random-looking transactions, or even prevent messages from being stored on the
blockchain. Another example is the bot-funding system, which seems to represent
the weak link of our system. An improved design could make this step harder to
disrupt. Furthermore, the overall communication system could be optimized by
using alternative data-embedding techniques, and expanded with more advanced
capabilities. These kinds of improvements would help understand the actual mag-
nitude of the threat so as to anticipate the development of defensive solutions.

TOPOLOGY Two interesting research directions can be followed to continue
our work on a topology monitoring system. On the one side, the centralization of
our solution can be an obstacle to its adoption. It is therefore important to design
a fully-distributed protocol that avoids the need of trusted parties. On the other
side, detection and reaction mechanisms should be devised for potential issues
and threats. In other words, topology analysis techniques are needed, that address
the requirements of a cryptocurrency network. We believe this kind of solutions
would allow advancing towards a more adaptive and secure-by-design network.

UNREACHABLE NODES A variety of studies should be done to fully under-
stand the role of unreachable nodes in the network. For instance, an analysis of
their participation in the propagation of transactions would help estimate their
actual influence on efficiency and security. Similarly, it would be important to
analyze if and how including these nodes in previous security studies might affect
their results.

104

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 105 — #121

As for the ReAP protocol, a more formal analysis is needed, to verify its an-
onymity guarantees. Similarly, a proof-of-concept implementation would allow
performing experiments and compare results against the Diffusion and Clover
protocols.

CLOVER Future work on Clover includes an experimental comparison with
Dandelion and an analysis against adversaries using rumor-centrality-based es-
timators, like the maximum-likelihood method described in [24].

SIMULATION FRAMEWORK In many of the works described in this thesis, the
simulation of the Bitcoin network played an essential role in the evaluation of the
proposed solutions. The use of a realistic and thorough simulation environment
is essential for obtaining valid results. Although a tailored environment can be
developed for each experiment, having a generic simulation framework would
be of great help in obtaining sound and standardized results. The realization of
such a framework requires a thorough analysis of the actual Bitcoin network and
comparative experiments that validate the simulator against the real-world.

8.2 Final Remarks

With this thesis, we tried to go beyond mainstream research on Bitcoin network
layer, and delve into those topics that have been marginally covered in the litera-
ture. We proved that Testnet is a real blockchain network and should be regarded
as such. We argued against the concealment of network topology and provided
a first solution for its active monitoring. We showed the relevance of unreach-
able nodes and how their participation can be beneficial for the whole network.
Finally, based on our results on unreachable nodes, we designed a simple but ef-
fective protocol for anonymous transaction propagation. Despite being developed
for Bitcoin, most of our results are generic enough to be applicable to any permis-
sionless blockchain.

Our results show that, while important milestones have been set for the un-
derstanding of blockchain P2P networks, much remains to be done. Most impor-
tantly, they prove that, in research, we should never take anything for granted. In
particular, we would like to conclude with the following thoughts:

• The fact that nobody takes something into consideration does not necessar-
ily mean it is not important;

• Unless theoretically or empirically proved, claims in a paper should always
be counterchecked;

105

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 106 — #122

• Sometimes, important information is hidden in the details: always read the
small print.

We strongly believe that these directives can guide researchers to a deeper and
more thorough comprehension of this exciting new world called blockchain.

106

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 107 — #123

Bibliography

[1] Khan MK. Technological advancements and 2020. Telecommunication
Systems. 2020;73:1–2. Available from: https://doi.org/10.1007/
s11235-019-00647-8.

[2] Mercer D. Global Connected and IoT Device Forecast Update. Strat-
egy Analytics Consumer Electronics. 2019;p. 6. Available from:
https://www.strategyanalytics.com/access-services/
devices/connected-home/consumer-electronics/
reports/report-detail/global-connected-and-iot-
device-forecast-update.

[3] Liao Y, Deschamps F, de Freitas Rocha Loures E, Ramos LFP. Past,
present and future of Industry 4.0 - a systematic literature review and
research agenda proposal. International Journal of Production Re-
search. 2017;55(12):3609–3629. Available from: https://doi.org/
10.1080/00207543.2017.1308576.

[4] OECD. Gross domestic spending on R&D [Internet page]; 2021. Avail-
able from: https://data.oecd.org/rd/gross-domestic-
spending-on-r-d.htm. (Last accessed: 2021-01-21).

[5] Thames L, Schaefer D. In: Thames L, Schaefer D, editors. Industry
4.0: An Overview of Key Benefits, Technologies, and Challenges. Cham:
Springer International Publishing; 2017. p. 1–33. Available from: https:
//doi.org/10.1007/978-3-319-50660-9 1.

[6] Chen W, Xu Z, Shi S, Zhao Y, Zhao J. A Survey of Blockchain Applications
in Different Domains. In: Proceedings of the 2018 International Confer-
ence on Blockchain Technology and Application. ICBTA 2018. New York,
NY, USA: Association for Computing Machinery; 2018. p. 17–21. Avail-
able from: https://doi.org/10.1145/3301403.3301407.

[7] Wang C, Li B. Peer-to-peer overlay networks: A survey.
2003;Available from: https://www.researchgate.net/

107

https://doi.org/10.1007/s11235-019-00647-8
https://doi.org/10.1007/s11235-019-00647-8
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://doi.org/10.1080/00207543.2017.1308576
https://doi.org/10.1080/00207543.2017.1308576
https://data.oecd.org/rd/gross-domestic-spending-on-r-d.htm
https://data.oecd.org/rd/gross-domestic-spending-on-r-d.htm
https://doi.org/10.1007/978-3-319-50660-9_1
https://doi.org/10.1007/978-3-319-50660-9_1
https://doi.org/10.1145/3301403.3301407
https://www.researchgate.net/profile/Bo_Li16/publication/2944067_Peer-to-Peer_Overlay_Networks_A_Survey/links/553dfab00cf2c415bb0f882d.pdf
https://www.researchgate.net/profile/Bo_Li16/publication/2944067_Peer-to-Peer_Overlay_Networks_A_Survey/links/553dfab00cf2c415bb0f882d.pdf

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 108 — #124

profile/Bo Li16/publication/2944067 Peer-
to-Peer Overlay Networks A Survey/links/
553dfab00cf2c415bb0f882d.pdf.

[8] Pourebrahimi B, Bertels K, Vassiliadis S. A survey of peer-to-peer net-
works; 2005. Available from: https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.64.1218&rep=rep1&type=
pdf.

[9] Palomar E, Estevez-Tapiador JM, Hernandez-Castro JC, Ribagorda A. Se-
curity in P2P Networks: Survey and Research Directions. In: Zhou X,
Sokolsky O, Yan L, Jung ES, Shao Z, Mu Y, et al., editors. Emerging
Directions in Embedded and Ubiquitous Computing. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2006. p. 183–192. Available from: https:
//link.springer.com/chapter/10.1007/11807964 19.

[10] Delgado-Segura S, Pérez-Solà C, Herrera-Joancomartı́ J, Navarro-Arribas
G, Borrell J. Cryptocurrency networks: A new P2P paradigm. Mobile
Information Systems. 2018;2018. Available from: https://doi.org/
10.1155/2018/2159082.

[11] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system; 2008. Avail-
able from: https://bitcoin.org/bitcoin.pdf.

[12] Bitcoin Core; 2020. (Last accessed: 2020-07-02). Available from:
https://bitcoincore.org/.

[13] Böhme R, Christin N, Edelman B, Moore T. Bitcoin: Economics,
Technology, and Governance. Journal of Economic Perspectives. 2015
May;29(2):213–38. Available from: https://www.aeaweb.org/
articles?id=10.1257/jep.29.2.213.

[14] Blockchain.com - Blockchain Explorer; 2020. (Last accessed: 2020-12-
11). Available from: https://www.blockchain.com.

[15] CoinMarketCap - Cryptocurrency Prices, Charts And Market Capitaliza-
tions; 2020. (Last accessed: 2020-12-11). Available from: https:
//coinmarketcap.com.

[16] Decker C, Wattenhofer R. Information propagation in the Bitcoin network.
In: IEEE P2P 2013 Proceedings; 2013. p. 1–10. Available from: https:
//doi.org/10.1109/P2P.2013.6688704.

108

https://www.researchgate.net/profile/Bo_Li16/publication/2944067_Peer-to-Peer_Overlay_Networks_A_Survey/links/553dfab00cf2c415bb0f882d.pdf
https://www.researchgate.net/profile/Bo_Li16/publication/2944067_Peer-to-Peer_Overlay_Networks_A_Survey/links/553dfab00cf2c415bb0f882d.pdf
https://www.researchgate.net/profile/Bo_Li16/publication/2944067_Peer-to-Peer_Overlay_Networks_A_Survey/links/553dfab00cf2c415bb0f882d.pdf
https://www.researchgate.net/profile/Bo_Li16/publication/2944067_Peer-to-Peer_Overlay_Networks_A_Survey/links/553dfab00cf2c415bb0f882d.pdf
https://www.researchgate.net/profile/Bo_Li16/publication/2944067_Peer-to-Peer_Overlay_Networks_A_Survey/links/553dfab00cf2c415bb0f882d.pdf
https://www.researchgate.net/profile/Bo_Li16/publication/2944067_Peer-to-Peer_Overlay_Networks_A_Survey/links/553dfab00cf2c415bb0f882d.pdf
https://www.researchgate.net/profile/Bo_Li16/publication/2944067_Peer-to-Peer_Overlay_Networks_A_Survey/links/553dfab00cf2c415bb0f882d.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.1218&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.1218&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.1218&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/11807964_19
https://link.springer.com/chapter/10.1007/11807964_19
https://doi.org/10.1155/2018/2159082
https://doi.org/10.1155/2018/2159082
https://bitcoin.org/bitcoin.pdf
https://bitcoincore.org/
https://www.aeaweb.org/articles?id=10.1257/jep.29.2.213
https://www.aeaweb.org/articles?id=10.1257/jep.29.2.213
https://www.blockchain.com
https://coinmarketcap.com
https://coinmarketcap.com
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/P2P.2013.6688704

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 109 — #125

[17] Pappalardo G, Di Matteo T, Caldarelli G, Aste T. Blockchain Inefficiency
in the Bitcoin Peers Network. EPJ Data Science. 2018;7(1):30. Avail-
able from: https://link.springer.com/article/10.1140/
epjds/s13688-018-0159-3.

[18] Neudecker T, Hartenstein H. Network Layer Aspects of Per-
missionless Blockchains. IEEE Communications Surveys Tutorials.
2019;21(1):838–857. Available from: https://doi.org/10.1109/
COMST.2018.2852480.

[19] Cao T, Yu J, Decouchant J, Verissimo P. Revisiting Network-
Level Attacks on Blockchain Network. 2018;Available from:
https://orbilu.uni.lu/bitstream/10993/38142/1/
bcrb18-cao.pdf.

[20] Franzoni F, Abellan I, Daza V. Leveraging Bitcoin Testnet for
Bidirectional Botnet Command and Control Systems. In: Bonneau
J, Heninger N, editors. Financial Cryptography and Data Security.
Cham: Springer International Publishing; 2020. p. 3–19. Available
from: https://link.springer.com/chapter/10.1007/978-
3-030-51280-4 1.

[21] Miller A, Litton J, Pachulski A, Gupta N, Levin D, Spring N, et al.
Discovering bitcoin’s public topology and influential nodes. 2015;Avail-
able from: https://allquantor.at/blockchainbib/pdf/
miller2015topology.pdf.

[22] Wang L, Pustogarov I. Towards Better Understanding of Bitcoin Un-
reachable Peers. CoRR. 2017;abs/1709.06837. Available from: https:
//arxiv.org/abs/1709.06837.

[23] Franzoni F, Daza V. Improving Bitcoin Transaction Propagation by Lever-
aging Unreachable Nodes. In: 2020 IEEE International Conference on
Blockchain (Blockchain); 2020. p. 196–203. Available from: https:
//doi.org/10.1109/Blockchain50366.2020.00031.

[24] Fanti GC, Viswanath P. Anonymity Properties of the Bitcoin P2P Network.
CoRR. 2017;abs/1703.08761. Available from: http://arxiv.org/
abs/1703.08761.

[25] Bojja Venkatakrishnan S, Fanti G, Viswanath P. Dandelion: Redesign-
ing the Bitcoin Network for Anonymity. vol. 1. New York, NY, USA:
ACM; 2017. p. 22:1–22:34. Available from: http://doi.acm.org/
10.1145/3084459.

109

https://link.springer.com/article/10.1140/epjds/s13688-018-0159-3
https://link.springer.com/article/10.1140/epjds/s13688-018-0159-3
https://doi.org/10.1109/COMST.2018.2852480
https://doi.org/10.1109/COMST.2018.2852480
https://orbilu.uni.lu/bitstream/10993/38142/1/bcrb18-cao.pdf
https://orbilu.uni.lu/bitstream/10993/38142/1/bcrb18-cao.pdf
https://link.springer.com/chapter/10.1007/978-3-030-51280-4_1
https://link.springer.com/chapter/10.1007/978-3-030-51280-4_1
https://allquantor.at/blockchainbib/pdf/miller2015topology.pdf
https://allquantor.at/blockchainbib/pdf/miller2015topology.pdf
https://arxiv.org/abs/1709.06837
https://arxiv.org/abs/1709.06837
https://doi.org/10.1109/Blockchain50366.2020.00031
https://doi.org/10.1109/Blockchain50366.2020.00031
http://arxiv.org/abs/1703.08761
http://arxiv.org/abs/1703.08761
http://doi.acm.org/10.1145/3084459
http://doi.acm.org/10.1145/3084459

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 110 — #126

[26] Swan M. Blockchain: Blueprint for a new economy. O’Reilly Media, Inc.;
2015.

[27] Nofer M, Gomber P, Hinz O, Schiereck D. Blockchain. Business & In-
formation Systems Engineering. 2017 Jun;59(3):183–187. Available from:
https://doi.org/10.1007/s12599-017-0467-3.

[28] Zheng Z, Xie S, Dai HN, Chen X, Wang H. Blockchain chal-
lenges and opportunities: a survey. International Journal of
Web and Grid Services. 2018;14(4):352–375. Available from:
https://www.inderscienceonline.com/doi/abs/10.1504/
IJWGS.2018.095647.

[29] Peterson LL, Davie BS. Computer networks: a systems approach. Elsevier;
2007.

[30] Bowden R, Keeler HP, Krzesinski AE, Taylor PG. Block arrivals in the
Bitcoin blockchain. CoRR. 2018;abs/1801.07447. Available from: http:
//arxiv.org/abs/1801.07447.

[31] Cachin C, Vukolic M. Blockchain Consensus Protocols in the Wild.
CoRR. 2017;abs/1707.01873. Available from: http://arxiv.org/
abs/1707.01873.

[32] Neudecker T, Hartenstein H. Short Paper: An Empirical Analysis of Block-
chain Forks in Bitcoin. In: Goldberg I, Moore T, editors. Financial Cryptog-
raphy and Data Security. Cham: Springer International Publishing; 2019. p.
84–92. Available from: https://link.springer.com/chapter/
10.1007/978-3-030-32101-7 6.

[33] Antonopoulos AM. Mastering Bitcoin: unlocking digital cryptocurrencies.
O’Reilly Media, Inc.; 2014.

[34] De Leon DC, Stalick AQ, Jillepalli AA, Haney MA, Sheldon FT. Block-
chain: properties and misconceptions. Asia Pacific Journal of Innova-
tion and Entrepreneurship. 2017;Available from: https://doi.org/
10.1108/APJIE-12-2017-034.

[35] Politou E, Casino F, Alepis E, Patsakis C. Blockchain Mutability: Chal-
lenges and Proposed Solutions. IEEE Transactions on Emerging Top-
ics in Computing. 2019;p. 1–1. Available from: https://doi.org/
10.1109/TETC.2019.2949510.

110

https://doi.org/10.1007/s12599-017-0467-3
https://www.inderscienceonline.com/doi/abs/10.1504/IJWGS.2018.095647
https://www.inderscienceonline.com/doi/abs/10.1504/IJWGS.2018.095647
http://arxiv.org/abs/1801.07447
http://arxiv.org/abs/1801.07447
http://arxiv.org/abs/1707.01873
http://arxiv.org/abs/1707.01873
https://link.springer.com/chapter/10.1007/978-3-030-32101-7_6
https://link.springer.com/chapter/10.1007/978-3-030-32101-7_6
https://doi.org/10.1108/APJIE-12-2017-034
https://doi.org/10.1108/APJIE-12-2017-034
https://doi.org/10.1109/TETC.2019.2949510
https://doi.org/10.1109/TETC.2019.2949510

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 111 — #127

[36] Viriyasitavat W, Hoonsopon D. Blockchain characteristics and
consensus in modern business processes. Journal of Indus-
trial Information Integration. 2019;13:32 – 39. Available from:
http://www.sciencedirect.com/science/article/pii/
S2452414X18300815.

[37] Wust K, Gervais A. Do you Need a Blockchain? In: 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT); 2018. p. 45–54. Avail-
able from: https://doi.org/10.1109/CVCBT.2018.00011.

[38] Ethereum.org; 2020. (Last accessed: 2020-12-18). Available from:
https://ethereum.org.

[39] Hyperledger.org - Fabric; 2020. (Last accessed: 2020-12-18). Available
from: https://www.hyperledger.org/use/fabric.

[40] Ripple.com; 2020. (Last accessed: 2020-12-18). Available from: https:
//ripple.com/.

[41] Bitcoin.org;. (Last accessed: 2020-12-18). Available from: https://
bitcoin.org.

[42] Monero.org; 2020. (Last accessed: 2020-12-18). Available from: https:
//www.getmonero.org/.

[43] Wu M, Wang K, Cai X, Guo S, Guo M, Rong C. A Comprehensive
Survey of Blockchain: From Theory to IoT Applications and Beyond.
IEEE Internet of Things Journal. 2019;6(5):8114–8154. Available from:
https://doi.org/10.1109/JIOT.2019.2922538.

[44] Reynard C. The 10 most popular cryptocurrencies in 2018;
2018. (Last accessed: 2020-12-22). Available from: https:
//www.telegraph.co.uk/technology/digital-money/
top-10-popular-cryptocurrencies-2018/.

[45] Bitcoin Clients; 2020. (Last accessed: 2020-12-22). Available from:
https://en.bitcoin.it/wiki/Clients.

[46] Bitcoin Protocol Documentation; 2020. (Last accessed: 2020-
12-22). Available from: https://en.bitcoin.it/wiki/
Protocol documentation.

[47] Bitcoin Core integration/staging tree; 2020. (Last accessed: 2020-12-22).
Available from: https://github.com/bitcoin/bitcoin.

111

http://www.sciencedirect.com/science/article/pii/S2452414X18300815
http://www.sciencedirect.com/science/article/pii/S2452414X18300815
https://doi.org/10.1109/CVCBT.2018.00011
https://ethereum.org
https://www.hyperledger.org/use/fabric
https://ripple.com/
https://ripple.com/
https://bitcoin.org
https://bitcoin.org
https://www.getmonero.org/
https://www.getmonero.org/
https://doi.org/10.1109/JIOT.2019.2922538
https://www.telegraph.co.uk/technology/digital-money/top-10-popular-cryptocurrencies-2018/
https://www.telegraph.co.uk/technology/digital-money/top-10-popular-cryptocurrencies-2018/
https://www.telegraph.co.uk/technology/digital-money/top-10-popular-cryptocurrencies-2018/
https://en.bitcoin.it/wiki/Clients
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://github.com/bitcoin/bitcoin

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 112 — #128

[48] Neudecker T. Security and anonymity aspects of the network layer of per-
missionless blockchains. Ph.D. Thesis, KIT; 2019.

[49] Teachbitcoin.io - Bitcoin Transaction Overview; 2019. (Last ac-
cessed: 2020-12-26). Available from: https://teachbitcoin.io/
presentations/transaction build.html#/.

[50] Bitcoin Stack Exchange. What is meant by Bitcoin dust?;
2013. (Last accessed: 2020-12-26). Available from: http:
//bitcoin.stackexchange.com/questions/10986/what-
is-meant-by-bitcoin-dust.

[51] Wiki B. OP RETURN; 2018. (Last accessed: 2019-09-22). Available from:
https://en.bitcoin.it/wiki/OP RETURN.

[52] Bartoletti M, Pompianu L. An Analysis of Bitcoin OP RETURN Meta-
data. In: Brenner M, Rohloff K, Bonneau J, Miller A, Ryan PYA,
Teague V, et al., editors. Financial Cryptography and Data Security.
Cham: Springer International Publishing; 2017. p. 218–230. Available
from: https://link.springer.com/chapter/10.1007/978-
3-319-70278-0 14.

[53] Merkle RC. A Digital Signature Based on a Conventional Encryption Func-
tion. In: Pomerance C, editor. Advances in Cryptology — CRYPTO ’87.
Berlin, Heidelberg: Springer Berlin Heidelberg; 1988. p. 369–378. Avail-
able from: https://link.springer.com/chapter/10.1007/3-
540-48184-2 32.

[54] Wikipedia. Blockchain; 2020. (Last accessed: 2020-12-27). Available
from: https://en.wikipedia.org/wiki/Blockchain.

[55] OnionCat - An Anonymous VPN-Adapter; 2020. (Last accessed: 2021-01-
02). Available from: https://www.onioncat.org/.

[56] Bitnodes - Global Bitcoin Nodes Distribution; 2020. (Last accessed: 2020-
12-16). Available from: https://bitnodes.earn.com/.

[57] Tor Project - Anonymity Online; 2020. (Last accessed: 2021-01-02). Avail-
able from: https://www.torproject.org/.

[58] Srisuresh P, Holdrege M. IP network address translator (NAT) terminology
and considerations; 1999. Available from: http://www.hjp.at/doc/
rfc/rfc2663.html.

112

https://teachbitcoin.io/presentations/transaction_build.html#/
https://teachbitcoin.io/presentations/transaction_build.html#/
http://bitcoin.stackexchange.com/questions/10986/what-is-meant-by-bitcoin-dust
http://bitcoin.stackexchange.com/questions/10986/what-is-meant-by-bitcoin-dust
http://bitcoin.stackexchange.com/questions/10986/what-is-meant-by-bitcoin-dust
https://en.bitcoin.it/wiki/OP_RETURN
https://link.springer.com/chapter/10.1007/978-3-319-70278-0_14
https://link.springer.com/chapter/10.1007/978-3-319-70278-0_14
https://link.springer.com/chapter/10.1007/3-540-48184-2_32
https://link.springer.com/chapter/10.1007/3-540-48184-2_32
https://en.wikipedia.org/wiki/Blockchain
https://www.onioncat.org/
https://bitnodes.earn.com/
https://www.torproject.org/
http://www.hjp.at/doc/rfc/rfc2663.html
http://www.hjp.at/doc/rfc/rfc2663.html

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 113 — #129

[59] Biryukov A, Pustogarov I. Bitcoin over Tor isn’t a Good Idea. In: 2015
IEEE Symposium on Security and Privacy; 2015. p. 122–134. Available
from: https://doi.org/10.1109/SP.2015.15.

[60] Bitcoin Wiki - Protocol Documentation; 2019. (Last accessed:
2019-12-03). Available from: https://en.bitcoin.it/wiki/
Protocol documentation.

[61] Birman K. The Promise, and Limitations, of Gossip Protocols. SIGOPS
Oper Syst Rev. 2007 Oct;41(5):8–13. Available from: https://
doi.org/10.1145/1317379.1317382.

[62] Wikipedia. Poisson distribution; 2020. (Last accessed: 2020-
12-31). Available from: https://en.wikipedia.org/wiki/
Poisson distribution.

[63] de Kwaasteniet A. Ranking crypto’s by number of nodes;
2019. (Last accessed: 2020-12-28). Available from: https:
//medium.com/coinmonks/ranking-cryptos-by-number-
of-nodes-57a12e4ae51a.

[64] Donet Donet JA, Pérez-Solà C, Herrera-Joancomartı́ J. The Bit-
coin P2P Network. In: Böhme R, Brenner M, Moore T, Smith
M, editors. Financial Cryptography and Data Security. Berlin, Hei-
delberg: Springer Berlin Heidelberg; 2014. p. 87–102. Available
from: https://link.springer.com/chapter/10.1007/978-
3-662-44774-1 7.

[65] Feld S, Schonfeld M, Werner M. Analyzing the Deployment of Bit-
coin’s P2P Network under an AS-level Perspective. Procedia Computer
Science. 2014;32:1121 – 1126. The 5th International Conference on
Ambient Systems, Networks and Technologies (ANT-2014), the 4th In-
ternational Conference on Sustainable Energy Information Technology
(SEIT-2014). Available from: http://www.sciencedirect.com/
science/article/pii/S187705091400742X.

[66] Delgado-Segura S, Bakshi S, Pérez-Solà C, Litton J, Pachulski A, Miller
A, et al. TxProbe: Discovering Bitcoin’s Network Topology Using Orphan
Transactions. CoRR. 2018;abs/1812.00942. Available from: http://
arxiv.org/abs/1812.00942.

[67] Samant K, Bhattacharyya S. Topology, search, and fault tolerance in un-
structured P2P networks. In: 37th Annual Hawaii International Conference

113

https://doi.org/10.1109/SP.2015.15
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://doi.org/10.1145/1317379.1317382
https://doi.org/10.1145/1317379.1317382
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Poisson_distribution
https://medium.com/coinmonks/ranking-cryptos-by-number-of-nodes-57a12e4ae51a
https://medium.com/coinmonks/ranking-cryptos-by-number-of-nodes-57a12e4ae51a
https://medium.com/coinmonks/ranking-cryptos-by-number-of-nodes-57a12e4ae51a
https://link.springer.com/chapter/10.1007/978-3-662-44774-1_7
https://link.springer.com/chapter/10.1007/978-3-662-44774-1_7
http://www.sciencedirect.com/science/article/pii/S187705091400742X
http://www.sciencedirect.com/science/article/pii/S187705091400742X
http://arxiv.org/abs/1812.00942
http://arxiv.org/abs/1812.00942

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 114 — #130

on System Sciences, 2004. Proceedings of the; 2004. p. 6 pp.–. Available
from: https://doi.org/10.1109/HICSS.2004.1265682.

[68] ”bloXroute Team”. The scalability problem, (very) simply ex-
plained; 2018. (Last accessed: 2020-12-28). Available from:
https://medium.com/bloxroute/the-scalability-
problem-very-simply-explained-5c0656f6e7e6.

[69] Visa. 56,582 transaction messages per second!; 2020. (Last
accessed: 2021-01-03). Available from: https://
visatechmatters.tumblr.com/post/108952718025/56-
582-transaction-messages-per-second.

[70] Kim S, Kwon Y, Cho S. A Survey of Scalability Solutions on Block-
chain. In: 2018 International Conference on Information and Communi-
cation Technology Convergence (ICTC); 2018. p. 1204–1207. Available
from: https://doi.org/10.1109/ICTC.2018.8539529.

[71] Wang G, Shi ZJ, Nixon M, Han S. SoK: Sharding on Blockchain. In: Pro-
ceedings of the 1st ACM Conference on Advances in Financial Technolo-
gies. AFT ’19. New York, NY, USA: Association for Computing Machin-
ery; 2019. p. 41–61. Available from: https://doi.org/10.1145/
3318041.3355457.

[72] Wirdum AV. How Falcon, FIBRE and the Fast Relay Network Speed
Up Bitcoin Block Propagation (Part 2); 2016. (Last accessed: 2020-
12-28). Available from: https://bitcoinmagazine.com/
articles/how-falcon-fibre-and-the-fast-relay-
network-speed-up-bitcoin-block-propagation-part-
1469808784.

[73] McCorry P, Möser M, Shahandasti SF, Hao F. Towards Bitcoin Pay-
ment Networks. In: Liu JK, Steinfeld R, editors. Information Se-
curity and Privacy. Cham: Springer International Publishing; 2016. p.
57–76. Available from: https://link.springer.com/chapter/
10.1007/978-3-319-40253-6 4.

[74] Zhou Q, Huang H, Zheng Z, Bian J. Solutions to Scalability of Blockchain:
A Survey. IEEE Access. 2020;8:16440–16455. Available from: https:
//doi.org/10.1109/ACCESS.2020.2967218.

[75] Corallo M. Bitcoin Relay Network; 2019. (Last accessed: 2020-12-28).
Available from: https://www.bitcoinrelaynetwork.org/.

114

https://doi.org/10.1109/HICSS.2004.1265682
https://medium.com/bloxroute/the-scalability-problem-very-simply-explained-5c0656f6e7e6
https://medium.com/bloxroute/the-scalability-problem-very-simply-explained-5c0656f6e7e6
https://visatechmatters.tumblr.com/post/108952718025/56-582-transaction-messages-per-second
https://visatechmatters.tumblr.com/post/108952718025/56-582-transaction-messages-per-second
https://visatechmatters.tumblr.com/post/108952718025/56-582-transaction-messages-per-second
https://doi.org/10.1109/ICTC.2018.8539529
https://doi.org/10.1145/3318041.3355457
https://doi.org/10.1145/3318041.3355457
https://bitcoinmagazine.com/articles/how-falcon-fibre-and-the-fast-relay-network-speed-up-bitcoin-block-propagation-part-1469808784
https://bitcoinmagazine.com/articles/how-falcon-fibre-and-the-fast-relay-network-speed-up-bitcoin-block-propagation-part-1469808784
https://bitcoinmagazine.com/articles/how-falcon-fibre-and-the-fast-relay-network-speed-up-bitcoin-block-propagation-part-1469808784
https://bitcoinmagazine.com/articles/how-falcon-fibre-and-the-fast-relay-network-speed-up-bitcoin-block-propagation-part-1469808784
https://link.springer.com/chapter/10.1007/978-3-319-40253-6_4
https://link.springer.com/chapter/10.1007/978-3-319-40253-6_4
https://doi.org/10.1109/ACCESS.2020.2967218
https://doi.org/10.1109/ACCESS.2020.2967218
https://www.bitcoinrelaynetwork.org/

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 115 — #131

[76] FIBRE - Fast Internet Bitcoin Relay Engine; 2019. (Last accessed: 2020-
12-28). Available from: http://bitcoinfibre.org/.

[77] Falcon - A Fast Bitcoin Backbone; 2016. (Last accessed: 2020-12-28).
Available from: https://falcon-net.org/.

[78] Douceur JR. The Sybil Attack. In: Druschel P, Kaashoek F, Row-
stron A, editors. Peer-to-Peer Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg; 2002. p. 251–260. Available from: https://
link.springer.com/chapter/10.1007/3-540-45748-8 24.

[79] Rosenfeld M. Analysis of Hashrate-Based Double Spending. CoRR.
2014;abs/1402.2009. Available from: http://arxiv.org/abs/
1402.2009.

[80] Checkpoint Lockin; 2020. (Last accessed: 2021-01-03). Available from:
https://en.bitcoin.it/wiki/Checkpoint Lockin.

[81] Wiki B. Weaknesses; 2020. (Last accessed: 2021-01-03). Available from:
https://en.bitcoin.it/wiki/Weaknesses.

[82] Eyal I, Sirer EG. Majority Is Not Enough: Bitcoin Mining Is Vulnerable.
In: Christin N, Safavi-Naini R, editors. Financial Cryptography and Data
Security. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 436–
454. Available from: https://link.springer.com/chapter/
10.1007/978-3-662-45472-5 28.

[83] Nayak K, Kumar S, Miller A, Shi E. Stubborn Mining: Generalizing Selfish
Mining and Combining with an Eclipse Attack. In: 2016 IEEE European
Symposium on Security and Privacy (EuroS P); 2016. p. 305–320. Avail-
able from: https://doi.org/10.1109/EuroSP.2016.32.

[84] Ober M, Katzenbeisser S, Hamacher K. Structure and Anonymity of the
Bitcoin Transaction Graph. Future Internet. 2013;5(2):237–250. Available
from: https://www.mdpi.com/1999-5903/5/2/237.

[85] Herrera-Joancomartı́ J, Pérez-Solà C. Privacy in Bitcoin Transactions:
New Challenges from Blockchain Scalability Solutions. In: Torra V,
Narukawa Y, Navarro-Arribas G, Yañez C, editors. Modeling Decisions for
Artificial Intelligence. Cham: Springer International Publishing; 2016. p.
26–44. Available from: https://link.springer.com/chapter/
10.1007/978-3-319-45656-0 3.

115

http://bitcoinfibre.org/
https://falcon-net.org/
https://link.springer.com/chapter/10.1007/3-540-45748-8_24
https://link.springer.com/chapter/10.1007/3-540-45748-8_24
http://arxiv.org/abs/1402.2009
http://arxiv.org/abs/1402.2009
https://en.bitcoin.it/wiki/Checkpoint_Lockin
https://en.bitcoin.it/wiki/Weaknesses
https://link.springer.com/chapter/10.1007/978-3-662-45472-5_28
https://link.springer.com/chapter/10.1007/978-3-662-45472-5_28
https://doi.org/10.1109/EuroSP.2016.32
https://www.mdpi.com/1999-5903/5/2/237
https://link.springer.com/chapter/10.1007/978-3-319-45656-0_3
https://link.springer.com/chapter/10.1007/978-3-319-45656-0_3

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 116 — #132

[86] Reid F, Harrigan M. In: Altshuler Y, Elovici Y, Cremers AB, Aharony
N, Pentland A, editors. An Analysis of Anonymity in the Bitcoin System.
New York, NY: Springer New York; 2013. p. 197–223. Available from:
https://doi.org/10.1007/978-1-4614-4139-7 10.

[87] Androulaki E, Karame GO, Roeschlin M, Scherer T, Capkun S. Evaluating
User Privacy in Bitcoin. In: Sadeghi AR, editor. Financial Cryptography
and Data Security. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p.
34–51. Available from: https://link.springer.com/chapter/
10.1007/978-3-642-39884-1 4.

[88] Ron D, Shamir A. Quantitative Analysis of the Full Bitcoin Trans-
action Graph. In: Sadeghi AR, editor. Financial Cryptography and
Data Security. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p.
6–24. Available from: https://link.springer.com/chapter/
10.1007%2F978-3-642-39884-1 2.

[89] Meiklejohn S, Pomarole M, Jordan G, Levchenko K, McCoy D, Voelker
GM, et al. A Fistful of Bitcoins: Characterizing Payments Among Men
with No Names. In: Proceedings of the 2013 Conference on Inter-
net Measurement Conference. IMC ’13. New York, NY, USA: ACM;
2013. p. 127–140. Available from: http://doi.acm.org/10.1145/
2504730.2504747.

[90] Wu L, Hu Y, Zhou Y, Wang H, Luo X, Wang Z, et al.. Towards Under-
standing and Demystifying Bitcoin Mixing Services; 2020. Available from:
https://arxiv.org/abs/2010.16274.

[91] Conti M, Sandeep Kumar E, Lal C, Ruj S. A Survey on Security
and Privacy Issues of Bitcoin. IEEE Communications Surveys Tuto-
rials. 2018;20(4):3416–3452. Available from: https://doi.org/
10.1109/COMST.2018.2842460.

[92] Lamport L, Shostak R, Pease M. The Byzantine Generals Problem.
ACM Trans Program Lang Syst. 1982 Jul;4(3):382–401. Available from:
https://doi.org/10.1145/357172.357176.

[93] Karame GO, Androulaki E, Capkun S. Double-spending Fast Payments
in Bitcoin. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security. CCS ’12. New York, NY, USA: ACM;
2012. p. 906–917. Available from: http://doi.acm.org/10.1145/
2382196.2382292.

116

https://doi.org/10.1007/978-1-4614-4139-7_10
https://link.springer.com/chapter/10.1007/978-3-642-39884-1_4
https://link.springer.com/chapter/10.1007/978-3-642-39884-1_4
https://link.springer.com/chapter/10.1007%2F978-3-642-39884-1_2
https://link.springer.com/chapter/10.1007%2F978-3-642-39884-1_2
http://doi.acm.org/10.1145/2504730.2504747
http://doi.acm.org/10.1145/2504730.2504747
https://arxiv.org/abs/2010.16274
https://doi.org/10.1109/COMST.2018.2842460
https://doi.org/10.1109/COMST.2018.2842460
https://doi.org/10.1145/357172.357176
http://doi.acm.org/10.1145/2382196.2382292
http://doi.acm.org/10.1145/2382196.2382292

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 117 — #133

[94] Bamert T, Decker C, Elsen L, Wattenhofer R, Welten S. Have a snack, pay
with Bitcoins. In: IEEE P2P 2013 Proceedings; 2013. p. 1–5. Available
from: https://doi.org/10.1109/P2P.2013.6688717.

[95] Neudecker T, Andelfinger P, Hartenstein H. A simulation model for anal-
ysis of attacks on the Bitcoin peer-to-peer network. In: 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM); 2015.
p. 1327–1332. Available from: https://ieeexplore.ieee.org/
document/7140490.

[96] Apostolaki M, Zohar A, Vanbever L. Hijacking Bitcoin: Routing Attacks
on Cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy
(SP); 2017. p. 375–392. Available from: https://doi.org/10.1109/
SP.2017.29.

[97] Saad M, Cook V, Nguyen L, Thai MT, Mohaisen A. Partitioning At-
tacks on Bitcoin: Colliding Space, Time, and Logic. In: 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS);
2019. p. 1175–1187. Available from: https://doi.org/10.1109/
ICDCS.2019.00119.

[98] Rekhter Y, Li T, Hares S, et al.. A border gateway protocol 4 (BGP-4).
ISI, USC Information Sciences Institute; 1994. Available from: http:
//www.hjp.at/doc/rfc/rfc4271.html.

[99] Pilosov A, Kapela T. Stealing the Internet: An Internet-scale man in
the middle attack. NANOG-44, Los Angeles, October. 2008;p. 12–
15. Available from: https://defcon.org/images/defcon-16/
dc16-presentations/defcon-16-pilosov-kapela.pdf.

[100] Tran M, Choi I, Moon G, Vu AV, Kang M. A Stealthier Par-
titioning Attack against Bitcoin Peer-to-Peer Network. In: 2020
IEEE Symposium on Security and Privacy (SP). Los Alamitos,
CA, USA: IEEE Computer Society; 2020. p. 515–530. Avail-
able from: https://doi.ieeecomputersociety.org/10.1109/
SP40000.2020.00027.

[101] Apostolaki M, Marti G, Müller J, Vanbever L. SABRE: Protecting Bitcoin
against Routing Attacks. CoRR. 2018;abs/1808.06254. Available from:
http://arxiv.org/abs/1808.06254.

[102] Singh A, Ngan T, Druschel P, Wallach DS. Eclipse Attacks on Over-
lay Networks: Threats and Defenses. In: Proceedings IEEE INFOCOM

117

https://doi.org/10.1109/P2P.2013.6688717
https://ieeexplore.ieee.org/document/7140490
https://ieeexplore.ieee.org/document/7140490
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.1109/ICDCS.2019.00119
https://doi.org/10.1109/ICDCS.2019.00119
http://www.hjp.at/doc/rfc/rfc4271.html
http://www.hjp.at/doc/rfc/rfc4271.html
https://defcon.org/images/defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf
https://defcon.org/images/defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00027
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00027
http://arxiv.org/abs/1808.06254

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 118 — #134

2006. 25TH IEEE International Conference on Computer Communica-
tions; 2006. p. 1–12. Available from: https://doi.org/10.1109/
INFOCOM.2006.231.

[103] Heilman E, Kendler A, Zohar A, Goldberg S. Eclipse Attacks
on Bitcoin’s Peer-to-Peer Network. In: 24th USENIX Security
Symposium (USENIX Security 15). Washington, D.C.: USENIX
Association; 2015. p. 129–144. Available from: https:
//www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/heilman.

[104] Kaminsky D. Black ops of TCP/IP. Black Hat USA. 2011;44. Available
from: https://www.slideshare.net/dakami/black-ops-
of-tcpip-2011-black-hat-usa-2011.

[105] Koshy P, Koshy D, McDaniel P. An Analysis of Anonymity in
Bitcoin Using P2P Network Traffic. In: Christin N, Safavi-Naini
R, editors. Financial Cryptography and Data Security. Berlin, Hei-
delberg: Springer Berlin Heidelberg; 2014. p. 469–485. Available
from: https://link.springer.com/chapter/10.1007/978-
3-662-45472-5 30.

[106] Neudecker T, Hartenstein H. Could Network Information Facilitate Ad-
dress Clustering in Bitcoin? In: Financial Cryptography and Data Security.
Cham: Springer International Publishing; 2017. p. 155–169. Available
from: https://link.springer.com/chapter/10.1007/978-
3-319-70278-0 9.

[107] Shah D, Zaman T. Rumor Centrality: A Universal Source Detector. SIG-
METRICS Perform Eval Rev. 2012 Jun;40(1):199–210. Available from:
https://doi.org/10.1145/2318857.2254782.

[108] Shah D, Zaman T. Rumors in a Network: Who’s the Culprit? IEEE Trans-
actions on Information Theory. 2011;57(8):5163–5181. Available from:
https://doi.org/10.1109/TIT.2011.2158885.

[109] Fanti G, Venkatakrishnan SB, Bakshi S, Denby B, Bhargava S, Miller A,
et al. Dandelion++: Lightweight Cryptocurrency Networking with For-
mal Anonymity Guarantees. Proc ACM Meas Anal Comput Syst. 2018
Jun;2(2). Available from: https://doi.org/10.1145/3224424.

[110] Biryukov A, Khovratovich D, Pustogarov I. Deanonymisation of Clients in
Bitcoin P2P Network. In: Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security. CCS ’14. New York, NY,

118

https://doi.org/10.1109/INFOCOM.2006.231
https://doi.org/10.1109/INFOCOM.2006.231
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-hat-usa-2011
https://www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-hat-usa-2011
https://link.springer.com/chapter/10.1007/978-3-662-45472-5_30
https://link.springer.com/chapter/10.1007/978-3-662-45472-5_30
https://link.springer.com/chapter/10.1007/978-3-319-70278-0_9
https://link.springer.com/chapter/10.1007/978-3-319-70278-0_9
https://doi.org/10.1145/2318857.2254782
https://doi.org/10.1109/TIT.2011.2158885
https://doi.org/10.1145/3224424

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 119 — #135

USA: ACM; 2014. p. 15–29. Available from: http://doi.acm.org/
10.1145/2660267.2660379.

[111] Mastan ID, Paul S. A New Approach to Deanonymization of Unreach-
able Bitcoin Nodes. In: Capkun S, Chow SSM, editors. Cryptology and
Network Security. Cham: Springer International Publishing; 2018. p. 277–
298. Available from: https://link.springer.com/chapter/
10.1007/978-3-030-02641-7 13.

[112] Lei M. Exploiting Bitcoin’s topology for double-spend attacks. ETH
Zurich; 2015. Available from: https://pub.tik.ee.ethz.ch/
students/2015-FS/BA-2015-10.pdf.

[113] Nick J. Guessing Bitcoin’s P2P Connections; 2015. (Last accessed: 2021-
01-06). Available from: https://jonasnick.github.io/blog/
2015/03/06/guessing-bitcoins-p2p-connections/.

[114] Neudecker T, Andelfinger P, Hartenstein H. Timing Analysis for In-
ferring the Topology of the Bitcoin Peer-to-Peer Network. In: 2016
Intl IEEE Conferences on Ubiquitous Intelligence Computing, Ad-
vanced and Trusted Computing, Scalable Computing and Communica-
tions, Cloud and Big Data Computing, Internet of People, and Smart
World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld); 2016. p.
358–367. Available from: https://doi.org/10.1109/UIC-ATC-
ScalCom-CBDCom-IoP-SmartWorld.2016.0070.

[115] Grundmann M, Neudecker T, Hartenstein H. Exploiting Transac-
tion Accumulation and Double Spends for Topology Inference in Bit-
coin. In: Zohar A, Eyal I, Teague V, Clark J, Bracciali A, Pintore F,
et al., editors. Financial Cryptography and Data Security. Berlin, Hei-
delberg: Springer Berlin Heidelberg; 2019. p. 113–126. Available
from: https://link.springer.com/chapter/10.1007/978-
3-662-58820-8 9.

[116] Patton M, Gross E, Chinn R, Forbis S, Walker L, Chen H. Uninvited Con-
nections: A Study of Vulnerable Devices on the Internet of Things (IoT).
In: 2014 IEEE Joint Intelligence and Security Informatics Conference;
2014. p. 232–235. Available from: https://doi.org/10.1109/
JISIC.2014.43.

[117] O’Neill M. Insecurity by Design: Today’s IoT Device Se-
curity Problem. Engineering. 2016;2(1):48. Available from:

119

http://doi.acm.org/10.1145/2660267.2660379
http://doi.acm.org/10.1145/2660267.2660379
https://link.springer.com/chapter/10.1007/978-3-030-02641-7_13
https://link.springer.com/chapter/10.1007/978-3-030-02641-7_13
https://pub.tik.ee.ethz.ch/students/2015-FS/BA-2015-10.pdf
https://pub.tik.ee.ethz.ch/students/2015-FS/BA-2015-10.pdf
https://jonasnick.github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/
https://jonasnick.github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://link.springer.com/chapter/10.1007/978-3-662-58820-8_9
https://link.springer.com/chapter/10.1007/978-3-662-58820-8_9
https://doi.org/10.1109/JISIC.2014.43
https://doi.org/10.1109/JISIC.2014.43

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 120 — #136

http://www.engineering.org.cn/en/journal/eng/EN/
abstract/article 17218.shtml.

[118] Bertino E, Islam N. Botnets and Internet of Things Security. Com-
puter. 2017 feb;50(02):76–79. Available from: https://doi.org/
10.1109/MC.2017.62.

[119] Antonakakis M, April T, Bailey M, Bernhard M, Bursztein E, Cochran
J, et al. Understanding the Mirai Botnet. In: 26th USENIX Secu-
rity Symposium (USENIX Security 17). Vancouver, BC: USENIX
Association; 2017. p. 1093–1110. Available from: https:
//www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/antonakakis.

[120] Kolias C, Kambourakis G, Stavrou A, Voas J. DDoS in the IoT: Mirai
and other botnets. Computer. 2017;50(7):80–84. Available from: https:
//doi.org/10.1109/MC.2017.201.

[121] Feily M, Shahrestani A, Ramadass S. A Survey of Botnet and Botnet De-
tection. In: 2009 Third International Conference on Emerging Security In-
formation, Systems and Technologies; 2009. p. 268–273. Available from:
https://doi.org/10.1109/SECURWARE.2009.48.

[122] Mahmoud M, Nir M, Matrawy A, et al. A Survey on Bot-
net Architectures, Detection and Defences. IJ Network Security.
2015;17(3):264–281. Available from: http://dx.doi.org/10.6633%
2fIJNS.201505.17(3).06.

[123] Ali ST, McCorry P, Lee PHJ, Hao F. ZombieCoin: Powering Next-
Generation Botnets with Bitcoin. In: Brenner M, Christin N, John-
son B, Rohloff K, editors. Financial Cryptography and Data Security.
Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 34–48. Avail-
able from: https://link.springer.com/chapter/10.1007%
2F978-3-662-48051-9 3.

[124] Frkat D, Annessi R, Zseby T. ChainChannels: Private Botnet Com-
munication Over Public Blockchains. In: 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Com-
puting and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData);
2018. p. 1244–1252. Available from: https://doi.org/10.1109/
Cybermatics 2018.2018.00219.

120

http://www.engineering.org.cn/en/journal/eng/EN/abstract/article_17218.shtml
http://www.engineering.org.cn/en/journal/eng/EN/abstract/article_17218.shtml
https://doi.org/10.1109/MC.2017.62
https://doi.org/10.1109/MC.2017.62
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1109/SECURWARE.2009.48
http://dx.doi.org/10.6633%2fIJNS.201505.17(3).06
http://dx.doi.org/10.6633%2fIJNS.201505.17(3).06
https://link.springer.com/chapter/10.1007%2F978-3-662-48051-9_3
https://link.springer.com/chapter/10.1007%2F978-3-662-48051-9_3
https://doi.org/10.1109/Cybermatics_2018.2018.00219
https://doi.org/10.1109/Cybermatics_2018.2018.00219

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 121 — #137

[125] Silva SS, Silva RM, Pinto RC, Salles RM. Botnets: A sur-
vey. Computer Networks. 2013;57(2):378–403. Available from:
https://www.sciencedirect.com/science/article/pii/
S1389128612003568.

[126] Tyagi AK, Aghila G. A wide scale survey on botnet. International
Journal of Computer Applications. 2011;34(9):10–23. Available from:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.259.5081&rep=rep1&type=pdf.

[127] Liu J, Xiao Y, Ghaboosi K, Deng H, Zhang J. Botnet: Classification, At-
tacks, Detection, Tracing, and Preventive Measures. EURASIP Journal
on Wireless Communications and Networking. 2009 Sep;2009(1):692654.
Available from: https://doi.org/10.1155/2009/692654.

[128] Binkley JR, Singh S. An Algorithm for Anomaly-based Botnet Detec-
tion. SRUTI. 2006;6:7–7. Available from: https://dl.acm.org/
doi/abs/10.5555/1251296.1251303.

[129] Abu Rajab M, Zarfoss J, Monrose F, Terzis A. A Multifaceted Ap-
proach to Understanding the Botnet Phenomenon. In: Proceedings of
the 6th ACM SIGCOMM Conference on Internet Measurement. IMC ’06.
New York, NY, USA: ACM; 2006. p. 41–52. Available from: http:
//doi.acm.org/10.1145/1177080.1177086.

[130] Livadas C, Walsh R, Lapsley D, Strayer WT. Using Machine Learning
Techniques to Identify Botnet Traffic. In: Proceedings. 2006 31st IEEE
Conference on Local Computer Networks; 2006. p. 967–974. Available
from: https://doi.org/10.1109/LCN.2006.322210.

[131] Gu G, Zhang J, Lee W. BotSniffer: Detecting botnet com-
mand and control channels in network traffic. 2008;Available
from: http://corescholar.libraries.wright.edu/cgi/
viewcontent.cgi?article=1006&context=cse.

[132] Westervelt R. Botnet masters turn to google, social networks to
avoid detection; 2009. (Last accessed: 2019-09-22). Available
from: https://searchsecurity.techtarget.com/news/
1373974/Botnet-masters-turn-to-Google-social-
networks-to-avoid-detection.

[133] Wang P, Wu L, Aslam B, Zou CC. A Systematic Study on Peer-to-
Peer Botnets. In: 2009 Proceedings of 18th International Conference on

121

https://www.sciencedirect.com/science/article/pii/S1389128612003568
https://www.sciencedirect.com/science/article/pii/S1389128612003568
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.5081&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.5081&rep=rep1&type=pdf
https://doi.org/10.1155/2009/692654
https://dl.acm.org/doi/abs/10.5555/1251296.1251303
https://dl.acm.org/doi/abs/10.5555/1251296.1251303
http://doi.acm.org/10.1145/1177080.1177086
http://doi.acm.org/10.1145/1177080.1177086
https://doi.org/10.1109/LCN.2006.322210
http://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=1006&context=cse
http://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=1006&context=cse
https://searchsecurity.techtarget.com/news/1373974/Botnet-masters-turn-to-Google-social-networks-to-avoid-detection
https://searchsecurity.techtarget.com/news/1373974/Botnet-masters-turn-to-Google-social-networks-to-avoid-detection
https://searchsecurity.techtarget.com/news/1373974/Botnet-masters-turn-to-Google-social-networks-to-avoid-detection

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 122 — #138

Computer Communications and Networks; 2009. p. 1–8. Available from:
https://doi.org/10.1109/ICCCN.2009.5235360.

[134] Nagaraja S, Mittal P, Hong CY, Caesar M, Borisov N. BotGrep: Find-
ing P2P Bots with Structured Graph Analysis. In: Proceedings of the
19th USENIX Conference on Security. USENIX Security’10. Berkeley,
CA, USA: USENIX Association; 2010. p. 7–7. Available from: http:
//dl.acm.org/citation.cfm?id=1929820.1929830.

[135] Saad S, Traore I, Ghorbani A, Sayed B, Zhao D, Lu W, et al. Detect-
ing P2P botnets through network behavior analysis and machine learn-
ing. In: 2011 Ninth Annual International Conference on Privacy, Secu-
rity and Trust; 2011. p. 174–180. Available from: https://doi.org/
10.1109/PST.2011.5971980.

[136] Wiki B. Testnet; 2019. (Last accessed: 2019-09-22). Available from:
https://en.bitcoin.it/wiki/Testnet.

[137] Lopp J. How to Solo Mine on Bitcoin’s Testnet; 2015. (Last accessed:
2019-09-22). Available from: https://blog.lopp.net/how-to-
solo-mine-on-bitcoin-s-testnet.

[138] Ali ST, McCorry P, Lee PHJ, Hao F. ZombieCoin 2.0: managing next-
generation botnets using Bitcoin. International Journal of Information Se-
curity. 2018 Aug;17(4):411–422. Available from: https://doi.org/
10.1007/s10207-017-0379-8.

[139] Zhong Y, Zhou A, Zhang L, Jing F, Zuo Z. DUSTBot: A du-
plex and stealthy P2P-based botnet in the Bitcoin network. PloS
one. 2019;14(12). Available from: https://doi.org/10.1371/
journal.pone.0226594.

[140] Kurt A, Erdin E, Cebe M, Akkaya K, Uluagac AS. LNBot: A Covert
Hybrid Botnet on Bitcoin Lightning Network for Fun and Profit. In:
Chen L, Li N, Liang K, Schneider S, editors. Computer Security – ES-
ORICS 2020. Cham: Springer International Publishing; 2020. p. 734–
755. Available from: https://link.springer.com/chapter/
10.1007/978-3-030-59013-0 36.

[141] Yin J, Cui X, Liu C, Liu Q, Cui T, Wang Z. CoinBot: A Covert
Botnet in the Cryptocurrency Network. In: Meng W, Gollmann D,
Jensen CD, Zhou J, editors. Information and Communications Security.
Cham: Springer International Publishing; 2020. p. 107–125. Available

122

https://doi.org/10.1109/ICCCN.2009.5235360
http://dl.acm.org/citation.cfm?id=1929820.1929830
http://dl.acm.org/citation.cfm?id=1929820.1929830
https://doi.org/10.1109/PST.2011.5971980
https://doi.org/10.1109/PST.2011.5971980
https://en.bitcoin.it/wiki/Testnet
https://blog.lopp.net/how-to-solo-mine-on-bitcoin-s-testnet
https://blog.lopp.net/how-to-solo-mine-on-bitcoin-s-testnet
https://doi.org/10.1007/s10207-017-0379-8
https://doi.org/10.1007/s10207-017-0379-8
https://doi.org/10.1371/journal.pone.0226594
https://doi.org/10.1371/journal.pone.0226594
https://link.springer.com/chapter/10.1007/978-3-030-59013-0_36
https://link.springer.com/chapter/10.1007/978-3-030-59013-0_36

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 123 — #139

from: https://link.springer.com/chapter/10.1007/978-
3-030-61078-4 7.

[142] Baden M, Ferreira Torres C, Fiz Pontiveros BB, State R. Whispering Botnet
Command and Control Instructions. In: 2019 Crypto Valley Conference
on Blockchain Technology (CVCBT); 2019. p. 77–81. Available from:
https://doi.org/10.1109/CVCBT.2019.00014.

[143] Oliveira A, GonÃ§alves V, Filho GR. Using Ethereum Smart Contracts
for Botnet Command and Control; 2020. Copyright - Copyright Aca-
demic Conferences International Limited Jun 2020. Available from:
https://search.proquest.com/conference-papers-
proceedings/using-ethereum-smart-contracts-
botnet-command/docview/2453793786/se-2?accountid=
14708.

[144] Zarpelão BB, Miani RS, Rajarajan M. Detection of Bitcoin-Based Botnets
Using a One-Class Classifier. In: Blazy O, Yeun CY, editors. Information
Security Theory and Practice. Cham: Springer International Publishing;
2019. p. 174–189. Available from: https://link.springer.com/
chapter/10.1007/978-3-030-20074-9 13.

[145] Correia P, Rocha E, Nogueira A, Salvador P. Statistical characterization of
the Botnets C&C traffic. Procedia Technology. 2012;1:158–166. Available
from: https://doi.org/10.1016/j.protcy.2012.02.030.

[146] Mascheck S. ARG MAX, maximum length of arguments for a new pro-
cess; 2016. (Last accessed: 2019-09-22). Available from: https:
//www.in-ulm.de/˜mascheck/various/argmax.

[147] Neudecker T. Characterization of the Bitcoin Peer-to-Peer Network (2015-
2018). Karlsruher Institut für Technologie (KIT); 2019. 1. Available from:
https://doi.org/10.5445/IR/1000091933.

[148] Grundmann M, Neudecker T, Hartenstein H. Exploiting Transac-
tion Accumulation and Double Spends for Topology Inference in Bit-
coin. In: Financial Cryptography and Data Security. Berlin, Hei-
delberg: Springer Berlin Heidelberg; 2019. p. 113–126. Available
from: https://link.springer.com/chapter/10.1007/978-
3-662-58820-8 9.

[149] Group DR. Bitcoin Network Monitor - Transaction Propagation;
2019. (Last accessed: 2020-01-16). Available from: https://
dsn.tm.kit.edu/bitcoin/videos.html#transactions.

123

https://link.springer.com/chapter/10.1007/978-3-030-61078-4_7
https://link.springer.com/chapter/10.1007/978-3-030-61078-4_7
https://doi.org/10.1109/CVCBT.2019.00014
https://search.proquest.com/conference-papers-proceedings/using-ethereum-smart-contracts-botnet-command/docview/2453793786/se-2?accountid=14708
https://search.proquest.com/conference-papers-proceedings/using-ethereum-smart-contracts-botnet-command/docview/2453793786/se-2?accountid=14708
https://search.proquest.com/conference-papers-proceedings/using-ethereum-smart-contracts-botnet-command/docview/2453793786/se-2?accountid=14708
https://search.proquest.com/conference-papers-proceedings/using-ethereum-smart-contracts-botnet-command/docview/2453793786/se-2?accountid=14708
https://link.springer.com/chapter/10.1007/978-3-030-20074-9_13
https://link.springer.com/chapter/10.1007/978-3-030-20074-9_13
https://doi.org/10.1016/j.protcy.2012.02.030
https://www.in-ulm.de/~mascheck/various/argmax
https://www.in-ulm.de/~mascheck/various/argmax
https://doi.org/10.5445/IR/1000091933
https://link.springer.com/chapter/10.1007/978-3-662-58820-8_9
https://link.springer.com/chapter/10.1007/978-3-662-58820-8_9
https://dsn.tm.kit.edu/bitcoin/videos.html#transactions
https://dsn.tm.kit.edu/bitcoin/videos.html#transactions

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 124 — #140

[150] Fanti G, Viswanath P. Deanonymization in the Bitcoin P2P Network. In:
Proceedings of the 31st International Conference on Neural Information
Processing Systems. NIPS’17. Red Hook, NY, USA: Curran Associates
Inc.; 2017. p. 1364–1373. Available from: https://dl.acm.org/
doi/10.5555/3294771.3294901.

[151] Kiayias A, Panagiotakos G. Speed-Security Tradeoffs in Blockchain Proto-
cols; 2015. Cryptology ePrint Archive, Report 2015/1019. Available from:
https://eprint.iacr.org/2015/1019.

[152] Essaid M, Kim HW, Park WG, Lee KY, Park SJ, Ju HT. Network Us-
age of Bitcoin Full Node. In: 2018 International Conference on In-
formation and Communication Technology Convergence (ICTC); 2018.
p. 1286–1291. Available from: https://ieeexplore.ieee.org/
abstract/document/8539723.

[153] Jia Zhao, Jiande Lu. Solving Overlay Mismatching of Unstructured P2P
Networks using Physical Locality Information. In: Sixth IEEE Inter-
national Conference on Peer-to-Peer Computing (P2P’06); 2006. p. 75–
76. Available from: https://ieeexplore.ieee.org/abstract/
document/1698595.

[154] Liu Y, Xiao L, Ni L. Building a Scalable Bipartite P2P Over-
lay Network. IEEE Transactions on Parallel and Distributed Sys-
tems. 2007 Sep;18(9):1296–1306. Available from: https://
ieeexplore.ieee.org/abstract/document/4288128.

[155] Dotan M, Pignolet YA, Schmid S, Tochner S, Zohar A. SOK: Cryp-
tocurrency Networking Context, State-of-the-Art, Challenges. In: Pro-
ceedings of the 15th International Conference on Availability, Reliability
and Security. ARES ’20. New York, NY, USA: Association for Comput-
ing Machinery; 2020. Available from: https://doi.org/10.1145/
3407023.3407043.

[156] Deshpande V, Badis H, George L. BTCmap: Mapping Bitcoin Peer-to-
Peer Network Topology. In: 2018 IFIP/IEEE International Conference
on Performance Evaluation and Modeling in Wired and Wireless Net-
works (PEMWN); 2018. p. 1–6. Available from: https://doi.org/
10.23919/PEMWN.2018.8548904.

[157] Rostami H, Habibi J. Topology awareness of overlay P2P networks.
Concurrency and Computation: Practice and Experience. 2007;19(7):999–
1021. Available from: https://doi.org/10.1002/cpe.1089.

124

https://dl.acm.org/doi/10.5555/3294771.3294901
https://dl.acm.org/doi/10.5555/3294771.3294901
https://eprint.iacr.org/2015/1019
https://ieeexplore.ieee.org/abstract/document/8539723
https://ieeexplore.ieee.org/abstract/document/8539723
https://ieeexplore.ieee.org/abstract/document/1698595
https://ieeexplore.ieee.org/abstract/document/1698595
https://ieeexplore.ieee.org/abstract/document/4288128
https://ieeexplore.ieee.org/abstract/document/4288128
https://doi.org/10.1145/3407023.3407043
https://doi.org/10.1145/3407023.3407043
https://doi.org/10.23919/PEMWN.2018.8548904
https://doi.org/10.23919/PEMWN.2018.8548904
https://doi.org/10.1002/cpe.1089

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 125 — #141

[158] Yunhao Liu, Xiaomei Liu, Li Xiao, Ni LM, Xiaodong Zhang. Location-
aware topology matching in P2P systems. In: IEEE INFOCOM 2004.
vol. 4; 2004. p. 2220–2230 vol.4. Available from: https://doi.org/
10.1109/INFCOM.2004.1354645.

[159] Zhiyong Xu, Rui Min, Yiming Hu. HIERAS: a DHT based hierarchi-
cal P2P routing algorithm. In: 2003 International Conference on Paral-
lel Processing, 2003. Proceedings.; 2003. p. 187–194. Available from:
https://doi.org/10.1109/ICPP.2003.1240580.

[160] Oliveira LB, Siqueira IG, Loureiro AAF. On the Performance of Ad
Hoc Routing Protocols under a Peer-to-Peer Application. J Parallel Dis-
trib Comput. 2005 Nov;65(11):1337–1347. Available from: https:
//doi.org/10.1016/j.jpdc.2005.05.023.

[161] info S. Peers; 2020. (Last accessed: 2020-01-16). Available from: https:
//statoshi.info/dashboard/db/peers.

[162] info S. P2P Messages; 2020. (Last accessed: 2020-01-16). Available from:
https://statoshi.info/dashboard/db/p2p-messages.

[163] Mariem SB, Casas P, Romiti M, Donnet B, StÃ¼tz R, Haslhofer B. All
that Glitters is not Bitcoin – Unveiling the Centralized Nature of the BTC
(IP) Network; 2020. Available from: https://arxiv.org/abs/
2001.09105.

[164] Essaid M, Park S, Ju HT. Bitcoin’s dynamic peer-to-peer topology. In-
ternational Journal of Network Management. 2020;n/a(n/a):e2106. E2106
nem.2106. Available from: https://onlinelibrary.wiley.com/
doi/abs/10.1002/nem.2106.

[165] Rossow C, Andriesse D, Werner T, Stone-Gross B, Plohmann D, Dietrich
CJ, et al. SoK: P2PWNED - Modeling and Evaluating the Resilience of
Peer-to-Peer Botnets. In: 2013 IEEE Symposium on Security and Pri-
vacy; 2013. p. 97–111. Available from: https://doi.org/10.1109/
SP.2013.17.

[166] Richter P, Allman M, Bush R, Paxson V. A Primer on IPv4 Scarcity.
SIGCOMM Comput Commun Rev. 2015 04;45(2):21–31. Available from:
https://doi.org/10.1145/2766330.2766335.

[167] Hu Z. NAT traversal techniques and peer-to-peer applications.
In: HUT T-110.551 Seminar on Internetworking; 2005. p. 04–
26. Available from: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.103.1659&rep=rep1&type=pdf.

125

https://doi.org/10.1109/INFCOM.2004.1354645
https://doi.org/10.1109/INFCOM.2004.1354645
https://doi.org/10.1109/ICPP.2003.1240580
https://doi.org/10.1016/j.jpdc.2005.05.023
https://doi.org/10.1016/j.jpdc.2005.05.023
https://statoshi.info/dashboard/db/peers
https://statoshi.info/dashboard/db/peers
https://statoshi.info/dashboard/db/p2p-messages
https://arxiv.org/abs/2001.09105
https://arxiv.org/abs/2001.09105
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2106
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2106
https://doi.org/10.1109/SP.2013.17
https://doi.org/10.1109/SP.2013.17
https://doi.org/10.1145/2766330.2766335
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1659&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1659&rep=rep1&type=pdf

“thesis-FedFranz” — 2021/2/4 — 11:30 — page 126 — #142

[168] Van de Velde G, Hain T, Droms R, Carpenter B. Local Network Protection
for IPv6. RFC 4864, May; 2007. Available from: http://www.hjp.at/
doc/rfc/rfc4864.html.

[169] McCarthy K. IPv6 growth is slowing and no one knows why. Let’s see
if El Reg can address what’s going on; 2018. (Last accessed: 2020-07-
14). Available from: https://www.theregister.com/2018/05/
21/ipv6 growth is slowing and no one knows why/.

[170] Czyz J, Allman M, Zhang J, Iekel-Johnson S, Osterweil E, Bailey M.
Measuring IPv6 Adoption. SIGCOMM Comput Commun Rev. 2014
Aug;44(4):87–98. Available from: https://doi.org/10.1145/
2740070.2626295.

[171] Howard L. IPv6 Growth; 2019. (Last accessed: 2020-07-14). Available
from: https://www.retevia.net/ipv6-growth/.

126

http://www.hjp.at/doc/rfc/rfc4864.html
http://www.hjp.at/doc/rfc/rfc4864.html
https://www.theregister.com/2018/05/21/ipv6_growth_is_slowing_and_no_one_knows_why/
https://www.theregister.com/2018/05/21/ipv6_growth_is_slowing_and_no_one_knows_why/
https://doi.org/10.1145/2740070.2626295
https://doi.org/10.1145/2740070.2626295
https://www.retevia.net/ipv6-growth/

