
Universitat Politècnica de Catalunya
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Abstract

Photons are good candidates for carrying quantum information because
they are very stable particles: they interact weakly with the medium and
barely with each other. However, this has drawbacks when you want to
process the information because, in this case, it is preferable to have
photon-photon interactions. For example, for applications in quantum
repeaters, such interactions would allow deterministic Bell state mea-
surements, increasing the entanglement distribution rate between two
remote nodes. Getting two photons to interact with each other effi-
ciently requires mapping them into a nonlinear medium at the single-
photon level, that is, a medium that reacts differently when it interacts
with a single photon than when it does with two. Such strong non-
linearity has been demonstrated with Rydberg atoms, which are atoms
excited to a state with a high principal quantum number.

In this thesis we have performed nonlinear quantum optics experi-
ments using an ensemble of cold Rydberg atoms, where we have studied
the properties of the quantum light emitted by these atoms. First, we
demonstrated nonlinearities at the single-photon level. To reach this
stage, we made several improvements to the previous experimental setup
available in the group, of which the implementation of a dipole trap was
especially relevant. We evidence quantum nonlinearity by measuring
photon antibunching for the transmitted light after interacting with the
Rydberg state under electromagnetically induced transparency (EIT).
We also showed the generation of single photons on-demand after stor-
ing weak coherent states of light pulses as collective Rydberg excitations.

Then, we studied the variation of the light statistic throughout the
output pulse after propagating through the medium as Rydberg polari-
tons, which are superposition states of light and Rydberg excitations.
We showed that the properties at the beginning and the end of the pulse
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were different from those of the steady state. In particular, the light de-
tected after the input pulse was abruptly turned off gave much stronger
suppression of two-photon events. Then, we investigated how to exploit
this effect to generate single photons on demand. To do this, we ana-
lyzed the quality of the single photons detected at the end of the pulse
as a function of the detection probability and compared the results with
those obtained by storing the input pulse as collective Rydberg excita-
tions. We showed that the photons were generated more efficiently when
increasing the detection window at the cost of deteriorating the single
photons statistics.

Finally, we investigated the indistinguishability of the photons emit-
ted by our Rydberg atomic ensemble, a crucial property for using Ry-
dberg atoms as nodes in quantum networks. We also compared the
single photons generated after storage under EIT conditions with those
obtained using a two-photon Raman excitation to the Rydberg state.
We measured the indistinguishability by making them interfere with
weak coherent states of light in a Hong-Ou-Mandel experiment. And we
showed that, although we obtained better photon statistics under EIT
conditions, the indistinguishability from those obtained with Raman ex-
citation was significantly higher.



Resume

Els fotons són bons candidats per transportar informació quàntica perquè
són part́ıcules molt estables: interaccionen dèbilment amb el medi i,
amb prou feines, entre ells. Això també presenta inconvenients quan es
vol processar la informació perquè, en aquest cas, és preferible tenir
interaccions fotó-fotó. Per exemple, per a aplicacions en repetidors
quàntics, aquestes interaccions permetrien mesuraments deterministes
d’estats de Bell, produint un augment de la velocitat de distribució de
l’entrellaçament entre dos nodes remots. Fer que dos fotons interactüın
entre ells de manera eficient requereix mapejar-los en un medi no lineal
a nivell d’un sol fotó, és a dir, un medi que reacciona de manera diferent
quan interactua amb un sol fotó que quan ho fa amb dos. Una no lin-
ealitat tan forta ha estat demostrada amb àtoms de Rydberg, que són
àtoms excitats a un estat amb un nombre quàntic principal alt.

En aquesta tesi hem realitzat experiments d’òptica quàntica no lin-
eal emprant conjunts d’àtoms freds de Rydberg, on hem estudiat les
propietats de la llum quàntica emesa per aquests àtoms. En primer
lloc, vam demostrar no linealitats a nivell d’un sol fotó. Per arribar a
aquest estat, vam realitzar diverses millores a la configuració experimen-
tal anterior disponible al grup, de les quals va ser especialment rellevant
la implementació d’un parany dipolar. La no linealitat quàntica es va
evidenciar mesurant el desagrupament dels fotons de la llum transmesa
després d’interactuar amb l’estat de Rydberg sota transparència indüıda
electromagnèticament (TIE). També vam comprovar la generació de fo-
tons individuals sota demanda després d’emmagatzemar estats coherents
febles de polsos de llum com excitacions col·lectives de Rydberg.

A continuació vam estudiar la variació de l’estad́ıstica de la llum al
llarg del pols de sortida després de propagar-se a través del medi com
a polaritons de Rydberg, que són estats de superposició de llum i ex-
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citacions de Rydberg. Es va demostrar que les propietats al principi i
al final del pols eren diferents a les de l’estat estable. En particular, la
llum detectada després que el pols d’entrada s’apagués abruptament va
donar una supressió molt més gran dels esdeveniments de dos fotons.
Tot seguit, vam investigar com aquest efecte podria usar-se per generar
fotons individuals sota demanda. Per a fer-ho, vam analitzar la qualitat
dels fotons individuals detectats a la fi del pols en funció de la prob-
abilitat de detectar-los i vam comparar els resultats amb els obtinguts
emmagatzemant el pols d’entrada com excitacions col·lectives de Ryd-
berg. D’aquesta manera, vam poder comprovar que els fotons es van
generar més eficientment quan vam augmentar la finestra de detecció a
costa de deteriorar l’estad́ıstica dels fotons individuals.

Finalment, vam investigar la indistingibilitat dels fotons emesos pel
nostre conjunt atòmic de Rydberg, una propietat crucial per utilitzar
àtoms de Rydberg com a nodes de xarxes quàntiques. També vam com-
parar els fotons individuals generats després de l’emmagatzematge en
condicions de TIE amb els obtinguts emprant una excitació Raman de
dos fotons a l’estat de Rydberg. La indistingibilitat es va medir fent-
los interferir amb estats coherents febles de llum en un experiment de
Hong-Ou-Mandel. I vam demostrar que, tot i que vam obtenir millors
estad́ıstiques dels fotons en condicions de TIE, l’indistingibilitat dels
obtinguts amb excitació Raman resultava significativament més gran.



Resumen

Los fotones son buenos candidatos para transportar información cuántica
porque son part́ıculas muy estables: interaccionan débilmente con el
medio y apenas entre ellos. Sin embargo, esto presenta inconvenientes
cuando se quiere procesar la información porque, en este caso, es preferi-
ble tener interacciones fotón-fotón. Por ejemplo, para aplicaciones en
repetidores cuánticos, tales interacciones permitiŕıan mediciones deter-
ministas de estados de Bell, aumentando la velocidad de distribución
del entrelazamiento entre dos nodos remotos. Hacer que dos fotones in-
teractúen entre śı de manera eficiente requiere mapearlos en un medio
no lineal a nivel de un solo fotón, es decir, un medio que reacciona de
manera diferente cuando interactúa con un solo fotón que cuando lo hace
con dos. Una no linealidad tan fuerte ha sido demostrada con átomos de
Rydberg, que son átomos excitados a un estado con un número cuántico
principal alto.

En esta tesis hemos realizado experimentos de óptica cuántica no
lineal utilizando conjuntos de átomos fŕıos de Rydberg, donde hemos es-
tudiado las propiedades de la luz cuántica emitida por estos átomos. En
primer lugar, demostramos no linealidades a nivel de un solo fotón. Para
llegar a este estado, realizamos varias mejoras a la configuración exper-
imental anterior disponible en el grupo, de las cuales fue especialmente
relevante la implementación de una trampa dipolar. La no linealidad
cuántica se evidenció midiendo un desagrupamiento de los fotones de la
luz transmitida después de interactuar con el estado de Rydberg bajo
transparencia inducida electromagnéticamente (TIE). También compro-
bamos la generación de fotones individuales bajo demanda después de
almacenar estados coherentes débiles de pulsos de luz como excitaciones
colectivas de Rydberg.

A continuación, estudiamos la variación de la estad́ıstica de la luz
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a lo largo del pulso de salida después de propagarse a través del medio
como polaritones de Rydberg, que son estados de superposición de luz y
excitaciones de Rydberg. Se demostró que las propiedades al principio
y al final del pulso eran diferentes a las del estado estable. En parti-
cular, la luz detectada después de que el pulso de entrada se apagara
abruptamente dio una supresión mucho mayor de los eventos de dos fo-
tones. Seguidamente, investigamos cómo este efecto podŕıa usarse para
generar fotones individuales bajo demanda. Para ello, analizamos la ca-
lidad de los fotones individuales detectados al final del pulso en función
de la probabilidad de detectarlos y comparamos los resultados con los
obtenidos almacenando el pulso de entrada como excitaciones colectivas
de Rydberg. Pudimos aśı comprobar que los fotones se generaron más
eficientemente cuando incrementamos la ventana de detección a costa
de deteriorar la estad́ıstica de los fotones individuales.

Finalmente, investigamos la indistinguibilidad de los fotones emitidos
por nuestro conjunto atómico de Rydberg, una propiedad crucial para
usar átomos de Rydberg como nodos de redes cuánticas. También com-
paramos los fotones individuales generados después del almacenamiento
en condiciones de TIE con los obtenidos empleando una excitación Ra-
man de dos fotones al estado de Rydberg. La indistinguibilidad se midió
haciéndolos interferir con estados coherentes débiles de luz en un exper-
imento de Hong-Ou-Mandel. Y demostramos que, aunque obtuvimos
mejores estad́ısticas de los fotones en condiciones de TIE, la indistin-
guibilidad de los obtenidos con excitación Raman resultaba significati-
vamente mayor.



A mi madre,
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Chapter 1

Introduction

1.1 Quantum information and communication

Quantum information science makes use of quantum mechanical sys-
tems to perform information processing and communication tasks. One
of the advantages with respect to classical computing is that quantum
computing may be able to efficiently solve hard computational problems
in classical computing, such as factorization of large numbers [1]. The
reason is that conventional computers perform calculations on funda-
mental pieces of information called bits, which can take the value 0 or 1.
Instead, quantum computers use objects called quantum bits, or qubits
[2], which can represent both 0 and 1 at the same time due to the su-
perposition principle. Notwithstanding, this threatens the foundation
of our current encryption system, which is based on the complexity to
factorize large numbers. Fortunately, quantum mechanics also gives us
tools to devise a new more secure encryption system [3, 4, 5] in the form
of quantum key distribution (QKD), which allows us to transmit a secret
key without the risk of undetected eavesdropping [6, 7, 8, 9].

In analogy to the classical information, quantum information can be
transmitted between physically separate quantum systems using quan-
tum networks, which are composed of quantum nodes linked by quantum
channels [10]. Quantum information is generated, processed, and stored
in quantum nodes and transmitted with high fidelity from one node to
another through a quantum channel. The best candidates to transmit
the information are photons [11] since they are highly-stable particles
in the sense that they do not interact with each other and weakly with
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the environment. They can be transmitted along moderate distances
(of order 100 km) in optical fibers, with an attenuation length of around
22 km at telecommunication wavelengths, which allows the use of ex-
isting infrastructure for quantum communication. Moreover, they can
be efficiently manipulated using simple devices like mirrors and beam-
splitters [1]. However, distributing photons over long distances (of order
1000 km) is an important challenge in quantum communication, since
loss and decoherence are significant in this case (the transmission of a
1000 km-long optical fiber is 10−20). In classical communication, we use
amplifiers to overcome this problem but, due to the no-cloning theorem
[12, 13], this is not possible in the quantum regime. In this case, we can
exploit a very important quantum resource: entanglement [14]. Two
particles are entangled when it is not possible to describe them indi-
vidually, i.e. the system state cannot be defined as a product state of
particles 1 and 2. Then, the outcomes of measurements performed on
entangled particles are correlated, regardless of the distance that sep-
arates them. If two distant nodes are entangled, we can use the help
of a classical communication channel to transmit quantum information
between them, in a process known as quantum teleportation [15]. Two
distant nodes can be entangled without the need to physically send an
entangled photon the entire distance, using complex devices called quan-
tum repeaters [16, 17, 18, 19, 20].

(a)
(b)

Figure 1.1: Graphical representation of the operation of quantum re-
peaters.

The operation of a quantum repeater is schematically represented
in figure 1.1a. Consider two entangled pairs A1A2 and B2B1, where
A2 and B2 are in the same place located midway from A1 to B1. A
joint measurement of A2 and B2 in the Bell-states basis projects the
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pair A1B1 in an entangled state, even though A1 and B1 do not have a
common past. This process is known as entanglement swapping [21, 22].
This can be done using linear optics, e.g. using beamsplitters, but the
success probability in this case is bounded by 50% per swapping oper-
ation [23, 24], limiting the entanglement distribution rate achievable in
quantum repeaters. By successive operations over short-distance links,
one can share entanglement over two nodes A and B separated by a long
distance (see figure 1.1b).

In the quantum nodes, the information processing is carried out by
quantum logic gates, which are unitary operations on the qubits [1].
These can act on a single qubit or on multiple ones. The most common
two-qubit gate is the controlled-unitary gate, where a unitary opera-
tion is applied to a second qubit depending on the state of the first
one. It can be shown that this type of two-qubit gate together with
single-qubit gates form a universal set of quantum logic gates, so any
quantum computation can be expressed in terms of those gates [1]. A
two-qubit quantum gate can be used to perform a deterministic (in-
stead of probabilistic) Bell-state measurement [25, 26, 27], thus highly
increasing the distribution rate of entanglement in quantum repeater
operations [28, 29].

When quantum information is encoded in photons, a two-qubit quan-
tum gate involves a photon-photon interaction. However, as mentioned
above, photons do not interact with each other, so this is a major
challenge in quantum information processing [10]. Fortunately, photon-
photon interactions can be mediated by a medium showing nonlinearity
at the single-photon level. Such a strong nonlinearity can be seen in this
way: a first photon interacts with the medium and modifies its way of
interacting with a second photon (see figure 1.2). Therefore, its response
to a light pulse containing a single photon should be very different from
its response when the pulse has two or more photons [11]. This is very
difficult to achieve since common media typically have a very weak non-
linearity, far from the quantum regime. A strong nonlinearity can be
addressed by using a single particle, e.g. an atom, as an interface. A
single atom interacts resonantly with no more than a single photon at
a time. However, since the interaction probability between a photon
and an atom is usually very weak, the atom must be strongly coupled
to a high-finesse cavity [30], which involves many technical challenges
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Figure 1.2: Graphical representation of the interaction of a nonlinear
medium at the single-photon level with two input photons. The response
of the medium to the first photon is different than for the second photon.

[31, 32, 33]. A different approach is to use a large ensemble of atoms
instead of just a single one, such as the light-matter interaction depends
on the optical depth of the ensemble. Hence, no high-finesse cavity is
necessary to ensure strong light-matter interactions. However, in the
weak excitation regime, an ensemble of atoms normally does not dis-
play strong nonlinearity. Then, the challenge is to make the ensemble
of atoms behave as if they were only one. In this case, the atoms would
act collectively and a single photon would interact with all of them at
the same time [11, 34]. Rydberg atoms, which are atoms excited to a
state with a high principal quantum number provide a powerful tool to
strongly increase the interactions in the medium [35, 11], enabling us
to reach nonlinearities at the single-photon level [36]. Although strong
light-matter coupling is normally achieved near an optical resonance,
where it is accompanied by absorption, this destructive process can be
avoided with electromagnetically induced transparency (EIT). EIT is a
coherent optical phenomenon in which a medium, originally opaque due
to its resonant interaction with light, becomes transparent over a narrow
window within an absorption line [37].

Nonlinear systems at the single-photon level, such as a cloud of Ryd-
berg atoms, can also be exploited to generate single photons on demand.
Having photon sources that emit only one photon is extremely important
in implementing many of the quantum information protocols [38]. For
applications in quantum repeaters, photons must also be indistinguish-
able so that a Bell-state measurement projects them into a maximally
entangled state [22, 39, 40]. Furthermore, since the interfaces used for
storage and processing of quantum information transmitted by photons
are based on atomic systems, photons must match the spectrum of the
atomic transitions, which is usually in the order of MHz [41, 40]. Fi-
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nally, photons should be generated on demand. On-demand sources
emit a single photon in a specific time interval after a trigger signal.
This is important to be able to synchronize multiple sources. Therefore,
single-photon sources must meet many requirements: they must not only
be fast and efficient, but they must generate pure, indistinguishable,
and narrow-bandwidth photons on demand. On-demand single-photon
sources can be implemented from a variety of systems, including single
emitters, such as single atoms, ions or molecules [42, 43, 44, 45, 46];
solid-state systems [47, 48, 49] or ensembles of atoms, such as Rydberg
atoms [50, 51].

1.2 Rydberg atoms for quantum information

Nonlinearity in Rydberg atoms normally occurs with a phenomenon
called dipole blockade. Highly excited Rydberg atoms show strong long-
range dipole-dipole interactions [52], which shift the energy required to
excite multiple atoms to a Rydberg state. In this way, only one photon
from a resonant input field will be able to excite an atom to the Ryd-
berg state. A second photon, however, will not be on resonance with the
transition. This results in a nonlinear response of the medium at the
single-photon level, which is a key ingredient for applications in quantum
information, as explained in the previous section. Since the interaction
between two Rydberg atoms depends on their relative distance, there
is a maximum distance at which dipole blockade occurs, which is called
the blockade radius [52].

The use of electromagnetically induced transparency (EIT) with Ry-
dberg atoms [53] provides an efficient way to map photons onto Ryd-
berg states, therefore enabling photon-photon interactions. EIT can
render an opaque medium transparent within a narrow window around
resonance employing a two-photon transition controlled by a coupling
field. Photons within this transparency window propagate through the
medium as quasiparticles called dark-state polaritons (DSP) with a ve-
locity much lower than the one of light in vacuum [54, 55]. Besides,
it is possible to control the velocity of the DSP by controlling the in-
tensity of the coupling field, even decreasing it to zero, which enables
the storage of information in the medium. When we use EIT to excite
atoms to Rydberg states, the dipole blockade prevents more than one
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atom from being excited within the blockaded region. Therefore, only
one photon within this region can propagate through the medium. A
second photon cannot interact with the medium under EIT conditions
and therefore sees it opaque. The probability that a second photon can
also be transmitted depends on the optical depth within the blockaded
region. Therefore, this is an important parameter in the nonlinearity
of the system. The phenomenon of dipole blockade and EIT will be
explained in more detail in Chapter 2.

Rydberg atomic ensembles have been used to mediate interactions
between photons in quite a lot of experiments in the last years [11, 56,
57]. The first demonstration of strong nonlinearities in the output light
under Rydberg EIT conditions was made by Pritchard et al. in 2010
[58]. A nonlinearity at the single-photon level was demonstrated in a
similar system two years later by Peyronel et al. [36]. At the same
time, other experiments also demonstrated nonlinearity at the single-
photon level: Dudin and Kuzmich generated single photons by using
off-resonant (Raman) excitation to a Rydberg state [59] and Maxwell
et al. achieved it by storing and retrieving under EIT conditions [60].
These last two experiments constitute the first realization of a single-
photon source based on Rydberg atoms. Dispersive nonlinearities at the
single-photon level have also been demonstrated, showing exotic states
of light as a two-photon bound state [61], three-photon bound state [62]
and repulsive photons [63]. The first demonstration of a single-photon
source using Rydberg atoms in a room-temperature vapor was made by
Ripka et al. in 2018 [51]. In general, Rydberg atoms have been proposed
and used so far to generate single photons in a quasi-deterministic fash-
ion [64, 65, 50], contrary to ground state ensembles which usually rely
on probabilistic or heralded schemes [39]. A photon-photon interaction
mediated by Rydberg atoms located in two different atomic ensembles
was demonstrated by Busche et al. in 2017 [66].

There are many proposals to exploit Rydberg interactions for quan-
tum information processing applications [57]. Some examples are photon-
photon gates [67, 68, 69, 70], optical switches and transistors [71], build-
ing blocks for quantum repeaters [72, 73], among others. The first single-
photon switch and transistor were demonstrated in 2014 [74, 75, 76],
followed by some improvements [77, 78, 79]. The first experimental
demonstration of a photon phase gate with a π phase shift based on Ry-
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dberg EIT was reported in 2019 [80]. Other experimental applications
exploit the strong interactions of Rydberg atoms to manipulate and gen-
erate quantum states in a quasi-deterministic way. Some examples are:
a quantum memory loaded with one single atomic excitation [81], entan-
glement between light and atomic excitation [82, 28] and manipulation
of two collective atomic excitations [64]. Furthermore, some experiments
have shown building blocks for quantum repeaters applications [83].

Another approach is to use the strong interaction between two in-
dividual Rydberg atoms to manipulate quantum information stored in
atoms [84, 85, 86, 87] with a high fidelity [88, 89, 90]. In this way,
the first quantum gate was demonstrated by Isenhower in 2010 [91] and
several have come later [92, 93]. Other applications as entanglement
generation [94, 95, 89] and quantum simulation [96, 97, 98, 99, 100] have
been demonstrated.

1.3 Motivation and contents of the thesis

The general goal of this thesis is to experimentally study the properties
of an ensemble of Rydberg atoms for applications in quantum non-linear
optics, quantum information and computation. As a starting point, we
already had a cloud of cold atoms, a laser system to prepare and excite
them to Rydberg states in a controlled way, and a system to detect and
analyze the output photons [101].

The ambitious long-term goal of this project is the implementation
of building blocks for applications in quantum repeaters. The idea is to
exploit the strong nonlinearities of Rydberg atoms to build a two-qubit
quantum gate. This will allow deterministic Bell-state measurements,
increasing the entanglement distribution rate. To this end, we realized
an experiment in 2017 in which we connected our Rydberg cloud of
atoms to an existing DLCZ quantum memory in our laboratory [83]. In
this experiment, we stored a true single photon as a Rydberg collective
excitation and observed that the non-classical correlations of the single
photon persisted after retrieval from the cloud. However, the nonlinear-
ity in the ensemble of Rydberg atoms was far from the single-photon
level, which is an essential element for building a two-qubit gate, as we
have already mentioned. Therefore, the first objective of this thesis has
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been to increase the nonlinearity of the medium to the single-photon
level and, also, the efficiency of the light-matter coupling. The process
carried out and the characterization of the nonlinearity in each step is
explained in Chapter 3.

After achieving nonlinearity at the single-photon level, we have con-
ducted two experiments to study the properties of the quantum light
generated in our cloud of atoms. In the first one, we have studied the
propagation of weak coherent pulses of light in an ensemble of Rydberg
atoms under EIT conditions. In particular, we have observed that the
quantum statistics of the transmitted light strongly varies during the
transients parts of the pulse. Although the transmission of continuous-
wave (CW) weak-coherent states of light has been investigated before
[36], the use of CW light makes challenging the efficient creation of sin-
gle photons localized in time, i.e. on-demand [102]. It has been shown
that single localized photons can be created by using an off-resonant
excitation to Rydberg states [59, 81, 64] or by storing single photons
through EIT [60, 103]. However, this represents an additional experi-
mental complexity and source of inefficiency. The use of the transients
of transmitted pulses (without storage) in Rydberg EIT may therefore
lead to the generation of localized single photons with higher efficiencies.
This study is shown in Chapter 4.

In the second experiment, we have studied the indistinguishability
of single photons generated in the Rydberg ensemble. As mentioned
before, probing indistinguishability is important for the implementa-
tion of quantum networks using collective Rydberg excitation as quan-
tum nodes, where a crucial next step is to generate entanglement be-
tween remote nodes. So far, only a few experiments have probed the
indistinguishability of single photons emitted by Rydberg ensembles
[50, 104, 82], but most of the experiments considered only a small part of
the single-photon pulse. Moreover, all experiments realized so far used
single photons generated by off-resonant excitation to Rydberg states.
In our study, we have realized a Hong-Ou-Mandel experiment, where
the single photons interfere with a weak coherent state of light, demon-
strating a good overlap between them. Furthermore, we have compared
the overlap obtained using photons generated by off-resonant excitation
with those generated by EIT. The results of this study are shown in
Chapter 5.



Chapter 1. Introduction 33



34 Chapter 1. Introduction



Chapter 2

Quantum optics with
Rydberg atoms

In this chapter, we will make a summary of the fundamental theoret-
ical concepts necessary to understand this thesis work. We will start
introducing the general properties of Rydberg atoms, especially the
dipole-dipole interactions, which convert them in interesting systems
for quantum information applications. In this work, Rydberg atoms
are mainly used as a single-photon source. Therefore, we will continue
by introducing two important figures of merits of single-photons qual-
ity: the second-order correlation function and the indistinguishability.
After this, we will describe two techniques which can be used to gener-
ate high-quality single photons from ensembles of Rydberg atoms: the
electromagnetically-induced transparency, more oriented for using Ryd-
berg atoms to engineer photon-photon interactions, and the off-resonant
excitation technique. Finally, we will discuss the processes involved in
the decoherence and dephasing of Rydberg atoms.

2.1 Rydberg atoms

A fairly complete and detailed reading of the application of Rydberg
atoms in the field of quantum information can be found in the review by
Saffman et al (2010) [52] and the more recent reviews by Murray et al.
(2016) [105] and Adams et al. (2019) [57]. The writing of this section
has been based primarily on these reviews.

Atoms with a valence electron in a highly-excited state are called
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Rydberg atoms [35, 52, 57]. The energy of these states can be calcu-
lated with a simple Bohr model, where a valence electron is bound to a
positive-charged nucleus by the Coulomb force.

Enlj = −Ry
n2

(2.1)

where n is the principal quantum number and Ry is the Rydberg con-
stant. This model works well for alkali atoms, where internal electrons
form closed shells, and for states with a high orbital momentum quan-
tum number l. However, for states with low l, it is possible to find the
valence electron near the nucleus and, therefore, interaction with inter-
nal electrons needs to be taken into account. This is done by introducing
the so-called quantum defect δl, so that the effective principal quantum
number is n∗ = n− δl [52, 57].

The interaction between Rydberg atoms can be 12 orders of magni-
tude larger than the interaction between ground state atoms [52]. This
arises from the scaling of their properties with n (see table 2.1), which
allows to control the strength of the interaction by changing n. Espe-
cially important is the dipole moment between adjacent states, which
scales with n2 and can become huge for large n, allowing the interactions
to be significant even at long distances of the order of 10 µm. More-
over, Rydberg atoms are metastable with lifetimes going from tens to
hundreds of µs [52], which together with the strong and controllable in-
teractions make them attractive candidates for applications in quantum
technologies [52, 105, 57].

Property Scaling

Binding energy n−2

Energy spacing n−3

Orbital radius n2

Polarizability n7

Transition dipole moment from ground state n−3/2

Transition dipole moment between adjacent states n2

Radiative lifetime n3

Table 2.1: Scaling of the properties of Rydberg atoms with n.
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2.1.1 Dipole-dipole interactions

The dipole-dipole interaction between two alkali atoms separated by a
distance long enough to neglect spatial overlap is schematically repre-
sented in figure 2.1 and described by the potential operator

Vdd =
1

4πε0R3

(
~µ1 · ~µ2 − 3

(
~µ1 · R̂

)(
~µ2 · R̂

))
, (2.2)

where ~µ1(2) is the dipole transition operator associated with each atom

~µ1(2) = e~r1(2), R is the relative distance between atoms and R̂ the uni-
tary vector in this direction [52, 106].

Figure 2.1: Simple schema of two one-electron atoms. Blue circles are
representation of atomic nuclei and orange ones are electrons. This is a
valid representation for alkali atoms.

One may think that dipole-dipole interactions are only possible if
both atoms have permanent dipole moments, such that the interaction
can be pictured out as in figure 2.1. However, one can observe non-
negligible effects due to dipole-dipole interactions, even if the individual
atoms are presumably in a non-degenerate state, where 〈n, l, j|~µ|n, l, j〉 =
0. These effects become apparent when we treat the system in the
two-atom state basis. To simplify this problem, we consider the case
where only one state |r′, r′′〉 contributes to the interaction (see figure
2.2). We can see that, although the diagonal elements of Vdd are zero
〈r, r|Vdd|r, r〉 = 〈r′, r′′|Vdd|r′, r′′〉 = 0, the off-diagonal elements
〈r′, r′′|Vdd|r, r〉 are different from zero, as long as |r〉 is dipole-coupled
with |r′〉 and |r′′〉 (see figure 2.2c). Therefore, if the potential energy of
the interaction is comparable to the energy defect δ = E|r,r〉−E|r′,r′′〉 =
2E|r〉 − E|r′〉 − E|r′′〉 (fig. 2.2b), the system should be described in a
superposition of both states |r, r〉 and |r′, r′′〉, hence it is no longer sep-
arable. That is, we cannot describe it as a product of the individual
atomic states and its associated energy is different from the sum of the
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individual atomic energies. A clear explanation can be found in the re-
view by Browaeys and Lahaye (2016) [107].

Figure 2.2: (a) Level structure representation in the one-atom basis,
(b) level structure in the two-atom basis. δ is the energy separation
between both levels [108]. (c) Schematic representation of dipole-dipole
interaction in Rydberg atoms. The dipole transition moment ~µ1 of an
atom interact with ~µ2 of another atom.

The eigenenergies and eigenstates of the system can be calculated by
solving the Schrödinger equation H |ψ〉 = E |ψ〉 where the interacting
Hamiltonian in the basis {|r, r〉 , |r′, r′′〉} is(

δ 〈r, r|Vdd|r′, r′′〉
〈r′, r′′|Vdd|r, r〉 0

)
. (2.3)

It can be shown that the solutions depend on the interatomic distance
R. For R → ∞, the interaction potential vanishes and the eigenstates
tend to the separable ones, with eigenenergies E|r,r〉 for |r, r〉 and E|r′,r′′〉
for |r′, r′′〉. For smaller R, the eigenenergies are shifted due to the inter-
action. For the |r, r〉 state, this energy shift is [52]

∆r,r(R) =
δ

2
− sign(δ)

√
δ2

4
+
C2

3

R6
Dr,r, (2.4)

where Dr,r is the van der Waals eigenvalues, which account for the
angular part of the interaction and usually lies between 0 and 1 and
C3 = e2 〈r′| r̂ |r〉 〈r′′| r̂ |r〉, where r̂ is the position operator. Note that,
since the transition dipole moment between adjacent states scales with
n2 (see table 2.1), C3 scales with n4. From the above equation, we can
find two different regimes:

• For δ < 〈r′, r′′|Vdd|r, r〉, which happens for small interatomic dis-
tances: The potential is able to couple |r, r〉 and |r′, r′′〉. This can
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be seen as if the atoms were continuously going from one state
to another dipole-coupled one, exchanging virtual photons in the
process. This is called a dipole-dipole type interaction, because
the interaction occurs at the first order of the perturbation theory
[109]. The energy shift in this limit is ∆r,r ∼ −sgn(δ)C3

√
Dr,r/R

3,
which increases with n4.

• For δ > 〈r′, r′′|Vdd|r, r〉, which happens for longer interatomic dis-
tances: The energy potential is not able to couple the two states
and dipole-dipole interaction appears in the second-order of the
perturbation theory [109]. This can be seen as a two virtual-photon
process, in contrast to the single virtual-photon process for small
δ. This interaction produces an energy shift ∆r,r ' C6/R

6 ∝
C2

3/(δR
6), which increases with n11 (C3 ∝ n4 and δ ∝ n−3 from

table 2.1) and is called a Van der Waals-type interaction.

The distance that marks the transition from the dipole-dipole to Van
der Waals interaction is called the critical distance Rc and is defined from
δ = C3

√
Dr,r/R

3
c . Note that if δ = 0, Rc = ∞ and we can excite the

atoms to the degenerate state no matter how far they are, leading to a
so-called Förster resonance.

As we said before, the angular part, included in the term Dr,r, also
plays a role in the interaction. Working with spherically symmetric S
orbitals as Rydberg states has the advantage of having almost spher-
ically symmetric interactions. Another advantage is that the energy
defect is negative and hence, the interaction is repulsive, which prevents
Rydberg-Rydberg collisions creating dephasing.

2.1.2 Dipole blockade

An important effect arising from the strong interactions between Ry-
dberg atoms is the dipole blockade [84, 85]. It prevents the Rydberg
excitation of two atoms if they are closer than a distance called the
blockade radius rb. It occurs because, at this distance, the energy shift
∆rr is greater than the excitation linewidth. For Van der Waals-type
interactions where the excitation linewidth is limited by the linewidth
of the laser field h̄Ω, rb is defined as
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rb =
6

√
C6

h̄Ω
, (2.5)

what gives that rb ∝ n11/6, since C6 ∝ n11. Usual experimental con-
ditions gives a blockade radius of the order ∼ 10 µm. A schematic
representation of the Rydberg blockade is shown in figure 2.3a.

(a) (b)

Figure 2.3: (a) Level scheme of the double excitation. For interatomic
distances closer than rb, the blockade prevents the excitation of both
atoms to the Rydberg state. (b) Schematic representation of a blockade
sphere. A single Rydberg excitation is shared among all the atoms inside
this volume.

This can be generalized for atomic ensembles with a number of atoms
N � 2. For atoms confined within a volume smaller than r3

b , dipole
blockade ensures that no more than a single Rydberg excitation can be
created. Hence, the system is driven from the state |G〉 = |g1, g2, ..., gN 〉,
where all the atoms are in the ground state, to the collectively excited
state |R〉, which is called a Rydberg spin-wave, defined by

|R〉 =
1√
N

N∑
j=1

|g1, ..., rj , ..., gN 〉 (2.6)

This means that the entire medium acts as a two-level system, often
called a superatom. Due to the collective behavior of the atoms, the
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Rabi frequency is enhanced to
√
NΩ.

For larger atomic clouds, dipole blockade results in spatial correla-
tions between Rydberg excitations within the cloud, since the distance
between them should be greater than rb. Due to finite cloud extension,
dipole blockade set a maximum number of Rydberg excitations that can
be present in the cloud. In this case, each excitation is enhanced by
the number of atoms inside a blockade sphere, defined by the blockade
radius (see figure 2.3b).

For applications in quantum processing, the dipole blockade, or gen-
erally the strong interaction of a Rydberg pair, can be exploited to en-
gineer photon-photon interactions and single-photon sources. In order
to characterize the photons generated from a Rydberg ensemble, two
important figure of merits are the second-order correlation function and
the indistinguishability.

2.2 Statistics of quantum light

This section is inspired by the book of Mark Fox [38].

The second-order correlation function gives the temporal coherence
of the light and is defined as

g(2)(t, τ) =

〈
a†(t)a†(t+ τ)a(t+ τ)a(t)

〉
〈a†a〉2

(2.7)

where a†(t)(a(t)) is the creation (annihilation) operator for the transmit-
ted light mode at time t. The second-order correlation function usually
does not depend on t so g(2)(t, τ) is simply written as g(2)(τ). There
are three types of light statistics, depending on the value of g(2)(0) (see
figure 2.4):

• Bunched light: g(2)(0) > 1. This means that the probability of
detecting two photons separated by a short τ is higher than for a
longer τ . In a stream of photons, they are all clumped together in
bunches. It is the case of thermal light.

• Coherent light: g(2)(0) = 1. The probability of finding two photons
for τ = 0 is the same as for larger values of τ . It correspond to a
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stream of photons with completely random time intervals between
them.

• Antibunched light: g(2)(0) < 1. The probability of finding two
photons at short τ is lower than the probability when τ → ∞.
Then, it consists of a stream of photons with a minimum time
interval between them.

Figure 2.4: In the left, simple representation of three photon streams
with the different type of statistics. In the right, the corresponding
second-order correlation function feature.

It can be shown that the classical theory of light satisfies

g(2)(0) ≥ 1 (2.8)

and

g(2)(0) ≥ g(2)(τ) (2.9)

Then, the observation of photon antibunching is a purely quan-
tum effect with no classical counterpart [38]. For a photon number
state |n〉, the second-order correlation function at zero-delay time is
g(2)(0) = (n− 1)/n. As a consequence, for single-photon states (|1〉), it
gives g(2)(0) = 0. The first demonstration of photon antibunching was
made by Kimble et al. using the light emitted by sodium atoms [110].

The second-order correlation function can be obtained with a Hanbury-
Brown and Twiss experiment [111, 112, 113], where the input photons
go through a 50:50 beamsplitter (BS) and are detected by two single-
photon avalanche detectors (SPD), as shown in figure 2.5. The arrival
times of the photons in each detector are recorded so we can measure
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the number of coincidences when there is a click event in SPD1 at time
t and a click in SPD2 at time t+τ . Finally, the second-order correlation
function is obtained by normalizing the number of coincidences by the
expected one in the uncorrelated case. That is

g(2)(t, τ) =
〈n1(t)n2(t+ τ)〉
〈n1(t)〉 〈n2(t+ τ)〉

, (2.10)

where n1(2)(t) is the number of photons registered by the first(second)
detector at time t. The symbol 〈...〉 indicates the average value found
after many repetitions of the experiment [38].

Figure 2.5: Simple setup representation of HBT experiment.

As we said before, g(2)(t, τ) usually does not depend on t and a click
in the first detector can be used to define the start (t = 0). Then, a
histogram with the number of coincidences as a function of the delay
time τ can be produced. In figure 2.6, we show two kinds of histograms
obtained in a Hanbury-Brown and Twiss experiment, for the case of
antibunched light. In the left, we show the case of a continuous beam
of light with photons separated by a minimum time interval of average
tp. In this case, the probability to detect two photons at the same time
should be zero, hence g(2)(0) = 0 and the time-width of the antibunch-
ing dip is related to tp. Therefore, we can say that the source generating
such a light beam is a source of single photons. However, they are de-
localized inside the light beam, in the sense that we cannot know at
which time we will detect a photon, we only know that they should be
separated by a time ∼ tp.

As discussed in the introduction, for applications in quantum infor-
mation and quantum computing, we need a source able to emit a single
photon in response to a trigger pulse. In the right of figure 2.6, we show
a simple representation of this case. The time separation between trig-
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ger pulses (represented as vertical lines) will be denoted by ttrigger and
the averaged time needed for the source to emit a single photon after a
trigger pulse by tem. If ttrigger > tem, the emission is then controlled by
the trigger pulse and the single-photon generation time is known. The
histogram of the number of coincidences detected by a Hanbury-Brown
and Twiss experiment will show no coincidences around τ = 0, which
means that the probability to detect two photons generated by the same
pulse is zero, what gives g(2)(0) = 0. A bunch of coincidences around
τ = m · ttrigger should be detected, where m is an integer, correspond-
ing to coincidences between two photons generated in different trigger
pulses.

Figure 2.6: Simple representation of two single-photon sources with the
corresponding coincidences histogram feature. In the left, photons are
delocalized inside a light beam. In the right, they are localized after a
trigger pulse.

2.3 Photon indistinguishability

The indistinguishability of two photons can be tested by means of the
Hong-Ou-Mandel (HOM) effect [114]. This is a two-photon interfer-
ence effect, which occurs when two identical photons impinge on a 50:50
beamsplitter, one per input mode. The four output possibilities are rep-
resented in figure 2.7. Since a photon has 50% of probability of being
reflected or transmitted, both photons could in principle leave the beam-
splitter in the same output port (first and fourth cases of figure) or in
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different ports (second and third cases). If the photons are identical,
i.e. same polarization, spatio-temporal mode and frequency, there is a
destructive interference between the second and third possibilities and
they cancel each other. Hence, photons can only leave the beamsplitter
in the same output mode.

Figure 2.7: Representation of the HOM effect. Each plot represent an
output possibility. The sum and minus sign come from the relative phase
between terms for the case of identical photons.

This effect can be mathematically described from the transformation
relation of the beamsplitter. If the input optical modes are character-
ized by the annihilation (creation) operators a(a†) and b(b†), the output
modes c(c†) and d(d†) can be obtained from(

a
b

)
→ 1√

2

(
1 1
1 −1

)(
c
d

)
, (2.11)

where the -1 can be physically interpreted as the reflection from one sur-
face of the beamsplitter inducing a relative phase shift of π with respect
to the reflection from the other side.

Therefore, if two identical photons enter the beamsplitter, one on
each side, the double-mode state becomes |1, 1〉ab = a†b†|0, 0〉ab which
gives

1

2

(
c† + d†

)(
c† − d†

)
|0, 0〉cd =

1

2

(
c†2 − d†2

)
|0, 0〉cd

=
|2, 0〉cd − |0, 2〉cd√

2
,

(2.12)

obtaining that both photons exit the beamsplitter in the same output
mode.
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The HOM effect is observed by measuring the photon events arriv-
ing to the photodetectors placed after the two beamsplitter output ports
(see figure 2.7). The probability to record a coincidence is zero when
the two input photons are perfectly indistinguishable. In the non-ideal
case, the degree of indistinguishability between photons can be obtained
by comparing the probability to have a coincidence when they are sent
in the same mode pindis with the probability when the two photons are
sent in different modes pdis (for example, by sending them in different
times). The HOM visibility V = (pdis − pindis)/pdis gives the informa-
tion about how indistinguishable the two photons are, which is directly
related with the purity of single photons [48].

Since this effect relies on the existence of photons, it can not be fully
explained by classical optics. When two coherent states interfere at
the beamsplitter, the maximum visibility which can be obtained under
normal conditions is 1/2 [115]. As a consequence, a visibility higher than
0.5 is a proof that the interference happens in the quantum regime.

2.4 Electromagnetically-induced transparency

This section is primarily based on the review of Fleischhauer et al. (2005)
[37].

Strong coupling between light and an ensemble of atoms is typically
found when light interacts resonantly with the medium, what is usually
accompanied by strong absorption and dispersion. However, the elec-
tromagnetically induced transparency (EIT) technique allows a coherent
light-matter coupling (without loosing photons) [37], what makes it ideal
for using Rydberg atoms as a quantum interface for photons.

In a ladder-type three-level system, EIT appears when a weak probe
beam couples the ground state |g〉 to an intermediate excited state |e〉
and a strong coupling beam couples |e〉 to a metastable state |r〉 (see
figure 2.8a). Let us consider first the case where Rydberg interactions
are either negligible or nonexistent. For example, when |r〉 is a low-
lying Rydberg state with the blockade radius smaller than the average
interatomic distance. In the absence of the coupling beam, the probe
field interacts with the two-level system {|g〉 , |e〉}. If the probe field
is sent on resonance with the |g〉 → |e〉 transition, it is absorbed and
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rapidly scattered due to spontaneous emission from the state |e〉 with
a rate Γeg. When the coupling beam is applied, quantum interference
appears, leaving the medium transparent to the probe. This effect can
be qualitatively described taking into account that Ωc � Ωp, where Ωc

and Ωp are the Rabi frequencies of the coupling and probe field, respec-

tively, defined as Ω = ~µ ~E0/h̄, where ~µ is the transition dipole moment
and ~E0 the electric field amplitude. If the beams are sent in resonance
with the two-photon transition |g〉 → |r〉, the two possible pathways in
which probe light can be absorbed (|g〉 → |e〉 and |g〉 → |e〉 → |r〉 → |e〉)
interfere and cancel each other. The atoms are driven to a so-called dark
state, which is a superposition state of |g〉 and |r〉 in the dressed-state
picture [37]. As a consequence, atoms cannot be promoted to |e〉, lead-
ing to a vanishing light absorption within a very narrow transparency
frequency window.

The response of the medium can be quantitatively described using a
semiclassical analysis. From the atomic master equation, we obtain the
following expression for the susceptibility [56]:

χ(1) =
ODγeg
kpL

· iγrg + 2δ

(γeg − 2i∆)(γrg − 2iδ) + Ω2
c

, (2.13)

where γeg and γrg are the rates of decoherence, including spontaneous
emission and dephasing processes from |e〉 and |r〉, respectively, ∆ =
ωp − ωge and δ = (ωp + ωc) − ωgr are the single and double-photon
detunings, where ωp is the probe field frequency, ωc is coupling field
frequency and ωgr and ωge are the transitions frequencies. The normal-
ization factor is written in terms of the optical depth of the medium to
the probe beam, which can be obtained from the transmission in the
absence of the coupling beam as T = e−OD. Then, kp = 2π/λp is the
probe wavevector and L is the medium length. The feature of the real
and imaginary part of the susceptibility is represented in figure 2.8b, in
the presence (blue line) and absence (orange line) of the coupling field.

The imaginary part of the susceptibility governs absorption happen-
ing in the medium, so that the transmission under EIT conditions (when

the coupling beam is applied) can be obtained as T = e−kp·L·Im[χ(1)]. The
transmission at the two-photon and single-photon resonances (δ = ∆ =
0) is

TEIT = exp

(
−OD γegγrg

|Ωc|2+γegγrg

)
. (2.14)
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(a) (b)

Figure 2.8: (a) Level structure of a ladder-type three-level system in-
teracting with probe and coupling fields. The probe detuning from
|g〉 → |e〉 transition is represented by ∆, while the two-photon tran-
sition |g〉 → |r〉 is on resonance. Decoherence rates from states |r〉 and
|e〉 are represented by γrg and γeg, respectively. (b) Linear susceptibility
as a function of probe detuning ∆ (in units of γeg): top, Im[χ(1)], related
to absorption; bottom, Re[χ(1)] determines the refractive index. For the
plot: γrg = 0 and Ωc = 0.5γeg. Note that for γrg 6= 0, Im[χ(1)]6= 0 for
∆ = 0 and therefore the transmission within the EIT window is not
perfect.

Around resonance, it is a Gaussian with width

∆EIT =
Ω2
c√

Γegγeg

1√
OD

, (2.15)

where Γeg is the total spontaneous emission rate out of state |e〉, as de-
fined before.

The real part of the susceptibility is related to dispersion and deter-
mines the refractive index of the medium as n =

√
1 + Re[χ(1)]. Then,

a probe pulse traveling through the medium experiences a change in its
group velocity compared to that in vacuum c. The group velocity as a
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Figure 2.9: Graphical representation of the propagation of a probe pulse
under EIT conditions. The pulse travels through the medium as a po-
lariton, which is a coupled state of light and atomic excitation. The
reduced group velocity leads to a spatial compression of the pulse dur-
ing propagation.

function of the refractive index is:

vgr =
c

n+ ωp
dn
dωp

. (2.16)

Since the slope of n in the regime of transparency is positive and steep
(see figure 2.8b), the resulting group velocity of the probe pulse is
strongly reduced vgr � c [116] (however phase velocity is c). This
phenomenon is called slow-light [116]. The group velocity at resonance
(δ = ∆ = 0) as a function of experiment parameters is

vgr =
c

ngr
; ngr = 1 +

OD · c
L

Γeg
Ω2
c + γegγrg

. (2.17)

This effect leads to a spatial compression of the probe pulse when it
propagates through the medium (see figure 2.9). The propagation can
be described in a mathematical formalism employing a quasiparticle
known as dark-state polariton (DSP) [55], which is a coherent superpo-
sition of electromagnetic and atomic excitations.

Since vgr depends on Ωc in the way that decreasing Ωc leads to lower
vgr (see equation 2.17), it is possible to reduce the group velocity to zero
by switching off the coupling beam. This process is known as light stor-
age [117, 54, 118, 119]. Reducing vgr to zero also changes the character
of the polariton to a pure excitation (see figure 2.10). By increasing
Ωc back to its initial value, the probe pulse can be retrieved from the
medium. Then, the time after which the pulse leaves the medium is not
only dependent on the group velocity vgr (as in slow light), but on the
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Figure 2.10: Graphical representation of the storage of a probe pulse
under EIT conditions. When the pulse is traveling through the medium
as a polariton, the control field is switched off (t1). This leads to a
vanishing of the light component of the polariton and the information
is stored as atomic excitation (t2). After a storage time tstor = t3 − t1,
the control field is switched on again and the light component of the
polariton is recovered, being able to continue its propagation through
the atomic medium.

time interval between switching off and on the coupling beam , which
we call storage time tstor. Note that a pulse can be stored entirely only
if its compressed length is shorter than the atomic cloud length. Oth-
erwise, only the part which is traveling through the medium when Ωc

is decreased to zero can be stored, which leads to a limitation in the
storage efficiency.

Note that the light component of the polariton allows it to propagate
through the medium in a coherent way while the atomic excitation com-
ponent makes it sensitive to interactions between atoms. This makes
EIT a good strategy for light-matter coupling that can be used to effec-
tively achieve photon-photon interactions.

2.4.1 Electromagnetically-induced transparency with Ry-
dberg atoms

When the long-range interactions between Rydberg atoms are strong
enough to cause dipole blockade, the propagation of the probe field under
EIT is affected. In this regime, the blockade radius is found when the

interaction-induced shift equals the EIT linewidth ∆EIT = Ω2
c

2γeg
, which

is set by the EIT transparency width of a single atom [120] (see equation
2.15 and figure 2.3a)
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rb = 6

√
2C6γeg
h̄Ω2

c

∝ n11/6. (2.18)

When a probe photon interacts with an atom via EIT, it creates a
Rydberg polariton which propagates through the medium with velocity
vgr. Due to the dipole blockade, the excitation of one atom to a Ryd-
berg level shifts the Rydberg levels of atoms closer than rb such that the
coupling beam light is not on-resonant any more. Therefore, subsequent
probe photons inside the blockaded region interact with two-level atoms,
instead of three-level ones.

In the so-called dissipative regime, the probe field is sent on reso-
nance (∆ = 0) with the |g〉 → |e〉 transition. This ideally means that,
although photons undergoing EIT are transmitted through the medium,
blockaded photons are absorbed and scattered due to spontaneous emis-
sion from |e〉 state. That is to say, the dipole blockade in the dissipative
regime leads to photon losses. This effect was first reported by Pritchard
et al. as a suppression of the probe transmission as a function of the
input probe photon rate [58] (see figure 2.11). Under ideal conditions,
the time between two consecutive output photons is the blockade time
τb = rb/vgr, where vgr is the group velocity, defined in equation 2.17.

Figure 2.11: Reduction in probe transmission due to dipole blockade,
for different number of input photons (or values of Ωp). This simulation
uses the model proposed by Petrosyan et al. [121].

The quantum regime is achieved when the probability of finding two
output photons closer than a blockade time τb is strongly reduced. In
this case, the output light is antibunched, as shown in figure 2.12. Note
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that it is a feature of the EIT propagation which allows us to map
the spatial correlation between two Rydberg polaritons (they cannot be
closer than rb) into time correlations of the output photons, which can-
not be closer than τb. This change in the statistics of the output light
was first demonstrated by Peyronel et al. [36]. In order to achieve this,
a one-dimensional medium with a large OD per blockade radius ODb is
required. For the first, the transversal size of the interaction region (ef-
fectively two times the waist of the probe beam) should be smaller than
rb, so the parallel propagation of two Rydberg polaritons is negligible.
The second can be explained because a nonlinearity at the single-photon
level is reached when the probability that a blockaded photon is trans-
mitted, which goes with e−ODb , is much lower than the transmission of a
photon undergoing EIT. Otherwise, a significant amount of photons in-
teracting with a two-level system can be found at the output, where it is
not possible to distinguish them from the photons propagating through
EIT.

Figure 2.12: Graphical representation of the generation of antibunched
light with Rydberg EIT. Dipole blockade does not allow the creation of
two Rydberg polaritons closer than rb, which leads to photon scattering
(represented by the curved red arrows). The spatial correlations between
Rydberg polaritons are mapped into time correlations of the output
photons, due to the propagation feature of EIT.

As discussed previously in the introduction, the interaction between
two photons needs to be mediated by a nonlinear medium at the single-
photon level. That is, the response of the medium to a second photon
should be different than the response to a first one. In the case of Ryd-
berg EIT, we want a second photon to interact with a two-level system,
while a first photon interacts with a three-level system. This is the case
when the input pulse can be compressed within a blockade radius. The
dissipative case is schematically represented in figure 2.13, where the
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second photon is scattered while the first photon is transmitted. This
behavior can be generalized for an input state with an arbitrary num-
ber of photons |n〉 as well as a weak-coherent state |α〉. Therefore, this
Rydberg EIT medium acts as a single-photon source, since we obtain a
single photon at the output, localized within a pulse (see section 2.2).

Figure 2.13: Graphical representation of the generation of a localized
single photon after a probe pulse propagation under Rydberg EIT. If
the probe pulse can be compressed within a blockade radius, only one
photon can be transmitted while successive ones are scattered.

Therefore, strong experimental requirements should be fulfilled in
order to have an efficient nonlinear medium at the single-photon level:
the time-width of the probe pulse should be shorter than the blockade
time, in order to prohibit more than one Rydberg excitation within the
pulse. At the same time, the narrow EIT window imposes a limit to the
minimum time-width of the probe pulse to fit within the EIT bandwidth.
Moreover, we need TEIT to be close to one, a large OD in order to have an
ODb � 1 and a transversal size of the interaction region smaller than rb.

Another method to exploit the nonlinearity in Rydberg EIT is found
in the storage process [122]. In this case, the nonlinearity does not rely
in the different transmission between a first and a second photon, but
in the different retrieval times. Therefore, such severe ODb conditions
are not necessary. In a fully blockaded medium, the photon interacting
with a three-level system can be stored as a collective Rydberg exci-
tation, also called Rydberg spin wave, and be retrieved after a storage
time tstor, much longer than the time it takes for the other photon to
travel through the medium length, in case is not absorbed. This behav-
ior is schematically represented in figure 2.14. Furthermore, for a larger
medium where two or more atoms can be excited to the Rydberg state,
storage allows to increase the interaction time, which can lead to the de-
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phasing of the higher-order excitation terms, as we will see in section 2.6.

Figure 2.14: Graphical representation of the storage nonlinearity, for
the case where the probe pulse is compressed within a blockade radius.
Due to dipole blockade, only one photon interacts with a three-level sys-
tem and hence, propagates through the medium as a Rydberg polariton
with group velocity vgr (t1). Other photons, represented by curved red
arrows, either interact with a two-level system and are scattered or es-
cape the medium faster. As the Rydberg polariton can be stored as a
Rydberg spin-wave (t2), it can be retrieved after a much longer time
tstor = t3 − t1.

In this thesis, we focus on achieving a sufficiently strong nonlinear-
ity in a Rydberg EIT system in order to obtain single photons at the
output. Although dissipation and propagation effects are an important
source of nonlinearity in a Rydberg EIT system, they can have detri-
mental effects on the output single photons. For example, the scattering
due to dipole blockade can lead to lower indistinguishability of the single
photons [123], to worse single-photon generation efficiency [124, 102] or
to the creation of Rydberg pollutants, which are Rydberg excitations
which cannot be retrieved in the probe mode but prevent the generation
of single photons due to blockade effect [102, 50]. These effects must be
taken into account when Rydberg EIT is used as a source of single pho-
tons. In order to study these effects, we can compare the single photons
generated through EIT with those generated by an off-resonant (also
called Raman) excitation process, where there is ideally no propagation
or dissipation.
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2.5 Off-resonant excitation to a Rydberg state

Another way to generate single photons is by means of a two-photon
excitation to a Rydberg state with a large probe detuning ∆ compared
to Γeg. In the following, we will call this type of scheme off-resonant
excitation, although it is also often referred to in the literature as Ra-
man excitation. Consider an atomic ensemble with a size smaller than
the blockade radius, so dipole blockade allows no more than one Ryd-
berg excitation within the atomic cloud. Therefore, a single collective
Rydberg excitation, also called Rydberg spin-wave, can be generated.
This excitation process is schematically represented in figure 2.15a. Due
to the large ∆, the population of the intermediate state can be ne-
glected and the two-photon Rabi frequency for a single atom is given by
Ω = ΩpΩc/(4∆) [52]. The collective behavior of the excitation enhance
the single-atom Rabi frequency by

√
NΩ, as pointed out before. The

state of the Rydberg spin-wave right after the excitation is

|R〉 =
1√
N

∑
j

cj(~rj)e
i(~kp+~kc)~rj |g1, ..., rj , ..., gN 〉, (2.19)

where ~rj is the position of the jth atom, ~kp(c) is the wavevector of the
probe(coupling) laser fields and cj(~rj) is an amplitude coefficient, mainly
given by the field amplitudes at ~rj . Note that these phases are also
present in the Rydberg spin wave created by storage in EIT, although
we have not explicitly written them down.

A single photon can be retrieved from the Rydberg spin-wave by
using the coupling laser to transfer the excitation into the intermediate
excited state. Due to the collective behavior of the excitation, the am-

plitudes and the phase terms ei(
~kp+~kc)~rj give information of the spatial

mode of the input photons and hence, ensure the retrieval in its original
mode (see figure 2.15b). Single photons generated through this method
were first demonstrated by Dudin and Kuzmich in 2012 [59], while a
high quality source has been demonstrated very recently [50].

In principle, it is possible to coherently transfer population from
the ground to the Rydberg state by means of well-defined pulse areas
with duration t = π/|Ω|. However, several potential sources of errors
should be taken into account [52]. For example, detuning errors due to
Doppler broadening, AC Stark shifts caused by the excitation lasers and



56 Chapter 2. Quantum optics with Rydberg atoms

energy shifts of the Rydberg state due to external magnetic or electric
fields. Moreover, partial population of the intermediate state results in
decoherence. Some excitation schemes, using a counter-intuitive pulse
sequence where the coupling laser is applied before the probe, has also
been used to increase excitation probabilities [125].

2.6 Dephasing and decoherence

The coherence time of a Rydberg spin-wave is usually limited by the
relative motion of the atoms. The phase acquired by each atom after

a time δt is ei(
~kp+~kc)(~rj+ ~vjδt) where ~vj is the velocity of the jth atom

[126]. The more different the relative phase is between the atoms, the
less likely it is to retrieve the photon in its original mode. Note that
δt correspond to tstor for Rydberg EIT, and the time delay between the
writing and the retrieving process for the off-resonant excitation scheme.
Therefore, assuming a Boltzmann distribution of velocities, a low tem-
perature of the cloud is necessary. Moreover, a low value of ~kp + ~kc can
be achieved by sending counter-propagating probe and coupling beams,
so that ~kp + ~kc = (kp − kc)x̂, where x̂ denotes the unitary vector in
the direction of the probe beam. However, since the wavelength of the
coupling and probe lasers are very different, there is still a mismatch.
Recently, new theoretical proposals to suppress the dephasing have been
presented [127]. The decoherence rate of the |g〉 to |r〉 transition is usu-
ally limited by the excitation laser linewidth, which is difficult to de-
crease below the fundamental limit set by the radiative lifetime of Ryd-
berg atoms, which is of the order of hundreds of microseconds. There are
another several sources of dephasing, such as fluctuations of the external
electric and magnetic field [128], blackbody radiation from environment
[129, 130], interaction with ground-state atoms [131], radiation trapping
[132, 124, 102], molecular formation [133].

Another source of error is the creation of pollutants [102, 50], which
are Rydberg excitations that cannot be retrieved in the probe mode but
prevent subsequent Rydberg excitations and hence the generation of sin-
gle photons due to the blockade effect. This results in bunching of the
second-order correlation function [102, 50]. Long-lived pollutants can be
formed when atoms decay to another Rydberg level not coupled to the
coupling field or when they move out of the region of the coupling beam.
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These contaminants can then block the creation of Rydberg excitations
over several trials, generating bunching between consecutive trials. Fur-
thermore, in dissipative EIT, the presence of scattering constitutes an
additional source of pollutants, which are formed by the reabsorption
of scattered photons. Since these contaminants are in resonance with
the coupling field, they can be removed from one trial to the next and
are therefore short-lived. However, these could also decay to another
Rydberg level, leading to long-lived pollutants.

For mediums with more than one Rydberg excitation, dipole-dipole
and Van der Waals interactions are sources of dephasing [134, 135]. A
Rydberg atom pair acquires an interaction-induced phase e−i∆ijt, where
∆ij ' C6/R

6
ij is the energy shift, where Rij is the relative distance be-

tween ith and jth atoms. Since Rij is not a constant value, the accumu-
lated phase decouples the double excitation component from the phase-
matched mode during the retrieval process. This interaction-induced
dephasing happens for all the components with more than one excita-
tion. For example, the component with three excitations acquires an
interaction-induced phase of e−i(∆ij+∆ik+∆jk)t. Therefore, the dephas-
ing is normally greater for higher number of Rydberg excitations, which
effectively enhanced the non-linearity [122] and can be used to gener-
ate single photons [59]. A schematic representation of the interaction-
induced dephasing is shown in figure 2.16.
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(a)

(b)

Figure 2.15: Schematic representation of the generation of a single pho-
ton by means of off-resonant excitation to a Rydberg state. In the top,
a probe and a coupling pulse with well-defined areas are sent towards a
small atomic ensemble. Due to dipole blockade, a collective Rydberg ex-
citation is created with a phase given by the fields momentum ~kp+~kc. In
the lower plot, a resonant coupling pulse transfers the excitation to the
excited state, forcing a probe photon to be emitted in the phase-matched
direction.
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Figure 2.16: Schematic representation of dephasing due to Rydberg in-
teractions, for the case where a maximum of two Rydberg excitations
can be created in the medium. The initial state of the system is rep-
resented in the row with t0. Given the limited atomic cloud size, it
is a superposition of none (left), one (middle) or two (right) Rydberg
excitations. Since only the double excitation component is affected by
the dipole-dipole interactions, after a sufficiently long time t1 − t0, the
probability to retrieve the double excitation in the phase-matched mode
is strongly reduced. This is shown in the double-excitation component
(right) of the t1 row, where the curved red lines represent the photon
loss.
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Chapter 3

Experimental setup

3.1 General description

Experiments with Rydberg atoms require a complex experimental setup.
In addition to the common apparatuses used in experiments with cold
atoms, such as a vacuum chamber and a controllable system of frequency
stabilized lasers, there are other requirements that must be fulfill to
achieve nonlinear effects at the level of a single photon. First, a strong
light-matter coupling with an optical depth OD� 1 is required. Sec-
ond, the probe beam must be focused with a diameter smaller than the
blockade radius, i.e. smaller than ∼ 10 µm, to prevent the propagation
of more than one polariton at a time such that we can assume that
the medium is one-dimensional. In addition, atoms should be strongly
confined, so that only few blockade spheres can be fitted within the in-
teraction region of the atomic ensemble. In Rydberg EIT experiments,
we also need small linewidths of the excitation lasers and a coupling
Rabi frequency strong enough to obtain good EIT transparency. Fi-
nally, a system for the detection and characterization of output photons
is necessary.

In our experiment, we achieve a dense and small atomic cloud of
87Rb atoms by loading them into a dipole trap from a magneto-optical
trap. This will be described in section 3.4. To excite the atoms to a
Rydberg level, the dipole beam is turned off and the probe beam is sent
with a counter-propagating coupling beam. The excitation can be car-
ried out under EIT conditions or by means of an off-resonant excitation.
The different sequences will be described in section 3.5. Finally, the re-
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trieved photons are sent to the detection and analysis setup, presented
in section 3.6.

Most of the experimental setup, such as the laser system, the magneto-
optical trap and the setup for the atomic excitation and the detection
of photons, was already built at the beginning of my PhD project. Al-
though some minor changes and improvements were also made, the main
change was the implementation of the dipole trap. Therefore, we will
describe its setup in more detail (see section 3.4.4). A more in-depth
explanation of the previous experimental setup, as well as detailed ref-
erences to the equipment that was already in place, can be found in Dr.
Emanuele Distante’s thesis [101].

3.2 Laser system

Our laser system is composed of four different lasers called trap, re-
pumper, coupling and dipole trap, according to their purposes, as we
will see later.

• Trap laser: It has a wavelength of 780 nm and addresses tran-
sitions from the hyperfine ground state |52S1/2, F = 2〉 of the D2

line of 87Rb |52S1/2〉 → |52P3/2〉. It is a Toptica TA-pro, a tunable
external-cavity diode laser (ECDL) used in another experiment of
our laboratory, where its frequency is actively stabilized by satu-
ration absorption spectroscopy [136]. Then, a seed is sent to our
experiment, where it is amplified by a Toptica BoosTA Ampli-
fier and divided into four lines that pass through four different
acousto-optic modulators (AOM) in a double-pass configuration.
The intensity and frequency of the light at the output depends
on the RF signals sent to the AOMs, which are generated by a
field-programmable gate array (FPGA)-based arbitrary waveform
generator from Signadyne. Each of the lines is destined for a differ-
ent process, which are generally: trap the atoms in the magneto-
optical trap, generate the probe light, optically pump the atoms
to the |52S1/2, F = 2,mF = 2〉 Zeeman state and stabilize the
frequency of the coupling laser.

• Repumper laser: It also has a wavelength of 780 nm, but ad-
dresses transitions from the |52S1/2, F = 1〉 hyperfine state of the
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D2 line. The repumper laser is based on a distributed feedback
diode laser (DFB) from EagleYard. Its frequency is actively stabi-
lized using the frequency of the trap laser as a reference by means
of light beating spectroscopy [101]. The repumper frequency and
intensity is also controlled by an RF signal sent to an AOM.

• Coupling laser: It connects the intermediate excited state to the
Rydberg state |52P3/2〉 → |r〉 = |nS1/2〉 and has a wavelength of
around 480 nm, which can be slightly changed to address differ-
ent Rydberg states. It is a commercial Toptica TA/DL SHG pro
laser, which consists of a tunable external-cavity diode laser at 960
nm, an amplifier and a second-harmonic generation (SHG) cavity,
where the frequency of the light is doubled. It is also stabilized
with respect to the trap laser frequency, by searching for EIT sig-
nals in a Rb cell at room temperature [101]. The coupling light
is also sent through an AOM in double-pass configuration in or-
der to control the intensity and frequency of the beam sent to the
atoms. The combined linewidth of both trap and coupling lasers
is estimated to be a few hundreds kHz, based on laser data sheets.

• Dipole trap laser: It has a wavelength of 852 nm, far-detuned
with respect to any resonance of the two D lines of 87Rb atoms.
The dipole trap laser is based also on a distributed feedback diode
laser from EagleYard. An output power of 40 mW acts as a seed
of a Toptica BoosTA pro Amplifier system, after which we obtain
a power of 2.6 W. Since it is not on resonance with any atomic
transition, the dipole trap laser does not need frequency stabiliza-
tion. An AOM in single-pass configuration is used, in this case, to
control the intensity of the beam, so that we are able to turn it on
and off quickly.

3.3 Experimental sequence

The experimental sequence, shown schematically in figure 3.1, is com-
posed of many different processes, which can be grouped in two general
ones: the preparation of the atomic ensemble and the realization of the
experiment itself, i.e. the excitation of atoms and detection of the re-
trieved photons. The loading of the atoms in the dipole trap lasts 2.05
s and requires different steps, which will be explained in more detail in
sections 3.4.1-3.4.4. Once the loading is completed, the time available
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to perform the experiment is limited by the lifetime of the dipole trap.
In our case, the number of atoms and, therefore, the optical depth is ac-
ceptably high (OD ∼ 5) for 200 ms. However, the dipole trap potential
results repulsive for Rydberg atoms and leads to AC Stark shifts. Then,
the dipole trap must be turned off during excitation to Rydberg levels.
This can be done without losing atoms if the dipole trap is modulated
with a frequency higher than the frequency associated to the trap. In
this way, every time the dipole trap is turned off, we can make an exci-
tation trial. This reduces the available experimental time to slightly less
than half, i.e. less than 100 ms (see figure 3.1). In addition, an upper
bound in the modulation frequency, that limits the number of trials, is
given by the time we need to perform an excitation and retrieval of the
photons, which is ∼ 2−5 µs. When the sequence ends, the cloud loading
process can start again.

Time

MOT CMOT Molasses OP

Dipole trap

...

Excitation: 200 ms2 s

0.5s

28 ms 20 ms 0.3 ms

1 ms

Figure 3.1: Scheme of the experimental sequence. MOT: magneto-
optical trap, CMOT: compressed magneto-optical trap, OP: optical
pumping.

3.4 Loading of the atoms

As mentioned before, the loading of the atoms in the dipole trap in-
volves many different processes with lengths shown in figure 3.1. In the
following sections, we will describe each of these processes, emphasizing
the dipole trap.

3.4.1 Magneto-optical trap

Atoms are initially loaded into a magneto-optical trap (MOT) [137],
which consists of an ultra-high vacuum chamber; three red-detuned laser
beams, located almost perpendicular to each other and reflected back-
wards; and two magnetic coils in anti-Helmholtz configuration, as can
be seen in figure 3.2. The two coils create a magnetic field gradient that
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is zero at the intersection point of the three beams.

Vacuum chamber from above Vacuum chamber from the front

Trap beam

Repumper beam

Magnetic coils

Mirror

4

Viewport

x

y

x

z

~20o

Figure 3.2: Experimental scheme of the vacuum chamber and MOT
beams (the trap and repumper beams overlap) [138].

Figure 3.3: Transitions used for the MOT

In an MOT, atoms are slowed down due to momentum kicks given by
unidirectional absorption of photons followed by emission in a random
direction. The Doppler effect makes only the atoms moving towards the
red-detuned laser beams to see the photons in resonance and, therefore,
be able to absorb them. Due to momentum conservation, the absorp-
tion of photons pushes the atoms towards the point of intersection of the
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three beams. The radiation forces from the laser beams balance each
other only for a stationary atom, reducing the atomic velocity and there-
fore the temperature of the system. This technique is known as optical
molasses. In addition to cooling the atoms, we can also confine them at
the intersection point thanks to the magnetic field gradient and a correct
polarization of the laser beams. The magnetic field gradient produces a
Zeeman shift that depends on the position of the atom. If the light is
circularly polarized with the correct handedness, the probability of ab-
sorption is greater when the atom is farther from the center. The atoms
entering the intersection region of the laser beams are slowed down due
to the optical molasses and the position-dependent force pushes the cold
atoms toward the center of the trap. Therefore, the MOT provides a
good source of atoms for loading the dipole-force trap [139].

To implement the MOT, we use the closed transition |5S1/2, F =
2〉 → |5P3/2, F = 3〉, coupled by the trap laser (see figure 3.3). Al-
though the decay to the state |5S1/2, F = 1〉 has a very low probability,
this can happen because many excitation cycles are needed to reduce the
momentum of the atoms. To pump the atoms back to the closed tran-
sition, we apply a repumper beam, co-propagating with the trap beam,
resonant with the transition |5S1/2, F = 1〉 → |5P3/2, F = 2〉. The
total peak intensities of the trap and the repumper during the MOT
are Itrap ≈ 2 mW·mm−2 and Irep ≈ 4 mW·mm−2 and the detuning
of the trap is ∆trap = −19 MHz ≈ −3Γ. The detuning is defined as
∆ = ωtransition − ωbeam to be consistent with how it is normally written
in the literature.

3.4.2 Compressed magneto-optical trap

The compressed magneto-optical trap (CMOT) method allows us to in-
crease the atomic density above that obtained in the steady state of the
MOT without significantly increasing the temperature [140]. For that
purpose, the gradient of the magnetic field is increased by a ramp, along
with the detuning of the trap beam. These changes are combined with
a decrease in the intensity of the trap and repumper beams in order to
reduce the radiation pressure.

The increase in the current sent to the magnetic coils is done with
a controllable current source with a fast slew rate from Servowatt. It
allows the variation of the magnetic field gradient with a ramp dura-
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tion of 18 ms. The trap detuning goes from ∆trap = −19 MHz to
∆trap = −53 MHz ≈ −9Γ in the same time interval, while the trap and
repumper peak intensities are reduced with respect to the MOT stage,
but kept constant during the ramp time at Itrap ≈ 0.3 mW·mm−2 and
Irep ≈ 1.5 µW·mm−2. After the end of the ramp, all parameters remain
constant for an additional 10 ms. A scheme of the relative detunings
and intensities with respect to the MOT and molasses processes can be
seen in figure 3.4.

3.4.3 Molasses and optical pumping

The molasses phase is applied to reduce the temperature of the atomic
cloud. During this process, the magnetic field gradient is turned off
and only Doppler cooling is performed. The intensities of the trap and
the repumper in this phase are Itrap ≈ 0.1 mW·mm−2 and Irep ≈
0.2 µW·mm−2; and the detuning of the trap is ∆trap = −63 MHz
≈ −10Γ. The temperature of the atoms after this stage is T ∼ 50 µK,
measured by imaging the atomic cloud for different time of flights [101]
without the dipole trap.

Later, we prepare the atoms in the initial state |g〉 = |5S1/2, F = 2〉
by applying the repumper at maximum intensity for 200 µs.

3.4.4 Dipole trap

The density of the atomic cloud can be increased and the size decreased
by optically trapping the atoms using a highly focused far-detuned laser
beam [141, 142]. As the intensity of such a beam has a steep gradient
in space, this generates a Stark shift in the atom that depends on its
position. For a negative detuning ∆dt < 0, this shift creates an attrac-
tive force on the atoms towards the point of maximum intensity. If ∆dt

is sufficiently large, a Gaussian beam with peak intensity I0 and beam
waist ωdt produces a transversal force F ∝ I0/(∆dtω

2
dt) [143].

The wavelength of our dipole trap is 852 nm. This wavelength was
chosen such that it is compatible with the anti-reflection coating of the
vacuum chamber viewports and, at the same time, generates a negligible
scattering in the atoms (see figure 3.5a). As mentioned before, the dipole
trap laser system is composed by a distributed feedback diode laser and
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Figure 3.4: Scheme for relative intensities, trap detuning and magnetic
field gradient inside the different loading processes. The intensities are
normalized with respect to the intensity sent in the MOT process (note
that they are shown in logarithmic scale). The detuning of the trap laser
is in units of Γ and the gradient of the magnetic field is, in fact, voltage
sent to the magnetic coils current supply.

an amplifier, which gives an output power of 2.6 W. This is sent through
an AOM in single-pass configuration, where part of the power is lost.
The maximum value, measured close to saturation in the first order, is
around 1.6 W. After that, the light is sent towards the vacuum chamber
by coupled it into a single-mode fiber from Schäfter+Kirchhoff. The
dipole trap power at the vacuum chamber is around 1.2 W and it is fo-
cused with a beam waist of ωdt ≈ 27 µm, which leads to a peak intensity
of I0 ∼ 1 kW/mm2. The experimental setup for the dipole trap can be

seen in figure 3.5b. We calculate a trap depth of Udt ≈ 3πc2

2ω3
ge

Γ
∆dt
·I0 ∼ 0.45

mK, where ωge is the transition frequency of the D2 line of 87Rb. We
can see that the obtained trap depth is much higher than the aver-
age temperature of the atoms after molasses. The scattering rate is
Rscatt ≈ Γ

h̄∆dt
Udt ∼ 10 photons per atoms per second and the frequency

of the trap in the radial direction is calculated to be 15 kHz.
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Figure 3.5: (a) Dipole trap detuning with respect to the D lines tran-
sitions of 87Rb (not to scale). (b) Experimental scheme of the dipole
trap [138].

The characterization of the atomic cloud loaded in the dipole trap is
done through absorption imaging. A beam resonant with the transition
|5S1/2, F = 2〉 → |5P3/2, F = 3〉 is focused in the atomic cloud as can be
seen in the setup scheme of figure 3.6. Then, a telescope consisting of
two lenses with focal lengths 100 mm and 200 mm magnified by two the
image of the beam obtained by a CCD camera. The beam transmission
in the pixel located at the position (x, y) is

T (x, y) =
iatoms(x, y)− ibackground(x, y)

ino atoms(x, y)− ibackground(x, y)
, (3.1)

where iatoms(x, y) correspond to the image of the beam through the
cloud, ino atoms(x, y) to the image of the beam without the atoms and
ibackground(x, y) to the background image. The size of the atomic cloud
can then be obtained by a 2D Gaussian fit to the transmission, shown
in figure 3.7. The result gives a transverse length of ωtrap = 34 µm.

The optical depth of each pixel OD(x, y) can be calculated from the
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Figure 3.6: Experimental scheme of the absorption imaging used to
characterized the atomic cloud [138]. The imaging beam is sent on
resonance with the transition |5S1/2, F = 2〉 → |5P3/2, F = 3〉.
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Figure 3.7: Gaussian fit to the transmission for obtaining the transversal
size of the dipole trap. The plot in the left shows the transmission
obtained from the images, in logarithmic scale. The plot in the middle
shows the 2D Gaussian fit to the experimental data and the third plot
shows the residual, which correspond to the experimental data minus
the fit.

transmission using the equation

T (x, y) = e−OD(x,y)(1− e−ODsat) + e−ODsat , (3.2)

where ODsat is the maximum value of the optical depth that we can
measure. Then, we can estimate the atomic density in each pixel using
ρ(x, y) = OD(x, y)/(σωtrap), where σ is the absorption cross section of
the atoms and ωtrap the transversal size of the dipole trap previously
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obtained. Within a small region of 20 × 10 pixels in the center of the
cloud, corresponding to 703 µm2, we calculate an averaged atomic den-
sity of ∼ 3 · 1011 cm−3.

Given the calculated value of Rscatt, the time required to heat the
atoms out of the dipole trap by photon scattering is more than 50 s.
Therefore, we expect the lifetime of the dipole trap to be limited by
collisions with the background gas. The decay time of a dipole trap due
to collisions is described by the equation [142]

dN

dt
= −αN − βN2 − γN3, (3.3)

where the first term refers to the background losses, the second to two-
body losses and the third to three-body losses. Since the dominant term
corresponds to background losses, the lifetime of the dipole trap can be
defined as τ = 1/α, which corresponds to the time it takes to reduce the
number of atoms to 1/e.

To calculate the lifetime of our dipole trap, we take images of the
atomic cloud at different times after the molasses (see figure 3.1), which
is when the atoms are trapped only by the dipole trap. We call this
time the trapping time. In each image, the number of atoms is cal-
culated within the small region of 20 × 10 pixels previously defined.
The amount of atoms the beam goes through in each pixel can be esti-
mated using N(x, y) = OD(x, y)Apixel/σ, where Apixel is the real area
associated with a pixel (in our case Apixel ≈ 1.87 µm) and OD(x, y) is
obtained from equation 3.2. On the left of figure 3.8, the transmission of
the atomic cloud is shown after 60 ms of trapping time. On the right, we
show the number of atoms obtained for different trapping times together
with the fit to equation 3.3, from which we obtain α ≈ 2.2 · 10−3 Hz,
β ≈ 4 · 10−11 Hz/atom and γ = 0 is fixed. This results in a lifetime of
τ ≈ 0.46 s.

3.5 Excitation of atoms

During the process of excitation of atoms to Rydberg levels, the dipole
trap is turned off to eliminate all AC-Stark shifts and prevent the loss
of Rydberg atoms due to the repulsive potential of the dipole trap.
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Figure 3.8: Characterization of the dipole trap. (a) Transmission of the
atomic cloud obtained by absorption imaging, for a trapping time of 60
ms. (b) Evolution of the number of atoms calculated in a small region
in the centre of the atomic cloud for different trapping times. A fit to
this data gives a lifetime of τ ≈ 0.46 s.

As mentioned before, atoms are initially prepared in the ground state
|g〉 = |5S1/2, F = 2〉. The excitation is done by sending a probe light,
which couples the transition |g〉 = |5S1/2, F = 2〉 → |e〉 = |5P3/2, F = 3〉,
together with a counter-propagated coupling beam, which couples the
intermediate state with the Rydberg state |e〉 = |5P3/2, F = 3〉 → |r〉 =
|nS1/2〉. The probe beam is sent perpendicularly to the vacuum chamber
viewport, but at an angle of 19o with respect to the dipole trap beam.
Before the chamber, the probe beam passes through an aspheric lens
that focuses it on the center of the atomic ensemble with a beam waist
of wp ≈ 6.5 µm. The strong dipole-dipole interaction of Ryberg atoms
leads to blockade and only a Rydberg excitation is allowed per blockade
sphere. The experimental scheme of the excitation process can be seen
in figure 3.9.

The OD of the medium is obtained from a fit to the transmission for
different detuning of the probe beam ∆, in absence of the coupling beam.
In a separate measurement, the coupling beam is turned on, which opens
a transparency window in the probe transmission by means of EIT, as
mentioned in section 2.4. We can obtain some important parameters
such as Ωc from a fit of the transmission for different detuning ∆ of
the probe light. An example of this measurement for the Rydberg state
|r〉 = |70S1/2〉 is shown in figure 3.10, where we obtain OD ≈ 6 and
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Figure 3.9: (a) Transitions involved in the excitation of the atoms to
the Rydberg state. (b) Experimental scheme of the excitation process
[138].

Ωc = 10.61± 0.05 MHz.

The FPGA boards (Signadyne) that are used to control the RF signal
sent to the acousto-optic modulators include an arbitrary wave-function
generator (AWG) that allows us to fully control the amplitude envelope
of the RF signal. This functionality enables to send probe and coupling
pulses with different shape, amplitude and duration towards the atomic
cloud.

When we excite the atoms under EIT conditions, the probe and the
coupling light are sent in resonance with the intermediate state (∆ = 0).
In this case, the blockade effect produces scattering of photons. The ex-
periment is performed by sending weak-coherent pulses of probe light to
the medium. If the coupling field is on, these pulses propagate coher-
ently in the form of Rydberg polaritons with a group velocity vgr much
smaller than the velocity of light in vacuum c. To perform storage, we
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Figure 3.10: Transmission of a probe beam for different detunings with
the transition |g〉 = |5S1/2, F = 2〉 → |e〉 = |5P3/2, F = 3〉 with (in blue)
and without (in orange) a coupling field resonant with the transition
|e〉 = |5P3/2, F = 3〉 → |r〉 = |70S1/2〉. The input rate of probe photons
is 0.3 MHz. A fit to this data gives OD ≈ 6 and Ωc = 10.61±0.05MHz.

turn off the coupling beam when polaritons are propagating through the
medium. After an arbitrary time, we can retrieve the probe photons by
turning on the coupling beam again. An example of the optical pulses
for the probe and coupling fields for storage and retrieval through EIT,
together with the measured probe pulses, is shown in figure 3.11. The
optical pulses are obtained by estimating the response of the AOMs to
the arbitrary-wave functions that we generate.

We can also excite the atoms to Rydberg levels by sending probe
and coupling pulses in the off-resonant excitation configuration, i.e. the
optical fields are detuned with respect to the intermediate state, so that
the interaction with it is negligible. Specifically, the detuning is set to
∆ = −40 MHz for the probe and ∆c = 40 MHz for the coupling beam.
In addition, the time widths of both pulses and the amplitude of the cou-
pling one are optimized so that the probability of excitation is greater.
In this way, collective Rydberg excitations are created within our atomic
cloud. After an arbitrary time, these excitations can be mapped into
probe photons by sending a new coupling pulse to the medium. This
coupling pulse can be sent in resonance with the intermediate state,
which will change the frequency of the retrieved photons to be in res-
onance with the |g〉 → |e〉 transition due to energy conservation. An
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Figure 3.11: Optical pulses for excitation of atoms under EIT conditions.
In this case, both probe and coupling beam are sent on resonance with
the intermediate state. The detected probe counts (red dots) are also
shown, normalized by the input pulse. The probe counts detected for
Time < 1 µs correspond to the part of the slow-light pulse retrieved
from the medium before the coupling beam is turned off (note that we
cannot compress the entire input pulse inside the medium).

example of the optical pulses used to generate the collective excitation,
together with the measured temporal distribution of the probe counts,
is shown in figure 3.12.

3.6 Photon detection

Probe photons are detected by two single-photon avalanche detectors,
one from Excelitas (model SPCM-AQRH-14-FC) with ∼ 100 Hz of dark
counts and the other from Laser Components (model COUNT-10C-FC)
with ∼ 10 Hz of dark counts. The signals generated from the detection
clicks are sent to a time-to-digital converter (TDC) from Signadyne,
which has a resolution of 320 ps.

As mentioned in 2.2, the second-order correlation function can be
measured by sending the retrieved photons through a 50:50 beamsplit-
ter from Thorlabs with the two outputs connected to the two single-
photon avalanche detectors, as shown in figure 3.13. This configuration
is known as the Hanbury-Brown and Twiss experiment. The signals
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Figure 3.12: Optical pulses used for off-resonant excitation to the Ry-
dberg level. In this case, probe is sent with a detuning of -40 MHz
with respect to the intermediate state. Probe counts are also shown,
normalized by the input pulse.

from both detectors, together with a TTL signal that marks the start of
an excitation trial, are sent to the TDC. The resulting times are saved in
timestamp files, which are subsequently analyzed to obtain the statistics
associated with the output photons.

Single-photon detector

Beam splitter

Fiber coupler

Analysis equipment

y

x

Figure 3.13: Experimental scheme of the Hanbury-Brown and Twiss
experiment [138].



Chapter 4

Towards single-photon
nonlinearity

4.1 Introduction

As mentioned in section 1.1, a medium with nonlinearity at the single-
photon level is a key requirement for processing quantum information
carried by single photons. In simple words, such a medium has a different
response when it interacts with a single photon than when it interacts
with more than one. Such a nonlinearity enables the quasi-deterministic
generation of single photons and the realization of photonic quantum
processing, e.g. photon-photon gates.

It has been demonstrated that a medium made of Rydberg atoms
excited under EIT conditions can show nonlinearity at the single-photon
level, as we have discussed before in section 2.4.1. For the dissipative
case, this nonlinearity is translated as a minimum separation between
photons propagating through the medium, which means that only a sin-
gle photon can leave the medium at a time. For quantum communica-
tion purposes, this medium should generate single-photon pulses located
within a pulse, when weak-coherent states of light are sent as an input.

However, at the beginning of this PhD project, our cloud of Ryd-
berg atoms was only showing nonlinear effects when pulses with more
than sixty input photons of average were sent to the medium. Reaching
the quantum regime, i.e. nonlinearity at the single photon level, was
therefore a first major goal of this PhD work. Since then, we have im-
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plemented many improvements in the way we load the atomic cloud and
excite the atoms. In this section, we review all the changes done to the
experiment that allowed us to reach single-photon nonlinearity. We also
present a characterization study of the nonlinearity in three different
stages of the project: at the beginning, to define the starting point; just
before implementing the optical dipole trap and at the final stage. This
characterization was done following two different methods, depending
on how far we were from the quantum regime. All of the measurements
presented in this chapter were carried out under EIT conditions.

4.2 Characterization of optical nonlinearity in
Rydberg EIT

In general, the nonlinearity is assessed by sending weak coherent pulses
into the Rydberg medium and measuring the output light. For a weakly-
blockaded medium, the photon statistics at the output are very similar
to that of the weak coherent state. As a consequence, a measurement
of the second-order correlation function gives values very close to the
classical one (g(2)(0) = 1). In this case, the nonlinearity is assessed
by measuring the number of input photons at which the number of
output photons saturates. For a strongly-blockaded medium, the second-
order correlation function can be used to characterize the output light
statistics, since it shows values much smaller than one.

4.2.1 Weakly-blockaded medium

If the interactions between Rydberg atoms are negligible, the mean
number of output photons has a linear relation with the mean num-
ber of input photons, given by the transmission T = nout/nin. However,
when interactions between Rydberg atoms become important, the out-
put number of photons nout saturates when nin increases, due to the
Rydberg blockade effect. The saturation value is described by the pa-
rameter Nmax, which gives the maximum number of output photons
corrected by the linear transmission T . The relation between nout, nin
and Nmax can be simply described by the equation [76]

nout = Nmax · T
(

1− e
−nin
Nmax

)
. (4.1)

In our experiment, nin and nout are obtained from the number of detec-
tion events recorded in a single-photon avalanche detector per trial, cor-
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rected by the detection efficiency. In the absence of atoms, the obtained
value correspond to nin. When the pulse is retrieved after propagation
or storage in a Rydberg medium, we obtain nout. By sending input
pulses with different amplitudes, we can obtain Nmax by fitting the data
to the equation 4.1, as will be shown in the next sections. Ideally, in a
medium with single-photon non-linearity, Nmax = 1.

4.2.2 Strongly-blockaded medium

For a strongly-blockaded medium, the output light shows quantum statis-
tics, which can be measured with the second-order correlation function.
The definition can be found in the equation 2.7 of section 2.2. Ideally,
we expect the light retrieved from a Rydberg EIT medium with nonlin-
earity at the single-photon level to show antibunching (g(2)(0) < 1) with
a time-width related to the blockade time τb = rb/vgr, where vgr is the
group velocity of the polaritons in the medium.

The second-order correlation function is obtained by sending the out-
put light through a Hanbury-Brown and Twiss experiment, consisting
on a beamsplitter and two single-photon avalanche detectors (see section
3.6). The arrival times of the photons for each detector, together with
trigger times for each trial, are saved in a time-stamp file. First, we
select a detection window with starting time t0 after the trigger and a
duration ∆t. Then, g(2)(t, τ) is obtained from the equation 2.10, where t

is the starting time of the detection window in the first detector (t ≡ t(1)
0 )

and t + τ is the starting time of the second detector (t + τ ≡ t
(2)
0 ). To

measure the statistics of the whole pulse, we select detection windows

in both detectors with t
(1)
0 = t

(2)
0 = 0 and a ∆t longer than the pulse

duration ∆tpulse, such that the detection windows take into account the
whole retrieved pulse. In this case, the second-order correlation function

g(2)(0, 0) is labeled as g
(2)
∆t (0). A perfect single photon located within a

pulse should give a zero probability to obtain two clicks within the same

pulse and then a g
(2)
∆t (0) = 0. To obtain a time-resolved g(2)(τ), ∆t is

taken to be much shorter than ∆tpulse and g(2)(t, τ) is integrated over

all the possible values of t ≡ t
(1)
0 . The coincidence histogram obtained,

similar to figure 2.6 of section 2.2, will have a resolution given by a bin
size of 2∆t. Figure 4.1 shows an example for a bin size of 50 ns. This
measurement was taken for a Rydberg state with n = 90 and a weak
long input pulse. In the upper plot, the range of τ taken to calculate
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the coincidences is longer than the separation between different trials
ttrial = 16 µs. Then, the bunches shown in this plot correspond to co-
incidences between different trials. In the lower plot, we have zoomed
around the central peak, corresponding to coincidences detected in the
same trial. Here, we can see the characteristic time correlations ap-
pearing in dissipative Rydberg EIT systems, where the probability to
detect two photons close to each other is strongly suppressed due to
dipole blockade (see section 2.4.1). The normalization factor is obtained

Figure 4.1: Coincidences as a function of the delay time, with a bin size
of 50 ns. (a) For τ � ttrigger. (b) Zoom of the upper plot for τ < ttrigger.

either from the number of coincidences between non-correlated trials or
directly from the single-photon detection probabilities.

4.3 Starting point

As the starting point of the nonlinearity measurements, we present here
the results published in 2017 [83]. In this experiment, a magneto-optical
trap was used to load the atoms, leading to a Gaussian distribution of
atoms with σ ≈ 0.8 mm and a peak density of ρ0 ≈ 3.2 · 1010 cm−3.
The atoms were initially prepared in the state |g〉 = |5S1/2, F = 2〉. A
probe beam resonant with the transition |g〉 → |e〉 = |5P3/2, F = 2〉 was
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focused in the center of the cloud with a beam waist of ωp ≈ 6.5 µm,
giving a OD ≈ 6. A counter-propagating coupling beam resonant with
|e〉 → |r〉 = |60S1/2〉 was focused with ωc ≈ 13 µm, giving a Rabi fre-
quency of Ωc ≈ 5 MHz, fulfilling the conditions for EIT. The values of
OD and Ωc were extracted from a fit to the transmission for different
detuning of the probe light, as previously presented in section 3.5. With
these parameters, we can infer a blockade radius of rb ≈ 6.4 µm from
the equation 2.18.

For the characterization of the nonlinearity, Gaussian-shaped probe
pulses were sent with a FWHM≈ 400 ns, optimized to obtain the highest
possible storage efficiency. When the pulse was traveling through the
medium, the coupling beam was switched off to perform storage. After a
storage time tstor = 4 µs, the probe light was retrieved with a maximum
efficiency of η0 = nout/nin ≈ 0.005, measured for nin ≈ 5 photons,
and detected with an avalanche photo-detector. The mean number of
output photons, corrected by the linear transmission T , as a function of
nin, is shown in figure 4.2. The value of Nmax obtained from the fit to
equation 4.1 shows a nonlinear effect at the level of ∼ 60 input photons.
This represents the best value obtained before we implemented the next
changes in the experiment, described in sections 4.5-4.6.

Figure 4.2: Mean number of output photons retrieved after a storage
time of 4 µs at |r〉 = |60S1/2〉, divided by the linear transmission T , as
a function of the mean number of input photons. The saturation level
gives Nmax = 62± 2. Error bars correspond to one s.d.
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4.4 Parameters to improve

The second-order correlation function of the light after propagation in
a Rydberg EIT medium in steady state conditions, i.e. for an uniform
input rate of photons, was characterized by Peyronel et al. in 2012
[36]. In their model, they obtain an analytical expression of g(2)(0) from
the equations governing the two-particle amplitudes, which are obtained
using the Heisenberg equations of motion for the slow-varying operators
involved in the creation of a photon, an intermediate state excitation
and a Rydberg excitation. In steady state conditions and after several
simplifications, the g(2)(0) is:

g(2)(0) ≈ 4(1 + (Ωc/Γ)2)

πOD
exp

[
− ODb√

1 + (Ωc/Γ)2

]
, (4.2)

where Γ is the decay rate of |e〉 state and ODb is the optical depth
per blockade sphere, defined as ODb = ODrb/L for a one-dimensional
medium. Among the approximations made to obtain this equation
are: neglecting the decay of the |g〉 → |r〉 coherence, assuming uni-
form density along the propagation direction, one dimension and large
OD. Therefore, although we cannot use it for quantitatively describing
our problem, we can use it for qualitatively understanding it. From this
equation, we can see that ODb is a key parameter, since g(2)(0) drops
exponentially when OD2

b > 1+(Ωc/Γ)2. The general OD of the medium
also influences, but in a linear way (∝ 1/OD). Note that g(2)(0) also
depends on Ωc, in a way that decreasing it leads to lower g(2)(0). How-
ever, for a medium where γrg 6= 0, decreasing Ωc also leads to lower
EIT transparency (see equation 2.14 of section 2.4). Therefore, we will
work with the greatest value of Ωc possible, which usually lies between
0.8Γ− 1.7Γ.

Having a one-dimensional medium is key to achieve nonlinearity at
the single-photon level, since it is related to the probability to find
two parallel polaritons. A one-dimensional medium can be assumed
if the transversal size of the interaction region is much smaller than
rb at all positions, which is not the case of the experiment presented
in section 4.3, due to the huge cloud length. In this case, the previ-
ous definition of ODb as ODrb/L is not precise and possibly gives a
greater value of the optical depth per blockade sphere. In the following,
we will write ODb < ODrb/L for conditions where one-dimensionality
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cannot be assumed. From the experimental parameters, we obtain
ODb < ODrb/L ≈ 0.048.

Another parameter that we should consider when we aim for ob-
taining a single photon located within a pulse is the maximum number
of excitations which can be fitted inside the medium. This is specially
important when storage is performed. For a general case where the di-
mension can be greater than one, we can estimate it as Nb = VIR/r

3
b ,

where VIR is the volume of the interaction region. However, for a one-
dimensional medium, a better estimation is Nb = L/rb. In an ideal case,
Nb . 1. For the initial configuration of the experiment, we infer that
the maximum number of excitations which can be stored in the medium
is Nb ∼ 3200.

When storage is performed, interaction-induced dephasing also can
play a role in increasing the nonlinearity of the system (see section 2.6).
The phase-shift applied to the components with more than one excita-
tion depends on three parameters: the relative distance between exci-
tations, the interaction coefficients (C6 ∝ n11 and C3 ∝ n4) and the
storage time. Therefore, interaction-induced dephasing will normally
increase for higher Rydberg levels and longer storage times.

Therefore, the nonlinearity of the medium depends on several param-
eters. The improvement of them, specially ODb and Nb, can be done in
several ways, which can be summarized in:

• Exciting to Rydberg levels with higher n: It increases the interac-
tion coefficients and the blockade radius, which also increases the
number of atoms per blockade sphere.

• Increasing the density of the cloud: It increases the number of
atoms per blockade sphere and hence the ODb.

• Changing the probe and coupling transitions to one with stronger
dipole moment: It increases the light-atom interaction and hence
the OD.

• Reducing the transverse size and volume of the interaction region
by confining more the atoms.

• Storing for long times.
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4.5 Towards stronger nonlinearities

The critical step in the experiment to achieve quantum statistics in the
output light was to implement a dipole trap to load the atomic cloud.
However, we tried many previous improvements that we present in this
section. A summary of the important parameters in each of the steps
can be found in the table 4.1.

n rb ODb N slow
max Nb tstor N stor

max

Starting point 60 6.4 µm < 0.048 * 3200 4 µs 60
CMOT 60 6.2 µm < 0.16 * 680 * *
Transitions 60 6.2 µm < 0.27 * 680 3 µs 10
Rydberg state 70 8 µm < 0.34 * 320 3 µs 4
Optical pumping 70 8 µm < 0.5 10 320 2 µs 3

Table 4.1: Summary of improvements made to the experiment before
the dipole trap and the important parameters in each step. * indicates
that no data is available. All values are approximations.

4.5.1 Compressed-magneto-optical trap (CMOT)

In order to increase the density of the atoms and decreasing the num-
ber of blockade spheres in the medium, we implemented a compressed
magneto-optical trap, described in section 3.4.2. From fluorescence
imaging, we estimated a peak density of ρ ≈ 6 · 1010 cm−3 and a cloud
size of σ ≈ 0.3 mm.

After the implementation of the CMOT, we measured OD ≈ 16
and Ωc ≈ 5.5 MHz. For the same Rydberg state |r〉 = |60S1/2〉, these
parameters lead to rb ≈ 6.2 µm, ODb < 0.16 and Nb ∼ 680.

4.5.2 Transitions

In order to increase the light-matter coupling, we also changed the tran-
sitions used in the experiment to ones with higher dipole moments. The
probe, before connected with the intermediate state |e〉 = |5P3/2, F = 2〉,
is now coupled with |e〉 = |5P3/2, F = 3〉. This new transition means
an ideal gain in the |g〉 → |r〉 excitation probability of 4.7, assuming
an equally-distributed population in the different Zeeman levels of the
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ground state.

Experimentally, we obtained an OD ≈ 26 and Ωc ≈ 5.5 MHz. Hence,
the maximum bound of the ODb was increased to ODb < 0.27. At
this point, we measured a Nmax ∼ 10 for a storage time tstor = 3 µs.
However, we obtained a second-order correlation function of g(2)(0) ≈ 1,
showing no quantum statistics.

4.5.3 Change of Rydberg level

In order to increase the volume of the blockade sphere, we changed the
excitation to a higher Rydberg level, specifically |r〉 = |70S1/2〉. Given
the previous value of OD and a coupling Rabi frequency of Ωc ≈ 6.5
MHz, the blockade radius is rb ≈ 8 µm, which leads to ODb < 0.34
and Nb ∼ 320. For this experiment status, we measured Nmax = 4 ± 1
for a storage time of tstor = 3 µs. However, no quantum statistic was
obtained in a second-order correlation measurement.

4.5.4 Optical pumping

Another step towards increasing the light-matter coupling was to optically-
pump the atoms in the Zeeman level |g〉 = |5S1/2, F = 2,mF = 2〉, since
the transition |5S1/2, F = 2,mF = 2〉 → |5P3/2, F = 3,mF = 3〉 → |r〉
has the strongest dipole moment. In the ideal case, we expect a gain in
the excitation probability of 14, comparing to the starting configuration
with |e〉 = |5P3/2, F = 2〉, assuming an equally-distributed population
in the Zeeman levels of the ground state.

After the implementation and optimization of the optical pumping,
we measured OD ∼ 40 and Ωc ≈ 6.5 MHz, which leads to ODb < 0.5.
The characterization of the nonlinearity at this stage is shown in the
next section.

4.5.5 Final results

The resulting nonlinearity of the system was characterized following the
two methods described in section 4.2, i.e. by measuring the saturation
level of output photons Nmax and the second-order correlation function
g(2)(τ).
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Nmax measurement is shown in figure 4.3, for different storage times.
We can see that the obtained values for Nmax are more than ten times
smaller than the ones obtained at the beginning (see figure 4.2), being
very close to the values expected for the quantum regime. Moreover,
this measurement indicates that, although the difference in Nmax be-
tween the different storage times is in most cases inside the error bars,
this difference is significant when we compare to the one obtained with
slow light, corresponding to tstor = 0 and square markers in the plot. In
the top, the efficiency of the storage process is characterized for a low
number of input photons (nin ≈ 3 photons), such that we can consider
than the dephasing time (the characteristic time in which the retrieval
efficiency decreases) is limited by atomic motion and not by Rydberg
interactions. In this case, the retrieval efficiency follows a Gaussian de-
cay with a lifetime given by the temperature of our atomic cloud [126].
A Gaussian fit to the data gives τ ≈ 1.3 µs. Note that the first point
correspond to the slow light efficiency, so it is not included in the fit.

Figure 4.3: In the left, mean number of output photons, corrected by the
linear transmission, as a function of the mean number of input photons,
for three different storage times. In the top right, the storage efficiency
for different storage times and the resulting dephasing time extracted
from a Gaussian fit without including the slow light efficiency. In the
bottom, Nmax as a function of the storage time. Square marker and
tstor = 0 corresponds to slow light measurement. Error bars correspond
to one s.d.
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Figure 4.4: In the left, g
(2)
∆t (τ) between different trials, after storing the

pulse for tstor = 0.8 µs. The detection window of ∆t = 0.7 µs is shown
in the inset plot. The time between trials is ttrial = 10.2 µs. In the right,
g(2)(τ) for delay times τ between two photon events happening in the
same trial, for tstor = 0.8 µs and a bin size of 50 ns. The black dashed
line indicates the classical threshold. Errors correspond to one s.d.

The measurement of the second-order correlation function of the out-
put pulse for tstor = 0.8 µs and nin ≈ 4 photons is shown in figure 4.4. In
the left, we select a window time of ∆t = 0.7 µs to take into account all
the photon events arriving inside the retrieved pulse (see inset). Then,
we measure the probability to have a coincidence between different tri-
als. This value is then normalized by the classical one given by the
single-photon detection probabilities 〈n1〉 〈n2〉 within the time window

∆t, leading to g
(2)
∆t (τ). The value obtained within the same trial (first

column) gives g
(2)
∆t (0) = 1.04 ± 0.06, which is still classical. In the plot

on the right, we show a time-resolved measurement of the g(2)(τ) by
taking different τ within the same trial and a bin size of 2∆t = 50 ns. In
this case, the classical coincidences are measured from the coincidences
between one trial and the next one. At zero-delay time, we obtain a
value of g(2)(0) = 0.54±0.13, which is in the quantum regime. However,
the magnitude of error bars and bin size does not allow us to see a clear
antibunching dip.

We also measure the variation in the statistics of the output pulse,
after a storage time of tstor = 0.8 µs, with respect to the mean number
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of input photons. Results are shown in figure 4.5 for a ∆t = 0.7 µs
longer than the retrieved pulse (see inset plot). For nin � 1, we mea-
sure correlation between one trial and the following ones, characterized
by a bunching effect lasting until the 4th next trial, which correspond to
a delay time between two detections of 40.8 µs. A clear understanding
of this effect is difficult, since the regime of nin � 1 constitutes a chal-
lenging many-body dissipative problem. A possible explanation arrives
from nearly-stationary Rydberg excitations which cannot be retrieved
from the cloud from one trial to another (pollutants) [102, 50]. They
can be located out of the interaction region or in another Rydberg state
and are more likely to be created for nin � 1. The pollutants generated
in one trial can blockade the storage of photons in the following trials,
giving rise to long-lived correlations as the ones shown in figure 4.5.

Figure 4.5: Second-order correlation function between trials, for different
mean number of input photons nin. The values for the same pulse are:

g
(2)
∆t (0) = 1.04± 0.06 for nin ∼ 4, g

(2)
∆t (0) = 1.03± 0.05 for nin ∼ 13 and

g
(2)
∆t (0) = 1.48 ± 0.09 for nin ∼ 22. The black dashed line indicates the

classical threshold. Errors correspond to one s.d.

The results presented here show that the obtained nonlinearity at
this stage was not high enough to see clear quantum statistics in the
output light. Moreover, the count rate of the experiment was very low:
around 990 trials/s and 6 counts/s in each detector, giving < 150 coin-
cidences/hour. The slow light and storage efficiency were also quite low:
ηslow ≈ 0.02 and ηstor ≈ 0.007 for tstor = 0.8 µs.
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4.6 Nonlinearity with the dipole trap

In order to increase the nonlinearity of the medium, we implemented a
dipole trap to load a smaller and denser atomic cloud, consisting of a
red-detuned laser beam at 852 nm highly focused in the center of the
atomic cloud. The resulting cloud had a transversal size of 34 µm and a
peak density of ∼ 4·1011 cm−3. In the following experiments, no Zeeman
optical pumping was performed, so the atoms were prepared in the state
|g〉 = |5S1/2, F = 2〉. The probe beam was sent with an angle of 19o

with respect to the dipole trap beam (see figure 3.5b of section 3.4.4) and
resonantly coupled to the state |e〉 = |5P3/2, F = 3〉, leading OD ∼ 5−7.

4.6.1 Change of Rydberg level

In the following measurements, we excite the atoms to three different
Rydberg states |r〉 = |nS1/2, F = 2〉 with n = 70, 81, 90. The coupling
Rabi frequencies, obtained from a fit to the EIT transparency, are Ωc ≈
10, 9.5, 7 MHz for the different states, respectively. The key parameters
calculated for these conditions are shown in the table 4.2.

n rb One dimension ODb Nb

70 7 µm rb � 2ωp < 0.4 ∼14
81 9.3 µm rb < 2ωp . 0.5 ∼6
90 12.7 µm rb ∼ 2ωp ∼ 0.7 ∼2-3

Table 4.2: Key parameters to characterize the nonlinearity after im-
plementing the dipole trap, for three different Rydberg states. All the
values are approximations calculated for a medium with OD= 6 and
effective length L = 104 µm, where L = 34/sin(19o) µm takes into ac-
count the angle between the dipole trap and the probe beam, whose
waist is ωp ≈ 6.5 µm.

4.6.2 Final results

With these parameters, we finally obtained quantum statistics in the
output pulses, when measuring the second-order correlation function.
The following measurements were obtained for Gaussian input pulses
with nin . 2 photons and FWHM≈ 200 ns, unless we specify another
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values.

The values of Nmax and g
(2)
∆t (0), after propagation under EIT and

after storing for 0.5 µs are shown in figure 4.6, for the three different
principal quantum numbers n = 70, 81, 90 and nin . 1.5. As we can see,

the higher the n, the closer to the single-photon statistics (g
(2)
∆t (0) = 0),

although the values of Nmax does not show any clear dependence. This
indicates, as we have suspected from previous measurements, that Nmax

is a good indicator of the nonlinearity only for weakly-blockaded ensem-
bles. However, it is not sufficient when the nonlinearity approaches to
the single-photon regime.

Figure 4.6: In the left, second-order correlation function g
(2)
∆t (0) with

respect to the principal quantum number of the Rydberg state, for a
pulse after propagating through EIT (tstor = 0) and after being stored
for tstor = 0.5 µs. The black dashed line indicates the classical limit. In
the right, Nmax obtained for the same parameters does not show a clear
correlation. Error bars correspond to one s.d. In theNmax measurement,
systematic errors associated to the detection efficiency are also included.

An analysis of the second-order correlation function for delay times
within the same pulse is shown in figure 4.7, for a bin size of 2∆t = 30
ns. In the left, g(2)(τ) is measured for pulses after propagation under
EIT (slow light case), for the three different Rydberg states. The val-
ues at zero-delay time gives g(2)(0) = 0.84 ± 0.03 for n = 70, g(2)(0) =
0.69 ± 0.03 for n = 81 and g(2)(0) = 0.45 ± 0.05 for n = 90. Note that
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these values are much higher than what we expect from the equation
4.2 (g(2)(0) . 0.1 for n = 90) and are instead more similar to e−ODb ,
which can be due to the strong assumptions of the equation. In the
right plot of figure 4.7, we show g(2)(τ) for different storage times in
the state |r〉 = |81S1/2〉. Although for tstor = 0, we can see a clear
dependence with τ , leading to an antibunching dip, this is not the case
for a retrieved pulse after storage, where we see a g(2)(τ) roughly con-
stant with τ . The absence of clear time correlations means that two
photons detected within the same pulse have the same probability to be
retrieved at the same time (τ = 0) than with a delay time of τ ≈ 0.2 µs.
This may suggest that the limitation in the nonlinearity is given by
the fact that the medium is not one-dimensional. Moreover, since the
probability to detect two photons is low for the whole pulse duration,
we can say that the output single photon is localized within a pulse.
The values obtained for zero-delay time are g(2)(0) = 0.44 ± 0.04 for
tstor = 0.2 µs and g(2)(0) = 0.34 ± 0.04 for tstor = 0.5 µs. Note that
the slow light measurement is the same as the one shown in the left plot.

Figure 4.7: Second-order correlation function with respect to the delay
time between two-photon events τ , with a bin size of 30 ns. In the
left, g(2)(τ) for slow light, for three different Rydberg states with n =
70, 81, 90. In the right, g(2)(τ) after storage in the state |81S1/2〉 for
different tstor. The black dashed line indicates the classical threshold.
Error bars correspond to one s.d.

In figure 4.8, we characterize the statistics of the full pulse, i.e.
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g
(2)
∆t (0), after storing for different times. We can see that, although the

change in the statistics between the case with tstor = 0 and the cases
with tstor > 0 is evident, the difference between the different storage
times is not so clear. This is in contrast with previous results obtained
with atoms loaded in the magneto-optical trap [122], where there was a
clear dependence with the storage time. This could be explained if we
consider that the interaction-induced dephasing is stronger when there
are more excitations in the cloud. The dispersion of the points suggests
changes in the experimental conditions during the hours-long measure-
ments. In the right, we show the storage efficiency for the different
storage times and the dephasing time obtained from a Gaussian fit to
this data.

Figure 4.8: In the left, g
(2)
∆t (0) of the whole output pulse with respect

to the storage time, for different Rydberg states. The black dashed line
indicates the classical threshold. At the right, storage efficiency as a
function of storage time for the different Rydberg states. A Gaussian
fit to the data is also shown, with the extracted dephasing time. Errors
correspond to one s.d.

In figure 4.9, we show g
(2)
∆t (0) as a function of the mean number of

input photons nin, for the three different principal quantum numbers
n = 70, 81, 90, after 0.5 µs of storage time. We can see that the quan-
tum statistics of the output photons becomes classical when nin � 1.
This bunching effect for higher nin was also demonstrated for the case of
a bigger cloud in figure 4.5. As we said in the previous case, this might
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be explained by the creation of pollutants [102], even though it might
also be explained by an increase in the two-excitations component, since
we can store more than one photon in the cloud (Nb > 1).

Figure 4.9: Second-order correlation function with respect to the ap-
proximated mean number of input photons, for different Rydberg states
and after 0.5 µs of storage time. The black dashed line indicates the
classical threshold. Error bars correspond to one s.d.

Besides the improvements in the statistics of the output photons, an
increase in the experiment rate was also achieved after the implementa-
tion of the dipole trap, leading to ∼ 5730 trials/s. The slow light and
storage efficiencies also increased, as we can see from figure 4.8, obtain-
ing ηslow ∼ 0.5 and ηstor ∼ 0.06 for tstor = 0.5 µs. Furthermore, for
tstor = 0.5 µs, we measured an average of 30 counts/s arriving to each
detector, leading to > 500 coincidences/hour.

4.7 Conclusion

Since the beginning of my PhD, several changes have been implemented
to the experiment, leading to an increase in the nonlinearity of the
medium, the light-matter coupling and the duty cycle and count rates
of the experiment. The most important step was the implementation of
the dipole trap, which strongly reduced the size of the atomic cloud and
increased its density. Afterwards, the second-order correlation measure-
ment of light after propagation or storage in a Rydberg EIT system was
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in the quantum regime, witnessed by second-order correlation function
measurements with g(2)(0)� 1.



Chapter 5

Propagation dynamics of
Rydberg polaritons

5.1 Introduction

As we have shown before, an ensemble of cold atoms coupled to Ryd-
berg states by means of EIT provides an efficient light-matter interface,
which allows the long-range spatial correlations between Rydberg po-
laritons to be mapped into time correlations of the transmitted light.
In section 2.4.1 and 4.4, we have seen that ODb plays a very important
role in creating the strong nonlinearity in the slow light case [36], since
it is related to the probability to detect a blockaded photon. However,
reaching high values of ODb is experimentally challenging to achieve, as
it requires a high atomic density and very high Rydberg levels. Further-
more, achieving a single photon localized within a pulse, that is, reaching
low values of the second-order correlation function for the entire pulse,
requires compressing it ideally within a blockade sphere 2.4.1. We have
shown in section 4.6.2 that single localized photons can be created by
storing the light as Rydberg excitations which are later retrieved from
the medium. However, the use of transmitted pulses (without storage)
in Rydberg EIT could therefore potentially lead to the generation of
localized single photons with higher efficiencies.

In this chapter, we study the photon statistics of weak coherent
pulses propagating through Rydberg EIT. We show experimentally that
the value of the second-order correlation function of the transmitted
light strongly depends on the position within the pulse. In particular,

95
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we show that the falling edge of the transmitted pulse displays much
lower values than the rest of the pulse. Recently, similar results were
observed by Möhl et al. [144]. Our theoretician colleagues Dr. Roberto
Tricarico and Prof. Darrick Chang at ICFO derived a theoretical model
which explains qualitatively our results. Finally, we used this effect to
generate single photons from the atomic ensemble. We show that by
selecting only the last part of the transmitted pulse, we could generate
single photons localized within a part of the pulse with an antibunch-
ing parameter as low as 0.12± 0.05 and with a generation efficiency per
trial larger than what it is possible with probabilistic generation schemes
with atomic ensembles. We compare these results with single photons
created by storing the light as Rydberg excitations which are later re-
trieved from the medium.

The main results of this chapter are described in the scientific article
[145] and therefore a large part of the chapter has been taken from it.

5.2 Experiment

The atoms are loaded in the dipole trap, modulated with a period of
16 µs, which leaves a time of less than 8 µs to perform one experimental
trial. This is repeated 13000 times during the dipole trap lifetime, which
gives a total experimental rate of 5730 trials/s.

Atoms are excited to the Rydberg state |r〉 = |90S1/2〉 (fig. 5.1a)
and the probe light propagates through the medium with an OD ≈ 10.
Figure 5.1b shows the EIT transparency window of our cloud, for an
input photon rate Rin ≈ 0.3 MHz. The EIT width and coupling Rabi
frequency obtained from a fit to the data are 2.3 MHz and 6.4 MHz,
respectively. These parameters give a group velocity vgr ∼ 200 µm/µs
of propagating Rydberg polaritons (see equation 2.17), much smaller
than the velocity of light in vacuum c. That means that polaritons take
L/vgr ∼ 0.5 µs to go throughout the atomic cloud. The average num-
ber of input photons in the medium at a time results ∼ 0.2 � 1, so
no interaction effects are expected to dominate the transparency. As
the blockade radius is rb ≈ 13 µm for our experimental parameters (see
equation 2.18), the parallel propagation of two polaritons in our atomic
cloud is unlikely. With these parameters, the optical depth per blockade
radius is ODb ≈ 1.2.
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(a)

(b)

Figure 5.1: Level scheme and transitions used in the experiment and
EIT transparency window.

The statistics of the light is obtained by measuring the second-order
correlation function g(2)(t, τ), defined in equation 2.7 of section 2.2. This
is done by sending the output pulses through a Hanbury Brown and
Twiss setup (see figure 2.5). The value of g(2)(t, τ) is hence obtained
from equation 2.10 by taking into account the detection clicks inside a
window of duration ∆t starting at a time t0 after the trial trigger.

5.3 Second-order correlation of the entire pulse

In this section, we study the photon statistics of a square pulse with a
mean number of photons nin ≈ 1.5 and a temporal length of 1 µs, after
propagation through the Rydberg medium. In figure 5.2a, we can see
the temporal shape of the input and output pulses, showing a transmis-
sion of T= nout/nin = 0.285± 0.016, where nout(in) is the total number
of clicks in the output(input) pulse. The transmission efficiency from
the ensemble to the first detector is 0.23± 0.02, taking into account all
the optical elements, and the SPAD1 detection efficiency is 0.43± 0.04.

First, we consider the counts arriving in a time window of ∆t =
1.6 µs, sufficiently large to include the whole output pulse, as shown in

figure 5.2b. In figure 5.3a, we show the g
(2)
∆t (τ) for different trials, where
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(a) (b)

Figure 5.2: (a) Counts per trial arriving to the first detector, as a func-
tion of time after trigger (the trigger time is made 0 at the beginning
of the output pulse), for a bin size of 20 ns, for the input (in blue) and
output pulse (in orange). The temporal distribution of the input pulse
is taken from the counts detected without loading the atomic cloud. (b)
Temporal window of data analysis, with t0 = 0 and ∆t = 1.6 µs. The
total temporal distribution is shown in dashed line.

the coincidence histogram is normalized by the coincidences measured
between pulses distant at least 80 µs, where no correlation is observed.
The bunching shown between close trials might be explained by the
creation of long-lived pollutants, which are Rydberg excitations that
cannot be retrieved from one trial to another and blockade the creation
of the following Rydberg excitations [102, 50]. These pollutants can be
atoms that have decayed to nearby Rydberg states or Rydberg atoms
that have moved outside the coupling beam. The value obtained for
ntrial = 0 leads a second-order correlation function of the entire pulse

of g
(2)
∆t (0) = 0.908 ± 0.004. This shows that while the full output pulse

displays non-classical statistic, it is far from being a single photon. Note
that the temporal width of the output pulse corresponds to a spatial
width during propagation of vgr · 1 µs ∼ 200 µm, much longer than the
blockade radius. In figure 5.3b, we show a time-resolved g(2)(τ) for a bin
size of 2∆t = 10 ns. For τ = 0, we obtain g(2)(0) = 0.31± 0.03, demon-
strating a strong antibunching, as shown previously by Peyronel et al.
[36]. We see that g(2)(τ) quickly increases to 1 for τ ≥ 350 ns, much
shorter than the pulse duration. This increase is attributed to the fact
that the propagating pulse is not compressed inside a blockade radius.
The fact that this time is slightly longer than the expected blockade
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time (τb = rb/vgr ∼ 0.1 µs) may be due to diffusion during propagation,
caused by the limited spectral width of the EIT transparency window
[36]. Hence, we can intuitively conclude that we generate several photons
per trial (figure 5.3a) with a minimum time separation between them
(figure 5.3b). However, for applications in quantum communication, a
single-photon source should generate single photons localized within a
specific time interval.

Figure 5.3: (a) g
(2)
∆t (τ), as a function of ntrial, where τ = ntrial · ttrigger

and ttrigger = 16 µs. The value at ntrial = 0 gives g
(2)
∆t (0) = 0.908±0.004,

which represents a measurement of the whole pulse statistics. (b) g(2)(τ)
as a function of the delay time τ between two photon events at the same
trial, being the one at zero-delay time g(2)(0) = 0.31±0.03. The bin size
is 10 ns. Error bars in the plots correspond to one standard deviation
(s.d.)

5.4 Second-order correlation function through-
out the pulse: Transients

In order to understand better the statistics of the output photons, we
perform a more detailed study of the second-order correlation function.

We take a detection window with t
(1)
0 = t

(2)
0 = t0 and ∆t shorter than the

pulse duration but longer than the required one used for a time-resolved
measurement. Then, we calculate the second-order correlation function
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at zero-delay time for different starting times t0 along the pulse. In this

chapter, g(2)(t0, 0) is labeled as g
(2)
∆t (t0) from now on. If the photons

are completely delocalized within the whole output pulse, we expect a

constant g
(2)
∆t (t0) over t0.

A measurement for ∆t = 200 ns is shown in figure 5.4. We find
that the second-order correlation function is not constant throughout
the pulse duration, but decreases towards the end of the pulse. We
observe three different regimes. For early times (t0 < 0.4 µs), a first

transient is observed, exhibited by a decrease in the g
(2)
∆t (t0) while the

output intensity increases over time. We measure g
(2)
∆t (t0) = 0.8 ± 0.1

for t0 = 0 and g
(2)
∆t (t0) = 0.53± 0.02 for t0 = 0.3 µs. In the steady-state

region (0.4 µs < t0 < 1 µs), both the g
(2)
∆t (t0) and the output intensity

are constant over time. When the input pulse is switched off (t0 > 1 µs),
a second transient is observed. Although a decrease in the output in-

tensity is expected, g
(2)
∆t (t0) follows the same behavior in the same time

range, decreasing until reaching a value as low as g
(2)
∆t (t0) = 0.12± 0.05

for t0 = 1.4 µs. These changes of g
(2)
∆t (t0) along the pulse correspond to

three different regimes during the propagation of Rydberg polaritons, as
we will describe in the following section.

5.5 Theoretical explanation of transients

A theoretical model with a quantitative explanation of these results has
been developed by Dr. Roberto Tricarico and Prof. Darrick Chang.
It is a numerical “spin model” that takes advantage of the fact that
the output field does not depend on the total number of atoms or on
the coupling efficiency of one atom to the probe mode separately, and
therefore it is possible to investigate an artificial, quasi-one-dimensional
system of a much smaller, tractable number of atoms with a greater
coupling efficiency to the probe, while maintaining the same OD, ODb

of the experiment. For a more detailed description, refer to the scientific
article [145].
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Figure 5.4: (a) Photon counts of SPAD1 as a function of the arrival time
with respect to the trial trigger. The temporal window is an example
with t0 = 0.6 and ∆t = 0.2 µs. Dashed line corresponds to the total

pulse distribution. (b) g
(2)
∆t (t0) as a function of the window starting time

t0. The highlighted point correspond to the example in the left. The
error bars are given by one s.d.

5.5.1 Second-order correlation function in the steady-state
regime

In a simple picture of the steady-state region, photons separated by more
than a blockade radius propagate in a three-level system as Rydberg po-
laritons. However, photons closer than a blockade radius to a Rydberg
polariton interact with a two-level system and are therefore affected by
absorption. However, there is a small part of photons propagating in
a two-level system that does get transmitted, due to limited ODb. In
the steady-state region, these two kinds of photons are indistinguishable
since they are delocalized in space-time. However, their mutual spatial
correlations are mapped into time correlations, which are described by
g(2)(τ) [36].

If the time interval for the data acquisition ∆t is smaller than the
blockade time τb, only one polariton can be detected within this region,
so the two-photon events will mainly correspond to the case where one
photon has interacted with a three level medium and the other with a
two level medium. Therefore, the probability of a two-photon detection
is related to e−ODb . Note that this is a very simplistic model, as g(2)(0)
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actually depends on more parameters, as previously studied by Peyronel
et al. in the regime of OD� 1 and one-dimensional medium (see equa-
tion 4.2) [36]. However, this simple picture is useful to show that the

value of ∆t influences in the measured g
(2)
∆t (t0), since it delimits the time

range where looking for time correlations in two-photon events. That
is to say, all the photons with a time delay −∆t < τ < ∆t contribute

to the measured g(2)(0). Hence, as ∆t decreases, the measured g
(2)
∆t (t0)

also decreases. This behavior is shown in the inset of figure 5.6.

5.5.2 First transient

As mentioned before, in the steady-state regime, photons retrieved from
Rydberg polaritons are indistinguishable from the ones interacting with
a two-level system due to Rydberg blockade. However, when the input
probe field is abruptly switched on, we expect photons that propagate
as Rydberg polaritons to have a group velocity vgr � c and leave the
medium in a characteristic time given by L/vgr, where L is the medium
length.

To further understand the behavior, it is convenient to utilize an
input-output relation, which express the output field operator as a sum
of the input field and the field re-emitted by the atoms. In the model, the
decay rate of the excited state Γeg is decomposed into the sum of Γ1D,
which is the emission rate into the Gaussian mode defined by the probe
beam, and Γ′, which is the decay rate into noncollectable directions and
represents the losses. Then, the input-output relation takes the form:

E(t) = Ep(t)− i
√

Γ1D

2

N∑
h=1

eikpzhσhge, (5.1)

where Ep(t) is the input probe field at time t, kp is the probe wavevector,
σhge = |g〉 〈eh| is the atomic lowering operator of the atom h and zh is
the position of atom h.

Right after the turn-on, there is no population in the |e〉 and |r〉
states and, since the atomic properties must evolve continuously, the
action of σhge on the state immediately after the turn-on of the pulse is
zero. From equation 5.1, this implies that the output field is the same
as the input field immediately after turn-on and therefore the output
pulse should give the same statistics as the input pulse g(2)(0) = 1. This
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evolves until the population in the Rydberg state reaches the steady-
state value, which occurs at a time L/vgr.

For our experimental conditions, we calculate L/vgr ∼ 0.5 µs, which
is in good agreement with the duration of the first transient ∼ 400 ns.
Note that this also explain the time it takes for the output intensity to
reach its maximum value.

5.5.3 Second transient

When the input probe field is abruptly switched off, the retrieval of pho-
tons from Rydberg polaritons is physically equivalent to the retrieval
after storage. These photons can then be localized in time, since they
leave the medium in a time scale L/vgr, much longer than what it takes
for photons interacting with a two-level system, which configure the two-
photon events, to leave the medium. Therefore, the characteristic time
of this transient should also be related to L/vgr.

In figure 5.5, we show the measured g
(2)
∆t (t0) as a function of the start-

ing time t0, together with the temporal distribution of the input and out-
put pulses. The green shadowed region shows times where no probe pho-

tons are entering the medium, which correspond to times where g
(2)
∆t (t0)

is strongly reduced. We can see that the duration of the second transient
is ∼ 0.4− 0.5 µs, as we expect. Note that this is a very simple picture.
For better understanding of the different time scales involved in the first
and second transient regime, see Dr. Roberto Tricarico’s work.

Using the input-output relation of equation 5.1, we can see that the
outgoing field at a time immediately following the shutoff will only be
due to purely atomic emission and jump discontinuously from its value
immediately before. Since under ideal EIT conditions, the |e〉 state is
unpopulated, the atoms are not able to emit light instantaneously and
the output intensity should be zero immediately after the shutoff. Re-
garding to the two-photon intensity, its value before the shutoff is close
to zero due to the Rydberg blockade. This can be understood as a de-
structive interference between the incoming field and the field re-emited
by the atoms. Therefore, if the input field is instantly extinguished, the
two-photon outgoing intensity is due to a purely atomic emission which,
for large OD, is almost equal in amplitude (but opposite in phase) to the
incoming field. Since the single-photon output intensity is zero, this re-
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Figure 5.5: g
(2)
∆t (t0) as a function of the starting time t0 (in blue) and

input (orange) and output (green) pulse shapes, as a function of the
arrival times to the first detector. The output counts are multiplied by
a factor 3 and normalized to the maximum value of input counts. The
green shadowed region correspond to times where no probe photons are

entering the medium, which corresponds to a decrease in g
(2)
∆t (t0). Error

bars correspond to one s.d.

sults in photon bunching with g(2)(0)� 1 immediately after the shutoff.
However, the flash of bunched output light can be seen only if the time
scale of the shutoff is much faster than the time needed by the atoms
to react, which is roughly Γ−1

eg . Unfortunately, this is not our case. The
results of the theoretical model for our experimental conditions is shown
in figure 5.6.

5.6 Comparison with different shapes of the in-
put pulse

To show the dependence of these transients with the shape of the input
pulse, we study the propagation of triangular pulses (see figure 5.7), fol-
lowing the same method described above. For this measurement, OD
≈ 5.8 and Ωc ≈ 6.2 MHz. In the case of a triangular shape with a
negative slope (figure 5.7a), the probe field is switched on abruptly but

slowly switched off. Here, we observe that g
(2)
∆t (t0) starts with a value
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Figure 5.6: g
(2)
∆t (t0) as a function of the starting time t0 (blue points,

left y-axis) and counts per trial as a function of the arrival times to the
first detector (orange and green solid lines, rigth y-axis). The dashed
lines show the results from the theoretical simulation. Note that the
theoretical g(2)(t) value (dashed blue line) corresponds to the case with
∆t → 0. For comparison, in the inset plot, we show that the average

steady-state (ss) experimental value g
(2)
∆t (tss) tends to the theoretical

g(2)(tss) ≈ 0.3 for smaller ∆t. Moreover, note that using a ∆t > 0
would smooth out the discontinuities seen in the simulation of the turn-
on transient and could explain why they are not seen in the experimental
data. Error bars correspond to one s.d.

close to 1, but then it decreases rapidly towards smaller values, remain-

ing constant at the end of the pulse with g
(2)
∆t (t0) = 0.52 ± 0.13 for the

last point (t0 = 0.8 µs). For a triangular shape with a positive slope
(figure 5.7b), i.e. slowly switched on and abruptly turned off, we only

observe a clear transient at the end of the pulse, since g
(2)
∆t (t0) starts to

decrease when the input pulse intensity goes to zero (t0 > 1 µs). A value

of g
(2)
∆t (t0) = 0.05±0.04 is obtained for the last point (t0 = 0.8 µs), which

is much lower than observed for the triangular shape with negative slope.

These results show that the appearance of the transients depends on
how the input pulse varies over time. Specifically, a first transient or

very low values of g
(2)
∆t (t0) at the end are observed if the changes in the

input probe intensity are abrupt. This can be explained from the simple
picture of the physics described in the previous section. The dynamics
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between photons propagating in a two-level system and Rydberg polari-
tons are distinguishable at the output only if the time in which the input
probe field is switched on(off) is much smaller than L/vgr. In this case,
changes in the second-order correlation function at the beginning(end)
of the output pulse will be observed.

Figure 5.7: Second-order correlation function (in blue), for a time win-
dow of ∆t = 200 ns inside the output pulse. The input and output
counts arriving to the first detector (orange and green lines) are shown.
Both are normalized to the maximum of the input counts and output is
multiplied by 3. (a) Input pulse with a triangular shape and a negative
slope and (b) with a positive slope. The error bars in figures represent
one s.d.

5.7 Single-photon generation and storage

The second transient opens the way for possible applications related to
narrowband single-photon generation. For that purpose, we could cut
the output pulses and exploit the single photons arriving in the last part
of the pulse. In order to analyze this proposal, we select a temporal win-
dow ∆t at the end of the pulse when looking at the detector counts and
coincidences. Then, we measure the statistics of the photons arriving
inside this temporal window and their corresponding generation prob-
ability. The generation probability is inferred as nout(∆t)/ηdet, where
nout(∆t) is the number of counts per trial arriving to the first detector
in the selected time window and ηdet is the detection efficiency, including
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fiber coupling, transmission through all the optical elements and SPAD
efficiency.

Figure 5.8: Example of single-photon generation with ∆t = 500 ns and

t0 = 1.1 µs. (a) g
(2)
∆t (τ) as a function of ntrial, where τ = ntrial · ttrigger.

The value at ntrial = 0 gives g(2)(0) = 0.218± 0.015, which represents a
measurement of the whole-window statistics. (b) g(2)(τ) for τ � ttrigger,
for a bin size of 50 ns. Contrary to figure 5.3, the value of g(2)(τ) remains
low for the whole window, confirming a localized single photon.

Figure 5.8 shows an example of single-photon generation for ∆t =
500 ns and t0 = 1.1 µs. The value obtained for the whole window is

shown in figure 5.8a, giving g
(2)
∆t (0) = 0.218±0.015, which is significantly

lower than for ∆t = 1.6 µs. Moreover, the time-resolved measurement
of the second-order correlation function (figure 5.8b) shows that the val-
ues of g(2)(τ) remain low for the full window, similar to what we obtain
after storage (see figure 4.7 of section 4.6.2).

Figure 5.9 shows g
(2)
∆t (t0) for different ∆t when the final time tend =

t0 + ∆t = 1.6 µs is fixed (see figure 5.9a), for Gaussian and square in-
put pulses. When we increase the time window ∆t, the probability to
have a detection count increases, but at the expense of reducing the
quality of the single photons. For the previously studied square pulse,

a g
(2)
∆t (t0) = 0.48 ± 0.01 is obtained for ∆t = 0.68 µs and a generation

probability of 0.145± 0.014, while a g
(2)
∆t (t0) = 0.147± 0.017 is obtained

for ∆t = 0.45 µs and a generation probability of 0.046 ± 0.004. We
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also compare the results for the square pulse with the case of a Gaus-
sian input pulse. We see that the Gaussian pulse leads to higher value

of g
(2)
∆t (t0) for all generation efficiencies compared to the square pulse.

This confirms that switching off the input pulse abruptly is beneficial
for the production of single photons.

Figure 5.9: (a) Temporal distribution of a Gaussian pulse after propa-
gation through EIT (blue) and after storage (green), and distribution
of a square pulse (orange). In the slow-light case, the temporal window
∆t is varied while the final time is fixed, as indicated by the shadowed

region and the arrow. (b) g
(2)
∆t (t0) as a function of 1/∆t, for an input

Gaussian and square pulse and after storage. (c) g
(2)
∆t (t0) as a function

of the probability to have a photon at the output of the cloud. Error
bars correspond to one s.d.

For the Gaussian pulse, we also compare the results with the strat-
egy consisting in storing the pulse in the Rydberg state. As the OD
of our medium is limited, only a part of the pulse can be stored (green
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plot of figure 5.9a). After a storage time of tstor = 500 ns, we measure

g
(2)
∆t (0) by taking into account all the coincidences inside the whole out-

put pulse. As we can observe in figure 5.9c, we obtain the same value of

g
(2)
∆t compared with the input square pulse, for similar or lower generation

probability. For lower quality of the output photons, i.e higher values

of g
(2)
∆t (t0), the generation probability in the transient case importantly

increases. Finally, we plot g
(2)
∆t (t0) as a function of the inverse of ∆t,

which is proportional to the photon bandwidth. Values of g
(2)
∆t (t0) < 0.2

can be achieved for 1/∆ ∼ 2 MHz, showing that high quality, narrow-
band single photons can be generated with this technique.

5.8 Behavior with the number of input photons

We also studied the variation of the g
(2)
∆t (t0) over the pulse for different

number of input photons. For that, we sent 1 µs-long square pulses in
a medium with OD ≈ 5 and coupling Rabi frequency Ωc ≈ 5.9 MHz,
which gives a group velocity of 400 µm/µs In figure 5.10a, the temporal
distribution of counts per trial arriving to the first detector is shown, for
a bin size of 10 ns. Since the temporal width of the input pulse is 1 µs,
nin ∼ 7 corresponds to < 2 photons in the medium at a time, still far
from the saturation regime, where absorption is strong (note that the
medium length is around 100 µm in the propagation direction, much
longer than the blockade radius). However, some features related to
scattering become evident, such as the hump appearing at early times
for the highest number of input photons [124, 102]. The variation in

the g
(2)
∆t (t0) over the pulse is shown in figure 5.10b for ∆t = 200 ns.

Although the three measurements are similar, the steady-state g(2)(0)
increases with the input photon number, which is something that we
have shown before in section 4.6.2, where we suggested an explanation
based in the creation of pollutants [102]. Note that the second-order
correlation within the same pulse can be affected by both long-lived
pollutants that survive subsequent trials and short-lived pollutants that
can be removed with the coupling field.

As the behavior in the second transient is not clear from the analysis

of figure 5.10b, the g
(2)
∆t (t0) is studied by varying the temporal detection

window ∆t, while fixing the final time to tend = t0 + ∆t = 1.5 µs.
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(a) (b)

Figure 5.10: (a) Number of counts per trials as a function of the arriving
time to the first detector after the trial trigger, for different values of

nin. Bin size is 10 ns. (b) g
(2)
∆t (t0) as a function of the starting time t0,

for ∆t = 200 ns. OD ≈ 5 and Ωc ≈ 5.9 MHz. Note the lower counts per
trial in this measurement is due to lower detection efficiency, probably
due to misalignment of the detection setup. Error bars correspond to
one s.d.

In the upper plot of figure 5.11, we can see that the same value of

g
(2)
∆t (t0) is obtained for a longer ∆t when the number of input photons

is lower. Then, the related bandwidth increases with nin. This could be
explained if single photons leave the medium before when the number
of input photons is higher. This could be understood from a scattering-
induced projection of the Rydberg polariton wavefunction. In a simple
picture, when a photon is scattered, there is a leakage of information
into the environment about the position of the Rydberg polariton, which
should be within a blockade time from the scattered photon. Therefore,
it induces a projection of the polariton wavefunction to be inside this

position range [123, 124]. In the lower plot, the value of g
(2)
∆t (t0) is shown

as a function of the single photon generation probability. Although the
differences between the three measurements is apparent for higher values

of g
(2)
∆t (t0), where the same value is obtained with higher probability for

greater nin. However, for very low generation probabilities, reducing the

size of the error bars of g
(2)
∆t (t0)) is needed in order to see clear differences

between nin.
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Figure 5.11: g
(2)
∆t (t0) obtained for different temporal window ∆t at the

end of the pulse, for different number of input photons. In the top, as
a function of 1/∆t. In the bottom, as a function of the probability to
have a photon at the output of the cloud. Error bars correspond to one
s.d.

5.9 Conclusions

In this chapter, we investigated the transients appearing for weak co-
herent pulses propagating in a cold atomic ensemble in the regime of
Rydberg electromagnetically induced transparency. We found experi-
mentally that the second order correlation function of the output pulse
strongly depends on the temporal position and varies during the tran-

sient parts of the pulse. In particular, the value of g
(2)
∆t (t0) strongly

decreases towards the end. Finally, we explored the possibility of using
this effect to generate localized single photons.

As shown in section 5.5, increasing the optical depth and reducing
the Rabi frequency of the coupling field results in a better separation be-
tween the two-photon dynamics and the single-photon one and therefore

leads to a smaller value of g
(2)
∆t in the turn-off transient. However, the
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single photon generation efficiency is currently affected by the low value
of the transmission in the EIT transparency window, which is likely lim-
ited by the decoherence rate of the |g〉 to |r〉 transition γrg, which also
enforces a lower bound in the choice of Ωc. We expect that reducing the
laser linewidths (currently around 300 kHz) by active stabilization on an
optical cavity would bring to a significant increase in the EIT transmis-
sion and also make lower choices of Ωc possible. Moreover, a larger value
of ODb would allow a more efficient compression of the pulse within a
blockade radius. The current values of the generation efficiency achieved
(around 10%) are comparable with the values reported in single-photon
generation experiments using off-resonant excitation techniques in Ry-
dberg atoms [59]. It is informative to compare these values of efficiency
with techniques of probabilistic single-photon generation with atomic
ensembles, such as e.g. the Duan-Lukin-Cirac-Zoller scheme [39]. This
scheme generates probabilistically photon pairs in a two-mode squeezed
state with a probability per trial p, where one of the photon is stored as
a collective atomic spin excitation in the ensemble. Upon detection of
the first photon which provides a heralding signal, this collective spin ex-
citation can then be efficiently transferred into a single photon in a well
defined spatio-temporal mode with an efficiency ηR. The probability to
generate a single photon per trial is therefore given by PDLCZ = pηDηR
where ηD is the probability to detect the first photon. For a perfect
two-mode squeezed state and for p� 1, the second-order correlation of
the retrieved photon is g(2)(0)=4p. In the best case scenario (i.e. with
unity detection and read-out efficiency), a DLCZ source could generate
a photon with g(2)(0) = 0.1 with a probability of PDLCZ = 0.025 per
trial. In practice, with finite detection and read-out efficiencies, this
value will be even lower. Therefore, even though the single-photon gen-
eration efficiencies demonstrated in this chapter are quite modest and
could be still largely improved, they compare favorably to probabilistic
schemes.



Chapter 6

Indistinguishability of
photons generated in a
Rydberg ensemble

6.1 Introduction

For the implementation of quantum networks using collective Rydberg
excitations as quantum nodes, a crucial next step is to generate entan-
glement between remote nodes. Quantum repeater architectures have
been proposed, that rely on deterministic light-matter entanglement and
two-qubit gates using Rydberg ensembles [72, 73]. In these architectures,
distant Rydberg ensembles are entangled by a measurement induced
process which involves interfering single photons emitted by the Ryd-
berg ensembles and a Bell State Measurement. For this process to be
successful, the single photons must be coherent and indistinguishable,
in order to erase the information about the origin of the photons. So
far, only a few experiments have probed the indistinguishability of sin-
gle photons emitted by Rydberg ensembles [82, 104, 50]. In the work
carried out by Li et al. (2013), they assessed the photon indistinguisha-
bility by performing Hong-Ou-Mandel experiments between a Rydberg
photon and a weak coherent state [82]. In the work of Craddock et
al. (2019), they interfered a Rydberg photon with another single pho-
ton created by a single ion [104]. However, in both experiments only
a small part of the temporal waveform of the Rydberg single photon
was probed. While this strategy allows observing high-visibility HOM
dips for the selected photons and the generation of remote entanglement
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by Bell state measurements, it reduces the available two-photon coinci-
dence and entanglement rate per trial by a factor (∆t/T )2, where ∆t
is the detection window considered and T is the total photon duration.
The work recently carried out by Ornelas et al. (2020) [50] provided
a great single-photon indistinguishability over the full photon window
by interfering two Rydberg photons. Nevertheless, the works done up
to date only investigated single photons generated by off-resonant (OR)
two-photon excitation (also called Raman excitation) to the Rydberg
state. The indistinguishability of single photons generated by Rydberg
EIT, and the difference between both processes has not been investi-
gated so far.

In this chapter, we investigate the indistinguishability of single pho-
tons retrieved from collective Rydberg excitations in cold atomic en-
sembles. The Rydberg spin waves are created either by off-resonant
two-photon excitation to the Rydberg state or by Rydberg electromag-
netically induced transparency. To assess the indistinguishability of the
generated single photons, we perform Hong-Ou-Mandel experiments be-
tween the photons and weak coherent states of light. We analyze the
obtained overlap as a function of the detection window and we find that
the photons generated under Rydberg EIT conditions show slightly lower
overlap than the ones generated by off-resonant excitation. We obtain
an overlap greater than 72% in all cases reaching a value of 98% for a
small detection window and off-resonant excitation to Rydberg state.
These results are important for the use of Rydberg atomic ensembles as
quantum network nodes.

The results shown in this chapter have been summarized in the arXiv
paper [146] and hence, a large part of this chapter has been taken from
it.

6.2 Single photon generation

In this experiment, we perform 37000 experimental trials per dipole trap
cycle with a rate of 178 kHz during the trap lifetime. The atoms are ex-
cited to the Rydberg state |r〉 = |90S1/2〉 by means of a two-photon
transition addressed by the probe and the coupling beam, as previ-
ous experiments. The optical depth of the atomic cloud for a resonant
probe beam is around 5. The difference between the excitation under
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Figure 6.1: (a) Level scheme and transitions used in the experiment.
The single-photon detunings of the probe (∆) and coupling (∆c) beams
are defined from the transition with regards to the intermediate state.
In EIT conditions, ∆ = ∆c = 0.

EIT and OR conditions is mainly the one-photon detuning, defined as
∆ = ωp − ωge for the probe beam and ∆c = ωc − ωer for the coupling,
where ωp(c) are the frequencies of the light fields and ωge(er) the frequen-
cies of the corresponding atomic transitions (see figure 6.1). Under EIT
conditions, ∆ = ∆c = 0 while for OR excitation, ∆ = −∆c = −40 MHz.
In both cases, the two-photon transition is sent on resonance so that
δ = ∆c + ∆ ≈ 0.

The pulse sequence for the single-photon generation in our Rydberg
ensemble for the OR excitation is represented in figure 3.12 of section
3.5. In this case, we send a probe and a coupling pulse1 into the atomic
medium both detuned from the |e〉 state by ∆ = −∆c = −40 MHz,
as we said before. Therefore, the interaction with |e〉 state can be ne-
glected and the long-range interaction between Rydberg atoms allows
ideally only one Rydberg excitation to be created. This excitation, usu-
ally called Rydberg spin wave, is collectively shared among all the atoms
in the medium. By sending a close-to-resonant coupling pulse after a
given storage time, we can retrieve a single photon under mode-matching
conditions, i.e. with a frequency ≈ ωge in the direction of the probe field.

The EIT sequence is represented in figure 3.11 of section 3.5. In
this case, we send a weak probe pulse together with a coupling beam
resonantly coupled to |e〉 state, so that ∆ = −∆c = 0 MHz. Since the

1The shape of the coupling pulse at the beginning and the end of the experimental
trial is given by the response time of the AOM but is optimized between the writing
and retrieval.



116
Chapter 6. Indistinguishability of photons generated in a Rydberg

ensemble

Rabi frequency of the coupling beam is Ωc ≈ 6 MHz, much higher than
the probe coupling, a narrow frequency window is opened in which the
medium is transparent to the probe. Due to dipole blockade, ideally
only one Rydberg dark-state polariton is allowed to propagate through
the medium at a time. By turning off the coupling beam, the polariton
state becomes a purely Rydberg spin wave. To retrieve the excitation,
the coupling field is turned back on and the polariton continues its propa-
gation until exiting the medium, generating a single photon in the probe
mode.

A study of the single photons obtained by these two methods under
similar experimental conditions can reveal the differences between the
physical mechanisms underlying both methods.

Note that, for our experimental conditions, we calculate a blockade
radius of rb ≈ 13 µm for the EIT case and rb ≈ 19 µm for the OR
excitation if we consider that the excitation linewidth is given by the
laser linewidth (∼ 300 kHz). Since these values are lower than the
medium length L, more than one Rydberg excitation can be created in
both cases. Hence, we expect interaction-induced dephasing (see section
2.6) to play a role in the single-photon generation.

6.3 Second-order correlation function

The second-order correlation function is measured by means of a Hanbury-
Brown and Twiss experiment (see section 2.2 and 3.6). The detection
window ∆t is chosen to include the whole retrieval photon pulse. The
normalization factor is the product of the single-photon detection prob-

abilities. In figure 6.2, we show the g
(2)
∆t (τ) between different trials.

In the left, we show the results for single photons generated by off-
resonant excitation and in the right, under EIT conditions. The val-
ues at zero-delay time correspond to the second-order correlation func-
tion of the whole photon pulse. For the OR excitation case, we obtain

g
(2)
∆t (0) = 0.225± 0.014, which is higher than the value obtained for the

EIT case g
(2)
∆t (0) = 0.171 ± 0.012. In both cases, we can see a clear

antibunching feature, which is a proof of quantum behavior and single-
photon emission.

A time-resolved g(2)(τ) is presented in figure 6.3, where the normal-
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Figure 6.2: Second-order correlation function for different trials. In the
left, for photons generated by means of off-resonant excitation to the
Rydberg state. In the right, for photons generated by resonant Rydberg
EIT.

ization factor is measured by the coincidences between distant trials. For
the OR excitation scheme, g(2)(0) = 0.14± 0.04 and the variation with
different τ seems higher than for the EIT case, where the second-order
correlation function at zero-delay time is g(2)(0) = 0.11 ± 0.04. From
these measurements, we observe that the quality of the single photons,
considering the probability of generating two photons in the pulse, is
better for EIT conditions than for the OR excitation case.

The dependency of g
(2)
∆t (0) with the probability to generate single

photons on the output is shown in figure 6.4 for the OR case. The photon
generation probability is quantified by PSP , defined as PSP = p1

ηdet,1
where p1 is the number of detections per trial in the SPAD1 and ηdet ≈
0.07 is the detection efficiency of the SPAD1 which includes all optical
losses from the atomic cloud to the detector and the SPAD1 efficiency.
PSP is varied by controlling the mean number of input photons nin of
the writing probe pulse. As we can see, the source still preserve its
quantum characteristic with increasing number of photons, remaining
with g(2)(0) < 0.4 for all nin, with a maximal value of g(2)(0) = 0.35 ±
0.04 for PSP = 0.18± 0.02. The behavior of photons generated by EIT
with respect to nin is very different and will be discussed in section 6.4.2.
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Figure 6.3: Second-order correlation function as a function of the delay
time within the same pulse. In the left, for photons generated by means
of off-resonant excitation to the Rydberg state. In the right, for photons
generated by resonant Rydberg EIT.

Figure 6.4: Second-order correlation function for single photons gen-
erated by means of off-resonant excitation to the Rydberg state, as a
function of the single-photon generation probability.
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Figure 6.5: Experimental setup of the HOM measurement. The single
photons generated in the Rydberg ensemble (SP) are sent to one port of
a beamsplitter, while in the second port we send a weak coherent state
(WCS). The outputs are sent to two single-photon detectors (SPAD1

and SPAD2) in order to measure the coincidence probability. Note that
in the experiment, we use a fiber-based beamsplitter in order to reduce
spatial mismatch.

6.4 Indistinguishability

To probe the indistinguishability of the photons emitted by the Ryd-
berg ensemble we perform Hong-Ou-Mandel interference measurement
(see section 2.3) with a weak coherent state pulse (WCS), as represented
in figure 6.5. The WCS is obtained by strongly filtering a beam coming
from the same laser as the probe, so that the mean number of photons
per pulse is much smaller than one. We perform the HOM by sending
the single photon emitted by the Rydberg ensemble to one port of a
beamsplitter and the photon coming from the WCS to the second port.
We then record the photon arrival times at each single-photon detector
and the trial trigger times in a time stamp file. From that, we can derive
the coincidences per trial in different detection windows.

The visibility of the HOM is then defined as V = 1− pind
pd

, where pind
and pd are the number of coincidences per trial when the two photons are
made indistinguishable and distinguishable, respectively. To generate
the distinguishable input, we apply a delay between the WCS pulse
and the retrieval time of the photon emitted by the Rydberg ensemble.
For the sequence with indistinguishable inputs, WCS pulse and single
photon overlap in time. Finally, we can estimate the indistinguishability
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between the single photons and the weak coherent state by following the
model presented by Li et al. in 2013 [82]. They calculate the probability
pind as:

pind =
p2

4
g(2)(0) +

|ᾱ|4

4
+ (1− η)

p|ᾱ|2

2
(6.1)

where η is the mode overlap between the Rydberg photon and the WCS,
p is the probability to detect the Rydberg photon, g(2)(0) is the second-
order correlation function of the Rydberg photon and |ᾱ|2 is the proba-
bility to detect a photon coming from the WCS. Then, the mean number
of photons in the WCS is |α|2≈ |ᾱ|2ηtotaldet , where ηtotaldet is the total detec-
tion efficiency taking into account both detectors. This simple equation
makes the following assumptions:

• Three-photon coincidence events are negligible.

• The weak coherent state is weak enough so that we never have
three photons in the second port.

• Imbalance ratio of the beamsplitter is negligible.

The first two conditions are mainly satisfied if |α|2� 1. The beamsplit-
ter is a fiber-based one from Thorlabs with a ratio 53 : 47. Accounting
for the imperfect balance of the BS results in slightly higher indistin-
guishability factors, with a difference much smaller than the error bars
[147]. Although the previous equation also assume that the detection
efficiencies of both detectors are the same, these are canceled when cal-
culating the visibility (see equation 6.3).

For completely distinguishable fields (η = 0), we obtain:

pd =
p2

4
g(2)(0) +

|ᾱ|4

4
+
p|ᾱ|2

2
. (6.2)

Therefore, we can compute the visibility:

V = 1− pind
pd

=
ηp|ᾱ|2

p2

2 g
(2)(0) + |ᾱ|4

2 + p|ᾱ|2
. (6.3)

A high visibility would be achieved for two perfectly indistinguishable
photons (η = 1). In this case, the third term of equation 6.1 would
vanish and, since the first two other terms are related to two-photon
events coming from the same port, they would give small contributions.
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Specifically, we can extract from equation 6.3 that, in the limit of a per-
fect single photon (g(2)(0)→ 0) and very small contribution of the WCS
(|α|2→ 0), the visibility tends to the indistinguishability factor η.

6.4.1 Photons generated by off-resonant excitation.

We first analyze the case of excitation in the OR condition. In the
left plot of figure 6.6, we show an example of the pulses when they are
made indistinguishable (upper plot) and distinguishable (bottom). In
this case, the two photons are detected in well-differentiated time win-
dows, labeled as SP and WCS. For the analyses of this data, we consider
two different detection window durations: one with ∆t = 500 ns, which
contains the full pulse, and another with ∆t = 100 ns, centered in the
maximum amplitude. In the right plot of figure 6.6, we measure the
visibility for different mean number of photons in the WCS, for both
detection windows. The maximum visibility achieved is V = 0.58± 0.03
for ∆t = 500 ns and V = 0.66 ± 0.07 for ∆t = 100 ns. In both
cases, we thus achieve a visibility higher than the 0.5 classical value
expected for interference of two WCS [148, 149], attesting quantum
photonic antibunching and therefore the quantum behavior of our Ry-
dberg source. From the distinguishable measurement, we obtain the
ratio |ᾱ|2/p by counting the photons arriving in the SP and WCS win-
dow and the second-order correlation function of the Rydberg pho-

tons g(2)(0) ≡ g
(2)
∆t (0) by measuring the coincidences within the SP

window. We obtain g
(2)
∆t (0) = 0.266 ± 0.005 for ∆t = 500 ns and

g
(2)
∆t (0) = 0.22 ± 0.01 for ∆t = 100 ns. With these values, we fit the

data to equation 6.3 and extract the indistinguishability factor. For
∆t = 500 ns, we find η = 0.89±0.02 and for ∆t = 100 ns, η = 0.98±0.01.

We can see that reducing the window of observation leads to higher
visibilities and higher indistinguishability factors, which is in accordance
with previous observations [82, 104]. This is due to the fact that restrict-
ing the window of observation to values smaller than the coherence times
of the retrieved photons can decrease the distinguishability between pho-
tons and therefore increase the visibility. A more extensive study of the
indistinguishability with respect to ∆t, by comparing to the EIT case,
will be presented in section 6.4.3. We point out that we did an evalua-
tion of the accidental coincidences due to dark counts and they do not
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Figure 6.6: Off-resonant excitation: On the left, temporal distribu-
tion of photon counts for the indistinguishable (top) and distinguishable
(bottom) case. Two detection temporal windows of ∆t = 500 ns and
∆t = 100 ns are shown. On the right, visibility is plotted as a function
of the probability ratio |ᾱ|2/p for the two different detection windows
of left panel. The indistinguishability is obtained from a fit to equation
6.3 (continuous lines). Error bars correspond to one s.d.

have a detrimental impact in our observations, i.e. a background correc-
tion of the data leaves results inside the error bars of the non-corrected
values. Therefore, no background subtraction is performed in the data
presented here.

6.4.2 Photons generated by EIT

The visibility of single photons generated by Rydberg EIT are shown in
figure 6.7. We can see that these values are in general lower than in the
OR excitation case, shown in figure 6.6. We observe that, when the de-
tection window takes into account all the pulse statistics (∆t = 600 ns),
the visibility remains below 0.5 for most points, with a maximum value
of V = 0.54± 0.03. However, for a detection window of ∆t = 100 ns, it
is over 0.5 with a maximum of V = 0.67± 0.09. Even though the HOM

visibilities are lower for EIT photons, the values of g
(2)
∆t (0) are better

than for OR photons. The measured second-order correlation function

of the Rydberg photons are g
(2)
∆t (0) = 0.166± 0.005 for ∆t = 600 ns and
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Figure 6.7: EIT: On the left, temporal distribution of photon counts
for the indistinguishable (top) and distinguishable (bottom) case. Two
detection temporal windows of ∆t = 600 ns (including the whole pulse)
and ∆t = 100 ns (centered in the single photon) are shown. On the
right, visibility as a function of the probability ratio |ᾱ|2/p, for the
two different detection windows of left panel. The indistinguishability
is obtained from a fit to equation 6.3 (continuous lines). Error bars
correspond to one s.d.

g
(2)
∆t (0) = 0.16 ± 0.01 for ∆t = 100 ns. Note that for that experiment,

there was a small frequency shift of 380 kHz between the WCS and the
retrieved single photon, which is expected to cause a decrease of only 3%
in the indistinguishability. Also, the observation window for ∆t = 600
ns is not centered at maximum amplitude, but optimized to include a
larger portion of the pulse, because in contrast to the OR excitation,
the pulse is not symmetric.

6.4.3 Variation with the detection window

To investigate further the effect of the observation window, we vary ∆t
for the OR and EIT case, as shown in figure 6.8. On those measure-
ments, although we observe an increase in the probability to generate a
photon PSP with increased observation window, it is accompanied with
a decrease in the indistinguishability and an increase in the second-order
correlation function, implying a statistical decrease in the quality of the
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Figure 6.8: Variation of measurement parameters in OR condition with
respect to the window duration. In the top panel, the indistinguishabil-
ity η between a photon from the WCS and a Rydberg photon; in the
center, the probability to detect a Rydberg photon in each trial PSP and
in the bottom, the second-order correlation function of Rydberg photons

g
(2)
∆t (0).

single photon. This decrease could be explained by the effect of the finite
laser linewidths, which limits the coherence time of both the WCS and
the single photon [150, 151, 152]. Another reason could be the tempo-
ral waveform mismatch between the single photons retrieved from the
Rydberg ensemble and the WCS. However, in our case we inferred a tem-
poral overlap above 98% for OR excitation and 97% for EIT conditions.
If the energy shift between WCS and single photon central frequency in
the EIT case is considered, this value is decreased to 94%. These values,
while slightly lower than for the OR case, are not sufficient to explain
the lower indistinguishability of the single photons generated through
EIT.

6.4.4 Variation within the pulse waveform

To further evaluate how the distinguishability varies inside the pho-
ton envelope, we implement a time-resolved analysis of the visibility, as
shown in figure 6.9. For that, we measure the coincidences profile within
one trial for the distinguishable and indistinguishable cases with a bin
size of 20 ns. For the distinguishable case, we apply a correction in the
delay time between two detections in order to calculate the coincidences



Chapter 6. Indistinguishability of photons generated in a Rydberg
ensemble 125

Figure 6.9: Time-resolved coincidences for OR excitation and EIT ex-
citation. On the top charts we show the time resolved coincidences, for
a bin size of 20 ns, covering the whole extension of the pulse. On the
bottom charts, we show the visibility obtained for the same conditions.

we would obtain if the Rydberg photon and the WCS overlapped in time.
We observe that the visibility is higher at the center and decreases on
the wings, which is in agreement with the measurements of figure 6.8.
However, the decrease is small and the visibility, and therefore the in-
distinguishability, remains high over the full single-photon pulse. This
is in contrast to single photons emitted by ions in cavities [153] or by
most solid-state systems and shows that Rydberg emitted photons are
well suited for quantum communication tasks, where the possibility of
using an extended detection window results in increased efficiency in the
generation of entanglement between remote nodes. The lower indistin-
guishability for the single photons generated by EIT in comparison with
the photons generated by OR excitation is also confirmed by this mea-
surement, where we observe a similar behavior than for the OR photons,
but with lower visibilities.

6.4.5 Discussion of the differences between EIT and OR
excitation

As mentioned before, the expected indistinguishability taking into ac-
count waveform mismatch and frequency shifts are different for the EIT
and OR excitation cases. However, these arguments are not enough to
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explain the disrupted photon generation.

Both in EIT and in OR excitation, the single photons are retrieved
from Rydberg spin waves by sending a resonant coupling pulse to the
atomic ensemble. Therefore, it is normal to look for the cause in the
writing process. The disrupted photon generation may be explained
considering that, in Rydberg EIT conditions, input photons can inter-
act with the intermediate excited state and lead to photon scattering
depending on the input photon number nin. To further study that, we
measure the indistinguishability of photons generated under EIT con-
ditions with respect to nin. The results are shown in figure 6.10, for
nin varying from 1 to 20. We observe that the indistinguishability η
varies between 0.7 and 0.8. In addition, the probability to generate a
single photon PSP decreases with increasing number of input photons,
particularly for nin > 10. The decrease in efficiency is accompanied by
a strong degradation of the single photon quality, witnessed by a large
increase in g(2)(0), up to g(2)(0) = 0.63 ± 0.02 for nin = 20 ± 2. The
presence of scattering over the nin range is demonstrated by a strong
decrease in the light transmission under EIT conditions with increasing
nin, decreasing by a factor of 3.6 for nin varying from 1 to 20.

Gorshkov et al. predicted theoretically in 2013 that the photon pu-
rity P (which gives an upper bound for the indistinguishability) de-
creases with nin until reaching a steady value of 0.5, for the light trans-
mitted under the regime of Rydberg EIT [123]. This loss of photon
purity is due to the fact that when nin increases, there is an increasing
probability of having two photons within a blockade radius, leading to
an increase in the scattering events. In a simple picture, when a pho-
ton is scattered, there is a leakage of information into the environment
about the position of the Rydberg polariton, which should be within a
blockade time from the scattered photon. Therefore, it induces a pro-
jection of the polariton wavefunction [123], which decreases the purity
of the transmitted single photons. However, this seems in contradic-
tion with the data presented in figure 6.10, where the overlap does not
clearly decreases with nin. A possible explanation can be found if we
consider the photon dissipation due to the finite EIT bandwidth. In this
case, if the polariton wavefunction is projected, it can be filtered out of
the transmitted mode since its bandwidth does not fit inside the EIT
bandwidth [124, 102]. This effect also cause a decrease in the single-
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Figure 6.10: Variation of measurement parameters in EIT condition
with respect to the mean number of input photons. In the top panel,
the overlap η between a photon from the WCS and a Rydberg photon;
in the center, the probability to generate a Rydberg photon in each
trial PSP and in the bottom, the second-order correlation function of
Rydberg photons g(2)(0).

photon generation probability, which is in agreement with the behavior
that we observe in figure 6.10. In the second-order correlation function,
it produces a bunching around antibunching, for photons propagating
as Rydberg polaritons [102]. Another explanation for the decrease in
the single-photon generation probability is the formation of pollutants
created by the reabsorption of scattered photons [102]. As we have said
before, pollutants are Rydberg excitations that cannot be retrieved in
the probe mode but prevent the generation of single photons due to
the blockade effect. The consequence in the second-order correlation
function is also a bunching behavior [102, 50]. These pollutants can be
formed, for example, when atoms decay to another Rydberg level not
coupled to the coupling field, leading to long-lived pollutants that can
block the creation of Rydberg polaritons over several trials. In this way,
they produce bunching between consecutive trials, as shown in the fig-
ure 6.2. Although these types of contaminants can be generated by both
excitation schemes, the presence of scattering in EIT constitutes an ad-
ditional source of pollutants, which are formed by the reabsorption of
scattered photons. Since these contaminants are in resonance with the
coupling field, they can be removed from one trial to the next and are
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therefore short-lived. However, these could also decay to another Ryd-
berg level, leading to long-lived pollutants. To our knowledge, a proper
theory describing the effect of pollutants on the indistinguishability and
quality of single photons generated by Rydberg EIT with storage has
not yet been proposed.

In summary, we observed that the overlaps and HOM visibilities are
lower for the photons generated with the EIT protocol, and that the
quality of the single photon degrades faster with nin than with the OR
protocol. These effects may be due to the presence of scattering inducing
decoherence and generation of pollutants. However, more measurements
and a full model of decoherence in Rydberg EIT storage would be needed
to quantify the consequences of scattering.

6.5 Conclusion

We conducted an extensive study of the quality of the single photons
generated by Rydberg-mediated nonlinearities. We performed Hanbury-
Brown and Twiss experiment together with HOM interferometry com-
paring two excitation schemes, namely OR and EIT. We provided figures
of merit for the single-photon generation and characterization in each
of those schemes and concluded that the single photons generated by
EIT scheme show a lower second-order correlation function than the
ones obtained in the OR scheme, giving a value of g

(2)
∆t (0) ≈ 0.17 for the

whole pulse and without background correction. However, the single
photons generated by OR excitation have a superior indistinguishabil-
ity, presenting an overlap of 89% for the full pulse, and up to 98% for
a smaller detection window. We discussed the impact of extending the
window of observation in the indistinguishability and concluded that,
despite higher values of overlap are achieved for smaller windows of ob-
servations, the single photons remain highly indistinguishable for the
whole duration of the pulse. These observations are interesting for ap-
plications in quantum communications, where extending the window of
observation implies a gain in efficiency and distant entanglement rate.
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Conclusions

7.1 Main results of the thesis

The first goal of this thesis was to achieve nonlinearities at the single-
photon level in a cold Rydberg atomic ensemble, by exploiting the strong
dipole interactions between Rydberg atoms. We achieved this by mak-
ing several improvements to the previous experimental setup, including
increasing the atomic density of our cloud, increasing the principal quan-
tum number to n=90 and implementing a dipole trap for the atoms. The
latter, of particular relevance, allowed us to obtain an atomic cloud with
a density of 3·1011 cm−3 and a transverse length of 34 µm. With this
configuration, we achieved an optical density per blockade radius (ODb)
of the order of one and a volume of the interaction region small enough
to fit very few blockade spheres. Quantum nonlinearity was demon-
strated by obtaining an antibunching dip in the statistics of the light
after interacting with the Rydberg states under conditions of EIT. The
generation of single photons at the output was witnessed by a second or-
der correlation function smaller than 0.5, measured for the whole pulse,
when weak coherent states of light pulses were sent as an input. In ad-
dition, we performed a detailed characterization of the nonlinearity as
a function of the principal quantum number of the Rydberg state, the
storage time and the number of photons in the input pulse.

In a second step, we conducted an in-depth study of the transients
in the output pulses of light, after propagating through the medium as
Rydberg polaritons. We showed that the properties of the light after the
second transient are very similar to those obtained after storage, if the
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input pulse is switched off fast enough, i.e. faster than the time it takes
for a polariton to cross the medium. Thanks to the collaboration with
theorists from the group of Darrick Chang at ICFO, we were able to
qualitatively and quantitatively explain these results, although we have
only presented here an intuition of the physics behind this phenomena.
With the intention of exploiting these results to generate single photons
more efficiently, we studied the statistics of the light in the final tran-
sient as a function of the probability to have a photon at the output
of the atomic cloud and we compared these results with the strategy
based on storing as Rydberg spin waves. We showed that it is possible
to generate photons more efficiently at the cost of slightly deteriorating
the single-photon quality.

Finally, we did a more in-depth study of the quality of the single pho-
tons retrieved from a Rydberg spin wave. To do this, the Rydberg spin
wave was created by means of two different methods: by the previously
realized storage under EIT condition and by off-resonant excitation to
the Rydberg state, where the atoms were excited using a two-photon
transition with a large detuning with respect to the intermediate state.
The quality of the generated photons was characterized by measuring the
second-order correlation function and the indistinguishability, a crucial
property to use Rydberg atoms as quantum network nodes. The indis-
tinguishability was measured from the interference between the single
photon and a weak coherent state of light in a Hong-Ou-Mandel experi-
ment. Although the obtained g(2) values of the single photons obtained
by excitation under EIT conditions were better than for the off-resonant
excitation case, the indistinguishability was considerably better for the
off-resonant excitation method, showing visibilities much higher than the
classical limit of 50% and an overlap of 82%, taking into account the en-
tire pulse. The mismatch observed between both excitation procedures
still needs a proper theoretical simulation, although we introduced some
possible explanations. As we said before, these results are important for
using Rydberg atoms as quantum nodes. For example, if we want to
entangle two remote nodes, we can interfere the single photons emitted
by both nodes in a Bell state measurement in which success depends on
the indistinguishability between them.
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7.2 Future directions

As we said in the introduction, the ultimate goal of this project is to
create a two-qubit quantum gate to perform deterministic Bell state
measurements in quantum repeater protocols. In this final scenario, the
entangled photons will be generated from an external source and sent to
the Rydberg atomic cloud to make them interact. The entangled pho-
ton source that will be used in our case is a DLCZ quantum memory,
based on an atomic ensemble, which is placed in another experiment
in our laboratory. To meet this goal, many intermediate steps must
be taken. In this sense, the experiment we conducted in 2017 [83] was
an important first step, as we demonstrated a good connection between
both systems by storing a heralded photon coming from the DLCZ-based
photon source in a Rydberg state. We demonstrated that the quantum
properties of the photon were preserved after retrieval from the Rydberg
spin wave. However, the nonlinearity of the medium was far from the
single-photon level.

After this, one possible next step is to demonstrate coherent storage
and retrieval of a photonic qubit in the Rydberg atomic cloud. A pho-
tonic time-bin qubit generated by the DLCZ quantum memory [154] can
be converted into a frequency basis, such that the early bin is connected
to a Rydberg state, while the late bin is coupled to a long-lived ground
state, by means of two different coupling beams under conditions of EIT.
After storage in these states, we can retrieve them and study whether
the qubit quantum properties are preserved.

Another possibility will be to study the interaction between a single
photon and a weak coherent state, so that the storage of a single photon
as a Rydberg spin wave blockades the excitation caused by the weak
coherent state. Therefore, the photon (or the photonic qubit) will act as
the control and the weak coherent state as the target. The single photon
must be coupled to a different Rydberg state than the weak coherent
state by using another coupling beam at a different frequency. In that
case, the two states can be chosen to be close to a Förster resonance.
Another option is to store the control and the target in two independent
spatial modes but close enough to interact with each other [66], as in a
two-rail configuration [69]. Interactions between two single photons will
require an additional source of heralded photons or an improvement in
the generation rate of the current one.
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At the same time, improvements will be made to the experimental
setup. The first will be to reduce the combined probe and coupling laser
linewidth by stabilizing them with respect to a highly stable Fabry-Perot
cavity [155, 156]. This is necessary due to the long lifetime of Rydberg
atoms, of hundreds of µs, which corresponds to a natural linewidth of
tens of kHz. A combined laser linewidth of this magnitude will reduce
the dephasing from the Rydberg state γgr, resulting in higher EIT trans-
parency, which will allow us to excite to Rydberg states with higher prin-
cipal quantum number. Besides this, a smaller volume of the interaction
region and higher density of the atoms can be achieved by implementing
a crossed dipole trap instead of a single one.

A different approach is to use the Rydberg atomic cloud as an emitter
node and take advantage of the blockade effect to entangle a photon and
a collective atomic excitation in a deterministic way [28, 72, 73]. This
would be very useful for quantum repeaters since it allows to increase
the entanglement distribution rate, compared to other protocols based
on probabilistic processes such as the DLCZ scheme. In Rydberg atoms-
based quantum repeaters [72, 73], the entanglement swapping between
remote nodes is performed by deterministic Bell state measurements be-
tween two collective atomic excitations. As a first step towards this goal,
we could generate a deterministic entanglement between a photon and
a collective atomic excitation. In order to achieve this, we should im-
plement a blockade-based quantum gate between two collective atomic
excitations. We could also use this method to generate entanglement
between two disparate nodes, such as the Rydberg ensemble and the
DLCZ quantum memory, by interfering the photonic qubits generated
by both systems. For that, we should demonstrate that these photons
are indistinguishable.

Therefore, the next step toward the connection between both exper-
iments is to measure the indistinguishability between the photons gen-
erated in the Rydberg cloud and the photons generated by the DLCZ
quantum memory, something crucial in order to perform remote entan-
glement between two different nodes. For this, we will realize a HOM
experiment similar to the one carried out in section 6.4, but this time by
interfering the Rydberg photon with a heralded photon from the DLCZ
quantum memory, which adds considerable technical difficulty.
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In conclusion, the results achieved in this thesis constitute a fun-
damental starting point for future applications of Rydberg atoms in
quantum processing and communication.
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