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The automotive industry is constantly involved in the development of new

methodologies and projects with the aim of reducing costs. During the ve-

hicle design process, one of the most signi�cant cost arises from building and

testing prototypes for a valid crashworthiness performance. Mathematical crash

models play an important role to get a solid knowledge of the structure, aiming

to achieve a successful Euro NCAP test. However, the complex nature of a crash

model hinders to obtain a robust design to guarantee a good performance. Cur-

rently, in the context of crashworthiness models, particular attention is focused

to uncertainties a�ecting the design process. Despite important improvements

in modeling uncertainty quanti�cation, theoretical simulations and experimen-

tal models are not still in perfect correlation. Starting from a computational

crash model that reproduces the behaviour of the structure system, the aim of

uncertainty quanti�cation is modeling the sources of uncertainty (lack of knowl-

edge and natural variability) from the input parameters to the output responses.

This doctoral thesis presents an uncertainty quanti�cation methodology for

complex crashworthiness models, assessing the robustness of the models and

supporting decision making. Due to the high computational cost of crash mod-

els (around 18 hours for a full VPS/pamcrash model), the use of raw Monte

Carlo methods for uncertainty quanti�cation is often una�ordable. To overcome

this limitation, in the �rst part of the thesis a review of the state-of-the-art is

presented. The most relevant methods are implemented for a benchmark prob-

lem of interest for SEAT. However, some weaknesses are detected for classic

approaches to deal with complex crash models. Input variability leads to non-

linear problems with high dimensional outputs. In addition, the behaviour

of crash structures may have multiple hidden structure modes that can be a

challenging task to be predicted. Detecting and describing these behaviours

to quantify probabilities, statistics and sensitivity analysis (among other mea-

sures) can provide a potential tool for robust analysis for the SEAT portfolio.

To overcome this problem, the use of metamodels (surrogate models) is a

well established approach, substituting the full order model (based on a lim-

ited number of training runs of the full order model at selected points of the

input variables) for uncertainty quanti�cation. In this doctoral thesis several

techniques are studied, Ordinary Kriging, Polynomial Response Surface and a

new novel surrogate strategy based on the Proper Generalized Decomposition

denoted by Separated Response Surface. However, uncertainty inputs, nonlin-

ear behaviours and large number of degrees of freedom for the outcome leads
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to solve high dimensional problems where the metamodel jeopardizes e�ciency.

Thus, previous to de�ne a metamodel, a dimensionality reduction technique

(for this thesis, kernel Principal Component Analysis) presents advantages to

simplify the outcome description with the aim of building an a posteriori e�-

cient metamodel.

This thesis develops a methodology combining dimensionality reduction and

surrogate modeling for uncertainty quanti�cation of crash problems, aiming to

perform a minimum number of full order simulations, using a data-driven adap-

tive approach. The proposed methodology is tested for an industrial benchmark

problem, demonstrating its performance for obtaining robust information of the

system for multi-purpose analyses.
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Chapter 1

Introduction

1.1 Crashworthiness: historical background

In the automotive industry, it is of utmost importance to carry out research

and development quick and e�ciently for its highly competitive market. Thus,

car companies are constantly investigating for improving tools, methodologies

and processes to optimize the e�ectiveness. The �eld of crashworthiness is a

critical in�uential parameter for the marketability of a new car, speci�cally le-

gal requirements and di�erent regulations are requisites on new car projects. In

European Union, the vehicles are tested with the Euro NCAP normative. There-

fore, an e�cient and robust crashworhtiness design is an enormous advantage

over their competitors. In the beginnings, automakers focused on destructive

physical testing of prototypes to analyze crashworhtiness properties. Nowadays,

destructive testing of automobiles has been drastically reduced and replaced by

hundreds of crash simulations.

Automotive crashworthiness simulations have their origins in the army, in-

troduced in the 60s. Laboratories in the United State developed the explicit

Finite Element Method and implemented it to crash projects in 1970 with the

growth of supercomputers (Spethmann, Thomke, and Herstatt, 2006). The

project was related to the impact of a aircraft at a high velocity of 200m/s on

the safety containment of a nuclear power plant. The computational simulation

took 33 hours to solve a model of 60 elements of the safety containment for

22 milliseconds of simulation (Haug, Scharnhorst, and Du Bois, 1986). The

automotive industry observed the potential of this technology applied to crash-

worthiness tests. The �rst approaches consisted of modeling single car compo-

nents. In 70s, engineering journals reported articles about numerical methods

for crash simulations in the automotive �eld (Haug, Scharnhorst, and Du Bois,

1986). This was associated with the availability of supercomputers and the ne-

cessity of car industry to simulate components of the car at early project stage

to reduce the prototype costs. One of the �rst projects was the simulation of
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a side member of a Porsche in 1983 to investigate the absorption of the kinetic

energy by elastic and plastic deformations. A number of 96 elements were mod-

eled with the Abaqus software on a supercomputer. In contrast with respect to

a destructive test, virtual simulations could analyze the exact values of plastic

and elastic results for each element of the model. However, with the current

knowledge, this Porsche simulation was oversimpli�ed in the geometry mesh

and, consequently, unrealistic results were obtained.

In the 80s, the vectorized supercomputer appeared with signi�cant improve-

ments in processor speed. At this point, the �rst full vehicle crash simulation

was simulated with the solver Pamcrash from ESI Group in the course of the

Forschungsgemeinschaft Automobiltechnik working group (Du Bois et al., 2004).

The conglomerate group was composed for all the seven German automakers

(Audi, BMW, Ford, Mercedes-Benz, Opel, Porsche and Volkswagen).

In 1986, the greatest achievement was performed with the Volkswagen Polo

model, a full frontal crash of the passenger structure was recreated. The model

was meshed with 5661 �nite elements, 105 beams and 5100 nodes (the maximum

available for the hardware), see Fig.1.1. The simulation required 4 hours for

60 milliseconds of crash simulation. This project was an in�ection point in

automotive crash simulations.

Figure 1.1 The 1986 Volkswagen Polo model for a frontal
crash. Pamcrash model and real crash test. Source: (Haug,

Scharnhorst, and Du Bois, 1986)

In 90s, the German magazine Auto, Motor und Sport created a new crash

test for the automobile companies. The test demanded a frontal crash with

55km/h and 50 percent of impact for the rigid barrier. This test induced a

signi�cant increase in the load on the vehicle structure.. In consequence, the

engineers employed crash simulation to achieve this goal. The Opel Astra was

the �rst vehicle to succeed for this test with virtual simulation of a crash model



1.1. Crashworthiness: historical background 3

of 70000 elements and 2 days of computational time for 110 milliseconds of

simulation, see Fig. 1.2. At that moment, virtual simulation started to obtain

the bene�ts of simulations compared with the traditional experimental tests,

allowing fast, cheap and better understanding of crashworthiness (Böttcher,

Frik, and Gosolits, 2005).

Figure 1.2 The 1990 Open Astra front impact model. Source:
(Böttcher, Frik, and Gosolits, 2005)

In 2000s, a computational revolution appears by combining CAD, CAM and

CAE as a powerful tool to develop craswhorthiness. The computational models

started to become more complex, considering randomness, dummies, di�erent

parameters settings and parametrizing interiors. Fig. 1.3 shows the crash model

of the 2003 Opel Astra. For this model 1,398,435 elements were considered. This

model was solved in a Linux cluster instead of using a supercomputer. With

the new developments in crash models, the companies signi�cantly reduced the

number of experimental prototypes for new projects.

The growth of computing power made it possible to model more complex

and realistic cars, allowing hundreds of simulations with di�erent combinations

of parameters. Currently, car manufacturers work with millions of elements and

hundreds of parts. However, the complexity of the models caused a problem of

correlation between simulation and experimentation.

At the end of the �rst decade of the 2000s, an accelerated rise of arti�cial

intelligence, machine learning and data science, brings a new �eld with great po-

tential. Within a short time, large companies began to implement the scienti�c
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Figure 1.3 The 2003 Opel Astra model with dummies, con-
trols, restraint systems and fuel tank. Source: (Böttcher, Frik,

and Gosolits, 2005)

advances in the �eld of data, recognizing the enormous potential that this would

bring. It drastically revolutionized the decision making processes in companies

and turned data into an extremely valuable asset for predicting markets, facial

recognition, language processing and predictive modeling among others. Car

industries started to investigate and implement data science to their numerical

problems to obtain robust models to reduce the physical tests (prototypes).

Nowadays, arti�cial intelligence and machine learning are combined to study

thousands of data, with the aim objective of obtaining relevant information

and a better understanding of the behaviour of the structures. This concept

presents a new revolution for the automotive industry. The fusion between

CAD, CAM, CAE and arti�cial intelligence foresees a very promising future for

new car projects. This fusion would allow to obtain a very robust information

to quantify the uncertainty from the simulations. However, this merge between

these di�erent �elds presents challenging di�culties to be solved.
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1.2 Scope of the thesis

In SEAT portfolio, this Industrial Doctoral thesis is proposed to tackle the afore-

mentioned problem between simulation an experimentation. The computational

models are approximations of the real world and thus may present inaccuracy

results between these two correlated �elds. Wrong simulation predictions are

attributed to di�erent sources of uncertainty depending on the model applica-

tion. Numerical errors (discretization error in space and time for the FEM),

oversimpli�cation of the input variables (not all the parameters are taken into

account) and variability in the model parameters (uncertainty knowledge of

the inputs) are the main source of uncertainty. To mitigate this problem Un-

certainty Quanti�cation (UQ) has played an important role in the last years

allowing to become a new �eld of research to address this issue. UQ �eld is

intended to propagate the uncertainty inputs to the output responses, provid-

ing uncertainty responses of the quantity of interest. Thus, the outcome of the

computational model is complemented with robust information.

The uncertainty quanti�cation �eld and the increase of computational re-

sources play an important role to manage data analysis with source of uncer-

tainty. However, computational models are highly expensive (e.g. 18 hours for

realistic crash) and not always is feasible to develop an uncertainty quanti�ca-

tion approach. Fortunately, stochastic analysis, machine learning and arti�cial

intelligence can deal with uncertainty quanti�cation problems for computational

models. this drives to create new methodologies and algorithms that allow to

deal with expensive computational models and large datasets of information.

UQ aims to describe and understand how the uncertainty inputs propagates

the variability to the output model by merging the �eld of applied mathematics

(e.g. stochastic analysis, statistics, probability theory, mathematical models),

physics (e.g. civil engineering) and data science (e.g. machine learning, arti�cial

intelligence). However, UQ in the �eld of crashworthiness can present complex

issues. Variability in the inputs, nonlinear behaviours for the responses and high

dimensional problems leads to a complex UQ problem statement. In that cases,

classic approaches as Monte Carlo method is computationally una�ordable and

other techniques need to be proposed to deal with all these di�culties.

With all the aforementioned, this doctoral thesis explores the communication

bridge between the �elds of crash simulation, stochastic analysis, uncertainty

quanti�cation and data science to obtain robust information from simulation

models.
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1.3 Objectives and outline of the Doctoral thesis

The goal of this Doctoral thesis is to propose a new uncertainty quanti�cation

methodology applied for the �eld of crashworthiness. This goal is divided in

di�erent objectives:

• Implementation of the state-of-the-art UQ methodologies for a crashwor-

thiness benchmark problem.

• Implementation of a nonlinear dimensionality reduction technique for non-

linear datasets.

• Development of surrogate models for crash problems with uncertainty

inputs, high dimensional outputs and nonlinear behaviours.

• Implementation of advanced statistic, clustering detection (structure hid-

den modes) and sensitivity analysis (in�uence of parameters) for crash

models.

• Propose a new algorithm/methodology for robust analysis for expensive

crash models with nonlinear behaviours.

• Test the proposed methodology to a benchmark crash problem.

• Implementation of the novelty methodology to a realistic industrial prob-

lem for SEAT portfolio.

The thesis is organised in �ve chapters including this introduction. In Chap-

ter 2 it is presented a crashworthiness benchmark problem (simpli�ed B-Pillar

model) from SEAT portfolio as the starting point for the thesis. Also, a state-of-

the-art of some stochastic methods for crashworhtiness to deal with uncertainty

quanti�cation is developed. This section is divided in intrusive and non in-

trusive solvers. For each class, a brief theoretical explanation of the methods

is given. The methods that present the most advantages for the benchmark

problem are applied. Speci�cally Monte Carlo, Quasi Monte Carlo and Poly-

nomial Chaos are tested. Some weaknesses are identi�ed from the di�erent

state-of-the-art methods. To deal with that, in Chapter 3 a novel approach

combining dimensionality reduction and surrogate modeling is proposed. Also,

di�erent metamodel techniques are compared, where a novel response surface

based in Proper Generalized Decomposition is developed. The performance of

the methodology is tested using the benchmark problem presented in Chapter

2. In addition to the presented methodology, a new adaptive approach based
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on dimensionality reduction and surrogate modeling for multi-purpose analysis

is presented in Chapter 4. The methodology is based on an adaptive compact

approach evaluating sensitivity analysis and hidden structure modes with the

minimum number of evaluations of the full order model. The adaptive approach

is tested with an industrial benchmark problem and compared with a Monte

Carlo vademecum of simulations. A detailed summary of this thesis with the

most relevant conclusions and discussion is presented in Chapter 5.

1.4 Publications and conferences

Articles in indexed journals:

• Rocas, M., García-González, A., Larráyoz, X., Díez, P.: Nonintru-

sive stochastic �nite elements for crashworthiness with VPS/Pamcrash.

Archives of Computational Methods in Engineering pp. 1�26. (2020).

Impact factor=7.36.

• Rocas, M., Zlotnik, S., García-González, A., Larráyoz, X., Díez, P.:

Nonintrusive Uncertainty Quanti�cation for automotive crash problems

with VPS/Pamcrash. Finite Elements in Analysis and Design 193, p.

103556. (2021). Impact factor=2.949.

• Rocas, M., García-González, A., Larráyoz, X., Díez, P.: Adaptative sur-

rogates fo crashworthiness models for multi-purpose engineering analyses

accounting for uncertainty. Submitted (2021).

International conference contributions:

• Rocas, M., S., García-González, A., Larráyoz, X., Díez, P.: Nonintrusive

Uncertainty Quanti�cation for crashworthiness simulations. ADMOS (In-

ternational Conference on Adaptive Modelling and Simulation). Alicante

(Spain), (2019).

Internal/Industrial talks, workshops, seminars and posters:

• Rocas, M.: AI-methoden für CAE. Volkswagen, Audi, Porche, Skoda,

SEAT. (2020). Workshop group.

• Rocas, M.: Robustheit in der Berechnung. Wolfsburg, Germany (2020).

Workshop group.
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• Rocas, M., García-González, A., Larráyoz, X., Díez, P.: Uncertainty

quanti�cation for crashworhtiness models. AK-Versagen. Volkswagen.

Wolfsburg, Germany (2019).Talk.

• Rocas, M.: Nonintrusive Stochastic Finite Element Method for crash-

worthiness with VPS Pamcrash. NumROM LaCan. Barcelona, Spain

(2018), Scienti�c Seminar.

• Rocas, M.: Uncertainty quanti�cation with stochastic Finite Element

Methods for crashworthiness. SEAT Future Mobility Day. Barcelona,

Spain (2018). Poster.

• Rocas, M.: Uncertainty quanti�cation with stochastic Finite Element

Methods for crashworthiness. ProMotion Volkswagen. Wolfsburg, Ger-

many (2018). Poster.

This Doctoral thesis is presented in the Industrial Doctorate framework

funded by Generalitat de Catalunya, Ministerio de Economía y Empresa and

Ministerio de Ciencia, Innovación y Universidades. This research was proposed

and developed in collaboration between the Laboratory of mathematical and

computational modelling (LaCàN) of the School of Civil Engineering (Universi-

tat Politècnica de Catalunya) and the Entwicklung Karosserie (EK) department

of structure calculation of SEAT (Martorell).
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Chapter 2

Uncertainty Quanti�cation for

crashwhortiness

This chapter presents a state-of-the-art of the most suitable techniques for

stochastic analysis in the �eld of crashworhtiness. The di�erent techniques

are divided in intrusive and non intrusive solvers, that is the nature of the

two group of techniques. This Chapter is structured as follows: section 2.1 de-

scribes the benchmark crash problem used for di�erent methods. The stochastic

approaches are reviewed, both the intrusive and non-intrusive strategies, in Sec-

tions 2.2 and 2.3 respectively. Next, Section 2.4 shows a comparative analysis

of the SFEM solvers. Section 2.5, illustrates the numerical results obtained

using the aforementioned stochastic UQ techniques. Finally, with Section 2.6

the chapter closes with a discussion and conclusions.

The content of this chapter has been published in Archives of Computational

Methods in Engineering (Rocas et al., 2020).

2.1 Benchmark for a B-Pillar crash model

This chapter discusses the problem statement presented by SEAT for UQ anal-

yses as a starting point for the thesis. The benchmark problem presented makes

reference to a B-pillar problem from a vehicle. In Fig. 2.1 a realistic B-pillar is

illustrated. The B-pillar provides structural support for the vehicle's roof panel

and is designed for blocking the front door and absorb the energy from a side

crash. This component is one of the most sophisticated parts of the vehicle body

presenting unpredictable nonlinear behaviours. It is demonstrated that small

changes in the input variables present big changes in the output response. This

leads to obtain di�erent modes of the structure and in consequence a loss of

con�dence with the model. This lack of knowledge with poor robustness leads

to a lack of trust to move on to prototyping and experimentation.
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(a) Full vehicle render. (b) B-pillar model.

Figure 2.1 Volkswagen Golf VI with highlighted structural
components (Volkswagen AG, 2012)

2.1.1 Model description

The benchmark crash problem under consideration is illustrated in Fig. 2.2.

It corresponds to a reduced test model, ideally reproducing the main charac-

teristics of the simulation of a B-pillar, a well-known structural component of

cars. This particular benchmark test is used for di�erent research studies in

the Volkswagen Group. For the sake of saving computational cost and time,

this model is often used to test new materials, adhesives, welding spots or other

conditions because, due to the simplicity of the model, the numerical response

requires a computation of approximately 20 minutes.

The driving force in the model is provided by the impactor (green zone

in Fig. 2.2), that crashes at a speed of 50 mm/s against the vertical pro�le

(red zone) during one second. The three structural parts are plates made of

laminated steel sheet manufactured by cold folding. All the parts are joined

with a structural adhesive bond, its material properties are characterized by

Volkswagen with a con�dential character.

The complete structure is modelled with shell elements. The impactor is

considered to be a rigid body. The whole model has a grand total of N = 13908

nodes (with 6 degrees of freedom). The Quantity of Interest (QoI) to be analysed

is the �nal plastic strain average of the 142 shell elements of the area depicted

in black in Fig. 2.2.

The numerical solver is implemented in VPS/Pamcrash (PAM-SCL - The-

ory Notes Manual 2000), with the shell �nite element discretization mentioned

above and an explicit time stepping scheme to solve the dynamical problem. The

displacements of the points at the ends of the horizontal pro�le are prescribed
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Figure 2.2 Crash benchmark. Thicknesses h1, h2 and h3 are
the three input random parameters corresponding to the ver-
tical pro�le (red), horizontal pro�le (orange) and plate pro�le
(blue). The impactor (green), and the area of elements of in-

terest (black) are also depicted.

to zero (points marked with green arrows in Fig. 2.2). The contact between

the di�erent components of the structure are treated with the surface-surface

model de�ned in VPS/Pamcrash.

Thicknesses h1, h2 and h3 of the three parts of the structure are consid-

ered to be stochastic parameters, that random variables are collected in vector

h = [h1, h2, h3]
T. Their aleatory character is associated with the imperfec-

tions produced during the manufacturing process. Random variables h1, h2
and h3 are assumed to be normal and uncorrelated, that is hi ∼ N (µi, σ

2
i ) and

cov(hi, hj) = 0, for i, j = 1, 2, 3. In each of the three parts, the corresponding

thickness is considered to be constant. Besides, the three thicknesses h1, h2 and

h3 are modelled as having the same mean µ1 = µ2 = µ3 = 1.2mm and standard

deviation σ1 = σ2 = σ3 = 0.12mm.

In order to build a training set, and as a �rst assessment of the stochas-

tic behavior of the system, a number of ns Monte Carlo realizations (or sam-

ples) are performed. Thus, ns values of the input parameters hi, for i =

1, 2, . . . , ns are generated with a random number generator and the correspond-

ing VPS/Pamcrash solutions are obtained. These solutions (in particular the
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vectors containing the plastic strain in the d = 142 elements of the zone of in-

terest) are collected in a training set matrix X = [x1x2 · · ·xns ] ∈ IRd×ns , where

each column xi = [xi1 . . . x
i
d]
T is the VPS/Pamcrash solution corresponding to

input hi. The actual QoI is the average plastic strain in the speci�c area plotted

in black in Fig. 2.2, is represented by a form l0(·), and for each hi and xi reads

Y
QoI

= l0(xi) =
1

d

d∑
j=1

xij.

The QoI is introduced as an essential indicator for decision making. The

QoI summarizes the information contained in x. Quantifying the uncertainty

of the QoI is su�cient to take some decisions. For instance, to verify the

crashworthiness response of the structural design. Note that the Monte Carlo

process with ns samples is considered for the thesis as a reference method, and it

is only obtained in the academic example under consideration. The number of

full-scale computations a�ordable for a real problem in the automotive industrial

practice is much lower.

2.2 Intrusive SFEM solvers

This section summarizes the state-of-art of the most signi�cant intrusive Stochas-

tic Finite Element Method (SFEM) applied in crashworthiness for UQ analysis.

Intrusive methods reformulate the deterministic �nite element matrix scheme

into a stochastic model SFEM by including the randomness of the variables.

Despite the computational complexity, SFEM techniques are used for solving

stochastic partial di�erential equations.

2.2.1 Formulation and notation

For an UQ analysis on the proposed benchmark, the comercial software VPS

solves the equilibrium equation of transient dynamics (PAM-SCL - Theory

Notes Manual 2000)

MÜ + CU̇ + KU = Fext(t), (2.1)

where M (Mass matrix), C (damping matrix), K (Sti�ness matrix), Fext (ex-

ternal force) and t (time).

Nevertheless, for the sake of simplicity, a linear static problem is developed to

illustrate the used notation of the di�erent stochastic techniques. The compact
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equation corresponds to:

K(h)U(h) = F(h) (2.2)

where K(h) is the sti�ness matrix, F(h) the load vector and U(h) the vector

of unknowns, and h is the vector containing a random discretization, where the

number of realizations is determined by ns samples. The global sti�ness matrix

K(h) is obtained after assembling the elemental matrices Ke,

Ke =

∫
Ωe

BTDBdΩe (2.3)

where D corresponds to the elasticity matrix which depends on the Lamé

parameters, and B is the matrix that relates the components of the stress with

the nodal displacements. Assuming that matrix D has a stochastic behaviour,

the elasticity matrix is given by:

D((x, y, z),h) = R((x, y, z),h)D0 (2.4)

where R((x, y, z),h) is the random �eld and D0 is the mean value of the

elasticity matrix. The behavior of the random �eld R((x, y, z),h) is described

by the mean µ and a �uctuation function P (h) such that R((x, y, z),h) =

µ((x, y, z)) + P ((x, y, z),h), thus the sti�ness matrix becomes:

K((x, y, z),h) =

∫
Ω

R((x, y, z),h)BTD0BdΩ (2.5)

=

∫
Ω

(µ(x, y, z) + P ((x, y, z),h))BTD0BdΩ.

The purpose of the stochastic analysis is to determine reliable statistical

information of a QoI response from the solution U(h), which is a random �eld.

Recall that for our dynamic analysis, the QoI is chosen to be the mean of the

plastic strain of the area of interest illustrated in Fig. 2.2.

2.2.2 Perturbation Method

The Perturbation Method was introduced in 1970 to solve a large number of

problems with uncertainty inputs. The main idea is to propagate the uncer-

tainty by Taylor series (Kleiber and Hien, 1992; Arregui-Mena, Margetts, and

Mummery, 2016), this technique has been used in structural engineering to

solve nonlinear dynamic problems (Liu, Belytschko, and Mani, 1986b; Liu, Be-

lytschko, and Mani, 1986a).
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The stochastic parameters used to construct the stifness matrix K(h) are

varying around their mean. In this approach the stochastic �eld R((x, y, z),h)

is discretized into ns zero-mean random variables (hi)nsi=1. Hence, expanding the

sti�ness matrix K((x, y, z),h) as a Taylor series around their mean K0 reads

(Stefanou, 2009):

K((x, y, z),h) = K0 +
ns∑
i=1

KI
ih

i +
1

2

ns∑
i=1

ns∑
j=1

KII
ij h

ihj + ..., (2.6)

where K0 =
∫
Ω
µBTD0BdΩ is the mean value of the sti�ness matrix. Further-

more, KI
i , KII

ij are the �rst and second order derivatives respectively, evaluated

at h = 0, and represent the �uctuation part of the sti�ness matrix:

KI
i =

∂K((x, y, z),h)

∂hi
|h=0. (2.7)

KII
ij =

∂2K((x, y, z),h)

∂hi∂hj
|h=0. (2.8)

For solving of the system KU = F, the propagated Taylor expansion of

vector F corresponds to

F(h) = F0 +
ns∑
i=1

FI
ih

i +
1

2

ns∑
i=1

ns∑
j=1

FII
ij h

ihj + ..., (2.9)

and assuming the external forces F as deterministic (no random behaviour),

then the �rst and second derivatives are FI
i = FII

ij = 0, thus F = F0.

Besides, the propagated Taylor expansion of vectors U reads

U(h) = U0 +
ns∑
i=1

UI
ih

i +
1

2

ns∑
i=1

ns∑
j=1

UII
ij h

ihj + ... (2.10)

where the terms U0, U
I
i and U

II
ij can be calculated by substituting (2.10) and

the deterministic F0 into (2.2) and identifying the similar order coe�cients on

both sides of the equation, is obtained the following iterative scheme:

U0 = K−10 F0 (2.11)

UI
i = −K−10 KI

iU0 (2.12)

UII
ij = −K−10 (KI

iU
I
j + KI

iU
I
i + KII

ij U0) (2.13)
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Equation (2.11) gives the deterministic nodal displacement, equation (2.12)

and (2.13) give the �rst and second order perturbations, respectively, of the dis-

placement vector. Additionally, the statistics of U(h) with the mean E(U(h))

and the covariance matrix Cov[U(h),U(h)] read:

E(U(h)) ≈ U0 +
1

2

ns∑
i=1

ns∑
j=1

UII
ij Cov[h

i,hj], (2.14)

Cov[U(h),U(h)] ≈
ns∑
i=1

ns∑
j=1

UI
i (U

I
j )
TCov[hi,hj]. (2.15)

Increasing the number of terms in the expansion will improve the accuracy

of the perturbation method, but a�ecting the computational cost.

2.2.3 Galerkin Polynomial Chaos Method

This section is devoted to review the formulation of Galerkin Polynomial Chaos

(PC) method for UQ. By considering Gaussian random inputs, the main idea

of Polynomial Chaos is to propagate the uncertainty through a Hermite polyno-

mials basis (Ghanem and Spanos, 2003). This stochastic method involves two

basic steps:

• Step 1: Implementing the polynomial Hermite expansion into the the

stochastic formulation of the model.

• Step 2: Applying Galerkin projection basis to get the polynomial chaos

coe�cients.

Applying Hermite polynomials for the terms of the equilibrium equation

(2.2), allow to extend K(h), U(h) and F(h) as polynomial expansions in the

form:

K(h) =
nKC∑
i=0

KiΨi(h),

U(h) =
nPC∑
i=0

UiΨi(h),

F(h) =
nFC∑
i=0

FiΨi(h),

(2.16)

where Ki,Ui,Fi are the polynomial chaos coe�cients (known as Fourier

coe�cients) and Ψi(h) are orthogonal basis. Where, a main condition for using



16 Chapter 2. Uncertainty Quanti�cation for crashwhortiness

this technique is that the random inputs have to be independent variables. For

the sake of simplicity, the polynomial basis of the equation (2.16) corresponds

to Ψi({hk}3k=1). The number of terms NKC,PC,FC are de�ned as

NKC,PC,FC + 1 =
(M + dKC,PC,FC)!

M !dKC,PC,FC!
, (2.17)

being dKC, dPC and dFC the order of the polynomial expansions, andM the number

of stochastic variables.

To construct a proper orthogonal polynomial basis is necessary to know

the Probability Density Function (PDF) of the inputs in the called Askey-

Wilson scheme (Askey and Wilson, 1985; Mathelin, Hussaini, and Zang, 2005)

to guarantee a good convergence. For example, Hermite polynomial basis for

gaussian distribution, and Legendre polynomials for uniform distribution (Xiu

and Karniadakis, 2002; Zhang, 2013; Xiu, 2010).

In the case of our benchmark problem, three Gaussian input variables are

considered h = [h1, h2, h3]
T . The multivariate Hermite polynomials are cre-

ated by the tensor product of the univariate polynomials of each random input

(Feinberg and Langtangen, 2015). Table 2.1 shows the corresponding relation

between multi-indexes and single-indexes for the calculation of the multivariate

basis of Hermite polynomial basis of order 2.

Multi-index Multi-polynomial i Ψj(h)
(0 0 0) Ψ0(h1)Ψ0(h2)Ψ0(h3) 0 1
(1 0 0) Ψ1(h1)Ψ0(h2)Ψ0(h3) 1 h1
(0 1 0) Ψ0(h1)Ψ1(h2)Ψ0(h3) 2 h2
(0 0 1) Ψ0(h1)Ψ0(h2)Ψ1(h3) 3 h3
(2 0 0) Ψ2(h1)Ψ0(h2)Ψ0(h3) 4 h21 − 1
(1 1 0) Ψ1(h1)Ψ1(h2)Ψ0(h3) 5 h1h2
(1 0 1) Ψ1(h1)Ψ0(h2)Ψ1(h3) 6 h1h3
(0 2 0) Ψ0(h1)Ψ2(h2)Ψ0(h3) 7 h22 − 1
(0 1 1) Ψ0(h1)Ψ1(h2)Ψ1(h3) 8 h2h3
(0 0 2) Ψ0(h1)Ψ0(h2)Ψ2(h3) 9 h23 − 1

Table 2.1 Multi-index Hermite Polynomials of three dimen-
sion. Note that the �rst column describes the degree of the

univariate polynomials.

As in the Perturbation method, it is assumed that the external force F is

deterministic. Therefore the equilibrium equation 2.2 takes the form:(
nKC∑
i=0

KiΨi(h)

)(
nPC∑
j=0

UjΨj(h)

)
= F (2.18)
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becoming,
nKC∑
i=0

nPC∑
j=0

KiUjΨi(h)Ψj(h) = F. (2.19)

The above equation is projected onto nth polynomial basis with n = (0, 1, .., nPC).

To simplify the formulation, It is assumed that nKC = nPC, and therefore, making

the inner product, it is obtained the expression:〈
nPC∑
i=0

nPC∑
j=0

KiUjΨi(h)Ψj(h), Ψn(h)

〉
= 〈F, Ψn(h)〉 , (2.20)

renaming Ψi(h) as Ψi to relax and compact the notation, the previous expression

can be written such that

nPC∑
i=0

nPC∑
j=0

KiUj 〈ΨiΨj, Ψn〉 = 〈F, Ψn〉 . (2.21)

Describing the inner product of two random functions, f(v) and g(v), as:

〈f(v), g(v)〉 = E(f(v)g(v)) =
∫
R

f(v)g(v)pv(v)dv, (2.22)

being pv(v) the probability density function of v. Therefore, let us introduce

the following notation:

Cijn = E[ΨiΨjΨn] = 〈ΨiΨj, Ψn〉 , (2.23)

Fn = 〈F, Ψn〉 . (2.24)

Then, equation (2.21) can be rewritten as:(
nPC∑
i=0

nPC∑
j=0

KiCijn

)
Uj = Fn (2.25)

For the sake of simplicity, let us de�ne

Kjn =
nPC∑
i=0

KiCijn (2.26)

Thus the equation (2.25) reads(
nPC∑
j=0

Kjn

)
Uj = Fn (2.27)
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which means:
K00 . . . K0,nPC

K10 . . . K1,nPC
...

. . .
...

KnPC,0 . . . KnPC,nPC




U0

U1

...

UnPC

 =


F0

0
...

0


Uj is a N -dimensional vector (N is the number of nodes of the �nite element

model), and Kjn is a matrix of size (N x N). Therefore, the global linear system

will have (N · nPC) x (N · nPC) size. In this case, where F is deterministic, only

F0 is non-zero. The computational cost to solve the linear system is thus much

greater with respect to a deterministic approach (Ghanem and Spanos, 2003).

Additionally, the �rst vector of coe�cients U0 corresponds to the mean of U,

that is E[U] = U0.

At this point, for post-processing analysis in polynomial chaos, it is useful

to de�ne the covariance matrix of all the components of U, which read:

Cov[U,U] =
nPC∑
i=0

E[Ψ 2
i ]Ui ·UT

i . (2.28)

2.2.4 Spectral Stochastic Finite Element Method

This section presents a brie�y review of the Spectral Stochastic Finite Ele-

ment Method developed by Ghanem and Spanos in 1991 (Ghanem and Spanos,

2003). The essence of this approach is to combine Karhunen-Loeve expansion

(for the stochastic input parameters) with Polynomial Chaos (for the response

variability(Sudret and Der Kiureghian, 2000)). In the literature, di�erent devel-

opments have been applied combining Karhunen-Loeve and PC (Ghanem and

Spanos, 2003; Ghanem and Kruger, 1996; Nouy, 2009; Doostan, Ghanem, and

Red-Horse, 2007).

For this method, we suppose that each random input hi is described as a

random �eld Hi((x, y, z)). Then, each �eld can be discretized as a �nite number

of uncorrelated random variables by the truncated Karhunen-Loéve decompo-

sition (Shinozuka and Deodatis, 1991; Liu, Liu, and Peng, 2017; Stefanou and

Papadrakakis, 2007). Aiming to reduce the dimensionality of the problem to

deal with an stochastic analysis. To relax and simplify the notation, for this ap-

proach it is considered one random �eld to illustrate the theoretical concepts of

the method. The Karhunen-Loève decomposition allows representing a random

�eld by a sum of mutually uncorrelated (zero-mean) scalar random variables
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multiplied by deterministic functions (Grigoriu, 2006), namely

H((x, y, z),h) = µ(x, y, z) +
nKL∑
i=1

√
λiξi(h)ϕi(x, y, z), (2.29)

where µ(x, y, z) is the mean of the random �eld H((x, y, z),h), λi and

ϕi(x, y, z) are the deterministic eigenvalues and eigenfunctions of to the covari-

ance function respectively. To relax and simplify the notation for this approach

it is considered only a random �eld. The eigenfunction ϕi(x, y, z) are obtained

through a spectral covariance decomposition. The stochasticity of the system

is approximated by nKL uncorrelated standard Gaussian random variables ξi(h)

are the random variables knowns as the Fourier coe�cients, with i = 1, 2, ...nKL.

The readers are referred to (Ghanem and Spanos, 2003; Ghanem and Kruger,

1996) for deeper theoretical details on Karhunen-Loéve technique.

The sti�ness matrix K is computed by Karhunen-Loeve substituting in (2.3)

equations (2.4) and (2.29), becoming the elemental matrix Ke(h)

Ke(h) = Ke
0 +

nKL∑
i=1

Ke
i ξi(h), (2.30)

where Ke
0 is the mean value

∫
Ωe
µ((x, y, z))BTD0BdΩe and Ke

i are deterministic

matrices that describe the �uctuation part of the sti�ness matrix, given by:

Ke
i =
√
λi

∫
Ωe

ϕi(x, y, z)B
TD0BdΩe. (2.31)

Assuming F is deterministic and expanding the unknown vector U(h) by

PC expansion, the �nite element equilibrium system reads:(
nKL∑
i=0

Kiξi(h)

)
·

(
nPC∑
j=0

UjΨj(h)

)
= F. (2.32)

Physically, K0 refers to the mean sti�ness, and Ki to the random �uctuation

around the mean. After some algebraic manipulations (analogously to Galerkin

PC method), the equilibrium system is given by:

Kij =
nKL∑
i=0

Cijk ·Ki; k = 0, ..., nPC, (2.33)
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where Cijk = E[ξiΨjΨk], and �nally obtaining(
nPC∑
i=0

Kij

)
Uj = Fn. (2.34)

From above expressions, the statistics of the coe�cient vector U = [U0,U1, ...,UnPC ]
T

are described as in Galerkin PC, since the stochastic response propagation in

Spectral Stochastic Finite Element Method is developed by a PC expansion.

2.3 Non intrusive SFEM solvers

Non-intrusive techniques does not require reformulation of the source code,

which facilitates the statistical analyses by direct pre and post processing meth-

ods. This makes that techniques highly recommended to be applied in a wide

range of �elds from integrated circuits to computational �uid dynamics (Kain-

tura, Dhaene, and Spina, 2018; Phoon, Huang, and Quek, 2005). In this section,

it is reviewed the most suitable methods for crashworthiness.

2.3.1 Non-intrusive Polynomial Chaos expansion

Non-intrusive Polynomial Chaos (Eldred, 2009) is based on a decomposition

of a random function Y (U(h)) into deterministic and stochastic components

in a separable manner. Thus, the quantity of interest Y
QoI

= Y (U(h)) consid-

ered for the computational crash problem is represented as a Polynomial Chaos

expansion by the expression:

Y
QoI

= Y (U(h)) =
nPC∑
n=0

cn · Ψn(h), (2.35)

where cn are the deterministic Fourier coe�cients and Ψn(h) are the random

basis functions (orthogonal polynomials chosen in the Askey-Wilson scheme

(Askey and Wilson, 1985)). Recall that for using polynomial chaos, the inputs

have to be independent, however, if there are dependencies between them, it

is necessary additional methods. For more details the reader is referred to

(Feinberg and Langtangen, 2015).

In the following, an overview of the two main techniques to estimate Fourier

Coe�cients are described: Pseudo Spectral Projection (quadrature based) and

Point Collocation (least square minimisation).
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Pseudo Spectral Projection Polynomial Chaos

Pseudo Spectral Projection method (or quadrature polynomial chaos) is based

on a quadrature scheme to obtain the coe�cients cn (Phoon, Huang, and Quek,

2005; Hosder, Walters, and Perez, 2014). Each coe�cient is calculated by

projecting equation (2.35) onto the nth basis, with n = 0, 1, .., nPC such that

〈Y
QoI
, Ψn(h)〉 =

〈
nPC∑
n=0

cnΨn(h), Ψn(h)

〉
. (2.36)

Using the orthogonality properties of the basis functions:

〈Y
QoI
, Ψn(h)〉 = cn〈Ψ 2

n(h)〉, (2.37)

then,

cn =
〈Y

QoI
, Ψn(h)〉
〈Ψ 2

n(h)〉
. (2.38)

Recalling the de�nition (2.22), the previous equation becomes:

cn =
E(Y

QoI
, Ψn)

E(Ψ 2
n)

=
1

E(Ψ 2
n)

∫
Ω

Y
QoI
Ψn(h)PDF(h)dh (2.39)

The goal of Pseudo Spectral Projection is to evaluate the multi-dimensional

integral of (2.39) with numerical quadrature techniques (Mathelin, Hussaini,

and Zang, 2005; Eldred, Webster, and Constantine, 2008; Jäckel, 2005; Sraj

et al., 2017; Gilli et al., 2013), obtaining:

cn =
1

E(Ψ 2
n)

K−1∑
k=0

Y
QoI
(hk)Ψn(h

k)wk, (2.40)

where wk are weights, hk are quadrature points, K is the number of evalua-

tions for the model, determined by (q+1)nd , being q the number of quadrature

points and nd the number of stochastic inputs (nd = 3 for the benchmark under

consideration). Y
QoI
(hk) is the QoI evaluated in the quadrature point hk and

Ψn(h
k) are the basis functions. Finally, E(Ψ 2

n) can be computed analytically for

multivariate polynomials (Le Ma�tre et al., 2002; Matthies and Keese, 2005).

Point Collocation Polynomial Chaos

Point collocation Polynomial Chaos, is another non-intrusive technique to cal-

culate the Fourier coe�cients cn for the equation 2.35 (Hosder, Walters, and

Balch, 2007; Berveiller, Sudret, and Lemaire, 2004). The goal of this method

is to extend the polynomial chaos expansions to be equal to each black box
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evaluation Y
QoI
(hk) at a set of "collocation" sampling points hk. Hence, the

polynomial chaos reads

Y
QoI
(hk) =

nPC∑
n=0

cn · Ψn(hk), k = 0, 1, .., K. (2.41)

The corresponding linear system reads:
Ψ0(h

0) . . . ΨnPC(h
0)

Ψ0(h
1) . . . ΨnPC(h

1)
... . . .

...

Ψ0(h
K) . . . ΨnPC(h

K)


︸ ︷︷ ︸

M

.


c0

c1
...

cnPC


︸ ︷︷ ︸

c

=


Y

QoI
(h0)

Y
QoI
(h1)
...

Y
QoI
(hK)


︸ ︷︷ ︸

z

This establishes a system of K equations and nPC unknowns, where gen-

erally K ≥ nPC, being therefore an overdetermined system. The least-square

minimisation approach consists in �nding a set of coe�cients which minimises

the mean square error, obtaining the solution

c = (MTM)−1MTz. (2.42)

The choice of the collocation points hk highly in�uences computational cost

and also the accuracy of the results. Various sampling methods to de�ne hk are

proposed in the literature such as: Pseudo-Random values, Latin hypercube,

Hammersley samples, Halton sequences, and Sobol sequences among others

(Hammersley, 1960; Rifkin and Lippert, 2007; Feinberg and Langtangen, 2015;

Wong, Luk, and Heng, 1997).

Post processing polynomial chaos

From the orthonormal of the basis functions, it is easily computed the mean

and standard deviation of a polynomial chaos expansion using the coe�cients

cn. The mean of the random solution is given by

E[Y
QoI
] = E

[
nPC∑
n=0

cn · Ψn(h)

]
= c0, (2.43)

which indicates that the zero coe�cient of the expansion corresponds to the

expected value. Similarly, the variance reads,
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σ2 = V ar[Y
QoI
] = E

[
(Y

QoI
− E(Y

QoI
))2
]
=

〈(
nPC∑
i=0

cnΨi(h)− c0

)2〉
=

nPC∑
i=1

c2i
〈
Ψ 2
i (h)

〉
.

(2.44)

Additionally, the PC expansion can be used as a response surface for UQ.

Thus, the PDF of Y
QoI

is obtained by evaluating the PC expansion with new

random points h (Sudret and Mai, 2015). A framework scheme of the non-

intrusive Polynomial Chaos procedure is shown in Fig. 2.3.

Figure 2.3 Non-intrusive Polynomial Chaos framework

2.3.2 Monte Carlo Method

The Monte Carlo (MC) method is a well-know technique for propagating the un-

certainty in complex systems (Wasserstein, 1997). This probabilistic technique

generates a �nite number of random samples hi, i = 1, 2, ..., ns to propagate the

uncertainty by evaluating the model in each sample point hi. Fig. 2.4 and 2.5

show the main idea and the steps of MC methodology for the B-pillar crash

problem.

The input space is typically parametrized by a large number of random

samples (nMC=ns), leading to a high dimensional problem. The expected value
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Figure 2.4 Monte Carlo crash problem scheme.

Figure 2.5 Monte Carlo method framework

E[Y
QoI
] of the training set is de�ned by:

Y
MC
= E[Y

QoI
] =

1

nMC

nMC∑
i=1

Y
QoI
(hi), (2.45)

where hi corresponds to an input sample realization, and nMC the number of

Monte Carlo evaluations. Given the expected value Y
MC
, the variance (σ2) and

the standard deviation (σ) are determined by,

σ2[Y
QoI
] =

1

nMC

nMC∑
i=1

(Y
QoI
(hi)− Y

MC
)2, (2.46)

σ =
√
σ2. (2.47)
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It is important to empathize that the Standard Deviation (StD) is measured

in the same units as the training set and the variance is measured in squared

units.

The main disadvantage of MC method is its slow convergence rate, deter-

mined by the order 1√
nMC
. In crashworthiness analysis, each simulation requires a

large time to be solved, consequently, the required computational cost to imple-

ment this stochastic technique is generally una�ordable. In such cases, di�erent

variants from MC can be implemented based in smart sampling and variance

reduction techniques.

2.3.3 Quasi Monte Carlo Method

Quasi Monte Carlo (QMC) method is a variant of the MC technique based

on a reduction of the model evaluations. Thus, the input parameters hi are

discretized for i = 1, 2, .., nQMC, where the number of samples are reduced with

respect to MC (nQMC < nMC). QMC is based in smart sampling where the conver-

gence rate is improved with respect to the classical MC, close to 1
nQMC

(Graham,

Parkinson, and Scheichl, 2018).

The choice of QMC points are based on low discrepancy sequences, also

called quasi-random or sub-random sequences (Niederreiter, 1978). Sub-random

numbers have an advantage over MC random points, they cover the domain of

interest quickly and evenly. Fig. 2.6 shows a comparative plot with three

schemes to generate QMC points in a uniform 2D space. It illustrates: random

points, Hammersley, Halton and Sobol sequences (Feinberg and Langtangen,

2015; Hosder, Walters, and Balch, 2007). Fig. 2.7 shows the QMC scheme

procedure. Analogously to MC, the QMC expected value of the QoI is given by

Y
QMC

=
1

nQMC

nQMC∑
i=1

Y
QoI
(h̃i), (2.48)

where h̃i represents the input parameters discretized with a discrepancy

sequence technique.

2.3.4 Multi level Monte Carlo Method

Multilevel Monte Carlo (MLMC) is a variant of MC that has been implemented

in di�erent �elds (Graham, Parkinson, and Scheichl, 2018; Barth, Schwab, and

Zollinger, 2011). The method is based in a hierarchy numerical approach for

di�erent levels of accuracy. For each level, the model becomes progressively

accurate with more computational cost. The strategy consist in evaluate a
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(a) Random
points

(b) Hammers-
ley points

(c) Halton
points

(d) Sobol
points

Figure 2.6 Comparison of various quasi random sequences
(B),(C),(D) with respect to random points (A).

large number of simulations for a low computational model (giving a sense of

average behaviour) and few number of simulations for a high accurate model

(giving a sense of precision) (Aslett, Nagapetyan, and Vollmer, 2017). This

hierarchy method generally provides better results for models that the mesh or

the time step can be changed easily for each level to create a training set of

models. If the problem allows this condition, then the computational cost is

drastically improved with respect to MC.

Here the quantity of interest Y
QoI

is approximated for a sequence of hierarchi-

cal levels Y 0
QoI
, ..., Y l

QoI
with di�erent accuracies. Being Y 0

QoI
the less accurate level,

thus requiring less computing cost. On the contrary, Y `
QoI

is the most accurate

and therefore computationally costly (Giles, 2008). The sense of the multilevel

method is based in the telescoping sum de�ned by

E[Y
MLMC

] = E[Y 0
QoI
] +

L∑
`=1

E[Y `
QoI
− Y `−1

QoI
]. (2.49)

Where the �rst term E[Y 0
QoI
] it is a low estimator of the QoI and the terms∑L

`=1 E[Y `
QoI
− Y `−1

QoI
] improves the accuracy. Subtituying the MC equation 2.45
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Figure 2.7 Quasi Monte Carlo method framework

into 2.49 for each level leads to

E[Y
MLMC

] =
1

n0

n0∑
n=1

Y 0
QoI
(hn)+

L∑
`=1

[
1

n`

n∑̀
n=1

(Y `
QoI
(hn)− Y `−1

QoI
(hn))

]
,

(2.50)

where n0 is the number of simulations in level 0 and n` is the number of

simulations in level `, where n0 < n1 < · · · < n`−1 < n` . The di�erent levels

of accuracy for each model basically are obtained by two di�erent manners: (i)

increasing the time step, (ii) re�ning the mesh grid. In crashworthiness analysis,

re�ning the mesh can be una�ordable, thus a better option is to increase the

time step, keeping the mesh �xed. Fig. 2.8 illustrates the MLMC scheme of

a 2D geometry with a telescoping increasing mesh. Analogously to MC and

QMC, Fig. 2.9 shows the framework of the main steps to implement MLMC

method.

2.3.5 Taguchi Method

Design of Experiments (DoE) is based on the implementation of sampling strate-

gies using a speci�c number of simulations. One of the �rst DoE approaches is

the Taguchi method, based on studying the variability of the input with a small

number of simulations. Taguchi is applied in several �elds such as automotive
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Figure 2.8 Schematic example of a Multi Level Monte Carlo
telescoping strategy using di�erent mesh grid levels.

engineering, biology, chemistry to evaluate the minimum number of model eval-

uations (Gopalsamy, Mondal, and Ghosh, 2009; Tsui, 1992; Fratila and Caizar,

2011). The key of this technique is on the use of orthogonal arrays by columns.

That is, for any pair of columns, all combinations of input levels occur, and they

occur an equal number of times (Taguchi and Konishi, 1987; Zang, Friswell, and

Mottershead, 2005; Lin et al., 2005; Al-Momani and Rawabdeh, 2008). Table

2.2 shows an example of parameters combination using Taguchi method. It

consists on a total 9 simulations to be conducted with three parameters (in our

case they would be the thicknesses h1, h2, h3), each one of them discretized with

three values:

h1 = [h11, h
2
1, h

3
1]

h2 = [h12, h
2
2, h

3
2]

h3 = [h13, h
2
3, h

3
3]

For more speci�c details on Taguchi method and orthogonality properties,

the reader is refereed to (Taguchi and Konishi, 1987).

The main steps used in Taguchi methodology (Fei, Mehat, and Kamaruddin,

2013; Roy, 2001) are:

• Select the random variables.

• Select of number of samples for each variable.

• Construct the orthogonal array.

• Conduct the simulations with respect to the array.
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Figure 2.9 Multi Level Monte Carlo framework

Simulation
number

Input h1 Input h2 Input h3

1 h11 h12 h33
2 h11 h22 h23
3 h11 h32 h13
4 h21 h12 h23
5 h21 h22 h13
6 h21 h32 h33
7 h31 h12 h13
8 h31 h22 h33
9 h31 h32 h23

Table 2.2 Orthogonal Array of combination inputs

• Analyse data results.

To post process the outcomes from Taguchi method, a signal-to-noise ratio

(Atkinson, Donev, and Tobias, 2007) and an analysis of variance is commonly

used to calculate and improve the variability of the samples (Fei, Mehat, and

Kamaruddin, 2013; Datta, Bandyopadhyay, and Pal, 2008; Taguchi and Kon-

ishi, 1987).
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2.4 Comparison of SFEM solvers for crashwor-

thiness

In this section, it is shown a comparative analysis between intrusive and non-

intrusive sampling methods to implement the most suitable UQ approaches for

the crashworthiness benchmark problem explained in section 2.1.

Intrusive solvers such as Perturbation method, Galerkin Polynomial Chaos

and Spectral Stochastic Finite Element Method described in above sections

have important strengths to take into account. Intrusive techniques give the

full random responses in the whole time and space domains. Also, in gen-

eral cases it requires fewer simulation compared with non-intrusive approaches.

However, these methodologies are not trivial to be implemented or even not

possible (Eiermann, Ernst, and Ullmann, 2007). Furthermore, computational

complexity increases with the number of random inputs and the order of the

expansion (Arregui-Mena, Margetts, and Mummery, 2016). In the case where

the QoI have a non-linear response, high expansion orders are required and

instabilities can jeopardize the problem (Bergman et al., 1997).

On the other side, the main advantage of non intrusive methods, Pseudo

Spectral Polynomial Chaos, Point Collocation Polynomial Chaos, Monte Carlo

and variants (non intrusive methods), is the use of commercial softwares to

obtain deterministic outputs without inferring in the source code (Eiermann,

Ernst, and Ullmann, 2007).

MC technique is considered the most general and robust method of uncer-

tainty quanti�cation. For that reason, it is used as a reference method for com-

parison purposes. This approach allows to tackle linear and nonlinear problems

in a wide range of engineering and science �elds (Sudret and Der Kiureghian,

2000; Sudret, 2008). One main drawback lays on the large number of simulations

necessary to obtain good results, which in crashworthiness means una�ordable

computational cost. QMC and MLMC present improvements to reduce dimen-

sionality, thus in cases where simulations require a high computing power, its

implementation is recommended (Graham, Parkinson, and Scheichl, 2018).

Non intrusive PC present advantages with respect to MC methods in terms

of dimensionality, since it allows a reduction of the number of simulations. Un-

like MC approach, non intrusive PC expansions su�er from the curse of dimen-

sionality, the number of terms grow exponentially with the number of random

inputs (Xiu, 2009; Stefanou, 2009) and the polynomial degree. In pseudo spec-

tral projection PC, the number of simulations increases by N
psp

= (q)nd , where q

is the number of quadrature nodes and nd the number of random variables. For
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Point Collocation PC the number of simulations is de�ned by N
pc
= nf

(nd+p)!
nd!p!

,

being p the order of the polynomial expansion and nf a proportional parameter

that increases the number of collocation points, thus oversampling the number

of simulations. If the parameter nf > 1 the system is overdetermined and least

squares technique is used to reduce the residual error of the response. This

proportional parameter is used to improve the response accuracy. In the lit-

erature, di�erent authors consider indispensable oversampling the training set

of simulations for a good performance (Hadigol and Doostan, 2018; Eldred,

2009). Fig. 2.10 shows the computational cost associated to Pseudo Spectral

Projection and Point Collocation. It is clearly visible the lower computational

cost of Point Collocation with respect to Pseudo Spectral Projection with large

number of stochastic inputs (Feinberg and Langtangen, 2015). However, with

low number of random inputs the cost is similar.

(a)

(b)

Figure 2.10 Number of black box simulations using (A)
Pseudo Spectral Projection Polynomial Chaos, and (B) Point

Collocation Polynomial Chaos with nf = 1.

To conclude, for one or two random variables, the number of simulations for

both methods have similar computational cost. However, when the number of
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random variables increases, Point Collocation is a better option for uncertainty

quanti�cation (Stefanou, 2009).

2.5 Benchmark B-Pillar results

In this section it is presented the results of the benchmark problem described

in section 2.1.

The benchmark model is solved with a deterministic approach as a starting

point. It is considered deterministic thicknesses h1 = h2 = h3 = 1.2 mm. In

Fig. 2.11 it is shown the snapshots of the local plastic strain evolving in time for

the explicit simulation. The response for the QoI (plastic strain average on the

the area of interest in the last step of time) through this deterministic approach

corresponds to Y
QoI

= 0.0798.

Figure 2.11 Snapshots of the model response (0s, 0.5s and 1s
from left to right).

In the next section the B-Pillar problem is considered stochastic with random

thicknesses.

2.5.1 Framework

The benchmark crash problem is analyzed with di�erent non-intrusive UQ

methods. The deterministic evaluations of the full order model are conducted
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with the commercial solver VPS/Pamcrash 2015.4. Intrusive methods have

been avoided for the need to reformulate the source code of Pamcrash.

As aforementioned, the computational time is mainly the most critical draw-

back in crashworthiness studies. Thus, the non intrusive stochastic techniques,

PC and QMC, are implemented and compared with the MC results.

A MC vademecum of nMC = 2466 simulations is performed for the training

set. MC is used as a reference methodology for comparison purpose. Computing

the solutions of the �nal training set with 2466 samples used here required

around 822 hours (approximately 35 days) of computational time in one of

the SEAT clusters. Besides, the computational time required for a standard

full crash model is around one day per simulation. Thus, any e�ort in devising

strategies to build a reliable training set with the minimum number of full-order

solutions is worthwhile. Therefore, Quasi Monte Carlo and Point Collocation

Polynomial Chaos are implemented with Hammersley sampling (Hammersley,

1960) for the discretization of the input space h. Fig. 2.12 illustrates the

stochastic space h of the three random thickness using Hammersley technique.

Figure 2.12 Stochastic input space of h1, h2, h3 with 200
Hammersley sample points.

For the study of Point Collocation PC, di�erent oversampling values nf and

polynomial orders p are conducted. Aiming to obtain the optimal combination

of these two parameters involved for the method.

The deterministic black box simulations were launched by parallel comput-

ing with two di�erent machines: i) A cluster with 16 CPUs of 3.40 GHz and
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252.3 GiB of RAM memory. ii) A Workstation laptop with 4 CPUs of 3.40 Ghz

and 32 GiB of RAM. The computational cost for a single simulation was in the

order of 20 minutes, whereas all the set of simulations are in the order of weeks.

2.5.2 Monte Carlo

The Monte Carlo method is implemented as a reference approach to obtain

a vademecum of the QoI. In Fig. 2.13 the convergence plots of the mean

Y
MC
and the standard deviation StD

MC
with respect the number of simulations

ns are illustrated. In Table 2.3 it is represented the statistical values up to

ns = 2466 simulations. The MC approach convergence to the values of Y
MC
=

0.0695 and StD
MC

= 0.0239, which will be considered as reference results for

further analysis. Accordingly, the PDF evolution is illustrated in Fig. 2.14

with di�erent sampling size ns. A clear bimodal behaviour is observed. The

Mode 2 shows a predominant area of probability with respect to Mode 1. This

phenomenon of multi modality usually occurs when small perturbations in the

system cause some changes on the output. The prediction of di�erent modes

give an important key to understand the nature of the problem.

ns 1000 1500 2066 2466

Y
MC

0.0697 0.0699 0.0695 0.0695
StD

MC
0.0234 0.0237 0.0240 0.0239

Table 2.3 Mean and standard deviation results with MC.

To analyze the bimodality, two simulations are selected from the PDF func-

tions coinciding with each peak in Fig. 2.16. Fig. 2.15 shows the two simulations

respectively.

In Table 2.4 it is illustrated the two simulations with its corresponding

stochastic inputs h1, h2, h3. To analyze which parameter or combination of

parameters generate the bimodal distribution, in Fig. 2.16 there are plotted

the samples that appears at left (red) and right (blue) of the histogram.

h1 h2 h3 Y
QoI

Simulation (A) 1.31 1.47 1.37 0.0294
Simulation (B) 1.22 1.08 1.12 0.0852

Table 2.4 Stochastic inputs h1, h2, h3 and Y
QoI

for each peak
of the PDF.
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(a) Mean convergence

(b) Standard deviation convergence

Figure 2.13 Convergence plots of the expected value Y
MC
and

standard deviation StD
MC
with respect to the number of eva-
lutions ns

Fig. 2.17 shows the stochastic space of the thickness inputs h for each

simulation according to the previous bimodal color condition. It is observed

two di�erentiated domains regarding the stochastic thickness h3. It seems to be

an evidence that parameter h3 has a direct correlation with the QoI. However,

h1 and h2 from Fig. 2.17c shows a mixed distribution of the samples in all the

stochastic space, therefore a not clear in�uence with the output is here visible.

2.5.3 Quasi Monte Carlo

In this section QMC is implemented with the Hammersley technique for the

input discretization. Fig. 2.18 shows the mean and standard deviation con-

vergence plots with respect to the reference values from the MC approach (red

line). Similar results with respect to MC were obtained with 330 simulations

(recall that for MC a total of 2466 simulations were used), leading to a QMC

values Y
QMC

= 0.06944 and a StD
QMC

= 0.02391.
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Figure 2.14 Probability density functions for the QoI with
di�erent sampling size ns for the training set.

(a) Y
QoI

= 0.0294 (b) Y
QoI

= 0.0852

Figure 2.15 (A) Simulation sample corresponding to peak 1
and (B) simulation sample corresponding to peak 2.

2.5.4 Non intrusive Polynomial Chaos

In this section the results and capabilities of the Point Collocation Polynomial

Chaos are shown for di�erent combinations of the polynomial order p and the

oversampling parameter nf . Fig. 2.19, 2.20, 2.21 and 2.22 show the results for

the di�erent cases. It is illustrated the probability density functions for MC

(blue), QMC (green) and PC (red). For each case, there are evaluated the

same number of VPS/Pamcrash simulations for QMC and PC for comparison

purposes.

According to these illustrations, using polynomial orders higher than four,
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Figure 2.16 Probability density function for the QoI with two
coloured areas corresponding to each structure mode.

(a) 2466 out-
put samples

(b) Frontal
view

(c) Verti-
cal view

Figure 2.17 Scattered plots of the input space with respect to
the bimodal behaviour. Red samples (Mode 1), blue samples

(Mode 2).
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(a) QMC mean convergence

(b) QMC standard deviation convergence

Figure 2.18 Quasi Monte Carlo mean and standard deviation
convergence plots for di�erent sampling size nQMC .

the accuracy of the results tends to diverge, apart from the case of nf = 2

(double of training set evaluations with respect the unknowns) with p = 5 and

p = 6 (Fig. 2.23), where the probability density function are better captured.

This e�ect is clearly seen in Fig. 2.24, illustrating the behaviour of the mean

and standard deviation, for the di�erent cases described above, increasing the

polynomial order.

In terms of the number of evaluations, Fig. 2.25 illustrates the mean and

standard deviation of MC, QMC and PC methods with the di�erent samplig size

ns. All con�gurations of PC show less accurate results with respect to QMC,

that maintains a highly stable results with very low number of simulations. Also,

when the number ns increases it is observed that the results of PC with nf = 1

and nf = 2 shows inaccurate results for any combination of the polynomial

order p.



2.6. Conclusions 39

(a) p = 1 and
nf = 1

(b) p = 2 and
nf = 1

(c) p = 3 and
nf = 1

(d) p = 4 and
nf = 1

Figure 2.19 Probability density function evolution of Point
Collocation Polynomial Chaos (nf = 1, Hammersley sam-
pling), QMC (Hammersley sampling) and MC (random sam-
pling). Approaches launched with di�erent polynomial order

p and nQMC.

2.6 Conclusions

The most suitable SFEM solvers for crashworhtiness UQ analysis were intro-

duced in this chapter. In order to avoid the cumbersome task of an intrusive

approach, non-intrusive methods are implemented for the benchmark problem.

The VPS/Pamcrash is used as a solver for the training evaluations of the full

order model.

The MC results of the stochastic problem o�ers a sound framework for

uncertainty propagation, however its low e�ciency precludes its use for analyses

involving crash models. In this case, MC is implemented as a reference method

to be compared with other techniques. It is detected a bimodal behaviour of

the QoI with a high predominant probability area.
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(a) p = 1 and
nf = 2

(b) p = 2 and
nf = 2

(c) p = 3 and
nf = 2

(d) p = 4 and
nf = 2

Figure 2.20 Probability density function evolution of Point
Collocation Polynomial Chaos (nf = 2, Hammersley sam-
pling), QMC (Hammersley sampling) and MC (random sam-
pling). Approaches launched with di�erent polynomial order

p and nQMC.

To demonstrate the viability of decreasing the number of simulations (train-

ing set), two non-intrusive techniques are studied and compared with respect

to MC: Quasi Monte Carlo and Point Collocation Polynomial Chaos, both im-

plemented for the crash problem. Compared with the classical MC method,

QMC e�ectively reduces the required number of simulations to achieve a simi-

lar accuracy results. The so-called Point Collocation Polynomial Chaos (based

on a least-square minimization) shows that in order to have a good accuracy it

requires three times greater the number of simulations (nf = 3), leading to an

overdetermined problem. The PC results capture worse the bimodal behaviour

of the probability density function. However, the highest pick of the PDF shows

good precision. In counterpart, the results of QMC illustrates a good perfor-

mance to capture the bimodal behaviour but the pick with highest probability

is worse described.

For the present state-of-the-art review, some weaknesses are observed to
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(a) p = 1 and
nf = 3

(b) p = 2 and
nf = 3

(c) p = 3 and
nf = 3

(d) p = 4 and
nf = 3

Figure 2.21 Probability density function evolution of Point
Collocation Polynomial Chaos (nf = 3, Hammersley sam-
pling), QMC (Hammersley sampling) and MC (random sam-
pling). Approaches launched with di�erent polynomial order

p and nQMC.

deal with high dimensional outputs and data analysis. The high dimensional

outputs of the model evaluations brings a rich high dimensional dataset X =

[x1x2 · · ·xns ] ∈ IRd×ns where each column xi = [xi1 . . . x
i
d]
T is a VPS/Pamcrash

solution storing the maximum plastic strain in the last step of time in the

area of interest. This leads to a high dimensional problem to post process and

metamodel. The state-of-the-art methods present limitations in terms of e�-

ciency, data behaviours (clustering) and sensitivity analysis. However, it has

been opened a new research way of possibilities combining stochastic modelling

with data analysis techniques (machine learning) (such as dimensionality reduc-

tion techniques and surrogate modelling) to optimize the computation resources

required for these analysis through reducing the dimensionality of the problem.

In the next chapters, dimensionality reduction and surrogate modelling will

be combined for a new proposed methodology for the benchmark crash problem.
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(a) p = 1 and
nf = 4

(b) p = 2 and
nf = 4

(c) p = 3 and
nf = 4

(d) p = 4 and
nf = 4

Figure 2.22 Probability density function evolution of Point
Collocation Polynomial Chaos (nf = 4, Hammersley sam-
pling), QMC (Hammersley sampling) and MC (random sam-
pling). Approaches launched with di�erent polynomial order

p and nQMC.

(a) p = 5 and
nf = 2

(b) p = 6 and
nf = 2

Figure 2.23 Probability density function evolution of Point
Collocation Polynomial Chaos (nf = 2, Hammersley sam-
pling), QMC (Hammersley sampling) and MC (random sam-
pling). Approaches launched with di�erent polynomial order

p and nQMC.
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(a) Mean convergence

(b) Standard deviation convergence

Figure 2.24 Mean and standard deviation convergence plots
with respect to the polynomial order p implemented with Point

Collocation PC.
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(a) PC and QMC mean convergence.

(b) PC and QMC standard deviation convergence.

Figure 2.25 Comparative analysis of the mean and standard
deviation with MC, QMC and PC approaches for di�erent con-
�gurations of the sampling size ns, the polynomial order p and

the oversampling parameter nf .
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Chapter 3

Nonintrusive uncertainty

quanti�cation for nonlinear high

dimensional problems

This chapter presents a nonintrusive methodology to deal with uncertainty

quanti�cation problems for high dimensional nonlinear outputs. The novelty

lies in the combination of dimensionality reduction and surrogate modelling for

crashworthiness problems, aiming to detect hidden structure modes and develop

statistics of the reduced space. This chapter is structured as follows: section 3.1

presents a brief introduction of the most advanced publications combining di-

mensionality reduction and surrogate modelling for UQ analysis. The proposed

UQ methodology is described in section 3.2. In section 3.3 the main ideas of

PCA and kPCA techniques are recalled. Next, in section 3.4 the three di�erent

surrogates under consideration are detailed (SRS, OK and PRS). Finally, the

di�erent surrogates are readily used to quantify the uncertainty of the output.

In section 3.5 it is presented the Monte Carlo sampling for the surrogate model

and the comparative criterion. Section 3.6 illustrates the performance of the

proposed methodology for the crash problem proposed in Section 2.1. Finally,

section 3.7 includes some concluding remarks.

The content of this chapter has been published in Finite Elements in Anal-

ysis and Design Journal (Rocas et al., 2021).

3.1 Introduction and motivation

In crashworthiness, a single simulation takes CPU hours in a High Performance

Computing facility. Thus, the very large number of queries associated with a

standard UQ process are practically una�ordable in this context. For a more

deeply UQ analysis, the state-of-the-art methods explained in Chapter 2 show

weaknesses in terms of computational cost and data analysis to tackle high
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dimensional outputs. One viable alternative is using a surrogate model (or

metamodel) build upon a reduced number of full-order simulations (denoted

as training set), see Qiu et al., 2018; Wang et al., 2018; Moustapha et al.,

2014 for di�erent approaches and comparative analyses. Still, the viability of

metamodels is limited by the number of input parameters: a large number of

parameters results in a highly multidimensional input space and therefore the

engineer is a�icted by the so-called curse of dimensionality. If the parametric

model is already low-dimensional (3-4 design parameters), the actual threat is

not the curse of dimensionality but dimensionality reduction is still necessary

to computationally a�ord the simulation process for decision making. This is

common in crashworthiness and in the example included here for illustration.

The idea is to determine a low number of relevant parameters (as com-

binations of the original ones) properly representing all the variability of the

dataset. Principal Component Analysis (PCA) is the standard dimensionality

reduction technique, to be used if the data structure is such that the low-

dimensional subset where the data is contained (also referred as manifold) is

linear. Other manifold learning techniques identify nonlinear low-dimensional

structures. Among them, kernel Principal Component Analysis (kPCA) is con-

sidered here because it is one the simplest approaches, see García-González et

al., 2020 for a synthetic presentation. The combination of dimensionality reduc-

tion with surrogate modeling is a common strategy to carry out UQ in di�erent

disciplines and contexts Lataniotis, Marelli, and Sudret, 2018; Li, Wang, and

Jia, 2020; Nagel, Rieckermann, and Sudret, 2017.

This chapter analyzes the combination of di�erent alternatives for dimen-

sionality reduction and surrogate models for UQ in crashworthiness simulations

with uncertain input parameters. Among the di�erent techniques explores, the

novel combination of kPCA and Separated Response Surface (SRS) demon-

strates interesting properties. Other strategies are also used to de�ne surrogate

model �tting the training set like Polynomial Regression Surface (PRS) and

Ordinary Kriging (OK). To do this, we used Monte Carlo sampling (as it is the

simplest method for statistical analyses) in two steps of the proposed method-

ology: 1) to obtain the training set for dimensionality reduction and surrogate

model reconstruction, and 2) once the low dimensional surrogate models were

properly developed, standard Monte Carlo is performed (practically with no

computational cost) to increase the probabilistic resolution in the description

of the QoI.
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3.2 Dimensionality reduction, surrogate model

and UQ

The number of samples ns a�ordable in a real problem is generally not su�cient

to produce a proper Monte Carlo assessment of the statistical properties of the

output of the system. Chapter 2 demonstrates that the standard Monte Carlo

sampling is extremely demanding and, in practice, beyond the possibilities of

standard industrial practitioners (Rocas et al., 2020).

As indicated in the previous Chapter 2, the standard Monte Carlo approach

consists in generating random samples of the input, running the model and

retrieving statistics of the output (or any QoI). This is what corresponds to the

upper part (black arrows) in the scheme of Fig.3.1.

However, the part of the standard model (also denoted as full-order, here

computed with VPS/Pamcrash) is too computationally expensive to be per-

formed for the number of samples providing statistical relevance. Thus, the

alternative is to replace this full-order model by a surrogate, that is a simple

functional transformation from h to x. The surrogate is created using a training

set consisting in data generated by the full-order model.

An additional di�culty is encountered due to the high-dimension of the

outcome of the model, x. It is complicated to create a high-dimensional func-

tional approximation having a target space of d (here 142) dimensions. Thus,

previous to undertake the determination of the surrogate, it is convenient to

apply some dimensionality reduction technique. In the context of crashworthi-

ness simulation, the data generated by the models are often adopting nonlinear

data structures (García-González et al., 2020; Van Der Maaten, Postma, and

Herik, 2009). Thus, it is expected to require nonlinear dimensionality reduction

techniques as kPCA. For this thesis the QoI is introduced as an indicator for

decision making. The QoI summarizes the information contained in x. Quanti-

fying the uncertainty of the QoI is su�cient to take some decisions. Uncertainty

Quanti�cation of high-dimensional objects like x is cumbersome and the out-

come is di�cult to use as a tool supporting decision making. In that sense, the

stochastic assessment focuses in a low-dimensional (even purely scalar) QoI,

rather than in a high-dimensional object like x. However, a deeper analysis of

the phenomenon requires understanding the underlying mechanisms associated

with the overall mechanical response of the system. In that sense, all the in-

formation contained in x is pertinent. The fact that the model order reduction

strategy is able to recover back the full-order object in as accurately as possible

is therefore extremely advantageous. In this aspect, kPCA behaves much better
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than PCA in many cases: the simple QoI is fairly approximated by the PCA

reduction, but kPCA improves the mapping back to the original variable x.

All these aspects are covered in the methodology described in remainder of

the section, having the following steps:

• Creation of training set. Generate ns realizations of the input pa-

rameters hi, for i = 1, 2, . . . , ns, and compute the corresponding full-order

solutions xi (that constitute the training set).

• Dimensionality reduction. Analyze the training set and �nd the

principal components allowing to reduce the dimensionality of the family

of solutions. In practice, this boils down to apply dimensionality reduc-

tion techniques as PCA or kPCA and determine a mapping between the

solutions x ∈ IRd and some new variable z? ∈ IRk in a much lower-

dimensional space (k � d). The mapping between x and z? is to be

characterized forward and backward. The kPCA backward mapping is

found to be more accurate than with PCA. That is, kPCA recovers with

much more accuracy a full-order x associated with a reduced-order coordi-

nate z?. Although this advantage is often not perceptible when assessing

a low-dimensional (or scalar) QoI, a proper x recovery is crucial to deepen

in the mechanical interpretation of the results. For instance, to identify

the mechanisms associated with the di�erent modes of the probability

distribution.

• Surrogate model. The functional dependence z? = F (h) is deter-

mined from the data provided by the training set, and the dimensionality

reduction.

• Complete Monte Carlo UQ (using surrogate). Once the surrogate

F (·) is available, for each input value h, the corresponding z? is straight-

forwardly computed as F (h). Then the backward mapping produces the

corresponding x, and l0(x) is the associated QoI. The concatenation of

the three operations is computationally a�ordable. Therefore standard

Monte Carlo can be performed with a su�cient number of realizations.

The di�erent aspects of the devised methodology are described in detail in

the following sections. It is important noting that, among the four conceptual

steps mentioned above, the computational cost is concentrated in the creation

of the training set. Obtaining this representative collection of solutions requires

a computational time in the range of weeks or months, depending on the type of
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Figure 3.1 Schematic illustration of the methodology.

simulation in crashworthiness. The other steps: dimensionality reduction, sur-

rogate modeling and Monte Carlo UQ represent in practice a negligible amount

of computational e�orts (in the order of seconds).

3.3 Dimensionality reduction

The training set matrix X = [x1x2 · · ·xns ] ∈ IRd×ns is seen as a set of ns points

in a d-dimensional space. The idea of Dimensionality Reduction (DR) is to �nd

a subspace of lower dimension k � d where the set of points is contained.

3.3.1 Principal Component Analysis

The Principal Component Analysis (PCA) strategy consists in diagonalizing

the square d × d matrix XTX (covariance matrix), that is �nding U ∈ IRd×d

such that

XTX = UΛUT (3.1)

where Λ is a diagonal matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd. The

dimension is reduced from d to k if the last d−k eigenvalues are negligible with
respect to the k �rst. In this case, the new variable selected is

z? = U?Tx, (3.2)

being U? ∈ IRd×k the matrix with the �rst k columns of U. Eq. (3.2) describes

the forward mapping, that is how to map the high-dimensional vector x into

the element z? reduced dimensional space, from dimension d to dimension k.
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The backward mapping goes in the opposite direction and reads

x = U?z?. (3.3)

Thus, PCA is a straightforward methodology relying in the fact that the

training set is lying in a linear subspace.

3.3.2 Kernel Principal Component Analysis

In many cases, the structure of the low-dimensional manifold where the solution

ranges is nonlinear and more sophisticated dimensionality reduction techniques

are required. The kernel Principal Component Analysis (kPCA) is an alterna-

tive based on the PCA, in fact, it performs PCA in a new feature space where

the data is transformed from the original space (Schölkopf, Smola, and Müller,

1998).

The main characteristics of the kPCA are explained in detail in (García-

González et al., 2020) and summarized here. It is assumed that some transfor-

mation Φ from IRd to a higher-dimensional space is able to �atten the training

set. That is the transformed training set {Φ(x1),Φ(x2), . . . ,Φ(xns)} is such
that PCA is able to discover a linear subspace of dimension k. In other words,

the transformation Φ maps the nonlinear manifold (of dimension k) where the

training set ranges into a linear subspace.

The transformation Φ that produces this e�ect is a priori unknown. How-

ever, it is worthy trying with some di�erent alternatives and see what is the

reduced dimension they propose: the best choice for Φ is the one producing

the lower value of k. Moreover, in practice Φ is indirectly characterized using

the kernel trick. Thus, instead of describing directly Φ, an expression for the

bivariate form κ(·, ·) is provided, assuming that the following relation between

κ(·, ·) and Φ(·) holds
κ(xi,xj) = Φ(xi)TΦ(xj) (3.4)

for i, j = 1, 2, . . . , ns.

A classical choice for the kernel κ(·, ·) is the so-called Gaussian kernel, de-

�ned as

κ(xi,xj) = exp(−β
∥∥xi − xj

∥∥2) (3.5)

where β is a parameter that, in the applications of this research, is taken equal

to 0.1.

Having the kernel at hand, one may compute a matrix equivalent to XXT

for the samples transformed by Φ. This matrix is denoted by G ∈ IRns×ns and
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has generic coe�cient

[G]ij = κ(xi,xj) (3.6)

It is worth noting that the eigenvalues of XXT are the same of those of XTX,

which are the ones extracted in (3.1). Actually, G is also readily diagonalized

and the following factorization is obtained

G = VΛ̃VT (3.7)

where Λ̃ contains the same non-zero eigenvalues that would be obtained from

diagonalizing the corresponding covariance matrix, which is not available.

Thus, the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λns are computed, and the reduced

dimension k is selected such that the last ns− k eigenvalues are negligible with

respect to the k �rst.

Once k is obtained, the original variable x ∈ IRd is mapped into a variable

in the reduced space, z? ∈ IRk using the following the expression

z? = V?Tg(x), (3.8)

where V? ∈ IRns×k is the matrix with the �rst k columns of V and g(x)IRns is

a vector with generic component

[g(x)]i = κ(xi,x) (3.9)

for i = 1, . . . , ns.

As described in detail in (García-González et al., 2020), if the samples trans-

formed by Φ are not centred, some corrections have to be done and both matrix

G and vector g have to be modi�ed accordingly. These corrections are straight-

forward and are omitted here for the sake of a simpler presentation.

Equations (3.8) and (3.9) characterize the forward kPCA mapping, from x

to z?. The backward mapping for kPCA is not as simple as for the PCA version

described in equation (3.3). A point z? in the reduced space is mapped back to

a point x which is recovered as a weighted average of the points of the training

set, namely

x =
ns∑
i=1

wi(z
?)xi , with weights such that

ns∑
i=1

wi(z
?) = 1 (3.10)

The weights wi(z?) are computed such that the forward mapping of x is as close

as possible to z?. A popular strategy to compute these weights with a simple
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approach is to use a radial basis interpolation concept based on the distances of

z? to the images of the sample points, z? i for i = 1, . . . , ns. That is computing

di = ‖z? − z? i‖ and taking any value of wi(z?) decreasing with di, for example

wi(z
?) ∝ 1

d2i
.

3.4 Surrogate Modeling

As already announced, the dimensionality reduction techniques presented above

are a previous step to build a Surrogate Model (SM). The training set is now

used to approximate the functional dependence associated with the full-order

model. The �nal goal is to compute x as an easy-to-evaluate function of h, that

is the surrogate. With the dimensionality reduction, this is split in two steps:

a surrogate from h to z? plus the backward mapping from z? to x, see Fig. 3.1.

Here, the surrogates are presented as generic methodologies to establish a

functional dependency among some input h and some output function y(h) (we

use y to account for any output, that could be either x or z?). Obviously, doing

the surrogate with z? has the advantage of dealing with a much lower dimension

(number of components) of the model output. In practice, for the sake of a

simpler presentation, a scalar output Y (h) is considered in the following, that

stand, for example, for any of the components of y(h). In the examples, Y

coincides with the �rst component of the reduced space using kPCA, that is

Y = [z?]1.

In the following, the parameters describing the stochastic input space where

the function takes values are collected in the vector h = [h1 . . . hnd ]
T ∈ IRnd .

Where nd is the number of stochastic dimensions of the problem (nd = 3 in the

benchmark under consideration).

Thus, the goal is to approximate the functional dependence Y (h) using the

images of the points of the training set yk = Y (hk), k = 1, . . . , ns, where, all

the sample points are collected in the vector y = [y1y2...yns ]T .

3.4.1 Separated Response Surface

The idea of Separated Response Surface (SRS) is to �nd a separated approxima-

tion F (h) to Y (h). The separated character of F (h) means that it is a sum of

rank-one terms, being each rank-one term the product of sectional modes (the

adjective sectional is used to indicate that the mode depends only on one of

the parameters). The algorithm employed to compute the SRS is based on the



3.4. Surrogate Modeling 53

ideas of the least-squares Proper Generalized Decomposition (PGD) approxi-

mations described in detail in (Díez et al., 2018; Díez et al., 2019; Lu, Blal, and

Gravouil, 2018b; Lu, Blal, and Gravouil, 2018a).

Thus, F (h) reads

F (h) =
nf∑
j=1

σj

nd∏
i=1

f ji (hi) (3.11)

where each sectional mode f ji (hi) is represented in some discrete sectional space.

The discrete sectional space is generated by a family of functions{
Ψ i1(hi)Ψ

i
2(hi) . . . Ψ

i
ni
(hi)

}
being ni the dimension of the sectional function space.

Accordingly, sectional modes have the following expression

f ji (hi) =

ni∑
m=1

ami Ψ
i
m(hi) (3.12)

where the unknown coe�cients ami , for i = 1, . . . , nd and m = 1, . . . , ni, have to

be computed to determine the sectional mode f ji (hi), for j = 1, 2, . . .

Di�erent alternatives are available as the approximation space de�ned by

Ψ im(hi). Here we have considered a �nite element discretization with ni nodes

(in 1D domains, ni − 1 elements).

A least-squares criterion based on a discrete Euclidean product is chosen to

select F (h). Thus, F (h) ≈ Y (h) is taken such that it minimizes

‖F (h)− Y (h)‖2 = 〈F − Y, F − Y 〉 =
ns∑
k=1

wk(F (hk)− yk)2 (3.13)

where the weights wk are introduced to assimilate the sum into an integral, that

is, to assume that ∫
Ωh

F (h) dh ≈
ns∑
k=1

wkF (hk)

note that the associated scalar product 〈·, ·〉 of two arbitrary functions F and

G reads

〈F,G〉 =
ns∑
k=1

wkF (hk)G(hk). (3.14)

Note that weights wk, k = 1, 2, . . . , ns must be selected corresponding to

a quadrature having as integration points hk, where Y is known. Typically,

the distribution of points hk is provided by a stochastic sampling and cannot

be enforced a priori by the user to obtain his/her preferred quadrature (e.g. a

Gauss-Legendre quadrature or a composite Simpson's rule). Thus, the weights
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of the quadrature are adapted to optimize the integration order in a (multidi-

mensional) Newton-Cotes fashion.

Thus, least-squares solution in a linear functional space V is readily com-

puted as a projection, that is �nding F ∈ V such that

〈F, F ?〉 = 〈Y, F ?〉 for all F ? ∈ V (3.15)

Note that integral equation (3.15) has to be ful�lled for any weighting func-

tion (or test function) F ? in V , as in the standard weak form of a boundary

value problem.

The key aspect of any PGD algorithm is how to solve the rank-one approx-

imation. That, is how to �nd an approximation to Y (h) with a function of the

form

F (h) = σ

nd∏
i=1

fi(hi) (3.16)

which is a particular case of (3.11) with just one term.

The standard PGD strategy consists in an alternate direction approach, that

is to compute the sectional mode fγ, the rest of the sectional modes fi for i 6= γ

are assumed to be known. Thus, in practice, F (h) and δF (h) are taken as

F (h) = fγ(xγ)

[∏
i 6=γ

fi(hi)

]
(3.17)

and

δF (h) = δfγ(hγ)

[∏
i 6=γ

fi(hi)

]
. (3.18)

This alternate directions strategy leads to a sectional problem, reduced to

the γ coordinate. The family of sectional problem is to be solved sequentially

for γ = 1, 2, . . . , ns, and then iterated until convergence is reached.

For the sake of simplifying the writing, the computable term depending on

all the sectional modes but γ is denoted as Tγ and T kγ when evaluated in hk,

namely

Tγ :=
∏
i 6=γ

fi(hi) and T
k
γ :=

∏
i 6=γ

fi(h
k
i ). (3.19)

Thus, the sectional counterpart of (3.15) reads

〈fγTγ, δfγTγ〉 = 〈Y, δfγTγ〉 for all δfγ (3.20)
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that is
ns∑
k=1

wk(T kγ )
2fγ(x

k
γ)δfγ(h

k
γ) =

ns∑
k=1

wkT kγ y
kδfγ(x

k
γ). (3.21)

Using a particular case of (3.12), that is

fγ(hγ) =

nγ∑
m=1

amγ Ψ
γ
m(hi) (3.22)

in (3.21) and taking δfγ(hkγ) = Ψγ` (h
k
γ) for all ` = 1, . . . , nγ yields

ns∑
k=1

wk(T kγ )
2

nγ∑
m=1

amγ Ψ
γ
m(h

k
γ)Ψ

γ
` (h

k
γ) =

ns∑
k=1

wkT kγ y
kΨγ` (h

k
γ) (3.23)

or
nγ∑
m=1

[
ns∑
k=1

wk(T kγ )
2Ψγm(h

k
γ)Ψ

γ
` (h

k
γ)

]
︸ ︷︷ ︸

M`m

amγ =
ns∑
k=1

wkT kγ y
kΨγ` (h

k
γ)︸ ︷︷ ︸

f`

(3.24)

for all ` = 1, . . . , nγ. That is, a linear system of nγ equation with nγ unknowns

Maγ = f . (3.25)

Once the sectional approximation is obtained solving (3.25), the loop in

alternate directions iterations is continued until convergence and completion of

the rank-one computation. As usual in PGD (Garikapati et al., 2020), once the

rank-one solution is obtained, the greedy approach aims at computing the next

term (next j in (3.11)).

As it is standard in this type of strategies, in order to compute an approxi-

mation having the separated form given in (3.11), there are three nested loops.

First, the greedy approach (loop in j) aims at computing rank-one terms hav-

ing the form given in (3.16). Then an alternated direction iterative scheme is

applied consisting in two nested loops: the iterative loop to reach convergence

(not described explicitly in this text with an iteration index) and an inner loop

for γ = 1, 2, . . . ns, ranging all sectional dimensions. This is standard in the

references describing any PGD scheme, see Díez et al., 2019 for an algorithmic

description.

As mentioned above, functions Ψ im in (3.12) are chosen as classical C0 �nite
elements shape functions. Contrary to other choices (e.g. high-order polyno-

mials) these type of functions are more stable due to their local support but

introduce a lack of smoothness (jumps in the �rst derivatives, singularities in the

second derivatives). Consequently, when using a �nite element approximation
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for the sectional modes, it is important having the possibility of enforcing the

smoothness of the solution. This is equivalent to penalize in system (3.25), the

non-smoothness of the sectional function described in (3.22). This requires, for

instance, penalizing some postprocessed quantity of the sectional mode fγ(hγ),

represented by the vector of nodal values, aγ. The quantity to be penalized,

the lack of smoothness, is represented by a matrix G mapping the nodal values

of fγ(hγ) into the postprocessed quantity in some representative points. In the

following, G is taken as the standard gradient operator, computing the deriva-

tives of fγ(hγ) in the integration points of the elements of the mesh. Thus,

G is a nG × nγ matrix, being nG the number of integration points in the mesh

(assuming that the dimension of the sectional space is 1). Thus, the measure of

the lack of smoothness that has to be reduced is given by aTγG
TGaγ. Provided

that system (3.25) is equivalent to minimize the following functional

1

2
aTγMaγ − fTaγ

Enforcing the smoothness requires minimizing the perturbed functional

1

2
aTγMaγ − fTaγ + λ

1

2
aTγG

TGaγ

for some value of the factor λ that states the importance of the smoothing. The

larger is λ, the smoother is the recovered solution. This results in the following

linear system, which is a modi�cation of (3.25) accounting for the smoothing

[
M + λGTG

]
aγ = f (3.26)

3.4.2 Ordinary Kriging

Ordinary Kriging (OK) is an interpolation technique commonly used in engi-

neering and originated for geostatistical problems (Oliver and Webster, 2014).

The OK method determines weights for a set of simulation points to calculate a

prediction of a new sample. The weights are calculated with a variogram model

that has the main feature to estimate variances for any distance. The kriging

metamodel F (h) of any point h is de�ned by:

F (h) =
ns∑
i=1

wiy
i, (3.27)

where the unknowns wi are the weights and yi are the scalar values of the

function to be interpolated. To determine the optimal values for the Kriging
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weights, the variogram function plays an important role. There exist di�erent

variograms: Gaussian, exponential, linear among others (Oliver and Webster,

2014). The OK matrix system to obtain the weights reads,
γ11 γ12 . . . γ1ns 1
...

...
. . .

...
...

γns1 γns2
. . . γnsns 1

1 1 . . . 1 0




w1

...

wns

µ

 =


γ10
...

γns0

1

 .

A speci�c condition for OK with respect to other Kriging methods is en-

forcing the sum of weights equal to 1,
∑

ns

i=1wi = 1. This condition is achieved

by introducing the new unknown µ as Lagrange multiplier (Malvi¢ and Bali¢,

2009). The entries of the matrix in the equation above depend on the vari-

ogram function γ evaluated for each distance δ between a pair of samples, that

is γij = γ(δ), being δ = ‖hi−hj‖. The entries γ10 . . . γns0 are evaluations of the
variogram γ between all the sample points with respect to the new (current)

point. Here, we used the spherical variogram de�ned as:

γ(δ) =

{
C0 + C1

[
3
2

(
δ
a

)
− 1

2

(
δ
a

3
)]
, 0 < δ ≤ a

C0 + C1, δ > a
(3.28)

C0 is the nugget constant representing the noise of the data, a is the range

of the transition zone where the variogram levels o� and the sill (C0 + C1) is

de�ned as the total variance of the model. For the benchmark problem C0 = 0,

in consequence C1 is the total variance of the model. In Fig.3.2 it is illustrated

a spherical variogram function. A speci�c condition for OK with respect others

Kriging methods are the sum of weights equal to 1,
∑

ns

i=1wi = 1. This condition

is achieved by using Lagrange multipliers (Malvi¢ and Bali¢, 2009).

3.4.3 Polynomial Response Surface

Polynomial Response Surface (PRS) has been applied in numerous studies to

build metamodel for di�erent engineering problems (Gano, Kim, and Brown,

2006; Fang et al., 2005; Giunta and Watson, 1998). It consists in a simple

multidimensional polynomial �tting. A second order polynomial model F (h)
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Figure 3.2 Variogram with the three main parameters. The
nugget C0, the range a and the sill C0 + C1.

takes the form,

F (h) = c0 +
nd∑
i=1

cihi +
nd∑
i=1

ciih
2
i +

nd−1∑
i=1

nd∑
j=i+1

cijhihj, (3.29)

where hi is the i-th stochastic input, the di�erent coe�cients c are the unknowns

to be computed, collected in a vector c. If the approximation was able to

interpolate the data, the following linear system should be solved:

Ac = y, (3.30)

where A is the matrix containing the values of the di�erent interpolation func-

tions in (3.29), that is, for nd = 3,

{
1, h1, h2, h3, (h1)

2, (h2)
2, (h3)

2, h1h2, h1h3, h2h3
}

in the sample points hk, for k = 1, . . . , ns. This results in

A =


1 h11 h12 h13 (h11)

2
(h12)

2
(h13)

2
h11h

1
2 h11h

1
3 h12h

1
3

1 h21 h22 h23 (h21)
2

(h22)
2

(h23)
2

h21h
2
2 h21h

2
3 h22h

2
3

...
...

...
...

...
...

...
...

...
...

1 hns1 hns2 hns3 (hns1 )
2 (hns2 )

2 (hns3 )
2 hns1 h

ns
2 hns1 h

ns
3 hns2 h

ns
3

 ,
(3.31)

The model is often non-interpolative, with more equations (points in the sample)

than unknowns (number of coe�cients in c). Therefore system (3.30) cannot
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be solved exactly but using a least squares minimization criterion, that is min-

imizing the Euclidean norm of the residual, namely ‖y − Ac‖. This results in
taking the vector of unknown coe�cients solution of

(ATA)c = ATy. (3.32)

This method presents drawbacks for high-dimensional data and data with oscil-

lations. Increasing the order of the Polynomials may improve accuracy. How-

ever, for high-order approximations Runge's phenomenon creates instabilities

and wrong predictions (Boyd and Xu, 2009).

3.5 Uncertainty Quanti�cation

3.5.1 Monte Carlo sampling with surrogate modeling

Once the surrogate model is available, the Monte Carlo UQ assessment with a

large number of samples nMC is produced at an a�ordable computational cost.

Thus, for each of the three metamodels introduced above (SRS, OK and

PRS) nMC realizations h1,h2, . . . ,hnMC are produced and the corresponding value

of the mean, variance (and standard deviation) and probability density function

(pdf, to be approximated as a histogram) is readily estimated:

Mean = E[F (h)] =
1

nMC

nMC∑
k=1

F (hk) (3.33)

Variance = σ2 =
1

nMC − 1

nMC∑
k=1

(
F (hk)− E[F (h)]

)2
, (3.34)

The PDF corresponding to Y = F (h) is denoted by fY (y) and it is approxi-

mated by histogram pY (y) computed on the basis of the nMC Monte Carlo samples

yk = F (hk), for k = 1, 2, . . . , nMC. Note that histogram pY (y) is a piecewise con-

stant function de�ned over a partition in uniform intervals of the Y domain,

ΩY =
⋃nY
`=1 I`. Piecewise constant function pY is such that for y ∈ I`, pY (y) is

equal to the number of samples yk lying in I` divided by ns.

Each response surface is used to generate the images of the nMC = 50000

samples of the input space h ∈ IRnd , that is h → Y ). The backward mapping

technique (Y → X → QoI) described in Section 3.3 is used to obtain the

statistics of the QoI.

Comparing the obtained values of mean and variance is straightforward be-

cause they are scalar values. However, comparing PDFs is not as trivial. Here,
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the Kullback Leibler divergence technique is proposed as a criterion to compare

the PDF functions.

3.5.2 Comparative criterion for PDFs

Kullback-Leibler (KL) divergence is used as a comparative criterion for the dif-

ferent resulting Monte Carlo PDFs of each metamodel. This quantity measures

di�erences between two PDF functions Galas et al., 2017. Two random vari-

ables F and G have PDFs f and g. The KL divergence is introduced as a

distance that quanti�es if the two random variables are similar enough. The

random variable F and its PDF f are taken as the reference and g is considered

to be an approximation to f . Thus, KL divergence between the two continuous

PDFs f and g reads:

DKL(F‖G) =
∫ ∞
−∞

f(y) log

(
f(y)

g(y)

)
dy. (3.35)

Note that equation (3.35) is associated with the notion of entropy and it is

interpreted as the relative entropy or the information gain from G to F .

In the case the PDFs are replaced by their discrete counterparts, that is

histograms, instead of f and g, one has histograms pY and qY with the format

described in the previous section. Thus, pY and qY are expressed as the values

of the probability of being in each of the nY bins, that is pY (y`) and qY (y`), for

` = 1, 2, . . . , nY and y` ∈ I`. The discrete counterpart of equation (3.35) reads

DKL(pY ‖qY ) =
nY∑
`=1

pY (y
`) log

(
pY (y

`)

qY (y`)

)
. (3.36)

The values obtained using the discrete KL divergence introduced in equation

(3.36) depend on the number of bins, nY . In order to normalize these values, a

normalizing constant is introduced providing a reference to understand whether

the resulting discrete KL divergence is actually small enough. Note that the

KL divergence is seen as a distance but it is not conceived as the norm of a

di�erence. Thus, it is not possible to normalize dividing directly by the norm of

pY (or f in (3.35)). In order to obtain a reference value, we propose taking the

distance of pY to the less informative distribution, that is the uniform histogram

qU such that qU(y`) = 1
nY
, for ` = 1, 2, . . . , nY . The rationale behind this choice

is taking qU as the zero or absolute reference distribution. This value is denoted
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as D0
KL and reads

D0
KL = DKL(pY ‖qU) =

nY∑
`=1

pY (y
`) log

(
nY pY (y

`)
)
. (3.37)

Note that the quantity D0
KL de�ned in equation (3.37) is actually the entropy

of pY . Dividing the �gures obtained with the KL divergence of (3.36) by D0
KL

provides a relative value that allows elaborating a more informed criterion to

decide if pY and qY are su�ciently close to each other.

3.6 Benchmark B-Pillar results with DR and SM

In this section, the combination methodology of kPCA + SRS explained in

detail in the previous is applied for the B-Pillar crash problem to show the

performance of the methodology. Also, OK and PRS are applied as a classic

surrogate techniques to compare the SRS results.

3.6.1 DR with kPCA

Initially, a certain amount of VPS/Pamcrash simulations is required to recon-

struct the input matrix X for kPCA manifold analysis and dimensionality reduc-

tion (the training set computed in an o�-line phase). These simulations are the

initial samples for the data analysis. A key issue is quantifying the number of

samples required to obtain enough and credible information to describe the low-

dimensional manifold containing the solution. As described above, we devise

the combined use of kPCA to reduce the dimensionality, di�erent techniques

to build a response surface, and the KL divergence as a measure to compare

the di�erent probability distributions and stop enriching the sampling. This

process is illustrated in the �owchart scheme shown in Fig.3.3, and it is detailed

next:

The eigenvalues of the kernel matrix G = VΛ̃VT in kPCA (equation 3.7),

show the quantity of information collected by each associated eigenvector, as

explained in section 3.3 and more detailed in García-González et al., 2020. Sum-

marizing, the largest eigenvalue measures the largest amount of information col-

lected by the corresponding eigenvector. For instance, for the �rst eigenvalue of

matrix Λ̃, the associated eigenvector is the �rst column of matrix V. Adopting

the �rst component as reduced model (keeping only one principal component,

the �rst one), the d = 142 dimensions of the training set samples (each column
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Figure 3.3 Flowchart scheme to select the number of simula-
tion ns for the kPCA input matrix X.

of matrix X) are reduced to one scalar number and the ns samples are stored

in the vector y = [y1y2...yns ]T , see sections 3.3 and 3.4 for more details.

In the case of our benchmark crash problem, reducing to one dimension

collects more than 80% of information of the manifold where data belong. This

80% �gure allows considering as admissible in this context, and in agreement

with the resulting approximations, the very advantageous reduction to a single

dimension. This �gure is calculated along the sampling re�nement process (for

di�erent values of ns) to check the behaviour of the quantity of information

retained in the one-dimensional reduction. This is shown in Fig.3.4, where it

can be noticed that even using only 100 samples, the �rst eigenvalue collects

already 80% of information.

Figure 3.4 Quantity of information [%] stored by the �rst
eigenvector by increasing the number of samples ns.
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At this point, the number of samples ns is required to guarantee some sta-

tistical accuracy. The KL divergence is used to compare the subsequent distri-

butions of probability of the QoI, obtained with the training sets corresponding

to the di�erent values of ns, see Fig. 3.3. That means, to validate the �nal

value of ns = 2366, to be used in the input matrix X for analysis (instead of

the starting value of ns = 100). That is, the histogram obtained by the values

of y for a low number of samples ns is compared by the KL divergence criterion

with the histogram for a higher number of samples. This process is repeated by

increasing the number of samples until the value of the KL divergence becomes

smaller than 10−2 (considered low enough for our required accuracy). The re-

sults obtained in this process are detailed in Fig.3.5, where it is clear how the

histograms become more stable increasing the number of samples, and conse-

quently the KL-Div value decreases. For the �nal number of samples ns = 2366,

the KL-Div value is below the prescribed tolerance. Recalling expression (3.37),

the calculated value of D0
KL for the �nal histogram in Fig.3.5 is D0

KL = 0.2361.

Thus, the relative value of the di�erence of the last two distributions is of 2.9%.

Additionally, Fig.3.6 shows how the KL-Div value becomes stable when the

number of samples is rich enough. At this point, increasing the number of

samples does not add extra information to the model.

Fig.3.7a shows the �nal histogram obtained for the �nal sampling, ns = 2366.

Additionally, the low dispersion of the results by using one reduced dimension

is con�rmed (the �rst eigenvalue contains 82.61% of information, stored in y =

[y1y2...yns ]T ). Moreover, the consistency of the backward mapping from vector y

to x and then calculating the corresponding QoI is also con�rmed by the results

in Fig.3.7b.

3.6.2 Link between input space and reduced space

The �rst principal component y is linked to its corresponding values of h =

[h1, h2, h3]
T . Fig. 3.8 shows the scatter plot between the reduced space and

the inputs h2, h3. Moreover, two clusters with di�erent density are observed.

The input h1 is discarted by the criterium of Spearman Correlation coe�cient

(SpC) (Hauke and Kossowski, 2011). The dependences between the �rst princial

component with respect to the inputs are:

• SpC(y, h1) = 0.035

• SpC(y, h2) = 0.163

• SpC(y, h3) = −0.968
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Figure 3.5 KL divergence evolution between histograms with
di�erent sampling size.

Figure 3.6 Evolution of KL divergence with respect the num-
ber of simulations.

Clearly, h1 shows a very small correlation, and therefore is discarded for

surrogate modeling.
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(a) (b)

Figure 3.7 (a) Reference values of histogram, mean, variance
and standard deviation of the �rst principal component y of
kPCA. This reference values are achieved with 2366 simula-
tions in VPS/Pamcrash. (b) Scatter plot around the identity
function (red) of the QoI with respect to the approximated for

the �rst principal component y.

Figure 3.8 Scatter plot between the reduced space y and the
inputs h2, h3.

Scattering plots for sensitivity analysis

In Fig. 3.9 it is shown the scattered plot between the reduced space y and the

inputs h2, h3. Referring to Fig. 2.16, two modes of probability are observed.

The input samples that are falling in the small mode are plotted in red and in

the big mode in blue. It is illustrated that in plot (A) for any sample point h2 we

can obtain any response y. Instead, in plot (B) it is observed a sigmoid shape,

Any value of the input parameter h3 is de�ned practically all the behaviour of

the model modes. However, in the range h3 = [1.2 − 1.3] it is shown that the

response y can fall in the red or blue area.
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To tackle this uncertainty range, the parameter h3, in Fig. 3.10 it is blocked

to h3 = 1.3. The green samples shows the behaviour of h2 and y with an h3
equal to 1.3 mm.

(a) (b)

Figure 3.9 (A) Scattered plot h2,y (B) Scatter plot h3,y.
In red samples falling in the small mode and in blue samples

falling in the big mode with respect to Fig. 2.16.

Figure 3.10 Scattered plot h2,y. The green points are the
samples with the condition h3 = 1.3 mm.

Fig. 3.10 shows a clear sigmoid behaviour between h2−y when the input h3
is in the order of 1.3 mm (green samples). In consequence, the input parameter

h2 will de�ne the the whole behaviour of a sample point to fall in the red or

blue clusters when h3 = 1.3.

3.6.3 Surrogate modeling

In Fig. 3.11 it is shown the response surface of SRS, OK and PRS metamodels

between the �rst principal component of kPCA (storing 82.61% of information)

and the inputs h2, h3. The metamodels F
OK
and F

SRS
show adaptive behaviour
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with the sample points (in blue). However, the F
PRS

metamodel exhibits unstable

tails in areas where there are few samples from the training set. This problem is

called Runge's phenomenon and is common due to lack of sampling in the tails of

the distributions. To evaluate the behaviour and the robustness of the response

surfaces, each surface is evaluated increasing new random samples until 50000

points, aiming to compare histograms, means and standard deviations with

respect to the reference values plotted in Fig. 3.7.

(a)

(b)

(c)

Figure 3.11 In red, is shown the response surfaces of (A) SRS,
(B) OK and (C) PRS. In blue, the scattering samples.

In Fig.3.12 the histogram, mean, variance and standard deviation results of

50000 new random samples are illustrated for the evaluation of each metamodel.

The three metamodels give approximations to the mean with an error around
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5% of the Standard Deviation. Since the current reference mean (Figure 3.7a)

is zero, both positive and negative values can be expected. The histograms of

the F
SRS

and F
OK
metamodels show similar bimodal distribution with respect to

the reference histogram illustrated in Fig. 3.7a. However, the two modes of dis-

tribution are not captured with the F
PRS

metamodel. The Runge's phenomenon

of the response surface and a worse adaptation to the sampling points overlooks

the two distribution modes.

In Fig. 3.13 the convergence of the three surrogate models are compared with

the reference values while new random points for each metamodel are increased

up. The results of this comparative study shows similar results in terms of mean

and standard deviation for the three techniques. Meaning that these statistical

values are not sensitive for the criterion to select the best surface. However,

the results for the KL divergence clearly shows a worse behaviour for the PRS

method caused for the tails of the response surface. In contrast, SRS and OK

have similar results for the KL divergence where a very good performance is

observed.

3.6.4 Uncertainty quanti�cation for the surrogate model

Once the surrogates F (·) are available, for each input value h, the correspond-

ing z? is straightforwardly computed as F (h). Then, the backward mapping

produces the corresponding input vector x of plastic deformation values in the

area of interest, being l0(x) its the associated QoI. The concatenation of the

three operations is computationally negligible with respect to the cost of the

training set of full order simulations. At this point, standard Monte Carlo is

performed with 50000 new random samples for h1, h2 and h3 to evaluate each

metamodel. In Fig. 3.14 it is presented the corresponding PDFs of the QoI for

the metamodels (SRS, OK and PRS). A bimodal function with approximately

19% of probability for the small mode and 81% for the big mode can be appre-

ciated for SRS and OK. Otherwise, PRS fails to capture such behaviour. The

statistical variables of the QoI for each metamodel are presented in Table 4.1.

Here the three variables present similar results, which means that any meta-

model captures similar information in terms of mean, variance and standard

deviation.

Recalling that kPCA improves the mapping back to the original variable

x, a physical interpretation of the bimodal PDF can be performed. The cor-

responding behaviour of the structure for each mode of the PDF is illustrated

in Fig. 3.15. Clearly, two physical modes are observed. The �rst snapshot of

Fig. 3.15 shows the higher values of plastic strain and a signi�cant back-bend of
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the plate pro�le. Otherwise, the second snapshot shows lower values of plastic

deformation with a more rigid behaviour of the plate. The �rst physical case

present 81% of probability and the second case 19% of probability occurrence.

Table 3.1 Statistical variables for each metamodel.

Mean Variance StD

Reference values 0.0695 0.1546 0.0239

SRS 0.07245 0.1452 0.0211

OK 0.0659 0.15 0.0225

PRS 0.0707 0.1479 0.0219

3.7 Conclusions

A nonintrusive methodology to perform uncertainty quanti�cation for crashwor-

thiness problems is presented. The basic idea is to combine some dimensionality

reduction technique (here kPCA) with a surrogate model based on a training

set of full-order solutions (ideally not too many, because of their computational

cost). The dimensionality reduction eases the task of the surrogate model and

enables the analyst to detect clusters and categorize the data. The surrogate

model (or metamodel) substitutes at a negligible computational cost the orig-

inal full-order model. It therefore permits producing multiple queries to the

model, corresponding the di�erent parametric input values demanded by the

Monte Carlo strategies.

In the benchmark problem considered, kPCA allows describing the full phe-

nomenon with only one principal component, accounting for more than 82%

of the total variance (that is, of the information). This problem is relevant in

automotive engineering (and often used as benchmark by SEAT engineers) and,

despite the fact that only three input parameters are assumed to have stochastic

nature (and 3 dimensions are not awakening the curse of dimensionality), the

dimensionality reduction is still pertinent to simplify the output of interest to

be analyzed. Actually, using kPCA, only one principal component is accounting

for more than 82% of the total information. It also detects two clusters corre-

sponding to two deformation modes and two di�erent levels of the QoI. The

UQ methodology is also providing the probabilities of occurrence of these two

modes, which are 19% and 81%. This is re�ected in a bimodal PDF, one mode

having a probability four times larger than the other. Moreover, using kPCA
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as dimensionality reduction strategy the backward mapping from the reduced

space is more accurate and allows interpreting the mechanisms associated with

these two modes.

In the presented methodology for a crash problem, the use of linear PCA

is also a suitable option. On the one side, if a single scalar QoI is required for

decision making, PCA is simpler than kPCA. On the other side, if it is necessary

to �nd both an accurate QoI, as well as a more detailed approximation of the full

original variable x map, corresponding to a complete deformation �eld, kPCA

improves the mapping back to the original input space, since it accounts on the

intrinsic nonlinearities involved in the manifold of training set. Thus, both PCA

or kPCA can be used for this methodology, depending on the main objective

sought. In this manuscript, for the reasons mentioned above, kPCA is used and

described in more detail. This allows dealing with problems representing more

complex phenomena, where data lies in highly nonlinear manifold.

Three formats of the surrogate models are taken into consideration, Ordinary

Kriging (OK), Polynomial Response Surface (PRS) and a Separated Response

Surface (SRS) approach, introduced here as novelty and based in the PGD

methodology. The assessment of the mean and variance of the outcome (the

QoI) is properly computed using the three alternative surrogates. However,

when it comes to analyze the PDF (approximated by histograms), the SRS and

OK surrogates perform much better than the PRS. The PRS surrogate fails to

capture the bimodal character of the PDF.

Being OK an interpolative methodology (the response surface passes through

the data of the training test), it is pretty sensitive to the noise contained in the

data. In the current examples, this is not an important issue, because the data

is not particularly noisy. However, it may be relevant in other cases. SRS

being a least-squares �tting it is not su�ering of this drawback. Moreover,

SRS is proposing an explicit parametric solution, therefore it can be used to

compute derivatives or to integrate it analytically. This allows also to compute

the statistical moments, probability density function and cumulative density

function with analytical methods, circumventing the Monte Carlo sampling.

Another interesting feature of the SRS is its fair scalability with the number of

input parameters (stochastic dimension).

The combination of the kPCA manifold learning technique with the di�erent

surrogates o�ers an attractive framework to perform UQ in complex problems.

Here, the application to parametric crashworthiness simulations open new per-

spectives. The available alternatives for the surrogates (in particular OK and
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SRS) and the dimensionality reduction techniques at hand, are a powerful tool-

box allowing to attack challenging problems in science and engineering.

The combination of dimensionality reduction and surrogate models produces

accurate solutions at an a�ordable computational cost, accounting also for the

uncertainty, that is assessing the credibility of the simulation. Particularly in

the context of crashworthiness UQ, the computational cost is a key issue and a

driving force for the research developments in the �eld. Obviously, increasing

accuracy requires a higher computational e�ort. Finding a trade-o� between

these two factors is a daily concern for research engineers. This chapter intends

to provide tools to achieve accurate and credible crashworthiness industrial

simulations at an acceptable computational e�ort.

The proposed approach demonstrates promising results for UQ analysis in

the crashworthiness framework. However, from a data-driven point of view,

it is interesting to refocus the methodology proposed in this chapter towards

a more autonomous algorithm for multi-purpose analyses. The next chapter

takes into account the development of an adaptive autonomous application for

engineer decision making for multi-purpose engineering analyses accounting for

uncertainty.
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(a)

(b)

(c)

Figure 3.12 Histogram, mean and standard deviation results
of the di�erent surrogate models. (A) SRS, (B) OK and (C)
PRS. The results are obtained by evaluating each surrogate

model with 50000 new random samples.
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(a)

(b)

(c)

Figure 3.13 Convergence plots of SRS, OK and PRS evalu-
ating KL divergence, mean and standard deviation with re-
spect to the reference values(KL=0, mean=0, standard devia-

tion=1.5428 plotted with the dashed line).
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(a) (b)

(c) (d)

Figure 3.14 a) shows the histogram of the 2366 reference sam-
ples. b), c) and d) shows the histograms of the QoI by evaluat-
ing 50000 random samples for SRS, OK and PRS metamodels.
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(a)

(b)

Figure 3.15 a) Snapshot simulation of the plastic strain in the
biggest mode in the QoI histogram. b) Snapshot simulation of
the plastic strain in the smallest mode in the QoI histogram.
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Chapter 4

Adaptive UQ methodology for

multi-purpose engineering analysis

Chapter 3 presents a novel UQ methodology for high dimensional outputs with

non linear behaviours in the �eld of crashworthiness, combining dimensional-

ity reduction and surrogate modeling. A dimensionality reduction technique is

proposed to reduce the output data to a reduced space with lower dimension.

The reduced space is compared with di�erent training sets until achieve a KL

convergence criterion. Then, di�erent surrogate models are proposed to estab-

lish a relationship between the input space and the reduced space of outputs.

Once the metamodel is achieved, the standard Monte Carlo is implemented to

perform an UQ analysis within a negligible computational cost.

In this chapter is presented an methodology to evaluate only the necessary

samples for the training set without losing precision for multi-purpose engineer-

ing analyses. The novelty approach is based in an adaptive strategy combining

dimensionality reduction and surrogate modeling explained in Chapter 3 with

a data-driven strategy.

The chapter is structured as follows: section 4.1 a brief introduction and

motivation. In Section 4.2 a benchmark crash problem is presented. In Section

4.3 is provided the description of the adaptive methodology divided in main

steps. In Section 4.4 it is presented the results of the benchmark problem for a

vademecum of 3000 simulations and the results of the proposed methodology.

Finally, Sections 4.5 closes the chapter with conclusions.

4.1 Introduction and motivation

Empathizing that for the crash industry each single model consume hours of

CPU it is essential to reduce the number of simulations to a small set of training

runs. Recently, Min Li proposed a sensitivity analysis methodology combining

PCA and Kriging for models with high-dimensional outputs. The study was
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applied for the San Francisco coastal protection (Li, Wang, and Jia, 2020).

Also J.B Nagel, J. Rieckermann and B. Sudret proposed a sensitivity analysis

methodology applying PCA for the reduction of the outputs and Polynomial

Chaos for surrogate modeling for an urban drainage model (Nagel, Riecker-

mann, and Sudret, 2017). All of these studies present strategies for dealing

with dimensionality reduction and surrogate modeling for UQ. However, large

number of simulations for the training set are needed, and in consequence high

computational cost for the �eld of crashworthiness.

In this chapter, an adaptive (or levelled) methodology that combines di-

mensionality reduction and surrogate modeling for nonlinear complex models is

proposed. Speci�cally, kPCA is used to reduce the high-dimensional outcomes

to low number of components and OK to metamodel between the stochastic

input space and the reduced space from kPCA. Quite apart from the terms of

standard UQ, the methodology allows obtaining complementary multi-purpose

information of the model. Di�erent features of the model are obtained in this

context with a negligible additional computational e�ort: structural modes as-

sociated with output data, sensitivity analysis (in�uence from perturbation of

input parameters in the results), statistical assessment of various quantities of

interest. The method provides an e�cient and robust tool for decision making

with the minimum evaluations of the full order model but guaranteeing preci-

sion. This adaptive strategy allows to evaluate only the necessary samples for

the training set to optimize the computational cost. In order to demonstrate the

performance of the proposed approach, a benchmark crash problem is studied.

The literature contains di�erent works in crashworthiness UQ �eld (Rocas et

al., 2021; Rocas et al., 2020; Wang et al., 2018), where di�erent UQ approaches

are shown implementing techniques as Monte Carlo, Polynomial Chaos, Quasi

Monte Carlo, dimensionality reduction and surrogate modelling.

4.2 Industrial application: The tapered model

In this section, a industrial benchmark problem is presented to validate the

feasibility of the proposed UQ methodology.

4.2.1 Model description

In the �eld of crashworthiness, the B-pillar is a part of the structure of a car

that plays an important role in passenger safety. The manufacture process is
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one of the keys to achieve a successful design. Initially, the B-pillars were de-

signed by assembling monolithic parts with di�erent strengths capabilities. The

idea was to produce a substructure with variable strength depending on the ex-

ternal loads. Recently, this structure design has been improved by reducing the

number of pieces and weight by introducing a tailored templed B-pillar with a

variable hardness pro�le, that is variable mechanical properties. The tailored

tempering manufacturing process results in a progressive hardness pro�le, as

illustrated in Fig. 4.1. An austenitized sheet piece with a thickness of 1.5 mm

is introduced to a tailored press. This press is divided in two halves. One half

with a temperature of 40◦C and the other half with 530◦C. After a holding

time of 20 seconds the piece is extracted and cooled down to room tempera-

ture. As a result, the piece has a progressive hardness pro�le. In Fig. 4.3 is

illustrated the hardness curve. The problem of the tailored tempering process

is to ensure certain reproducibility within a series production process. Random

perturbations of the mechanical properties are inevitable in serial production.

Thus, the resulting mechanical properties are a�ected by important uncertain-

ties, to be modelled with material parameters of aleatoric nature. Controlling

this stochastic process with robustness is a challenge for the industry, and rep-

resents a cumbersome task. Therefore, computational modelling can be a hard

task due to its random behaviour.

Figure 4.1 Tailored tempering process. Tailored press with
two temperatures. The Right press with 40◦C and the left

press with 530◦C.

For this research, the model is developed with explicit formulation in VPS/Pamcrash.

Solving the equation 2.1 of transient dynamics explained in Chapter 2.
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A simpli�ed model is adopted here to demonstrate the strengths and ca-

pabilities of the proposed algorithms and data driven strategies. It models a

tapered tensile specimen. With respect to a realistic B-pillar pro�le, this bench-

mark has much lower computational requirements while containing the essential

features of the problem, allowing to account for the same conceptual di�cul-

ties and reproduce all the pertinent mechanisms. The geometry of the model

is illustrated in Fig. 4.2. The structure is �xed in the right side. In the left

side a uniform displacement of 7 mm in 40 ms (uniaxial load) is prescribed.

The benchmark is modelled using the Belytschko-Tsay shell element with one

integration point in the plane. The model has a total of 329 quadratic shell

elements of 1.5 mm (thickness) and 384 nodes. A fracture model with a no

element elimination con�guration is implemented to guaranty the same number

of elements for each simulation. For the time discretization it is used a time

step of 0.2 ms.

Figure 4.2 Geometry of the benchmark model.

The model is characterized with a Young Modulus of 200 GPa and a Poisson

ratio of 0.3. Due to the manufacturing process explained above, the variability

of the problem comes from the hardness curve of the material. To characterize

the random behaviour of the curve, the position of the three points in Fig. 4.3

are taken as the uncertain input of the problem. Namely, Point 1=(h1, h4), point

2=(h2, h5) and point 3=(h3, h6). The six stochastic variables are collected in a

vector of inputs h = [h1, h2, h3, h4, h5, h6]
T . The random inputs are assumed to

be uncorrelated with Gaussian distributions hi ∼ N (µi, σi), i = 1, 2, ..., 6. All

the other parameters in the model are considered deterministic. In Table 4.1

the mean and standard deviation for each variable is described.
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Figure 4.3 Hardness curve for the sheet piece through the
manufacture process of heated and cooled press halves.

Table 4.1 Uncertainty variables.

Inputs Mean StD
hi µi σi
h1 20 5.5%
h2 70 5.5%
h3 120 3%
h4 212 5.5%
h5 360 2.5%
h6 460 3%

The output of the solution U of eq. 2.1 is characterized as a QoI vector x of

dimension d = 329, corresponding to the values of the plastic strain in 329 shell

elements. In practise, sampling the parametric input values and computing the

full order model results in collecting di�erent vectors of x ∈ IRd.
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4.3 Adaptive UQ methodology

A novel UQ methodology for high dimensional outputs in the �eld of crashwor-

thiness is proposed in the Chapter 3 (Rocas et al., 2021). The methodology

combines Dimensionality Reduction (DR) and Surrogate Modeling (SM). The

approach requires a speci�c number of evaluation (obtained with hierarchical

KL-Divergence criterion) of the high order model for the UQ methodology.

Then, a DR technique is proposed to reduce the output data to a reduced

space with lower dimension and SM to establish a relationship between the in-

put space and the reduced space. Once the metamodel is achieved, a standard

Monte Carlo analysis is carried out to perform an UQ study with a negligible

computational cost.

The main disadvantage of this approach is how to de�ne the number of sam-

ples for the training set (to guarantee enough information for an UQ analysis).

In industry, the size of the data set is de�ned based on computational resources,

objectives, and the model. In terms of e�ciency, this is an inappropriate ap-

proach to deal with this kind of problems, since the computational cost of the

full order model is high, where each evaluation consume high resources and

time. In this section it is presented an UQ methodology to evaluate only the

necessary samples for the training set without losing precision.

To guarantee a robust design with a small number of evaluation of expensive

models becomes a real challenge. The proposed methodology is developed to

deal with the complex issue to quantify the uncertainty for crash problems,

with the aim of minimizing computational cost, while preserving precision with

an adaptive approach. In this section, the main steps of the proposed strategy

are described. Fig. 4.4 presents the �owchart, and in the following subsections

each step is explained in detail. A general overview of the main steps in the

�owchart follows:

• The �rst step, called A-Training set, relies on the identi�cation and char-

acterization of the stochastic inputs to evaluate the expensive model in a

set of training points. Then, the QoI of each simulation is stored in the

output matrix X.

• The second step, B-Dimensionality reduction is based on the kPCA di-

mensionality reduction technique applied to nonlinear data set. However,

other techniques can be implemented. This step is intended to reduce

the dimension of the output matrix X. The reduced space of princi-

pal components allows to detect hidden structural modes and also avoids

jeopardizing the metamodel approach.
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• The third step, C-Surrogate modeling , corresponds to the development

of a response surface between the reduced space, from kPCA, and the

stochastic space of inputs. The metamodel allows to substitute the full

order model to evaluate any new point in the reduced space and to map

it backwards in the original space (García-González et al., 2020).

• The fourth step, D-Parametric convergence quanti�cation, it is evaluated

the metamodel with new Monte Carlo samples as a substitute of the

expensive model. Sensitivity analysis of the input parameters (Sobol'

indices) and clustering are performed in the enriched reduced space of

kPCA. These indices are used in a stopping criterion to check the con-

vergence and stability of the method.

• In the �fth step, E-Uncertainty quanti�cation, the enriched space of kPCA

is mapped backwards to perform uncertainty quanti�cation of the input

space. Statistical measures of the input space (QoI histograms, means,

variances, standard deviations and free new simulations) are analyzed with

negligible computational cost.

The �rst four steps (A, B, C, D) are implemented in an adaptive scheme

with di�erent levels of sampling sizes. The variance of the percentage of the

clusters and the sensitivity indices of the input parameters are compared for each

level aiming to analyze the stability of the problem outcome. If the stopping

criterion is ful�lled, the method stops. If not, it goes to the next level with a

new sampling size ns, for enriching the training set. This levelled approach is

implemented until stability is achieved. The details of the adaptive stopping

criteria are explained in Section 4.3.5.
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Figure 4.4 Flowchart of the adaptive UQ methodology

4.3.1 Training set

Let us consider a set of random variables describing the input parameters of

the model by h = [h1h2 · · ·hnd ]T . A Halton sampling technique (Wong, Luk,

and Heng, 1997) is used to select ns points (to build a discrete training set

in the input space). The advantage of Halton sequence with respect other

techniques as Monte Carlo, Hammersley sequences, among others, is the nested

samples property for each resampling level size. The sampling points of the

input space are stored in the matrix H = [h1h2 · · ·hns ] ∈ IRnd×ns . Each input

vector hi, i = 1, 2, ..., ns requires a single run in VPS/pamcrash. The idea is to

evaluate ns simulations of the expensive model to store the output responses in

X = [x1x2 · · ·xns ] ∈ IRd×ns as a training set. In the benchmark problem, each

xi collects the maximum plastic strain of all the elements of the model in the

last time step. Fig. 4.5 illustrates the �owchart to sample the parametric space

and obtain the training set.



4.3. Adaptive UQ methodology 85

Figure 4.5 Flowchart of the training model.

4.3.2 kPCA dimensionality reduction

Analyze the training set and �nd the principal components allows to reduce de

complexity of the problem. The dimensionality reduction technique kPCA is

proposed for the reduction of the output matrix X = [x1x2 · · ·xns ] ∈ IRd×ns . It

is of utmost importance consider that in the �eld of crashworthiness the data is

nonlinear. The standard Principal Component Analysis (PCA) captures linear

behaviours, however for this research kPCA is implemented for its non-linear

ability and the extremely advantageous backward mapping to recover back the

full-order object in as accurately as possible. In this aspect, kPCA behaves

much better than PCA in many cases.

kPCA provides a useful tool to transform the original data from high dimen-

sional space to a low dimensional space where the main features of the input

data are kept. Considering the training set matrix X = [x1x2 · · ·xns ] ∈ IRd×ns

as the input matrix, the main objective is to �nd a low dimensional space, where

the �rst k principal components retain most of the information to capture the

data behaviour. For this, a nonlinear mapping function Φ(x) is needed, where

in general it is unknown. However, the most used kernel functions are:

• Gaussian kernel: κ(xi,xj) = e−β‖x
i−xj‖2

• Linear kernel: κ(xi,xj) =< xi,xj >

• Polynomial kernel: κ(xi,xj) = (< xi,xj > +b)p

Collecting a reduced number of terms with enough pieces of information

allows to reduce the number of metamodels for the feature space z?, and in

consequence, the computational cost. This combination is problem dependent

and re�t kPCA multiple times to compare di�erent kernels and parameters with

a optimization function is needed. Also, if the data has di�erent behaviours and

the mapping function is appropriate, then the reduced space z? is a sensitive

measure for cluster detection (structure modes).
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In practice, this boils down to apply kPCA and determine a mapping func-

tion G(x) between the solutions x ∈ IRd and some new variable z? ∈ IRk in

a much lower-dimensional space (k � d). The set of eigenvalues provides the

criterion to choose the number of terms k to be retained for the reduction (for

the benchmark problem, 90% of information must be retained), leading to,

z? = G(x). (4.1)

The mapping between x and z? is to be characterized forward and backward

as x? = G−1(z?) ≈ x. There exist di�erent techniques available in the literature

(Zheng, Lai, and Yuen, 2010; Wang, 2012). For this research, it is implemented

a technique based on a minimization of the discrepancy functional (residual)

(García-González et al., 2020).

The proposed weighting distance technique (García-González et al., 2020)

associates weights to each value in the calculation based on the distance between

the samples and the input sample x. Let di for i = 1, ..., ns be the squared

distances di = ‖z? − z? i‖. Where wi are the weights de�ned by,

wi =
1/d2i∑
ns

j=1 1/d
2
j

. (4.2)

Here, the inverse of the squared distances (1/d2) is used to de�ne the weights,

following (García-González et al., 2020). Any other decreasing function of the

distance is admissible, to account for the in�uence of the distance in the weights.

Any version of the radial-based interpolation is commonly used to construct

surrogate models based on samples from a training set.

For a z? point in the reduced space it corresponds a x point in the original

space de�ned by:

x ≈
ns∑
i=1

wix
i. (4.3)

This technique allows to backward any point from the reduced space z? to the

original space. In Fig. 4.6 it is illustrated the �owchart for the dimensionality

reduction step.
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Figure 4.6 Flowchart of the dimensionality reduction step.

4.3.3 Surrogate modeling

In crashworthiness, it is common to have high dimensional output matrices.

In consequence, it is una�ordable to construct a surrogate model in terms of

computational cost to deal for an e�cient approach.

The main idea of this surrogate modeling step is constructing a response

surface z? = F (h), from input h to the reduced space z?. Here, the surrogate

technique is presented to establish a functional dependency among some input

h and some output function y(h) (typically, a post-process or reduced model

of x?).

A scalar output Y is considered for any of the components of y(h). For the

benchmark problem, Y corresponds to the �rst principal component of kPCA,

that is Y = [z?]1 = [y1y2 · · · yns ]T , where yi, i = 1, 2, ..., ns are the points of the

reduced space .

The functional dependence Y = F (h) is determined from the data provided

by the training set, and the dimensionality reduction space. The metamodel

function F (h), approximates for any input h the corresponding image yi in the

reduced space. Then the backward mapping explained in Section 4.3.2 returns

to the input sample by x? ≈ G−1(F (h)).
For this research, Ordinary Kriging (OK) is used for metamodeling. In the

literature di�erent papers regarding kriging metamodeling (Oliver and Web-

ster, 2014; Rocas et al., 2021). Other surrogate modelling technique can be

implemented as Polynomial Chaos or Separated Response Surface (Rocas et

al., 2020). However, kriging shows a better performance for crash modelling

(Rocas et al., 2021). The purpose is to evaluate the metamodel with new nMC

realizations to estimate new z? values to enrich the reduced space for a posteriori

UQ analysis. Here it is presented a brief review of OK for the methodology.
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OK is an interpolation surrogate method that determines weights for a set of

sample points to obtain a prediction of a new input. The weights are based on a

variogram model that has the main advantage of estimating di�erent variances

for any distance between a pair of samples. The kriging metamodel F (h) of

any point h is de�ned by:

F j(h) =
ns∑
i=1

wij(h)[y
i]j, j = 1, 2, ..., k. (4.4)

The unknowns w are the weights and [yi]j are the scalars of the principal

component j of kPCA. This means that for each dimension of z? is needed a

particular surrogate model. Therefore, the �rst k terms of the feature space

determines the number of metamodels needed for the approach. The main

condition with OK with respect other Kriging approaches is that the sum of

weights is equal to 1. For more theoretical details of OK see (Oliver andWebster,

2014). In Fig. 4.7 it is illustrated the scheme for the surrogate modeling block.

Figure 4.7 Flowchart of the surrogate modeling.

4.3.4 Parametric convergence quanti�cation

Optimization and redesign is a common task in crashworthiness, where detecting

the main structure modes and the principal parameters could provide a useful

tool for the engineers. For that, once the surrogate model F (h) is available,

for each input value h, the corresponding z? is computed as F (h). At this

point, standard Monte Carlo is performed with nMC = 105 new random samples

of h to evaluate the surrogate model. The operations are computationally

negligible with respect to the cost of the training set of the full order simulations.

Therefore, sensitivity and statistical measures are easily performed.
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In order to quantify the parametric uncertainty of the problem, sensitiv-

ity analysis of the input parameters (Sobol' indices) and clustering (structure

modes) are performed in the enriched reduced space z? of kPCA with new

nMC = 105 samples. Here, the clustering technique K-means (Likas, Vlassis, and

Verbeek, 2003) is implemented for the reduced space z? ∈ IRk×ns in order to de-

tect clusters in the data. However, other cluster techniques can be implemented

(Saxena et al., 2017) . On the other hand, Sobol' indices are implemented to

characterize the in�uence of the inputs to the outputs.

The essence of Sobol' indices is based on a variance decomposition of the

feature space Y . We can de�ne the total variance of Y as V arY . Therefore,

V arY can be decomposed into partial variance associated with the inputs h as

V arY =
∑

nd

i=1 V ari +
∑

nd−1
i=1

∑
nd

j=i+1 V arij + ...+ V ar1,...,nd , where V ari denotes

the variance contribution of the parameter hi. While the other terms make

reference with high order of interaction between inputs h. Two sensitivity

measures provide the Sobol' indices:

• Parameter in�uence ranking

• Identi�cation of negligible parameters

For this study three types of Sobol' indices are calculated:

1. First order Sobol' Index:

The �rst order sensitivity index Si measures the single e�ect of the input

hi on the output variance of the model (Sobol, 1993; Saltelli et al., 2010).

Si is de�ned as

Si =
V ari
V arY

=
V ari[E∼i(Y |hi)]

V arY
, (4.5)

where the conditional expectation E∼i(Y |hi) denotes the expected value

of the output Y when the input hi is �xed.

2. Second order Sobol' Index:

The second order sensitivity index Sij measures the interaction between

hi and hj (Sobol, 1993; Saltelli et al., 2010). Sij can be computed as

Sij =
V arij
V arY

=
V arij[E∼ij(Y |hi, hj)]

V arY
− Si − Sj, (4.6)

where the conditional expectation E∼i(Y |hi, hj) is the expected value of

the output Y when the two input hi and hj are �xed.

3. Total order Sobol' Index :

The Total sensitivity index ST i is called the "Total e�ect" of a input
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parameter hi (Nagel, Rieckermann, and Sudret, 2017). This index includes

the e�ect of the �rst order indices and the e�ects between the input hi and

all the possible combinations with the other inputs (Homma and Saltelli,

1996). It is de�ned as

ST i = 1− V ar∼i[Ei(Y |h∼i)]
V arY

, (4.7)

where h∼i refers to all the inputs except hi. For instance, h∼1 = h2, h3, h4, h5, h6.

For the calculation of the conditional expectation of the Sobol' indices there

exist di�erent estimators in order to optimize the number of model evalua-

tions (Saltelli et al., 2010). For this research, Saltelli algorithm (Kucherenko

and Song, 2017) is implemented to calculate the conditional expectation. In

addition, it is important to remark that Sobol' indices are computed for all

principal components of z? ∈ IRk. In Fig. 4.8 it is illustrated the main ideas for

the parametric convergence quanti�cation step.

Figure 4.8 Flowchart of the parametric convergence quanti�-
cation step.

4.3.5 Autonomous stopping criteria

For the proposed adaptive UQ approach is required a stopping criteria. The

variables used to analyze the convergence are both, the Sobol' indices and the

percentage of the clusters. These two variables are proposed for the importance

in the �eld of crashworthiness to detect structure modes and main parameters.

However, any other sensitive measures can be implemented as a stopping criteria

for the reduced space z? (e.g. mean, variance, standard deviation, histograms)

depending on the problem.

The strategy is based in a comparative approach between levels of di�erent

sampling size. The size of the training sets for each level are de�ned by n`s =
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ncon` with ` = 1, 2, ..., L. Where ncon is a constant variable of the number of

simulations. This parameter depends on the problem and is de�ned by the user.

For the benchmark problem ncon = 10, which leads to obtain the levels:

• Level1 → n1s = 10

• Level2 → n2s = 20

• Level3 → n3s = 30
...

• LevelL → nLs = 10L

Referring to the �owchart in Fig. 4.9, the methodology starts with Level1
and the computation of the steps A,B,C,D. Then, Level2 is launched with the

computation of the steps with a new sampling size n2s. For the new sampling

size of each level it is reused the simulations of the previous level, aiming to

evaluate the minimum number of simulations of the full order model. The �rst

levels are launched until s levels (for the benchmark problem s = 5). In the last

level (Levels) the variance of the percentage of the modes and the Sobol' indices

of the previous s levels are analyzed. If the variances of the stopping variables

(Sobol' indices and cluster percentage) are su�ciently small with respect to a

stopping variance condition, the method stops. If not, the approach goes to

a next level with the new increment of sampling size. The stopping variables

are always analyzed for the last s levels, meaning that the parameter s de�nes

how stationary is the solution. The process is repeated for each new level until

the stability is achieved. In addition, it is necessary to achieve these stopping

conditions for each dimension of the reduced space z? ∈ IRk.

4.3.6 Uncertainty quanti�cation

Once the methodology is converged, the backward mapping returns z? to the

corresponding input space x through x? = G−1(z?), aiming to develop uncer-

tainty quanti�cation of the input space.

Uncertainty quanti�cation of high-dimensional objects like x is cumbersome

and the outcome is di�cult to use as a tool supporting decision making. In

that sense, the stochastic assessment focuses in a low-dimensional (even purely

scalar) QoI, rather than in a high-dimensional object like x. A speci�c QoI is

introduced as an essential indicator for decision making.

For this study, the speci�c QoI is the average plastic strain of the input

vector x. However, any QoI function can be analyzed depending of the purpose
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Figure 4.9 Flowchart scheme of the adaptive stopping crite-
ria.



4.4. Industrial Benchmark results 93

of the problem. Here, it is represented by a function form l0(·), and for each hi

and xi reads

l0(xi) =
1

d

d∑
j=1

xij. (4.8)

Statistical measures of l0(x) can be performed (e.g. mean, variance, standard

deviation).

On the other hand, the fact that the model order reduction strategy is able to

recover back the full-order object x?, is extremely advantageous to represent new

simulations with negligible computational cost. Therefore, for any combination

of the input parameters h it is able reproduce the solution of the vector x for the

physical model. In Fig. 4.10 it is illustrated the main ideas for the uncertainty

quanti�cation step.

Figure 4.10 Flowchart of the uncertainty quanti�cation step.

On the other hand, for a better understanding of the previous sections, a

more detailed overview of the adaptive method is presented in Fig. 4.11. There

are illustrated the 5 most important steps (A, B, C, D, E in navy blue) and the

most important information derived from them.

4.4 Industrial Benchmark results

In this section the proposed methodology is implemented for the benchmark

problem. The numerical results are divided in two sub-sections: i) The Refer-

ence results, where the benchmark problem has been evaluated with a vademe-

cum of 3000 simulations, and ii) UQ adaptive results, where it is evaluated the

methodology and compared with the reference results.
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Figure 4.11 Flowchart overview of the proposed adaptive
methodology.

4.4.1 Vademecum results

The idea of this section is to calculate the reference results, aiming to be com-

pared with the proposed adaptive methodology. For this, the proposed method-

ology is implemented with a �xed number of samples ns for the training set.

It is considered six stochastic inputs h = [h1, h2, h3, h4, h5, h6]
T for the bench-

mark problem, where each input follows a normal distribution with its corre-

sponding mean and standard deviation described in Table 4.1. For the QoI

output it is considered the maximum plastic strain of all the shell elements

(d = 329) from the tapered geometry. For the reference data set, a vademecun

of ns = 3000 Monte Carlo samples are computed to obtain the output matrix,

X = [x1x2 · · ·xns ] ∈ IRd×ns . Each vector xi, i = 1, 2, ..., ns store the maximum

plastic strain of all the elements for each simulation in the last step of time. In

Fig. 4.12 it is shown the 3000 stochastic hardness curves for each simulation.
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Figure 4.12 Input hardness curves of 3000 samples.

The dimensionality reduction problem is implemented with a Polynomial

Kernel, k(xi,xj) = (< xi, xj > +b)p with a coe�cient b = 0.1 and a polynomial

degree p = 3. With this kernel con�guration it is reduced the dimension of

the problem to the �rst principal component (k = 1) with capturing 98, 8% of

the variance information. Leading to obtain a reduced space Y = z? = [z?]1 ∈
IRk×ns . Using linear PCA, 17 principal components (k = 17) are required to

capture the same percentage information, and in consequence 17 metamodels

for each dimension. Clearly an improvement is shown with respect to PCA

(kPCA →k=1 and PCA →k=17). For the metamodel it is implemented OK

between the input parameters h and the feature space [z?]1 with a spherical

variogram (Oliver and Webster, 2014). For the UQ analysis (statistic measures

and Sobol' indices) it is evaluated the metamodel with 105 random samples.

In Fig. 4.13 it is shown the reduced space of the �rst principal component

Y = [z?]1 of kPCA and the corresponding PDF. Clearly, two clusters (modes of

the structure) of samples are di�erentiated. The red and blue samples are plot-

ted by K-means algorithm (Kodinariya and Makwana, 2013). The percentage

of probability for each clusters are:

• Red cluster: 84.43%.
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Figure 4.13 Histogram and reduced space Y .

• Blue cluster: 15.57%.

In Fig. 4.14 a solution of the original model for each cluster (red and blue)

is shown. It is observed two di�erent behaviours. The structure breaks either

on the right (Fig. 4.14a) or to the left (Fig. 4.14b).

For the Sobol' sensitivity analysis it is used Saltelli method to obtain the

conditional variance for each index (Saltelli et al., 2010). In Fig.4.15 it is plotted

the values of the �rst order of Sobol' indices for each input. In Fig. 4.16 are

shown the second order Sobol' indices. This index explains the interaction

e�ect between all the possible pairs of parameters with respect to the output

variance output. In Fig. 4.17 it is illustrated the 6 Total Sobol' indices. This

index explains the total e�ect of an input parameter hi to the total variance

V arY .This measures the e�ect of the output variance of hi, with respect to any

variable and any order of interaction between parameters.
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(a)

(b)

Figure 4.14 (a) Corresponds to a sample from the red mode
of the reduced space Y transformed by backward mapping to
the original space of the model. Figure (b) corresponds to a
sample from the red mode of the reduced space Y transformed
by backward mapping to the original space of the model.

Figure 4.15 First order Sobol' indices.
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Figure 4.16 Second order Sobol' indices.

Figure 4.17 Total Sobol' indices.
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From the above presented results, in Table 4.2 it is illustrated the most im-

portant variables to take into account as a reference values for the next section

4.4.2 where the adaptive methodology is tested.

Table 4.2 Reference values from a vademecum of 3000 train-
ing samples.

Clustering modes

Left mode = 84.43%
Right mode = 15.57%

Sobol' indices

First order
S4 = 0.35
S6 = 0.23

Second order
S46 = 0.26

Total indices
ST4 = 0.62
ST6 = 0.51

4.4.2 Adaptive UQ methodology results

In this section it is presented the numerical results to validate the performance

of the adaptive methodology applied to the benchmark problem described in

Section 4.2. The approach is implemented with a polynomial kernel (degree p =

3) for the dimensionality reduction problem and OK for the surrogate modeling

from h to Y . For the benchmark, Y coincides with the �rst component of the

reduced space using kPCA. The criterion to stop the adaptive methodology

is based in a variance criterion. The approach stops once the variance of the

previous 5 levels (s = 5) achieves the order of V ar
S
= 10−4 (for the Sobol'

indices) and V arm = 1 (for the mode percentage).

In Fig. 4.18 it is plotted the evolution of the Sobol' indices and the cluster

percentage for each level of sampling size. We can analyze that the last 5 sample

points of each graph have small variability, corroborating that the stopping

criteria is accomplished. The method stops in Level24 (L = 24) with a training

set of n24s = 240.

In Table 4.3 it is compared the results obtained with the training set of

3000 samples (Vade.) with respect to the adaptive approach with 240 training

samples (Adapt.).
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Figure 4.18 Evolution plots of the First Sobol' indices (S4,
S6), Second order Sobol' Indice (S46), Total Sobol' indices

(ST4, ST6) and the percentage of the left mode (Lm).
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Table 4.3 Comparison results between reference vademecum
(3000 training samples) with respect to the adaptive method-

ology (240 training samples).

Lm Rm S4 S6 S46 ST4 ST6

Vade. 84.43% 15.57% 0.35 0.23 0.26 0.62 0.51

Adapt. 84.81% 15.19% 0.34 0.22 0.23 0.56 0.43

The surrogate model constructed with 240 training samples brings a pow-

erful tool. Statistical measures (mean, variance and standard deviation) and

scattered plots o�er and interesting analysis to understand an analyze the cause

of each structure mode. Fig. 4.19 shows the scatter plot between the two main

parameters h4 and h6. The sample points are coloured in red or in blue, de-

pending on the structure mode (left=red, right=blue).

Figure 4.19 Scatter plot between the inputs h4 and h6. Red
samples corresponds to the left mode and blue samples to the
right mode. Point A (h1 = 22, h2 = 60, h3 = 128, h4 = 195,
h5 = 333, h6 = 472). Point B (h1 = 18.5, h2 = 65, h3 = 122,

h4 = 224.5, h5 = 365, h6 = 430).

Here it is clearly visible two di�erentiated areas of color points. This means

that the relation between the parameters h4 and h6 de�nes practically the whole
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behaviour of each mode.

Each training sample needs considerable CPU resources and time. This

method allows to obtain new simulations with a negligible consumption of time.

In the scatter plot (Fig.4.19) a new point h for each color area is selected in a

empty zone of the plot (yellow points) to backward to the original space x. In

Fig. 4.20 it is compared the full order computational samples with respect to the

corresponding backward samples from Y to x with PCA and kPCA techniques.

The performance of PCA and kPCA is shown to illustrate the improvement of

kPCA for this crashworhtiness model.

kPCA clearly shows better performance in the backward mapping. Taking

into account that with kPCA the �rst principal component [z?]1 contains 98.8%

of information and PCA only 77.7%.

(a) VPS/Pamcrash re-

sult (Point A).

(b) VPS/Pamcrash

result (Point B).

(c) Backward with

PCA (Point A).

(d) Backward with

PCA (Point B).

(e) Backward with

kPCA (Point A).

(f) Backward with

kPCA (Point B).

Figure 4.20 (a) and (b) illustrates the full order simulation
with VPS/Pamcrash for the points A and B. Also (c), (d), (e)
and (f) show the backwards from Y to the original space x

with PCA and kPCA.

On the other hand, in Fig. 4.21 it is illustrated the histogram of the speci�c

QoI function l0(x). Depending on the problem, the QoI is su�cient i some

cases, for decision making (Rocas et al., 2021), since the QoI summarizes the
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information contained in x. Here, the QoI corresponds to the average of vector

x. The statistical measures of the QoI are: mean=0.0407, variance=1.12e− 06

and standard deviation=0.0011. The histogram presents a normal distribution

centred approximately at 0.041 and a long tail on the left. The samples falling

in the normal distribution corresponds to the left structure mode. Otherwise,

the samples that fall into the distribution tail makes reference to the samples

with the structure mode on the right.

Figure 4.21 Histogram of the QoI with ns = 105.

4.5 Conclusions

Uncertainty quanti�cation in crash simulation is a highly demanding research

�eld for the automotive industry. On the one hand, its non linear behaviours

combined with hidden structure modes leads to a challenging task for UQ anal-

ysis. On the other hand, high dimensional outputs for the quantity of interest

can be a challenging problem for surrogate modelling by su�ering the curse of

dimensionality. Additionally, each evaluation of the high order model needs

hours. Therefore, classic approaches as Monte Carlo are not viable.

This chapter presents an adaptive methodology for crashworthiness combin-

ing dimensionality reduction and surrogate modelling for an UQ and sensitivity
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analysis approach . The adaptive method evaluates limited set of samples of the

high order model guaranteeing a good accuracy. The problem of dimensionality

reduction for the outputs is tackle using kPCA in such a way OK for meta-

modeling the reduced space of kPCA and the input samples hi, i = 1, 2, · · · , ns.
Moreover, cluster detection, percentages of success or failure, sensitivity analy-

sis, statistics and free new simulations are a set of robust and reliability infor-

mation for decision making. Having access to this information of the model is

a rich tool for CAE departments for multi-purpose analysis.

The proposed methodology is implemented in a realistic industrial bench-

mark problem. The uncertainty of the problem is characterized with 6 random

parameters de�ning the hardness curve of the material model. The maximum

plastic strain for all the elements in the last time step is considered as QoI of the

model. The methodology is implemented with a polynomial kernel. The conver-

gence is achieved with 240 samples for the training set with a stopping criteria of

a variance condition of V ar
S
= 10−4 (for the Sobol' indices) and V arm = 1 (for

the mode percentage). The method detected two structure modes (clusters).

The big mode approximately with 84% and a small mode with 16% of probabil-

ity. In the biggest structure mode, the pyshical model concentrates high values

of plastic strain in the left part. In contrast, in the small mode they are on the

right area. Moreover, the main in�uence parameters for the output are h4, h6
(h4 → 34% and h6 → 22%) for the �rst order, and h4− h6 (h4− h6 → 23%) for

the second order of sensitivity. This means that the relation between these two

parameters is de�ning practically all the behaviour of the model. In addition,

the total Sobol' indices ST4 and ST6 are showing similar relation with respect

to the �rst and second order of Sobol' indices. This emphasizes that the other

parameters h1, h2, h3, h5 have low in�uence to the output. Also, the speci�c QoI

function l0(·) shows a normal distribution with a long tail in the left allowing

to facilitate the understanding of the high dimension vector x.

The results from the industrial benchmark veri�ed the performance and ac-

curacy of the proposed methodology with respect to a vademecum approach of

3000 samples for the training set. The method can be extended and applied

for other disciplines (e.g. aerodynamics, occupant safety, aeroacoustic, among

others) with uncertainty inputs, nonlinear responses and high dimensional out-

puts. The methodology is presented with kPCA and OK for dimensionality

reduction and surrogate modeling, respectively. Nevertheless, other dimension-

ality reduction techniques as Isometric Mapping or Locally Embeddings can

be implemented as well. In addition, other metamodel techniques (regression,

interpolation) can be used as well depending on the data.
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The combination of dimensionality reduction and surrogate models with an

adaptive approach for multi-purpose information produces accurate solutions

with an a�ordable computational cost, accounting also for the uncertainty, that

is assessing the credibility of the simulation. Particularly in the context of

crashworthiness UQ, the computational cost is a key issue and a driving force

for the research developments in the �eld. Since, increasing accuracy requires

a higher computational e�ort, �nding a trade-o� between these two factors is a

critical concern for last decision making. This chapter intends to provide tools

to achieve accurate and credible crashworthiness industrial simulations at an

acceptable computational e�ort.
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Chapter 5

Conclusions

The present Doctoral thesis aims to bridge the gap between uncertainty quan-

ti�cation, machine learning and crashworthiness simulations in order to enable

robust models. Robustness is essential to qualify numerical simulations as cred-

ible alternatives to experimental test upon prototypes. Freeing the design loop

from the dependence on experiments is suppressing a bottleneck both in terms

of �nancial cost and timely response.

The �eld of crashworthiness presents three main characteristics: (i) uncer-

tain inputs, coming from di�erent sources of variability, e.g. manufactured pro-

cesses, supplier tolerance, human errors, simpli�cations and assembly processes,

(ii) nonlinear behaviours resulting from the complex nature of a complex system

which simulation demands high computational costs, and, (iii) high dimensional

responses that jeopardize the e�ciency of any UQ approach for post-processing.

In this thesis, all these concepts have been accounted for and analyzed in order

to propose di�erent solutions.

As a �rst step, a benchmark crash problem from the SEAT portfolio is pre-

sented as a starting point for the thesis in Chapter 2. This chapter provides a

state-of-the-art review of uncertainty quanti�cation techniques for crashworthi-

ness. The content is divided in intrusive and non intrusive approaches. Quasi

Monte Carlo and Point Collocation Polynomial Chaos are implemented as non

intrusive approaches and compared with the classic Monte Carlo (as a refer-

ence approach). Both methods show interesting results for capturing the gen-

eral behaviour of the benchmark problem. However, di�erent limitations were

detected. Nonlinear behaviours present di�culties for Polynomial Chaos to

capture the principal modes. Also, high dimensional outputs jeopardize the

postprocess and the data analysis. In consequence, sensitivity analysis and the

detection of new hidden modes becomes a cumbersome task.

In Chapter 3 it is presented a new methodology to tackle the disadvantages

detected in Chapter 2 by combining dimensionality reduction and surrogate
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modeling. The novelty of this methodology/algorithm lies in how the dimension-

ality reduction and surrogate modeling are coupled together for crashworthiness

UQ analysis. The coupling is performed between the reduced space obtained

with a dimensionality reduction technique and the stochastic input space of pa-

rameters. For this purpose, kPCA is used for dimensionality reduction and for

the surrogate modeling, Ordinary Kriging and Polynomial Regression are im-

plemented to show their performance with respect to a new proposed technique

developed in this thesis, called, Separated Response Surface and based in the

PGD method. The methodology is tested for the benchmark B-Pillar problem,

where the best performance is achieved with the combination of kPCA and OK

or SRS. Depending on how is the dataset of the reduced space, it is properly

to use OK for non noisy samples and SRS for noisy samples. The proposed

methodology has shown good results for uncertainty quanti�cation, allowing to

describe the propagation of the input randomness to the model outputs with

a smart approach.The advantage of this approach lies in the reduced space of

kPCA where the output samples are containing the most important information

of the training set. In this way, the reduced space can be analyzed in a more

intelligent and e�cient way.

The proposed algorithm is useful for robust analysis when the model can

present nonlinear behaviours that leads to hidden structure modes. The method

allows to quantify statistics (e.g. mean, variance, standard deviation, proba-

bility density function), structure modes (e.g. detection of bifurcation modes,

percentage of modes), robustness criterion, sensitivity analysis (e.g. scattering

plots of in�uence parameters) and mapping new simulations by a backward

mapping to the physical space in almost real time. The approach is extremely

useful for a rich dataset. However, obtaining a large dataset of simulations

is sometimes una�ordable in crashworthiness. Therefore, it is of critical im-

portance an adaptive criterion to decide how many number of simulations are

needed for the training set to guaranty enough information for the analysis and

avoid oversampling.

Chapter 4 presents a realistic industrial problem for Volkswagen and SEAT

portfolio. The objective is to quantify the uncertainty of a model that presents

a randomness hardness curve. It is presented an adaptive approach improving

the weaknesses of the previous algorithm (dimensionality reduction and surro-

gate modeling) presented in Chapter 3. A novel methodology with an adaptive

approach is developed to evaluate only the necessary samples for the training

set. Taking into account that the input space is sampled with Halton sequences,
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and the stopping criterion for the method is achieved by evaluating the conver-

gence of the sensitivity index (Sobol' indices) and the cluster percentages (these

stopping criterion variables are used to evaluate the convergence, since these are

sensitive measures for the industrial specialist). This adaptive methodology is

tested using a industrial benchmark problem of interest for SEAT and it is

compared with a vademecum of 3000 samples for the training set. The method

illustrates a good performance equilibrium between the number of evaluation

for the high order model and the uncertainty results of the model.

Overall, this thesis provides a new methodology tool for a wide class of

problems, but speci�cally for crashworthiness. This has strong practical impli-

cations for numerous relevant problems for SEAT and the industry in general

(e.g. structural design, aeroacoustic, aerodynamics, occupant protection, data

analysis,). In the industrial framework of SEAT, the proposed methodology

has allowed to deal with uncertainty problems with an e�cient approach for

the EK department. This thesis has been the incentive and the starting point

of a new line of research and development for SEAT, where the combination

of uncertainty quanti�cation, machine learning and data science is growing ex-

ponentially. The thesis provide a useful knowledge and tool for engineering

decision making. Allowing to evaluate the robustness of any project to decide

new redesigns, decisions or paths.

However, the methodology developed in this doctoral thesis presents some

limitations. In the dimensionality reduction step, explained in section 4.3.2

and speci�cally detailed in section 3.3.2 (containing the theoretical details of

kPCA), an important concern is the choice of the kernel and the setting of the

hyperparameters, as they de�ne the reduced space for a future metamodeling

step. The criterion to select the these variables is determined with the per-

centage of information of the principal components. This is a good criterion

to store the maximum content of each dimension and to mapped backward to

the physical space x. However, it is also of interest to evaluate the ability of

the dimensionality reduction technique for clustering detection. In this way,

we could improve the metamodeling step between the inputs and the reduced

space. This merge between the percentage of information and the clustering ca-

pacity would improve the methodology allowing to optimize the reduced space

taking into account these two criteria.

Moreover, the methodology presented here assumes that the stochastic be-

haviour of the uncertain input parameters is properly characterized. This

stochastic behaviour is propagated to the output. The determination of this

aleatory description deserves however more intensive research, and the �nal
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results are extremely sensitive to it. Also output data resulting from the simu-

lations has to be properly managed.

Referring to the nature of this Industrial Doctorate, the achievements of this

doctoral thesis are presented below from two points of view: i) one focused on

a scienti�c direction, and ii) on a more industrial branch.

The main achievements and advantages of this UQ methodology for a sci-

enti�c approach are:

• Discover the nonlinear structure hidden modes.

• Percentage of success or failure for each mode to evaluate the robustness

of the modes.

• Know the cause of any structure mode by the combination of the input

parameters.

• Ranking of input in�uence (independent in�uence, second order in�uence,

total in�uence).

• Statistical measures of a crash model(mean, variance, standard deviation

and probability density functions).

• Evaluation of new simulations with negligible computational cost with

any combination of the input parameters.

• Reduced computational cost with respect to the classic UQ methods.

The main bene�ts and advantages that this thesis brings to the EK depart-

ment from an industrial point of view:

• Introduce a new development and research line into SEAT for uncertainty

quanti�cation, machine learning and data science for EK calculus depart-

ment. Enabling to create a team for stochastic/data science.

• Engineers' expertise is used to monitor and make decisions for new re-

designs and ideas. It is reduced the work time of changing models, launch-

ing simulations and many hours in post processing the responses.

• A compact machine learning/methodology tool to evaluate the robustness

of a crash model.



111

Bibliography

Al-Momani, Emad and Ibrahim Rawabdeh (2008). �An application of �nite

element method and design of experiments in the optimization of sheet metal

blanking process�. In: JJMIE 2.1, pp. 53�63.

Arregui-Mena, Jose David, Lee Margetts, and Paul M Mummery (2016). �Prac-

tical application of the stochastic �nite element method�. In: Archives of

computational methods in engineering 23.1, pp. 171�190.

Askey, Richard and James Arthur Wilson (1985). �Some basic hypergeometric

orthogonal polynomials that generalize Jacobi polynomials�. In: 319.

Aslett, Louis JM, Tigran Nagapetyan, and Sebastian J Vollmer (2017). �Multi-

level Monte Carlo for reliability theory�. In: Reliability Engineering & System

Safety 165, pp. 188�196.

Atkinson, Anthony, Alexander Donev, and Randall Tobias (2007). �Optimum

experimental designs, with SAS�. In: 34.

Barth, Andrea, Christoph Schwab, and Nathaniel Zollinger (2011). �Multi-level

Monte Carlo �nite element method for elliptic PDEs with stochastic coe�-

cients�. In: Numerische Mathematik 119.1, pp. 123�161.

Bergman, LA et al. (1997). �A state-of-the-art report on computational stochas-

tic mechanics�. In: Probabilistic Engineering Mechanics 12.4, pp. 197�321.

Berveiller, M, B Sudret, and M Lemaire (2004). �Presentation of two methods

for computing the response coe�cients in stochastic �nite element analysis�.

In: Proc. 9th ASCE Specialty Conference on Probabilistic Mechanics and

Structural Reliability, Albuquerque, USA.

Böttcher, Curd-Sigmund, Ste�en Frik, and Bernd Gosolits (2005). 20 years of

crash simulation at Opel-experiences for future challenges.

Boyd, John P and Fei Xu (2009). �Divergence (Runge phenomenon) for least-

squares polynomial approximation on an equispaced grid and Mock�Chebyshev

subset interpolation�. In:Applied Mathematics and Computation 210.1, pp. 158�

168.

Datta, Saurav, Asish Bandyopadhyay, and Pradip Kumar Pal (2008). �Grey-

based Taguchi method for optimization of bead geometry in submerged arc

bead-on-plate welding�. In: The International Journal of Advanced Manu-

facturing Technology 39.11-12, pp. 1136�1143.



112 BIBLIOGRAPHY

Díez, Pedro et al. (2018). �Algebraic PGD for tensor separation and compres-

sion: an algorithmic approach�. In: C. R. Mec. 346.7, pp. 501�514. doi:

10.1016/j.crme.2018.04.01.

Díez, Pedro et al. (2019). �Encapsulated PGD algebraic toolbox operating with

high-dimensional data�. In: Archives of Computational Methods in Engineer-

ing, pp. 1�16.

Doostan, Alireza, Roger G Ghanem, and John Red-Horse (2007). �Stochastic

model reduction for chaos representations�. In: Computer Methods in Applied

Mechanics and Engineering 196.37-40, pp. 3951�3966.

Du Bois, Paul et al. (2004). �Vehicle crashworthiness and occupant protection�.

In:

Eiermann, Michael, Oliver G Ernst, and Elisabeth Ullmann (2007). �Computa-

tional aspects of the stochastic �nite element method�. In: Computing and

visualization in science 10.1, pp. 3�15.

Eldred, Michael (2009). �Recent advances in non-intrusive polynomial chaos and

stochastic collocation methods for uncertainty analysis and design�. In: 50th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Ma-

terials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference

11th AIAA No, p. 2274.

Eldred, Michael, Clayton Webster, and Paul Constantine (2008). �Evaluation of

non-intrusive approaches for Wiener-Askey generalized polynomial chaos�.

In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,

and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Con-

ference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA

Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimiza-

tion Specialists Conference, p. 1892.

Fang, Hongbing et al. (2005). �A comparative study of metamodeling methods

for multiobjective crashworthiness optimization�. In: Computers & struc-

tures 83.25-26, pp. 2121�2136.

Fei, Ng Chin, Nik Mizamzul Mehat, and Shahrul Kamaruddin (2013). �Practical

applications of Taguchi method for optimization of processing parameters

for plastic injection moulding: a retrospective review�. In: ISRN Industrial

engineering 2013.

Feinberg, Jonathan and Hans Petter Langtangen (2015). �Chaospy: An open

source tool for designing methods of uncertainty quanti�cation�. In: Journal

of Computational Science 11, pp. 46�57.

http://dx.doi.org/10.1016/j.crme.2018.04.01


BIBLIOGRAPHY 113

Fratila, Domnita and Cristian Caizar (2011). �Application of Taguchi method

to selection of optimal lubrication and cutting conditions in face milling of

AlMg3�. In: Journal of Cleaner Production 19.6-7, pp. 640�645.

Galas, David J et al. (2017). �Expansion of the Kullback-Leibler divergence,

and a new class of information metrics�. In: Axioms 6.2, p. 8.

Gano, Shawn, Harold Kim, and Don Brown (2006). �Comparison of three surro-

gate modeling techniques: Datascape, kriging, and second order regression�.

In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Con-

ference, p. 7048.

García-González, Alberto et al. (2020). �A kernel Principal Component Analysis

(kPCA) digest with a new backward mapping (pre-image reconstruction)

strategy�. In: arXiv preprint arXiv:2001.01958.

Garikapati, Hasini et al. (2020). �A Proper Generalized Decomposition (PGD)

approach to crack propagation in brittle materials: with application to ran-

dom �eld material properties�. In: Computational Mechanics 65.2, pp. 451�

473.

Ghanem, Roger G and Robert M Kruger (1996). �Numerical solution of spectral

stochastic �nite element systems�. In: Computer methods in applied mechan-

ics and engineering 129.3, pp. 289�303.

Ghanem, Roger G and Pol D Spanos (2003). Stochastic �nite elements: a spectral

approach. Courier Corporation.

Giles, Michael B (2008). �Multilevel monte carlo path simulation�. In: Opera-

tions Research 56.3, pp. 607�617.

Gilli, L et al. (2013). �Uncertainty quanti�cation for criticality problems us-

ing non-intrusive and adaptive polynomial chaos techniques�. In: Annals of

Nuclear Energy 56, pp. 71�80.

Giunta, Anthony and Layne Watson (1998). �A comparison of approxima-

tion modeling techniques-Polynomial versus interpolating models�. In: 7th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, p. 4758.

Gopalsamy, Bala Murugan, Biswanath Mondal, and Sukamal Ghosh (2009).

�Taguchi method and ANOVA: An approach for process parameters opti-

mization ofhard machining while machining hardened steel�. In:

Graham, Ivan G, Matthew J Parkinson, and Robert Scheichl (2018). �Mod-

ern Monte Carlo variants for uncertainty quanti�cation in neutron trans-

port�. In: Contemporary Computational Mathematics-A Celebration of the

80th Birthday of Ian Sloan. Springer, pp. 455�481.



114 BIBLIOGRAPHY

Grigoriu, Mircea (2006). �Evaluation of Karhunen�Loève, spectral, and sam-

pling representations for stochastic processes�. In: Journal of engineering

mechanics 132.2, pp. 179�189.

Hadigol, Mohammad and Alireza Doostan (2018). �Least squares polynomial

chaos expansion: A review of sampling strategies�. In: Computer Methods in

Applied Mechanics and Engineering 332, pp. 382�407.

Hammersley, John M (1960). �Monte Carlo methods for solving multivariable

problems�. In: Annals of the New York Academy of Sciences 86.3, pp. 844�

874.

Haug, E, T Scharnhorst, and P Du Bois (1986). �FEM-Crash, Berechnung eines

Fahrzeugfrontalaufpralls�. In: VDI Berichte 613, pp. 479�505.

Hauke, Jan and Tomasz Kossowski (2011). �Comparison of values of Pearson's

and Spearman's correlation coe�cients on the same sets of data�. In: Quaes-

tiones geographicae 30.2, pp. 87�93.

Homma, Toshimitsu and Andrea Saltelli (1996). �Importance measures in global

sensitivity analysis of nonlinear models�. In: Reliability Engineering & Sys-

tem Safety 52.1, pp. 1�17.

Hosder, Serhat, Robert Walters, and Michael Balch (2007). �E�cient sampling

for non-intrusive polynomial chaos applications with multiple uncertain in-

put variables�. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Struc-

tural Dynamics, and Materials Conference, p. 1939.

Hosder, Serhat, Robert Walters, and Rafael Perez (2014). �A Non-Intrusive

Polynomial Chaos Method For Uncertainty Propagation in CFD Simula-

tions�. In: doi: 10.2514/6.2006-891.

Jäckel, Peter (2005). �A note on multivariate Gauss-Hermite quadrature�. In:

London: ABN-Amro. Re.

Kaintura, Arun, Tom Dhaene, and Domenico Spina (2018). �Review of poly-

nomial chaos-based methods for uncertainty quanti�cation in modern inte-

grated circuits�. In: Electronics 7.3, p. 30.

Kleiber, Michaª and Tran Duong Hien (1992). �The stochastic �nite element

method: basic perturbation technique and computer implementation�. In:

Kodinariya, Trupti M and Prashant R Makwana (2013). �Review on determin-

ing number of Cluster in K-Means Clustering�. In: International Journal 1.6,

pp. 90�95.

Kucherenko, Sergei and Shufang Song (2017). �Di�erent numerical estimators

for main e�ect global sensitivity indices�. In: Reliability Engineering & Sys-

tem Safety 165, pp. 222�238.

http://dx.doi.org/10.2514/6.2006-891


BIBLIOGRAPHY 115

Lataniotis, Christos, Stefano Marelli, and Bruno Sudret (2018). �Extending clas-

sical surrogate modelling to ultrahigh dimensional problems through super-

vised dimensionality reduction: a data-driven approach�. In: arXiv preprint

arXiv:1812.06309.

Le Ma�tre, Olivier P et al. (2002). �A stochastic projection method for �uid �ow:

II. Random process�. In: Journal of computational Physics 181.1, pp. 9�44.

Li, Min, Ruo-Qian Wang, and Gaofeng Jia (2020). �E�cient dimension re-

duction and surrogate-based sensitivity analysis for expensive models with

high-dimensional outputs�. In: Reliability Engineering & System Safety 195,

p. 106725.

Likas, Aristidis, Nikos Vlassis, and Jakob J Verbeek (2003). �The global k-means

clustering algorithm�. In: Pattern recognition 36.2, pp. 451�461.

Lin, G et al. (2005). �A computational design-of-experiments study of hemming

processes for automotive aluminium alloys�. In: Proceedings of the Institu-

tion of Mechanical Engineers, Part B: Journal of Engineering Manufacture

219.10, pp. 711�722.

Liu, Wing Kam, Ted Belytschko, and A Mani (1986a). �Probabilistic �nite ele-

ments for nonlinear structural dynamics�. In: Computer Methods in Applied

Mechanics and Engineering 56.1, pp. 61�81.

� (1986b). �Random �eld �nite elements�. In: International journal for nu-

merical methods in engineering 23.10, pp. 1831�1845.

Liu, Zhangjun, Zixin Liu, and Yongbo Peng (2017). �Dimension reduction of

Karhunen-Loeve expansion for simulation of stochastic processes�. In: Jour-

nal of Sound and Vibration. issn: 10958568. doi: 10.1016/j.jsv.2017.

07.016.

Lu, Y, N Blal, and A Gravouil (2018a). �Adaptive sparse grid based HOPGD:

Toward a nonintrusive strategy for constructing space-time welding compu-

tational vademecum�. In: International Journal for Numerical Methods in

Engineering 114.13, pp. 1438�1461.

Lu, Ye, Nawfal Blal, and Anthony Gravouil (2018b). �Multi-parametric space-

time computational vademecum for parametric studies: Application to real

time welding simulations�. In: Finite Elements in Analysis and Design 139,

pp. 62�72.

Malvi¢, Tomislav and Davorin Bali¢ (2009). �Linearity and Lagrange Linear

Multiplicator in the Equations of Ordinary Kriging�. In: Nafta: exploration,

production, processing, petrochemistry 60.1, pp. 31�43.

http://dx.doi.org/10.1016/j.jsv.2017.07.016
http://dx.doi.org/10.1016/j.jsv.2017.07.016


116 BIBLIOGRAPHY

Mathelin, Lionel, M Yousu� Hussaini, and Thomas A Zang (2005). �Stochastic

approaches to uncertainty quanti�cation in CFD simulations�. In: Numerical

Algorithms 38.1-3, pp. 209�236.

Matthies, Hermann G and Andreas Keese (2005). �Galerkin methods for linear

and nonlinear elliptic stochastic partial di�erential equations�. In: Computer

methods in applied mechanics and engineering 194.12-16, pp. 1295�1331.

Moustapha, Maliki et al. (2014). �Metamodeling for crashworthiness design:

comparative study of kriging and support vector regression�. In: Uncertain-

ties 2014-proceedings of the 2nd International Symposium on Uncertainty

Quanti�cation and Stochastic Modeling, July 7th to July 11th, 2014, Rouen,

France. ETH-Zürich.

Nagel, Joseph B, Jörg Rieckermann, and Bruno Sudret (2017). �Uncertainty

quanti�cation in urban drainage simulation: fast surrogates for sensitivity

analysis and model calibration�. In: arXiv preprint arXiv:1709.03283.

Niederreiter, Harald (1978). �Quasi-Monte Carlo methods and pseudo-random

numbers�. In: Bulletin of the American Mathematical Society 84.6, pp. 957�

1041.

Nouy, Anthony (2009). �Recent developments in spectral stochastic methods

for the numerical solution of stochastic partial di�erential equations�. In:

Archives of Computational Methods in Engineering 16.3, pp. 251�285.

Oliver, MA and RWebster (2014). �A tutorial guide to geostatistics: Computing

and modelling variograms and kriging�. In: Catena 113, pp. 56�69.

PAM-SCL - Theory Notes Manual (2000).

Phoon, KK, HW Huang, and ST Quek (2005). �Simulation of strongly non-

Gaussian processes using Karhunen�Loeve expansion�. In: Probabilistic en-

gineering mechanics 20.2, pp. 188�198.

Qiu, Na et al. (2018). �Crashworthiness optimization with uncertainty from sur-

rogate model and numerical error�. In: Thin-Walled Structures 129, pp. 457�

472.

Rifkin, Ryan M and Ross A Lippert (2007). �Notes on regularized least squares�.

In:

Rocas, M et al. (2020). �Nonintrusive Stochastic Finite Elements for Crash-

worthiness with VPS/Pamcrash�. In: Archives of Computational Methods in

Engineering, pp. 1�26.

Rocas, Marc et al. (2021). �Nonintrusive Uncertainty Quanti�cation for automo-

tive crash problems with VPS/Pamcrash�. In: Finite Elements in Analysis

and Design 193, p. 103556.



BIBLIOGRAPHY 117

Roy, Ranjit K (2001). Design of experiments using the Taguchi approach: 16

steps to product and process improvement. John Wiley & Sons.

Saltelli, Andrea et al. (2010). �Variance based sensitivity analysis of model out-

put. Design and estimator for the total sensitivity index�. In: Computer

physics communications 181.2, pp. 259�270.

Saxena, Amit et al. (2017). �A review of clustering techniques and develop-

ments�. In: Neurocomputing 267, pp. 664�681.

Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller (1998). �Non-

linear component analysis as a kernel eigenvalue problem�. In: Neural com-

putation 10.5, pp. 1299�1319.

Shinozuka, Masanobu and George Deodatis (1991). �Simulation of stochastic

processes by spectral representation�. In: Applied Mechanics Reviews 44.4,

pp. 191�204.

Sobol, Ilya M (1993). �Sensitivity analysis for non-linear mathematical models�.

In: Mathematical modelling and computational experiment 1, pp. 407�414.

Spethmann, Philipp, Stefan H Thomke, and Cornelius Herstatt (2006). The

impact of crash simulation on productivity and problem-solving in automotive

R&D. Tech. rep. Working Paper.

Sraj, Ihab et al. (2017). �Quantifying uncertainties in fault slip distribution

during the T	ohoku tsunami using polynomial chaos�. In: Ocean Dynamics

67.12, pp. 1535�1551.

Stefanou, George (2009). �The stochastic �nite element method: past, present

and future�. In: Computer methods in applied mechanics and engineering

198.9-12, pp. 1031�1051.

Stefanou, George and Manolis Papadrakakis (2007). �Assessment of spectral

representation and Karhunen�Loève expansion methods for the simulation

of Gaussian stochastic �elds�. In: Computer methods in applied mechanics

and engineering 196.21-24, pp. 2465�2477.

Sudret, Bruno (2008). �Global sensitivity analysis using polynomial chaos ex-

pansions�. In: Reliability engineering & system safety 93.7, pp. 964�979.

Sudret, Bruno and Armen Der Kiureghian (2000). Stochastic �nite element

methods and reliability: a state-of-the-art report. Department of Civil and

Environmental Engineering, University of California . . .

Sudret, Bruno and Chu V Mai (2015). �Computing derivative-based global sen-

sitivity measures using polynomial chaos expansions�. In: Reliability Engi-

neering & System Safety 134, pp. 241�250.

Taguchi, Genichi and Seiso Konishi (1987). �Taguchi methods: orthogonal arrays

and linear graphs; tools for quality engineering�. In:



118 BIBLIOGRAPHY

Tsui, Kwok-Leung (1992). �An overview of Taguchi method and newly devel-

oped statistical methods for robust design�. In: Iie Transactions 24.5, pp. 44�

57.

Van Der Maaten, Laurens, Eric Postma, and Jaap Van den Herik (2009). �Di-

mensionality reduction: a comparative�. In: J Mach Learn Res 10.66-71,

p. 13.

Wang, Quan (2012). �Kernel principal component analysis and its applications

in face recognition and active shape models�. In: arXiv preprint arXiv:1207.3538.

Wang, Tao et al. (2018). �Crashworthiness analysis and multi-objective op-

timization of a commercial vehicle frame: A mixed meta-modeling-based

method�. In: Advances in mechanical engineering 10.5, p. 1687814018778480.

Wasserstein, Ronald L (1997). �Monte carlo: Concepts, algorithms, and appli-

cations�. In:

Wong, Tien-Tsin, Wai-Shing Luk, and Pheng-Ann Heng (1997). �Sampling with

Hammersley and Halton points�. In: Journal of graphics tools 2.2, pp. 9�24.

Xiu, Dongbin (2009). �Fast numerical methods for stochastic computations: a

review�. In: Communications in computational physics 5.2-4, pp. 242�272.

� (2010). Numerical methods for stochastic computations: a spectral method

approach. Princeton university press.

Xiu, Dongbin and George Em Karniadakis (2002). �The Wiener�Askey polyno-

mial chaos for stochastic di�erential equations�. In: SIAM journal on scien-

ti�c computing 24.2, pp. 619�644.

Zang, C, MI Friswell, and JE Mottershead (2005). �A review of robust optimal

design and its application in dynamics�. In: Computers & structures 83.4-5,

pp. 315�326.

Zhang, Yi (2013). �E�cient uncertainty quanti�cation in aerospace analysis and

design�. In:

Zheng, Wei-Shi, JianHuang Lai, and Pong C Yuen (2010). �Penalized preimage

learning in kernel principal component analysis�. In: IEEE Transactions on

Neural Networks 21.4, pp. 551�570.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Crashworthiness: historical background
	Scope of the thesis
	Objectives and outline of the Doctoral thesis
	Publications and conferences
	Articles in indexed journals:
	International conference contributions:
	Internal/Industrial talks, workshops, seminars and posters:



	Uncertainty Quantification for crashwhortiness
	Benchmark for a B-Pillar crash model
	Model description

	Intrusive SFEM solvers
	Formulation and notation
	Perturbation Method
	Galerkin Polynomial Chaos Method
	Spectral Stochastic Finite Element Method

	Non intrusive SFEM solvers
	Non-intrusive Polynomial Chaos expansion
	Pseudo Spectral Projection Polynomial Chaos
	Point Collocation Polynomial Chaos
	Post processing polynomial chaos

	Monte Carlo Method
	Quasi Monte Carlo Method
	Multi level Monte Carlo Method
	Taguchi Method

	Comparison of SFEM solvers for crashworthiness
	Benchmark B-Pillar results
	Framework
	Monte Carlo
	Quasi Monte Carlo
	Non intrusive Polynomial Chaos

	Conclusions

	Nonintrusive uncertainty quantification for nonlinear high dimensional problems
	Introduction and motivation
	Dimensionality reduction, surrogate model and UQ
	Dimensionality reduction
	Principal Component Analysis
	Kernel Principal Component Analysis

	Surrogate Modeling
	Separated Response Surface
	Ordinary Kriging
	Polynomial Response Surface

	Uncertainty Quantification
	Monte Carlo sampling with surrogate modeling
	Comparative criterion for PDFs

	Benchmark B-Pillar results with DR and SM
	DR with kPCA
	Link between input space and reduced space
	Scattering plots for sensitivity analysis

	Surrogate modeling
	Uncertainty quantification for the surrogate model

	Conclusions

	Adaptive UQ methodology for multi-purpose engineering analysis
	Introduction and motivation
	Industrial application: The tapered model
	Model description

	Adaptive UQ methodology
	Training set
	kPCA dimensionality reduction
	Surrogate modeling
	Parametric convergence quantification
	Autonomous stopping criteria 
	Uncertainty quantification

	Industrial Benchmark results
	Vademecum results
	Adaptive UQ methodology results

	Conclusions

	Conclusions
	Bibliography

