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NOTATION AND CONVENTIONS

We shall use the following notation throughout this work:

Mn(C) space of n× n complex matrices

Idn identity matrix of size n

Jm(λ) Jordan block of size m and eigenvalue λ

Comm∗(A) set of non-singular matrices that commute with A

Arg(λ) principal argument of λ ∈ C
logk(λ) k-th branch of the logarithm of λ ∈ C \ {0}
log(λ) principal logarithm of λ ∈ C \ {0}
Log(M) principal logarithm of a non-singular matrix M

All the matrices in this work are assumed to be square. We use eigenvector

to denote right eigenvectors. Otherwise we will make explicit that we refer

to left eigenvalues.
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INTRODUCTION

Markov processes are stochastic processes in which the future is indepen-

dent of the past, given the present. In this framework, Markov matrices

are used to describe the changes of a discrete random variable over time.

More precisely, Markov matrices (or transition matrices) are non-negative

real square matrices with rows summing to one whose entries are the condi-

tional probabilities of substitution between the states of a discrete random

variable. When the probabilities of substitution are considered to be con-

tinuous (and differentiable) functions depending on time, Markov processes

can be described in terms of the instantaneous rates of substitution between

states. In order to keep such a process tractable, the substitution rates are

usually assumed to be constant over time. In this case, we say that the

process is a homogeneous continuous-time process and one displays all the

rates together in a matrix called rate matrix. Rate matrices are real square

matrices with rows summing to zero and non-negative off-diagonal entries.

In this setting, given the rate matrix Q of the process, the transition ma-

trix encoding the substitution probabilities after time t can be written as

M(t) = exp(Qt). Any Markov matrix that can be written in this way is said

to be “embeddable” because it can be embedded into the Markov semigroup

{exp(Qt), t ≥ 0}. Equivalently, a Markov matrix M is embeddable if it can

be written as the exponential of a rate matrix Q, M = exp(Q) (with no

reference to time). In this case, any rate matrix Q satisfying M = exp(Q)

is called a Markov generator of M . It is clear that not all Markov matrices

are embeddable since a necessary condition for this is that the matrix is

non-singular.

Question 1 (Embedding problem [Elf37]): Decide whether a given n × n
Markov matrix is embeddable.

Solving the embedding problem results in giving necessary and sufficient

conditions for a Markov matrix M to be embeddable. The characterization

of 2 × 2 embeddable matrices was given by Kingman in [Kin62]. Accord-

ing to this solution, a 2 × 2 Markov matrix is embeddable if and only if
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its determinant is positive. Therefore, in this case one can easily decide

whether a Markov matrix is embeddable without needing to compute any

matrix logarithm. However, Kingman claimed that this did not seem fea-

sible for Markov matrices of larger sizes. Actually, he even claimed that it

seemed unlikely to obtain an explicit characterization for the embeddability

of larger matrices (see [Dav10]).

The complete solution to the embedding problem for 3×3 matrices was not

obtained until recently (see [CC11]). The characterization of embeddability

in this case is much more cumbersome than in the case of 2 × 2 matrices,

showing that Kingman was not completly wrong. Indeed, the solution is

split into different cases depending on the Jordan decomposition of the

Markov matrix and the full explicit solution has taken almost fourty years

to be complete (see the contributions in [Cut73, Joh74, Car95, CC11]).

In addition to the solutions for 2× 2 and 3× 3 matrices, there are also sev-

eral results regarding the embeddability of n × n matrices. Some of these

involve necessary conditions in terms of the eigenvalues of the transition

matrix [Elf37, Kin62, Run62] or sufficient conditions expressed in terms of

the determinant of the Markov matrix [Cut73, Dav10, Goo70] or its entries

[Fug88].

Besides asking for a criterion for embeddability, it is natural also to ask

for conditions that guarantee the existence of a unique Markov generator.

While the embedding problem is concerned with the existence of Markov

generators, the rate identifiability problem focuses on their uniqueness. We

say that an embeddable matrix has identifiable rates when there is only

one Markov generator for it. There are several examples in the literature

showing embeddable matrices that admit more than one Markov generator

(see for example [Spe67, SS76, Dav10]).

Question 2 (Rate identifiability): Characterize the n×n embeddable ma-

trices that admit a unique Markov generator.

There are some known conditions that guarantee that the principal loga-
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rithm of a Markov matrix is its only real logarithm with rows summing to

zero (see some examples in [Cut72, SS76, IRW01]). This leads to a number

of partial solutions to the embedding problem which consist on checking

whether the principal logarithm is a rate matrix or not. Actually, up to

our knowledge, all the examples of embeddable matrices without repeated

eigenvalues known before the results presented in this work (including those

without identifiable rates) satisfy that their principal logarithm is a rate

matrix.

Question 3: Is the embeddability of Markov matrices with different eigen-

values characterized by its principal logarithm?

Although the embedding problem is essentially a theoretical problem, it

has been studied in detail in many applied areas due to its practical con-

sequences. For example, in economic sciences by [IRW01, GMZ86], in so-

cial sciences (see [SS76]) and in evolutionary biology (e.g.[VYP+13, Jia16,

KK17, BS20]). Our original interest on the embedding problem arises from

phylogenetics (the study of evolutionary relationships), where the embed-

ding problem appears related to fundamental questions concerning the con-

sistency of nucleotide substitution models. These models generally use a

Markov process to describe the substitution of nucleotides over time in a

given DNA sequence. The state space of the random variables in such a

process consists on the four nucleotides in the DNA: adenine, guanine, cy-

tosine and thymine.

The traditional approach to nucleotide substitution models is to consider

homogeneous continuous-time Markov processes (see the first models in

[JC69, Kim81, Fel81, Tav86]). Although real evolutionary processes are

not homogeneous in general (see [HPCD05], for example), any substitution

process in continuous-time can be approximated by concatenating short ho-

mogeneous processes. In this case, the transition matrix for the whole pro-

cess is obtained by multiplying the (embeddable) transition matrices of the

concatenated processes. If the resulting transition matrix is embeddable,

then the original process can be modelled as homogeneous. However, the

product of embeddable matrices is not necessarily an embeddable matrix.
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Therefore, although the transition matrices of homogeneous continuous-

time nucleotide substitution models are embeddable by construction, one

still has to take the embedding problem into consideration in this frame-

work.

An alternative approach to nucleotide substitution models is to avoid the

time consideration and simply use a Markov matrix to rule the whole substi-

tution process. This is a more general framework than that of homogeneous

continuous-time, as it takes into account all Markov matrices, regardless

of whether they are embeddable not. In contrast, some of the considered

transition matrices can be argued to describe unrealistic evolutionary pro-

cesses (e.g. permutation matrices). In this setting, the parameters of the

model are the substitution probabilities (instead of the instantaneous rates

of mutation). This approach has been used to study the geometric prop-

erties of the models with tools from algebraic geometry and commutative

algebra (see [SS05, AR07, AR08, DK09]), which in turn has led to sev-

eral algebraic methods for reconstructing the evolutionary history of living

species without needing to estimate the substitution parameters (see for ex-

ample the work in [Eri05, CFS07, RH12, CK14, AKR17]). Of course, these

methods can be used for phylogenetic inference in the context of homo-

geneous continuous-time substitution processes. Actually, there are other

reconstruction methods with an algebraic basis which have been explicitly

defined for homogeneous continuous-time models (see [SCJJ08, HJS13]).

The connection between the two different frameworks for nucleotide substi-

tution processes introduced above is intimately related to the embedding

problem, as some Markov matrices are rejected or potentially considered

depending on the approach.

Question 4: Quantify how many nucleotide transition matrices are consis-

tent with a homogeneous continuous-time approach (i.e. are embeddable).

Depending on the approach, the assumptions of the nucleotide substitution

models are expressed as constraints either in terms of the instantaneous

rates of mutation or in terms of the substitution probabilities. These re-
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strictions are usually motivated by observations on the frequencies of sub-

stitutions between nucleotides (see [Kim80, Kim81]) or by mathematical

convenience (e.g. [Fel04, Tav86]). A natural question is that of deciding

when a transition matrix subject to model constraints admits a Markov

generator with the same restrictions on its entries (model-embeddability).

Question 5: Quantify the proportion of both embeddable and model-

embeddable transition matrices within a particular nucleotide substitution

model.

Throughout this memoir we give answers to the problems above and to

other related questions. Next, we outline the structure and the main re-

sults of this report.

In Chapter 1 we introduce the basic definitions and results that shall be

used throughout this work and we give a detailed background on the em-

bedding problem. We also introduce there the description of all matrix

logarithms (real or not) detailed in [Gan59] and the characterization of

matrices with real logarithms due to Culver [Cul66], which are fundamen-

tal for most of our contributions. In the last section of Chapter 1, we focus

on nucleotide substitution models and the impact of the embeding problem

in this framework. In particular, we give evidence that all embeddable nu-

cleotide transition matrices are biologically meaningful (see Remark 1.4.13).

In Chapter 2 we study the embeddability and rate identifiability of Markov

matrices of any size (Questions 1 and 2). We give tighter bounds on the

eigenvalues of rate matrices than already existing ones. Based on this, we

give a sufficient condition for the embeddability of Markov matrices that

relaxes the hypothesis of similar known results (cf. [Cut73, IRW01]).

Theorem 1 (Theorem 2.2.5). Let M be an n × n diagonalizable Markov

matrix and let Λ be the set formed by its non-real eigenvalues and its eigen-

values with multiplicity ≥ 2. Then, the unique possible Markov generator

of M is Log(M) if for all z ∈ Λ we have βn(z) ≤ π, where

βn(z) = min

ß»
2 log(det(M)) log |z| − log2 |z|,− log |z|

tan(π/n)

™
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In this case, M is embeddable if and only if Log(M) is a rate matrix.

In addition to this partial solution to the embedding problem (and also to

the rate identifiabily problem), we give a criterion to test the embeddability

of any n× n Markov matrix with different eigenvalues:

Theorem 2 (Theorem 2.3.3). Let M be a Markov matrix with an eigen-

decomposition of the form

M = P diag
(
1, λ1, . . . , λt, µ1, µ1, . . . , µs, µs

)
P−1,

with P ∈ GLn(C), λi ∈ (0, 1) for i = 1, . . . , t, µj ∈ {z ∈ C : Im(z) > 0}
for j = 1, . . . , s, all of them pairwise different. Let logk(µ) denote the k−th

branch of the logarithm of µ. Then, M is embeddable if and only if

P diag
(

0, log(λ1), . . . , log(λt), logk1(µ1), logk1(µ1), . . . , logks(µs), logks(µs)
)
P−1

is a rate matrix for some k1, . . . , ks ∈ Zs satisfying†−Arg(µj)−βn(µj)
2π

£
≤ kj ≤

ö−Arg(µj)+βn(µj)
2π

ù
.

Using this, we get an algorithm that can be used to find all the Markov gen-

erators of any given Markov matrix with different eigenvalues (Algorithm

2.3.5). In particular, this algorithm solves both the embedding problem

and and the rate identifiability problem for a dense subset of n×n Markov

matrices for any n ∈ N.

In Chapter 3 we focus on the embedding problem and the rate identifia-

bility problem for 4 × 4 Markov matrices. As in the case of 3 × 3 Markov

matrices, our proposed solution to these problems is split into several re-

sults depending on the Jordan form of the given Markov matrix (see Table

3.2). The particular case of Markov matrices with different eigenvalues is

solved by specializing the results in the previous chapter to 4 × 4 matri-

ces, which results in an explicit criterion for both embeddability and rate

identifiability in this case .

Theorem 3 (Theorem 3.2.1). Let M = Pdiag(1, λ1, λ2, λ3)P−1 be a 4× 4

Markov matrix with λ1 ∈ R>0, λ2 ∈ C, λ3 ∈ C pairwise different. If
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λ2, λ3 6∈ R, define V = P diag(0, 0, 2πi,−2πi) P−1 and

L := max
(i,j): i 6=j, Vi,j>0

°
−Log(M)i,j

Vi,j

§
, U := min

(i,j): i 6=j, Vi,j<0

õ
−Log(M)i,j

Vi,j

û
.

Otherwise, write L = U = 0 and let V denote the 4× 4 zero matrix. Set

N := {(i, j) : i 6= j, Vi,j = 0 and Log(M)i,j < 0}.

Then, M is embeddable if and only if N = ∅, L ≤ U and λi /∈ R≤0 for

i = 1, 2, 3. In this case, the Markov generators of M are Log(M)+kV with

k ∈ [L,U ].

In addition, we provide an algorithm to test the embeddability of Markov

matrices with an eigenvalue with multiplicity 2 (Algorithm 3.2.3) and an-

other algorithm to test the embeddability of the remaining Markov matrices

(Algorithm 3.2.2). By applying this last algorithm on a uniformly gener-

ated random sample of Markov matrices with different eigenvalues, we are

able to estimate the proportion of embeddable matrices within the set of

4 × 4 Markov matrices (Question 4). According to the results obtained,

only about a 0.05% of 4 × 4 Markov matrices are embeddable (see Table

3.1).

In Chapter 4 we solve the embedding problem for the Kimura 3-parameter

model [Kim81] and its submodels, the Kimura 2-parameter model [Kim80]

and the Jukes-Cantor model [JC69]. The following theorem summarizes

the related results and gives a criterion to test the embeddability of generic

Kimura 3-parameter Markov matrices.

Theorem 4 (see Proposition 3.1.14 and Corollaries 4.2.1 and 4.2.6). Let M

be a Kimura 3-parameter Markov matrix with eigenvalues 1, λ, µ, γ. Then,

if M has no repeated negative eigenvalue, the following are equivalent:

i) M is embeddable.

ii) M is model-embeddable.

iii) The principal logarithm of M is a rate matrix.
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iv) The eigenvalues of M are strictly positive and satisfy

λ ≥ µγ, µ ≥ λγ, γ ≥ λµ.

This result exhibits that the answer to Question 3 is affirmative when we

restrict to the Kimura 3-parameter model or to any of its submodels. We

also study the case of repeated eigenvalue in great detail. More precisely,

we see that Kimura 3-parameter matrices with a repeated eigenvalues can

be considered to belong to the Kimura 2-parameter model without loss of

generality. In this context, we give a criterion for the embeddability and

for the rate identifiability of generic Kimura 2-parameter matrices.

Theorem 5 (Theorem 4.3.8). For any given Kimura 2-parameter Markov

matrix M =

Ö
a b c c

b a c c

c c a b

c c b a

è
with b 6= c, the following holds:

a) If c = 0.5− b, then M is not embeddable.

b) If c < 0.5− b, M is embeddable if and only if c ≤
√
b− b. In this case,

i) If c < 1−e−4π

4 , then the rates of M are identifiable.

ii) If c = 1−e−4π

4 , then M has exactly 3 Markov generators.

iii) If c > 1−e−4π

4 , then M has infinitely many Markov generators.

c) If c > 0.5− b, M is embeddable if and only if 1−e−2π

4 ≤ c ≤
√
b− b. In

this case the rates of M are not identifiable. Moreover,

i) If c = 1−e−2π

4 , then M has exactly 2 Markov generators.

ii) If c > 1−e−2π

4 , then M has infinitely many Markov generators.

Unlike the case of generic Kimura 3-parameter matrices, we see that embed-

dable Kimura 2-parameter matrices may have unidentifiable rates. More-

over, we see that there are Kimura 2-parameter embeddable matrices that

are not model-embeddable. This shows that rates may not be able to

reproduce symmetric constraints among probabilities and seems to be in-

consistent with the original approach of Kimura models via mutation rates,
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where the symmetries between transition and transversion probabilities are

to be captured by the rate matrix [Kim80, Kim81].

In this chapter, we also compute the proportion of embeddable and model-

embedable matrices within the Kimura 3-parameter model, the Kimura

2-parameter model and the Jukes-Cantor model (Question 5). We get that

only a 9.375% of the transition matrices in the Kimura 3-Parameter model

are embeddable, whereas for the Kimura 2-parameter model the proportion

barely surpasses the 33%. Finally, the Jukes-Cantor model has a 75% of

embeddable matrices.

In Chapter 5 we focus on the strand-symmetric model defined in [YP04,

CS05]. We show that, under the assumption of different eigenvalues, the

embeddability and model-embeddability of matrices within the strand sym-

metric model are equivalent (Proposition 5.1.2) and we give a necessary

condition to guarantee both of them.

Theorem 6 (Theorem 5.1.8). Let M be a strand-symmetric Markov matrix

with different eigenvalues. If M is embeddable, then one of the following

does necessarily hold:

i) Log(M) is a rate matrix.

ii) Log(M) has no null entries and exactly two negative off-diagonal en-

tries, which lie in its anti-diagonal.

Although we do not provide an explicit criterion for the embeddability of

strand-symmetric matrices, we can estimate the proportion of embeddable

matrices within the model by applying algorithm 3.2.2 on a uniformly gen-

erated random sample of strand symmetric matrices. According to the

results obtained, only about 1.75% of Markov matrices within the strand-

symmetric model are embeddable (same for model-embeddable). We fin-

ish this chapter by constructing a family of examples within the strand-

symmetric model to show that the answer to Question 3 can be negative

(see Examples 5.2.4 and 5.2.5). Moreover, we are able to perturb these ex-

amples to prove that it is generically false that the embeddability of 4× 4

Markov matrices is determined by its principal logarithm.
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Theorem 7 (see Theorem 5.3.1). There is an Euclidean open set of embed-

dable Markov matrices whose principal logarithm is not a Markov generator

within the set of 4× 4 Markov matrices.

We conclude the introduction by summarizing the results obtained for

Question 5 for the different nucleotide substitution models considered in

Chapters 3, 4 and 5. We note that the simpler the model is, the larger the

proportion of embeddable matrices within the model.

Model Proportion of embeddable

General Markov 0.00057

Strand symmetric 0.0175

Kimura 3-parameter 0.09375

Kimura 2-parameter 0.33336

Jukes-Cantor 0.75
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1
PRELIMINARIES

In this chapter we introduce the definitions and results that will be used

throughout this thesis. The chapter is divided into four sections. In the

first section we explain how to apply real and complex functions to matri-

ces. We focus on the matrix exponential and the matrix logarithm as they

are required to state the embedding problem.

In the second section we recall some known results about Markov processes

and introduce Markov matrices and rate matrices as well as some of their

properties. The contents in this section motivate the embedding problem

for Markov matrices [Elf37].

In the third section, we talk about the existence and uniqueness of solu-

tions to the embedding problem. More precisely, we give a survey on the

solutions to this problem for the cases that had been already solved (that

is 2 × 2 and 3 × 3 matrices) and we also present some known results for

the general case. The uniqueness of solutions to the embedding problem

is discussed in the framework of the rate identifiability problem, which is

introduced in this section.

Finally, in the fourth section we introduce nucleotide substitution models,

which motivated the present work. Markov matrices of size four play a

special role in this case, as they are used as the transition matrices of the

underlying Markov processes. We discuss the consequences (in terms of

modelling) of restricting to embeddable matrices in this context.
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Preliminaries

All the results in this chapter of the memoir are known results which can

be found in the literature. We include some proofs for completeness,in par-

ticular we give the proofs that we have worked out which, in some cases,

are original and different from the ones presented in the references.

1.1 FUNCTIONS OF MATRICES

In this section we explain how to extend complex functions to square matri-

ces. Almost all the results in this section are well-known and can be found

in most books on linear algebras, such as [Gan59] and [Mey00], or in more

specific volumes like [Hig08]. Throughout this work we shall only consider

square matrices and use the following notation (see also the notation list

in page 9).

Notation. Mn(K) denotes the set of n×n square matrices with entries in

a field K and we shall only consider K = R or C. GLn(K) is the subset of

non-singular matrices in Mn(K). We denote the identity matrix of size n as

Idn (or simply Id when the size is understood form the context) and we use

1 to refer to the vector (1, . . . , 1)t. We use the word eigenvector to denote

right eigenvectors and we refer to left-eigenvectors explicitly. The set of all

eigenvalues of a matrix A ∈Mn(K) is the spectrum of A and is denoted by

σ(A). We denote by aλ the algebraic multiplicity of the eigenvalue λ and

by gλ its geometric multiplicity (that is, the dimension of Ker(A− λIdn)).

1.1.1 Jordan Decomposition

In this subsection we recall the Jordan decomposition of a matrix and state

some of its properties. This will be used later in Section 1.1.4 to enumerate

all the possible logarithms of any non-singular square matrix.

Definition 1.1.1. Given A ∈ Mn(C), a matrix J ∈ Mn(C) is a Jordan

canonical form of A if there is a non-singular matrix P such that P−1 A P =

J and J = diag(Jm1(λ1), . . . , Jms(λs)) where mi ∈ N, m1 + · · · + ms = n
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Functions of matrices

and Jm(λ) denotes the upper-triangular matrix

Jm(λ) :=

à
λ 1

λ
. . .

. . . 1

λ

í
∈Mm(C).

A Jordan decomposition of A is a factorization of A into a Jordan canonical

form:

A = P J P−1. (1.1)

It is well known that any matrix in Mn(C) admits a Jordan decomposition

and that the values λi above are the eigenvalues of A. We say that each

Jm(λ) is an m×m Jordan block of eigenvalue λ. In this case, we say that

P is a Jordan transformation matrix for A. The Jordan canonical form of

A, namely J , is unique up to the ordering of the Jordan blocks. However,

even if we fix an ordering on these, the Jordan transformation matrix P is

not unique.

The Jordan segment of eigenvalue λ is the aλ × aλ block-diagonal matrix

containing all the Jordan blocks of eigenvalue λ, ordered by decreasing

size, and is denoted by Jλ. The geometric multiplicity of λ, gλ, coincides

with the number of Jordan blocks in the Jordan segment Jλ. If all the

eigenvalues of A have the same algebraic and geometric multiplicity then

all the Jordan blocks in J have size 1 and s = n, thus J = diag(λ1, . . . , λs).

In this case we say that A diagonalizes and a Jordan decomposition as in

(1.1) is also called an eigendecomposition of A.

Example 1.1.2. Consider the following matrices

A =
1

2

à
0 0 −1 3 1

0 −2 0 0 0

−2 6 −1 −3 5

4 0 1 1 −1

0 6 0 0 4

í
P =

à
1 −1 0 −1 0

−1 0 −1 0 1

0 −1 0 0 0

1 0 0 −1 0

0 1 0 0 1

í
.
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A straightforward computation shows that P is a Jordan transformation

matrix for A. Indeed,

J = P−1 A P =

à
−1 1 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 2 0

0 0 0 0 2

í
is a Jordan form of A formed by four Jordan blocks. The spectrum of

A is σ(A) = {−1, 2}. The algebraic multiplicity of −1 is a−1 = 3 and

its geometric multiplicity is g−1 = 2. As mentioned above, the algebraic

multiplicity coincides with the size of the corresponding Jordan segment

whereas the geometric multiplicity is the number of Jordan blocks in it, so

J1 = diag(J2(1), J1(1)) =

Ñ
−1 1 0

0 −1 0

0 0 −1

é
.

On the other hand, a2 = 2 and g2 = 2. Since a2 = g2, the Jordan segment

with eigenvalue 2 is the diagonal matrix

J2 =

Å
2 0

0 2

ã
.

Next we show how to obtain all the Jordan transformation matrices from

a given one. To this aim we first introduce the commutant of a matrix.

Definition 1.1.3. Given a square matrix M , the commutant group of M

is the set of invertible complex matrices that commute with M :

Comm∗(M) = {N ∈ GLn(C) : MN = NM}.

Lemma 1.1.4. Given a matrix A, let P J P−1 be a Jordan decomposition

of A. Then the set of all Jordan transformation matrices for A is

{‹P = PC : C ∈ Comm∗(J)}.
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Proof. If C ∈ Comm∗(J), then (PC)J(PC)−1 = PJP−1 = A thus PC is

a Jordan transformation matrix. Conversely, given P and ‹P two Jordan

transformation matrices for A we have ‹PJ‹P−1 = A = PJP−1. Hence

(P−1‹P )J = J(P−1‹P ), so C := P−1 ‹P belongs to Comm∗(J).

The next proposition gives a description of the commutant of a matrix in

Jordan form and also shows that it does not depend on the eigenvalues but

on the structure of the Jordan blocks.

Proposition 1.1.5. The following holds:

i) Comm∗(λIdn) = GLn(C) for any λ ∈ C.

ii) If Jλ1 , . . . , Jλs are Jordan segments with different eigenvalues, then

Comm∗(diag(Jλ1 , . . . , Jλs)) = {diag(C1, . . . , Cs) : Ci ∈ Comm∗(Jλi)}.

iii) If Jλ1 and Jλ2 are two Jordan segments with the same block structure

then Comm∗(Jλ1) = Comm∗(Jλ2).

Proof.

i) This is immediate because λIdn commutes with any matrix in Mn(C).

ii) Let us write J = diag(Jλ1 , . . . , Jλs). We prove both inclusions:

⊇) This inclusion follows immediately by block multiplication.

⊆) Given C ∈ Comm∗(J), let us split it into blocks as:

C =

Ö
C1,1 . . . C1,s

...
. . .

...

Cs,1 . . . Cs,s

è
with Ci,i ∈Maλi

(C).

As JC−CJ = 0 we get JλiCi,j−Ci,jJλj = 0 for all i, j. Thus, for

i = j this implies that Ci,i ∈ Comm∗(Jλi). In order to conclude

the proof we want to see that, if i 6= j, then Ci,j = 0. For indices
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i and j such that i 6= j, we write A = Jλi , B = Jλj and E = Ci,j .

Then,

(AE)k,l =

{
λiEk,l + Ek+1,l if Ak,k+1 = 1,

λiEk,l if k = aλi or Ak,k+1 = 0

and

(EB)k,l =

{
λjEk,l + Ek,l−1 if Bk,l−1 = 1,

λjEk,l if l = 1 or Bk,l−1 = 0.
.

Since the Jordan segment Jλi includes all Jordan blocks with

eigenvalue λi we have λi 6= λj . Hence, AE − EB = 0 implies

that Ek,l = 0 for all k, l and also that Ci,j = 0 for i 6= j.

iii) If Jλ1 and Jλ2 have the same Jordan block structure, then Jλ1 −Jλ2 =

(λ1 − λ2)Id. In this case, for any C ∈ Comm∗(Jλ1) we have:

C Jλ1 −C Jλ2 = C
(
(λ1−λ2) Id

)
=
(
(λ1−λ2) Id

)
C = Jλ1 C−Jλ2 C.

Hence, C Jλ2 − Jλ2 C = C Jλ1 − Jλ1 C = 0 and hence Comm∗(Jλ1) ⊆
Comm∗(Jλ2). The opposite inclusion follows by symmetry.

1.1.2 Spectral Resolution of a function

Throughout this report we shall be working with functions of matrices

defined the via spectral resolution or via a power series. The first approach

is based on applying a well-defined function and its successive derivatives

to the eigenvalues of the matrix via its Jordan canonical form, whereas

the second approach consists on applying the Taylor series of the function

to the matrix. It is known that, when both methods can be applied, the

resulting matrices are equal [Hig08, Section 1.2]. Besides these, there are

other equivalent approaches based on the Hermite interpolation polynomial

or the Cauchy integral (see [Hig08, Chap.1] for details).

Definition 1.1.6. Given A ∈Mm(C) with spectrum σ(A) = {λ1, . . . , λs},
let ιi denote the maximum size of the Jordan blocks of eigenvalue λi. A
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complex-valued function f is said to be defined on the spectrum of A if

the successive derivatives f (j)(λi) are defined for each j = 0, . . . , ιi − 1,

i ∈ {1, . . . , s}.

Definition 1.1.7. Given A ∈Mm(C), let J = diag(Jm1(λ1), . . . , Jms(λm))

be its Jordan canonical form. Given a function f defined on the spectrum

of A, we define the spectral resolution of f in A as

f(A) = Pdiag(f(Jm1(λ1)), . . . , f(Jms(λs)))P
−1,

where

f(Jmk(λk)) =

â
f(λk) f ′(λk) · · · fmk−1(λk)

(mk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

ì
, for k = 1, . . . , s.

Note that f(A) = Pf(J)P−1. In the particular case that A diagonalizes

with an eigendecomposition P diag(λ1, . . . , λs) P
−1 we have that f(A) also

diagonalizes and

f(A) = P diag(f(λ1), . . . , f(λs)) P
−1.

Remark 1.1.8. If f is defined on the spectrum of a block-diagonal ma-

trix A = diag(A1, . . . , As), then the spectral resolution of f in A can

be computed block-wise. Indeed, f is defined on the spectrum of each

block Ai, i = 1, . . . , s. Since each block Ai admits a Jordan decomposition

Ai = PiJiP
−1
i we have that diag(J1, . . . , Js) is a Jordan form of A and the

corresponding transformation matrix is P = diag(P1, . . . , Ps) (note that the

blocks in this Jordan form may appear in a different order than in Jordan

form of A introduced in Definition 1.1.1). Therefore we have:

f(A) =

Ö
P1

. . .

Ps

èÖ
f(J1)

. . .

f(Js)

èÖ
P−1

1
. . .

P−1
s

è
.
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Remark 1.1.9. The spectral resolution of a function f in a matrix A

is well-defined in the sense that it does not depend on the transformation

matrix P . If A diagonalizes this can be inferred from Lemma 1.1.4 together

with Proposition 1.1.5. We refer to [Mey00, pp. 601-603] for a detailed

proof in the case of non-diagonalizable matrices.

In general, it is not true that f(Jm(λ)) = Jm(f(λ)) for m > 1. Nonetheless,

we have the following result.

Lemma 1.1.10. If f(λ), f ′(λ), . . . , f (m−1)(λ) are defined for a complex-

valued function f and f ′(λ) 6= 0, then the Jordan form of f(Jm(λ)) is

Jm(f(λ)).

Proof. Note that f(Jm(λ)) has only one eigenvalue, namely f(λ). More-

over, since f ′(λ) 6= 0 we have that rank(f(Jm(λ)) − f(λ)Id) = m − 1, so

dim(Ker(f(Jm(λ))−f(λ)Id)) = 1. Hence f(λ) is an eigenvalue of f(Jm(λ))

with algebraic multiplicity m and geometric multiplicity 1. This guarantees

the claim.

1.1.3 Matrix exponential

Using the previous section one can define the exponential of a matrix A,

exp(A), via the spectral resolution. However, one can also define it by

applying the Taylor power series of f(x) = ex to the matrix, that is,

exp(A) =
∞∑
k=0

Ak

k!
, where A0 = Id. (1.2)

Since the power series above is absolutely convergent for any matrix and

the exponential function is holomorphic in C, both approaches to define the

exponential of a matrix can be applied to any square matrix. Throughout

this work we will use both methods indistinctly. We shall denote the ex-

ponential of a complex number x by ex and the exponential of a matrix A

by exp(A). In this subsection we state some properties of the exponential

of a matrix.
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Example 1.1.11. If we compute the exponential of a Jordan block J(λ)

via its spectral resolution we get

exp(Jn(λ)) =


eλ eλ eλ

2! · · · eλ

(n−1)!

eλ eλ
. . .

...
. . .

. . . eλ

2!

eλ eλ

eλ

 .

Similarly, we can compute the exponential of a matrix A with Jordan de-

composition A = P J P−1, J = diag(Jm1(λ1), . . . , Jms(λs)), P ∈ GLn(C).

In this case we have exp(A) = P exp(J) P−1. More precisely,

exp(A) = P diag(exp(Jm1(λ1)), . . . , exp(Jms(λs))) P
−1. (1.3)

In particular, if A diagonalizes so does exp(A) and

exp(P diag(λ1, . . . , λn) P−1) = P diag(eλ1 , . . . , eλn) P−1. (1.4)

Note that eλ 6= 0 for any λ ∈ C, thus Lemma 1.1.10 applies and the Jordan

form of exp(Jn(λ)) is Jn(eλ). Analogously, diag(Jm1(eλ1), . . . , Jms(e
λ
s )) is a

Jordan form of exp(A).

Lemma 1.1.12. If v is an eigenvector of a matrix A with eigenvalue λ,

then v is an eigenvector of exp(A) with eigenvalue eλ.

Proof. Since v is an eigenvector of A, we have exp(A) v =
(∑∞

k=0
Ak

k!

)
v =∑∞

k=0
Ak v
k! =

∑∞
k=0

λkv
k! = eλ v.

Remark 1.1.13. Note that the converse is not true in general. For in-

stance, consider the matrix

A =

Ç
0 2π

−2π 0

å
whose exponential is the identity matrix Id2 (this is shown in the forth-

coming Example 1.1.23). Note that (1, 0)t is not an eigenvector of A but it

is an eigenvector of exp(A).
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Due to the non-commutativity nature of matrix multiplication it is gener-

ally false that exp(A) exp(B) = exp(A+B). However, if A and B commute

this formula holds.

Proposition 1.1.14. If A,B ∈ Mn(C) commute then exp(A + B) =

exp(A) exp(B).

Proof. If A and B commute then we can apply the binomial theorem to

compute (A+B)k. Hence

N∑
i=0

(A+B)i

i!
=

N∑
i=0

i∑
j=0

Ç
i

j

å
Ai−jBj

i!
=

N∑
i=0

i∑
j=0

Ai−j

(i− j)!
Bj

j!
.

On the other hand,(
N∑
k=0

Ak

k!

)(
N∑
l=0

Bl

l!

)
=

N∑
k=0

(
Ak

k!

N∑
l=0

Bl

l!

)
=

N∑
k=0

N∑
l=0

Ak

k!

Bl

l!
.

By taking the limit when N tends to infinity in both expressions above we

get

exp(A+B) =

∞∑
i=0

i∑
j=0

Ai−j

(i− j)!
Bj

j!

and

exp(A) exp(B) =
∞∑
k=0

∞∑
l=0

Ak

k!

Bl

l!
.

Note that both sums converge because the exponential power series is con-

vergent. Moreover, they are equal because we can set any values for i, j in

the first series and see that the same term appears in the second expression,

and vice versa.

Remark 1.1.15. The Baker–Campbell–Hausdorff formula [Cam97] gives

an explicit expression for exp(A + B), even if A and B do not commute.

In particular, it shows that the converse of the previous proposition is also

true.

We conclude this section by presenting another well-known result which

relates the trace of a matrix and the determinant of its exponential.
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Proposition 1.1.16. For any matrix A ∈Mn(C) we have

etr(A) = det(exp(A)).

Proof. Let JA = diag(Jm1(λ1), . . . , Jms(λs)) be a Jordan canonical form of

A. According to Lemma 1.1.10, Jexp(A) = diag(Jm1(eλ1), . . . , Jms(e
λs)) is a

Jordan canonical form of exp(A). Since both the trace and the determinant

of a matrix are invariant under change of basis, we get etr(A) = etr(JA) =

em1λ1+···+msλs = (eλ1)m1 · · · (eλs)ms = det(Jexp(A)) = det(exp(A)).

1.1.4 Matrix logarithms

In this section we recall the definition of the logarithms of a matrix and

explain how to find all of them.

Definition 1.1.17. Let A and L be in Mn(C). L is said to be a logarithm

of A if exp(L) = A.

Remark 1.1.18. From Proposition 1.1.16 we get that det(exp(L)) is never

0. Thus, singular matrices have no logarithm.

It is known that the spectral resolution is consistent with function compo-

sition [Mey00, Ex. 7.9.18]. That is,

(f ◦ g)(A) = f(g(A)) (1.5)

provided that g(A) and f(g(A)) are well-defined. Therefore, one can ob-

tain matrix logarithms by using the spectral resolution of the logarithm

function.

Example 1.1.19. Let us consider the following matrices:

A =

Å
0.6 0.2

0.2 0.9

ã
P =

Å
1 2

−2 1

ã
.

A direct computation shows that P diag(1, 0.5) P−1 is an eigendecomposi-

tion of A. Since the real logarithm function log is defined on the spectrum
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of A, σ(A) = {1, 0.5}, we can obtain a logarithm of A by computing the

spectral resolution of log in A:

log(A) = P diag(log(1), log(0.5)) P−1 ≈
Å
−0.5545177445 0.2772588722

0.2772588722 −0.138694361

ã
.

Indeed, we have exp(log(A)) = (exp ◦ log)(A) = A by (1.5).

However, if one is interested in computing all the logarithms of a matrix

then all branches of the complex logarithm have to be considered. Indeed, a

different matrix logarithm arises from the spectral resolution of each branch

of the logarithm.

Definition 1.1.20. The k−th branch of the logarithm, logk : C\{0} → C, is

defined by logk(λ) = log |λ|+ (Arg(λ) + 2πk)i, where log |λ| is the natural

real logarithm of |λ| and Arg(λ) ∈ (−π, π] is the principal argument of

λ. The principal logarithm of λ is the logarithm whose imaginary part

coincides with Arg(λ). For ease of reading, the principal logarithm of λ

will be denoted by log(λ).

Remark 1.1.21. The domain of the branches of the logarithm just defined

includes negative numbers. Therefore we can apply the spectral resolution

of logk to any non-singular square matrix that diagonalizes. However, the

derivative of logk is not continuous at negative values, so logk might not

be defined on the spectrum of a non-diagonalizable matrix with negative

eigenvalues.

Definition 1.1.22. Given a matrix A,L ∈ Mn(C) we say that L is a

primary logarithm of A if it can be obtained as the spectral resolution of

logk applied to A, L = logk(A) for some k ∈ Z. The primary logarithm

arising from the principal logarithm is called the principal logarithm of A

and is denoted by Log(A). One can also define the principal logarithm of A

by the Mercator series, which is convergent for non-singular matrices with

eigenvalues in the disk with radius 1 centered at 1:

Log(A) =
∞∑
k=1

(−1)k+1 (A− Id)k

k
.
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It is known that all logarithms of a Jordan block are primary [Gan59].

However, this is not true for generic matrices. Indeed, according to (1.3),

one can use different branches of the logarithm on different Jordan blocks

and still obtain a matrix logarithms. These logarithms cannot be obtained

via the spectral resolution of a single logarithmic function and hence they

are called non-primary logarithms.

Example 1.1.23 (Logarithms of Idn). The branches of the logarithm ap-

plied to the identity matrix of size n give all its primary logarithms:

logk(Idn) = diag(2πki, . . . , 2πki).

However, since e2πk i = 1 for all k ∈ Z we have that diag(2πk1i, . . . , 2πkni)

is also a logarithm of Idn for any k1, . . . , kn ∈ Z. Note that this logarithm

is primary if and only if k1 = · · · = kn. Moreover we deduce from (1.4)

that

exp(P diag(2πk1i, . . . , 2πkni) P
−1) = Idn for any k1, . . . , kn ∈ Z,

P ∈ GLn(C).

This suggests a procedure to obtain more logarithms of Idn, none of which

will be a diagonal matrix. For example, let us consider the following ma-

trices

P1 =

Å
1 1

i −i

ã
, P2 =

Å
1 1

−i i

ã
.

Then,

L1 = P1diag(2πi,−2πi) P−1
1 =

Å
0 2π

−2π 0

ã
and

L2 = P2diag(2πi,−2πi) P−1
2 =

Å
0 −2π

2π 0

ã
are two different non-primary logarithms of Id2 with the same eigenvalues.

As shown in the previous example, a matrix A may have different non-

primary logarithms with the same Jordan form. The following result enu-

merates all possible logarithms of any non-singular diagonalizable matrix.
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Theorem 1.1.24 ([Gan59, Sec. VIII.8]). Let A = P diag(λ1, . . . , λn) P−1

be a non-singular matrix. Then L ∈Mn(C) is a logarithm of A if and only

if

L = PC diag
(

logk1(λ1), . . . , logkn(λs)
)
C−1P−1 (1.6)

for some k1, . . . , kn ∈ Z and C ∈ Comm∗(diag(λ1, . . . , λn)).

Proof. We start by checking that exp(L) = A. Indeed:

exp(L) = PC exp(diag(logk1(λ1), . . . , logkn(λs))) C
−1P−1

= PCdiag(λ1, . . . , λs)C
−1P−1

= Pdiag(λ1, . . . , λs)P
−1 = A.

To prove that any logarithm of A can be written as in (1.6) we first note

that any logarithm of A must diagonalize. Indeed, let us assume that L

is a non-diagonalizable logarithm of A, i.e. L = ‹P J ‹P−1 where J is

a non-diagonal Jordan form. Then, according to (1.3), A = exp(L) can

be transformed into a block-diagonal matrix with at least one block of

size greater than one. According to Lemma 1.1.10, this block does not

diagonalize and hence neither does A, which contradicts the hypothesis of

the theorem. Therefore we can write L = ‹P diag(x1, . . . , xn) ‹P−1 and

exp(L) = ‹P diag(ex1 , . . . , exn) ‹P−1. This shows that λi = exi for i =

1, . . . , s and hence xi = logki(λi) for some ki ∈ Z. Moreover, we deduce

that ‹P diagonalizes A and, according to Lemma 1.1.4, this implies that

C = P−1‹P commutes with diag(λ1, . . . , λn).

The previous result can be extended to almost every non-singular matrix.

The exceptions arise because the branches of the logarithm are not defined

on the spectrum of matrices with Jordan blocks of size greater than 1

associated with negative eigenvalues (see Remark 1.1.21).

Theorem 1.1.25 ([Gan59, Sec. VIII.8]). Let A = P J P−1 be a non-

singular matrix with eigenvalues λ1, . . . , λs ∈ C \ {0} and a Jordan form

J = diag(Jm1(λ1), . . . , Jms(λs)). Assume that the algebraic and geometric

multiplicity coincide for any eigenvalue λi ∈ R<0 coincide. Then, L is a
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logarithm of A if and only if there exist k1, . . . , ks ∈ Z and C ∈ Comm∗(J)

such that

L = PC diag
(

logk1(Jm1(λ1)), . . . , logks(Jms(λs))
)
C−1P−1.

Remark 1.1.26. Depending on the Jordan form of A and the choices

for k1, . . . , ks it may happen that Comm∗(diag(Jm1(λ1), . . . , Jms(λs))) is

included in Comm∗
(
diag

(
logk1(Jm1(λ1)), . . . , logks(Jms(λs))

))
. When this

holds, there is a unique logarithms of A with the chosen values for k1, . . . , ks,

which can be written as

L = P diag
(

logk1(Jm1(λ1)), . . . , logks(Jms(λs))
)
P−1.

Moreover, in this case, both A and L have the same eigenvectors. According

to Proposition 1.1.5 this occurs, for example, when all the eigenvalues of A

are pairwise different (independently of k1, . . . , ks) or also when k1 = k2 =

· · · = ks. From this, we obtain the following result:

Corollary 1.1.27. Let A be a non-singular matrix. For each k ∈ Z, the

primary logarithm logk(M) is the unique logarithm of A whose eigenvalues

are k−th branches of the logarithm of the eigenvalues of A.

We conclude this section by noting that Theorem 1.1.25 can actually be

used for any non-singular matrix by modifying the domain of the branches

of the logarithm function in C.

Remark 1.1.28. The branches of the logarithm are usually defined on

C \ (R≤0) so that they are continuous (actually holomorphic). For any

non-singular matrix A there is a ray in the complex plane that does not go

through any of its eigenvalues. Hence, we could take another branch cut

to define log such that it is continuous on σ(A) and then define the k-th

branch of the logarithm accordingly. By doing this, the spectral resolution

of logk would be well-defined in A even if it had negative eigenvalues with

different algebraic and geometric multiplicity. In particular, we can define

the principal logarithm of any non-singular matrix with negative eigenval-

ues according to this setting. Moreover, by this procedure, Theorem 1.1.25

can be applied to any non-singular matrix, including those with Jordan

blocks with negative eigenvalues of any size.
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1.2 MARKOV PROCESSES, MARKOV MATRICES AND RATE MA-

TRICES

The goal of this section is to introduce Markov processes, Markov matrices

and rate matrices in order to motivate the embedding problem from the

point of view of stochastic processes. Throughout this work we will restrict

to Markov chains with a finite state space. The contents in this section can

be found in most books on probability applications or random processes

such as [GS01], [Asm03] or [Fel08].

1.2.1 Markov chains

We start by introducing Markov chains with the purpose of understanding

the nature of Markov matrices, which are needed to define the embedding

problem. We consider discrete random variables with a common finite state

space Σ = {y1, . . . , yn}.

Definition 1.2.1. Let X = {Xt : t ∈ R≥0} be a family of discrete random

variables defined on a common probability space with finite state space Σ

and probability measure P. X is a continuous-time Markov chain if

P(Xt = y|Xu : 0 ≤ u ≤ s) = P(Xt = x|Xs), for any s ∈ [0, t). (1.7)

for any index t ∈ R>0 and any state y ∈ Σ.

In this definition, the index variable t is regarded as a continuous variable

representing time. Thus, Markov chains are stochastic processes for which

future is independent of past, given the present. This conditional inde-

pendence is known as memorylessness and is guaranteed by the Markov

property given by (1.7).

Given a Markov chain X , the transition probability from state yi ∈ Σ at

time t to state yj ∈ Σ at time t + s is defined as P(Xt+s = yj |Xt = yi).

Throughout this section we assume that P(Xt = yi) > 0, for any t ∈ R≥0

and any yi ∈ Σ so that the conditional probabilities are well defined. Since

we assumed that the state space Σ = {y1, . . . , yn} is finite, we can represent
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the transition probabilities from time t to time t+ s by a square matrix of

order n: Ö
P(Xt+s = y1|Xt = y1) . . . P(Xt+s = yn|Xt = y1)

...
. . .

...

P(Xt+s = y1|Xt = yn) . . . P(Xt+s = yn|Xt = yn)

è
.

This matrix is called the transition matrix from time t to time t + s and

we denote it by M(t, t+ s).

As transition probabilities can be thought of as the substitution probabili-

ties between states after a given period of time, transition matrices give the

probabilities of all possible changes of state occurring after a time interval

but give no information about the intermediate states along it.

Next, we show that the product of the transition matrices corresponding to

consecutive time intervals lead to the transition probabilities corresponding

to the concatenation of these intervals.

Lemma 1.2.2. For any t1, t2, t3 ∈ R≥0 such that t1 < t2 < t3 we have

M(t1, t2)M(t2, t3) = M(t1, t3).

Proof. Assuming that the conditional probabilities are well defined and

according to their properties, for any states yi, yj ∈ Σ, we have that

P(Xt3 = yj | Xt1 = yi) =
P(Xt3 = yj , Xt1 = yi)

P(Xt1 = yi)

=
∑
yk∈Σ

P(Xt3 = yj , Xt2 = yk, Xt1 = yi)

P(Xt1 = yi)

=
∑
yk∈Σ

P(Xt3 = yj | Xt2 = yk, Xt1 = yi)P(Xt2 = yk, Xt1 = yi)

P(Xt1 = yi)

=
∑
yk∈Σ

P(Xt3 = yj | Xt2 = yk, Xt1 = yi)P(Xt2 = yk | Xt1 = yi).

Moreover, P(Xt3 = yj | Xt2 = yk, Xt1 = yi) = P(Xt3 = yj | Xt2 = yk) by

the Markov property (1.7), which concludes the proof.
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1.2.2 Properties of Markov matrices

The entries of the transition matrices are conditional probabilities, and so

they lie in the interval [0, 1]. Moreover, the rows of a transition matrix sum

to one because the sum of all conditional probabilities with the same initial

state is equal to 1. Matrices satisfying this property are called Markov

matrices.

Definition 1.2.3. A real square matrix M is a Markov matrix if its entries

are non-negative and all its rows sum to 1. Depending on the context,

a Markov matrix might also be referred to as a transition matrix, (row-

)stochastic matrix or probability matrix.

Remark 1.2.4. Note that Lemma 1.2.2 yields that the space of n × n

Markov matrices is closed under matrix multiplication and hence it is a

multiplicative semi-group.

The Perron-Frobenius theorem [Per07, Fro12] can be used to bound the

eigenvalues of positive matrices and of certain classes of non-negative ma-

trices. Next we recall a pair of consequences of this theorem in the setting

of Markov matrices.

Proposition 1.2.5. Let M be a Markov matrix and let σ(M) denote the

spectrum of M . Then:

i) |λ| ≤ 1 for any λ ∈ σ(M).

ii) The vector 1 = (1, . . . , 1)t is an eigenvector of M with eigenvalue 1.

Proof. Let v = (v1, . . . , vn)t be an eigenvector of M with eigenvalue λ. Take

k ∈ {1, . . . , n} such that |vk| = maxj |vj |. Then, we have

|λvk| =
∣∣∣ n∑
j=1

akjvj

∣∣∣ ≤ n∑
j=1

|akj ||vj | ≤
n∑
j=1

|akj ||vk| =
( n∑
i=1

|aki|
)
|vk| = |vk|.

This proves i). Statement ii) is proven by straightforward computation.

Remark 1.2.6. According to Perron-Frobenius theorem [Per07], the eigen-

value 1 of any positive Markov matrix has multiplicity 1. In this case, its
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left-eigenvectors are either positive or negative (the same is true for eigen-

vectors). Moreover, if M is non-negative instead of positive, it is known

that the eigenvalue 1 has the same algebraic and geometric multiplicity (see

[Mey00, §8.4]).

Definition 1.2.7. A probability distribution Π = (π1, . . . , πn) on the state

space Σ is a stationary distribution for M if ΠM = Π. In particular,

a stationary distribution is a left-eigenvector of M with eigenvalue 1. It

follows from the previous remark that if M is positive such a distribution

exists and is unique. Therefore, in this case, the long term probability of

being at state yk is πk independently of the initial state.

1.2.3 Homogeneous Markov chains

If we assume that the transition probabilities of a Markov chain X only

depend on the length of the time interval, then it is possible to generate

all the transition matrices of X from a single matrix. A Markov process

satisfying this property is said to be homogeneous.

Definition 1.2.8. We say that a continuous-time Markov chain is (time-)

homogeneous if, for any time values s, t and for any states yi, yj ∈ Σ, we

have P(Xs+t = yj | Xs = yi) = P(Xt = yj | X0 = yi) . In this case, we have

M(0, s) = M(t, t + s) for any values of the time variables s and t and we

can define M(t) := M(0, t).

Remark 1.2.9. In the case of homogeneous Markov chains, the concate-

nation of transition matrices given in Lemma 1.2.2 becomes the following

identity known as the Chapman-Kolmogorov equation:

M(t+ s) = M(t)M(s). (1.8)

Given a homogeneous continuous-time Markov chain X with state space

Σ = {y1, . . . , yn} we denote by qij the instantaneous rate of substitution

from state yi to yj . We organize these values on an n× n matrix Q, where

we set qii = −
∑

j 6=i qij . This matrix is called the instantaneous rate matrix

of X and is a rate matrix according to the following definition:
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Definition 1.2.10. A real square matrix Q is a rate matrix if its off-

diagonal entries are non-negative and its rows sum to 0.

Remark 1.2.11. Analogously to the case of Markov matrices, we have

that 1 is an eigenvector with eigenvalue 0 for any rate matrix, because its

rows sum to 0.

Next we show that all transition matrices of a homogeneous continuous-

time Markov chain arise from its instantaneous rate matrix Q. Moreover,

it also claims that Q is unique. For this reason, Q is called the Markov

generator of the chain.

Theorem 1.2.12. Let X = {Xt : t ∈ R≥0} be a homogeneous continuous-

time Markov chain with instantaneous rate matrix Q. Then the following

are equivalent:

i) M(t) is the transition matrix from time s to time s+ t.

ii) M(t) is the unique solution to M ′(t) = M(t)Q with M(0) = Id.

iii) M(t) = exp(Qt) for all t ∈ R≥0.

Moreover, a matrix Q ∈Mn(R) is a rate matrix if and only if exp(Qt) is a

Markov matrix for all t ∈ R≥0.

Proof. Picard-Lindelöf theorem guarantees that the initial value problem

arising from a linear system of differential equations has a unique solution.

Since, M(t) = exp(Qt) satisfies the differential equation M ′(t) = M(t) Q

with initial condition M(0) = Id then ii) and iii) are equivalent. Hence, it

is enough to prove the equivalence between i) and ii) to conclude the proof.

For ease of reading, let us denote P(Xt = yj | X0 = yi) by pij(t). According

to the Chapman-Kolmogorov equation (1.8) and using that the rows of

Markov matrices sum to one, we can express the transition probabilities at

time t+ s between any states i and j as:

pij(s+ t) =
n∑
k=1

pik(s)pk,j(t) =
(

1−
∑
k 6=i

pik(s)
)
pij(t) +

∑
k 6=i

pik(s) pkj(t).

Using that pk,l(s) ∼ s qkl when s is close to 0 on the expression above we

get:
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pij(s+ t) ∼
(

1−
∑
k 6=i

s qi,k

)
pi,j(t) +

∑
k 6=i

s qi,k pk,j(t)

= pi,j(t) + s
(∑
k 6=i
−qi,k

)
pi,j(t) +

∑
k 6=i

s qi,k pk,j(t)

= pi,j(t) + s qi,i pi,j(t) +
∑
k 6=i

s qi,kpk,j(t).

This implies that M(t + s) ∼ M(t) + s QM(t) when s tends to 0. Taking

the limit when s tends to 0 and using the definition of derivative we obtain

M ′(t) = QM(t). Note that according to the definition of transition matrices

we have M(0) = Id, which concludes the first part of the proof.

We already proved that ifQ is a rate matrix then M(t) = exp(Qt) is Markov

matrix for all t ≥ 0. To prove the converse, assume thatQ ∈Mn(R) satisfies

that M(t) = exp(Qt) is a Markov matrix for all t ∈ R>0. Let us define

A(t) = M(t)−Id
t and B(t) = M(t)−Id−Q

t =
∑∞

k=2
Qtk

k!t .

We have that Qt = A(t)−B(t) for all t > 0 because the exponential power

series (1.2) is absolutely convergent. Moreover, A(t) is a rate matrix for all

t > 0 and limt→0B(t) = 0. Therefore Q is a rate matrix.

Remark 1.2.13. Note that if Q is a rate matrix then Qt is a rate matrix

if and only if t ≥ 0. Thus, the set of n × n rate matrices is a cone within

Mn(R).

1.3 THE EMBEDDING PROBLEM

In this section we introduce the embedding problem posed by Elfving [Elf37]

and review some known conditions regarding the existence and uniqueness

of solutions to this problem. We also review explicit characterizations of

embeddable 2 × 2 and 3 × 3 Markov matrices, which were already known

before our work.
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1.3.1 The embedding problem and the rate identifiability problem

The goal of the embedding problem is to determine if a given Markov matrix

M has a homogeneous continuous-time realisation, i.e. to decide whether

M = exp(Qt) for some rate matrix Q and some value of time t ∈ R≥0. In

Remark 1.2.13 we saw that, if Q is a rate matrix, so is Qt. This motivates

the following formulation of the embedding problem.

Definition 1.3.1. A Markov matrix M is embeddable if there is a rate ma-

trix Q such that M = exp(Q). In this case, we say that Q is a Markov gen-

erator for M . The embedding problem [Elf37] consists on deciding whether

a given Markov matrix is embeddable or not.

Remark 1.3.2. If Q is a Markov generator for M , its eigenvalues are the

logarithms of the eigenvalues of M (see Theorems 1.1.24 and 1.1.25).

Example 1.3.3. Consider the following matrices:

M =

Å
0.75 0.25

0.25 0.75

ã
P =

Å
1 1

1 −1

ã
N =

Å
0 1

1 0

ã
Note that both M and N are Markov matrices. Moreover, M diagonalizes

with eigendecomposition M = P diag(1, 0.5) P−1. If we apply the spectral

resolution of the principal logarithm to M we obtain:

Log(M) = P diag(log(1), log(0.5)) P−1 =

Å
log(0.5)/2 − log(0.5)/2

− log(0.5)/2 log(0.5)/2

ã
.

Therefore, M is embeddable because it has a logarithm (the principal log-

arithm) which is a rate matrix. On the other hand, N diagonalizes with

eigendecomposition N = P diag(1,−1) P−1. It follows from Theorem

1.1.24 that any logarithm of N has a non-real eigenvalue because logk(−1)

is not real for any k ∈ Z. Therefore, no logarithm of N is real (and therefore

neither a rate matrix) which proves that N is not embeddable.

There are several examples in the literature showing embeddable matri-

ces that admit more than one Markov generator (see for example [Spe67],

[Cut73], [SS76], [IRW01], [Dav10]). While the embedding problem is con-

cerned with the existence of Markov generators, the rate identifiability

problem focuses on their uniqueness.
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Definition 1.3.4. Given an embeddable Markov matrix M , the rate iden-

tifiability problem consists on deciding whether it has a unique Markov

generator. If this is the case, M has identifiable rates.

Example 1.3.5. Consider the following matrices:

M =

Ñ
1− 2e−6π 1 + e−6π 1 + e−6π

1 + e−6π 1− 2e−6π 1 + e−6π

1 + e−6π 1 + e−6π 1− 2e−6π

é
, P =

Ñ
1 −1− i 1 + i

1 i −i
1 1 1

é
.

A straightforward computation shows that M = P diag(1, λ, λ) P−1, with

λ = −e−6π. Moreover, both Q1 = P diag(0, log(λ), log−1(λ))P−1 and

Q2 = P diag(0, log−1(λ), log(λ))P−1 are non-primary logarithms of M and

are rate matrices. Indeed:

Q1 =

Ñ
−4π π 3π

7π/3 −11π/3 4π/3

5π/3 8π/3 −13π/3

é
, Q2 =

Ñ
−4π 3π π

5π/3 −13π/3 8/3π

7π/3 4π/3 −11π/3

é
.

Hence, M is an embeddable Markov matrix whose rates are not identifiable.

1.3.2 Known conditions on the existence and uniqueness of Markov gen-

erators

Here, we review the study on real logarithms of real matrices developed in

[Cul66]. Since both Markov matrices and rate matrices have real entries, we

specialize these results in our setting of real logarithms of Markov matrices.

Several known necessary conditions for the existence of Markov generators

arise from this work. We also state some known results regarding rate

identifiability that shall be used later on.

Proposition 1.3.6 ([Cul66]). Let M be a real square matrix.

i) If there exists a real logarithm of M , then det(M) > 0 and each Jordan

block of M associated with a negative eigenvalue occurs an even number

of times.

ii) If all the eigenvalues of M are positive and no Jordan block appears

more than once in its Jordan canonical form, then the principal loga-

rithm of M is its unique real logarithm.
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Proof. We first note that for any given λ ∈ C \ {0} and k ∈ Z, we have

logk(λ) =

{
log−k(λ) if λ ∈ C \ R<0,

log−k−1(λ) if λ ∈ R<0.
(1.9)

i) Assume that M has a Jordan block with a negative eigenvalue λ

that occurs an odd number of times and let L be a logarithm of M .

By changing the branch cut of the logarithm (see Remark 1.1.28),

Lemma 1.1.10 can be applied to every k−th branch of the logarithm

f = logk in any Jordan block Jn(λ) , n ≥ 1. Since λ < 0, we deduce

from Theorem 1.1.25 that the Jordan form of L has an odd number

of Jordan blocks whose eigenvalues are a non-real logarithm of λ.

Together with (1.9) this implies that L is not a real matrix.

ii) For positive numbers, the principal logarithm is the only branch of

the logarithm that produces a real logarithm. The claim follows im-

mediately from Theorem 1.1.25 and Proposition 1.1.27.

Remark 1.3.7. The converse of both statements in this proposition are

also true (see Theorems 1 and 2 in [Cul66]).

As a consequence, one obtains the following characterization for the em-

beddability of Markov matrices with pairwise different real eigenvalues.

Corollary 1.3.8 ([SS76]). Let M be a Markov matrix with real pairwise

different eigenvalues. Then, M is embeddable if and only if Log(M) is a

rate matrix. In this case, M has identifiable rates and all its eigenvalues

are positive.

Proof. Under the assumption and according to Proposition 1.3.6 i), if M

has a negative eigenvalue then it has no real logarithms. If M has pairwise

different positive eigenvalues then the only real logarithm of M is its prin-

cipal logarithm by Proposition 1.3.6 ii) and hence, no other logarithm of

M can be a rate matrix.

This shows that the results by Culver [Cul66] on real logarithms have an

impact not only in the embedding problem but also on the identifiability of

46



The embedding problem

rates. Indeed, if M has different real eigenvalues then the previous corollary

guarantees that there is at most one Markov generator. Together with

this, the next result quantifies the set of real logarithms for real matrices

in general.

Corollary 1.3.9 ([Cul66]). Let M be a real square matrix and assume that

the equation M = exp(Q) has more than one solution. Then, there are an

infinite number of real solutions Q, which are:

i) Countable, if the Jordan canonical form of M has no repeated Jordan

block. In this case, M necessarily has a non-real eigenvalue.

ii) Uncountable, if the Jordan canonical form of M contains at least two

Jordan blocks of the same size with the same eigenvalue.

Together with Proposition 1.3.6, the result above suggests that there might

be Markov matrices with infinitely many real logarithms (which can be

a rate matrix or not). However, there are some other known conditions,

besides those of Corollary 1.3.8, that guarantee the uniqueness of a Markov

generator.

Theorem 1.3.10 ([Cut72, Cut73]). Let M be Markov matrix satisfying

any of the following conditions:

i) mini{mi,i} > 0.5, or

ii) det(M) > e−π.

Then, M is embeddable if and only if its principal logarithm is a rate matrix.

In this case, M has identifiable rates.

Remark 1.3.11. There are other known sufficient conditions that guaran-

tee that the only possible Markov generator of a Markov matrix is its prin-

cipal logarithm. For example, this is satisfied if M satisfies det(M) > 0.5

and ‖M − Id‖ < 0.5 for some multiplicative norm [IRW01].

The previous theorem illustrates that the embeddability of any Markov

matrix close enough to the identity is determined by its principal logarithm.

Moreover, if such a matrix is embeddable it has identifiable rates. In the
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following example, we use this to show that for n ≥ 3 there are matrices

close to the identity matrix that are not embeddable.

Example 1.3.12. Let M = diag(Idn−3, A) where

A =

Ñ
1 0 0

0 1− ε1 ε1
ε2 0 1− ε2

é
with ε1, ε2 ∈ (0, 1) satisfying ε1 6= ε2.

Then, Log(M) = diag(0,Log(A)) where 0 denotes the zero matrix of size

n− 3 and Log(A) is the principal logarithm of A,

Log(A) =

Ö
0 0 0

ε2 log(1−ε1)−ε1 log(1−ε2)
−(ε2−ε1) log(1− ε1) ε1 log(1−ε2)−ε1 log(1−ε1)

−(ε2−ε1)

− log(1− ε2) 0 log(1− ε2)

è
.

Note that if ε2 > ε1 the numerator of the entry Log(A)2,1 is positive and

its denominator is negative. On the contrary, if ε1 > ε2 the numerator is

negative and the denominator is positive. Hence, Log(M) is not a Markov

generator because Log(A)2,1 < 0. Therefore, by taking ε1 6= ε2 close enough

to zero we have that M is a non-embedabble matrix as close to Idn as

wanted.

1.3.3 Embeddability of 2× 2 and 3× 3 Markov matrices

In this section we deal with the case of 2 × 2 and 3 × 3 Markov matrices,

for which characterizations of embeddability are already known.

Case n = 2

Since 1 is an eigenvalue of any Markov matrix, it turns out that 2 × 2

Markov matrices only have real eigenvalues. Hence, Corollary 1.3.8 and

Theorem 1.3.10 can be used to solve the embedding problem for any 2× 2

Markov matrix. Moreover, these results also show that any embeddable

2× 2 Markov matrix has identifiable rates.

On the other hand, the embeddability of 2×2 Markov matrices was already

characterized by [Kin62] some years before the results presented above.
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Moreover, his solution is simpler as it does not require the computation of

Log(M).

Theorem 1.3.13 ([Kin62]). Let M be a 2 × 2 Markov matrix. Then the

following are equivalent:

i) M is embeddable.

ii) det(M) > 0.

iii) tr(M) > 1.

Proof. By Proposition 1.2.5 we have that either M = Id2 or M diagonalizes

with two different real eigenvalues, 1 and λ ∈ [−1, 1). If M = Id2 then the

statement holds owing to the fact that Log(Id2) is the 2×2 zero matrix (see

Example 1.1.23). Assume now that λ 6= 1. In this case, there is P ∈ GL2(R)

such that M = P diag(1, λ) P−1. Since both the trace and the determinant

are endomorphism invariants we have det(M) = λ, tr(M) = 1+λ and hence

we get the equivalence between statements ii) and iii). If M has a Markov

generator then it has a real logarithm. In this case, we infer from Remark

1.1.18 and Proposition 1.3.6 i) that λ > 0, thus i) implies ii). Finally, let us

assume that det(M) = λ > 0 and compute the principal logarithm of M :

Log(M) = P diag(0, log(λ)) P−1 =
log(λ)

λ− 1

(
P
(
diag(0, λ− 1)

)
P−1

)
=

log(λ)

λ− 1

(
P
(
diag(1, λ)− diag(1, 1)

)
P−1

)
=

log(λ)

λ− 1
(M − Id).

Note that M − Id is a rate matrix. Moreover, since λ ∈ (0, 1) we have that

log(λ)/(λ− 1) > 0 and hence we infer from Remark 1.2.13 that Log(M) is

a rate matrix

Case n = 3

The solution to the embedding problem for 3 × 3 Markov matrices can

be split into different cases according to the Jordan canonical form of the

Markov matrix. Corollary 1.3.8 gives sufficient and necessary conditions

to guarantee the embeddability of 3 × 3 Markov matrices with different
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real eigenvalues. The following result deals with the case of Markov ma-

trices with a conjugated pair of complex eigenvalues or a repeated positive

eigenvalues. The case of repeated negative eigenvalues shall be treated

afterwards.

Theorem 1.3.14 ([Cut73]). Let M = P diag(1, µ, µ) P−1 be a Markov

matrix. Then

i) If µ ∈ R>0, M is embeddable if and only if Log(M) is a rate matrix.

ii) If µ ∈ C \ R, M is embeddable if and only if Log(M) is a rate matrix

or P diag(0, log−1(µ), log−1(µ)) P−1 is a rate matrix.

iii) If µ ∈ R<0 and M is embeddable then P diag(0, log |µ|, log |µ|) P−1 is

a rate matrix.

In [Car95] it is shown that the embeddability of 3×3 Markov matrices with

a repeated negative eigenvalue is equivalent to the existence of a square

root of the Markov matrix satisfying several constraints. In spite of that,

finding such a square root and finding Markov generators turn out to be

problems with a similar difficulty for a matrix with a repeated eigenvalue,

because there is an uncountable amount of non-primary logarithms and

non-primary roots.

The embeddability of 3×3 Markov matrices with a repeated negative eigen-

value was explicitly characterized for the first time in [CC11]. The solution

provided there shows that the embedding problem can become quite com-

plex in the case of repeated eigenvalues:

Theorem 1.3.15 ([CC11, Theorem 2.6]). Let M = Pdiag(1, λ, λ)P−1 be a

Markov matrix with λ ∈ [−1, 0). Let (v1, v2, v3) ∈ R3 be the left eigenvalue

of M with eigenvalue 1 satisfying v1 + v2 + v3 = 1 and denote by w the

minimum of v1, v2, v3.

i) If 1
v1
, 1
v2
, 1
v3

are realizable as the sides of a triangle then

M is embeddable if and only if
»

4v1v2v3
(v1v2+v1v3+v2v3)2

− 1 ≥ π
− log |λ| .
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ii) If 1
v1
, 1
v2
, 1
v3

are not realizable as the sides of a triangle, then

M is embeddable if and only if
»

w
1−w ≥

π
− log |λ| .

Remark 1.3.16. Corollary 2.3 in [CC11] shows that v1, v2, v3 > 0, so

w > 0.

From Proposition 1.2.5 we have that any non-diagonalizable 3× 3 Markov

matrix M has Jordan form diag(1, J2(λ)) with λ 6= 1. Moreover, according

to Proposition 1.3.6, such a matrix is embeddable if and only if Log(M)

is a rate matrix. This, together with Corollary 1.3.8, Theorem 1.3.14 and

Theorem1.3.15, solves completely the embedding problem for 3×3 Markov

matrices.

To conclude this section we want to point out that, in [Joh74, Cor. 1.2],

the author rewrites the necessary and sufficient conditions for the embed-

dability of 3 × 3 Markov matrices given by Corollary 1.3.8 and Theorem

1.3.14 ii) in terms of the entries of the Markov matrix and its eiganvalues.

Analogously, [Joh74, Prop. 1.4] gives another characterization of 3× 3 em-

beddable matrices with a repeated real eigenvalue (diagonalizable or not)

equivalent to that in 1.3.14 i, which consists on checking whether the prin-

cipal logarithm of the Markov matrix is a rate matrix or not.

1.4 MATHEMATICAL MODELS FOR NUCLEOTIDE SUBSTITUTION

In this section we explain how Markov processes can be used to model the

evolution of DNA sequences. This can be found in any book related to

algebraic statistics in the context of nucleotide substitution models such as

[AR04], [PS05], [Ste16] or [Sul18].

The deoxyribonucleic acid (DNA) is a molecule found in the nucleus of the

cells of living organisms. The DNA carries all the genetic information of the

organism, which contains the instructions for its development, functioning,

growth and reproduction. The DNA has a double helix structure, composed

by two strands of smaller units, called nucleotides. There are four different
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nucleotides which can be found in the DNA strands, adenine (A), guanine

(C), cytosine (C) and thymine (T). Therefore, it is usual to represent DNA

strands as a sequence of characters in the alphabet {A, G, C, T}. Both DNA

strands are linked via hydrogen bonds between their nucleotides according

to the pairings A− T and C− G (Watson-Crick base pairing). Hence, there

is a complementarity relationship between the strands.

During the replication of the DNA, some changes in the sequence may

occur. For example, a nucleotide might be substituted by another one (this

is known as single nucleotide polymorfism). Nucleotide substitution models

are simplified models for the evolution of DNA sequences. In these models,

one usually assumes that the substitution of nucleotides occurs randomly

and following a Markov process.

1.4.1 Nucleotide substitution models

We can model the substitution of nucleotides in an evolutionary process

by the conditional probabilities that a nucleotide is substituted by another

one. The random variables at the beginning and at the end of this process,

denoted by X and Y respectively, take values in the set of nucleotides. If

we fix the order A, G, C, T in the states, the corresponding transition matrix

is defined as

M =

Ö
P(Y = A|X = A) P(Y = G|X = A) P(Y = C|X = A) P(Y = T|X = A)

P(Y = A|X = G) P(Y = G|X = G) P(Y = C|X = G) P(Y = T|X = G)

P(Y = A|X = C) P(Y = G|X = C) P(Y = C|X = C) P(Y = T|X = C)

P(Y = A|X = T) P(Y = G|X = T) P(Y = C|X = T) P(Y = T|X = T)

è
.

A nucleotide substitution model is specified by a subset of the set of 4 × 4

Markov matrices. These models do not take time into consideration. When

we consider homogeneous continuous-time models we will state it explicitly

(see Section 1.4.2).

Most nucleotide substitution models are simplifications of this general model

and assume identities between the transition parameters, usually motivated
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by biochemical properties of the DNA or simply by mathematical or com-

putational convenience. Next, we briefly list some of these models, starting

from the most simple and increasing the complexity until considering the

General Markov model.

The Jukes-Cantor model

The simplest nucleotide substitution model is the Jukes-Cantor model,

which considers that all substitutions have the same probability to occur

and only distinguishes between silent (the nucleotide remains the same at

the end of the process) and non-silent substitutions [JC69].

Definition 1.4.1. We say that a 4×4 real matrix is a Jukes-Cantor matrix

(JC matrix for short) if all its off-diagonal entries are equal:á
a b b b

b a b b

b b a b

b b b a

ë
.

The Jukes-Cantor model (JC model for short) is the nucleotide substitution

model whose transition matrices are JC Markov matrices.

The Kimura models

Depending on their chemical composition, nucleotides can be classified into

purines (A and G) and pyrimidines (C and T). According to this, sub-

stitutions are categorized as transitions (a substitution between purines

or between pyrimidines) or transversions (a substitution of a purine by a

pyrimidine or vice versa). The Kimura models are nucleotide substitution

models that give different substitution probabilities depending on whether

they correspond to transitions or transversions. The Kimura 2-parameter

model [Kim80] assumes that all transitions have the same probability and

also that all transversions occur with the same probability. The Kimura 3-

parameter model [Kim81] further assumes two different substitution prob-

abilities for transitions depending on whether the original nucleotide is

substituted by its complementary or not (see Figure 1.1).
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Definition 1.4.2. A Kimura 3-parameter matrix (K3P matrix for short)

is a 4× 4 real matrix with the following shape:á
a b c d

b a d c

c d a b

d c b a

ë
.

For ease of reading we will use the notation K(a, b, c, d) to denote a matrix

with the structure above. If c = d we say that such a matrix is a Kimura

2-parameter matrix ( K2P matrix for short).

The Kimura 3-parameter model (K3P model for short) is the nucleotide

substitution model whose transition matrices are K3P matrices. The Kimura

2-parameter model (K2P model for short) is defined analogously.

Remark 1.4.3. Note that JC matrices and K2P matrices are particular

cases of K3P matrices. Thus the corresponding models are submodels of

the K3P model. Moreover, if M = K(a, b, c, d) is a Markov matrix then a+

b+c+d = 1. Thus, 1 is a left-eigenvector with eigenvalue 1 (see Proposition

1.2.5). Therefore, the uniform distribution Π = (1/4, 1/4, 1/4, 1/4) is said

to be the stationary distribution of the K3P model and its submodels (as

it is the stationary distribution for all positive K3P Markov matrices).

A

Purines

b

G

d

c

c T

Pyrimidines

C

b

Figure 1.1: Substitution probabilities according to the Kimura 3-parameter

model. For the Kimura 2-parameter model we have c = d and for the Jukes-

Cantor model, b = c = d.

54



Mathematical models for nucleotide substitution

The strand symmetric model

The strand symmetric model is a nucleotide substitution model that takes

into account the complementary pairs of nucleotides A − T, C − G [YP04,

CS05] . Due to the molecular structure of the DNA, this implies that,

whenever there is a substitution on a nucleotide in one of the strands,

there is also a substitution on the corresponding complementary nucleotide

in the other strand .

Definition 1.4.4. A strand symmetric matrix (SS matrix for short) is a

4× 4 real matrix with the following form:á
a b c d

e f g h

h g f e

d c b a

ë
.

The strand symmetric model (SS model for short) is the nucleotide substi-

tution model whose transition matrices are SS matrices.

The General Markov model

The most general nucleotide substitution model is the general Markov

model, which assumes that each substitution might have a different prob-

ability to occur. Therefore, this model considers different parameters for

each possible substitution and admits any Markov matrix as a transition

matrix.

1.4.2 Nucleotide substitution models in continuous-time

In the setting of nucleotide substitution models in continuous-time, the

constraints of the model are assumed on the instantaneous substitution

rates rather than on the transition probabilities. In order to keep the

model tractable it is usually assumed that the instantaneous substitution

rates are constant throughout time (homogeneity assumption). In this case,

evolution is modelled as a homogeneous Markov process in continuous-time.
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Definition 1.4.5. The continuous-time Jukes-Cantor model is the homo-

geneous continuous-time model whose rate matrices are JC matrices. Sim-

ilarly, we consider the continuous-time Kimura 2-Parameter model, the

continuous-time Kimura 3-Parameter model, the continuous-time strand

symmetric model and the continuous-time general Markov model.

Remark 1.4.6. The Jukes-Cantor model and both Kimura models were

originally introduced in the setting of continuous-time by describing the

structure of the rate matrices (see [JC69, Kim80, Kim81]). Hence, in the

context of evolutionary biology, the notation JC69, K2P and K3P usually

denotes homogeneous continuous-time models.

Expressing the model constraints in terms of the probabilities of substitu-

tion between states or in terms of the instantaneous rates of substitution

leads to two different versions of the same model connected by the em-

bedding problem. A related problem is that of deciding when a transition

matrix subjected to model constraints admits a Markov generator with

the same restrictions on its entries. This problem has been deeply studied

recently (see [Mat08, AKK21]).

Definition 1.4.7. Given a homogeneous continuous-time nucleotide sub-

stitution model M, we say that a Markov matrix is model-embeddable (or

M-embeddable) if it is embeddable and at least one of its Markov generators

belongs to M.

1.4.3 Phylogenetic trees

Phylogenetics is the subfield of evolutionary biology that studies the evo-

lutionary relationships among species using genomic data. Charles Darwin

proposed in his celebrated book On the Origin of Species [Dar59] that all

the living beings in the Earth are descendants of a single species, so-called

the last universal common ancestor. According to this, it seems natural to

represent the living species and its ancestors in a tree-like structure, known

as tree of life, which represents the evolutionary relationships (phylogenies)

among species.
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Definition 1.4.8. A tree is a connected acyclic graph. We say that a tree

is rooted if all the edges of the graph are directed away from a fixed node,

which is called the root of the tree. The leaves of a tree are its nodes of

degree one (by degree of a node we mean the number of edges incident to

it). A phylogenetic tree is a tree whose leaves are labelled within a given

set of living species (or other taxonomies). Each edge (or branch) of such a

tree represents an ancestor-descendant relationship between the connected

nodes, so that the inner nodes correspond to ancestors of the species at the

leaves.

The main goal in phylogenetics is to reconstruct the evolutionary history of

a given number of living species (or other taxa). This is usually expressed by

means of phylogenetic tree. In this context, the evolution of DNA sequences

can be modelled by a Markov process in a phylogenetic tree and the Markov

property states that the evolution at different lineages is independent given

their common ancestor. By further assuming that each site in a DNA

sequence evolves independently from each other and all follow the same

Markov process (independently and identically distributed), one can model

the evolution of DNA sequences on a phylogenetic tree by modelling a single

position. This is done by assigning a distribution Π = (πA, πG, πC, πT) at the

root of the tree and specifying 4× 4 transition matrices M (e) at each edge

e of the tree. These are called the substitution parameters of this Markov

process on the phylogenetic tree.

Remark 1.4.9. The length of a branch in a phylogenetic tree usually

represents the expected number of elapsed nucleotide substitutions per site

that have occurred along the Markov process on that branch. If the uniform

distribution is a stationary distribution for M (e), then the branch length of

e can be approximated by − log(det(M(e)))
4 [BH87].

Example 1.4.10. Let X1, X2, X3 be random variables with a common

state space {A, G, C, T} and let M (ei) = K(1− bi − ci − di, bi, ci, di) be K3P

Markov matrices for i = 1, 2, 3, 4. Figure 1.2 represents a nucleotide sub-

stitution process in a phylogenetic tree following the K3P model:
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Figure 1.2: Markov process on a phylogenetic tree.

The substitution parameters for this evolutionary process are the distri-

bution Π at the root (which is usually assumed to be uniform so that it

coincides with the stationary distribution of the K3P model) and bi, ci, di
for i = 1, 2, 3, 4. Using the Markov property on the tree, one can compute

the joint distribution of (X1, X2, X3) from the substitution parameters.

It is known that the set of transition matrices of a models needs to be

multiplicatively closed in order to be consitent with the concatenation of

evolutionary processes(see [SFSJ12], [FSSJW15], [SJFS+12]). Taking this

into account, some phylogenetic reconstruction methods aim to recover the

substitution parameters from the observed data (see for example [KK19]).

Moreover, in the setting of continuous-time models, for each edge e we

have M (e) = exp(Qete) for some rate matrix Qe and time te > 0 and some

phylogenetic reconstruction methods aim to recover Qete (in general it is

not possible to recover them independently) instead of M (e). Thus, in this

context rate identifiability is crucial.

The reader may note that there are transition matrices, such as permutation

matrices, which might have no sense from a biological point of view. Thus,

not all Markov matrices within a nucleotide substitution model M are

“biologically meaningful”. In general, transition matrices related to the

evolution of a DNA sequence should be close to the identity matrix to

allow a more robust inference.

58



Mathematical models for nucleotide substitution

To conclude this section, we introduce next several sets of transition matri-

ces that have interest for phylogenetic inference in relation with what we

have explained.

Definition 1.4.11. For any nucleotide substitution model M, we define

the following sets:

∆M The set of all Markov matrices in the model.

∆Mdlc The set of Markov matrices in the model whose diagonal entries are

the largest entries in each column. These matrices are called diagonal

largest in column, DLC for short. Having invertible DLC matrices

is a necessary condition for the the identifiability of the substitution

parameters in a phylogenetic tree [Cha96].

∆Mdd The set of all M ∈ ∆M such that the probability of not mutating is

higher than the probability of mutating, i.e. Mii ≥ 0.5 for all i. These

matrices are said to be diagonally-dominant matrices. If embeddable,

these matrices have identifiable rates (see the first claim in Theorem

1.3.10).

∆MId The set of all M ∈ ∆M in the connected component of the identity

matrix when we remove from ∆M all matrices with determinant equal

to 0. This corresponds to the set of Markov matrices with positive

eigenvalues if all the transition matrices in ∆M have real eigenvalues.

On the contrary, if the model admits transition matrices with non-

real eigenvalues, then ∆MId is the set of Markov matrices with positive

determinant. This set necessarily includes the multiplicative closure

of the transition matrices in the continuous-time version of the model

[SFSJ12].

∆Memb The set of all embeddable Markov matrices in the model. That is, the

set of transition matrices that admit a homogeneous continuous-time

realisation.

Since the the model General Markov model does not impose any restrictions

on transition matrices, if M is the General Markov model, we will omit it

from the notation for ease of reading.
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Remark 1.4.12. Note that if a matrix is diagonally-dominant, then its off

diagonal entries are smaller than or equal to 0.5. Hence, ∆Mdd ⊆ ∆Mdlc ⊆ ∆M.

Also note that, if all the transition matrices in ∆M have real eigenvalues

then ∆MId corresponds to the set of Markov matrices with positive eigenval-

ues. On the contrary, if the model admits transition matrices with non-real

eigenvalues, then ∆MId is the set of Markov matrices with positive determi-

nant.

Remark 1.4.13. Note that every embeddable matrix is the product of

embeddable matrices close to the identity matrix. Indeed, if M = exp(Q) is

an embeddable matrix, we have that Qn := 1
nQ is a rate matrix for any n ≥

1 (see Remark 1.2.13). Therefore, M = exp(Qn)n appears as the n-th power

of a Markov matrix. Moreover, we can take n big enough so that exp(Qn)

is as close to Id as wanted. This justifies that all embeddable matrices are

biologically meaningful, including those with negative eigenvalues or small

determinant.
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2
EMBEDDABILITY AND RATE IDENTIFIABILITY

OF GENERIC MARKOV MATRICES

In this chapter we address the embedding problem for n×n Markov matri-

ces with pairwise different eigenvalues (not necessarily real) for any n ∈ N.

Note that this is a dense subset within the set of n × n Markov matrices.

Since the case of real eigenvalues is already solved by Corollary 1.3.8 we

focus on Markov matrices with non-real eigenvalues.

In the first section we derive some bounds for the eigenvalues of rate ma-

trices. In the second section, we use these bounds to relax the conditions

given in Theorem 1.3.10 ii), which guarantee that the principal logarithm is

the only possible Markov generator of a given Markov matrix. In the third

section, we give a bound on the number of Markov generators in terms of

the spectrum of a Markov matrix. Based on this, we establish a criterion

for deciding whether a generic Markov matrix (different eigenvalues) is em-

beddable (Theorem 2.3.3) and, in this case, we propose an algorithm that

lists all its Markov generators (Algorithm 2.3.5).

2.1 BOUNDS ON THE EIGENVALUES OF RATE MATRICES

In 1945 Kolmogorov posed the problem of describing the set of all the

possible eigenvalues of a Markov matrix [Swi72, p.2]. Note that both the

Perron-Frobenius theorem for positive matrices and the Gershgorin circles

theorem for general matrices [Ger31] were already stated at that time,

so it was known that the solution to this problem was a region in the
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complex plane included in the unit disc centered at 0 (see the first claim in

Proposition 1.2.5). The first description of this region was implicitly given

by Karpelevich in [Kar51] (see also [DD45] and [DD46]). In particular,

Karpelevich proved that any non-real eigenvalue λ of an n × n Markov

matrix satisfies: Å
1

2
+

1

n

ã
π ≤ |Arg(λ− 1)|. (2.1)

Recall that Lemma 1.1.12 and Theorem 1.2.12 provide a tool to translate

results on eigenvalues of Markov matrices into rate matrices. Using this,

Runnenburg obtained the following result by adapting (2.1) to rate matri-

ces.

Lemma 2.1.1 ([Run62]). Let Q ∈Mn(R) be a rate matrix. Then, for any

eigenvalue λ ∈ σ(Q) we haveÅ
1

2
+

1

n

ã
π ≤ |Arg(λ)|. (2.2)

Remark 2.1.2. In [Run62] it is also shown that the only rate matrices

Q = (qij) with at least one eigenvalue λ 6= 0 for which (2.2) is tight are

given (after a suitable reordering of both rows and columns) by:

qij =


−α if i = j,

α if i ≡ j − 1 mod n,

0 otherwise.

We use Runnenburg’s result to provide bounds on the imaginary part of

the complex eigenvalues of rate matrices. To this end, for any rate matrix

Q of size 3× 3 or larger and any eigenvalue λ ∈ σ(Q), we define

Bn := min

®
−
√

3

2
tr(Q),− tr(Q)

2 tan(π/n)

´
,

and

bn(λ) := min

ß»
2 tr(Q) Re(λ)− (Re(λ))2,− Re(λ)

tan(π/n)

™
.

The following result bound the real and imaginary part of λ and shows that

bn(λ) is well-defined (see (2.3)).
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Lemma 2.1.3. Let Q be an n × n rate matrix. Then for any eigenvalue

λ ∈ σ(Q) we have

i) Re(λ) ≤ 0 and, if λ 6∈ R, then tr(Q)
2 ≤ Re(λ) ≤ 0.

ii) If λ /∈ R, then n ≥ 3 and | Im(λ)| ≤ bn(λ) ≤ Bn.

Proof.

i) If Q is a rate matrix, then exp(Q) is a Markov matrix by Theo-

rem 1.2.12. In particular, the eigenvalues of Q are logarithms of

the eigenvalues of a Markov matrix (see Lemma 1.1.12). Using that

|eλ| = eRe(λ) together with the fact that the modulus of the eigenval-

ues of a Markov matrix is bounded by 1 (see Proposition 1.2.5) we

deduce that Re(λ) ≤ 0 for any λ ∈ σ(Q). Note that

tr(Q) =
∑

λ∈σ(Q)

λ =
∑

λ∈σ(Q)∩R

λ+
∑

λ∈σ(Q)\R

Re(λ).

Therefore, tr(Q) ≤ Re(λ). Moreover, if λ /∈ R, then Re(λ) appears

twice in this expression because non-real eigenvalues of Q appear in

conjugated pairs. Thus, Re(λ) ≥ tr(Q)/2.

ii) We know that 0 is an eigenvalue of Q (see Remark 1.2.11). Moreover,

sinceQ is a real matrix λ ∈ σ(Q). Hence, Q has at least three different

eigenvalues. Now, note that from the inequalities obtained in 2.1.3)

it is straightforward that

2 tr(Q) Re(λ)− (Re(λ))2 ≥ 0 (2.3)

In particular bn(λ) is well-defined. Next we show that for any non-real

eigenvalue λ ∈ σ(Q) we have

| Im(λ)| ≤
»

2 tr(Q) Re(λ)− (Re(λ))2 ≤ −
√

3

2
tr(Q). (2.4)

Let us write r = − tr(Q). Since Q is a rate matrix, we have that‹Q = Q + rIdn is a non-negative matrix with rows summing to r.
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Therefore, ‹Q/r is a Markov matrix and hence we derive from Propo-

sition 1.2.5 that any eigenvalue λ̃ ∈ σ(‹Q) satisfies |λ̃| ≤ r. Now, if λ

is an eigenvalue of Q we have that λ + r ∈ σ(‹Q) which implies that

(Re(λ) + r)2 + Im(λ)2 = |λ+ r|2 is upper bounded by r2. From this

we obtain

| Im(λ)| ≤
»
r2 − (Re(λ) + r)2 =

»
2 Re(λ) tr(Q)− Re(λ)2. (2.5)

Since −r/2 ≤ Re(λ) by 2.1.3), we have that r/2 ≤ r + Re(λ). The

remaining inequality in (2.4) follows by using this in (2.5). Indeed:

| Im(λ)| ≤
»
r2 − (Re(λ) + r)2 ≤

»
r2 − (r/2)2 =

»
3r2/4.

We prove now that

| Im(λ)| ≤ − Re(λ)

tan(π/n)
≤ − tr(Q)

2 tan(π/n)
(2.6)

for any non-real eigenvalue λ of Q. If n < 3, then Q has no complex

eigenvalues because 0 is an eigenvalue of any rate matrix and the

other root of the characteristic polynomial has to be real as well.

Conversely, if n ≥ 3, the first inequality in (2.6) is obtained by using

that

| Im(λ)| = | tan(Arg λ) Re(λ)| = −Re(λ)| tan(Arg λ)|,

the boundary on |Arg(λ)| given in (2.2) and that the modulus of the

tangent function restricted to (−π,−π
2 −

π
n ] ∪ [π2 + π

n , π] attains its

maximum at∣∣∣∣tan

ÅÅ
−1

2
− 1

n

ã
π

ã∣∣∣∣ =

∣∣∣∣tan

ÅÅ
1

2
+

1

n

ã
π

ã∣∣∣∣ =
1

tan(π/n)
> 0.

The second inequality follows by using −Re(λ) ≤ − tr(Q)/2, which

was proven in the first part of the proof.

From the first inequality in both (2.4) and (2.6) we have | Im(λ)| ≤
bn(λ) whereas bn(λ) ≤ Bn follows from the definition of bn(λ) and

the second inequality of (2.4) and (2.6).
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Remark 2.1.4. Note that for n ≥ 2 we have tan(π/n) > tan(π/(n + 1)).

Moreover, for n = 6 we have − tr(Q)
2 tan(π/n) = −

√
3

2 tr(Q). Therefore, we have:

Bn =

{
− tr(Q)

2 tan(π/n) if n = 3, 4, 5, 6

−
√

3
2 tr(Q) if n ≥ 6 .

Similarly, for n ≤ 6 we have bn(λ) = − Re(λ)
tan(π/n) . Indeed, if n ∈ {3, 4, 5, 6}

then

− Re(λ)

tan(π/n)
≤ −
√

3 Re(λ) =
»

4 Re(λ)2 − (Re(λ))2

≤
»

2 tr(Q) Re(λ)− (Re(λ))2.

Figure 2.1 illustrates the statement of Lemma 2.1.3 for different values of

n.

X

X

X

X

X

X

X

Figure 2.1: Complex region containing the eigenvalues of n×n rate matrices

(Lemma 2.1.3). The two situations in Remark 2.1.4 are represented.
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2.2 SUFFICIENT CONDITIONS FOR EMBEDDABILITY AND IDEN-

TIFIABILITY OF RATES

The set of n×n Markov matrices with different eigenvalues is a dense subset

within the set of Markov matrices of size n. If the eigenvalues of such a

matrix are real, then there is at most one generator and the embeddability

can be decided by computing the unique candidate, the principal logarithm

(see Corollary 1.3.8). However, this is not the case if M has non-real

eigenvalues.

Lemma 2.2.1. Let Q be a rate matrix with no null entries and with either

a repeated eigenvalue µ or a pair of conjugated complex eigenvalues µ, µ.

Then, there exist t0 ∈ R>0 such that M(t) := exp(Qt) is an embeddable

matrix whose rates are not identifiable for any t ≥ t0 .

Proof. For ease of reading, we write the proof only for the case that Q

diagonalizes (if Q does not diagonalize, the proof can be adapted). Under

the assumptions of the lemma, we can write

Q = P diag(0, λ1, . . . , λn−3, µ, µ) P−1

for some P ∈ GLn(C), λ1, . . . , λn−3 ∈ C. Let us define the matrix

V = P diag(0, . . . , 0, 2πi,−2πi) P−1. Note that V is a logarithm of Idn (see

Example 1.1.23) that commutes with Q and has row sums equal to zero.

Therefore, Proposition 1.1.14 yields that exp(tQ+ V ) = exp(tQ) exp(V ) =

exp(tQ) for all t ∈ R. As noted earlier in Remark 1.2.13, tQ is a rate matrix

for all t ≥ 0. Since the entries of V are fixed and no entry of Q is equal to

zero we derive that for t > 0 large enough Q′ = Qt + V is a rate matrix

satisfying exp(Qt) = exp(Q′).

Therefore, under the assumptions of the previous lemma if the homogeneous

continuous-time Markov process ruled by Q runs for enough time, then its

instantaneous rates will stop being identifiable. This can be translated in

terms of the determinant of the transiton matrix M(t) = exp(Qt). For

example, Theorem 1.3.10 ii) yields that all embeddable Markov matrices

with determinant greater than e−π have identifible rates (which are given
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by the principal logarithm). In the following corollary we use the results

from the previous section to relax this constraint on the determinant.

Corollary 2.2.2. Let M be an n × n Markov matrix such that

det(M) > min
{
e
− 2π√

3 , e−2π tan(π/n)
}

. Then, the unique possible Markov

generator of M is Log(M). In particular, M is embeddable if and only if

Log(M) is a rate matrix.

Proof. If Q is a Markov generator of M then tr(Q) = log(det(M)) by

Proposition 1.1.16. By hypothesis, we have that tr(Q) is strictly greater

than min
¶
− 2π√

3
,−2π tan(π/n)

©
. In this case, Lemma 2.1.3 yields that

| Im(λ)| ≤ Bn < π for any λ ∈ σ(Q). Hence, the eigenvalues of Q are the

principal logarithm of the eigenvalues of M (see Remark 1.3.2) and Q is

necessarily the principal logarithm of M by Corollary 1.1.27.

Table 2.1 compares the bounds of Corollary 2.2.2 with other previously

known bounds for several sizes of Markov matrices.

Matrix size [Cut73] [IRW01] e−2π/
√

3 e−2π tan(π/n)

n = 3 0.043214 0.5 0.026580 0.000019

n = 4 0.043214 0.5 0.026580 0.001867

n = 5 0.043214 0.5 0.026580 0.010410

n = 6 0.043214 0.5 0.026580 0.026580

n = 7 0.043214 0.5 0.026580 0.048518

Table 2.1: Lower bounds on the determinant (rounded to the 6th decimal)

that allow the characterization of the embeddability in terms of the prin-

cipal logarithm. In these cases, rate identifiability is also guaranteed. For

each size, the lowest bounds appear in boldface.

The next example shows that the bound on the determinant given in Corol-

lary 2.2.2 is sharp for n = 3.

Example 2.2.3. Consider the matrices:

M =
1

3

Ö
1− 2e−π

√
3 1 + e−π

√
3 1 + e−π

√
3

1 + e−π
√

3 1− 2e−π
√

3 1 + e−π
√

3

1 + e−π
√

3 + 1 1 + e−π
√

3 1− 2e−π
√

3

è
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and

P =

Ö
1 2π

√
3 2π

√
3

1 −π
√

3− 3πi −π
√

3 + 3πi

1 −π
√

3 + 3πi −π
√

3− 3πi

è
.

It is immediate to check that P−1MP = diag(1,−e−π
√

3,−e−π
√

3). Hence,

Theorem 1.1.24 guarantees that the following matrices are logarithms of

M :

Q1 = P diag(log(1), log(−e−π
√

3), log−1(−e−π
√

3)) P−1

= P diag(0,−π
√

3 + πi,−π
√

3− πi) P−1 =
1√
3

Ñ
−2π 0 2π

2π −2π 0

0 2π −2π

é
Q2 = P diag(log(1), log−1(−e−π

√
3), log(−e−π

√
3)) P−1

= P diag(0,−π
√

3− πi,+π
√

3− πi) P−1 =
1√
3

Ñ
−2π 2π 0

0 −2π 2π

2π 0 −2π

é
Since both Q1 and Q2 are rate matrices, M is embeddable and has at least

two Markov generators. Since det(M) = e−2π tan(π/3) ≤ e−2π/
√

3, we deduce

that the bound in Corollary 2.2.2 is sharp for n = 3.

Remark 2.2.4. This example can be extended to larger values of n to

obtain embeddable matrices M̃ whose rates are not identifiable and such

that det(M̃) = e−2π tan(π/3). Fixed n ≥ 4, this can be done by considering

the matrices M̃ = diag(Idn−3,M), ›Q1 = diag(0, Q1) and ›Q2 = diag(0, Q2)

where M , Q1 and Q2 are the matrices in example 2.2.3 and 0 is the zero

matrix of size n − 3. In this case, we have that exp(Q̃i) = M̃ for i = 1, 2

(see Remark 1.1.8). Therefore, M̃ is an embeddable Markov matrices with

det(M̃) = e−2π tan(π/3) and at least two Markov generators, namely›Q1 and›Q2.

The bound in Corollary 2.2.2 arises from Bn in Lemma 2.1.3. Hence, a

more relaxed hypothesis, which depends not only on the determinant of M

but also on its eigenvalues, can be obtained by using maxλ∈σ(M) bn(log |λ|)
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Sufficient conditions for embeddability and identifiability of rates

instead of Bn. In order to simplify the notation, given a non-singular

Markov matrix M and an eigenvalue z ∈ σ(M) we define

βn(z) := min

ß»
2 log(det(M)) log |z| − log2 |z|,− log |z|

tan(π/n)

™
. (2.7)

Note that βn(z) is well defined. Indeed, since Markov matrices have real

determinant and the modulus of its eigenvalues is bounded by 1 (see Propo-

sition 1.2.5) we have»
2 log(det(M)) log |z| − log2 |z| ∈ R.

Moreover, if Q is a Markov generator of M then logk(z) ∈ σ(Q) for some

k ∈ Z (see Remark 1.3.2). In this case, we have βn(z) = bn(logk(z)) because

Re(logk(z)) = log |z|.

Theorem 2.2.5. Let M be an n × n diagonalizable Markov matrix and

let Λ be the set formed by its non-real eigenvalues and its eigenvalues with

multiplicity ≥ 2. If βn(z) < π for all z ∈ Λ, then the unique possible

Markov generator of M is Log(M). In particular, M is embeddable if and

only if Log(M) is a rate matrix.

Proof. If Λ = ∅, then M has pairwise different real eigenvalues and the

claim is true by Corollary 1.3.8. If Λ 6= ∅, assume that Q is a Markov

generator of M . If λ ∈ σ(Q) is real, then eλ is an eigenvalue of M (see

Lemma 1.1.12). In this case, eλ is real and λ is necessarily its principal

logarithm. Now, assume that λ is a non-real eigenvalue of Q. Since Q is

real we have that λ ∈ σ(Q). Moreover, according to Lemma 1.1.12, we have

that eλ, eλ ∈ σ(M). Note that if eλ ∈ R then eλ = eλ. Thus, either z := eλ

is non-real or it is real and repeated. In any case, we have z ∈ Λ. Now, it

follows from Theorem 1.1.24 that λ = logk(z) for some k ∈ Z and hence

Re(λ) = log|z|. From Lemma 2.1.3 we obtain | Im(λ)| ≤ bn(λ) = β(z) and

by hypothesis this is smaller than π for any z ∈ Λ. Hence, λ = log(z)

and we deduce that all the eigenvalues of Q are principal logarithms of an

eigenvalue of M . Thus, Q = Log(M) by Corollary 1.1.27.

Remark 2.2.6. Example 2.2.3 together with Remark 2.2.4 show that for

any size n there is an embedabble matrix with at least two different Markov
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Embeddability and rate identifiability of generic Markov matrices

generators satisfying maxz∈Λ βn(z) = π. Thus, the hypothesis of Theorem

2.2.5 can not be relaxed. Moreover, Theorem 2.2.5 relaxes the hypothesis

of Corollary 2.2.2. Indeed, assume that M is a Markov matrix such that

det(M) > min
{
e
− 2π√

3 , e−2π tan(π/n)
}

. As shown in the proof of Corollary

2.2.2 this implies that if Q is Markov generator of M , then Q = Log(M).

Therefore, by Lemma 2.1.3 we have bn(λ) ≤ Bn < π for any λ ∈ σ(Q).

Hence, M satisfies the hypotheses of Theorem 2.2.5 because βn(eλ) = bn(λ).

2.3 BOUNDS ON THE NUMBER OF MARKOV GENERATORS

In this section we deal with the embedding problem for n×n Markov matri-

ces with pairwise different eigenvalues, real or not. According to Corollary

1.3.8, if all the eigenvalues of such a matrix are real, then its embeddability

is determined by the principal logarithm. Although any Markov matrix

with non-real eigenvalues has infinitely many real logarithms with rows

summing to 0, we will show that only a finite number of them have non-

negative off-diagonal entries (Theorem 2.3.3). In this way we are able to

design an algorithm that returns all the Markov generators of a Markov

matrix with distinct eigenvalues (see Algorithm 2.3.5).

It is well known that a Markov matrix with a non-repeated negative eigen-

value has no Markov generator (Proposition 1.3.6). Because of this and

Proposition 1.2.5 i), the real eigenvalues of an embeddable Markov matrix

with pairwise different eigenvalues lie in (0, 1]. Throughout this section

we fix an n × n Markov matrix M with pairwise different eigenvalues and

whose real eigenvalues lie in (0, 1]. Equivalently,

M = P diag
(
1, λ1, . . . , λt, µ1, µ1, . . . , µs, µs

)
P−1 (2.8)

with P ∈ GLn(C), λi ∈ (0, 1) for i = 1, . . . , t, µj ∈ {z ∈ C : Im(z) > 0} for

j = 1, . . . , s, all of them pairwise different.

Definition 2.3.1. Given a Markov matrix M as in (2.8) and k1, . . . , ks ∈ Z,

we define Logk1,...,ks(M) as the following matrix:

P diag
(

0, log(λ1), . . . , log(λt), logk1(µ1), logk1(µ1), . . . , logks(µs), logks(µs)
)
P−1.
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Bounds on the number of Markov generators

Note that Log0,...,0(M) is the principal logarithm of M , Log(M) (see Corol-

lary 1.1.27). The next result claims that all real logarithms of M with rows

summing to 0 are of this type.

Proposition 2.3.2. Let M be a Markov matrix as in (2.8). Then, a matrix

Q with rows summing to 0 is a real logarithm of M if and only if Q =

Logk1,...,ks(M) for some k1, . . . , ks ∈ Z.

Proof. The columns of P are eigenvectors of M . Since the rows of M sum

to one and M has no repeated eigenvalue, we can assume without loss of

generality that the first column is the vector 1. Moreover, we can take the

columns corresponding to conjugated complex eigenvalues to be conjugated

eigenvectors.

⇐) From (1.9) we have that logk(µ) = log−k(µ). Hence, Theorem 1.1.24

yields that Logk1,...,ks(M) is a logarithm of M for any k1, . . . , ks ∈ Z.

Note that the rows of Q sum to 0 because the first column of P is

the eigenvector 1 and its corresponding eigenvalue is 0. Moreover,

the non-real eigenvalues of Q appear in conjugated pairs and the

corresponding eigenvectors appearing as column-vectors in P are also

conjugated, thus Q is real.

⇒) Let Q be a real logarithm of M with rows summing to 0. Since M

has pairwise different eigenvalues, from Theorem 1.1.24 and Remark

1.1.26 we get:

Q =P diag
(

logk0(1), logk1(λ1), . . . , logkt(λt), . . .

. . . , logkt+1
(µ1), logkt+2

(µ1), . . . , logkt+2s−1
(µs), logkt+2s

(µs)
)
P−1.

Since the rows of Q sum to 0, we get that k0 = 0. Since Q is real

and has no repeated eigenvalues we have that k1 = k2 = · · · = kt = 0

and also that its non-real eigenvalues appear in conjugated pairs.

According to (1.9) this is only satisfied by taking kt+2m = −kt+2m−1

for all m ∈ {1, . . . , s}. With these values we have log−kt+2m−1
(µm) =

logkt+2m−1
(µm).
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Embeddability and rate identifiability of generic Markov matrices

As a byproduct of the proposition above and Lemma 2.1.3, the next theorem

shows that for any Markov matrix with pairwise different eigenvalues there

is a finite number of matrices that are candidates to be Markov generators.

Therefore, its embeddability can be determined by checking whether a finite

family of matrices contains a rate matrix.

Theorem 2.3.3. If M is a Markov matrix as in (2.8) and β(µi) is defined

as in (2.7), then

i) M is embeddable if and only if Logk1,...,ks(M) is a rate matrix for some

(k1, . . . , ks) ∈ Zs satisfying
†−Arg(µj)−βn(µj)

2π

£
≤ kj ≤

ö−Arg(µj)+βn(µj)
2π

ù
for j = 1, . . . , s.

ii) M has at most
∏
j

ö
1 +

βn(µj)
π

ù
Markov generators.

iii) M has at most
⌊
1−

√
3 log(det(M))

2π

⌋s
Markov generators if n > 6, at

most
ö
1− log(det(M))

2π tan(π/n)

ùs
if n = 3, 4, 5, 6 and at most one if n ≤ 2.

Proof.

i) According to Proposition 2.3.2, any Markov generator of M can be

written as Q = Logk1,...,ks(M) for some k1, . . . , ks ∈ Z. In this case,

| Im
(

logkj (µj)
)
| ≤ bn(logkj (µj)) by Lemma 2.1.3. Moreover, we have

that | Im
(

logkj (µj)
)
| = |Arg(µj) + 2πkj | and βn(µj) = bn(logkj (µj)),

thus βn(µj) ≥ |Arg(µj) + 2πkj |. Using that 0 < Arg(µj) < π we get:

βn(µj) ≥ |Arg(µj) + 2πkj | =

{
Arg(µj) + 2πkj if kj ≥ 0

−Arg(µj)− 2πkj otherwise.

We get the asserted bounds by isolating kj in the expression above.

ii) If n < 3 then M has only real eigenvalues and hence its only possible

Markov generator is Log(M). For other values of n, it follows from

the first statement that if Logk1,...,ks(M) is a Markov generator, then

kj lies in a closed interval of length
βn(µj)
π . Since kj ∈ Z for all j we

get that M has at most
∏
j

ö
1 +

βn(µj)
π

ù
generators.
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Bounds on the number of Markov generators

iii) Let us recall that if Q is a Markov generator of M and logk(µj) is an

eigenvalue of Q then βn(µj) = bn(logk(µj)). Hence, by Lemma 2.1.3

and Remark 2.1.4 we have

βn(µj) ≤ Bn =

{
− log(det(M))

2 tan(π/n) if n = 3, 4, 5, 6

−
√

3
2 log(det(M)) if n > 6.

The statement follows from this inequality and ii).

Remark 2.3.4. Theorem 2.2.5 and Corollary 2.2.2 are particular cases of

Theorem 2.3.3 obtained by using the bounds given in ii) and iii) respectively.

Actually, analogously to Remark 2.2.6, the bound for the number of Markov

generators of M given by ii) is more accurate that the bound given by iii).

However, the later is much easier to obtain because it does not require to

compute of the eigenvalues of M . Moreover, this bound might be related

to the expected number of substitutions along the Markov process ruled by

M (see section 1.4.2 or [BH87]).

2.3.1 Computational solution to the embedding problem

We finish this chapter by presenting an algorithm which determines the em-

beddability of a Markov matrix with pairwise different eigenvalues and re-

turns all its Markov generators. The algorithm computes all the logarithms

of M described in Theorem 2.3.3 i) and tests if they are rate matrices.
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Embeddability and rate identifiability of generic Markov matrices

Algorithm 2.3.5 (Markov generators for n × n matrices with different

eigenvalues).

input : M , an n× n Markov matrix with no repeated eigenvalues.

output: All its Markov generators if M is embeddable, an empty

list otherwise.

generators=[ ]

compute eigenvalues of M

if M has a negative or zero eigenvalue then
return “M not embeddable”

exit

else

s = #non-real eigenvalues
2 (µ1, . . . , µs, non-real eigenvalues with

Im(µj) > 0)

if s > 0 (i.e. M has a non-real eigenvalue) then

for j = 1, . . . , s do

set lj =
ö−Arg(µj)−βn(µj)

2π

ù
and uj =

ö−Arg(µj)+βn(µj)
2π

ù
for k1 = li, . . . , ui, i = 1, . . . , s do

compute Logk1,...,ks(M)

if Logk1,...,ks(M) is a rate matrix then
add Logk1,...,ks(M) to generators

else

if Log(M) is a rate matrix then
add Log(M) to generators

if generators=[ ] then
return “M not embeddable”

else
return generators

Remark 2.3.6. As stated in Corollary 2.2.2, if M has a Markov generator

different than Log(M), then M has a small determinant and some eigen-

values of M are close to 0. In this case there might be numerical issues in

the implementation of the algorithm.
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3
CHARACTERIZATION OF EMBEDDABLE 4× 4

MARKOV MATRICES

In this chapter we solve the embedding problem for any 4 × 4 Markov

matrix. For matrices with different eigenvalues, real or not, we provide

a refined version of Theorem 2.3.3 and we give a criterion for the embed-

dability (Corollary 3.1.7). We also study the embeddability of 4×4 Markov

matrices that do not diagonalize or that have repeated eigenvalues.

In the first section of this chapter we present the main results, which solve

the embedding problem for 4 × 4 Markov matrices. In the second section

we present algorithms for testing the embeddability of 4× 4 diagonalizable

matrices. In the third section we discuss the consequences of our results

from the perspective of the rate identifiability for 4×4 embeddable matrices.

3.1 EMBEDDABILITY OF 4× 4 MARKOV MATRICES

We start by enumerating all possible diagonal forms of a diagonalizable

4× 4 Markov matrix with real logarithms (up to ordering the eigenvalues).

Lemma 3.1.1. Let M be a diagonalizable 4× 4 Markov matrix. If M ad-

mits a real logarithm then its diagonal form lies necessarily in one of the

following cases (up to ordering the eigenvalues):

Case I diag(1, λ1, λ2, λ3) with λ1, λ2, λ3 ∈ (0, 1] pairwise different.

Case II diag(1, λ, µ, µ̄) with λ ∈ (0, 1], µ, µ̄ ∈ C \ R, Im(µ) > 0.

Case III diag(1, λ, µ, µ) with λ ∈ (0, 1], µ ∈ [−1, 1), µ 6= 0, µ 6= λ.

Case IV diag(1, λ, λ, λ) with λ ∈ (0, 1].
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Characterization of embeddable 4× 4 Markov matrices

Proof. First note that M is non-singular (Proposition 1.3.6). Moreover,

|λ| ≤ 1 for any λ ∈ σ(M) and 1 is an eigenvector of M with eigenvalue 1

(Proposition 1.2.5). Hence, if M has a negative eigenvalue, it must have

multiplicity 2 by Proposition 1.3.6. Thus, M has no other negative eigen-

value. Similarly, the non-real eigenvalues of M come in conjugated pairs

because M is real and hence there is at most one conjugated pair of eigen-

values (and the remaining eigenvalue must be real and positive). Finally,

we claim that if the diagonal form is diag(1, λ, µ, µ) with λ 6= µ, then µ 6= 1.

Indeed, if µ = 1, then M − Id would be a rank 1 real matrix whose rows

sum to 0, which contradicts the fact that M − Id has no negative entries

outside the diagonal. This implies that any diagonalizable 4 × 4 Markov

matrix with a real logarithm lies in one of the cases in Lemma 3.1.1.

Next, we proceed to study the embeddability of Markov matrices lying in

each of these cases.

3.1.1 Case I

The embeddability of Markov matrices when all the eigenvalues are real

and different is already solved by Corollary 1.3.8. That result also shows

that in this case the rates are identifiable. However, in Case I, we also

consider the possibility that the eigenvalue 1 has multiplicity 2. Our next

result shows that Corollary 1.3.8 does still hold in this case.

Lemma 3.1.2. Let M = Pdiag(1, λ1, λ2, λ3)P−1 be a Markov matrix with

λ1, λ2, λ3 ∈ (0, 1] pairwise different and P ∈ GL4(R). Then M is embed-

dable if and only if Log(M) is a rate matrix. Moreover, in this case Log(M)

is the unique Markov generator of M .

Proof. If λ1, λ2, λ3 are different than 1, the embeddability of this case is

already solved by Corollary 1.3.8. Otherwise, we can assume λ1 = 1 without

loss of generality. Under this assumption, let Q be a Markov generator of

M . By Lemma 1.1.12, the eigenvalues of Q are logk1(1), logk2(1), logk3(λ2),

logk4(λ3) for some ki ∈ Z. Since the sum of the rows of Q vanish, 0 is an

eigenvalue of Q and therefore either k1 = 0 or k2 = 0. Using that Q is

real we deduce that both of them are zero because non-real eigenvalues of
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Embeddability of 4× 4 Markov matrices

Q must appear in conjugated pairs. Again, since Q is real, the eigenvalues

of Q corresponding to the non-repeated real eigenvalues of M are their

respective principal logarithms, so that k3 = k4 = 0. Hence, Corollary

1.1.27 implies that Q = Log(M).

3.1.2 Case II

Markov matrices M in Case II (see Lemma 3.1.1) have non-real eigen-

values and an eigendecomposition as M = P diag(1, λ, µ, µ) P−1 with

λ ∈ (0, 1], µ ∈ C \ R, Im(µ) > 0, and P ∈ GL4(C).

If λ 6= 1, Proposition 2.3.2 yields that the Markov generators of M are

necessarily of the form

Logk(M) := P diag
(
0, log(λ), logk(µ), logk(µ)

)
P−1

= P diag
(
0, log(λ), log(µ) + 2πki, log(µ)− 2πki

)
P−1,

(3.1)

for some k ∈ Z. Note that Logk(M) is not the same than the spectral

resolution of the k−th determinantion of the logarithm in M , which would

be denoted as logk(M).

The next result shows that the Markov generators are of this form even if

λ = 1.

Proposition 3.1.3. Let M be a Markov matrix with an eigendecomposition

P diag(1, 1, µ, µ̄) P−1 with P ∈ GL4(C) and µ, µ̄ ∈ C such that µ 6= 0 and

Im(µ) > 0.

i) If ‹P diag(1, 1, µ, µ̄) ‹P−1 is another eigendecomposition of M , then

P diag(0, 0, logk(µ), logk(µ)) P−1 = ‹P diag(0, 0, logk(µ), logk(µ)) ‹P−1

for any k ∈ Z. In particular, Logk(M) does not depend on the choice

of the transformation matrix.

ii) A matrix Q is a real logarithm of M with rows summing to 0 if and

only if Q = Logk(M) for some k ∈ Z.
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Proof.

i) If ‹P diag(1, 1, µ, µ̄) ‹P−1 is another eigendecomposition of M , we

have that ‹P = PA for some matrix A ∈ Comm∗(diag(1, 1, µ, µ̄))

due to Lemma 1.1.4. Moreover, by Proposition 1.1.5 we have that

Comm∗(diag(1, 1, µ, µ̄)) = Comm∗(diag(0, 0, logk(µ), logk(µ))) and

hence, we obtain the desired result.

ii) By i), the definition of Logk(M) does not depend on P and it is a

logarithm of M (see Theorem 1.1.24). Since M is a Markov matrix,

we have that 1 is an eigenvector of M (see Proposition 1.2.5). Hence

we can assume that the first column-vector of P is 1 and the rows of

Logk(M) sum to 0.

Conversely, next we prove that any real logarithm Q of M with rows

summing to 0 is of the form Logk(M). From Theorem 1.1.24 we have

that there are k1, k2, k3, k4 ∈ Z and A ∈ Comm∗(diag(1, 1, µ, µ̄)) such

that

Q = P A diag(logk1(1), logk2(1), logk3(µ), logk4(µ̄)) A−1 P−1

Since the rows of Q sum to 0 we get k1 = k2 = 0 as in the proof of

Lemma 3.1.2. As Q is real, we get that logk3(µ) and logk4(µ̄) must be

conjugated. According to (1.9), this implies k4 = −k3. From Propo-

sition 1.1.5 we deduce that A commutes with (0, 0, logk3(µ), logk3(µ))

and hence Q = Logk3(M).

Now that we know that all real logarithms in Case II can be expressed as

in (3.1), we decompose Logk(M) as

Logk(M) = Log(M) + k · V where V = P diag(0, 0, 2πi,−2πi) P−1. (3.2)

Remark 3.1.4. Since Logk(M) does not depend on the choice of the trans-

formation matrix P (see Proposition 3.1.3), we deduce that the matrix V

does not depend on the choice of P either.

Next we show that the values of k for which Logk(M) is a Markov generator

form a sequence of consecutive integers.
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Lemma 3.1.5. Let M = P diag(1, λ, µ, µ) P−1 be a Markov matrix with

λ ∈ (0, 1], µ ∈ C \ R, Im(µ) > 0, and P ∈ GL4(C). If Logk1(M) and

Logk2(M) are rate matrices with k1 < k2, then Logk(M) is a rate matrix

for all k ∈ [k1, k2].

Proof. The proof is immediate because the entries of Logk(M) = Log(M)+

k · V depend linearly on k and the set of rate matrices is a convex subset

of the space of matrices (see Remark 1.2.13).

Note that we could use Lemma 2.1.3 to bound the values of k for which

Logk(M) is a Markov generator, as we did in Chapter 2. However, Lemma

3.1.5 allows us to state a precise description of those logarithms of M that

are Markov generators (not only giving a necessary condition). We develop

this in the following result.

Theorem 3.1.6. Let M be a Markov matrix with eigendecomposition M =

P diag(1, λ, µ, µ) P−1 for some λ ∈ (0, 1], µ ∈ C \ R with Im(µ) > 0 and

P ∈ GL4(C). Consider the matrix V = P diag(0, 0, 2πi,−2πi) P−1 and

define

L := max
(i,j): i 6=j, Vi,j>0

°
−Log(M)i,j

Vi,j

§
, U := min

(i,j): i 6=j, Vi,j<0

õ
−Log(M)i,j

Vi,j

û
and N := {(i, j) : i 6= j, Vi,j = 0 and Log(M)i,j < 0}.
Then, Logk(M) is a rate matrix if and only if N = ∅ and L ≤ k ≤ U .

Proof. By (3.2) we have that Logk(M) = Log(M) + k · V . Now, assume

that there is k ∈ Z such that Logk(M) is a rate matrix. In this case,

Log(M)i,j + kVi,j ≥ 0 for all i 6= j. Hence:

a) 0 ≤ Log(M)i,j for all i 6= j such that Vi,j = 0. In particular N = ∅.

b) −Log(M)i,j
Vi,j

≤ k for all i 6= j such that Vi,j > 0. In particular L ≤ k.

c) −Log(M)i,j
Vi,j

≥ k for all i 6= j such that Vi,j < 0. In particular U ≥ k.

Conversely, let us assume that N = ∅ and that there is k ∈ Z such that

L ≤ k ≤ U . We want to check that Logk(M) is a rate matrix. First, note

that the rows of Logk(M) sum to 0, as proved in Propositions 2.3.2 and

3.1.3. Now, consider i 6= j, then:
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a) if Vi,j = 0 we have Logk(M)i,j = Log(M)i,j . Since N = ∅ it follows

that Log(M)i,j ≥ 0, so Logk(M)i,j ≥ 0.

b) if Vi,j > 0, then Logk(M)i,j ≥ Log(M)i,j + L · Vi,j ≥ Log(M)i,j +
−Log(M)i,j

Vi,j
Vi,j = 0.

c) if Vi,j < 0, then −Logk(M)i,j ≤ −Log(M)i,j−U·Vi,j ≤ −Log(M)i,j−
−Log(M)i,j

Vi,j
Vi,j = 0.

The theorem above can be used to enumerate all Markov generators of M .

As an immediate consequence, we get the following characterization of 4×4

embeddable matrices with a pair of (non-real) conjugated eigenvalues.

Corollary 3.1.7. Let M be a Markov matrix with eigendecomposition M =

P diag(1, λ, µ, µ̄) P−1 with P ∈ GL4(C), λ ∈ (0, 1] and µ, µ̄ ∈ C \ R. Let

L, U and N be as in Theorem 3.1.6. Then, M is embeddable if and only if

N = ∅ and L ≤ U .

3.1.3 Case III

Let M be a Markov matrix as in Case III of Lemma 3.1.1, that is

M = P diag(1, λ, µ, µ) P−1 with λ ∈ (0, 1], µ ∈ [−1, 1), µ 6= λ, 0. (3.3)

for some P ∈ GL4(R). Note that this can be seen as a limit case of

Markov matrices with a conjugated pair of complex eigenvalues (case II)

and, similarly to that case, M has infinitely many real logarithms with

rows summing to 0. However, one has to be careful when using Theorem

1.1.24 in the current case because M has repeated eigenvalues and hence

different choices for the matrix C may lead to different logarithms (see

Remark 1.1.26).

Definition 3.1.8. Let M, P, λ and µ as in (3.3). For any k ∈ Z and

x, y, z ∈ R, consider the matrices

V (x, y, z) := P diag

Å
0, 0,

Å
−y x

−z y

ãã
P−1,

and L = P diag(0, log(λ), log |µ|, log |µ|) P−1 and define

Lk(x, y, z) = L+ (2πk + Argµ) V (x, y, z).
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Remark 3.1.9. If µ > 0 we have L0(x, y, z) = Log(M) for all (x, y, z) ∈ R3.

For later use, note that

Lk(x, y, z) =

®
L−k(−x,−y,−z) if µ > 0;

L−k−1(−x,−y,−z) if µ < 0.

As in the previous case, we start by characterizing all the real logarithms of

M with rows summing to 0. To this end, we consider the algebraic variety

V = {(x, y, z) ∈ R3 | xz − y2 = 1}. (3.4)

V is a 2−sheet hyperboloid with one of its sheets V− in the orthant x, z < 0

and the other sheet V+ in the orthant x, z > 0. The next theorem shows

that the logarithms of M with real entries and rows summing to 0 are

of the form Lk(x, y, z) with (x, y, z) ∈ V. Furthermore, the restriction of

Lk(x, y, z) to one of the components of V parametrizes the real logarithms

of M with rows summing to 0.

Theorem 3.1.10. Let M be a Markov matrix as in (3.3). Then, the

following are equivalent:

i) Q is a real logarithm of M with rows summing to 0.

ii) Q = Lk(x, y, z) for some (x, y, z) ∈ V, k ∈ Z.

Moreover, if Q 6= Log(M), there is a unique k ∈ Z and a unique (x, y, z) ∈
V+ such that Q = Lk(x, y, z).

Proof. We first prove that i) implies ii). We know by Theorem 1.1.24 that

any logarithm Q of M can be written as

Q = P C diag(logk1(1), logk2(λ), logk3(µ), logk4(µ)) C−1 P−1

for some k1, k2, k3, k4 ∈ Z and some C ∈ Comm∗(diag(1, λ, µ, µ)).

Since Q is a rate matrix we have that 0 is one of its eigenvalues (see Remark

1.2.11). Therefore, we deduce that k1 = k2 = 0 (even if λ = 1) because non-

real eigenvalues of Q must appear in conjugated-pairs. Moreover, logk3(µ)

and logk4(µ)) are a conjugated pair. According to (1.9), this implies that
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k4 = −k3 if µ > 0 and k4 = −k3 − 1 if µ < 0. Thus, if we take k = k3, we

have

Q = P C diag(log(1), log(λ), logk(µ), logk(µ)) C−1 P−1 (3.5)

If all the eigenvalues of Q are real, then µ > 0 and k = 0. In this case,
the eigenvalues of Q are given by the principal logarithm of the respective
eigenvalues of M and hence Q = Log(M) (see Corollary 1.1.27) and we
have Q = L0(x, y, z) for all (x, y, z) ∈ V. On the other hand, if Q has a
conjugated pair of complex eigenvalues log |µ| ± (2πk + Arg µ)i, then the
third and fourth columns of P C must be a conjugated pair of vectors (up to
product by a scalar) because non-real eigenvectors of real matrices appear
in conjugated pairs. Furthermore, according to (3.3), P is a real matrix.
Hence, it is the third and fourth columns of C that are a conjugated pair of
vectors (up to product by a scalar). This fact together with the fact that
C commutes with diag(1, λ, µ, µ) yields that

C =

Ü
z1 0 0 0

0 z2 0 0

0 0 a+ bi z(a− bi)
0 0 c+ di z(c− di)

ê
for some z1, z2 ∈ C and z, a, b, c, d ∈ R satisfying z1, z2 6= 0 and ad− bc 6= 0

because C is a non-singular matrix. Note that we can decompose C as

C = AB where:

A =

á
1 0 0 0

0 1 0 0

0 0 a b

0 0 c d

ë
B =

á
z1 0 0 0

0 z2 0 0

0 0 1 z

0 0 i −zi

ë
(3.6)

Now, let us define the matrix

J := B diag
Ä
0, log(λ), logk(µ), logk(µ)

ä
B−1

=

á
0 0 0 0

0 log(λ) 0 0

0 0 log |µ| 2πk + Argµ

0 0 −(2πk + Argµ) log |µ|

ë
.
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Note that the matrix Q in (3.5) can be written as Q = PAJA−1P−1. This

together with the fact that diag(0, log(λ), log |µ|, log |µ|) commutes with A

(see Proposition 1.1.5) implies that Q = L+ (2πk + Argµ)V , where

L = P

Ü
0 0 0 0

0 log(λ) 0 0

0 0 log |µ| 0

0 0 0 log |µ|

ê
P−1

and

V = P A

Ü
0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

ê
A−1 P−1.

In fact, it is straightforward to check that V = V (x, y, z) with

x =
a2 + b2

ad− bc
, y =

ac+ bd

ad− bc
, z =

c2 + d2

ad− bc
.

Note that these values satisfy xz − y2 = 1 and hence we can write Q =

Lk(x, y, z) for some k ∈ Z and (x, y, z) ∈ V.

We prove now that ii) implies i). We know that Lk(x, y, z) is real and

its rows sum to zero by definition. Hence it is enough to check that if

(x, y, z) ∈ V, then Lk(x, y, z) is a logarithm of M . To this end, consider

the matrix

A :=

á
1 0 0 0

0 1 0 0

0 0 1 0

0 0 y
x

1
x

ë
.

If (x, y, z) ∈ V then we have x 6= 0 and z = 1+y2

x . In this case, a straight-

forward computation shows that

Lk

Å
x, y,

1 + y2

x

ã
= P (AB) diag

Ä
0, log(λ), logk(µ), logk(µ)

ä
(AB)−1P−1,

where B is defined as in (3.6).
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According to Proposition 1.1.5, both A and B commute with diag(1, λ, µ, µ)

and hence so doesAB. Therefore, Theorem 1.1.24 yields that Lk
Ä
x, y, 1+y2

x

ä
is a logarithm of M .

We just proved that the real logarithm of M with rows summing to 0 are of

the form Q = Lk(x, y, z) for some k ∈ Z and (x, y, z) ∈ V. By Remark 3.1.9,

we can take (x, y, z) ∈ V+ without loss of generality. To prove that k and

(x, y, z) are unique if Q 6= Log(M), we assume that Lk(x, y, z) = L
k̃
(x̃, ỹ, z̃)

for some k̃ ∈ Z and (x̃, ỹ, z̃) ∈ V+. In this case, we have

(2πk + Argµ)V (x, y, z) = (2πk̃ + Argµ)V (x̃, ỹ, z̃).

Since Q 6= Log(M) then 2πk + Argµ 6= 0 and hence:

x =
2πk̃ + Argµ

2πk + Argµ
x̃ y =

2πk̃ + Argµ

2πk + Argµ
ỹ z =

2πk̃ + Argµ

2πk + Argµ
z̃.

Using that (x, y, z), (x̃, ỹ, z̃) ∈ V we get xz−y2 =
(

2πk̃+Argµ
2πk+Argµ

)2
(x̃z̃−ỹ2) = 1.

Moreover, we deduce that 2πk̃+Argµ
2πk+Arg µ = 1 because x, z, x̃, z̃ > 0. Therefore,

k̃ = k and (x̃, ỹ, z̃) = (x, y, z).

Remark 3.1.11. Excluding the case of the principal logarithm, every real

logarithm of M with rows summing to 0 can also be realized as some

Lk(x, y, z) for a unique k ∈ Z and a unique (x, y, z) ∈ V− (see Remark

3.1.9).

In order to characterize those logarithms that are rate matrices, for any

k ∈ Z we define the set

Pk =
{

(x, y, z) ∈ R3 : Lk(x, y, z) is a rate matrix
}
.

Note that the entries of Lk(x, y, z) depend linearly on x, y, z, and hence

Pk is the space of solutions to a system of linear inequalities (i.e. a con-

vex polyhedron). From Theorem 3.1.10 we obtain that the set of Markov

generators for a matrix in Case III can be described as
⋃
k Pk ∩ V+. As a

consequence, we have the following embeddability criterion for 4×4 Markov

matrices with two repeated eigenvalues.
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Corollary 3.1.12. Let M be a Markov matrix as in (3.3).

i) If µ > 0, M is embeddable if and only if Pk ∩V+ 6= ∅ for some k with

d log(µ)

2π
e ≤ k ≤ b− log(µ)

2π
c.

ii) If µ < 0, M is embeddable if and only if Pk ∩ V+ 6= ∅ for some k

satisfying

d−1

2
+

log |µ|
2π
e ≤ k ≤ b−1

2
− log |µ|

2π
c.

In particular, if µ < −e−π then M is not embeddable.

Proof. Let M be a Markov matrix as in (3.3). We first show that if Q is a

Markov generator of M , then Q = Lk(x, y, z) for some (x, y, z) ∈ V+ and

some k ∈ Z satisfying

−Argµ+ log |µ|
2π

≤ k ≤ −Argµ− log |µ|
2π

. (3.7)

Indeed, if Q is a Markov generator of M , then it has at most one conjugated

pair of non -real eigenvalues, logk(µ) and logk(µ). It follows from Lemma

2.1.3 that their imaginary part | Im(logk(µ))| = Arg(µ) + 2πk is bounded

by β4(µ) = − log |µ|.
Since k ∈ Z, the bounds on k are a straightforward consequence of (3.7).

Indeed, it is enough to take Argµ = 0 for µ > 0 and Argµ = π for µ < 0. In

the case of µ < 0, it is immediate to check that d−1
2 + log |µ|

2π e ≤ b−
1
2−

log |µ|
2π c

if and only if log |µ| < −π. Hence, if µ < −e−π there is no k satisfying the

embeddability conditions in the statement.

Remark 3.1.13. The inequalitiesns in Corollary 3.1.12 are tight. Indeed,

for Corollary 3.1.12 i) the equality is obtaned uniquely by M = Id. More-

over, we will see in the following chapter an example of an embeddable

Markov matrix with two repeated eigenvalues (3.3) with µ = −e−π (Exam-

ple 4.3.2).
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3.1.4 Case IV

Here, we deal with 4 × 4 Markov matrices with an eigenvalue of multi-

plicity 3 or 4. This case corresponds to the equal-input matrices used in

phylogenetics (see [Ste16, Sec. 7.3.1]). The embeddability of this family of

matrices is also studied in [BS20].

Proposition 3.1.14. Let M be a diagonalizable 4× 4 Markov matrix with

eigenvalues 1, λ, λ, λ. Then the following are equivalent:

i) M is embeddable.

ii) det(M) > 0.

iii) Log(M) is a rate matrix.

Proof. If M = Id, that is λ = 1, then it follows from Theorem 1.1.24

that Log(M) is the zero matrix and hence it is a Markov generator of M .

Moreover, it follows from Corollary 2.2.2 the zero matrix is the only Markov

generator of the identity matrix.

Now, let us assume λ 6= 1. Due to Proposition 1.1.16 we get that i)⇒ ii).

iii)⇒ i) is straightforward, thus to conclude the proof it is enough to check

that if det(M) > 0 then Log(M) is a rate matrix.

Since M is diagonalizable, M − λId is a rank 1 matrix whose rows sum to

1− λ (because M is Markov). Hence, M can be written as:

M =

á
a+ λ b c d

a b+ λ c d

a b c+ λ d

a b c d+ λ

ë
, (3.8)

for some λ = 1− (a+ b+ c+ d) ∈ (0, 1), a, b, c, d ≥ 0.

Let us fix P ∈ GL4(R) such thatM = P diag(1, λ, λ, λ) P−1. If det(M) > 0

then λ ∈ (0, 1) and x := log(λ) ∈ R<0. In this case, we have:

Log(M) = P diag(0, x, x, x) P−1 = x
(
P diag(0, 1, 1, 1) P−1

)
=

x

λ− 1

(
P diag(1, λ, λ, λ) P−1 − Id

)
=

x

λ− 1
(M − Id).
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Since M − Id is a rate matrix and λ ∈ (0, 1) it follows that Log(M) is a

rate matrix.

Remark 3.1.15. In the context of continuous-time DNA nucleotide sub-

stitution models, if a matrix with three repeated eigenvalues is embeddable

then it is a transition matrix for the Felsenstein 81 model [Fel81]. The sta-

ble distribution of such matrices is given by Π = (a, b, c, d)/(a+ b+ c+ d),

where a, b, c, d are as in (3.8). When the stable distribution is uniform, that

is a = b = c = d, we recover the Jukes-Cantor model [JC69].

3.1.5 Non-diagonalizable matrices

If we restrict the embedding problem to non-diagonalizable 4× 4 matrices

we have:

Theorem 3.1.16. A non-diagonalizable 4×4 Markov matrix M is embed-

dable if and only if it has only positive eigenvalues and Log(M) is a rate

matrix. In this case, it has just one Markov generator.

Proof. The “if” part is immediate, so we proceed to prove the “only if” part.

Let M be an embeddable non-diagonalizable Markov 4 × 4 matrix. Thus,

M is non-singular and it has no negative eigenvalues. Since the eigenvalue

1 has the same algebraic and geometric multiplicity (see Remark 1.2.6) we

deduce that M has at most one Jordan block of size greater than 1 × 1

and, in this case, its Jordan form is necessarily one of the following (after

a suitable reordering of the Jordan blocks):á
1 0 0 0

0 λ 1 0

0 0 λ 1

0 0 0 λ

ë
with λ 6= 1 or

á
1 0 0 0

0 λ1 0 0

0 0 λ2 1

0 0 0 λ2

ë
with λ2 6= 1.

According to Proposition 1.3.6, if M is embeddable then its eigenvalues are

necessarily positive. Moreover, if the Jordan form of M has no repeated

Jordan blocks, then Log(M) is the unique real logarithm of M and hence

M is embeddable if and only if Log(M) is a rate matrix. Conversely, if M

has a real logarithm other than Log(M), we deduce that the blocks of any

Jordan form of M can be reordered as
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J :=

á
1 0 0 0

0 1 0 0

0 0 λ 1

0 0 0 λ

ë
with λ ∈ (0, 1).

In this case, let P be a Jordan transformation matrix for M for such Jordan

form. Since λ > 0, we obtain from Theorem 1.1.25 that if Q is a logarithm

of M then there are k1, k2, k3 ∈ Z and C ∈ Comm∗(J) such that

Q = P C

á
2πk1i 0 0 0

0 2πk2i 0 0

0 0 log(λ) + 2πk3i 1/λ

0 0 0 log(λ) + 2πk3i

ë
C−1 P−1.

If Q is a rate matrix, it is a real matrix and hence k1 = −k2 and k3 = 0.

Moreover, 0 is an eigenvalue of Q and hence k1 = −k2 = 0. Therefore, the

eigenvalues of Q are the principal logarithms of the eigenvalues of M , so

that Q = Log(M) by Corollary 1.1.27.

3.2 ALGORITHMS FOR TESTING EMBEDDABILITY

From the results developed in the previous sections we are able to prove that

the embeddability of a 4 × 4 Markov matrix M with different eigenvalues

(real or not) can be checked directly by looking at its principal logarithm

Log(M) together with a basis of eigenvectors. We summarize this in the

following result.

Theorem 3.2.1. Let M = Pdiag(1, λ1, λ2, λ3)P−1 be a 4× 4 Markov ma-

trix with λ1 ∈ R>0, λ2 ∈ C, λ3 ∈ C pairwise different. If λ2, λ3 6∈ R, define

V = P diag(0, 0, 2πi,−2πi) P−1 and

L := max
(i,j): i 6=j, Vi,j>0

°
−Log(M)i,j

Vi,j

§
, U := min

(i,j): i 6=j, Vi,j<0

õ
−Log(M)i,j

Vi,j

û
.

Otherwise, write L = U = 0 and let V denote the 4× 4 zero matrix. Set

N := {(i, j) : i 6= j, Vi,j = 0 and Log(M)i,j < 0}.
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Then, M is embeddable if and only if N = ∅, L ≤ U and λi /∈ R≤0 for

i = 1, 2, 3. In this case, the Markov generators of M are Log(M)+kV with

k ∈ [L,U ].

Proof. We know that |λi| ≤ 1 and, if M is embeddable, λi /∈ R≤0 for any

i = 1, 2, 3 (see Proposition 1.2.5). If all the eigenvalues of M are real,

then M lies in Case I of Lemma 3.1.1. In this case, Log(M) is the only

possible Markov generator for M (Lemma 3.1.2). From Proposition 1.2.5

and the definition of principal logarithm we have that 1 = (1, 1, 1, 1)t is an

eigenvector of Log(M) with eigenvalue log(1) = 0 and hence the rows of

Log(M) sum to 0. Therefore, as V = 0, we have that Log(M) is a rate

matrix if and only ifN = ∅. Conversely, if M has a non-real eigenvalue then

it lies in Case II of Lemma 3.1.1. In this case, Log(M)+kV = Logk(M) and

the claim follows immediately from Theorem 3.1.6 and Corollary 3.1.7.

According to the previous result, we present an algorithm (Algorithm 3.2.2)

that solves both the embedding problem and the rate identifiability problem

for 4 × 4 Markov matrices in Cases I and II. In particular, this algorithm

solves the embedding problem for a dense subset of 4× 4 Markov matrices.

Hence, we can use it to determine how big the set of embeddable Markov

matrices is within the set of all Markov matrices and other meaningful sets

(see Definition 1.4.11). This is summarized in Table 3.1.

Samples Embeddable samples Proportion of embeddable

∆ 107 5774 0.0005774

∆Id 4998008 5774 0.0011553

∆dlc 148375 5460 0.0367987

∆dd 2479 299 0, 1206132

Table 3.1: We sampled 107 Markov matrices uniformly and independently

from the space of 4×4 Markov matrices ∆. For each of these sets introduced

in Definition 1.4.11 (∆, ∆Id, ∆dlc and ∆dd), the first column shows how

many sample points lie in the set, the second column shows how many

of them are embeddable and the third column displays the corresponding

proportion. Embeddability was checked with Algorithm 3.2.2.
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Algorithm 3.2.2.

input : M , a 4× 4 Markov matrix with different eigenvalues as in

Thm 3.2.1.

output: All its Markov generators if M is embeddable, an empty

list otherwise.

generators=[ ]

compute eigenvalues of M

if M has no negative or zero eigenvalue then
set Principal = Log(M)

if all the eigenvalues are real then

if Principal is a rate matric then
add Principal to generators

else
compute P and V as in Theorem 3.2.1

compute L, U and N
if N = ∅ then

for k ∈ Z such that L ≤ k ≤ U do
compute Logk(M) = Principal + k V

if Logk(M) is a rate matric then
add Logk(M) to generators

if generators = [ ] then
return “M not embeddable”

else
return generators

The previous algorithm can also be used to determine the embeddability of

non-diagonalizable matrices and also for diagonalizable matrices in case IV

of Lemma 3.1.1, due to the fact that these matrices have real eigenvalues

and they are embeddable if and only if their principal logarithm is a rate

matrix (see Proposition 3.1.14 and Theorem 3.1.16). However, the embed-

dability of a matrix with three equal eigenvalues can be determined more

easily by checking the sign on its determinant (see Proposition 3.1.14).
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From Corollary 3.1.12, we derive the following algorithm to decide the

embeddability of Markov matrices in Case III:

Algorithm 3.2.3 (Markov generators of 4× 4 matrices with two repeated

eigenvalues).

input : M (Markov matrix) and P as in (3.3).

output: One of its Markov generators Lk(x, y, z) for each k ∈ Z
(if they exist).

generators = [ ]

compute the eigenvalues of M : 1, λ, µ, µ

if det(M) > 0 and µ ≥ −e−π then
Compute L = P diag(0, log(λ), log |µ|, log |µ|) P−1

set L =
†−Arg µ+log |µ|

2π

£
and U =

ö−Arg µ−| log(µ)|
2π

ù
for k ∈ [L,U ] ∩ Z: do

if Pk ∩ V+ 6= ∅ then
choose (x, y, z) ∈ Pk ∩ V+ (see below)

add Lk(x, y, z) = L+ k V (x, y, z) to generators

if generators = [ ] then
return “M not embeddable”

else return generators

Remark 3.2.4. If Lk(x, y, z) 6= Log(M) then each choice of (x, y, z) ∈
Pk ∩ V+ in the algorithm above would give a different Markov generator

of M (see Theorem 3.1.10). Thus, the set of all Markov generators of M

is obtained by considering, for each possible k, all (x, y, z) ∈ Pk ∩ V+ (this

can produce infinitely many Markov generators).

Next, we explain how to find generators for 4×4 Markov matrices with two

repeated eigenvalues by using Algorithm 3.2.3. More precisely, we explain

how to check whether the intersection Pk ∩V+ in Algorithm 3.2.3 is empty

or not and how to choose a point in it (if not empty).

Let M be a Markov matrix with eigendecomposition as in (3.3), that is

M = P diag(1, λ, µ, µ) P−1 with P ∈ GL4(R), λ > 0 and µ ∈ [−1, 1) such

that µ 6= 0 and µ 6= λ. In this case, Theorem 3.1.10 yields that each Markov
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generator other than Log(M) can be uniquely expressed as Lk(x, y, z) for

some k ∈ Z and some (x, y, z) ∈ Pk ∩ V+.

Assume that k = 0 and Arg(µ) = 0. Then, L0(x, y, z) is the principal

logarithm of M for all (x, y, z). Therefore, if the intersection Pk∩V+ is not

empty, it is equal to V+. In this case, the algorithm can choose any point

(x, y, z) ∈ V+ such as (1, 0, 1). For the remainder of this section we assume

that Lk(x, y, z) 6= Log(M). This assumption is equivalent to assuming that

2πk + Argµ 6= 0.

We denote by li,j the entries of the matrix L in Definition 3.1.8 and by pi,j
and p̃i,j the entries of P and P−1 respectively. Pk is the set of solutions for

the system of inequalities Lk(x, y, z)i,j ≥ 0 for all i 6= j, where Lk(x, y, z) =

L + (2πk + Argµ)V (x, y, z). A direct computation shows that the entries

of V (x, y, z) depend linearly on x, y and z:

V (x, y, z)i,j = pi,3p̃4,jx− pi,4p̃3,jz + (pi,4p̃4,j − pi,3p̃3,j)y.

Hence, the planes Hi,j containing the faces of Pk are given by the equations:

pi,3p̃4,jx− pi,4p̃3,jz + (pi,4p̃4,j − pi,3p̃3,j)y =
−li,j

2πk + Argµ
. (3.9)

It follows from (3.9) that for each i 6= j the faces of the polyhedron Pk1
and Pk2 corresponding to the (i, j)-entry of Lk(x, y, z) are parallel for any

k1, k2 ∈ Z.

Let us define f(x, y, z) = xz−y2−1 so that V = {(x, y, z) ∈ R3 | f(x, y, z) =

0}. Note that (x, y, z) ∈ V+ if and only if f(x, y, z) = 0 and x, z > 0. Next

we show how to find points in Pk ∩ V+. To do so, we evaluate f(x, y, z) in

the vertices, edges and faces of Pk according to the following steps:

Step 1 Evaluate f(x, y, z) on each of the vertices of Pk. If the evaluation of

f in all the vertices of Pk has the same sign (and none is equal to 0),

then we proceed to step 2.

If there is a pair of vertices v1 and v2 such that f(v1)f(v2) < 0, then

V+ cuts Pk and hence there are infinitely many generators. To find a
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valid value for (x, y, z) it is enough to find a point P in the segment

between v1 and v2 such that f(P ) = 0.

If there is not such a pair of vertices but there is some vertex v

satisfying f(v) = 0 then we can chose that vertex itself.

Step 2 Find the roots of f(x, y, z) lying on each edge of Pk. To do so, it is

enough to compute the roots of f(x, y, z) in each line containing an

edge of Pk and check whether they lie in the polyhedron or not. If

the edges of Pk do not intersect V+, then we can look at the faces of

Pk (see the next step).

If we find a simple root or two different roots in one of the edges, we

can choose (x, y, z) as one of these roots. In this case, V+ cuts the

interior of Pk and hence there are infinitely many generators.

If all the roots lying in the edges have multiplicity 2, then we can

choose the values of (x, y, z) corresponding to any of these points.

Step 3 For i 6= j consider the intersection Hi,j ∩ V+ 6= ∅, where Hi,j is

the plane defined by (3.9). If the intersection is not empty, chose a

point in it (see next paragraph) and check whether it belongs to Pk
or not. Note that in the previous step we got that the edges of Pk
do not intersect {f(x, y, z) = 0}. Hence, if Hi,j ∩ V+ 6= ∅ then this

intersection lies either completely in the corresponding face of the

polyhedron or completely outside the polyhedron. If we find a point

P = (x, y, z) which belongs to the polyhedron in this way, then M

has infinitely many generators and Lk(x, y, z) is one of them. If we

fail to find a point in any of the faces, then M has no generator with

the current value of k.

Next, we give an insight on how to find P ∈ Hi,j ∩V+ (if not empty).
For ease of reading we write as Ax + By + Cz = D the equation of

Hi,j (3.9). Given (x, y, z) ∈ V, we can write z = 1+y2

x because x 6= 0.
Therefore, by multiplying the equation Ax+By +Cz = D by x and
rearranging the terms in the equality, we conclude that

Cy2+(Bx)y+(Ax2−Dx+C) = 0 if and only if
Å
x, y,

1 + y2

x

ã
∈ V∩Hi,j .
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Hence, V+ ∩ Hi,j is not empty if there exists x > 0 for which the

discriminant

∆(x) := (B2 − 4AC) x2 + (4 CD) x− 4C2

is non-negative. We study below whether this is possible depending

on the coefficients of x in ∆(x):

i) If B2 − 4AC < 0, compute both roots of ∆(x) = 0. If the

roots are non-real or negative then V+ ∩Hi,j = ∅. If both roots

are real and positive, then all the values between them satisfy

∆(x) ≥ 0. Note that, in the current case it is not possible to

have one positive root is positive and one negative root because

V ∩ {x = 0} = ∅.

ii) If B2 − 4AC > 0, then ∆(x) > 0 when x→ +∞.

iii) If B2 − 4AC = 0 and CD > 0, then ∆(x) > 0 when x→ +∞.

iv) If B2 − 4AC = 0, CD ≤ 0 and C 6= 0, then ∆(x) < 0 for all

x ≥ 0. In this case, we have V+ ∩Hi,j = ∅.

v) If ∆(x) is identically 0, then the intersection of V+ with the face

Hi,j is unbounded with respect to x.

Note that in cases ii), iii) and v) we have that ∆(x) ≥ 0 when x→ +∞
and hence the intersection of V+ with the face Hi,j is unbounded with

respect to x. Therefore, if Pk is bounded, then the intersection of V+

with the face (i, j) of the polyhedron is empty in any of these cases.

3.3 RATE IDENTIFIABILITY OF 4 × 4 EMBEDDABLE MARKOV

MATRICES

The identifiability of rates for 4× 4 embeddable matrices has been mainly

solved by the previous results of this chapter (see Table 3.2 below, which

summarizes these results). Next, we study the missing case of three re-

peated eigenvalues.
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Rate identifiability of 4× 4 embeddable Markov matrices

Proposition 3.3.1. Let M be a diagonalizable 4 × 4 embeddable Markov

matrix with eigenvalues 1, λ, λ, λ. If det(M) > e−6π, the rates of M are

identifiable and the unique generator is Log(M).

Proof. Let Q be a Markov generator of M . If λ > e−2π then the real

part of the non-zero eigenvalues of Q is greater than −2π, thus it follows

from Lemma 2.1.3 that their imaginary part lies is bounded by ±2π. Since

the eigenvalues of M are real and positive this implies that the non-zero

eigenvalues of Q are log(λ) and hence Q = Log(M).

Remark 3.3.2. We do not know whether det(M) > e−6π is a sharp

bound. Note that, it is lower than the bounds given by Corollary 2.2.2

(det(M) > e−2π) and by Theorem 2.2.5 (det(M) > e−3π). However, the

largest determinant of a 4 × 4 embeddable matrix with three equal eigen-

values and non-identifiable rates that we have been able to find is e−12π,

and corresponds to the matrix

M =
1

4

Ü
1 + 3e−4π 1− e−4π 1− e−4π 1− e−4π

1− e−4π 1 + 3e−4π 1− e−4π 1− e−4π

1− e−4π 1− e−4π 1 + 3e−4π 1− e−4π

1− e−4π 1− e−4π 1− e−4π 1 + 3e−4π

ê
.

Indeed, in addition to its principal logarithm

Log(M) =

á
−3π π π π

π −3π π π

π π −3π π

π π π −3π

ë
we have found another six Markov generators for M :á

−3π π 2π 0

π −3π 0 2π

0 2π −3π π

2π 0 π −3π

ë
,

á
−3π π 0 2π

π −3π 2π 0

2π 0 −3π π

0 2π π −3π

ë
á
−3π 0 π 2π

2π −3π 0 π

π 2π −3π 0

0 π 2π −3π

ë
,

á
−3π 2π π 0

0 −3π 2π π

π 0 −3π 2π

2π π 0 −3π

ë
,
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Characterization of embeddable 4× 4 Markov matrices

á
−3π 0 2π π

2π −3π π 0

0 π −3π 2π

π 2π 0 −3π

ë
, and

á
−3π 2π 0 π

0 −3π π 2π

2π π −3π 0

π 0 2π −3π

ë
.

Note that Theorem 2.3.3 bounds the number of generators of a Markov

matrix with no repeated eigenvalues. Moreover, Algorithm 2.3.5 lists all

the generators of such a matrix. If we restrict the identifiability problem

to 4× 4 Markov matrices, we were able to deal with the rate identifiability

problem for all the matrices in cases I, II and III, that is, all 4× 4 matrices

except those with an eigenvalue of multiplicity three (Case IV) for which

we have Proposition 3.3.1. This is summarized in Table 3.2.
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4

THE EMBEDDING PROBLEM FOR KIMURA

NUCLEOTIDE SUBSTITUTION MODELS

In this chapter we deal with the embeddability of K3P Markov matrices

introduced in section 1.4.1. In terms of modelling, this corresponds to

decide which transition matrices within the model have a homogeneous

continuous-time realization. Recall that K3P matrices are real and have

the form

K(a, b, c, d) =

á
a b c d

b a d c

c d a b

d c b a

ë
.

When c = d such a matrix is said to be a K2P matrix whereas for b = c = d

it is called a JC matrix (see Section 1.4.1).

A key fact for the specialization of the results obtained in Chapter 3 in the

setting of K3P Markov matrices is that all K3P matrices are simultaneously

diagonalizable through the following Hadamard matrix (see [ES93, HP93]):

S :=

á
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

ë
. (4.1)

Note that K3P matrices are symmetric. Thus, by the spectral theorem its

eigenvalues are real and we can obtain an orthonormal basis of eigenvectors.
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The embedding problem for Kimura nucleotide substitution models

Indeed, S2 = 4 · Id, so S−1 = 1
4S. The following lemma can be proved by

direct computation using the matrix S just introduced.

Lemma 4.0.1. A 4× 4 matrix is K3P if and only if it can be diagonalized

by S. In this case, K(a, b, c, d) = S DS−1, with D = diag(a+ b+c+d, a+

b− c− d, a− b+ c− d, a− b− c+ d).

Remark 4.0.2. If we identify the set of nucleotides {A, G, C, T} with the

elements in Z2 × Z2 and label the rows and columns of a K3P matrix

A = (aij) accordingly, then we have that aij = akl if and only if i−j = k− l
for any i, j, k, l ∈ Z2 × Z2. Because of this, the K3P model lies in the class

of group-based models [SS05]. In this setting the matrix S−1AS is called

the Fourier transform of the K3P matrix A [ES93].

For the particular case of K3P Markov matrices, we have that the eigenvalue

a + b + c + d is equal to 1. From this, we derive that every K3P Markov

matrix is determined by the other three eigenvalues:

λ := a+ b− c− d, µ := a− b+ c− d, γ := a− b− c+ d. (4.2)

Moreover, it is immediate to check that a matrix M = K(a, b, c, d) is K2P

(resp. JC) if and only if µ = γ (resp. λ = µ = γ).

Througout this chapter we will fix the matrix S as in (4.1) and we shall

use λ, µ, γ in (4.2) to denote the eigenvalues of K3P matrices.

In the first section of this chapter we study the embedding problem for

K3P Markov matrices when we require the Markov generators to be K3P

matrices (model-embeddability). In the second section we characterize the

set of all embeddable K3P matrices. In the third section we study the iden-

tifiability of rates of K3P embeddable matrices with two equal eigenvalues.

When restricting the embedding problem and the rate identifiability prob-

lem to K3P Markov matrices, the results in the second and third sections

in this chapter improve those in Chapter 3. Finally, in the fourth section

we compute the volumes of embeddable matrices within some meaningful

subsets of transition matrices in the K3P model, including the transition

matrices of the K2P model and the JC model.
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Model embeddability of K3P Markov matrices

4.1 MODEL EMBEDDABILITY OF K3P MARKOV MATRICES

When working with phylogenetic trees, one needs that set of transition ma-

trices is multiplicatively closed in order to keep the study and the parameter

estimation consistent (see Section 1.4.3). In the continuous-time frame-

work, this leads to the question whether the product of model-embeddable

matrices is model-embeddable.

Lemma 4.1.1. Matrix multiplication is commutative and closed within the

set of K3P matrices. Moreover, the product of K3P -embeddable matrices

is K3P -embeddable.

Proof. We have that K(a, b, c, d) ·K(a′, b′, c′, d′) = (S DS−1) · (S D′ S−1) =

S DD′ S−1, is a K3P matrix by Lemma 4.0.1. Since D and D′ are diagonal

matrices, we have that DD′ = D′D and from this, the product of K3P

matrices is commutative. Therefore, for any K3P rate matrices Q1 and Q2,

Proposition 1.1.14 yields exp(Q1) exp(Q2) = exp(Q1 + Q2). To conclude

the proof it is enough to note that Q1 +Q2 is also a K3P rate matrix.

The model embeddability for K3P matrices has has been largely discussed

(and solved) in a more general context [AKK21] (see also [Mat08]). Accord-

ing to the previous lemma, the following characterizes K3P-embeddabable

matrices in term of its eigenvalues.

Theorem 4.1.2. Let M be a K3P Markov matrix with eigenvalues 1, λ, µ, γ.

Then, there exists a K3P matrix Q such that exp(Q) = M if and only if

λ, µ, γ > 0. In this case, Q is necessarily the principal logarithm Log(M) =

S diag(0, log(λ), log(µ), log(γ)) S−1.

Proof. First of all, if λ, µ, γ > 0, then we can take principal logarithms of

λ, µ, γ and define Q as the principal logarithm of M , i.e. Q := Log(M) =

S diag(0, log(λ), log(µ), log(γ)) S−1. Then, Q is a real matrix, exp(Q) = M

and it has K3P form because of Lemma 4.0.1 and (1.4). Conversely, if Q

is a K3P matrix which is also a logarithm of M , then the eigenvalues of

Q are real by the spectral theorem for symmetric matrices. Therefore,

the eigenvalues of M have to be positive by Lemma 1.1.12. Moreover, by

Lemma 4.0.1, Q can be written as Q′ = S diag(r, s, u, v) S−1, for some
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The embedding problem for Kimura nucleotide substitution models

r, s, u, v ∈ R. Because of Lemma 1.1.12, these values are real logarithms

of 1, λ, µ, γ. Using that the only real logarithm of a real number is its

principal logarithm we derive from Corollary 1.1.27 that Q is necessarily

the principal logarithm of M .

We conclude this section by characterizing when the principal logarithm of

a K3P Markov matrix is a Markov generator. Together with the previous

theorem, this solves the model embeddability for the K3P model (and its

submodels).

Lemma 4.1.3. Let M be a K3P Markov matrix with eigenvalues 1, λ, µ, γ.

Then, Log(M) is a rate matrix if and only if λ, µ, γ > 0 and

λ ≥ µγ, µ ≥ λγ, γ ≥ λµ. (4.3)

Proof. Since Log(M) is a primary logarithm of M it can by diagonalized

by S and hence it is a K3P matrix (see Lemma 4.0.1). More precisely,

from the definition of principal logarithm and Lemma 4.0.1 we derive that

Log(M) = K(ã, b̃, c̃, d̃), where

ã = 1
4

(
log(λ) + log(µ) + log(γ)

)
, b̃ = 1

4

(
log(λ)− log(µ)− log(γ)

)
,

c̃ = 1
4

(
log(µ)− log(λ)− log(γ)

)
, d̃ = 1

4

(
log(γ)− log(λ)− log(µ)

)
.

It is immediate that ã + b̃ + c̃ + d̃ = 0. Therefore, we only need to check

that the non-diagonal entries b̃, c̃ and d̃ of Log(M) are non-negative if and

only if the inequalities (4.3) are satisfied. Indeed,

β ≥ 0⇔ log(λ)− log(µ)− log(γ)

4
≥ 0⇔ log

Å
λ

µγ

ã
≥ 0⇔ λ ≥ µγ.

The other inequalities are proven analogously.

4.2 EMBEDDABILITY OF K3P MARKOV MATRICES

In this section, we adapt the results of Chapter 3 to K3P Markov matrices.

Since all K3P Markov matrices diagonalize with real eigenvalues, we only

consider cases I, III and IV in Lemma 3.1.1.
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Embeddability of K3P Markov matrices

4.2.1 Case I: Generic K3P Matrices

The subset of Markov matrices with different eigenvalues 1, λ, µ, γ is a dense

subset of K3P matrices. Recall that the embeddability of such a matrix

is determined by its principal logarithm (see Corollary 1.3.8 and Lemma

3.1.2). Moreover, Lemma 4.1.3 characterizes when the principal logarithm

of a K3P matrix is a rate matrix. As a consequence of these results we

determine the embeddability of most K3P matrices.

Corollary 4.2.1. Let M be a K3P Markov matrix with eigenvalues 1, λ, µ, γ

such that λ, µ, γ are pairwise different. Then, M is embeddable if and only

if the eigenvalues of M are strictly positive, and satisfy

λ ≥ µγ, µ ≥ λγ, γ ≥ λµ.

4.2.2 Case III: two repeated eigenvalues

We start by showing that the study of embeddability for K3P matrix with

two repeated eigenvalues can be restricted to K2P matrices.

Lemma 4.2.2. Let M = K(a, b, c, d) be a K3P matrix with a an eigenvalue

with multiplicity 2. Then there exist a 4 × 4 permutation matrix P such

that P t M P is a K2P matrix. Moreover, Q is a Markov generator of M

if and only if P t Q P is a Markov generator of P M P . In particular M

is embeddable if and only if P t M P is embeddable

Proof. Since M is a Markov matrix its eigenvalues are 1, λ, µ, γ, where

λ, γ, µ are defined in (4.2). We first show that it is not possible that the only

eigenvalue with multiplicity 2 of a K3P matrix is the eigenvalue 1. Indeed,

if λ = 1, we derive from (4.2) that c = d = 0 and hence µ = γ = a − b.
Similarly, γ = 1 implies λ = µ an µ = 1 implies λ = γ. Note that (4.2)

yields µ − γ = c − d, thus µ = γ if and only if c = d. Analogously,

we have λ = γ if and only if b = d and λ = µ if and only if b = c.

Therefore, if M has a two equal eigenvalues it has one of the following forms:

K(a, b, c, c), K(a, b, c, b) or K(a, b, b, d). Note that these three matrices

produce a K2P by ordering the nucleotides as (A, G, C, T), (A, C, G, T) and

(A, C, T, G) respectively (see Figure 1.1). To conclude the proof we note that
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The embedding problem for Kimura nucleotide substitution models

reordering the nucleotides is equivalent to permute the rows and columns

of M accordingly (see Section 1.4.1).

According to Theorem 3.1.10 all real logarithms with rows summing to zero

of a K2P Markov matrix M with eigenvalues 1, λ, µ, µ, λ 6= µ are of the

form:

Lk(x, y, z) = L+ (2πk + Argµ) V (x, y, z), (4.4)

where k ∈ Z,

L = S diag(0, log(λ), log |µ|, log |µ|) S−1 and

V (x, y, z) := S diag

Å
0, 0,

Å
−y x

−z y

ãã
S−1

for some (x, y, z) ∈ V+ = {(x, y, z) ∈ R3|xz − y2 = 1, x, z > 0}.

Note that Arg µ is either 0 or π because µ ∈ R. Moreover, if µ > 0, then

L is the principal logarithm of M and hence L0(x, y, z) = Log(M) for all

(x, y, z) ∈ V+.

Lemma 4.2.3. Let M be a K2P Markov matrix with eigenvalues 1, λ, µ, µ,

λ 6= µ. Then, Lk(x, y, z) is a Markov generator of M if and only if the

following inequalities hold:

log(λ)− 2 log |µ| ≥
∣∣2πk + Argµ

∣∣|x− z| (4.5)

and

− log(λ) ≥
∣∣2πk + Argµ

∣∣(x+ z + 2|y|
)
. (4.6)

Proof. From Theorem 3.1.10 we have that Lk(x, y, z) is a real logarithm

of M with rows summing to 0 for all values of k ∈ Z. Thus we only need

to characterize those Lk(x, y, z) that have non-negative entries outside the

diagonal. By computing L as in (4.4) we get:

L =
1

4

Ö
log(λ) + 2 log(µ) log(λ)− 2 log(µ) − log(λ) − log(λ)

log(λ)− 2 log(µ) log(λ) + 2 log(µ) − log(λ) − log(λ)

− log(λ) − log(λ) log(λ) + 2 log(µ) log(λ)− 2 log(µ)

− log(λ) − log(λ) log(λ)− 2 log(µ) log(λ) + 2 log(µ)

è
.
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On the other hand, we obtain the following expression for V (x, y, z):

V (x, y, z) =
1

4

Ü
x− z −x+ z −x− z − 2y x+ z + 2y

−x+ z x− z x+ z + 2y −x− z − 2y

x+ z − 2y −x− z + 2y −x+ z x− z
−x− z + 2y x+ z − 2y x− z −x+ z

ê
.

By looking at the off-diagonal entries of Lk(x, y, z) (see (4.4) ), we get that

Lk(x, y, z) is a rate matrix if and only if:

−λ+ 2µ±
(
2πk + Argµ

)
(x− z) ≥ 0 (entries (1, 2), (2, 1), (3, 4), (4, 3) ≥ 0)

λ±
(
2πk + Argµ

)
(x+ z + 2y) ≥ 0 (entries (1, 3), (1, 4), (2, 3), (2, 4) ≥ 0)

λ±
(
2πk + Argµ

)
(x+ z − 2y) ≥ 0 (entries (3, 1), (3, 2), (4, 1), (4, 2) ≥ 0).

The first inequality above gives (4.5), while (4.6) follows by joining the

second and third inequalities due to the fact that max
(
|x + z − 2y|, |x +

z + 2y|
)

= x+ y + 2|y| as x, z > 0 .

Below, we prove that if M is embeddable then L0(1, 0, 1) is necessarily a

Markov generator.

Theorem 4.2.4. Let M be a nonsingular K2P Markov matrix with eigen-

values 1, λ, µ, µ satisfying λ > 0 and µ 6= λ. If Lk(x, y, z) is a Markov

generator of M for some k ∈ Z, (x, y, z) ∈ V+, then we have:

i) Ll(x, y, z) is a rate matrix for any integer l ∈ Ik where

Ik =

{
〈−k, k〉 if µ > 0

〈−k − 1, k〉 if µ < 0

(we use the notation 〈a, b〉 to denote the closed interval delimited by a

and b, no matters if a > b or a < b).

ii) Lk(1, 0, 1) is a rate matrix.

Proof. We shall prove that Ll(x, y, z) and L0(1, 0, 1) are Markov matrices

by checking that they satisfy the inequalities (4.5) and (4.6) in Lemma

4.2.3.
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i) We have |2πl+Arg µ| ≤ |2πk+Arg µ| for any l ∈ Ik. Therefore, since

the inequalities (4.5) and (4.6) are satisfied for Lk(x, y, z), we deduce

that they are also satisfied for Ll(x, y, z).

ii) For any (x, z, y) ∈ V+ we have xz ≥ 1 and x + z + 2|y| = x + z +

2
√
xz − 1. Moreover, since z > 0 we obtain z ≥ 1/x and hence

x+ z + 2|y| ≥ x+ 1/x. Now, let us consider the real function f(x) =
1+x2

x restricted to R>0. With this restriction on the domain of f , we

can compute its derivatives f ′(x) = (x2− 1)/x2 and f ′′(x) = 2/x3 for

any x ∈ R>0. Note that f ′(x) only vanishes at x = 1 and f ′′(2) = 2,

thus f(x) has an absolute minimum at x = 1. This proves that

x+ z+ 2|y| ≥ f(1) = 2 for any (x, y, z) ∈ V+. Moreover, in this case,

x+ z + 2|y| = 2 if and only if (x, y, z) = (1, 0, 1). Furthermore, using

that Lk(x, y, z) is a rate matrix and applying Lemma 4.2.3 we get:

log(λ)− 2 log |µ| ≥
∣∣2πk + Argµ

∣∣|x− z| ≥ ∣∣2πk + Argµ
∣∣|1− 1| = 0

and

− log(λ) ≥
∣∣2πk + Argµ

∣∣(x+ z + 2|y|
)
≥
∣∣2πk + Argµ

∣∣(1 + 1 + 0
)
.

Therefore, Lk(1, 0, 1) satisfy the inequalities (4.5) and (4.6).

Now, we are ready to prove one of the main results in this section, which

characterizes embeddable K2P Markov matrices.

Corollary 4.2.5. Let M be a K2P matrix with eigenvalues 1, λ, µ, µ such

that λ 6= µ. Then, M is embeddable if and only if

L0(1, 0, 1) = S

Ü
0 0 0 0

0 log(λ) 0 0

0 0 log |µ| −Argµ

0 0 Argµ log |µ|

ê
S−1

is a rate matrix. In particular, if µ > 0, then M is embeddable if and only

if Log(M) is a rate matrix.
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Proof. If λ < 0 or M is singular, then M is not embeddable because it has

no real logarithm (see Proposition 1.3.6). For λ > 0, the first claim is a

direct consequence of Theorems 3.1.10 and 4.2.4. To conclude the proof,

note that if µ > 0 then L0(1, 0, 1) = Log(M) (see Remark 3.1.9).

The following corollaries use the result above to characterize embeddable

K2P Markov matrices in terms of its eigenvalues (Corollary 4.2.6) and in

terms of its entries (Corollary 4.2.7).

Corollary 4.2.6. Let M be a K2P Markov matrix with eigenvalues 1, λ,

µ, µ. Then:

i) If µ = 0, M is not embeddable.

ii) If µ > 0, M is embeddable if and only if λ ≥ µ2.

iii) If µ < 0, M is embeddable if and only if e−2π ≥ λ ≥ µ2.

Proof. By Corollary 4.2.5 we know that M is embeddable if and only if

L0(1, 0, 1) is a rate matrix. If λ 6= µ, from Lemma 4.2.3 we have that

L0(1, 0, 1) is a rate matrix if and only if log(λ)−2 log |µ| ≥ 0 and − log(λ) ≥
2 Argµ. The claim follows by taking exponentials and rearranging the

terms in these inequalities. For λ = µ, M is a JC matrix which is known

to be embeddable if and only if its eigenvalues are positive (see Proposition

3.1.14). Note that if λ = µ, the inequality λ ≥ µ2 is satisfied if and only if

λ ∈ [0, 1]. By Proposition 1.2.5 i) we have that λ ≤ 1, thus the statement

also holds if λ = µ.

Corollary 4.2.7. Let M = K(1− b− 2c, b, c, c) be a K2P Markov matrix.

Then:

i) If c = 0.5− b, M is not embeddable.

ii) If c < 0.5− b, M is embeddable if and only if c ≤
√
b− b .

iii) If c > 0.5− b, M is embeddable if and only if 1−e−2π

4 ≤ c ≤
√
b− b.
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Proof. The claim follows from Corollary 4.2.6 by expressing the eigenvalues

in terms of the entries. In this case, we have λ = 1 − 4c, µ = 1 − 2b − 2c

(see (4.2)). It is clear that the cases in both results are the same. Now,

λ ≤ µ2 is equivalent to 0 ≤ (µ2−λ)/4 = c2 +2bc+b2−b. This inequality is

satisfied if and only if c ∈ [−b−
√
b,−b+

√
b]. Since M is a Markov matrix

we have that c > 0 and also that b ∈ [0, 1]. Therefore, λ ≤ µ2 is equivalent

to 0 < c <
√
b − b. Finally, it is immediate to check that e−2π ≥ λ is

equivalent to 1
4 −

e−2π

4 ≤ c.

Remark 4.2.8. The third item in Corollary 4.2.6 (or in Corollary 4.2.7)

shows that there are embeddable K3P matrices with negative eigenvalues.

These matrices are embeddable but are not model-embeddable because

their principal logarithm is not a real matrix (see Theorem 4.1.2). This

fact exhibits that the structure of the K3P model, which imposes certain

symmetries between transitions and between transversions, is not always

captured by the same symmetries between the mutation rates (cf. [Kim80,

Kim81]). Moreover, this also shows that embeddability is not necessarily

determined by the principal logarithm (cf. [VYP+13, AKK21]).

4.2.3 Case IV: JC Matrices

If a K3P matrix has three repeated eigenvalues, then it is a JC matrix.

Therefore, all JC Markov matrix with positive determinant are embeddable

by Proposition 3.1.14. In this case, its principal logarithm is a rate matrix

and it is a JC matrix too (see Theorem 4.1.2).

4.3 IDENTIFIABILITY OF RATES FOR K2P MARKOV MATRICES

We know that generic K3P embeddable matrices have different eigenvalues

and hence they have identifiable rates by Corollary 1.3.8. In this section

we address the rate identifiability problem for K2P embeddable matrices.

Actually, by Lemma 4.2.2, the results in this section can be applied to any

K3P matrix with an eigenvalue with multiplicity 2, regardless of whether

they are K2P matrices or not.
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As a consequence of the results obtained in previous section, we provide a

criterion to determine whether the rates of K2P embeddable matrices are

identifiable or not. Furthermore, for those matrices with non-identifiable

rates we determine how many Markov generators they admit.

Proposition 4.3.1. Let M be an embeddable K2P Markov matrix with

eigenvalues 1, λ, µ, µ with λ 6= µ. Then, the rates of M are identifiable if

and only if L−1(1, 0, 1) is not a rate matrix.

Proof. By Corollary 4.2.5 we know that M is embeddable if and only if

L0(1, 0, 1) is a rate matrix. Now, assume that there are (x, y, z) ∈ V+

and k ∈ Z such that Lk(x, y, z) is a Markov generator of M different

than L0(1, 0, 1). This implies that k 6= 0 if µ > 0 (see Remark 3.1.9).

Hence, Theorem 4.2.4 gives that L−1(1, 0, 1) is also Markov generator be-

cause −1 belongs to the interval Ik, independently of the sign of µ. Note

that L0(1, 0, 1) and L−1(1, 0, 1) are distinct Markov generators by Theorem

3.1.10.

Example 4.3.2. Here we show an embeddable K2P Markov matrix with

negative eigenvalues and non-identifiable rates. Take M as K2P Markov

matrix with eigenvalues 1, λ = e−2π and µ = −e−π (with multiplicity 2).

Rounding to the 10th decimal the entries of M are:

M =

Ü
0.2288599016 0.2720738198 0.2495331393 0.2495331393

0.2720738198 0.2288599016 0.2495331393 0.2495331393

0.2495331393 0.2495331393 0.2288599016 0.2720738198

0.2495331393 0.2495331393 0.2720738198 0.2288599016

ê
.

As we can see, Log(M) is not a real matrix:

Log(M) =
1

2

Ü
−2π + π i −π i π π

3π − π i −2π + π i π π

π π −2π + π i −π i
π π −π i −2π + π i

ê
.

In spite of that, L0(1, 0, 1) is a rate matrix, so M is embeddable. Further-

more, L−1(1, 0, 1) is also a Markov generator of M and hence the rates are
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not identifiable. Indeed,

L0(1, 0, 1) =

á
−π 0 0 π

0 −π π 0

π 0 −π 0

0 π 0 −π

ë
and

L−1(1, 0, 1) =

á
−π 0 π 0

0 −π 0 π

π 0 −π 0

0 π 0 −π

ë
.

Remark 4.3.3. We derive easily that the product of embeddable matrices

within the Kimura 2ST model is not necessarily embeddable (cf. Lemma

4.1.1 ). Indeed, it is enough to consider the embeddable matrix M in the

previous example and any K3P matrix N with positive eigenvalues 1, λ, µ, γ

satisfying the inequalities (4.3) so that N is embeddable. The product of M

and N is clearly a K3P Markov matrix, whose eigenvalues are the product of

the eigenvalues of M and N . Thus, MN has two different negative eigen-

values and another positive eigenvalue. According to Proposition 1.3.6,

MN has no real logarithm so, in particular, it cannot be embeddable.

Example 4.3.4. In this example we show an embeddable K2P Markov

matrix with positive eigenvalues and non-identifiable rates. Let us consider

M the K2P Markov matrix with eigenvalues 1, λ = e−4π and µ = e−2π

(with multiplicity 2). Rounding to the 10th decimal the entries of M are:

M =

Ü
0.2509345932 0.2490671504 0.2499991282 0.2499991282

0.2490671504 0.2509345932 0.2499991282 0.2499991282

0.2499991282 0.2499991282 0.2509345932 0.2490671504

0.2499991282 0.2499991282 0.2490671504 0.2509345932

ê
.

We have that Log(M) is a Markov generator and hence M is embeddable.

Indeed,

Log(M) =

Ü
−2π 0 π π

0 −2π π π

π π −2π 0

π π 0 −2π

ê
.
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Nonetheless, the rates of M are not identifiable because there are other

Markov generators for it:

L−1(1, 0, 1) =

á
−2π 0 2π 0

0 −2π 0 2π

0 2π −2π 0

2π 0 0 −2π

ë
,

and

L1(1, 0, 1) =

á
−2π 0 0 2π

0 −2π 2π 0

2π 0 −2π 0

0 2π 0 −2π

ë
.

Remark 4.3.5. In Examples 4.3.2 and 4.3.4, the Markov generators other

than the principal logarithm are not K3P matrices, they belong to one

of the Lie Markov models listed in [FSSJW15], namely the model 3.3b.

This is another 3-dimensional model, different from the K3P model, which

contains the K2P model as well.

Theorem 4.3.6. Let M be an embeddable K2P Markov matrix with eigen-

values 1, λ, µ, µ with λ 6= µ. The following holds:

i) If µ > 0 and λ > e−4π, then M has only one Markov generator, which

is its principal logarithm.

ii) If µ > 0 and λ = e−4π, then M has exactly 3 generators: Log(M),

L1(1, 0, 1) and L−1(1, 0, 1).

iii) If µ < 0 and λ = e−2π then M has exactly 2 generators: L0(1, 0, 1)

and L−1(1, 0, 1).

In any other case, M has uncountable Markov generators.

Proof. Since M is embeddable we have that λ ≥ µ2 (see Corollary 4.2.6).

Let us also recall that for any (x, y, z) ∈ V+ we have x+z+2|y| ≥ 2 and the

equality is obtained only for (x, y, z) = (1, 0, 1) (see the proof of Theorem

4.2.4).
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i) We know that L−1(1, 0, 1) is not a rate matrix by Lemma 4.2.3.

Hence, by Proposition 4.3.1 the rates of M are identifiable. Further-

more, due to Corollary 4.2.5 we have that the only Markov generator

of M must be its principal logarithm.

ii) Let Lk(x, y, z) be a Markov generator of M with (x, y, z) ∈ V+. From

inequality (4.6) in Lemma 4.2.3 we have that 4π ≥ 2|k|π (x+z+2|y|).
Using that (x + z + 2|y|) > 2 for (x, y, z) 6= (1, 0, 1) we get that the

inequality holds if and only if k = 0 (and hence L0(x, y, z) = Log(M))

or (x, y, z) = (1, 0, 1) and |k| = 1.

iii) Let Q := Lk(x, y, z) be a Markov generator of M with (x, y, z) ∈ V+.

It follows from inequality (4.6) in Lemma 4.2.3 that 2π ≥ |2k +

1|π (x+ z + 2|y|)
∣∣. Using again that (x+ z + 2|y|) > 2 for (x, y, z) 6=

(1, 0, 1) we derive that the inequality holds if and only if (x, y, z) =

(1, 0, 1) and |2k + 1| ≤ 1.

Given (x, y, z) ∈ V+ with x = z, we have that L−1(x, y, z) satisfies inequal-

ity (4.5) in Lemma 4.2.3. If µ > 0 and λ < e−4π then inequality (4.6)

is satisfied for L−1(1, 0, 1). Furthermore, inequality (4.6) is satisfied for

L−1(x, y, x) provided that (x, y, x) ∈ V+ is close enough to (1, 0, 1). Hence,

Lemma 4.2.3 implies that L−1(x, y, z) is a Markov generator of M for any

(x, y, z) ∈ V+ close enough to (1, 0, 1) satisfying x = z. The same argument

does also work for µ < 0 and λ < e−2π.

Remark 4.3.7. Theorem 4.3.6 proves that the matrices in Examples 4.3.2

and 4.3.4 do not admit any Markov generator other than the shown there.

Moreover, embeddable matrices with non-identifiable rates must satisfy

λ ≥ µ2, hence they have determinant ≤ e−8π if all the eigenvalues are

positive, and determinant ≤ e−4π if they have a repeated negative eigen-

value. In particular, the matrices in these examples are precisely the K2P

embeddable matrices with no-identifiable rates with greater determinant

for each case (negative and positive eigenvalues respectively). This im-

plies that, in the framwork of the continuous K2P model, we can guarantee

identifiability of rates as long as the expected number of elapsed nucleotide

substitution per site is lower than π (see Remark 1.4.9)
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Figure 4.1 below illustrates Corollary 4.2.6 and Theorem 4.3.6. Note that

the space of embeddable matrices with no identifiable rates has positive

measure within the space of all K2 Markov matrices.

Figure 4.1: Parameterizations of K2P Markov matrices in terms of their

eigenvalues λ and µ. Embeddable matrices with only one Markov generator

appear in light grey and embeddable matrices with infinitely many Markov

generators in dark grey. The vertical segments delimiting the dark regions

contain embeddable matrices without identifiable rates but a finite number

of Markov generators. The scale in this figure is not exact so that the dark

grey areas could be visualized.

We can characterize rate identifiability of K2P matrices in terms of their

entries rather than in terms of its eigenvalues as we did for embeddability

in Corollary 4.2.7. All together, the main results in this chapter for the

K2P model are summarized in the following result (see also Figure 4.2).

Theorem 4.3.8. For any given K2P Markov matrix M = K(a, b, c, c), the

following holds:

a) If c = 0.5− b, then M is not embeddable.
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b) If c < 0.5− b, M is embeddable if and only if c ≤
√
b− b. In this case,

i) If c < 1−e−4π

4 , then the rates of M are identifiable.

ii) If c = 1−e−4π

4 , then M has exactly 3 Markov generators.

iii) If c > 1−e−4π

4 , then M has infinitely many Markov generators.

c) If c > 0.5− b, M is embeddable if and only if 1−e−2π

4 ≤ c ≤
√
b− b. In

this case the rates of M are not identifiable. Moreover,

i) If c = 1−e−2π

4 , then M has exactly 2 Markov generators.

ii) If c > 1−e−2π

4 , then M has infinitely many Markov generators.

Figure 4.2: Parameterizations of K2P Markov matrices in terms of their

entries b and c. Embeddable matrices with only one Markov generator ap-

pear in light grey and embeddable matrices with infinitely many Markov

generators in dark grey. The horizontal segments delimiting the dark re-

gions contain embeddable matrices without identifiable rates but a finite

number of Markov generators. The scale in this figure is not exact so that

the dark grey areas could be visualized.
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4.4 VOLUME OF EMBEDDABLE MATRICES FOR THE K3P MODEL

AND ITS SUBMODELS

The goal of this section is to take advantage of the characterization of em-

beddability of K3P, K2P and JC matrices in terms of the eigenvalues in

order to measure how big the set of embeddable matrices is within each of

these models. This can be measured in terms of the volume of the corre-

sponding subspaces and clarifies how restrictive is to consider homogeneous

continuous-time models. At the same time, we will obtain the volume of

some relevant subsets of Markov matrices with some constraints to make

them mathematically or biologically meaningful (see Definition 1.4.11).

Remark 4.4.1. For the K3P model, the subsets introduced in Definition

1.4.11 can be expressed in terms of its entries a, b, c, d:

� ∆K3P is the set of all K3P Markov matrices, i.e. a+ b+ c+d = 1 and

a, b, c, d ≥ 0.

� ∆K3P
dlc is the set of K3P Markov matrices with a ≥ b, c, d.

� ∆K3P
dd is the set of all M ∈ ∆K3P with a ≥ b + c + d or equivalently

a ≥ 0.5.

� ∆K3P
Id is the set of allM ∈ ∆K3P with positive eigenvalues (see Remark

1.4.12). According to (4.2) this is the set of M ∈ ∆K3P satisfying

a+ b > c+ d, a+ c > b+ d and a+ d > b+ c.

� ∆K3P
emb is the set of all embeddable K3P Markov matrices.

By using this, it is immediate to check that ∆K3P
dd ⊂ ∆K3P

Id ⊂ ∆K3P
dlc ⊂ ∆K3P

(cf. Remark 1.4.12). Also note that the description of ∆K3P
· in terms of

the entries of K3P matrices can be adapted to the K2P model and the JC

model by imposing c = d and b = c = d respectively. Hence, the inclusions

above are also valid for these two models.
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4.4.1 The volume of embeddable K3P matrices

In order to compute the volumes of the sets introduced above, note that ev-

ery K3P matrix K(a, b, c, d) is a convex combination of the identity matrix

and the permutation matricesá
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

ë
,

á
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

ë
,

á
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

ë
,

with coefficients a, b, c, d ≥ 0 satisfying a+ b+ c+d = 1. Moreover, Lemma

4.0.1 allows the identification of K3P Markov matrices with a 3-dimensional

space by using the coordinates (λ, µ, γ). Hence, the space of all K3P Markov

matrices describes the 3-dimensional simplex (a regular tetrahedron) whose

vertices correspond to the permutation matrices above. The coordinates

of the vertices are given by their corresponding eigenvalues: p1 = (1, 1, 1),

p2 = (1,−1,−1), p3 = (−1, 1,−1) and p4 = (−1,−1, 1) (see Figure 4.3).

The centroid of this simplex has coordinates (eigenvalues) O = (0, 0, 0) and

corresponds to the matrix

M =
1

4

á
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

ë
.

According to this representation, JC matrices (b = c = d) correspond to the

line through p1 and the centroid O, while K2P matrices (c = d) correspond

to a plane section of the simplex (µ = γ).

Proposition 4.4.2. Consider the subsets of K3P Markov matrices in Re-

mark 4.4.1. Then:

i)
V (∆K3P

dlc )

V (∆K3P)
= 1

4 ,
V (∆K3P

Id )

V (∆K3P)
= 3

16 ,
V (∆K3P

dd )

V (∆K3P)
= 1

8 and
V (∆K3P

emb )

V (∆K3P)
= 3

32 .

ii)
V (∆K3P

emb∩∆K3P
Id )

V (∆K3P
emb )

= 1,
V (∆K3P

emb∩∆K3P
dd )

∆K3P
dd

' 0.61008.
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Figure 4.3: Simplex representing all K3 Markov matrices. Each matrix is

represented by its eigenvalues (λ, µ, γ).

Proof. We compute the volumes of each subset in Definition 1.4.11 for the

K3P model in the space of K3P Markov parametrized by its eigenvalues

(λ, µ, γ). The claim follows by computing the corresponding quotients.

Note that the change from the coordinates given by the entries (b, c, d) to

the coordinates in terms of the eigenvalues (λ, µ, γ) is given by an affine

transformation (see (4.2)) and hence it preserves the proportion of volumes.

The determinant of the corresponding linear map is equal to −16. There-

fore, the volume of any subset of K3P Markov matrices is sixteen times

larger in the parametrization in terms of the eigenvalues. However, it is

clear that the relative volumes do not depend on the parametrization. Be-

fore start computing the volumes of the sets, we recall that the volume of

a tetrahedron with vertices p1, p2, p3, p4 is given by the well known formula

V =
1

6
|det(−−→p1p2,

−−→p1p3,
−−→p1p4)|. (4.7)

i) The space ∆K3P
dd of diagonal dominant matrices is defined by the in-

equality a ≥ b + c + d. Since a + b + c + d = 1, this is equivalent to

a ≥ 1/2. Thus, ∆K3P
dd is the regular simplex with vertices p1, q2, q3

and q4 (see Figure 4.3) and V (∆K3P
dd ) = 1

3 by (4.7).

The space ∆K3P
Id of matrices with positive eigenvalues is composed

of ∆K3P
dd together with the simplex with vertices q2, q3, q4 and the
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centroid O. The formula in (4.7) gives that this last simplex has

volume 1/6. Therefore, V (∆K3P
Id ) = V (∆K3P

dd ) + 1/6 = 1/2.

The three inequalities defining ∆K3P
dlc are equivalent to λ + µ ≥ 0,

λ + γ ≥ 0 and µ + γ ≥ 0 (see (4.2)). If we denote by pijk the cen-

troid of the triangle defined by pi, pj and pk, it is straighforward to

see that ∆K3P
dlc is formed by ∆K3P

Id together with the three simplices

defined by {O, q2, q3, p123}, {O, q3, q4, p134} and {O, q4, q2, p124}. Ac-

cording to (4.7), the volume of these three simplices is 1/18. There-

fore, V (∆K3P
dlc ) = 1/2 + 3 (1/18) = 2/3.

∆K3P is the tetrahedron with vertices p1 = (1, 1, 1), p2 = (1,−1,−1),

p3 = (−1, 1,−1) and p4 = (−1,−1, 1) (see Figure 4.3). In this case,

(4.7) yields V (∆K3P) = 8/3.

Before computing V (∆K3P
emb ), note that all embeddable K3P matrices

with a negative eigenvalue have a repeated eigenvalue (see Section

4.2). Therefore, they are a marginal case with measure (i.e. volume)

zero within the whole set of K3P Markov matrices. Hence, the volume

of the space ∆K3P
emb can be computed using the conditions in Corollary

4.2.1. This implies that λ, γ, µ > 0. Moreover, the range of values for

µ is between γ λ and λ/γ if λ ≤ γ. Conversely, µ lies between γ λ and

γ/λ if γ ≤ λ. Hence, we are led to compute the following integral

V (∆K3P
emb ) =

∫ 1

0

Ç∫ γ

0

∫ λ/γ

γλ
dµ dλ+

∫ 1

γ

∫ γ/λ

λγ
dµ dλ

å
dγ

which can be easily shown to be equal to 1/4.

ii) As noted above, the set of embeddable matrices that are not in ∆K3P
Id

has measure (i.e. volume) zero within ∆K3P. Therefore, we have

V (∆K3P
emb ∩∆K3P

Id ) = V (∆K3P
emb ).

On the other hand, the Markov matrix in Example 4.3.2 is embed-

dable but not DLC, thus ∆K3P
emb 6⊂ ∆K3P

dlc . The computation of the

volume of the intersection ∆K3P
dd ∩ ∆K3P

emb is similar to the computa-

tion of V (∆K3P
emb ) but for each value of γ ∈ [0, 1] we have to remove
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the area of the space below the line λ + µ = 1 − a (corresponding

to non-embeddable matrices). This leads to two different situations:

for γ ∈ [0, 3 − 2
√

2] the line cuts the hyperbola λµ = γ; whereas for

γ ∈ [3 − 2
√

2, 1] the line and the hyperbola do not meet. The com-

putation of the corresponding integrals has been obtained using the

mathematical software SAGE [S+12].

From the previous theorem and the fact that ∆K3P
dd ⊂ ∆K3P

Id ⊂ ∆K3P
dlc ⊂ ∆

(see Remark 4.4.1), we can compute the relative volumes of embeddable

matrices in each of the above subsets of K3P Markov matrices. This is

shown in Table 4.1. These relative volumes are a measure of how many

matrices are rejected when taking the homogeneoues continuous-time ap-

proach.

∆K3P ∆K3P
dlc ∆K3P

Id ∆K3P
dd ∆K3P

emb
V (·)

V (∆K3P)
1 1/4 3/16 1/8 3/32

V (∆K3P
emb∩ ·)
V (·) 3/32 3/8 1/2 0.61008 1

Table 4.1: Relative volumes of relevant subsets of K3P Markov matrices

and proportion of embeddable matrices within each of them.

Remark 4.4.3. Theorem 4.1.2 implies that all the values of Table 4.1

remain the same if we only consider K3P -embeddable matrices (instead of

embeddable matrices). This is due to the fact that the set of K3P Markov

matrices with a repeated eigenvalue has measure zero within ∆K3P together

with Corollary 1.3.8.

4.4.2 The volume of embeddable K2P matrices

In the previous sections we have been using two different parameteriza-

tions for the set of K2P Markov matrices (see Figures 4.1 and 4.2), one in

terms of the eigenvalues of the Markov matrix (λ and µ) and the other in

terms of its entries (b and c). The first parametrization can be used to de-

scribe ∆K2P
Id , whereas the second provides an easier description of ∆K2P

dlc and

∆K2P
dd . Figures 4.4 and 4.5 illustrate these sets and the inclusions between
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them (see Remark 4.4.1) in terms of the eigenvalues and the entries of the

Markov matrix, respectively. For a clearer picture of embeddability and

rate identifiability within each of these subsets of K2P Markov matrices,

intersect Figures 4.1 and 4.4 or Figures 4.2 and 4.5.

∆K2P ∆K2P
dlc ∆K2P

Id ∆K2P
dd

Figure 4.4: Relevant subsets of K2P Markov matrices parametrized in terms

of the eigenvalues λ and µ (in grey).

∆K2P ∆K2P
dlc ∆K2P

Id ∆K2P
dd

Figure 4.5: Relevant subsets of K2P Markov matrices parametrized in terms

of the entries b and c (in grey).

Proposition 4.4.4. Consider the subsets of K2P Markov matrices in Re-

mark 4.4.1 and let ∆K2P
idf ⊂ ∆K2P

emb be the subset of embeddable K2P matrices

with identifiable rates. Let α denote the area of the space of all K2P Markov

matrices, ∆K2P. Then:

i) V (∆K2P
dlc ) = 5α

12 , V (∆K2P
Id ) = 3α

8 , V (∆K2P
dd ) = α

4 , V (∆K2P
emb ) = (1+e−3π)α

3

and V (∆K2P
idf ) = (1−e−6π)α

3 .

ii) ∆K2P
emb ∩∆K2P

dlc = ∆K2P
emb ∩∆K2P

Id . Moreover, V (∆K2P
emb ∩∆K2P

Id ) = α
3 .

iii) ∆K2P
dd ∩∆K2P

emb = ∆K2P
dd ∩∆K2P

idf . Moreover, V (∆K2P
emb ∩∆K2P

dd ) = (7−4
√

2)α
3 .
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Proof. We compute the areas of each subset in Definition 1.4.11 for the K2P

model in the 2-dimensional space parametrized by its eigenvalues (λ, µ).

The claim follows by computing the corresponding quotients.

Note that the change from the coordinates given by the entries (b, c) to

the coordinates in terms of the eigenvalues (λ, µ) is given by the affine

transformation

ϕ : Entries −→ Eigenvalues

(b, c) 7−→ (1− 4c , 1− 2b− 2c)

and hence it preserves the proportion of volumes. The determinant of the

corresponding linear map is equal to −8. Therefore, the volume of any

subset of K2P Markov matrices is eight times larger in the parametrization

in terms of the eigenvalues. However, it is clear that the relative volumes

do not depend on the parametrization. We shall use the parametrization in

terms of the eigenvalues to compute the volumes because the expressions

involved are simpler. In this context, we have that ∆K2P is the triangle

with vertices (−1, 0), (1, 1) and (1,−1) which has area 2, so α = 2.

i) ∆K2P
dlc is the polygon with vertices (−1/3, 1/3), (1, 1), (1, 0) and (0, 0)

which has area 10/12.

∆K2P
Id is the trapezoid with vertices (0, 1/2), (1, 1), (1, 0) and (0, 0)

which has area 3/4.

∆K2P
dd is the triangle with vertices (0, 1/2), (1, 1) and (1, 0) which has

area 1/2.

According to Corollary 4.2.6 we have V (∆K2P
emb ) =

∫ 1

0

∫ 1

µ2
1 dλdµ +∫ 0

−e−π

∫ e−2π

µ2
1 dλdµ =

2(1 + e−3π)

3
.

According to Theorem 4.3.6, we have that V (∆K2P
idf ) =

∫ 1

0

∫ 1

µ2
1 dλdµ−∫ e−2π

0

∫ e−4π

µ2
1 dλdµ =

2(1− e−6π)

3
.
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The embedding problem for Kimura nucleotide substitution models

ii) If M ∈
(
∆K2P

emb ∩∆K2P
dlc

)C
then its eigenvalue λ is negative, so λ 6≥ µ2

and M is not embeddable, which proves that ∆K2P
emb ∩∆K2P

dlc = ∆K2P
emb ∩

∆K2P
Id (see Figure 4.4). It follows from Corollary 4.2.6 that the volume

of this set can be computed as

∫ 1

0

√
λ dλ = 2/3.

iii) The set of diagonally-dominant matrices is the triangle with vertices

(0, 0.5), (1, 1) and (1, 0). According to Theorem 1.3.10 i), diagonally-

dominant Markov matrices have only one real logarithm and hence

the first equality follows. Furthermore the points where the curve

µ2 = λ intersects with the boundary of ∆K2P
dd are (3− 2

√
2,−1 +

√
2)

and (1, 1), thus it follows from Corollary 4.2.6 that the volume can

be computed as

∫ 1

√
2−1

∫ 1

µ2
1 dλdµ+ 2(

√
2− 1)2 =

7− 4
√

2

3
.

V (·)
V (∆K2P)

V (∆K2P
emb∩ ·)
V (·)

V (∆K2P
idf ∩ ·)

V (∆K2P
emb∩ ·)

∆K2P 1 1+e−3π

3 ≈ 0.33336 1−e−6π

1+e−3π ≈ 0.99992

∆K2P
dlc 0.41Û6 0.8 1− e−6π ≈ 1.00000

∆K2P
Id 0.375 0.Û8 1− e−6π ≈ 1.00000

∆K2P
dd 0.25 14−8

√
2

3 ≈ 0.89543 1

Table 4.2: The first column shows the relative volumes of relevant spaces

in the K2P model, the second column displays the relative volumes of

embeddable matrices within those spaces and the third column contains

the relative volume of embeddable matrices with identifiable rates within

the subset of embeddable matrices for each of the spaces. The values are

rounded to the 5th decimal.
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Volume of embeddable matrices for the K3P model and its submodels

Table 4.2 shows the relative volumes of the regions defined at the beginning

of this section as well as the proportion of embeddable matrices within

them. The values are obtained from the preceding proposition together

with the inclusions in Remark 4.4.1 (see Figures 4.4 and 4.5).

Remark 4.4.5. Recall that all embeddable K3P matrices with positive

eigenvalues are also model embeddable (see Theorem 4.1.2). Hence, by

Proposition 4.4.4 ii) we have that the relative volumes of K2P-embeddable

matrices within ∆K2P is equal to 1/3. Moreover, within ∆K2P
dlc , ∆K2P

Id and

∆K2P
dd , all embeddable matrices are model-embeddable.

4.4.3 The volume of embeddable JC matrices

The computation of the sets introduced in Definition 1.4.11 for the JC

model can be easily inferred from Remark 4.4.1 and Proposition 3.1.14.

Indeed, for the JC model we have

∆JC = {K(1− 3b, b, b, b) | b ∈ [0, 1/3]};
∆JC

dlc = {K(1− 3b, b, b, b) | b ∈ [0, 1/4]};
∆JC

Id = ∆JC
emb = {K(1− 3b, b, b, b) | b ∈ [0, 1/4)};

∆JC
dd = {K(1− 3b, b, b, b) | b ∈ [0, 1/6]};

Using this, it is immediate to check that the space of embeddable Jukes-

Cantor matrices has volume (length) 1/4 while the space of all Markov

Jukes-Cantor matrices has volume 1/3. Therefore, three out of four Jukes-

Cantor matrices are embeddable. Recall that all embeddable JC matri-

ces are also JC-embedable, thus the proportion of embeddable and model-

embeddable matrices within JC Markov matrices is the same.
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5
EMBEDDABLE MATRICES WHOSE PRINCIPAL

LOGARITHM IS NOT A GENERATOR

In this chapter we construct a set with positive measure within the set of

4× 4 Markov matrices that contains embeddable matrices whose principal

logarithm is not a rate matrix. Note that, despite the Markov matrix in

Example 4.3.2 is embeddable and its principal logarithm is not a rate ma-

trix, it cannot be perturbed to obtain an open set of matrices satisfying

the same. This happens because that matrix has a repeated negative eigen-

value and any open neighbourhood contains Markov matrices with complex

non-negative eigenvalues for which the principal logarithm is a rate matrix.

Therefore, in order to accomplish the goal of this section it is necessary to

look for another class of matrices. In this sense, strand symmetric matrices

with a conjugated pair of non-real eigenvalues and positive determinant

will work. Recall from Definition 1.4.4 that SS matrices are real and have

the following form: á
a b c d

e f g h

h g f e

d c b a

ë
.

In the first section of this chapter we give a necessary condition for the

embeddability of (a dense subset of) SS Markov Markov matrices and use

the algorithms introduced in Chapter 3 to measure how big the set of

embeddable SS matrices is. In the second section we show that there exist

embeddable SS matrices with different eigenvalues whose principal logarithm

is not a rate matrix. In the last section, we explain how to deform these
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Embeddable matrices whose principal logarithm is not a generator

examples of SS embedable matrices in order to obtain open subsets in

the space of 4 × 4 Markov matrices formed by embeddable matrices that

satisfy the same (see Theorem 5.3.1). Actually, our result proves that for

any k ∈ Z, there is a non-empty open set of embeddable Markov matrices

whose unique Markov generator is Logk (this notation was introduced in

(3.1)) .

5.1 THE EMBEDDING PROBLEM FOR SS MARKOV MATRICES

Strand symmetric matrices are not simultaneously diagonalizable and may

have non-real eigenvalues. This makes the study of their embeddability is

much more complex than for K3P matrices (see Chapter 4). Nevertheless,

there is a change of basis that transforms all SS matrices into block-diagonal

matrices, which is given by the following transformation matrix

S :=

á
1 0 0 −1

0 1 −1 0

0 1 1 0

1 0 0 1

ë
.

Lemma 5.1.1 ([CK13, Lemma 6.2] and [JS16]). A matrix M ∈M4(R) is

a SS matrix if and only if

S−1MS =

Å
A 0

0 B

ã
for some A,B ∈M2(R).

Proof. This can be proven by direct computation. Indeed,

S−1MS =

á
a+ d b+ c 0 0

e+ h f + g 0 0

0 0 f − g e− h
0 0 b− c a− d

ë
. (5.1)

Furthermore,

S

á
α ψ 0 0

κ β 0 0

0 0 δ ε

0 0 φ γ

ë
S−1 =

1

2

á
α+ γ ψ + φ ψ − φ α− γ
κ+ φ δ + ε δ − ε κ− φ
κ− ε β − δ β + δ κ+ ε

α− γ ψ − φ ψ + φ α+ γ

ë
.
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The embedding problem for SS Markov matrices

As in the case of K3P matrices, the structure of SS matrices guarantees that

all real logarithms of generic SS matrices (that is, with different eigenval-

ues) are also SS matrices.

Proposition 5.1.2. Let M be a SS Markov matrix with no repeated eigen-

values. Then, all its real logarithms are SS matrices. In particular, M is

embeddable if and only if M is SS-embedable.

Proof. Since M is a SS matrix with no repeated eigenvalues, it is diago-

nalizable. By Lemma 5.1.1 we have M = S diag(A,B) S−1 where A and

B are 2 × 2 diagonalizable real matrices. Take PA, PB ∈ GL2(C) such

that P−1
A APA and P−1

B BPB are diagonal matrices and define the matrix

P = Sdiag(PA, PB). By construction we have that P−1MP is a diagonal

matrix. Since M has different eigenvalues, any real matrix Q satisfying

exp(Q) = M can be diagonalized by P (see Remark 1.1.26). Therefore, we

have that S−1QS is a block-diagonal matrix and hence Q is a SS matrix

by Lemma 5.1.1.

Remark 5.1.3. This proof is also valid if the eigenvalues of M are 1, 1,

µ, µ. In this case, M and all its logarithms with rows summing to zero

are simultaneously diagonalizable for any P ∈ GLn(C) such that P−1MP

is a diagonal matrix (see Proposition 3.1.3). In particular, all the real

logarithms of M with row sum equal to 0 can be diagonalized by P =

Sdiag(PA, PB). Therefore, all the real logarithms of SS matrices with non-

real eigenvalues are also SS matrices.

Next, we focus on the embeddability of SS matrices with non-real eigenval-

ues. Recall that in Chapter 3, we saw that any Markov generator of such a

matrix M is necessarily of the form Logk(M) introduced in Section 3.1.2.

Moreover, according to Proposition 5.1.2 and Remark 5.1.3 these genera-

tors are SS matrices. Below we give an alternative expression for Logk(M)

that clearly shows its SS structure. To this end, given v = (v1, . . . , v6) ∈ R6

and θ ∈ R we introduce the matrix Q(θ, v) defined as follows:

1

2

Ö
−v1 − v3 + θv5 v1 − θv4 v1 + θv4 −v1 + v3 − θv5

v2 + θv6 −v2 − v3 − θv5 −v2 + v3 + θv5 v2 − θv6
v2 − θv6 −v2 + v3 + θv5 −v2 − v3 − θv5 v2 + θv6

−v1 + v3 − θv5 v1 + θv4 v1 − θv4 −v1 − v3 + θv5

è
. (5.2)
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Embeddable matrices whose principal logarithm is not a generator

Note that these matrices are SS matrices whose rows sum to zero. Actually,

the following lemma shows that any SS matrix with row sums equal to zero

is one of these matrices.

Lemma 5.1.4. Let Q be a SS matrix whose rows sum to 0. Then, for any

θ ∈ R, θ 6= 0, there exists a unique v ∈ R6 such that Q = Q(θ, v). More

precisely,

v1 = 2(q1,2 + q1,3), v2 = 2(q2,1 + q2,4),

v3 = −(q2,2 − q2,3)− (q1,1 − q1,4), v4 = −2(q1,2−q1,3)
θ ,

v5 =
−(q1,1−q1,4)−(q2,2−q2,3)

θ , v6 =
2(q2,1−q2,4)

θ .

(5.3)

Proof. Using that the rows of Q = (qi,j) sum to zero, (5.1) yields

Q = S

á
−q1,2 − q1,3 q1,2 + q1,3 0 0

q2,1 + q2,4 −q2,1 + q2,4 0 0

0 0 q2,2 − q2,3 q2,1 − q2,4

0 0 q1,2 − q1,3 q1,1 − q1,4

ë
S−1.

Analogously, for Q(θ, v) we have

Q(θ, v) = S

á−v1
2

v1
2 0 0

v2
2

−v2
2 0 0

0 0 −v3−θv5
2

θv6
2

0 0 −θv4
2

−v3+θv5
2

ë
S−1. (5.4)

We obtain (5.3) by imposing Q = Q(θ, v).

Note that one can easily compute the eigenvalues of Q(θ, v) from (5.4).

Indeed, we have:

σ(Q(θ, v)) =
{

0,−v1 − v2,−v3 ± θ
»
v2

5 − v4v6

}
(5.5)

Hence, if Q(θ, v) has a conjugated-pair of non-real eigenvalue then v2
5 −

v4v6 < 0. In this case, the imaginary part of these eigenvalues is equal to

±θ provided that v lies in the algebraic variety

W = {(v1, . . . , v6) ∈ R6 | v4v6 − v2
5 = 1}.
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The embedding problem for SS Markov matrices

Remark 5.1.5. W = R3 × V, where V is the variety defined in (3.4).

Theorem 5.1.6. Given θ ∈ (−π, π) and v ∈ W, define M = exp(Q(θ, v)).

Then:

i) The matrix M is a SS matrix with rows summing to 1.

ii) exp(Q(θ + 2πk, v)) = M for all k ∈ Z.

iii) If θ 6= 0, then M has two non-real conjugated pair of eigenvalues

µ, µ whose principal argument is equal to ±θ. In this case, we have

Logk(M) = Q(θ + 2πk, v).

Proof.

i) Since Q(θ, v) is a SS matrix whose rows sum to zero, then 1 =

(1, 1, 1, 1)t is an eigenvector of Q(θ, v) with eigenvalue 0 . From

Lemma 1.1.12 we get that 1 is also an eigenvector with eigenvalue e0 =

1 of M and hence the rows of M sum to 1. To conclude this part of

the proof, note that Lemma 5.1.1 yields that S−1Q(θ, v)S is a block-

diagonal matrix, thus Remark 1.1.8 implies that exp(S−1Q(θ, v)S) =

S−1 exp(Q(θ, v))S is also a block-diagonal matrix. Hence, we get that

exp(Q(θ, v)) is a SS matrix by Lemma 5.1.1.

ii) Given v = (v1, v2, v3, v4, v5, v6) ∈ W, write w = (0, 0, 0, v4, v5, v6).

Note that as v lies in W so does w, thus the eigenvalues of Q(2πk,w)

are 0, 0, 2πki,−2πki (see (5.5)). Hence, Lemma 1.1.12 implies that

exp(Q(2πk,w)) = Id. Now, Q(θ + 2πk, v) = Q(θ, v) + Q(2πk,w)

and it is immediate to check that Q(θ, v) and Q(2πk,w) commute.

Indeed, a straightforward computation shows that Q(α, v)Q(β,w) =

Q(β,w)Q(α, v) for any α, β ∈ C. Therefore, Proposition 1.1.14 yields

exp(Q(θ + 2πk, v)) = exp(Q(θ, v)) exp(Q(2πk,w)) = exp(Q(θ, v)).

iii) According to (5.5), Q(θ, v) has a conjugated pair of eigenvalues µ, µ

with imaginary part equal to ±θ. Hence, Lemma 1.1.12 yields that

M has a conjugated pair of eigenvalues with principal argument ±θ.
Note that µ and µ are not real because |θ| < π and θ 6= 0. By

statement ii) we have that Q(θ+2πk, v) is a logarithm of M . Actually,

(3.1) and (5.5) imply that Q(θ + 2πk, v) = Logk(M).
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Embeddable matrices whose principal logarithm is not a generator

As a byproduct of the previous results, we can use the same vector v ∈ W
to express all the Markov generators of any embedabble SS matrix with a

given non-real eigenvalue µ with Im(µ) > 0 as Q(Arg(µ) + 2πk, v).

Corollary 5.1.7. Let M be a SS Markov matrix with non-real eigenvalues

1, λ, µ, µ with λ ∈ (0, 1], µ ∈ C \ R, Im(µ) > 0. Then, there exists v ∈ R6

such that Logk(M) = Q(Arg(µ) + 2πk, v) for all k ∈ Z. Moreover, v is

unique and it lies in W.

Proof. Proposion 2.3.2 claims that all real logarithms with rows summing

to zero of M are of the form Logk(M) for some k ∈ Z. Moreover, all

these logarithms are SS matrices by Proposition 5.1.2. Hence, according to

Lemma 5.1.4 there is a unique v ∈ R6 such that Log0(M) = Q(Arg(µ), v).

Now, recall that Log0(M) is the principal logatrithm of M (see Definition

2.3.1), so its eigenvalues are necessarily 0, log(λ), log(µ) + Arg(µ)i and

log(µ) − Arg(µ)i. The particular form of the eigenvalues of Q(Arg(µ), v)

in terms of the components vi (see (5.5)) implies that v lies in W and from

Theorem 5.1.6 ii) we obtain that Q(Arg(µ) + 2πk, v) = Logk(M).

Next we give a necessary condition for a SS Markov matrix with non-real

eigenvalues to be embeddable in terms of its principal logarithm:

Theorem 5.1.8. Let M = P diag(1, λ, µ, µ) P−1 be a SS Markov matrix

with λ ∈ (0, 1], µ ∈ C\R, Im(µ) > 0, and P ∈ GL4(C). If M is embeddable

then one of the following does necessarily hold:

i) Log(M) is a rate matrix.

ii) Log(M) has no null entries and exactly two negative off-diagonal en-

tries, which lie in its anti-diagonal.

Proof. If M is embeddable then there exists a rate matrix Q = (qij) such

that exp(Q) = M . By Proposion 2.3.2, there is k ∈ Z, k 6= 0 such that

Q = Logk(M). Moreover, by Corollary 5.1.7 there is v ∈ W such that

Q = Q(Arg(µ) + 2πk, v) is a rate matrix. For such v we have Log(M) =

Q(Arg(µ), v) (see Theorem 5.1.6). In particular, Log(M) is a SS matrix

whose rows sum to zero. If Q = Log(M) then k = 0 and i) does hold.
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The embedding problem for SS Markov matrices

Now, assume that Log(M) = (li,j) is not a rate matrix. According to

(5.2), we have that q1,2 + q1,3 = v1. Therefore, v1 ≥ 0 because the off-

diagonal entries of q are non-negative. Since Arg(µ) ∈ (0, π) we have that

|Arg(µ)| < |Arg(µ) + 2πk| for all k 6= 0. Moreover, v4, v6 6= 0 because v ∈
W. Hence, we have that v1±(Arg(µ)+2πk)v4 ≥ 0 implies v1±Arg(µ)v4 >

0. Therefore, q1,2, q1,3 ≥ 0 imply that l1,2, l1,3 > 0. Analogously, from

q2,1 + q2,4 = v2 we deduce that v2 ≥ 0 and l2,1, l2,4 > 0. Moreover, we also

have l3,1, l3,4, l4,2, l4,3 > 0 due to the symmetries of SS matrices. Finally,

note that l1,4 + l2,3 = q1,4 + q2,3 ≥ 0. Since L is not a rate matrix this

implies that that either l1,4 > 0, l2,3 < 0 or l1,4 < 0, l2,3 > 0. In order to

conclude the proof it is enough to note that l1,4 = l4,1 and l2,3 = l3,2. Since

all off-diagonal entries of Q are different than zero and all its rows sum to

zero, we deduce that Q has no null entries.

Since the space of SS Markov matrices has dimension six, it is not possible

to obtain a characterization for the embeddability of SS Markov matrices

just in terms of their eigenvalues as we did for K3P matrices (see Section

4.2). Nevertheless, the embeddability of SS Markov matrices can be easily

decided by using the algorithms introduced in Section 3.2. Table 5.1 shows

the proportion of embeddable SS matrices within the set of all SS Markov

matrices ∆ and within the relevant subsets introduced in Definition 1.4.11.

Samples Embeddable samples Proportion of embeddable

∆SS 108 174520 0.017452

∆SS
Id 4998715 174520 0.034913

∆SS
dlc 1021064 173425 0.1698473

∆SS
dd 156137 49732 0.3185151

Table 5.1: We sampled 108 Markov matrices uniformly and independently

from the space of SS Markov matrices. For each of these sets introduced in

Definition 1.4.11(∆SS, ∆SS
Id , ∆SS

dlc, ∆SS
dd), the first column shows how many

sample points lie in the set, the second column shows how many of them are

embeddable and the third column displays the corresponding proportion.

Embeddability was checked with Algorithm 3.2.2.
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Embeddable matrices whose principal logarithm is not a generator

5.2 STRAND SYMMETRIC MATRICES WHOSE PRINCIPAL LOGA-

RITHM IS NOT A RATE MATRIX

In this section we construct a family of embeddable SS matrices with no

repeated eigenvalues whose principal logarithm is not a rate matrix. In

particular, we give a negative answer to Question 3 in the introduction

with respect to whether the embeddability of a generic Markov matrix can

be decided from its principal logarithm. To this end, we shall use a SS 4×4

matrix M with non-real eigenvalues, so that it has other real logarithms

in addition to its principal logarithm (see Proposition 1.3.6). As explained

in the previous section, all the real logarithms of M with rows summing

to 0 can be written as Logk(M) = Q(θk, v) for some k ∈ Z, v ∈ W and

θk ∈ R (see Corollary 5.1.7). Note that by fixing θ, one can characterize

when Q(θ, v) is a rate matrix in terms of v ∈ R6 by solving a system of

linear inequalities.

Definition 5.2.1. Given θ ∈ (−π, π), we denote by R(θ) the set of those

v ∈ R6 such that Q(θ, v) is a rate matrix and by R(θ)c its complementary.

Remark 5.2.2. Since the rows of Q(θ, v) sum to zero, R(θ) is the solu-

tion of the inequation system Q(θ, v)i,j ≥ 0 for all pairs (i, j) with i 6= j.

Therefore, R(θ) is an unbounded convex polyhedral cone because these in-

equalites are linear with respect to θ (see (5.2)). In particular, if Q(θ, v) is

a rate matrix so is Q(θ, λv) for any λ ≥ 0 (see Remark 1.2.13).

Lemma 5.2.3. For any θ ∈ (−π, π) and any k ∈ Z, k 6= 0, we have that

R(θ)c∩R(θ+2πk) has two connected components C(k)
1 and C(k)

2 , where C(k)
1

is the set of solutions to the following inequalities:

−v1 + v3 − θv5 < 0,

−v1 + v3 − (θ + 2πk)v5 ≥ 0,

−v2 + v3 + (θ + 2πk)v5 ≥ 0,

v1 + (θ + 2πk)v4 ≥ 0,

v1 − (θ + 2πk)v4 ≥ 0,

v2 + (θ + 2πk)v6 ≥ 0,

v2 − (θ + 2πk)v6 ≥ 0.

(5.6)

Moreover, (v1, v2, v3, v4, v5, v6) ∈ C(k)
1 if and only if (v2, v1, v3, v6,−v5, v4) ∈

C(k)
2 .
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Strand symmetric matrices whose principal logarithm is not a rate matrix

Proof. Recall that Q(θ, v) is a SS matrix and hence it is enough to look

at its first two rows to decide if it is a rate matrix or not. Let us take

v ∈ R(θ)c ∩R(θ + 2πk), so that R := Q(θ + 2πk, v) is a rate matrix while

L := Q(θ, v) is not. By Theorem 5.1.6 we have exp(R) = exp(L). Moreover,

exp(R) is an embeddable matrix (because R is a rate matrix) and L = (lij)

is its principal logarithm. By construction L is not a rate matrix, thus

Theorem 5.1.8 implies that either l1,4 ≥ 0, l2,3 < 0 or l2,3 ≥ 0, l1,4 < 0 .

This proves that R(θ)c ∩R(θ + 2πk) has two connected components. The

system of linear inequalities in (5.6) is the reduced system arising from the

assumption that the only negative off-diagonal entry of R and L is l1,4. We

denote this component by C(k)
1 . In order to conclude the proof, consider the

vectors v = (v1, v2, v3, v4, v5, v6) and ṽ = (v2, v1, v3, v6,−v5, v4). From the

definition of Q(θ, v) in (5.2) one can immediately check that Q(θ, v) and

Q(θ, ṽ) have the same off-diagonal entries (in different order). Moreover,

Q(θ, v)1,4 = Q(θ, ṽ)2,3 and Q(θ, v)2,3 = Q(θ, ṽ)1,4 so that v ∈ C(k)
1 if and

only if ṽ ∈ C(k)
2 .

Note that given v ∈ C(k)
1 ∩W, Theorem 5.1.6 gives that

M = exp(Q(θ, v)) = exp(Q(θ + 2πk, v))

is a SS matrix. Moreover, by construction we have that Q(θ + 2πk, v)

is a rate matrix and hence M is an embeddable SS matrix (see Theorem

1.2.12). However, Log(M) = Q(θ, v) is not a rate matrix because v ∈
Rc(θ). Therefore, we have a constructive method to obtain embeddable SS

matrices whose principal logarithm is not a rate matrix.

Example 5.2.4. For each k 6= 0 we construct an example of an embeddable

SS matrix whose unique Markov generator is Logk. This family of examples

is obtained by taking M = exp(Q(θ, v)) with θ = π/2 and

v =
(

3|θ + 2πk|+ π

2
, |θ + 2πk|+ π

2
, 2|θ + 2πk|+ π,−2,−sign(k),−1

)
.

This vector lies in the interior of C(k)
1 ∩W and has been obtained using the

mathematical software Maple [Map09].

133



Embeddable matrices whose principal logarithm is not a generator

� For k ∈ Z≥0, consider the Markov matrix given by M = P+ D+ P−1
+

where D+ := diag(1, e(1−8k)π, e−2π(1+2k)i,−e−2π(1+2k)i) and

P+ :=

á
1 6k + 2 1− i 1 + i

1 −2k − 1 −i +i

1 −2k − 1 i +i

1 6k + 2 −1 + i −1− i

ë
.

A straightforward computation shows that M is a Markov matrix.

Further computations show that, for any l ∈ Z, the matrix Logl(M)

is equal to

π

4

Ü
−9− 20k − 4l 6 + 12k + 8l 2 + 12k − 8l 1− 4k + 4l

1 + 4k − 4l −5− 12k + 4l 1 + 4k − 4l 3 + 4k + 4l

3 + 4k + 4l 1 + 4k − 4l −5− 12k + 4l 1 + 4k − 4l

1− 4k + 4l 2 + 12k − 8l 6 + 12k + 8l −9− 20k − 4l

ê
.

Since l, k ∈ Z and k ≥ 0, the only possible choice for l so that all

off-diagonal entries are non-negative is l = k (this can be easily seen

by looking at the entries (2, 1) and (4, 1) for instance). In this case

we have:

Logk(M) =
π

4

Ü
−9− 24k 6 + 20k 2 + 4k 1

1 −5− 8k 1 3 + 8k

3 + 8k 1 −5− 8k 1

1 2 + 4k 6 + 20k −9− 24k

ê
.

� For k ∈ Z<0, consider the Markov matrix given by M = P− D− P
−1
−

where D− := diag(1, e(1+8k)π, e4kπi,−e4kπi) and

P− :=

á
1 6k + 1 1− i 1 + i

1 −2k −i i

1 −2k i −i
1 6k + 1 −1 + i −1− i

ë
.

In this case, given l ∈ Z we have that the matrix Logl(M) is equal to

π

4

Ü
3 + 20k + 4l −12k + 8l −4− 12k − 8l 1 + 4k − 4l

−1− 4k − 4l −1 + 12k − 4l 1− 4k + 4l 1− 4k + 4l

1− 4k + 4l 1− 4k + 4l −1 + 12k − 4l −1− 4k − 4l

1 + 4k − 4l −4− 12k − 8l −12k + 8l 3 + 20k + 4l

ê
.
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Since l, k ∈ Z and k < 0, the only possible choice for l that produces

only non-negative off-diagonal entries is l = k. Indeed,

Logk(M) =
π

4

Ü
3 + 24k −4k −4− 20k 1

−1− 8k −1 + 8k 1 1

1 1 −1 + 8k −1− 8k

1 −4− 20k −4k 3 + 24k

ê
.

In both cases, the given Markov matrix M is embeddable and Logk(M) is

its unique Markov generator.

For k 6= 0, the matrices described in the previous example are embeddable

matrices whose principal logarithm is not a rate matrix. Up to our knowl-

edge, these are the first known examples of embeddable matrices with dif-

ferent eigenvalues satisfying this property (cf. Example 4.3.2). According

to Theorem 1.3.14, if k 6= 0 and k 6= −1, there is no analogous construction

for 3× 3 Markov matrices.We conclude this section by giving explicitly the

matrix M for k = 1.

Example 5.2.5. Rounding to the 10-th decimal and taking k = 1 the

matrix M in the previous example is:

M =

Ü
0.1363636331 0.3636363701 0.3636363571 0.1363636397

0.1363636331 0.3636363669 0.3636363603 0.1363636397

0.1363636397 0.3636363603 0.3636363669 0.1363636331

0.1363636397 0.3636363571 0.3636363701 0.1363636331

ê
.

In this case, M is an embeddable SS matrix whose principal logarithm is

not a rate matrix and whose only generator is Log1(M).

Log(M) =
π

4

á
−29 18 14 −3

5 −17 5 7

7 5 −17 5

−3 14 18 −29

ë
and

Log1(M) =
π

4

á
−33 26 6 1

1 −13 1 11

11 1 −13 1

1 6 26 −33

ë
.
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5.3 AN OPEN SET OF EMBEDDABLE MATRICES WHOSE UNIQUE

LOGARITHM IS Logk

In this section we perturb the entries of the matrices obtained in Exam-

ple 5.2.4 in order to obtain embeddable matrices (with no symmetry con-

straints) whose unique Markov generator is still the logarithm Logk defined

in (3.1).

Theorem 5.3.1. For any k ∈ Z, there is a non-empty Euclidean open set

of embeddable Markov matrices whose unique Markov generator is given

by Logk. In particular, there is a non-empty Euclidean open set of 4 × 4

Markov matrices that are embeddable and whose principal logarithm is not

a rate matrix.

Proof. Let us define the matrix

R =

Ü
1 0 0 0

0 1 0 0

0 0 1 1

0 0 i −i

ê
.

Given ε = (ε1, . . . , ε12) ∈ R12 consider the matrix

Aε =

Ü
1 ε1 ε4 ε7
0 1 ε5 ε8
0 ε2 1 ε9
0 ε3 ε6 1

ê
.

Now, taking P+ and P− as in Example 5.2.4 we define the matrices H and

Dε depending on the sign of k as follows:

� If k ∈ Z≥0, take H = P+ R−1 =

Ü
1 6k + 2 1 −1

1 −2k − 1 0 −1

1 −2k − 1 0 1

1 6k + 2 −1 1

ê
,

Dε = diag
(

1 , (1 + ε10)e(1−8k)π , ε11 + i(1 + ε12)e−2π(1+2k) , ε11 −
i(1 + ε12)e−2π(1+2k)

)
.

Note that det(H) = 32k − 12 6= 0, so H is invertible.
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� If k ∈ Z<0, take H = P− R
−1 =

Ü
1 6k + 1 1 −1

1 −2k 0 −1

1 −2k 0 1

1 6k + 1 −1 1

ê
,

Dε = diag
(

1 , (1 + ε10)e(1+8k)π , ε11 + i(1 + ε12)e−4kπ , ε11 − i(1 +

ε12)e−4kπ
)
.

Analogously to the previous case, det(H) = 32k − 4 6= 0 and H is

invertible.

Next, we need to introduce some notation. We write U ⊂ M4(R) for the

open set of matrices with non-zero entries and at least one negative entry

outside the diagonal, and we write V ⊂M4(R) for the open set of matrices

with non-zero entries and positive off-diagonal entries. Given κ > 0, we

write

X =
{
ε = (ε1, . . . , ε12) : |εi| < κ for i = 1, . . . , 12

}
⊆ R12.

Claim 1. There is κ ∈ (0, 1) such that Mε := (HAεR) Dε (HAεR)−1 is a

Markov matrix with positive determinant for all ε ∈ R12 satisfying εi < κ,

i = 1, . . . , 12. In this case, Mε has pairwise different eigenvalues and two

of them are non-real.

For ease of reading we shall prove this claim after finishing the current proof.

Take κ ∈ (0, 1) as in Claim 1. Note that, if ε ∈ X, then any real logarithm

of Mε with rows summing to zero is of the form Logl(Mε) for some l ∈ Z
(see Section 3.1.2). Now, letM1 be the set of 4×4 real matrices with rows

summing to one and consider the map f : X →M1 defined by f(ε) = Mε.

Then, for m = k − 1, k, k + 1 we define the maps gm : f(X) −→ M4(R)

by gm(M) := Logm(M). Note that f(0) is the matrix M in Example 5.2.4

and hence gk−1(f(0)), gk+1(f(0)) ∈ U and gk(f(0)) ∈ V . Moreover, since

f , gk−1, gk and gk+1 are continuous on their respective domains, we have

that g−1
k−1(U), g−1

k (V ) and g−1
k+1(U) are open sets in f(X) containing f(0).

Therefore,

W := g−1
k−1(U) ∩ g−1

k (V ) ∩ g−1
k+1(U) ⊆ f(X) (5.7)

is a non-empty open set in f(X) (it contains f(0)). Note that any M ∈W
is a Markov matrix by Claim 1. Furthermore, according to (5.7) we have
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that Logk(M) is a rate matrix while Logk−1(M) and Logk+1(M) are not.

Therefore, Lemma 3.1.5 yields that any matrix in W is an embeddable

Markov matrix whose only Markov generator is Logk(M).

Figure 5.1 illustrates the remaining part of this proof. We shall use the

claim below in order to check that W contains a non-empty open subset

of M1 and conclude the proof. The proof of this claim can be found after

this proof.

Claim 2. Consider the set Y = {ε ∈ X | ε6 +ε9 = 0}. Then, f is injective

in X \ Y .

From the claim and the fact that f is continuous on its whole domain we

have that f |X\Y : X \ Y →M1 is a continuous injective map. Moreover,

since X \ Y is open in R12 ' M1 we can apply the invariance of domain

theorem to infer that f |X\Y is a homeomorphism from X \Y into its image.

Therefore, f(X \ Y ) is an open set of M1 and hence so is f(X \ Y ) ∩W .

We conclude the proof by showing that f(X \ Y ) ∩W 6= ∅. We have that

the complementary set of f(Y ) is dense in f(X) because f(Y ) is an open

set of an affine algebraic variety of dimension ≤ 11. This implies that f(0)

is adherent to f(X) \ f(Y ) ⊆ f(X \ Y ). Therefore, f(X \ Y ) cuts the

neighbourhood W of f(0).

Proof of Claim 1. By construction, the eigenvalues of Mε are the diagonal

entries in Dε and the corresponding eigenvectors are the columns of Pε :=

H Aε R. Since ε ∈ X, we have that Mε is non-singular. Indeed, the

first eigenvalue of Mε is equal to 1 and the second one (1 + ε10)e(1−8|k|)π is

positive. Similarly, the third and fourth eigenvalues and eigenvectors are a

conjugated pair. Since H and Aε are real matrices and the third and fourth

columns of R are a conjugated pair of vectors we deduce that Mε is a real

matrix. Moreover, it is immediate to check that the first column of Pε is

the vector 1 and hence the rows of Mε sum to one. Now, note that M0 is

the Markov matrix M in Example 5.2.4, thus M0 is positive. Therefore, for

κ small enough we have that Mε is a non-negative real matrix with rows

summing to one. ε ∈ X
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Figure 5.1: This figure illustrates the proof of Theorem 5.3.1. The map

f(ε) = Mε is injective in X \Y and f(0) is the matrix M in Example 5.2.4.

W is an open set of embeddable n× n matrices whose principal logarithm

is not a rate matrix.

Proof of Claim 2. Since the eigenvalues of any Mε are all simple, the values

of ε10, ε11, ε12 are completely determined by Mε. It remains to see that Mε

also determines the other values of εi, i = 1, . . . , 9 as long as ε ∈ X \ Y .

Let ci denote the i-th column of Aε. By construction, the columns of

Pε = H Aε R are eigenvectors of Mε, which we proceed to describe now:

� v1 = (1, 1, 1, 1)t, with eigenvalue λ1 = 1.

� v2 = Hc2, with positive eigenvalue λ2 =

{
(1 + ε10)e(1−8k)π if k ≥ 0,

(1 + ε10)e(1+8k)π if k < 0.

� v3 = H(c3 + c4 i), with complex eigenvalue with positive imaginary

part

λ3 =

{
ε11 + i(1 + ε12)e−2π(1+2k) if k ≥ 0,

ε11 + i(1 + ε12)e−4kπ if k < 0.

� v4 = H(c3 − c4 i), with complex eigenvalue with negative imaginary

part

λ4 = λ3 =

{
ε11 − i(1 + ε12)e−2π(1+2k) if k ≥ 0,

ε11 − i(1 + ε12)e−4kπ if k < 0.

139



Assume that there are ε, ε̃ ∈ X\Y so that Mε = Mε̃ and write ‹v1, ‹v2, ‹v3, ‹v4

for the corresponding eigenvectors of Mε̃ and c̃i for the i-th column of

Aε̃. Using again that the eigenvalues are simple, we have that there are

z2, z3, z4 ∈ C such that vi = zi ‹vi, i = 2, 3, 4.

- From v2 = z2 ‹v2, we have that Hc2 = z2H‹c2 = H (z2 ‹c2) and hence

we get c2 = z2 ‹c2. From the second component of c2 and ‹c2, we

deduce that z2 = 1. Hence, c2 = ‹c2 which implies that εi = ε̃i for

i = 1, 2, 3.

- From v3 = z3 ‹v3, we deduce that H(c3 + c4 i) = z3H(‹c3 + ‹c4 i) =

Hz3(‹c3 +‹c4 i), and hence c3 + c4 i = z3 (‹c3 +‹c4 i). Write z3 = a+ bi

with a, b ∈ R. By looking at the real part of the third component

we get 1 = a− b‹ε9. Similarly, from the imaginary part of the fourth

component we have 1 = a+ b‹ε6. Since, (‹ε9 +‹ε6) 6= 0 this implies that

b = 0 and a = 1, so z3 = 1. We derive that c3 = ‹c3 and c4 = ‹c4 which

implies that εi = ε̃i for i = 4, . . . , 9.

We conclude that ε = ε̃.
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A
APPENDIX: PYTHON SCRIPTS

Required packages:

import numpy as np

from numpy import linalg as la

from scipy import linalg as si

from sympy import *

import math

import cdd

import random

Auxiliar functions

def GetRandomRow(fineness):

#Input: number of possible values for each number.

#Output: 4 numbers that sum to 1. Obtained by sampling

uniformly in a grid on a 3-dimensional probability simplex.

x,y,z= tuple(sorted(random.sample(list(range(fineness +3)),

3)))

a=x/fineness

b=(y-x-1)/fineness

c=(z-y-1)/fineness

d=( fineness +2 -z)/fineness

return a,b,c,d

def checkRate(Q):

#Input: A real square matrix.

#Output: True if its a rate matrix , False otherwise.

for i in range(4):

for j in range(4):

if Q[i][j]< 0 and i!=j:

return False

return True
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def ComplexEmbeddability(LogM ,vaps , P):

#Input: Principal logarithm , eigenvalues and eigenvectors of a

Markov matrix with a conjugated -pair of non real

eigenvalues.

#Output: List of Markov generators

output =[]

Pinv = la.inv(P)

#Define V depending on the ordering of the eigenvalues.

if vaps [3]. imag != 0:

if vaps [2]. imag != 0:

aux = P@ np.diag([0,0,np.pi*2j,-np.pi*2j]) @Pinv

elif vaps [1]. imag != 0:

aux = P@ np.diag([0,np.pi*2j,0,-np.pi*2j]) @Pinv

else:

aux = P@ np.diag([np.pi*2j,0,0,-np.pi*2j]) @Pinv

elif vaps [2]. imag != 0:

if vaps [1]. imag != 0:

aux = P@ np.diag([0,np.pi*2j,-np.pi*2j,0]) @Pinv

else:

aux = P@ np.diag([0,np.pi*2j,0,-np.pi*2j,0]) @Pinv

else:

aux = P@ np.diag([np.pi*2j,-np.pi*2j,0,0]) @Pinv

#If det(M) is close to 0, there might be small errors in P

. As a consequence , the obtained matrix V could have non -

real entries with a small (O(10^( -16)) imaginary part.

V= np.zeros ((4,4))

for i in range(4):

for j in range(4):

V[i][j]= aux[i][j].real

#V has at least a negative off -diagonal entry and a

positive off -diagonal entry so L and U are bounded.

U=oo

L=-oo

for i in range(4):

for j in range(4):

if i!= j:

if V[i][j]> 0:

if (-LogM[i][j]/V[i][j] > L):
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L=-LogM[i][j]/V[i][j]

elif V[i][j]<0:

if (-LogM[i][j]/V[i][j] < U):

U=-LogM[i][j]/V[i][j]

elif LogM[i][j] < -epsilon:

#In this case M is not embeddable.

return output

L= math.ceil(L)

U= math.floor(U)

#List of all generators

if L <= U:

while L <= U:

output.append(LogM+L*V)

L = L+1

return output

Implementation of Algorithm 3.2.2:

def CheckEmbeddability(M):

#Input: A Markov matrix with different eigenvalues.

#Output: Its Markov generators (or an empty list).

#Compute eigenvalues(vaps) and eigenvectors(matrix P) and

check whether there is a negative or non -real eigenvalue.

We also check if M has different eigenvalues.

vaps , P = la.eig(M)

complexFlag=False

for i in range(4):

if vaps[i].imag != 0:

complexFlag=True

elif vaps[i] <= 0:

print("M has a negative or null eigenvalue.")

return []

for j in range(4):

if i!=j and abs(vaps[i]-vaps[j])==0 and vaps[i

]!=1:

print("M has a repeated eigenvalue (!=1).")

return []

#If det(M) is close to 0, the matrix LogM might have non -

real entries with small imaginary components (O(10^ -16)).

LogM = si.logm(M)
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for i in range(4):

for j in range(4):

if LogM[i][j].imag !=0:

print("Unable to compute Log(M) correctly.")

return []

#Compute Markov generators

if complexFlag:

return ComplexEmbeddability(LogM ,vaps ,P)

elif checkRate(LogM):

return [LogM]

Script used to obtain Table 3.1:

#Counters for different cases

Embed=0

DLC=0

DD=0

Repeated =0

Complex =0

sing=0

DLCE=0

DDE=0

ComplexE =0

errorCount =0

n=0

PosDet =0

prec =10000 #Fineness used in GetRandomRow

size =10000000 #Number of samples

InitialTime=time.time()

while n < size:

#Increase sample counter and reset flags

n=n+1

DLCflag= False

negFlag=False

DDflag=False

complexFlag=False

repeatedFlag=False

errorFlag=False

#Generate random Markov matrix
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M= [[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]

for j in range(4):

M[j][0],M[j][1],M[j][2],M[j][3]= GetRandomRow(prec)

#Check if M is diagonally dominant or diagonal largest in

column.

if M[0][0] >=0.5 and M[1][1] >=0.5 and M[2][2] >=0.5 and M

[3][3] >=0.5:

DD=DD+1

DLC=DLC+1

DDflag = True

DLCflag = True

elif M[0][0] >=M[1][0] and M[0][0] >=M[2][0] and M[0][0] >=M

[3][0] and M[1][1] >=M[0][1] and M[1][1] >=M[2][1] and M

[1][1] >=M[3][1] and M[2][2] >=M[0][2] and M[2][2] >=M[1][2]

and M[2][2] >=M[3][2] and M[3][3] >=M[0][3] and M[3][3] >=M

[1][3] and M[3][3] >=M[2][3]:

DLCflag=True

DLC=DLC+1

#Compute eigenvalues (vaps), a basis of eigenvectors (

matrix P) and determinant (det). We check whether there is

any negative or non -real eigenvalue.

vaps , P = la.eig(M)

det=1

for i in range(4):

det=det*vaps[i]

if vaps[i].imag != 0:

complexFlag=True

elif vaps[i] < 0:

negFlag=True

for j in range(4):

if i!=j and abs(vaps[i]-vaps[j])==0:

repeatedFlag=True

#If there is a repeated eigenvalue we are not able to test

all the Markov generators candidates with this algorithm ,

in this case the sample is discarded.

if repeatedFlag:

n=n-1

repeated=repeated +1

if DLCFlag:
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DLC=DLC -1

if DDFlag:

DD=DD -1

#If there is a non -repeated negative eigenvalue the matrix

is not embeddable.

elif negFlag:

if complexFlag:

Complex=Complex +1

#Singular matrices have no logarithm (not embeddable).

elif det == 0:

sing=sing+1

elif det >0:

PosDet=PosDet +1

LogM = si.logm(M)

#If det(M) is close to 0, the matrix LogM might have

non -real entries with small (O(10^ -16)) imaginary

components. In this case , the sample is discarded.

for i in range(4):

for j in range(4):

if LogM[i][j].imag !=0:

errorFlag = True

if errorFlag:

errorCount=errorCount +1

n=n-1

if DLCFlag:

DLC=DLC -1

if DDFlag:

DD=DD -1

#Check embeddability

elif complexFlag:

Complex=Complex +1

generators = ComplexEmbeddability(LogM ,vaps ,P)

if generators != []:

Embed=Embed+1

if DLCflag:

DLCE=DLCE+1

if DDflag:
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DDE=DDE+1

ComplexE=ComplexE +1

elif checkRate(LogM):

Embed=Embed+1

if DLCflag:

DLCE=DLCE+1

if DDflag:

DDE=DDE+1

#Output.

print("\nNUMBER OF SAMPLES:","\n Total:",size ,"\n", "

Embeddable:",Embed ,"\n", "DLC",DLC ,"\n", "DD", DD ,"\n", "

Positive Determinant:", PosDet , "\n", "Complex eigenvalues:

", Complex)

print("\nNUMBER OF EMBEDDABLE SAMPLES :\n","Total:",Embed , "\n

DLC", DLCE ,"\n DD:",DDE ,"\n Complex",ComplexE)

print("\n \nSpecial Cases \nRepeated and Singular:", Repeated

, sing)

print("Total time:",time.time()-InitialTime)

print("Error", errorCount)

Script used to obtain Table 5.1:

#Counters for different cases

Embed =0

DLC=0

DD=0

Repeated =0

Complex =0

sing=0

DLCE=0

DDE=0

ComplexE =0

errorCount =0

n=0

PosDet =0

prec =10000000 #Fineness used in GetRandomRow

size =10000000 #Number of samples

InitialTime=time.time()

while n < size:

#Increase sample counter and reset flags
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n=n+1

DLCflag= False

negFlag=False

DDflag=False

complexFlag=False

repeatedFlag=False

errorFlag=False

#Generate random SS matrix

M= [[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]

for i in range(2):

M[i][0],M[i][1],M[i][2],M[i][3]= GetRandomRow(prec)

for i in range(2):

for j in range(4):

M[3-i][3-j]= M[i][j]

#Check if M is diagonally dominant or diagonal largest in

column.

if M[0][0] >=0.5 and M[1][1] >=0.5:

DD=DD+1

DLC=DLC+1

DDflag = True

DLCflag = True

elif M[0][0] >=M[1][0] and M[0][0] >=M[2][0] and M[0][0] >=M

[3][0] and M[1][1] >=M[0][1] and M[1][1] >=M[2][1] and M

[1][1] >=M[3][1]:

DLCflag=True

DLC=DLC+1

#Compute eigenvalues (vaps), a basis of eigenvectors (

matrix P) and determinant (det). We check whether there is

any negative or non -real eigenvalue.

vaps , P = la.eig(M)

det=1

for i in range(4):

det=det*vaps[i]

if vaps[i].imag != 0:

complexFlag=True

elif vaps[i] < 0:

negFlag=True

for j in range(4):

if i!=j and abs(vaps[i]-vaps[j])==0:
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repeatedFlag=True

#If there is a repeated eigenvalue we are not able to

test all the Markov generators candidates with this

algorithm , in this case the sample is discarded.

if repeatedFlag:

n=n-1

repeated=repeated +1

if DLCFlag:

DLC=DLC -1

if DDFlag:

DD=DD -1

#If there is a non -repeated negative eigenvalue the matrix

is not embeddable.

elif negFlag:

if complexFlag:

Complex=Complex +1

#Singular matrices have no logarithm (not embeddable).

elif det == 0:

sing=sing+1

elif det >0:

PosDet=PosDet +1

LogM = si.logm(M)

#If det(M) is close to 0, the matrix LogM might have

non -real entries with small (O(10^ -16)) imaginary

components. In this case , the sample is discarded.

for i in range(4):

for j in range(4):

if LogM[i][j].imag !=0:

errorFlag = True

if errorFlag:

errorCount=errorCount +1

n=n-1

if DLCFlag:

DLC=DLC -1

if DDFlag:

DD=DD -1
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#Check embeddability

elif complexFlag:

Complex=Complex +1

generators = ComplexEmbeddability(LogM ,vaps ,P)

if generators != []:

Embed=Embed+1

if DLCflag:

DLCE=DLCE+1

if DDflag:

DDE=DDE+1

ComplexE=ComplexE +1

elif checkRate(LogM):

Embed=Embed+1

if DLCflag:

DLCE=DLCE+1

if DDflag:

DDE=DDE+1

#Output

print("\nNUMBER OF SAMPLES:","\n Total:",size ,"\n", "

Embeddable:",Embed ,"\n", "DLC",DLC ,"\n", "DD", DD ,"\n", "

Positive Determinant:", PosDet , "\n", "Complex eigenvalues:

", Complex)

print("\nNUMBER OF EMBEDDABLE SAMPLES :\n","Total:",Embed , "\n

DLC", DLCE ,"\n DD:",DDE ,"\n Complex",ComplexE)

print("\nRELATIVE VOLUME OF EMBEDDABLE\n", "SS", Embed/size , "

\n DLC", DLCE/DLC ,"\n DD:",DDE/DD ,"\n Positive Determinant:

", Embed/PosDet ,"\n Complex",ComplexE/Complex)

print("\n \nSpecial Cases \nRepeated and Singular:", Repeated

, sing)

print("Total time:",time.time()-InitialTime)

print("Error", errorCount)
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APPENDIX: RESUM EN CATALÀ

B.1 INTRODUCCIÓ

L’objectiu d’aquesta tesi és resoldre el problema d’embedding per a matrius

de Markov, proposat per Gustav Elfving el 1937 [Elf37]. Una matriu de

Markov és una matriu quadrada, no negativa i amb files que sumen 1.

Diem que una matriu de Markov M és embeddable si es pot expressar com

l’exponencial d’una matriu de taxes, és a dir, si és l’exponencial d’una

matriu real, amb files que sumen 0 i amb entrades no negatives fora de

la diagonal. En aquest cas, diem que la matriu de taxes és un generador

de Markov d’M . Tal i com el seu nom indica, el problema d’embedding

consisteix a caracteritzar les matrius de Markov que són embeddables.

Objectiu 1 (Problema d’embedding [Elf37]): Donada M una matriu de

Markov, decidir si és embeddable o no.

La motivació del problema ve dels processos de Markov, els quals s’utilitzen

per a modelar els canvis d’estat d’una variable aleatòria al llarg del temps

sota la hipòtesi que el futur és independent del passat, és a dir, que les

probabilitats de substitució entre estats no depenen dels canvis que ha-

gin passat anteriorment. En aquest context, les matrius de Markov també

s’anomenen matrius de transició, ja que les seves entrades són les proba-

bilitats de substitució entre estats després d’un peŕıode de temps fixat.

Quan es considera que aquestes entrades són funcions cont́ınues (i deri-

vables) que depenen del temps, el procés de Markov es pot descriure en

termes de les taxes instantànies de substitució entre estats. Per tal de
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mantenir el processos en temps continu tractables, sovint es considera que

les taxes de substitució instantànies són constants. Sota aquesta hipòtesi

d’homogenëıtat respecte al temps, les taxes de substitució es representen

mitjançant les entrades d’una matriu de taxes Q i les matrius de transició

M(t) del procés de Markov satisfan M(t) = Qt per a qualsevol t ≥ 0 i per

tant són embeddables. Aix́ı doncs, en el context dels processos de Markov,

el problema d’embedding consisteix a decidir si unes certes probabilitats de

substitució poden sorgir d’un procés homogeni en temps continu.

El problema d’embedding per a matrius 2 × 2 va ser resolt per Kingman

(vegeu [Kin62]). Tal i com s’explica en aquest article, una matriu 2 × 2

és embeddable si, i només si, té determinant positiu. Per tant, en aquest

cas es pot decidir fàcilment si una matriu de Markov és embeddable. Tot

i això, en el mateix article l’autor expressa els seus dubtes respecte a la

possibilitat d’obtenir una solució senzilla per a casos més grans i fins i tot

posa en dubte que es pugui obtenir una solució expĺıcita per al problema

d’embedding. Tal i com s’ha vist més tard, aquestes afirmacions no anaven

del tot desencaminades. El problema d’embedding també està resolt per

a matrius 3 × 3, però en aquest cas la solució és molt més complicada.

De fet, la solució està dividida en diferents casos segons la forma de Jor-

dan de la matriu de Markov i s’han necessitat gairebé quaranta anys per a

resoldre expĺıcitament tots els casos (vegeu les contribucions més rellevants:

[Cut73, Joh74, Car95, CC11]). Tot i que existeixen alguns resultats per a

casos particulars de matrius n× n, fins ara no ha estat possible resoldre el

problema d’embedding per a matrius 4× 4 o més grans.

Un problema relacionat amb el d’embedding és el d’identificabilitat de

taxes. Mentre que en el problema d’embedding es pregunta si una matriu

donada té un generador de Markov, en el problema d’identificabilitat es pres-

suposa l’existència de generadors i se’n qüestiona la unicitat. Aix́ı doncs,

diem que una matriu embeddable té taxes identificables si té un únic gene-

rador de Markov. Es coneixen múltiples exemples de matrius embeddables

sense identificabilitat de taxes (vegeu, per exemple, [Spe67, SS76, Dav10]).

Objectiu 2 (Identificabilitat de taxes): Caracteritzar les matrius embed-
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dables que tenen un únic generador de Markov.

L’estudi del problema d’identificabilitat de taxes també té conseqüències

en el problema d’embedding. Per exemple, se sap de vàries condicions que

garanteixen que el logaritme principal d’una matriu de Markov n’és el seu

únic logaritme real o l’únic logaritme amb files que sumen zero (vegeu-

ne alguns exemples a [Cul66, Cut72, SS76]). Com que els generadors de

Markov han de ser logaritmes de la matriu de Markov per definició, això

dóna lloc a solucions parcials del problema d’embedding que consisteixen a

comprovar si el logaritme principal de la matriu de Markov és una matriu

de taxes o no. De fet, tots els exemples de matrius embeddables amb

valors propis diferents (fins i tot els que no tenen taxes identificables) que

coneix́ıem abans de la feina presentada en aquest llibre, satisfan que el seu

logaritme principal és una matriu de taxes.

Objectiu 3: Estudiar si l’embeddabilitat d’una matriu de Markov (amb

valors propis simples) està determinada pel seu logaritme principal.

Tot i que el problema d’embedding és essencialment teòric, s’ha estudiat

detalladament en moltes àrees aplicades degut a les seves implicacions en

modelització. Per exemple, en ciències econòmiques [IRW01, GMZ86], en

ciències socials [SS76] o en biologia evolutiva [VYP+13, Jia16, KK17, BS20].

Originalment, el nostre interès pel problema ve motivat per la filogenètica

(l’estudi de les relacions evolutives), on el problema d’embedding està rela-

cionat amb qüestions fonamentals respecte a la definició i consistència dels

models de substitució de nucleòtids. Aquests models sovint descriuen la

substitució de nucleòtids en una cadena d’ADN al llarg del temps mit-

jançant un procés de Markov amb quatre estats, un per a cadascun dels

different nucleòtids (adenina, guanina, citosina i timina).

Tradicionalment, els models de substitució de nucleòtids consideren proces-

sos de Markov homogenis i en temps continu (vegeu, per exemple, [JC69,

Kim81, Fel81, Tav86]). Encara que els processos evolutius reals no són

homogenis en general (e.g. [HPCD05]), qualsevol procés de substitució

en temps continu es pot aproximar mitjançant la concatenació de proces-

sos homogenis curts. En aquest cas, la matriu de transició per al procés
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sencer s’obté multiplicant les matrius de transició corresponents als pro-

cessos concatenats (que són embeddables). Si la matriu resultant també

és embeddable, aleshores el procés original es pot modelar com si fos ho-

mogeni. Tot i això, el producte de matrius embeddables no té per què ser

una matriu embeddable i per tant és necessari tenir en compte el problema

d’embedding en aquest context, encara que les matrius de transició dels

models en temps continu siguin embeddables per construcció.

Alternativament, es pot evitar considerar el temps i simplement utilitzar

una matriu de Markov per descriure el procés de substitució complet.

Aquest enfocament és més general que no pas el dels processos homogenis

en temps continu perquè considera totes les matrius de Markov, indepen-

dentment de si són embeddables o no. D’altra banda, aquesta generalitat

no té per què ser completament positiva, ja que algunes de les matrius

afegides descriuen processos evolutius que es podrien considerar poc rea-

listes (per exemple, les matrius de permutació). Quan no es treballa en

temps continu, els paràmetres del model són les probabilitats de substi-

tució entre nucleòtids en lloc de les taxes instantànies de mutació. El fet

de treballar amb aquestes probabilitats permet l’ús de tècniques t́ıpiques

de la geometria algebraica i de l’àlgebra commutativa per a estudiar les

propietats geomètriques del model (vegeu [SS05, AR07, AR08, DK09]).

Al seu torn, aquests estudis han permès trobar diversos mètodes alge-

braics per a reconstruir la història evolutiva d’un conjunt d’espècies do-

nades sense necessitat d’estimar els paràmetres de substitució (vegeu, per

exemple, [Eri05, CFS07, RH12, CK14, AKR17]). Cal remarcar que aquests

mètodes de reconstrucció filogenètica també es poden utilitzar en processos

de substitució homogenis en temps continu. De fet, existeixen mètodes de

reconstrucció amb una base algebraica que s’han definit expĺıcitament per

a models homogenis en temps continu (vegeu [SCJJ08, HJS13]).

La connexió entre aquests dos tipus de models de substitució (en temps

continu o sense considerar el temps) està ı́ntimament lligada al problema

d’embedding, ja que les matrius de Markov són descartades o potencialment

considerades segons l’enfocament.
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Objectiu 4: Quantificar la proporció de matrius de transició 4 × 4 que

són consistents amb l’enfocament dels models de substitució de nucleòtids

homogenis i en temps continu (i.e., que són embeddables).

Segons el context, les hipòtesis dels diferents models de substitució de nu-

cleòtids s’expressen com a restriccions en termes de les taxes instantànies

de mutació o en termes de les probabilitats de substitucions. Aquestes

restriccions solen estar motivades per observacions de les freqüències de

substitucions entre nucleòtids (vegeu per exemple els models de Kimura

[Kim80, Kim81]) o per conveniència matemàtica (com és el cas del model de

Felsenstein [Fel04] o del model GTR [Tav86]). Sembla natural preguntar-se

quan una matriu de transició subjecta a les restriccions d’un cert model ad-

met un generador de Markov que satisfaci les mateixes restriccions. Quan

això passa, diem que la matriu de transició és model-embeddable.

Objectiu 5: Donat un model de substitució de nucleòtids, quantificar-ne

la proporció de matrius de transició embeddable i model-embeddable.

B.2 RESULTATS PRINCIPALS

El caṕıtol 1 és introductori. Aqúı presentem les definicions i els resultats ja

coneguts que necessitarem posteriorment i posem en context el problema

d’embedding de manera detallada. També introdüım dos resultats fona-

mentals per a les nostres contribucions: la descripció de tots els logaritmes

d’una matriu qualsevol i la caracterització de les matrius que tenen algun

logaritme real (vegeu [Gan59] i [Cul66], respectivament). A l’última secció,

ens centrem en els models de substitució de nucleòtids i en l’impacte que hi

té el problema d’embedding. A més a més justifiquem que totes les matrius

embeddables són biològicament significatives (vegeu la remarca 1.4.13).

Al caṕıtol 2 estudiem els problemes d’embedding i d’identificabilitat de

taxes per a matrius de Markov de qualsevol mida (Objectius 1 i 2). En

primer lloc, millorem les cotes existents per als valors propis de les matrius

de taxes. Això ens permet trobar una condició suficient per a garantir

l’embeddabilitat d’una matriu de Markov n × n amb una hipòtesi més

relaxada que en altres resultats semblants (cf. [Cut73, IRW01]).
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Teorema 1 (Teorema 2.2.5). Sigui M una matriu de Markov n × n i

diagonalitzable. Per a tot valor propi z ∈ σ(M) definim

βn(z) := min

ß»
2 log(det(M)) log |z| − log2 |z|,− log |z|

tan(π/n)

™
.

Si per a tot valor propi amb part imaginària no nul·la o amb multiplicitat

major que 1 es satisfà que βn(z) ≤ π, aleshores M és embeddable si, i

només si, el seu logaritme principal és una matriu de taxes. En aquest cas,

les taxes d’M són identificables (i vénen donades per Log(M)).

A més a més d’aquesta solució particular del problema d’embedding (i del

problema d’identificabilitat de taxes), també donem el següent criteri per

a comprovar si una matriu de Markov n × n amb valors propis diferents

(reals o no) és embeddable:

Teorema 2 (Theorem 2.3.3). Sigui M una matriu de Markov amb valors

propis diferents dos a dos. Donada una descomposició d’M en valors propis

qualsevol:

M = P diag
(
1, λ1, . . . , λt, µ1, µ1, . . . , µs, µs

)
P−1,

amb P ∈ GLn(C), λi ∈ (0, 1) per i = 1, . . . , t i µj ∈ {z ∈ C : Im(z) > 0}
per j = 1, . . . , s; tenim que M és embeddable si i només si

P diag
(

0, log(λ1), . . . , log(λt), logk1(µ1), logk1(µ1), . . . , logks(µs), logks(µs)
)
P−1

és una matriu de taxes per alguns valors k1, . . . , ks ∈ Zs tals que†−Arg(µj)−βn(µj)
2π

£
≤ kj ≤

ö−Arg(µj)+βn(µj)
2π

ù
.

Basant-nos en aquest resultat, aconseguim un algoritme que permet trobar

tots els generadors de Markov de qualsevol matriu de Markov diagonalit-

zable i sense valors propis repetits (Algoritme 2.3.5). Aquest algoritme

resol tant el problema d’embedding com el d’identificabilitat de taxes per

a un subconjunt dens de matrius de Markov n× n per a tot n ∈ N.

Al caṕıtol 3 resolem completament el problema d’embedding per a matrius

4 × 4. Com en el cas 3 × 3, la nostra solució es divideix en diversos casos
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segons la forma de Jordan de la matriu de Markov donada (vegeu la taula

3.2). El cas de matrius de Markov amb valors propis diferents dos a dos es

resol mitjançant l’especialització dels resultats del caṕıtol anterior. Aquest

cop, obtenim un criteri expĺıcit tant per a l’embeddabilitat com per a la

identificabilitat de taxes.

Teorema 3 (Teorema 3.2.1). Sigui M = Pdiag(1, λ1, λ2, λ3)P−1 una ma-

triu de Markov 4× 4 amb valors propis λ1 ∈ R>0, λ2 ∈ C, λ3 ∈ C diferents

dos a dos. Si λ2, λ3 6∈ R, definim V = P diag(0, 0, 2πi,−2πi) P−1 i

L := max
(i,j): i 6=j, Vi,j>0

°
−Log(M)i,j

Vi,j

§
, U := min

(i,j): i 6=j, Vi,j<0

õ
−Log(M)i,j

Vi,j

û
.

En cas contrari, prenem L = U = 0 i fixem que V sigui la matriu zero.

Donada la matriu V definim

N := {(i, j) : i 6= j, Vi,j = 0 and Log(M)i,j < 0}.

Aleshores M és embeddable si i només si N = ∅, L ≤ U i λi /∈ R≤0 per

i = 1, 2, 3. En aquest cas, els generadors de Markov per a M són les matrius

Log(M) + kV amb k ∈ [L,U ].

També donem un algoritme per comprovar l’embeddabilitat de les matrius

de Markov 4× 4 amb un valor propi amb multiplicitat 2 (Algoritme 3.2.3)

i un algoritme per a comprovar l’embeddabilitat de la resta de matrius

(Algorithm 3.2.2). Utilitzant aquest últim algoritme en un conjunt de ma-

trius de Markov 4× 4 (amb valors propis diferents) generat aleatòriament

d’acord amb la distribució uniforme, podem estimar la proporció de ma-

trius embeddables dins del conjunt de matrius de Markov 4× 4 (Objectiu

4). D’acord amb els resultats obtinguts, només un 0.05% de les matrius de

Markov 4× 4 és embeddable (vegeu la taula 3.1).

Al caṕıtol 4 resolem el problema d’embedding per al model de substitució

de nucleòtids Kimura 3-paràmetres [Kim81] i per als seus submodels, el

model Kimura 2-paràmetres [Kim80] i el model de Jukes-Cantor [JC69].

Teorema 4 (vegeu la proposició 3.1.14 i els corol·laris 4.2.1 i 4.2.6). Sigui

M una matriu de Markov corresponent al model de Kimura 3-paràmetres
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amb valors propis 1, λ, µ, γ. Si tots els valors propis d’M són simples, les

següents afirmacions són equivalents:

i) M és embeddable.

ii) M és model-embeddable.

iii) El logaritme principal d’M és una matriu de taxes.

iv) Els valors propis d’M són estrictament positius i satisfan

λ ≥ µγ, µ ≥ λγ, γ ≥ λµ.

Aquest resultat mostra que la conjectura estudiada a l’objectiu 3 és certa

quan ens restringim al model Kimura 3-paràmetres. En aquest caṕıtol

també estudiem detalladament aquelles matrius de Markov dins del model

que tenen un valor propi amb multiplicitat 2. De fet, veurem que es pot con-

siderar sense pèrdua de generalitat que pertanyen també al model Kimura

2-paràmetres. Aix́ı doncs, el següent resultat dóna un criteri per a la em-

beddabilitat i la identificabilitat de taxes de les matrius de transició del

model Kimura 3-paràmetres que tenen algun valor propi amb multiplicitat

2.

Teorema 5 (Teorema 4.3.8). Donada una matriu de transició del model

Kimura 2-paràmetres M =

Ö
a b c c

b a c c

c c a b

c c b a

è
tal que b 6= c, tenim:

a) Si c = 0.5− b, M no és embeddable.

b) Si c < 0.5− b, aleshores M és embeddable si i només si c ≤
√
b− b. En

aquest cas,

i) Si c < 1−e−4π

4 , aleshores les taxes d’M són identificables.

ii) Si c = 1−e−4π

4 , aleshores M té exactament 3 generadors de Markov.

iii) Si c > 1−e−4π

4 , aleshores M té una quantitat no numerable de gen-

eradors de Markov.
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c) Si c > 0.5 − b, aleshores M és embeddable si i només si 1−e−2π

4 ≤ c ≤√
b− b. En aquest cas, les taxes d’M no són identificables, és més:

i) Si c = 1−e−2π

4 , aleshores M té exactament 2 generadors de Markov

ii) Si c > 1−e−2π

4 , aleshores M té una quantitat no numerable de gen-

eradors de Markov.

A diferència del model Kimura 3-paràmetres, veiem que les matrius del

model Kimura 2-paràmetres que són embeddables poden no tenir taxes

identificables. No només això, sinó que algunes matrius embeddables dins

del model Kimura 2-paràmetres no són model-embeddables, la qual cosa

sembla ser inconsistent amb l’enfocament original d’aquests models mit-

jançant taxes de mutació, en el qual les restriccions en les taxes s’inferien

a partir de les probabilitats de substitució.

Concloem el caṕıtol calculant la proporció de matrius embeddables i model-

embedabbles dins dels models Kimura 3-paràmetres, Kimura 2-paràmetres

i Jukes-Cantor (Objectiu 5). Veurem que només el 9.375% de les matrius de

transició corresponents al model de Kimura 3-paràmetres són embeddables.

Per al model Kimura 2-paràmetres la proporció de matrius embeddables és

lleugerament superior al 33% mentre que el model de Jukes-Cantor té un

75% de matrius de transició embeddables.

Al caṕıtol 5 hi estudiem el model strand-symetric (vegeu [YP04, CS05]).

Sota la hipòtesis de valors propis simples, veiem que la embeddabilitat i

la model-embeddabilitat són equivalents per a aquest model (Proposition

5.1.2) i donem un condició necessària per tal que se satisfacin.

Teorema 6 (Teorema 5.1.8). Sigui M una matriu de transició pertanyent

al model strand-symmetric i amb valors propis simples. Si M és embed-

dable, aleshores al menys una de les següents afirmacions és certa:

i) Log(M) és una matriu de taxes.

ii) Log(M) no té cap entrada igual a zero i té exactament dues entrades

negatives fora de la diagonal, les quals estan a l’anti-diagonal de la

matriu.

171



Appendix: Resum en català

Tot i que no donem un criteri expĺıcit per a l’embeddabilitat de les ma-

trius de transició del model strand-symmetric, podem estimar-ne la pro-

porció aplicant l’algoritme 3.2.2 a una mostra aleatòria de matrius gener-

ada uniformement d’acord amb el model. Els resultats obtinguts mostren

que aproximadament l’1.75% de matrius de transició del model strand-

symmetric són embeddables. Acabem el caṕıtol construint una famı́lia

d’exemples de matrius de Markov dins d’aquest model que mostren que la

conjectura estudiada a l’objectiu 3 pot ser falsa (vegeu els exemples 5.2.4

i 5.2.5). A més a més, pertorbem aquests exemples i demostrem que és

genèricament fals que l’embeddabilitat d’una matriu de Markov 4 × 4 es

pugui determinar únicament a partir del seu logaritme principal.

Teorema 7 (vegeu el teorema 5.3.1). Existeix un subconjunt obert de ma-

trius de Markov 4×4 amb mesura positiva (en la norma euclidiana) format

per matrius que són embeddables i que el seu logaritme principal no és una

matriu de taxes.

Concloem aquest resum fent una śıntesi dels resultats obtinguts per a

l’objectiu 5 respecte als models de substitució de nucleòtids considerats al

llarg dels caṕıtols 3, 4 i 5. Excepte per al model Kimura 2-paràmetres, els

conjunts de matrius embeddable i model-embeddable dins d’aquests models

són idèntics. Observem que com més simple és el model, més gran és la

proporció de matrius embeddable.

Model Proporció de matrius embeddables

General Markov 0.00057

Strand symmetric 0.0175

Kimura 3-paràmetres 0.09375

Kimura 2-paràmetres 0.33336

Jukes-Cantor 0.75
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