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Abstract

Mathematical and computational modeling of �exoelectricity at mesoscopic and
atomistic scales

David Codony

This PhD thesis focuses on the development of mathematical and computational models for
�exoelectricity, a relatively new electromechanical coupling that is present in any dielectric at
the micron and sub-micron scales. The work is framed in the context of both continuum and
quantum mechanics, and explores the gap between these two disciplines.

On the one hand, the focus is put on the mathematical modeling of the �exoelectric e�ect
by means of continuum (electro-) mechanics, and the development of computational tech-
niques required to numerically solve the associated boundary value problems. The novel
computational infrastructure developed in this work is able to predict the performance of
engineered devices for electromechanical transduction at sub-micron scales, where �exoelec-
tricity is always present, without any particular restrictions in geometry, material choice,
boundary conditions or nonlinearity. The numerical examples within this document show
that �exoelectricity can be harnessed in multiple di�erent ways towards the development of
breakthrough applications in nanotechnology.

On the other hand, the �exoelectric e�ect is also studied at an atomistic level by means of
quantum mechanics. This work proposes a novel methodology to quantify the �exoelectric
properties of dielectric materials, by means of connecting ab-initio atomistic simulations
with the proposed models at a coarser, continuum scales. The developed approach sheds
some light on a controversial topic within the density functional theory community, where
large disagreements among di�erent theoretical derivations are typically found. The ab-initio
computations serve not only to assess the material parameters within the continuum models,
but also to validate their inherent assumptions regarding the relevant physics at the nanoscale.

Keywords: Flexoelectricity, Continuum mechanics, Quantum mechanics, Mathematical modeling, Computa-
tional modeling.
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Chapter 1

Introduction

1.1 Motivation

Electroactive materials are able to transform mechanical energy into electrical energy (and
viceversa), hence their ubiquity in modern technologies (cf. Fig. 1.1). One of the main appli-
cations is to generate electrical power from mechanical sources (energy harvesting), such
as vibrations associated with operating machinery, movements of the human body, ocean
waves, wind, and others (Dagdeviren et al., 2016). Another usage consists on converting a
mechanical input into an electrical output just for sensing and measuring devices. Conversely,
the application of electric �elds to electroactive materials can yield well-controlled mechanical
forces for actuation in robotics, biomedical devices, motors and personal electronics among
others.

The underlying physics that drive electromechanical transduction can be very di�erent
in nature, and vary depending on the considered material. One of the most well-known and
exploited electromechanical coupling is piezoelectricity, by which the mechanical strains " and
the electric polarization p are linearly coupled:

pl = dlij"ij , (1.1)

where d is the tensor of piezoelectricity. This is the case of piezoelectric ceramics, which
are polarized upon deformation, and conversely deform when an electrical �eld is applied.
Piezoelectricity can be intuitively understood by the ionic crystal model under compression or
tension (cf. Fig. 1.2a), in which the electric dipole moment increases or decreases due to a shift
between the centers of gravity of the negative and the positive ions. Piezoelectricity allows
reversibility, in the sense that reversal of the input (e.g. compression instead of tension) yields
an opposite output (e.g. increasing or decreasing polarization �eld). However, it is restricted to
crystalline dielectrics with a non-centrosymmetric structure. Otherwise, the dipole moment is
not a�ected by the mechanical input (i.e. the piezoelectricity tensor vanishes).



2 Introduction

Figure 1.1: Applications of electromechanical transduction. Possible sources of energy harvesting (left)
and its usage for sensing and actuation (right). Figure adapted from Dagdeviren et al. (2016).

Soft materials such as piezoelectric polymers or dielectric elastomers exhibit a di�erent
mechanism named electrostriction or Maxwell-stress e�ect. The application of an electric
�eld through a compliant dielectric induces an electrostatic stress in it, as a result from the
Coulombic attraction between the charges of opposite sign located on both sides of the material
(cf. Fig. 1.2b). It can be mathematically written as

�ij = mklijekel , (1.2)

where the stresses � are coupled to the square of the electric �eld e through the electrostriction
tensor m. In contrast to piezoelectricity, electrostriction is present in all dielectrics (referred to
as universality), albeit it is only relevant in soft materials. However, it presents two noticeable
drawbacks. On the one hand, it is a one-way coupling only: electric �eld (or polarization) is
not generated by the application of strain. Hence, they can only be used as actuators. On the
other hand, it does not allow reversibility: regardless of the sign of the applied electric �eld,
the material will always deform in the same direction (either compression or expansion).

Some dielectrics exhibit as well other physical couplings, such as pyroelectricity (tempera-
ture-dependent polarization) or ferroelectricity (reversible spontaneous polarization), to name
a few. All this variety of electromechanical couplings has been largely studied, is quite well
understood and is suitable to describe the behavior of dielectrics at the macro- and mesoscale.
However, at smaller (micro- and nano-) scales, additional e�ects become relevant and must be
taken into account as well. One of these less studied electromechanical couplings constitutes
the focus of the present manuscript: �exoelectricity.
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Figure 1.2: 2D sketches of di�erent physics for electromechanical transduction in a crystalline dielectric.



4 Introduction

The �exoelectric e�ects consists on the coupling between electric polarization and strain
gradients. The (direct) �exoelectric e�ect is understood as the material polarization due to
inhomogeneous deformation (e.g. bending or twisting) and is mathematically expressed as

pl = flijk
)"ij
)xk

, (1.3)

where f is the �exocoupling tensor. In hard materials, it can be intuitively understood as
well by the ionic crystal model under bending (cf. Fig. 1.2c), in which a non-zero net dipole
moment arises, even in centrosymmetric materials. Therefore, it is present in all dielectrics,
regardless of their crystalline structure. Similarly to piezoelectricity, it is a two-way coupling,
and hence it is also possible inducing a bending deformation by applying an external electric
�eld. Moreover, thanks to its linearity it is reversible in sign. Figure 1.3 shows the linearity of
the direct �exoelectric e�ect measured in di�erent dielectrics.

There also exists a thermodynamically conjugate converse �exoelectric e�ect that consists
on the generation of stress � due to the application of an inhomogeneous electric �eld e, i.e.

�ij = flijk
)el
)xk

. (1.4)

The term “�exoelectricity” may refer to the direct �exoelectric e�ect only, or to both the direct
and converse �exoelectric e�ects, depending on the context.

Due to their convenient properties (that is, universality, reversibility and being a two-
way coupling) as compared to piezoelectricity or electrostriction, �exoelectricity seems to
be a promising mechanism to be exploited in modern technologies. However, it has only
gained attention very recently (cf. Fig. 1.4). The reason behind this is that the �exoelectric
material constants are typically very small, and therefore su�ciently large strain gradients are
required in order to trigger a sizable �exoelectric e�ect. Since strain-gradients scale inversely
to spatial dimension, they are typically small at the meso- and macroscale, but considerably
large in the micro- and nanoscale. Therefore, �exoelectricity is by nature a size dependent
e�ect, relevant only at the microscale and nanoscale. It is not surprising that the rise of
scienti�c and industrial interest in �exoelectricity coincides in time with the investment
and developments in various nanotechnologies, such as nanomedicine, nanobiotechnology
and nanoremediation, or the discovery of atomically-thin materials (2D monolayers) such
as graphene, featuring unprecedented and exciting mechanical and optical properties with
multiple potential applications.
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Figure 1.3: Linearity of �exoelectric polarization with respect to strain gradient. Figure adapted from
Wang et al. (2019).

Figure 1.4: The number of publications on �exoelectricity in solids per year. Figure adapted from Yudin
and Tagantsev (2013).
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1.2 State of the art of the �exoelectric e�ect

The state of the art of the �exoelectric e�ect is brie�y summarized in Fig. 1.5. The most
characteristic (and challenging) feature is perhaps its underlying multiscale nature in the
majority of the areas, from its observation, understanding, modeling and quanti�cation until the
computationally-based functional design of electromechanical devices for speci�c technological
applications. In what follows, we summarize the most relevant aspects of the �exoelectric
e�ect.

Design concepts
Non-centrosymmetry

Chirality

Accumulation

Closed-form solutions
(1D) Rods

(2D) Plates

Computational tools
Numerical modeling

Optimization

Prediction / Design
Material science
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Observation
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In-situ testing

Quantification
Experiments
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Quantum mechanics

Continuum mechanics

Physics

Mathematics

Development / Technology
Process

Proof of concept
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Testing

Marketing

New technologies

Flexoelectric MEMS
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...
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Flexible/stretchable electronics

Piezoelectric metamaterials (Upscaling)

Miniaturization (Downscaling)

Ultra-high density memories

...

Micro/nanoscale Meso/macroscale

Figure 1.5: State of the art of �exoelectricity, and its underlying multiscale nature.

(a) A clamped, closed-circuited 2.5 µm-thin
BaTiO3 �lm under an external transversal elec-
tric �eld generated by a potential di�erence of
20V, undergoes bending deformation with a cur-
vature of 0.15mm−1.

(b) The induced curvature � depends on the
thickness of the �lm T as � ∝ T −2.

Figure 1.6: First experiment demonstrating �exoelectricity. Figure adapted from Bursian and Zaikovskii
(1968).
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1.2.1 Observation

The �exoelectric e�ect was experimentally observed for the �rst time in 1968 by Bursian and
Zaikovskii (1968), after the theoretical predictions by Mashkevich and Tolpygo (1957). In
this experiment (see Fig. 1.6), various single-crystal thin �lms of barium titanate (BaTiO3) of
thicknesses in the range of 0.1 − 10µm were subjected to transversal electric �eld (actuation
mode). The bending was found to be always in the direction of the positive electrode, i.e. it was
a reversible e�ect. Moreover, the bending of the �lm also produced a charge on its surfaces
(sensing mode), con�rming the two-way nature of the coupling.

Since then, �exoelectricity has been observed in multiple materials: biomaterials such as
cellular membranes (Ahmadpoor and Sharma, 2015, Petrov, 2002, Todorov et al., 1991) and
viruses (Kalinin et al., 2006), soft materials such as liquid crystals (Harden et al., 2006, Meyer,
1969, Petrov, 1975, Prost and Marcerou, 1977, Trabi et al., 2008) or polymers (Baskaran et al.,
2011a, 2012, 2011b, Breger et al., 1976, Deng et al., 2014a, Marvan and Havránek, 1998, Zhang
et al., 2016b, Zhou et al., 2017), hard ceramics (Cross, 2006, Ma and Cross, 2002, 2001a,b),
and even in atomically-thin nanomaterials such as graphene (Kalinin and Meunier, 2008) or
carbon nanotubes (Dumitrică et al., 2002).

In order to illustrate the ubiquity of �exoelectricity in nature, the following examples
are of particular interest. A biological material in which �exoelectricity plays a role is the
stomatopods dactyl club. Stomatopods, such as the peacock mantis shrimp (see Fig. 1.7), are
marine crustaceans that use damage-tolerant hammerlike claws for defense and to attack their
prey. The claws undergo repeated high-velocity and high-force impacts (Weaver et al., 2012).
The mechanical structure of the claw of the Peacock Mantis shrimp is formed by di�erent
regions with highly anisotropic Young modulus distribution, generating large stress-gradients
that trigger the �exoelectric e�ect, resulting in a voltage of 1-2 V across the thickness of the
impact surface. As pointed out by Vásquez Sancho (2018), �exoelectricity is known to be able
to increase a material’s toughness (Abdollahi et al., 2015b), which is the most characteristic
feature of this crustacean’s club.

Another impressive implication of �exoelectricity in biology is found in the mammalian
hearing mechanism (cf. Fig. 1.8). Hair cells are the primary sensory receptors in the auditory
system that transform the mechanical vibrations of sound into sensible electrical action
potential and, although the corresponding mechanism is still not fully understood, one possible
explanation is the stereocilia in inner hair cells being �exoelectric (Ahmadpoor and Sharma,
2015, Krichen and Sharma, 2016, Oghalai et al., 2000, Peng et al., 2011).

Finally, it is worth mentioning another exciting implication in biology, found in human
bones self-healing (cf. Fig. 1.9). As reported by Vasquez-Sancho et al. (2018), micro-cracks
in bones generate very large strain gradients, inducing an electric �eld in the vicinity of
the a�ected area due to the �exoelectric nature of the bone mineral hydroxyapatite. This
crack-generated electrical stimulus is large enough to drive the activity of osteoblasts towards
damaged regions, thus initiating the crack-healing process.
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Figure 1.7: Flexoelectric e�ect in the peacock mantis shrimp dactyl club. The insets show the multi-
regional nature of the stomatopod dactyl club, revealing a gradient in mineralization, increasing towards
the club surface. The outer impact region is dense and highly mineralized, and the inner periodic region
is more organic. The insets show the highly anisotropic Young modulus of each region. Such anisotropy
induces a stress gradient at each impact that generates a voltage of 1-2 V across the thickness of the
impact surface thanks to the �exoelectric e�ect. Figures adapted from Vásquez Sancho (2018), Weaver
et al. (2012), Wikimedia Commons (2010, 2020), Yaraghi et al. (2016).

Figure 1.8: Flexoelectric e�ect in mammalian hearing mechanism. Hair bundles consist of several
stereocilia that are connected by thin �bers organized in rows of decreasing height. Bending of the
hair bundle toward the tallest (shortest) row make the cellular inner environment more electrically
positive (negative). During these processes, a voltage di�erence emerges across the thickness of the
stereocilia membrane due to the �exoelectric response of the cellular membrane. Caption and Figure
adapted from Krichen and Sharma (2016).
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Figure 1.9: Flexoelectric e�ect in human bones. Strain gradients can be large around small defects such
as micro-cracks in bone mineral, so gradient-induced electricity (�exoelectricity) is also expected to be
large around such defects. Caption and Figure adapted from Vasquez-Sancho et al. (2018).

1.2.2 Quanti�cation

The experimental quanti�cation of the �exoelectric tensor is very challenging, due to (i)
the high resolution equipment required to capture such small values, (ii) the di�culty in
experiments in isolating the �exoelectric e�ect from other physics, and (iii) the high number of
independent components of the �exoelectric tensor. In general, the �exoelectricity tensor has 54
independent components (Le Quang and He, 2011, Shu et al., 2011), although they are reduced

Figure 1.10: Schematics of �exoelectric experimental setups for the direct measurements of �exoelectric
constants. Figure adapted from Wang et al. (2019).
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to only 3 coe�cients for materials possessing cubic symmetry (such as perovskite oxides in
paraelectric phase), i.e. the longitudinal (�L), transversal (�T) and shear (�S) coe�cients. Many
experimental methods have been developed for each coe�cient, as summarized in Fig. 1.10.

The longitudinal coe�cient can be assessed by the truncated pyramid compression (Cross,
2006, Hana, 2007, Marvan and Havránek, 1998), where the di�erent sizes of the bases induce
a longitudinal strain gradient ∇z"zz that yields a vertical electric �eld ez . Another method
based on converse �exoelectricity consists on applying a graded electric �eld ∇zez across the
truncated pyramid and measuring the resulting vertical strain "zz via high-resolution optical
approaches (Fu et al., 2006, Hana et al., 2006).

The experimental setups for assessing the transversal coe�cient rely on beam bending,
where the transversal variation of the axial strain ∇z"xx generates a transversal electric �eld ez .
Various setups have been used to induce bending, such as the cantilever loading (Huang et al.,
2017, 2011, Kwon et al., 2014, Li et al., 2014, 2013, Ma and Cross, 2002, 2005, 2006, 2001a, Shu
et al., 2017, 2016, 2013), and the three- or four-point bending (Ma and Cross, 2003, Narvaez
and Catalan, 2014, Narvaez et al., 2015, Zubko et al., 2007).

For the shear coe�cient, there is no well-established procedure based on the direct �ex-
oelectric e�ect to date. This is due to the di�culty in generating a sustained shear strain
gradient generating a non-vanishing net polarization. There do exist approaches based on the
converse e�ect, by electrically loading a truncated pyramid across the lateral sides (Shu et al.,
2014), which yields an electric �eld gradient-induced deformation. Another approach based
on the direct �exoelectric e�ect consists on applying a torque load upon a half cylindrical
specimen (Zhang et al., 2017), yielding a strain-gradient-induced electric �eld. However, the
measured coe�cient does not correspond to the shear �exoelectric coe�cient �S of cubic
crystals. As pointed out by Mocci et al. (2020), an axial variation of the cross section size
(i.e. the radius varying along the axial direction) would be required in order to generate the
proper electric �eld to characterize �S.

Other than experiments, the �exoelectric coe�cient can be assessed by theoretical com-
putations (even in materials that have been predicted to be stable, but not yet synthesized).
A rough estimate of the �exocoupling coe�cient was �rst provided by Kogan (1964) using a
simple phenomenological model:

f ≈ 1
4��0

q
a , (1.5)

where q is the electronic charge, a is an interatomic spacing of a few angstroms and �0 is
the vacuum permittivity. Since then, there have been a number of attempts to properly
quantify the �exoelectric response in solids by means of �rst-principles calculations. There are
mainly two approaches: (i) the indirect approach, which relies on the �rst-principles theory
of �exoelectricity (Dreyer et al., 2018, Hong and Vanderbilt, 2013, Resta, 2010, Stengel, 2013,
2014) based on density functional perturbation theory (DFPT) (Baroni et al., 2001, Gonze and
Lee, 1997), and (ii) the direct approach, where the induced polarization of a bent material is
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computed at di�erent curvatures by means of ab-initio atomistic computations (Dumitrică
et al., 2002, Kalinin and Meunier, 2008, Shi et al., 2018), such as density functional theory
(DFT) (Hohenberg and Kohn, 1964, Kohn and Sham, 1965), and the �exoelectric coe�cient is
assessed as the change rate of curvature-induced polarization. A more comprehensive review
of the topic is reported in Section 4.1. However, we point out here that such computations are
in general di�cult. For the direct approach, the commercial implementations typically assume
periodic boundary conditions, which are not ful�lled in bending states unless supercells are
considered, leading to very expensive computations. Moreover, the results are sensitive to the
choice and size of the supercell, and most of the times implicitly assume di�erent boundary
conditions as those enforced in experiments (Wang et al., 2019). One the contrary, indirect
approaches involve intricate derivations that require the decomposition of the tensor into
lattice-mediated, frozen-ion and mixed contributions (Wang et al., 2019).

In any case, there is a well-known order-of-magnitude discrepancy between the theo-
retically estimated and the experimentally measured �exoelectric coe�cients. Speci�cally,
experimental measurement of the �exoelectric coe�cient in the paraelectric phase of many
perovskite oxides reaches up to several tens of µC/m, whereas theoretical estimations suggest
the intrinsic �exoelectricity should not exceed several nC/m (Wang et al., 2019). This discrep-
ancy can be due to many reasons, but from the experimental side, many sources of error can
arise. For instance, experiments based on the application of electric �eld intrinsically trigger
the electrostrictive e�ect along with the �exoelectric one, so both responses must be properly
separated. Other physics can be present, such as the pseudo Jahn-Teller e�ect (Bersuker, 2013)
or surface e�ects (Narvaez et al., 2015, Yurkov and Tagantsev, 2016). Another source of error
is due to the oversimpli�cation of strain gradient distribution, specially in the setups relying
in the truncated pyramid geometry (Abdollahi et al., 2015a, 2014). Apart from comparing
to experiments, disagreement in the orders of magnitude and even the sign of �exoelectric
tensors also exist among di�erent theoretical calculations, which may be attributed to di�erent
electric boundary conditions considered, di�erent force-patterns or the inclusion of surface
e�ects (Wang et al., 2019).

1.2.3 Theoretical and computational modeling

The research on �exoelectricity is rapidly increasing, and so is the development of theoretical
and computational models for it. They are necessary due to many reasons. On the one
hand, theoretical models are useful in order to conceptualize the �exoelectric e�ect and fully
understand it. On the other hand, the experiments to characterize the �exoelectric coe�cients
inevitably depend on an underlying model whose parameters are to be �t with experimental
data. More importantly, the development of proof-of-concept technologies based on the
�exoelectric e�ect requires computational (including also optimization) tools in order to
predict and maximize the performance of a certain device, and demonstrate its feasibility.

There exist a wide range of theoretical and computational models of �exoelectricity, detailed
in the State of the art Section of the di�erent Chapters in this manuscript, i.e. Sections 2.1 and



12 Introduction

3.1 respectively. Here we just point out the associated di�culties and challenges present in
such modeling.

The main di�culties are related with the multiscale, multiphysics nature of �exoelectric-
ity. While many approaches attempt to model �exoelectricity from a phenomenological or
continuum point of view, the multiple underlying physics present at the atomic scale make it
di�cult to state general models taking all of them into account. A complete model must treat
with many physics that are intrinsically coupled at sub-micron scales, such as surface e�ects,
magnetism, thermodynamics, dislocations and defects, etc. In that case, the model becomes
intractable since it depends on a plethora of material parameters that cannot be individually
assessed. Otherwise, many assumptions must be done in order to neglect some of them, which
decreases the validity of the model.

Another di�culty in mathematical and computational models arise from the non-locality of
the �exoelectric e�ect, i.e., strain or polarization gradients. By virtue of that, �exoelectricity in
a solid dielectric is governed by a system of (at least) fourth-order partial di�erential equations.
Therefore, analytical solutions are restricted to very simple 1D or 2D geometries. Multi-
dimensional modeling of �exoelectricity necessitates from numerical approximations, but the
fourth-order nature of the equations requires C1 continuity of the approximation of the state
variables, precluding the use of many standard techniques such as the �nite element method.
To this end, many alternative numerical strategies are present in the literature, but typically
present some limitations or ine�ciencies.

In short, the theoretical and computational modeling of �exoelectricity are very challenging,
and require intensive research.

1.2.4 Technological applications

The presence of �exoelectricity in technology is nowadays still limited, given that it has gained
attention very recently only, with many open questions remaining in order to fully understand
the underlying transduction mechanisms. Moreover, manufacturing sub-micron scale devices
involves advanced machinery and is typically expensive. However, there exist a wide range of
potential technological applications where �exoelectricity may yield a breakthrough.

A generalized emerging trend in technology is the miniaturization of existing devices
towards smaller scales. Since �exoelectricity plays a role in any dielectric at sub-micron
scales, it must be taken into account even in non-�exoelectricity-based devices. Otherwise,
the interplay of �exoelectricity with other physics, such as piezoelectricity, may lead to a
tremendous throughput drop or even to a dysfunctionality of the device. A numerical analysis
of such phenomena in �exural bimorph con�gurations is provided in Abdollahi and Arias
(2015), showing that the designs of sub-micron scale piezoelectric bimorph transducers must
be �exoelectric-aware, since they exhibit dramatically di�erent behavior than that at larger
scales, where the �exoelectric e�ect is not relevant (see Fig. 1.11).

Conversely, �exoelectricity can be harnessed to enhance the apparent piezoelectric behavior.
One of the most exciting applications of �exoelectricity at the mesoscale is in implantable
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(a) Sensor mode

(b) Actuator mode

Figure 1.11: Constructive and destructive interplay between piezoelectricity and �exoelectricity in �ex-
ural series bimorph devices. The miniaturization of the devices to sub-micron scales yields dramatically
di�erent responses than those at larger scales. Figure adapted from Abdollahi and Arias (2015).
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Figure 1.12: Manufacture of wavy piezoelectric nanoribbons on silicone rubber substrate for application
in �exible energy conversion. Figure adapted from Qi et al. (2011).

or wearable energy harvesting systems. Such devices are typically attached onto soft, bio-
compatible substrates that require conforming to irregularly curved surfaces, and must be
able to undergo �exing and stretching modes without failure. The work in Qi et al. (2011)
presents a novel strategy to do so, based on the generation of wavy lead zirconate titanate
(PZT) piezoelectric ribbons of nanoscopic thickness onto a soft poly(dimethyl-siloxane) (PDMS)
substrate. The buckled shape of the ribbons is obtained by releasing a pre-strained substrate
with attached nanoribbons on it (see Fig. 1.12). The structure easily accommodates large
compressive and tensile strains without fracture by simply changing the wave amplitudes.
Furthermore, the buckled shape is bene�cial not only to increase the fracture strength, but
also to increase the electromechanical transduction. By measuring the apparent piezoelectric
response on buckled and �at regions of the nanoribbons, it was found that buckled regions
present a substantial 70% increase of response as compared to �at regions, mainly attributed
to the �exoelectric e�ect. The maximum curvature of the nanoribbons was found to be
of 30 mm−1, which is several orders of magnitude larger than those achieved by standard
four-point bending tests, thus yielding a large �exoelectric response. Thanks to the positive
interplay between piezoelectricity and �exoelectricity at the nanoscopic level, the highest
piezoelectric response on a stretchable medium was reported to date. We refer to Chen et al.
(2010), Dong et al. (2020), Feng et al. (2011), Han et al. (2016), Park et al. (2010), Su et al. (2018)
for other relevant studies or experiments regarding �exoelectricity in wrinkled or buckled
deformation modes with application to �exible electronics.

Another application of �exoelectricity that has recently gained a lot of interest is to create
apparently piezoelectric materials without using piezoelectric constituents (Chu et al., 2009,
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(a) Truncated micro-pyramids under
compression. (b) Flexure-mode composite.

BTO
STO

(c) Multimaterial stacks.

Figure 1.13: Material architectures yielding an e�ective piezoelectric response. Figures adapted from
Chu et al. (2009), Liu et al. (2016a), Zhu et al. (2006).

Fousek et al., 1999, Fu et al., 2007, Sharma et al., 2010, 2007, Zhang et al., 2016c, Zhou et al.,
2015, Zhu et al., 2006). Apart from piezoelectric ceramics being typically very brittle, two main
reasons behind this interest are mentioned next. On the one hand, the dielectric materials
with larger piezoelectric response are typically lead-oxide-based, containing more than 60%
lead in weight, which has recently raised an increasing concern due to its toxicity (Hong et al.,
2016, Rödel et al., 2009, Zhou et al., 2015). To date, other alternative dielectrics have been
explored, but they have either lower temperature stability or lower piezoelectric response,
reducing its performance. On the other hand, conventional piezoelectric ceramics lose their
piezoelectric properties near the Curie temperature (Zhang et al., 2016c), which limits their ap-
plication at higher temperatures. One approach to resolving these issues consists on designing
piezoelectric composites or metamaterials, in which the apparent piezoelectric response origi-
nates from their non-centrosymmetric geometrical microstructure, even in centrosymmetric
crystalline structures that do not feature piezoelectricity. Under a uniform compression, the
internal geometrical features of the microstructure will generate strain gradients, triggering
the �exoelectric e�ect. The overall symmetry of the nanostructure must be properly designed
such that the net average of the polarization due to the presence of strain gradients is non-
zero (Sharma et al., 2007), yielding an apparent piezoelectric behavior at coarser scales, thus
upscaling the �exoelectric e�ect. A wide range of material architectures have been proposed
(cf. Fig. 1.13), including multimaterial stacks (Liu et al., 2016a), geometrically polarized cavities
in the material (Sharma et al., 2007) and the juxtaposition on a plane of polar elements, such
as truncated micro-pyramids working under compression (Cross, 2006, Fousek et al., 1999, Fu
et al., 2007, Zhu et al., 2006) or the �exure-mode composites (Chu et al., 2009, Wan et al., 2017).

At a nanoscopic level, one of the most exciting applications of �exoelectricity is in nano-
generators harnessing energy from mechanical vibrations (Jiang et al., 2013, Majdoub et al.,
2008). Energy harvesting from dynamical systems for applications in self-powered miniature
sensors and electronic devices has emerged as an intensely researched topic (Ahmadpoor and
Sharma, 2015). As an example, Deng et al. (2014a) developed a theoretical continuum model
for �exoelectric nanoscale energy harvesting based on a microscale cantilever resonator (see
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Figure 1.14: Schematic of a centrosymmetric �exoelectric energy harvester under base excitation. The
cantilever beam undergoes bending vibrations, generating an alternating potential di�erence across the
electrodes thanks to the �exoelectric e�ect. The power density varies as a function of the resistance
load and the vibrating frequency. Figure adapted from Ahmadpoor and Sharma (2015), Deng et al.
(2014a).

Fig. 1.14), working under applied mechanical base excitation. The output power density and
conversion e�ciency increase signi�cantly when the beam thickness reduces from micro to
nanoscale, and hence �exoelectricity-based sub-micron energy harvesting can be a viable
alternative to piezoelectrics, specially at high temperatures where �exoelectricity, unlike piezo-
electricity, persists well beyond the Curie temperature point (Deng et al., 2014a). However,
till now, electromechanical energy converting e�ciency of manufactured �exoelectric energy
harvesters reaches only to 6.6% (Liang et al., 2017, Shu et al., 2019).

Another interesting application in the realm of nano-/micro-electromechanical systems
(NEMS/MEMS) is that of sensors and actuators. Bhaskar et al. (2016) manufactured a silicon-
compatible thin-�lm cantilever actuator with a single �exoelectrically-active layer of SrTiO3,
as depicted in Fig. 1.15. The obtained performance (curvature divided by electric �eld) reaches
3.33 MV−1, comparable to that of state-of-the-art piezoelectric bimorph cantilevers. Hence,
�exoelectricity is proven to be a viable route to lead-free MEMS/NEMS systems.

Finally, another attractive application of �exoelectricity is the domain tailoring and po-
larization switching, which could be used for the development of ultra-high storage density
memory applications (Lu et al., 2012, Park et al., 2018). Ferroelectric materials are charac-
terized by a permanent electric dipole that can be reversed through the application of an
external electric �eld. However, the stress gradient generated by the tip of an atomic force
microscope can also switch the polarization in the nanoscale volume of a ferroelectric �lm
thanks to the �exoelectric e�ect, without the need of applying an external electric �eld (see
Fig. 1.16). The resolutions achieved by mechanical polarization switching are much higher
than those obtained by the traditional electrical polarization switching, and hence the storage
capacity of such materials can be dramatically increased. Thus, �exoelectricity may enable a
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new generation of ultra-high storage density memory applications in which memory bits are
written mechanically and read electrically.

To conclude this Section, we point out that �exoelectricity can be linked to many other
important physical behaviors, and hence many other applications are envisioned in the near
future. Some examples are (i) photo�exoelectricity (Shu et al., 2020, Yang et al., 2018), a very
recently discovered physical e�ect combining photovoltaic energy conversion and �exoelec-
tricity, or (ii) the �exocaloric e�ect (Chen et al., 2018, Liu et al., 2016b, Patel et al., 2017),
coupling strain gradients with thermal currents.
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Figure 1.15: Optical image of a �exoelectric nano-actuator made of an array of SrTiO3 nanocantilevers.
The colour scale corresponds to the out-of-plane displacement. Figure adapted from Bhaskar et al.
(2016).

Figure 1.16: Schematic of mechanical polarization switching due to the trailing �exoelectric �eld
generated by the scanning probe microscope tip motion thanks to the �exoelectric e�ect. Figure
adapted from Park et al. (2018).
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1.3 Goals and objectives

The main objective of this thesis is twofold. On the one hand, it aims to extend the current
state of the art of the �exoelectric e�ect, with a particular focus on the mathematical modeling
and the computational techniques required to solve boundary value problems of practical
engineering interest with potential applications in technology. Speci�cally, the computational
framework must be able to reliably and e�ciently predict the electromechanical behavior of
engineered devices at sub-micron scales, where �exoelectricity is always present, without any
particular restrictions in geometry, material choice, boundary conditions or nonlinearity. The
ultimate goal is to provide a tool that can pave the way for the development of functional
technological devices for electromechanical transduction at the microscopic and nanoscopic
scales.

On the other hand, such a modeling involves material parameters that are still under debate,
with large disagreement between theoretical derivations and experimental computations. Even
the actual physics involved in electromechanical transduction at the atomic and molecular
level are not completely clear. The second goal of the thesis is to shed light on this matter by
connecting ab-initio atomistic simulations with the proposed models at a coarser, continuum
scale, bridging the gap between these two approaches. On the one hand, atomistic computations
can validate continuum models and check that they capture the relevant inherent physics. On
the other hand, the material parameters in the continuum models can be directly assessed by
ab-initio computations, complementing the experimental characterization.

The speci�c objectives of this thesis are listed as follows:

• Explore and understand the variety of continuum models for �exoelectricity at in�nites-
imal deformations, rigorously establishing the connections between them and clarifying
the interpretation of high-order boundary conditions.

• Extend such continuum models to the regime of �nite deformations, including other
relevant physics that are not present in linearized models.

• Develop an e�cient computational infrastructure for �exoelectricity, capable of solving
boundary value problems in arbitrary geometries and di�erent boundary conditions. The
tool must be able to predict the electromechanical performance of �exoelectricity-based
devices with potential application in technology.

• Understand and handle the numerical di�culties arising from a fourth-order PDE system.

• Propose functional sub-micron electromechanical devices based on �exoelectricity, and
assess their performance with the proposed computational tool.

• Link the continuum modeling with atomistic simulations to characterize the �exoelectric
tensor of materials of interest from �rst principles.

• Validate the continuum model assumptions by means of ab-initio simulations.
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1.4 Outline

The manuscript is organized as follows. Chapter 2 explores, formulates and discusses the
variety of macroscopic models describing the �exoelectric e�ect at the continuum level. In plain
words, describes the equations that de�ne �exoelectricity, and the associated boundary value
problems. Section 3 details the numerical approach that is considered to solve the boundary
value problems, and illustrates it with a variety of setups and applications with technological
and engineering interest. Section 4 relies in the models in Section 2 for deriving a proper
methodology to quantify the �exoelectric tensor by means of atomistic simulations, based
on density functional theory. The transversal coe�cient of several monolayers is assessed
following this approach. Finally, Section 5 summarizes and concludes the manuscript.

1.5 Research stay at Georgia Tech

The author of this manuscript has participated in a �ve-month-long research stay at the
Georgia Institute of Technology (Georgia Tech) in Atlanta, GA (USA), from March 1st until
July 31st 2019. The purpose of this visit was to start a fruitful academic collaboration between
the FLEXOCOMP group in Universitat Politècnica de Catalunya, lead by Prof. Irene Arias,
and the MP&M group in Georgia Tech, lead by Prof. Phanish Suryanarayana, on the study
of atomistic and continuum bridging of electroactive materials, with particular focus on the
�exoelectric e�ect.

Prof. Arias’ group is focused on building a conceptual and computational infrastructure
in the frame of continuum mechanics to understand and model �exoelectricity, and use it
to assist its experimental observation and to enable the rational simulation-based design of
�exoelectricity-based technologies. The group has remarkable expertise on �nite element
calculations, continuum mechanics and electroactive materials.

Prof. Suryanarayana’s group is interested in developing mathematical and computational
tools in the frame of �rst principle calculations, that allow for the accurate and e�cient
characterization of materials at di�erent length scales. The group has remarkable expertise on
ab-initio calculations, density functional theory and atomistic-continuum bridging techniques.

The collaboration between the two groups can be very fruitful, since both are interested in
studying the same physical phenomenon from two di�erent but complementary perspectives.

In this case, the goal of the visit was to establish the connection between atomistic and
continuum scales, towards the validation of the continuum models used in Barcelona, the
quanti�cation of the �exoelectric tensor of materials of interest and the understanding of the
structure-property relation with regards to �exoelectricity. By running simulations on the
in-house code of Prof. Suryanarayana’s group, based on non-standard ab-initio techniques,
the electronic structure of �exoelectric materials under non-periodic loading conditions such
as bending or twisting can be determined. Then, it remains exploring how to properly extract
the �exoelectric material parameters for continuum models that best �t the atomistic data.
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This research collaboration is related to Chapter 4 of this manuscript. So far, two papers
have been produced, i.e. Codony et al. (2020a) and Kumar et al. (2020), and are brie�y explained
in the publications list in Section 1.6. The collaboration is still on-going, with many ideas in
mind to investigate, as reported in Section 4.3.

1.6 List of publications

This manuscript gathers most of the published and unpublished (to this date) original research
done by the author during his PhD. The following lists organize the original contributions of
this manuscript’s author depending on the relation with the thesis.

1.6.1 Publications derived from this thesis

1.6.1.1 Scienti�c journal articles published or under review

D. Codony, O. Marco, S. Fernández-Méndez, and I. Arias. An Immersed Boundary Hierarchical
B-spline method for �exoelectricity. Comput. Meth. Appl. Mech. Eng. 354, 750 (2019).

This paper develops a computational framework with un�tted meshes to solve linear
piezoelectricity and �exoelectricity electromechanical boundary value problems at in-
�nitesimal strains. It corresponds to the Nitsche’s direct �exoelectricity formulation in
Section 2.2.2.1.b and the immersed boundary numerical method in 3.2.3.

D. Codony, P. Gupta, O. Marco, and I. Arias. Modeling �exoelectricity in soft dielectrics at �nite
deformation. J. Mech. Phys. Sol. 146, 104182 (2020b).

This paper develops the equilibrium equations describing the �exoelectric e�ect in soft
dielectrics under large deformations, described in this document in Section 2.2.4.1.a. The
numerical implementation is based on the body-�tted approach described in Section
3.2.2, and the numerical algorithm to solve the nonlinear system of equations and
corresponding numerical examples are reported in Section 3.2.6 of this document. A
theory of geometrically nonlinear extensible �exoelectric slender rods under open and
closed circuit conditions is further developed, providing closed form analytical solutions
for cantilever bending and buckling under mechanical and electrical actuation, with very
good agreement with the numerical implementation.

D. Codony, I. Arias, and P. Suryanarayana. Transversal �exoelectric coe�cient for nanostructures
at �nite deformations from �rst principles. arXiv preprint arXiv: 2010.017 47. Under review
(2020a).

In this paper, a reformulation of the �exoelectric tensor from ab-initio simulations is pro-
posed, overcoming an ill-de�nition typically present in other �rst principle works. The
approach is particularized to assess the transversal �exoelectric coe�cient of di�erent
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atomic monolayers, such as graphene and its Group-IV analogues, from symmetry-
adapted DFT calculations. It is the �rst publication arising from the collaboration with
the MP&M group in Georgia Tech 1.5, and is the basis of Section 4.2 of this manuscript.

1.6.1.2 Scienti�c journal articles in preparation

The following works are original contributions of the manuscript’s author that are under
preparation.

D. Codony, S. Fernández-Méndez, S., and I. Arias, Nitsche’s method for �nite deformation
�exoelectricity, In preparation (2021a).

This work is a combination of the computational framework for un�tted meshes and high-
order continuity of the approximation space in Codony et al. (2019) with the formulation
of the �exoelectric e�ect in soft dielectrics under large deformations in Codony et al.
(2020b). Section 3.2.7 of this manuscript brie�y comments on this idea. The resulting
tool allows the computation of arbitrarily shaped compliant �exoelectric materials with
multiple potential applications, as illustrated in the example in Section 3.2.7.1.

D. Codony, and I. Arias, Residual-based weak form stabilization for �exoelectricity, In prepara-
tion (2021b).

As reported in Section 3.3.1, the numerical solution to the Lifshitz-invariant �exoelec-
tricity problem may feature boundary layers in the electric �eld, leading to spurious
oscillations which completely spoil the quality of the results. This work resorts to the
Galerkin least-squares (GLS) method to stabilize the problem by increasing the e�ective
mechanical and electrical length scales in a self-consistent manner, providing control on
the second derivatives of the state variables.

D. Codony, and I. Arias, Lifshitz-invariant �exoelectricity, In preparation (2021a).

This paper formulates the Lifshitz-invariant �exoelectricity model, accounting for both
the direct and converse �exoelectric e�ects. The boundary terms are detailed and
compared to the standard direct �exoelectricity models, yielding two boundary value
problems with very di�erent properties. Both models are compared by means of numeri-
cal computations in several �exoelectricity benchmarks. The paper originates from the
preliminary work reported in Sections 2.2.2.2 and 2.2.2.3 of this manuscript.

D. Codony, and I. Arias, Switchable �exoelectric device by buckling, In preparation (2021c).

This work is an extension of the numerical example in 3.2.7.1 to other �exoelectric
devices working under buckling conditions. Sensitivity and optimization analyses are
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performed in order to maximize the net electromechanical transduction of the devices.

D. Codony, A. Mocci, O. Marco, and I. Arias, Wheel-shaped and helical torsional �exoelectric
devices, In preparation (2021b).

This work is an extension of the numerical example in 3.2.5.2 where a torsional actuation
induces bending of the internal components of the device, generating an electric �eld
thanks to the �exoelectric e�ect. By accounting for three-dimensional devices working
under the same idea, a much larger net electric voltage is accumulated, leading to an
e�ective upscaling of the �exoelectric e�ect towards larger scales.

1.6.2 Other related publications

The manuscript’s author has participated in the following works that are closely related to
this thesis.

S. Kumar, D. Codony, I. Arias, and P. Suryanarayana. Flexoelectricity in atomic monolayers from
�rst principles. Nanoscale (2020).

This work extends the methodology developed in Codony et al. (2020a) to other �fty
atomic monolayers, such as Group III and IV monochalcogenides, Group V monolayers,
Group V chalcogenides and transition metal di- and trichalcogenides. A simpli�ed model
for the �exoelectric e�ect is proposed, depending on the monolayer thickness, the elastic
modulus and the atomic polarizability. It is the second publication arising from the
collaboration with the MP&M group in Georgia Tech 1.5, and is related with Section 4.3
of this manuscript.

J. Ventura, D. Codony, and S. Fernández-Méndez. A C0 interior penalty �nite element method
for �exoelectricity. arXiv preprint arXiv: 2008.12391. Under review (2020).

This work proposes a C0 Interior Penalty Method (C0-IPM) for the computational mod-
elling of �exoelectricity, allowing standard high-order C0 �nite element approximations.
It involves second derivatives in the interior of the elements, plus integrals on the mesh
faces in order to weakly enforce C1 continuity of the approximation space across ele-
ments. It is the result of the Master’s thesis of Jordi Ventura (Ventura Siches, 2020), who
was co-advised by Prof. Sonia Fernández-Méndez and this manuscript’s author.

J. Barceló-Mercader, D. Codony, O. Marco, S. Fernández-Méndez, and I. Arias, Nitsche’s method
for interfaces in �exoelectricity and application to periodic structures. To be submitted
(2021b).
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A general framework for the numerical computation of �exoelectric devices composed
by multiple materials is presented in this work. The method relies on the weak enforce-
ment of high-order interface conditions using Nitsche’s method. The approach is also
suitable for simulating periodic materials formed by a repeating unit cell. The numerical
simulations illustrate the usefulness of the proposed approach towards the design of
functional electromechanic multi-material devices and metamaterials, harnessing the
�exoelectric e�ect. It is implemented within the computational framework iHB-FEM
described in Section 3.2.1.

J. Barceló-Mercader, D. Codony, and I. Arias, Generalized periodicity conditions for the compu-
tational modeling of �exoelectric metamaterials. To be submitted (2021a).

This work develops generalized periodic conditions in order to characterize the behavior
of architected periodically-arranged materials by reducing the numerical computation
to a single unit cell. In doing so, the bulk response of the architected material is very
e�ciently computed without the need of considering a su�ciently large sample. The
implementation is a module of the computational framework iHB-FEM described in
Section 3.2.1.

A. Mocci, J. Barceló-Mercader, D. Codony, and I. Arias, Geometrically polarized architected
dielectrics with e�ective piezoelectricity. To be submitted (2021).

This paper uses the computational machinery developed in Barceló-Mercader et al.
(2021a) in order to characterize the e�ective piezoelectric coe�cient of non-piezoelectric
metamaterials working under compression. Di�erent bending-dominated lattices, geo-
metrical orientations, constituents thickness and �exoelectric materials are considered
in order to assess the throughput sensitivity. The proposed �exoelectricity-based meta-
materials have a comparable performance to currently-used piezoelectrics.

1.6.3 Patents

I. Arias, A. Abdollahi, A. Mocci, and D. Codony, Lattice structure with piezoelectric behavior,
a force or movement sensor and an actuator containing said lattice structure. European patent
o�ce. In process (2020).

This patent contains several functional �exoelectricity-based devices that have been
rationalized and developed at the FLEXOCOMP group, including sensors, actuators and
metamaterials.

1.6.4 Conference proceedings

During the PhD thesis, the research done has been presented in a number of international
conferences. The presentations delivered by the PhD candidate are listed below.
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• D. Codony, O. Marco, S. Fernández-Méndez, and I. Arias. Numerical solution of strain-
gradient elasticity based on an immersed boundary B-spline framework. 16th European
Mechanics of Materials Conference (EMMC16). Nantes, FR (2018).

• D. Codony, O. Marco, S. Fernández-Méndez, and I. Arias. Numerical solution of the �exo-
electric coupling based on an immersed boundary B-spline framework. 10th European
Solid Mechanics Conference (ESMC2018). Bologna, IT (2018).

• D. Codony, O. Marco, S. Fernández-Méndez, and I. Arias. Immersed boundary hierar-
chical B-spline method for the numerical simulation of nano-scale electromechanical
transduction. 13th World Congress in Computational Mechanics (ECCM2018). New York
City, NY, USA (2018)

• D. Codony, O. Marco, S. Fernández-Méndez, and I. Arias. An immersed boundary
hierarchical B-spline-based computational approach for nano-scale electromechanics.
55th Technical Meeting of the Society of Engineering Science (SES2018). Leganés, SP (2018).

• D. Codony, O. Marco, J. Barceló-Mercader, S. Fernández-Méndez, and I. Arias. Un�tted B-
spline-based computational approach for non-local continuum mechanics. Application
to hard and soft �exoelectric materials and composites. 56th Technical Meeting of the
Society of Engineering Science (SES2019). St Louis, MO, USA (2019).





Chapter 2

Continuum modeling of
�exoelectricity

2.1 State of the art

Phenomenological models for �exoelectricity in crystalline dielectrics were �rst proposed by
Kogan (1964) after the early studies by Mashkevich and Tolpygo (1957) and Tolpygo (1963).
The �rst comprehensive theoretical works by Tagantsev (1986, 1991) clari�ed the distinction
between piezoelectricity and �exoelectricity. In the mechanics community, Mindlin (1968)
formalized the converse �exoelectric e�ect in elastic dielectrics. A complete uni�ed continuum
framework, including strain gradient elasticity, both direct and converse �exoelectric couplings,
and the polarization inertia e�ect was proposed later by Sahin and Dost (1988). More recently,
a simpli�ed framework for isotropic dielectrics was proposed by Maranganti et al. (2006).

Nowadays, there exist a plethora of di�erent continuum �exoelectricity theories. Some of
them reformulate the models by variants of gradient elasticity theory (Askes and Aifantis,
2011, Mindlin and Eshel, 1968), such as the couple-stress theory (Hadjesfandiari, 2013, Mindlin
and Tiersten, 1962, Poya et al., 2019), and rotation-gradient theory (Anqing et al., 2015, Li et al.,
2015). Other authors consider the couplings with further physics, such as the �exoelectric
e�ect in ferroelectrics (Catalan et al., 2004, Eliseev et al., 2009), the coupling with magnetic
�elds (Eliseev et al., 2011, Liu, 2014) or photovoltaics (Shu et al., 2020, Yang et al., 2018), and
the contributions of surface e�ects (Shen and Hu, 2010). General variational principles for
�exoelectric materials can be found in Hu and Shen (2010), Liu (2014), Shen and Hu (2010).
The reader is referred to Krichen and Sharma (2016), Nguyen et al. (2013), Wang et al. (2019),
Yudin and Tagantsev (2013), Zubko et al. (2013) for comprehensive reviews of �exoelectricity
in solids. Another focus of recent research is the modelling of �exoelectricity for soft materials
(e.g. polymers and elastomers), which requires a �nite deformation framework (Liu, 2014,
McBride et al., 2020, Poya et al., 2019, Thai et al., 2018, Yvonnet and Liu, 2017).

All the aforementioned theories of �exoelectricity can be classi�ed depending on the
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following considerations:

• The choice of variables describing the �exoelectric e�ect. For the mechanics, either the
displacement gradient or its symmetrized form (i.e. strain) can be used, which give rise to
type-I or type-II �exoelectricity, respectively. For the dielectrics, the most usual variable
is the electric polarization. However, there exist many theories taking the electric �eld
or the electric displacement instead.

• The �exoelectric coupling considered, either the direct one, the converse, both, or the
Lifshitz-invariant form. Section 2.1.1 further elaborates on this topic.

• The dielectric media surrounding the �exoelectric solid being included in the modeling
or not.

In the next Sections we describe the di�erent type-II �exoelectricity models neglecting the
surrounding media. Section 2.1.2 does so taking the polarization as primal electric variable,
whereas in Section 2.1.3 the electric �eld is considered instead. Finally, in Section 2.1.4 the
recent advances on �exoelectricity for highly deformable materials are further discussed.

2.1.1 Direct and converse �exoelectric e�ects

Following the work by Maranganti et al. (2006), Yudin and Tagantsev (2013), the most gen-
eral (type-II) quadratic expression for the internal energy density describing the bulk static
�exoelectric e�ect in centrosymmetric dielectrics can be written in terms of the strain tensor
" = 1

2 (∇u + (∇u)T), the electric polarization �eld P and their corresponding spatial gradients
in the following form:

 (0)(", ∇", P, ∇P) = 12cijkl"ij"kl +
1
2aklPkPl +

1
2ℎijklmn"ij,k"lm,n +

1
2bijklPi,kPj,l

− f (1)lijk"ij,kPl − f
(2)
lijk"ijPl,k , (2.1)

where

• c is the usual fourth-order elasticity tensor,

• a is the usual second-order reciprocal dielectric susceptibility tensor,

• h is the sixth-order strain gradient elasticity tensor, representing the purely non-local
elastic e�ects,

• b is the fourth-order polarization gradient tensor, representing the purely non-local
e�ects of polarization,

• f (1) is the direct �exocoupling tensor,

• f (2) is the polarization gradient-strain coupling tensor introduced by Mindlin in his
theory of polarization gradient (Mindlin, 1968). In a more modern context, it is also
known as the converse �exocoupling tensor.
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The two latter terms in Eq. (2.1) can be rewritten as follows:

f (1)lijk"ij,kPl + f
(2)
lijk"ijPl,k =

1
2flijk ("ij,kPl − "ijPl,k) +

1
2 (f

(1)
lijk + f

(2)
lijk)

) ("ijPl)
)xk

, (2.2)

with the (e�ective) �exocoupling tensor

flijk = f (1)lijk − f
(2)
lijk . (2.3)

The �rst term in the right hand side of Eq. (2.2) is known as the Lifshitz invariant (Landau
and Lifshitz, 2013, Lifshitz and Landau, 1984, Sharma et al., 2010), and represents both the
direct and converse �exoelectric e�ects as discussed later on. The second term in Eq. (2.2) is a
null-Lagrangian (Evans, 2010), in the sense that its bulk integral can be written as a surface
integral by means of the divergence theorem as

∫Ω
1
2 (f

(1)
lijk + f

(2)
lijk)

) ("ijPl)
)xk

dΩ = ∫Γ
1
2 (f

(1)
lijk + f

(2)
lijk) "ijPlnk dΓ, (2.4)

and hence it does not a�ect the Euler-Lagrange equations. For this reason, it has often
been omitted in the literature (Sharma et al., 2010, Yudin and Tagantsev, 2013), yielding an
alternative internal energy density to Eq. (2.1) as

 (Lif)(", ∇", P, ∇P) = 12cijkl"ij"kl +
1
2aklPkPl +

1
2ℎijklmn"ij,k"lm,n +

1
2bijklPi,jPk,l

− 12flijk ("ij,kPl − "ijPl,k) . (2.5)

Although formulations di�ering in null Lagrangians result in the same Euler-Lagrange
equations, they di�er in the de�nition of the Neumann boundary conditions. See Ghiba et al.
(2017) for an in-depth discussion in the context of strain-gradient elasticity models. Null
Lagrangians are thus viewed as modeling choices. This issue is addressed in Section 2.2.2.3
which highlights the importance of this modeling choice.

The bulk constitutive electromechanical equations for the physical stress � and physical
electric �eld E are

El =
) 
)Pl

− )
)xk (

) 
)Pl,k)

= aklPk − bijlkPi,jk − flijk"ij,k , (2.6a)

�ij =
) 
)"ij

− )
)xk (

) 
)"ij,k)

= cijkl"kl − ℎijklmn"lm,nk + flijkPl,k , (2.6b)

with  representing either  (0) or  (Lif).
The two constitutive equations for mechanics and dielectrics in Eq. (2.6) are coupled due to

the direct and converse �exoelectric e�ects. On the one hand, the direct �exoelectric e�ect in
Eq. (2.6a) induces an electric �eld (or polarization) proportional to the strain gradient, whereas
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the converse e�ect in Eq. (2.6b) consists on a contribution to the mechanical stress (or strain)
proportional to the gradient of polarization. Note that both �exoelectric e�ects are governed
by the same �exocoupling tensor f .

The direct and converse �exoelectricity terms in Eq. (2.5) di�er by a null Lagrangian.
Hence, an alternative expression for the internal energy density that is often used to model
�exoelectricity is given by

 (Dir)(", ∇", P) = 12cijkl"ij"kl +
1
2aklPkPl +

1
2ℎijklmn"ij,k"lm,n − flijk"ij,kPl , (2.7)

where the gradient polarization term has also been neglected for simplicity (b = 0).
We name  (Dir) the direct �exoelectric energy density. However, one should keep in mind

that this energy density also features both direct and converse �exoelectric e�ects. This is
apparent by evaluating the resulting constitutive equations:

El = aklPk − flijk"ij,k , (2.8a)
�ij = cijkl"kl − ℎijklmn"lm,nk + flijkPl,k , (2.8b)

where the �exoelectric coupling appears in the expressions of the electric �eld and the stress.
The direct �exoelectric energy density  (Dir) is convenient (and hence popular) since the
dependence on the polarization gradient vanishes. This facilitates the derivations of closed-
form analytical solutions for simple �exoelectric devices, e.g. Euler-Bernoulli beams (Baroudi
et al., 2018, Deng et al., 2014a, Liang et al., 2014, Yan and Jiang, 2013, Yan, 2017) and Timoshenko
beams (Zhang et al., 2016a), and also facilitates the implementation of numerical solution
methods, typically based on the �nite element (or related) methods.

2.1.2 Polarization-based models: Free energy minimization

Let us present the �exoelectricity models that take the polarization as the primal electrical
unknown. This is the most natural choice, since it yields a variational formulation in terms
of the physical free energy such that, upon minimization over the admissible states, Euler-
Lagrange equations and boundary conditions follow as necessary conditions (Liu, 2014).

Following Maranganti et al. (2006) or Liu (2014), such physical free energy takes the form

Π[u, P] = ∫Ω ( 
Int(u, P) + 12�0||E||

2
) dΩ −W ext, (2.9)

where Ω represents the �exoelectric material,  Int is the internal energy density of the �ex-
oelectric material (either  (0) in (2.1), the direct form  (Dir) in (2.7) or the Lifshitz-invariant
form  (Lif) in (2.5)), 1

2�0||E||2 is the electrostatic energy density, with �0 being the vacuum
permittivity, and W ext is the external work.

The corresponding variational principle is stated as a constrained minimization problem of
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the form

(u∗, P ∗) = argmin
u
min
P
Π[u, P], (2.10a)

s.t.

∇ × E = 0, (2.10b)
∇ ⋅ D = 0, (2.10c)

where Eq. (2.10b) and (2.10c) are the stationary Maxwell’s equations in matter (i.e. the Maxwell-
Faraday’s and Gauss’s laws).

Such minimization leads to the following Euler-Lagrange equations (Liu, 2014, Maranganti
et al., 2006):

∇ ⋅ � = 0 in Ω, where � = ) Int

)" − ∇ ⋅ ) 
Int

)∇" , (2.11a)

∇ ⋅ (�0E + P) = 0 in Ω, where E = ) Int

)P − ∇ ⋅ ) 
Int

)∇P , (2.11b)

s.t. ∇ × E = 0 in Ω. (2.11c)

Note that Eq. (2.11a) and Eq. (2.11b) describe a coupled elliptic problem, whereas Eq. (2.11c) is
an additional constraint that requires the irrotationality of the electric �eld E . This condition
is inconvenient to �nd solutions for u and P , either analytical closed forms or numerical
approximations (Liu, 2014). Hence, many authors prefer electric �eld-based models instead of
polarization-based ones, since the electric �eld can be then irrotational by construction.

2.1.3 Electric �eld-based models: Enthalpy optimization

We present now �exoelectricity models that take the electric �eld as the primal electrical
unknown, instead of the electric polarization. Note that the Maxwell-Faraday’s law (∇ × E = 0)
implies the existence of an electric potential � such that

E = −∇�. (2.12)

Hence, by considering � as the actual electrical unknown, Maxwell-Faraday’s law is automati-
cally ful�lled, without the need of including it as a constraint.

Following Abdollahi et al. (2014), Deng et al. (2014a), Zhuang et al. (2020), the variational
formulation is written in terms of the free enthalpy (also called electrical Gibbs free energy)

Π[u, E] = ∫Ω
 (u, E) dΩ − W ext, (2.13)
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where  is the electrical enthalpy density. The corresponding variational principle is

(u∗, �∗) = argmin
u
max
�
Π[u, −∇�], (2.14)

which is now an unconstrained optimization problem. The solution of this problem yields the
following Euler-Lagrange equations (Zhuang et al., 2020):

∇ ⋅ � = 0 in Ω, where � = ) 
)" − ∇ ⋅

) 
)∇" , (2.15a)

∇ ⋅ D = 0 in Ω, where D = ) 
)E − ∇ ⋅ ) )∇E , (2.15b)

which describe a coupled elliptic problem with no additional constraints.
Analogously to Section 2.1.1, several �exoelectric enthalpy forms can be de�ned. The ones

which are worth mentioning for later reference are the Direct ( 
(Dir)

) and Lifshitz-invariant

( 
(Lif )

) �exoelectricity forms of the enthalpy, namely

 (Dir)(", ∇", E) = 12cijkl"ij"kl −
1
2�ijEiEj +

1
2ℎijklmn"ij,k"lm,n − �

(1)
lijkEl"ij,k , (2.16)

and

 (Lif )(", ∇", E, ∇E) = 12cijkl"ij"kl −
1
2�ijEiEj −

1
2MijklEi,kEj,l

+ 12ℎijklmn"ij,k"lm,n −
1
2�lijk (El"ij,k − El,k"ij) , (2.17)

where � is the dielectricity tensor,M is the gradient dielectricity tensor, and � is the �exoelectric
tensor.

2.1.4 Models at �nite deformation

In recent years, several reasons justify an increasing interest in �exoelectricity in polymeric
materials. On the one hand, a large �exoelectric response is expected. Experiments hint that
the �exoelectric coe�cients of polymers are at least the same order of magnitude as those
of hard crystalline materials (Baskaran et al., 2011a, 2012, Chu and Salem, 2012), but being
much more deformable, much larger �exoelectric polarization is possible. On the other hand,
electromechanical actuation of polymers by �exoelectricity overcomes the current limitations
of traditional actuation based on the Maxwell stress e�ect, which are: (i) one-way coupling,
i.e. mechanical deformation does not produce an electric �eld, (ii) very large electric �elds are
required (which may lead to dielectric breakdown), and (iii) reversal of electric �eld does not
reverse the direction of the deformation (Krichen and Sharma, 2016, O’Halloran et al., 2008,
Pelrine et al., 1998, Rosset and Shea, 2016). The versatility of the �exoelectric actuation as
compared to Maxwell stress-based actuation fosters the rational design of a new generation



2.2 Main contributions 33

of e�cient electromechanical elastomeric devices, such as sensors, actuators and energy
harvesters, based on the �exoelectric e�ect (Huang et al., 2018, Jiang et al., 2013, Wang et al.,
2019).

The mechanism of �exoelectricity in (soft) polymers is more complicated than in hard
crystalline materials or other soft materials such as liquid crystals or cellular membranes. In
the former, the �exoelectric e�ect can be intuitively understood by the ionic crystal model
under bending, in which a non-zero net dipole moment arises due to a shift between the centers
of gravity of the negative and the positive ions. In the latter, �exoelectricity results from the
reorientation of irregularly shaped polarized molecules under strain gradients (Nguyen et al.,
2013). However, in the case of polymers, both glassy and crystalline components contribute to
�exoelectricity (Baskaran et al., 2011a, 2012). We refer to Krichen and Sharma (2016), Nguyen
et al. (2013), Wang et al. (2019), Yudin and Tagantsev (2013), Zubko et al. (2013) for excellent
and comprehensive reviews of �exoelectricity in solids.

The literature about continuum theories of �exoelectric polymers or elastomers undergoing
large deformations is still scarce (Liu, 2014, McBride et al., 2020, Nguyen et al., 2019, Poya et al.,
2019, Thai et al., 2018, Yvonnet and Liu, 2017, Zhuang et al., 2019). Some of these works model
�exoelectricity as a linear coupling between strain gradients and the electric displacement
(Poya et al., 2019) or the electric �eld (McBride et al., 2020, Nguyen et al., 2019, Zhuang
et al., 2019) instead of the electric polarization, which is the most natural choice according
to experiments and �rst-principle calculations (Hong and Vanderbilt, 2013, Ma and Cross,
2002, 2001a, Resta, 2010, Zubko et al., 2007). Furthermore, works modeling �exoelectricity as
a coupling between strain gradients and electric polarization consider a coupling tensor of
mixed material-spatial character (Liu, 2014, Thai et al., 2018, Yvonnet and Liu, 2017), leading
in general to a lack of objectivity.

2.2 Main contributions

In view of the current state of the art, several points are addressed and investigated here in
terms of modeling of �exoelectricity within the framework of continuum (electro-)mechanics.
In particular, a topic that is studied is the relation between the energy and enthalpy forms of
the �exoelectric coupling, which remains unclear. This analysis is performed for both the direct
(Section 2.2.1.1) and Lifshitz-invariant (Section 2.2.1.2) �exoelectricity forms in an in�nitesimal
deformation framework, and the particularity of considering the gradient polarization term
is also studied in Section 2.2.1.3. The same analysis is performed on a �nite deformation
framework for the direct �exoelectricity model in Section 2.2.3. We propose a formulation
with a fully material �exoelectric coupling between strain gradient and electric polarization,
in contrast to previous works in the literature, which yields an objective enthalpy functional
by construction.

Based on the enthalpy forms of the direct and Lifshitz-invariant �exoelectricity models, the
associated variational principles and boundary value problems are derived in Sections 2.2.2
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and 2.2.4 for in�nitesimal and �nite strains, respectively. Each boundary value problem is
formulated considering strong and weak imposition of essential boundary conditions, in order
to be suitable formulations for the numerical solution in conforming and non-conforming
spatial discretizations, respectively.

The last topic, addressed in Section 2.2.2.3, is a comparison between the direct and Lifshitz-
invariant �exoelectricity boundary value problems in benchmark setups such as cantilever
bending and actuation, where very di�erent responses are detected, and very interesting
insights are obtained.

2.2.1 Legendre transform: the connection between the two families of
�exoelectricity functionals

The variational models based on energy functional minimization, with an internal energy
density of the form  (u, P) (cf. Section 2.1.2), and the ones based on enthalpy functional
optimization, with an enthalpy density of the form  (u, E) (cf. Section 2.1.3), are related by
means of a partial Legendre transform. That is: given one form, the other one is uniquely
determined, and can be directly obtained by a partial Legendre transform. Both formulations
are then equivalent.

However, in the literature of �exoelectric modeling, there is some lack explaining this
relation and detailing in which sense they are equivalent. In this Section we derive the form of
the enthalpy density  given an expression for the energy density  , revealing the assumptions
that must be made and the relations between the material parameters of each form.

A dielectric body in equilibrium necessarily satis�es mechanical balance laws of linear
and angular momentum and Maxwell equations. In the absence of a magnetic �eld, they are
expressed as

∇⋅� + b = 0 in Ω, (2.18a)
� = �T in Ω, (2.18b)

∇ × E = 0 in Ω, (2.18c)
∇⋅D − q = 0 in Ω; (2.18d)

where � is the physical stress, E is the the electric �eld, D is the electric displacement, and
b and q are the body force and electric charge per unit volume. Equation (2.18c) implies the
existence of an electric potential � such that E = −∇�.

The total energy density is given by  (u, P, E) =  Int(u, P) + 1
2�0E ⋅ E , where  Int is the

internal energy density of the material and the second term refers to the electrostatic energy
density, with �0 being the electric permittivity of vacuum. The di�erentiation of the total
energy density with respect to the electric �eld E yields the classical constitutive law for
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D ∶= )E ( ) for a dielectric material:

D(P, E) = �0E + P, (2.19)

where P ∶= )E ( Int) is the electric polarization.

2.2.1.1 Direct �exoelectricity

Let us consider in this Section the direct �exoelectricity internal energy density, i.e.  Int ≡  (Dir)

as described in Eq. (2.7). In order to �nd the equivalent internal enthalpy density  Int, we
resort to a partial Legendre transform and de�ne the following internal dual potential (or
internal enthalpy)

 Int(u, E) = min
P ( Int(u, P) − P ⋅ E)

= min
P (

1
2cijkl"ij"kl +

1
2amlPmPl +

1
2ℎijklmn"ij,k"lm,n − f

(1)
lijk"ij,kPl − PlEl) . (2.20)

The stationarity condition of the minimization results in

El =
) Int
)Pl

= amlPm − f (1)lijk"ij,k , (2.21)

which can be inverted to

Pm = a−1lm (El + f
(1)
lijk"ij,k) = a

−1
lm (El + EFlexol ) , (2.22)

where EFlexol = f (1)lijk"ij,k is the so-called �exoelectric �eld. By inserting Eq. (2.22) into (2.20), and
exploiting the intrinsic symmetry of a, the internal enthalpy density is obtained as

 Int(u, �) = 12cijkl"ij"kl −
1
2a

−1
ij EiEj +

1
2ℎijklmn"ij,k"lm,n

− 12a
−1
abf (1)aijkf

(1)
blmn"ij,k"lm,n − a−1lmf

(1)
mijkEl"ij,k . (2.23)

The total enthalpy density is obtained by substracting the electrostatic energy density to
the internal enthalpy (Dorfmann and Ogden, 2014, 2017, Liu, 2014). Further, for convenience,
let us de�ne the dielectricity (�), the (direct) �exoelectricity (�(1)) and e�ective strain gradient
elasticity (h) tensors as follows:

�ij = a−1ij + �0δij , (2.24a)

�(1)lijk = a−1lmf
(1)
mijk , (2.24b)

ℎijklmn = ℎijklmn − a−1abf (1)aijkf
(1)
blmn. (2.24c)
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Then, the total enthalpy density for the direct �exoelectricity model reads

 (Dir)(u, �) =  Int(u, �) − 12�0EiEi

= 12cijkl"ij"kl −
1
2�ijEiEj +

1
2ℎijklmn"ij,k"lm,n − �

(1)
lijkEl"ij,k , (2.25)

which closely resembles the expression for the total enthalpy density in Eq. (2.16). Eq. (2.24)
reveals the relation between the energy-density tensors {a, f (1), h} and their enthalpy-density
counterparts {�, �(1), h}. Further, by assuming the standard expression for isotropic reciprocal
dielectric susceptibility tensors a = (�e�0)−1I = (� − �0)−1I, Eq. (2.24) simpli�es to

�ij = �δij , (2.26a)

�(1)lijk = �e�0f
(1)
lijk , (2.26b)

ℎijklmn = ℎijklmn − �e�0f (1)aijkf
(1)
almn = ℎijklmn −

�(1)aijk�
(1)
almn

�e�0
, (2.26c)

which yields the standard de�nition of � for isotropic dielectrics, as a function of its electric
permittivity �, and reveals a well-known feature of �exoelectricity: its linear growth with the
dielectric susceptibility �e , cf. Fig. 2.1. This is the reason why materials with high dielectric
constant (e.g. ferroelectric perovskites) typically feature also large �exoelectric constants
(Nguyen et al., 2013, Zhuang et al., 2020, Zubko et al., 2013). Eq. (2.26c) is also noticeable, since
it shows that the (e�ective) strain gradient elasticity tensor is modi�ed due to the �exoelectric
coupling.

Figure 2.1: Linear trend of the scaling of the �exoelectric coe�cient with respect to relative permittivity
�r = �e + 1. Adapted from Wang et al. (2019).
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2.2.1.2 Lifshitz-invariant �exoelectricity (without gradient polarization)

The derivation of the enthalpy density corresponding to the Lifshitz-invariant �exoelectric
internal energy density in Eq. (2.5) is analogous to the derivation of the direct �exoelectricity
case in Section 2.2.1.1, provided that gradient polarization is neglected. This assumption is
sometimes taken in the literature, cf. the formulation in Zubko et al. (2013) for 1D. The case
including gradient polarization is explored later in Section 2.2.1.3.

Let us consider an internal energy density of the following form

 (Int)(", ∇", P, ∇P) = 12cijkl"ij"kl +
1
2aklPkPl

+ 12ℎijklmn"ij,k"lm,n −
1
2flijk ("ij,kPl − "ijPl,k) , (2.27)

where gradient polarization term b is neglected from Eq. (2.5). Then, the stationary condition
of the following minimization,

 Int(u, E) = min
P ( Int(u, P) − P ⋅ E)

= min
P (

1
2cijkl"ij"kl +

1
2aklPkPl +

1
2ℎijklmn"ij,k"lm,n

− 12flijk ("ij,kPl − "ijPl,k) − PlEl), (2.28)

results in

El =
) Int
)Pl

− )
)xk (

) Int
)Pl,k )

= amlPm − flijk"ij,k , (2.29)

which closely resembles Eq. (2.21), the only di�erence being f instead of f (1). Hence, the
inverse relation

Pm = a−1lm (El + flijk"ij,k) (2.30)

is inserted into (2.28), and after substracting the electrostatic energy density, the following
total enthalpy density is obtained:

 (Lif0)(u, �) =  Int(u, �) − 12�0EiEi

= 12cijkl"ij"kl −
1
2�ijEiEj +

1
2ℎijklmn"ij,k"lm,n +

1
2a

−1
abf (1)aijkf

(1)
blmn"ij,kn"lm

− 12�lijk (El"ij,k − El,k"ij) , (2.31)

where the de�nitions in Eq. (2.24a) and (2.24b) have been analogously considered, here for the
full (not the direct) �exocoupling and �exoelectric tensors.
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The last step consists on rewriting the fourth term in Eq. (2.31) as

1
2a

−1
abf (1)aijkf

(1)
blmn"ij,kn"lm = −12a

−1
abf (1)aijkf

(1)
blmn"ij,k"lm,n +

) ( 1
2a−1abf

(1)
aijkf

(1)
blmn"ij,k"lm)

)xn
(2.32)

where the last term is neglected from the bulk enthalpy density since it is attributed to the
surface by means of the divergence theorem, as done in Section 2.1.1 to obtain the Lifshitz-
invariant internal energy density. With this consideration, the �nal version of the total enthalpy
density for the Lifshitz-invariant form of �exoelectricity is obtained as

 (Lif0)(u, E) =  Int(u, E) − 12�0EiEi

= 12cijkl"ij"kl −
1
2�ijEiEj +

1
2ℎijklmn"ij,k"lm,n −

1
2�lijk (El"ij,k − El,k"ij) , (2.33)

which has the well-known form of the total enthalpy density in Lifshitz-invariant �exoelectric-
ity present in Eq. (2.17). The same e�ective strain gradient elasticity tensor from Eq. (2.24c) is
retrieved here. In fact, the direct and Lifshitz-invariant total enthalpy densities in Eq. (2.25) and
Eq. (2.33) are related with each other by means of an integration by parts of the �exoelectricity
term, exactly in the same way as done in Section 2.1.1 for the energy densities.

2.2.1.3 Lifshitz-invariant �exoelectricity (with gradient polarization)

In this Section, the enthalpy density corresponding to the Lifshitz-invariant �exoelectric
internal energy density in Eq. (2.5), including gradient polarization, is derived via a partial
Legendre transform. The procedure is analogous to the previous Sections, but slightly modi�ed
in order to properly treat the high-order electric terms coming from gradient polarization. In
this case, the typical �exoelectric energy and enthalpy forms are not equivalent, as shown
next.

Let us begin with the total energy density in Eq. (2.5), that is,

 Int ≡  (Lif)(", ∇", P, ∇P) = 12cijkl"ij"kl +
1
2aklPkPl +

1
2ℎijklmn"ij,k"lm,n +

1
2bijklPi,jPk,l

− 12flijk ("ij,kPl − "ijPl,k) , (2.34)

this time including the gradient polarization term modeled by the material tensor b. In order
to simplify the derivations next, let’s assume that a = (�e�0)−1I is isotropic and that b takes
the simpli�ed form of bijkl = � 2elecaikδjl = � 2elec(�e�0)−1δikδjl , with a length scale parameter �elec.
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The stationary condition of the Legendre transform minimization reads

 Int(u, E) = min
P ( Int(u, P) − P ⋅ E)

= min
P (

1
2cijkl"ij"kl +

1
2(�e�0)

−1PlPl +
1
2ℎijklmn"ij,k"lm,n +

1
2(�e�0)

−1� 2elecPl,kPl,k

− 12flijk ("ij,kPl − "ijPl,k) − PlEl), (2.35)

which results in

El =
) Int
)Pl

− )
)xk (

) Int
)Pl,k )

= Êl − Ẽlk,k , (2.36)

with

Êl =
) Int
)Pl

= (�e�0)−1Pl −
1
2flijk"ij,k , (2.37a)

Ẽlk =
) Int
)Pl,k

= � 2elec(�e�0)−1Pl,k +
1
2flijk"ij . (2.37b)

Since it is di�cult to invert the expression E(P, ∇P) in Eq. (2.36) to get P(E, ∇E), let us just
invert the expression Ê(P) in Eq. (2.37a) to get P(Ê) as

Pl (Ê) = �e�0 (Êl +
1
2flijk"ij,k) , (2.38)

hence

Pl,k(Ê) = �e�0 (Êl,k +
1
2flabc"ab,ck) (2.39)

and Eq. (2.37b) turns out

Ẽlk(Ê) = � 2elec (Êl,k +
1
2flabc"ab,ck) +

1
2flijk"ij . (2.40)

Thus, by Eq. (2.36),

El (Ê) = Êl − Ẽlk,k ,

= Êl − � 2elec (Êl,kk +
1
2flabc"ab,ckk) −

1
2flijk"ij,k

= Ěl − � 2elec∇2 (Ěl + flijk"ij,k)
= El (Ě) (2.41)

where Ěl ∶= Êl − 1
2 flijk"ij,k is de�ned for convenience. Note that with this de�niton, the
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polarization in Eq. (2.38) is rewritten as

Pl (Ě) = �e�0 (Ěl + flijk"ij,k) , (2.42)

which is analogous to the expression for polarization in Eq. (2.30) in the case where b was
neglected, where E is replaced by Ě . In fact, note that Ě → E in the limit of �elec → 0, so
in view of Eq. (2.41) and (2.42), E can be interpreted in this context as the sum of a local
contribution from Ě (local electric �eld) and a nonlocal contribution from P(Ě):

El (Ě) = Ěl − (�e�0)−1� 2elec∇2Pl (Ě), (2.43)

being ∇2 the vector Laplacian operator.
By means of Eq. (2.42) and (2.43), substracting the electrostatic energy density from Eq. (2.35)

and doing the appropriate integration by parts, the following total enthalpy density is obtained
as a function of Ě as

 (Lif )(u, Ě) =  Int(u, E(Ě)) − 12�0El (Ě)El (Ě)

=  (Lif0)(u, Ě) − 12Mijkl Ěi,k Ěj,l + (∇∇", ∇∇Ě), (2.44)

where  (Lif0) is de�ned in Eq. (2.33), higher order terms  are neglected, and

Mijkl = (� + �0)δikδjl� 2elec = bijkl (�2 − �20) (2.45)

is the gradient dielectricity tensor.
Hence, Eq. (2.44) resembles the expression for the total enthalpy density in Eq. (2.17),

including the gradient dielectricity term. However, a fundamental di�erence is that the
expression obtained here is written in terms of Ě , i.e. the local electric �eld, instead of the full
expression E of the electric �eld. This fact implies rewriting the Maxwell–Faraday equation in
Eq. (2.18c) in terms of Ě as

∇ × El = ∇ × (Ěl − �
2
elec∇2 (Ěl + flijk"ij,k)) = 0 (2.46)

or

(1 − � 2elec∇2) (∇ × Ě) = � 2elec∇2 (∇ × EFlexo) ≠ 0. (2.47)

In other, words, the local �eld Ě is not irrotational, even if the �exoelectric coupling is vanished.
Hence, it cannot be expressed as (minus) the gradient of a (local) electric potential, as usually
assumed in Eq. (2.1.3). Therefore, the energy density- and the enthalpy density-based Lifshitz-
invariant �exoelectric models are not equivalent, unless the polarization gradient (and gradient
dielectricity) terms are neglected.
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However, which model is more representative of the actual physics is an open question, far
beyond the scope of this study. When it comes to numerical modeling, the enthalpy-based
approach is preferable since (i) the electrostatics are already taken into account, without the
need of handling two di�erent variables for the electric and polarization �elds, and (ii) the
electric potential can be considered directly as state variable instead of the electric �eld, so
there is no need of including the Maxwell-Faraday equation as an additional constraint to the
variational principle.

2.2.2 Variational models at in�nitesimal deformation

In this Section, we consider di�erent �exoelectric enthalpy density models and derive their
corresponding variational models and associated boundary value problems, that will be nu-
merically solved as explained in Chapter 3.

Let Ω be a physical domain in ℝ3 . The domain boundary, )Ω, can be conformed by several
smooth portions as )Ω = ⋃f )Ωf (Fig. 2.2a). At each point x ∈ )Ωf we de�ne nf as the outward
unit normal vector. The boundary of the f -th portion of )Ω is denoted as ))Ωf , which is a
closed curve. At each point x ∈ ))Ωf we de�ne mf as the unit co-normal vector pointing
outwards of )Ωf , which is orthogonal to the normal vector nf and to the tangent vector of the
curve ))Ωf , sf (see Fig. 2.2b and 2.2c). The orientation of sf is arbitrary and not relevant in
the derivations next.
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Figure 2.2: Sketch of the geometry of Ω ∈ ℝ3. (a) Detail of )Ω subdivided in smooth portions )Ωi and
)Ωj , with their corresponding normal vectors ni and nj , (b) detail of )Ωi , with the triplet {mi , si , ni}
de�ned on ))Ωi , and (c) detail of )Ωj , with the triplet {mj , sj , nj} de�ned on ))Ωj . Figure adapted
from Codony et al. (2019).

Following Eq. (2.13), the generic form of the enthalpy functional Π[u, �] of a �exoelectric
material is written as

Π[u, �] = ∫Ω ( (u, �) +
Ω(u, �)) dΩ + ∫)Ω

)Ω(u, �) dΓ + ∫C
C (u, �) ds (2.48)

where  is the internal bulk enthalpy density in Ω and Ω, )Ω and C represent the
external work density per unit volume, area and length, respectively. The corresponding
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variational principle corresponds to an unconstrained optimization of the form

(u∗, �∗) = argmin
u
max
�
Π[u, �]. (2.49)

Di�erent boundary value problems arise depending on the �exoelectric form that is chosen to
describe  . We show next the derivations for the direct and Lifshitz-invariant �exoelectric
forms.

2.2.2.1 Direct �exoelectricity form

According to Eq. (2.16), the direct �exoelectricity enthalpy density is stated as

 (Dir)(", ∇", E) ∶= 12"ijcijkl"kl +
1
2"ij,kℎijklmn"lm,n −

1
2El�lmEm − El�lijk"ij,k , (2.50)

and the admissible external sources of work are

Ω(u, �) ∶= −biui + q�, (2.51a)
)Ω(u, �) ∶= −tiui − ri)nui + w�, (2.51b)
C (u, �) ∶= −jiui , (2.51c)

where b is the external body force per unit volume, q is the external free electric charge per
unit volume, t and j are the forces per unit area (i.e. traction) and length, w is the surface
charge density (i.e. electric charge per unit area) and r is the double traction (i.e. moment per
unit area).

The boundary of the domain )Ω is split into several disjoint Dirichlet and Neumann bound-
aries as

)Ω = )Ωu ∪ )Ωt = )Ωv ∪ )Ωr = )Ω� ∪ )Ωw , (2.52)

where )Ωu , )Ωv and )Ω� are the Dirichlet boundaries corresponding to prescribed values for
the displacement, its normal derivative and the electric potential, and )Ωt , )Ωr and )Ωw the
Neumann boundaries corresponding to prescribed values of their enthalpy conjugates, i.e. the
traction, the double traction and the surface charge density. The edges C of )Ω are also split
into C = Cu ∪ Cj corresponding to the Dirichlet and Neumann edge partitions, respectively,
where either the displacement �eld or the forces per unit length are prescribed. Here, Cu is
corresponds to the curves within the classical Dirichlet boundary, namely Cu = C ∩ )Ωu , and
Cv = C ⧵ Cu .
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The corresponding boundary and edge conditions are mathematically written as

u − u = 0 on )Ωu , t(u, �) − t = 0 on )Ωt ; (2.53a)
)n(u) − v = 0 on )Ωv , r(u, �) − r = 0 on )Ωr ; (2.53b)

� − � = 0 on )Ω� , w(u, �) − w = 0 on )Ωw ; (2.53c)
u − u = 0 on Cu , j(u, �) − j = 0 on Cj ; (2.53d)

where u, v and � are the prescribed displacement, normal derivative of the displacement
and electric potential at the Dirichlet boundaries, and t , r , w and j are the traction, double
traction, surface charge and the line force �elds prescribed on the Neumann boundaries. The
expressions t(u, �), r(u, �), w(u, �) and j(u, �)will be derived later as a result of the variational
principle in Eq. (2.56).

Many authors in the literature of computational �exoelectricity neglect the edge conditions
in Eq. (2.53d) (Abdollahi et al., 2015a, 2014, Aravas, 2011, Mao and Purohit, 2014). In the
cases where essential boundary conditions are enforced strongly, as in conforming FE or
meshless discretizations, this fact has no practical relevance since the strong imposition on
)Ωu automatically implies the strong imposition on the adjacent edges in Cu as well. However,
it is important to underline that in frameworks where boundary conditions are enforced
weakly, dismissing edge conditions is equivalent to considering homogeneous Neumann edge
conditions, which is wrong on Cu (Dirichlet edges). Edge conditions are kept here to ensure
self-consistency and a well-de�ned boundary value problem.

2.2.2.1.a Standard framework: Strong boundary conditions

The standard approach in computational mechanics to take into account Dirichlet boundary
conditions consists on assuming that the functional space of the state variables already ful�lls
Dirichlet boundary conditions. Therefore, it is not required to include Dirichlet boundary
conditions explicitly into the weak form.

By means of Eq. (2.50)-(2.53), the enthalpy functional in Eq. (2.48) is written as

Π(Dir)
D [u, �] = ΠΩ[u, �] + ΠNeumann[u, �], (2.54)

where

ΠΩ[u, �] = ∫Ω ( 
(Dir)("(u), ∇"(u), E(�)) − biui + q�) dΩ, (2.55a)

ΠNeumann[u, �] = ∫)Ωt
−t iui dΓ + ∫)Ωr

−r i)nui dΓ + ∫)Ωw
w� dΓ + ∫Cj

−j iui ds. (2.55b)

The equilibrium states (u∗, �∗) of the body correspond to the saddle points in the enthalpy
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potential ful�lling the following variational principle:

(u∗, �∗) = arg min
u∈D

max
�∈D

Π(Dir)
D [u, �], (2.56)

with the functional spaces D and D having su�cient regularity and ful�lling the Dirichlet
boundary conditions in Eq. (2.53), that is:

D ∶= {u ∈ [H 2(Ω)]3 | u − u = 0 on )Ωu and on Cu , and )nu − v = 0 on )Ωv}, (2.57a)
D ∶= {� ∈ H 1(Ω) | � − � = 0 on )Ω�}. (2.57b)

The weak form of the problem is found by enforcing �Π(Dir)
D = 0 for all admissible variations

�u ∈ 0 and �� ∈ 0, with

0 ∶= {�u ∈ [H 2(Ω)]3 | �u = 0 on )Ωu and on Cu , and )n�u = 0 on )Ωv}, (2.58a)
0 ∶= {�� ∈ H 1(Ω) | �� = 0 on )Ω�}. (2.58b)

The weak form reads: Find (u, �) ∈ D ⊗ D such that, ∀(�u, ��) ∈ 0 ⊗ 0,

�Π(Dir)
D ≡ �uΠ(Dir)

D + ��Π(Dir)
D

≡ ∫Ω (�̂ij�"ij + �̃ijk�"ij,k − D̂l�El − bi�ui + q��) dΩ

+ ∫)Ωt
−t i�ui dΓ + ∫)Ωr

−r i)n�ui dΓ + ∫)Ωw
w�� dΓ + ∫Cj

−j i�ui ds

= 0, (2.59)

where we use the notation �" ∶= "(�u), �∇" ∶= ∇"(�u) and �E ∶= E(��).
The Cauchy stress �̂ (", ∇", E), the double stress �̃ (", ∇", E) and the electric displacement
D̂(", ∇", E) in Eq. (2.59) are the conjugate quantities to the strain ", the strain gradient ∇" and
the electric �eld E , respectively, as follows:

�̂ij(", ∇", E) ∶=
) (Dir)(", ∇", E)

)"ij
= cijkl"kl , (2.60a)

�̃ijk(", ∇", E) ∶=
) (Dir)(", ∇", E)

)"ij,k
= ℎijklmn"lm,n − �lijkEl , (2.60b)

D̂l (", ∇", E) ∶= −
) (Dir)(", ∇", E)

)El
= �lmEm + �lijk"ij,k . (2.60c)

The Euler-Lagrange equations associated with the weak form in Eq. (2.59) and the expres-
sions t(u, �), r(u, �), w(u, �) and j(u, �) from the Neumann boundary conditions in Eq. (2.53)
are found by integrating Eq. (2.59) by parts twice and making use of the divergence and surface
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divergence theorems (Codony et al., 2019). The resulting Euler-Lagrange equations are
{
(�̂ij − �̃ijk,k),j + bi = 0 in Ω,

D̂l,l − q = 0 in Ω,
(2.61)

which can be interpreted as a two-way coupling between a fourth-order elliptic PDE for the
mechanics and a second-order elliptic PDE for the electrostatics. In view of Eq. (2.61), the
de�nition of the physical stress � arises naturally as

�ij(u, �) ∶= �̂ij(u, �) − �̃ijk,k(u, �) = cijkl"kl − ℎijklmn"lm,nk + �lijkEl,k . (2.62)

The expressions t(u, �), r(u, �), w(u, �) and j(u, �) from the Neumann boundary conditions
in Eq. (2.53) are

ti(u, �) = (�̂ij − �̃ijk,k − ∇Sk �̃ikj) nj + �̃ijkÑjk on )Ω, (2.63a)
ri(u, �) = �̃ijknjnk on )Ω, (2.63b)
w(u, �) = −D̂lnl on )Ω, (2.63c)
ji(u, �) = [[�̃ijkmjnk]] on C, (2.63d)

where ∇S ⋅ is the surface divergence operator, Ñ is the second-order geometry operator (a
measure of the curvature of )Ω) and [[ ]] is the jump operator de�ned on C (we refer to Codony
et al. (2019) for further details).

Remark 2.1 (Second order boundary conditions in a FE framework). In practice, in a FE context,
the functional spaces in Eq. (2.57) and (2.58) are approximated by means of a set of linear
combinations of basis and test functions. However, D and 0 are in general di�cult to
approximate since they require ful�lling second order Dirichlet conditions for the displacement
�eld (i.e. prescribing its normal derivative). The typical approach to overcome this di�culty is
considering )Ωv = ∅, which implies that only second order Neumann boundary conditions are
allowed, i.e. )Ω = )Ωr (Abdollahi et al., 2014, Deng et al., 2017, Ghasemi et al., 2017, Mao et al.,
2016, Zhuang et al., 2019). This choice is further justi�ed by the unclear physical interpretation
of second order Dirichlet boundary conditions (McBride et al., 2020).

2.2.2.1.b Nitsche’s method: Weak boundary conditions

In Section 2.2.2.1.a the functional spaces of the state variables are chosen such that Dirichlet
boundary conditions are automatically ful�lled. An alternative to enforce essential boundary
conditions without constraining the functional spaces consists on incorporating them into
the enthalpy functional, in a way that equilibrium states (u∗, �∗) satisfying the corresponding
variational principle necessarily ful�ll the Dirichlet boundary conditions. We propose here the
Nitsche’s method (Nitsche, 1971) due to its simple form and convenient numerical properties
(i.e. self-consistency, symmetry, optimal error convergence rates and preservation of the
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number of degrees of freedom (Fernández-Méndez and Huerta, 2004)) as compared to other
alternatives such as the Lagrange multipliers or the penalty methods.

Following Nitsche’s approach, the enthalpy functional Π(Dir)
D in Eq. (2.54) is modi�ed as

Π(Dir)[u, �] = Π(Dir)
D [u, �] + ΠNitsche[u, �], (2.64)

where ΠNitsche[u, �] acts on the Dirichlet boundaries incorporating essential boundary condi-
tions in Eq. (2.53) weakly as follows:

ΠNitsche[u, �] = ∫)Ωu (
1
2�u(ui − ui)

2
− (ui − ui)ti(u, �)) dΓ

+ ∫)Ωv (
1
2�v()

nui − vi)
2
− ()

nui − vi)ri(u, �)) dΓ

+ ∫)Ω� (
−12��(� − �)

2
+ (� − �)w(u, �)) dΓ

+ ∫Cu (
1
2�Cu(ui − ui)

2
− (ui − ui)ji(u, �)) ds, (2.65)

with the numerical parameters �u , �v , �� , �Cu ∈ ℝ+. The expressions t(u, �), r(u, �), w(u, �)
and j(u, �) are now conjugate to the Dirichlet boundary conditions. The (positive or negative)
penalty terms inserted in each boundary integral are quadratic in the Dirichlet boundary
conditions, and its only purpose is to ensure equilibrium states (u∗, �∗) being, respectively,
actual minima and maxima of the energy functional with respect to u and � (Codony et al.,
2019).

The variational principle associated to Π(Dir) for the equilibrium states (u∗, �∗) is

(u*, �*) = argmin
u∈

max
�∈

Π(Dir)[u, �], (2.66)

where  ∶= H 1(Ω), and  is the space of functions belonging to [H 2(Ω)]
3 with L2-integrable

third derivatives on the boundary )Ωu , to account for the integrals involving t(u, �) in
Eq. (2.63a). The variational principle in Eq. (2.66) leads to the same Euler-Lagrange equa-
tions in Eq. (2.61) and de�nitions of t(u, �), r(u, �), w(u, �) and j(u, �) in Eq. (2.63) as the
constrained variational principle in Eq. (2.56) (Codony et al., 2019). However, the weak form
arising from �Π(Dir) = 0 incorporates Dirichlet boundary conditions weakly, and hence the
unconstrained functional spaces for the state variables and their corresponding admissible
variations coincide, i.e. u, �u ∈  and �, �� ∈  .
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The weak form reads: Find (u, �) ∈  ⊗  such that, ∀(�u, ��) ∈  ⊗  ,

�Π(Dir) ≡ �uΠ(Dir) + ��Π(Dir)

≡ ∫Ω (�̂ij�"ij + �̃ijk�"ij,k − D̂l�El − bi�ui + q��) dΩ

+ ∫)Ωt
−t i�ui dΓ + ∫)Ωu (

(ui − ui) (�u�ui − �ti) − ti�ui)dΓ

+ ∫)Ωr
−r i)n�ui dΓ + ∫)Ωv (

()nui − vi) (�v)n�ui − �ri) − ri)n�ui)dΓ

+ ∫)Ωw
w�� dΓ + ∫)Ω� (

− (� − �) (���� − �w) + w��) dΓ

+ ∫Cj
−j i�ui ds + ∫Cu (

(ui − ui) (�u�ui − �ji) − ji�ui)

= 0, (2.67)

with �t ∶= t(�u, ��), �r ∶= r(�u, ��), �w ∶= w(�u, ��) and �j ∶= j(�u, ��).
Remark 2.2 (Value of the penalty parameters in the discrete case). Note that Eq. (2.67) is self-
consistent for any value of the penalty parameters �u , �v , �Cu , �� . However, in the discrete
space of numerical approximation of the state variables, they must be large enough to ensure
stability, i.e. maintain the min-max nature of the variational principle in Eq. (2.66). Arbitrarily
large values are not suitable since the conditioning of the linear system is deteriorated. The
analytical derivation of lower bounds of the penalty parameters can be found in Codony
et al. (2019) for the discrete case, but moderate values of the penalty parameters are typically
enough to ensure convergence and enforce boundary conditions properly (Codony et al., 2019,
Fernández-Méndez and Huerta, 2004, Schillinger et al., 2016). Thus, the explicit computation
of stability lower bounds can be avoided by writing the penalty parameters in terms of a
dimensionless parameter � ∈ ℝ+ as follows:

�u =
Y
ℎ � , �v = (� 2mech + � 2� ) Y

ℎ � , �Cu =
(� 2mech + � 2� ) Y

ℎ2 � , �� =
�
ℎ� , (2.68)

where ℎ denotes the characteristic length of the discretization (typically, the mesh size), Y is the
Young modulus, � is the electric permittivity, �mech is the mechanical length scale, �� ∼ �/

√
Y�

is the �exoelectric length scale and � is the �exoelectric tensor (see Appendix A for further
details on material parameters). In the computations in this manuscript, the constant value
� = 100 is large enough to provide stable results, regardless of the (un�tted) discretization of
Ω, as further commented in Chapter 3.
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2.2.2.2 Lifshitz-invariant �exoelectricity form

According to Eq. (2.17), the Lifshitz-invariant �exoelectric enthalpy density is stated as

 (Lif)(", ∇", E, ∇E) ∶= 12"ijcijkl"kl +
1
2"ij,kℎijklmn"lm,n −

1
2El�lmEm

− 12Ei,jMijklEk,l −
1
2�lijk (El"ij,k − El,k"ij) . (2.69)

The admissible external sources of work are the ones corresponding to the direct �exoelectricity
form in Eq. (2.51), plus the high order dielectric quantities ℘ (electric charge density per unit
length) and r (double charge density, i.e. charge moment per unit area), analogous to j and r
from mechanics:

Ω(u, �) ∶= −biui + q�, (2.70a)
)Ω(u, �) ∶= −tiui − ri)nui + w� + r)n�, (2.70b)
C (u, �) ∶= −jiui + ℘�. (2.70c)

Accordingly, the boundary of the domain )Ω is split into several disjoint Dirichlet and
Neumann boundaries as

)Ω = )Ωu ∪ )Ωt = )Ωv ∪ )Ωr = )Ω� ∪ )Ωw = )Ω' ∪ )Ωr, (2.71)

where the high-order nature of the dielectrics leads to the de�nition of the Dirichlet )Ω' and
Neumann )Ωr boundaries corresponding to prescribed values for the normal derivative of the
electric potential and its conjugate, i.e. the double charge density r. The edges C of )Ω are
also split into

C = Cu ∪ Cj = C� ∪ C℘, (2.72)

corresponding to the Dirichlet and Neumann edge partitions, respectively, where either the
electric potential � or the electric charge density per unit length ℘ are prescribed.

The corresponding boundary and edge conditions are mathematically written as

u − u = 0 on )Ωu , t(u, �) − t = 0 on )Ωt ; (2.73a)
u − u = 0 on Cu , j(u, �) − j = 0 on Cj ; (2.73b)

)n(u) − v = 0 on )Ωv , r(u, �) − r = 0 on )Ωr ; (2.73c)
� − � = 0 on )Ω� , w(u, �) − w = 0 on )Ωw ; (2.73d)
� − � = 0 on C� , ℘(u, �) − ℘ = 0 on C℘; (2.73e)

)n(�) − ' = 0 on )Ω' , r(u, �) − r = 0 on )Ωr; (2.73f)

where ', ℘ and r are the prescribed values of ', ℘ and r on the corresponding boundaries.
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Analogously to the direct �exoelectricity form, the Neumann expressions t(u, �), j(u, �),
r(u, �), w(u, �), ℘(u, �) and r(u, �) will be derived later as a result of the variational principle
in Eq. (2.76).

2.2.2.2.a Standard framework

By means of Eq. (2.69)-(2.73), the enthalpy functional in Eq. (2.48) is written as

Π(Lif)
D [u, �] = ΠΩ[u, �] + ΠNeumann[u, �], (2.74)

where

ΠΩ[u, �] = ∫Ω ( 
(Lif)("(u), ∇"(u), E(�), ∇E(�)) − biui + q�) dΩ, (2.75a)

ΠNeumann[u, �] = ∫)Ωt
−t iui dΓ + ∫)Ωr

−r i)nui dΓ + ∫Cj
−j iui ds

+ ∫)Ωw
w� dΓ + ∫)Ωr

r)n� dΓ + ∫C℘
℘� ds. (2.75b)

The equilibrium states (u∗, �∗) of the body correspond to the saddle points in the enthalpy
potential ful�lling the following variational principle:

(u∗, �∗) = arg min
u∈D

max
�∈D

Π(Lif)
D [u, �], (2.76)

with the functional spaces D and D having su�cient regularity and ful�lling Dirichlet
boundary conditions in Eq. (2.73), that is:

D ∶= {u ∈ [H 2(Ω)]3 | u − u = 0 on )Ωu and on Cu , and )nu − v = 0 on )Ωv}, (2.77a)
D ∶= {� ∈ H 2(Ω) | � − � = 0 on )Ω� and on C� , and )n� − ' = 0 on )Ω'}. (2.77b)

The weak form of the problem is found by enforcing �Π(Lif)
D = 0 for all admissible variations

�u ∈ 0 and �� ∈ 0, with

0 ∶= {�u ∈ [H 2(Ω)]3 | �u = 0 on )Ωu and on Cu , and )n�u = 0 on )Ωv}, (2.78a)
0 ∶= {�� ∈ H 2(Ω) | �� = 0 on )Ω� and on C� , and )n�� = 0 on )Ω'}. (2.78b)
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The weak form reads: Find (u, �) ∈ D ⊗ D such that, ∀(�u, ��) ∈ 0 ⊗ 0,

�Π(Lif)
D ≡ �uΠ(Lif)

D + ��Π(Lif)
D

≡ ∫Ω (�̂ij�"ij + �̃ijk�"ij,k − D̂l�El − D̃lm�El,m − bi�ui + q��) dΩ

+ ∫)Ωt
−t i�ui dΓ + ∫)Ωr

−r i)n�ui dΓ + ∫Cj
−j i�ui ds

+ ∫)Ωw
w�� dΓ + ∫)Ωr

r)n�� dΓ + ∫C℘
℘�� ds

= 0, (2.79)

with �∇E ∶= ∇E(��).
The Cauchy stress �̂ (", ∇", E, ∇E), the double stress �̃ (", ∇", E, ∇E), the electric displacement
D̂(", ∇", E, ∇E) and the double electric displacement D̃(", ∇", E, ∇E) in Eq. (2.79) are the conju-
gate quantities to the strain ", the strain gradient ∇", the electric �eld E and the electric �eld
gradient ∇E , respectively, as follows:

�̂ij(", ∇", E, ∇E) ∶=
) (Lif)(", ∇", E, ∇E)

)"ij
= cijkl"kl +

1
2�lijkEl,k , (2.80a)

�̃ijk(", ∇", E, ∇E) ∶=
) (Lif)(", ∇", E, ∇E)

)"ij,k
= ℎijklmn"lm,n −

1
2�lijkEl , (2.80b)

D̂l (", ∇", E, ∇E) ∶= −
) (Lif)(", ∇", E, ∇E)

)El
= �lmEm +

1
2�lijk"ij,k , (2.80c)

D̃lk(", ∇", E, ∇E) ∶= −
) (Lif)(", ∇", E, ∇E)

)El,k
= MijlkEi,j −

1
2�lijk"ij . (2.80d)

The Euler-Lagrange equations associated with the weak form in Eq. (2.79) and the ex-
pressions t(u, �), j(u, �), r(u, �), w(u, �), ℘(u, �) and r(u, �) from the Neumann boundary
conditions in Eq. (2.73) are found by integrating Eq. (2.79) by parts twice and making use of
the divergence and surface divergence theorems, analogously to the direct �exoelectricity
form, but now for both mechanics and dielectrics. The resulting Euler-Lagrange equations are

⎧⎪⎪
⎨⎪⎪⎩

(�̂ij − �̃ijk,k),j + bi = 0 in Ω,

(D̂l − D̃lk,k),l − q = 0 in Ω,
(2.81)

which can be interpreted as a two-way coupling between two fourth-order elliptic PDEs arising
from mechanics and electrostatics.

The expressions t(u, �), j(u, �), r(u, �), w(u, �), ℘(u, �) and r(u, �) from the Neumann
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boundary conditions in Eq. (2.73) are

ti(u, �) = (�̂ij − �̃ijk,k − ∇Sk �̃ikj) nj + �̃ijkÑjk on )Ω, (2.82a)
ji(u, �) = [[�̃ijkmjnk]] on C, (2.82b)
ri(u, �) = �̃ijknjnk on )Ω, (2.82c)

w(u, �) = −(D̂l − D̃lk,k − ∇
S
kD̃kl)nl − D̃jkÑjk on )Ω, (2.82d)

℘(u, �) = −[[D̃jkmjnk]] on C, (2.82e)
r(u, �) = −D̃jknjnk on )Ω. (2.82f)

Note that the Lifshitz �exoelectricity strong form in Eq. (2.81) reduces to the direct �exo-
electricity strong form in Eq. (2.61) by vanishing the gradient dielectricity material tensor M.
However, the boundary terms in Eq. (2.82) and Eq. (2.63) remain di�erent, since the expressions
for �̂ , �̃ , D̂ and D̃ in Eq. (2.80) and (2.60) di�er.

Remark 2.3 (Second order boundary conditions in a FE framework). Analogously to Remark 2.1,
due to the unclear physical interpretation of second order dielectric Dirichlet boundary condi-
tions, it makes sense to consider only second order Neumann boundary conditions, i.e. )Ω' = ∅,
hence )Ω = )Ωr. This choice also facilitates the construction of the functional spaces for the
test and shape functions. Moreover, typically second order homogeneous Neumann boundary
conditions are considered, which further reduces the corresponding implementation.

2.2.2.2.b Nitsche’s method

The enthalpy functional Π(Lif)
D in Eq. (2.74) is modi�ed as

Π(Lif)[u, �] = Π(Lif)
D [u, �] + ΠNitsche[u, �], (2.83)
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where ΠNitsche[u, �] acts on the Dirichlet boundaries incorporating essential boundary condi-
tions in Eq. (2.73) weakly, analogously to Eq. (2.65):

ΠNitsche[u, �] = ∫)Ωu (
1
2�u(ui − ui)

2
− (ui − ui)ti(u, �)) dΓ

+ ∫)Ωv (
1
2�v()

nui − vi)
2
− ()

nui − vi)ri(u, �)) dΓ

+ ∫Cu (
1
2�Cu(ui − ui)

2
− (ui − ui)ji(u, �)) ds

+ ∫)Ω� (
−12��(� − �)

2
+ (� − �)w(u, �)) dΓ

+ ∫)Ω' (
−12�'()

n� − ')
2
+ ()

n� − ')r(u, �)) dΓ

+ ∫Cu (
−12�C�(� − �)

2
+ (� − �)℘(u, �)) ds, (2.84)

with the numerical parameters �u , �v , �Cu , �� , �' , �C� ∈ ℝ+.
The variational principle associated to Π(Lif) for the equilibrium states (u∗, �∗) is

(u*, �*) = argmin
u∈

max
�∈

Π(Lif)[u, �], (2.85)

where  and  are the spaces of functions belonging to [H 2(Ω)]
q with L2-integrable third

derivatives on the boundary )Ωu and )Ω� respectively, where q represents the number of
dimensions of the state variables, i.e. q = 1 in the case of  , and q = 3 for  . The variational
principle in Eq. (2.85) leads to the same Euler-Lagrange equations in Eq. (2.81) and de�nitions
of Neumann terms in Eq. (2.82) as the constrained variational principle in Eq. (2.76).

Finally, the Nitsche’s weak form of the Lifshitz �exoelectric boundary value problem reads:
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Find (u, �) ∈  ⊗  such that, ∀(�u, ��) ∈  ⊗  ,

�Π(Lif) ≡ �uΠ(Lif) + ��Π(Lif)

≡ ∫Ω (�̂ij�"ij + �̃ijk�"ij,k − D̂l�El − D̃lm�El,m − bi�ui + q��) dΩ

+ ∫)Ωt
−t i�ui dΓ + ∫)Ωu (

(ui − ui) (�u�ui − �ti) − ti�ui)dΓ

+ ∫)Ωr
−r i)n�ui dΓ + ∫)Ωv (

()nui − vi) (�v)n�ui − �ri) − ri)n�ui)dΓ

+ ∫Cj
−j i�ui ds + ∫Cu (

(ui − ui) (�Cu�ui − �ji) − ji�ui)

+ ∫)Ωw
w�� dΓ + ∫)Ω� (

− (� − �) (���� − �w) + w��) dΓ

+ ∫)Ωr

r)n�� dΓ + ∫)Ω' (
− ()n� − ') (�')n�� − �r) + r)n��) dΓ

+ ∫C℘
℘�� ds + ∫C� (

− (� − �) (�C��� − �℘) + ℘��)

= 0, (2.86)

with �r ∶= r(�u, ��) and �℘ ∶= ℘(�u, ��).
Remark 2.4 (Value of the penalty parameters in the discrete case). Analogously to Remark
2.2, the penalty parameters �' , �C� introduced in this Section can be written in terms of the
dimensionless parameter � ∈ ℝ+ as

�' = (� 2elec + � 2� ) �
ℎ � , �C� =

(� 2elec + � 2� ) �
ℎ2 � , (2.87)

where �elec is the dielectric length scale, cf. Appendix A.

In the case of �exoelectricity, as in other related high-order problems, the lack of physical
understanding of the boundary conditions hinders the choice of appropriate physically-based
null-Lagrangians, and other criteria such as conveniece or simplicity are used. In Section
2.2.2.3, the boundary value problems resulting from these two formulations are compared.
This insight will be used to rationally derive appropriate null Lagrangians for �exoelectricity.

2.2.2.3 Comparison of both models

As pointed out in Section 2.1.1, the Lifshitz-invariant and direct �exoelectricity boundary value
problems are not equivalent, even though their associated Euler-Lagrange equations coincide
since the de�nition of boundary terms (e.g. tractions and surface charges) di�er, cf. Eq. (2.82)
and Eq. (2.63). Consequently, when solving speci�c boundary value problems, a traction-free
or charge-free-surface boundary conditions have di�erent meaning in each formulation and



54 Continuum modeling of flexoelectricity

thus the resulting physical and mathematical problems are di�erent. The relation between the
resulting boundary value problems and its implications on the modeled physics has not been
addressed yet.

Here, the direct and Lifshitz-invariant �exoelectricity models are compared in di�erent
(2D plane strain) standard benchmarks, namely (i) the cantilever beam bending and (ii) the
cantilever beam actuation. The problems are numerically solved by means of the immersed
boundary B-spline method, detailed in Chapter 3. Some of the results corresponding to
the Direct �exoelectricity form were already presented in Codony et al. (2019), whereas
the Lifshitz-invariant �exoelectricity results are yet to be published. To the best author’s
knowledge, Lifshitz-invariant �exoelectricity benchmarks had never been reported before
within the computational �exoelectricity community.

In both experiments we consider a cantilever of length L = 8µm and thickness H = 0.4µm.
The material properties are simple enough to isolate the transversal �exoelectric e�ect, i.e. a
Young modulus Y = 100 GPa, electric permittivity � = 11 nC/Vm and transversal �exoelectric
coe�cient �T = 1 µC/m. The other material parameters are set to 0. For a complete description
of material tensors, we refer to Appendix A.1. In each case, free surfaces are assumed to be free
of tractions and surface charges, with the de�nition of tractions and surface charges resulting
in each model.

2.2.2.3.a Cantilever bending

Cantilever bending is the most well-known benchmark for �exoelectricity, widely used by
experimentalists to capture the transversal �exoelectric e�ect (Baskaran et al., 2012, Chu and
Salem, 2012, Ma and Cross, 2002, 2005, 2006). It has been also studied numerically (Abdollahi
et al., 2014, Codony et al., 2019, Zhuang et al., 2020) and analytically (Majdoub et al., 2009,
2008).

In this experiment the left tip is clamped and a vertical force F = −1µN/µm is applied on
the top right corner. The right tip is electrically grounded and the other boundaries are free,
which corresponds to open-circuit electrical boundary conditions (Fig. 2.3a). The transversal
�exoelectric e�ect is triggered due to the mechanically-induced gradient of axial strains along
each beam cross section.

The results are shown in Fig. 2.3. Indeed, Direct and Lifshitz-invariant �exoelectric for-
mulations lead to di�erent electromechanical responses. Two main di�erences are pointed
out next. Firstly, the mechanical results are quite similar. The axial strains vary linearly
along the cross sections of the bent beam in both cases (Fig. 2.3c), as expected. However,
the �exoelectricity-induced sti�ening of the beam (Codony et al., 2020b) is di�erent in each
case. Comparing the maximum de�ection of the Direct-�exoelectric beam (0.30 µm) and the
Lifshitz-invariant-�exoelectric beam (0.24 µm) with respect to a standard elastic one (0.32 µm),
it becomes apparent that the e�ective sti�ness is increased around 7% in the former and a 33%
in the latter.

Nevertheless, the most interesting di�erence arises in the electrical response, as shown in
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Figure 2.3: Comparison of Direct and Lifshitz-invariant �exoelectricity forms (I): Cantilever bending



56 Continuum modeling of flexoelectricity

Figs. 2.3b and 2.3d. While the Direct �exoelectricity form presents an electric potential varying
linearly along a cross section of the beam, the Lifshitz-invariant form features boundary layers
with opposite sign than that of the bulk. This phenomenon is highlighted in Fig. 2.3d, which
depicts the transversal electric �elds along the middle cross section. This �nding is interesting
and is brie�y addressed in Section 2.3.3.

Remark 2.5 (Numerical stabilization). As discussed later on in Section 3.3.1, the appearance of
a boundary layer may lead to mesh-dependent spurious oscillations in the numerical solutions.
Hence, some stabilization technique is required in that case. The simulations presented in this
Section are properly stabilized according to the approach described in Section 3.3.1.

2.2.2.3.b Cantilever actuator

In this experiment we explore the transversal �exoelectric e�ect triggered by electrical actua-
tion. This device was �rst used by Bursian and Zaikovskii (1968) to experimentally demonstrate
for the �rst time the �exoelectric e�ect, which had been predicted theoretically by Mashkevich
and Tolpygo (1957). Computational studies are also present in Abdollahi et al. (2014), Zhuang
et al. (2020).

Here, an electric �eld across the beam thickness is enforced by attaching an electrode on
the top boundary at prescribed voltage V = 5V, while the bottom boundary is grounded,
which corresponds to closed-circuit electrical boundary conditions (Fig. 2.4a). Mechanically,
the left tip is clamped, and no force is applied. Due to the transversal �exoelectric e�ect, the
electric �eld will yield an axial strain gradient along the thickness of the beam, inducing a
constant curvature.

The results are shown in Fig. 2.4, and are quite similar to the ones reported in the cantilever
bending case. The two di�erences between the Direct and Lifshitz-invariant �exoelectricity
models are also present here. The latter presents more sti�ening, in view of the maximum
de�ections obtained: 0.30 µm for the Direct case and only 0.12 µm for the Lifshitz-invariant
one. Boundary layers in the electric �eld distribution are also obtained here for the Lifshitz-
invariant form (Fig. 2.4d). However, in this case the bulk electric �eld is much larger than
the boundary layer e�ect, and hence the electric potential distributions are much more alike
(Fig. 2.4b).
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Figure 2.4: Comparison of Direct and Lifshitz-invariant �exoelectricity forms (II): Cantilever actuator
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2.2.3 Legendre transform in a �nite deformation framework: Direct
�exoelectric energy density

The derivation of the Legendre transform in a �nite deformation framework is analogous to
the case of in�nitesimal deformation in Section 2.2.1. However, it involves certain subtleties
and generalizations that are not trivial at all, and hence it is worth revisiting the process. We do
so in this Section for the direct �exoelectricity model, and leave the case of Lifshitz-invariant
�exoelectricity model as future work, cf. Section 2.3.1.

Consider a deformable dielectric body described by Ω0 in the reference (or undeformed)
con�guration, and by Ω in the current (or deformed) con�guration. The deformation map � ∶
Ω0 → Ωmaps every material point X ∈ Ω0 to the spatial point x = �(X) ∈ Ω. Whenever index
notations are used, uppercase and lowercase indexes refer to quantities in the reference and
the current con�gurations, respectively. The deformation gradient F, the Jacobian determinant
J , and the right and left Cauchy-Green deformation tensors C, B are de�ned as

FiI (X) ∶=
)�i(X)
)XI

, J ∶= det(F), CI J ∶= FkI FkJ , Bij ∶= FiKFjK . (2.88)

Standard strain measures in the reference and the current con�gurations are the Green-
Lagrangian E and the Almansi-Eulerian e strain tensors given by

EI J ∶=
1
2 (CI J − δI J) , eij ∶=

1
2 (δij − B−1ij ) = EI J F−1I i F−1J j . (2.89)

The gradient of the deformation gradient F̃, the gradient of the Cauchy-Green deformation
tensor C̃ and the Green-Lagrangian strain gradient Ẽ as

F̃iJK ∶=
)FiJ
)XK

= )2xi
)XJ)XK

, (2.90a)

C̃I JK ∶=
)CI J
)XK

= 2 symm
I J

(F̃kIKFkJ) , (2.90b)

ẼI JK ∶=
)EI J
)XK

= 12C̃I JK ; (2.90c)

where symmI J (AI J) ∶= (AI J + AJ I) /2. Note that the relation Ẽ( F̃ ) in Eq. (2.90c) is inverted
as

F̃iJK = (ẼI JK + ẼKI J − ẼKJ I) F−1I i , (2.91)

analogously to the relation between second derivative of displacement and strain gradients in
the limit of in�nitesimal deformation, cf. Schia�no et al. (2019).

This body in equilibrium necessarily satis�es mechanical balance laws of linear and angular
momentum, and Maxwell equations. In the absence of a magnetic �eld, they can be expressed
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in an Eulerian frame as

∇⋅� + b = 0 in Ω, (2.92a)
� = �T in Ω, (2.92b)

∇ × e = 0 in Ω, (2.92c)
∇⋅d − q = 0 in Ω; (2.92d)

where � is the physical stress, e is the the electric �eld, d is the electric displacement, and
b and q are the body force and electric charge per unit volume. Equation (2.92c) implies the
existence of an electric potential � such that e = −∇�. The linear constitutive law for d for a
dielectric material is

d(p, e) = �0e + p or, equivalently, d(p, �) = −�0∇� + p, (2.93)

where p is the electric polarization, which is work-conjugate to e, and �0 is the electric
permittivity of vacuum.

To formulate the problem in a material frame, the Lagrangian second Piola-Kirchho�
physical stress tensor S is de�ned from the work-conjugacy relation �ijeij = 1

J SI JEI J , where
�ijeij is a mechanical work density per unit physical volume and SI JEI J a mechanical work
density per unit reference volume, leading to

SI J =JF−1I i F−1J j �ij . (2.94)

To follow an analogous procedure with the electric displacement (Dorfmann and Ogden, 2005,
2014, 2017, Lax and Nelson, 1976, Steinmann and Vu, 2017, Vu et al., 2007), we �rst identify
the nominal or material electric �eld. The electric potential can be expressed in the material
frame as Φ(X) = �(�(X)), and the nominal electric �eld E = −∇0Φ de�ned as the negative of
its material gradient. By the chain rule, we thus �nd that

EI = −
)Φ
)XI

= − )�)xi
)xi
)XI

= eiFiI . (2.95)

Then, from the work-conjugacy relation diei = 1
J DIEI , we identify the nominal electric dis-

placement as

DI =JF−1I i di . (2.96)

Since electric displacement and polarization are physically equivalent quantities, we analo-
gously �nd

PI =JF−1I i pi . (2.97)
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Using Eq. (2.88) and (2.94)-(2.97), the balance equations in Eq. (2.92a)-(2.92d) and the constitu-
tive law for dielectrics in Eq. (2.93) are written in material form as

(FiI SI J),J + Bi = 0i in Ω, (2.98a)

SI J = SJ I in Ω, (2.98b)
EL + Φ,L = 0 in Ω, (2.98c)

DK = �0JC−1KLEL + PK in Ω, (2.98d)
DK,K − Q = 0 in Ω, (2.98e)

with B = Jb and Q = Jq.
Now, the Lagrangian internal energy density per unit reference volume of the �exoelectric

solid is de�ned as (Codony et al., 2020b)

ΨInt(E, Ẽ, P) = ΨMech(E, Ẽ) + ΨDiele(E, P) + ΨFlexo(P, Ẽ). (2.99)

We allow ΨMech to depend on Lagrangian strain and strain gradient as required for stability
(Liu, 2014). The isotropic dielectric energy per unit reference volume follows by transforming
the spatial expression per unit physical volume  Diele(p) = 1

2(� − �0)
pipi (Liu, 2014) by recalling

Eq. (2.97), resulting in

ΨDiele(E, P) = 1
2J (� − �0)

PICI JPJ , (2.100)

where � denotes the electric permittivity of the material. The �exoelectric coupling linking
polarization and strain gradient is encoded by ΨFlexo, which for simplicity we assume to be
independent on strain.

The spatial expression of the electrostatic energy density  Elec(e) = 1
2�0eiei (Liu, 2014) can

also be expressed in the material frame by recalling Eq. (2.95), resulting in the energy density
per unit reference volume

ΨElec(E, E) = J �0
2 EIC−1I J EJ . (2.101)

To formulate a uni�ed potential self-consistently accounting for the material electrome-
chanics and for electrostatics, ΨInt(E, Ẽ, P) and ΨElec(E, E) must be expressed in terms of the
same variables. To accomplish this, we resort to a partial Legendre transform and de�ne the
following internal dual potential

Ψ̄Int(E, Ẽ, E) = min
P (ΨInt(E, Ẽ, P) − P ⋅ E) . (2.102)
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The stationarity condition of the minimization results in

E(E, Ẽ, P) = )ΨInt
)P . (2.103)

In principle, this expression can be inverted to �nd P(E,E, Ẽ), which plugged intoΨInt(E, Ẽ, P)−
P ⋅ E results in the dual potential Ψ̄Int(E, Ẽ, E).

If we postulate the following direct �exoelectric coupling

ΨFlexo(P, Ẽ) = −PLfLI JK ẼI JK , (2.104)

where fLI JK is a purely Lagrangian tensor as further discussed in Remark 2.6, this inversion
can be made explicit yielding

EL =
1

J (� − �0)
CLMPM − fLI JK ẼI JK , (2.105)

PM = J (� − �0)C−1ML (EL + fLI JK ẼI JK) = J (� − �0)C−1ML (EL + EFlexoL ) , (2.106)

where we have de�ned EFlexoL = fLI JK ẼI JK for convenience.
Replacing Eq. (2.106) in Eq. (2.102) and rearranging terms, we �nd

Ψ̄Int(E, Ẽ, E) = ΨMech(E, Ẽ) − J
2 (� − �0)E

Flexo
I C−1I J EFlexoJ

− J
2(� − �0)EIC

−1
I J EJ − J (� − �0)EIC−1I J EFlexoJ . (2.107)

Now, the total electromechanical enthalpy accounting for electrostatics Ψ̄Enth = Ψ̄Int − ΨElec
(Dorfmann and Ogden, 2014, 2017, Liu, 2014) can be written from Eq. (2.107) and (2.101) as

Ψ̄Enth(E, Ẽ, E) = Ψ̄Mech(E, Ẽ) + Ψ̄Diele(E, E) + Ψ̄Flexo(E, Ẽ, E), (2.108)

with

Ψ̄Mech(E, Ẽ) =ΨMech(E, Ẽ) − J
2 (� − �0)E

Flexo
M C−1MLEFlexoL , (2.109)

Ψ̄Diele(E, E) = − 12EM (JC−1ML�) EL, (2.110)

Ψ̄Flexo(E, Ẽ, E) = − EM (JC−1ML�LI JK) ẼI JK ; (2.111)

where � = (� − �0)f is the �exoelectricity tensor (Wang et al., 2019, Zubko et al., 2013),
described in Eq. (A.8). The e�ective mechanical energy density of the system (Wang et al.,
2019) in Eq. (2.109) can be written as

Ψ̄Mech(E, Ẽ) =ΨElast(E) + ΨStrGr(E, Ẽ) − 12 ẼI JK (
�AI JK JC−1AB�BLMN

� − �0 ) ẼLMN , (2.112)
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where the two �rst terms coming from ΨMech correspond to a classical hyperelastic potential
(e.g. Saint-Venant-Kirchho�, cf. Eq. (A.9), or Neo-Hookean, cf. Eq. (A.10), constitutive models)
and a strain gradient elasticity potential respectively. The third term, i.e. the �exoelectricity-
induced mechanical energy, has the same structure as the strain gradient elasticity potential.
For convenience, we thus de�ne

Ψ̄Mech(E, Ẽ) =ΨElast(E) + 12 ẼI JK ℎ̄I JKLMN ẼLMN , (2.113)

where h(E, Ẽ) is the e�ective strain gradient elasticity tensor. In this work, for simplicity, it
is taken as constant, i.e. h(E, Ẽ) = h as described in Eq. (A.2). This choice corresponds to the
extension of the Saint-Venant-Kirchho� elasticity model to strain gradient elasticity.

Finally, the electromechanical enthalpy density corresponding to a dielectric material with
the direct �exoelectric coupling is

Ψ̄Enth(E, Ẽ, E) = ΨElast(E) + 12 ẼI JK ℎ̄I JKLMN ẼLMN −
1
2EM �̄MLEL − EM �̄MIJK ẼI JK , (2.114)

where

�̄ML(E) ∶= JC−1ML�, (2.115)
�̄MIJK (E) ∶= JC−1ML�LI JK (2.116)

are the e�ective dielectricity and �exoelectricity tensors respectively, which explicitly depend
on the Green-Lagrangian strain E.

Remark 2.6 (Objectivity of the proposed �exoelectric coupling). In the present formulation, �LI JK
is a purely Lagrangian tensor, and hence it is meaningful to view it as a material constant with
the same material symmetries and intrinsic symmetry (�LI JK = �LJ IK ) as the in�nitesimal strain
�exoelectric tensor (Krichen and Sharma, 2016, Majdoub et al., 2008, Zubko et al., 2013). We
note, however, that in previous literature a distinct notion of polarization per unit undeformed
volume is introduced as pr = Jp, i.e. a volume-normalized spatial polarization related to our
material or nominal polarization by pr

i = FiIPI (Dorfmann and Ogden, 2014, 2017, Liu, 2014).
The polarization pr is not work-conjugate to the Lagrangian electric �eld E , and it can be
problematic when used to formulate �exoelectric couplings, as in Deng et al. (2014b,c), Liu
(2014), Thai et al. (2018), Yvonnet and Liu (2017), which consider the following coupling:

ΨFlexo(F̃, pr) = −pr
lFliJK F̃iJK . (2.117)

The tensor F is a mixed spatial-material �exoelectric tensor, which unlike the in�nitesimal
�exoelectric tensor is intrinsically symmetric with respect to its last two indices (FliJK = FliKJ ).
By comparing Eq. (2.117) and (2.104), using Eq. (2.90c) and (2.91), the relation pr

i = FiIPI and
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the chain rule, we �nd the relation between f and F as

FliJK = −
)2ΨFlexo

)prl)F̃iJK
= symm

JK
(fLI JK) FiI F−1Ll , (2.118a)

fLI JK = −
)2ΨFlexo

)PL)ẼI JK
= (FliJKF−1I i +FljIKF−1J j −FlkI J F−1Kk) FlL. (2.118b)

In the limit of in�nitesimal deformation, F and f correspond to the so-called type-I (f I) and
type-II (f II) �exocoupling tensors, respectively, and choosing one or the other is just a matter of
convenience, cf. Schia�no et al. (2019). However this equivalence does not hold anymore in a
�nite deformation framework, since f is purely Lagrangian whereas F is not. Equation (2.118b)
clearly shows that taking F as a material constant, as done in Yvonnet and Liu (2017) and
Thai et al. (2018), directly implies a very particular dependence of the Lagrangian �exoelectric
tensor f on deformation, breaking the invariance of the enthalpy density with respect to a
superimposed rigid body motion (Codony et al., 2020b), and hence yielding a non-objective
potential, which is a basic requirement of hyperelastic (and related) �nite deformation models.
The purely Lagrangian approach described in this work overcomes this di�culty, since it is
objective by construction.

Remark 2.7 (Link to the linear theory of �exoelectricity). In the limit of in�nitesimal deformation,
and keeping terms up to second order, the enthalpy density in Eq. (2.114) reduces to the one
present in the linear theory of �exoelectricity, cf. Eq. (2.50), since

J → 1 + ∇⋅u ≈ 1, (2.119a)
C−1 → I − 2" ≈ I, (2.119b)
E → ", (2.119c)

�̄(E) → �I = �, (2.119d)
�̄(E) → �. (2.119e)

Remark 2.8 (Characterization of the �exoelectric tensor). The expression of the polarization in
spatial frame is found by inserting (2.97) into Eq. (2.106), yielding

pl = ((� − �0)EL + �LI JK ẼI JK) F−1Ll . (2.120)

Hence, we infer

�LI JK =
) (plFlL)
)ẼI JK

|||||E
. (2.121)

Equation (2.121) describes a way to characterize the �exoelectricity tensor from measurements
of the spatial polarization and the Green-Lagrangian strain gradients in a �nite deformation
framework, either experimentally or by means of ab-initio methods based on quantum mechan-
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ics. The latter approach is used in Section 4.2.1 to characterize the transversal �exoelectricity
coe�cient of nanostructures under bending by means of the cyclic density functional theory.

2.2.4 Variational models at �nite deformation

The generic material form of the enthalpy functional Π[� , Φ] governing the physics of a
�exoelectric body is written as

Π[� , Φ] = ∫Ω0 (
Ψ̄Enth(� , Φ)+Ω0(� , Φ)) dΩ0+∫)Ω0

)Ω0(� , Φ) dΓ0+∫C0
C0(� , Φ) ds0 (2.122)

where Ψ̄Enth is the internal bulk enthalpy density per unit reference volume Ω0, and Ω0 ,
)Ω0 and C0 represent the external work density per unit reference volume, area and length,
respectively. Di�erent boundary value problems arise depending on the �exoelectric form
that is chosen to describe Ψ̄Enth. We show next the direct �exoelectric form, and leave the
Lifshitz-invariant �exoelectric form as future work (see Section 2.3.1).

2.2.4.1 Direct �exoelectricity form

As derived in the previous Section (see Eq. (2.114)), the internal energy enthalpy corresponding
to a dielectric material with the direct �exoelectric coupling is

Ψ̄Enth(E, Ẽ, E) = ΨElast(E) + 12 ẼI JKℎI JKLMN ẼLMN −
1
2EM �̄MLEL − EM �̄MIJK ẼI JK , (2.123)

and the admissible external sources of work are

Ω0(� , Φ) ∶= −Bi�i + QΦ, (2.124a)
)Ω0(� , Φ) ∶= −Ti�i − Ri)N0 �i + WΦ, (2.124b)
C0(� , Φ) ∶= −Ji�i ; (2.124c)

where B is the prescribed external body force per unit reference volume, Q is the external
free electric charge per unit reference volume, T and J are the forces per unit reference area
and length, W is the surface charge density (i.e. electric charge per unit area) and R is the
double traction (i.e. moment per unit reference area). Note that T , J , R and B are written in
spatial frame coordinates (indicated by the lowercase subscripts), but normalized with respect
to volume, area and length in the material frame.

The boundary of the reference body, )Ω0, is split in several disjoint Dirichlet and Neumann
sets as follows:

)Ω0 = )Ω�
0 ∪ )ΩT

0 = )ΩV
0 ∪ )ΩR

0 = )ΩΦ0 ∪ )ΩW
0 . (2.125)

On the Dirichlet boundaries )Ω�
0 , )ΩV

0 and )ΩΦ0 , the deformation map � , normal derivatives
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of the deformation map )N0 � , and electric potential Φ are prescribed, respectively. On the
Neumann boundaries )ΩT

0 , )ΩR
0 and )ΩW

0 , their respective work conjugate quantities are
prescribed, i.e. the surface traction, the surface double traction and the surface charge density.
The edges of the boundary of the reference body C0 are also split in Dirichlet in Neumann sets
as

C0 = C�
0 ∪ C J

0 , (2.126)

depending on whether the deformation map or edge forces are prescribed. For simplicity, the
prescribed Neumann boundary terms and source terns are treated as dead loads, i.e. they do
not depend on � or Φ.

The corresponding boundary and edge conditions are mathematically written as

� − � = 0 on )Ω�
0 , T (� , Φ) − T = 0 on )ΩT

0 ; (2.127a)
)N0 � − V = 0 on )ΩV

0 , R(� , Φ) − R = 0 on )ΩR
0 ; (2.127b)

Φ − Φ = 0 on )ΩΦ0 , W (� , Φ) − W = 0 on )ΩW
0 ; (2.127c)

� − � = 0 on C�
0 , J (� , Φ) − J = 0 on C J

0 ; (2.127d)

where � , V and Φ are the prescribed deformation map, normal derivative of the deformation
map and electric potential at the Dirichlet boundaries, and T , R, W and J are the traction,
double traction, surface charge and the line force �elds prescribed on the Neumann boundaries.
The expressions T(� , Φ), R(� , Φ), W(�, Φ) and J (� , Φ) will be derived later as a result of the
variational principle in Eq. (2.132).

Remark 2.9 (Deformation map or displacement �eld as the mechanical state variable). The linear
theory of �exoelectricity (cf. Section 2.2.2) is written in terms of the displacement �eld u,
whereas in the framework of �nite deformations, the deformation map � is used. In fact, the
theory of �exoelectricity at �nite deformations developed in the present Section can also be
written in terms of the displacement �eld u by writing the deformation map � as a function of
u as follows:

�(u) = I ⋅ X + u. (2.128)

The deformation gradient is rewritten accordingly as

FiI (u) = δiI +
)ui(X)
)XI

, (2.129)

and so on for the rest of the kinematic tensors of the theory, as well as the boundary conditions.
Note that the variations �� = �u, and hence writing the weak form in terms of u is trivial.
In this work, however, � is kept as the primary state variable to emphasize the conceptual
di�erence of the meaning of u in the two theories, and to emphasize the existence of the two
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frames � and X .

2.2.4.1.a Standard framework

Assuming that the functional spaces of the state variables ful�ll Dirichlet boundary conditions,
inserting Eq. (2.123)-(2.127) into Eq. (2.122) leads to

Π(Dir)
D [� , Φ] = ΠΩ0[� , Φ] + ΠNeumann[� , Φ], (2.130)

where

ΠΩ0[� , Φ] = ∫Ω0 (
Ψ̄Enth(E(� ), Ẽ(� ), E(Φ)) − Bi�i + QΦ)dΩ0, (2.131a)

ΠNeumann[� , Φ] = ∫)ΩT0
−T i�i dΓ0

+ ∫)ΩR0
−Ri)N0 �i dΓ0 + ∫)ΩW0

WΦdΓ0 + ∫C J0
−J i�i ds0. (2.131b)

The equilibrium states (� ∗, Φ∗) of the body correspond to the saddle points in the enthalpy
potential ful�lling the following variational principle:

(� ∗, Φ∗) = arg min
�∈D

max
Φ∈D

Π(Dir)
D [� , Φ], (2.132)

with the functional spaces D and D having su�cient regularity and ful�lling Dirichlet
boundary conditions (2.127):

D ∶= {� ∈ [H 2(Ω0)]3 | � − � = 0 on )Ω�
0 and on C�

0 , and
)N0 � − V = 0 on )ΩV

0 }, (2.133a)
D ∶= {Φ ∈ H 1(Ω0) | Φ − Φ = 0 on )ΩΦ0 }. (2.133b)

The weak form of the problem is found by enforcing �Π(Dir)
D = 0 for all admissible variations

�� ∈ 0 and �Φ ∈ 0, with

0 ∶= {�� ∈ [H 2(Ω0)]3 | �� = 0 on )Ω�
0 and on C�

0 , and )N0 �� = 0 on )ΩV
0 }, (2.134a)

0 ∶= {�Φ ∈ H 1(Ω0) | �Φ = 0 on )ΩΦ}. (2.134b)
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The weak form reads: Find (� , Φ) ∈ D ⊗ D such that, ∀(�� , �Φ) ∈ 0 ⊗ 0,

�Π(Dir)
D = ��Π(Dir)

D + �ΦΠ(Dir)
D

= ∫Ω0 (
ŜI J �EI J + S̃I JK�ẼI JK − D̂L�EL − Bi��i + Q�Φ) dΩ0

− ∫)ΩT0
T i��i dΓ0 − ∫)ΩR0

Ri)N0 ��i dΓ0 − ∫C J0
J i��i ds0 + ∫)ΩW0

W�ΦdΓ0,

= 0; (2.135)

where

�EL ∶= −
)(�Φ)
)XL

, (2.136a)

�FiI ∶=
)(��i)
)XI

, (2.136b)

�F̃iI J ∶=
)2(��i)
)XI)XJ

, (2.136c)

�EI J ∶=
1
2�CI J = symmI J

(�FkI FkJ) , (2.136d)

�ẼI JK ∶=
1
2�C̃I JK = symmI J

(�FkI F̃kJK + FkI �F̃kJK) . (2.136e)

We have introduced the local second Piola-Kirchho� stress Ŝ, the second Piola-Kirchho� double
stress S̃ and the local electric displacement D̂ de�ned as follows:

ŜI J (� , Φ) =
)Ψ̄Enth

)EI J
= 2)Ψ

Elast(C)
)CI J

+ JCMLI JEM (
1
2�EL + �LABK ẼABK) , (2.137)

S̃I JK (� , Φ) =
)Ψ̄Enth

)ẼI JK
= ℎI JKLMN ẼLMN − JC−1LMEM�LI JK , (2.138)

D̂L(� , Φ) = −
)Ψ̄Enth

)EL
= JC−1KL (�EK + �KI JM ẼI JM) , (2.139)

with

CABCD =
2
J
) (−JC−1AB)
)CCD

= (C−1ACC−1BD + C−1BCC−1AD − C−1ABC−1CD) . (2.140)

Analogously to the linear theory of �exoelectricity (see Section 2.2.2.1.a), Eq. (2.135) can
be integrated by parts and, by invoking the divergence and surface divergence theorems, the
strong form in Eq. (2.98) is recovered along with the following de�nitions of the physical
second Piola-Kirchho� stress S, the nominal electric displacement D, the surface traction T, the
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double traction R, the surface charge density W and the edge forces J (Codony et al., 2020b):

SI J (� , Φ) ∶= ŜI J (� , Φ) − S̃I JK ,K (� , Φ)

= 2)Ψ
Elast(C)
)CI J

− ℎ̄I JKLMN ẼLMN ,K +
J
2CMLI JEM�EL + JC−1LMEM,K�LI JK , (2.141a)

DL(� , Φ) ∶= D̂L(� , Φ)
= JC−1KL (�EK + �KI JM ẼI JM) , (2.141b)

Ti(� , Φ) ∶= FiI [(SI J − S̃IKJ ,NPNK)NJ + S̃I JK ÑJK] − F̃iINPNK S̃IKJNJ , (2.141c)
Ri(� , Φ) ∶= FiI S̃I JKNJNK , (2.141d)
W(�, Φ) ∶= − DLNL, (2.141e)
Ji(� , Φ) ∶= [[FiI S̃I JKMJNK]]; (2.141f)

where N , M, P and Ñ are the analogues of the normal vector, conormal vector, surface
projection operator and second-order geometry tensor, as de�ned in Section 2.2.2, computed
in the reference frame Ω0.

Upon inspection, the second Piola-Kirchho� stress tensor S in Eq. (2.141a) is composed
by four terms. The �rst two terms correspond to the classical and high-order mechanical
stresses, respectively. The third one corresponds to the total second Piola-Maxwell stress
tensor SMaxwell. This becomes evident by expanding it as

SMaxwellI J ∶=
J
2CMLI JEM�EL = JF−1I i F−1J j � [(EMF

−1
Mi) (ELF−1Lj ) −

1
2 (EMF−1Ma) (ELF−1La ) δij] , (2.142)

and obtanining its spatial counterpart by using Eq. (2.94) and (2.95) as

�Maxwell ∶= � (e ⊗ e −
1
2 |e|

2I) . (2.143)

The last term corresponds to the total �exoelectricity-induced stress, and is analogous to
the term appearing in the linear theory of �exoelectricity, cf. Eq. (2.62), with an e�ective
�exoelectricity tensor (cf. Eq. (2.116)) depending on the deformation state.

The nominal electric displacement in Eq. (2.141b), in turn, is also analogous to the electric
displacement in the linear theory of �exoelectricity, cf. Eq. (2.60c), with e�ective dielectricity
(cf. Eq. (2.115)) and �exoelectricity tensors.

This model is illustrated and analyzed in Section 3.2.6 resorting to numerical computation of
a cantilever rod, which constitutes the simplest functional �exoelectric device. The successful
electromechanical modeling of �exoelectric devices at large deformations, including novel
physics such as electrostriction (based on the Maxwell stress e�ect) and novel electromechanical
mechanisms (such as mechanically and electrically-induced buckling) enables the rational
design of soft �exoelectric devices harnessing the intrinsic nonlinearities of the physics, which
are not present in former linear �exoelectricity models.
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2.2.4.1.b Nitsche’s method

Following Nitsche’s approach, and analogously to Section 2.2.2.1.b, the enthalpy functional
Π(Dir)

D in Eq. (2.130) is modi�ed as

Π(Dir)[� , Φ] = Π(Dir)
D [� , Φ] + ΠNitsche[� , Φ], (2.144)

where ΠNitsche[� , Φ] acts on the Dirichlet boundaries incorporating essential boundary condi-
tions in Eq. (2.127) weakly as follows:

ΠNitsche[� , Φ] = ∫)Ω�0 (
1
2��(�i − � i)

2
− (�i − � i)Ti(� , Φ)) dΓ0

+ ∫)ΩV0 (
1
2�V()

N
0 �i − V i)

2
− ()

N
0 �i − V i)Ri(� , Φ)) dΓ0

+ ∫)ΩΦ0 (
−12�Φ(Φ − Φ)

2
+ (Φ − Φ)W(�, Φ)) dΓ0

+ ∫C�0 (
1
2�C�(�i − � i)

2
− (�i − � i)Ji(� , Φ)) ds0, (2.145)

with the numerical parameters �� , �V , �Φ, �C� ∈ ℝ+.
The variational principle associated to Π(Dir) for the equilibrium states (� ∗, Φ∗) is

(� ∗, Φ∗) = argmin
�∈

max
Φ∈

Π(Dir)[� , Φ], (2.146)

where  ∶= H 1(Ω0), and  is the space of functions belonging to [H 2(Ω0)]
3 with L2-integrable

third derivatives on the boundary )Ω�
0 .

The weak form reads: Find (� , Φ) ∈  ⊗  such that, ∀(�� , �Φ) ∈  ⊗  ,

�Π(Dir) = �uΠ(Dir) + ��Π(Dir)

= ∫Ω0 (
ŜI J �EI J + S̃I JK�ẼI JK − D̂L�EL − Bi��i + Q�Φ) dΩ0

+ ∫)ΩT0
−T i��i dΓ0 + ∫)Ω�0 (

(�i − � i) (����i − �Ti) − Ti��i)dΓ0

+ ∫)ΩR0
−Ri)N0 ��i dΓ0 + ∫)ΩV ( ()N0 �i − V i) (�V )N0 ��i − �Ri) − Ri)N0 ��i)dΓ0

+ ∫)ΩW0
W�ΦdΓ0 + ∫)ΩΦ0 (

− (Φ − Φ) (�Φ�Φ − �W) + W�Φ)dΓ0

+ ∫C J0
−J i��i ds0 + ∫C�0 (

(�i − � i) (�C� ��i − �Ji) − Ji��i)ds0

= 0; (2.147)
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with

�T(� , �; �� , �Φ) ∶= �FiI [(SI J − S̃IKJ ,NPNK)NJ + S̃I JK ÑJK]
+ FiI [(�SI J − �S̃IKJ ,NPNK)NJ + �S̃I JK ÑJK]
− (�F̃iIN S̃IKJ + F̃iIN �S̃IKJ) PNKNJ , (2.148a)

�R(� , �; �� , �Φ) ∶= (�FiI S̃I JK + FiI �S̃I JK)NJNK , (2.148b)
�W (� , �; �� , �Φ) ∶= − �DLNL, (2.148c)
�J (� , �; �� , �Φ) ∶=[[(�FiI S̃I JK + FiI �S̃I JK)MJNK]]. (2.148d)

The expressions for �S(� , �; �� , �Φ), �S̃(� , �; �� , �Φ), �∇S̃(� , �; �� , �Φ) and �D(� , �; �� , �Φ)
are quite lengthy, and can be found in Appendix B.

2.3 On-going and future work

2.3.1 Legendre transform and variational model for Lifshitz-invariant
�exoelectricity at �nite deformation

The Legendre transform at �nite deformations presented in Section 2.2.3 for the direct �exo-
electric model can also be derived for the Lifshitz-invariant model, as done in Section 2.2.1.3
for in�nitesimal deformations. The only relevant di�erence with respect to the in�nitesimal
deformation framework is the appearance of additional terms in the enthalpy density arising
from the integration by parts of certain terms depending on the deformation state.

However, we did not investigated this line of research (yet) since, prior to modeling �nite
deformations, the features and properties of the Lifshitz-invariant model (e.g. the appearance
of a boundary layer) should be completely understood at in�nitesimal deformations, as well as
the appropriate numerical stabilization that is required (see Section 3.3.1) in order to properly
solve the boundary value problem.

2.3.2 Consideration of a dielectric surrounding media

In this work we only considered boundary value problems involving the �exoelectric material
being object of study. However, the media (typically air) surrounding it is also dielectric
(although not polarizable), and hence the electric potential is not con�ned to the material but
extends towards the surroundings. Rather than considering homogeneous electric Neumann
boundary conditions on the free surfaces, it may be more realistic to directly model the
surrounding medium as a dielectric, interacting with the solid by means of electrical interface
conditions, and prescribing Dirichlet or Robin boundary conditions far enough from the sample,
cf. Fig. 2.5. This issue becomes more relevant when considering soft materials with relatively
low dielectric constant (Thai et al., 2018, Yvonnet and Liu, 2017).
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Figure 2.5: Sketch of a �exoelectric material ΩR embedded in a dielectric media VR . Adapted from Liu
(2014).

2.3.3 Surface e�ects

In the context of �exoelectricity, boundary layers are usually attributed to surface piezoelec-
tricity (Liang et al., 2014, Shen and Hu, 2010, Yan, 2017, Zhuang et al., 2019, Zubko et al.,
2013), which is seen as a di�erent electromechanical coupling between strains and polarization
developed at the boundary of the samples, coexisting with the bulk �exoelectric e�ect (see
Fig. 2.6). It is usually modeled by a zero-thickness layer at the boundaries, which leads to a
surface energy density contribution on top of the bulk energy density.

In the computational experiments reported in Section 2.2.2.3, however, boundary layers are
obtained from the Lifshitz-invariant form of �exoelectricity (cf. Fig. 2.3d), which is associated
to a purely bulk energy density. This �nding suggests that there might exist a link between
surface piezoelectricity and bulk �exoelectricity explained, at least in part, by the Lifshitz-
invariant form of �exoelectricity. Moreover, note that the surface piezoelectricity and bulk
�exoelectricity tensors have the same units, further supporting this idea.

The exploration of surface e�ects and their relation to existing bulk �exoelectricity models
is a matter of author’s very recent and future research. The MSc. thesis of M. Dingle (Din-
gle Palmer, 2020), co-supervised by the author of this manuscript, takes the �rst steps in this
direction.
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Figure 2.6: Surface piezoelectricity model. Adapted from Zubko et al. (2013).

2.3.4 Photo�exoelectricity

Photo�exoelectricity (Yang et al., 2018) is a very recent physical e�ect by which photovoltaic
energy conversion and �exoelectricity are combined. Traditional solar cells are based on the
photovoltaic e�ect, by which built-in semiconducting junctions induce an electrical current
in the presence of light (photons), and is usually manifested only in noncentrosymmetric
(piezoelectric or ferroelectric) semiconductors. However, it has been recently shown (Yang
et al., 2018) that any semiconductor (including the centrosymmetric ones, which do not feature
semiconducting junctions) under applied strain-gradients feature also a bulk photovoltaic
e�ect, thanks to the electromechanical interaction induced by �exoelectricity. This �nding may
extend nowadays solar cell technologies by boosting the solar energy conversion e�ciency
from a wide pool of established semiconductors.

Conversely, it has also been shown (Shu et al., 2020) that the e�ective �exoelectric coe�-
cients of semiconductors under a source of light are orders of magnitude higher than in the
dark, and much larger than those of traditional dielectric insulators, cf. Fig. 2.7.

This interesting phenomenon has been scarcely modeled and numerically solved, and is of
the interest of future research of this manuscript’s author.
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Figure 2.7: Photo�exoelectric e�ect. Adapted from Shu et al. (2020).
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2.4 Concluding remarks

The continuum modeling of �exoelectricity has been reviewed. The relation between the
energy and enthalpy forms of the Direct and Lifshitz-invariant �exoelectricity models has
been clari�ed, as well as the relation between the material tensors of each. The e�ect of
considering the gradient polarization term has been derived and discussed, leading in general
to �exoelectric models that are not equivalent due to the modi�cation of the Maxwell-Faraday’s
equation that states the irrotationality of the electric �eld.

The relation between the energy and enthalpy forms of the Direct �exoelectricity model has
also been analyzed in the framework of �nite deformations. We propose the �rst �exoelectric
model at �nite deformations coupling strain gradients and electric polarization by means of a
fully Lagrangian �exoelectric tensor, analogous to that of in�nitesimal deformations, leading
to an objective energy potential by construction.

The direct and Lifshitz-invariant �exoelectricity boundary value problems have been
compared in in�nitesimal-deformation cantilever benchmark setups. The latter presents a
higher �exoelectricity-induced sti�ening of the beam, and features a boundary layer where
the electric �eld behaves di�erently than in the bulk.

Based on the enthalpy forms of the direct and Lifshitz-invariant �exoelectricity models, the
associated variational principles and boundary value problems have been derived accounting
for strong or weak enforcement of Dirichlet boundary conditions. As a di�erence from other
works in the literature, the contributions at the edges of the boundary arising from the 4th-
order PDE have been taken into account, which is essential to maintain the self-consistency of
the formulation.

The modeling presented in this Chapter is considered in Chapter 3 to solve the associated
boundary value problems by means of numerical methods.
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Numerical solution methods

3.1 State of the art

The equations of �exoelectricity can only be solved analytically in very simple settings, such
as simpli�ed Euler-Bernoulli (Baroudi and Najar, 2019, Deng et al., 2014a, Liang et al., 2014)
and Timoshenko beam (Zhang et al., 2016a) models. Otherwise, it is necessary to resort to
computational �exoelectricity. We refer to Zhuang et al. (2020) for a comprehensive review on
computational approaches to solve �exoelectricity boundary value problems.

The major challenge is to handle the C1 continuity of the state variables required by the
fourth-order PDE system. To address this, several numerical alternatives have been proposed,
such as mesh-free approximations (Abdollahi and Arias, 2015, Abdollahi et al., 2015a, 2014,
2015b, Zhuang et al., 2019), isogeometric analysis (Ghasemi et al., 2017, 2018, Hamdia et al.,
2018, Nanthakumar et al., 2017, Nguyen et al., 2019, Thai et al., 2018) and C1 Argyris triangular
element approximation (Yvonnet and Liu, 2017). Another family of numerical methods are
those circumventing the C1 continuity requirement by introducing additional variables, such as
mixed formulations (Deng et al., 2018, 2017, Mao et al., 2016), or those based on micromorphic
theories of continua (McBride et al., 2020, Poya et al., 2019). Recently, a few works report
the application of these methods to large deformation �exoelectricity (McBride et al., 2020,
Nguyen et al., 2019, Poya et al., 2019, Thai et al., 2018, Yvonnet and Liu, 2017, Zhuang et al.,
2019).

The aforementioned numerical approaches have some limitations or drawbacks, as listed
below:

• Di�culty to handle arbitrarily shaped geometries. On the one hand, the isogeo-
metric analysis is based on a conforming discretization by means of B-spline or NURBS
patches, which have rectangular shape in 2D (cuboidal shape in 3D). This approach
has been typically considered to model �exoelectric beams and trapezoidal shapes, but
cannot handle arbitrary geometries.
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On the other hand, mesh-free methods are convenient to discretize convex geometries.
However, it is in general di�cult to approximate more complicated geometries with
internal holes or multiple features.

• Di�culty to mesh arbitrarily shaped geometries. The C1 Argyris element, mixed
�nite elements and micromorphic approaches rely on an unstructured mesh partitioning
the domain of interest. The generation of the mesh is not trivial, specially in 3D, and it
can be the bottleneck of the computation for complex enough geometries.

• Limited or suboptimal error convergence rates. Some of the aforementioned
methods present limitations regarding the error convergence rates. On the one hand, the
mesh-free approximations have a limited L2 error convergence of order (ℎ2). Both the
compactly supported radial basis function (CSRBF) shape functions presented in Zhuang
et al. (2019), which can have C2 or C4 continuity, and the C∞-continuous local maximum-
entropy (LME) mesh-free approximants from Abdollahi et al. (2014), span functional
spaces with C1 consistency. Namely, they can exactly reproduce linear functions only.
Since the �exoelectricity equations depend on the approximation of the strain gradients,
a C1-consistent approximation space is not su�cient to ensure systematic convergence
upon mesh re�nement.

On the other hand, the C1 Argyris element present in Yvonnet and Liu (2017) is C2-
consistent, yielding approximations with L2 error convergence of (ℎ3). However, the
convergence rate cannot be systematically increased.

• Large computational cost. In contrast to approximations built on top of a mesh,
the mesh-free methods require an intermediate step consisting on the computation
of the basis functions themselves. This step yields an increase in the computational
cost, specially if the aforementioned process is iterative. Moreover, richer numerical
quadratures are usually required since the resulting basis functions are not polynomial.

Another substantial increase in computational cost in mesh-based methods is due to
having a large number of degrees of freedom per element. This is the case of C1 Argyris
element, mixed �nite elements and micromorphic theories of continua.

• Poor scalability. A typical feature of mesh-free methods, specially those with non-
compact basis such as the LME approximants in Abdollahi et al. (2014), is that the basis
functions overlap with a large number of other basis functions, yielding a system matrix
with a large �ll-in and with an unstructured sparsity pattern. These facts deteriorate
the scalability and parallelization of the method in terms of constructing and solving
the algebraic system of equations.
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3.2 Main contributions

In view of the limitations and drawbacks of current numerical approaches present in the
computational �exoelectricity literature, an alternative approach based on immersed boundary
B-Spline approximation is proposed here. This approach circumvents the limitations of other
methods, at the expense of dealing with un�tted meshes and smooth, non-interpolant dis-
cretizations of the state variables. Moreover it requires enforcing essential boundary conditions
weakly by adding some integral terms in the weak form.

The developed computational framework is introduced in Section 3.2.1. An overview of
body-�tted B-spline approximation is given in Section 3.2.2, since it is itself a useful method
for simulating �exoelectricity in rectangular or cuboidal domains. The extension to handle
arbitrarily shaped geometries, i.e. the immersed boundary B-spline method, is presented
in Section 3.2.3. The remaining Sections of this Chapter make use of the aforedescribed
numerical methods to solve di�erent �exoelectricity boundary value problems of practical and
engineering interest.

Section 3.2.4 shows a three-dimensional simulation of a conical semicircular rod under
torsion that can be used to characterize the shear �exoelectric coe�cient.

Section 3.2.5 presents the sensing electrode boundary conditions and uses them towards
the design of scalable �exoelectric sensors working under an applied rotation.

Section 3.2.6 shows the numerical strategy used to solve �exoelectricity boundary value
problems at large deformations, which yield a nonlinear system of equations. The approach is
illustrated by studying the response of soft �exoelectric rods, which constitute the simplest
functional �exoelectric devices, under mechanically- or electrically-induced bending and
buckling states. The rich interplay between �exoelectricity, electrostriction and geometrical
instabilities is thoroughly analyzed.

Finally, Section 3.2.7 extend the previous approach for large deformations to arbitrarily-
shaped soft �exoelectric devices, which requires introducing un�tted discretization and
Nitsche’s method to the nonlinear problem. The method is used to compute the response of a
�exoelectric sensor composed by periodically-arranged collective-beams. The device works
under compression, while the inner beams composing it activate the �exoelectric e�ect by
buckling.

3.2.1 iHB-FEM computational framework

The numerical approach proposed in this Chapter presents many particularities that preclude
its implementation within standard commercial �nite element-based libraries. Hence, an
in-house computational framework has been implemented from scratch. It is named iHB-FEM,
which stands for Immersed boundary hierarchical B-splines framework for electromechanics.
Despite its name, its functionalities have been extended in various ways, and it currently
allows body-�tted approximations in Cartesian domains, as well as other physical problems
than electromechanics. The framework is able to handle 2D and 3D problems.
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The code is written in Matlab (MATLAB, 2015), and it makes use of certain precompiled C
libraries and advanced vectorization features that result in a good e�ciency and reasonable
scalability for an interpreted language. It belongs to the FLEXOCOMP group lead by prof. Irene
Arias, and has been mainly developed and maintained by this manuscript’s author with
the help of Dr. Onofre Marco as a postdoctoral researcher. Its modularity, readability and
documentation allow for a relatively easy hands-on for PhD students, master students and
other researchers to use it and extend their features and capabilities. Remarkable contributions
towards the implementation of new functionalities, testing and documentation are attributed
to Jordi Barceló-Mercader, Alice Mocci and Hossein Mohammadi, current PhD students in the
FLEXOCOMP group. Also, several students have used it for their master’s thesis, introducing
new physics and features. This is the case of Monica Dingle (Dingle Palmer, 2020) and Sergi
de la Torre (De La Torre Israel, 2020).

The most essential features of the computational framework are reported in Codony et al.
(2019).

3.2.2 Body-�tted B-spline approximation

The B-spline approximation in conforming (or body-�tted) meshes is a simple enough method
to successfully resolve the �exoelectricity equations in a smooth approximation space. It can
only be used to discretize rectangular (or cuboidal) geometries, and therefore is suitable for
the study of �exoelectricity in cantilever beams. Moreover, in practical terms, it is also useful
to test the implementation of di�erent continuum models before implementing them within
the immersed boundary framework.

3.2.2.1 Uniform B-Spline basis

B-spline functions (de Boor, 2001, Piegl and Tiller, 2012, Rogers, 2001) are smooth piece-wise
polynomials with minimal (compact) support. Being p the polynomial degree, they are by
construction Cp−1-continuous throughout the domain, and therefore can be used as basis for
the smooth approximation and interpolation of functions.

Let us consider a uniform B-spline basis. The univariate uniform B-spline basis of degree
p consisting of n basis functions is de�ned on the unidimensional parametric space � ∈ Ξ =
[0, n + p] in terms of the uniform knot vector k = [k0, k1, k2, … , kn+p] = [0, 1, 2, 3, … , n + p]. The
i-th function of this basis is de�ned recursively as (de Boor, 2001):

B0i (� ) =
{
1 ki ≤ � < ki+1
0 otherwise

;

Bpi (� ) =
� − ki
ki+p − ki

Bp−1i (� ) + ki+p+1 − �
ki+p+1 − ki+1

Bp−1i+1 (� );
i = 0, … , n − 1. (3.1)

B-Spline basis are smooth (Cp−1), positive-valued functions with compact (p + 1) support,
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Figure 3.1: First univariate B-spline basis function Bp0 (� ) of degree p. Figure adapted from Codony et al.
(2019).

and they form a partition of unity. They are explicitly evaluated and exactly integrated by rich
enough numerical quadratures, thanks to their piece-wise polynomial nature. However, they
do not satisfy the Kronecker delta property (except for the trivial case p = 1).

Due to the uniformity of the knot vector, the i-th B-spline function can be expressed as a
translation of the �rst (0th) one as Bpi (� ) = Bp0 (� − i). Figure 3.1 shows the function Bp0 (� ) of
the basis for degrees p = {1, … , 4}.

In the D-dimensional space, the i-th B-spline function Bpi (� ) of a D-variate B-spline basis
(where i is the D-variate index [i1, … , iD]) is de�ned as the tensor product of D univariate
B-spline functions as

Bpi (� ) = B
p
[i1,…,iD]([�1, … , �D]) ∶=

D
∏
d=1

Bpid (�d ); with id = 0,… , nd − 1, (3.2)

which is de�ned on the D-dimensional parametric space � ∈ � = [0, n1 + p] ⊗ ⋯ ⊗ [0, nD + p].
Therefore, the parametric space is a hyperrectangle (e.g. a rectangle in 2D or a cuboid in 3D)
de�ned globally on a D-dimensional Cartesian grid, in contrast with traditional Lagrangian
basis present in standard FEM implementations, whose parametric space is de�ned element-
wise.

3.2.2.2 Approximation of the state variables

In order to use B-Spline basis (de�ned in the parametric space �) to approximate the state
variables u and � (de�ned in the physical space Ω), let us de�ne the geometrical map

' ∶ � → Ω
� ↦ x = '(� ),

(3.3)
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which maps a given point � ∈ � in the parametric space to a given point x ∈ 
 in the physical
space. The basis functions N(x) ∈ Ω are de�ned as N = [Bp ◦ '−1], in such a way that

[u(x)]d ≃ [uℎ(x)]d = ∑
i
Ni(x)auid = ∑

i
Bpi (� )auid , d = 1, … , D; (3.4a)

�(x) ≃ �ℎ(x) = ∑
i
Ni(x)a�i = ∑

i
Bpi (� )a�i; (3.4b)

where {au , a�} are the degrees of freedom (known as the control variables in B-spline nomen-
clature) of the approximations uℎ(x) and �ℎ(x). Since B-spline bases do not satisfy in general
the Kronecker delta property, the control variables do not necessarily take the value of the
interpolated function at any point, and therefore one should not think of them as “nodal values”
as in standard FEM.

Typically, the map '(� ) is expressed as the interpolation of a discretization of the physical
space, namely:

['(� )]d ≃ ∑
i
Si(� )x̂id , d = 1, … , D; (3.5)

where S(� ) are the basis functions for the interpolation of the geometry, and x̂ are points on
the physical space de�ning the map (known as the control points in B-spline nomenclature).
Di�erent choices of S(� ) and x̂ are possible. However, since N(x) must maintain the Cp−1

continuity of B-Spline basis, S(� ) must be Cp−1-continuous too, and the most natural choice is
S(� ) ∶= Bp(� ). This choice is typically known as Isogeometric (Hughes et al., 2005) when '(� )
represents an exact interpolation of the geometry Ω.

Therefore, the geometrical map x = '(� ) is globally de�ned, in contrast with traditional
FEM implementations, where it is de�ned element-wise. This implies that a conforming (or
body-�tted) discretization of Ω must be homeomorphic to the parametric space �, i.e. Ω must
be homeomorphic to a hyperrectangle. This requirement on Ω is circumvented in Section 3.2.3
by means of the Immersed boundary method, where a non-conforming (or un�tted) Cartesian
discretization of Ω is considered instead, allowing Ω having any arbitrary shape.

However, in the particular case ofΩ being a hyperrectangle, a conforming discretization can
be directly considered, leading to a uniform Cartesian grid made of cells of size {ℎ1 × ⋯ × ℎD}.
In such a case, the global geometry interpolation in Eq. (3.5) is equivalent to a local (cell-wise)
linear mapping

'c(�̆ c) = x̆c0 +
D
∑
d=1

ℎd �̆ cded (3.6)

being x̆c0 the �rst corner of the cell c, and �̆ c ∈ [0, 1] ⊗ ⋯ ⊗ [0, 1] the cell-wise parametric space.
The Cp−1-continuity of N(x) is not compromised thanks to the uniformity of the mesh. The
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Jacobian of the geometric mapping turns out constant and diagonal, i.e.

J = ∇�'(�̆ c) =
D
∑
d=1
ed ⊗ edℎd =

⎡
⎢
⎢
⎢
⎣

ℎ1 0 0
0 ⋱ 0
0 0 ℎD

⎤
⎥
⎥
⎥
⎦

, (3.7)

namely a scaling of the parametric space along each Cartesian direction. This simple expression
is convenient for numerical computations, specially to compute the (high-order) gradients of
the basis functions in Ω, since the tensor product structure of the basis is preserved, e.g.

∇x jNi(x) = ∇x j[Bpi ◦ '−1](x) = ∇� kB
p
i (� )J −1kj = ℎ−1j ( )

)�jB
p
ij (�j))∏D

d≠j Bpid (�d ); (3.8a)

∇xk [∇x jNi] (x) = ⋯ =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

ℎ−2j ( )2
)2�jB

p
ij (�j))∏D

d≠j Bpid (�d ) if j = k,
ℎ−1j ℎ−1k ( )

)�jB
p
ij (�j)) ( )

)�kB
p
ik (�k))∏D

d≠j
d≠k

Bpid (�d ) if j ≠ k; (3.8b)

and so on.

3.2.2.3 Interpolant basis on the boundary: Open knot vectors

As previously mentioned, B-spline bases do not satisfy in general the Kronecker delta property,
which implies they are not interpolant at the boundaries. In order to enforce boundary
conditions in a strong way, the basis can be modi�ed by knot multiplicity, as illustrated
in Fig. 3.2. Let us consider a univariate basis of degree p = 2 with uniform knot vector
k = [−2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8], cf. Fig. 3.2a. Since knots are unique, each of them have a
multiplicity m = 1. By repeating a knot, its multiplicity is increased to m > 1, and in turn the
continuity of the B-Spline basis at that knot is decreased to Cp−m. In the previous example, the
knot k5 = 3 is repeated (cf. Fig. 3.2b), yielding a knot vector k = [−2, −1, 0, 1, 2, 3, 3, 4, 5, 6, 7, 8].
The modi�ed basis is C1-continuous along the whole parametric space, except at � = 3 where
its continuity is decreased to C0. Note that the new basis has one extra degree of freedom.
A special case is that of open knot vectors, where knots at both ends have multiplicity m = p + 1.
In such a case, continuity at the boundaries is reduced to C−1 (i.e. discontinuous), yield-
ing a boundary-interpolant (or open) basis suitable to enforce essential boundary condi-
tions strongly. This is illustrated in Fig. 3.2c, which corresponds to the knot vector k =
[0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6], where both ends have multiplicity m = 3.

In open univariate bases, the control variables corresponding to the �rst and last basis
functions can be directly prescribed with the value of the boundary condition. In open
multivariate bases, the values of the control variables on the boundary are computed by means
of the L2 projection of the boundary condition onto the space spanned by the corresponding
B-spline basis functions.
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Figure 3.2: Modi�cation of a B-Spline basis of degree p = 2 by means of knot multiplicity

3.2.3 Immersed boundary B-spline approximation

As discussed in Section 3.2.2.2, the geometric map x = '(� ) is global, which implies the domain
Ω must be homeomorphic to the parametric space (a hyperrectangle). Since arbitrarily-shaped
geometries are not allowed, the applicability range of the method is drastically reduced. In
order to circumvent this requirement on Ω, we consider the immersed boundary method, also
known as the embedded domain method (Mittal and Iaccarino, 2005, Peskin, 2002). The main
idea consists on extending the physical domain Ω to a larger embedding domain

Ω□ = {Ω ∪ Ω�ct | Ω ⊆ Ω□} (3.9)

with hyperrectangular shape. The geometrical map in Eq. (3.3) is rede�ned as

' ∶ � → Ω□

� ↦ x = '(� ),
(3.10)

which is independent on Ω, and hence arbitrary geometries are allowed. The basis functions
N(x) ∈ Ω□ are now de�ned in the embedding domain, which is discretized by means of a
uniform Cartesian grid as Ω□ = ⋃c Ωc□, cf. Fig. 3.3a. Hence, the simpli�cations in Eq. (3.6)-(3.8)
also hold here, i.e. the Jacobian of the geometric map remains diagonal and constant throughout
Ω□, preserving the tensor product structure of multivariate bases and corresponding spatial
gradients.

The physical boundary )Ω is allowed to intersect the cells Ωc□ of the embedding mesh
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Figure 3.3: 2D sketch of the immersed boundary method. (a) Physical domain Ω (red) immersed in the
discretization of the embedding domain Ω□ = Ω ∪ Ω�ct (grey); outer cells are not depicted, (b) detail of
an inner cell Ωc□ ∈  and (c) detail of a cut cell Ωc□ ∈ . Figure adapted from Codony et al. (2019).

arbitrarily, leading to a un�tted discretization ofΩ. Cells inΩ□ are classi�ed into three di�erent
sets ,  and , depending on their intersection with the physical domain Ω:

i)  ∶= {Ωc□ ∶ Ωc□ ⊆ Ω}, the set of inner cells which remain uncut within the domain
(Fig. 3.3b),

ii)  ∶= {Ωc□ ∶ Ωc□ ⊈ Ω and Ωc□ ∩ Ω ≠ ∅}, the set of cells cut by the boundary (Fig. 3.3c),

iii)  ∶= {Ωc□ ∶ Ωc□ ∩ Ω = ∅}, the set of outer cells, which are neglected.

Cell classi�cation is usually accomplished by checking whether all vertices of each cell (and
possibly more points within the cell) lie within the domain Ω (inner cell), only part of them
(cut cell) or none of them (outer cell). In the case of implicit boundary representation (e.g. level
set approaches) it is enough to evaluate the level set function on the evaluation points (see
Fries (2016), Fries and Omerović (2016), Kudela et al. (2016), Legrain et al. (2012)). For explicit
boundary representation (e.g. CAD descriptions), ray-tracing procedures are required, as
explained in Marco et al. (2017, 2015). In this work we restrict ourselves to explicit boundary
representation by means of NURBS surfaces in 3D and NURBS curves in 2D.

Immersed boundary methods permit considering arbitrary geometries and involve trivial
mesh generation, at the cost of having to deal with a non-conforming discretization. The main
challenges are enforcing essential boundary conditions, de�ning a good-enough numerical
integration on cut cells and alleviating ill-conditioning produced by degrees of freedom with
small intersection with Ω. The former is solved by enforcing essential boundary conditions
in weak form, by means of Nitsche’s method, as explained in Sections 2.2.2.1.b, 2.2.2.2.b and
2.2.4.1.b. The latter are commented in next Sections.
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3.2.3.1 Cut-cell integration

Bulk integrals are numerically performed in each cell, i.e. inner ones Ωc□ ∈  and also the
physical part of cut ones Ωc□ ∩ Ω, for Ωc□ ∈  (see Fig. 3.3b and 3.3c). Standard cubature rules
(Witherden and Vincent, 2015) apply for the former, but not for the latter which can have
arbitrary shape. To this end, the physical part Ωc□ ∩ Ω of every cut cell Ωc□ ∈  is divided into
several non-overlapping sub-domains (e.g. cuboids or tetrahedra in 3D, triangles or trapezoids
in 2D) which are easily integrated, cf. Fig. 3.4. To sub-divide cut cells we rely on the marching
cubes algorithm (Lorensen and Cline, 1987, Marco et al., 2015), which splits each cell into
several conforming tetrahedra (or triangles in 2D), although other conforming (Fries, 2016,
Kudela et al., 2016) or non-conforming (Düster et al., 2008, Schillinger and Ruess, 2015)
subdivision schemes are also possible. Boundary integrals are similarly performed on each
corresponding sub-domain boundary, as well as integrals on the boundary of the boundary of
Ω (as sometimes required in three-dimensional fourth-order PDE).

□ Ω∩

0 1

1

0

Cut cell

Numerical
quadrature

Ω

Figure 3.4: Conforming sub-division of cut cells to perform numerical integration.

Note that integration sub-domains in contact with the physical domain boundary )Ω might
have curved faces or edges in the case )Ω is not �at. Hence, a linear cell-wise approximation
of the geometry leads to a geometric error of order 2 which might spoil the optimal (higher-
order) convergence of the method. Therefore, cell-wise polynomial approximations of the
geometry of degree p are required in general. Alternatively, we exploit the explicit NURBS
representation of the geometry by resorting to the NEFEM approach (Legrain, 2013, Sevilla
and Fernández-Méndez, 2011, Sevilla et al., 2008, 2011a,b) which captures the exact geometry
without the need of any polynomial approximation (Marco et al., 2015).
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3.2.3.2 Cut-cell stabilization

The discretization of boundary value problems with immersed boundary B-spline basis leads to
an algebraic system of equations for the control variables associated to the approximated �elds.
This system su�ers from ill-conditioning (namely a large condition number) in the presence of
cut cells with a small portion in the domain, i.e. when the volume fraction �c = |Ωc

□∩Ω| / |Ωc
□| ≪ 1

for some Ωc
□ ∈ . Ill-conditioning arises basically due to: i) basis functions on the trimmed cell

having very small contribution to the integral terms, and ii) basis functions being quasi-linearly
dependent on the trimmed cell (de Prenter et al., 2016). According to a detailed investigation
on ill-conditioning of immersed boundary methods present in de Prenter et al. (2016), the
condition number in second order elliptic problems scales with the minimum volume fraction
�min = minc (�c) at a rate of �−(2p+1−2/D)min , which implies that ill-conditioning is more severe for
high-order basis. A similar behavior is expected (and con�rmed by numerical experiments,
cf. Fig. 3.6) for the case of �exoelectricity (coupled fourth-order elliptic PDE).

Several strategies have been proposed to alleviate ill-conditioning of trimmed cells, such
as the ghost penalty method (Burman, 2010), the arti�cial sti�ness approach (Düster et al.,
2008, Schillinger and Ruess, 2015), the extended B-spline method (Höllig et al., 2012, 2001,
Rüberg and Cirak, 2012, Rüberg et al., 2016) or special preconditioning techniques speci�cally
designed for immersed boundary methods (de Prenter et al., 2016), among others.

For uniform meshes, the extended B-spline approach by Höllig et al. (Höllig et al., 2012,
2001, Rüberg and Cirak, 2012, Rüberg et al., 2016) is considered, due to its simple form and good
performance. The main idea consists on removing the critical basis functions (the ones with
smaller intersection with Ω) from the approximation space and extrapolating well-behaved
basis functions from neighboring cells towards the cut cell. Fig. 3.5 illustrates this process for
the univariate case. The modi�ed basis has less degrees of freedom, but the condition number
and error converge rates are equivalent to those of body-�tted (untrimmed) methods (Höllig
et al., 2001). The extended B-spline basis stabilization can be easily implemented as a linear
constraint on the approximation space of cut cells based on the uniform Cartesian structure of
the discretization (Höllig et al., 2012, 2001, Rüberg and Cirak, 2012, Rüberg et al., 2016).

The use of the extended B-spline approach to hierarchical meshes (see Section 3.2.3.3) fol-
lows the same idea but involves a more sophisticated implementation. For the sake of simplicity,
we stabilize hierarchical meshes by means of a simple diagonal scaling preconditioning.

To illustrate the e�ectiveness of the extended B-Spline stabilization technique, we consider
the direct �exoelectricity boundary value problem in Section 2.2.2.1.b and evaluate the condition
number of the resulting system matrix as a function of the minimum volume fraction �min
of several un�tted discretizations. Inspired by the experiment in de Prenter et al. (2016), we
consider a background Cartesian mesh of square cells of size ℎ = 0.0915. A square domain
with a circular hole is considered, i.e. Ω = (−1, 1)2⧵B((0, 0), 0.5), as depicted in Fig. 3.6a. To
create di�erent discretizations yielding di�erent �min, the domain Ω is gradually rotated �
about the origin, from 0 to �/4 in a sequence of 100 steps, while the background mesh remains
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Figure 3.5: Extended B-spline approach on a univariate mesh of degree p = 2. Originally (top), the
functional space on the trimmed cell Ω5□ ∈  is spanned by two well-behaved B-splines B23(� ), B24(� )
and a critical B-spline B25(� ). In order to alleviate ill-conditioning of the present functional space
(bottom), the critical basis B25(� ) is removed, and the basis functions B22(� ), B23(� ) and B24(� ) spanning
the functional space of the nearest inner cell, i.e. Ω4□ ∈ , are extrapolated (or extended) towards the cut
cell Ω5□. The resulting functional space is spanned by the extended basis functions {B̃22(� ), B̃23(� ), B̃24(� )},
instead of the original ones {B22(� ), B23(� ), B24(� ), B25(� )}. Mathematically, the extended set is a linear
combination of the original one, and the corresponding coe�cients can be systematically computed for
any polynomial degree p (Höllig et al., 2012, 2001, Rüberg and Cirak, 2012, Rüberg et al., 2016).

�xed. First order Dirichlet and second order homogeneous Neumann boundary conditions
are considered at the boundaries )Ω, with Nitsche’s normalized penalty parameters ζ = 100.
The condition number of the system matrix that arises from the discretization is computed by
means of the condest routine from Matlab (MATLAB, 2015).

Fig. 3.6b and 3.6c show condition numbers as a function of �min for spline degrees p = 3
and p = 4 respectively. The original approximation space yields arbitrarily large condition
numbers, scaling at a rate of 2p with respect to minimum volume fraction, revealing a similar
behavior to that of second order PDE, cf. de Prenter et al. (2016). Therefore, the numerical
results are untrustworthy and the need for an ill-conditioning alleviation strategy becomes
apparent. On the one hand, the extended B-spline stabilization technique is very e�ective,
yielding constant condition numbers regardless of the minimum volume fraction of the mesh.
Therefore, it leads to robust simulations and trustworthy results in this sense. On the other
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(b) Cubic spline mesh (p = 3).
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(c) Quartic spline mesh (p = 4).

Figure 3.6: Condition number against the minimum volume fraction using di�erent cut-cell stabilization
techniques.

hand, the simple diagonal scaling technique reduces the condition numbers but is not as
e�ective as the extended B-spline stabilization, producing a relatively large scatter in the
results.

3.2.3.3 Local mesh re�nement: Hierarchical B-splines

Hierarchical B-spline re�nement was �rst introduced by Forsey and Bartels (Forsey and
Bartels, 1988). It can be understood as a technique for locally enriching the approximation
space by replacing selected coarse B-splines (parents) with �ner ones (children). It is based on
a remarkable property of uniform B-splines: their natural re�nement by subdivision. For a
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uniform univariate B-spline basis of degree p, the subdivision property leads to the following
two-scale relation (Zorin, 2000):

Bpi (� ) =
p+1
∑
j=0

spj Bpi (2� − j) ∶=
2i+p+1
∑
j=2i

B̂pj (�̂ ), with spj =
1
2p(

p + 1
j ) = 2−p(p + 1)!

j!(p + 1 − j)! ; (3.11)

where �̂ ∶= 2� .
In other words, a B-spline function Bpi (� ) can be expressed as a linear combination of

contracted, translated and scaled copies B̂pj (�̂ ) of itself (Schillinger et al., 2012), as illustrated in
Fig. 3.7 for B-splines of di�erent polynomial degree p. The extension to higher dimensions is
trivial by means of the tensor product of univariate bases.
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Figure 3.7: Two scale relation of a univariate B-spline basis function Bp0 (� ) of degree p. Top: Original
(parent) B-spline. Bottom: The j-th children B-spline basis, j = {0, … , p + 1}. Figure adapted from
Codony et al. (2019).

A hierarchical B-spline basis is de�ned from a uniform B-spline basis by replacing some
basis functions with their corresponding children (see Fig. 3.8). This process can be performed
recursively, leading to a parent-children hierarchy spanning several levels of re�nement.

In a hierarchical B-Spline framework, cell re�nement translates into some basis functions to
be re�ned. The change of focus from cell re�nement (as in conventional FE) to basis re�nement
is the key point, which allows maintaining the smoothness of the functional space. There exist
di�erent hierarchical re�nement strategies, depending on the relation between cells and basis
to be re�ned (Bornemann and Cirak, 2013, Kraft, 1997, 1995, Schillinger et al., 2012, Vuong
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Figure 3.8: Hierarchical re�nement of a quadratic (p = 2) bivariate B-spline basis. (a) Uniform mesh;
B-spline basis function B22,1(�1, �2) (blue) is selected for re�nement. (b) Hierarchical mesh; basis function
B22,1(�1, �2) is replaced by their 16 children B̂2i,j (�̂1, �̂2) (blue), ∀{i, j} = {4, 5, 6, 7} ⊗ {2, 3, 4, 5}. Figure
adapted from Codony et al. (2019).

et al., 2011). Each of these implies a certain number N of cells in the neighborhood of the
target cell that will also be re�ned, since the basis functions span p + 1 cells per dimension.

A good strategy combining e�ciency and ease of implementation consists on re�ning the
B-Spline bases whose support center lies inside the cells to be re�ned (Bornemann and Cirak,
2013). This strategy leads to a re�nement neighborhood of N = ⌈p/2⌉ cells. Note that re�ning
all non-vanishing B-Splines within a cell would lead to an unnecessary larger re�nement
neighborhood of N = p. Fig. 3.9 illustrates the hierarchical mesh re�nement concentrated
around a prede�ned line (black dashed) up to 5 di�erent levels of hierarchy.

The implementation of hierarchical B-Spline basis can be made as e�cient as that of uniform
basis by means of the subdivision projection technique, cf. Bornemann and Cirak (2013). In a cell
spanning several levels of re�nement, the integrals arising from the discretization of boundary
value problems can be computed at the �nest hierarchy level only, and then projected to the
corresponding coarser levels during the assembly process, thanks to the two scale relation. This
procedure avoids dealing with degrees of freedom from di�erent hierarchy levels, facilitating
the implementation of hierarchical re�nement on a pre-existing B-Spline-based code.
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(a) Domain to be discretized (b) Starting uniform mesh (c) Final hierarchical mesh

Figure 3.9: Hierarchical discretization of a domain for a B-Spline basis of degree p = 1 or 2. Re�nement is
required along the black dashed line. Starting from a uniform mesh, the cells overlapping the re�nement
zone are recursively re�ned. The neighboring cells at a (L1) distance N = ⌈p/2⌉ = 1 are also forced to be
re�ned. Each color represents a di�erent level of hierarchy.

3.2.4 Application to the characterization of shear �exoelectricity

As pointed out in Section 1.2.2, the shear �exoelectricity coe�cient can be measured by a
conical rod with semicircular cross section under torsion (Mocci et al., 2020), where a net
angular polarization arises thanks to the longitudinal variation of the cone radius. In this
Section we inspire in this setup to validate our formulation and implementation. This example
is extracted from Codony et al. (2019).

Figure 3.10a shows the geometrical model of the conical semicircular rod, with a length of
100 µm, oriented along the x axis. The radii of the semicircular bases are 26.3 µm and 7.5 µm,
and their centers are located at xO = (0, 0, 0) µm and xo = (100, 0, 0) µm.

The larger semicircular basis is clamped and grounded, and torsion is enforced at the
opposite basis by prescribing the displacement �eld. The corresponding boundary conditions
are:

ux = uy = uz = 0 at x = 0 (larger basis and its perimeter), (3.12a)
uy = −�z at x = 100 µm (smaller basis and its perimeter), (3.12b)
uz = �y at x = 100 µm (smaller basis and its perimeter), (3.12c)
� = 0 at x = 0, (3.12d)

where � is the tangent of the prescribed torsional angle.
The mechanical response of the rod is composed by several e�ects, including non-constant

twisting (in-plane rotation) and warping (out-of-plane displacement). Without going into the
details, one can think of the rod undergoing "xy and "xz shear strains varying along the x
direction, hence triggering the shear �exoelectric e�ect along the y − z plane.
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(a) Geometrical 3D model (b) Un�tted uniform B-spline mesh
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(c) Shear �exoelectric coupling
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(d) Full �exoelectric coupling

Figure 3.10: Conical semicircular rod under torsion. (c) and (d) (top) show the electric potential over
the deformed shape of the rod (×10 magni�cation) after torsion. (c) and (d) (bottom) show the electric
potential distribution in the cross section at y = 90.5 µm.

Numerical simulations are performed with a cubic (p = 3) trivariate B-spline basis on
an un�tted uniform mesh of cell size 1.778 µm (see Fig. 3.10b). The prescribed torsion is
set to � = 0.1, which corresponds to a counterclockwise torsion of about 5.7°. The material
constants are set to match those of barium strontium titanate, a strongly �exoelectric ceramic,
in its paraelectric phase. That is, a Young modulus Y = 152GPa, Poisson ratio � = 0.33,
�mech = 10 µm, � = 11 nC/(Vm) and �L = �T = �S = 121 µC/m.

In order to isolate the shear �exoelectric e�ect, two simulations are performed. In the �rst
one, only the shear �exoelectric coe�cient is taken into account, namely �L = �T = 0, whereas
in the second one the complete �exoelectricity tensor � is considered.
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The numerical results are shown in Fig. 3.10c and 3.10d. The electric potential takes
positive values for y > 0 and negative values otherwise, being more prominent near the
free end. An e�ective electric �eld arises in the polar direction contained in the y − z plane,
which can be readily seen by plotting the electric potential in a cross section of the rod. This
distribution allows to measuring the electric potential di�erence between both sides of the rod,
and therefore can be used to quantify the shear �exoelectric coe�cient (Mocci et al., 2020).

Results do not vary much by considering or disregarding the longitudinal and transversal
coe�cients of the �exoelectric tensor (see Fig. 3.10c vs 3.10d). In order to quantify it, the
voltage di�erence at the corners of the cross sections, namely at x+ = (90.5, 9.265, 0) µm and
x− = (90.5, −9.265, 0) µm, is evaluated for the two cases, yielding

�Shear(x+) − �Shear(x−) = 22.92V,
�Full(x+) − �Full(x−) = 22.28V,

which shows that considering the longitudinal and transversal coe�cients of the �exoelectric
tensor a�ects the voltage di�erence only by 2.87%. Therefore, it is apparent that the �exoelectric
behavior of this setup is mainly controlled by the shear �exoelectric coe�cient �S .

3.2.5 Application to electrode-based scalable �exoelectric sensors

In electromechanics, conducting electrodes are frequently attached to the surface of the devices
to enable either actuation or sensing. Actuators induce a deformation due to a prescribed
electric potential, whereas sensors infer the deformation state by the measured change in the
electric potential. In both cases, as the electrodes are made of conducting material, the electric
potential in the electrode is uniform. The electrical Dirichlet boundary condition in Eq. (2.53c)
corresponds to actuating electrodes where the uniform electric potential is prescribed. In the
case of sensing electrodes, however, the uniform electric potential is constant but a priori
unknown, and thus requires a special treatment. Fig. 3.11 illustrates the e�ect of sensing
electrodes in a standard benchmark for the longitudinal (direct) �exoelectric coupling: the
truncated pyramid compression (Codony et al., 2019).

In the following, the mathematical modeling of sensing electrodes is described in Section
3.2.5.1, and its use towards designing functional �exoelectric devices is illustrated in Section
3.2.5.2.
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Figure 3.11: Flexoelectric truncated pyramid of size H = 7.5 µm under a compressive force F = 4500 µN,
with (b) and without (a) a sensing electrode at the base. The �exoelectric material is isotropic with
Young modulus Y = 100GPa, Poisson ratio � = 0.37, dielectric constant � = 11 nCm/V, longitudinal
and transversal �exoelectric coe�cients �T = �L = 1 µC/m and other material parameters set to 0.

3.2.5.1 Sensing electrode boundary conditions

Let us consider a partition of the boundary distinguishing actuating and sensing electrodes,
i.e.

)Ω = )Ω� ∪ )ΩΦ ∪ )Ωw , (3.13)

where )Ω� and )ΩΦ correspond, respectively, to actuating and sensing electrodes on the
boundary, respectively, and )Ωw to the electrical Neumann boundary. The sensing boundary
)ΩΦ is conformed by NΦ electrodes, namely )ΩΦ = ⋃NΦ

i=1 )Ωi
Φ. The electric potential � on

sensing electrodes is constant, but unknown. Mathematically, the sensing electrode conditions
are stated as

� − Φi = 0 on )Ωi
Φ, ∀i = 1, … , NΦ, (3.14)

where at each electrode )Ωi
Φ the electric potential takes a constant (yet a priori unknown)

scalar value Φi ∈ ℝ.
In a body-�tted framework, the sensing electrode conditions in Eq. (3.14) are easily enforced

by means of a linear constraint on the functional space so that it is constant on )Ωi
Φ. In an

un�tted framework, however, they must be weakly enforced. Restricting ourselves to the
Direct �exoelectricity form at in�nitesimal strains for simplicity, we follow Nitsche’s approach
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and incorporate the work ΠiΦ[u, �, Φi] of each sensing electrode to the energy potential Π(Dir)

in Eq. (2.64) (Codony et al., 2019):

ΠiΦ[u, �, Φi] = ∫)ΩiΦ (
� − Φi)w(u, �) dΓ, (3.15)

where now each Φi constitutes an additional state variable. The associated variational principle
for the equilibrium states (u∗, �∗, Φ1∗, … , ΦNΦ∗) of the body is

(u∗, �∗, Φ1∗, … , ΦNΦ∗) = argmin
u∈

max
�∈

min
Φ1∈ℝ

… min
ΦNΦ∈ℝ(Π

(Dir)[u, �] +
NΦ
∑
i=1

ΠiΦ[u, �, Φi]) . (3.16)

Equation (3.15) has a similar form to the Nitsche terms ΠDirichlet[u, �] in Eq. (2.65), but the
penalty term quadratic to the boundary condition in Eq. (3.14) is omitted here, because if it
was positive in sign then it could be made arbitrarily large with respect to �, and, conversely,
if was is negative in sign then it could be made arbitrarily large with respect to Φi (Codony
et al., 2019). Vanishing of the �rst variation of the energy functional in Eq. (3.16) yields

0 = �Π(Dir)[u, �; �u, ��]+
NΦ
∑
i=1

�ΠiΦ[u, �, Φi ; �u, ��, �Φi], ∀�u ∈  , �� ∈  , �Φi ∈ ℝ, (3.17)

where the additional terms

�ΠiΦ[u, �, Φi ; �u, ��, �Φi] ∶= ∫)ΩiΦ (
�−Φi)w(�u, ��) dΓ+∫)ΩiΦ

w(u, �)(��−�Φ
i
)dΓ. (3.18)

The weak form of the un�tted formulation for direct �exoelectricity accounting for sensing
electrodes reads:

Find (u, �, Φ1, ..., ΦNΦ) ∈  ⊗  ⊗ ℝNΦ such that

Eq. (3.17) holds ∀(�u, ��, �Φ1, ..., �ΦNΦ) ∈  ⊗  ⊗ ℝNΦ . (3.19)

3.2.5.2 Wheel-shaped (2D) �exoelectric sensor

In this Section we illustrate the usefulness of sensing electrode boundary conditions in order
to design scalable �exoelectric devices. Let us consider a wheel-shaped geometry as depicted
in Fig. 3.12a. It is composed by Nb radial beams of width H , ranging from the inner radius Rin
to the outer radius Rout, connected by an outer circular arc of width H ranging from the �rst
radial beam at � = 0 until the last beam at � = 2�(1 − 1/Nb). The inner tips of the radial beams
are clamped, as depicted in Fig. 3.12b.

The device can act as a �exoelectric sensor, activated by means of an applied rotation uR(x)
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of the outer circular arc as follows:

uR(x) = [
cos(�R) − 1 − sin(�R)
sin(�R) cos(�R) − 1 ] ⋅ [

x
y ] , (3.20)

where �R is the applied rotation angle. Such deformation will induce the bending of the radial
beams, generating a transversal electric �eld thanks to the transversal �exoelectric e�ect.
However, the goal is not just inducing a potential di�erence across each beam’s thickness, but
also accumulating this di�erence from beam to beam, yielding a scalable device. The easiest
way of doing so is attaching electrodes at the top an bottom boundaries of the radial beams,
close to the inner clamped tips where the curvature is expected to be maximum, as depicted
in Fig. 3.12b, with the �rst electrode being grounded (� = 0) and the rest being sensors. By
connecting two consecutive electrodes in di�erent beams (in other words, considering that
both electrodes are actually the same electrode )Ωi

Φ at same voltage Φi) the accumulation
e�ect will be achieved.

Fig. 3.12c depicts the electromechanical response of the wheel-shaped �exoelectric sensor
with geometrical parameters H = 0.43 µm, Rin = 1 µm, Rout = 5 µm and Nb = 10, and material
parameters Y = 100GPa, � = 0.3, � = 11 nCm/V, �L = �T = 1 µC/m (other material parameters
are set to 0), which correspond to a hard, isotropic �exoelectric material. The applied rotation
angle is set to �R = �/12. The un�tted Cartesian mesh has element size ℎ ≈ 60 nm and spline
degree p = 3. As expected, the rotation-induced bending of the radial beams generates electric
�eld due to the �exoelectric e�ect, and it is accumulated from beam to beam thanks to the
sensing electrode conditions.

Fig. 3.12d shows the value of the voltage at each sensing electrode. Since the considered
material is isotropic, all radial beams present the same induced electric �eld, which is e�ectively
accumulated. The total electric potential di�erence attained is about 59V, which is roughly
Nb = 10 times larger than the one present across a single bent beam. The sensitivity of this
�exoelectric sensor can be measured as VNb /�R ≈ 226V/rad ≈ (22.6Nb)V/rad. Hence, it is
linearly proportional to the number of beams Nb constituting the device, allowing a systematic
increase in sensitivity just by geometrical design.

By accounting for three-dimensional helical-shaped devices working under the same idea, a
much larger net electric voltage is expected since the number of beams can be easily increased
without the 2� angular restriction of 2D models. This idea is currently being explored (Codony
et al., 2021b).
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Figure 3.12: Wheel-shaped �exoelectric sensor under a rotation of �R = �/12.

3.2.6 Application to nonlinear �exoelectric rods

In this Section, the direct �exoelectricity model in the �nite deformation framework in Section
2.2.4.1.a is studied on a �exoelectric rod, which constitutes the simplest functional �exoelectric
device. The rod is analyzed in di�erent settings such as axial and transversal mechanical
loadings (sensing mode) and clamped-free and clamped-clamped transversal electrical loading
(actuation mode), cf. Fig. 3.13. The interplay of the �exoelectric e�ect with other physics,
such as electrostriction, and its role in several deformation states, such as mechanically or
electrically-induced bending or buckling, are also analyzed. The examples are extracted and



3.2 Main contributions 97

adapted from Codony et al. (2020b), which is an original contribution of the author of this
document.

The governing equations in Eq. (2.135) are solved numerically by means of the body-
�tted B-spline approach presented in Section 3.2.2. Since we restrict ourselves to 2D rod-like
geometries (i.e. rectangles), there is no need of resorting to more general approaches such as
the immersed boundary (un�tted) approximation. The state variables {� , Φ} are approximated
on an open uniform cubic (p = 3) B-spline-based Cartesian mesh with square cells of size
ℎ = H/10, being H the thickness of the rod. (First order) Dirichlet boundary conditions are
strongly enforced thanks to the interpolant nature of the basis at the boundaries.

The discretization of Eq. (2.135) yields a nonlinear system of equations (discretized state
variables are denoted with the same notation from now on for simplicity). In order to solve it,
a modi�ed-step Newton-Raphson algorithm is considered. At the k-th iteration, an increment
of the solution {Δ�, ΔΦ}(k) is found by vanishing the �rst order Taylor expansion of the
residual  (namely the discrete version of �Π(Dir)

D in Eq. (2.135)) around the previous solution
{� , Φ}(k−1) of the (k − 1)-th iteration:

 [� (k), Φ(k); �� , �Φ] ≈ [� (k−1), Φ(k−1); �� , �Φ]

+ ))� [� (k−1), Φ(k−1); �� , �Φ] ⋅ Δ� (k)

+ ))Φ [� (k−1), Φ(k−1); �� , �Φ] ⋅ ΔΦ(k)

= 0. (3.21)

Given {� , Φ}(k−1) at the previous iteration, Eq. (3.21) leads to an algebraic system of equations
for {Δ�, ΔΦ}(k) of the form

[
H�� H�Φ
HΦ� HΦΦ]

(k−1)
⋅ [
Δ�
ΔΦ]

(k)
= −[

R�
RΦ]

(k−1)
, (3.22)

where

H�� (� (k−1), Φ(k−1)) =
)
)� [� (k−1), Φ(k−1); �� , 0] , (3.23a)

H�Φ (� (k−1), Φ(k−1)) =
)
)Φ [� (k−1), Φ(k−1); �� , 0] , (3.23b)

HΦ� (� (k−1), Φ(k−1)) =
)
)� [� (k−1), Φ(k−1); 0, �Φ] , (3.23c)

HΦΦ (� (k−1), Φ(k−1)) =
)
)Φ [� (k−1), Φ(k−1); 0, �Φ] , (3.23d)

R� (� (k−1), Φ(k−1)) =  [� (k−1), Φ(k−1); �� , 0] , (3.23e)
R� (� (k−1), Φ(k−1)) =  [� (k−1), Φ(k−1); 0, �Φ] . (3.23f)
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The explicit form of the variation of the residual , i.e. the second variation of the enthalpy
functional �Π(Dir)

D , is found in the Appendix B of Codony et al. (2020b).
Once {Δ�, ΔΦ}(k) are found, we compute the modi�ed increments {Δ�, ΔΦ}(k) by ensuring

that the total increment i) leads to an enthalpy decrease along � , ii) leads to an enthalpy
increase along Φ, and iii) has a prede�ned maximum norm 
max ∈ ℝ+. The �rst two conditions
are required in accordance to the min-max variational principle in Eq. (2.132), whereas the
latter is just a numerical requirement to avoid too large increments of the solution at each
iteration. To formulate those conditions mathematically, let us recast the variational principle
in Eq. (2.132) as

Φ̂(� ) ∶= argmax
Φ∈D

(Π
(Dir)
D [� , Φ]), (3.24a)

� ∗ = argmin
�∈D

(Π̂
(Dir)
D [�]) with Π̂(Dir)

D [�] ∶= Π(Dir)
D [� , Φ̂(� )], (3.24b)

Φ∗ = Φ̂(� ∗). (3.24c)

Numerically, Eq. (3.24) is equivalent to solving two linear systems consecutively, constructed
from Eq. (3.22) by writing ΔΦ(k) as a function of Δ� (k), as follows:

Ĥ��
(k−1) ⋅ Δ� (k) = − R̂�

(k−1) with
⎧⎪⎪
⎨⎪⎪⎩

Ĥ��
(k−1) ∶= [H�� − H�Φ ⋅ H−1ΦΦ ⋅ HΦ�]

(k−1)

R̂�
(k−1) ∶= [R� − H�Φ ⋅ H−1ΦΦ ⋅ .RΦ]

(k−1) ,

(3.25a)

HΦΦ(k−1) ⋅ ΔΦ(k) = − R̂Φ
(k−1) with R̂Φ

(k−1) ∶= RΦ(k−1) + HΦ� (k−1) ⋅ Δ� (k) . (3.25b)

From Eq. (3.25) it is clear that the descent and ascent directions are respectively identi�ed by
R̂�

(k−1) and R̂Φ
(k−1), i.e. the modi�ed residuals which take into account the coupled nature of

the enthalpy potential. Therefore, the modi�ed increments are computed as follows:

�� (k) =
{
−1 if R̂�

(k−1) ⋅ Δ� (k) > 0,
+1 otherwise;

(3.26a)

�Φ(k) =
{
−1 if R̂Φ

(k−1) ⋅ ΔΦ(k) < 0,
+1 otherwise;

(3.26b)

� (k) = min
⎧⎪⎪
⎨⎪⎪⎩
+1, 
max/

√
‖‖‖‖‖
Δ� (k)
�0

‖‖‖‖‖

2
+
‖‖‖‖‖
ΔΦ(k)
Φ0

‖‖‖‖‖

2⎫⎪⎪
⎬⎪⎪⎭
; (3.26c)

Δ� (k) = �� (k)� (k)Δ� (k); (3.26d)

ΔΦ(k) = �Φ(k)� (k)ΔΦ(k); (3.26e)
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with �0 and Φ0 characteristic factors of the problem for displacement and potential. In practice,

max is treated as an adaptive heuristic parameter, tunable for proper convergence.

Finally, the solution at the k-th iteration is updated with

{� , Φ}(k) = {� , Φ}(k−1) + {Δ�, ΔΦ}(k). (3.27)

The external loads are applied incrementally in a sequence of load steps, and the modi�ed-
step Newton-Raphson algorithm presented here is used to obtain converged solutions at every
load step. Once convergence is reached, the stability of the solution is checked by assuring
{� , Φ}(k) is a saddle point in the enthalpy functionalΠ(Dir)

D [� , Φ] in accordance to the variational
principle in Eq. (2.132). By means of Eq. (3.24), stability of {� , Φ}(k) is given by

�2� Π̂(Dir)
D [� (k); Δ� ; Δ�] > 0 ∀Δ� ∈ 0, (3.28a)

�2�Π(Dir)
D [� (k), Φ(k); ΔΦ; ΔΦ] < 0 ∀ΔΦ ∈ 0. (3.28b)

Numerically, Eq. (3.28) is met by checking the sign of the extremal eigenvalues � of Ĥ��
(k)

and HΦΦ(k) as follows:

�min [Ĥ��
(k)
] > 0, �max [HΦΦ(k)] < 0. (3.29)

We recognize convergence to unstable solutions by the violation of Eq. (3.29). In such case,
the solution {� , Φ}(k) is slightly perturbed and the iterative algorithm is run again until a
stable solution is found. In practice, we found that �max[ HΦΦ(k) ] remains always negative,
and therefore the encountered instabilities are given by �min[ Ĥ��

(k)
] becoming negative only

(i.e. geometrical instabilities). The eigenvector associated to �min[ Ĥ��
(k)

] is an appropriate
direction for numerical perturbations on � (k) to reach stable solutions.

In the following examples, elasticity is modeled by isotropic hyperelastic potentials, either
Saint-Venant–Kirchho� (Eq. (A.9)) or Neo-Hookean (Eq. (A.10)) models. Both require two
elastic constants, i.e. the Young’s modulus Y and the Poisson’s ratio � . Strain-gradient elasticity
is modeled by the analogous isotropic hyperelastic Saint-Venant–Kirchho� law (Eq. (A.2)),
which additionally depends on the characteristic length scale �mech. Dielectricity is isotropic,
which depends on the electric permittivity �, and the �exoelectric tensor � is assumed to
have cubic symmetry with three independent constants �L, �T and �S, namely the longitudinal,
transversal and shear �exoelectric coe�cients (Eq. (A.8)).

An analytical 1D model for unshearable, extensible slender �exoelectric rods under large
deformations was also presented in Codony et al. (2020b), as well as its linearized Euler-
Bernoulli counterpart. Closed-form solutions for the quantities of interest (i.e. displacement,
electric �eld, curvature and elongation) are also provided for the loading cases depicted
in Fig. 3.13. Such model assumes linear strains, use a Saint-Venant–Kirchho� hyperelastic
potential for classical elasticity, neglects strain gradient elasticity (i.e. �mech = 0) and consider
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the transversal �exoelectric e�ect only (i.e. �L = �S = 0). In the following examples we validate
the full numerical model against the closed-form solutions present in Codony et al. (2020b)
by considering material parameters matching the aforementioned assumptions. For some
relevant examples, we also analyze general �exoelectric problems described by the more
realistic Neo-Hookean hyperelastic potential and the full �exoelectric tensor.

N

(a) Bending-based sensor

N

(b) Buckling-based sensor

L

H

V

(c) Bending-based actuator

V

(d) Buckling-based actuator

Figure 3.13: Sketch of a �exoelectric rod of dimensions L by H under several loading and boundary
conditions. (a) A cantilever rod subjected to a transversal load N at the right end tip, and electrically
grounded at the mid-point in the right end cross-section. (b) A clamped-clamped rod subjected to a
compressive axial load N at the right end, which is allowed to displace horizontally, and electrically
grounded at the mid-point in the left end cross-section. (c) A cantilever rod sandwiched between two
electrodes (depicted in blue) under applied voltage V . (d) A clamped-clamped rod sandwiched between
two electrodes (blue in color) under applied voltage V . Figure adapted from Codony et al. (2020b).
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3.2.6.1 Mechanically-induced bending

We consider here a �exoelectric cantilever rod of thickness H = 100nm and slenderness
of L/H = 20, under bending by a vertical point load in an open circuit con�guration with
the mechanically free end electrically grounded, cf. Fig. 3.13a. Young’s modulus is chosen
as Y = 1.725GPa and the dielectric permittivity as � = 0.092nC/Vm, which correspond to
polyvinylidene �uoride (PVDF) (Chu and Salem, 2012, Zhang et al., 2016b, Zhou et al., 2017).

Validation

Fig. 3.14 collects the validation results. Typical computational solutions are shown in Fig. 3.14a,
where the electric potential � is plotted on the deformed con�guration. These simulations
highlight the very large deformations attained. As predicted by the linear (Majdoub et al.,
2009, 2008) and nonlinear (Codony et al., 2020b) analytical models, �exoelectricity leads to
an e�ective sti�ening of the system even though the elastic constants are kept �xed. The
maximum electric �eld generated at the clamping cross-section exhibits a maximum for an
intermediate value of the �exoelectric constant. The existence of an optimal value of �T,
for which the �exoelectric response is maximized, results from the competition of the two
con�icting e�ects of �T: i) the sti�ening and ii) the �exoelectric coupling. For small values of
�T the structure is very compliant and larger strain gradients are attained but the generated
�eld is small due to the small coupling, whereas for very large values of �T the �exoelectric
coupling is large but the sti�er beam attains smaller deformations and thus smaller strain
gradients.

To further analyze these e�ects, we present in Fig. 3.14b the dependence of the cantilever
rod vertical displacement at the tip on the endpoint load, and the vertical electric �eld on the
clamped edge, for di�erent values of transversal �exoelectric coe�cient �T. The results for
the tip displacement show i) the sti�ening as �T increases, ii) the nonlinearity in the response
of the system (particularly for the most deformable systems), iii) an excellent quantitative
agreement with the nonlinear �exoelectric rod model, and iv) an agreement with the linearized
E-B model for small deformations, i.e. smaller loads or sti�er cantilevers (large values of �T).
Similarly, we �nd an excellent agreement between the numerical simulations and the nonlinear
rod model in the vertical electric �eld on the clamped end. Its behavior is nonlinear for large
loads since the electric �eld is directly proportional to the curvature (Codony et al., 2020b).
The non-monotonicity in the maximum electric �eld as a function of �T discussed above is
also apparent from this plot.

General flexoelectric problem

We investigate now more general �exoelectric conditions beyond the restrictive assumptions of
the reduced model in Codony et al. (2020b) by assuming an isotropic Neo-Hookean hyperelastic
rod, cf. Eq. (A.10) augmented with strain gradient elasticity, with material parameters � = 0.3,
�mech = 0.1 µm and varying �exoelectric constants.
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(b) Bending of a cantilever rod of slenderness L/H = 20 with varying transversal �exoelectric coe�cient �T. The
left plot shows the vertical displacement at the loaded end, and the right one shows the vertical electric �eld at the
�xed end.

Figure 3.14: Electromechanical response of Saint-Venant–Kirchho� cantilever �exoelectric sensor under
bending. The transversal �exoelectric coe�cient �T in the legends is expressed in nC/m. Figure adapted
from Codony et al. (2020b).

Fig. 3.15 represents the electromechanical response of the open circuit cantilever rod under
point load for varying �exoelectric constants �L, �T, �S = {−10, 0, 10}nC/m. Fig. 3.15a shows
the de�ection uY of the loaded end, whereas Fig. 3.15b shows the vertical electric �eld EY
at the clamped end. For the sake of brevity, some combinations of �exoelectric tensors are
omitted, since we found that the responses are analogous to the ones of other combinations as
follows:

uY |� = uY |−�; (3.30a)
EY |� = −EY |−�. (3.30b)

From Fig. 3.15a, it is clear that �exoelectricity is always increasing the bending sti�ness
of the rod. The largest sti�ening is found with opposite �T and �L, followed by the case of
vanishing �L. On the contrary, the simulations with �L ∼ �T and the ones with vanishing �T
present a smaller sti�ening. In all cases, the e�ect of the shear �exoelectric coe�cient �S on
bending sti�ness is much smaller, and therefore less relevant.
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Figure 3.15: Electromechanical response of Neo-Hookean cantilever �exoelectric sensor under bending,
with di�erent �exoelectric tensors (expressed in nC/m). Figure adapted from Codony et al. (2020b).

Fig. 3.15b shows the electric response of the rod at the clamped tip, revealing that all three
�exoelectric coe�cients are relevant here. Within the studied range, a larger �exoelectricity-
induced bending sti�ness leads also to a larger electric �eld. However, in addition, the shear
�exoelectric e�ect �S has a large in�uence on the electric �eld. In most cases, a non-vanishing
�S leads to a substantial decrease in the reported electric �eld, which slightly depends also on
the sign of �S. The only case in which a non-vanishing �S increases the electric �eld is the one
where �S is the only non-vanishing �exoelectric coe�cient.

3.2.6.2 Mechanically-induced buckling

We now compress an open-circuit �exoelectric rod of thickness H = 100 nm and slenderness
L/H = 60 until buckling occurs, and also during the post-buckling stage. The left tip is
clamped and a uniform horizontal load is applied on the right cross-section, which can only
move uniformly in axial direction, i.e. vertical displacement and rotation of the right end are
prevented (see Fig. 3.13b). We consider an isotropic Saint-Venant–Kirchho� model with Young’s
modulus Y = 1.725GPa, dielectric permittivity � = 0.092nC/Vm and di�erent transversal
�exoelectric coe�cients: �T = {0, 1, 5, 10} nC/m. The other material parameters are set to zero
(� = �L = �S = �mech =0 ).

As shown in Fig. 3.16, the numerical simulations and the analytical 1D model agree re-
markably well. The highly nonlinear nature of the electromechanical system is clear in the
responses reported in the post-buckling regime. Before buckling, the system is uniformly
compressed and the �exoelectric e�ect is not present yet since the rod is not bent, and hence
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(a) Buckled rod geometry and resulting electric po-
tential [V].
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Figure 3.16: Force-controlled buckling of a �exoelectric rod. Markers refer to the numerical implemen-
tation and solid lines refer to the analytical nonlinear model for rods in Codony et al. (2020b). The
transversal �exoelectric coe�cient �T is expressed in nC/m. Figure adapted from Codony et al. (2020b).



3.2 Main contributions 105

the electric response is zero. Once the rod has buckled (see Fig. 3.16a), the vertical displacement
at the center (Fig. 3.16c) and the horizontal displacement at the right end (Fig. 3.16d) suddenly
deviate from zero and evolve nonlinearly with respect to the applied load. The �exoelectric
e�ect arises due to the curvature induced by buckling, leading to a measurable electric �eld at
the center of the rod, which also evolves nonlinearly with applied load (Fig. 3.16e).

The role of the magnitude of the �exoelectric coe�cient �T is twofold. On the one hand,
the critical buckling load becomes larger with a larger �T coe�cient. This fact is in agreement
with the previous example where the e�ective sti�ness of the rod is increased due to the
�exoelectric e�ect. Numerically, the precise value of the critical buckling load is identi�ed
by the load at which the eigenvalue �min [Ĥ��

(k)
] vanishes, as reported in Fig. 3.16b. On the

other hand, the electric �eld at the post-buckling stage grows faster with a larger �T coe�cient
as expected. Thus, the buckling-induced �exoelectric response is delayed but stronger when
�T is larger.

3.2.6.3 Electrically-induced bending

We now consider a closed-circuit �exoelectric cantilever rod of thickness H = 1µm and
slenderness L/H = 20 which rolls up into a circle upon electrical stimulus. The geometry and
boundary conditions are depicted in Fig. 3.13c. The left tip cross-section of the rod is clamped,
while all other boundaries are traction-free. The electric potential at the top boundary is set to
a certain non-zero value � = V , and the bottom boundary is grounded (� = 0). The voltage
di�erence Δ� = V induces a transverse electric �eld across the rod thickness which triggers
the �exoelectric and electrostrictive e�ects (Codony et al., 2020b), thereby generating a non-
uniform strain that bends the rod, as shown in Fig. 3.18d. Depending on the sign of the applied
electric �eld the cantilever will bend upwards or downwards. This bending actuator was �rst
used by Bursian and Zaikovskii (1968) to experimentally demonstrate for the �rst time the
�exoelectric e�ect, which had been predicted theoretically by Mashkevich and Tolpygo (1957).
The Young’s modulus considered is Y = 1.0GPa, and the dielectric permittivity � = 0.11nC/Vm,

Validation

Figure 3.17 shows the electromechanical response of an elastically isotropic Saint-Venant–Kirch-
ho� �exoelectric rod (� = �mech = 0) with the �exoelectric constants �T = 10nC/m, �L = �S = 0.

The curvature 1/R (Fig. 3.17a) and the axial strain � (Fig. 3.17b) are constant along the rod,
and agree very well with the analytical derivations in Codony et al. (2020b) up to a relatively
large value of applied voltage V . Beyond this limit, the linear strains assumption of the 1D
non-linear model loose validity. According to Codony et al. (2020b), the rod bends thanks to
the �exoelectric coupling, and elongates mainly due to electrostriction, i.e. the Maxwell stress
e�ect.
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Figure 3.17: Actuation of Saint-Venant–Kirchho� cantilever rod with transversal �exoelectric coe�cient
�T = 10nC/m. Numerically, the axial strain corresponds to the axial component of the Green-Lagrangian
strain tensor EXX evaluated at Y = 0, whereas the value from the 1D model corresponds to its Taylor
approximation (Codony et al., 2020b). Figure adapted from Codony et al. (2020b).

General flexoelectric problem

Since the curvature is uniform (Codony et al., 2020b), the rod forms an arc of a circle,
cf. Fig. 3.18d. Thus, a natural question that arises is which set of �exoelectric parameters
achieve a fully-closed circular shape more e�ciently (i.e. with a lower applied voltage). To
address this question, we consider an isotropic Neo-Hookean elastic (see Eq. (A.10)) rod with
� = 0.37, �mech = 0.03µm and varying �exoelectric constants. To quantify the curvature of
the rod relative to the curvature of the closed circle, we de�ne the normalized curvature
R−1(V ) = R−1(V )/R−1◦ (V ), where R−1◦ (V ) is the curvature required to form a closed circular
shape for a given rod length.

Figure 3.18 shows the evolution of the axial strain � (V ), curvature R−1 and normalized cur-
vature R−1 for �exoelectric tensors with di�erent combinations of longitudinal (�L), transversal
(�T) and shear (�S) �exoelectric coe�cients. The cases including a non-vanishing shear coef-
�cient are omitted, since the results do not change signi�cantly, even when �S is one order
of magnitude larger than �L or �T. For the sake of brevity, the simulations (i) with negative
applied electric voltage V , and (ii) yielding negative curvatures, are also omitted since the
results are analogous to those simulations with (i) positive applied voltage and (ii) negative
�exoelectric coe�cients, respectively, as

� (V )|� = � (−V )|� = � (V )|−� = � (−V )|−�; (3.31a)
R−1(V )|� = −R−1(−V )|� = −R−1(V )|−� = R−1(−V )|−�; (3.31b)
R−1(V )|� = −R−1(−V )|� = −R−1(V )|−� = R−1(−V )|−�. (3.31c)

As expected, the axial strain of the rod (depicted in Fig. 3.18a) does not vary much with
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Figure 3.18: Actuation of Neo-Hookean cantilever rod with di�erent �exoelectric tensors (expressed in
nC/m). Figure adapted from Codony et al. (2020b).

the di�erent �exoelectric parameters, since it is mainly a consequence of electrostriction. The
curvature (Fig. 3.18b), instead, varies signi�cantly for the di�erent combinations of �exoelectric
parameters. The dominant parameter is the transversal �exoelectric coe�cient �T which leads
to positive curvature, as shown in case B. The longitudinal �exoelectric coe�cient �L is also
relevant and leads to negative curvature, as shown in case D. The largest response is found
with positive �T and negative �L, as shown in case A. Finally, case C corresponds to positive
�L and �T, and yields curvatures in between cases B (purely transversal �) and D (purely
longitudinal �).

The normalized curvature is shown in Fig. 3.18c. For su�ciently large actuation, case A
reaches R−1 > 1, which indicates that the actuator rolls up forming a closed circle. This process
is shown in Fig. 3.18d, where the deformed con�guration and electric potential distribution
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within the rod is depicted at di�erent applied voltages.

3.2.6.4 Electrically-induced buckling

In the previous example, the rod undergoes elongation upon electrical actuation mainly due to
electrostriction. In this Section, we present a similar setup where the right tip is also clamped,
as shown in Fig. 3.13d. In this case, an axial compressive force is expected at the clamped
ends since the elongation of the rod is prevented. According to the analytical derivations
in Codony et al. (2020b), electrostriction induces an axial force which grows quadratically
with the applied voltage and, for a large enough applied (critical) voltage Vcr, a mechanical
instability is reached, inducing buckling of the rod.

Figure 3.19 shows numerical simulations of a �exoelectric Saint-Venant–Kirchho� rod
(� = �mech = 0) of dimensions L = 20µm, H = 1µm, with Young’s modulus Y = 1.0GPa,
dielectric permittivity � = 0.11nC/Vm and transversal �exoelectric coe�cient �T = 10nC/m
(�L = �S = 0). The postbuckling con�guration and the evolution of the maximum de�ection
and axial strain with respect to applied voltage are depicted in Fig. 3.19a-3.19c, showing an
excellent match between the numerical results and the analytical expressions in Codony et al.
(2020b). The critical voltage at which the rod buckles (see Fig. 3.19d) matches also with the
one predicted by the analytical 1D nonlinear model, and the critical electric �eld (cf. Fig. 3.19e)
is inversely proportional to the slenderness of the rod.
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Figure 3.19: Actuation of Saint-Venant–Kirchho� clamped-clamped rod with transversal �exoelectric
coe�cient �T = 10nC/m and varying slenderness. In (d), �̄min = �min (nDOF/n0)4, where nDOF is the
number of degrees of freedom of each simulation, and n0 = 312 is an arbitrary normalization constant,
chosen such that �̄min(0) ≈ 1. Figure adapted from Codony et al. (2020b).
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3.2.7 Application to arbitrarily-shaped soft �exoelectric devices

The direct �exoelectricity model at �nite deformations has been illustrated in Section 3.2.6
by studying �exoelectric rods discretized with body-�tted (i.e. rectangular) meshes. In this
Section we go beyond simple body-�tted meshes and consider un�tted meshes, which can
handle arbitrarily-shaped geometries. We employ Nitsche’s formulation presented in Section
2.2.4.1.b in order to enforce essential boundary conditions weakly.

In the same way as in Section 3.2.6, the nonlinear system of equations arising from the
weak form in Eq. (2.147) is solved by the modi�ed-step Newton-Raphson algorithm. In this
case, the residual  in Eq. (3.21) has extra terms Nitsche coming from the Nitsche integrals at
the Dirichlet boundaries:

Nitsche [� , Φ; �� , �Φ] = ∫)Ω�0 (
(�i − � i) (����i − �Ti) − Ti��i)dΓ0

+ ∫)ΩV ( ()N0 �i − V i) (�V )N0 ��i − �Ri) − Ri)N0 ��i)dΓ0

+ ∫)ΩΦ0 (
− (Φ − Φ) (�Φ�Φ − �W) + W�Φ)dΓ0

+ ∫C�0 (
(�i − � i) (�C� ��i − �Ji) − Ji��i)ds0, (3.32)

with the variations �T(� , �; �� , �Φ), �R(� , �; �� , �Φ), �W (� , �; �� , �Φ) and �J (� , �; �� , �Φ)
de�ned in Eq. (2.148). At the k-th iteration, the solution increment {Δ�, ΔΦ}(k) is found by
vanishing the �rst order Taylor expansion of the residual  +Nitsche around the previous
solution {� , Φ}(k−1), yielding the following algebraic system of equations:

([
H�� H�Φ
HΦ� HΦΦ]

+ [
HNitsche
�� HNitsche

�Φ
HNitsche
Φ� HNitsche

ΦΦ ])
(k−1)

⋅ [
Δ�
ΔΦ]

(k)
= −([

R�
RΦ]

+ [
RNitsche
�
RNitsche
Φ ])

(k−1)
, (3.33)

where

HNitsche
�� (� (k−1), Φ(k−1)) =

)Nitsche

)� [� (k−1), Φ(k−1); �� , 0] , (3.34a)

HNitsche
�Φ (� (k−1), Φ(k−1)) =

)Nitsche

)Φ [� (k−1), Φ(k−1); �� , 0] , (3.34b)

HNitsche
Φ� (� (k−1), Φ(k−1)) =

)Nitsche

)� [� (k−1), Φ(k−1); 0, �Φ] , (3.34c)

HNitsche
ΦΦ (� (k−1), Φ(k−1)) =

)Nitsche

)Φ [� (k−1), Φ(k−1); 0, �Φ] , (3.34d)

RNitsche
� (� (k−1), Φ(k−1)) = Nitsche [� (k−1), Φ(k−1); �� , 0] , (3.34e)
RNitsche
� (� (k−1), Φ(k−1)) = Nitsche [�(k−1), Φ(k−1); 0, �Φ] . (3.34f)
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The variation �Nitsche [� , Φ; �� , �Φ; Δ� , ΔΦ] required to compute Eq. (3.34) is approximated
as

�Nitsche [� , Φ; �� , �Φ; Δ� , ΔΦ] ≈ ∫)Ω�0 (
Δ�i (����i − �Ti) − ΔTi��i)dΓ0

+ ∫)ΩV ()
N
0 Δ�i (�V )N0 ��i − �Ri) − Ri)N0 ��i)dΓ0

+ ∫)ΩΦ0 (
− ΔΦ (�Φ�Φ − �W) + ΔW�Φ)dΓ0

+ ∫C�0 (
Δ�i (�C� ��i − �Ji) − ΔJi��i)ds0, (3.35)

where ΔT = �T(� , �; Δ� , ΔΦ), ΔR = �R(� , �; Δ� , ΔΦ), ΔW = �W(�, �; Δ� , ΔΦ) and ΔJ =
�J (� , �; Δ� , ΔΦ). Eq. (3.35) is not exact because the following terms have been neglected:

0 ≈ − ∫)Ω�0
(�i − � i) Δ�Ti dΓ0 − ∫)ΩV

()N0 �i − V i) Δ�Ri dΓ0

+ ∫)ΩΦ0
(Φ − Φ)Δ�W dΓ0 − ∫C�0

(�i − � i) Δ�Ji ds0. (3.36)

Note that the Δ� operator in Eq. (3.36) refers to the second variations of T , R, W and J , which
are extremely di�cult to compute, specially since they involve third derivatives of the enthalpy
functionals. Luckily, the terms in Eq. (3.36) can be neglected since they rapidly tend to zero
as Dirichlet boundary conditions are met, i.e. after one or two iterations in the modi�ed-step
Newton-Raphson algorithm.

Once {Δ�, ΔΦ}(k) are found by solving Eq. (3.33), the modi�ed increments {Δ�, ΔΦ}(k)
are computed as described in Section 3.2.6, and the solution is updated with Eq. (3.27) until
convergence.

The proposed numerical scheme is illustrated in the following example in Section 3.2.7.1.

3.2.7.1 Collective-beam sensor triggered by compression

We consider here a soft �exoelectric device which yields a scalable potential di�erence when
subjected to uniform compression, hence mimicking the response of a piezoelectric sensor.
The device (see Fig. 3.20a) is composed by an horizontal arrangement of nb vertical cantilevers
of width Hb and length LY , separated at a distance s, and connected at the center with a
transversal rod of width Ha. The cantilevers are clamped at both ends and the central point of
the device is grounded (i.e. Φ = 0). The main idea is to axially compress the device by applying
a vertical displacement uY = −� on the top boundary until the vertically-arranged cantilevers
undergo buckling. As previously seen in Section 3.2.6.2, a mechanically-induced buckling
on �exoelectric rods yields an electric �eld across the rod thickness due to the buckling-
induced curvature and the �exoelectric e�ect. Since the buckled rods are connected at the
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Figure 3.20: Flexoelectric collective-beam sensor triggered by compression. (b)-(c) refer to the solution
at last load step (� = �max = 100nm), whereas (d)-(f) show di�erent quantities of interest at each load
step. The vertical blue dashed lines in (d)-(f) denote the critical � at which the buckling instability is
triggered.
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location at which curvature, and hence electric �eld, is maximum, an e�ective accumulation
of the potential di�erence across the many rods composing the device is expected. The
device is scalable since the expected response (voltage di�erence between left and right ends)
will increase linearly with the width of the device, hence making it possible to harness the
�exoelectric e�ect, occurring at sub-micron scales, at larger (meso-) scales.

Fig. 3.20 shows the results of the aforedescribed �exoelectric sensor with design parameters
nb = 4, Ha = Hb = s = 100nm and LY = 700nm, under an increasing compression � ranging
from 0 to �max = 100nm. The material parameters correspond to polyvinylidene �uoride
(PVDF) (Chu and Salem, 2012, Zhang et al., 2016b, Zhou et al., 2017), that is, Young’s modulus
Y = 1.725GPa, Poisson ratio � = 0.38, dielectric permittivity � = 0.092nC/Vm, and �T =
−10nC/m. Other material parameters are set to 0. The un�tted Cartesian mesh has element
size ℎ ≈ 12nm and spline degree p = 3.

Fig. 3.20b shows the electromechanical state of the device at the maximum compression
�max. The buckled shape of the constituent cantilever rods is apparent, as well as the electric
potential distribution within the device induced due to the �exoelectric coupling. The electric
potential along the horizontal rod connecting the cantilevers (i.e. along Y = LY /2) is shown
in Fig. 3.20c. As expected, the di�erence in electric potential across the rods is accumulated
from rod to rod, yielding a scalable device: if the number of constituent cantilevers is doubled
(2nb = 8), the potential di�erence along the X coordinate will double as well. Remarkably, the
electric potential is not monotonic along the horizontal rod: the junctions between vertical
cantilevers undergo an opposite trend to the one across the cantilevers. This is due to the
opposite strain gradients at the junctions compared to the cantilever centers. Indeed, since the
concave side of cantilevers undergoes transversal compression while the convex one undergoes
traction, the junctions between them undergo the opposite behavior. Overall, a measurable
(non-vanishing) macroscopic electric �eld EX = −(ΦR −ΦL)/(XR −XL) is obtained, independently
of nb .

Figures 3.20d-3.20f show the evolution of the minimum eigenvalue �min of the algebraic
system of equations, the horizontal de�ection uX and the macroscopic electric �eld EX as a
function of the increasing compression � . The critical compression �cr at which the buckling,
and hence the electromechanical transduction, is triggered corresponds to the point at which
�min = 0 in Fig. 3.20d, and is about �cr = 55nm. The horizontal de�ection (Fig. 3.20e) and the
macroscopic electric �eld (Fig. 3.20f) are 0 until the critical compression is reached. Then, both
quantities undergo a highly nonlinear increase with respect to the applied compression � .

The optimal design parameters maximizing EX and yielding a desired �cr can be obtained
by means of a shape optimization analysis, which is left to future work.

In view of the results in Fig. 3.20, devices built by a periodic material arrangement (also
called architected materials) yield generalized periodic solution �elds, that is, solutions that are
periodic up to a constant value, just like the electric potential pro�le in Fig. 3.20c. In other
words, the �rst derivatives of the solutions (in this case, the electric �elds) are periodic. In
those situations, is it possible to reduce the computation to a single unit cell by means of
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generalized periodic conditions in order to characterize the behavior of architected materials
in a very e�cient way. This idea has been already developed in our research group but is out
of the scope of this thesis. We refer to Barceló-Mercader et al. (2021a) and Mocci et al. (2021)
for further details.

3.3 On-going and future work

3.3.1 Residual-based weak form stabilization

As discussed in Remark 2.5 in Section 2.2.2.3, depending on the geometry of Ω, the boundary
conditions, the material parameters and the mesh size, the numerical solution to the �exoelec-
tricity problem features spurious oscillations which completely spoil the quality of the results.
Fig. 3.21 shows an example of spurious oscillations arising in a Lifshitz-form �exoelectric
cantilever beam under open circuit boundary conditions.

In view of the results in Section 2.2.2.3, and further con�rmed by the experience of this
manuscript’s author, the numerical instabilities are associated with the presence of boundary
layers in the electric �eld, which may appear when considering the Lifshitz-invariant �exoelec-
tricity form (cf. Section 2.2.2.2). Such spurious oscillations are not encountered in the literature
of computational �exoelectricity since only the direct �exoelectricity form (cf. Section 2.2.2.1)
has been considered so far.

In the following, we resort to the Galerkin least-squares (GLS) method (Baiocchi et al.,
1993, Franca and Stenberg, 1991, Thompson and Pinsky, 1995) to stabilize the problem, due
to its simple form and implementation. The idea is to increase the e�ective mechanical and
electrical length scales in a self-consistent manner, providing control on the second derivatives
of the state variables.

To this end, it is useful to think of a simpli�ed 1D-version of the Euler-Lagrange equations
associated to the Lifshitz-invariant �exoelectricity form (cf. Eq. (2.81)) as follows:
{
)(�̂ − )�̃) + b = 0,
)(D̂ − )D̃) − q = 0,

⟹
{
uuu + u�� ≡ YuI I − Y� 2mechuI V − ��I I I = −b,
�uu + ��� ≡ −��I I + �� 2elec�I V + �uI I I = q,

(3.37)

depending on just �ve material parameters, namely the Young modulus Y and mechani-
cal length scale �mech, the dielectric constant � and the dielectric length scale �elec, and the
�exoelectric coe�cient �. The corresponding weak form is

{
auu(�u, u) + au�(�u, �) = lu(�u),
a��(��, �) + au�(u, ��) = l�(��),

(3.38)
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(a) Electric potential distribution within the cantilever.
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(b) Detail of the electric potential along the cross section at x = L/2.

Figure 3.21: Spurious, mesh-dependent oscillatory behavior of the electric potential � in a Lifshitz-
invariant �exoelectric cantilever beam of dimensions L = 3.2µm by H = 0.4µm under bending with
open circuit boundary conditions. The mesh size is ℎ = 0.0275µm. The Young modulus is Y = 100GPa,
the Poisson ratio � = 0.37, the dielectric permittivity � = 11nJ/V2m and the longitudinal and transversal
�exoelectric coe�cients �L = �T = 1µJ/Vm. Other material coe�cients are 0. The applied force is
F = 100µN.

with appropriate boundary conditions, where

auu(�u, u) = (�uI , YuI )Ω + (�uI I , Y � 2mechuI I )Ω, (3.39a)
a��(��, �) = (��I , −��I )Ω + (��I I , −�� 2elec�I I )Ω, (3.39b)

au�(�u, �) = −
1
2� ((�u

I , �I I )Ω − (�uI I , �I )Ω) , (3.39c)

lu(�u) = (�u, b)Ω, (3.39d)
l�(��) = (��, −q)Ω. (3.39e)

Following the GLS method, we make use of Eq. (3.37) to de�ne the following bilinear forms:
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mech({u, �}, {�u, ��}) ∶= (uu�u + u���, �mechrmech(u, �))Ω, (3.40a)

elec({u, �}, {�u, ��}) ∶= (�u�u + ����, −�elecrelec(u, �))Ω, (3.40b)

with the residuals

rmech(u, �) ∶= uuu + u�� + b, (3.41a)
relec(u, �) ∶= �uu + ��� − q. (3.41b)

Note that a solution ful�lling Eq. (3.37) yields vanishing residuals in Eq. (3.41), and therefore
the bilinear forms in Eq. (3.40) vanish too. Hence, they can be added to the original weak form
in Eq. (3.38) while maintaining self-consistency:
{
auu(�u, u) + au�(�u, �) +mech({u, �}, {�u, 0}) +elec({u, �}, {�u, 0}) = lu(�u),
a��(��, �) + au�(u, ��) +mech({u, �}, {0, ��}) +elec({u, �}, {0, ��}) = l�(��).

(3.42)

The stabilization parameters �mech, �elec provide control on the second derivatives of the state
variables and can be tuned as a function of mesh size and material parameters.

Remark 3.1 (Relation to the variational multiscale method). The stabilizing forms in Eq. (3.40)
are constructed following the GLS approach, considering the same di�erential operator as
in the strong form in Eq. (3.37). If the adjoint operator was considered instead, the algebraic
subgrid scale (ASGS) stabilization method (Codina, 1998, 2000, Guasch and Codina, 2007)
would be obtained, in the context of variational multiscale methods (VMS) (Codina et al., 2018,
Hughes et al., 1998). Remarkably, since the considered problem is a (high-order, coupled) elliptic
PDE, the associated di�erential operator is self-adjoint, and both ASGS and GLS stabilization
methods yield the same result. This can be easily seen by noticing that uu = ∗uu , u� = ∗�u ,
�u = ∗u� and �� = ∗�� .

The optimal choice of �mech, �elec remains unclear and is a matter of author’s current
research. However, a reasonable choice can be made based on the following analysis. The
stabilizing bilinear forms in Eq. (3.40) are simpli�ed for the case of a B-spline discretization
of degree p = 2, since the coupling operators u� and �u vanish as well as the fourth-order
terms in uu and �� , yielding the simpli�ed uncoupled forms

mech(u, �u) = (Y�uI I , �mechYuI I)Ω + (Y�uI I , �mechb)Ω, (3.43a)

elec(�, ��) = −(���I I , �elec��I I)Ω − (���I I , �elecq)Ω. (3.43b)
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Hence, the weak form Eq. (3.42) is simpli�ed to
{
âuu(�u, u) + au�(�u, �) = l̂u(�u),
â��(��, �) + au�(u, ��) = l̂�(��),

(3.44)

where

âuu(�u, u) = (�uI , YuI )Ω + (�uI I , Y (� 2mech + Y�mech)uI I )Ω, (3.45a)
â��(��, �) = (��I , −��I )Ω + (��I I , −�(� 2elec + ��elec)�I I )Ω, (3.45b)

l̂u(�u) = (�u − �uI IY�mech, b)Ω = (�u, (1 − Y�mech∇2)b)Ω, (3.45c)

l̂�(��) = (�� − ��I I ��elec, −q)Ω = (��, −(1 − ��elec∇2)q)Ω. (3.45d)

From Eq. (3.45) it is apparent that Y�mech ∼ � 2mech and ��elec ∼ � 2elec. Therefore, an appealing
choice for �mech, �elec is

�mech = �mech
ℎ2
Y , �elec = �elec

ℎ2
� , (3.46a)

where ℎ represents the mesh size and �mech, �elec are dimensionless scalars that can either be
chosen as constant or dependent on the relation between material parameters and mesh size.
With this choice, the (p = 2) stabilized �exoelectric weak form in Eq. (3.44) corresponds to the
original one in Eq. (3.38) with modi�ed (e�ective) mechanical and electrical length scales and
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Figure 3.22: Simpli�ed residual-based weak form stabilization in Eq. (3.44) with spline degree p = 2
on the 2D Lifshitz-invariant �exoelectric cantilever beam. The stabilization parameters are chosen as
�mech = �elec = � .
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modi�ed (non-local) source terms as

� 2mech → �̂ 2mech = � 2mech + �mechℎ2, b → b̂ = b (1 − �mechℎ2∇2) , (3.47a)
� 2elec → �̂ 2mech = � 2elec + �elecℎ2, q → q̂ = q (1 − �elecℎ2∇2) . (3.47b)

By choosing large enough �mech and �elec, spurious oscillations in the numerical solution can
be prevented. A 2D implementation of the simpli�ed stabilization forms in Eq. (3.43) for spline
degree p = 2 is illustrated in Fig. 3.22, showing the control on the subscales as the stabilization
parameters are tuned, and a robust approximation of {u, �} for large enough stabilization
parameters.

The convergence properties of the method depend on the choice of stabilization parameters.
A rigorous analytical study could determine the optimal values yielding the best convergence
rates, which is being pursued by the author of this manuscript, as well as rigorous generalization
of the stabilization strategy to higher spatial dimensions.

3.4 Concluding remarks

A novel computational �exoelectricity framework based on the immersed boundary hierarchi-
cal B-Spline method has been proposed, circumventing the limitations of other state-of-the-art
approaches. In particular, arbitrarily shaped geometries are allowed by the consideration
of un�tted meshes, which imply a negligible meshing cost. The state variables are approx-
imated in a smooth enough functional space de�ned in terms of B-Spline basis functions,
which allows spatial adaptivity thanks to the hierarchical B-spline mesh re�nement. The
un�tted nature of the approximation space requires speci�c numerical integration schemes for
trimmed cells, stabilization of the trimmed basis functions and a weak enforcement of essential
boundary conditions. However, the associated error convergence rates are optimal even for
high-order approximations, outperforming other methods in the literature. The method is
computationally e�cient since the number of degrees of freedom for a given continuity and
spatial resolution is minimum as compared to other approaches, and the purely polynomial
nature of the basis functions and all their real-space derivatives facilitates their evaluation and
numerical integration. The stencils generated by the discretization are completely structured
and very sparse, facilitating the solution of the associated algebraic systems of equations.

The method has been used to solve many boundary value problems with particular engi-
neering interest, both at in�nitesimal and �nite deformations. The examples in this manuscript
include the characterization of the shear �exoelectric e�ect by a conical semicircular rod
under torsion, the design of complex-shaped functional �exoelectric devices such as sensors
and actuators in the regimes of in�nitesimal and �nite deformations, and the study of soft
�exoelectric nano-rods under bending and buckling deformations.

In short, a robust and e�cient infrastructure for computational �exoelectricity has been
developed, outperforming other state-of-the-art methodologies.



Chapter 4

Quantum electromechanics of
�exoelectricity

4.1 State of the art

In this Section we brie�y review the basics of quantum mechanics, and more speci�cally
density functional theory, and present the state of the art of computational �exoelectricity
within this �eld. The review does not intend to be comprehensive, but rather to give a quick
glimpse on the foundations of quantum mechanics and DFT to any reader unfamiliar with it.

4.1.1 Density functional theory

4.1.1.1 Foundations

In quantum mechanics, a system composed by N particles is identi�ed with a wave function
Ψ(r1, … , rN ; t) which is, mathematically, a complex-valued function de�ned in the so-called
con�guration space of the system, depending on the coordinates rn = (xn, yn, zn, sn) , n =
1, … , N (including spin) of each particle in the system. Therefore, the con�guration space is
4N -dimensional in general (or 3N -dimensional if spin can be ignored), and the wave function
of the system maps at time t each point in the con�guration space to a complex number.
According to the Pauli exclusion principle, two or more identical fermions (matter particles
such as electrons, neutrons and protons) cannot occupy the same quantum state within a
quantum system simultaneously. This implies the wave function being antisymmetric with
respect to the exchange of two particles, namely

Ψ(r1, … , ri , … , rj … , rN ; t) = −Ψ(r1, … , rj , … , ri … , rN ; t), ∀i ≠ j. (4.1)

The quantum state of a system is completely determined by the wave function. For instance,
under a probabilistic interpretation, the squared norm of a single-particle normalized wave
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function yields the probability density of �nding that particle at position r and time t :

f (r; t) = |Ψ(r; t)|2 = Ψ∗(r; t)Ψ(r; t) ∈ (0, 1) (4.2)

where the asterisk indicates the complex conjugate.
The wave function of a system can be found by solving the Schrödinger’s equation, which

is the fundamental equation in quantum mechanics, playing an analogous role of Newton’s
laws and conservation of energy in classical mechanics. Its time-independent, non relativistic
form is

ĤΨ = EΨ, (4.3)

where Ψ(r1, … , rN ) is time-independent now and E is a scalar denoting the total energy of the
system. The symbol Ĥ denotes the Hamiltonian operator, which corresponds to the sum of
the kinetic energies T̂ of all the particles, plus the potential energy V̂ in the system:

Ĥ (r1, … , rN ) =
N
∑
n=1

T̂n + V̂ (r1, … , rN ), (4.4a)

T̂n =
|pn |2
2mn

= −ℏ2
2mn

∇2n, (4.4b)

where p = −iℏ∇ is the momentum operator, ℏ is the reduced Planck constant, ∇2 is the
Laplacian operator, and mn is the mass of the n-th particle.

Typically, the goal of computational quantum mechanics is to solve the Schrödinger’s
equation for a system consisting of many electrons and nuclei (a many-body problem). This
approach is exact, but unfortunately intractable due to the computational complexity of the
problem: given that the dimension of con�guration space grows linearly with the number
N of particles constituting the system, the computational e�ort to solve the Schrödinger’s
equation scales exponentially with N .

Therefore, simplifying assumptions are generally required. A frequent assumption is the
Born–Oppenheimer approximation (Born and Oppenheimer, 1927). Because of the large
di�erence in mass between the electrons and nuclei and the fact that the forces on the particles
must be same, the electrons respond almost instantaneously to the motion of the nuclei. Thus,
it is a reasonable assumption separating the many-body wave function in terms of electronic
and nuclear coordinates. This reduces the many-body problem to the solution of the quantum
state of the electrons in some frozen-ion con�guration of the nuclei. However, even with this
simpli�cation, the many-body problem remains una�ordable.

A further simpli�cation, which gives rise to density functional theory (DFT) (Hohenberg
and Kohn, 1964, Kohn and Sham, 1965) allows mapping exactly the electron many-body
problem (in the presence of nuclei) onto that of a single electron moving in an e�ective
nonlocal potential. This simpli�cation is crucial, since the con�guration space is reduced to the
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real space, regardless of the number of particles in the system, and hence the computational
complexity is drastically reduced. The key variable in DFT is the electron density, represented
by �(x), which is de�ned as

�(x) = ∫r2
⋯∫rN

Ψ(x, r2, … , rN ) dr2⋯ drn. (4.5)

Hohenberg and Kohn (1964) rigorously proved the existence of an electron density, and stated
the two Hohenberg–Kohn theorems:

• “The ground state Ψ of any interacting many particle system with a given �xed inter-
particle interaction is a unique functional of the electron density �(x)”, namely Ψ =
Ψ[�(x)]. This directly implies that the energy is also a functional of the electron density,
i.e. E = E[�(x)].

• “The electron density that minimizes the energy functional is the true electron density
corresponding to the full solutions of the Schrödinger equation”.

Therefore, the goal now is �nding the electron density of the system. Once it is found, all
the quantities of interest deriving from the wave function can also be written in terms of the
electron density.

4.1.1.2 Nonlinear Kohn-Sham eigenvalue problem

In order to �nd the electron density of a system withNe electrons of massme andNn (frozen-ion)
nuclei, one must solve the Kohn-Sham equations in Ω (Kohn and Sham, 1965). By neglecting
spin, they can be stated as (Ghosh and Suryanarayana, 2017, Suryanarayana and Phanish,
2014)

K[�(x)]�i(x) = �i�i(x), ∀i = 1, … , Ns, s.t. ∫Ω
�∗i (x)�j(x) dΩ = δij , (4.6a)

where K[�(x)] = − ℏ2
2me

∇2 + Ve�[�(x)], (4.6b)

and �(x) = 2
Ns

∑
i=1

fi |�i(x)|2, (4.6c)

complemented with appropriate boundary conditions. In the above equations, K[�] is the
Kohn-Sham operator with eigenvalues �i and (orthonormal) eigenfunctions (or Kohn-Sham
orbitals) �i , Ve�[�] is the e�ective potential and Ns > Ne/2 is the total number of states. The
thermalized orbital occupations 0 ≤ fi ≤ 1 arise from the Fermi-Dirac smearing equation
(Mermin, 1965)

fi = (1 + exp(
�i − �f
� ))

−1
with �f s.t. 2

Ne

∑
i=1

fi = Ne (4.7)



122 �antum electromechanics of flexoelectricity

with the smearing parameter � , where �f is the Fermi level. As a result of the above equations,
note that the electron density satis�es

∫Ω
�(x) dΩ = Ne (4.8)

as expected.
The Kohn-Sham equations must be solved self-consistently, typically by a �xed-point

iteration with respect to the electron density � (or the e�ective potential Ve�), commonly
referred to as the self consistent �eld (SCF) method (Slater, 1974). In each iteration, the
(linearized) Kohn-Sham operator is constructed by evaluating Eq. (4.6b) using the electron
density �k−1 of the previous iteration (or an initial guess for the �rst iteration), and the lowest
Ns orbitals resulting from solving the (linearized) eigenvalue problem in Eq. (4.6a) are used
to calculate �k from Eq. (4.6c) and (4.7). Once convergence on � is achieved, the resulting
force on each frozen nuclei can be computed. If these forces are non-vanishing, the atomic
structure is not in equilibrium. Hence an outer iterative loop known as structural relaxation
is performed, where the nuclei positions and the domain Ω are optimized with respect to
the atomic forces resulting from the SCF iteration on �. At the end of the process, a relaxed
con�guration {r1, … , rNn} is obtained, along with the corresponding electron density �(x).

The e�ective potential Ve�[�(x)] in Eq. (4.6b) includes the interactions between the “parti-
cles” present in the system, including the frozen-ion nuclei. It can be expressed as

Ve�[�(x)] = Vext(x) + VHartree[�(x)] + Vxc[�(x)], (4.9)

where Vext(x) is the external potential accounting for the interaction between the nuclei and
the electron density, and

VHartree[�(x)] =
e2
4��0 ∫Ω

�(x)
|r − x| dr (4.10)

is the Hartree potential, accounting for the interaction of the electron density with itself, i.e. the
analogous of the electron-electron interactions in a (discrete) many-body system. Vxc[�] is a
correction term known as the exchange-correlation potential, that accounts for the fact that
particles in the many-body problem are actually correlated and obey the Pauli exclusion
principle. The exact expression of Vxc[�] is unknown and must be approximated. Several
methods are available in literature, such as the local density (LDA) (Kohn and Sham, 1965)
and generalized gradient (GGA) (Perdew et al., 1996, Perdew and Yue, 1986) approaches. The
exchange-correlation term is the key approximation in DFT computations, which makes it a
non-exact method, i.e. not equivalent to Schrödinger’s equation.

The external potential Vext(x) accounting for the interaction of the electron density with
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the nuclei is a collection of Coulomb point-charge interactions of the form

Vext(x) = −
e2
4��0

Nn

∑
i=1

Zn
|x − rn |

, (4.11)

where Zn is the atomic number of the n-th nucleus (i.e. the number of protons in the nucleus).
As |x − rn | → 0, i.e. in the vicinity of the nuclei, the external potential is very strong, and
the tightly bound core orbitals physically oscillate very rapidly. In order to capture a decent
numerical approximation of these orbitals, e.g. by �nite elements (FE), �nite di�erences (FD) or
spectral methods such as plane wave (PW) expansions, an extremely rich approximation space
is required (i.e. very �ne FE mesh, very small FD grid size or very high PW cut-o� energy,
respectively). Therefore, in practical (computational) terms, the actual external potential makes
the problem intractable and one further approximation is typically required, known as the
pseudopotential theory (Heine et al., 1970, Phillips, 1958). Since most physical properties of
solids depend on the valence electrons to a much greater extent than on the core electrons
(Payne et al., 1992), the pseudopotential theory allows replacing the strong external potential
Vext with a much weaker potential (a pseudopotential) that describes all the salient features of
valence electrons in the system. Thus the original solid is now replaced by pseudo-(valence)-
electrons and pseudo-ion cores composed by the actual nuclei and core electrons. These
pseudo-electrons experience exactly the same potential outside the core region as the original
electrons but have a much weaker potential inside the core region, cf. Fig. 4.1, which eliminates
the need of extremely rich approximation spaces for �i(x). The Kohn-Sham problem is posed
then on the orbitals corresponding to valence electrons only, which is also computationally
favourable since Ne, and thus Ns, is decreased. There exist a wide range of pseudopotentials,
and in fact the development of accurate pseudopotentials is actually a focus of active research
within the DFT community. The most recent and accepted pseudopotentials are the optimized
norm-conserving Vanderbilt pseudopotentials (ONCV) (Hamann, 2013).
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Figure 4.1: A schematic illustration of the pseudopotential Ṽext(x) and Kohn-Sham pseudo-orbitals �̃(x)
(depicted in red color) inside (|x − r| < rc) and outside (|x − r| > rc) the core region of an atom, with
respect to the actual potential Vext(x) and Kohn-Sham orbitals �(x) (depicted in black color). Figure
adapted from Liu (2017).

4.1.1.3 Periodicity in 
: Bloch’s theorem

Usually in condensed matter physics, crystalline solids are considered to extend in�nitely
over the real space, i.e. Ω = ℝ3. Obviously, this is computationally impossible to handle, and
periodic (or extended) systems are considered instead by means of Bloch’s theorem.

Let us consider a periodic lattice in Ω with lattice vectors a1, a2, a3, and a generic lattice
translational vector R = n1a1 +n2a2 +n3a3, with n1, n2, n3 ∈ ℕ. The Bloch’s theorem states that
each electronic orbital in the periodic lattice takes the form of a periodic function modulated
by a plane wave:

�i(x) = exp (ik ⋅ x) ui(x), (4.12)

where ui(x) = ui(x + R) has the same periodicity in real space as the crystal lattice, and k
are simply referred to as k points, de�ned in the �rst Brillouin zone (Brillouin, 1953), i.e. the
speci�c region of reciprocal-space of the lattice which is closest to the origin. The electronic
orbitals �i(x) are in general not periodic in real space, and ful�ll the following Bloch boundary
conditions instead:

�i(x + R) = exp (ik ⋅ (x + R)) ui(x + R) = exp (ik ⋅ R) �i(x). (4.13)

By Eq. (4.6c) it is easy to see that, if electronic orbitals are Bloch periodic (i.e. ful�ll the Bloch
boundary condition in Eq. (4.13)), the electron density is actually periodic in real space. In
other words, what Bloch’s theorem states is that only the magnitude of the orbitals must be
periodic, whereas the phase is not necessarily so.
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Figure 4.2: A schematic of a typical Bloch wave in one dimension. The real part is depicted in solid
line. The dashed line represents the plane wave modulation factor. The light circles represent atoms.
Figure adapted from Wikimedia Commons (2016).

The Bloch’s theorem changes the problem of calculating an in�nite number of electronic
orbitals to one of calculating a �nite number of electronic orbitals at all the possible (in�nite)
k points in reciprocal space (or Brillouin zone). However, the electronic orbitals at k points
that are very close together will be almost identical (Payne et al., 1992). Hence it is possible to
represent all their contributions as an integral in k space which, in practical terms, is performed
via numerical integration. Therefore, only a few computations at di�erent k points are actually
required. The choice of k points in a crystalline lattice reciprocal space is known as k point
sampling (Monkhorst and Pack, 1976). The output of numerical solutions to the Kohn-Sham
equations will converge as the density of k points is increased.

4.1.2 Cyclic density functional theory

After the recent discovery of graphene, 1D nanostructures possessing a cylindrical-type
geometry (e.g. nanotubes, nanowires, and nanorods), as well as their 2D counterparts, have
received a lot of attention due to their unusual and fascinating material properties (Ghosh
et al., 2019). Though these 2D structures are originally planar, they take up cylindrical-type
geometries when subject to bending deformations. These kind of structures are typically
computed with traditional DFT implementations by means of periodic supercells, that is,
considering a cyclic structure surrounded by vacuum in a large enough periodic domain
Ω so that the interactions between the periodic images are negligible. This approach is
very challenging, even with state-of-the-art DFT codes, since DFT calculations are highly
expensive, scaling cubically with system size (Martin, 2004). Since traditional DFT approaches
are restricted to a�ne coordinate systems, they are unable to fully exploit the cyclic symmetry
to reduce the computational cost (Ghosh et al., 2019).

Cyclic density functional theory (cyclic DFT) (Banerjee and Suryanarayana, 2016, Ghosh
et al., 2019) is a particularization of DFT for cyclic structures which exploits the cyclic symmetry
of electronic structures. The key idea behind it is to consider unit cells of structures with cyclic
symmetry, as depicted in Fig. 4.3, and enforce cyclic boundary conditions to the electronic
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(a) Cyclic structure (b) Unit cell

Figure 4.3: Cyclic structure corresponding to a graphene nanotube in zigzag con�guration. The
(in�nite) system corresponds to replicating a unit cell in angular and axial directions.

+

Cyclic-Bloch boundary condition

Cyclic Kohn-Sham

: Group order

Figure 4.4: Overview of the cyclic symmetry-adapted formulation for the Kohn-Sham eigenproblem
arising from cyclic DFT. Figure adapted from Codony et al. (2020a).
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density. In so doing, the computational cost is drastically reduced, scaling only linearly with
respect to radius of curvature (Codony et al., 2020a). Since cyclic boundary conditions locally
simulate the behavior of a system subjected to uniform bending, cyclic DFT makes it possible to
carry out systematic ab-initio simulations of nanostructures subjected to bending deformations
(Banerjee and Suryanarayana, 2016), even in the case of extremely large curvature radii (Ghosh
et al., 2019).

In cyclic DFT, the cyclic unit cell Ω (see Fig. 4.3b) is de�ned in cylindrical coordinates as

Ω =
{
x = [r cos(#), r sin(#), z]T s.t. (# , r , z) ∈ [0, �) × [Rin, Rout) × [0, Lz)

}
, (4.14)

with 0 < Rin < Rout, Lz > 0 and � = 2�/G, with G ∈ ℕ+ denoting the group order of the cyclic
symmetry.

The cyclic DFT formulation consists on reformulating the Kohn-Sham equations de�ned
in a cyclic extended system to the reduced Kohn-Sham equations in a single cyclic unit cell as

� [�(x)] �
i (x) = ��i  �

i (x), s.t. ∫Ω
 �
i
∗(x) �

j (x) dΩ = 1
G δij ,

∀� ∈ 0, … , G − 1, ∀i = 1, … , Ns, (4.15)

where � [�] is the cyclic Kohn-Sham operator and  �
i are the orbitals in a cyclic DFT frame-

work (Banerjee and Suryanarayana, 2016). The �-points in cyclic structures are, in short,
the analogous to k points in periodic structures, with the particularity that the � space is
discrete while k space is continuous. The electronic charge density � satis�es cyclic symmetry,
which implies cyclic-Bloch boundary conditions for the atomic orbitals, cf. Fig. 4.4. Standard
Bloch boundary conditions are enforced in axial direction, whereas zero-Dirichlet boundary
conditions are applied in the radial one.

4.1.3 Transversal �exoelectricity in electronic systems

In a DFT framework, the polarization is de�ned as electric dipole moment (accounting for
both electron density and nuclei) per unit volume:

p(x) = p[�(x)] = e
‖Ω‖ (∫Ω

x�(x) dΩ −
Nn

∑
n=1
rnZn) . (4.16)

The calculation of the transversal �exoelectric coe�cient �T requires the derivative of the
polarization p with respect to curvature �. There exist mainly two approaches to compute
this derivative: (i) a direct evaluation of it at � = 0 by means of density functional perturbation
theory (DFPT) (Baroni et al., 2001, Gonze and Lee, 1997), or (ii) a numerical approximation of
it by means of DFT, which requires computing p on bent systems at multiple curvatures in the
vicinity of the curvature � at which �T is desired.

The �rst approach, based on perturbative (DFPT) methods, has been explored by many
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authors, e.g. Dreyer et al. (2018), Hong and Vanderbilt (2013), Resta (2010), Stengel (2013, 2014).
However, the coe�cients so computed correspond to the asymptotic zero curvature limit.
Therefore, they are restricted to linear response, likely not representative at the relatively
large curvatures commonly encountered in experimental investigations involving bending
deformations (Chen et al., 2015, Han et al., 2020, Lindahl et al., 2012, Qu et al., 2019).

Given the complexities and challenges associated with DFPT-based methods, a convenient
alternative is the second aforementioned approach, where the derivative is approximated by
direct evaluations of p at multiple �, as done in Dumitrică et al. (2002), Kalinin and Meunier
(2008), Shi et al. (2018). However, as illustrated in Fig. 4.5 , a fundamental issue in this context
is that �T becomes an ill-de�ned quantity on employing the standard de�nition of polarization
(Codony et al., 2020a), since it depends on the choice of the unit cell. In fact, in the limiting
case of the unit cell of the bent structure encompassing a complete circle, �T = 0 for any charge
distribution, a result that is clearly incorrect. Even for structures that are �nite along the
angular direction, �T has an arti�cial dependence—not attributable to edge-related e�ects—on
the corresponding dimension of the structure, i.e., on the angle subtended by the bent structure
(Codony et al., 2020a).

Figure 4.5: Illustration depicting the ill-de�ned nature of the transversal �exoelectric coe�cient for a
(bent) structure composed by discrete charges. Figure adapted from Codony et al. (2020a).
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4.2 Main contributions

In view of the ill-de�ned nature of the transversal �exoelectric coe�cient �T in uniformly bent
structures, we introduce the concept of radial polarization in Section 4.2.1, and reformulate the
de�nition of �T in terms of it. The de�nition and properties of the radial polarization within
a electronic structure framework are discussed in Section 4.2.2. We then use this approach
in Section 4.2.3 to calculate �T for group IV atomic monolayers by means of cyclic DFT. The
aforementioned contributions have been published in (Codony et al., 2020a).

4.2.1 Radial polarization: Reformulating the transversal �exoelectricity
coe�cient

Recalling the framework of continuum modeling at �nite deformations, Eq. (2.121) describes a
way to characterize the �exoelectricity tensor from measurements of the spatial polarization p
and the Green-Lagrangian strain gradients Ẽ in a �nite deformation framework:

�LI JK =
) (plFlL)
)ẼI JK

|||||E
, (4.17)

where F denotes the deformation gradient. Let us then consider the case of a uniformly bent
slab with some thickness (see Fig. 4.5). On identifying Ω0 (undeformed state) with the �at slab
in the X1-X3 plane, pure bending around the X3 axis can be represented using the deformation
map

[x1 x2 x3]
T = � ([X1 X2 X3]

T
) =

⎡
⎢
⎢
⎢
⎣

(R + X2) cos #
(R + X2) sin #

λ3X3

⎤
⎥
⎥
⎥
⎦

, (4.18)

where R is the radius of curvature, # = �/2 − X1/R, and λ3 is the axial stretch. The deformation
gradient and strain gradient tensors then take the form:

F =
⎡
⎢
⎢
⎢
⎣

+(J /λ3) sin # cos # 0
−(J /λ3) cos # sin # 0

0 0 λ3

⎤
⎥
⎥
⎥
⎦

, (4.19)

Ẽ = J
λ3

⎡
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1/R 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦

, (4.20)

where J /λ3 = (1 + X2/R) ≈ 1, assuming that R is large relative to the thickness of the system,
which generally holds true for nanostructures. The only component of Ẽ that does not vanish
is Ẽ112 ≈ 1/R = �, where � is the curvature. It therefore follows from Eq. (4.17) that the
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transverse �exoelectric coe�cient �T ∶= �2112 = ) (plFl2) /)�, which can be rewritten using
Eq. (4.19) as:

�T =
) (p ⋅ n)
)� = )pr

)� , (4.21)

where pr ∶= p ⋅ n is de�ned to be the radial polarization (Codony et al., 2020a), with n =
[cos(#), sin(#), 0]T representing the unit vector normal to the uniformly bent structure.

The above formulation reveals the fundamental di�erence between the standard and
proposed de�nitions for the transverse �exoelectric coe�cient �T. Speci�cally, Eq. (4.21)
suggests that �T is the rate at which the radial polarization pr changes with curvature, instead
of the x2-component of the polarization, as assumed previously (Kalinin and Meunier, 2008, Shi
et al., 2018). The proposed de�nition is also in agreement with reduced models for �exoelectric
membranes (Ahmadpoor and Sharma, 2015), which assume that �exoelectricity-induced
polarization is normal to the membrane.

The de�nition presented here can be viewed as a generalization of the standard one to
�nite bending deformations, agreeing in the limit � → 0. Indeed, the proposed formulation is
applicable even to the nonlinear regime, overcoming a key limitation of the standard de�nition.

4.2.2 Radial polarization in electronic structure computations

In electronic structure calculations (e.g. standard or cyclic DFT), the radial polarization pr is a
functional of the electronic density �(x) as follows:

pr = pr[�(x)] =
1
‖Ω‖ ∫Ω

(r − Re�)�(x) dΩ, (4.22)

analogously to the standard polarization in Eq. (4.16), and the integral can be interpreted as
the radial dipole moment. Speci�cally, r ∶= x ⋅ n = R + X2 signi�es the radial component of
x and Re� is the radial centroid of the ions. Note that pr and therefore �T are independent
of the choice of unit cell for structures extended in the X1-direction, and do not display an
arti�cial dependence on the corresponding width for �nite structures, thereby overcoming
a fundamental limitation of the standard de�nition. With the proposed approach, both pr
and �T are invariant against (i) angular shift, (ii) axial shift, (iii) angular replication and (iv)
axial replication of the unit cell Ω, thanks to the cyclic-periodic nature of the electron charge
density �:

�(# , r , z) = �(# + nΩ�, r , z + mλ3Lz), ∀(nΩ × m) ∈ [0, … , G − 1] × ℤ. (4.23)

Mathematically, the following statements hold:
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(a) Top view of the cyclic Silicon chain. Simulation is
carried out considering only one atom in the unit cell.
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Figure 4.6: Cyclic DFT benchmark simulation showing the polarization of a silicon chain of 25 atoms
under pure bending. The unit cell Ω (depicted in (a) in blue color) is of group order G = 25 and length
Lz = 40 bohr, and contains one Si atom at (# , r , z) = (0, 18.5 bohr, 20 bohr) (1 bohr=5.2918e-11m). The
standard polarization p is computed along the direction of the bisector of the shifted and replicated
unit cell (denoted by a black arrow in (a),(b),(c)) with the standard approach in Eq. (4.16). Di�erent
number of replicated domains nΩ and relative angular shifts lead to di�erent values of polarization.
However, radial polarization computed with Eq. (4.22) remains invariant.
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(i) Angular shift invariance: ∀#0 ∈ ℝ:

pr =
1
‖Ω‖ ∫

Lz

0 ∫
Rout

Rin
∫

#0+#

#0
(r − Re�)�r d# dr dz. (4.24)

(ii) Axial shift invariance: ∀z0 ∈ ℝ:

pr =
1
‖Ω‖ ∫

z0+Lz

z0
∫

Rout

Rin
∫

#

0
(r − Re�)�r d# dr dz. (4.25)

(iii) Angular replication invariance: ∀nΩ ∈ 1, … , G:

pr =
1

nΩ‖Ω‖ ∫
Lz

0 ∫
Rout

Rin
∫

nΩ#

0
(r − Re�)�r d# dr dz.

(4.26)

(iv) Axial replication invariance: ∀m ∈ ℤ+:

pr =
1

m‖Ω‖ ∫
mLz

0 ∫
Rout

Rin
∫

#

0
(r − Re�)�r d# dr dz. (4.27)

Fig. 4.6 illustrates the invariance cases (i) and (iii) in a benchmark simulation of a uniformly
bent 1D Silicon chain. Whereas the (ill-de�ned) standard de�nition of polarization yields
results depending on the angular shift and replication of the unit cell, the proposed radial
polarization approach yields invariant results.

In order to further investigate the invariant nature of the proposed radial polarization, we
write its expression in the undeformed con�guration as

pr =
1

‖Ω0‖ ∫Ω0
(X2 − X e�

2 )�0(X) dΩ0, (4.28)

where X e�
2 = Re�−R, and �0 = J� is the nominal electron density. Interestingly, the radial dipole

moment in the deformed con�guration Ω corresponds to the standard dipole moment along
the X2-direction in the undeformed con�guration Ω0. This con�rms the purely Lagrangian
nature of the �exoelectric tensor as discussed in Remark 2.6.

4.2.3 Transversal �exoelectricity coe�cient using cyclic DFT

Using the aforedescribed methodology, we compute the transversal �exoelectric coe�cient �T
for the following group IV atomic monolayers: graphene (C), silicene (Si), germanene (Ge),
and stanene (Sn), which possess a honeycomb lattice structure. The materials are bent around
the X3 axis at curvatures of � ∼ 0.19 − 0.75 nm−1, which are representative curvatures of those
encountered in realistic experiments (Chen et al., 2015, Han et al., 2020, Lindahl et al., 2012,
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Qu et al., 2019). To assess the anisotropy of �T, we consider bending along the two principal
directions of the materials; that is, armchair and zigzag directions (cf. Fig. 4.7). The analysis is
done with both LDA and GGA exchange-correlation functionals and ONCV pseudopotentials.

a

X1

X3

X2

δ

(a) Armchair con�guration

δ

a

X1

X3

X2

(b) Zigzag con�guration

Figure 4.7: Generic �at group-IV monolayer in armchair and zigzag directions, prior to bending. The
lattice constants for each material are reported in Tab. 4.1.

LDA GGA

Graphene a 2.6603 2.6870
� 0.0000 0.0000

Silicene a 4.1732 4.2207
� 0.7872 0.8742

Germanene a 4.3237 4.4198
� 1.2134 1.2813

Stanene a 4.9715 5.1044
� 1.5183 1.6015

Table 4.1: Lattice constants [bohr] of group IV atomic monolayers.

Zigzag Armchair
LDA GGA LDA GGA

Graphene 0.22 0.22 0.22 0.22
Silicene 0.19 0.19 0.19 0.18

Germanene 0.28 0.27 0.28 0.27
Stanene 0.27 0.27 0.26 0.27

Table 4.2: Transversal �exoelectric coe�cient �T [e] of group IV atomic monolayers.
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Figure 4.8: Radial polarization pr (normalized by area) as a function of the bending curvature �. Figure
adapted from Codony et al. (2020a).
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Figure 4.9: Contours of nominal electron density di�erence [e/bohr3] between the armchair bent
(� = 0.19 nm−1) and �at atomic monolayers. The contours are in the X1 − X2 plane passing through the
two fundamental atoms. Figure adapted from Codony et al. (2020a).

The numerical implementation of cyclic DFT (Xu et al., 2020a,b) relies on the real space
approximation of the electronic density onto a symmetry-adapted high-order �nite di�erences
(FD) grid in (# , r , z) directions. Once �(x) is found, the radial polarization can be evaluated
accurately and naturally by means of numerical integration in cylindrical coordinates, without
the need of auxiliary symmetry-adapted projections as it would be required by other traditional
approaches such as plane wave (PW) DFT.

The values of �T obtained for the group IV monolayers are presented in Tab. 4.2. Due to
the disagreement in literature over the thickness of atomic monolayers (Huang et al., 2006),
the radial dipole moments are normalized with respect to the area instead of volume while
computing the radial polarization using Eq. 4.22, i.e. the units of �T here are [e] (1e=1.6022e-
10µC), rather than the conventionally used [e/ bohr]. Note that a single curvature-independent
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value is listed for each entry in the table since the �exoelectric coe�cients have been found to
be essentially constant for the bending deformations considered here (see Fig. 4.8), signaling
linear response for the chosen curvatures. Therefore, the values of �T reported here can also
be interpreted as those corresponding to the asymptotic limit of � → 0.

Notably, the results are independent of the exchange-correlation functional, the key ap-
proximation within DFT. In addition, the nearly identical values in the zigzag and armchair
directions indicate that group IV monolayers are transversely isotropic with regards to �ex-
oelectricity. The �exoelectric coe�cients between the di�erent materials are comparable,
with germanene/stanene having the largest value (�T ∼ 0.27e), silicene having the smallest
(�T ∼ 0.19e), and graphene towards the lower end (�T = 0.22e). Notably, the value for graphene
is twice as large as that reported by Dumitrică et al. (2002), Kalinin and Meunier (2008).
The signi�cantly smaller coe�cient obtained previously can be attributed to the arti�cial
dependence on the width, a consequence of using the standard de�nition of the polarization.

To get insights into the underlying nature of the �exoelectric e�ect for the chosen mono-
layers, we plot in Fig. 4.9 the nominal electronic charge redistribution on the X1 − X2 plane
passing through the two fundamental atoms. For all materials, there is a net radial charge
transfer that occurs from below the neutral axis to above it. However, the plots indicate that
there is a fundamental di�erence between graphene and the other members in its group. For
graphene, bending introduces an asymmetry in the p-orbital overlap. However, the charge
transfer in the other monolayers occurs between the two atoms instead.

4.3 On-going and future work

As an outcome of this work, the transversal �exoelectricity constant of just four Group-IV
monolayers has been characterized. However, the methodology can be directly applied to other
2D monolayers. The work in Kumar et al. (2020) computes the �exoelectric coe�cient of other
relevant 2D monolayers that have been successfully synthesized, such as those with honeycomb
lattice structure (i.e. Groups III-V, V monolayers, transition metal dichalcogenides (TMDs) and
Group III monochalcogenides) as well as materials with rectangular lattice structure (i.e. Group
V monolayers, Group IV monochalcogenides, transition metal trichalcogenides (TMTs) and
Group V chalcogenides).

Since the framework developed here is general and not restricted to the linear response of
atomic monolayers, an appealing research line is the computation of the transversal �exoelec-
tric coe�cients for interesting and more complex systems, including multilayered materials
such as graphite and their corresponding analogs, as well as ferroelectric perovskites, which
are widely considered in �exoelectricity-based technologies due to its large bulk �exoelectric
constants according to experimental measurements. Surface e�ects might be apparent also
from this study.

Another line of research consists on deriving an analogous concept to radial polarization
for structures featuring not only cyclic but helical symmetry, which essentially corresponds to
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bending+twisting deformation modes. It is likely that other �exoelectric constants rather than
the transversal one will be characterized following this approach.

4.4 Concluding remarks

We have presented a novel formulation for calculating the transversal �exoelectric coe�cient
of nanostructures at �nite deformations from �rst principles. Speci�cally, we have introduced
the concept of radial polarization to rede�ne the �exoelectric coe�cient, making it a well-
de�ned quantity for uniform bending deformations. The proposed framework has been used
to calculate the coe�cients for group IV atomic monolayers using cyclic DFT simulations. In
the case of graphene, which is perhaps the most widely studied 2D material, the �exoelec-
tric coe�cient is signi�cantly larger than that reported previously, with a charge transfer
mechanism that fundamentally di�ers from the other members of its group. Furthermore, the
reported transversal �exoelectric coe�cients are constant within a large range of bending
curvatures, con�rming the linearity of the �exoelectric coupling in continuum models.



Chapter 5

Conclusions

This PhD thesis has addressed multiple open questions in the current state of the art of
the �exoelectric e�ect in solids, focusing on theoretical and computational modeling at the
continuum level, but also exploring its connection to �rst principles. The main contributions
are listed below:

• The relation between the energy and enthalpy forms of the Direct and Lifshitz-invariant
�exoelectricity continuum models at in�nitesimal deformations has been clari�ed. The
bulk energy and enthalpy densities of a dielectric, with consideration of a gradient
polarization term, are not equivalent due to the modi�cation of the Maxwell-Faraday’s
equation about the irrotationality of the electric �eld. Otherwise, they are indeed
equivalent.

• The �rst objective model for �exoelectricity at �nite deformations has been proposed,
coupling strain gradients and electric polarization by means of a fully Lagrangian
�exoelectric tensor. Previous attempts in the literature were not objective, or were not
considering the polarization �eld for the �exoelectric coupling. The model is illustrated
by means of a robust numerical implementation able to handle very large nonlinearities
such as large deformation bending, electrostriction or buckling.

• The connection between direct and Lifshitz-invariant �exoelectricity boundary value
problems at in�nitesimal deformations has been established. As both formulations di�er
in null Lagrangians, their Euler-Lagrange equations coincide, but the expressions of the
Neumann terms (e.g. tractions and surface charges) and thus the meaning of natural
boundary conditions are di�erent. According to the cantilever beam benchmarks, the
Lifshitz-invariant formulation is apparently sti�er than the direct one.

• The need for stabilization methods in order to properly capture boundary layers that
can arise in the electric �eld has been suggested. So far, such boundary layers have been
reported in the Lifshitz-invariant formulation only.
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• A numerical stabilization technique to alleviate spurious oscillations whenever boundary
layers arise has been implemented for the �rst time. A simple Galerkin least squares
method has been proposed, and it has been shown to be e�ective for the cantilever beam
benchmarks.

• The �rst �exoelectricity formulation for un�tted meshes has been developed, including
boundary conditions arising at the edges of the boundary. First order, second order and
edge essential boundary conditions are enforced weakly via Nitsche’s method. Consid-
ering un�tted meshes facilitates the meshing and computation of complex geometries,
and the construction of smooth-enough approximation spaces, required due to the
fourth-order nature of the equations. The proposed implementation considers functional
spaces spanned by hierarchical B-spline basis, which have convenient numerical and
computational properties. The method yields optimal high-order convergence rates,
outperforming other methods in the literature.

• The proposed computational infrastructure has been used to solve many boundary
value problems with particular engineering interest, both at in�nitesimal and �nite
deformations. The numerical examples in this manuscript correspond to functional de-
vices for electromechanical transduction based on the �exoelectric e�ect, with potential
applications in nanotechnology. The examples include the design of complex-shaped
sensors and actuators made of hard ceramics, rod-shaped compliant polymeric sen-
sors and actuators under bending and buckling conditions, and arbitrarily-shaped soft
electromechanical sensors.

• The continuum modeling of �exoelectricity at �nite deformations has been linked
with atomistic simulations in order to develop a novel formulation for calculating the
transversal �exoelectric coe�cient of nanostructures at �nite deformations from �rst
principles. The concept of radial polarization has been introduced in a density functional
theory (DFT) framework to rede�ne the transversal �exoelectric coe�cient in systems
under bending, overcoming a well-established intrinsic ill-de�nition of the �exoelectric
coe�cient in previous works.

• The transversal �exoelectric coe�cients for group-IV 2D materials (graphene, silicene,
germanene and stanene) have been quanti�ed using the novel proposed formulation
in a cyclic DFT implementation. In the case of graphene, the transversal �exoelectric
coe�cient is signi�cantly larger than that reported previously, with a charge transfer
mechanism that fundamentally di�ers from the other members of its group. Germanene
and stanene present the largest �exoelectric constants among the studied materials.

• The linearity of the �exoelectric coupling in continuum models has been con�rmed
for the studied materials from ab-initio simulations, since the computed transversal
�exoelectric coe�cients are constant within a large range of bending curvatures.
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The are still many open questions left to future work. Regarding the continuum modeling,
the Legendre transform between bulk energy and enthalpy densities in a large deformation
framework remains unexplored. Also, the e�ect of considering homogeneous Neumann
boundary conditions instead of continuity conditions with the dielectric surrounding media
has not been assessed. The relation between the di�erent �exoelectricity models and surface
e�ects such as surface piezoelectricity remains unaddressed, as well as the investigation of
the reason for the appearance of unexpected boundary layers in the electric �eld. Moreover,
the modeling can be extended to other related physics such as photo�exoelectricity, with
promising technological applications.

As for the numerical modeling, the most critical issue requiring further research is the
robust alleviation of numerical oscillations in any formulation, geometry or loading conditions.
Besides that, it would be extremely interesting to combine the present infrastructure with
geometry/topology optimization toolboxes, in order to maximize the performance of the
proposed electromechanical devices. Also, for practical reasons, it would be convenient to
rewrite the in-house implementation within a high performance computation (HPC) scalable
environment, allowing the e�cient and accurate computation and design of large �exoelectric
devices, including three-dimensional geometries at large deformations.

Considering the ab-initio computations, the proposed methodology can be systematically
applied to multiple materials such as other atomic monolayers, multilayered materials such
as graphite or even bulk materials such as ferroelectric perovskites. The appearance and
relevance of surface e�ects and other relevant physics can be also studied from there, allowing
the development of more complete and accurate continuum models. Finally, apart from
bending, other interesting setups can be studied such as wrinkling or twisting, potentially
allowing for the characterization of other coe�cients of the �exoelectric tensor.
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A Material characterization

A.1 In�nitesimal deformation framework: Material tensors

In the in�nitesimal deformation framework, the material is characterized by spec�ying the
material tensors of elasticity c, strain gradient elasticity h, dielectricity � , piezoelectricity e,
�exoelectricity � and eventually gradient dielectricityM. We recall that the Lamé parameters λ
and μ are related with the Young modulus Y and the Poisson’s ratio � as λ = Y�/(1 + �)(1 − 2�)
and μ = Y /2(1 + �).

Elasticity tensor c

Isotropic elasticity is represented by the fourth-order tensor c, which depends on λ and μ in
the following form:

cI JKL = λδI JδKL + 2μδIKδJ L. (A.1)

Strain gradient elasticity tensor h

We consider an isotropic simpli�ed strain gradient elasticity tensor (Altan and Aifantis, 1997),
which depends on λ, μ and the mechanical length scale �mech in the following form:

ℎI JKLMN = (λδI JδLM + 2μδI LδJM) � 2mechδKN . (A.2)

Dielectricity tensor �

Isotropic dielectricity is represented by the second-order tensor � , which depends on the
electric permittivity � as

�ij = �δij . (A.3)

Gradient dielectricity tensorM

Isotropic gradient dielectricity is represented by the fourth-order tensor M, which depends on
the electric permittivity � and the dielectric length scale �elec as

Mijkl = �� 2elecδikδjl . (A.4)

Piezoelectricity tensor e

Piezoelectricity is represented by the third-order tensor e.
Tetragonal symmetry is considered, which has a principal direction and involves longitudi-

nal, transversal and shear couplings represented by the parameters eL, eT and eS , respectively.
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For a material with principal direction x1, the piezoelectric tensor e<x1> reads

e<x1>LI J =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

eL, for L = I = J = 1,
eT, for L = 1, I = J ,
eS, for J = 1, L = I or I = 1, L = J ,
0 otherwise.

(A.5)

The piezoelectric tensor e oriented in an arbitrary direction d is obtained by rotating e<x1> as

elij = RlLRiIRjJ e<x1>LI J , (A.6)

where R is a rotation matrix that rotates x1 onto d.

Flexoelectricity tensor �.

The cubic �exoelectric tensor depends on the longitudinal �L, transversal �T and shear �S
parameters (Codony et al., 2019, Le Quang and He, 2011). In the Cartesian axes, it takes the
following form:

�<x1>LI JK =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

�L, for L = I = J = K,
�T, for I = J ≠ K = L,
�S, for L = I ≠ J = K or L = J ≠ I = K,
0 otherwise.

(A.7)

The �exoelectric tensor � oriented in an arbitrarily rotated Cartesian basis is obtained by
rotating �<x1> as

�lijk = RlLRiIRjJRkK�<x1>LI JK , (A.8)

where R is the rotation matrix associated to the unit vectors of the rotated basis.

A.2 Finite deformation framework: Hyperelastic potentials

In the �nite deformation framework, the material is characterized by spec�ying the material
tensors of �exoelectricity � and strain gradient elasticity h, the electric permittivity � and,
additionally, the elastic energy density ΨElast(C). We present here two isotropic models for
ΨElast(C), namely the Saint-Venant–Kirchho� and Neo-Hookean models.
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Isotropic Saint-Venant–Kirchho� model.

It corresponds to the extension of the linear isotropic elastic material model to the non-linear
regime, and depends on λ and μ as follows:

ΨElast(C) = λ2 [Tr(E )]
2 + μTr(E2 ), (A.9a)

)ΨElast(C)
)CI J

= λ2 [Tr(E )] δI J + μEI J , (A.9b)

)2ΨElast(C)
)CI JCKL

= λ4δI JδKL +
μ
2δIKδJ L. (A.9c)

Isotropic Neo-Hookean model

The Neo-Hookean model is adequate for describing nonlinear stress-strain behavior of cross-
linked polymers at moderate strains. It is mathematically de�ned as

ΨElast(C) = λ2 [log( J )]
2 + μ2 [Tr( C ) − nsd] , (A.10a)

)ΨElast(C)
)CI J

= λ2 log( J )C
−1
I J +

μ
2 (δI J − C−1I J ) , (A.10b)

)2ΨElast(C)
)CI JCKL

= λ4C
−1
I J C−1KL +

1
4 [μ − λ log( J )] (C

−1
IKC−1JL + C−1ILC−1JK) . (A.10c)
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B Variations of stresses and electric displacement in a �nite
deformation framework

In this Appendix the expressions for the variations �S(� , �; �� , �Φ), �S̃(� , �; �� , �Φ), �∇S̃(� , �; �� , �Φ)
and �D(� , �; �� , �Φ) are derived, which are present in the Nitsche’s weak form for the direct
�exoelectricity model at �nite deformations in Section 2.2.4.1.b. To this end, let us de�ne the
second gradient of the deformation gradient F̌, the second gradient of the Green-Lagrangian
strains ∇Ẽ, and the electric �eld gradient as

F̌iJKL ∶=
)2FiJ

)XK)XL
= )3xi
)XJ)XK)XL

, (B.1a)

ẼI JK ,L ∶=
)2EI J
)XK)XL

= symm
I J

symm
KL

(F̌kIKLFkJ + F̃kIK F̃kJL) , (B.1b)

EI ,J ∶= −
)2Φ

)XI)XJ
; (B.1c)

and their corresponding variations

�F̌iJKL =
)3��i

)XJ)XK)XL
, (B.2a)

�ẼI JK ,L = symm
I J

symm
KL

(�F̌kIKLFkJ + F̌kIKL�FkJ + 2�F̃kIK F̃kJL) , (B.2b)

�EI ,J = −
)2�Φ
)XI)XJ

. (B.2c)

Then, from the expressions of S(� , �), S̃(� , �), D(� , �) in Eq. (2.141a), (2.138), (2.141b) and

S̃I JK ,Q = ℎI JKLMN ẼLMN ,Q − JC−1LMEM,Q�LI JK + JCLMABẼABQEM�LI JK , (B.3)
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their corresponding variations are derived as follows:

�SI J (� , �; �� , �Φ) =(4
)2ΨElast(C)
)CI J)CAB

− JCMLABEM,K�LI JK +
J
2CMLI JABEM�EL)�EAB

− (ℎI JKLMN ) �ẼLMN ,K

+ (JCMLI JEM�) �EL
+ (JC−1LM�LI JK) �EM,K , (B.4a)

�S̃I JK (� , �; �� , �Φ) = (JCLMAB�LI JKEM) �EAB

+ (ℎI JKLMN ) �ẼLMN

− (JC−1LM�LI JK) �EM , (B.4b)
�S̃I JK ,Q(� , �; �� , �Φ) = (J�LI JK (CLMABEM,Q + CLMCDABẼCDQEM)) �EAB

+ (JCLMABEM�LI JK) �ẼABQ

+ (ℎI JKLMN ) �ẼLMN ,Q

+ (JCLMABẼABQ�LI JK) �EM
− (JC−1LM�LI JK) �EM,Q , (B.4c)

�DL(� , �; �� , �Φ) = − (JCKLAB (�EK + �KI JM ẼI JM)) �EAB

+ (JC−1KL�KI JM) �ẼI JM

+ (JC−1KL�) �EK , (B.4d)

where

CABCDEF ∶=
2
J
) (JCABCD)

)CEF
= DCADBEF + DDBCAEF + DCBDAEF + DADCBEF − DCDABEF − DABCDEF (B.5)

and

DABCDEF ∶= C−1AB (
1
2C

−1
CDC−1EF − C−1CEC−1DF − C−1CFC−1DE) . (B.6)





Bibliography

A. Abdollahi and I. Arias. Constructive and destructive interplay between piezoelectricity
and �exoelectricity in �exural sensors and actuators. J. Appl. Mech. 82, 121003 (2015).

A. Abdollahi, D. Millán, C. Peco, M. Arroyo, and I. Arias. Revisiting pyramid compression to
quantify �exoelectricity: A three-dimensional simulation study. Phys. Rev. B 91, 104103
(2015a).

A. Abdollahi, C. Peco, D. Millán, M. Arroyo, and I. Arias. Computational evaluation of the
�exoelectric e�ect in dielectric solids. J. Appl. Phys. 116, 093502 (2014).

A. Abdollahi, C. Peco, D. Millán, M. Arroyo, G. Catalan, and I. Arias. Fracture toughening
and toughness asymmetry induced by �exoelectricity. Phys. Rev. B 92, 094101 (2015b).

F. Ahmadpoor and P. Sharma. Flexoelectricity in two-dimensional crystalline and biological
membranes. Nanoscale 7, 16555 (2015).

B. Altan and E. Aifantis. On some aspects in the special theory of gradient elasticity. J. Mech.
Behav. Mater. 8, 231 (1997).

L. Anqing, Z. Shenjie, Q. Lu, and C. Xi. A �exoelectric theory with rotation gradient e�ects
for elastic dielectrics. Modell. Simul. Mater. Sci. Eng. 24, 015009 (2015).

N. Aravas. Plane-strain problems for a class of gradient elasticity models - A stress function
approach. J. Elast. 104, 45 (2011).

H. Askes and E. C. Aifantis. Gradient elasticity in statics and dynamics: an overview of
formulations, length scale identi�cation procedures, �nite element implementations and
new results. Int. J. Solids Struct. 48, 1962 (2011).

C. Baiocchi, F. Brezzi, and L. P. Franca. Virtual bubbles and Galerkin-least-squares type
methods (Ga. LS). Comput. Meth. Appl. Mech. Eng. 105, 125 (1993).

A. S. Banerjee and P. Suryanarayana. Cyclic density functional theory: A route to the �rst
principles simulation of bending in nanostructures. J. Mech. Phys. Solids 96, 605 (2016).

J. Barceló-Mercader, D. Codony, and I. Arias. Generalized periodicity conditions for the
computational modeling of �exoelectric metamaterials. (2021a). To be submitted.

149

https://doi.org/10.1115/1.4031333
http://dx.doi.org/10.1103/PhysRevB.91.104103
http://dx.doi.org/10.1103/PhysRevB.91.104103
http://dx.doi.org/10.1063/1.4893974
http://dx.doi.org/10.1103/PhysRevB.92.094101
http://dx.doi.org/10.1039/C5NR04722F
https://doi.org/10.1515/JMBM.1997.8.3.231
https://doi.org/10.1515/JMBM.1997.8.3.231
https://doi.org/10.1088/0965-0393/24/1/015009
https://doi.org/10.1007/s10659-011-9308-7
https://doi.org/10.1016/j.ijsolstr.2011.03.006
https://doi.org/10.1016/0045-7825(93)90119-I
https://doi.org/10.1016/j.jmps.2016.08.007


150 Bibliography

J. Barceló-Mercader, D. Codony, O. Marco, S. Fernández-Méndez, and I. Arias. Nitsche’s
method for interfaces in �exoelectricity and application to periodic structures. (2021b). To
be submitted.

S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal
properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).

S. Baroudi and F. Najar. Dynamic analysis of a nonlinear nanobeam with �exoelectric actuation.
J. Appl. Phys. 125, 044503 (2019).

S. Baroudi, F. Najar, and A. Jemai. Static and dynamic analytical coupled �eld analysis of
piezoelectric �exoelectric nanobeams: A strain gradient theory approach. Int. J. Sol. Struct.
135, 110 (2018).

S. Baskaran, X. He, Q. Chen, and J. Fu. Experimental studies on the direct �exoelectric e�ect
in �-phase polyvinylidene �uoride �lms. Appl. Phys. Lett. 98, 242901 (2011a).

S. Baskaran, X. He, Y. Wang, and J. Fu. Strain gradient induced electric polarization in �-phase
polyvinylidene �uoride �lms under bending conditions. J. Appl. Phys. 111, 014109 (2012).

S. Baskaran, N. Ramachandran, X. He, S. Thiruvannamalai, H. Lee, H. Heo, Q. Chen, and J. Fu.
Giant �exoelectricity in polyvinylidene �uoride �lms. Phys. Lett. A 375, 2082 (2011b).

I. B. Bersuker. Pseudo-Jahn–Teller E�ect. A Two-State Paradigm in Formation, Deformation,
and Transformation of Molecular Systems and Solids. Chem. Rev. 113, 1351 (2013).

U. K. Bhaskar, N. Banerjee, A. Abdollahi, Z. Wang, D. G. Schlom, G. Rijnders, and G. Catalan.
A �exoelectric microelectromechanical system on silicon. Nat. Nanotechnol. 11, 263 (2016).

M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Ann. Phys. 389, 457 (1927).

P. Bornemann and F. Cirak. A subdivision-based implementation of the hierarchical b-spline
�nite element method. Comput. Meth. Appl. Mech. Eng. 253, 584 (2013).

L. Breger, T. Furukawa, and E. Fukada. Bending piezoelectricity in polyvinylidene �uoride.
Japanese Journal of Applied Physics 15, 2239 (1976).

L. Brillouin. Wave propagation in periodic structures: electric �lters and crystal lattices.
(1953).

E. Burman. Ghost penalty. CR Math. 348, 1217 (2010).

J. Bursian and O. Zaikovskii. Changes in curvature of a ferroelectric �lm due to polarization.
Sov. Phys. Solid State 10, 1121 (1968).

G. Catalan, L. Sinnamon, and J. Gregg. The e�ect of �exoelectricity on the dielectric properties
of inhomogeneously strained ferroelectric thin �lms. J. Condens. Matter Phys. 16, 2253
(2004).

http://dx.doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1063/1.5057727
https://doi.org/10.1016/j.ijsolstr.2017.11.014
https://doi.org/10.1016/j.ijsolstr.2017.11.014
https://doi.org/10.1063/1.3599520
https://doi.org/10.1063/1.3673817
https://doi.org/10.1016/j.physleta.2011.04.011
https://doi.org/10.1021/cr300279n
https://doi.org/10.1038/nnano.2015.260
https://doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1016/j.cma.2012.06.023
https://cds.cern.ch/record/106186
http://dx.doi.org/10.1016/j.crma.2010.10.006
https://doi.org/10.1088/0953-8984/16/13/006
https://doi.org/10.1088/0953-8984/16/13/006


Bibliography 151

P. Chen, H. Zhang, and B. Chu. Strain gradient induced thermal-electrical response in
paraelectric Na0.5Bi0.5TiO33-based ceramics. Phys. Rev. Mater. 2, 034401 (2018).

X. Chen, S. Xu, N. Yao, and Y. Shi. 1.6 V nanogenerator for mechanical energy harvesting
using PZT nano�bers. Nano Lett. 10, 2133 (2010).

X. Chen, C. Yi, and C. Ke. Bending sti�ness and interlayer shear modulus of few-layer
graphene. Appl. Phys. Lett. 106, 101907 (2015).

B. Chu and D. Salem. Flexoelectricity in several thermoplastic and thermosetting polymers.
Appl. Phys. Lett. 101, 103905 (2012).

B. Chu, W. Zhu, N. Li, and L. E. Cross. Flexure mode �exoelectric piezoelectric composites.
J. Appl. Phys. 106, 104109 (2009).

R. Codina. Comparison of some �nite element methods for solving the di�usion-convection-
reaction equation. Comput. Meth. Appl. Mech. Eng. 156, 185 (1998).

R. Codina. On stabilized �nite element methods for linear systems of convection-di�usion-
reaction equations. Comput. Meth. Appl. Mech. Eng. 188, 61 (2000).

R. Codina, S. Badia, J. Baiges, and J. Principe. Variational multiscale methods in computational
�uid dynamics. Encyclopedia of Computational Mechanics Second Edition , 1 (2018).

D. Codony and I. Arias. Lifshitz-invariant �exoelectricity. (2021a). To be submitted.

D. Codony and I. Arias. Residual-based weak form stabilization for �exoelectricity. (2021b).
To be submitted.

D. Codony and I. Arias. Switchable �exoelectric device by buckling. (2021c). To be submitted.

D. Codony, S. Fernández-Méndez, and I. Arias. Nitsche’s method for �nite deformation
�exoelectricity. (2021a). To be submitted.

D. Codony, A. Mocci, O. Marco, and I. Arias. Wheel-shaped and helical torsional �exoelectric
devices. (2021b). To be submitted.

D. Codony, I. Arias, and P. Suryanarayana. Transversal �exoelectric coe�cient for nanostruc-
tures at �nite deformations from �rst principles. arXiv preprint arXiv:2010.01747 (2020a).

D. Codony, P. Gupta, O. Marco, and I. Arias. Modeling �exoelectricity in soft dielectrics at
�nite deformation. J. Mech. Phys. Solids 146, 104182 (2020b).

D. Codony, O. Marco, S. Fernández-Méndez, and I. Arias. An Immersed Boundary Hierarchical
B-spline method for �exoelectricity. Comput. Meth. Appl. Mech. Eng. 354, 750 (2019).

L. Cross. Flexoelectric e�ects: Charge separation in insulating solids subjected to elastic strain
gradients. J. Mater. Sci. 41, 53 (2006).

https://doi.org/10.1103/PhysRevMaterials.2.034401
https://doi.org/10.1021/nl100812k
http://dx.doi.org/10.1063/1.4915075
https://doi.org/10.1063/1.4750064
http://dx.doi.org/10.1063/1.3262495
https://doi.org/10.1016/S0045-7825(97)00206-5
https://doi.org/10.1016/S0045-7825(00)00177-8
https://doi.org/10.1002/9781119176817.ecm2117
https://arxiv.org/abs/2010.01747
https://doi.org/10.1016/j.jmps.2020.104182
https://doi.org/10.1016/j.cma.2019.05.036
http://dx.doi.org/10.1007/s10853-005-5916-6


152 Bibliography

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-I. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers.
Recent progress in �exible and stretchable piezoelectric devices for mechanical energy
harvesting, sensing and actuation. Extreme Mech. Lett. 9, 269 (2016).

C. de Boor. A Practical Guide to Splines. Applied Mathematical Sciences (Springer New York,
2001).

S. De La Torre Israel. Theoretical and computational modeling of charge transport in �exo-
photovoltaics. Master’s thesis. UPC, Facultat de Matemàtiques i Estadística, Departament
d’Enginyeria Civil i Ambiental (2020).

F. de Prenter, C. Verhoosel, G. van Zwieten, and E. van Brummelen. Condition number
analysis and preconditioning of the �nite cell method. Comput. Meth. Appl. Mech. Eng.
(2016).

F. Deng, Q. Deng, and S. Shen. A three-dimensional mixed �nite element for �exoelectricity.
J. Appl. Mech. 85 (2018).

F. Deng, Q. Deng, W. Yu, and S. Shen. Mixed �nite elements for �exoelectric solids. J. Appl.
Mech. 84 (2017).

Q. Deng, M. Kammoun, A. Erturk, and P. Sharma. Nanoscale �exoelectric energy harvesting.
Int. J. Solid. Struct. 51, 3218 (2014a).

Q. Deng, L. Liu, and P. Sharma. Electrets in soft materials: Nonlinearity, size e�ects, and
giant electromechanical coupling. Phys. Rev. E 90, 012603 (2014b).

Q. Deng, L. Liu, and P. Sharma. Flexoelectricity in soft materials and biological membranes.
J. Mech. Phys. Solids 62, 209 (2014c).

M. Dingle Palmer. Multiscale modelling of surface e�ects in small-scale electromechanics. Mas-
ter’s thesis. UPC, Escola Tècnica Superior d’Enginyeria de Camins, Canals i Ports de
Barcelona, Departament d’Enginyeria Civil i Ambiental (2020).

G. Dong, S. Li, T. Li, H. Wu, T. Nan, X. Wang, H. Liu, Y. Cheng, Y. Zhou, W. Qu,et al.. Peri-
odic Wrinkle-Patterned Single-Crystalline Ferroelectric Oxide Membranes with Enhanced
Piezoelectricity. Adv. Mater. , 2004477 (2020).

A. Dorfmann and R. Ogden. Nonlinear electroelasticity. Acta Mech. 174, 167 (2005).

L. Dorfmann and R. W. Ogden. Nonlinear theory of electroelastic and magnetoelastic interac-
tions. Vol. 1 (Springer, 2014).

L. Dorfmann and R. W. Ogden. Nonlinear electroelasticity: material properties, continuum
theory and applications. Proc. Math. Phys. Eng. Sci. 473, 20170311 (2017).

C. E. Dreyer, M. Stengel, and D. Vanderbilt. Current-density implementation for calculating
�exoelectric coe�cients. Phys. Rev. B 98, 075153 (2018).

https://doi.org/10.1016/j.eml.2016.05.015
http://www.springer.com/gb/book/9780387953663
http://hdl.handle.net/2117/332729
http://dx.doi.org/10.1016/j.cma.2016.07.006
http://dx.doi.org/10.1016/j.cma.2016.07.006
https://doi.org/10.1115/1.4038919
https://doi.org/10.1115/1.4036939
https://doi.org/10.1115/1.4036939
https://doi.org/10.1016/j.ijsolstr.2014.05.018
https://doi.org/10.1103/PhysRevE.90.012603
https://doi.org/10.1016/j.jmps.2013.09.021
https://doi.org/10.1002/adma.202004477
https://doi.org/10.1007/s00707-004-0202-2
https://doi.org/10.1007/978-1-4614-9596-3
https://doi.org/10.1007/978-1-4614-9596-3
https://doi.org/10.1098/rspa.2017.0311
http://dx.doi.org/10.1103/PhysRevB.98.075153


Bibliography 153

T. Dumitrică, C. M. Landis, and B. I. Yakobson. Curvature-induced polarization in carbon
nanoshells. Chem. Phys. Lett. 360, 182 (2002).

A. Düster, J. Parvizian, Z. Yang, and E. Rank. The �nite cell method for three-dimensional
problems of solid mechanics. Comput. Meth. Appl. Mech. Eng. 197, 3768 (2008).

E. A. Eliseev, M. D. Glinchuk, V. Khist, V. V. Skorokhod, R. Blinc, and A. N. Morozovska.
Linear magnetoelectric coupling and ferroelectricity induced by the �exomagnetic e�ect in
ferroics. Phys. Rev. B 84, 174112 (2011).

E. Eliseev, A. Morozovska, M. Glinchuk, and R. Blinc. Spontaneous �exoelectric/�exomagnetic
e�ect in nanoferroics. Phys. Rev. B 79, 165433 (2009).

L. Evans. Partial Di�erential Equations. Graduate studies in mathematics (American Mathe-
matical Society, 2010).

X. Feng, B. D. Yang, Y. Liu, Y. Wang, C. Dagdeviren, Z. Liu, A. Carlson, J. Li, Y. Huang, and
J. A. Rogers. Stretchable ferroelectric nanoribbons with wavy con�gurations on elastomeric
substrates. Acs Nano 5, 3326 (2011).

S. Fernández-Méndez and A. Huerta. Imposing essential boundary conditions in mesh-free
methods. Comput. Meth. Appl. Mech. Eng. 193, 1257 (2004).

D. Forsey and R. Bartels. Hierarchical B-spline re�nement. ACM Siggraph Comp. Graph. 22,
205 (1988).

J. Fousek, L. Cross, and D. Litvin. Possible piezoelectric composites based on the �exoelectric
e�ect. Mat. Lett. 39, 287 (1999).

L. P. Franca and R. Stenberg. Error analysis of Galerkin least squares methods for the elasticity
equations. SIAM J. Numer. Anal. 28, 1680 (1991).

T. Fries. Higher-Order Accurate Integration for Cut Elements with Chen-Babuška Nodes.
in Advances in Discretization Methods: Discontinuities, Virtual Elements, Fictitious Domain
Methods (Springer International Publishing, 2016) pp. 245–269.

T. Fries and S. Omerović. Higher-order accurate integration of implicit geometries. Int. J.
Num. Meth. Eng. 106, 323 (2016). nme.5121.

J. Y. Fu, W. Zhu, N. Li, and L. E. Cross. Experimental studies of the converse �exoelectric
e�ect induced by inhomogeneous electric �eld in a barium strontium titanate composition.
J. Appl. Phys. 100, 024112 (2006).

J. Y. Fu, W. Zhu, N. Li, N. B. Smith, and L. Eric Cross. Gradient scaling phenomenon in
microsize �exoelectric piezoelectric composites. Appl. Phys. Lett. 91, 182910 (2007).

H. Ghasemi, H. Park, and T. Rabczuk. A level-set based IGA formulation for topology
optimization of �exoelectric materials. Comput. Meth. Appl. Mech. Eng. 313, 239 (2017).

http://dx.doi.org/ https://doi.org/10.1016/S0009-2614(02)00820-5
http://dx.doi.org/ 10.1016/j.cma.2008.02.036
https://doi.org/10.1103/PhysRevB.84.174112
https://doi.org/10.1103/PhysRevB.79.165433
https://books.google.es/books?id=Xnu0o_EJrCQC
https://doi.org/10.1021/nn200477q
https://www.doi.org/10.1016/j.cma.2003.12.019
http://dx.doi.org/ 10.1145/378456.378512
http://dx.doi.org/ 10.1145/378456.378512
https://doi.org/10.1016/S0167-577X(99)00020-8
https://doi.org/10.1137/0728084
http://dx.doi.org/10.1007/978-3-319-41246-7_12
http://dx.doi.org/10.1007/978-3-319-41246-7_12
http://dx.doi.org/10.1002/nme.5121
http://dx.doi.org/10.1002/nme.5121
https://doi.org/10.1063/1.2219990
https://doi.org/10.1063/1.2800794
http://dx.doi.org/https://doi.org/10.1016/j.cma.2016.09.029


154 Bibliography

H. Ghasemi, H. S. Park, and T. Rabczuk. A multi-material level set-based topology optimiza-
tion of �exoelectric composites. Comput. Meth. Appl. Mech. Eng. 332, 47 (2018).

I.-D. Ghiba, P. Ne�, A. Madeo, and I. Münch. A variant of the linear isotropic indeterminate
couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress,
symmetric couple-stresses and orthogonal boundary conditions. Mathematics andMechanics
of Solids 22, 1221 (2017).

S. Ghosh, A. S. Banerjee, and P. Suryanarayana. Symmetry-adapted real-space density
functional theory for cylindrical geometries: Application to large group-IV nanotubes. Phys.
Rev. B 100, 125143 (2019).

S. Ghosh and P. Suryanarayana. SPARC: Accurate and e�cient �nite-di�erence formulation
and parallel implementation of Density Functional Theory: Isolated clusters. Comput. Phys.
Commun. 212, 189 (2017).

X. Gonze and C. Lee. Dynamical matrices, Born e�ective charges, dielectric permittivity
tensors, and interatomic force constants from density-functional perturbation theory. Phys.
Rev. B 55, 10355 (1997).

O. Guasch and R. Codina. An algebraic subgrid scale �nite element method for the convected
Helmholtz equation in two dimensions with applications in aeroacoustics. Comput. Meth.
Appl. Mech. Eng. 196, 4672 (2007).

A. R. Hadjesfandiari. Size-dependent piezoelectricity. Int. J. Solids Struct. 50, 2781 (2013).

D. R. Hamann. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88,
085117 (2013).

K. M. Hamdia, H. Ghasemi, X. Zhuang, N. Alajlan, and T. Rabczuk. Sensitivity and uncertainty
analysis for �exoelectric nanostructures. Comput. Meth. Appl. Mech. Eng. 337, 95 (2018).

E. Han, J. Yu, E. Annevelink, J. Son, D. A. Kang, K. Watanabe, T. Taniguchi, E. Ertekin, P. Y.
Huang, and A. M. van der Zande. Ultrasoft slip-mediated bending in few-layer graphene.
Nat. Mater. 19, 305 (2020).

J. K. Han, D. H. Jeon, S. Y. Cho, S. W. Kang, S. A. Yang, S. D. Bu, S. Myung, J. Lim, M. Choi,
M. Lee,et al.. Nanogenerators consisting of direct-grown piezoelectrics on multi-walled
carbon nanotubes using �exoelectric e�ects. Sci. Rep. 6, 1 (2016).

P. Hana. Study of �exoelectric phenomenon from direct and from inverse �exoelectric behavior
of PMNT ceramic. Ferroelectrics 351, 196 (2007).

P. Hana, M. Marvan, L. Burianova, S. Zhang, E. Furman, and T. R. Shrout. Study of the inverse
�exoelectric phenomena in ceramic lead magnesium niobate-lead titanate. Ferroelectrics
336, 137 (2006).

J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jakli. Giant
�exoelectricity of bent-core nematic liquid crystals. Phys. Rev. Lett. 97, 157802 (2006).

https://doi.org/10.1016/j.cma.2017.12.005
https://doi.org/10.1177/1081286515625535
https://doi.org/10.1177/1081286515625535
http://dx.doi.org/ 10.1103/PhysRevB.100.125143
http://dx.doi.org/ 10.1103/PhysRevB.100.125143
https://doi.org/10.1016/j.cpc.2016.09.020
https://doi.org/10.1016/j.cpc.2016.09.020
http://dx.doi.org/10.1103/PhysRevB.55.10355
http://dx.doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1016/j.cma.2007.06.001
https://doi.org/10.1016/j.cma.2007.06.001
https://doi.org/10.1016/j.ijsolstr.2013.04.020
https://doi.org/10.1103/PhysRevB.88.085117
https://doi.org/10.1103/PhysRevB.88.085117
https://doi.org/10.1016/j.cma.2018.03.016
https://doi.org/10.1038/s41563-019-0529-7
https://doi.org/10.1038/srep29562
https://doi.org/10.1080/00150190701354281
https://doi.org/10.1080/00150190600696006
https://doi.org/10.1080/00150190600696006
https://doi.org/10.1103/PhysRevLett.97.157802


Bibliography 155

V. Heine, M. Cohen, and D. Weaire. Solid State Phys. vol. 24. The Pseudopotential Concept.
(1970).

P. Hohenberg and W. Kohn. Density functional theory (DFT). Phys. Rev. 136, B864 (1964).

K. Höllig, J. Hörner, and A. Ho�acker. Finite element analysis with B-splines: weighted and
isogeometric methods. in International Conference on Curves and Surfaces (Springer, 2012)
pp. 330–350.

K. Höllig, U. Reif, and J. Wipper. Weighted extended B-spline approximation of Dirichlet
problems. SIAM J. Numer. Anal. 39, 442 (2001).

C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C. W. Ahn, and W. Jo. Lead-free
piezoceramics–Where to move on? J. Materiomics 2, 1 (2016).

J. Hong and D. Vanderbilt. First-principles theory and calculation of �exoelectricity. Phys.
Rev. B 88, 174107 (2013).

S. Hu and S. Shen. Variational principles and governing equations in nano-dielectrics with
the �exoelectric e�ect. Sci. China Phys. Mech. Astron. 53, 1497 (2010).

S. Huang, T. Kim, D. Hou, D. Cann, J. L. Jones, and X. Jiang. Flexoelectric characterization of
BaTiO3-0.08 Bi(Zn1/2Ti1/2)O3. Appl. Phys. Lett. 110, 222904 (2017).

S. Huang, L. Qi, W. Huang, L. Shu, S. Zhou, and X. Jiang. Flexoelectricity in dielectrics:
Materials, structures and characterizations. J. Adv. Dielectr. 8, 1830002 (2018).

W. Huang, K. Kim, S. Zhang, F.-G. Yuan, and X. Jiang. Scaling e�ect of �exoelectric
(Ba,Sr)TiO3 microcantilevers. Phys. Stat. Solid. RRL 5, 350 (2011).

Y. Huang, J. Wu, and K. C. Hwang. Thickness of graphene and single-wall carbon nanotubes.
Phys. Rev. B 74, 245413 (2006).

T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, �nite elements,
NURBS, exact geometry and mesh re�nement. Comput. Meth. Appl. Mech. Eng. 194, 4135
(2005).

T. J. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy. The variational multiscale method-a
paradigm for computational mechanics. Comput. Meth. Appl. Mech. Eng. 166, 3 (1998).

X. Jiang, W. Huang, and S. Zhang. Flexoelectric nano-generator: Materials, structures and
devices. Nano Energy 2, 1079 (2013).

S. V. Kalinin, S. Jesse, W. Liu, and A. A. Balandin. Evidence for possible �exoelectricity in
tobacco mosaic viruses used as nanotemplates. Appl. Phys. Lett. 88, 153902 (2006).

S. V. Kalinin and V. Meunier. Electronic �exoelectricity in low-dimensional systems. Phys.
Rev. B 77, 033403 (2008).

http://dx.doi.org/10.1007/978-3-642-27413-8_21
http://dx.doi.org/10.1137/S0036142900373208
https://doi.org/10.1016/j.jmat.2015.12.002
http://dx.doi.org/10.1103/PhysRevB.88.174107
http://dx.doi.org/10.1103/PhysRevB.88.174107
http://dx.doi.org/10.1007/s11433-010-4039-5
https://doi.org/10.1063/1.4984212
https://doi.org/10.1142/S2010135X18300025
https://doi.org/10.1002/pssr.201105326
https://doi.org/10.1103/PhysRevB.74.245413
http://dx.doi.org/10.1016/j.cma.2004.10.008
http://dx.doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/S0045-7825(98)00079-6
https://doi.org/10.1016/j.nanoen.2013.09.001
https://doi.org/10.1063/1.2194008
http://dx.doi.org/ 10.1103/PhysRevB.77.033403
http://dx.doi.org/ 10.1103/PhysRevB.77.033403


156 Bibliography

S. M. Kogan. Piezoelectric e�ect during inhomogeneous deformation and acoustic scattering
of carriers in crystals. Sov. Phys. Solid State 5, 2069 (1964).

W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation e�ects.
Phys. Rev. 140, A1133 (1965).

R. Kraft. Adaptive and Linearly Independent Multilevel B-splines. Bericht (SFB 404,
Geschäftsstelle, 1997).

R. Kraft. Hierarchical B-splines. (1995). unpublished.

S. Krichen and P. Sharma. Flexoelectricity: A perspective on an unusual electromechanical
coupling. J. Appl. Mech. 83, 030801 (2016).

L. Kudela, N. Zander, S. Kollmannsberger, and E. Rank. Smart octrees: Accurately integrating
discontinuous functions in 3D. Comput. Meth. Appl. Mech. Eng. 306, 406 (2016).

S. Kumar, D. Codony, I. Arias, and P. Suryanarayana. Flexoelectricity in atomic monolayers
from �rst principles. Nanoscale , (2020).

S. R. Kwon, W. Huang, L. Shu, F.-G. Yuan, J.-P. Maria, and X. Jiang. Flexoelectricity in
barium strontium titanate thin �lm. Appl. Phys. Lett. 105, 142904 (2014).

L. D. Landau and E. M. Lifshitz. Course of theoretical physics (Elsevier, 2013).

M. Lax and D. Nelson. Maxwell equations in material form. Phys. Rev. B 13, 1777 (1976).

H. Le Quang and Q.-C. He. The number and types of all possible rotational symmetries for
�exoelectric tensors. Proc. Math. Phys. Eng. Sci. 467, 2369 (2011).

G. Legrain, N. Chevaugeon, and K. Dréau. High order X-FEM and levelsets for complex
microstructures: Uncoupling geometry and approximation. Comput. Meth. Appl. Mech. Eng.
241, 172 (2012).

G. Legrain. A NURBS enhanced extended �nite element approach for un�tted CAD analysis.
Comput. Mech. 52, 913 (2013).

A. Li, S. Zhou, L. Qi, and X. Chen. A reformulated �exoelectric theory for isotropic dielectrics.
J. Phys. D: Appl. Phys. 48, 465502 (2015).

Y. Li, L. Shu, W. Huang, X. Jiang, and H. Wang. Giant �exoelectricity in
Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite. Appl. Phys. Lett. 105, 162906 (2014).

Y. Li, L. Shu, Y. Zhou, J. Guo, F. Xiang, L. He, and H. Wang. Enhanced �exoelectric e�ect in a
non-ferroelectric composite. Appl. Phys. Lett. 103, 142909 (2013).

X. Liang, S. Hu, and S. Shen. E�ects of surface and �exoelectricity on a piezoelectric nanobeam.
Smart Mater. Struct. 23, 035020 (2014).

X. Liang, S. Hu, and S. Shen. Nanoscale mechanical energy harvesting using piezoelectricity
and �exoelectricity. Smart Mater. Struct. 26, 035050 (2017).

https://doi.org/10.1103/PhysRev.140.A1133
https://books.google.es/books?id=5Z4CHQAACAAJ
https://doi.org/10.1115/1.4032378
http://dx.doi.org/10.1016/j.cma.2016.04.006
http://dx.doi.org/10.1039/D0NR07803D
https://doi.org/10.1063/1.4898139
https://doi.org/10.1016/C2013-0-00704-9
https://doi.org/10.1103/PhysRevB.13.1777
https://doi.org/10.1098/rspa.2010.0521
http://dx.doi.org/10.1016/j.cma.2012.06.001
http://dx.doi.org/10.1016/j.cma.2012.06.001
https://doi.org/10.1007/s00466-013-0854-7
https://doi.org/10.1088/0022-3727/48/46/465502
https://doi.org/10.1063/1.4899060
https://doi.org/10.1063/1.4824168
https://doi.org/10.1088/0964-1726/23/3/035020
https://doi.org/10.1088/1361-665X/26/3/035050


Bibliography 157

E. Lifshitz and L. Landau. Statistical Physics (Course of Theoretical Physics, Volume 5). (1984).

N. Lindahl, D. Midtvedt, J. Svensson, O. A. Nerushev, N. Lindvall, A. Isacsson, and E. E. B.
Campbell. Determination of the Bending Rigidity of Graphene via Electrostatic Actuation
of Buckled Membranes. Nano Lett. 12, 3526 (2012).

C. Liu, H. Wu, and J. Wang. Giant piezoelectric response in piezoelectric/dielectric superlat-
tices due to �exoelectric e�ect. Appl. Phys. Lett. 109, 192901 (2016a).

L. Liu. An energy formulation of continuum magneto-electro-elasticity with applications. J.
Mech. Phys. Solids 63, 451 (2014).

P. Liu. Low scaling GW method: implementation and applications. (2017).

Y. Liu, J. Chen, H. Deng, G. Hu, D. Zhu, and N. Dai. Anomalous thermoelectricity in strained
Bi2Te3 �lms. Sci. Rep. 6, 32661 (2016b).

W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface construction
algorithm. Comput. Graph. 21, 163 (1987).

H. Lu, C.-W. Bark, D. E. De Los Ojos, J. Alcala, C.-B. Eom, G. Catalan, and A. Gruverman.
Mechanical writing of ferroelectric polarization. Science 336, 59 (2012).

W. Ma and L. Cross. Flexoelectric polarization of barium strontium titanate in the paraelectric
state. Appl. Phys. Lett. 81, 3440 (2002).

W. Ma and L. Cross. Flexoelectric e�ect in ceramic lead zirconate titanate. Appl. Phys. Lett.
86, 072905 (2005).

W. Ma and L. Cross. Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006).

W. Ma and L. E. Cross. Large �exoelectric polarization in ceramic lead magnesium niobate.
Appl. Phys. Lett. 79, 4420 (2001a).

W. Ma and L. E. Cross. Observation of the �exoelectric e�ect in relaxor Pb (Mg 1/3 Nb 2/3) O3
ceramics. Appl. Phys. Lett. 78, 2920 (2001b).

W. Ma and L. E. Cross. Strain-gradient-induced electric polarization in lead zirconate titanate
ceramics. Appl. Phys. Lett. 82, 3293 (2003).

M. S. Majdoub, P. Sharma, and T. Çağin. Erratum: Enhanced size-dependent piezoelectricity
and elasticity in nanostructures due to the �exoelectric e�ect [Phys. Rev. B 77, 125424 (2008)].
Phys. Rev. B 79, 119904 (2009).

M. Majdoub, P. Sharma, and T. Çağin. Enhanced size-dependent piezoelectricity and elasticity
in nanostructures due to the �exoelectric e�ect. Phys. Rev. B 77, 125424 (2008).

S. Mao and P. K. Purohit. Insights Into Flexoelectric Solids From Strain-Gradient Elasticity.
J. Appl. Mech. 81, 1 (2014).

http://dx.doi.org/10.1021/nl301080v
https://doi.org/10.1063/1.4967003
http://dx.doi.org/https://doi.org/10.1016/j.jmps.2013.08.001
http://dx.doi.org/https://doi.org/10.1016/j.jmps.2013.08.001
https://doi.org/10.1038/srep32661
http://dx.doi.org/10.1145/37402.37422
https://doi.org/10.1126/science.1218693
https://doi.org/10.1063/1.1518559
https://doi.org/10.1063/1.1868078
https://doi.org/10.1063/1.1868078
https://doi.org/10.1063/1.2211309
https://doi.org/10.1063/1.1426690
https://doi.org/10.1063/1.1356444
https://doi.org/10.1063/1.1570517
http://dx.doi.org/ 10.1103/PhysRevB.79.119904
http://dx.doi.org/10.1103/PhysRevB.77.125424
http://dx.doi.org/10.1115/1.4027451


158 Bibliography

S. Mao, P. K. Purohit, and N. Aravas. Mixed �nite-element formulations in piezoelectricity
and �exoelectricity. Proc. Math. Phys. Eng. Sci. 472 (2016).

R. Maranganti, N. Sharma, and P. Sharma. Electromechanical coupling in nonpiezoelectric
materials due to nanoscale nonlocal size e�ects: Green’s function solutions and embedded
inclusions. Phys. Rev. B 74, 014110 (2006).

O. Marco, J. J. Ródenas, J. M. Navarro-Jiménez, and M. Tur. Robust h-adaptive meshing
strategy considering exact arbitrary CAD geometries in a Cartesian grid framework. Comput.
Struct. 193, 87 (2017).

O. Marco, R. Sevilla, Y. Zhang, J. J. Ródenas, and M. Tur. Exact 3D boundary representation
in �nite element analysis based on Cartesian grids independent of the geometry. Int. J. Num.
Meth. Eng. 103, 445 (2015).

R. M. Martin. Electronic Structure: Basic Theory and Practical Methods (Cambridge University
Press, 2004).

M. Marvan and A. Havránek. Flexoelectric e�ect in elastomers. in Relationships of Polymeric
Structure and Properties (Springer, 1998) pp. 33–36.

V. S. Mashkevich and K. B. Tolpygo. Electrical, optical and elastic properties of diamond
type cristals. 1. Sov. Phys. Solid State 5, 435 (1957).

MATLAB. 8.6 (R2015b) (The MathWorks Inc., Natick, Massachusetts, 2015).

A. McBride, D. Davydov, and P. Steinmann. Modelling the �exoelectric e�ect in solids: a
micromorphic approach. Comput. Meth. Appl. Mech. Eng. 371, 113320 (2020).

N. D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441
(1965).

R. B. Meyer. Piezoelectric e�ects in liquid crystals. Phys. Rev. Lett. 22, 918 (1969).

R. D. Mindlin and N. N. Eshel. On �rst strain-gradient theories in linear elasticity. Int. J.
Solids Struct. 4, 109 (1968).

R. D. Mindlin and H. F. Tiersten. E�ects of couple-stresses in linear elasticity. Arch. Ration.
Mech. Anal. 11, 415 (1962).

R. D. Mindlin. Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4, 637 (1968).

R. Mittal and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239
(2005).

A. Mocci, J. Barceló-Mercader, D. Codony, and I. Arias. Geometrically polarized architected
dielectrics with e�ective piezoelectricity. (2021). To be submitted.

A. Mocci, A. Abdollahi, and I. Arias. Quanti�cation of shear �exoelectricity in ferroelectrics.
(2020). To be submitted.

http://dx.doi.org/10.1098/rspa.2015.0879
https://doi.org/10.1103/PhysRevB.74.014110
https://doi.org/10.1016/j.compstruc.2017.08.004
https://doi.org/10.1016/j.compstruc.2017.08.004
http://dx.doi.org/10.1002/nme.4914
http://dx.doi.org/10.1002/nme.4914
http://dx.doi.org/10.1017/CBO9780511805769
https://doi.org/10.1007/BFb0114342
https://doi.org/10.1007/BFb0114342
https://doi.org/10.1016/j.cma.2020.113320
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.137.A1441
http://dx.doi.org/ 10.1016/0020-7683(68)90036-X
http://dx.doi.org/ 10.1016/0020-7683(68)90036-X
https://doi.org/10.1007/BF00253946
https://doi.org/10.1007/BF00253946
http://dx.doi.org/ 10.1016/0020-7683(68)90079-6
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1146/annurev.fluid.37.061903.175743


Bibliography 159

H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B
13, 5188 (1976).

S. Nanthakumar, X. Zhuang, H. S. Park, and T. Rabczuk. Topology optimization of �exoelec-
tric structures. J. Mech. Phys. Solids 105, 217 (2017).

J. Narvaez and G. Catalan. Origin of the enhanced �exoelectricity of relaxor ferroelectrics.
Appl. Phys. Lett. 104, 162903 (2014).

J. Narvaez, S. Saremi, J. Hong, M. Stengel, and G. Catalan. Large �exoelectric anisotropy in
paraelectric barium titanate. Phys. Rev. Lett. 115, 037601 (2015).

B. Nguyen, X. Zhuang, and T. Rabczuk. NURBS-based formulation for nonlinear electro-
gradient elasticity in semiconductors. Comput. Meth. Appl. Mech. Eng. 346, 1074 (2019).

T. D. Nguyen, S. Mao, Y.-W. Yeh, P. K. Purohit, and M. C. McAlpine. Nanoscale �exoelec-
tricity. Adv. Mater. 25, 946 (2013).

J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung
von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg 36, 9 (1971).

J. S. Oghalai, H.-B. Zhao, J. W. Kutz, and W. E. Brownell. Voltage-and tension-dependent
lipid mobility in the outer hair cell plasma membrane. Science 287, 658 (2000).

A. O’Halloran, F. O’malley, and P. McHugh. A review on dielectric elastomer actuators,
technology, applications, and challenges. J. Appl. Phys. 104, 9 (2008).

K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. L. Kang, Z. L. Wang, and K. J. Lee. Piezoelectric
BaTiO3 thin �lm nanogenerator on plastic substrates. Nano Lett. 10, 4939 (2010).

S. M. Park, B. Wang, S. Das, S. C. Chae, J.-S. Chung, J.-G. Yoon, L.-Q. Chen, S. M. Yang, and
T. W. Noh. Selective control of multiple ferroelectric switching pathways using a trailing
�exoelectric �eld. Nat. Nanotechnol. 13, 366 (2018).

S. Patel, A. Chauhan, N. A. Madhar, B. Ilahi, and R. Vaish. Flexoelectric induced caloric e�ect
in truncated Pyramid shaped Ba0.67Sr0.33TiO3 ferroelectric material. J. Elec. Mater. 46, 4166
(2017).

M. C. Payne, M. P. Teter, D. C. Allan, T. Arias, and a. J. Joannopoulos. Iterative minimiza-
tion techniques for ab initio total-energy calculations: molecular dynamics and conjugate
gradients. Rev. Mod. Phys. 64, 1045 (1992).

R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph. Electrostriction of polymer dielectrics with
compliant electrodes as a means of actuation. Sens. Actuator A Phys. 64, 77 (1998).

A. W. Peng, F. T. Salles, B. Pan, and A. J. Ricci. Integrating the biophysical and molecular
mechanisms of auditory hair cell mechanotransduction. Nat. Commun. 2, 1 (2011).

https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1016/j.jmps.2017.05.010
https://doi.org/10.1063/1.4871686
https://doi.org/10.1103/PhysRevLett.115.037601
https://doi.org/10.1016/j.cma.2018.08.026
http://dx.doi.org/10.1002/adma.201203852
http://dx.doi.org/10.1007/BF02995904
http://dx.doi.org/10.1007/BF02995904
https://doi.org/10.1126/science.287.5453.658
https://doi.org/10.1063/1.2981642
https://doi.org/10.1021/nl102959k
https://doi.org//10.1038/s41565-018-0083-5
https://doi.org/10.1007/s11664-017-5362-7
https://doi.org/10.1007/s11664-017-5362-7
https://doi.org/10.1103/RevModPhys.64.1045
https://doi.org/10.1016/S0924-4247(97)01657-9
https://doi.org/10.1038/ncomms1533


160 Bibliography

J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple.
Phys. Rev. Lett. 77, 3865 (1996).

J. P. Perdew and W. Yue. Accurate and simple density functional for the electronic exchange
energy: Generalized gradient approximation. Phys. Rev. B 33, 8800 (1986).

C. S. Peskin. The immersed boundary method. Acta Num. 11, 479 (2002).

A. G. Petrov. Flexoelectric model for active transport. in Physical and Chemical Bases of
Biological Information Transfer (Springer, 1975) pp. 111–125.

A. G. Petrov. Flexoelectricity of model and living membranes. Biochim. Biophys. Acta (BBA)
1561, 1 (2002).

J. C. Phillips. Energy-band interpolation scheme based on a pseudopotential. Phys. Rev. 112,
685 (1958).

L. Piegl and W. Tiller. The NURBS Book. Monographs in Visual Communication (Springer
Berlin Heidelberg, 2012).

R. Poya, A. J. Gil, R. Ortigosa, and R. Palma. On a family of numerical models for couple
stress based �exoelectricity for continua and beams. J. Mech. Phys. Solids 125, 613 (2019).

J. Prost and J. Marcerou. On the microscopic interpretation of �exoelectricity. J. Phys. 38,
315 (1977).

Y. Qi, J. Kim, T. D. Nguyen, B. Lisko, P. K. Purohit, and M. C. McAlpine. Enhanced Piezo-
electricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT
Ribbons. Nano Lett. 11, 1331 (2011).

W. Qu, S. Bagchi, X. Chen, H. B. Chew, and C. Ke. Bending and interlayer shear moduli of
ultrathin boron nitride nanosheet. J. Phys. D: Appl. Phys. 52, 465301 (2019).

R. Resta. Towards a bulk theory of �exoelectricity. Phys. Rev. Lett. 105, 127601 (2010).

J. Rödel, W. Jo, K. T. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic. Perspective on
the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009).

D. Rogers. An Introduction to NURBS: With Historical Perspective. Morgan Kaufmann Series in
Computer Graphics and Geometric Modeling (Morgan Kaufmann Publishers, 2001).

S. Rosset and H. R. Shea. Small, fast, and tough: Shrinking down integrated elastomer
transducers. Appl. Phys. Rev. 3, 031105 (2016).

T. Rüberg and F. Cirak. Subdivision-stabilised immersed b-spline �nite elements for moving
boundary �ows. Comput. Meth. Appl. Mech. Eng. 209, 266 (2012).

T. Rüberg, F. Cirak, and J. M. García Aznar. An unstructured immersed �nite element method
for nonlinear solid mechanics. Adv. Model. Simul. Eng. Sci. 3, 22 (2016).

https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.33.8800
http://dx.doi.org/10.1017/S0962492902000077
https://doi.org/10.1016/S0304-4157(01)00007-7
https://doi.org/10.1016/S0304-4157(01)00007-7
https://doi.org/10.1103/PhysRev.112.685
https://doi.org/10.1103/PhysRev.112.685
http://dx.doi.org/10.1007/978-3-642-97385-7
https://doi.org/10.1016/j.jmps.2019.01.013
http://dx.doi.org/10.1021/nl104412b
http://dx.doi.org/10.1088/1361-6463/ab3953
https://doi.org/10.1103/PhysRevLett.105.127601
https://doi.org/10.1111/j.1551-2916.2009.03061.x
https://doi.org/10.1016/B978-1-55860-669-2.X5000-3
https://doi.org/10.1063/1.4963164
http://dx.doi.org/10.1016/j.cma.2011.10.007
http://dx.doi.org/10.1186/s40323-016-0077-5


Bibliography 161

E. Sahin and S. Dost. A strain-gradients theory of elastic dielectrics with spatial dispersion.
Int. J. Eng. Sci. 26, 1231 (1988).

A. Schia�no, C. E. Dreyer, D. Vanderbilt, and M. Stengel. Metric wave approach to �exo-
electricity within density functional perturbation theory. Phys. Rev. B 99, 085107 (2019).

D. Schillinger, L. Dedè, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank, and T. J. Hughes.
An isogeometric design-through-analysis methodology based on adaptive hierarchical
re�nement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput.
Meth. Appl. Mech. Eng. 249–252, 116 (2012).

D. Schillinger, I. Harari, M.-C. Hsu, D. Kamensky, S. K. Stoter, Y. Yu, and Y. Zhao. The
non-symmetric Nitsche method for the parameter-free imposition of weak boundary and
coupling conditions in immersed �nite elements. Comput. Meth. Appl. Mech. Eng. 309, 625
(2016).

D. Schillinger and M. Ruess. The Finite Cell Method: A Review in the Context of Higher-Order
Structural Analysis of CAD and Image-Based Geometric Models. Arch. Comp. Meth. Eng.
22, 391 (2015).

R. Sevilla and S. Fernández-Méndez. Numerical integration over 2D NURBS-shaped domains
with applications to NURBS-enhanced FEM. Finite Elem. Anal. Des. 47, 1209 (2011).

R. Sevilla, S. Fernández-Méndez, and A. Huerta. NURBS-enhanced �nite element method
(NEFEM). Int. J. Num. Meth. Eng. 76, 56 (2008).

R. Sevilla, S. Fernández-Méndez, and A. Huerta. 3D NURBS-enhanced �nite element method
(NEFEM). Int. J. Num. Meth. Eng. 88, 103 (2011a).

R. Sevilla, S. Fernández-Méndez, and A. Huerta. NURBS-enhanced �nite element method
(NEFEM). Arch. Comp. Meth. Eng. 18, 441 (2011b).

N. Sharma, C. Landis, and P. Sharma. Piezoelectric thin-�lm superlattices without using
piezoelectric materials. J. Appl. Phys. 108, 1 (2010).

N. Sharma, R. Maranganti, and P. Sharma. On the possibility of piezoelectric nanocomposites
without using piezoelectric materials. J. Mech. Phys. Solids 55, 2328 (2007).

S. Shen and S. Hu. A theory of �exoelectricity with surface e�ect for elastic dielectrics. J.
Mech. Phys. Solids 58, 665 (2010).

W. Shi, Y. Guo, Z. Zhang, and W. Guo. Flexoelectricity in Monolayer Transition Metal
Dichalcogenides. J. Phys. Chem. Lett. 9, 6841 (2018).

L. Shu, W. Huang, S. Ryung Kwon, Z. Wang, F. Li, X. Wei, S. Zhang, M. Lanagan, X. Yao, and
X. Jiang. Converse �exoelectric coe�cient f1212 in bulk Ba0.67Sr0.33TiO3. Appl. Phys. Lett.
104, 232902 (2014).

L. Shu, S. Ke, L. Fei, W. Huang, Z. Wang, J. Gong, X. Jiang, L. Wang, F. Li, S. Lei, et al..
Photo�exoelectric e�ect in halide perovskites. Nat. Mater. , 1 (2020).

https://doi.org/10.1016/0020-7225(88)90043-2
https://doi.org/10.1103/PhysRevB.99.085107
http://dx.doi.org/10.1016/j.cma.2012.03.017
http://dx.doi.org/10.1016/j.cma.2012.03.017
https://www.doi.org/10.1016/j.cma.2016.06.026
https://www.doi.org/10.1016/j.cma.2016.06.026
http://dx.doi.org/ 10.1007/s11831-014-9115-y
http://dx.doi.org/ 10.1007/s11831-014-9115-y
https://doi.org/10.1016/j.finel.2011.05.011
http://dx.doi.org/ 10.1002/nme.2311
https://doi.org/10.1002/nme.3164
https://doi.org/10.1007/s11831-011-9066-5
http://dx.doi.org/ 10.1063/1.3443404
http://dx.doi.org/10.1016/j.jmps.2007.03.016
http://dx.doi.org/10.1016/j.jmps.2010.03.001
http://dx.doi.org/10.1016/j.jmps.2010.03.001
http://dx.doi.org/10.1021/acs.jpclett.8b03325
https://doi.org/10.1063/1.4882060
https://doi.org/10.1063/1.4882060
http://dx.doi.org/10.1038/s41563-020-0659-y


162 Bibliography

L. Shu, T. Li, Z. Wang, F. Li, L. Fei, Z. Rao, M. Ye, S. Ke, W. Huang, Y. Wang,et al.. Flexoelectric
behavior in PIN-PMN-PT single crystals over a wide temperature range. Appl. Phys. Lett.
111, 162901 (2017).

L. Shu, R. Liang, Z. Rao, L. Fei, S. Ke, and Y. Wang. Flexoelectric materials and their related
applications: A focused review. J. Adv. Ceram. , 1 (2019).

L. Shu, T. Wang, X. Jiang, and W. Huang. Veri�cation of the �exoelectricity in barium
strontium titanate through d33 meter. AIP Adv. 6, 125003 (2016).

L. Shu, X. Wei, L. Jin, Y. Li, H. Wang, and X. Yao. Enhanced direct �exoelectricity in paraelectric
phase of Ba(Ti0.87Sn0.13)O3 ceramics. Appl. Phys. Lett. 102, 152904 (2013).

L. Shu, X. Wei, T. Pang, X. Yao, and C. Wang. Symmetry of �exoelectric coe�cients in
crystalline medium. J. Appl. Phys. 110, 104106 (2011).

J. C. Slater. The self-consistent �eld for molecules and solids. Vol. 4 (McGraw-Hill, 1974).

P. Steinmann and D. K. Vu. Computational challenges in the simulation of nonlinear elec-
troelasticity. Comput. Assist. Meth. Eng. Sci. 19, 199 (2017).

M. Stengel. Flexoelectricity from density-functional perturbation theory. Phys. Rev. B 88,
174106 (2013).

M. Stengel. Surface control of �exoelectricity. Phys. Rev. B 90, 201112 (2014).

S. Su, H. Huang, Y. Liu, and Z. H. Zhu. Wrinkling of �exoelectric nano-�lm/substrate systems.
J. Phys. D 51, 075309 (2018).

P. Suryanarayana and D. Phanish. Augmented Lagrangian formulation of orbital-free density
functional theory. J. Comput. Phys. 275, 524 (2014).

A. K. Tagantsev. Piezoelectricity and �exoelectricity in crystalline dielectrics. Phys. Rev. B
34, 5883 (1986).

A. K. Tagantsev. Electric polarization in crystals and its response to thermal and elastic
perturbations. Phase Transit. A 35, 119 (1991).

T. Q. Thai, T. Rabczuk, and X. Zhuang. A large deformation isogeometric approach for
�exoelectricity and soft materials. Comput. Meth. Appl. Mech. Eng. 341, 718 (2018).

L. L. Thompson and P. M. Pinsky. A Galerkin least-squares �nite element method for the
two-dimensional Helmholtz equation. Int. J. Num. Meth. Eng. 38, 371 (1995).

A. Todorov, A. Petrov, M. O. Brandt, and J. H. Fendler. Electrical and real-time stroboscopic
interferometric measurements of bilayer lipid membrane �exoelectricity. Langmuir 7, 3127
(1991).

K. Tolpygo. Long wavelength oscillations of diamond-type crystals including long range forces.
Sov. Phys. Solid State 4, 1297 (1963).

https://doi.org/10.1063/1.5001265
https://doi.org/10.1063/1.5001265
https://doi.org/10.1007/s40145-018-0311-3
https://doi.org/10.1063/1.4968524
https://doi.org/10.1063/1.4802450
http://dx.doi.org/10.1063/1.3662196
https://cames.ippt.pan.pl/index.php/cames/article/view/90
http://dx.doi.org/10.1103/PhysRevB.88.174106
http://dx.doi.org/10.1103/PhysRevB.88.174106
http://dx.doi.org/10.1103/PhysRevB.90.201112
https://doi.org/10.1088/1361-6463/aaa696
https://doi.org/10.1016/j.jcp.2014.07.006
http://dx.doi.org/10.1103/PhysRevB.34.5883
http://dx.doi.org/10.1103/PhysRevB.34.5883
https://doi.org/10.1080/01411599108213201
https://doi.org/10.1016/j.cma.2018.05.019
https://doi.org/10.1002/nme.1620380303
https://doi.org/10.1021/la00060a036
https://doi.org/10.1021/la00060a036


Bibliography 163

C. Trabi, C. Brown, A. Smith, and N. Mottram. Interferometric method for determining the
sum of the �exoelectric coe�cients (e1+ e3) in an ionic nematic material. Appl. Phys. Lett.
92, 223509 (2008).

F. Vásquez Sancho. Flexoelectricity in biomaterials. Ph.D. thesis. Universitat Autònoma de
Barcelona (2018).

F. Vasquez-Sancho, A. Abdollahi, D. Damjanovic, and G. Catalan. Flexoelectricity in bones.
Adv. Mater. 30, 1705316 (2018).

J. Ventura, D. Codony, and S. Fernández-Méndez. A C0 interior penalty �nite element method
for �exoelectricity. arXiv preprint arXiv:2008.12391 (2020).

J. Ventura Siches. Computational modelling of �exoelectric materials based on C0-FEM for 4th
order PDEs. Master’s thesis. UPC, Facultat de Matemàtiques i Estadística, Departament
d’Enginyeria Civil i Ambiental (2020).

D. Vu, P. Steinmann, and G. Possart. Numerical modelling of non-linear electroelasticity. Int.
J. Num. Meth. Eng. 70, 685 (2007).

A.-V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon. A hierarchical approach to adaptive
local re�nement in isogeometric analysis. Comput. Meth. Appl. Mech. Eng. 200, 3554 (2011).

M. Wan, Z. Yong, W. Huang, S. Zhang, N. Zhou, and L. Shu. Design of a �exure composite
with large �exoelectricity. J. Mat. Sci. 28, 6505 (2017).

B. Wang, Y. Gu, S. Zhang, and L.-Q. Chen. Flexoelectricity in solids: Progress, challenges,
and perspectives. Prog. Mater Sci. (2019).

J. C. Weaver, G. W. Milliron, A. Miserez, K. Evans-Lutterodt, S. Herrera, I. Gallana, W. J. Mer-
shon, B. Swanson, P. Zavattieri, E. DiMasi,et al.. The stomatopod dactyl club: a formidable
damage-tolerant biological hammer. Science 336, 1275 (2012).

Wikimedia Commons. File:OdontodactylusScyllarus2.jpg. (2010). Accessed: 2020-12-08.

Wikimedia Commons. File:Bloch function.svg. (2016). Accessed: 2020-10-18.

Wikimedia Commons. File:Odontodactylus_scyllarus_2.png. (2020). Accessed: 2020-12-08.

F. Witherden and P. Vincent. On the identi�cation of symmetric quadrature rules for �nite
element methods. Comput. Math. Appl. 69, 1232 (2015).

Q. Xu, A. Sharma, B. Comer, H. Huang, E. Chow, A. J. Medford, J. E. Pask, and P. Surya-
narayana. SPARC: Simulation Package for Ab-initio Real-space Calculations. arXiv preprint
arXiv:2005.10431 (2020a).

Q. Xu, A. Sharma, and P. Suryanarayana. M-SPARC: Matlab-Simulation Package for Ab-initio
Real-space Calculations. SoftwareX 11, 100423 (2020b).

https://doi.org/10.1063/1.2938722
https://doi.org/10.1063/1.2938722
http://hdl.handle.net/10803/643308
https://doi.org/10.1002/adma.201705316
https://arxiv.org/abs/2008.12391
http://hdl.handle.net/2117/328111
https://doi.org/10.1002/nme.1902
https://doi.org/10.1002/nme.1902
http://dx.doi.org/ 10.1016/j.cma.2011.09.004
https://doi.org/10.1007/s10854-017-6339-2
https://doi.org/10.1016/j.pmatsci.2019.05.003
https://doi.org/10.1126/science.1218764
https://commons.wikimedia.org/wiki/File:OdontodactylusScyllarus2.jpg
https://commons.wikimedia.org/wiki/File:Bloch_function.svg
https://commons.wikimedia.org/wiki/File:Odontodactylus_scyllarus_2.png
http://dx.doi.org/http://dx.doi.org/10.1016/j.camwa.2015.03.017
https://www.arxiv.org/abs/2005.10431
https://www.arxiv.org/abs/2005.10431
https://doi.org/10.1016/j.softx.2020.100423


164 Bibliography

Z. Yan and L. Jiang. Flexoelectric e�ect on the electroelastic responses of bending piezoelectric
nanobeams. J. Appl. Phys. 113, 194102 (2013).

Z. Yan. Modeling of a nanoscale �exoelectric energy harvester with surface e�ects. Phys. E
88, 125 (2017).

M.-M. Yang, D. J. Kim, and M. Alexe. Flexo-photovoltaic e�ect. Science 360, 904 (2018).

N. A. Yaraghi, N. Guarín-Zapata, L. K. Grunenfelder, E. Hintsala, S. Bhowmick, J. M. Hiller,
M. Betts, E. L. Principe, J.-Y. Jung, L. Sheppard,et al.. A sinusoidally architected helicoidal
biocomposite. Adv. Mater. 28, 6835 (2016).

P. Yudin and A. Tagantsev. Fundamentals of �exoelectricity in solids. Nanotechnol. 24, 1
(2013).

A. Yurkov and A. Tagantsev. Strong surface e�ect on direct bulk �exoelectric response in
solids. Appl. Phys. Lett. 108, 022904 (2016).

J. Yvonnet and L. Liu. A numerical framework for modeling �exoelectricity and Maxwell
stress in soft dielectrics at �nite strains. Comput. Meth. Appl. Mech. Eng. 313, 450 (2017).

R. Zhang, X. Liang, and S. Shen. A Timoshenko dielectric beam model with �exoelectric
e�ect. Meccanica 51, 1181 (2016a).

S. Zhang, K. Liu, M. Xu, H. Shen, K. Chen, B. Feng, and S. Shen. Investigation of the 2312
�exoelectric coe�cient component of polyvinylidene �uoride: Deduction, simulation, and
mensuration. Sci. Rep. 7, 1 (2017).

S. Zhang, M. Xu, G. Ma, X. Liang, and S. Shen. Experimental method research on transverse
�exoelectric response of poly (vinylidene �uoride). Jpn. J. Appl. Phys. 55, 071601 (2016b).

X. Zhang, J. Liu, M. Chu, and B. Chu. Flexoelectric piezoelectric metamaterials based on the
bending of ferroelectric ceramic wafers. Appl. Phys. Lett. 109, 072903 (2016c).

W. Zhou, P. Chen, Q. Pan, X. Zhang, and B. Chu. Lead-free metamaterials with enormous
apparent piezoelectric response. Adv. Mater. 27, 6349 (2015).

Y. Zhou, J. Liu, X. Hu, B. Chu, S. Chen, and D. Salem. Flexoelectric e�ect in PVDF-based
polymers. IEEE Trans. Dielectr. Electr. Insul. 24, 727 (2017).

W. Zhu, J. Y. Fu, N. Li, and L. Cross. Piezoelectric composite based on the enhanced �exo-
electric e�ects. Appl. Phys. Lett. 89, 192904 (2006).

X. Zhuang, S. S. Nanthakumar, and T. Rabczuk. A meshfree formulation for large deforma-
tion analysis of �exoelectric structures accounting for the surface e�ects. arXiv preprint
arXiv:1911.06553 (2019).

X. Zhuang, B. H. Nguyen, S. S. Nanthakumar, T. Q. Tran, N. Alajlan, and T. Rabczuk.
Computational Modeling of Flexoelectricity: A Review. Energies 13, 1326 (2020).

https://doi.org/10.1063/1.4804949
https://doi.org/10.1016/j.physe.2017.01.001
https://doi.org/10.1016/j.physe.2017.01.001
http://dx.doi.org/10.1126/science.aan3256
https://doi.org/10.1002/adma.201600786
http://dx.doi.org/ 10.1088/0957-4484/24/43/432001
http://dx.doi.org/ 10.1088/0957-4484/24/43/432001
https://doi.org/10.1063/1.4939975
https://doi.org/10.1016/j.cma.2016.09.007
https://doi.org/10.1007/s11012-015-0290-1
https://doi.org/10.1038/s41598-017-03403-7
https://doi.org/10.7567/JJAP.55.071601
https://doi.org/10.1063/1.4961310
https://doi.org/10.1002/adma.201502562
https://doi.org/10.1109/TDEI.2017.006273
https://doi.org/10.1063/1.2382740
https://arxiv.org/abs/1911.06553
https://arxiv.org/abs/1911.06553
https://doi.org/10.3390/en13061326


Bibliography 165

D. Zorin. Subdivision for Modeling and Animation. SIGGRAPH 2000 Course Notes , 65 (2000).

P. Zubko, G. Catalan, A. Buckley, P. Welche, and J. Scott. Strain-gradient-induced polarization
in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007).

P. Zubko, G. Catalan, and A. K. Tagantsev. Flexoelectric e�ect in solids. Annu. Rev. Mat. Res.
24, 387 (2013).

http://mrl.nyu.edu/publications/subdiv-course2000/coursenotes00.pdf
https://doi.org/10.1103/PhysRevLett.99.167601
http://dx.doi.org/ 10.1146/annurev-matsci-071312-121634
http://dx.doi.org/ 10.1146/annurev-matsci-071312-121634

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	State of the art of the flexoelectric effect
	Observation
	Quantification
	Theoretical and computational modeling
	Technological applications

	Goals and objectives
	Outline
	Research stay at Georgia Tech
	List of publications
	Publications derived from this thesis
	Scientific journal articles published or under review
	Scientific journal articles in preparation

	Other related publications
	Patents
	Conference proceedings


	Continuum modeling of flexoelectricity
	State of the art
	Direct and converse flexoelectric effects
	Polarization-based models: Free energy minimization
	Electric field-based models: Enthalpy optimization
	Models at finite deformation

	Main contributions
	Legendre transform: the connection between the two families of flexoelectricity functionals
	Direct flexoelectricity
	Lifshitz-invariant flexoelectricity (without gradient polarization)
	Lifshitz-invariant flexoelectricity (with gradient polarization)

	Variational models at infinitesimal deformation
	Direct flexoelectricity form
	Standard framework: Strong boundary conditions
	Nitsche's method: Weak boundary conditions

	Lifshitz-invariant flexoelectricity form
	Standard framework
	Nitsche's method

	Comparison of both models
	Cantilever bending
	Cantilever actuator


	Legendre transform in a finite deformation framework: Direct flexoelectric energy density 
	Variational models at finite deformation
	Direct flexoelectricity form
	Standard framework
	Nitsche's method



	On-going and future work
	Legendre transform and variational model for Lifshitz-invariant flexoelectricity at finite deformation
	Consideration of a dielectric surrounding media
	Surface effects
	Photoflexoelectricity

	Concluding remarks

	Numerical solution methods
	State of the art
	Main contributions
	iHB-FEM computational framework
	Body-fitted B-spline approximation
	Uniform B-Spline basis
	Approximation of the state variables
	Interpolant basis on the boundary: Open knot vectors

	Immersed boundary B-spline approximation
	Cut-cell integration
	Cut-cell stabilization
	Local mesh refinement: Hierarchical B-splines

	Application to the characterization of shear flexoelectricity
	Application to electrode-based scalable flexoelectric sensors
	Sensing electrode boundary conditions
	Wheel-shaped (2D) flexoelectric sensor

	Application to nonlinear flexoelectric rods
	Mechanically-induced bending
	Mechanically-induced buckling
	Electrically-induced bending
	Electrically-induced buckling

	Application to arbitrarily-shaped soft flexoelectric devices
	Collective-beam sensor triggered by compression


	On-going and future work
	Residual-based weak form stabilization

	Concluding remarks

	Quantum electromechanics of flexoelectricity
	State of the art
	Density functional theory
	Foundations
	Nonlinear Kohn-Sham eigenvalue problem
	Periodicity in real space: Bloch's theorem

	Cyclic density functional theory
	Transversal flexoelectricity in electronic systems

	Main contributions
	Radial polarization: Reformulating the transversal flexoelectricity coefficient
	Radial polarization in electronic structure computations
	Transversal flexoelectricity coefficient using cyclic DFT

	On-going and future work
	Concluding remarks

	Conclusions
	Appendices
	Material characterization
	Infinitesimal deformation framework: Material tensors
	Finite deformation framework: Hyperelastic potentials

	Variations of stresses and electric displacement in a finite deformation framework

	Bibliography

