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Preface 

 

Preliminary studies on the behaviour of Vitis vinifera Grenache and Carignan vines has 

enabled the VTV Viticulture Research group at the University Rovira i Virgili to achieve a 

high level of understanding of the physiology of this cultivar in areas of a warm 

Mediterranean climate. The initial project I was involved with was the wine-growing region 

of Terra Alta (Tarragona, Spain) which allowed me to understand the behaviour of the 

physiology of the vines during the vegetative growth cycle and fruit ripening. I joined in 

the study of varieties Grenache and Carignan. The first showed a very different bunch 

ripening behaviour related to the mesoclimate. Grenache and Carignan are the more 

abundant varieties of the Priorat wine region where I spent the last twenty years making 

wine so I was interested to do a deeper study. 

The appellation is known worldwide for the excellent quality of its wines and had great 

impact on the economic development of the region in recent years.  Monitoring the 

behaviour of the two varieties is of great importance in the future of the region. Deeper 

understanding of the ripening of fruit at harvest and various physiological responses and 

the level of isohydry of Grenache and Carignan lead us to study the Priorat as a very 

vulnerable Mediterranean wine-growing region in the context of global climate change. In 

addition, it is crucial to see whether this vulnerability is sustainable in terms of production 

and quality of the resulting wines. For this reason the thesis is divided into three main 

chapters: 4, 5 and 6. 

Chapter 4 is focused on the characterisation of cv. Grenache and Carignan, mesoclimate 

and soil, vegetative growth and physiological parameters in order to assess plant stress 

environment. This will establish two main locations, early and a late ripening mesoclimates. 

Parameters of climate and soil will be deeply analysed to determine how the vegetative 

development of the vine and in particular how water stress affect the synthesis of plant 

hormones; mainly abscisic acid which is a good indicator of the level of water stress in 

vines. A simplified method for the determination of this phytohormone in leaf vines has 

been developed, together with the growth measurements. This section will go further 

deep into the case of Carignan and Grenache varieties at the level of secondary 

metabolism in grapes, to deepen in the phenolic compounds that accumulate in fruit and 

which factors determine their quality into the wine.  

Chapter 5 escribes and analyses a methodology of small-scale winemaking based on 

notable heterogeneity found in previous research. Small-scale fermentation protocols 

used mirrored typical winemaking techniques commonly used in the small production 

wineries of the Priorat. By applying this methodology to Grenache and Carignan, grapes 
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were processed and turned into wine for analysis. The phenolic composition of the wine 

has been essential to establishing quality parameters and to assess the consequence of 

the water stress during crucial periods.  

 

Chapter 6 evaluates the potential consumption of Priorat wine based on a bibliographic 

research I did for my Master of nutrition and metabolism. The numerous studies that refer 

to the effect of wine consumption on health show a lack of detail on the quality of the wines 

consumed, both in their initial composition and in their geographical origin. Given the 

interest of many organizations in guaranteeing the origin of wine from a certain 

geographical area, analysis of the impact of the consumption of a specific region, in this 

case Priorat was evaluated. Another investigation in this section assesses how wine, in 

moderate consumption can reduce caloric intake but without losing its potential 

antioxidant capacity and beneficial health effects. 

 

The analysis of soils and phenolic maturity were carried out in the laboratories of the 

Department of Biochemistry and Biotechnology of the Faculty of Enology and the grape 

samples in the laboratory of Mas dels Frares in Constantí. The acid abscisic (ABA) and HPLC 

analyses were carried out at the headquarters of Shirota Functional Foods, SFF in Reus. 

Plant measurements were carried out in the field directly with mobile equipment. All 

experiments were carried out under field conditions. 
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Chapter 1.  Introduction  
 

 

In the late 19th century the phylloxera epidemic destroyed most of the vineyards in 

Europe, which resulted, between 1874 and 1903, 30% loss for the surfaces of vines. 

Despite its consequences on the landscape, the Priorat has still retained traces that 

constitute assets of the surviving vineyards: walls, stone walling, terraces, villages, wine 

abbeys like Scala Dei, olive oil mills, ancient machinery museums, etc. Today, more than 

the great difficulty of cultivating the vineyards, the higher risk of abandonment is great. 

The defence of landscapes, it takes money and professionals, due to the difficulty of 

dealing with viticulture on high steep slopes. Nonetheless, the wine landscape is an 

important component of the wine origin and it summarizes the climate and soil for grape 

quality, the local history and the grape production traditions. Some experimental results 

reinforce that the conservation and valorisation of the mountain landscape, related with 

the vine potential of the mountain environment, is an important goal to achieve. 

 

Landscapes are representative of the different wine regions of the world. Nature and 

humankind, they express a very close relationship between peoples, with powerful beliefs 

and traditional customs, together with their natural environment. Tarragona Wine County, 

being Tarraco the capital of Tarraconensis, the name given by Augustus to Hispania 

Citerior, already featured in the writings of the classical authors, such as Pliny the Elder and 

Silius Italicus. Undoubtedly, Romans possessed the predatory instinct that led them to 

build and empire and exploit the natural sources of their provinces. Grapevines were 

planted throughout the empire wherever the conditions were suitable, including such a 

poor and rocky soils, like those of the Priorat. There is absolutely no doubt about the 

historical origin of the name Priorat, since the region comprised the domains of the prior 

of the Carthusian monastery of Scala Dei. Nowadays, the Priorat DOQ reflects not only the 

history, landscape, flora, fauna and geology, but also the surprising black slate slopes 

where weak old vines grow.  Consequently, its landscape properly represents the inland 

Mediterranean world: cultivated terraces on lofty mountains, forests, sacred places 

testifying the creative genius, social development and the imaginative and spiritual vitality 

of humanity. To reveal and sustain the great diversity of the interactions between humans 

and their environment, to protect living traditional cultures and preserve the traces of 

those which have disappeared, these cultural landscapes, must be defended. Priorat 

heritage allows the authenticity of its wine to survive and make people community to be 

economically sustainable. 

 

The wine-growing area classified as Denominació d’Origen Qualificada Priorat (DOQ) is 

located in the central part of the province of Tarragona, in a depression caused by the 

doubling of the Serra del Montsant in its southern part. It is made up of land located in the 

municipalities of La Morera del Montsant - and its aggregate Scala Dei -, La Vilella Alta, La 
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Vilella Baixa, Gratallops, Bellmunt del Priorat, Porrera, Poboleda, Torroja del Priorat, El 

Lloar and the northern part from the municipalities of Falset and El Molar. Vine cultivation 

is distributed at altitudes ranging from 100 m above sea level, in part of the municipalities 

of Bellmunt del Priorat and El Molar, and up to 700 m, in the municipality of La Morera del 

Montsant. The crop configuration is characterized by slopes that exceed 15% in most cases 

to a maximum of 60%. Lately, terraces or terraced fields are being replanted that allow the 

mechanization of cultivation. It is one of the oldest Denominations of Origin in Spain, 

renowned and known for the production of reds with body and high alcohol content. The 

typical soil formed by schists allows rapid drainage that together with the hot summers 

and low rainfall characteristic of the region, configures an ecosystem in which drought 

prevails. The progressive depopulation of the area meant a reduction of the vineyard to 

an area of about 700 hectares at the end of the 80s. The decade of the 90s underwent a 

strong reconversion, passing in a short time from the sales of wine in bulk (half a million 

litres) to the sales of almost all bottled production. The wines are sold at a very high price 

and are highly valued for export. Today, the vineyard area is estimated at 2.088 hectares 

in 2020 and grape production averaged 6.3 million kg between 2015 and 2018 

(www.doqpriorat.org). Strong climatic events have decreased the production to  5.5 in 

2019 and to 4.1 in 2020. These unexpected weather conditions make this area a case study 

of high interest not only at a physiological level but also at an agricultural and 

socioeconomic level. 

 

 

The last three decades, terracing of hillsides of Priorat has been extended to adapt the 

vineyard work to mechanization. However, some studies carried out to evaluate this impact 

of terracing on the vineyards of Priorat DOQ would indicate that, not only alters the 

morphology of the landscape but in addition it can be affected the production and quality 

of grapes. Soil hydrological properties are markedly affected, with a negative repercussion 

on water availability for plants, a reduction of soil water capacity and hydraulic conductivity 

of vines. In addition, terraces are constructed with higher risers and widths than those 

expected for the high slopes degrees existing in the area, with the result of landslides after 

not very few rainfall events. The maintenance or restoration of the risers is not carried out 

due to difficulties for heavy machinery accessibility and to avoid further damage to 

infrastructures such as irrigation, training systems and vines, damaged by mass 

movements. Hence, it was never of such importance to protect the Priorat landscape, to 

avoid mistakes of the past and preserving nowadays the beauty of its richness. As 

Carthusians did in the Priorat at the monastery of Scalada dei, these sorts of landscapes 

are an element of the multifunctionality of viticulture, and are vectors of historical, cultural 

and environmental communication, enriching of our wine-producing regions.  

 

Grape composition and the type and style of wine in a given region are the result of the 

interaction of the combination of climate-soil with human activity, while the interannual 
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climate variability makes the difference in quality between vintages. Following climate 

warming predictions on a more global scale, increasing temperatures and decreasing 

precipitation together with the irregularity of their distribution, will more negatively affect 

Mediterranean agriculture. The grapevine is known as a type of crop well-adapted to water 

stress conditions; an example of this is the vineyards of the Priorat, characterized by low 

vigour plants growing on steep slopes and poor soils. However, the Priorat vineyard 

ecosystems could easily become vulnerable to the more severe weather conditions 

anticipated in the future. The concept of ‘terroir’ has a clear importance from an 

agricultural point of view. This concept refers initially to soil factor, includes pedology, 

climate and topography factors, interacting together in a particular agricultural unit under 

human influence. The integrated soil environment within a context of mesoclimate will 

have a different impact in the same crop in terms of characteristics presented by the 

system. A vineyard reflects its immediate growing area, including the soils and climatic 

conditions that influence production.  

 

Variations resulting from the current climate change, especially in regions like the 

Mediterranean basin, should be carefully analysed and characterized for greater 

understanding. From the last report of the Mediterranean Experts on Climate and 

Environmental Change (MedECC, 2019), average annual air temperatures are now 

approximately 1.5°C higher than during the preindustrial period, well above current 

global warming trends (+1.1°C). Without additional mitigation, regional temperature 

increase will be of 2.2°C in 2040, possibly exceeding 3.8°C in some regions in 2100. 

Summer rainfall will decrease by 10 to 30% according to the area. Extreme events (heat 

waves, droughts, floods and fires) become more frequent. Surface seawater temperature 

has recently increased by about 0.4°C per decade. The projections for 2100 vary between 

+1.8°C and +3.5°C in average compared to the period between 1961 and 1990. Such 

climatic changes quickly effect growing regions featuring poor, coarse-textured soils with 

low fertility, especially those located in areas with low and irregular precipitation, and also 

subjected to erosive phenomena. Water stress, resulting from high evapotranspiration, 

lack of summer rainfall, and well-drained soils with low retention capacity, has a significant 

effect on such vineyards. An understanding of vegetative growth, and how this affects the 

final composition of the grapes, is a formula essential to determining optimal harvest dates 

for high quality wines. This study evaluates the effect of mesoclimate variability in the DOQ 

Priorat (Catalonia, NE Spain), focusing on the grape varietal V. vinifera ‘Carignan’ and 

'Grenache'. The availability of data to characterize the climatic variation between small 

plots is an essential tool for improving crop management under such extreme conditions. 

These conditions, together with the projections of climatic models, make this region 

vulnerable to current global change.  

 

Climate classifications are based on the study of different meteorological elements over 

long periods of time in order to know the general characteristics of the atmosphere in a 
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given area. Data are calculated and compiled on monthly and annual averages of 

temperatures, precipitation, etc., and large areas of countries or continents are 

characterized. Temperature, latitude and precipitation have been used to classify global 

climates. When defining the climate of a region, reference is made to the macroclimate. In 

this sense, the Priorat enjoys a temperate Mediterranean climate, like most of the wine-

growing areas of the peninsula with the exception of the north, Galicia and Cantabria 

which belong to the warm temperate oceanic climate; and the Ribera del Duero which has 

a strong tendency towards continentality. The Mediterranean climate enjoys hot, dry 

summers, mild winters and heavy rainfall in spring and autumn. However, if we consider 

the growth of a certain crop such as the vineyard, it is important to know better the climatic 

particularities that occur in the area and how these affect its annual cycle of growth and 

fruiting. 

 

The climatic characteristics that come together at the level of a certain plot are called 

mesoclimates. It is defined in a surface of 10 to 110m. The mesoclimatic differences are 

more important in the areas where the orography is quite changing, as is the case of the 

Priorat. The influence of the mesoclimate has a clear effect on the ripening of the grapes 

and the time of harvest. Also, Alain Carbonneau provides the definition of microclimate, 

the microclimate at the plant level referring to the conditions of temperature, humidity and 

insolation that take place inside the vine, at the level of leaves and grapes, which influence 

the photosynthetic efficiency and consequently in the correct maturation of the grapes. 

 

The mesoclimate determines climatic differences due to the topography of the region and 

that give rise to local modifications or changes that can affect to more or less ample 

extensions. Factors that condition them include distance to the sea, altitude, orientation, 

exposure, and latitude. From one region to another or between nearby municipalities, 

noticeable differences in temperature, precipitation, insolation and thermal amplitude can 

be seen, which affect the processes of growth, sprouting, fruit formation, ripening and, 

ultimately, the composition of grapes. Coastal areas receive the effect of thermal shock 

absorber from the sea, frosts are rare and summers are rather cool. In contrast, inland 

winters are very cold and summers very hot, rainfall is scarce, diurnal and annual thermal 

changes are more abrupt and the thermal amplitude greater. It is said that the climate of 

these counties tends to be continental. Altitude implies a decrease in atmospheric 

pressure and consequently a decrease in temperature, an increase in relative humidity, 

and the possibility of rain. The relief determines not only the climatic conditions by the 

effect of altitude, but also by the exposure of the earth to the sun’s rays which depends on 

the orientation of the slopes. The conditions of insolation are very different in the sun (cat. 

solana), the slopes that face towards the south, of the shades (cat. obaga), slopes oriented 

towards the north. Depending on the slope of the slope, the rays will be received more 

perpendicularly in the sun and more radiation will arrive. 
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In general, all climate change models also predict a variation in the hydrological cycle, 

reducing precipitation between 10 and 40% (Rosenzwieg and Tubiello, 1997) and 

modifying its frequency and duration. Thus, a reduction in annual rainfall is expected, 

especially in the summer months, and a higher incidence of episodes of intense rain. In 

the Mediterranean region in Catalonia  and according to the Tercer Informe sobre el canvi 

climatic a Catalunya (TICCC), annual rainfall in this region will decrease 9% from now on to 

2050 and temperature is expected to increase +1.4% (MedECC, 2019).  

 

Another factor is the increase in CO2 concentration. In general, long-term exposure to high 

concentrations of CO2 will reduce stomatal conductance by 25% and consequently 

respiration (Long et al., 2004), also producing an increase in photosynthesis rates, 

production and efficiency in the water use. The influence of plant material on key 

physiological processes related to the efficient use of water by the plant has been 

demonstrated, from water absorption and stress detection by roots, to by water transport 

(Alsina et al., 2007; de Herralde et al., 2006; Lovisolo and Schubert, 2006), the modulation 

of hydraulic and chemical signals between root and leaves (Ren et al., 2007; Christman et 

al. al., 2007) and gas exchange at the leaf level (Flexas et al., 2007; Soar et al., 2004; Bota 

et al., 2001). All these processes and those of fruit formation and ripening are modified by 

the environmental conditions of temperature, humidity (Soar et al., 2006), radiation 

(Schultz et al., 1998, Jeong et al., 2004) or availability of water (Antolín et al., 2003). 

 

Viticulture is an agri-food sector particularly dependent on climatic and meteorological 

variations. Episodes of extreme weather such as frost, hail or heavy rains before harvest 

can cause considerable losses of a specific harvest, while long-term climatic changes can 

determine changes in the maturation potential and in the style of the wines that a region 

can produce. Furthermore, wine production is highly adapted to local environmental 

conditions with the use of varieties and techniques that allow optimum quality production 

for each specific site. Long-term climatic variations put this balance between varieties - soil 

- climate at risk (Jones, 2007). According to the prediction models, in vineyards in the 

Mediterranean area the most limiting factor will be the variation in the rainfall regime and 

the water availability during the summer. This will make the Priorat are more vulnerable to 

Climate Change. On the other hand, Grenache is one of the Mediterranean varieties which 

her great alcoholic yield  is  characterized  by  a  high  accumulation  of  sugar  in  the  

berries  during  the  ripening process. The alcoholic degree attained in their wines tends 

to be much higher than in Carignan wines.  The  Atlantic  variety  Cabernet  Sauvignon  also  

raises  high  amount  of  sugar  in  the  grapes. Consequently, the increase of Grenache 

wine production enhances an increase of the alcoholic degree in the wines of the Priorat 

DOQ (de Herralde et al., 2012). In recent years, the DOQ promoted the new plantings of 

Grenache and Carignan and also an increasing demand on these wines in international 

markets.  
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That is why the knowledge of the autochthonous varieties of Priorat, Grenache and 

Carignan, and the impact of the adverse climatic conditions, will make this heroic 

viticulture, based on the orographic conditions with little mechanization, small vineyards 

sometimes non accessible by machinery, and often organized in terraces, the basis for the 

quality heritage of Priorat. 
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Chapter 2. Objectives and Outline 
 

 

2.1 General Objectives 
 

The general objectives of this project are the generation of new knowledge regarding the 

effect of water deficits in Grenache and Carignan in key physiological periods (flowering, 

veraison and fruit ripening); as well as its consequences at the level of synthesis of phenolic 

compounds in grapes and wine. Deepening the knowledge of the variety, adaptability to 

edaphoclimatic conditions, availability of water in the soil and the ecophysiological 

responses of the vine are the object of this study, considering the integration of responses 

at the plant level and the effect of stress on the composition of the fruit and even going 

further, evaluating the quality of the final wine. 

 

2.2 Problem Statement 
 

The Grenache and Carignan varieties are widely spread in the wine-growing areas of the 

northwest of the province of Tarragona, especially in the Terra Alta, Montsant and Priorat 

Denominations of Origin, where they form the basis of the VQPRD. In 2008, our research 

group started to study of the cultivars Grenache and Carignan in the wine-growing area of 

Priorat, where the drought factor and high temperatures lead us to consider this DOQ as 

a vulnerable Mediterranean wine region in the context of global climate change. In 

previous research with Grenache and Carignan in the Terra Alta wine region (2006 to 

2008), these varieties showed a different kinetic of accumulation of phenolic compounds 

around harvest that were dependent on the terroir and the vintage. For this reason, one of 

the elements of greatest interest is the effect of climate and soil in relation to the 

development of the vine, deepening the study of the effect of annual climate variability, as 

well as its interaction with the soil and its water reserve capacity. Although water stress 

favours the synthesis of phenols (determinants of quality in red wines), the extreme 

weather conditions that occur in the Priorat region can have negative implications for the 

production and composition of the grape. 

 

One of the quintessential indicators of water stress is abscisic acid. The role of ABA 

(abscisic acid) in the abiotic stress tolerance mechanisms of the plant has been extensively 

studied because it significantly limits the productivity of crops of agronomic importance. 

To assess the water stress in grapevines, a methodology that allows us to give a quick and 

precise response and that indicates the level of water deficit, together with the 

measurements of vegetative and productive growth, can allow us to study in depth how 

the periods of little water availability and high temperatures can affect the synthesis of 

phenolic compounds that accumulate in fruits. Since some studies show that ABA is 

involved in the mechanism that controls the synthesis of anthocyanins and intervenes in 
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the synthesis of tannins that accumulate in the skin, analysis of the phenolic composition 

by HPLC of the final wine may be essential for the establishment of the quality parameters 

in relation to water stress.  

 

Secondly, in order to assess the impact of environmental factors and growing conditions 

on the quality of the wine, it is essential to be able to carry out reliable small-scale 

fermentations that allow comparable results to be obtained in large-scale commercial 

vinification. Validating a small-scale methodology is one of the objectives of this project. 

Researchers often conduct winemaking experiments using small amounts of grapes. Few 

studies have actually evaluated the efficacy of small-scale fermentations, so it is not known 

whether reliable and representative data are obtained for replication in large-scale 

commercial production. Our research would indicate the pros and cons of employing 

different volumes of small-scale fermentation. Some phenols in wine are released more 

easily than others. When a sample is not large enough to undergo large-scale 

fermentation, the total phenols cannot be fully extracted from the wine. This gap would be 

filled by examining how different volumes could affect the composition of the resulting 

wines and which would be large enough to conclusively represent a specific winemaking 

procedure. 

 

2.3 Objectives and their importance 
 

In order to find answers to the proposed objective, three blocks or specific objectives are 

established: 

 

2.3.1 Chapter 4: Characterization of the Grenache and Carignan varieties in the 
Priorat and water stress assessment 
 

The characterization studies on Grenache and Carignan allow us to observe if the 

maturation of the pulp and the seeds depends mainly on the year or the vigour, thus giving 

rise to a composition of the pulp (probable alcohol, acidity and pH) and phenolic 

(anthocyanins and tannins) of sufficient concentration to allow us to produce wines with 

optimal quality parameters. In addition, in some years, the maturation of the pulp will be 

more advanced than that of the seed and, as a consequence, more heterogeneity and 

wines with a lower phenolic load. In the case of varieties such as Grenache, a higher sugar 

content can be observed in warm years. For this reason, vigour management is of great 

importance to achieve a homogeneous crop to guarantee optimal maturation at harvest 

time. Therefore, the lack of maturity of the seed in extreme hot conditions and the weak 

vigour will denote that variety presents a high risk of presenting a negative astringency in 

the final wines. Based on this knowledge, the objective is to study the influence of the main 

elements of terroir (mesoclimate and soil) and the effect into physiological aspects 

(vegetative growth, leaf area, water potential, leaf temperature, and harvest production) 
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and secondary metabolism (accumulation of stress hormones, pulp composition, 

secondary metabolites). Given the fact that abscisic acid is a good phytohormone indicator 

of stress, the development of a methodology that can be used in grapevines and that 

increases the precision and speed in the quantification together with a predictive machine-

learning technique that is used for both classification and regression, will allow us to asses 

water stress and the differentiation of vineyards. The algorithm of the decision tree models 

repeatedly partitions the data into multiple subspaces so that the outcomes in each final 

subspace are as homogeneous as possible. This study will be useful to interpret larger 

data sets from different vineyards and will be helpful to interpret the physiological results 

obtained.  

 

2.3.2 Chapter 5: Assessment of a small-scale fermentation methodology 
 

At the same time, a small-scale winemaking methodology will be developed in order to 

assess the repeatability and the reproducibility of the winemaking procedure, that strictly 

defines the sampling, crushing and distribution of the skin, together with the fermentation 

conditions, in order to obtain good reproducibility of the method. This will create the basis 

for establishing a methodology that can be used in subsequent research studies using 

small-scale fermentation vessels, allowing the results to be extrapolated to a commercial 

level. This study is of great importance because the availability of grapes in volumes 

suitable for winemaking is limited in viticulture research and most of the studies related to 

water stress give rise to an important heterogeneity when orography factors are important. 

 

2.3.3 Chapter 6: Estimated Priorat wine consumption in humans 
 

Phenolic compounds of wine have also attracted much interest due to their antioxidant 

properties and their potentially beneficial effects for human health. The apparent low 

bioavailability of anthocyanins seems to cast doubt on their ability to exert their proposed 

beneficial effects throughout the body. Evaluating within the literature the effects of wine 

on health, there is no clear evidence of what kind of wine is supposed to have more 

beneficial effects on metabolic syndrome. Based on recent studies, meta-analysis and pool 

analysis on wine composition and due to its predicted low bioavailability, it was estimated 

the efficacy intake of 5 geographically different Priorat wines (Estate Wines), according to 

recent researches made on gastrointestinal absorption and alcohol intake effect on 

metabolic syndrome, to better estimate whether geographical origin of wine might have 

an influence on the daily antioxidant serum composition. The evaluation of different 

wine/doses let us suggest that the choice of a specific Estate wine in our daily meal would 

lead to have the same amount of polyphenols avoiding wines with a higher alcoholic 

degree. 
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2.4 Justification 
 

Global change is inducing significant variations in the phenology, production and quality 

of the vine, which strongly depend on the specific region, and which show the vulnerability 

of this crop and the final quality of the grape and wine facing sustained increases in 

temperature or significant reductions in water availability. Two important aspects are 

needed to assess: on the one hand, ecophysiological and genetic variability aspects 

related to water use efficiency and, on the other, the effects induced by mesoclimatic 

variations, and specifically of temperature and water availability. The knowledge acquired 

will make it possible to better assess the vulnerability of viticulture to global change and 

also identify ways to reduce its presumed impact. 

 

This thesis provides an added value that allows extrapolating the results in the plant and 

in wine at a commercial level, so that a link of superior knowledge can be reached to 

validate research studies in the field of vine physiology and micro-fermentations in studies 

of extraction of phenolic compounds in red wines. The determination of the relationships 

between ecophysiological parameters and grape composition will allow us to define with 

greater knowledge both the agronomic potential and the oenological potential of the 

varieties under study. All this focused on improving certain agronomic practices that 

guarantee the sustainability of the vine as a crop within the DOQ Priorat and also advise 

some oenological practices based on the changes in phenolic composition observed in 

the grapes. 

 

2.5 Limitations and viability 
 

The limitations to this study are the reduced time of the measurements, since in field 

studies each year the variability of the environmental factors is verified to a lesser or greater 

degree. Many trials in viticulture need several years of study to draw conclusions about the 

observed phenomena. In order to partially reduce these limitations, previous studies 

allowed our research group to evaluate the qualitative potential of the varieties studied in 

two different wine-growing regions (Terra Alta and Priorat). At the same time, it would be 

interesting to complete this project with the study of other varieties, in order to be able to 

integrate all the results and be able to extrapolate to other red varieties. 

 

The proposed work is considered viable due to the integration of previous knowledge, 

experience and differentiated capacities regarding the experiments to be carried out. The 

benefits of this project make it possible to assess at the vineyard level, how the cultivation 

of Grenache and Carignan, contributes to environmental sustainability, in addition to 

having an impact on the assessment of the quality of the final wine in the DOQ Priorat, but 

above all to establish methodologies that allow giving validity to similar studies on a 

commercial scale.  
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Chapter 3. Materials and Methods 
 

 

3.1 Plant material  and site location 
 

3.1.1 Plant material and site location for cv. Carignan 

 

To carry out this research, two locations for Carignan have been selected within the 

DOQ Priorat. The choice of the two locations responds to the fact of the existence of two 

clearly differentiated mesoclimates in Priorat: the subzone with a maritime influence in 

which the thermoregulatory breezes directly affect (municipalities of Porrera and 

Poboleda) and; the subzone at the other end, which opens towards the Ebro river valley, 

warmer due to the Priorat orography that prevents the arrival of sea breezes (municipalities 

of Bellmunt del Priorat, La Vilella Baixa and El Molar) (Nadal, 2002). 

 

Location 1) In the municipality of El Molar (UTM X:810512 UTM Y:4562090) in the DOQ 

Priorat, the vineyard is located on slopes and river terraces oriented to the south-east 

south, between 200 and 300 m above sea level. The vineyard is presented on terraces and 

slopes, the vines are over 50 years old, cultivated in bush and grafted on Rupestris de Lot. 

The study was performed at two Sites (Site 1 and Site 2) located in an early mesoclimate 

(El Molar) at different altitudes. Sites of the early region El Molar (EM) were located at: Site 

1 (41º 9' 90'' N; 0º 42' 75'' E, elevation 220m) and Site 2 (41º 9' 40'' N; 0º 42' 38'' E, elevation 

185m). Three plot replications of each combination vigour/variety were randomly 

distributed in the vineyards, with each elementary plot consisting of 30 vines. Short 

pruning is performed. The soils are of colluvial origin, formed by a mixture of slate and 

calcareous materials, with loam to clay loam textures and with a percentage of stoniness 

that depends on the level gradient. Harvest dates in this location are traditionally mid-

September. 

 

Location 2) In the municipal area of Porrera (UTM X: 320300 UTM Y: 4562075) on a west-

southwest facing slope with vineyards between 425 and 495 m above sea level, on terraces 

with different slopes. The majority variety of Vitis vinifera is Carignan, with the presence of 

some scattered red Grenache. The majority rootstock is R-110 (V. rupestris x V. berlandieri) 

and Rupestris de Lot (V. rupestris). Three Sites were selected for the late region in Porrera 

(PO): Site 3 (41º 10' 51'' N; 0º 52' 25'' E, elevation 425m), Site 4 (41º 10' 50'' N, 0º 52' 29'' 

E elevation 425m), and Site 5 (41º 10' 57'' N, 0º 52' 32'' E elevation 495 m). Vines are over 

60 years old conducted in bush. The soil texture is based on slate, or commonly named as 

llicorella, with a coarse fraction (> 2 mm) 39.7% and a fine fraction (≤2 mm) 60.3% and a 

loamy texture. The traditional harvest dates in this location are at the end of October. 

Carignan old bush vines planted in a density of 5000–6000 vines·ha-1. Vines were planted 
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in steep terraces with a slope of 15–25%. The soils were composed of slate conferring a 

stony, dry, and poor soil. Furthermore, the soils were well-drained, as they contained a 

high proportion (between 70% to 90%) of large particles more than 2 mm in diameter. 

Three plot replications of each combination vigour/variety were randomly distributed in 

the vineyards, with each elementary plot consisting of 30 vines.  

 

3.1.2 Plant material and site location for cv. Grenache 

 

Location 3) Two Grenache vineyards are analysed here, both grafted onto R110. The plots 

are located in the townships of El Molar (EM), Site 6 (41° 9' 21.10'' N, 0° 43' 4.08'' E, altitude 

210m) and El Lloar (LO), Site 7 (41° 10' 5.64 "N, 0° 43' 17.18'' E, altitude 240m), and studied 

during two distinctly different vintages: 2010 and 2011. Soils in both are typical of the 

region, characterized by poor, dry, and pebbly schist. The USDA classification for EM is 

sandy loam and silty loam for LO, both are of a co-alluvial origin formation. The terraces 

are naturally located at progressive topographic heights. Grenache vines in LO are 14 

years old, and are growing in east-south facing terraces; EM vines are 16 years old and 

south-facing. Vine spacing is 1.2m and the inter-row distance is 2.5m. VSP trellising (70cm 

high) and bilateral cordon pruning characterize both vineyards. The Grenache from Lloar 

(LO) is grafted onto R-110 and distributed in terraces at different levels, conducted in 

trellises with a height of vegetation between 60-70 cm. Short pruning is performed on all 

vines and the trellises are conducted in a vertical system in a bilateral cordon. Harvest dates 

in this location are traditionally mid-September. Three plot replications of each 

combination vigour/variety were randomly distributed in the vineyards, with each 

elementary plot consisting of 30 vines.  

 

 

Figure 1. Priorat county ‘comarca’ (left) and Priorat wine growing area, DOQ (right). Location of areas of study. EM (El 
Molar, red point) LO (El Lloar, blue point) and PO (Porrera, yellow point). 
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3.2 Climatic characterization  
 

Weather stations (DECAGON®) located in each vineyard recorded various climate data, 

including temperature (ºC), humidity (%), rainfall (mm), and radiation (W·m-2). VPD (vapor 

pressure deficit) was also calculated. Also, the evapotranspiration (ET0) based on 

Hargreaves (Hargreaves and Samani, 1985) was calculated with average temperature and 

radiation (Allen et al., 1998).   

 

    
Figure 2. Installation of weather stations in each vineyard (Site 1 to Site 5). Datalogger (right). 

 

                       
Figure 3. Pyranometer, Anemometer, Pluviometer and  humidity and temperature sensors. Adapted by 

(www.metergoup.com). 

 

   
Figure 4. Schematic design of a weather station. Model EM5139. Pluviometer (ECRN-50), Humidity and temperature 

sensors (EC-T/HR)) and Pyranometer (PAR sensor, PYR) (www.metergoup.com). 
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Figure 2 shows the installation of Decagon Weather Stations. Each weather station 

included a pluviometer, pyranometer, anemometer, temperature sensors and humidity 

sensor. PAR sensors recorded photosynthetically active radiation. Anemometer recorded 

wine speed and direction. 

3.3 Soil characterization  

Figure 6 shows the EC-5 soil moisture sensors that were installed in the five vineyards.  EC-

5 sensor recorded volumetric water content.  Figure 7 shows the picture of the datalogger 

that allows data storage. The Em50 has 5 sensor ports and a communication port. The 

Em50 is configured by plugging a laptop into the communications port. The included 

ECH2O Utility software provides windows setup that will name the logger, set the clock 

recorder, select the type of sensor on each port, and specify how often you want the 

sensors to read. The sensors were placed according to the scheme of Figure 5. Sensors 

are installed at three different depths, 20, 40 and 60cm. 

 

 
Figure 5. Schematic representation of the distribution of Decagon soil moisture sensors. Model EC-5. 5 sensors were 

installed at different soil depth (P1: 60cm; P2: 40cm; P3: 20cm; P4: 60cm and P5: 40cm) (www.metergoup.com). 
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Figure 6. Installation of water soil sensors in each vineyard (Site 1 to Site 5). Datalogger. (www.metergoup.com). 

           
Figure 7. Datalogger (left) and ECH2O EC-5 Soil moisture sensor (right) used to determine soil humidity. Every 

datalogger can connect up to 5 sensors (www.metergoup.com). 
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Figure 8. ECH2O Utility software. Every datalogger was identified by name and location that was determined by 
Latitude and Longitude. 5 sensors were plugged at each port (P1: 60cm; P2: 40cm; P3: 20cm; P4: 60cm and P5: 40cm. 

 

Regarding geology, the oldest materials date in the Priorat of primary geological era, 400 

million years ago in the Palaeozoic and during different periods (Devonian, Carboniferous, 

Permian). More recent in the Primary, the Carboniferous era, the slate appears to make up 

the majority of the soils of Priorat. The soils have different colours and brightness 

depending on the type of minerals and oxides are formed and cemented with sand: 

brilliant black, brown, red, grey and freckled. Hercynian movements of Mesozoic cause an 

uprising of a whole set of substrates, formation of new sediment and cement will result in 

the red sandstones that are so characteristic of today's towns.  Finally during the 

Quaternary glacial periods and the alternation of interglacial impact on the erosive power 

of water currents generated on the territory the formation of fluvial terraces and deposits 

rates glaciers that have come to shape the today’s relief.  

In the Priorat, there are three types of soils of different origin: 

a) Calcareous soils: These are soils formed by materials from the Tertiary, they are 
silts that come from limestone that form the mountains of the area. These soils 
are located in the Montalts and Montsant and more specifically in plots of 
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Morera del Montsant and El Molar. These soils are deep with a more or less 
developed petrocalcic. 

b) Llicorella (slate) soils: These are soils that develop on Palaeozoic shales, 
usually from the Carboniferous. Decomposed slate layers alternate with other 
siliceous materials and sometimes with the presence of calcium cements. In 
addition these slate soils are the result of the consolidation of clayey sediments. 
These are the most important in the DOQ Priorat and make up the typical 
landscape of this region. These soils are located in the locations of La Viella 
Baixa, La Viella Alta, Gratallops, El Lloar, Torroja, Poboleda and Porrera. 

c) Granitic soils: These soils are formed by materials from the pre-Cambrian 
period, these materials are very decomposed granites. These are sandy soils 
located in flat areas around the towns of Falset, Marçà and some can also be 
found on land in Bellmunt and in the direction of Gratallops. 

 

Mostly, within the DOQ Priorat, we find three different types of soils, two of which belong 

to the Palaeozoic period while another belongs to plutonic and hypabyssal rocks. 

 

Figure 9. Priorat geological map (ICC:Institut Cartogràfic de Catalunya). Scale 1:250.000. 

 Palaeozoic- Devonian ( Eifelian-Famennian) 

 Palaeozoic-  Carboniferous  

 Plutonic and hypabyssal- Late Hercynian intrusive rocks 
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There are three geological periods within the study area: 

a) Palaeozoic-Devonian: This is the oldest soil of the DOQ Priorat. This period is 

from 397 million years ago to about 359 million years ago. In this case, the 

general characteristics of this soil are clayey slates with intercalations of 

quartzites and lyddites predominate. 

b) Palaeozoic- Carboniferous: The soil of this period is the most extensive in the 

DOQ Priorat. The Carboniferous goes from 359 million years ago to about 326 

million years ago. In this case, the most general characteristics of these types 

of soils are that sandstones and slates with conglomerate levels predominate, 

with andesites at the base. 

c) Plutonic and hypabyssal rocks:  Late Hercynian intrusive rocks: These rocks 

are classified in igneous rocks, they derive from the crystallization of a magma, 

and the process that generates them is magmatism. Hypabyssal and 

subvolcanic rocks are formed by solidification of magma within cracks or 

fractures, forming dikes and sills. Plutonic rocks are present in masses, usually 

large in size, depending on their shape and dimensions laccolites, phacolites, 

lopoliths or batholiths will form. 

From the geological point of view, in the Priorat the soil that stands out most is that of 

Llicorella. This soil absorbs and stores moisture giving the vineyard optimal soil. In 

addition, the slate holds the heat radiated by the floor, and at the same time reflects light. 

All these characteristics make the wine obtained have a very personal and typical character 

of the area. 

Agronomically speaking, the soils of the DOQ Priorat are stony, sandy and relatively 

unfertile due to their poverty in terms of organic matter. The metamorphic nature of the 

stony elements facilitates the breakage of slate in the direction of the layers of stratification, 

the outcome of which is the formation of flat Llicorella (slate) stones that cover the surface 

of the soil. On the slopes, these flat slate stones contribute to diminishing the magnitude 

of erosion phenomena that would normally occur on such steep slopes. 

Slate (in Catalan Llicorella, with local variations such as licorella, llicorell or llecorell), is the 

unchallenged protagonist od the DOQ Priorat, although the region also comprises a 

number of areas from which slate is absent, such as the foothills of the Montsant and much 

of the mountain itself. The term Llicorella is linked to Llècol, a word used to designate 

humour, taste, flavoursome mellowness, the etymological source of which is the Celtic 

Likka, which means stone (Lopez-Monné et al., 2004) 
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3.4 Vegetative growth  
 

Two vines per replicate were used for vigour measurements, with a total of six vines per 

treatment. Number of shoots per vine, diameter and length of shoots, clusters per vine, 

berry weight, bunch weight, yield, pruning weight and total leaf area were measured in 

each replicate. Furthermore, Ravaz index (yield/pruning weight) and the ratio of the total 

leaf area TLA/yield were calculated.  

 

Individual 100 leaf areas were scanned by a CI-202 Leaf Area Meter. The CI-202 Laser Area 

Meter uses advanced laser technology to provide with a precise and convenient way to 

measure leaf area. The high-resolution laser scanner, data logger, and display are all 

enclosed in a durable, handheld scanner and detachable palette. The CI-202 is used to 

perform non-destructive measurements on the leaves of living plants by placing the leaf 

on the palette and sliding the scanner over the leaf, enabling collection of data from the 

same plant, or even the same leaf, throughout its life span. The transparent, protective 

sheath on the palette makes it easy to capture precise leaf area measurement on tender 

or intricate leaves. The total leaf area was calculated by using the methodology described 

in Edo-Roca et al. (2014). 

 

 

    
Figure 10. Equations used to calculate TLA for cv. Grenache and cv.Carignan. 

 

After scanning the leaf area we proceed with measuring the length of the midrib (central 

nerves), which correlated well with the area of the leaf. The equation used for cv. Grenache 

was y=147.75x-3387 (R2=0.9108) and for cv. Carignan y= 169.43x-5187.8 (R2=0.8799). 
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3.5 Phenology 
 

Some of the most clearly observable effects of climatology on plant biology are 

summarized in phenological observations, already in the key dates that define the annual 

cycle of the species, either in those quantitative parameters that we consider phenological. 

The different phases of growth and development of the vine are defined in 16 

phenological stages, each of them being recognized by a letter according to the 

methodology described by Baggiolini (1952) and by Lorenz et al. (1995). It is established 

that the full phenological state is reached in the count of 50% of elements in a certain 

phenological state. In our study, it was of great importance to know the duration of each 

stage under the influence of the mesoclimatic variable and to determine the percentage 

of accumulation in each stage. In three vines of each elemental plot, the dates of sprouting, 

full flowering, fruit set, pea size berry, veraison, harvest (optimal ripening) and leaf fall was 

determined. The number of buds per vine, the phenological stage and the percentage of 

each stage was calculated. 

 

 
Figure 11. Phenological stages by Baggiolini: A (winter dormancy), B (wool, doeskin stage), C (green shoot), D (first leaf 
unfolded), E (2 to 3 leaf’s unfolded), F (inflorescence clearly visible), G (inflorescence elongating, flowers closely pressed 
together), H (inflorescence fully developed, flowers separating), I (full flowering, 50% of caps falling), J (fruit set, young 

fruits beginning to swell), K (berries pea-sized, bunches hang), L (beginning of berry touch), M (beginning of berry 
ripening, loss of green colour, veraison), N (ripeness), O (lignification), P (leaf falling). 

 

The budburst represents the starting point of the plant growth with the appearance of the 

first leaves. From this moment on, the plant will, once again, start its photosynthetic activity 

and shift progressively from a growth based on its reserves to a growth based on the 
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production of newly synthesized carbohydrates. This is the methodology used for the 

determination: 

 

For notations: 

 

• We take into account only the vine-plants that are definitively established and in 

production. 

• We recognize that a bud is in budburst if we see a small green or red tip.  

• We consider only the principal buds. 

• The retained stage corresponds to the date at which 50 % budburst has been 

reached in relation to the number of productive buds left at the pruning.  

• It is necessary to undertake the observations on at least five vine-plants per 

homogenous zone 

 

Passage frequency:  

 

• From the moment when a minimum of 5 % of buds have burst, at least one 

additional passage was done with a maximum of one-week interval, in a manner 

to have one observation after 50 % of the buds have burst. 

• The date of «50 % budburst» is obtained by interpolation between the observed 

values before and after 50 %. 

 
The flowering marks the beginning of the reproductive stage: the fall of the cap 

corresponds to the moment where the pollen will come into contact with the stigmas. The 

process of fertilization of the ovum that follows, conditions the formation of the berries and 

the pips, it thus constitutes a crucial moment in the development cycle.   

 

For notations: 

 

• Take into account only the vine-plants that are definitively established and in 

production. 

• It is considered that a flower is open when the base of the cap is detached, 

regardless of whether it falls off or not.  

• We estimate a level of flowers open. The retained stage corresponds to the 

date at which a level of 50 % is reached. 

• It is necessary to undertake the observations on at least five vine-plants per 

homogenous zone. 

• To determine the stage of 50 % flowering, we evaluate the level of flowering 

per vine-plant or by inflorescence, then we calculate an average. 
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Passage frequency: 

 

• From the moment when we observe a minimum 5 % of flowers open, do at 

least one supplementary passage with a maximum of one-week interval, in a 

manner to have one observation after 50 % of the flowers have opened. 

• The date of «50 % of flowers open» is obtained by interpolation between the 

observed values before and after 50 %. 

 

The veraison marks the beginning of the ripening process of the grapes, that finishes at 

the harvest. 

 

For notations,  

 

• Take into account only the vine-plants that are definitively established and that are in 

production. 

• We consider that a berry has completed its veraison if it is soft to the touch. 

• This criterion permits an unbiased comparison of the grape varieties, whether white or 

red.  

• Always undertake notations at the same hour, preferably in the morning. 

• The retained stage corresponds to the moment at which the berries are soft to the 

touch. 

• The use of the colour appearance method is acceptable for interannual comparisons 

of the same grape variety at the same site. In this case, a visual estimate of the 

percentage of coloured berries on the entirety of the bunches of the vine must be 

effectuated. 

• It is necessary to undertake the observations on a minimum of five vine-plants per 

homogenous zone. 

Passage frequency: 

 

• From the moment when we have observed a minimum of 5 % of berries soft to the 

touch, we did at least 1 supplementary passage with a maximum of one-week interval, 

in a manner to have one observation after 50 % of the berries are soft to the touch. 

• The date of «50 % berry veraison completion» is obtained by interpolation between 

the observed values before and after 50 %. 

 

3.6 Leaf water potential, ΨLWP and stomatal conductance, gs 

 

Measurements of stomatal conductance (gs) and leaf water potential (LWP) was intended 

to determine the variations in plant physiology between plots in the same area, potentially 

attributable to mesoclimatic variations. To perform the measurements of stomatal 

conductance the SC-1 Decagon Porometer (Decagon Devices, Inc. 2365 NE Hopkins 
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Court Pullman, WA 99163) was used. This mobile instrument was very easy to transport 

due to the difficulty of the terrain in the Priorat. Measurements with the SC-1 Decagon 

Porometer was restricted to stomatal conductance and leaf temperature. Stomatal 

conductance (mmol m−2 s−1) measured by a porometer is the rate of CO2 entering, or water 

vapor exiting through stomata. Stomatal conductance (gs) is a measure of the degree of 

stomatal opening and can be used as an indicator of plant water status. Stomatal 

conductance is related to LWP by feedback processes. Reductions in gs prevent further 

decreases in LWP by reducing transpiration; also, reductions in LWP can induce stomatal 

closure, resulting in lowered gs.  
 

The LWP (Leaf Water Potential) in each phenological stage, PS (pea size), V (veraison), and 

RP (ripeness), were measured using a pressure chamber (207 Bar/3000 PSI pressure) 

(Model 600 PMS Instruments, Oaklands Park, Wokingham, United Kingdom) according to 

the technique described by Scholander et al. (1965). Leaf water potentials are reference 

measures of vine water status that have enabled solid reference thresholds of vine water 

status to be established. To ensure consistent readings, predawn LWP (ΨPLWP) was 

measured one to two hours before sunrise at 8:00  (6:00  solar time), when grapevine water 

status is at a maximum (Carbonneau,1998), and midday LWP (ΨMLWP) was measured at 2:30  

(12:30  solar time). In addition, primary (PLA) and secondary leaf (SLA) areas were 

measured during the PS, V, RP, and PH (postharvest) stages. 

 

 

                     
 

Figure 12. Infrared thermometer Testo© allowed the measurement of leaf temperature (left). 600 PMS Scholander 
chamber (right) allowed the measurement of leaf water potential (ΨLWP) (right) 
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Figure 13. The steady state SC-1 Decagon ® Leaf Porometer consists of a hand-held enclosure with a cable connected 
to a leaf-clip sensor. The final reading appears on the display in terms of either conductance or resistance. Saved data 

can download to a PC using an RS232 cable and download to a PC using an RS232 cable and download utility software. 
(www.metergoup.com) 

 

 

 

 
 

Figure 14. The pressure chamber method for measuring plant water potential. The diagram at left shows a shoot sealed 
into a chamber, which may be pressurized with compressed gas. The diagrams at right show the state of the water 

columns within the xylem at three points in time: (A) The xylem is uncut and under a negative pressure, or tension. (B) 
The shoot is cut, causing the water to pull back into the tissue, away from the cut surface, in response to the tension in 

the xylem. (C) The chamber is pressurized, bringing the xylem sap back to the cut surface. Adapted from: Plant 
Physiology and Development, Sixth Edition by Lincoln Taiz, Eduardo Zeiger, Ian M. Møller, and Angus Murphy, 

published by Sinauer Associates. 

 

3.7 Sample leaf preparation for ABA determination 
 

Several long and tedious methods have been developed for the extraction and 

determination of ABA in plant tissue; however, some studies have developed more rapid 

approaches for the determination of phytohormones in plant material other than vine 

leaves (Riov et al., 1990; Setha et al., 2005). However, the establishment of a rapid method 

for determining ABA in vine leaves (López-Carbonell and Jáuregui., 2005), along with 
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measurements of LWP, provided important information for the classification of the water 

status of the vineyards.  

 

Healthy leaves having reached approximately two-thirds of their definitive size were 

sampled from five vines per block and were bagged using Ziploc ® bags covered with a 

metalized high-density polyethylene reflective film to avoid additional leaf heating. This 

approach prevents the degradation of phytohormones, such as ABA. Samples were stored 

at -20ºC. The methodology of López-Carbonell et al. (2009) was used for the extraction of 

ABA in Carignane leaves. Extraction solvent (solution 1) was prepared with 

acetone/water/acetic acid (80:19:1, v/v/v). The solvent temperature was kept at -20ºC. 

Reconstitution solvent (solution 2) was prepared with water/acetonitrile/acetic acid 

(90:10:0.05, v/v/v).  

 

This methodology was improved by carefully weighing 4–5 g of fresh weight from a pool 

of different leaf samples and lyophilizing samples in a Telstar LyoQuest freeze dryer with a 

condenser temperature of -55ºC, followed by powdering with mortar and pestle. Dried 

samples were carefully weighed in a 1.5-mL Eppendorf tube. Next, 1 mg of ABA internal 

standard was added to each of the three replicates at the beginning of the extraction 

procedure. A volume of 1.2 mL of extraction solvent (solution 1) with the 300 mg of sample 

inside the Eppendorf was extracted in triplicate, and temperatures remained cool while 

samples were manipulated. The Eppendorf mixture was vortexed and left overnight at -

20ºC, followed by centrifugation at 15,000 rpm for 10 min at 4ºC. Supernatants were 

pooled, dried under a nitrogen stream (Stuart, SBH200D), and reconstituted in 445 μL of 

reconstitution solvent (solution 2), followed by stirring, vortexing, and centrifugation 

(10,000 rpm, 10 min). Samples were filtered through a 0.22-μm PTFE filter (Millex Syringe-

driven Filter Unit). Next, 5 mL of each sample was injected into the LC–ESI–MS/MS system. 

Internal standards were used for the calibration of ABA. The calibration curves for ABA 

showed high linearity (R2 = 0.9959). The regression equation for the relationship between 

area (EIC) and ABA concentration (mg/L) was ABA = 1×106Area - 138.14. ABA standards 

were prepared daily. High correlation coefficients (r2 > 0.995) were obtained for 

concentrations ranging from 0.019 to 0.472 mg/L. 

 

 

3.8 Fruit sampling and analysis 
 

Berry ripening was carefully monitored, and chemical analyses of the resulting wines were 

evaluated. During harvest, weekly samples of 400 berries were randomly harvested and 

then analysed. Sugars (Brix), TTA (g/L total titratable acidity), and the pH of the grape juice 

were determined. After crushing the whole berries, extraction of phenolic compounds was 

performed following a modified version of the Glories method (Nadal, 2010) to determine 

total anthocyanins (ANT T) and extractable anthocyanins (ANT E); %EA (extractability of 
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anthocyanins), %SM (seed maturity), and TPI (total polyphenol index) were also measured. 

OIV methods were used to analyse alcohol by volume (ABV), total titratable acidity (TTA), 

pH, anthocyanins, DMAC (flavan-3-ol by derivatization with p-

dimethylaminocinnamaldehyde), and total tannins in wine. ANOVA was performed using 

the general linear model procedure. The Tukey test was used for post-hoc analysis 

(XLSTAT statistical package, EXCEL) between plots. The evolution of grape ripeness and 

wine composition at the chosen Sites was followed at each of the municipalities. Small-

scale fermentations were performed for each Site in triplicate. Grapes were randomly 

sampled, de-stemmed, crushed into stainless-steel wine vats, and fermented after 3 days 

of cool maceration to extract the colour and following the fermentation of all sugars. 

Potassium metabisulfite was added to a final concentration of 20 ppm to preserve the 

products of oxidation processes until bottling. The wine did not undergo malolactic 

fermentation. The composition of wine was determined at all Sites. Specifically, alcohol by 

volume (ABV, OIV), total acidity (TTA, OIV), pH (OIV), total anthocyanins (Ribéreau-Gayon 

et al., 2003), tannins, and flavan-3-ol (DMAC method developed by Vivas et al., 1994) were 

determined. 

 

 

3.9 Winemaking procedure 
 

Grapes were handpicked at full ripeness into 20kg boxes, and stored at 21ºC in a cold 

room before crushing. Grapes were de-stemmed and crushed individually for each tank 

volume using a BucherVaslin® Delta E2. Tanks were filled one-by-one to three-quarters 

capacity in order to ensure an upper appropriate fermentation cap management. Room 

temperature during fermentation was kept at 23ºC, and 40mgL−1 sulphur dioxide was 

added to the must. All tanks were inoculated with 0.2gL−1yeast (ICV GRE Selection Inter 

Rhône, Lallemand®). The pomace was gently hand-punched down twice a day until 

alcoholic fermentation was accomplished. During the tumultuous stage, must density and 

temperature were both measured daily, controlling sugar consumption, and avoiding 

extremely high temperatures (higher than 28ºC) during the winemaking process. The 

pomace was pressed once fermentation was completely exhausted (reducing sugars 

<2gL−1). Free-run wines were then obtained using a cone-shaped funnel (Lacor inox 18/20; 

diameter 22cm) to separate the pomace from the wine. Press wine was obtained using a 

40L Hydropress with a capacity of juice yield of up to 20–25L per pressing, depending on 

variety and ripeness of fruit (http://www.vigopresses.co.uk). After pressing, the juice was 

settled overnight and racked to the same tank to promote clarity. Potassium 

metabisulphite was added (Winy Sepsa Enartis®) to reach 20mgL−1 of sulphur dioxide to 

prevent microbial spoilage. Wines were stabilized at 4ºC for 2 months, followed by racking 

before bottling, and kept at 4ºC for further storage. Finished wines were bottled without 

fining or filtering. The wines did not undergo malolactic fermentation to avoid unwanted 

apparent malolactic deviations, and no oak treatment or aging was undertaken. 
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3.10 Determination and identification of anthocyanins and 

procyanidins  by RRLC-DAD-TOF/MS.  
 

All solvents were of HPLC grade. Water, methanol and trifluoroacetic acid were purchased 

from J.T. Baker (Phillipsburg, NJ, USA). Standard of malvidin-3-O-glucoside was 

purchased from Sigma Aldrich (St. Louis, MO, USA). 

 

Grapes and wines preparation: The phenolic maturity of grapes was analysed according 

to the modified Glories method (Nadal, 2010). The extract (at pH =1; total anthocyanins) 

was previously filtered by using PVDF (0.22μm) before carrying out the analysis of 

anthocyanins by (RRLC-DAD-TOF/MS). The same Liquid Chromatography procedure was 

followed for the wine samples. 

 

Instrumentation: Anthocyanin content was determined following the methodology 

detailed in Valls et al., (2009) and adapted from Deviliers et al. (2004)  through high-

performance liquid chromatography (HPLC) using a Hewlett Packard Liquid 

Chromatograph (Waters Corporation, Mildford, MA, USA) equipped with a Zorbax Eclipse 

Plus C18 Column (150×2.1mm; 3.5µm) and a Zorbax Eclipse Plus-C18 Precolumn 

(12.5×4.6mm; 5µm). Injection volume was 5µL; elution was performed with a mobile phase 

A of HPLC-grade water (0.2% trifluoroacetic acid) and a mobile phase B using methanol 

(0.2% trifluoroacetic acid). The column temperature was set at 50ºC. The HPLC was 

coupled to a Diode Array Detector (DAD) (Peak width > 0.1 mm (2s); storage of all 190–

700 nm step 2 nm; slit 4 nm; margin for negative absorbance 100 mAu. ITMS conditions: 

ionization source ESI positive; ion trap analyser (capillary 3500 V, target mass 493 m/z, 

comp stability 100%, trap drive level 100%, scan 100–900 m/z, ICC smart target 500000, 

max accu time 200 ms, average 5).   

 

The anthocyanidin mono glucosides of the  wines were chromatographed by HPLC using 

a Beckman Ultra sphere (C18) ODS (250 × 4.6 mm i.d.) column, and detection was carried 

out at 520 nm. The solvents were A, H2O/HCOOH (9:1), and B, CH3CN/H2O/ HCOOH 

(3:6:1). The gradient was 20–85% B for 70 min, 85–100% B for 5 min, and then isocratic for 

10 min at a flow rate of 1 mL/min. The content in free anthocyanins was determined using 

a calibration curve (based on peak area), which was established using malvidin 3-

glucoside.  

 

Quantifications were performed using the DAD detector, and identifications were made 

considering the time of flight (TOF). A mass spectrometry (MS) detector was used to assist 

in the identification. The contents of free anthocyanins were determined using calibration 

curves (based on peak area), which were established using malvidin 3-glucoside 
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(Extrasynthèse®). Standard solutions were subjected to the same procedure (y= 0.7968x 

+ 7.5756, R2=0.9774). The anthocyanidin-3-monoglucosides and respective acetylated 

and coumaroyl glycosides were identified based on their UV-Vis spectra and retention 

times. The anthocyanidins were identified by HPLC by comparison with internal standards. 

The calibration curves were obtained by injecting standards with different concentrations 

of malvidin 3-glucoside (Sigma). The range of linear calibration curves was from 0.1 to 1.0 

mg/L for the lower concentration compounds (R2 > 0.996), 0.1 to 5.0 mg/L for intermediate 

concentration compounds (R2 > 0.987), and 10.0 to 200.0 mg/L for the higher 

concentration compounds (R2 > 0.987). Unknown concentrations were determined from 

the regression equations, and the results were expressed in mg of malvidin 3-glucoside 

per berry. Repeatability of this method from extraction to HPLC analysis for four samples 

of the same batch of grape skins had a coefficient of variation < 7%. 

 

Triplicates from each sample were analysed. The different phenolics compounds analysed 

were tentatively identified according to their order of elution, retention times of pure 

standards (catechin, epicatechin, catechin gallate, epicatechin gallate, procyanidin B1 and 

B2) (Fluka). Anthocyanin quantification was made using the calibration curves belonging 

to the most similar compound: malvidin-3-glucoside. Total amount of anthocyanins was 

given in mg/g berry (grapes) and mg/L (wines).  
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3.10.1 Chromatographic conditions for anthocyanin analysis 

 

Table 1 shows the retention times for the anthocyanidins (glucosides, acetilglucosides and 

cumarilglucosides). Figure 15 shows the chemical structure of anthocyanins with different 

R groups (cyanidin, delphinidin, peonidin, petunidin, malvidin). 

 
Table 1. Peak assignments, retention times and mass spectral data of anthocyanidins. glucoside (1 to 5), acetyl 

glucoside (6 to 10) and coumaroyl glucoside (11 to 15). 

 Anthocyanin Retention 

time 

M+ 

(m/z) 

M+-X 

(m/z) 

Transition 

(MS2) 

(m/z) 

1 Delphinidin 3-O-glucoside 10.8 465 303 (M+-glu) 465→303 

2 Cyanidin 3-O-glucoside 11.8 449 287 (M+-glu) 449→287 

3 Petunidin 3-O-glucoside 12.5 479 317 (M+-glu) 479→317 

4 Peonidin  3-O-glucoside 13.4 463 301 (M+-glu) 463→301 

5 Malvidin  3-O-glucoside 13.8 493 331 (M+-glu) 493→331 

6 Delphinidin 3-O-acetilglucoside 15.3 507 303 (M+-gluAc) 507→303 

7 Cyanidin 3-O-acetilglucoside 16.2 491 287 (M+-gluAc) 491→287 

8 Petunidin 3-O-acetilglucoside 16.7 521 317 (M+-gluAc) 521→317 

9 Peonidin  3-O-acetilglucoside 17.6 505 301 (M+-gluAc) 505→301 

10 Malvidin  3-O-acetilglucoside 17.8 535 331 (M+-gluAc) 535→331 

11 Delphinidin 3-O-cumarilglucoside 17.6 611 303 (M+-gluCou) 611→303 

12 Cyanidin 3-O-cumarilglucoside 18.5 595 287 (M+-gluCou) 595→287 

13 Petunidin 3-O-cumarilglucoside 18.7 625 317 (M+-gluCou) 625→317 

14 Peonidin  3-O-cumarilglucoside 19.3 609 301 (M+-gluCou) 609→301 

15 Malvidin  3-O-cumarilglucoside 19.4 639 331 (M+-gluCou) 639→331 
 

 

  

 
Figure 15. Anthocyanin structure. 

 

 

3.10.2 Chromatographic conditions for procyanidin analysis:  

 

The procyanidin extracts were chromatographed and detected by HPLC-DAD using two 

connected columns MERCK (C18) ODS (250 x 4.6 mm i.d.) protected with a guard column 

packed with the same packing according to the procedure described elsewhere (De 

Freitas and Glories, 1999). The elution system consisted of two solvents, A: 2.5% acetic 

acid in water, and B: 80% acetonitrile in A. Gradient elution consisted of: 7% B with isocratic 

elution for 5 min; 7-20% B, from 5 to 90 min; 20-100% B, from 95 to 100 min; 100% B, from 
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100 to 110 min (isocratic), followed by washing and reconditioning of the column. The 

analysis was carried out at 25ºC and at a flow rate of 1.0 mL/min. The procyanidin dimers 

B1 to B8 and trimer C1 used as standards were synthesised following the reported 

methods (Geissman and Yoshimura, 1966; Michaud et al., 1973). Procyanidin dimers in 

grape extracts were identified by analytical HPLC, by comparison with authentic standards 

(De Freitas et al., 1998b; Rigaud et al., 1991). The (-)-epicatechin O-gallate and B2-3’’-O-

gallate were collected from the HPLC column and their structures were elucidated by NMR 

(De Freitas, 1995).  

 
Table 2. Retention time and m/z for each compound. 

 Procyanidin Retention time (m/z) 

1 Procyanidin C (trimer) 0.6 865.1989 

2 Gallic acid 0.8 169.0147 

3 Procyanidin B3 (dimer) 1.9 577.1364 

4 Procyanidin B1 (dimer) 2.1 577.1364 

5 Procyanidin C (trimer) 2.4 865.1989 

6 Catechin 2.8 289.0722 

7 Procyanidin B4 (dimer) 3.4 577.1364 

8 Procyanidin B2 (dimer) 3.7 577.1364 

9 Dimer monogallate 4.5 729.1469 

10 Dimer monogallate 4.7 729.1469 

11 Epicatechin 5.0 289.0722 

12 Procyanidin C1 (trimer) 5.0 865.1989 

13 Procyanidin B (dimer) 5.1 577.1364 

14 Dimer digallate 5.7 881.1683 

15 Epicatechin gallate 6.2 441.0835 

16 Procyanidin B (dimer) 6.6 577.1364 

 
Compounds determined: Procyanidin C (trimer), Gallic acid, Procyanidin B3 (dimer), Procyanidin B1 (dimer), Procyanidin 

C (trimer), Catechin, Procyanidin B4 (dimer), Procyanidin B2 (dimer), Dimer monogallate, Dimer monogallate, 

Epicatechin, Procyanidin C1 (trimer), Procyanidin B (dimer), Dimer digallate, Epicatechin gallate, Procyanidin B (dimer). 

After carrying out HPLC for procyanidin content in wine, table 2  shows the retention time and m/z for each compound. 

 

                     
Figure 16. Procyanidin B1(left)  and Procyanidin B2 (right). Adapted from  PubChem (pubchem.ncbi.nlm.nih.gov). 
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Figure 17.Procyanidin B3 (left)  and Procyanidin B4 (right). Adapted from  PubChem (pubchem.ncbi.nlm.nih.gov). 

 

 
Figure 18. Procyanidin C. Adapted from  PubChem (pubchem.ncbi.nlm.nih.gov). 

 

 

                                                       
 

Figure 19. Gallic acid (left), Catechin (middle) and epigallocatechin  (right). Adapted from  PubChem 
(pubchem.ncbi.nlm.nih.gov). 

 

 

       
Figure 20. Epicatechin gallate and epigallocatechin gallate (right). Adapted from  PubChem 

(pubchem.ncbi.nlm.nih.gov). 
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Figure 21. Procyanidin T2. Adapted from  PubChem (pubchem.ncbi.nlm.nih.gov). 

 

 

Procyanidins were analysed  by injecting 3l of wine samples through a Rapid Resolution 

Liquid Chromatography (RRLC) using a Zorbax Eclipse XDB-C18 (50 × 30; 1.8µm) followed 

by a RRLC in-line pre-column (4.6 mm, 0.2µm) at 30ºC. HPLC injection volume was 1.4µL, 

with a  0.7mL/min flux. Mobile phase A: water (0.1% formic acid), mobile phase B: 

methanol (0.1% formic acid).  Column temperature: 30 ºC, Detector DAD: Conditions TOF 

Dual Ionisation ESI: Temperature: 350 ºC, Flux drying gas (N2): 12 L/min, Nebulisator: 

60psi, Polarity: Negative. Analysator: Mass range: 100-2000 m/z, Capillary Voltage: 

3000V,Fragmentor: 150V, Skimmer: 60V, Octopole RF Peak: 250 V, Mass reference: 

112,985587, 966,000725.  Phenolic compounds were identified according to their order 

of elution, retention times of pure compounds (gallic acid, catechin, procyanidin dimer B2, 

mono gallate dimer, procyanidin trimer C1 and epicatechin gallate) and their molecular 

masses . 

 

3.11 Experimental design 
 

Experimental design was carried out during two seasons, 2009 and 2010 in 5 locations 

(Site 1, Site 2, Site 3, Site 4 and Site 5) of cv. Carignan and in 2010 and 2011 in two locations 

of cv. Grenache (Site 6 and Site 7) in the DOQ  Priorat (Catalonia, Spain). The plots have 

different altitude, orientation and exposure (Table 3) located on hillsides and fluvial 

terraces, formed by the Llicorella (slaty schist soils). Soil water monitoring was performed 

with capacitance sensors (ECH2O, Decagon), located at each vineyard  (Figure 7). In all 

mesoclimatic locations variations were observed (climate, topography), characterized 

using agroclimatic stations (Decagon®). The below table shows the location, altitude, 

exposure, slope and planting distance for each vineyard. 
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Table 3. Summary of locations, Sites, variety, altitude, vineyard exposure, planting distance and slope. 

Vineyard 

Location 
Town UTM Variety Code  Altitude Exposure 

Planting 

distance 

Slope 

Site 1 El Molar 
41º09’21”N 

0º42’59”E 
Carignan EM, EMDA 220m SW 2.10x1.30 23.9 

Site 2 El Molar 
41º09’19”N 

0º42’40”E 
Carignan EM, EMBA 185m SW 2.10x1.30 23.3 

Site 3 Porrera 
41º10’51”N 

0º52’26”E 
Carignan PO, POMO 425m SW 1.40x1.20 49.9 

Site 4 Porrera 
41º10’58,3”N 

0º52’32,9” E 
Carignan PO, POME 425m SE 1.40x1.00 48.3 

Site 5 Porrera 
41º10’58,1”N 

0º52’32,6”E 
Carignan PO, PODA 495m SW 1.20x1.20 54.3 

Site 6 El Molar 
41º9’21,10”N 

0º43,4’08”E 
Grenache EM, EMGRE 210m SW 2.50x1.20 15.3 

Site 7 El Lloar 
41º10’5,64”N 

0º43’17,18”E 
Grenache LO, LLOGRE 240m SW 2.50x1.20 17.9 

 

Based on the previous experiences carried out in the DO Terra Alta and in order to 

determine what mesoclimatic variations are also established for the DOQ Priorat at the 

level of each plot specifically and to be able to relate them to the phenological and 

physiological differences that are going to be studied, it was installed in each plot a 

portable and automatic weather station (type EM50 DECAGON (Decagon Devices Inc., 

Pullman WA, USA, www.decagon.com) associated with a data logger. The agroclimatic 

stations (DECAGON) located in each plot recorded temperature (ºC), relative humidity (%), 

radiation (W m-2) and precipitation (mm) on an hourly basis, which allowed the calculation 

of the vapor pressure deficit (VPD, kPa), the thermal amplitude (AT , ºC), growing degree 

days (GDD10, ºC) and potential evapotranspiration (ET0, l m-2) according to Hargreaves. 

 

The water content in the soil was measured by means of capacitance sensors (ECH2O, 

DECAGON) in a profile of up to 60 cm  depth and expressed as a water layer (SWCWL, l · 

m-2) then calculated as % of Volumetric Water Content (VWC). These data allowed the 

calculation of daily and seasonal climatic indices that are commonly used in different 

predictive models and in relation to the phenological parameters recorded. Among 

others, it was also calculated the average temperature of the growing season, the average 

maximum temperature of the growing season, the average minimum temperature of the 

growing season, the average temperature of the ripening period, the degree days of 

growth, using different base temperatures (Winkler et al., 1974; Huglin, 1978; Bind et al., 

1996; Jones and Davis, 2000; García de Cortázar, 2006). 

 

The determination of the total leaf area (TLA; m2) was carried out at pea size (PS), veraison 

(V), ripeness (RP) and post-harvest (PH) (Carbonneau 1976; Cuevas 2001). In each of these 

phenological stages, at predawn (PD) and noon, the leaf water potential (LWP) was 

measured, using the Scholander pressure chamber (ARIMAD©). Also, the leaf temperature 

exposed to the sun were measured by an IR thermometer (Testo©). At the key moments 
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of the vegetative and productive cycle (pea-sized berry, veraison, full maturation (two or 

three weeks after veraison) and on the day of harvest), specific measurements were 

sampled providing information on the physiological state of the grapes, vigour and the 

level of stress. At these physiological stages, leaf samples were extracted to determine the 

concentration of phytohormones (abscisic acid) in the leaf to evaluate the levels of this 

hormone in order to calculate which is the moment of more severe water stress. This aimed 

to determine the variations in plant physiology between plots in the same area, potentially 

attributable to mesoclimatic variations. It was determined the mesoclimatic variations 

between plots to relate them with phenological or physiological variations of Grenache 

and Carignan. 

 

As mentioned before, the wine-growing area of Priorat is located in the central part of the 

province of Tarragona, where vine cultivation is distributed at altitudes ranging from 100 

m and 700 m above the sea level. The crop configuration is characterized by slopes that 

exceed 15% in most cases. The typical soil formed by schists allows rapid drainage that 

together with the hot summers and low rainfall characteristic of the region, configures an 

ecosystem in which drought prevails. The choice of the two locations for Carignan 

responds to the fact of the existence of two clearly differentiated mesoclimates in Priorat: 

the subzone with maritime influence in which the thermoregulatory breezes directly affect 

(Porrera) (Figure 23) and; the subzone at the other end, which opens towards the Ribera 

del Ebro, warmer that prevents the arrival of sea breezes (Figure 22) (El Molar). 

 

     
Figure 22. Location 1: NDVI Map for Site 1 (El Molar, EM, EMDA) and Site 2 (El Molar, EM, EMBA). Normalized 

difference vegetation index.  Adapted from CESENS® (Encore Lab SL, Logroño, Spain) 
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Figure 23. Location 2: NDVI Map for Site 3 (Porrera, PO, POMO), Site 4 (Porrera, PO, POME) and Site 5 (Porrera, PO, 

PODA). Normalized difference vegetation index.  Adapted from CESENS® (Encore Lab SL, Logroño, Spain) 

 

 

Regarding Grenache, two vineyards are analysed here (Figure 24), both grafted onto 

R110. The plots are located in the townships of El Molar (EM) and El Lloar (LO), and studied 

during two distinctly different vintages: 2010 and 2011. Soils in both are typical of the 

region, characterized by poor, dry, and pebbly schist. The USDA classification for EM is 

sandy loam and silty loam for LO, both are of a co-alluvial origin formation. The terraces 

are naturally located at progressive topographic heights. Grenache vines in LO are 14 

years old, and are growing in east-south facing terraces; EM vines are 16 years old and 

south-facing. Vine spacing is 1.2m and the inter-row distance is 2.5m. VSP trellising (70cm 

high) and bilateral cordon pruning characterize both vineyards. Grenache is distributed in 

terraces at different levels, conducted in trellises with a height of vegetation between 60-

70 cm. Short pruning is performed on all vines and the trellises are conducted in a vertical 

system in a bilateral cordon. The soils are of colluvial origin, formed by a mixture of slate 

and calcareous materials, with loam to clay loam textures and with a percentage of 

stoniness that depends on the level gradient. Harvest dates in this location are traditionally 

mid-September. Three plot replications of each combination vigour/variety were 

randomly distributed in the vineyards, with each elementary plot consisting of 30 vines.  
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Figure 24. Location 3: NDVI Map for Site 6 (El Molar, EM, EMGRE) and Site 7 (El Lloar, LO, LLOGRE) 

 

Each of the vineyards will monitor the maturation process. Each terrace or hillside is 

divided into 3 blocks or elementary plots will carry out the different measurements and 

samplings in triplicate. 3 vines from each block are marked for non-destructive follow-ups 

(phenology). For the control and monitoring of the ripening of the grapes, samples of 450 

berries were collected; 100 for the analysis of the basic parameters and the rest to proceed 

to determine the phenolic ripening of the berry.  

 

The follow-up consisted of: 

 

1- Berry growth (weekly): berry size evolution (weight and / or volume), from veraison to 

harvest. 

2- Composition of the grape (weekly) 

2.1. Basic analysis of the must (brix by refractometry, TTA, pH, malic acid). 

2.2. Grape phenolic ripening analysis: 

a) Anthocyanins in skins (maceration in ethanol and HCl at pH 1 and reading at 

535nm) 

b) In whole berry, in addition to determining the total polyphenol index (A280), 

extractable and total anthocyanins according to the Glories methodology 

(Ribéreau-Gayon, 2000; Mateos, 2003), total tannins will also be analysed 

(Ribéreau-Gayon and Stonestreet , 1965, 1966), catechins by the DMAC method 

(Vivas et al., 1994) and the colouring intensity will be determined by measuring 

absorbances at 420, 520 and 620nm 

c) Determination of phenols in seeds after extraction in methanol: IPT, tannins 

and DMAC 
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d) Characterization of individual anthocyanins and procyanidins by HPLC. and 

also performing the detection at the lengths of 530, 420, 520, 620 and 280 nm 

(Hebrero et al., 1989). 

3- Performance 

3.1- Yield components at harvest date: kg / vine, bunches / vine, average bunch 

weight, berries / bunch. 

3.2- Vegetative expression and vigour; pruning weight of vines during winter rest. 

Ravaz index. 

3.3- Small-scale fermentations of each of the plots according to the red winemaking 

protocol. In wine, the alcoholic degree, total acidity, sulphur dioxide, pH and colour 

parameters will be determined: colouring intensity, total phenolic compounds (A280), 

total anthocyanins, total tannins.  

 

3.12 Statistical analysis 
 

Statistical analysis of data was performed using analysis of variance (ANOVA) to determine 

statistically different values at a significance level of  p<0.05. The Tukey test was applied to 

compare the 4 established treatments. All statistical analyses were performed using SPSS 

17.0 program for Windows.  

 

The water potential, leaf temperature, and grape and wine composition were evaluated 

through one-way ANOVA, and when P<0.05, Tukey post-hoc tests were used. A Pearson 

correlation matrix was calculated for all parameters with a significance level (α) of 0.05. 

 

CART (classification and regression trees) analysis was performed using XLSTAT (Microsoft 

Excel statistical add-in). The decision tree method is a powerful and popular predictive 

machine learning technique that is used for both classification and regression (Breiman et 

al., 1984). Thus, the methods are also known as Classification and Regression 

Trees (CART). The algorithm of decision tree models repeatedly partitions the data into 

multiple subspaces, so that the outcomes in each final subspace are as homogeneous as 

possible. Amongst all measured variables, the CART technique acts as a predictive model 

that shows the more significant variables to distinguish each final subspace. The tree 

models predict the outcome by asking a set of if-else questions. Regression tree analysis 

predicted the outcome as a real number (leaf temperature and water potential). The start 

of the tree was at the root node; for each variable, CART finds the set that minimizes the 

sum of the node impurities in the two child nodes and chooses the split that gives the 

minimum overall variable and set. The measure of the node impurity is based on the 

distribution of the observed values in the node; splitting stops if the relative decrease in 

impurity is below a pre-specified threshold. 
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The effect of tank size on wine composition was evaluated through one-way analysis of 

variance (ANOVA); P < 0.05, and the Tukey post-hoc test were used. The comparison of 

small-scale wines to commercial-sized tanks was performed using Principal Component 

Analysis (PCA), considering the 2500 L tank as a supplementary item; i.e. they were not 

included to calculate the principal components (PC), but to evaluate its performance. 

Statistical analyses were performed using R (R Core Team, 2014, Foundation for Statistical 

Computing, http://www.R-project.org/), and the FactoMineR and “factoextra” packages 

for personal computer (PC) calculation and graphical representation, respectively. 
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Chapter 4. Mesoclimatic Characterisation of Carignan and 

Grenache in the Priorat 
 

4.1 Chapter summary 
 

This chapter deepens on the characterisation of cultivars Carignan and Grenache in the 

selected plots. Additionally, the comparison of both grapes in two different vintages, helps 

to understand the physiology of each cultivar under water stress conditions, which are very 

common in DOQ Priorat. After understanding both varieties it is used a statistical tool to 

classify the vineyards, given the difficulty to assess water stress under several abiotic 

factors. 

 

4.2  Mesoclimatic characterisation for cv. Carignan (El Molar- and 

Porrera-) 
 

4.2.1 Climatology and soil  

 

The climate of the DOQ is characterized by cold temperatures during winter and very high 

temperatures in summer. The vineyards located on hillsides and terraces are dry, however, 

the influence of the sea breeze, the garbinada wind,  make the temperatures soften in 

summer, increase the relative humidity and decrease evaporation, and in most cases 

involves a delay of ripening. On contrast, the serè is a cold, dry wind that blows from the 

northwest along the Ebro Basin and comes more or less around the Priorat. In addition, 

the altitude of the plot is given by the location of towns between 110 m and 220 m, and 

between 200 and 700 for the higher altitude vineyards. The annual precipitation is 

between 450 and 500 mm, and rainfall are abundant between the end of October and 

November. Data that characterize climatic variation between small plots are essential for 

improving crop management under such extreme conditions.  

 

The weather station (Agro-climatic network in Catalonia, XAC) provided supplemental 

data on the weather conditions in the study area. The climate in the Priorat region is 

characterized by high temperatures during the summer, drought, and steep poor stony 

soils and is thus highly vulnerable to climate change. 
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Figure 25. Installation of weather stations and soil sensors in Porrera. Old vines are planted in steep slopes of Llicorella. 

 

 
 

Figure 26. Annual climate diagram in early (EM) and late (PO) regions. Monthly Rainfall (P), monthly average 
Temperature (Tm), Maximum Temperature for 2009, 2010 and 2011. 
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In 2009, in the early mesoclimate (El Molar, EM), the minimum temperature differences 

between Site 1 and Site 2 were 7°C, except in early March to mid-May and the first 3 weeks 

of July, where the minimum temperature differences were up to 3°C lower in Site 1. These 

differences, along with a slightly higher maximum temperature in Site 2, resulted in a 

higher thermal amplitude (AT) on the vineyard, especially from mid-May to early July and 

from veraison (V) to ripeness (RP) (August 15–September 21). Only moderate rain values 

were recorded in June (20 mm and 19 mm in EM and PO, respectively), indicating that the 

summer was dry. The average temperature during the summer months was high, reaching 

23.2ºC in June, 25.5ºC in July, and 25.8ºC in August in EM and 21.4ºC, 23.4ºC, and 23.9ºC 

in PO in June, July, and August, respectively. 

 

 
 

Figure 27. Annual climate diagram in early (EM) and late (PO) regions. Rainfall (P), Maximum Temperature (Tmax), and 
vapour pressure deficit (DPV) for 2009 and 2010. 

 

The 2009 vintage presents a very irregular distribution of rainfall in both locations. Rainfall 

was concentrated in the month of April, being scarce in the summer months. The last 

moderate rains were recorded in June, subsequently leading to a remarkably dry summer. 

The temperature and ETP in the Molar showed high values during June, July and August. 

In 2010, although the total annual rainfall does not differ significantly from 2009, the 

distribution of rain is more uniform throughout the year. Temperatures throughout the 

cycle were milder, although high temperatures were occasionally recorded in July (34.3ºC 

in Molar and 30.4ºC in Porrera). The vapor pressure deficit in 2009 follows the same trend 

as the maximum temperature where the highest values are reached in the months of June, 

July and August; 1.22kPa, 1.41kPa and 1.38kPa in the early region (EM) and 1.14kPa, 

1.15kPa and 1.19kPa in the late region (PO). Thus, the extreme values are obtained in the 

early zone given that there is a higher atmospheric demand. In 2010, only in the month of 

July a remarkably high value of the VPD (1.8kPa) was observed. This value is only observed 

in the early zone, due to a specific climatic situation in which the temperature increased by 
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2ºC and the relative humidity decreased by 15%. The VPD in the late region (PO), on the 

other hand, presents VPD values similar to the previous year. 

As expected, the late ripening region PO resulted in lower Temperature, VPD and GDD. 

Climatic data revealed 2009 as a warmer vintage.  In 2009, temperature was very high 

especially in May and June, a fact that did not happen in 2010. The year 2009 showed a 

very uneven distribution of rainfall in both locations, EM and PO. Rainfall is concentrated 

in April representing 40% and 42% of the total of the year in EM and PO respectively, 

resulting in a very dry summer (Figure 26). In 2010, the two regions have followed the 

same trend with respect to temperature changes. Compared to the previous year there 

was very high Tm values only in July. Tmax always reached higher EM values. Rainfall 

distribution was more uniform during the year. During the time this study was conducted, 

the maximum summer temperature difference between early and late regions ranged 

between 3 and 5 degrees (Figure 27). The lowest temperature recorded in the late region 

corresponds to a higher annual rainfall, which exceeds the early region at about 100mm. 

These results highlights the frequency of rain in 2010 (the year with the highest annual 

rainfall), which, together with a slight decrease in temperatures throughout the growing 

season, led us to characterize the vintage as warm. Although the years 2009 and 2011 are 

classified as dry, periods of higher temperatures in 2011 do not correspond to July, as 

expected. There was an unusually warm period in April and September, which formed a 

particular seasonal variability in 2011, most notably in the late region. The VDP, GDD10 and 

ET0 are lower in the late region and in the temperate vintage. 

Table 4. Soil and Subsoil Texture. 

    < 2mm  >2mm  % 

sand 

% silt % clay USDA-Classification 

Site 1 Soil 49.6 50.4 56.7 22.3 20.0 Sandy clay loam 

  Subsoil 42.3 57.7 57.0 21.3 20.7 Sandy clay loam 

Site 2 Soil 22.9 77.1 53.3 26.7 20.0 Sandy clay loam 

  Subsoil 13.4 86.6 50.7 25.3 24.0 Sandy clay loam 

Site 3 Soil 40.1 59.9 50,3 29.7 20.0 Sandy clay loam 

  Subsoil 37.5 62.5 28.0 67.0 5.0 Silty loam 

Site 4 Soil 8.9 91.1 62.7 23.0 14.7 Sandy clay loam 

  Subsoil 44.5 55.5 32.0 64.0 4.0 Silty loam 

Site 5 Soil 29.2 70.8 74.0 16.0 10.0 Sandy clay loam 

  Subsoil 19.5 80.5 30.0 65.0 5.0 Silty loam 

 

Slate soils are stony, dry and poor. They are characterized by a high degree of porosity 

and good drainage as a result of the high percentage of burdensome elements they have, 

between 50 and 90% in particles of more than 2 mm in diameter. Site 1 shows a 

predominance of less rocky elements (>2mm) due to the flatter terrain of terraces situated 

on top of a soft ridge. Those soils accumulated the most amounts of sand and fine particles, 

while the gravel and stones were dragged down the slope and deposited in adjacent plots. 

In the late region, Site 3 is the plot that has an average percentage of finer elements, due 
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to the accumulation of eroded elements. Conversely, Site 2 and Site 5 contain a large 

proportion of gravel or coarse elements with higher drainage. Site 4 shows an important 

difference between the most stony topsoil and subsoil finely textured with good drainage. 

 

Figure 28. Rainfall (L/m2) (right axis)  and soil humidity (L/m2) measured at 60cm (left axis). Site 1 (red) and Site 2 (dark 
blue). Rainfall (black) 

   

Figure 29. Rainfall (L/m2) (right axis)  and soil humidity measured in % of VWC (Volumetric water content) measured at 
45 cm. Sensor is located at 45 cm deep (left axis).  Site 3 (orange), Site 4 (blue) and Site 5 (green) 

From the observation of Figure 28 and Figure 29 it is observed how after a rain event, the 

sensors respond and show a peak according to the amount of rain, indicative of the 

increase in the percentage of available water. In finer soils, the available water has a higher 
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basal line. It is also observed how the year 2010 presents a more distributed rainfall and 

with a less dry period during the summer months, when the plant has more water needs.  

As shown in Figure 30, corresponding to the calculation of evapotranspiration, it is also 

observed that in a warm year (2009) the vineyards in the early ripening zone do not differ 

as much as in the late zone. On the other side, in Porrera plots, a different 

evapotranspiration is already shown between the vineyards in May-April. This suggests 

that late ripening mesoclimates, differentiate much more between plots than warmer 

areas. Plants suffer from water deficit during the summer period because temperatures are 

high and rainfall is virtually absent, as a result, evapotranspiration increases sharply with 

highs in July and August, which often causes a depletion of soil water reserves in El Molar. 

In addition, in stony slate soils, water reserves are depleted and water stress occurs. IN 

temeperate vintages, the stress would be partly alleviated by the precipitation of late 

spring and summer.  

     

Figure 30. Evapotranspiration (ET0). Site 1 (blue), Site 2 (red), Site 3 (orange), Site 4 (blue) and Site 5 (green). 

 

4.2.2 Phenology and vegetative growth 

 

Phenological stages  reflect  among  other things the environmental characteristics of the 

climate in the region where they occur. Consequently, long series of phenological 

observations may be used for the detection of climate variability or climate change.  The effect 

of climate on phenology resulted in a greater variability of budbreak and veraison dates, 

depending on previous budbreak temperatures and those recorded in the spring. In the 

temperate vintage (2010) budbreak is delayed by 8 days in PO and by 11 days in EM when 

compared with the warm vintage (2009). However, in the temperate vintage, the 

differences are less notable at the beginning of budbreak and veraison between early and 

late regions (3 and 5 days respectively). 
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The high temperature in spring 2011 resulted in an earlier fruit set in the late region, which 

equilibrated the date recorded in the early region. Both regions accumulated 

approximately 150 degree days (GDD10) compared to previous vintages, and involved a 

thermal integral to flowering of 585 and 536 GDD10 in the early and late region 

respectively. Moreover, the extended summer at the end of the ripening period in 2011 

caused an advance of 15 days prior to the normal harvest date in the region. Most of the 

earlier studies on phenology and climate influence found a shortening of time between 

phenological stages, although most of them were conducted in cold weather. Date of 

harvest varied by 15 days in the warm year (2009), while the difference between regions 

was 10 days in the temperate years (2010) and by only a week in the warm year with 

seasonal temperature variability (2011). A delay in budbreak does not directly result in a 

delay of harvest, and it was observed that the warm years in late region brought an earlier 

date of harvest, particularly for 2011. 

 
 

Table 5. Phenology dates of phenological stages in early (EM) and late (PO) regions. 

2009 Bud break Bloom Fruit set Pea size Veraison Harvest  Leaf drop 

EM 28-Mar 20-May 1-Jun 18-Jun 25-Jul 18-Sep 2-Nov 

PO 3-Apr 26-May 10-Jun 25-Jun 4-Aug 4-Oct 31-Oct 

2010               

EM 8-Apr 30-May 6-Jun 29-Jun 5-Aug 20-Sep 29-Oct 

PO 11-Apr 5-Jun 13-Jun 6-Jul 11-Aug 30-Sep 2-Nov 

2011               

EM 31-Mar 2-Jun 9-Jun 21-Jun 27-Jul 10-Sep 20-Nov 

PO 3-Apr 3-Jun 9-Jun 27-Jun 5-Aug 15-Sep 5-Nov 

 
 

Table 6. Growing degree days (accumulated GDD10) related to each phenological period in the early (EM) and late 
(PO) parcels. 

 Budburst Bloom Fruit set Pea size Veraison Harvest Leaf fall 

2009 
       

EM 45 282 415 633 1180 2000 2133 

PO 70,3 340 485 600 1230 1840 1960 

2010 
       

EM 80 400 489 744 1348 2004 2220 

PO 65,3 377 446 707 1222 1790 1950 

2011 
       

EM 73 585 642 800 1313 2015 2584 

PO 35,6 358 388 589 1029 1572 1857 
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Table 7. Length of different phenological periods from budburst in the early (EM) and late (PO) parcels. 
 

Bud- 

Bloom 

Bud-

Fruit set 

Bud- 

Pea size 

Bud- 

Veraison 

Bud-

Harvest 

Bud- 

leaf fall 

2009       

EM 53 65 82 119 174 219 

PO 53 68 83 123 184 211 

2010       

EM 52 59 82 119 165 204 

PO 54 62 85 121 171 204 

2011       

EM 64 71 83 89 134 205 

PO 61 67 85 93 134 185 

 

These facts are associated with the high temperatures occurring in late August and even 

September in the Priorat, a situation in which the maturation of the grapes is accelerated. 

The total vegetative cycle from bud break to leaf drop shortened in the temperate year by 

15 days in the early region and 7 days in the late region (2011 year). The long lasting 

summers evidenced the elongation of the cycle; leaf drop is delayed in the late region by 

5 days and by 18 days in the early region. It is likely that the lowest temperatures occurring 

in October and the highest thermal amplitude (data not shown) accelerate leaf drop in late 

regions). 

 

      
Figure 31. Evolution of the phenological stages of the Carignan variety in the towns of El Molar (EM) in 2009 and 2010.  

Percentage of Baggiolini phenological stages were measures from A to J. 
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Figure 32. Evolution of the phenological stages of the Carignan variety in the town of Porrera (PO) in 2009 and 2010. 

Percentage of Baggiolini phenological stages were measures from A to J. 

 

Phenology is concerned with the periodic phenomenon of the vine growing cycle (bud 

burst, flowering, veraison), in relation to the climate. It is a veritable biological clock of the 

vines. The timing of the numerous operations in the vineyard (phytosanitary protection, 

defoliation, crop thinning, etc.) is undertaken in accordance with the phenological stages. 

Since the precociousness of the latter is directly linked to the temperature, the phenology 

is also a marker of global warming. The phenology of the vines responds very well to 

temperature. The vine growth cycle is more early-ripening in a warm year and more late-

ripening in a cool year. It is also more early-ripening in a warm soil as compared to a cool 

soil. This monitoring of the phenology from the bud burst to the  flowering and then the 

veraison provides knowledge, relatively early in the season, about whether the harvest will 

be earlier or later. This forecast becomes more precis over the successive stages. 

 

During warm years the highest phenological differences between early and late regions 

were recorded, which reached the maximum of a week at budbreak and veraison. The start 

of budbreak is delayed in years of low winter temperatures, but this delay does not seem 

to affect the variations in the harvest date. To highlight the effect of seasonal climate 

variability: the temperature rise in spring and autumn affects a shortening between 

phenological stages in the late region, causing advances in flowering and harvest. The 

warm autumn also has a noticeable effect on the elongation cycle of the vine in the early 

region, prolonging the period from harvest to leaf drop.  

 

Controlling the development of foliar mass as a way to improve the efficient use of water 

at the crop level has been a key factor. Given that soil analysis revealed Site 1 as a parcel 

having the finest texture and in Porrera the highest and steepest vineyard (Site 5) show the 

higher amount of gravels and stones; whilst Site 3 has a balance between fine elements 

and stones. Topsoil and subsoil layers are notably different in the Site 4 parcel. The two 

plots Site 5 and Site 1 are those with major differences between berry weights within the 
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two years of study, indicating a greater variability. Site 1 has the largest grape production, 

regardless of the vintage probably due to the fine soil texture. At the end of the maturation 

period, the ratio TLA / kg was higher in Site 1 and Site 5, corresponding with a greater leaf 

area in Site 1. In general the two plots are more irregular, with greater differences over the 

years with higher rainfall (2010) compared to dry years (2009), where the ratios do not 

show much difference. Concerning Ravaz-Index, the most unbalanced vigour corresponds 

to Site 1 (this explains major productions of grapes) and Site 4, which shows higher pruning 

weight, where the soil is more heterogeneous. 
 

 

Table 8. ANOVA and test Tukey (p<0,05). Mean and SD for 2009 and 2010. TLA: total leaf area. Vegetative growth in 
the early (Site 1, Site 2) and late (Site 3, Site 4, Site 5) mesoclimates. aValues with different letters denote a statistically 

(p<0.05) significant difference. Mean and standard deviation. 

 Bunch 

weight (g) 

Berry  

weight (g) 
Kg/vine TLA (m2) 

Ravaz 

Index 
TLA/kg 

2009                         

Site 1 131.0(72.0) a 2.07(0.09) a 1.21(0.48)  a 1.77(0.29) a 2.4(0.4) c 1.46(0.19) a 

Site 2 116.0(35.5) a 1.82(0.04) b 0.91(0.42)  a 1.21(0.31) b 4.1(0.5) a 1.33(0.34) a 

Site 3 134.0(20.5) a 1.33(0.03) d 0.85(0.10)  a 1.62(0.25) ab 3.2(0.2) b 1.79(0.21) a 

Site 4 148.0(12.8) a 1.71(0.02) c 0.96(0.09)  a 1.42(0.07) b 4.3(0.1) a 1.37(0.32) a 

Site 5 176.0(46.4) a 1.02(0.07) e 0.89(0.33)  a 1.76(0.31) a 4.7(0.8) a 1.89(0.34) a 

2010                       

Site 1 127.5(39.1) a 1.43(0.11) b 1.30(0.60)  a 1.46(0.45) a 5.6(2.0) a 1.23(0.20) b 

Site 2 143.4(37.4) a 1.51(0.08) b 1.10(0.40)  a 1.62(0.43) a 4.7(1.3) a 1.50(0.10) ab 

Site 3 79.9(39.8) a 1.62(0.10) ab 0.90(0.40)  a 1.83(0.89) a 3.3(1.0) a 2.03(0.40) a 

Site 4 99.4(14.6) a 1.40(0.09) b 1.00(0.30)  a 1.88(0.26) a 6.2(2.9) a 1.86(0.50) ab 

Site 5 102.0(14.6) a 1.71(0.03) a 1.10(0.30)  a 1.75(0.60) a 6.5(2.9) a 1.59(0.50) ab 

 

The weight of the clusters and the production per vine do not show significant differences 

due to the great dispersion in the results, a consequence due to the great heterogeneity 

present between clusters of old vines. The berry weight, although it presents significant 

differences, shows a great oscillation of values in 2009, in a range between 1.02-2.07 while 

in temperate vintage the oscillations are smaller (1.40-1.71). In the plots examined in both 

vintages and viticultural regions (early and late) it is observed that the worst balanced 

Ravaz indices (3.2 and 3.3) and excessively high TLA/production ratios (1.79 and 2.03) they 

are in the Site 3 (POMO) vineyard. The conditions that exist in this vineyard favour a greater 

vegetative development that translates into greater vigour to the detriment of production 

(0.9 and 0.85). 
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Figure 33. Primary leaf area during the growing season in El Molar for Carignan. Site 1 (black) and Site 2 (grey). 

   
Figure 34. Primary leaf area during the growing season in Porrera for Carignan. Site 3 (black) and Site 4 (grey) and Site 

5 (scattered). 

 

   
Figure 35. Carignan Site 1 El Molar, July 14th and Sep 7th 2009. 
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Figure 36. Carignan Site 2 El Molar, July 7th and Sep 2nd  2009. 

 

     
Figure 37. Site 3, 4 and 5 Porrera, Sep 25th (left), Oct 15th (middle) and Oct 27th (right) 2009. 

 

Figure 35 shows an example of the plants sampled on plot Site 1 on July 14th, 2009 and 

the same plant sampled on September 7th, 2009. It is observed how the leaves in 

September are folded to prevent water loss and its appearance is less intense green. The 

installation of the soil humidity sensors was done in each plot. Figure 36 shows the same 

effect in the Site 2 plot, in the photo on the left a greater greener colour is observed in the 

leaf, showing the Site 2 plot a greater vigour. Figure 37 shows the 3 pictures of the same 

plot in the different stages of the phenological cycle on the Porrera estate, pictures were 

taken on September 25th, October 15th and October 27th, 2009. 

 

4.2.3 Leaf water potential 

 

The Carignan variety shows a clear decrease in the water potential in the ripening season, 

reaching values of -2 MPa in temperate year (2010) and early mesoclimate (El Molar); and 

in the warm (2009) vintage and late mesoclimate (Porrera). Carignan shows a recovery of 

the water potential in warm year and early mesoclimate; this is corroborated with early 

basal leaf yellowing and presence of raisins in the bunch, which does not occur in the other 

sites.  
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Figure 38. EM (El Molar) Leaf water potential (LWP) during the growing period from PS (Pea Size) to PH (Post Harvest) 
during 2009 and 2010. Hours are shown in solar time. 

 

      
 

Figure 39. PO (Porrera) Leaf water potential (LWP) during the growing period from PS (Pea Size) to PH (Post Harvest) 
during 2009 and 2010. Hours are shown in solar time. 

 

Even when soil water content diminishes, the Carignan leaf water potential (LWP) falls, and 

the plant suffers increasing stress. In general, grapevine is considered a water stress 

avoidant species, with a tight stomatal control. However, some varieties have shown a 

more efficient stomatal control than others. Our study revises, once more, the varietal 

behaviour of Carignan grapevine and tries to determine which behaviour confers best 

stress tolerance. Carignan would show a more anisohydric behaviour but under severe 
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drought conditions the vines result on a yellowing of the leaf and an increased number of 

raisins. 

 
 

Figure 40. Unripe bunch of Site 1 Carignan in El Molar under severe water stress. 

 

4.2.4 Leaf temperature 

 

The leaf temperature was measured between PS and PH at 8:00 AM and 12:00 PM. 

Temperature measured in the morning at 8:00 AM showed different tendency in Site 1 and 

2 than Sites 3, 4 and 5. It is observed that the difference between the leaf temperature and 

the air temperature at noon is maintained in a greater range in the Porrera vineyard, 

indicating a greater transpiration in the vineyards of Site 1, 2 and 3.  

 

Leaf temperatures measured in the morning show a temperature balance between air and 

leaf, while temperatures measured at noon show how air temperatures are much higher 

than leaf temperatures. In the 2010 vintage. In neither case, the two temperatures become 

equal and therefore the plant continues to cool its leaves thanks to continuous 

transpiration. This confirms the good hydric status of the vineyards studied in 2010 for 

both mesoclimates confirming the milder vintage. 
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Figure 41. Measuremnets of T leaf and T air in El Molar during the vegetative cycle 2010. 

 

    

Figure 42. Measurements of T leaf and T air in Porrera during the vegetative cycle 2010. 
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4.2.5 Stomatal conductance 

 

Carignan in EM at Pea Size (PS)  showed a higher transpiration at similar leaf water potential 

(LWP) values. As this cultivar shows early basal leaf yellowing and drop upon water stress, 

it could be ruled out the hypothesis of an increased transpiration due to a higher water 

availability during early stages of vegetative growth. On the contrary, during summer and 

the lack of water during veraison led us to confirm that decrease in stomatal  conductance 

could be caused by a smaller loss of hydraulic conductivity due to low xylem vulnerability 

to cavitation. From our results the maximum value for gs is seen at the beginning of the 

summer (PS) where El Molar Site 1 reaches values up to 500 mmol m-2s-1 and Porrera up to 

300 mmol m-2s-1. This suggests that at PS there is no stomata closure for any of the plots as 

it shows higher values at noon. Site 1 and Site 2 show the highest differences between 

Sites compared to Porrera.  

 

Stomatal conductance (gs) decreases sharply under conditions of water stress as long as 

the season advances, resulting in an important limiting factor for photosynthesis around 

the vintage. In the period of PS the plants of Carignan show a stomatal conductivity at noon 

that is not altered by water stress. Instead from veraison and until harvest it is seen how the 

stomatal conductance at noon is lower, showing a more important stomatal closure. In the 

EM plots, in the warmer area, the stomatal conductance is very weak from the early hours 

of the morning. On the other hand, for the late mesoclimate in PO, it is seen how the 

conductance around the vintage and in the early hours of the morning still presents a 

certain stomatal opening while this decreases as we approach noon. This would indicate 

that the conductance is affected by the location of the plot. 

  

The water available for the plant depends on the rainfall regime or the irrigation strategy 

used in the management of a vineyard, but it is not the case of study where no irrigation is 

available. It is known that under non-limiting conditions of soil water availability (gs values 

greater than 150 mmol H2O m – 2s– 1), the photosynthetic activity of the leaf remains in a 

range between 12 and 16 mmol CO2 m – 2s – 1 (Escalona et al., 1999). The progressive 

advance of the hydric deficit during the summer, typical of the Mediterranean climate, 

determines a decrease in foliar photosynthetic activity that is reflected in a slowdown and 

subsequent stop of the vegetative growth, being able to substantially compromise the 

production and quality of the grape (Medrano et al., 2002; Chaves et al., 2010). This fact is 

accentuated with the more severe drought situation. In addition, under these growing 

conditions, grape production and quality can be compromised, which suggests the need 

for the use of irrigation systems that allow regulating the photosynthetic activity of the leaf 

and therefore growth, production and quality of the grape. 
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Figure 43. Stomatal conductance in 2010 at both location, El Molar (left) and Porrera (right). EMDA (Site 1), EMBA (Site 

2), POMO (Site 3), POME (Site 4) and PODA (Site 5). Phenological stage: Pea size (PS). 

 

   
Figure 44. Stomatal conductance in 2010 at both location, El Molar (left) and Porrera (right). EMDA (Site 1), EMBA (Site 

2), POMO (Site 3), POME (Site 4) and PODA (Site 5). Phenological stage: Veraison (V). 

 

   
Figure 45. Stomatal conductance in 2010 at both location, El Molar (left) and Porrera (right). EMDA (Site 1), EMBA (Site 

2), POMO (Site 3), POME (Site 4) and PODA (Site 5). Phenological stage: Ripeness (RP). 
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4.2.6 Grape and wine Composition 

 

Soluble solids (Brix) and total acidity are independent of vineyards and vintage (Table 9), 

Site 3 and Site 4 (west and east exposure) accumulated more Brix, with significant 

differences of almost 1 to 2.7 more degree Brix than other vineyards (2010). In 2009 

differences are not as noticeable as 2010. As for the content of anthocyanins, an increasing 

trend associated with the late region in warmer years and in higher altitude vineyards was 

observed. Variations in the composition of the grapes are not attributable to berry weight, 

which showed no consistent differences between plots and years (data not shown) 

 

Concerning the phenolic composition of the grape, only in warm years are significant 

differences observed between the study plots. The highest concentration in total and 

extractable anthocyanins correspond to the plots of the later region (PO), with maximum 

values reaching 1728 mg/L in Site 3. On the contrary, in the early region (EM) lower 

concentrations of anthocyanins accumulate (992 and 1116 mg/L). This results suggest that 

in a very vintage (2009) anthocyanins might degrade compared to the late ripening area 

(Porrera) where anthocyanins accumulate much more. In the temperate year 2010, the 

anthocyanin concentration did not vary between plots or between mesoclimates. 

 
Table 9. Result of the composition of the grape in the maturation. ANT T: Total anthocyanins; ANT E = Extractable 
anthocyanins. TTA: Titratable Acidity. Statistical analysis ANOVA and Tukey's test (p <0.05) Average and standard 

deviation. 

  ANT T(mg/L) ANT E(mg/L) Brix TTA(g/L) 

2009             

Site 1 1116(34) c 531(82) c 24.2(0.1) b 5.08(0.01) a 

Site 2 992(46) d 544(40) c 23.7(0.1) d 4.79(0.04) b 

Site 3 1728(153) a 1000(27) a 24.3(0.1) b 3.89(0.07) d 

Site 4 1292(32) b 756(66) b 24.7(0.1) a 3.42(0.05) e 

Site 5 1570(106) a 997(17) a 24.0(0.1) c 4.03(0.05) c 

2010                 

Site 1 1278(119) a 699(55) b 24.4(0.3) b 4.64(0.14) a 

Site 2 918(59) b 559(34) c 23.5(0.3) c 4.28(0.04) a 

Site 3 995(56) b 713(25) b 26.2(0.5) a 3.82(0.15) b 

Site 4 1185(106) a 760(25) b 25.2(0.4) a 4.48(0.08) a 

Site 5 1286(50) a 867(28) a 23.8(0.1) c 4.53(0.09) a 

 

Analysis of the wines: The difference between the minimum and maximum values of 

alcoholic degree was 1.5 (range between 16.0-14.5% (v / v)) in 2009 and 1.1 (in range of 

15.2-14, 2% (v / v)) in 2010. Regarding the TPI index, differences were found between plots 

of up to 23 units in 2009, while there were only 5 TPI units in 2010. The same happens in 

relation to tannins, observing differences of 1.5 (range between 2.9-1.4 g / l) for 2009 and 
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1.1 (range of 2.2-1.1 g/l) in 2010. On the other hand, the differences in anthocyanins Total 

comparing both years is less remarkable (between 30- 80 g/l). 

 

The TPI index is around 45-50.8 in temperate years and 45-72 in drier and warmer years. 

Regardless of the year and the plots, anthocyanins are in a range between 441.3-525.8 

mg/L. In warm years, grapes in the early zone reach a higher alcoholic degree than in the 

late zone, although there are no differences in temperate years between zones. However, 

the total acidity is higher in the late zone in both vintages. The results in TPI, pH and 

anthocyanins show variability between plots and vintages, however the concentration of 

tannins was always higher in wines from the early zone. In the warmest years (2009), wines 

acquire a greater alcoholic degree, acidity and lower pH in Site 1and Site 5. In the other 

hand, the results in the temperate year (2010) show more variability depending on the 

type of soil and slope of the plot. Wine phenolic composition does not seem to follow a 

behaviour strictly related to soil type of each plot, with a major importance of the 

interannual climatic conditions. 

 
Table 10. Interparcel analysis of phenolic compounds in wines in 2009 and 2010. ANOVA and Fisher's test (p <0.05) to 

reveal the differences between treatments. Average and standard deviation. aValues with different letters denote a 
statistically (p<0.05) significant difference. Mean and standard deviation. 

  ABV TTA(g/L) pH ANT T(mg/L) Tannins (g/L) TPI  (A280) 

2009                 

Site 1 16.0(0.4) a 6.63(0.17) c 3.17(0.09) bc 398(10) c 2.9(0.2) a 72.4(3.2) a 

Site 2 15.2(0.6) abd 6.40(0.15) c 3.27(0.03) b 467(4) a 2.4(0.2) b 66.6(6.2) a 

Site 3 14.8(0.1) bc 6.39(0.03) c 3.28(0.01) b 471(22) ab 2.2(0.3) b 49.1(2.2) b 

Site 4 14.5(0.2) cb 6.85(0.06) b 3.35(0.01) a 433(23) b 1.7(0.1) c 45.0(1.3) c 

Site 5 15.4(0.1) d 7.62(0.07) a 3.21(0.02) c 452(6) b 1.4(0.1) d 45.6(0.6) c 

2010                 

Site 1 14.5(0.1) b 6.98(0.08) c 3.22(0.02) c 493(17) b 1.9(0.1) b 47.6(2.3) bcd 

Site 2 14.4(0.1) bc 6.13(0.10) d 3.52(0.01) a 526(14) a 2.2(0.1) a 49.9(0.7) ab 

Site 3 15.2(0.2) a 6.97(0.05) c 3.54(0.00) a 441(19) c 1.1(0.3) d 50.8(0.4) a 

Site 4 15.3(0.1) a 7.45(0.07) a 3.43(0.04) b 456(18) c 1.6(0.0) c 48.4(0.1) c 

Site 5 14.2(0.2) c 7.19(0.08) b 3.44(0.00) b 447(10) c 1.1(0.2) d 45.7(2.4) d 

 

4.2.7 HPLC-DAD-MS polyphenolic characterisation of Vitis vinifera L. cv. Carignan 

grape and wine  

 

Carignan wines showed the highest concentrations of total anthocyanins in the dry and 

warm vintage. However, the nature of the anthocyanins led to variability in the extraction 

ratios (data not shown) and, as a consequence, the anthocyanin composition of the wines 

varied with respect to the grapes. In that respect, De Villiers et al. (2004) found that non-

acylated glucosides were more easily extracted, followed by acetyl glucosides and, finally, 

p-coumaroyl glucoside, which are the most difficult to extract from grapes to wine. In this 
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study, the non-acylated compounds were also found at higher concentrations than their 

acylated counterparts. Site 1 in 2009 extracts 251.1mg/L being the lowest; site 2, 3, 4 and5 

reach a higher concentration of anthocyanins up to 319.1mg/L. Instead in 2010 Site 2 

extracts the highest concentration, 214.8mg/L being the other sites no lower than 

187.5mg/L.  

 
Table 11. Anthocyanin composition of the wines issued from Site 1 and 2 (Molar ) and Site 3, 4 and 5 (Porrera). 2009. 

aValues with different letters denote a statistically (p<0.05) significant difference. Mean and standard deviation. 

Location Site 1    Site 2    Site 3    Site 4    Site 5    
Sample wine (mg/L) Vintage 2009  

Mv3G 164,1 ± 4,8 a 217,0 ± 4,5 d 222,6 ± 6,3 cd 203,6 ± 7,4 b 226,8 ± 1,8 c 

Pt3G 7,6 ± 0,4 a 8,8 ± 2,3 b 7,7 ± 1,9 a 5,5 ± 1,8 a 6,9 ± 2,1 a 

Dp3G 2,0 ± 1,7 a 2,7 ± 1,0 b 2,2 ± 1,8 a 2,0 ± 1,3 a 2,6 ± 0,6 a 

Pn3G 4,6 ± 0,2 b 5,2 ± 0,6 d 5,5 ± 0,1 c  3,5 ± 0,0 a 4,7 ± 0,5 c 

Cy3G 0,3 ± 0,0 b 0,3 ± 0,1 ab 0,3 ± 0,0 b 0,2 ± 0,0 a 0,3 ± 0,0 b 

Total G  178,7 ± 6,8 b 234,0 ± 3,2 ab 238,3 ± 5,6 a 214,8 ± 10,3 c 241,4 ± 4,2 a 

Mv3AG 32,2 ± 1,6 a 57,1 ± 1,9 c 54,8 ± 0,6 b 59,5 ± 0,5 c 64,6 ± 1,5 d 

Pt3AG 0,8 ± 0,0 a 1,1 ± 0,0 d 1,0 ± 0,0 c  0,9 ± 0,0 b 0,9 ± 0,0 b 

Dp3AG 0,3 ± 0,0 a 0,4 ± 0,0 b 0,3 ± 0,0 a 0,3 ± 0,0 a 0,3 ± 0,0 a 

Pn3AG 1,5 ± 0,0 a 1,8 ± 0,0 b 1,9 ± 0,0 c  1,5 ± 0,1 a 2,0 ± 0,1 d 

Cy3AG 0,2 ± 0,0 ns 0,2 ± 0,0 ns 0,2 ± 0,0 ns 0,2 ± 0,0 ns 0,2 ± 0,0 ns 

Total AG 35,0 ± 1,6 d 60,6 ± 1,8 ab 58,2 ± 0,6 a 62,4 ± 0,5 b 68,0 ± 1,5 c 

Mv3CG 28,7 ± 2,4 a 38,5 ± 5,6 b 41,3 ± 1,2 b 34,6 ± 7,9 ab 37,3 ± 7,6 ab 

Pt3CG 3,9 ± 0,2 a 5,8 ± 0,0 c 4,4 ± 0,2 b 3,7 ± 0,2 a 4,2 ± 0,1 b 

Dp3CG 1,3 ± 0,1 b 1,8 ± 0,0 c 1,2 ± 0,0 b 1,0 ± 0,1 a 1,0 ± 0,0 a 

Pn3CG 2,5 ± 0,3 ns 3,0 ± 0,4 ns 2,8 ± 0,1 ns 2,0 ± 0,2 ns 2,8 ± 0,1 ns 

Cy3CG 1,1 ± 0,0 c 1,2 ± 0,0 d 1,0 ± 0,0 c 0,7 ± 0,0 a 0,9 ± 0,0 b 

Total CG 37,5 ± 2,8 b 50,4 ± 6,0 a 51,0 ± 1,4 a 42,0  ± 8,2 ab 46,2 ± 7,7 ab 

G+AG+CG 251,1 ± 0,5 c 345,0 ± 7,1 ab 347,6 ± 6,8 a 319,1 ± 16,4 b 355,5 ± 6,6 a 

 

As a result, it is observed that in warm mesoclimate and in warm year, the concentration 

range oscillates between 251.1 and 345.0 mg / L; in late mesoclimate and warm year the 

range oscillates between 319.1 and 355.5 mg / L. On the other hand, in a warm vintage, 

the concentration ranges are very different; in warm mesoclimate and temperate year the 

ranges are between 187.5 and 214.8 mg / L and in late mesoclimate and temperate year 

the values are between 197.6 and 202.8mg / L.   

UNIVERSITAT ROVIRA I VIRGILI 
PRIORAT VINEYARD VULNERABILITY AND WATER STRESS ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE. 
ESTIMATED PRIORAT WINE CONSUMPTION IN HUMANS 
Antoni Sánchez-Ortiz 
 
 



 

61 

Table 12. Anthocyanin composition of the wines issued from Site 1 and 2 (Molar ) and Site 3, 4 and 5 (Porrera). 2010. 
aValues with different letters denote a statistically (p<0.05) significant difference. Mean and standard deviation. 

Location Site 1    Site 2    Site 3    Site 4    Site 5    
Sample wine (mg/L) Vintage 2010  

Mv3G 134,7 ± 3,0 b 145,7 ± 2,3 ab 132,7 ± 2,8 b 136,3 ± 4,8 b 137,8 ± 4,5 b 

Pt3G 2,7 ± 0,1 b 3,8 ± 0,5 ab 2,9 ± 0,2 b 3,6 ± 0,9 a 2,6 ± 0,3 ab 

Dp3G 0,6 ± 0,9 ns 0,9 ± 0,1 ns 0,6 ± 0,6 ns 0,9 ± 0,4 ns 0,4 ± 0,1 ns 

Pn3G 0,8 ± 0,1 ns 0,8 ± 0,1 ns 0,7 ± 0,1 ns 0,8 ± 0,3 ns 0,6 ± 0,1 ns 

Cy3G 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 

Total G  138,7 ± 4,2 b 151,2 ± 3,0 a  136,9 ± 3,6 b 141,6 ± 6,3 b 141,4 ± 4,9 b 

Mv3AG 25,7 ± 0,5 c 38,7 ± 1,2 a 35,3 ± 0,1 b 35,9 ± 0,0 b 36,4 ± 1,2 a 

Pt3AG 0,1 ± 0,0 ns 0,1 ± 0,0 ns 0,1 ± 0,0 ns 0,1 ± 0,0 ns 0,1 ± 0,0 ns 

Dp3AG 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 

Pn3AG 0,1 ± 0,0 ns 0,1 ± 0,0 ns 0,1 ± 0,0 ns 0,1 ± 0,0 ns 0,1 ± 0,0 ns 

Cy3AG 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 

Total AG 25,8 ± 0,6 d 38,9 ± 1,2 a 35,4 ± 0,1 c 36,1 ± 0,0 b 36,5 ± 1,2 abc 

Mv3CG 22,3 ± 0,3 c 23,6 ± 0,3 b 24,6 ± 0,5 a 24,1 ± 1,2 a 23,4 ± 0,7 ab 

Pt3CG 0,4 ± 0,1 b 0,8 ± 0,1 a 0,5 ± 0,1 b 0,6 ± 0,2 b 0,4 ± 0,1 b 

Dp3CG 0,1 ± 0,0 b 0,2 ± 0,0 a 0,1 ± 0,0 b 0,1 ± 0,1 ab 0,1 ± 0,0 b 

Pn3CG 0,1 ± 0,0 ns 0,2 ± 0,0 ns 0,2 ± 0,0 ns 0,1 ± 0,0 ns 0,1 ± 0,0 ns 

Cy3CG 0,0 ± 0,0 ns 0,1 ± 0,0 ns 0,0 ± 0,0 ns 0,1 ± 0,0 ns 0,0 ± 0,0 ns 

Total CG 23,0 ±  0,4 b 24,8  ± 0,4 a 25,3 ±  0,7 a 25,1 ±  1,6 a 24,1 ±  0,8 ab 

G+AG+CG 187,5 ± 5,1 c 214,8 ± 4,6 a 197,6 ± 4,4 b 202,8 ± 7,9 b 202,0 ± 6,9 b 

 

It is important to note that in reference to the composition of anthocyanins, there is an 

important relationship with the vintage and the situation of the plot in warm years and in 

temperate years it only has a direct relationship with the climatology of vintage, but not 

the location of the plot. 
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Table 13. Procyanidin composition of the wines issued from Site 1 and 2 (Molar ) and Site 3, 4 and 5 (Porrera). 2009. 
aValues with different letters denote a statistically (p<0.05) significant difference. Mean and standard deviation. 

Location Site 1    Site 2    Site 3    Site 4    Site 5    

Sample wine (mg/L) Vintage 2009    

Gallic acid 22,1 ± 0,3 a 16,1 ± 0,6 b 14,6 ± 0,5 bc 15,3 ± 0,5 b 13,9 ± 0,2 c 

Cat 10,7 ± 0,2 a 7,7 ± 0,1 b 5,0 ± 0,1 d 5,4 ± 0,1 c 4,7 ± 0,1 e 

EC 3,2 ± 0,1 a 1,8 ± 0,1 d 2,2 ± 0,0 c 3,1 ± 0,0 a 2,6 ± 0,0 b 

ECG 0,1 ± 0,1 ns 0,1 ± 0,0 ns 0,1 ± 0,0 ns 0,1 ± 0,0 ns 0,0 ± 0,0 ns 

Total Monomers  36,1 ± 2,5 a 25,7 ± 1,8 b 21,8 ± 3,7 bc 23,8 ± 4,6 b 21,1 ± 3,3 b 

pdB1 23,7 ± 2,2 a 18,9 ± 3,4 a 13,7 ± 2,3 b  14,5 ± 1,5 b 12,6 ± 2,2 b 

pdB2 8,6 ± 0,9 ab 6,3 ± 0,7 c 6,9 ± 0,7 bc 9,6 ± 0,8 a 7,1 ± 0,6 b 

pdB3 3,5 ± 0,2 a 2,4 ± 0,1 c 2,3 ± 0,2 c 2,7 ± 0,1 b 2,0 ± 0,1 d 

pdB4 8,5 ± 0,9 ab 6,3 ± 0,7 c 6,9 ± 0,7 c 9,5 ± 0,8 a 7,1 ± 0,7 bc 

pdB2MG1 1,7 ± 0,1 c 2,5 ± 0,1 b 3,0 ± 0,1 a 3,1 ± 0,2 a 1,9 ± 0,0 c 

pdB1G1 1,2 ± 0,1 a 1,2 ± 0,1 a 0,9 ± 0,0 b 0,8 ± 0,1 b 0,8 ± 0,0 b 

DDG 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 0,0 ± 0,0 ns 

pdB1G2 3,0 ± 0,2 b 3,6 ± 0,1 b 4,2 ± 0,2 a 4,7 ± 0,1 a 4,2 ± 0,1 a 

Total Dimers 50,2 ± 3,9 a 41,1 ± 4,7 bc 38,0 ± 4,0 c 44,7 ± 3,8 ab 35,6 ± 5,8 c 

ptC 7,4 ± 0,9 a 6,6 ± 0,5 a 5,7 ± 0,1 b 5,5 ± 0,5 b 5,0 ± 0,2 b 

ptT2 9,8 ± 0,8 a 6,9 ± 0,4 b 4,8 ± 0,5 c 5,5 ± 0,3 c 4,2 ± 0,4 d 

ptECG 6,4 ± 0,2 a 4,1 ± 0,2 b 4,5 ± 0,2 b 6,6 ± 0,2 a 4,4 ± 0,3 b 

Total Trimers 23,6 ± 1,9 a 17,6 ± 2,2 b 15,0 ± 3,5 bc 17,6 ± 2,1 b 13,6 ± 2,9 c 

M+D+T 109,9 ± 12,3 a 84,4 ± 7,9 a 74,9 ± 6,8 b 86,2 ± 7,7 a 70,3 ± 5,0 b 

 

In warm vintage, 2009, Site 1 concentrates the greatest amount of procyanidins (109.0 

mg/L) compared to Site2, Site 3 , 4 and 5 which all show lower values than 86.2 mg/L. In 

2010, the opposite effect can be observed, the lower concentration is found at Site 1 (75.8 

mg/L) and Site 5 (72.2 mg/L). Temperate vintage, 2010, shows an increase in total trimeric 

procyanidins compared to 2009. Monomeric forms are more abundant in 2009 than in 

2010, particularly in Site 1 and 2 and in Site 5. In warm mesoclimates the ranges oscillate 

between 84.4 and 109.0 mg/L and in temperature values range 75.8 and 103.0 mg/L. In 

late mesoclimate, ranges in 2019 oscillate between 70.3 and 86.2 and in 2010, between 

72.7 and 116.0 mg/L. This suggests the amount of procyanidins is not influenced by 

mesoclimate.  
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Table 14. Procyanidin composition of the wines issued from Site 1 and 2 (Molar ) and Site 3, 4 and 5 (Porrera). Vintage 
2010. aValues with different letters denote a statistically (p<0.05) significant difference. Mean and standard deviation. 

Location Site 1    Site 2    Site 3    Site 4    Site 5    

Sample wine (mg/L)  Vintage 2010    

Gallic acid 10,2 ± 1,9 b 12,7 ± 1,0 ab 13,0 ± 0,1 a 11,3 ± 0,5 bc 9,6 ± 0,5 c 

Cat 4,9 ± 1,5 a 6,8 ± 0,8 ab 5,7 ± 0,4 a 5,4 ± 1,2 a 3,4 ± 0,4 b 

EC 3,5 ± 1,1 b 6,3 ± 0,5 a  5,5 ± 0,3 a 4,4 ± 0,7 b  3,9 ± 0,4 b 

ECG 0,1 ± 0,0 ns 0,2 ± 0,1 ns 0,1 ± 0,0 ns 0,1 ± 0,0 ns 0,1 ± 0,0 ns 

Total Monomers  18,6 ± 4,4 b 26,0 ± 2,3 a 24,3 ± 0,9 a 21,3 ± 2,3 b 17,0 ± 1,3 c 

pdB1 5,0 ± 1,2 b 6,0 ± 0,5 a 7,1 ± 0,7 a 6,5 ± 1,2 ab 4,5 ± 0,3 b 

pdB2 1,4 ± 0,6 c 3,2 ± 0,3 b 6,8 ± 0,8 a 4,9 ± 1,5 ab 3,1 ± 0,3 b 

pdB3 5,0 ± 1,2 b 6,2 ± 0,7 ab 7,1 ± 0,7 a 6,6 ± 1,2 ab 4,5 ± 0,3 b 

pdB4 9,1 ± 2,1 bc 12,3 ± 1,1 ab 13,6 ± 0,8 a 10,1 ± 1,6 c 8,8 ± 0,8 c 

pdB2MG1 1,4 ± 0,6 c 3,2 ± 0,3 b 6,8 ± 0,8 a 4,9 ± 1,5 a 3,1 ± 0,3 b 

pdB1G1 2,0 ± 0,5 bc 2,6 ± 0,3 bc 2,8 ± 0,3 b 6,6 ± 0,6 a 1,8 ± 0,4 c 

DDG 0,0 ± 0,1 ns 0,0 ± 0,0 ns 0,2 ± 0,2 ns 0,0 ± 0,0 ns 0,0 ± 0,1 ns 

pdB1G2 9,6 ± 0,2 b 11,6 ± 0,5 a 9,6 ± 0,1 b 9,9 ± 0,8 b 9,3 ± 0,5 b 

Total Dimers 33,4 ± 6,5 b 45,1 ± 3,6 a 54,0 ± 4,3 a 49,6 ± 8,4 a 35,1 ± 2,8 b 

ptC 8,5 ± 0,6 c 11,1 ± 0,5 b 15,2 ± 0,7 a 12,3 ± 1,4 b 7,9 ± 0,2 c 

ptT2 9,6 ± 2,1 b 11,7 ± 0,3 a 12,3 ± 1,5 a 9,4 ± 1,0 b 6,7 ± 0,6 c 

ptECG 5,6 ± 1,7 c 9,1 ± 0,9 a 10,3 ± 0,7 a 6,9 ± 0,8 b 5,4 ± 1,2 c 

Total Trimers 23,8 ± 4,4 c 31,9 ± 1,7 a 37,8 ± 2,9 a 28,6 ± 3,2 a 20,1 ± 2,0 c 

M+D+T 75,8 ± 15,4 b 103,0 ± 7,6 a 116,0 ± 8,1 a 99,4 ± 13,9 a 72,2 ± 6,1 b 

 

From this results we can suggest that procyanidin concentration is mostly affected by 

vintage. This results would also suggest that temperate vintages where maturation of the 

fruit  takes place slowly, the procyanidins can polymerise better than in a warm vintage, 

where procyanidins might concentrate by dehydration of the berry rather than by a natural 

evolution of ripeness. 
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Table 15. Summary of the Anthocyanin composition of the wines issued from Site 1 and 2 (Molar ) and Site 3, 4 and 5 
(Porrera). Vintage 2009 and 2010. aValues with different letters denote a statistically (p<0.05) significant difference. 

Mean and standard deviation. 

Location Site 1       Site 2       Site 3       Site 4       Site 5       

2009 Wine (mg/L) anthocyanins   

Total G  178,7 ± 6,8 b 234,0 ± 3,2 ab 238,3 ± 5,6 a 214,8 ± 10,3 c 241,4 ± 4,2 a 

Total AG 35,0 ± 1,6 d 60,6 ± 1,8 ab 58,2 ± 0,6 a 62,4 ± 0,5 b 68,0 ± 1,5 c 

Total CG 37,5 ± 2,8 b 50,4 ± 6,0 a 51,0 ± 1,4 a 42,0 ± 8,2 ab 46,2 ± 7,7 ab 

G+AG+CG 251,1 ± 0,5 c 345,0 ± 7,1 ab 347,6 ± 6,8 a 319,1 ± 16,4 b 355,5 ± 6,6 a 

2010    

Total G  138,7 ± 4,2 b 151,2 ± 3,0 a  136,9 ± 3,6 b 141,6 ± 6,3 b 141,4 ± 4,9 b 

Total AG 25,8 ± 0,6 d 38,9 ± 1,2 a 35,4 ± 0,1 c 36,1 ± 0,0 b 36,5 ± 1,2 abc 

Total CG 23,0 ± 0,4 b 24,8 ± 0,4 a 25,3 ± 0,7 a 25,1 ± 1,6 a 24,1 ± 0,8 ab 

G+AG+CG 187,5 ± 5,1 c 214,8 ± 4,6 a 197,6 ± 4,4 b 202,8 ± 7,9 b 202,0 ± 6,9 b 

 

 

Table 15 and Table 16 is a summary of total monomeric, dimeric and trimeric 

concentrations. In both vintages, catechins and epicatechins are always more abundant 

species in all sites, with lower epigallocatechin concentration. Site 1 shows the higher 

monomeric forms amongst all sites.  Concerning dimeric forms, procyanidin B4  and B1G2 

is the more abundant, being those dimeric forms twice as much as the monomeric forms 

(in 2010). In 2019 dimeric procyanidin B4 and B2 are more abundant. Trimeric forms range 

between monomeric and dimeric being ptC, ptT2 and ptECG not significantly different in 

Porrera in 2010  but all different in 2009.  

 
 

Table 16. Summary of the Procyanidin composition of the wines issued from Site 1 and 2 (Molar ) and Site 3, 4 and 5 
(Porrera). Vintage 2009 and 2010. aValues with different letters denote a statistically (p<0.05) significant difference. 

Mean and standard deviation. 

Location Site 1       Site 2       Site 3       Site 4       Site 5       

2009 Wine (mg/L) Procyanidins     

Total 

Monomers  36,1 ± 2,5 a 25,7 ± 1,8 b 21,8 ± 3,7 bc 23,8 ± 4,6 b 21,1 ± 3,3 b 

Total 

Dimers 50,2 ± 3,9 a 41,1 ± 4,7 bc 38,0 ± 4,0 c 44,7 ± 3,8 ab 35,6 ± 5,8 c 

Total 

Trimers 23,6 ± 1,9 a 17,6 ± 2,2 b 15,0 ± 3,5 bc 17,6 ± 2,1 b 13,6 ± 2,9 c 

M+D+T 109,9 ± 12,3 a 84,4 ± 7,9 a 74,9 ± 6,8 b 86,2 ± 7,7 a 70,3 ± 5,0 b 

2010      

Total 

Monomers  18,6 ± 4,4 b 26,0 ± 2,3 a 24,3 ± 0,9 a 21,3 ± 2,3 b 17,0 ± 1,3 c 

Total 

Dimers 33,4 ± 6,5 b 45,1 ± 3,6 a 54,0 ± 4,3 a 49,6 ± 8,4 a 35,1 ± 2,8 b 

Total 

Trimers 23,8 ± 4,4 c 31,9 ± 1,7 a 37,8 ± 2,9 a 28,6 ± 3,2 a 20,1 ± 2,0 c 

M+D+T 75,8 ± 15,4 b 103,0 ± 7,6 a 116,0 ± 8,1 a 99,4 ± 13,9 a 72,2 ± 6,1 b 
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4.3 Mesoclimate characterisation for Grenache (El Molar- and El Lloar) 
 

4.3.1 Climatology and soil 

The assessment of Grenache vineyards was done during 2010 and 2011. By looking at the 

climatic diagram for both vintages, temperatures were higher in 2011 during the ripening 

period (September), while in 2010 the temperatures were more moderate, averaging up 

to 5ºC less than in 2011 (Figure 46). Maximum temperatures in 2010, in the LO plot, 

reached values slightly below that of the EM plot, with a peak in July. In contrast, in 2011 

the highest temperatures appeared one month later than their peak in 2010, reaching 

markedly high values of vapor pressure deficit (VPD) at the end of August and September, 

corresponding with the grape ripening period. The maximum temperature in 2011 

remained high for several months with no variance between plots. The annual rainfall in 

2010 was lower by 75mm compared to 2011, with low rainfall between June and October, 

being almost null values in the months of August and September. Vintage 2010 did not 

carry continued VPD values as high as in 2011 in the same period. Thus, 2010 was defined 

as milder vintage. As expected, the crucial months defining the characteristics of the 

vintage are July, August, September and October – the period between veraison and 

ripening. The 2010 vintage was characterized by a heterogenic distribution of rainfall and 

a lower vapor deficit pressure than 2011. 

            
 

Figure 46. 2010 and 2011 climatology in EM (El Molar) and LO (El Lloar). Tmax (maximum Temperature), P (rainfall) and 
DPV (vapor pressure deficit). 

 

Concerning the soil structure, the plot of EM features a similar texture between the soil and 

subsoil layers. EM gravely elements in both soil and subsoil ranged between 35-40%, while 

the remaining percentage corresponds to fine particles giving a clay loam texture in USDA 

classification terminology (Table 17). In contrast, the LO subsoil contains less clay and is 

much richer in silt. The soil texture in the first layer, in LO, is clearly gravely, whereas in its 
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subsoil silt is predominant. In LO, the soil is much more stony, with a clay content (25.3%) 

higher than that of the EM plot (5.3%). This heterogeneity results in the two plots having 

different water drainage characteristics, explaining the decrease in leaf area of LO vines at 

the end of the growing season (Table 17). The VPD in 2010 was lower at ripening 

(September and October), reflecting lower temperatures. Toghether with a high VPD, this 

decrease in leaf area lasted until two weeks before harvest, coinciding with the period of 

grape maturation. 

 
Table 17. Soil and Subsoil Texture. 

    < 2mm  >2mm  % sand % silt % clay USDA-Classification 

EM Soil 59.4% 40.6% 46.3 48.3 5.3 Sandy loam 

  Subsoil 65.8% 34.2% 40.0 54.7 5.3 Sandy loam 

LO Soil 36.4% 63.6% 42.0 32.7 25.3 Silty loam 

  Subsoil 70.3% 29.7% 25.3 70.0 4.7 Silty loam 

 

4.3.2 Phenology and vegetative growth 

 

In general, the evolution of TLA (total leaf area) was similar in both vineyards (EM, El Molar 

and LO, El Lloar) in the temperate year (2010), showing the same trend, with differences 

only at pea size (Figure 47). The leaf area of the two plots evolves differently in 2011; in 

the LO plot it is observed more growth than in the EM plot. In 2011 the greater leaf area 

achieved in LO during veraison, induced by the continuous rainfall during the spring 

combined with extreme temperatures during maturation, resulted in a greater decrease in 

leaf area compared to the previous year. At ripening no leaf area differences were 

observed, in either vineyard, regardless of the vintage. In 2010 the LO plot grew a slightly 

larger leaf area than the EM vines, given the scarcity in the distribution of rainfall during 

the spring. In 2011, from veraison to ripeness, the attached graph slopes of leaf size show 

a steep decrease compared to 2010.  
 

Table 18. Phenological stages and dates for Grenache in two vintages, 2010 and 2011. 

2010 Fruit set Pea size Veraison Harvest  Leaf drop 

EM 1-Jun 21-Jun 22-Jul 06-Sep 04-Nov 

LO 10-Jun 05-Jun   27-Jul 12-Sep 04-Nov 

2011           

EM 4-Jun 19-Jun 18-Aug 04-Sep 01-Oct 

LO 11-Jun 14-Jun 21-Aug 29-Aug 29-Oct 
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Figure 47. Primary Leaf Area during the growing season in El Molar (EM) and El Lloar (LO) for Grenache.  EM (black) 
and LO (grey) 

 

During 2010 and 2011, leaf area (LA) at the phenological stages of pea size (PS), veraison 

(V), final ripening (RP) and post-harvest (PH) was measured. Total leaf area (TLA) within 

parcels did not differ significantly in the temperate year. In the drier vintage, however, 

vines from LO developed more leaf area than those growing in the south-facing terraces 

at EM. Nevertheless, the total leaf area before harvest was similar. The heterogeneity in the 

soil profile at the LO location could likely induce a variation in the drainage capacity, 

affecting the vine growth (TLA).  

 

 

       
 

Figure 48. Grenache Vineyard in el Molar (Site 6, EMGRE) 
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Figure 49. Grenache Vineyard in El Lloar (Site 7, LLOGRE). 

 

4.3.3 Leaf water potential 

In 2010, the difference between EM and LO is most marked at PS (LWP measured at 5:30) 

and at PH (LWP measured at 11:30). In contrast, around maturity (RP), the most notable 

differences are shown to the extent of Ψ 11:30. In all phenological stages, the tendency in 

the last measure, is to recover the potential, reaching less negative values, thus indicating 

less plant stress. During ripening (RP) and at 11:00, point of the day of greatest water stress, 

LO gives more negative values than EM, although the differences between plots are very 

small.  

 
Figure 50. Leaf water potential in El Molar (EM) and El Lloar (LO) for Grenache in 2010 (left) and 2011 (right). 

 

The water potential of 2011 was not so different between plots if we compare with 2010. 

It should be noted the great difference between the different phenological stages where 

particularly harvest date was delayed in 2011. During pea size (PS), the water potential is 

less negative, but during veraison (V) and maturation (RP), coinciding with the month of 

highest VPD, the plant is more affected by water stress (more negative values). In 2010, 
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stress was more pronounced during RP and the vines did not achieve recovery shown by 

a decrease in LWP. In both vintages, Grenache never showed lower LWP than Carignan.  

 

4.3.4 Leaf temperature 

 

The leaf temperature with respect to the external temperature shows a very similar 

evolution at 8:00 am along with the vegetative cycle. At noon the differences between 

temperatures are different in PS and V but not in RP and PH. This would indicate that the 

refrigeration of the plant given through the stomatal opening is minimal from mid-summer 

until the end of the ripening period. The measurements have only been carried out in 2011 

(warm vintage). Even so, comparing with the leaf temperature measurements carried out 

in Carignan, there are less differences between Tleaf and Tair in Garnacha. 

 

 
 

Figure 51. Measuremenets of leaf temperature (T leaf) and air temperature (T air) in Porrera during the vegetative cycle 
2010. 

 

4.3.5 Stomatal conductance 

 

The evolution of stomatal conductance (gs) in cultivar Garnacha shows a very different 

behaviour depending on whether the year is warmer or more temperate (Figure 52). In a 

warmer year (2011) a more constant daily evolution is observed, showing less stomatal 

conductance as the hours of the day progress, the highest values being at the beginning 

of the day with values ranging between 100 and 200 mmol m⁻² s⁻1. On the other hand, in 

temperate year (2010) the conductance in Grenache oscillates depending on the time of 

day, always showing a lower conductance at noon and a recovery at the end of the day. 

Values at noon are below 100 mmol m⁻² s⁻1 on V and RP. This oscillation would indicate a 

stomatal closure and opening as a function of external conditions, thus showing a more 

adaptive physiological response to environmental conditions. 

UNIVERSITAT ROVIRA I VIRGILI 
PRIORAT VINEYARD VULNERABILITY AND WATER STRESS ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE. 
ESTIMATED PRIORAT WINE CONSUMPTION IN HUMANS 
Antoni Sánchez-Ortiz 
 
 



 

70 

 

  
 

  
 

Figure 52. Stomatal conductance (gs) measured in cv. Grenache in 2010 and 2011 vintages. Site 6  (Grenache in El Molar, 
EMGRE) and Site 7 (Grenache in El Lloar, LLOGRE). 
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4.3.6 Acid Abscisic composition 

 

ABA was determined through the growing cycle in 2011. Acid abscisic (ABA) 

concentration in Grenache at PS shows lower values than any other phenological stage 

with no significant differences at pea size. At veraison (V) ABA concentration increases 

considerably at Predawn and Midday. At RP, acid abscisic maintains the high 

concentrations acquired during veraison (V). ABA only decreases after harvest. Values 

obtained at PH might show high variability within the plant, as most of the leafs have lost 

turgency and yellowing was quite visible. 

 
Table 19. Values for abscisic acid concentration (ng/g) (ABA) for sites 6 and 7 at 4 different stages of growth -pea size 

(PS) and veraison (V). ripeness (RP) and post-harvest (PH) at Predawn and  Midday. aValues with different letters denote a 
statistically (p<0.05) significant difference. Mean and standard deviation. 

 Pea Size (PS) Veraison (V) 

Site [ABA] Predawn  

[ABA]  

Midday  [ABA] Predawn  

[ABA]  

Midday  

6 (Molar) 97.8 (3.3) 185.7 (17.5) 238.3 (5.3) 466.4 (22.5)b 

7 (Lloar) 73.6 (7.5) 153.1 (9.8) 240.7 (9.0) 546.3 (15.2)a 

 Ripeness (RP) Post-Harvest (PH) 

Site [ABA] Predawn  

[ABA]  

Midday  [ABA] Predawn  

[ABA]  

Midday  

6 (Molar) 286.9 (22.2)a 462.2 (13.8) 204.8 (11.5)b 428.8 (26.6)a 

7 (Lloar) 148.3 (5.5)b 477.0 (48.1) 237.7 (11.4)a 234.1 (18.1)b 
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4.3.7 Grape and wine composition 

Grape composition: our research indicates significant differences between the two plots 

in both years of study. For the EM plot, both vintages resulted in higher Brix values. The 

LO plot in 2011 had a particularly higher value of TTA compared to the EM plot, but no 

differences in pH. Concerning phenolic composition, both years the EM plot showed the 

highest content of ANT T (Total anthocyanins), ANT E (Extractable anthocyanins), TPI (Total 

polyphenol index) and DMAC. It should be emphasized in the warmest year (2011) that 

differences between plots equalized, but were exacerbated in 2010. The EM plot’s berry 

size was similar in both years, but the LO plot berry size differed each year depending on 

climate, and thus the final composition of the wine differed from one year to the next. 

Table 20. Grape must composition and berry weight. aValues with different letters denote a statistically (p<0.05) 
significant difference. Mean and standard deviation. 

    Berry weight (g) Brix TTA (g/L) pH 

EM  2010 1.44 (0.05) b 27.4 (0.0) a 4.6 (0.1) a 3.55 (0.01) a 

LO  2010 1.74 (0.01) a 26.9 (0.1) b 4.2 (0.1) b 3.45 (0.02) b 

EM  2011 1.40 (0.02) a 27.5 (0.5) a 4.3 (0.2) b 3.40 (0.06) a 

LO  2011 1.28 (0.07) b 26.3 (0.4) b 5.6 (0.1) a 3.50 (0.05) a 

 

 

Table 21. Grape phenolic composition. . aValues with different letters denote a statistically (p<0.05) significant 
difference. Mean and standard deviation. 

    ANT T (ppm)   ANT E (ppm)   TPI   DMAC (ppm)   

EM  2010 661.5  (39.4) a 452.1  (8,1) a 65.7  (3.2) a 103.2  (5.2) a 

LO  2010 520.3  (41.8) b 359.3  (23,5) b 54.2  (4.3) b 82.6  (4.8) b 

EM  2011 557.7  (103.5) a 455.6  (57,0) a 69.0  (3.9) a 235.9  (20.3) a 

LO  2011 479.5  (43.9) a 392.0  (43,9) a 64.0  (1.6) a 224.0  (28.5) a 

 

Rainfall occurring during spring affects the vegetative growth, over two different climatic 

years. Temperatures during the ripening period, proved crucial, particularly the vapor 

pressure deficit. In the case of Grenache, grape composition is clearly affected by weather 

conditions in early September in the area studied, with major differences in phenolic 

composition between plots during the cooler year.  The warmer year did not change the 

quality of grape composition, must, or polyphenol composition as much as the temperate. 

A similar trend is observed in the wines, in which composition is similar between plots, 

suggesting that both, the climatology of the year and the soil profile have a higher impact 

on the quality of grapes than the topographical situation. The content of flavan-3-ol and 

tannins in the wines depends on the type of plot only in temperate years, while in warm 

years synthesis occurs equally regardless of the vineyard parcel. 
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Table 22. Wine composition, ABV: alcohol by volume, TTA: total titratable acidity, and pH. aValues with different letters 
denote a statistically (p<0.05) significant difference. Mean and standard deviation. 

  % ABV TTA (g/L) pH 

EM 2010 16.1 (0.1) a 5.5 (0.0) a 3.55 (0.03) a 

LO 2010 15.5 (0.4) a 5.0 (0.4) b 3.64 (0.08) a 

EM 2011 15.5 (0.1) a 5.3 (0.4) a 3.65 (0.16) a 

LO 2011 15.1 (0.2) a 5.3 (0.2) a 3.50 (0.07) a 

 

 

Table 23. Wine composition, ANT T: total anthocyanins, DMAC, TPI (Total polyphenol index) and tannins. . aValues with 
different letters denote a statistically (p<0.05) significant difference. Mean and standard deviation. 

  ANT T (ppm) DMACA (ppm) TPI Tannins (g/L) 

EM 2010 239.9 ± 22.5 a 324.8 ± 47.0 a 47.0 ± 3.0 a 1.91 ± 0.05 a 

LO 2010 186.8 ± 23.8 b 274.2 ± 64.8 a 38.2 ± 3.4 b 1.33 ± 0.12 b 

EM 2011 361.4 ± 72.1 a 376.3 ± 94.4 a 40.3 ± 6.0 a 1.56 ± 0.33 a 

LO 2011 355.7 ± 47.4 a 412.2 ± 36.3 a 45.9 ± 4.1 a 2.00 ± 0.61 a 

 

Wine composition: for both vintages the highest concentration of anthocyanin was found 

in the EM treatment, showing major differences from the LO plot in 2010. The smaller the 

berry size, the higher the ANT T and DMACA, regardless of vintage. The greatest 

differences in concentration occurred during the temperate year (2010). The greatest 

amount of tannin concentration resulted from smaller berries. The total polyphenol index 

does not differ significantly between plots and years. Lower polymerization of the flavan-

3-ol units were a function of the smaller berry size. 
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4.4 Vineyard classification based on water stress assessment on 
Carignan grapevines by using classification and regression trees 
 

This paper has been published as a result of this thesis: 
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4.4.1 Introduction 

 

Water stress on vine plants induces the synthesis of secondary metabolism. Around 

veraison, water deficit stress causes a significant increase in the abscisic acid (ABA) level in 

fruit zone leaves (Okamoto et al., 2004) and berries (Coombe and Hale, 1973; Düring and 

Allenweldt, 1980). ABA plays an important role in the regulation of growth and the 

ripening of vines. Lack of water in the soil and elevated temperatures induce the synthesis 

of ABA in the roots, followed by its translocation to the leaves, where it rapidly alters the 

osmotic potential of stomatal guard cells, causing them to shrink and the stomata to close. 

Stomatal closure reduces transpiration and thus prevents further water loss from the leaves 

during periods of low water availability. Around veraison, ABA levels in grapes increase 

significantly, along with the stimulation of ripening and phenolic synthesis, but decrease 

during the final stage of berry ripening (Palejwala et al., 1985; Soar et al., 2006; Wheeler 

et al., 2009; Bondada and Shutthanandan, 2012). Abscisic acid may be translocated from 

the sites of biosynthesis, such as roots and leaf vascular tissues, to the guard cells. Recent 

identification of multiple transmembrane ABA transporters indicates that the movement 

of this hormone within plants is actively regulated in an intercellular network (Kuromori et 

al, 2018). 

 

Regulation of water deficits has often been used to balance grapevine vegetative and 

reproductive growth to control berry quality (Chaves et al., 2010). Analysis of the phenolic 

composition in wine is essential for establishing quality parameters related to water stress, 

as some studies have shown that ABA is involved in the mechanisms controlling the 

synthesis of anthocyanins and promotes the synthesis of tannins accumulating in skin 

(Lacampagne et al., 2010) ABA synthesis depends on different factors promoting water 

stress; plant water physiology is affected by various environmental factors (e.g., 

topography, soil water-holding capacity, temperature, rainfall, and vapor deficit pressure), 

plant vigour, and cultural practices, such as irrigation techniques and fertilization programs 

(Jackson and Lombard, 1993; Downey et al., 2004) and by scion/rootstock interaction with 

soil type (Lavoie-Lamoureux et al., 2017), Grenache is highly influenced by vigour, because 

anthocyanin accumulation is favoured in balanced, high-vigour vines, whereas in 

Carignane, the anthocyanin content varies under the combined effects of vigour, 

rootstock, berry size, and vintage (Edo et al., 2014) . 

 

Appropriate statistical tools are required for identifying the factors that have the strongest 

effects on quality and stress during growth (plant) and maturation (grape). Predictors, such 

as linear or polynomial regressions, are global models, where a single predictive formula 

is applied over the entire dataset. However, when the data interact in complex, nonlinear 

ways, assembling a single global model is challenging. Classification-type problems can 

be resolved when a categorical dependent variable (e.g., class and group membership) is 

predicted from one or more continuous and/or categorical predictor variables. Generally, 

UNIVERSITAT ROVIRA I VIRGILI 
PRIORAT VINEYARD VULNERABILITY AND WATER STRESS ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE. 
ESTIMATED PRIORAT WINE CONSUMPTION IN HUMANS 
Antoni Sánchez-Ortiz 
 
 



 

76 

the purpose of analyses involving tree-building algorithms is to determine a set of if-then 

logical (split) conditions that permit accurate prediction or classification of the data.  

 

The aim of this study was to evaluate the efficacy of a multivariate nonparametric technique 

of classification and regression trees (CART) for identifying and selecting the most 

important factors affecting water stress in vineyards with a heterogenic orography (e.g., 

leaf water potential (LWP), concentration of ABA, surface leaf temperature (Ts)); analyse 

the effect of these interactions on final grape and wine quality (e.g., composition of 

anthocyanins and procyanidins); and improve the rapidity with which ABA can be 

measured in grapevine leaves. The heterogeneity of the vineyards in the Priorat wine 

region requires the collection of a considerable amount of data and more robust statistical 

tools to better understand the factors affecting water stress in vineyards. Because of the 

increasing drought and higher temperatures occurring in the Priorat, the Priorat is highly 

vulnerable to future climate change. Here, we explore applications of multivariate 

nonparametric classification techniques such as CART, a type of decision tree technique 

(Breiman et al., 1984), given that traditional methods are not appropriate for analyses 

because of the characteristics of the variables studied. 

 

4.4.2 Results  

 

LWP and ABA measurements are shown in Table 24 and Table 25. After characterizing 

differences in variability through a non-parametric Kruskal-Wallis test (Table 26) at a 

significance level of 5%, Pearson correlations between the measured variables and their 

significance (Table 27) were calculated. The classification of sites was captured by the  

Classification and Regression Trees (CART) to help identifying key variables in the data.  

The most meaningful predictors were used to create the tree . Plant, grape and wine data 

were collected to evaluate the  interactions. However, to obtain reliable classification and 

regression trees, a previous selection of nodes and child’s was completed using the 

easiest-to-measure variables in the field and the easiest-to-analyse variables in the 

laboratory.  Each round of data is known as ‘nodes’. Each node will have an if-else clause 

based on a labelled variable. Based on that question each instance of input will be 

directed/routed to a specific leaf-node which will tell the final prediction. The tree depth is 

chosen as the most number of levels desired in the decision tree. The first node is split 

based on the most important predictor, then the following child nodes are broken down to 

separate out the next variable. Entering a value the program sets the minimum number of 

cases an internal node to be split. 3 times terminal node limits allow a reasonable number 

of splitters.  
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CART: water stress and plant growth 

 

Plant growth parameters that differed significantly (p-value ≤0.05) between plots were 

berry weight and total leaf area/kg (TLA/kg) at the veraison (V) and ripening (RP) stages. 

Water stress indicators that differed significantly between plots were LWP and [ABA] at 

pea size (PS) and veraison(V) and surface temperature (Ts) at pea size (PS). Pearson 

correlations revealed that LWP at PS measured at 8:00, ABA at V measured at 14:00, and 

Ts at PS measured at 8:00 were negatively correlated with the synthesis of anthocyanins in 

wine for all anthocyanin families (acylated and non-acylated). LWP and Ts showed stronger 

correlations when these parameters were measured earlier in the day (8:00) or at the 

beginning of the vegetative cycle (PS). The same variables—LWP at PS measured at 8:00, 

ABA at V measured at 14:00, and Ts at PS measured at 8:00—were positively correlated 

with TLA/kg V. 

 

As a result from this  the CART, LWP at PS measured at 8:00 was the most important 

predictor allowing to create the first node that separated early mesoclimates (nodes 6 and 

7) from late mesoclimates (nodes 4 and 5). Nodes 2 and 3 were dependent on ABA at PS 

(late mesoclimate) and V (early mesoclimate). However, obtaining a partition of the five 

sites [ABA] at V was decisive and resulted in the generation of nodes 8 and 9. As a 

consequence, the sites with the highest probability of being classified with LWP values ≤ -

0.863 (8:00 at PS) were the parcels located in the town of Molar (sites 1 and 2). Hence, site 

1 had levels ≥ ABA 175.9 ng/g (14:00 at V) (Figure 53). Site 3, within the late mesoclimate 

area, had a lower probability of having ABA ≤ 183.9 ng/g (morning at pea size) PS. Fewer 

factors differentiated site 3 (grey) from the other sites; it was thus separated in an early 

node as in sites 1 and 2 (blue and red) of the early mesoclimate area (Figure 53) 

 

CART: ABA, LWT, and Ts 

 

The most significant variables for characterizing and classifying the observations were 

[ABA], LWP, and Ts. Ts was selected given that it had a direct relationship (positive Pearson 

correlation) with the vegetative growth parameters of TLA/kg and berry size. The Pearson 

correlation produced a clear classification tree (Figure 54) based on the Ts, at the root 

node, it generated three child nodes (2, 3, and 4). This first classification by Ts at PS 

measured at 7:00 resulted in a purity of 100% for site 4, but the Ts at PS measured at 12:00 

was clearly the most important variable for sites 5 and 6 under a second child node 

classification. However, the early sites (1 and 2) were differentiated by [ABA] at PS 

measured at 8:00. 

Although many authors have described the effect of Ts on the quality of grapes during the 

ripeness period (Spayd et al., 2002; Van Leeuwen et al., 2009; Greer and Weedon, 2013), 

the analysis of the tree shows the magnitude of the effect of Ts from the early stage of 

PS. Measurements taken at 8:00 at PS were more likely to have values of Ts ≤ 22.0ºC in the 
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late mesoclimate area. Child node 4 indicates that sites 1 and 2 had a high probability of 

being classified within the temperature range 22ºC ≤ Ts ≤ 24ºC (8:00 at PS). Using the 

CART greatly facilitates the characterization of the importance of the classification of 

vineyards, especially in the late area (sites 3, 4, and 5). Furthermore, sites 3 and 5 were 

located in equivalent positions in the tree (purity 50%); thus, the differentiation of both 

plots from other plots depended on the same factors. Remarkably, both site 3 and site 5 

had similar TLA and thus greater water loss. (Figure 54)  

 

CART: anthocyanins in wine quality 

In this CART analysis, Pearson correlations of plant parameters and wine composition in 

each site were calculated. Both LWP at PS measured at 8:00 and LWP at V measured at 

14:30 were correlated with ANT (mg/L), A-G (mg/L), and A-AG (mg/L). However, lower 

correlation coefficient values were obtained for LWP at V measured at 14:30pm. Despite 

the difficulty of establishing direct links between plant parameters (TLA/kg at V) and wine 

composition (anthocyanins), robust correlations were found for Ts at PS measured at 7:00 

and wine anthocyanins (non-acylated and acylated). The most significant relationship was 

for the correlation between TLA/kg V and A-AG (mg/L). 

 

Based on the easy-to-measure parameters in the vineyard, such as Ts and the ratio of leaf 

area and production at V (TLA/kg V), we could characterize the relationship between the 

water status of plants and plant growth to the quality of the final wine product. This 

classification of plots allowed us to determine patterns of heterogeneity between plots. 

Thus, the CART classifies sites through the nodes to distinguish among different vineyards. 

(Figure 55)  

The tree shows that LWP (node 1) at PS permitted the differentiation of early (EM) and late 

(PO) sites. Values within the range -1.45 ≤ LWP ≤ -0.862 described the late ripeness sites 

(4, 5, and 6), while the range -0.863 ≤ LWP ≤ -0.290 classified the warmest sites (1 and 2). 

In the late mesoclimate area (node 2), sites were separated by anthocyanins; sites 3, 4, and 

5 were classified together by node 5 and were primarily influenced by the LWP at 14:30 in 

V. This finding suggests that the topography of the vineyard location, as well as the climate 

and soil type, had an important influence on wine quality. However, the parameter that 

classifies vineyards was ABA at 14:00 V (≤ 175.9 ng/g) by node 3 and was necessary for 

divided sites 1 and 2 (early mesoclimate).Thus, LWP did not affect the phenolic content of 

the wines. 

 

4.4.3 Discussion 

 

Measurements of the distribution of soil water revealed that the differences detected 

among the five sites reflected heterogeneity in soil particle size, depth, and texture. Sites 

1 and  2 (El Molar) on a clayey soil had a higher water-holding capacity, than that of sites 
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3, 4 and 5 (Porrera), which were steep with more stones and soil was primarily composed 

of larger elements. Thus, the vines in the town of El Molar (site 1 and 2, early mesoclimate) 

had more available water than those in Porrera (sites 3, 4 and 5, late mesoclimate), despite 

the lower rainfall recorded during the cycle. Pre-dawn leaf water potential (PLWP) reflects 

soil water availability as perceived by the plant and midday leaf water potential (MLWP) 

measures leaf water potential under maximum daily water demand. Therefore the higher 

soil water content at sites 1 and site 2 led to more vigorous plants because LWPs were less 

negative. In Porrera, because of the lower water retention in soils, the plants had more 

negative LWPs than those in Molar. In addition, at approximately the pea size phenological 

stage, water transpiration by leaves was higher and LWPs showed more negative values 

because of the low soil water content in the stony and poor soil. It is known that Vitis 

genotypes show either an isohydric or anisohydric response to water stress. In isohydric 

cultivars, strong control of stomatal conductance by ABA reduces transpiration, obviates 

decreases in water potential, and delays the onset of stress tolerance mechanisms. In 

contrast, weak ABA control of stomatal closure does not avoid midday decreases in water 

potential in anisohydric grapevines (Lovisolo et al., 2010). In addition, during periods of 

low water availability and higher transpiration water demand, many authors have observed 

that a hydraulic signal can also have a controlling effect on stomatal conductance, and this 

also relates to both patterns, isohydric species maintain relatively stable LWPs precisely 

because of their more strict stomatal control, whereas anisohydric species would show a 

looser regulation of transpiration. What is more, the degree of isohydry can be related to 

a reduced soil water availability (lower, more negative soil water potential, Ψsoil) may affect 

plant conductance in two ways, by lowering its hydraulic conductance (KH) and/or its leaf 

conductance (gLeaf). These reductions, have opposite effects on the water potential 

difference through the plant (ΔΨ = |ΨLeaf- Ψsoil|), whereas lower KH increases ΔΨ, lower gLeaf 

decreases ΔΨ (Martínez-Vilalta et al. 2014, Martínez-Vilalta and García-Forner, 2017). Thus, 

there is a tight coordination between hydraulic and water vapour transport at the plant 

level (Sperry and Love, 2015).  

 

Parameters that best discriminated between sites were LWP and ABA content, followed by 

berry size and anthocyanin concentration. Around veraison, higher correlations between 

LWP and ABA content were obtained. After analysis of the Pearson correlations, the best 

results were obtained for the veraison phenological stage where vapor pressure deficit 

(VPD) is lower. ABA concentrations in Carignan vines at different sites (early (1 and 2) and 

late (3, 4, and 5)) are shown in Table 25. Higher concentrations of ABA were observed in 

all vineyards when measurements were taken at noon. This observation reflects increased 

water stress in all plots and confirmed measurements of LWP. It also established a direct 

correlation between the concentration of ABA and LWP (R2=0.918). The strongest 

correlations were observed for the first measurements in the morning, while 

measurements at noon showed greater dispersion, R2 (0.7175). Thus, the CART analysis 
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could distinguish among sites of the later mesoclimate region based on ABA at pea size 

stage.  

 

In Figure 53, PLWP at pea size separated sites within mesoclimate and reached values of 

-0.86 for the early and -1.45 for the late mesoclimate. Around veraison, ABA concentration 

classified vineyards in the warmest area with values of 258 ng/g in site 1 and 175 ng/g in 

site 2. In the coldest area, the values were lower and did not separate at such wide 

intervals. At site 3, ABA concentration did not exceed 183 ng/g at pea size; instead, values 

were higher in sites 4 and 5 but did not differentiate vineyards. Values for these plots at 

veraison were lower than in pea size; site 3 had values as high as 164 ng/g, and site 5 had 

values as high as 188 ng/g. The three most similar sites in ABA at veraison at noon were 

sites 2, 4, and 5. Thus, the ABA concentration at veraison is important for differentiating 

most of the plots, including sites 1, 2, 4, and 5.  

 

In Figure 54, Ts at pea size measured at predawn permitted separation by temperature 

ranges and isolated site 2 with temperatures between 19.8 and 22°C. The early sites were 

separated by ABA at pea size at predawn (with higher values in site 2, considering that site 

1 had a rocky soil, while site 2 was composed by finer elements). Plots of the coldest area 

were only separated by Ts at pea size at noon. Site 5 was located at higher elevation and 

experienced higher temperatures at noon (36.6ºC) than site 3 (35.2°C). Ts at veraison did 

not provide useful information because the plots experienced similar levels of stress. Thus, 

the characterization of the plots by Ts can be predicted at pea size but not around veraison. 

 

In Figure 55, PLWP at pea size separated sites with different mesoclimates. Sites 1 and 2 

differed in ABA around veraison at noon (Figure 55). The ABA concentration in site 1 was 

twice that of site 2; thus, these plots did not differ in the concentration of anthocyanins 

unlike the colder sites. Sites in the cold mesoclimate were classified by the anthocyanins 

in wine. Although there was a strong correlation with anthocyanins in grapes, wine 

correlated with other variables (as evidenced by Pearson correlations greater than 0.7). 

Plants at site 2 were the least vigorous with anthocyanin values less than 339 m/L. Because 

plants at sites 3 and 4 showed more vigour, the effect that distinguished the plots was 

MLWP at veraison, as the water stress was increased in site 3 (LWP of -1.82) and site 4 (LWP 

of -1.6). 

 

Even if the action of ABA in occlusive cells is complex and not yet fully understood, 

Vitis genotypes apparently exhibit different levels of drought adaptation that differ in key 

steps involved in ABA metabolism and signalling (Rossdeutsch et al., 2016). In general, 

Vitis vinifera varieties, displayed more pronounced responses to water-deficit in 

comparison to other Vitis genotypes. Moreover, Dal Santo et al. (2016) proposed a cause-

effect link between the physiological grapevine plant conditions and the intensity of the 

gene expression changes. Finally, in regards to grape composition, many key genes 
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(VvMybA1 and VvUFGT) of the flavonoid biosynthetic pathway are also up-regulated 

during ripening, resulting in a berry quality increase (Ferrandino and Lovisolo, 2014). ABA 

accumulation and the induction of flavonoid biosynthesis increase the quality of berries by 

facilitating the accumulation of secondary metabolites, especially polyphenols. Under 

water stress, polyphenolic concentrations increase in berries both in isohydric varieties, 

such as Grenache (Coipel et al., 2006), Tempranillo (Santesteban et al., 2011), Manto negro 

(Medrano et al., 2003), and in anhysohydric varieties, such as Cabernet Sauvignon 

(Kennedy et al., 2002; Bindon et al., 2008), Cabernet Franc (Matthews and Anderson, 

1988), and Muscat of Alexandria (Dos Santos et al., 2007), with different temporal dynamics 

related to ABA induction. Aquaporins are another target for ABA to regulate both water 

and carbon fluxes. ABA affects aquaporin regulation in response to abiotic stresses 

(Kaldenhoff et al., 2008) by modulating their gene expression and protein abundance or 

activity, affecting in cellular water relations and cell metabolism in response to water stress.  

Aquaporins can be modulated at several levels, via transcription, translation, trafficking 

and gating (opening  and  closing  of  the  pore)  and  by  environmental  and  

developmental  factors  (Chaumont  and Tyerman  2014),  such  as:  irradiation  (Prado  et  

al.  2013,  Lopez  et  al.  2013),  transpiration  (Sakurai-Ishikawa  et  al.  2011,  Laur  and  

Hacke  2013),  circadian  rhythms  (Hachez  et  al.  2008),  abscisic  acid (ABA)  feeding  

(Shatil-Cohen  et  al.  2011,  Pantin  et  al.  2013),  auxin  feeding  (Péret  et  al.  2012)  and 

shoot wounding (Sakurai-Ishikawa et al. 2011, Vandeleur et al. 2014). Coupled with that, 

Castellarin et al., (2007) showed that water stress favoured the accumulation of more 

hydroxylated and methylated anthocyanins (peonidin 3-O-glucoside and malvidin 3-O-

glucoside). In addition, the degradation of anthocyanin would probably be induced by 

high temperatures with an oxidative stress leading to the formation of H2O2, with the 

subsequent induction of peroxidases and of oxidoreduction enzymes (Mori et al., 2007). 

In contrast, little is known about the impact of temperature on proanthocyanin 

accumulation in grape skins; berries are able to compensate the initial effects of 

temperature on proanthocyanin biosynthesis resulting in similar concentration of 

proanthocyanin at harvest (Cohen et al., 2012). 

 

Overall, the effect of variables on the classification of the trees was closely tied to the water 

scarcity of the plants. In viticulture science it is of particular importance to evaluate whether 

the relationships between physiological parameters fitted to data through these powerful 

statistical methodologies. In addition, some authors (Brillante et al., 2017) have shown that 

well-trained machine-learning models can be used to capture the essential relationships 

between plant physiology and the environment. As an example, Brillante et al. (2016) have 

for the first time modelled grapevine water stress. This models will be important to design 

experiments and provide with validation tests to demonstrate the efficiency of the models. 

 
  

UNIVERSITAT ROVIRA I VIRGILI 
PRIORAT VINEYARD VULNERABILITY AND WATER STRESS ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE. 
ESTIMATED PRIORAT WINE CONSUMPTION IN HUMANS 
Antoni Sánchez-Ortiz 
 
 



 

82 

Table 24. Values of predawn leaf water potential (PLWP, ΨPLWP (MPa)) and midday leaf water potential (MLWP, 
ΨMLWP (MPa))  for sites 1, 2, 3, 4, and 5 at two different stages of growth—pea size (PS) and veraison (V)—at Predawn 

and Midday.. Mean and standard deviation. 

 Pea size (PS) Veraison (V) 

Site 

ΨPLWP  

Predawn 

ΨMLWP  

Midday 

ΨPLWP  

Predawn 

ΨMLWP  

Midday 

1 -0.33 (0.04) -1.29 (0.05) -0.47 (0.12) -1.38 (0.07) 

2 -0.43 (0.08) -1.21 (0.16) -0.54 (0.13) -1.44 (0.08) 

3 -1.43 (0.01) -1.48 (0.04) -0.82 (0.21) -1.76 (0.07) 

4 -1.27 (0.04) -1.39 (0.05) -0.47 (0.05) -1.58 (0.06) 

5 -1.28 (0.03) -1.50 (0.00) -0.92 (0.08) -1.50 (0.04) 

 
Table 25. Values for abscisic acid concentration (ABA) for sites 1, 2, 3, 4 and 5 at two different stages of growth -pea 

size (PS) and veraison (V)- at Predawn and  Midday. Mean and standard deviation. 

 Pea Size (PS) Veraison (V) 

Site [ABA] Predawn  

[ABA]  

Midday  [ABA] Predawn  

[ABA]  

Midday  

1 152.8 (4.7) 195.0 (33.4) 162.8 (7.6) 243.5 (13.1) 

2 181.1 (21.4) 226.4 (5.9) 92.5 (8.7) 115.5 (3.6) 

3 152.0 (17.3) 229.0 (42.2) 97.3 (15.5) 89.9 (8.6) 

4 211.8 (5.5) 423.0 (80.7) 83.7 (2.4) 134.8 (38.7) 

5 196.3 (5.9) 400.1 (19.8) 114.9 (12.7) 178.8 (9.3) 

 
Table 26. Analysis of the differences between groups using the non-parametric Kruskal-Wallis test. Pea Size (PS), 

veraison (V) and ripeness (RP). 

Conditions Hour 
Phenological 

stage 
p-Value 

Leaf Water Potential Predawn PS 0.014 

 Midday PS 0.014 

 Midday V 0.017 

Abscisic acid content Predawn PS 0.019 

 Midday V 0.017 

Leaf surface temperature Predawn PS 0.012 

Total anthocyanins  Wine 0.019 

Glycosylated Anthocyanins  Wine 0.014 

Acetyl Glycosylated Anthocyanins  Wine 0.011 

Berry Weight   0.009 

Total Leaf Area /Kg  V 0.024 

  RP 0.019 
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Table 27. Pearson correlation matrix. Bold values are different from 0 at a significance level (α of 0.05. Abscisic acid (ABA), Pre down leaf water potential (ΨPLWP), midday 

leaf water potential (ΨMLWP), leaf surface temperature (Ts), total anthocyanins (ANT), glycosylated anthocyanins (A-G), acetyl glycosylated anthocyanins (A-AG), and total 
leaf area (TLA) around veraison (V), ripeness (RP), and pea size (PS). 

Pearson Correlation 

Matrix 

[ABA] (ng/g) 

Predawn PS 

[ABA] 

(ng/g) 

Midday V 

ΨPLWP  

(MPa) 

Predawn 

PS 

ΨMLWP  

(MPa) 

Midday 

PS 

ΨMLWP  

(MPa) 

Midday 

V 

Ts 

(ºC) 

Predawn 

PS  

Berry 

weight 

(g) 

TLA/Kg 

V 

TLA/Kg 

RP 

 ANT 

(mg/L) 

wine 

 A-G 

(mg/L) 

wine 

 A-AG 

(mg/L) 

wine 

[ABA] Predawn PS 1            
[ABA] Midday V -0.143 1           
Ψ Predawn PS -0.283 0.489 1          
Ψ Midday PS -0.011 0.145 0.798 1         
Ψ Midday V 0.116 0.696 0.796 0.574 1        
Ts Predawn PS  -0.226 0.451 0.935 0.763 0.702 1       
Berry weight -0.228 0.316 0.783 0.697 0.492 0.917 1      
TLA/Kg V -0.516 0.627 0.738 0.437 0.578 0.703 0.566 1     
TLA/Kg RP -0.304 0.682 0.015 -0.262 0.190 -0.006 -0.161 0.478 1    
ANT - wine 0.319 -0.703 -0.588 -0.408 -0.461 -0.737 -0.752 -0.699 -0.451 1   
 A-G - wine 0.278 -0.680 -0.576 -0.380 -0.461 -0.752 -0.776 -0.661 -0.407 0.986 1  
A-AG - wine 0.610 -0.628 -0.658 -0.411 -0.393 -0.732 -0.738 -0.846 -0.449 0.917 0.882 1 
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Figure 53. Classification and Regression Trees by water indicators (LWP, ABA and Ts). Site 1 (red), Site 2 (blue), Site 3 (grey), Site 4 (orange) and Site 5 (green). Root node 
represents the entire population and splits based on the most important predictor, then the following child notes are broken down to separate out of the next parameters. 

The outer circle represents the data percentages of the previous step per each vineyard, where each colour represents the data from a single vineyard. The inner circle pie is 
the percentage that results from answering the if-else question. The circles on the right branch correspond to those vineyards with higher values; those on the left to those 

with lower values, in answer to the if-else question (values are shown in brackets).  
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Figure 54. Classification and Regression Trees by Ts (surface canopy temperature). Site 1 (red), Site 2 (blue), Site 3 (grey), Site 4 (orange) and Site 5 (green). Root node 
represents the entire population and splits based on the most important predictor, then the following child notes are broken down to separate out of the next parameters. 

The outer circle represents the data percentages of the previous step per each vineyard, where each colour represents the data from a single vineyard. The inner circle pie is 
the percentage that results from answering the if-else question. The circles on the right branch correspond to those vineyards with higher values; those on the left to those 

with lower values, in answer to the if-else question (values are shown in brackets). 
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Figure 55. Classification and Regression Trees by total anthocyanins. Site 1 (red), Site 2 (blue), Site 3 (grey), Site 4 (orange) and Site 5 (green). Root node represents the 

entire population and splits based on the most important predictor, then the following child notes are broken down to separate out of the next parameters. The outer circle 
represents the data percentages of the previous step per each vineyard, where each colour represents the data from a single vineyard. The inner circle pie is the percentage 
that results from answering the if-else question. The circles on the right branch correspond to those vineyards with higher values; those on the left to those with lower values, 

in answer to the if-else question (values are shown in brackets). 
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4.5 Conclusions 
 

Regarding the results obtained from the characterization of Carignan, during warm years 

the highest phenological differences between early and late regions were recorded, which 

reached the maximum of a week at budbreak and veraison. The start of budbreak is 

delayed in years of low winter temperatures, but this delay does not seem to affect the 

variations in the harvest date. To highlight the effect of seasonal climate variability: the 

temperature rise in spring and autumn affects a shortening between phenological stages 

in the late region, causing advances in flowering and harvest. The warm autumn also has a 

noticeable effect on the elongation cycle of the vine in the early region, prolonging the 

period from harvest to leaf drop.  

These abiotic factors causing vine stress notably higher in warmer areas than colder, lead 

us to consider the need of an improvement in the system of cultivation in each specific 

area (PO and EM). Adequate management in winemaking it should be adapted in the short 

and medium term, ensuring continued quality of the grapes and therefore the final 

product. However, the most restrictive in terms of water, bring to a new way of work trying 

to improve the efficiency of water use. In general, inter vineyards differences are much less 

accused during temperate vintage (2010) compared to warm and hot vintage (2009). 

Regards to vine production, soils with higher percentage of finer elements (Site 1, Site 5) 

had 20%-35% more yield than the stony plots. The soil texture directly influences on 

growth. The stony soil in Site 4 lead to diminishes the plant vigour and yield. However, the 

other two plots of PO (late ripening) are able to maintain the leaf area during summer.  As 

regards to the wine, alcohol content and anthocyanin vary between plots and in the 

vintage. The total acidity appears to be associated with late mesoclimate (PO). Conversely, 

levels of tannins are still high in the early region (EM) and especially if the year is dry.  

Anthocyanin content in dry years is higher in late region (PO). The evolution of sugars and 

acids in berries follow a different pattern from that of the phenolic compounds. In years of 

high temperatures, the fruits reach a high degree of sugars, without having adequately 

ripened the skins and seeds, so the accumulation of phenolic compounds has not reached 

its maximum concentration. 

To sum up, the climatic variability at the end of ripening is mainly determined by the 

increase in temperature and the deficit in vapor pressure. The persistence in the ripening 

season of high VPD values gives rise to notable inter-plot differences in warm years and 

early zone. In general, the plots with higher vegetative growth and lower production (lower 

Ravaz index and high leaf area/production ratio) would be more vulnerable to climate 

change, less predictable in relation to the composition of the grape and wine with 

variations in the composition of the grape in time of maturation. In warm years, grapes in 

the early zone reach a higher alcoholic degree than in the late zone, whereas the acidity is 

significantly higher in the late zone. Anthocyanins show variability in terms of vintage and 
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plot, whereas the accumulation of tannins is more notable in grapes from early and warm 

regions. 

The climatic characterization of two completely different vintages and the choice of five 

plots located in two different ripening zones, has allowed us to establish ranges in terms 

of the polyphenolic composition in grapes and wine. The prediction of an interval of 

concentrations of anthocyanins and tannins is extremely important to define qualities and 

styles of wine, given the great inter-parcel variability observed in plots of old Carignan 

vineyards within the Priorat DOQ. 

Regarding the results obtained from the characterization of Grenache, the EM plot, with a 

more northerly orientation, a poorer soil texture and more extreme climatic conditions of 

drought, would lead to lower vegetative growth, not always associated with greater water 

stress. On vineyards such as EM, having more available water in temperate years results in 

more balanced growth, meaning that the phenolic ripening of the grapes is more optimal. 

During more temperate years (2010), a clear inter-plot difference is seen in the phenolic 

composition of the grapes (colour and tannins); in contrast to the warmer year (2011), the 

difference between plots is not so noticeable. This suggests that in the case of the cultivar 

Grenache, the composition of the grapes was clearly affected by the climate of the vintage, 

given that in warmer years, the composition of the grapes showed no difference. The 

concentration of anthocyanins in grapes between the two years is very similar. In contrast, 

the composition of total anthocyanins in wine in the warmest year exceeds the more 

temperate. A possible interpretation of this fact may be that Grenache has a good 

response in terms of adaptation capacity to warmer conditions; thus the difference in 

anthocyanin composition is more affected by the vintage than location of the vineyard, 

which would explain the higher concentration during 2011 and the smaller difference 

between plots in a warmer vintage.  

Small berries from EM produced the highest levels of anthocyanins. EM always has the 

highest content in total anthocyanins (ANT T), extractable anthocyanins (ANT E), TPI and 

DMAC in both years. Concerning the wines, the highest concentration of anthocyanin were 

found in the EM treatment, with greater differences that LO in 2010. Grenache vines 

growing under warm climate conditions (Priorat DOQ), in heterogeneous-stony soils, 

showed notably variability in the wine composition in front of climate change. 

It can be concluded that under more temperate climatic conditions, the maturation and 

polymerization of tannins has been slower in LO. Therefore, the quality of the wine 

parameters is more marked by the climate of the year than by the topographic situation of 

the study area, although the extraction in the wines can be modified by other factors such 

as winemaking techniques and alcohol content. Harvest takes place in 2 or 3 weeks of 

difference between the early and later areas. At the same time, the topography gives rise 
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to different exposures and different orientations, which makes the ripening of grapes to 

change within a single municipality. 
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Chapter 5. Small-scale fermentation methodology to be used in 

vineyard heterogeneity 
 

 

5.1 Chapter Summary 

Researchers typically perform winemaking experiments using small amounts of grapes. 

Few studies have actually evaluated the effectiveness of small-scale fermentations – do 

they result in reliable and representative data for replication in larger-scale commercial 

production? Our research indicates that yes they do. Likewise, we have studied the pros 

and cons of employing different small-scale fermentation vessels. Fermentation vessel size 

should be carefully considered depending on the purpose of a proposed research. Some 

grape varietals skins release wine phenols more readily than others; when a sampling is 

not large enough to undergo a full-scale fermentation, such phenols might not fully extract 

into the wine. This study examines how the volumes (10, 25, 50 and 100L) can affect the 

composition of resulting wines and which is large enough to conclusively represent a 

specific winemaking procedure. Additionally, we carried out a commercial fermentation 

using a 2.500L vat. Tempranillo and Cabernet Sauvignon showed markedly 

different kinetics during fermentation. The medium size-vessel (25-50L) would give the 

best extraction for the phenolic composition of both wines. Taking into account which size 

of the smaller test vessels was employed, their patterns led to very good reproducibility 

for the ABV, pH and TA (CV≤ 7%) as well as ANT, TPI and tannins (CV≤ 20%). The HPLC 

phenolic composition also shows a low coefficient of variation (CV≤20%). This gives us the 

basis for validating small-scale fermentations applied to research studies.  

 

5.2 Introduction 
 

Research in viticulture relies mostly on measuring yield and grape composition to assess 

which management practices convey an improvement in vine performance and, as a 

consequence, could be worth implementing in the field (Ferreira et al., 2014). Although 

useful, this approach does not allow a completely satisfactory evaluation, since researchers 

cannot assess the extent to which the effects observed are transferred to the composition 

of the wine; i.e. to the quality of the final product (Pascual et al., 2016). 

 

In order to overcome this limitation, some researchers introduce small-scale fermentations 

in their experiments to obtain a more complete evaluation, which is widely recognized as 

a positive step forward in the applicability of research (Sampaio et al., 2007). However, 

despite its relevance, little attention has been paid to evaluating the extent to which 

reducing grape processing volume in small-scale winemaking affects fermentation 

dynamics, wine composition, and reproducibility. On the one hand, authors such as Baker 
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et al. (1978) Mirabel et al. (1999), Dallas et al. (2003), González-Manzano et al.(2004) and 

Kroll et al. (1956) have published results addressing grape-seed extraction in model wine 

solutions, and others such as Lopes et al. (2002) and Rossouw et al. (2012) report on yeast 

performance as influenced by commercial and small-scale tanks. On the other hand, in a 

direct comparison of small-scale to commercial winemaking, Casalta et al. (2010) 

compared the aromatic compounds of Chardonnay, and noted that only three 

experiments used different fermentation volumes in red varieties. Schmid et al. (2007) 

compared three wine volumes (20, 50, and 300 kg) of a blend of Cabernet Sauvignon and 

Cabernet Franc, in an experiment that focused on evaluating the suitability of frozen must, 

and reported that winemaking outcomes were comparable among the three volumes 

compared. In the same research team, Jiranek (2010) and Schmid and Jiranek (2011) 

compared fresh, frozen, and blast-frozen grape fermentation using two different volumes 

(80 and 500 kg), and concluded that the wines were similar under wine tasting conditions. 

Finally, Sampaio et al. (2007) compared a small volume of Pinot Noir (3.5 kg) to a 

commercial fermentation (4540 kg), and observed that it was possible to effectively control 

oxidation and spoilage at this volume, although significant differences were observed in 

wine composition between both scales. 

 

From this information, it can be seen that the existing research in this field is scarce. 

Therefore, while taking into account that small-scale winemaking conditions vary between 

experiments, as regional or winemaker preferences and protocol modifications may affect 

any stage of winemaking (i.e. yeast inoculation, cap management regime, and malolactic 

fermentation), there is a clear need to understand how conditions (particularly tank size) 

affect the composition of the wines obtained (Cerpa-Calderon and Kennedy, 2008). 

Moreover, the above-mentioned research did not consider repeatability, which is 

particularly relevant since high variability may limit potential buyer interest in purchasing 

from small-scale wineries, and an additional source of variation could interfere with data 

analysis. 

 

The aim of this work was to evaluate the repeatability and reproducibility of small-scale 

winemaking. The differential aspect of this research was that four replicates were used with 

four different volumes of two distinct red varieties (Lasanta et al., 2014) Tempranillo and 

Cabernet Sauvignon, and that the small-scale fermentation protocols used mirrored 

typical winemaking techniques commonly used in small wineries producing premium red 

wines worldwide. 
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5.3 Materials and methods 
 

5.3.1 Experimental design 

 

This research was conducted in the experimental winery of the Enology Faculty in 

Tarragona, Spain, using grapes from the faculty experimental vineyards (41º8'54'' N, 

1º11'54''E, Altitude: 50 m). The vineyards are located near the coast in the Designation of 

Origin Tarragona (Spain), which has a Mediterranean climate. The soils are typically fertile 

and dense, and are managed according to standard practices in the region. Grapes from 

two distinct varieties were used –Tempranillo (TE) and Cabernet Sauvignon (CS)– with the 

former based on large berries and low-to-medium phenolic potential, and the latter based 

on small sized berries and high phenolic content. For both varieties, four different small-

scale volumes (10, 25, 50, and 100 L) were compared. All vessels had a ratio 

height/diameter ranging between 1.4 and 1.5. All tanks were made of stainless steel, with 

a rubber gasket to help keep the lid tight. For each variety and tank volume, four replicates 

were vinified. Additionally, a commercial-sized large fermentation was performed in a 

2500 L stainless steel tank. 

 

5.3.2 Grape analysis 

 

All grape batches were analysed before they were introduced into each tank. One 

hundred berries from each variety were used to determine the sugar level, acidity, and pH, 

and another 300 berries were used to analyse phenolic maturity. Sugar content was 

determined using a handheld portable refractometer (Model 102/112/102bp). Titratable 

acidity (TA; g/L) was measured by titration with sodium hydroxide, and pH was measured 

using a pH meter (Crison Micro CM 2201). The modified Glories method, consisting of 

berry samples macerated at pH 3.6 instead of pH 3.2 (Nadal., 2010) was used to analyse 

phenolic maturity. Berries were blended (Oster Blender Classic 3 Model 4655) and 

macerated in an agitator (Edmund Bühler GmbH SM-30) to determine total anthocyanin (T 

Ant) and tannin content (Ribéreau-Gayon et al., 2003) (Ribéreau-Gayon and Stonestreet, 

1965). 

 

5.3.3 Wine analysis 

 

Alcohol by volume (ABV), pH, TA, T Ant, and tannins within each tank size were analysed. 

Anthocyanin content was determined following the methodology detailed in Valls et al. 

(2009) and adapted from Deviliers et al. (2004) through high-performance liquid 

chromatography (HPLC) using a Hewlett Packard Liquid Chromatograph (Waters 

Corporation, Mildford, MA, USA) equipped with a Zorbax Eclipse Plus C18 Column 

(150 × 2.1 mm; 3.5 µm) and a Zorbax Eclipse Plus-C18 Precolumn (12.5 × 4.6 mm; 5 µm). 

Injection volume was 5 µL; elution was performed with a mobile phase A of HPLC-grade 
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water (0.2 % trifluoroacetic acid) and a mobile phase B using methanol (0.2 % 

trifluoroacetic acid). The column temperature was set at 50 ºC and the HPLC was coupled 

to a Diode Array Detector (DAD). Quantifications were performed using the DAD detector, 

and identifications were made considering the time of flight (TOF). A mass spectrometry 

(MS) detector was used to assist in the identification. Free anthocyanin content was 

determined using a calibration curve (based on peak area, y = 0.7968x + 7.5756; 

R2 = 0.9774), which was established using malvidin 3-glucoside standard solutions 

submitted to the same procedure. Anthocyanidin-3-monoglucosides and respective 

acetylated and coumaroylated glycosides were identified on the basis of their ultraviolet–

visible (UV–vis) spectra and retention times (Table 28). Anthocyanidins were identified by 

HPLC, making a comparison with internal standards. Calibration curves were obtained by 

injecting standards with different concentrations of malvidin 3-glucoside (Extrasynthese, 

Genay, France). The range of the linear calibration curves was 0.1 to 1.0 mg/L for the lower 

(R2 > 0.996), 0.1–5.0 mg/L for intermediate (R2 > 0.987), and 10.0–200.0 mg/L for the 

higher concentration compounds (R2 > 0.987). Unknown concentrations were determined 

from the regression equations, and the results were expressed as milligrams of malvidin 3-

glucoside. Repeatability of HPLC analysis gave a coefficient of variation of <7 %. 

 
Table 28. Peak assignments, retention times, and mass spectral data of anthocyanidins. 

Peak # Analytes Retention 

time 

(m/z) Code Id. 

1 Delphinidin 3-O-glucoside 10.8 465 Dp3G 

2 Cyanidin 3-O-glucoside 11.8 449 Cy3G 

3 Petunidin 3-O-glucoside 12.5 479 Pt3G 

4 Peonidin 3-O-glucoside 13.4 463 Pn3G 

5 Malvidin 3-O-glucoside 13.8 493 Mv3G 

6 Delphinidin 3-O-acetilglucoside 15.3 507 Dp3AG 

7 Cyanidin 3-O-acetilglucoside 16.2 491 Cy3AG 

8 Petunidin 3-O-acetilglucoside 16.7 521 Pt3AG 

9 Peonidin 3-O-acetilglucoside 17.6 505 Pn3AG 

10 Malvidin 3-O-acetilglucoside 17.8 535 Mv3AG 

11 Delphinidin 3-O-cumarilglucoside 17.6 611 Dp3CG 

12 Cyanidin 3-O-cumarilglucoside 18.5 595 Cy3CG 

13 Petunidin 3-O-cumarilglucoside 18.7 625 Pt3CG 

14 Peonidin 3-O-cumarilglucoside 19.3 609 Pn3CG 

15 Malvidin 3-O-cumarilglucoside 19.4 639 Mv3CG 

 

Code assignments: Dp3G (Delphinidin 3-O-glucoside), Cy3G (Cyanidin 3-O-glucoside), Pt3G (Petunidin 3-O-glucoside), 

Pn3G (Peonidin 3-O-glucoside), Mv3G (Malvidin 3-O-glucoside), Dp3AG (Delphinidin 3-O-acetilglucoside), Cy3AG 

(Cyanidin 3-O-acetilglucoside), Pt3AG (Petunidin 3-O-acetilglucoside), Pn3AG (Peonidin 3-O-acetilglucoside), Mv3AG 

(Malvidin 3-O-acetilglucoside), Dp3CG (Delphinidin 3-O-cumarilglucoside), Cy3CG (Cyanidin 3-O-cumarilglucoside), 

Pt3CG (Petunidin 3-O-cumarilglucoside), Pn3CG (Peonidin 3-O-cumarilglucoside), Mv3CG (Malvidin 3-O-

cumarilglucoside). 

 

Procyanidins were analysed by injecting 3 l of wine samples through Rapid Resolution 

Liquid Chromatography (RRLC) using a Zorbax Eclipse XDB-C18 (50 × 30; 1.8 µm) 
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followed by a RRLC in-line pre-column (4.6 mm, 0.2 µm) at 30 ºC. The HPLC injection 

volume was 1.4 µL, with a 0.7 mL/min flux; mobile phase A: water (0.1 % formic acid), 

mobile phase B: methanol (0.1 % formic acid). Phenolic compounds were identified 

according to their order of elution, retention times of pure compounds (gallic acid, 

catechin, procyanidin dimer B2, mono gallate dimer, procyanidin trimer C1, and 

epicatechin gallate) and their molecular masses. Table 29 shows the retention time and 

m/z for each compound. 

 
Table 29. Peak assignments, retention times, and mass spectral data of procyanidins. 

Peak # Analytes Retention 

time 

(m/z) Code Id. 

1 Procyanidin trimer C 0.6 865.1989 ptC 

2 Gallic acid 0.8 169.0147 GA 

3 Procyanidin dimer B3 1.9 577.1364 pdB3 

4 Procyanidin dimer B1 2.1 577.1364 pdB1 

5 Procyanidin trimer T2 2.4 865.1989 ptT2 

6 (+)-Catechin 2.8 289.0722 Cat 

7 Procyanidin dimer B4 3.4 577.1364 pdB4 

8 Procyanidin dimer B2 3.7 577.1364 pdB2 

9 Procyanidin dimer B2-3-O-gallate (Dimer monogallate) 4.5 729.1469 PdB2MG1 

10 Procyanidin dimer B2-3’-O-gallate (Dimer monogallate) 4.7 729.1469 PdB2MG2 

11 (-)-Epicatechin 5.0 289.0722 EC 

12 Procyanidin trimer C1 (-)-epicatechin-3-O-gallate 5.0 865.1989 ptECG 

13 Procyanidin dimer B1-3-O-gallate 5.1 577.1364 pdB1G1 

14 Dimer digallate 5.7 881.1683 DDG 

15 (-)-Epicatechin-O-gallate 6.2 441.0835 ECG 

16 Procyanidin dimer B1-3’-O-gallate 6.6 577.1364 pdB1G2 

Code assignments: ptC (Procyanidin trimer C), GA(Gallic acid), pdB3 (Procyanidin dimer B3), pdB1 (Procyanidin dimer 

B1), ptT2 (Procyanidin trimer T2), Cat ((+)-Catechin), pdB4 (Procyanidin dimer B4), pdB2 (Procyanidin dimer B2), 

PdB2MG1(Procyanidin dimer B2-3-O-gallate), PdB2MG2 (Procyanidin dimer B2-3’-O-gallate), EC ((-)-Epicatechin), 

ptECG (Procyanidin trimer C1 (-)-epicatechin-3-O-gallate), pdB1G1 (Procyanidin dimer B1-3-O-gallate), DDG (Dimer 

digallate), ECG ((-)-Epicatechin-O-gallate), pdB1G2 (Procyanidin dimer B1-3’-O-gallate). 

 

5.4 Results 
 

5.4.1 Grape composition 

 

Grape composition before fermentation was very similar for all tank sizes (Table 30), and 

low variability occurred between tanks of the same size (coefficients of variation [CV] <5 %). 

This finding was essential, to guarantee that the differences eventually observed in wine 

composition were not due to differences in grape composition, but were associated with 

the winemaking process. 
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Table 30. Must composition and berry weight of each tank. aValues with different letters denote a statistically (p<0.05) 
significant difference. Mean and standard deviation. 

Volume Brix pH TA (g/L) Bw (g) 

TE-10 23.1±0.1a 3.42±0.02a 6.46±0.12a 2.21±0.11a 

TE-25 23.1±0.1a 3.40±0.01ab 6.53±0.15a 2.30±0.14a 

TE-50 23.2±0.1a 3.44±0.02b 6.60±0.10a 2.20±0.13a 

TE-100 23.2±0.1a 3.41±0.01a 6.54±0.11a 2.33±0.08a 

CS-10 23.8±0.1b 3.26±0.02b 5.00±0.10a 1.39±0.14b 

CS-25 24.1±0.1a 3.21±0.01c 5.20±0.10a 1.43±0.06b 

CS-50 24.1±0.1a 3.26±0.02b 5.18±0.07a 1.51±0.12b 

CS-100 23.8±0.1b 

 3.26±0.01b 5.21±0.06a 1.56±0.12b 

TA: titratable acidity. Bw: berry weight. 

5.4.2 Fermentation performance 

 

Winemaking conditions allowed adequate fermentation dynamics in the 32 tanks included 

in the experiment, achieving a complete transformation of sugars into ethanol. 

Density rapidly decreased after the second day of fermentation for both varieties, and 5 

and 9 days after the start of fermentation, with only a small quantity of sugar 

(ρ = 1010 kg/m3) remaining in TE and CS, respectively. At this point, the second stage of 

fermentation (slow fermentation process) began and, after 3 days, the remaining sugars 

were transformed into alcohol. 

 

In general terms, the complete alcoholic fermentation of TE and CS could be divided into 

two different stages: tumultuous and slow. The duration of tumultuous fermentation varied 

according to the composition of the must and the temperature at which it was carried out. 

Grapes were stored at 21 ºC in a cooler before crushing. The cellar temperature was set at 

22 ºC and the temperature in the tank was held at 28 ºC at the tumultuous stage to ensure 

good extraction of polyphenols. This step should be carefully considered to avoid 

uncontrolled fermentation and make this methodology reliable. The yeasts developed 

comfortably, thus ensuring the total transformation of all sugar into alcohol for both grape 

varieties. Density rapidly decreased after the second day of fermentation for each variety 

and vessel (Figure 56). 
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Figure 56. Evolution of fermentation in small-vessels. Evolution of density (D) and temperature (T) during fermentation. 

 

Approximately 6 and 10 days after the start of fermentation (for TE and CS, respectively), 

a small quantity of sugar corresponding to a density of ρ = 995 kg/m3 remained in the 

must. At this point, the last stage of fermentation transformed the remaining final grams of 

sugar into alcohol over the following 3-4 days. TE showed a rapid decrease until the 5th 

day of fermentation, when it reached ρ = 997.8, 1007.0, 1006.5, and 1005.0 kg/m3, 

respectively, for each increasing small-scale volume (25, 50, 75, and 100 L). Fermentation 

kinetics in TE required 8 days to ferment all the reducing sugars, showing a slow decrease 

for the last 3 days. The CS required 12 days to complete the fermentation process. 

Temperatures did not exceed 28 ºC for both kinetics under the same conditions of 

controlled room temperature and vessel size. After fermentation, the temperature 

decreased to 22 ºC in both cases. 

 

Modelling data using linear functions proved easier for predicting the kinetics of the 

fermentation processes of both varieties/volume studies. As tumultuous fermentation 

occurred with a different duration for each variety compared with the slow stage, two 

regression curves were calculated for each combination variety/volume. As expected, in 

the tumultuous phase (when maximal fermentation activity occurred) and slow 

fermentation stage (after tumultuous fermentation), two slopes were clearly distinguished 

on the fermentation curves for both varieties (Table 31). Linear regression slopes of the 

tumultuous stage ranged between −21.933 and −24.850 for TE and −12.286 and −17.321 

for CS, indicating faster kinetics for TE in the tumultuous fermentation stage. The 

coefficient of determination was also higher in the tumultuous stage. Next, considering all 

volume vessels, the TE slopes from the tumultuous stage did not indicate substantially 

different kinetics between volumes, although for the 10 L capacity vessel, it appeared to 
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decrease faster, with a curve described by y = −24.8x + 1121, compared with the 25, 50, 

and 100 L vessels (y = −22.4x + 1124, y = −22.1x + 1122, and y = −21.9x + 1120, 

respectively), showing very similar slopes. However, the slow stage revealed a similar 

tendency, having the lowest slope for the 10 L vessel. CS showed a proportional 

relationship between slope and volume. The 10 L tank had the highest slope in the 

tumultuous stage (y = −17.3x + 1119), and the lowest slope on the slow stage 

(y = −1.9x + 1016), indicating that the tumultuous part of fermentation proceeded faster 

in the 10 L vessel than any other vessel evaluated. 

 
Table 31. Kinetics of fermentation, tumultuous and slow stages. 

Treatment Tumultuous fermentation stage R2 value Slow fermentation stage R2 value 

TEM 10L y = −24.8x + 1121 0.95 y = −0.25x + 999 0.83 

TEM 25L y = −22.4x + 1124 0.95 y = −3.15x + 1020 0.76 

TEM 50L y = −22.1x + 1121 0.93 y = −3.2x + 1021 0.85 

TEM 100L y = −21.9x + 1120 0.97 y = −2.53x + 1016 0.80 

CS 10L y = −17.3x + 1119 0.95 y = −1.90x + 1016 0.68 

CS 25L y = −15.9x + 1118 0.96 y = −3.41x + 1034 0.85 

CS 50L y = −13.6x + 1118 0.93 y = −5.66x + 1062 0.98 

CS 100L y = −12.3x + 1117 0.90 y = −6.53x + 1074 0.98 

 

5.4.3 Effect of small-scale tank volume on wine composition 

With regards to the basic parameters of wine composition, tank size was observed not to 

influence ABV, pH, or TA in either CS or TE (Table 32), but it did affect phenolic 

composition (T Ant, and tannins). The highest T Ant values were observed in the 

intermediate sizes (25 and 50 L), whereas for tannin content, the highest values were found 

in the larger tanks (50 and 100 L) in both varieties.  

 
Table 32. Wine analysis of tanks after fermentation of TE (Tempranillo) and CS (Cabernet Sauvignon). aValues with 

different letters denote a statistically (p<0.05) significant difference. Mean and standard deviation. 

Volume ABV pH TA (g/L) T Ant (mg/L) Tannins (g/L) 

TE-10 12.82±0.05b 3.63±0.01b 5.25±0.12c 311±7c 2.3±0.2bc 

TE-25 12.90±0.08ab 3.68±0.01b 5.32±0.28bc 367±15a 1.9±0.5bc 

TE-50 12.77±0.03b 3.75±0.03a 5.54±0.24b 385±14a 2.7±0.5ab 

TE-100 12.91±0.02a 3.76±0.01a 5.60±0.05b 342±7b 3.0±0.1a 

CS-10 13.18±0.06a 3.51±0.09 5.97±0.22ab 341±20c 1.3±0.6bd 

CS-25 13.23±0.06a 3.57±0.04 6.00±0.12ab 402±26a 1.1±0.3cd 

CS-50 13.18±0.07a 3.55±0.01 6.14±0.21ab 379±23ab 1.9±0.3b 

CS-100 13.25±0.04a 3.53±0.01 6.27±0.14a 363±25bc 2.0±0.2b 

ABV: Alcohol by volume. pH: Potential hydrogen; TA: Titratable acidity in tartaric. T Ant: Total anthocyanin and tannins. 

Results show the mean value and standard deviation. 

One of the most relevant effects of tank size from a research perspective is increasing or 

decreasing the variability of the composition of the wine obtained from replicates. When 

the CV obtained for each variable, tank size, and variety were compared, all values were 
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low, especially for ABV, pH, and TA (CV <4 %), but also for T Ant and tannin content (CV 

<8 %). Taking into account that the observed CVs were satisfactory for all tank sizes and 

varieties (less than 5 %), there was a slightly greater variability in the intermediate sizes (25 

and 50 L) with TE. This observation supported the repeatability of wine quality at any of the 

tank sizes with regards to the major wine composition parameters. 

 

 
Table 33. Anthocyanin wine profile (glucoside, acetyl glucoside and coumaroyl glucoside) for Tempranillo. aValues with 

different letters denote a statistically (p<0.05) significant difference. Mean and standard deviation. 

 Analytes C-2500L 10L 25L 50L 100L 

Mv3G 70.3±8.1ab 70.9±12.2ab 84.5±8.4a 85.1±13.4a 60.8±2.3b 

Pt3G 8.4±1.8c 15.1±2.6ab 17.6±2.1a 18.5±4.0a 13.2±1.0b 

Dp3G 5.6±0.4a 6.3±1.3a 7.3±1.0a 8.1±2.2a 5.8±0.6a 

Pn3G 11.0±0.5b 12.7±1.5a 14.2±0.9a 16.1±1.7a 12.0±0.6b 

Cy3G 0.8±0.2a 0.8±0.1a 0.9±0.2a 1.2±0.2a 0.8±0.1a 

Total G  96.1±1.0b 105.9±17.7ab 124.4±12.5a 129.0±21.4a 92.7±4.5b 

Mv3AG 30.1±0.5b 29.4±1.7b 38.9±2.2a 40.2±5.1a 26.8±0.5c 

Pt3AG 0.9±0.2a 1.0±0.2a 1.4±0.2a 1.5±0.3a 0.9±0.0a 

Dp3AG 0.2±0.0a 0.2±0.0a 0.3±0.0a 0.3±0.1a 0.2±0.0a 

Pn3AG 2.9±0.2b 2.8±0.3b 3.9±0.3a 4.1±0.5a 2.6±0.2b 

Cy3AG 0.1±0.0a 0.1±0.0a 0.1±0.0a 0.1±0.0a 0.1±0.0a 

Total AG 33.7 ± 0.6 b 33.5 ± 2.2 b 44.7 ± 2.7 a 46.2 ± 6.1 a 30.5 ± 0.7 b 

Mv3CG 25.8±0.9ab 27.6±2.6ab 29.6±2.0a 28.9±4.6a 21.6±0.9b 

Pt3CG 4.1±0.4b 4.9±0.9ab 5.8±0.7a 5.8±1.6ab 3.6±0.4b 

Dp3CG 1.8±0.2b 1.5±0.4b 1.8±0.2ab 1.8±0.6b 1.2±0.2b 

Pn3CG 5.7±0.2ab 5.1±0.5a 6.2±0.4a 6.6±1.3a 4.2±0.2b 

Cy3CG 1.2±0.1b 1.6±0.3a 1.7±0.2a 1.9±0.4a 1.2±0.1b 

Total CG 38.6±1.9ab 40.7±4.7a 45.1±3.5a 44.9±8.6a 31.8±1.8b 

 

Dp3G (Delphinidin 3-O-glucoside), Cy3G (Cyanidin 3-O-glucoside), Pt3G (Petunidin 3-O-glucoside), Pn3G (Peonidin 3-

O-glucoside), Mv3G (Malvidin 3-O-glucoside), Dp3AG (Delphinidin 3-O-acetilglucoside), Cy3AG (Cyanidin 3-O-

acetilglucoside), Pt3AG (Petunidin 3-O-acetilglucoside), Pn3AG (Peonidin 3-O-acetilglucoside), Mv3AG (Malvidin 3-O-

acetilglucoside), Dp3CG (Delphinidin 3-O-cumarilglucoside), Cy3CG (Cyanidin 3-O-cumarilglucoside), Pt3CG 

(Petunidin 3-O-cumarilglucoside), Pn3CG (Peonidin 3-O-cumarilglucoside), Mv3CG (Malvidin 3-O-cumarilglucoside). 

 

T Ant composition (Table 33 and Table 34) in the medium-sized tanks (25 and 50 L) was 

higher than any other volumes (10 and 100 L) in TE. Malvidin glucosides (G) were more 

highly extracted (up to one-third) than acetyl glucosides (AG). Furthermore, the latter 

showed almost the same concentration of coumaroyl glucosides (GC). In CS, the greatest 

anthocyanin contents were found in the biggest volumes (Table 34). CS tanks measuring 

10 and 25 L showed delayed extraction of anthocyanins, giving 117.7 mg/L of T Ant in 10 L, 

128.5 mg/L in 25 L, 361.9 mg/L in 100 L, and 384.4 mg/L in 50 L. Thus, in the case of CS, it 

appears that the larger the tank, the greater the extraction (50, 100). In CS, the difference 

between G and AG total concentration was not remarkable, with lower extractions 

observed in the smaller volumes in all cases. Reproducibility in terms of anthocyanin 

content can be said to be satisfactory, since the CVs for all anthocyanin families were below 
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20 %, with the median CV being 13 % for CS and 10 % for TE (Figure 57). Tank size 

appeared to affect reproducibility, although the observed effect was different for each 

variety. In TE, the lowest CVs were found for the 100 L and 25 L tanks, whereas in CS this 

occurred in the 10 L and 50 L tanks. 
 

 

Table 34. Anthocyanin wine profile (glucoside, acetyl glucoside and coumaroyl glucoside) for Cabernet Sauvignon. 
aValues with different letters denote a statistically (p<0.05) significant difference. Mean and standard deviation. 

Analytes  C-2500 L 10L 25L 50L 100L 

Mv3G 95.6±13.7a 31.3±3.9b 34.1±5.2b 114.1±3.8a 103.6±19.4a 

Pt3G 6.7±1.5a 1.0±0.1b 1.1±0.2b 7.8±0.2a 7.4±1.8a 

Dp3G 2.4±0.9a 0.2±0.1b 0.3±0.1b 2.7±0.3a 2.6±0.9a 

Pn3G 7.1±0.7ab 8.2±1.6ab 9.7±0.9b 8.2±0.8ab 7.7±0.7a 

Cy3G 0.1±0.0a 0.0±0.0a 0.0±0.0a 0.1±0.0a 0.1±0.0a 

Total G  111.9±16.8a 40.6±5.7b 45.3±6.4b 132.9±5.1a 121.4±22.7a 

Mv3AG 173.0±15.4a 69.2±7.7b 74.4±7.9b 209.7±10.2a 200.7±20.4a 

Pt3AG 3.5±0.7a 0.5±0.1b 0.5±0.1b 4.5±0.2a 4.4±0.7a 

Dp3AG 0.8±0.2a 0.1±0.0b 0.1±0.0b 0.9±0.1a 0.8±0.2a 

Pn3AG 1.4±0.3a 1.9±0.4a 1.9±0.2a 1.8±0.3a 1.8±0.1a 

Cy3AG 0.2±0.0a 0.0±0.0b 0.0±0.0b 0.2±0.0a 0.2±0.0a 

Total AG 178.9±15.5a 71.6±8.2b 76.9±8.2b 217.0±10.9a 208.0±21.4a 

Mv3CG 22.3±4.6a 4.0±0.7b 4.8±0.5b 30.5±1.7a 28.2±4.6a 

Pt3CG 0.8±0.3a 0.0±0.0b 0.1±0.0b 0.9±0.1a 0.9±0.3a 

Dp3CG 0.1±0.0a 0.0±0.0b 0.0±0.0b 0.1±0.0a 0.1±0.0a 

Pn3CG 3.1±0.7a 1.4±0.3b 1.5±0.2b 3.1±0.1a 3.3±0.7a 

Cy3CG 0.1±0.0a 0.0±0.0b 0.0±0.0b 0.1±0.0a 0.1±0.0a 

Total CG 26.4±5.7a 5.5±1.0b 6.3±0.7b 34.6±1.9a 32.5±5.7a 

 

Description: Dp3G (Delphinidin 3-O-glucoside), Cy3G (Cyanidin 3-O-glucoside), Pt3G (Petunidin 3-O-glucoside), Pn3G 

(Peonidin 3-O-glucoside), Mv3G (Malvidin 3-O-glucoside), Dp3AG (Delphinidin 3-O-acetilglucoside), Cy3AG (Cyanidin 

3-O-acetilglucoside), Pt3AG (Petunidin 3-O-acetilglucoside), Pn3AG (Peonidin 3-O-acetilglucoside), Mv3AG (Malvidin 

3-O-acetilglucoside), Dp3CG (Delphinidin 3-O-cumarilglucoside), Cy3CG (Cyanidin 3-O-cumarilglucoside), Pt3CG 

(Petunidin 3-O-cumarilglucoside), Pn3CG (Peonidin 3-O-cumarilglucoside), Mv3CG (Malvidin 3-O-cumarilglucoside). 
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Table 35. Procyanidin wine profile (M: monomers, D: dimers and T: trimers) for Tempranillo. aValues with different 
letters denote a statistically (p<0.05) significant difference. Mean and standard deviation. 

Analytes  C-2500L 10L 25L 50L 100L 

Gallic acid 41.0±0.1a 21.1±0.9c 19.5±1.0c 23.6±2.9bc 26.7±2.0b 

Cat 40.7±1.3a 14.7±1.0bc 13.0±0.7c 17.7±2.3bc 17.3±1.2b 

EC 15.0±0.4a 10.1±0.8b 9.5±0.5b 13.2±1.7a  12.8±0.8a 

ECG 0.5±0.0c 0.8±0.1c 1.4±0.1a 1.5±0.1a 1.1±0.1b 

Total M 97.3±1.8a 46.8±2.8c 43.2±2.3c 56.0±7.0b  57.9±4.0b 

pdB1 20.5±0.2a 11.9±0.7c 10.8±0.4c 13.5±1.7bc 13.3±0.8b 

pdB2 5.6±0.3d 14.1±1.0b 12.7±1.0c 15.9±2.0ab 16.8±0.9a 

pdB3 7.1±0.1d 12.0±0.7b 10.8±0.5c 13.5±1.7ab 13.3±0.7a 

pdB4 17.7±0.5a 13.7±0.8b 12.8±0.9c 15.6±1.9ab 16.2±1.0a 

pdB2MG1 5.5±4.1a 1.2±0.2c 1.3±0.3c 1.9±0.4b 1.6±0.2b 

pdB1G1 2.8±0.1b 4.4±0.3a  4.3±0.5a 4.5±0.4a 4.5±0.3a 

DDG 0.5±0.1a 0.0±0.0b 0.0±0.0b 0.0±0.0b   0.0±0.0b 

pdB1G2 5.4±0.2b 6.6±0.8b 10.4±6.4a 7.1±0.5b 6.9±0.4b 

Total D 65.0±5.6a 63.9±4.6a 63.1±10.2a 72.0±8.6a 72.5±4.3a 

ptC 5.0±0.0b 21.7±0.9a 21.8±1.7a 22.9±2.0a 22.6±1.1a 

ptT2 20.1±1.1a 22.0±1.0a 21.8±1.0a 23.8±2.0a 22.2±1.0a 

ptECG 15.7±0.6a 11.6±1.1b 9.7±0.5c 12.1±1.4b 12.4±0.9b 

Total T 40.8±1.7b 55.3±3.0a 53.4±3.2a 58.8±5.4a 57.2±3.0a 

Description: ptC (Procyanidin trimer C), GA(Gallic acid), pdB3 (Procyanidin dimer B3), pdB1 (Procyanidin dimer B1), 

ptT2 (Procyanidin trimer T2), Cat ((+)-Catechin), pdB4 (Procyanidin dimer B4), pdB2 (Procyanidin dimer B2), 

PdB2MG1(Procyanidin dimer B2-3-O-gallate), PdB2MG2 (Procyanidin dimer B2-3’-O-gallate), EC ((-)-Epicatechin), 

ptECG(Procyanidin trimer C1 (-)-epicatechin-3-O-gallate), pdB1G1 (Procyanidin dimer B1-3-O-gallate), DDG (Dimer 

digallate), ECG ((-)-Epicatechin-O-gallate), pdB1G2 (Procyanidin dimer B1-3’-O-gallate. 
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Table 36. Procyanidin wine profile (M: monomers, D: dimers and T: trimers) for Cabernet Sauvignon. aValues with 
different letters denote a statistically (p<0.05) significant difference. Mean and standard deviation. 

Analytes  C-2500L 10L 25L 50L 100L 

Gallic 

acid 

34.3±0.1a 21.6±2.4c 31.9±5.6a 29.6±1.2a 25.7±0.9b 

Cat 64.1±0.4a 21.5±2.0d 37.0±8.6b 33.6±3.0bc 29.6±1.3c 

EC 35.8±0.3a 22.3±2.7b 33.0±6.4a 31.2±3.5a 26.0±1.1b 

ECG 0.1±0.0c 0.6±0.1b 0.9±0.1a 1.2±0.2a 0.8±0.2a 

Total M 134.3±0.9a 65.9±7.2c 102.8±20.6b 95.7±7.9b 82.1±3.5b 

pdB1 20.7±0.6a 11.0±0.7c 15.8±3.4b 14.9±0.7b 13.5±0.6b 

pdB2 11.3±0.7c 22.5±2.5b 31.2±7.2a 29.3±2.4a 24.3±0.8b 

pdB3 8.7±0.6c 11.1±0.9b 15.6±3.3a 14.9±0.5a 13.5±0.5b 

pdB4 19.7±1.9b 22.2±2.1b 31.0±7.3a 28.3±1.5a 23.9±0.7b 

pdB2MG1 1.1±0.1c 3.6±0.3a 3.1±0.8b 3.0±0.2b 2.6±0.3b 

pdB1G1 2.4±0.1c 3.7±0.4b 4.8±0.9a 4.7±0.3a 4.1±0.2b 

DDG 0.4±0.1a 0.3±0.0a 0.2±0.1ab 0.2±0.1ab 0.2±0.0b 

pdB1G2 9.8±0.3b 11.0±0.3b 15.3±8.0a 10.8±11.1b 16.9±5.8a 

Total D 74.0±4.3b 85.5±7.2b 116.9±31.0a 106.2±16.8a 98.8±9.0a 

ptC 4.7±0.1c 15.8±1.2b 20.1±3.5ab 19.1±1.0a 14.6±8.4ab 

ptT2 15.7±2.1b 15.3±1.4b 22.0±4.7ab 19.7±1.2a 18.3±0.7ab 

ptECG 17.4±1.6b 15.9±2.3ab 22.1±4.7a 19.9±1.4a 16.8±0.6b 

Total T 37.8±3.8b 47.0±5.0a 64.2±12.9a 58.8±3.6a 49.7±9.8a 

 

Description: ptC (Procyanidin trimer C), GA(Gallic acid), pdB3 (Procyanidin dimer B3), pdB1 (Procyanidin dimer B1), 

ptT2 (Procyanidin trimer T2), Cat ((+)-Catechin), pdB4 (Procyanidin dimer B4), pdB2 (Procyanidin dimer B2), 

PdB2MG1(Procyanidin dimer B2-3-O-gallate), PdB2MG2 (Procyanidin dimer B2-3’-O-gallate), EC ((-)-Epicatechin), 

ptECG (Procyanidin trimer C1 (-)-epicatechin-3-O-gallate), pdB1G1 (Procyanidin dimer B1-3-O-gallate), DDG (Dimer 

digallate), ECG ((-)-Epicatechin-O-gallate), pdB1G2 (Procyanidin dimer B1-3’-O-gallate) 

 

Variability in procyanidin content (Figure 57) was relatively similar to that observed for 

anthocyanins; the median value was just 9 % except for CS-25 and TE-50 (12 and 22 %, 

respectively). The upper and lower CV values ranged between 10 % and 22 % in CS and 

between 5 % and 17 % in TE, with dimers showing a higher CV, which indicated that 

reproducibility was in general terms very satisfactory, particularly in TE, where it was almost 

always below 10 %. In both CS and TE, the lower CVs were associated with 10 L and 100 L 

volumes. In general, the effect of tank size on procyanidin content repeatability was less 

relevant than it was for anthocyanins. 
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Figure 57. Coefficient of variations (%) for Cabernet Sauvignon (CS) and Tempranillo (TE). ABV: Alcohol by volume. pH, 

. TA: titratable acidity. T Ant: Total anthocyanins. G: glucosides. AG: acetyl glucosides. CG: coumaroyl-glucosides. M: 
monomers. D: dimers. T: trimers. 

5.4.4 Comparison with commercial volume 

 

PCA allowed the information provided by all the analysis variables included in the study to 

be condensed into a reduced number of components, with a minimum loss of information 

in both varieties (Figure 58). Thus, in CS, the first component accounted for 44.6 % of 

variability, the second for 36.6 %, and the third for 5.9 % (Figure 59); whereas in TE the 

corresponding values were 44.0 %, 27.3 %, and 7.2 %, respectively (Figure 60). In both 

varieties, the first component included mainly anthocyanin-content variables, the second 
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included procyanidins-content variables, and the third component was linked 

predominantly to acidity (pH in CS, and TA in TE). 

 

PCA scores for all small-scale tanks, average scores for each small-scale volume, and 

commercial scale tank scores are shown in Figure 59 and Figure 60 for CS and TE, 

respectively. For both varieties, the composition of the wine obtained in the 100 L tanks 

was clearly more similar to the commercial-scale wine for the main (first) component, 

related to anthocyanin content. For the second component, related to procyanidins, wines 

obtained in 10 L and 100 L volumes were the most similar to the commercial scale in CS, 

whereas for TE, differences were smaller in this axis, with 10 L, 25 L, and 100 L showing 

similar scores for this component compared with the commercial scale wine (Figure 59 

and Figure 60). 

 

  
 

Figure 58. Contribution of wine composition variables to Principal Component Analysis dimensions 1 and 2 in all the 
small-scale fermentations. The resulting components from this transformation shows that the first two principal 

component have the highest variance and accounts for as most of the variability in the data. The first 2 components 
contribute to 67.92% of the total variance. Choosing two components is good enough to show that the two grape and 
small-scale fermentations are well separated. This justifies that we do a separate analysis of the main components of 

each variety. 
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Figure 59. Contribution of wine composition variables to Principal Component Analysis dimensions 1 and 2 in Cabernet 

Sauvignon. The first 2 components contribute to 81.22% of the total variance. The commercial vessel (2500 L) was 
considered as a supplementary individual, i.e. not including it to calculate the principal components (PC) but evaluating 

its performance. Those variables contributing the most are drawn darker (a,d), and have been grouped according to 
their family in b, c, e and f as clear grey (basic wine parameters), dark grey (anthocyanins) and white (procyanidins).  
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Figure 60. Contribution of wine composition variables to Principal Component Analysis dimensions 1 and 2 in 
Tempranillo. The first 2 components contribute to 71.33% of the total variance. The commercial vessel (2500 L) was 

considered as a supplementary individual, i.e. not including it to calculate the principal components (PC) but evaluating 
its performance. Those variables contributing the most are drawn darker (a,d), and have been grouped according to 

their family in b, c, e and f as clear grey (basic wine parameters), dark grey (anthocyanins) and white (procyanidins). In 
both cases ABV and TTA do not contribute to distinguish the small volume vessels. Contrarily, Anthocyanin’s 

contribution is needed to explain variables in Dimension 1. 
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5.5 Conclusions 
 

Although other studies investigating microscale fermentation have shown results using 

much smaller volumes (1 L), our contribution focuses on the relevance of volume 

fermentation size, even when larger volumes are considered. With regards to repeatability, 

all tank sizes proved to be adequate, since CV values were low in general. A certain trend 

of increased variability in 25 and 50 L tanks was observed, but the differences were small, 

and the CVs obtained were very satisfactory (usually below 15 % when determining 

phenolics and 5 % on grape and wine composition). This is an important result, since one 

of the main concerns of researchers in viticulture and enology is that reducing tank size in 

their experiments can increase variability during the fermentation stage, thus producing 

less reliable results. According to our data, decreasing the tank size from 100 L to 10 L 

does not cause an increase in variability and, therefore, the reliability of the results is very 

good. 

 

However, having similar reliability in terms of variability does not mean that tank size did 

not affect wine typicality. For both varieties, we observed that the greatest volume was 

more representative of commercial scale fermentation, particularly for anthocyanins (first 

component in PCA). Thus, 10 L tanks achieved the lowest concentration of anthocyanin 

and phenol extraction into the wine, with the benefit of extraction of non-acylated 

anthocyanins. De Villiers et al. (2004) found that non-acylated glycosides are more easily 

extracted, followed by acetyl glycosides, and p-coumaroyl; the latter being more difficult 

to extract from grapes to wine. Alternately, procyanidins, included predominantly in the 

second component of PCA, were extracted in larger quantities in the commercial-sized 

tank, although 10 L, 25 L, and 100 L showed similar scores for this component compared 

with commercial-scale wine. The pump-overs and extended maceration that takes place in 

commercial wine may have a different effect when compared to the gently hand-punched 

action used on the small-scale. This may be due to the additional mechanical action of the 

pump, which does not apply to small volumes and leads to a much greater concentration 

of monomers moving into the wine. However, despite different extraction of monomers, 

dimers, and trimers, the total procyanidin content was more similar between tanks than 

that observed in the extraction of anthocyanins. Tank size affected fermentation dynamics 

in both varieties, with the effects being clearer in CS tanks, where fermentation took place 

more slowly due to the smaller berry size. In both varieties, the smallest tank (10 L) 

fermented the fastest (with no differences found between the remaining three sizes in TE) 

and gradually fermented more slowly as the tank size increased in CS. However, tank size 

did not affect the total time required to complete fermentation. 
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Overall, according to our results, the smallest tank size used in this study could be 

sufficiently representative when the goal of winemaking is to compare different fields or 

winemaking strategies (i.e. viticulture practices or yeast trials), as variability was not 

affected by tank size. Nevertheless, when the objective of small-scale winemaking is to 

examine wine extraction and phenolic composition, mainly for red phenolic varieties, an 

increase in the tank volume (up to 100 L) is needed to obtain comparable results to 

commercial-scale wines. 

 

In conclusion, small-scale winemaking is a valuable tool for viticulture and enological 

research, although small-size tanks should only be used when the objective of the research 

is to compare different fields or winery treatments in relative terms. However, to approach 

the reality of wineries, the methodology used in this article helps to identify true 

applicability between small-scale and large-scale fermentations to define the phenolic 

extraction of different grape styles for commercial wines. Larger volumes (100 L) must be 

used for evaluating the phenolic composition of red grapes, as small vessels (less than 

100 L) would compromise research to estimate commercial phenolic extraction levels.  
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Chapter 6. Influence of geographical origin of wines on the 

estimated polyphenol consumption in humans 
 

6.1 Chapter summary 
 

Two important families of polyphenol compounds present in grapes are known to 

influence the final wine quality: proanthocyanins (condensed tannins) and anthocyanins. 

Polyphenol composition is due not only to the type of cultivar but also to the location 

where the grapes are grown, environmental and management practices as well as the 

growing season. The vines grow in two climatically and geologically different villages in 

the Spanish well-known grape growing area Priorat. The climate of the region allows the 

vines to synthesize much more of these phenols and the wines from this region have 

especially high polyphenolic composition, particularly procyanidins and anthocyanidins. 

Phenolic compounds of wine have also attracted much interest due to their antioxidant 

properties and their potentially beneficial effects for human health. The apparent low 

bioavailability of anthocyanins seems to cast doubt on their ability to exert their proposed 

beneficial effects throughout the body. Evaluating within the literature the effects of wine 

on health, there is no clear evidence of what kind of wine is supposed to have more 

protective effects against metabolic syndrome. Based on recent studies, meta-analysis and 

pooled analyses on wine composition and due to its predicted low bioavailability, we 

estimated the efficacy intake of 5 geographical different wines (Estate Wines), according 

to recent research made on gastrointestinal absorption and alcohol intake effect on 

metabolic syndrome, to better estimate whether geographical origin of wine might have 

an influence on the daily antioxidant serum composition. The evaluation of different 

wine/doses let us suggest that the choice of a specific Estate wine in our daily meal could 

lead to similar levels of polyphenols, while avoiding wines with a higher alcoholic degree. 

 

Background 

 

Proanthocyanins and anthocyanins, two important families of polyphenolic compounds in 

grapes, influence wine quality. The polyphenol composition of wine depends on the type 

of cultivar, location, environmental conditions and management practices. Phenolic 

compounds have additionally attracted considerable research interest due to their 

antioxidant properties and potential beneficial effects on human health. However, the low 

bioavailability of anthocyanins creates a major bottleneck in their ability to exert beneficial 

effects. Despite extensive research on the effects of wine on human health, no clear 

evidence has emerged on the benefits of wine quality or geographic area of production 

on adverse health conditions, such as metabolic syndrome. 
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Scope and Approach 

 

Five climatically and geologically distinct areas from the famous Spanish grape-growing 

area, Priorat, were evaluated. Owing to the poor rainfall and scarcity of water during 

harvest, vines synthesize significant amounts of polyphenols. Based on recent studies, 

meta-analyses and pooled analyses of wine composition along with the predicted low 

bioavailability of polyphenol compounds, we estimated the efficacy of five geographically 

distinct wines according to gastrointestinal absorption and effects of alcohol intake in both 

men and women, with a view to ascertaining whether geographical origin influences the 

antioxidant serum composition of wine.  

 

Key findings 

 

Data on estimated consumption of wine suggest that the polyphenol contents are similar 

regardless of choice of wine/area while different alcohol compositions affect the level of 

alcohol and calorie intake. Thus, moderate alcohol drinkers should be advised to continue 

the habit, but without exceeding the dose considered a healthy threshold (up to 30–40 g 

of alcohol/day in men and 10–20 g of alcohol/day in women), given no medical 

contraindications are present. 

 

6.2 Objectives 
 

Although the bioavailability of wine polyphenols is known to be very low, despite of its 

beneficial health effects, it is not well described what category of wines –table wines, DOQ 

wines, etc.- might add better qualities in polyphenolic composition, considering healthy 

daily intake amount of food.  

 

Polyphenols intake for each individual depends on the total amount of food containing 

these substances. In the case of wine, the total amount that is recommended in healthy 

people has some limits, due to the toxic effect of alcohol consumption. As a consequence, 

this report tries to evaluate how different ranges of wine recommended intake (supposed 

healthy) can have a beneficial effect depending on gender and age. Thus, both women 

and men were theoretically evaluated according to the different recommended healthy 

dietary intake amounts. 

 

The aim of this study is to evaluate the influence of different Estate wine compositions on 

the estimated polyphenol consumption in humans. We carried out complete analyses of 5 

Priorat Estate Wines to evaluate how different intake levels of wine could give the serum a 

specific amount of polyphenols. We also evaluated the influence of the altitude and sun-

exposure on polyphenolic composition in the 5 Estate Wines. Additionally, the caloric 

effect of alcohol was also calculated and the decision of considering different wine doses 
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was to evaluate the effect of alcoholic degree of each wine, in order to see how the amount 

of ethanol in these wines can influence total caloric diet due to wine consumption. 

 

6.3 Definition of Estate wine or Vinos de Pago 
 

Wines are designated Estate Wines, Estate Bottled or Vinos de Pago if they are derived 

from a viticultural area with specific geological and microclimatic conditions that facilitate 

growth of grapes from which wines with singular qualities and traits are obtained. Specific 

atmospheric conditions and soil composition of a vineyard can therefore generate a range 

of wines that are different and unique compared to those from neighboring regions. 

Vinos de Pago are a Spanish IGP (Indicación Geográfica Protegida) controlled by the Ley 

de la Viña y el Vino (2003) and the wines produced need to fulfill the updated legislation 

below: 

1) Any single estate or Pago must be known by a name related to the place of vine 

growth and encompass an area less than its municipality region. 

2) An estate or Pago belonging to a Denominación de Origen Calificada can be 

designated 'Vino de Pago Calificado'. 

3) Winemaking and bottling must be conducted by the owner of the vineyard using 

the grapes grown in the Pago and wine must be aged and stored separately from 

other wines not produced from the Pago. 

4) Winemaking must follow a strict quality control procedure from vine to market. 

Wines used in our study belong to the Appelation of Origin Priorat, which is considered a 

Denominación de Origen Calificada and thus labeled 'Vinos de Pago Calificado'. 

 

6.4 Grape polyphenolic synthesis, structure and composition 
 

Two main pathways are implicated in the biosynthesis of phenolic compounds: shikimic 

acid and malonic acid (Ávalos Garcia et al., 2009). The malonic acid pathway is considered 

one of the most important sources of phenols in fungi and bacteria but less extensively 

used in superior plants. On the other hand, the shikimic acid pathway is responsible for 

biosynthesis of the vast majority of polyphenolic compounds in plants. Starting from 

erythrose-4-phosphate and phosphoenolpyruvic acid, a sequence of reactions is initiated 

leading to the generation of shikimic acid and a number of aromatic amino acids 

(phenylalanine, tryptophan and tyrosine). Most polyphenolic compounds are derived from 

phenylalanine. Phenolic compounds are important contributors to antioxidant properties 

and the colour and mouthfeel of red wine (Singleton and Rossi, 1965). Two important 

families of polyphenol compounds present in grapes are known to influence final wine 

quality, specifically, proanthocyanidins (condensed tannins) and anthocyanins. The former 

contribute to the astringency and bitterness of wines while the latter are pigments 

responsible for wine colour (Lea and Joworsky, 1987;Lea, 1992). Polyphenol composition 

is attributed not only to the type of cultivar but also location of grapes, environmental and 
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management practices, and the growing season (Romeyer et al., 1983) (Singleton and 

Trousdale, 1983;Jackson and Lombard, 1993) . Proanthocyanidins and anthocyanins 

constitute the two most abundant classes of phenolic compounds in berry skin. 

Condensed tannins are polymeric flavan-3-ols mainly comprising subunits of (-)-

epicatechin in addition to significant amounts of epigallocatechin, (+)-catechin, and 

epicatechin- 3-O-gallate (Harborne and Grayer, 1988). 

 
Figure 61. Procyanidin structure. The different subunits are linked by C4-C8 and, to a lesser extent, C4-C6 interflavan 

bonds. 

Anthocyanins are responsible for the colour of red and black varieties of grapes. Most Vitis 

Vinifera varieties produce non-acylated glucoside, acetyl glucoside, coumaroyl glucoside 

(and, to a lesser extent, caffeoyl glucoside) derivatives of delphinidin, cyanidin, petunidin, 

peonidin, and malvidin. Each variety of grape has a specific anthocyanin profile. 

Anthocyanin analysis has been proposed for varietal authentication of grapes and wines. 

Both anthocyanins and tannins are partially extracted from grape skin during wine making 

and undergo structural transformations through several reactions with significant influence 

on wine sensory characteristics due to their involvement in astringency, bitterness, colour 

intensity, and colour stability (Brouillard, 1988). 

Anthocyanins represent the largest group of water-soluble pigments in the plant kingdom. 

These compounds are widely distributed in crops, beans, fruits, vegetables and red wine, 

resulting in human ingestion of significant amounts of anthocyanins from plant-based daily 

diets. In general, anthocyanin pigments are stable under acidic conditions but are unstable 

and rapidly broken down under neutral conditions. 
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Figure 62. The main phenolic acids are also found in wine: hydroxybenzoic acid, Tyrosol, Hydroxycinnamic acid, tartaric 

acid and derivatives 

Another large group of flavonoids are flavonols (quercetin, myricetin, kaempferol, 

isorhamnetin and their glycosides), which contribute to bitterness, red wine colour 

(Boulton, 2001), and antioxidant activity (Plumb et al., 1998). The concentration of phenolic 

compounds in grapes is also dependent on the grape cultivar and influenced by viticultural 

and environmental factors, such as maturity stage, seasonal conditions, production area 

and fruit yield (Mazza et al., 1999; Cheynier et al., 1998; Broussaud et al., 1999; Ojeda et 

al., 2002).  

 
Figure 63. Structure of Flavanols, Flavonols and ellagic acid 
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Resveratrol is synthesized in grape skin as a response to fungal infection. The compound 

acts as a phytoalexin, preventing pathogen proliferation. During an attack of Botrytis 

cinerea (the main fungal infection damaging wine crops), plants form a resveratrol barrier 

(Smidrkal, 2001). Additionally, in grape berries of some varieties, piceid, a stilbene 

glucoside of resveratrol is detected, which is related to the biosynthesis of resveratrol. 

Together with resveratrol, its oligomers (the dimer trans-ε-viniferin and trimer α-viniferin) 

have been detected in wine. Resveratrol levels in red wines range between 0.1 and 14.3 

mg/L (Baur and Sinclair, 2006). 

 

   

  
Figure 64. Structure of piceid, resveratrol 3-O-β-D-glucopyranoside. 

 

 
Figure 65. Structures of trans-resveratrol (1) and its dimer trans-ε-viniferin (2) components of wine. 

 

Table 37 and Table 38 present the main grape and wine phenolic antioxidants (including 

phenolic acids) and their classification. 
 

Table 37. Generic classification of phenolic compounds. 

Class of wine antioxidants Compound 

Flavanols (+)-catechin 

(-)-epicatechin 

Hydroxybenzoic acids gallic acid 

protocatechuic acid 

syringic acid 

vanillic acid 

ethyl gallate 

ellagic acid 

Hydroxycinnamic acids p-coumaric acid 

o-coumaric acid 
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caffeic acid 

ferulic acid 

Tartaric acid and derivatives caftaric acid (2-O-caffeoyl-(2R,3R)-(+)-tartaric acid) 

fertaric acid (2-O-feruloyl-(2R,3R)-(+)-tartaric acid) 

coutaric acid (2-O-p-coumaryl-(2R,3R)-(+)-tartaric acid) 

Proanthocyanins procyanidin B1 

procyanidin B2 

Phenols Tyrosol 

Hydroxytyrosol 

4-ethylguaiacol 

tryphtophol 

Flavonols kaempherol 

quercetin 

rhamnetin 

isorhamnetin 

myricetin 

kaempherol-3-O- glucoside 

isorhamnetin-3-O- glucoside 

isoquercitrin 

rutin 

Anthocyanins (coumaroylated, acylated, 

pyranoanthocyanins) 

cyanidin-3-O-glucoside 

delphinidin-3-O-glucoside 

peonidin-3-O-glucoside 

petunidin-3-O-glucoside 

malvidin-3-O-glucoside 

Vitisin A 

Vitisin B 

Resveratrols cis-resveratrol 

trans-resveratrol 

trans-piceid 

cis-piceid 

trans-ε-viniferin 

α-viniferin 

 

 

Table 38. Phenolic compounds in different parts of grape and its products. 

Origin Phenolic compounds 

seed gallic acid, (+)-catechin, epicatechin, dimeric procyanidin, proanthocyanins 

skin Proanthocyanins, ellagic acid, myricetin, quercetin, kaempferol, trans-resveratrol 

leaf myricetin, ellagic acid, kaempferol, quercetin, gallic acid 

stem rutin, quercetin 3-O-glucuronide, trans-resveratrol, astilbin 

raisin hydroxycinnamic acid, hydroxymethylfurfural 

red 

wine 

malvidin-3-glucoside, peonidin-3-glucoside, cyanidin-3-glucoside, petunidin-3-glucoside, 

catechin, quercetin, resveratrol, hydroxycinnamic acid 

 

6.5 Effects of climate, soil and vineyard on grape composition. 
 

Climate and wine quality are strongly linked in viticultural areas worldwide. Given the 

climate is sufficiently warm to ripen a specific grape cultivar, quality is inversely related to 

warmth and length of summer (Sánchez-Ortiz et al., 2020). A number of studies on the 
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climatic effect on quality suggest that  wines derived from cooler climates are fresher, more 

acidic, and finer in bouquet and aroma while wines from warmer regions are high in 

alcohol content and short on taste and aroma. Vines take up only water and dissolved 

mineral ions from the soil and a poor soil structure will allow grapevines to send roots 

down. Priorat soil types are typically found on slopes and ridges with characteristic erosion 

and decomposition. Vines are planted on  slate-driven soils and are often dry-vineyarded, 

receiving little or no irrigation. On the other hand, valley soils are typically more fertile and 

dense, composed of finer textural elements (Edo et al., 2014). Deep penetration of root 

systems into these soils can lead to excessive growth at the expense of concentrated 

flavours. Priorat DOQ, which is situated behind the coastal mountain range of Tarragona, 

is characterized by a Mediterranean climate (Nadal and Sánchez-Ortiz, 2011) with very little 

precipitation during the vegetation cycle. The soil is of poor quality, dry and pebbly, and 

mainly composed of slate.  

 

6.6 Healthy effects of wine polyphenols. 
 

Phenolic components of wine have attracted significant research interest due to their 

antioxidant properties and potential beneficial effects on human health (Fernández-

Pachón et al., 2004; de Beer et al., 2003). Grape seed extract has been commonly used in 

recent years as a nutritional supplement (Waterhouse et al., 2000). However, analysis of 

phenolic compounds from vine and wine products (grape seeds and skins, musts, and 

wines) is complex due to their significant diversity. Dietary intake of polyphenols from red 

fruits, vegetables and red wine can be as high as 200 mg/day and their consumption via 

red wine has been proposed as part of the reason underlying the ‘‘French Paradox’’ 

(Clifford, 2000) suggesting that a diet rich in saturated fats and moderate alcohol 

consumption could prevent the elevated levels of heart disease, cancer and stroke found 

in other countries.  

 

Anthocyanins are effective antioxidants (Stintzing and Carle, 2004) but also have other 

biological activities with health benefits independent of antioxidant capacity. Examples 

include inhibition of cancer cell growth in vitro (Zhang et al., 2007), induction of insulin 

production in isolated pancreatic cells (Jayaprakasam et al., 2005), reduction of starch 

digestion through inhibition of α-glucosidase activity (Matsui et al., 2001), suppression of 

inflammatory responses (Tall et al., 2004), protection against age-related decline in 

cognitive behaviour and neuronal dysfunction in the central nervous system (Joseph et al., 

1999). Breeding of crops with increased anthocyanin content has been  an important 

target of research (Brennan, 1996). However, to achieve biological effects in specific 

tissues or organs, anthocyanins must be bioavailable, i.e., effectively absorbed from the 

gastrointestinal tract (GIT) into the circulation and delivered to the appropriate locations 

within the body. Studies on oral administration of anthocyanins have confirmed increased 

antioxidant status of serum (Serafini et al., 1998; Ramirez-Tortosa et al., 2001), but this is 
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usually accompanied by very low uptake of anthocyanins (Lapidot et al., 1998; Bub et al., 

2001; Frank et al., 2003) and corresponding low levels of urinary excretion as intact or 

conjugated forms. The apparent low bioavailability of anthocyanins casts doubt on the 

ability to exert their proposed beneficial effects in the human body. Anthocyanins are 

therefore not generally recognized as a physiological functional food factor. However, 

cyanidin 3-glucoside (C3G), a typical anthocyanin, is reported to exert antioxidative and 

anti-inflammatory effects in vitro and in vivo (Tsuda et al., 1998) (Tsuda et al., 1999) (Tsuda 

et al., 2002) (Tsuda et al., 2002) (Tsuda et al., 2003), clearly suggesting beneficial effects 

beyond its antioxidant capacity.  

 

Epidemiologic studies have linked flavonoid-rich foods with reduced risk of cancer and 

cardiovascular disease. While the mechanisms underlying the suggested health benefits 

of flavonoid-rich foods remain to be fully elucidated, in vitro and in vivo studies have 

demonstrated that flavanols and procyanidins from wine have a number of beneficial 

biological activities, including the ability to reduce oxidative damage, promote 

endothelium-dependent relaxation, and decrease platelet aggregation. 

 

6.6.1 Metabolic syndrome 

 

Metabolic syndrome is a combination of several clinical features including central obesity, 

high blood pressure, elevated fasting glucose and triacylglycerol  (triglycerides) contents, 

along with low concentrations of HDL cholesterol, and insulin resistance. The clustering of 

these features is speculated to increase the risk of cardiovascular disease, which is 

associated with each component. Consistent with this theory, Isomaa et al., (2001) have 

reported that metabolic syndrome markedly increases cardiovascular morbidity and 

mortality. Metabolic syndrome components include: 1) central obesity measured as waist 

circumference (102 cm for men and 88 cm for women), 2) high serum triacylglycerol (150 

mg/dL), 3) low serum HDL cholesterol (40 mg/dL for men and 50 mg/dL for women), 4) 

hypertension (systolic/diastolic pressure greater than 130/85 mmHg, and 5) high fasting 

glucose (greater than 110 mg/dL). Metabolic syndrome is defined as the presence of three 

or more of these components. 

 

6.6.2 Alcohol intake 

 

Limited studies to date have focused on the effects of alcohol on development of 

metabolic syndrome. While an association between alcohol drinking and prevalent 

metabolic syndrome has been documented, the findings are inconsistent. Some studies 

indicate that the relationship is inversely linear (Park et al., 1998; Djousse et al., 2004) , J-

shaped (Yoon et al., 2004) or positively linear (Fan et al., 2006) whereas others show no 

association (Lee at al., 2005). In addition, the association appears to differ based on type 

of alcoholic beverage. Compared with no alcohol consumption (Motilva et al., 2016), light 
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to moderate drinking of wine and beer appears favourable for reducing the prevalence 

odds ratio of metabolic syndrome whereas liquor drinking tends to increase the ratio or 

have no association with metabolic syndrome. Earlier studies on the association between 

alcohol consumption and metabolic syndrome have had limited success in establishing 

causality owing to their cross-sectional design (Sun et al., 2019) . To evaluate the effect of 

alcohol on development of metabolic syndrome, the incidence of metabolic syndrome 

was prospectively examined in relation to alcohol consumption status, including average 

daily amount consumed, type of alcoholic beverage most consumed, and drinking 

frequency (Inkung and Shin, 2008) and concluded that heavy drinking, in particular among 

liquor drinkers, is associated with an increased risk of the metabolic syndrome by 

influencing its components. But did not clarify the association between drinking minimal 

alcohol and the metabolic syndrome as well as the beverage specific association for 

drinking beer or wine. Additionally, a prospective study on a Korean cohort aged 40–69 

years showed that heavy drinking, particularly liquor, is associated with increased risk of 

metabolic syndrome through affecting its components, including waist circumference, 

triacylglycerol content, blood pressure, and glucose. Although mounting evidence 

strongly supports beneficial cardiovascular effects of moderate red wine consumption 

(one to two drinks per day; 10-30 g alcohol) in most populations, clinical advice to 

abstainers to initiate daily alcohol consumption has not yet been substantiated in the 

literature and must be considered with caution on an individual basis (Lippi et al, 2010). 

Further research is warranted to clarify the association between the level of alcohol 

consumption and metabolic syndrome risk as well as the beverage-specific association in 

terms of beer or wine. 

 

6.6.3 Coronary heart disease (CHD) 

 

Coronary heart disease (CHD), also known as coronary artery disease, is narrowing of the 

small blood vessels that supply blood and oxygen to the heart. CHD is usually caused by 

atherosclerosis, which occurs when plaque builds up in the walls of arteries, leading to 

narrowing. With the narrowing of coronary arteries, blood flow to the heart can slow down 

or stop, reducing the delivery of oxygen to the heart and causing chest pain (stable 

angina), shortness of breath, heart attack and other symptoms. Cardiovascular disease is 

the main cause of mortality in industrialized countries but incidence rates show marked 

geographical differences. The lower incidence of CHD in Mediterranean countries has 

been partly ascribed to dietary habits. Recent findings from studies in a large European 

cohort suggest that a high degree of adherence to the Mediterranean diet is associated 

with reduction in mortality. In small-scale clinical studies, the Mediterranean diet or some 

of its components have been linked to reduced blood pressure along with improved lipid 

profiles (Hertog et al., 1995) and endothelial function. High blood pressure (HBP) is a 

serious condition that can trigger CHD and other health problems. Blood pressure refers 

to the force of blood pushing against the walls of arteries as the heart pumps out blood. 
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Consistently increased blood pressure over time can damage the body in many ways 

(Puddley and Beilin, 2006). Alcohol intake from any type of alcoholic beverage appears 

beneficial, but some studies suggest that red wine confers additional health benefits. The 

benefits of red wine are further supported by a meta-analysis of 13 studies involving 

209,418 participants that showed a 32% risk reduction of atherosclerotic disease with red 

wine intake, which was greater than 22% risk reduction upon beer consumption (Liberale 

et al., 2019). Dietary intake of flavanones, anthocyanidins and specific foods rich in 

flavanoids is potentially associated with reduced risk of death due to cardiovascular heart 

disease. 

 

Conversely, other investigations have failed to demonstrate beneficial effects of red wine, 

leading to the conclusion that additional lifestyle factors, such as diet, exercise, 

socioeconomic status or pattern of alcohol consumption, potentially play a role in the lower 

rates of atherosclerosis in wine drinkers (Opie and Lecour, 2007). However, increased 

alcohol consumption for the purpose of cardio protection cannot be justified. There is no 

rational reason for non-drinkers to start consuming wine as a preventive measure, 

considering that several other well-proven therapies exist for cardiovascular risk reduction, 

such as exercise, smoking cessation, blood pressure control and lowering of cholesterol 

(Szmitko and Verma, 2005). 

 

6.6.4 Dyslipidaemia and diabetes 

 

High-density lipoprotein (HDL) is one of the five major groups of lipoproteins 

(chylomicrons, VLDL, IDL, LDL and HDL) that facilitate transport of lipids, such as 

cholesterol and triglycerides, within the water-based bloodstream. In healthy individuals, 

~30% blood cholesterol is carried by HDL. HDL is proposed to remove cholesterol from 

atheroma within arteries for transport to the liver for excretion or re-utilization. Therefore, 

HDL-bound cholesterol is sometimes known as "good cholesterol" or HDL-C. A high level 

of HDL-C could protect against cardiovascular diseases and, conversely, low HDL 

cholesterol levels (<40 mg/dL or ~1 mmol/L) increases the risk of heart disease. 

Cholesterol contained in HDL particles is considered beneficial for cardiovascular health, 

in contrast to "bad" LDL cholesterol. 

Recent attention has focused on food factors that may be beneficial in preventing body fat 

accumulation and reducing the risk of diabetes and heart disease. Although a number of 

drugs that target obesity-related metabolic diseases or prevent body fat accumulation 

have been marketed, little evidence showing that food factors are directly beneficial in 

improvement of dysfunction of adipocytes responsible for adipocytokine secretion and 

lipid metabolism is available (Ardevol et al., 2000). Anthocyanins were recently shown to 

enhance adipocytokine (adiponectin and leptin) secretion, expression of PPARγ and 

adipocyte-specific genes in isolated rat adipocytes without stimulation by PPARγ ligand 
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activity for the first time (Tsuda et al., 2004). However, other anthocyanin-responsive genes 

may exist that would contribute to clarification of the biological basis for utilization of 

anthocyanins as physiological functional food factors. Nutrigenomics is the application of 

high-throughput genomic tools in nutrition research. Significant advances in DNA 

microarray technology should promote our understanding of anthocyanin-mediated 

influence on gene expression and regulatory mechanisms of genes responsible for 

prevention of obesity and amelioration of insulin sensitivity through modulation of 

adipocyte function. Data from DNA microarray analysis showed for the first time that 

anthocyanins enhance the lipolytic activity and gene expression of related enzymes in 

adipocytes (Tsuda et al., 2005). Dietary anthocyanin has recently been shown to 

significantly suppress the development of obesity. A number of studies suggest that 

anthocyanins regulate obesity and insulin sensitivity associated with adiponectin and 

leptin secretion and PPARγ activation in adipocytes. 

The normal non-diabetic blood glucose level ranges from 70 to 110 mg/dl, depending on 

the type of blood tested. Glucose level >140 mg/dl is usually indicative of diabetes (except 

in newborns and some pregnant women). Insulin, a hormone made by the pancreas, helps 

the body utilize glucose for energy. Insulin resistance is a condition in which the body 

produces insulin but cannot use it properly. In individuals with insulin resistance, the 

muscle, fat, and liver cells do not respond normally and require more insulin for glucose 

entry into cells. Eventually, the pancreas fails to keep up with the body's surplus need for 

insulin. Excess glucose builds up in the bloodstream, setting the stage for diabetes. 

Patients with insulin resistance often have high levels of both glucose and insulin 

circulating in the blood.  

Insulin resistance (Yamauchi et al., 2001) increases the risk of developing type 2 diabetes 

and heart disease. Atherosclerotic diseases are prevalent as secondary complications 

associated with type 2 diabetes, and a diet high in readily absorbable carbohydrates is 

associated with increased risk of type 2 diabetes (Shulze et al., 2004). Accumulating 

epidemiologic data implicate postprandial hyperglycaemia as a risk factor in the 

development of cardiovascular disease. Elevated postprandial glucose levels may have a 

direct toxic effect on the vascular endothelium mediated via oxidative stress, independent 

of other cardiovascular risk factors, such as hyperlipidaemia (Griendling and FitzGerald, 

2003). Postprandial hyperglycaemia also may exert effects through its substantial 

contribution to total glycaemic exposure. Ischemia-reperfusion causes oxidative damage 

that is enhanced with repetitive postprandial hyperglycaemia (Franzt et al, 2005).. Among 

the cells damaged by diabetes are primary sensory neurons, also known as dorsal root 

ganglion neurons. Damage to these cells triggers diabetic peripheral neuropathy. Elevated 

glucose leads to apoptosis in neurons (Vincent et al., 2005) accompanied by increased 

oxidative stress. Procyanidins have insulin-like effects in insulin-sensitive cells that could 

explain their antihyperglycemic effect in vivo. These effects, in addition to their antioxidant 

activity, may contribute to beneficial effects against diabetes (Pinent et al., 2004). Earlier 
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epidemiologic studies indicate that alcohol consumption is associated with improved 

insulin sensitivity but experimental evidence to confirm this finding is limited. For instance, 

moderate wine consumption by overweight women in a previous study did not improve 

or impair insulin sensitivity or induce changes in any of the known indicators of insulin 

sensitivity, including body weight and composition, blood lipid, and blood pressure 

(Cordain et al., 2000). 

6.7 Bioavailability of anthocyanins and procyanidins 

Bioavailability refers to the amount of a specific nutrient in food or a bioactive ingredients 

ultimately used by the body to perform specific physiological functions, becoming 

available at the site of action after absorption from the gastrointestinal tract (McGhie and 

Walton, 2007). Several factors influence nutrient bioavailability, including digestion, 

absorption, distribution in blood and entry into tissue where it is physiologically effective. 

Bioavailability can be quantified to some extent by measuring: (1) the amount of the 

nutrient in various body tissues and fluids or (2) growth or enzyme activity dependent on 

the nutrient. However, a nutrient is rarely stored in a single body tissue, and therefore, 

determining the levels in single tissues does not accurately reflect true bioavailability 

(Cavalgante et al., 2018). For example, levels of nutrients in blood, which is easily 

accessible for measurement purposes, may not reflect those in other tissues that serve as 

major stores, such as liver. Each step involved in the process that facilitates bioavailability 

of nutrients is affected by a variety of factors in food and the nutritional status of individuals. 

It is particularly difficult to assess bioavailability in cases where the nutrients are present in 

many different forms in foods and tissues.  

While the flavanol monomers in wine ((-)-epicatechin and (+) catechin) are readily 

absorbed and metabolized in humans (Williamson and Manach, 2005), little is known 

about the bioavailability and metabolism of procyanidins. Several studies have shown 

rapid absorption of polyphenolic compounds, such as procyanidins, quercetin and 

flavanols, from grapes into plasma (Bell et al., 2000) (García-Alonso et al., 2006) (Baba et 

al., 2001). After two weeks of daily red wine consumption (375 mL), total plasma phenol 

concentrations increased significantly and trace levels of metabolites from (+)-catechin 

and (-)-epicatechin were detected in plasma. However, the biotransformation and 

bioavailability patterns of many dietary polyphenols remain to be clarified, particularly 

anthocyanins (Fernandes et al., 2015) The tissue distribution and biotransformation 

pathways for several dietary polyphenols are yet to be determined. Furthermore, 

biological activities of metabolites of many dietary polyphenols require further 

investigation. The potential health benefits of dietary polyphenols require confirmation in 

both animal models of disease and humans at appropriate doses. Whereas in vitro studies 

have provided insights into the mechanisms of action of individual dietary polyphenols 

(Han et al., 2020), the significance of these findings requires validation in vivo. Further 

efforts should be made to integrate the available in vitro and in vivo activity data with 
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bioavailability data for assessing the potential utility of various dietary polyphenols. 

Accumulating evidence from human feeding studies suggests that the absorption and 

bioavailability of specific flavonoids are markedly higher than originally believed (Ross and 

Kasum, 2002). Most flavonoids in plants are attached to sugars (glycosides) and 

occasionally exist as aglycones. Aglycones are freely absorbed from the gut by passive 

diffusion while glycosides are hydrolysed by colon microflora before gastrointestinal 

absorption (Zubick and Meydani, 2003). 

Human feeding trials with wine have demonstrated that procyanidins can survive the acidic 

milieu of the stomach and are therefore not initially broken down, entering the small 

intestine intact. Consistent with this finding, dimer B2 [epicatechin (4β-8)-epicatechin] was 

detected in human plasma as early as 30 min after consumption of a flavanol-rich food. 

Thus, while the metabolic fate of dimer B2 is yet to be elucidated, clearly it can be 

absorbed, supporting a contributory role to the benefits of flavanol/procyanidin-rich food 

(Zhang et al., 2006). In terms of absorption, lactase phloridzin hydrolase (LPH) hydrolyzes 

the majority of anthocyanidins, allowing absorption by the small intestine (Crespy et al., 

2001). Notably, cyanidine-3-glucoside is not hydrolysed in small intestine (Vitaglione et al., 

2007). Other recent studies indicate that bilitranslocase plays a role in absorption at the 

gastric level (Nicolin et al., 2005). The degradation of anthocyanins mainly takes place in 

the intestine, where both the intestinal microbiota and pH play important roles in 

catabolizing anthocyanins into metabolites. The degradation products of anthocyanins in 

the gastrointestinal tract are reported to be phenolic acids, phenol aldehydes and 

phenols. Both anthocyanins and degraded products or metabolites can be absorbed 

through either passive diffusion or active transport. The molecular absorption mechanism 

is still to be fully clarified in order to assess the real in vivo digestion, absorption, 

bioavailability and bioactivities of anthocyanins (Han et al., 2019). 

 

6.8 Synergy of wine polyphenols with food 
 

Assessment of nutrient bioavailability remains critical to our understanding of the 

mechanisms by which humans utilize essential nutrients from consumed foods and how 

foods satisfy nutritional requirements (Schönfeldt et al., 2016). Different food components 

could reduce or enhance nutrient bioavailability. Some components form complexes with 

a nutrient and prevent its digestion or absorption or even induce degradation. In the case 

of wine, phenolic compounds are able to chelate iron and red wine decreases the 

concentration of digested phenolic products attributable to the formation of iron-

polyphenol chelates. In terms of protein affinity, flavonoids are strongly affected by the 

presence of milk, especially after the digestion process (Cilla et al., 2009). Additionally, 

using an in vitro digestion procedure, Argyri et al. (2005) found that co-digestion of red 

wine with vitamin C and meat resulted in an increase and decrease in antioxidant capacity 
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and total phenol content, respectively. Similarly, co-digestion of raspberry extract with 

meat, bread and cereals decreased the recovery of total phenol (McDougall et al., 2005) 

but not anthocyanins in the serum-available fraction. The hydroalcoholic matrix of wine 

could facilitate the solubility and absorption of its phenolic components (Soleas, 1997). 

6.9 Results and discussion 
6.9.1 Sampling and winemaking 

 

The climate in the Priorat region (Tarragona, Spain), characterized by very high 

temperatures during summer, drought and steep and poor stony soils, promotes 

ecosystem vulnerability to current global changes. A recent report on how mesoclimate 

influences wine quality has shown the differences between Priorat mesoclimates. The 

study involved five different vineyards, whereby two villages under two different 

mesoclimates were selected (early and late ripening and two/three different parcels in 

each mesoclimate, topographically located up or down the slope). At each of the two 

municipalities, El Molar (early) and Porrera (late), 60 years old vines were selected, planted 

in bush at a density of 5000-6000 vines·ha-1. To evaluate the effects of topography and 

mesoclimate on the qualitative potential of vitis vinifera cv Carignan in the Priorat region, 

Sanchez-Ortiz et al (2020) monitored the evolution of the maturity process in the five 

parcels and analysed the composition of both the grapes grown and wines obtained.  

 

Grapes were fermented after three days of cool maceration for colour extraction, followed 

by fermentation of all reducing sugars, addition of 20 g/hl sulphur dioxide to preserve 

oxidation, and finally bottling. The wine did not undergo malolactic fermentation and was 

therefore young, without oaking or ageing. OIV methods (International Organisation of 

Vine and Wine) were used to analyse alcohol by volume (ABV), total tartaric acidity (ATT), 

pH, total anthocyanins (Ribéreau-Gayon et al., 2003), DMACA (flavan-3-ol by derivatization 

with p-dimethylaminocinnamaldehyde) (Vivas et al., 1993), and total tannins in wine. 

ANOVA was performed using the general linear model procedure. The Tukey test was 

used for post hoc analysis (XLSTAT statistical package, EXCEL) between plots. 

 

Alcohol by volume (ABV), pH, TTA, T Ant, and tannins were analysed. Anthocyanin content 

was determined following the methodology detailed in Valls et al. (2009) through high-

performance liquid chromatography (HPLC) using a Hewlett Packard Liquid 

Chromatograph (Waters Corporation, Mildford, MA, USA) equipped with a Zorbax Eclipse 

Plus C18 Column (150 × 2.1 mm; 3.5 µm) and a Zorbax Eclipse Plus-C18 Precolumn 

(12.5 × 4.6 mm; 5 µm). Injection volume was 5 µL; elution was performed with a mobile 

phase A of HPLC-grade water (0.2 % trifluoroacetic acid) and a mobile phase B using 

methanol (0.2 % trifluoroacetic acid). The column temperature was set at 50 ºC and the 

HPLC was coupled to a Diode Array Detector (DAD). Quantifications were performed 

using the DAD detector, and identifications were made considering the time of flight 
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(TOF). A mass spectrometry (MS) detector was used to assist in the identification. Free 

anthocyanin content was determined using a calibration curve (based on peak area, 

y = 0.7968x + 7.5756; R2 = 0.9774), which was established using malvidin 3-glucoside 

standard solutions submitted to the same procedure. Anthocyanidin-3-monoglucosides 

and respective acetylated and coumaroylated glycosides were identified on the basis of 

their ultraviolet–visible (UV–vis) spectra and retention times (Table 28). Anthocyanidins 

were identified by HPLC, making a comparison with internal standards. Calibration curves 

were obtained by injecting standards with different concentrations of malvidin 3-glucoside 

(Extrasynthese, Genay, France). The range of the linear calibration curves was 0.1 to 

1.0 mg/L for the lower (R2 > 0.996), 0.1–5.0 mg/L for intermediate (R2 > 0.987), and 10.0–

200.0 mg/L for the higher concentration compounds (R2 > 0.987). Unknown 

concentrations were determined from the regression equations, and the results were 

expressed as milligrams of malvidin 3-glucoside. Repeatability of HPLC analysis gave a 

coefficient of variation of <7 %. 

 

Procyanidins were analysed by injecting 3 l of wine samples through Rapid Resolution 

Liquid Chromatography (RRLC) using a Zorbax Eclipse XDB-C18 (50 × 30; 1.8 µm) 

followed by a RRLC in-line pre-column (4.6 mm, 0.2 µm) at 30 ºC. The HPLC injection 

volume was 1.4 µL, with a 0.7 mL/min flux; mobile phase A: water (0.1 % formic acid), 

mobile phase B: methanol (0.1 % formic acid). Phenolic compounds were identified 

according to their order of elution, retention times of pure compounds (gallic acid, 

catechin, procyanidin dimer B2, mono gallate dimer, procyanidin trimer C1, and 

epicatechin gallate) and their molecular masses. Table 29 shows the retention time and 

m/z for each compound. 

 

6.9.2 Composition of Priorat Estate wines used for the study 

 

In order to assess the estimated consumption of 5 Estate wines, previous analysis of 

individual wines was conducted. These wine were not blended with other grapes nor with 

vintages, thus the 5 five wines are considered single varietals and single vintage. This adds 

a lot of value to this study as most of the wines in the market are difficult to prove that are 

made from a single blend (the European law allows to label as single grape and single 

varietal even if this contains a minimum of 15% of other grapes and other vintages in the 

same blend). In this study, total anthocyanin and tannin contents, DMACH, pH, total acidity 

and alcohol % of each wine sample are presented in Table 39.  
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Table 39. Total anthocyanins, tannins, DMACH, pH, total acidity and alcohol % of each wine sample. 

Estate Wine  Site 1 Site 2 Site 3 Site 4 Site 5 

      

Total 

Anthocyanins 

(mg/L) 398,4 ± 9,6 a 466,6 ± 4,0 b 470,5 ± 22,0 b 432,9 ± 22,8 ab 451,5 ± 6,3 b 

Tannins (g/L) 2,9 ± 0,2 c 2,4 ± 0,2 a 2,2 ± 0,3 a 1,7 ± 0,1 b 1,4 ± 0,1 b 

DMACH 

(mg/L) 388,8 ± 22,9 a 361,4 ± 14,4 a 324,0 ± 7,9 b 295,6 ± 8,0 bc 263,1 ± 4,5 c 

pH 3,17 ± 0,1 ac 3,27 ± 0,0 abc 3,28 ± 0,0 abc 3,35 ± 0,0 b 3,21 ± 0,0 c 

ATT (g/L) 6,63 ± 0,2 ac 6,40 ± 0,2 c 6,39 ± 0,0 c 6,85 ± 0,1 a 7,62 ± 0,1 b 

% alc. vol 16,10 ± 0,4 a 15,20 ± 0,6 abc 14,80 ± 0,1 bde 14,50 ± 0,2 ce 15,40 ± 0,2 ad 

 

6.9.3 Concentration in anthocyanins and procyanidins in the wines considered for 

the study 

 

According to the previous analysis of 5 wines from 5 different geographically areas in the 

Priorat described by Sánchez-Ortiz  (2020), wines from Site 1 and Site 2 region represent 

Estate wines derived from the warmest area (early ripening, E) while Estate wines from Site 

3, Site 4 and Site 5 are obtained from the coldest area (late ripening, L). Estate wines are 

designated Site 1 (El Molar, early region, uphill), Site 2 (El Molar, early region, downhill), 

Site 3 (Porrera, late region, downhill west-exposed), Site 4 (Porrera, late region, downhill 

east-exposed) and Site 5 (Porrera, late region, uphill). Total anthocyanin contents of two 

Estate wines (Site 1 and Site 4) were not significantly different while estate wines from Site 

2, Site 3 and Site 5 locations displayed higher anthocyanin concentrations compared to 

Site 1, which had the lowest content. Estate wine from Site 1 had the highest concentration 

of tannin, which was significantly different from tannin contents of wines from Site 2, Site 

3, Site 4 and Site 5. Thus, the Estate wine produced from Site 1 contained the highest 

tannin and lowest anthocyanin amounts. The pH for Site 1 appeared lower than that for 

Site 2 and Site 3, but not to a significantly different extent. In contrast, pH differences 

relative to Site 4 and Site 5 were marked. Highest differences in total acidity were observed 

between Site 1 and Site 5 estate wines that belonged to different mesoclimatic areas. The 

alcohol content was markedly higher in Site 1 compared to Site 3 and Site 4 (an increase 

in 1.56% alc. vol in Site 1 vs. Site 4 and 1.26% alc. vol in Site 1 vs. Site 3).  

 

Results from the chemical analyses were significantly different between the two early 

ripening geographical areas (Site 1 and 2) with a p-value <0.05. Considering the influence 

of only early and late regions instead of vineyard location, no marked differences in total 

anthocyanins, pH and total acidity were observed. In contrast, total tannin content, DMACH 
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and alcoholic degree (% alc by vol.) were significantly different. While no major differences 

were recorded in total anthocyanin contents between treatments in the first analysis of 

wine (Table 39). 

 

Results from the HPLC analysis was used for evaluation of specific anthocyanins and 

procyanidins, with a view to determining the polyphenol types that are more abundant in 

different wines with potential health benefits. Table 40 and Table 41 show the previous 

results obtained from the 5 different wine growing areas in the DOQ Priorat. 
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Table 40. HPLC analysis of anthocyanin composition. 

Estate Wine  Site 1 Site 2 Site 3 Site 4 Site 5 

malvidin-3-

glucoside 164,1 ± 4,8 a 217,1 ± 4,5 d 222,6 ± 6,3 cd 203,6 ± 7,4 b 226,8 ± 1,8 c 

petunidin-3-

glucoside 7,6 ± 0,4 a 8,8 ± 2,3 b 7,7 ± 2,0 a 5,5 ± 1,8 a 6,9 ± 2,0 a 

delphinidin-3-

glucoside 2,0 ± 1,7 a 2,7 ± 1,0 b 2,2 ± 1,8 a 2,0 ± 1,3 a 2,6 ± 0,6 a 

peonidin-3-

glucoside 4,6 ± 0,2 b 5,2 ± 0,1 d 5,5 ± 0,1 e 3,5 ± 0,0 a 4,7 ± 0,0 c 

cyanidin-3-

glucoside 0,3 ± 0,0 b 0,3 ± 0,1 ab 0,3 ± 0,0 b 0,2 ± 0,0 a 0,3 ± 0,0 b 

malvidin-3-

acetylglucoside 32,3 ± 1,6 a 57,1 ± 1,9 c 54,8 ± 0,6 b 59,5 ± 1,8 c 64,6 ± 1,5 d 

petunidin-3-

acetylglucoside 0,8 ± 0,0 a 1,1 ± 0,0 d 1,0 ± 0,0 c 0,9 ± 0,0 b 0,9 ± 0,0 b 

delphinidin-3-

acetylglucoside 0,3 ± 0,0 a 0,4 ± 0,0 b 0,3 ± 0,0 a 0,3 ± 0,0 a 0,3 ± 0,0 a 

peonidin-3-

acetylglucoside 1,5 ± 0,0 a 1,8 ± 0,0 b 1,9 ± 0,0 c 1,5 ± 0,0 a 2,0 ± 0,1 d 

cyanidin-3-

acetylglucoside 0,2 ± 0,0  0,2 ± 0,0  0,2 ± 0,0  0,2 ± 0,0  0,2 ± 0,0   

malvidin-3-

coumarylglucoside 28,7 ± 2,4 a 38,5 ± 5,6 b 41,5 ± 1,2 b 34,6 ± 7,9 ab 37,3 ± 7,6 ab 

petunidin-3-

coumarylglucoside 3,9 ± 0,2 a 5,8 ± 0,0 c 4,4 ± 0,2 b 3,7 ± 0,2 a 4,2 ± 0,1 b 

delphinidin-3-

coumarylglucoside 1,3 ± 0,1 b 1,8 ± 0,0 c 1,2 ± 0,0 b 1,0 ± 0,1 a 1,0 ± 0,0 a 

peonidin-3-

coumarylglucoside 2,5 ± 0,3  3,0 ± 0,4  2,8 ± 0,1  2,0 ± 0,2  2,8 ± 0,0   

cyanidin-3-

coumarylglucoside 1,1 ± 0,0 c 1,2 ± 0,0 d 1,0 ± 0,0 c 0,7 ± 0,0 a 0,9 ± 0,0 b 

Total Anthocyanins 

(mg/L) 251,1 ± 11,7 a 345,0 ± 15,9 c 347,6 ± 12,3 c 319,1 ± 20,7 b 355,5 ± 13,7 c 

 

HPLC analysis of the five wines revealed 15 anthocyanins, mainly 3-0-glucosides of 

malvidin, petunidin, delphinidin, peonidin and cyanidin (Table 40). Acetylated and 

coumaroylated glucosides were additionally identified. ANOVA of anthocyanin data 

revealed high malvidin content, as expected. Post-hoc analyses showed that malvidin-3-

glucoside (with the largest concentration amongst all the treatment groups) was 

significantly higher in wines from Site 2, Site 3 and Site 4.  

 

HPLC analysis for procyanidins were also considered leading to the identification of 15 

polyphenolic compounds. No differences were found in the dimer digallate levels among 

the five wines (Table 41). ANOVA revealed the highest contents of gallic acid, procyanidin 

B1 and catechin polyphenolic compounds. While the highest levels were detected for 

procyanidin B1, amounts were significantly different among all the wines examined. Estate 

wines from Site 1 contained the highest amount of gallic acid, followed by estate wines 

from Site 2-Site 4 and Site 3-Site 5. Site 1 wines are markedly different to those derived 

from Site 2-Site 4 and Site 3-Site 5. Differences between the latter two groups were also 

observed. The patterns for catechin were similar to those of procyanidin B1. 

Concentrations of procyanidin B2 and B4 were higher in wine samples from Site 4. 
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Table 41. HPLC analysis of five red wines leading to the identification of 15 polyphenolic compounds. 

Estate Wine Site 1 Site 2 Site 3 Site 4 Site 5 

      

procyanidin B3 3,5 ± 0,2 c 2,4 ± 0,1 b 2,3 ± 0,2 b 2,7 ± 0,1 b 2,0 ± 0,1 a 

procyanidin B1 23,7 ± 0,0 e 19 ± 0,2 d 13,7 ± 0,3 c 14,5 ± 0,1 b 12,6 ± 0,2 a 

procyanidin B4 8,5 ± 0,2 d 6,3 ± 0,0 c 6,9 ± 0,1 b 9,5 ± 0,2 a 7,1 ± 0,2 b 

procyanidin B2 8,6 ± 0,1 d 6,3 ± 0,0 c 6,9 ± 0,1 b 9,6 ± 0,1 a 7,1 ± 0,1 b 

dimer monogallate 1,7 ± 0,1 c 2,5 ± 0,1 a 3,0 ± 0,1 b 3,1 ± 0,2 b 1,9 ± 0,0 c 

procyanidin B 5.1 1,2 ± 0,1 b 1,2 ± 0,1 b 0,9 ± 0,0 a 0,8 ± 0,1 a 0,8 ± 0,0 a 

dimer digallate 0,0 ± 0,0  0,0 ± 0,0  0,0 ± 0,0  0,0 ± 0,0  0,0 ± 0,0   

procyanidin B 6.6 3,0 ± 0,2 c 3,6 ± 0,1 b 4,2 ± 0,2 a 4,7 ± 0,1 a 4,2 ± 0,0 a 

gallic acid 22,1 ± 0,3 d 16 ± 0,6 c 14,6 ± 0,5 a 15,3 ± 0,5 cb 13,8 ± 0,2 a 

catechin 10,7 ± 0,2 e 7,7 ± 0,1 d 5,0 ± 0,1 c 5,4 ± 0,1 b 4,7 ± 0,1 a 

epicatechin 3,2 ± 0,1 b 1,8 ± 0,1 a 2,2 ± 0,0 a 3,1 ± 0,0 b 2,6 ± 0,0 a 

epicatechin gallate 0,1 ± 0,1 b 0,1 ± 0,0 b 0,1 ± 0,0 b 0,1 ± 0,0 b 0,0 ± 0,0 a 

trimer C 0.6 7,4 ± 0,3 b 6,6 ± 0,3 b 5,7 ± 0,1 a 5,5 ± 0,5 a 5,0 ± 0,2 a 

trimer C 2.4 9,8 ± 0,1 e 6,9 ± 0,0 d 4,8 ± 0,2 c 5,5 ± 0,1 b 4,2 ± 0,1 a 

trimer C1 6,4 ± 0,2 b 4,1 ± 0,2 a 4,5 ± 0,2 a 6,6 ± 0,2 b 4,4 ± 0,3 a 

TOTAL  109,9 ± 1,0 c 84 ± 0,7 b 74,9 ± 1,0 a 86,2 ± 0,9 b 70,3 ± 0,5 a 

 
 

6.10 Estimation of polyphenols intake in humans 
 

Prior to determining the influence of polyphenol intake, the effects of alcohol-derived 

calories from all wines were examined (see Equations in Table 42). Atwater factor (7 kcal/g 

alcohol) was used for calculation of alcohol-derived energy. Average height and weight 

values of individuals from the Spanish population were obtained from the Ministry of 

Health (Ministerio de Sanidad), estimated as 78 kg and 171 cm for men and 67 kg and 160 

cm for women. Body mass index (BMI) was used to determine whether the Spanish 

population could be classified as normal weight, overweight, obese, or extremely obese. 

The values obtained indicated normal average weight of the population under study. We 

estimated a moderate activity level for both genders (shown in Table 42) representing an 

activity factor of 1.78 for men and 1.64 for women, as recommended by World Health 

Organisation (WHO). Total calorie requirements were calculated from the Harris-Benedict 

equation (Harris and Benedict, 1918). Calorie intake due to metabolized alcohol and % 

energy due to alcohol were additionally calculated, along with blood alcohol levels/day.  
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Table 42. Values and equations used for calculation of Daily Energy Needs, Alcohol Energy, % Energy due to alcohol 
consumption, Healthy wine (recommended volume of wine intake) and blood alcohol level (BAL). % Energy due to 

alcohol consumption is based on Daily Energy Needs determined using Harris-Benedict Equation. 

Table calculation equations 

Description Unit Calculation 

Activity factor (Physical activity level, 

PAL) 

No Light level activity factor: 1,55 (men) and 1,56 

(women) 

Moderate level activity factor: 1,78 (men) and 1,64 

(women) 

Intense level activity factor: 2,10 (men) and 1,82 

(women) 

Daily Energy Needs, REE  kcal Women: REE=655.1+9.56*weight+1,85*high-

4,68*age 

Men: REE= 66.5+13,75*weight+5.0*high-6,78*age 

+20% light, +30% moderate and 50-75% intense 

activity 

+10% Food Induced Thermogenesis 

Alcohol Energy kcal ml wine/day·(%alc. vol/100)*alcohol 

density*7Kcal/g Ethanol 

7kcal/g alcohol (Atwater Factor) 

% Energy due to alcohol consumption % %=alcohol energy/Daily Energy Needs 

Healthy wine (intake of wine volume 

recommended) 

ml/day V (ml wine) = (g healthy alcohol/ % DA·0,789) 

 

Blood alcohol level (BAL) g/day BAL = (g healthy alcohol/kg)·(60L/100kg) 

 

 

Amounts of 30–40 g alcohol/day for men and 10–20 g alcohol/day for women are 

recommended. Thus, we considered three levels of g alcohol/day: 30, 35 and 40 for men 

(Table 43) and 10, 15 and 20 for women. (Table 44). Considering % alc. vol of the five 

different estate wines, % energy due to alcohol consumption was calculated. Values from 

8.9%–11.8% total energy needs for men and 3.4%–6.7% for women were obtained. The 

three dose ranges allowed estimation of average alcohol-derived energy.  

 

Procyanidin and anthocyanidin absorption levels was calculated considering the 

recommended healthy threshold of wine intake per day. We estimated % serum-available 

recovery of anthocyanin and procyanidin based on a recent review (3.9% for anthocyanins 

and 7.2% for procyanidins) (Mc Dougall, 2005). The final serum amount of polyphenols 

(either procyanidins or anthocyanidins) was evaluated considering the three levels of wine 

(determined earlier as 30, 35 and 40 g for men and 10, 15 and 20 g for women). A total 

daily dietary polyphenol intake of 200 mg/day was estimated. Final estimated plasma 

concentration was calculated as mg/day.  
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Table 43. Estimated calculation for men based on an average weight (78.1kg), average high (171cm), average Age (45 
years old), Body Mass index22.8, Activity level (moderate), Activity factor 1.78 and Daily Energy Needs determined 

using Harris-Benedict Equation (2366Kcal). 

 Men 

Wine Site 1 Site 2 Site 3 Site 4 Site 5 

Healthy 

alcohol 

serving 

(g/day) 

30 35 40 30 35 40 30 35 40 30 35 40 30 35 40 

Alcohol 

Energy 

(Kcal) 

210 245 280 210 245 280 210 245 280 210 245 280 210 245 280 

Healthy 

wine 

(ml/day) 

233 272 311 247 288 329 253 296 338 259 302 345 244 284 325 

% alc. Vol 16.1 15.2 14.8 14.5 15.4 

Blood 

alcohol 

levels/day 

0.23 0.27 0.31 0.23 0.27 0.31 0.23 0.27 0.31 0.23 0.27 0.31 0.23 0.27 0.31 

% Energy 

due to 

alcohol 

consumption 

8.9 10.4 11.8 8.9 10.4 11.8 8.9 10.4 11.8 8.9 10.4 11.8 8.9 10.4 11.8 

 
Table 44. Estimated calculation for women based on an average weight (67.1kg), average high (160cm), average Age 
(45 years old), Body Mass index 21, Activity level (moderate), Activity factor 1.64 and Daily Energy Needs determined 

using Harris-Benedict Equation (2087Kcal). 

 Women 

Wine Site 1 Site 2 Site 3 Site 4 Site 5 

Healthy 

alcohol 

serving 

(g/day) 

10 15 20 10 15 20 10 15 20 10 15 20 10 15 20 

Alcohol 

Energy 

(Kcal) 

70 105 140 70 105 140 70 105 140 70 105 140 70 105 140 

Healthy 

wine 

(ml/day) 

78 117 156 82 123 164 84 127 169 86 129 172 81 122 162 

% alc. Vol 16.1 15.2 14.8 14.5 15.4 

Blood 

alcohol 

levels/day 

0.09 0.13 0.18 0.09 0.13 0.18 0.09 0.13 0.18 0.09 0.13 0.18 0.09 0.13 0.18 

% Energy 

due to 

alcohol 

consumption 

3.4 5.1 6.7 3.4 5.1 6.7 3.4 5.1 6.7 3.4 5.1 6.7 3.4 5.1 6.7 
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Table 45. Estimated healthy wine dose and % gastrointestinal absorption for Men: 7.2% for phenols and 3.7% for anthocyanins. Results are presented as mg/day in three groups:  
< 1mg/day (low), 1<x<2 mg/day (medium) and > 2mg/day (optimum). 

    

TOT. 
PRO 
mg/L  

TOT. 
ANT. 
mg/L  

PRO. 
mg/day  

TOT. 
intake 

ANT. 
mg/day 

TOT. 
intake 

% 
BIO.  
PRO. 

% 
BIO.  
ANT. 

PRO. 
diary 

intake 
% 

ANT. 
diary 

intake 
% 

PRO. 
EXP. 

serum  
intake 

mg/day 

ANT. 
EXP 

serum  
intake 

mg/day 

Serum PRO. EXP. Intake Serum ANT. EXP. Intake 

 <1  1<x<2  >2  <1  1<x<2   >2  

M
e

n
 

Site 1 109,9  251,1  

25,7 58,6 

7,2  3,9  

12,8 29,3 1,85 2,29   x       x 

29,9 68,3 14,9 34,1 2,15 2,66 
  

x 
  

x 

34,2 78,1 17,1 39,0 2,46 3,05     x     x 

Site 2 84,4  345  

20,8 85,2 10,4 42,6 1,50 3,32   x       x 

24,3 99,4 12,2 49,7 1,75 3,88 
 

x 
   

x 

27,8 113,5 13,9 56,8 2,00 4,43     x     x 

E (Mean 
Site 1 and 

Site 2) 
97,2  298,1  

23,3 71,9 11,6 36,0 1,67 2,81   x       x 

27,1 83,8 13,6 41,9 1,95 3,27 
 

x 
   

x 

31,0 95,8 15,5 47,9 2,23 3,74     x     x 

Site 3 74,9  347,6  

18,9 87,9 9,5 44,0 1,36 3,43   x       x 

22,2 102,9 11,1 51,4 1,60 4,01 
 

x 
   

x 

25,3 117,5 12,7 58,7 1,82 4,58   x       x 

Site 4 86,2  319,1  

22,3 82,6 11,2 41,3 1,61 3,22   x       x 

26,0 96,4 13,0 48,2 1,87 3,76 
 

x 
   

x 

29,7 110,1 14,9 55,0 2,14 4,29     x     x 

Site 5 70,3  355,5  

17,2 86,7 8,6 43,4 1,24 3,38   x       x 

20,0 101,0 10,0 50,5 1,44 3,94 
 

x 
   

x 

22,8 115,5 11,4 57,8 1,65 4,51   x       x 

L (Mean 
Site 1 and 

Site 2) 
77,1  340,7  

19,5 85,8 9,7 42,9 1,40 3,35   x       x 

22,7 100,1 11,4 50,0 1,64 3,90 
 

x 
   

x 

26,0 114,4 13,0 57,2 1,87 4,46   x       x 
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Table 46. Estimated healthy wine dose and % gastrointestinal absorption for Women: 7.2% for phenols and 3.7% for anthocyanins. Results are presented as mg/day in three 

groups:  < 1mg/day (low), 1<x<2 mg/day (medium) and > 2mg/day (optimum). 

    

TOT. 
PRO 
mg/L 

TOT. 
ANT. 
mg/L  

PRO. 
TOT. 

Intake 
mg/day 

ANT.  
TOT. 

Intake 
mg/day 

% 
BIO.  
PRO 

% 
BIO.  
ANT 

PRO. 
diary 

intake % 

ANT. 
diary 

intake % 

PRO. 
EXP. 

serum  
intake 

mg/day 

ANT. 
EXP 

serum  
intake 

mg/day 

Serum PRO. EXP. 
Intake 

Serum ANT. EXP. 
Intake 

 <1   1<x<2  >2   <1  1<x<2  >2  

W
o

m
e

n
 

Site 1 109,9  251,1  

8,6 19,6 

7,2  3,9  

4,3 9,8 0,62 0,76 x     x     

12,9 29,4 6,4 14,7 0,93 1,15 x 
   

x   

17,1 39,2 8,6 19,6 1,23 1,53   x     x   

Site 2 84,4  345  

6,9 28,3 3,5 14,1 0,50 1,10 x       x   

10,4 42,4 5,2 21,2 0,75 1,65 x 
   

x   

13,8 56,6 6,9 28,3 1,00 2,21   x       x 

E (Mean 
Site 1 and 

Site 2) 
97,2  298,1  

7,7 23,9 3,9 12,0 0,56 0,93 x     x     

11,6 35,9 5,8 18,0 0,84 1,40 x 
   

x   

15,5 47,9 7,7 23,9 1,12 1,87   x     x   

Site 3 74,9  347,6  

6,3 29,2 3,1 14,6 0,45 1,14 x       x   

9,5 44,1 4,8 22,1 0,68 1,72 x 
   

x   

12,7 58,7 6,3 29,4 0,91 2,29 x         x 

Site 4 86,2  319,1  

7,4 27,4 3,7 13,7 0,53 1,07 x       x   

11,1 41,2 5,6 20,6 0,80 1,61 x 
   

x   

14,8 54,9 7,4 27,4 1,07 2,14   x       x 

Site 5 70,3  355,5  

5,7 28,8 2,8 14,4 0,41 1,12 x       x   

8,6 43,4 4,3 21,7 0,62 1,69 x 
   

x   

11,4 57,6 5,7 28,8 0,82 2,25 x         x 

L (Mean 
Site 1 and 

Site 2) 
77,1  340,7  

6,5 28,5 3,2 14,2 0,47 1,11 x       x   

9,7 42,9 4,9 21,4 0,70 1,67 x 
   

x   

13,0 57,1 6,5 28,5 0,93 2,23 x         x 
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Data from Table 45 and Table 46 suggest that wines contribute to 2.9%–17.1% of daily 

total procyanidin and 9.8%–57.7% of daily total anthocyanin. Wines contribute significantly 

to total polyphenol intake (200 mg/day). While men ingested between 1.0 and 2.0 mg/day 

of procyanidins with all the estate wines, women could only achieve this concentration in 

three groups (Site 1, Site 2, and Site 4). The concentration in men reached > 2 mg/day for 

three of the estate wines (Site 1, Site 2 and Site 4), with higher procyanidin contents. On 

the other hand, if we consider the estate wine/dose, men only obtained > 2 mg/day 

procyanidin with 35 and 40 g Site 1, 40 g Site 2 and 40 g Site 4. In this case, men need to 

consume higher doses of estate wine to acquire > 2 mg procyanidins/day. Women could 

not obtain > 2 mg/day in all cases. In terms of anthocyanin composition in serum for 

women, the values depended on estate wine and estate wine/dose, while men achieved 

>2 mg/day with all estate wines. Women achieved a concentration of <2 mg/day 

anthocyanin with Site 1 estate wine and > 2 mg/day with the other wines (Site 2, Site 3, Site 

4 and Site 5), though intake of higher volumes of wine. 
 

Estate wine located in El Molar (Site 1) contained the highest tannin concentration (109.9 

mg/L), lowest anthocyanin amount (251.1 mg/L) and highest degree of alcohol (16.1% alc. 

vol) relative to other wines (Table 46). The second highest level of procyanidin (86.2 mg/L) 

but lower alcohol (14.5%) was recorded for Site 4, compared to the other wines. Taking 

into account the influence of mesoclimate and grouping of wines as early region (E) and 

late region (L), no differences in total amounts were observed. Overall, > 2 mg/day 

procyanidin and anthocyanin contents were detected in men and 1<x<2 mg/day in 

women for both E and L groups. 

 

6.11 Conclusions 
 

Although the bioavailability of wine-derived polyphenols in organisms is very low, 

polyphenols are associated with the beneficial effects of wine on human health. The type 

of wine with polyphenol compositions that may have greater beneficial effects on health 

considering a healthy recommended intake level remains to be established. Traceability 

of food, especially given the value of Estate wines, associated to single vineyards, is an 

important goal, allowing determination of the accurate composition of food in daily meals. 

Polyphenol intake for each individual depends on the total content of these substances in 

ingested food. In the case of wine, the total recommended amount for healthy individuals 

has limits due to the toxic effect of alcohol consumption. In this chapter we evaluated the 

beneficial effects of different ranges of recommended intake for wine (considered healthy) 

depending on gender and age. Both women and men were theoretically evaluated owing 

to different recommended healthy dietary levels of intake. Our main objective was to 

establish the influence of different estate wine compositions on estimated polyphenol 

consumption in humans. For this study, we comprehensively analysed five Priorat estate 

wines to ascertain how different intake levels lead to specific polyphenol patterns in serum. 

UNIVERSITAT ROVIRA I VIRGILI 
PRIORAT VINEYARD VULNERABILITY AND WATER STRESS ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE. 
ESTIMATED PRIORAT WINE CONSUMPTION IN HUMANS 
Antoni Sánchez-Ortiz 
 
 



 

142 

The influence of altitude and sun exposure on polyphenol composition of the five Estate 

wines was additionally considered. Furthermore, the caloric effect of alcohol was 

calculated and different wine doses considered to determine the effect of the alcoholic 

degree of each wine on total calories in the diet due to wine consumption. 

 

Considering the low absorption of phenolic compounds based on the previous 

publications, we hypothesized that some Estate wines provide similar polyphenol levels in 

serum of healthy individuals upon intake of a recommended amount on a daily basis. The 

choice of a Estate wine may avoid the effects of an elevated alcoholic degree. In this 

theoretical study, the caloric effect of alcohol was between 210 and 280 kcal for men and 

70 and 140 kcal for women in relation to total calorie requirements (2366 kcal for men and 

2078 kcal for women). This is a significant factor for consideration, since alcohol-derived 

calories represent 8.9% and 11.8% (minimum and maximum, respectively) of the total 

calorie requirement for men and 3.4% and 6.7% for women. Site 1, Site 2 and Site 4 estate 

wines provided higher amounts of procyanidins at a greater alcohol concentration (40 g) 

in both men and women, but Site 4 wine provided a lower concentration of alcohol. The 

total alcohol intake and total calorie count could be reduced without significantly affecting 

the amount of polyphenols acquired from each wine. All higher Estate wines/dose (Site 2, 

Site 3, Site 4 and Site 5) provided higher concentrations of serum anthocyanin but Site 4 

estate wine was concomitantly associated with a lower alcohol content.  

 

In summary, it is suggested that depending on the healthy recommended servings of wine 

for either women or men, different Estate wines can be selected to obtain similar amounts 

of procyanidins and anthocyanins in the diet. In addition, selection of specific Estate wines 

may avoid additional alcohol intake. This finding is of great importance because alcohol-

derived energy is not usually considered in total energy requirements, which is essential 

for patients with obesity or diabetes who need to control weight and energy expenditure 

due to carbohydrates, respectively. Thus, even when the vineyards are relatively close in 

location, the precise geographical origin of the wine must be carefully considered during 

selection for daily intake. In this study, the mesoclimate of wine origin did not affect the 

total procyanidin and anthocyanidin range of concentrations (both geographically 

different areas, E (early) and L (Late)) but significant differences were observed among 

Estate wines. In view of recent reports, it can be further suggested that synergy of wine 

with other specific foods could facilitate gastrointestinal absorption and improve health 

benefits due to distinct wine compositions (for instance, combining pasta and wine instead 

of meat and wine). Although our present findings support the beneficial effects of 

moderate alcohol consumption, it is important to consider the high toxicity of alcohol and 

dependence when consumed in large quantities in a non-negligible percentage of 

individuals. We therefore do not recommend alcohol consumption by non-drinkers due 

to the risk of triggering an adverse situation of dependence or excessive consumption. 

Moderate alcohol drinkers should be advised to continue this habit without exceeding the 
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dose considered healthy (up to 30–40 g/day in men and 10–20 g in women), given no 

medical contraindications exist. Our preliminary research serves as a basis for future 

interventional studies to accurately evaluate the effects of wine produced from specific 

grape-growing areas on human health. As wine bottles do not show the composition, 

more complete labelling of wine showing the amount of total phenolic concentration 

would add an extra value together with the alcohol content. 
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Chapter 7. Overall Discussion and Conclusions 
 

The orography of the Priorat determines the particular mesoclimate of the region. Climatic 

parameters such as temperatures, rainfall and vapour pressure deficit show differences 

between nearby localities. The location of the vineyard plots, the altitude, the dominance 

of the humid sea breeze -garbinada- or the dry winds -serè-, the inclination of the slopes 

and the exposure of the vineyards, they form a certain mesoclimate that exerts a decisive 

influence on the ripening of the grapes. The effect of climate on phenology, potentially 

attributable to mesoclimatic variations, results in greater variability in budbreak and 

veraison dates that depends on previous recorded temperatures. A temperate vintage 

delays budbreak when compared with a warm vintage. However, in a temperate vintage, 

the differences are less noticeable at the beginning of bud break and veraison between 

the early and late regions. Moreover, the extended summer at the end of the ripening 

period causes the harvest date to advance 15 days. A delay in bud break do not result in 

a delay at harvest; warm years in the late region resulted in an earlier harvest date. These 

observations are associated with high temperatures occurring in late August and even 

September in the Priorat, which results in accelerated grape ripening.  

 

The climatic variability in the same vintage manifests significantly during the maturation 

period and is determined by the increase in temperature and the deficit in vapor pressure. 

From weather records, the late ripening region resulted in lower temperatures, vapour 

pressure deficit and growing degree days. Moreover, climatic data revealed 2009 and 

2011 as a warmer vintage. The persistence during the ripening season around harvest of 

high VPD values gives rise to notable inter-plot differences in warm years and early areas. 

In general, plots with higher vegetative growth and lower production, would be more 

vulnerable to climate change, less predictable in relation to the composition of the grape 

and wine, and with variability in the evolution of the grape composition during ripeness. 

The type of soil and the existing drainage in terraces and slopes determines a variability in 

production per vine. Recent studies in Penedès show that water retention in the soil will be 

crutial to fulfill the water needs as well as the agronomic practices with the maintenance of 

enough organic matter into the soil (Funes et al., 2020). What is more, using precision 

viticulture tecniques (e.g use of NDVI, soil variability maps,  sensoring the vineyards in a 

geostatistical approach to delineate irrigation management zones and to identify the most 

representative spots within a field for point measurement) as well as regenerative 

agriculture techniques will help to give a quicker response to an unexpected weather 

event. 

It can be suggested that  the cultivar Grenache responds more quickly to environmental 

changes when water stress conditions are more extreme. Grenache may behave by 

showing a stomatal closure during periods of high VPD and thus avoiding a large loss of 

water, recovering at times of day that are more favourable. In the opposite direction, 
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Carignan  show more negative water potentials, a stomatal opening and therefore a more 

constant water loss. Previous research carried out in grapevines show that water stress 

greatly reduces the hydraulic conductivity (Kh) of the xylem (Lovisolo and Schubert, 1998; 

Schultz, 2003; Alsina et al., 2007) and it is determined by the anatomical features of the 

xylem through apoplastic transport (Tyree, 2003; de Herralde et al., 2006), or by the 

symplastic and transcellular pathways (Tyerman et al., 2002), possibly through aquaporins 

(Vandeleur et al., 2009). Along with these restrictions on general circulation, it has now 

been shown that the  hydraulic conductivity of the leaf is generally responsible for at least 

30% of the loss of hydraulic conductivity under stress (Sack and Holbrook, 2006), and that 

this reduction presents strong interspecific variability often related to petiole morphology 

and vessel architecture (Charrier et al., 2018). Stomatal density and size are responsive to 

environmental conditions during leaf development and are invariant after the leaf is fully 

expanded (Düring, 1980, Rogiers et al., 2011). In contrast, the size of the pore opening is 

adjusted reversibly in response to the environment internal and external to the plant 

(Aphalo and Jarvis, 1991, Cowan,1977). The responsiveness of stomata to the 

environment hence results from the combination of both invariant and reversible 

responses operating at different time scales (Bresta et al., 2011).  

Additionally, Grenache and Carignan have very different leaf morphologies from an 

ampelographic point of view. In fact Gago et al., (2019) found that Grenache compared to 

Syrah had a significantly smaller leaf surface area, but a significantly thicker leaf blade. It 

also had significantly larger stomata and a larger stomatal index than Syrah. The 

distribution of mesophyll tissues was similar in both cultivars, but the upper epidermis was 

significantly thicker in Grenache Noir, and the palisade parenchyma cells were longer in 

Syrah. Further work could be done amongst Grenache and Carignan that are needed to 

determine how these morphological differences may be connected with different 

responses at the functional level.  

Even if Grenache showed more isohydric behaviour compared to Carignan, under 

episodes of unexpected heat and drought, the response of the plant tends towards 

survival by closing the stomata in both varieties. It is also possible that a combination of 

both signals - hydraulic and hormonal -, such as hydraulic conductance (kh) and ABA, 

allows some species to change from isohydric to anisohydric behaviour (Domec and 

Johnson, 2012), depending on the circumstances of the environment. It should be noted 

that the behaviour that the same variety can show in different mesoclimate within the same 

region during an experiment is subject to several conditions that modify this behaviour 

(Medrano et al., 2003; Williams and Baeza, 2007 ; Chalmers, 2007; Poni et al., 2007; 

Santesteban et al., 2009; Lovisolo et al., 2010; Chaves et al., 2010; Collins et al., 2010; 

Rogiers et al., 2011; Pou et al. ., 2012). The classification of isohydry and anisohydry for 

species and cultivars is dependent on many factors including water potential regulation, 

stomatal behaviour, and hydraulic transport under drought conditions (Martínez-Vilalta 

and Garcia-Forner, 2016; Dal Santo et al., 2016). A recent meta-analysis examined factors 
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influencing stomatal conductance in grapevine in response to water availability proposing 

that there is a continuum of stomatal responses that are dependent upon the scion – 

rootstock combination and the interaction with different soil types (Lavoie-Lamoureux et 

al., 2017).  

The precocity of the plot determines the kinetics of maturation in areas with a variable 

orography  and affects the composition of the pulp, causing a disjunction between the 

maturity of the pulp and the phenolic maturity of the skin. The results of this study indicate 

that the plots located in precocious areas and on stony soils present greater vulnerability 

in vintages with severe climate and drought, showing, at the end of maturation, a 

significant increase in sugars that does not correspond to the consequent anthocyanin 

concentration in berry. It is well known that the optimum temperature for anthocyanin 

synthesis is around 30ºC, and that higher values up to 35ºC inhibit it. Therefore, 

modification of the vine microclimate through canopy management can prevent excessive 

sunlight and high temperatures from reaching the bunch and improve anthocyanin 

content (Downey et al., 2003; Tarara et al., 2008). Also the severity of leaf removal should 

be taken into account as it affects the enological parameters of grape must, particularly 

sugars, acidity and aminoacidic composition (Yue et al., 2019; Zhang et al., 2017). 

 

Particularly, in earlier areas, the rate of acid degradation and accumulation of sugars takes 

place from earlier stages. However, the synthesis of anthocyanins and their accumulation 

varies depending on vintage. Anthocyanins reach higher concentrations in the early zone 

favored by temperate vintages, on the other hand, in plots of late zones in altitude the 

accumulation of these compounds decreases. In warm years, grapes in the early 

mesoclimate reach a higher alcoholic degree than in the late, while the acidity is higher in 

the late mesoclimate. Anthocyanins show variability in terms of vintage and plot, whereas 

the accumulation of tannins is more notable in grapes from early and warm regions. In the 

temperate year 2010, the anthocyanin concentration did not vary between mesoclimates. 

Summarizing, the knowledge of the kinetics of evolution of the quality compounds of the 

berry and in particular, the evolution of phenolic compounds according to the 

topography/mesoclimate of the plot, will be of great importance in viticulture of terraces 

and slopes to determine the vintage date for obtaining quality wines.The prediction of an 

interval of concentrations of anthocyanins and tannins is of utmost importance to define 

the  styles of wine and at the same time adapting the techniques of extraction of phenols 

in the winery to achieve the appropriate tanicity in the wines produced. 

To sum up, oenologists have the challenge to understand the physiology of the grapevines 

Grenache and Carignan to better assess the water stress and the implication on the 

accumulation of colour and tanins. As an example, DOQ Priorat grape production in 2019 

decreased in 1.1 milion due to unexpected heat event during the last week of June. 

Understanding the mechanism of the vines to cope with the unexpected climate effects 

that are becoming more frequent, together with implementing precision viticulture and 
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adapting the techniques of extraction of color and tannin during fermentation will have to 

be managed with greater knowledge and more precisely, as well as deciding which is the 

best time of harvest, depending on the water status of the plant. 

The Greek physician Hippocrates considered wine a part of a healthy diet. The future 

consumtion of wine, whether it turns out to be, will not be just one thing. It will be the 

combinaton of what happens on the politics, the economics, the public health, the 

environment but the attention should be focused in consuming moderate amounts of wine 

under a Mediterranean diet. Recommendations of wine consumption should be always 

related to the composition and always avoiding heavy drinking. A more personalised 

standar drinking amount should be considered. 
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1  | INTRODUC TION

Water stress on vine plants induces the synthesis of secondary 
metabolism. Around veraison, water deficit stress causes a signif-
icant increase in the abscisic acid (ABA) level in fruit zone leaves 
(Okamoto et al., 2004) and berries (Coombe & Hale, 1973; Düring 
& Allenweldt, 1980). ABA plays an important role in the regulation 

of growth and the ripening of vines. Lack of water in the soil and 
elevated temperatures induce the synthesis of ABA in the roots, 
followed by its translocation to the leaves, where it rapidly alters 
the osmotic potential of stomatal guard cells, causing them to shrink 
and the stomata to close. Stomatal closure reduces transpiration 
and thus prevents further water loss from the leaves during peri-
ods of low water availability. Around veraison, ABA levels in grapes 
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Abstract
Multiple factors, such as the vineyard environment and winemaking practices, are 
known to affect the development of vines as well as the final composition of grapes. 
Water stress promotes the synthesis of phenols and is associated with grape quality 
as long as it does not inhibit production. To identify the key parameters for man-
aging water stress and grape quality, multivariate statistical analysis is essential. 
Classification and regression trees are methods for constructing prediction models 
from data, especially when data are complex and when constructing a single global 
model is difficult and models are challenging to interpret. The models were obtained 
by recursively partitioning the data space and fitting a simple prediction model 
within each partition. The partitioning can be represented graphically as a decision 
tree. This approach permitted the most decisive variables for predicting the most 
vulnerable vineyards and wine quality parameters associated with water stress. In 
Priorat AOC, Carignan grapevines had the highest water potential and abscisic acid 
concentration in the early growth plant stages and permitted vineyards to be classi-
fied by mesoclimate. This information is useful for identifying which measurements 
could most easily differentiate between early and late-ripening vineyards. LWP and 
Ts during an early physiological stage (pea size) permitted warm and cold areas to be 
differentiated.

K E Y W O R D S

ABA, anisohydric, carignan, classification and regression trees, isohydric, water stress
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increase significantly, along with the stimulation of ripening and 
phenolic synthesis, but decrease during the final stage of berry 
ripening (Bondada & Shutthanandan,  2012; Palejwala et  al.,  1985; 
Soar et al., 2006; Wheeler et al., 2009). Abscisic acid may be translo-
cated from the sites of biosynthesis, such as roots and leaf vascular 
tissues, to the guard cells. Recent identification of multiple trans-
membrane ABA transporters indicates that the movement of this 
hormone within plants is actively regulated in an intercellular net-
work (Kuromori et al., 2018).

Regulation of water deficits has often been used to balance 
grapevine vegetative and reproductive growth to control berry 
quality (Chaves et al., 2010). Analysis of the phenolic composition in 
wine is essential for establishing quality parameters related to water 
stress, as some studies have shown that ABA is involved in the mech-
anisms controlling the synthesis of anthocyanins and promotes the 
synthesis of tannins accumulating in skin (Lacampagne et al., 2010) 
ABA synthesis depends on different factors promoting water stress; 
plant water physiology is affected by various environmental factors 
(e.g., topography, soil water-holding capacity, temperature, rain-
fall, and vapor deficit pressure), plant vigor, and cultural practices, 
such as irrigation techniques and fertilization programs (Downey 
et al., 2004; Jackson & Lombard, 1993) and by scion/rootstock in-
teraction with soil type (Lavoie-Lamoureux et al., 2017), Grenache 
is highly influenced by vigor, because anthocyanin accumulation is 
favored in balanced, high-vigor vines, whereas in Carignan, the an-
thocyanin content varies under the combined effects of vigor, root-
stock, berry size, and vintage (Edo et al., 2014).

Appropriate statistical tools are required for identifying the 
factors that have the strongest effects on quality and stress during 
growth (plant) and maturation (grape). Predictors, such as linear or 
polynomial regressions, are global models, where a single predictive 
formula is applied over the entire dataset. However, when the data 
interact in complex, nonlinear ways, assembling a single global model 
is challenging. Classification-type problems can be resolved when a 
categorical dependent variable (e.g., class and group membership) is 
predicted from one or more continuous and/or categorical predictor 
variables. Generally, the purpose of analyses involving tree-building 
algorithms is to determine a set of if–then logical (split) conditions 
that permit accurate prediction or classification of the data.

The aim of this study was to evaluate the efficacy of a multivar-
iate nonparametric technique of classification and regression trees 
(CART) for identifying and selecting the most important factors af-
fecting water stress in vineyards with a heterogenic orography (e.g., 
leaf water potential [LWP], concentration of ABA, surface leaf tem-
perature [Ts]); analyze the effect of these interactions on final grape 
and wine quality (e.g., composition of anthocyanins and procyani-
dins); and improve the rapidity with which ABA can be measured in 
grapevine leaves. The heterogeneity of the vineyards in the Priorat 
wine region requires the collection of a considerable amount of data 
and more robust statistical tools to better understand the factors af-
fecting water stress in vineyards. Because of the increasing drought 
and higher temperatures occurring in the Priorat, the Priorat is highly 
vulnerable to future climate change. Here, we explore applications of 

multivariate nonparametric classification techniques such as CART, 
a type of decision tree technique (Breiman et al., 1984), given that 
traditional methods are not appropriate for analyses because of the 
characteristics of the variables studied.

2  | RESULTS

2.1 | LWP and ABA

LWP and ABA measurements are shown in Tables 1 and 2. After 
characterizing differences in variability through a nonparametric 
Kruskal–Wallis test (Table 3) at a significance level of 5%, Pearson 
correlations between the measured variables and their significance 
(Table 4) were calculated. The classification of sites was captured 
by the Classification and Regression Trees (CART) to help identify-
ing key variables in the data. The most meaningful predictors were 
used to create the tree. Plant, grape and wine data were collected 
to evaluate the interactions. However, to obtain reliable classifi-
cation and regression trees, a previous selection of child nodes 
was completed using the easiest-to-measure variables in the field 
and the easiest-to-analyze variables in the laboratory. Each round 
of data is known as ‘nodes’. Each node will have an if–else clause 
based on a labeled variable. Based on that question each instance 

TA B L E  1   Values of predawn leaf water potential (PLWP, ΨPLWP 
[MPa]) and midday leaf water potential (MLWP, ΨMLWP [MPa]) for 
Sites 1, 2, 3, 4, and 5 at two different stages of growth—pea size 
(PS) and veraison (V)—at predawn and midday

Site

Pea size (PS) Veraison (V)

ΨPLWP
Predawn

ΨMLWP
Midday

ΨPLWP
Predawn

ΨMLWP
Midday

1 −0.33 (0.04) −1.29 (0.05) −0.47 (0.12) −1.38 (0.07)

2 −0.43 (0.08) −1.21 (0.16) −0.54 (0.13) −1.44 (0.08)

3 −1.43 (0.01) −1.48 (0.04) −0.82 (0.21) −1.76 (0.07)

4 −1.27 (0.04) −1.39 (0.05) −0.47 (0.05) −1.58 (0.06)

5 −1.28 (0.03) −1.50 (0.00) −0.92 (0.08) −1.50 (0.04)

Note: Values are mean and standard deviation.

TA B L E  2   Values for abscisic acid concentration (ABA) for Sites 
1, 2, 3, 4, and 5 at two different stages of growth—pea size (PS) and 
veraison (V)—at predawn and midday

Site

Pea size (PS) Veraison (V)

[ABA] 
Predawn

[ABA] 
Midday

[ABA] 
Predawn

[ABA] 
Midday

1 152.8 (4.7) 195.0 (33.4) 162.8 (7.6) 243.5 (13.1)

2 181.1 (21.4) 226.4 (5.9) 92.5 (8.7) 115.5 (3.6)

3 152.0 (17.3) 229.0 (42.2) 97.3 (15.5) 89.9 (8.6)

4 211.8 (5.5) 423.0 (80.7) 83.7 (2.4) 134.8 (38.7)

5 196.3 (5.9) 400.1 (19.8) 114.9 (12.7) 178.8 (9.3)

Note: Mean and standard deviation.
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of input will be directed/routed to a specific leaf-node which will 
tell the final prediction. The tree depth is chosen as the most num-
ber of levels desired in the decision tree. The first node is split 
based on the most important predictor, then the following child 
nodes are broken down to separate out the next variable. Entering 
a value, the program sets the minimum number of cases an internal 
node is to be split. Three times terminal node limits allow a reason-
able number of splitters.

2.1.1 | CART: WATER STRESS AND 
PLANT GROWTH

Plant growth parameters that differed significantly (p value ≤  .05) 
between plots were berry weight and total leaf area/kg (TLA/kg) 
at the veraison (V) and ripening (RP) stages. Water stress indica-
tors that differed significantly between plots were LWP and [ABA] 
at pea size (PS) and veraison(V) and surface temperature (Ts) at pea 
size (PS). Pearson correlations revealed that LWP at PS measured at 
8:00, ABA at V measured at 14:00, and Ts at PS measured at 8:00 
were negatively correlated with the synthesis of anthocyanins in 
wine for all anthocyanin families (acylated and non-acylated). LWP 
and Ts showed stronger correlations when these parameters were 
measured earlier in the day (8:00) or at the beginning of the vegeta-
tive cycle (PS). The same variables—LWP at PS measured at 8:00, 
ABA at V measured at 14:00, and Ts at PS measured at 8:00—were 
positively correlated with TLA/kg V.

As a result from this the CART, LWP at PS measured at 8:00 
was the most important predictor allowing to create the first node 
that separated early mesoclimates (Nodes 6 and 7) from late me-
soclimates (Nodes 4 and 5). Nodes 2 and 3 were dependent on 

TA B L E  3   Analysis of the differences between groups using the 
nonparametric Kruskal–Wallis test

Conditions Hour
Phenological 
stage

p 
value

Leaf water potential Predawn PS .014

Midday PS .014

Midday V .017

Abscisic acid content Predawn PS .019

Midday V .017

Leaf surface 
temperature

Predawn PS .012

Total anthocyanins Wine .019

Glycosylated 
anthocyanins

Wine .014

Acetyl glycosylated 
anthocyanins

Wine .011

Berry weight .009

Total leaf area/kg V .024

RP .019

Abbreviations: PS, pea size; RP, ripeness; V, veraison.
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ABA at PS (late mesoclimate) and V (early mesoclimate). However, 
obtaining a partition of the five sites [ABA] at V was decisive and 
resulted in the generation of Nodes 8 and 9. As a consequence, the 
sites with the highest probability of being classified with LWP values 
≤−0.863 (8:00 at PS) were the parcels located in the town of Molar 
(Sites 1 and 2). Hence, Site 1 had levels ≥ABA 175.9 ng/g (14:00 at V) 
(Figure 1). Site 3, within the late mesoclimate area, had a lower prob-
ability of having ABA ≤ 183.9 ng/g (morning at pea size) PS. Fewer 
factors differentiated Site 3 (gray) from the other sites; it was thus 
separated in an early node as in Sites 1 and 2 (blue and red) of the 
early mesoclimate area (Figure 1).

2.1.2 | CART: ABA, LWT, AND Ts

The most significant variables for characterizing and classifying the 
observations were [ABA], LWP, and Ts. Ts was selected given that it 
had a direct relationship (positive Pearson correlation) with the veg-
etative growth parameters of TLA/kg and berry size. The Pearson 
correlation produced a clear classification tree (Figure 2) based on 

the Ts, at the root node, it generated three child nodes (2, 3, and 
4). This first classification by Ts at PS measured at 7:00 resulted in 
a purity of 100% for Site 4, but the Ts at PS measured at 12:00 was 
clearly the most important variable for Sites 5 and 6 under a second 
child node classification. However, the early sites (1 and 2) were dif-
ferentiated by [ABA] at PS measured at 8:00.

Although many authors have described the effect of Ts on the 
quality of grapes during the ripeness period (Greer & Weedon, 2013; 
Spayd et al., 2002; Van Leeuwen et al., 2009), the analysis of the tree 
shows the magnitude of the effect of Ts from the early stage of PS. 
Measurements taken at 8:00 at PS were more likely to have values 
of Ts ≤ 22.0°C in the late mesoclimate area. Child Node 4 indicates 
that Sites 1 and 2 had a high probability of being classified within the 
temperature range 22°C ≤ Ts ≤ 24°C (8:00 at PS). Using the CART 
greatly facilitates the characterization of the importance of the clas-
sification of vineyards, especially in the late area (Sites 3, 4, and 5). 
Furthermore, Sites 3 and 5 were located in equivalent positions in 
the tree (purity 50%); thus, the differentiation of both plots from 
other plots depended on the same factors. Remarkably, both Site 
3 and Site 5 had similar TLA and thus greater water loss. (Figure 2).

F I G U R E  1   Classification and regression trees by water stress indicators (LWP, ABA, and Ts). Site 1 (red), Site 2 (blue), Site 3 (gray), Site 4 
(orange), and Site 5 (green). Root node represents the entire population and splits based on the most important predictor, then the following 
child nodes are broken down to separate out the next parameters. The outer circle represents the data percentages of the previous step 
per each vineyard, where each color represents the data from a single vineyard. The inner circle pie is the percentage that results from 
answering the if–else question. The circles on the right branch correspond to those vineyards with higher values and those on the left to 
those with lower values, in answer to the if–else question (values are shown in brackets)
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2.1.3 | CART: ANTHOCYANINS IN WINE QUALITY

In this CART analysis, Pearson correlations of plant parameters 
and wine composition in each site were calculated. Both LWP at PS 
measured at 8:00 and LWP at V measured at 14:30 were correlated 
with ANT (mg/L), A-G (mg/L), and A-AG (mg/L). However, lower cor-
relation coefficient values were obtained for LWP at V measured at 
14:30 pm. Despite the difficulty of establishing direct links between 
plant parameters (TLA/kg at V) and wine composition (anthocya-
nins), robust correlations were found for Ts at PS measured at 7:00 
and wine anthocyanins (non-acylated and acylated). The most sig-
nificant relationship was for the correlation between TLA/kg V and 
A-AG (mg/L).

Based on the easy-to-measure parameters in the vineyard, 
such as Ts and the ratio of leaf area and production at V (TLA/
kg V), we could characterize the relationship between the water 
status of plants and plant growth to the quality of the final wine 
product. This classification of plots allowed us to determine pat-
terns of heterogeneity between plots. Thus, the CART classifies 
sites through the nodes to distinguish among different vineyards. 
(Figure 3).

The tree shows that LWP (Node 1) at PS permitted the differ-
entiation of early (EM) and late (PO) sites. Values within the range 
−1.45 ≤ LWP ≤ −0.862 described the late ripeness sites (4, 5, and 
6), while the range −0.863 ≤ LWP ≤ −0.290 classified the warmest 
sites (1 and 2). In the late mesoclimate area (Node 2), sites were sep-
arated by anthocyanins; Sites 3, 4, and 5 were classified together by 
Node 5 and were primarily influenced by the LWP at 14:30 in V. This 

finding suggests that the topography of the vineyard location, as 
well as the climate and soil type, had an important influence on wine 
quality. However, the parameter that classifies vineyards was ABA at 
14:00 V (≤175.9 ng/g) by Node 3 and was necessary for divided Sites 
1 and 2 (early mesoclimate). Thus, LWP did not affect the phenolic 
content of the wines.

3  | DISCUSSION

Measurements of the distribution of soil water revealed that the dif-
ferences detected among the five sites reflected heterogeneity in 
soil particle size, depth, and texture. Sites 1 and 2 (El Molar) on a 
clayey soil had a higher water-holding capacity, than that of Sites 
3, 4, and 5 (Porrera), which were steep with more stones and soil 
was primarily composed of larger elements. Thus, the vines in the 
town of El Molar (Sites 1 and 2, early mesoclimate) had more avail-
able water than those in Porrera (Sites 3, 4, and 5, late mesoclimate), 
despite the lower rainfall recorded during the cycle. Predawn leaf 
water potential (PLWP) reflects soil water availability as perceived 
by the plant and midday leaf water potential (MLWP) measures leaf 
water potential under maximum daily water demand. Therefore 
the higher soil water content at Site 1 and Site 2 led to more vigor-
ous plants because LWPs were less negative. In Porrera, because 
of the lower water retention in soils, the plants had more negative 
LWPs than those in Molar. In addition, at approximately the pea size 
phenological stage, water transpiration by leaves was higher and 
LWPs showed more negative values because of the low soil water 

F I G U R E  2   Classification and regression trees by Ts (surface canopy temperature). Site 1 (red), Site 2 (blue), Site 3 (gray), Site 4 (orange), 
and Site 5 (green). Root node represents the entire population and splits based on the most important predictor, then the following child 
nodes are broken down to separate out the next parameters. The outer circle represents the data percentages of the previous step per each 
vineyard, where each color represents the data from a single vineyard. The inner circle is the percentage that results from answering the 
if–else question. The circles on the right branch correspond to those vineyards with higher values and those on the left to those with lower 
values, in answer to the if–else question (values are shown in brackets)

Root node: 1

Purity(%): 20
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content in the stony and poor soil. It is known that Vitis genotypes 
show either an isohydric or anisohydric response to water stress. In 
isohydric cultivars, strong control of stomatal conductance by ABA 
reduces transpiration, obviates decreases in water potential, and 
delays the onset of stress tolerance mechanisms. In contrast, weak 
ABA control of stomatal closure does not avoid midday decreases in 
water potential in anisohydric grapevines (Lovisolo et al., 2010). In 
addition, during periods of low water availability and higher transpi-
ration water demand, many authors have observed that a hydraulic 
signal can also have a controlling effect on stomatal conductance, 
and this also relates to both patterns, isohydric species maintain rel-
atively stable LWPs precisely because of their more strict stomatal 
control, whereas anisohydric species would show a looser regulation 
of transpiration. What is more, the degree of isohydry can be related 
to a reduced soil water availability (lower, more negative soil water 
potential, Ψsoil) may affect plant conductance in two ways, by lower-
ing its hydraulic conductance (KH) and/or its leaf conductance (gLeaf). 
These reductions, have opposite effects on the water potential dif-
ference through the plant (ΔΨ  =  |ΨLeaf  − Ψsoil|), whereas lower KH 
increases ΔΨ, lower gLeaf decreases ΔΨ (Martínez-Vilalta & García-
Forner, 2017; Martínez-Vilalta et al., 2014). Thus, there is a tight co-
ordination between hydraulic and water vapor transport at the plant 
level (Sperry & Love, 2015).

Parameters that best discriminated between sites were LWP 
and ABA content, followed by berry size and anthocyanin concen-
tration. Around veraison, higher correlations between LWP and 
ABA content were obtained. After analysis of the Pearson correla-
tions, the best results were obtained for the veraison phenological 
stage where vapor pressure deficit (VPD) is lower. ABA concentra-
tions in Carignan vines at different sites (early (1 and 2) and late (3, 
4, and 5)) are shown in Table 4. Higher concentrations of ABA were 
observed in all vineyards when measurements were taken at noon. 
This observation reflects increased water stress in all plots and 
confirmed measurements of LWP. It also established a direct cor-
relation between the concentration of ABA and LWP (R2 =  .918). 
The strongest correlations were observed for the first measure-
ments in the morning, while measurements at noon showed greater 
dispersion, R2 (.7175). Thus, the CART analysis could distinguish 
among sites of the later mesoclimate region based on ABA at pea 
size stage.

In Figure 1, PLWP at pea size separated sites within mesoclimate 
and reached values of −0.86 for the early and −1.45 for the late me-
soclimate. Around veraison, ABA concentration classified vineyards 
in the warmest area with values of 258 ng/g in Site 1 and 175 ng/g 
in Site 2. In the coldest area, the values were lower and did not sep-
arate at such wide intervals. At Site 3, ABA concentration did not 

F I G U R E  3   Classification and regression trees by total anthocyanins. Site 1 (red), Site 2 (blue), Site 3 (gray), Site 4 (orange), and Site 5 
(green). Root node represents the entire population and splits based on the most important predictor, then the following child nodes are 
broken down to separate out the next parameters. The outer circle represents the data percentages of the previous step per each vineyard, 
where each color represents the data from a single vineyard. The inner circle pie is the percentage that results from answering the if–else 
question. The circles on the right branch correspond to those vineyards with higher values; those on the left to those with lower values, in 
answer to the if–else question (values are shown in brackets)
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exceed 183 ng/g at pea size; instead, values were higher in Sites 4 
and 5 but did not differentiate vineyards. Values for these plots at 
veraison were lower than in pea size; Site 3 had values as high as 
164 ng/g, and Site 5 had values as high as 188 ng/g. The three most 
similar sites in ABA at veraison at noon were Sites 2, 4, and 5. Thus, 
the ABA concentration at veraison is important for differentiating 
most of the plots, including Sites 1, 2, 4, and 5.

In Figure 2, Ts at pea size measured at predawn permitted sepa-
ration by temperature ranges and isolated Site 2 with temperatures 
between 19.8°C and 22°C. The early sites were separated by ABA 
at pea size at predawn (with higher values in Site 2, considering that 
Site 1 had a rocky soil, while Site 2 was composed by finer elements). 
Plots of the coldest area were only separated by Ts at pea size at 
noon. Site 5 was located at higher elevation and experienced higher 
temperatures at noon (36.6°C) than Site 3 (35.2°C). Ts at veraison did 
not provide useful information because the plots experienced similar 
levels of stress. Thus, the characterization of the plots by Ts can be 
predicted at pea size but not around veraison.

In Figure 3, PLWP at pea size separated sites with different me-
soclimates. Sites 1 and 2 differed in ABA around veraison at noon 
(Figure 1). The ABA concentration in Site 1 was twice that of Site 2; 
thus, these plots did not differ in the concentration of anthocyanins 
unlike the colder sites. Sites in the cold mesoclimate were classified 
by the anthocyanins in wine. Although there was a strong correlation 
with anthocyanins in grapes, wine correlated with other variables (as 
evidenced by Pearson correlations greater than 0.7). Plants at Site 2 
were the least vigorous with anthocyanin values less than 339 m/L. 
Because plants at Sites 3 and 4 showed more vigor, the effect that 
distinguished the plots was MLWP at veraison, as the water stress 
was increased in Site 3 (LWP of −1.82) and Site 4 (LWP of −1.6).

Even if the action of ABA in occlusive cells is complex and not 
yet fully understood, Vitis genotypes apparently exhibit different 
levels of drought adaptation that differ in key steps involved in 
ABA metabolism and signaling (Rossdeutsch et al., 2016). In gen-
eral, Vitis vinifera varieties, displayed more pronounced responses 
to water deficit in comparison to other Vitis genotypes. Moreover, 
Dal Santo et al., (2016) proposed a cause–effect link between the 
physiological grapevine plant conditions and the intensity of the 
gene expression changes. Finally, in regards to grape composition, 
many key genes (VvMybA1 and VvUFGT) of the flavonoid biosyn-
thetic pathway are also up-regulated during ripening, resulting in 
a berry quality increase (Ferrandino & Lovisolo,  2014). ABA ac-
cumulation and the induction of flavonoid biosynthesis increase 
the quality of berries by facilitating the accumulation of secondary 
metabolites, especially polyphenols. Under water stress, polyphe-
nolic concentrations increase in berries both in isohydric varieties, 
such as Grenache (Coipel et  al.,  2006), Tempranillo (Santesteban 
et al., 2011), Manto negro (Medrano et al., 2003), and in anhyso-
hydric varieties, such as Cabernet Sauvignon (Bindon et al., 2008; 
Kennedy et al., 2002), Cabernet Franc (Matthews & Anderson, 1988), 
and Muscat of Alexandria (Dos Santos et al., 2007), with different 
temporal dynamics related to ABA induction. Aquaporins are an-
other target for ABA to regulate both water and carbon fluxes. 

ABA affects aquaporin regulation in response to abiotic stresses 
(Kaldenhoff et al., 2008) by modulating their gene expression and 
protein abundance or activity, affecting in cellular water relations 
and cell metabolism in response to water stress. Aquaporins can 
be modulated at several levels, via transcription, translation, traf-
ficking and gating (opening and closing of the pore) and by environ-
mental and developmental factors (Chaumont & Tyerman, 2014), 
such as: irradiation (Lopez et al., 2013; Prado et al., 2013), tran-
spiration (Laur & Hacke, 2013; Sakurai-Ishikawa et al., 2011), cir-
cadian rhythms (Hachez et al., 2008), abscisic acid (ABA) feeding 
(Pantin et al., 2013; Shatil-Cohen et al., 2011), auxin feeding (Péret 
et  al.,  2012) and shoot wounding (Sakurai-Ishikawa et  al.,  2011; 
Vandeleur et al., 2014). Coupled with that, Castellarin et al., (2007) 
showed that water stress favored the accumulation of more hy-
droxylated and methylated anthocyanins (peonidin 3-O-glucoside 
and malvidin 3-O-glucoside). In addition, the degradation of an-
thocyanin would probably be induced by high temperatures with 
an oxidative stress leading to the formation of H2O2, with the sub-
sequent induction of peroxidases and of oxidoreduction enzymes 
(Mori et  al.,  2007). In contrast, little is known about the impact 
of temperature on proanthocyanidin accumulation in grape skins; 
berries are able to compensate the initial effects of temperature 
on proanthocyanidin biosynthesis resulting in similar concentra-
tion of proanthocyanidin at harvest (Cohen et al., 2012).

Overall, the effect of variables on the classification of the trees 
was closely tied to the water scarcity of the plants. In viticulture 
science it is of particular importance to evaluate whether the rela-
tionships between physiological parameters fitted to data through 
these powerful statistical methodologies. In addition, some au-
thors (Brillante et al., 2017) have shown that well-trained machine-
learning models can be used to capture the essential relationships 
between plant physiology and the environment. As an example, 
Brillante et al.,  (2016) have for the first time modeled grapevine 
water stress. This models will be important to design experiments 
and provide with validation tests to demonstrate the efficiency of 
the models.

4  | CONCLUSIONS

To assess water stress in grapevines, both LWP and concentration 
of ABA are important for characterizing the physiology of the grow-
ing season and its effects on phenol grape quality. A methodology 
that permits rapid and accurate responses to ABA to be determined, 
that indicates the water deficit, and that measures vegetative and 
productive growth (berry weight and TLA/kg) can help elucidate 
how periods of water scarcity and high temperatures affect the 
synthesis of phenolic compounds. Prediction of the most impor-
tant water stress parameters for distinguishing several sites in this 
study permitted a hierarchy of the five vineyards to be established. 
Analysis by CART has some advantages over other methods of clas-
sification or prediction for evaluating data from a pool of measure-
ments of multiple vineyards. The first advantage is that this method 
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is nonparametric and thus does not require any assumptions regard-
ing the distribution of the predictors, the response or the relation-
ship between them, and their possible interactions. Another reason 
for the growing popularity of this technique is its interpretability. 
In general, the intuitive nature of decision trees makes them sim-
pler to interpret relative to other methods of multivariate regres-
sion. The methodology presented here can be robustly applied to 
large datasets to detect patterns without making any assumptions 
about the distribution or variance of the data. The information from 
these types of studies can also be useful for making better man-
agement decisions for viticulture systems. A key advantage of the 
tree structure is its applicability to a wide variety of variables. In the 
particular case of the Priorat wine growing area, due to the complex 
orography, the CART technique is useful to segment several varied 
groups of plant and grape composition data, from very hetereogene-
ous vineyards. This study indicates the CART technique can be used 
to interpret larger data sets from different crops and other areas to 
help interpret the physiological results obtained.

5  | MATERIAL S AND METHODS

5.1 | Site location and plant material

The study was performed at five sites: two sites (Site 1 and Site 2) 
located in an early mesoclimate (El Molar) and three sites (Site 3, Site 
4, and Site 5) in a late-ripening mesoclimate (Porrera) at different 
altitudes. Sites of the early region El Molar (EM) were located at: Site 
1 (41°9′90″N; 0°42′75″E, elevation 100m) and Site 2 (41°9′40″N; 
0°42′38″E, elevation 200m). The following three sites were selected 
for the late region in Porrera (PO): Site 3 (41°10′51″N; 0°52′25″E, 
elevation 410  m), 450  m: Site 4 (41°10′50″N, 0°52′29″E eleva-
tion 450m), and Site 5 (41°10′57″N, 0°52′32″E elevation 490 m). 
Carignan old bush vines were studied (50–60 years) with an average 
load of eight buds per vine and were planted in a density of 5000–
6000 vines ha−1. Vines were planted in steep terraces with a slope of 
15%–25%. The soils were composed of slate conferring a stony, dry, 
and poor soil. Furthermore, the soils were well-drained, as they con-
tained a high proportion (between 70% and 90%) of large particles 
more than 2 mm in diameter.

5.2 | Climatic characterization during vintage in 
both regions

Weather stations (DECAGONmodel) located in each vineyard  
recorded various climate data, including temperature (°C), humid-
ity (%), rainfall (mm), and radiation (W/m2). VPD (vapor pressure 
deficit) was also calculated. The early region is located near the 
Ebro river, is characterized by higher temperatures in summer, 
and lacks cool breezes. In contrast, the late region experiences 
sea breezes that delay maturation. Vineyards located on hillsides 
and terraces are drier; however, the effect of the sea breeze  

(i.e., garbinada) decreases summer temperatures, increases the 
relative humidity, and decreases evaporation, resulting in delayed 
ripening. However, the cold, dry wind that blows from the north-
west along the Ebro basin (i.e., serè) also affects the wine growing 
area of Priorat. The climate of the DOCa (Denominación de Origen 
Calificada) is characterized by cold temperatures during the winter 
and hot temperatures during the summer. The annual precipitation 
is between 450 and 500 mm, and rains are abundant between the 
end of October and November.

Data that characterize climatic variation between small 
plots are essential for improving crop management under such  
extreme conditions. The weather station (Agro-climatic network 
in Catalonia, XAC) provided supplemental data on the weather 
conditions in the study area. The climate in the Priorat region 
(Tarragona, Spain) is characterized by high temperatures during 
the summer, drought, and steep poor stony soils and is thus highly 
vulnerable to climate change. In the early mesoclimate (El Molar, 
EM), the minimum temperature differences between Site 1 and 
Site 2 were 7°C, except in early March to mid-May and the first 
3 weeks of July, where the minimum temperature differences were 
up to 3°C lower in Site 1. These differences, along with a slightly 
higher maximum temperature in Site 2, resulted in a higher thermal 
amplitude (AT) on the vineyard, especially from mid-May to early 
July and from veraison (V) to ripeness (RP) (August 15–September 
21). Approximately 40% and 42% of the total precipitation, in EM 
(El Molar, early ripening site) and PO (Porrera, late-ripening site), 
respectively fell in April, and the levels of precipitation were low 
during the summer months. Only moderate rain values were re-
corded in June (20 and 19 mm in EM and PO, respectively), indicat-
ing that the summer was dry. The average temperature during the 
summer months was high, reaching 23.2°C in June, 25.5°C in July, 
and 25.8°C in August in EM and 21.4°C, 23.4°C, and 23.9°C in PO 
in June, July, and August, respectively.

5.3 | Phenology

The effect of climate on phenology resulted in greater variability in 
budbreak and veraison (V) dates depending on previous budbreak 
temperatures and those recorded in the spring. A temperate vintage 
budbreak was delayed by 8 days in Sites 3, 4, and 5 and by 11 days in 
Sites 1 and 2 when compared with a warm vintage. However, in a tem-
perate vintage, the differences were less notable at the beginning of 
bud break (BB) and veraison (V) between the early and late regions (3 
and 5 days, respectively). The high temperatures in spring resulted in 
an earlier fruit set in the late region, which matched the date of fruit 
set in the early region. Moreover, the extended summer at the end 
of the ripening period caused the harvest date to be 15 days prior to 
the normal harvest date in the region. Most earlier studies examining 
the effect of climate on phenology have detected reductions in the 
amount of time between phenological stages; however, most pre-
vious studies have been conducted in cool climate vineyards (Bock 
et  al.,  2011; Jorqueta-Fontena & Orrego-Verdugo,  2010). Date of 
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harvest varied by 15 days between regions in the warm year, 10 days 
in the temperate year, and only a week in the warm year with sea-
sonal temperature variability. A delay in bud break did not result in a 
delay in harvest; warm years in the late region resulted in an earlier 
harvest date. These observations are associated with high tempera-
tures occurring in late August and even September in the Priorat, 
which results in accelerated grape ripening.

5.4 | Yields and grape ripening

Berry ripening was carefully monitored, and chemical analyses of 
the resulting wines were evaluated. During harvest, weekly sam-
ples of 400 berries were randomly harvested and then analyzed. 
Sugars (Brix), ATT (g/L total tartaric acidity), and the pH of the grape 
juice were determined. After crushing the whole berries, extraction 
of phenolic compounds was performed following a modified ver-
sion of the Glories method (Nadal et al., 2010) to determine total 
(ANT T) and extractable anthocyanins (ANT E); %EA (extractability 
of Anthocyanins), %SM (seed maturity), and TPI (total polyphenol 
index) were also measured. OIV methods (International Organisation 
of Vine and Wine) were used to analyze alcohol by volume (ABV), 
total tartaric acidity (ATT), pH, anthocyanins, DMACA (flavan-3-ol 
by derivatization with p-dimethylaminocinnamaldehyde), and total 
tannins in wine. ANOVA was performed using the general linear 
model procedure. The Tukey test was used for post hoc analysis 
(XLSTAT statistical package, EXCEL) between plots.

5.5 | LWP

The LWP in each phenological stage, PS (pea size), V (verai-
son), and RP (ripeness), were measured using a pressure cham-
ber (207  bar/3000 PSI pressure) (Model 600 PMS Instruments, 
Oaklands Park, Wokingham, United Kingdom) according to the tech-
nique described by Scholander et al.,  (1965). Leaf water potentials 
are reference measures of vine water status that have enabled solid 
reference thresholds of vine water status to be established. To en-
sure consistent readings, predawn LWP (ΨPLWP) was measured one 
to two hours before sunrise at 8:00 (6:00 solar time), when grape-
vine water status is at a maximum (Carbonneau, 1998), and midday 
LWP (ΨMLWP) was measured at 2:30 (12:30 solar time). In addition, 
primary (PLA) and secondary leaf (SLA) areas were measured during 
the PS, V, RP, and PH (postharvest) stages.

5.6 | Sample leaf preparation for ABA determination

Several long and tedious methods have been developed for the ex-
traction and determination of ABA in plant tissue; however, some 
studies have developed more rapid approaches for the determina-
tion of phytohormones in plant material other than vine leaves (Riov 
et  al.,  1990; Setha et  al.,  2005). However, the establishment of a 

rapid method for determining ABA in vine leaves (López-Carbonell 
& Jáuregui., 2005), along with measurements of LWP, could provide 
important information for the classification of the water status of 
the vineyards.

Healthy leaves having reached approximately two-thirds of 
their definitive size were sampled from five vines per block and 
were bagged using Ziploc bags covered with a metalized high-
density polyethylene reflective film to avoid additional leaf heat-
ing. This approach prevents the degradation of phytohormones, 
such as ABA. Samples were stored at −20°C. The methodology 
of López-Carbonell et  al.,  (2009) was used for the extraction of 
ABA in Carignan leaves. Extraction solvent (Solution 1) was pre-
pared with acetone/water/acetic acid (80:19:1, v/v/v). The solvent 
temperature was kept at −20°C. Reconstitution solvent (Solution 
2) was prepared with water/acetonitrile/acetic acid (90:10:0.05, 
v/v/v). This methodology was improved by carefully weighing 
4–5  g of fresh weight from a pool of different leaf samples and 
lyophilizing samples in a Telstar LyoQuest freeze dryer with a con-
denser temperature of −55°C, followed by powdering with mor-
tar and pestle. Dried samples were carefully weighed in a 1.5-ml 
Eppendorf tube. Next, 1 mg of ABA internal standard was added 
to each of the three replicates at the beginning of the extraction 
procedure. A volume of 1.2 ml of extraction solvent (Solution 1) 
with the 300  mg of sample inside the Eppendorf was extracted 
in triplicate, and temperatures remained cool while samples were 
manipulated. The Eppendorf mixture was vortexed and left over-
night at −20°C, followed by centrifugation at 15,000 g for 10 min 
at 4°C. Supernatants were pooled, dried under a nitrogen stream 
(Stuart, SBH200D), and reconstituted in 445 μl of reconstitution 
solvent (Solution 2), followed by stirring, vortexing, and centrifu-
gation (10,000 g, 10 min). Samples were filtered through a 0.22-μm 
PTFE filter (Millex Syringe-driven Filter Unit). Next, 5 ml of each 
sample was injected into the LC–ESI–MS/MS system. Internal 
standards were used for the calibration of ABA. The calibration 
curves for ABA showed high linearity (R2 = .9959). The regression 
equation for the relationship between area (EIC) and ABA concen-
tration (mg/L) was ABA = 1 × 106Area − 138.14. ABA standards 
were prepared daily. High correlation coefficients (r > .995) were 
obtained for concentrations ranging from 0.019 to 0.272 mg/L.

5.7 | Berry sampling and winemaking

The evolution of grape ripeness and wine composition at the five 
sites was followed at each of the two municipalities during the early 
(EM) and late (PO) mesoclimate. A total of 400 grape berries were 
randomly sampled. The total sugar content was measured by a re-
fractometer. The pH was measured after homogenization of the 
juice. Small-scale fermentations were performed for each site in 
triplicate. Grapes were randomly sampled, de-stemmed, crushed 
into stainless-steel wine vats, and fermented after 3  days of cool 
maceration to extract the color and following the fermentation of all 
sugars. Potassium metabisulfite was added to a final concentration 

UNIVERSITAT ROVIRA I VIRGILI 
PRIORAT VINEYARD VULNERABILITY AND WATER STRESS ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE. 
ESTIMATED PRIORAT WINE CONSUMPTION IN HUMANS 
Antoni Sánchez-Ortiz 
 
 



10 of 12  |     SÁNCHEZ-ORTIZ et al.

of 20  ppm to preserve the products of oxidation processes until 
bottling. The wine did not undergo malolactic fermentation. The 
composition of wine was determined at all five sites. Specifically, 
alcohol by volume (ABV), total acidity (TA), pH, total anthocyanins 
(Ribéreau-Gayon et  al.,  2000), tannins, and flavan-3-ol (DMACH 
method) were determined.

5.8 | HPLC analysis of anthocyanins

High-performance liquid chromatography (HPLC) was used to quan-
tify the amount of anthocyanins and procyanidins in wines from 
the five treatments. Triplicates from each sample were analyzed. 
Anthocyanins were quantified using calibration curves of the most 
similar compound: malvidin-3-glucoside. Total amounts of anthocya-
nins were given in mg/g berry (grapes) and mg/L (wines). The different 
phenolic compounds analyzed were tentatively identified according to 
their order of elution and the retention times of pure standards (cat-
echin, epicatechin, catechin gallate, epicatechin gallate, procyanidin 
B1 and B2) (Fluka). Procyanidin dimers in grape extracts were identi-
fied by analytical HPLC and comparison with authentic standards. The 
(−)-epicatechin O-gallate and B2-3′-O-gallate were collected from the 
HPLC column, and their structures were elucidated by NMR.

5.9 | Chromatographic conditions for 
anthocyanin analysis

Column Zorbax Eclipse Plus C18 150  ×  2.1  mm, 3.5  µm (SFF-
CXX, P/N 959763-902) and Precolumn Zorbax Eclipse Plus-C18 
12.5 × 4.6 mm, 5 µm (SFF-C002, P/N 820950-936) were assembled 
over P/N 820888-901. HPLC conditions: injection volume 5 µl; mo-
bile phase A Water HPLC-grade (0.2% trifluoroacetic acid); mobile 
phase B methanol (0.2% trifluoroacetic acid); column temperature 
50°C; Detector DAD (diode array detector) (Peak width > 0.1 mm 
(2 s); storage of all 190–700 nm step 2 nm; slit 4 nm; margin for nega-
tive absorbance 100 mAu. ITMS conditions: ionization source ESI 
positive; ion trap analyzer (capillary 3,500 V, target mass 493 m/z, 
comp stability 100%, trap drive level 100%, scan 100–900 m/z, ICC 
smart target 500,000, max accu time 200 ms, average 5). The an-
thocyanidin monoglucosides of the skin extracts and wines were 
chromatographed by HPLC using a Beckman Ultra sphere (C18) 
ODS (250 × 4.6 mm i.d.) column, and detection was carried out at 
520 nm. The solvents were A, H2O/HCOOH (9:1), and B, CH3CN/
H2O/ HCOOH (3:6:1). The gradient was 20%–85% B for 70  min, 
85%–100% B for 5 min, and then isocratic for 10 min at a flow rate of 
1 ml/min. The content in free anthocyanins was determined using a 
calibration curve (based on peak area), which was established using 
malvidin 3-glucoside. Standard solutions were subjected to the same 
procedure [concentration (mg/L) = 803.7 × (do − d) + 15.13].

The contents of free anthocyanins were determined using cali-
bration curves (based on peak area), which were established using 
malvidin 3-glucoside. Standard solutions were subjected to the same 

procedure (y = 0.7968x + 7.5756, R2 =  .9774). The anthocyanidin-
3-monoglucosides and respective acetylated and coumaroylated 
glycosides were identified based on their UV-Vis spectra and reten-
tion times. The anthocyanidins were identified by HPLC by compar-
ison with internal standards. The calibration curves were obtained 
by injecting standards with different concentrations of malvidin 
3-glucoside (Sigma). The range of linear calibration curves was from 
0.1 to 1.0 mg/L for the lower concentration compounds (R2 > .996), 
0.1 to 5.0  mg/L for intermediate concentration compounds 
(R2  >  .987), and 10.0 to 200.0  mg/L for the higher concentration 
compounds (R2 > .987). Unknown concentrations were determined 
from the regression equations, and the results were expressed in mg 
of malvidin 3-glucoside per berry. Repeatability of this method from 
extraction to HPLC analysis for four samples of the same batch of 
grape skins had a coefficient of variation <7%.

5.10 | Statistics

The water potential, leaf temperature, and grape and wine com-
position were evaluated through one-way ANOVA, and when 
p  <  .05, Tukey post hoc tests were used. A Pearson correlation 
matrix was calculated for all parameters with a significance level 
(α) of 0.05.

CART (classification and regression trees) analysis was per-
formed using XLSTAT (Microsoft Excel statistical add-in). The 
decision tree method is a powerful and popular predictive machine-
learning technique that is used for both classification and regres-
sion (Breiman et  al.,  1984). Thus, the methods are also known as 
Classification and Regression Trees (CART). The algorithm of de-
cision tree models repeatedly partitions the data into multiple 
subspaces, so that the outcomes in each final subspace are as ho-
mogeneous as possible. Among all measured variables, the CART 
technique acts as a predictive model that shows the more signifi-
cant variables to distinguish each final subspace. The tree models 
predict the outcome by asking a set of if–else questions. Regression 
tree analysis predicted the outcome as a real number (leaf tem-
perature and water potential). The start of the tree was at the root 
node; for each variable, CART finds the set that minimizes the sum 
of the node impurities in the two child nodes and chooses the split 
that gives the minimum overall variable and set. The measure of the 
node impurity is based on the distribution of the observed values in 
the node; splitting stops if the relative decrease in impurity is below 
a pre-specified threshold.
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