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Abstract

In the present thesis we study the combinatorics of plethysm from the perspective of incidence
bialgebras and objective combinatorics. The objective algebra is carried out at the level of Segal
groupoids, by using homotopy slices and homotopy pullbacks of groupoids and simplicial
methods.

The first main contribution is to exhibit plethystic substitution as a convolution tensor
product obtained from an explicit simplicial groupoid, TS : �op → Grpd, by the standard general
constructions of incidence coalgebras and homotopy cardinality, in analogy with how ordinary
substitution is obtained from the fat nerve NS of the category of finite sets and surjections S. The
simplicial groupoid TS arises from S as its T -construction, a new categorical construction which is
reminiscent of Quillen’s Q and Waldhausen’s S-constructions. Furthermore, it is closely related
to the Nava–Rota theory of partitionals, and in fact it gives a new interpretation of transversals, a
key concept in this theory.

The simplicial groupoid NS is equivalent to the two-sided bar construction of the operad Sym.
We observe that TS too is equivalent to the two-sided bar construction of a certain operad, and
that the way to obtain this operad from Sym can be generalized to any (nice enough) operad.

This leads to the second main contribution: a functorial construction on generalized operads,
called the T-construction, which establishes a passage from ordinary substitutions to plethystic
substitutions. This construction is staged in the setting of P-operads for P a strong cartesian
monad on a cartesian category. This generality allows for treating simultaneously a variety of
notions of plethysm (and in fact leads to new notions of plethysm), such as ordinary plethysm,
plethysm in several variables, plethysm of series with coefficients in a noncommutative ring,
plethysm of series with non-commuting variables and Y-plethysm for Y a monoid. In the last
case the construction agrees with the Giraudo T -construction, which produces an operad from a
monoid. For all these notions of plethysm, a combinatorial model is exhibited in the form of a
monoidal Segal groupoid.

Keywords: plethysm, simplicial groupoids, homotopy combinatorics, incidence bialgebras, gener-
alized operads, bar construction.
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Introduction

The art of counting is a fundamental aspect of mathematics, and is the primary concern
of enumerative combinatorics [1, 66, 67].

The usage of power series and their operations has long been an essential tool to
solve enumeration problems. It goes back to the 18th century, with the study of Euler
on partitions of integers by means of generating functions [27]. This was one starting
point for algebraic combinatorics, where algebraic structures are exploited to establish
combinatorial identities, and vice-versa. It has long been appreciated, though, that
bijective proofs give a deeper understanding than algebraic manipulation. This is the
aim of the so-called objective method, pioneered by Lawvere [45], Joyal [43], and Baez
and Dolan [2].

With Joyal’s theory of species [43], the intuition behind manipulation of generating
functions found a proper combinatorial foundation. A species is a functor from the
category of finite sets and bijections to itself (see Section 1.1). Operations between species
can be explicitly defined, and they correspond in a natural way to operations on their
generating functions. Paramount among these is the substitution of species, which
corresponds to the functional substitution of generating functions, hence providing an
objective counterpart to substitution of one variable power series.

Plethysm is a substitution of power series in infinitely many variables (see (2) below)
that was introduced by Pólya [62] in the context of unlabelled enumeration theory, as a
tool to count equivalence classes of a set under a symmetry action.

Independently, it was introduced by Littlewood [48], who actually coined the term, in
the framework of symmetric functions and representation theory of the general linear
groups [52] (see Section 1.5). This notion has later been used in algebraic topology, in
connection with λ-rings [10] and power operations in cohomology [4].

The first combinatorial model for plethysm was given by Nava and Rota [61]. They
developed the notion of partitional (Section 1.4), a functor from the groupoid of partitions
to the category of finite sets, and showed that a suitable notion of composition of
partitionals yields plethystic substitution of their generating functions, in analogy with
the theory of species. A variation of this combinatorial interpretation was given shortly
after by Bergeron [7], who instead of partitionals considered permutationals, functors
from the groupoid of permutations to the category of finite sets. This approach is nicely
related to the theory of species through an adjunction. Later on, Nava [60] studied both
partitionals and permutationals from the point of view of incidence algebras, and added
a third class of functors called linear partitionals.

Incidence algebras and coalgebras are another essential tool in algebraic combinat-
orics [39]. Coalgebras arise from the ability to decompose structures into smaller ones.
Rota [64] showed that many of these coalgebras admit an interpretation in terms of

1



2 CONTENTS

incidence coalgebras of posets: from any locally finite poset, form the free vector space on its
intervals, and endow this with a coalgebra structure by defining the comultiplication as

∆([x,y]) =
∑

x6m6y

[x,m]⊗ [m,y].

The same construction works for locally finite monoids [14]. Observe that a poset can
be viewed as a category where there is at most one arrow between any two objects,
and a monoid is a category with only one object. The notion of incidence coalgebra
was generalized to the context of categories by Leroux [20, 47], and goes as follows: a
category is locally finite if every arrow admits only a finite number of 2-step factorizations.
The incidence coalgebra of a locally finite category is the free vector space spanned by its
arrows, with comultiplication

∆(f) =
∑
b◦a=f

a⊗ b

and counit ε(idx) = 1 and ε(f) = 0 else. The coassociativity of ∆ comes from the
associativity of composition of arrows.

In the classical theory of posets, often it is not the raw incidence coalgebra that is most
interesting, but rather a reduced incidence coalgebra, where two intervals are identified if
they are equivalent in some specific sense (e.g. isomorphic as abstract posets).

In the 21st century, an objective approach to Leroux theory was taken up by Lawvere
and Menni [45], by using linear algebra over sets. Let Set be the category of sets. The
objective counterpart of the vector space spanned by a set S is the slice category Set/S
(cf. [31]). An object in this category is a morphism A

f−→ S of sets, and it corresponds
to the vector whose s-entry (for s ∈ S) is |f−1(s)|. Linear functors Set/S → Set/R (those
that preserve sums) are given by spans S ← M → R, and obtained by taking pullback
and postcomposition, as in Equation (4) below. A coalgebra in Set/S is thus given by a
comultiplication span S←M→ S× S and a counit span S← N→ 1.

However, combinatorial structures have symmetries, and to deal with them it is
useful to upgrade this objective method to groupoids and homotopy linear algebra over
groupoids [3, 30, 31]. On the other hand, the importance of factorizations of arrows in
incidence coalgebras suggests a simplicial viewpoint, via the nerve construction [23].
These two facts lead to the recent generalization of the theory of Leroux to∞-categories
by Gálvez, Kock and Tonks [32, 33, 35]. They introduced the notion of decomposition
space, a general homotopical framework for incidence coalgebras and Möbius inversion.
These are the same as 2-Segal spaces, introduced by Dyckerhoff and Kapranov [24] in the
context of homological algebra and representation theory [29].

Decomposition spaces are simplicial groupoids that satisfy an exactness condition
weaker than the Segal condition: while the Segal condition essentially characterizes the
ability to compose, the decomposition-space axioms express the ability to decompose.
Many incidence coalgebras in combinatorics do not arise from posets or categories but do
arise from decomposition spaces. Examples of this include the Butcher–Connes–Kreimer
bialgebra of rooted trees [13, 19, 32], various Hall algebras, or some coalgebras coming
from the Waldhausen S-construction [24, 32]. Bialgebras, rather than coalgebras, are
obtained from monoidal decomposition spaces [32]. In examples from combinatorics, the
monoidal structure is often disjoint union. In the present work we use the machinery
of decomposition spaces, but all our examples will be Segal groupoids (Section 2.2).
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To recover the algebraic incidence coalgebra from the categorified incidence coalgebra
(Section 2.3) one takes homotopy cardinality, a cardinality functor defined from groupoids
to the rationals [31] (Section 2.4).

Example (see Section 1.3 below). Let QJxK be the ring of formal power series in x without
constant term, and let F,G ∈ QJxK. The Faà di Bruno bialgebra F is the free algebra
Q[A1,A2, . . . ], where An ∈ QJxK∗ is the linear map defined by

An(F) =
dnF

dxn
.

Its comultiplication is defined to be dual to substitution of power series. That is

∆(An)(F,G) = An(G ◦ F).

The Faà di Bruno bialgebra is based on the original computations made by Faà di
Bruno in [28] on the derivatives of the composition of two functions. The combinatorial
interpretation of F in terms of incidence algebras was first found by Doubilet [21]. It is the
reduced incidence bialgebra of the lattice of partitions reduced modulo type equivalence.
Joyal showed that this bialgebra can be objectified by using the category of finite sets and
surjections S [43, §7.4]. In the context of Segal spaces and incidence bialgebras the result
reads as follows: the Faà di Bruno bialgebra F is equivalent to the homotopy cardinality of the
incidence bialgebra of the fat nerve NS of the category S (Remark 3.3.3). The comultiplication
here is given by summing over factorizations of surjections:

∆(n� l) =
∑

n�k�l

(n� k)⊗ (k� l). (1)

The algebra structure is given by disjoint union of sets. This sum runs over isomorphism
classes of factorizations n � k � l, meaning up to isomorphism k

∼−→ k ′ making the
diagram commute. The advantage of working with groupoids is precisely that one does
not have to worry about these isomorphism classes: this information is encoded in the
simplicial groupoid NS. Of course, the surjection n� 1 corresponds to An.

The Faà di Bruno bialgebra can also be interpreted through operads: it is well-known
that NS is equivalent to the two-sided bar construction of Sym, the terminal reduced
symmetric operad [42] (see also Theorem 7.0.1). This equivalence takes the surjection
n� 1 to the unique operation of arity n, and the comultiplication of an operation runs
through all possible 2-step factorizations. For example

∆
( )

= ⊗ + 3 ⊗ + ⊗ .

We arrive thus at the last ingredient of this thesis. The theory of operads has long
been a standard tool in topology and algebra [49, 53], and in category theory [46], and it
is getting increasingly important also in combinatorics [37, 55].

It was shown in [42] that the two-sided bar construction [54, 74] of an operad is a
Segal groupoid, and classical constructions of bialgebras from operads factor through
this construction (see [18, 68, 69] for related constructions).
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Contributions of the present thesis

In this thesis we study the combinatorics of plethysm within the framework of incidence
bialgebras and objective combinatorics. The objective algebra is carried out at the level of
Segal groupoids, by using homotopy slices and homotopy pullbacks of groupoids and
simplicial methods. The construction of these Segal groupoids is itself a subject of study,
and leads to many other (old and new) notions of plethysm.

The first main contribution of the present work is to exhibit plethystic substitution as
a convolution tensor product obtained from an explicit simplicial groupoid,

TS : �op → Grpd,

by the standard general constructions of incidence coalgebras and homotopy cardinality,
in pleasant close analogy with the example above with ordinary substitution andNS. This
simplicial groupoid arises from S as its T -construction, a categorical construction that we
introduce in Section 3.1, and which is reminiscent of Quillen’s Q [63] and Waldhausen’s
S-constructions [72]. The simplicial groupoid TS is closely related to partitionals, and in
fact it gives a new interpretation of transversals, a key concept in this theory.

We have mentioned several different approaches to the combinatorics of plethysm in
the beginning: partitionals, permutationals and linear partitionals. Besides these different
approaches, distinct variations of plethysm have emerged with time. Most prominently,
plethysm of power series with variables indexed by a (locally finite) monoid, introduced
by Méndez and Nava [56] in the course of generalizing Joyal’s theory of colored species
to an arbitrary set of colors, and plethysm in several variables used in multisort species.

The second main contribution of this thesis is a construction on operads, called the
T-construction, which establishes a passage from ordinary substitutions to plethystic
substitutions. In particular, this construction produces Segal groupoids for the partitional
and the linear partitional (also called exponential) cases, for the other aforementioned
variations of plethysm, for plethysm of series with coefficients in a noncommutative
ring, and for plethysm of series with noncommuting variables. The last two have never
appeared before, but it is appropriate to mention that the noncommutative version of
the Faà di Bruno bialgebra comes up in algebraic topology [58], combinatorics [11, 25],
numerical analysis [50, 59] and number theory [38].

The starting point for the T-construction is the observation that, in the same way as
NS, the simplicial groupoid TS is equivalent to the two-sided bar construction of an
operad, and that the way to obtain this operad from Sym can be generalized to any (nice
enough) operad.

In the present work, for maximal flexibility, we work with operads in the form of
P-operads [12, 46], where is P a cartesian monad in a cartesian category E. This is a
technical but powerful machinery, which allows us to cover simultaneously notions such
as monoids, categories, nonsymmetric and symmetric operads, colored and noncolored
operads, and to work over the category E = Grpd of groupoids. The two-sided bar
construction is worked out in this context for the first time. An essential condition for
the T-construction to be well-defined is that P is strong [41, 57, 71]. The present work
represents the first manifestation of strong monads in combinatorics.

The main results of this thesis have already been released in paper form. The content
of Chapter 3 constitutes the paper A simplicial groupoid for plethysm [15], to appear in
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Algebraic and Geometric Topology. This material was exposed at the international
conferences Category Theory 2018 and CSASC 2018. Moreover, an expository survey
titled Combinatorics and simplicial groupoids [16], containing the ideas of [15] and its relation
to the theory of species and partitionals, will appear in TEMat.

The content of Chapters 4 to 8 constitutes the paper Plethysms and operads [17],
submitted for publication.

Summary

The thesis is divided into eight chapters.

Chapter 1: Plethysm

This chapter is a summary on plethysm and the combinatorics surrounding it. Let us
begin by saying what this substitution is about.

Definition ([62]). Let QJxK be the ring of power series in the variables x = (x1, x2, . . . )
without constant term. Given two power series, F(x1, x2, . . . ) and G(x1, x2, . . . ) in QJxK,
their plethystic substitution is defined as

(G~ F)(x1, x2, . . . ) = G(F1, F2, . . . ), (2)

with Fk = F(xk, x2k, . . . ).

As mentioned before, this notion originated within unlabelled enumeration theory.
In Section 1.1 we broadly explain how plethysm is used in this setting, and we treat it
from the perspective of the theory of species.

We continue in Section 1.2 with the theory of colored species. On the one hand, this
gives rise to plethysm in several variables. For two variables, it is defined as follows:(

H~ (G, F)
)
(x1, x2, . . . ;y1,y2, . . . ) = H(G1,G2, . . . ; F1, F2, . . . ),

with Gk = G(xk, x2k, . . . ;yk,y2k, . . . ) and Fk = F(xk, x2k, . . . ;yk,y2k, . . . ). On the other
hand, if the species are colored over a monoid Y, one can define their Y-plethysm [56],
which at the level of power series is

(G~ F)(xi; i ∈ Y) = G
(
Fi(xj; j ∈ Y); i ∈ Y

)
,

where Fi(xj; j ∈ Y) = F(xij; j ∈ Y). Note that now the variables are indexed by Y. For this
to be well-defined, Y has to be locally finite.

In Section 1.3 we expand a bit on the Faà di Bruno bialgebra and some of its
variations, including the ordinary Faà di Bruno bialgebra, the multivariate case, and the
noncommutative case.

In the same way the theory of species categorifies substitution of one variable power
series, the theory of partitionals of Nava–Rota [61] categorifies plethysm. We explain this
theory in Section 1.4. In this approach the power series F ∈ QJxK are written as

F(x) =
∑
λ

Fλ
xλ

aut(λ)
, (3)
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where λ = (λ1, λ2, . . . ) is an infinite vector of natural numbers with a finite number of
nonzero entries, and

aut(λ) = 1!λ1λ1! · 2!λ2λ2! · · · , xλ = xλ11 x
λ2
2 · · · .

As we shall see, aut(λ) is the number of automorphisms of the partition or surjection
represented by λ. The key concept for defining the substitution of partitionals is that of a
transversal (Definition 1.4.2, Example 1.4.3), a complex notion of partition of a partition.
We also explain linear partitions and linear transversals [60], which are concerned with
exponential power series, in which aut(λ) = λ! = λ1!λ2! · · · .

Finally, in Section 1.5, for completeness, we describe Littlewood’s plethysm of sym-
metric functions and its relation to Pólya plethysm.

Chapter 2: Segal groupoids and incidence coalgebras

In Section 2.1 we review the homotopy theory of the 2-category of groupoids, including
in particular the extensively used notions of homotopy pullback, weak slice and fibration.
In the rest of the chapter we review the theory of Segal groupoids and their incidence
coalgebras. Let us present a synopsis of these. A Segal groupoid is a simplicial groupoid

X : �op −→ Grpd

satisfying certain conditions encoding the ability to compose (2.2.1). The spans

X1
d1←−−− X2

(d2,d0)−−−−−→ X1 ×X1, X1
s0←−−− X0

t−−→ 1,

define two functors

∆ : Grpd/X1 −→ Grpd/X1×X1 ε : Grpd/X1 −→ Grpd
S
s−→ X1 7−→ (d2,d0)! ◦ d∗1(s), S

s−→ X1 7−→ t! ◦ s∗0(s),
(4)

where upperstar is homotopy pullback, lowershriek is postcomposition and Grpd/
denotes the weak slice category. If X is a Segal groupoid then ∆ is coassociative and ε
counital (in a homotopy sense, see Theorem 2.3.1) [32].

If X satisfies some finiteness conditions [33], which we explain in Section 2.4, then we
can take homotopy cardinality | · | of ∆ and ε to get a coalgebra structure

∆ : Qπ0X1 −→ Qπ0X1 ⊗Qπ0X1 ε : Qπ0X1 −→ Q,∣∣S s−→ X1
∣∣ 7−→ ∣∣(d2,d0)! ◦ d∗1(s)

∣∣ ∣∣S s−→ X1
∣∣ −→ ∣∣t! ◦ s∗0(s)

∣∣,
in the vector space Qπ0X1 spanned by the connected components of X1. Moreover, if X is
monoidal then Qπ0X1 acquires a bialgebra structure.

Chapter 3: A Segal groupoid for plethysm

This chapter contains the first main contribution of the thesis, published in [15]. We
introduce, in Section 3.2, the plethystic bialgebra P as the free algebra Q

[
{Aλ}λ

]
on the

linear functionals Aλ which return the Fλ coefficient (3) of a power series F ∈ QJxK, and
with comultiplication dual to plethystic substitution

∆(Aλ)(F,G) = Aλ(G~ F).
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We study this bialgebra to obtain a formula for extracting the comultiplication of Aλ
(Proposition 3.2.3) which can be viewed as a generalization of the Bell polynomial
expression for extracting the coefficients of ordinary composition of one-variable power
series.

In Section 3.3 we show (Theorem 3.3.1) that this bialgebra is in fact the homotopy
cardinality of the incidence bialgebra of a certain new Segal groupoid, called TS. This
Segal groupoid arises from the category of finite sets and surjections S from the T -
construction, a main contribution of this thesis, that we previously introduce in Section 3.1.
Let us see what TS looks like. The objects of its 1 and 2-simplices can be pictured as

t01

t00 t11

∈ T1S

t02

t01 t12

t00 t11 t22

y

µ

∈ T2S.

where the tij are finite sets and the arrows surjections. Morphisms of such shapes
are levelwise bijections tij

∼−→ t ′ij compatible with the diagram. In general TnS is an
analogous pyramid, with t0n in the peak, all of whose squares are pullbacks of sets.
The face maps di remove all the sets containing an i index, and the degeneracy maps si
repeat the ith diagonals, as will be detailed in Section 3.1.

Diagrams whose last set is singleton are called connected. The main point of TS is
that the connected objects in T1S parametrize precisely the summation of the series, and,
rather strikingly, the connected objects in T2S encode all the combinatorics of plethystic
substitution, as we shall see. Including also the non-connected objects is essential for
having a simplicial object.

The comultiplication is given by

∆

 t02

t00 t22

 :=
∑
t02

t01 t12

t00 t11 t22

y

t01

t00 t11

⊗
t12

t11 t22.

As in (1), this sum is over isomorphism classes of such diagrams, meaning up to
isomorphisms t01

∼−→ t ′01 and t12
∼−→ t ′12 making the diagram commute.

In Section 3.4 we see how the notion of transversal of a partition, which is the key
concept in the theory of partitionals [61], is encoded in T2S. To make the comparison we
use the fact that the groupoid of partitions is equivalent to the groupoid of surjections.

Finally, in Section 3.5 we take the opportunity to describe a plethystic analogue of
the Faà di Bruno formula for the connected Green function associated to the incidence
bialgebra of TS.

The fact that TS is based on surjections just like NS, leads to an important question
which is the second part of the thesis: what is the general mechanism by which plethystic
substitution arises from ordinary substitution?
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The key observation is that, in the same way the fat nerve of the category of surjections
NS is equivalent to the bar construction of Sym, the simplicial groupoid TS is also
equivalent to the bar construction of an operad, TSr Sym. The comparison between TS
and TSr Sym is treated in Chapter 8.

The mechanism by which TSr Sym arises from Sym can be generalized to include all
the other plethysms and beyond, and we call it the T-constructions.

Chapter 4: Monads and operads

It turns out that that the operad TSr Sym and many of the other operads related to
plethysms, are not operads over Set but over Grpd. Moreover, we encounter symmetric
and nonsymmetric operads, as well as colored and noncolored operads. This makes the
framework of P-operads (generalized multicategories in the terminology of Leinster [46])
the ideal level of generality for the T-construction.

We explain the basics of this theory in Section 4.2. Let P be a cartesian monad on a
cartesian category E. A P-operad is represented by a span and two arrows

Q1

PQ0 Q0

s t

PQ1×PQ0Q1 Q1

Q0 Q1,

m

e

where Q0 is thought of as the object of colors, Q1 is thought of as the object of operations,
s returns the P-configuration of input colors, t returns the output color, e is the unit and
m is composition. All these arrows have to satisfy associativity and unit axioms. These
axioms have been relegated to Appendix A, since they are routinary.

For instance, if Id is the identity monad, then an Id-operad is a category internal to E.
The T-construction is in fact a composition of two constructions, one from P-operads to
(internal) categories and one from categories to P-operads.

We will mainly be interested in E = Grpd. In particular, nonsymmetric operads will
be considered as M

r
-operads, where M

r
is the free semimonoidal category monad in Grpd,

and symmetric operads as S
r
-operads, where S

r
is the free symmetric semimonoidal

category monad in Grpd. As it is usual, the (objects of the) operations of M
r

or S
r
-operads

Q will be depicted as

x

where the colors symbolize objects of Q0.
Note that unlike nonsymmetric operads, symmetric operads cannot be portrayed

as P-operads in Set, because the free commutative monoid monad is not cartesian.
Furthermore, working in Grpd adapts better with the theory of decomposition spaces
and incidence coalgebras. This theory uses weak notions of simplicial groupoids, slice
categories, and pullbacks, but by keeping track of fibrancy we can stay within strict
notions and strict monads in the style of [73].
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In Section 4.4 we explain the notion of strong monad (Definition 4.4.1). It is essential
for the T-construction that P is strong. This notion goes back to the work of A. Kock [41]
in enriched category theory, but it has turned out to be fundamental for the role monads
play in functional programming [57, 71]. Strong monads have recently found their
way to algebraic topology [6]. The present work represents their first manifestation in
combinatorics.

Finally, in Section 4.5 we introduce the two-sided bar construction for P-operads.
This is a standard construction [54], but has never appeared in the setting of P-operads
before. We denote by BQ the two-sided bar construction of the P-operad Q. As a
heuristic description we can say that the n-simplices of BQ are forests of n-level trees of
operations of Q.

Chapter 5: The T-construction

The T-construction is named after the T -construction of Chapter 3. By coincidence
Giraudo [36] had used the same letter T for a functor from monoids to nonsymmetric
operads. The T-construction of the present work encompasses both these constructions,
and the letter T has been maintained, but now in a fancier font.

The T-construction is composed in fact by two constructions. The first one, introduced
in Section 5.1, produces a P-operad TPC from a category C internal to E. The entire
section is devoted to the definition TPC (5.1.1), together with its composition (Defin-
ition 5.1.1) and unit (Definition 5.1.4) and to show they satisfy associativity and unit
axioms (Propositions 5.1.3 and 5.1.6).

The second construction, introduced in Section 5.2, produces a category TPQ from
a P-operad Q. The entire section is devoted to the definition TPQ (5.2.1), together with
its composition (Definition 5.2.1) and unit (Definition 5.2.4) and to show they satisfy
associativity and unit axioms (Propositions 5.2.3 and 5.2.6).

Some of the technical proofs of these two sections have been shifted to Appendix B,
for the sake of readability.

We will extensively use the composite of these two, which produces a P-operad TPQ

from a P ′-operad Q. The only purpose of Section 5.3 is to emphasize this fact.
In Section 5.4 we explore the finiteness conditions that the agents of the T-construction

have to satisfy, in the case E = Grpd, so that later on we can take homotopy cardinality.
These include finiteness conditions on P, C and Q (Definition 5.4.1), and verification that
the conditions are preserved by the T-construction (Lemmas 5.4.3 and 5.4.4).

This chapter is the most technical, and there does not seem to be much of a point in
going into these details in the present summary. Instead, we will see some examples in
the subsequent subsection.

Chapter 6: T-construction for M
r

and S
r
-operads

In Section 6.1 we begin by unraveling the T-construction from categories in Set to M
r
-

operads (nonsymmetric operads). The idea is that an operation in TMrC is given by a
sequence of arrows of C with the same output. For instance, an operation with input
c1, c2, c3 and output c can be pictured as
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c

c3c2c1

Composition goes as expected (6.1.4). Clearly this can be made a symmetric operad too.
As shown in Example 6.1.3, when C is a monoid this construction coincides with the
Giraudo T -construction, which was introduced by Giraudo [36] as a generic method to
build combinatorial operads from monoids.

In Section 6.2 we unravel the T-construction from nonsymmetric to symmetric operads
and some variations, such as from symmetric operads to S

r
-operads. Recall that this

means producing first a category TM
r
Q and then a S

r
-operad TS

r
Q. The general idea is

that an operation in TS
r
Q is a sequence of operations (x1, . . . , xn) of Q satisfying that

for each i all the input objects of xi coincide, and that all the n output objects coincide.
The following picture shows an operation of input (•, •) and output • consisting of the
sequence (x,y):

x y

Composition is obtained by repetition of operations and composition in Q (6.2.1). Nev-
ertheless, from a combinatorial point of view, when dealing with plethysm it is more
natural to apply the T-construction to the opposite category (TM

r
Q)op. It is the purpose

of Section 6.3 to develop this point of view. The general idea is that an operation in
TSrQop is a sequence of operations (x1, . . . , xn) of Q satisfying that all the input objects
coincide. But then these inputs become the outputs, as shown in the following picture:

x y

Composition is again obtained by repetition of operations and composition in Q (6.3.1).
From a purely formal perspective, in all our cases of interest it makes no difference to
take this opposite convention.

Chapter 7: Plethysms and operads

We finally explain in this chapter the relation between the T-construction and plethysm.
We begin with the classical plethystic bialgebra P: it is isomorphic to the homotopy
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cardinality of the incidence bialgebra of BTSr Sym (Theorem 7.0.2). For instance, under
this isomorphism, the following 1-simplex of BTSr Sym

s =

(5)

corresponds to A(0,3,1,2)A(0,1,1) in P. In this statement we have of course incurred in a
slight abuse of language, since the real correspondence is∣∣∣1 psq−−→ B1TSr Sym

∣∣∣ 7−→ A(0,3,1,2)A(0,1,1).

In Section 7.1 we give a summary of all the variations of the plethystic bialgebra that
can be obtained from the operads Sym, Ass, Sym2 and Ass2 and the monads M

r
and S

r
.

Looking at s in Equation (5) one can already see several possible noncolored variations:
commutativity of the two operations of s; commutativity of the operations inside s, and
whether they belong to Sym or to Ass.

At the level of power series, the variations include: exponential plethysm of Nava [60]
(Theorem 7.3.3); noncommutative variables (Theorems 7.2.1 and 7.3.4); noncommutative
variables and coefficients (Theorems 7.2.2 and 7.3.6), and power series in two sets of
infinitely many variables (Theorems 7.2.4 and 7.3.9).

Section 7.2 is devoted to the bialgebras arising from Sym and Sym2, and Section 7.3
is devoted to the bialgebras arising from Ass and Ass2. The difference between the first
ones and the second ones relies on the number of automorphisms. Finally, in Section 7.4
we deal with the Y-plethysm of Méndez–Nava [56] (Theorem 7.4.2).

Along the way we encounter some variations of the Faà di Bruno bialgebra, such as:
the ordinary Faà di Bruno bialgebra (Theorem 7.3.1); noncommutative [11, 25, 50] (The-
orem 7.3.2); two-variables (Theorem 7.2.3); two noncommuting variables (Theorem 7.3.7),
and noncommutative Faà di Bruno bialgebra in two noncommuting variables (The-
orem 7.3.8).

Chapter 8: TS revisited

As mentioned above, it is the operadic nature of TS that motivates the T-construction.
We begin, in Section 8.1, by showing that indeed BTSr Sym is equivalent to TS. This in
particular will prove Theorem 7.0.2.

Here is an example of a correspondence under this equivalence at the level of 1-
simplices:

7−→
5

2 1

In Example 8.1.6 we establish a correspondence of 2-simplices.
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Finally, in Section 8.2 we characterize some of the two-sided bar constructions of
Chapter 7 as simplicial groupoids similar to TS. In particular, in Example 8.2.1 we recover
the linear transversals of Nava [60].

List of notations

~ plethystic substitution (1.0.1)

Grpd category of groupoids and groupoid morphisms

Cat category of small categories

C generic category

Set category of sets and set maps

S category of finite sets and surjections

B category of finite sets and bijections

P category of partitions (page 24)

S category of surjections (page 47)

Tw+ twisted arrow category with additional
arrows between the identities (page 36)

� simplex category (page 30)

NS fat nerve (page 31) of S

TS simplicial groupoid obtained from the T -construction of S (page 39)

Λ set of infinite vectors λ = (λ1, λ2, . . . ) of natural
numbers with λi = 0 for all i large enough (page 39)

Vk kth Verschiebung operator (page 39)

W set of finite words ω = ω1 . . .ωn of positive natural numbers (page 88)

F Faà di Bruno bialgebra (page 21)

P plethystic bialgebra (page 40)

E generic ambient cartesian category, mainly Set or Grpd (page 54)

(P,µ,η) generic strong cartesian monad (4.2.1 and 4.4.1)

Id identity monad (4.4.3)

M free monoid monad (page 54)

M
r

free semigroup monad (4.4.5)

S free symmetric monoidal category monad (4.4.7)

S
r

free symmetric semimonoidal category monad (4.4.8)

L monad A 7→ P1×A (page 65)

Y generic (locally finite) monoid (4.4.6)

Y monad given by A 7→ Y×A, for Y a monoid (4.4.6)

C category internal to E (page 53)
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Q P-operad internal to E (page 54)

Q0,Q1 objects and operations of Q (page 54)

(Q,µQ,ηQ) monad on E/Q0 defined by the P-operad Q (page 60)

DA,B strength natural transformation (4.4.1)

DB strength for A = 1 (page 65)

RA projection P1×A 7→ A (page 65)

B two-sided bar construction (page 61)

BP two-sided bar construction relative to a monad P (page 63)

Bn n-simplices of the two-sided bar construction B (page 94)

B
◦
n subgroupoid of connected objects of Bn (page 94)

Sym the reduced symmetric operad (4.4.8)

Ass the reduced associative operad (4.4.5)

TPC T-construction from C to a P-operad (page 65)

TPQ T-construction from a P-operad to a category C (page 71)

TPQ T-construction from a P ′-operad to a P-operad (page 77)

Ford ordinary Faà di Bruno bialgebra (page 22)

Fnc noncommutative Faà di Bruno bialgebra (page 21)

F2 Faà di Bruno bialgebra in two variables (page 91)

F2ord ordinary Faà di Bruno bialgebra in two variables

F〈2〉 Faà di Bruno bialgebra with
two noncommuting variables (page 95)

F〈2〉,nc noncommutative Faà di Bruno with
two noncommuting variables (page 95)

An,an generators for the several Faà di Bruno bialgebras

Pexp exponential plethystic bialgebra (page 93)

P♦ plethystic bialgebra with noncommuting variables (page 90)

P♦lin linear plethystic bialgebra with
noncommuting variables (page 94)

P♦,nc noncommutative plethystic bialgebra
with noncommuting variables (page 91)

P♦,nc
lin noncommutative linear plethystic bialgebra

in noncommuting variables (page 94)

P2 plethystic bialgebra in two variables (page 92)

P2exp exponential plethystic bialgebra in two variables (page 95)

PY plethystic bialgebra relative to a monoid Y (page 96)

Aλ,aλ
Aω,aω generators for the several plethystic bialgebras





1
Plethysm

This chapter is a summary on plethysm and the combinatorics surrounding it. We start
by explaining its relevance in unlabelled enumeration theory. Although this goes back
to Pólya [62], we treat it from the more modern point of view of combinatorial species.
We also take the opportunity to introduce the Faà di Bruno bialgebra, since it is closely
related both to species and to the plethystic bialgebra. In Section 1.4 we introduce
the theory of partitionals [61]. Finally in Section 1.5 we give a glimpse of plethysm
of symmetric functions. But before that, let us define again the notion of plethystic
substitution, since it is the thread of this chapter.

Definition 1.0.1 ([62]). Given two power series, F(x1, x2, . . . ) and G(x1, x2, . . . ) in QJxK,
their plethystic substitution is defined as

(G~ F)(x1, x2, . . . ) = G(F1, F2, . . . ),

with Fk = F(xk, x2k, . . . ).

Example 1.0.2. For instance,

xn ~ xm = xn·m

xn ~ (xm1
+ xm2

) = xn·m1
+ xn·m2

(x32 + x
7
5)~ (x64 + x

2
1) = (x68 + x

2
2)
3 + (x620 + x

2
5)
7.

Observe that a one-variable power series can be regarded as a power series in QJxK
where only the monomials xn1 may have nonzero coefficient. Under this correspondence
plethysm agrees with ordinary substitution of one-variable power series.

1.1 Species

The theory of species, introduced by Joyal [43], is one of the starting points for objective
combinatorics. Through the notion of species, Joyal showed that manipulations with
power series and generating functions can be carried out directly on the combinatorial
structures themselves. A species is a functor

F : B −→ B

from the category B of finite sets and bijections to itself. To each finite set S the species F
associates another finite set F[S], whose elements are called F-structures on the set S. Each
bijection S→ R gives a bijection F[S]→ F[R]. Two F-structures σ,σ ′ ∈ F[S] are isomorphic
if there exists a bijection f : S ∼−→ S such that F[f](σ) = σ ′.

15
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Example 1.1.1. The species of partitions Π sends a set E to Π(E), the set of all its partitions,

and a bijection E f−→ E ′ to the obvious bijection Π(E)→ Π(E ′) given by f. For instance

Π([3]) =
{

1 2 3 1 2 3 1 2 3 1 3 2 1 2 3

}
Other examples include structures of graphs, trees, linear orders, etc.

We may attach different kinds of power series to a species F in order to enumerate
the F-structures or the isomorphism classes of F-structures. The first ones are often called
labelled structures, while the second ones are called unlabelled structures. The exponential
generating function associated to F is

F(x) =
∑
n>0

|F[n]|
xn

n!
,

where |F[n]| is the number of F-structures on a set of n elements. This function is used
for labelled enumeration. The type generating function associated to F is

F̃(x) =
∑
n>0

|F̃[n]| xn,

where |F̃[n]| is the number of unlabelled structures of F.

Example 1.1.2. For instance, in view of the example above we have that |Π[3]| = 5, while
|Π̃[3]| = 3, because the partitions 1 2 3 , 1 2 3 and 1 3 2 are isomorphic. The
number of partitions of an n-element set |Π[n]| is generally called the Bell number Bn [66].

Several operations of generating functions can be lifted to the level of species [43].
For instance, given two species F and G we define their sum and product by

(F+G)[S] = F[S] +G[S] and (F ·G)[S] =
∑

S1+S2=S
S1∩S2=ø

F[S1]×G[S2]

respectively. Both operations are compatible with addition and multiplication of gen-
erating functions, so that (F+G)(x) = F(x) +G(x), (F ·G)(x) = F(x) ·G(x) and similarly
for the type generating functions. Nevertheless, the operation that interests us most is
substitution [43, §2.2]. Suppose that G[∅] = ∅. Then

(F ◦G)[S] =
∑

π∈Π[S]

F[π]×
∏
B∈π

G[B], (1.1.1)

where F[π] interprets π as a set. In other words, an (F ◦G)-structure on S is a partition π
of S together with an F-structure of π and G-structures for each block of π. Notice that
this is not the composition of F and G as functors. Substitution of species is compatible
with the exponential generating function,

(F ◦G)(x) = F(x) ◦G(x), (1.1.2)

but not with the type generating function.
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Example 1.1.3. Let E be the species of sets, defined by E[S] = {S}, so that for each finite
set S there is a unique E-structure, the set S itself. Also, denote by E+ the species of
nonempty sets, defined by E+[S] = {S} if S is nonempty and E+[S] = ∅ if S = ∅. It is clear
then that the exponential and type generating functions for these species are given by

E(x) =
∑
n=0

xn

n!
= ex, Ẽ(x) =

∑
n=0

xn =
1

1− x
,

E+(x) =
∑
n=1

xn

n!
= ex − 1, Ẽ+(x) =

∑
n=1

xn =
1

1− x
− 1.

Observe that the species of partitions Π is precisely the substitution of these two:

Π = E ◦ E+,

because, in view of Equation (1.1.1),

Π[S] =
∑

π∈Π(S)

{π}×
∏
B∈π

{B} =
∑

π∈Π(S)

E[π]×
∏
B∈π

E+[B].

By using Equation (1.1.2) we obtain the exponential generating function of Π,

Π(x) = ee
x−1,

from which the Bell numbers can be computed. Notice that we had to use E+ instead
of E as the second argument of substitution because a partition does not allow empty
blocks.

We can easily see that (1.1.2) does not hold for the type generating functions. Indeed,

Ẽ(x) ◦ Ẽ+(x) = 1+ x+ 2x2 + 4x3 + · · · ,

which already fails at x3, since we had seen that |Π̃[3]| = 3, not 4.

To obtain a power series for unlabelled enumeration compatible with substitution, a
third kind of generating function is required. The cycle index series of a species F [43, §3]
is the formal power series (in infinitely many variables x1, x2, . . . )

ZF(x1, x2, . . . ) =
∑
n>0

1

n!

∑
σ∈Sn

|Fix(F[σ])| xσ11 x
σ2
2 · · ·

 ,

where Sn denotes the group of permutations of [n], σk is the number of cycles of size k
of σ and Fix(F[σ]) is the set of F-structures fixed by F[σ].

Example 1.1.4. Consider the species E. For every n and σ ∈ Sn it is obvious that E[σ]
fixes E[n], since it has only one element. This implies that its cycle index series is given
by [9]

ZE(x1, x2, . . . ) =
∑
n>0

1

n!

∑
σ∈Sn

xσ11 x
σ2
2 · · ·

 = ex1+
x2
2 +

x3
3 +···.

Let us now see that the term n = 3 of ZΠ is∑
σ∈S3

|Fix(Π[σ])| xσ11 x
σ2
2 · · · = 5x

3
1 + 9x1x2 + 4x3. (1.1.3)
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We have six permutations in S3. The only permutation with three cycles of order 1 is
the identity, and it fixes the five partitions of [3]. This gives the first term, 5x31. There are
two cyclic permutations, and each of them fixes the partitions 1 2 3 and 1 2 3 .
This yields the last term, 4x3. Finally, there are three permutations with a cycle of order
two, and each of them fixes the partitions 1 2 3 and 1 2 3 plus the partition they
induce. This gives the middle term, 9x1x2.

Theorem 1.1.5 (Joyal [43], see also [9]). Given two species F and G, their cycle index series
satisfy the following properties:

(i) ZF+G = ZF +ZG,

(ii) ZF·G = ZF ·ZG,

(iii) ZF◦G = ZF ~ZG,

(iv) ZF(x, 0, 0, . . . ) = F(x),

(v) ZF(x, x2, x3, . . . ) = F̃(x),

where ~ denotes plethystic substitution.

In particular, we can compute the type generating function of the composite species F ◦G
from the plethystic substitution of the cycle index series of F and G. From the viewpoint
of the theory of species, this is the motivation for the cycle index series and plethystic
substitution, often referred to as Pólya theory.

Example 1.1.6. The cycle index series of Π can be computed as

ZΠ = ZE ~ZE+ = ZE
(
ZE+(x1, x2, . . . ),ZE+(x2, x4, . . . ), . . .

)
= eZE+(x1,x2,... )+

ZE+
(x2 ,x4 ,... )

2 +···.

Expanding the exponentials and collecting the terms by degree we obtain

ZΠ = 1+ x1 +
1

2!
(2x21 + 2x2) +

1

3!
(5x31 + 9x1x2 + 4x3)

+
1

4!
(15x41 + 42x

2
1x2 + 21x

2
2 + 24x1x3 + 18x4) + · · ·

Notice that the term n = 3 coincides, as expected, with the one computed above (1.1.3).
Also, the type generating function is given by

Π̃(x) = ZΠ(x, x2, . . . ) = 1+ x+ 2x2 + 3x3 + 5x4 + · · · .

1.2 Colored species

The theory of species has a natural generalization to several variables [8, 43]. Consider
the set k = {1, . . . ,k}. A k-sort species is a functor

F : B/k −→ B,
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where B/k is the slice category of finite sets over k. To each map χ : S→ k the species F
associates a finite set F[χ], whose elements are called F-structures on χ. Isomorphisms of
F-structures are defined in the same way as before. Each bijection

S R

k

∼

χ ρ

in B/k gives a bijection F[χ]→ F[ρ].

Example 1.2.1. For example, there is a 2-sort species Π2 that sends χ : E→ 2 to Π(E), the

set of partitions of E, and a bijection χ f−→ χ ′ to the obvious bijection Π2(E) → Π2(E ′)

given by f. For instance, let χ : 3→ 2 given by χ(1) = χ(2) = 1 and χ(3) = 2. Then,

Π2(χ) =
{

1 2 3 1 2 3 1 2 3 1 3 2 1 2 3

}
We have colored the elements of 3 according to χ. It may seem this example does not
add much to Example 1.1.1, but notice that the bijections between structures are different,
since they have to preserve the colors. In general we can get other colored species by
coloring the vertices of graphs, trees, etc.

As before, we can associate generating functions to a k-sort species. For simplicity we
define them for k = 2, but the generalization to arbitrary k is obvious:

F(x,y) =
∑
n,k>0

|F[n,k]|
xn

n!
yk

k!
,

F̃(x,y) =
∑
n,k>0

|F̃[n,k]| xnyk,

ZF(x1, x2, . . . ;y1,y2, . . . ) =
∑
n,k>0

1

n!k!

∑
σ∈Sn
τ∈Sk

|Fix(F[σ, τ])| xσ11 x
σ2
2 · · ·y

τ1
1 y

τ2
2 · · ·

 ,

where F[n,k] is the set of F-structures of a map n+k→ 2, F̃[n,k] is the set of its unlabelled
structures, and Fix(F[σ, τ]) is the set of F-structures fixed by F[σ, τ].

Example 1.2.2. For instance, in view of Example 1.2.1, we have that |Π2(2, 1)| = 5, while
|Π2(2, 1)| = 4, because the two partitions 1 2 3 and 1 3 2 are isomorphic. Note
that in this case the partition 1 2 3 is not isomorphic to these two. It is easy to see
that the (2, 1) term of ZΠ2 is∑

σ∈S2
τ∈S1

|Fix(F[σ, τ])|xσ11 x
σ2
2 · · ·y

τ1
1 y

τ2
2 · · · = 5x

2
1y1 + 3x2y1.

Indeed, τ can only be the identity and σ can be either the identity or the transposition
of 1 and 2. In the first case all five partitions are fixed, while in the second case the
partitions 1 2 3 , 1 2 3 and 1 2 3 are fixed.
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Notions of sum, product and substitution of k-sort species can be defined analogously
as before, and they are compatible with these series in the same way as before. We define
only substitution of species. Given k-sort species F,G1, . . . ,Gk we define

F(G1, . . . ,Gk)[S
χ−→ k] =

∑
π∈Π(S)
ρ : π→k

F[ρ]×
∏
B∈π

Gρ(B)[B]. (1.2.1)

The theory of k-sort species was further generalized by Méndez and Nava [56] to
colored species over any set I: an I-species is a functor

M : B/I −→ B.

The generating function of an I-species is given by

M(xi; i ∈ I) =
∑

n

|M[n]|
xn

n!
,

where n = (ni; i ∈ I) with ni = 0 for almost all i, n! =
∏
i∈I ni! and xn =

∏
i∈I x

ni
i .

Most of the notions defined for species and k-sort species can be defined in this case. We
are, however, mostly interested in one of its differences, that comes into play when I is a
monoid. We now replace I by Y for the sake of notation coherence. Suppose Y is a locally
finite monoid satisfying the left cancellation property and indivisibility of the identity.
This means that Y has a well-defined divisibility relation |. For an object χ : S → Y, we
write i|χ if i|χ(s) for all s ∈ S, and χ/i the map χ/i(s) := χ(s)/i. Given a Y-species M, we
define a new Y-species FiM for each i ∈ Y as follows:

FiM[χ] =

{
M[χ/i] if i|χ,

∅ otherwise

Given another Y-species, their Y-plethysm is defined as

(N~M)[S
χ−→ Y] =

∑
π∈Π(S)
ρ : π→Y

N[ρ]×
∏
B∈π

Fρ(B)M[B]. (1.2.2)

Notice the similarity between this definition and Equation (1.2.1). This substitution is
compatible with the Y-plethysm of their generating functions:

(N~M)(x) = N
(
M(xij; j ∈ Y); i ∈ Y

)
.

We treat this substitution in Section 7.4, but we only need Y to be locally finite. Notice
that if Y = (N+,×) then Y-plethysm reduces to classical plethysm.

1.3 The Faà di Bruno bialgebra

Back to the definition of substitution of species (1.1.1), observe that the relevant informa-
tion comes from a decomposition of S, for S a finite set. This decomposition is in fact the
comultiplication of the isomorphism class of the interval [0̂, 1̂] of partitions of S in the
incidence bialgebra of the poset of partitions. Here 0̂ denotes the finest partition (bottom
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element in the poset), and 1̂ denotes the coarsest partition (top element in the poset).
Indeed,

∆
(
[0̂, 1̂]

)
=
∑
0̂6π61̂

[0̂,π]⊗ [π, 1̂], (1.3.1)

which becomes the same as (1.1.1) after expressing partitions as the disjoint union of
their blocks. Disjoint union gives this coalgebra a structure of bialgebra, known as the
Faà di Bruno bialgebra.

As already explained in the introduction, the Faà di Bruno bialgebra F is the free
commutative algebra Q[A1,A2, . . . ], where An is the dual map An ∈ QJxK∗ defined by

An(F) =
dnF

dxn
.

Its comultiplication is defined to be dual to substitution of power series. That is

∆(An)(F,G) = An(G ◦ F).

The comultiplication of An corresponds to the comultiplication of [n] in the incidence
coalgebra of partitions, and can be expressed with the Bell polynomials Bn,k(A1,A2, . . . ),
which count the number of partitions of a set with n elements into k blocks [66]:

∆(An) =

n∑
k=1

Bn,k(A1,A2, . . . )⊗Ak.

For example,

∆(A4) = A4 ⊗A1 + (4A1A3 + 3A
2
2)⊗A2 + 6A21A2 ⊗A3 +A41 ⊗A4.

The category of partitions is equivalent to the category of surjections, so that F can be
expressed from surjections too [43, §7.4], and in fact it looks simpler. The interval [0̂, 1̂]
corresponds to the surjection S→ 1, and its partitions correspond to 2-step factorizations
(see (ii) of Lemma 3.4.1), so that Equation (1.3.1) corresponds to

∆(S� 1) =
∑

S�R�1

(S� R)⊗ (R� 1).

The algebra structure is again given by disjoint union of sets. This sum is over isomorph-
ism classes of factorizations S � R � 1, meaning up to isomorphism R

∼−→ R ′ making
the diagram commute. The precise statement that this comultiplication on surjections
(or partitions) gives in fact the Faà di Bruno bialgebra fits very well into the theory of
Segal spaces, where all the issues with isomorphism classes take care of themselves (see
Remark 3.3.3).

If instead we took the monoidal category of finite ordered sets and monotone sur-
jections we would obtain the noncommutative Faà di Bruno bialgebra [11, 25, 50] (see
Section 7.3). It is defined as the free associative unital algebra Q〈a1,a2, . . . 〉 on the linear
maps defined by

an(F) =
1

n!
dnF

dxn
.

In this case the coproduct runs over all possible monotone 2-step factorizations. For
example,

∆(a4) = a4 ⊗ a1 + (a1a3 + a3a1 + a
2
2)⊗ a2 + (a21a2 + a1a2a1 + a2a

2
1)⊗ a3 + a41 ⊗ a4.



22 plethysm

Moreover, if we symmetrize the above monoidal category we obtain the ordinary Faà
di Bruno bialgebra (see Section 7.3). This is defined as the free commutative algebra
Q[a1,a2, . . . ]. For example,

∆(a4) = a4 ⊗ a1 + (2a1a3 + a
2
2)⊗ a2 + 3a21a2 ⊗ a3 + a41 ⊗ a4.

There is also a k-variate Faà di Bruno bialgebra, in connection to substitution of k-sort
species. Find its definition in Section 7.2. For now we content ourselves to express the
decomposition of k-colored sets inherent to Equation (1.2.1) as a comultiplication of
colored surjections:

∆

 S 1

k

χ

 =
∑

S R 1

k k

π

χ ρ

 S R

k k

π

χ ρ

⊗
 R 1

k.
ρ

 .

As before, this sum is over isomorphism classes of factorizations. The analogy between
this equation and (1.2.1) is not difficult to see: S,χ,π and ρ have the same meaning, and
the blocks B are the elements of R.

The monomials of ordinary power series are indexed by natural numbers, which
coincide with isomorphism classes of sets. However, the monomials of power series
in infinitely many variables are indexed by isomorphism classes of partitions λ =

(λ1, λ2, . . . ). This is why Nava and Rota [61] developed the notion of partitional as a
generalization of species, in order to give an interpretation of plethystic substitution
analogous to the species interpretation of ordinary substitution. A sequence like λ could
also represent the isomorphism class of a permutation, and in fact Bergeron [7] gave a
similar interpretation but in terms of permutationals, rather than partitionals.

1.4 Partitionals

The content on partitions featuring in this section is due to Nava and Rota [61]. A partition
π of a finite set E is a family of subsets of E, called blocks, such that every block of π is
nonempty, the blocks are pairwise disjoint, and every element of E is contained in some
block. Given two partitions π,σ of E we say that π is finer than σ (or σ is coarser than π),
and write π 6 σ if every block of π is a subset of some block of σ. In this case we define
the induced partition σ|π to be the partition on the set of blocks of π given by the blocks of
σ. Also, the restriction of a partition π to a subset B ⊆ E is the partition of B given by the
intersections of B with the blocks of π; it is denoted by πB.

Notice that the relation 6 defines a partial order on the set Π(E) of all partitions
of E, and this order has a minimum, given by the partition with singleton blocks and
denoted by 0̂, and a maximum, given by the partition with one block and denoted by 1̂.
In particular, for every π,σ ∈ Π(E) the supremum π∨ σ and the infimum π∧ σ of π and
σ exist in (Π(E),6), and they are respectively called the join and the meet. For example if
E = {1, 2, 3, 4, 5, 6}, π = 1 2 3 4 5 6 and σ = 1 2 6 3 4 5 , then

π∧ σ = 1 2 3 4 5 6 , π∨ σ = 1 2 6 3 4 5 ,
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σ|(π∨ σ) = 1 2 6 3 4 5 , and π{1,3,4,6} = 1 3 4 6 .

It is easy to see that in fact

π∧ σ = {B∩C | B ∈ π,C ∈ σ,B∩C 6= ∅}.

The join is, roughly speaking, the union of all blocks with common elements. However
to give a precise and simple definition of the join it is preferable to view partitions as
equivalence relations. This will also help us to introduce other notions later. It is clear
that a partition π on a set E defines an equivalence relation ∼π on E, where two elements
are related if they belong to the same block of π. In this setting the meet of two partitions
π,σ is given by (for p,q ∈ E) p ∼π∧σ q if p ∼π q and p ∼σ q, and their join is given by
p ∼π∨σ q if there exists a finite sequence r0, . . . , rn such that

p = r0 ∼1 r1 ∼2 · · · ∼n rn = q, (1.4.1)

where each relation ∼k is either ∼π or ∼σ. We say that two partitions π,σ are independent
if every block of π meets every block of σ. We say that they commute if, for every p,q ∈ E,
we have that p ∼π r ∼σ q for some r ∈ E if and only if p ∼σ s ∼π q for some s ∈ E. It is
straightforward to see that two partitions are independent if and only if they commute
and their join is 1̂. The following result says that commuting is the same as being
blockwise independent.

Proposition 1.4.1 ([22]). Let π,σ ∈ Π(E). Then π and σ commute if and only if or every
B ∈ π∨ σ the restrictions πB and σB are independent partitions of B.

We are finally ready to define the most intricate and important definition regarding
partitions in this section.

Definition 1.4.2 ([61]). Let σ be a partition of E. A pair (π, τ) of partitions of E is called a
transversal of σ when

(i) π 6 σ,

(ii) π∧ τ = 0̂,

(iii) π and τ commute, and

(iv) σ∨ τ = π∨ τ.

One can visualize this concept as follows: if (π, τ) is a transversal of (E,σ), then the
elements of E can be arranged in a collection of matrices whose rows are the blocks of
τ and whose columns are the blocks of π (because of (ii), (iii) and Proposition 1.4.1),
such that the blocks of σ are unions of columns (by (i)) of the same matrix (by (iv)). The
matrices are the blocks of σ∨ τ = π∨ τ. Let us see an example of a transversal:

Example 1.4.3. Consider a set E with 21 elements, and σ a partition with blocks of size
2, 4, 6 and 9. Then the following arrangement represents a transversal of (E,σ):

•
•
•
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

(1.4.2)
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The rows are the blocks of τ, the columns are the blocks of π, the dashed lines delimit
the blocks of σ, and the two matrices are the blocks of σ∨ τ = π∨ τ. Observe that the
matrix arrangement is not unique, since we could permute rows and some columns, but
any arrangement compatible with σ defines a unique transversal, and any pair (π, τ)
admitting such a representation is a transversal.

There is a category P whose objects are pairs (E,π), where E is a set and π ∈ Π(E),
and whose morphisms are defined as follows: if (F,σ) is another object of P a morphism

f : (E,π) −→ (F,σ)

is a bijection f : E→ F which maps blocks of π to blocks of σ. Notice that P is in fact a
groupoid, since all the morphisms are invertible. In this groupoid, the isomorphism class
of a partition (E,π) can be described by the sequence of natural numbers

λ = (λ1, λ2, . . . ), where λk = number of blocks of size k of (E,π).

Observe that |E| = 1 · λ1 + 2 · λ2 + 3 · λ3 + · · · and that the number of blocks of π is
|π| = λ1 + λ2 + · · · . Also, notice that the number of automorphisms of (E,π) is

aut(λ) = 1!λ1λ1! · 2!λ2λ2! · 3!λ3λ3! · · · ,

because an automorphism of π permutes the elements inside each block and permutes
the blocks of the same size.

A partitional [61] is a functor M : P → B from the category of partitions P to the
category of sets and bijections B. The image M[E,π] of (E,π) under M is the set of
M-structures. By functoriality, the cardinality |M[E,π]| depends only on the isomorphism
class λ of the partition (E,π), and is denoted by M[λ]. Therefore we can define the
generating function of M as

M(x1, x2, . . . ) =
∑
λ

M[λ]

aut (λ)
xλ11 x

λ2
2 · · · . (1.4.3)

As in the case of species, several operations of generating functions can be lifted to the
level of partitionals. The sum and the product are defined in a similar way as for species,
and we will not do it here. The substitution, however, is more complex and involves the
notion of transversal. Let M and R be two partitionals, then their substitution [61, §6] is
defined as

(M ◦ R)[E,σ] :=
∑
(π,τ)

transversal of σ

M
[
τ, (σ∨ τ)|τ

]
×
∏

B∈σ∨τ
R[πB,σB|πB].

Substitution of partitionals is compatible with plethystic substitution of generating
functions. That is, (M ◦ R)(x1, x2, . . . ) = M(x1, x2, . . . )~ R(x1, x2, . . . ) [61, §6]. Notice
that, as before, this definition is also based on a decomposition of (E,σ),

∆(E,σ) :=
∑
(π,τ)

transversal of σ

(
τ, (σ∨ τ)|τ

)
×
∏

B∈σ∨τ
(πB,σB|πB). (1.4.4)
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which under isomorphism classes gives rise to a comultiplication in a bialgebra, the
plethystic bialgebra [15, §3], introduced in this thesis (see section 3.2), and closely related
to the incidence algebra of Nava [60].

In [60] Nava gave a variation of partitionals, called linear partitionals, as a set-
theoretic counterpart to power series given in exponential form, that is, with denominator
λ! = λ1!λ2! · · · ,

F(x1, x2, . . . ) =
∑
λ

fλ
λ!
xλ11 x

λ2
2 · · · . (1.4.5)

Partitions and transversals are replaced by linear partitions and linear transversals: a
linear partition E is pair (σ,6) where σ is a partition of E and 6 is a partial order on E
consisting of linear orders for each block of σ. Observe that if σ is a linear partition of
type λ, the number of automorphisms of σ that preserve the order is precisely λ!. A linear
transversal of σ is a transversal (π, τ) such that every block of π is a segment of 6.

As mentioned in the introduction, a similar model was given by Bergeron [7] in
terms of permutationals, rather than partitionals. These are functors from the category of
permutations to the category of sets and bijections, and their substitution relies on a notion
of transversal compatible with a permutation. This was also later studied by Nava in [60],
alongside partitionals and linear partitionals. In this approach aut(λ) = 1λ1λ1 · 2λ2λ2! · · · ,
which is the number of automorphisms a permutation with λk cycles of length k.

1.5 Littlewood plethysm

Although we are interested in Pólya’s notion of plethysm, it is appropriate, in order to
show the scope of this subject, to give a brief review of Littlewood’s plethysm [48] and
their relation.

Denote by Λ the ring of symmetric functions [67]. That is, the subring of QJx1, x2, . . .K
whose elements are invariant under permutations of the variables and whose monomials
have bounded degree. It can also be described as the direct limit of Λn, the subring
of symmetric polynomials of Q[x1, x2, . . . ], with the inclusion φn : Λn −→ Λn+1 that
amounts to adding all monomials containing the new variable obtained by symmetry.

The power sum symmetric functions,

pk =
∑
i>1

xki ,

form an algebra basis of Λ. This means that

Λ ' Q[p1,p2, . . . ].

The following result characterizes Littlewood’s plethysm of symmetric functions.

Proposition 1.5.1 (cf. [52, 67]). There is a unique binary operation • : Λ×Λ → Λ, called
plethysm, satisfying the following properties:

(i) For all n,m > 1, pn • pm = pnm.

(ii) For all n > 1, the map pn • _ : Λ→ Λ is a Q-algebra homomorphism.

(iii) For all f ∈ Λ, the map _ • f : Λ→ Λ is a Q-algebra homomorphism.
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For example, it is not difficult to see that for all f ∈ Λ

pn • f = f • pn = f(xn1 , xn2 , . . . ).

Notice that the plethysm of symmetric functions is precisely the same as the Pólya
plethysm in the ring Q[p1,p2, . . . ]. But of course, we defined Pólya plethysm in the ring
of power series, rather than the polynomial ring.

Littlewood’s plethysm was first defined in connection with the representation theory
of the general linear groups. More concretely, the characters of polynomial representations
of the general linear groups of finite vector spaces can be identified with symmetric
functions (cf. [67]). Consider finite dimensional vector spaces V ,W and Y, and polynomial
representations φ : GL(V) → GL(W) and ψ : GL(W) → GL(Y). It turns out that their
characters satisfy

char(ψ ◦φ) = char(ψ) • char(φ).

Plethysm may be also naturally understood from the point of view of λ-rings [52].
In fact, the ring Λ is the free λ-ring on one generator, e1, where the operations λn are
defined by plethysm with the elementary symmetric functions en:

λn(f) = en • f.

Also, composition of operations λnλm is given by plethysm en • em. As a λ-ring,
the plethysm with the power sum symmetric function pn is precisely the nth Adams
operation.



2
Segal groupoids and incidence coalgebras

The theory of incidence coalgebras for Segal groupoids and, more generally, for decom-
position spaces, was developed by Gálvez, Kock and Tonks [31–33] in the context of∞-groupoids. We stick however to 1-groupoids, which is enough for our combinatorial
applications.

2.1 Groupoids

A groupoid is a small category whose arrows are all isomorphisms. For instance, a set is
a groupoid with only identity arrows, and a group is a groupoid with only one object.
We denote by Iso(x,y) the set of arrows between two elements x,y of a groupoid X.
A map of groupoids is just a functor, and a homotopy between two maps is a natural
transformation. Since every arrow in a groupoid is invertible, every homotopy is in fact a
natural isomorphism. We denote by Grpd the 2-category of groupoids.

A map f : X → Y is a homotopy equivalence if it is an equivalence of categories, that
is, there exists a map g : Y → X such that f ◦ g ' idX and g ◦ f ' idY . As for categories,
a map is a homotopy equivalence if it is essentially surjective and fully faithful. Two
groupoids X and Y are called homotopy equivalent if there exists an equivalence between
them. This equivalence relation is denoted ', and it is the appropriate notion of sameness
for groupoids. All the notions involved in this section are invariant under homotopy
equivalence.

We may henceforth say just equivalence, instead of homotopy equivalence, as well as
pullback, fiber, etc., for the homotopy notions.

A groupoid X is called discrete if it is homotopy equivalent to a set. In other words, if
Aut(x) := HomX(x, x) is trivial for every x ∈ X. It is connected if HomX(x,y) is nonempty
for all x,y ∈ X. A maximal connected subgroupoid of X is termed a component of X, and
the set of components is denoted π0(X). Also, the group Aut(x) is often denoted π1(X, x)
or just π1(x). Finally, if X is both discrete and connected then it is called contractible. This
means homotopy equivalent to the terminal groupoid 1.

A homotopy pullback is a homotopy limit of a functor F : {• → • ← •}→ Grpd. More

concretely, given groupoid maps X f−→ B
g←− Y, their homotopy pullback is a square

Z X

Y B

q

p
y

f

g

ψ
(2.1.1)

which is universal in a homotopy sense. Usually we will not draw the natural transform-
ation, but all squares are understood to commute up to homotopy.

27
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By the homotopy universal property, the homotopy pullback is only defined up to
homotopy equivalence. We shall exploit two specific models for it. The first is the
homotopy fiber product, which we proceed to define; the second is the strict pullback in
certain fibrant situations (see Lemma 2.1.5 below).

The homotopy fiber product of X f−→ B
g←− Y is the groupoid X×BY defined as follows:

its objects are triples (x,y,φ) with x ∈ X, y ∈ Y and φ : f(x) → g(y) an arrow of B. Its
arrows are pairs (α,β) : (x,y,φ) → (x ′,y ′,φ ′) consisting of two arrows α : x → x ′ and
β : y → y ′ satisfying g(β) ◦φ = φ ′ ◦ f(α) : f(x) → g(y ′). The maps q and p (2.1.1) are
given by the projections of x and y, while the natural isomorphism ψ is given by the
third components φ. It is a standard fact that this homotopy fibre product is a model for
the homotopy pullback, i.e. satisfies the 2-categorical universal property.

Given a map of groupoids X f−→ B and an object b ∈ B, the homotopy fiber of b along
f, or fiber of f over b, is the groupoid Xb obtained by taking the homotopy pullback of

the diagram X
f−→ B

pbq←−− 1. In the rest of the chapter all the pullbacks and fibers are
homotopy.

Example 2.1.1. Consider a groupoid X and two objects x,y ∈ X. There is a pullback
square

Iso(x,y) X

1 X×X.

y
diag

p(x,y)q

Let us see this. The objects of this pullback can be given by triples (z,φx,φy), where

z ∈ X and z
φx−−→ x and z

φy−−→ y are arrows in X. An arrow (z,φx,φy) → (z ′,φ ′x,φ ′y) is

given by an arrow z
f−→ z ′ of X such that the following diagram commutes:

z x

y z ′.

φy

φx

f

φ ′y

φ ′x

Clearly there is at most one arrow between any two objects. One of these squares is given
by

z x

y z x,

φy

φx

φx

φy φ−1
x

id

which shows that the connected components are given by the arrows x → y, as we
wanted to see.

Lemma 2.1.2. Consider a diagram of groupoids

X2 X1 X0

Y2 Y1 Y0

y
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such that the right square is a homotopy pullback. Then the left square is a homotopy pullback if
and only if the outer square is a homotopy pullback.

A map p : E → B of groupoids is a fibration if for any object e ∈ E and arrow
φ : b → p(e) there exists an arrow ψ : e ′ → e such that p(ψ) = φ. If the arrow ψ is
unique then p is called a discrete fibration. For example, if B is discrete and p is surjective
on objects then p is a fibration.

Remark 2.1.3. A functor p : E→ B between categories is an isofibration if for any object
e ∈ E and isomorphism φ : b→ p(e) there exists an isomorphism ψ : e ′ → e such that
p(ψ) = φ. Hence a fibration of groupoids is also an isofibration. We will use this in
Section 3.1.

It is important to note that these notions of fibrations are not homotopy invariant
notions: a map of groupoids equivalent to a fibration is not in general a fibration.
Nevertheless, naturally defined maps of groupoids are surprisingly often fibrations. In
particular, the projections from the homotopy fibre product X← X×BY → Y are always
fibrations.

The great advantage of fibrations is that they allow to work with strict pullbacks as a
model for the homotopy pullback, as expressed in the following result.

Lemma 2.1.4. The strict pullback along a fibration is equivalent to the homotopy pullback.

To ensure a good supply of fibrations, the following result is useful.

Lemma 2.1.5. Fibrations and discrete fibrations are preserved by strict pullbacks.

Whenever a group G acts on a groupoid X, the homotopy quotient X//G [2] is defined
as the groupoid whose objects are the same those of X, and whose arrows x → y are
pairs (g,φ) such that g ∈ G and φ : gx→ y an arrow in X. Intuitively, it is the smallest
groupoid containing the arrows of X and an arrow x→ gx for every x ∈ X and g ∈ G.

Lemma 2.1.6. Given a map of groupoids X f−→ B, there is a canonical equivalence between X and
the homotopy sum of its fibers over f,

X '
∫b
Xb :=

∑
π0B

Xb//Aut(b).

Let I be a groupoid. The weak slice Grpd/I is the category whose objects are maps of
groupoids X→ I and whose arrows are triangles

X Y

I

If 1 is the terminal groupoid, then Grpd/1 ' Grpd. Be aware that in Chapter 4 we also
use the notion of strict slice category Grpd/I, whose objects are again maps X→ I but
whose arrows are strictly commutative triangles.

A map of groupoids f : X→ Y defines a functor

f∗ : Grpd/Y −→ Grpd/X
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by taking pullback along f. It also defines a functor

f! : Grpd/X −→ Grpd/Y

given by post-composition with f.

A span is a pair of groupoid maps with common domain I f←− X g−→ J. A span thus
induces a map between the slices given by pullback and post-composition,

Grpd/I
f∗−−→ Grpd/X

g!−−→ Grpd/J.

A functor is linear if it preserves homotopy sums. The linear functors are precisely those
that are given by spans [31]. The following Beck–Chevalley rule holds: for any pullback
square

Z X

Y B

q

p
y

f

g

the functors p!q
∗,g∗f! : Grpd/X −→ Grpd/Y are homotopy equivalent [31]. By the Beck–

Chevalley rule composition of linear functors is linear. We denote by LIN the monoidal
2-category of all slice categories Grpd/X and linear functors between them, with the
tensor product induced by the cartesian product,

Grpd/X ⊗Grpd/Y := GrpdX×Y .

The neutral object is Grpd ' Grpd/1. In homotopy linear algebra [31], the category
Grpd/X plays the role of the vector space with basis X, and the linear functors play the
role of linear maps. Moreover, for a linear functor induced by the span I← X→ J, the
groupoid X plays the role of the matrix defining the linear map.

2.2 Segal groupoids

We denote by � the simplex category, whose objects are finite nonempty standard ordinals

[n] = {0 < 1 < · · · < n}

and whose morphisms are order preserving maps between them. These maps are
generated by the coface maps ∂i : [n− 1]→ [n], which skip i, and the codegeneracy maps
σi : [n+ 1] → [n], which repeats i. The obvious relations between this maps, such as
∂i∂j = ∂j−1∂i for i < j, are called cosimplicial identities.

A simplicial groupoid is a pseudo-functor X : �op −→ Grpd. The image of [n]

is denoted by Xn and called the groupoid of n-simplices. The images of ∂i and σi

are denoted di and si and called face and degeneracy maps respectively. Explicitly,
a simplicial groupoid is a sequence of groupoids (Xn)n>0 together with morphisms
di : Xn → Xn−1 and si : Xn → Xn+1 for 0 6 i 6 n, satisfying the simplicial identities,
induced by the cosimplicial identities:

disi ' di+1si = 1, didj ' dj−1di, dj+1si ' sidj,
disj ' sj−1di, sjsi ' sisj−1, (i < j).
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The simplicial identities are not equalities but coherent isomorphisms.
A simplicial groupoid X : �op −→ Grpd is a Segal space [32, §2.9, Lemma 2.10] if the

following square is a pullback for all n > 0:

Xn+1 Xn

Xn Xn−1.

d0

dn+1
y

dn

d0

(2.2.1)

Segal spaces arise prominently through the fat nerve construction: the fat nerve of
a category C is the simplicial groupoid X = NC with Xn = Fun([n],C)', the groupoid
of functors [n] → C. For instance, the objects of the groupoid X3 are chains of three
composable arrows of C,

· · · ·,

and the arrows of X3 are diagrams

· · · ·

· · · ·,
o o o o

with all the vertical arrows invertible.
In this case the outer face maps are fibrations, so that by Lemma 2.1.5 the pullbacks

(2.2.1) are strict. This implies that all the simplices are strictly determined by X0 and
X1, respectively the objects and arrows of C, and the inner face maps are given by
composition of arrows in C. In particular, the groupoid X2 is equivalent to X1×X0X1, the
groupoid of composable pairs arrows of C, and d1 : X2 → X1 is composition in C. The
map d0 : X2 → X1 assigns to a composable pair the second arrow, and d2 : X2 → X1
assigns to a composable pair the first arrow.

In the general case, Xn is determined from X0 and X1 only up to equivalence, but
one may still think of it as a “category” object whose composition is defined only up to
equivalence.

Remark 2.2.1. Despite the Segal conditions (2.2.1) require the squares to be homotopy
pullbacks, if the top or bottom face maps are fibrations, the ordinary pullbacks are also
homotopy pullbacks, by Lemma 2.1.5. In the present work, homotopy pullbacks mostly
arise n this way.

2.3 Incidence coalgebras

Let X be a simplicial groupoid. The spans

X1
d1←−−− X2

(d2,d0)−−−−−→ X1 ×X1, X1
s0←−−− X0

t−−→ 1,

define two functors

∆ : Grpd/X1 −→ Grpd/X1×X1 ε : Grpd/X1 −→ Grpd

S
s−→ X1 7−→ (d2,d0)! ◦ d∗1(s), S

s−→ X1 7−→ t! ◦ s∗0(s) .
(2.3.1)
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Recall that upperstar is homotopy pullback and lowershriek is postcomposition.

Theorem 2.3.1 ([32]). If X is a Segal groupoid then Grpd/X1 has the structure of strong
homotopy comonoid in the symmetric monoidal category LIN, with the comultiplication and
counit defined by the spans above.

This comonoid is called the incidence coalgebra of X. The original statement of the the-
orem involves decomposition spaces, which are a special kind of simplicial∞-groupoids
encoding the ability to decompose. Segal groupoids are a particular case of decompos-
ition spaces [32, Proposition 3.7] and the only one we shall need. The coassociativity
square looks like this:

Grpd/X1 Grpd/X1×X1

Grpd/X1×X1 Grpd/X1×X1×X1 .

∆

∆ ∆⊗id

id⊗∆

It commutes up to equivalence, and it is a consequence of Beck–Chevalley and some of
the Segal conditions.

The morphisms of Segal spaces that induce coalgebra homomorphisms are the so-
called CULF functors [32, §4], standing for conservative and unique-lifting-of-factorisations
(ULF). A functor F : X→ Y of simplicial groupoids is conservative if it is cartesian with
respect to codegeneracy maps,

Xn Xn+1

Yn Yn+1,

si

F
y

F

si

and it is ULF if it is cartesian with respect to inner coface maps

Xn+1 Xn+2

Yn+1 Yn+2,

F
y

di

F

di

(0 6 i 6 n).

We say that F is CULF if it is both conservative and ULF. This means that it is cartesian
with respect to any generic (i.e. induced by an endpoint-preserving map of �). Observe
that F induces a linear functor

F1! : Grpd/X1 −→ Grpd/Y1 .

Lemma 2.3.2. If F is CULF, then F1! is a coalgebra homomorphism, meaning that it preserves
the comultiplication and the counit up to coherent homotopy:

(F1! ⊗ F1!)∆X ' ∆YF1!, εX ' εYF1!.

A Segal space X is monoidal if it comes equipped with an associative unital monoid
structure given by CULF functors m : X×X→ X and e : 1→ X.
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Proposition 2.3.3 ([32]). If X is a monoidal Segal space then Grpd/X1 is naturally a bialgebra,
termed its incidence bialgebra. Monoidal CULF functors induce bialgebra homomorphisms.

For example the fat nerve of a monoidal extensive category is a monoidal Segal space.
Recall that a category C is monoidal extensive if it is monoidal (C,+, 0) and the natural
functors C/A × C/B → C/A+B and C/0 → 1 are equivalences.

If X is monoidal the multiplication of its incidence bialgebra is given by

� : Grpd/X1 ⊗Grpd/X1
∼−→ Grpd/X1×X1

+!−−−→ Grpd/X1
(G→ X1)⊗ (H→ X1) 7−→ G×H→ X1 ×X1 7−→ G×H→ X1.

2.4 Homotopy cardinality

A groupoid X is finite if π0(X) is a finite set and π1(x) = Aut(x) is a finite group for every
point x. If only the latter is satisfied then it is called locally finite. A map of groupoids is
called finite when all its fibers are finite. The homotopy cardinality [2], [31, §3] of a finite
groupoid X is defined as

|X| :=
∑
x∈π0X

1

|Aut(x)|
∈ Q.

A span I f←− X→ J, and the corresponding linear functor Grpd/I → Grpd/J, are termed
finite when f is finite. We denote by grpd the 2-category of finite groupoids.

Proposition 2.4.1 ([31]). Let I, J and X be locally finite groupoids and Grpd/I → Grpd/J a
finite span. Then the induced linear functor Grpd/I → Grpd/J restricts to a functor

grpd/I → grpd/J. (2.4.1)

To a slice category grpd/X, with X locally finite, we associate the free vector space
Qπ0X spanned by the connected components of X, with canonical basis {δx}x∈π0X. A
finite map p : Y → X is associated to the vector given by its homotopy cardinality:

|p| :=
∑
x∈π0X

|Yx|

|Aut(x)|
δx,

In this sum, Yx. A simple computation shows that |1 pxq−−→ X| = δx. A finite linear functor
as in 2.4.1 defines a linear map

Qπ0X −→ Qπ0Y

|Z
z−→ X| 7−→ |g!f

∗(z)|,

δx 7−→
∑
y∈π0Y

|Mx,y|

π1(y)
,

where Mx,y is the homotopy fiber along the map M
(f,g)−−−→ X× Y.

A Segal space X is locally finite [33, §7] if X1 is a locally finite groupoid and both
s0 : X0 → X1 and d1 : X2 → X1 are finite maps. In this case one can take homotopy
cardinality of the incidence coalgebra (2.3.1) to get the numerical incidence coalgebra
(cf. [33, §7]):
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∆ : Qπ0X1 −→ Qπ0X1 ⊗Qπ0X1 ε : Qπ0X1 −→ Q∣∣S s−→ X1
∣∣ 7−→ ∣∣(d2,d0)! ◦ d∗1(s)

∣∣ ∣∣S s−→ X1
∣∣ −→ ∣∣t! ◦ s∗0(s)

∣∣.
Moreover, if X is monoidal then Qπ0X1 acquires a bialgebra structure with the product
· = |� |. In particular, if we denote by + the monoidal product in X, then δa ·δb = δa+b for

any |1
paq−−→ X1| and |1

pbq−−→ X1|. Furthermore, if the monoidal structure of X is symmetric,
then the bialgebra Qπ0X1 is commutative. Note that in the special case where X is the
nerve of a poset, this construction becomes the classical incidence coalgebra [64, 65].

The following result gives a closed formula for the computation of the comultiplication
when X is a Segal space.

Lemma 2.4.2 ([15]). Let X be a Segal space. Then for f in X1 we have

∆(δf) =
∑

b∈π0X1

∑
a∈π0X1

| Iso(d0a,d1b)f|
|Aut(b)||Aut(a)|

δa ⊗ δb, (2.4.2)

where Iso(d0a,d1b) is the set of morphisms from d0a to d1b and Iso(d0a,d1b)f is its homotopy
fiber along d1.

Proof. It is enough to see that the following square is a pullback:

Iso(d0a,d1b) X2

1 X1 ×X1

y
(d2,d0)

pa,bq

Consider the following diagram,

Iso(d0a,d1b) X2 X0

1 X1 ×X1 X0 ×X0.

y
(d2,d0)

d0◦d2

y
diag

p(a,b)q d0×d1

That the right square is a pullback follows from the Segal square (2.2.1) for n = 1

by general properties of the pullback. The outer square is precisely the square of
Example 2.1.1. As a consequence, by Lemma 2.1.2, the left square is a pullback too.
Equation (2.4.2) now follows from the definitions of ∆ and homotopy cardinality. Notice
that the fiber of f is taken along the map

Iso(d0a,d1b) −→ X2
d1−−−→ X1.

Moreover, since Iso(d0a,d1b) is discrete we have that

Iso(d0a,d1b)f ' Aut(f)× {φ ∈ Iso(d0a,d1b) |d1(φ)}.

Remark 2.4.3. A wrong version of the result was originally published in [33]. The mistake
was found and corrected as a result of [15], and the correct statement and proof appeared
in [34].



3
A Segal groupoid for classical plethysm

In this chapter we give a combinatorial interpretation for classical plethysm. This
interpretation is modeled on Joyal’s construction of the Faà di Bruno bialgebra from the
category of surjections [43], as explained in the introduction. Instead of the fat nerve, we
use the T -construction, a formal construction that we introduce next. In Section 3.2 we
develop the plethystic bialgebra P to derive a formula for extracting the comultiplication
of the elements of its basis (Proposition 3.2.3). In Ssection 3.3 we finally apply the
T -construction to the category S of finite sets and surjections to obtain a Segal groupoid
whose incidence bialgebra is isomorphic to P (Theorem 3.3.1). In Section 3.4 we show
that the notion of transversal (see Section 1.4) is encoded in the groupoid of 2-simplices
of TS. We end the chapter by deriving a Faà di Bruno formula for the “connected Green
function” in the incidence bialgebra of TS.

3.1 The T -construction

The present construction is inspired by Lurie’s account [51, §1.2.2] of the Waldhausen
S-construction [72]. The use of transversal complexes (which we introduce here) instead
of “gap complexes”, on the other hand, is reminiscent of Quillen’s Q-construction [63],
which is the “twisted arrow category” (edgewise subdivision) of the S-construction.

The T -construction can be applied to any category which possesses a class of distin-
guished squares satisfying the following axioms inspired by the properties of pullbacks:

(i) The identity squares are distinguished and the class of distinguished squares is
closed under isomorphisms. Equivalently, the squares

∼

∼

are distinguished.

(ii) Given

,

if the right and the left squares are distinguished then the outer rectangle is distin-
guished.

(iii) For any two maps b
p−→ a, c

q−→ a there are maps d
p ′−→ c,d

q ′−→ b making a

distinguished square. Moreover, for any other two maps d ′
p ′′−−→ c,d ′

q ′′−−→ b making

35
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a distinguished square there is a unique isomorphism d ′
φ−→ d making the diagram

commute,
d ′

d c

b a.

q ′′

p ′′

φ

q ′

p ′

q

p

For instance in any category with pullbacks, these form a class of distinguished
squares. Moreover, in any subcategory of a category with pullbacks whose arrows
are stable under pullbacks these form again a class of distinguished squares. This is
our motivating example, since surjections are stable under pullbacks in the category
of sets, although the category of finite sets and surjections does not have pullbacks.
Distinguished squares are indicated with the same symbol as pullbacks.

Let I be a linearly ordered set. Consider the category Tw+(I), whose objects are pairs
i 6 j in I and whose morphisms are relations (i, j) 6 (i ′, j ′) whenever i ′ 6 i and j 6 j ′ or
whenever i = j 6 i ′ = j ′. This construction can be viewed as the twisted arrow category
of I together with arrows between the identities of I.

For example, for I = [n] the objects and arrows of Tw+([n]) can be pictured as
(picturing n = 3)

03

02 13

01 12 23

00 11 22 33.

The set of categories Tw+([n]) for all n form a cosimplicial object ∆→ Cat given by
[n] 7→ Tw+([n]). The face map dk : Tw+([n−1])→ Tw+([n]) is the obvious induced map
dk(i, j) = (dk(i),dk(j)), and similarly for the degeneracy maps.

Let C be a category with distinguished squares. A functor F : Tw+(I)→ C is called
transversal complex if for every i 6 j 6 k 6 l the associated diagram

F(i, l) F(j, l)

F(i,k) F(j,k)

y (3.1.1)

is a distinguished square, as indicated in the picture. The word transversal comes of
course from the Nava–Rota notion (see section 1.4). Let Trans(I,C) be the full subgroupoid
of Fun(Tw+(I),C)' containing only the transversal complexes. Then the assignment

[n] 7−→ Trans([n],C)

defines a simplicial groupoid TC : �op → Grpd. The groupoid TnC = Trans([n],C) has as
objects diagrams in C (picturing n = 4)
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t04

t03 t14

t02 t13 t24

t01 t12 t23 t34

t00 t11 t22 t33 t44.

y

y y

y y y

The morphisms of such diagrams are levelwise isomorphisms tij
∼−→ t ′ij making the

diagram commute. In particular T0C = C'. The face map di removes all the objects
containing an i index. The degeneracy map si repeats the ith diagonals. For example

s1


t02

t01 t12

t00 t11 t22,

y

 =

t02

t01 t12

t01 t11 t12

t00 t11 t11 t22.

y

y y

Remark 3.1.1. The Quillen Q-construction of an abelian category A, denoted QA, can be
described in a similar way [63]. It is the simplicial groupoid such that QnA is the full
subgroupoid of Fun(Tw([n]),A)' consisting of functors F satisfying the same pullback
condition as the transversal complexes (8.1.1) and the additional conditions that for all
i 6 j 6 k the map F(i,k) � F(i, j) is an epimorphism and the map F(i,k)� F(j,k) is a
monomorphism. Thus, an object of Q2A is essentially a diagram

t02

t01 t12

t00 t11 t22.

y

The main difference between T and Q are the horizontal arrows aii → ajj which appear
in T but not in Q, coming from the additional arrows (i, i)→ (j, j) of Tw+([n]) compared
to Tw([n]). For the significance of these extra arrows see Section 3.4.

We proceed to show that TC is a Segal space. We will make use of the following
standard result.

Lemma 3.1.2. Let F : A→ B be a functor between two categories and let C be another category.
Then if F is injective on objects the induced functor Fun(B,C)→ Fun(A,C) is an isofibration.

Proposition 3.1.3. Let C be a category with distinguished squares. Then the simplicial groupoid
TC is a Segal space.
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Proof. By the previous lemma, since the face maps di : Tw+([n−1]) → Tw+([n]) are
injective on objects, the face maps

di : Fun
(

Tw+([n]),C
)
→ Fun

(
Tw+([n−1]),C

)
are isofibrations. But because TnC is a full subgroupoid of Fun

(
Tw+([n]),C

)' and is
closed under isomorphisms it follows that the face maps of TC are isofibrations. As a
consequence it is sufficient to see (see Diagram (2.2.1)) that Tn+1C is equivalent to the
strict pullback

TnC

TnC Tn−1C.

y
dn

d0

(3.1.2)

But this is indeed the case: the objects of this pullback are pairs in TnC× TnC coinciding
at the last and first face respectively. That is, pairs

∗

∗ ∗

∗ ∗ ∗,

y
∗

∗ ∗

∗ ∗ ∗

y


such that the dashed regions are equal. This gives a groupoid whose objects are

∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

y y

and morphisms are levelwise isomorphisms making the diagram commute. But this is
equivalent to Tn+1C, since the missing apex can be uniquely filled with a distinguished
square.

The following result characterizes the categories whose T -construction is CULF mo-
noidal.

Proposition 3.1.4. Let (C,+, 0) be a monoidal category with distinguished squares. Then TC is
a CULF monoidal Segal space if and only if the following conditions hold.

(i) (C,+, 0) is monoidal extensive,

(ii) Given Ω, Γ ,Λ commutative squares in C such that Ω = Γ +Λ, then

Ω is distinguished ⇐⇒ Γ and Λ are distinguished.

Proof. Condition (i) is the necessary and sufficient condition to be able to sum arrows
and commutative diagrams in C, as we know from the nerve of a monoidal extensive
category. However we need sums of distinguished squares to be distinguished squares
in order for TnC× TnC→ TnC to be well-defined. This gives the left implication of (ii).
Finally, we have to impose right implication of (ii) to ensure that the monoidal structure
is given by CULF functors.
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As explained in the introduction, the central object of this chapter is TS, the T -
construction of the category S of finite sets and surjections. Let us now see that TS meets
all the requirements for the main theorem to be stated.

Lemma 3.1.5. The category S

(i) has a class of distinguished squares,

(ii) is monoidal extensive with disjoint union (+) and empty set as monoidal structure,

(iii) satisfies (ii) of Proposition 3.1.4,

Proof. We declare the distinguished squares to be the commutative squares in S that are
pullbacks in the category of sets (note that S itself does not have pullbacks). For (ii)
observe that taking disjoint union clearly gives an equivalence S/A × S/B ' S/A+B. It is
the restriction to surjections of the monoidal structure of finite sets and their coproduct.
The fact the pullback in sets is the disjoint union of the product of the fibers implies
(iii).

In view of this lemma and Propositions 3.1.3 and 3.1.4 we obtain the following result.

Proposition 3.1.6. TS is a CULF monoidal Segal space.

By Theorem 2.3.1 and Proposition 2.3.3 this implies that TS has an associated incidence
bialgebra. Observe that S' is locally finite, so that T1S is locally finite and s0 : T0S→ T1S
is finite. Moreover, every arrow of S admits, up to isomorphism, a finite number of 2-step
factorizations, therefore d1 : T2S→ T1S is also finite. This means that TS is locally finite
in the sense of [33]. As a consequence we can take homotopy cardinality of the incidence
bialgebra of TS.

Remark 3.1.7. Notice that NS, the fat nerve of the category of finite sets and surjections,
is the full subsimplicial groupoid of TS containing the simplices whose left-down arrows
(i.e. F(i, j)→ F(i,k), j < k) are identities.

3.2 Plethystic bialgebra

The following notation is used:

• x = (x1, x2, . . . ),

• Λ: set of infinite vectors of natural
numbers with λi = 0 for all i large
enough,

• Λ 3 λ = (λ1, λ2, . . . ) and
(λ1, . . . , λn) := (λ1, . . . , λn, 0, . . . ),

• |λ| =
∑
k λk,

• xλ = xλ11 x
λ2
2 · · · ,

• aut(λ) = 1!λ1λ1! · 2!λ2λ2! · · · ,

• λ+ µ is coordinate-wise sum.

First of all, we define the n-th Verschiebung operator Vn as

(Vnλ)i =

 λi/n if n | i

0 otherwise,
for λ = (λ1, λ2, . . . ).
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For example V2(5, 9, 2, 0, . . . ) = (0, 5, 0, 9, 0, 2, 0, . . . ). It is clear that Vn preserves sums.
Note that the Fk introduced in the definition of plethystic substitution (Definition 1.0.1)
can be expressed as

Fk(x1, x2, . . . ) = F(xk, x2k, . . . ) =
∑
λ

Fλ
xV

kλ

aut(λ)
.

Remark 3.2.1. Note that λ can be viewed as the isomorphism class of a surjection
X� B with λk fibers of size k. With this identification, aut(λ) is precisely the cardinal
of Aut(X � B) in the groupoid of surjections S, whose objects are surjections and
whose arrows are pairs of compatible bijections, one for the source and one for the
target. Moreover, the Verschiebung operators can also be defined at the objective level of
surjections,

VS(X� B) := X× S� X� B,

which is nothing but the scalar multiplication of X � B and S in Set/B [31]. It is clear
that VS corresponds numerically to V |S|.

For each λ define the functional Aλ ∈ QJxK∗ by Aλ(F) = Fλ. We define the plethystic
bialgebra to be the free polynomial algebra P = Q

[
{Aλ}λ

]
along with the comultiplication

dual to plethystic substitution. That is, for each λ and F,G ∈ QJxK,

∆(Aλ)(F,G) = Aλ(G~ F).

The counit is given by ε(Aλ) = Aλ(x1).
Now, consider a list µµµ ∈ Λn of n infinite vectors, regarded as a representative element

of a multiset µµµ ∈ Λn/Sn. We denote by R(µµµ) ⊆ Sn the set of automorphisms that maps
the list µµµ to itself. For example if µµµ = {α,α,β,γ,γ,γ} then R(µµµ) has 2! · 1! · 3! elements.
Notice that if µµµ,µ ′µ ′µ ′ ∈ Λn are representatives of the same multiset then there is an induced
bijection R(µµµ) ∼= R(µ ′µ ′µ ′). We may thus refer to R(µµµ) for a multiset µµµ ∈ Λn/Sn by taking a
representative, since we are only interested in its cardinality.

Remark 3.2.2. Observe that
∑
nΛ

n/Sn ' π0T1S. Furthermore, the number of auto-
morphisms of a representative element in T1S of the image of µµµ under this bijection is
precisely

aut(µµµ) = |R(µµµ)| ·
∏
µ∈µµµ

aut(µ).

Fix two infinite vectors, σ, λ ∈ Λ, and a list of infinite vectors µµµ ∈ Λn, with n = |λ|.
We define the set of (λ,µµµ)−decompositions of σ as

T
µµµ
σ,λ :=

{
p : µµµ

∼−−→
∑
k

{1, . . . , λk} | σ =
∑
µ∈µµµ

Vq(µ)µ

}
,

where p is a bijection of n-element sets and q returns the index of p(µ) in the sum. A
useful way to visualize an element of this set is as a placement of the elements of µµµ over
a grid with λk cells in the kth column such that if we apply Vk to the kth column and
sum the cells the result is σ. For example, if λ = (2, 0, 1, 3) and µµµ = {α,α,β,γ,γ,γ} the
placement
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γ

α

V1

γ

V2 V3

α

β

γ

V4

belongs to Tµµµσ,λ if σ = V1(γ+α) + V3(γ) + V4(α+β+ γ), where the sum is a pointwise
vector sum in Λ. Note that each such placement appears |R(µµµ)| times in Tµµµσ,λ. Observe
also that if µµµ,µ ′µ ′µ ′ ∈ Λn are representatives of the same multiset then there is an induced
bijection Tµµµσ,λ

∼= T
µ ′µ ′µ ′

σ,λ. We may thus refer to Tµµµσ,λ for a class µµµ ∈ Λ|λ|/S|λ| by taking a
representative, since we are only interested in its cardinality.

Proposition 3.2.3. Let σ ∈ Λ be an infinite vector. Then the comultiplication of Aσ in P is
given by

∆(Aσ) =
∑
λ

∑
µµµ

aut(σ) · |Tµµµσ,λ|

aut(λ) · aut(µµµ)

(∏
µ∈µµµ

Aµ

)
⊗Aλ, (3.2.1)

where λ runs through Λ and µµµ runs through Λ|λ|/S|λ|.

Remark 3.2.4. Not surprisingly, if σ = (n, 0, 0, . . . ) this expression gives the comultiplica-
tion of An for ordinary composition of one-variable power series. Extending this analogy
between classical and plethystic we define the polynomials Pσ,λ

(
{Aµ}µ

)
,

∆(Aσ) =:
∑
λ

Pσ,λ
(
{Aµ}µ

)
⊗Aλ,

which are the generalization of the Bell polynomials to the plethystic case. Hence in
particular P(n,0,... ),(k,0,... )

(
{Aµ}µ

)
= Bn,k

(
{A(i,0,... )}i

)
.

Example 3.2.5. Let us see that

P(0,0,0,1,0,2),(1,2)
(
{Aµ}µ

)
=

=
6!22!4! · 2!
2!22! · 4!3!22!

A(0,0,0,1)A
2
(0,0,1) +

6!22!4! · 2!
2!22! · 6!3!2!

A(0,0,0,0,0,1)A(0,0,1)A(0,1).

Indeed, there are only two elements µµµ ∈ Λ3/S3 (where 3 = |(1, 2)|) such that Tµµµσ,λ is not
empty. Namely

µ1µ1µ1 = {(0, 0, 0, 1), (0, 0, 1), (0, 0, 1)}

µ2µ2µ2 = {(0, 0, 0, 0, 0, 1), (0, 0, 1), (0, 1)}.

The vector (0, 0, 0, 1, 0, 2) is obtained respectively as

(0, 0, 0, 1, 0, 2) = V1(0, 0, 0, 1) + V2(0, 0, 1) + V2(0, 0, 1),

(0, 0, 0, 1, 0, 2) = V1(0, 0, 0, 0, 0, 1) + V2(0, 0, 1) + V2(0, 1).

The colors will be used to connect this example to Example 3.3.2. In both cases it is
straightforward to check that |Tµµµ1σ,λ| = |T

µµµ2
σ,λ| = 2. Notice however that |R(µ1µ1µ1)| = 2 while

|R(µ2µ2µ2)| = 1. The rest comes from the automorphisms of the vectors involved.
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This can be visualized at the level of power series as follows. The vector σ corresponds
to (the linear map returning the coefficient of) x4x26. In the same way, the vector λ
corresponds to x1x22. The monomials associated to µ1µ1µ1 are x4 and x3 and the monomials
associated to µ2µ2µ2 are x6, x3 and x2. If we take power series with only these monomials
and substitute them we obtain

(x1x2)~ (x4 + x3) =(x4 + x3)(x8 + x6)
2 = x4x

2
6 + · · · ,

(x1x2)~ (x6 + x3 + x2) =(x6 + x3 + x2)(x12 + x6 + x4)
2 = 2x4x

2
6 + · · · .

Before proving Proposition 3.2.3 we shall need the following two lemmas. For the sake
of notation we work from now on with another basis of P, {aλ}λ, defined as aλ := Aλ

aut(λ) .
Let z = z1, z2, . . . be a set of infinitely many formal variables. Consider, in the style
of [11, Remark 2.3], the map ∆ : PJzK → (P ⊗ P)JzK given by linearly extending the
comultiplication defined above for P. Given power series F,G ∈ QJxK and elements
φ ∈ PJzK and ψ ∈ (P⊗P)JzK, we introduce the notation

〈φ, F〉 := φ(F) ∈ QJzK and 〈ψ, (F,G)〉 := ψ(F,G) ∈ QJzK,

for the sake of readability. For each positive natural number i, define the power series

Ai(z) =
∑
λ

aλzV
iλ ∈ PJzK.

Observe that by definition ∆(Ai(z)) =
∑
λ∆(aλ)z

Viλ. The following result is straightfor-
ward.

Lemma 3.2.6. For any i, j > 0 and F,G ∈ QJxK

(i) 〈Ai(z), F〉 = Fi(z),

(ii) 〈∆(Ai(z)), (F,G)〉 = (G~ F)i(z),

(iii) 〈Ai(z), F ·G〉 = 〈Ai(z), F〉 · 〈Ai(z),G〉,

(iv) 〈Ai(z) ·Aj(z), F〉 = 〈Ai(z), F〉 · 〈Aj(z), F〉.

Lemma 3.2.7.

∆(A1(z)) =
∑
λ

(∏
i

Aλii (z)

)
⊗ aλ.

Proof. Let F,G ∈ QJxK. By (ii) of Lemma 3.2.6 we have

〈∆(A1(z)), (F,G)〉 = (G~ F)(z).

Now, by definition of plethystic substitution

(G~ F)(z) =
∑
λ

(∏
i

Fλii (z)

)
· aλ(G(z)),

but (iv) and (i) of Lemma 3.2.6 tell us respectively that〈∑
λ

(∏
i

Aλii (z)

)
, F

〉
=
∑
λ

(∏
i

〈Ai(z), F〉λi
)

=
∑
λ

(∏
i

Fλii (z)

)
.
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Therefore

(G~ F)(z) =

〈∑
λ

(∏
i

Aλii (z)

)
⊗ aλ, (F,G)

〉
,

as we wanted to see.

Proof of Proposition 3.2.3. Define sets

Tλ :=
{
{µi,j}i>1,j∈{1,...,λi}

}
,

Tσ,λ :=

{µi,j}i>1,j∈{1,...,λi} | σ =
∑
i

λi∑
j=1

Viµi,j

 .

We now compute

∆(A1(z)) =
∑
λ

(∏
i

Aλii (z)

)
⊗ aλ =

∑
λ

 ∑
{µi,j}i,j∈Tλ

∏
i

λi∏
j=1

aµi,jz
Viµi,j

⊗ aλ =

=
∑
λ

∑
σ

 ∑
{µi,j}i,j∈Tσ,λ

∏
i

λi∏
j=1

aµi,j

 zσ

⊗ aλ =

=
∑
σ

∑
λ

 ∑
{µi,j}i,j∈Tσ,λ

∏
i

λi∏
j=1

aµi,j

 zσ ⊗ aλ.

But on the other hand ∆(A1(z)) =
∑
σ∆(aσ)z

σ. Hence by Lemma 3.2.7

∆(aσ) =
∑
λ

 ∑
{µi,j}i,j∈Tσ,λ

∏
i

λi∏
j=1

aµi,j

⊗ aλ. (3.2.2)

Notice that lists {µi,j}i,j with the same elements ordered in different ways may be
λ-decompositions of distinct σ. Therefore the comultiplications of different generators
may have terms in common. Finally, observe that the multiset µµµ represented by any list

µµµ = {µi,j}i,j appears precisely
|T
µµµ
σ,λ|

|R(µµµ)|
times in Tσ,λ. This implies that expression (3.2.2) is

equivalent to

∆(aσ) =
∑
λ

∑
µµµ

|T
µµµ
σ,λ|

|R(µµµ)|

∏
µ∈µµµ

aµ

⊗ aλ.

Changing again the basis from {aλ}λ to {Aλ}λ we obtain Equation (3.2.1).

3.3 T -construction for surjections

We are now ready to state and prove the main result of this chapter. The proof is
essentially a question of unpacking the abstract constructions. A pleasant feature is
the way in which the subtle symmetry factors come out naturally from the groupoid
formalism.
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Theorem 3.3.1. The homotopy cardinality of the incidence bialgebra of TS is isomorphic to P.

Proof. Recall from Chapter 2 that the homotopy cardinality of the incidence bialgebra of
TS is denoted by Qπ0T1S. We split the proof into three parts. First we define an isomorph-

ism Qπ0T1S
θ' P of algebras, next we explore the relation between the Verschiebung

operator and T2S, and finally we show that θ preserves the comultiplication.

The isomorphism. We call connected the elements of TnS with a singleton at the nn
position. Notice that as a vector space Qπ0T1S is spanned by π0T1S, and as a free algebra
it is generated by the classes of the connected elements of T1S, since every diagram is a
sum of connected ones. The isomorphism class δλ of a connected element

t01

t00 1
λ

∈ T1S

is given by the infinite vector λ = (λ1, λ2, . . . ) representing the class of t01 � t00. Be
aware that the same notation is used for either the connected elements of T1S and the
infinite vectors representing their isomorphism class. This being said, the assignment

Qπ0T1S −→ P

δλ 7−→ Aλ

δλ+µ = δλδµ 7−→ AλAµ,

for λ and µ connected, defines an isomorphism of algebras. Notice that λ+ µ is the mon-
oidal sum in T1S, which does not correspond to the pointwise sum of their corresponding
infinite vectors, since it has two connected components.

The Verschiebung operator. Pick a connected element t,

t02

t01 t12

t00 t11 1

y

µ

∈ T2S.

For each r ∈ t11, consider the map on the fibers µr : (t01)r � (t00)r. Since the square
is a pullback of sets we have that the surjection (t02)r −→ (t00)r is isomorphic to the
composite

(t01)r × (t12)r
p1−−→ (t01)r

µr−−→ (t00)r,

which is precisely V(t12)rµr (see Remark 3.2.1). Therefore the surjection (t02)r −→ (t00)r
belongs to the isomorphism class of V |(t12)r|µr. But recall that

d1(t) =
t02

t00 1,
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therefore the isomorphism class of d1(t) is precisely∑
r∈t11

V |(t12)r|µr.

In fact, continuing with the scalar multiplication interpretation of Remark 3.2.1, we could
just say that t02 � t00 is a linear combination in

⊕
r Set/(t00)r , namely

t02 −→ t00 =
∑
r

((t02)r −→ (t00)r) · (t12)r =
∑
r

V(t12)r((t02)r −→ (t00)r).

The comultiplication. We have to show that ∆(δσ) for σ connected yields Equation (3.2.1).
By Lemma 2.4.2 we have that

∆(δσ) =
∑

λ∈π0T1S

∑
τ∈π0T1S

| Iso(d0τ,d1λ)σ|
|Aut(λ)||Aut(τ)|

δτ ⊗ δλ. (3.3.1)

Since σ is connected, also λ must be connected,

t12

t11 1.
λ

It is clear that Iso(d0τ,d1λ) is nonempty if and only if |d0τ| = |d1λ|. Without loss of
generality we can assume that d0(τ) = d1(λ) = t11 and write

t01

t00 t11.
τ

Note that in particular |t11| = |λ|. If, as above, we denote by µr : (t01)r � (t00)r the fiber
surjection of r ∈ t11 and µµµ = {µr}r, we have that δτ corresponds to

∏
µ∈µµµAµ and that

|Aut(τ)| = aut(µµµ).

Hence it only remains to show that | Iso(d0τ,d1λ)σ| = aut(σ) · |Tµµµσ,λ|. Since Iso(d0τ,d1λ)
is a discrete groupoid, i.e. just a set, it makes sense to consider the subset

{φ ∈ Iso(d0τ,d1λ) | d1(φ) ' σ}

consisting of those φ that give an object isomorphic to σ after composition by φ, pullback
and d1, as shown in the picture,

d1

 t01 t12

t00 t11 t11 1

τ λ

φ

 ' σ.

Note that in this picture the pullback is taken along the dashed arrow. Observe that this
condition on φ can be written as

σ =
∑
r∈t11

V |(t12)φ(r)|µr,
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where now σ and µr represent the corresponding infinite vectors. This is in bijection
with morphisms µµµ ∼−→

∑
{1, . . . , λk} satisfying

σ =
∑
µ∈µµµ

Vq(µ)µ,

since summing over r ∈ t11 is equivalent to summing over µ ∈ µµµ and the same Ver-
schiebung operators appear in both sums. Hence there is a bijection

{φ ∈ Iso(d0τ,d1λ) | d1(φ) ' σ} ' Tµµµσ,λ =

{
p : µµµ

∼−−→
∑
k

{1, . . . , λk} | σ =
∑
µ∈µµµ

Vq(µ)µ

}
.

But the homotopy fiber of Iso(d0τ,d1λ) over σ is precisely this subset described above
times the set of automorphisms of σ in T1S, that is

Iso(d0τ,d1λ)σ ' Iso(σ,σ)× {φ ∈ Iso(d0τ,d1λ) | d1(φ) ' σ}.

Therefore | Iso(d0τ,d1λ)σ| = aut(σ) · |Tµµµσ,λ| and Equation (3.3.1) corresponds to Equa-
tion (3.2.1), as we wanted to see.

Example 3.3.2. Let us see the interpretation of P(0,0,0,1,0,2),(1,2)
(
{Aµ}µ

)
(see Example 3.2.5)

in the simplicial groupoid TS. The vector σ = (0, 0, 0, 1, 0, 2) corresponds to

16

3 1,

or, specifying the

size of each fiber,

(6, 6, 4)

3 1.

In the same way, the vector λ = (1, 2) corresponds to

(1, 2, 2)

3 1.

Now, what we want to compute is, roughly speaking, all the 2-simplices of TS that give
σ under d1 and λ under d0. There are essentially two such simplices,

(4, 6, 6)

(4, 3, 3) (1, 2, 2)

3 3 1

y

µ1µ1µ1

and

(6, 6, 4)

(6, 3, 2) (1, 2, 2)

3 3 1,

y

µ2µ2µ2

and it is clear that the two left-down diagrams, given by the face map d2, correspond to
µ1µ1µ1 and µ2µ2µ2 of Example 3.2.5.

Remark 3.3.3. We end this section by deriving the analogous result for one-variable
power series. As mentioned in the introduction, the statement reads: the Faà di Bruno
bialgebra F is equivalent to Qπ0S, the homotopy cardinality of the incidence bialgebra
of the fat nerve NS : �op → Grpd of the category of surjections. First of all, observe
that F is generated by the functionals An returning the nth coefficient of a power
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series. The connected elements of S are the surjections with singleton target. Hence,

δn = |1
pn�1q−−−−−→ S| corresponds to An. Using Lemma 2.4.2 we get

∆(δn) =
∑
b:k�1

∑
a:n�k

| Iso(k,k)n�1|
|Aut(b)||Aut(a)|

δa ⊗ δk.

It is clear that |Aut(b)| = k!, and that any element of Iso(k,k) gives n � 1, so that
| Iso(k,k)n�1| = n! · k!. Moreover, δa = δn1 . . . δnk , where ni are the fibers of a : n� k.
Altogether we obtain

∆(δn) =
∑
k�1

∑
n�k

n!
|Aut(n� k)|

(
k∏
i=1

δni

)
⊗ δk,

which is easily checked to correspond to the comultiplication of An,

∆(An) =
∑
k

∑
n1+···+nk=n

(
n

n1, . . . ,nk

)( k∏
i=1

Ani

)
⊗Ak.

In view that NS is contained in TS (see Remark 3.1.7), this result is a particular case of
Theorem 3.3.1, as also pointed out in Remark 3.2.4.

3.4 Transversals from surjections

The category of partitions P is equivalent to the category of surjections S, so that as in
the case of Faà di Bruno we can use surjections to describe transversals. Among the
advantages of surjections over partitions there is the fact that partitions of partitions
are pairs of composable surjections. In what follows we introduce a new approach to
transversals by using surjections.

First of all, let us translate all the notions regarding partitions to surjections. The
category of surjections has as objects surjections E � S between finite sets and as
morphisms commutative squares

E F

S R,

∼

∼

where the horizontal arrows are bijections. It is clear that f : E � S corresponds to the
partition π of E given by p ∼π q if f(p) = f(q) or, what is the same, the partition whose
blocks are the fibers of f. Hence, the isomorphism class of a surjection is given by a
sequence λ = (λ1, λ2, . . . ) where λk is the number of fibers of size k, and the number of
automorphisms of f is also aut(λ): in this case λ1! · λ2! · · · is the number of bijections
S

∼−→ S permuting elements with a fiber of the same size, and 1!λ1 · 2!λ2 · · · is the number
of fiberwise bijections E ∼−→ E.
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Consider π, τ ∈ Π(E) and let π : E � S and τ : E � X be their corresponding surjec-
tions. Construct the diagram of sets

E

S×IX X

S I

φ

τ

π y

y

by taking pushout along π and τ and pullback of the pushout diagram. Note that all the
arrows are surjections except perhaps φ. Note also that any pullback of surjections is
also a pushout square.

Lemma 3.4.1. Let π and τ be two partitions of E presented as surjections as above, and σ : E� B

another partition. Let also A ⊆ E.

(i) π 6 σ if and only if σ factors through π: E � S � B. Moreover the surjection S � B

corresponds to σ|π.

(ii) πA corresponds to the unique surjection A � R (up to isomorphism) that factors the
morphism A ↪→ E� S as a surjection followed by an injection A� R ↪→ S.

(iii) 0̂ is E� E and 1̂ is E� 1.

(iv) The join π∨ τ corresponds to the pushout surjection E� I.

(v) The meet π∧ τ corresponds to the surjection φ : E� Im(φ). Hence π∧ τ = 0̂ if and only
if φ is injective.

(vi) π and τ commute if and only if φ is surjective.

(vii) π and τ are independent if and only if φ is surjective and I = 1.

Proof. (i), (ii) and (iii) are clear. (iv) follows from the fact that the pushout is precisely
Xt/∼ S where ∼ is the equivalence relation generated by the relation of belonging to the
same fiber along π and τ. This is precisely the same relation defined in (1.4.1).

For (v), recall that for every p,q ∈ E we have that p ∼π∧τ q if and only if p ∼π q

and p ∼τ q, but this is the same as π(p) = π(q) and τ(p) = τ(q), which is the same as
φ(p) = φ(q). But this is equivalent to p ∼φ q, considering φ as a surjection to its image.

Finally, if π and τ are independent then π∧ τ = 1̂, so that I = 1, and every fiber along
π has nonempty intersection with every fiber along τ, which means that φ is surjective.
The converse is similar. This, together with Proposition 1.4.1 shows (vi), since the set
π∨ τ is precisely I.

In view of this lemma, a transversal of the surjection σ : E� B is a diagram

E

S X

B I 1

π τ
σ

y

(3.4.1)
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where the square is obtained as the pushout of π and τ. The fact that π∧ τ = 0̂ and that π
and τ commute implies that this square is also a pullback. Furthermore the condition that
the pushouts π∨ τ and σ∨ τ coincide gives a map B� I. Conversely, any commutative
square of the form

S

B I

I

is a pushout in the category of surjections. Therefore the map B � I says that π∨ τ

coincides with σ∨ τ.
Hence, a transversal is just an object of T2S.

Example 3.4.2. The diagram corresponding to the transversal of Example 1.4.3 is

21

8 5

4 2 1

π τ
σ

y

where each number corresponds to the number of blocks of each partition, and 21 is the
cardinality of E.

3.5 Faà di Bruno formula for the Green function

In this section we take the opportunity to describe a plethystic analogue of the Faà di
Bruno formula for the connected Green function, originating in quantum field theory.
This formula is a compact and elegant way of encapsulating the comultiplication of the
connected elements of coalgebras of graphs, trees, operads, etc. (cf. [30, 42]). The original
connected Green function was defined in the Connes–Kreimer Hopf algebra of Feynman
graphs [19] as the sum of all connected graphs divided by their symmetry factors. For its
role in quantum field theory, see also Bellon–Schaposnik [5], Ebrahimi-Fard–Patras [26],
and van Suijlekom [70].

In the case of the Faà di Bruno bialgebra, the formula was first noticed by Brouder,
Frabetti and Krattenthaler [11]. The role of the Green function is played by the infinite
series

A =

∞∑
k=1

Ak
k!
∈ QJA1,A2, . . .K.

They showed that the comultiplication of F extends to a comultiplication in QJA1,A2, . . .K
and that

∆(A) =

∞∑
k=1

Ak ⊗ Ak
k!

,

thus synthesizing the comultiplication of the individual coefficients in a single formula.
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Let us obtain this formula for the plethystic bialgebra. In the completion of P define
the Green function to be the series

A :=
∑
λ

aλ

(
recall that aλ =

Aλ
aut(λ)

)
.

Proposition 3.5.1. Let ak :=
∑

|λ|=k aλ. Then

∆(A) =
∑
k

Ak ⊗ ak.

Proof. This could be proved directly in P, but we will prove it more elegantly by deriving
an equivalence of groupoids related to TS and taking homotopy cardinality. First of all,

let G be the inclusion S
G

↪−−→ T1S taking a� b to

a

b 1,

It is clear that

|G| =
∑
λ

Aλ
|Aut(λ)|

=
∑
λ

aλ = A.

Denote by T the subgroupoid of connected objects of T2S. Observe that d∗1(G) is precisely

the inclusion T ↪−→ T2S. Therefore ∆(G) is the map T
(d2,d0)!d

∗
1(G)

−−−−−−−−−→ T1S× T1S. Now,
since TS is a Segal space we have that T2S ' T1S×B T1S, where B = T0S is the groupoid
of finite sets and bijections. As a consequence T ' T1S×B S. In pictures this equivalence
looks like

T '


∗

∗ t11,

∗

t11 1,


We can decompose this as the homotopy sum of its fibers

T '
∫b∈B

(T1S)b × bS,

where now the right b subscript means d0-fiber over b and the left b subscript means
d1-fiber over b. A fancier way to express this equation is

T '
∫b∈B

Sb ×Bb,

in view of the equivalences (T1S)b ' Sb and bS ' Bb.
Let us take homotopy cardinality. To compute ∆(A) we only need to know |Sb → T1S|

and |Bb → T1S|. The latter, if we call |b| = k, is clearly

|Bb → T1S| =
∑
|λ|=k

aλ =: ak.
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For the former, just notice that Sb → T1S ' (S→ T1S)�k, since (T1S)b ' (T1S)+k1 . Here
� is the monoidal product in Grpd/T1S. This implies that

|Sb → T1S| = |(S→ T1S)�k| = |S→ T1S|k = Ak,

and therefore
∆(A) =

∑
k

Ak ⊗ ak,

as asserted.

Remark 3.5.2. We shall see later that the plethystic bialgebra is actually the incidence
bialgebra of a certain locally finite operad (see Theorem 7.0.2 and Proposition 8.1.5). Once
this is established, the above plethystic Faà di Bruno formula can actually be seen as a
special case of the abstract Faà di Bruno formula for operads of Kock–Weber [42].





4
Monads and operads

As mentioned in the introduction, the T-construction fits neatly within the context of
generalized operads and strong monads. The following discussion of generalized operads
is taken from [46]. Let us start by expressing the notions of category and of nonsymmetric
operad in this setting.

A small category C can be described by sets and functions

C1

C0 C0

s t

C1×C0C1 C1

C0 C1

m

e

where the pullback is taken along C1
s−→ C0

t←− C1, satisfying associativity and identity
axioms, which can be expressed with commutative diagrams in Set (see Appendix A.1).
The set C0 is the set of objects and C1 is the set of arrows of C. The map s returns the
source of an arrow and t returns its target. The maps m and e represent composition
and identities.

4.1 Classical operads

Recall that a nonsymmetric operad in Set is a collection

O :=
⊔
n>0

O(n)

of sets together with composition maps

◦ : O(k)×
(
O(n1)× · · · ×O(nk)

)
−→ O(n1 + · · ·+nk)

and a distinguished element 1 ∈ O(1), called the identity. These maps have to satisfy the
following identity and associativity axioms:

x ◦ (1, . . . , 1) = 1 ◦ x = x,(
x ◦ (x1, . . . , xn)

)
◦
(
x11, . . . , xm1

1 , . . . , x1n, . . . , xmn
n

)
=x ◦

(
x1 ◦ (x11, . . . , xm1

1 ), . . . , xn ◦ (x1n, . . . , xmn
n )

)
.

A symmetric operad consists on the same data as above together with an action of the
symmetric group Sn on O(n) compatible with ◦. A more compact way to define an
operad is as a monoid in a monoidal category of symmetric sequences [40], which are
equivalent to species [44]. Different notions of species give different flavors of operads,
such as nonsymmetric, symmetric, and colored operads. Recall that operations of classical
operads are pictured as

53
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x

Let us define nonsymmetric operads in a similar way as the category C above. First
we take the opportunity to recall what a monad is. Let E be a category. A monad is a
triple (P,µ,η) where P : E → E is a functor, and µ : P2 → P and η : 1E → P are natural
transformations, called multiplication and unit, satisfying the following commutative
squares:

P3 P2

P2 P,

P(µ)

µP µ

µ

P P2

P2 P.

P(η)

ηP µ

µ

Let M : Set → Set be the free monoid monad: it sends a set A to
⊔
n∈NA

n (see
Example 4.4.4 below). Then a nonsymmetric operad can be described as consisting of
sets and functions

Q1

MQ0 Q0

s t

MQ1×MQ0Q1 Q1

Q0 Q1

m

e

(4.1.1)

satisfying associativity and identity axioms, which can be expressed with commutative
diagrams in Set (see Appendix A.2) and involve the monad structure on M. The set Q0 is
the set of objects and Q1 is the set of operations of Q. The map s assigns to an operation
the sequence of objects constituting its source, and t returns its target. The maps m and
e represent composition and identities.

4.2 P-operads

The above characterization of nonsymmetric Set operads can be generalized to any
ambient category and any monad P as long as they are cartesian. The classical case is
Set; we shall be concerned also with Grpd.

Definition 4.2.1. A category is cartesian if it has all pullbacks. A functor is cartesian if it
preserves pullbacks. A natural transformation is cartesian if all its naturality squares are
pullbacks. A monad (P,µ,η) is cartesian if P is cartesian as a functor and µ and η are
cartesian natural transformations.

Given a cartesian category E and a cartesian monad (P,µ,η), we define E(P) as
the bicategory whose 0-cells are the objects E of E, whose 1-cells E → E ′ are spans
PE←M→ E ′, and 2-cells are the usual morphisms M→ N between spans:
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M

PE E ′

N.

d c

q p

Given two 1-cells

M

PE E ′

d c

M ′

PE ′ E ′′

d ′ c ′

the composite is given by taking a pullback and using the multiplication µ of P, and the
1-cell identity is given by η and id. They are shown in the following diagram:

N

PM M ′

P2E PE ′ E ′′

PE

y

Pd Pc d ′ c ′

µE

E

PE E

ηE id

Composition and identity of 2-cells are obvious. Since composition assumes a global
choice of pullbacks, and since the pasting of two chosen pullbacks is not generally a
chosen pullback, composition is associative up to coherent isomorphism. The coherence
2-cells are defined using the universal property of the pullback.

Definition 4.2.2 (Burroni [12]). Let P be a cartesian monad in a cartesian category E. A
P-operad is a monad in the bicategory E(P).

This means that a P-operad Q consists precisely of objects Q0 and Q1 of E together
with maps s, t, composition m and identities e as in Diagram (4.1.1) satisfying associativ-
ity and identity axioms (Appendix A.2). A morphism Q→ Q ′ of P-operads is defined as

a pair of arrows Q0
f0−→ Q ′0, Q1

f1−→ Q ′1, satisfying the following diagrams,

Q1

PQ0 Q0

Q ′1

PQ ′0 Q ′0,

f1

Pf0 f0

Q0 Q1

Q ′0 Q ′1,

e

f0 f1

e

PQ1×PQ0Q1 Q1

PQ ′1×PQ ′0
Q ′1 Q ′1,

m

Pf1×Pf0f1 f1

m

(4.2.1)
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regarding compatibility with the spans, identities and composition maps. Notice that
this is not an arrow in E(P). The category of P-operads is denoted P-Operad.

4.3 Morphisms of spans

In Chapter 5 we will deal with morphisms between long horizontal composites of spans.
It is thus worth to set up a framework for such morphisms: consider the following
diagrams, named blocks, made of maps in E,

· · ·

· · ·

(4.3.1)

· · · · ·

· · ·
y

· · ·

· · · · ·

y
(4.3.2)

· · · · ·

· · ·

· · · · ·

· · ·

(4.3.3)

Notice that (4.3.2) induce isomorphisms of spans if the vertical maps are isomorphisms,
since in this case they represent horizontal composition of spans. Diagram (4.3.1) is an
isomorphism when all the vertical arrows are isomorphisms, and (4.3.3) are isomorphisms
when all the vertical arrows and the span projected away are isomorphisms. Besides, the
blocks can be horizontally and vertically attached in the obvious way to get morphisms
of longer spans, with the only restriction that the diagrams (4.3.3) can be attached to the
right and to the left respectively.

Lemma 4.3.1. Any pasting of blocks defines a morphism between the limit of the top row and the
limit of the bottom row. Moreover, such a morphism is an isomorphism if it can be constructed
from blocks that are isomorphisms.

The morphisms between long spans are pictured with diagrams

··· · · . . . · ·

··· · · . . . · ·

...
...

where the left bold part is the limit of the diagram: the upper dot is the limit of the upper
row, and same for the bottom row. Observe that the decomposition of a morphism into
blocks is not unique, and there may be decompositions of isomorphisms whose blocks
are not necessarily isomorphisms. Here is an example that will be used later on.



4.4 strong monads 57

Example 4.3.2. The following diagram represents an isomorphism of composites of spans:

· · · · ·

· · · · ·

a b

f
y

g

c

a ′ b ′ c ′

(4.3.4)

Indeed, it can be expressed by pasting isomorphism blocks:

· · · · ·

· · · · · · ·

· · · · ·

a b

f b
y

c

a ′ b ′ g c

a ′ b ′ c ′

c y

(4.3.5)

4.4 Strong monads

We now recall the notion of strong monad [41], which is central in the T-construction.
From now on the ambient category E is required to have a terminal object, hence all finite
limits.

Definition 4.4.1. Let (P,µ,η) be a monad on E. A strength for P is a natural transform-
ation with components DA,B : A×PB → P(A×B), satisfying the following two axioms
concerning tensoring with 1 and consecutive applications of D,

1×PA P(1×A)

PA

D1,A

p2
Pp2

(4.4.1a)

(A×B)×PC A×(B×PC) A×P(B×C)

P((A×B)×C) P(A×(B×C))

DA×B,C

A×DB,C

DA,B×C (4.4.1b)

and two axioms concerning compatibility with monad unit and multiplication,

A×B A×PB

P(A×B)

ηA×B

A×ηB

DA,B (4.4.2a)

A×P2B P(A×PB) P2(A×B)

A×PB P(A×B)

A×µB

DA,PB PDA,B

µA×B

DA,B

(4.4.2b)
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Before seeing some examples of P-operads and strong monads, we prove the following
lemma, which will be useful in Chapter 5.

Lemma 4.4.2. Let u be the unique morphism u : P1→ 1. Then the square

A×P21 A×P1

P(A×P1) P(A×1)

A×Pu

DA,P1

y
DA,1

P(A×u)

(4.4.3)

is a pullback.

Proof. Observe that if we project the bottom rows of this square to the second component,

A×P21 A×P1

P(A×P1) P(A×1)

P21 P1,

A×Pu

DA,P1

y
DA,1

P(A×u)

Pp2 Pp2

Pu

then the lower square is a pullback because P is cartesian, and the outer square is a
pullback because it is a projection, by (4.4.1a). Therefore the upper square is a pullback
too.

Let us see some examples of strong monads.

Example 4.4.3. Obviously the identity monad is strong. If we take the identity monad Id
on any cartesian cartesian category E then a Id-operad is the same as a category internal
to E, and a noncolored Id-operad is a monoid in E. In particular if E = Set they are small
categories and monoids, respectively.

Example 4.4.4. Let (M,µ,η) be the free monoid monad on the category E=Set. As
mentioned above, a M-operad is the same thing as a nonsymmetric operad. Here is the
full explicit description of M. Let A be a set and a0, . . . ,an∈A, then

MA =
⊔
n∈N

An,

ηA(a0) = (a0),

µA
(
(a1, . . . ,ai), . . . , (aj, . . . ,an)

)
= (a1, . . . ,an). (4.4.4)

The free monoid monad is strong with the following strength:

DA,B : A×MB M(A×B)(
a, (b1, . . . ,bn)

) (
(a,b1), . . . , (a,bn)

)
.
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It is straightforward to check that the diagrams (4.4.2b) and (4.4.2a) are satisfied and clear
that DA,B is injective. This last feature is relevant because to define the T-construction, in
Chapter 5, it is be necessary that D1,C0 is a monomorphism.

Example 4.4.5. The free semigroup monad M
r

on Set is defined in the same way as
the free monoid monad, except that in this case M

r
A =

⊔
n>1A

n. This means that a
M

r
-operad is a nonsymmetric operad without nullary operations. The terminal M

r
-operad

be denoted Ass, which is of course the reduced associative operad. Notice that M
r

is also
a strong cartesian monad on Grpd. In this sense the operad Ass can also be considered
as an M

r
-operad in Grpd, with discrete groupoid of objects and discrete groupoid of

operations. The context will suffice to distinguish between Set and Grpd, but in the main
applications (Chapter 7) we work over Grpd.

Example 4.4.6. Let Y be a monoid. Denote by Y the monad on Set given by YA = Y×A
with unit and multiplication given by those of Y. Then Y is strong with strength given
by the associator of the cartesian product. Therefore in this case the strength is an
isomorphism. The same holds if Y is a monoid in Grpd and Y is then a monad on Grpd.

Example 4.4.7. Let (S,µ,η) be the free symmetric monoidal category monad on Grpd.
An S-operad is an operad internal to groupoids, so that it has a groupoid of colors and a
groupoid of operations. Let A be a groupoid and Sn the symmetric group on n elements.
The monad S acts on A by

SA =
⊔
n∈N

An//Sn,

where // means homotopy quotient [2, 30]. Hence it is analogous to M, but we add an
arrow

(a1, . . . ,an)
σ−−−→ (aσ1, . . . ,aσn)

for every element σ ∈ Sn. The multiplication and unit natural transformations are
defined as in (4.4.4) for both objects and operations. Notice that any symmetric operad
Q is in particular an S-operad, where the groupoid of objects Q0 is discrete and the
groupoid Q1 has only the arrows coming from the permutations of its source sequence.
In other words, a symmetric operad is an S-operad

SQ0
s←−−− Q1

t−−−→ Q0

such that Q0 is discrete and s is a discrete fibration. The strength for S is defined the
same way as for M,

DA,B : A×SB S(A×B)(
a, (b1, . . . ,bn)

) (
(a,b1), . . . , (a,bn)

)
,

and it is again a monomorphism, since it is injective both on objects and morphisms.
Observe that symmetric operads cannot be expressed as P-operads in Set, since the

actions of the symmetric groups have to be encoded necessarily as morphisms in Q1.
Also, the only monad P one could attempt to use to define them is the free commutative
monoid monad, but it is not cartesian.

Example 4.4.8. As for M and M
r
, we can remove the empty sequence from S to get a

monad S
r

on Grpd whose operads do not have nullary operations. We denote by Sym
the terminal S

r
-operad, which is the reduced commutative operad.



60 monads and operads

4.5 The two-sided bar construction for P-operads

The two-sided bar construction for operads is standard [54]. In this section we introduce
the construction in the more general setting of P-operads by using induced monads. Any
P-operad Q defines a monad (Q,µQ,ηQ) on the slice category of E over Q0

Q : E/Q0 −→ E/Q0,

given by pullback and composition, as shown in the following diagram for an element

X
f−→ Q0 of E/Q0

QX

PX Q1

PQ0 Q0.

y

Pf s
t

(4.5.1)

The image of f is thus the red composite. The multiplication µQ and the unit ηQ are
defined by the following morphisms

Q2XQ2XQ2X P2X P2Q0 PQ1 PQ0 Q1 Q0

P2X P2Q0 PQ1×
PQ0
Q1 Q0

QXQXQX PX PQ0 Q1 Q0,

µQ
Xµ
Q
Xµ
Q
Xµ
Q
Xµ
Q
Xµ
Q
Xµ
Q
Xµ
Q
Xµ
Q
Xµ
Q
Xµ
Q
Xµ
Q
X

P2f Ps Pt s t

P2f

µX µQ0

s t

m

y

Pf
s t

(4.5.2)

XXX X Q0 Q0 Q0

PQXPQXPQX X PQ0 Q1 Q0.

ηQ
Xη
Q
Xη
Q
Xη
Q
Xη
Q
Xη
Q
Xη
Q
Xη
Q
Xη
Q
Xη
Q
Xη
Q
Xη
Q
X

f

ηX ηQ0 e

Pf s t

(4.5.3)

Definition 4.5.1. An algebra over the P-operad Q is an algebra over the monad Q.

Notice that the category E/Q0 has a terminal object, Q0
1−→ Q0, so that there is an

algebra over Q given by the unique arrow q : Q1→ 1. Moreover, since E has a terminal
object, the P-operad P : E/1→ E/1 itself can be represented by the span

P1←− P1 −→ 1,

and is the terminal P-operad. Now, the terminal arrow u : Q0 → 1 induces, by postcom-
position, a functor u! : E/Q0 → E/1. The diagram

PQ0 Q1 Q0

P1 P1 1

Pu u (4.5.4)
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represents a natural transformation u!Q
φ
=⇒ Pu! which is compatible with the comulti-

plications and units of Q and P, meaning that

u!Q2
φ2

==⇒ P2u!
µu!==⇒ Pu! = u!Q2

u!µ
Q

===⇒ u!Q
φ
=⇒ Pu! and

u!
u!η

Q

===⇒ u!Q
φ
=⇒ Pu! = u!

ηu!==⇒ Pu!

or, equivalently,

PQ0 P2Q0 PQ1 PQ0 Q1 Q0

P1 P21 P21 P1 P1 1

P21

P1 P1 1

Pu

µQ0

P2u Pu u

µ1

Pu

Pu

µ1

y
=

PQ0 P2Q0 PQ1 PQ0 Q1 Q0

Q2

PQ0 Q1 Q0

P1 P1 1,

µQ0

y

Pu u

(4.5.5)

Q0 Q0 Q0

PQ0 Q1 Q0

P1 P1 1.

ηQ0 e

Pu u

=

Q0 Q0 Q0

1 1 1

P1 P1 1.

u u u

η1 η1

(4.5.6)

Lemma 4.5.2. The natural transformation φ is cartesian.

Proof. Let us describe the naturality squares of φ. Let H be a map in E/Q0, that is, a
commutative triangle

X Y

Q0.

h

f g

Consider the diagram

PX×
PQ0
Q1 PY×

PQ0
Q1 Q1

PX PY PQ0.

u!QH

φX φY
y s

Pu!H Pg

From (4.5.1) it is clear that the pullback square on the right is precisely the definition
of u!Qg. From (4.5.1) and (4.5.4) we have that the square on the left is the naturality
square for φ at H, and moreover that φX and φY are projections. But Pu!H = Ph and
Pg ◦ Ph = Pf, so that the composite square is precisely the definition of u!Qf, which is a
pullback. As a consequence, the naturality square is a pullback too.

Given a P-operad Q, we define its two-sided bar construction [42, 54, 74]

BQ : �op −→ E
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as the two-sided bar construction of Q, φ and the terminal algebra 1. This means that the
space of n-simplices BnQ is given by

Pu!Qn1,

the inner face maps are given by the monad multiplication µQ, the bottom face map
is given by c : Q1 → 1 and the top face maps are given by φ and µ. Similarly, the
degeneracy maps are given by ηQ. Diagrams (4.5.5) and (4.5.6) and the monad axioms
for P and Q guarantee that the simplicial identities are satisfied.

In practice, the bar construction of Q is simply

PQ0 PQ1 PQ2 PQ3 · · · , (4.5.7)

where

(i) Q2 := PQ1×
PQ0
Q1 and Q3 := P2Q1 ×

P2Q0

PQ1×
PQ0
Q1, etc.;

(ii) the bottom face maps d0 are induced by t;

(iii) the top face maps dn are induced by s and µ;

(iv) the inner face maps are induced by m and µ, and

(v) the degeneracy maps are induced by e and η.

Henceforth we will indiscriminately use this simplicial notation. Let us see some ex-
amples.

Example 4.5.3. Let C be a small category. Hence C is a Id-operad in Set. Then BC is the
nerve of C. Moreover, we can consider C as a category internal to Grpd whose groupoid
of objects has as morphisms the isomorphisms of C, and whose groupoid of arrows has
as morphisms the isomorphisms of the arrow category of C. In this case BC is the fat
nerve of C, whose groupoid of n-simplices is the groupoid Map(∆[n],C). In the theory of
incidence coalgebras, this is often more interesting than the ordinary nerve, cf. [15, 32, 33].

Example 4.5.4. If Q is a symmetric operad, as in Example 4.4.7, then BQ is the usual
operadic two-sided bar construction. Its n-simplices have as objects forests of n-level
Q-trees, and as morphisms permutations at each level. For example, the following picture

y1

x1x1

y1

x1x1

y2

x2

y1

x3x3

is an object of PQ2 with (2! · 2!2 · 3!4) · (2!) · (2! · 2!2) automorphisms.
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The following result is a reformulation of [74, Proposition 4.4.1] and [42, Proposition
3.3] in the context of P-operads.

Proposition 4.5.5. The simplicial object BQ is a strict category object.

Proof. We have to check that the squares

Bn+2Q Bn+1Q

Bn+1Q BnQ

d0

dn+2 dn+1

d0

(4.5.8)

are pullbacks for n > 0. We show the case n = 0, the rest are similar. The square is given
by

Pu!QQ1 Pu!Q1

PPu!Q1 PPu!1

Pu!Q1 Pu!1.

Pu!Qc

P(φQ1) P(φ1)

PPu!c

µP
u!Q1 µP

u!1

Pu!c

(4.5.9)

The bottom square is cartesian because it is a naturality square for µP, and P is a cartesian
monad. The top square is P applied to a naturality square of φ, which is cartesian, by
Lemma 4.5.2. Since P preserves pullbacks, the square is cartesian.

This allows to obtain the following result, in the special case where E = Grpd.

Proposition 4.5.6. Let P : Grpd→ Grpd be a cartesian monad that preserves fibrations. Let Q
be a P-operad such that Q0 is a discrete groupoid. Then the simplicial groupoid BQ is a Segal
groupoid.

Proof. It is enough to see that the strict pullbacks (4.5.8) are also homotopy pullbacks.

For n = 0, notice that Pu!Q1
Pu!c−−−→ Pu!1 is precisely the map PQ1

Pm−−→ PQ0. But since
Q0 is discrete, m is a fibration, which means that Pm is a fibration, because P preserves
fibrations. This implies that the square is also a homotopy pullback. Moreover, since

pullbacks preserve fibrations, the map Pu!QQ1 Pu!Qc−−−−→ Pu!Q1 is again a fibration. The
same argument then implies that the square for n = 1 is also a homotopy pullback, and
so on.

Suppose now that R : E→ E is another cartesian monad and that there is a cartesian

monad map P
ψ
=⇒ R. Then we can take the bar construction over R

BRQ : �op −→ E

whose n-simplices are given by

Ru!Qn1 (or RQn).
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In this case all the face maps coincide with the previous ones except the top face map,
which is given by

Ru!Qn+11
R(φQ1)−−−−−→ RPu!Qn1

R(ψu!Qn1)−−−−−−−→ RRu!Qn1
µR
u!Qn1−−−−→ Ru!Qn1.

Since ψ is cartesian, the simplicial object BR is also a strict category object. Moreover,
if R preserves fibrations, it is a Segal groupoid, for the same reason as BQ in Proposi-
tion 4.5.6. The main examples of this bar construction that we use come from the natural
transformations M

r ⇒ S, S
r ⇒ S and M

r ⇒ M, as in [42].



5
The T-construction

Throughout this chapter (P,µ,η) is a cartesian strong monad on a cartesian category
E, and category means a category internal to E. As mentioned in the introduction, the
T-construction consists of two constructions, one from internal categories to P-operads
and another from P-operads to categories. With the purpose of reducing the diagrams
and fiber products, we use the following notation for the endofunctors and natural
transformations featuring in this chapter:

L : E E F : Id L

A A×P1, FA : A×1 LA,

D : L P R : L Id

DA : A×P1 PA, RA : A×P1 A.

id×η1

p1

D2A := DPA ◦DA,P1, R2A := RA ◦ RLA.

Observe that L is cartesian as a functor. Also, notice that R and F are cartesian natural
transformations. Finally, by monomorphism we refer to the 1-categorical notion. In the
case of most interest where E is Set or Grpd, this means injective on objects and injective
on arrows.

The material of this chapter is highly technical. The casual or application-oriented
reader might wish to regard it as a black box and take on faith the well-definedness of
the constructions, and still be able to appreciate the examples worked out in Chapters 6

and 7.

5.1 From categories to P-operads

Let C be a category such that DC0 : P1×C0 → PC0 is a monomorphism. It is convenient
in this section to adopt a simplicial nomenclature. Hence C is represented by the span

C1

C0 C0

d1 d0

C1×C0C1 =: C2 C1

C0 C1,

d1

e

with the only inconvenience that some of the face maps share their names. Notice that
we still denote by e the degeneracy map s0. We now construct a P-operad TPC from the
category C. To keep notation short, the simplicial nomenclature for TPC is C̃i for the

65
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simplices and d̃i for the face maps. The span defining the objects and operations of TPC

is given by the pullback

C̃1

PC1 LC0

PC0 PC0 C0.

i1
d̃1 d̃0

y

Pd1

Pd0 DC0
RC0

(5.1.1)

Observe that C̃0 = C0, so that TPC has the same objects as C. Besides, the morphism i1
is a monomorphism, since monomorphisms are preserved by pullbacks and DC0 is a
monomorphism.

To define composition we need to specify a map C̃2
d̃1−→ C̃1, where C̃2 := PC̃1×

PC0
C̃1,

satisfying the axioms of Appendix A.1. However, to describe it we have to express C̃2 in a

way we can naturally use composition in the original category C2
d1−→ C1. The following

diagram represents an isomorphism

C̃2 ∼= P2C1 ×
P2C0

PLC1 ×
PLC0

(C0×P21) =: C̃ ′2,

P2C0 P2C1 P2C0 PLC1 PLC0 C0×P21 C0 .

P2C0 P2C1 P2C0 PLC0 PC0 PC1 PC0 LC0 C0

P2d1 P2d0 PLd0

PLd1
(A)

PRC1

y

PRC0

DC0 ,P1 p1

(B) id×Pu

y

P2d1 P2d0
PDC0

PRC0
Pd1 Pd0 DC0

RC0

(5.1.2)
It is clear that all the squares in (5.1.2) commute. Moreover, the square (A) is cartesian
because R and P are cartesian, and the square (B) is the same as (4.4.3) of Lemma 4.4.2.

Definition 5.1.1. The composition of TPC is given by the following arrow C̃ ′2
d̃ ′1−→ C̃1,

C̃′2C̃
′
2C̃
′
2 P2C0 P2C1 P2C0 PLC1 PLC0 C0×P21 C0

P2C0 P2C1 P2C0 P2C1 P2C0 C0×P21 C0

P2C2

P2C0 P2C1 P2C0

C̃1C̃1C̃1 PC0 PC1 PC0 LC0 C0 .

d̃′
1
d̃′
1
d̃′
1
d̃′
1
d̃′
1
d̃′
1
d̃′
1
d̃′
1
d̃′
1
d̃′
1
d̃′
1
d̃′
1

P2d0P2d1 PLd0

PDC1
(A) PDC0

(B)

DP1,C0 p1

(C)

P2d0P2d1 P2d1

P2d0

(D)

D2
C0

p1

id×µ1(G)

P2d2 P2d0

P2d1

y

µC0
(E)

P2d1 P2d0

µC1
(F) µC0

Pd1 d0 DC0
RC0

(5.1.3)
It is clear that the diagram commutes: (A) is P applied to a naturality square of D; (B)
is the definition of D2; (C) and (D) are P2 applied to axioms (A.1.1a) and (A.1.1b) for
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composition in C; (E) and (F) are naturality squares of µ, and (G) is again axiom (4.4.2b)
for strong monads. The remaining squares are trivial.

Notice that from this definition it is clear that d̃1 satisfies axioms (A.2.1a) and (A.2.1b).
Furthermore, there is a map

C̃ ′2 P2C2,
i ′2

given by the diagram

P2C0 P2C1 P2C0 PLC1 PLC0 C0×P21 C0

P2C0 P2C1 P2C0 P2C1 P2C0,

P2d1 Pd0 PLd0

PDC1 PDC0

DC0 ,P1

P2d1
P2d0 P2d1 P2d0

(5.1.4)
which clearly makes the square

C̃ ′2 P2C2

P2C1

C̃1 PC1,

d̃ ′1

i ′2

P2d1

µC1

i1

and therefore

also the square

C̃2 P2C2

P2C1

C̃1 PC1,

d̃1

i2

P2d1

µC1

i1

(5.1.5)

commute, for the corresponding arrow i2. This says, roughly speaking, that composition
in TPC is “the same” as composition in P2C, as it is also clear in most of the examples.

We have to check that composition is associative (A.2.3). Let us first state the following
lemma.

Lemma 5.1.2. There is a map C̃3
i3−−→ P3C3 such that the following diagrams commute

C̃3 P3C3

P3C2

C̃2 P2C2,

d̃1

i3

P3d1

PµC2

i2

(5.1.6a)

C̃3 P3C3

P3C2

C̃2 P2C2.

d̃2

i3

P3d2

µPC2

i2

(5.1.6b)

Proof. See Appendix B.

Proposition 5.1.3. Composition is associative.
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Proof. In view of Lemma 5.1.2 there is a diagram

C̃3 C̃2

P3C3 P3C2 P2C2

P3C2 P3C1 P2C1

P2C2 P2C1 PC1

C̃2 C̃1,

d̃1

d̃2

i3

d̃1

i2
P3d1

P3d2 (A)

PµC2

P3d1 (B) P2d1

P3d1

µPC2 (C)

PµC1

µPC1 (D) µC1

P2d1 µC1

d̃1

i2

i1

where the four trapeziums are diagrams (5.1.5) and (5.1.6) of Lemma 5.1.2. The inner
squares are the following: (A) is P3 applied to associativity of C; (B) is P applied to
naturality of µ at d1; (C) is naturality of µ at Pd1 and (D) is the associativity law of µ.
Since i1 is a monomorphism (5.1.1) and all the inner diagrams commute, so does the
outer square, as we wanted to see.

The unit morphism of TPC is easier to obtain than composition. Recall that the unit
is a morphism ẽ : C0 → C̃1 such that the following diagram (A.2.2) commutes,

C0

PC0 C̃1 C0.

ẽ
ηC0 id

d1 d0

Definition 5.1.4. The unit of TPC is given by the following arrow:

C0C0C0 PC0 C0 C0 C0 C0

PC0

C̃1C̃1C̃1 PC0 PC1 PC0 LC0 C0.

ẽ̃ẽẽẽẽẽẽẽẽẽẽe (A)

ηC0
ηC0

(B) ηC0 (C) FC0 (D)

Pe

Pd1 Pd0 DC0 RC0

(5.1.7)

It is clear that all the diagrams commute: (A) and (B) come from P applied to (A.1.2a)
and (A.1.2b), this is d1 ◦ e = id = d0 ◦ e; (C) is the compatibility between D and η (4.4.2a),
and (D) is obvious from the definitions of R and F.

We have to verify that composition with the unit morphism is the identity (A.2.4). To
prove it we follow the same strategy as for associativity. That is, we project the diagrams
into diagrams in the original category C containing the corresponding unit axioms. Recall
first that

C2 := C1×C0C1 and C̃2 := PC̃1×
PC0
C̃1.
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Lemma 5.1.5. We have commutative squares

PC0×
PC0
C̃1 PC0×

PC0
PC1

PC2

C̃2 P2C2,

Pẽ×idid

il1

Pe×idid

PηC2

i2

(5.1.8a)

C̃1×
C0

C0 PC1×
PC0

PC0

PC2

C̃2 P2C2,

η
C̃1
×ηC0 ẽ

ir1

id×idPe

ηPC2

i2

(5.1.8b)

where il1 and ir1 are the morphisms corresponding to i1.

Proof. See Appendix B.

Proposition 5.1.6. The unit morphism ẽ of TPC satisfies the left and right composition axioms
(A.2.4).

Proof. For the left composition (A.2.4a), the required commutative triangle is the outline
of the diagram

PC0×
PC0
C̃1 C̃2

PC0×
PC0

PC1 PC2 P2C2

PC2 P2C1

PC1

C̃1

Pẽ×idid

ir1 (B) i2

d̃1

Pe×idid

(A) p2

(C) id

PηC2

(E)
µC2

P2d1

Pd1
µC1 (F)

(D)

i1

(5.1.9)
We have that Diagram (A) commutes by definition of il1; (B) is precisely (5.1.8a) of
Lemma 5.1.5; (C) is P applied to the left composition with the unit axiom in the category
C (A.1.4a); (D) is naturality of µ at d1; (E) is P of the unit axiom of P applied to C2,
and (F) is the same as (5.1.5). Since i1 is a monomorphism and all the inner diagrams
commute so does the outer triangle, as we wanted to see.
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For the right composition (A.2.4b), the required commutative triangle is the outline
of the diagram

C̃1×
C0

C0 C̃2

PC1×
PC0

PC0 PC2 P2C2

PC2 P2C1

PC1

C̃1

η
C̃1
×ηC0 ẽ

il1 (B)

(A)

i2

d̃1

id×idPe

(E)(C) id

ηPC2

µC2
P2d1

Pd1
µC1 (F)

(D)

i1

(5.1.10)
We have that Diagram (A) commutes by definition of ir1, (B) is precisely (5.1.8a) of
Lemma 5.1.5, (C) is P applied to the right composition with the unit axiom in the
category C (A.1.4b); (D) is again naturality of µ at d1, (E) is the unit axiom of P applied
to PC2 and (F) is the same as (5.1.5), as before. Since i1 is a monomorphism and all the
inner diagrams commute so does the outer triangle, as we wanted to see.

The last thing to check is that the construction is functorial. First of all we have to
specify how the construction acts on morphisms. Let C and C ′ be two categories and

C
f−→ B a functor, that is a diagram

C0 C1 C0

B0 B1 B0

f0

d1 d0

f1 f0

d1 d0

satisfying the commutative squares of (4.2.1). Then TPf is the morphism given by

C̃1C̃1C̃1 PC0 PC1 PC0 LC0 C0

B̃1B̃1B̃1 PB0 PB1 PB0 LB0 B0.

f̃1̃f1̃f1̃f1̃f1̃f1̃f1̃f1̃f1̃f1̃f1̃f1 Pf0

Pd1 Pd0

Pf1 Pf0

DC0 RC0

Lf0 f0

Pd1 Pd0 DB0 RB0

Proposition 5.1.7. The morphism TPf satisfies again the commutative squares of Equation (4.2.1).
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Proof. The first of the squares of (4.2.1) is clear from the definition of TPf. For the
compatibility with the unit, let us write the square in expanded form:

B̃1B̃1B̃1 PB0 PB1 PB0 LB0 B0

PB0

B0B0B0 PB0 B0 B0 B0 B0

C0C0C0 PC0 C0 C0 C0 C0

PC0

C̃1C̃1C̃1 PC0 PC1 PC0 LC0 C0

B̃1B̃1B̃1 PB0 PB1 PB0 LC0 B0

Pd1 Pd0 DB0 RB0
Pe

ẽ̃ẽẽẽẽẽẽẽẽẽẽe

ηB0

ηB0

ηB0 FB0

ẽ

f0

ẽ

f0

ẽ

f0

ẽ

f0

ẽ

f0

ẽ

f0

ẽ

f0

ẽ

f0

ẽ

f0

ẽ

f0

ẽ

f0

ẽ

f0 Pf0

ηC0
ηC0

f0

ηC0

f0

FC0

f0 f0

Pe

f̃1̃f1̃f1̃f1̃f1̃f1̃f1̃f1̃f1̃f1̃f1̃f1 Pf0

Pd1 Pd0
Pf1 Pf0

DC0 RC0
Lf0 f0

Pd1 Pd0 DB0 RB0

Observe that the five columns of the expanded diagram represent five squares, since the
top row and the bottom row are the same. We refer to this squares as vertical squares.
The red and green diagrams are precisely the definition of the unit morphism ẽ for TPB

and TPC respectively (Definition 5.1.4). The rest is the definition of TPf, given above. We
have to check that the vertical squares commute. The first and the last one are trivial; the
second one is a combination of naturality of η at f0 and the middle square of (4.2.1) for

C
f−→ B, and the other two are naturality of η at f0 and naturality of F at f0 respectively.
The compatibility of TPf with composition follows from an analogous argument.

Moreover, given another morphism B
g−→ A it is clear that TP(g ◦ f) = TPg ◦ TPf, just

because of the functoriality of P and L.

Since the construction is functorial, if the strength DA is a monomorphism for every
object A ∈ E then TP is in fact a functor from categories internal to E to P-operads.

5.2 From P-operads to categories

This construction has a similar structure as the construction above, so we follow the same
steps. Let Q be a P-operad,

Q1

PQ0 Q0

d1 d0

PQ1×
PQ0
Q1 := Q2 Q1

Q0 Q1,

d1

e

and assume that DQ0 : P1×Q→ PQ is a monomorphism. We construct a category TPQ

from the P-operad Q. In this case, the simplicial nomenclature for TPQ is Qi for the
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simplices and di for the face maps. The following pullback defines the objects and arrows
of TPQ:

Q1

LQ0 Q1

Q0 PQ0 Q0.

j1
d0d1

y

RQ0

DQ0 d1

d0

(5.2.1)

Observe that Q0 = Q0, so that again TPQ has the same objects as Q. Besides, the
morphism j1 is a monomorphism, since monomorphisms are preserved by pullbacks
and DQ0 is a monomorphism.

To define composition we need to define a map Q2
d1−→ Q1, where Q2 := Q1×Q0Q1,

satisfying the axioms of Appendix A.2. However, to specify this map we need to express

it in a way we can naturally use composition in the original P-operad Q2
d1−→ Q1. The

following diagram represents an isomorphism

Q2
∼= L2Q0 ×

PLQ0
LQ1×

PQ0
Q1 =: Q

′
2,

Q0 L2Q0 LPQ0 LQ1 PQ0 Q1 Q0

Q0 LQ0 PQ0 Q1 Q0 LQ0 . PQ0 Q1 Q0

RLQ0

LDQ0

y

RPQ0(A)

Ld1

RQ1

(B)

Ld0

y

d1 d0

DQ0
RQ0

d1 d0 DQ0
RQ0

d1 d0

(5.2.2)
It is clear that all the squares in (5.2.2) commute. Moreover, the squares (A) and (B) are
cartesian because so is R.

Definition 5.2.1. The composition of Q is given by the following arrow Q
′
2

d
′
1−→ Q1,

Q
′
2Q
′
2Q
′
2 Q0 L2Q0 LPQ0 LQ1 PQ0 Q1 Q0

Q0×P21 P2Q0 PQ1 PQ0 Q1 Q0

(D) Q2 (E)

Q1Q1Q1 Q0 PQ0 PQ0 Q1 PQ0 .

id×DP1

LDQ0

(A) DPQ0

Ld1

DQ1(B)

d1 d0

D2
Q0

id×µ1 (C) µQ0

Pd1

Pd0 d1

d0

d2 d0
y

d1

DQ0
RQ0

d1 d0

(5.2.3)

Let us see that all the diagrams commute: (A) is a combination of naturality of D applied
to DQ0 and axiom (4.4.1b) concerning consecutive applications of the strength, (B) is
naturality of D at d1, (C) is axiom (4.4.2b) for strong monads and (D) and (E) are
respectively axioms (A.2.1a) and (A.2.1b) for composition in Q. The remaining diagrams
are clear.
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Notice that from this definition it is clear that d1 satisfies axioms (A.1.1a) and (A.1.1b).
Furthermore, there is a morphism

Q
′
2 Q2,

j ′2

given by the diagram

Q0 L2Q0 LPQ0 LQ1 PQ0 Q1 Q0

P2Q0 PQ1 PQ0 Q1 Q0,

LDQ0

DPQ0

Ld1

DQ1

d1 d0

Pd1 Pd0 d1 d0

(5.2.4)
which clearly makes the square

Q
′
2 Q2

Q1 Q1,

d
′
1

j ′2

d1

j1

and therefore

also the square

Q2 Q2

Q1 Q1,

d1

j2

d1

j1

(5.2.5)

commute, for the corresponding j2. This says, roughly speaking, that composition in Q
is “the same” as composition in Q, as is also clear in most of the examples.

We have to check that composition is associative (A.1.3).

Lemma 5.2.2. There is a morphism Q3
j3−−→ Q3 such that the following diagrams commute

Q3 Q3

Q2 Q2,

d1

j3

d1

j2

(5.2.6a)
Q3 Q3

Q2 Q2.

d2

j3

d2

j2

(5.2.6b)

Proof. See Appendix B.

Proposition 5.2.3. Composition is associative.

Proof. In view of Lemma 5.2.2 there is a diagram

C3 C2

C3 C2

C2 C1

C2 C1.

d2

d1

j3

d1

j2
d2

d1 d1

d1

d1

j2

j1
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The four trapeziums are the commutative diagrams (5.2.5) and (5.2.6) of Lemma 5.2.2
respectively, and the inner square is associativity of composition in C (A.2.3). Since j1 is
a monomorphism and all the inner diagrams commute, so does the outer square, as we
wanted to see.

The unit morphism of the new category is easier to obtain than composition. Re-
call that the unit is a morphism e : Q0 → Q1 such that the following diagram (A.1.2)
commutes

Q0

Q0 Q1 Q0.

eid id

d1 d0

Definition 5.2.4. The unit of Q is given by the following arrow:

Q0Q0Q0 Q0 Q0 Q0 Q0 Q0

Q1Q1Q1 Q0 LQ0 PQ0 Q1 Q0.

eeeeeeeeeeee (A) FQ0 (B) ηQ0 (C) e (D)

RQ0 DQ0 d1 d0

(5.2.7)

It is clear that all the diagrams commute: (A) is obvious from the definitions of R and F,
(B) is axiom (4.4.2a) for strong monads, and (C) and (D) are respectively the unit axioms
(A.2.2b) and (A.2.2a) of Q.

We have to check that composition with the unit morphism is the identity (A.1.4). To
prove it we follow the same strategy as for associativity. That is, we project the diagrams
into diagrams in the original P-operad Q containing the corresponding unit axioms.
Recall first that

Q2 := PQ1×
PQ0
Q1 and Q2 := Q1×Q0Q1.

Lemma 5.2.5. We have commutative squares

Q0×
Q0

Q1 PQ0×
PQ0
Q1

Q2 Q2,

e×idid

jl1

Pe×idid

j2

(5.2.8a)

Q1×
Q0

Q0 Q1×
Q0

Q0

Q2 Q2,

id×ide

jr1

ηQ1×ηQ0 e

j2

(5.2.8b)

where jl1 and jr1 are the morphisms corresponding to j1.

Proof. See Appendix B.

Proposition 5.2.6. The unit morphism e of Q satisfies the left and right composition axioms
(A.1.4).
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Proof. For the left composition (A.1.4a), the required commutative triangle is the outline
of the diagram

Q0×
Q0

Q1 Q2

PQ0×
PQ0
Q1 PQ1×

PQ0
Q1

Q1

Q1,

e×idid

jl1 (B)

(A)

j2

d1

(C)

Pe×idid

d1

(D)

j1

(5.2.9)
We have that Diagram (A) commutes by definition of jl1, (B) is precisely (5.2.8a) of
Lemma 5.2.5, (C) is the left composition with unit axiom in the P-operad C (A.2.4a)
and (D) is the same as (5.2.5). Since j1 is a monomorphism and all the inner diagrams
commute, so does the outer triangle, as we wanted to see.

For the right composition (A.1.4b), the required commutative triangle is the outline
of the diagram

Q1×
Q0

Q0 Q2

Q1×
Q0

Q0 PQ1×
PQ0
Q1

Q1

Q1,

id×ide

jr1 (B)

(A)

j2

d1

(C)

ηQ1×ηQ0 e

d1

(D)

j1

(5.2.10)
We have that Diagram (A) commutes by definition of jr1, (B) is precisely (5.2.8b) of
Lemma 5.2.5, (C) is the right composition with unit axiom in the P-operad Q (A.2.4b),
and (D) is the same as (5.2.5), as before. Since j1 is a monomorphism and all the inner
diagrams commute so does the outer triangle, as we wanted to see.

The last thing to check is that the construction is functorial. First of all we have to
specify how the construction acts on morphisms. Let Q and Q ′ be two P-operads and

Q
f−→ B a morphism, that is a diagram

PQ0 Q1 Q0

PB0 B1 B0

Pf0

d1 d0

f1 f0

d1 d0
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satisfying the commutative squares of (4.2.1). Then TPf is the functor given by

Q1Q1Q1 Q0 LQ0 PQ0 Q1 Q0

B1B1B1 B0 LB0 PB0 B1 B0.

f1f1f1f1f1f1f1f1f1f1f1f1 f0

RQ0 DQ0

Lf0 Pf0

d1 d0

Pf1 f0

RB0 DB0 d1 d0

Proposition 5.2.7. The morphism TPf satisfies again the commutative squares of Equation (4.2.1).

Proof. The first of the squares of (4.2.1) is clear from the definition of TPf. For the
compatibility with the unit, let us write the square in expanded form:

B1B1B1 B0 LB0 PB0 B1 B0

B0B0B0 B0 B0 B0 B0 B0

Q0Q0Q0 Q0 Q0 Q0 Q0 Q0

Q1Q1Q1 Q0 LQ0 PQ0 Q1 Q0

B1B1B1 B0 LB0 PB0 B1 B0.

RB0 DB0 d1 d0

eeeeeeeeeeee FB0
ηB0 e

e

f0

e

f0

e

f0

e

f0

e

f0

e

f0

e

f0

e

f0

e

f0

e

f0

e

f0

e

f0 f0

FQ0

f0

ηQ0

f0

e

f0 f0

f1f1f1f1f1f1f1f1f1f1f1f1 f0

RQ0 DQ0

Lf0 Pf0

d1 d0

Pf1 f0

RB0 DB0 d1 d0

The red and green diagrams correspond to the definition of the unit morphisms of TPQ

and TPB respectively (Definition 5.2.4). The rest is the definition of TPf, given above. We
have to see that the vertical squares commute. The first and the last one are trivial; the
second is naturality of F at f0; the third one is naturality of η at f0, and the fourth one is

the middle square of (4.2.1) for Q f−→ B.
The compatibility of TPf with composition follows from an analogous argument.

Moreover, given another morphism B
g−→ A it is clear that TP(g ◦ f) = TPg ◦ TPf, just

because of the functoriality of P and L.

Since the construction is functorial, if the strength DA is a monomorphism for every
object A ∈ E then TP is in fact a functor from P-operads to categories internal to E.

5.3 The composite construction

Since we have defined a construction from P-operads to categories and a construction
from categories to P-operads, we obtain a composite construction from P ′-operads to
P-operads, for P ′ and P not necessarily the same monad. In particular, since a category
is the same as an Id-operad, the composite construction for P ′ = Id is the same as the
functor from categories to P-operads. From now on we call T-construction any of the
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three constructions; the context will suffice to distinguish, but we are mainly interested
in landing on a P-operad, rather than a category. To keep notation short, we denote by

TPQ := TPT
P ′Q

the composite construction that produces a P-operad from the P ′-operad Q. The monad
P ′ will always be clear from the context.

5.4 Finiteness conditions

In Chapter 7 we will be interested in computing the incidence bialgebra of the bar
construction of several P-operads in E = Grpd. Recall that to be able to take the
homotopy cardinality, the bar construction has to be locally finite as a simplicial groupoid
(in the sense of [33]). We now define the notion of locally finite operad (in the sense
of [42]) in the setting of P-operads, which is the sufficient condition for its bar construction
to be locally finite, and we give sufficient conditions on the T-construction to preserve
locally finiteness.

Definition 5.4.1. A natural transformation is finite if all its components are finite. A
monad (P,µ,η) on Grpd is locally finite if µ and η are finite natural transformations. A
P-operad Q is locally finite if Q1 is locally finite, and the maps d1 and e are finite.

In the special case of P = Id, P-operads are just categories, and the notion of locally
finite agrees with the standard notion [47]. Notice that Q can be locally finite even if P is
not. The condition of P being locally finite appears in the T-construction.

Example 5.4.2. For a classical symmetric or nonsymmetric operad, the locally finiteness
condition amounts to saying that every operation can be expressed as a composition of
operations in a finite number of ways. For instance, the operads Ass and Sym are locally
finite. For this it is important that nullary operations are excluded. The nonreduced
versions, where there is a nullary operation, are not locally finite.

The bar construction of Q is locally finite if Q is locally finite and P preserves locally
finite groupoids and finite maps (see Chapter 4). Also, given another locally finite monad
R on Grpd that preserves locally finite groupoids and finite maps, if there is a cartesian

monad map P
ψ
=⇒ R with ψ finite, then the bar construction BR is also locally finite.

Let us see that the T-construction interacts well with finiteness, as long as some simple
conditions are satisfied.

Lemma 5.4.3. Let P : Grpd→ Grpd be a locally finite strong monad that preserves locally finite
groupoids, finite maps and fibrations. Assume moreover that the strength D is finite. Consider a
locally finite category C in Grpd such that C0 is discrete and DC0 is a monomorphism. Then the
P-operad TPC is locally finite.

Proof. Recall from Diagram (5.1.1) that C̃1 is defined as the pullback

C̃1 LC0

PC1 PC0.

y
DC0

Pd0
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Notice that the pullback and the monomorphism refer to the 1-categorical notions, while
the finite map condition is a homotopy notion.

Let us see first that C̃1 is locally finite. Since C1 is locally finite and P preserves
locally finite groupoids, PC1 is locally finite. Now, an automorphism in C̃1 is a pair of
automorphisms (f,g) ∈ PC1×LC0 coinciding at PC0, but there is only a finite number of
f’s, since PC1 is locally finite, and for each f at most one g, since DC0 is a monomorphism.

We have to prove also that d̃1 and ẽ are finite maps. This follows from their defini-
tions, 5.1.1 and 5.1.4: since C0 is discrete, we have that d0 is a fibration, and because P
(and also L) preserves fibrations, all the right arrows in diagrams (5.1.3) and (5.1.7) are
fibrations. As a consequence their limit is equivalent to their homotopy limit. Finally,
notice that all the vertical maps involved in these two diagrams are finite. This implies
that their homotopy limit, and hence their limit, is also finite.

Lemma 5.4.4. Let P : Grpd→ Grpd be a locally finite strong monad that preserves locally finite
groupoids, finite maps and fibrations. Assume moreover that the strength D is finite. Consider
a locally finite P-operad Q such that Q0 is discrete and DQ0 is a monomorphism. Then the
P-operad TPC is locally finite.

Proof. The proof is analogous to the proof of Lemma 5.4.3.

In particular these results imply of course that if P and P ′ are monads satisfying the
conditions of Lemmas 5.4.3 and 5.4.4 and Q is a locally finite P ′-operad then TPQ is
locally finite.

Remark 5.4.5. In the sequel, we deal with the free semigroup monad M
r

and the free
symmetric semimonoidal category monad S

r
, which preserve locally finite groupoids,

finite maps and fibrations, as required by Lemmas 5.4.3 and 5.4.4. Moreover, their
strength is finite, as can be easily seen from its definition (see Examples 4.4.4 and 4.4.7).
Also, we use the reduced operads Ass and Sym, as well as their colored versions. They
are all locally finite and have discrete groupoid of colors.
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T-construction for M

r
and S

r
-operads

In this chapter we unravel the T-construction with some of the main examples. We begin
discussing the construction from categories to M

r
-operads and S

r
-operads. When the

category is just a monoid we get the Giraudo T -construction [36], which we recall next.
Lastly we treat symmetric and nonsymmetric operads.

The choice of working with the reduced version of the operads (excluding nullary
operations), is irrelevant for the sake of the T-construction itself, which is abstract enough
to work with any operad. The reason for preferring the reduced version is to stay within
the realm of locally finite operads, as mentioned in Example 5.4.2 and Remark 5.4.5.
Moreover, it is also easy to see that the cartesian monad maps M

r ⇒ S, S
r ⇒ S and

M
r ⇒ M are finite.

6.1 The T-construction for categories

Let C be a category internal to Set, represented by the span C0 ← C1 → C0, and take the
free semigroup monad M

r
. The set of objects of TMrC is again C0, while C̃1 is given by

C̃1

M
r
C1 LC0

M
r
C0 M

r
C0 C0.

d̃1 d̃0

y

Pd1

Pd0 DC0

RC0

(6.1.1)

Recall from Example 4.4.7 that the strength is given by

DC0 : LC0 M
r
C0(

c, (1, . . . , 1)
) (

(c, 1), . . . , (c, 1)
)
.

(6.1.2)

Therefore, the pullback condition means that the elements in C̃1 that have input c1, . . . , cn
and output c are the sequences of n arrows in C whose sources are c1, . . . , cn and whose
targets are all c. Hence

C̃1 =
∑

(c1,...,cn;c)

n∏
i=1

Hom(ci, c).

Substitution in TMrC,

◦ :
k∏
i=1

Hom(ci, c)×
k∏
i=1

ni∏
j=1

Hom(dij, ci) −→
∏
16i6k
16j6ni

Hom(dij, c),

79
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goes as follows: for an operation x ∈
∏k
i=1Hom(ci, c) and a sequence of k operations

yi ∈
∏ni
j=1Hom(dij, ci), with i = 1, . . . ,k,

x ◦ (y1, . . . ,yk) = (x1 ◦ y11, . . . , x1 ◦ y1n1 , . . . , xk ◦ y
k
1 , . . . , xk ◦ yknk) ∈

∏
16i6k
16j6ni

Hom(dij, c).

Note that now the composition inside the parenthesis is composition of morphisms of C,
while the composition on the left-hand side of the equation is composition in M

r
C. It is

not difficult to see that the composition we get from Definition 5.1.1 agrees with the one
defined above: both use the fact that C̃2 is a subset of (M

r
)2C together with (M

r
)2◦ and

the monad multiplication. The identity elements of this operad are given by the identity
morphisms of C. If the category C has coproducts (+) then

n∏
i=1

Hom(ci, c) = Hom(c1 + · · ·+ cn, c),

so that the operations of TMrC are in fact arrows of C.
Since C can be considered as a category internal to Grpd, we can also compute TSrC

to get a symmetric operad. It is clear that TMrC1 = TMrC1//S, where the action of the
symmetric group Sn is given by permutation of tuples, that is

Sn ×
∏n
i=1Hom(ci, c) −→

∏n
i=1Hom(cσ(i); c)(

σ, (x1, . . . , xn)
)

7−→ (xσ(1), . . . , xσ(n)).

It is useful to picture elements (c1, . . . , cn; c) as (picturing n = 3)

s =

c

c1c2c3

(6.1.3)

Under this representation, composition in TSrC (or TMrC) looks like

c

c1

c11c21c31

c2

c12

c3

c13c23

=

c

c11c21c31c12c13c23

(6.1.4)

Example 6.1.1. Take C= {0 1 }. For any pair of objects of C there is exactly one
morphism between them. Hence TMrC has one operation for each given sequence of
inputs and output, so that it is the 2-colored associative operad Ass2. In the same way
TSrC is the 2-colored symmetric operad Sym2. In fact it is straightforward to see that the
T-constructions of the discrete connected groupoid of n elements are Assn and Symn.

Example 6.1.2. Consider the category C = {0 −→ 1}. Note that in this case there is either
one or no morphism between two objects of C. Thus clearly

TSrC(c1, . . . , cn; c) =

{
(c→ c1, . . . , c→ cn) if c = 0 or c = c1 = · · · = cn = 1

∅ otherwise.

Of course this operad is a suboperad of the previous one, since this category is a
subcategory of the previous one. In particular, composition is obvious.
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Example 6.1.3. We now specialize to the case of categories with only one object, that is
monoids, recovering the T -construction of Giraudo. This construction was introduced by
Giraudo [36] as a generic method to build combinatorial operads from monoids.

Since a monoid is just a category with one object, it is represented by the span

1 ← Y → 1, and because the morphism L1 D1−−→ M
r
1 is an isomorphism, we have that

TMrY is given by

M
r
Y

M
r
Y L1

M
r
1 M

r
1 1.

y

M
r
s M

r
t D1

It is easy to see that this gives the same operad TY defined in [36], since TY is precisely
M

r
Y, and both compositions are defined by using composition in (M

r
)2Y and the monad

multiplication.

Example 6.1.4. If Y1 is the singleton monoid, then TMrY1 = Ass, the associative operad,
and TSrY1 = Sym, the commutative operad.

It is interesting to have a heuristic look at the incidence coalgebra that arises from the
operads TSrC. Recall from Section 4.5 that the Segal groupoid BTSrC has as 1-simplices
families of operations. The 0-simplices are families of objects of C, and n-simplices
are families of n-level trees. For example, the left-hand side of (6.1.4) is a 2-simplex
(consisting of a family of one operation).

The face and degeneracy maps are clear. For instance, the degeneracy maps s0 and
s1 of the operation s of (6.1.3) are respectively

c

c3

c3

c2

c2

c1

c1

c

c

c3c2c1

where the morphisms between equal objects are identities. Recall that the comultiplication
is given by all the possible two-step factorizations:

∆(s) =
∑

t∈B2TS
r
C

d1(t)'r

d2(t)⊗ d0(t).

A decomposition of the s has thus one of the following forms,

c

d3

c3

d2

c2

d1

c1

c

d

c3c2c1

c

d2

c3c2

d1

c1

c

d2

c3

d1

c2c1

c.

d2

c2

d1

c2c1

(6.1.5)
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Note the change of order of the outputs in the last factorization. This happens because
(c → c1, c → c2, c → c3) ' (c → c1, c → c3, c → c2) since we are dealing with sym-
metric operads. In the nonsymmetric situation of TMrC, the comultiplication would
have to respect the order, so that in (6.1.5) the last decomposition would not appear.
Hence, the comultiplication of an operation involves all the possible simultaneous and
non-simultaneous factorizations of the morphisms constituting it. In particular, the
comultiplication of unary operation c→ d coincides with its comultiplication as a morph-
ism of C. Of course the simultaneous factorizations also appear as non-simultaneous
factorizations, for example the second factorization in (6.1.5) also appears as

c,

d

c3

d

c2

d

c1

but they are not isomorphic in TSrC, since the first one is a unary operation composed
with a 3-ary operation, while this one is a 3-ary operation composed with three unary
operations.

Example 6.1.5. Consider the divisibility poset (N, |), where d → n means d|n. The
comultiplication of d→ n in the incidence coalgebra of this poset is, as it is well known

∆(d→ n) =
∑
d|k|n

(k→ n)⊗ (d→ k).

Let us see what the comultiplication in the incidence coalgebra of BTSr (N, |) looks like.
Consider the 3-ary operation

24.

846

It is clear that 4 → 24 and 8 → 24, as well as 4 → 24 and 6 → 24, admit a nontrivial
simultaneous decomposition, given respectively by 8 → 24 and 12 → 24, but 8 → 24

and 6 → 24 do not admit any non trivial simultaneous decompositions. Hence the
decompositions of this operation are

24

8,24

8

4,8,12,24

4

6,12,24

6

24

24

846

24

8,24

8

12,24

46

24

8,24

84

6,12,24

6

24

24,

86

4,8,12,24

4

which yield 2 · 4 · 3+ 1+ 2 · 2+ 2 · 3+ 1 · 4 = 39 terms.
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6.2 The T-construction for operads

We now unravel the full T-construction from nonsymmetric operads to S
r
-operads. As

we already know, the first ones are the same as M
r
-operads in Set, but we view them

as M
r
-operads in Grpd with discrete groupoids of objects and arrows. At the end we

comment on other variations similar to this case, such as from symmetric operads to
S

r
-operads.

Let Q be an M
r
-operad represented by the span M

r
Q0 ← Q1 → Q0. Recall that

elements of Q1 are depicted as

x

We apply first the T-construction to get a category TM
r
Q:

Q1

LQ0 Q1

Q0 SQ0 Q0.

y

RQ0 DQ0 s t

The strength morphism is the same as in (6.1.2). Therefore the elements of Q1 are the
elements of Q1 such that all the input objects coincide,

x

so that x is an arrow c
x−→ d in TM

r
Q. Notice that Q2 is a subset of Q2. Therefore

composition in TM
r
Q is the same as composition in Q. For example

x ◦ y =
y

xx

= y ◦ (x, x)

(6.2.1)

where y ◦ (x, x) is composition in Q. Hence the recipe is to repeat x for each input of
y and use composition in Q. Now we have to apply again the T-construction to get a
S

r
-operad from the category TM

r
Q. This step was made above for any category: the

objects of Q̃1 are sequences (x1, . . . , xn) of elements xi ∈ Q1. For instance the pair
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x y is an operation (x,y)

in TSrQ. Clearly TSrQ is a symmetric operad, since the groupoid of objects is discrete
and the morphisms in the groupoid Q̃1 are given by permutation of tuples.

Example 6.2.1. If the starting M
r
-operad is Ass, which is a noncolored operad, then it is

easy to see that the monoid TM
r
Ass is isomorphic to (N+,×). Therefore the operations

of TSr Ass are sequences of natural numbers and composition is given by multiplication.
For example (

(2, 3), (4, 7)
)
◦ (5, 9) = (5 · 2, 5 · 3, 9 · 4, 9 · 7) = (10, 15, 36, 63).

If the starting M
r
-operad is Ass2 the 2-colored associative operad, then the category

TM
r
Ass2 has two objects and a morphism n−→ for every pair of objects and positive natural

number n. Composition is given by multiplication. The operations of TSr Ass2 are thus
sequences of such arrows with the same output.

Suppose we start instead from a symmetric operad Q. Recall from Example 4.4.7 that
a symmetric operad is an S-operad in Grpd such that Q0 is discrete and S

r
Q0

s←− Q1 is
discrete fibration. The T-construction to get another S

r
-operad is completely analogous

to the previous case, but in this case the groupoid Q̃1 inherits morphisms from Q, so
that for instance the element

x x y

has 2! · 3!2 · 2! automorphisms, corresponding to 2! invariant permutations of (x, x,y)
and permutations of the inputs. The latter contribution did not appear in the previous
case, since Q was a planar operad. Notice that this means that TSrQ is not a symmetric
operad, but just an S

r
-operad in Grpd.

Example 6.2.2. If the starting S
r
-operad is Sym, which is a noncolored symmetric operad,

then it is easy to see that the monoid TS
r
Sym is isomorphic to the monoid (N+,×)

internal to groupoids where Aut(n) ∼= Sn. The objects of TSr Sym are the same as the
objects in TSr Ass, and the morphisms are given by permutation of tuples (as in TSr Ass)
plus the ones given by Aut(n) for each n. The colored case is analogous.

6.3 The opposite convention

It is not difficult to see that the categories TS
r
Ass and TS

r
Sym (as well as TM

r
Ass and

TM
r
Sym) are self dual. In the case of Ass this means that the monoid (N+,×) is com-

mutative. An obvious consequence of this self duality is that we get equivalent operads
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by applying the T-construction to their opposite categories. Nevertheless, when dealing
with plethysm it is in fact more natural, from a combinatorial point of view, to apply the
T-construction to the opposite categories. This is particularly apparent when we interpret
the simplicial groupoid TS as an operad (see Examples 8.1.6 and 8.2.6).

We end this chapter by developing this variant in a general context, since we believe
it is interesting in its own right. From a formal perspective there is not much to say, since
in the context of internal categories if C is represented by

C1

C0 C0

s t

then Cop is represented by

C1

C0 C0

t s

and thus the T-construction can be applied the same way. Let us see what TSrCop looks
like. We have that

C̃
op
1 =

∑
(c1,...,cn;c)

n∏
i=1

HomCop(ci, c) =
∑

(c1,...,cn;c)

n∏
i=1

HomC(c, ci),

for each tuple (c1, . . . , cn; c) of elements of C0. In this case elements (c1, . . . , cn; c) can
be pictured as (picturing n = 3)

c

c1 c2 c3

and under this representation, composition in TSrCop looks like

c

c1

c11 c21 c31

c2

c12

c3

c13 c23.

=

c

c11 c21 c31 c12 c13 c23

Furthermore, if C has products then

n∏
i=1

HomC(c, ci) = HomC(c, c1× · · ·×cn).

Suppose now that we start from an M
r
-operad Q. The first step is the same as before:

we obtain a category TM
r
Q whose arrows are operations of Q
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x

all of whose inputs coincide. Next, we take the opposite category TM
r
Qop, and depict its

arrows as

x

The T-construction TSrQop has as operations sequences (x1, . . . , xn) of arrows xi ∈ Q
op
1

with the same output. For instance the pair

x y is an operation (x,y)

in TSrQop. We show once and for all an example of composition in TSrQop:

x y

x1 x2 y1

x1

x x

x2

x

y1

y y y y

(6.3.1)

and then of course we compose in Q, as in (6.2.1).



7
Plethysms and operads

Let us present the relation between the several plethystic bialgebras, operads and the
T-construction. Some proofs are omitted, since most of them are similar. The operads
involved are the reduced symmetric operad Sym, the reduced associative operad Ass and
their 2-colored versions. Also, playing the same role as these operads, we have a locally
finite monoid Y. On the other hand, the T-constructions are taken with respect to the
monads S

r
and M

r
, as in Chapter 6, and everything is internal to E = Grpd.

Let us stress again that by Proposition 4.5.6, Lemmas 5.4.3 and 5.4.4 and the discussion
of Chapter 6 all the bar constructions featuring in the present chapter are locally finite
Segal groupoids, so that we can take cardinality to arrive at their incidence bialgebra in
the classical sense of vector spaces.

It is appropriate to begin with the classical bialgebras, which are the main cases:

Theorem 7.0.1 (Joyal, cf. modern reformulation in [30]). The Faà di Bruno bialgebra F is
isomorphic to the homotopy cardinality of the incidence bialgebra of BSSym.

Recall that BSSym ' NS, so that Remark 3.3.3 already proves this result. Notice that
Sym is of course the same as TIdSym and, as explained in Chapter 6, it is also TSr of the
trivial monoid. This connects the Faà di Bruno bialgebra to the T-construction in an
analogous way as the plethystic bialgebras.

Theorem 7.0.2. The plethystic bialgebra P is isomorphic to the homotopy cardinality of the
incidence bialgebra of BSTSr Sym.

Proof. The comparison between these two incidence bialgebras has been explained in
Chapter 3, where the simplicial interpretation of plethysm was established. In Chapter 8

we will see that indeed BTSr Sym is equivalent to TS.

Example 7.0.3. Nevertheless, let us see again the interpretation of P(0,0,0,1,0,2),(1,2)
(
{Aµ}µ

)
(see Examples 3.2.5 and 3.3.2) but now from the point of view of BSTSr Sym. The vectors
σ = (0, 0, 0, 1, 0, 2) and λ = (1, 2) are represented by

and

respectively. We have used the opposite convention (Section 6.3), which in this case does
not affect the result. What we want to count is, roughly speaking, the number of ways
we can obtain σ as a composition of λ with three operations. It is straightforward to see
that there are essentially two choices:

87
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and

which clearly coincide with the ones of Examples 3.2.5 and 3.3.2. This example could be
misleading, in the sense that each operation above contains only one operation of Sym.
This happens of course because |σ| = |λ|. For instance, if we take instead λ = (1, 1) we
obtain three possible choices:

, and

Remark 7.0.4. We mentioned in Remark 3.1.7 that NS is contained in TS. From the
present operadic perspective, it is clear that Sym is the suboperad of TSr Sym consisting of
sequences of the unique unary operation.

Before showing the rest of results, we give a brief summary of all the different
plethystic bialgebras we study and how they relate to the various operads. The following
standard notation is used:

• x = (x1, x2, . . . ),

• Λ: set of infinite vectors of natural
numbers with λi = 0 for all i large
enough,

• Λ 3 λ = (λ1, λ2, . . . ) and
(λ1, . . . , λn) := (λ1, . . . , λn, 0, . . . ),

• xλ = xλ11 x
λ2
2 · · · ,

• aut(λ) = 1!λ1λ1! · 2!λ2λ2! · · · ,

• λ! = λ1! · λ2! · · · ,

• W: set of finite words of positive nat-
ural numbers,

• W 3 ω = ω1 . . .ωn,

• xω = xω1 · · · xωn ,

• ω! = ω1! · · ·ωn!.

7.1 Overview of variations

We proceed to introduce the variations of the plethystic bialgebra we explore. For the set
of variables (x1, x2, . . . ), there are three sources of variations. At the level of power series
they are the following:

(i) Commuting or noncommuting variables: of course in the classical case the variables
commute. When the variables do not commute we will index them by ω ∈ W,
rather than λ ∈ Λ.

(ii) Commuting or noncommuting coefficients.
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(iii) Two types of automorphisms: aut(λ) or λ! for commuting variables, and ω! or 1 for
noncommuting variables.

These variations are not independent: if the variables commute then the coefficients
commute. Analogous variations can be obtained of the Faà di Bruno bialgebra, except
that in this case there is only one variable.

At the objective level, these three variations correspond (respectively) to the following
choices:

(i) T-construction over S
r

or over M
r
.

(ii) Bar construction over S or over M.

(iii) Taking Sym or Ass as input operads.

The reason why they are not independent is clear here: there is a cartesian natural
transformation M

r ⇒ S
r

that allows taking BS
r

of an M
r
-operad (see Chapter 4), but no

natural transformation in the opposite direction.
Let us give a brief justification of these correspondences. Consider the following

operation:

a =

This could be an operation in any one of the following operads:

(i) TSr Sym: in this case each operation has automorphisms, coming from the action
of the symmetric group on Sym, and since the T-construction is over S

r
we can

permute the operations inside a. This means that the isomorphism class of a is
given by λ = (0, 3, 1, 2), since the order of the operations does not matter, and it has
aut(λ) = 2!33! · 3!11! · 4!22! automorphisms. The corresponding bialgebra is thus
P, the classical plethystic bialgebra, and this particular operation corresponds to
A(0,3,1,2), the linear map returning the coefficient of x32x3x

2
4/ aut(λ).

(ii) TMr Sym: in this case the operations have automorphisms again, but since the T-
construction is over M

r
we cannot permute them. This means that the isomorphism

class of a is given by ω = (3, 2, 4, 2, 2, 4), so that it corresponds to noncommuting
variables. Clearly it has 3!2!4!2!2!4! automorphisms. Now, depending on the bar
construction it corresponds to commuting or noncommuting coefficients. This par-
ticular operation corresponds to A(3,2,4,2,2,4), the linear map returning the coefficient
of x3x2x4x2x2x4/ω!.

(iii) TMr Ass: in this case the operations do not have automorphisms, and since the T-
construction is over M

r
we cannot permute them. This means that the isomorphism

class of a is given by ω = (3, 2, 4, 2, 2, 4), so that it corresponds to noncommuting
variables, and it has no automorphisms. Now, depending on the bar construction it
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corresponds to commuting or noncommuting coefficients, as in the previous case.
This particular operation corresponds to a(3,2,4,2,2,4), the linear map returning the
coefficient of x3x2x4x2x2x4.

(iv) TSr Ass: in this case the operations do not have automorphisms, and since the T-
construction is over S

r
we can permute them. This means that the isomorphism class

of a is given by λ = (0, 3, 1, 2), and it has λ! = 3! · 1! · 2! automorphisms. Therefore
it corresponds to commuting variables and coefficients. This particular operation
corresponds to a(0,3,1,2), the linear map returning the coefficient of x32x3x

2
4/λ!.

The cases of Sym and Ass are developed in Sections 7.2 and 7.3 respectively. In
Section 7.4 we generalize P to power series in the set of variables (xm |m ∈ Y) indexed
over a locally finite monoid.

In Sections 7.2 and 7.3 we also study the Faà di Bruno bialgebra in two variables
and the plethystic bialgebra in the two sets of variables (x1, x2, . . . ), (y1,y2, . . . ). For the
plethystic case we consider only commuting variables and coefficients. Let us give a
similar digression as above for the plethystic cases. Consider the following 2-colored
operation:

a =

The isomorphism class of this operation is given by (λ1, λ2) =
(
(0, 2, 0, 2), (0, 1, 1, 1)

)
(since everything commutes now), and it can be an operation in either TSr Sym2 or
TSr Ass2. It thus corresponds to A(

(0,2,0,2),(0,1,1,1)
) the linear map returning the coeffi-

cients of x22x
2
4y2y3y4/ aut(λx) aut(λy), or to a(

(0,2,0,2),(0,1,1,1)
), the linear map returning

the coefficients of x22x
2
4y2y3y4/λ

x!λy!.

Remark 7.1.1. There is no Segal groupoid whose incidence bialgebra corresponds to
permutational power series, where aut(λ) = 1λ11! · 2λ22! · · · , because, roughly speaking,
circular orders cannot be composed, and hence cannot be assembled into a Segal groupoid
nor an operad. They can, however, be encoded into a decomposition space in the sense
of [32]. Nevertheless, at this point, no decomposition space has been found to give a
simplicial-groupoid interpretation of Bergeron permutationals.

7.2 Bialgebras from Sym and Sym2

Replace QJxK by Q〈〈x〉〉, that is, noncommuting variables. Elements of Q〈〈x〉〉 are written

F(x) =
∑
ω∈W

Fω

ω!
xω,

Substitution of power series in Q〈〈x〉〉 is defined in the same way as before (Definition 1.0.1).
The plethystic bialgebra with noncommuting variables P♦ is defined as the free polynomial
algebra Q

[
{Aω}ω

]
on the set maps Aω and comultiplication and counit as usual.
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Theorem 7.2.1. The plethystic bialgebra with noncommuting variables P♦ is isomorphic to the
homotopy cardinality of the incidence bialgebra of BSTMr Sym.

If we now take R〈〈x〉〉 with R a noncommutative unital ring, then we get the noncom-
mutative plethystic bialgebra with noncommuting variables P♦,nc, which is the free associative
unital algebra Q〈{Aω}ω〉 together with the usual comultiplication and counit. In this
case, substitution of power series is defined in the same way but it is not associative.
However the comultiplication is still coassociative. A proof of this can be found in [11]
for the one variable case, which is obtained below.

Theorem 7.2.2. The noncommutative plethystic bialgebra with noncommuting variables P♦,nc

is isomorphic to the homotopy cardinality of the incidence bialgebra of BMTMr Sym.

Let us move forward to power series in two variables. All the results are also valid
for any number of variables, but for simplicity and notation we have chosen to show
the two variables case. Also, for the bivariate plethystic bialgebras, we do not enter into
noncommutativity of the variables or of the coefficients.

Let QJx,yK be the ring of formal power series in the variables x and y with coefficients
in Q without constant term. Elements of QJx,yK are written

F(x,y) =
∑

n+m>1

Fn,m

n!m!
xnym.

The set QJx,yK×QJx,yK forms a (noncommutative) monoid with substitution of power
series:(

QJx,yK×QJx,yK
)
×
(
QJx,yK×QJx,yK

)
QJx,yK×QJx,yK(

(F1, F2), (G1,G2)
) (

G1(F1, F2),G2(F1, F2)
)
.

◦

We define the Faà di Bruno bialgebra in two variables F2 as the free polynomial algebra
Q
[
{Ain,m}i=1,2

n+m>1

]
generated by the set maps

Ain,m : QJx,yK×QJx,yK Q

(F1, F2) Fin,m

together with the comultiplication induced by substitution, meaning that

∆(Ain,m)
(
(F1, F2), (G1,G2)

)
= Ain,m

(
(G1,G2) ◦ (F1, F2)

)
,

and counit given by ε(Ain,m) = Ain,m(x,y).

Theorem 7.2.3. The Faà di Bruno bialgebra in two variables F2 is isomorphic to the homotopy
cardinality of the incidence bialgebra of BSym2. The same holds for n variables and Symn.

Notice that Sym2 is the same as TIdSym and the same as TSrC, where C= {0 1 }

(Example 6.1.1). This connects the Faà di Bruno bialgebra in two variables to the T-
construction in an analogous way as the plethystic bialgebras.
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We can do the same with the power series ring in two sets of infinitely many variables
QJx, yK with coefficients in Q. We write

X = (x, y), λ = (λ1, λ2) ∈ Λ2, aut(λ) = aut(λ1) aut(λ2) and Xλ = xλ
1

yλ
2

,

so that elements of QJXK are written

F(X) =
∑
λ

Fλ
aut(λ)

Xλ.

The set QJXK×QJXK forms a (noncommutative) monoid with plethystic substitution of
power series:

(
QJXK×QJXK

)
×
(
QJXK×QJXK

)
QJXK×QJXK(

(F1, F2), (G1,G2)
) (

G1(F1, F2),G2(F1, F2)
)~

The plethystic bialgebra in two variables P2 is defined as the free polynomial algebra
Q
[
{Aiλ}

i=1,2
]

generated by the set maps

Aiλ : QJXK×QJXK Q

(F1, F2) Fiλ

together with the comultiplication induced by substitution, meaning that

∆(Aiλ)
(
(F1, F2), (G1,G2)

)
= Aiλ

(
(G1,G2) ◦ (F1, F2)

)
,

and counit given by ε(Aiλ) = A
i
λ(x,y).

Theorem 7.2.4. The plethystic bialgebra in two variables P2 is isomorphic to the homotopy
cardinality of the incidence bialgebra of BSTSr Sym2.

Example 7.2.5. We could define polynomials P2σ,λ
(
{Aµ}

i
µ

)
to express the comultiplication

of Aiσ, in analogy to the univariate case. Let us see again the interpretation of P2σ,λ
(
{Aµ}

i
µ

)
,

for σ =
(
(0, 0, 0, 0, 0, 1), (0, 0, 0, 1, 0, 1)

)
and λ =

(
(1, 1), (0, 1)

)
, from the point of view of

BSTSr Sym2. These two vectors are represented by

and

respectively. The output color depends on whether we are computing the comultiplication
of A1σ or A2σ. We assume the former, without loss of generality. It is easy to see that there
are essentially three options, which are the only possible colorings of the solutions for
the analogous case of Example 7.2.5:
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, and

At the level of power series, in the style of Example 3.2.5, we have the following substitu-
tions

(x1x2y2)~ (y4 + x3,y3) =(y4 + x3)(y8 + x6)y6 = y4x6y6 + · · ·
(x1x2y2)~ (x6 + y3,y2) =(x6 + y3)(x12 + y6)y4 = x6y6y4 + · · ·
(x1x2y2)~ (y6 + x3,y2) =(y6 + x3)(y12 + x6)y4 = y6x6y4 + · · · .

7.3 Bialgebras from Ass and Ass2

Take again QJxK, but now write elements of QJxK as

F(x) =
∑
n>1

fnx
n.

The ordinary Faà di Bruno bialgebra Ford is the free polynomial algebra Q[a1,a2, . . . ]
generated by the linear maps ai(F) = fi together with the comultiplication induced by
substitution and counit given by ε(an) = an(x), as before.

Theorem 7.3.1. The ordinary Faà di Bruno bialgebra Ford is isomorphic to the homotopy
cardinality of the incidence bialgebra of BS

r
Ass.

It is clear that F and Ford are isomorphic bialgebras, since we have only changed the
basis. However their combinatorial meaning is slightly different, and indeed BS

r
Sym and

BS
r
Ass are not equivalent. Note that Ass is of course the same as TIdAss and, as explained

in Chapter 6, it is also TMr of the trivial monoid. This connects the ordinary Faà di Bruno
bialgebra to the T-construction.

If above we replace Q by R (a noncommutative unital ring), we obtain the noncommut-
ative Faà di Bruno bialgebra Fnc [11, 25, 50], the free associative unital algebra Q〈a1,a2, . . . 〉
generated by the set maps ai(F) = fi, together with the comultiplication induced by
substitution and counit ε(an) = an(x), as before. In this case, substitution of power
series is not associative, but the comultiplication is still coassociative [11]. It is clear that
F and Ford are the abelianization of Fnc [11].

Theorem 7.3.2. The noncommutative Faà di Bruno bialgebra Fnc is isomorphic to the homotopy
cardinality of the incidence bialgebra of BM

r
Ass.

We now move to the plethystic bialgebras. The exponential plethystic bialgebra Pexp is
the same bialgebra as P, but in this case aut(λ) = λ! = λ1!λ2! · · · [60]. The generators of
this bialgebra are denoted by aλ.

Theorem 7.3.3. The exponential plethystic bialgebra Pexp is isomorphic to the homotopy cardin-
ality of the incidence bialgebra of BSTSr Ass.
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The linear plethystic bialgebra with noncommuting variables P♦lin is the same bialgebra as
P♦ but without automorphisms of ω. The generators for this bialgebra are denoted aω.

Theorem 7.3.4. The linear plethystic bialgebra with noncommuting variables P♦lin is isomorphic
to the homotopy cardinality of the incidence bialgebra of BSTMr Ass.

The noncommutative linear plethystic bialgebra with noncommuting variables P♦,nc
lin is

the same as P♦,nc but without automorphisms on ω. We write aω for its generators.
Contrary to what it may seem, the noncommutativity simplifies the explicit formula for
the comultiplication of the generators. Denote by |w| the length of a word. Let also WW

n

be the set of length n words of words of W. Finally, for k ∈N and ω = ω1 . . .ωn ∈W,
define the kth Verschiebung operator as

kω = (kω1) . . . (kωn).

Proposition 7.3.5. The comultiplication of P♦,nc
lin is given by

∆(aν) =
∑
ω∈W

∑
κ∈WW

|ω|

Tκν,ω

 |ω|∏
i=1

aκi

⊗ aω,

where

Tκκκν,ω =

 1 if ν =
∑n
i=1ωiκi

0 otherwise.

This proposition is analogous to Proposition 3.2.3.

Theorem 7.3.6. The noncommutative linear plethystic bialgebra with noncommuting variables
P
♦,nc
lin is isomorphic to the homotopy cardinality of the incidence bialgebra of BMTMr Ass.

Proof. Notice that B1TMr Ass is discrete. Its elements are given by sequences of tuples

(m11, . . . ,m1n1), . . . , (m
k
1 , . . . ,mknk)

of elements of positive natural numbers (see Example 6.2.1), but there is only the
identity morphisms between them. Thus juxtaposition of sequences gives BTMr Ass a
(nonsymmetric) monoidal structure. Sequences containing one tuple are called connected,
and form an algebra basis of the incidence bialgebra. The subgroupoid of connected
sequences is denoted B

◦
1TMr Ass. It is clear that π0B

◦
1TMr Ass = B

◦
1TMr Ass is isomorphic

to W, and that π0B1TMr Ass = B1TMr Ass is isomorphic to WW . Although π0B1TMr Ass =
B1TMr Ass we keep using the notation δω for the isomorphism class of ω ∈ B1TMr Ass. It
only remains to compute the comultiplication:

∆(δν) =
∑
ω

∑
κ

| Iso(d0κ,d1ω)ν|δκ ⊗ δω.

By the discussion above we only have to check that

| Iso(d0κ,d1ω)ν| = T
κ
ν,ω,

but this is clear because there is only one morphism between d0κ and d1ω and fibering
over ν means taking the subset of those morphisms that give ν after composing, hence
| Iso(d0κ,d1ω)ν| = 1 if d1(κ,ω) = ν and 0 otherwise, exactly as Tκν,ω.
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Let us move forward to power series in two variables. Again, all the results are also
valid for any number of variables, but for simplicity and notation we have chosen to
show the two variables case.

Let Q〈〈x,y〉〉 be the ring of formal power series in the noncommutative variables x
and y with coefficients in Q without constant term. Elements of Q〈〈x,y〉〉 are written

F(x,y) =
∑
ω

fωω,

where ω is a nonempty word in x and y. The set Q〈〈x,y〉〉 forms a noncommutative
monoid with substitution of power series.

We define the Faà di Bruno bialgebra in two noncommuting variables F〈2〉 as the free
polynomial algebra Q

[
{aiω}

]
generated by the set maps

aiω : Q〈〈x,y〉〉×Q〈〈x,y〉〉 Q

(F1, F2) fiω

together with the counit given by ε(aiω) = aiω(x,y) and the comultiplication induced by
substitution.

Theorem 7.3.7. The Faà di Bruno bialgebra in two noncommuting variables F〈2〉 is isomorphic
to the homotopy cardinality of the incidence bialgebra of BS

r
Ass2.

We obtain the noncommutative Faà di Bruno bialgebra in two noncommuting variables
F〈2〉,nc by taking above power series with coefficients in R.

Theorem 7.3.8. The noncommutative Faà di Bruno bialgebra in two noncommuting variables
F〈2〉,nc is isomorphic to the homotopy cardinality of the incidence bialgebra of BAss2.

Finally, the exponential plethystic bialgebra in two variables P2exp is the same as P2 but
with exponential automorphisms aut(λ) = λ1!λ2! · · · . The generators of this bialgebra
are denoted aiλ.

Theorem 7.3.9. The exponential plethystic bialgebra in two variables P2exp is isomorphic to the
homotopy cardinality of the incidence bialgebra of BSTSr Ass2.

7.4 Y-plethysm and bialgebras from Y

In Section 7.3 we could have taken the locally finite monoid (N,×) instead of Ass, since
TM

r
Ass = (N,×) (Example 6.2.1). In fact, we have indirectly done so in the proof of

Theorem 7.3.6. It is the case that the three plethystic bialgebras of Section 7.3 can be
generalized to any locally finite monoid. In this section we explain the generalization of
Pexp, which arises from Y-plethysm, introduced by Méndez and Nava [56] in the context
of colored species.

Let Y be a locally finite monoid; this means that any m ∈ Y there has a finite number
of two-step factorizations m = nk. This is the same as the finite decomposition property
of Cartier–Foata [14]. Consider the ring of formal power series QJxm|m ∈ YK without
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constant term. Following the same conventions as above, the set of variables {xm}m∈Y is
denoted x. Elements of QJxK are written

F(x) =
∑
λ∈Λ

fλ
λ!

xλ,

where now the sum is indexed by the subset Λ ⊆ HomSet(Y, N) of maps with finite
support, and xλ is the obvious monomial, for λ ∈ Λ. In this case λ! =

∏
λm!.

The monoid structure of Y defines an operation xm ~ xn = xmn, which extends to a
binary operation on QJxK as

(G~ F)(xm|m ∈ Y) :=G(Fm|m ∈ Y), where

Fm(xn|n ∈ Y) := F(xmn|n ∈ Y).

This substitution operation was introduced in [56] in the context of species colored over
a monoid, although their conditions on the monoid are more restrictive (see Section 1.2).
The main example comes from the monoid (N+,×), which gives ordinary plethysm.
Another relevant example is (N,+), which gives Fk(x) = F(xk, xk+1, . . . ), which appears
in [55]. The power series Fm can be described by using the Verschiebung operators: for
each m ∈ Y we define the mth Verschiebung operator Vm on HomSet(Y, N) as follows:
for each λ ∈ HomSet(Y, N) and n ∈ Y,

Vmλ(n) =
∑
mk=n

λk.

Clearly if Y = (N+,×) this gives the usual Verschiebung operators [15,60,61]. The power
series Fm can be expressed as

Fm(x) =
∑
λ

fλ
aut(λ)

xV
mλ.

As usual, we define the Y-plethystic bialgebra PY as the polynomial algebra Q
[
{aλ}λ

]
on the set maps aλ : QJxK → Q defined by aλ(F) = fλ, with comultiplication dual to
plethystic substitution, that is

∆(aλ)(F,G) = aλ(G~ F),

and counit given by ε(aλ) = aλ(x1).
What follows is devoted to expressing the comultiplication of PY . We develop it in an

analogous way as P in Section 3.2. Consider a list µµµ ∈ Λn of n infinite vectors, regarded
as a representative element of a multiset µµµ ∈ Λn/Sn. We denote by R(µµµ) ⊆ Sn the set
of automorphisms that maps the list µµµ to itself. For example if µµµ = {α,α,β,γ,γ,γ} then
R(µµµ) has 2! · 1! · 3! elements. Notice that if µµµ,µ ′µ ′µ ′ ∈ Λn are representatives of the same
multiset then there is an induced bijection R(µµµ) ∼= R(µ ′µ ′µ ′). We may thus refer to R(µµµ)
for a multiset µµµ ∈ Λn/Sn by taking a representative, since we are only interested in its
cardinality.

Fix two infinite vectors, σ, λ ∈ Λ, and a list of infinite vectors µµµ ∈ Λn, with n = |λ|.
We define the set of (λ,µµµ)−decompositions of σ as

T
µµµ
σ,λ :=

{
p : µµµ

∼−−→
∑
m∈Y

{1, . . . , λm} | σ =
∑
µ∈µµµ

Vq(µ)µ

}
,
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where p is a bijection of n-element sets and q returns the index of p(µ) in the sum. A
useful way to visualize an element of this set is as a placement of the elements of µµµ over
a grid with λm cells in the mth column such that if we apply Vm to the mth column
and sum the cells the result is σ. For example, if λ = (λm1

, λm2
, λm3

) = (2, 1, 3) and
µµµ = {α,α,β,γ,γ,γ} the placement

γ

α

Vm1

γ

Vm2

α

β

γ

Vm3

belongs to Tµµµσ,λ if σ = Vm1(γ + α) + Vm2(γ) + Vm3(α + β + γ), where the sum is a
pointwise vector sum in Λ. Note that each such placement appears |R(µµµ)| times in Tµµµσ,λ.
Observe also that if µµµ,µ ′µ ′µ ′ ∈ Λn are representatives of the same multiset then there is
an induced bijection Tµµµσ,λ

∼= T
µ ′µ ′µ ′

σ,λ. We may thus refer to Tµµµσ,λ for a class µµµ ∈ Λ|λ|/S|λ| by
taking a representative, since we are only interested in its cardinality.

Proposition 7.4.1. The comultiplication of PY is given by

∆(σ) =
∑
λ

∑
µµµ

aut(σ) · |Tµµµσ,λ|

aut(λ) · aut(µµµ)

∏
µ∈µµµ

aµ. (7.4.1)

This proposition is analogous to Proposition 3.2.3.

Theorem 7.4.2. The Y-plethystic bialgebra PY is isomorphic to the homotopy cardinality of the
incidence bialgebra of BSTSrY.

Proof of 7.4.2. Let us compute the homotopy cardinality of the incidence bialgebra of
BTSrY. First of all, notice that the elements of B1TSrY = S

r
TSrY are sequences of tuples

(m11, . . . ,m1n1), . . . , (m
k
1 , . . . ,mknk)

of elements of Y. Juxtaposition of sequences gives BTSrY a symmetric monoidal structure.
Sequences containing only one tuple are called connected, and form an algebra basis of
the incidence bialgebra. Since the morphisms between tuples are given by permutations, it
is clear that the set of isomorphism classes of connected elements π0B

◦
1TSrY is isomorphic

toΛ, the subset of HomSet(Y, N) consisting of maps with finite support. The isomorphism

class δλ of a connected element λ is given by the map Y λ−→N such that λm is the number
of times m appears in λ. Be aware that the same notation is used for either the connected
elements of B1TSrY and the maps representing their isomorphism class. Moreover,

π0B1TSrY ∼=
∑
n

Λn//Sn,

so that an element τ ∈ π0B1TSrY may be identified with a multiset µµµ of maps. With these
identifications we clearly have

|Aut(λ)| = λ! and |Aut(τ)| = aut(µµµ),
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for λ connected and τ not necessarily connected. The left-hand sides refer to the auto-
morphism groups in B1TSrY, while the right-hand sides were introduced above.

The assignment

Qπ0B1TSrY −→ Pexp

δλ 7−→ aλ
δλ+µ = δλδµ 7−→ aλaµ,

for λ and µ connected, defines an isomorphism of algebras. Notice that λ+ µ is the
monoidal sum in B1TSrY, which does not correspond to the pointwise sum of their
corresponding infinite vectors, since it has two connected components.

We now have to compute the coproduct in Qπ0B1TSrY . It is enough to compute it for
connected elements. From Lemma 2.4.2 we have, for σ connected,

∆(δσ) =
∑
λ

∑
τ

| Iso(d0τ,d1λ)σ|
|Aut(λ)||Aut(τ)|

δτ ⊗ δλ. (7.4.2)

In view of the discussion above, it only remains to show that

| Iso(d0τ,d1λ)σ| = aut(σ) · |Tµµµσ,λ|.

Consider representatives for τ and λ,

τ =
(
(m11, . . . ,m1n1), . . . , (m

k
1 , . . . ,mknk)

)
λ = (m1, . . . ,mk),

then d0τ = d1λ = (1, . . . , 1), k times. This means that

Iso(d0τ,d1λ) = Aut(1, . . . , 1) ∼= Sk.

Any element φ ∈ Iso(d0τ,d1λ) induces a map between sequences(
(m11, . . . ,m1n1), . . . , (m

k
1 , . . . ,mknk)

) φ−−→ (m1, . . . ,mk).

We express it as a permutation on τ and write

φ(τ) =
(
(m
φ(1)
1 , . . . ,mφ(1)

nφ(1)
), . . . , (mφ(k)

1 , . . . ,mφ(k)
nφ(k)

)
)
.

Now, consider the subset{
φ ∈ Iso(d0τ,d1λ) | d1

(
(φ(τ), λ)

)
' σ
}

.

It is straightforward to see that this subset is isomorphic to

T
µµµ
σ,λ :=

{
p : µµµ

∼−−→
∑
m∈M

{1, . . . , λm} | σ =
∑
µ∈µµµ

Vq(µ)µ

}
,

under the identifications τ → µµµ and φ → p. The summation of the Verschiebung
operators is precisely composition of φ(τ) and λ. Finally, since Iso(d0τ,d1λ)σ is a
homotopy fiber we have that

Iso(d0τ,d1λ)σ ∼= Aut(σ)×
{
φ ∈ Iso(d0τ,d1λ) | d1

(
(φ(τ), λ)

)
' σ
}

∼= Aut(σ)× Tµµµσ,λ

and therefore
| Iso(d0τ,d1λ)σ| = aut(σ) · |Tµµµσ,λ|,

as we wanted to see.

This proves also Theorem 7.3.3 by taking the monoid (N+,×).
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TS revisited

We end this work by exploring the relations between the T-construction and the simplicial
groupoid TS. We first prove that TS and BSTSr Sym are equivalent simplicial groupoids.
This proves in particular Theorem 7.0.2. Then we show that the operads of Chapter 7

arising from Ass or Sym are also equivalent to similar simplicial groupoids.

8.1 Equivalence between TS and BST
SrSym

Consider the category of finite ordinals [n] = {1, . . . ,n} and set maps. We say that a
square

[m] [n]

[l] [k]

p

q

y
f

g

(8.1.1)

is monotone if it is a pullback of sets, p is monotone and q is monotone at each fiber over
p, that is, q|p−1(i)| is monotone for all i ∈ [l].

Lemma 8.1.1. Consider the category of finite ordinals and set maps.

(i) The class of monotone pullback squares is closed under composition of squares.

(ii) Given a diagram [l]
g−→ [k]

f←− [n], there is a unique monotone square as (8.1.1).

Proof. (i) is clear, and (ii) follows from the fact that we can totally order the pullback,

P =
∑
i∈[k]

[l]i × [n]i,

by using the orders of [l] and [n]. That is, given a,b ∈ P, then a < b if p(a) < p(b) or
p(a) = p(b) and q(a) < q(b).

Consider the full subsimplicial groupoid V ⊆ TS containing only the simplices whose
entries are the finite ordinals [k], whose left-down arrows and right arrows are monotone
surjections and whose left-down arrows are fiber-monotone in the sense of (8.1.1), and
whose pullback squares are monotone. Note that Lemma 8.1.1 ensures that V is well
defined, meaning that the inclusion V ↪→ TS is a morphism of simplicial groupoids.

Lemma 8.1.2. V ↪→ TS is an equivalence of simplicial groupoids.

99
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Proof. Given an element of TnS,

t01 tn−1,n

t00 t11 tn−1,n−1 tnn,

it is clear we can choose an ordering of the tii and the ti,i+1 such that all the arrows
between them are monotone. Then by Lemma 8.1.1 there exists a unique ordering on
the rest of the tij’s making the pullback squares monotone. Hence the inclusion is
essentially surjective. Since we have taken the full inclusion, the automorphism group of
any element of Vn is equal to to its automorphism group as an element of TnS. Hence
the inclusion is an equivalence.

Note that in V the uniqueness of the monotone squares implies that the Segal maps
are in fact isomorphisms,

Vn ∼= V1×V0 · · · ×V0V1.

In other words, there is a well-defined composition d1 : V1×V0V1 → V1. In view of this
we may drop the elements tij with j > i+ 2 from the diagrams.

Lemma 8.1.3. Let V be the operad whose n-ary operations are diagrams

[m]

[n] 1

where [m]� [n] is monotone, whose morphisms are entrywise bijections, and whose composition
is given by monotone pullback squares. Then V ∼= BV.

Proof. The isomorphism is given by

[m1] [mk]

[n1] 1, , [n2] 1,

7→
[m1 + · · ·+mk]

[n1 + · · ·+nk] [k]

at the level of 1-simplices and similarly in general.

Lemma 8.1.4. V is isomorphic to TSr Sym.

Proof. An operation of TSr Sym is a family of operations of Sym, which is equivalent to
a monotone surjection [m]� [n]. It is also clear that morphims between operations of
TSr Sym are the same as morphisms in V. Thus we only need to see that the compositions
coincide. Let us denote by x the unique x-ary operation of Sym. Thus a general element
of TSr Sym is a tuple (x1, . . . , xn). By definition of the T-construction

(x1, . . . , xn)~
(
(y11, . . . ,y1k1), . . . , (y

n
1 , . . . ,ynkn)

)
=

=
(
y11 · x1, . . . ,y1k1 · x1, . . . ,yn1 · xn, . . . ,ynkn · xn

)
,
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which is nothing but the pullback [∑
i,j xiy

i
j

]
[∑

i,j y
i
j

] [∑
i xi
]

[∑
i k
i
i

]
[n] 1,

y

the composition of their corresponding operations in V.

Proposition 8.1.5. The simplicial groupoids TS and BSTSr Sym are equivalent.

Proof. It is direct from Lemmas 8.1.1, 8.1.2 and 8.1.3.

Example 8.1.6. Consider the following 2-simplex of BSTSr Sym:

, or

(8.1.2)

We use colors here only to make the comparison more pleasant, but of course this is not
a colored operad. This 2-simplex corresponds, in TS, to

17

7 5

3 2 1.

y
(8.1.3)

It is opportune in this example to show that indeed the opposite convention comes out
more naturally in order to interpret TS as an operad. Recall from Section 3.3 that using
the Verschiebung operators as a scalar multiplication (see Remark 3.2.1) we can write the
information on (8.1.3) as

17� 3 = (9� 2) + (8� 1) = V3(3� 2) + V2(4� 1) = (3× 3� 2) + (2× 4� 1),
(8.1.4)

This was used in the proof of Theorem 3.3.1, and we can clearly see it in (8.1.2). On the
contrary, it is not difficult to check that without the opposite convention Equation (8.1.4)
would rather appear as

17� 3 = (9� 2) + (8� 1) =
(
(2× 3� 1) + (1× 3� 1)

)
+ (4× 2� 1).
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8.2 Other TS-like simplicial groupoids

We now present other equivalences between variations of TS and some of the bar con-
structions treated before. First of all we introduce some notation: monotone surjections
between ordered sets are denoted a b.• We call linear surjection a b◦ a sur-
jection between finite sets f : a � b with an order on f−1(r) for each r ∈ b, as in
Section 3.4.

Notice that the composite of two monotone surjections is again a monotone surjection,
and the composite of two linear surjections is again a linear surjection, with the obvious
order. Moreover, given pullback squares

•p
y

•f and ◦q
y

◦g ,

we say that p and f are compatible if the order of p is induced by the order of f, in the
sense of Lemma 8.1.1. Similarly, we say that q and g are compatible if the order of q is
induced by the order of g.

The proofs of all the following results are similar to the one of Proposition 8.1.5. To
avoid repetitiveness we give only intuitive explanations.

Example 8.2.1. The simplicial groupoid BSTSr Ass is equivalent to the simplicial groupoid
constructed as TS but with the additional structure that all the left-down surjections are
linear and compatible. Morphisms are order-preserving levelwise bijections. Hence the
1-simplices are diagrams

t01

t00 t11.

◦

The isomorphism classes of connected diagrams are again infinite vectors λ = (λ1, λ2, . . . )
as in TS, and the number of automorphisms of a connected element of class λ is precisely
λ1! · λ2! · · · , since t01 is fixed.

Recall from Section 1.4 the definition of linear transversal. In the language of surjec-
tions, a linear partition corresponds to a surjection σ : E� B with a partial order on E
consisting of linear orders on each fiber of σ. We shall name these surjections linear, and
denote them σ : E B.◦ A linear transversal of σ corresponds to a transversal

E

S X

B I 1

π◦ τ
σ◦

y

γ
◦

θ
◦

(8.2.1)

such that all the left-down surjections are linear and whose linear orders are compatible.
By compatible we mean that the order of σ is the one induced by the orders of π and γ
and the order of π is induced by the one of θ along the pullback.

We can clearly recognize this as an object in the groupoid of 2-simplices of BSTSr Ass.
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Example 8.2.2. The simplicial groupoid BSTMr Ass is equivalent to the simplicial grou-
poid constructed as TS but with the additional structure that the left-down surjections
and the right surjections are linear and compatible. Morphisms are order-preserving
levelwise bijections. Hence the 1-simplices are diagrams

t01

t00 t11.

◦

◦

Observe that for a connected element, t00 is totally ordered. Thus the isomorphism
classes of connected elements are given by words ω = ω1ω2 . . .ωn where ωi is the size
of the ith fiber. It does not have any automorphisms, since t01 and t00 are fixed.

Example 8.2.3. The simplicial groupoid BSTMr Sym is equivalent to the simplicial group-
oid constructed as TS but with the additional structure that the right surjections are
linear and compatible. Morphisms are order-preserving levelwise bijections. Hence the
1-simplices are diagrams

t01

t00 t11.◦

Observe that for a connected element, t00 is totally ordered. Thus the isomorphism
classes of connected elements are given by finite words ω = ω1ω2 . . .ωn where ωi > 0
is the size of the ith fiber. It has ω! := ω1!ω2! · · ·ωn! automorphisms, since t00 is fixed.

Example 8.2.4. The simplicial groupoid BMTMr Sym is equivalent to the simplicial group-
oid constructed as TS but with the additional structure that the right surjections are
monotone. Morphisms are order-preserving levelwise bijections. Hence the 1-simplices
are diagrams

t01

t00 t11.•

Observe that for a connected element, t00 is totally ordered. Thus the isomorphism
classes of connected elements are given by finite words ω = ω1ω2 . . .ωn where ωi > 0
is the size of the ith fiber. It has ω! := ω1!ω2! · · ·ωn! automorphisms, since t00 is fixed.
The difference between this simplicial groupoid and the one of Example 8.2.3 is that in
this case t11 is also ordered. As a consequence the monoidal structure is not symmetric,
so that the resulting incidence bialgebra is not commutative.

Example 8.2.5. The simplicial groupoid BMTMr Ass is equivalent to the simplicial groupoid
constructed as TS but with the additional structure that the left-down surjections and
the right surjections are monotone and compatible. Morphisms are order-preserving
levelwise bijections. Hence the 1-simplices are diagrams

t01

t00 t11.

•

•
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Observe that for a connected element, t00 is totally ordered. Thus the isomorphism
classes of connected elements are given by words ω = ω1ω2 . . .ωn where ωi is the size
of the ith fiber. It does not have any automorphisms, since t01 and t00 are fixed. Again,
the difference between this simplicial groupoid and the one of Example 8.2.2 is that in
this case t11 is ordered.

Example 8.2.6. Finally, the simplicial groupoid BSTSr Sym2 is equivalent to the simplicial
groupoid constructed as TS but with the additional structure that the objects are 2-colored
and the right-down surjections are color preserving. Morphisms are color-preserving
levelwise bijections.

For instance, the following 2-simplex of BSTSr Sym2,

, or

(8.2.2)

where now the colors do refer to the input and output colors, corresponds to the following
2-simplex:

17

3+4 5

1+2 1+1 1.

y

(8.2.3)

Observe that indeed the right-down surjections are color-preserving. Notice also that if
we had not used here the opposite convention the colors of (8.2.2) would not match the
colors of (8.2.3) in such a direct way.



A
Some axioms

a.1 Axioms for internal category

Let E be a cartesian category. A category C internal to E can be described by objects and
arrows of E

C1

C0 C0

s t

C1×C0C1 C1

C0 C1

m

e

where the pullback is taken along C1
s−−→ C0

t←−− C1, satisfying the following commutat-
ive diagrams:

C1×C0C1 C1

C1 C0

p1

m

s

s

(A.1.1a)

C1×C0C1 C1

C1 C0

p2

m

t

t

(A.1.1b)

C0 C1

C0

id

e

s (A.1.2a)
C0 C1

C0

id

e

t (A.1.2b)

(C1×C0C1)×C0C1 C1×C0C1

C1×C0(C1×C0C1)

C1×C0C1 C1

m×C0C1

m

C1×C0m

m

(A.1.3)
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C0×C0C1 C1×C0C1

C1

p2

e×C0C1

m

(A.1.4a)

C1×C0C0 C1×C0C1

C1

p1

C1×C0e

m

(A.1.4b)

a.2 Axioms for P-operad

Let E be a cartesian category and (P,µ,η) a cartesian monad. A P-multicategory Q can
be described by objects and arrows of E

Q1

PQ0 Q0

s t

PQ1×PQ0Q1 Q1

Q0 Q1

m

e

where the pullback is taken along PQ1
t−→ PQ0

s←− Q1, satisfying the following commut-
ative diagrams:

PQ1×PQ0Q1 PQ1

P2Q0

Q1 PQ0

p1

m

Ps

µQ0

s

(A.2.1a)

PQ1×Q0Q1 Q1

Q1 Q0

p2

m

t

t

(A.2.1b)

Q0 Q1

PQ0

ηQ0

e

s (A.2.2a)
Q0 Q1

Q0

id

e

t (A.2.2b)
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(P2Q1×P2Q0PQ1)×PQ0Q1 PQ1×PQ0Q1

P2Q1×P2Q0(PQ1×PQ0Q1)

PQ1×PQ0Q1 Q1

Pm×Q0Q1

m

µQ1×µQ0m

m

(A.2.3)

PQ0×PQ0Q1 PQ1×PQ0Q1

Q1

p2

Pe×Q0Q1

m

(A.2.4a)

Q1×Q0Q0 PQ1×PQ0Q1

Q1

p1

Q1×Q0e

m

(A.2.4b)





B
Some proofs

b.1 Associativity of TPC

Proof of Lemma 5.1.2. Let us begin by proving (5.1.6a). We have from (5.1.2) that

C̃3 ∼= PC̃ ′2×
PC0
C̃1,

so that the inner face map d̃1 is isomorphic to

PC̃ ′2×
PC0
C̃1

Pd̃ ′1×idid
−−−−−−→ C̃2.

However, in order to see (5.1.2) it is convenient to express C̃3 and d̃1 in another form.
Diagram (B.1.2) represents a commutative square

C̃ ′3 PC̃ ′2×PC0
C̃1

C̃ ′2 C̃2

d̃ ′1 Pd̃ ′1×idid
(B.1.1)

109
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introducing both C̃ ′3 ∼= C̃3 and its corresponding map d̃ ′1. The square above is pictured
in bold letters at the left of (B.1.2), indicating that each element is the total fiber product
of its row, and similarly for the arrows:

C̃2C̃2C̃2 P2C1 P2C0 PLC0 PC0 PC1 PC0 LC0

P3C1

P3C2

P3C1 P3C0 P3C1 P3C0

PC̃ ′2×PC0
C̃1PC̃ ′2×PC0
C̃1PC̃ ′2×PC0
C̃1 P3C1 P3C0 P2LC1 P2LC0 P(C0×P21) PC0 PC1 PC0 LC0

C̃ ′3C̃
′
3C̃
′
3 P3C1 P3C0 P2LC1 P2LC0 P(C1×P21) P(C0×P21) C0×P31

P3C1 P3C0 P3C1 P3C0

P3C2

P3C1

C̃ ′2C̃
′
2C̃
′
2 P2C1 P2C0 PLC1 PLC0 C0×P21

C̃2C̃2C̃2 P2C1 P2C0 PLC0 PC0 PC1 PC0 LC0

P2d0 PDC0 PRC0 Pd1 Pd0 DC0

PµC1

P3d1

P3d2 P3d0
y

P3d0 P3d1

P3d0

PµC0

P3d0 P2Ld0

P2DC1 P2DC0

PDC0 ,P1

Pp1

P(µ1×id)

Pd1
Pd0 DC0

P3d0 P2Ld0

P2DC1 P2DC1

PDC0 ,P1◦P(d1×id)

P(d0×id)

Pp1
P(d1×id)

(A)

P(id×µ1)

y
Pp1

P(id×µ1)

D
C0 ,P21

(B)

id×Pµ1

y

P3d0

P3d1

P3d0

PµC0

P3d2 P3d0y

P3d1

PµC1

P2C0 PDC0◦PLd1 PLd0
PRC1

PLd1

y
PRC0

DC0 ,P1

C0×Pu

y

P2C0 PDC0 PRC0 Pd1 Pd0 DC0

(B.1.2)
Note that the square (A) is clearly a pullback, and (B) is a consequence of Lemma 4.4.2.
The rest of diagrams inside (B.1.2) are the same as the ones in (5.1.2) and (5.1.3), with
perhaps some extra P or L. This, together with the fact that all the arrows to the left of
(A) are identities, ensures that the morphism C̃ ′3 → PC̃ ′2×PC0

C̃1 is indeed an isomorphism.

Hence, we only need to see that the vertical diagrams, given by the coloring, commute,
but they are all either trivial or projections. Now, the following diagram defines a
morphism

C̃ ′3
i ′3−−−−→ P3C3,

P3C1 P3C0 P2LC1 P2LC0 P(C1×P21) P(C0×P21) C0×P31

P3C1 P3C0 P3C1 P3C0 P3C1 P3C0 ,

P3d0 P2Ld0

P2DC1
P2DC1

P(d0×id)

PD2
C1

PD2
C0

D
C0 ,P21

P3d0 P3d1 P3d0 P3d1 P3d0

(B.1.3)
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which is given by applying the strength D to every factor. Thus, the last thing to check is
that the square

C̃ ′3 P3C3

P3C2

C̃ ′2 P2C2,

d̃ ′1

i ′3

P3d1

PµC2

i ′2

(B.1.4)

From the definitions of i ′3, C̃2
d̃ ′1−→ C̃1 and i ′2 (5.1.3) and C̃ ′3

d̃ ′1−→ C̃ ′2 (B.1.2) this square is
given by the following diagram,

P2C2P2C2P2C2 P2C1 P2C0 P2C1 P2C0

P3C2P3C2P3C2 P3C1 P3C0 P3C1 P3C0

P3C2

P3C3P3C3P3C3 P3C1 P3C0 P3C1 P3C0 P3C1 P3C0

C̃ ′3C̃
′
3C̃
′
3 P3C1 P3C0 P2LC1 P2LC0 P(C1×P21) P(C0×P21) C0×P31

P3C1 P3C0 P3C1 P3C0

P3C2

P3C1

C̃ ′2C̃
′
2C̃
′
2 P2C1 P2C0 PLC1 PLC0 C0×P21

P2C2P2C2P2C2 P2C1 P2C0 P2C1 P2C0

P2d0 P2d1 P2d0

P3d0

PµC1 PµC0

P3d1

P3d0

PµC1 PµC0

P3d2 P3d0
y

P3d1

P3d0

P3d1

P3d0

P3d1

P3d0

P3d0 P2Ld0

P2DC1

P2DC1

P2DC0

P2DC1

P(d0×id)

P(id×µ1)

PD2C1 PD2C0

P(id×µ1)

D
C0P21

id×Pµ1

P3d0

P3d1

P3d0

PµC0

P3d2

P3d0

y

P3d1

PµC1

P2C0 PLd0

PDC1 PRC0

DC0 ,P1

P2C0 P2d1 P2d0

(B.1.5)
which clearly commutes. Therefore (5.1.6a) also commutes, as we wanted to see.

Let us do the same for (5.1.6b). We have from (5.1.2) that

C̃3 ∼= P2C̃1 ×
P2C0

C̃ ′2,

so that the inner face map d̃2 is isomorphic to

P2C̃1 ×
P2C0

C̃ ′2
µ
C̃1
×µC0 d̃

′
1

−−−−−−−−→ C̃2.
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However, in order to see (5.2.2) it is convenient to work again with the corresponding

face map C̃3
d̃ ′2−→ C̃ ′2. Diagram (B.1.7) represents a commutative square

C̃ ′3 P2C̃1 ×
P2C0

C̃ ′2

C̃ ′2 C̃2

d̃ ′2 µ
C̃1
×µC0 d̃

′
1

(B.1.6)

defining d̃ ′2. The square above is pictured in bold letters at the left of (B.1.7), indicating
that each element is the total fiber product of its row, as before:

C̃2C̃2C̃2 P2C1 P2C0 PLC0 PC0 PC1 PC0 LC0

P2C1

P2C2

P2C0 P2C1 P2C0 P2C1 P2C0

P2C̃1 ×
P2C0

C̃ ′2P2C̃1 ×
P2C0

C̃ ′2P2C̃1 ×
P2C0

C̃ ′2 P3C1 P3C0 P2LC0 P2C0 P2C1 P2C0 PLC1 PLC0 C0×P21

C̃ ′3C̃
′
3C̃
′
3 P3C1 P3C0 P2LC1 P2LC0 P(C1×P21) P(C0×P21) C0×P31

P3C0 P2LC1 P2LC0 P2LC1 P2LC0

P2LC2

P2LC1

C̃ ′2C̃
′
2C̃
′
2 P2C1 P2C0 PLC1 PLC0 C0×P21

C̃2C̃2C̃2 P2C1 P2C0 PLC0 PC0 PC1 PC0 LC0

Pd0 PDC0 PRC0 Pd1 Pd0 DC0

µC1

P2d1

P2d1 P2d2
y

µC0

P2d1

P2d0

P2d1

P2d0

µC0

P2d0

µPC1 µPC0

P2DC0

P2RC0

µLC0

d1

d0 PLd0

PDC1 PDC0

DC0 ,P1

id×µ1

P2d0

µPC1

P2DC0◦P
2Ld1

P2Ld0

P2RC1
PLd1

(A)

y
P2RC0 (B)

P(d0×id)

P(id×Pu) (C)

PDC1 ,P1

yy

P(id×Pu)

PDC0 ,P1

D
C0 ,P21

id×µP1

id×P2u(D)

y

µPC0

P2DC0◦P
2Ld1

P2Ld0

P2Ld1

P2Ld0

µLC0

P2Ld1 PLd0

P2Ld1

y

µLC1

P2d0
PDC0◦PLd1

PLd0

PRC1
PLd1

y
PRC0

DC0 ,P1

id×Pu

P2d0 PDC0 PRC0 Pd1 Pd0 DC0

(B.1.7)
Note that the squares (A) and (C) are clearly a cartesian, and (B) and (D) are a con-
sequence of Lemma 4.4.2. The rest of diagrams inside (B.1.7) are the same as the ones in
(5.1.2) and (5.1.3), with perhaps some extra P or L. This, together with the fact that all the
arrows to the left of (A) are identities, ensures that the morphism C̃ ′3 → P2C̃1 ×

P2C0

C̃ ′2 is

indeed an isomorphism. Hence, we only need to see that the vertical diagrams, given by
the coloring, commute: the orange, yellow and blue diagrams are trivial, the red diagram
is naturality of µ at u, the green one is naturality of µ at RC0 plus naturality of D at u
and the purple diagram is naturality of µ at RC1 plus naturality of R at d1.
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The last thing to check is that the square

C̃ ′3 P3C3

P3C2

C̃ ′2 P2C2,

d̃ ′2

i ′3

P3d2

µPC2

i ′2

(B.1.8)

commutes. From the definitions of i ′3 (B.1.3), C̃2
d̃ ′1−→ C̃1 and i ′2 (5.1.3) and C̃ ′3

d̃ ′2−→ C̃ ′2
(B.1.7) we have that this square is given by the diagram

P2C2P2C2P2C2 P2C1 P2C0 P2C1 P2C0

P3C2P3C2P3C2 P3C1 P3C0 P3C1 P3C0

P3C2

P3C3P3C3P3C3 P3C1 P3C0 P3C1 P3C0 P3C1 P3C0

C̃ ′3C̃
′
3C̃
′
3 P3C1 P3C0 P2LC1 P2LC0 P(C1×P21) P(C0×P21) C0×P31

P3C0 P2LC1 P2LC0 P2LC1 P2LC0

P2LC2

P2LC1

C̃ ′2C̃
′
2C̃
′
2 P2C1 P2C0 PLC1 PLC0 C0×P21

P2C2P2C2P2C2 P2C1 P2C0 P2C1 P2C0

P2d0 P2d1 P2d0

P3d0

µPC1 µPC1

P3d1 P3d0

µPC0 µPC0

P3d2 P3d0
y

P3d1

P3d0

P3d1

P3d0

P3d1

P3d0

P3d0

µPC1

P2Ld0

P2DC1 P2DC0

P(d0×id)

PD2C1

PDC1 ,P1

PDC0 ,P1

PD2C0

D
C0 ,P21

id×µP1

µPC0

P2Ld0 P(id×d0)

µLC0

P2Ld2

P2Ld0

y

P2Ld1

µLC1

P2d0 PLd0

PDC1 PDC0

DC0 ,P1

P2d0 P2d1 P2d0

(B.1.9)
which commutes by naturality of D. Therefore (5.1.6b) also commutes, as we wanted to
see.
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b.2 Left and right composition with the unit in TPC

Proof of Lemma 5.1.5. Let us begin by showing (5.1.8a). The following diagram is an
expanded version of (5.1.8a) in the way shown by the bold diagram in the left, so that the
fiber product of each row is the bold element at its left, and similarly for the arrows.

P2C2P2C2P2C2 P2C1 P2C0 P2C1

PC2PC2PC2 PC1 PC0 PC1

PC0×
PC0

PC1PC0×
PC0

PC1PC0×
PC0

PC1 PC0 PC0 PC1

PC0×
PC0
C̃1PC0×

PC0
C̃1PC0×

PC0
C̃1 PC0 PC0 PC0 PC0 PC1 PC0 LC0

P2C0

C̃2C̃2C̃2 P2C1 P2C0 PLC0 PC0 PC1 PC0 LC0

PLC1

P2C2P2C2P2C2 P2C1 P2C0 P2C1

P2d0 P2d1

Pd0

PηC1 PηC0

Pd1

PηC1

Pe

Pd1

PηC0

PηC0 PFC0

Pd1 Pd0 DC0

P2e

P2d0

PRC0
PDC0

Pd1
Pd0 DC0

PLd1 PRC1

PDC1

y

P2d0 P2d1

(B.2.1)
The arrows without a label are identities. All the diagrams in (B.2.1) have appeared
before, in the definitions of C̃1 (5.1.1), i ′2 (5.1.4) or ẽ (5.1.7). Hence we only have to see
that the three diagrams given by the colors commute. The red square is just P applied
to naturality of η at e, and the green one is trivial. For the blue diagram notice that the
pullback induces a morphism PC1 → PLC1 which is easily seen to be PFC1 , but by axiom
(4.4.2a) we have that PDC1 ◦ PFC1 = PηC1 , which coincides with the upper blue diagram,
as we wanted to see.
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Let us now see (5.1.8b). We expand the diagram in the same way:

P2C2P2C2P2C2 P2C1 P2C0 P2C1

PC2PC2PC2 PC1 PC0 PC1

PC1×
PC0

PC0PC1×
PC0

PC0PC1×
PC0

PC0 PC1 PC0 PC0

C̃1×
C0

C0C̃1×
C0

C0C̃1×
C0

C0 PC1 PC0 LC0 C0 C0 C0 C0

PC0

C̃2C̃2C̃2 P2C1 P2C0 PLC0 PC0 PC1 PC0 LC0

PLC1

P2C2P2C2P2C2 P2C1 P2C0 P2C1

P2d0 P2d1

Pd0

ηPC1 ηPC0 ηPC1

Pd1

Pd0

Pe

ηPC1

Pd0

ηPC0

DC0

RC0

ηLC0

DC0

ηC0

ηC0

ηC0 FC0

Pe

P2d0 PDC0

PRC0 Pd1
Pd0 DC0

PLd1 PRC0

PDC1

y

P2d0 P2d1

(B.2.2)
As before, all the diagrams in (B.2.1) have appeared before, in the definitions of C̃1 (5.1.1),
i ′2 (5.1.4) or ẽ (5.1.7). Hence we only have to see that the three diagrams given by the
colors commute. In this case both the red and the green diagrams are trivial. For the blue
one, notice that the pullback induces a morphism LC0 → PLC1 which is easily seen to be
PLe ◦ ηLC0 , and as a consequence the lower blue diagram coincides with the upper blue
diagram, by naturality of D and η.

b.3 Associativity in TPQ

Proof of Lemma 5.2.2. Let us begin by proving (5.2.6a). We have from (5.2.2) that

Q3
∼= Q

′
2×
Q0

Q1,

so that the inner face map d1 is isomorphic to

Q
′
2×
Q0

Q1
d
′
1×idid−−−−−→ Q2.

However, in order to see (5.2.2) it is convenient to express Q3 and d1 in another form.
Diagram (B.3.2) represents a commutative square

Q
′
3 Q

′
2×
Q0

Q1

Q
′
2 Q2

d
′
1 d

′
1×idid

(B.3.1)



116 some proofs

introducing both Q ′3 ∼= Q3 and its corresponding map d ′1. The square above is pictured
in bold letters at the left of (B.3.2), indicating that each element is the total fiber product
of its row, and similarly for the arrows:

Q2Q2Q2 LQ0 PQ0 Q1 Q0 LQ0 PQ0 Q1

Q2

Q0×P21 P2Q0 PQ1 PQ0 Q1 Q0

Q
′
2×
Q0

Q1Q
′
2×
Q0

Q1Q
′
2×
Q0

Q1 L2Q0 LPQ0 LQ1 PQ0 Q1 Q0 LQ0 PQ0 Q1

Q
′
3Q
′
3Q
′
3 L3Q0 L2PQ0 L2Q1 LPQ0 LQ1 PQ0 Q1

L(Q0×P21) LP2Q0 LPQ1 LPQ0 LQ1 PQ0

LQ2

Q
′
2Q
′
2Q
′
2 L2Q0 LPQ0 LQ1 PQ0 Q1

Q2Q2Q2 LQ0 PQ0 Q1 Q0 LQ0 PQ0 Q1

DQ0 d1 d0 RQ0 DQ0 d1

d1

d2 d0
y

D2Q0

id×µ1 µQ0

Pd1

Pd0
d1

d0

LDQ0

id×DP1 DPQ0

Ld1

DQ0

d1

d0

RQ0

DQ0

d1

L2DQ0

RL2Q0

L(id×DP1)

y

RLPQ0

LDPQ0

L2d1

RLQ0

LDQ1

y y

RPQ0

Ld1

DQ0◦Ld0

RQ1 Ld0
y

d1

LD2Q0

L(id×µ1) LµQ0

LPd1 Ld1

Ld2

Ld0

Ld1

y

LDQ0

RLQ0

y
RPQ0

Ld1

DQ0◦Ld0

RQ1 Ld0
y d1

DQ0 d1 d0 RQ0 DQ0 d1

(B.3.2)
All the pullback squares are naturality squares of R, which is cartesian. All the diagrams
inside (B.3.2) are the same as the ones in (5.2.2) and (5.2.3), with perhaps some extra P or
L. Thus, it is clear that the morphism Q

′
3 → Q

′
2×Q0Q1 is indeed an isomorphism. Hence,

we only need to see that the vertical diagrams, given by the coloring, commute: the red,
green and purple diagrams are trivial, and the rest are naturality squares for R.

Now, the following diagram represents a morphism,

Q
′
3

j ′3−−−−→ Q3,

L3Q0 L2PQ0 L2C1 LPQ0 LQ1 PQ0 Q1

P2Q1 P2Q0 PQ1 PQ0 Q1

L2RQ0 L2d1
LRQ0

D2
Q1

DPQ0

DQ0

DQ1

d1

Pd0 Pd1 Pd0 d1

(B.3.3)

which is given by applying the strength D to every factor. The last thing we have to check
is that the square

Q
′
3 Q3

Q
′
2 Q2,

d
′
1

j ′3

d1

j ′2

(B.3.4)
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commutes. From the definitions of j ′3, Q2
d
′
1−→ Q1 and j ′2 (5.2.3) and Q ′3

d
′
1−→ Q

′
2 (B.3.2) we

have that this square is given by the following diagram

Q2Q2Q2 P2Q0 PQ1 PQ0 Q1

PQ2

Q3Q3Q3 P3Q0 P2Q1 P2Q0 PQ1 PQ0 Q1

Q
′
3Q
′
3Q
′
3 L3Q0 L2PQ0 L2Q1 LPQ0 LQ1 PQ0 Q1

L(Q0×P21) LP2Q0 LPQ1 LPQ0 LQ1 PQ0

LQ2

Q
′
2Q
′
2Q
′
2 L2Q0 LPQ0 LQ1 PQ0 Q1

Q2Q2Q2 P2Q0 PQ1 PQ0 Q1

Pd1 Pd0
d1

Pd2 Pd0
y

Pd1

PµQ0

P2d1 Pd1 Pd0
d1

L2DQ0

L(id×DP1) LDPQ0

L2d1

LDQ1

Ld1

DQ0◦Ld0

DQ1

d1

LD2Q0

L(id×µ1) LµQ0

LPd1 Ld1

Ld2

Ld0

Ld1

y

LDQ0

DPQ0

Ld1

DQ0◦Ld0

DQ1

d1

Pd1 Pd0 d1

(B.3.5)
which commutes by naturality of D. Therefore (5.2.6a) also commutes, as we wanted to
see.

Let us do the same for (5.2.6b). We have from (5.2.2) that

Q3
∼= Q1×

Q0

Q
′
2,

so that the inner face map d2 is isomorphic to

Q1×
Q0

Q
′
2

id×idd
′
1−−−−−→ Q2.

However, in order to see (5.2.2b) it is convenient to work again with Q ′3. Diagram (B.3.7)
represents a commutative square

Q
′
3 Q1×

Q0

Q
′
2

Q
′
2 Q2

d
′
2 d

′
1×idid

(B.3.6)
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defining the corresponding map d ′2. The square above is pictured in bold letters at the left
of (B.3.7), indicating that each element is the total fiber product of its row, and similarly
for the arrows:

Q2Q2Q2 LQ0 PQ0 Q1 Q0 LQ0 PQ0 Q1

Q2

Q0 Q0×P21 P2Q0 PQ1 PQ0 Q1

Q1×
Q0

Q
′
2Q1×

Q0

Q
′
2Q1×

Q0

Q
′
2 LQ0 PQ0 Q1 Q0 L2Q0 LPQ0 LQ1 PQ0 Q1

Q
′
3Q
′
3Q
′
3 L3Q0 L2PQ0 L2Q1 LPQ0 LQ1 PQ0 Q1

LQ0×P21 PQ0×P21 Q1×P21 P2Q0 PQ1 PQ0 Q1

Q2

Q
′
2Q
′
2Q
′
2 L2Q0 LPQ0 LQ1 PQ0 Q1

Q2Q2Q2 LQ0 PQ0 Q1 Q0 LQ0 PQ0 Q1

DQ0 d1 d0 RQ0 DQ0 d1

d1

d2 d0
y

D2Q0

id×µ1 µQ0

Pd1 Pd0
d1

DQ0

d1

d0
R2Q0 LDQ0

id×DP1 DPQ0

Ld1

DQ1

d1

L2DQ0

R2LQ0

id×DP1

y

R2PQ0

id×DP1

LDQ0◦L
2d0

R2Q1
L2d0

id×DP1

y

DPQ0

Ld1

DQ1

d1

DQ0×id

id×µ1 id×µ1

D2Q0
◦(d0×id)

id×µ1 µQ0

Pd1

Pd0
d1

d2

d0

d1

y

LDQ0

RLQ0

y
RPQ0

DQ0◦Ld0

Ld0
RQ1

y d1

DQ0 d1 d0 RQ0 DQ0 d1

(B.3.7)

All the pullback squares are naturality squares of R, which is cartesian. All the
diagrams inside (B.3.7) are the same as the ones in (5.2.2) and (5.2.3), with perhaps
some extra P or L. Thus, it is clear that the morphism Q

′
3 → Q1×Q0Q

′
2 is indeed an

isomorphism. Hence, we only need to see that the vertical diagrams, given by the
coloring, commute: the red, green and purple diagrams are trivial, and the rest are just
projections.

The last thing to check is that the square

Q
′
3 Q3

Q
′
2 Q2,

d
′
2

j ′3

d2

j ′2

(B.3.8)



B.4 left and right composition with the unit in TPQ 119

commutes. From the definitions of j ′3 (B.3.3), Q ′2
d
′
1−→ Q1 and j ′2 (5.2.3) and Q ′3

d
′
2−→ Q

′
2

(B.3.7) it is not difficult to see that this square is represented by the diagram

Q2Q2Q2 P2Q0 PQ1 PQ0 Q1

Q2

Q3Q3Q3 P3Q0 P2Q1 P2Q0 PQ1 PQ0 Q1

Q
′
3Q
′
3Q
′
3 L3Q0 L2PQ0 L2Q1 LPQ0 LQ1 PQ0 Q1

LQ0×P21 PQ0×P21 Q1×P21 P2Q0 PQ1 PQ0 Q1

Q2

Q
′
2Q
′
2Q
′
2 L2Q0 LPQ0 LQ1 PQ0 Q1

Q2Q2Q2 P2Q0 PQ1 PQ0 Q1

Pd0Pd1 d1

d2 d0
y

d1

PµQ0

P2d1

µQ1 µQ0

Pd1 Pd0
d1

L2DQ0

L(id×DP1) LDPQ0

L2d1

LDQ1

Ld1

DQ0◦Ld0

DQ1

d1

DQ0×id

id×µ1 id×µ1

d1×id

id×µ1 µQ0

Pd1

Pd0
d1

d2

d0

d1

y

LDQ0

DPQ0

Ld1

DQ1

d1

Pd1 Pd0 d1

(B.3.9)
which clearly commutes. Therefore (5.2.6b) also commutes, as we wanted to see.

b.4 Left and right composition with the unit in TPQ

Proof of Lemma 5.2.5. Let us begin by showing (5.2.8a). The following diagram is an
expanded version of (5.2.8a) in the way shown by the bold diagram in the left, so that the
fiber product of each row is the bold element at its left, and similarly for the arrows.

Q2Q2Q2 PQ1 PQ0 Q1

PQ0×
PQ0
Q1PQ0×

PQ0
Q1PQ0×

PQ0
Q1 PQ0 PQ0 Q1

Q0×
Q0

Q1Q0×
Q0

Q1Q0×
Q0

Q1 Q0 Q0 Q0 Q0 LQ0 PQ0 Q1

Q2Q2Q2 LQ0 PQ0 Q1 Q0 LQ0 PQ0 Q1

LQ1

Q2Q2Q2 PQ1 PQ0 Q1

Pd0 d1

Pe

d1

FQ0
ηQ0 e

RQ0

DQ0

DQ0

d1

DQ0 d1

d0 RQ0 DQ0

d1

RQ0 Ld0

DQ1

y

Pd0 d1

(B.4.1)
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The arrows without a label are identities. All the diagrams in (B.4.1) have appeared
before, in the definitions of Q1 (5.2.1), j ′2 (5.2.4) or e (5.2.7). Hence we only have to see
that the three diagrams given by the colors commute. The green and blue diagrams are
trivial. For the red one, notice that the pullback induces a morphism LQ0 → LQ1 which
is easily seen to be Le, so that the red square is just naturality of D at e.

Let us now see (5.2.8b). We expand the diagram in the same way:

Q2Q2Q2 PQ1 PQ0 Q1

Q1×
Q0

Q0Q1×
Q0

Q0Q1×
Q0

Q0 Q1 Q0 Q0

Q1×
Q0

Q0Q1×
Q0

Q0Q1×
Q0

Q0 LQ0 PQ0 Q1 Q0 Q0 Q0 Q0

Q2Q2Q2 LQ0 PQ0 Q1 Q0 LQ0 PQ0 Q1

LQ1

Q2Q2Q2 PQ1 PQ0 Q1

Pd0 d1

ηQ1

d0

ηQ0 e

DQ0 d1 d0

FQ0
ηQ0 e

DQ0 d1

d0 RQ0 DQ0

d1

RQ1
Ld0

DQ1

y

Pd0 d1

(B.4.2)
All the diagrams in (B.4.2) have appeared before, in the definitions of Q1 (5.2.1), j ′2 (5.2.4)
or e (5.2.7). Hence we only have to see that the three diagrams given by the colors
commute. The green and blue diagrams are trivial. For the red one notice that the
pullback induces a morphism Q1 → LQ1 which is easily seen to be FQ1 , but by axiom
(4.4.2a) we have that DC1 ◦ FQ1 = ηQ1 , so that the red square commutes.
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