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Summary 

 

 

 

Towards sustainability forces process industries to change their traditional patterns. Therefore, 
efficient retrofitting has been a significant challenge and raised several issues, motivating the 
process system engineering (PSE) to develop models. These models mainly aim to optimize 
profitability, cost reduction, energy consumption, demand satisfaction, the environmental impact 
associated with the production process, and social acceptance. Nevertheless, such optimization 
is significantly complicated if considering the presence of uncertainty and seeking compromised 
outcomes.  
This thesis aims to extend a general model to facilitate retrofitting in industrial processes and 
expedite optimization of the issues. Such a contribution based on developing efficient 
mathematical models allows coordinating many decision variables synchronizing the production 
and distribution tasks in terms of economic and environmental criteria. 
This thesis presents an overview of the retrofitting requirement towards sustainable 
material/energy networks, describing and analyzing the current methods, tools, and models used 
and identifying the most relevant open issues.  
The second part focused on developing current models stressing energy integration in the 
processing system. This part first explores how the economic performance of the network can be 
enhanced and environmental impacts improved simultaneously by integrating an energy 
generation unit into the production system. Furthermore, the network sustainability performance 
was explored under demand uncertainties. Additional risk indicators (including financial and 
environmental risk metrics) have been included to add risk management capability to the model. 
This part also explores the strategies that efficiently select the number of scenarios. 
Consequently, a novel generalized mathematical formulation that integrates equations regarding 
energy generation and material production decision variables is efficiently solved. The effect of 
uncertainty on the economic and environmental performance is analyzed by using risk analysis. 
Finally, the model was extended to solve multi-renewable energy generation integrated into the 
multi-product production process under demand uncertainty. The importance and effect of the 
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energy/material integration over the network configuration are analyzed through sensitivity 
analysis. 
 The third part of this thesis provides the conclusions and further work to be developed.       
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Resumen  

 

 

 
El camino hacia la sostenibilidad obliga a las industrias de procesos a cambiar los patrones  de 
trabajo tradicionales. La modernización eficiente es un importante desafío que plantea múltiples 
problemas, lo que ha llevado a la ingeniería de sistemas de procesos (PSE) a desarrollar modelos 
que intentan no solo optimizar la rentabilidad, reducir de costes o satisfacer demanda de 
productos y servicios, sino también afrontar el impacto ambiental asociado al proceso productivo 
y la aceptación social de dicho proceso, en entornos volátiles, en los que la consideración de la 
incertidumbre asociada al escenario de trabajo es esencial.  
Esta tesis tiene como objetivo ampliar y flexibilizar los modelos de gestión de cadena de 
suministro existentes para facilitar la retroadaptación de los procesos industriales y agilizar la 
optimización de los problemas de toma de decisiones en este entorno. Tal aporte está basado en 
el desarrollo de modelos matemáticos eficientes que permite coordinar diferentes variables de 
decisión, sincronizando las tareas de producción y distribución en términos de criterios 
económicos y ambientales.  
Para ello, en primer lugar se presenta una visión general del requisito de adaptación hacia redes 
de materiales / energía sostenibles, describiendo y analizando los métodos, herramientas y 
modelos actuales utilizados e identificando los problemas abiertos más relevantes. 
La segunda parte de esta Tesis se centra en el desarrollo de modelos que enfatizan la integración 
energética en el sistema de proceso. Esta parte explora primero cómo se pueden mejorar 
simultáneamente el desempeño económico de la red y los impactos ambientales mediante la 
integración de unidades de generación de energía en el sistema de producción. Además, se ha 
explorado el rendimiento de la sostenibilidad de la red bajo incertidumbre en la demanda. Se han 
incluido indicadores de riesgo adicionales (incluidas métricas de riesgo financiero y ambiental) 
para incorporar en el modelo la capacidad de gestión de riesgos. Esta parte también explora las 
estrategias que seleccionan de manera eficiente el número de escenarios a considerar. 
En consecuencia, se resuelve de forma eficiente una formulación matemática novedosa que 
generaliza e integra ecuaciones relativas a decisiones de producción energética y de materiales. 
El efecto de la incertidumbre sobre el desempeño económico y ambiental se analiza mediante 
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análisis de riesgo. Finalmente, el modelo se amplía para abordar la utilización coordinada de 
diferentes formas de energía renovable, y su integración en el proceso de producción multi-
producto bajo incertidumbre en la demanda. La importancia y el efecto de la integración  de la 
toma de decisiones sobre la configuración de la red se discuten a través de diferentes análisis de 
sensibilidad. 
La tercera parte de esta tesis resume las conclusiones de todos estos trabajos y plantea 
ampliaciones y nuevas líneas de mejora que surgen a partir de los modelos y procedimientos 
desarrollados en esta tesis. 
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Chapter 1

MOTIVATIONS, OBJECTIVES & INTRODUCTION 

 

This chapter presents an overview of challenges in process industries. Generally, the challenges 
are listed as increasing economic performance, reducing resource consumption, and minimizing 
environmental impact issues. These challenges have been arising since the industries were forced 
to keep their pace with sustainable development. This chapter has focused on the challenges 
associated with sustainability in energy/material supply chains. Furthermore, this chapter 
proposes the research scope and objectives of this thesis. Generally, these objectives focus on 
improving the sustainability of process industries, specifically energy management and 
renewable resources exploitation. 

1.1. Introductory perspective and global issues 
Attention regarding the energy consumptions of existing process industries and environmental 
concerns such as more restrictive regulations on greenhouse gases (GHG) emissions has been 
growing for recent decades. This attention has made industrial sectors modify their energy and 
environmental performance using innovative retrofitting strategies, particularly integrating 
renewable energy sources (RES) in the production process. Hence efficient management of 
integrated systems is one of the most significant challenges of our time. 
To that end, the design optimization based on new resources and technologies, alternative 
materials, and equipment seems to be essential. Also, environmental and economic assessments 
are crucial in the retrofitted production process since many policies are pursuing to reduce 
climate change risks by developing strategies and technologies to reduce emissions. 
In this line, significant efforts have been made to improve the energy efficiency in the industrial 
sector, mainly focused on various energy savings strategies such as management, technologies, 
and policies during the last years (Abdelaziz, Saidur, & Mekhilef, 2011). However, it is still 
required innovative and efficient strategies such as integrated solutions combining different 
technologies and approaches are still required. Besides, despite the efforts to change the current 
trend, the International Energy Agency (Koirala, 2017) reports that industries are half as energy-
efficient as they could be according to the thermodynamic laws. So, the opportunities to enhance 
the performance and reduce the environmental impacts are still very high. Consequently, 
intensive work in strategies is needed for worldwide enterprises to recover/maintain market 
leadership, disregarding the chaotic and competitive environment. For this purpose, studying the 
following issues have to be simultaneously addressed:
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 An efficient model for highly complex networks through a well-balanced policy for 
material, energy, costs, and environmental concerns  

 Efficient resource occupation (optimal process management) 
 Intensive collaboration in integrative areas, promoting the development of integrated 

frameworks 
 Reducing and preventing unfavorable environmental and improving costs (e.g., “Green 

engineering”).  
Hence, Process System Engineering (PSE) is an adequate response to the above needs linking the 
concepts of modeling, simulation, optimization, and process control for the analysis, evaluation, 
and optimization for the design and operation of process systems. However, the significant 
advancement in approaches, methodologies, and computational procedures, has been done to 
address the above issues, the following particular challenges remain as open issues for PSE 
researchers regarding recent studies (Filho, Angeli, & Fraga, 2018; Grossmann, 2017): 

 To develop integrated frameworks for the management of complex process systems. 
 To improve the use and quality of the environmental indicators for the design of eco-

friendly processes. 
 To facilitate the procedure of design under uncertainty for process scale-up. 
 To represent the treatment of uncertainty in process design and optimization through the 

development of novel modeling frameworks. 
 Developing hybrid approaches (dynamic and discrete strategies integration). 
 Multi-scale dynamic modeling. 

The majority of mentioned issues have their limitations and specific application requirements to 
process problems; since the design and management of complex sustainable processes under 
uncertainty are a particular interest, it has to be applied for all the industrial activities worldwide. 
Thus, this thesis focuses on developing an integrated framework to facilitate the management of 
large-scale and complex process industries and represents treatment for issues associated with 
sustainability problems under uncertainty. 
Moving toward sustainability and mainly being aware of the scarcity of resources, climate 
change, and environmental pollution requires revising current production and consumption 
patterns while enhancing the robustness of process industries. Currently, researchers are making 
an effort to develop approaches that promote sustainable solutions. Their solutions aim to a) 
facilitate the efficient management of natural resources (i.e., water, biomass, and fossil fuels) 
(Bernardi, Giarola, & Bezzo, 2012), b) reduce emissions, and c) develop alternative energy 
generation processes (i.e., reduce fossil-fuel dependency)(Martín & Grossmann, 2017). 
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In particular, these approaches assist in evaluating, identifying, and reducing the most damaging 
industrial activities; however, they have limitations and can apply to specific industries. Thus, 
the proposed models have not been general enough, including various technologies and 
resources. 

1.2. The Industrial energy demand situation  

Global energy consumption is steadily increasing with economic growth as well as the population 
explosion. Due to International Energy Agency IEA reports conducted in 2019, worldwide 
consumption in 2018 has increased at nearly twice the average growth rate since 2010. The 
significant sources of energy are fossil-derived fuels, including petroleum, coal, and natural 
gases. Table. 1.1 displays the demand for all fuels has been increased.  

Table. 1. 1. Global energy demand (Global Energy & CO2 Status Report 2019 – Analysis - IEA). 

Regarding the BP Statistical Review of World Energy conducted in 2019 (BP, 2019), crude oil and 
natural gas, the primary energy resources, maybe run out respectively in another 45 and 60 years, 
with the current global energy consumption rate. 

Fig. 1. 1. The energy consumption trend through three different lenses: sectors, regions and, fuels (BP p.l.c., 2019). 
 

  Energy Demand (Mtoe) Growth rate (%) Shares (%) 
  2018 2017-2018 2000 2018 

Total Primary Energy 
Demand 

14 301 2.3% 100% 100% 

Coal 3 778 0.7% 23% 26% 
Oil 4 488 1.2% 37% 31% 
Gas 3 253 4.6% 21% 23% 
Nuclear 710 3.3% 7% 5% 
Hydro 364 3.1% 2% 3% 
Biomass and waste 1 418 2.5% 10% 10% 
Other renewables 289 14.0% 1% 2% 
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The energy transition from three different perspectives is illustrated in Fig 1.1, that each of these 
graphs illuminates different aspects of the transition: the sectors, the regions, and the 
consumption and production of different fuels. The industrial sector is the largest major energy 
consumer globally, representing more than 33% of total consumption. Total world energy utilized 
in the industrial sector reached 5 Billion tons of oil equivalent in 2010, and it forecasts that amount 
can be reached 7 Billion tons of oil equivalent in 2040. 
All of the growth in energy demand centralizes fast-growing developing economies, led by India 
and China. In 1990, the Organization for Economic Co-operation and Development (OECD) 
accounted for almost two-thirds of energy demand, with the developing world just one-third. In 
the energy transition (ET) scenario, that position is almost exactly reversed by 2040, with the non-
OECD accounting for over two-thirds of demand. China remains the most prominent energy 
market: in 2040, roughly twice the size of India. Energy consumption in Africa keeps small 
relative to its size: in 2040, Africa accounts for almost a quarter of the world’s population but only 
6% of energy demand. 
Renewables and natural gas account for 85% of energy growth. The substitution of a lower-carbon 
energy system with renewable energy and natural gas is gaining importance relative to oil and 
coal. The fastest-growing energy source belongs to renewable energy (7.1% p.a.), contributing 
half of the growth in global energy, with its share in primary energy increasing from 4% today to 
around 15% by 2040. 
Besides, the continued use of fossil-based fuels is not sustainable due to its limited availability 
and greenhouse gases emission and other air contaminants, including carbon dioxide (ܱܥଶ), 
carbon monoxide (ܱܥ), sulfur dioxide (ܱܵଶ), nitrogen oxides (ܰ ௫ܱ), in addition to particulate 
matter and volatile organic compounds, upon combustion (Patade, Meher, Grover, Gupta, & 
Nasim, 2018). 

 
Fig. 1. 2. ܱܥଶ Emission by sector (BP p.l.c., 2019)
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As Fig. 1.1 illustrates, the rapid growth in energy demand in the power and industry sectors 
means that they are the largest source of the increase in 2ܱܥ emissions over the same period (see 
Fig 1.2), with their share in the global energy system increasing to around 40% and 25% 
respectively by 2040. These are far higher than the transport sector, which accounts for around 
10% of 2ܱܥ of energy use. Most importantly, carbon prices will increase to $200 per tonne of 2ܱܥ 
in the OECD and $100 in the non-OECD by 2040 (reported by BP p.l.c., 2019).  
Therefore, the global energy system, particularly industrial sectors, faces a dual challenge: the 
need for ‘more energy and less carbon. Hence, for environmental and economic sustainability, 
renewable and carbon-neutral efficient biofuels are needed to displace or supplement the long 
run and complement the fossil-derived fuels soon. 
Focusing on renewables studies reveals a global acceptance of the renewable resources to 
penetrate the global energy system more quickly than other alternatives (Fig. 1.3). 

Fig. 1. 3. Speed of penetration of new fuels in the global energy system (BP p.l.c., 2019). 

In short, renewable exploitation strategies have been implemented in the industrial context to 
optimize the design of energy networks (Martín & Grossmann, 2018). Nevertheless, the 
application of the exploitation of renewables strategies in industries is sometimes confined to 
address problems with the following assumptions: 

 The regionalized problems in which the variability of renewable resource availability in 
medium/large scale problems, 

 Multi-product problems. 
Hence, the use of Supply Chain Management (SCM) concepts represents a powerful tool to 
manage the material/energy flows. 
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1.3.  Supply chain management concepts 
A Supply Chain (SC), as displayed in Fig. 1.4, is generally defined as an integrated process 
involving organizations to transform raw materials into final products and deliver them to the 
end-user. A Supply Chain typically consists of four echelons: supply (providing raw materials), 
production (converting these raw materials into final products), storage/distribution (storing and 
delivering demanded final products to retailers) and, market (selling these to end-users) (Lainez, 
Kopanos, Espuña, & Puigjaner, 2009). 

Fig. 1. 4. Generic multi-echelon Supply Chain Network.

The concept of Supply Chain Management (SCM) defines the governance of the exchangeable 
resources (i.e., material, information, and financial) flows within a conventional supply chain 
explained above. Supply Chain Management mainly aims to achieve an end-users satisfactory 
level and optimize economic performance by coordinating the SC activities. 

1.3.1.  Sustainable supply chain management 
Accelerated globalization and increased demands on being responsible for the environmental 

and social performance force organizations to evolve, and the concept of industrial symbiosis and 
circular economy plays an essential role in managing this evolution (Y. Zhang, Zheng, Chen, Su, 
& Liu, 2014).  
Due to circular economy, Sustainable supply chain management involves integrating and 
financially viable practices into an overall supply chain lifecycle, from product design and 
development to material selection, including raw material extraction or agricultural, fabrication, 
packaging and transportation, storing, distribution and consumption, return to disposal. 
Environmentally conscious supply chain management and practices can assist organizations in 
reducing their total carbon footprint and optimize their end-to-end operations to achieve more 
efficiency. Sustainable aspects can apply to all supply chains that can be optimized. Sustainability 
in the SC encapsulates several different priorities: 

  Environmental management 
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  Conservation of resources 
  Reduction of carbon footprint 
  Financial savings and viability 
  Social responsibility. 

In short, supply chain sustainability practices, to succeed, must deliver improved environmental 
performance within a financially viable operating construct. 

 
Fig. 1. 5. A Framework of Sustainable Supply Chain Management. 

Fig. 1.5 illustrates the three activities and the intersection between them that form sustainability. 
In the literature, most studies tackled the social and environmental dimensions of Sustainable 
Supply Chain Management (SSCM) towards the economic goal achievements of the firm and its 
supply chain (K. Xu & Cong, 2011). 

1.3.2. Supply Chain Mathematical Modeling 
Mathematical modeling, generally, intends to define a quantitative system as close to reality as 
possible through a set of equations. Supply chain modeling is mainly applied for control, 
coordination, identifying potential bottlenecks, and optimizing supply chain management. The 
SSCM contains a four-dimension structure consists of SCM, sustainability, modeling, and 
research directions. Hence, these four compromised dimensions define the modeling approaches. 
The model type keywords are pretty extensive and linked to many tools and techniques, and the 
employed solution approaches that Fig. 1.6 maps them. 
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Fig. 1. 6. Analytic categories of the structural dimension “Modeling” (Brandenburg, et al., 2014). 

Furthermore, as supply chains consist of sets of different task-oriented entities depending on the 
particular arrangement of the set’s elements, different organizational problems come up so that 
there are different decision-making policies to cope with them. Historically, two approaches have 
been proposed based on the decision-making domain: Centralized and Decentralized approaches 
(Saharidis, 2011). 
The centralized approach considers a single entity that authorizes to take all the SC decisions. It 
significantly eases network coordination, although its application is inefficient and often leads to 
decisions that all the process members hardly accept. 
Despite the centralized one, the Decentralized approach considers an active attitude of the entire 
supply chain members. Decision-makers take their own decisions as a function of their 
performances. This approach leads to a well-balanced solution-seeking of the highest benefit for 
all the entities. Nevertheless, the decisions of a supply chain member affect the overall system 
performance and other member’s decisions. Also, a lack of information between supply chain 
members’ performances, preferences, and behaviors influences the robustness/confidence of the 
final decisions. 
Note that the Decision-making process runs while many alternative material suppliers and 
potential customers increase complexity and decrease efficient coordination. Thus, a classification 
based on the planning horizon can assist in easing the solution of SCM problems. It is explained 
this classification as below: 
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  Long-term planning (Strategic level): in this level, the planning horizon is yearly-based and 
in which the decisions include the number of facility locations and facilities capacities and 
the decisions that imply economic impacts.  

  Medium-term planning (Tactical level): typically, in this level, it is assumed a monthly-
based time horizon in which the optimization of production operations happens to satisfy 
the demand at a satisfactory level. Tactical decisions include the amounts of exchangeable 
resources (i.e., acquisition and distribution), optimal production targets, and inventory 
levels across time.  

   Short-term planning (Operational planning): daily planning is usually, considered and 
decisions in this level are associated with the complex equipment operations (startup and 
shut down), the production quantities, and task sequencing to specific equipment. 

1.4.  Research Scope and Objectives  
There has not yet been any quantitative methodology to retrofit large-scale integrated 
energy/material supply chains for process industries by reviewing the literature. Accordingly, 
developing an effective general model is necessary, specifically in highly competitive and 
uncertain situations. Hence this thesis aims to develop a model able to, generally, optimize the 
tactical/strategic decisions of large-scale process industries focusing on material/energy 
integrated supply chains. Regarding the overall goal, the following objectives are supposed to 
accomplish: 

  Propose a mathematical model that represents integrated energy/material supply chains 
of process industries. 
 Develop a multi-objective model considering at least economic, environmental 

aspects. 
 Evaluate the effect of uncertainties over a centralized scheme. 

  Develop and generalize tactical/strategic models for retrofitting multi-product multi-
energy resource systems. 

  Integrate renewables resources in process industries to offer the most effective method 
for reducing fossil energy consumption and greenhouse gas emissions. 

  Address risk management in sustainability problems under uncertainty by extending the 
current multi-objective models. 

 Analyze and compare integrated systems in comparison with current standalone models. 
The capability of the proposed model must be well assessed under a holistic multi-objective 
approach (i.e., energy, environmental impact, and cost-effectiveness) to obtain conclusive results. 
Hence, the thesis applies the model to a case study, and its viability is analyzed. As concluded by 
the results, retrofitting energy/material systems with integrated renewable resources are most 
suitable for countries with a high share of carbon-rich sources.  
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Besides, the proposed model is general enough and applicable for different industries scales, 
including uncertainty of demand for products of process industries.  

1.5.  Thesis outline 
The thesis structure devises to address the previously discussed sustainable supply chain 
management issues; multi-objective optimization and uncertainty approaches are the two critical 
elements across the different parts of the thesis. 
In addition to the overview of the current sustainability problems, especially in supply chain 
management (Chapter 1), part I of this thesis consists of a detailed state of the art for Sustainable 
Supply Chain Management (SSCM), motivations, and general objectives of this thesis. The rest of 
part I consists of: 
 a detailed state of the art for the Sustainable Supply Chain Management (SSCM), 

uncertainty, and mathematical programming applications (Chapter 2). 
 The description of methodologies and tools and the advantages and disadvantages of the 

methods used to address sustainable SCM developed until now (Chapter 3). 
Note that at the end of part I, significant challenges are identified. Basically, in this part, the 
different optimization techniques used throughout this thesis have been outlined. The main 
concepts briefly are explained to provide the reader with a general knowledge of the theories 
behind the solution techniques. Notably, it emphasizes techniques and algorithms for Multi-
objective optimization and stochastic programming since their application to sustainability 
problems requires a solid knowledge of their principles (see Fig. 1.6). 
Part II evaluates supply chain retrofitting for energy integration in the process industries to 
identify the overall better solution using multi-objective optimization. In particular, Chapter 4 
explores the sustainability benefits of single renewable energy resource integration in material 
supply chains. The results are compared to non-integrated ones to observe the capability of the 
novel model through environmental impacts, and economic objectives improve simultaneously. 
In Chapter 5, the main challenge is uncertainty and its effect within a sustainable energy SC. In 
the same way, Chapter 6 proposes a design and planning optimization model of multi-renewable 
energy resources (as an internal energy supplier) integrating into process industries.  
Finally, Part III summarizes the main contribution of this thesis and draws up concluding 
remarks for future work. 
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Fig. 1.7. Thesis outline.
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 Chapter 2

 

 

THE STATE OF THE ART 

 

This chapter summarizes the main contributions to the optimization of Sustainable Supply Chain 
Management. Besides, it reviews studies addressing the challenges related to uncertainty 
management. Finally, this chapter identifies the most relevant open issues addressed in this 
thesis. 

2.1. Sustainable Supply Chain Management 
Recently, the application of Industrial Ecology (IE) and Industrial Symbiosis (IS) concepts in 
supply chain management creates a challenging area named sustainable supply chain 
management (Leigh & Li, 2015). Hence, several researchers provided frameworks for a common 
understanding of SSCM among supply chain managers to adopt it in practice and accept them 
during the last decades. In this line, (Carter & Rogers, 2008) performed a large-scale literature 
review and presented the rational relation between environmental, social, and economic 
performance within a supply chain management context by using conceptual theories. Later, the 
researchers conducted studies to modify, develop, and optimize conventional supply chains 
regarding sustainability. For instance, (Kleindorfer, Singhal, & Wassenhove, 2005) introduced a 
new pattern for extended supply chains and sustainable operation management. (K. Xu & Cong, 
2011; Yen & Yen, 2012) proposed a framework to modify environmental logistics; these studies 
attempted to propose a sustainable modification at the managerial level. In this regard, the 
literature review classifies into 1) sustainable Material SCs, 2) Biomass SCs, and 3) Renewable 
resource SCs described the following. 

2.1.1.  Sustainable Material Supply Chain Management 
Several researchers have conducted studies to develop material supply chains at the operation 
and design level to be sustainably conscious. Recently, (A, Pati, & Padhi, 2019) have done a 
holistic literature review on Sustainable supply chain management in the chemical industry. 
Commonly, the primary approach towards sustainability in an SSC is carbon emission reduction, 
but some studies considered the other environmental metrics like (Mele, Guillen-Gosalbez, & 
Jimenez, 2009) that tried to optimized the biochemical oxygen demand. 
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One of the definitive studies in this field is the work proposed by (Guillen-Gosalbez & 
Grossmann, 2009); they developed a chemical supply chain to be more sustainable by controlling 
life cycle inventory associated with network operation. Later on, they developed the precedent 
work by using the damage assessment model. (Mele, Kostin, Guillén-Gosálbez, & Jiménez, 2011) 
applied their model to a fuel supply chain extended it by using GWP100 in addition to Eco-
indicator 99 and optimized the SC in the presence of these two environmental indicators. Besides, 
(Azadeh, Shafiee, Yazdanparast, Heydari, & Fathabad, 2017) presented a bi-objective 
optimization model of crude oil supply chains minimizing environmental impacts damage 
assessment model while maximizing economic criteria simultaneously. 
Generally, sustainable supply chains are modeled as multi-objective optimization problems to 
obtain trade-offs amongst economic, environmental, and social criteria. Nevertheless, most 
studies consider only the environmental and economic objective functions, neglecting the social 
criterion, and commonly are case-specific. The lack of a general SSC model has been a notable 
motivation for this thesis. Relatively, (Tautenhain, Barbosa-Povoa, & Nascimento, 2019) 
described a generic multi-objective formulation that includes the three pillars of sustainability 
and proposed a metaheuristic to obtain approximations of the Pareto frontier within a reasonable 
time. 

2.1.2.  Biomass Supply Chain Management 
From the other perspective, the substitution of biofuels with fossil-based fuels is one way to move 
towards sustainable development. Biomass supply chains and biofuels/bioenergy production 
present paradigmatic case studies regarding the consideration of sustainability issues and the 
exploitation of industrial symbiosis (IS), industrial ecology (IE), circular economy (CE) 
opportunities in the process industries. Several studies have illustrated the advantages of these 
approaches as classified in the followings: 

a) Biomass to bioenergy 
 Cost-effectiveness approach of SC design and scheduling optimization (A. Dunnett, 

Adjiman, & Shah, 2007); 
 Cost optimization of logistics (Y. Yu, Bartle, Li, & Wu, 2009); 
 Costs optimization of logistics and network design (Parker, Fan, & Ogden, 2010); 
 Multi-objective design optimization of SC (Pérez-Fortes, Laínez-Aguirre, Arranz-Piera, 

Velo, & Puigjaner, 2012); 
 Cost and ܱܥଶ emission optimization of logistics (Kanzian, Kühmaier, Zazgornik, & 

Stampfer, 2013); 
 Multi-objective design and planning optimization (Perez-Fortes, Laainez-Aguirre, 

Bojarski, & Puigjaner, 2014); 
 Multi-objective design and planning optimization (Cambero, Sowlati, & Pavel, 2016); 
 Multi-objective optimal planning (She, Chung, & Han, 2019); 
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 Cost evaluation of SC design (Ling et al., 2019); 
 Multi-objective optimization of logistics network (C. Chen, Gan, Zhang, & Qiu, 2020); 

 
b) Biomass to biofuel  

 Production and logistics cost optimization (A. J. Dunnett, Adjiman, & Shah, 2008); 
 Cost optimization of logistics (Zamboni, Shah, Bezzo, & others, 2009); 
 Well-To-Tank (WTT) approach and multi-objective optimization (Zamboni, Shah, & 

Bezzo, 2009); 
 Biorefinery logistics and design optimization (S. D. Ekşioǧlu, Acharya, Leightley, & Arora, 

2009); 
 Cost optimization of design and logistic of SC (Ekşioǧlu, Li, Zhang, Sokhansanj, & 

Petrolia, 2010); 
 Cost optimization of SC design (Akgul, Zamboni, Bezzo, Shah, & Papageorgiou, 2010); 
 Cost optimization of SC strategic planning (Huang, Chen, & Fan, 2010); 
 Multi-objective design and planning optimization (You & Wang, 2011); 
 Multi-objective planning optimization (Santibanez-Aguilar, Gonzalez-Campos, Ponce-

Ortega, Serna-Gonzalez, & El-Halwagi, 2011); 
 Optimal cost of SC design (Corsano, Vecchietti, & Montagna, 2011); 
 Optimal cost of SC design (Kim, Realff, Lee, Whittaker, & Furtner, 2011); 
 Multi-objective design and planning optimization (Giarola, Zamboni, & Bezzo, 2011); 
 Optimal Multi-objective design (You, Graziano, & Snyder, 2012); 
 Optimal cost of planning and feedstock resource allocation (C. W. Chen & Fan, 2012); 
 Multi-objective design optimization and risk management (Giarola, Bezzo, & Shah, 2013); 
 Multi-objective design optimization (Liu, Qiu, & Chen, 2014a); 
 Optimal multi-objective planning (Santibañez-Aguilar, Gonzalez-Campos, Ponce-Ortega, 

Serna-Gonzalez, & El-Halwagi, 2014); 
 Economic evaluation considering carbon reduction in SC design and planning (Lainez-

Aguirre, Pérez-Fortes, & Puigjaner, 2017); 
 Optimal multi-objective design (Gao, Qu, & Yang, 2019); 
 Optimal design cost-effectiveness (Sarker, Wu, & Paudel, 2019); 

 
c) Biomass/bioenergy integrated with renewable energy 

 Optimal cost of planning and logistics (Cucek, Martin, Grossmann, & Kravanja, 2014); 
 Multi-objective design and planning optimization (Yue, You, & Snyder, 2014); 
 Cost optimization of energy management of biomass-renewable SC (C. Wang et al., 2016); 
 Cost-effectiveness of renewable resource supply chains (Giwa, Alabi, Yusuf, & Olukan, 

2017); 
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 Cost optimization of biomass combined renewable energy resource supply chain (Zheng, 
Jenkins, Kornbluth, Kendall, & Træholt, 2018); 

As mentioned above, biomass supply chain management consists of three main classes of (a), (b), 
and (c). The studies of class (a) aim to optimize the economic and environmental performance of 
bioenergy SCs. Mathematical programming is applied to obtain optimal design or/and planning 
supply chains. These works responded to sustainability by demonstrating the viability of bio-
based energy substitution with fossil-based energies. Besides, they optimize and control 
environmental impacts, mainly by ܱܥଶ emission reduction.  
Class (b) were more widely studied. Mostly are bi-objective optimization to achieve minimizing 
costs and environmental impacts. Some of them considered social acceptance along with the 
economic performance of the SCs. The studies tried to obtain an optimal design or/and planning 
biomass for biofuel networks.  
Class (c) consists of studies dedicated to optimizing the combination of biomass and renewable 
energy resources. Note that in this class, fewer studies exist. 

2.1.3.  Renewable resource Supply Chain Management 
Renewable energy resources, or renewables, are naturally replacing fuel sources that can 
substitute with coal, oil, natural gas, and nuclear power and provide clean, safe, and reliable 
power with low or zero carbon emissions. Towards sustainability, several potential benefits make 
renewables an attractive option for the energy supply chains. 
However, the significant renewable energy challenges are related to its fundamental 
characteristics. The most widespread renewable energy technologies – wind and solar – should 
tackle variability and uncertainty. In this line, researchers have mainly focused on optimizing 
these renewable energy resource characteristics, often summarized in the notion of intermittency, 
cause friction – technical, operational, financial - when integrating them in the energy system. 
The most recent works have concentrated on a) optimization in microgrids (Borhanazad, 
Mekhilef, Gounder Ganapathy, Modiri-Delshad, & Mirtaheri, 2014; Fathima & Palanisamy, 2015; 
Hafez & Bhattacharya, 2012; Sanchez et al., 2014), b) optimal sizing (Ahadi, Kang, & Lee, 2016; 
Alabert, Somoza, De La Hoz, & Graells, 2016; Askarzadeh, 2017; Ogunjuyigbe, Ayodele, & 
Akinola, 2016; Tito, Lie, & Anderson, 2016), and c) multi-objective optimal design and planning 
(Baghaee, Mirsalim, Gharehpetian, & Talebi, 2016; Dufo-López, Cristóbal-Monreal, & Yusta, 2016; 
Kamjoo, Maheri, Dizqah, & Putrus, 2016; Maleki, Pourfayaz, & Rosen, 2016).  
Generally, it is deducted through the literature review that the studies evolved by the time from 
single to multi-objective optimization, to be environmental and socially conscious, cover more 
concepts such as logistics, design, and planning at once, and finally to be more robust while 
considering uncertainty.   
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2.2.  Multi-Objective Optimization  
Historically, process industries focused on optimizing economic performance, and this concept 
includes unit installation, allocation, raw material, energy, and product flows and production 
rates. Since the sustainability concepts received strict attention, considering environmental and 
social aspects seems inevitable. Thus, it is necessary to adopt these objectives into the models that 
lead to multi-objective optimization models. There are two major numerical and analytical 
approaches. 
Numerical methods application is for constructing an approximation of the Pareto front. These 
methods rely on the well-known scalarization approach proposed by Pascoletti and Serafini 
(Khorram, Khaledian, & Khaledyan, 2014). They generate a good distribution of the entire Pareto 
front for both convex and non-convex ones and commonly are preferred methods to apply to 
complex problems.  
Analytical methods are capable of reaching an exact solution through detailed mathematical 
calculations. Hence, these methods usually require a large number of equations to approximate 
the solution realistically. PSE widely utilizes these methods, such as the ߝ-constraint method to 
address multi-objective problems (Cheng, Subrahmanian, & Westerberg, 2003; Guillén-Gosálbez 
& Grossmann, 2010; Guillen, Mele, Bagajewicz, Espuna, & Puigjaner, 2005; Mele et al., 2011; You, 
Tao, Graziano, & Snyder, 2012). In this method, the problem adjusts to a single objective, subject 
to the other objectives that act as the constraints. Using different epsilons leads to an optimal 
Pareto frontier. Nevertheless, the associated solution identification challenge remains unsolved. 
Therefore, several approaches exist to narrow down Pareto solutions, such as Pareto filters 
(Arora, 2012; Sudeng & Wattanapongsakorn, 2015) and, Data envelopment analysis (Seiford & 
Zhu, 2005). Besides, the evaluation of the feasible solution implies an additional computational 
effort to build the Pareto frontier. Therefore, various approaches bypass the mentioned procedure 
by promoting a single optimal solution directly right after solving the model. These approaches 
include goal programming (Charnes & Cooper, 1977; ROMERO, 1991), multi-parametric 
programming (Zeleny, 1974), analytic hierarchy processes (AHP) (Saaty, 2004), weighted sum 
(R. Timothy Marler & Arora, 2010), metaheuristics (Sudeng & Wattanapongsakorn, 2015), 
lexicographic methods (Arora, 2012), and fractional programming (Sakawa & Yano, 1985). These 
methods are applied extensively to a wide range of multi-objective problems, especially in 
sustainable supply chain management problems (Kanzian et al., 2013; Pérez-Fortes et al., 2012; 
Ruiz-Femenia, Guillen-Gosalbez, Jimenez, & Caballero, 2013; Tautenhain, Barbosa-Povoa, & 
Nascimento, 2019; You, Tao, et al., 2012; Zamboni, Shah, & Bezzo, 2009).  
New trends force process managers to consider several conditions to obtain robust solutions that 
simultaneously satisfy multi objectives. 
Solving a multi-objective problem is not the only challenge to be tackled; however, there are 
always issues to address. In addition, to obtain a value that accurately demonstrates the cause-
effect of a particular objective, another open issue is the efficient integration of multi-objective 
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approaches with uncertainty management. Different efficiency indices and performance 
indicators such as financial and environmental metrics have gained widespread popularity. 

i) Finical indicators 
Financial management tries to reduce the rejection chance of robust solutions during the 
optimization process (Giarola et al., 2013; You, Wassick, & Grossmann, 2009). The application of 
financial metrics provides more precise and accurate information regarding the economic 
behavior of the system. Some of the most common financial risk metrics used in the literature are 
now briefly described: 

 Downside risk (DR): provides a statistical measure to calculate the loss value regarding 
changes in the economic conditions and uncertainty. Commonly, the loss associated with 
the financial return can be much less than the expected results. The DR mathematical 
formulation is relatively simple since it avoids using binary variables, and thus, it is very 
computationally efficient (Hahn & Kuhn, 2012). However, the main disadvantage of the 
downside risk is the lack of linear interconnection with the probability of occurrence. 

 Financial Risk (FR): is the probability of not meeting a specific economic target. Despite 
DR, considering financial risk in a mathematical model causes several binary variables 
(Guillen et al., 2005) and leads to a complex model. So an extensive computational effort 
is needed. The FR metric is an indicator that describes if the solution produces winnings, 
but it cannot quantify it. Thus, quantitative knowledge compromising the FR metrics’ 
usefulness.  

 Value at Risk (VaR) and Conditional Value at Risk (CVaR): are measures of the investment 
loss and quantify it with the associated probability. In other words, these metrics evaluate 
the solution performance in the assumed region of the cumulative probability curve 
(Aseeri & Bagajewicz, 2004). CVaR, also known as the expected shortfall, measures the 
amount of tail risk by taking a weighted average of the extreme losses in the tail of the 
possible returns distribution over the VaR cutoff point (Ehrenstein, Wang, & Guillén-
Gosálbez, 2019). Nevertheless, VaR is a statistic metric that quantifies financial risk over a 
specific time frame. This metric is commonly to determine the occurrence ratio of potential 
losses. However, VaR is a robust measurement and not a financial risk metric used in 
decision support.  

 Worst case (WC): is commonly used as an alternative regarding a conservative risk 
estimation is needed. The worst-case scenario is to control the probability of meeting 
unfavorable solutions. Hence, the decision-maker preliminarily defines a set of values in 
which the performance variations indicate neglected variations in the process 
performance (Ehrenstein et al., 2019; Ruiz-Femenia et al., 2013). Historically, WC was 
considered as a risk management metric since it associates the expected economic worst 
performance for a set of solutions (Guillen et al., 2005) for a low computational effort. The 
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major disadvantage of this metric is that it cannot be analyzed individually and depends 
on objective qualitative performance.  

Despite the advantages of using robust decision support strategies by combining multiple 
metrics, developing a single one that efficiently correlates quantitative and qualitative 
measurements (probability and potential level of winnings/losses) simultaneously remains an 
open issue. 

ii) Environmental indicators 
The Decision-making process under a sustainable environment requires scientifically-based 
information on sustainability. There are different environmental indicators to observe the 
fulfillment of sustainable targets. This section reviews the applied indicators (Dong & Hauschild, 
2017).  

 Planetary Boundaries (PB): defines as a safe operating space by estimating impacts and aims 
to protect the function of the Earth system. Focusing on the stability of the Earth system 
processes, this indicator is concerned with impacts on the natural environment within 
boundaries.  Several planetary boundaries have been recognized so far, such as climate 
change (i.e., atmospheric ܱܥଶ concentration, energy imbalance at top-of-atmosphere), 
acidification (i.e., carbonate ion concentration in oceans), ozone depletion (i.e., 
stratospheric ܱଷ concentration), atmospheric aerosol loading (i.e., Aerosol Optical Depth 
(AOD)), eutrophication, change in biosphere integrity (i.e., extinction rate and 
biodiversity intactness index), freshwater use and, forest resources (i.e., area of forested 
land as % of original or potential forest cover). There are one or more developed indicators 
to demonstrate the distance to the boundary and indicate the transgression. As PB is a 
relatively new concept, there exist significant uncertainties of boundaries, so more 
research is needed (Bjørn, Diamond, Owsianiak, Verzat, & Hauschild, 2015). However, 
the PB indicator proposes a method to evaluate environmental impacts whereas, an 
absolute scale takes the whole earth as the system boundary (De Vries, Kros, Kroeze, & 
Seitzinger, 2013).    

 Sustainable Development Goals (SDGs): are the most recent indicators released by the UN. 
These indicators are parts of a plan of action to shift the world onto a sustainable path. 
The SDGs aim to guarantee common goals and comprehension among different 
stakeholders in worldwide sustainable development. These targets specifically focus on 
climate change, ocean acidity (measured as surface pH), and ozone depletion based on 
Millennium Development Goals (MDG) indicators, air/chemical pollution, waste 
treatment. Most of the targeted indicators have to reach a certain level within a limited 
time(Hák, Janoušková, & Moldan, 2016).  
 



Chapter 2. The State Of The Art 

22 
 

 Life Cycle Assessment (LCA): measures all emissions and resource consumption and 
quantifies the associated environmental and health impacts. This robust and mature 
method is laid out in ISO standard (ISO 14040/14044) and widely applied in recent studies 
(Azapagic & Clift, 1999), particularly in sustainable supply chain management problems 
(Brandenburg et al., 2014). Commonly, LCA techniques are combined with a 
mathematical programming approach to create a systematic method. This method enables 
an assessment of the process and supply chain alternatives that may result in significant 
environmental and economic benefits simultaneously (Azadeh et al., 2017; Bojarski, 
Lainez, Espuna, & Puigjaner, 2009; Genovese, Acquaye, Figueroa, & Lenny Koh, 2015; 
Guillén-Gosálbez & Grossmann, 2010; Guillen-Gosalbez & Grossmann, 2009; Hugo & 
Pistikopoulos, 2005; Lainez-Aguirre et al., 2017; Liu, Qiu, & Chen, 2014b; Mele et al., 2011; 
Pérez-Fortes et al., 2012; Ruiz-Femenia et al., 2013; Santibañez-Aguilar et al., 2014; She et 
al., 2019; Tautenhain et al., 2019; You, Graziano, et al., 2012; You & Wang, 2011; Yue et al., 
2014). The most widely-used LCA metrics include Global Warming potentials (GWP) 
(Buddadee, Wirojanagud, Watts, & Pitakaso, 2008), Eco-indicator 99 (Guillen-Gosalbez & 
Grossmann, 2009), IMPACT 2002 (Bojarski et al., 2009). GWP signifies greenhouse Gas 
(GHG) emissions causing the global warming effects, while Eco-indicator 99 and IMPACT 
2002+ measure the environmental impacts in more extensive categories such as human 
health, ecosystem quality, and resources. Note that most searchers merely use LCA 
indicators as a post-optimization tool to evaluate environmental sustainability. 

Despite the advantages of using robust decision support strategies by combining multiple 
metrics, developing a single one that efficiently correlates quantitative and qualitative 
measurements (probability and potential level of winnings/losses) simultaneously remains an 
open issue. 

2.3.  Uncertainty management  
As mentioned in this chapter, different types of contingencies affect processes performance and 
the associated operating conditions. Uncertainty management techniques are the most commonly 
used to control these unexpected event effects. Hence, this section is describing uncertainty 
sources through a supply chain. Uncertainty management is becoming crucial for the PSE 
community since it ensures feasible/efficient processes regarding quality and applicability.  
Uncertainties impact the performance of supply chains and affect the decision-making process. 
The main uncertainties in sustainable supply chains mainly include (I) raw material uncertainties, 
(II) production and operation uncertainty, (III) logistics uncertainty, (IV) demand and price 
uncertainty, (V) environmental impact uncertainty, and (VI) other uncertainties. These 
mentioned classifications explain in detail as the following: 

I. Raw material supply uncertainties: focus on supply quantity and quality uncertainties and 
arable land unavailability as an uncertainty source.  Caesar, Riese, & Seitz (2007); Nagel 
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(2000) considered uncertain raw material supply quantity; while Nagel (2000) found it 
hard to maintain a stable supply that affects the environmental and economic viability of 
alternative fuel (Caesar et al., 2007) considered the shortage of feedstock caused by 
harvesting technology deficiencies. Uncertain Supply quality was studied by 
(Dautzenberg & Hanf, 2008) and recently (Medina-González, Espuña, & Puigjaner, 2018), 
and proposed an efficient model to handle the variation of raw material quality. 

II. Production and operation uncertainty: imply process or/and operation conditions (Cheng et 
al., 2003; Filho et al., 2018; Grossmann & Guillén-Gosálbez, 2010). They dealt with 
equipment deficiencies, production quality, and stability and, therefore, adopted a plant-
wide control process.  

III. Uncertainties in transportation and logistics: mainly target delivery and intermodal. 
(Ekşioǧlu et al., 2010) studied the impact of an uncertain intermodal facility on location 
and transportation decisions. (Choy et al., 2007) aimed to manage the information flow 
efficiency through the supply chain to reduce uncertainty. The literature indicates that 
various factors impinge on transport operations through a supply chain. Sanchez-
Rodrigues, Potter, & Naim (2010) determined these key factors and consequently 
proposed a qualitative evaluation of different types of uncertainty impacting transport 
operations rather than estimating the risk that each of them involved.  

IV. Demand and price uncertainties: is historically the most common source of uncertainties in 
supply chains. Thus, it has a direct impact on potential sales revenue and raw 
material/required energy supply. Here several issues Market volatility (Markandya & 
Pemberton, 2010), market size (Jouvet, Le Cadre, & Orset, 2012), market conditions (Dal 
Mas, Giarola, Zamboni, & Bezzo, 2010; Zheng et al., 2018), uncertain demand quantity 
(Guillen et al., 2005) (You & Grossmann, 2008) (You et al., 2009) (Kostin, Guillén-Gosálbez, 
Mele, Bagajewicz, & Jiménez, 2012) (Hahn & Kuhn, 2012) (Ruiz-Femenia et al., 
2013)(Govindan & Fattahi, 2017). 

V. Environmental impacts uncertainties: aim to evaluate uncertainties related to environmental 
damages, and commonly LCA uncertainty is taken to account. Guillen-Gosalbez & 
Grossmann (2009) indicated that the Eco-indicator 99 methodology is affected by three 
primary sources of uncertainty: the fundamental or model uncertainties, operational or 
data uncertainty, and uncertainty the completeness of the model. Later on, (Guillén-
Gosálbez & Grossmann, 2010) focused on the environmental impact associated with 
operational uncertainty, and (Sabio et al., 2014) considered the uncertainty of the LCI data 
explicitly while this source of uncertainty does not affect the economic performance of the 
supply chain.  

VI. Other uncertainty sources: mainly can be environmental damages caused by carbon, 
methane, nitrogen emissions. (Hammond, Kallu, & McManus, 2008) considered carbon 
emission as a source of uncertainty leads to the inability to evaluate the actual carbon 
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emission to indicate a number in the market. In addition to carbon emission, (Mortimer & 
Elsayed, 2006) dealt with other particles such as methane and nitrogen emissions as it is 
complicated to fully determine the amount of methane and other nitrous gas effects on 
the environment, and it controlled the uncertain environmental damage caused by 
determining the amount of methane and other nitrous gas effects on the environment. Tax 
exemption can lead to uncertainty, and in this line, (Rozakis & Sourie, 2005) developed a 
model that estimated the cost and surplus by employing tax exemptions.  

Initially, the uncertainty effects over a process were ignored and substituted by a safety factor. 
This factor adds a small percentage of the nominal/optimal operational value to the decision 
variables, including equipment capacity, inventory level, and production rate. In this way, it 
assures the operational feasibility and, to some extent, process robustness. However, the solutions 
obtained by this approach are typically costly and inefficient (Cheng et al., 2003; Jung, Blau, 
Pekny, Reklaitis, & Eversdyk, 2004; You & Grossmann, 2008); hence, it is required more efficient 
and sensitive approaches. Therefore, new approaches have been proposed recently and classified 
into two main groups: Reactive and preventive approaches described as the following. 

2.3.1.  Reactive approaches  
These approaches aim to unveil the uncertainty by developing a deterministic model. The 
procedure is to be solved the model once to discover the uncertainty. Applying reactive 
approaches leads to constant plan adjustments that cannot be applicable to design problems.  The 
principal used reactive approaches are Model Predictive Control, Multi-Parametric 
programming, Rolling Horizon approach, and Real-Time Optimization, which are the following 
described. 
Model Predictive Control (MPC) is used to manage a dynamic system to predict the process 
performance by control variables. (Bose & Pekny, 2000; Braun, Rivera, Carlyle, & Kempf, 2002; 
Braun, Rivera, Flores, Carlyle, & Kempf, 2003; W. Wang, Rivera, & Kempf, 2007) controlled the 
customer satisfaction level by controlling the inventory level dynamic. Similarly, (Perea-López, 
Ydstie, & Grossmann, 2003) defined operational variables to manage the profit optimality of the 
system. (Niu, Zhao, Xu, Shao, & Qian, 2013) focused on process production management by 
controlling the demand price dynamic and inventory level. Velarde, Valverde, Maestre, Ocampo-
Martinez, & Bordons (2017) applied MPC to energy supply chains to manage the delays and 
disturbances in distribution networks. However, the MPC approach cannot manage uncertainties 
associated with sustainability; thus, there is a need to integrate robust and accurate MO 
approaches with MPC strategies. (Kouvaritakis & Cannon, 2016) proposed details on the MPC 
application as a tool for sustainable development. 
Multi-Parametric optimization (MP) is a strategy that operates as a function of different 
parameters and is commonly used to plot the optimized performances of objective functions and 
decision variables. The MP programming leads to a set of critical regions that implies the optimal 
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decision variables within uncertainty space (P. L. Yu & Zeleny, 1976). The advantage of this 
approach is that by using these regions, the required computational effort significantly reduces 
(Dua & Pistikopoulos, 2000; Pistikopoulos, 2009). Hence, several planning problems have 
extensively used the MP approach, specifically multi-stage MILP inventory design and planning 
(Guillen-Gosalbez & Grossmann, 2009; Rivotti & Pistikopoulos, 2014) and utility plants 
scheduling (Shokry & Espuña, 2017b). Besides, (Krieger & Pistikopoulos, 2014; Nascu, Lambert, 
Krieger, & Pistikopoulos, 2014) developed online parametric estimation by integrating the MPC 
and MP. Consequently, the integrated MPC-MP approach was applied to control and optimize 
batch processes dynamically (Shokry, Dombayci, & Espuña, 2016; Shokry & Espuña, 2017a). 
Regarding the capability of the MP to manage multiple sources of uncertainty, (Charitopoulos & 
Dua, 2016) applied it to sustainability problems. Furthermore, recent studies successfully approve 
the MP combination approaches within surrogate models to promote the sustainability of 
industrial problems (Lupera Calahorrano, Shokry, Campanya, & Espuña, 2016; Medina-
González, Shokry, Silvente, Lupera, & Espuña, 2020). 
The Rolling Horizon approach (RH) is well known as an iterative method that addresses 
deterministic problems involving a defined prediction horizon. Typically its application is when 
the problem aims to compare a short period with the entire horizon. Herein, the uncertain 
parameters are defined or easily forecasted. In each optimization phase, the forecast rolls forward 
until completing the whole horizon. The approach assumes that all parameters are known (based 
on the system feedback at each iteration) within the prediction horizon. The dynamic feature of 
the RH makes it worthwhile to apply it to planning and scheduling problems. Kostin, Guillén-
Gosálbez, Mele, Bagajewicz, & Jiménez (2011) and (Silvente, Kopanos, Dua, & Papageorgiou, 
2018; Silvente, Kopanos, Pistikopoulos, & Espuña, 2015) focused on the problems associated with 
the daily energy generation and storage. (Perea-López et al., 2003) successfully combined the RH 
and the MPC to manage the supply chain dynamics, and (Kopanos & Pistikopoulos, 2014) 
addressed reactive scheduling problems for heat and power units. However, it is required to 
justify its application to actual industrial processes in further studies. 
Real-Time Optimization (RTO) focuses on managing continuous process operation and 
particularly its economic performance optimization. The RTO solution strategies are parameter 
estimation techniques that update vital parameters. They are commonly applied to nonlinear 
steady-state processes collaborating with the MPC to update the setpoints after optimizing the 
process management (H. Li & Swartz, 2019). Since applying the RTO to dynamics problems is 
complicated, the RTO has been developed to dynamic real-time optimization strategies to 
manage process dynamics precisely in which the bottleneck moves frequently. Alternatively, 
nonlinear MPC is used to address nonlinear dynamic optimization problems (H. Li & Swartz, 
2019). Nevertheless, global optimization of a dynamic complex process can hardly achieve with 
the available computing resources.  
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2.3.2.  Preventive approaches  
This class of approaches is based on the known behavior of the uncertain parameters within the 
problem formulation and identified as a stochastic model. There are three classifications for these 
programming models, including stochastic, robust, and fuzzy programming. 
Stochastic programming is an approach for modeling optimization problems that involve 
uncertainty, and it can estimate the variables as a function of the unpredictable variations through 
the set of scenarios with an associated probability distribution. As a scenario-based approach, 
stochastic programming aims to obtain the optimal decisions, disregarding the realization of the 
uncertainty parameters. The two-stage stochastic programming approach (Prékopa, 1995), and 
through MILP and MINLP formulations, is commonly used to solve PSE problems. Hence, this 
extensively addresses the planning of an industrial SC under supply and demand uncertainties 
(C. W. Chen & Fan, 2012; Grossmann & Guillén-Gosálbez, 2010), the risk management of SC 
design under demand uncertainty (Govindan & Fattahi, 2017; Kostin et al., 2012). Due to the 
existing potential to promote process sustainability, a wide range of studies were using scenario-
based approaches to tackle sustainable SC problems under uncertainty such as SC design and 
planning under process life cycle uncertainty (Cheng et al., 2003), managing uncertainty in 
environmental damage and life cycle inventory (Guillén-Gosálbez & Grossmann, 2010), 
environmentally conscious supply chains under demand uncertainty (Ruiz-Femenia et al., 2013). 
Despite the extensive interest in applying the multi-objective stochastic approach, there is a need 
for further studies regarding decision-support strategies. 
Robust Optimization (RO) is a new and active, and recently developed approach. Basic versions 
of the RO assume that constraint violation is not allowed to realize the data in the uncertainty set. 
RO is famous for its computational tractability for several classes of uncertainty sets and problem 
types (Gorissen, Yanikoğlu, & den Hertog, 2015). However, due to its proactive feature, it does 
not react to different uncertain events. So that it is inefficient for short-term problems 
(Grossmann, Apap, Calfa, García-Herreros, & Zhang, 2016; Rezaei, Khazali, Mazidi, & Ahmadi, 
2020). Robust optimization attempts to find a solution that can remain feasible for the whole 
uncertainty space by optimizing the problem deterministically for the worst-case scenario (Ben-
Tal Laurent El Ghaoui Arkadi Nemirovski, 2009). Historically, PSE problems have effectively 
used the RO techniques to deal with the SC operation (Verderame & Floudas, 2009), SC 
operational risk (Hahn & Kuhn, 2012), process scheduling (Z. Li & Ierapetritou, 2008; Mirzapour 
Al-E-Hashem, Malekly, & Aryanezhad, 2011), and inventory sizing (Ben-Tal, Goryashko, 
Guslitzer, & Nemirovski, 2004). The RO application requires a significantly high computational 
effort; hence this approach is integrated with decomposition strategies and forms a single 
framework to make it capable of solving complex process-scheduling problems (Q. Zhang, 
Grossmann, & Lima, 2016). The RO demonstrates the capability to address multi-objective 
problems to promote process sustainability (Bairamzadeh, Saidi-Mehrabad, & Pishvaee, 2018; 
Sabio et al., 2014). Nevertheless, the RO application in PSE has been relatively limited and usually 
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restricted to operational/tactical problems. Even if the RO strategies can address MO problems, 
further studies must ensure the systematic generation/identification of sustainable and robust 
solutions. 
Fuzzy Programming is applied when there is no particular distribution for uncertain data, but it 
is possible to determine its boundaries and membership functions. Commonly, the uncertainties 
representation using a set of fuzzy constraints. The fuzzy approach has addressed many 
industrial problems under uncertainty, including chemical product design (Ng, 
Chemmangattuvalappil, & Ng, 2015), close-loop SC design (J. Xu, He, & Gen, 2009), logistics 
design (Pishvaee, Torabi, & Razmi, 2012), SC planning and scheduling (Su, 2017), material supply 
planning (Sun, Liu, & Lan, 2010). Fuzzy programming deals with multi-objective problems 
addressing different aspects of sustainability, including industrial hazardous waste management 
(Ghezavati & Morakabatchian, 2015), environmental conscious multi-objective SC network 
design (Tsao, Thanh, Lu, & Yu, 2018), and (Tsao & Thanh, 2020) proposed a strategy to address 
the design and management of integrated networks. However, two main challenges remain 
unsolved to address sustainability problems under uncertainty; first, a clear definition of 
membership functions that determine the objective behavior and the detailed impacts of 
uncertain conditions on the process performance. The second challenge is to develop approaches 
to make decision-makers able to consider their preferences into the fuzzy model.  
The reactive and preventive uncertainty approaches are not capable of tackling the main 
limitations in: 
I) the study uncertainty effects for the hierarchical levels individually (Elluru, Gupta, Kaur, & 

Singh, 2019), 
II) a single uncertainty source consideration (Moret, Peduzzi, Gerber, & Maréchal, 2016), 
III) application capability for multi-objective problems (Moret, Codina Gironès, Bierlaire, & 

Maréchal, 2017),  
that hinder their application to further and complex problems, as stated above. Besides, the 
increasing concern about sustainability and green engineering obliges industries and academia 
to develop integrated/holistic approaches to manage multiple and unexplored uncertainty 
sources simultaneously for multi-objective/multi-criteria problems. In particular, this thesis tries 
to contribute to such a line, as described in the following chapters. 

2.4.  Trends and Challenges  
An extensive literature review has been made over this chapter, focusing on practical and 
integrated solution methods and strategies proposed for supply chain management, particularly 
sustainable supply chain management. This survey emphasizes the motivation to drive further 
research efforts in four main topics (i.e., multi-objective decision-support, uncertainty 
management, and sustainability issues) and the combined/integrated effect of the above 
challenges. The strategies aim to simultaneously consider many objectives in a systematic 
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framework to identify the best global solution. A considerable proportion of the multiple 
objectives optimization models focus on just economic optimality. The economic criteria are the 
most desirable objective, and the economic formulations for the additional criteria successfully 
represent the system performance. Apart from economic criteria, several motivations, such as 
social and environmental issues, remain to be addressed. Since it is not very easy to propose an 
effective method for optimizing the environmental and social regulations/concerns in industrial 
processes thus, to facilitate problem-solving, future studies must address the following 
challenges:  
 Multi-Objective issues 
It is vital to develop and improve the objectives and model formulations to increase the accuracy 
concerning real-life process industries’ performance to tackle these issues. In this regard, further 
studies should consider the following hints: 

 The economic objectives mainly focus on optimizing Net present Value (NPV) subjected 
to fixed capital cost and an adjusted interest rate. Using a set of financial risk metrics 
provides more details about system behavior.  

 Historically, researchers have extensively used Life Cycle Assessment (LCA) among other 
methods as a systematic environmental analysis method. The practical application of LCA 
provides efficient knowledge about process conditions/constraints. Commonly, these 
methods relax the multi-objective problems by integrating linear programming with 
weighted-sum approaches. However, there are insufficient studies about the effects of 
resource quality and associated consumption (i.e., biomass, renewable energy resources). 
As a particular case, even if material/energy integration within LCA enables a 
comprehensive assessment of the environmental impact, its application for a large-scale 
material/energy supply chain remains an open issue.  

In addition to all mentioned above, an adequate multi-objective function formulation affects the 
entire system. Accordingly, an efficient formulation for each SC echelon is needed to identify the 
activities with the highest impacts for each objective. In this regard, some studies assess the 
objectives systematically to form a hierarchy/importance based on the decision-maker 
perspective to effectively industrial changes.  
In general, many PSE problems, including those that addressed sustainability, aim to improve 
the robustness and quality of the obtained solutions. Even with the highest quality of the obtained 
solutions, a huge decision maker issue remains unattended and poorly addressed. Hence, 
problem solvers require an accurate decision support strategy in a multi-objective framework.  
 Uncertainties Management issues 
Commonly, uncertainty issues are the primary process industries challenges to tackle. Thus, it is 
necessary to develop a framework to model these uncertainties, and studies ultimately aim to 
obtain an easy way to interpret and implement solutions. Recently, the studies have achieved a 
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significant advancement in this regard, although some challenges remain to address as the 
following: 

 Decision-makers have faced a high level of uncertainty in supply chain management due 
to the dynamic and complex nature of influential factors in supply chain management. 
Hence, modeling under uncertainty has become an active research field, and several 
studies have considered this concept, particularly the effect of demand and price 
uncertainty. Nevertheless, the studies have scarcely addressed the simultaneous analysis 
of uncertainty sources, and thus, the absence of a proper approach severely affects supply 
chain performance. Besides, such a study would represent a huge opportunity area and 
lead to a particular challenge. In this line:  

o The multi-parametric programming has been applied to the detailed information 
on the effect of the different uncertainty parameters over the system behavior 
while considering their interactions—however, its potential to define the 
uncertainty importance has remained unattended.  

o Data management is an important and complicated process and is needed to 
stabilize data variation. Besides, current stochastic models generate a large 
amount of output information; therefore, there is also a need for data-driven tools 
to integrate analytical tools with tailor-made databases. Hence, future studies 
should focus on implementing a strategy that accurately manages a large amount 
of process information, data variations, and the different data flows. Knowledge 
management systems (i.e., surrogate models and ontologies) can be successful 
alternatives.  

 Besides dealing with various sources of uncertainty, another critical issue is the number 
of scenarios. Various approaches and methods are introduced in the literature to deal with 
scenario-based uncertainty models, including stochastic programming, robust 
optimization, and fuzzy programming. Multi-stage stochastic programming is the most 
used approach, and it should be able to manage uncertainty efficiently. So far, dealing 
with small scenarios has been studied extensively, but its application to medium-large 
scale industrial problems has remained an open issue. 

 Ultimately, performance indexes are needed to represent uncertainties and quantify the 
robustness of the proposed solutions. The application of reactive and preventive 
approaches integrated into Multi-Objective problems will represent a promising research 
direction. 

 Sustainability issues 
Regarding sustainability principles, exploiting renewable resources in process industries turns to 
be a particular interest. This challenging issue requires addressing simultaneously many 
uncertainties affecting the resources and resulting in multi-objective problems. In this regard, 
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several studies have been dedicating to improving strategies. Nevertheless, it is still necessary to 
propose applied strategies to deal with large-scale problems. Hence, the following challenges 
remain to consider in further studies. 

 The integration of Industrial Symbiosis (IS) strategies within a holistic approach is a 
significant issue. This concept in an industrial context aims to efficiently exploit resources 
(i.e., material, energy, information) between companies/process plants. IS strategies 
address decentralized problems by considering at least two actors who manage the 
operations independently while seeking win-win solutions. This strategy creates a 
contentious evaluation of the relationship between the network and the player’s 
coordination/collaboration. However, in real-life problems, information flows are limited, 
which hinders the IS strategies application.  

 Besides the technical/conceptual challenges mentioned above, complex model 
formulation is another main issue to address. Here, there are two main challenges are 
needed to mention: 

o A scenario-based dynamic framework is responsible for dealing with the market 
conditions variations. This strategy is capable of reacting to the constant changes 
in the market conditions within a single model. However, this framework uses to 
simplify the uncertainty approach compromising its representativeness. 
Therefore, the adequate combination of the dynamic scenario-based framework 
with uncertainty approaches remains an open issue.  

o Here, several metrics can quantify the objectives and each entity’s performance in 
the decentralized scheme. Hence, it is needed to explore and develop them to 
improve decision-making strategies.  

 Integration issues 
Under sustainable development obligations, process industries are moving towards an 
optimization to integrate operational decisions into a general model. Despite several conflicting 
objectives and decision variables, this model should optimize the overall system performance. 
Thus, the main challenge is defining an efficient model that simultaneously represents the 
individual and global system performance and the synergy between different SC decision levels. 
This section proposes some particular challenges in the following: 

 As noted before, in terms of decision quality, multi-objective techniques development is 
required. These techniques are supposed to function accurately and represent the 
decision-maker preferences systematically. Besides, these developed techniques can 
adequately identify the standard variables that allow connecting the different hierarchical 
levels. 

 Current researchers dedicate their efforts to manage the prices, production rate, and 
distribution decisions to break the traditional organizational obstacles. A proper 
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framework is needed to examine the trade-offs between the impact of the operational 
decisions over the entire SC. 

So far, the high computational burden is required to solve large-size multi-scale optimization 
problems so that the computational effort reduces a critical issue to achieve a monolithic 
optimization model. Hence, researchers must dedicate themselves to developing and improving 
decomposition strategies to manage information flows, especially within a decentralized 
structure. Currently, knowledge-based algorithms (e.g., Metamodeling) are in use to expedite a 
feasible space.         
Ultimately, the critical factor in sustainable supply chain management is a systematic and general 
model to facilitate the decision-making coordination and integration processes. Such an objective 
can be a proposal of general PSE methods and tools for an advanced system management 
sustainable supply chain and integrated material/renewable energy resource supply chains. By 
studying the literature review and considering the above cases, it seems necessary to provide a 
general model that combined a sustainable material SC with a biofuel/bioenergy/renewable 
energy SC. Hence, this thesis dedicates to propose this general model. It demonstrates the 
advantages and discusses to enlighten a path to future studies. 
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 Chapter 3

 

METHODOLOGY AND TOOLS 

 

In the last decades, the process systems engineering community (PSE) has developed tools to 
facilitate the problem-solving process in the mentioned area using mathematical programming. 
Retrofitting the conventional supply chains and optimize tactical decisions have got extensive 
attention in industries. Decisions at these levels have a long-lasting effect on the firm, and hence 
they play a significant role in Supply Chain Management, particularly with sustainability 
considerations. The following, it is discussing some key aspects and tools that the studies 
commonly utilize. 

3.1. Optimization 
As the industrial world is getting more and more competitive, efficiency has become the main 
concern for many business activities. Such efficiency can generally define optimization problems 
and a well-studied area in academia (Yang, 2018).  
According to the various definitions, an optimization problem is finding and proposing optimal 
solutions that optimize objective functions. Optimization is applicable for a diverse range of areas 
such as process industries and production facilities, material/energy supply chain management, 
such as improving profit, energy consumption, or/and decreasing pollutant generation. 
Optimization is a wise step procedure as mentioned below: 

 The first step to implementing optimization is to identify all available data. 
 The second step is to determine an objective function and decision variables. 
 The third step is to translate the objective function and decision variables into a 

mathematical model.  
Moreover, the optimization procedure can include a single objective or the consideration of 
multiple criteria in the decision-making process. 
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3.2.  Mathematical model 
Generally, models illustrate the perceptions about how the world functions. A mathematical 
model is a translation of the perceptions into the language of mathematics. A mathematical model 
aims to define a system using mathematical approaches and expressions. Besides, mathematics 
is an exact and concise language with well-defined rules to formulate ideas (Lawson & Glenn, 
2008). The application of mathematical programming for decision-making problems implies the 
combination of mathematical representation and optimization algorithms. A mathematical model 
consists of several equation/inequation blocks such as: 

 Mass/energy balances, in addition to momentum, integral/differential and 
dynamic/stationary state, and other related information; 

 Conditional equations like thermodynamic and kinetic statements and chemical 
properties; 

 Design spec like capacity constraints, costs, and revenue. 
 

Convexity   
If ݔ and ݕ and all points on the straight line connecting ݔ and ݕ belong to S, therefore, ܵ is convex. 
Note that ܵ is a set in a natural or complex vector space. Fig. 3.1 illustrates Convex and non-
convex definitions.  

Fig. 3. 1. Definition of Convex (a) and Non-Convex(b) set (Kopanos & Puigjaner, 2019).

This definition can be expressed mathematically as below: 
ܵ is convex ⟺ ∀	ሺݔ, ሻݕ ∈ ܵ ∧ ߣ ∈ ሼ0,1ሽ: ݔߣ ൅ ሺ1 െ ݕሻߣ ∈ ܵ  

The following section discusses some commonly used techniques for solving optimization 
problems. Depending on the characteristic of each problem, the solution techniques differ.  

3.3.  Optimization techniques 
A combination of mathematical representation and optimization algorithms results in 
mathematical programming approaches focusing on optimization problems. The optimization 
model, in general, consists of an objective with/without several constraints that form 
constrained/non-constraint optimization, and also, there are two classes of continuous 
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optimization and discrete optimization. Regarding the structure, mathematical models are 
classified as linear and, Non-linear. 

3.3.1.  Linear programming (LP) 
Linear programming is a particular case of the constrained optimization problem in which the 
objective function is linear and the set of equations and inequalities. Linear programming 
methods propose a technique to find the optimum solution among a finite number of possible 
points (Thie & Keough, 2011). Commonly, a linear model has a canonical form as: 
 

 

 

Where ܿ ∈ 	Թ௡, ܾ	 ∈ 	Թ௠ and ܣ	 ∈ 	Թ௠ൈ௡. The term ݔ	 ൒ 0 represents nonnegative variables. The 
intersections of the hyperplanes associated with each constraint geometrically define the solution 
space of the LP problem, and the optimal solution is in each vertex of the feasible n-dimensional 
polytope (Fig. 3.2). 

 
Fig. 3. 2. Geometric solution of a linear program.

There are two solution methods used traditionally to solve linear problems: The simplex method 
and Interior-point Methods. 

a) Simplex Method 
In mathematical optimization, the Simplex algorithm is a method for solving Linear 
programming (LP) problems first proposed and then developed by Dantzig (1963). The Simplex 
algorithm proceeds to move from one basic feasible solution (an initial vertex) to another until 
finding an optimal basic feasible solution (Fig. 3.3). 

Minimize ܨሺݔሻ ൌ   ݔ்ܿ

Subject to ݔܣ ൌ ܾ (3.1) 

ݔ  ൒ 0  
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Fig. 3. 3. Illustration of Simplex Method (Kopanos & Puigjaner, 2019). 

a) Interior-point Methods 
Karmarkar, in 1984, proposed a new algorithm that had polynomial complexity and could solve 
real-world optimization problems more efficiently than the Simplex method. Karmarkar's work 
led to the development of many other non-Simplex methods commonly referred to as interior-
point methods. Well-implemented types of these methods are very potent, specifically for the 
problems with many variables (Thie & Keough, 2011). 
While the Simplex method considers the vertex of the feasible area, the interior-point methods 
infer an initial feasible interior-point and follow through the feasible region moving in one 
direction and stop with an approximate optimal solution when the difference between two 
iterations is sufficiently small in the original space (Fig. 3.4). 

Fig. 3. 4. Illustration of Interior-point Method (Kopanos & Puigjaner, 2019). 
 



 

37 
 

3.3.2. Nonlinear Programming (NLP) 
In mathematics and science, nonlinearity is a system in which the output change is not 
proportional to the input change. Nonlinear problems appear in engineering, biology, physics, 
mathematics, and many other sciences because most systems are inherently nonlinear. 
Typically, in a nonlinear system, there are variables of a polynomial of degree higher than one or 
in the argument of a function that is not a polynomial of degree one. In nonlinear mathematical 
models, all variables are continuous and contain nonlinearities in either objective function and or 
the constraints. 
In general, it is analytically hard to solve non-linear equations. Therefore, using iterative methods 
such as the First methods and the Newton-Raphson method, and the Bisection method (Kelley, 
1995) allows to approach the solutions. There are algorithms and methods proposed to deal with 
the complexity of these problems belong to constrained and unconstrained optimization 
methods, such as Penalty Methods, Interior point, and Sequential quadratic programming 
(Buchanan, 2008). 

Unconstrained optimization 
The mathematical representation of unconstrained optimization is as below: 
 
 
 
The objective function ܨሺݔሻ is a nonlinear function, and the algorithms proposed to solve are 
divided into two main groups: 

 Line search methods 
This method is a basic iterative approach to find a local minimum ݔ of the objective function ܨሺݔሻ. 
The approach first finds a descent direction along with the objective function ݂ that will reduce 
and then calculates a step size that determines how far ݔ should move along that direction. The 
gradient descent can compute the descent direction, Newton’s method, and Quasi-Newton 
method. 

 Trust region methods 
In optimization, a Trust region is the subset of the objective function region approximated using 
a quadratic function. If a suitable model of the objective function exists within the trust region, 
then the region is expanded; conversely, the region gets contracted if the approximation is 
insufficient. Trust-region methods are also known as restricted-step methods. 
Trust-region methods are dual to line-search methods: trust-region methods first, choose a step 
size (the size of the trust-region), and then a step direction, while line-search methods first choose 
a step direction and then a step size. 

Constrained optimization 
A general constrained optimization problem is mathematically defined as follows:  

Minimize ܨሺݔሻ
(3.2)

ݔ  ൌ ሺݔଵ, ,ଶݔ … ௡ሻ்ݔ ∈ Թ௡
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Where h:	Թ௡ → Թ௠ and g:	Թ௡ → Թ௣. 
In constrained optimization, it aims to optimize the objective function in the presence of 
constraints. There are two classes of constraints: hard and soft constraints. Hard constraints fix 
conditions for decision variables, while soft constraints penalize the objective function if the 
determined condition remains unsatisfied. Commonly a penalty method can readjust many 
unconstrained optimization algorithms to the constrained case. 

3.3.3. Mixed-integer Programming 
Mixed-integer optimization problems arise in many real-world applications. Integer variables are 
often required to model logical relationships, fixed charges, piecewise linear functions, 
disjunctive constraints, and non-divisibility of resources. 
A mixed-integer programming (MIP) problem is when some of the decision variables are 
constrained to be integer values at the optimal solution. Generally, in this optimization method, 
they are combined with continuous and discrete variables to respond to yes/no decisions. The use 
of integer variables dramatically expands the scope of practical optimization problems. Linear 
programming LP and nonlinear programming NLP models that contain integer variables are 
Mixed-Integer Linear Programming (MILP) and Mixed-Integer Non-Linear Programming 
(MINLP), respectively.  
To solve MILP problems, two highlighted algorithms of Branch and Bound (B&B) and Branch 
and Cut (B&C) are standard algorithms for discrete and combinatorial optimization problems 
that consist of a systematic enumeration of candidate solutions through state-space search. 
Nonlinear functions are required to accurately reflect physical properties, covariance, and 
economies of scale. Mixed-Integer Non-Linear Programming (MINLP) is applied to design 
problems, and its complexity is related to the non-convexity of the feasible region. Accordingly, 
various methods such as Branch & Bound, Branch & Cut, Generalized Benders Decomposition, 
and Outer-Approximation are generally known for solving MINLP problems. The following 
subsection explains the algorithms applied to MILP and MINLP.  

 Branch and Bound (B&B)  
The Branch and bound approach was developed independently by (Land & Doig, 2010), focusing 
on mixed discrete programming problems. This algorithm aims to find a value ܨሺݔሻ that 
optimizes a real-valued function ܨሺݔሻ, among feasible search space of ܵ or candidate solutions, 
while B&C involves running a branch and bound algorithm and using cutting planes to tighten 
the linear programming relaxations (Brusco & Stahl, 2005). 

Minimize ܨሺݔሻ  

Subject to ݄ሺݔሻ ൌ 0 (3.3)

 ݃ሺݔሻ ൑ 0  
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Fig. 3. 5. Graphical representation of the Branch and Bound algorithm. 

There are two main phases in the B&B algorithm: a) the search phase; and b) the verification 
phase; in the first phase, the algorithm does not find an optimal solution, while in the second 
phase, the binding solution is optimal, although there are neglected subproblems that the 
algorithm cannot cut them back. Note that a binding solution cannot be proven optimal until no 
neglected subproblems remain.  
According to these two mentioned phases of operation, the three algorithm components of search 
strategy, branching strategy, and cut back rules play distinct roles in B&B algorithms (Fig. 3.5).  
The search strategy and the cut back rules mainly impact the search and verification phases, 
whereas the branching strategy impacts both.  

Fig. 3. 6. A diagram of the three main B&B components.

Furthermore, cut back rules usually aim at the verification phase, especially in an objective-based 
bounding, comparatively weak before an optimal solution is recognized. In this case, if the 
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binding solution has a poor objective value early in the search process, the lower bounds will not 
be able to cut back effectively, even if they are very tight. Nonetheless, there are also situations in 
which cutting back rules contribute to the searching phase, such as when cutting planes in a 
mixed-integer program (MIP) is to find feasible solutions. 

 Cutting-plane method 
Gomory (2010) introduced the cutting-plane method to solve MILP based on the notion that each 
subgradient of the objective function or the violated/operational constraints designates a half-
space kept out from a set that contains an optimal solution. The Cutting-plane algorithm moves 
towards a global minimum of any pseudoconvex sub differentiable function. Such procedures 
generally exist to find integer solutions to mixed-integer linear programming problems. The cut 
reduces the solution space for a fractional solution graphically displayed in Fig. 3.7. 

 
Fig. 3. 7. Classical cutting plane method.

This methodology can be more effective if combined with branch and bound methods and 
Gomory cuts in all MIP solvers.  

 Generalized Benders Decomposition (GBD) and Outer-Approximation (OA) 
Generalized Benders Decomposition (GBD) and Outer-Approximation (OA) are two methods 
mainly applied to Mixed-Integer Non-Linear Problems (MINLP). (Geoffrion, 1972) generalized 
Benders’ approach to a broader range of programs. In Benders’ approach, a linear program was 
a parametrized sub-problem, but Geoffrion employed nonlinear convex duality theory to derive 
the natural families of cuts corresponding to those in Benders’ case. The proposed algorithm 
divides variables into two classes of complicated and non-complicated variables. Fixing the 
binary variables split the problem into a sequence of NLP sub-problems and MILP master 
problems. Specifically, the upper bound of the problem is generated by the NLP sub-problem, 
while the MILP master problems generate a combination of discrete variables to be used as lower 
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bounds for the NLP sub-problems. The optimal solution will be achievable by converging the 
upper and lower bounds. 
Like GBD, the Outer-Approximation algorithm suggested by (Duran & Grossmann, 1986) divides 
the MINLP non-convex problem into NLP sub-problems and MILP master problem. Hence, 
solving the NLP sub-problems results in a feasible region, and approximating the nonlinear 
constraints of the feasible region generates the master problem.  

3.4.  Multi-Objective Optimization  
The systematic and simultaneous optimization process of several objective functions is called 
multi-objective optimization (MOO) or vector optimization. Multi-objective Optimization is a 
multi-criteria decision-making tool applied to mathematical optimization problems. Hence, 
optimal decisions happen in the presence of trade-offs between two or more conflicting 
objectives. The general Multi-objective Optimization problem formulation is as below: 
 
 

 
 
Where ݔ ∈  ௜ andݔ ௡ is a vector of decision variables, ݊ is the number of independent variablesܧ
 :ሻ are called objective functions. The feasible decision space ܺ isݔ௜ሺܨ
ሼݔ ∣ ݃௝ሺݔሻ ൑ 0,			݆ ൌ 1,2, … ,݉; and ݄௜ሺݔሻ ൌ 0,				݅ ൌ 1,2, … , ݁ሽ	 while the feasible criterion space ܼ is 
the set ሼ ሻݔሺܨ ∣ ݔ ∈ ܺ ሽ. 
Despite the single-objective optimization (SOO), the solution of a multi-objective optimization 
problem (MOO) is more conceptual than a definition. It is necessary to define a set of points that 
fit a predetermined definition for an optimal solution. Non-dominated points of Pareto optimality 
(R. T. Marler & Arora, 2004) defined as Non-dominated points of Pareto optimality below:   
A point ݔ∗ ∈ ܺ is Pareto optimal if no other point ݔ ∈ ܺ exists such that ܨሺݔሻ ൑  ሻ, and for at∗ݔሺܨ
least one single function ݅ܨሺݔሻ ൏  ሻ. All Pareto optimal points spread on the boundary of the∗ݔሺ݅ܨ
feasible criterion space ܼ.  

Definition 3.1. Non-dominated and Dominated points: a vector of objective functions, ܨሺݔ∗ሻ ∈ ܼ, is 
nondominated if there is no other vector ܨሺݔሻ ∈ ܼ, such that ܨሺݔሻ ൑ ሻݔሺ݅ܨ ሻ with at least one∗ݔሺܨ ൏
 .ሻ is dominated∗ݔሺܨ ,ሻ. Otherwise∗ݔሺ݅ܨ

The curve that connects the set of feasible (all non-dominated) solutions is known as the Pareto 
frontier (see Fig. 3.8). 

Minimize ܨሺݔሻ ൌ ሾܨଵሺݔሻ, ,ሻݔଶሺܨ … , ሻሿݔ௞ሺܨ ்  

Subject to ݃௝ሺݔሻ ൑ 0 ,                    ݆ ൌ 1,2, . . , ݉ (3.4) 

 ݄௟ሺݔሻ ൌ 0,                    ݈ ൌ 1,2, . . , ݁  
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Fig. 3. 8. Pareto frontier for a multi-objective optimization problem (Dieter Vermeulen, 2020). 

There are three categories of multi-objective mathematical programming methods:  a priori, 
interactive, and a posteriori regarding decision-making and decision-maker preference. In a 
priori methods, the preference of the decision-maker (DM) must be specified in advance, like 
before the solution process, although the DM is not necessarily aware of possible attainments and 
the extent to which the expectation is realistic. The a priori methods include Value Function 
Method, Lexicographic Ordering, and Goal Programming (Charnes, Cooper, & Ferguson, 1955).  
Despite a priori methods, the interactive and the a posteriori methods transfer much more 
information to the decision-maker. Especially the a posteriori methods give the whole picture 
(i.e., the Pareto set), to the decision-maker, before the final decision reinforcing, thus, the DM 
confidence. 
In the interactive methods, there is a constant interchange between the decision-maker and 
phases of calculation, and after a few iterations, the process converges to the most favored 
solution. This approach includes Analytical Hierarchical Processes (AHP) (Saaty, 2004), Weighted 
sum approach (R. Timothy Marler & Arora, 2010), Step Method (STEM) (Benayoun, de 
Montgolfier, Tergny, & Laritchev, 1971), Fuzzy programming and Fractional approach (Sakawa 
& Yano, 1985).  
The a posteriori or generation methods are not very common as previously mentioned methods 
due to their computational effort and the lack of extensively available software. However, they 
have some notable advantages. The solution process consists of two independent phases: First, 
the generation of efficient solutions and the decision-makers' involvement when all the 
information is available. Hence, the DM is involved only in the second phase, having all the 
possible alternatives (the Pareto set or an adequate representation). Besides, all the discovered 
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potential solutions reinforce the decision maker’s confidence in the final decision. The most 
commonly used generation methods are the weighting method (W. Zhang & Yang, 2001) and the 
ε-constraint method described profoundly in the next section as it is the primary strategy of this 
thesis.   

3.4.1. The ε-constraint method 
Since a generation method can identify all finite numbers of Pareto optimal solutions, a wide 
range of algorithms, such as heuristics and exact methods are used, in this context. However, this 
must be taken into account that the weighted sum method, for instance, is the only capable 
method to find supported Pareto optimal solutions, i.e., those existing in the convex region of the 
objective-space and non-supported ones that can coincidently exist like intermediate solutions. 
In the ε-constraint method, one of the objective functions roles as the only objective of the 
problem, and the remaining ones are constraints. Therefore, it is possible to obtain different 
elements of the Pareto front by a systematic variation of constraint bounds. Assume that the 
following MOMP problem (Bérubé, Gendreau, & Potvin, 2009): 

 
 
 

Where ݔ is the decision variable vector, ܵ is the feasible region, and objective functions are 
,ሻݔଵሺܨ … ,  :ሻ. In the ε-constraint method, the model is as shown belowݔ௣ሺܨ
Maximize  ሻݔଵሺܨ	

Subject to 
ሻݔଶሺܨ														 ൒ ݁ଶ, 
ሻݔଷሺܨ														 ൒ ݁ଷ, 

														⋮ 
ሻݔ௣ሺܨ												 ൒ ݁௣, 
ݔ												 ∈ ܵ. 

 
 
 

(3.6) 
 

By parametrical alternation of the constrained objective functions (݁௜), efficient solutions are 
found. The following presents the global algorithm of the ε-constraint method applied to bi-
objective and related definitions: 

Definition 3.2. Utopia or Ideal point represents a situation that each objective achieves its optimal value 
individually. Although this point describes the ideal situation of a MOP, it cannot be a solution because 
the objectives conflict.    

Definition 3.3.  Nadir's point opposed to Utopia describes the worst performance of every single objective 
derived from the extreme points in a non-dominated solution set.  

Definition 3.4. Extreme points are two points of the Pareto frontier. 

Algorithm 3.1.  

Maximize ܨଵሺݔሻ, ,ሻݔଶሺܨ … ,  ሻݔ௣ሺܨ
(3.5)

Subject to ݔ ∈ ܵ,                     
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Step 1. Set  ݅ ൌ 1, ݆ ൌ 2. 

Step 2. Compute the Utopia and Nadir points. 

Step 3. Set Pareto Front ܲܨ ൌ ሼ൫ݖ௜
௎, ௝ݖ

ே൯ሽ and ௝݁ ൌ ௝ݖ
ே െ ∆	ሺ∆ൌ 1ሻ. 

Step 4. While ௝݁ ൒ ௝ݖ
௎, do: 

Step 4.1. Solve ௜ܲሺ ௝݁,ሻ through branch and cut and add the optimal solution value (ݖ௜∗,  ௝∗) toݖ
 .ܨܲ

Step 4.2. Set ௝݁ ൌ ௝ݖ
∗ െ ∆. 

Step 5. Remove dominated points from ܲܨ if required.  

Finally, the ߝ-constraint method produces a set of feasible solutions to propose to the decision-
makers. Fig 3.9 depicts Pareto frontier, Utopia, and Nadir points. 

 
Fig. 3. 9. Illustration of Pareto frontier and essential points for multi-objective optimization problems.

In this line, various Multi-Objective Decision Making (MODM) strategies have been introduced, 
as explaining in the following. 

3.4.2. Multi-objective Decision Making 
The multi-objective decision-making process implies the whole process of problem-solving, 
including fundamentally of five steps depicted in Fig. 3.10 (Chankong & Haimes, 1983). 
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Fig. 3. 10. Multi-Objective Decision-Making Process.

Several methods exist for the evaluation of a multi-objective decision-making model. Depending 
on the phase and data type receiving from the decision-maker, these methods estimate the utility 
function. There are different ways to evaluate a MO model and are classified into two groups: 
DM information and independent evaluation methods, as described below. 
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3.4.3.  Independent MODM Evaluation   

 ۾ۺ metric methods  
These methods function independently from data obtained by DM and aim to minimize the 
distance of existing objective functions of a multi-objective model to an ideal solution. ܮ௉ Methods 
use metric deviations to measure the proximity of an existing solution to the ideal solution. 
Compromise functions will do this measurement of deviation as follows (Ringuest, 1997): 

௉ܮ ൌ ሾ෍ሺߛ௝หܨ௝ሺݔ∗௝ሻ െ ሻหሻ௉ሿݔ௝ሺܨ

௄

௝ୀଵ

ଵ ௣ൗ

 
 

(3.7) 
 

here ܲ is the parameter that determines which of ܮ௉ metric family is to be applied. The ܲ’s effect 
emphasizes the relative contribution of individual deviations, i.e., ܲ ൌ ∞ (called the Tchebycheff 
metric) is the largest of deviations that completely dominate the distance measure. In addition to 
ܲ ൌ ∞, using the values ܲ ൌ 1 and ܲ ൌ 2 are very common. In maximization of the objective 
functions, ݔ∗௝ represents the ideal solution of the objective ܨ௝, and ߛ௝ is a gradation weight 
associated with the ݆௧௛ objective with all ߛ௝ ൐ 0. To minimize the deviations, the ܮ௉ Compromise 
minimized functions. 

3.4.4. Evaluating MODM depending on DM information  
A priori methods 
These methods function by getting basic information from DM before solving the problem. This 
type of information may be from quantitative scales applicable for utility function and value 
function methods, rating scales, or a mixture of them applicable to the Lexicographic method and 
Goal programming. 

 Goal programming 
Perhaps Goal programming is the oldest and widely applied approach to multi-criteria decision-
making. The initial formulations were proposed by (Charnes & Cooper, 1977) that ordered the 
unwanted deviations into several priority levels. The minimization of a deviation at a higher 
priority level is infinitely more important than any deviations at lower priority levels.  
The initial goal programming formulations ordered the unwanted deviations into several priority 
levels, with the minimization of a deviation at a higher priority level is infinitely more important 
than any deviations at lower priority levels.  
In the formulation, the first step is to establish attributes considered in the problem situation. 
Hence, for each attribute, it is necessary to determine the target value ܾ௜. The next step is to 
introduce negative or positive deviation variables into the GP model. The positive deviation 
variable ݌௜ and the negative deviation variable ݊௜ represent the quantification of the achievement 
and non-achievement of the ݅th goal. Generally, the ݅௧௛ goal is: 

ሻݔ௜ሺܨ ൅ ݊௜ െ ௜݌ ൌ ܾ௜ (3.8) 
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Where ݔ is the vector of decision variables. If ܨ௜ሺݔሻ ൒ 	ܾ௜ , then it is necessary to minimize ݊௜ , if 
ሻݔ௜ሺܨ ൑ 	ܾ௜  then ݌௜ must be minimized and if the ݅th goal is to be satisfied concerning the 
achievement level, it is needed to minimize ሺ݊௜ ൅   .௜ሻ݌
The GP aims to minimize the deviations between the achievement of the goals and the related 
aspiration levels. Hence the minimization process can be done by various methods, and each one 
leads to a different GP variant that the main ones are such as the Weighted goal programming 
(WGP) variant, Lexicographic goal programming (LGP), and MINMAX GP. 
The WGP consists of a compound objective consists of all goals. This objective minimizes the 
summation of deviations that exist between the goals and associated aspirational levels. Note that 
according to the DM preference for each goal, the deviations get weights.  
The other GP variant, as mentioned above, is lexicographic goal programming (LGP). The concept 
of this method is the pre-emptive or non-Archimedean priorities. Here, different goals are 
divided into several levels of pre-emptive priorities so that the fulfillment of the goals in a specific 
priority	ܳ௝ is infinitely preferred to any other set of goals situated in a lower priority. In other 
words, in LGP, higher priority goals are satisfied first, i.e., the goals are satisfied regarding a 
lexicographic order. 
The final step is to form the achievement function that substitutes the objective function concept 
in conventional mathematical programming models and compound function in WGP models. 
This achievement function consists of an ordered vector whose dimensions coincide with the 
number of priority levels established in the model. Each component in this vector represents the 
deviation variables. The minimization of these variables ensures that the goals ranked in this 
priority come closest to the established achievement levels. 

݁ݖ݅݉݅݊݅ܯݔ݈݁ ܽ ൌ ሾ݄ଵሺ݊, ,ሻ݌ ݄ଶሺ݊, ,ሻ݌ … ݄௤ሺ݊,  ሻሿ (3.9)݌
While it is not straightforwardly applicable for solving LGP problems, several adopted 
algorithms exist to solve LGP problems. These algorithms are the sequential linear method, the 
partitioning algorithm, which iteratively uses the Simplex, or the modified simplex method that 
uses a multi-phase simplex algorithm. 
MINMAX GP is the third variant to be presented. In this variant, despite a pre-emptive (LGP) or 
non-pre-emptive (WGP), which implies the minimization of the sum of deviational variables, the 
maximum of deviations is minimized. The MINMAX GP model is defined mathematically as 
below: 

 ݀	݁ݖ݅݉݅݊݅ܯ

(3.10) 
.ݏ ௜݊௜ߙ		.ݐ ൅ ௜݌௜ߚ ൑ ݀ 
ሻݔ௜ሺܨ ൅ ݊௜ െ ௜݌ ൌ ܾ௜ 

ݔ ∈  ܨ
ݔ ൒ 0, ݊ ൒ 0, ݌ ൒ 0 

Where ݀ is the maximum deviation, as the model (Eq. 3.10) is an LP problem, the conventional 
Simplex can solve it (ROMERO, 1991). 
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 Lexicographic method(Arora, 2012) 
In this method, ordering the objective functions impose preferences regarding their importance 
rather than by assigning weights. So that the following optimization problems are solved: 

	݁ݖ݅݉݅݊݅ܯ ௜ܨ ሺݔሻ 

(3.11) 
.ݏ ሻݔ௝ሺܨ		.ݐ ൑ ௝ݔ௝ሺܨ

∗ሻ 

݆ ൌ ሺ݅	݋ݐ	1 െ 1ሻ 

݅ ൐ 1,								 ݅ ൌ 1	, . . . , ݇ 
Where ݅ is a function’s position in the preferred sequence, and ܨ௝ሺݔ௝∗ሻ represents the minimum 
value for ݆௧௛ objective function found in the ݆th optimization problem. However, determining the 
uniqueness within the feasible objective space can be difficult. The algorithm terminates once to 
obtain a unique optimum. Often, with continuous problems, this approach terminates after 
finding the optimum of the first objective ܨଵሺݔሻ, Moreover, in any case, the solution is always 
Pareto optimal. Note that it is best to use a global optimization engine with this approach. Besides, 
this method is classified as a vector multi-objective optimization method because it treats each 
objective independently. The advantages of this method are:  

a) the uniqueness of the approach in specifying preferences; 
b) no need to normalize the objective functions; 
c) to provide a Pareto optimal solution. 

Interactive methods 
In these methods, the decision-maker would not be able to make a prior evaluation before solving 
the problem due to its complexity but will be able to evaluate during the solution of an example 
or in the presence of a local solution. In this way, the DM is allowed to intervene in the solution 
process and learn more about the current problem, and he intervenes and checks his preferences 
in a trade-off between levels of different goals constantly during the solving process. There are 
two categories of Interactive methods in terms of possible trade-offs of the available levels for 
different objectives. 

a) The methods in which the explicit information of the trade-offs exist. 
b) The methods in which the implicit information are estimating preferred trade-offs. 

Fig. 3.11 shows these methods classification, and the following subsection briefly describes the 
basic ideas behind the most appropriate ones.  
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Fig. 3. 11. Interactive Methods in Multi-Objective decision Making Evaluation Methods. 

Explicit interaction 
• Simplified Interactive Multiple Objective LP (SIMOLP) 

In this algorithm, first, a multi-objective linear problem is solved like a series of single objective 
linear problems, and then the problem is evaluated and optimized by information received from 
the DM, using weights in each transformation and linear estimation of the value function.  

• Geoffrion algorithm 
This algorithm can solve a linear and nonlinear Vector Maximum Problem (VMP) if the DM can 
identify the utility function among all available ones. This algorithm is in the form of the Frank 
& Wolfe method (Frank & Wolfe, 1956), mainly intended for nonlinearities. This method changes 
a nonlinear problem to a linear one by outer linearization and employing ܨ׏ሺݔሻ. ݀ ൐ 0 (for 
maximizing a problem) to do sequential optimization. 

• Surrogate Worth Trade-off method (SWT) 
This method consists of two steps: the first step aims to obtain efficient solutions, and the trade-
off functions are available in the objectives space; the second step includes a search for selecting 
a preferred solution among efficient solutions.  
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• Interactive Multi-Objective Complex Search 
Box (1965) developed this searching method to solve single-objective nonlinear programs. Later 
on, Biles & Swain (1979) presented a complex search procedure for multi-objective optimization 
of simulated systems. In their method, a simulated model evaluates the objective functions at 
each vertex of the search procedure.  

௝ݕ ൌ ݃௝൫ݔଵ, … , ,ଵݖ௡หݔ … , ௣൯ݖ ൅ ݆						,௝ߝ ൌ 1, . . , ݉ (3.12) 

A simulation trial estimates the system response at a particular set of values ݔ௜௞ by controllable 
input variables ݔ௜, ݅ ൌ 1, … , ݊ and yields responses ߟ௝. 

௝ሻݕሺܧ ൌ ௝ߟ ൌ ݃௝ሺݔଵ, … , ݆					,௡ሻݔ ൌ 1, . . , ݉ (3.13) 

This method has the advantage that the decision maker's underlying value function need not be 
explicitly specified. 

• The method of Satisfactory Goals 
This method is similar to Bounded objective methods, but the evaluation process by interaction 
with DM can result in a more improved final solution. The DM determines acceptable and 
practical satisfactory levels ܮ௜ for goals intentions and then identifies the objective that its goal 
has a minimum satisfactory level ܵܮ and optimizes this objective for main problem constraints 
and other objectives constraints. 
 

 

• Extended ܮ௣ method 
These kinds of methods are explained before in section 3.4.2.1. Applying the method may cause 
several efficient solutions. Therefore, a set of efficient solutions and their multiplicity might make 
the decision-making process complicated. Hence, reducing the current set to a smaller subset 
seems necessary. The Filtering method is a reductive method that the following describes 
concisely. 

o Filtering method 
Here it is tried to eliminate excess points and record a subset of heterogeneous points. Here, a 
compromise function of ܮ௣calculates the heterogeneity of each pair of efficient points: 

௉ܮ ൌ ሾ෍ሺߛ௜หܨ௜
௧ െ ௜ܨ

௛หሻ௉ሿ

௞

௜ୀଵ

ଵ ௣ൗ

൏ ݀ 
 

(3.15) 
 

Where ߛ௜ represents the degree of importance for ݅th objective, ܨ௜௛ is ݅th element of the efficient 
point of ݄ has crossed the filter and ܨ௜௧ is ݅௧௛ element of the efficient point ݐ that is understudy to 

Maximize ௅݂ௌሺݔሻ  

Subject to ݃௝ሺݔሻ ൑ 0 ,                    ݆ ൌ 1,2, . . , ݉ (3.14) 

 ௜݂ሺݔሻ ൒ ݅         ,௜ܮ ൌ 1,2, . . , ݇; ݅ ്   ܵܮ
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control heterogeneity. Besides, ݀ is a distance parameter that adjusts the heterogeneity process 
and 1 ൑ ܲ ൑ ∞. 

In addition to the Filtering method, there are other reductive methods like the Clustering method, 
value function assessment, and Ranking method. 

• Method of  Zionts-Wallenius 
(Zionts & Wallenius, 1976) proposed a method based on the progressive preference information 
given in the interactive programming methods. In this method, the utility function is linear since 
the accurate weights in such functions are not explicitly known. Hence, the method chooses an 
arbitrary set of positive multipliers or weights ߛ௜ ൒ ∑ satisfying ߝ ௜ߛ ൌ 1௣

௜ୀଵ  in the first step. 
Moreover, it generates a composite objective function or utility function using these multipliers.  

Maximize ෍ߛ௜

௞

௜ୀଵ

௜݂ሺݔሻ  

Subject to ݃௝ሺݔሻ ൑ 0 ,                    ݆ ൌ 1,2, . . , ݉ (3.16) 

ݔ  ൒ 0,           
The composite objective function is then optimized to produce an extremely efficient solution ݔ∗ 
to the problem. The utility function is not known explicitly; therefore, the set of all nonbasic 
variables consists of two subsets: 

(1) Those nonbasic variables lead to efficient adjacent extreme points when introduced into 
the basis.  

(2) Those nonbasic variables, when introduced into the basis, do not lead to efficient adjacent 
extreme points. 

The first subset of variables is known as efficient variables, and the second subset is inefficient 
variables. In finding efficient variables set from the set of nonbasic variables, essentially, ݓ௜௝ 
values must be estimated based on implicit information around the optimal solution at hand. 
These ݓ௜௝values represent the decrease in the objective function ܨ௜ due to some specified increase 
in ݔ௝. For estimating ݓ௜௝ values. After value estimation of ݓ௜௝, the following model is solved for 
each nonbasic variable ݔ௟ (݈ ∈ ܰ): 

௜ߛ௜௟ݓ෍	:݊݅ܯ

௣

௜ୀଵ

 

 
(3.17) 

 

.ݏ ௜ߛ௜௟ݓ෍		.ݐ

௣

௜ୀଵ

൒ 0, ݆ ് ݈, ݆ ∈  ܸܤܰ

෍ߛ௜

௣

௜ୀ௜

ൌ 1 

௜ߛ ൒ 0 
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Step 3 is to examine if the variable ݔ௟ is efficient or not. Hence, if the optimal value of Eq. (3.17) is 
negative, the variable ݔ௟ is efficient while it is nonnegative the ݔ௟ is not efficient.  
Step 4. For each variable ݔ௝ of a subset of efficient variables, the DM responds if he accepts a 
decrease in the objective function ܨଵ to ܨ௣	of ݓଵ௝ to ݓ௣௝ or not.  

a) If all the responses are “no” for all efficient variables, terminate the procedure and, ߛ௜ is 
defined as the most efficient weight for the utility function. 

b) If the DM response is “yes,” for each yes, an inequality of the below form is constructed: 

෍ݓ௜௟ߛ௜ ൑ െߝ

௣

௜ୀଵ

 (3.18)
 

c) for each ‘no’ response, construct an inequality of the form (3.19) 

෍ݓ௜௟ߛ௜ ൒ ߝ

௣

௜ୀଵ

 (3.19)
 

d) for each response of indifference, construct equality of the form as below: 

෍ݓ௜௟ߛ௜ ൌ 0

௣

௜ୀଵ

 (3.20)
 

Here is a feasible solution to all previously constructed constraints of the form (3.15)-(3.20), and 
the following set of constraints: 

෍ߛ௜ ൌ 1,

௣

௜ୀଵ

௜ߛ	 ൒ (3.21) ߝ
 

When the resulting set of ߛ௜ is obtained, the objective function is optimized to produce a new, 
extremely efficient solution to the problem. This process assures the convergence of an overall 
optimal solution concerning the DM’s implicit utility function.  
Implicit interaction 

 Step Methods (STEM) 
STEM is an iterative exploration procedure to reach after a certain number of cycles. Each cycle 
݉ consists of a calculation phase and a decision-making phase (i.e., a conversation between the 
analyst and the decision-maker). During the decision-making phase, the DM examines the results 
of the calculation phase to give new information about his objectives. 
This method is to solve a MOLP as is shown below: 

:ݔܽܯ ሼܥଵ
௧ݔ, ଶܥ

௧ݔ, … , ௞ܥ
௧ݔሽ 

.ݏ												 (3.22) .ݐ : ݔܣ ൑ ܾ 
ݔ												 ൒ 0 

under this model, the STEM algorithm description is as following: 

Step 0. Construction of a Pay-off table. Before starting the first cycle, it is necessary to construct 
a pay-off table of the optimum objectives calculated for the feasible region.  
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The ܼ௜௝ represents the value of the objective ݅௧௛ when the objective ݆௧௛ reaches to its ideal value of 
௝ܨ
∗. 

Step 1. Calculation phase. For each cycle ݉, linear programming (3.18)aims to minimize the	ߛ 
where implies the nearest, in the MINIMAX sense, to the ideal solution	ܨ௝∗: 

 ߛ	݊݅ܯ

.ݏ												 (3.23) .ݐ ߛ				: ൒ ቀܨ௝
∗ െ ሻቁݔ௝ሺܨ . ௝ߚ  

ݔ ∈ ܵ௠ 
ߛ ൒ 0 

The coefficient ߚ௝ represents the relative importance of the distances to the optimized objectives, 
note that they are only locally effective and but not predominant as the weights in the Utility 
method. 
Step 2. Decision phase. The compromise solution ݔ௠ is introduced to the decision-maker, who 
compares the objective ܨ௠ with an ideal value of ܨ௝∗. If ܨ௝௠ is satisfactory and, the decision-maker 
must accept the value of relaxation of ܨ௝∗ to allow an improvement of the unsatisfactory ones in 
the next cycle. 

Step 3. Repetition. Repeating previous steps until the value of all ܨ௝௠ will be satisfactory.   
 Sequential Multi-Objective problem solving (SEMOPS) 

SEMOPS, a sequential multi-objective problem-solving technique, allows the decision-maker to 
compromise one objective versus another in an interactive manner. SEMOPS cyclically uses a 
surrogate objective function based on goals and the decision maker's aspirations about achieving 
these goals. SEMOPS is a three-step algorithm involving setup, iteration, and termination.  

a) The DM defines aspiration levels ܮܣ ൌ ሼܮܣଵ, . . . ,  .௜ሽܮܣ
b) Lower and upper bounds of objective ݄݅ݐ is ሼܨ௜௟,  .௜௨ሽܨ

Step 1. Setup. To unscaling objectives, each ܨ௜ሺݔሻ is converted to ܪ௜ሺݔሻ (in the range of zero and 
aspiration level ܮܣ௜ also are converted to ܣ௜. 

ሻݔ௜ሺܪ ൌ
ሻݔ௜ሺܨ െ ݈݅ܨ
ݑ݅ܨ െ ݈݅ܨ

൅ ߝ ߝ ് 0 (3.24)

ܨ݆ ⋯ 2ܨ 1ܨ   ⋯ ܨ݇

1ܨ 1ܨ
∗ ܼ21   ܼ݆ 1  ܼ݇1

12ܼ 2ܨ 2ܨ 
∗  ܼ݆ 2  ܼ݇2

⋮ ⋮ ⋮  ⋮  ⋮

ܨ݆   ܼ1݆  ܼ2݆ ݆ܼ݇  ∗ܨ݆  
⋮  ⋮ ⋮  ⋮  ⋮

ܨ݇   ܼ1݇  ܼ2݇   ܼ݆ ݇ ∗ܨ݇  
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௜ܣ ൌ
௜ܮܣ െ ݈݅ܨ
ݑ݅ܨ െ ݈݅ܨ

൅  ߝ

Step 2. Iteration. This step is the interactive segment of the algorithm involving a cycle between 
an optimization phase and an evolution phase until achieving satisfaction. At the beginning of 
the ݅௧௛ cycle, a principal problem is formed with goal formulation ܨ௜ሺݔሻ, and the remained 
objectives form sub-problems. They should reach their associated aspiration levels as the set 
goals. The achieved solutions are introduced to the DM to evaluate. New aspiration levels set 
goals. 
Step 3. Termination. The optimum solution is introduced to DM to evaluate and decide about 
the next cycle. The steps above are repeating until achieving a satisfactory solution.  

 Method of Displaced Ideal 
This method was proposed by Zeleny (1974) for a MOLP, and ܮ௣ Metric is used in this method. 
However, the ideal solution is in the frontier point ܨሺݔ∗ሻ, it is not applicable for the objective-
space. The efficient solutions set lies in the sides between A, and B but reducing these solutions 
to subset C leads to having efficient solutions with the least distance from the ideal point.  

 
Fig. 3. 12. Method of Displaced Ideal for two objective functions. 

Note that the method of the displaced ideal is an adequate method for problems with complex, 
heterogeneous, and conflicting objectives, and it is not necessarily needed to receive information 
from the DM.  
A posteriori methods 
In these methods, when in the termination phase, a subset of an efficient solution is proposed to 
DM to select and evaluate the most satisfactory one. Also, there is no need for the utility function. 
Here, these methods include Parametric methods, the limited ܾ௅ methods, Multi-objective linear 
programming, and Multi-criteria simplex method. 

 Parametric methods 
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This method is known for generating various efficient solutions to propose to the DM. It is 
assumed an additive linear utility function, and the different weight values are applied to 
generate efficient solutions. Its mathematical model is as below: 

෍	ݔܽܯ ௝߱ܨ௝ሺݔሻ

௞

௝ୀଵ

 

(3.25) 
.ݏ	 .ݐ ݔ			: ∈ ܵ			 

௝߱ ൒ 0,෍ ௝߱ ൌ 1 

Note that weights ߱ do not represent the relative importance of objectives, but they change 
parametrically to find efficient points. This method is illustrated in a two-dimensional objective 
space as follows: 

ܮ ൌ ߱ଵܨଵ ൅ ߱ଶܨଶ										 

݁݌݋݈ܵ ൌ െ
߱ଵ
߱ଶ

 

Fig. 3. 13. Convex (a) and Non-Convex (b) objective functions.

Fig. 3.13 (a) shows function ܮ is the tangent line surface ܵ that defines point ܣ as an efficient point 
in the solution space ܵ . If solution space is non-convex, as Fig. 3.13 (b) shows, it may be impossible 
to find some efficient points such as ܣ. Note that the mentioned method does not apply to non-
linear problems even with convex solution space. 

 Multi-objective linear programming methods 
These methods are applicable for multi-objective linear programming, and therefore the available 
frontier points of a convex space can be found. A formulated MOLP is as below: 

 										ݔ௞ൈ௡ܥ	:ݔܽܯ

.ݏ (3.26) .ݐ ݔ௠ൈ௡ܣ			: ൌ ܾ			 
ݔ                       ൒ 0 

Most of the related algorithms include three steps as following: 
Step 1. Finding a feasible frontier point. 
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Step 2. Detecting the first efficient frontier point. 
Step 3. Detecting all efficient frontier points. 

 Multi-criteria Simplex method 
The multi-criteria simplex method is a natural generalization of the simplex method. This method 
was proposed by (P. L. Yu & Zeleny, 1975), and it is assumed: 

ܰ Efficient solutions set 
ܺ Available solutions set   

ܦ ൌ ܺ െ ܰ Non-efficient solution set 
௘ܰ௫ Efficient frontier points 

They studied the connectedness of ௘ܰ௫ and derive an algorithm to locate the entire set ௘ܰ௫. In this 
method, the set of efficient frontier points for a MOLP is a connected set, and any other efficient 
point is a convex linear composition of an efficient frontier points subset. 

  Optimization under uncertainty 
In deterministic models, the model's output is entirely determined by the parameter values and 
the initial conditions (i.e., all the required data is to know in advance). Stochastic models contain 
inherent randomness. The same set of parameter values and primary conditions result in an 
ensemble of different outputs. 
In a large number of problems, it is necessary to decide in the presence of uncertainty. In 
production planning and engineering design, uncertainty manages issues such as fuel prices, the 
availability of electricity, and the demand for chemicals. The critical challenges in optimization 
under uncertainty are huge uncertainty space that frequently leads to very large-scale 
optimization models and decision making in the presence of integer decision variables.  

3.4.5. Stochastic programming 
Stochastic programming is a structure for modeling optimization problems that involve 
uncertainty. Whereas all the previously presented strategies and methodologies depend on the 
data required to be known in advance, real-world problems almost invariably include some 
unknown parameters. Stochastic programming models take advantage of probability 
distributions governing the data are known or can be estimated. This section describes the 
stochastic and particularly the two-stage stochastic program.  
Stochastic programs are mathematical models where some of the data and parameters 
incorporated into objectives or constraints are uncertain. As described before, usually, a 
probability distribution on the parameters characterizes uncertainty. However, the uncertainty is 
rigorously defined; it can practically range from a few scenarios to specific and precise joint 
probability distributions. 
The most frequent model used to tackle problems under uncertainty is the two-stage stochastic 
programming and generally consists of two distinct sets of decision variables: first-stage 
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structural decision variables that are fixed and free of any uncertainty, and second-stage control 
decision variables that are affected by the uncertainty in input data (Prékopa, 1995). 

Let ݔ and ݕ define the first and second stage decision vectors, respectively, and let ߦ be the random 
observed vector. Consequently, there are two optimization problems to be solved. The second 
stage problem is defined by assuming ݔ and ߦ to be fixed, and is the following: 

 ݕ்ݍ			:݊݅ܯ
.ݏ		 (3.27) .ݐ ݔܶ			: ൅ܹݕ ൌ  			ߦ

ݕ                       ൒ 0 
Here, the first stage decision vector ݔ satisfies some deterministic constraints: 

ݔܣ ൌ ܾ														 
ݔ                          ൒ 0 

 
(3.28) 

Let ܭ be the set of all those ݔ vectors for which problem (3.27) has a feasible solution for every 
possible value of the random vector ݍ .ߦሺݔ,  ሻ is designated the optimum value of the problemߦ
(3.21) and ܳሺݔሻ ൌ ,ݔሺݍሾܧ  ,ሻ is called the recourse function. Thereforeݔሻሿ where the function ܳሺߦ
the first stage of problem formulation is as follows: 

ݔሼ்ܿ			:݊݅ܯ ൅ ܳሺݔሻሽ 

(3.29) 
.ݏ				 .ݐ ݔܣ			: ൌ ܾ				 

ݔ ൒ 0 
ݔ ∈  ܭ

To approximate a feasible global solution by using the two-stage model (Eq. (3.27) & Eq. (3.29)), 
a set of scenarios represents the problem variability using a scenario tree representation (Fig. 
3.14). 

 

Fig. 3. 14. Uncertainties in two-stage stochastic programming.
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The scenario-based approach 
Generally, uncertain parameters ߦ are represented by using a discrete number of possible 
scenarios; thus, a deterministic equivalent program can be formulated for a stochastic program 
as displayed in Eq. (3.24): 

݉݅݊
௫,௬ೞ೎

௢௕ܨ ൌ෍ܾ݋ݎ݌௦௖ܨሺݔ, ௦௖ݕ

ௌ஼

௦௖

, ௦௖ሻߦ  

.ݏ		 (3.30) .ݐ ݔܣ			: ൌ ܾ				 
ݔ                       ൒ 0, ௦௖ݕ	 ൒ 0, ௦௖ߦ			 ൒ 0 
ܿݏ                       ∈  ܥܵ

Here, 	ߦ௦௖ is the vector of values taken by the uncertain parameters in the scenarios ܿݏ and ܾ݋ݎ݌௦௖ 
is the probability of occurrence of scenario ܿݏ belonging to the set ܵܥ.  
Here, the better the representation of the scenarios used results in the better the robust solution 
approximates. Hence, the most common strategy is the Monte-Carlo sampling. This method aims 
to generate a random set of uncertain parameters considering a mean value and a standard 
deviation. In this thesis, Monte-Carlo sampling has been used as a unique sampling technique; 
however, other sampling techniques are used, such as polynomial-based methods, Sobol 
sampling, and methods based on low-discrepancy samples (also known as quasi-Monte Carlo 
methods). 
Besides the representativeness of the set of scenarios, its size significantly affects the 
computational effort (i.e., optimization time). In this line, scenario reduction methods are 
proposed. These methods promote selecting a trim and representative set of scenarios, as 
displayed in Fig. 3.15. 

 
Fig. 3. 15. Graphical representation of the clustering technique for scenario reduction method (Römisch, 2009).

The most effective method for scenario reduction is the transportation distance-based scenario 
reduction initially proposed by Heitsch and Römisch (2003) and later extended by(Z. Li & 
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Floudas, 2014). This method systematically minimizes the distance (i.e., Kantorovich distance) 
among scenarios, finding the optimal subset representing the original set of scenarios. 

3.5.  Optimization software 
By putting into practice optimization methods and implementing optimal solutions, many 
optimization problems can be solved. However, real-life problems are more complicated than the 
theoretically stated pure base mathematical models. In some books or publications, there are 
several optimization software for solving different problem scales. For this purpose, there are 
some commercial tools including GAMS (General Algebraic Modeling System, (Bussieck & 
Meeraus, 2004)), AMPL (A Mathematical Programming Language, (Fourer, Gay, & Kernighan, 
2003)), AIMMS (Advanced Interactive Multidimensional Modeling system, (Roelofs & Bisschop, 
2020)), LINGO, LINDO, MATLAB, and the recently introduced PYOMO. 
The conventional optimization software has common characteristics such as general 
mathematical language, different solvers to use. In this thesis, GAMS has been selected since it is 
a widely used modeling tool and optimization software in different fields, like the PSE, and 
promotes future comparisons. 

3.5.1. GAMS-General Algebraic Modeling System 
The General Algebraic Modeling System (GAMS) is a mathematical modeling tool for 
optimization. GAMS is designed for solving complex and large-scale models, specifically for 
modeling linear, nonlinear, and mixed-integer optimization problems.  
Besides, GAMS has some advantages that encourage to select that listed as below: 

 Strong virtual parallelism across set elements when solving an optimization problem 
makes programming very convenient to the user. 

 A compelling bunch of options to the user regarding condition definitions-at set level, at 
the statement level, and solver level. 

 "Dynamic" set definitions within parent set makes a variety of optimization solution space 
very convenient within nested loops or otherwise. It also makes multiple scenario 
programming very easy. 

While the platform is designed for deterministic problems, it is also applicable to stochastic 
problems with a bit of effort and careful programming. The only thing that is challenging on 
GAMS is the realization of complex evolutionary optimization algorithms. Moreover, it is worth 
mentioning that the optimization algorithms are embedded in some of the different GAMS 
solvers. Each solver is usually developed to tackle a specific type of program (i.e., LP, NLP, MILP, 
MINLP). 
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3.5.2. Solvers 
Many solvers are available to solve MILP problems such as BARON, BDMLP, GUROBI, LINDO, 
MOSEK, and CPLEX. Similarly, some other solvers are used to address convex and non-convex 
problems, including DICOPT (convex/non-convex), GloMIQO (convex/non-convex quadratic), 
BARON (convex/nonconvex), and SCIP (convex/non-convex), among others. In this thesis, the 
main solver to be used is CPLEX.  

3.6.  Final remarks 
In this chapter, different optimization techniques have been delineated. The central notion behind 
each technique has been explained concisely to provide a general perspective of the theory 
associated with the solution techniques. Regarding implementing mathematical formulation in 
the optimization software, having a good understanding of the optimization principles is 
necessary to interpret results and debug skills. Notably, this thesis has focused on the 
combination and development of multi-objective optimization and uncertainty approaches. 
Besides, solution recognition strategies have been proposed extensively.  
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 Chapter 4

 

SIMPLIFIED TARGETING MODELS FOR SC RETROFITTING 

 
Our traditional production system needs retrofitting to be more sustainable or adapted to 
sustainability criteria. 
An environmentally, economically, and socially sustainable production system is supposed to 
deal with conflicting objectives. Hence, this chapter aims to formulate and solve multi-objective 
problems by exploiting mathematical programming techniques to simultaneously optimize the 
system's performance through supply chains and production processes. This thesis utilizes a real-
world case study to validate the viability of the novel model. 
Despite the comprehensive capability of multi-objective approaches to simultaneously evaluate 
several objectives, the studies so far have proposed models to optimize small-scale and non-
complex problems. Notably, these approaches are practical to address complex sustainability 
problems. Hence, these approaches could be applied to improve supply chain management by 
considering both the quantified impact and its effects on more process conditions. 
This chapter aims to propose a general systematic multi-objective strategic and tactical 
optimization model towards more sustainable and robust decision-making for large-scale supply 
chain superstructures. The proposed model exploits mathematical programming techniques to 
simultaneously optimize the performance of large-scale SCs, particularly integrated material 
bioenergy supply chains, in the presence of conflicting objectives (economic and environmental). 

4.1.  Application of Multi-Objective approaches in sustainable supply chain 
retrofitting 

Optimization strategies should be improved within the framework of industrial symbiosis 
systems to meet sustainability goals. Thus, sustainable design and planning models for the 
process industries have strongly stimulated industries and academia during the last three 
decades. The industries and academia have set their goals to achieve a system with maximum 
sustainability adoption. Hence, their studies mainly have focused on retrofitting strategies, 
therefore, addressing fundamental improvements in energy, environmental, and cost 
performance. These strategies can involve industries in different levels, such as a unit, process 
segment, and overall system levels. Process industries, as the particular case, must address the 
following challenges: 
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(i) The management strategies of material/energy integration in process industries; 
(ii) The integration of economic and environmental aspects within the framework of 

supply chain management; 
(iii) The development of efficient retrofitting techniques to production processes;  

A holistic systems-based approach can tackle these challenges. Such an approach aims to propose 
an integrated formulation to optimize the global impact considering feasibility constraints. In this 
regard, the studies have applied mathematical programming to formulate the sustainability-
conscious industrial systems (Arora, 2012; Grossmann & Guillén-Gosálbez, 2010). For example, 
in environmentally conscious optimization models, environmental impact metrics combine with 
mathematical programming. For instance, (Sabio et al., 2014) proposed an integrated LCA model 
through multi-objective mathematical programming to demonstrate that the combination of 
mathematical programming and LCA provides a powerful tool to optimize the environmental 
and economic performance of industrial processes.  
Using environmental metrics to assess the environmental impact allows industries to control the 
contaminations and damages, mainly ܱܥଶ emissions caused by industrial activities. However, it 
is not a unique approach towards sustainability. As mentioned in Chapter 1, bioenergy 
substitution with fossil-based energies mitigates greenhouse gas emissions. A wide range of 
studies in the sustainability area has addressed bioenergy supply chain optimization using 
mathematical programming technics (mentioned in detail in Chapter 2). However, very few 
works have addressed bioenergy SCs optimization considering the byproducts as added-value 
products in the optimization process. For instance, Cambero et al. (2016) developed a bi-objective 
MIP model to optimize bioenergy SC network design. The novelty of their work is that modeling 
energy and material flows accurately estimates the quantities of exchanged material and energy 
and emissions across the supply chain simultaneously. However, the model neglected the added 
value of byproducts. 
While very few approaches have addressed sustainable supply chain retrofitting, a general model 
is needed to simultaneously optimize the retrofitted supply chain's economic benefits and 
environmental impacts.  
This chapter dedicates to introduce a novel model for the optimal retrofit and planning of large-
scale material/energy networks based on multi-objective mathematical formulations that make 
use of linear programming. Here two conflicting objectives are net present value (NPV) and 
environmental damage that is the function of ܱܥଶ emissions. The first objective is commonly 
optimized in process industries reflecting the economic dimension of sustainability. The other 
one quantifies the environmental impacts. Hence, this chapter's significant contribution is a 
mathematical approach adoption capturing the cause-effect relationship between 
material/energy consumption/demand and the associated environmental impacts. 
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4.2.  Problem statement 
This chapter addresses the retrofitting of a production network system. Fig. 4.1 depicts the 
problem statement concisely. Each region involved in the production process has associated 
energy demand that should be satisfied. This energy can be provided by external resources 
traditionally. Here, retrofitting opens the opportunity to provide the required energy internally. 
The process industries include different production technologies coupled with internal multi-
type energy generation technology. The energy generator unit receives and converts production 
plants' residues to energy in different types. The internally generated energy satisfies any energy 
demand, and the excess is transferrable to the grid. Note that, in any case, if the internal energy 
is not sufficient, the external resources can supply the shortage. The storage facilities are 
intermediaries to distribute the products to the markets. 

 
Fig. 4. 1. Multi-type energy integrated to material SC Network.

Note that material resources that play as the suppliers of the production process and internal 
energy generation units. The process industries include different production technologies 
coupled with internal energy generation technology, acting as raw material consumers and 
potential sites for storage technologies. The explicit production rate and material flow modeling 
among the plants and regions estimate the emissions across the supply chain. 
The goal is to identify the optimum design of the network configuration and plan the operational 
processes in terms of economic performance and environmental impacts.   
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4.3.  Mathematical Model 
The mathematical equations formulate the network shown in Fig. 4.1. The formulations mainly 
describe mass and energy balances and capacity constraints of each section of the network. The 
mathematical model of this contribution is mixed-integer linear programming (MILP) and used 
to optimize the stated problem in this chapter. This MILP is an extension of the model introduced 
by (Mele et al., 2011). This contribution has extended the Melé model by integrating the energy 
generation section.  

4.3.1. Material production and associated constraints equations 
Mass balances equations 
Eq. (4.1) defines the mass balance for each potential site. In the equation, for each material type ݅, 
the is a mass balance, and it is the summation of initial inventory ܵ ௜ܶ,௦,௚,௧ିଵ maintained in region 
݃ from the previous period added to the purchased raw material ܲ ௜ܷ,௚,௧ , the total produced 
material ܲ ௜ܶ,௚,௧ and input material flow rate ܳ௜,௟,௚ᇲ,௚,௧ that is equal to the current inventory ܵ ௜ܶ,௦,௚,௧ 
added to delivered product ܦ ௜ܶ,௚,௧ , the output material flow ܳ௜,௟,௚,௚ᇲ,௧ and generated waste ௜ܹ,௚,௧. 

∑ ܵ ௜ܶ,௦,௚,௧ିଵ ൅ ܲ ௜ܶ,௚,௧ ൅ ܲ ௜ܷ,௚,௧ ൅ ∑ ∑ ܳ௜,௟,௚ᇲ,௚,௧ ൌ௚ᇲஷ௚௟∈ூ௅ሺ௜,௟ሻ௦∈ூௌሺ௜,௦ሻ

∑ ܵ ௜ܶ,௦,௚,௧ ൅ ܶܦ ௜ܵ,௚,௧ ൅ ∑ ∑ ܳ௜,௟,௚,௚ᇲ,௧௚ᇲஷ௚௟∈ூ௅ሺ௜,௟ሻ ൅ ௜ܹ,௚,௧௦∈ூௌሺ௜,௦ሻ   ∀݅, ݃,  ݐ (4.1)

Note that ܵܫሺ݅, ,ሺ݅ܮܫ and ݏ ሻ is a subset that links material ݅ to its adequate storage technologyݏ ݈ሻ 
is an ordered pair of material ݅ and its suitable transportation mode ݈. 

ܲ ௜ܶ,௚,௧ ൌ െ∑ ௣,௜ߩ݊݃݅ݏ ൈ ௜,௣,௚,௧௣ܧܲ   ∀݅, ݃,  ݐ (4.2)
Equation (4.2) defines the total material production rate from the production rates of each 
technology ݌ installed in each site ݃.  

௜,௣,௚,௧ܧܲ ൌ |௣,௜ߩ| ∑ ௜,௣,௚,௧௜ᇲ∈ூெሺ௜ᇲ,௣ሻܧܲ   ∀݅, ,݌ ݃,  ݐ (4.3)
In equation (4.3), ܯܫሺ݅,  Note that the .݌ ሻ links the main product ݅ to its production technology݌
material balance coefficient ߩ௣,௜ is associated with technology ݌ that produces product/byproduct 
݅. 
Mass flow constraints 
The purchase of the raw material in region ݃ during period ݐ is limited by its existing production 
capacity, as defined in Eq. (4.4).  

ܲ ௜ܷ,௚,௧ ൑ ݅  ௚,௧݌݋ݎܥ݌ܽܥ ൌ ݓܴܽ ,݈ܽ݅ݎ݁ݐܽ݉ ∀݃,  ݐ (4.4)
In the following, the total product inventory ܵ ௜ܶ,௦,௚,௧ is limited by the storage capacity during 
period ݐ: 

∑ ܵ ௜ܶ,௦,௚,௧ ൑ ௦,௚,௧௜∈ூௌሺ௜,௦ሻ݌ܽܥܵ ,ݏ∀   ݃,  ݐ (4.5)
During the operation, the average inventory ܮܫܣ௜,௚,௧ depends on the amount of material delivered 
to the associated market. 
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௜,௚,௧ܮܫܣ ൌ ܶܦߪ ௜ܵ,௚,௧  ∀݅, ݃,  ݐ (4.6)
Here, ߪ is the storage period defined as the average time a product can be stored by a storage 
technology. The total storage capacity in each site must be at least twice the average inventory 
level of product	݅, to manage the supply and demand fluctuations (Eq. (4.7)). 

௜,௚,௧ܮܫܣ2 ൑ ∑ ௦,௚,௧௦∈ூௌሺ௜,௦ሻ݌ܽܥܵ   ∀݅, ݃,  ݐ (4.7)
Notice that delivered product quantityܶܦ ௜ܵ,௚,௧ is supposed to be equal to or less the market 
demand amount ܵܦ௜,௚,௧. 

ܶܦ ௜ܵ,௚,௧ ൑ ,݅∀ ௜,௚,௧ܦܵ ݃,  ݐ (4.8)
A binary variable represents the transportation links between the two sites. It equals 1 if a 
transportation link is established between the two sites and 0 otherwise. 

ܺ௟,௚,௚ᇲ,௧ ൅ ܺ௟,௚ᇲ,௚,௧ ൌ 1  ∀݈, ݃, ݃ᇱ, ሺ݃ݐ ് ݃ᇱሻ  (4.9)
Note that a region can either import or export material ݅, but not both at the same time.  
Besides, the total of material flows is between the lower and upper capacity of the flow rate. 

ܳ௟ܺ௟,௚,௚ᇲ,௧ ൑ ∑ ܳ௜,௟,௚,௚ᇲ,௧௜∈ூ௅ሺ௜,௟ሻ ൑ ܳ௟ܺ௟,௚,௚ᇲ,௧  ∀݈, ݃, ݃ᇱሺ݃ ് ݃ᇱሻ,  ݐ (4.10)
In this equation, subset ܮܫሺ݅, ݈ሻ represents the allowable combinations of material ݅ and suitable 
transportation mode ݈. 
Production and storage capacity constraints 
The production rate of each technology ݌ in site ݃ must be less than the capacity in use and more 
than the minimum capacity of the available technology. Note that	߬ is the minimum desired 
percentage of the available technology.  

௣,௚,௧݌ܽܥܲ|௣,௜ߩ|߬ ൑ ௜,௣,௚,௧ܧܲ ൑ ,݃∀  ௣,௚,௧݌ܽܥܲ|௣,௜ߩ| ,ݐ ,ሺ݅ܯܫ  ሻ݌ (4.11)
The capacity of technology ݌ in each period equal to the summation of the available capacity of 
the previous period, plus the capacity expansion in the current period (ܲܧ݌ܽܥ௣,௚,௧).   

௣,௚,௧݌ܽܥܲ ൌ ௣,௚,௧ିଵ݌ܽܥܲ ൅ ,݌∀ ௣,௚,௧ܧ݌ܽܥܲ ݃,  ݐ (4.12)
Besides, the capacity expansion is limited by upper and lower bounds capacities, as defined by 
Eq. (4.13). ܰ ௣ܲ,௚,௧ is an integer variable that indicates the number of plants installed in site ݃ and 
period ݐ. 

௣ܰ݌ܽܥܲ ௣ܲ,௚,௧ ൑ ௣,௚,௧ܧ݌ܽܥܲ ൑ ௣ܰ݌ܽܥܲ ௣ܲ,௚,௧ ∀݌, ݃,  ݐ (4.13)
Note that the capacity expansion must begin and finish within a period. Generally, in design 
problems, the period length can be one to several years. Therefore, the maximum allowable 
capacity expansion should be executed within one period.   
Storage capacity in any period is the summation of the existing capacity of the previous period 
and the expanded capacity in the current period.   

௦,௚,௧݌ܽܥܵ ൌ ௦,௚,௧ିଵ݌ܽܥܵ ൅ ,ݏ∀ ௦,௚,௧ܧ݌ܽܥܵ ݃,  ݐ (4.14)
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The storage capacity expansion is confined between the maximum and minimum available 
storage capacity of each technology, as stated in Eq. (4.15). ܰܵ௦,௚,௧ is an integer variable that 
indicates the number of plants installed in site ݃ and period ݐ. 

௦ܰܵ௦,௚,௧݌ܽܥܵ ൑ ௦,௚,௧ܧ݌ܽܥܵ ൑ ,ݏ∀ ௦ܰܵ௦,௚,௧݌ܽܥܵ ݃,  ݐ (4.15)

4.3.2. Energy generation and associated constraints equations 
 Energy balances and flows equations 
Due to single-resource energy generation, the total energy demand (ܶ݀݊ܽ݉݁ܦ݈ܽݐ݋௚,௧ ) is equal to 

the energy demand needed per unit of raw material (ݐ,݃݀݊ܽ݉݁ܦ) multiplied by the amount of 

raw material amount ሺ	ܲ ௜ܷ,௚,௧) in region ݃, each period ݐ. 
ݐ,݃݀݊ܽ݉݁ܦ݈ܽݐ݋ܶ ൌ ݐ,݃,ܷ݅ܲ ൈ  ݐ,݃݀݊ܽ݉݁ܦ

Eq.(4.16) defines the energy balance in each region and period: 

∑ ሾܬܫ݊ܧ௘,௚,௧ ൈ ௘ሿ௘ܬܫ݂ܧ ൅ ∑ ∑ ሾܬܺ݊ܧ௘,௫,௚,௧ ൈ ௫݂ܺܧ ௘,௫ሿܬ ൌ௘∈ா௑ሺ௘,௫ሻ

  ௚,௧݀݊ܽ݉݁ܦ݈ܽݐ݋ܶ
	∀݃,  ݐ (4.16)

Here, the total energy demand ܶ݀݊ܽ݉݁ܦ݈ܽݐ݋௚,௧ of the process plant located in region ݃, is equal 
to the total of internal energy flows ܬܫ݊ܧ௘,௚,௧ (flows between an energy generator and the process 
plant), plus the total external energy flow ܬܺ݊ܧ௘,௫,௚,௧ that the process plant receives from the 
external resources ܬܺ݊ܧ௘,௫,௚,௧. The conversion efficiencies between energy resources and the 
process plant are represented by ܬܫ݂ܧ௘ and ܬ݂ܺܧ௘,௫. In Eq. (4.16), subset ܺܧሺ݁,  ሻ links the energyݔ
type ݁ to its external supplier ݔ. 
The energy type ݁ generated in the internal resource will satisfy the process plant demand or 
market to the external energy demanders (Eq. (4.17)) and indicate the energy balance between 
internal and external resources.  

௘,௚,௧ܬܫ݊ܧ ൈ ௘ܬܫ݂ܧ ൅ ௘,௫,௚,௧ܺܫ݊ܧ ൈ ௘,௫ܺܫ݂ܧ ൌ ,݃∀ ௘,௚,௧ܩܫ݊ܧ ,ݐ ,ሺ݁ܺܧ  ሻݔ (4.17)
Here, ݔ,݁ܺܫ݂ܧ represents the conversion efficiency of the excess energy ܺܫ݊ܧ௘,௫,௚,௧ that can be sent 

to the external energy generation resources while, ܬܫ݊ܧ௘,௚,௧ is the energy flow consumed in the 
production plant while ܩܫ݊ܧ௘,௚,௧ is the total generated energy of type ݁ in region ݃ and period ݐ, 
respectively.  
Installation and generation capacity constraints 
The following equations define the installation capacity:  

௚ܫݓܲ ൑  ݃∀ ݔܽܯܫݓܲ (4.18)
௚ܫݓܲ ൈ ܫݓ݂ܲݎݑܵ ൑ (4.19) ݃∀ ݔܽܯ݂ܶݎݑܵ

Equations (4.20) to (4.23) correspond to the Big-M method, introducing the binary variable ݊ܩ௚,௧ 
(the generation decision variable) to avoid nonlinearity.   

௚,௧ܩܫݓܲ ൑ ݔܽܯܫݓܲ ൈ ,݃∀ ௚,௧݊ܩ  ݐ (4.20)
௚,௧ܩܫݓܲ ൒ െܲݔܽܯܫݓ ൈ ,݃∀ ௚,௧݊ܩ (4.21) ݐ
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ݐ,݃ܩܫݓܲ ൑ ݐ,݃ݔܽܯܩܫݓܲ ൅ ݔܽܯܫݓܲ ൈ ሺݐ,݃݊ܩ െ 1ሻ  ∀݃, (4.22) ݐ
ݐ,݃ܩܫݓܲ ൒ ݐ,݃݊݅ܯܩܫݓܲ െ ݔܽܯܫݓܲ ൈ ሺݐ,݃݊ܩ െ 1ሻ  ∀݃, (4.23) ݐ

It needs to choose a value of M sufficiently large to make the problem feasible and small enough 
to limit it. In this case, M corresponds to the maximum power capacity installation ܲ  ,Here .ݔܽܯܫݓ
parameters ܲݔܽܯܩܫݓ௚,௧ and ܲ݊݅ܯܩܫݓ௚,௧ are calculated based on specific energy resource models 
(see Eq. (4.24) to (4.26)).  

௚,௧ݔܽܯܩܫݓܲ ൌ  ௚,௧ܩܫݓܲ ∀݃, (4.24) ݐ
௚,௧݊݅ܯܩܫݓܲ ൌ ௚,௧ܩܫݓܲ ൈ ,݃∀ ܱܥ݃ܲ݊݅ܯ  ݐ (4.25)
௚,௧ܩܫݓܲ ൌ  ܮܵ/௚,௧ܩܫ݊ܧ ∀݃, (4.26) ݐ

External resource equations 
The following equations define the energy the flows between internal and external elements.   

ܺ݊ܧ ௘ܲ,௫,௚,௧ ൌ ௘,௫,௚,௧ܬܺ݊݁ ൈ  ௘,௫ܬ݂ܺܧ ∀݃, ,ݐ ,ሺ݁ܺܧ ሻ (4.27)ݔ
௘,௫,௚,௧ܵܺ݊ܧ ൌ ௘,௫,௚,௧ܺܫ݊݁ ൈ ,݃∀ ௘,௫ܺܫ݂ܧ ,ݐ ,ሺ݁ܺܧ  ሻݔ (4.28)
ܺݓܲ 	ܲ௘,௫,௚,௧ ൌ ܺ݊ܧ ௘ܲ,௫,௚,௧/ܵܮ  ∀ ݃, ,ݐ ,ሺ݁ܺܧ ሻ (4.29)ݔ
ܺݓܲ 	ܵ௘,௫,௚,௧ ൌ  ܮܵ/௘,௫,௚,௧ܵܺ݊ܧ ∀ ݃, ,ݐ ,ሺ݁ܺܧ ሻ (4.30)ݔ

Here, ܺ݊ܧ ௘ܲ,௫,௚,௧ and ܵܺ݊ܧ௘,௫,௚,௧ are the amount of energy purchased and sold in each external 
resource. The corresponding powers are ܲܺݓ ௘ܲ,௫,௚,௧ and ܲܵܺݓ௘,௫,௚,௧ in each time interval ܵܮ.  

4.3.3.  Objective functions  
The model includes two objective functions, being the net present value (NPV) as the economic 
objective function versus the environmental impact quantified regarding the Life Cycle 
Assessment (LCA) principles based on the compilation and evaluation of the inputs, outputs, and 
the potential of environmental impacts of a product (goods and service) system throughout its 
life cycle. The following section presents a detailed description of the calculation of the objective 
function. 

4.3.3.1. Economic objective 
The economic objective is the net present value (NPV) from the discounted cash flows ܨܥ௧ of each 
period ݐ divided into the planning horizon (Eq. (4.31)). 

ܸܰܲ ൌ ∑ ஼ி೟
ሺଵା௜௥ሻ೟షభ௧     (4.31)

Here, ݅ݎ is the interest rate and the net earning ܰܧ௧ (the profit after taxes) plus the fraction of the 
total depreciable capital ܱܶܶܮܣ௧ determine the cash flow	ܨܥ௧ as the following: 

௧ܨܥ ൌ ௧ܧܰ െ ௧ܮܣܱܶܶ    ݐ ൌ 1,⋯ , ܶ െ 1 (4.32)
௧ܮܣܱܶܶ ൌ

ி஼ூ

்
൅

஼ூ௡௦

்
൅

ீுீூ௡௦

்
 ݐ∀   (4.33)

The fixed capital investments (i.e., ݏ݊ܫܥ ,ܫܥܨ and ݏ݊ܫܩܪܩ) can partially be recovered at the end of 
the planning horizon. This partial amount is the salvage value ݒݏ of the network that may vary 
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from one type of industry to another. Eq. (4.34) defines the cash flow at the end of the planning 
horizon.   

௧ܨܥ ൌ ௧ܧܰ െ ௧ܮܣܱܶܶ ൅ ܫܥܨሺݒݏ ൅ ݏ݊ܫܥ ൅   ሻݏ݊ܫܩܪܩ ݐ ൌ ܶ (4.34)
The following section defines the net earnings and total fixed cost investments. Thus, the total 
fixed cost investments of the production plant and energy generation unit are first explained as 
the following.  
Total fixed cost investment 

i. The fixed costs of the production plant 
The total fixed cost investment of the production plant, denoted by ܫܥܨ, is determined by the 
production capacity and storage expansions plus the cost of transportation units utilized during 
the entire planned horizon.  

ܫܥܨ ൌ ∑ ∑ ∑ ௣,௚,௧ߙൣ
௉௥ ൈ ܰ ௣ܲ,௚,௧ ൅ ௣,௚,௧ߚ

௉௥ ൈ ௣,௚,௧൧ܧ݌ܽܥܲ ൅௧௚௣ ∑ ∑ ∑ ௦,௚,௧ߙൣ
ௌ௧ ൈ௧௚௦

ܰܵ௦,௚,௧ ൅ ௦,௚,௧ߚ
ௌ௧ ൈ ௦,௚,௧ܧ݌ܽܥܵ ൈ ௣,௚,௧൧ܧ݌ܽܥܲ ൅ ∑ ∑ ௟,௧ܥܯܶ ൈ ܰ ௟ܶ,௧௧௟   (4.35)

Here, parameters ߙ௣,௚,௧௉௥  and ߚ௣,௚,௧௉௥  are the fixed and variable investment coefficients for the 
production technologies and ߙ௦,௚,௧ௌ௧  and ߚ௦,௚,௧ௌ௧  are the fixed and variable investment coefficients for 
the storage technologies. Additionally, the investment cost associated with the transportation 
mode ݈ is denoted by ܶܥܯ௟,௧.  

ii. The fixed costs of the renewable energy installation 
 are the fixed costs variables corresponding to the installation of the renewable ݏ݊ܫܩܪܩ and ݏ݊ܫܥ
energy resource, and consequent ܱܥଶ emissions. Eq. (4.36) and Eq. (4.37) define in the following:  

ݏ݊ܫܥ ൌ ܫݓܲݎܲ ∑ ௚௚ܫݓܲ   (4.36)

ݏ݊ܫܩܪܩ ൌ ∑ൣݎܲܩܪܩ ܫݓܲܩܪܩ ൈ ௚ܫݓܲ ൅ ∑ ∑ ∑ ∑ ሾሺܲܲܺݓ௘,௫,௚,௧ ൅௧௚௫௘∈ா௑ሺ௘,௫ሻ௚

ܺݓܲ 	ܵ௘,௫,௚,௧ሻ ൈ   ௫ሿ൧ݓܲܩܪܩ
(4.37)

Here, ܱܥଶ emissions caused by installation energy generation units are translated to monetary 
value and added to the installation costs. Hence, in Eq. (4.37), ܫݓܲܩܪܩ and ݎܲܩܪܩ are the 
emission quantity and price per unit of power installed, respectively. 

iii. Total fixed costs constraint 
There is a limitation in the total capital investment, and defined by Eq. (4.38): 

ܫܥܨ ൅ ݏ݊ܫܥ ൅ ݏ݊ܫܩܪܩ ൑ തതതതത (4.38)ܥܫܨ
 
Net earnings 
The difference between the revenues and operating costs defines the net earnings ܰܧ௧. 

௧ܧܰ ൌ ሺ1 െ ߮ሻሺܴ݁ݒ௧ െ ௧ܥܱܨ െ ௧ܥܱܶ െ ܱܥ ௧ܲ െ ܱܥܩܪܩ ௧ܲሻ ൅ ܧܦ߮ ௧ܲ    (4.39) ݐ∀
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Here, the operation costs consist of the production cost ܥܱܨ௧ , transportation cost ܱܶܥ௧ , energy 
generation cost ܱܥ ௧ܲ and operational emission costs ܱܥܩܪܩ ௧ܲ associated with a renewable 
resource. ߮ denotes the tax rate and ܧܦ ௧ܲ defines the depreciation term.   

a) Total revenue and depreciation 
௧ݒܴ݁ ൌ ∑ ∑ ܶܦ ௜ܵ,௚,௧ ൈ ܴܲ௜,௚,௧௚௜∈ௌா௉ሺ௜ሻ    (4.40) ݐ∀

The revenues are the result of selling the final products with the corresponding prices to the on-
demand regions. ܶܦ ௜ܵ,௚,௧ is the final product amount delivered to región ݃ with the selling price 
ܴܲ௜,௚,௧ . 
In Eq. (4.40), ܵܲܧሺ݅ሻ represents the set of the final products. The depreciation term is calculated 
with the straight-line method, similarly as (Mele et al., 2011) did in their work (Eq. (4.41)).  

ܧܦ ௧ܲ ൌ ሺ1 െ ሻݒݏ ൈ  ௧ܮܣܱܶܶ (4.41) ݐ∀
b) The production operating costs 

The production operating costs ݐܥܱܨ depend on the production rates and average inventory 
levels. The unit production and storage costs are denoted by ܷܲܥ௜,௣,௚,௧ and ܷܵܥ௜,௦,௚,௧, respectively.  

௧ܥܱܨ ൌ ∑ ∑ ∑ ௜,௣,௚,௧ܥܷܲ ൈ ௜,௣,௚,௧ܧܲ ൅ ∑ ∑ ௜,௦,௚,௧ܥܷܵ ൈ௦∈ூௌሺ௜,௦ሻ௜௚௣∈ூெሺ௜,௣ሻ௜

௜,௚,௧ܮܫܣ ൅   ௧ܥܦ
(4.42) ݐ∀

This term includes the disposal cost ܥܦ௧ that is a function of the generated waste amount and 
landfill tax ܮ ௜ܶ,௚,௧ defined as the followings: 

௧ܥܦ ൌ ∑ ∑ ௜ܹ,௚,௧ ൈ ܮ ௜ܶ,௚,௧௚௜    (4.43) ݐ∀
c) The transportation costs 

The transportation cost, denoted by ܱܶܥ௧ includes the fuel cost ܥܨ௧ , labor cost ܥܮ௧ , maintenance 
cost ܥܯ௧  and general costs (ܥܩ௧) expressed in Eq. (4.44). 
௧ܥܱܶ ൌ ௧ܥܨ ൅ ௧ܥܮ ൅ܥܯ௧ ൅ ௧ܥܩ   (4.44) ݐ∀

The fuel cost depends on fuel consumption and its corresponding unit price ܨ ௟ܲ,௧. Eq. (4.45) 
defines the fuel consumption as below: 

௜,௟,௚,௚ᇲ,௧݁݃ܽݏܷ	݈݁ݑܨ ൌ
ଶா௅೒,೒ᇲ
ிா೗

ൈ
ொ೔,೗,೒,೒ᇲ,೟
்஼௔௣೗

   ∀݅, ݈, ݃, ݃ᇱ, (4.45)  ݐ

Here, 2ܮܧ௚,௚ᇱ determines the total distance traveled in a trip, and ܧܨ௟ indicates the fuel 
consumption of each transportation mode ݈. The material flow rate ܳ௜,௟,௚,௚ᇲ,௧ obtains the number 
of trips consequently made in each period, dividing into the capacity of the transportation mode 
 :Thereupon, the total fuel cost in each period is as the following .(௟݌ܽܥܶ) ݈

௧ܥܨ ൌ ∑ ∑ ∑ ∑ ௜,௟,௚,௚ᇲ,௧௟௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ݁݃ܽݏܷ	݈݁ݑܨ ൈ ܨ ௟ܲ,௧   (4.46) ݐ∀
Note that Eq. (4.46) considers that the transportation units operate only between two predefined 
regions.  
The labor transportation cost ܥܮ௧ is a function of the driver wage ݐ,݈ܹܦ and total delivery time 
 :that is defined as below (௜,௟,௚,௚ᇲ,௧݁݉݅ݐ	ݕݎ݁ݒ݈݅݁ܦ	݈ܽݐ݋ܶ)
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௜,௟,௚,௚ᇲ,௧݁݉݅ݐ	ݕݎ݁ݒ݈݅݁ܦ	݈ܽݐ݋ܶ ൌ
ொ೔,೗,೒,೒ᇲ,೟
்஼௔௣೗

ሺ
ଶா௅೒,೒ᇲ

ௌ௉೗
൅ ܷܮ ௟ܶሻ   ∀݅, ݈, ݃, ݃ᇱ, (4.47) ݐ

Here, ܵ ௟ܲ and ܷܮ ௟ܶ represent the average speed and loading/unloading time of transportation 
mode ݈, respectively. Therefore, the labor cost ܥܮ௧ is defined as the following: 

௧ܥܮ ൌ ∑ ∑ ∑ ∑ ݕݎ݁ݒ݈݅݁ܦ	݈ܽݐ݋ܶ ܶ݅݉݁௜,௟,௚,௚ᇲ,௧௟௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ ൈ ܦ ௟ܹ,௧   (4.48) ݐ∀
The general maintenance cost of the transportation systems depends on the total distance driven 
and the unit cost of the traveled distance ݈ܧܯ .  

௧ܥܯ ൌ ∑ ∑ ∑ ∑
ொ೔,೗,೒,೒ᇲ,೟
்஼௔௣೗

௟௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ ൈ ௚,௚ᇲܮܧ2 ൈ   ௟ܧܯ (4.49) ݐ∀

Finally, in this part, the general costs include transportation insurance, license, registration, and 
finances. Therefore, the general expenses ݐ,݈ܧܩ and the average number of transportation units 
 :௧ as belowܥܩ define general costs ݐ,݈ܶܰ

௧ܥܩ ൌ ∑ ∑ ௟,௧௧ᇱஸ௧௟ܧܩ ൈ ܰ ௟ܶ,௧ᇱ   (4.50) ݐ∀
Note that the transportation costs basely depend on the average number of transportation modes 
required. Hence, it is calculated from the total delivery time (obtained by Eq. (4.47)), divided by 
the transportation availability  ݈ܽݒ௟ , stated in Eq. (4.51): 

∑ ܰ ௟ܶ,௧ᇱ ൌ ∑ ∑ ∑
்௢௧௔௟ ஽௘௟௜௩௘௥௬ ௧௜௠௘೔,೗,೒,೒ᇲ,೟

௔௩௟೗
௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ௧ᇱஸ்   ∀݈ (4.51)

a) The operation costs of renewable energy resource 
The operation costs of energy generation units consist of energy generation costs and purchased 
energy imported from external resources.  

ܱܥ ௧ܲ ൌ ∑ ∑ ௘ܫ݊ܧݎܲ ൈ௚௘ ௘,௚,௧ܩܫ݊ܧ ൅ ∑ ∑ ∑ ሾܲ݊ܧݎ ௘ܲ,௫ ൈ௚௫௘∈ா௑ሺ௘,௫ሻ

ܺ݊ܧ ௘ܲ,௫,௚,௧ െ ௘,௫ܵ݊ܧݎܲ ൈ   ௘,௫,௧ሿܵܺ݊ܧ
 

 (4.52) ݐ∀
Here, ܱܥܩܪܩ ௧ܲ is the cost of ܱܥଶ emissions caused by operating the energy generation unit added 
to the operational costs.  

ܱܥܩܪܩ ௧ܲ ൌ ∑ൣݎܲܩܪܩ ∑ ௘ܫ݊ܧܩܪܩ ൈ ௘,௚,௧௚௘ܩܫ݊ܧ ൅
∑ ∑ ௘,௫ܺ݊ܧܩܪܩ ൈ ܺ݊ܧ ௘ܲ,௫,௚,௧௫௘∈ா௑ሺ௘,௫ሻ ൧  ∀(4.53) ݐ 

Note that Eq. (4.54) defines the allowable emissions amount for the entire horizon. 

ܫݓܲܩܪܩ ∑ ௚௚ܫݓܲ ൅ ∑ ∑ ௘ܫ݊ܧܩܪܩ ൈ ௘,௚,௧௚௘ܩܫ݊ܧ ൑ (4.54) ݐ∀  ݔܽܯܩܪܩ

4.3.3.2. Environmental objective 
In addition to the economic objective of maximizing the net present value (NPV), the MILP model 
is integrated with LCA. As per ISO 14040:2006, Life Cycle Assessment (LCA) includes 4 phases; 
the goal and scope definition, inventory analysis, impact assessment, and interpretation. These 
phases have been done by (Mele et al., 2011), and this thesis applies their results. Hence, based 
on their work, the environmental objective is to minimize the total annual ܱܥଶ-equivalent GHG 
emissions resulting from the supply chain operation, i.e., the feedstock production and provision, 
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the manufacturing and storage processes, and the transportation between regions. 
Mathematically, the emissions inventory due to the network is a function of some continuous 
variables. The production rate ܲ  ௜,௣,௚,௧ particularly calculates the entries of the life cycle inventoryܧ
and the transportation flow ܳ௜,௟,௚,௚ᇲ,௧ as stated in Eq. (4.55) to (4.57): 

݈ݑܹܿܲܩ ൌ ߱௜
௉௎ ∑ ∑ ∑ ܲ ௜ܷ,௚,௧௧௚௜    (4.55)

ݎܹܲܲܩ ൌ ∑ ∑ ∑ ∑ ߱௣௉௥ ൈ ௜,௣,௚,௧௧௚௣௜ܧܲ    (4.56)

ܹܳܲܩ ൌ ∑ ∑ ∑ ∑ ∑ ߱௟
்௥ ൈ ௚,௚ᇱܮܧ ൈ ௧௚ᇱ௚௟௜ݐ,′݃,݃,݈,݅ܳ     (4.57)

߱௜
௉௎, ߱௣௉௥ , and ߱௟

்௥ represent the heat absorbed by any greenhouse gas (as a multiple of the heat 
that the same mass of carbon dioxide would absorb) in the atmosphere by the feedstock 
production, the products operations, and material transportation process, respectively. The 
environmental impact, as an objective function, is defined by the variable ܯܣܦ as an 
environmental metric to be minimized.  

ܯܣܦ ൌ ݈ݑܹܿܲܩ ൅ ݎܹܲܲܩ	 ൅  ܹܳܲܩ	  (4.58)

4.3.3.3. Multi-objective equations 
The mathematical model presented herein capitalizes on the mixed-integer linear programming 
(MILP) formulation and seeks to optimize simultaneously the NPV and DAM objectives 
described in the bi-dimensional objective function as represented in model ܯ. The overall bi-
MILP formulation can briefly be expressed as follow: 

ሺܯሻ					 min
௫,௑,ே

ሼെܸܰܲሺݔ, ܺ, ܰሻ; ,ݔሺܯܣܦ ܺ, ܰሻ   

             s.t. constraints (4.1)-(4.58)  

ݔ               ∈ Թ,								ܺ ∈ ሼ0,1ሽ,									ܰ ∈ Ժା  
Here, ݔ represents the continuous variables such as capacities, production rates, inventory levels, 
and materials flows, ܺ denotes the binary variables (i.e., the transportation links), and ܰ refers to 
the integer variables like the number of plants, storage facilities, and transportation units of each 
selected mode.  
A set of Pareto consists of solution alternatives representing the optimal trade-off between the 
objectives considered in the problem. In this thesis, the ε-constraint method (Ehrgott, 2005) 
determines the Pareto set of solutions, which involves solving a set of instances the single-
objective problem M1 for different values of the auxiliary parameter	ߝ : 

ሺ1ܯሻ				 min
௫,௑,ே

ሼെܸܰܲሺݔ, ܺ, ܰሻሽ   
             s.t. constraints (4.1)-(4.58) 
,ݔሺܯܣܦ              ܺ, ܰሻ ൑   ߝ
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ߝ ൑ ߝ ൑   ߝ

ݔ               ∈ Թ,								ܺ ∈ ሼ0,1ሽ,									ܰ ∈ Ժା  
where the lower and upper limits are obtained from the optimization of each scaler objective 
separately:  

ሺ1ܽܯሻ				൫ݔ, ܺ, ܰ൯ ൌ arg	min
௫,௑,ே

ሼܯܣܦሺݔ, ܺ, ܰሻሽ   

             s.t. constraints (4.1)-(4.58)  

ݔ               ∈ Թ,								ܺ ∈ ሼ0,1ሽ,									ܰ ∈ Ժା  
which defines the lower bound of the epsilon parameter, i.e. ߝ ൌ ,ݔ൫	ܯܣܦ ܺ,ܰ൯ and  

ሺ1ܾܯሻ				൫ݔො, ෠ܺ, ෡ܰ൯ ൌ arg	min
௫,௑,ே

ሼെܸܰܲሺݔ, ܺ, ܰሻሽ   

            s.t. constraints (4.1)-(4.58)  

ݔ               ∈ Թ,								ܺ ∈ ሼ0,1ሽ,									ܰ ∈ Ժା  
defines the upper bound of the epsilon parameter, i.e. ߝ ൌ ,ොݔ൫	ܯܣܦ ෠ܺ, ෡ܰ൯. Note that the proposed 
model in this chapter is an extension of Mele et al., (2011) contribution equations regarding 
production by adding the energy section. It leads to amplify solutions borders and create more 
opportunities to make more flexible decisions. 

4.4.   Case Study: Retrofitting of integrated Sugar-bioethanol SCs 
The proposed formulation is validated through its application to a retrofitting problem of SSCM 
based on the sugarcane industry. Comparing to different types of crops such as maize/corn, the 
advantage of sugarcane is that it can be readily integrated with cogeneration at a large scale (see 
Fig. 4.2.).  
The problem addressed explores the optimal retrofitting and configuration of the sugar/ethanol 
production plants integrated with the cogeneration power plants. It is assumed a five-year time 
horizon (with yearly discretization). The current problem follows the same geographical and 
production data assumptions as in a former study with a similar case study (Mele et al., 2011).  
The sugarcane industry has been selected as a case study due to the high energy cost while it has 
a high potential for exploiting renewable agricultural residues. Despite other crops such as 
corn/maize, sugarcane can readily integrate with cogeneration at a large scale. According to the 
ISO report (International Sugar Organization), sugar mills are generally involved in excess power 
generation that can market to the grid and contribute to the country's energy mix. While the 
energy demand is increasing worldwide, specifically in developing countries, exploring the sugar 
industry's energy generation potential can be considered an alternative energy supplier. 
The following attributes identify conventional utility in sugar mills/ethanol distillery plants: Low 
pressure (20 to 30 bars)-low temperature (300 to 400Ԩ) boilers. Back-pressure turbines (BPT) to 
provide steam to the mechanical equipment that in average produce 30-34 t steam/h (1kWh is 
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equal to 0.284 t steam/h) (Bocci, Di Carlo, & Marcelo, 2009), while the energy consumption in the 
sugar plant is an internal heat demand of 480–550 kg steam/t cane and approximately 16 to 22 
kWh electricity (Birru, Erlich, & Martin, 2019).  
The sugarcane industry of Argentina (as a developing country) is selected. According to the 
Foreign Agricultural Service report ("Argentina: Sugar Annual | USDA Foreign Agricultural 
Service," 2020), the sugar production for the marketing year (MY) 2020/21 is forecasted at 1.8 
million tons (raw value), a moderate increase from last year on stable acreage while it is forecasted 
to produce 21.7 million tons of net sugar cane, equal to 24 million tons of gross sugar cane 
(including bagasse). 
Here is a country-size case study, and the geographic scope of the problem has been defined 
based on the country's administrative divisions. Therefore, it has been considered 24 provinces 
with an associated sugar and ethanol demand. Data and additional parameter values employed 
in the analysis are provided in Appendix section B.1.  

 
Fig. 4. 2. Sugar/Ethanol SC Network with the integrated cogeneration power plant. 

4.4.1. Cogeneration power plant 
Cogeneration plants are utility sections to respond to the need of process steam demand or/and 
power demand. In the sugarcane industry, steam is the base utility, and electrical power is a 
byproduct. Hence, the bagasse-based cogeneration plant has been considered as the single 
renewable energy generation to provide process steam and generate possible excess power.  

4.4.1.1. Modeling of cogeneration power plants 
In this contribution, the cogeneration power plant is considered the integrated energy generation 
part and modeled based on (Illukpitiya, Yanagida, Ogoshi, & Uehara, 2013). Since sugarcane 
residues such as bagasse generate energy (heat and electricity), a cogeneration power plant can 
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be considered a renewable energy generator. Here, ݐ,݃ܩܫ݊ܧ represents the energy that is generated 
in the cogeneration power plant. 

ݐ,݃ܩܫ݊ܧ ൌ ܲ݁݃ ൈ ܮܵ ൈ  ݐ,݃,ܹ݅ ∀݅, ݃,  (4.59) ݐ
where ௘ܲ௚ denotes the power generated by the cogeneration per ton of biomass; its quantity 
depends on the cogeneration thermodynamic and design data. Hence, in the following, the 
cogeneration plant adopted to the general model is introduced.  
Anderson Power Cycle 
While the energy provided by conventional technologies is limited to the crushing season, the 
Anderson power cycle with the back-pressure turbine lets the sugar/distillery complex send 
power to the grid all year round. Besides, conventional technologies suffer from the lack of ability 
to provide zero pollution. By adopting Anderson flue gas coolers, the wasted heat in flue gases is 
wholly recovered and cleaned. Also, a multi-effect evaporator can evaporate distillery spent-
wash, and the concentrated effluent is burnt in a boiler with the bagasse to generate more power 
(Kamate & Gangavati, 2009).   
In this line, several innovative biomass-based carbon-negative power generation systems have 
been developed during recent decades. (Yan, Wang, Wang, Cao, & He, 2021) have compared 
three biomass-based carbon-negative power generation systems. These three models are 
validated thermodynamically and economically (see Table. 4.1.). 

Table. 4. 1. Thermodynamic and economic data of Bioenergy models. 

 
Efficiency 

% 
Electric costs 

$/kWh 
 ૛ mitigationsࡻ࡯

kg/kWh 

BFPP 30.7 0.0584 0.943 

BIGCC 44.5 0.0497 0.629 

BIGFC 50.5 0.0493 0.567 
 

Regarding the system retrofitting strategies and have more efficient and adaptable to the 
sugarcane industry, the industries have replaced biomass integrated gasification with fuel cells 
(BIGFC) power plant with the conventional gas turbine.  The advantages of utilizing the BIGFC, 
studied by (Lobachyov & Richter, 1998), are as below: 

 A simple feeding system and non-required pressurized vessels; 
 Being functional  at low pressures; 
 No need for an additional gas cooler nor a high calorific value gas; 

Molten carbonate fuel cells (MCFC) are the more convenient technological choice because of the 
following reasons (Bocci et al., 2009): 

 Allowable use of carbon monoxide and hydrogen; 
 Possibility to reform the remaining hydrocarbons; 
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 Possibility of using the anode-exhausted gas and the outgoing cathode gas (mainly 
contains COଶ ) as fuel for the combustion chamber; 

 Contribution of high-temperature heat to generate the steam for gasification chamber, 
sugar production, and a combined steam cycle; 

The BIGFC plant, showed in Fig. 4.3., consists of an atmospheric pressure indirectly heated 
fluidized bed gasifier, hot gas conditioning system, and MCFC power generation unit. 

Fig. 4. 3. Simplified Process Diagram of Integrated Gasification Fuel Cell Power Cycle at Atmospheric 
Pressure ("Integrated gasification fuel cell cycle - Wikiwand"). 

The overall energy efficiency of the plant is measured based on the net amount of electric power 
generated per unit of biomass (Yan et al., 2021): 

ߟ ൌ 	
∑ ௘ܲ௚ െ ∑ܲ௘௖
݉௕௜௢ܸܪܮ

   (4.60)

Where, ௘ܲ௚ and ௘ܲ௖ are the power generated and consumed, respectively.  ݉௕௜௢ is the biomass 
flow rate, and ܸܪܮ is the lower heating value of the material in its original form(including ash 
and moisture). The electric power generated ௘ܲ௚ is calculated using the following equation(Bocci 
et al., 2009): 

௘ܲ௚ ൌ ݉௚ܿ௣ሺ ଷܶ െ ଶܶሻߟ௧ߟ௠்ߟ௔௨௫ߟ௔௟௧   (4.61)
Where ݉௚ represents the mass flow rate of the gas (the gasifier efficiency is assumed 90%); ܿ௣ is 
specific heat;  ߟ௧ , ߟ௠், ߟ௔௨௫ and ߟ௔௟௧ are efficiencies related to the turbine. This contribution has 
chosen the Direct Brayton cycle as the thermodynamic cycle, and the turbine thermodynamic 
efficiency equation is as below (Bocci et al., 2009):  
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௧ߟ ൌ
ሺ݄ଷ െ ݄ସሻ െ ሺ݄ଶ െ ݄ଵሻ

݄ଷ െ ݄ଶ
   (4.62)

By MCFC overall efficiency 40% (gasifier efficiency of 90%), the heat balance proposed by 
(Lobachyov & Richter, 1998) and using Design parameters are provided in Appendix section B.1 
(Table. B.1), global power of 50 MW with an electricity efficiency of 41% is obtained.  Assumed 
nominal capacity of the power plant is 8.33 MW. The power generation is available continuously 
for at least 7800 h annually (Illukpitiya et al., 2013). Thermal consumptions are assumed 307 
 and, the estimated total electricity requirement for internal use in the processing plants is ݐ/݄ܹ݇
45 ܹ݄݇ per t of cane (Bocci et al., 2009; Illukpitiya et al., 2013). 
The model optimizes the retrofitting of the SC network. For comparison purposes, the problem 
is first solved following a standard MOO approach and then compared to the basic model 
proposed by (Mele et al., 2011) to illustrate its advantages. 

4.5.   Multi-Objective solving approach 
This contribution has used the ε-constraint method to produce a set of Pareto solutions in the 
space of the two original objectives, NPV and DAM (Ehrgott, 2005). MO-MILP form of the model 
(M), implemented in GAMS 28.2.0 and solved CPLEX 12.4 on a Windows XP computer with 
Intel® Core™ i7-3770 CPU (920) 3.90GHz processor with 8.00GB of RAM. It takes approximately 
1200 seconds to identify the global optimum in every instance. The solver generated 12 Pareto 
points, as shown in Fig. 4.4, including nadir and utopia points.   

 
Fig. 4. 4. Pareto set of solutions NPV vs. GWP100.

In general, Fig. 4.4 depicts that the amount of ܱܥଶ decreases at the expense of compromising the 
NPV performance. Within the GWP100, ܱܥଶ range, the NPV varies about €8.20 ൈ 10଼ (increases 
from  €2.380 ൈ 10ଽ to	€3.20 ൈ 10ଽ), whereas GWP100 drops 2.40 ൈ ݇݃ (from 1.56	ଶܱܥ10଼ ൈ
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10ଽܱܥଶ	݇݃ to	1.80 ൈ 10ଽܱܥଶ	݇݃). The previous work (Morakabatchiankar, Hjaila, Graells, & 
Espuña, 2017) discussed the extreme solutions. In effect, to obtain the optimum environmental 
impact and economic benefit, it is required to retrofit the sugar plants of 5 regions (regions with 
sugarcane plantations) with the cogeneration power plants (upper bound according to the 
problem formulation) in the maximal NPV solution, whereas, the minimal GWP100  up to 9 
regions, can be retrofitted with the cogeneration power plants. Table 4.2 mentions the design 
solutions for both extreme cases.  

Table. 4. 2. Output data for the two extreme solutions.

Comparing to the base model (the model without considering cogeneration units), the extended 
model has resulted in a more expanded solution area. Mathematically, changing the boundaries 
of the constraints increases the opportunity of finding more optimum solutions. Fig. 4.5 illustrates 
the effect of retrofitting on the results. Note that in both GWP100 and the NPV, there is a broader 
range of solutions. 

Fig. 4. 5. Solutions Area comparison between a network with and without cogeneration. 

Analyzing the results approves that in the minimal GWP100 case, integrating cogeneration 
technology with negative-ܱܥଶ emissions decrease 4.65% in GWP100 at the same NPV (€2.380 ൈ
10ଽ) comparing to the model without considering the cogeneration unit. It means that although 

 NPV,	€ GWP100, 
,૛ࡻ࡯  ࢍ࢑

Retrofitted 
Regions 

Non 
Retrofitted 
Regions 

Distillery 
Production 
Technology 

Sugar Mill 
Production 
Technology 

Maximal 
NPV 

3.20 ൈ 109 െ1.56 ൈ 109 5 4 T3, T4 T1 , T2 

Minimal 
GWP100 

2.380 ൈ 109 െ1.8 ൈ 109 9 0 T3, T4 ,T5 T1, T2 
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feeding residues (bagasse and distillery spent wash) to the cogeneration plant results in a 4% 
reduction in disposal costs in addition to the revenues obtained by selling excess electricity to the 
grid, there is a break-even point between the installation and operational costs and the revenue. 
Thus, the high transportation costs and many storage tanks/warehouses deteriorate the network 
performance in both the NPV and DAM objectives. 
On the other extreme, evaluating the maximal NPV solution shows an improvement in the 
overall economic performance of the network compared to the non-retrofitted model. The NPV 
is increased by 3.6%. As mentioned before, the solution space (decision variables space) is 
loosened so that there are more possibilities to find more optimum solutions. 
From the mathematical perspective, while the number of economic constraints is significantly 
more than environmental impact constraints, the DAM objective is minimized subjected to 
numerous operation and design constraints (i.e., the tight feasible solution space). On the other 
side, a limited number of environmental impact constraints and the economic objective are 
maximized with fewer constraints.  

 
Fig. 4. 6. Pareto Sets of Solutions in two cases.

Nevertheless, the most important result is that all the solutions obtained by the extended model 
are in the Utopia zone of the base (non-retrofitted) model. The deduction is that, by retrofitting 
the base model, the possibility of achieving more optimum solutions will increase, particularly as 
pointed in the graph (see Fig. 4.6), the solution that has the minimum distance with the utopia 
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point can be considered a desirable one (at (NPV, GWP100) =(€3.03 ൈ 10ଽ,	െ1.66 ൈ 10ଽ	݇݃	ܱܥଶ)) 
and this contribution considers it as a reference solution for comparison purposes. 
The Maximum NPV solution attains €3.20 ൈ 10଺ for the NPV and െ1.56 ൈ 10ଽ ݇݃	ܱܥଶ	for the 
DAM objective and 6% variation (in both the NPV and DAM) from the reference solution. 
Therefore, this point can also be another desirable solution for the decision-maker. The design 
configuration of the maximum NPV solution is visible in Fig. 4.7; the solution has classified the 
country regions into three main parts, the industrial regions with and without sugarcane 
plantations (5 and 4 provinces, respectively) and the nonindustrial ones. Both industrial regions 
contain sugar mills and distilleries, while the sugar mills and distilleries installed in regions with 
sugarcane plantations are retrofitted with cogeneration power plants. The network overall 
provides the required process energy, and the industry markets the excess to the grid. The 
feedstock availability and fewer transportation costs, and less carbon dioxide emissions cause a 
simultaneous improvement in economic and environmental impacts. The other industrial regions 
supply their required energy from the external resources, as is shown in the figure. 
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Fig. 4. 7. Configuration of solution with the maximum NPV value.

Comparing the optimum design of retrofitted and non-retrofitted network configurations 
(Maximal NPV in both cases) can highlight some differences. First, in retrofitted cases, the 
production process involves more regions, and more production technologies are in use. The 
production process diagram, including the associated technologies, is illustrated in Fig. 4.8. Five 
production technologies are corresponding to sugar and ethanol productions, while two 
technologies (ܶ1 and ܶ2) are available for producing raw and white sugar, three technologies 

(ܶ3,	ܶ4, and ܶ5) are used to produced ethanol. In the non-retrofitted case, just one sugar 
production technology ( ଵܶ in minimal GWP100 and ଶܶ in maximal NPV) is utilized, while the 
current contribution allows taking advantage of both technology types ( ଵܶ, ଶܶ) in both optimum 
solutions. Similarly, in a non-retrofitted design, it is only used ହܶ in maximal NPV solution and 
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ܶ3 in minimal GWP100 solution to produce ethanol. However, in the retrofitted design, all three 
types of distillery technologies are utilized for producing bioethanol. Table 4.3 depicts more 
details about the number of industrial regions, technologies in use, and cogeneration capacity.  

 
Fig. 4. 8. Schematic representation of the five production technologies.

As a result, integrating the alternative energy resources (cogeneration as a particular case) 
reduces the environmental impact at the expense of increasing the installation and operation 
costs. Fig. 4.9 illustrates the amount of ܱܥଶ emissions of each level of the network. 

 
Fig. 4. 9. Contribution of different SC stages to the GWP100 for the non-retrofitted and retrofitted 

networks in Maximal NPV. 

It shows the contribution of each source of impact (i.e., cultivation, production, and 
transportation) to the GWP100 for the Maximal NPV among Pareto solutions. The cultivation of 
sugar cane shows in both cases an immense contribution to the total impact. Note that sugar cane 
cultivation has a considerable negative GWP100 that offsets the positive impacts of transportation 
and production tasks. Hence, in minimal GWP100 design, retrofitted regions are confined to those 
with the sugarcane plantations. In this way, fewer transportations happen that leads to ܱܥଶ 
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emissions reduction. Besides, the energy generated in this case is enough to supply internal 
energy demand, so that it is not required to purchase it from external resources. Note that the 
integrated cogeneration in the process industry reduces ܱܥଶ emissions while the utilized 
cogeneration is ܱܥଶ negative technology. Study the effects of carbon dioxide-negative is out of 
the scope of this thesis.  

Table. 4. 3. Comparing optimum design network configurations for non-retrofitted and retrofitted cases.
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Fig. 4. 10. Demand satisfaction level associated with the maximum NPV solution. 

It results in an approximate enhancement of 30% in production capacity reflected in satisfactory 
demand level as shown in Fig. 4.10. It means, in this case, more demand sites are covered 
comparing to the non-retrofitted network. 

4.6.  Concluding remarks 
A MILP model addressing the SC retrofitting in the process industry was presented, whose main 
contribution is to propose a novel model applicable for integrated energy/material SC networks 
to obtain optimal solutions.  The problem is formulated as a bi-criterion MILP that simultaneously 
optimizes the network's NPV and environmental impact performance. The environmental impact 
was measured over the entire life cycle of the process by applying two LCA-based methodologies. 
The capabilities of the proposed model were validated through the retrofitting of a large-scale SC 
management system on a country-size problem (sugar/distillery industry in Argentina). The case 
study accounts for a bio-based cogeneration power plant to satisfy internal energy demand and 
possibly sell the excess to the external market (the grid). Notably, the results have clearly shown 
how significant environmental and economic benefits can be attained by adequately retrofitting 
the process industry.  
Numerical results show that in the retrofitted network, the ܱܥଶ emissions amount is reduced 
notably along with an improvement in the economic performance of the system. Altogether, the 
identified solutions indicate an improvement in the economic objective, NPV, and a reduction in 
environmental impacts, reinforcing the idea that utilizing more energy resource alternatives are 
promising and feasible options to reduce the expenses of purchasing energy from external 
resources.  
This chapter provided valuable insight into the strategic and tactical decision-making of 
sustainable production and bioenergy generation supply chains. 
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4.7.  Nomenclature 

  Abbreviations 

BFPP Biomass-Fired Power Plant 
BIGCC Biomass-Fueled Integrated Gasification Combined Cycle 
BIGFC Biomass Integrated Gasification with Fuel Cells 
BPT Back Pressure Turbine 
GHG Greenhouse Gas 
LCA Life Cycle Assessment 
MCFC Molten Carbonate Fuel Cells 
MILP Mixed Integer Linear Programming 
MOO Multi-Objective Optimization 
NPV Net Present Value 
PSE Process System Engineering 
SC Supply Chain 
SSC Sustainable Supply Chain 
SSCM Sustainable Supply Chain Management 

  Index 

݁ Set for Energy types  ሺ݁|݁ ൌ 1,… ,  ሻܧ
݃ Set for Regions  ሺ݃|݃ ൌ 1,… ,  ሻܩ
i Set for Material types  ሺ݅|݅ ൌ 1,… ,  ሻܫ
l Set for Transportation modes  ሺ݈|݈ ൌ 1,… ,  ሻܮ
p Set for Production technologies  ሺ݌|݌ ൌ 1,… , ܲሻ 
s Set for Storage technologies  ሺݏ|ݏ ൌ 1,… , ܵሻ 
t Set for Planning periods  ሺݐ|ݐ ൌ 1,… , ܶሻ 
x Set for External energy suppliers   ሺݔ|ݔ ൌ 1,… , ܺሻ 

Sets 

EXሺe, xሻ Subset of ordered pairs that link energy types e to external 
resource x 

ILሺi, lሻ Subset of ordered pairs that link materials i to transport modes 
l 

IMሺi, pሻ Subset of ordered pairs that link main products i to 
technologies p 

,ሺ݅ܵܫ  ሻ Subset of ordered pairs that link materials i to storageݏ
technologies s 

  ሺ݅ሻ Subset of final products iܲܧܵ

Parameters 

α୮,୥,୲୔୰  Fixed investment coefficient for technology ݌ 
௦,௚,௧ߙ
ௌ௧  Fixed investment coefficient for storage technology ݏ 

௣,௚,௧௉௥ߚ  Variable investment coefficient for production technology ݌ 
௦,௚,௧ߚ
ௌ௧  Variable investment coefficient for storage technology ݏ 

 Auxiliary boundary for the ε-constraint method ߝ

 ௣,௜ߩ
Material balance coefficient associated with material ݅ and 
technology ݌ 

 Net cogeneration efficiency ߟ
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 ௔௟௧ Alternator efficiencyߟ

 ௔௨௫ Auxiliary devices (pumps, cooling towers, and otherߟ
components) efficiency 

 ௠் Mechanical turbine efficiencyߟ
 ௧ Turbine thermodynamic efficiencyߟ
 Storage period ߪ

߬ Minimum desired percentage of the available installed 
capacity  

߮ Tax rate 

߱௣௉௥ Life cycle environmental burden associated with production 
technology ݌ 

߱௜
௉௎ Life cycle environmental burden associated with purchasing 

material ݅ 

߱௟
்௥ Life cycle environmental burden associated with 

transportation mode ݈ 
௟ Availability of transportation mode݈ݒܽ ݈ 

 ௚,௧݌݋ݎܥ݌ܽܥ
Total capacity of raw material production (sugar cane 
plantations) in region ݃ in period  ݐ

ܿ௣ specific heat 
 ݅ ௚,௧ energy demand needed per unit of raw material݀݊ܽ݉݁ܦ
ܦ ௟ܹ,௧ Driver wage of transportation mode ݈ in period ݐ 

 ݁ ௘ Conversion efficiency between internal energy resource typeܬܫ݂ܧ
and the process plant ݅ 

 ௘,௫ Conversion efficiency of the excess energy type ݁ sent to theܺܫ݂ܧ
external energy generation resource ݔ 

 energy type ݔ ௘,௫ Conversion efficiency between external resourceܬ݂ܺܧ
݁ and the process plant ݅ 

 ′݃ ௚,௚ᇲ Distance between ݃ andܮܧ
 തതതതത Upper limit on the capital investmentܥܫܨ
 ݈ ௟ Fuel consumption of transportation modeܧܨ
ܨ ௟ܲ,௧ Fuel Price of transportation mode ݈ in period ݐ 
 ݐ ௟,௧ General expenses of transportation mode ݈ in periodܧܩ
 ݁ ௘ Emissions per unit of energy generated for each typeܫ݊ܧܩܪܩ
 Maximum allowable emissions amount ݔܽܯܩܪܩ
݃݇ Price of GHG emissions ݎܲܩܪܩ  ଶ equivalentܱܥ
 Emissions per unit of power ܫݓܲܩܪܩ
݄ Enthalpy 
 Interest rate ݎ݅
 Lower heating value ܸܪ݈
ܮ ௜ܶ,௚,௧ Landfill tax in period ݐ 
ܷܮ ௟ܶ Loading/unloading time of transportation mode ݈ 
݉௕௜௢ Biomass flow rate 
݉௚ Mass flow rate of the gas 
 ݈ ௟ Maintenance expenses of transportation modeܧܯ
 Minimum power generation coefficient ܱܥ݃ܲ݊݅ܯ
௘ܲ௖ power consumed inside the production process 
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௘ܲ௚ Power generated by the cogeneration per ton of biomass 
 ݌ ௣ Maximum capacity of technology݌ܽܥܲ
 ݌ ௣ Minimum capacity of technology݌ܽܥܲ
ܴܲ௜,௚,௧ Prices of final products ݅ 
 ݁ ௘ Price of energy typeܫ݊ܧݎܲ
݊ܧݎܲ ௘ܲ,௫ Purchase price of external energy type ݁ source ݔ  
  ݔ ௘,௫ Selling price of energy type ݁ to external sourceܵ݊ܧݎܲ
  Installation power cost ܫݓܲݎܲ
 the maximum power to be installed ݔܽܯܫݓܲ
ܳ௟ Maximum capacity of transportation mode ݈ 
ܳ௟ Minimum capacity of transportation mode ݈ 
 ݏ ௦ Maximum capacity of storage technology݌ܽܥܵ
 ݏ ௦ Minimum capacity of storage technology݌ܽܥܵ
  ݐ ௜,௚,௧ Demand of product ݅ in region ݃ in periodܦܵ
 Slot length ܮܵ
ܵ ௟ܲ Average speed of transportation mode ݈ 
 Surface occupied per unit  power ܫݓ݂ܲݎݑܵ
 Maximum available surface ݔܽܯ݂ܶݎݑܵ
 Salvage value ݒݏ
ܶ Number of time intervals 
 ݈ ௟ Capacity of transportation mode݌ܽܥܶ
 ݐ ௟,௧ Cost of establishing transportation mode ݈ in periodܥܯܶ
  ݐ ௜,௣,௚,௧ Unit production cost of product ݅ in region ݃ in periodܥܷܲ
 ݐ ௜,௦,௚,௧ unit storage cost of product ݅ in region ݃ in periodܥܷܵ

Variables 

  ݐ ௜,௚,௧ Average inventory level of product ݅ in region ݃ in periodܮܫܣ
 ݐ ௧ Cash flow in periodܨܥ
 Total cost of installation of all renewable power plants ݏ݊ܫܥ
ܱܥ ௧ܲ Operation cost of all renewable power plants in period ݐ 
 Environmental metric to be optimized ܯܣܦ
 ݐ ௧ Disposal cost in periodܥܦ
ܧܦ ௧ܲ Depreciation in period ݐ 
ܶܦ ௜ܵ,௚,௧ Amount of material ݅ delivered in region ݃ and period ݐ  
 ݐ ௘,௚,௧ Energy type e generated in region ݃ and periodܩܫ݊ܧ

 ௘,௚,௧ܬܫ݊ܧ
Energy flux type ݁ between renewable source and demand of 
region ݃ in period ݐ 

 ௘,௫,௚,௧ܺܫ݊ܧ
Energy flux type ݁ between renewable source and external 
source  ݐ region ݃ in period ݔ

 ௘,௫,௚,௧ܬܺ݊ܧ
Energy flux type ݁ between external sourceݔ and demand of 
region ݃ in period ݐ 

ܺ݊ܧ ௘ܲ,௫,௚,௧ Energy type ݁ purchased from external source ݔ in period ݐ 
 ݐ in period ݔ ௘,௫,௚,௧ Energy type ݁  sales to external sourceܵܺ݊ܧ
 ݐ ௧ Fuel cost in periodܥܨ
 Fixed capital investment ܫܥܨ
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 ݐ ௧ Facility operating cost in periodܥܱܨ

 ௜,௟,௚,௚ᇲ,௧݁݃ܽݏܷ	݈݁ݑܨ
Fuel consumption for transporting material ݅  by transportation 
mode ݈, between region ݃ and ݃′ in period ݐ 

 ݐ ௧ General cost in periodܥܩ

ܱܥܩܪܩ ௧ܲ 
Total GHG operational emissions ݇݃  ଶ equivalent in periodܱܥ
 ݐ

Total GHG Installation emissions ݏ݊ܫܩܪܩ ݇݃  ଶ equivalent for allܱܥ
renewable power plants 

 GWP100 amount in the cultivation process ݈ݑܥܹܲܩ
 GWP100 amount in the production process ݎܹܲܲܩ
 GWP100 amount in the transportation process ܹܳܲܩ
 ݐ ௧ Labor cost in periodܥܮ
 ݐ ௧ Maintenance cost in periodܥܯ
 ݐ ௧ Net earnings in periodܧܰ
ܸܰܲ Net Present Value 

ܰ ௣ܲ,௚,௧ 
Number of plants with technology ݌ established in region ݃ 
and period ݐ 

ܰܵ௦,௚,௧ 
Number of storages with storage technology ݏ established in 
region ݃ and period ݐ 

ܰ ௟ܶ,௧ Number of transportation units ݈ in period ݐ 

 ௜,௣,௚,௧ܧܲ
Production rate of material ݅ associated with technology ݌ 
established in region ݃ and period ݐ 

 ݐ in region ݃ and period ݌ ௣,௚,௧ Existing capacity of technology݌ܽܥܲ
 ݐ in region ݃ and period ݌ ௣,௚,௧ Capacity expansion of technologyܧ݌ܽܥܲ
ܲ ௜ܶ,௚,௧ Total production rate of material ݅ in region ݃ and period ݐ 
ܲ ௜ܷ,௚,௧ Purchases of material ݅ in region ݃ and period ݐ 
 ݃ ௚ Power to install at own source in regionܫݓܲ

 ௚,௧ܩܫݓܲ
Power to generate by a renewable source, in each region ݃, 
each period ݐ 

 ௚,௧ݔܽܯܩܫݓܲ
Maximum power to generate by renewable source in each 
region ݃ and period ݐ 

 ௚,௧݊݅ܯܩܫݓܲ
Minimum power to generate by renewable source in each 
region ݃ and period ݐ 

ܺݓܲ ௘ܲ,௫,௚,௧ Power purchased from external source ݔ in period ݐ 
ܺݓܲ 	ܵ௫,௚,௧ Power selling to external source ݔ in period ݐ 

ܳ௜,௟,௚,௚ᇲ,௧ 
Flow rate of material ݅ transported by mode ݈ from region ݃ to 
region ݃′ in period ݐ 

 ݐ ௧ Revenue in periodݒܴ݁
 ݐ in region ݃ and period ݏ ௦,௚,௧ Existing capacity of storage݌ܽܥܵ
 ݐ in region ݃ and period ݏ ௦,௚,௧ Capacity expansion of storageܧ݌ܽܥܵ

ܵ ௜ܶ,௦,௚,௧ 
Total inventory of material ݅ in region ݃ stored by technology 
 ݐ in period ݏ

 ݐ ௧ Transport operating cost in periodܥܱܶ
 ݐ ௧ total depreciable capital during periodܮܣܱܶܶ

 ௜,௟,௚,௚ᇲ,௧݁݉݅ݐ	ݕݎ݁ݒ݈݅݁ܦ	݈ܽݐ݋ܶ
Delivery time for transporting material ݅ by transportation 
mode ݈, between region ݃ and ݃′ in period ݐ 
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 ݐ ௚,௧ Energy demand of region ݃ and period݀݊ܽ݉݁ܦ݈ܽݐ݋ܶ
௜ܹ,௚,௧ Amount of wastes of ݅ generated in region ݃ and period ݐ 

Binary Variables 

 ௚,௧݊ܩ
Per the Big-M method, the local binary variable  to define lower 
and higher generation limits 

ܺ௟,௚,௚ᇲ,௧ 
1 if a transportation link established between regions ݃ and ݃′, 
otherwise 0 
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 Chapter 5

 

SC RETROFITTING UNDER UNCERTAINTY 

 
Regarding efficient management, the process sustainability depends on reducing the outsources 
contingency factors effects, which are subject to different variations, for instance, quality/quantity 
conditions of raw material resources, climatic conditions, and market demand. Analyzing the 
effects of these uncertain conditions is a serious challenge. It has to be addressed along with a 
multi-objective evaluation, seeking for the process sustainability. Therefore, there is a need for 
integrating strategies that consider multi-objective and uncertainty management approaches 
simultaneously. Hence, regarding the development of the model (the general model proposed in 
the previous chapter), the individual challenges associated with uncertainty management should 
be considered. Therefore, the core of this chapter addresses the efficient definition of the number 
of scenarios required to represent uncontrollable parameters. 
Thus, this chapter, it is addressed the uncertainty management issue in SSC retrofitting process. 
The proposed approach is based on the previous energy integration multi-objective model to 
optimize a retrofitted network in the presence of uncertainty. Such a strategy can produce a 
robust set of solutions while considering products demand uncertainty. The result consists of 
dominant and feasible solutions set. This contribution has utilized a case study to validate the 
proposed model and demonstrate details. 

5.1. Representation of uncertain process conditions 
The applied development of sustainable industrial processes has highly motivated researchers to 
propose approaches. These approaches aim to tackle problems present multidisciplinary 
challenges at multi scientific levels, which lead to integrated solution strategies. Hence, the 
optimization strategies should be improved. As commented in Chapter 2, there are two main 
challenges while addressing sustainability problems; the limitation fundamental to any MO 
problem (Mele et al., 2011) and the high complexity associated with the uncertainty (Grossmann, 
Apap, Calfa, Garcia-Herreros, & Zhang, 2015).   
While there are not capable models to systematically address these challenges simultaneously, a 
significant bias is identified in the solutions obtained by the current strategies. Therefore, it is 
necessary to develop models leading to robust and capable methods to address them.  Studies in 
the PSE literature have predominantly focused on the uncertainty effects representation on 
processes. These studies primarily have utilized the reactive and proactive approaches (explained 
sufficiently in Chapter 3).  
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Comparing the two approaches, the proactive is more reliable and assures the robustness of the 
solution by cause of pre-description of uncertainty. Applying to SCM, the recent contribution 
(Elluru, Gupta, Kaur, & Singh, 2019) has mentioned these strategies' strengths and weaknesses. 
Here, the strategies such as robust optimization (Govindan & Fattahi, 2017; Z. Li & Ierapetritou, 
2008; Q. Zhang et al., 2016), two-stage stochastic programming (You et al., 2009), and chance 
constraint optimization (Guillén-Gosálbez & Grossmann, 2010) are commonly used as methods 
to model the effect of uncertain parameters over a network. Despite the idea that says the larger 
the number of scenarios better the uncertainty representation, it leads to complex situations due 
to computational limitations, which turns to be a severe problem when addressing more complex 
systems. Hence, finding an optimal size of the uncertainty set still remains like a critical challenge 
(Moret et al., 2017, 2016). Thus, managing the large number of scenarios defining the uncertainty 
space has remained one of the deficiencies for uncertainty management approaches. In this line, 
scenario reduction approaches are prevalent as the methods allow selecting a representative 
number of scenarios from the original set (Z. Li & Floudas, 2014, 2016). Despite the successful use 
of these methods to several contributions, their application is limited to finite numbers of 
approaches and, a general framework needs development to apply to large-scale multi-objective 
SC retrofitting problems. 
In this chapter, a scenario reduction method is used within an ε-constraint method to optimize 
the retrofitting of material/energy supply chains under uncertainty. For this purpose, the 
presented model in this chapter is a modified model of the previous chapter by considering 
product demand as an uncertain parameter. 

5.1.1. Management of alternative energy resources 
Recently, bio-based energy integration has become an effective alternative for providing energy 
to solve at least two problems simultaneously: improving the economic performance of the 
system by reducing the energy costs (while the fossil-based energies are expensive) as well as 
reducing environmental impact (particularly ܱܥଶ emissions). In this regard, several studies have 
proposed different models to optimize the retrofitting, design, and planning of bio-energy SCs. 
Due to the complexity of the problem, and as discussed in Chapter 2, applying multi-objective 
optimization approaches to sustainable networks has been very common in recent studies, 
particularly biomass to energy systems. In this line, Yue, You, & Snyder (2014) have proposed a 
profound overview to describe the key challenges and opportunities in modeling and biomass-
to-bioenergy supply chains optimization.  
Researchers have conducted several extensive studies in the last decade regarding uncertainty 
management in biomass supply chains. In these studies, they commonly have applied uncertainty 
management approaches. As a remarkable instance, a recent novel model has been proposed by 
(Medina-González et al., 2020) in which a multi-objective model has been applied to the bio-based 
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energy supply chain network, subjected to multiple sources of uncertainty. However, the studies 
have not targeted the demand uncertainty in integrated energy/material SCs. 
Accordingly, in this chapter, the proposed approach is to merge generic SCs with biomass SCs 
and develop bio-based closed-loop energy integrated MOO model considering demand 
uncertainty to optimize the strategic and tactical decisions of large-scale SCs in the presence of 
conflicting objectives. 

5.2.  Problem statement 
Regarding the approach mentioned in the previous section, the proposed model determines the 
development of the general material/energy integration SC network introduced in the previous 
chapter (Chapter 4). It aims to determine optimal configurations of the retrofitted SC under 
uncertainty. Obtained solutions propose optimum network configurations, including the 
number, locations, and capacities of the process plants with the associated production 
technologies and their capacity expansion policy. 

 
Fig. 5. 1. Schematic representation of integrated material/energy SC under uncertainty. 

The single integrated energy resource (particular case is bio-based energy generation) SC subject 
to product demand uncertainty, as schematized in Fig. 5.1, is used from the previous chapter 
(Chapter 4) as a paradigmatic example of the problem to be addressed. 
A modified version of the case study (Kostin, Guillén-Gosálbez, Mele, Bagajewicz, & Jiménez, 
2012) applies to the contribution, aimed to test the viability. The objectives consider the expected 
net present value as an economic metric and GWP100 as the expected environmental impact of 
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the entire SC. Remarkably, the following subsection details the most relevant mass and energy 
balances and the associated constraints that describe the technologies involved. 

5.3. Mathematical formulation: Stochastic model 
This section describes how the stochastic model was obtained from the deterministic one. The 
stochastic model is a slight modification of the deterministic MILP described in the previous 
chapter. More precisely, equations describing the design of the process plants and energy 
generation units remain unaffected. Note that the source of uncertainty affects both the economic 
and environmental impact objective functions. 
Since the equations are the extension of the formulation in Chapter 4, they are provided in 
Appendix B.2. The equations are classified into four main blocks: mass balance equations and 
capacity constraints of the production process section, mass/energy balance equations and 
capacity constraints of the energy cogeneration section, and objective function equations. 

5.3.1. Objective functions  
The model aims to optimize the economic and environmental performance of the process network 
simultaneously and under uncertainty. Below is described how to quantify these performance 
criteria.  
Since the model shows different performances in each scenario, one goal of the mathematical 
formulation is to maximize the expected value of the resulting NPV distribution versus 
environmental impact minimization. Definite risk measures are also conjoint to the formulation 
to control the possibility of unfavorable scenarios with low NPV values. The following sections 
describe how to determine these metrics. 

5.3.1.1. Expected NPV 

One of the objectives of the model is to maximize the expected NPV. This metric is defined as 
below:  
ሾܸܰܲሿܧ ൌ ∑ ௦௖ܾܰܲ݋ݎܲ ௦ܸ௖௦௖     (5.1)

Where ܲ ܰ and ,ܿݏ	௦௖ is the probability of scenarioܾ݋ݎ ܲ ௦ܸ௖ represents the net present value attained 
in the same scenario.  

5.3.1.2. Environmental objective 
The environmental impact, as an objective function, is defined through the expected ܯܣܦ as an 
environmental metric to be minimized.  

ሿܯܣܦሾܧ ൌ ∑ ௦௖௦௖ܾ݋ݎܲ ൈ ௦௖   (5.2)ܯܣܦ
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5.3.1.3. The probabilistic constraint for financial risk management 
A set of constraints that measure the probability of not achieving a predefined target value Ω can 
control the variability of the objective function. Hence, it is needed to define the binary 
variable	ܼ௦௖. This variable takes the value of 1 if the NPV attained in scenario ܿݏ is below the target 
level	Ω, and it is 0 otherwise. The following constraints (Kostin et al., 2012) enforce the definition 
of such a variable: 

ܰܲ ௦ܸ௖ ൑ Ω ൅ܯሺ1 െ ܼ௦௖ሻ    (5.3) ܿݏ∀

ܰܲ ௦ܸ௖ ൒ Ω െܼܯ௦௖ ∀ܿݏ  (5.4) 
The probability of having an NPV below	Ω is defined as follows: 

ሾܸܰܲ݋ݎܲ ൑ Ω௞ሿ ൌ ∑ ௦௖௦௖ܾ݋ݎ݌ ܼ௦௖     (5.5) 
The following section proposes the results of these probabilistic metrics in a particular case.  

5.3.1.4. The probabilistic constraint for environmental impact risk management 
The goal of risk analysis is to identify robust solutions with low probabilities of significant 
impacts. This section attempts to adopt stochastic metrics borrowed from financial risk 
management to present a model that controls the risk. Hence, rather than minimizing the 
expected value of the impact distribution (which is the standard approach in stochastic 
programming), we propose to minimize the probability of exceeding a given target value. This 
probability can be quantified employing the following equation: 

ܯܣܦሼ	݋ݎܲ ൒ ሽ′ߗ ൑ ݇   (5.6) 
The probability of violation of the uncertain inequality in Eq. (5.6) (i.e., the left side representing 
the stochastic influence exceeds the right side reflecting the desired target limit) is maximum	݇. 
Here, DAM denotes the “true” value of the impact, and ݇ represents the probability of violation 
of the constraint. A ݇ value of zero indicates no chance of constraint violation, yielding the most 
conservative solution. 
Equation (5.6) is a probabilistic or chance-constraint widely used in robust optimization (Ben-Tal 
& Nemirovski, 1998). This section, inspired by (Sabio et al., 2014), addresses the environmental 
impact risk issue by discretizing the probabilistic constraints. Eq. (5.7) is, therefore, approximated 
via the following constraint: 

ܯܣܦሾ݋ݎܲ ൒ Ω′௞ሿ ൌ ∑ ௦௖௦௖ܾ݋ݎ݌ ܼ′௦௖     (5.7) 
where ܾ݋ݎ݌௦௖ as explained before, is a parameter representing the probability of occurrence of 
scenario ܿݏ, whereas ܼ′ܿݏ is a binary variable that takes the value of 1 if the environmental impact 
exceeds the target limit in scenario ܿݏ and 0 otherwise. The following constraints enforce the 
definition of this binary variable. Here, M is a sufficiently large parameter. 

௦௖ܯܣܦ ൒ Ω′ െ ሺ1ܯ െ ܼ′௦௖ሻ    (5.8) ܿݏ∀
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௦௖ܯܣܦ ൑ Ω′ ൅ ௦௖′ܼܯ  ܿݏ∀  (5.9) 

5.3.1.5. Multi-objective equations 
The proposed approach relies on an ε-constraint method applied to the mixed-integer linear 
programming (MILP) to incorporate the uncertainty associated with demand. This method, as 
explained before, is based on maximizing one of the objective functions and considering the other 
ones as constraints bounded by levels of ε. Then, the levels of ε can be changed to generate the 
entire Pareto optimal set. Thus, the following MILP optimization formulation aims to obtain the 
Pareto solutions. 
Here, the mathematical model seeks to optimize simultaneously the E[NPV] and E[DAM] 
objectives described in the bi-dimensional objective function as presented in model ܯ. The overall 
bi-MILP formulation is expressed briefly, as follow: 

ሺܯሻ					 min
௫,௑,ே

ሼെܧሾܸܰܲሺݔ, ܺ, ܰሻሿ; ,ݔሺܯܣܦሾܧ ܺ, ܰሻሿ   

s.t. constraints (5.1)-(5.9) and the equations provided in Appendix B.2   

ݔ               ∈ Թ,								ܺ ∈ ሼ0,1ሽ,									ܰ ∈ Ժା  
Here, ݔ represents the continuous variables such as capacities, production rates, inventory levels, 
and materials flows, ܺ denotes the binary variables (i.e., the transportation links), and ܰ refers to 
the integer variables like the number of plants, storage facilities, and transportation units of each 
selected mode.  

ሺ1ܯሻ				 min
௫,௑,ே

ሼെܧሾܸܰܲሺݔ, ܺ, ܰሻሿሽ    
s.t. constraints (5.1)-(5.9) and the equations provided in Appendix B.2   

,ݔሺܯܣܦሾܧ ܺ, ܰሻሿ ൑ ߝ
 

ߝ ൑ ߝ ൑   ߝ

ݔ               ∈ Թ,								ܺ ∈ ሼ0,1ሽ,									ܰ ∈ Ժା  
Where the lower and upper limits are obtained from the optimization of each scaler objective 
separately:  

ሺ1ܽܯሻ				൫ݔ, ܺ, ܰ൯ ൌ arg	min
௫,௑,ே

ሼܧሾܯܣܦሺݔ, ܺ, ܰሻሿሽ   

             s.t. constraints (5.1)-(5.9) and the equations provided in Appendix B.2  

ݔ               ∈ Թ,								ܺ ∈ ሼ0,1ሽ,									ܰ ∈ Ժା  
which defines the lower bound of the epsilon parameter, i.e., ߝ ൌ ,ݔ൫	ܯܣܦ ܺ,ܰ൯ and  

ሺ1ܾܯሻ				൫ݔො, ෠ܺ, ෡ܰ൯ ൌ arg	min
௫,௑,ே

ሼെܧሾܸܰܲሺݔ, ܺ, ܰሻሿሽ   

             s.t. constraints (5.1)-(5.9) and the equations provided in Appendix B.2  

ݔ               ∈ Թ,								ܺ ∈ ሼ0,1ሽ,									ܰ ∈ Ժା  
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defines the upper bound of the epsilon parameter, i.e. ߝ ൌ ,ොݔ൫	ܯܣܦ ෠ܺ, ෡ܰ൯. Considering uncertainty 
creates more opportunities to control the variability and make more flexibility in the decision-
making process. 
Standard stochastic optimization models try to identify robust solutions by optimizing the 
expected value of the objective distribution. This strategy ensures the best average performance 
but provides no control over its variability. Hence, the number of scenarios and their 
representativeness is the crucial factor for obtaining robust solutions. 

5.4.  Methodology  
This section introduces a novel optimization-based method for scenario reduction. This method 
applies multiple standards, not only can quantify the difference in the spatial distribution of 
parameter inputs but also quantify the difference in system output. The following subsections 
will describe the methods in detail according to different standards, and finally, the overall 
optimization model will be summarized.  

Fig. 5. 2. Schematic representation of a detailed description of the solution strategy proposed. 

Here, the proposed model adopts the form of a general mixed-integer programming-based 
scenario described by (Z. Li & Floudas, 2014), and the next presents a brief description of such a 
formulation. The proposed solution strategy includes three steps: deterministic optimization for 
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the nominal scenario, scenario reduction, stochastic optimization for reduced sets to obtain final 
solutions. Figure 5.2 shows the general algorithm of the proposed solution strategy of step one.  

5.4.1. Scenario reduction algorithm  
Given a set of scenarios	ܵܥ, a subset of scenarios ܴ is to be removed, and ܵܥ′ is the subset of 
scenarios ܵܥ′ ൌ ܥܵ െ ܴ (reduced set), the following two discrete distributions are:   

i) The original distribution which contains all scenarios in set ܵܥ and each scenario ܿݏ has 
the probability ܾ݋ݎ݌௦௖

௢௥௜௚ that ∑ ௦௖ܾ݋ݎ݌
௢௥௜௚

௦௖∈ௌ஼ ൌ 1 
ii) The reduced distribution represented by all scenarios ܵܥ′ and each scenario ܿݏ′ has the 

probability ܾ݋ݎ݌௦௖ᇱ௡௘௪ that ∑ ௦௖௡௘௪௦௖ᇱ∈ௌ஼ᇱܾ݋ݎ݌ ൌ 1 

The Kantorovich distance between discrete distributions is defined by the optimal objective value 
of the following linear problem:   

	݉݅݊
௡ೞ೎,ೞ೎ᇲ

∑ ∑ ݊௦௖,௦௖ᇱܥ௦௖,௦௖ᇱ ൅ ௘݂௫௣
௘௥௥

௦௖ᇱ௦௖     (5.10) 

             s.t.                ∑ ݊௦௖,௦௖ᇱ௦௖∈ௌ஼ ൌ   ௦௖ᇱ௡௘௪ܾ݋ݎ݌
(5.11) 

 

                                     ∑ ݊௦௖,௦௖ᇱ௦௖ᇱ∈ௌ஼ᇱ ൌ ௦௖ܾ݋ݎ݌
௢௥௜௚  

(5.12) 
 

݊௦௖,௦௖ᇱ ൒ ܿݏ∀         ,0 ∈ ′ܿݏ∀      , ܥܵ ∈  ′ܥܵ   
Where ܿݏ and ܿݏ′ are scenarios; ܾ݋ݎ݌௦௖ᇱ௡௘௪ and ܾ݋ݎ݌௦௖

௢௥௜௚ represent the probability of scenario ܿݏ′ in 
the new distribution and scenario ܿݏ in the original distribution; ݊௦௖,௦௖ᇱ is the probability 
displacement between scenarios;  
One of the critical parameters is ܥ௦௖,௦௖ᇱ which defines the distance between two scenarios that the 
following equation can model:  

௦௖,௦௖ᇱܥ ൌ ∑ หߠ௦௖ௗ െ ௦௖ᇱௗߠ ห஽
ௗୀଵ ൅ | ௦݂௖∗ െ ௦݂௖ᇱ

∗ |   ,ܿݏ∀  (5.13) ′ܿݏ
Note that ߠ௦௖ௗ  and ߠ௦௖ᇱௗ  are the realization of the uncertain parameters ݀ in scenarios ܿݏ and	ܿݏ′, 
respectively; ௦݂௖∗  and ௦݂௖ᇱ∗  are the optimal objective value under scenarios ܿݏ and	ܿݏ′.  

௦௖ᇱ௡௘௪ܾ݋ݎ݌ ൌ ሺ1 െ ௦௖ᇱሻݕ ൈ ௦௖ᇲܾ݋ݎ݌
௢௥௜௚ ൅ ∑ ௦௖,௦௖ᇱݒ ൈ ௦௖ܾ݋ݎ݌

௢௥௜௚
௦௖∈ௌ஼    ܿݏݕ ,′ܿݏ∀ ∈ ሼ0,1ሽ (5.14)

Where continuous variable ݒ௦௖,௦௖ᇱ denotes if a scenario ܿݏ is removed and assigned to scenario ܿݏ′ 
or not; binary variable ݕ௦௖ denotes whether a scenario is removed (ݕ௦௖ ൌ 1) or not (ݕ௦௖ ൌ 0ሻ. Note 
that if	ܾ݋ݎ݌௦௖ᇱ௡௘௪ ൌ 0, it means scenario ܿݏ is removed.  

∑ ௦௖ݕ ൌ ܰ௦௖∈ௌ஼     (5.15)

∑ ௦௖,௦௖ᇱݒ ൒௦௖ᇱ∈ௌ஼ ௦௖ݕ (5.16) ܿݏ∀  

0 ൑ ௦௖,௦௖ᇲݒ ൑ 1 െ ௦௖ݕ ,ܿݏ∀   ′ܿݏ ∈ (5.17) ܥܵ
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One of the most significant features of the proposed model is its capability to minimize the 
probabilistic distance in both parameter and output spaces, which means the objective value's 
expected performance. To modeling this feature, it is necessary to add the difference between the 
expected value obtained by the original and reduced sets of scenarios ( ௘݂௫௣

௘௥௥ ൌ ห ௘݂௫௣
௢௥௜௚ െ ௘݂௫௣

௡௘௪ห) to 

the primary objective function of the scenario reduction algorithm (Eq. (5.10)). Here, ௘݂௫௣
௢௥௜௚ ൌ

∑ ௦௖ܾ݋ݎ݌
௢௥௜௚

௦௖ ൈ ௦݂௖
∗  and	 ௘݂௫௣௡௘௪ ൌ ∑ ௦௖ᇱ௡௘௪௦௖ᇱܾ݋ݎ݌ ൈ ௦݂௖ᇱ

∗  . Here is the point that the performance of the 
deterministic optimization in the first step becomes relevant. Note that ௦݂௖

∗  is the objective value 
obtained by scenario	ܿݏ. 

௘݂௫௣
௘௥௥ ൒ െ∑ ௦௖ᇲܾ݋ݎ݌

௡௘௪
௦௖ᇲ ൈ ௦݂௖ᇲ

∗ ൅ ∑ ௦௖ܾ݋ݎ݌
௢௥௜௚

௦௖ ൈ ௦݂௖
∗    (5.18)

௘݂௫௣
௘௥௥ ൒ ∑ ௦௖ᇲܾ݋ݎ݌

௡௘௪
௦௖ᇲ ൈ ௦݂௖ᇲ

∗ െ ∑ ௦௖ܾ݋ݎ݌
௢௥௜௚

௦௖ ൈ ௦݂௖
∗    

(5.19)

For minimizing the differences between the worst and best performance, the error between the 
minimum (or maximum) objective values can incorporate into the scenario reduction model. 
More details about this model are perfectly explained in the contribution proposed by (Z. Li & 
Floudas, 2014). 

5.5.  Case study: Retrofitting of integrated biomass-based SCs under uncertainty 
This contribution has used a real-life case study previously studied by (Kostin et al., 2012) to 
illustrate the proposed procedures application. This case study has addressed optimal retrofitting 
of existing bioethanol and the sugar production industry established in Argentina under demand 
uncertainty. In this problem, three different products (i.e., white sugar ܦଵ, raw sugar ܦଶ, and 
ethanol 3ܦ) are produced from 3 raw materials (sugarcane ܴ1ܯ) and by-products (molasses ܴ2ܯ 
and honey ܴ3ܯ) by five different production technologies (sugar mills ଵܶ and ଶܶ , distilleries ܶ3 , 
ܶ4 and ܶ5) through the process network shown in Fig. 5.3.  

 
Fig. 5. 3. Production process network. 

The nominal capacity of the sugar mill and distillery plants are 350 and 300 thousand tons 
annually, respectively. Cogeneration power capacity has been calculated in the previous chapter 
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(section 4.4.1, Chapter 4), which is 50 MW with 41% of electricity efficiency. A time horizon of 4 
years is assumed and divided into yearly periods, and a specific geographic area is divided into 
a set of 24 sub-regions ݃ where the facilities of the SC can be configured and may play the role of 
biomass producers, energy generators, and consumers.  
Assume that the products’ demand parameters ܵܦ௜,௚ are subject to uncertainty, while the rest of 
the parameters are deterministic (take the nominal values). Nominal parameter data for this 
problem are provided in Table 5.1. 

Table. 5. 1. Products nominal demand. 

 
The by-products of the production plants (particularly bagasse) are supposed to send to the 
cogeneration to generate heat and electricity as added-value products. The electricity market 
price and the operational cost of electricity generation are 0.15€/kWh and 0.08€/kWh respectively. 
This contribution has aimed to maximize the economic metric (NPV) whereas minimizing the 

  Product demand (૚૙૜ܜ ൗܚܡ )  
Region Associated 

sub region
White sugar Raw sugar Ethanol 

(Buenos Aires) g1 76.61 38.31  84.28 
(Córdoba) g2 84.13 42.06 92.54 
(Corrientes) g3 25.44 12.72 27. 98 
 (La Plata) g4 379.3 189.63 417.2 
 (La Rioja) g5 9.714 4. 857 10.69 
 (Mendoza) g6 43.56 21.78 47.92 
 (Neuquén) g7 13.72 6.86 15.09 
 (Entre Ríos) g8 31.55 15.77 34.70 
(Misiones) g9 27.14 13.57 29.85 
(Chubut) g10 11.52 5.758 12.67 
(Chaco) g11 26.44 13.22 29.08 
(Santa Cruz) g12 5.708 2.854 6.279 
(Salta) g13 30.75 15.37 33.82 
(San Juan) g14 17.53 98.76 19.28 
(San Luis) g15 11. 02 5.508 12.12 
(Tucumán) g16 37.15 18.58 40.87 
(Jujuy) g17 17.12 8.562 18.84 
(Santa Fe) g18 81.12 40.56 89.23 
(La Pampa) g19 8.412 4.206 9.253 
(Santiago del Estero) g20 21.73 10.86 23.90 
(Catamarca) g21 8.612 4.306 9.474 
(Rio Negro) g22 15.02  7.511 16.52 
(Formosa) g23 13.52 6.760 14.87 
(Tierra del Fuego) g24 3.204 1.602 3.525 
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environmental impacts (GWP100, ݇݃,  ଶሻ. The deterministic model of the above retrofittingܱܥ
problem has been solved in Chapter 4. 
The scope of this chapter is limited to providing an effective strategy to solve the challenges 
associated with using a large number of solutions to represent the process uncertainty in MOO 
problems. Therefore, technical challenges such as temporary power supply (e.g., power storage, 
switching on/off the transmission grid, and power supply during certain hours of the day) are 
not within this scope. Other research is needed to expand this formulation and solve the power 
supply problem to explore the solutions' economic, environmental, and social performance 
differences. 
The objective is to select the optimum configuration (including their capacities and locations) and 
the best way to interconnect the various supply chain elements (i.e., providers, intermediates, and 
consumers). 
In the following, scenario reduction studies are performed assuming different sets of uncertain 
parameters and different discretization levels. The objective is to generate a different number of 
a superset of scenarios (from relatively large to small) by factorial design and test the proposed 
scenario reduction algorithm. The scope of this chapter is limited to address the challenges 
associated with the uncertainty within the SC problem.  
The objective is to select the most suitable configuration (including their capacities and locations), 
the best way to interconnect the various elements of the supply chain (i.e., feedstock, process 
plants, external energy provider, and the markets), and adequate storage/transport flows to make 
the best use of the feedstock. The solution obtained will be compared with deterministic results 
proposed in the previous chapter to highlight the uncertainty over the overall solution space.  

5.5.1. Scenario reduction solution  
Deterministic solution analysis and Scenario reduction 

Chapter 4 illustrated the capabilities of the modeling framework and solution strategy using the 
process network introduced previously. It described first the results obtained with the 
deterministic model that shed light on the inherent trade-offs between the economic and 
environmental performance of the industrial network. This section uses the stochastic 
formulation to address the uncertainty on the final product demand. 
A critical issue in the multi-scenario model is the generation of appropriate values of the uncertain 
parameters. Therefore, from 72 uncertain parameters corresponding to demand product ݅ in 
region ݃ (ܵ݅ܦ,݃), Monte Carlo simulation using What-If Analysis generated 1500 scenarios with 
the normal distribution and global and local standard deviations 8% and 3% assuming the mean 
values in Table 5.1.  
This study selected 125 scenarios randomly; then solved the deterministic model of the previous 
chapter to obtain the design variables and fixed them. Afterward, the 125 scenarios are used to 
attain 125 solutions. In the next step, the algorithm proposed in Section 5.4.1 generated a reduced 
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set of 100 scenarios (case 1). Without loss of generality, the size of 100 scenarios was selected to 
ensure a large set to be sufficiently representative. After the optimization realization and fixing 
the design variable, the 125 scenarios are applied to the model. To check the viability of the model, 
in the next step, the stochastic optimization is done for reduced sets of 50 (case 2), 20 (case 3), 10 
(case 4), and 1 (case 6) scenarios, obtained through the algorithm described in Section 5.4.1, and 
3 scenarios (case 5) that explained how to attain in the following. Then the expected values of the 
economic performance are obtained. Fig. 5.4 illustrates the deterministic solutions against the 
stochastic solutions obtained by the reduced sets of scenarios, while Table 5.2 shows the max, 
min, and expected values of the maximized economic objective for the reduced set. 

Table. 5. 2. Statistics on scenario reduction results for economic performance maximization. 
 Size Optimization 

NPV 
(€)(GAMS) 

Design Investment 
cost 

Max 
NPV(€)  

Min 
NPV(€) 

Exp 
NPV(€) 

Deterministic  3.202ൈ 10ଽ 50MW 9.530ൈ 10ଽ 3.200 ൈ 10ଽ 1.182 ൈ 10ଽ 2.360	ൈ 10ଽ 
Stochastic 
Case6 1 3.195ൈ 10ଽ 50MW 9.530ൈ 10ଽ 3.190ൈ 10ଽ 1.510ൈ 10ଽ 2.361ൈ 10ଽ 
Case5* 3 3.185ൈ 10ଽ 58MW 9.610ൈ 10ଽ 3.181ൈ 10ଽ 1.152ൈ 10ଽ 2.362ൈ 10ଽ 
Case4 10 2.90ൈ 10ଽ 80MW 9.860ൈ 10ଽ 3.062 ൈ 10ଽ 1.695 ൈ 10ଽ 2.400	ൈ 10ଽ 
Case3 20 2.75ൈ 10ଽ 81MW 10.000ൈ 10ଽ 2.580 ൈ 10ଽ 1.799 ൈ 10ଽ 2.449	ൈ 10ଽ 
Case2 50 2.60ൈ 10ଽ 83MW 10.150ൈ 10ଽ 2.598 ൈ 10ଽ 1.875 ൈ 10ଽ 2.485	ൈ 10ଽ 
Case1 100 2.56ൈ 10ଽ 85MW 10.170ൈ 10ଽ 2.899 ൈ 10ଽ 1.895 ൈ 10ଽ 2.726	ൈ 10ଽ 

*in case5, the set size is not obtained by the scenario reduction algorithm. 

In other words, Fig. 5.4 is used to visualize the relationships between the deterministic and the 
stochastic model solved by reduced sets of scenarios for the uncertain parameters. 

 
Fig. 5. 4. Expected NPV objective values for 125 scenarios.

After the deterministic design optimization procedure, 125 solutions were obtained. Individually, 
the results achieved by the reduced sets with fewer numbers of scenarios represent a poor 
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approximation for the global problem; however, they are used to evaluate the “similarity” among 
different sizes of scenario sets. Notice that the scenario reduction produces a well-balanced 
distribution considering the 72 uncertain parameters. Besides, stochastic cases with larger sizes 
of scenarios show more flexibility in response to various probabilities. For instance, case 1 (100 
scenarios-case) can manage the result variations compared to deterministic and other stochastic 
cases. 
Testing different sets of scenarios, the plot below (Fig. 5.5) demonstrates exponential behavior 
that any increment in the size of scenarios (scenarios > 50) leads to a few variations in the final 
solution (less than 1%) while lowering the number of scenarios increases such a difference 
exponentially.  

 
Fig. 5. 5. NPV performance for each size of scenarios. 

Furthermore, note that the scenarios represent better input (uncertain conditions) and output 
(expected economic performance) data. Accordingly, the deduction is that using sets containing 
at least 100 scenarios is more viable. 

5.5.2. Financial risk management  
In the following, Fig. 5.6 represents the cumulative probability profile of each set and 
Deterministic case. The cumulative probability distribution chart shows that the probability of 
the NPV is less than or equal to a particular value for each alternative. 
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Fig. 5. 6. Cumulative probability profiles for reduced sets of scenarios and deterministic cases.  

Regarding probabilistic metrics, defined in section 5.3.3.3, Fig. 5.6 depicts the cumulative 
probability curves associated with given SC designs. It is considered stochastic and deterministic 
formulations with 125 scenarios and, each one corresponding to a different materialization of the 
uncertain parameters. Assume that the target value Ω is equal to	€2.25 ൈ 10ଽ. For Case 1, there 
are five scenarios out of 125 with an NPV below this target value (i.e., the probability of not 
exceeding the target value is 5%) comparing to the deterministic case, not exceeding probability 
raises to 40%. In other words, Case 1 shows a significantly lower probability of small and high 
NPVs (comparing to the other cases), which would make it appealing for risk-averse decision-
makers. On the other hand, the deterministic case might be the preferred alternative for risk-
takers decision-makers, as it leads to larger probabilities of high NPVs at the expense of increasing 
along with the probability of low benefit.  
Values at risk (VaR) is the most common metric that defines the difference between the expected 
NPV and the NPV value corresponding to a certain level of risk. Here is assumed that this level 
is 5%. The symmetrically opposite measure of risk is the opportunity value (OV) or upside 
potential, which was discussed by (Aseeri & Bagajewicz, 2004), which defines the difference 
between the NPV at 95% risk and E[NPV] value. Fig. 5.7 presents the calculation of VaR and OV 
for the risk-averse and risk-taker cumulative probability curves.  
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Fig. 5. 7. Value at Risk (VaR) vs. opportunity value (OV).

Remarkably, the strategy can adjust the probability of occurrence as a function of the number of 
scenarios belonging to the new subset. Such an adjustable probability provides the required 
flexibility to mimic the original uncertainty distribution accurately.  
Note that case 5 deals with the scenario simplification approach; all uncertain parameters are 
classified into three scenarios as max, mid, and min (െߜ, ,௜ܦ ൅ߜ) while	േߜ ൌ േ10%, and tested 
with all possible ordered triples (4851 ordered triples contain discrete numbers between 1 and 98 
obtained by Gauss’ formula. Note that the probabilities 0% and 100% are not considered).  

ଵܦଵ: ሼ	ܿݏ
௠௔௫ ⋯ ଻ଶܦ

௠௔௫ሽ  Ordered triple 

ഥଵܦ	} :ଶ	ܿݏ ⋯ ݋ݎܲ ഥ଻ଶ} With probabilityܦ ௝ܾሺ݌௠௜௡, ,௠௜ௗ݌  ௠௔௫ሻ݌

ଵܦሼ :3	ܿݏ	
௠௜௡ ⋯ ଻ଶܦ

௠௜௡ሽ  ݆ ൌ 1,… , 4851 

Fig 5.8 illustrates all possible results obtained by this approach. The graph has constituted from 
4851 points that each point represents a solution obtained by a particular ordered triple of 
probabilities. Remarkably, the majority of the results locate between €3 ൈ 10ଽ and	€3.5 ൈ 10ଽ . It 
means the model mimes the deterministic model.  
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Fig. 5. 8. Results corresponding to scenario simplification approach.

Case 5 is a particular case with ordered triple probability (25%, 50%, 25%) that its behavior was 
explained in the previous section. Therefore, the deduction is that although the simplification 
approach is needed less computational effort, it cannot afford the flexibility required for 
managing this problem addressed in this thesis.  

5.5.3. Environmental impact risk management  
The previous section sat to solve the stochastic MILP to maximize the economic performance of 
the network. Here, it targets to minimize the environmental impact and analyze the 
corresponding results. First, the deterministic and stochastic problems in the multi-scenario MILP 
(considering the same reduced sets of scenarios from the previous section) were solved, the values 
of the design decision variables got fixed. Then, the viability of each case was examined for the 
125 scenarios.  Table. 5.3 shows the obtained results in detail.  

Table. 5. 3. Statistics on scenario reduction results for the environmental impact minimization. 
 Size Optimization DAM

(GWP100,ࢍ࢑, ૛ࡻ࡯ ൈ ૚૙ૢ) 

(GAMS) 

Design Investment 
cost 

Min 
DAM 

Max 
DAM 

Exp 
DAM 

GWP100 (݇݃, ൈ	ଶ)ܱܥ 10ଽ 

Deterministic  -1.8 65MW 1.030ൈ 10ଵ଴ -1.790 -0.8155 -1.292 
Stochastic 
Case6 1 -1.79 65MW 1.031ൈ 10ଵ଴ -1.783 -0.8150 -1.286 
Case5* 3 -1.79 68MW 1.610ൈ 10ଵ଴ -1.779 -0.8225 -1.330 
Case4 10 -1.77 75MW 1.860ൈ 10ଵ଴ -1.778 -0.8340 -1.336 
Case3 20 -1.76 90MW 1.900ൈ 10ଵ଴ -1.759 -0.8343 -1.396 
Case2 50 -1.75 93MW 1.950ൈ 10ଵ଴ -1.749 -0.8346 -1.450 
Case1 100 -1.74 95MW 1.970ൈ 10ଵ଴ -1.740 -0.845 -1.516 

*in case5, the set size is not obtained by the scenario reduction algorithm. 

The results show that by increasing the number of scenarios, the difference between the value of 
the optimized solution (obtained by GAMS) and the expected value is reduced. It is deduced that 
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using more significant size scenarios can control the variations, indicating the robustness of the 
solutions obtained. Fig. 5.9 illustrates this explanation.  

 

Fig. 5. 9. Expected DAM objective values for 125 scenarios.

Compared to Fig. 5.4, fewer solution variations are observed because fewer uncertainty-affected 
variables are involved for minimizing the DAM objective.  
Fig. 5.10 shows the cumulative probability curves for the environmental impact of the 
deterministic and stochastic solutions. The figure shows the probability of a value of GWP100 
when the expected DAM objective is minimized. The solving process first minimizes the impact 
in the most likely scenario (i.e., considering the mean values of the uncertain parameters) and 
then recalculating the objective function by fixing the values of the decision variables in the 
stochastic MILP.  It is worthwhile to mention that the same solution could be ideally obtained by 
minimizing the expected impact in the stochastic MILP for an infinite number (or large sizes) of 
scenarios. Case 1 (100 scenarios) approves it; in the environmental performance target	Ωᇱ ൌ
െ1.3 ൈ 10ଽ	݇݃	ܱܥଶ, there is only a 24% probability of not achieving the goal, while in the 
deterministic case, this failure probability raises to 50%. 
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Fig. 5. 10. Cumulative probability profiles for stochastic and deterministic cases.  

In the following section, the design configuration and planning solutions of deterministic and 
stochastic cases are explained. Note that the network configuration of the environmental impact 
minimization is very similar to the maximum economic performance solutions. Hence, the 
following section is just discussing the NPV maximal solution performance of different cases.  

Design and Planning comparison for deterministic and stochastic cases 
Here, the design solutions were obtained by solving the stochastic model for different reduced 
sets of scenarios. These solutions were compared to validate the reduced set representativeness. 
Table 5.4 illustrates three SC configurations (location and capacities of the different nodes 
expressed in thousand metric ton per year for production plants and MW for energy generation 
unit) which correspond to the three scenario size cases and happen in the maximal NPV. The 
capacities are the maximum ones.  
It expects that networks with larger capacities and more technologies guarantee higher demand 
satisfaction levels due to covering more demand. For instance, the design which corresponds to 
case 1 involves the technology establishment ହܶ moreover, larger energy generation capacity 
compared to the other cases. Note that the material flows are not mentioned in the table, while in 
stochastic case, there are more regions interconnected, which caused more demand satisfaction 
and an increase in the environmental damage factors. 
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ଵܶ and ଶܶ : Sugar mill 

ଷܶ, ସܶ, and ହܶ : Distillery 

 

 

Table. 5. 4. Design for the optimum network configurations obtained for the different sets of scenarios. 
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Focusing on Case 1 as the reference case, the corresponding Pareto curve illustrates the trade-off 
between environmental impact minimization and NPV maximization (see Fig. 5.9). Note that 
each point represents a network configuration and the design proposed in Table 5.3 reveals what 
is behind the maximal NPV point in the Pareto curve.  
Similarly, in the environmental impact minimum cases, the model decides to replace production 
technologies ଷܶ and ସܶ by ହܶ (because the feedstock used in these technologies is sugarcane). The 
industrial regions are retrofitted with cogeneration units (due to baggage availability) to reduce 
environmental impact under uncertainty. 
Since Case 1 (100 scenarios) shows the best representativeness in both Minimal DAM and 
Maximal NPV objectives, Fig. 5.11 represents the Pareto set of solutions for this case. 

 
Fig. 5. 11. Pareto set of solutions GWP100 vs. NPV for Case 1.

As mentioned before, the minimal GWP100 solution allows operating at most for energy demand 
so that it leads to involve more regions in generating bio-based energy and using residues as 
bioenergy resources (reflecting in Fig. 5.12). In other words, the cogenerated energy in the whole 
SC meets the internal energy demand, and the excess energy can be marketed to increase 
renewable energy generation by 20% compared to Maximal NPV solution. 
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a) Maximal NPV b) Minimal GWP100 

 

Fig. 5. 12.  Energy generation per Region in Minimal GWP100 and Maximal NPV (Case 1). 

Here, the pie charts (Fig. 5.13) represent the percentage share of Maximal NPV and Minimal 
GWP100. Bioethanol has a larger share in the minimum GWP100 case while the sugar production 
decreases almost 10%. Therefore, the deduction is that the ethanol demand satisfactory level is 
improved reasonably. 
   

Fig. 5. 13.  Percentage share of products in a) Maximal NPV and b) Minimal GWP100 and (Case 1). 

Finally, the results show (Fig. 5.14) that in the stochastic case, the energy demands lead to an 
overall decrease of 3.1% in the disposal costs in the stochastic solution. In comparison, only by 
12% increase in the purchasing amount of sugar cane the energy demand is satisfied and can be 
marketed by adding 97.5 Billion Euros to the annual revenue. 
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Fig. 5. 14. Disposal Cost Reduction vs. Sugar Cane Purchasing amount. 

5.6.  Conclusions 
This chapter has addressed the optimal retrofitting of bio-based energy integrated SC under 
uncertainty. The problem is mathematically formulated as a multi-objective stochastic MILP 
aiming to discover further opportunities that account for maximizing the expected NPV and 
minimizing the environmental impacts (in terms of GWP100).  The model was examined with 
different scenario sizes. The results of each case were analyzed and compared. It is deduced that 
a larger scenario size shows more representativeness and can control the uncertainty effects. 
Besides, a risk associated with the NPV quantifies the uncertainty effects, introduced as an 
additional constraint into the model. Then, this risk can manage to the probability of having low 
profit. The capabilities of the model were highlighted through its application to a case study. The 
proposed stochastic approach maximizes the expected NPV while satisfying at the same time a 
minimum environmental impact. Numerical results show that stochastic solutions improve 
system flexibility and should be therefore the preferred choice in practice. The optimal solutions 
are according to the number of residues used in cogeneration energy units directly related to the 
objectives. The interaction between the design objectives has been shown. This way of generating 
different possible configurations will help the decision-maker determine the best configuration 
according to the selected objectives. 
Finally, this method allows the management of different material flows within a sustainable way, 
ensuring energy availability and reducing operational costs and demand satisfaction. Thus, the 
proposed strategy represents a step forward to overcome problems such as long period 
forecasting of uncertainty conditions. 
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5.7.  Nomenclature 

  Abbreviations 

MILP Mixed Integer Linear Programming 
MOO Multi-Objective Optimization 
NPV Net Present Value 
OV Opportunity Value 
PSE Process System Engineering 
SC Supply Chain 
SCM Supply Chain Management 
SSC Sustainable Supply Chain 
VaR Value at Risk 

  Index 
k Target valueሺ݇|݇ ൌ 1,… ,  ሻܭ
sc Set of scenarios ሺܿݏ|ܿݏ ൌ 1,… ,  ሻܥܵ

Parameters 

 Auxiliary boundary for the ε-constraint method ߝ
௦௖ௗߠ  a realization of uncertain parameters in scenario ܿݏ 
 ݇ ௞ Target levelߗ
 ௞ Environmental performance target′ߗ
 ௦௖,௦௖ᇱ the distance between two scenariosܥ
௦݂௖
∗  Optimal objective value under scenario ܿݏ 
 Big positive number ܯ
ܰ Number of scenarios to be removed 
 ܿݏ ௦௖ the probability of scenarioܾ݋ݎ݌
௦௖ܾ݋ݎ݌

௢௥௜௚ the probability of scenario  in an original discrete ܿݏ
distribution 

   ݃ ௜,௚ Demand of product ݅ in regionܦܵ

Variables 

 is removed ܿݏ ௦௖,௦௖ᇱ a dual variable which means whether scenarioݒ
and assigned to scenario ܿݏ′ 

 ሿ Expected environmental damageܯܣܦሾܧ
 ሾܸܰܲሿ Expected net present valueܧ
 ܿݏ ௦௖ Environmental metric to be optimized in scenarioܯܣܦ

௘݂௫௣
௘௥௥ absolute error between the expected performance of original 

and reduced distribution 

௘݂௫௣
௢௥௜௚ 

Expected objective function obtained using the original set of 
scenarios 

௘݂௫௣
௡௘௪ Expected objective function obtained using the reduced set of 

scenarios 
݊௦௖,௦௖ᇱ Probability displacement between scenarios 
ܰܲ ௦ܸ௖ Net Present Value in scenario ܿݏ 
 in the reduced distribution ܿݏ ௦௖௡௘௪ new probability of scenarioܾ݋ݎ݌
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Binary Variables 

 (௦௖= 0ݕ) or not (௦௖= 1ݕ) is removed ܿݏ ௦௖ whether scenarioݕ

ܼ௦௖ 
1 if NPV attained in scenario ܿݏ is below the target level Ω, 
otherwise 0 

ܼ′௦௖ 
Binary variable (1 if the impact in scenario c is above the target 
limit, 0 otherwise 
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 Chapter 6 

 

SC RETROFITTING INTEGRATING MULTIPLE RENEWABLE ENERGY 
RESOURCES 

 

The recent increase in energy cost, particularly carbon-based fuels, coupled with global concerns 
related to ܱܥଶ emissions have resulted in serious efforts to redesign the production processes to 
substitute alternative energy resources. However, energy integration in conventional material 
supply chains (SC) has experienced a paradigm change, which leads to redesign production 
processes from a large-scale centralized approach to the in-situ exploitation of renewable sources. 
Nevertheless, less effort has yet expended in attempting to ensure renewable energy integration 
comparing to independent industries. However, this aspect creates a new pattern of resource-
based energy integrated SCs. Recently, Martín & Grossmann (2017, 2018) evaluate the use of the 
available renewable resources and the optimal integration of technologies to meet the demand 
for fuels and power simultaneously. Furthermore, they proposed the most efficient combination 
of an integrated facility to use renewable sources, solar and wind energy, biodiesel production 
with no area limitation. Some studies, such as one by Yuan & Chen (2012), presented overviews 
concerning integration possibilities different renewable resource combinations. Hence, the 
absence of a holistic model predicting the benefits of renewable integration compared to an 
energy-independent production system motivated this thesis author to address this issue. 
Besides, large-scale demand, such as a regional or country-level, requires a model capable of 
responding to the integration of resources at this large scale. The studies conducted recently have 
focused on specific technologies and addressed particular cases. Hence, a generic and systematic 
approach is needed to explore and assess a large set of alternative configurations. Therefore, this 
chapter proposes various possible combinations of integrated renewable resources, particularly 
solar and wind energy, in addition to the cogeneration power plant to multi-technology process 
plants. Afterward, energy integration benefits are evaluated, compared to an individual system. 
The chapter contains sections as follows. Section 6.1 describes the problem statement. Next, 
section 6.2 discusses the main model assumptions and solution procedures for formulating multi-
objective mixed-integer linear programming MILP models. Afterward, in section 6.3, the model 
is validated through a case study, and in section 6.4, the results are analyzed and discussed. 
Finally, in section 6.5, the conclusions are exposed.  
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6.1. Problem Statement 
Here, conventional material SC is developed considering several large-scale possible renewable 
resources, as is depicted in Fig. 6.1. 

 
Fig. 6. 1. Renewable-based network integrated into a conventional material SC. 

This network includes several potential regions capable of housing a set of plants with available 
production technologies and product flows to ship them to the associated markets. Assumed each 
industrial zone has its own sets of energy generation sites such as eco-industrial parks to satisfy 
production process energy demand.  
The problem addressed in this work formally states as follows. Given are: 

 A fixed time horizon divided into two sets of periods (months and years),  

 A set of potential locations for the material/energy SC facilities, energy generation sites, 
and energy/material storage technologies  

 Capacity limitations associated with these technologies (energy generation and 
production/storage processes) 

 Prices of final products and raw materials and energy to purchase/sell 

 Investment and operating costs of the production process/energy generation and 
environmental data (ܱܥଶ emissions associated with the network operation and a damage 
assessment model). 
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The goal of the study is to evaluate the benefits of an energy integration system compared with 
an individual one and to determine the optimal configuration of the material/energy integrated 
SC along with the associated planning decision that simultaneously maximizes the expected total 
net present value (NPV) and minimizes the environmental impact under demand uncertainty.  
Decisions to be made are of two types: structural and operational. The former include the number, 
location, and capacity of the plants, warehouses, energy generation technologies to be set up, 
their capacity expansion policy, and the transportation links between the integrated SC entities. 
The operational decisions are the production rate at the plants in each period, the flows of 
materials and energy between plants, energy generation sites, warehouses, energy and product 
markets, and the sales of final products. 

6.2.  Mathematical Model 
In this section, a MILP formulation is presented, based on the model introduced by Mele et al. 
(2011), which addresses the design and planning of sugar-bioethanol SCs, and further expanded 
to consider a multi resource-based energy integration. The last was presented initially by Alabert 
et al. (2016). 
The environmental concerns considering ܱܥଶ emissions are included along with the traditional 
economic objective, giving rise to a bi-criteria decision-making problem. The mathematical 
formulation considers all possible configurations of the future energy/material SC and all 
technical aspects associated with the SC performance.  
As mentioned above, the specific models' task is to treat each technology's characteristics and 
translate them into the general model. The input parameters and the results of the previous 
calculations are transferred to the optimization model to work with global units. 
After introducing the specific parameters of each technology, mainly corresponding to prices and 
technical parameters, they are used in blocks of equations representing the behavior of each 
particular technology. The outcome of these equations are values applied to the general model. 
Regarding the specific models of autonomous resources, this configuration varies slightly. The 
reason is that renewable generation technologies such as solar and wind need to be fed by 
databases of atmospheric conditions for each period. In this way, Fig. 6.2 shows the general 
structure of the proposed data flow. 
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Fig. 6. 2. The general structure of the model.

The model equations are classified into two parts; the adopted model part (Mele et al., 2011) and 
the extended part. On the other hand, the model includes three main blocks of equations: material 
production and flows; energy generation and flows; objective functions. The production and 
demand model (Eq. B.1 to B.15) is the same as Chapter 5 provided in Appendix B.3. The following 
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section proposes parameter calculations, energy section parameters, energy model, and 
integration model.  

6.2.1. Energy generation constraints section 
This section details the mathematical formulation of each specific model corresponding to 
possible technology to be installed to form the energy network. It stands out that it is not a finite 
number of technologies since the analyst can add more technologies by implementing the 
corresponding specific models. It is also not necessary that the dimensioned system incorporates 
them all but, at the user level, it will first define the possible technologies to be installed 
(regarding the parameter of each power or maximum capacity model) and, then the model will 
solve what combination of those that are possible is optimum. 
The equations corresponding to the installation limits and the energy balance apply to all flows 
for the total energy generated in each time interval. Here, the model proposed by Alabert et al. 
(2016) is extended and modified, but before that, it requires introducing pre-optimization 
equations of the individual system components. 

6.2.1.1. Modeling of the individual system components 
The developed model is generic, and the formulations presented in section 6.2 can be applied to 
any small-scale to large-scale problems providing adequate data of resource availability, climate, 
and demand. Table 6.1 introduces the energy technologies implemented in use in the model.  

Table. 6. 1. Enumeration and classification of specific models. 

Autonomous Resources External Resources 
Windmill Electrical grid 
Photovoltaic solar  
Cogeneration power plant  

Parameter calculations of the cogeneration power plant were explained in section 4.4.1.1 through 
equations (4.60) to (4.62) of Chapter 4. Parameter calculations of the windmill and solar 
photovoltaic panel are described in the following: 

I. Horizontal axis windmill parameters calculations 
The horizontal axis windmill model is presented based on the study conducted by Manyonge et 
al. (2012). The modification referring to the limiting factor is highlighted. The previous model 
was based on the maximum number of turbines, while in this case, it has been transformed into 
the maximally available surface so that the equivalent surface parameter occupied by a turbine is 
introduced. The model used for power coefficient ܲܥ is given as in Fernando et al. (2015). 

In the pre-optimization phase (the parameter calculations), it is necessary to calculate the 
generated power ܶݓܾܲݎݑ௚,௧ of a turbine in region ݃ and period	ݐ.  The generated power depends 
on the power coefficient ݌ܥ௚,௧ and captured power ܶܪݓܾܲݎݑ ௚ܹ,௧ (see Eq. (6.1)).  
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௚,௧ݓܾܲݎݑܶ ൌ ܪݓܾܲݎݑܶ	 ௚ܹ,௧	 ൈ ,݃∀ ௚,௧݌ܥ	 (6.1) ݐ
The captured power depends on the rotor diameter	ܴܦݐ݋, wind velocity	ܹܸ݃,ݐ and density of 
air	ߩ௔௜௥. Note that the generated power gets value if: 
ܸܹ݊ܫݐݑܥ  ൑ ܹ ௚ܸ,௧ ൑ ݐ,݃ܲܥ and ܸܹݐݑܱݐݑܥ ൒ 0, else it is zero. 

ܪݓܾܲݎݑܶ ௚ܹ,௧ ൌ 	
ଵ

ଶ
ሺ	ߨ	௔௜௥ߩ	

ோ௢௧஽

ଶ
ሻଶ	ܹ ௚ܸ,௧

ଷ   ∀݃, (6.2) ݐ
The analytical approximation model of the power coefficient is indicated as below:  

ܥ ௚ܲ,௧ ൌ ܿଵ ൬
௖మ
ஃ೒,೟

െ ଷܿߚ െ ܿସ൰ ݁
ష೎ఱ
౻೒,೟ ൅   ௚,௧ܿ଺ߣ ∀݃, (6.3) ݐ

Here, ܿଵି଺ are empirical power coefficient parameters, ߚ is the azimuth angle of the pitch, ߣ௚,௧  tip 
speed ratio (often known as TSR) and Λ௚,௧ is tip speed ratio at ݅௧௛ time step and these two design 
parameters are calculated by Eq. (6.4) and Eq. (6.5): 

௚,௧ߣ ൌ
ఠ௡௢௠ሺ

మഏ
లబ
ሻሺ
ೃ೚೟ವ
మ

ሻ

ௐ௏೒,೟
   ∀݃, (6.4) ݐ

ଵ

ஃ೒,೟
ൌ

ଵ

ఒ೒,೟ା଴.଴଼ఉ
െ

଴.଴ଷହ

ఉయାଵ
  ∀݃,  ݐ (6.5)

Note that ߣ௚,௧ depends on the nominal turbine rotation speed (߱݊݉݋) and the rotor diameter 
 .(ߚ) and Λ௚,௧ depends on the azimuth angle of the pitch ,(ܦݐ݋ܴ)
 In addition to	ܶݓܾܲݎݑ௚,௧ , the design parameter ܲݔܽܯܫݓ௘௜ should be calculated. This parameter 
denotes the máximum power to be installed.  

௘௜ݔܽܯܫݓܲ ൌ
ௌ௨௥௙ெ௔௫ுௐ

ௌ௨௥௙௉௪ுௐ
   ݁݅ ൌ ݀݊݅ݓ  ݕ݃ݎ݁݊݁ (6.6)

Here, the turbine surface per generated power (ܹܵܪݓ݂ܲݎݑ) is necessary to calculate through the 
equivalent surface area of a turbine (ܹܵܪݍܧ݂ܶݎݑ) and nominal turbine power (ܶݓܲ݉݋ܾܰݎݑ).  

ܹܪݓ݂ܲݎݑܵ ൌ
ௌ௨௥௙்ா௤ுௐ

்௨௥௕ே௢௠௉௪
     (6.7)

Note that the parameters	ܵ,ܹܪݔܽܯ݂ݎݑ	ݓܲ݉݋ܾܰݎݑܶ, and ܹܵܪݍܧ݂ܶݎݑ vary in different turbine 
models. Eq. (6.8) defines the unit Price per power.  

ܹܪݓܲݎܲ ൌ
்௨௥௕௉௥

்௨௥௕ே௢௠௉௪
     (6.8)

Table. 6.2 describes the input parameters of the HW model based on the datasheet proposed in 
Appendix B.3 and Table. 6.3 explains the parameters to be calculated in the pre-optimization 
phase.   
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Table. 6. 2. Input parameters of a specific windmill model.

 

 

Table. 6. 3. Calculated parameters in the pre-optimization phase for a specific windmill model. 

Identifier Description Unit 

 The tip speed ratio (often known as TSR) ሾെሿ ࢚,ࢍࣅ

઩࢚,ࢍ The tip speed ratio at ݅௧௛ time step ሾെሿ 

 ሾെሿ ݐ Power coefficient in region ݃ and period ࢚,ࢍࡼ࡯

The relation between the surface and power ሾ݉ଶ ࢃࡴ࢝ࡼࢌ࢛࢘ࡿ ܹ݇⁄ ሿ

࢏ࢋ࢞ࢇࡹࡵ࢝ࡼ
∗ Maximum power to install ሾܹ݇ሿ 

€Price per unit of power ሾ ࢃࡴ࢝ࡼ࢘ࡼ ܹ݇⁄ ሿ 

࢚,ࢍࢃࡴ࢝ࡼ࢈࢛࢘ࢀ Captured power by a turbine in region ݃ and period ݐ ሾܹ݇ሿ 

 ሾܹ݇ሿ ݐ Power generated by a turbine in region ݃ and period ࢚,ࢍ࢝ࡼ࢈࢛࢘ࢀ

* ݁݅ denotes wind energy 

II. Photovoltaic arrays parameter calculations  
The photovoltaic energy generation model is based on the study by Darras et al. (2010). It operates 
by importing the radiation and temperature data from a database to calculate the power per unit 

Identifier Description Unit 

 ሿܯNominal turbine rotation speed ሾܴܲ ࢓࢕࢔࣓

Rotor diameter ሾ݉ሿ ࡰ࢚࢕ࡾ

 ࢚,ࢍࢂࢃ Wind velocity in region ݃ and period ݐ ሾ݉ ⁄ݏ ሿ 

 ࢼ The azimuth angle of the pitch ሾ°ሿ 

 ૚െ૟ࢉ Empirical power coefficient parameters ሾെሿ 

 ࢃࡴࢗࡱࢀࢌ࢛࢘ࡿ The equivalent surface area of a turbine ሾ݉2 ⁄ܾݎݑݐ ሿ 

 ࢝ࡼ࢓࢕ࡺ࢈࢛࢘ࢀ Nominal turbine power ሾܹ݇ሿ 

 ࢃࡴ࢞ࢇࡹࢌ࢛࢘ࡿ
Maximum surface available for horizontal 
windmill axis 

ሾ݉2ሿ 

 ࢘ࡼ࢈࢛࢘ࢀ Price of a turbine ሾ€ሿ

 ࢘࢏ࢇ࣋ Density of air ሾ݇݃ ⁄ ݉3ሿ 

 ࢂࢃ࢔ࡵ࢚࢛࡯ Cut –in speed  ሾ݉ ⁄ݏ ሿ 

 ࢂࢃ࢚࢛ࡻ࢚࢛࡯ Cut –out speed ሾ݉ ⁄ݏ ሿ 
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of the installed surface. An incorporated variation considers surface equivalent occupied by each 
panel, distinguishing between catchment surface and occupied surface. 
This section aims to calculate two main parameters of the power per available surface 
݂ܲݎݑܵݓܲ) ௚ܸ,௧) and the maximum power to install (ܲݔܽܯܫݓ௘௜) defined by Eq. (6.9) and (6.10).  

ݐ,ܸ݂݃ܲݎݑܵݓܲ ൌ
ݐ,݃ݓܲ݊ܽܲ

݂ݎݑܵ݊ܽܲ
   ∀݃,  ݐ (6.9)

௘௜ݔܽܯܫݓܲ ൌ
ௌ௨௥௙ெ௔௫௉௏

ௌ௨௥௙௉௪௉௏
  ݁݅ ൌ ݎ݈ܽ݋ݏ  ݕ݃ݎ݁݊݁ (6.10)

Hence, it is necessary to calculate first the power generated by a panel (ܲܽ݊ܲݓ௚,௧) and the surface 
per unit of power (ܸܵܲݓ݂ܲݎݑ). Note that the panel surface (݂ܲܽ݊ܵݎݑ), the maximum available 
surface (ܸܵܲݔܽܯ݂ݎݑ), panel nominal power (ܲܽ݊ܰݓܲ݉݋), and the equivalent surface 
    .depend on the solar panel model and vary model to model (ܸܲݍܧ݂ܶݎݑܵ)

௚,௧ݓܲ݊ܽܲ ൌ
ீ ೒்,೟

ீோ
ሾܲܽ݊ܰݓܲ݉݋ ൅ ௣ߤ ൈ ݓܲ݉݋ܰ݊ܽܲ ൈ ൫ܲܽ݊ ௚ܶ,௧ െ ,݃∀  ൯ሿܣܶܵ  ݐ (6.11)

Here, ܩ ௚ܶ,௧ is the solar irradiance in region ݃ and period	ݐ. The panel temperature ܲܽ݊ ௚ܶ,௧ is 
calculated as below, and other parameters in the above equation are defined in Table. 6.4. Note 
that the panel temperature depends on the ambient temperature (ܶܣ௚,௧) and the solar irradiance 
in region ݃ and period	ݐ.  

ܲܽ݊ ௚ܶ,௧ ൌ ௚,௧ܣܶ ൅ ܩ ௚ܶ,௧ ൈ
ேை஼்ିଶ଴

଼଴଴
  ∀݃,  ݐ (6.12)

For attaining the maximum power to install (ܲݔܽܯܫݓ௘௜), it is necessary to calculate the surface 
per unit of power (ܸܵܲݓ݂ܲݎݑ), defined by Eq. (6.13). 

ܸܲݓ݂ܲݎݑܵ ൌ
ௌ௨௥௙்ா௤௉௏

௉௔௡ே௢௠௉௪
     (6.13)

In addition, Eq. (6.14) defines the panel price per unit of power: 

ܸܲݓܲݎܲ ൌ
௉௔௡௉௥

௉௔௡ே௢௠௉௪
   (6.14)

Table. 6.4 describes the input parameters of the photovoltaic model based on the datasheet 
proposed in Appendix B.3 and Table. 6.5 explains the parameters to be calculated in the pre-
optimization phase. 
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Table. 6. 4. Input parameters of a specific photovoltaic model.

 
Table. 6. 5. Calculated parameters in the pre-optimization phase for a specific photovoltaic model. 

Identifier Description Unit 

  ሾܹ݇/݉ଶሿ ݐ Power per available surface in region ݃ and period ࢚,ࢍࢂࡼࢌ࢛࢘ࡿ࢝ࡼ

The relation between the surface and power ሾ݉ଶ ࢂࡼ࢝ࡼࢌ࢛࢘ࡿ ܹ݇⁄ ሿ 

࢏ࢋ࢞ࢇࡹࡵ࢝ࡼ
∗ Maximum power to install ሾܹ݇ሿ 

€Panel price per unit of power ሾ ࢂࡼ࢝ࡼ࢘ࡼ ܹ݇⁄ ሿ 

 ሾܹ݇ሿ ݐ Power generated by a panel in region ݃ and period ࢚,ࢍ࢝ࡼ࢔ࢇࡼ

 ሿܥ°ሾ ݐ Temperature of a panel in region ݃ and period ࢚,ࢍࢀ࢔ࢇࡼ

* ݁݅ denotes solar energy 

6.2.1.2. Individual resources pre-optimization model 
The importance of the pre-optimization calculations introduced previously is to calculate the 
maximum power to be installed and the power generation, which refers to the surface unit. Once 
this is done, the values are exported to the optimization model.  

A. Windmill pre-optimization model 

Identifier Description Unit 

ሿܥ°ሾ ݐ Ambient temperature in region ݃ and period ࢚,ࢍ࡭ࢀ

ሾܹ݇/݉2ሿ ݐ Solar irradiance in region ݃ and period ࢚,ࢍࢀࡳ

 ࢀ࡯ࡻࡺ Normal Cell Operating Temperature ሾ°ܥሿ

 ࡾࡳ Solar irradiance under standard condition ሾܹ݇/݉2ሿ

 ࢂࡼࢗࡱࢀࢌ࢛࢘ࡿ The equivalent surface occupied by a panel ሾ݉2 ⁄݈݁݊ܽ݌ ሿ

 ࢝ࡼ࢓࢕ࡺ࢔ࢇࡼ Panel nominal power ሾܹ݇ሿ

 ࢂࡼ࢞ࢇࡹࢌ࢛࢘ࡿ Maximum surface available for a photovoltaic ሾ݉2ሿ

 ࢘ࡼ࢔ࢇࡼ Price of a panel ሾ€ሿ

 ࢖ࣆ Coefficient of variation of power per 
temperature 

ሾ% ⁄ ሿܥ°

 ࡭ࢀࡿ The ambient temperature under standard 
condition 

ሾ°ܥሿ

 ࢌ࢛࢘ࡿ࢔ࢇࡼ Panel surface ሾ݉2ሿ
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ܪݏ݊ܫ݂ݎݑܵ ௘ܹ௜,௚ ൌ ௘௜,௚ܫݓܲ ൈ   ܹܪݓ݂ܲݎݑܵ
∀݃ ,
݁݅ ൌ ݀݊݅ݓ  ݕ݃ݎ݁݊݁

(6.15)

௘௜,௚݉ݑܾܰݎݑܶ ൌ
௉௪ூ೐೔,೒

்௨௥௕ே௢௠௉௪
  (6.16)

௘௜,௚,௧,௦௖ܩܫݓܲ ൌ ௘௜,௚݉ݑܾܰݎݑܶ ൈ  ௚,௧ݓܾܲݎݑܶ

∀݃, ,ݐ  ܿݏ
݁݅ ൌ  ݕ݃ݎ݁݊݁	݀݊݅ݓ

(6.17)

௘௜,௚,௧,௦௖ݔܽܯܩܫݓܲ ൌ ௘௜,௚,௧,௦௖ (6.18)ܩܫݓܲ

௘௜,௚,௧,௦௖݊݅ܯܩܫݓܲ ൌ ௘௜,௚,௧,௦௖ܩܫݓܲ ൈ (6.20) ܹܪݓܲ݊݅ܯ

B. Solar photovoltaic pre-optimization model 

݂ܲݎݑܵ ௘ܸ௜,௚ ൌ
௉௪ூ೐೔,೒ൈ௉௔௡ௌ௨௥௙

௉௔௡ே௢௠௉௪
  

∀݃ ,
݁݅ ൌ ݎ݈ܽ݋ݏ  ݕ݃ݎ݁݊݁

(6.21)

ܲݏ݊ܫ݂ݎݑܵ ௘ܸ௜,௚ ൌ ௘௜,௚ܫݓܲ ൈ (6.22) ܸܲݓ݂ܲݎݑܵ

ܿݏ,ݐ,݃,݅݁ܩܫݓܲ ൌ ݃,ܸ݂݅݁ܲݎݑܵ ൈ  ݐ,ܸ݂݃ܲݎݑܵݓܲ

∀݃, ,ݐ  ܿݏ
݁݅ ൌ  ݕ݃ݎ݁݊݁	ݎ݈ܽ݋ݏ

(6.23)

௘௜,௚,௧,௦௖ݔܽܯܩܫݓܲ ൌ ௘௜,௚,௧,௦௖ (6.24)ܩܫݓܲ

௘௜,௚,௧,௦௖݊݅ܯܩܫݓܲ ൌ ௘௜,௚,௧,௦௖ܩܫݓܲ ൈ (6.25) ܸܲݓܲ݊݅ܯ

For both photovoltaic solar panel and windmill, the installation capacity constraints on energy 
generation are expressed in equations (6.26) and (6.27): 

݃,݅݁ܫݓܲ ൑  ݅݁ݔܽܯܫݓܲ ∀݁݅, ݃ (6.26)
∑ ௘௜,௚ܫݓܲ ൈ ௘௜ܫݓ݂ܲݎݑܵ ൑ ௘௜ݔܽܯ݂ܶݎݑܵ   ∀݃  (6.27)

C. Cogeneration unit pre-optimization model 
The cogeneration power plant is considered a renewable energy generator. Here, ܩܫ݊ܧ௘௜,௚,௧,௦௖ 
represents the energy generated in the cogeneration power plant in sub-region	݃, in period ݐ and 
scenario	ܿݏ. 

ݐ,݃,݅݁ܩܫ݊ܧ ൌ ܲ݁݃ ൈ ܮܵ ൈ  ܿݏ,ݐ,݃,ܹ݅
∀݅, ݃, ,ݐ  ܿݏ

 ݁݅ ൌ ݏݏܽ݉݋ܾ݅ (6.28) ݕ݃ݎ݁݊݁

௘௜,௚,௧,௦௖ݔܽܯܩܫݓܲ ൌ  ௘௜,௚,௧,௦௖ܩܫݓܲ ∀݃, ,ݐ  ܿݏ
݁݅ ൌ ݏݏܽ݉݋ܾ݅  ݕ݃ݎ݁݊݁

(6.29)
௘௜,௚,௧,௦௖݊݅ܯܩܫݓܲ ൌ ௘௜,௚,௧,௦௖ܩܫݓܲ ൈ ܱܥ݃ܲ݊݅ܯ (6.30)

Here, ܲ ௘௚ is the power generated per ton of raw material, SL denotes time slot, ܹ ௜,௚,௧,௦௖ is the waste 
amount produced from material ݅  in region ݃  in period ݐ, and scenario ܿݏ and ܱܥ݃ܲ݊݅ܯ is defined 
as the minimum power generated coefficient.  
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Regarding integrated energy/material SC model and energy non-storable characteristics, two 
different planning periods (month ࢚ and year ࢚" for the energy and material, respectively) are 
considered. 

6.2.2. Modeling of the integrated system components 
While the energy demand depends on the production process rate, the equations noted in this 
section link energy generation to the production system, and this way, it forms the integrated 
part of the model. All the equations representing energy generation belong to the general model. 
Equation (6.31) shows energy balance to meet the demand during a period	ݐ: 

∑ ∑ ሾܬܫ݊ܧ௘,௘௜,௚,௧,௦௖ ൈ ௘,௘௜ሿ௘௜௘ܬܫ݂ܧ ൅ ∑ ∑ ሾܬܺ݊ܧ௘,௫,௚,௧,௦௖ ൈ௫௘∈ா௑ሺ௘,௫ሻ

݂ܺܧ ௘,௫ሿܬ ൌ ,݃∀  ௚,௧,௦௖݀݊ܽ݉݁ܦ݈ܽݐ݋ܶ ,ݐ  ܿݏ (6.31)

The total energy demand (ܶ݀݊ܽ݉݁ܦ݈ܽݐ݋௚,௧,௦௖  ) is equal to the energy demand needed per unit of 
raw material ݐ,݃݀݊ܽ݉݁ܦ multiplied by the amount of raw material ܲ ௜ܷ,௚,௧,௦௖ consumed in sub-
region ݃, each period ݐ, and scenario	ܬܫ݊ܧ .ܿݏ௘,௘௜,௚,௧,௦௖ represents the energy flow between the 
energy generation unit ݁݅ and demand region ݃, each period ݐ and scenario ܿݏ and ܿݏ,ݐ,݃,ݔ,݁ܬܺ݊ܧ is 

energy flow between an external energy resource and a demand point (production plant). The 
total flows should satisfy the total energy demand in each region. ܬܫ݂ܧ௘,௘௜ and ܬ݂ܺܧ௘,௫ are 
conversion efficiencies between energy resources (internal and external resources) and 
production plants. The energy generated by each internal renewable resource will be transferred 
to the process plant to satisfy the energy demand or/and sold to the grid. 

∑ ௘,௘௜,௚,௧,௦௖ܬܫ݊ܧ ൈ ௘,௘௜௘ܬܫ݂ܧ ൅ ∑ ௘,௘௜,௫,௚,௧,௦௖ܺܫ݊ܧ ൈ ௘,௫௘∈ா௑ሺ௘,௫ሻܺܫ݂ܧ ൌ
,݅݁∀  ௘௜,௚,௧,௦௖ܩܫ݊ܧ ݃, ,ݐ  ܿݏ (6.32)

Acronym ܬܫ denotes the flows between internal energy generation resource and demand spot ܺܫ 
refer to internal and external energy flows and, ܺܬ is the flow between the external energy 
resource and demand spot. 

Fig. 6. 3. Flows and efficiencies between system elements.
The Big-M method is applied to define upper and lower generation limits so that equations result 
linear. ݊ܩ௘௜,௚,௧,௦௖ is a binary variable. The parameters ܲܩܫݓ௘௜,௚,௧,௦௖ and ܲ݊݅ܯܩܫݓ௘௜,௚,௧,௦௖ are used to 
calculate the power to install.  
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௘௜,௚,௧,௦௖ܩܫݓܲ ൑ ௘௜ݔܽܯܫݓܲ ൈ ,݅݁∀ ௘௜,௚,௧,௦௖݊ܩ ݃, ,ݐ  ܿݏ (6.33)
௘௜,௚,௧,௦௖ܩܫݓܲ ൒ െܲݔܽܯܫݓ௘௜ ൈ ௘௜,௚,௧,௦௖݊ܩ ∀݁݅, ݃, ,ݐ (6.34) ܿݏ
ܿݏ,ݐ,݃,݅݁ܩܫݓܲ ൑ ܿݏ,ݐ,݃,݅݁ݔܽܯܩܫݓܲ ൅ ݅݁ݔܽܯܫݓܲ ൈ ሺܿݏ,ݐ,݃,݅݁݊ܩ െ 1ሻ  ∀݁݅, ݃, ,ݐ (6.35) ܿݏ
ܿݏ,ݐ,݃,݅݁ܩܫݓܲ ൒ ܿݏ,ݐ,݃,݅݁݊݅ܯܩܫݓܲ െ ݅݁ݔܽܯܫݓܲ ൈ ሺܿݏ,ݐ,݃,݅݁݊ܩ െ 1ሻ  ∀݁݅, ݃, ,ݐ (6.36) ܿݏ

The value of M should be large enough to make the problem feasible and small enough to reduce 
it. In this case, M corresponds to the maximum power ܲݔܽܯܫݓ௘௜ to be installed. 

6.2.2.1. External resource equations 
The constraints corresponding to the installation limits and the energy balance according to the 
flows define the external energy resources section.  
ܺ݊ܧ ௘ܲ,௫,௚,௧,௦௖ ൌ ௘,௫,௚,௧,௦௖ܬܺ݊ܧ ൈ  ௘,௫ܬ݂ܺܧ ∀݃, ,ݐ ,ሺ݁ܺܧ ,ሻݔ (6.37) ܿݏ
௘,௫,௚,௧,௦௖ܵܺ݊ܧ ൌ ∑ ௘,௘௜,௫,௚,௧,௦௖ܺܫ݊ܧ ൈ ௘,௫௘௜ܺܫ݂ܧ ∀݃, ,ݐ ,ሺ݁ܺܧ ,ሻݔ  ܿݏ (6.38)
ܺݓܲ 	ܲ௘,௫,௚,௧,௦௖ ൌ ܺ݊ܧ ௘ܲ,௫,௚,௧,௦௖/ܵܮ  ∀݃, ,ݐ ,ሺ݁ܺܧ ,ሻݔ (6.39) ܿݏ
ܺݓܲ 	ܵ௫,௚,௧,௦௖ ൌ  ܮܵ/௘,௫,௚,௧,௦௖ܵܺ݊ܧ ∀݃, ,ݐ ,ሺ݁ܺܧ ,ሻݔ (6.40) ܿݏ
ܺ݊ܧ ௘ܲ,௫,௚,௧,௦௖ and ܵܺ݊ܧ௘,௫,௚,௧,௦௖ are the energy quantities to buy and sell at each period on each 
external resource, which defines the corresponding ܲܺݓ 	ܲ௘,௫,௚,௧,௦௖ and ܲܺݓ 	ܵ௫,௚,௧,௦௖  powers. 

6.2.3. Objective function 
The model explores the optimum economic and environmental performance of the network. The 
economic objective is represented by the net present value (NPV), whereas the environmental 
impact is quantified according to Life Cycle Assessment (LCA) principles explained in the 
previous chapter. 

6.2.3.1. Expected Net Present Value 
The expected NPV is maximized as an objective function. Hence, the calculated NPV for each 
scenario ܿݏ is multiplied by the associated probability ܾܲ݋ݎ௦௖ of each scenario	ܿݏ as expressed in 
Eq. (6.41). The  ܸܰܲܿݏ can be determined from the discounted cash flows ܨܥ௧",௦௖ generated in each 
of the time intervals ݐ” in which the entire time horizon: 
ሾܸܰܲሿܧ ൌ ∑ ௦௖ܾ݋ݎܲ ൈ ܰܲ ௦ܸ௖௦௖     (6.41)
ܰܲ ௦ܸ௖ ൌ ∑ ஼ி೟",ೞ೎

ሺଵା௜௥ሻ೟"షభ௧"    (6.42) ܿݏ∀
The equations related to cash flow calculations are provided in Appendix B.3. 

6.2.3.2. Expected environmental impacts 
The environmental impact as an objective function is defined through the ܿݏܯܣܦ variable and to 
be minimized. The equations related to the life cycle inventory calculations are provided in 
Appendix B.3.  

௦௖ܯܣܦ ൌ ௦௖݈ݑܹܿܲܩ ൅ ௦௖ݎܹܲܲܩ ൅	ܹܳܲܩ௦௖    (6.43)
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6.2.4. Multi-objective equations 
The overall bi-MILP formulation can be expressed in compact form as follows: 

ሺܯሻ					 min
௫,௑,ே

ሼെܧሾܸܰܲሺݔ, ܺ, ܰሻሿ; ,ݔሺܯܣܦሾܧ ܺ, ܰሻሿ   

s.t. constraints (6.1)-(6.43) and the equation provided in Appendix B  

ݔ               ∈ Թ,								ܺ ∈ ሼ0,1ሽ,									ܰ ∈ Ժା  
Note that the solution method is the same as in previous chapters, and it is provided in Appendix 
B. Here, the proposed multi-renewable energy resource integrated model shows more flexibility 
in managing energy demand. According to the integrated energy/material SC model and 
referring to the non-storable characteristic of energy, it is considered two different planning 
periods as mentioned previously.  

6.3.  Case study 
The capabilities of the proposed model are tested through a case study based on the sugar-
bioethanol industry of Argentina. The country is divided into 24 regions with associated ethanol, 
raw and white sugar demands. The employed data is from Mele et al. (2011), plus other additional 
information provided in Appendix section B.3. 

6.3.1. Windmill model 
As a horizontal axis system, the 850 kW model of GAMESA G58 (Gamesa, 2008) is chosen. The 
design data set is depicted in Appendix section B.3. 
Regional wind velocity ܹ ௚ܸ,௧ was extracted from The world Meteorological Service Data Base 
(“Home | World Weather Information Service”). Fig. 6.4 shows the calculated regional power 
coefficient ݌ܥ and how it varies during a year. The graph indicates the availability of wind power 
during a year in each region of Argentina.  
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Fig. 6. 4. Regional wind velocity and associated power coefficient ݌ܥ calculated for each month of a year.

The obtained results prove that the regions with more stability in wind velocity and fewer 
variations in ݌ܥ (i.e.,	݃ଷ,	݃଻,	଼݃, ݃ଵଵ, ݃ଵହ, ݃ଵ଼, and ݃ଶଷ) are potentially assumed to install wind 
turbines. Furthermore, to obtain ܶݓܾܲݎݑ௚,௧ (the power generated by a turbine in region ݃ and 
during month ݐ (Eq. (6.8)), it is necessary to calculate the power coefficient ݌ܥ and the captured 
power by each turbine (ܶݐ,ܹ݃ܪݓܾܲݎݑ) corresponding to each region based on the design 
parameters of GAMESA G58 and metrological data (see Appendix B.3). The power generated in 
region ݃ and month ݐ has been calculated and proposed in Table 6.2. Note that the maximum 
number of the windmill is assumed to be 60. The pre-optimization parameters are depicted in the 
following:  
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Table. 6. 6. Pre-optimization parameters. 

ࢃࡴ࢝ࡼࢌ࢛࢘ࡿ 3.48 ሾ࢓૛ ⁄ࢃ࢑ ሿ

࢏ࢋ࢞ࢇࡹࡵ࢝ࡼ
∗ 43000 ሾࢃ࢑ሿ

882.35 ࢃࡴ࢝ࡼ࢘ࡼ ሾ€ ⁄ࢃ࢑ ሿ

* ݁݅ denotes wind energy 

 
Table. 6. 7. Generated power calculated for each region in each month. 

Based on Alabert et al. (2016 a), the minimum energy generation coefficient ܹܪݓܲ݊݅ܯ is 
assumed to be equal to 1, and the operational price per unit of wind energy ܲ  is considered ܹܪ݊ܧݎ
to be 0	€/ܹ݄݇. 

6.3.2. Photovoltaic Arrays model 
The Kyocera KD225GH-4YB2 model is selected as a photovoltaic solar generator because of the 
case study discussed in this work. Related data is shown in Appendix B.3. Solar irradiance ܩ ௚ܶ,௧ 
is calculated using the Solar Electricity Handbook (Boxwell, 2010) for each month ݐ in each region 
݃ (Fig. 6.5). 

 

  Month            
Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec 

Region ࢉ࢙,࢚,ࢍ࢝ࡼ࢈࢛࢘ࢀ ሺࢃ࢑ሻ

 (Buenos Aires) g1 58.70 53.95 52.57 54.88 53.03 61.15 64.17 67.26 77.01 74.23 73.14 62.65 
(Córdoba) g2 0 0 0 0 0 0 0 0 0 0 0 0 
(Corrientes) g3 12.15 11.95 10.98 12.15 13.82 16.55 22.01 28.68 33.82 33.82 25.52 16.07 
 (La Plata) g4 62.65 58.21 53.95 53.03 52.11 58.70 61.15 64.68 78.13 73.68 74.23 64.68 
 (La Rioja) g5 22.29 14.47 8.49 0 0 0 0 3.40 11.95 24.92 33.46 30.01 
 (Mendoza) g6 30.01 22.29 16.79 8.66 0 0 0 8.49 15.84 24.02 30.01 31.36 
 (Neuquén) g7 134.97 101.10 77.01 61.15 45.95 45.53 46.80 59.18 72.59 100.46 134.97 153.19 
 (Entre Ríos) g8 24.62 23.15 22.29 22.86 23.73 26.76 33.10 42.62 55.20 52.61 42.47 30.79 
(Misiones) g9 0 0 0 0 0 0 0 0 0 0 0 0 
(Chubut) g10 166.51 158.17 148.87 157.00 159.35 171.36 168.33 151.17 138.69 138.69 153.49 165.31 
(Chaco) g11 0 0 0 0 6.85 7.76 11.71 16.58 19.97 19.19 13.55 7.99 
(Santa Cruz) g12 263.59 240.48 221.41 196.42 166.51 157.59 170.14 184.98 183.72 205.50 254.41 261.46 
(Salta) g13 8.72 6.63 0 0 0 0 0 0 8.23 16.23 19.97 14.52 
(San Juan) g14 31.30 24.60 16.94 9.76 0 0 7.76 13.87 22.01 30.29 36.37 36.09 
(San Luis) g15 46.83 43.07 40.08 34.99 33.12 37.20 48.77 63.56 78.77 84.80 77.09 59.85 
(Tucumán) g16 13.07 10.91 8.82 0 0 0 0 7.61 16.63 25.98 25.73 20.22 
(Jujuy) g17 0 0 0 0 0 0 0 0 0 8.00 11.55 9.25 
(Santa Fe) g18 23.73 21.82 21.82 21.82 21.82 24.72 30.85 40.02 50.91 50.53 41.01 28.36 
(La Pampa) g19 0 0 0 0 0 0 0 0 0 0 0 0 
(Santiago del 
Estero) 

g20 0 0 0 0 0 0 0 0 7.48 8.00 0 0 

(Catamarca) g21 17.64 13.60 9.69 0 0 0 0 9.25 19.12 29.18 30.85 25.22 
(Rio Negro) g22 132.03 127.21 107.63 95.81 95.81 102.17 106.53 94.77 91.68 97.91 106.53 121.29 
(Formosa) g23 15.26 12.90 12.22 15.84 18.91 23.73 31.71 41.01 45.11 43.03 31.13 20.32 
(Tierra del Fuego) g24 185.29 179.00 162.67 129.61 104.34 104.34 130.21 162.67 173.49 211.26 228.49 198.83 
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Fig. 6. 5. Solar Irradiance GT, associated with regions in each period. 

Ambient temperature ܶܣ௚,௧ is extracted from the world weather information service (“Argentina 
| World Weather Information Service”) and depicted in Fig. 6.6. 

 
Fig. 6. 6. Temperature profile TA, associated with regions in each period. 

The obtained results prove that the regions with more stability the solar irradiance (i.e.,	݃ଶ, ݃ଷ, 
݃ହ, ݃ଵଷ, and ݃ଵ଻) are potentially assumed to install solar photovoltaic arrays. Furthermore, to 
attain the amount of regional power generated per unit available area in each period ݐ 
݂ܲݎݑܵݓܲ) ௚ܸ,௧) (Eq. (6.14)), it is necessary to calculate the generated power by each panel 	ܲܽ݊ܲݐ,݃ݓ 
corresponding to each region based on the design parameters of Kyocera model KD225GH-4YB2 
and solar irradiance data (see Table. 6.8). Thus, ܲ ݂ܲݎݑܵݓ ௚ܸ,௧ in each region, and month ݐ has been 
calculated and proposed in Table. 6.9. 
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Table. 6. 8. Solar power generated by the panel. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Month       
Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec 

Region ࢚,ࢍ࢝ࡼ࢔ࢇࡼሺࢃ࢑ሻ

 (Buenos Aires) 1.98  1.72  4.6 4.57 4.62 4.58 4.75 4.81 4.87 5.05 5 4.98 4.78 
(Córdoba) 2.03  1.79  2.06 2.03 2.06 2.1 2.2 2.4 2.62 2.75 2.73 2.61 2.35 
(Corrientes) 1.84  1.61 3.32 3.27 3.33 3.41 3.53 3.74 3.96 4.11 4.11 3.86 3.51 
 (La Plata) 1.95  1.70  4.69 4.6 4.58 4.56 4.7 4.75 4.82 5.07 4.99 5 4.82 
 (La Rioja) 1.69  1.55  3.44 3.13 2.75 2.41 2.23 2.38 2.75 3.32 3.84 4.1 4 
 (Mendoza) 2.08  1.86 3.75 3.54 3.14 2.78 2.63 2.77 3.13 3.5 3.81 4 4.04 
 (Neuquén) 2.25  1.97  5.45 5.05 4.75 4.42 4.41 4.44 4.71 4.97 5.44 5.94 6.18 
 (Entre Ríos) 1.92  1.71  3.78 3.75 3.77 3.8 3.9 4.09 4.34 4.63 4.57 4.34 4.02 
(Misiones) 1.81  1.60  1.19 1.21 1.27 1.33 1.36 1.43 1.49 1.48 1.45 1.37 1.28 
(Chubut) 1.76  1.41  6.24 6.12 6.23 6.26 6.41 6.37 6.15 5.99 5.99 6.18 6.33 
(Chaco) 1.84  1.61  2.95 2.88 2.97 3.02 3.08 3.31 3.53 3.67 3.64 3.40 3.10 
(Santa Cruz) 1.82  1.47  7.20 6.99 6.71 6.35 6.24 6.39 6.57 6.56 6.81 7.35 7.42 
(Salta) 1.85  1.75  3.01 2.85 2.56 2.31 2.21 2.38 2.67 3.11 3.52 3.67 3.44 
(San Juan) 2.14  1.95 3.83 3.55 3.20 2.98 2.92 3.08 3.41 3.74 4.01 4.18 4.17 
(San Luis) 2.08  1.86  4.35 4.28 4.14 4.09 4.20 4.49 4.80 5.08 5.19 5.05 4.72 
(Tucumán) 1.76  1.63 3.27 3.15 2.93 2.65 2.47 2.68 3.08 3.53 3.88 3.87 3.68 
(Jujuy) 1.88  1.78 2.77 2.55 2.27 2.07 2.13 2.28 2.48 2.73 3.10 3.30 3.18 
(Santa Fe) 1.92  1.70  3.73 3.73 3.73 3.73 3.83 4.03 4.28 4.53 4.53 4.30 3.95 
(La Pampa) 2.07  1.84 2.60 2.53 2.47 2.40 2.50 2.63 2.83 2.90 2.83 2.77 2.70 
(Santiago del 
Estero) 

1.70  1.56  2.37 2.30 2.27 2.20 2.23 2.45 2.78 3.07 3.10 2.97 2.65 

(Catamarca) 1.69  1.56  3.40 3.20 2.97 2.70 2.60 2.85 3.18 3.63 3.98 4.03 3.85 
(Rio Negro) 2.09  1.85  5.83 5.55 5.37 5.37 5.47 5.53 5.35 5.30 5.40 5.53 5.75 
(Formosa) 1.85  1.60  3.37 3.33 3.50 3.63 3.80 4.05 4.30 4.40 4.35 4.03 3.68 
(Tierra del Fuego) 1.76  1.08  6.50 6.30 5.87 5.50 5.50 5.88 6.30 6.43 6.88 7.07 6.73 
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Table. 6. 9. Power per available surface of a panel in each month and region. 

Based on Alabert et al. (2016 a), the minimum energy generation coefficient ܸܲݓܲ݊݅ܯ  is assumed 
to be equal to 1, and the operational price per unit of photovoltaic energy ܸܲܲ݊ܧݎ  is considered 
to be 0	€/ܹ݄݇. Maximum available surface for photovoltaic ܸܵܲݔܽܯ݂ݎݑ  is 300000	݉ଶ. The pre-
optimization parameters are depicted in the following:  

Table. 6. 10. Pre-optimization parameters. 

ࢂࡼ࢝ࡼࢌ࢛࢘ࡿ 6.67 ሾ࢓૛ ⁄ࢃ࢑ ሿ

࢏ࢋ࢞ࢇࡹࡵ࢝ࡼ
∗ 45000 ሾࢃ࢑ሿ

3000 ࢃࡴ࢝ࡼ࢘ࡼ ሾ€ ⁄ࢃ࢑ ሿ

* ݁݅ denotes solar energy 

6.3.3.  Cogeneration power plant 
The cogeneration power plant has been explained in detail in Chapter 4 (section 4.4.1). It is 
assumed that the energy output per ton of sugarcane is 66	ܹ݄݇/ݐ, and the minimum energy 
generation coefficient 	ܱܥ݃ܲ݊݅ܯ is equal to 1. It is also assumed that the power plant capacity is 
 W, and power generation is available continuously for 7800 hours annually. Based on IEAܯ	50
(2010), the estimated installation costs of the cogeneration plant is 800€/ܹܭ.  

6.4.  Results 
Regarding the aim of proposing a quantitative tool, it targets at determining the optimal 
integration of renewable technologies to meet the energy (in this particular case electricity) 

  Month              
Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec 

Region ࢚,ࢍࢂࡼࢌ࢛࢘ࡿ࢝ࡼሺ࢓/ࢃ࢑૛ሻ

 (Buenos Aires) 1.21  1.05  0.85  0.64  0.49  0.40  0.44  0.58  0.81  0.93  1.12  1.20  1.21 

(Córdoba) 1.23  1.09  0.89  0.72  0.55  0.50  0.56  0.71  0.94  1.07  1.21  1.27  1.23 

(Corrientes) 1.12  0.98  0.84  0.67  0.59  0.48  0.55  0.69  0.83  0.94  1.08  1.13  1.12 

 (La Plata) 1.19  1.04  0.84  0.64  0.49  0.40  0.45  0.58  0.80  0.94  1.14  1.21  1.19 

 (La Rioja) 1.03  0.94  0.78  0.66  0.56  0.51  0.59  0.74  0.90  0.96  1.03  1.04  1.03 

 (Mendoza) 1.26  1.13  0.96  0.75  0.54  0.44  0.49  0.62  0.82  1.06  1.24  1.29  1.26 

 (Neuquén) 1.37  1.20  0.91  0.64  0.42  0.34  0.40  0.54  0.80  1.05  1.28  1.37  1.37 

 (Entre Ríos) 1.17  1.04  0.86  0.66  0.52  0.44  0.50  0.65  0.86  0.97  1.14  1.19  1.17 

(Misiones) 1.10  0.97  0.85  0.67  0.57  0.47  0.54  0.67  0.77  0.91  1.07  1.14  1.10 

(Chubut) 1.07  0.86  0.59  0.35  0.20  0.13  0.16  0.29  0.51  0.76  1.01  1.11  1.07 

(Chaco) 1.12  0.98  0.84  0.67  0.59  0.48  0.55  0.69  0.83  0.94  1.09  1.14  1.12 

(Santa Cruz) 1.11  0.89  0.61  0.36  0.20  0.13  0.17  0.30  0.52  0.78  1.04  1.15  1.11 

(Salta) 1.12  1.06  1.02  0.93  0.78  0.73  0.76  0.90  1.10  1.16  1.23  1.21  1.12 

(San Juan) 1.30  1.18  1.03  0.83  0.62  0.53  0.57  0.71  0.95  1.17  1.33  1.36  1.30 

(San Luis) 1.26  1.13  0.97  0.75  0.54  0.44  0.49  0.62  0.82  1.06  1.24  1.29  1.26 

(Tucumán) 1.07  0.99  0.96  0.87  0.71  0.66  0.70  0.85  1.04  1.09  1.15  1.12  1.07 

(Jujuy) 1.14  1.08  1.04  0.95  0.80  0.75  0.79  0.93  1.13  1.19  1.25  1.23  1.14 

(Santa Fe) 1.17  1.03  0.86  0.66  0.53  0.44  0.50  0.65  0.86  0.97  1.14  1.19  1.17 

(La Pampa) 1.26  1.12  0.86  0.63  0.44  0.35  0.40  0.54  0.76  0.99  1.21  1.26  1.26 

(Santiago del 
Estero) 

1.03  0.95  0.78  0.66  0.56  0.51  0.59  0.73  0.89  0.95  1.03  1.04  1.03 

(Catamarca) 1.03  0.95  0.78  0.66  0.56  0.51  0.59  0.73  0.89  0.95  1.02  1.04  1.03 

(Rio Negro) 1.27  1.12  0.86  0.63  0.44  0.35  0.40  0.55  0.77  1.00  1.22  1.27  1.27 

(Formosa) 1.12  0.97  0.86  0.69  0.59  0.48  0.55  0.69  0.84  0.94  1.08  1.13  1.12 

(Tierra del Fuego) 1.07  0.66  0.28  0.03  0.00  0.00  0.00  0.00  0.17  0.57  0.97  1.22  1.07 
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demand to produce the main products (sugar and ethanol) and cover the market demand over 
12 months and during four years of the planning horizon. The bi-criteria model was written in 
GAMS and solved with the MILP solver CPLEX 12.9 on an Intel® Core™ i7-3770 Octa-core 
Processor 3.40 GHz and 7.88 GB of RAM. It is focused on minimizing the cost but also included 
results on the environmental sustainability of the network.  
Pareto set of solutions 
The optimality of the multi-objective problem is validated by obtained environmental impact 
(represented by ݇݃	ܱܥଶ emissions) and NPV that resulted in minimal GWP100 െ3.43 ൈ
10ଽ	݇݃	ܱܥଶ and maximal NPV	€4.50 ൈ 10ଽ, respectively. In the following, in Fig. 6.7, the Pareto 
set of solutions is presented, in which each point implies an optimum network configuration. In 
the optimal area, there is minimum risk in making decisions. Between two points of A (Utopia) 
and B (Particular solution), NPV and GWP100 variations are negligible. Out of this bond, it faces 
dramatic changes and variations in both zones of Nadir and Utopia.   

 
Fig. 6. 7. Pareto set of solutions.

Design configuration for the particular solution 
The decision on the optimum configuration of the system mainly depends on its local resource 
(energy/raw material) availability and the installation and operational costs. Fig. 6.8 shows the 
SC configuration for a specific solution. In this, the SC consists of five sugar mills and ten ethanol 
distilleries. All these production plants are located in 10 regions, 5 of them having sugarcane 
plantations. These regions are the optimum locations because of raw material availability and 
stability in climatic conditions during a year. For instance, cogeneration power plants are 
installed in the zones having sugarcane plantations because of the availability of bagasse. Storage 
facilities are installed in four intermediate regions to facilitate product transportation.  
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Fig. 6. 8. SC configuration for Particular solution (point B in Fig. 6.7).

There are solar arrays and windmills in regions where the most constant solar irradiation and 
higher ݌ܥ coefficient during a period with the installed capacity, as depicted in Table. 6.11. 
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Table. 6. 11. Regional Installed power capacity (MW) of each technology.

 
Hence, regions Misiones (݃ଽ), Salta(݃ଵଷ), Tucumán(݃ଵ଺), Jujuy(݃ଵ଻), and Santa Fe(݃ଵ଼) are 
autonomously able to provide their energy demand and sell their exceeded energy to the grid.  
Regarding two extreme solutions of the Pareto curve, in the minimal GWP100 solution, the SC 
includes seven sugar mills utilizing sugar production technologies ଵܶ and ଶܶ five distilleries ܶ5 
that convert sugarcane into ethanol and produce bagasse as the waste. Most of these production 
facilities are located in five provinces that have sugar cane plantations. The consumption of sugar 
cane in this solution is 100% (i.e., all the available sugar cane is consumed). It results in significant 
reductions in ܱܥଶ emissions mainly because sugar cane cultivation is carbon negative, so that it 
has a negative contribution to global warming. Hence, the choice of the cogeneration in the 
minimum impact solution is motivated by their lower values of GWP100 and excess available 
bagasse as the cogeneration feedstock compared to other renewable energy generators. 
Despite cogeneration power plants fed by residues of the process plant, those resources such as 
solar and wind generate energy independently. Hence, in regions with high Power Coefficients 
 and constant climatic condition such ݃1 (Autonomous City of Buenos Aires, CABA) and ݃4 ݌ܥ
(Buenos Aires), it is feasible to implement wind turbines, which results in a high contribution of 
wind power in the energy/material SC. It has the most effective share of 60% in the integrated 
energy/material SC, and the NPV improves to 43% than the minimum environmental impact 
solution. In the following, the share of each renewable resource for maximum NPV and minimum 
GWP100 solutions is depicted in Fig. 6.9.  
 

Particular solution NPV (€) GWP100 (kg2ܱܥ)  
 4.37 ൈ 109

 

െ2.16 ൈ 109
 

 
Renewable energy 
generation technology Windmill Solar panel 

Cogeneration 
power plant 

Region    

Córdoba (2ࢍ) - √ 
45MW - 

Corrientes (3ࢍ) √ 
43MW 

√ 
22MW - 

La Rioja (݃5) - √ 
45MW - 

Misiones ( ݃9) - - √ 
65MW 

Salta ( ݃13) - √ 
16MW 

√ 
65MW 

Tucumán( 1݃6) - - √ 
65MW 

Jujuy ( ݃17) - √ 
16MW 

√ 
65MW 

Santa Fe ( ݃18) 
√ 

22MW - √ 
65MW 
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a) Maximum NPV b) Minimum GWP100 

 

Fig. 6. 9. Renewable resource share in a) Maximum NPV b) Minimum GWP100 solutions. 

In Table. 6.12, the benefits of the integrated material/energy SC are compared in short. 
Table. 6. 12. Energy/Material SC comparison. 

 

Uncertainty management and sensitivity analysis 
The problem is solved under product demand is uncertainty. Therefore, the number of scenarios 
is reduced to three (Max, Mean, Min) with an associated occurrence probability of 25%, 50%, and 
25%, respectively (Case 5 Chapter 5). Fig. 6.9 illustrates the expected overall generated energy 
and energy demand during ten years (2018 to 2028). The network responds to the energy demand 
in all scenarios. Thus, the results assure that an energy surplus of 10 to 40% for all demand levels, 
especially in low demand scenarios, creates possibilities to market it. 

 
Individual 
Material 
(Chapter 4) 

 Single integrated 
energy resource 
(Chapter 5) 

 Multi integrated 
energy resource 
(Chapter 6) 

NPV(€) 3.03 ൈ 109   3.18 ൈ 109   4.50 ൈ 109  
GWP100 
(kg CO2) 

െ1.72 ൈ 109 
 

െ1.8 ൈ 109 
 

െ3.43 ൈ 109 
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Fig. 6. 10. Expected energy generated/delivered for satisfying demand. 

The sensitivity analysis is to determine which decision variables have more weight in the system's 
profitability. The associated ENPVs are obtained by changing ±20% of unit investment and 
operation costs and, the results are depicted in Fig. 10. It is deducted that there is more sensitivity 
to the Capital Expenditure (CAPEX) than the Operating Expenses (OPEX). Hence, by 15% 
increase in CAPEX, NPV decreases 15% while, if OPEX increases the same, NPV drops only 7%.  

    
Fig. 6. 11. Sensitivity analysis for CAPEX and OPEX.

Following this notion, different scenarios are considered regarding the CAPEX values obtained 
by renewable investment unit cost variations.  
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Table. 6. 13. NPV associated with renewables unit cost variations.

 
It is assumed two extreme situations: Ideal case as the unit installation cost of renewables is equal 
to 0, and the worst case of the unit installation cost of renewables is infinite. Figure 6.12 illustrates 
the results.  

Fig. 6. 12. Fixed installation cost portion for each scenario versus NPV. 

In the ideal scenario, the unit installation cost of renewables is assumed to be zero, so 87% of the 
total budget allocates for installing production plants with a maximum NPV amount of	€1.17 ൈ
10ଵ଴. On the other side, as the unit installation cost of renewable is infinite, it reaches the base 
model (Melé et al., 2011) with 300 billion euros of NPV and more installation cost assigned. The 
area limited between two extremes represents the integrated system configurations that say with 
different installation unit costs of renewables, fixed cost investment share varies between 87 to 88 
percent of the total budget, and we have different configurations with proper NPVs. 
The share of installation costs of the ideal, particular, and worst cases in the budget are 
represented in Fig. 6.13. Here, FCI and CIns denote the fixed cost installation of the process plants 
and renewable energy generators.  

Renewable 
investment cost 
variation (%) 

∞ -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 

NPV(૚૙૚૙€) 0.3 0.565 0.6 0.665 0.7 0.785 0.8 0.889 0.9 1.0 1.17 
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Fig. 6. 13. The cost of renewables and process plant installation for Ideal cases, Particular and Worst 

cases.
Note that in the worst case, the production plants need to provide energy from external resources, 
whereas in the ideal case, the internal energy demand is satisfied, and excess energy of 87.60	݄ܹܩ 
is to sell annually (see Fig. 6.14). 

 
Fig. 6. 14. Purchase/Sell Energy amount in Ideal case, Particular and Worst cases. 

In the worst case, and regarding the high operational cost (energy to buy), although it is invested 
more in production plant capacity installation, it is produced more petite than the ideal case (Fig. 
6.14).  
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Fig. 6. 15. Production vs. Demand amount in Ideal case, Particular and Worst cases. 

Since the operating costs in the energy section are almost zero, it motivates the production section 
to operate in a higher capacity. Thus, in the ideal case, the production capacity is maximum.  

6.5.  Conclusions 
This chapter introduced a general model to optimize an integrated multi-energy/material SC with 
economic and environmental concerns. The model includes four segments of equations: material 
production, energy generation, integrated energy/material equations, and objective function, and 
it aimed to show the quantitative profitability of integration for both economic and 
environmental issues under uncertain conditions.  
The model was applied to the same case study of previous chapters, i.e., the Argentinean sugar 
cane industry considered 24 regions of Argentina as potential sites and associated climatic 
features and availability of renewable energy resources. In the first part, the Pareto solutions were 
proposed and discussed the economic profitability of renewable resources integration. Focused 
on a particular optimum configuration by the Pareto set of solutions, the exploitation benefits of 
renewable energies integration in a production process system were analyzed.  
Compared to the initial model proposed in chapter 4, the economic criteria represented by NPV 
increased significantly along with environmental impacts decrease. It deduced that the energy 
integration motivates the processing system to exploit the maximum production capacity. Thus, 
it leads to improving the economic and environmental criteria simultaneously. This deduction 
illustrates in the ideal, particular, and worst cases. For instance, in the worst case, it is obliged to 
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purchase energy from external resources and, the demand satisfaction level is too low for raw 
and white sugar.  
On the other hand, in the ideal case, the system tends to generate as much energy as possible. So 
there are more sites involve in renewable energy installation, and the system tends to generate 
more energy than material.  
In this particular case, although the integrated system should deal with different tactical and 
strategic limitations, an integrated network is compromising with all these restrictions and 
propose a flexible and robust solution. As a result, it satisfies the internal energy demand in the 
regions with sugarcane plantations and also generates exceeded energy to sell. 

6.6. Nomenclature 

  Abbreviations 

LCA Life Cycle Assessment 
CAPEX Capital Expenditure 
MILP Mixed Integer Linear Programming 
NPV Net Present Value 
OPEX Operating Expense 
SC Supply Chain 

  Index 
݁ Set for Energy types  ሺ݁|݁ ൌ 1,… ,  ሻܧ
݁݅ Set for Energy resources  ሺ݁݅|݁݅ ൌ 1,… ,  ሻܫܧ
݃ Set for Regions  ሺ݃|݃ ൌ 1,… ,  ሻܩ
sc Set of scenarios ሺܿݏ|ܿݏ ൌ 1,… , ሻܥܵ
t Set for Planning periods  ሺݐ|ݐ ൌ 1,… , ܶሻ
x Set for External energy suppliers   ሺݔ|ݔ ൌ 1,… , ܺሻ 

Sets 

EXሺe, xሻ Subset of ordered pairs that link energy types ݁ to external 
resource ݔ

Parameters 

 The azimuth angle of the pitch ߚ
 ߝ Auxiliary boundary for the ε-constraint method 
 ௚,௧ߣ The tip speed ratio in region ݃ in period ݐ 
Λ௚,௧  The tip speed ratio at ݅௧௛ time step in region ݃ in period ݐ 
 ௣ߤ Coefficient of variation of power per temperature 
 ௔௜௥ߩ Density of air 
 ݉݋݊߱ Nominal turbine rotation speed 
 ௚,௧݌ܥ power coefficient in region ݃ in period ݐ 
 ܸܹ݊ܫݐݑܥ Cut–in speed  
 ܸܹݐݑܱݐݑܥ Cut–out speed 
 ,ݐ energy demand needed per unit of raw material ݅ in period ܿݏ,ݐ,݃݀݊ܽ݉݁ܦ

for scenario ܿݏ 
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݁ Conversion efficiency between internal energy resource ݅݁,݁ܬܫ݂ܧ ݅ type 
݁ and the process plant ݅ 

 Conversion efficiency of the excess energy type ݁ sent to the ݔ,݁ܺܫ݂ܧ
external energy generation resource ݔ 

 energy type ݔ Conversion efficiency between external resource ݔ,݁ܬ݂ܺܧ
݁ and the process plant ݅ 

 ܴܩ Solar irradiance under standard condition 
ܩ ௚ܶ,௧  Solar irradiance in region ݃ and period ݐ 
 Interest rate ݎ݅
 Minimum power generation coefficient ܱܥ݃ܲ݊݅ܯ
 ܹܪݓܲ݊݅ܯ Minimum power generation by windmill 
 ܸܲݓܲ݊݅ܯ Minimum power generation by photovoltaic 
 ܶܥܱܰ Normal Cell Operating Temperature 
ܲ݁݃ Power generated by the cogeneration per ton of biomass 
 ݓܲ݉݋ܰ݊ܽܲ Panel nominal power 
 ݎܲ݊ܽܲ Price of a panel 
 ௚,௧ݓܲ݊ܽܲ Power generated by a panel in region ݃ and period ݐ 
 ݂ݎݑܵ݊ܽܲ Panel surface 
ܲܽ݊ ௚ܶ,௧  Temperature a panel in region ݃ and period ݐ 
 ܿݏ the probability of scenario ܿݏܾ݋ݎ݌
 ܹܪݓܲݎܲ Price per unit of wind power 
 ܸܲݓܲݎܲ Panel price per unit of power 
 ݅݁ ௘௜ the maximum power to install energy resourceݔܽܯܫݓܲ
݂ܲݎݑܵݓܲ ௚ܸ,௧  Power per available surface in region ݃ and period ݐ 
 ܦݐ݋ܴ Rotor diameter 
 Slot length ܮܵ
 ܣܶܵ The ambient temperature under standard condition 
 ܹܪݔܽܯ݂ݎݑܵ Maximum surface available for horizontal windmill axis 
 ܸܲݔܽܯ݂ݎݑܵ Maximum surface available for a photovoltaic 
 ܹܪݓ݂ܲݎݑܵ The relation between the surface and power 
 ܸܲݓ݂ܲݎݑܵ The relation between the surface and power 
 ܹܪݍܧ݂ܶݎݑܵ The equivalent surface area of a turbine 
 ܸܲݍܧ݂ܶݎݑܵ The equivalent surface occupied by a panel 
 ݔܽܯ݂ܶݎݑܵ Maximum total surface 
 ௘௜ Area occupation per unit power of each e݅ܫݓ݂ܲݎݑܵ
 ௚,௧ܣܶ Ambient temperature in region ݃ and period ݐ 
 ݓܲ݉݋ܾܰݎݑܶ Nominal turbine power 
 ݎܾܲݎݑܶ Price of a turbine 
 ௚,௧ݓܾܲݎݑܶ Power generated by a turbine in region ݃ and period ݐ 
ܪݓܾܲݎݑܶ ௚ܹ,௧  Captured power by a turbine in region ݃ and period ݐ 
ܹ ௚ܸ,௧  Wind velocity in region ݃ and period ݐ 

Variables 

 ܿݏ in scenario "ݐ Cash flow in period ܿݏ,"ݐܨܥ
 ܿݏ Environmental metric to be optimized in scenario ܿݏܯܣܦ
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 ሾܸܰܲሿܧ Expected net present value 
 ܿݏ in scenario ݐ Energy type e generated in region ݃ and period ܿݏ,ݐ,݃,݅݁ܩܫ݊ܧ
 Energy flux type ݁ between renewable source ݁݅ and demand ܿݏ,ݐ,݃,݅݁,݁ܬܫ݊ܧ

of region ݃ in period ݐ in scenario ܿݏ 

 ௘,௘௜,௫,௚,௧ܺܫ݊ܧ
Energy flux type ݁ between renewable source	݁݅ and external 
source ݐ region ݃ in period ݔ

Energy flux type ܿݏ,ݐ,݃,ݔ,݁ܬܺ݊ܧ ݁ between external sourceݔ and demand of 
region ݃ in period ݐ in scenario ܿݏ 

 in ݐ in period ݔ Energy type ݁ purchased from external source ܿݏ,ݐ,݃,ݔ,݁ܲܺ݊ܧ
scenario ܿݏ 

 in scenario ݐ in period ݔ Energy type ݁  sales to external source ܿݏ,ݐ,݃,ݔ,݁ܵܺ݊ܧ
ܿݏ

 ܿݏ GWP100 amount in cultivation process in scenario ܿݏ݈ݑܥܹܲܩ
 ܿݏ GWP100 amount in the production process in scenario ܿݏݎܹܲܲܩ
 ܿݏ GWP100 amount in transportation process in scenario ܿݏܹܳܲܩ
 ܿݏ Net Present Value in scenario ܿݏܸܲܰ
 ௘௜,௚ܫݓܲ Power to install a renewable source ei, in each region ݃ 
 ,݃ Power to generate by a renewable source ݁݅, in each region ܿݏ,ݐ,݃,݅݁ܩܫݓܲ

each period ݐ in scenario ܿݏ 
 Maximum power to generate by renewable source ݁݅ in each ܿݏ,ݐ,݃,݅݁ݔܽܯܩܫݓܲ

region ݃ and period ݐ in scenario ܿݏ 
 Minimum power to generate by renewable source ݁݅ in each ܿݏ,ݐ,݃,݅݁݊݅ܯܩܫݓܲ

region ݃ and period ݐ in scenario ܿݏ 
 in scenario ݐ in period ݔ Power purchased from external source ܿݏ,ݐ,݃,ݔ,݁ܲܺݓܲ

ܿݏ
 ܿݏ in scenario ݐ in period ݔ Power selling to external source ܿݏ,ݐ,݃,ݔ	ܵܺݓܲ
ܪݏ݊ܫ݂ݎݑܵ ௘ܹ௜,௚  Equivalent windmill surface to occupy in region ݃ 
ܲݏ݊ܫ݂ݎݑܵ ௘ܸ௜,௚  Equivalent photovoltaic surface to occupy in region ݃ 
݂ܲݎݑܵ ௘ܸ௜,௚  Photovoltaic surface to install in region ݃ 
 ܿݏ in scenario ݐ Energy demand of region ݃ and period ܿݏ,ݐ,݃݀݊ܽ݉݁ܦ݈ܽݐ݋ܶ
 ௘௜,௚݉ݑܾܰݎݑܶ Number of the turbine to install in region ݃ 
 in ݐ Amount of wastes of ݅ generated in region ݃ and period ܿݏ,ݐ,݃,ܹ݅

scenario ܿݏ 

Binary Variables 

 By the Big-M method, the local binary variable  is used to ܿݏ,ݐ,݃,݅݁݊ܩ
define lower and higher generation limits 
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 Chapter 7

 

CONCLUSIONS AND FUTURE WORKS 

 
This thesis has addressed Sustainable Supply Chains in the process industries, focused on Energy 
Management of large-scale systems. Hence, this thesis has developed a general model to facilitate 
the management and assure robust and viable solutions.  
Since retrofitting the actual process industries towards sustainability is a goal, applying this novel 
model allows the decision-makers to tackle several issues simultaneously to accomplish the 
several conflicting objectives. Precisely, this contribution has employed multi-objective strategies 
and promoted the model both at the strategic and tactical management levels (Chapter 4). 
Moreover, the systematic combination of the multi-objective approach with uncertainty 
management has extended the borders of the solution space (Chapter 5 and 6), and the numerical 
results have proved the significant effects of this combination on the solution's flexibility and 
robustness compared with the ones obtained through conventional PSE approaches. Notably, the 
work has resulted in contributions to the following areas. 
 To exploit the mathematical programming effectively to combine material/energy 

networks and optimize its performance. 
 Applying multi-objective optimization to drive robustly sustainable process and 

solutions; 
 Using MILP to deal with the complexity due to the  nature of material/energy 

networks;  
 Using the ε-constraint method to obtain the Pareto sets of solutions to obtain 

compromise solutions quickly; 
 Applying economic and environmental metrics simultaneously and analyzing the 

economic and environmental risks to manage the effects of uncertainty through the 
network; 

 Using the scenario-based model to deal with large numbers of uncertain parameters and 
investigate the adequate numbers of scenarios to be as representative as possible; 

 Exploiting scenario reduction strategies and simplified scenario approach to analyze and 
compare; 

It is worthy to note that the proposed model is general enough to apply to any size of the process 
industries, small-scale to large-scale and country-size problems. Applying the model to a case 
study has validated the model's efficiency and effectiveness, and numerical results illustrated the 
viability and capability of the model applied to integrated material/energy networks. 
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The integrated discussion of the conclusions obtained from each issue is next exposed, organized 
according to chapters 4 to 6: 

 Multi-Objective issues (notably to deal with conflicting objectives), 
 Uncertainty issues (to enhance flexibility and robustness in solutions) 
 Sustainability issues (to obtain compromised solutions) 
 Integration issues (to manage the complexity in large-scale networks) 

7.1. Multi-Objective issues 
Multi-objective optimization is a systematic and simultaneous process of optimizing several 
objective functions. Hence, the optimal solutions happen in the presence of trade-offs between 
two or more conflicting objectives. As explained in chapter 3, three MOO classes are a priori, 
interactive, and a posteriori (generation) methods. Despite a priori and interactive, generation 
methods are not very common due to the extensive computational efforts and less available 
software. However, they are efficient methods to manage the conflicting objectives since the 
generation methods involve the DM only in the second phase of the solution process (having all 
the alternatives in the form of the Pareto set or other proper representation). Consequently, 
applying these methods reduces the DM bias effects. The most commonly used generation 
method is the ε-constraint, described profoundly in chapter 3, and it is the primary solution 
strategy of this thesis. 
Besides, regarding the literature review, the multi-objective approach is the best to deal with 
complex, and this thesis has advanced uniquely to apply to large-scale complex networks. This 
contribution has validated the MOO capabilities through the design and planning of integrated 
material/energy networks. In particular, the case study accounts for renewable energy resources 
as alternative energy sources for satisfying energy demands in industrial sectors in Argentina.   
To demonstrate the benefits of applying MOO, numerical results (as the particular sub-results), 
associated with economic and environmental objectives, indicate that in both cases of single and 
multi-energy resources networks (Chapter 4 and 6), the compromised solutions are more viable 
comparing with the solutions obtained by  SOO. The obtained results through this thesis reinforce 
the idea that the MOO is the proper approach to apply to complex, large-scale problems, and in 
this particular case, applying it to energy-material management is a promising option to deal with 
several conflicting objectives efficiently.   

7.2.  Uncertainty issues 
Due to the uncertain nature of PSE problems, inevitably, uncertainty issues should be considered 
in the problem-solving processes. Mainly, stochastic programming has been applied to large 
numbers of PSE problems as a preventive approach. Stochastic programming aims to efficiently 
control the effect of uncertain/unpredictable conditions over the resulting solutions for a large-
scale network. 
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This thesis has exploited the scenario-based approach to deal with large numbers of uncertain 
parameters. The Monte Carlo sampling method generated random scenarios with the normal 
distribution that represent the uncertainty space. By using a scenario reduction algorithm, 
different reduced sets of scenarios were generated in different sizes. The problem was solved for 
each reduced set. The design decision variables got fixed, and the problem was solved again with 
different fixed variables for the same set of scenarios. The results revealed that notably that the 
representativeness of a reduced set depends on the numbers of uncertain parameters. The 
objective variations are perfectly centered by the adequate reduced set of scenarios and result in 
robust solutions.  
Besides, a simplified scenario-based approach was used to reduce computational complexity. The 
idea behind this strategy is to use a set containing three scenarios: (Mean value +γ, Mean value, 
Mean value -γ). Despite less computational efforts, the simplified scenarios method provides the 
results with poor quality, compared to the results obtained by the optimum reduced set, and 
similar to the results obtained by the smaller size of scenarios. 
This contribution utilized risk metrics to measure the uncertainty effects. Commonly, Values at 
risk (VaR) is the most used metric. The stochastic approach is appealing for the risk-averse 
decision-makers, while the opportunity value (OV) in the deterministic case is much higher than 
the stochastic one corresponding to a certain level of risk. Chapter 5 was profoundly dedicated to 
uncertainty issues and presented a clear image of VaR and OV for the risk-averse and risk-taker 
decision-makers.  
Although this contribution grantees an optimal solution, the accuracy in the description of the 
system behavior is maintained. Hence, future works should address the quality of the obtained 
design.   

7.3.  Sustainability issues 
Regarding sustainability criteria, here, it is mainly aimed to maintain or develop the sustainability 
level in a large-scale industrial network. This contribution has focused on carbon emissions 
reduction strategies to answer sustainability issues. A combined approach that consists of 
integrating LCA and optimization was applied, as former studies have done. Therefore, a bi-
criterion MILP seeks to maximize the network's NPV and life cycle environmental performance 
simultaneously. Besides, the carbon emissions in the design and operation phases were translated 
to the costs aimed to minimize.  
The combined model (mentioned above) was applied to the case studies. It is deduced from the 
results that multi-renewable energy resource networks demonstrate better environmental 
performance than a single resource one. Besides, uncertainty does not directly affect 
environmental impact but controls the variations by using adequate scenario numbers.  
As a sub conclusion, the results indicate the CO2 emissions reduction through the supply chain 
using renewable resources and the dependency on fossil-based energies has been reduced 
significantly through biofuel production and exploiting renewable resources.  Also, it leads to 
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paying less landfill tax to be seen as an improvement in the economic objective. Note that the 
uncertain quality of renewable resources should be considered in future works. However, the 
uncertain quality of renewable resources should be considered in future works.  

7.4.  Integration issues  
The synergies associated with integrating material and energy supply chains compared to the 
stand-alone systems have been studied through this thesis. The management of many decision 
variables simultaneously with various uncertain parameters becomes then a significant 
challenge. The novel model is capable of managing all these variables and uncertain parameters.  
It is proved using a multi-scenario multi-objective design and planning supply chain model as a 
test-bed. It facilitates reaching out to more possible solutions and searching for solution 
alternatives behaving in different manners within the uncertain parameter space (see Chapter 6). 
Besides, the approach allows narrowing down the number of alternatives to be analyzed, 
ensuring that the final solution performs well for a wide range of criterion targets. The integration 
can be used in different engineering problems, ensuring the quality of the final solution even for 
those in which process uncertainties have to be explicitly considered over the solution 
performance. 

7.5.  Future works 
The main future research direction would be classified in: 

 Social sustainability  issues: 
While sustainability in social issues is the neglected component in sustainable development, there 
is a need for a novel integrated method that allows considering and evaluating the social 
acceptance/risk of the selected decision criteria. Besides, social sustainability mainly focuses on 
the context of many current initiatives in sustainability and responsibility, including supply chain 
management. Notably, it is needed to utilize metrics, indicators, and frameworks of social 
impacts and initiatives related to their abilities to evaluate the social sustainability of supply 
chains. Integrated approaches such as applying a set of composite indicators and looking beyond 
traditional system boundaries are required in the future to develop social sustainability 
performance.  

 Robustness measuring within a solution identification framework: 
Structural robustness measures are needed to evaluate alternative solutions based on a trade-off 
between different objectives. The procedure can be integrated into the optimization process. The 
above is particularly interesting for its further application on large and complex problems, such 
as large-scale process industries. 

 Decentralized management and game theory 

This framework can apply to decentralized supply chain problems to explore its capabilities to 
produce a solution that simultaneously improves the performances of each of the SC entities. 
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 Appendix B

 
CASE STUDY DATA AND COMPLEMENTARY INFORMATION 

 

B.1 Complementary information of Chapter 4 
 

 Cogeneration datasheet 

Table. B. 1. Design data of the cogeneration power plant (Bocci et al., 2009). 
Identifier Value Unit
Atmospheric pressure  1 ܾܽݎ

Process pressure 2.1 ܾܽݎ

Thermal power needed 62 ܹܯ

Gasifier steam to biomass ratio 0.5  
Gasifier temperature 800 Ԩ

Combustor temperature 940 Ԩ

MCFC temperature 610 Ԩ

MCFC stack efficiency 55 %

MCFC voltage 0.77 ܸ

Combustor air excess 25 %

Gasifier efficiency 90 %

Internal steam turbine efficiency 85 %

Mechanical efficiency(ࢀ࢓ࣁ) 98 %

Auxiliary devices efficiency(࢛࢞ࢇࣁ) 95 %

Alternator efficiency 98 %

Air and fuel gas specific heat (࢖࡯) ܬ݇ 1006 ⁄  ܭ݃݇
Lower Heat Value bagasse (ࢂࡴࡸ) ܬܯ 7.40 ⁄ ݇݃ 
Recovery heat inlet water 
temperature 

15 Ԩ

Turbine minimum gas mass flow 
fraction 

30 %

Recovery heat inlet drop 
temperature 

ܭ 29

Minimum recovery heat inlet drop 
temperature 

ܭ 10

Electrical referential efficiency 27 %

Thermal referential efficiency 70 %
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Fig. B. 1. Thermodynamic diagram of the gas turbine cogeneration power plant (Bocci et al., 2009).
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B.2 Complementary information of Chapter 5 
 

a. Equations associated with the production section 
Mass balances equations  
∑ ܵ ௜ܶ,௦,௚,௧ିଵ,௦௖ ൅ ܲ ௜ܶ,௚,௧,௦௖ ൅ ܲ ௜ܷ,௚,௧,௦௖ ൅௦∈ூௌሺ௜,௦ሻ

∑ ∑ ܳ௜,௟,௚ᇲ,௚,௧,௦௖ ൌ ∑ ܵ ௜ܶ,௦,௚,௧,௦௖ ൅ ܶܦ ௜ܵ,௚,௧,௦௖ ൅௦∈ூௌሺ௜,௦ሻ௚ᇲஷ௚௟∈ூ௅ሺ௜,௟ሻ

∑ ∑ ܳ௜,௟,௚,௚ᇲ,௧,௦௖௚ᇲஷ௚௟∈ூ௅ሺ௜,௟ሻ ൅ ௜ܹ,௚,௧,௦௖  
∀݅, ݃, ,ݐ  ܿݏ (B.1)

Total production rate 

ܲ ௜ܶ,௚,௧,௦௖ ൌ െ∑ ௣,௜ߩ݊݃݅ݏ ൈ ௜,௣,௚,௧,௦௖௣ܧܲ   ∀݅, ݃, ,ݐ  ܿݏ (B.2)

௜,௣,௚,௧,௦௖ܧܲ ൌ |௣,௜ߩ| ∑ ௜,௣,௚,௧,௦௖௜ᇲ∈ூெሺ௜ᇲ,௣ሻܧܲ   ∀݅, ,݌ ݃, ,ݐ  ܿݏ (B.3)

Mass flow and inventory constraints 
ܲ ௜ܷ,௚,௧,௦௖ ൑ ݅ ௚,௧݌݋ݎܥ݌ܽܥ ൌ ݓܴܽ ,݈ܽ݅ݎ݁ݐܽ݉ ∀݃, ,ݐ  ܿݏ (B.4)
∑ ܵ ௜ܶ,௦,௚,௧,௦௖ ൑ ௦,௚,௧௜∈ூௌሺ௜,௦ሻ݌ܽܥܵ ,ݏ∀   ݃, ,ݐ  ܿݏ (B.5)
௜,௚,௧,௦௖ܮܫܣ ൌ ܶܦߪ ௜ܵ,௚,௧,௦௖ ∀݅, ݃, ,ݐ  ܿݏ (B.6)
௜,௚,௧,௦௖ܮܫܣ2 ൑ ∑ ௦,௚,௧௦∈ூௌሺ௜,௦ሻ݌ܽܥܵ   ∀݅, ݃, ,ݐ  ܿݏ (B.7)
ܶܦ ௜ܵ,௚,௧,௦௖ ൑ ,݅∀ ௜,௚,௧,௦௖ܦܵ ݃, ,ݐ  ܿݏ (B.8)
ܺ௟,௚,௚ᇲ,௧ ൅ ܺ௟,௚ᇲ,௚,௧ ൌ 1 ∀݈, ݃, ݃ᇱ, ሺ݃ݐ ് ݃ᇱሻ  (B.9)
ܳ௟ܺ௟,௚,௚ᇲ,௧ ൑ ∑ ܳ௜,௟,௚,௚ᇲ,௧,௦௖௜∈ூ௅ሺ௜,௟ሻ ൑ ܳ௟ܺ௟,௚,௚ᇲ,௧  ∀݈, ݃, ݃ᇱሺ݃ ് ݃ᇱሻ, ,ݐ  ܿݏ (B.10)

Production and storage capacity constraints 
௣,௚,௧݌ܽܥܲ|௣,௜ߩ|߬ ൑ ௜,௣,௚,௧,௦௖ܧܲ ൑ ,݃∀ ௣,௚,௧݌ܽܥܲ|௣,௜ߩ| ,ݐ ,ሺ݅ܯܫ ,ሻ݌  ܿݏ (B.11)

While the production and storage capacity variables are considered design variables, the 
following equations are the same as equations (4.12) to (4.15) in Chapter 4.  

௣,௚,௧݌ܽܥܲ ൌ ௣,௚,௧ିଵ݌ܽܥܲ ൅ ,݌∀ ௣,௚,௧ܧ݌ܽܥܲ ݃, ݐ (B.12)
௣ܰ݌ܽܥܲ ௣ܲ,௚,௧ ൑ ௣,௚,௧ܧ݌ܽܥܲ ൑ ௣ܰ݌ܽܥܲ ௣ܲ,௚,௧ ∀݌, ݃, ݐ (B.13)
௦,௚,௧݌ܽܥܵ ൌ ௦,௚,௧ିଵ݌ܽܥܵ ൅ ,ݏ∀ ௦,௚,௧ܧ݌ܽܥܵ ݃, ݐ (B.14)
௦ܰܵ௦,௚,௧݌ܽܥܵ ൑ ௦,௚,௧ܧ݌ܽܥܵ ൑ ,ݏ∀ ௦ܰܵ௦,௚,௧݌ܽܥܵ ݃, ݐ (B.15)

b. Energy generation and constraints 
 Energy balances and flows equations 
∑ ሾܬܫ݊ܧ௘,௚,௧,௦௖ ൈ ௘ሿ௘ܬܫ݂ܧ ൅ ∑ ∑ ሾܬܺ݊ܧ௘,௫,௚,௧,௦௖ ൈ ௫݂ܺܧ ௘,௫ሿܬ ൌ௘∈ா௑ሺ௘,௫ሻ

,݃∀  ௚,௧,௦௖݀݊ܽ݉݁ܦ݈ܽݐ݋ܶ ,ݐ  ܿݏ (B.16)

In a scenario, the energy type ݁ generating by the internal resource aimed to send to the process 
plant or market to the external energy demanders as the equation (B.17) defines and indicates the 
energy balance between internal and external resources in period	ݐ.  
௘,௚,௧,௦௖ܬܫ݊ܧ ൈ ௘ܬܫ݂ܧ ൅ ௘,௫,௚,௧,௦௖ܺܫ݊ܧ ൈ ௘,௫ܺܫ݂ܧ ൌ ,݃∀ ௘,௚,௧,௦௖ܩܫ݊ܧ ,ݐ ,ሺ݁ܺܧ ,ሻݔ  ܿݏ (B.17)

Installation and generation capacity constraints 
The installation capacity and constraint are design variables so that they are the same as Eq. (4.18) 
and (4.19) of Chapter 4. 
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௚ܫݓܲ ൑  ݃∀ ݔܽܯܫݓܲ (B.18)
௚ܫݓܲ ൈ ܫݓ݂ܲݎݑܵ ൑ (B.19) ݃∀ ݔܽܯ݂ܶݎݑܵ

The following equations (B.20) to (B.23) correspond to the Big-M method, introducing the binary 
variable ݊ܩ௚,௧,௦௖ as the generation decision, aims to avoid nonlinearity.   
௚,௧,௦௖ܩܫݓܲ ൑ ݔܽܯܫݓܲ ൈ ,݃∀ ௚,௧,௦௖݊ܩ ,ݐ  ܿݏ (B.20)
௚,௧,௦௖ܩܫݓܲ ൒ െܲݔܽܯܫݓ ൈ ,݃∀ ௚,௧,௦௖݊ܩ ,ݐ (B.21) ܿݏ
ܿݏ,ݐ,݃ܩܫݓܲ ൑ ܿݏ,ݐ,݃ݔܽܯܩܫݓܲ ൅ ݔܽܯܫݓܲ ൈ ሺܿݏ,ݐ,݃݊ܩ െ 1ሻ  ∀݃, ,ݐ (B.22) ܿݏ
ܿݏ,ݐ,݃ܩܫݓܲ ൒ ܿݏ,ݐ,݃݊݅ܯܩܫݓܲ െ ݔܽܯܫݓܲ ൈ ሺܿݏ,ݐ,݃݊ܩ െ 1ሻ  ∀݃, ,ݐ (B.23) ܿݏ

As noted previously, it is necessary to choose a value of M sufficiently large to make the problem 
feasible for each scenario ܿݏ and small enough to limit it. In this case, M corresponds to the 
maximum power ܲݔܽܯܫݓ to be installed. Here, ܲݔܽܯܩܫݓ௚,௧,௦௖ and ܲ݊݅ܯܩܫݓ௚,௧,௦௖ are parameters 
calculated based on specific energy resource models (see Eq. (B.24) and (B.26)).  
௚,௧ݔܽܯܩܫݓܲ ൌ  ௚,௧,௦௖ܩܫݓܲ ∀݃, ,ݐ (B.24) ܿݏ
௚,௧,௦௖݊݅ܯܩܫݓܲ ൌ ௚,௧,௦௖ܩܫݓܲ ൈ ܱܥ݃ܲ݊݅ܯ ∀݃, ,ݐ  ܿݏ (B.25)
௚,௧,௦௖ܩܫݓܲ ൌ  ܮܵ/௚,௧,௦௖ܩܫ݊ܧ ∀݃, ,ݐ (B.26) ܿݏ

External resource equations 
ܺ݊ܧ ௘ܲ,௫,௚,௧,௦௖ ൌ ௘,௫,௚,௧,௦௖ܬܺ݊݁ ൈ  ௘,௫ܬ݂ܺܧ ∀݃, ,ݐ ,ሺ݁ܺܧ ,ሻݔ (B.27) ܿݏ
௘,௫,௚,௧,௦௖ܵܺ݊ܧ ൌ ௘,௫,௚,௧,௦௖ܺܫ݊݁ ൈ ௘,௫ܺܫ݂ܧ ∀݃, ,ݐ ,ሺ݁ܺܧ ,ሻݔ  ܿݏ (B.28)
ܺݓܲ 	ܲ௫,௚,௧,௦௖ ൌ ∑ ܺ݊ܧ ௘ܲ,௫,௚,௧,௦௖௘   ܮܵ/ ∀݃, ,ݐ ,ሺ݁ܺܧ ,ሻݔ (B.29) ܿݏ
ܺݓܲ 	ܵ௫,௚,௧,௦௖ ൌ ∑ ௘,௫,௚,௧,௦௖௘ܵܺ݊ܧ   ܮܵ/ ∀݃, ,ݐ ,ሺ݁ܺܧ ,ሻݔ (B.30) ܿݏ

 
c. Objective functions  

Economic objective 
The economic objective is the net present value (NPV) from the discounted cash flows ܨܥ௧,௦௖ that 
is generated in each period ݐ in scenario ܿݏ for the entire time horizon. 

ܿݏܸܲܰ ൌ ∑ ܿݏ,ݐܨܥ
ሺ1൅݅ݎሻݐെ1ݐ    (B.31) ܿݏ∀

The fraction of the total depreciable capital ܱܶܶܮܣ௧ has been defined in Chapter 4 (Eq. (4.33)). 
௧ܮܣܱܶܶ ൌ

ி஼ூ

்
൅

஼ூ௡௦

்
൅

ீுீூ௡௦

்
ݐ∀   (B.32)

௧,௦௖ܨܥ ൌ ௧,௦௖ܧܰ െ ௧ܮܣܱܶܶ   ݐ ൌ 1,⋯ , ܶ െ 1, (B.33) ܿݏ∀
The salvage value ݒݏ has been defined in section 4.3.3.1.  
௧,௦௖ܨܥ ൌ ௧,௦௖ܧܰ െ ௧ܮܣܱܶܶ ൅ ܫܥܨሺݒݏ ൅ ݏ݊ܫܥ ൅   ሻݏ݊ܫܩܪܩ ݐ ൌ ܶ (B.34)

Total fixed cost investment 
i. The fixed costs of the production plant 

Total fixed cost investment includes ܫܥܨ  and ݏ݊ܫܥ determined in section 4.3.3.1. (Eq. (4.35)) of 
Chapter 4. 
ܫܥܨ ൌ ∑ ∑ ∑ ௣,௚,௧ߙൣ

௉௥ ൈ ܰ ௣ܲ,௚,௧ ൅ ௣,௚,௧ߚ
௉௥ ൈ ௣,௚,௧൧ܧ݌ܽܥܲ ൅௧௚௣ ∑ ∑ ∑ ௦,௚,௧ߙൣ

ௌ௧ ൈ௧௚௦

ܰܵ௦,௚,௧ ൅ ௦,௚,௧ߚ
ௌ௧ ൈ ௦,௚,௧ܧ݌ܽܥܵ ൈ ௣,௚,௧൧ܧ݌ܽܥܲ ൅ ∑ ∑ ௟,௧ܥܯܶ ൈ ܰ ௟ܶ,௧௧௟   (B.35)

ii. The fixed costs of the renewable energy installation 
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 ,is the fixed costs variables ݏ݊ܫܩܪܩ .is determined in section 4.3.3.1. (Eq. (4.35)) of Chapter 4 ݏ݊ܫܥ
corresponding to the installation of the renewable energy resource and consequent ܱܥଶ 
emissions. 

ݏ݊ܫܥ ൌ ܫݓܲݎܲ ∑ ௚௚ܫݓܲ   (B.36) 

ݏ݊ܫܩܪܩ ൌ ∑ൣݎܲܩܪܩ ܫݓܲܩܪܩ ൈ ௚௚ܫݓܲ ൅
∑ ∑ ∑ ∑ ∑ ሾሺܲܺݓ 	ܲ௘,௫,௚,௧,௦௖ ൅ ௫,௚,௧,௦௖ሻܵܺݓܲ ൈ ௫ሿ௦௖௧௚௫௘∈ா௑ሺ௘,௫ሻݓܲܩܪܩ ൧  (B.37) 

iii. Total fixed costs constraint 
ܫܥܨ ൅ ݏ݊ܫܥ ൅ ݏ݊ܫܩܪܩ ൑  തതതതത (B.38)ܥܫܨ

Net earnings 
௧,௦௖ܧܰ ൌ ሺ1 െ ߮ሻ൫ܴ݁ݒ௧,௦௖ െ ௧,௦௖ܥܱܨ െ ௧,௦௖ܥܱܶ െ ܱܥ ௧ܲ,௦௖ െ
ܱܥܩܪܩ ௧ܲ,௦௖൯ ൅ ܧܦ߮ ௧ܲ   

,ݐ∀  (B.39) ܿݏ

௧,௦௖ݒܴ݁ ൌ ∑ ∑ ܶܦ ௜ܵ,௚,௧,௦௖ ൈ ܴܲ௜,௚,௧௚௜∈ௌா௉ሺ௜ሻ    ,ݐ∀  (B.40) ܿݏ
The depreciation term is calculated with the straight-line method, similar to (Kostin et al., 2012) 
formulated in their work.  
ܧܦ ௧ܲ ൌ ሺ1 െ ሻݒݏ ൈ  ௧ܮܣܱܶܶ (B.41) ݐ∀

The production operating costs 
௧,௦௖ܥܱܨ ൌ ∑ ∑ ∑ ௜,௣,௚,௧ܥܷܲ ൈ ௜,௣,௚,௧,௦௖ܧܲ ൅௚௣∈ூெሺ௜,௣ሻ௜

∑ ∑ ௜,௦,௚,௧ܥܷܵ ൈ ௜,௚,௧,௦௖ܮܫܣ ൅ ௧,௦௖௦∈ூௌሺ௜,௦ሻ௜ܥܦ   
,ݐ∀ (B.42) ܿݏ

௧,௦௖ܥܦ ൌ෍෍ ௜ܹ,௚,௧,௦௖ ൈ ܮ ௜ܶ,௚

௚௜

  ,ݐ∀ (B.43) ܿݏ

The transportation costs 
௧,௦௖ܥܱܶ ൌ ௧,௦௖ܥܨ ൅ ௧,௦௖ܥܮ ൅ ௧,௦௖ܥܯ ൅  ௧,௦௖ܥܩ ,ݐ∀ (B.44) ܿݏ

௜,௟,௚,௚ᇲ,௧,௦௖݁݃ܽݏܷ	݈݁ݑܨ ൌ
௚,௚ᇱܮܧ2
௟ܧܨ

ൈ
ܳ௜,௟,௚,௚ᇲ,௧,௦௖
௟݌ܽܥܶ

  ∀݅, ݈, ݃, ݃ᇱ, ,ݐ (B.45) ܿݏ

Thereupon, the total fuel cost in each period is as the following: 
௧,௦௖ܥܨ ൌ ∑ ∑ ∑ ∑ ௜,௟,௚,௚ᇲ,௧,௦௖௟௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ݁݃ܽݏܷ	݈݁ݑܨ ൈ ܨ ௟ܲ,௧   ,ݐ∀ (B.46) ܿݏ

The labor transportation cost is a function of the driver wage	ܦ ௟ܹ,௧ . Moreover, the total delivery 
time is as below: 

௜,௟,௚,௚ᇲ,௧,௦௖݁݉݅ݐ	ݕݎ݁ݒ݈݅݁ܦ	݈ܽݐ݋ܶ ൌ
ொ೔,೗,೒,೒ᇲ,೟,ೞ೎
்஼௔௣೗

ሺ
ଶா௅೒,೒ᇲ

ௌ௉೗
൅ ܷܮ ௟ܶሻ   ∀݅, ݈, ݃, ݃ᇱ, ,ݐ (B.47) ܿݏ

Here, ܵ ௟ܲ and ܷܮ ௟ܶ represent the average speed and loading/unloading time of transportation 
mode	݈, respectively. Therefore, the labor cost ܥܮ௧,௦௖ is defined as the following: 
௧,௦௖ܥܮ ൌ ∑ ∑ ∑ ∑ ݕݎ݁ݒ݈݅݁ܦ	݈ܽݐ݋ܶ ܶ݅݉݁௜,௟,௚,௚ᇲ,௧,௦௖௟௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ ൈ ܦ ௟ܹ,௧  ,ݐ∀ (B.48) ܿݏ

The general maintenance cost of the transportation systems depends on the total distance driven 
and the unit cost of the traveled distance	ܧܯ௟ .  

௧,௦௖ܥܯ ൌ ∑ ∑ ∑ ∑
ொ೔,೗,೒,೒ᇲ,೟,ೞ೎
்஼௔௣೗

௟௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ ൈ ௚,௚ᇲܮܧ2 ൈ ௟ܧܯ    ,ݐ∀ (B.49) ܿݏ

Finally in this part, the general costs ܥܩ௧  and average number of transportation modes ܰ ௟ܶ,௧ are 
obtained by Eq. (4.50) and (4.51).  
௧ܥܩ ൌ ∑ ∑ ௟,௧௧ᇱஸ௧௟ܧܩ ൈ ܰ ௟ܶ,௧ᇱ   (B.50) ݐ∀
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∑ ܰ ௟ܶ,௧ ൌ ∑ ∑ ∑
்௢௧௔௟	஽௘௟௜௩௘௥௬ ௧௜௠௘೔,೗,೒,೒ᇲ,೟

௔௩௟೗
௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ௧ஸ் ∑ ܰ ௟ܶ,௧ᇱ ൌ௧ᇱஸ்

∑ ∑ ∑
்௢௧௔௟	஽௘௟௜௩௘௥௬	௧௜௠௘೔,೗,೒,೒ᇲ,೟

௔௩௟೗
௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ   

∀݈ (B.51)

The operation costs of renewable energy resource 
ܱܥ ௧ܲ,௦௖ ൌ ∑ ∑ ௘ܫ݊ܧݎܲ ൈ௚௘ ௘,௚,௧ܩܫ݊ܧ ൅ ∑ ∑ ∑ ሾܲ݊ܧݎ ௘ܲ,௫ ൈ௚௫௘∈ா௑ሺ௘,௫ሻ

ܺ݊ܧ ௘ܲ,௫,௚,௧,௦௖ െ ௘,௫ܵ݊ܧݎܲ ൈ   ௘,௫,௧,௦௖ሿܵܺ݊ܧ
 

,ݐ∀  (B.52) ܿݏ
Here, the costs of ܱܥଶ emissions caused by operating the energy generation unit are calculated 
and added to the operational costs.  
ܱܥܩܪܩ ௧ܲ,௦௖ ൌ ∑ൣݎܲܩܪܩ ∑ ௘ܫ݊ܧܩܪܩ ൈ ௘,௚,௧,௦௖௚௘ܩܫ݊ܧ ൅
∑ ∑ ௘,௫ܺ݊ܧܩܪܩ ൈ ܺ݊ܧ ௘ܲ,௫,௚,௧,௦௖௫௘∈ா௑ሺ௘,௫ሻ ൧  ∀ݐ, (B.42) ܿݏ

Note that the allowable emissions amount has a limitation for the entire horizon. 
ܫݓܲܩܪܩ ∑ ௚௚ܫݓܲ ൅ ∑ ∑ ௘ܫ݊ܧܩܪܩ ൈ ௘,௚,௧,௦௖௚௘ܩܫ݊ܧ ൑ ,ݐ∀  ݔܽܯܩܪܩ (B.43) ܿݏ

 
Environmental objective 
௦௖݈ݑܹܿܲܩ ൌ ߱௜

௉௎ ∑ ∑ ∑ ܲ ௜ܷ,௚,௧,௦௖௧௚௜ (B.44) ܿݏ∀  
௦௖ݎܹܲܲܩ ൌ ∑ ∑ ∑ ∑ ߱௣௉௥ ൈ ௜,௣,௚,௧,௦௖௧௚௣௜ܧܲ (B.45) ܿݏ∀  

௦௖ܹܳܲܩ ൌ ∑ ∑ ∑ ∑ ∑ ߱௟
்௥ ൈ ௚,௚ᇱܮܧ ൈ ௧௚ᇱ௚௟௜ܿݏ,ݐ,′݃,݃,݈,݅ܳ    (B.46) ܿݏ∀

The environmental impact, as an objective function, is defined through the expected ܿݏܯܣܦ as an 
environmental metric to be minimized.  
௦௖ܯܣܦ ൌ ௦௖݈ݑܹܿܲܩ ൅ ௦௖ݎܹܲܲܩ ൅	ܹܳܲܩ௦௖    (B.47)
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B.3 Complementary information of Chapter 6 
 

 Wind turbine datasheet 

Table. B. 2. Windmill data from the technical data sheet of GAMESA G58. 
Identifier Value Unit 

࢘࢏ࢇ࣋ ∗ 1.225 ݇݃
݉ଷൗ           

ܹܭ 850 ࢝ࡼ࢓࢕ࡺ࢈࢛࢘ࢀ   
ܯܴܲ 30.8 ࢓࢕࢔࣓             
   ݉ 52 ࡰ࢚࢕ࡾ
°   0 ࢼ                 
݉ 3 ࢂࢃ࢔ࡵ࢚࢛࡯ ⁄ݏ   
݉  21 ࢂࢃ࢚࢛ࡻ࢚࢛࡯ ⁄ݏ               
€  750,000 ࢘ࡼ࢈࢛࢘ࢀ

ଶ݉ 2,950 ࢃࡴࢗࡱࢀࢌ࢛࢘ࡿ ⁄  ܾݎݑܶ
2݉ 2,642 ࢃࡴ࢞ࢇࡹࢌ࢛࢘ࡿ ⁄  ܾݎݑܶ

* The ISA or International Standard Atmosphere states the density of air is 1.225 kg/m3 at sea level and 15 degrees C 
 
 
 

Table. B. 3. Coefficients of the Wind Turbine.  

 
ܿଵ ܿଶ ܿ3 ܿ4 ܿ5 ܿ6 

0.5176 46 0.4 0 21 0.0068 
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Table. B. 4. Monthly data of regional Wind velocity.

 
 

 

 

 

 

 

 

 

 

  Month      
Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec 

Region Wind velocity
࢓ሺ࢚,ࢍࢂࢃ ⁄࢙ ሻ 

 (Buenos Aires) g1 4.7 4.6 4.57 4.62 4.58 4.75 4.81 4.87 5.05 5 4.98 4.78 
(Córdoba) g2 2.14 2.06 2.03 2.06 2.1 2.2 2.4 2.62 2.75 2.73 2.61 2.35 
(Corrientes) g3 3.33 3.32 3.27 3.33 3.41 3.53 3.74 3.96 4.11 4.11 3.86 3.51 
 (La Plata) g4 4.78 4.69 4.6 4.58 4.56 4.7 4.75 4.82 5.07 4.99 5 4.82 
 (La Rioja) g5 3.75 3.44 3.13 2.75 2.41 2.23 2.38 2.75 3.32 3.84 4.1 4 
 (Mendoza) g6 4 3.75 3.54 3.14 2.78 2.63 2.77 3.13 3.5 3.81 4 4.04 
 (Neuquén) g7 5.94 5.45 5.05 4.75 4.42 4.41 4.44 4.71 4.97 5.44 5.94 6.18 
 (Entre Ríos) g8 3.83 3.78 3.75 3.77 3.8 3.9 4.09 4.34 4.63 4.57 4.34 4.02 
(Misiones) g9 1.22 1.19 1.21 1.27 1.33 1.36 1.43 1.49 1.48 1.45 1.37 1.28 
(Chubut) g10 6.35 6.24 6.12 6.23 6.26 6.41 6.37 6.15 5.99 5.99 6.18 6.33 
(Chaco) g11 2.95 2.95 2.88 2.97 3.02 3.08 3.31 3.53 3.67 3.64 3.40 3.10 
(Santa Cruz) g12 7.44 7.20 6.99 6.71 6.35 6.24 6.39 6.57 6.56 6.81 7.35 7.42 
(Salta) g13 3.14 3.01 2.85 2.56 2.31 2.21 2.38 2.67 3.11 3.52 3.67 3.44 
(San Juan) g14 4.04 3.83 3.55 3.20 2.98 2.92 3.08 3.41 3.74 4.01 4.18 4.17 
(San Luis) g15 4.44 4.35 4.28 4.14 4.09 4.20 4.49 4.80 5.08 5.19 5.05 4.72 
(Tucumán) g16 3.38 3.27 3.15 2.93 2.65 2.47 2.68 3.08 3.53 3.88 3.87 3.68 
(Jujuy) g17 2.93 2.77 2.55 2.27 2.07 2.13 2.28 2.48 2.73 3.10 3.30 3.18 
(Santa Fe) g18 3.80 3.73 3.73 3.73 3.73 3.83 4.03 4.28 4.53 4.53 4.30 3.95 
(La Pampa) g19 2.63 2.60 2.53 2.47 2.40 2.50 2.63 2.83 2.90 2.83 2.77 2.70 
(Santiago del 
Estero) 

g20 2.43 2.37 2.30 2.27 2.20 2.23 2.45 2.78 3.07 3.10 2.97 2.65 

(Catamarca) g21 3.58 3.40 3.20 2.97 2.70 2.60 2.85 3.18 3.63 3.98 4.03 3.85 
(Rio Negro) g22 5.90 5.83 5.55 5.37 5.37 5.47 5.53 5.35 5.30 5.40 5.53 5.75 
(Formosa) g23 3.48 3.37 3.33 3.50 3.63 3.80 4.05 4.30 4.40 4.35 4.03 3.68 
(Tierra del Fuego) g24 6.58 6.50 6.30 5.87 5.50 5.50 5.88 6.30 6.43 6.88 7.07 6.73 
https://weatherspark.com/y/28981/Average-Weather-in-Buenos-Aires-Argentina-Year-Round 
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Table. B. 5. Windmill captured power calculated for each region in each month. 

 

 

 

 

 

 

 

 

  Month            
  Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec 

Region ࢚,ࢍࢃࡴ࢝ࡼ࢈࢛࢘ࢀሺࢃ࢑ሻ 
 (Buenos 
Aires) 

g1 135.05 126.61 124.15 128.27 124.97 139.41 144.76 150.24 167.52 162.60 160.65 142.06 

(Córdoba) g2 12.75 11.37 10.88 11.37 12.05 13.85 17.98 23.39 27.05 26.47 23.13 16.88 

(Corrientes) g3 48.03 47.60 45.48 48.03 51.58 57.22 68.05 80.78 90.31 90.31 74.81 56.25 

 (La Plata) g4 142.06 134.19 126.61 124.97 123.34 135.05 139.41 145.66 169.52 161.62 162.60 145.66 

 (La Rioja) g5 68.60 52.95 39.89 27.05 18.21 14.43 17.54 27.05 47.60 73.65 89.65 83.25 

 (Mendoza) g6 83.25 68.60 57.70 40.27 27.95 23.66 27.65 39.89 55.77 71.94 83.25 85.77 

 (Neuquén) g7 272.62 210.57 167.52 139.41 112.32 111.56 113.85 135.91 159.69 209.41 272.62 307.02 

 (Entre Ríos) g8 73.08 70.26 68.60 69.70 71.38 77.16 89.00 106.33 128.83 124.22 106.05 84.71 

(Misiones) g9 2.37 2.20 2.29 2.64 3.03 3.24 3.81 4.30 4.18 3.93 3.35 2.74 

(Chubut) g10 332.71 316.58 298.79 314.32 318.85 342.17 336.24 303.17 279.59 279.59 307.60 330.38 

(Chaco) g11 33.41 33.41 30.94 33.92 36.00 38.17 47.09 57.29 64.07 62.52 51.01 38.73 

(Santa Cruz) g12 536.35 484.93 443.98 392.17 332.71 315.45 339.79 369.11 366.61 410.76 515.68 531.53 

(Salta) g13 40.43 35.47 29.99 21.90 16.03 14.09 17.63 24.68 39.29 56.57 64.07 53.05 

(San Juan) g14 85.65 73.05 58.02 42.77 34.43 32.40 38.17 51.68 68.06 83.77 94.98 94.47 

(San Luis) g15 113.89 107.15 101.74 92.46 89.02 96.51 117.37 143.68 170.65 181.38 167.66 137.09 

(Tucumán) g16 50.01 45.34 40.66 32.83 24.21 19.52 24.90 37.82 57.38 75.69 75.20 64.56 

(Jujuy) g17 32.55 27.55 21.57 15.15 11.48 12.63 15.32 19.72 26.56 38.75 46.75 41.63 

(Santa Fe) g18 71.38 67.69 67.69 67.69 67.69 73.27 84.82 101.63 121.19 120.52 103.42 80.17 

(La Pampa) g19 23.53 22.86 20.94 19.52 17.98 20.32 23.53 29.33 31.72 29.33 27.55 25.60 
(Santiago 
del Estero) 

g20 18.55 17.24 15.83 15.15 13.85 14.49 19.13 27.80 37.51 38.75 33.96 24.21 

(Catamarca) g21 59.43 51.13 42.62 33.96 25.60 22.86 30.11 41.63 62.39 81.70 84.82 74.23 

(Rio Negro) g22 267.15 258.20 222.37 201.06 201.06 212.51 220.38 199.19 193.66 204.83 220.38 247.29 

(Formosa) g23 54.58 49.64 48.18 55.77 61.96 71.38 86.41 103.42 110.81 107.07 85.35 64.76 
(Tierra del 
Fuego) 

g24 369.73 357.23 325.26 262.65 216.42 216.42 263.77 325.26 346.35 422.69 459.04 397.09 
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Table. B. 6. Monthly Tip speed ratio calculated for each region.  

 

 

 

 

 

 

 

  Month 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Region 
 Tip speed ratio

 ݐ,݃ߣ
 (Buenos Aires) g1 17.84 18.23 18.35 18.15 18.31 17.65 17.43 17.22 16.61 16.77 16.84 17.54 
(Córdoba) g2 39.19 40.71 41.31 40.71 39.93 38.12 34.94 32.01 30.49 30.72 32.13 35.68 
(Corrientes) g3 25.18 25.26 25.65 25.18 24.59 23.76 22.42 21.18 20.40 20.40 21.73 23.89
 (La Plata) g4 17.54 17.88 18.23 18.31 18.39 17.84 17.65 17.40 16.54 16.81 16.77 17.40
 (La Rioja) g5 22.36 24.38 26.79 30.49 34.80 37.61 35.24 30.49 25.26 21.84 20.45 20.96
 (Mendoza) g6 20.96 22.36 23.69 26.71 30.17 31.89 30.27 26.79 23.96 22.01 20.96 20.76 
 (Neuquén) g7 14.12 15.39 16.61 17.65 18.97 19.02 18.89 17.80 16.87 15.42 14.12 13.57
 (Entre Ríos) g8 21.90 22.19 22.36 22.24 22.07 21.50 20.50 19.32 18.13 18.35 19.34 20.84
(Misiones) g9 68.63 70.35 69.48 66.21 63.23 61.84 58.62 56.28 56.85 58.02 61.17 65.44
(Chubut) g10 13.21 13.43 13.69 13.46 13.40 13.09 13.16 13.63 14.00 14.00 13.56 13.24 
(Chaco) g11 28.42 28.42 29.16 28.28 27.72 27.19 25.35 23.75 22.88 23.06 24.68 27.06 
(Santa Cruz) g12 11.27 11.65 12.00 12.51 13.21 13.45 13.12 12.76 12.79 12.31 11.42 11.30
(Salta) g13 26.67 27.86 29.47 32.72 36.31 37.90 35.17 31.44 26.93 23.85 22.88 24.36
(San Juan) g14 20.77 21.90 23.65 26.18 28.14 28.71 27.19 24.58 22.42 20.92 20.06 20.10
(San Luis) g15 18.89 19.27 19.61 20.24 20.50 19.96 18.70 17.48 16.50 16.17 16.60 17.75
(Tucumán) g16 24.85 25.67 26.62 28.59 31.65 34.00 31.35 27.27 23.73 21.64 21.69 22.82 
(Jujuy) g17 28.67 30.31 32.89 37.00 40.58 39.31 36.86 33.88 30.68 27.05 25.41 26.41 
(Santa Fe) g18 22.07 22.46 22.46 22.46 22.46 21.88 20.83 19.62 18.50 18.53 19.50 21.23
(La Pampa) g19 31.95 32.25 33.21 34.00 34.94 33.54 31.95 29.68 28.92 29.68 30.31 31.06
(Santiago del 
Estero) 

g20 34.58 35.43 36.46 37.00 38.12 37.55 34.23 30.22 27.35 27.05 28.27 31.65

(Catamarca) g21 23.46 24.66 26.21 28.27 31.06 32.25 29.42 26.41 23.08 21.10 20.83 21.78
(Rio Negro) g22 14.21 14.38 15.11 15.63 15.63 15.34 15.16 15.67 15.82 15.53 15.16 14.58
(Formosa) g23 24.13 24.91 25.16 23.96 23.13 22.07 20.71 19.50 19.06 19.28 20.79 22.80 
(Tierra del 
Fuego) 

g24 12.75 12.90 13.31 14.29 15.25 15.25 14.27 13.31 13.04 12.20 11.87 12.45 
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Table. B. 7. Monthly Tip speed ratio in ࢎ࢚࢏ time step calculated for each region. 

 

 

 

 

 

  Month 
  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Region 
 

Tip speed ratio at ࢎ࢚࢏ time step
1
Λ݃,ݐ

 

 (Buenos Aires) g1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
(Córdoba) g2 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 -0.01 
(Corrientes) g3 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
 (La Plata) g4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
 (La Rioja) g5 0.01 0.01 0.00 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.01 0.01 0.01 
 (Mendoza) g6 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 
 (Neuquén) g7 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 
 (Entre Ríos) g8 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 
(Misiones) g9 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 
(Chubut) g10 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
(Chaco) g11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 
(Santa Cruz) g12 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 
(Salta) g13 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.01 0.01 0.01 
(San Juan) g14 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 
(San Luis) g15 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.02 0.02 
(Tucumán) g16 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.01 0.01 0.01 0.01 
(Jujuy) g17 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 
(Santa Fe) g18 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 
(La Pampa) g19 0.00 0.00 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
(Santiago del 
Estero) 

g20 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 

(Catamarca) g21 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 
(Rio Negro) g22 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
(Formosa) g23 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 
(Tierra del 
Fuego) 

g24 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.05 0.05 0.04 
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Table. B. 8. Power coefficient ݌ܥ calculated for each region in each month. 

 

 

 

 

  Month            
  Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec 

Region ࢚,ࢍ࢖࡯ 

 (Buenos Aires) g1 0.43 0.43 0.42 0.43 0.42 0.44 0.44 0.45 0.46 0.46 0.46 0.44 
(Córdoba) g2 -0.04 -0.07 -0.08 -0.07 -0.06 -0.03 0.03 0.09 0.13 0.12 0.09 0.02 
(Corrientes) g3 0.25 0.25 0.24 0.25 0.27 0.29 0.32 0.36 0.37 0.37 0.34 0.29 
 (La Plata) g4 0.44 0.43 0.43 0.42 0.42 0.43 0.44 0.44 0.46 0.46 0.46 0.44 
 (La Rioja) g5 0.32 0.27 0.21 0.13 0.04 -0.02 0.03 0.13 0.25 0.34 0.37 0.36 
 (Mendoza) g6 0.36 0.32 0.29 0.21 0.13 0.10 0.13 0.21 0.28 0.33 0.36 0.37 
 (Neuquén) g7 0.50 0.48 0.46 0.44 0.41 0.41 0.41 0.44 0.45 0.48 0.50 0.50 
 (Entre Ríos) g8 0.34 0.33 0.32 0.33 0.33 0.35 0.37 0.40 0.43 0.42 0.40 0.36 
(Misiones) g9 -0.33 -0.34 -0.34 -0.32 -0.30 -0.30 -0.27 -0.25 -0.26 -0.27 -0.29 -0.32 
(Chubut) g10 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
(Chaco) g11 0.17 0.17 0.16 0.18 0.19 0.20 0.25 0.29 0.31 0.31 0.27 0.21 
(Santa Cruz) g12 0.49 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.49 
(Salta) g13 0.22 0.19 0.15 0.08 0.01 -0.02 0.03 0.10 0.21 0.29 0.31 0.27 
(San Juan) g14 0.37 0.34 0.29 0.23 0.18 0.17 0.20 0.27 0.32 0.36 0.38 0.38 
(San Luis) g15 0.41 0.40 0.39 0.38 0.37 0.39 0.42 0.44 0.46 0.47 0.46 0.44 
(Tucumán) g16 0.26 0.24 0.22 0.17 0.10 0.05 0.11 0.20 0.29 0.34 0.34 0.31 
(Jujuy) g17 0.17 0.13 0.07 -0.01 -0.07 -0.05 0.00 0.05 0.12 0.21 0.25 0.22 
(Santa Fe) g18 0.33 0.32 0.32 0.32 0.32 0.34 0.36 0.39 0.42 0.42 0.40 0.35 
(La Pampa) g19 0.09 0.09 0.07 0.05 0.03 0.06 0.09 0.14 0.16 0.14 0.13 0.11 
(Santiago del 
Estero) 

g20 0.04 0.02 0.00 -0.01 -0.03 -0.02 0.05 0.13 0.20 0.21 0.18 0.10 

(Catamarca) g21 0.30 0.27 0.23 0.18 0.11 0.09 0.15 0.22 0.31 0.36 0.36 0.34 
(Rio Negro) g22 0.49 0.49 0.48 0.48 0.48 0.48 0.48 0.48 0.47 0.48 0.48 0.49 
(Formosa) g23 0.28 0.26 0.25 0.28 0.31 0.33 0.37 0.40 0.41 0.40 0.36 0.31 
(Tierra del 
Fuego) 

g24 0.50 0.50 0.50 0.49 0.48 0.48 0.49 0.50 0.50 0.50 0.50 0.50 
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 Solar panel 

 
Table. B. 9. Photovoltaic data from the technical data sheet of Kyocera KD225GH-4YB2. 

Identifier Value Unit 
ܹܭ 1 ࡾࡳ

݉ଶൗ           
Ԩ 25 ࡭ࢀࡿ   
ܹ 225 ࢝ࡼ࢓࢕ࡺ࢔ࢇࡼ                
% 0.0046- ࢖ࣆ

Ԩൗ    
Ԩ   45 ࢀ࡯ࡻࡺ                 
ଶ݉ 1.645 ࢌ࢛࢘ࡿ࢔ࢇࡼ   
2݉ 1.5 ࢂࡼࢗࡱࢀࢌ࢛࢘ࡿ                   
€ 675 ࢘ࡼ࢔ࢇࡼ   

 
 

Table. B. 10. Monthly data of regional temperature. 

https://en.climate-data.org/south-america/argentina-11/ 
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Table. B. 11. Solar irradiance. 

http://www.solarelectricityhandbook.com/solar-irradiance.html 
 

Table. B. 12. The temperature of a panel in each month and region. 

 
 

  Month            
Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec 

Region ࢚,ࢍࢀ࢔ࢇࡼሺԨሻ

 (Buenos Aires) 23.61  22.81  20.61  16.40  13.50 11.00  10.60 11.50 13.51 16.41 19.51 22.01 23.61 

(Córdoba) 23.81  22.81 21.21  17.01  13.90 10.70 10.80 12.61 15.01 17.71 20.81 22.71 23.81 

(Corrientes) 27.51  27.21  25.31  21.51  18.50 16.30  16.00 17.01 19.31 21.41 24.21 26.31 27.51 

 (La Plata) 22.81  21.81  20.01  16.20  12.70 9.90  8.90  10.70 12.51 15.71 18.41 21.11 22.81 

 (La Rioja) 28.01  26.61  24.01  19.00  14.80 11.40  10.90 13.81 17.51 21.31 25.01 27.31 28.01 

 (Mendoza) 24.01  22.81  20.21  15.91  11.90 8.50  8.10  10.40 13.51 17.21 20.71 23.21 24.01 

 (Neuquén) 22.11  21.21  17.81  13.30  9.50  6.20  6.10  8.20  11.01 14.81 18.71 21.21 22.11 

 (Entre Ríos) 24.91  23.81  21.81  18.20  15.40 12.50  12.00 13.40 15.31 18.21 20.91 23.51 24.91 

(Misiones) 26.11  25.81  24.31  20.71  18.20 16.30  15.90 17.20 18.71 21.11 23.31 25.51 26.11 

(Chubut) 20.31  19.91  17.30  13.50  9.70  6.40  6.20  7.90  10.30 13.51 16.61 18.91 20.31 

(Chaco) 27.01  26.51  24.61  20.81  18.00 16.10  15.40 17.01 18.91 21.21 23.71 26.01 27.01 

(Santa Cruz) 12.41  11.61  10.50  7.40  3.50  0.90  1.10  2.80  5.20  8.31  10.61 11.71 12.41 

(Salta) 27.41  26.41  25.21  22.71  20.31 19.61  20.01 22.31 23.91 26.81 27.51 28.01 27.41 

(San Juan) 26.01  24.51  21.41  16.21  11.70 8.40  8.00  10.61 14.31 18.41 22.11 25.21 26.01 

(San Luis) 23.91  22.81  20.01  15.61  12.00 8.90  8.60  10.40 13.71 17.01 20.41 23.01 23.91 

(Tucumán) 25.31  24.11  22.61  18.91  15.81 12.70  12.71 14.71 17.71 20.71 23.11 25.01 25.31 

(Jujuy) 23.61  22.51  21.41  18.31  14.81 12.21  11.91 15.01 17.81 21.71 23.01 23.81 23.61 

(Santa Fe) 25.31  24.41  22.61  17.60  15.30 12.40  12.20 13.60 15.41 18.41 21.41 23.51 25.31 

(La Pampa) 23.61  22.11  19.51  14.90  11.00 7.90  7.20  9.50  12.11 15.91 19.41 22.51 23.61 

(Santiago del 
Estero) 

26.71  25.51  23.81  19.80  16.10 12.70  12.20 15.31 18.51 22.71 24.81 26.51 26.71 

(Catamarca) 27.31  26.01  24.41  20.40  16.00 12.00  11.60 15.41 19.11 23.61 25.61 27.31 27.31 

(Rio Negro) 21.81  20.81  18.41  14.20  10.40 7.30  7.10  8.50  10.71 14.11 17.51 20.11 21.81 

(Formosa) 27.81  27.21  25.51  21.81  19.60 17.20  17.10 18.11 20.21 22.21 24.51 26.51 27.81 

(Tierra del Fuego) 9.01  8.70  7.60  5.40  3.00  1.50  1.40  1.90  3.60  5.90  7.01  8.31  9.01 
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a. Equations associated with the Chapter 6 mathematical model 
 
௧",௦௖ܨܥ ൌ ௧",௦௖ܧܰ െ  "௧ܮܣܱܶܶ "ݐ ൌ 1,⋯ , ܶ െ 1, (B.48) ܿݏ∀

"௧ܮܣܱܶܶ ൌ
ܫܥܨ
ܶ

൅
ݏ݊ܫܥ
ܶ

൅
ݏ݊ܫܩܪܩ

ܶ
 

"ݐ∀ (B.49)

The economic criteria consider costs corresponding to system elements installation and pondered 
operation costs for each renewable resource.  
ݏ݊ܫܥ ൌ ∑ ∑ ௘௜ܫݓܲݎܲ ൈ ௘௜,௚௚௘௜ܫݓܲ   (B.50)

ܱܥ ௧ܲ,௦௖ ൌ ∑ ∑ ௘௜ܫ݊ܧݎܲ ൈ௚௘௜ ௘௜,௚,௧,௦௖ܩܫ݊ܧ ൅
∑ ∑ ∑ ሾܲ݊ܧݎ ௘ܲ,௫ ൈ ܺ݊ܧ ௘ܲ,௫,௚,௧,௦௖ െ ௘,௫ܵ݊ܧݎܲ ൈ௚௫௘∈ா௑ሺ௘,௫ሻ

  ௘,௫,௧,௦௖ሿܵܺ݊ܧ

 
,ݐ∀  (B.51) ܿݏ

Both the environmental and the economic criteria calculate separately the contribution of the 
installation corresponding to power and capacity of the system's operation that encompasses 
generation and energy transfers. 
ݏ݊ܫܩܪܩ ൌ ∑ൣݎܲܩܪܩ ∑ ௘௜ܫݓܲܩܪܩ ൈ ௘௜,௚௚௘௜ܫݓܲ ൅
∑ ∑ ∑ ∑ ∑ ሾሺܲܺݓ 	ܲ௘,௫,௚,௧,௦௖ ൅ ௫,௚,௧,௦௖ሻܵܺݓܲ ൈ ௫ሿ௦௖௧௚௫௘∈ா௑ሺ௘,௫ሻݓܲܩܪܩ ൧  (B.52) 

ܱܥܩܪܩ ௧ܲ,௦௖ ൌ ∑ൣݎܲܩܪܩ ∑ ∑ ௘,௘௜ܫ݊ܧܩܪܩ ൈ ௘௜,௚,௧,௦௖௚௘௜௘ܩܫ݊ܧ ൅
∑ ∑ ௘,௫ܺ݊ܧܩܪܩ ൈ ܺ݊ܧ ௘ܲ,௫,௚,௧,௦௖௫௘∈ா௑ሺ௘,௫ሻ ൧  ∀ݐ,  (B.53) ܿݏ

A restriction of the maximum value of emissions from the total installation is also considered for 
the sizing horizon. 

ܫݓܲܩܪܩ ∑ ௚௚ܫݓܲ ൅ ∑ ∑ ∑ ௘,௘௜ܫ݊ܧܩܪܩ ൈ ௘௜,௚,௧,௦௖௚௘௜௘ܩܫ݊ܧ ൑ ,ݐ∀  ݔܽܯܩܪܩ (B.54) ܿݏ

An upper limit on the total capital investment is defined by Eq. (B.55): 
ܫܥܨ ൅ ݏ݊ܫܥ ൅ ݏ݊ܫܩܪܩ ൑ തതതതത (B.55)ܥܫܨ

In the calculation of the cash flow corresponding to the last period	ݐ" ൌ ܶ . It is assumed that part 
of the total fixed capital investment (,ܫܥܨ	ݏ݊ܫܥ, and	ݏ݊ܫܩܪܩ) may be recovered at the end of the 
planning horizon.  
௧",௦௖ܨܥ ൌ ௧",௦௖ܧܰ െ "௧ܮܣܱܶܶ ൅ ܫܥܨሺݒݏ ൅ ݏ݊ܫܥ ൅ ሻݏ݊ܫܩܪܩ ܿݏ∀ , ݐ ൌ ܶ (B.56)
 :denotes the total fixed cost investment of production plants ܫܥܨ

ܫܥܨ ൌ ∑ ∑ ∑ "௣,௚,௧ߙൣ
௉௥ ൈ ܰ ௣ܲ,௚,௧" ൅ "௣,௚,௧ߚ

௉௥ ൈ ௣,௚,௧"൧ܧ݌ܽܥܲ ൅௧"௚௣ ∑ ∑ ∑ "௦,௚,௧ߙൣ
ௌ௧ ൈ௧"௚௦

ܰܵ௦,௚,௧" ൅ "௦,௚,௧ߚ
ௌ௧ ൈ "௦,௚,௧ܧ݌ܽܥܵ ൈ ௣,௚,௧"൧ܧ݌ܽܥܲ ൅ ∑ ∑ "௟,௧ܥܯܶ ൈ ܰ ௟ܶ,௧"௧"௟   (B.52)

The net earnings are given by the difference between the incomes ܴ  ௧,௦௖ and the facility operationݒ݁
cost	ܥܱܨ௧,௦௖ , transportation cost ܱܶܥ௧,௦௖, operation cost ܱܥ ௧ܲ,௦௖ and operational emission costs 
ܱܥܩܪܩ ௧ܲ,௦௖ of renewables as stated in equation (B.53): 
௧,௦௖ܧܰ ൌ ሺ1 െ ߮ሻ൫ܴ݁ݒ௧,௦௖ െ ௧,௦௖ܥܱܨ െ ௧,௦௖ܥܱܶ െ ܱܥ ௧ܲ,௦௖

െ ܱܥܩܪܩ ௧ܲ,௦௖൯ ൅ ܧܦ߮ ௧ܲ  
,ݐ∀ (B.53) ܿݏ

௧",௦௖ܧܰ ൌ෍ܰܧ௧,௦௖
௧

 (B.54)

In equation (B.55), ܵܲܧሺ݅ሻ represents the set of products ݅ that can be sent to the market. 
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௧,௦௖ݒܴ݁ ൌ ෍ ෍ܶܦ ௜ܵ,௚,௧,௦௖ ൈ ܴܲ௜,௚,௧
௚௜∈ௌா௉ሺ௜ሻ

  ,ݐ∀ (B.55) ܿݏ

The operating costs are obtained by multiplying the unit production and storage costs (ܷܲݐ,݃,݌,݅ܥ 
and	ܷܵܥ௜,௦,௚,௧, respectively) with the corresponding production rates and average inventory 

levels, respectively. This term also includes the disposal cost	ܥܦ௧,௦௖. 
௧,௦௖ܥܱܨ ൌ ∑ ∑ ∑ ௜,௣,௚,௧ܥܷܲ ൈ ௜,௣,௚,௧,௦௖ܧܲ ൅௚௣∈ூெሺ௜,௣ሻ௜

∑ ∑ ௜,௦,௚,௧ܥܷܵ ൈ ௜,௚,௧,௦௖ܮܫܣ ൅ ௧,௦௖௦∈ூௌሺ௜,௦ሻ௜ܥܦ   
,ݐ∀ (B.56) ܿݏ

The disposal cost is a function of the amount of waste generated and landfill tax݅ܶܮ,݃: 
௧,௦௖ܥܦ ൌ ∑ ∑ ௜ܹ,௚,௧,௦௖ ൈ ܮ ௜ܶ,௚௚௜    ,ݐ∀ (B.57) ܿݏ

The transportation cost includes the fuel	ܥܨ௧,௦௖, labor	ܥܮ௧,௦௖, maintenance	ܿݏ,ݐܥܯ, and general ܿݏ,ݐܥܩ 
costs: 
௧,௦௖ܥܱܶ ൌ ௧,௦௖ܥܨ ൅ ௧,௦௖ܥܮ ൅ ௧,௦௖ܥܯ ൅ ௧,௦௖ܥܩ ,ݐ∀ (B.58) ܿݏ

The fuel cost is a function of the fuel price ݐ,݈ܲܨ and fuel usage: 

ܿݏ,ݐܥܨ ൌ ෍ ෍ ෍ ෍ሾ
௚,௚ᇲܮܧ2 ൈ ܳ௜,௟,௚,௚ᇲ,௧,௦௖

௟ܧܨ ൈ ௟݌ܽܥ
ሿ ൈ ܨ ௟ܲ,௧

௟௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ

  ,ݐ∀ (B.59) ܿݏ

Furthermore, as shown in equation (B.60), the labor transportation cost is a function of the driver 
wage (ܦ ௟ܹ,௧) and total delivery time (term inside the brackets): 
௧,௦௖ܥܮ ൌ ∑ ∑ ∑ ∑ ݕݎ݁ݒ݈݅݁ܦ	݈ܽݐ݋ܶ ܶ݅݉݁௜,௟,௚,௚ᇲ,௧,௦௖௟௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ ൈ ܦ ௟ܹ,௧  ,ݐ∀ (B.60) ܿݏ

The general maintenance cost of the transportation systems depends on the total distance driven 
and the unit cost of the traveled distance	ܧܯ௟ .  

௧,௦௖ܥܯ ൌ ∑ ∑ ∑ ∑
ொ೔,೗,೒,೒ᇲ,೟,ೞ೎
்஼௔௣೗

௟௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ ൈ ௚,௚ᇲܮܧ2 ൈ ௟ܧܯ    ,ݐ∀ (B.61) ܿݏ

Finally, the general cost includes transportation insurance, license and registration, and 
outstanding finances. It can be determined from the general expenses ܧܩ௟,௧ and number of 
transportation units ܰ ௟ܶ,௧ as follows (Mele et al., 2011): 
௧ܥܩ ൌ ∑ ∑ ௟,௧௧ᇱஸ௧௟ܧܩ ൈ ܰ ௟ܶ,௧ᇱ   (B.62) ݐ∀

The depreciation term is calculated with the straight-line method, similarly as (Mele et al., 2011) 
did in their work: 
ܧܦ ௧ܲ" ൌ ሺ1 െ ሻݒݏ ൈ  "௧ܮܣܱܶܶ (B.63) "ݐ∀

The average number of trucks required by the SC is calculated from the flow rates of materials 
between regions, the transportation mode availability݈ܽݒ௟, the capacity of a transport container, 
the average distance traveled between regions, the average speed, and the loading/unloading 
time, as stated in equation (B.64): 

∑ ܰ ௟ܶ,௧ᇱ ൌ ∑ ∑ ∑
ொ೔,೗,೒,೒ᇲ,೟,ೞ೎
௔௩௟೗ൈ்஼௔௣೗

ሺ
ଶா௅೒,೒ᇲ

ௌ௉೗
൅ ܷܮ ௟ܶሻ௚ᇱஷ௚௚௜∈ூ௅ሺ௜,௟ሻ௧ᇱஸ்   ∀݈, (B.64) ܿݏ

Mathematically, the inventory of emissions due to the operation of the network can be expressed 
as a function of some continuous variables of the model. Precisely, the entries of the life cycle 
inventory can be calculated from the production rates at the plants ܲܿݏ,ݐ,݃,݌,݅ܧ and transportation 
flows ܳ௜,௟,௚,௚ᇲ,௧,௦௖ as stated in equations (B.65) to (B.67): 
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௦௖݈ݑܹܿܲܩ ൌ ߱௜
௉௎ ∑ ∑ ∑ ܲ ௜ܷ,௚,௧,௦௖௧௚௜ (B.65) ܿݏ∀  

௦௖ݎܹܲܲܩ ൌ ∑ ∑ ∑ ∑ ߱௣௉௥ ൈ ௜,௣,௚,௧,௦௖௧௚௣௜ܧܲ (B.66) ܿݏ∀
௦௖ܹܳܲܩ ൌ ∑ ∑ ∑ ∑ ∑ ߱௟

்௥ ൈ ௚,௚ᇱܮܧ ൈ ௧௚ᇱ௚௟௜ܿݏ,ݐ,′݃,݃,݈,݅ܳ    (B.67) ܿݏ∀

B.4  Nomenclature 

  Abbreviations 

BFPP Biomass-Fired Power Plant 
BIGCC Biomass-Fueled Integrated Gasification Combined Cycle 
BIGFC Biomass Integrated Gasification with Fuel Cells 
BPT Back Pressure Turbine 
CAPEX Capital Expenditure 
GHG Greenhouse Gas 
LCA Life Cycle Assessment 
MCFC Molten Carbonate Fuel Cells 
MILP Mixed Integer Linear Programming 
MOO Multi-Objective Optimization 
NPV Net Present Value 
OPEX Operating Expense 
OV Opportunity Value 
PSE Process System Engineering 
SC Supply Chain 
SSC Sustainable Supply Chain 
SSCM Sustainable Supply Chain Management 
VaR Value at Risk 

  Index 
݁ Set for Energy types  ሺ݁|݁ ൌ 1,… ,  ሻܧ
݁݅ Set for Energy resources  ሺ݁݅|݁݅ ൌ 1,… ,  ሻܫܧ
݃ Set for Regions  ሺ݃|݃ ൌ 1,… ,  ሻܩ
i Set for Material types  ሺ݅|݅ ൌ 1,… ,  ሻܫ
k Target valueሺ݇|݇ ൌ 1,… , ሻܭ
l Set for Transportation modes  ሺ݈|݈ ൌ 1,… ,  ሻܮ
p Set for Production technologies  ሺ݌|݌ ൌ 1,… , ܲሻ 
s Set for Storage technologies  ሺݏ|ݏ ൌ 1,… , ܵሻ 
sc Set of scenarios ሺܿݏ|ܿݏ ൌ 1,… , ሻܥܵ
t Set for Planning periods  ሺݐ|ݐ ൌ 1,… , ܶሻ
x Set for External energy suppliers   ሺݔ|ݔ ൌ 1,… , ܺሻ 

Sets 

EXሺe, xሻ Subset of ordered pairs that link energy types ݁ to external 
resource ݔ

ILሺi, lሻ Subset of ordered pairs that link materials i to transport modes 
l 

IMሺi, pሻ Subset of ordered pairs that link main products i to 
technologies p 
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,ሺ݅ܵܫ  ሻ Subset of ordered pairs that link materials i to storageݏ
technologies s 

  ሺ݅ሻ Subset of final products iܲܧܵ

Parameters 

αp,g,t
Pr  Fixed investment coefficient for technology ݌ 
ݐ,݃,ݏߙ
ݐܵ  Fixed investment coefficient for storage technology ݏ 
ݐ,݃,݌ߚ
ݎܲ  Variable investment coefficient for production technology ݌ 
ݐ,݃,ݏߚ
ݐܵ  Variable investment coefficient for storage technology ݏ 
 The azimuth angle of the pitch ߚ
 Auxiliary boundary for the ε-constraint method ߝ
 Net cogeneration efficiency ߟ
 Alternator efficiency ݐ݈ܽߟ

 ݔݑܽߟ
Auxiliary devices (pumps, cooling towers, and other 
components) efficiency 

 Mechanical turbine efficiency ܶ݉ߟ
 Turbine thermodynamic efficiency ݐߟ
ܿݏߠ
݀  a realization of uncertain parameters in scenario ܿݏ 
 ݐ The tip speed ratio in region ݃ in period ݐ,݃ߣ
Λ݃,ݐ The tip speed ratio at ݄݅ݐ time step in region ݃ in period ݐ 
 Coefficient of variation of power per temperature ݌ߤ
 Density of air ݎ݅ܽߩ

 ݅,݌ߩ
Material balance coefficient associated with material ݅ and 
technology ݌ 

 Storage period ߪ

߬ Minimum desired percentage of the available installed 
capacity  

߮ Tax rate 
 Nominal turbine rotation speed ݉݋݊߱
݌߱
 Life cycle environmental burden associated with production ݎܲ

technology ݌ 
߱݅
ܷܲ Life cycle environmental burden associated with purchasing 

material ݅ 
݈߱
 Life cycle environmental burden associated with ݎܶ

transportation mode ݈ 
 ݇ ௞ Target levelߗ
 Environmental performance target ݇′ߗ
Availability of transportation mode ݈݈ݒܽ ݈ 
 the distance between two scenarios ′ܿݏ,ܿݏܥ

 ݐ,݃݌݋ݎܥ݌ܽܥ
Total capacity of raw material production (sugar cane 
plantations) in region ݃ in period  ݐ

 specific heat ݌ܿ
 ݐ power coefficient in region ݃ in period ݐ,݃݌ܥ
  Cut–in speed ܸܹ݊ܫݐݑܥ
 Cut–out speed ܸܹݐݑܱݐݑܥ
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 ,ݐ energy demand needed per unit of raw material ݅ in period ݐ,݃݀݊ܽ݉݁ܦ
for scenario ܿݏ 

 ,ݐ energy demand needed per unit of raw material ݅ in period ܿݏ,ݐ,݃݀݊ܽ݉݁ܦ
for scenario ܿݏ 

 ݐ Driver wage of transportation mode ݈ in period ݐ,݈ܹܦ
 ݁ Conversion efficiency between internal energy resource type ݁ܬܫ݂ܧ

and the process plant ݅ 
݁ Conversion efficiency between internal energy resource ݅݁,݁ܬܫ݂ܧ ݅ type 

݁ and the process plant ݅ 
 Conversion efficiency of the excess energy type ݁ sent to the ݔ,݁ܺܫ݂ܧ

external energy generation resource ݔ 
 energy type ݔ Conversion efficiency between external resource ݔ,݁ܬ݂ܺܧ

݁ and the process plant ݅ 
 ’݃ Distance between ݃ and ′݃,݃ܮܧ
ܿݏ݂
∗  Optimal objective value under scenario ܿݏ 
 തതതതത Upper limit on the capital investmentܥܫܨ
 ݈ Fuel consumption of transportation mode ݈ܧܨ
 ݐ Fuel Price of transportation mode ݈ in period ݐ,݈ܲܨ
 ݐ General expenses of transportation mode ݈ in period ݐ,݈ܧܩ
 ݁ Emissions per unit of energy generated for each type ݁ܫ݊ܧܩܪܩ
 Maximum allowable emissions amount ݔܽܯܩܪܩ
݃݇ Price of GHG emissions ݎܲܩܪܩ  ଶ equivalentܱܥ
 Emissions per unit of power ܫݓܲܩܪܩ
 Solar irradiance under standard condition ܴܩ
 ݐ Solar irradiance in region ݃ and period ݐ,݃ܶܩ
݄ Enthalpy 
 Interest rate ݎ݅
 Lower heating value ܸܪܮ
 ݐ Landfill tax in period ݐ,݃,݅ܶܮ
 ݈ Loading/unloading time of transportation mode ݈ܷܶܮ
 Big positive number ܯ
 Biomass flow rate ݋ܾ݅݉
݉݃ Mass flow rate of the gas 
 ݈ Maintenance expenses of transportation mode ݈ܧܯ
 Minimum power generation coefficient ܱܥ݃ܲ݊݅ܯ
 Minimum power generation by windmill ܹܪݓܲ݊݅ܯ
 Minimum power generation by photovoltaic ܸܲݓܲ݊݅ܯ
ܰ Number of scenarios to be removed 
 Normal Cell Operating Temperature ܶܥܱܰ
ܲ݁ܿ power consumed inside the production process 
ܲ݁݃ Power generated by the cogeneration per ton of biomass 
 Panel nominal power ݓܲ݉݋ܰ݊ܽܲ
 Price of a panel ݎܲ݊ܽܲ
 ݐ Power generated by a panel in region ݃ and period ݐ,݃ݓܲ݊ܽܲ
 Panel surface ݂ݎݑܵ݊ܽܲ



Appendix B. Case study Data 

176 
 

 ݐ Temperature of a panel in region ݃ and period ݐ,݃ܶ݊ܽܲ
 ݌ Maximum capacity of technology ݌݌ܽܥܲ

 ݌ Minimum capacity of technology ݌݌ܽܥܲ

 ݅ Prices of final products ݐ,݃,ܴ݅ܲ
 ݁ Price of energy type ݁ܫ݊ܧݎܲ
  ݔ Purchase price of external energy type ݁ source ݔ,݁ܲ݊ܧݎܲ
  ݔ Selling price of energy type ݁ to external source ݔ,݁ܵ݊ܧݎܲ
 ܿݏ the probability of scenario ܿݏܾ݋ݎ݌
ܿݏܾ݋ݎ݌

the probability of scenario ݃݅ݎ݋  in an original discrete ܿݏ
distribution 

  Installation power cost ܫݓܲݎܲ
 Price per unit of wind power ܹܪݓܲݎܲ
 Panel price per unit of power ܸܲݓܲݎܲ
 the maximum power to be installed ݔܽܯܫݓܲ
 ݅݁ the maximum power to install energy resource ݅݁ݔܽܯܫݓܲ
 ݐ Power per available surface in region ݃ and period ݐ,ܸ݂݃ܲݎݑܵݓܲ
݈ܳ Maximum capacity of transportation mode ݈ 
݈ܳ Minimum capacity of transportation mode ݈ 

 Rotor diameter ܦݐ݋ܴ
 ݏ Maximum capacity of storage technology ݏ݌ܽܥܵ
 ݏ Minimum capacity of storage technology ݏ݌ܽܥܵ

  ݐ Demand of product ݅ in region ݃ in period ݐ,݃,݅ܦܵ
 ܿݏ in scenario ݐ Demand of product ݅ in region ݃ in period ܿݏ,ݐ,݃,݅ܦܵ
 Slot length ܮܵ
݈ܵܲ Average speed of transportation mode ݈ 
 The ambient temperature under standard condition ܣܶܵ
 Salvage value ݒݏ
 Maximum surface available for horizontal windmill axis ܹܪݔܽܯ݂ݎݑܵ
 Maximum surface available for a photovoltaic ܸܲݔܽܯ݂ݎݑܵ
 The relation between the surface and power ܹܪݓ݂ܲݎݑܵ
 The relation between the surface and power ܸܲݓ݂ܲݎݑܵ
 The equivalent surface area of a turbine ܹܪݍܧ݂ܶݎݑܵ
 The equivalent surface occupied by a panel ܸܲݍܧ݂ܶݎݑܵ
 Maximum total surface ݔܽܯ݂ܶݎݑܵ
 Area occupation per unit power of each e݅ ݅݁ܫݓ݂ܲݎݑܵ
ܶ Number of time intervals 
 ݐ Ambient temperature in region ݃ and period ݐ,݃ܣܶ
 ݈ Capacity of transportation mode ݈݌ܽܥܶ
 ݐ Cost of establishing transportation mode ݈ in period ݐ,݈ܥܯܶ
 Nominal turbine power ݓܲ݉݋ܾܰݎݑܶ
 Price of a turbine ݎܾܲݎݑܶ
 ݐ Power generated by a turbine in region ݃ and period ݐ,݃ݓܾܲݎݑܶ
 ݐ Captured power by a turbine in region ݃ and period ݐ,ܹ݃ܪݓܾܲݎݑܶ
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  ݐ the unit production cost of product ݅ in region ݃ in period ݐ,݃,݌,݅ܥܷܲ
 ݐ unit storage cost of product ݅ in region ݃ in period ݐ,݃,ݏ,݅ܥܷܵ
 ݐ Wind velocity in region ݃ and period ݐ,ܸܹ݃

Variables 

 is removed ܿݏ a dual variable which means whether scenario ′ܿݏ,ܿݏݒ
and assigned to scenario ܿݏ′ 

  ݐ Average inventory level of product ݅ in region ݃ in period ݐ,݃,݅ܮܫܣ
 in ݐ Average inventory level of product ݅ in region ݃ in period ܿݏ,ݐ,݃,݅ܮܫܣ

scenario ܿݏ 
 ݐ Cash flow in period ݐܨܥ
 ܿݏ in scenario ݐ Cash flow in period ܿݏ,ݐܨܥ
 Total cost of installation of all renewable power plants ݏ݊ܫܥ
 ݐ Operation cost of all renewable power plants in period ݐܱܲܥ
 in ݐ Operational cost of all renewable power plants in period ܿݏ,ݐܱܲܥ

scenario ܿݏ 
 Environmental metric to be optimized ܯܣܦ
 ܿݏ Environmental metric to be optimized in scenario ܿݏܯܣܦ
 ܿݏ in scenario ݐ Disposal cost in period ܿݏ,ݐܥܦ
  ݐ Depreciation in period ݐܲܧܦ
  ݐ Amount of material ݅ delivered in region ݃ and period ݐ,݃,݅ܵܶܦ
 in ݐ Amount of material ݅ delivered in region ݃ and period ܿݏ,ݐ,݃,݅ܵܶܦ

scenario ܿݏ 
 ሿ Expected environmental damageܯܣܦሾܧ
 ݐ Energy type e generated in region ݃ and period ݐ,݃,݁ܩܫ݊ܧ
 ܿݏ in scenario ݐ Energy type e generated in region ݃ and period ܿݏ,ݐ,݃,݁ܩܫ݊ܧ
 ܿݏ in scenario ݐ Energy type e generated in region ݃ and period ܿݏ,ݐ,݃,݅݁ܩܫ݊ܧ

 ݐ,݃,݁ܬܫ݊ܧ
Energy flux type ݁ between renewable source and demand of 
region ݃ in period ݐ 

 Energy flux type ݁ between renewable source and demand of ܿݏ,ݐ,݃,݁ܬܫ݊ܧ
region ݃ in period ݐ in scenario ܿݏ 

 Energy flux type ݁ between renewable source ݁݅ and demand ܿݏ,ݐ,݃,݅݁,݁ܬܫ݊ܧ
of region ݃ in period ݐ in scenario ܿݏ 

 ௘,௫,௚,௧ܺܫ݊ܧ
Energy flux type ݁ between renewable source and external 
source  ݐ region ݃ in period ݔ

 ܿݏ,ݐ,݃,ݔ,݁ܺܫ݊ܧ
Energy flux type ݁ between renewable source	݁݅ and external 
source  ܿݏ in scenario ݐ region ݃ in period ݔ

 ݁݅ and external	௘,௘௜,௫,௚,௧,௦௖ Energy flux type ݁ between renewable sourceܺܫ݊ܧ
source  ݐ region ݃ in period ݔ

 ሾܸܰܲሿ Expected net present valueܧ

 ݐ,݃,ݔ,݁ܬܺ݊ܧ
Energy flux type ݁ between external sourceݔ and demand of 
region ݃ in period ݐ 

Energy flux type ܿݏ,ݐ,݃,ݔ,݁ܬܺ݊ܧ ݁ between external sourceݔ and demand of 
region ݃ in period ݐ in scenario ܿݏ 

 ݐ in period ݔ Energy type ݁ purchased from external source ݐ,݃,ݔ,݁ܲܺ݊ܧ
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 in ݐ in period ݔ Energy type ݁ purchased from external source ܿݏ,ݐ,݃,ݔ,݁ܲܺ݊ܧ
scenario ܿݏ 

 ݐ in period ݔ Energy type ݁  sales to external source ݐ,݃,ݔ,݁ܵܺ݊ܧ
 in scenario ݐ in period ݔ Energy type ݁  sales to external source ܿݏ,ݐ,݃,ݔ,݁ܵܺ݊ܧ

ܿݏ

݌ݔ݂݁
ݎݎ݁  absolute error between the expected performance of original 

and reduced distribution 

݌ݔ݂݁
 Expected objective function obtained using the original set of ݃݅ݎ݋

scenarios 

݌ݔ݂݁
 Expected objective function obtained using the reduced set of ݓ݁݊

scenarios 
 ݐ Fuel cost in period ݐܥܨ
 ܿݏ in scenarioݐ Fuel cost in period ܿݏ,ݐܥܨ
 Fixed capital investment ܫܥܨ
 ݐ Facility operating cost in period ݐܥܱܨ
 ܿݏ in scenario ݐ Facility operating cost in period ܿݏ,ݐܥܱܨ

 ݐ,′݃,݃,݈,݅݁݃ܽݏܷ	݈݁ݑܨ
Fuel consumption for transporting material ݅  by transportation 
mode ݈, between region ݃ and ݃′ in period ݐ 

݅ Fuel consumption for transporting material ܿݏ,ݐ,′݃,݃,݈,݅݁݃ܽݏܷ	݈݁ݑܨ  by transportation 
mode ݈, between region ݃ and ݃’ in period ݐ in scenario ܿݏ 

 ݐ General cost in period ݐܥܩ
 ܿݏ in scenario ݐ General cost in period ܿݏ,ݐܥܩ

 ݐܱܲܥܩܪܩ
Total GHG operational emissions ݇݃  ଶ equivalent in periodܱܥ
 ݐ

݃݇ Total GHG operational emissions ܿݏ,ݐܱܲܥܩܪܩ  ଶ equivalent in periodܱܥ
 ܿݏ in scenario ݐ

Total GHG Installation emissions ݏ݊ܫܩܪܩ ݇݃  ଶ equivalent for allܱܥ
renewable power plants 

 GWP100 amount in the cultivation process ݈ݑܥܹܲܩ
 ܿݏ GWP100 amount in cultivation process in scenario ܿݏ݈ݑܥܹܲܩ
 GWP100 amount in the production process ݎܹܲܲܩ
 ܿݏ GWP100 amount in the production process in scenario ܿݏݎܹܲܲܩ
 GWP100 amount in the transportation process ܹܳܲܩ
 ܿݏ GWP100 amount in transportation process in scenario ܿݏܹܳܲܩ
 ݐ Labor cost in period ݐܥܮ
 ܿݏ in scenario ݐ Labor cost in period ܿݏ,ݐܥܮ
 ݐ Maintenance cost in period ݐܥܯ
 ܿݏ in scenario ݐ Maintenance cost in period ܿݏ,ݐܥܯ
 Probability displacement between scenarios ′ܿݏ,ܿݏ݊
 ݐ Net earnings in period ݐܧܰ
 ܿݏ in scenario ݐ Net earnings in period ܿݏ,ݐܧܰ

 ݐ,݃,݌ܲܰ
Number of plants with technology ݌ established in region ݃ 
and period ݐ 

ܸܰܲ Net Present Value 
 ܿݏ Net Present Value in scenario ܿݏܸܲܰ
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 ݐ,݃,ݏܵܰ
Number of storages with storage technology ݏ established in 
region ݃ and period ݐ 

 ݐ,݃,݌,݅ܧܲ
Production rate of material ݅ associated with technology ݌ 
established in region ݃ and period ݐ 

 ݌ Production rate of material ݅ associated with technology ܿݏ,ݐ,݃,݌,݅ܧܲ
established in region ݃ and period ݐ in scenario ܿݏ 

 ݐ in region ݃ and period ݌ Existing capacity of technology ݐ,݃,݌݌ܽܥܲ
ܿݏܾ݋ݎ݌

 in the reduced distribution ܿݏ new probability of scenario ݓ݁݊
 ݐ Total production rate of material ݅ in region ݃ and period ݐ,݃,݅ܶܲ
 in ݐ Total production rate of material ݅ in region ݃ and period ܿݏ,ݐ,݃,݅ܶܲ

scenario ܿݏ 
 ݐ Purchases of material ݅ in region ݃ and period ݐ,݃,ܷ݅ܲ
 ܿݏ in scenario ݐ Purchases of material ݅ in region ݃ and period ܿݏ,ݐ,݃,ܷ݅ܲ
 ݃ Power to install at own source in region ݃ܫݓܲ
 ݃ Power to install a renewable source ei, in each region ݃,݅݁ܫݓܲ

 ݐ,݃ܩܫݓܲ
Power to generate by a renewable source, in each region ݃, 
each period ݐ 

 ,݃ Power to generate by a renewable source, in each region ܿݏ,ݐ,݃ܩܫݓܲ
each period ݐ in scenario ܿݏ 

 ,݃ Power to generate by a renewable source ݁݅, in each region ܿݏ,ݐ,݃,݅݁ܩܫݓܲ
each period ݐ in scenario ܿݏ 

 ݐ,݃ݔܽܯܩܫݓܲ
Maximum power to generate by renewable source in each 
region ݃ and period ݐ 

 Maximum power to generate by renewable source in each ܿݏ,ݐ,݃ݔܽܯܩܫݓܲ
region ݃ and period ݐ in scenario ܿݏ 

 Maximum power to generate by renewable source ݁݅ in each ܿݏ,ݐ,݃,݅݁ݔܽܯܩܫݓܲ
region ݃ and period ݐ in scenario ܿݏ 

 ݐ,݃݊݅ܯܩܫݓܲ
Minimum power to generate by renewable source in each 
region ݃ and period ݐ 

 Minimum power to generate by renewable source in each ܿݏ,ݐ,݃݊݅ܯܩܫݓܲ
region ݃ and period ݐ in scenario ܿݏ 

 Minimum power to generate by renewable source ݁݅ in each ܿݏ,ݐ,݃,݅݁݊݅ܯܩܫݓܲ
region ݃ and period ݐ in scenario ܿݏ 

 ݐ in period ݔ Power purchased from external source ݐ,݃,ݔ,݁ܲܺݓܲ
 in scenario ݐ in period ݔ Power purchased from external source ܿݏ,ݐ,݃,ݔ,݁ܲܺݓܲ

ܿݏ
 ݐ in period ݔ Power selling to external source ݐ,݃,ݔ	ܵܺݓܲ
 ܿݏ in scenario ݐ in period ݔ Power selling to external source ܿݏ,ݐ,݃,ݔ	ܵܺݓܲ

 ݐ,′݃,݃,݈,݅ܳ
Flow rate of material ݅ transported by mode ݈ from region ݃ to 
region ݃′ in period ݐ 

 Flow rate of material ݅ transported by mode ݈ from region ݃ to ܿݏ,ݐ,′݃,݃,݈,݅ܳ
region ݃’ in period ݐ in scenario ܿݏ 

 ܿݏ in scenario ݐ Revenue in period ܿݏ,ݐݒܴ݁
 ݐ in region ݃ and period ݏ Existing capacity of storage ݐ,݃,ݏ݌ܽܥܵ
 ݐ in region ݃ and period ݏ Capacity expansion of storage ݐ,݃,ݏܧ݌ܽܥܵ

 ݐ,݃,ݏ,݅ܶܵ
Total inventory of material ݅ in region ݃ stored by technology 
 ݐ in period ݏ
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 Total inventory of material ݅ in region ݃ stored by technology ܿݏ,ݐ,݃,ݏ,݅ܶܵ
 ܿݏ in scenario ݐ in period ݏ

 ݃ Equivalent windmill surface to occupy in region ݃,ܹ݅݁ܪݏ݊ܫ݂ݎݑܵ
 ݃ Equivalent photovoltaic surface to occupy in region ݃,ܸ݅݁ܲݏ݊ܫ݂ݎݑܵ
 ݃ Photovoltaic surface to install in region ݃,ܸ݂݅݁ܲݎݑܵ
 ݐ Transport operating cost in period ݐܥܱܶ
 ܿݏ in scenario ݐ Transport operating cost in period ܿݏ,ݐܥܱܶ
 ݐ total depreciable capital during period ݐܮܣܱܶܶ

 ݐ,′݃,݃,݈,݅݁݉݅ݐ	ݕݎ݁ݒ݈݅݁ܦ	݈ܽݐ݋ܶ
Delivery time for transporting material ݅ by transportation 
mode ݈, between region ݃ and ݃′ in period ݐ 

 Delivery time for transporting material ݅ by transportation ܿݏ,ݐ,′݃,݃,݈,݅݁݉݅ݐ	ݕݎ݁ݒ݈݅݁ܦ	݈ܽݐ݋ܶ
mode ݈, between region ݃ and ݃’ in period ݐ in scenario ܿݏ 

 ݐ Energy demand of region ݃ and period ݐ,݃݀݊ܽ݉݁ܦ݈ܽݐ݋ܶ
 ܿݏ in scenario ݐ Energy demand of region ݃ and period ܿݏ,ݐ,݃݀݊ܽ݉݁ܦ݈ܽݐ݋ܶ
 ݃ Number of the turbine to install in region ݃,݅݁݉ݑܾܰݎݑܶ
 ݐ Amount of wastes of ݅ generated in region ݃ and period ݐ,݃,ܹ݅
 in ݐ Amount of wastes of ݅ generated in region ݃ and period ܿݏ,ݐ,݃,ܹ݅

scenario ܿݏ 

Binary Variables 

 By the Big-M method, the local binary variable  is used to ܿݏ,ݐ,݃݊ܩ
define lower and higher generation limits 

 if a transportation link is established between regions ݃ and 1 ݐ,′݃,݃,݈ܺ
݃’, otherwise 0 

ܿݏ whether scenario ܿݏݕ is removed (1 =ܿݏݕ) or not (0 =ܿݏݕ) 
 ,is below the target level Ω ܿݏ if NPV attained in scenario 1 ܿݏܼ

otherwise 0 
 Binary variable (1 if the impact in scenario c is above the target ܿݏ′ܼ

limit, 0 otherwise 
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