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Versio catalana

En els proxims anys, la quantitat de dades observacionals disponibles per l'astrofisica

en conjunt, i particularment la cosmologia, hi augmentara en ordres de magnitud
degut als nous programes observacionales i als avangaments tecnologics. Per aprofi-
tar totalment aquestes observacions venideres, nous metodes estadistics per a obtenir
resultats cientifics han de ser desenvolupats i aplicats. Intensity Mapping és una
d’aquests nous metodes, que consisteix a tragar una linia d’emissi6é en coordenades
angulars i redshift, sense considerar objectes resolts.

Aquesta tesi hi esta enfocada a la simulacié i avaluacié d'Intensity Mapping amb
la linea Lyw fent la correlacié creuada de dos tipus de surveys optiques: la survey
fotometrica de banda estreta PAUS, i les surveys espectroscopiques eBOSS i DESI.
La primera hauria de contenir emissi6é Ly estesa provinent del mitja intergalactic al
fons de les imatges, mentres que les segones contenen el bosc Ly« (és a dir, el conjunt
de linies d’absorci6 generades pel mitja intergalactic) en el seus espectres de quasars.
Al fer la correlaci6 creuada d’ambdues, hauriem d’obtenir una senyal de I'emissi6 de
Lya difusa, a pesar dels objectes no correlacionats i el soroll a les imatges de PAUS.
Per simular aquesta correlacié creuada, una simulacié hidrodinamica dissenyada
especificament per a I’estudi de Lya al mitja intergalactic ha sigut emprada per sim-
ular tant I'emissié Lya com l’absorcié, mentres que els objectes no correlacionats a
les imatges de PAUS han sigut modelats utilitzant un cataleg simulat profund al que
s’han ajustat plantilles d’emissi6 espectral als seus objectes. El soroll instrumental
i atmosferic s’ha afegit a les imatges de PAUS simulades mesurant directament el
soroll de conjunts d’imatges apilades i emmascarades, i s’ha introduit a la simulaci6
com una distribucié gaussiana. A més a més, un codi de correlacié creuada ha estat
desenvolupat des de zero, optimitzat i validat dins d’aquesta tesi per calcular les
correlacions creuades.

Els resultats es presenten de forma probabilistica: per casos diferents (PAUS-
eBOSS, PAUS-DESI i dues extensions hipotétiques de PAUS) han sigut calculades
1,000 correlacions creuades amb realitzacions diferents del soroll instrumental i at-

mosferic de les imatges de PAUS, a més de les posicions dels quasars. Amb 1’aproximacié

optimista de soroll instrumental no correlacionat (el que requeriria més treball re-
duint les dades), fins I'extensié més llarga de PAUS que hem considerat té tan sols
una probabilitat de deteccié del 15%; si emprem el soroll correlacionat que s’observa
a les imatges, totes les probabilitats passen a ser negligibles.

A pesar d’aquests resultats negatius, podem extreure algunes conclusions val-
uoses. Els diferents tipus de funcions de correlacié de dos punts que hem consid-
erat (monopol, paral-lela i perpendicular a la linia de visi6) mostren comportaments
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complementaris: el monopol i la paral-lela tenen un millor rendiment a escales més
grans, mentres que la perpendicular sondeja millor les escales menors de 10 Mpc/h.
A més a més, el suavitzat en redshift a la senyal de Ly-alpha degut als filtres fo-
tometrics ha sigut implementat de forma adecuada al model teoric, i fins i tot pot ser
emprada per a predir les escales amb millor ratio entre soroll i senyal per a cada fun-
ci6 de correlacié. Per tant, aquests descobriments indiquen que aquesta metodologia
pot ser més adequada per les surveys de banda ampla; concloem la tesi donant al-
gunes directrius basiques sobre com aquest estudi es pot replicar per aquest tipus de
dades.

English version

In the upcoming years, the amount of observational data available for astro-
physics as a whole, and particularly cosmology, is expected to increase by orders
of magnitude due to the new observational programs and technological advance-
ments. To fully capitalise on these upcoming observations, new statistical methods
to draw scientific results have to be developed and applied. Intensity Mapping is
one of such new methods, which consists on the tracing of a sharp spectral feature
(e.g., a emission line) in angular coordinates and redshift, without considering re-
solved objects.

This thesis is focused on the simulation and evaluation of Intensity Mapping
with the Lya line by cross-correlating two kinds of optical surveys: the narrow-
band photometric survey PAUS, and the spectroscopic surveys eBOSS and DESI.
The former should contain extended Lya emission from the intergalactic medium in
the background of the images, while the latter contains the Lya forest (i.e., the set
of absorption lines generated by the intergalactic medium) in their quasar spectra.
Cross-correlating both then should yield a signal of the diffuse Lya emission, despite
the foregrounds and noise in PAUS images.

In order to simulate this, a hydrodynamic simulation specifically designed for
the study of Ly« in the intergalactic medium has been used to simulate both Lya
emission and absorption, while the foregrounds in PAUS images have been mod-
eled using a deep lightcone mock catalogue and fitting spectral energy distribu-
tions to its objects. Instrumental/atmospheric noise has been added to the simu-
lated PAUS images by directly measuring the noise from sets of masked and stacked
images, and introducing it on the simulation as a Gaussian distribution. Besides, a
cross-correlation code in Python has been developed from scratch, optimised and
validated in the framework of the thesis to compute the cross-correlations.

The results are presented in a probabilistic manner: for different cases (PAUS-
eBOSS, PAUS-DESI and two hypothetical PAUS extensions with DESI) 1,000 cross-
correlations are computed with different realisations of the instrumental /atmospheric
noise of PAUS images, as well as quasar positions. With the optimistic approxima-
tion of uncorrelated instrumental noise (which would require further work in data
reduction), even the largest PAUS extension considered only yields a probability of
detection of ~15%; using the actual correlated noise all the probabilities become
negligible.

In spite of these negative results, some valuable conclusions are extracted. The
different kinds of two-point correlation functions (monopole, parallel and perpen-
dicular to the line of sight) show complementary behaviours: monopole and par-
allel perform better at larger scales, while perpendicular samples better the scales
smaller than 10 Mpc/h. Besides, the redshift smoothing in the Lya signal due to



the photometric filters has been properly implemented in the theoretical model, and
can even be used to predict the scales with better SNR for each correlation function.
Therefore, these findings indicate that this methodology may be more suitable for
broad-band surveys; we conclude the thesis giving some basic guidelines on how
this study could be replicated for broad-band data.
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Chapter 1

Introduction to standard
cosmology

In this introductory chapter we will lay out a very brief history of the development
of Cosmology as a fully-fledged physical science, and from there explain in more
detail the most basic theoretical foundations of the standard ACDM cosmological
model: the FLRW metric, the Friedmann equations, and the evolution of energy
densities and the scale factor according to them, as well as the different definitions
of distance commonly used in cosmology. We will conclude this chapter with a very
brief exposition of the evolution of the Universe and its different stages, according
to the current paradigm.

1.1 Development of Physical Cosmology

If the broadest definition is to be considered, Cosmology is the study of the origin
and evolution of the Universe. When applying the scientific method to this task,
some important caveats arise, such as:

¢ There is only one universe (at least, that we can observe). Therefore, when
considering the Universe as a whole, there is only one possible experiment to
examine; our Universe as it is. This has crucial implications for both verifica-
tion of hypothesis via observation and formulation of hypothesis via induc-
tion, two keystones of the scientific method. Are these still valid when there is
only one observation to be made?

¢ Other physical sciences deal with the behaviour of systems that are ultimately
isolated in both time and space; this means that an arbitrary set of initial condi-
tions may be set for the sake of studying the evolution of the system. However,
the initial conditions of the Universe are by definition the origin of everything,
and thus when going back in time far enough any assumption strong enough
about an initial state enters the domain of metaphysics.

¢ Since we live in the Universe and it can be observed by us, the nature of the
Universe must allow the existence of conscious life. Consequently, it can be
argued that a particular feature of the Universe (e.g., energy densities, funda-
mental constants) is set to a certain value simply because a significant variation
in this value would mean that we would not be here to observe it. Are these
anthropic reasonings enough of a scientific explanation?

Due to these issues, among others, cosmology remained a purely philosophical
discipline during most of Modern history. In fact, this was still a common viewpoint
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as late as in the 1960s (Smeenk and Ellis, 2017). However, several advances in the last
century, both theoretical and observational, have led to the development of cosmol-
ogy into a fully recognised physical science. While this science can be called Physical
cosmology in order to differentiate it from the broader definition considered before,
in this thesis we will always refer to Cosmology exclusively as the scientific study of
the Universe.

In this section, we will present a succinct overview of these discoveries that
have turned current cosmology into a full branch of physics, with large system-
atic observation programs, theoretical models capable of elaborating several testable
predictions, and measurements of the parameters of these models (sometimes with
exquisite precision, e.g., the CMB temperature).

1.1.1 The Cosmological Principle

One assumption that lies at the core of every modern cosmological theory is that our
position in the Universe is not special, i e., not significantly different from any other
possible position. While this is a concept that can be originally attributed to Coper-
nicus (the Earth is not the centre of the Universe, but just another planet orbiting the
Sun), it can be extrapolated to cosmic scales, with the following implications:

¢ The Universe is isotropic: its properties are the same regardless of the direction
where it is observed.

¢ The Universe is homogeneous: its properties are the same in all of its points.
This is a logical result of total isotropy (since an inhomogeneity would neces-
sarily imply an observable anisotropy for a certain observer).

It is important to note that these two axioms are only applicable to large enough
scales; our daily experience shows us inequivocally that, for a scale small enough,
the Universe is clearly anisotropic and inhomogenous.

1.1.2 General Relativity

The publication of the theory of general relativity (Einstein, 1915) was a turning
point in our understanding of physics, since not only redefines gravitational inter-
actions as a consequence of the geometry of space and time, but also considers time
and space as different dimensions of the same four-dimensional manifold (usually
called spacetime). As of today, general relativity is the accepted description of grav-
itation, being an extremely accurate description of gravitational interactions at all
macroscopic scales, and standing the test of all the new observations carried out
over the last 100 years. In fact, the recent observation of gravitational waves (Ab-
bott et al., 2016) is the most recent verification of a theoretical prediction of general
relativity.

Two years after the original publication, Einstein applied the field equations of
general relativity to cosmology, with the aim of obtaining a description of the evo-
lution of the Universe as a whole (Einstein, 1917). The resulting equations needed
the addition of a constant to keep the universe stationary (since this was the con-
sensus of physicists at the time); the cosmological constant A. Some years later, it
was observed that the Universe was actually expanding, which made Einstein re-
tract from this cosmological constant. Nevertheless, the cosmological constant A is
a key feature of the current standard cosmological model, in order to account for the
observed expansion.
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After the initial work of Einstein, the task of applying general relativity to derive
a set of cosmological equations was followed by Alexander Friedmann (Friedmann,
1922; Friedmann, 1924), and independently by Georges Lemaitre (Lemaitre, 1931).
Afterwards, Howard Robertson and Arthur Walker demonstrated rigorously that
the equations derived by Friedmann and Lemaitre were the only possible solution
consistent with the cosmological principle, regardless of the field equations of gen-
eral relativity used to derive them (Robertson, 1935).

Consequently, this solution of the general relativity field equations in accordance
with the cosmological principle is known as the Friedmann-Lemaitre-Robertson-
Walker metric (FLRW). This FLRW metric will be developed and discussed in sec-
tion 1.2.1.

1.1.3 Observations of an expanding Universe

One of the facts in cosmology that has been verified the most by different observa-
tional probes is that, from our point of view, the Universe is currently ongoing an
accelerated expansion. In other words, on large enough scales all objects we can ob-
serve are moving away from us, and the farther away they are, the faster they move.
This phenomenon was first formally suggested in Lemaitre, 1927, and observational
confirmation came shortly after.

The first measurement of this accelerated expansion was done by Edwin Hubble
(Hubble, 1929), who used to the relationship between period and luminosity in vari-
able Cepheid stars to measure the distance to close galaxies. By observing the period
of the Cepheid stars contained in these galaxies, its actual luminosity can be inferred,
and by comparing the actual luminosity to the observed luminosity, the distance to
these Cepheid stars (and thus, the galaxies containing them) can be computed.

Hubble combined these distance measurements with the redshift of these same
galaxies observed by Vesto Slipher (Slipher, 1913), which were a measure of the rel-
ative velocity of the galaxies with respect to us. This study showed that there was a
strong correlation between distance and velocity (Figure 1.1).

The slope in the linear fit shown in fig. 1.1 is the value of the Hubble constant.
For a more thorough explanation of this constant, as well as the relationship between
redshift and velocity/distance, see section 1.2.6. This experimental confirmation of
the accelerated expansion challenged the conception of a stationary Universe that
was widely held at the time, diplaying it as a dynamic system that was currently
evolving.

It is important to note how revolutionary this notion was back then; not even
a decade before, it was discussed if the galaxies observed by Hubble (called nebu-
lae at that point) were small stellar aggregations or gas clouds embedded into the
Milky Way or galaxies like our own, much farther away than any object ever ob-
served before. This debate was actually held in 1920 between two astronomers, Har-
low Shapley (defending that the nebulae were part of our galaxy) and Heber Curtis
(proposing that they were independent galaxies).

Ever since the pioneering observations by Hubble, the accelerated expansion of
the Universe and the value of the Hubble constant have been determined by a myr-
iad of other cosmological probes. One of the most important probes will be briefly
discussed in the next subsection.



4 Chapter 1. Introduction to standard cosmology

+1000 KM

VELOCITY

DISTANCE
[ 0¥ PARSECS 2210® PARSECS

FIGURE 1.1: Original plot in Hubble, 1929, displaying his distance

measurements in the x axis vs the velocities inferred from Slipher’s

redshift measurements. Note that the units in the y axis should be

velocity (km/s), not distance (km). Also, an error in distance calibra-

tion yields a slope almost an order of magnitude larger than current
accepted values.

1.1.4 The Cosmic Microwave Background and the Big Bang theory

With solid evidence that the Universe was currently expanding, and theoretical
models that supported this expansion, several questions aroused regarding the ori-
gin and evolution of the Universe. Has expansion being going on forever? If so, how
was the Universe at earlier stages?

In order to answer these questions, two models were proposed: the steady-state
and the Big Bang. The steady-state model proposed that the Universe was forever
expanding yet effectively stationary; a continuous creation of matter was introduced
in Einstein’s equations, which cancelled out the decrease of density due to expansion
(Hoyle, 1948). This made the expansion compatible with the notion of an eternal and
immutable Universe.

On the other hand, the Big Bang model proposed that the Universe expanded
forever, but this implied that at as we went back time, the Universe necessarily was
denser and smaller (and thus hotter, since the energy density would be increased).
By reasoning in this manner, it followed that long ago enough the Universe was a
single point of infinite density; a singularity where the concepts of space and time
lost their meaning (). Unlike the state-steady model, the Big Bang model implied
that the Universe was fundamentally different before, and that its age was finite,
since the initial singularity was its inception. (Ironically, the term "Big Bang" was
coined by Fred Hoyle, one of the main proponents of the steady-state model).

A fortunate detection in 1964 provided decisive evidence for the Big Bang model,
which has been the consensus among cosmologists ever since. While working with
a highly sensitive radio antenna designed to detect satellite signals, American physi-
cists Arno Penzias and Robert Wilson discovered a uniform signal that could not be
accounted for, and remained the same regardless of the time or the day or the re-
gion of the sky that was being observed. Given its immutability, such a radiation
necessarily had its origin in extragalactic sources.
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This was the Cosmic Microwave Background (CMB); the first electromagnetic
radiation detectable after the Big Bang. Since the Universe expands, objects farther
away are more redshifted (and older, since the radiation we observe has taken a
longer time to arrive). Assuming then that the Universe is of finite age, there should
be an extremely redshifted first radiation, well below the optical spectrum. This is
exactly what Penzias and Wilson first observed, and although their initial temper-
ature estimate was higher, nowadays it is known to correspond to a thermal black-
body emission of T ~ 2.725K.

Strictly speaking, the CMB is not a signal of the very beginning of the Universe;
it is the first radiation at the epoch of recombination, when the Universe became
cold enough to allow electrons and protons to combine into hydrogen atoms. Prior
to this point, both baryonic matter and photons where coupled in a plasma state,
where the photons where continuously scattered. When recombination happened,
photons became able to freely travel without scattering, which made the Universe
effectively transparent to the CMB radiation we currently see.

Although the CMB seemed completely homogeneous at first, theory predicted
small inhomogeneites of the order of 1074 —-10"° (e.g., Peebles and Yu, 1970). This
apparent homogeneity is due to the fact that, just an instant before, the Universe
was a dense plasma, and no time had passed to allow for the formation of structure
we see today. The anisotropies of the CMB were first studied in detail by the COBE
mission, which measured the CMB variations in the full sky (Smoot et al., 1992),
and have turned out to be one of the most valuable probes to constrain cosmological
models. Later space missions have again observed the CMB with higher resolution,
namely the Wilkinson Microwave Anisotropy Probe (WMAP, Spergel et al., 2003)
and Planck (Planck Collaboration et al., 2016). Figure 1.2 shows a combination of
the CMB maps obtained by these three probes.

., Planck

=200 ukK 200 uK

FIGURE 1.2: Combined maps of CMB by the space missions COBE,
WMAP and Planck. Angular resolution is noticeably increased in
each survey. Credit: J]. Gudmunsson.
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1.2 The ACDM Model

The current standard model in cosmology is commonly known as the ACDM model,
where A stands for the Dark Energy in the form of a cosmological constant (origi-
nally named A by Einstein), and CDM is an acronym for Cold Dark Matter. While
this model fails to account for some observed features in the universe, such as the
disparity in the Hubble constant measurements (Bernal, Verde, and Riess, 2016) or
the anomalies in the CMB (Schwarz et al., 2016), it is still considered a massive suc-
cess, which accounts for most of the cosmological observations carried out in the last
century with relative simplicity.

In this subsection we will show a small, non-extensive overview of the aspects of
the model more related to the work of the thesis. This does not intend to cover the
entirety of the model, nor even to describe all of the parameters that compose it; for
a complete and comprehensible rundown of the standard model of cosmology, we
refer the reader to Dodelson and Schmidt, 2020, chapters 1 and 2.

1.2.1 The scale factor and the FLRW metric

By assuming the cosmological principle (homogeneity and isotropy at large enough
scales), we already place very stringent constraints on the geometry of the Universe.
One of the consequences of this principle is that, if space is expanding, as multiple
observational evidence shows, it must do so at the same rate in all points. There-
fore, the expansion (or contraction) of space can be simply modelled with a single
parameter dependant on time: the scale factor a(t).

Assuming the simplest case of an Euclidean three-dimensional space, we can
define two points with Cartesian coordinates  and « + d=. For a given time t, the
distance vector dr between these two points will be:

dr = a(t)dx. (1.1)

While the actual, physical distance r will evolve with time according to a(t), it is
important to note that the vector defined by the difference between the Cartesian
coordinates, dz will remain constant. Since the scale factor is simply a re-scaling, it
will be dimensionless, and thus dx will also have length units. Therefore, it can also
be considered a distance, although not physical.

This invariant distance dx is known as the comoving distance, and analogously
the coordinates x are called comoving coordinates. These two concepts are extensively
used in cosmology, given that the independence from the scale factor a(t) allows to
easily perform calculations and use expressions valid at any point of cosmic time.

By convention, the scale factor is set to 1 at the present time t(, so in our local
environment comoving and physical distances are the same (a(ty) = 1). Given that
the Universe has been expanding ever since the beginning, a(f < ty) < 1 at any
point in the past.

The application of the scale factor can be formally described with a metric, ac-
cording to the framework of general relativity: the FLRW metric. First, let us start
with the general definition of a metric:

ds? = Suvdxtdx’, (1.2)

where ds? is the square of the length element (also known as line element), dx* and
dx" are the elements y and v of the difference between the coordinates of two points
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x and x + dx, and Suv is the metric itself. Therefore, the metric is the relationship
between difference in coordinates and distance.

Since we are considering general relativity, the spacetime where this metric (and
the coordinates) are defined is a 4-dimensional manifold, where by convention the
first coordinate (1 = 0) is time, and the other three are the spatial coordinates. For
the simplest possible case, a flat spacetime devoid of matter, the metric is a tensor
with the following components

-2 000
0 100
0 001

Where the first element of the diagonal is goo, relative exclusively to the time coor-
dinate, and the other elements of the diagonal are the spatial elements of the metric,
811, 8§22, §33- The absolute value of gy is ¢, the speed of light. Following eq. (1.1), the
scale factor a(t) can be implemented into the metric simply by replacing the spatial
component, which yields

e 0 0 0
o a2 0 o
Sw=1lo 0 —a®t? o0 (14)
0 0 0 —a(t)

This is the tensor of the FLRW metric in a flat spacetime. Applying it to eq. (1.2) and
expanding, we obtain

ds? = c2dt* — a(t)*dzx, (1.5)

where dx are the spatial components of the coordinate tensor, and dt is its time com-
ponent. This is the FLRW metric for a flat Universe. Given that isotropy is always
assumed for this metric, it is often more convenient to express the metric in spherical
coordinates as

ds? = c?dt* — a(t)? (dx + x*dQ?), (1.6)

where x is the radial component of the spatial coordinates, and d() the solid angle
component, which comprises both the polar component § and azimuthal component
¢ (usually, by convention dQ? = d6? + sin® 8d¢p?).

If the Universe has an intrinsic spatial curvature (which does not violate the cos-
mological principle as long as this curvature is uniform), the FLRW metric adopts a
more complex form, and eq. (1.6) is then expressed as:

ds? = 2dt® — a(t)? (dx +k1 sinz(X\/E)dnz) if k>0

(1.7)
ds? = c2dt* — a(t)? <d)( + |k| ! sinh? (x4 / k\)sz> if k<O.

In this case, k is the curvature, with units of lengthfz. If the curvature is larger
than 0, the universe has spherical geometry (also known as closed universe), and if
the curvature is smaller than 0, the geometry is hyperbolic (open universe). We will
not develop more these equations for a Universe with curvature, since observational
evidence points to a flat or almost-flat Universe (e.g., Planck Collaboration, 2020).
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For this very same reason, a flat Universe will be assumed for the entirety of this
thesis.

1.2.2 The Friedmann equations

So far in this section, we have briefly explained the FLRW metric, which is the most
general set of geometrical constraints that satisfy the cosmological principle. In this
metric, the only time-dependant parameter is the scale factor a(t); if a flat Universe
is assumed, it is also the only free parameter of the metric.

Therefore, the capability to explain and predict the evolution of a(t) is an es-
sential requirement for any cosmological model. Following general relativity, we
can find a relationship between a(t) and the content of the Universe; the Friedmann
equations. For convenience, we will assume in this subsection that ¢ = 1 (natural
units)

First, let us consider the Einstein equation, which links the matter and energy
content of spacetime with its geometry:

1
Rl,ﬂ/ - ERgVV - Ag],“/ - 87TGT],{1/. (1.8)

Here g, is the metric tensor as in eq. (1.2), G is the Newtonian constant of gravita-
tion, A the cosmological constant alreadyu discussed in section 1.1.2, T,,, the energy-
momentum tensor, and Ry, is the Ricci tensor (R is its contraction, also known as
Ricci scalar: R = ¢#R,,,). The Ricci tensor is a mathematical object dependant solely
on the metric and its derivatives:

ory, or)
Ry = axvy _ axy; + 0,10, =T, TY,, (1.9)
where FQV is the Christoffel symbol of second kind:
1 03« dg 0w
A A [ Kv 4
T =38 ' < a9k axt > ' (1.10)

Regarding T}, it is a symmetric tensor whose components represent the follow-
ing (with units of energy density):

¢ Too: Energy density
* Toi, Tio: Energy flux/momentum density
e T;: Pressure

* Tj,

Tj; with i # j: Momentum flux/shear stress

Here we have adopted the convention of using Latin letters when referring strictly
to the spatial components (x > 0) and Greek letters when referring to any compo-
nent including time (y > 0).

The Einstein equation is indeed a extremely complex problem on itself, but for-
tunately the FLRW metric simplifies it to the point where an exact solution can be
found. If we compute the Ricci tensor using this metric, the Christoffel symbols with
two or three temporal indices (4 = 0) vanish, which yields only two kinds of non-
null components of the Ricci tensor: the strictly temporal component Rgp and the
spatial components Ry,. For the general case of FLRW metric with curvature, these
non-null components are:
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Rop = _32, (1.11)

8ij . iy
Rij = —;lz] (2k + 24 + aii), (1.12)

where the dots in 4 and i represent the first and second time derivatives respectively,
and k is the curvature of the metric. The expression of the Ricci scalar for these
components of the tensor and the FLRW metric is:

N )
i a k
R = —62 —6 (a) — 6;2 (1.13)

Now, in order to satisfy the cosmological principle, we assume the most general
form of an energy-momentum tensor corresponding to a perfect, isotropic fluid:

o 0 0 0
o —p 0 0
Tw=1o o0 —p o (1.14)

0O 0 0 —p

Where p is its density, and p its pressure. Note that the non-diagonal components of
the tensor can be interpreted as either energy fluxes or momentum fluxes; a net flux
in any direction would result in an anisotropy, and thus a violation of the cosmo-
logical principle. Under these assumptions, the temporal component of the Einstein
equation is

N 2
a k 2
3 <a> + ?)a—2 — Ac” = 87nGp, (1.15)
which can be expressed as
.\ 2
a 8tG Ak
(a) =5 F + 3 (1.16)

This is a differential equation that constrains the evolution of a(t); the first Fried-
mann equation, since it establishes a relationship between the velocity of the scale
factor evolution and the physical properties of the Universe.

The second Friedmann equation is derived from the spatial part of eq. (1.8). Re-
placing eq. (1.12) and eq. (1.13) in eq. (1.8), we find for the spatial components of the
trace (i = j):

. N2
i a k

Where we have already divided by the metric, g;;. We divide by 2 and rearrange the
equation in the following form

i 1 (a\? Ak
S+o(2) =4 S 1.1
a+2<a) nGp—l—z 2a? (1.18)
If we subtract to this equation the first Friedmann equation (eq. (1.16)) divided by
two, the expression we obtain is the second Friedmann equation:

i 4nG A
o= (p+3p)+

3 3 (1.19)



10 Chapter 1. Introduction to standard cosmology

This expression is also a differential equation, independent of the first. In this case,
this equation sets a relationship between the acceleration of the scale factor and the
physical properties of the Universe. In the following subsection, we will see how
these equations are commonly expressed in terms of observational parameters with
a more specific interpretation.

1.2.3 The Hubble constant and the deceleration parameter

As explained in section 1.1.3, the Hubble constant is the relationship between the
distance of an object and the velocity it drifts away from us. It can simply be defined
as:

v = Hyd. (1.20)

Where v is the velocity of the object (drifting away from us), Hyp is the Hubble con-
stant and d is its physical distance. The velocity v in this expression is due to the
expansion of the Universe (also known as Hubble flow); however, the actual ob-
served velocity of an object will not only have this Hubble flow component. Other
velocities (proper motions), due to the relative movement of galaxies respect to other
galaxies or larger structures such as clusters, will also contribute to the net move-
ment of the observed object, biasing the measurement of Hy. Therefore, systematic
observations of large cosmic volumes are needed to accurately determine its value.

Figure 1.1 shows the original measurement of Hy, but not only it is an observation
of an extremely limited sample; distances are not properly measured due to a error in
the calibration of variable Cepheid stars, and thus the resulting Hy is almost an order
of magnitude larger than current observed values. In comparison to this first plot,
fig. 1.3 shows a compilation of measurements of Hy from different observational
probes over the last 20 years.

82.5 T —— Forecast
KP GW170817 T ans
80.0{
SHOES
77.5 1 CPH HsT+ [l M2t
T SH,ES | GAIA2
g 75.0 1 *
Z
5 72.5 1
< ®
E *
= 70.0 1 K
T 67 s W3 ws ) 5 ||1SXBNS
1w w wilsl® | =
65.0 - p13 1 BAO o
62.5 * Dist. Ladder ® ACDM X Std. Sirens
2000 2005 2010 2015 2020
year

FIGURE 1.3: Values of Hy determined by different observational
probes, ordered chronologically by date of publication. Blue val-
ues represent local-Universe measurements based on calibration of
Cepheid stars, red values are based on CMB observations, and green
values are direct measurements using standard sirens. Obtained from

Ezquiaga and Zumalacarregui, 2018, Figure 8.
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By looking at fig. 1.3, it is evident that this last decade a clear tension has ap-
peared between observational probes. Local measurements of Hy yield higher val-
ues than observations based on the early-Universe data from CMB, and the increase
in precision with better observations has worsened this tension. Since this uncer-
tainty in Hy is crucial when defining cosmological quantities, it is common practice
to define Hy as a function of the i parameter:

Hy=100h (Kms 'Mpc ) (1.21)

This h parameter is generally accepted to be in a range 0.6 < I < 0.8, and express-
ing cosmological distances or volumes in units dependant on / is a convenient way
of computing and expressing data while always considering this uncertainty in an
implicit manner.

The scientific value of Hy lies not only in being the first observation of an ex-
panding Universe, but in its direct relation with the first Friedmann equation, which
puts constraints on the physical properties of the Universe. In order to show this,
first let us assume a value of the Hubble constant as a function, of cosmic time, H(¢).
This time-dependent Hubble constant is also known as the Hubble parameter; in fact
the Hubble constant is simply the Hubble parameter at present time (Hy = H(ty)).
it is important to note that, despite being dependant on time, in order to satisfy the
cosmological principle H(t) must be equal at all points in space.

Now, let us consider an observer at time f, and an object separated from the ob-
server a physical distance dr (since we assume the Universe isotropic, the distance
can simply be expressed as an scalar). If we note its comoving distance as d), and
assume that the observed velocity of the object corresponds to the Hubble flow (neg-
ligible proper motion), the physical distance and observed velocity v can be written
as

_dr _ da(t) ax .
v= = 10 + a(t)E = a(t)dy. (1.22)
Since proper motion is assumed negligible, all the observed velocity must come from
the Hubble flow (the variation of the scale factor), and thus dy = 0. With these
expressions, eq. (1.20) can be redefined as

dr=a(t)dx ;

a(t)dx = H(t)a(t)dy, (1.23)

and thus the expression of the Hubble parameter as a function of the scale factor is

H(t) = =~ (1.24)

This expression of the Hubble parameter is the square root of the left-hand side of
the first Friedmann equation (eq. (1.16)), which can be written as

_8nG Ak
L T

Which links directly the value of the Hubble constant at a given cosmic time with
the energy density of the Universe, as well as the possible values of its curvature and
cosmological constant.The second Friedmann equation is also usually expressed as
a function of another variable, the deceleration parameter

H? (1.25)

q(t) = _i((tt);(t), (1.26)
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which represents minus the acceleration of the scale factor, in dimensionless units
(and its value at current time is noted gg). Using this deceleration parameter as well
as eq. (1.24), eq. (1.19) can be expressed as

_ 4nG

A
q= 37H (P +3P) — 37H (1.27)

1.2.4 Energy content of the Universe

Once we have managed to define a clear relationship between an observable such as
the Hubble parameter, and the density of energy content in the universe, the ques-
tion that remains is, what is the physical meaning of this density p, and how does it
evolve with a? In this subsection we will deal with these questions.

Matter density

According to the mass-energy equivalence from general relativity, the energy con-
tained of a certain amount of matter of mass m is

E = mc?, (1.28)

which makes its energy directly proportional to its mass. Assuming matter conser-
vation on cosmological scales, the matter energy density in a certain point will solely
depend on the volume; if the universe expands, the matter energy density will de-
crease, since the same energy will be contained in a larger volume. Given that space
is three-dimensional, an arbitrary physical volume is going to be proportional to the
cube of the scale factor, so a matter energy density will be proportional to its inverse:

om(t) < a(t)™3. (1.29)

Knowing that by convention a(tp) = 1, and noting the current matter density as
pmo, the relation between the current matter density and the matter density at any
previous time is

Pm = Pmod > (1.30)

This density includes both the matter we can see and interact with (baryonic
matter), as well as the dark matter, which is hypothesised to exist due to several
independent observational probes (e.g., galaxy velocity curves, weak lensing), but
whose nature is unknown.

There are essential differences between baryonic matter and most models of dark
matter; namely, dark matter is assumed to interact only through the gravitational
force, thus being collisionless and unable to emit or react to electromagnetic radia-
tion. However, on the scales where the cosmological principle holds (and therefore,
all the equations of this section), gravity is the only non-negligible force, and thus
both kinds of matter can be considered the same.

Radiation density

Another component of the total energy budget of the Universe is radiation. How-
ever, photons are massless, and its energy depends on its wavelength:

_ e

E=—. (1.31)
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Here, hp is the Planck constant (noted with a subscript to differentiate it from the
h parameter), and A the wavelength of the photon. This has a key implication: when
the Universe expands, not only the photon density will be reduced because of the
increase in volume, but the energy of each photon will also decrease, given that their
wavelength will expand proportionally to a.

Since the photon density is proportional to the inverse of the cube of 4, and their
energy is proportional to the inverse of 4, their energy density will be proportional
to the negative fourth power. Therefore,

or = proa* (1.32)

Dark energy and the equation of state

The cosmological constant, as displayed in eq. (1.16), can be thought as an energy
density completely independent of a(t); in other words, an energy density abso-
lutely constant in time. The energy density due to the cosmological constant px
needs have the same units as p to be added as a part of the total energy density
budget, which can be done with the following expression

A
A= 8nG’
and considering that A is constant, its dependency with time can simply be written
as

(1.33)

PA = PAO (1.34)

The physical interpretation of this last equation is that A represents a energy
density intrinsic of space, the vacuum energy (since even if space is completely empty,
this energy content is still there). In cosmology, this phenomenon is called dark
energy. It is needed to explain the observed accelerated expansion of the Universe
with Friedmann equations, but its physical nature remains unknown.

While the cosmological constant/vacuum energy is the standard approach to
model dark energy (hence the A from ACDM), other possible forms of dark energy
are also considered. The behaviour of this different types of dark energy is usually
described by the equation of state, usually expressed as:

p = wp. (1.35)

This equation expresses the pressure of a fluid as a function of its density. The evo-
lution of the energy density as a function of the scale factor can be derived from the
continuity equation

p+3-(p+p) =0, (1.36)

which states that the variation of energy density in a point must be equal to
the flux of energy density in that point (under the assumption that on cosmologi-
cal scales all fluxes are due to the variation of a). If we substitute eq. (1.35) in this
differential equation, we find the following solution for an arbitrary fluid:

p = poa 3+ (1.37)

Depending on the value of w, different models of dark energy are defined:
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¢ w = —1: Vacuum energy/cosmological constant.

* w = w(a): Variable dark energy. Most models correspond to a scalar field
(quintessence). Current values need to be below -1/3 to be in accordance with
the observed accelerated expansion.

¢ w < —1: Phantom energy. Although the Friedmann equations can yield solu-
tions with these models, they imply that vacuum energy is unstable, so they
are less considered.

The w parameter and the equation of state can also be used to model the be-
haviour of not only dark energy, but also the other components of the Universe. For
matter, w = 0 (pressureless fluid), and for radiation w = 1/3 (radiation pressure).
Replacing these values of w in eq. (1.37), we recover the expressions in eq. (1.30) and
eq. (1.32).

1.2.5 Evolution of energy densities and the Hubble parameter

Having described the evolution of the energy densities for each component of the
Universe as a function of 4, eq. (1.25) can be rewritten as:

871G _ _ k
H2 = ? (pmoa 3 —|—pr0ﬂ 4 + pAO) — ETZ (138)

Following the same reasoning as dark energy, the curvature term in the right-
hand side of the equation can be expressed as an energy density, pyo = k, such that

8tG _ _ _
H? = = (pmoa 3+ 0108t + o0 + Prod 2) : (1.39)

In this case, pxo does not have a physical meaning such as vacuum energy for
P, since k is an strictly geometrical term. This is simply a convention to write this
expression of the Hubble constant more elegantly, and express the effect of the cur-
vature on the evolution of the scale factor in the same terms as any other component
of the Universe.

All these energy densities can be expressed as a function of the current total en-
ergy density of the Universe: the critical density p.. By convention, a(ty) = 1, and
thus if we consider in eq. (1.39) the sum of all energy density values in ty equal to
the critical density, we can define this critical density like

_ 3H}
Pe=8nG’
For each one of the components, the dimensionless energy density parameter ()
is defined as the ratio of their current densities and the critical density:

(1.40)

Op=Pm0. o =Ff0. o, PN, o _ Pk (1.41)
Pec Pe Pec Pe

The fraction of the energy density of the Universe for each component is repre-
sented in fig. 1.4, in two plots for different timescales: before CMB and after CMB.
The framework of this thesis only is focused in the latter, so neutrinos have not been
included in section 1.2.4, since its contribution is only significant at very early times.
It is important to note how the contribution of radiation was only non-negligible
well before 1 Gyr, and during most of its lifespan the Universe has been dominated
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TABLE 1.1: ACDM parameters used to plot fig. 1.4, extracted from
Planck Collaboration et al., 2016. The parameters g and ns will be
discussed in section 2.2.2.

Parameter Value

O, (dark energy density parameter) 0.6911 £ 0.0062
O (matter density parameter) 0.3089 + 0.0062
O h? (baryonic matter density parameter) 0.02230 £ 0.00014
Qcgmh? (cold dark matter density parameter) 0.1188 + 0.0010
Hy (Hubble constant) 67.74 £ 0.46

0 (standard deviation of density fluctuations at 8 Mpc/h, z =0)  0.8159 + 0.0086
ns (primordial power spectrum spectral index) 0.9667 =+ 0.0040

by matter. However, dark energy has slowly become more and more significant, un-
til being the dominant component in the last ~4 Gyr. The parameters used to plot
fig. 1.4 are displayed in table 1.1.

Before CMB | | After CMB

Dark energy

Dark matter

Dark matter
< _p_gryonic matter

Radiation
Neutrinos Baryonic matter
01 02 03 2 4 6 8 10 12
Age of the Universe (Myr) Age of the Universe (Gyr)

FIGURE 1.4: Fractions of each component of the energy density of the

Universe versus time. The discontinuity before and after CMB is due

to the change of time scales; the time units in the plot after CMB are

three orders of magnitude larger than the plot before CMB, and thus

the transition to negligible radiation and neutrino energy densities is
too fast to be appreciated in Gyr units.

Combining eq. (1.40) and eq. (1.41) with eq. (1.39), the Hubble parameter can be
expressed as a function of the scale factor:

H(a) = Hov/Qea 4 + Qma 3 + a2 + Q,. (1.42)

This expression is used regularly for all cosmological computations of time and
distances, as it will be seen in section 1.2.7.
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1.2.6 Redshift

In the broadest sense of the term, redshift is the difference between the wavelength
of the radiation emitted by a source, and the wavelength of this same radiation ob-
served by a certain observer. Its mathematical definition is

_ Ao —Ae
z= A
where A, is the wavelength at the source of emission, and A, is the observed
wavelength. Usually, this phenomenon is called redshift when A, > A. (the ob-
served wavelength is larger than the emission, and thus the observed spectrum has
shifted to the red). If A, < A¢, following the same logic is is usually referred to as
blueshift, although this is never the case for cosmological distance large enough (as
in this work).

There may be different physical phenomena producing redshift, such as the rela-
tive velocity between the observer and the source (Doppler effect), the difference in
gravitational potential between source and observer (gravitational redshift), or the
expansion of the Universe (cosmological redshift).

In this subsection we will only discuss cosmological redshift and the Doppler
effect. We also note that while other physical mechanisms due to the medium where
radiation is transmitted may result in a shifting to the red of the spectrum (e.g.,
scattering caused by dust), these are usually referred to as reddening.

(1.43)

Doppler effect

Let us assume the source and the observer moving away from each other with a
relative velocity v; this velocity is simply assumed negative if they are approach-
ing. Due to this relative movement, the distance between two consecutive observed
peaks separated in time At (the period of the wave) will be increased by vAt.

If this hypothetical wave corresponds to electromagnetic radiation, it will always
move at speed ¢, and its period will be At = A./c (since the period is the time
required to for the wave to advance a full wavelength). Consequently, the observed
and emitted wavelength are related by

Ao = Ae +0A/C, (1.44)
and applying this equality to eq. (1.43), we find

0
2= (1.45)

This equation corresponds to the classical Doppler effect. It is worth nothing
that this is a linear approximation that holds for speeds not too close to c. For the
cosmological case, where the relative velocities are caused mostly by the Hubble
flow, eq. (1.45) stops being valid roughly at z ~ 0.5.

Cosmological redshift

The expansion of the Universe has a similar effect on the observed wavelength, if
the observed radiation has travelled during enough time so the scale factor a has
changed significantly. Let us assume an electromagnetic wave, emitted by a distant
object at time f, and observed currently, at tg. The scale factor factor at the time of
emission will be a = a(t), while at the time of observation a(ty) = 1.
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Given that the wavelength of the emitted radiation is a physical distance, it will
expand according to the increase of the scale factor with time. Therefore, the relation
between the emitted and the observed wavelength will be

Ae = alo. (1.46)

Replacing this in eq. (1.43), we find the following equations linking scale factor
and redshift:

Z_l—a_ . 1
- oa 11—z

(1.47)

These straightforward relationships make cosmological redshift more used than
the actual scale factor both in equations and data plots. For example, eq. (1.42) is
more commonly expressed as

H(z) = Ho\/Qe(1+2)4 + Qua(1 +2)° + O (1 +2)2 + Q. (1.48)

Like the scale factor, a certain value of cosmological redshift unequivocally points
to a certain time in cosmic history (as well as a distance, as will be explained in the
next subsection), and unlike the scale factor, redshift can be directly measured. If
the spectrum of an object is observed, by assuming some spectral features of this
object known (e.g., emission lines, spectral breaks), the redshift of the object can be
determined. The most common observational approaches (photometric and spec-
troscopic) to determine the redshift of observed objects with optical telescopes will
be briefly discussed in chapter 3.

However, these direct observations also include the redshift due to the Doppler
effect (peculiar velocity, i.e., the proper motion of galaxies regardless of Hubble
flow). While its effect is usually smaller, it is still a source of error that needs to be
accounted for. Given that the peculiar velocities are usually far below c, the classical
Doppler approximation (eq. (1.45)) holds true for them.

Regarding the recession velocity derived from cosmological redshift, the simple
classical eq. (1.45) is only valid at small redshifts, given that redshift is caused by
the expansion of the Universe at every point of the trajectory of the redshifted pho-
ton, not only the relative motion due to the Hubble flow. The proper expression to
compute the cosmological recession velocity is (Davis and Lineweaver, 2001)

z cdZ

v(z) = a(z) o H(Z)

where 2’ is the integration variable over the specified redshift ranges. This ex-
pression yields v > ¢ for z £ 1.5 in any cosmology consistent with current observa-
tions, which at first sight might seem impossible. According to general relativity, ¢
is the asymptotic speed limit of any massive object, regardless of the reference frame
where it is observed. However, superluminal velocities do not violate this principle;
the reason for this will be briefly explored in section 1.2.7.

(1.49)

1.2.7 Cosmological distances

So far, we have mentioned two definitions of distance in cosmology: the physical
distance between objects (also known as proper distance), and the comoving distance,
which is independent of the scale factor. However, other types of distance are also
defined and commonly used for different purposes.
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Comoving distance

Working with physical distances in a Universe where the scale factor evolves with
time is unnecessarily complex; for most purposes in cosmology, whenever a set of
spatial coordinates needs to be used, these are in comoving space.

Given that the scale factor does not modify measured angles (since angles are
dimensionless, and the scale factor affects equally all dimensions of space), if spher-
ical coordinates are used the only comoving distance needed to locate an object in
comoving space is its radial distance.

Let us consider an observer at the origin of our comoving coordinate system,
and at current time £y, and a distant object that has emitted light at a time fe. In a
infinitesimal time interval dt, light will have travelled a physical distance

cdt = a(t)dy, (1.50)

where dy is the comoving distance. This can be easily derived from eq. (1.6)
assuming the distance completely radial, and knowing that in general relativity the
spacetime interval between two points travelled at light speed is null.

This expression can be integrated from the time of emission to the time of ob-
servation, in order to determine the total comoving distance travelled by light, and
thus the distance to the observed object:

te c
x(te) = ok (1.51)

Applying the change of variable @ = da/dt, and the definition of the Hubble
parameter (eq. (1.24)), x can be expressed as a function of the scale factor:

e c ", c
x(a) :/1 da% :/1 dam. (1.52)

Finally, using the relationship between scale factor and redshift (eq. (1.47)), and
the expression of the Hubble parameter as a function of redshift (eq. (1.48)), we find

dz

c [Ze
x(z) = Ho/o Ao o T aa " (1.53)

With this expression we are able to compute the comoving distance to an object
only by observing its redshift, and assuming values for the Hubble constant and
the energy density parameters. This set of fixed parameters, required to determine
cosmic distances, is usually called a cosmology.

Angular diameter distance

The distance to an object can also be measured by observing the angle it subtends in
the sky, and knowing its physical size. In a flat universe, the expression for this is

l
dp = gp =a(te)x = 112, (1.54)
where [, is the physical size of the object, and 0 the observed angle.
In a static Universe, this would be equal to the physical distance to the object
(since it comes from the geometrical definition of an angle). Nevertheless, since the
scale factor varies, this is equal to the comoving distance to the object times the scale
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factor at the time of emission of the observed radiation (i.e., the physical distance
when the light was emitted).

For a non-flat Universe, the angular diameter distance is dependent on the cur-
vature, and its expression is

a
dp = inh ( v/ Oy H, if Q>0
A Hov/ Oy 51 ( k 0%) 1 k
a (1.55)
dp = ————sin < |Qk|H0X> if O <O.
Ho /| Qx|

Luminosity distance

Another method to determine the distance of an object is by comparison of its ob-
served flux to its actual luminosity, if the latter is known. The relation between the
observed flux F (at the time of observation () and the luminosity of the object L is

L

_ Lt (1.56)
4md?

where dy is the luminosity distance. If the Universe was stationary, this would be
equal to the comoving distance of the object, but given that the Universe expands,
this is not the case.

The flux is the number of photons emitted by the source that cross a spherical
shell per unit of (comoving) surface and time. Even if the shell is in comoving units,
the wavelength of the photons will increase as the universe expands, and thus its
energy will decrease by a factor of a (with a being the scale factor at the time of
emission). Besides, the amount of photons that cross the shell in a unit of time will
also decrease by a factor of a (since the distance they have to travel at light speed
has increased by a factor of a—1. Therefore, the relation between observed flux and
luminosity will be:

_ La(te)?

—_— 1.57

with x being the comoving distance to the object. Consequently, the luminosity
distance is defined as

_ X

dy = 2t~ (1+2z)x. (1.58)
Figure 1.5 shows the evolution versus redshift of these three distances, in log-
arithmic scale, for the cosmology defined in table 1.1. It is worth noting that da
actually has a maximum value around z ~ 1.5, and then decreases again with red-
shift. This result may seem counter-intuitive, but it is simply due to the contraction
of space at distances large enough, which increases the observed angle 6 of an object
(since space is smaller, an object of size I, occupies a larger fraction of the sky, and

thus subtends a larger angle).

Particle horizon and the observable Universe

Another concept related to distance is that of the limits of the observable Universe.
According to general relativity, information can not travel faster than the speed of
light ¢, and thus, an event at a certain point in space and time can only be perceived
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FIGURE 1.5: Comoving distance x, angular diameter distance d5 and
luminosity distance d}, versus redshift, for the cosmology specified in
table 1.1.

in the regions of space where light has had time to travel to. Similarly, an observer
can only perceive events from regions in space close enough so that light has had the
time to arrive to said observer. These two space-time regions are called the future
and past lightcones for a certain point in space-time, respectively; everything inside
the lightcone is in causal contact with the observer. Figure 1.6 shows a schematic
representation of a lightcone, for a three-dimensional space-time.

Given that the Universe has finite age, we can only observe the regions of the
Universe that fall into our past lightcone, which is usually known as the observable
Universe. At any given time, this volume corresponds to a sphere centred in us with
a certain comoving radius, the particle horizon. This particle horizon is computed
using eq. (1.51), but replacing f. by zero (the start of the Universe), and tq by the
time at which we want to determine it (for our current particle horizon, t, would
remain the same).

This brings an interesting point that will be discussed in section 1.3.1: if 4 in-
creases fast enough, the particle horizon can actually decrease with time. In order
to do so, the Hubble flow at the particle horizon itself must be faster than the c. If
that is the case, in spite of light always advancing at speed c, the Universe will ex-
pand even faster, which will mean that space will exit the particle horizon (and our
observable Universe) as time advances.

The Hubble horizon

While the particle horizon represents a strict causal limit of how far can be we ob-
serve, another boundary of physical interest is the Hubble horizon, i.e., the surface at
which the velocity of recession due to the Hubble flow surpasses the speed of light.
This limit marks the point where the growth of structure is decoupled from physical
processes, as will be discussed in section 2.2.2. It is simply defined as (in comoving
units)
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time (years)

FIGURE 1.6: Schematic representation of a lightcone. Vertical axis
represents time, horizontal surface space. Credit: MissMJ, Wikimedia

Commons.
()= s (1.59)

and evolves differently from the particle horizon. In fact, for the current stan-
dard model, the former is always smaller (except the very brief inflationary period).
This results in a sizeable portion of the observable Universe (the volume inside the
particle horizon), drifting away from us at speeds larger than light. Figure 1.7 shows
this result for the cosmology displayed in table 1.1.

Although the relative speed between two objects can not be greater than c, the
geometrical expansion of space is not bound by this hard limit; thus, the evolution
of the scale factor a may result in objects drifting away at speeds higher than c, if
the distance between them is large enough. This does not violate general relativity,
since this apparent relative motion is due to the expansion of space itself. In fact, if
there is no relative motion between both objects, they will remain still in comoving
space in spite of the expansion of space.

Nevertheless, the fact that such objects may be observed (as they are objects are
inside the particle horizon) may also seem in contradiction with general relativity.
However, what we actually observe is the radiation emitted by these objects long
ago. If these objects were inside the Hubble horizon at the time of emission (even if
they are receding superluminally at the time of observation), the observed photons
have no information of its source moving away from the observer at speeds larger
than c.

Besides, even if the observed objects are already outside of the Hubble volume
when the radiation was emitted, the emitted photons can enter the Hubble horizon
at some point in time. The relative velocity between the source and the Hubble
horizon of the observer is always going to be smaller than between the source and
the observer, so as long as the source doesn’t move away from the expansion of our
Hubble horizon at speeds larger than c, the emitted photons will eventually enter the
Hubble volume. Once inside the Hubble volume, these photons will reach us in a



22 Chapter 1. Introduction to standard cosmology

10000
—— Hubble horizon
Particle horizon
8000 1
No causal contact
= 6000 1
)
Q.
= Superluminal recession
> 4000 +
2000 +
Subluminal recession (Hubble volume)
0 T . . . . .
0 2 4 6 8 10 12

Age of the Universe (Gyr)

FIGURE 1.7: Evolution of the particle horizon and the Hubble horizon
for the cosmology specified in table 1.1.

finite time, as c will always be larger than the speed of the Hubble flow in this region.
The observed redshift of these photons will not be infinite either, as cosmological
redshift is a product of the expansion of the universe along the trajectory of the
photon, not the relative velocities between source and observer. (eq. (1.49)).

It is worth noting that, while the particle horizon is usually designated by that
name in cosmological literature, the nomenclature for the Hubble horizon is far more
diverse. The term Hubble radius is used interchangeably, and in some cases instead of
referring to the limit of superluminal recession, authors refer to the volume enclosed
by that limit as Hubble volume or Hubble sphere.

1.3 Brief history of the Universe

After having described the different components of the Universe, as well as its evolu-
tion according to the FLRW metric derived from general relativity, we can conclude
this section by explaining in a very schematic way how this evolution is divided
in different eras. This division is performed according to the predominant physical
components at each era, and thus represent different regimes where the equations
governing the Universe’s evolution vary greatly.

1.3.1 Inflation (The very beginning)

According to the current paradigm of the standard model of cosmology, the first
event right after the Big Bang was inflation. In a very short lapse of time (~ 10732
s) the Universe expanded exponentially, which froze the quantum fluctuations that
appeared in the original singularity, stretching them out to cosmic proportions. This
rapid expansion, which implied an increase in a of several orders of magnitude (at
least 10%°), also meant that the particle horizon decreased dramatically, since ¢ was
negligible compared to such an expansion rate.

This relatively simple model addresses some of the most important questions
that do not seem to be explained with arbitrary initial conditions, namely:
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* Existence of structure: At scales small enough so that the cosmological princi-
ple does not hold anymore, there are clear inhomogeneities (chapter 2), which
eventually aggregate to form galaxies. The initial quantum fluctuations, ex-
panded due to inflation, provide inhomogeneities in the initial density field
that explain the formation of these structures.

¢ The horizon problem: The Universe at large scales is extremely homogeneous,
even in regions far away enough to not be in causal contact yet (e.g., CMB re-
gions separated by more than 60°). In principle, since these regions have never
had any information of each other, there is no reason for them to be identical.
However, in the inflationary model the particle horizon shrunk enormously
during inflation, and resumed its growth once inflation ended; therefore, a
conoving volume much larger than the current observable Universe was in
causal contact before inflation, which explains the observed homogeneity.

The current standard model of inflation is the slow-roll inflation, where this rapid
expansion is attributed to an scalar field that rolls down a potential, much more
slowly than the actual expansion of the Universe (Linde, 1982; Albrecht and Stein-
hardt, 1982). Once this scalar field started to decay faster, inflation ended. With
this fast decay, the cooling of the Universe due to the rapid expansion reverts, since
the potential of the inflaton field is converted into particles. This process is usually
known as reheating.

1.3.2 Radiation era (Almost the beginning-370 kyr)

After the end of inflation, the Universe was initially dominated by radiation, as can
be seen in fig. 1.4. During this era, the Universe was extremely hot and dense com-
pared to its actual state, and kept expanding, albeit at a much slower rate than
inflation. In fact, by solving eq. (1.16) neglecting all terms but radiation density
(eq. (1.32)), it can be shown that during this era a o t1/2.

As the Universe slowly cooled down while expanding, several processes took
place at a subatomic level. Some of the most important, in assumed chronological
order, are:

* Baryogenesis: The quarks (elementary indivisible particles) formed from the
decay of the inflaton field combined between themselves to form more com-
plex particles. Baryons (neutrons and protons), which virtually account for all
the observed, non-dark matter in the Universe, were formed at this stage.

¢ Decoupling of neutrinos: Neutrinos, extremely light particles that barely ever
interact with matter or radiation, decoupled from other particles shortly after,
and started freely travelling. This implies the existence of a cosmic neutrino
background emitted before the CMB. Nevertheless, given how difficult it is to
detect neutrinos, it is unlikely that this background signal will ever be detected
in the foreseeable future.

* Nucleosynthesis: The protons and neutrons generated during baryogenesis
combined to form nuclei more complex that 'H, which consists only of one
proton. This resulted in primordial abundances of ~75% hydrogen, ~25% he-
lium, and trace amounts of lithium, which has been extensively verified with
observations. All the elements other than hydrogen and helium (called metals
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in cosmology) were generated much later, at the core of stars. To differenti-
ate this primordial nucleosynthesis from subsequent ones, this phenomenon is
usually referred to as Big Bang Nucleosynthesis (BBN).

The radiation era ends at the epoch of matter-radiation equality, where p, = pm,
approximately at zeq ~ 3600 (around 50000 years in fig. 1.4, counting neutrinos as
radiation).

1.3.3 Matter era (370 kyr-10 Gyr)

As matter became the main component of the Universe, the dynamics of its evo-
lution changed; since radiation pressure was no longer dominant, baryonic matter
could clump together due to the gravitational force, and form structures. Besides,
expansion kept going at a faster rate (solving eq. (1.16) with only matter density
from eq. (1.30) shows that a « t?/3). The following events during this era led to the
Universe we observe today:

* Recombination and the CMB: After the radiation era, photons were still cou-
pled (i.e., in thermal equilibrium) with matter, which prevented them from
travelling freely, and kept matter in an ionised state. When the Universe cooled
down enough (at zcpp ~ 1100), photons decoupled from matter, which caused
two simultaneous events. First, photons started freely streaming, forming
the CMB radiation we observe today. Second, the decoupled nuclei quickly
bonded with electrons, turning into neutral atoms.

¢ The dark ages: Although the CMB had been released, hydrogen still had not
clumped to form stars and galaxies. Besides, due to recombination hydrogen
was in neutral state, and thus able to absorb radiation to excite its electron or
be ionised. Combined, with the much higher gas density due to the small scale
factor, it meant that right after the CMB the Universe was not only dark, but
also mostly opaque.

* Reionisation: As the first stars and galaxies formed from gravitational col-
lapse, the radiation emitted by them started ionising the surrounding medium,
which rendered the Universe progressively transparent (given that ionised hy-
drogen can not absorb radiation). This was a gradual process, where ionisation
started in bubbles around the first galaxies and ended up covering the whole
space. The start of reionisation is believed to have started around z ~ 20, while
its end is usually considered around z ~ 6.

After reionisation, at z < 6, the state of the Universe was, at first sight, very
similar to what can be seen today: a transparent medium full of galaxies. Therefore,
observations in the optical and near-infrared spectrum rarely go at z > 6, since from
that point the further we go back in time the less transparent the Universe is, and
the less galaxies there are to observe.

1.3.4 Dark energy era (10 Gyr-13.7 Gyr, i.e. today)

The matter era can be considered the bulk of the history of the Universe so far, but in
"recent" times a new element has become the dominant component of the Universe;
dark energy. Similarly to the radiation and matter era, the transition from the matter
to the dark energy era is considered at the point where p,, = p5, which happened at
z ~ 0.3.
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In contrast to the previous eras, during this dark energy phases that still lasts
the Universe has not suffered any dramatic transformation in physical composi-
tion, such as baryogenesis or recombination. Therefore, the only major difference
between the matter era and the dark energy is the accelerated expansion of the Uni-
verse, caused by the latter. In fact, solving eq. (1.16) while keeping only the A term
from dark energy shows that a « ¢! in this era.

According to the ACDM model, such a exponential expansion will go on indefi-
nitely, which implies the reduction of the observable Universe, which will eventually
make unreachable any objects that are not gravitationally bound (i.e., anything far-
ther away than the Milky Way and its surrounding galaxies in our case).

Figure 1.8 shows a diagram of the different stages of the evolution of the Uni-
verse, focused on the events after CMB (matter and dark energy eras).
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FIGURE 1.8: Cartoon of the evolution of the Universe, from the Big
Bang to the present day. Credit: NAQ]J.
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Chapter 2

Large-scale structure

After explaining the basic theoretical foundations of cosmology in the previous chap-
ter, here we will delve into the study of one of the most important features of the
Universe from a cosmological standpoint: the large-scale structure.

The cosmological principle (i.e., the assumption that on scales large enough, the
Universe is isotropic and homogeneous), is a core element of the great majority of
cosmological studies carried out today. In fact, all the concepts laid out in section 1.2
(the scale factor and its evolution, distance measurements, etc.) rely completely on
this principle.

Nevertheless, when we observe at scales small enough, it is clear that the cos-
mological principle is no longer valid. Due to the attractive effect of gravity, matter
congregates in the densest areas, while the regions with smaller density progres-
sively become more devoid of matter. This phenomenon results in a hierarchical,
bottom-up formation of structure: baryonic matter clumps to form stars and other
celestial bodies, which aggregate to form galaxies, and most galaxies are gravita-
tionally bound to others in clusters. Galaxy clusters form even larger structures:
filaments and nodes of a cosmic web.

This cosmic web is the largest structure that appears in the Universe; if averaged
over scales large enough (roughly of the order of ~100 Mpc/h, e.g., Gongalves et
al., 2018; Pandey and Sarkar, 2015), the cosmic web is indistinguishable and the
Universe becomes completely homogeneous. Figure 2.1 shows this cosmic web, both
mapped from observations (left), and generated in numerical simulations (right).

Dark matter is also hypothesised to form gravitationally bound structures known
as halos. These structures are generally larger than galaxy scales, and may contain
one or more galaxies inside. More compact dark matter structures are not expected
in the ACDM paradigm, as dark matter is collisionless, and thus unable to accrete
(i.e., lose energy and angular momentum due to collisions and friction during a
gravitational collapse process). Regardless, these dark matter halos can be seen as
the fundamental constituents of the cosmic web.

This ensemble of inhomogeneites arranged in a structured way is referred to
as large-scale structure in cosmology, and it is an invaluable probe to determine the
content of the universe, and to constrain different cosmological models as well. In
order to do so, the properties of the large-scale structure need to be measured with
well-defined statistics, and these statistics need to be related to the actual physical
parameters of the Universe via theoretical models.

In this chapter, we will explain the most important statistics applied to the study
of the large-scale structure: the two-point correlation function and its analogue in
Fourier space, the power spectrum. Besides, we will finish with a small overview on
a particular probe of large-scale structure of special interest for this thesis: the Lya
forest.
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FIGURE 2.1: Left panel: Map constructed with the galaxies observed

by the Sloan Digital Sky Survey (SDSS) in the near Universe. Credit:

SDSS. Right panel: Snapshot at z = 0 of the dark matter distribution of
the Millennium Simulation. Credit: Millennium Simulation Project.

2.1 Overdensities and the two-point correlation function

2.1.1 Overdensity

In order to quantify these inhomogeneities and their associated structure, it is more
convenient to define an observable directly related to the variation of density rela-
tive to an average value, instead of working with absolute densities. The reasoning
behind this choice is similar to the use of comoving distances: since the Universe has
always been expanding, any absolute density is bound to monotonically decrease in
time for a volume large enough. Therefore, a theoretical framework based on rela-
tive density variations will be valid at any point in time, without any need to scale.

This relative density variation is known as the overdensity (also called density con-
trast), and is defined as

5(x t) = W, 2.1)

where p(x, t) is the matter density at a certain point of space and time, and (p(t)) is
the average matter density of the Universe at that given time.

If no index is added to §, the overdensity is always assumed to be respective to
the matter distribution (dominated by dark matter). Regarding the other compo-
nents of the Universe discussed in section 1.2.4, radiation only plays an important
role well before the CMB, and it is completely negligible in the observable Universe
(see fig. 1.4), while dark energy is assumed homogeneous (and only relevant at late
times). Thus, the study of the large-scale structure of the Universe is the study of its
matter distribution.

2.1.2 Bias

The overdensity J, as defined in 2.1, is an expression of the inhomogeneities in the
dark matter distribution. Dark matter, however, does not interact with radiation,
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and thus can not be directly observed. What we observe instead is radiation coming
from baryonic matter (e.g., galaxies, quasars, intergalactic medium (IGM), etc.), or
the effects of matter on radiation (weak lensing). When referring to the dark matter
distribution, these observables are called tracers of dark matter.

Consequently, the observed &; for a given tracer ¢t will be biased with respect to
the actual dark matter distribution. This bias b; is always modelled as a multiplica-
tive factor of 4:

5t(X, t) = bté(x, t) (22)

The most simple functional form of this bias b;is to assume that it is constant, how-
ever, this can only be applied as a first-order approximation. An accurate modelling
of the bias will result in dependencies not only in redshift and the mass of the re-
spective halo the object is contained in (the classical bias parameters), but also the
masses of surrounding halos, their merger history, or even other physical properties
such as the halo spin. These contributions of the environmental properties to the
bias of a certain are known as assembly bias.

In this work, we will only use simplistic assumptions of the two tracers that will
be cross-correlated (the Lya forest and the diffuse Lya emission), partially because
the current constraints on the values of these biases is very limited, and also because
a detailed modelling of the bias is out of the scope of this thesis. For a comprehensive
review of the literature on galaxy (and other tracers) bias, see Desjacques, Jeong, and
Schmidt, 2018.

2.1.3 The two-point correlation function

Out of all the statistics that can be estimated from the observed distribution of a
tracer, the most used in cosmology (at least in real space) is, by far, the two-point
correlation function (2PCF). For a scalar field dependent on space (such as the over-
density 4(x)), the 2PCF for a certain distance vector r is defined as the average value
of the product between d(x) and the field at the points at a certain distance r, 6(x +r).
Mathematically, this is expressed as

&(r) = ‘1//de5(x)5(x-|-r) = (5(X)6(x +1)). 2.3)

Where V is the volume of integration. In a purely mathematical scenario, ideally
V = R3, however, when working with observational data or simulations the actual
volume where §(x) is defined will be finite, which will introduce artificial variabil-
ity in the calculation of ¢(r). Usually, if the volume of integration is large enough
(approximately 10 times larger than [r| in the smallest dimension), these effects are
fairly negligible compared to observational error and cosmic variance.

Given the cosmological principle, if this volume of integration V is large enough,
the 2PCF will be isotropic, since at any point x the Universe on average must look
the same regardless of the direction of the r vector. Therefore, the 2PCF will depend
simply on the scalar variable r, the modulus of r, which can be expressed as

&(r)=(0(x)d(x+1)) V| =r. (2.4)

This theoretical 2PCF is defined for the total matter distribution, dominated by
dark matter; any actual observations will be based on tracers with a certain bias, as
expressed in eq. (2.2). Therefore, for any tracers t1 and ¢2, the measured correlation
will be related to the real matter 2PCF as
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gtltZ(r) = btlthC(r)r (2.5)

where by and by, are the respective bias of the tracers. If t1 and 2 are the same
sample of the same tracer, the effective bias of the 2PCF will simply be b, and in
such case the measured 2PCF is usually referred to as autocorrelation. If the tracers
being correlated are different, then it is known as cross-correlation.

When this 2PCF is estimated from observational data, the tracers often are not
scalar fields, but discrete counts in redshift space (e.g., galaxies mapped by a survey).
For the autocorrelation of galaxies (or other discrete counts), the 2PCF has a far more
intuitive meaning: it is the excess in probability of finding a galaxy at a distance r
from another galaxy with respect to a Poisson distribution (where the probability of
finding a galaxy at a certain point is completely independent from its environment).

Therefore, a positive (negative) value of the 2PCF at a certain distance » means
that the probability of finding two galaxies as such distance is higher (lower) than
in a fully random distribution. Some simple properties can be deduced from this
interpretation of the 2PCF. First, for distances large enough ¢(r) must tend to zero,
since above the scale of homogeneity the distribution should be indistinguishable
from a random distribution. And second, the cumulative integral [ ¢(r)dr also must
tend to zero at the same scales, given that the cumulative probability becomes that
of a random distribution as well.

In fig. 2.2 an example of matter 2PCF is displayed, both its theoretical prediction
(solid line) and the values measured from a simulation (blue points). This was a
validation test for the correlation code developed for this work (section 5.2). For a
complete review on the 2PCF and its estimators, as well as other statistics applied
to the study of large-scale structure, we refer the reader to Bernardeau et al., 2001,
chapter 3.

2.2 The power spectrum

2.2.1 Definition of the power spectrum

From a mathematical standpoint, the evolution of the structure observed in the Uni-
verse according to its physical parameters is better described in Fourier space. First,
we define the Fourier transform of a certain scalar field f(x) defined in R3 as

FF&I= | Px f(x)e ™ = f(k), (2.6)
as well as its inverse Fourier transform
“1(F _ 1 31, F(1.) Hikx
FUF0) = (s oo DX 008 = £x). 27)

The (271) 3 factor in the inverse Fourier transform comes from the normalisation
criteria applied. Other normalisations of the transform, which would yield different
coefficients in F and F ! are entirely possible, but this one is arguably the most
used convention is cosmology.

Another necessary definition for this explanation is that of the convolution of
two scalar fields, f(x) and g(x), which is expressed as

(Frg)(x) = [ X F(x=x)gx). @8
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FIGURE 2.2: Example of 2PCF used to validate the correlation code

developed for this thesis. The blue points represent the 2PCF mea-

sured by the code in the MICE Grand Challenge Simulation (Fosalba

et al., 2013), the solid red line is the theoretical prediction using the

cosmology of the simulation, and the dashed blue line is SNR of each

bin (right axis). The increased error with distance is due to the limited
sample volume.

This operator has an interesting property in Fourier space, named the convolution
theorem, which states that the Fourier transform of the convolution of two functions
is equal to the products of the Fourier transform of each individual function,

FI(f=8)(0)] = @m)>F[f(x)] Flg(x)]. (29)

The (277)? factor in this expression comes from the chosen normalisation of the
Fourier transform; different normalisations would result in different factors on the
left-hand side of eq. (2.9).

In order to demonstrate this convolution theorem, we write eq. (2.8), but replac-
ing the function f(x) inside the integral by 7 ~[f(k)], while keeping the x — x’ term,

(F8)(x) = [ dKFIR) [ dg(x), 210)

and rearranging the terms inside the integral, we find

(f+g)(x) = /}R PKf(K) [ /R 3 d3x'g(x/)e—ka’] eix = /R PRF0OF(k)e ™. (211)

The left-hand side is the inverse Fourier transform of the product of f(k) and
g(k),ie.,

(f *&)(x) = 2> F ()5 (K)], (2.12)
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so simply by applying the Fourier transform to both sides of eq. (2.12), we re-
cover eq. (2.9).

Having defined the convolution operator and its properties in Fourier space, it
is interesting to note that the 2PCF, as defined in eq. (2.3), is the convolution of §
with itself at the point —r (i.e., &(r) = (6 % 6)(—r)). If we take isotropy into account,
and consider r a scalar variable, then we have &(r) = (6 * 6)(r). Therefore, the 2PCF
becomes a simple product of two functions in Fourier space. Since it is the main
statistic applied to the analysis of the structure of the Universe, it is now clear why
would it be more convenient to develop its associated physical theory in this space.
In order to do so, we define the power spectrum of the matter distribution, P(k), as

P(k) = [6(k)|?, (2.13)

where d(k) is the Fourier transform of the overdensity field d(x). It is worth
noting that, according to this definition, P(k) has units of (length)3, since §(x) is
dimensionless (eq. (2.1)), and é(k) has units of (length)?, considering that in our
definition Fourier transform is an integral over R?, and k has units of (length) 3.

With this definition, the 2PCF is simply the inverse Fourier transform of the
power spectrum, i.e.,

_ 1 x _ L [% ikx
20) = Gy /]R PRP(R)E = /0 dk k2P (k)e™, (2.14)

Here, in the left-side of the equation we have assumed isotropy (due again to
the cosmological principle), so P(k) only depends on the modulus of k (k = |k|),
and integrated over the solid angle of a sphere in spherical coordinates (which is
equivalent to multiplying by 47 for a isotropic field). Therefore, the power spectrum
is usually expressed as a function of k. The values of this variable k are usually
known as modes; for a certain mode k, a higher value of P(k) means a larger degree
of inhomogeneity at these scales (i.e., more dispersion around zero of the values of
o(x)).

So far, we have discussed the power spectrum of the matter distribution, dom-
inated by the underlying dark matter. In the same fashion as the 2PCF, the power
spectrum of a certain tracer t will be biased with respect to the matter power spec-
trum. Given that the Fourier transform is linear, the relationship between the matter
power spectrum P(k) and the power spectrum of the tracer P;(k) can be written as

Pi(k) = b7P(k), (2.15)

where b; is exactly the same bias for the tracer as described in eq. (2.2) for real space.

2.2.2 Theoretical model of the power spectrum

The theoretical modelling of the power spectrum and its evolution requires to con-
sider the wildly different physical properties of the Universe in the different eras it
goes through, as explained in section 1.3, as well as the evolution of all the modes of
P(k), which may seem like a daunting task at first.

However, a mostly analytical expression for the power spectrum can be obtained
in the linear regime approximation (6 << 1). Under this assumption, the equations
governing the evolution of the modes of P(k) can be expanded using perturbation
theory, and all the non-linear terms (higher than first order) are neglected. An ex-
pression of the power spectrum as a function of k and z in the linear regime is
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P(k,z) = Py(k)T(k)*D(k, z)>. (2.16)

e Py(k) is the primordial power spectrum, given by the conditions right after
inflation.

e T(k) is the transfer function, which models how the modes go through the
radiation era until the matter era.

e D(k,z) is the growth factor, which dictates how the modes develop since the
beginning of the matter era until the present day.

The reason why the transfer function and the growth factor are squared in eq. (2.16)
is that they are defined to describe the power spectrum of the gravitational potential,
not the matter fluctuations.
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FIGURE 2.3: Linear power spectrum (solid line) and its non-linear
counterpart (dashed line), for different redshifts, computed using
CAMB for the cosmology in table 1.1.

The primordial power spectrum

The current inflationary paradigm considers that right at the end of inflation, the
only inhomogeneites in the Universe were the quantum fluctuations stretched to
cosmic scale. If these fluctuations come from a single non-interacting field, they
must follow a Gaussian distribution. Consequently, the primordial power spectrum
right after inflation must be that of a Gaussian distribution, which adopts the form
of a power law (Guth and Pi, 1982) such as

Po(k) = AK™s. (2.17)

Here, A is a normalisation constant that fixes the amplitude of the power spec-
trum, and ng, the exponent of the power law, is the spectral index. If ng = 1, we
usually refer to a scale invariant power spectrum (referring to the fact that, in a loga-
rithmic scale of base k, Py(k) would be displayed as a constant).
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These two variables are also cosmological parameters of the ACDM model; in
the case of of s, it is given directly, while A is usually computed by adjusting the
normalisation of the power spectrum to a certain observable. By convention, the
statistic used for this purpose most of the time is 3, i.e., the standard deviation of
the overdensity field in a sphere of radius 8 Mpc/h at z = 0. In table 1.1, the values
of ns and oy for Planck Collaboration et al., 2016 are displayed.

The calculation of o for both real and Fourier space can be expressed as

02 = 4r / " W (P8 = o [ " dk W (K)R2P(K), (2.18)
Jo 27t~ Jo

where W, (r) and W(k) are the window functions that define the integration
range in real and Fourier space, respectively. For the particular case of o3, these are
top-hat functions of radius 8 Mpc/h in real space and 0.125 (Mpc/h)~! in Fourier
space. Therefore, with an observed value of 03, using this expression the normalisa-
tion of the power spectrum given by the factor A can be computed, assuming that
P(k, z) follows a functional form as in eq. (2.16).

The transfer function

Once inflation ends, the primordial power spectrum generated by the Gaussian
quantum fluctuations starts to evolve according to the physical properties of the
Universe at that time: an extremely hot, radiation-dominated environment that pro-
gressively expands and cools down. Here we will shortly discuss the meaning and
approximate behaviour of the transfer function that describes the evolution of the
power spectrum during this era, as a derivation of the function is out of the scope of
this thesis. For a comprehensive derivation of the transfer function and the growth
factor, we refer the reader to Dodelson and Schmidt, 2020, chapter 7.
Qualitatively, the evolution of overdensity with time can be understood as

s
dt?

i.e., since it is attractive and dependant on mass, gravity accelerates the growth of
overdensities, while pressure decelerates it. If pressure dominates, the evolution of &
will become oscillatory. In this expression we have just added abstract terms to rep-
resent the effects of each force, without including an actual functional dependence
on physical parameters.

In the radiation-dominated era, radiation pressure is the dominant contributor
to the pressure term in eq. (2.19). Since dark matter does not interact with elec-
tromagnetic radiation, dark matter fluctuations still grow, but a slower rate than
when matter dominates in the next era. Since radiation is the dominant energy com-
ponent in the early Universe, it affects significantly the gravitational potential by
homogenising it. As radiation is massless, and thus not attracted by gravity in the
non-relativistic sense, it will not cluster in the lowest potential regions, generating
even lower potentials (which is the basis for structure formation).

Given that the increase of potential is partially suppressed by radiation, this re-
sults in a logarithmic growth of the dark matter overdensity,

= (Gravity - Pressure) -, (2.19)

5 « Ina. (2.20)

On the other hand, baryonic matter is coupled to radiation, and its pressure over-
comes gravity when it is the dominant element of the Universe. Therefore, baryonic
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fluctuations exhibit an oscillatory behaviour, according to eq. (2.19), while being
progressively suppressed. Since most of the matter content is dark matter, these
oscillations only show as small wiggles in the net power spectrum (highlighted in
the transfer function displayed in fig. 2.4). Besides, when measuring the 2PCF in
real/redshift space, a peak in this statistic around ~110 Mpc/h (see fig. 2.2) appears
for this same reason: it is the comoving length of the radiation pressure waves just
before decoupling from baryonic matter (see section 2.3).

Nevertheless, radiation (or any other physical phenomenon) only affects modes
inside the Hubble horizon (i.e., k > kg); larger modes are simply out of causal con-
tact (as information can not travel fast enough to affect them), and thus are consid-
ered to be frozen. These modes, however, do still evolve, but isolated from any kind
of causal phenomenon. It can be seen as a purely kinematic evolution, where modes
evolve "on their own", as opposed of a dynamical evolution inside the Hubble hori-
zon, where pressure and gravity influence their evolution. When discussing the
evolution of power spectrum modes, the term horizon always refers to the Hubble
radius.

A strict derivation of the behaviour of modes outside of the horizon would re-
quire a relativistic treatment of perturbation theory, and the standard Newtonian
derivation is already out of the scope of this thesis. Nevertheless, the approximate
evolution of super-horizon modes can be deduced from a very simple perturbative
approach. First, let us assume the first Friedmann equation (eq. (1.16)), for a com-
pletely flat Universe (k = 0), and the cosmological constant A included in the energy
density term (eq. (1.33)),

8nG
H(t)? = ==po(t), (2.21)
where pp would be the average energy density of the Universe at time t. If a
small perturbation in density is introduced while keeping the same expansion rate,
a non-negligible curvature will appear, i.e.,

Here, p;(t) is the perturbed value of the average density, and k is the curva-
ture parameter, not the mode wavenumber. Recalling the definition of overdensity
(eqg. (2.1)), the fluctuation é due to this small perturbation can be written as a function
of the scale factor and the energy density as

(2.22)

3k

3(t) = 87Ga(t5p0(D) x a(t)2po(t) L. (2.23)

This expression comes from replacing in (eq. (2.1)) pp and p; on the denominator,
using the values obtained from eq. (2.21) and eq. (2.22) respectively. Therefore, if we
know the evolution of the average density and the scale factor at a given time, the
super-horizon growth of ¢ can be estimated. For the radiation era, we know that
p « a~* (eq. (1.32)), so the growth of super-horizon fluctuations as a function of the
scale factor can be expressed as

5(a) < a’. (2.24)

Having defined the evolution of the fluctuations on both sub-horizon and super-
horizon modes, we can finally describe the behaviour of the transfer function T'(k)
(eq. (2.16)). By convention, this function is normalised so at the largest scales, T(k) =
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1 (well outside the horizon at the epoch of equality, where the radiation era ends).
Therefore, since all super-horizon modes evolve similarly, T (k) ~ 1 for these modes.
On the other hand, the smaller-scale modes that entered the horizon in the radia-
tion era will have T(k) < 1, since the modes tend to grow logarithmically, but the
normalisation introduces an a2 factor from the super-horizon growth.

The smaller the mode (larger k), the sooner it will enter the Hubble horizon, and
stop growing quadratically. Consequently, sub-horizon modes with larger k will
have a smaller value of T(k), as its growth was slowed down by radiation earlier,
while its super-horizon counterparts kept growing. The transfer function will then
show the following behaviour

1 it K
T(k) o if k< kreq (2.25)
k2Ink if k> ki eq

with kyeq being the wavenumber of the Hubble horizon at the epoch of equal-
ity. In practice, there is not a clear cut between the super-horizon and sub-horizon
modes, and numerical codes are needed to provide an exact solution, since it re-
quires to solve both the Einstein equations determining the evolution of matter and
gravitational potential, as well as the Boltzmann equations that describe the evolu-
tion of the coupled photon fluid.

However, eq. (2.25) already illustrates the most important feature: the turnover
of the transfer function around kyeq. This can be seen in both the transfer function
displayed in fig. 2.4, as well as the power spectra in fig. 2.3. The primordial power
spectrum is a power law very close to a linear slope (which should be displayed as
linear in a logarithmic plot, regardless of the exponent); the characteristic form of
the observed power spectrum, with a maximum around ky at zeq, comes from the
turnover in the transfer function.
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FIGURE 2.4: Transfer function with an arbitrary normalisation, as de-

fined in eq. (2.16), for the cosmology in table 1.1, computed in CAMB.

The shaded area is the regime where the baryonic wiggles are more

noticeable; in the zoomed panel the ratio between T (k) and Tegm (k)
is shown for this shaded region.
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The growth factor and non-linearities

Once matter becomes the dominant element of the Universe, and radiation decou-
ples some time after, describing the evolution of the power spectrum becomes a less
daunting task. On scales large enough (of the order of Mpc/h), baryonic effects such
as pressure or friction become negligible, and the matter distribution can be consid-
ered a perfect fluid. Besides, density fluctuations and velocities are small to allow
not only a purely Newtonian approach, but also a solution via linear perturbation
theory. The derivation shown in this subsection is extracted from Peebles, 1980.
First, since matter is to be considered a perfect fluid, the differential equations
that determine its evolution need to be laid out. We will do so in a form already
adapted for the FRLW metric, following the conventions explained in chapter 1.
First, the continuity equation, which is akin to the condition of mass conservation,

06 1
5t EV(V +6v) = 0. (2.26)

Second, the Euler equation, which expresses momentum conservation by estab-
lishing a relation between the net variation of momentum and the gravitational po-
tential ¢ (neglecting pressure gradients),

ov 1 a 1

And finally, the Poisson equation, which relates the gravitational potential to the
matter content,

v%:%%nw4. (2.28)

In these equations, v represents the peculiar velocity of the matter fluid at the
point where the equation is evaluated, i.e., the velocity minus the Hubble flow (in
comoving space, v is actually the net velocity of the fluid).

We can apply the linear approximation to simplify eq. (2.26) and eq. (2.27); in
order to do so, all the terms that are higher than first order in § and v are neglected
(e.g., 62, v?, 6v). The continuity equation is then

90

1
5 T-Vv=0, (2.29)

and moving the left-hand term to the right-hand side, the linear Euler equation
is

ov  a 1

With these lineal approximations, a single differential equation for  can be ob-
tained with the following steps:

1. Apply time derivative to eq. (2.29)
2. Multiply eq. (2.30) by a~1V.

3. Subtract the second equation to the first; v should not appear in the resulting
equation.

4. In the resulting equation, replace V2¢ using eq. (2.28).
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The result is a second-order differential equation where, for a given cosmology,
the only variable is §

026 _ad5 3

o "9t 2

Considering that the overdensity is a function of both time and space (4(x, t)),

and that this equation only places constrains on time evolution, a solution for § can
adopt the following form:

Oma2H} =0 (2.31)

5(x,t) = A(x)D (t) + B(x)D_(t), (2.32)

where A(x) and B(x) are arbitrary spatial functions, and D (t), D_(t) temporal
functions whose value increases and decreases with time, respectively (growing and
decaying modes). Given that we are evaluating the temporal evolution of §, we can
neglect the spatial part; in the linear regime the growth of fluctuations will be the
same everywhere. Besides, since gravity is an attractive force (and the only force
considered in eq. (2.28) is gravity indeed), the decaying mode D_(t) can be ruled
out as a non-physical solution. The growing mode D (t) (henceforth D(t)) is the
growth factor we are looking for. Knowing this, eq. (2.32) can be rewritten only for
D(t),

9’D oD 3
D) 25?2 20,130 4270 =0 (233)

Where we have expressed the equation as a function of the Hubble parameter
and redshift, to follow the conventional notation. For matter domination (all other
energy densities negligible), we find that, since a o 372, D(t) o a. A more general
solution can be provided in integral form for a flat Universe with a cosmological
constant, which corresponds to the ACDM model at late times. This solution, ex-
pressed as a function of redshift (which is the most common form for the linear
growth factor), is

_ H(z) [ [dZ(1+72) e dz (14-2)
D(z) = 7 [ /0 T } / “HE (2.34)

This linear growth factor only depends on redshift (time), and not space (or
modes k); as can be seen in fig. 2.3, for different redshifts the linear power spectrum
only shows an offset in the total amplitude, while conserving the same shape.

Nevertheless, this is only accurate in the linear regime (i.e., when ¢ is of the or-
der of few at most, and v < ¢); when linear theory breaks down, each mode evolves
differently. In fig. 2.3 this effect is clear, since the larger the k (smaller scales), the
more noticeable is the power gain with time. The origin of this behaviour is gravita-
tional collapse, and thus, when discussing non-linearities and non-linear regime in
the power spectrum, it refers to the effects of gravity on small scales.

2.3 Baryon Acoustic Oscillations

As explained in section 2.2.2, during the radiation-dominated era, in the early Uni-
verse, photons were coupled to baryonic matter, and radiation pressure was high
enough to overcome the attractive effect of gravity. This generated oscillations of
the baryon-photon fluid, which can be seen as wiggles in the transfer function and
the power spectrum (e.g., fig. 2.4).



2.4. The Lyn forest 39

These oscillations, however, translate to real space as longitudinal pressure waves
that propagate with time, akin to sound waves in our atmosphere. When matter
and radiation decoupled, baryons where no longer subjected to radiation pressure,
which froze these acoustic oscillations. Consequently, this results in an imprint in
the baryonic distribution: the fronts of these waves right before decoupling (i.e., the
maximum distance travelled by the waves during the radiation era) will have larger
baryon densities than average. This feature in the matter distribution is referred to
as baryon acoustic oscillations (BAO), and the length of these oscillations is commonly
known as the sound horizon.

While not directly observable by eye, BAO can be detected in clustering statistics
such as the 2PCF (e.g., the peak in fig. 2.2 around ~110 Mpc/h is indeed the BAO
signal in the simulation). Initially, BAO were hypothesised to be present in the CMB
power spectrum (Peebles and Yu, 1970), and also first observed there (Miller et al.,
1999). However, the imprint of BAO should also be observable at later times in
galaxy distributions, and eventually was detected in the 2PCF computed from large
spectroscopic samples (Eisenstein et al., 2005; Cole et al., 2005).

The scientific value of the BAO observation is that they function as a standard
ruler: since these are frozen pressure waves at scales too large for gravitational in-
teraction, they do not collapse and simply expand at the same rate as the scale factor
a, which makes their size constant in comoving space. BAO in the line-of-sight di-
rection can then be used to precisely determine the Hubble parameter at a certain
redshift, while transverse BAO yield a measurement of the angular diameter dis-
tance (Seo and Eisenstein, 2003).

These two observables combined allow to constrain the expansion history of the
Universe, and thus constitute an independent probe to evaluate dark energy and its
equation of state. Consequently, ever since its first detections BAO have been at the
core of several observational programs, to the point of being one of the main goals
of the spectroscopic surveys simulated in this work (see section 3.3, section 3.4).

2.4 The Lya forest

The theoretical models of large-scale structure are mostly based on the underlying
dark matter distribution, which is always the main contributor to the gravitational
potential, while all observational data we can retrieve is from tracers that follow this
dark matter distribution. While most of these tracers are directly observed thanks
to the radiation they emit in different wavelengths (e.g., galaxies, quasars, hot gas),
in this section we will discuss a tracer of special interest for this work, observed
indirectly thanks to absorption lines in spectra: the Lya forest.

24.1 Introduction to the Ly« forest

Most of the baryons in the Universe do not lie in galaxies (either in stars or as in-
terstellar gas), but in the intergalactic medium (IGM) in the form of gas, clustered
around the underlying dark matter web, but undetectable by direct means. Given
its density, much lower than the galactic medium, any thermal or line emission that
may come from the IGM is completely negligible compared to the observed galaxies
and quasars, where the vast majority of optical emission is concentrated in stars and
accretion disks.

The composition of these IGM clouds is by ~75% hydrogen and ~25% helium,
following the BBN proportions. Most of this hydrogen nowadays is completely
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FIGURE 2.5: Cartoon displaying the concept of BAO: around large
overdensities, galaxies have a larger probability to be found at BAO
distance, since the original sound waves imprinted larger baryonic
densities at these scales. The white ruler represents the sound hori-
zon. In this figure, the effect is exaggerated and not to scale. Credit:
Zosia Rostomian, Lawrence Berkeley National Laboratory.

ionised (HII), thus being completely transparent to radiation. However, even in the
local Universe a fraction of this hydrogen is still in neutral form (HI), which means
that when a photon collides, it is absorbed to excite the HI electron. This renders HI
effectively opaque to the wavelengths that can excite the electron from its ground
state (n = 1, with n being the principal quantum number of HI orbitals), to any state
with higher energy (n > 1).

These wavelengths are known as the Lyman series, named after physicist Theodore
Lyman. Table 2.1 shows the wavelengths and names of all of its lines, given that the
wavelength step between lines decreases at higher n; for n > 11 the subsequent
lines are virtually indistinguishable from an absorption continuum, referred to as
the Lya limit. All of these lines lie in the UV spectrum, and thus, are blocked by the
atmosphere and impossible to observe from ground telescopes unless its source is at
redshift high enough (z > 2.75).

Even if only a small fraction of the IGM gas is HI, its cross-section is wide enough,
and the size of the gas-occupied regions large enough, that there is significant ab-
sorption of any light passing through at the Lya wavelength or higher. Therefore,
when observing the spectra of objects in the right wavelengths, these IGM absorp-
tion lines should be seen.

Nevertheless, as the radiation emitted by the observed source at zsource travels
towards us, it will progressively be redshifted due to the expansion of space (see
section 1.2.6). Thus, any observer between the source and us will also observe this
radiation at a certain z, smaller than the redshift observed by us (z < zsource), given
that, as an intermediate observer, it is closer to the source.

This has a fundamental consequence: all the spectra originally emitted at bluer
wavelengths than the Lya line in rest frame will, at some point between the source
and us, be at the Lya wavelength, hence becoming susceptible of absorption by the
IGM. As a result, the observed spectrum will have multiple emission lines at bluer
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TABLE 2.1: Wavelengths and names of the Lyman series.

Name Lya LyB Lyy Lyé Lye Lyl Lyy Ly Ly: Lyx Lyman limit

n 2 3 4 5 6 7 8 9 10 11 > 11
A(nm) 121.6 1026 973 950 93.8 931 926 923 921 919 <912

wavelengths than the Lya emission at the redshift of the source (Ary, - (1 4+ Zsource))-
In fact, each one of these absorption lines, if observed at a wavelength Aapsorption, Will
come from an IGM cloud at redshift

Aabsor i
. ption
Zabsorption — — 5 1. (2.35)

)\Lyzx

This ensemble of absorption lines due to the IGM is known as the Ly« forest. Gener-
ally, it can be observed in the spectrum of quasars at high enough redshift (z > 2.75),
due to both the extreme luminosity of the quasars (which allows to detect them even
at z > 6), and the uniformity of its spectrum, even in the UV.

Figure 2.6 shows an example of quasar spectrum with a Lya forest, together with
a cartoon representation of the quasar, the line of sight and the space across the
quasar and Earth. All the forest absorption lines correspond to IGM clouds between
the quasar and the observer at lower redshifts; the most pronounced absorption line
corresponds to the gas surrounding a galaxy that almost intersects the line of sight.

Quasar

Gas intersecting
line of sight

td

QSO HI Lyman (¢ =— | ] "um.nliivr
and Lyman {3 [ \ melal lines
eSS0

Absorber Absorber
HI Lyman g HI Lyman ¢t

e N

Wavolongth —se—

FIGURE 2.6: Cartoon of the Lya forest. Top panel shows the quasar

and its line of sight to earth, with an intersecting gas cloud, in real

space. Bottom panel shows the spectra of the quasar in observed

frame, with the Lya line centred in the quasar. Absorption lines to the

left (bluewards) of the Ly« line correspond to the Ly« forest. Credit:
Neil Crighton.
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The Lya forest was initially hypothesised and detected in Gunn and Peterson,
1965, referred to as the "Gunn-Peterson effect". In the original description this phe-
nomenon was expected to be a uniform absorption of the observed spectrum at
shorter wavelengths than Lya, caused by a rather homogeneous distribution of HI
in the IGM. Nevertheless, later observations with higher spectroscopic resolution
(Lynds, 1971) showed that the partial absorption was actually a jagged spectrum
composed of hundreds of successive absorption lines; hence the "forest" denomina-
tion.

2.4.2 Basic properties of the forest

Although the Lya forest traces the complex underlying dark matter distribution,
some of its properties can be approximated by remarkably simple observational
laws, while other are heavily dependant on the physical modeling, and present de-
generacies that can not be broken by direct observation (e.g., ionisation fraction and
temperature). In this subsection we will briefly discuss the three basic parameters
that characterise the absorption lines of the forest: its column density, line profile
and redshift distribution.

For a thorough review of the subject, we refer the reader to Rauch, 1998, however,
we must warn that some of the proposed models for the formation of Lyx absorbers
explained there are outdated, and the CDM hierarchical model is accepted as the
current paradigm. It is also worth noting that all the features described here are
reproduced fairly well (at least with ~10% accuracy) by hydrodynamic simulations;

Column density

In spectroscopy, the column density of a certain absorption line is the density of ab-
sorbing particles that generates a certain absorption line, in units of density per sur-
face area (usually given in cm~2). Since this refers only to the density of particles
absorbing light, whenever column density is discussed for the Lya forest, it refers
solely to HI.

So as to determine the column density of a certain observer, first we need to
define the optical depth as a function of the observed flux intensity,

Jobs _ e . (2.36)
Icont
Here, Iops is the flux intensity integrated along the absorption line, I.ont the flux
intensity of the fitted continuum integrated in the same range (i.e., the flux if there
was no absorption), and T the optical depth, a dimensionless parameter which is
related to the column density with the following expression

T=N- 0, (2.37)

where N is the column density in cm~2, and o, the effective cross-section for the
absorption line, in cm?.

The Lya forest starts being detectable at column densities of N ~ 10?2 cm~2, a
density low enough to be approximately of the same order of the mean baryonic
density of the Universe. The lines become deeper until N ~ 107 cm~2, where the
Lya absorption saturates, but even then absorption systems can be detected up to

N ~ 10% cm ™2 (see section 2.4.3).
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Despite such extreme range of column densities (spanning about 10 orders of
magnitude), the column density distribution presents a quite straightforward be-
haviour, that can be modelled at first order as a power law

dN
B
IN < NP, (2.38)

where N is the number of absorbers (absorption lines), and § the exponent of
the power law, with values generally around 1.5. Thus, this expression gives the
number of absorbers for a given column density; logically, the higher the column
density, the least absorbers. It is worth noting that this is just an approximation, and
other expressions (e.g., a broken power law with a steeper form for higher densities)
may be a better match to the observations.

Line profiles

Given that the IGM clouds of the Ly« forest are relatively simple physical systems
(compared to galaxies), its absorption lines closely follow Voigt profiles. Such pro-
files are the convolution of a Lorentzian and a Gaussian distribution. The first ac-
counts for the homogeneous broadening (caused by the intrinsic uncertainty of the
energy levels in the Lya absorption), while the second represents other physical pro-
cesses (namely thermal motion or turbulence).

This profile can be can be simply described by two parameters, its peak value
(which yields the redshift of the absorber), and the Doppler parameter, b = /20
The latter can be described by a truncated Gaussian distribution of mean ~30 km/s,
standard deviation ~15 km/s, and a lower cutoff at ~10 km/s, without a clear cor-
relation with column densities.

The most important (and direct) scientific result that can be obtained from the
Doppler parameter is a upper limit on the temperature of the absorber, considering

that b follows the expression
2kT
b — 7 + bgther’ (239)

where k is the Boltzmann constant, T the HI temperature, m the mass HI mass, and
bother the dispersion caused by other physical effects (mostly turbulence). These up-
per limits usually yield temperatures of T ~ 10* K, which is similar to the expected
temperature of photoionisation equilibrium, T > 3 - 10* K. Although photoionisa-
tion equilibrium is usually assumed in physical models, the actual temperatures
may actually be lower, and different mechanisms for cooling of the HI have been
explored.

Distribution of absorbers

If a certain column density threshold is set (be it the observational limit of 10'2 cm 12

or a higher one), the number of absorber per redshift unit can be approximately
described by the following power law,

‘Z/;/ « (1+2z)". (2.40)

This expression, however, shows a clear evolution: as we go further in redshift, the
7 exponent also increases. For the relatively low-redshift Lya forest (1 < z < 3, from



44 Chapter 2. Large-scale structure

the UV to the start of the optical range), generally we find 2 < v < 3, whileatz ~ 4
the power law becomes noticeably steeper, with higher v values.

This increase on the number of absorbers with redshift (and the fact that, for
z ~ 4 it becomes more drastic) is a confluence of several factors: one one hand, those
related to the evolution of the dark matter structure, and on the other hand, the
physical processes of collapse and reionization that the absorbers might undergo.
Nevertheless, the dominant effect, specially at high redshifts, is the reionization of
the IGM: although cosmic reionization is considered complete at z ~ 6, there is still
a progressive reduction of the residual HI with time.

In addition to its number density with redshift, the distribution of absorbers can
also be studied with other approaches. One of them is simply clustering (i.e., the
computation of the 2PCF); in that regard, low-column density absorbers (N < 10'°
cm~2) are very weakly clustered (much less than galaxies), while for absorber of
higher column densities the 2PCF increases. This may be a hint of the denser ab-
sorbers being galaxy precursors, or at least being placed in gravitational wells from
dark matter halos. More results from the clustering measurements of the Ly forest
will be discussed in section 2.4.4.

Another feature worth mentioning of the absorber distribution is the proximity
effect: the reduction on the number of absorbers as we approximate to the redshift of
the quasar. While this adds an extra layer of complexity when modeling the forest
(e.g., can other quasars close to the line of sight artificially decrease the absorber
density?), it can also be used to estimate the UV background in the IGM (Carswell
et al., 1987).

2.4.3 Special features

The characteristics explained in the previous subsection describe fairly well the ob-
served Lya forest for most quasars (z < 6), and absorbers of low enough column
density (N < 10 cm™2), as long as no other relevant IGM lines appear in the same
wavelength range as the forest. Here, we will briefly discuss the elements that ap-
pear in the forest spectrum when one of these conditions is not met.

Lyman limit systems

In principle, the relation between optical depth and column density is linear (eq. (2.37)),
and an increase in N only results in an increase of the absorbed flux, without altering
the shape of the absorption line in the spectrum.

These assumptions, however, do not hold true anymore when absorption is strong
enough to make the absorption line reach zero flux at its peak; in such case, the ab-
sorber becomes effectively opaque to the Lya emission from its reference frame. An
increase of N will modify the shape of the line, expanding the region where the con-
tinuum is totally absorbed, and making the transition between the continuum and
the opaque absorber more abrupt, close to a discrete step. This is referred to as the
saturation of the absorption line.

In the Lya forest, an absorber saturates completely when N > 10'7 cm~2. These
absorbers are called Lyman limit systems, due to the fact that they become also opaque
in the Lya continuum. Figure 2.7 displays an example of a Lyman limit system from
one of the earliest studies of these absorbers (Prochaska, 1999).

Due to the saturation, in these systems the column does not show an straight-
forward relationship as in eq. (2.37). The total absorbed flux becomes dependant on
log N, and a degeneracy appears with the Doppler parameter, b (given that the shape
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of the absorption line can not be constrained anymore regardless of its area). Never-
theless, given the resolution of modern spectrographs, N can still be determined by
profile fitting.

log N(HI) = (18.92, 19.12, 19.32)
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FIGURE 2.7: Example of Lyman limit system, detected at z = 2.652,

but with the x scale centred in the system for this figure. Smooth

lines represent fits for different column densities of the system. From
Prochaska, 1999, Fig. 1.

Damped Lya absorbers

If the column density of an absorber increases even more (N > 2 - 10 cm~2), the
saturated absorption line broadens, but its profile becomes again less abrupt. The
continuum in the vicinity of the absorption line starts decreasing in a smooth slope
that becomes steeper close to saturation, but without the vertical jump of the Ly-
man limit systems. These features are referred to as damping wings, and thus the
absorbers that exhibit this behaviour are Damped Lyx absorbers. Figure 2.8 shows an
observational example.

The origin of these damping wings lies in the intrinsic uncertainty of the life-
time of excited HI, which in turn results in a uncertainty in its energy level, and
thus a broadening of the absorption line. For unsaturated Ly absorbers this effect
is combined with the Doppler effect from the motion of the gas, resulting in the
aforementioned Voigt profile.

Nevertheless, deviations too large from the average wavelength of the line are
only possible due to this lifetime broadening; on such regions, this broadening will
dominate over the Doppler effect. However, the likelihood of such deviations is
small enough, so in unsaturated absorbers, and even Lyman limit systems these re-
gions are optically thin. Only when N increases well above saturation this broaden-
ing due solely to lifetime uncertainty becomes apparent, resulting in the appearance
of damping wings.
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In these damped systems, the equivalent width of the absorption is proportional
to v/N, without degeneracies with b. This makes damped Lya absorbers more in-
formative and easier to study than Lyman limit systems, especially with the lower
resolution spectrographs used in early works on the subject (e.g., Carswell et al.,
1975).

In addition to this, damped Lya absorbers show some physical properties that
make them the most studied feature of the Lya forest. Given its high column density,
inside an outer shell of ionised gas most of the hydrogen in damped Lya absorbers
remains as HI, making them the largest reservoirs of neutral gas in the Universe
at z < 5. This is of special importance, since HI is an essential element for star
formation.

Besides, since a larger gravitational potential is needed to maintain these systems
bound, they are believed to reside in small halos, and show more clustering than
standard Lyw forest lines. Therefore, damped Lya absorbers play a crucial role in
galaxy formation and evolution, and have been largely studied in these fields. For a
comprehensive review on that matter, the reader may refer to Wolfe, Gawiser, and
Prochaska, 2005.
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FIGURE 2.8: Example of damped Lya at z = 3.556; colored lines rep-
resent fits for different column densities. From Songaila and Cowie,
2010, Fig. 7.

Gunn-Peterson trough

So far, we have seen the elements that appear in a quasar spectrum when a certain
region of the IGM is dense enough to become effectively opaque to Lya emission. If
the HI density was high enough for saturation in all of the IGM, everything blue-
wards from the Lya line of the quasar would be totally absorbed.

This is exactly what should happen before reionisation, and is referred to as
Gunn-Peterson trough. Hypothesised in Gunn and Peterson, 1965, it was finally dis-
covered in Becker et al., 2001 analysing the spectrum of a SDSS quasar at z = 6.28
(fig. 2.9). This was one of the first direct observational probes of reionisation, and
was critical in determining its end at z ~ 6.
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FIGURE 2.9: One of the first detections of the Gunn-Peterson trough,

at z = 6.28. Going in descendent wavelength direction, the trough

begins almost immediately after the Lya line. From Becker et al., 2001,
Fig. 1.

Lyp forest

The HI in the IGM can absorb at any Lyman wavelength from table 2.1, although
Lya is the most common transition, given that it is the least energetic. Therefore, in
the spectrum of a quasar a forest of absorption lines will appear bluewards from the
Lyp line, the next one in the series.

Nevertheless, the Lyp line is already will already be inside the Lya forest region
of the spectrum (since it is bluer than Lyw), so the result will be a combination of
both the Lya and Ly forests after the Lyp line, each one coming from a different
redshift. For a given observed wavelength A, the Lya forest absorption will come
from a redshift z;y, = Agps/ALya — 1, while the Ly forest absorption will happen at
Zlya = /\obs//\Lya -1

This superimposition of two signals with a large redshift offset greatly limits
the usefulness of the Lyp forest, as the Lya and Lyp absorbers are far away enough
to have no correlation (i.e., far above the scale of homogeneity). In addition, the
redshift range where the Lya forest can be fully exploited is also limited to the region
of the spectrum between the Lyx and Lyf lines. However, the Lyp forest region can
still be used for cosmological studies, mainly because Lya forest cross-correlation
can still yield results in spite of the Lyp signal (e.g., Blomqvist et al., 2019).

24.4 Cosmology with the Lya forest

The Lya forest is a valuable cosmological tool, as it traces the underlying dark matter
structure. Nevertheless, the relationship between the observed optical depth 7 in the
forest absorbers and the overdensity J is far from trivial, and can not be separated
from other parameters, both cosmological and relative to physical conditions of the
IGM. This is illustrated by the Fluctuating Gunn-Peterson Approximation (FGPA,
Weinberg et al., 1997), which can be expressed as

-1
Tr(z) = 01720 (1 4 6)27077 <1 L1 dVlos>

H(z) dx
2

(5) o) (oas) () (=)

(2.41)
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FIGURE 2.10: Detail of the Lya and Lyp forest in a quasar spectrum

at z = 3. Blue and red lines represent the continuum fit for the

Lya and Lyp forest, respectively; the bump in the spectrum between

both (around ~410 nm) is the Lyp line emitted by the quasar. From
Blomgqvist et al., 2019, Fig. 3.

In addition to several cosmological parameters already covered in 1.2, other vari-
ables of astrophysical origin appear. Ty (in K) and < are the parameters of a power
law that relates HI temperature to overdensity

T(5) = To(1+4 )", (2.42)

while T is the photoionisation rate, in s~!. Besides, the dVjos/dx term is the spatial
derivative of the line-of-sight velocity, which accounts for the differences between
real space and redshift space (since the physical modelling is performed in the for-
mer, but the latter is observed).

This FGPA assumes that eq. (2.42) holds, and that gas density is low enough
for pressure gradients to become negligible and gravity dominate, which makes HI
overdensity be close to the actual dark matter . Therefore, it breaks § g 10, which
does not include most of the forest lines (N 2, 10'°). In this regime, if all the parame-
ters but J are assumed known, the relation between T and 6 becomes a simple power
law, but the physical properties of the Lya forest are far from certain.

In spite of these degeneracies with IGM properties, the Lya forest as a cosmic
tracer still presents some distinct advantages. First, it is one of the best clustering
probes in its redshift range (2 < z < 4), since at these high redshifts galaxy density
in surveys is much smaller than at z < 2 (given that only the brightest are observed).
Second, it traces really well the low overdensity regions at relatively large scales,
which are mostly in the linear regime. These features makes the Ly« forest suitable to
constrain warm dark matter models (WDM) or neutrino masses, which both should
cause suppression and cut-offs in the power spectrum (Viel, 2003). Therefore, since
its first observations the Lya forest has been used as a tool to both measure clustering
and place constraints on the aforementioned physical models.
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Some recent examples of clustering measurements are the determination of the
1D power spectrum (along the line of sight) in Chabanier et al., 2019, as well as the
3D power spectrum and BAO in Bautista et al., 2017, both with eBOSS data releases.
While the 1D power spectrum can be determined with relatively few quasars, its
three-dimensional counterpart requires a large enough quasar density, since with
the scarce space sampling of the Ly« forest the power spectrum of the whole volume
is being determined. Regarding the model constraints, for example Yeche et al.,
2017 places constraints in neutrino masses using the 1D power spectrum from the
Lya forest, and Garzilli, Boyarsky, and Ruchayskiy, 2017 discusses the degeneracies
between warm and cold dark matter models and thermal histories of the IGM when
analyzing Lya forest spectra.
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Chapter 3

Cosmological surveys and
Intensity Mapping

The task of systematically registering the positions of celestial bodies has been car-
ried out by most civilisations through History, with the Hipparchus star catalogue
(compiled in ~135 BC) being the most famous historical example. However, the con-
ception of extragalactic bodies, such as other galaxies than the Milky Way, dates from
the beginning of the XXth century (see section 1.1.3), and the observation of all but
the closest of these galaxies requires modern telescopes. Therefore, the elaboration of
catalogues of galaxies with cosmological purposes is a recent scientific activity, with
the first of them being the Center for Astrophysics Redshift Survey (Davis, Huchra,
and Latham, 1983). These kind of observations, as well as its derived catalogues, are
referred to as cosmological surveys.

In the broadest sense, cosmological surveys are observational programs designed
to systematically scan certain areas of the sky, with the aim of obtaining an uniform
mapping of a significant fraction of the Universe at certain wavelengths and redshift.
While surveys can be carried out in any wavelength of the electromagnetic spectrum,
the surveys considered in this thesis are only in the optical part of the spectrum (and
thus, their observations are performed with conventional ground telescopes).

Optical surveys can be classified in two large groups: imaging surveys and spec-
troscopic surveys. In the first, sky images are directly registered with a CCD camera
mounted on the telescope, and a set of filters in front of the camera determine the
wavelength ranges that are observed, given by the response function of each filter
(effective throughput of the filter versus wavelength, e.g., see fig. 3.3). In the second
case, an spectrograph is mounted on the telescope, which disperses the observed
light depending on its wavelength by diffraction. This dispersed light is then reg-
istered by different pixels of a CCD, thus obtaining a high-resolution continuum of
observed flux versus wavelength (e.g., fig. 2.9), instead of a net flux value per each
filter.

While spectroscopic surveys provide far more detailed information of the flux
emitted by an object, imaging surveys have the advantages of not requiring previ-
ous object selection (as the whole sky is observed, instead of specific targets), and
requiring much less observation time to achieve higher SNR and observe fainter ob-
jects (since each pixel of the CCD receives photons from a much larger wavelength
range).

In this chapter, we will first discuss the observational technique that will be eval-
uated for the the Lya line in this thesis: Intensity Mapping (IM). Then, we will delve
into the characteristics of the surveys simulated in this work: a narrow-band imag-
ing survey, the Physics of the Accelerating Universe Survey (PAUS), the Extended
Baryon Oscillation Spectroscopic Survey (eBOSS), and the Dark Energy Spectro-
scopic Instrument (DESI).
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FIGURE 3.1: Left panel: galaxy positions in a simulation. Right panel:
HI distribution corresponding to the simulated galaxies. Credit:
Francisco Villaescusa-Navarro.

3.1 Intensity Mapping

In the last few years, the amount of observational data for the Universe at different
wavelengths has steadily increased, which has led to the development of new meth-
ods and techniques to analyse these observations. IM is one of these techniques,
consisting of the tracing of large-scale structure with one or more emission lines,
without resolving any kind of finite source, like galaxies or quasars. The use of a
sharp and narrow spectral feature, such as an emission line, allows us to map the
structure not only in angular coordinates but also in redshift, which provides a 3D
tomography of the tracer (Peterson et al., 2009).

Figure 3.1 shows the difference between IM and conventional observation of re-
solved objects: on the left panel there are displayed as dots the resolved galaxies
from a simulation, while in the right panel the HI distribution corresponding to
these galaxies is shown. This is the same HI in the IGM originating the Lya forest
(section 2.4), and as this HI radiates with different emission lines (e.g., 21 cm, Lyx),
with IM the distribution of the right panel would be observed, instead of the left
one.

Originally, this technique was proposed to study the power spectrum with the
21-cm emission line at high, pre-reionization redshifts (z > 5) (Madau et al., 1997;
Loeb and Zaldarriaga, 2004), but its application at lower redshifts has also been stud-
ied, e.g., as a method to measure BAO (Chang et al., 2008). Other emission lines have
also been considered, such as the CO rotational line at intermediate (Breysse, Kovetz,
and Kamionkowski, 2014; Li et al., 2016) or high redshift, (Carilli, 2011), CII emis-
sion line (Gong et al., 2012; Yue et al., 2015), or the Ly line (Silva et al., 2013; Pullen,
Doré, and Bock, 2014). Given the relatively short wavelength of Lyx emission, this
line can only be observed at z > 2 with ground-based telescopes, which limits any
IM study with this tracer to relatively high redshifts.

Since IM does not resolve individual objects but considers all emission at cer-
tain wavelengths, one of the main challenges that IM studies face is contamination
by foregrounds. It is worth noting that, for most cases (i.e., all lines but Ly, and
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other tracers that may have been used for cross-correlation), IM is a technique ap-
plied to radio telescope observations, as these emission lines go from the far infrared
well intro the radio spectrum. Therefore, both the observational data and the anal-
ysis techniques are completely different: radio telescopes have much less angular
resolution but much larger angular coverage, and the treatment of both foreground
contamination and other noise sources is fundamentally distinct.

Regarding foregrounds, this source of noise can be removed via cross-correlation
with other datasets of objects with well-known redshift, an approach that has been
successfully applied in detections of the 21-cm line (Chang et al., 2010), CII emission
line (Pullen et al., 2018) and the Ly« line (Croft et al., 2016; Chiang, Ménard, and
Schiminovich, 2019). We will discuss the particularities of the few Lya IM studies,
since they are the closest to our case (both because they deal with the same emission
line, and the bulk of their data comes from optical /UV telescopes, not radio ones).

In the Lya case, in Chiang, Ménard, and Schiminovich, 2019 detection of ex-
tragalactic background light (EBL) is reported using cross-correlation of UV broad-
band data from the Galaxy Evolution Explorer (GALEX, Gil de Paz et al., 2007) with
spectroscopic galaxy samples; with an adjustable spectral model of the EBL they
place constraints on total Lyax emission up to z = 1. This work only considers the
evolution of EBL and its properties in redshift direction by integrating the cross-
correlation in an angular range corresponding to 0.5-5 Mpc/h, so other than the
redshift evolution, the results of this work are confined to cluster scales.

On the other hand, in Croft et al., 2016 all data used for IM was extracted from
the Sloan Digital Sky Survey III (SDSS-I1I, Eisenstein et al., 2011) BOSS (section 3.3).
Lya emission is estimated by selecting spectra of Luminous Red Galaxies (LRGs) at
z < 0.8 and subtracting a best fit model for each galaxy spectrum, which leaves a
significant amount of Ly« surface brightness from higher redshifts. These residual
spectra are cross-correlated with quasars from the same catalogue, which gives a
detection at mean redshift z = 2.5 of large-scale structure at a 8¢ level, and a shape
consistent with the ACDM model. This cross correlation, however, only yields a
positive signal on scales up to 15 Mpc/h. Given the quasar density of BOSS, this
implies that only 3% of the space (15 Mpc/h around quasars) is being mapped, and
large scale structure of Lya emission in general is not being constrained by this mea-
surement. Lya emission is extended at high enough redshift (approximately z > 3),
with Lya blobs (Taniguchi, Shioya, and Kakazu, 2001; Matsuda et al., 2004) form-
ing visible structures around quasars up to hundreds of kpc in size, and the inte-
grated faint Lya emission in turn covers almost 100% of the sky (Wisotzki et al.,
2018). Therefore, cross-correlation of the Lya emission with a more suitable dataset
(less rare than quasars) is expected to provide a positive signal on larger scales.

One of these possible datasets to cross-correlate with is the Lya forest, as the
Lya emission observed with IM comes from the very same IGM that causes the Ly«
forest. As described in section 2.4, each Lya forest spectrum contains information
about the HI distribution along a large fraction of the entire line of sight, which
should allow cross-correlation over larger, more representative volumes. In Croft et
al., 2018 a first attempt at cross-correlation was performed between Ly« forest from
BOSS and similar LRG spectra with the best galaxy fit subtracted to those used in
Croft et al., 2016, but no signal was found. Nonetheless, BOSS was not designed
with Lya IM as an objective, and it is certain that larger and more suitable datasets
are needed to obtain a clear detection (Kovetz et al., 2017). Such a dataset would
need data with redshift precision close to that achieved by spectroscopy over large
areas, providing a volume large enough to study large-scale structure with Lyax IM
(Croft et al., 2018).
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One potential candidate that may fulfil these requirements are narrow-band imag-
ing surveys, such as PAUS. The objective of this work is therefore to simulate a study
of IM with the Ly« line using the images from PAUS, whose background (which con-
tains Lyx emission from the IGM) is to be cross-correlated with the Lya forest date
from eBOSS and DESI. The characteristics of these surveys will be briefly described
in the following sections.

3.2 PAUS

Most imaging surveys observe the night sky using broad-band filters: these filters
have wide response functions, usually with FWHM>100 nm, so with a few of them
the whole optical spectrum is covered. With such filters, the spectral information of
the observed objects is fairly limited (since we only get a few points of the optical
spectrum), but good SNR can be obtained with relatively low observation times.
Some examples of these surveys are the Sloan Digital Sky Survey (SDSS, Ahumada
et al., 2020) or the Dark Energy Survey (DES, Abbott et al., 2018).

One of the main purposes of these surveys is the determination of the redshifts
of the observed objects knowing their fluxes in each filter (usually known as pho-
tometric redshifts). In spite of the very limited spectral information provided by the
broad-band filters, our current knowledge of galaxy spectra, and the calibration with
complementary spectroscopic observations, allows to determine photometric red-
shifts with errors of the order of few percent for objects at z < 1 (e.g., Hoyle et al.,
2018).

Nevertheless, narrow-band surveys, with filters significantly narrower than the
standard broad-band ones, have also been carried out. They offer a trade-off be-
tween broad-band and spectroscopic surveys: higher spectral resolution than broad-
band, but also higher observation times. The Physics of the Accelerating Universe
Survey (PAUS), in which this work is focused on, is an state-of-the-art narrow-band
imaging survey, currently being carried out at the William Herschel Telescope in
Roque de los Muchachos, with the PAU Camera (Castander et al., 2012). Figure 3.2
displays the instrument already mounted and ready for observation, as well as the
William Herschel Telescope.

The main feature of this instrument is the use of 40 narrow-band filters with
a full width at half maximum (FWHM) of ~ 13 nm, with mean wavelengths of
455 to 845 nm in steps of 10 nm. Figure 3.3 displays the response function of the
40 PAUS filters (colored), together with the standard ugriz bands from SDSS (black
lines). Such configuration allows one to obtain photometric redshifts (photo-z) with
sub-percent precision over large sky areas (Marti et al., 2014). Preliminary results
(Eriksen et al., 2019) already achieve better photo-z precision than state-of-the-art
photo-z measurements in the COSMOS field (Laigle et al., 2016).

The main purpose of the survey is the elaboration of high-density galaxy cat-
alogues with high-precision redshifts for cross-correlations of lensing and redshift
distortion probes (Gaztafiaga et al., 2012). As of the time of writing, the latest public
catalogue (Alarcon et al., 2020) is complete in the COSMOS field up to iap < 23,
and at the completion of the survey similar catalogues are expected to be released
in the other fields observed by PAUS. These are the W1, W2 and W3 fields from
the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS, Heymans et al.,
2012). Together with COSMOS, they cover approximately ~130 deg? of the sky, how-
ever, since a full coverage of the CFHTLenS fields is not expected a total angular area



3.3. eBOSS 55

FIGURE 3.2: Left panel: PAUS Camera mounted on the William Her-
schel Telescope. Credit: PAUS Collaboration. Right panel: Outer view
of the telescope. Credit: 2pem/Wikimedia Commons.

of ~100 deg? of PAUS images will be considered for the simulations presented this
work.

In addition to these photometric catalogues, the narrow-band data from PAUS
may also be used for intensity mapping of Lya. The background of PAUS im-
ages, where no objects are resolved, also contains valuable cosmological informa-
tion. Given the wavelength range of the NB filters, Lya luminosity is observed in
the range 2.7 < z < 6, distributed in 40 redshift bins, one per each NB filter. At this
redshift range faint Lyax emission surrounds most objects (Wisotzki et al., 2018), but
foreground contamination must be removed first in order to study it, since the weak
Lya emission coming from the IGM is several orders of magnitude fainter than the
observed galaxies.

In spite of the wavelength coverage of PAUS, however, only the seven bluest
NBs will be considered for this work, which span from 455 to 515 nm (shaded in
tig. 3.3). With these seven blue filters, Lyx emission is observed over the range 2.7 <
z < 3.3, approximately. At higher filter wavelengths, the observed Lya emission
increases in redshift, thus being farther away and fainter. In addition to this, the
fraction of quasars observed at z > 3.3 is extremely small (fig. 3.7), which means that
the amount of Lya forest data sampling this space is also very limited. Therefore,
adding extra filters only provides a volume for the cross-correlation with lower SNR
in PAUS images, and scarcely sampled by the Ly« forest.

3.3 eBOSS

The Baryon Oscillation Spectroscopic Survey (BOSS, Dawson et al., 2013) is a survey,
part of the larger SDSS project, with the main aim of measuring BAO (see section 2.3)
with the spectra of LRGs in a redshift range z < 0.7, up to magnitude iap < 20.
However, other of the targets of the survey is high-redshift quasars, and their Ly«
forest. Given that the Lya line enters the optical spectrum at z > 2, these quasars
are observed in the redshift range 2.15 < z < 3.5, up to magnitudes as faint as
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FIGURE 3.3: Response function for PAUS filters (coloured) and origi-
nal SDSS ugriz filters (black). Shaded area represents the wavelength
range studied in this work.

gap < 22. The total angular coverage of the survey is of 10,000 deg?, containing a
total of approximately 1.5 million LRGs and 150,000 quasars.

After finishing its observational run, new spectroscopic targets were selected
to continue the survey, under the name of the Extended Baryon Oscillation Spec-
troscopic Survey (eBOSS, Dawson et al., 2016). Most of these new targets come
from two populations unexplored by BOSS: 250,000 LRGs at a higher redshift range
(0.6 < z < 2.2), and 500,000 low-redshift quasars (0.9 < z < 2.2). While most of the
observed spectra of these quasars does not contain their Lya forest (as the Lya line
falls well into the UV spectrum), their redshift measurements alone already provide
valuable information to study clustering, as they are highly biased tracers. In addi-
tion to these two new spectroscopic samples, eBOSS also targets 60,000 new quasars
at z > 2.1, whose observed spectra indeed contain the Ly« forest. All these new ob-
servations are carried out with approximately the same survey footprint, and thus
angular coverage; eBOSS increases the total object density in the same fields as the
original BOSS catalogue.

The BOSS/eBOSS instrument (Smee et al., 2013) is a multifibre spectrograph that
allows the observation of 1,000 targets in a single exposure. In order to do so, each
fibre collects the light of a single object, and is rerouted to the spectrograph, where
the light emitted by the object is diffracted and observed. These fibres are all concen-
trated in a fibre cartridge (fig. 3.4, left panel); on top of the cartridge, an aluminium
plate drilled at the positions of the selected targets is mounted (fig. 3.4, right panel).
Each one of the fibres is manually inserted in the corresponding hole of the plate,
thus ensuring that each fibre observes its designated object.

For this instrument, two twin spectrographs are connected to the fibre cartridge,
each one with a blue and a red camera, observing different wavelength ranges. The
light is diffracted by a grism (a combination of a diffractive grating and a prism),
reaching spectral resolutions of 1,560 < R < 2,270 in the blue channel, and 1,850 <
R < 2,650 in the red channel (with the spectral resolution being defined as R =
A/AA). The ensemble of fibre cartridge with plate+spectrographs is mounted on the



3.4. DESI 57

telescope, with the fibre plate (and the connected fibres) on its focal plane. The tele-
scopes where the observations took place were the Sloan Foundation 2.5m telescope
at the Apache Point Observatory for BOSS, and the Irénéé du Pont Telescope (also
2.5m) at Las Campanas Observatory for eBOSS.

FIGURE 3.4: Left panel: Fibre cartridge of the BOSS spectrograph.
Right panel: Plate for the BOSS spectrograph. Credit for both: SDSS.

Regarding its contribution to science, both BOSS and eBOSS have been the largest
spectroscopic surveys at their times, which makes their data invaluable for cosmol-
ogy. In the particular case of the Lya forest, most of the recent cosmological results,
such as measurements of power spectrum or BAO, have been a product of these
surveys (see section 2.4.4).

Given that the spectral resolution of eBOSS is far larger than the narrow-band
photometry from PAUS (the maximum resolution achievable for the latter would be
around 65 if its photometric data was to be compared against spectroscopy), and that
the much larger angular coverage fully overlaps with the PAUS fields, the only pa-
rameter we need from eBOSS to model the cross-correlation is the angular quasar
density versus redshift of its catalogue. This is necessary to introduce the exact
amount of quasars in the simulation, which in turn will determine how much space
is actually sampled by their Ly« forests. Figure 3.7 shows this data (orange line for
eBOSS), extracted from Dawson et al., 2016, Table 1.

3.4 DESI

The Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration et al., 2016b),
is a next-generation spectroscopic survey, with the main goal of constraining differ-
ent dark energy models by measuring BAO (section 2.3) and redshift space distor-
tions (section 5.3.2). In order to do so, four different samples will be observed: LRGs
up to z < 1.0, galaxies with bright OII lines up to z < 1.7, a bright galaxy sample at
z ~ 0.2 (to be observed mostly in bright moon phases), and a high-redshift quasar
sample at 2.1 < z < 3.5. In total, more than 30 million objects will be observed.
Regarding its angular coverage of the sky, it will be of 14,000 deg?, completely
overlapping with the eBOSS fields. Besides, fainter targets will be selected, which
increases the net object density. In the case of quasars, eBOSS selected targets up to
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FIGURE 3.5: Left panel: Sloan Foundation Telescope at Apache Point

Observatory. Right panel: Irénéé du Pont Telescope at Las Campanas
Observatory. Credit for both: SDSS.

gAB < 22, while DESI goes deeper, extending the magnitude limit up to gap < 22.5.
Therefore, DESI is considered a direct successor to eBOSS.

The entirety of the survey will be carried out at the Mayall Telescope at the Kitt
Peak National Observatory. This is a 4-meter telescope (thus, larger than the 2.5-
meter telescopes used in BOSS/eBOSS) that has been completely repurposed for
DESI, and will dedicate all of its observing time to the survey. A picture of the
telescope, already prepared for DESI, is displayed in fig. 3.6, right panel.

The instrument (DESI Collaboration et al., 2016a) mounted on the telescope will
also be a multifibre spectrograph, but instead of using drilled plates to locate the
tibres in the focal plane, each fibre will be directed by a robotic positioner, making
the process completely automatic. Up to 5,000 targets can be observed in a single
exposition (one per fibre), and the observed light is redirected by each fibre to one
of the 10 identical spectrographs of the instrument. These spectrographs have three
cameras that observe different parts of the spectrum: infrared, red and blue. Their
spectral resolution is 2,000 < R < 3,200 for the blue channel, 3,200 < R < 4,100
for the red channel, and 4,100 < R < 5,000 for the infrared channel. Figure 3.6,
left panel, displays the focal plane system, showing the robotic positioners with the
fibres attached.

As of the time of writing, DESI has finished commissioning, i.e., the tests to ver-
ify that the instrument, once mounted, satisfies all the requirements for the survey.
The survey validation phase is to be started, and by the next year the acquisition of
scientific data should be on its way. More precisely, 1% of the survey is expected to
be completed in the first half of 2021.

Regarding the data needed to simulate the cross-correlation in this work, as in the
case of eBOSS, the only necessary parameter is the quasar density versus redshift.
Its values are displayed in fig. 3.7, blue line, as extracted from DESI Collaboration
etal., 2016b, Fig. 3.17.
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FIGURE 3.6: Left panel: Detail of the DESI focal plane system. Each

axis in the focal plane is a robotic positioner with a fibre attached.

Right panel: Mayall Telescope at Kitt Peak National Observatory.
Credit for both: DESI Collaboration.
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Chapter 4

Simulation of survey data

As we have stated in section 3.1, the goal of this thesis is to simulate the cross-
correlation between PAUS images and the Lya forest from eBOSS/DESI, with the
objective of detecting the extended Lyax emission of the IGM.

In order to simulate this cross-correlation between different surveys, the first
step is to simulate the actual survey datasets. The simulation of the background
of PAUS images poses a bigger challenge, since independent elements from the Lya
signal need to be taken into account (namely, foreground emission and instrumen-
tal/atmospheric noise). On the other hand, the modelling of the observed Ly« forest
is quite straightforward, as it already traces the underlying dark matter distribution
fairly well, even without any kind of additional data reduction.

For this work, an already existing hydrodynamic simulation has been used for
both Lya forest data and Lya emission, while the foregrounds in PAUS images have
been computed using a broad-band mock catalogue interpolating the spectral en-
ergy distributions (SEDs) of objects by fitting SED templates. On top of the fore-
grounds, noise from any other sources (electronic, atmospheric, etc.) has been in-
cluded by assuming that the sum of all noise follows a Gaussian distribution, and
measuring the variance of this distribution directly from PAUS reduced images.

This chapter is divided in three sections. First, in section 4.1, we will briefly dis-
cuss the two main kinds of numerical simulations used in cosmology: n-body and
hydrodynamic. In section 4.2, the three elements used for the modelled survey (hy-
drodynamic simulation, mock catalogue and noise) are described, and in section 4.3,
we explain how these datasets are combined to simulate both PAUS images and
eBOSS/DESI Ly forest data.

4.1 Overview of cosmological simulations

In order to constrain and either verify or falsify cosmological models, the theory
behind these models needs to be compared against observations. However, the Uni-
verse is a system complex enough that the only way to relate most observables to
the underlying theory is by running numerical simulations based on said theoretical
models.

For example, the variation of the observed 2PCF (or other clustering observables)
depending on different dark matter models can only be inferred by adjusting the
properties of the hypothetical dark matter and running a numerical simulation of
its evolution. For smaller scales, features related to galaxy and cluster evolution rely
even more on simulations to both make predictions and better understand the actual
underlying physical processes.
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Therefore, cosmological simulations are an invaluable tool for modern cosmol-
ogy, and thanks to the continuous improvement on computational power and nu-
merical methods, a very active research topic. We will briefly explore the two main
types of numerical simulations used in cosmology: N-body and hydrodynamic. For
a complete overview on the current state-of-the-art, we refer the reader to Vogels-
berger et al., 2020 and the references therein.

4.1.1 N-body simulations

At cosmological scales, the dominant element that dictates both the observed struc-
ture and its evolution is dark matter. According to the current ACDM paradigm,
cold dark matter is collisionless and only interacts through gravitational force; all
the electromagnetic processes that affect baryons at macroscopic scales can be sim-
ply ignored, as well as pressure or turbulence. Consequently, simulating only the
evolution of dark matter should be much less complex than taking into account its
baryonic counterpart, while providing an accurate picture at large scales. This is the
principle behind N-body simulations, where dark matter particles evolve as bodies
interacting through gravity only.

Normally, these simulations are run by setting an initial density field at redshift
high enough (z ~ 100), following the primordial inflationary power spectrum and
the transfer function (see section 2.2.2). Dark matter particles are placed according
to this initial distribution, and their evolution is computed until z = 0. All the infor-
mation regarding all dark matter particles (position, momentum) is stored at certain
time steps; these snapshots allow to recreate later the properties of the simulated
Universe at different redshifts.

Computing the evolution of the dark matter particles implies solving the colli-
sionless Boltzmann equation, which determines the evolution by of the phase-space
density (i.e., the space of position and momentum where all the particles are repre-
sented as a dynamical system), and the Poisson equation, which gives the gravita-
tional potential. In most simulations Newtonian gravity is considered, as the linear
theory approximation yields the same results as general relativity, and dark matter
particles do not reach relativistic speeds. Given that the simulation is confined to
a finite box, periodic boundary conditions are set, which emulate the homogeneity
(and the cosmological principle) observed in the real Universe.

This relative simplicity of the gravity-only evolution, together with the afore-
mentioned approximations, make n-body simulations suitable to simulate large cos-
mological volumes. The first simulations already covered scales large enough to
study galaxy clustering, (e.g., Aarseth, Turner, and Gott, 1979; Aarseth and Fall,
1980), but with only around ~1000 particles per simulation (and usually, one parti-
cle assigned per galaxy). Modern state-of-the-art simulations, such Millennium XXL
(Angulo et al., 2012) or Euclid Flagship (Potter, Stadel, and Teyssier, 2017) are run
with ~ 10° — 10!2 particles in boxes with sides of the order of Gpc/h, which covers
a significant portion of the sky. Zoomed simulations, which focus on much smaller
volumes (of the order of ~Mpc/h) with much higher resolution also exist, such as
COCO (Hellwing et al., 2016), designed to study the halo structure and small-scale
effects, or CLUES (Libeskind et al., 2009), which replicates our Local Group. Fig-
ure 4.1 shows the structure at different scales of one of the largest N-body simula-
tions, MICE-Grand Challenge (Fosalba et al., 2013).

Given that the only output of N-body simulations are the positions of dark-
matter particles, as well as its organisation in halos, filaments and other structures,
some kind of model is needed to obtain derive observable properties (namely, galaxy
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FIGURE 4.1: Example of one of the largest N-body simulations,

MICE-Grand Challenge, displaying the wide dynamic range (from

Gpc to Mpc scales) covered by the simulation. Extracted from Fos-
alba et al., 2013, Fig. 1.

positions, as well as its basic spectral properties and its magnitude) solely from the
dark matter structure. Without such a model, the results of N-body simulations
could hardly be compared to observations, as dark matter by itself cannot be ob-
served. This is usually achieved with semi-analytical models (e.g., Hatton et al.,
2003; Benson, 2012), which use analytical expressions to derive galaxy occupations
in halos, HI mass, star formation rates, etc. from the properties of the halos and their
merging trees.

Considering that the Ly« forest is a crucial element of this work, it is worth noting
that one of the most remarkable successes of early cold dark matter N-body simula-
tions was to properly emulate the absorption patterns of the Ly« forest. This finding
was a decisive proof for the adoption of cold dark matter in the current standard
model.

4.1.2 Hydrodynamic simulations

While N-body simulations can reproduce with a great degree of accuracy the cosmic
web, baryonic distributions, as well as visible objects such as galaxies or quasars, can
only be approximated via semi-analytical models (which usually are calibrated ei-
ther with empirical data or other simulations, offering little to no predictive power).
Besides, the effects that baryonic matter may have on the smaller structures (e.g.,
halo shapes), are completely neglected.

Therefore, if baryonic phenomena such as galaxy formation and evolution are
to be studied, we need simulations that include baryons as another element that
evolves and interacts. Such simulations are known as hydrodynamic simulations. Usu-
ally, baryons are included in the simulation as ideal gases with no viscosity, and after
setting an initial gas distribution, they are evolved by solving the Euler equations of
fluid dynamics. There are two numerical approaches to the problem: Eulerian and
Lagrangian.

In Eulerian methods, the simulation volume is divided into cells, and the hy-
drodynamic equations are solved considering each cell of the mesh as a discrete en-
tity, which is equivalent to formulating the equations for a static observer that does
not flow with the gas particles. Given the huge dynamic range of hydrodynamic
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simulations (as variables such as density or temperature can vary several orders of
magnitude between a star-forming region and an underdense region of the IGM, for
example), adaptive meshes are employed.

On the other hand, Lagrangian methods use as a reference discrete moving ele-
ments (sampling particles), which follow the hydrodynamic equations of motion. In
this case, the equations are formulated for a moving observer that is part of the fluid,
and dividing the simulation volume into a mesh is not needed. The most commonly
used Lagrangian approach is the smoothed-particle hydrodynamics method, which
was originally developed in the field of astrophysics (SPH, Gingold and Monaghan,
1977).

In addition to the hydrodynamics of the baryonic gas (which already are more
complex than the gravitational interactions of dark matter particles), several phys-
ical phenomena regarding baryons need to be taken into account. These are usu-
ally out of the already large dynamic range of hydrodynamic simulations, and it is
completely unfeasible to simulate them numerically, unlike the baryonic gas. Conse-
quently, they are implemented with simple analytical approximations or numerical
methods, known as subresolution models (as they emulate processes way below the
numerical resolution of the simulation). Some of the most important are:

¢ Star formation: Stars form from the accretion of cold and dense gas. This pro-
cess is impossible to replicate numerically in a cluster-sized simulation, as a
galaxy of the size of the Milky Way contains ~ 10! stars. Usually, this is
simulated by assigning a probability of generating stars to gas regions above
certain density thresholds, or other gas properties. Gas particles that turn into
stars are then considered collisionless, as they behave like point particles at
galactic scales.

¢ Stellar feedback: Stars do affect their surrounding gaseous medium, either by
the continuous emission of stellar winds or the drastic ejections of matter in su-
pernovae. These processes are simulated by injecting either thermal or kinetic
energy on gas particles surrounding star regions.

* AGN feedback: Active galactic nuclei (AGN) are the accreting disks surround-
ing supermassive black holes at the centre of galaxies. The high-energy pro-
cesses in these objects result in the emission of a strong electromagnetic con-
tinuum, as well as the ejection of relativistic matter in collimated jets. Since
these are well outside the dynamic range of cosmological hydrodynamic sim-
ulations, subresolution models are needed for its implementation.

Initially, hydrodynamic simulations managed to reproduce key properties of the
IGM, but struggled to form realistic galaxies (e.g., much larger bulges than disks in
late-type galaxies, unrealistic stellar masses). Recent simulations can produce fairly
realistic late-type (spiral) and early-type (elliptical/irregular) galaxies, but there is
still much to be understood about the underlying physical processes, especially sub-
resolution models.

Given the higher complexity of hydrodynamic equations, as well as all the em-
bedded subresolution models, hydrodynamic simulations cover much smaller vol-
umes than their N-body counterparts; the largest hydrodynamic simulations have
maximum sizes of the order of ~ 100 Mpc/h, such as EAGLE (Schaye et al., 2015) or
[ustris-TNG (Springel et al., 2018). Smaller scale simulations, which focus solely on
galaxy formation and evolution, without much consideration of large-scale struc-
ture, also exist, such as NIHAO (Wang et al., 2015) or Latte/FIRE (Wetzel et al,,
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2016). In fig. 4.2, a example of star distribution in large-scale structure (left panel)
and a simulated disk galaxy (right panel) from different Illustris-TNG simulations
are shown.

FIGURE 4.2: Left panel: Stellar mass distribution in a projection of

Mustris TNG100-1 at z = 0 (cropped). Right panel: Detail of a large

disk galaxy from Illustris TNG50 at z = 2. Credit for both: TNG
Collaboration.

4.2 Independent simulations in this work

As we have mentioned at the beginning of the chapter, the simulated PAUS data
is a combination of different cosmological simulations (hydrodynamic for Ly« data,
N-body for foregrounds), plus a Gaussian realisation of atmospheric/instrumental
noise. The hydrodynamic simulation is also used to model the Lya forest data from
eBOSS/DESI. In this section, we will review these cosmological simulations, as well
as explain how the instrumental noise from PAUS has been estimated.

4.2.1 Hydrodynamic simulation

The hydrodynamic simulation used in this work has been performed with the P-
GADGET code (Springel, 2005; Di Matteo et al., 2012), with 2 - 4096 particles in a
400 Mpc/h box using the cosmology specified in table 4.1. While this cosmology
has small differences in parameters compared to a more standard cosmology ob-
tained from observational surveys (e.g., table 1.1), these deviations in cosmological
parameters are small enough to not affect the results of this work in any significant
manner. Besides, the discrepancies in / can be entirely be accounted for with the
current tensions in Hy measurements. Therefore, for consistency the cosmology of
the hydrodynamic simulation has been used for the entirety of this work.

Particle masses of 1.19 - 10" h~!M, and 5.92 - 10k~ M, were used for gas and
dark matter respectively, with a gravitational force resolution of 3.25h! kpc. In
order to speed up the simulation, the density threshold for star formation was lower
than usual, so gas particles became collisionless star particles more quickly. This
density threshold was 1,000 times the mean gas density. Besides this, black hole
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formation and stellar feedback were not taken into account. While this results in
inaccurate stellar properties of galaxies, it does not significantly affect the IGM, and
thus the simulated Ly« forest (Viel, Haehnelt, and Springel, 2004).

TABLE 4.1: Cosmological parameters of the hydrodynamic simula-
tion; they have been also used for any other calculations carried out
in this work.

QA Qm Qb h Nng (%]
0.725 0.275 0.046 0.702 0.968 0.82

This simulation was originally computed for Lya forest studies, and has already
been used in several works. In Cisewski et al., 2014 and Ozbek, Croft, and Khandai,
2016, different methodologies to model the 3D IGM between Ly« forest data were
tested with it, while in Croft et al., 2018 it was used to simulate Lyx IM. Figure 4.3
shows a voxel plot of the hydrodynamic simulation in both Lyx emission, in lumi-
nosity units (erg/s), and absorption, in J flux contrast, defined as

e n

(e7™)
Where T is the optical depth of the Ly« forest pixel i (section 2.4.2), computed along
sightlines through the simulation, as in Hernquist et al., 1996. Therefore, with this
definition high values of § correspond to regions with low HI density, and vice-
versa. This ¢ absorption flux is expected to have a clustering bias with respect to
dark matter of b, = 0.336 = 0.012 at z = 2.25 (Slosar et al., 2011), including redshift
distortion effects.

While the physics leading to the Lya forest absorption are reproduced explicitly
in the hydrodynamic simulation, we make predictions for the Lya luminosity using
a simple heuristic model, with an amplitude normalised using observational data;
not enough is known about all sources of Lya emission to warrant using a more
detailed model.

In this model, the Lya luminosity is proportional to the square of the baryonic
density field at the scale of the spatial binning of the hydrodynamic simulation (1.56
Mpc/h). This is done with the following expression

5 = ~1 (4.1)

LLya(V) = CLpb(I’)z, (42)

where py,(7) is the baryonic density field, and Cy, is a normalisation constant cho-
sen in order to set the average Lya luminosity density to 1.1 - 10¥erg/s/(Mpc)>.
This value of Lya luminosity density is that measured from observed Lya emitters
at redshift z = 3.1 (Gronwall et al., 2007), which is a conservatively low value to
use, as it does not include any sources of Lya emission which are not readily ob-
served in narrow-band Lya surveys. This includes low surface brightness extended
halos around Lya emitters (e.g., Steidel et al., 2011) (which could host 50% or more
extra Lya luminosity density), or any other low surface brightness emission which
could be difficult to detect in surveys aiming to detect objects above a threshold, but
which would be included in an intensity map. The Lya luminosity density we use
can be converted to an associated star formation rate density applying a commonly
used relationship between Lya luminosity and star formation rate (SFR) of 1.1 - 1042
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erg/s/(Mg/yr) at z ~ 3 (Cassata et al., 2011). This relation yields a SFR density
measured from observed Lya emitters of 0.01 M, /yr/Mpc® (Gronwall et al., 2007).

Once the Lya luminosity density is determined for a simulation cell in the model,
the Ly luminosity values are convolved with the line of sight velocity field, in order
to put the Lya emission into redshift space. This technique is similar to that used to
convert the Lya forest absorption spectra into redshift space (see e.g., Hernquist et
al., 1996). The work of estimating the Lya luminosity from the baryon distribution
of the hydrodynamic simulation was mostly done by our collaborator Rupert Croft,
from Carnegie Mellon University.

The baryons are unbiased with respect to dark matter, and thus in the model, the
Lya emission is expected to be biased with respect to dark matter by a factor be ~ 2
on linear scales (due to Lya being related to the square of the baryonic density). This
be in the model is chosen to be consistent with the measured bias of Lyax emitters at
these redshifts (e.g., Gawiser et al., 2007), considering that these are the predominant
sources of Lya emission, and that the contribution of the IGM is subdominant. We
note that the assumption of squaring the density will lead to a linear bias of b = 2,
which may not hold at very highest densities, and this may result in artefacts in the
form of extremely bright pixels. As it is explained later (section 4.3.1), a Lya flux
threshold is set for the simulated PAUS images, partially in order to account for this
effect.

4.2.2 Mock catalogue/Foreground simulation

If we consider PAUS images for Lyx IM, most of the detected photons of cosmic
origin will not come from Lyw at a certain redshift (depending on the filter used),
but from uncorrelated sources at different redshifts than the expected Lya emission.
The main contributors to this contamination of the signal will be foregrounds, i.e.,
objects with lower redshift between the Lyax emission and the observer. In this work,
96.7% of all the observed flux in the simulation (averaged over all filters) was from
foregrounds (after masking resolved objects).

Since the goal of this work is assessing the potential of cross-correlating PAUS
with Lya forest data, a realistic model of these foregrounds is key for our study. In
order to model them, we will need a mock catalogue that spans a range of redshift
large enough (at least z = 2.75, but ideally until z = 6, where the PAUS redshift
range for Lya ends), with an angular size comparable to the Lya forest/emission
simulation box. Besides, all objects in the catalogue must have their observed SEDs
in the PAUS wavelength range (455-855 nm) and with resolution higher than PAUS
FWHM (AA < 13 nm).

The two first requirements (redshift range and angular size) are met by already
available mock catalogues generated with N-body simulations and semi-analytical
models, but none of them contain direct SED information. Such mock catalogues are
intended to reproduce large surveys, with the only spectral information available
being either broad bands, which do not meet the resolution requirement, or emission
lines, which are insufficient to generate the foregrounds.

Our approach to this problem is to take a mock catalogue with broad bands, and
interpolate SEDs for all objects by fitting SED templates to the broad bands. The
mock catalogue selected is a lightcone (e.g., a larger simulation in a certain line of
sight, constructed by combining the same N-body simulation at different redshifts)
originally developed to simulate data from the Euclid satellite, made from a run
of the Millennium Simulation using WMAP7 cosmology (Guo et al., 2013). This
lightcone is complete up to magnitude 27 in Euclid H band, which makes it ideal for
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FIGURE 4.4: The five SED templates used for foreground simulation,
normalised to facilitate visual comparison.

foreground simulations (since most mock catalogues do not reach such depths). The
semi-analytical model applied to compute galaxies is GALFORM (Gonzalez-perez et
al., 2014), and the lightcone was constructed with the technique described in Merson
etal., 2013.

In order to interpolate SEDs, we have considered the SDSS ugriz bands (ftig. 3.3,
black lines) from this mock and the five SED templates defined by Blanton and
Roweis, 2006, which we show in fig. 4.4. For the five templates, their ugriz band
values have been computed in a fine redshift grid (Az ~ 0.01). These template bands
are used as the elements of a coordinate basis, and for any object the coefficients of
the linear combination of templates that gives the ugriz bands of the object can be
computed with the following expression

Uobi U g1 i1 X1
8obj Up & 1 1 Zp X2
robj = usz g3 13 13 23 X X3 (43)
Lobj Ug 84 T4 14 Z4 X4
Zobj/ Us g5 rs5 15 Zs Zgria~z X5

Where the left hand array are the bands of the object 0bj at redshift z, the right
hand array X are the coefficients of the linear combination of the templates, and the
matrix is the basis of template bands at the redshift zgq closest to the redshift of
the object z. This is a simple linear system that has a single exact solution as long
as the basis matrix is invertible (which has been checked for all zy;4). However, the
coefficients X must be all non-negative for the SED to make physical sense (since the
SED templates are patterns of emitted flux for galaxies, and thus subtracting them
has no physical meaning). Therefore, instead of finding the analytical solution, the
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coefficients are computed using non-negative least squares. This numerical method
is approximate, but on average yields relative errors of a few percent when recover-
ing the original bands. Once these coefficients are obtained, the linear combination
of SED templates using the coefficients is computed for all objects, thus generating
a full mock catalogue with high spectral resolution SEDs.

4.2.3 PAUS Noise

In addition to the foregrounds, PAUS images have noise from a large variety of
sources (electronic, airglow, etc.), together with the intrinsic variability between nights
(seeing, moonlight, etc). Instead of simulating each one of these components with a
physical model, we have measured them directly from PAUS images. For each one
of the 7 filters considered, 8 exposures in 10 different pointings in the COSMOS field
have been blindly selected as a representative sample to evaluate the noise. All of
these images were already reduced by the PAUS pipeline, but some additional pro-
cessing was carried out to emulate the additional reduction that would be necessary
for IM applications.

First, resolved sources were removed by applying a sigma-clipping filter with
30 threshold in 5 iterations; ideally, the masks could be extracted from a reference
catalogue, but as a preliminary study sigma-clipping is enough to virtually remove
all resolved objects. The masked pixels were replaced by random values drawn
from a Gaussian distribution with the same mean and ¢ as the unmasked pixels of
the image, to avoid having empty pixels that would result in an overestimation of
o (since ¢ needs to be computed for the pixel size of the simulation, which is larger
than the CCD pixel size, masked pixels would result in artificially smaller samples
inside a simulation pixel, and thus a higher o). Figure 4.5 shows one of the reduced
science image from PAUS used for the noise measurement (top panel), and the result
after applying sigma-clipping (bottom panel).

Second, once resolved objects were masked, the median flux value was com-
puted and subtracted for all the images. This was done to cancel out the variability
in sky brightness due to moon phases and time of observation, which may modify
the average background flux by a factor of few. While this erases all Lya clustering
signal at scales larger than the CCD (~12 Mpc/h in its smallest dimension at z = 3),
this approach is enough for noise determination in this preliminary work. A proper
modelisation of the moonlight and sky brightness as a function of date and time
could remove this variability without erasing the large-scale Lya signal, but it is out
of the scope of this thesis. However, it is a pending task if Lya IM is to be performed
on PAUS data (or other optical imaging surveys).

After this processing, ¢ could be measured directly from the resulting images,
but it would include not only the electronic and atmospheric noise aforementioned,
but also the variance due to the cosmic foregrounds and the Lya signal, which are
already considered in our simulation.

In order to remove all signals from cosmic origin and keep only the electronic
and atmospheric noise, we have stacked all exposures for all pointings, but apply-
ing an scaling factor of -1 to half of them. Since the number of exposures is even, any
signal that should remain constant between exposures would tend to zero (e.g., both
Lya and foreground emission), while the variability due to atmospheric and elec-
tronic components remains. This has been done using SWARP (Bertin et al., 2002),
disabling background removal (to not artificially decrease the resulting noise), and
cropping the regions of the stacked image where there was not a full overlap of all
the 8 exposures. Figure 4.6 show an example of the resulting stacked image.
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FIGURE 4.5: Example of PAUS image in the 455 nm filter used to

measure noise. Top panel: Reduced science image. Bottom panel: The

same image, after sigma-clipping and replacement of masked pixels
by Gaussian values.
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FIGURE 4.6: Stacking of 8 clipped exposures in the 455 nm filter, with
alternate sign. Same pointing as the images in fig. 4.5.

For each one of these stacked images, the o was computed for increasing pixel
sizes, starting by the intrinsic pixel size of the CCD, and going above the pixel size of
our hydrodynamic simulation. The flux values of these increasing pixel sizes were
computed by adding the values of all pixels inside them instead of averaging, since
the hydrodynamic simulation considers the total Lya luminosity in each 3D pixel,
not its spatial average. Given that the images are stacked, the resulting ¢ has been
divided by ,/Nexp, to scale the result to a single exposure.

Figure 4.7 shows the average o for each filter versus pixel size; the vertical line
represents the pixel size of the simulation, and the dashed line an extrapolation of
the o vs pixel size considering uncorrelated noise (averaged for the 7 filters). This
extrapolation has been determined with

— 0y, (4.4)

where 0y and 6 are the standard deviation and angular size for the original pixels
of the image, and o, 0; its counterparts for the new pixels. This expression comes
from the fact that the sum of uncorrelated Gaussian variables has a ¢? equal to the
sum of all the 02 of the individual Gaussian distributions. In this approximation, we
consider each pixel to be an uncorrelated Gaussian with equal 0pixel; thus, the sum
of n pixels will have ogym = \/ﬁapixel. Since we are adding CCD pixels to form larger
pixels where ¢ is computed, this 1/ factor will be equal to the ratio of angular sizes,
which results in eq. (4.4).

By looking at fig. 4.7, it is clear that the ¢ measured from the images displays a
noticeable correlation for pixel scales larger than 30 arcsec, since it shows a much
steeper slope in logarithmic scale. With the approach we have followed, it is certain
that this correlation is not of cosmic origin, but other than that, we can not speculate
more on the causes for this observed correlation, which are left for future research.

Therefore, we have considered two different noise levels: first, the measured o
for the simulation pixel size, which would be the intersection of the coloured lines
with the vertical black line in fig. 4.7, and the uncorrelated ¢ following eq. (4.4).
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FIGURE 4.7: Average measured o of masked images vs pixel size,

for the seven filters used in this work. The dashed line shows the

extrapolated mean for uncorrelated noise, and the vertical line the
pixel size of the simulation.
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TABLE 4.2: 0ppise Mmeasured for the pixel size of the simulation, in
(erg/s/ cm?/nm)-1071, for the seven narrow-band filters, as well as
its value scaled for three exposures, 03¢xp, and 18 exposures, 01gexp-

A(nm) 455 465 475 485 495 505 515
Onoise 13.52  20.78 846 515 729 6.62 13.14
Osexp /.80 12.00 4.89 297 421 382 7.58
Tigexp 319 490 199 121 172 1.56 3.10

TABLE 4.3: 0noise €xtrapolated as uncorrelated noise to the pixel size

of the simulation, in (erg/s/ cm?/ nm)-lO’lé, for the seven narrow-

band filters, as well as its value scaled for three exposures, T3exps and
18 exposures, 01gexp-

A(nm) 455 465 475 485 495 505 515
Unose 1032 1074 832 739 746 7.79 7.63
Tiexp 596 620 481 427 431 450 440
Tlsexp 243 253 196 174 176 1.84 1.80

The former represents the most realistic case if the cross-correlation with actual data
was to be computed now, while the latter is an hypothetical case where through
further work on image reduction all noise correlations are removed, and only the
uncorrelated and irreducible electronic noise remains.

In table 4.2, the mean oyneise for each filter, measured at the pixel size of the sim-
ulation, as well as the scaled noise for three exposures T3expy 1S shown, by dividing
Onoise by a factor of |/Nexp. A hypothetical case for a deeper PAUS (complete up to
iap < 24) is also considered, since it is a possibility currently being explored. This
would imply multiplying by six the current exposure time for all survey pointings,
hence the 01gexp- Table 4.3 shows the same data for the uncorrelated noise approxi-
mation. Overall, the correlation in the noise increases oyise by a factor of ~10.

4.3 Simulation of PAUS Ly« IM

All the elements described in the previous section (hydrodynamic simulation, fore-
grounds from mock catalogue and PAUS noise) need to be properly combined in
order to obtain a realistic simulation of PAUS images for IM. Besides, Lya absorp-
tion data from the hydrodynamic simulation needs some processing to emulate the
space sampling of the Lya forest; these procedures will be explained in this section.

4.3.1 PAUS images: Lyx emission

In order to simulate the PAUS images for the cross-correlation, the elements ex-
plained in the previous subsection (Lya emission from the hydrodynamic simu-
lation, foregrounds from the mock catalogue and Gaussian noise) must be con-
verted to units of observed flux density (erg/s/cm?/nm) and merged into the seven
narrow-band filters.

Since the hydrodynamic simulation gives Lya emission in luminosity units (erg/s),
the first step is to compute the comoving coordinates of all pixels of the simulation
from the point of view of the observer. Assuming the cosmology of the simulation,
and knowing that the simulation snapshot is at z = 3, we consider the comoving dis-
tance from the observer to the centre of the box to be the radial comoving distance at
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redshift 3, x(z = 3). Knowing this, the comoving coordinates of all cells of the simu-
lation with respect to the observer are also known (as well as their edges), assuming
that the three axes of the simulation box are RA, dec and radial directions respec-
tively. The bins of the hydrodynamic simulation are not in spherical coordinates
but Cartesian, however, given the small angular size of the sample, the small-angle
approximation can be applied.

With the comoving radial distance of all cells known, and the relation x(z) given
by the cosmology, the inverse relation z()) can be computed numerically, and thus a
redshift can be assigned to each cell. This allows to compute the luminosity distance
simply with its definition for a flat cosmology (section 1.2.7)

di(z) = (1+2) - x(2). (4.5)

Moreover, given that all the emitted flux is Lya, the rest frame wavelength is
also known (Aryg = 121.567 nm), which yields the observed wavelength range of all
cells in the hydrodynamic simulation, and thus all redshift bins (following the small
angle approximation, all cells in the same radial distance bin will have the same
redshift, and thus observed wavelength range). With all these elements computed,
the observed flux density for all PAUS cells comes from the following expression

L
 dmdy (z) A0S

Where L is the cell luminosity given by the hydrodynamic simulation (erg/s),
d1, the luminosity distance in cm, and AASPS the observed wavelength range for the
redshift bin of the cell, all corresponding to the PAUS cell i.

Having computed the observed flux density for all PAUS cells, the redshift bins
of the PAUS simulation need to be merged to simulate the wavelength bins given by
PAUS filters. In order to do so, PAUS filters are considered to have top-hat response
functions 10 nm wide, ranging from 455 nm (bluest filter) to 845 nm (reddest). Fol-
lowing this criterion, the redshift bins of the simulation completely fill the seven
bluest filters, which also limits the cross-correlation to seven filters in this work. The
last four redshift bins of the simulation fall outside the seventh filter; these bins are
discarded for the simulation of PAUS images. For each one of the simulated PAUS
filters, all the redshift bins of the hydrodynamic simulation that fall inside the wave-
length range of the filter are merged into a single one, with its flux value being the
mean of the merged bins (since observed fluxes are the average flux density over the
response function).

With redshift bins already merged to simulate PAUS filters, the average Lya red-
shift for each filter can be used to convert from observed flux densities (erg/s/cm?/nm)
to absolute flux densities (erg/s/nm), with the following expression

fai (4.6)

Fri = 47dy (zop) foie (4.7)

Where z,, is the redshift of Lya in the respective narrow band. This is done
in order to cancel out the dimming of observed Ly« flux with redshift (due simply
to the increasing distance between said emission and the observer), which would
introduce an artificial gradient in the emission field to be cross-correlated. However,
the previous conversion to observed fluxes was necessary, since we can only convert
to absolute fluxes with observational data using the observed redshift, i.e., PAUS
redshift bins, not the much finer redshift bins of the original simulation.
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FIGURE 4.8: Logarithmic histograms of the ratio between fluxes and
mean Lya fluxes, for the Lyx emission, foreground emission, and in-
strumental noise, both the measured noise and the uncorrelated ex-
trapolation (in absolute value). Noise values for the current PAUS
case, U3expabs- 1he vertical line represents the imposed Lya threshold.

On top of this conversion to absolute fluxes, a realistic threshold can be imposed
to Lya fluxes, both to remove possible artefacts that may be derived from the as-
sumption that Lya luminosity is proportional to baryon density squared, and also to
account for the fact that resolved objects will be removed from PAUS images before
cross correlating (which may remove some bright Lya emitters at high redshift).

The chosen Lya absolute flux threshold is 10 times the brightest pixel of the simu-
lated foregrounds, whose computation will be explained in section 4.3.2. This value
is chosen assuming that the foreground simulation gives a realistic estimate of how
much unresolved flux can be expected, and taking into account that resolved objects
are masked based on their ¢ band luminosity. This broad band has FWHM=138.7 nm
(tig. 3.3), which is one order of magnitude wider than PAUS narrow bands. There-
fore, Lya emission observed in a PAUS filter will be reduced by a factor of 10 when
observed in the g filter. A maximum value of of 1.53 - 107> erg/s/nm was set as a
threshold, which affected only 0.0024 % of all pixels. To visualise the extent of this
threshold, fig. 4.8 shows histograms of absolute fluxes for the Lya emission, fore-
grounds and instrumental noise, divided by the mean Lya flux and together with
the Lya threshold, represented as a vertical line.

After all these steps, the result is a simulation of Lya extended emission in PAUS
filters. However, given the redshift and the size of the simulation, it only covers
~ 25 deg?, with an angular pixel size of 1.38 arcmin?; since the expected area to
cross-correlate is 100 degZ, the simulation is replicated four times in mosaic pattern,
which effectively covers the expected area. The result can be seen in fig. 4.9.
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noise considered for the current PAUS case, 03expabs, using the un-
correlated noise approximation.



4.3. Simulation of PAUS Lyn IM 79

4.3.2 PAUS images: foregrounds

Given that resolved objects will be removed from PAUS images before cross-correlating,
only the objects too faint to be resolved must be included in the foreground simula-
tion. The PAUS reference catalogue is complete up to magnitude 25 in the g band;
consequently, only the objects in the mock lightcone dimmer than this value are
selected. Besides this, since the lightcone is elliptical in angular coordinates, it is
cropped to the largest inscribed rectangle. This rectangle is smaller than the 25 deg?

at z~3 of the hydrodynamic simulation, so it is repeated in a mosaic pattern and
cropped to cover the same angular area as the original Lya simulation.

All the foreground objects have their SEDs computed by template fitting, as ex-
plained in the previous section, and they are binned in RA and dec using the same
angular bins as the Lya flux simulation. Since the templates are fitted to apparent
magnitudes, by using the definition of AB magnitude the interpolated SEDs are al-
ready in observed flux units of erg/s/cm?/nm.

For each one of these RA x dec pixels, the net observed SED is computed as
the sum of the SEDs inside the bin. These stacked SEDs are then integrated and
averaged over the response functions of the seven PAUS blue filters according to the
expression below, which gives the observed foreground flux,

Jo~ dAfsep(A)Rub(A)
Jo dARp(A)

Here fsgp is the flux density of the interpolated SED, R, the response function
of a certain narrow band, and f;, the observed flux density in that narrow band.
With this expression the observed foreground flux in the PAUS filters is obtained; in
order to convert to absolute fluxes eq. (4.7) is used.

The result is a three-dimensional array covering ~25 deg? that can be directly
added to the Lya observed flux simulation. As in the Ly« flux case, this array needs
to be replicated four times in a mosaic pattern for an effective coverage of 100 deg?.
This time, however, for each replication the array is rotated clockwise (keeping the
redshift direction the same), in order to ensure that each 25 deg2 subset is a different
realisation of Lya emission+foregrounds (if the rotation was not performed, repli-
cating the arrays for a 100 deg? would be analogous to sampling the same 25 deg?
area four times). The result of these simulated foregrounds can be seen in fig. 4.10.

This rotation introduces discontinuities in the foreground structure, since the pe-
riodic boundary conditions of the mock catalogue are broken. Nevertheless, the
cross-correlation is computed by selecting cubes of PAUS cells around forest cells,
so only forest cells close enough to the discontinuities will be affected by them.

As shown in fig. 5.3, the cross-correlation is only computed in perpendicular (an-
gular) direction up to 20 Mpc/h. Given that the whole angular size of the simulation
is 800 Mpc/h, and that the discontinuities are two straight lines dividing the simu-
lation in RA and dec, this leaves <10% of the forest cells potentially affected by the
discontinuities. Also, the dominant noise contribution is instrumental noise, not the
foregrounds, so even in the small fraction of forest cells affected by discontinuities
the effects of these on the cross-correlation should be fairly small.

frb = (4.8)

4.3.3 PAUS images: Combination and noise

Considering that both have the same units and the same binning, the Lya and fore-
grounds absolute flux simulations can be directly added into a total absolute flux
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TABLE 4.4: Opoiseabs With noise correlation, in (erg/s/nm)-10%, for
the seven narrow-band filters, as well as its value scaled for three
€XPOSUTES, U3exp abs, aNd 18 exposures, 0gexp abs-

A (nm) 455 465 475 485 495 505 515
Uroseabs 912 15.05 656 427 645 624 13.16
Tiexpabs 527 8.69 379 247 372 3.60 7.60
Tlgexpabs 215 3.55 155 101 152 147 3.10

TABLE 4.5: 0ppiseaps following the uncorrelated extrapolation, in
(erg/s/nm)-10%3, for the seven narrow-band filters, as well as its
value scaled for three exposures, 03exp abs, and 18 exposures, 01gexp abs-

A(nm) 455 465 475 485 495 505 515
Uroiseabs 696 778 646 613 660 7.34 7.64
Tsexpabs 402 449 373 354 381 424 441
Clsxpabs 164 183 152 144 156 173 180

array. The only step left to properly simulate PAUS observations is to add the in-
strumental and atmospheric noise. For this simulation, we have modeled this noise
as a Gaussian distribution of mean zero and ¢ dependent on the filter. This ¢ is
the instrumental noise directly measured from images and scaled for the number
of exposures, as specified in table 4.2, converted to absolute flux units according to
eq. (4.7). Two cases have been considered: the o measured at the pixel size of the sim-
ulations (table 4.2), and the extrapolation considering uncorrelated noise (table 4.3),
which yields lower values of ¢.

These absolute flux noise values, 0yp;ise abs, @S Well as the scaled value that is used,
T3expabs, and the hypothetical deep PAUS, 01gexpabs, are displayed in table 4.4 for
the real noise case, and in table 4.5 for the uncorrelated extrapolation. The final
result of Lya flux+foregrounds+instrumental noise is shown in fig. 4.11. Only the
uncorrelated noise case is shown, as the resulting figure in this case is already noise-
dominated.

With this simulation, despite repeating both the Lya emission and the foregrounds
in a mosaic pattern, we ensure that the cross-correlation always samples a different
combination of signal+noise, since instrumental noise is generated for the full simu-
lation and foregrounds are rotated.

While it may be argued that the clustering signal from Lya emission is repeated,
the only caveat of this is that cosmic variance may be underestimated. Given that
the original diameter of the hydrodynamic simulation is 400 Mpc/h, far above the
homogeneity scale (e.g., Gongalves et al., 2018), and that the predominant sources
of noise are by far foregrounds and instrumental noise (as seen in section 6.2), any
effect cosmic variance may have on the result is negligible.

4.3.4 eBOSS/DESI: Ly« forest

To simulate the Ly« forest data of eBOSS/DESI surveys, the hydrodynamic absorp-
tion simulation show in fig. 4.3 is replicated four times in a mosaic pattern, as if it
was shown in the PAUS simulation.

After this operation, random cells in the simulation array are selected with the
quasar density redshift distribution shown in fig. 3.7 (depending on the survey to be
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simulated), with the redshift of each cell computed as for the Lya emission simula-
tion. The RA and dec coordinates of the quasar cells are selected randomly from a
uniform distribution. The total number of quasar cells (i.e., the number of quasars
in the sample) is also computed from the redshift distribution, considering that the
simulation has an angular area of 100 deg® and that only quasars with z > 2.7 are
to be included (since quasars at lower redshift will have all Lya forests outside the
redshift range of the simulation).

The cells between the quasar cells and the observer (the cells in the same angular
bins and negative redshift direction) are considered Ly« forest cells, including the
quasar cells themselves. Only these forest cells are taken into account for cross-
correlation; everything else in the hydrodynamic simulation is masked.

In addition to this, if a quasar is at redshift high enough so that Ly 3 forest appears
at z > 2.7, its forest cells that would be covered by the Lyf region are also masked,
given that these regions of the quasar spectrum contain both Lyax and Ly absorption
lines superimposed from different redshifts. While these Lyp forest regions can be
used for cross-correlation studies (e.g., Blomqvist et al., 2019), here we adopt the
conservative approach and remove them from the cross-correlation. These masked
LyB cells account for 12% of the total forest cells.

Regarding the SNR of the forest data, we take as a reference the mean SNR values
displayed in Chabanier et al., 2019, Table 2. These correspond to a high quality
sample of the first eBOSS release, and thus are an optimistic estimate of what can be
expected in both future eBOSS releases and DESI. For the redshift bin closer to our
study (z ~ 3), the eBOSS data shows (SNR) = 6.5 per forest pixel. However, this
value needs to be scaled to the bin sizes of our forest simulation with the following
expression,

SNRsimulation(/\) = MLUMHO_IH <SNReBOSS>r (4.9)
AMReposs)
where AAgmulation is the wavelength bin size for our forest simulation (deter-
mined as in section 4.3), and (Reposs) the mean resolution of eBOSS (~4350 accord-
ing to the data reduction in Chabanier et al., 2019). This results in a higher SNR, that
increases linearly from 9.97 at the lowest redshift to 10.29 at the high redshift end.
Gaussian noise is added to each forest cell according to the determined SNR.
A voxel representation of this Lya forest simulation, displaying only forest cells
used for cross-correlation, is shown in fig. 4.12, both for eBOSS and DESI expected
quasar densities.
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Chapter 5

Computation of the
cross-correlation

As we have already discussed, the goal of this thesis is to simulate Lya IM by cross-
correlating PAUS with the Ly forest data from eBOSS/DESI. So far, we have already
explained how the observational data has been simulated in the last chapter, as well
as laying out the theoretical basis needed to properly follow the work in the chapters
before.

Therefore, the only topic left before discussing the results is how the 2PCF is
computed; this is the subject of this chapter, divided in three subsection. First, in
section 5.1 the mathematical estimator used to compute the cross-correlation will be
explained, as well the error estimation and the biases derived from foregrounds and
other sources of noise. Then, in section 5.2, the code elaborated as a part of this the-
sis to compute said cross-correlation will be briefly described, with a focus on the
algorithm structure. Finally, in section 5.3 the theoretical model of the 2PCF, needed
to validate and interpret the results, is discussed.

5.1 Cross-correlation estimator

5.1.1 Estimator definition

In order to compute the cross-correlation from the PAUS and eBOSS /DESI simulated
datasets, an estimator of the 2PCF is needed, i.e., a function applicable to a real
sample that tends to yield the real value of the underlying statistical distribution.
We have already discussed the theoretical definition of the 2PCF in section 2.1.3, but
strictly speaking, it can only be applied to smooth scalar fields completely defined
over R" (which is never going to be the case with observational data).

Generally, the 2PCF estimators used in cosmology are designed to correlate pairs
of discrete points, as this is the product of galaxy surveys (e.g., see Kerscher, Sza-
pudi, and Szalay, 2000). The main challenge these estimators face is to minimise
the biases introduced by finite boundary conditions and irregular survey volumes.
However, in this work the elements to cross-correlate are uniform discrete divisions
of the sample volume (as it is usually the case with IM).

Besides, the boundary of the simulation is regular with no incomplete regions,
and the distances sampled by the cross correlation are one order of magnitude smaller
than the simulation size (35 Mpc/h vs 400 Mpc/h, see fig. 5.3). Therefore, any
boundary effects are very likely to be small, especially when compared to the dom-
inant noise components in PAUS images (both foregrounds and instrumental or at-
mospheric). Consequently, a more straightforward estimator has been chosen,
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Er) = X (51 Y_cBin(r,) <Pj> ‘ 51)
X (1 Y €Bin(ry) 1)

This estimator is defined for distance bins r,,. Since the cells to be cross-correlated
have finite volumes, distances are assumed from the coordinates of their centres.
Regarding the other terms in the equation, d; is the 6 flux of the forest cell i, as defined
in eq. (4.1), and ¢j is the absolute flux contrast for the pixel j in simulated PAUS
images, defined as

(E)

In other words, this estimator is the average value of the products of all cell pairs
in a certain distance bin, so it can be interpreted as a discrete equivalent of the the-
oretical definition in eq. (2.3). Normally, the average computed by this estimator
is weighted by a function of the pipeline error, as well as additional errors terms
derived from data reduction (e.g. Font-Ribera et al. (2012)). However, for this pre-
liminary work the error in simulated PAUS images is approximately constant, with
only slight variations between filters (see Table 4.4), and the Ly« forest error has been
considered negligible, so no weighting has been applied.

This distance r in eq. (5.1) is defined as the total distance between cells (monopole
cross-correlation), but it could also be defined as the distance projected onto the
line of sight (parallel cross-correlation, ¢(r)), or perpendicular to it (perpendicular
cross-correlation, ¢(r,)). Consequently, the parallel and perpendicular estimators
¢(r|n) and &(r1 ) can be defined simply by switching the definition of distance,
li —j|, by |i —j| - thes and |i — j| X if}s respectively (where i}, is the unit vector
parallel to the line of sight). All these three kinds of 2PCF will be considered in this
work.

¢ = 1. (5.2)

5.1.2 Jackknife error

If the 2PCF values obtained from the estimator are to hold any scientific validity,
they need to be accompanied by their error values (i.e., the ¢ of the estimator). Gen-
erally, the simplest approach would be to apply the estimator to different observed
samples, and compute the error as the ¢ of the values of the estimator for all samples.

However, in cosmology we only have one Universe to observe, and thus repeat-
ing the experiment to obtain a different set of observations is out of the question.
Consequently, one common approach is the use of resampling techniques, which
give an estimation of the error in any statistic from a single observational sample.
Even when working solely with simulations, as in this case, resampling techniques
are still applied, as cosmological simulations are computationally very expensive.

For this work, the error of the estimator has been computed jackknife resampling,
a resampling method widely used in cosmology, which has been largely proven to
yield reliable error estimations (Escoffier et al., 2016; O’Connell et al., 2019). In order
to apply this technique, first the simulated volume need to be divided in N equal
subsamples. Then, N values of the estimator are computed, each one determined
over all the observed volume but the subsample k. Following the notation in eq. (5.1),
this can be expressed as
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FIGURE 5.1: Jackknife division of the simulated volume (both for
PAUS and eBOSS/DESI). Each colour represents a jackknife subsam-

ple.
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where Vy is the designated jackknife subsample. For our particular case, this
means that for ¢ all Lya forest cells are considered but the ones lying inside the
subvolume Vj. Once all the ék(rn) have been computed, the error of the estimator is
determined as

N e . 2
Oe(rn) = | Y [x(rm) — E(ra)] (5.4)

k

For this work, the simulation has been divided in 25 subsamples by imposing
uniform cuts in RA and dec. Since space is not sampled uniformly in redshift in this
cross-correlation (because Lya forest available data depends on the quasar redshift
distributions), no cuts have been performed in redshift, so all jackknife subsamples
cover the whole redshift range of the simulation. Figure 5.1 displays the jackknife
divisions in the simulated volume.

5.1.3 Noise bias

The cross-correlation estimator introduced in eq. (5.1) is biased if at least one of the
signals being cross-correlated contains noise of mean different than zero, which is of
particular importance for this study. In order to demonstrate this, let us assume that
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the estimator is used to cross-correlate two arbitrary observable scalar fields, f(r)
and g(r). For both fields, a finite number of samples at different points are observed,
fi and gi, and from these points the respective means (f) and (g) are computed.
In order to apply the estimator, the contrasts of both fields need to be determined,
which, as in eq. (4.1) and eq. (5.2), would be done with the following expressions

_ A=, _&i—(8)
fcontrastl - <f> ’ gcontrash - <g> . (55)

If 5; and ¢; are replaced in eq. (5.1) by fcontrasti and geontrastj, and these are substi-
tuted by its definition in eq. (5.5), the following expression can be obtained

o= () (g~ (9))]
Mo (1)

Here the second summation in the right side of eq. (5.1) has been rewritten as Z]?
for simplicity. Now, let us consider that the field g(r) is the sum of two independent
fields, the signal S(r) and the noise N(r), so

g(r) = (5.6)

g(r) = S(r) + N(r). (5.7)

By our definition, the noise N(r) is uncorrelated with f(r), so for a sample large
enough a hypothetical estimated cross-correlation between f(r) and N(r) would
tend to zero. Following eq. (5.6), this can be expressed as

3 [<ﬁ — LN - <N>>] 0, 58)
)

Conversely, the hypothetical cross-correlation {s(7) between f(r) and S(r) would
be

L (= () Zi(S = ()]
Heo(1gr)

Nevertheless, only the field g(r) can be observed, and thus the only cross-correlation
that can be computed is that of the f(r) with S(r) plus N(r):

L { (= () 58— () + 5N — (V)] }
(H(s+N) L (151) |

If a sample large enough is assumed, eq. (5.8) holds true, and since the noise
component of the cross-correlation tends to zero, the denominator in eq. (5.9) and
eq. (5.10) is identical. Therefore, the following relation can be derived between the
hypothetical cross-correlation of the signal, {s(r), and the actual cross-correlation of
the signal with noise, s n(7),

gs(r) = (5.9)

Csin(r) = (5.10)

Esn(r) = 5oy Es(0) 61)

If the noise of the observable g(r) had mean zero, we would have s n(r) =
¢s(r), and thus the estimator would be unbiased. However if we consider PAUS
images to be the observable g(r), the noise N(r) would be the foregrounds plus
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instrumental noise. The first component necessarily has a mean larger than zero,
since it is a sum of observed fluxes, while the second also should in principle, given
that it includes effects such as scattered light and airglow, which are strictly positive.

Nevertheless, this noise bias does not affect the SNR, and thus the probability of
detection, which is the main result presented in chapter 6. Considering that the error
is computed via jackknife resampling (i.e., the o of the cross-correlation computed
for different subsamples), this noise bias will multiply the cross-correlation value
and its error equally, and therefore will cancel out when computing the SNR.

5.2 Correlation code

When a cosmological study requires computing correlations between samples (ei-
ther observed or simulated), most times a public, already existing code is used.
These codes are specifically developed and maintained for cosmology, and the bulk
of the codes is written in low-level languages such as C. This allows for a high de-
gree of memory management and optimisation, at the expense of higher develop-
ment and maintenance costs compared to high-level languages commonly used in
scientific computing, such as Python.

Some examples of these correlation codes for cosmology would be TREECORR
(Jarvis, Bernstein, and Jain, 2004), a highly versatile code capable of computing the
2PCF and 3PCF of galaxy positions, lensing measurements, or scalar fields (e.g.,
CMB), CORRFUNC (Sinha and Garrison, 2020), focused on the 2PCF of galaxy pairs,
or POLSPICE (Szapudi et al., 2001), developed exclusively for CMB correlations.

However, the characteristics of the Lya IM simulated in this work differ greatly
from the most frequent cross-correlations computed in cosmology: the Lya forest
is a high-resolution tracer that samples the space only in the line-of-sight dimen-
sion, while the Lya emission in PAUS images can be interpreted as a scalar field in
fine redshift bins. Consequently, a cross-correlation code has been developed from
scratch for this work. In this section we will discuss its main aspects as an algorithm;
the actual core of the correlation code, together with a more technical explanation of
its variables, is displayed in appendix A.

Given that the cross-correlation code has to be developed in the framework of a
PhD thesis, with the sole aim of simulating the PAUS-eBOSS / DESI cross-correlations,
the chosen language for the code has been Python; a more efficient with a lower-level
language would be out of the scope of the work. Regardless, computing times are
small enough to not require further optimisation in our case, as it will be shown
later.

The aim of the code is relatively simple: to compute eq. (5.1) for a given set of
distance bins (either monopole, parallel or perpendicular). The simplest approach
would be to compute all possible pairs between PAUS pixels (cells of the hydro-
dynamic Lya emission simulation) and possible forest pixels (cells of the hydrody-
namic Lya absorption simulation), then select all the cell pairs of interest for each
distance bin. This is a pure brute-force approach (since all the possible combinations
are computed), and while simple and reliable, it is also very inefficient. Therefore,
to optimise the code until reasonable computation times are achieved, some features
that separate it from a pure brute-force approach have been implemented.

First, the Lya forest cells are only a very small fraction of the hydrodynamic ab-
sorption simulation, since most of the IGM is not sampled by quasars. It is manda-
tory then to compute only the pairs with absorption cells that are forest cells, as
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everything else (which is the great majority of the pairs) will be automatically dis-
carded. This has been achieved by generating a data array containing only the forest
data, and iterating over it (first over every forest, then over every cell of the respec-
tive forest). Algorithm 1 is a pseudo-code describing the cross-correlation algorithm;
these two iterations can be seen after the necessary initialisations.

Second, even if we only consider the forest cells, there is no point in computing
the pairs with all possible PAUS cells. The hydrodynamic simulation has a diame-
ter of 400 Mpc/h, and if we consider that the actual PAUS simulation repeats it in
a mosaic pattern, the area covered spans a length of ~800 Mpc/h in RA and dec
directions. The scale of homogeneity is <200 Mpc/h for the largest estimates, if the
criterion for homogeneity is the 2PCF tending to zero. Consequently, cell pairs at
larger distances will yield no information. Besides, to compute the 2PCF reliably at a
certain distance a volume of diameter approximately one order of magnitude larger
that this distance is needed; if the sample volume is smaller, the intrinsic variance
of the structure makes the estimation unreliable. Hence, our correlation is limited to
r < 40 Mpc/h, which is only a small fraction of PAUS cells lying in the vicinity of
the considered forest cell, compared to the whole simulation.

Therefore, for a given forest cell, only a cube of surrounding PAUS cells is se-
lected, and the product of the forest cell with these PAUS cells is determined (as well
as their distances, which are pre-computed at the beginning of each forest with the
small-angle approximation). The size of the cube (e.g., the number of adjacent PAUS
cells in both line of sight and RA /dec directions) is an entry parameter of the code,
and must be chosen accordingly with the distance binnings for r, | and r, (so no
distance bins are left without pairs, nor pairs are computed outside of all distance
bins). The computation of distances between the forest cell and the surrounding
cube of PAUS cells is displayed in algorithm 1 at the beginning of the iteration over
forests, while the selection of PAUS cells appears at the beginning of the nested loop
over forest cells.

Third, a more technical aspect of the algorithm is the use of external libraries
when possible, instead of Python code. Like any other Python script for scientific
computation, we make extensive use of NumPy for the management of data arrays,
as well as a myriad of functions and operators that can be executed over said arrays.
These NumPy libraries are made with highly-optimised C code and vectorised (i.e.,
designed to work with a whole array of elements at once), and thus are orders of
magnitude faster than a function for the same purpose written directly in Python.

Consequently, the bulk of operations most be handled exclusively by NumPy
functions, leaving Python as little work as possible. This is achieved by minimising
the number of Python loops, especially if they are already nested into other loops.
In order to do so, the whole array of elements to be iterated through is passed to
the NumPy function; since this function is vectorised, it is significantly faster than
operating over every single element at once with a Python loop. The pseudo-code
in algorithm 1 shows the exact loop structure of the actual Python script: cross-
correlation is computed just with two levels of nesting (one for each forest, and one
for each cell in the forest). The instructions of the if statement inside the second loop
are only executed when the memory limit is reached, and thus are ignored for the
vast majority of iterations.

Once the rationale behind the code design has been explained, we can describe in
detail the structure of algorithm 1. First, the pseudo-code shown there is just the core
of the cross-correlation script; it is assumed that the following elements are already
defined:
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Algorithm 1: Algorithm of the cross-correlation code.

/* Initialisation of arrays to store histogram results */
1 for i in jackknife indices do
2 Cell pair values for each monopole bin (dd_mono;, 1D);
3 Number of cells pair for each monopole bin (np_mono;, 1D);
4 | Cell pair values for each parallel and perpendicular bin (dd_2d;, 2D);
5 | Number of cell pairs for each parallel and perpendicular bin (np_2d;, 2D);
/* Initialisation of cell pair data arrays, limited by memory */
6 Cell products (cell_products);
7 Line of sight (LoS), RA and dec distances (los_dist, ra_dist, dec_dist);
8 Jackknife indices (jk_ind);
/* Iteration over all forests */
9 for forest in forests do

10 Compute unit vectors in LoS, RA and dec directions;
11 | Compute relative distances to all PAUS cell pairs;
/* Iteration over all forest cells */
12 | for forest cell in forest do
13 if inside same PAUS cell as previous forest cell then
14 | Keep the same cube of PAUS cells;
15 else
16 Determine the new cube of PAUS cells centred at the forest cell;
17 Crop the cells of the cube that lie outside the survey volume;
18 Multiply cells in the PAUS cube by the forest cell, store in cell_values.;
19 Store LoS, RA and dec distances in los_dist, ra_dist, dec_dist;
20 Store jackknife indices (from forest cell) for each cell pair in jk_ind;
/* Computing histograms if memory full/last iteration x/
21 if memory limit reached or last iteration then
22 Compute perpendicular distance as
dist_perp=(dist_ra®+dist_dec?)!/?;
23 for i in jackknife indices do
2 Select elements in cell pair arrays with jk_ind= i;
25 Compute histogram binning by dist_mono, no weighting. Add
result np_mono;;
26 Repeat same histogram, weighting by cell_pairs. Add result to
dd_mono;;
27 Compute 2D histogram binning by , no weighting. Add result
to np_2d;;
28 Repeat same 2D histogram, weighting by cell_pairs. Add result
to dd_2d;;
29 Reinitialise cell_pairs, los_dist, ra_dist, dec_dist;, jk_ind;
30 for i in jackknife indices do
31 Compute &(r); = Yj4idd_monoj/ Y .inp_monoy;
32 Compute f(rH, r1)i = Yjudd_2di/ Y mp_2d;;

/* Njx is the number of jackknife subsamples x/
33 Compute monopole as ¢(r) = ¥, (f(r)i/Njk;
34 Compute monopole error following eq. (5.4);
35 Compute 2D cross-correlation as ff(rH, ri) =Y (f(rH, r1)i/ Ni;
36 Compute 2D cross-correlation error following eq. (5.4);
37 Average é(rH, r1) overr, to obtain 5(7’” ). Do the same for its error;
38 Average f(rH, r1) over r| to obtain &(r1). Do the same for its error;




90 Chapter 5. Computation of the cross-correlation

* For the Lyx forest:

— A 2D array (one dimension for forests, another for cells in each forest)
with ¢ values.

— An analogous 2D array with jackknife indices (integers which indicate to
what jackknife subsample each forest cell belongs to).

— A 3D array of Cartesian coordinates of each cell (one dimension for coor-
dinates in RA, dec and z directions, two for forests and forest cells).

¢ For the simulated PAUS images:

— A 3D array (since the whole volume is sampled) with J values.

— A 4D array with their Cartesian coordinates (one dimension for coordi-
nates in RA, dec and z directions, three to point to each cell of the array).

In addition to this, the distance binnings in 7, 7| and r; must already have been
defined as entry parameters, as well as the proper size of the cube of PAUS cells
whose pairs are to be computed. With all the data necessary, the bulk of the cross-
correlation is a combination of two tasks: computing the products of cell pairs, and
classifying the pair counts and products in the proper redshift bins. The algorithm
tackles both separately to make the most out of NumPy functions.

First, the arrays necessary to store the histogram results are initialised from line 1
to line 5. Two 2PCFs are considered: the monopole (binned in r) and the 2D 2PCF
(binned in both | and r |, from which the parallel and perpendicular 2PCF are com-
puted). For each one, two arrays are initialised: one for the number of cell pairs per
bin (histogram without weighting), and another for the sum of all cell pair products
of the respective bin (histogram weighted by the cell pair products). Dividing the
second by the first is akin to eq. (5.1), which gives the estimated 2PCF. Given that the
error is computed via jackknife, these values of pairs and total cell product values
per bin need to be stored separately for each jackknife subsample, which gives an
extra dimension to these arrays.

Second, the arrays to store all the cell pairs data have to be defined, which is done
from line 6 to line 8. These are large 1D arrays, whose size is computed according to
the memory allocation given as an entry parameter. These arrays are the input data
to compute the histograms from, and since NumPy functions are vectorised (includ-
ing the calculation of histograms), the larger the array the faster the calculation (up
to a certain limit, see fig. 5.2 and the subsequent discussion), so their size will be as
large as the memory allocation permits. The following arrays are defined:

* One for the values of the cell products.
¢ Three for distances of cell pairs in line of sight, RA and dec directions.

* One to store the jackknife indices of the forest cell of each pair. This will not
be a direct input to the histogram functions, but a mask that allows to quickly
select all pairs corresponding to a given jackknife subsample.

With all the initialisations done, these cell pair data arrays are filled from line 9
to line 20; once these arrays are full (more precisely, once they would be go over
its limit in the next iteration), or the loop has gone through all of the forest cells,
histograms are computed from to line 21 to line 29. Finally, from line 30 to line 38
the 2PCFs are computed, following the estimator described in section 5.1.
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FIGURE 5.2: Comparison of the time per array element versus num-

ber of elements in the array for the functions np.histogram and

np.bincount. Both cases computed for randomly generated arrays of
integers between 0 and 1000, classified in 1000 uniform bins.

The slowest part of this code (in a sense, the bottleneck) is between line 21 and
line 29: computing the histograms of cell pair data has by far the largest computa-
tional cost. Since this is handled solely by NumPy functions (sorting the cell pairs
directly in Python is completely out of the question), the key to optimisation lies in
the selection of the right NumPy function and its proper parameters.

The "default" options for this task in NumPy are the functions np.histogram and
np.histogram2d (for binning in both 7| of r, ). While they allow total flexibility in
their binning, they alone take >95% of the computation time. A much faster (and
less known alternative) is np.bincount; it is approximately one order of magnitude
quicker, as seen in fig. 5.2. However, this speed comes at a cost: it is designed to
work only with integers (although a weighting of floats can be applied), and only
works in uniform bins of size 1. Therefore, what it does is to return the number
of (weighted) occurrences of each integer in a given array. Even if it only works in
one dimension, in order to compute a 2d histogram iterating np.bincount over one
dimension is still faster than np.histogram2d.

In order to use this function, then, all distances must be scaled to integers; this
is done right before the histogram computation, and the scaling factor is a function
of both the cell size of the PAUS simulation and the distance binnings for the 2PCFs.
Using np.bincount this way, computing the cross-correlation in the PAUS-DESI sim-
ulation takes a total of ~32.6 s: ~27.3 s spent only in the instances of np.bincount,
and ~5.3 s in the rest of the code. These numbers are considering that all necessary
data is already loaded in memory, and for a memory allocation of 5 GB in a single
thread of a Intel Xeon E-2144G @ 3.6 GHz.

From these numbers, it can be concluded that further optimisation depends mostly
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on the use of a more efficient histogram function. After some research, we found that
np.bincount was the best option out of the histogram functions present in common
Python packages for data science (e.g., NumPy, Pandas, SciPy), so a significant re-
duction on computation time probably needs a more specific library. Consequently,
there is no need to further optimise the Python part of the code (i.e., algorithm 1).

On the other hand, this also means that parallelisation can only improve reduce
the ~16% of the computing time not spent in np.bincount, since the function can
not take any advantage of multithreading; while the current version of the code has
been prepared to run in parallel, the gains are fairly small. Another caveat to take
into account is that, in order to sort the cell pairs as fast as possible, the np.bincount
function needs to "saturate", i.e., to reach the minimum computational time per ele-
ment in all of its executions. According to fig. 5.2, this limit is reached around just
~ 10° elements, but still, larger memory allocations imply less times running line 21
to line 29, and reduced net overheads when computing the histograms.

For a more technical approach to the cross-correlation algorithm, the actual core
functions of the Python code are displayed and briefly discussed in appendix A.

5.3 Theoretical correlation function

To validate the result of the simulated cross-correlation, as well as to derive the clus-
tering, comparison against a theoretical 2PCF is needed. The first step is to compute
the unbiased matter-matter 2PCF from the theoretical matter power spectrum. For
this work, this 2PCF has been initially computed as a field depending on two vari-
ables, the distances parallel and perpendicular to the line of sight, r| and 7, respec-
tively, with the following expression (e.g. see Hui, Gaztafiaga, and Loverde 2007;
Gaztafaga, Cabré, and Hui 2009)

Glry,re) = ﬁ /0oo dk kPy (k) exp(—kreut)- (5.12)

Where Py (k) is the non-linear matter power spectrum computed with CAMB
(Lewis, Challinor, and Lasenby, 2000), and the non-linear modelling of HALOFIT
(Peacock et al., 2014). This power spectrum has been computed at the redshift of the
hydrodynamic simulation snapshot (z = 3), using its cosmology (table 4.1). Regard-
ing other terms, 7.y is the radius of the exponential cutoff set in order to avoid large
oscillations in the theoretical 2PCF due to small-scale effects that are not represented
in its counterpart measured in the simulation. For this study, the chosen value for
this cutoff is rcyt = 3 Mpc/h.

By definition, there is no anisotropy in eq. (5.12), which may make the compu-
tation of the 2PCF in two directions seem redundant. Nevertheless, two effects that
are to be taken into account will break the isotropy of the function: the smoothing
introduced by the binning of the simulated data, and the effect of redshift-space dis-
tortions (RSDs).

5.3.1 Smoothing

This effect arises from the fact that correlation is being performed between spatial
cells with finite volumes, whose value of the field to cross-correlate is the average
over the volume of the cell. If the length of these cells to cross-correlate is equal
or smaller than the binning of the correlation estimator (eq. (5.1)), this effect will
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be negligible, given that by binning the estimator already averages over a similar
length. This is the case for the Lya forest cells in all directions or the PAUS cells in
RA and dec directions, where their length (1.56 Mpc/h, given by the hydrodynamic
simulation bins) is smaller than the binning of the estimated cross-correlation (see
fig. 6.2).

On the other hand, this effect is not negligible for the redshift direction in PAUS
cells, where the mean cell size is 56.25 Mpc/h (since the redshift bins have been
merged to simulate PAUS filters). Averaging the Lya flux in PAUS images over such
distances will certainly have an effect on the estimated cross-correlation, which also
has to be simulated in the theoretical 2PCF. Considering that the redshift direction in
the simulation has a direct correspondence with 7| in eq. (5.12), this smoothing can
be emulated by averaging each point in the computed (r|, 7 ) field over a length in
r| equal to the average PAUS cell size

- i+ /2
Slryre) = ll/r|—1”/2 dry &(r|,r1)- (5.13)

Where [} = 56.25 Mpc/h. By definition of the 2PCF (eq. (2.3)), r > 0, so for
r| <l /2 this expression changes to

s 1 [ mith/2 /2=
E(ryre) = I [/0 dr| C(rﬁ,u)%—/o dr) &(rj,ri)| - (5.14)
If the 2PCF is interpreted as an average product of cell pairs at a certain distance,
such as in the estimator we use, this last expression represents the case where the
small Lya forest cell lies inside the redshift range of the PAUS cell it is being cross-
correlated with. The smoothing integral needs to cover the whole /|, but since the
distance between cells necessarily has to be non-negative, the integral is truncated
in two terms: one for the portion of the PAUS cell at higher redshift than the Ly«
forest cell, and another for the portion at lower redshift. Figure 5.3 shows the effect
of this 2PCF smoothing (dashed lines) compared to the non-smoothed 2PCF (solid

lines) for the three correlation types considered in this work.

5.3.2 Bias and RSDs

In addition to this smoothing effect, bias from the tracers also needs to be taken into
account, as well as the effect of RSDs. Since the scales studied in this work are large
enough, the only RSD effect considered is the Kaiser effect (Kaiser, 1987).

So far, the unbiased matter-matter 2PCF has been considered (called ¢m hence-
forth), but the cross-correlation in this work uses Lya emission and Lya forest ab-
sorption. The power spectrum of a tracer t correlated with itself can be obtained
from the unbiased 2PCF with the following expression

Pe(k) = bg(1 + Bupz’)*P(k). (5.15)

Where by is the bias of the tracer (Lya emission and Lya forest in this case),
is the cosine of the angle between the vector position vector in Fourier space k and
the line of sight, and By is the effective RSD parameter. Py (k) is the power spectrum
of the tracer; given that RSDs are included in the expression, it is implied to be in
redshift space.

If we are to compute the 2PCF from this Py (k), we need to take into account the
dependency of y; with 7 and 7 . For the two-dimensional 2PCF p; will depend on
the values of r| and r |, but for the monopole, parallel and perpendicular correlation,
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this dependency vanishes. For the parallel and perpendicular case, y; = 1 and pp =
0 respectively, while for the monopole, after integration in all directions eq. (5.15)
becomes

. 2 2 1,\° -
Git(r) = by <1 + gﬁtt + 5,5tt> Conm (7). (5.16)

For this work, two tracers are considered: the Lya emission (denoted by e) and
the Lya absorption that generates the Lya forest (denoted by a); the autocorrela-
tion of both tracers will be computed to validate the simulation, as explained in
section 6.1. The assumed bias factors b for both tracers are already explained in
section 4.2, while the B parameter needs different assumptions for each case.

Given that the Lya emission has been considered proportional to the square of
the matter density field, its B will be the same as the matter density, scaled by the
bias factor b,,. Following the approximation in Kaiser, 1987 for linear theory, we
find

,Bee = ()mb(je)%- (5.17)

Regarding the Lya absorption, ., is independent from b,,, since the nonlinear trans-
formation applied to obtain the Ly« absorption field (eq. (4.1)) does not preserve the
flux between real and redshift space. According to Slosar et al., 2011, the value
of Baa for different simulations depends on their resolution, with values oscillating
between 1 and 1.5 at z~2.25. Recent observations of BAO with the Lya forest au-
tocorrelation yield Baa ~ 1.8 at z = 2.34 (de Sainte Agathe et al., 2019), but also
show some evidence of B,, decreasing with redshift. Since the mean redshift of this
work (z ~ 3) is higher than any of the cited values of B,,, and the hydrodynamic
simulation is relatively low-resolution, we decide to adopt the conservative value of
Baa = 1.

So far, we have discussed how to model the effects of the bias and the RSDs
for the autocorrelation of the Lya emission and the Lya absorption from the forest;
however, the cross-correlation between both tracers also needs to be modeled. In
order to do so, we compute the effective biases of each tracer for cross-correlation,
b; as the square root of the tracer bias times its RSD factor. For example, for the
monopole, following eq. (5.16) the effective bias would be

N 2 1
by = by (1 + g.Btt + 55%t> : (5.18)

Therefore, the monopole cross-correlation can be expressed as

Eea(r) = =ba(r)bo(r)Emm (7). (5.19)

Where the minus sign comes from the fact that the cross-correlation is between an
emission and an absorption field. Table 5.1 sums up the by and By considered for
both Lya emission and absorption, as well as the resulting effective bias b; for the
monopole.

5.3.3 Monopole, parallel and perpendicular 2PCF

This two-dimensional 2PCF computed with eq. (5.12) has to be converted to a 2PCF
depending solely on a single distance parameter, either the total distance between
cell pairs r = (rﬁ + 12 )?, or the parallel/perpendicular distances, in order to be
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TABLE 5.1: Bias factor by and RSD parameter Sy considered for Lya
emission and absorption, as well as the resulting effective bias for
cross-correlation by, according to Eq. 5.18.

by B by monopole
Lyx emission 2.000 0.488 2.343
Lya absorption 0.336 1.000 0.557

compared to the estimator defined in eq. (5.1). The estimator could also be defined
as a function of both r| and r, however, this would greatly reduce the number of
cell pairs available per bin, and thus the SNR of the measured cross-correlation.

For the monopole 2PCEF, this has been performed by computing (fmm(ru, r;)ina
very fine uniform grid of r|, r, values, and then averaging these values in bins of
total distance r = (rﬁ + % ). Regarding the parallel and perpendicular 2PCFs, they
have been obtained from the theoretical two-dimensional 2PCF simply by numerical
integration, according to the following expressions

Ry
gmm(TH) = RlJ_ 0 dr Cmm(rurﬁ_)
(5.20)

R
Cmm(rL) = Rl/o H dr) Cmm (7)), 71),

where R and R, are the maximum binning distances used by the estimator
in eq. (5.1) for the parallel and perpendicular directions. These 2PCFs, unlike the
monopole, depend on the total range over which the correlation is computed, which
makes them less suitable for comparison of the results against the theory. Conse-
quently, only the monopole 2PCF will be used to compare the results of the simula-
tion against the theory in chapter 6.
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Chapter 6

Results and conclusions

The results presented in this thesis are divided in three parts. First, in section 6.1
we compare the results of our Lya IM simulation, without noise nor foregrounds,
against the theoretical 2PCF computed in section 5.3. This allows us to validate our
model, as well as verify the actual bias of the tracers in our simulation (with RSDs
included, as defined in eq. (5.18)). Besides, it can also be interpreted as an ideal
(and thus, unfeasible) result where foregrounds are completely removed and noise
is negligible.

Second, in section 6.2 the probability of a detection (SNR>3) when adding fore-
grounds and instrumental noise using the uncorrelated extrapolation (table 4.5) is
explored at different scales. Four cases of cross-correlation are explored: PAUS-
eBOSS, PAUS-DES], and the cross-correlation of DESI with two hypothetical exten-
sions of PAUS (an increase in exposure time, PAUS deep, and in survey field, PAUS
extended). These results can be considered and optimistic estimate, assuming that
further work has been dedicated to understand and mitigate the noise correlations
that appear in PAUS images.

Third, in section 6.3 we summarise the same results, but using the correlated
noise directly measured from PAUS images, instead of the uncorrelated extrapola-
tion; this is a realistic estimate with our current understanding of noise correlation
and the reduced images already available. Finally, with conclude in section 6.4 sum-
marising the methodology and results of the thesis, as well as laying out some pos-
sible future work that can be developed based on the results obtained here.

6.1 Cross-correlation without noise or foregrounds. Compar-
ison against theory

In order to compare the cross-correlation results against the theoretical prediction
(and thus validate that the cross-correlation results are sound), the actual effective
biases of the tracers of the hydrodynamic simulation need to be measured and com-
pared against the expected values from table 5.1.

These effective biases of the simulation have been determined by correlating the
emission/absorption arrays of the hydrodynamic simulation (fig. 4.3) with them-
selves, using the same binning as in the PAUS-eBOSS/DESI simulations (wide red-
shift bins for PAUS, only Lya forest cells for eBOSS/DESI). No foregrounds or noise
were added for this correlation, since they do not have the same physical units, and
the purpose of this calculation is just to determine the real bias while testing that the
binning of the simulation and the smoothing effect are properly taken into account.
Considering eq. (5.16) and eq. (5.18), the effective bias of the tracer can be estimated
from the smoothed theoretical prediction ¢mm and the estimated correlation of the
tracer étt with
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p Cu()
b(r) El)’ (6.1)

Where t is any tracer, and the expression has been considered only for the monopole
2PCF. The results of this bias determination are displayed in fig. 6.1. The error of the
bias at all distance bins is simply the propagated error of the cross-correlation; any
error that could be included in the theoretical 2PCF (e.g., cosmic variance) has been
considered negligible.

As can be seen in fig. 6.1, the actual measured b,, around 0.4, is smaller by ~25%
than the expected value from table 5.1, but for the emission field b, is actually really
close to the predicted value. This is to be expected: the Lya emission field is propor-
tional to the square of the matter density field, which already gives an exact value
of the bias, and the effect of RSDs in this case are well described by linear theory.
However, for the Lyw forest both b and 8 are uncertain (especially the latter), and the
reference values available come from measurements/simulations at lower redshifts,
so such discrepancies are reasonable.

With these measured biases, the simulated cross-correlation can be compared to
the theoretical 2PCF by applying eq. (5.19), but instead of using the effective bias val-
ues of table 5.1, we apply the measured effective biases from fig. 6.1 to each distance
bin.

A comparison of the simulated cross-correlation, without either foregrounds or
instrumental noise, to the theoretical 2PCF with the measured biases is displayed
in fig. 6.2. Only the monopole 2PCF is shown, since the parallel and perpendicular
2PCF depend on the range in which the 2PCF is computed, as shown in eq. (5.20).
No foregrounds or instrumental noise have been added both to ensure a good SNR
to validate our model, and because the noise bias described in eq. (5.11) would also
need to be corrected to compare the simulation against theory.

With no foregrounds or instrumental noise, there is a clear detection of cross-
correlation at r > 30 Mpc/h with DESI, and several bins show a clear detection up
to r ~ 30 Mpc/h with eBOSS. For all the bins with a detection, the errorbars of
the theoretical prediction and the actual cross-correlation overlap; this validates the
simulated cross-correlation. Besides, this also proves that, for an ideal case without
any other sources of noise, this cross-correlation could be used to constrain either
the bias of the tracers or the 2PCF on scales up to ~30 Mpc/h.

Nevertheless, when the foregrounds and the instrumental noise from PAUS are
added to the simulation, the general SNR of the cross-correlation drops greatly.
Therefore, instead of simulating the cross-correlation and comparing to the theory
(assuming that a detection is almost certain), a different approach has been taken to
evaluate the probability of a detection.

6.2 Cross-correlation with uncorrelated noise: Probability of
detection

6.2.1 PAUS-eBOSS/DESI

As explained in chapter 4, a simulation of the cross-correlation contains three stochas-
tic elements: the instrumental noise in PAUS images, the Gaussian noise inserted in
the Lya forest simulation, and the quasar cells in eBOSS/DESI that determine the
Ly« forest cells to be sampled (following the redshift distributions in fig. 3.7). Nev-
ertheless, the noise in the Lya forest is clearly subdominant (its addition does not
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tom panel), measured as described in eq. (6.1), for correlations using
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sent the theoretical bias without considering RSDs (8 = 0). Coloured

horizontal lines are the weighted average of the recovered effective
bias for the respective surveys.
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FIGURE 6.3: Probability of a detection for the monopole 2PCF as
a function of distance in the simulated cross-correlations PAUS-
eBOSS and PAUS-DES], for 1000 different realisations of instrumental
noise+Lya forest. Solid line displays the actual probability of any de-
tection, dashed line shows the probability of a spurious detection.

alter the results), so we will discuss only the PAUS noise and the quasar positions
from now on.

Without the instrumental noise, different realisations of the Ly« forest quasar po-
sitions do not modify significantly the cross-correlation results. Nevertheless, when
the instrumental noise (using the uncorrelated extrapolation) is added to the PAUS
simulation, the SNR of the cross-correlation heavily decreases, up to the point of a
detection (SNR>3) depending on the realisation of the noise and the Ly« forest (i.e.,
the SNR is not consistent between different runs of the simulation pipeline). Fixing
one of these stochastic elements (either the Lya forest position or the instrumental
noise) does not gives consistent results either.

Therefore, the approach we have taken is to simulate the cross-correlation 1000
times, with different realisations of the instrumental noise and the Lya forest quasars
each time, and compute the probability of detection as the fraction of the realisations
where at least one bin has SNR>3. For each one of the realisations, the monopole,
parallel and perpendicular 2PCF have been computed using 12 uniform distance
bins; finer distance bins would result in empty bins (without any cell pairs) for some
cases.

In addition to this, the cross-correlation has also been computed another 1000
times for each case, but with the Lya emission in PAUS images mirrored both in the
RA and dec axes. This way, the actual cross-correlation between the simulated PAUS
images and the Lya forest should be null, as one of the two signals has been inverted,
so any detection that results from this cross-correlation is inherently spurious. In



102 Chapter 6. Results and conclusions

fact, the 2PCF has only been computed with 12 uniform bins partially because ap-
plying other uniform binnings seemed to increase the spurious detections without a
larger net increase in real ones.

Figure 6.3 displays the probability a detection in the monopole 2PCF for these
1000 runs for PAUS-eBOSS and PAUS-DESI: the solid line represents the probability
of any detection from the real cross-correlation (this includes the spurious ones), and
the dashed line the probability of a spurious detection (for the cross-correlation with
inverted Lya emission). Figure 6.4 shows analogous information, but for the parallel
(top panel) and perpendicular (bottom panel) 2PCF.

As it would be expected, cross-correlation with DESI noticeably increases the
detection probability for all three 2PCFs; however, the probability of any detection
is still very small. In the PAUS-eBOSS case, the solid line is barely above the dashed
one, which implies the the probability of a detection is almost negligible. In PAUS-
DES], there are some regions where the probability of any detection is clearly above
the dashed line; these are the cases that we will discuss.

First, the monopole/parallel 2PCF and the perpendicular 2PCF seem to better
sample different scales: the parallel 2PCF has a lower probability of detection at
small scales, and shows an increase in detection probability around 10 Mpc/h, while
the perpendicular 2PCF has exactly the opposite behaviour. The cause of these con-
trasting trends in the detection probability for different 2PCFs is the smoothing effect
that PAUS filters have in the parallel (redshift) direction, displayed in fig. 5.3.

This figure shows the 2PCF multiplied times its respective distance squared;
given that our cross-correlation algorithm selects a cube of surrounding PAUS cells
to compute the respective pairs of each forest cell, the surface of this cube (and thus
the amount of available pairs for each distance bin) will grow as r2. Therefore, r>Z(r)
can be interpreted as the 2PCF weighted by the number of pairs sampled, and thus
is a better predictor of SNR than ¢(r) alone.

In the parallel cross-correlation, and to a lesser extent, the monopole 2PCF, smooth-
ing decreases the absolute value of the 2PCF at scales of 10 Mpc/h and 15 Mpc/h
respectively, while at larger scales the 2PCFs are increased (at least, as far as the
size of the hydrodynamic simulation allows to compute the 2PCEF, 30-35 Mpc/h).
This trend matches almost perfectly the detection probabilities in fig. 6.3 and fig. 6.4,
with sharp increases in the monopole and parallel 2PCF at the same scales.

On the other hand, the perpendicular 2PCF in fig. 5.3 shows a smaller decrease,
even when going to larger scales than the ones depicted in fig. 5.3; this small effect
of the smoothing results in higher detection probabilities at smaller scales, where
the 2PCF has higher absolute values. This result shows that the parallel and perpen-
dicular 2PCFs are highly complementary, and both should be taken into account for
any future observational studies of Lya IM with PAUS (or similar surveys) in order
to maximise the probability of a detection at all scales.

Nevertheless, it is worth noting that, even in these regions where the detection
probability increases, the difference with the spurious detection probability is re-
ally modest, and outside of these regimes the probability of an spurious detection is
larger. While this should not be technically possible, it is due to the fact that these
two probabilities come from two different finite sets of realisations, and thus they
have an intrinsic variance. If anything, it can be interpreted as the effective proba-
bility of a non-spurious detection being null.

Furthermore, the total probability of any detection (regardless of the kind of
2PCF and the binning) has also been computed, considering that any realisation
where one or more bins in any 2PCF had SNR>3 was an effective detection. These
results are summarised in the two upper rows of table 6.1; the probability of a real
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TABLE 6.1: Probability of any detection for simulated cross-
correlations PAUS-eBOSS and PAUS-DESI, using the uncorrelated
PAUS noise extrapolation.

Surveys Any detection Spurious Real

PAUS-eBOSS 18.7% 16.9% 1.8%
PAUS-DESI 24.7% 20.2% 4.5%

PAUS deep-DESI 39.5% 24.2% 15.3%
PAUS extended-DESI 36.8% 27.8% 9.0%

detection is simply the difference between the probability of any detection (percent-
age of the 1000 realisations that yielded a detection) an the probability of a spurious
detection (percentage of the 1000 realisations with inverted Lya emission where a
detection happened). With this approach, we assume that the probability of a real
detection of Lya cross-correlation and a spurious one are independent processes.

When considering these results, it is important to take into account that in this
study no weightings to improve SNR of the estimator in eq. (5.1) have been con-
sidered, and only a uniform binning has been applied for the 2PCFs computation
(which are common methodologies to optimise the SNR in an observational analy-
sis). Nevertheless, the detection probabilities are still very small, with the probability
of a spurious detection being far higher than an actual one in both cases; it is safe to
assume that any statistical approach to increase SNR is unlikely to yield significantly
better results.

6.2.2 Hypothetical cases: PAUS deep, PAUS extended

In addition to the PAUS-eBOSS and PAUS-DESI simulations, two hypothetical cases
have also been considered: PAUS deep, a survey with the same field coverage, but
complete up to a magnitude deeper (iap < 24), and PAUS extended, with the same
exposure time as current PAUS, but a larger angular area of 225 deg?. These hypo-
thetical PAUS cases have only been cross-correlated with the DESI simulation, since
eBOSS would be rendered obsolete by DESI before such hypothetical surveys could
be finished.

PAUS deep has been simulated analogously to PAUS, with the sole difference be-
ing the instrumental noise, now reduced by a factor of v/6, as displayed in table 4.4
(018expabs)- Regarding PAUS extended, the Lya emission array has been repeated in
a mosaic of 3x3, instead of 2x2, thus yielding an angular coverage of ~225 deg?. To
cover this mosaic of Lyx emission, the foregrounds array has been repeated and ro-
tated for the first 4 iterations; after that, it has been mirrored in RA direction and
repeated until the 3x3 mosaic has been filled. This gives 8 possible combinations of
Lyx emission-foregrounds: the 4 rotations of the foreground array plus the 4 mir-
rored rotations, which sets a limit on the maximum area we can simulate in this
study. In fact, the 3x3 mosaic already has one redundant combination of Lyx emis-
sion+foregrounds (since it is composed of 9 realisations). Simulating even larger
areas would result in largely redundant foregrounds, which would provide too opti-
mistic results given that the same combination of Lya emission+foregrounds would
be sampled multiple times.

The probability of detection for 1000 realisations of these simulations, together
with original PAUS-DESI simulation, is shown for the monopole 2PCFin fig. 6.5, and
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toiap < 24 (exposure time x6), while PAUS extended refers to a total
survey area of 225 deg?. Solid line displays the actual probability of
any detection, dashed line shows the probability of a spurious detec-
tion.
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its parallel and perpendicular counterparts in fig. 6.6. Table 6.1 displays the proba-
bility of any detection (two lower columns); the probability of spurious detections
has also been computed following the same methodology.

Both cases show a noticeable increase in the probability of any detection, which
is now close to 40%. However, the probability of spurious detections also increases,
which diminishes the net gain in the probability of any detection. Overall, spurious
detections are more likely, but the probability of a real detection is only smaller by
a factor of few (less than 2 for PAUS deep-DESI, and approximately 3 for PAUS
extended-DESI).

The same complementary trend is observed in fig. 6.5 and fig. 6.6, with the per-
pendicular 2PCF sampling better at scales below 10 Mpc/h, while the monopole and
parallel 2PCF have a much higher chance of detection at larger scales. For these last
two 2PCFs, PAUS extended seems to provide a much higher increase of probability
of detection (an increase by a factor of 2-3) at distances larger than 10 Mpc/h, while
the improvement of PAUS deep compared to original PAUS is much smaller. The
perpendicular 2PCF at small scales, however, shows similar improvement with ei-
ther PAUS deep or PAUS extended. PAUS deep, however, seems to perform much
better at small scales with the perpendicular 2PCF.

PAUS deep would need 6 times the observation time from current PAUS to ob-
serve the same area (going from 3 exposures for each pointing to 18), while PAUS
extended only would need 2.25 times the observation time to be carried out (since
225 deg? are being observed instead of 100 deg?, with the same exposure time per
pointing). Since PAUS deep seems to provide better detection probabilities (by a
factor of ~1.5), but also requires almost twice the observational time, it is difficult to
assess which strategy is more time-efficient for a Lya IM detection. Nevertheless, it
seems clear that increasing exposure time yields better results on small scales, and
observing a larger field increases the detection probability at larger scales.

6.3 Cross-correlation with correlated noise: Probability of de-
tection

So far in this section, we have only discussed the results for the optimistic case where
it is assumed that methods are developed to remove the noise correlation the photo-
metric imaging of PAUS. However, this is not the current case, and while a noticeable
reduction in the noise correlation might be achieved (since this is an active area of
research in other IM applications, such as 21 cm IM, e.g. Liu et al., 2009), using the
correlated noise is the most realistic approach for now.

Table 6.2 shows the probability detection results, following the same methodol-
ogy as in section 6.2, but applying the correlated noise to the simulation of PAUS
images. The probability of a detection greatly decreases in both cases, to the point of
being negligible in all cases but PAUS deep-DESI, where it is close to 2%. In fact, for
the PAUS-eBOSS case we actually obtain more spurious detections with the inverted
Lya signal that total detections with the proper cross-correlations; a clear sign of all
of them being spurious.

6.4 Conclusions and future work

In this thesis the possibility of performing Lyax IM by cross-correlation of spectro-
scopic Lya forest data with the background of narrow-band images from PAUS has
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TABLE 6.2: Probability of any detection for all the considered cases,
using the actual correlated PAUS noise.

Surveys Any detection Spurious Real

PAUS-eBOSS 15.2% 17.5%  0.0%
PAUS-DESI 18.0% 17.9%  0.1%

PAUS deep-DESI 18.5% 16.8%  1.7%
PAUS extended-DESI 18.6% 184%  0.2%

been simulated and evaluated. Lya forest emission and absorption have been simu-
lated from a hydrodynamic simulation of size 400 Mpc/h designed for the study of
the IGM (Cisewski et al., 2014; Ozbek, Croft, and Khandai, 2016; Croft et al., 2018).
The foregrounds in PAUS images have been simulated from a lightcone mock cat-
alogue made from the Millennium Simulation with the WMAP7 cosmology (Guo
et al., 2013), and using the GALFORM (Gonzalez-perez et al. 2014) semi-analytical
model. SED templates (Blanton and Roweis, 2006) have been fitted using non-
negative least squares to the broad-band data of this mock catalogue in order to
achieve PAUS spectral resolution for these foregrounds.

Instrumental noise has been considered for both the simulated PAUS images
(measured directly from reduced and stacked PAUS science images) and the Lya
forest spectroscopic data (extracted from Chabanier et al., 2019). Two different cases
for the PAUS instrumental noise have been simulated: one with an optimistic un-
correlated noise extrapolation (assuming that noise correlation is mitigated in future
work), and another with the current noise levels directly measured, which show a
clear correlation at the pixel size of our simulation.

The theoretical 2PCFs (monopole, parallel and perpendicular correlations) have
been computed with the derivation shown in Gaztafiaga, Cabré, and Hui (2009) from
the matter power spectrum, obtained using CAMB (Lewis, Challinor, and Lasenby,
2000). The smoothing of these theoretical 2PCFs due to the large redshift bins for Lya
emission in PAUS narrow-band images has been simulated, and the biases and RSDs
of both Lya emission and absorption have been measured by comparing the theo-
retical monopole 2PCF to the correlation of the Lya absorption and emission arrays,
using the same spatial binning as the PAUS-DESI cross-correlation. Furthermore, a
cross-correlation code in Python has been developed from scratch and optimised to
compute the cross-correlations between these simulated datasets; with proper for-
matting of observational data it could also be run on both actual observed PAUS
images and Ly forest spectra.

Regarding the results, the simulated cross-correlations without foregrounds or
instrumental noise show that, despite the redshift smoothing of Lya emission in
PAUS images, and the limited fraction of space sampled by Lya forest data, the the-
oretical monopole 2PCF can be recovered, and the bias of both Lya emission and
absorption can be measured. This shows the validity of this technique in an ideal
case to both place constraints on the 2PCF and the bias of the extended Lya emission
or the Lya forest.

Nevertheless, a bias has been identified in the cross-correlation estimator when
cross-correlating fields with noise with mean larger than zero (such as the fore-
grounds and the instrumental noise for this case). This noise bias, while not affecting
the SNR, should be taken into account if constraints such as the Lya emission bias
or the Lya mean luminosity are to be derived from cross-correlation. A constrained
model of the foregrounds and other noise sources average values would be needed;
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conversely, assuming a known bias and expected Lya luminosity this same cross-
correlation could be used to place constraints on foregrounds emission.

When the cross-correlation is run with the instrumental noise and foregrounds in
PAUS images, SNR greatly decreases, up to the point where not all realisations yield
a detection. A realisation of this cross-correlation contains three stochastic elements:
the instrumental noise of PAUS and the Lya forest, derived from a random Gaus-
sian distribution (although negligible in the second case), and the positions of the
quasars, drawn from the quasar redshift distribution of eBOSS/DESI. Fixing one of
these stochastic elements does not provide consistent SNR either, so the probability
of a detection (i.e., the cross-correlation reaching a certain SNR threshold) has been
evaluated using a purely frequentist approach.

In order to determine this probability, 1000 realisations of the simulated cross-
correlations have been carried out with different realisations of both instrumental
noise and quasar positions, and for each one the monopole, parallel and perpendic-
ular 2PCFs have been computed for 12 uniform distance bins. Moreover, another
1000 realisations have been computed with mirrored Lya emission in PAUS images,
to determine the probability of spurious detections.

Considering a detection threshold of SNR>3, and under the uncorrelated PAUS
noise assumption, Lyax emission has been detected in only 1.8% of PAUS-eBOSS sim-
ulations and 4.5% of PAUS-DESI simulations. These percentages increase to 15.3%
and 9.0% with two hypothetical PAUS extensions: PAUS deep (going up to iap < 24
instead of ixp < 23), and PAUS extended (observing 225 deg? instead of 100 deg?).
Nevertheless, in all cases the probability of a spurious detection is higher, and when
including the correlated PAUS noise instead, the higher probability of a real detec-
tion (PAUS deep-DESI), is just 1.7%. These results clearly show that, even if noise
correlation was to be mitigated and PAUS observation time extended, the cross-
correlation of the images background with Lya forest data is unlikely to yield a de-
tection, and if such a detection happens the most likely scenario is that it is spurious.

Despite these negative results, some valuable conclusions can still be extracted.
First, the perpendicular and parallel 2PCFs show complementary behaviours: the
former has relatively high detection probabilities at scales up to 10 Mpc/h, while
the latter displays a non-negligible probability of detection at scales larger than 10
Mpc/h. These different trends are due to the smoothing of the 2PCF in redshift
direction, which affects far more the parallel 2PCF than its perpendicular counter-
part. Second, this smoothing effect has been properly modelled and recovered when
comparing the noiseless correlation to theory, so larger smoothing lengths can be ac-
counted for, and the scales where they will maximize the detection probability, and
thus the SNR, can also be predicted.

These two results point out to the fact that broad-band photometric surveys, with
angular coverages one or even two orders of magnitude larger than PAUS, such as
DES (Abbott et al., 2018) or SDSS (Ahumada et al., 2020) may be more promising
for Lya IM. This is because their main drawback compared to narrow-band surveys
(redshift smoothing) has been properly modelled and reproduced, and increasing
survey area has been shown to be an effective strategy to increment the detection
probability. In fact, since spectroscopic surveys rely on broad-band data for their
target selection, the entirety of eBOSS and DESI has already been mapped by broad-
band surveys; therefore, all of their footprints could be used for Lyx IM.

Consequently, a possible (and more promising) follow-up to this work would
be the simulation Lyx IM with the methodology presented here, but using broad-
band data instead of PAUS. The main challenge to overcome in this case, would
be the simulation of a much larger angular area, and thus simulated volume (e.g,



110 Chapter 6. Results and conclusions

the PAUS survey footprint is approximately ~100 deg?, while the DESI coverage is
14,000 degz).

A hydrodynamic simulation (necessary to model Lyx emission and absorption)
two orders of magnitude larger than the one used in this thesis simply does not ex-
ist; in fact, one of the largest state-of-the-art simulations, IllustrisTNG (Springel et
al., 2018) has a maximum diameter of 300 Mpc, approximately half of the size of our
simulation (400 Mpc/h, which covers just ~1/4 of PAUS area). Fortunately, recent
applications of machine learning in cosmological simulations allow to recreate the
HI distribution only from dark matter simulations, with significantly better results
than conventional semi-analytical models (Wadekar et al., 2020). Hence, a HI distri-
bution could be generated with this method in much larger volumes; even if is not
as realistic as a proper hydrodynamic simulation, for a preliminary forecast such as
this study it could be enough.

On the other hand, foregrounds should also be modelled in much larger areas,
and while mock catalogues that simulate entire broad-band surveys exist, they are
limited to the maximum magnitudes of said survey. Since the foregrounds that can-
not be removed (and thus, need to be modelled) are actually the objects that cannot
be resolved in the survey images (i.e., too faint for detection), any mock catalogue
with the aim of simulating an existing survey will not be deep enough for fore-
grounds simulation. Running the semi-analytical codes used to generate these mock
catalogues over N-body simulations at fainter magnitudes and higher redshifts is by
no means a trivial task, so the fastest option might be taking an already existing cat-
alogue and offsetting its objects to fainter magnitudes and higher redshifts. Further
work should be done to determine how to do this while respecting observational
constraints (e.g., luminosity functions), but given that it is a simulation of a noise
component and not the actual signal, a highly realistic model would not be needed
either.

In conclusion, we can say that this thesis presents a simulation of Lyx IM between
the narrow-band images of PAUS and the Ly« forest data from eBOSS and DESI. The
results of this forecast are mostly negative: even with the most optimistic estimate
of uncorrelated instrumental noise in PAUS images, and assuming an extension of
observing time for current PAUS, the probability of a real detection is just of 15.3%
at best. However, one of the most important caveats of cross-correlating the Lya
emission from photometric images, the large smoothing in redshift direction due to
the width of the filters, has been properly modelled and shown to maximise detec-
tion probability (and thus SNR) in different regimes depending on the type of 2PCF.
This opens the door to similar studies with broad-band data, since the much larger
redshift smoothing is no longer an issue, and the higher SNR due to wider filters, as
well as the much larger angular coverages, would improve the SNR of the resulting
cross-correlation with the Lya forest.
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Cross-correlation code

In this appendix, the actual core of the cross-correlation code is shown, i.e., the lines
of code that carry out the bulk of the 2PCF computation. This can be interpreted as
the real-code analogue to the pseudo-code displayed in 1. In fact, the code shown
here would start at the same point, and end around 29, right before computing the
2PCF from the histograms.

Of course, this is not a fully functional correlation code on itself: the sections
regarding data loading and management, as well as plotting of results have been
omitted, as they are far more trivial and do not need any particular optimisation.
Therefore, for code in this appendix to work, the following variables, directly de-
rived from entry parameters of the code, are already expected to be defined:

n_bins_monopole: Number of uniform distance bins for the monopole 2PCE.
n_bins_parallel: Number of uniform distance bins for the parallel 2PCF.

n_bins_perpendicular: Number of uniform distance bins for the perpendicu-
lar 2PCFE.

parallel_cells: Number of adjacent cells in parallel direction to compute cell
pairs (size of PAUS cube surrounding forest cell).

perpendicular_cells: Number of adjacent cells in perpendicular direction to
compute cell pairs (size of PAUS cube surrounding forest cell).

jackknives: Number of jackknife divisions in each angular direction (RA,

dec). The number of jackknife subsamples will be jackknives?.

array_size: Size of the arrays to store cell pair data. This is a soft limit to how
much memory the code will use.

Besides, the following arrays with the data to be cross-correlated should also be
loaded:

grid: ¢ values of all PAUS cells. Shape: [number of RA bins, number of dec
bins, number of PAUS filters]. Floats.

v_lines: ¢ values for all forest cells. Empty redshift bins for a forest (either
because redshift is higher than the quasars, or the Lyp forest is already present)
should contain NaN. Shape: [number of forests, number of fine redshift bins].
Floats.

jk_v_lines: Jackknife indices of each forest cell. Shape: [number of forests,
number of fine redshift bins]. Integers.
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¢ v_lines_ind: Indices of the PAUS cell in the grid array containing the respec-
tive forest cell; this array is used as a pointer for each forest cell. Shape: [3,
number of forests, number of fine redshift bins]. Integers.

® grid_coord: Cartesian coordinates of all PAUS cells. Shape: [3, number of RA
bins, number of DEC bins, number of PAUS filters]. Floats.

® v_lines_coord: Cartesian coordinates of all PAUS cells. Shape: [3, number of
forests, number of fine redshift bins]. Floats.

Here, with fine redshift bins we refer to the actual redshift bins of the hydrody-
namic simulation, as they are the effective maximum resolution of our simulation,
and with PAUS filters we refer to the wide redshift bins resulting from merging the
original bins to simulate the filters in PAUS images.

Regarding the technical aspects of the code, it has been written in Python 3 (run
in version 3.6.12), and makes use of the library NumPy (version 1.18.5). The library
is expected to have been loaded as follows:

import numpy as np
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#4% Initializations

#Histograms wvectors initialized

np_total, dd_total=np.zeros([n_bins_monopole, jackknives*#*2]) ,np.zeros([n_bins_monopole,jackknives**2])
np_cube=np.zeros((n_bins_parallel, n_bins_perpendicular, jackknives**2))
dd_cube=np.zeros((n_bins_parallel, n_bins_perpendicular, jackknives**2))
jk_histogram=np.zeros(jackknives**2)

# Initialization of cell pair vectors

ov_products=np.zeros(array_size) .astype('float32')

dist_parallel=np.zeros(array_size) .astype('float32"')

dist_x, dist_y=np.zeros(array_size).astype('float32'), np.zeros(array_size) .astype('float32')
jk_indices=np.zeros(array_size) .astype('int16"')

#4% Defining necessary functions
#Calling closest grid cell
def closest_grid(i, j, *args):
if args==Q):
return (grid_coord[:,v_lines_ind[0,i,j], v_lines_ind[1,i,j],v_lines_ind[2,1i,j]])
else:

return (grid_coord[:,v_lines_ind[0,i,jl+args[0][0], v_lines_ind[1,1i,jl+args[0][1],v_lines_ind[2,1i,j]l+args[0][2]])

#Histogram calculation

def hist_calculation(dist_parallel, jk_indices, dist_perpendicular, dist_total, ov_products, bins_parallel,

bins_perpendicular, bins_total, mask):
for i in range(jackknives**2):
chosen_ind=jk_indices==i
np_totall:,i]l=np_totall:,i]+np.bincount(dist_total[chosen_ind+* mask],
< minlength=n_bins_monopole) [0:n_bins_monopole]

dd_totall:,i]=dd_total[:,i]l+np.bincount(dist_total[chosen_ind* mask], weights=ov_products[chosen_ind* mask],

minlength=n_bins_monopole) [0:n_bins_monopole]
for j in range(n_bins_parallel):
chosen_ind=np.logical_and(jk_indices==i, dist_parallel==j)
np_cubelj,:,il=np_cubelj,:,i]l+np.bincount (dist_perpendicular[chosen_ind*"mask],

minlength=n_bins_perpendicular) [0:n_bins_perpendicular]

dd_cubel[j,:,i]l=dd_cubelj,:,i]l+np.bincount (dist_perpendicular[chosen_ind* mask],

weights=ov_products[chosen_ind*"mask], minlength=n_bins_perpendicular) [0:n_bins_perpendicular]

return(np_total,dd_total,np_cube, dd_cube, jk_histogram)
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#4) Computation of distances between redshift planes and adjacent cells in redshift planes.

adjacent_parallel, adjacent_x, adjacent_y=np.zeros(grid.shape[2]-1), np.zeros(grid.shape[1:]), np.zeros(grid.shape[2])
for i in range(grid.shape[2]):
adjacent_x[:,i]l=np.linalg.norm(grid_coord[:,0,:,i]-grid_coord[:,1,:,i], axis=0)
adjacent_y[i]=np.linalg.norm(grid_coord[:,0,0,i]-grid_coord[:,0,1,i])
if i<grid.shape[2]-1:
adjacent_parallel[i]=np.linalg.norm(grid_coord[:,0,0,i+1]-grid_coord[:,0,0,1i])

# Calculation of scale factors for mp.bincount
dist_max_par=(parallel_cells+1/2)*max(adjacent_parallel)
dist_max_perp=(perpendicular_cells+1/2)#*np.linalg.norm((np.max(adjacent_x), np.max(adjacent_y)))
dist_max_mono=np.linalg.norm((dist_max_par, dist_max_perp))

scale_par=n_bins_parallel/dist_max_par
scale_perp=n_bins_perpendicular/dist_max_perp
scale_mono=n_bins_monopole/dist_max_mono

# Calculation of bin edges for 2D histogram
bins_parallel=np.arange(0, n_bins_parallel+1)
bins_perpendicular=np.arange(0, n_bins_perpendicular+1)
bins_total=np.arange(0, n_bins_monopole+1)

#4% Computing all cell pairs
# Initializing counter of number of cell pairs
n=0
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for i in v_lines.shapel[0]: #Iteration over wision lines

# Obtaining maxtmum and mintmum index in viston line (bin at quasar redshift)
z_ind_min=0
z_ind_max=v_lines.shape[1]
for j in range(v_lines.shape[1]):
if “np.isnan(v_lines[i,j]):
z_ind_min=j
break
for j in range(z_ind_min, v_lines.shape[1]):
if np.isnan(v_lines[i,j]):
z_ind_max=]
break

# Computation of unitary vectors perpendicular (line of sight) and paralel (z,y) to redshift plane
# Only 1f the vision line has non-nan cells
if z_ind_max>z_ind_min:
if v_lines_ind[2,i,z_ind_min]<grid.shape[2]-1:
axis_los=(closest_grid(i,z_ind_min, (0,0,1))-closest_grid(i,z_ind_min))/\
np.linalg.norm(closest_grid(i,z_ind_min, (0,0,1))-closest_grid(i,z_ind_min))
else:
axis_los=(closest_grid(i,z_ind_min, (0,0,-1))-closest_grid(i,z_ind_min))/\
np.linalg.norm(closest_grid(i,z_ind_min, (0,0,-1))-closest_grid(i,z_ind_min))
if v_lines_ind[0,i,z_ind_min]<grid.shape[0]-1:
axis_x=(closest_grid(i,z_ind_min, (1,0,0))-closest_grid(i,z_ind_min))/\
np.linalg.norm(closest_grid(i,z_ind_min, (1,0,0))-closest_grid(i,z_ind_min))
else:
axis_x=(closest_grid(i,z_ind_min)-closest_grid(i,z_ind_min, (-1,0,0)))/\
np.linalg.norm(closest_grid(i,z_ind_min)-closest_grid(i,z_ind _min, (-1,0,0)))
if v_lines_ind[1,i,z_ind_min]<grid.shape[1]-1:
axis_y=(closest_grid(i,z_ind_min, (0,1,0))-closest_grid(i,z_ind_min))/\
np.linalg.norm(closest_grid(i,z_ind_min, (0,1,0))-closest_grid(i,z_ind_min))
else:
axis_y=(closest_grid(i,z_ind_min)-closest_grid(i,z_ind_min, (0,-1,0)))/\
np.linalg.norm(closest_grid(i,z_ind_min)-closest_grid(i,z_ind_min, (0,-1,0)))
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for j in range(z_ind_min, z_ind_max): #Iteration over cells in vision line

# Indices of the closest grid cell redefined to make things slightly faster. Also, it ts checked if
# these indices have not changed, in order to avoid redundant calculations
if j>z_ind_min:
if ra_ind==v_lines_ind[0,i,j] and dec_ind==v_lines_ind[1,i,j] and z_ind==v_lines_ind[2,1i,j]:
same_grid_cell=True
else:
ra_ind=v_lines_ind[0,1i,]j]
dec_ind=v_lines_ind[1,1i,]]
z_ind=v_lines_ind[2,i,]]
same_grid_cell=False

#Limits for computing correlations in adjacent redshift planes
min_plane=max(z_ind-parallel_cells,0)
max_plane=min(z_ind+parallel_cells+1,grid.shape[2])

# Number of cell pairs for the wision line cell
n_pairs_plane=displacements_x.shape[0]
n_pairs_total=abs(max_plane-min_plane)*n_pairs_plane

else:
ra_ind=v_lines_ind[0,1i,]j]
dec_ind=v_lines_ind[1,i,]]
z_ind=v_lines_ind[2,1, j]
same_grid_cell=False

#Limits for computing correlations in adjacent redshift planes
min_plane=max(z_ind-parallel_cells,0)
max_plane=min(z_ind+parallel_cells+1,grid.shape[2])

# Number of cell pairs for the wvision line cell
n_pairs_plane=displacements_x.shape[0]
n_pairs_total=abs(max_plane-min_plane)*n_pairs_plane
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# Checking 1f cube of cell pairs does not fit im current storage arrays
if n+n_pairs_total>=array_size: # If 7t does not fit, histograms are computed, storage arrays are emptied

dist_perpendicular=np.linalg.norm((dist_x[:n], dist_y[:n]),axis=0)

del dist_x

del dist_y

dist_total=np.linalg.norm((dist_parallel[:n], dist_perpendicular),axis=0)
mask=np.isnan(ov_products)

dist_parallel, dist_perpendicular=scale_par*dist_parallel, scale_perp*dist_perpendicular
dist_total=scale_mono*dist_total

dist_parallel, dist_perpendicular, dist_total=dist_parallel.astype('uintl6'),

- dist_perpendicular.astype('uint16')

dist_total=dist_total.astype('uintl6"')

np_total,dd_total,np_cube, dd_cube, jk_histogram=hist_calculation(dist_parallel[:n], jk_indices[:n],

dist_perpendicular, dist_total, ov_products[:n], bins_parallel, bins_perpendicular, bins_total, mask[:n])

ov_products=np.zeros(array_size) .astype('float32")

dist_parallel=np.zeros(array_size) .astype('float32')

dist_x, dist_y=np.zeros(array_size) .astype('float32'), np.zeros(array_size).astype('float32')
n=0

same_grid_cell=False

ra_ind=v_lines_ind[0,1i,]j]

dec_ind=v_lines_ind[1,1,]j]

z_ind=v_lines_ind[2,1, j]
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if same_grid_cell==False:
#Computation of distance between actual vision line cell and closest grid cell (r_los, r_z, T_Yy)
r=grid_coord[:,v_lines_ind[0,i,j], v_lines_ind[1,i,j],v_lines_ind[2,i,j]l]-v_lines_coordl[:,1i,j]
r_los=np.abs(np.dot (axis_los,r))
r_x=np.dot (axis_x,r)
r_y=np.dot(axis_y,r)

# Distances and overdensity products for all surrounding grid cells computed
dist_x_temp=np.repeat(adjacent_x[dec_ind, min_plane:max_plane], n_pairs_plane)\
*np.tile(displacements_x, max_plane-min_plane)
dist_y_temp=np.repeat(adjacent_y[min_plane:max_plane], n_pairs_plane)\
*np.tile(displacements_y, max_plane-min_plane)
dist_x[n:n+n_pairs_total]l=dist_x_temp+r_x
dist_y[n:n+n_pairs_totall=dist_y_temp+r_y
back_planes_dist=np.cumsum(adjacent_parallel[min_plane:z_ind] [::-1]1) [::-1]
front_planes_dist=np.cumsum(adjacent_parallel[z_ind:max_plane-1])
dist_r_los_temp=np.concatenate([-np.ones(((back_planes_dist.shape[0]+1)*n_pairs_plane)),
np.ones ((front_planes_dist.shape[0]*n_pairs_plane))])
dist_parallel_temp=np.repeat(np.concatenate([back_planes_dist, [0], front_planes_dist]), n_pairs_plane)
dist_parallel [n:n+n_pairs_totall=np.abs(dist_parallel_temp+r_los*dist_r_los_temp)
adjacent_cells=np.reshape(grid[ra_ind+iteration_x[0]:ra_ind+iteration_x[-1]+1,
dec_ind+iteration_y[0] :dec_ind+iteration_y[-1]+1, min_plane:max_plane], -1, order='F')
ov_products[n:n+n_pairs_totall=adjacent_cells*v_lines[i,j]
jk_indices[n:n+n_pairs_totall=jk_v_lines[i, j]*np.ones(n_pairs_total)
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else:
# Storing distances between previous vision line cell and closest grid cell as other wvariables
r=grid_coord[:,v_lines_ind[0,i,j], v_lines_ind[1,i,j],v_lines_ind[2,i,j]]-v_lines_coordl[:,i,j]
r_los=np.abs(np.dot(axis_los,r))
r_x=np.dot(axis_x,r)
r_y=np.dot (axis_y,r)

# Distances and overdensity products computed from the previous vision line cell
dist_x[n:n+n_pairs_total]=dist_x_temp+r_x
dist_y[n:n+n_pairs_total]l=dist_y_temp+r_y
dist_parallel[n:n+n_pairs_totall=np.abs(dist_parallel_temp+r_los*dist_r_los_temp)
ov_products[n:n+n_pairs_total]=adjacent_cells*v_lines[i, j]
jk_indices[n:n+n_pairs_totall=jk_indices[n-n_pairs_total:n]

n=n+n_pairs_total

#0ne last histogram calculation, 1f necessary.

dist_perpendicular=np.linalg.norm((dist_x[:n], dist_y[:n]),axis=0)

del dist_x

del dist_y

dist_total=np.linalg.norm((dist_parallel[:n], dist_perpendicular),axis=0)

mask=np.isnan(ov_products)

dist_parallel, dist_perpendicular=scale_par*dist_parallel, scale_perp*dist_perpendicular

dist_total=scale_mono*dist_total

dist_parallel, dist_perpendicular, dist_total=dist_parallel.astype('uintl6'), dist_perpendicular.astype('uinti6')

dist_total=dist_total.astype('uinti6')

np_total,dd_total,np_cube, dd_cube, jk_histogram=hist_calculation(dist_parallel[:n], jk_indices[:n],
dist_perpendicular, dist_total, ov_products[:n], bins_parallel, bins_perpendicular, bins_total, mask[:n])
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