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Abstract

We introduce the concepts of non-positive and negative at infinity plane valuation
of a Hirzebruch surface and determine nice global and local geometric properties of
the surfaces given by those divisorial valuations.

Let Fδ be a Hirzebruch surface over an algebraically closed field, where δ is a
non-negative integer. The concepts of non-positive and negative at infinity divisorial
valuation were firstly introduced in [60] for valuations considered over the projective
plane P2. We extend these concepts to divisorial valuations of Fδ, giving easy to
check conditions to decide whether a valuation is of these types, and study positivity
properties of the surfaces that they define. We prove that non-positive at infinity
divisorial valuations of Fδ are those divisorial valuations of Fδ such that cone of
curves of the surface that they define is minimally generated. Our results extend
those in [60].

Non-positivity and negativity at infinity are also extended to the class of real
valuations of P2 and Fδ. Their dual graphs are studied and compared according to
the valuations they come from.

Finally, given a flag E• = {Z ⊃ E ⊃ {q}}, where E is an exceptional divisor
defining a non-positive at infinity divisorial valuation of Fδ over C and Z the ratio-
nal surface given by νE , we explicitly compute the Seshadri-type constant for pairs
(νE , D), where D is a big divisor on Fδ, and obtain the vertices of the Newton-
Okounkov bodies of pairs (E•, D).
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Resumen

Introducimos los conceptos de no positividad y negatividad en el infinito para valo-
raciones planas de una superficie de Hirzebruch y determinamos interesantes propie-
dades geométricas globales y locales de las superficies definidas por las valoraciones
divisoriales que cumplen dicha condición.

Sea Fδ una superficie de Hirzebruch sobre un cuerpo algebraicamente cerrado,
donde δ es un entero no negativo. Los conceptos de valoración divisorial no positiva
y negativa en el infinito fueron primeramente introducidos en [60] para valoraciones
sobre P2. Nosotros extendemos estos conceptos a valoraciones divisoriales de Fδ,
aportando una condición fácil de comprobar para decidir cuándo una valoración es
de estos tipos, y estudiamos propiedades de positividad de las superficies que estas
definen. En particular, probamos que las valoraciones divisoriales de Fδ no positivas
en el infinito son aquellas valoraciones divisoriales de Fδ tales que el cono de curvas
de la superficie que definen está generado por un número mínimo de generadores.

Los conceptos de no positividad y negatividad en el infinito también los ex-
tendemos para valoraciones reales de P2 y Fδ. Sus grafos duales son estudiados y
comparados acorde a las valoraciones que les corresponden.

Sea una bandera E• = {Z ⊃ E ⊃ {q}}, donde E es un divisor excepcional
que define una valoración divisorial νE de Fδ (sobre C) no positiva en el infinito
y Z la superficie racional dada por νE . En la última parte de la tesis calculamos
explícitamente la constante de tipo Seshadri de pares (νE , D), donde D es un divisor
big en Fδ, y también obtenemos los vértices de los cuerpos de Newton-Okounkov de
pares (E•, D).
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Introduction

Let A1(X) (respectively, A1(X)) be the R-vector space of numerical equivalence
classes of one-cycles (respectively, numerical equivalence classes of Cartier divisors)
of an n-dimensional complete algebraic scheme X over an algebraically closed field
k of any characteristic. Assuming that X is a smooth projective variety, A1(X) is a
vector space of finite dimension. The dimension of both A1(X) and its dual A1(X)

is called the Picard number of X and written ρ = ρ(X).

Given X as above (projective and smooth), the cone of curves of X, NE(X), is
the convex cone (see Subsection 1.4.1) of A1(X) spanned by the numerical equiva-
lence classes of all effective 1-cycles of X (positive combinations of integral curves);
its closure NE(X) is a closed convex cone. In addition, the numerically effective
(nef) cone of X, Nef(X), is the convex cone in A1(X) generated by the numerical
equivalence classes of Cartier divisors whose intersection product with all irreducible
curves is non-negative (and it is also the dual cone of NE(X)). The previously intro-
duced cones are relevant in the study of the geometry of the variety X. When X is
2-dimensional, the case considered in this work, A1(X) is identified with A1(X) and
the previously defined convex cones live in the same vector space of finite dimension.
In addition, it holds that Nef(X) ⊆ NE(X). See [11, 94, 95, 21, 110] for some recent
works with respect to NE(X) and [23, 24, 29, 45] with respect to Nef(X).

Kleiman [76] also proved an important numerical criterion for ample divisors. It
claims that the closure of the cone of curves NE(X) except of the origin lies entirely
in the positive halfspace of A1(X) determined by any ample Cartier divisor.

The cone NE(X) plays a significant role in the minimal model program. This pro-
gram aims a birational classification theory of higher-dimensional algebraic varieties
and started at the end of the 20th century. The program pretends to extend (and
include) the case of curves and the Enriques classification of algebraic surfaces. In
the surfaces case, Enriques, Castelnuovo, Severi, Zariski, Mumford, Bombieri were
important contributors. Some of the main mathematicians involved in the higher
dimensional case are Mori, Kollar, Shokurov, Kawamata, Reid, Cascini and Birkar.
Even when the program is in constant evolution, one can found an introduction in
[77] and also in [88], where the Enriques classification of surfaces is included in the
framework of the minimal model program. See [10] for a recent survey.

Let KX be a canonical divisor on a smooth projective complex variety X. Set
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2 Introduction

D any divisor on X and write NE(X)|D≥0
= NE(X) ∩ D≥0 the subset of NE(X)

which is in the non-negative half-space given by D. The closure of the cone of curves
has a particular structure which helps to construct minimal models for varieties.
This fact was proved by Mori [93] for the 3-dimensional case, and later generalized
by Kawamata [75] for arbitrary dimension. Indeed, assuming that the canonical
divisor KX is not nef, the subset NE(X)|KX<0 is generated by countable many
rational curves and they can only accumulate on the hyperplane defined by the
elements of A1(X) whose intersection product with KX vanishes. Even more, fixed
an ample divisorH and given a positive number ε, there are only finitely many curves
C1, C2, . . . , Cs whose classes lie in the region NE(X)|KX+εH≤0 and then NE(X) =

NE(X)|KX+εH≥0 +
∑s

i=1 R>0[Ci]. These curves Ci generate extremal rays Ri of
NE(X) and define maps which contract all the curves whose class lies in the extremal
rays.

In general, even if X is a smooth projective surface, there is no characterization
of the fact that the cone NE(X) is finitely generated (i.e. it is finite polyhedral and
then NE(X) = NE(X)). It is known (see [71, Chapter V, Problem 4.15] and [85,
Section 1.5.D]) that if Y is the surface obtained by blowing-up ten or more points
of P2 in very general position, there are infinitely many smooth irreducible curves
with self-intersection −1 (named (−1)-curves) and these curves span extremal rays
of NE(Y )|KY <0. In addition, it is conjectured that the region NE(Y )|KY >0 is “almost
circular” (i.e. is supported upon a spherical cone) [33, 34].

When X is a smooth projective surface, the literature contains several works
related to the structure of NE(X). In [106] it is proved that the unique smooth
surfaces whose cone of curves could have infinitely many −1-curves are the rational
surfaces. In a complementary way, many authors, using different methods and under
specific assumptions on rational surfaces X, have given either sufficient or equivalent
conditions to the fact that NE(X) is finite polyhedral (see for example [69, 89, 17,
55, 70, 56, 60, 35, 50, 51]).

Valuations have been used in several areas of the mathematics to study different
problems, including the classification of varieties. In 1882 Dedekind and Weber used
valuations to treat Riemann surfaces, but the first axiomatic definition of valuation
was given in 1912 by Kürschák. Valuations are important objects in the problem of
resolution of singularities as one can see in the works of Zariski and Abhyankar [114,
115, 117, 1, 2]. Although Hironaka solved this problem in characteristic zero without
using them, they seem to be a relevant tool for the case of positive characteristic
[111]. Some recent works about valuations are [41, 112, 16, 96, 105, 97, 32, 6].

There is no classification of valuations. Nevertheless, valuations of the quotient
field of regular two-dimensional local rings (R,m) centered at m were classified by
Zariski in terms of three invariants: the rank, the rational rank and the transcendence
degree. These valuations are usually named plane valuations. A refinement of the
previous classification was given by Spivakosky [109] in terms of dual graphs (see
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also [47] and [66]). Plane valuations have an interesting geometric point of view:
they are in one-to-one correspondence with simple sequences of point blowups which
start with the blowup of SpecR at m. That is, sequences of point blowups where
each center (except the first one m) is a closed point in the last created exceptional
divisor. These sequences need not to be finite and those which are correspond to
divisorial valuations: those defined by the order at the last appearing exceptional
divisor in the corresponding sequence of blowups.

Spivakovsky’s classification divides plane valuations in five types, being divisorial
valuations one of them. In this dissertation we will be particularly interested in two
other types: irrational and exceptional curve valuations (see Section 1.3).

In the last years several authors have considered a class of plane valuations ν
called non-positive at infinity. These valuations provide nice information about ge-
ometric global objects as the cone of curves of surfaces given by ν [20, 60] or on
parameters of good error-correcting codes linked to this class of valuations [57, 59].
Non-positive at infinity valuations form part of the so-called valuations centered at
infinity used to study the dynamics of polynomial maps of the affine plane [47, 48, 49].

Recall that k stands for an algebraically closed field of arbitrary characteristic and
P2 := P2

k the projective plane over k. Denote by (X : Y : Z) projective coordinates
in P2, by L the projective line “at infinity” with equation Z = 0, and by p the
point of P2 whose coordinates are (1 : 0 : 0). Take affine coordinates x = X/Z and
y = Y/Z. Consider a plane valuation ν of the function field of P2 centered at OP2,p.
The valuation ν is called non-positive at infinity if it holds that ν(f) ≤ 0 for all
f ∈ k[x, y] \ {0}.

A sub-class of non-positive at infinity valuations was studied in [20]. Valuations
in that sub-class are determined by those sequences of point blowups which remove
the base points of pencils defined by the line at infinity L and curves with only one
place at infinity (i.e., a projective curve C on P2 which is reduced and unibranched
at p and such that C ∩ L = {p}). The authors show that the cone of curves of the
surfaces defined by the previous valuations ν is generated by the smallest possible
set of curves, that is the classes of the strict transform of L and those of the strict
transforms of the exceptional divisors created by the sequence of blowups given by
ν (i.e. the cone of curves is regular). This result is extended in [60] proving that
the divisorial valuations ν providing surfaces with regular cone of curves are exactly
those which are non-positive at infinity. Even more, [60, Theorem 1] gives other two
equivalent conditions to the result of the cone of curves: a numerical local property
which is easy to check and the nefness of a certain divisor derived from ν. [60]
also presents sufficient and necessary conditions to the fact that ν(f) < 0 for all
f ∈ k[x, y] \ k.

Non-positive at infinity valuations are also useful in coding theory. There is
another sub-class of non-positive at infinity valuations which is very related to pro-
jective curves with only one place at infinity. Abhyankar and Moh [3, 4] studied
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these curves and proved, under certain conditions, a nice result called Abhyankar-
Moh (semigroup) Theorem, which determines the generators of the so-called semi-
group at infinity. In [58], the authors show an analogue result to Abhyankar-Moh
Theorem for the semigroup at infinity of plane valuations of the former sub-class
Sν,∞ = {−ν(f) | f ∈ k[x, y] \ {0}} considering adequate fields k. This semigroup
is the key to construct and determine parameters of a large set of error-correcting
codes [57, 59].

Assume now for a while that X is a smooth irreducible projective variety over
k = C of dimension n.

Recall that a divisor D on X is big when h0(X,OX(mD)) grows like mn [85,
Section 2.2]. The convex cone in A1(X) generated by the numerical equivalence
classes of big divisors is called the big cone of X and denoted Big(X). It holds that
Big(X) = Int

(
NE(X)

)
[85, Theorem 2.2.26], where Int means topological interior,

and, when X is a surface, there is a locally finite decomposition of Big(X) into
rational locally polyhedral subcones called Zariski chambers (see Subsection 1.5.2
and [7]).

Newton-Okounkov bodies of big divisors D on varieties X as above are convex sets
used to study the asymptotic behaviour of linear systems |mD|, for m� 0. Firstly,
they were introduced by Okounkov [99, 100] and afterwards developed independently
by Lazarsfeld and Mustaţă [86], and Kaveh and Khovanskii [74]. Many authors are
interested in these convex sets since they also reveal interesting information about
invariants and positivity properties of divisors on X [15, 104, 81, 79, 80, 82]. Other
recent works about Newton-Okounkov bodies are [26, 27, 92, 12, 101].

Let us recall the definition of Newton-Okounkov body of a big divisor with respect
to a flag of subvarieties of X. A flag of subvarieties Y• of X is a sequence of smooth
irreducible subvarieties Yi of codimension i in X, 0 ≤ i ≤ n :

Y• := {X = Y0 ⊃ Y1 ⊃ . . . ⊃ Yn = {q}} .

The flag Y• defines a valuation νY• of the function field K(X) with rank n. Then
the Newton-Okounkov body ∆νY• (D) of a big divisor D on X with respect to νY•
(or Y•) is the closed convex hull of the set⋃

m≥1

{
νY•(f)

m
| f ∈ H0(X,OX(mD)) \ {0}

}
.

The Newton-Okounkov bodies ∆νY• (D) are non-empty compact sets [86, 74, 13]
and polygons when X is a surface [82]. In higher dimensions they are extremely
complicated and could be non-polyhedral even if we suppose that X and D satisfy
good properties [82].

The bodies ∆νY• (D) satisfy the following property:

volX(D) = n! volRn(∆νY• (D)),
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where volRn means the standard volume and

volX(D) := lim sup
m→∞

h0(X,OX(mD))

mn/n!
,

called the volume of D. This volume is a birational invariant of big divisors (see [85,
Proposition 2.2.43 and Example 2.2.49]) which gives information about the asymp-
totic behaviour of their linear systems. We cite some works that study the volume
of a divisor: [85, Section 2.2], [7] and [42]. The volume of an ample divisor D coin-
cides with its self-intersection number. Other recent works about the volume of big
divisors are [14, 113, 98, 25].

Some authors have found a relation between the Newton-Okounkov bodies and
Seshadri constants [79, 78], objects introduced by Demailly in order to study Fujita’s
conjecture [37]. One can see [39, 67, 87, 118, 68, 101] for recent works about Seshadri
constants.

An explicit computation of the Newton-Okounkov bodies ∆νY• (D) is a difficult
task even if X is a surface. In this last case, Lazarsfeld and Mustaţă [86] provide a
generic way to describe these bodies. This description depends on the Zariski decom-
position of certain divisors (see Subsection 1.5.2). More explicitly and roughly speak-
ing, the authors describe in [86] the Newton-Okounkov bodies ∆νY• (D) as convex sets
whose vertices are determined by the Zariski decomposition of divisors Dt = D− tC,
where C is the smooth irreducible subvariety of codimension 1 in Y• and t is a (real)
number such that a ≤ t ≤ µ(D,C), a being the coefficient of C in the negative
part of the Zariski decomposition of D and µ(D,C) := sup{s > 0 |D − sC is big}.
In particular, the first components of the vertices of the bodies ∆νY• (D) are those
values t where the ray [Dt] crosses into a different Zariski chamber [82]. Further-
more, [65] considers surfaces X defined by divisorial valuations ν of the function field
of P2 centered at some point p ∈ P2 and flags E• = {X ⊃ E ⊃ {q}} where E is
the exceptional divisor defining ν (= νE). In that paper, the authors show that the
exceptional curve valuations centered at p and valuations νE• defined by flags E• are
the same thing. Moreover, it is proved that the Newton-Okounkov body of the pull-
back of a general projective line H with respect to E• is a triangle or a quadrilateral,
characterizing when one gets triangle or not. Even more, these Newton-Okounkov
bodies are explicitly and completely computed when the valuation νE is non-positive
at infinity. Previously, these Newton-Okounkov bodies were only characterized for
surfaces defined by certain family of divisorial valuations [28].

On the other hand, some authors [15, 38, 64] are interested in an invariant asso-
ciated to the vanishing sequence of sections of a big line bundle L, H0(X,L), along
a real valuation ν of the function field K(X) centered at a local ring (R,m) (over an
algebraically closed field k). This invariant is defined as

µ̂L(ν) := lim
m→∞

amax(mL, ν)/m,
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where amax(mL, ν) is the last value of the vanishing sequence. This object provides
similar information for valuations as the Seshadri constant does for points. We call
µ̂L(ν) the Seshadri-type constant for the pair (L, ν) (see [31] for a similar invariant).
In general, computing the value µ̂L(ν) is also a hard task, although there exists the
bound µ̂L(ν) ≥

√
vol(L)/vol(ν), where vol(ν) means volume of the valuation ν, i.e.

vol(ν) = lim
α→∞

length(R/Pα)

αn/n!
,

Pα being the set Pα = {f ∈ R | ν(f) ≥ α} ∪ {0} (see [15]). Assuming X = P2,
L a projective line which does not go through p and νE a divisorial valuation of
the function field of P2 centered at OP2,p, the last bound is expressed as µ̂L(νE) ≥√

1/vol(νE) and, if the equality holds, the valuation νE is called minimal. This
concept is strongly involved in a valuative conjecture formulated in [64] (see also
[38]) which implies the well-known Nagata conjecture. In addition, µ̂L(νE) can be
geometrically understood as µ̂L(νE) = sup{s > 0 |L∗ − sE is big} (when k has
characteristic zero), where L∗ is the pull-back of L on the surface defined by νE ,

which establishes a relation with the Newton-Okounkov bodies [15, 28, 65]. When
νE is non-positive at infinity, µ̂L(νE) have been computed explicitly in [64].

Let Fδ be the δth Hirzebruch surface over an algebraically closed field k, δ being a
non-negative integer. The projective plane P2 and the Hirzebruch surfaces Fδ, δ 6= 1,

constitute the classical minimal models for rational surfaces [9]. In this dissertation
we mainly consider divisorial valuations ν of the function field of Fδ centered at
OFδ,p, where Fδ is any Hirzebruch surface and p is a closed point of Fδ, which we
name divisorial valuations of Fδ for short. As algebraic and local objects, these
valuations do not differ of those corresponding to quotient fields of bidimensional
local rings; however our valuations will be considered over global objects giving rise
to global information.

The main goals in this thesis are four:

1. To find adequate affine charts on Fδ that allow us to establish a concept of
non-positivity (or negativity) at infinity in a close way as it was done in the
projective case. The main fact is that valuations ν which are non-positive (or
negative) on non-zero regular functions on these charts give rise to surfaces Z
with interesting geometrical global properties.

2. To compare non-positive at infinity divisorial and real valuations of P2 with
those of Fδ and provide algorithms determining their corresponding dual graphs.

3. To extend the concept of minimality of divisorial valuations of P2 to divisorial
valuations of Fδ and computing the Seshadri-type constant µ̂D(ν) for any non-
positive at infinity divisorial valuation of Fδ and any big divisor D on Fδ.

4. Finally, to explicitly determine the Newton-Okounkov bodies with respect to
flags E• = {Z ⊃ E ⊃ {q}} of divisors D which are the pull-back of big
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divisors and E is the last created exceptional divisor by the sequence of blowups
corresponding to non-positive at infinity valuations ν of Fδ.

The main results of this thesis are stated and proved in the following papers
accomplished jointly my advisors:

[63] C. Galindo, F. Monserrat and C.-J. Moreno-Ávila. Non-positive at infinity
divisorial valuations of Hirzebruch surfaces. Rev. Mat. Complut., 33:349-372,
2020.

[62] C. Galindo, F. Monserrat and C.-J. Moreno-Ávila. Seshadri-type constants and
Newton-Okounkov bodies for non-positive at infinity valuations of Hirzebruch
surfaces. Arxivmath:1905.03531 , 2019.

[61] C. Galindo, F. Monserrat and C.-J. Moreno-Ávila. Discrete equivalence of
non-positive at infinity plane valuations. Arxivmath:1911.06661 , 2019.

We devote the remaining of this introduction to summarize the contents of this
memoir.

Chapter 1 reviews concepts and results which we will use in the upcoming chap-
ters mainly about Hirzebruch surfaces, divisors, blowups and plane valuations. Here
we also establish several conventions and notation that we will follow in this work.
We focus on the 2-dimensional case, but we provide several references which contain
details in higher dimension.

In Chapter 2 we introduce non-positive and negative at infinity divisorial and
irrational valuations of Hirzebruch surfaces Fδ. Valuations of Fδ is a short name for
valuations of the function field of Fδ centered at OFδ,p for some p ∈ Fδ. We study
global geometric properties associated to the surfaces defined by these valuations in
the divisorial case. Finally, we compare the dual graphs which can correspond with
non-positive at infinity divisorial and irrational valuations of P2 and Fδ and provide
an algorithm to obtain all dual graphs corresponding to the previous valuations.
Here our ground fields are algebraically closed of arbitrary characteristic.

Being more specific, Section 2.1 recalls the concepts of non-positive and negative
at infinity divisorial valuation of P2 and the main results that characterize these
valuations.

In Section 2.2 we distinguish two types of divisorial valuations of Fδ, called special
and non-special valuations (Definition 2.2.1). This distinction is due to the particular
geometric structure of the Hirzebruch surfaces (Propositions 1.6.9 and 1.6.10) and
the situation arising from considering a particular finite simple sequence of points
blowups (Proposition 2.2.2). As a result, there exist two natural charts “at infinity”.
On the one hand, that one given by the points of Fδ which belong to neither the fiber
F1 containing p nor the special section M0 on Fδ -the unique integral curve on Fδ
with non-positive self-intersection (Subsection 1.6.1). On the other hand, the chart

https://arxiv.org/abs/1905.03531
https://arxiv.org/abs/1911.06661


8 Introduction

given by the points which are neither in F1 nor in a particular uniquely defined curve
M1 6= M0.

In Section 2.3 we focus on the study of global and local geometric properties of the
rational surfaces Z defined by non-positive or negative at infinity special divisorial
valuations νn of Fδ. We begin by considering certain divisors Λi, 1 ≤ i ≤ n, on
Z (Proposition 2.3.1) and prove that they satisfy several nice properties. We also
describe the relation of these divisors on F1 with those used in [60] for treating a
similar problem for valuations of P2; notice that F1 can be obtained by blowing-up
a point in P2. Our main result is Theorem 2.3.7 which proves [60, Theorem 1] as a
particular case. Next, we state that result.

Theorem A (Theorem 2.3.7). Let νn be a special divisorial valuation of the function
field of Fδ centered at OFδ,p, p being a closed point in Fδ. Set Z the surface that νn
defines. Denote by ϕF1 (respectively, ϕM0) the germ of the fiber F1 (respectively, the
special section M0) at p. Consider the divisor Λn mentioned previously and the last
maximal contact value of νn, βg+1(νn). Then the following conditions are equivalent:

(a) The valuation νn is non-positive at infinity.

(b) The divisor Λn is nef.

(c) The inequality 2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)2 ≥ βg+1(νn) holds.

(d) The cone of curves NE(Z) is generated by the classes of the strict transforms
on Z of F1, M0 and the irreducible exceptional divisors associated with the
composition of point blowups π : Z → Fδ given by νn.

From our reasoning, we are able to prove that all the divisors Λi, 1 ≤ i ≤ n, are
nef and effective when we suppose that νn is non-positive at infinity (Remark 2.3.9
and Corollary 2.3.11). Even more, each special divisorial valuation νi, defined by the
exceptional divisor Ei created by the sequence of blowups π, is also non-positive at
infinity (Corollary 2.3.10) and a non-positive at infinity special irrational valuation
of Fδ can be approached by suitable sequences of non-positive at infinity special
divisorial valuations of Fδ (Corollary 2.3.12).

Negative at infinity special divisorial valuations of Fδ are also characterized in
this memoir; next we state this result which corresponds to Theorem 2.3.14 and has
algebraic and geometric connotations. It extends Theorem 2 of [60].

Theorem B (Theorem 2.3.14). Under the notations in Theorem A, the following
conditions are equivalent:

(a) The valuation νn is negative at infinity.

(b) It holds that either 2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)2 = βg+1(νn) and the Iitaka
dimension of the divisor Λn vanishes, or 2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)2 >

βg+1(νn).
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(c) The inequality Λn · C̃ > 0 holds for the strict transform on Z, C̃, of any curve
C on Fδ, C 6= F1,M0.

This dissertation also considers surfaces defined by non-special divisorial valua-
tions νn of Fδ. We study algebraic and local and global geometric properties related
to the above mentioned surfaces. In this case the family of divisors one needs to use
is much bigger and more complex than in special case (Proposition 2.4.2). We show
that it is enough to consider a set of divisors denoted ∆i, δ + 1 ≤ i ≤ n, (Lemma
2.4.7) to prove the main results of this section (Theorems 2.4.8 and 2.4.14) and their
consequences (Remark 2.4.9 and Corollaries 2.4.10, 2.4.11 and 2.4.12).

Notice that our results on the cone of curves do not assume any positivity property
for the canonical divisor of the considered rational surfaces.

Continuing with our summary of Chapter 2, Section 2.5 is devoted to compare
dual graphs corresponding to the three types of non-positive at infinity divisorial
and irrational valuations considered in this dissertation. As mentioned, valuations
are essentially algebraic objects and then the valuations of Hirzebruch surfaces do
not differ from valuations centered at points of other smooth surfaces. Nevertheless,
it is interesting to attach them to the surface where they are centered and study the
three types of non-positive at infinity valuations which have been defined because
they also contain geometric information. Thus, we would like to know better the
surfaces which they define and to try to find a more purely algebraic definition for
them. As a suitable tuple of rational or real numbers is an equivalent datum to the
dual graph of a valuation as ours (Section 1.3), we say that two real valuations are
discretely equivalent if they have the same tuple (Definition 2.5.1). We provide nu-
merical conditions involving the tuples corresponding to real valuations of P2 or Fδ to
decide which dual graphs admit valuations of some of the above types of non-positive
at infinity valuations (Theorem 2.5.4). Furthermore, we define the sets of discrete
classes corresponding to each type and show inclusions among them (Theorem 2.5.5
and Remark 2.5.6). Finally, we develop an algorithm computing the discrete equiv-
alence classes that admit non-positive at infinity divisorial and irrational valuations
(Subsection 2.5.1).

Chapter 3 studies Seshadri-type constants and Newton-Okounkov bodies of non-
positive at infinity valuations of the projective plane and Hirzebruch surfaces. Here
we assume that C is our ground field.

We start by reviewing the concept of Seshadri-type constant µ̂D(νn) for divisorial
valuations νn of P2 or Fδ and big divisors D on the above surfaces. We also extend
the concept of minimal valuation of P2

C := P2 (Definition 3.0.1); our extension works
for valuations νn and divisors as above. Our definition for the value µ̂D(νn) involves
a limit, but it can be also interpreted geometrically as

µ̂D(νn) = sup{s > 0 |D∗ − sEn is big},
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where En is the exceptional divisor defining νn and D∗ is the pull-back of D on the
surface that νn defines. We will prove in Section 3.1 that our extended definition of
minimal valuation coincides with that given in [38, 64] when applying to a divisorial
valuation of P2. We also show in this section, when νn is a non-minimal valuation
of P2, that the so-called supraminimal curve generates an extremal ray of NE(Z), Z

being the surface defined by νn (Corollary 3.1.6). This supraminimal curve is defined
by the unique monic irreducible polynomial f such that deg(f)µ̂L(νn) = νn(f) ([38,
Lemma 5.1] and [65, Lemma 3.10]).

Our Section 3.2 proves one of the main results of Chapter 3, which shows the
value of µ̂D(νn) for non-positive at infinity divisorial valuations of Fδ and big divisors
on Fδ:

Theorem C (Theorem 3.2.1). Let νn be a non-positive at infinity divisorial valuation
of the function field of Fδ centered at OFδ,p, p ∈ Fδ. Let D be a big divisor that is
linearly equivalent to aF + bM on Fδ. Then

(a) If the valuation νn is special, then µ̂D(νn) = (a+bδ)νn(ϕF1)+bνn(ϕM0), where
ϕF1 (respectively, ϕM0) is the germ of F1 (respectively, M0) at p.

(b) Otherwise, µ̂D(νn) = aνn(ϕF1) + bνn(ϕM1), where ϕF1 (respectively, ϕM1) is
the germ of F1 (respectively, M1) at p.

Theorem C allows us to characterize those non-positive at infinity divisorial valu-
ation of Fδ which are minimal with respect to a big and nef divisor on Fδ (Corollary
3.2.3).

Section 3.3 is devoted to study the Newton-Okounkov bodies of the pull-back
on surfaces Z of big divisors D on either the projective plane P2 or Hirzebruch
surfaces Fδ with respect to flags E• = {Z ⊃ Er ⊃ {pr+1}}, where Er are exceptional
divisors defining divisorial valuations νr of P2 or Fδ and Z the surface given by νr.
For short, we will denote these Newton-Okounkov bodies by ∆ν(D) (see Definition
3.3.3). Notice that following [65, Section 3.2], it can be proved that exceptional
curve valuations ν of P2 or Fδ correspond to valuations νE• attached to the flags E•
as above. These exceptional curve valuations ν have two components ν = (v1, v2),

where v1 = νr is the divisorial valuation defined by Er. We introduce concepts like
special, non-special, non-positive at infinity and minimal exceptional curve valuation
of a Hirzebruch surface which depend on the first component of the exceptional curve
valuation (Definitions 3.3.1 and 3.3.2). Key objects in this section are the so-called
maximal contact values of some divisorial valuations νi defined by the exceptional
divisors Ei appearing in the sequence of point blowups corresponding to νr. These
values are denoted {βj(νi)}

g+1
j=0 and we are only interested in the indices i = r and

i = η (Subsection 1.3.1). We set g∗+ 2 the number of maximal contact values of the
exceptional curve valuation ν. Lemma 3.3.6 considers maximal contact values and
plays an important role in our explicit description of Newton-Okounkov bodies.
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The first main result in Section 3.3 describes the Newton-Okounkov bodies ∆ν(D)

of big divisors on P2 and Fδ of minimal exceptional curve valuations ν.

Theorem D (Theorem 3.3.7). Let E• = {Z ⊃ Er ⊃ {pr+1}} be a flag and ν = ν• its
attached exceptional curve valuation. Set D a big divisor on either P2 or Fδ. Then,
the valuation ν is minimal if and only if the Newton-Okounkov body ∆ν(D) is a

triangle whose vertices are (0, 0),
(
µ̂D(νr),

µ̂D(νr)β0(νη)

β0(νr)

)
and

(
µ̂D(νr),

µ̂D(νr)βg∗ (νη)

βg∗ (νr)

)
,

when pr+1 ∈ Er ∩ Eη with η 6= r. If pr+1 is a free point, the triangle is given by the

vertices (0, 0), (µ̂D(νr), 0) and
(
µ̂D(νr),

µ̂D(νr)

βg∗+1(νr)

)
.

An explicit description of the Newton-Okounkov bodies of flags as above for non-
minimal valuations ν is an open problem. Section 3.3 solves it when the valuations ν
are non-positive at infinity. Notice that [65] solves the case where ν is a non-minimal
exceptional curve valuations of P2.

We divide our study in two subsections (Subsections 3.3.1 and 3.3.2) providing
a description that depends on the fact that the exceptional curve valuation is either
special or non-special.

Following ideas in [86] and [82], we start by looking for suitable values ti which
will be the first components of the vertices of the Newton-Okounkov bodies to be
described (Lemmas 3.3.13 and 3.3.34). Then, we obtain the corresponding Zariski
decompositions (Propositions 3.3.17 and 3.3.38). Recall that these values ti are those
where the ray [D]− t[Er] crosses into a different Zariski chamber and therefore they
characterize locally the structure of the interior of the cone of curves NE(Z) according
to the exceptional curve valuation ν is either minimal or non-minimal (Remarks
3.3.15, 3.3.18, 3.3.36 and 3.3.39). The ray [D∗] − t[Er] crosses a unique Zariski
chamber when ν is minimal with respect to D, and the same holds in a particular
case when ν is special and non-minimal with respect to D. The ray [D∗] − t[Er]
crosses at least two Zariski chamber when ν is non-special and non-minimal with
respect to D.

We conclude this introduction by explaining that the main results in these subsec-
tions are explicit descriptions of the Newton-Okounkov bodies ∆ν(D) of big divisors
with respect to a non-minimal non-positive at infinity exceptional curve valuation ν
of Fδ (see Theorems 3.3.21, 3.3.24, 3.3.27, 3.3.42 and 3.3.45). As a consequence of
these explicit calculations, we show that the vertices of our Newton-Okounkov bodies
depend only on the expression of D, the volume of ν and the values of the germs at
p of the fibre and sections on Fδ whose strict transforms (together with those of the
exceptional divisors) span the cone of curves. As a particular case of the results of
the special exceptional curve valuations of Fδ, we obtain the Newton-Okounkov body
computed in [65, Corollary 5.2] with respect to a non-positive at infinity exceptional
curve valuation of P2 (Corollary 3.3.29).





Chapter 1

Preliminaries

In this chapter we introduce the concepts, notation and conventions needed to de-
velop this dissertation. We restrict the considered objects to the 2-dimensional case
since we will always work there, although almost all of them can be extended to
higher dimension. The style of this first part is descriptive due to its compilatory na-
ture. Unless otherwise stated, our ground fields are algebraically closed of arbitrary
characteristic.

1.1 Basic concepts

We start by collecting some concepts of algebraic geometry. We mainly follow [71].
Other useful references for us are [102, 107] and [108].

Let k be an algebraically closed field of arbitrary characteristic and k∗ := k \{0}.
A variety is an integral separated scheme of finite type over k. Varieties of dimension
2 are named surfaces.

Set Z a surface and p a closed point of Z (i.e., an irreducible 0-dimensional closed
subscheme on Z). We denote by OZ the structural sheaf of Z, by OZ,p the stalk of
OZ at p and by mp the maximal ideal of the local ring OZ,p. The elements of the
stalk OZ,p are called germs. It is said that p is a smooth point of Z if the local ring
OZ,p is regular. Otherwise, p is a singular point (or a singularity) of Z. Moreover,
the surface Z is called to be smooth, non-singular or regular if every point of Z is
smooth. In this work, from now on, surface means 2-dimensional smooth projective
variety and will be usually denoted by Z.

Let G be a prime divisor (i.e., a closed integral subscheme of codimension 1) on
Z and η its generic point. Then, the local ring OZ,η is a discrete valuation ring with
quotient field K(Z), the function field of Z. If νG denotes the corresponding discrete
valuation (see Section 1.3) then, for all non-zero element f of K(Z), the order of f
along G, denoted ordG(f), is defined as νG(f).

A Weil divisor D on Z is an element of the free Z-module Div(Z) generated by

13
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the prime divisors on Z. Thus, D can be written

D = n1G1 + n2G2 + · · ·+ nrGr,

where Gi are prime divisors on Z and ni integer numbers. If ni = 0 for all i, we write
D = 0; if ni ≥ 0 for all i and some of them is strictly positive, then D is called to be
effective or a curve. The union ∪ni 6=0Gi is called the support of D and it is denoted
by supp(D). If C is a curve on Z passing through p, ϕC,p represents the germ of the
curve C at the point p. Often, we only use ϕC if no confusion arises.

Let f be a non-zero rational function of K(Z). The Weil divisor of f , denoted
by div(f), is defined as

div(f) :=
∑
G

ordG(f)G,

where the sum runs over the prime divisors G on Z. A Weil divisor which equals
the divisor of a rational function is named principal divisor. We say that two Weil
divisors D and D′ are linearly equivalent, written D ∼ D′, if D −D′ is a principal
divisor. This is an equivalence relation on Div(Z) and we denote by Cl(Z) the
quotient group Div(Z)/ ∼.

Let K be the constant sheaf corresponding to the function fieldK(Z) [71, Chapter
II, Example 1.0.3]. Denote by K∗ (respectively, O∗Z) the sheaf of invertible elements
in the sheaf of rings K (respectively, OZ). A Cartier divisor D on Z is a global section
of the sheaf K∗/O∗Z . As a result, a Cartier divisor can be described by giving a family
of pairs {(Ui, fi)}i∈I , where {Ui}i∈I is an open covering of Z and fi ∈ Γ(Ui,K∗) is
such that fi/fj ∈ Γ(Ui ∩ Uj ,O∗Z) for all i, j ∈ I. A Cartier divisor {(Ui, fi)}i∈I is
principal if it is in the image of the natural map Γ(Z,K)→ Γ(Z,K∗/O∗Z), i.e. all the
functions fi are restrictions of the same rational function f ∈ K(Z). We say that a
Cartier divisor {(Ui, fi)}i∈I is effective when fi ∈ Γ(Ui,OUi) for all i ∈ I.

Set D1 and D2 two Cartier divisors defined by {(Ui, fi)}i∈I and {(Vj , gj)}j∈J ,
respectively. We define the sum D1 + D2 as the Cartier divisor given by the set
{(Ui ∩ Vj , figj)}i∈I,j∈J . With this operation the set of Cartier divisors is an abelian
group. We say that D1 and D2 are linearly equivalent, D1 ∼ D2, if their difference
is a principal divisor. This is an equivalence relation on the set of Cartier divisors
and we denote by CaCl(Z) its quotient group.

An invertible sheaf L on Z is a locally free OZ-module of rank 1. Set L1 and L2

two invertible sheaves on Z, then the tensor product L1 ⊗OZ L2 (L1 ⊗L2 for short)
is also an invertible sheaf. In addition, if L is an invertible sheaf on Z, there exists
an invertible sheaf L−1 on Z such that L⊗ L−1 ∼= OZ ([71, Chapter II, Proposition
6.12]). The group of isomorphism classes of invertible sheaves on Z under the tensor
product is called Picard group of Z and denoted Pic(Z).

Set D a Cartier divisor on a surface Z defined by {(Ui, fi)}i∈I . The sheaf asso-
ciated to D, denoted OZ(D), is the sub-sheaf of K defined by taking OZ(D) to be
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the sub-OZ-module of K generated by f−1
i on Ui. This is well-defined because fi/fj

is invertible in Ui ∩ Uj , so f−1
i and f−1

j generate the same OZ-module.

Proposition 1.1.1. [71, Chapter II, Proposition 6.13] Let Z be a surface and OZ
its structural sheaf. Then:

(a) for any Cartier divisor D, OZ(D) is an invertible sheaf. The map D 7→ OZ(D)

gives a 1-1 correspondence between Cartier divisors on Z and invertible sub-
sheaves of K.

(b) given two Cartier divisors, D1 and D2, the sheaf associated to D1 − D2 is
isomorphic to OZ(D1)⊗OZ(D2)−1.

(c) two Cartier divisors, D1 and D2, are linearly equivalent if and only if its asso-
ciated invertible sheaves OZ(D1) and OZ(D2) are isomorphic.

All the surfaces Z we are going to consider are noetherian, integral, separated
locally factorial schemes. So, by [71, Chapter II, Proposition 6.11], the group of the
Weil divisors, Div(Z), is isomorphic to the group of Cartier divisors and principal
divisors correspond under this isomorphism. Therefore, we can say that a Cartier di-
visor is principal (respectively, effective) if it corresponds to a principal (respectively,
effective) Weil divisor ([71, Chapter II, Remark 6.17.1]). As a consequence, in the
future, we will use the word divisor, without specifying if it is a Weil or Cartier divi-
sor, and also a curve on Z and its corresponding effective divisor will be denoted by
the same letter. In addition, Pic(Z) is isomorphic to the groups Cl(Z) and CaCl(Z)

([71, Chapter II, Proposition 6.15 and Corollary 6.16]). From now we will use this
isomorphism and we will identify Pic(Z) with the group of the divisors on Z modulo
linear equivalence. The element of Pic(Z) defined by a divisor D will be denoted
[D].

Intersection multiplicity and intersection number on surfaces are important tools
in this work. Let us recall them.

Let Z be a surface as above and suppose that C1 and C2 are two curves on Z

that meet at a point p ∈ Z. The intersection multiplicity (ϕC1 , ϕC2)p of C1 and C2

at p is defined to be

(ϕC1 , ϕC2)p := dimk OZ,p/〈ϕC1 , ϕC2〉.

Moreover, it holds that (ϕC1 , ϕC2)p = 1 if and only if ϕC1 and ϕC2 generate the
maximal ideal mp of OZ,p. In this case, it is said that C1 and C2 are transversal at
p, or meet transversally at p ([9, Chapter I, Definition I.3]). We will understand that
(ϕC1 , ϕC2)p = 0 when C1 or C2 does not pass through p.

Theorem 1.1.2. [71, Chapter V, Theorem 1.1] Keep the previous notation. There
is a unique pairing Div(Z)× Div(Z)→ Z, denoted by D1 ·D2 for any two divisors
D1, D2, such that
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(a) if D1 and D2 are non-singular curves meeting transversally, then D1 · D2 =

#(D1 ∩D2), the number of points of D1 ∩D2,

(b) it is symmetric: D1 ·D2 = D2 ·D1,

(c) it is additive: (D1 +D2) ·D3 = D1 ·D3 +D2 ·D3, for all D3 ∈ Div(Z),

(d) it depends only on the linear equivalence classes: if D1 and D2 are two linearly
equivalent divisors then D1 ·D3 = D2 ·D3, for all D3 ∈ Div(Z).

D1 ·D2 is usually called the intersection number of D1 and D2.

The following proposition connects intersection number and intersection multi-
plicity.

Proposition 1.1.3. [71, Chapter V, Proposition 1.4] If C1 and C2 are curves on a
surface Z having no common irreducible component then

C1 · C2 =
∑

p∈C1∩C2

(ϕC1 , ϕC2)p.

To compute the self-intersection of a divisor D on Z, that is, the intersection
number D2 := D ·D, linear equivalence must be used (see [71, Chapter V, Example
1.4.1]). In addition, using this concept we can define a numerical invariant on Z. Let
ΩZ/k be the sheaf of differentials of Z over k and ωZ = ∧2ΩZ/k the canonical sheaf.
A canonical divisor on Z is any divisor whose associated invertible sheaf is ωZ . KZ

will denote an arbitrary canonical divisor of Z and its self-intersection depends only
on the surface Z.

The intersection number of two classes [D1] and [D2] of Pic(Z) is defined as
intersection number D1 · D2 of any two representatives D1 of [D1] and D2 of [D2].
Moreover, we say that D1 (respectively, [D1]) is orthogonal to D2 (respectively,
[D2]) whenever D1 · D2 = 0 (respectively, [D1] · [D2] = 0). We denote by D⊥

(respectively, [D]⊥) the set of divisors (respectively, the classes of divisors) on Z

which are orthogonal to D (respectively, [D]).

To conclude this section, we introduce several more concepts.
Set L an invertible sheaf on Z. By [71, Chapter II, Theorem 5.19], H0(Z,L) is a

finite-dimensional k-vector space. Fixed s ∈ H0(Z,L), we will denote by div(s)0 the
divisor of zeros of s, that is, the divisor defined by {Ui, φUi(s|Ui)}i∈I , where {Ui}i∈I
is an open covering of Z and φUi : L(Ui)→ OZ(Ui) the isomorphism given by L.

Proposition 1.1.4. [71, Chapter II, Proposition 7.7] Let Z be a surface and D a
divisor on Z. Set L = OZ(D) the corresponding invertible sheaf. Then

(a) For each non-zero s ∈ H0(Z,L), the divisor of zeros of s is an effective divisor
linearly equivalent to D.

(b) Every effective divisor linearly equivalent to D is div(s)0 for some s ∈ H0(Z,L).
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(c) Two sections s, s′ ∈ H0(Z,L) have the same divisor of zeros if and only if there
is a λ ∈ k∗ such that s′ = λs.

A complete linear system on Z is the set (which might be empty) of effective
divisors linearly equivalent to some given divisor D. We denote it by |D|. When L is
isomorphic to the invertible sheaf OZ(D) associated to D, by the above result, one
has a one-to-one correspondence (H0(Z,L) \ {0})/k∗ → |D| defined by s 7→ div(s)0,
which gives |D| a structure of projective space over k.

Proposition 1.1.5. [77, Lemma 1.20] If D is a divisor on a surface Z such that
D2 > 0, then either |nD| 6= ∅ or | − nD| 6= ∅ for n large enough.

Any k-vector subspace d of a complete linear system |D| is called linear system.
In the case of L being isomorphic to OZ(D), the linear system d corresponds to a
k-vector subspace W ⊆ H0(Z,L), where W = {s ∈ H0(Z,L) | div(s)0 ∈ d} ∪ {0},
and the dimension of d, denoted dim(d), is defined as the dimension of d as projective
space, that is, dim(d) = dim(W ) − 1. A point p ∈ Z is said to be a base point of
a linear system d if p ∈ supp(D) for all D ∈ d. A linear system d is base-point-free
when d does not have base points.

Proposition 1.1.6. [71, Chapter II, Lemma 7.8] Let d be a linear system on Z

corresponding to a subspace W ⊆ H0(Z,L). Then, d is base-point-free if and only if
L is generated by its global sections in W .

To finish, the Iitaka dimension [72] of a divisor D on Z is defined as κ(D) := −∞
if |nD| = ∅ for all n ∈ Z>0 and, otherwise,

κ(D) := κ(Z,D) = max{dim φ|nD|(Z)},

where n runs over {m ∈ Z>0 | H0(Z,OZ(mD)) 6= 0}, dim means the projective
dimension and, for each n, φ|nD|(Z) is the closure of the image of the rational map
defined by the complete linear system |nD|. When |nD| 6= ∅, for some n, the Iitaka
dimension satisfies 0 ≤ κ(D) ≤ dim(Z) = 2. By definition, the Kodaira dimension
of Z is the Iitaka dimension of a canonical divisor on Z.

1.2 Blowups and configurations

A well-known tool in algebraic geometry is the concept of blowup. In this section
we recall its definition in the case of surfaces and some of its properties that will be
applied in later sections and chapters. We have mainly followed [9], [18], [22], [91]
and [19]. We will keep the notations and conventions of the above section.

Let Z0 be a smooth projective surface and p a closed point of Z0. Then, there
exist a surface Z and a morphism π : Z → Z0, which are unique up to isomorphism,
such that
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(1) The restriction of π to π−1(Z0 \ {p}) is an isomorphism onto Z0 \ {p}.

(2) π−1(p) = E is isomorphic to P1.

We say that π is the blowup of Z0 at p and E is the exceptional divisor (or exceptional
curve) of the blowup (see, for instance, [9, Chapter II, Section II.1]).

In the literature the above definition often corresponds to the concept of monoidal
transformation (see [71, Chapter V, Section 3]) to distinguish it from other more
general transformations, and the surface Z is denoted by Blp(Z0).

Let D be an effective divisor on Z0. We call strict transform of D on Z to the
divisor defined by the closure of π−1(D \{p}) on Z and we denote it by D̃. The total
transform of D on Z is the pull back π∗D of D. It will be usually denoted by D∗.
If D1 and D2 are two effective divisors on Z0 which are linearly equivalent, then D∗1
and D∗2 are also linearly equivalent (see [73, Proposition 2.15]).

Some properties related to the blowup concept are the following.

Proposition 1.2.1. [9, Chapter II, Lemma II.2 and Proposition II.3] Let Z0 be a
surface, Z the surface created by a blowup π at a closed point p ∈ Z0 and E the
exceptional divisor.

(a) Set D an effective divisor on Z0. It holds that D∗ = D̃ + multp(ϕD)E.

(b) There is an isomorphism Pic(Z0)⊕ Z ∼= Pic(Z) given by (D,m) 7→ D∗ +mE.

(c) Let D1 and D2 be divisors on Z0. Then D∗1 · D∗2 = D1 · D2, D
∗
1 · E = 0 and

E2 = −1.

(d) KZ ∼ K∗Z0
+ E, where KZ and KZ0 are canonical divisors on Z and Z0,

respectively.

Now we are going to consider finite sequences of blowups at closed points and
recall some concepts associate to them. As we will see, the above results can be also
extended to these sequences.

Let Z0 be a surface and p a closed point of Z0. The set of closed points in
the exceptional divisor created after blowing up p is called the first infinitesimal
neighbourhood of p. By induction, if i > 1, the i-th infinitesimal neighbourhood of p
is defined to be the first infinitesimal neighbourhood of some point in the (i− 1)-th
infinitesimal neighbourhood of p. A point q is infinitely near p when q belongs to
some i-th infinitesimal neighbourhood of p for i ≥ 1. The points which are infinitely
near some point of Z0 are called infinitely near Z0. Occasionally, the closed points
of Z0 will be named proper in order to distinguish from the infinitely near ones.

Let p and q be two points which are proper or infinitely near Z0. It is said that
p precedes q, denoted p < q, if and only if q is infinitely near p. We write p ≤ q

if p equals or precedes q. The level of p, written l(p), is the number of proper or
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infinitely near points which precede p. The proper points of Z0 are the points of level
zero.

Consider a finite, or infinite, set C of proper and infinitely near Z0 points. This
set is said to be a configuration of infinitely near points (or configuration for short)
over Z0 if, for every point q ∈ C, the points which precede q belong to C. The points
of level zero of C are called origins of C. When there exists a unique origin p in C, we
will say that C is a configuration with origin at p. Unless otherwise stated, we only
consider finite configurations.

The relation ≤ is a partial order for the set of elements of a configuration C.
Usually this relation is called natural order. If the natural order is a total order, then
we say that the configuration C is a chain. Set � a total order on a configuration C.
The total order � is called admissible for any p, q ∈ C, p ≤ q implies p � q.

Fixed a configuration of infinitely near points C, we can set C = {pi}ni=1 under
an admissible total order such that p1 � p2 � . . . � pn. Moreover, we can attach the
pair (C,�) a unique sequence of points blowups,

πC,� : Z = Zn
πn−→ Zn−1 → · · · → Z1

π1−→ Z0.

such that pi ∈ Zi−1 and Zi = Blpi(Zi−1), for 1 ≤ i ≤ n. The surface Z is called the
sky of the configuration.

The sky of a configuration is eventually independent of the admissible total order
as we see in the following result (see [22, Proposition 4.3.2] or [91, Proposition 1.2.4]).

Proposition 1.2.2. Assume that � and �′ are two admissible total orders of a same
configuration of infinitely near points C over a surface Z0. Set Z and Z ′ the skies
of the configuration associated to � and �′, respectively. Then there exists a unique
isomorphism φ : Z → Z ′.

From now on, we consider configurations over a surface Z0 endowed with an
admissible total order and denote the corresponding sequence of blowups by π.

Let C = {pi}ni=1 be a configuration and consider

π : Z = Zn
πn−→ Zn−1 → · · · → Z1

π1−→ Z0 (1.1)

its sequence of blowups. The exceptional divisor created by blowing-up pi will be
denoted Epi (or simply Ei when no confusion arises).

Let D be a divisor on one of the surfaces in (1.1), Zi. Abusing of notation,
the strict (respectively, total) transform of D on Zj , for j ≥ i, is denoted by D̃

(respectively, D∗). Frequently, the strict transform of Ei will be simply written Ei.
Also, we denote by multpj (ϕD) the multiplicity of the strict transform of D at the
point pi ∈ C, 1 ≤ i ≤ n.

A point pi in C is proximate to a point pj ∈ C, i > j, when the point pi belongs to
the strict transform of Ej on Zi−1. It is denoted by pi → pj . A point pi ∈ C is called
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satellite if pi is proximate to two points of C. Otherwise, pi is named free. When
each point pi belongs to the exceptional divisor Ei−1, for 2 ≤ i ≤ n, (that is, when
C is a chain) the sequence π is said to be simple. Notice that, when C is a chain, a
point pi ∈ C is satellite if there exists an integer j < i− 1 such that pi is proximate
to pj .

Proposition 1.2.3. [18, Theorem 1.6] Let C be a configuration of infinitely near
points and p, q and r points in C. The relation of proximity on C satisfies the following
properties:

(a) If q → p then p < q.

(b) If p ≤ q and l(q) = l(p) + 1 then q → p.

(c) If p < q ≤ r and r → p then q → p.

The following results considers a sequence of blowups as (1.1).

Proposition 1.2.4. [5, Proposition 1.1.26] Keep the notation introduced in the last
paragraphs, the following statements hold.

(a) Set D an effective divisor on Z0. Then D∗ = D̃ +
∑n

i=1 multpi(ϕD)E∗i .

(b) There exists an isomorphism Pic(Z0)⊕ Zn ∼= Pic(Z) given by

(D,m1,m2, . . . ,mn) 7→ D∗ +

n∑
i=1

miE
∗.

(c) KZ ∼ K∗Z0
+
∑n

i=1E
∗
i , where KZ and KZ0 are canonical divisors on Z and Z0,

respectively.

(d) Set D1 and D2 two divisors on Z0. Then it holds that

D∗1 ·D∗2 = D1 ·D2, D1 · E∗i = 0 and D∗1 · Ei = 0, for 1 ≤ i ≤ n.

(e) For all i, j ∈ {1, 2, . . . , n}

Ei · Ej =


−ri − 1 if i = j,

1 if i 6= j and Ei ∩ Ej 6= ∅,
0 otherwise,

where ri is the number of points that are proximate to pi.

(f) For all i, j ∈ {1, 2, . . . , n}

E∗i · E∗j =

{
−1 if i = j,
0 otherwise.
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(g) For all i, j ∈ {1, 2, . . . , n}

Ei · E∗j =


−1 if i = j,
1 if pi → pj,
0 otherwise.

(h) If D1 is a divisor on Z0 and D2 is a divisor on Z then D∗1 ·D2 = D1 · π∗D2,

where π∗D2 is the direct image of the divisor D2 on Z0 induced by π.

Proposition 1.2.4 (a) gives the following expression with respect to the strict and
total transforms of the exceptional divisors:

Ei = E∗i −
∑
pj→pi

E∗j .

As a consequence, the set {E∗1 , E∗2 , . . . , E∗n} is a Z-basis of the free abelian group
ZE1 ⊕ZE2 ⊕ · · · ⊕ZEn of the divisors with exceptional support. The matrix PC :=

(pij)1≤i,j≤n, where pij = −Ei · E∗j , is called proximity matrix of C and gives the
change of basis between {Ei}ni=1 and {E∗i }ni=1. In addition, for a curve C it holds
that

multpi(ϕC) =
∑
pj→pi

multpj (ϕC). (1.2)

See [22, Theorem 3.5.3 (Proximity equalities)].

We conclude the section stating the concept of dual graph of a configuration over
a surface Z0.

A vertex-weighted graph is a pair (Γ, `Γ), where Γ is a non-directed graph whose set
of vertices is VΓ and `Γ : VΓ → Z is a map. For simplicity, we will denote it by Γ. Set
Γ1 and Γ2 two vertex-weighted graphs. A graph homomorphism (Γ1, `Γ1)→ (Γ2, `Γ2)

of vertex-weighted graphs is a morphism φ : Γ1 → Γ2 such that `Γ2(φ(v)) = `Γ1(v)

for all v ∈ VΓ1 .
Let Ω be a set {C1, C2, . . . , Cm} of integral curves on a surface Z. The dual

graph of Ω, denoted by Γ(Ω), is a vertex-weighted graph (Γ(Ω), `Γ(Ω)) obtained as
follows. Its set of vertices corresponds one-to-one to the curves of Ω (that is, one
assigns a vertex v(C) of Γ(Ω) to each curve C ∈ Ω); two vertices v(Ci) and v(Cj)

are connected by an edge when i 6= j and Ci ∩ Cj 6= ∅; and `Γ(Ω)(v(Ci)) := C2
i .

Set C a configuration over a surface Z0. The dual graph ΓC of C is defined to be
the dual graph of Ω := {Ep}p∈C .

1.3 Plane valuations

In this section we describe some properties and objects related to valuations of quo-
tient fields of 2-dimensional regular local rings centered at them. As we will see, these
valuations are directly connected to simple sequences of points blowups. Moreover,
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we recall some of their invariants, which are key objects in this dissertation. We have
developed this section following [117], [109] and [36]. We will keep the notation as
above.

Let K be the quotient field of a 2-dimensional regular local ring (R,m) and set
K∗ = K \ {0}. Assume that k is the residue field R/m and it is algebraically closed
and contained in R. Set G a totally ordered abelian group. A valuation of K is a
surjective map ν : K∗ → G that satisfies:

ν(f + g) ≥ min{ν(f), ν(g)} and ν(fg) = ν(f) + ν(g), for f, g ∈ K∗.

The group G is called the value group of ν. Given two valuations, ν1 : K∗ → G1

and ν2 : K∗ → G2, ν1 and ν2 are equivalent if there exists an order-preserving
isomorphism h : G1 → G2 of their groups of values such that h ◦ ν1 = ν2 (see [117,
Chapter VI, Section 8]).

The valuation ring of ν is the local regular ring Rν := {f ∈ K∗ | ν(f) ≥ 0}∪{0}.
Its maximal ideal is mν = {f ∈ K∗ | ν(f) > 0} ∪ {0}. A valuation ν is said to be
centered at R when R∩mν = m. Two valuations centered at R are equivalent if and
only if their valuation rings are isomorphic [117, Chapter VI, Section 8].

The valuations of K centered at R are usually called plane valuations. Valuations
(not only plane valuations) were central objects in some works of the middle of the
last century by Abhyankar and Zariski which aim to solve problems of resolution of
singularities in algebraic geometry (see [114, 115, 117, 1, 2] for example). Zariski
introduced three classical invariants for valuations which, in the plane case, help us
to classify them: the rank of ν, which is denoted by rk(ν) and defined as the Krull
dimension of Rν ; the rational rank r.rk(ν) of ν, which is the dimension of the Q-
vector space G⊗ZQ; and the transcendence degree of ν, written tr.deg(ν) and defined
as the transcendence degree of the field extension kν/k, where kν is the residue field
kν := Rν/mν . Abhyankar in [2] showed that (in our plane case) the above invariants
satisfy the following inequalities:

rk(ν) + tr.deg(ν) ≤ r.rk(ν) + tr.deg(ν) ≤ dim(R) = 2.

An important geometrical property of the plane valuations is given in the next
theorem (see [117] and [109]).

Keep the above notation and let ν be a plane valuation. Set π the (non-necessarily
finite) simple sequence of point blowups:

π : · · · → Zn
πn−→ Zn−1 → · · · → Z1

π1−→ Z0 = SpecR, (1.3)

where π1 is the blowup at the closed point p := p1 ∈ Z0 defined by the maximal ideal
m and πi+1, i ≥ 1, is the blowup at the unique closed point pi+1 that belongs to the
exceptional divisor Ei created by πi and such that the plane valuation ν is centered
at OZi,pi+1 .

The above assignation gives rise to the following result.
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Theorem 1.3.1. Plane valuations (up to equivalence) of K centered at R correspond
one-to-one with sequences of point blowups as (1.3).

Let ν be a plane valuation. The semigroup of ν, Sν , is defined to be the monoid
ν(R \ {0})∪{0}, and the set Cν = {p1, p2, . . .} is called the configuration of infinitely
near points of ν. Following Section 1.2, notice that Cν is a configuration over Z0 with
origin at p whose cardinality might be infinite. From now on, an exceptional divisor
Ei is called satellite (respectively, free) if the point pi is satellite (respectively, free).

Another useful object related to a plane valuation ν is its dual graph Γν , which is
the dual graph of the configuration Cν . Here, for simplicity, the weight attached to
each vertex will be the positive integer i which represents the exceptional divisor Ei,
instead of the self-intersection of Ei. Notice that both ways of attaching weights to
the graph are equivalent. A vertex of Γν is called to be satellite (respectively, free)
when it represents a satellite (respectively, free) exceptional divisor. As the sequence
of blowups corresponding to ν is simple, the dual graph Γν is a tree and the degree
of the vertices of Γν may be 0, 1, 2 or 3.

Let Γν be the dual graph of a plane valuation ν and Cν the configuration of ν.
Next we introduce some notation. Set st0 := 1 and let us define g ∈ Z≥0 ∪ {∞} and
an increasing sequence of g weights of Γν st1, st2, . . . distinguishing three cases: (1)
Cν is infinite and Γν has infinitely many vertices of degree 3, (2) Cν is finite and its
last point pn is satellite, and (3) otherwise. In case (1) we define g := +∞ and we
set st1 < st2 < · · · the weights of the vertices of degree 3. In case (2) g−1 is defined
to be the number of vertices of degree 3 in Γν and we set st1 < st2 < · · · < stg−1

the weights of those vertices (if there are any) and stg the weight of the vertex
associated to Epn . In case (3) g is the number of vertices of degree 3 in Γν and set
st1 < st2 < · · · < stg the weights of those vertices (if there are any). The vertices
with weight sti before introduced are usually called star vertices or stars.

In the above cases (2) and (3), we distinguish two subgraphs of Γν : Γ̂ν and Γg+1
ν .

The subgraph Γ̂ν is a connected graph formed by the vertices α such that α ≤ stg

and the edges which join them. The subgraph Γg+1
ν contains those vertices α such

that α ≥ stg and their attached edges. In case (1) we set Γ̂ν := Γν

Notice that Γ̂ν is just the vertex 1 when g = 0. Otherwise, one can find more than
one vertex with degree 1 in Γ̂ν . These vertices are named dead ends and denoted in
a ordered way by `i, 0 ≤ i ≤ g. Thus, `0 := 1.

In this work, we will use the following partial order on the set of the vertices of
Γ̂ν : given two vertices α and β, we define α 4 β if there exists a path from 1 to β
going through α. This ordering allows us to divide Γ̂ν into subgraphs Γiν , 1 ≤ i ≤ g,
where Γiν contains the vertices α such that sti−1 4 α 4 `i and the attached edges.

Plane valuations have been classified by Spivakovsky in five types according to
their dual graphs (see [109]). Next we recall this classification. The names of the
different types of valuations come from [47].
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. . .
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Γ1
ν

`1

st11 . . .

...

Γjν

`j

stj

· · ·
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...

Γgν

`g

stg

· · ·

. . .︸ ︷︷ ︸
Tail

Γg+1
ν

`g+1

Figure 1.1: Dual graph of a divisorial valuation

A plane valuation ν is called divisorial if its configuration of infinitely near points
is finite. We set `g+1 the weight the last vertex. The subgraph of Γν whose vertices
(together with the edges joining them) are those whose weights α satisfy stg 4 α 4

`g+1 is denoted Γg+1
ν and named tail. Note that stg = `g+1 and it has degree 0 or 2

when the tail has a unique vertex. If g = 0, every vertex of Γg+1
ν is free. Otherwise,

all the vertices of Γg+1
ν are free with the exception of stg. Figure 1.1 shows the shape

of Γν .

Up to isomorphism, the group of values of a divisorial valuation ν is Z. When
we consider this group embedded into R, then there exists c ∈ R \ {0} such that
ν(f) = c · ordE(f) for all f ∈ K∗, where E is the last exceptional divisor created by
the sequence of point blowups associated to ν [109, Remark 2.7]. Different constants
c give rise to equivalent divisorial valuations defined by the same exceptional divisor.
Throughout this work, we usually assume c = 1. The equivalent valuation to ν given
by c = 1/ν(m), where ν(m) = min{ν(f) | f ∈ m \ {0}}, is called the normalization
of ν and it is denoted νN .
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st11 . . .
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. . .

...

Γgν

`g
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· · ·

. . . . . . ......
Infinitely many
vertices

`g+1

Γg+1
ν

Figure 1.2: Dual graph of an irrational valuation

A valuation ν is named irrational when its configuration is infinite and there is
a positive integer r such that the points pi, for i ≥ r, are satellite and they are not
proximate to a same point. Its group of values is a subgroup of R. The dual graph Γν

is like that in Figure 1.2. The subgraph Γg+1
ν contains infinitely many vertices, the
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exceptional divisors corresponding to those vertices with weight stg + 1 ≤ i ≤ lg+1

are free and the remaining ones are satellite. Here, the vertex with weight stg is
always a star vertex if g 6= 0.

. . .

...

Γ1
ν

`1

st11 . . .
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Γjν

`j

stj

· · ·

. . .

...

Γgν

`g

stg

· · ·

. . . . . .

Infinitely many
free vertices

Figure 1.3: Dual graph of a non-exceptional curve valuation

A plane valuation is a non-exceptional curve valuation if its configuration contains
infinitely many points and all of them are free after a point pr. The group of values
is isomorphic to Z2

lex (lexicographically ordered). The dual graph associated to this
type of valuations is depicted in Figure 1.3. In this case Γg+1

ν has infinitely many
free vertices with the exception of stg when g 6= 0.
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Infinitely many horizontal
or vertical vertices

`g+1

Γg+1
ν

Figure 1.4: Dual graph of an exceptional curve valuation

An exceptional curve valuation is a plane valuation whose configuration has in-
finitely many points and there exists a point pr such that all the points pi, where
i > r, are proximate to pr. Z2

lex is the corresponding group of values. Its dual graph
can be seen in Figure 1.4. The subgraph Γg+1

ν contains infinitely many vertices such
that at the beginning a finite number of them are free and the remaining ones are
satellite. Here, stg is also the weight of a star vertex if g 6= 0 and `g+1 is the last free
vertex in Γg+1

ν .
Finally, a plane valuation is called to be infinitely singular if its associated con-

figuration is infinite and there are infinitely many points which give rise to divisors
Esti . That is, its dual graph (Figure 1.5) has an infinite number of star vertices. Its
group of values is a subgroup of R.
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Figure 1.5: Dual graph of infinitely singular valuation

The following result is useful to perform computations with non-divisorial valu-
ations. More details can be found in [54] and [65, Section 3.2].

Theorem 1.3.2. Let OZ0,p be a regular local ring.

(a) Let ν be a non-exceptional curve valuation centered at OZ0,p. There exists an
analytically irreducible germ of curve ϕC passing through p such that

ν(f) =

{
(0, (ϕC , f)p) , if ϕC - f
(α, (ϕC , f)p) , if f = ϕαCh;ϕC - h

where f, h ∈ OZ0,p \ {0}.

(b) Let ν be an exceptional curve valuation centered at OZ0,p, and Cν = {p1, p2, . . .}
its configuration where all points pi are proximate to a point pr for i > r ≥ 1.
Then, up to equivalence,

ν(f) = (v1(f), v2(f)), for all f ∈ OZ0,p \ {0},

where v1(f) := νr(f) is the divisorial valuation defined by the exceptional divi-
sors Er and v2(f) = νη(f)+

∑
pi→pr multpi(f), νη being the divisorial valuation

defined by Eη and η the index different from r such that pr+1 ∈ Eη when pr+1

is satellite; otherwise, νη(f) = 0.

(c) Let ν be an irrational valuation centered at OZ0,p. Then, up to equivalence,

ν(f) = lim
i→∞

νNi (f), for all f ∈ OZ0,p \ {0},

where νNi is the normalization of the divisorial valuation defined by the excep-
tional divisor Ei created by the sequence of points blowups corresponding to
ν.

(d) Let ν be an infinitely singular valuation centered at OZ0,p. Then, up to equiva-
lence,

ν(f) = lim
i→∞

νNi (f), for all f ∈ OZ0,p \ {0},

where νNi is defined as above.
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Notice that the irrational and infinitely singular valuations of the above theorem
are normalized. In this dissertation we always suppose that condition.

To conclude, in Figure 1.6 we show the relation of the above classification of the
plane valuations with the Zariski invariants.

Type rk(ν) r.rk(ν) tr.deg(ν)

Divisorial valuation 1 1 1

Irrational valuation 1 2 0

Non-exceptional curve valuation 2 2 0

Exceptional curve valuation 2 2 0

Infinitely singular valuation 1 1 0

Figure 1.6: Table of the types of plane valuations

1.3.1 More invariants of plane valuations

Several invariants have been considered to study plane valuations. We define some
of them for divisorial, irrational and exceptional curve valuations, since we will only
consider these valuations in the following chapters (see [109, 36] for further informa-
tion).

Let ν be a divisorial, irrational or exceptional curve valuation and Cν = {pi}i≥1

(p := p1) its configuration of infinitely near points. Write mi the maximal ideal
corresponding to the point pi for i ≥ 1. We call sequence of values of ν to the set
{ν(mi)}i≥1, where ν(mi) = min{ν(f) | f ∈ mi\{0}}. The sequence of values satisfies
the proximities equalities [22, Theorem 8.1.7]:

ν(mi) =
∑
pj→pi

ν(mj), i ≥ 1,

when the set {pj ∈ Cν | pj → pi} is not empty. If ν is an exceptional curve valuation
and pi → pr for every i > r, then ν(mr) = (a, b) and ν(mi) = (0, c), for some
a, b, c ∈ Z, a, c > 0.

Denote by π the simple sequence of blowups associated to ν as showed in (1.3).
Following [109, Section 7] and [47, Chapter 6, Section 6, Subsection 1], there exists an
analytically irreducible germ ϕi at p such that its strict transform on Zi is transversal
to Ei at any previously fixed non-singular point of the exceptional locus. In the
divisorial case, it holds that ν(mi) = multpi(ϕn), for i ≥ 1.

Along this work we will often use the so-called Noether formula for valuations.
One can find a proof in [22, Theorem 8.1.6]:

Lemma 1.3.3. Let ν be a divisorial, irrational or exceptional curve valuation whose
configuration (of infinitely near points) is Cν = {pi}i≥1 (p := p1). Let C be a curve
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on Z0. Then

ν(ϕC) =
∑
i≥1

ν(mi) ·multpi(ϕC).

As a consequence of the above result, if ν is a divisorial valuation defined by
an exceptional divisor En, one has that, under a suitable choice of ϕn, ν(ϕC) =

(ϕn, ϕC)p.

The sequence of Puiseux exponents of ν is defined to be the ordered set {β′i(ν)}g+1
i=0

where β′0(ν) = 1 and, for 1 ≤ i ≤ g + 1, β′i(ν) is the continued fraction

β′i(ν) = ai1 +
1

ai2 +
1

. . . +
1

airi

= 〈ai1; ai2, . . . , a
i
ri〉,

where aik, 1 ≤ k < ri + 1, successively counts the number of vertices in Γiν with the
same value ν(mj). It holds that β′i(ν) ∈ Q>0 \Z>0, for 1 ≤ i < g, and they are bigger
than 1. When ν is divisorial (respectively, irrational), then rg+1 = 1 (respectively,
rg+1 =∞) and thus β′g+1(ν) is a positive integer (respectively, β′g+1(ν) ∈ R>0\Q>0).
When ν is an exceptional curve valuation, then ag+1

rg+1 =∞ and so β′g+1(ν) does not
exist (see [36] for more information).

Finally, the sequence of maximal contact values of ν is the set {βi(ν)}g+1
i=0 , where

each element βi(ν) is the value ν(ϕ`i) for 0 ≤ i ≤ g + 1. This family of invariants
generates the semigroup of values Sν of ν. Moreover, if ν is a divisorial valuation
defined by the divisor En, βg+1(ν) can be obtained as a combination of the remaining
maximal contact values and satisfies

βg+1(ν) =
n∑
i=1

ν(mi)
2, (1.4)

by the Noether formula.

Before stating an useful result, following [46, Section 5.2], we introduce an algo-
rithm that extends the Euclidean division and the greatest common divisor for some
values in the additive semigroup Rn≥0, where n ≥ 1, under the lexicographical order.
We denote the elements of Rn by x = (x1, x2, . . . , xn).

Proposition 1.3.4. [46, Proposition 5.13] Let y ≤ x ∈ Rn≥0 be such that there exists
an index t (1 ≤ t ≤ n) satisfying xj = yj = 0 for j < t and yt > 0. Then there exists
a unique positive integer m such that x = my + z and (0, 0, . . . , 0) =: 0 ≤ z < y.

As a consequence, given two elements x0 and x1 in Rn≥0 such that x1 ≤ x0,
performing when possible “Euclidean divisions” as described in Proposition 1.3.4,
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one gets the following algorithm:

x0 = m0 x1 + x2; 0 < x2 < x1

x1 = m1 x2 + x3; 0 < x3 < x2

...
...

...
...

xl−1 = ml−1 xl + xl+1; 0 < xl+1 < xl
...

...
...

...

The next possibilities for the algorithm can happen:

(1) It stops and xk = mk xk+1 + 0 holds for some index k.

(2) It never stops and one obtains an infinite sequence of non-negative integers
ml, l ≥ 0.

(3) It stops and there exists, for some index k, another index t (1 ≤ t ≤ n) such
that the first t components xk+1,j , 1 ≤ j ≤ t, vanish, but xk,t 6= 0, being
xk,1 = . . . = xk,t−1 = 0, that is, mk =∞.

When Item (1) holds, it is said that xk+1 is the greatest common divisor of x0

and x1, denoted by gcd(x0, x1).
Consider now the sequences of Puiseux exponents {β′i(ν)}g+1

i=0 and the maximal
contact values {βi(ν)}g+1

i=0 of a divisorial, irrational or exceptional curve valuation.
Then both sequences satisfy the following result [36, Lemma 1.8].

Proposition 1.3.5. Under the above notation, for 0 ≤ i < g,

βi+1(ν) = ei(ν)(β′i+1(ν)− 1) + ni(ν)βi(ν) (1.5)

where ei(ν) := gcd(β0(ν), β1(ν), . . . , βi(ν)), n0(ν) = 1 and ni(ν) = ei−1(ν)/ei(ν).

The above formula is also true for i = g when ν is a divisorial or irrational valuation.

As a result, it holds that βi(ν) ∈ Z>0, βi+1(ν) 6∈ ei(ν)Z and βi+1(ν) > ni(ν)βi(ν),

for 0 ≤ i < g. In addition, βg+1(ν) ≥ ng(ν)βg(ν) and, if ν is divisorial, βg+1(ν) is a
positive integer.

The following results will be useful.

Corollary 1.3.6. Let ν be a divisorial valuation, {β′i(ν)}g+1
i=0 its sequence of Puiseux

exponents and {βi(ν)}g+1
i=0 its sequence of maximal contact values. Define eg(ν) = 1,

ei(ν) = gcd(β0(ν), β1(ν), . . . , βi(ν)), n0(ν) = 1, ni(ν) = ei−1(ν)/ei(ν), for 0 ≤ i ≤ g,

as in Proposition 1.3.5. Then

β′i(ν) =
qi(ν)

ni(ν)
, for 1 ≤ i < g + 1,

for some qi(ν) ∈ Z>0 such that gcd(qi(ν), ni(ν)) = 1, and

ei(ν) =

g∏
k=i+1

nk(ν), for 0 ≤ i < g.
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Proof. Suppose g = 1. It follows easily that e0(ν) = β0(ν) and e1(ν) = 1. By
Condition (1.5),

β′1(ν) =
β1(ν)

e0(ν)
=
β1(ν)/e1(ν)

e0(ν)/e1(ν)
=
q1(ν)

n1(ν)
,

where q1(ν) and n1(ν) are positive integers. Also, it holds that

gcd(q1(ν), n1(ν)) = gcd(β1(ν), β0(ν)) = 1,

which completes the proof for the case g = 1.

Now consider g > 1. As above, by (1.5), one gets that

β′i(ν) =
βi(ν)− ni−1(ν)βi−1(ν) + ei−1(ν)

ei−1(ν)

=

(
βi(ν)− ni−1(ν)βi−1(ν) + ei−1(ν)

)
/ei(ν)

ei−1(ν)/ei(ν)
=
qi(ν)

ni(ν)
,

for i ∈ {1, 2, . . . , g}, where qi(ν) and ni(ν) are positive integers satisfying that
gcd(qi(ν), ni(ν)) = 1. Indeed, as βi−1(ν) ∈ ei−1(ν)Z and ei−2(ν), ei−1(ν), βi−1(ν)

and βi(ν) ∈ ei(ν)Z, it holds that qi(ν) and ni(ν) are positive integers. Now we prove
that gcd(qi(ν), ni(ν)) = 1 reasoning by contradiction. Suppose that there exists a
positive integer mi > 1 such that gcd(qi(ν), ni(ν)) = mi. Consequently, one obtains
gcd(β0(ν), β1(ν), . . . , βi(ν)) = miei(ν), which leads to a contradiction.

Finally, it holds that ei(ν) =
∏g
k=i+1 nk(ν), where nk(ν) = ek−1(ν)/ek(ν) and

0 ≤ i < g, since eg(ν) = 1. This concludes the proof.

As a consequence of Proposition 1.3.5 and Corollary 1.3.6, the sequence of maxi-
mal contact values of a divisorial valuation ν might be computed inductively using ex-
clusively its sequence of Puiseux exponents and taking β0(ν) =

∏g
i=1 ni(ν). Another

immediate consequence of the above mentioned results is the following corollary.

Corollary 1.3.7. Let ν (respectively, ν ′) be a divisorial valuation, {β′i(ν)}g+1
i=0 (res-

pectively, {β′i(ν ′)}
ĝ+1
i=0 ) its sequence of Puiseux exponents and {βi(ν)}g+1

i=0 (respectively,
{βi(ν ′)}

ĝ+1
i=0 ) its sequence of maximal contact values. Assume that ĝ ≤ g. Consider

the value ei(ν) (respectively, ei(ν ′)) defined as in Corollary 1.3.6.

(a) If β′i(ν) = β′i(ν
′) for 0 ≤ i ≤ k, where 0 ≤ k < ĝ, then

ei(ν
′) = e · ei(ν) and βi(ν

′) = e · βi(ν), for 0 ≤ i ≤ k,

where 0 ≤ k < ĝ and e = ek(ν
′)/ek(ν).

(b) If β′i(ν) = β′i(ν
′) for 0 ≤ i ≤ ĝ < g, then

ei(ν
′) = e · ei(ν) and βi(ν

′) = e · βi(ν), for 0 ≤ i ≤ ĝ < g,

where e = eĝ(ν)−1.

(c) If β′i(ν) = β′i(ν
′) for 0 ≤ i ≤ ĝ = g, then

ei(ν
′) = ei(ν) and βi(ν

′) = βi(ν), for 0 ≤ i ≤ ĝ = g.
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1.4 Cones associated to a surface

This section contains some basic concepts in convex analysis needed to study the
cone of curves of a surface, one of the most important objects in this dissertation. In
addition, we recall the definitions of several types of divisors, the convex cones that
they generate and the connections among them. For the first part we have followed
[53], [103] and [91] and for the second one [71] and [85]. We keep the notation
established in the above sections.

1.4.1 Convex cones

Let M ∼= Zm be a free module of rank m over Z and N := HomZ(M,Z) its dual
module. Consider the Z-bilinear pairing

〈 , 〉 : N ×M → Z,

where 〈ȳ, x̄〉 is the value of ȳ in x̄, for x̄ ∈M and ȳ ∈ N .
Set the vector space V := M ⊗Z R ∼= Rm over R and its dual vector space

V ∗ := N ⊗Z R ∼= Rm. Each element x̄ of M (respectively, ȳ of N) can be identified
with its image x̄⊗1 in V (respectively, ȳ⊗1 in V ∗). We regard M ⊆ V and N ⊆ V ∗

and notice that the above pairing can be extended as follows:

〈 , 〉 : V ∗ × V → R.

Consider on V and V ∗ the induced usual topology of Rm and set ‖·‖ the associated
metric on V and V ∗. Given A,B subsets of V (or V ∗), denote by Ā the topological
closure (with respect to the usual topology of Rm), Int(A) the topological interior,
A⊥ the orthogonal complement of A with respect to the bilinear pairing 〈 , 〉, −A the
set −A = {−a | a ∈ A} and A+B the set A+B = {a+ b | a ∈ A and b ∈ B}.

We also consider the vector spaces VQ = M ⊗ZQ and V ∗Q = N ⊗Q over Q. They
can be identified as subsets of V and V ∗, respectively. We will denote by AQ the
intersection of a subset A of V (respectively, V ∗) and VQ (respectively, V ∗Q).

Let A be a subset of V . A is said to be convex if λ x̄+ (1−λ) ȳ ∈ A, for x̄, ȳ ∈ A
and λ ∈ R such that 0 ≤ λ ≤ 1. The intersection of all convex sets containing A is
called the convex hull of A and denoted by conv(A). Notice that this convex set is
the smallest one which contains A.

Let S be a non-empty subset of V . We say that S is a convex cone (or simply a
cone) if it satisfies the following conditions:

x̄+ ȳ ∈ S and α x̄ ∈ S, for x̄, ȳ ∈ S and α ∈ R≥0.

The vector subspace of V generated by S is denoted by lin(S) and the dimension of
lin(S) by dim(S). If S = {0}, the dimension is 0.
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Notice that Int(S) ∪ {0}, S̄ and the intersection of non-empty cones are cones.
Indeed, set x̄, ȳ ∈ Int(S)∪{0} and we are going to show that x̄+ ȳ ∈ Int(S)∪{0}. We
can suppose that x̄ and ȳ are different from 0. There exist two neighbourhoods of 0

in lin(S), U and V , such that x̄+U ⊂ S and ȳ+V ⊂ S. Reasoning by contradiction,
suppose that x̄+ ȳ 6∈ Int(S). Therefore, we can find an element z̄ ∈ U ∩ V such that
x̄ + ȳ + z̄ 6∈ S. That is a contradiction, since S is a cone. Set x̄ ∈ Int(S) ∪ {0} and
α ∈ R≥0, let us show that αx̄ ∈ Int(S)∪ {0}. We can suppose that both α and x do
not vanish. Then there exists a neighbourhood U of 0 in lin(S) such that x̄+U ⊂ S.
Thus one has that αx̄ ∈ Int(S) since otherwise, as αU is also a neighbourhood of 0

in lin(S), αx̄+ αz̄ 6∈ Int(S) for some z̄ ∈ U , but αx̄+ αz̄ = α(x̄+ z̄) ∈ S because S
is a cone and x̄+ z̄ ∈ S and then one gets a contradiction. Similar arguments prove
that S̄ and the intersection of non-empty cones are cones.

Let A be a non-empty subset of V . The family of cones which contain A is
non-empty, since V is a cone. The intersection of all cones that contain A is the
smallest cone that contains A and is denoted by con(A). When a cone S of V can
be expressed as S = con(A), where A is a non-empty subset of V , it is said that S
is generated by A.

A subset A of V is said to be polyhedral if it is the intersection of a finite number of
closed semi-spaces. That is, if there exists b̄1, b̄2, . . . , b̄k ∈ V ∗ and β1, β2, . . . , βk ∈ R
such that

A = {x̄ ∈ V | 〈b̄i, x̄〉 ≥ βi for all i = 1, 2, . . . , k}.

If A admits an expression like the previous one such that βi = 0 for all 1 ≤ i ≤ k,
it is said that A is a polyhedral cone. Notice that every polyhedral set is a closed
convex set.

A convex set A in V is said to be finitely generated if it can be expressed as
A = conv(A1) + con(A2), where A1 and A2 are two finite subsets of V .

One has the following property whose proof can be found in [103, Theorem 19.1].

Theorem 1.4.1. A set A ⊆ V is polyhedral if and only if A is a finitely generated
convex set.

As a consequence of the above theorem, a polyhedral cone is a set S of V which
can be defined as S = con(A), where A is a finite subset of V .

Let S be a cone in V . The cone S is named rational if it is generated by elements
in M . A rational cone S ⊂ V is called regular when it is generated by a subset of
a Z-basis of M . If S is a regular cone generated by a subset {ē1, ē2, . . . , ēk} of a
Z-basis of M, any element of S ∩M can be expressed as a unique positive linear
combination of ē1, ē2, . . . , ēk.

The dual cone of a cone S is defined to be the closed cone

S∨ := {ȳ ∈ V ∗ | 〈ȳ, x̄〉 ≥ 0 for all x̄ ∈ S}.
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If S is a polyhedral cone, its dual cone is polyhedral (see [103, (Farkas’ theorem)
Chapter 19 and 22]. Moreover, S = S∨∨ (see [103, Theorem 14.1]).

Proposition 1.4.2. Let S ⊂ V be a regular cone generated by the Z-basis B =

{ēi}mi=1 of Zm. Then, S∨ is generated by the dual Z-basis of B, B∗ = {ē∗i }mi=1.

Proof. Set C∗ the cone generated by B∗. It is clear that C∗ ⊆ C∨ by the definition
of C∗. We are going to prove that C∨ ⊆ C∗. Let x̄ be an element of C∨∩Zm. As B∗

is the dual Z-basis of B, one has that x̄ =
∑m

i=1 αiē
∗
i , where αi ∈ Z, for 1 ≤ i ≤ m.

Then
αi = 〈x̄, ēi〉 ≥ 0, for 1 ≤ i ≤ m,

since x̄ is an element of C∨. As a consequence, x̄ can be expressed as a positive
combination of the generators of C∗ and then it belongs to C∗.

Let S be a polyhedral cone in V . The vector subspace of V given by S ∩ (−S)

is called the linearity space of S. By definition, the cone S is strongly convex if it is
closed and its linearity space is {0}.

There are some useful equivalent conditions to the fact of that a cone is strongly
convex (see [53, Section 1.2]).

Proposition 1.4.3. Let S be a polyhedral cone. Then, the following conditions are
equivalent:

(a) S is strongly convex.

(b) S contains no non-zero linear subspace.

(c) There is an element q̄ ∈ S∨ such that S ∩ {q̄}⊥ = {0}.

A subset F of a cone S of V is called a face of S whenever F := S ∩ {z̄}⊥, for
some z̄ ∈ S∨. It holds that S is a face of S, since S = S ∩ {0}⊥. If S is a strongly
convex cone, {0} is also a face of S. Every face different from S and {0} is named
proper face.

Some properties of the faces of a cone S are shown in the next result.

Proposition 1.4.4. Let S be a cone in V . The following conditions are satisfied:

(a) The faces of S are cones in V .

(b) If S is strongly convex, its faces are also strongly convex.

(c) If S is polyhedral, its proper faces are also polyhedral cones.

(d) If S is polyhedral, S has a finite number of faces.

(e) If F1 and F2 are faces of S such that F1 ⊆ F2, then F1 is a face of F2.
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(f) If S is polyhedral, F2 is a face of S and F1 is a face of F2, then F1 is a face
of S.

(g) If S is polyhedral, then the map F 7→ S∨ ∩ F⊥ is a bijection between the set
of the faces of S and S∨. Moreover, if F1 and F2 are faces of S, it holds that
dim(F) + dim(S∨ ∩ F⊥) = dim(V ) and

F1 ⊆ F2 if and only if S∨ ∩ F⊥2 ⊆ S∨ ∩ F⊥1 .

Proof. One obtains (a) as consequence of the definition of face.
To get (b) notice that, if F is a face of S, then F ∩ (−F) ⊆ S ∩ (−S). As a

result, if S is strongly convex, the face F is strongly convex.
We are going to prove (c) and (d). As S is a polyhedral cone, S is the cone

generated by a subset {v̄1, v̄2, . . . , v̄k} of V . Moreover, by definition, a face F of S
satisfies that F = S ∩ {q̄}⊥, where q̄ ∈ S∨, then F is the cone generated by those v̄i
such that 〈q̄, v̄i〉 = 0. This fact completes the proof.

We also have (e) because if F1 = S ∩ {q̄}⊥, where q̄ ∈ S∨, then q̄ belong to F∨2
by the definition of dual cone. Thus, F1 is a face of F2.

Finally, for proving (f) and (g) it sufficient to see [44, Proposition II.1.7] and [53,
Section 1.2], respectively.

A face F of a cone S is said to be extremal if, given two elements z̄1, z̄2 ∈ S \ {0}
such that z̄1 + z̄2 ∈ F , it holds that z̄1, z̄2 ∈ F . A 1-dimensional extremal face is an
extremal ray. In addition, any polyhedral cone is the convex hull of its extremal rays
[77, Definition 1.15].

We finish this first part of the section with the following result which allows us to
compute the extremal rays of the dual cone of a cone in V . We only show a sketch
of the proof which can be found in [91, Proposition A.3.22].

Proposition 1.4.5. Let V be a vector space of dimension m and S a strongly convex
polyhedral cone in V such that dim(S) = m. Set R = R≥0 r̄ = {α r̄ | α ∈ R≥0} ⊂ S∨,
where r̄ ∈ V ∗. Then, R is a extremal ray of S∨ if and only if there exist m − 1

extremal rays R1 = R≥0 r1,R2 = R≥0 r2, . . . ,Rm−1 = R≥0 rm−1 of S such that
{r1, r2, . . . , rm−1} are linearly independent vectors of V and

R = S∨ ∩R⊥1 ∩R⊥2 ∩ · · · ∩ R⊥m−1.

Proof. Let R be an extremal ray of S∨. By Proposition 1.4.4, there exists a unique
(m − 1)-dimensional face F of S such that R = S∨ ∩ F⊥ \ {0}, F being a strongly
convex polyhedral cone generated by extremal rays of S contained in F . Denote
by R1,R2, . . . ,Rs these rays. Since dim(F) = m − 1, there exist i1, i2, . . . , im−1 ∈
{1, 2, . . . , s} such that {Ri1 ,Ri2 , . . . ,Rim−1} is a basis of lin(F). Therefore,

F⊥ = lin(F )⊥ = R⊥i1 ∩R
⊥
i2 ∩ · · · ∩ R

⊥
im−1

and R = S∨ ∩R⊥i1 ∩R
⊥
i1 ∩ · · · ∩ R

⊥
im−1

.
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Now suppose that R = R≥0 r̄ is a subset of S∨ (r̄ ∈ V ∗) such that

R = S∨ ∩R⊥1 ∩R⊥2 ∩ · · · ∩ R⊥m−1 \ {0},

where R1 = R≥0 r̄1,R2 = R≥0 r̄2, . . . ,Rm−1 = R≥0 r̄m−1 are extremal rays of S and
{r1, r2, ..., rm−1} linearly independent vectors of V . Set A the vector subspace of
V generated by {r̄1, r̄2, . . . , r̄m−1} and F := S ∩ A. Given z̄ ∈ R, it holds that
A = {z̄}⊥ and F := S∩{z̄}⊥. By definition of F , r̄i belongs to F , for 1 ≤ i ≤ m−1,

and thus F is a (m − 1)-dimensional face of S. As a result, R = S∨ ∩ F⊥, since
F⊥ = A⊥ = R⊥1 ∩ R⊥2 ∩ · · · ∩ R⊥m−1. Moreover, by Proposition 1.4.4 (e), R is a
1-dimensional face of S∨ and, consequently, it is an extremal ray of S∨.

1.4.2 Cone of curves of a surface

In this subsection we apply the above concepts and their properties to some geometric
objects which we desire to study. We keep the notation introduced before.

Let Z be a smooth projective surface over an algebraically closed field k (surface
for short). A divisor D on Z is numerically equivalent to zero, D ≡ 0, if D · C = 0

for every curve C on Z. Two divisors D1 and D2 are numerically equivalent if
D1 −D2 ≡ 0.

Recall that Pic(Z) is the Picard group of Z and · the bilinear pairing associated
to Pic(Z) (see Section 1.1 for more information). Inside Pic(Z) we can find the
subgoup Picτ (Z) given by the classes of the divisors numerically equivalent to zero
and define Num(Z) as the set of classes of Pic(Z) modulo numerical equivalence,
that is, Num(Z) = Pic(Z)/Picτ (Z). As Z is a smooth projective surface, the dual
Z-module HomZ(Num(Z),Z) of Num(Z) is isomorphic to Num(Z). Therefore, we
have a bilinear pairing, Num(Z) × Num(Z) → Z, associated to Num(Z), induced
by the bilinear pairing associated to Pic(Z) (see [71, Chapter V, Remark 1.9.1]).
As a consequence of the Nerón-Severi theorem [83], it holds that Num(Z) is a free
Z-module of finite rank. The rank of Num(Z) is named the Picard number of Z.

An element D of the Q-vector space DivQ(Z) := Div(Z) ⊗ Q (R-vector space
DivR(Z) := Div(Z)⊗R) is called Q-divisor (respectively, R-divisor). That is, D can
be expressed as

D = n1G1 + n2G2 + · · ·+ nrGr,

where Gi is a divisor on Z and ni ∈ Q (respectively, ni ∈ R) for 1 ≤ i ≤ r. A Q-
divisor (respectively, R-divisor) is said to be effective when Gi is effective and ni ≥ 0

for all i and some of them is positive.
A Q-divisor (respectively, R-divisor) D is numerically equivalent to zero, D ≡ 0,

if D · C = 0 for every curve C on Z. Two Q-divisors (respectively, R-divisors) D1

and D2 are numerically equivalent if D1 − D2 ≡ 0. The resulting vector space of
numerical equivalence classes is denoted by NumQ(Z) (respectively, NumR(Z)) and
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one has the isomorphism NumQ(Z) = Num(Z)⊗ZQ [85, Remark 1.3.4] (respectively,
NumR(Z) = Num(Z) ⊗Z R [85, Example 1.3.10]). The vector space Num(Z)R has
finite dimension by Nerón-Severi theorem. Moreover, we can extend the bilinear
pairing Num(Z) × Num(Z) → Z to a bilinear pairing NumR(Z) × NumR(Z) → R
that, abusing of the notation, will also be denoted by ·. That is, given [D1], [D2] ∈
NumR(Z), [D1]·[D2] ∈ R. As a result, we have similar conditions to those introduced
at the beginning of this section and then we can consider the concepts and results of
convex cones within NumR(Z).

By definition, the cone of curves of Z, denoted by NE(Z), is the following convex
cone in NumR(Z):

NE(Z) =

{
[D] ∈ NumR(Z) | [D] =

∑
i

ai[Ci],
where Ci is an integral curve
on Z and ai ∈ R≥0.

}

Its topological closure for the usual topology is denoted by NE(Z) and, as Z is
a surface, the R-divisors whose class belongs NE(Z) are called pseudoeffective [85,
Definition 2.2.25 and Remark 2.2.27].

Proposition 1.4.6. [77, Lemma 1.22] Let C be an irreducible curve on a surface Z.
If C2 ≤ 0, then [C] is in the boundary of NE(Z). If C2 < 0, then [C] generates an
extremal ray in NE(Z) and NE(Z).

A divisor (respectively, Q-divisor, R-divisor) on Z is said to be nef if

D · C ≥ 0, for every irreducible curve C on Z.

The convex cone containing the numerical equivalence classes of these R-divisors is
denoted by Nef(Z). The dual cone of the nef cone Nef(Z) is the convex cone NE(Z)

(see [85, Proposition 1.4.28]) and then a divisor D is pseudoeffective if and only if
D · D′ ≥ 0 for every nef divisor D′. Moreover, it holds that Nef(Z) ⊂ NE(Z) [85,
Example 1.4.33 (i)], since Z is a smooth projective surface.

We will also use ample and big divisors. A divisor D which satisfies Nakai-
Moishezon criterion [71, Chapter V, Theorem 1.10], that is, D2 > 0 and D · C > 0,

for every irreducible curve C on Z, is called to be ample. A divisor D is named big
if κ(D) = dimZ. In [85, Corollary 2.2.7] one can find the following characterization
of bigness for a divisor: A divisor D is big if and only if there exist an ample divisor
H, a positive integer n and an effective divisor G such that nD ≡ H +G.

One can find in [85, Theorem 2.2.16] the following characterization of bigness for
a nef divisor.

Theorem 1.4.7. Let D be a nef divisor on a surface Z. Then D is big if and only
if its self-intersection is strictly positive, i.e. D2 > 0.
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A Q-divisor (respectively, R-divisor) D is said to be ample if it can be written as

D = a1H1 + a2H2 + · · ·+ arHr,

where Hi is an ample divisor and ai ∈ Q>0 (respectively, ai ∈ R>0), for 1 ≤ i ≤ r. A
Q-divisor D is big if there is a positive integer m > 0 such that mD is integral and
big. A R-divisor D is big if it can be written as

D = a1B1 + a2B2 + · · ·+ arBr,

where, for all i, Bi is a big integral divisor and ai ∈ R>0. The convex cone generated
by the numerical equivalence classes of ample (respectively, big) R-divisors is denoted
by Amp(Z) (respectively, Big(Z)).

The following result gives us a relation among the convex cones above introduced.
A proof can be found in [76] and [85, Theorem 1.4.23 and Theorem 2.2.26].

Theorem 1.4.8. Keeping the notation used before, it holds that:

(a) The nef cone Nef(Z) is the closure of the ample cone Amp(Z) and Amp(Z) is
the interior of Nef(Z).

(b) The big cone Big(Z) is the interior of NE(Z) and NE(Z) is the closure of
Big(Z).

Now we are going to introduce a last convex cone named characterisitic cone (see
[76] for further information). The characteristic cone of a surface Z is the convex
cone of NumR(Z) generated by the numerical equivalence classes of the semiample
divisors on Z, that is, those divisors D such that the complete linear system |mD| is
base-point-free for some positive integer m. This convex cone is denoted P̃ (Z) and
satisfies the following property.

Proposition 1.4.9. [76] With the previous notation, it holds that P̃ (Z) ⊆ Nef(Z)

and their interiors coincide.

To conclude this section, we present several results which we will use in the
following chapters.

Theorem 1.4.10 (Kleiman’s Ampleness Criterion). Let Z be a surface. A divisor
D on Z is ample if and only if [D] · [D′] > 0 for all [D′] ∈ NE(Z) \ {0}.

The above result was proved by Kleiman [76] and shows that NE(Z) is a strongly
convex cone.

Theorem 1.4.11. [71, Chapter V, Theorem 1.9 (Hodge index theorem)] Let H be an
ample divisor on a surface Z and D a divisor on Z such that D 6≡ 0 and D ·H = 0.
Then, D2 < 0.
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A well-known consequence of Sylvester theorem (see [84, Chapter XV, Section 4,
Theorem 4.1]) is that the bilinear form defined on the vector space NumR(Z) can be
diagonalized with only ±1’s on the diagonal. In addition, by Hodge index theorem
(see [71, Chapter V, Remark 1.9.1]), the diagonalized intersection pairing only has
one +1 corresponding to a multiple of an ample divisor H, and the remaining values
on the diagonal are −1. This allows us to state and prove the following result.

Proposition 1.4.12. Let D be a big and nef divisor on a surface Z. Let Ω =

{C1, C2, . . . , Cm} be a set of integral curves on Z such that D · Ci = 0 for all i =

1, 2, . . . ,m. Then the intersection matrix (Ci · Cj) is negative definite.

Proof. Let M be the m ×m matrix whose entries are Ci · Cj . First notice that for
every y = (y1, y2, . . . , ym) ∈ Rm \ {0},

yM yt = G(y)2, (1.6)

where G(y) is the R-divisor
∑m

i=1 yiCi. Hence, it is enough to see that the self-
intersection of any non-zero class in the hyperplane

[D]⊥ := {x ∈ NumR(Z) | [D] · x = 0}

of the space NumR(Z) is strictly negative. Next we are going to prove it.
Set an ample divisor H on Z. By Hodge index theorem (Theorem 1.4.11) there

exists a basis B = {h0,h1, . . . ,hn} of NumR(Z) such that h0 is a (real) multiple of
[H], h2

0 = 1, h0 ·hi = 0 and hi ·hj = −δij for all i, j ∈ {1, 2, . . . , n}, where δij denotes
the Kronecker delta. Since the intersection matrix whose entries are (hi · hj)1≤i,j≤n

is negative definite, we can restrict our proof to those points of the hyperplane [D]⊥

of NumR(Z) whose first coordinate with respect to B is 1. Let α1, α2, . . . , αn ∈ R
such that (1, α1, . . . , αn) are the coordinates of the vector 1

D·H [D] with respect to
the basis B. Since D is nef and big, D2 > 0 by Theorem 1.4.7 and therefore

n∑
i=1

α2
i < 1. (1.7)

Now, an arbitrary element of NumR(Z) whose coordinates with respect to B are

(1, x1, . . . , xn)

belongs to [D]⊥ if and only if
n∑
i=1

αixi = 1, (1.8)

and has negative self-intersection if and only if
∑n

i=1 x
2
i > 1.

Then our statement on the classes in [D]⊥ follows because the map

f : Rn → R, f(x1, x2, . . . , xn) =

n∑
i=1

x2
i ,
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subject to the restriction (1.8), has an absolute minimum at the point

p =
1∑n
i=1 α

2
i

(α1, α2, . . . , αn) and f(p) =
1∑n
i=1 α

2
i

> 1.

Notice that p is the closest to the origin point of the hyperplane defined by the
equation (1.8) and the last inequality follows from (1.7). This concludes the proof.

Proposition 1.4.13. [77, Corollary 1.21] Let H be an ample divisor on a surface
Z. The set Q(Z) := {[D] ∈ NumR(Z) | [D]2 > 0} has two connected components

Q+(Z) := {[D] ∈ Q(Z) | [D] · [H] > 0} and Q−(Z) := {[D] ∈ Q(Z) | [D] · [H] < 0}.

In particular, Q+(Z) ⊂ NE(Z).

Proposition 1.4.14. Let Z be a surface. Set H an ample divisor on Z and write

A(Z) := {[D] ∈ NumR(Z) | [D]2 ≥ 0 and [D] · [H] ≥ 0}.

Then, it holds that A(Z) = A(Z)∨, where A(Z)∨ is the dual cone of A(Z).

Proof. As the proof of Proposition 1.4.12, assume that B = {h0,h1, . . . ,hn} is a
basis of NumR(Z) such that h2

0 = 1, h0 · hi = 0 and hi · hj = −δij , for 1 ≤ i, j ≤ n,

where δij is the Kronecker delta. Denote by 〈·, ·〉 and || · || the standard inner product
in Rn and the Euclidean norm which it defines.

We start by showing that A(Z) ⊆ A(Z)∨. Fix [D] ∈ A(Z)\{0} whose coordinates
in the basis B are (d0, d1, . . . , dn). Since [D] ∈ A(Z) \ {0}, it holds that d0 > 0.
Otherwise, d0 = [D] · h0 = 0, −

∑n
i=1 d

2
i = [D]2 ≥ 0 and then di vanishes for all i.

Set x = (x1, x2, . . . , xn) ∈ Rn such that xi = di/d0, for 1 ≤ i ≤ n. By definition,
one has that ||x|| ≤ 1. Assume, reasoning by contradiction, that [D] 6∈ A(Z)∨.
Consequently, one can find [D′] ∈ A(Z) with coordinates (d′0, d

′
1, . . . , d

′
n) in the basis

B such that [D] · [D′] < 0. Write y = (y1, y2 . . . , yn) ∈ Rn such that yi = d′i/d
′
0, for

1 ≤ i ≤ n. One obtains that

1 <

n∑
i=1

xiyi = 〈x, y〉 = |〈x, y〉| ≤ ||x|| ||y|| ≤ 1 · 1 = 1,

where | · | is the absolute value and the second inequality is satisfied by Cauchy-
Schwarz inequality. That is a contradiction and then [D] ∈ A(Z)∨.

Now we are going to show that A(Z)∨ ⊆ A(Z), which will conclude the proof.
Set [D] ∈ A(Z)∨ \ {0} with coordinates (d0, d1, . . . , dn) in the basis B. Notice that
h0,h0 + hi and h0 − hi belong to A(Z) for all i. Hence, d0 > 0 because, otherwise,
d0 = [D] · h0 = 0, di = [D] · (h0 + hi) ≥ 0,−di = [D] · (h0 − hi) ≥ 0 and then di

vanishes for all i. Reasoning by contradiction, suppose that [D] 6∈ A(Z). Therefore,
[D]2 < 0. Set an element x = (x1, x2, . . . , xn) ∈ Rn, where xi = di/d0 for i ∈
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{1, 2, . . . , n}. Consequently, ||x|| > 1. Take a divisor D′ whose class has coordinates
(1, x1/||x||, . . . , xn/||x||) (with respect to B) and a vector y = (y1, y2, . . . , yn) ∈ Rn

such that yi = xi/||x||, for 1 ≤ i ≤ n. It holds that ||y|| = 1, [D′]2 = 0 and so the
class of D′ belongs to A(Z). Then

[D] · [D′] ≥ 0 and 〈x, y〉 ≤ 1.

On the other hand, taking into account that y = x/||x||,

||x|| = 1

||x||
〈x, x〉 = 〈x, y〉 ≤ 1

holds, which is a contradiction.

1.5 Seshadri-type constants and Newton-Okounkov bo-
dies

In this section we briefly introduce Seshadri-type constants and show their relation
to Newton-Okounkov bodies corresponding to certain flags on surfaces. These bodies
will be defined later and are convex sets of R2. Our development is supported on
[85, Chapter 5], [8],[86], [82] [15], [40] and [38]. Here, we use the notation established
before, although in this section k = C.

1.5.1 Seshadri-type constants of divisorial valuations

Let Z0 be a (complex smooth irreducible projective) surface and D a nef divisor on
Z0. Let π : Z → Z0 be the blowup at a point p ∈ Z0 with exceptional divisor E.
The Seshadri constant of D at p, denoted by ε(Z0, D; p) (or ε(D; p) for short), is the
non-negative real number

ε(D; p) = sup{t ∈ R≥0 | D∗ − tE is nef on Z},

where D∗ denotes the pull back π∗D.
This constant depends only on the numerical equivalence class of D and satisfies

the homogeneity property: ε(nD; p) = nε(D; p), for every positive integer n and
point p ∈ Z0 [85, Examples 5.1.3 and 5.1.4].

Notice that the ray [D∗]− t[E] meets the boundary of the nef cone of Z for the
value t = ε(D; p). Then, the Seshadri constant ε(D; p) provides information about
the positivity at p of the divisor D [85, Remark 5.1.2].

An equivalent definition of the Seshadri constant is given in the following result.
A proof can be found in [85, Proposition 5.1.5].

Proposition 1.5.1. Keep the notation introduced before. Then

ε(D; p) = inf
p∈C⊆Z0

{
D · C

multp(ϕC)

}
,

where the infimum is taken over all integral curves C ⊆ Z0 going through p.
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The explicit computation of the Seshadri constants is very hard. However, there
exist some upper and lower bounds given by several authors. Let us show some of
them.

According [8], if D is an ample divisor on a smooth projective surface Z0, then

ε(D, p) ≤
√
D2.

Even more, if the Seshadri constant ε(D, p) is irrational, then the equality holds and,
when the strict inequality is satisfied, ε(D, p) is rational. In addition, it holds that
ε(D, p) ≥ 1, for all except countably many points p ∈ Z0 [85, Proposition 5.2.3].

The Seshadri constants have not only been used to study deeply the positivity of
divisors on surfaces, but also on varieties and, particularly, on projective spaces, see
[85, Chapter 5] and [8] for more information.

Some invariants which contain similar information to Seshadri constants have
been also introduced. Next we give some information about them.

Let I ⊆ OZ0 be an ideal sheaf and set D an ample divisor on Z0. Let π : Z → Z0

be the blowup of Z0 along I whose exceptional divisor is denoted by E. The s-
invariant of I with respect to D is the positive real number

sD(I) = inf{t ∈ R | tD∗ − E is nef on Z}.

Notice that if we set the closed point p ∈ Z0 defined by a maximal ideal m ⊆ OZ0 ,
then

ε(D; p) = 1/sD(m).

The s-invariant of I with respect toD is introduced in [31] to study the complexity
of a polynomial ideal in terms of the degrees of its generators from a geometrical
perspective.

Another important invariant related to the Seshadri constants is given in [40].
Let D be an big divisor on Z0. The value µ(D; p) is defined to be

µ(D; p) := sup{t ∈ R | D∗ − tE is big on Z}.

Note that the ray [D∗] − t[E] meets the boundary of the pseudoeffective cone
NE(Z) for the value t = µ(D; p).

In [40, Remark 2.1] a connection between the invariant µ(D; p) and the Seshadri
constant ε(D; p) is established. Assume that D is an ample divisor. If ε(D; p) is
irrational, µ(D; p) = ε(D; p) holds and, when µ(D; p) is rational, then so is ε(D; p).
In addition, it is proved (see [40, Proposition 2.2]) that

µ(D; p) = lim sup
m→∞

max{ordp(f) | f ∈ H0(Z0,OZ0(mD))}
m

.
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The authors of [15] (see also [38] and [64]) extend the previous value µ(D; p) from
a point p to a real valuation ν of the function field of Z0 centered at the local ring
OZ0,p and a big divisor D on Z0 giving rise to the value

µ̂D(ν) := lim
m→∞

max{ν(f) | f ∈ H0(Z0,OZ0(mD))}
m

.

Furthermore, they prove that

µ̂D(ν) = sup{t ∈ R | D∗ − tE is big on Z}, (1.9)

when ν is the divisorial valuation defined by an exceptional divisor E on Z [15,
Theorem 2.24], and provide the following lower bound for a real valuation of the
function field of Z0:

µ̂D(ν) ≥

√
volZ0(D)

vol(ν)
, (1.10)

where, by [43], the value

vol(ν) := lim
α→∞

length(OZ0,p/Pα)

α2/2
, (1.11)

Pα being the ideal Pα = {f ∈ OZ0,p | ν(f) ≥ α} ∪ {0} of the local ring OZ0,p where
ν is centered, is called the volume of ν and

volZ0(D) := lim sup
m→∞

h0(Z0,mD)

m2/2
(1.12)

is named the volume of D.
The case when Z0 = P2 and D = L a general projective line on P2 is studied in

[38] and [64]. This value µ̂L(ν) can be expressed as

µ̂L(ν) = lim
m→∞

max{ν(f) | f ∈ H0(P2,OP2(mL))}
m

and also can been seen geometrically as µ̂L(ν) = sup{t ∈ R | L∗ − tE is big on Z},
where Z is the surface given by ν and L∗ the pull-back of L on Z.

It is important to mention that µ̂L(ν) is involved in a variation of the Nagata
Conjecture in the valuative setting, which implies that conjecture (see [38] and [64]
for more information).

1.5.2 Newton-Okounkov bodies of big divisors on a surface

In this subsection we introduce the Newton-Okounkov bodies corresponding to flags
on surfaces. A general description of these bodies can be seen in the introduction of
this dissertation (see page 4).

Let Z be a smooth complex projective surface and K(Z) its function field. A
flag on Z is a sequence

C• := {Z ⊃ C ⊃ {q}},
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where C is a smooth irreducible curve on Z and q a closed point of C named center
of C•.

A flag C• as above comes with a discrete valuation νC• of rank 2 of the function
field K(Z) (see [28] for further information). Set g = 0 the local equation at q of C
on Z. This valuation νC• : K(Z)→ Z2

lex can be computed as follows:

νC•(f) = (v1(f), v2(f)), where v1(f) := ordC(f) and v2(f) := ordq
(

f

gv1(f)

)
,

for f ∈ K(Z).

Let C• be a flag and D a big divisor on Z. The Newton-Okounkov body of D with
respect to C• is the subset of R2

∆C•(D) = ∆νC• (D) :=
⋃
m≥1

{
νC•(f)

m
| f ∈ H0(Z,mD) \ {0}

}
,

where the upper line means the closed convex hull in R2. This definition can be
extended to big Q-divisors and big R-divisors (see [86]). In our case, Z is a surface,
the Newton-Okounkov body is a polygon (see [82]) and

volZ(D) = 2 volR2(∆ν(D)),

where volR2 means Euclidean area (see [86]) and volZ(D) > 0 since D is big [85, Sub-
section 2.2.C]. In addition, Newton-Okounkov bodies satisfy the homothetic property,
that is, ∆ν(dD) = d ·∆ν(D) for any integer d > 0 (see [86, Proposition 4.1]).

Newton-Okounkov bodies for big R-divisors on a surface can be described making
use of the Zariski decomposition of these divisors.

Set D a pseudoeffective (see page 35) R-divisor on a surface Z. Then the divisor
D can be written as

D = PD +ND,

where ND is an effective R-divisor such that, if ND 6= 0, their irreducible components
generate a negative definite intersection matrix and PD is a nef R-divisor orthogonal
to ND, i.e. PD · ND = 0 (see [116] and [52]). The above expression is called the
Zariski decomposition of D, and PD (respectively, ND) is the positive (respectively,
negative) part of D.

An important consequence of the Zariski decomposition is that vol(D) = P 2
D [85,

Corollary 2.3.22].

Let D be a big R-divisor on a surface Z and C ⊂ Z an integral curve. Write

µ(D,C) = sup{t > 0 | D − tC is big}.

Theorem 1.5.2. [86, Theorem 6.4] and [82, Theorem B] Keep the notation consid-
ered before. The Newton-Okounkov body ∆νC• (D) of D with respect to νC• is the
region

∆νC• (D) = {(t, y) | 0 ≤ t ≤ µ(D,C) and α(t) ≤ y ≤ β(t)},
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where α(t) := ordq(NDt |C) and β(t) := α(t) +PDt ·D. Here, PDt (respectively, NDt)
is the positive (respectively, negative) part of the divisor Dt = D − tC.

Let π : Z → Z0 be the blowup of a point p ∈ Z0 with exceptional divisor E.
Consider a big divisor D on Z0 such that p does not belong to its support. Denote
by D∗ the total transform (or the pull-back) of D on Z. Then, by Equality (1.9),

µ(D∗, E) = µ̂D(ν),

where ν is the divisorial valuation defined by E.

The Zariski decomposition of a big and nef divisor also allows us to provide a
description of the big cone Big(Z) of a smooth projective surface Z (see [7] for more
information).

Let D be a R-divisor on Z and D = PD + ND its Zariski decomposition. We
define the sets

Null(D) = {C | C is a irreducible curve with D · C = 0}

and
Neg(D) = {C | C is a irreducible component of ND}.

Notice that Neg(D) ⊆ Null(PD) holds since PD ·ND = 0.

Let P be a big and nef divisor. The set ΣP defined as

ΣP := {[D] ∈ Big(Z) | Neg(D) = Null(P )}

is called Zariski chamber. This set is a convex cone which, in general, is neither open
nor closed. By [7, Proposition 1.6], the interior of ΣP is given by the set

{[D] ∈ Big(Z) | Neg(D) = Null(P ) = Null(PD)}.

In addition, a big divisor D on Z is in the boundary of some ΣP if and only if
Neg(D) 6= Null(PD) (see [7, Proposition 1.5]).

Theorem 1.5.3. [7, Theorem 1.11] Let Z be a smooth projective surface. Then there
is a locally finite decomposition of the big cone of Z into rational locally polyhedral
subcones such that in each subcone the support of the negative part of the Zariski
decomposition of the divisors is constant.

1.6 Rational surfaces

In this section we review the definition and some properties of Hirzebruch surfaces
which will be fundamental in the next chapters. Our main references are [71], [9],
[102] and [90]. We also show some other results about rational surfaces that can be
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found in [71, Chapter V, Section 5] and [9, Chapter II]. We maintain the notation of
the previous sections.

Let k be an algebraically closed field of arbitrary characteristic and Z1 and Z2

two smooth projective surfaces over k (surfaces for short). Recall that a Zariski open
subset of a surface is dense and, given two morphism f and g from Z1 to Z2 such
that there is a non-empty open subset U ⊂ Z1 satisfying f |U = g|U , then f = g [71,
Chapter I, Lemma 4.1]. A rational map f : Z1 99K Z2 is a morphism f : U → Z2

from a non-empty open subset U ⊂ Z1 to Y . Two rational maps f : U → Z2 and
g : V → Z2, where U, V ⊂ Z1, are the same if f and g coincide on a non-empty open
subset of U∩V . A rational map f : Z1 99K Z2 is said to be dominant if the image of f
contains a non-empty open subset W of Z2. In this case, if g : Z2 99K Z3 is a rational
map between surfaces defined on a non-empty open subset V of Z2, the composition
g ◦ f : Z1 99K Z3 is defined on the non-empty subset f−1(V ∩W ). A rational map
f is called to be birational when it is dominant and there exists another dominant
rational map g : Z2 99K Z1 such that g ◦ f = IdZ1 and f ◦ g = IdZ2 as birational
morphism. In this last case, it is said that Z1 and Z2 are birational, or birationally
equivalent. Notice that, by definition, two surfaces Z1 and Z2 are birational if and
only if they contain isomorphic open subsets.

Let Z be a surface. We will denote by B(Z) the set of isomorphism classes of
surfaces which are birationally equivalent to Z. A surface Z is relatively minimal if
its class in B(Z) is minimal in the following sense: each birational morphism Z → Z ′

is an isomorphism, where Z ′ is a surface which belongs to B(Z).

Proposition 1.6.1. [9, Chapter II, Proposition II.16] For any surface Z, there is a
birational morphism Z → Z ′, where Z ′ is a relatively minimal surface.

Theorem 1.6.2. [9, Chapter II, Theorem II.11] Let f : Z → Z0 be a birational
morphism of surfaces. Then, there is a sequence of blowups πk : Zk → Zk−1, where
1 ≤ k ≤ n, and an isomorphism u : Z → Zn such that f = π1 ◦ . . . ◦ πn ◦ u.

These results can also be found in [71, Chapter V, Theorem 5.8 and Theorem
5.5, respectively]. As a consequence, a smooth projective surface can be obtained
by a finite sequence of point blowups where the first one is centered at a point of a
relatively minimal surface. We are going to show another characterization of these
surfaces.

Let C be a curve on a surface Z. C is a (−1)-curve (or a exceptional curve of the
first kind) whenever C is isomorphic to P1 and C2 = −1. Notice that the exceptional
divisor created by a blowup is a (−1)-curve.

The following result, called Castelnuovo’s contractibility criterion, shows that a
(−1)-curve on a surface is the exceptional divisor of a blowup.

Theorem 1.6.3. [71, Chapter V, Theorem 5.7] Let Z be a surface containing a
(−1)-curve C. Then, there exist a morphism f : Z → Z ′ between surfaces, a closed
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point p ∈ Z ′ and an isomorphism u : Z → Blp(Z ′) such that u(C) is the exceptional
divisor of the blowup π : Blp(Z ′)→ Z ′ and f = π ◦ u.

As a consequence, one has the following result.

Corollary 1.6.4. A surface Z is relatively minimal if and only if Z contains no
(−1)-curve.

We are interested in a particular class of surfaces called rational.
Let P1 := P1

k be the projective line over field k. A surface Z is called birationally
ruled if it is birationally equivalent to C ×P1 for some curve C. If C = P1, Z is said
to be a rational surface. A geometrically ruled surface, or simply a ruled surface, is
a surface Z, together with a surjective projective morphism π : Z → C to a (non-
singular) curve C, such that the fibre Zp := π−1(p) is isomorphic to P1 for every
point p ∈ C, and such that π admits a section (i.e., a morphism σ : C → X such
that π ◦σ = IdC). It holds that every ruled surface is birationally ruled [71, Chapter
V, Proposition 2.2].

An example of rational surface is the projective plane P2 := P2
k over k. Other

examples are the surfaces we next define.

Definition 1.6.5. Let δ be a non-negative integer. The δ-th Hirzebruch surface is
the projective space Fδ := P(OP1 ⊕OP1(−δ)).

The Hirzebruch surfaces are ruled surfaces over P1 and every ruled surface Z over
P1 is isomorphic to P(OP1 ⊕ OP1(−δ)) for some non-negative integer δ [9, Chapter
III, Proposition III.15]. As a result, the Hirzebruch surfaces are rational surfaces. In
addition, we have the following consequence of [9, Chapter V, Theorem V.10] and
Corollary 1.6.4.

Theorem 1.6.6. Z is a relatively minimal rational surface if and only if Z is iso-
morphic to P2 or to one of the surfaces Fδ, for δ = 0 or δ ≥ 2.

The above result allows us to conclude that every rational surface can be seen as
a surface created by a finite sequence of point blowups over P2 or Fδ, where δ is a
non-negative integer different from 1.

To finish this first part of this section, we notice that two divisors on P2 or Fδ
are linearly equivalent if and only if they are numerically equivalent. As a result, it
holds that

Pic(P2) = Num(P2) and Pic(Fδ) = Num(Fδ).

1.6.1 Hirzebruch surfaces

We devote this subsection to give an extended description of the Hirzebruch surfaces.
Recall that k is an algebraically closed field of arbitrary characteristic.
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Let Fδ be a Hirzebruch surface over k and pr : Fδ → P1 the projective morphism
associated to Fδ (since Fδ is a ruled surface). Denote by Pic(Fδ) the Picard group
of Fδ and by [D] the linear equivalence class of a divisor D. It holds that Pic(Fδ)
is isomorphic to Z ⊕ Z and it is generated by the set {[F ], [M ]}, where F is a fiber
of pr and M a section of pr whose self-intersection is δ. The matrix of the bilinear
pairing of Pic(Fδ) with respect to that basis is(

0 1

1 δ

)
.

When δ is positive, there exists a unique irreducible curve on Fδ with negative self-
intersection. That curve is linearly equivalent to −δF + M and its self-intersection
equals −δ (see [9, Chapter IV, Proposition IV.1]); it is denoted by M0 and is usually
called the special section. Notice that, if δ = 0, M0 will denote a section such that
M2

0 = 0.
The following result will be useful.

Proposition 1.6.7. Let Fδ be a Hirzebruch surface.

(a) Let C be an irreducible curve C 6= F,M0. Then C ∼ aF + bM, where a ≥ 0

and b > 0.

(b) The cone of curves NE(Fδ) is generated by the class of a fiber F and that of
the section M0.

(c) A divisor D ∼ aF + bM on Fδ is nef if and only if a ≥ 0 and b ≥ 0.

(d) A divisor D ∼ aF + bM on Fδ is big if and only if b > 0 and a > −δb.

Proof. Item (a) follows from [71, Chapter V, Proposition 2.20].
Item (b) holds by (a) and by the fact that M0 is the curve with non-positive

self-intersection on Fδ.
Now we are going to prove (c). By (b), one has that a divisor D ∼ aF + bM is

nef if and only if D · F ≥ 0 and D ·M0 ≥ 0. Then, a divisor D is nef if and only if
b ≥ 0 and a ≥ 0.

Finally we show (d). A divisor D ∼ aF + bM is big if and only if D ·D′ > 0 for
every nef divisor D′ on Fδ. Taking into account (c), one obtains that the nef divisors
are generated by the class of a fiber F and that of a section M . As a consequence, a
divisor D is big if and only if the conditions b = D · F > 0 and a+ bδ = D ·M > 0

hold.

Remark 1.6.8. Let Fδ be a Hirzebruch surface. When δ is a positive integer, we
can find big divisors D on Fδ which are not nef. In fact, these divisors are linearly
equivalent to aF + bM , where b ∈ Z>0 and −δb < a < 0. In addition, it is easy to
check that the Zariski decomposition of D, D = PD +ND, is PD ∼ (b+ a/δ)M and
ND ∼ (−a/δ)M0.
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Let A2 = A2
k be the affine plane over k. A Hirzebruch surface Fδ can be obtained

as the quotient of (A2 \ {(0, 0)}) × (A2 \ {(0, 0)}) by an action of the product of
multiplicative groups, k∗× k∗, where k∗ = k \ {0} (see [102, Chapter 2]). Let X0, X1

be coordinates in the first factor and Y0, Y1 coordinates in the second one. For each
(λ, µ) ∈ k∗ × k∗ the action is defined as follows:

(λ, 1) : (X0, X1;Y0, Y1) → (λX0, λX1;Y0, λ
−δY1)

(1, µ) : (X0, X1;Y0, Y1) → (X0, X1;µY0, µY1)
. (1.13)

Note that the action preserves the ratio (X0 : X1) and then the projective morphism
pr : Fδ → P1 is just the projection onto the first factor.

On account of [30] and [90, Section 1.2], the homogeneous coordinate ring of Fδ
is Sδ := k[X0, X1, Y0, Y1], where each variable is graded on Z× Z≥0 as follows

degX0 = (1, 0), degX1 = (1, 0), deg Y0 = (0, 1), deg Y1 = (−δ, 1).

The set of homogeneous elements of degree (a, b) ∈ Z×Z≥0 in Sδ is described as

Sδ(a, b) :=
⊕

α0+α1=δβ1+a, β0+β1=b

kXα0
0 Xα1

1 Y β0
0 Y β1

1

and so, it is said that an integral curve C on Fδ has degree (a, b) if it is defined by
an irreducible and reduced polynomial H ∈ Sδ(a, b). Recall that, by Proposition
1.6.7(a), any irreducible curve C of degree (a, b), different from a fiber F and M0, is
linearly equivalent to aF + bM , where a ≥ 0 and b > 0.

Assume that δ is positive. The above development shows that an irreducible
curve on Fδ of degree (1, 0) is linearly equivalent to a fiber F and it is defined by the
equation aX0 + bX1 = 0, where a, b ∈ k and at least one of them is not equal to zero.
Similarly, an irreducible curve of degree (0, 1) on Fδ is linearly equivalent to M and
its equation is aY0 +

∑δ
i=0 biX

i
0X

δ−i
1 Y1 = 0, where a ∈ k∗ and bi ∈ k. Finally, one

can see that M0 is defined by the equation Y1 = 0.
Notice that a point p ∈ Fδ determines a fiber F and p cannot belong to the

intersection of the special section M0 and an irreducible curve linearly equivalent to
M . Next, we distinguish two types of points in Fδ which will be considered along
this work. A point p ∈ Fδ is called a special point if p belongs to the special section.
Otherwise, p is named a general point.

A useful result about the geometry of a Hirzebruch surface Fδ, where δ ≥ 1, is
the following one stated in [90].

Proposition 1.6.9. Assume that δ ≥ 1. Then, through any general point of Fδ a δ-
dimensional family of irreducible curves linearly equivalent to M goes. Furthermore,
an irreducible curve of degree (1, 0) and an irreducible curve of degree (0, 1) meet at
a general point.
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Proof. Let (px0 : px1 ; py0 , py1) be the coordinates of a general point p ∈ Fδ; this means
py1 6= 0. In addition p determines a fiber F and so either px0 or px1 does not vanish.
Consequently, with the previous notation, one obtains that

bδ =
apy0 +

∑δ−1
i=0 bi(px0)i(px1)δ−ipy1

(px0)δpy1
or b0 =

apy0 +
∑δ

i=1 bi(px0)i(px1)δ−ipy1

(px1)δpy1

which finishes the proof of our first statement taking into account a ∈ k∗.
The second one holds since an irreducible curve of degree (1, 0) (respectively, an

irreducible curve of degree (0, 1)) is linearly equivalent to F (respectively, M) and
F ·M = 1.

When δ = 0, the Hirzebruch surface is F0 = P(OP1 ⊕ OP1) and this surface is
isomorphic to P1×P1 by (1.13). This gives rise to two morphisms to P1, obtaining a
double ruling structure. Note that, in this case, there is no special section (M0 ∼M)
and the matrix of the bilinear pairing is(

0 1

1 0

)
.

The homogeneous coordinate ring of F0 is S0 := k[X0, X1, Y0, Y1] whose variables
have the following degrees:

degX0 = (1, 0) = degX1 and deg Y0 = (0, 1) = deg Y1.

The homogeneous part of degree (a, b) ∈ Z≥0 × Z≥0 of S0 equals

S0(a, b) =
⊕

α0+α1=a, β0+β1=b

kXα0
0 Xα1

1 Y β0
0 Y β1

1

and an irreducible curve C of degree (a, b) on F0 is linearly equivalent to aF +

bM , where b > 0 and a ≥ 0. In addition, when studying F0, there is no need of
distinguishing between special and general points.

Proposition 1.6.10. [90, Lemma 1.2.3] A point p in F0 determines and it is deter-
mined by a unique curve F of degree (1, 0) and a unique curve M of degree (0, 1).

Notice that a point p = (px0 : px1 ; py0 , py1) in F0 defines and is defined by an irre-
ducible curve F of degree (1, 0) with equation px1X0− px0X1 = 0 and an irreducible
curve M of degree (0, 1) with equation py1Y0 − py0Y1 = 0.

Remark 1.6.11. When considering either a point p ∈ F0 or a special point in Fδ,
δ ≥ 1, we get the same behaviour as in Proposition 1.6.10: a point in F0 determines
a unique fiber and a unique section M , and a special point belongs to the special
section and it determines a unique fiber F .
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To finish this section, we show some details about the local structure of a Hirze-
bruch surface.

Let δ be a non-negative integer and Fδ a Hirzebruch surface. Fδ is covered by
four open sets, all of them isomorphic to A2. These open sets will be denoted by
Ui,j := Fδ \V(XiYj), for 0 ≤ i, j ≤ 1, where V(XiYj) is the closed set in Fδ described
by the points which satisfy XiYj = 0.

Indeed, when i = j = 0, taking λ = 1/X0, it holds that

(X0 : X1;Y0, Y1) ≡ (1 : X1/X0;Y0, X
δ
0Y1).

Now, if we pick µ = 1/Y0, one obtains that

(1 : X1/X0;Y0, X
δ
0Y1) ≡ (1 : X1/X0; 1, (Xδ

0Y1)/Y0).

As X0 and Y0 are not equal to zero, and X1 and Y1 can take any value in k, we get
affine coordinates (1 : X1/X0; 1, (Xδ

0Y1)/Y0) ∼= (u, v), where (u, v) ∈ A2. Analogous
descriptions can be done for the remaining open sets.

The following result provides some changes of coordinates for the previous open
sets.

Proposition 1.6.12. Let Ui,j be the open sets of the surface Fδ above defined.
Consider, as described, affine coordinates (u, v) for Ui,j and (u′, v′) for Uk,l, where
i, j, k, l ∈ {0, 1}. Then

(a) 
u′ =

1

u

v′ =
1

uδv

, if i = j = 0 and k = l = 1. And

(b) 
u′ =

1

u

v′ =
v

uδ

, if i = 0 and j = k = l = 1.

Proof. We prove (a). A proof for (b) runs similarly. Consider a point p ∈ U0,0∩U1,1.
Then the coordinates of p in U0,0 are (px0 : px1 ; py0 , py1), where px0 6= 0 and py0 6= 0,

and

(px0 : px1 ; py0 , py1) ≡
(

1 :
px1
px0

; 1,
(px0)δpy1
py0

)
.

Moreover, p ∈ U1,1, therefore

(px0 : px1 ; py0 , py1) ≡
(
px0
px1

: 1;
py0

(px1)δpy1
, 1

)
.



1.6. Rational surfaces 51

Denote px1
px0

and (px0 )δpy1
py0

by u and v, respectively; and px0
px1

and py0
(px1 )δpy1

by u′ and
v′, respectively. As a consequence, it holds that

u′ =
px0
px1

=
1

u
, and

v′ =
py0

(px1)δpy1
=

py0
(px0)δpy1

(px0)δ

(px1)δ
=

1

uδv
,

which finishes the proof.
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Chapter 2

Non-positive and negative at
infinity valuations of a rational
surface

In this chapter we introduce the concepts of non-positivity and negativity at infinity
of divisorial and irrational valuations of the projective plane P2 and of a Hirzebruch
surface Fδ, δ ≥ 0. We will show that rational surfaces defined by divisorial valuations
of the above types enjoy good geometrical properties. Asymptotic results could
be deduced from real valuations. For our study, we divide the above considered
valuations into three types. Since these valuations are essentially characterized by
their dual graphs (as we will explain), we study their dual graphs and provide an
algorithm to generate them. Our main results and proofs concerning these objects
can be found in [63] and [61].

To start we introduce the notation that we use in this chapter.
Let k be an arbitrary algebraically closed field. Assume that the surface Z0 is

either the projective plane P2 or a Hirzebruch surface Fδ, δ ≥ 0, over k. Consider a
finite or infinite simple sequence of blowups

π : · · · → Zn
πn−→ Zn−1 → · · · → Z1

π1−→ Z0, (2.1)

where each blowup πi : Zi → Zi−1 is centered at a closed point pi ∈ Zi−1 such that
p1 = p ∈ Z0 and, otherwise, pi belongs to the exceptional divisor created by πi−1.

Abusing of notation, for each surface Zn (with n ≥ 1), we denote by Ei (respectively,
E∗i ), i ≤ n, the strict (respectively, total) transform on Zn of the exceptional divisor
Ei created after blowing-up pi and by D̃ (respectively, D∗) the strict (respectively,
total) transform on Zn of a divisor D on Zi. Write ϕC (respectively, ϕi) the germ
of a curve C at p (respectively, an analytically irreducible germ at p whose strict
transform on Zi is transversal to Ei at a non-singular point of the exceptional locus).

In this chapter we only consider divisorial and irrational valuations. Set ν the

53
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divisorial or irrational valuation defined by a simple sequence of blowups as (2.1).
Frequently and for short, ν is usually called a divisorial or irrational valuation of Z0.
Recall that if π is finite, then ν is a divisorial valuation and this valuation is defined by
the last exceptional divisor En. Often, when the situation requires it, the valuation
ν is denoted νn. Cν = {pi}i≥1 stands for the configuration of infinitely near points
of ν, the dual graph of ν is denoted by Γν and its corresponding subgraphs by Γiν ,
for i ∈ {1, 2, . . . , g+ 1}. We also denote by {βi(ν)}g+1

i=0 (respectively, {β′i(ν)}g+1
i=0 ) the

sequence of maximal contact values (respectively, the sequence of Puiseux exponents)
associated to ν.

Let νn be the divisorial valuation of the function field of Z0 centered at OZ0,p

defined by the exceptional divisor En. Set Z := Zn the surface generated by νn.
According the previous chapter, it holds that

Pic(Z) ∼= Pic(Z0)⊕ ZE∗1 ⊕ ZE∗2 ⊕ · · · ⊕ ZE∗n.

The corresponding bilinear paring is denoted by ·. Write PicR(Z) the tensor product
Pic(Z) ⊗ R and, by abuse of notation, · its bilinear pairing. Notice that PicR(Z) =

NumR(Z).

2.1 Non-positive at infinity valuations of the projective
plane

In this section we assume that Z0 = P2. Let ν be a divisorial or irrational valuation of
the function field of P2 centered at OP2,p and π the simple sequence of point blowups
that it defines. We always suppose that the number of blowups is at least 2. Set
L the projective line (called the line at infinity) containing the point p and whose
strict transform passes through p2.

Definition 2.1.1. Under the above assumptions, the valuation ν is called to be
non-positive at infinity (NPI) when ν(f) ≤ 0, for all f ∈ OP2(P2 \ L). If ν(f) < 0

holds, for all f ∈ OP2(P2 \ L) \ k, then ν is said to be negative at infinity (NI).

From a geometric point of view, NPI and NI divisorial valuations of P2 are inte-
resting since they give us information about the cone of curves of the surfaces that
they define, as we will see in the following results. These theorems can be found in
[60] and our future Theorems 2.3.7 and 2.3.14 will extend them to the case Z0 = Fδ.

Theorem 2.1.2. Let νn be a divisorial valuation of P2 and L the line at infinity.
Set βg+1(νn) (respectively, {νn(mi)}ni=1) the last maximal contact value (respectively,
the sequence of values) of νn. Then, the following conditions are equivalent:

(a) The valuation νn is non-positive at infinity.

(b) νn(ϕL)2 ≥ βg+1(νn).



2.2. Valuations of a Hirzebruch surface 55

(c) The divisor νn(ϕL)E∗0 −
∑n

i=1 νn(mi)E
∗
i , where E

∗
0 is the total transform of a

projective line E0 which does not pass through p, is nef.

(d) The cone of curves NE(Z) is generated by the classes of L̃, E1, E2, . . . , En (i.e.,
it is regular).

Theorem 2.1.3. Keeping the assumptions and notation of Theorem 2.1.2, the fo-
llowing conditions are equivalent:

(a) The valuation νn is negative at infinity.

(b) Either νn(ϕL)2 > βg+1(νn), or νn(ϕL)2 = βg+1(νn) and the Iitaka dimension
of νn(ϕL)E∗0 +

∑n
i=1 νn(mi)E

∗
i vanishes.

(c) The intersection product of νn(ϕL)E∗0 +
∑n

i=1 νn(mi)E
∗
i and the strict transform

of any integral curve C on P2 different from the projective line L is positive.

2.2 Valuations of a Hirzebruch surface

This section considers divisorial and irrational valuations of a Hirzebruch surface and
divides them into two types named special and non-special.

In this section we assume that the surface Z0 of the sequence π (2.1) is a Hirze-
bruch surface Fδ, δ ≥ 0, and p a closed point in Fδ. Recall that a basic introduction
about Hirzebruch surfaces was provided in Subsection 1.6.1. Let νn be a divisorial
valuation of the function field of Fδ centered at OFδ,p.

Definition 2.2.1. A divisorial valuation νn as above is called to be special (with
respect to Fδ and p) when one of the following conditions holds:

1. δ = 0.

2. δ > 0 and p is a special point.

3. δ > 0, p is a general point and there is no integral curve in the complete linear
system |M | whose strict transform on Z has negative self-intersection.

Otherwise, νn will be named non-special.

We start with a property of non-special divisorial valuations.

Proposition 2.2.2. Let νn be a non-special divisorial valuation and Cνn = {pi}ni=1

its configuration of infinitely near points. Suppose also that there exists an integral
curve M ′, linearly equivalent to M, going through p = p1 and whose strict transform
passes through p2. Then, there exists a unique integral curve M1 ∈ |M | such that M1

goes through p and their strict transforms pass through the points p2, p3, . . . , pδ+1.
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Proof. We start by showing the existence of M1. Without loss of generality suppose
that the general point p has coordinates (0, 1; 0, 1) ∈ U11. Pick affine coordinates
{u, v} =

{
X0
X1
, Y0
Xδ

1Y1

}
for which p = (0, 0). By Subsection 1.6.1, an integral curve of

degree (0, 1) passing through p is defined by the equation aY0+
∑δ

i=1 biX
i
0X

δ−i
1 Y1 = 0,

where a ∈ k∗ and bi ∈ k, 1 ≤ i ≤ δ. One can assume a = 1 with local equation (in
U11) v +

∑δ
i=1 biu

i = 0.

Blowing up the point p and looking at the strict transform of curves as M , we
notice the existence of a (δ − 1)-dimensional family of curves linearly equivalent to
M̃ = M∗−E∗1 which goes through each point of the exceptional divisor E1 with the
exception of the point at infinity. If now we blow any point different from the infinity,
we obtain a similar situation appearing a (δ−2)-dimensional family of curves linearly
equivalent to M̃ = M∗ − E∗1 − E∗2 going through each free point of E2. Repeating
this procedure and noticing that every point pi, i ≤ δ + 1, is free, we conclude the
existence of a section M1 as in the statement.

To finish let us show the uniqueness. Suppose that the strict transforms M̃1 and
M̃2 of two curvesM1 andM2 of degree (0, 1) go through pδ+1. Then M̃1 and M̃2 also
pass through pi, 1 ≤ i ≤ δ. This fact fixes the values bi in the above given equation
for M1 and M2. As a consequence, the equations of M1 and M2 are the same and
we conclude the proof.

Remark 2.2.3. By the above proposition, another way of stating the condition (3)
of Definition 2.2.1 is to say: δ > 0, p is a general point and, either p2 ∈ Cνn belongs
to strict transform of the fiber of pr passing through p on Z1, or there does not exist
any j ≥ δ + 1 such that the points pi, 1 ≤ i ≤ j, of Cνn are free.

Let us see how our types of divisorial valuations can be extended to irrational
ones.

Definition 2.2.4. Let ν be an irrational valuation of Fδ. Set νNi the normalized
divisorial valuations of Fδ which satisfy ν(f) = limi→∞ ν

N
i (f), for all f ∈ OFδ,p.

Then ν is said special (respectively, non-special) when so are νNi , i� 1.

Let ν be a divisorial or irrational valuation of Fδ centered at OFδ,p. Denote by
F1 the fiber of pr which contains the point p. When ν is non-special, M1 is the curve
provided by Proposition 2.2.2 whose strict transform has negative self-intersection
on the surface defined by ν (if ν is divisorial), or by νNi , i� 1 (otherwise).

Definition 2.2.5. Under the above notation, a special (respectively, non-special)
divisorial or irrational valuation ν of Fδ is called non-positive at infinity (NPI) when
ν(f) ≤ 0, for f ∈ OFδ(Fδ \ (F1 ∪M0)) (respectively, f ∈ OFδ(Fδ \ (F1 ∪M1))). And,
ν is said to be negative at infinity (NI) if ν(f) < 0, for f ∈ OFδ(Fδ \ (F1 ∪M0)),
f 6∈ k (respectively, f ∈ OFδ(Fδ \ (F1 ∪M1)), f 6∈ k).
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2.3 The cone of curves of a surface defined by an NPI
special divisorial valuation of a Hirzebruch surface

Our goal in this section is to give a geometric characterization to the fact that a
special divisorial valuation of a Hirzebruch surface Fδ, δ ≥ 0, is non-positive, or
negative, at infinity.

Let p be a point of a Hirzebruch surface Fδ, δ ≥ 0, and νn a special divisorial
valuation of the function field of Fδ centered at OFδ,p. Keeping the notation of the
above sections, denote by F1 the fiber of pr going through the point p and M0 the
special section, or the section of pr containing p when δ = 0. Recall that Z := Zn is
the rational surface defined by the finite simple sequence of blowups

π : Z := Zn
πn−→ Zn−1 → · · · → Z1

π1−→ Z0 = Fδ (2.2)

corresponding to the divisorial valuation νn.
Notice that F̃1 and M̃0 have negative self-intersection on Z since F 2

1 = 0 and
M2

0 = −δ. Therefore, by Proposition 1.4.6, the classes of F̃1 and M̃0 generate ex-
tremal rays of the cones NE(Z) and NE(Z). For our purposes, we need to consider the
strongly convex cone S1(Z) of PicR(Z) generated by the set {[F̃1], [M̃0]} ∪ {[Ei]}ni=1

and also its dual cone

S∨1 (Z) = {[D] ∈ PicR(Z) | [D] · [C] ≥ 0, for all [C] ∈ S1(Z)}.

The following proposition provides generators for the cone S∨1 (Z).

Proposition 2.3.1. The dual cone S∨1 (Z) is generated by [F ∗], [M∗] and the classes
{[Λi]}ni=1 of the divisors

Λi := aiF
∗ + biM

∗ −
i∑

j=1

multpj (ϕi)E
∗
j , (2.3)

where ai := (ϕi, ϕM0)p and bi := (ϕi, ϕF1)p.

Proof. By Proposition 1.4.2, it suffices to show that {[F ∗], [M∗]} ∪ {[Λi]}ni=1 is the
dual basis of the basis {[F̃1], [M̃0]}∪{[Ei]}ni=1 of Pic(Z) with respect to the intersec-
tion product.

Let piF1 be the last point in the configuration Cνn of the valuation νn giving rise
to Z through which the strict transform of F1 passes. Also, if p belongs to M0, we
define iM0 such that piM0

is the last point of Cν through which the strict transform of
M0 passes; otherwise we define iM0 := 0. Taking into account that ϕi is analytically
irreducible, the proximity equalities (Equation (1.2)) show that Λi · Ej = δij , where
δij denotes the Kronecker delta. Also, for each i ∈ {1, 2, . . . , n}, it holds

Λi · F̃1 = bi −
min{i,iF1}∑

j=1

multpj (ϕi) = 0,



58 2. NPI and NI valuations of a rational surface

and

Λi · M̃0 = ai −
min{i,iM0

}∑
j=1

multpj (ϕi) = 0,

where the summations with upper index equal to 0 are defined to be 0. Finally notice
that F ∗ · F̃1 = 0, F ∗ · M̃0 = 1, M∗ · F̃1 = 1, M∗ · M̃0 = 0 and F ∗ · Ei = M∗ · Ei = 0

for all i = 1, 2, . . . , n. This concludes the proof.

Remark 2.3.2. By Subsection 1.3.1, the divisor Λi defined in (2.3) can also be
written as

Λi = νi(ϕM0)F ∗ + νi(ϕF1)M∗ −
i∑

j=1

νi(mj)E
∗
j , (2.4)

where νi, 1 ≤ i ≤ n, is the divisorial valuation of Fδ defined by the divisor Ei created
in the sequence (2.2) and {νi(mj)}ij=1 its sequence of values. In addition, the self-
intersection of Λi is

Λ2
i = 2aibi + δb2i − βg+1(νi) = 2νi(ϕM0)νi(ϕF1) + δνi(ϕF1)2 − βg+1(νi),

where βg+1(νi) is the last maximal contact value of νi.

From now on the expression shown in the right hand of Equation (2.4) will be
denoted Λ(νi).

The following two results show that a divisorial valuation of P2 determines a
special divisorial valuation of the Hirzebruch surface F1 providing the same surface
Z. These results also relate some useful divisors and invariants corresponding to
both valuations.

Proposition 2.3.3. Let νn be a divisorial valuation of P2 and L the line at infinity
as in Subsection 2.1. Set Cνn = {pi}ni=1 (respectively, {νn(mi)}ni=1) the configuration
of infinitely near points (respectively, the sequence of values) of νn and consider
νn(ϕL)E∗0 −

∑n
i=1 νn(mi)E

∗
i the divisor defined in Theorem 2.1.2(c). Then there

exists a special divisorial valuation ν of F1 defining the same surface Z as νn such
that

E∗0 − E∗1 ∼ F ∗ and νn(ϕL)E∗0 −
n∑
i=1

νn(mi)E
∗
i ∼ Λ(ν), for n > 1.

Proof. Consider the finite sequence defined by νn (finishing at Z = Zn) given in
(2.2). For 1 ≤ i ≤ n, denote by Epi the exceptional divisor created after blowing-
up pi. By [9, Chapter IV, Proposition IV.1], F1 can be regarded as the projective
plane P2 with the point p blown up. Since we are considering that p = p1 ∈ L (see
Subsection 2.1), any fiber F of pr is a curve which belongs to |L̃|, where L̃ is the
strict transform of L on Z1 = F1, andM0 ∼ Ep1 on F1. Now, take Cν = {qi}n−1

i=1 such
that qi = pi+1, for 1 ≤ i ≤ n− 1; it is the configuration of infinitely near points of a
special divisorial valuation ν of F1 and defines the same surface Z as νn. Set Eqi the
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exceptional divisor created after blowing-up qi, for 1 ≤ i ≤ n− 1. Write {ν(ni)}n−1
i=1

the sequence of values of ν. It holds that

ν(ϕM0) = νn(m1) and ν(ni) = νn(mi+1), for 1 ≤ i ≤ n− 1.

Suppose now that piL is the last point of Cνn through which L̃ goes and set F1 the fiber
which contains q1 = p2 on F1 whose strict transforms pass through q2, q3, . . . , qiF1 =

piL . Then

νn(ϕL) =

iL∑
j=1

νn(mj) ·multpj (ϕL) =

iF1∑
j=1

ν(nj) ·multqj (ϕF1) + νn(m1)

= ν(ϕF1) + ν(ϕM0).

As a result, one has that

Λ(ν) = ν(ϕM0)F ∗ + ν(ϕF1)M∗ −
n−1∑
i=1

ν(ni)E
∗
qi

∼ (ν(ϕM0) + ν(ϕF1))F ∗ + ν(ϕF1)M∗0 −
n−1∑
i=1

ν(ni)E
∗
qi

∼ νn(ϕL)E∗0 − νn(m1)E∗p1 −
n∑
i=2

νn(mi)E
∗
pi

= νn(ϕL)E∗0 −
n∑
i=1

νn(mi)E
∗
pi ,

which completes the proof.

Corollary 2.3.4. Let νn be a divisorial valuation of P2 and Cνn = {pi}ni=1 (res-
pectively, {νn(mi)}g+1

i=0 , {β′i(νn)}g+1
i=0 , {βi(νn)}g+1

i=0 ) its configuration of infinitely near
points (respectively, its sequence of values, its sequence of Puiseux exponents, its
sequence of maximal contact values). Set ν the special divisorial valuation of F1

defined by ν as described in Proposition 2.3.3 and denote by {β′i(ν)}ĝ+1
i=0 (respectively,

{βi(ν)}ĝ+1
i=0 ) its sequence of Puiseux exponents (respectively, its sequence of maximal

contact values). Then,

(a) If β′1(νn) ≥ 2,

• β′1(ν) = β′1(νn)− 1 and β′i(ν) = β′i(νn), for 2 ≤ i < g + 2;

• β0(ν) = β0(νn)and βi(ν) = βi(νn)−νn(m1)·multp1(ϕli), for 1 ≤ i ≤ g+1.

(b) If 1 < β′1(νn) < 2 and ĝ = g,

• β′1(ν) =
1

β′1(νn)− 1
and β′i(ν) = β′i(νn), for 2 ≤ i ≤ g + 1;

• β0(ν) = β1(νn)− β0(νn), β1(ν) = β0(νn) and
βi(ν) = βi(νn)− νn(m1) ·multp1(ϕ`i), for 2 ≤ i ≤ g + 1.
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(c) If 1 < β′1(νn) < 2 and ĝ = g − 1,

• β′1(ν) =
1

β′1(νn)− 1
+ β′2(νn)− 1 and β′i(ν) = β′i+1(νn), for 2 ≤ i < g+ 1;

• β0(ν) = β1(νn) − β0(νn) and βi(ν) = βi+1(νn) − νn(m1) · multp1(ϕ`i+1
),

for 1 ≤ i ≤ g.

Proof. Following the proof of Proposition 2.3.3, recall that Cν = {qi}n−1
i=1 (respec-

tively, {ν(ni)}n−1
i=1 ) denotes the configuration of infinitely near points (respectively,

the sequence of values) of ν which satisfies qi = pi+1 (respectively, ν(ni) = ν(mi+1)),
for 1 ≤ i ≤ n − 1. In addition, Epi (respectively, Eqi) is the exceptional divisor
created after blowing-up pi (respectively, qi).

We begin by proving (a). By assumption one has νn(m1) = νn(m2) and conse-
quently ĝ = g, β0(ν) = β0(νn),

β′1(ν) = β′1(νn)− 1 and β′i(ν) = β′i(νn), for 2 ≤ i < g + 2.

Moreover, by definition βi(νn) = νn(ϕp`i ) (respectively, βi(ν) = νn(ϕqki )) where
ϕp`i (respectively, ϕqki ) is an analytically irreducible germ at p1 (respectively, q1)
whose strict transform is transversal to Ep`i (respectively, Eqki ), being these last
two exceptional divisors those corresponding with the dead ends of Γiνn and Γiν ,
respectively. Moreover, it holds that

qki = q`i−1 = p`i and multqj (ϕqki ) = multpj+1(ϕp`i ), for 1 ≤ j ≤ n− 1,

since ĝ = g. Therefore,

βi(ν) = ν(ϕqki ) =
n−1∑
j=1

ν(nj) ·multqj (ϕqki )

=
n∑
j=2

νn(mj) ·multpj (ϕp`i )

= νn(ϕp`i )− νn(m1) ·multp1(ϕp`i ),

which proves (a).
Let us show (b) recall that ĝ = g. As 1 < β′1(νn) < 2, νn(m1) > νn(m2) and then

β0(ν) = νn(m2) = β1(νn)− β0(νn), β1(ν) = β0(νn),

β′1(ν) =
1

β′1(νn)− 1
and β′i(ν) = β′i(νn), for 2 ≤ i ≤ g + 1,

since ĝ = g. This proves the statement after noticing that the relation among the
maximal contact values of the valuations follows from a similar argument to that
developed before.

Finally, we prove (c). In this case, note that β′1(νn) = 1 + 1/a1
2, where a1

2 ∈ Z>0.

Thus,

β′1(ν) =
1

β′1(νn)− 1
+ β′2(νn)− 1 and β′i(ν) = β′i+1(νn), for 2 ≤ i < g + 1.



2.3. The cone of curves of NPI special valuations 61

In addition, β0(ν) = νn(m2) = β1(νn)− β0(νn) and, taking into account that

qki = p`i+1
, for 1 ≤ i ≤ g, and multqj (ϕqki ) = multpj+1(ϕp`i+1

), for 1 ≤ j ≤ n− 1,

the relation among the maximal contact values of the valuations follows by using an
analogous reasoning to that shown previously. This completes the proof.

Remark 2.3.5. Corollary 2.3.4 provides the following condition

βĝ+1(ν) = βg+1(νn)− νn(m1)2.

As a consequence, the following chain of equalities holds:

Λ(ν)2 = 2ν(ϕM0)ν(ϕF1) + ν(ϕF1)2 − βĝ+1(ν)

= (ν(ϕF1) + ν(ϕM0))2 − (βĝ+1(ν) + ν(ϕM0)2)

=

(
νn(ϕL)E∗0 −

n∑
i=1

νn(mi)E
∗
i

)2

,

where we have used the fact that νn(ϕL) = ν(ϕF1) + ν(ϕM0) and νn(m1) = ν(ϕM0).

Now we return to our study of surfaces given by special divisorial valuations of
Hirzebruch surfaces Fδ where δ need not be one. The family of divisors {Λi}ni=1

defined in (2.3) is important in this section because it has interesting properties
which are suitable to achieve our propose, as we will see in the following result.

Lemma 2.3.6. Let νn be a special divisorial valuation of Fδ. Then, under the
above notation, it holds that Λ2

1 ≥ 0, and the inequality Λ2
i ≥ 0 for some index

i ∈ {2, 3, . . . , n} implies:

(a) Λ2
i > 0, if pi is a satellite point of the configuration Cνn.

(b) Λ2
i−1 ≥ 0 and, when Λ2

i−1 = 0, the point pi is satellite and the point pi−1 is
free.

Proof. The self-intersection of the divisor Λ1 satisfies Λ2
1 = 1 + δ when p1 is a special

point and also when δ = 0. Otherwise, Λ2
1 = δ − 1.

For proving the remaining statements, we can assume, without loss of generality,
that i = n ≥ 2.

We are going to prove the result when p1 is a special point. Otherwise, the proof
is the same after setting δ = 0 or an = 0.

We start with the proof of (a) for which we will use some properties of the set of
maximal contact values of νn, {βj(νn)}g+1

j=0 . We divide this proof in two cases.
Case 1(a): g > 1. Reasoning by contradiction and taking into account that the

point pn is satellite, we get that

0 = Λ2
n = 2anbn + δb2n − eg−1(νn)βg(νn) = eg−1(νn)

[
2anbn + δb2n
eg−1(νn)

− βg(νn)

]
,
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where eg−1(νn) = gcd(β0(νn), β1(νn), . . . , βg−1(νn)) (see Proposition 1.3.5). Since
both an and bn are either a multiple of β0(νn) or β1(νn), the first addend in the brack-
ets is a multiple of eg−1(νn), which gives a contradiction because gcd(eg−1(νn), βg(νn))

equals 1.
Case 2(a): g = 1. We distinguish three sub-cases: The first one when the values

an and bn are divisible by β0(νn). Then eg−1(νn) = e0(νn) = β0(νn) and the proof
follows as above. The second one when the value an satisfies an = β1(νn); then
Λ2
n = β0(νn)(2β1(νn) + β0(νn)δ − β1(νn)) > 0. Otherwise, it holds that

Λ2
n = β1(νn)(2β0(νn) + β1(νn)δ − β0(νn)) > 0,

which concludes the proof of (a).

Now we prove (b). Again we can suppose that i = n. We also assume that
the point pn is satellite (otherwise Λ2

n−1 > 0 by the Noether formula). Denote by
νn−1 the divisorial valuation defined by the divisor En−1. Let {βj(νn−1)}ĝ+1

j=0 be the
sequence of maximal contact values of νn−1,

eg−1(νn−1) = gcd(β0(νn−1), β1(νn−1), . . . , βg−1(νn−1))

and e := eĝ−1(νn−1)/eĝ−1(νn). Consider two cases with two sub-cases.
Case 1(b): g = ĝ. Assume first that g > 1. From the following equality, which is

proved in [60, Lemma 2],

|βg(νn−1)− eβg(νn)| = 1

eg−1(νn)
, (2.5)

one can deduce that

−
eg−1(νn)βg(νn−1)

e
≥ −1

e
− eg−1(νn)βg(νn). (2.6)

In this case both valuations νn and νn−1 are defined by satellite points, therefore
an−1 = ean, bn−1 = ebn, βg+1(νn) = eg−1(νn)βg(νn) and

βg+1(νn−1) = eg−1(νn−1)βg(νn−1)

by Equality (1.5) and Corollary 1.3.7. As a consequence

Λ2
n−1 = e2

[
2anbn + δb2n −

eg−1(νn)βg(νn−1)

e

]

≥ e2

[
2anbn + δb2n −

1

e
− eg−1(νn)βg(νn)

]
= e2

[
Λ2
n −

1

e

]
> 0,

where the first inequality is deduced from (2.6) and the last one holds since Λ2
n >

eg−1(νn) > 1/e.
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To conclude the proof in this case, it remains to study what happens when g = 1.
We consider the same subcases as above. The first one where the values an and bn
are both divisible by β0(νn) and the fact Λ2

n−1 > 0 can be proved as before. The
second one where the value an equals β1(νn), then one has that

Λ2
n−1 = 2β0(νn−1)β1(νn−1) + δβ0(νn−1)2 − β2(νn−1)

= β0(νn−1)(2β1(νn−1) + δβ0(νn−1)− β1(νn−1))

= β0(νn−1)(β1(νn−1) + δβ0(νn−1)) > 0.

Otherwise, one has Λ2
n−1 = β1(νn−1)(β0(νn−1) + δβ1(νn−1)) > 0 and the proof ends.

Case 2(b): ĝ = g − 1. When g > 1, it holds

βĝ+1(νn−1) =
βg+1(νn) + 2

4

and thus
Λ2
n−1 =

1

4

(
2anbn + δb2n − βg+1(νn)− 2

)
=

1

4
Λ2
n −

1

2
≥ 0,

because Λ2
n ≥ 2.

Finally we must assume that g = 1 and, as above, when the values an and bn are
divisible by β0(νn) = 2, Λ2

n−1 ≥ 0. When an = β1(νn), Λ2
n−1 = β1(νn−1) + δ ≥ 0,

and otherwise,

Λ2
n−1 = 2β1(νn−1) + δβ1(νn−1)2 − β1(νn−1) ≥ 0,

which concludes the proof.

Recall that νn is a special divisorial valuation of Fδ and Z is the surface de-
fined by νn. The next theorem provides equivalent conditions to the fact that νn
is non-positive at infinity. This result uses the values an and bn and the divisor Λn

introduced in Proposition 2.3.1.

Theorem 2.3.7. Let νn be a special divisorial valuation of the function field of Fδ
centered at OFδ,p. Set Z the surface that νn defines. Consider the divisor Λn given
in (2.3) and the last maximal contact value of νn, βg+1(νn). Then the following
conditions are equivalent:

(a) The valuation νn is non-positive at infinity.

(b) The divisor Λn is nef.

(c) The inequality 2anbn + δb2n ≥ βg+1(νn) holds.

(d) The cone of curves NE(Z) is generated by the classes of the strict transforms on
Z of the fiber passing through p, the section M0 and the irreducible exceptional
divisors associated with the map π given by νn.
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Proof. Our first step is to prove the equivalence between (a) and (b), and we start
by proving that (b) implies (a). We assume firstly that δ > 0 and p = p1 is a special
point. We are going to use the notation introduced in Subsection 1.6.1. Without
loss of generality, suppose that the special point p has coordinates (1 : 0; 1, 0). The
point p belongs to the fiber F1 whose equation is X1 = 0, and the special section M0

is defined by the equation Y1 = 0. Set U00 the affine open set of Fδ given by X0 6= 0

and Y0 6= 0, whose associated affine coordinates are {u, v} =
{
X1
X0
,
Xδ

0Y1
Y0

}
. Consider

also the affine open set of Fδ, U11, defined by X1 6= 0 and Y1 6= 0, with coordinates
{x, y} =

{
X0
X1
, Y0
Xδ

1Y1

}
. It holds that p ∈ U00 and F1 and M0 have local equations

u = 0 and v = 0, respectively. Denote by P the set of non-constant functions in
OFδ(U11) (up to multiplication by a nonzero element of k) such that neither x nor y
divide them. In terms of the coordinates {u, v}, f ∈ P can be expressed as

f(x, y) = f(1/u, 1/uδv) =
hf (u, v)

udeg1(hf )+δ deg2(hf )vdeg2(hf )
, (2.7)

where hf (u, v) ∈ OFδ(U00). The bi-homogeneous polynomial

X
deg1(hf )
0 Y

deg2(hf )
0 · hf

(
X1

X0
,
Xδ

0Y1

Y0

)
defines a curve Cf on the surface Fδ of degree (deg1(hf ), deg2(hf )) and, if F ′ and
M ′ are the fiber and the section on Fδ with equations X0 = 0 and Y0 = 0, it holds
that the map f → Cf defines a one-to-one correspondence between P and the set of
the curves on Fδ containing no curve in {F1, F

′,M0,M
′} as a component. Now, the

conditions Λn nef and (2.7) show that

0 ≤Λn · Cf = Λn ·

[
deg1(hf )F ∗ + deg2(hf )M∗ −

n∑
i=1

multpi(hf )E∗i

]
=− [−(deg1(hf ) + deg2(hf )δ)νn(u)− deg2(hf )νn(v) + νn(hf )] = −νn(f).

Thus, to finish the proof of (a) in this case (p is a special point), it only remains to
assume that either x or y or both are factors of f . Then the proof follows from the
existence of non-negative integers α, β with α+ β 6= 0 and f1 ∈ P such that

νn(f) = νn(xαyβf1) = −(α+ βδ)νn(u)− βνn(v) + νn(f1) ≤ 0.

If δ = 0 the proof is analogous, and the non-positivity of νn for the case when p is
a general point can be proved in a similar way after assuming that p has coordinates
(0 : 1; 0, 1) and considering local coordinates {u, v} =

{
X0
X1
, Y0
Xδ

1Y1

}
in the affine open

set U11 and {x, y} =
{
X1
X0
, Y0
Xδ

0Y1

}
in U01.

Now we are going to prove that (a) implies (b). Assume by contradiction that
the divisor Λn is not nef and, therefore, that there exists an effective divisor C such
that Λn · C < 0. This implies that, with the above notation, if p is a special point
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–or p ∈ F0–, (respectively, p is a general point), then there exists f ∈ OFδ(U11)

(respectively, f ∈ OFδ(U01)) such that −νn(f) = Λn · C < 0, a contradiction.
The fact that (b) implies (c) follows easily from previous computations given in

Remark 2.3.2.
Let us prove that (d) can be deduced from (c). Fix any ample divisor H on the

surface Z and consider the set

A(Z) := {[D] ∈ PicR(Z) | [D]2 ≥ 0 and [H] · [D] ≥ 0}.

Recall that the above defined cone S1(Z) is generated by the classes [F̃1], [M̃0] and
[Ei], 1 ≤ i ≤ n, and we are going to prove that

NE(Z) = S1(Z) + S∨1 (Z) = NE(Z) (2.8)

and
S∨1 (Z) ⊆ A(Z) ⊆ S1(Z) (2.9)

hold, which shows (d). Our Condition (c) means that Λ2
n ≥ 0 and by Lemma 2.3.6,

one has that Λ2
i ≥ 0, 1 ≤ i ≤ n − 1. Proposition 2.3.1 proves the first inclusion

in (2.9) and the last one follows from the first one and the equality A(Z)∨ = A(Z)

given in Proposition 1.4.14.
It remains to prove the chain of equalities (2.8). First, notice that A(Z) ⊆ NE(Z)

by Proposition 1.4.13. Thus S∨1 (Z) ⊆ NE(Z). Now, if [C] is the class of an irreducible
curve on Z and it is not one of the given generators of S1(Z), then [C] ∈ S∨1 (Z)

because otherwise [C] · [D] < 0 for [D] ∈ S1(Z) and C and D would have a common
component. Therefore we have proved (2.8) with inclusions ⊇ instead of equalities.
Taking topological closures we deduce that (2.8) holds.

Finally (d) implies (b) by Proposition 2.3.1, which concludes the proof.

Remark 2.3.8. Taking into account the proof of Proposition 2.3.3 and Remark
2.3.5, one can state Theorem 2.1.2 as a particular case of Theorem 2.3.7. Moreover,
a divisorial valuation of P2 is NPI if and only if the corresponding special divisorial
valuation of F1 is NPI.

Remark 2.3.9. By Proposition 2.3.1, Proposition 2.3.3, Theorem 2.3.7 and Remark
2.3.8, it holds that the nef cone Nef(Z) of Z is generated by [F ∗], [M∗] and [Λi],

1 ≤ i ≤ n, when νn is a NPI special divisorial valuation of Fδ, and by [E∗0 ] and [Di],

where Di = νn(ϕL)E∗0 −
∑n

i=1 νn(mi)E
∗
i and 1 ≤ i ≤ n, if νn is a NPI divisorial

valuation of P2.

Corollary 2.3.10. Under the notation in Theorem 2.3.7, assume that νn is NPI
and, for 1 ≤ i ≤ n− 1, denote by νi the special divisorial valuation of Fδ defined by
the divisor Ei created by each map πi appearing in the sequence (2.2) defined by νn.
Then the valuation νi is also non-positive at infinity.
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Proof. By hypothesis and Lemma 2.3.6, one has that Λ2
i ≥ 0, for i ∈ {1, 2 . . . , n−1}.

As a result, following Remark 2.3.2 and Theorem 2.3.7, νi is NPI for 1 ≤ i ≤ n−1.

Corollary 2.3.11. Keeping the notation as in Theorem 2.3.7, if Λn is a nef divisor,
then every Λi is effective, for 1 ≤ i ≤ n. In particular,

Λi = (Λi ·M∗)F̃1 + (Λi · F ∗)M̃0 +
n∑
j=1

(Λi · Λj)Ej .

Proof. It is clear that Λi is nef and its self-intersection is non-negative by Coro-
llary 2.3.10. Moreover, the set {[F ∗], [M∗]} ∪ {[Λi]}ni=1 is the dual basis of the basis
{[F̃1], [M̃0]}∪{[Ei]}ni=1 of PicR(Z) by Proposition 2.3.1 and the classes of the divisors
in the set {F ∗,M∗}∪{Λi}ni=1 belong to A(Z) ⊂ NE(Z). As a consequence, the divisor
Λi can be written as

Λi = αi1F̃ + αi2M̃0 +

n∑
j=1

βijEj ,

where αi1 = Λi ·M∗ ≥ 0, αi2 = Λi · F ∗ ≥ 0 and βij = Λi · Λj ≥ 0, for 1 ≤ j ≤ n,
which concludes the proof.

Now we state a result which allows us to define a sequence of non-positive at
infinity special valuations of Fδ, δ ≥ 0, which approaches a non-positive at infinity
special irrational valuation of Fδ.

Corollary 2.3.12. Let νn be a non-positive at infinity special divisorial valuation
of Fδ and Cνn = {pi}ni=1 its configuration of infinitely near points. Set a special
divisorial valuation νm such that its configuration Cνm = {qi}mi=1, n < m, satisfies
that Cνn ⊂ Cνm and the points qi, n + 1 ≤ i ≤ m, are satellite. Then, the valuation
νm is non-positive at infinity.

Proof. Denote by {βi(νn)}g+1
i=1 (respectively, {βi(νm)}ĝ+1

i=1 ) the sequence of maximal
contact values of νn (respectively, νm). Define eg−1(νn) := gcd(β1(νn), β2(νn), . . . ,

βg−1(νn)) and eĝ−1(νm) = gcd(β1(νm), β2(νm), . . . , βĝ−1(νm)).
Notice that it holds that

eĝ−1(νm)βg+1(νn) ≥ βĝ(νm). (2.10)

In fact, consider that pn is a free point and then the inequality holds by the Noether
formula and the inequality eĝ−1(νm)multpn(ϕn) ≥ multpn(ϕm). The satellite case
follows from the previous one.

By Theorem 2.3.7 and Remark 2.3.2, the valuation νm is non-positive at infinity
if and only if 2νm(ϕM0)νm(ϕF1) + δνm(ϕF1)2 − βĝ+1(νm) ≥ 0. It is easy to check
that the last condition holds since

2νm(ϕM0)νm(ϕF1) + δνm(ϕF1)2 = e2
ĝ−1(νm)

(
2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)2

)
≥ e2

ĝ−1(νm)βg+1(νn) ≥ βĝ+1(νm),
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by Corollary 1.3.7, Equation (2.10) and the fact that νn is non-positive at infinity,
which completes the proof.

Notice that one gets a similar property for non-positive at infinity divisorial va-
luation of P2 by Remark 2.3.8.

Next we show an example of the previously stated results.

Example 2.3.13. Let ν be a special divisorial valuation of F2 whose sequence of
maximal contact values is {16, 24, 60, 131, 524}. Γν (Figure 2.1) is its dual graph.
Set Cν = {pi}12

i=1 (where p = p1) its configuration of infinitely near points and
assume that p is a special point, F1 is the fiber going through p and the strict

1 3

2

4 6

5

7 8 10 11 12

9

Figure 2.1: Dual graph of ν in Example 2.3.13

transform of M0 passes through p2. Therefore, it holds that a12 = (ϕM0 , ϕ12)p = 24,
b12 = (ϕF1 , ϕ12)p = 16 and 2a12b12+δb212 = 1280 > 524 = βg+1(ν). Consequently, by
Theorem 2.3.7, the cone of curves NE(Z) of Z defined by ν is generated by [F̃1], [M̃0]

and {[Ei]}12
i=1 and the divisors Λi, 1 ≤ i ≤ 12, defined in Proposition 2.3.1 are nef.

To finish this section we provide a result that characterizes the fact that a special
divisorial valuation of Fδ is negative at infinity. Also, by Proposition 2.3.3, Theorem
2.1.3 is a particular case of that result.

Theorem 2.3.14. Under the notation in Theorem 2.3.7, the following conditions
are equivalent:

(a) The valuation νn is negative at infinity.

(b) It holds that either 2anbn + b2nδ > βg+1(νn), or 2anbn + b2nδ = βg+1(νn) and
the Iitaka dimension of the divisor Λn vanishes.

(c) The inequality Λn · C̃ > 0 holds for the strict transform on Z, C̃, of any curve
C on Fδ, C 6= F1,M0.

Proof. For a start, we recall that the Iitaka dimension [72] of a divisor D on Z is the
maximum of the projective dimensions of the closures of the images of the rational
maps defined by the complete linear systems |nD|, when n runs over those positive
integers m such that H0(Z,OZ(mD)) 6= 0.

We assume that p1 is a special point. The other cases can be proved similarly.
Consider the same notations as in the proof of Theorem 2.3.7. Assume also, without
loss of generality, that p1 has coordinates (1 : 0; 1, 0).
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We start by proving by contradiction that (b) can be deduced from (a). Hence,
assume that (a) holds but (b) is false (what means, taking into account Theorem
2.3.7, that Λ2

n = 0 and dim |mΛn| > 0 for m large enough). Therefore, there exists
f ∈ P such that the class of mΛn − C̃f is effective for m large enough. This implies
that

0 ≤ Λn · (mΛn − C̃f ) = mΛ2
n − Λn·C̃f = −Λn · C̃f .

Hence 0 = Λn · C̃f = −νn(f) because Λn is nef (by Theorem 2.3.7), and this fact
contradicts (a).

To prove that (b) implies (c), we reason again by contradiction and consider
C an integral curve on Fδ different from F1 and M0, and such that Λn · C̃ ≤ 0.
In fact Λn · C̃ = 0 because, by Theorem 2.3.7, Λn is nef. Let F be the face of
the cone of curves of Z spanned by the classes [F̃1], [M̃0], [E1], . . . , [En−1], that is,
F = [Λn]⊥ ∩ NE(Z). It is clear that [C̃] ∈ F and, since the extremal rays of NE(Z)

are generated by classes of irreducible curves with negative self-intersection, C̃2 = 0.
C̃ is nef, so [C̃]⊥ ∩ NE(Z) is a face of NE(Z) which contains [C̃] and, then, it must
coincide with [Λn]⊥ ∩ NE(Z). Indeed, this is a consequence of the fact that, in
suitable coordinates, A(Z) is the projective cone over an Euclidean ball B (by the
Hodge index theorem (Theorem 1.4.11)) and B is strictly convex. Then, C̃ is linearly
equivalent to a multiple of Λn and, by Corollary 2.3.11, we get a contradiction.

To finish, the fact that (c) implies (a) can be proved as in Theorem 2.3.7 when
proving that (b) implies (a).

2.4 The cone of curves of a surface defined by an NPI
non-special divisorial valuation of a Hirzebruch sur-
face

In this section we only consider non-special divisorial valuations νn of Fδ, δ > 0. As
in Section 2.3, we are going to provide several equivalent conditions to the fact that
νn is non-positive or negative at infinity.

Notice that, since our divisorial valuations are non-special, by Proposition 2.2.2,
one has that two important properties hold: On the one hand, at least the points
p = p1, p2, . . . , pδ+1 of the configuration of infinitely near points are free. On the other
hand, there exists a unique integral curve of degree (0, 1) which is linearly equivalent
to M whose strict transform on Z has negative self-intersection (see Proposition
2.2.2). This curve will be denoted by M1. Consequently, [M̃1] generates an extremal
ray of NE(Z) and NE(Z) as well as [F̃1] and [M̃0], where F1 is the fiber passing
through the point p and M0 the special section.

Following Section 2.3, denote by S2(Z) the strongly convex cone of PicR(Z)

generated by the classes of the divisors of the set {F̃1, M̃0, M̃1} ∪ {E1}ni=1. We will
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describe its dual cone S∨2 (Z) in Proposition 2.4.2. Before stating this result, we prove
a useful lemma.

Lemma 2.4.1. The class of the strict transform of M1 on Z, [M̃1], can be written
as

[M̃1] = δ[F̃1] + [M̃0] + (δ − 1)[E1] + (δ − 2)[E2] + · · ·

+[Eδ−1] + dδ+1[Eδ+1] + · · ·+ dn[En],

where di ∈ Z and di ≤ −1 for all i = δ + 1, δ + 2, . . . , n.

Proof. It is clear that we can write [M̃1] as

[M̃1] = d01[F̃1] + d02[M̃0] + d1[E1] + · · ·+ dn[En],

for some values d01, d02, di ∈ Z, 1 ≤ i ≤ n. Now, using the equalities

[F̃1] = [F ∗]− [E∗1 ], [M̃0] = δ[F ∗] + [M∗] and [Ei] = [E∗i ]−
∑
pj→pi

[E∗j ],

we can compare the above expression with the equality [M̃1] = [M∗] −
∑iM1

j=1[E∗j ],

where iM1 is the index of the last point of the configuration of infinitely near points
given by ν, Cν , through which M̃1 goes. This gives rise to a system of linear equations
in the variables d01, d02, {di}ni=1, whose first equations are

d01 − δd02 = 0, d02 = 1, d1 − d01 = −1, d2 − d1 = −1, . . . , dδ−1 − dδ−2 = −1,

dδ − dδ−1 = −1.

These equations determine the values of d01, d02, di for i ∈ {1, 2, . . . , δ}, that coincide
with those given in the statement. The fact that di ≤ −1 for i ≥ δ + 1 follows
from considering the remaining equations and recalling that non-free points can only
appear when j > δ + 1.

Proposition 2.4.2. Let Z be the surface given by a non-special divisorial valuation
and let S2(Z) be the cone of PicR(Z) defined before Lemma 2.4.1. Then the dual
cone of S∨2 (Z), S∨2 (Z), is generated by the following classes of divisors: [F ∗], [M∗],
{[Θi]}δi=1, {[∆i]}ni=δ+1, {[Γi]}ni=δ+1 and {[Υik]}ni=δ+1,k=1,...,δ−1, where

Θi := biM
∗ −

i∑
j=1

multpj (ϕi)E
∗
j ,

∆i := (−δbi + ci)F
∗ + biM

∗ −
i∑

j=1

multpj (ϕi)E
∗
j ,

Γi := ciM
∗ −

i∑
j=1

(
δmultpj (ϕi)

)
E∗j , and

Υik := (ci − kbi)M∗ −
k∑
j=1

(ci − kbi)E∗j −
i∑

j=k+1

(
(δ − k)multpj (ϕi)

)
E∗j ,
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and where

bi := (ϕF1 , ϕi)p, 1 ≤ i ≤ n, and ci := (ϕM1 , ϕi)p, δ + 1 ≤ i ≤ n.

Proof. Proposition 1.4.5 shows that it suffices to consider every (n+ 1)-dimensional
linear subspaceH generated by elements of S2(Z) and check whetherH⊥ is generated
by an element of S∨2 (Z). We will see that these generators are those in the statement.

Denote by lin(S) the linear subspace generated by a set S ⊆ PicR(Z). Then

lin
(
{[F̃1]} ∪ {[Ei]}ni=1

)⊥
= lin

(
[F ∗]

)
, lin

(
{[M̃0]} ∪ {[Ei]}ni=1

)⊥
= lin

(
[M∗]

)
,

and [F ∗], [M∗] ∈ S∨2 (Z). Moreover, lin
(
{[M̃1]} ∪ {[Ei]}ni=1

)⊥
is not generated by an

element in S∨2 (Z).
We have studied subspaces H generated by, at least, all the classes [Ei]. Now we

are going to treat the cases where a class [Ei], 1 ≤ i ≤ n, is not considered. Let us
start with the linear space lin

(
{[F̃1], [M̃0]} ∪ {[Ej ]}1≤j≤n,j 6=i

)
, set

[Di] = di01[F ∗] + di02[M∗] + di1[E∗1 ] + · · ·+ din[E∗n] ∈ PicR(Z)

with arbitrary coefficients and impose the conditions:

[Di] · [F̃1] = 0, [Di] · [M̃0] = 0, [Di] · [Ej ] = 0, [Di] · [M̃1] ≥ 0 and [Di] · [Ei] ≥ 0.

Then we obtain the system of equalities and inequalities:

di02 + di1 = 0, di01 + δdi02 − δdi02 = 0, −dij +
∑
ps→pj

dis = 0,

di01 + δdi02 +

min{i,iM1
}∑

j=1

dij ≥ 0 and − dii +
∑
ps→pi

dis ≥ 0,

where iM1 is the index defined in the proof of Lemma 2.4.1. Solving the above system,
we obtain dii < 0; dij =

∑
ps→pj dis, 1 ≤ j ≤ i− 1; dij = 0, i + 1 ≤ j ≤ n; di01 = 0;

and di02 = −di1. This proves that dij = −multpj (ϕi) holds and also

δ multp1(ϕi)−
min{i,iM1

}∑
j=1

multpj (ϕi) ≥ 0

by our first inequality, which shows that the classes {[Θi]}1≤i≤δ in the statement give
generators of the dual cone S∨2 (Z).

Reasoning as above for the subspace lin
(
{[F̃1], [M̃1]}∪{[Ej ]}1≤j≤n,j 6=i

)
and with

the same notation, we get the system of equalities and inequalities:

di02 + di1 = 0, di01 + δdi02 +

min{i,iM1
}∑

j=1

dij = 0, −dij +
∑
ps→pj

dis = 0,

di01 + δdi02 − δdi02 ≥ 0 and − dii +
∑
ps→pi

dis ≥ 0.
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Here, the equality dij = −multpj (ϕi) is again true and the first inequality means
that

min{i,iM1
}∑

j=1

multpj (ϕi)− δ multp1(ϕi) ≥ 0

must hold. As a consequence, we have proved that the classes {[∆i]}δ+1≤i≤n in the
statement give extremal rays of S∨2 (Z).

Repeating the procedure with lin
(
{[M̃0], [M̃1]} ∪ {[Ej ]}1≤j≤n,j 6=i

)
, the obtained

system is

di01 + δdi02 − δdi02 = 0, di01 + δdi02 +

min{i,iM1
}∑

j=1

dij = 0, −dij +
∑
ps→pj

dis = 0,

di02 + di1 ≥ 0 and − dii +
∑
ps→pi

dis ≥ 0.

This proves, on the one hand, that dii < 0; dij =
∑

ps→pj dis, 1 ≤ j ≤ i− 1; dij = 0,

i + 1 ≤ j ≤ n; di01 = 0; and di02 = (1/δ)
∑min{i,iM1

}
j=1 −dij . On the other hand,

reasoning as above, dij = δ multpj (ϕi) and then

min{i,iM1
}∑

j=1

multpj (ϕi)− δ multp1(ϕi) ≥ 0,

which shows that the set of classes {[Γi]}δ+1≤i≤n gives generators of S∨2 (Z).
It only remains to consider those subspaces

lin
(
{[F̃1],[M̃0],[M̃1]} ∪ {[Ej ]}j∈{1,2,...,n}\{k,i}

)
attached to pairs of indices k, i, 1 ≤ k < i ≤ n. Lemma 2.4.1 proves the (n + 1)-
dimensionality of these subspaces. Our computations depend on two indices i and
k. So, we write

[Dik] = dik01[F ∗] + dik02[M∗] + dik1[E∗1 ] + dik2[E∗2 ] + · · ·+ dikn[E∗n].

We must impose the following conditions:

[Dik] · [F̃1] = 0, [Dik] · [M̃0] = 0, [Dik] · [M̃1] = 0, [Dik] · [Ej ] = 0, [Dik] · [Ek] ≥ 0

and [Dik] · [Ei] ≥ 0,

which give the equivalent system

dik02 + dik1 = 0, dik01 = 0, dik01 + δdik02 +

min{i,iM1
}∑

j=1

dikj = 0,

−dikj +
∑
ps→pj

diks = 0,−dikk +
∑
ps→pk

diks ≥ 0 and − diki +
∑
ps→pi

diks ≥ 0.
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To solve it we can assume that the inequalities are strict because, otherwise, we
would obtain that [Dik] either vanishes or it gives the class [Θδ]. Indeed, if both
inequalities are equalities, then [Dik] = 0. Otherwise, taking into account that the
first δ + 1 points in Cν are free, by considering the third equality and δ + 1 ≤ iM1 ,
it holds that one of the indices i or k equals δ. This shows that we obtain [Θδ] as a
solution.

The solutions of the system satisfy that diki < 0;−dikk > −
∑

ps→pk diks; dikj =∑
ps→pj diks, 1 ≤ j 6= k ≤ i− 1; dikj = 0, i+ 1 ≤ j ≤ n; dik01 = 0; dik02 = −dik1; and

it must hold that

− δdik1 = −
min{i,iM1

}∑
j=1

dikj , (2.11)

by the third equation. Note that, for k + 1 ≤ j ≤ i, dikj = −multpj (ϕi) up to a
positive factor, and also that −dikk > −

∑
ps→pk diks ≥ 0.

The indices i and k must satisfy that 1 ≤ k ≤ δ − 1 and δ + 1 ≤ i ≤ n. Indeed,
with respect to k and reasoning by contradiction, suppose that k ≥ δ. By hypothesis,
k < i, δ + 1 ≤ iM1 , and dikj = dikδ for 1 ≤ j ≤ δ − 1, because the first δ + 1 points
in Cν are free, then

−
min{i,iM1

}∑
j=1

dikj = −δdik1 −
min{i,iM1

}∑
j=δ+1

dikj ,

where −
∑min{i,iM1

}
j=δ+1 dikj > 0, which does not hold by (2.11). Notice that this equality

is true by our imposed equalities. With respect to the index i, again reasoning by
contradiction, suppose that i ≤ δ. As 1 ≤ k ≤ δ − 1, Equality (2.11) is equivalent to

− (δ − k)dikk = −
min{i,iM1

}∑
j=k+1

dikj , (2.12)

because dikj = dikk for 1 ≤ j ≤ k. This implies that −(δ − k)dikk = −(i− k)dikk+1,
which is a contradiction since −dikk > −dikk+1.

Notice that (2.11) also gives us the value of dikk, which can be obtained from the
following chain of equalities:

dikk = δdik1 −
min{i,iM1

}∑
j=1, j 6=k

dikj = δdikk − (k − 1)dikk −
min{i,iM1

}∑
j=k+1

dikj .

Thus, if we take dikj = −(δ − k)multpj (ϕi), k + 1 ≤ j ≤ i, one gets that

dik1 = · · · = dikk =
−(δ − k)

∑min{i,iM1
}

j=k+1 multpj (ϕi)
(δ − k)

= −
min{i,iM1

}∑
j=k+1

multpj (ϕi),

and the coefficient of [M∗] is dik02 = −dik1.
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As a result, we have that [Dik] = [Υik], where

Υik :=

min{i,iM1
}∑

j=k+1

multpj (ϕi)

M∗ −
k∑
j=1

min{i,iM1
}∑

s=k+1

multps(ϕi)

E∗j

−
i∑

j=k+1

(
(δ − k)multpj (ϕi)

)
E∗j ,

where δ + 1 ≤ i ≤ n and 1 ≤ k ≤ δ − 1. This finishes the proof.

Remark 2.4.3. From the above proof, it can be deduced that, when considering
the surface F1 and a non-special valuation ν, no class [Υik] appears as a generator
of S∨2 (Z).

Remark 2.4.4. The divisors {Θi}δi=1, {∆i}ni=δ+1, {Γi}ni=δ+1 and {Υik}ni=δ+1,k=1,...,δ−1

defined in Proposition 2.4.2 can be written as

Θi = Θ(νi) := νi(ϕF1)M∗ −
i∑

j=1

νi(mj)E
∗
j ,

∆i = ∆(νi) := (−δνi(ϕF1) + νi(ϕM1))F ∗ + νi(ϕF1)M∗ −
i∑

j=1

νi(mj)E
∗
j ,

Γi = Γ(νi) := νi(ϕM1)M∗ −
i∑

j=1

(δ νi(mj))E
∗
j , and

Υik = Υk(νi) := (νi(ϕM1)− kνi(ϕF1))M∗ −
k∑
j=1

(νi(ϕM1)− kνi(ϕF1))E∗j

−
i∑

j=k+1

((δ − k)νi(mj))E
∗
j ,

where νi is the non-special divisorial valuation defined by the exceptional divisor Ei
and {νi(mj)}ij=1 its sequence of values. Moreover, their self-intersections satisfy

Θ2
i = δb2i − βg+1(νi) = δνi(ϕF1)2 − βg+1(νi),

∆2
i = 2(−δbi + ci)bi + δb2i − βg+1(νi)

= 2bici − δb2i − βg+1(νi)

= 2νi(ϕF1)νi(ϕM1)− δνi(ϕF1)2 − βg+1(νi),

Γ2
i = δc2

i − δ2βg+1(νi) = δνi(ϕM1)2 − δ2βg+1(νi),

Υ2
ik = δ(ci − kbi)2 − k(ci − kbi)2 − (δ − k)2

n∑
j=k+1

mult2pj (ϕi))

= (δ − k)[(ci − kbi)2 − (δ − k)(βg+1(νi)− kb2i )]

= (δ − k)[c2
i − 2kcibi + δkb2i − (δ − k)βg+1(νi)]
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= (δ − k)[c2
i − k(2cibi − δb2i )− (δ − k)βg+1(νi)]

= (δ − k)[νi(ϕM1)2 − k(2νi(ϕM1)νi(ϕF1)− δνi(ϕF1)2)− (δ − k)βg+1(νi)],

where βg+1(νi) is the last maximal contact value of νi. Note that these divisors have
a close behaviour to the divisors {Λi}ni=1 defined in Proposition 2.3.1,

The before mentioned divisors introduced in Proposition 2.4.2 are essential to
characterize the cone of curves NE(Z) of a surface Z defined by a non-special divi-
sorial valuation of a Hirzebruch surface. Some of their properties are stated in the
forthcoming lemma.

Lemma 2.4.5. Let Z (respectively, νn) be a rational surface (respectively, a val-
uation) as in Proposition 2.4.2. Consider the set of divisors there defined. Then
∆2
δ+1 > 0, Γ2

δ+1 > 0 and Υ2
δ+1k > 0 for all k ∈ {1, 2, . . . , δ− 1}. In addition, for any

index i ∈ {δ + 2, δ + 3, . . . , n} such that ∆2
i ≥ 0 (respectively, Γ2

i ≥ 0, Υ2
ik ≥ 0), the

following properties are satisfied:

(a) If pi is a satellite point of the configuration Cνn that νn defines, it holds ∆2
i > 0

(respectively, Γ2
i > 0, Υ2

ik > 0).

(b) ∆2
i−1 ≥ 0 (respectively, Γ2

i−1 ≥ 0,Υ2
i−1k ≥ 0) and, moreover, if ∆2

i−1 = 0

(respectively, Γ2
i−1 = 0, Υ2

i−1k = 0) then pi is a satellite point and pi−1 is free.

Proof. To prove our first assertion, it suffices to notice that the following three equali-
ties hold:

∆2
δ+1 = 2 + δ − (δ + 1) = 1 > 0,

Γ2
δ+1 = δ(δ + 1)2 − δ2(δ + 1) = δ(δ + 1)(δ + 1− δ) = δ(δ + 1) > 0,

Υ2
δ+1k = δ(δ + 1− k)2 − k(δ + 1− k)2 − (δ + 1− k)(δ − k)2

= (δ − k)(δ + 1− k)2 − (δ − k)2(δ + 1− k)

= (δ − k)(δ + 1− k)[δ − k + 1− (δ − k)]

= (δ − k)(δ + 1− k) > 0.

Finally we remark that (a) and (b) can be proved reasoning as in the proof of
Lemma 2.3.6. Indeed, recalling that g + 2 is the cardinality of the set of maximal
contact values of νn, the case g = 1 follows as in that proof, and, when g > 1,
with notations as in that lemma and in Proposition 2.4.2, it suffices to consider the
following equalities and to reason again as we did in the mentioned Lemma 2.3.6.

∆2
n = 2bncn − δb2n − βg+1(νn) = eg−1(νn)

[
2bncn − δb2n
eg−1(νn)

− βg(νn)

]
,

Γ2
n = c2

nδ − δ2βg+1(νn), and

Υ2
nk = (δ − k)[c2

n − k(2cnbn − δb2n)− (δ − k)βg+1(νn)].
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Remark 2.4.6. The non-negativity of the self-intersection of the divisors introduced
in Proposition 2.4.2 can be numerically determined. By Remark 2.4.4, it holds that
Θ2
i = δ − i ≥ 0, 1 ≤ i ≤ δ, since the points p1, p2 . . . , pδ are free. For the remaining

divisors, these conditions follow from Remark 2.4.4 and Lemma 2.4.5.
Indeed, the inequality ∆2

n ≥ 0 (or, equivalently, 2bncn − δb2n ≥ βg+1(νn)) implies
that ∆2

i ≥ 0, that is, 2bici − δb2i ≥ βg+1(νi) for 1 ≤ i ≤ n, where νi is the divisorial
valuation defined as in Remark 2.4.4. Likewise, when Γ2

n ≥ 0, it holds that Γ2
i ≥ 0,

or equivalently that c2
i ≥ δβg+1(νi), for 1 ≤ i ≤ n.

To finish, given a positive integer k, 1 ≤ k ≤ δ − 1, the inequality

c2
n − k(2cnbn − δb2n) ≥ (δ − k)βg+1(νn),

allows us to conclude that Υ2
ik ≥ 0, for 1 ≤ i ≤ n, which numerically can be expressed

as c2
i − k(2cibi − δb2i ) ≥ (δ − k)βg+1(νi).

The next lemma will be useful for proving the main result in this section.

Lemma 2.4.7. Let νn be a non-special divisorial valuation of a Hirzebruch surface
and Z the surface that it defines. Consider the divisors ∆i,Γi and Υik, δ+1 ≤ i ≤ n;

1 ≤ k ≤ δ − 1, given in Proposition 2.4.2. Then, for each index i, ∆2
i ≥ 0 implies

Γ2
i ≥ 0 and Υ2

ik ≥ 0 for all k ∈ {1, 2, . . . , δ − 1}.

Proof. Our proof is consequence of the following two properties:
Property 1: If the self-intersections of the divisors ∆i and Υiδ−1 are non-negative,

then the same property holds for the divisors Γi and Υik, 1 ≤ k ≤ δ − 1.
Property 2: If the self-intersection of the divisor ∆i is non-negative, so is the

self-intersection of Υiδ−1.
For proving Property 1, our hypotheses are, by Remark 2.4.6,

βg+1(νi) ≤ 2cibi − δb2i and (2.13)

(δ − 1)(2cibi − δb2i − βg+1(νi)) ≤ c2
i − δβg+1(νi). (2.14)

The inequality in (2.14) and the following one

βg+1(νi) ≤ c2
i − (δ − 1)(2cibi − δb2i )

are equivalent. From the last inequality and the one in (2.13), we get that c2
i ≥

δβg+1(νi) and then Γ2
i ≥ 0. Finally, Υ2

ik ≥ 0, 1 ≤ k ≤ δ − 1, if and only if the
inequality

k(2cibi − δb2i − βg+1(νi)) ≤ c2
i − δβg+1(νi)

holds, fact that follows straightforwardly from (2.13) and (2.14).
To conclude we prove Property 2. It suffices to check that the following inequal-

ities
βg+1(νi) ≤ 2cibi − δb2i < c2

i − (δ − 1)(2cibi − δb2i ) (2.15)
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are true. In fact, the first inequality comes from our hypothesis ∆2
i ≥ 0 and the

inequality given by the first and the last sides in (2.15) allows us to show Υ2
iδ−1 ≥ 0.

To prove the second inequality in (2.15), set ci = x and bi = b for simplicity. We are
considering non-special valuations, which means that x > δb. In our new notation
we want to prove that

2bx− δb2 < x2 − (δ − 1)(2bx− δb2).

This inequality is equivalent to

0 < x2 − (2bδ)x+ δ2b2,

and it holds for all x 6= δb since the point (δb, 0) is the vertex of the parabola given
by the right-hand side of the inequality.

In the same way that Theorem 2.3.7 gives equivalent conditions for the non-
positivity of special divisorial valuations, the forthcoming theorem provides two in-
teresting geometrical conditions characterizing the non-positivity at infinity of non-
special divisorial valuations. It also includes a numerical and local expression that
can be easily checked.

Theorem 2.4.8. Let νn be a non-special divisorial valuation of the function field
of Fδ centered at OFδ,p and Cνn = {pi}ni=1 its configuration of infinitely near points.
Let Z be the surface that νn defines and consider the divisor ∆n on Z defined in
Proposition 2.4.2. Then the following conditions are equivalent:

(a) The valuation νn is non-positive at infinity.

(b) The divisor ∆n is nef.

(c) It holds the following inequality: 2cnbn − δb2n ≥ βg+1(νn).

(d) The cone of curves of Z is generated by [F̃1], [M̃0], [M̃1], [E1], [E2], . . . , [En].

Proof. Our proof uses a close reasoning to that of Theorem 2.3.7. Keeping the
notation as in that theorem, we are going to give a sketch of the proof emphasizing
only the main differences.

To prove that (a) can be deduced from (b), we can suppose that p is a ge-
neral point of Fδ with coordinates (0 : 1; 0, 1). Consider local coordinates {x, y} ={
X1
X0
,
Xδ

0Y1
Y0

}
in the affine open set U00 and {u, v} =

{
X0
X1
, Y0
Xδ

1Y1

}
in U11. Notice that,

with our notation, F1 and M1 are defined by the equations X0 = 0 and Y0 = 0,
p ∈ U11, and F1 and M1 have local equations u = 0 and v = 0, respectively.

If now S denotes the set of non-constant polynomials in OFδ(U00) (up to multi-
plication by a nonzero element of k) such that neither x nor y divide them, f ∈ S
satisfies

f(x, y) = f(1/u, uδ/v) =
hf (u, v)

udeg1(hf )vdeg2(hf )
, (2.16)
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where hf (u, v) ∈ OFδ(U11).
The bi-homogeneous polynomialXdeg1(hf )+δ deg2(hf )

1 Y
deg2(hf )

1 hf (X0
X1
, Y0
Xδ

1Y1
) defines

a curve Cf on Fδ of degree (deg1(hf ), deg2(hf )) and f 7→ Cf is a one-to-one corres-
pondence between S and the set of curves on Fδ containing no curve F1, F

′,M0,M1

as a component, where F ′ and M0 are defined by the equations X0 = 0 and Y1 = 0.
Then ∆n · Cf = −ν(f) and by (b), −ν(f) ≥ 0. The case when f ∈ OFδ(U00) and x
or y or both are factors of f follows as in Theorem 2.3.7 and (a) is proved.

A proof of the fact that (a) implies (b), (b) implies (c) and (d) implies (b) can
be done as in Theorem 2.3.7.

To see that (c) implies (d), it suffices to notice that, by Lemmas 2.4.5 and 2.4.7,

S∨2 (Z) ⊆ {[D] ∈ PicR(Z) | [D]2 ≥ 0 and [H] · [D] ≥ 0} =: A(Z),

where S∨2 (Z) is the dual cone defined in Proposition 2.4.2 and H an ample divisor
on Z. Finally, the fact

S∨2 (Z) ⊆ A(Z) ⊆ (S∨2 (Z))∨ = S2(Z)

and a reasoning as in Theorem 2.3.7 completes our proof.

Remark 2.4.9. The extremal rays of the nef cone Nef(Z) of Z are the elements
of the set {[F ∗], [M∗]} ∪ {[Θi]}δi=1 ∪ {[∆i]}ni=δ+1 ∪ {[Γi]}ni=δ+1 ∪ {[Υi`]}1≤k≤δ−1

δ+1≤i≤n , by
Proposition 2.4.2 and Theorem 2.4.8.

As in the special case, one has the following two corollaries as a consequence of
the above theorem.

Corollary 2.4.10. Let νn be a non-positive at infinity non-special divisorial valuation
of Fδ. Consider the divisorial valuations νi defined by the divisors Ei associated
to the simple sequence of point blowups that νn defines. Then the valuations νi,
δ + 1 ≤ i ≤ n− 1, are non-positive at infinity (non-special of Fδ).

Proof. This result follows from the same reasoning that Corollary 2.3.10 using Theo-
rem 2.4.8, Lemmas 2.4.5 and 2.4.7 and Remark 2.4.6.

Corollary 2.4.11. Let Z be a surface as in Theorem 2.4.8 defined by a non-positive
at infinity non-special valuation. Then all the divisors Θi, i = 1, 2, . . . , δ; ∆i,Γi and
Υik, i = δ + 1, δ + 2, . . . , n and k = 1, 2, . . . , δ − 1, defined in Proposition 2.4.2, are
effective. In particular, it holds that

Θi = (Θi · F ∗)M̃1 +
n∑
j=1

(Θi ·∆j)Ej ,

∆i = (∆i ·M∗0 )F̃1 + (∆i · F ∗)M̃1 +
n∑
j=1

(∆i ·∆j)Ej ,

Γi = (Γi · F ∗)M̃1 +

n∑
j=1

(Γi ·∆j)Ej ,
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Υik = (Υik · F ∗)M̃1 +

n∑
j=1

(Υik ·∆j)Ej .

Proof. Notice that the set {F ∗,M∗}∪{∆i}ni=1 is the dual basis of the basis {F̃1, M̃1}∪
{Ei}ni=1 of PicR(Z) by Proposition 2.4.2, and each divisor of the first set is nef and
has non-negative self-intersection by Corollary 2.4.10 and then its class belongs to
A(Z) ⊂ NE(Z). Finally, arguing as in Corollary 2.3.11, the result is proved.

As in the non-positive at infinity special case, we can set a sequence of non-
positive at infinity non-special divisorial valuations of Fδ which approaches a non-
positive at infinity non-special irrational valuation. The proof follows from the ar-
guments used to prove Corollary 2.3.12.

Corollary 2.4.12. Let νn be a non-positive at infinity non-special divisorial valuation
of Fδ and Cνn = {pi}ni=1 its configuration of infinitely near points. Set a non-special
divisorial valuation νm such that its configuration Cνm = {qi}mi=1, n < m, satisfies
that Cνn ⊂ Cνm and the points qi, n + 1 ≤ i ≤ m, are satellite. Then, the valuation
νm is non-positive at infinity.

Example 2.4.13. Let ν be a non-special divisorial valuation of the Hirzebruch sur-
face F2 whose sequence of maximal contact values is {15, 51, 262, 786}. Set Cν =

{pi}12
i=1 the configuration of infinitely near points of ν and Γn (Figure 2.2) its dual

graph. Denote by F1 the fiber of F2 that goes through p1, by M0 the special section

1 2 3 6 7 8 9 12

115

4 10

Figure 2.2: Dual graph of ν in Example 2.4.13.

and by M1 the integral curve that is linearly equivalent to M whose its strict trans-
form pass through p1, p2 and p3. Then b12 = 15, c12 = 45 and βg+1(ν) = 786, and so,
Theorem 2.4.8 (c) is satisfied. Therefore, the cone of curves of the surface Z defined
by ν is generated by {[F̃1], [M̃0], [M̃1]} ∪ {Ei}12

i=1 and the divisors ∆i, 1 ≤ i ≤ 12,
defined in Proposition 2.4.2 are nef.

We conclude the section stating a result that provides two equivalent conditions
characterizing the negativity at infinity of non-special divisorial valuations. It can
be proved as we did in Theorem 2.3.14.

Theorem 2.4.14. Keeping the same assumptions and notations as in Theorem 2.4.8,
the following conditions are equivalent:
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(a) The valuation νn is negative at infinity.

(b) It holds that either 2cnbn− b2nδ > βg+1(νn), or 2cnbn− b2nδ = βg+1(νn) and the
Iitaka dimension of the divisor ∆n vanishes.

(c) The inequality ∆n · C̃ > 0 is satisfied for the strict transform on Z, C̃, of any
curve C on Fδ, C 6= F1,M1.

2.5 Discrete equivalence of NPI valuations

In this section we study the dual graphs of NPI divisorial and irrational valuations
of the projective plane and the Hirzebruch surfaces. Moreover, we will provide an
algorithm to compute explicitly those dual graphs which admit NPI valuations. We
keep the notation of the above sections. As at the beginning of the chapter, Z0

denotes either the projective plane P2 or a Hirzebruch surface Fδ, δ ≥ 0.

As we have seen in Subsection 1.3.1, the sequence of Puiseux exponents of a
plane valuation and its dual graph are very close data. The mentioned sequence
allows us to work easily with the dual graph. For this reason we introduce the
following definition.

Definition 2.5.1. Let ν be a divisorial or irrational valuation of Z0. Denote by
{β′j(ν)}g+1

j=0 the sequence of Puiseux exponents of ν. We call discrete class of ν to
the tuple

d(ν) = (g, β′0(ν), β′1(ν), . . . , β′g+1(ν)).

Two valuations as before which have the same discrete class are named discretely
equivalent.

The next result is a consequence of the definition of sequence of Puiseux exponents
of a plane valuation.

Proposition 2.5.2. Let ν, ν ′ be two divisorial or irrational valuations. Then the
dual graphs of ν and ν ′ coincide if and only if ν and ν ′ have the same discrete class.

Before stating a characterization of the discrete classes of NPI valuations, we
present a lemma explaining how to get the last contact value of a plane valuation
from its sequence of Puiseux exponents.

Lemma 2.5.3. Let ν be a divisorial or irrational valuation of Z0 and d(ν) =

(g, β′0(ν), β′1(ν), . . . , β′g+1(ν)) its discrete class. Then the last maximal contact value
of ν satisfies

βg+1(ν) =

g∑
j=0

ej(ν)2(β′j+1(ν)− 1) + e0(ν)2β′0(ν).
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Proof. By Equality (1.5) and since eg(ν) = gcd(β0(ν), β1(ν), . . . , βg(ν)) = 1, it holds
that

βg+1(ν) = eg(ν)2(β′g+1(ν)− 1) + eg−1(ν)βg(ν).

Now, again by Condition (1.5), one has

ej(ν)βj+1(ν) = ej(ν)2(β′j+1(ν)− 1) + ej−1(ν)βj(ν),

for 1 ≤ j ≤ g − 1. This concludes the proof after noticing that e0(ν) = β0(ν).

Recall that the coordinates of a discrete class d = (g, β′0, β
′
1, . . . , β

′
g+1) of a

divisorial valuation satisfy that g and β′g+1 are non-negative integers, β′0 = 1 and
(when g > 0) β′j = qj/nj ∈ Q>0 \ Z, where gcd(qj , nj) = 1. Moreover, for each d
we define eg = 1, ej =

∏g
k=j+1 nk, 0 ≤ j < g, and τj = ej/e0, for 0 ≤ j ≤ g. When

we consider discrete classes of irrational valuations, their coordinates are defined
similarly but β′g+1 ∈ R>0 \ Q. We gave more information about these values in
Subsection 1.3.1.

In what follows, we denote by D the set of tuples d as before.

Theorem 2.5.4. Set a class d ∈ D. Then

(a) There exists an NPI divisorial or irrational valuation of P2 with discrete class
d if, and only if, the following inequality holds:

β′21 ≥
g∑
j=0

τ2
j (β′j+1 − 1) + β′0.

(b) There exists an NPI special divisorial or irrational valuation of Fδ with discrete
class d if, and only if, δ is a non-negative integer and the following inequality

β′1(δβ′1 + 2) ≥
g∑
j=0

τ2
j (β′j+1 − 1) + β′0

holds.

(c) There exists an NPI non-special divisorial or irrational valuation of Fδ with
discrete class d if, and only if, it holds that

2β′1 − δ ≥
g∑
j=0

τ2
j (β′j+1 − 1) + β′0.

Proof. We only need to show the result for the set of discrete classes of divisorial
valuations because the irrational case follows from the divisorial one and Theorem
1.3.2(c).

Let d = (g, β′0, β
′
1, . . . , β

′
g+1) be a discrete class where β′g+1 is a positive integer.

Set β0, β1 and βg+1 the values which can be computed from the components of d
following the formulas given in Equality (1.5) and Lemma 2.5.3.
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We first prove (a). By Lemma 2.5.3 and the equality β′1 = β1/β0, it suffices to
show that d is the discrete class of an NPI divisorial valuation of P2 if and only if
β

2
1 ≥ βg+1. Assume first that νn is an NPI divisorial valuation of P2 whose discrete

class is d. Following Theorem 2.1.2, one has

(ϕL, ϕn)2
p = νn(ϕL)2 ≥ βg+1.

Now, if the strict transform of L goes through all initial free points in Cνn , then the
equality νn(ϕL) = β1 holds. Otherwise, νn(ϕL) = sLβ0, where 1 ≤ sL ≤ bβ1/β0c.
As a result one gets that β2

1 ≥ βg+1 and this implication is proved. Conversely, if we
set a discrete class d ∈ D (where β′g+1 ∈ Z>0) such that β2

1 ≥ βg+1, it suffices to take
a divisorial valuation ν of P2 whose discrete class is d and whose first free points in
Cν are determined the projective line L. Consequently the equality ν(ϕL) = β1 is
satisfied and the proof is over by Theorem 2.1.2.

As in the proof of (a), to show the equivalence claimed in (b) we are going to use
the fact that the inequality given there is equivalent to the following one:

2β1β0 + δβ
2
1 ≥ βg+1.

Now suppose that d is the discrete class of a special divisorial valuation νn of Fδ. By
Theorem 2.3.7, the inequality

2(ϕF1 , ϕn)p(ϕM0 , ϕn)p+δ(ϕF1 , ϕn)2
p = 2νn(ϕF1)νn(ϕM0)+δνn(ϕF1)2 ≥ βg+1 (2.17)

holds. Now νn(ϕF1) is equal either to β1 if F̃1 goes through all initial free points in Cνn
or to sF1β0, where 1 ≤ sF1 ≤ bβ1/β0c, otherwise. The section M0 has a behaviour
like F1 and then νn(ϕM0) equals either β1 or sM0β0, where 0 ≤ sM0 ≤ bβ1/β0c. This
proves that 2β1β0 + δβ

2
1 ≥ βg+1 since F1 and M0 pass both through p but at most

one of their strict transforms goes through p2. Conversely, set a class d ∈ D (where
β′g+1 ∈ Z>0) such that the inequality 2β1β0 + δβ

2
1 ≥ βg+1 is satisfied, then taking

the special divisorial valuation ν of Fδ with discrete class d whose first free points
in Cν coincide with those through which F̃1 goes, by Theorem 2.3.7, one obtains an
NPI special divisorial valuation of Fδ with discrete class d.

Finally arguing as before one can give a proof of (c) which is supported in the
next two facts. First, by Theorem 2.4.8 the inequality in the statement is equivalent
to the following one

2(ϕF1 , ϕn)p(ϕM1 , ϕn)p − δ(ϕF1 , ϕn)2
p = 2νn(ϕM1)νn(ϕF1)− δνn(ϕF1)2 ≥ βg+1.

Second, the fiber F1 and the section M1 satisfy that νn(ϕF1) = β0 and νn(ϕM1)

equals either β1 or sM1β0, where δ + 1 ≤ sM1 ≤ bβ1/β0c. This completes the proof.

The following result explains the relation among the dual graphs of the different
types of NPI valuations using their discrete classes and the above theorem. Before
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stating the result, denote by DP2 (respectively, D1
Fδ ,D

2
Fδ) the set of discrete classes

in D which represent to some (respectively, special, non-special) NPI divisorial or
irrational valuation of P2 (respectively, Fδ).

Theorem 2.5.5. Let DP2 ,D1
Fδ ,D

2
Fδ be the sets introduced before. Write D≤2

P2 (res-
pectively, D≥2

P2 ) the set of discrete classes in DP2 whose coordinate β′1 satisfies β′1 ≤ 2

(respectively, β′1 ≥ 2). Set similarly D1,≤2
F0

and D1,≥2
F0

. Then

(a) DP2 ⊆ D1
Fδ for all δ > 0.

(b) D≤2
P2 ⊆ D1,≤2

F0
and D1,≥2

F0
⊆ D≥2

P2 .

(c) D2
Fδ ⊆ DP2 for all δ > 0.

Proof. According to the proof of Theorem 2.5.4, for any δ > 0 it is satisfied that
d ∈ DP2 (respectively, d ∈ D1

Fδ) if and only if β′21 ≥ βg+1/β
2
0 (respectively, 2β′1 +

δβ′21 ≥ βg+1/β
2
0). As we are supposing β′21 ≥ βg+1/β

2
0, the inequality 2β′1 +δβ′21 ≥ β′21

is true when δ is a positive integer and also if δ = 0 and β′1(ν) ≤ 2, which proves (a)
and the first inclusion in (b).

The second inclusion in (b) follows from an analogous argument which yields the
opposite inequality.

To finish, using again Theorem 2.5.4, a class d is an element of D2
Fδ , δ > 0, if

and only if 2β′1 − δ ≥ βg+1/β
2
0. Consequently, the fact that β′21 ≥ 2β′1 − δ concludes

the proof.

Remark 2.5.6. The inclusions introduced in Theorem 2.5.5 are strict. Let us show
this fact with some examples.

(a) Fix the discrete class d = (2, 1, 4/3, 17/3, 1). Therefore e0 = 9, e1 = 3 and
e2 = 1. Moreover,

β′1 =
48

27
and

g∑
i=0

τ2
i (β′i+1(ν)− 1) + β′0 =

50

27

which shows that d 6∈ DP2 . Nevertheless,

β′1(δβ′1 + 2) =
48δ + 72

27
.

This proves that d ∈ D1
Fδ for all non-negative integer δ. Consequently the inclusion

in Theorem 2.5.5 (a) and the first one of Theorem 2.5.5 (b) are strict.

(b) Consider δ = 0 and the class d = (3, 1, 7/3, 43/2, 14/3, 1). Thus e0 = 18, e1 =

6, e2 = 3 and e3 = 1 and one obtains

2β′1 =
504

108
,

g∑
j=0

τ2
j (β′j+1 − 1) + β′0 =

509

108
and β′21 =

588

108
,

which implies that d ∈ D≥2
P2 but d 6∈ D1,≥2

F0
.
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(c) To conclude, set the class d = (2, 1, 5/2, 57/5,Φ), where Φ denotes the golden
ratio. One has e0 = 10, e1 = 5 and e2 = 1. Then

2β′1 − δ =
100

20
− δ and

g∑
j=0

τ2
j (β′j+1 − 1) + β′0 =

102

20
+

1

100
(Φ− 1).

This shows that d 6∈ D2
Fδ for any positive integer δ, although d ∈ DP2 since β′21

= 125/20.

2.5.1 An algorithm for obtaining the dual graphs of NPI valuations

The aim of this subsection is to describe a procedure in order to generate those
discrete classes (that is, dual graphs) admitting some NPI divisorial or irrational
valuation. We assume g > 0 because any discrete class (0, 1, β′1) admits an NPI
(respectively, NPI special) valuation of P2 (respectively, Fδ) and by Theorem 2.5.4
the discrete classes (0, 1, β′1 ≥ δ) are those that admit NPI non-special valuations of
Fδ.

Our algorithm starts with an input

d(νI) = (g, β′0(νI), β
′
1(νI), . . . , β

′
g+1(νI) = 1), (2.18)

which is a discrete class belonging to DP2 , D1
Fδ or D2

Fδ , simply written by D. It
provides two outputs:

Output 1. Another discrete class of the same set D of the input of the form:

d(νO1) =
(
g + 1, β′0(νO1) = β′0(νI), β

′
1(νO1) = β′1(νI),

. . . , β′g(νO1) = β′g(νI), β
′
g+1(νO1), β′g+2(νO1) = 1

)
. (2.19)

Output 2. In fact, it is a double output. The first one is a discrete class in the
same set D of the input as follows:

d(νO1
2
) =

(
g, β′0(νO1

2
) = β′0(νO1), β′1(νO1

2
) = β′1(νO1),

. . . , β′g(νO1
2
) = β′g(νO1), β′g+1(νO1

2
)
)
, (2.20)

where β′g+1(νO1
2
) ∈ R>0 \Q.

And the second one is a discrete class in the same set D of the input with the
following shape

d(νO2
2
) =

(
g + 1, β′0(νO2

2
) = β′0(νO1), β′1(νO2

2
) = β′1(νO1),

. . . , β′g+1(νO2
2
) = β′g+1(νO1), β′g+2(νO2

1
)
)
, (2.21)

β′g+2(νO2
1
) being a positive integer different from 1.

Note that the outputs are not unique. In fact, one can obtain infinitely tuples as
Output 1 and also as the first one in Output 2.
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It is easily seen that the tuple of the input corresponds to a discrete class of an
NPI divisorial valuation which is defined by a satellite (exceptional) divisor whose
dual graph Γ has subgraphs Γj , 1 ≤ j ≤ g, and Γg+1 that contains only the vertex stg.
The algorithm gives us dual graphs admitting the same type of NPI valuations which
maintain the subgraphs Γj , 1 ≤ j ≤ g, and have a new subgraph Γg+1; the obtained
graphs correspond to divisorial valuations defined by a satellite divisor or to irrational
valuations. In addition, our algorithm also provides dual graphs of NPI divisorial
valuations defined by free divisors which preserve the subgraphs Γj , 1 ≤ j ≤ g, and
add two subgraphs more, Γg+1 and (a tail) Γg+2.

It becomes clear that selecting appropriate tuples (1, β′0 = 1, β′1, 1) at the begin-
ning, we are able to give the dual graph of any NPI valuation of any desired type
with g as large as we want.

Let us show our algorithm. For a start and under the notation stated before, set

q(d(ν)) :=


β′1(ν)2, if Z0 = P2,

β′1(ν)(δβ′1(ν) + 2), if Z0 = Fδ and ν is special,

2β′1(ν)− δ, if Z0 = Fδ and ν is non-special,

β′1(ν) being the third coordinate of d(ν).
Input: A discrete class d(νI) as in (2.18) that satisfies

q (d(νI)) >

g−1∑
j=0

ej
(
νNI
)2 (

β′j+1(νI)− 1
)

+ β′0(νI). (2.22)

This condition must be imposed since we start with the discrete class of an NPI
divisorial valuation and one needs to have some degree of freedom to add Puiseux
exponents.
Output 1: It will be a tuple d(νO1) as in (2.19) computed as follows. Set β′g+1(νO1) =

qg+1/ng+1, where qg+1, ng+1 ∈ Z>0 are such that gcd(qg+1, ng+1) = 1 and qg+1 >

ng+1. The output must satisfy

β′j(νO1) = β′j(νI) and ej(νNO1
) = ej(ν

N
I ), for 0 ≤ j ≤ g,

and β0(νO1) = ng+1β0(νI). Then

eg+1(νNO1
) =

1

β0(νO1)
=

1

ng+1β0(νI)
=
eg(ν

N
I )

ng+1
.

As we desire that the tuple d(νO1) corresponds to a discrete class of an NPI valuation,
for obtaining a suitable Output 1 it suffices to take a pair qg+1 and ng+1 (which defines
β′g+1(νO1)) satisfying the following inequality:

q(d(νI))−
∑g−1

j=0 ej(ν
N
I )2(β′j+1(νI)− 1)− β′0(νI)

eg(νNI )2
+ 1 ≥ β′g+1(νO1) =

qg+1

ng+1
> 1. (2.23)
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Note that the algorithm must make a choice since there are infinitely many options.
Output 2: To obtain a tuple d(νO1

2
) as (2.20), it suffices to search an irrational

number β′g+1(νO1
2
) which satisfies Inequality (2.23) when we replace the rational

number β′g+1(νO1) with β′g+1(νO1
2
). Notice that we have to make a choice again.

Finally, for getting a discrete class d(νO2
2
) as (2.21), it suffices to find a positive

integer β′g+2(νO2
2
) > 1 such that

q(d(νO2
2
))−

∑g
j=0 ej(ν

N
O1

)2(β′j+1(νO1)− 1)− β′0(νO1)

eg+1(νNO1
)2

≥ β′g+2(νO2
2
)− 1. (2.24)

We remark that the biggest non-negative integer β′g+2(νO2
2
)− 1 satisfying Inequality

(2.24) provides the maximum number of free vertices one can obtain in the tail of
the dual graph.

To conclude this subsection, we give two examples which show how our algorithm
runs.

Example 2.5.7. Consider Z0 = P2 and the input d(νI) = (2, 1, 5/2, 7/5, 1). There-
fore {ei(νI)}2i=0 = {10, 5, 1}. As required, our input satisfied Inequality (2.22) since

25

4
=

(
5

2

)2

>

(
5

2
− 1

)
+

(
1

2

)2(7

5
− 1

)
+ 1 =

52

20
.

Now suitable values for our purposes β′3(νO1) are those satisfying Inequality
(2.23), that is those β′3(νO1) such that

366 =
β′1(νI)

2 − e0(νNI )2(β′1(νI)− 1)− e1(νNI )2(β′2(νI)− 1)− β′0(νI)

e2(νNI )2
+ 1 ≥

β′3(νO1) > 1.

If, for example, we select d(νO1) = (3, 1, 5/2, 7/5, 8/3, 1), we get a valid Output
1. Our algorithm also searches values β′4(νO2

2
), which must satisfy Inequality (2.24),

that is 3270 ≥ β′4(νO2
2
)−1 ≥ 0. Consequently a possible Output 2 would be d(νO2

2
) =

(3, 1, 5/2, 7/5, 8/3, 3200). The dual graphs of νI , νO1 and νO2
2
can be seen in Figure

2.3.

Example 2.5.8. Assume now that Z0 = F2 and d(νI) = (3, 1, 5/3, 12/5, 5/2, 1).
This input is as the algorithm requires because {ei(νI)}2i=0 = {30, 10, 2, 1},

80

9
=

5

3

(
2

5

3
+ 2

)
>

(
5

3
− 1

)
+

(
1

3

)2(12

5
− 1

)
+

(
1

15

)2(5

2
− 1

)
+ 1 =

823

450

and, then, Inequality (2.22) holds. Thus, if we desire an output d(νO1
2
), we need

to find some irrational number such that it satisfies Inequality (2.23). That is, we
can use any value β′4(νO1

2
) such that 6355 ≥ β′4(νO1

2
) > 0. Therefore, d(νO1

2
) =

(3, 1, 5/3, 12/5, 5/2, π) is a suitable output. One can see the dual graphs of νI and
νO1

2
in Figure 2.4.
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Figure 2.3: Dual graphs in Example 2.5.7.
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Figure 2.4: Dual graphs in Example 2.5.8.



Chapter 3

Seshadri-type constants and
Newton-Okounkov bodies for
non-positive at infinity valuations

The aim of this chapter is to describe the Seshadri-type constants and Newton-
Okounkov bodies with respect to non-positive at infinity valuations of Hirzebruch
surfaces. Our main results and proofs concerning these objects can be found in [62].
This chapter also contains the study of the same constants and bodies when the
valuations are of the projective plane. As a reference, we have used the articles
[64] and [65]. Recall that a basic introduction about Seshadri-type constants and
Newton-Okounkov bodies for surfaces was provided in Section 1.5. We keep the
notation of the previous chapters. In this chapter k will be the complex field C.

Denote by Z0 the projective plane P2 or a Hirzebruch surface Fδ, δ ≥ 0, over C
and p a point of Z0. Let ν be an exceptional curve valuation of the function field
of Z0 centered at OZ0,p. Write νn the divisorial valuation corresponding to a finite
simple sequence of blowups as follows:

π : Z := Zn
πn−→ Zn−1 → . . .→ Z1

π1−→ Z0.

The valuation ν has a distinguished point pr such that pi → pr for i > r and its first
component, which is a divisorial valuation (Theorem 1.3.2), is defined by the divisor
Er, thus it is usually denoted νr (see Section 1.3). As in Chapter 2, for simplicity, we
denote by Ei (respectively, E∗i ) the strict (respectively, total) transform on Zn of the
exceptional divisor Ei created after blowing-up pi and by D̃ (respectively, D∗) the
strict (respectively, total) transform on Zn of a divisor D on Zi, for i ≤ n. Write ϕC
(respectively, ϕi) the germ of a curve C at p (respectively, an analytically irreducible
germ at p whose strict transform on Zi is transversal to Ei at a non-singular point
of the exceptional locus).

Keeping the conventions of the above chapters, ν (respectively, νn) will be often

87
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called exceptional curve (respectively, divisorial) valuations of Z0. If Z0 = P2, and
one considers a divisorial valuation νn, L denotes the line at infinity (see Section
2.1). In the case Z0 = Fδ, F1 denotes the fiber containing p, M0 denotes the special
section and, when νn is non-special, M1 denotes the irreducible curve of degree (0, 1)

going through p whose strict transform has negative self-intersection on the surface
defined by νn (see Proposition 2.2.2).

Set again νn a divisorial valuation of Z0 and consider a big divisor D on Z0.
Recall that the value µ̂D(νn) introduced in Subsection 1.5.1 is

µ̂D(νn) = lim
m→∞

max{νn(f) | f ∈ H0(Z0,OZ0(mD))}
m

. (3.1)

In addition, this value µ̂D(νn) has a lower bound (1.10) which can be written as

µ̂D(νn) ≥
√

volZ0(D)βg+1(νn), (3.2)

because βg+1(νn) = vol(νn)−1 by [64, Section 2.5].
We conclude this brief introduction with the concept of minimal valuation (of P2

o Fδ) with respect to a big divisor.

Definition 3.0.1. Let D be a big divisor on a surface Z0 as defined above. A
divisorial valuation νn of Z0 is called to be minimal with respect to D if

µ̂D(νn) =
√

volZ0(D)βg+1(νn).

When the above condition is not satisfied, the valuation νn is named non-minimal
with respect to D.

3.1 Seshadri-type constants for divisorial valuations of
the projective plane

In this section we are going to give a definition of minimal divisorial valuation of
P2 := P2

C which does not depend on a divisor. It can be found in [15, 38] and [64].
We will prove in Proposition 3.1.3 that this definition is equivalent to Definition 3.0.1
in the projective case and the reference to a divisor can be deleted. Moreover, we
will show interesting results related to non-minimal valuations of P2.

Assume that Z0 = P2 := P2
C. Consider projective coordinates (X : Y : Z) in

P2, a point p ∈ P2 with coordinates (1 : 0 : 0) and the affine coordinates u = Y/X

and v = Z/X around p. Let νn be a divisorial valuation of the function field of P2

centered at OP2,p and set E0 a general projective line on P2. Following [38] and [64],
the value µ̂(νn) is defined as

µ̂(νn) := lim
m→∞

µm(νn)

m
, (3.3)
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where

µm(νn) = max{νn(f) | f ∈ H0(Z0,OZ0(mE0))}

= max{νn(f) | f ∈ C[u, v], deg(f) ≤ m}.

Taking into account (3.1) and (3.2), it holds that µ̂(νn) ≥
√
βg+1(νn).

Now we introduce the above mentioned concept of minimal valuation of P2.

Definition 3.1.1. [38, 64] A divisorial valuation νn of P2 is called to be minimal if

µ̂(νn) =
√
βg+1(νn).

Notice that a divisorial valuation of P2 is minimal in the sense of the above
definition if and only if it is minimal with respect to E0 in the sense of Definition
3.0.1.

The following lemma will allow us to show the relation between our definitions
3.0.1 and 3.1.1 in the projective case.

Lemma 3.1.2. Let νn be a divisorial valuation of P2 and d a positive integer. Then

µ̂dE0(νn) = dµ̂(νn).

Proof. Taking into account (3.1), it holds that

µ̂dE0(νn) = lim
m→∞

max{νn(f) | f ∈ C[u, v], deg(f) ≤ dm}
m

=d lim
m′→∞

max{νn(f) | f ∈ C[u, v],deg(f) ≤ m′}
m′

=dµ̂(νn),

where the second equality follows from the replacement m′ = dm and the third one
from (3.3).

Proposition 3.1.3. Let ν be a divisorial valuation of P2. Then νn is minimal in the
sense of Definition 3.1.1 if and only if it is minimal with respect to any big divisor
D on P2 in the sense of Definition 3.0.1.

Proof. By Definition 3.1.1, a minimal divisorial valuation of P2 satisfies

µ̂(νn)2 = βg+1(νn).

Consequently, it holds that d2µ̂(νn)2 = d2βg+1(νn), for all positive integers d. In
addition, by Lemma 3.1.2, the equality µ̂D(νn)2 = D2βg+1(νn) holds, where D is a
big divisor linearly equivalent to dE0, which completes the proof.

We finish this section giving two results concerning non-minimal divisorial valu-
ations of P2.
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Proposition 3.1.4. [[38, Lemma 5.1] and [65, Lemma 3.10]] Let νn be a divisorial
valuation of P2. Suppose the existence of an irreducible polynomial f ∈ C[u, v] such

that νn(f) > deg(f)
√
βg+1(νn). Then

µ̂(νn) =
νn(f)

deg(f)
.

In addition, if νn is a non-minimal valuation, then there exists such an irreducible
polynomial f and it is the unique irreducible polynomial (up to product by a non-zero
constant) satisfying the above condition.

Definition 3.1.5. Let νn be a non-minimal divisorial valuation of P2. A curve C is
called supraminimal of νn if it is defined by an irreducible polynomial f ∈ C[u, v]

satisfying νn(f)/deg(f) = µ̂(νn). This curve is unique by the above proposition.

Corollary 3.1.6. Let νn be a non-minimal divisorial valuation of P2 and Z the
surface which νn defines. Then the class of the strict transform of the supraminimal
curve of νn generates an extremal ray of the cone of curves NE(Z) of Z.

Proof. To prove the result we show that the strict transform of the supraminimal
curve of νn has negative self-intersection and, by Proposition 1.4.6, we conclude the
proof.

Consider the divisor

D = E∗0 −
1

µ̂(νn)

n∑
i=1

νn(mi)E
∗
i .

This divisor is nef and big. Indeed, suppose that C̃h is the strict transform on Z of
a curve Ch on P2 defined by a polynomial h ∈ C[u, v]. Then

D · C̃h = deg(h)− 1

µ̂(νn)

n∑
i=1

νn(mi) ·multpi(h) = deg(h)− νn(h)

µ̂(νn)
≥ 0,

where the second equality holds by Noether’s formula and the inequality by the fact
that νn is non-minimal. In addition, by the proximities equalities, D ·Ei = 0, for all
i ∈ {1, 2, . . . , n}. Therefore, we have just proved that D is nef. The self-intersection
of the divisor D satisfies

D2 = (E∗0)2 −
βg+1(νn)

µ̂(νn)2
> 1− 1 = 0

by assumption, and by Theorem 1.4.7, D is big.
Now, denote by C̃f the strict transform of the supraminimal curve of νn Cf . Cf

is defined by an irreducible polynomial f ∈ C[u, v]. Consequently, by Proposition
3.1.4,

D · C̃ = deg(f)− νn(ϕC)

µ̂(νn)
= deg(f)− deg(f) = 0,

and so C̃f is orthogonal to D. This implies that C̃f has negative self-intersection by
Proposition 1.4.12, which completes the proof.
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Remark 3.1.7. Let νn be a non-positive at infinity divisorial valuation of P2. By
[64, Proposition 5.4], µ̂(νn) = νn(ϕL) and the line at infinity L is the supraminimal
curve of νn when νn is non-minimal.

3.2 Seshadri-type constants for NPI divisorial valuations
of Hirzebruch surfaces

We devote this subsection to study the value µ̂D(νn) for any non-positive at infinity
divisorial valuation νn of a Hirzebruch surface Fδ over C and any big divisor D on
Fδ. We will also show some consequences of our study.

Our main result is the following one:

Theorem 3.2.1. Let νn be an NPI divisorial valuation of the function field of Fδ
centered at OFδ,p. Set D ∼ aF + bM a big divisor on Fδ. Then:

(a) If νn is special, then µ̂D(νn) = (a+ bδ)νn(ϕF1) + bνn(ϕM0).

(b) Otherwise, µ̂D(νn) = aνn(ϕF1) + bνn(ϕM1).

Proof. To show (a) we assume that p is a special point. When p is a point of F0

(respectively, p is a general point), the proof is similar and holds assuming δ = 0

(respectively, νn(ϕM0) = 0). Set C a curve on Fδ such that C ∈ |mD|, where
m ∈ Z>0, and C̃ its strict transform on Z. The divisor on Z

Λ(νn) = νn(ϕM0)F ∗ + νn(ϕF1)M∗ −
n∑
i=1

νn(mi)E
∗
i

is nef by Theorem 2.3.7 and so Λ(νn) · C̃ ≥ 0. This implies that

(a+ bδ)νn(ϕF1) + bνn(ϕM0) ≥ νn(ϕC)

m

and consequently we have obtained an upper bound for νn(ϕC)/m, where C belongs
to |mD| and m ∈ Z>0. Now fix the curve C1 = m(a+ δb)F1 +mbM0 and then

C1 ∈ |mD| and
νn(ϕC1)

m
= (a+ δb)νn(ϕF1) + bνn(ϕM0),

which proves (a) since we have just seen that the bound can be reached.
Likewise a proof for (b) follows from considering the divisor

∆(νn) = (νn(ϕM1)− δνn(ϕF1))F ∗ + νn(ϕF1)M∗ −
n∑
i=1

νn(mi)E
∗
i ,

which is nef by Theorem 2.4.8, and the curve C1 = maF1 +mbM1.
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Remark 3.2.2. Let νn be an NPI divisorial valuation of P2 and ν the corresponding
NPI special divisorial valuation of F1 described in the proof of Proposition 2.3.3. Set
E0 a general projective line on P2 and M an irreducible curve of degree (0, 1) on F1.
The proofs of Proposition 2.3.3 and Theorem 3.2.1 prove that

µ̂(νn) = µ̂E0(νn) = νn(ϕL) = ν(ϕF1) + ν(ϕM0) = µ̂M (ν).

Even more, by Remark 2.3.5, if νn is minimal then ν is non-minimal with respect to
M since

µ̂M (ν) = µ̂(νn) =
√
βg+1(νn) =

√
βĝ+1(ν) + ν(ϕM0)2 >

√
βĝ+1(ν),

where βg+1(νn) (respectively, βĝ+1(ν)) is the last maximal contact value of νn (res-
pectively, ν).

Corollary 3.2.3. Let νn be an NPI divisorial valuation of Fδ and set D ∼ aF + bM

a big and nef divisor on Fδ. Then

(a) When νn is special, it is minimal with respect to D if and only if

2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)2 = vol(νn)−1

and a = bνn(ϕM0)/νn(ϕF1).

(b) Otherwise, νn is minimal with respect to D if and only if

2νn(ϕM1)νn(ϕF1)− δνn(ϕF1)2 = vol(νn)−1

and a = b(νn(ϕM1)− δνn(ϕF1))/νn(ϕF1).

Proof. We will see (a). Applying a similar argument, one can prove (b).
We begin by proving that νn is minimal with respect to D under the assump-

tions mentioned in the statement. As the equalities 2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)2 =

vol(νn)−1 and D2 = vol(D) are satisfied, one gets

vol(D)

vol(νn)
=(2abδ + b2δ2)νn(ϕF1)2 + 2b(a+ bδ)νn(ϕF1)νn(ϕM0) + 2abνn(ϕF1)νn(ϕM0)

=(a+ bδ)2νn(ϕF1)2 + 2b(a+ bδ)νn(ϕF1)νn(ϕM0) + b2νn(ϕM0)2

=µ̂D(νn)2,

where the second equality is obtained as consequence of the condition (aνn(ϕF1) −
bνn(ϕM0))2 = 0, which holds by hypothesis. This shows that νn is minimal with
respect to D.

Conversely suppose that νn is minimal with respect to D. Theorem 3.2.1 shows
that

((a+ bδ)νn(ϕF1) + bνn(ϕM0))2 = b(2a+ δb)vol(νn)−1. (3.4)
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In addition, it holds that

((a+ bδ)νn(ϕF1) + bνn(ϕM0))2 = a2νn(ϕF1)2 + b2νn(ϕM0)2 + b(2a+ bδ)δνn(ϕF1)2

+ b(a+ δb)(2νn(ϕF1)νn(ϕM0))

=(aνn(ϕF1)− bνn(ϕM0))2

+ b(2a+ δb)(2νn(ϕF1)νn(ϕM0) + δνn(ϕF1)2),

which, together with Equality (3.4), gives rise to

(aνn(ϕF1)− bνn(ϕM0))2 + b(2a+ δb)(2νn(ϕF1)νn(ϕM0) + δνn(ϕF1)2−vol(νn)−1) = 0.

Both summands in the above expression are not negative and so they must vanish.
This concludes the proof.

Corollary 3.2.4. Let νn be an NPI divisorial valuation of Fδ. Then νn is non-
minimal with respect to any big divisor D on Fδ whenever some of the following
conditions holds:

(a) νn is special and 2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)2 > vol(νn)−1.

(b) νn is non-special and 2νn(ϕM1)νn(ϕF1)− δνn(ϕF1)2 > vol(νn)−1.

Proof. Let us first prove (a). It suffices to check that any big divisor D ∼ aF + bM

satisfies
µ̂D(νn)2/P 2

D > βg+1(νn),

where PD is the positive part of the Zariski decomposition of D (see Remark 1.6.8).
Define the map q1 : (−δ,∞)→ R>0 as

q1(x) :=


((x+ δ)νn(ϕF1) + νn(ϕM0))2

((1/δ)x+ 1)2δ
if x ∈ (−δ, 0),

((x+ δ)νn(ϕF1) + νn(ϕM0))2

2x+ δ
if x ∈ [0,∞).

It follows easily that q1 has an absolute minimum at the point (x1, q1(x1)), where

x1 =
νn(ϕM0)

νn(ϕF1)
and q1(x1) = 2νn(ϕM0)νn(ϕF1) + νn(ϕF1)2δ.

The equality q1(a/b) = µ̂D(νn)2/P 2
D, the assumption

2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)2 > vol(νn)−1

and Theorem 3.2.1 complete the proof.
Finally, we can proceed analogously as above to prove (b). Here we have to

consider the map q2 : (−δ,∞)→ R>0,

q2(x) :=


(νn(ϕF1)x+ νn(ϕM1))2

((1/δ)x+ 1)2δ
if x ∈ (−δ, 0),

(νn(ϕF1)x+ νn(ϕM1))2

2x+ δ
if x ∈ [0,∞),
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instead of q1, which has an absolute minimum at the point (x2, q2(x2)), where

x2 =
νn(ϕM1)− δνn(ϕF1)

νn(ϕF1)
and q2(x2) = 2νn(ϕM1)νn(ϕF1)− δνn(ϕF1)2.

3.3 Newton-Okounkov bodies of non-positive at infinity
valuations

Newton-Okounkov bodies are convex sets which provide interesting geometric infor-
mation [86, 74, 15]. However, giving an explicit description of them is very difficult.
As we have seen in Subsection 1.5.2, these bodies can be described; however the
involved objects for that description are also very hard to compute. In this section
we give a much more simple and explicit description of the Newton-Okounkov bodies
of big divisors on a surface Z0, which is the projective plane P2 := P2

C or a Hirze-
bruch surface Fδ over C, δ ≥ 0, with respect to flags defined by exceptional divisors
associated to NPI divisorial valuations.

Let Er be the last exceptional divisor created by a finite simple sequence of
blowups

π : Z := Zr
πr−→ Zr−1 → . . .→ Z1

π1−→ Z0 (3.5)

and pi+1, 0 ≤ i ≤ r− 1, the closed point of Zi where the blowup πi+1 : Zi+1 → Zi is
centered. Denote by E• the flag of Z (see Subsection 1.5.2) defined as

E• := {Z = Zr ⊃ Er ⊃ {pr+1}}, (3.6)

where the closed point pr+1 ∈ Er is the center of E•. The point pr+1 could belong
to another exceptional divisor. In this case, this divisor is denoted by Eη, that is, η
is a positive integer η < r such that pr+1 ∈ Eη ∩ Er.

As we have mentioned in Subsection 1.5.2, a flag of a smooth surface comes
with a discrete valuation of rank 2; in fact, they are equivalent objects. In this
chapter, following [65, Section 3.2] and our Section 1.3, the discrete valuation ν :=

νE• attached to E• corresponds with an exceptional curve valuation whose value
group is Z2 and ν(mr) = (1, 0) and ν(mr+1) = (0, 1), up to equivalence. Recall that
ν can be computed as follows: ν(f) = (v1(f), v2(f)), where

v1(f) := νr(f) and v2(f) := νη(f) +
∑
pi→pr

multpi(f), for f ∈ OZ0,p,

νr (respectively, νη) being the divisorial valuation defined by Er (respectively, Eη).
Set Cν = {pi}i≥1 the configuration of infinitely near points of ν, where pi → pr for

all i > r, and Cνr = {pi}ri=1 the configuration of infinitely near points of νr. Write Γν

(respectively, Γνr) the dual graph of ν (respectively, νr). We consider the following
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useful ordering on the set of vertices of Γνr (Section 1.3): given two vertices α and β,
we say that α 4 β if there exists a simple path on the graph Γνr from 1 to β passing
through α.

Denote by {βi(νn)}g+1
i=0 the sequence of maximal contact values of the divisorial

valuation νn for n = r, η. Write Sν the semigroup of values of ν. It is generated
by {βi(ν)}g

∗+1
i=0 , where βi(ν) = (βi(νr), βi(νη)) (respectively, βi(ν) = (βi(νr), 0) and

βg∗+1(ν) = (βg∗+1(νr), 1)) if the point pr+1 is satellite (respectively, free) (see [65]).
Notice that it holds that g = g∗ + 1 if pr+1 and pr are satellite points. Otherwise,
g = g∗.

The distinction between special and non-special valuations and the definition
of minimal valuation given for divisorial valuations can be easily extended to the
exceptional curve case.

Definition 3.3.1. Let ν be an exceptional curve valuation of Z0. We say that ν is
special when Z0 = Fδ, δ ≥ 0, and its first component νr is special, and is non-special
if Z0 = Fδ, δ > 0, and its first component νr is non-special. Likewise, the valuation
ν is called to be non-positive at infinity (NPI) when its first component νr is NPI.

Definition 3.3.2. Let D be a big divisor on a surface Z0. An exceptional curve
valuation of Z0 is said to be minimal with respect to D if its first component νr is
minimal with respect to D.

Notice that, in the above definition, is enough to say minimal when Z0 = P2 by
Proposition 3.1.3.

The aim of this section is to explicitly compute Newton-Okounkov bodies of
divisors D∗ with respect to ν := νE• , where ν is a exceptional curve valuation of
Z0, E• is a flag as (3.6), and D∗ is the total transform of a big divisor D on Z0.
Under the above conditions, H0(Z0,OZ0(D)) ∼= H0(Z,OZ(D∗)) holds and, without
restriction of generality, we can use the following definition about Newton-Okounkov
bodies.

Definition 3.3.3. Let ν be an exceptional curve valuation of Z0 and D a big divisor
on Z0. The Newton-Okounkov body of D with respect to ν is defined as

∆ν(D) :=
⋃
m≥1

{
ν(f)

m
| f ∈ H0(Z0,mD) \ {0}

}
,

where the upper line means closed convex hull in R2.

Remark 3.3.4. When Z0 = P2, it suffices to study the case where D is a projective
line since ∆ν(dD) = d ·∆ν(D) for all integer d > 0.

Set C(ν) the convex cone of R2 generated by the semigroup of values Sν of ν
and HD(ν) the half-plane {(x, y) ∈ R2 | x ≤ µ̂D(νr)}. We explicitly describe the set
C(ν) ∩ HD(ν) in the following result.
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Proposition 3.3.5. Keep the notation introduced before. The Newton-Okounkov
body ∆ν(D) of D with respect to ν is contained in the triangle C(ν) ∩ HD(ν) whose
vertices are

(0, 0),

(
µ̂D(νr),

µ̂D(νr)β0(νη)

β0(νr)

)
and

(
µ̂D(νr),

µ̂D(νr)βg∗+1(νη)

βg∗+1(νr)

)

if pr+1 ∈ Eη ∩ Er (with η 6= r); and

(0, 0), (µ̂D(νr), 0) and

(
µ̂D(νr),

µ̂D(νr)

βg+1(νr)

)
,

otherwise.

Proof. To start, we suppose that pr+1 is the satellite point Eη ∩ Er. Following
Subsection 1.3.1 and Corollary 1.3.7, the jth maximal contact value of ν, 0 ≤ j ≤ g∗,
is βj(ν) = (βj(νr), βj(νη)). All these values belong to the line passing through the
origin with slope β0(νη)/β0(νr). This line gives a ray of the cone C(ν) which is defined
by another line going through the origin with slope βg∗+1(νη)/βg∗+1(νr). Both lines
together with the line x = µ̂D(νr) determine the triangle C(ν)∩HD(ν) giving rise to
the displayed vertices. Finally, Equality (3.1) completes the proof of (a).

Let us assume that pr+1 is a free point. It holds that βj(ν) = (βj(νr), 0) for
j ∈ {0, 1, . . . , g∗} and βg∗+1(ν) = (βg+1(νr), 1), and consequently one obtains the
triangle C(ν) ∩ HD(ν). Finally, by Equality (3.1), we conclude the proof.

Next, we provide a description of the Newton-Okounkov bodies with respect to
a minimal exceptional curve valuation of Z0. Before stating the result, we show a
useful lemma.

Lemma 3.3.6. Keep the notation introduced before. Assume that pr+1 is the satellite
point Eη ∩ Er, η 6= r. Then,

(a) It holds that

βg+1(νr) =

∣∣∣∣∣βg∗+1(νη)

βg∗+1(νr)
− β0(νη)

β0(νr)

∣∣∣∣∣
−1

.

(b) If η 4 r, then

νr(ϕη) = βg+1(νr) ·
βg∗+1(νη)

βg∗+1(νr)
and νr(ϕη) + 1 = βg+1(νr) ·

β0(νη)

β0(νr)
.

(c) If η 64 r, then

νr(ϕη) = βg+1(νr) ·
β0(νη)

β0(νr)
and νr(ϕη) + 1 = βg+1(νr) ·

βg∗+1(νη)

βg∗+1(νr)
.
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Proof. The first item is proved in [65, Lemma 3.9]. We are going to show Item (b).
We can distinguish three cases:

Case 1: Assume that pr is a free point. That is, η = r− 1, η 4 r and g = g∗. By
Corollary 1.3.7,

νr(ϕη) + 1 = βg+1(νr) = βg+1(νr) ·
β0(νη)

β0(νr)
.

Finally, it holds that

νr(ϕη) = βg+1(νη) = βg+1(νη) ·
βg+1(νr)

βg+1(νr)
= βg+1(νr) ·

βg∗+1(νη)

βg∗+1(νr)
,

which proves the result in this case.
Case 2: Let us show the case when pr is a satellite point, pη is a free point

and η < `g. That is, η = `g − 1, η 4 r and g = g∗ + 1. In addition, it holds that
β′i(νr) = β′i(νη) for 0 ≤ i ≤ g − 1 and νr(ϕη) = eg−1(νr)νη(ϕη). As a consequence, it
holds that

νr(ϕη) = eg−1(νr)νη(ϕη) = βg+1(νr) ·
βg(νη)

βg(νr)
= βg+1(νr) ·

βg∗+1(νη)

βg∗+1(νr)

and

νr(ϕη) + 1 = βg(νr) =
βg+1(νr)

eg−1(νr)
= βg+1(νr) ·

β0(νη)

β0(νr)
,

by Corollary 1.3.7 and the equality βg+1(νr) = eg−1(νr)βg(νr).
Case 3: Suppose now that η 4 r and neither Case 1 nor Case 2 hold. Thus,

g = g∗ + 1 holds since pr and pr+1 are satellite points. In this situation, one has

eg−1(νη)βg(νr) > eg−1(νr)βg(νη)) = νr(ϕη),

by [65, Proposition 2.5]. Thus,

νr(ϕη) = βg+1(νr) ·
βg(νη)

βg(νr)
= βg+1(νr) ·

βg∗+1(νη)

βg∗+1(νr)
.

Moreover, by [65, Lemma 3.9], eg−1(νη)βg(νr) − eg−1(νr)βg(νη) = 1 and then, by
Corollary 1.3.7,

νr(ϕη) + 1 = eg−1(νη)βg(νr) = eg−1(νr)βg(νr) ·
β0(νη)

β0(νr)
= βg+1(νr) ·

β0(νη)

β0(νr)
,

which completes the proof of (b).
Finally, Item (c) can be proved arguing as in the proof of Case 3 of (b).

Theorem 3.3.7. Let ν be an exceptional curve valuation of Z0 and set D a big divisor
on Z0. Then, the Newton-Okounkov body ∆ν(D) of D with respect to ν coincides
with the triangle C(ν) ∩ HD(ν) if and only if ν is minimal with respect to D.
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Proof. We start by recalling that the triangle C(ν) ∩ HD(ν) contains the Newton-
Okounkov body ∆ν(D) by Proposition 3.3.5. In addition, the area of this triangle
is

µ̂D(νr)
2

2

∣∣∣∣∣βg∗+1(νη)

βg∗+1(νr)
− β0(νη)

β0(νr)

∣∣∣∣∣
(
respectively,

µ̂D(νr)
2

2βg+1(νr)

)
when pr+1 is a satellite point (respectively, pr+1 is a free point). By Lemma 3.3.6, the
area of the triangle C(ν)∩HD(ν) in the satellite case becomes µ̂D(νr)

2/2βg+1(νr) and
then, in both cases, the triangle C(ν) ∩ HD(ν) has the same area. From Subsection
1.5.2 and (3.2), one can deduce that

µ̂D(νr)
2

2βg+1(νr)
≥ vol(D)

2
= volR2(∆ν(D))

and therefore the triangle C(ν) ∩ HD(ν) and the body ∆ν coincide if and only if
they have the same area, or equivalently, the valuation ν is minimal with respect to
D.

Remark 3.3.8. When Z0 = P2, the above theorem has been proved for any big
divisor D on P2. Notice that the Newton-Okounkov bodies ∆ν(D) described in the
minimal case satisfy the homothetic property by Lemma 3.1.2.

Notice that, if we consider NPI exceptional curve valuations, then we can compute
explicitly the values µ̂D(νr) and therefore Newton-Okounkov bodies in the minimal
case. Let us show and example:

Example 3.3.9. Let p be a special point of the Hirzebruch surface F2 and νr

a special divisorial valuation centered at OF2,p whose maximal contact values are
{βi(νr)}4i=0 = {12, 18, 117, 239, 720}. Set Cνr = {pi}25

i=0 (where p = p1) its configu-
ration of infinitely near points, F1 the fiber containing p and M0 the special section
whose strict transform goes through p2. Therefore

νr(ϕF1) = 12, νr(ϕM0) = 18 and 2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)2 = 720.

Consider the divisor D = 18F + 12M. By Theorem 3.2.1 and Corollary 3.2.3, the
value µ̂D(νr) is equal to 720 and then νr is minimal with respect to D.

Let ν = νE• be the valuation defined by the flag E• = {Z25 ⊃ E25 ⊃ {p26}},
where p26 ∈ E25 ∩E24, and whose first component is the previous valuation νr. The
semigroup of values Sν of ν is generated by{

βj(ν)
}4

i=0
= {(12, 12), (18, 18), (117, 117), (239, 239), (720, 719)}

and, by Theorem 3.3.7, the coordinates of the Newton-Okounkov body ∆ν(D) (Fig-
ure 3.1(a)) of D with respect to ν are

0 = (0, 0), Q1 = (720, 720) and Q2 = (720, 719) .
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If now we assume that p26 is a free point, we get another example. Here, the semi-
group of values Sν of ν is generated by{

βj(ν)
}4

i=0
= {(12, 0), (18, 0), (117, 0), (239, 0), (720, 1)}

and the coordinates of the vertices of ∆ν(D) (Figure 3.1(b)) are

0 = (0, 0), Q1 = (720, 0) and Q2 = (720, 1).

0 µ̂D(νr)

Q2

Q1

(a) The point pr+1 is satellite.

0 µ̂D(νr)

Q2

Q1

(b) The point pr+1 is free.

Figure 3.1: ∆ν(18F + 12M) in Example 3.3.9.

Explicitly computing Newton-Okounkov bodies with respect to non-minimal va-
luation is a hard task. Whenever Z0 = P2, an explicit description of the vertices
of these bodies can be found in [65, Theorems 3.12 and 3.14]. When considering a
non-positive at infinity exceptional curve valuation ν of P2, the Newton-Okounkov
body ∆ν(E0) of a general projective line E0 can be completely computed as we show
in the next result, which will be proved later. The proof is a consequence of further
results (see Corollary 3.3.29).

Theorem 3.3.10. Let E• = {Z = Zr ⊃ Er ⊃ {pr+1}} be a flag and ν = νE•
its attached exceptional curve valuation. Assume that the first component νr of ν
is an NPI divisorial valuation of P2. Denote by β(ν)g

∗+1
i=0 (respectively, β(νr)

g∗+1
i=0 )

the sequence of maximal contact values of ν (respectively, νr). Consider a general
projective line E0 and the projective line at infinity L as in Subsection 2.1. Then
the Newton-Okounkov body of E0 with respect to ν = νE• is a triangle whose vertices
have the following coordinates:

(a)

0 = (0, 0), Q1 =

(
βg+1(νr)

νr(ϕL)
, 0

)
and Q2 = (νr(ϕL), 1),

when pr+1 is a free point and ν(ϕL) = β1(ν).
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(b)

0 = (0, 0), Q1 =

(
βg+1(νr)

νr(ϕL)
,

1

νr(ϕL)

)
and Q2 = (νr(ϕL), 0),

when pr+1 is a free point and ν(ϕL) 6= β1(ν).

(c)

0 = (0, 0), Q1 =

(
βg+1(νr)

νr(ϕL)
,
νr(ϕη)

νr(ϕL)

)
and Q2 = (νr(ϕL), νη(ϕL)),

when pr+1 ∈ Eη ∩ Er (η 6= r), η 4 r and, either g∗ > 0, or g∗ = 0 and
ν(ϕL) 6= β1(ν). The latter points also describe the Newton-Okounkov body of E0

if pr+1 is the satellite point Eη ∩Er (η 6= r), η 64 r, g∗ = 0 and ν(ϕL) = β1(ν).

(d)

0 = (0, 0), Q1 =

(
βg+1(νr)

νr(ϕL)
,
νr(ϕη) + 1

νr(ϕL)

)
and Q2 = (νr(ϕL), νη(ϕL)),

when pr+1 ∈ Eη ∩ Er (η 6= r), η 64 r and, either g∗ > 0, or g∗ = 0 and
ν(ϕL) 6= β1(ν). The latter points also describe the Newton-Okounkov body of E0

if pr+1 is the satellite point Eη ∩Er (η 6= r), η 4 r, g∗ = 0 and ν(ϕL) = β1(ν).

Let us see an example which corresponds to Theorem 3.3.10.

Example 3.3.11. Let νn be a divisorial valuation of P2 whose configuration of
infinitely near points is Cνn = {pi}17

i=1 and whose sequence of maximal contact values
is {8, 20, 63, 256}. Firstly, assume that the strict transforms of the projective line L
pass through p1 and p2. Then, by Remark 3.1.7,

µ̂(νn) = νn(ϕL) = 16 and µ̂(νn)2 = 256 = βg+1(νn).

Consequently, the valuation νn is non-positive at infinity and minimal.
Set ν := νE• the exceptional curve valuation of P2 which is defined by the flag

{Z17 ⊃ E17 ⊃ {p18}}. Its first coordinate is the above divisorial valuation νn. If
we assume that p18 is satellite, then p18 ∈ E16 ∩ E17 and the Newton-Okounkov
body ∆ν(E0) of a general projective line E0 with respect to ν is a triangle whose
coordinates are

0 = (0, 0), (16, 16) and
(

16,
255

16

)
.

If we suppose that p18 is a free point, then ∆ν(E0) is the triangle with coordinates

0 = (0, 0), (16, 0) and
(

16,
1

16

)
.

Now consider another configuration of infinitely near points Cνn for which the
strict transforms of the projective line L pass through p1, p2 and p3. Then, νn is
negative at infinity and non-minimal, since

µ̂(νn) = νn(ϕL) = 20 and µ̂(νn)2 = 400 > 256 = βg+1(νn).
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Considering the exceptional curve valuation corresponding to a flag

{Z17 ⊃ E17 ⊃ {p18}}

corresponding to this new configuration Cνn , it holds that the Newton-Okounkov
body ∆ν(E0) is determined by the vertices of coordinates

0 = (0, 0),

(
256

20
,
255

20

)
and (20, 20)

when p18 ∈ E16 ∩ E17, since 16 = η 4 r = 17. Otherwise, these vertices are

0 = (0, 0),

(
256

20
,

1

20

)
and (20, 0) .

In what follows, we assume that ν is an exceptional curve valuation of Fδ, δ ≥ 0,

which is non-minimal with respect to a big divisor D ∼ aF + bM on Fδ. Its first
component will be the divisorial valuation νr of Fδ.

The divisor D is also nef when δ = 0. Otherwise (δ 6= 0), D can be big and not
nef. In this last case, the Zariski decomposition of the total transform D∗ on Z = Zr

of D is

PD∗ ∼
(
b+

a

δ

)
M∗ and ND∗ =

−a
δ
M̃0 +

iM0∑
i=0

−aνi(ϕM0)

δ
Ei,

where PD∗ (respectively, ND∗) is the positive (respectively, negative) part of D∗ and
iM0 indicates the last point in Cνr through which the strict transform of M0 passes.
In the following subsections, in virtue of Theorem 1.5.2 and [81, Lemma 1.10], we
will distinguish two situations to compute ∆ν(D).

The first one corresponds to the case when the point pr+1 is not in the support of
the divisor ND∗ , denoted by supp(ND∗). Here, we can also assume that the divisor
D is nef. Indeed, when D ∼ aF +bM is big and not nef, then b > 0 and −bδ < a < 0

and, by [81, Lemma 1.10], the Newton-Okounkov body ∆ν(D) satisfies

∆ν(D) = ∆ν(PD) =
(
b+

a

δ

)
∆ν(M).

Otherwise, the point pr+1 belongs to supp(ND∗). This fact happens if and only
if g∗ = 0, p1 is a special point, all the points in {pi}r+1

i=1 are free, D is big but not nef,
iM0 = r and pr+1 ∈ supp(M̃0). Notice that we are in the first situation whenever
δ = 0.

We conclude by noting that, when pr+1 6∈ supp(ND∗), one can write (3.2) as

µ̂D(νr) ≥
√
D2βg+1(νr), (3.7)

since vol(D) = D2. Otherwise, we will replace D by PD.
In the forthcoming subsections we will explicitly describe the Newton-Okounkov

body of a divisor D as above with respect to an NPI exceptional curve valuation ν
of Fδ. We begin with special valuations, where the first situation explained before
could happen.
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3.3.1 Newton-Okounkov bodies with respect to non-positive at in-
finity special valuations

Along this subsection we consider a big divisor D ∼ aF + bM on Fδ, δ ≥ 0, and an
NPI special exceptional curve valuation ν of Fδ which is non-minimal with respect
to D. Also, we assume that νr is the first component of ν.

Set Z = Zr the rational surface that νr defines and Ei, 1 ≤ i ≤ r, the exceptional
divisors obtained in the sequence of point blowups defined by νr. We denote by E∗i
(respectively, D∗) the total transform of the exceptional divisor Ei (respectively, the
total transform of the divisor D) on Z.

For simplicity, the symbol θr1(D) stands for the expression aνr(ϕF1)− bνr(ϕM0),

where F1 is the fiber which contains p and M0 the special section; both on Fδ. If
θr1(D) vanishes, then either a = bνr(ϕM0)/νr(ϕF1); or νr(ϕM0) = 0 and a = 0.
Note that, under the second condition, some of the expressions we are going to
introduce are not defined and they will not used when θr1(D) = 0. In addition, when
pr+1 ∈ supp(ND∗), θr1(D) is negative.

Firstly, we state (and prove) three lemmas which will help us to obtain the Zariski
decomposition of some key divisors for our goal.

Lemma 3.3.12. Let D be a big and nef divisor on Fδ and νr an NPI special divisorial
valuation of Fδ. Set θr1(D) the value above defined. Then the divisor on Z

D1 = D∗ − b

νr(ϕF1)

r∑
i=1

νr(mi)E
∗
i

(
respectively, D2 = D∗ − a

νr(ϕM0)

r∑
i=1

νr(mi)E
∗
i

)
is nef if θr1(D) ≥ 0 (respectively, θr1(D) < 0).

Proof. We only show that D1 is nef. The proof for D2 runs similarly. Taking into
account that b is positive, it holds that

D1 = D∗ − b

νr(ϕF1)

r∑
i=1

νr(mi)E
∗
i

∼ b

νr(ϕF1)

(
aνr(ϕF1)

b
F ∗ + νr(ϕF1)M∗ −

r∑
i=1

νr(mi)E
∗
i

)

=
b

νr(ϕF1)

(
θr1(D)

b
F ∗ + Λr

)
,

where Λr = νr(ϕM0)F ∗ + νr(ϕF1)M∗ −
∑r

i=1 νr(mi)E
∗
i . As θr1(D) is non-negative

and F ∗ and Λr are nef divisors, by Theorem 2.3.7, D1 is also nef.

Lemma 3.3.13. Let νr be an NPI special divisorial valuation of Fδ and Z the surface
defined by νr. Set D ∼ aF + bM a big divisor on Fδ and, as above, denote by θr1(D)

the expression aνr(ϕF1)−bνr(ϕM0). Let t1, t2, t3 and t4 be the following four rational
numbers:

t1 =
b

νr(ϕF1)
βg+1(νr), t2 =

b

νr(ϕF1)
βg+1(νr) + θr1(D),
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t3 =
a

νr(ϕM0)
βg+1(νr) and t4 =

(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)
.

(1) Assume that the divisor D is nef. The values t1 and t2 (respectively, t3 and t4)
belong to the set

TD,νr := {t ∈ Q | 0 ≤ t ≤ µ̂D(νr)}

if θr1(D) ≥ 0 (respectively, θr1(D) < 0).

(2) Assume that pr+1 ∈ supp(ND∗). Then, the value t4 satisfies

0 < −aνr(ϕM0)/δ < t4 ≤ µ̂D(νr).

Proof. We only prove that t1, t2 ≤ µ̂D(νr) for the first part. A proof for the values
t3 and t4 in our second assertion follows from an analogous reasoning.

We start by proving that t1 ≤ µ̂D(νr) when θr1(D) is non-negative. Consider the
nef divisor on Z, D1 = D∗ − b

νr(ϕF1 )

∑r
i=1 νr(mi)E

∗
i , defined in Lemma 3.3.12. For

any curve C ∈ |mD|,m ∈ Z>0, it holds that

m(2ab+ b2δ)− b

νr(ϕF1)
νr(ϕC) = D1 · C̃ ≥ 0,

where C̃ is the strict transform of C under the birational map that νr defines. Con-
sequently, one has

2ab+ b2δ ≥ b

νr(ϕF1)
µ̂D(νr),

and together with (3.7) we obtain

µ̂D(νr) ≥
D2βg+1(νr)

µ̂D(νr)
=

(2ab+ b2δ)βg+1(νr)

µ̂D(νr)
≥
bβg+1(νr)

νr(ϕF1)
, (3.8)

which show our claim.
Now we are going to prove that t2 ≤ µ̂D(νr) if θr1(D) ≥ 0. Using Theorem 3.2.1,

it is sufficient to see

b βg+1(νr) ≤ b
(
2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)2

)
,

which is true by Theorem 2.3.7 and the fact that b is positive.
To conclude, we show (2), that is, 0 < −aνr(ϕM0)/δ < t4 when D ∼ aF + bM is

big and pr+1 ∈ supp(ND∗). It is easy to check that

t4 +
aνr(ϕM0)

δ
=

(a+ bδ)(νr(ϕM0)2 + δβg+1(νr))

δ(νr(ϕM0) + δνr(ϕF1))
> 0,

where the inequality holds since, as mentioned at the end of the last subsection, D
is big but not nef and then −bδ < a < 0, which completes the proof.

A consequence of the above lemma and Theorem 3.2.1 is the following result.
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Corollary 3.3.14. Let D be a big divisor on Fδ, δ ≥ 0, and νr an NPI special
divisorial valuation of Fδ. Consider the values θr1(D), t2 and t4 given in Lemma
3.3.13. Then,

(a) Assume that θr1(D) ≥ 0, then 2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)2 = βg+1(νr) if and
only if t2 = µ̂D(νr).

(b) Otherwise (θr1(D) < 0), the equality 2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)2 = βg+1(νr)

holds if and only if t4 = µ̂D(νr).

Proof. We only show a proof for Item (a). A similar argument shows Item (b). We
start assuming that 2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)2 = βg+1(νr). Applying the above
equality to the expression of t2 in Lemma 3.3.13, the next equalities follow:

t2 = 2bνr(ϕM0) + δbνr(ϕF1) + aνr(ϕF1)− bνr(ϕM0)

= (a+ bδ)νr(ϕF1) + bνr(ϕM0) = µ̂D(νr),

which show one implication. For the other one, assume that t2 = µ̂D(νr). Then,

0 = µ̂D(νr)− t2 = bδνr(ϕF1) + 2bνr(ϕM0)− b

νr(ϕF1)
βg+1(νr),

and, as b and νr(ϕF1) are positive, the result follows by multiplying νr(ϕF1)/b.

Remark 3.3.15. Some extra information can be given on the values ti, 1 ≤ i ≤ 4.

(a) The valuation νr is minimal with respect to a big and nef divisor D on Fδ if
and only if

µ̂D(νr) =
bβg+1(νr)

νr(ϕF1)
= t1 = t2

(
=
aβg+1(νr)

νr(ϕM0)
= t3 = t4, when νr(ϕM0) 6= 0

)
.

In fact, the equalities t1 = t2 and µ̂D(νr) = t2 are equivalent to those given in
Corollary 3.2.3 by Corollary 3.3.14.

(b) Assume that νr is non-minimal with respect to a big and nef divisor D on Fδ.
Then,

(b.1) The value θr1(D) vanishes if and only if µ̂D(νr) > t1 = t2(= t3 = t4,

when νr(ϕM0) 6= 0).

(b.2) Consider that θr1(D) > 0. The inequality

2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)2 ≥ βg+1(νr)

holds if and only if µ̂D(νr) ≥ t2 > t1 > 0.

(b.3) Otherwise (θr1(D) < 0). The conditions

2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)2 ≥ βg+1(νr) and a ≥ 0

hold if and only if µ̂D(νr) ≥ t4 > t3 ≥ 0.
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Lemma 3.3.16. Keep the notation of Lemma 3.3.13. Assume that νr is non-minimal
with respect to a big divisor D ∼ aF + bM on Fδ.

(1) Suppose that D is also a nef divisor. Then, the intersection matrices defined by
the sets {F̃1, E1, E2, . . . , Er−1} and {M̃0, E1, E2, . . . , Er−1} are negative defi-
nite.

(2) Suppose that pr+1 ∈ supp(ND∗), it holds that the set {M̃0, E1, E2, . . . , Er−1}
determines a negative definite intersection matrix.

Proof. Set D1 the divisor given in Lemma 3.3.12. There we proved that D1 is nef.
Now we are going to show that it is also a big divisor. Indeed, as νr is non-minimal
with respect to D and taking into account (3.8), one gets the following inequalities

D2βg+1(νr)

µ̂D(νr)
≥
bβg+1(νr)

νr(ϕF1)
and 1 >

D2βg+1(νr)

µ̂D(νr)2
,

which allow us to show that D2
1 > 0 since

D2
1 = D2 −

b2βg+1(νr)

νr(ϕF1)2
≥ D2 − bµ̂D(νr)

νr(ϕF1)

(
D2βg+1(νr)

µ̂D(νr)2

)
> D2 − bµ̂D(νr)

νr(ϕF1)
≥ 0.

As a consequence, using Theorem 1.4.7, it holds that D1 is big. In addition, D1 is or-
thogonal to F̃1 and to Ei, for 1 ≤ i ≤ r−1, and consequently the set {F̃1, E1, E2, . . . ,

Er−1} generates a negative definite intersection matrix by Proposition 1.4.12.
The remaining cases follow from a similar argument using, either the divisor D2

defined in Lemma 3.3.12 or the big and nef divisor (b+ a/δ)M∗.

The following proposition provides the positive and negative parts of the Zariski
decomposition of certain divisors on Z which we will use to describe the Newton-
Okounkov body of a big divisor on Fδ, δ ≥ 0.

Proposition 3.3.17. Let νr be an NPI special divisorial valuation of Fδ and Z = Zr

the rational surface that νr defines. Set νi the NPI special divisorial valuation which
the divisor Ei defines, for i ∈ {1, 2, . . . , r− 1}. Consider a big divisor D ∼ aF + bM

on Fδ and assume that νr is non-minimal with respect to D. Set θr1(D) = aνr(ϕF1)−
bνr(ϕM0) and the divisor on Z, Λr = νr(ϕM0)F ∗+ νr(ϕF1)M∗−

∑r
i=1 νr(mi)E

∗
i . Let

D1 and D2 be the divisors given in Lemma 3.3.12 and t1, t2, t3 and t4 the rational
numbers defined in Lemma 3.3.13.

(1) Assume that D is also a nef divisor.

(a) Suppose that θr1(D) ≥ 0. The positive and negative parts of the Zariski
decomposition of the divisors on Z Dt1 := D∗−t1Er, and Dt2 := D∗−t2Er
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are

PDt1 ∼ D1 and NDt1
=

b

νr(ϕF1)

r−1∑
i=1

νr(ϕi)Ei,

and PDt2 ∼
b

νr(ϕF1)
Λr and

NDt2
=

θr1(D)

νr(ϕF1)
F̃1 +

r−1∑
i=1

bνr(ϕi) + θr1(D)νi(ϕF1)

νr(ϕF1)
Ei.

(b) Otherwise, the positive and negative parts of the Zariski decomposition of
the divisors Dt3 := D∗ − t3Er, and Dt4 := D∗ − t4Er are

PDt3 ∼ D2 and NDt3
=

a

νr(ϕM0)

r−1∑
i=1

νr(ϕi)Ei,

and PDt4 ∼
a+ bδ

νr(ϕM0) + δνr(ϕF1)
Λr and

NDt4
=

(
−θr1(D)

νr(ϕM0) + δνr(ϕF1)

)
M̃0

+
r−1∑
i=1

(a+ bδ)νr(ϕi)− θr1(D)νi(ϕM0)

νr(ϕM0) + δνr(ϕF1)
Ei.

(2) Assume that pr+1 ∈ supp(ND∗). Then the previous divisors PDt4 and NDt4
are

the positive and negative parts of Dt4.

Proof. We only show a proof for (a); a proof for the remaining cases follows from a
similar argument. We begin with the Zariski decomposition of Dt1 . It is immediate
that PDt1 + NDt1

∼ Dt1 . In addition, the divisor PDt1 is nef by Lemma 3.3.12.
Finally, each component of NDt1

is orthogonal to PDt1 by the proximity equalities,
and they determine an intersection matrix which is negative definite.

To conclude, we will prove the result for Dt2 . The divisor PDt2 is nef and orthog-
onal to each component of NDt2

by Proposition 2.3.1 and Theorem 2.3.7. Moreover,
it is clear that the intersection matrix given by the components of NDt2

is negative
definite by Lemma 3.3.16. Finally, the fact that Dt2 ∼ PDt2 + NDt2

follows from
summing the next two expressions

D − b

νr(ϕF1)
βg+1(νr)Er ∼

b

νr(ϕF1)
Λr +

θr1(D)

νr(ϕF1)
F ∗ +

b

νr(ϕF1)

r−1∑
i=1

νr(ϕi)Ei

and

−θr1(D)Er =
θr1(D)

νr(ϕF1)

r−1∑
i=1

νi(ϕF1)Ei −
iF1∑
i=1

E∗i

 ,

and from considering that F̃1 ∼ F ∗ −
∑iF1

i=1E
∗
i , where iF1 indicates the last point in

the configuration of infinitely near points Cνr of the valuation νr through which the
strict transform of F1 goes, which proves the result.
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Remark 3.3.18. Keep the notation used at the end of Subsection 1.5.2, in Lemmas
3.3.12, 3.3.13 and 3.3.16 and in Proposition 3.3.17. The ray [Dt] := [D∗]−t[Er], where
0 ≤ t ≤ µ̂D(νr), crosses the interior of NE(Z) heading towards the face of NE(Z)

spanned by the classes of the divisors F̃1, M̃0, E1, E2, . . . , Er−1. Indeed, notice that,
when t is a small enough value, it holds that

Null(Dt) = {E1, E2, . . . , Er−1} = Neg(Dt).

When θr1(D) > 0, the ray [D∗] − t[Er] is contained in the boundary of a Zariski
chamber for the values t1 and t2 since

Neg(Dt1) = {E1, E2, . . . , Er−1} and Null(PDt1 ) = {F̃1, E1, E2, . . . , Er−1},

and

Neg(Dt2) = {F̃1, E1, E2, . . . , Er−1} and Null(PDt2 ) = {F̃1, M̃0, E1, E2, . . . , Er−1}.

An analogous result happens if θr1(D) < 0. In this case the ray [D∗]− t[Er] is in the
boundary of a Zariski chamber for the values t3 and t4 because

Neg(Dt3) = {E1, E2, . . . , Er−1} and Null(PDt3 ) = {M̃0, E1, E2, . . . , Er−1},

and

Neg(Dt4) = {M̃0, E1, E2, . . . , Er−1} and Null(PDt4 ) = {F̃1, M̃0, E1, E2, . . . , Er−1}.

Finally, for θr1(D) = 0, the ray is in the boundary of several Zariski chambers for the
value t1 = t2, since

Neg(Dt1) = {E1, E2, . . . , Er−1} and Null(PDt1 ) = {F̃1, M̃0, E1, E2, . . . , Er−1}.

Figure 3.2 depicts the above situations, where each case has a different color; the
vertical line, denoted [Λn]⊥, represents the face of NE(Z) spanned by the classes of
the divisors F̃1, M̃0, E1, E2, . . . , Er−1; and the Zariski chambers Σ1,Σ2,Σ3 and Σ4

below defined are delimited by discontinuous lines.

Σ1 :=
{

[ξ] ∈ Big(Z) |Neg(ξ) = Null(ξ) = {[E1], [E2], . . . , [Er−1]}
}
,

Σ2 :=
{

[ξ] ∈ Big(Z) |Neg(ξ) = Null(ξ) = {[F̃1], [E1], [E2], . . . , [Er−1]}
}
,

Σ3 :=
{

[ξ] ∈ Big(Z) |Neg(ξ) = Null(ξ) = {[M̃0], [E1], [E2], . . . , [Er−1]}
}
and

Σ4 :=
{

[ξ] ∈ Big(Z) |Neg(ξ) = Null(ξ) = {[F̃1], [M̃0], [E1], [E2], . . . , [Er−1]}
}
.

Now we are going to state the three main results in this subsection. Recall that
D ∼ aF +bM is a big divisor on Fδ and ν an NPI special exceptional curve valuation
which is non-minimal with respect to D and whose first component is νr.



108 3. Seshadri-type constants and NO-bodies

Figure 3.2: Local description of the cone of curves NE(Z) of a rational surface Z
given by a non-positive at infinity special divisorial valuation of Fδ.

The results explicitly describe the Newton-Okounkov bodies ∆ν(D). We distin-
guish three cases:

Case A: Either g∗ > 0, or g∗ = 0, ν(ϕF1) 6= β1(ν) and ν(ϕM0) 6= β1(ν).
Case B: The integer g∗ equals 0 and ν(ϕF1) = β1(ν).
Case C: The integer g∗ equals 0 and ν(ϕM0) = β1(ν).

Before starting our description for Case A, we give a useful property.

Lemma 3.3.19. Let ν be an NPI special exceptional curve valuation of Fδ and
Cν = {pi}i≥1 its configuration of infinitely near points such that pi → pr for all i > r.
Consider the cases described before.

(a) Suppose that pr+1 is the satellite point Eη ∩ Er, η 6= r.

(a.1) Assume we are in Case A. Then,

νη(ϕF1) = νr(ϕF1) · β0(νη)

β0(νr)
and νη(ϕM0) = νr(ϕM0) · β0(νη)

β0(νr)
.

(a.2) Assume we are in Case B. Then,

νη(ϕF1) = νr(ϕF1) ·
βg∗+1(νη)

βg∗+1(νr)
and νη(ϕM0) = νr(ϕM0) · β0(νη)

β0(νr)
.
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(a.3) Assume we are in Case C. Then,

νη(ϕF1) = νr(ϕF1) · β0(νη)

β0(νr)
and νη(ϕM0) = νr(ϕM0) ·

βg∗+1(νη)

βg∗+1(νr)
.

(b) Otherwise (pr+1 is a free point).

(b.1) Assume we are in Case A. Then,

ν(ϕF1) = (νr(ϕF1), 0) and ν(ϕM0) = (νr(ϕM0), 0).

(b.2) Assume we are in Case B. Then,

ν(ϕF1) = (νr(ϕF1), 1) and ν(ϕM0) = (νr(ϕM0), 0).

(b.3) Assume we are in Case C. Then,

ν(ϕF1) = (νr(ϕF1), 0) and ν(ϕM0) = (νr(ϕM0), 1).

Proof. The result easily follows from the next observations. The value ν(ϕF1) equals
β1(ν) when the strict transform of the fiber F1 goes through all initial free points
of Cν . Otherwise, ν(ϕF1) = sF1β0(ν) for a positive integer sF1 . Similarly, the value
ν(ϕM0) is equals to either β1(ν), or sM0β0(ν), for a non-negative integer sM0 . Finally
at most one of the strict transforms of F1 and M0 pass through p2.

We begin with Case A. Here D can be also considered a nef divisor without
loss of generality, since ∆ν(D) with D big and not nef can be obtained as we said
in the paragraphs before Subsection 3.3.1. Following Subsection 1.5.2, the Newton-
Okounkov body ∆ν(D) can be seen as the set

{(t, y) ∈ R2 | 0 ≤ t ≤ µ̂D(νr) and α(t) ≤ y ≤ β(t)}, (3.9)

where α(t) := ordpr+1(NDt |Er) and β(t) := α(t) + PDt · Er for all t ∈ [0, µ̂D(νr)];

PDt and NDt being the positive part and the negative part of the divisor on Z

Dt = D∗ − tEr, respectively. As a result, using Proposition 3.3.17, some points
which belong to ∆ν(D) are

Q1 =

(
bβg+1(νr)

νr(ϕF1)
,
bνr(ϕη)

νr(ϕF1)

)(
respectively, Q1 =

(
bβg+1(νr)

νr(ϕF1)
, 0

))
,

Q2 = Q1 +

(
0,

b

νr(ϕF1)

)
,

Q3 =

(
bβg+1(νr)

νr(ϕF1)
+ θr1(D),

bνr(ϕη) + θr1(D)νη(ϕF1)

νr(ϕF1)

)
(
respectively, Q3 =

(
bβg+1(νr)

νr(ϕF1)
+ θr1(D), 0

))
and Q4 = Q3 +

(
0,

b

νr(ϕF1)

)
(3.10)
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when θr1(D) ≥ 0 and pr+1 is the satellite point Eη ∩ Er (respectively, a free point).
If θr1(D) < 0 and pr+1 is the satellite point Eη ∩Er (respectively, a free point), then
the points which are contained in ∆ν(D) are

Q5 =

(
aβg+1(νr)

νr(ϕM0)
,
aνr(ϕη)

νr(ϕM0)

)(
respectively, Q5 =

(
aβg+1(νr)

νr(ϕM0)
, 0

))
,

Q6 = Q5 +

(
0,

a

νr(ϕM0)

)
,

Q7 =

(
(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)
,
(a+ bδ)νr(ϕη)− θr1(D)νη(ϕM0)

νr(ϕM0) + δνr(ϕF1)

)
(
respectively, Q7 =

(
(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)
, 0

))
and Q8 = Q7 +

(
0,

a+ bδ

νr(ϕM0) + δνr(ϕF1)

)
.

(3.11)
The point Q9 = (µ̂D(νr), µ̂D(νη)) (respectively, Q9 = (µ̂D(νr), 0)) if pr+1 is

satellite (respectively, free) is also contained in ∆ν(D) by definition. This last point
can be explicitly computed using Theorem 3.2.1.

Remark 3.3.20. In this remark, we give some observations about the previous
points Qi. They are the following ones.

(a) The value θr1(D) vanishes if and only ifQ1 = Q3(= Q5 = Q7 when νr(ϕM0) 6= 0)

and Q2 = Q4(= Q6 = Q8 when νr(ϕM0) 6= 0). Moreover, if θr1(D) < 0, it holds
that δ > 0 and a = 0 if and only if Q5 = (0, 0) = Q6.

(b) Some of the above points Qi are collinear by Lemma 3.3.6 and Lemma 3.3.19:
Indeed,

(b.1) Assume that pr+1 is the satellite point Eη ∩ Er, η 6= r. The points
(0, 0), Q2, Q4 (respectively, Q6, Q8) and Q9 are in the line T1 ≡ β0(νr)y =

β0(νη)x when η 4 r and θr1(D) ≥ 0 (respectively, θr1(D) < 0). If η 64 r

and θr1(D) ≥ 0 (respectively, θr1(D) < 0), then (0, 0), Q1, Q3 (respectively,
Q5, Q7) and Q9 are in T1.

(b.2) Suppose that pr+1 is a free point. The points (0, 0), Q1, Q3 (respectively,
Q5, Q7) and Q9 are in the line y = 0.

Let us state our main result for the Case A.

Theorem 3.3.21. Let ν be an exceptional curve valuation. Assume that ν belongs to
Case A defined before Lemma 3.3.19. Following the notations of the above paragraphs,
the Newton-Okounkov body ∆ν(D) of a big and nef divisor D ∼ aF + bM on Fδ with
respect to ν is a quadrilateral if and only if a 6= 0 and θr1(D) 6= 0. Otherwise, it is a
triangle (because one of the conditions of Remark 3.3.20(a) happens).

The vertices of ∆ν(D) are
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(a) (0, 0), Q1, Q3 (respectively, Q5, Q7) and Q9 if pr+1 is the satellite point Eη∩Er,
η 6= r, η 4 r and θr1(D) ≥ 0 (respectively, θr1(D) < 0).

(b) (0, 0), Q2, Q4 (respectively, Q6, Q8) and Q9 if pr+1 is the satellite point Eη∩Er,
η 6= r, η 64 r and θr1(D) ≥ 0 (respectively, θr1(D) < 0).

(c) (0, 0), Q2, Q4 (respectively, Q6, Q8) and Q9 if pr+1 is a free point and θr1(D) ≥ 0

(respectively, θr1(D) < 0).

Proof. We first prove that the sets of points {(0, 0), Q1, Q2, Q3, Q4, Q9} and {(0, 0),

Q5, Q6, Q7, Q8, Q9} generate convex hulls, denoted by ∆ and ∆′ respectively, whose
area is equal to D2/2.

We begin with ∆. Consider the triangle (0, 0), Q1 and Q2 (respectively, Q3, Q4

and Q9). Its area is

b2βg+1(νr)

2νr(ϕF1)2

(
respectively,

b

2νr(ϕF1)

(
µ̂D(νr)−

( b

νr(ϕF1)
βg+1(νr) + θr1(D)

)))
.

Now take the parallelogram Q1, Q2, Q3 and Q4. It is immediate that its area is
b

νr(ϕF1 )θ
r
1(D). Therefore, summing the previous areas yields that of ∆ which equals

2ab+ b2δ

2
=
D2

2
.

Proceeding analogously with ∆′, we sum the area of the triangles with vertices
(0, 0), Q5 and Q6, and Q7, Q8 and Q9 together with that of the trapezium with
vertices Q5, Q6, Q7 and Q8. It is a simple matter to see that the areas of the triangles
are a2

2νr(ϕM0
)2
βg+1(νr) and

a+ bδ

2(νr(ϕM0) + δνr(ϕF1))

(
µ̂D(νr)−

(
(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)

))
.

Now we consider the trapezium. The length of its parallel sides (generated by Q5

and Q6, and Q7 and Q8) and the distance between them are

a

νr(ϕM0)
,

a+ bδ

νr(ϕM0) + δνr(ϕF1)
and

−θr1(D)(δβg+1(νr) + νr(ϕM0)2)

νr(ϕM0)(νr(ϕM0) + δνr(ϕF1))
.

Then the area of the trapezium is

−θr1(D) ((2a+ bδ)νr(ϕM0) + aδνr(ϕF1)) (δβg+1(νr) + νr(ϕM0)2)

2νr(ϕM0)2(νr(ϕM0) + δνr(ϕF1))2
.

Continuing the process, when we sum the previous areas, the first observation is that
the coefficients of βg+1(νr) are cancelled. Therefore, it suffices to sum the following
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fractions
(a+ bδ)µ̂D(νr)

2(νr(ϕM0) + δνr(ϕF1))
,
θr1(D)(a+ bδ)νr(ϕM0)

2(νr(ϕM0) + δνr(ϕF1))2
and

−θr1(D)νr(ϕM0)2((2a+ bδb)νr(ϕM0) + aδνr(ϕF1))

2νr(ϕM0)2(νr(ϕM0) + δνr(ϕF1))2
,

which provides the desired value D2/2.
If we look at the vertices of ∆ and ∆′, some of the defining points of ∆ and ∆′

can be removed depending on the assumptions by Remark 3.3.20(b). As a result,
the Newton-Okounkov body ∆ν(D) is a triangle or a quadrilateral.

To conclude the proof we are going to see that ∆ν(D) is a triangle if and only if
one of the situations of Remark 3.3.20 (a) happens.

Suppose, for instance, that pr+1 is a satellite point and η 64 r. The remaining cases
run similarly. Take θr1(D) ≥ 0. Here the Newton-Okounkov body ∆ν(D) is a triangle
if and only if one of the following conditions holds: either the line going through Q2

and Q9 contains Q4, or the point Q4 is in the line T2 ≡ βg∗+1(νη)x = βg∗+1(νr)y.
Both options are true if and only ifQ2 = Q4, or equivalently, θr1(D) = 0. Now consider
θr1(D) < 0. In this situation, the Newton-Okounkov body ∆ν(D) is a triangle if and
only if one of the following conditions happens: the line passing through Q6 and Q9

contains Q8; the point Q8 is in the line T2; or Q5 = (0, 0) = Q6. As above, the first
and second conditions are satisfied if and only if θr1(D) = 0, which contradicts our
assumption (θr1(D) < 0). By Remark 3.3.20, the third one holds if and only if δ > 0

and a = 0, which completes the proof.

Let us show an example of Newton-Okounkov body ∆ν(D) which corresponds to
Theorem 3.3.21 (a).

Example 3.3.22. Let νr be a special divisorial valuation of Fδ (centered at OF2,p),

where p is a special point of F2, and {βi(νr)}3i=0 = {20, 28, 153, 612} its sequence
of maximal contact values. Set Cνr = {pi}12

i=1 (with p = p1) the configuration of
infinitely near points of ν and write F1 the fiber containing p. Assume that the strict
transform of M0 only passes through p2. Therefore, νr(ϕF1) = 20, νr(ϕM0) = 28 and
2νr(ϕF1)νr(ϕM0) + νr(ϕF1)2δ = 1920 > 612 = βg+1(νr). That is, νr is non-positive
at infinity by Theorem 2.3.7.

Set ν = νE• the valuation defined by the flag E• = {Z = Z12 ⊃ E12 ⊃ {p13}},
where p13 ∈ E8∩E12, and whose first coordinate is the above divisorial valuation νr.
Following Theorem 3.3.21, the Newton-Okounkov body ∆ν(F+2M) is a quadrilateral
and its vertices are

0 = (0, 0), Q5 =

(
612

28
,
152

28

)
, Q7 =

(
4068

68
,
1012

68

)
and Q9 = (156, 39) ,

since νr is non-minimal with respect to F + 2M by Corollary 3.2.4, θr1(F + 2M) < 0

and 8 4 12. Figure 3.3 shows the Newton-Okounkov body ∆ν(F + 2M) (in dark)
and the triangle C(ν) ∩ HF+2M (ν) given in Proposition 3.3.5.
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0 t3 t4 µ̂D(νr)

Q6

Q8

Q9

Q7

Q5

Figure 3.3: ∆ν(F + 2M) and C(ν) ∩ HF+2M (ν) in Example 3.3.22.

Next we formulate a similar result to Theorem 3.3.21 for Case B described before
Lemma 3.3.19. That is, we assume that ν is a valuation in Case B and then g∗ = 0 and
ν(ϕF1) = β1(ν). As the first point in Fδ where we blow up can be special or general,
it may happen that ν(ϕM0) = (0, 0). In this last case the value θr1(D) = aνr(ϕF1) is
non-negative. Moreover, we can suppose that D is big and nef, since ∆ν(D) with D
big and not nef can be obtained as we said in the paragraphs before Subsection 3.3.1.

Notice that ∆ν(D) can also be described as the convex set (3.9). So, using Propo-
sition 3.3.17, when pr+1 is the satellite point Eη ∩ Er and θr1(D) ≥ 0 (respectively,
θr1(D) < 0), the points Q1, Q2, Q3, Q4 (respectively, Q5, Q6, Q7, Q8) and Q9 given in
(3.10) (respectively, (3.11)) for the satellite case belong to ∆ν(D). Otherwise (pr+1

is free), the points

Q1 =

(
bβg+1(νr)

νr(ϕF1)
, 0

)
, Q2 = Q1 +

(
0,

b

νr(ϕF1)

)
,

Q3 =

(
bβg+1(νr)

νr(ϕF1)
+ θr1(D),

θr1(D)

νr(ϕF1)

)
and Q4 = Q3 +

(
0,

b

νr(ϕF1)

)

(respectively, Q5, Q6, Q7, Q8 given in (3.11) for the free case) and

Q9 = (µ̂D(νr), a+ bδ)

are in ∆ν(D) if θr1(D) ≥ 0 (respectively, θr1(D) < 0).
Before determining the vertices of the Newton-Okounkov body in Case B, we

show some situations where the previous points are aligned.

Remark 3.3.23. As in Case A, the points Qi described in the last but one paragraph
satisfy the following properties.

(a) The statement in Remark 3.3.20(a) remains true.
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(b) Assume that ν(ϕM0) = (0, 0). It follows from Lemma 3.3.6 and Lemma 3.3.19
that the points (0, 0), Q1, Q3 (respectively, Q2, Q4) and Q9 are in the line
βg∗+1(νη)x = βg∗+1(νr)y when pr+1 is the satellite point Eη ∩ Er, η 6= r,

and η 4 r (respectively, η 64 r), since µ̂D(νr) = aνr(ϕF1) and we are in
Case B. If pr+1 is a free point, then (0, 0), Q2, Q4 and Q9 belong to the line
y = x/βg+1(νr).

(c) Assume ν(ϕM0) 6= (0, 0). As a consequence of Lemma 3.3.6 and Lemma 3.3.19,
some of the before described points Qi are collinear. Indeed,

(c.1) Suppose that pr+1 is the satellite point Eη ∩ Er, η 6= r. The points
(0, 0), Q1 and Q3 (respectively, (0, 0), Q6 and Q8) belong to the line T2 ≡
βg∗+1(νr)y = βg∗+1(νη)x (respectively, T1 ≡ β0(νr)y = β0(νη)x), and the
point Q4 (respectively, Q7) is contained in the line which passes through
Q2 and Q9 (respectively, Q5 and Q9), when η 4 r and θr1(D) ≥ 0 (respec-
tively, θr1(D) < 0).

(c.2) If pr+1 ∈ Eη ∩ Er, η 6= r, η 64 r and θr1(D) ≥ 0 (respectively, θr1(D) < 0),
then the points (0, 0), Q2 and Q4 (respectively, (0, 0), Q5 and Q7) are in
the previous line T2 (respectively, T1), and Q3 (respectively, Q8) belongs
to the line which goes through Q1 and Q9 (respectively, Q6 and Q9).

(c.3) Otherwise (pr+1 is a free point), the points (0, 0), Q2 and Q4 (respectively,
(0, 0), Q5 and Q7) are in the line y = x/βg+1(νr) (respectively, y = 0), and
Q3 (respectively, Q8) is contained in the line which passes through Q1 and
Q9 (respectively, Q6 and Q9) when θr1(D) ≥ 0 (respectively, θr1(D) < 0).

Theorem 3.3.24. Let ν be an exceptional curve valuation in Case B described before
Lemma 3.3.19. With notations as in the previous paragraphs, the Newton-Okounkov
body ∆ν(D) of a big and nef divisor D ∼ aF + bM on Fδ with respect to ν is a
quadrilateral if and only if a 6= 0. Otherwise, it is a triangle (see Remark 3.3.23).

(a) When ν(ϕM0) = (0, 0), the vertices of the quadrilateral are

(a.1) (0, 0), Q2, Q4 (respectively, Q1, Q3) and Q9 if pr+1 is the satellite point
Eη ∩ Er, η 6= r, and η 4 r, (respectively, η 64 r).

(a.2) (0, 0), Q1, Q3 and Q9 whenever pr+1 is a free point.

In addition, if δ > 0 and a = 0, then the vertices of the triangle ∆ν(D) are the
above ones, where Q1 = Q3 and Q2 = Q4.

(b) When ν(ϕM0) 6= (0, 0), the vertices of the quadrilateral are

(b.1) (0, 0), Q2, Q3 (respectively, Q5, Q8) and Q9 if θr1(D) ≥ 0 (respectively,
θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er, η 6= r, and η 4 r.
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(b.2) (0, 0), Q1, Q4 (respectively, Q6, Q7) and Q9 if θr1(D) ≥ 0 (respectively,
θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er, η 6= r, and η 64 r.

(b.3) (0, 0), Q1, Q4 (respectively, Q6, Q7) and Q9 if θr1(D) ≥ 0 (respectively,
θr1(D) < 0) and pr+1 is a free point.

Moreover, if δ > 0 and a = 0, the vertices of the triangle ∆ν(D) are the above
ones where Q5 = (0, 0) = Q6.

Proof. Take the convex hulls defined by the points {(0, 0), Q1, Q2, Q3, Q4, Q9} and
{(0, 0), Q5, Q6, Q7, Q8, Q9}. Reasoning as in the proof of Theorem 3.3.21, we deduce
that the area of both sets is D2/2. In addition, taking into account Remark 3.3.23,
one gets (a). Finally, checking that Q9 does not belong to neither the line T1 ≡
β0(νr)y = β0(νη)x nor the line T2 ≡ βg∗+1(νr)y = βg∗+1(νη)x, we obtain (b) by
Remark 3.3.23, which proves the result.

Example 3.3.25. Let νr be a special divisorial valuation of F2 and {βi(νr)}2i=0 =

{2, 5, 10} its sequence of maximal contact values. Set Cνr = {pi}4i=1 the configuration
of infinitely near points of νr such that p1 is a special point. Moreover, assume that
the strict transforms of F1 (the fiber passing through p1) go through p2 and p3.

Therefore, νr(ϕF1) = 5 and νr(ϕM0) = 2 and then

2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)2 = 70 > 10 = βg+1(νr).

As a result, the divisorial valuation νr is non-positive at infinite.
Let ν = νE• be the exceptional valuation associated to the flag E• = {Z =

Z4 ⊃ E4 ⊃ {pr+1}} and whose first component is the last divisorial valuation νr.
In addition, suppose that pr+1 is the satellite point E3 ∩ E4. Then, its sequence of
maximal contact values is {β0(ν), β1(ν)} = {(2, 1), (5, 3)}, ν(ϕF1) = (5, 3) = β1(ν)

and ν(ϕM0) = (2, 1). As a result, we are in Case B. Assume that D = F + M . By
Theorem 3.2.1, µ̂D(νr) = (a+ bδ)νr(ϕF1) + bνr(ϕM0) = 17 and so ν is non-minimal
respect to D (since µ̂D(νr)

2 > D2βg+1(νr)). Therefore, by Theorem 3.3.24, the
Newton-Okounkov body ∆ν(D) is the convex hull generated by

(0, 0), Q1 = (2, 1), Q4 = (5, 3) and Q9 = (17, 10),

because θr1(D) = aνr(ϕF1)− bνr(ϕM0) = 3 and 3 = η 64 r = 4. One can see in Figure
3.4 the Newton-Okounkov ∆ν(F+M) in dark and the triangle C(ν)∩HF+M (ν) given
in Proposition 3.3.5.

To conclude this subsection, we describe the Newton-Okounkov body ∆ν(D)

in Case C introduced before Lemma 3.3.19. Therefore, assume that g∗ = 0 and
ν(ϕM0) = β1(ν). Here, we can suppose that D is a big and nef divisor except for the
case when all the points {pi}r+1

i=1 are free. In this last situation, pr+1 ∈ supp(ND∗) if
and only if D is big and not nef.
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0

Q2

Q1

Q3

Q4

Q9

t1 t2 µ̂D(νr)

Figure 3.4: ∆ν(F +M) and C(ν) ∩ HF+M (ν) in Example 3.3.25.

Let us start assuming that D is big and nef. As above in Case B, ∆ν(D) can
be described as in (3.9). So, by Proposition 3.3.17, when θr1(D) ≥ 0 (respectively,
θr1(D) < 0) and pr+1 is the satellite point Eη ∩ Er, the points Q1, Q2, Q3, Q4 (res-
pectively, Q5, Q6, Q7, Q8) and Q9 provided in (3.10) (respectively, (3.11)) for the
satellite situation belong to ∆ν(D).

If pr+1 is a free point and θr1(D) < 0 (respectively, θr1(D) ≥ 0), the points

Q5 =

(
aβg+1(νr)

νr(ϕM0)
, 0

)
, Q6 = Q5 +

(
0,

a

νr(ϕM0)

)
,

Q7 =

(
(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)
,

−θr1(D)

νr(ϕM0) + δνr(ϕF1)

)
,

Q8 = Q7 +

(
0,

a+ bδ

νr(ϕM0) + δνr(ϕF1)

)

(respectively, Q1, Q2, Q3, Q4 given in (3.10) for the free case) and Q9 = (µ̂D(νr), b)

are in ∆ν(D).
Finally, assume that D is big and not nef and all the points in {pi}r+1

i=1 are free.
Recall that these hypothesis are equivalent to the fact that pr+1 ∈ supp(ND∗) (see
the paragraphs before Subsection 3.3.1). Therefore, the points

P1 =

(
−aνr(ϕM0)

δ
,
−a
δ

)
,

P2 =

(
(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)
,

−θr1(D)

νr(ϕM0) + δνr(ϕF1)

)
,

P3 = P2 +

(
0,

a+ bδ

νr(ϕM0) + δνr(ϕF1)

)
and P4 = (µ̂D(νr), b)

belong to ∆ν(D).
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Remark 3.3.26. As the above cases, the points Qi, 1 ≤ i ≤ 9, and Pj , 1 ≤ j ≤ 4,

satisfy the following properties.

(a) The statement in Remark 3.3.20(a) holds if D is a big and nef divisor.

(b) When D is big and nef, some points Qi are collinear by Lemma 3.3.6 and
Lemma 3.3.19. Indeed,

(b.1) If pr+1 is the satellite point Eη ∩ Er, η 6= r, η 4 r and θr1(D) ≥ 0 (respec-
tively, θr1(D)), then the points (0, 0), Q2 and Q4 (respectively, (0, 0), Q5

and Q7) are in the line T1 ≡ β0(νr)y = β0(νη)x (respectively, T2 ≡
βg∗+1(νr)y = βg∗+1(νη)x), and the point Q3 (respectively, Q8) belongs to
the line which goes through Q1 and Q9 (respectively, Q6 and Q9).

(b.2) When pr+1 ∈ Eη ∩ Er, η 6= r, η 64 r and θr1(D) ≥ 0 (respectively, θr1(D) <

0), the points (0, 0), Q1 and Q3 (respectively, (0, 0), Q6 and Q8) are in the
line T1 (respectively, T2) and the point Q4 (respectively, Q7) is contained
in the line which passes through Q2 and Q9 (respectively, Q5 and Q9).

(b.3) Otherwise (pr+1 is a free point), the points (0, 0), Q1 and Q3 (respectively,
(0, 0), Q6 and Q8) are in the line y = 0 (respectively, y = x/βg+1(νr)) and
the point Q4 (respectively, Q7) belongs to the line which passes through
Q2 and Q9 (respectively, Q5 and Q9).

(c) If pr+1 ∈ supp(ND∗), then θr1(D) < 0 and the point P2 is contained in the line
which goes through P1 and P4, and P1 and P3 belong to the line y = x/βg+1(νr).

Now, we formulate our result for Case C describing the vertices of the Newton-
Okounkov body ∆ν(D). Notice that, as said, D is big and nef except when pr+1 is
in supp(ND∗). Recall that the Newton-Okounkov bodies ∆ν(D) for the remaining
cases where D is big but not nef can be reduced to the big and nef situation (see the
paragraphs before Subsection 3.3.1).

Theorem 3.3.27. Let ν be an exceptional curve valuation as described in Case C
before Lemma 3.3.19. With assumptions and notations as in the previous paragraphs,
the Newton-Okounkov body ∆ν(D) of a big divisor D ∼ aF + bM on Fδ with respect
to ν is a quadrilateral if and only if a 6= 0 and D is nef. Otherwise, it is a triangle.

(a) When D is a big and nef divisor, then the vertices of the quadrilateral are

(a.1) (0, 0), Q1, Q4 (respectively, Q6, Q7) and Q9 if θr1(D) ≥ 0 (respectively,
θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er, η 6= r, and η 4 r.

(a.2) (0, 0), Q2, Q3 (respectively, Q5, Q8) and Q9 if θr1(D) ≥ 0 (respectively,
θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er, η 6= r, and η 64 r.

(a.3) (0, 0), Q2, Q3 (respectively, Q5, Q8) and Q9 if θr1(D) ≥ 0 (respectively,
θr1(D) < 0) and pr+1 is a free point.
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Moreover, if δ > 0 and a = 0, the vertices of the triangle ∆ν(D) are the above
ones where Q5 = (0, 0) = Q6.

(b) If D is big but not nef and all the points in {pi}r+1
i=1 are free, then the vertices

of the triangle ∆ν(D) are P1, P3 and P4.

Proof. It easy see that (a) follows as in Theorem 3.3.24 (b) using Lemma 3.3.6 and
Lemma 3.3.19.

Let us prove (b). Firstly, we are going to see that the area of the convex hull ∆

generated by P1, P2, P3 and P4 is P 2
D∗/2. Indeed, the area of the triangle generated

by P1, P2 and P3 (respectively, P2, P3 and P4) is

(a+ bδ)

(
(a+bδ)βg+1(νr)−θr1(D)νr(ϕM0

)

νr(ϕM0
)+δνr(ϕF1 ) − −aνr(ϕM0

)

δ

)
2(νr(ϕM0) + δνr(ϕF1))respectively,

(a+ bδ)

(
µ̂D(νr)−

(a+bδ)βg+1(νr)−θr1(D)νr(ϕM0
)

νr(ϕM0
)+δνr(ϕF1 )

)
2(νr(ϕM0) + δνr(ϕF1))

 .

Summing both areas, we have

(a+ bδ)
(
µ̂D(νr)−

−aνr(ϕM0
)

δ

)
2(νr(ϕM0) + δνr(ϕF1))

=
(a+ bδ)

(
b+ a

δ

)
(νr(ϕM0) + δνr(ϕF1))

2(νr(ϕM0) + δνr(ϕF1))

=

((
b+ a

δ

)
M∗
)2

2
=
P 2
D∗

2
,

which is the desired value. After taking account Remark 3.3.26(c), the proof is
concluded.

Example 3.3.28. Let νr be a special divisorial valuation of the Hirzebruch surface
F3 and Cνr = {pi}3i=1 its configuration of infinitely near point, where all points are
free and p1 is special. Assume that the strict transforms of the special section M0

pass through p2 and p3. Consequently, νr(ϕF1) = 1, νr(ϕM0) = 3 and

2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)2 = 9 > 3 = βg+1(νr).

Thus νr is non-positive at infinity.
Set ν = νE• the valuation associated to the flag E• := {Z = Z3 ⊃ E3 ⊃ {pr+1}},

where pr+1 is a free point, such that its first component is the above divisorial
valuation νr. The sequence of maximal contact values of ν is {β0(νr), β1(νr)} =

{(1, 0), (3, 1)}. Assume that the strict transform ofM0 passes through pr+1. Consider
the divisor D = −2F + M, which is big and not nef. Therefore, we are in Case
C. By Theorem 3.2.1, µ̂D(νr) = (a + bδ)νr(ϕF1) + bνr(ϕM0) = 4 and then ν is
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non-minimal respect to D (because µ̂D(νr)
2 > D2βg+1(νr)). In addition, θr1(D) =

aνr(ϕF1)− bνr(ϕM0) = −5.

Then, by Theorem 3.3.27, the Newton-Okounkov body ∆ν(D) is the convex set
whose vertices are

P1 =

(
2,

2

3

)
, P3 = (3, 1) and P4 = (4, 1).

Figure 3.5 shows the Newton-Okounkov body ∆ν(−2F+M) in dark and the triangle
C(ν) ∩ HF+M (ν) described in Proposition 3.3.5.

P1

P3 P4

P2

−aνr(ϕM0)/δ t4 µ̂D(νr)0

Figure 3.5: ∆ν(−2F +M) and C(ν) ∩ H−2F+M (ν) in Example 3.3.28.

Corollary 3.3.29. Let E• = {Z = Zr ⊃ Er ⊃ {pr+1}} be a flag and ν = νE•
its attached exceptional curve valuation. Assume that its first component νr is an
NPI divisorial valuation of P2 and thus Z is obtained from a sequence of points
blowups starting at P2. Then there exists an exceptional curve valuation ν̂ whose
first component ν̂r is an NPI special divisorial valuation of F1 which corresponds to
the same flag. Moreover, if E0 is a general projective line on P2 and M a curve
of degree (0, 1) on F1, the Newton-Okounkov body ∆ν(E0) of E0 coincides with the
Newton-Okounkov body ∆ν̂(M) of M .

Proof. The first part is a consequence of Theorem 1.3.2(b), Proposition 2.3.3 and
Corollary 2.3.4.

Now we are going to prove the second part of the result. Set
{
βi(ν)

}g∗+1

i=0(
respectively,

{
βi(νr)

}g+1

i=0
,
{
βi(ν̂)

}ĝ∗+1

i=0
,
{
βi(ν̂r)

}ĝ+1

i=0

)
the sequence of maximal con-

tact values of ν (respectively, νr, ν̂, ν̂r) and νη (respectively, ν̂η̂) the divisorial va-
luation which appears in the second coordinate of ν (respectively, ν̂) when pr+1 is a
satellite point. Notice that η̂ = η − 1.

Note that a projective line on P2 corresponds with a curve of degree (0, 1) D = M

on F1. Therefore one always has that θr1(D) = −ν̂r(ϕM0) < 0. Denote by L the line
at infinity on P2 (see Subsection 2.1). By the Noether formula, Proposition 2.3.3,



120 3. Seshadri-type constants and NO-bodies

Corollary 2.3.4, Remark 2.3.5 and Remark 3.2.2 the following equalities hold

βg+1(νr) = βĝ+1(ν̂r) + ν̂r(ϕM0)2, ν(m1) = ν̂(ϕM0), ν(ϕL) = ν̂(ϕF1) + ν̂(ϕM0),

νr(ϕη) = ν̂r(ϕη̂) + ν̂r(ϕM0) · ν̂η̂(ϕM0) and µ̂(νr) = µ̂D(ν̂r).

(3.12)
We distinguish three situations to show the result. Case 1 : either g∗ 6= 0, or

g∗ = 0 and ν(ϕL) 6= β1(ν); Case 2 : g∗ = 0, ν(ϕL) = β1(ν) and iL > 2; and Case
3 : g∗ = 0, ν(ϕL) = β1(ν) and iL = 2, where iL indicates the last point in the
configuration of infinitely near points Cνr of νr through which the strict transform of
L passes.

Let us see Case 1. Consider the points given in (3.11) for Case A corresponding
to the divisor D = M, the value θr1(D) < 0 and δ = 1. That is, the points

Q5 = (0, 0) = Q6 (respectively, Q5 = (0, 0) = Q6) ,

Q7 =

(
βg+1(ν̂r) + ν̂r(ϕM0)2

ν̂r(ϕM0) + ν̂r(ϕF1)
,
ν̂r(ϕη̂) + ν̂r(ϕM0)ν̂η̂(ϕM0)

ν̂r(ϕM0) + ν̂r(ϕF1)

)
(
respectively, Q7 =

(
βg+1(ν̂r) + ν̂r(ϕM0)2

ν̂r(ϕM0) + ν̂r(ϕF1)
, 0

))
,

Q8 = Q7 +

(
0,

1

ν̂r(ϕM0) + ν̂r(ϕF1)

)
and Q9 = (µ̂D(ν̂r), µ̂D(ν̂η̂))

(respectively, Q9 = (µ̂D(ν̂r), 0))

if pr+1 is a satellite (respectively, free) point. Taking into account (3.12) and Theo-
rems 3.3.10 and 3.3.21, we obtain the result for this case.

Notice that Case 2 and Case 3 can be proved with a similar reasoning and using
the cases B and C (described before Lemma 3.3.19) and Theorems 3.3.24 and 3.3.27,
respectively, which completes the proof.

Remark 3.3.30. The previous theorem provides two ways to describe the same
Newton-Okounkov body, but the triangles given in Proposition 3.3.5 where it is
contained are different. Notice that they correspond to distinct exceptional curve
valuations.

Remark 3.3.31. Following the assumptions and notations of Corollary 3.3.29, the
Newton-Okounkov body ∆ν(E0) of a projective line E0 on P2, where the valuation ν
of P2 is minimal and non-positive at infinity, is described as the Newton-Okounkov
body ∆ν̂(M) of a curve of degree (0, 1) M , where ν̂ is a non-minimal with respect to
M and special non-positive at infinity valuation of F1 (see Remark 3.2.2). Even more,
this Newton-Okounkov body is the set given in Theorem 3.3.21 when δ = 1, a = 0

and θr1(D) < 0, since ν is minimal.

Example 3.3.32. Consider the first divisorial valuation νn of P2 described in Ex-
ample 3.3.11. Recall that its configuration of infinitely near points is Cνn = {pi}17

i=1
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and its sequence of maximal contact values is {βi(νn)}3i=0 = {8, 20, 63, 256}. By
Proposition 2.3.3 and Corollary 2.3.4, we can see the above divisorial valuation of
P2 as the divisorial valuation νr of F1 whose sequence of maximal contact values is
{βi(νr)}3i=0 = {8, 12, 47, 192}.

In the first case of Example 3.3.11, we had that νn(ϕL) = 16 = µ̂(νn) and then νn
is non-positive at infinity and minimal. By the proof of Proposition 2.3.3, Theorem
3.2.1 and Remark 2.3.5, one gets that νr(ϕF1) = 8, νr(ϕM0) = 8 and µ̂M (νr) = 16

and so νr is non-positive at infinity (by Remark 2.3.5) and non-minimal with respect
toM (since 256 = µ̂D(νr)

2 > M2βg+1(νr) = 192). Recall thatM is a curve of degree
(0, 1) on F1. Taking into account Corollary 3.3.29, we can assume that νr is the first
component of the valuation ν = νE• , where E• is the flag E• = {Z17 ⊃ E17 ⊃ {pr+1}}
defined in Example 3.3.11. If pr+1 is the satellite point E16∩E17 (with the notation of
Example 3.3.11), the Newton-Okounkov body ∆ν(M) is the convex hull determined
by the vertices

(0, 0), Q7 =

(
16,

255

16

)
and Q9 = (16, 16),

since θr1(M) = −8 and 16 4 17. Otherwise (pr+1 is a free point), ∆ν(D) is triangle
with vertices

(0, 0), Q8 =

(
16,

1

16

)
and Q9 = (16, 0).

Now assume that νn is the second divisorial valuation of P2 considered in Example
3.3.11. Here, we recall that νn(ϕL) = 20 = µ̂(νn) and then νn is non-positive at
infinity and non-minimal. With respect to the corresponding divisorial valuation νr
of F1, one has νr(ϕF1) = 12, νr(ϕM0) = 8 and µ̂M (νr) = 20 and then νr is non-
positive at infinity and non-minimal with respect to M . In this case, ∆ν(M) is
described by the vertices

(0, 0), Q7 =

(
256

20
,
255

20

)
and Q9 = (20, 20),

since pr+1 is the satellite point E16 ∩E17, 16 4 17 and θr1(M) = −8. Finally, if pr+1

is a free point, the coordinates of ∆ν(M) are

(0, 0), Q8 =

(
256

20
,

1

20

)
and Q9 = (20, 20).

3.3.2 Newton-Okounkov bodies with respect to non-positive at in-
finity non-special valuations

To finish this chapter we complete our description of the Newton-Okounkov bodies
associated to NPI valuations. It remains to study the case of non-special valuations
which are non-minimal with respect to a big divisor on Fδ. We continue with the
same notation introduced at the beginning of Section 3.3.

Let ν be an NPI non-special exceptional curve valuation of Fδ whose first com-
ponent is νr. Set D a big divisor on Fδ. We can assume that D is also nef, since p1
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is general (see Definition 2.2.1) and then pr+1 6∈ supp(ND∗). Denote by θr2(D) the
expression aνr(ϕF1) − b

(
νr(ϕM1) − δνr(ϕF1)

)
, where F1 is the fiber containing the

point p1 and M1 the section described in Proposition 2.2.2. Notice that θr2(D) = 0

if and only if a = b(νr(ϕM1)− δνr(ϕF1))/νr(ϕF1).

Lemma 3.3.33. Let νr be an NPI non-special divisorial valuation of Fδ. Consider
a divisor D and the value θr2(D) as above. Then the divisor on the surface Z defined
by νr

D3 = D∗ − b

νr(ϕF1)

r∑
i=1

νr(mi)E
∗
i

(
respectively, D4 = D∗ − a+ bδ

νr(ϕM1)

r∑
i=1

νr(mi)E
∗
i

)
is nef if θr2(D) ≥ 0 (respectively, θr2(D) < 0).

Proof. Let us see that D4 is a nef divisor if θr2(D) < 0. The remaining case follows
from a similar reasoning to that developed in Lemma 3.3.12.

Define

∆r :=
(
νr(ϕM1)− δνr(ϕF1)

)
F ∗ + νr(ϕF1)M∗ −

r∑
i=1

νr(mi)E
∗
i and

Γr := νr(ϕM1)M∗ − δ
r∑
i=1

νr(mi)E
∗
i .

Both divisors are nef by Theorem 2.3.7 and this finishes the proof because

D4 ∼
a

νr(ϕM1)− δνr(ϕF1)
∆r +

−θr2(D)

νr(ϕM1)− δνr(ϕF1)
Γr

and −θr2(D) > 0.

The next result can be proved as we did for Lemma 3.3.13. Recall that the
non-positivity at infinity of a non-special divisorial valuation can be checked with
the inequality 2νr(ϕM1)νr(ϕF1)− δνr(ϕF1) ≥ βg+1(νr) (see Theorem 2.3.7). Besides,
D ∼ aF + bM is a big and nef divisor on Fδ and we also use the value θr2(D).

Lemma 3.3.34. Let νr be an NPI non-special divisorial valuation of Fδ. Then the
rational numbers

t5 =
b

νr(ϕF1)
βg+1(νr) and t6 =

b

νr(ϕF1)
βg+1(νr) + θr2(D)(

respectively, t7 =
a+ bδ

νr(ϕM1)
βg+1(νr) and t8 =

aβg+1(νr)− νr(ϕM1)θr2(D)

νr(ϕM1)− δνr(ϕF1)

)
belong to the set TD,νr := {t ∈ Q | 0 ≤ t ≤ µ̂D(νr)} when θr2(D) ≥ 0 (respectively,
θr2(D) < 0).

Corollary 3.3.35. Let νr be an NPI non-special divisorial valuation of Fδ. Set
D ∼ aF + bM a big and nef divisor on Fδ. Consider the value θr2(D) given before
Lemma 3.3.33 and the rational numbers t6 and t8 provided in Lemma 3.3.34. Then
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(a) When θr2(D) ≥ 0, it holds 2νr(ϕM1)νr(ϕF1)− δνr(ϕF1)2 = βg+1(νr) if and only
if t6 = µ̂D(νr).

(b) Otherwise (θr2(D) < 0), it holds either 2νr(ϕM1)νr(ϕF1)−δνr(ϕF1)2 = βg+1(νr),

or a = 0, if and only if t8 = µ̂D(νr).

Proof. We only show (b), because (a) follows easily from the proof of Lemma 3.3.14.
Let us start by considering that 2νr(ϕM1)νr(ϕF1) + δνr(ϕF1)2 = βg+1(νr). Applying
the last condition to t8, it holds

t8 =
a(2νr(ϕM1)νr(ϕF1)− δνr(ϕF1)2)− νr(ϕM1)θr2(D)

νr(ϕM1)− δνr(ϕF1)

=
(aνr(ϕF1) + bνr(ϕM1))(νr(ϕM1)− δνr(ϕF1))

νr(ϕM1)− δνr(ϕF1)
= µ̂D(νr).

In addition, it is easy to check that t8 equals µ̂D(νr) when a = 0.
Conversely, suppose that t8 = µ̂D(νr). Then,

0 = µ̂D(νr)− t8 =
µ̂D(νr)(νr(ϕM1)− δνr(ϕF1))− aβg+1(νr) + νr(ϕM1)θr2(D)

νr(ϕM1)− δνr(ϕF1)

=
a(2νr(ϕM1)νr(ϕF1) + δνr(ϕF1)2 − βg+1(νr))

νr(ϕM1)− δνr(ϕF1)
,

which completes the proof.

Remark 3.3.36. As in Remark 3.3.15, one can obtain information from the values
ti, 5 ≤ i ≤ 8.

(a) νr is minimal with respect to a big and nef divisor D if and only if

µ̂D(νr) =
bβg+1(νr)

νr(ϕF1)
= t5 = t6 =

(a+ bδ)βg+1(νr)

νr(ϕM1)
= t7 = t8.

In fact, the equalities t5 = t6 and µ̂D(νr) = t6 are equivalents to those provide
in Corollary 3.2.3 by Corollary 3.3.35.

(b) Assume that νr is non-minimal with respect to D. Then,

(b.1) θr2(D) = 0 if and only if µ̂D(νr) > t5 = t6 = t7 = t8 > 0.

(b.2) If θr2(D) > 0, 2νr(ϕM1)νr(ϕF1) − δνr(ϕF1)2 ≥ βg+1(νr) if and only if
µ̂D(νr) ≥ t6 > t5 > 0.

(b.3) If θr2(D) < 0, 2νr(ϕM1)νr(ϕF1) − δνr(ϕF1)2 ≥ βg+1(νr) and a ≥ 0 if and
only if µ̂D(νr) ≥ t8 > t7 > 0.

Arguing with the divisors D3 and D4 from Lemma 3.3.33 as we did with those
from Lemma 3.3.16, one can show that D3 and D4 are also big. In addition,

D3 · F̃1 = 0, D4 · M̃1 = 0 and D3 · Ei = 0 and D4 · Ei = 0,

for 1 ≤ i ≤ r − 1. As a result, one obtains the next lemma.
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Lemma 3.3.37. Let νr be a divisorial valuation and D a divisor as in Corollary
3.3.35. Assume also that νr is non-minimal with respect to D. The intersection ma-
trix determined by the set of divisors {F̃1, E1, E2, . . . , Er−1} (respectively, {M̃1, E1, E2,

. . . , Er−1}) is negative definite.

Let νr be a divisorial valuation and D a divisor as stated in Corollary 3.3.35.
Consider the rational numbers ti, 5 ≤ i ≤ 8, defined in Lemma 3.3.34. The following
proposition determines the Zariski decomposition of the divisorsD∗−tiEr, which will
use to describe the Newton-Okounkov bodies ∆ν(D) of exceptional curve valuations
as before Lemma 3.3.33. Our determination depends on the above defined value
θr2(D) and the divisors D3, D4 and

∆r = (νr(ϕM1)− δνr(ϕF1))F ∗ + νr(ϕF1)M∗ −
r∑
i=1

νr(mi)E
∗
i

provided in Lemma 3.3.33 and its proof.

Proposition 3.3.38. The following statements hold.

(a) The positive and negative parts of the Zariski decomposition of the divisor Dt5 =

D∗ − t5Er (respectively, Dt6 = D∗ − t6Er) are

PDt5 ∼ D3 and NDt5
=

b

νr(ϕF1)

r−1∑
i=1

νr(ϕi)Ei(
respectively, PDt6 ∼

b

νr(ϕF1)
∆r and

NDt6
=

θr2(D)

νr(ϕF1)
F̃1 +

r−1∑
i=1

bνr(ϕi) + θr2(D)νi(ϕF1)

νr(ϕF1)
Ei

)
,

when θr2(D) ≥ 0.

(b) The positive and negative parts of the Zariski decomposition of Dt7 = D∗−t7Er
(respectively, Dt8 = D∗ − t8Er) are

PDt7 ∼ D4 and NDt7
=

a+ bδ

νr(ϕM1)

r−1∑
i=1

νr(ϕi)Ei(
respectively, PDt8 ∼

a

νr(ϕM1)− δνr(ϕF1)
∆r and

NDt8
=

−θr2(D)

νr(ϕM1)− δνr(ϕF1)
M̃1 +

r−1∑
i=1

aνr(ϕi)− θr2(D)νi(ϕM1)

νr(ϕM1)− δνr(ϕF1)
Ei

)
,

when θr2(D) < 0.

Proof. We are going to show (b). A proof for (a) follows similarly. On the one hand,
the components of the divisor NDt7

determine a negative definite intersection matrix.
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On the other hand, PDt7 is a nef divisor by Lemma 3.3.33 and orthogonal to each
component of NDt7

by the proximity equalities. Therefore, PDt7 +NDt7
is the Zariski

decomposition of Dt7 .
Let us prove our statement forDt8 . The components ofNDt8

determine a negative
definite intersection matrix by Lemma 3.3.37 and PDt8 is a nef divisor and orthogonal
to each component of NDt8

by Proposition 2.4.2 and Theorem 2.4.8. To finish, let
us show that PDt8 +NDt8

∼ Dt8 , which finishes the proof. Indeed, set piM1
the last

point in the configuration of infinitely near points Cνr of the valuation νr through
which the strict transform of M1 passes. From the fact that M̃1 ∼ M∗ −

∑iM1
i=1 E

∗
i ,

one deduces that

a(∆r +
∑r−1

i=1 νr(ϕi)Ei) + θr2(D)M∗

νr(ϕM1)− δνr(ϕF1)
∼ D −

aβg+1(νr)

νr(ϕM1)− δνr(ϕF1)
Er.

Besides,

−θr2(D)

νr(ϕM1)− δνr(ϕM1)

r−1∑
i=1

νi(ϕM1)Ei −
iM1∑
i=1

E∗i

 =
−θr2(D)νr(ϕM1)

νr(ϕM1)− δνr(ϕF1)
Er,

and the proof concludes after summing both expressions.

Remark 3.3.39. As in Remark 3.3.18, we can deduce from the above results that the
ray [Dt] := [D∗]− t[Er], where 0 ≤ t ≤ µ̂D(νr), crosses the interior of NE(Z) heading
towards the face of NE(Z) spanned by the classes of the divisors F̃1, M̃1, E1, E2, . . . ,

Er−1. Figure 3.6 shows the situation in this case, where [∆n]⊥ represents the men-
tioned face of NE(Z) and the Zariski chambers Σ1,Σ2,Σ3 and Σ4 defined below are
delimited by discontinuous lines.

Σ1 :=
{

[ξ] ∈ Big(Z) |Neg(ξ) = Null(ξ) = {[E1], [E2], . . . , [Er−1]}
}
,

Σ2 :=
{

[ξ] ∈ Big(Z) |Neg(ξ) = Null(ξ) = {[F̃1], [E1], [E2], . . . , [Er−1]}
}
,

Σ3 :=
{

[ξ] ∈ Big(Z) |Neg(ξ) = Null(ξ) = {[M̃1], [E1], [E2], . . . , [Er−1]}
}
and

Σ4 :=
{

[ξ] ∈ Big(Z) |Neg(ξ) = Null(ξ) = {[F̃1], [M̃1], [E1], [E2], . . . , [Er−1]}
}
.

We finish this subsection describing the Newton-Okounkov bodies ∆ν(D), where
ν andD are as in the paragraph before Lemma 3.3.33. Recall that the first component
of ν is the divisorial valuation νr. As in the previous subsection, we divide our
description in two cases.

Case D: Either g∗ > 0 or g∗ = 0 and ν(ϕM1) 6= β1(ν).
Case E: The value g∗ equals 0 and ν(ϕM1) = β1(ν).

Lemma 3.3.40. Let ν be an NPI non-special exceptional valuation of Fδ and Cν =

{pi}i≥1 its configuration of infinitely near points such that pi → pr for all i > r.
Consider the cases described before.
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Figure 3.6: Local description of the cone of curves NE(Z) of a rational surface Z
given by a non-positive at infinity non-special divisorial valuation of Fδ.

(a) Suppose that pr+1 is the satellite point Eη ∩ Er, η 6= r.

(a.1) Assume we are in Case D. Then,

νη(ϕF1) = νr(ϕF1) · β0(νη)

β0(νr)
and νη(ϕM1) = νr(ϕM1) · β0(νη)

β0(νr)
.

(a.2) Assume we are in Case E. Then,

νη(ϕF1) = νr(ϕF1) · β0(νη)

β0(νr)
and νη(ϕM1) = νr(ϕM1) ·

βg∗+1(νη)

βg∗+1(νr)
.

(b) Otherwise (pr+1 is a free point).

(b.1) Assume we are in Case D. Then,

ν(ϕF1) = (νr(ϕF1), 0) and ν(ϕM0) = (νr(ϕM0), 0).

(b.2) Assume we are in Case E. Then,

ν(ϕF1) = (νr(ϕF1), 0) and ν(ϕM0) = (νr(ϕM1), 1).
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Proof. The result is immediate using the next properties: The value ν(ϕF1) equals
β0(ν) since the strict transform of F1 does not go through p2. Moreover, the value
ν(ϕM1) equals either β1(ν) when the strict transforms of M1 pass through all initial
free points of Cν , or sM1β0(ν), where sM1 is a positive integer greater than δ. This
concludes the proof.

We begin our study with Case D. Reasoning as in the previous subsection, the
Newton-Okounkov body ∆ν(D) can be described as in (3.9) and, by Proposition
3.3.38, the points

Q10 =

(
bβg+1(νr)

νr(ϕF1)
,
bνr(ϕη)

νr(ϕF1)

)(
respectively, Q10 =

(
bβg+1(νr)

νr(ϕF1)
, 0

))
,

Q11 = Q10 +

(
0,

b

νr(ϕF1)

)
,

Q12 =

(
bβg+1(νr)

νr(ϕF1)
+ θr2(D),

bνr(ϕη) + θr2(D)νη(ϕF1)

νr(ϕF1)

)
(
respectively Q12 =

(
bβg+1(νr)

νr(ϕF1)
+ θr2(D), 0

))
and Q13 = Q12 +

(
0,

b

νr(ϕF1)

)
(3.13)

are in ∆ν(D) if θr2(D) ≥ 0 and pr+1 is the satellite point Eη ∩Er (respectively, a free
point).

When θr2(D) < 0 and pr+1 ∈ Eη ∩ Er (respectively, pr+1 is a free point), the
points in ∆ν(D) are

Q14 =

(
(a+ bδ)βg+1(νr)

νr(ϕM1)
,
(a+ bδ)νr(ϕη)

νr(ϕM1)

)
(
respectively, Q14 =

(
(a+ bδ)βg+1(νr)

νr(ϕM1)
, 0

))
, Q15 = Q14 +

(
0,

a+ bδ

νr(ϕM1)

)
,

Q16 =

(
aβg+1(νr)− θr2(D)νr(ϕM1)

νr(ϕM1)− δνr(ϕF1)
,
aνr(ϕη)− θr2(D)νη(ϕM1)

νr(ϕM1)− δνr(ϕF1)

)
(
respectively, Q16 =

(
aβg+1(νr)− θr2(D)νr(ϕM1)

νr(ϕM1)− δνr(ϕF1)
, 0

))
and Q17 = Q16 +

(
0,

a

νr(ϕM1)− δνr(ϕF1)

)
.

(3.14)
In addition, the point Q18 = (µ̂D(νr), µ̂D(νη)) (respectively, Q18 = (µ̂D(νr), 0))

belongs to ∆ν(D) when pr+1 is satellite (respectively, free), by Theorem 3.2.1.

Remark 3.3.41. The latter points Qi, 10 ≤ i ≤ 18, satisfy the following nice prop-
erties:

(a) θr2(D) = 0 if and only if Q10 = Q12 = Q14 = Q16 and Q11 = Q13 = Q15 = Q17.
Moreover, when θr2(D) < 0, it holds that a = 0 if and only if Q16 = Q17 = Q18.
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(b) Some of the previous points Qi are collinear. Indeed,

(b.1) Consider pr+1 the satellite point Eη ∩ Er, η 6= r, and η 4 r. When
θr2(D) ≥ 0 (respectively, θr2(D) < 0) the points (0, 0), Q11, Q13 (respec-
tively, Q15, Q17) and Q18 are in the line T1 ≡ β0(νr)y = β0(νη)x. If
pr+1 ∈ Eη ∩ Er, η 64 r, and θr2(D) ≥ 0 (respectively, θr2(D) < 0), the
points (0, 0), Q10, Q12 (respectively, Q14, Q16) and Q18 also belong to T1.

(b.2) Assume that pr+1 is a free point. If θr2(D) ≥ 0 (respectively, θr2(D) < 0),
the points (0, 0), Q10, Q12 (respectively, Q14, Q16) and Q18 are contained
in the line y = 0.

Theorem 3.3.42. Let ν be an exceptional valuation in Case D. Keeping the notation
in the previous paragraphs, the Newton-Okounkov body ∆ν(D) of D with respect to
ν is a quadrilateral if and only if a 6= 0 and θr2(D) 6= 0. Otherwise, it is a triangle
(see Remark 3.3.41).

The vertices of ∆ν(D) are

(a) (0, 0), Q10, Q12 (respectively, Q14, Q16) and Q18 when θr2(D) ≥ 0 (respectively,
θr2(D) < 0), pr+1 is the satellite point Eη ∩ Er, η 6= r, and η 4 r.

(b) (0, 0), Q11, Q13 (respectively, Q15, Q17) and Q18 when θr2(D) ≥ 0 (respectively,
θr2(D) < 0), pr+1 is the satellite point Eη ∩ Er, η 6= r, and η 64 r.

(c) (0, 0), Q11, Q13 (respectively, Q15, Q17) and Q18 when θr2(D) ≥ 0 (respectively,
θr2(D) < 0) and pr+1 is a free point.

Proof. Let us see that D2/2 is the area of the convex hull ∆ generated by the points
(0, 0), Q14, Q15, Q16, Q17 and Q18. By Remark 3.3.41, the case concerning the points
(0, 0), Q10, Q11, Q12, Q13 and Q18 and the fact of being a quadrilateral or a triangle
follow as in the proof of Theorem 3.3.21.

The area of the triangle with vertices (0, 0), Q14 and Q15 (respectively, Q16, Q17

and Q18) is

(a+ bδ)2

2νr(ϕM1)2
βg+1(νr)

(
respectively,

a

2(νr(ϕM1)− δνr(ϕF1))

(
µ̂D(νr)−

(
aβg+1(νr)− θr2(D)νr(ϕM1)

νr(ϕM1)− δνr(ϕF1)

)))
.

The area of the trapezium provided by Q14, Q15, Q16 and Q17 is

−θr2(D) ((a+ bδ)(νr(ϕM1)− δνr(ϕF1)) + aνr(ϕF1)) (νr(ϕM0)2 − δβg+1(νr))

2νr(ϕM1)2(νr(ϕM1)− δνr(ϕF1))2
.
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Summing the areas of that trapezium and the two previous triangles, we note that
the coefficients of βg+1(νr) vanish and it is sufficient to sum the next three fractions

aµ̂D(νr)

2(νr(ϕM1)− δνr(ϕF1))
,

aθr2(D)νr(ϕM1)

2(νr(ϕM1)− δνr(ϕF1))2
and

−θr2(D)νr(ϕM1)2((a+ bδ)(νr(ϕM1)− δνr(ϕF1)) + aνr(ϕF1))

2νr(ϕM1)2(νr(ϕM1)− δνr(ϕF1))2
.

After computing, one obtains (2ab+ δb2)/2, which concludes the proof.

Example 3.3.43. Let p be a general point of the Hirzebruch surface F2 and νr a
non-special divisorial valuation centered at OF2,p, whose sequence of maximal contact
values is {βi(νr)}3i=0 = {15, 51, 262, 786}. Set Cνr = {pi}12

i=1 (with p = p1) the
configuration of infinitely near points of νr, F1 the fiber going through p and M1 the
integral curve described in Proposition 2.2.2 whose strict transforms pass through p2

and p3. That is, the self-intersection of M̃1 is negative. Therefore, νr(ϕF1) = 15 and
νr(ϕM1) = 45 and then

2νr(ϕF1)νr(ϕM1)− δνr(ϕF1)2 = 900 > 786 = βg+1(νr).

As a result, νr is non-positive at infinity by [63, Theorem 4.8].
Let ν = νE• be the valuation defined by the flag

E• = {Z = Z12 ⊃ E12 ⊃ {p13}},

where p13 ∈ E9 ∩ E12, whose first component is the above divisorial valuation νr.
By Theorem 3.3.42, the coordinates of the vertices of the Newton-Okounkov body
∆ν(2F + 5M) are

(0, 0), Q14 =

(
9432

45
,
3132

45

)
, Q16 =

(
3597

15
,
1197

15

)
and Q18 = (255, 85) ,

because νr is non-minimal with respect to 2F + 5M by Corollary 3.2.4, θr2(D) < 0

and 9 = η 4 r = 12.

To finish, we study ∆ν(D) when ν is in Case E. As in Case D, ∆ν(D) can be
seen as the set in (3.9) and then, by Proposition 3.3.38, the points Q10, Q11, Q12, Q13

(respectively, Q14, Q15, Q16, Q17) and Q18 provided in (3.13) (respectively, (3.14))
for the satellite case are in ∆ν(D) when pr+1 is the satellite point Eη ∩ Er, η 6= r,

and θr2(D) ≥ 0 (respectively, θr2(D) < 0). If pr+1 is a free point and θr2(D) < 0

(respectively, θr2(D) ≥ 0), the points

Q14 =

(
(a+ bδ)βg+1(νr)

νr(ϕM1)
, 0

)
, Q15 = Q14 +

(
0,

a+ bδ

νr(ϕM1)

)
,

Q16 =

(
aβg+1(νr)− θr2(D)νr(ϕM1)

νr(ϕM1)− δνr(ϕF1)
,

−θr2(D)

νr(ϕM1)− δνr(ϕF1)

)
,

Q17 = Q16 +

(
0,

a

νr(ϕM1)− δνr(ϕF1)

)
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(respectively, Q10, Q11, Q12, Q13 given in (3.13) for the free case) andQ18 = (µ̂D(νr)), b)

belong to ∆ν(D).

Remark 3.3.44. The previous pointsQi, 1 ≤ i ≤ 18, satisfy the following conditions.

(a) Remark 3.3.41(a) is also true for these points.

(b) Some of the above points Qi are collinear. Indeed,

(b.1) Assume that pr+1 is the satellite point Eη ∩ Er, η 6= r, and η 4 r. When
θr2(D) ≥ 0 (respectively, θr2(D)), the points (0, 0), Q11 and Q13 (respec-
tively, (0, 0), Q14 and Q16) are in the line T1 ≡ β0(νr)y = β0(νη)x (respec-
tively, T2 ≡ βg∗+1(νr)y = βg∗+1(νη)x) and the point Q12 (respectively,
Q17) belongs to the line which goes through Q10 and Q18 (respectively,
Q15 and Q18).

(b.2) Suppose now that pr+1 ∈ Eη ∩ Er, η 6= r, and η 64 r. If θr2(D) ≥ 0 (res-
pectively, θr2(D)), the points (0, 0), Q10 and Q12 (respectively, (0, 0), Q15

and Q17) are contained in the line T1 ≡ β0(νr)y = β0(νη)x (respectively,
T2 ≡ βg∗+1(νr)y = βg∗+1(νη)x) and the point Q13 (respectively, Q16) is
in the line which passes through Q11 and Q18 (respectively, Q14 and Q18).

(b.3) Assume that pr+1 is a free point. If θr2(D) ≥ 0 (respectively, θr2(D) < 0),
the points (0, 0), Q10 and Q12 (respectively, (0, 0), Q15 and Q17) belong
to the line y = 0 (respectively, y = x/βg+1(νr)) and the point Q13 (res-
pectively, Q16) is contained in the line going through Q11 and Q18 (res-
pectively, Q14 and Q18).

Theorem 3.3.45. Let ν be an exceptional curve valuation in Case E described before
Lemma 3.3.40. Under the previous notations, the Newton-Okounkov body ∆ν(D) of
D with respect to ν is a quadrilateral if and only if a 6= 0. Otherwise, it is a triangle
(see Remark 3.3.44).

The vertices of ∆ν(D) are

(a) (0, 0), Q10, Q13 (respectively, Q15, Q16) and Q18 if θr1(D) ≥ 0 (respectively,
θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er, η 6= r, and η 4 r.

(b) (0, 0), Q11, Q12 (respectively, Q14, Q17) and Q18 if θr1(D) ≥ 0 (respectively,
θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er, η 6= r, and η 64 r.

(c) (0, 0), Q11, Q12 (respectively, Q14, Q17) and Q18 if θr1(D) ≥ 0 (respectively,
θr1(D) < 0) and pr+1 is a free point.

Proof. The result follows as in the proof of Theorem 3.3.42 to compute the area of
the convex hulls generated by the points given in the statement, and as in Theorem
3.3.24 (b) after taking into account Remark 3.3.44.
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Example 3.3.46. Let νr be a non-special divisorial valuation of the Hirzebruch
surface F4 and Cνr = {pi}5i=1 the configuration of infinitely near points of νr where
all the points are free. Assume that the strict transforms of M1 go through p2, p3, p4

and p5. Then, νr(ϕF1) = 1, νr(ϕM0) = 5 and 2νr(ϕM1)νr(ϕF1) − δνr(ϕF1)2 = 6 >

5 = βg+1(νr), and then νr is non-positive at infinity.
Set ν = νE• the exceptional curve valuation associated to the flag E• = {Z =

Z5 ⊃ E5 ⊃ {pr+1}}, whose first component is the previous divisorial valuation νr and
pr+1 is a free point. The sequence of maximal contact values of ν is {β0(ν), β1(ν)}
= {(1, 0), (5, 1)}. Assume that the strict transform ofM1 goes through pr+1, therefore
we are in Case E. Consider the big and nef divisor D = 2F +3M . By Theorem 3.2.1,
µ̂D(νr) = aνr(ϕF1) + bνr(ϕM0) = 17 and then ν is non-minimal with respect to D
(since µ̂D(νr) > D2βg+1(νr)). Consequently, by Theorem 3.3.45, the vertices of the
Newton-Okounkov body ∆ν(D) are

(0, 0), Q14 = (14, 0), Q17 = (15, 3) and Q18 = (17, 3),

because θr2(D) = aνr(ϕF1) − b(νr(ϕM1) − δνr(ϕF1)) = −1 < 0. We depict the
Newton-Okounkov body ∆ν(2F + 3M) and the triangle C(ν)∩H2F+3M (ν) in Figure
3.7.

0 t7 t8 µ̂D(νr)

Q14

Q16

Q17
Q18

Q15

Figure 3.7: ∆ν(2F + 3M) and C(ν) ∩ H2F+3M (ν) in Example 3.3.46.
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Conclusions

Let Fδ be a Hirzebruch surface, δ a non-negative integer, and νr a divisorial valuation
of the function field of Fδ centered at OFδ,p, where p is a point in Fδ (we say for short
that νr is a divisorial valuation of Fδ).

Due to the particular geometric structure of Fδ, in this thesis we distinguish two
types of divisorial valuations of Fδ: special and non-special valuations (see Definition
2.2.1). We introduce the concepts of non-positivity and negativity at infinity of a
divisorial valuation of Fδ, concepts which we have adapted to special and non-special
valuations by using adequate affine charts on Fδ. One of these charts is formed by
the points in Fδ which do not belong to the fiber F1 containing p nor the special
section M0; the second one is determined by the points which are neither in F1 nor
in a specific curve M1 6= M0.

Theorem 2.3.7 (respectively, Theorem 2.4.8) shows interesting global and local
geometrical properties which are equivalent to the fact that a special (respectively,
non-special) divisorial valuation νr of Fδ is non-positive at infinity. In particular, the
cone of curves NE(Z) of the rational surface Z defined by a non-positive at infinity
special (respectively, non-special) divisorial valuation νr is generated by the classes
of the strict transforms of F1 and M0 (respectively, F1,M0 and M1) and the classes
of the strict transforms of the exceptional divisors associated with the composition
of point blowups π : Z → Fδ given by νr. This property also characterizes the above
mentioned divisorial valuations.

Consider the flag E• = {Z ⊃ Er ⊃ {q}}, where Er is the exceptional divisor
defining a non-positive at infinity special, or non-special, divisorial valuation νr of
Fδ over C and Z the rational surface given by νr. In Theorem 3.2.1 we explicitly
compute a Seshadri-type constant for pairs (νr, D), where D is a big divisor on Fδ,
denoted µ̂D(νr). In addition, Theorems 3.3.7, 3.3.21, 3.3.24, 3.3.27, 3.3.42 and 3.3.45
determine the coordinates of the vertices of the Newton-Okounkov bodies of pairs
(E•, D). Our description considers two cases: νr is minimal with respect to D and
νr is non-minimal with respect to D (see Definition 3.0.1).

The first components of the coordinates of the vertices of the Newton-Okounkov
bodies of pairs (E•, D), denoted ti, are the values t where the ray [D]− t[Er] crosses
into a different Zariski chamber (see Subsection 1.5.2). Consequently, when νr is
special (respectively, non-special), we obtain a local description of the cone of curves
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NE(Z) of Z near the face [Λr]
⊥ (respectively, [∆r]

⊥) generated by the classes of
the strict transforms of F1,M0 (respectively, F1,M1) and the classes of the divisors
E1, E2, . . . , Er−1, where E1, E2, . . . , Er−1 are the strict transforms of the exceptional
divisors associated to π (see Remark 3.3.18 and 3.3.39).

In [60] the authors consider divisorial valuations of P2 and study global and local
geometry properties associated to non-positive and negative at infinity divisorial
valuations ν of P2. In Section 2.3 we reprove [60, Theorems 1 and 2] as a particular
case. The same happens with Corollary 3.3.29 where we obtain [65, Corollary 5.2] as
a particular case. Notice that Corollary 5.2 in [65] computes the Newton-Okounkov
bodies of pairs (E•, D), where D is a general projective line on P2 and E• is a flag
as {X ⊃ E ⊃ {q}}, E being an exceptional divisor defining a non-positive at infinity
divisorial valuation νE of P2 and X the rational surface defined by νE .

Finally, Section 2.5 studies and compares the dual graphs of non-positive at infin-
ity divisorial and irrational valuations of P2 and Fδ and provides an algorithm which
inductively determines all dual graphs admitting non-positive at infinity valuations.



Conclusiones

Sea Fδ una superficie de Hirzebruch, δ un entero no negativo, y νr una valoración
divisorial del cuerpo de funciones de Fδ centrada en OFδ,p, donde p es un punto en
Fδ (abreviadamente, una valoración divisorial de Fδ).

En esta tesis, debido a la particular estructura geométrica de Fδ, distinguimos
dos tipos de valoraciones divisoriales de Fδ, valoraciones especiales y no especiales
(véase Definición 2.2.1). Introducimos el concepto de no positividad y negatividad
en el infinito para valoraciones divisoriales de Fδ, conceptos adaptados a valoraciones
especiales y no especiales. Para ello utilizamos cartas afines adecuadas en Fδ. Una de
ellas está formada por los puntos de Fδ que no pertenecen a la fibra F1 que contiene
a p, ni a la sección especial M0. La segunda está determinada por los puntos que no
están en F1 ni en una curva particular M1 6= M0.

En el Teorema 2.3.7 (respectivemente, Teorema 2.4.8) mostramos interesantes
propiedades geométricas globales y locales que son equivalentes al hecho de que
una valoración especial (respectivamente, no especial) de Fδ sea no positiva en el
infinito. En particular, el cono de curvas NE(Z) de la superficie racional Z definida
por una valoración νr divisorial especial (respectivamente, no especial) no positiva
en el infinito está generado por las clases de los transformados estrictos de F1 y
M0 (respectivamente, F1,M0 y M1) y las clases de los transformados estrictos de
los divisores excepcionales asociados a la composición de explosiones π : Z → Fδ
definidas por νr. Esta propiedad también caracteriza las valoraciones divisoriales
antes mencionadas.

Consideremos la bandera E• = {Z ⊃ Er ⊃ {q}}, donde Er es un divisor excep-
cional que define una valoración divisorial νr especial, o no especial, de Fδ (sobre
C) no positiva en el infinito y Z la superficie racional dada por νr. En el Teorema
3.2.1 calculamos explícitamente una constante de tipo Seshadri para pares (νr, D),

donde D es un divisor big en Fδ, denotada µ̂D(νr). Además, en los Teoremas 3.3.7,
3.3.21, 3.3.24, 3.3.27, 3.3.42 and 3.3.45, expresamos las coordenadas de los vértices
de los cuerpos de Newton-Okounkov de pares (E•, D). Nuestra descripción considera
dos casos: aquel donde νr es minimal respecto D y el caso donde νr es no minimal
respecto D (véase Definición 3.0.1).

Las primeras componentes de las coordenadas de los vértices de los cuerpos de
Newton-Okounkov de pares (E•, D), denotadas ti, son los valores t donde el rayo
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[D] − t[Er] cruza a una cámara de Zariski diferente (véase Subsección 1.5.2). Con-
secuéntemente, cuando νr es especial (respectivamente, no especial), obtenemos una
descripción local del cono de curvas NE(Z) de Z cerca de la cara [Λr]

⊥ (respectiva-
mente, [∆r]

⊥) generado por las clases de los transformados estrictos de los divisores
F1,M0 (respectivamente, F1,M1) y las clases de los divisores E1, E2, . . . , Er−1, donde
E1, E2, . . . , Er−1 son los transformados estrictos de los divisores excepcionales asoci-
ados a π (véase Notas 3.3.18 y 3.3.39).

En [60] los autores consideran valoraciones divisoriales de P2 y estudian propieda-
des geométricas globales y locales asociadas a valoraciones divisoriales de P2 no
positivas y negativas en el infinito. En la Sección 2.3 probamos [60, Teoremas 1 y 2]
como un caso particular. Lo mismo ocurre con el Corolario 3.3.29 donde obtenemos
[65, Corolario 5.2] como un caso particular. Nótese que el Corolario 5.2 en [65] calcula
explícitamente los cuerpos de Newton-Okounkov de pares (E•, D), donde D es una
recta proyectiva general en P2 y E• es una bandera como {X ⊃ E ⊃ {q}}, siendo
E un divisor excepcional que define una valoración divisorial νE de P2 (sobre C) no
positiva en el infinito y X la superficie racional definida por νE .

Finalmente, en la Sección 2.5 estudiamos y comparamos los grafos duales de
valoraciones divisoriales e irracionales de P2 y Fδ que son no positivas en el infinito
y aportamos un algoritmo que determina inductivamente todos los grafos duales que
admiten valoraciones no positivas en el infinito.
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