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SUMMARY  

 

Hepatitis B is a serious liver infection which can be either “acute” or “chronic”. It is the 

primary cause of liver cancer (also known as hepatocellular carcinoma), which is the 2nd 

leading cause of cancer deaths in the world. Even though an efficient prophylactic vaccine 

is available, there remains a need for chronic hepatits B patients. Currently, FDA-approved 

antiviral therapies are limited to type 1 interferons (IFNs) and nucleos(t)ide analogues 

(NAs) which reduce HBV antigen levels. The HBV core protein (Cp) is an essential 

component of the virus replication cycle, including capsid assembly, pgRNA packaging 

and cccDNA maintenance. Thus, the HBV Cp has become an important target for 

developing direct-acting antivirals. A new class of compounds named capsid assembly 

modulators (CAMs) have been identified, showing the potential to efficiently eliminate 

HBV DNA from infected liver cells. 

This doctoral thesis aims at proposing novel methodologies whether in continuous flow or 

computationally driven, that will support the fast discovery of HBV inhibitors. 

The first research project described in chapter two, reports the development and the 

optimization of three chemical reactions in continuous flow: a CDI-mediated amidation, a 

thermal aminolysis and a Boc-deprotection. The processes that were developed 

quantitatively facilitated the obtention of relevant building blocks necessary to generate a 

library of oxalyl-amide-containing scaffolds: a novel chemotype of HBV capsid assembly 

modulators (CAMs).  

The following chapter (chapter three) encompasses the synthesis and biological evaluation 

of a focused library of oxalyl-amide analogues which lead to the identification of two 

potential lead compounds. The analysis of structure-activity relationship led to a reasonable 

perception of the physico-chemical features responsible for the potency within this 

compound series. In addition, the mode of action of the of several analogues was 

characterized in vitro. 

The fourth chapter illustrates a virtual screening workflow aimed at supporting and 

prioritizing the synthesis of new oxalyl-amide analogues. This workflow combined 

pharmacophore-based screening and molecular docking, leading to the selection of 90 new 

compounds with putative high potency. Several compounds from this selection were 

synthesized and tested where they effectively displayed higher potency than the initial lead.  
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The next project reports the investigation in continuous flow of the sulfilimine-based 

synthesis of 1,2,4-triazolo-[1,5-a]-pyridine-2-carboxylate. The limitations of the chemical 

reaction were assessed in continuous flow and a computational modelling approach was 

conducted, affording an acute mechanistic understanding of the reaction process.  

The last project reported in chapter six attempted to identify novel HBV capsid assembly 

modulators.  A combination of molecular dynamics and pharmacophore modelling was 

used to isolate representative ligand-complex conformations that were then used as queries 

for a large virtual screening (ca. 65 million compounds). The method predicted novel 

chemotypes that have the potential to behave as CAMs with the expected mode of action. 

A total of 30 potential molecules with excellent druglikeness were selected to be developed 

further experimentally.  
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ABBREVIATIONS  

 

In this document the abbreviations and acronyms most commonly used in organic 

chemistry have been used, according to the recommendations of the 

ACS “Guidelines for authors”: 

http://pubs.acs.org/paragonplus/submission/joceah/joceah_authguide 

 

aa amino acid 

ACS American Chemistry Society 

ADMET absorption, distribution, metabolism, excretion, toxicity  

aSEC analytical size exclusion chromatography 

AUC area under the ROC curve 

BPR back pressure regulator 

CAA capsid assembly assay 

CADD computer-aided drug discovery  

CAM capsid assembly modulator 

cccDNA closed circular covalent DNA 

CHA common hits approach 

CHB chronic hepatitis B  

Cp  core protein 

CTD C-terminal domain 

CYP3A4 cytochrome P450 3A4 

DBT dibenzothiazepinecarboxamide 

DD drug discovery  

DFT density functional theory  

DMTA design, make, test, analyze 

DNA deoxyribonucleic acid 

DoE Design of Experiment 

DSF differential scanning fluorimetry 

EC50 half-minimal effective concentration in cell culture 

EF enrichment factor 

EM electron microscopy 

EMA European Medicines Agency 

FDA Food and Drug Administration  

FOA fractional overlap area 

FPR  false positive rate  

GCI Green Chemistry Institute 

GPA glyoxamoylpyrroloxamide 

HAP heteroaryldihydropyrimidine 

HBA hydrogen bond acceptor 

HBA hydrogen bond acceptor 
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HBD hydrogen bond donor 

HBD hydrogen bond donor 

HBeAg hepatitis B e-antigen 

HBsAg hepatitis B surface antigen  

HBV hepatitis B virus 

hCp149 human HBV core protein 

HDX-MS hydrogen-deuterium exchange mass spectrometry 

hERG human ether-à-go-go-related gene 

HPLC high-pressure liquid chromatography 

HTE high-throughput experimentation 

HTL hit-to-lead 

(v)HTS (virtual) high-throughput screening 

ITN innovative training network 

LBDD ligand-based drug design 

LJ Lennard-Jones 

LO lead optimization 

MD molecular dynamics  

MoA mode of action 

MS mass spectrometry 

MW molecular weight 

NCE new chemical entity 

NDA  new drug application  

NME new molecular entities 

NME new molecular entities 

NMR nuclear magnetic resonance 

NMS native mass spectrometry 

NTD N-terminal domain 

PAT process analytical technology  

PCA principal component analysis 

pgRNA pregenomic RNA 

PK/PD pharmacokinetic/pharmacodynamic 

PM  pharmacophore model  

PME particle mesh Ewald 

PPA phenylpropenamide 

PT phenylurea 

R&D research and development 

rcDNA relaxed circular DNA 

RMSD root-mean-square deviation  

RNA ribonucleic acid 

Ro5 rule of 5 

ROC curve receiver operating characteristic curve 

RPM representative pharmacophore model 

RT reverse transcriptase 

SAR structure-activity relationship 
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SBA sulfamoylbenzamide 

SBDD structure-based drug design 

SDE standard deviation ellipse 

TPR true positive rate 

TPSA topological polar surface area 

VT VapourTec® 

wCp149 woodchuck HBV core protein 

WHO World Health Organization 
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 Chapter I 

I.1 THE DRUG DISCOVERY PARADIGM   
 

According to Segens’s Medical dictionary, drug discovery is: „The process of developing 

a therapeutical active substance for a defined target molecule or pathway“.1 A drug 

discovery campaign is initiated in response to an unmet clinical need to offer a treatment 

or a cure.  

 

Historically, new therapeutic leads have been discovered from traditional plant remedies or 

by serendipity. An emblematic example of the latter being the discovery of penicillin in 

1928 by Sir Alexander Fleming: During his summer vacation, one of his staphylococcus 

culture plates was contaminated and developed a mold that created a bacteria-free circle. 

At the time, Fleming was working in an old building with considerable dust and 

contamination was likely to occur. Despite that, Fleming recognized the possible 

significance of the bacteria-free circle and isolated the mold in pure culture. Eventually he 

found that it produced a substance that has a powerful destructive effect on many of the 

common bacteria that infect Man.2 He named the antibacterial substance liberated into the 

fluid in which the mold was grown “penicillin,” after Penicillium notatum, the contaminant 

of the staphylococcus colony that led to the discovery.i  

Serendipity aside, Mother Nature stands as a tremendous source of  novel chemotypes and 

pharmacophores.3 Plants, microorganisms and animals, represent a largely underexploited 

tank of numerous and diverse therapeutic applications. Until the late 1800s, most drugs 

were actually based on herbs or extraction of ingredients from botanical sources.4 Until 

now, natural products have been the major sources of chemical diversity as starting 

materials for driving pharmaceutical discovery.5 Moreover, many natural products and 

synthetically modified natural product derivatives have been successfully developed for 

clinical use to treat human diseases in almost all therapeutic areas.6 A notable example in 

this field is the acetyl salicylic acid, more commonly known as „Aspirin“.  

Indeed, salicylated-rich plants such as willow and myrtle had been used to treat fever or 

rheumatoid arthritis for over 4000 years.7 The active substance, salicylic acid“, was isolated 

 
i It should be noted that while Fleming generally receives credit for discovering penicillin, he in fact 

technically rediscovered the substance. Indeed, 32 years earlier a French medical student named Ernest 

Duchesne originally discovered the antibiotic properties of Penicillium.215215. It is not clear why his initial 

discovery remained unnoticed but Duchesne was posthumously honored in 1949, 5 years after Alexander 

Fleming had received the Nobel Prize. 
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 General introduction 

in the first half of the 19th century and its derivative acetyl salicylic acid - our modern 

version of Aspirin - was synthesized by Felix Hoffman, a German chemist working for 

Bayer in 1897 in Germany (Figure I.1).  

 

Figure I.1. (A) Felix Hoffmann (Portrait of Felix Hoffmann, BAYER, public domain).7 By acetylating the 

phenol group of salicylic acid, he obtained acetylsalicylic acid in its purest form. (B) Aspirin in its original 

crystal powder form. (Aspirin flask, BAYER, public domain).8 

 

The subsequent development of this molecule into a pharmaceutical drug by Bayer at that 

time paved the way for what is now known as „modern drug discovery“. In fact, drug 

discovery really took a turn during the 19th century: advances in chemistry enabled isolation 

of active substances and de novo synthesis of active compounds were successfully applied 

to market drugs such as Aspirin by Bayer in 1899.7  Shortly after, chemical modifications 

to increase potency were elaborated. To go back to the example of the penicillin: after its 

(re-)discovery in 1928 and its approval in clinical use in the 1940s, series of semisynthetic 

penicillin derivatives with improved therapeutical properties were introduced over the next 

40 years.9 In parallel, identification of distinct enzymes and cellular receptors by 

pharmacologists and biochemists were providing the basis for rational drug discovery and 

development that is still in use today (Figure I.2).10 

Nowadays, the Food and Drug Administration (FDA) in the United States acts as one of 

the main regulatory authorities in terms of drug development along with the European 

Medicines Agency (EMA). 

The FDA describes the drug discovery process in five basic stages: 

1) Early Drug Discovery 

2) Preclinical research  

3) Clinical research 

4) Review and approval  

5) Post-release monitoring  

A B 
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 Chapter I 

 

Figure I.2. Drug discovery process.  

 

The „Early Drug Discovery “phase generally lasts three to six years and entails several 

steps. The target, which can be a protein, a gene or RNA, needs to be efficacious, safe, and  

“druggable”.  “Druggable” means that the target is accessible to a putative drug molecule 

(a small molecule or a larger biological entity). The target must elicit a biological response 

upon binding with the putative drug and methods must exist to measure that response in 

vitro and in vivo. Drugs in development typically fail in clinical phases due to lack of 

efficacy and/or due to toxicity. For this reason, properly choosing and validating the initial 

target is of paramount importance. Then, the hit-to-lead phase will assess several hit 

clusters and identify a few hit series that have the best potential as a drug-like lead. 

Structure-activity relationship (SAR) will be investigated to confirm appropriate response 

from the biological target.  Additionally, initial assessment of in vivo ADMETii properties  

 
ii Absorption, distribution, metabolism, elimination and toxicity studies are an assessment of the 

pharmacokinetic/pharmacodynamic (PK/PD) properties of the compound. 
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will help selecting the most promising lead for further optimization.  

Consecutively, the lead optimization phase characterizes a potential clinical candidate with 

optimal physico-chemical properties. The structure of the lead will be derivatized and 

modified in order to obtain a compound with suitable solubility, permeability and pH while 

maintaining good potency and selectivity for the biological target.12 This first stage lasts in 

general between three and five years whereby several thousands of compounds are 

screened, which directly underlines the need for considerable synthetic capacities at this 

point.  

The „Preclinical research“ stage lasts about a year and is distinctly essential to assess 

whether the envisioned drug can cause harm to the patient.  Preclinical trials test the 

candidate in vitro and in vivo for efficacy, toxicity and pharmacokinetics to build a 

pharmacological profile for the potential candidates.12 Information is also collected to guide 

the selection of dosage form, drug delivery method, side effects, effects on gender or 

ethnicity, interaction with other treatments and effectiveness compared to similar drugs.  

 

The third stage „Clinical trial“ is made of several sub-phases that include dose studies, 

healthy volunteer study, patient population studies, PK/PD studies in human drug stability. 

It is considered the most lengthy and costly stage of drug development.13 Once satisfying 

results are obtained in clinical trials and are in compliance with the regulatory authority, a 

New Drug Application (NDA) can be presented and is reviewed and approved in stage four.  

 

The final stage „Post-release monitoring“ involves pharmacovigilance activities and 

surveillance in case safety alerts are raised about the drug on the long run.12 

 

Even though the drug discovery stages have not evolved much over the last century, 

technological revolutions especially occurring in the late 1980s and 1990s have broad-

opened the landscape of possibilities to deliver more effective treatments in a fast and cost-

effective manner. A few of these novel disruptive technologies worth mentioning are: 1) 

the development of quick and reliable analytical techniques such as Nuclear Magnetic 

Resonance (NMR) and Mass Spectrometry (MS); 2) the novel separation techniques with 

High-Pressure Liquid Chromatography (HPLC); 3) the identification of novel protein 

structures from crystallography techniques; 4) the exponential increase of computer power 

which, combined with protein structures has set the base of computer-aided drug design.  
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However, despite numerous technological breakthroughs and broader understanding of 

biological systems, drug discovery is still a “lengthy, expensive, difficult and inefficient 

process”.14  In 2012, Scannell et al. coins the term „Eroom’s law“  (in contrast to „Moore’s 

law“, a term generally used for technologies that improve exponentially over time) to report 

a curious trend in pharmaceutical R&D: Over the last 50 years, despite major advances in 

many of the scientific and technological inputs into drug research and development (R&D), 

the rate of FDA drugs approved has steadily declined while R&D cost keep increasing 

(Figure I.3).14 Overall, this results in the decline of R&D efficiency, measured in terms of 

the number of new drugs brought to market by the global biotechnology and pharmaceutical 

industries per billion US dollars of R&D spending. 

 

Figure I.3. Eroom’s law in pharmaceutical R&D.14 Overall trend in R&D efficiency (inflation-adjusted). 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature 

Reviews Drug Discovery, REF 14, 2012. 

 

The cost of drug development is the full cost of bringing a new drug to market from early 

drug discovery through clinical trials and approval. In 2020, a study published by the 

Journal of the American Medical Association estimates the average cost to bring a new 

drug to market at $985.3 million. The study spans from 2009 to 2018 and accounts for 

failed clinical trials.15 Notwithstanding this cost-wise assessment, drug development 

remains extremely time-consuming, considering that it generally takes from ten to fifteen 

years to develop a single new drug molecule, from the time it is identified in early drug 

development until it is available in the market for patients.   

As Paul et al. wrote: “Without a substantial increase in R&D productivity, the 

pharmaceutical industry’s survival (let alone its continued growth prospects), at least in its 

current form, is in great jeopardy.” The study estimates that without a cost reduction of 

50% per new chemical entity (NCE), a viable business model cannot be sustained.16  
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This statement inevitably pushes all actors of the drug discovery process on an individual, 

institutional, and industrial level, to re-assess their “old ways” and to truly reflect on how 

they can take part in the change in paradigm.  

I.2 HOW TO BOOST DRUG DISCOVERY? 
 

As aforementioned, early drug discovery entails the validation of a biological target, the 

identification of screening hits, and the subsequent optimization of those hits to increase 

affinity, selectivity, efficacy, metabolic stability and additional ADME parameters. It is -

with the clinical trial phase – often considered a rate-limiting step of the drug discovery 

process. It requires extensive iterative rounds of screening and optimization and significant 

synthetic capabilities.  

 
Figure I.4. Iterative learning cycles of medicinal chemistry based on diverse discipline activities with 

examples of key approaches used before 1980 (purple), up to 2000 (orange), and nowadays (red).17 

 

The design-make-test-analyze (DMTA) cycle is the central iterative process in lead 

optimization (Figure I.4). It involves four steps:  

- Design: a hypothesis is proposed to improve the profile of the lead molecule. 

- Make: the compounds designed are synthesized. 

- Test: compounds with confirmed structure and purity are tested in one or more 

validated assays. 

- Analyze: the experimental data are analyzed, and the results used to amend a design 

hypothesis for the next cycle. 
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In recent years, novel enabling technologies have emerged to support the drug discovery 

process, especially in the early drug discovery stage.  

The following section will be focusing on two approaches that are key to boosting early 

drug discovery: 

- The development of novel chemical synthesis methods. 

- The development of acute predictive models via computational methods.  

 

I.2.1 INTENSIFYING CHEMICAL SYNTHESIS  
 

Reducing costs and accelerating the timelines of drug discovery is key for pharmaceutical 

companies.14 Process chemistry departments play a role in meeting this demand by 

providing robust and efficient manufacturing routes to active pharmaceutical ingredients 

(API) faster than ever before. Thanks to the growing implementation of automation and 

parallelization principles in existing synthetic methodologies, robust chemical process 

intensification takes a new momentum.18  

 

I.2.1.1 High-throughput experimentation: miniaturization  

 

High-throughput experimentation (HTE) can be broadly defined as “the workflow of 

running multiple reactions in parallel”.19 Classically, it is applied in combination with 

design of experimentiii (DoE) techniques and rational design to probe reaction mechanisms, 

examine the scope of reagents/catalysts or to determine critical parameters for a specific 

chemical transformation.19 In the past decade, there has been a large increase in major 

pharmaceutical companies adopting HTE platforms.20 Companies realize the benefit of this 

technology to accelerate the optimization of a synthetic route or for downstream processing 

while also covering a wider chemical space than the classic one-factor-at-a-time 

optimization. Recent advances in automation and process analytical technology (PAT) 

have warranted higher efficiency, allowed more reactions with less material, and lessened 

the necessity of human intervention.21,22 

Eli Lilly has reported a large-scale automated drug discovery platform capable of 

performing > 16,000 reactions on a 100 mg scale per year. A diversity of reaction types 

 
iii Design of experiments (DOE) is defined as a branch of applied statistics that deals with planning, 

conducting, analyzing, and interpreting controlled tests to evaluate the factors that control the value of a 

parameter or group of parameters. 
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were carried out, such as: organometallic cross-coupling reactions, alkylations, reductive 

aminations and multicomponent reactions.23 The platform also extends to the concept of 

self-optimized synthesis that was introduced by Buchwald and Jensen in 2016.24 In that 

latter case, a DoE-based algorithm was coupled to online HPLC analysis to optimize  the 

yields in a Suzuki-Miyaura reaction (Figure I.5).24 

 

 

Figure I.5. Automated Suzuki–Miyaura cross-coupling optimization.24  

 

In 2017, Cernak and co-workers described the application of micromole-scale high-

throughput experimentation in the early drug discovery phase.22 The aim was the 

identification and optimization of a diacylglycerol acyltransferase 1 (DGAT1) inhibitor 

lead. They report the optimization and application of a SNAr reaction with HTE approach 

that enabled the synthesis of thousands of analogues. A rich SAR could be mapped and 

contributed to the progression of a (piperidinyl)pyridinyl-1H- benzimidazole in advanced 

preclinical studies (Figure I.6).22 Later on in 2019, a first-time acoustic droplet ejection 

(ADE) approach was disclosed by AstraZeneca and the University of Groningen.25 In ADE, 

short and precise acoustic waves are applied to a liquid, and very small nanodroplets of 

defined size are ejected and transported to a destination.26 The platform is an automated 

ADE platform that was used to scout a novel Ugi-multicomponent approach for 

isoquinoline derivatives synthesis (Figure I.7). 384 reactions were performed in less than 2 

days, including quality evaluation of each reaction by SFC-MS and TLC-UV-MS. Sixty-

two substituted isocyanides were combined with seven various benzylamines to evaluate 

the reaction scope. 
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Figure I.6. Micromole-scale parallel-in-parallel reaction optimization. Screening enabled the discovery of 

robust reaction conditions for library synthesis.  

 

About 80% of the nanoscale reactions revealed the product, and the functional group 

compatibility was exerted. Twenty-nine examples were successfully reproduced on mmol 

scale, underlining the scalability of the reaction. This type of technology offers fast and fair 

assessment of the scope of a new reaction but also very low material consumption. Indeed, 

the total amount of building block used for the successful synthesis of more than 300 

isoquinolines derivatives is less than 50 mg. 

 

 
 

Figure I.7. Experimental workflow of nanochemistry and newly designed reaction synthesis of isoquinolines. 

Adapted from REF 26 authorized under ACS AuthorChoice agreement. 

 

I.2.1.2 Flow chemistry, meso- and microfluidics 

 

Flow chemistry can be trivially defined as the proceeding of a reaction in a continuous 

manner.27–31 According to the channel’s size of the reactor used for the continuous process, 

one can differentiate mesofluidics (millimeter- to centimeter-sized channels) from 
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microfluidics (micrometer-sized channels). Microfluidic and mesofluidic technologies 

enable the operation with small volumes in a well-controlled environment, flexible 

technical setup, and parameter control to an extent that is not available for batch-based 

methods. Their technical setup typically consists of a pumping unit, a mixer, reactor 

chamber, detectors, and separating or receiving units (Figure I.8).  

 

Figure I.8. (A) Zones of a standard two-feed continuous flow setup. (B) Diagram legend.  

 

Numerous benefits of continuous flow processing reside in the improved mass transfer and 

heat transfer. This is enabled by the high surface area to volume ratio environment and the 

channels architectures inherent to flow reactors (Figure I.9).32,33  The benefits of continuous 

manufacturing (CM) include: 1) the ability to operate at high temperature in a low-boiling 

solvent; 2) improved safety for a hazardous reaction; 3) better yields, improved 

containment; 4) efficient solvent stripping with enhanced performance in terms of product 

stability; 5) elimination of one isolation and elimination of solids handling in another 

isolation; 6) increased quality assurance and process understanding provided by online 

PAT and process automation. The continuous feature is suitable for the design of multistep 

processes and promises an easy scale up by duplicating the number of reactors in parallel. 

 

Altogether, flow chemistry also addresses sustainable chemistry values by potentially 

leading to cleaner, more efficient, less consumptive, and safer chemical processes, while 

also being a tool to develop entirely novel chemical transformations.35 

A 

B 
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Figure I.9. Strategic drivers for the adoption of continuous flow approaches for the synthesis of chemicals.43 

 

It should be noted that until the 90s, flow chemistry was solely employed by heavy 

chemistry industries like petrochemicals and piloted by chemical process engineers. It was 

just about 20 years ago that flow chemistry started to invade fine organic chemistry 

laboratories, enforcing the idea that continuous processing can renew the discipline. In 

parallel, continuous flow technologies such as micro- and mesofluidics made an entrance 

in pharmaceutical industries at different stages of the drug discovery process.  In 2019, 

IUPAC identified „ten chemical innovations that will change our world“ and cited flow 

chemistry as an emerging technology with the potential to make our planet more 

sustainable.36 The article explains that flow chemistry perfectly tackles one of the United 

Nations´s 2030 Agenda for Sustainable Development: responsible consumption and 

production, as a critical technology that increased productivity while lowering the 

environmental impact.36 

 

In 2007, Novartis AG decided to invest $65 million to Massachusetts Institute of 

Technology (MIT) over 10 years to create the Novartis-MIT Center for Continuous 

Manufacturing, a research center dedicated to transforming pharmaceutical production.37 

The Center developed new technologies to replace the pharmaceutical’s industry 

conventional batch-based system with a continuous flow manufacturing process. More 

pharmaceutical companies have followed that lead: GlaxoSmithKline committed a $50 

million investment in a Singapore plant for continuous manufacturing and expanded the 

facilities with an additional $95 million in 2019;38 J&J is collaborating with Rutgers 

University School of Engineering with a $6 million investment;37 Eli Lilly has funded a 

continuous flow manufacturing facility in Ireland with an initial $40 million investment39 

and finally; Vertex Pharmaceuticals had their FDA-approved cystic fibrosis drug Symdeko 

produced by continuous manufacturing.40  
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In 2015 Janet Woodcock, the Director of the Center for Drug Evaluation and Research 

(CDER) called on the Commissioner of the FDA to „award grants to institutions of higher 

education and nonprofit organizations for the purpose of studying and recommending 

improvements to the process of continuous manufacturing of drugs and biological products 

and similar innovative monitoring and control techniques“.41 This so-called „mindset 

momentum” will encourage pharmaceutical companies to take a step towards innovative 

continuous manufacturing process. Just over the past few years, dozens of reviews have 

been praising flow chemistry as the next technology that will revolutionize the medicinal 

chemistry field.17,30,42–47  

Flow chemistry has proven useful to strengthen and reliably perform some of the most 

commonly used  reactions in early drug discovery: 1) amide formation (including peptide 

synthesis);48,49 2) Suzuki–Miyaura cross-coupling;50–52 3) aromatic nucleophilic 

substitution (SNAr);53–55 4) reductive amination;56–59 or 5) Boc protection/deprotection.60,61 

When transferred to continuous flow, all these useful transformations exerted a high 

versatility and a productivity that superseded their batch version.44 More interestingly, flow 

chemistry also represents a tool to access novel chemical space, particularly in the fields of 

photochemistry, electrochemistry and when unstable intermediates are involved. 

Controlling reactive intermediates is an essential asset to selectively divert the outcome of 

a reaction. Starting from oxadiazolines, Ley and co-workers generated unstable diazo 

compounds in situ to conduct the C(sp2)–C(sp3) cross-coupling reaction of arylboronic 

acids.62  Similarly, reactions involving reactive organometallic reagents formed in situ were 

greatly enabled in continuous flow.63–65 As well, the use of continuous flow reactors in 

photochemical transformations provides a more efficient and homogeneous irradiation of 

the reaction mixture, which will generally result in decreased reaction times and increased 

selectivity.66–70  In a collaboration between Janssen Pharmaceutica and the University of 

Eindhoven, the trifluoromethylation of heterocycles using iridium catalysts and CF3SO2Na 

as trifluoromethylating agent was conducted as an entirely innovative methodology.71,72    

From the perspective of drug development, an important aspect is the issue of scaling up: 

from few milligrams during primary testing, the production of API quickly scales to tens 

of grams for early preclinical studies, then hundreds of grams for toxicology, kilograms for 

clinical trials and finally hundreds of tons. Having this in mind, scaling up is generally 

easier for a continuous process than for a batch process: by numbering up flow devices or 

scaling up the reactor volumes, the reaction throughput can be increased while maintaining 

the performance of the reactor (smart dimensioning).73,74 In this application, flow chemistry 
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has been effectively introduced in key steps for active pharmaceutical ingredients (API) 

manufacture.43 In a recent example, Merck reports a one-step diazotization synthesis of 2-

fluoroadenine using Olah’s reagents under continuous flow.75 Starting from commercially 

available 2,6-diaminopurine, the process was critically improved by acute control of the 

temperature and residence time. The product could be isolated in 98% purity by 

recrystallization.75 Similarly, Schuster and co-workers took advantage of the tight 

temperature control enabled by a flow setup to optimize a Matteson reaction, a key step in 

the synthesis of β-lactamase inhibitor Vaborbactam (Figure I.10).76 The Matteson reaction 

is typically performed at -95°C to -100°C as it involves the formation of an unstable 

intermediate: (dichloromethyl)lithium, a labile species prone to carbene formation.77 The 

continuous process was successfully scaled up from gram to 100-kilogram scale with high 

productivity, energy efficiency and reduced waste.76 The process was later adapted by 

Novartis.78  

 

 

Figure I.10. Matteson Reaction Used in the Synthesis of Vaborbactam API in continuous flow.  

 

Moreover, multistep synthesis and end-to-end production of active pharmaceutical 

ingredients is an attractive application for flow chemistry in the pharmaceutical industry, 

particularly since such flow processes have a lower space-time demand. A pioneering 

example is from Eli Lilly with their kilogram-scale manufacture of Prexasertib – an 

UNIVERSITAT ROVIRA I VIRGILI 
APPLICATIONS OF FLOW CHEMISTRY METHODS AND COMPUTER-AIDED APPROACHES TO EXPEDITE THE DEVELOPMENT 
OF HBV INHIBITORS 
Justine Raymond



 

16 

 

 General introduction 

anticancer drug – in a continuous flow system (Figure I.11).34 The continuous flow process 

afforded 3 kg per day of cGMPiv material in a standard laboratory fume hoods.  

 

 

Figure I.11. Continuous manufacturing production route for Prexasertib monolactate monohydrate. 

 

I.2.1.3 Automation of the DMTA cycle 

 

Over the last decade, extensive efforts were made across industry to automate and integrate 

the routine aspects of the design-make-test-analyze (DMTA) cycle.79 One of the most 

ambitious visions is to integrate machine-learning algorithms in the design of novel 

compounds, their chemical synthesis and subsequent testing in biological assay. Those 

algorithms would ultimately be able to interpret SAR data to iteratively command the 

synthesis of next rounds of compounds with potentially improved activity.  

 

Several companies such as Abbott, Abbvie, Eli Lilly and Cyclofluidic have tackled the 

challenge with relative success. In 2017, Djuric and colleagues at Abbvie disclosed a fully 

automated and integrated platform for synthesis, purification, quantitation, dissolution and 

bioassay testing of small molecules. In comparison, preparation of identical libraries of 

compounds through conventional approaches, consisting of autonomous synthesis, 

purification, and testing was conducted in the span of several days, reflecting industry 

standards. The correlation of bioassay data between both approaches was excellent.80 The 

platform enables batch-supported compound synthesis of up to 48-member libraries with 

purification and quantitation of compounds. The platform was validated with the effective 

preparation of 22-member amide library and 33-member aromatic amine library in 15 h 

and 30 h, respectively.80 

 
iv cGMP: current Good Manufacturing Practice 
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Figure I.12. Schematic representation of integrated synthesis-purification-bioassay platform developed by 

Abbvie.  

 

In 2019, Cyclofluidic Ltd narrated their great epic effort towards a fully integrated closed 

loop design, synthesis, and screening platform.81 With the platform named “CyclOps” 

(Figure I.12), the team achieved significant technical progress in demonstrating the 

potential for rapid SAR generation utilizing a fully automated design make and test 

process.81  Notably, CyclOps was successfully utilized in the lead optimization of ABL 

kinases inhibitors.82 The platform ran in fully automated mode over a long weekend, 

completing 72 cycles without any intervention. New compounds were synthesized, and 

valuable SAR was uncovered in a fully automated way and in record time.81 

Overall, full integration of all aspects of compound design synthesis, testing and automated 

iteration throughout the molecular design cycle has not yet been productively applied on a 

broader scale but has already demonstrated very promising outcomes.  

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
APPLICATIONS OF FLOW CHEMISTRY METHODS AND COMPUTER-AIDED APPROACHES TO EXPEDITE THE DEVELOPMENT 
OF HBV INHIBITORS 
Justine Raymond



 

18 

 

 General introduction 

I.2.2 DEEPEN PREDICTIVE CAPABILITIES  
 

It was during the 1970s that computational modelling of macromolecules as a mean of 

understanding and predicting chemical and biological processes was first introduced. 

Notably, Martin Karplus, Michael Levitt and Arieh Warshel shared the Nobel Chemistry 

Prize awardees in 2013 "for the development of multiscale models for complex chemical 

systems."(Figure I.13).83 

 

 

Figure I.13. The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus, Michael Levitt and 

Arieh Warshel "for the development of multiscale models for complex chemical systems".83 

 

Being able to narrow the candidates down to the most promising lead for clinical testing is 

still an intricate challenge in drug discovery. Conventionally, the search for potential lead 

structures is done mainly by high-throughput screening of an existing internal library. Since 

the late 1990s, virtual screening methods have made possible the screening of compounds 

that do not physically exist in the investigators library but that can be readily obtained 

through purchase or synthesis. What’s more, computational prediction of binding affinity 

obtained from molecular docking models assists in prioritizing the synthesis and test of 

newly designed analogues. Molecular docking protocols are used to mimic the binding of 

a ligand into the binding pocket of the protein of interest. During docking, an extensive set 

of the ligand conformations (or ligand poses) is sampled within the binding cavity of the 

target protein (Figure I.14). The binding affinity of the ligand is estimated rapidly for all 

sampled conformations with a scoring function. In principle, docking will predict the most 

favorable conformations of ligands and reveal key groups or atoms for binding. Once a 

protein target and suitable compound libraries are selected, molecular docking-based 
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virtual high-throughput screening is used to identify the compounds with higher affinities 

to the active site of the protein.84 

 

 

Figure I.14. Schematic illustration of docking a small molecule ligand (green) to a protein target (black) 

producing a stable complex.85 Reprinted from REF 81 under the terms and conditions of the Creative 

Commons Attribution (CC BY) license. 

 

For the last 30 years, computer-aided drug design (CADD) has been typically used during 

early drug discovery for hit identification, hit-to-lead development, and lead optimization 

of other pharmaceutical properties (Figure I.15).86,87 

 

Figure I.15. Applications of CADD to the various stages of drug development. 
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CADD encompasses a set of techniques aimed at identifying novel potential leads that will 

interact with the target proteins. Among various existing computational approaches, the 

most notable are:  

• Structure-based drug design (SBDD), that relies on the knowledge of the three-

dimensional structure of the biomolecular target. 

• Ligand Based drug design (LBDD), that relies on the knowledge of active and 

inactive ligands. 

• Quantitative Structure Activity Relationship (QSAR), that relates molecular 

descriptors to biological activity. 

 

In principle, the aim of such computational methods is to predict the affinity of a compound 

for a protein target to guide and prioritize the synthesis of compounds for in vitro testing. 

Thus, saving time and cost in early drug discovery.88 As such, these tools have proved to 

accelerate drug discovery by reducing the number of iterations required and have often 

provided novel structures.  

In the past two decades, tremendous gain in computational capabilities have enabled us to 

expedite early drug discovery via in silico approaches. The main advances have been in the 

field of artificial intelligence and in the combination of empirical CADD methods with 

biophysics, notably molecular mechanics and molecular dynamics.89 

 

I.2.2.1 Artificial intelligence and deep learning 

 

It is estimated that the chemical space comprises more than 1060 molecules, which 

potentially contains structurally diverse hits for the development of drug molecules. In 

addition, as of February 2021, the RCSB Protein Data Bank90 (rcsb.org) contained more 

than 170.000 protein structures obtained from X-ray, NMR and electron microscopy 

techniques. Among them, 29% correspond to human proteins and therefore constitute a 

wide range of potential targets for human diseases: Notwithstanding, computational models 

of unknown proteins can also be constructed by homology modelling, threading and de 

novo design.91 Moreover, the general increase in data digitalization in the pharmaceutical 

sector inextricably comes with the challenge of processing and analyzing all that 

knowledge to solve complex clinical problems.92  
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Artificial intelligence (AI) can be applied at different stages of drug discovery (Figure 

I.16).96 AI methods are used to handle increasingly large volumes of data with enhanced 

automation.92 AI technologies involve advanced tools and networks that are designed to 

mimic human intelligence. Even though, it is clear that AI will not replace humans (yet), 

they utilize systems and softwares that can interpret data and learn from input data to make 

independent decisions for accomplishing specific objectives.93,94 According to the 

McKinsey Global Institute, advances in AI-guided automation are likely to change the work 

culture of society.95 These still growing developments have opened a new landscape for 

CADD, entering the realm of Big Data.   

 

 

Figure I.16. Role of AI in drug discovery.96 AI can be used effectively in different parts of drug discovery, 

including drug design, chemical synthesis, drug screening, polypharmacology and drug repurposing. 

 

Quantitative structure-activity relationship (QSAR) methods started out as linear 

relationship methods. QSAR was first introduced as Free Wilson method and Hansch 

analysis97 in the end of the 1980s. More recently, these methods have evolved into machine 

learning (ML) methods, a sub-field of artificial intelligence. 

 

In the last two decades, ML methods have achieved great successes in the field of 

chemoinformatics, to design and discover new drugs. Recently, scientists are looking to 

extend the capabilities of machine learning to the prediction of additional properties such 

as toxicity, microsomal permeability, ADME, etc. A subfield of the ML is deep learning 

(DL) which has gained popularity with the development of advanced neural network 
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architectures for the pharmaceutical research. DL engages artificial neural networks 

(ANNs), an algorithm that achieves problem-solving by mimicking brain function. In other 

words, in the same way that our brain will apply information obtained from past 

experiences to solve new problems, a neural network will construct a system of „neurons“ 

that can reach decisions, classifications and predictions based on previous data.98 

 

 An important innovation is the combination of ML methods and big data analysis to predict 

more extensive biological features. A recent example is the development of a deep learning 

approach for the prediction of human hERGv (human ether-a-go-go-related gene) 

blockers.99 Another important application of this technology is in the field of 

polypharmacology.100 Indeed, virtual screening and high throughput screening (HTS) 

techniques may be efficient to assess the biological effect of a molecule toward the target; 

yet, they do not account for potential „off-target“effects. With over 20 000 proteins in the 

human body and every one of them having the potential to interact with an exogenous small 

molecule, a given drug may have hundreds of off-targets interactions, a phenomenon called 

polypharmacology (Figure I.17).100 Polypharmacology causes toxicity and other adverse 

effects, most of which are only discovered much further down the development pipeline, 

after the drug has already been heavily invested in. Such adverse effects can be discovered 

in animal studies, clinical trials, or worst of all, when the drug is already on the market and 

widely used.  

 

 

Figure I.17. Schematic depiction of polypharmacology.101 The same molecule may interact with a number 

of off-target, leading to various adverse effects. hERG pdb code: 5VA1; CYP3A4 pdb code : 6UNE;  JAK3 

pdb code : 6DUD. 

 
v hERG (the human Ether-à-go-go-Related Gene) is a gene that codes for a protein known as Kv11.1, the 

alpha subunit of a potassium ion channel. This ion channel (sometimes simply denoted as 'hERG') is best 

known for its contribution to the electrical activity of the heart. Interaction of drug with hERG can result in 

decreased channel function and drug-induced (acquired) long QT syndrome, which can subsequently lead to 

sudden death. 
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Over the past few years, numerous start-ups and companies have applied ML to large 

databases of known experimental drug binding data with the aim of assessing the viability 

of a drug along the drug development pipeline.  

 

Ligand Express™ by Cyclica takes on the challenge of proteome-wide screening, an 

approach that proposes the screening of hundreds of thousands of proteins for the binding 

of an individual molecule. The algorithm expands the prediction potential of protein-drug 

interactions by 10- to 100-fold over conventional machine learning approaches, offering a 

panoramic view of a small molecule and enabling a comprehensive understanding of a 

drug’s effect, both on- and off-target across the entire structurally characterized 

proteome.101
 

Similarly, LigandScout proposes a “parallel screening” workflow supplied with a high 

quality collection of 3D pharmacophores.102 The pharmacophore database covers  

approximately 300 clinically relevant pharmacological targets originating from major 

therapeutical classes, such as anti-infective, cardiovascular, endocrine, gastrointestinal, 

immunologic, metabolic, neurologic, oncolytic, renal-urologic, and respiratory agents101. 

According to the targets encoded by these models, a pharmacological profile for the 

compound will emerge. 

 

I.2.2.2 Combination with biophysics methods 

 

Biophysical methods are defined as a set of techniques to study the structure, properties, 

dynamics or function of biomolecules at an atomic or molecular level.103 They encompass 

a range of techniques including microscopy, spectroscopy, electrophysiology, single-

molecule methods and molecular modelling. As above-mentioned, experimental techniques 

to „solve“vi novel protein structures or macromolecules (NMR, X-ray crystallography, etc.) 

are on the rise and steadily outperforming each other in precision and accuracy. However, 

these tools only assert a static vision of the macromolecular complex:  Because proteins are 

dynamic and can undergo various conformational changes, protein conformation is one of 

the biggest approximations in ligand design. Thus, protein flexibility crucially affects the 

range of possible target conformational states for ligand binding. Experimentally, 

fluorescence and NMR methods enable to partially depict the protein dynamics on 

 
vi “solving” a structure refers to the processes of determining tridimensional coordinates of the atoms of the 

protein of interest, generally in physiological solution 
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timescale of femtosecond to microseconds.104–111A promising alternative or complement to 

studies of protein dynamics is to simulate these movements in silico via molecular 

modelling and molecular dynamics.  

 

In general, the purpose of a computer simulation is to gain insight into the behavior of an 

actual physical system or process. To achieve that specific objective, a model system is 

developed that represents or emulates the given physical system. A suitable algorithm 

subsequently generates a time series or an ensemble of states (observations) for the model 

system. Molecular dynamics allows, starting from classical mechanics, to simulate the 

trajectory of atoms in a molecular system in solution, in crystalline phase or in gaseous 

phase, in order to provide information on the evolution of the system over time.  

 

Molecular dynamics (MD) simulations can provide important information on the dynamic 

character of the target regarding drug design and have become increasingly useful in 

modern drug discovery. Recently, MD simulation techniques have been successfully 

applied to uncover the conformational dynamics of challenging drug target. For example, 

KRAS is  a driver oncogene that is observed particularly in pancreatic, colorectal and lung 

cancers.112 Recently, the study of the interaction between its oncogenic mutant KRAS(G12) 

and its covalent inhibitor AMG 512 by classical all-atom MD simulations shed light on the 

biology of KRAS and the binding mode of AMG512.113 Comprehensive reviews explain 

how the new understanding of KRAS dynamics helped deciphering the mutant 

functionality and pointed out vulnerabilities of these oncoproteins at the atomic level.114  

Another example, intrinsically disordered proteins (IDPs), which are a type of proteins that 

do not possess a stable tertiary structural arrangement and thus only exist as conformation 

ensembles. In this case, MD represents a major asset to gain insights into inhibitor binding 

sites, internal protein dynamics or more elaborate mechanistic views. A number of proteins 

of interest have already been investigated with such methods with very promising results 

e.g. c-Myc115 (oncoprotein, anti-canter target), tau protein116 (microtubule-associated 

protein, neurodegenerative diseases, Alzheimer’s), stahmin117 (microtubule-regulating 

protein, anticancer target and more.118–123 

 

MD can offer significant insights into ligand-receptor interactions and in the best cases can 

even predict the behavior of the system in defined conditions (temperature and pressure). 

As such it is can be used to complement molecular docking with accurate estimation of 
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protein-ligand binding energy124–126 and can also predict binding kinetics.127–129 Moreover, 

MD has also found relevance in combination with molecular docking techniques for virtual 

screening.130 Indeed, molecular docking is probably the most widespread method to 

simulate protein ligand binding.131 However, the inability to handle protein’s flexibility is 

considered as the main drawback of docking methods. Despite the rise of seemingly 

„dynamic“ strategies such as soft docking,132 rotamer libraries,133 and local optimization of 

side chains,134 this downside remains substantial. A practical approach to simulate the 

receptor’s plasticity during docking is by the parallel screening multiple receptor 

conformations.130 In this case, MD is a convenient way to generate receptor 

conformations.135 The „relaxed complex scheme“ described by the McCammon’s group is 

an emblematic example of this strategy for drug design (Figure I.18).136 

 

 

Figure I.18. Fundamental steps in a virtual screening workflow combining docking and MD 

simulations.130 (1) An MD trajectory is used to explore the receptor conformational space. (2) From the 

trajectory, several snapshots are extracted, and redundancy is eliminated by means of cluster analysis. (3) 

From each cluster, a representative structure (e.g., medoid) is selected. (4) Virtual ligand screening is 

independently carried out at each representative conformation. (5) Activity predictions returned by 

independent runs are combined together in a global ranking. Adapted from REF 122 authorized under ACS 

AuthorChoice agreement. 

 

Later on, Shoichet’s group was able to demonstrate that some conformers perform better 

than others in retrieving active ligands.137 Various reports published over the years strongly 

demonstrate that limited conformational ensemble can improve both the final enrichment 
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and the chemical diversity of the hits.138–143 A comparative study published by Nichols and 

co-workers emphasized that MD-generated receptor variants can match and outperform 

crystal structures in virtual screening experiments.144 Finally, in a review reported by Mc 

Cammon and Ivetac, the authors report the successful identification of several modulators 

of relevant pharmaceutical targets owing to the relaxed complex method.145 

 

I.3 HEPATITIS B VIRUS  
 

I.3.1 BACKGROUND 

I.3.1.1 A global health threat  

 

Hepatitis B is a viral infection of the liver and the world’s most common serious liver 

infection.146 A HBV infection either develops into acute or chronic hepatitis. Acute 

hepatitis B will cause an acute inflammation of the liver and hepatocellular necrosis. 

Chronic hepatitis B (CHB) is a persistent HBV infection which complications lead to 

cirrhosis and hepatocellular carcinoma, the most common form of liver cancer. According 

to the Global Hepatitis Report released by the World Health Organization (WHO) in 

2017,147 an estimated 257 million people worldwide were living with hepatitis B virus 

(HBV) infection in 2015. During the same year, the United Nations included combating 

viral hepatitis in the Sustainable Development Goals.148 The aim is a reduction in hepatitis 

related mortality of 65% and a 90% reduction in new infections by 2030. In 2016, World 

Health Assembly passed the Global Health Sector Strategy on Viral Hepatitis which aims 

to eliminate HBV and HCV by 2030.149 

With the COVID-19 pandemic still raging worldwide, HBV programs render difficult to 

maintain, in particular in low- and middle- income countries.150 Recent alarming reports 

state that the current disruption to HBV initiative threatens the 2030 elimination goals as it 

will increase the global burden of chronic infection in the long term and provide a source 

of onward transmission to future generations.151  

 

I.3.1.2 A bit of history  

 

In around 400 b.c, cases of jaundice had been documented by Hippocrates who named it 

„epidemic jaundice“.152 It is only within the last half century that HBV started to be 
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described from a molecular perspective. The „Australia antigen” (HbsAg) is the surface 

antigen of the hepatitis B virus. HbsAg was discovered by Blum and co-workers in 1965. 

Four years later, Dane’s group were able to describe the morphology of  HBV viral particles 

thanks to electron microscopy (EM).153 During the next decade, work performed by 

Summers and collaborators lead to the identification of the viral genome154 and followed 

by its complete sequencing by Galbert et al. in 1979.155 These efforts combined have 

fostered the development of an effective vaccine in 1981, perceived as the first „anticancer“ 

vaccine considering the evolution of HBV infection into fibrosis, cirrhosis and 

hepatocellular carcinoma.156  

 

I.3.1.3 Epidemiology  

 

The chronic form of the disease is diagnosed when HbsAg persists in the host after 6 

months. According to WHO, more than 400 million people are chronic carriers of HBV. 

Among them, 78% live in Asia, 16% in Africa, 3% in South America and the 3% remaining 

are dispersed in Europe, North America and Oceania. It is estimated that 650.000 people 

die each year due to a complication of the virus infection.157 

 

 
Figure I.19. HbsAg endemicity (1957-2013).159 Reprinted from The Lancet, Vol. 386, A. Schweitzer et al., 

Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data 

published between 1965 and 2013, Pages 1546-1555, Copyright 2015, with permission from Elsevier.  

 

Global distribution of HBsAg carriers in adults is highlighted in 3 regions (Figure I.19):  

- Low endemic area (< 2% HBsAg): Wes Europe, Australia, North America and 

some countries of Latin America; 
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- Medium endemic area (2 to 7% HBsAg): Eastern Europe, Middle East, 

Mediterranean countries, South-East Asia, Russia and some countries in South 

America; 

- High endemic area (8 to 20% HBsAg): Sub-saharan Africa, China, some East 

European, South American and North American countries.158 

 

I.3.1.4 Transmission  

 

HBV has a very high transmission potential: though enveloped it is very resistant and can 

survive more than 7 days without a host.160 It is considered 100 times more contagious than 

HIV.  The main transmission modes are through infected blood, sexual (horizontal 

transmission) or perinatal (vertical transmission or mother-to-child transmission). 

Transmission via infected blood typically happens after contact with needles or infected 

medical equipment. Sexual transmission may occur during unprotected sexual intercourse, 

subjects with multiple partners (hetero- or homosexuals) being the main risk group.  

Infection in adulthood leads to chronic hepatitis in less than 5% of cases. Perinatal 

transmission from mother to infant is the major route of HBV transmission in many parts 

of the world. The risk of developing chronic infection is 90% following perinatal infection 

(up to 6 months of age).161 Horizontal transmission (from person to person) are generally 

mediated by body fluids generally saliva when there is a repeated exposure.161 In low 

endemic areas, infection mainly occurs in adulthood. The infection is asymptomatic in 80% 

of the cases. For the remaining 20% of the cases, acute hepatitis can arise after an incubation 

period from one to six months. In more than 90% of the cases patients will naturally recover 

from HBV infection. In highly endemic areas, HBV infection ends up being a chronic 

infection in 80% of the cases.161  

 

I.3.2 STRATEGIES FOR A CURE  

I.3.2.1 HBV replication cycle 

 

The human virus HBV is the prototype of a virus family named Hepadnaviridae (for 

“hepatotropic DNA virus”). This family typically contains small spherical virus essentially 

hepatotropes, enveloped, with high host specificity.162 With the Spumaviridate and 

Caulimoviridae families, they are the only DNA viruses that replicates their genome via a 

reverse transcription step from the viral RNA. HBV is a small, enveloped DNA virus that 
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contains a 3.2-kb, partially double-stranded, relaxed circular (rc) DNA genome and 

replicates via an RNA intermediate. It is organized into four frame-shifted overlapping 

open-reading frames encoding the core protein (HBcAg, nucleocapsid); polymerase (P); 

the precore protein, which is processed to secreted hepatitis B e antigen (HBeAg); hepatitis 

B surface antigens (HBsAg, consisting of the large, medium, and small envelope proteins); 

and the X protein (HBx) (Figure I.20).163-164 

 

           

          

 
Figure I.20. (A) Schematic representation of the HBV genome.164 The gene S is a long open reading frame 

(ORF) that encodes for HBsAg. The gene is divided in sections pre-S1, pre-S2, and S. The core gene consists 

of the pre-core and core regions, which encode for the HBV e antigen (HBeAg) and core protein, respectively. 

The polymerase (P) gene overlaps the entire S gene and encodes the viral DNA polymerase. Hepatitis B x 

antigen (HBxAg) is the smallest gene and is associated with the activation of transcription. Reprinted from 

REF 154 under the terms and conditions of the Creative Commons Attribution (CC BY) license. (B) 

Schematic representation of hepatitis B virus (HBV).165 The structure of the virion is composed of a 

rcDNA, enclosed by a nucleocapsid, comprised of HBcAg and surrounded by a lipid envelope containing 

large (L)-HBsAg, middle (M)-HBsAg and small (S)-HBsAg. The virus also expresses two non-particulate 

proteins X protein and HBeAg. 

 

Hepatocytes are the main target of viral replication. While the replication cycle of HBV 

has been well characterized over the years, the biogenesis, homoeostasis, and turnover of 

the cccDNA reservoir remains understudied.166 

The replication cycle is initiated by the specific binding of the preS1 domain of the large 

envelope protein to the sodium-taurocholate cotransporting polypeptide (NTCP) receptor 

on the hepatocyte plasma membrane.167 The viral and cellular membranes fuse to deliver 

the viral capsid to the cytoplasm. The viral capsid is addressed to the cell nucleus where 

the DNA/polymerase complex is released. Then, the nucleocapsid disassembles to release 

its content of partially rcDNA. The conversion of the rcDNA into covalently closed circular 

DNA (cccDNA) is mediated by a host DNA repair machinery.168 cccDNA acts as a 

transcriptional template and DNA reservoir that will persists in the hepatocyte.5 It is found 

packaged into chromatin-like mini chromosomes sitting by histones.169,170 Transcription of 

A B 
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mRNAs from cccDNA is operated by RNA polymerase II, monitored by virus-encoded 

promoter and enhancer elements.171 The pregenomic RNA (pgRNA), precore mRNA, 

preS1 and pre S2/S mRNA and HBx mRNA are translated into the main viral proteins 

thanks to the host cell translation machinery. Encapsidation of the pgRNA is done by the 

viral polymerase (P). Finally, mature nucleocapsids are either packaged with envelope 

proteins and exported as infectious virions or recycled back to the nucleus for cccDNA 

replenishment (Figure I.21).172 

 

 

Figure I.21. The hepatitis B virus replication cycle.172 (1) Viral entry via binding to NTCP receptor (2) 

The nucleocapsid is transported to the nucleus (3) The nucleocapsid disassembles to release rcDNA (4) The 

host’s machinery converts the incoming DNA to cccDNA (5) The five major mRNAs are translated into the 

seven viral proteins (6) pgRNA is encapsidated by RNA polymerase (7a)  Mature nucleocapsid are packaged 

with envelope proteins and exported or (7b) recycled to the nucleus. Reprinted from The Lancet, Vol. 4, P. 

Revill et al., A global scientific strategy to cure hepatitis B, Pages 545-558, Copyright 2009, with permission 

from Elsevier.  

 

I.3.2.2 Current treatments  

 

Antiviral therapies currently available to treat chronic hepatitis B virus are based on 

interferon-alpha (IFNα) and its pegylated form (Peg-IFNα) and nucleos(t)ide analogs 

(NUCs). IFNα is an innate immunity cytokine which, in the case of HBV operates via a 

complex pathway that: activates natural killer (NK) cells; inhibits the viral genome 

transcription; destabilized viral nucleocapsids and degrades cccDNA.173–175 Overall, the 
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antiviral effect of interferons remains modest in CHB patients for reasons that are mainly 

unknown.176 On another hand, NUCs will mimic natural nucleoside and interrupt the 

transcription of HBV proteins. FDA-approved NUCs include Lamivudine (LMV), 

Adefovir Dipivocil (ADV), Tenofovir disoproxil fumarate (TDF) and the most potent to 

date: Entecavir (ETV).  

Inhibition of the viral polymerase activity by NUCs results in the decreased production of 

virions and reduced recycling of viral nucleocapsids to the nucleus of the infected cells. 

However, NUCs do not inhibit the de novo formation of cccDNA in newly infected cells, 

meaning that despite therapy, the persistent residual viremia can always infect new 

hepatocytes and re-establish a viral cccDNA reservoir.168 Additionally, cccDNA pool is 

maintained via the recycling of viral nucleocapsids to the nucleus of infected cells.168 To 

date, none of the available treatment is able to fully eliminate HBV from hepatocytes, 

which means lifelong therapies are often required.177  

 

I.3.2.2 Potential targets  

 

As of now, the persistence of cccDNA is a key obstacle for a cure of chronic hepatitis B. 

To tackle this hurdle, a number of strategies are being explored by targeting different steps 

of the viral replication cycle (Figure I.22).172 

 

 
Figure I.22. Current and future virological and immunological targets  for the treatment and cure of 

chronic hepatitis B.172  All steps of the HBV replication cycle (viral entry, cccDNA formation, 

chromatinization and transcription, viral mRNAs, envelope protein secretion, core proteins and the capsid, 

Pol enzymatic activities). Reprinted from The Lancet, Vol. 4, P. Revill et al., A global scientific strategy to 

cure hepatitis B, Pages 545-558, Copyright 2009, with permission from Elsevier.  
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HBV cure strategies can be classified in four functional categories depending on their mode 

of action. A first approach is to completely inhibit HBV replication to prevent de novo 

infection and to block the recycling of capsids in the nucleus and avoid replenishment of 

the cccDNA pool. Entry inhibitors, target the HBV entry receptor NTCP to stop new HBV 

infections and viral spreading to healthy hepatocytes. The most advanced entry inhibitor to 

date is Myrcludex B which is giving very promising results in combination with 

tenofovir.178–181  

In parallel, capsid assembly modulators (CAMs) have been identified, showing the 

potential to efficiently eliminate HBV DNA from infected liver cells.182 Two main classes 

of CAMs currently in development are heteroaryldihydropyrimidines183 (HAP) and 

sulfamoyl benzamides184 (SBA). Notably, the former lead to the formation of aberrant 

capsids and the latter to normally shaped but empty capsids.185 In addition to capsid 

assembly modulators and entry inhibitors, new Pol and RNAse H inhibitors, NAPs and 

si/shRNA-based approaches have the potential to achieve a complete inhibition of HBV 

replication.186 

A second approach is to restore the innate  and adaptive immunity of the host with the aim 

of stimulating antiviral immuno-mediated pathways without triggering anti-HBV flare.186 

This can be achieved by inhibition of HBV gene expression at the post-transcriptional level 

and by relieving HBsAg-mediated immunosuppression. Recent clinical studies using RNA 

interference (RNAi) are showing liver-specific knockdown replication and protein 

expression.187–190 Nucleic acid polymers (NAPs) such as REP9-AC inhibits both HBV 

entry and HBsAg release from infected hepatocytes.191–193 Checkpoint molecule inhibitors 

have exhibited a potent immunostimulatory effect by rescuing virus specific cytotoxic T 

cells.194 Specifically, PD-1 inhibitors nivolumab and pembrolizumab are monoclonal 

antibodies currently in phase 1 studies for CHB patients.195–197 Bioengineered HBV-

specific T cells is another promising strategy to build up immunity in CHB patients which 

is currently supported by preclinical data and an initial patient case report. 198–200 Finally, 

therapeutic vaccines201,202 and agonists of toll like receptors (TLRs) are also being actively 

pursued.203–207 

A third approach is to selectively sensitize HBV infected hepatocytes to immune 

elimination. To this end, SMAC mimetic antagonizes cellular inhibitors of apoptosis 

proteins (cIAPs) to promote hepatitis B virus clearance.208 Recently, SMAC mimetic 

birinapant has shown effective control of HBV replication in  preclinical models.208–210 
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Finally, the fourth approach is to directly target cccDNA by preventing its formation, 

destroying existing cccDNA, or silencing cccDNA transcription. The main strategy used in 

this case if by using direct-acting antivirals (DAAs),211,212 host-targeting agents (HTAs), 

202,213,214 and immune-modulatory agents. 

 

In conclusion, the mechanism behind HBV persistence is complex and therefore 

challenging to address. Several strategies are being applied currently underway to reach a 

relevant therapy for CHB patients as soon as possible. With the combined efforts of 

academic and industry-based research, coupled with a robust drug development pipeline, 

the promise of a viable cure arises. Together with mass HBV vaccination and improved 

access to existing DAAs in highly endemic areas, a real hope for the total elimination of 

HBV can exist.  

I.4 MAIN OBJECTIVES  
 

The present thesis work was conceived as part of the VIRO-FLOW project. VIRO-FLOW 

is an innovative training network (ITN) aiming at the fast and efficient identification of 

new curative agents for the Hepatitis B virus (HBV). In particular, novel class of capsid 

assembly modulators (CAMs) would be synthesized, integrating the advantages of 

continuous flow chemistry with in vitro microfluidic bioassay technologies (Figure I.23). 

 

 
Figure I.23. Integrated system for the generation of SAR data envisioned by the VIROFLOW project. 

The synthesis of new compounds in continuous flow is driven by computational studies. The desired 

molecules are analysed and purified online before being supplied to the chip-based bioassay in flow. The IC50 

values can be used to rationalize structure-activity relationship and to inform the design of new more active 

compounds.  
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As part of the VIRO-FLOW project, the overall goal of the present thesis is the 

development of new synthetic and computational methodologies that will effectively hasten 

the discovery of novel HBV inhibitors. As such, this work entails:   

- the development of efficient synthetic methodologies in flow to support the 

generation of a focused library of compounds. 

- the development of computational tools for the rapid identification of novel 

potentially active CAMs. 

 

Following these guidelines, the goals of each chapter are:   

 

▪ Chapter II. The development of three different continuous flow processes that will 

facilitate the synthesis of relevant building blocks for a novel CAM chemotype. 

▪ Chapter III. The study of a focused library of HBV CAMs: understanding of 

structure-activity relationship and evaluation of their mode of action in vitro. 

▪ Chapter IV. The elaboration of a workflow in silico to drive hit-to-lead and lead 

optimization synthetic plans of a CAMs series. 

▪ Chapter V. The investigation of a synthetic process in continuous flow that leads to 

chemically relevant building blocks supported by mechanistic elucidation.  

▪ Chapter VI. The investigation of CAMs mode of action in silico via molecular 

dynamics to propose new potential capsid assembly modulators with the predicted 

phenotype. 
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VII.1 GENERAL CONCLUSIONS AND SUGGESTIONS 
FOR FUTURE WORK 
 

Overall, this PhD thesis encompasses methodologies and tools -whether experimental or 

computational - aiming at supporting the medicinal chemist in finding new drugs 

efficiently, in particular against hepatitis B virus. 

In Chapter II, three flow processes were developed that were effectively used to accelerate 

the generation of relevant building blocks for a focused library of HBV inhibitors. Some of 

the most used reactions in drug discovery were successfully adapted in continuous flow. 

The batch and flow conditions are respectively depicted in Table VII.1, Table VII.2, Table 

VII.3 and Table VII.4, highlighting how flow processing:  

- Allowed selectivity issues to be alleviated compared to batch. 

- Yielded higher compared to batch. 

- Reduced reaction time compared to batch. 

- Simplified the downstream processing.  

- Granted a high reaction diversity.  

Table VII.1. Optimization of CDI-mediated amidation. 

 
 Batch Flow 

Reaction time 16h Residence time = 35 min 

Reaction temperature 50°C 70°C 

 

Table VII.2. Optimization of thermal aminolysis I. 

 
 Batch Flow 

Reaction time 16 h Residence time = 35 min 

Reaction temperature 80°C 100°C 

Selectivity 43% 86% 

Table VII.3. Optimization thermal aminolysis II. 
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 Batch Flow 

Reaction time 16 h Residence time = 35 min 

Reaction temperature 80°C 100-130°C 

Selectivity 43% 83-85% 

 

Table VII.4. Optimization of N-Boc deprotection. 

 
 Batch Flow 

Reaction time 2 h Residence time = 3 min 

Temperature r.t 250 °C 

Reagent TFA No reagent 

Work up Aqueous work up, tedious No work up 

Selectivity 30-70% 98% 

 

In this specific project, the next step was necessarily to combine such process into an 

automatized platform to accomodate several transformations in a fully continuous manner 

(Scheme VII.1). A prototype for such system was imagined to be focused on diversification 

of the indole and the terminal amine moiety. The complete system must be monitored by a 

computer interface and coding will also intervene in such development. It is a large-scale 

endeavour that encompasses several disciplines e.g. continuous flow, robotics, 

automatization, online analysis, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme VII.1. Concept of automated platform for the fast production of oxalamides analogues. 
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Yet, those processes already have undeniable advantages as single operations. Practically, 

even when setting up the system can take several hours, the gain in time remained 

significant. With an average productivity of 7 g per day using a lab scale system, all these 

processes can be easily reused in a fully reproducible way at later stages of drug 

development to synthesize gram to kilogram scale of one or several lead to supply 

preclinical or clinical studies. This application confirms flow chemistry a versatile tool that 

supports synthesis at several steps of the drug development process. 

 

In Chapter III, batch and flow processes were combined judiciously combined to foster 

chemical diversity and efficiently lead to a library of oxalyl-amide scaffolds. A total of five 

synthetic routes were optimized and adapted to tolerate a variety of substitutions in a smart 

and convenient manner. Analysis of structure activity-relationship supported the 

rationalization of activity trends. The potency of the initial hit 1 (EC50 = 2.0 µM) was 

improved by 40-fold thanks to an acute understanding of SAR, leading to 18j with an EC50 

of 0.046 µM (Scheme VII.2). Finally, confirmation of the mode of action in vitro of few 

analogues series was informed, placing the series in the class of SBA-type CAMs (CAM 

class I) with their associated properties in vitro. 

 

 

Scheme VII.2. New hit 18j identified from starting from hit 1. SAR mapping. 
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From there, next step has been to take advantage of this newly acquired knowledge to feed 

the development of an in silico approach that would allow to further optimize this 

compound series. This work was conducted in the following chapter. 

 

Chapter IV reports the validation of docking methods and the development of new in silico 

tools to drive lead optimization synthetic plans. The crystal structure obtained for one 

potent oxalamides analogues (Figure VII.1) continued the rationalization of the observed 

SAR described in Chapter III. The crystallized model could also be used as a starting point 

for docking studies and structure-based pharmacophore modelling. 

  

 

Figure VII.1. Binding pocket at the interface of two HBV Cp149 protein chain (chain E in yellow and chain 

B in green). The hydrogen bonds are shown as orange dashed lines.  

 

A pharmacophore-based workflow was developed and validated to use as a yes/no 

assessment tool for new virtually designed oxalamides compounds. The study focused on 

two points of diversity. A virtual library of 1037 molecules were virtually synthesized 

according to existing synthetic pathways and tested against the validated pharmacophore 

model. The development of these tools supported the progress of the hit-to-lead efforts and 

rewarded very promising results (Figure VII.2). Notably, compound IV4a was found to be 

4-fold more potent than the initial lead (18j) (Figure VII.2).  
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Figure VII.2. Overall results from HVLS workflow.  

 

While a number of molecules are still pending evaluation in cellular assay, the best hits 

were taken to the first stage of pre-clinical studies: solubility, hERG toxicity and 

microsomal stability are assessed. From this point onward, QSAR modelling could be used 

to predict various ADMET properties and inform further lead optimization. 

In total, above 150 new compounds from this chemotype were synthesized with competing 

bioactivity. While competing series (Figure VII.3, GLPs) also display excellent bioactivity 

values, they may differ in preclinical stages. Initial results in microsomal stability assay 

and solubility assay for our compound series were already very promising. 

  

 

Figure VII.3. Glyoxamides (GLPs) from competitors. 
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In Chapter V, a continuous flow process was applied for the validation of a novel synthetic 

methodology of a hardly accessible heterobicycle in batch (Table VII.5). Investigations in 

both batch and flow also lead to the elucidation of a complex reactional mechanism via 

DFT calculations.  

 

Table VII.5. Optimization of synthesis of 2-(ethoxycarbonyl)-[1,2,4]triazolo[1,5-a]pyridine 3-oxide . 

 

 Batch Flow 

Reaction time 4 h 
Residence time = 5-20 

min 

Temperature -20°C 25°C 

Yield 25-31% 48-53% 

 

The reaction rate was mildly increased in continuous flow (ca. 25-31% in batch vs 48-53% 

in flow) and reaction time (Table VII.5). The use of continuous flow proved very valuable 

in handling unstable intermediates such as nitrile oxide. Once set up, the flow system 

provided an uncomparable ease of handling as well as highly reproducible conditions.  

More than fifty reactions in total were conducted in flow during this study, with a rate of 

up to 12 “reaction-sampling-analysis” cycle per day. In this regard, the integration of an 

online process analytical tool (PAT) could have been even beneficial to reproducibility. 

The results obtained from the computational investigation revealed the occurrence of 

kinetically highly competitive intermediates that explained the selectivity issues that were 

faced and hardly overcame. To go further, a thorough kinetic study would allow to 

quantitatively assess the reaction rate constant and reaction orders relative to the desired 

product and the side products formation. In this area, flow chemistry can again reveal to be 

extremely useful with numerous reports praising the use of continuous-flow reactors for 

the rapid evolution and validation of kinetic motifs.  

Obtaining these additional reaction parameters can set the basis of an accurate 

computational modelization of the reaction system with opportunities of putative 

optimization to guide additional experimentation. An exciting opportunity would be to 

tackle this challenge from a pure process chemistry point of view and elaborate a custom 
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design reactor that could give the desired product in sufficient amount. Transcending the 

limits of competitive kinetics thanks to reactor design has been done successfully before 

thanks to the collaborative efforts of chemists, process chemists, flow modelling experts 

and 3D printing capacity.  

 

Finally, the structure-based approach developed in chapter VI focuses on the identification 

of new CAMs chemotypes belonging specifically to class II, i.e new molecules possessing 

a HAP-type MOA.  

The choice to use two structurally dissimilar representative molecules that can trigger a 

class II MOA offers to cover a larger conformational space and promises to increase the 

diversity of novel chemotypes that could be retrieved. Ideally, to obtain new potentially 

active compound that could combine the most relevant pharmacophore features of both 

reference molecules (Scheme VII.5). 

 

Scheme VII.5. Reference molecules used for the development of the MD-driven study. Both compounds 

belonged to class II CAMs. 

 

A molecular dynamics approach was particularly interesting to use in that case for two main 

reasons: 

 1) it is known that crystallized protein-ligand complex (Cp149_Y132A 

crystallization system) represents only a subset of WT dimer formation; 

2) independent report highlights that the dynamics of Cp early assembly 

intermediates (dimers, tetramers or hexamers) are a key factor in the subsequent capsid 

assembly process.  

Fifty nanoseconds molecular dynamics simulation were conducted on ligand-bound Cp 

tetramers providing multiple snapshots of the protein-ligand state at different point in time, 

thus rendering the dynamic of the Cp tetramer upon binding of either HAP-34a or KR-

26556. 
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The MD snapshots were clustered thanks to CHA filtering tools to identify representative 

pharmacophore models i.e pharmacophore models with common binding interactions and 

protein-ligand conformations.  

A set of MD pharmacophores from HAP-34a and KR-26556 were selected to run a 65 

million molecules virtual screening that retrieved a total of 115 molecules. The docking 

study that followed helped assessing the quality of the hits and the plausibility of interacting 

with the binding pocket. A final evaluation of druglikeness by calculating relevant physico-

chemical properties helped finalize a selection of 30 molecules (Figure VII.4).  

 

 

Figure VII.4. Structure-based workflow for discovering potent inhibitors of HBV Cp. 

 

Unequivocally, the limitation of this work is the lack of experimental validation. Yet, the 

final hit list potentially contains active compounds with a likelihood to belong to class II 

CAMs. The selected molecules were also assessed by their druglikeness or leadlikeness 

making them appropriate for further optimization. As such, it can be used for researchers 

willing to develop novel HBV CAMs. 

 

This thesis work raises an argument in favor of the use of flow chemistry in drug discovery: 

- In medicinal chemistry programs as an enabling synthetic methodology for fast 

generation of relevant building blocks in a focused library.  

- In fundamental research as an investigative tool for understudied chemical 

reactions.   
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- In methodology development for the synthesis of species difficult to access. 

 

In addition, this thesis work aims to demonstrate the potential of pharmacophore modelling 

in in silico predictions: 

-  As a pre-docking filter to mitigate virtual libraries of new potentially active 

compounds in lead optimization. 

- As an analysis tool to characterize protein-ligand dynamics. 

- As a precise screening procedure to identify new potential molecules of interest 

driven by molecular dynamics. 

VII.2 DRAWING A BIGGER PICTURE 
 

Intensifying drug discovery is a continuous challenge that will require the cooperation of 

numerous institutions, academic, industrial and governmental. Moreover, scientists must 

be willing to shift their perspective and be open to novel technologies and to give on their 

old ways. In other words, it also requires a consensual commitment of individual scientists 

to stay in touch with increasing challenges. Especially, in the era of the 21st century that 

has seen the emergence of numerous hurdles on societal and environmental level.  

Growing awareness of the imminence of an ecological threat is also a part if these 

challenges and is essential to stimulate the shift toward a more circular economy. Flow 

chemistry is just one of a wide variety of novel technology that contributes to a collective 

effort towards sustainability. Computational modelling rationalises drug discovery and 

prioritizes the synthetic efforts, thus limiting the waste of resources.  

 

As such, the VIRO-FLOW project follows in line by promoting the use of innovative 

technologies and tools – whether experimental or computational – to bring solution to the 

R&D productivity gap. The present PhD dissertation that resulted from this programme 

intends to be an evidence-based testimonial of the advantages of continuous flow for lab 

bench medicinal chemists, especially as it goes further into demonstrating real-life 

applications of drug development in the case of HBV.  

 

In parallel, this PhD thesis is also the result of a program that required to cross the frontiers 

of scientific disciplines, countries, type of institutions. Indeed, European Industrial 

Doctorates as part of Marie Skłodowska-Curie Innovative Training Networks effectively 
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blends international collaboration, sustainability, and new technologies in an applied 

environment. Thus, this framework encompasses principles that are at the core of the quest 

towards a sustainable drug development model. This type of initiative must keep being 

supported and encouraged.  

UNIVERSITAT ROVIRA I VIRGILI 
APPLICATIONS OF FLOW CHEMISTRY METHODS AND COMPUTER-AIDED APPROACHES TO EXPEDITE THE DEVELOPMENT 
OF HBV INHIBITORS 
Justine Raymond



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
APPLICATIONS OF FLOW CHEMISTRY METHODS AND COMPUTER-AIDED APPROACHES TO EXPEDITE THE DEVELOPMENT 
OF HBV INHIBITORS 
Justine Raymond




