

ADVERTIMENT. L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons:

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

BY NC ND

PhD Thesis

Targeting NRAS mutant melanomas through metabolic stress

Kimberley Anne Mc Grail Fernández

Thesis Director: Dr. Juan Ángel Recio Conde Academic Tutor: Dr. José Miguel Lizcano de Vega

Biochemistry, Molecular Biology and Biomedicine PhD program Biochemistry and Molecular Biology Department Universidad Autónoma de Barcelona (UAB) 2021

Kimberley Anne Mc Grail Fernández Juan Ángel Recio Conde, PhD José Miguel Lizcano de Vega, PhD

"Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so we may fear less".

Marie Curie

ACKNOWLEDGEMENTS

En primer lugar, me gustaría agradecer al Dr. Recio. Gracias Kelle por todo lo que me has enseñado, por el apoyo continuo y por confiar siempre en mí.

Millones de gracias a mi equipo VHIR: Sara, Yoelsis, Mª José, Natalia, Pedro J, Marta. Ha sido una suerte compartir momentos científicos y no científicos con vosotros. En especial gracias Pauli, no sé que hubiera hecho sin ti. Gracias también a las chicas que han pasado por el lab, sobre todo a Sara G., por atreverse a acompañarme en este proyecto.

Aunque no formen parte de esta tesis me gustaría agradecer a Isa y Marta, porque gracias a ellas empecé este camino, y me hicieron ver que era capaz. Han sido un referente y su apoyo ha sido fundamental.

Por supuesto, gracias a mi familia, sin ellos no habría llegado hasta aquí. Gracias por apoyarme siempre en todo.

Por último, pero no menos importante, gracias a la que considero mi otra familia, por hacerme sentir como en casa. Gracias Pedro, has sido la pieza clave de esta etapa. Eres el responsable de que haya llegado hasta el final. *T'estimo*.

LIST OF CONTENTS

ACKNOWLEDGEMENTS	5
LIST OF CONTENTS	7
SUMMARY/RESUMEN	13
INTRODUCTION	
1 Skin cancer	21
1.1. Subtypes, incidence and mortality	21
1.2. RISK factors	
2. Melanoma	22
2.1. Classification	22
2.2. Progression and prognosis	23
2.3. Molecular characterization of melanoma	24
2.3.1. BRAF-mutant melanoma	26
2.3.2. NRAS-mutant melanoma	27
2.3.3. Differences among <i>BRAF</i> and <i>NRAS</i> mutant tumors	29
2.4. Therapeutic strategies for the treatment of melanoma	30
2.4.1. Targeted therapy	31
2.4.2. Immunotherapy	33
2.4.3. Therapeutic needs	35
2.4.3.1. RAS: The undruggable oncogene	36
3. Cancer Metabolism: An Emerging Hallmark of cancer	37
3.1. Metabolic reprogramming in cancer	
3.2. Oncogene-dependent metabolic settings	
3.2.1. Metabolic regulation in <i>BRAF</i> mutant tumors	
3.3. Glucose metabolism	40
3.3.1. Glycolysis regulation	43
3.3.2. Regulation of glucose metabolism in cancer	44
3.3.2.1. Warburg effect	
3.3.2.2. Glucose deprivation	47
3.3.3. Targeting metabolism as a novel therapeutic approach	48
4. Phosphofructokinase (PFK-1)	48
4.1 Isozymes and structure	48
4.2. Regulation and role in cancer	
5 DEKER(6-nhoenhofructo-2-kinaso/fructoso-2.6-hienhoenhataso	
onzymes	;) 51
enzymes	
5.1. Isoenzymes and structure	51
5.2. Regulation and role in cancer	52
HYPOTHESIS AND OBJECTIVES	55
RESULTS	59
I ne KAS-EKK1/2 pathway is differentially regulated in NRAS ^{Q61R} and	BKAF VOULE
mutant cens in response to metabolic stress	

Activated ERK1/2 localization upon metabolic stress is predominantly cytoplasmic
Hyperactivation of the RAS-ERK1/2 pathway sensitizes NRAS ^{Q61R} mutant cells to treatment with the multi-kinase inhibitor Sorafenib63
Sorafenib is the only inhibitor promoting synthetic lethality in NRAS ^{Q61R} mutant cells
Hyperactivation of the RAS-ERK1/2 pathway is NRAS ^{Q61R} -dependent and involves a switch from CRAF- to BRAF-dependent signaling68
NRAS ^{Q61R} and BRAF ^{V600E} mutant cells differentially express metabolism-related genes
Mitochondrial response capacity is compromised in NRAS ^{Q61} mutant cells74
NRAS ^{Q61R} mutant cells are less flexible than BRAF ^{V600E} mutant cells using alternative fuels in the absence of glucose75
Addition of glucose but not pyruvate is able to revert the RAS-ERK1/2 hyperactivation observed upon metabolic stress, as well as Sorafenib-induced apoptosis
Several glycolytic (<i>ALDOB, ENO2, ENO3, G6PC2, PGAM2 and PKLR</i>) and glucose metabolism-related genes (<i>FBP1, FBP2, G6PD, LDHC, MPC2, PFKFB2 and PFKFB4</i>) are regulated in NRAS ^{Q61R} mutant cells in response to metabolic stress
Upregulation of <i>PFKFB2</i> enzyme, which is regulated in response to metabolic stress, shows a significant tendency to co-occur with NRAS ^{Q61} mutations82
PFKFB2 phosphorylation is regulated in response to metabolic stress and Sorafenib treatment
Glucose withdrawal induces PFK-1 activation through co-localization with actin fibers
Fructose 1,6-bisphosphate produces an increase in ERK1/2 phosphorylation89
In silico analysis shows PFKFB2 putative target sequences for confirmed kinases and new phosphorylation sites that may be regulated by RAF and ERK1/2 phosphorylation
Mass Spectrometry analysis reveals ERK2 and PFKFB3 as possible PFKFB2- interacting proteins as well as novel PFKFB2 phosphorylation sites, which are regulated in response to metabolic stress and Sorafenib treatment
PFKFB2 and PFKFB3 seem to be able to form heterodimers96
PFKFB2 and PFKFB3 downregulation produces a decrease in ERK1/2 phosphorylation upon metabolic stress in NRAS ^{Q61R} mutant cells

2-Deoxy-D-glucose (2DG) mimics the low glucose effect <i>in vitro</i>	99
Combination of 2DG and Sorafenib has a synergistic effect in NRAS cells <i>in vivo</i> , including patient-derived cells	^{Q61} mutant 100
DISCUSSION	
CONCLUSIONS	115
METHODOLOGY	119
Cell culture and treatments Protein isolation and immunoblotting Nuclear/Cytoplasmic protein purification Apoptosis assay siRNA transfection	121 122 123 124 124 124 125 126 126 127 127 127 127 127 128 131 131 132 132 132 132 133 134 134 134 137 138 139 141
BIBLIOGRAPHY	

SUMMARY/RESUMEN

BRAF and *NRAS* are the most commonly found mutated genes in cutaneous melanoma. Alterations in these genes result in the constitutive activation of the RAS-ERK1/2 pathway, contributing to tumor development and progression. Beside both genes are consecutive located in the same signaling cascade, *BRAF* and *NRAS* mutated tumors are considered two different entities at clinical and molecular levels, resulting in distinct signaling patterns and different biological behavior. Furthermore, while there is a first line of treatment using targeted therapy against *BRAF* mutant melanomas, *NRAS* mutant tumors remain without specific line of treatment, showing low response rates and high toxicity to the currently applied therapies. Thus, the understanding of the molecular differences between *BRAF* and *NRAS* mutant tumors is essential to improve therapeutic opportunities for the treatment of patients carrying *NRAS* mutations.

Previous results in our group, together with additional investigations, have highlighted the presence of different metabolic settings subjected to BRAF^{V600E} oncogene regulation. However, little is known about the role of *NRAS* mutations in metabolic rewiring. Deciphering metabolic settings in *NRAS* mutant melanomas could provide new avenues for the establishment of specific therapeutic approaches against these, until now, untargetable tumors.

In this study, we have investigated the molecular implications of glucose starvation in NRAS^{Q61} and BRAF^{V600E} mutant cells in order to establish whether the presence of NRAS-dependent metabolic settings can be exploited for the development of targeted therapies against *NRAS* mutant melanomas. Overall, in this study we have demonstrated the presence of NRAS^{Q61} oncogene-dependent metabolic settings. NRAS^{Q61} mutant cells show a differential response to metabolic stress when compared to BRAF^{V600E} mutant cells, which results in the hyperactivation of the RAS-ERK1/2 pathway and the sensitization to the multi-kinase inhibitor Sorafenib. PFKFB2, PFKFB3 and PFK-1 are key players in the regulation of this process. We also propose a novel approach for the specific targeting of NRAS^{Q61} mutant melanomas based on the combination of 2-deoxy-D-glucose (2DG) and Sorafenib. We conclude that *NRAS* and *BRAF* mutant tumors are different entities at different levels, not only at molecular and clinical levels but

also at metabolic level and this fact provides a new therapeutic window for the targeting of *NRAS* mutant tumors.

Los genes *BRAF* y *NRAS* presentan una mayor incidencia mutacional en melanoma cutáneo. Alteraciones en estos genes resultan en la activación constitutiva de la vía de RAS-ERK1/2, lo que contribuye activamente al desarrollo y la progresión tumoral del melanoma. Aunque ambas mutaciones dan lugar a alteraciones de la misma vía de señalización, ha sido ampliamente descrito que los tumores que se generan de las mismas, constituyen dos entidades diferentes tanto a nivel molecular como desde el punto de vista clínico. Una cuestión relevante reside en el hecho de que mientras los melanomas mutados en *BRAF* disponen de terapias específicas dirigidas contra el oncogén, los melanomas que presentan mutaciones son tratados con tratamientos antitumorales más genéricos, que desembocan en tasas de respuesta mucho menores y en una elevada toxicidad. En este contexto, el desenmascaramiento de las diferencias moleculares existentes entre los tumores con mutaciones en *BRAF* y en *NRAS* es esencial para el establecimiento de nuevas estrategias terapéuticas dirigidas a pacientes que presentan mutaciones en *NRAS*.

Resultados obtenidos previamente en nuestro grupo de investigación, sumados a los de otras investigaciones, han confirmado la presencia de diferentes patrones metabólicos sujetos a la regulación por BRAF^{V600E}. Sin embargo, apenas existe evidencia sobre el papel de las mutaciones en *NRAS* en la regulación metabólica. El establecimiento de características metabólicas específicas de melanomas con mutaciones en *NRAS* podría contribuir al desarrollo de nuevos enfoques terapéuticos dirigidos contra este tipo de tumor.

Durante el desarrollo de este estudio hemos investigado las implicaciones moleculares derivadas de la falta de glucosa en células de melanoma mutadas en NRAS^{Q61} y BRAF^{V600E}, con el fin de establecer si la presencia de características metabólicas dependientes de NRAS podría ser explotada para el desarrollo de nuevas terapias contra este tipo de tumor. En este estudio, hemos demostrado la presencia de patrones metabólicos bajo el control de NRAS^{Q61}. Las células que presentan mutaciones en NRAS^{Q61} muestran una respuesta diferencial al estrés metabólico, en comparación con las células mutadas en BRAF^{V600E}, que desemboca en la hiperactivación de la vía de RAS-ERK1/2 y en la sensibilización de estas células al inhibidor multi-quinasa Sorafenib. PFKFB2, PFKFB3 y PFK-1 son

Resumen

elementos clave en la regulación de este proceso. Adicionalmente, proponemos una nueva aproximación terapéutica para el tratamiento dirigido de los melanomas mutados en NRAS^{Q61}, basada en la combinación de 2-deoxi-D-glucosa (2DG) y Sorafenib. Tras los resultados obtenidos, podemos concluir que los tumores que presentan mutaciones en *NRAS* y *BRAF* son entidades diferentes a distintos niveles, no solo a nivel clínico y molecular, sino también a nivel metabólico, lo que implica la existencia de nuevas ventanas terapéuticas para el tratamiento de tumores que presentan mutaciones en *NRAS*.

INTRODUCTION

Introduction

1. Skin cancer

1.1. Subtypes, incidence and mortality

Skin cancer is the most frequently diagnosed cancer worldwide, with millions of new diagnosed cases each year^{1,2}. It can be generally divided in three subtypes depending on the cell type the tumor is originated from: Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC) and Melanoma (Table I.1)^{3,4}. While BCC and SCC are both derived from epithelial cells (keratinocytes), melanomas arise from melanocytes, specialized cells originated from neural crest progenitors that migrate to eye, meninges, mucosal epithelia, and the skin during embryonic development. These cells are essential for protection against environmental mutagenic agents as they are involved in the synthesis of melanin, a photoprotective pigment that avoid DNA damage upon UV radiation⁵.

Skin cancer types	Origin	Incidence	Mortality
Basal Cell Carcinoma (BCC)	Basal cells (Deep epidermis)	ells (Deep lermis) 75-80%	
Squamous Cell Carcinoma (SCC)	Squamous cells (Superficial epidermis)	15-20%	Low
Melanoma	Melanocytes	2-5 %	High

Table I.1. Skin cancer subtypes. Table includes information regarding tumor origin, incidence and mortality rate^{3,4}.

In terms of frequency, BCC and SCC are the most frequent types of skin cancer and accounts for more than 90% of all the cases, however both types of tumors present a good prognosis due to its low proliferation rate and minimum invasion capacity. Melanoma, even accounting for less than five percent of all skin cancers, is the most aggressive and treatment-resistant form. It is a very heterogeneous disease that can be subclassified at the same time according to the histological and molecular features of the tumor. All melanoma subtypes are characterized by an increased proliferation rate and a high metastatic capacity, so these tumors present a bad prognosis and are responsible of more than 80% of skin cancer-related deaths⁶.

1.2. Risk factors

Several factors have been observed to influence the risk of suffering melanoma, including harboring multiple benign or atypical nevi, fair skin, previous melanoma, family history of melanoma, continued exposure to UV radiation and immunosuppression. These risk factors or environmental stressors involve a genetic predisposition to suffering skin cancer⁶. Particularly, repeated intense childhood sun damage influences potential risk of melanoma⁷. UV radiation has multiple effects in the skin including DNA damage, induction of oxidative stress, alteration of immune response and production of growth factors; and this is of particular relevance because it is responsible of the high mutational burden that characterize skin tumors and make of them a challenge as well as an opportunity in terms of treatment⁸.

2. Melanoma

2.1. Classification

Melanoma is the most aggressive and treatment-resistant form of skin cancer. It can be subdivided according to its primary site of location into cutaneous, mucosal and uveal melanoma. Marked differences in the genomic landscape have been described depending on the origin of the tumor⁹. Cutaneous melanoma is the most frequent one and it is at the same time classified in four major subgroups: Superficial spreading, nodular, lentigo maligna and acral lentiginous (Table I.2)¹⁰⁻¹².

Melanoma subtypes	Incidence	Main phenotypic features
Superficial Spreading	70%	It is often flat and thin but can undergo vertical growth.
Nodular	5%	It grows into the skin and spread quickly.
Lentigo Maligna	5-15%	It often develops in older people. It usually grows outward across the surface of the skin for many years before it starts to grow down into the skin.
Acral	5%	It locates to the soles of the feet, the palms of the hands or under the nails. It usually grows outward across the surface of the skin for a long time before it starts to grow down into the skin.

 Table I.2. Melanoma subtypes.
 Incidence values correspond to Caucasian populations¹⁰⁻¹².

2.2. Progression and prognosis

The Clark model of the progression of melanoma describes the transformation from normal to tumoral melanocytes. It starts from the development of a benign lesion or nevus resulting from the proliferation of normal melanocytes in the epidermis. Then, these cells undergo uncontrolled growth and acquire invasion capacities giving rise to metastasis. All these phenotypic changes are the reflection of genetic and epigenetic alterations taking place during the progression of the disease, which involve the acquisition of mutations in regulatory genes, the deregulation of growth factors secretion and the loss of adhesion receptors^{6,10} (Figure I.1).

Figure I.1. Clark Model. Representation of melanoma progression since the formation of a benign melanocytic lesion (nevus) to the formation of a metastatic melanoma¹³.

Nevus growth has been attributed to a variety of mutations, being *BRAF* the most commonly found in until 50% of non-tumoral lesions¹⁴. Normally, nevus growth is limited, so its progression to a malignant lesion is infrequent. This limited growth has been explained by a process known as oncogene-induced senescence (OIS)¹⁵. Senescence is a key cellular protection against aberrant cell proliferation. In senescent nevi, genetic and epigenetic alterations can additionally occur allowing the cells to overcome senescence and resulting in the acquisition of malignancy and the consequent progression of the tumor⁶.

Introduction

Once tumor cells acquire the ability of radial growth, intra-epidermal lesions can occur. Then, cells can progress to the vertical-growth phase, driven by the regulation of different adhesion molecules. These changes will allow the tumor cells to penetrate through the basement membrane and invade the dermis. Finally, the regulation of critical factors that drive tumor cell motility and dissemination into lymphatic and vascular vessels will allow cells to dissociate from the primary lesion and spread to other areas in the skin or even to other organs, being able to proliferate and establish metastatic nests in distant sites⁶.

It is important to highlight that not all melanomas start from the first step of the Clark model; more than 50% of melanoma tumors can be originated independently of the existence of a previous benign lesion^{16,17}.

Currently, the staging system adopted by clinicians no longer considers Clark's model, because it is less prognostic and more subjective than other alternatives, but it is still useful for the understanding of biological and genetic changes taking place during melanoma progression. More recent models are based in the TNM classification system established by American Joint Committee on Cancer (AJCC)¹⁸.

Independently of the used model, prognosis is getting worse with every step being metastatic melanoma the most aggressive and difficult to treat. For this reason, most efforts in the field are focused on the study of acquisition of malignancy and progression mechanisms as well as the establishment of new therapeutic approaches for the targeted treatment of these advanced tumors.

2.3. Molecular characterization of melanoma

For the acquisition of malignancy, abnormal activation of the RAS-ERK1/2 pathway has been widely described, being *BRAF*, *NRAS* and *NF1*, a negative regulator of RAS, the most common genetic targets in melanoma (*TCGA database*). *BRAF* and *NRAS* are mutated in more than 70% of melanoma patients resulting in RAS-ERK1/2 pathway hyperactivation¹⁹. Moreover, deregulation of this pathway can also occur through the overexpression or hyperactivation of tyrosine kinase receptors (RTKs) such as proto-oncogene KIT²⁰, hepatocyte growth factor receptor (HGFR/MET)²¹ and vascular endothelial growth factor receptor (VEGFR)²². KIT

alterations are more common in acral and mucosal melanomas²⁰ while GNAQ and GNA11, two G protein subunits involved in MAPK signaling, are frequently activated in uveal melanomas²³ (Figure I.2).

Other recurrent genetic alterations include upregulation of *AKT* and *PTEN* loss, what involves the activation of the phosphatidylinositol 3-kinase (PI3K) pathway^{24,25} (Figure I.2).

Figure I.2. RAS-ERK1/2 pathway. Percentages indicate mutational incidence in melanoma. Data obtained from *TCGA database*.

The MAPK pathway, or more specifically the RAS/RAF/MEK/ERK pathway, is involved in the transmission of the signal downstream of RTKs in response to growth factors. This signaling cascades start from the dimerization and intrinsic activation of the RTK and the consequent activation of RAS proteins, small GTPases that are recruited to the membrane and activates RAF (MAPKKK), that in turn activates MEK (MAPKK), which phosphorylates ERK (MAPK), resulting in gene expression regulation, cell division, metabolism, motility, survival, differentiation and apoptosis²⁶.

Three different members including HRAS, KRAS (two alternative splice variants: KRASa and KRASb²⁷) and NRAS compose the RAS family. When RAS proteins bind to GTP, become activated and can transactivate its effector

molecules, including RAF proteins, that initiates a phosphorylation cascade²⁸.

The RAF family is composed by ARAF, BRAF and CRAF kinases, which are characterized by the presence of a RAS-binding domain (RBD) in the N-terminal region of the protein. Each of the members can dimerize with itself or with any other member of the family. This dimerization and consequent activation result in the phosphorylation and activation of MEK1/2, which in turns, phosphorylates and activates ERK1/2^{26,29,30}. Activated ERK can phosphorylate multiple cytoplasmic and cytoskeletal proteins or can translocate to the nucleus, where it phosphorylates and activates several transcription factors²⁶. Active ERK can also phosphorylate components of the RAS pathway attenuating the signal transmission and participating in its own regulation³¹.

Upon normal conditions, the RAS pathway is subjected to a thigh regulation in order to modulate proliferation and survival mechanisms in non-malignant cells. However, there are many tumors where deregulation of growth factorsdependent signaling and mutations in the upstream effectors of the pathway have been observed, especially in melanoma^{19–23}. Thus, understanding the behavior and regulation mechanisms of these altered genes is critical for the management of melanoma patients.

2.3.1. BRAF-mutant melanoma

BRAF mutant melanoma is the most common molecular subtype, reaching an incidence of more than 50% of the cases (*TCGA database*). Most oncogenic *BRAF* mutations, accounting for a 90% of the total, cause valine to glutamic acid substitutions at codon 600 (BRAF^{V600E}), which are the result of the point mutation T1799A and involves the constitutive activation of the BRAF kinase domain^{19,32}. The second most common mutation, representing a 5-6% of the total, is BRAF^{V600K}, where a valine is substituted by a lysine. Other oncogenic mutations in the *BRAF* gene are BRAF^{V600R} and BRAF^{V600D 32}. All these mutations result in the activation of BRAF and consequently, of the downstream molecules MEK and ERK, resulting in the hyperactivation of the RAS-ERK1/2 pathway and the regulation of cell growth and survival of tumoral cells¹⁹ (Figure I.3).

Figure I.3. RAS-ERK1/2 pathway regulation in NRAS and BRAF mutant tumors.

Since *BRAF* point mutations were discovered in 2002, the targeted therapy landscape for melanoma have changed dramatically and several therapies for the treatment of *BRAF* mutant melanomas have been proposed until now showing promising results. Small molecules that inhibit BRAF have been tested clinically alone and in combination with MEK inhibitors showing significant results in patients carrying *BRAF* mutations. These therapeutic strategies, even successful, have showed some limitations²⁹.

2.3.2. NRAS-mutant melanoma

The RAS protein family is constituted by HRAS, KRAS and NRAS. These members establish a superfamily of small GTPases that plays an essential role in the transduction of signals from the extracellular media through the activation of RTKs. Under physiological conditions, RAS proteins can exist in either an active (GTP-bound) or an inactive (GDP-bound) conformation. The exchange of GDP for GTP, and consequently, the activation of RAS, is catalyzed by guanine nucleotide exchange factors (GEFs), including SOS1, SOS2 and RasGRF10. On the other hand, GTPase-accelerating proteins (GAPs) are involved in switching RAS from the active to the inactive state^{33,34}. Under normal conditions RAS activation typically proceeds following RTK activation upon ligand binding, what results in the autophosphorylation of the receptor and its consequent dimerization. Adaptor molecules carrying an SH2 domain, such as GRB2, are then recruited, followed by GEFs³³⁻³⁵. Once activated, RAS is recruited to the membrane, binds downstream

Introduction

intracellular effectors and stimulates different signaling pathways, including the RAS-ERK1/2 and PI3K/AKT pathways, what results in the coordination of multiple cellular responses including proliferation, survival, differentiation, apoptosis, senescence and metabolism ^{28,34}.

All isoforms share structural and functional similarities and, even are nearly ubiquitous and broadly conserved across species, they are differentially expressed depending on the tissue and the tumor type^{36,37}. Regarding the sequence variability among the different isoforms, identical residues are found within the first half of the GTPase domain, while in the second half; an 82% of sequence identity can be appreciated. In the C-terminal domain, significant sequence variability can be observed, constituting the hypervariable region (HVR)^{36,37}.

In general, *KRAS* is the most frequently found mutated isoform in cancer, including colorectal, lung and pancreatic cancers, however, in the specific case of melanoma, activating mutations in *NRAS* are the most common ones, accounting for more than 20% of the cases³⁸. This has been proposed to be due to a higher expression of the NRAS isoform in melanocytes, when compared to other cell types³⁹. In this isoform, mutations typically occur at codons 12 (NRAS^{G12}) and 61 (NRAS^{Q61}). NRAS^{G12} mutation affects the conformation of the protein and decreases its sensitivity to GTPase-accelerating proteins (GAPs) while NRAS^{Q61} mutations usually involves a substitution of glutamine to leucine (*NRAS*^{Q61L}) and disrupts the GTPase activity of NRAS locking it in its active conformation^{34,40} (Figure I.3). Both mutations are activating and involve the constitutive activation of the RAS-ERK1/2 cascade and the subsequent biological effect in cell proliferation and survival⁴¹. Furthermore, NRAS but not BRAF mutations, result in the regulation of additional signaling pathways, like PI3K/AKT pathway³⁴, supporting the relevance of NRAS in growth, motility and survival and, as a consequence, in tumorigenesis and cancer progression.

When compared with *BRAF* mutations, *NRAS* mutations also involve differences at molecular level that affects the regulation of the RAS-ERK1/2 pathway. It has been described that *NRAS* mutant cells signal preferentially through CRAF rather than BRAF⁴². CRAF-mediated MAPK signaling depends on two parallel mechanisms: the inactivation of BRAF and deregulation of PKA

signaling that prevents CRAF inactivation⁴². The inactivation of BRAF occurs through a negative feedback mechanism in which ERK phosphorylates BRAF at the inhibitory phosphorylation sites S151, T401, S750 and T753⁴³. Regarding PKA, it can be inhibited by several mechanisms preventing CRAF phosphorylation at its inhibitory sites⁴².

It has been widely described that constitutive activation of the pathway is essential for most melanomas but it is important to distinguish between the mutated agents within the pathway involved in this activation, as well as the molecular and phenotypic implications, in order to develop specific therapeutic strategies. Understanding molecular differences between both *BRAF* and *NRAS* mutant tumors would be essential to propose novel and/or more effective therapies.

2.3.3. Differences among BRAF and NRAS mutant tumors

As previously explained, *BRAF* and *NRAS* mutations involve the activation of the RAS-RAF-MEK-ERK signaling pathway. These mutations have been observed to be mutually exclusive (*TCGA database*) and even the consequences of the mutations seem to be similar, *BRAF* and *NRAS* mutant tumors have been described to be different entities at different levels, including molecular and clinical levels^{40,44}.

As described in Table I.3, *BRAF* and *NRAS* mutant tumors show different signaling patterns as well as different biological behavior. As previously mentioned, the incidence rate varies between both tumor types, being *BRAF* mutations more commonly found in both, malignant and non-malignant melanocytic lesions⁴⁴. However, contrary to *NRAS* mutations, *BRAF* mutations are not found in congenital nevi^{44,45}. While *NRAS* mutations appears in both, sun-exposed and sun-unexposed areas of the skin, *BRAF* mutations preferentially appears in those areas of the skin that have been intermittently exposed to UV radiation^{44,46}. Differences in malignancy have been also described, being *NRAS* mutations the ones presenting worse prognosis, due to both, a high mitotic rate and a high metastatic capacity^{44,47}. Molecularly, *NRAS* mutations are also involved in the activation of additional signaling pathways, including the PI3K/AKT pathway, whereas in the case of *BRAF* mutant tumors, additional mutations are required for PI3K pathway activation^{48,49}. Furthermore, the age of diagnosis can

also differ between both types, being *NRAS* mutant tumors diagnosed in older patients^{44,50,51}. An important final consideration is the availability of targeted therapy against *BRAF* mutant tumors, while *NRAS* mutant melanomas lack a specific line of treatment and are treated using other therapeutic alternatives, including chemotherapy and immunotherapy, showing low response rates and toxicity^{29,34,40,44}.

	BRAF ^{mut}	NRAS ^{mut}	Reference
Incidence	~50%	~20%	TCGA database
Location	Intermittently sun- exposed areas	Sun-exposed and sun- unexposed areas	44,46
Non-malignant melanocytic lesions (nevi)	Yes	No	44
Congenital nevi	No	Yes	44,45
Age at diagnosis	Younger	Older (>55 years old)	44,50,51
Malignancy	Lower mitotic rates and thinner primary tumors	Higher mitotic rate and thicker primary tumors	44
Prognosis	It depends on additional mutations	Bad (high metastatic rate)	44,47
Activation of additional signaling pathways	Additional mutations are required (e.g. PTEN)	PI3K/Akt	48,49
Targeted therapy	Yes	No	29,34,40,44

Table I.3. Differences among *BRAF* and *NRAS* mutant tumors.

Recently, it has been described that metabolic settings can be driven by *BRAF* mutations, suggesting an oncogene-dependent metabolic rewiring^{52–57}. However, most of the findings are related to *BRAF* mutant tumors, and little is known about the role of *NRAS* mutations in metabolism reprogramming. Deciphering metabolic settings in *NRAS* mutant melanomas could provide new avenues for the establishment of specific therapeutic approaches.

2.4. Therapeutic strategies for the treatment of melanoma

Surgery is the first option for the treatment of melanoma patients at initial diagnosis since primary cutaneous lesions are usually easily removable. However, most melanomas are diagnosed at late stages when metastasis has already occurred. Until 2011, advanced melanomas had been treated using standard chemotherapeutic regimes, like Dacarbazine, showing almost no effects in the overall survival of patients⁵⁸. Significant advances in the understanding of the biological and molecular basis of this disease have been made since then, what

have resulted in the establishment of successful treatments, including targeted therapy and immunotherapy. Nevertheless, only a subset of patients benefits from these approaches and is able to achieve durable responses. Within these groups, the majority experience resistance acquisition and disease relapse, highlighting the need of establishing improved and novel therapeutic strategies⁵⁹.

2.4.1. Targeted therapy

As previously established, deregulation of the RAS-ERK1/2 pathway takes place in the majority of melanomas; where *BRAF* mutations, especially BRAF^{V600E}, are found in approximately 50% of the cases. Vemurafenib and Dabrafenib were the two first BRAF inhibitors approved for the treatment of *BRAF* mutant melanoma in 2011 and 2013, respectively. In both cases survival benefit was demonstrated when compared to standard treatment (Dacarbazine)^{60,61}. However, inhibition of BRAF alone has showed limited responses and has been associated with the development of resistance⁶². Furthermore, additional skin tumors such as cutaneous squamous carcinomas have been observed to appear after treatment^{63,64}.

Distinct and heterogeneous mechanisms of resistance to targeted therapy have been described; including the reactivation of the RAS-ERK1/2pathway by the acquisition of additional mutations⁶⁵, the upregulation of alternative pathways, like PI3K/AKT pathway^{65,66}, the regulation of cell cycle and apoptosis⁶⁷⁻⁶⁹, the constitutive activation of receptor tyrosine kinases such as platelet-derived growth factor receptor β (PDGFR β) or insulin-like growth factor 1 receptor (IGF1R)^{70,71}, and metabolic reprogramming^{72,73}. Moreover, reactivation of the RAS-ERK1/2 pathway can also occur due to molecular switches within the pathway, also known as the "paradoxical activation of the pathway"74. This phenomenon results from the activation of CRAF in cells carrying wild type BRAF in response to RAS-ERK1/2 pathway inhibition and is based on the ability of RAF proteins forming dimers. In BRAF mutant tumors, upon BRAF inhibition, CRAF can dimerize with another CRAF molecule, or can also forms heterodimers with wild type BRAF, what allows the downstream activation of the pathway^{74,75}. This activation is even higher due to the increased kinase activity of BRAF-CRAF heterodimers when compared to BRAF and CRAF homodimers⁷⁶.

In order to avoid the paradoxical activation of the pathway, as well as other mechanisms involving resistance acquisition, simultaneous inhibition of MEK and BRAF was proposed several years ago, leading to improved survival when compared to BRAF inhibitor monotherapy. When Dabrafenib, a BRAF inhibitor, and Trametinib, a MEK inhibitor, were administered together, increased clinical benefit and lower toxicity were observed⁷⁷. Combined-treatment is now considered a standard therapeutic option for patients carrying *BRAF* mutations. Currently, several BRAF (Vemurafenib, Dabrafenib, Selumetinib) and MEK (Trametinib, Cobimetinib, Binimetinib) inhibitors have been approved by the FDA and different combinations of them are used in the clinics. Nevertheless, the efficacy of these combinations is restricted to the subset of patients with mutant *BRAF*. Moreover, combined therapies still results in the development of resistance and relapse after a limited period of time^{77–79}.

The second most common oncogenic mutation in melanoma occurs in NRAS. Due to the role of NRAS activation in melanomagenesis and melanoma progression, inhibiting it would provide improved outcome in melanoma patients. Because the activation of RAS depends on previous association to the inner face of the plasma membrane, several efforts have been made to target the hydrophobic modifications of the C-terminal domain necessary for its anchorage. Specifically, farnesyl transferase inhibitors, such as Tipifarnib and Lonafarnib, and Stransfarnesylthiosalicylic acid, also known as Salirasib, have been tested in order to try to prevent NRAS localization to the plasma membrane. Unsuccessful results have been observed^{80,81}, which can be explained by the presence of alternative modifications, such as geranylgeranyl that also allow NRAS association to the plasma membrane⁸². Moreover, toxicity has been observed due to the inhibition of a large family of proteins that also require farnesylation as a post-translational modification. An alternative mechanism for the specific inhibition of RAS proteins is the inhibition of its binding to the downstream effector RAF molecules. With this aim Rigosertib, a small molecule RAS mimetic, has been tested but no promising results have been obtained⁸¹. Additional efforts have been made trying to inhibit downstream RAS targets in order to mitigate the pathway activation but only partial responses have been observed⁸¹.

KIT specific targeting has been also tested using Imatinib and other tyrosine kinase inhibitors such as Nilotinib. Some beneficial effects have been observed for those patients carrying KIT mutations, which are mainly those with acral and mucosal melanomas^{83–85}. This approach may be promising but accurate selection of specific cohorts of patients with this molecular subtype is essential for treatment success.

Targeting other upstream elements of the RAS-ERK1/2 signaling cascade has been also contemplated and inhibition of several tyrosine kinase receptors (RTKs) has been tested for the treatment of melanoma. Lenvatinib, which targets VEGFR, fibroblast growth factor receptor (FGFR), KIT and proto-oncogene tyrosine-protein kinase receptor RET (RET); and Axitinib, targeting VEGFR1/3, KIT and PDGFR, are some examples. In general, even potential benefit in patients outcome has been observed, further and more complete studies are needed⁵⁹. Even successful, these kind of inhibitors are not expected to have a high impact in this kind of tumors, since amplifications or activating mutations in RTKs are not that frequent in melanoma (*TCGA database*).

2.4.2. Immunotherapy

Until now, several efforts have been made for the modulation and activation of the immune response against tumors. Since first immunotherapy-based trials using IL-2 were performed in the 1980s, showing long-term remission in a few patients⁸⁶, several alternative therapies involving T-cells activation have been proposed.

Currently, the most effective immune-therapies are based in the inhibition of immunocheckpoints, specially the inhibition of PD-1/PD-L1 and CTLA-4 axis with Pembrolizumab/Nivolumab and Ipilimumab respectively^{87–89}. This approach is based in the blockage of tumor-induced inhibitory effect on effector T cells in order to avoid immune tolerance. This way, effector T cells become active and are able to react against the malignant cells, therefore eliminating the tumor. The combination of different immunocheckpoint inhibitors has provided promising results during the last years, showing tumor regression and improved survival, what has been translated into a significant improve of clinical outcome^{90,91}.
Introduction

The past decade has been a time of accelerated progress in this field and although immune-based approaches, specially the use of immunocheckpoint inhibitors, have through light to the field of advanced melanoma therapy, there are still several limitations. In one hand, there are a high percentage of non-responders showing a low objective response rate (ORR), added to the intrinsic toxicity of being targeting the immune system. On the other hand, when compared to targeted therapies, response rates are lower⁹². Moreover, despite promising initial responses in some patients are observed, resistance to immune-based therapies can be developed. Several strategies including genetically modified virus, antibody-mediated inhibition of immunocheckpoints, cytokine-based approaches, vaccines and adoptive cell transfer, are being developed and clinically tested in order to deal with low response rates, treatment-derived toxicity and resistance development⁹³.

Herpes simplex virus type I T-VEC is a genetically modified virus that preferentially replicates in tumor cells, enhances antigen loading of MHC class I and expresses granulocyte-macrophage colony-stimulating factor (GM-CSF), which results in an increased tumor-antigen presentation by dendritic cells (DCs). Combination with Ipilimumab and Pembrolizumab has showed an increase in the ORR in advanced melanoma patients. However, the majority of responses are limited to the site of injection, and the delivery to metastatic regions is limited⁹³.

Inhibitors against lymphocyte activation gene-3 (LAG-3), an inhibitor of Tcell response, activation and growth; and T-cell immunoglobulin and mucindomain containing-3 (TIM-3), a suppressor of FoxP3⁺ Treg-cells, macrophages and DCs, are now in clinical development. LAG-3 inhibition with different monoclonal antibodies (Relatlimab, LAG525 and MK-4280) has showed promising results in combination with Pembrolizumab or Nivolumab. Regarding TIM-3, trials are ongoing and potential synergistic effects are expected in combination with other immunocheckpoint inhibitors⁹⁴.

Several cytokines, including IL-12, IL-15, IL-18, IL-21 and GM-CSF have been tested showing reduction of tumor growth. However, the use of cytokinebased treatments as single agents is quite controversial due to their pleiotropic activity and derived-toxicity⁹³. Peptide vaccines have been proposed as an alternative mechanism to induce specific immune response against tumor antigens. The results have showed some potential synergistic effects in combination with other immunocheckpoint inhibitors⁹³.

Adoptive cell transfer is emerging as a new strategy for the treatment of patients with non-functional tumor antigen-specific T-cells. Two different approaches, including transfer of expanded pre-existing anti-tumor T-cell populations and gene therapy based in the alteration of T-cells to express high affinity T-cell receptors (TCRs) becoming melanoma-specific have been described. CAR-T cells (chimeric antigen receptor T-cells) have been proposed for adoptive cell transfer, showing efficacy in hematological malignancies. However, lower responses have been described in solid tumors. Combination of CAR-T cells-based therapy with immunocheckpoint inhibitors is currently being tested⁹³.

Future promising strategies include the combination of different immunebased therapies among them and with targeted therapy agents. Even several trials are ongoing trying to increase response rates and to deal with toxicity and resistance-development, it seems that only certain subsets of patients would benefit from these approaches.

2.4.3. Therapeutic needs

Despite huge advances have been made in the landscape of metastatic melanoma treatment during the last decade, only a subset of patients achieves long-term responses. Moreover, there are still a significant percentage of patients that do not respond to any available therapy. Establishment of novel therapeutic approaches, together with the improvement of already available ones, are critical steps to further improve survival outcomes in patients with this disease.

Targeted therapies are only available for *BRAF* mutant tumors but, regarding those 50% of patients lacking *BRAF* mutations, few advances have been made in the development of specific targeted treatments. As already mentioned, the next most common mutation in melanoma occurs in *NRAS*, accounting for more than 20% of cases. *NRAS*-mutant patients have been observed to present a more aggressive disease that is associated with poorer prognosis^{44,47}. Although the

relatively high incidence and relevance of this mutation in the disease, these tumors are still orphans in terms of therapy and are subjected to treatment with non-specific approaches, which includes chemotherapy and immunotherapy, resulting in low response rates and high toxicity. There is an urgent need to find new approaches for the treatment of *NRAS*-mutant melanoma in order to target these tumors in a more specific way, what will contribute to the improvement of patient's survival.

2.4.3.1. RAS: The undruggable oncogene

RAS proteins have been observed to be highly relevant in melanoma biology, being mutated in more than 20% of the cases and playing a key role in the regulation of the RAS-ERK1/2 pathway. As explained above, these proteins need to be post-translationally modified in order to acquire acyl groups that allow its localization to the plasma membrane⁸⁰⁻⁸². During the last years different post-translational modification inhibitors have been proposed, however, none of them have produced benefits in patient's outcome and serious side effects have been observed.

Due to the failure observed upon direct inhibition of NRAS, efforts have been focused in the inhibition of critical signaling pathways driven by RASmediated transformation. The most studied approach has been the inhibition of the RAS-ERK1/2 pathway using MEK inhibitors. After several clinical trials testing different MEK inhibitors from first to third generation, no specific response has been observed in patients carrying *NRAS* mutations^{95–98}.

Next generation MEK inhibitors, such as Binimetinib and Pimasertib, have showed certain effects in progression-free survival (PFS) in *NRAS*-mutated advanced melanoma patients when compared to Dacarbazine, however, adverse effects are still observed^{99,100}. In order to achieve more relevant clinical responses, MEK inhibitors are being tested in combination with additional agents. It is of especial interest the synergistic effect observed upon the combination with PI3K pathway inhibitors. Several clinical trials are ongoing in order to define the most efficient drug combination for the treatment of this molecular subtype⁴⁰. For the moment, no clear effects are observed and further investigation is needed. Although the currently implemented targeted and immunotherapeutic approaches may provide some benefit to patients with *NRAS*-mutant melanoma, none of these therapies are mutation specific and have shown partial responses and significant toxicity. In contrast with *BRAF* mutant melanoma, to date, there are no available specific and effective therapeutic strategies approved for *NRAS* mutant melanoma treatment. As a consequence, many clinicians do not perform mutational profiling of *NRAS* routinely although the presence of *NRAS* mutations may have prognostic implications and would facilitate patient management and clinical trial enrolment. A better understanding of the biological and signaling features of the *NRAS*-mutant melanoma subtype is urgently needed. This would help to the establishment of novel, specific and effective therapeutic strategies, what is essential to keep advancing in the management of this disease.

3. Cancer Metabolism: An Emerging Hallmark of cancer

3.1. Metabolic reprogramming in cancer

During the last two decades interest in how cancer cells regulate metabolism has growth considerably. Tumor cells have to deal with stressful situations like low nutrient and oxygen accessibility at the same time that they need to maintain high proliferation rates and tumor growth. In order to adapt to such stressful situation and sustain tumor mass, cells have to provide enough energy as well as building blocks, like amino acids, nucleotides and lipids^{53,54}. As a result, metabolism regulation is frequently altered in transformed cells, what results in an opportunity for the specific targeting of them. One of the most studied and established cancer hallmarks is the adaptation of glucose metabolism, involving an increase in aerobic glycolysis or *Warburg effect* even in the presence of enough oxygen^{53,54,101}.

Tumor metabolism is a complex process that derives from intrinsic tumor properties together with tumor-microenvironment interactions and all the involved processes must be coordinated. The metabolic composition of the tumor microenvironment can determine the metabolic phenotype of the tumor cells, and vice versa. This fact results in high heterogeneity between different tumors or even within the same tumor^{54,102}. Moreover, metabolic features of the tumor can also

Introduction

change during time in order to adapt to the metabolic needs during cancer progression^{102,103}. In this context, cancer cells are exposed to different levels of oxygen and nutrients, what determines the behavior of the cells that, depending on the location within the tumor, will rewire it metabolism in one way or another in order to adapt to these conditions¹⁰². Because of the complexity of this process, characterization of metabolic regulation in cancer has been a challenge during the last years.

Many studies indicate that targeting metabolism can result in the reduction of cancer growth. Furthermore, during the last years, evidence is growing about the fact that metabolic reprogramming can be subjected to regulation by oncogenes and/or tumor suppressors^{102,103}. These discoveries open new avenues for therapeutic interventions based on targeting metabolism in tumor cells. Moreover, metabolic targeting could be combined with other anticancer drugs in order to improve the efficacy of the treatment, avoid resistance development and improve patient's outcome.

3.2. Oncogene-dependent metabolic settings

Metabolic reprogramming is the result of a complex interplay between oncogenes, tumor suppressors and components of the tumor microenvironment. These factors can modulate both the expression and the activity of a wide range of metabolic enzymes, giving rise to specific expression and activity patterns that differ from non-tumoral cells. These patterns will vary depending on the tissue of origin and the genetic and epigenetic features of the tumor cells.

Until now, several oncogenic drivers have been described to regulate different metabolic pathways. In the specific case of the RAS-ERK1/2 pathway, *BRAF* oncogenic mutations have been related to the regulation of several genes such as hypoxia-inducible factor 1 subunit α (*HIF1\alpha*), MYC proto-oncogene (*MYC*) and melanocyte inducing transcription factor (*MITF*), which are responsible of the regulation of distinct metabolic pathways, including carbon metabolism, especially by regulating the balance between aerobic glycolysis and oxidative phosphorylation^{57,104–106}.

38

3.2.1. Metabolic regulation in BRAF mutant tumors

It is well established that oncogenic *BRAF* mutations regulate metabolic reprogramming in melanoma^{52,53,57,107}. In *BRAF* mutant tumors, pyruvate has been defined as a pivotal metabolite. It can fuel alternative metabolic pathways, what will define the tumor destiny. If it is metabolized through the TCA cycle and the consequent oxidative phosphorylation, oncogene-induced senescence (OIS) will be activated^{108,109}. This is the result of the regulation of pyruvate dehydrogenase complex (PDH) regulated by both, pyruvate dehydrogenase kinases (PDKs) and phosphatases (PDPs). In senescent cells, PDH activity is increased due to a higher phosphatase activity, which result in the maintenance of OIS¹¹⁰. On the other hand, induction of aerobic glycolysis would result in the development of tumorigenesis, in this case, due to an increase of kinase activity^{108,109}. It has been described *in vivo* that PDK1 silencing (both, genetically and chemically), decreases tumorigenesis and promotes regression of already established tumors. Moreover, it enhances sensitivity to BRAF inhibitors, suggesting the combination of PDK1 and BRAF inhibitors as a novel therapeutic approach¹¹¹.

Another important metabolic pathway regulated in *BRAF* mutant tumors is ketogenesis. High expression of mitochondrial ketogenic enzymes, including HMG-CoA synthase 1/3 and hydroxyl-3-methylglutaryl-CoA lyase (HMGCL), have been described to cooperate with *BRAF* mutations¹¹². In primary human melanomas, HMGCL overexpression on a BRAF^{V600E} background is accompanied by elevated phosphorylation and activation of MEK and ERK in comparison to tumor cells with wild-type BRAF¹¹². Importantly, HMGCL is required for BRAF-induced cell transformation, as knockdown of either mutant *BRAF* or *HMGCL* decreases cell proliferation and tumor growth in xenograft models¹¹². Addition of acetoacetate, the HMGCL product, to the media of cultured cells selectively promoted proliferation of *BRAF* mutant cells and rescued growth phenotypes induced by *HMGCL* knockdown, what was accompanied by increased MEK and ERK phosphorylation¹¹².

Moreover, BRAF inhibition promotes the overexpression of MITF and peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1 α) in order to adapt to low ATP levels and as a consequence, reduced glycolytic flow⁵⁷. MITF

Introduction

expression partially restores glycolysis through the induction of mitochondrial biogenesis and the increase of oxidative metabolism. ATP levels can be also restored through a PGC1 α -driven mitochondrial generation program that results in the upregulation of oxidative phosphorylation. This induction limits BRAF inhibitor efficacy. Thus, combining BRAF inhibition with inhibitors of mitochondrial function is a promising approach to inhibit tumor cell proliferation⁵⁷.

Both, metformin and phenformin, known inhibitors of AMP-activated protein kinase (AMPK), have been described to enhance the therapeutic efficacy of BRAF^{V600E} inhibitors in melanoma^{113,114}. This efficacy is due to metformin- and phenformin-derived blockage of the boost in glycolytic and TCA cycle intermediates taking place during malignant transformation¹¹⁵. Moreover, BRAF^{V600E} mutant tumors have been described to be insensitive to energy stress and consequently do not activate AMPK due to the uncoupling of liver kinase B1 (LKB1)-AMPK axis¹⁰⁷.

BRAF alterations are also involved in glutamine metabolism. BPTES, an inhibitor of the enzyme glutaminase, synergizes with BRAF inhibitors due to the increased reliance of BRAF^{V600E}-inhibited melanoma cells on glutamine^{72,116}.

Overall, these studies independently confirm that combined targeting of mitochondrial oxidative metabolism and oncogenic BRAF signaling has a synergistic effect in the inhibition of tumor growth and resistance development. However, even more than 20% of melanomas have activating mutations in *NRAS*, surprisingly, much less is known about the metabolic consequences of this genetic alteration. In the case of *KRAS* mutations, several studies support metabolic rewiring in different types of cancers which involves changes in glucose metabolism, glutamine utilization, mitochondrial metabolism and reactive oxygen species (ROS) metabolism⁵³.

3.3. Glucose metabolism

Glucose metabolism involves different metabolic pathways including glycolysis, which transform glucose to pyruvate with the consequent ATP generation; the pentose phosphate pathway (PPP), which generates ribulose-5-phosphate and pentose phosphates for RNA and DNA synthesis, as well as NADPH; the hexosamine pathway, required for protein glycosylation; glycogenesis, which storage glucose for future needs; the serine biosynthesis pathway, involved in the generation of aminoacids; and the one-carbon metabolism cycle, required for purine and glutathione biosynthesis, as well as for NADPH generation¹⁰³.

Until now, glycolysis has been the most studied and cancer-related metabolic pathway. It is a multistep process in which glucose is transformed into pyruvate in the cytoplasm (Figure I.4). First of all, glucose is internalized into the cell through specific transporters known as GLUT1-4. The different isoforms present different affinities for glucose and its expression can vary depending on the cell type and tissue¹⁰³. Interestingly, certain oncogenes can regulate glucose uptake by switching from one isoform to another in tumor cells. For example both, *KRAS* and *BRAF* mutations, are known to induce the expression of GLUT1^{117,118}. Nevertheless, targeting glucose carriers as a way of targeting cancer is not a good approach because of the derived toxicity from non-tumoral cells also expressing these same isoforms¹⁰³.

The glycolytic pathway is composed by several reversible enzymatic reactions and three irreversible or committed steps, which are the most relevant ones in terms of regulation. Once glucose is internalized, it is phosphorylated by hexokinase (HK) to produce glucose 6-phosphate (G6P) in the first committed step. At this point glucose is trapped inside the cell. G6P is then rearranged to fructose 6-phosphate (F6P) by glucose phosphate isomerase (GPI). Fructose can also enter to the glycolytic pathway by phosphorylation at this point. The second committed step of glycolysis is driven by phosphofructokinase 1 (PFK-1) and catalyzes the conversion of F6P into fructose 1,6-bisphosphate (F 1,6-biP). The obtained hexose is split in two trioses: glyceraldehyde 3-phosphate (GA3P) and dihydroxyacetone phosphate (DHAP) by aldolase (ALDO). DHAP can be quickly converted into GA3P by a triosephosphate isomerase enzyme (TPI). Then, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of GA3P into 1,3-bisphosphoglycerate (1,3-biPG). Subsequently, 1,3-biPG is converted into 3-phosphoglycerate (3PG) by phosphoglycerate kinase (PGK) in a reaction that generates ATP. Phosphoglycerate mutase (PGAM) isomerizes 3PG into 2phosphoglycerate (2PG). Enolase next converts 2PG to phosphoenolpyruvate (PEP) and finally PEP results in pyruvate upon pyruvate kinase (PKM) activation in the third and last committed step of the pathway, also involving the production of ATP¹⁰³.

Figure I.4. Glycolysis pathway. Enzymes that catalyze the metabolic reactions are shown in ovals. GLUT=Glucose transporter; HK=Hexokinase; GCK=Glucokinase; G6P=Glucose 6-phosphate; GPI=Glucose 6-phosphate isomerase; F6P=Fructose 6phospate; PFKFB=6-Phosphofructo 2-kinase/fructose-2,6-bisphosphatase; F 2,6biP=Fructose 2,6-bisphosphate; PFK-1=Phosphofructokinase; F 1,6-biP= Fructose 2,6-bisphosphate; ALDO=Aldolase; DHAP=Dihydroxyacetone-phosphate; **TPI=Triosephosphate** isomerase; G3P=Glyceraldehyde 3-phosphate; GAPDH=Glyceraldehyde 3-phosphate dehydrogenase; 1,3-biPG=1,3bisphosphoglycerate; PGK=Phosphoglycerate kinase; 3PG=3-phosphoglycerate; PGAM=phosphoglycerate mutase; 2PG=2-phosphoglycerate; ENO=Enolase; PEP=Phosphoenol pyruvate; PK=Pyruvate kinase; LDH=Lactate dehydrogenase; MCT=Monocarboxylate transporter; AcCoA=acetyl-CoA; α -KG= α -ketoglutarate; OAA=Oxaloacetate; FAS=Fatty acids synthesis; PPP=Pentose phosphate pathway; TCA=Tricarboxylic acid. Hay et al., 2016¹⁰³.

The energetic balance of the pathway results in the consumption of two molecules of ATP during the first half or preparatory phase of the pathway and the generation of four molecules of ATP during the second or payoff phase of the pathway. Moreover, two molecules of NADH are generated.

3.3.1. Glycolysis regulation

The conversion of glucose into pyruvate is regulated to meet two major cellular needs: the production of ATP and the provision of building blocks to sustain cell proliferation and tumor growth. As previously explained, glycolysis involves several enzymatic reactions that can be classified into reversible and irreversible. Irreversible steps, which are known to be critical for the regulation of the process, are catalyzed by hexokinases (HKs), phosphofructokinases (PFKs) and pyruvate kinases (PKMs). These enzymes are subjected to a rigorous control by a wide range of mechanisms.

There are five different human hexokinases whose expression varies depending on the tissue. HK2 is the most expressed isoform in cancer cells, resulting in an increased glycolytic flux¹¹⁹. This step is known as the first committed step of glycolysis mainly for two reasons: it traps glucose inside the cell and it is the converging point of glycolysis, the pentose phosphate pathway (PPP), the hexosamine pathway and glycogen biosynthesis. Hexokinases can be allosterically inhibited by its own product glucose 6-phosphate (G6P)¹⁰³.

In the case of phosphofructokinases, regulation is more complex. PFK-1 can be allosterically regulated (activated) by fructose 2,6-bisphosphate (F 2,6-biP), which is generated from fructose 6-phosphate (F6P) by 6-phosphofructo-2kinase/fructose-2,6-bisphosphatase (PFK-2 or PFKFB) enzymes. Different downstream products of glycolysis, including phosphoenol pyruvate (PEP), lactate, citrate, palmitoyl-CoA and ATP, can also negatively regulate this enzyme. Moreover, PFK-1 activity can be inhibited by glycosylation at position S529 avoiding the binding to F 2,6-biP¹²⁰. Regulation of this enzyme is essential for the control of metabolites derivation to branching pathways¹⁰³.

Pyruvate kinases catalyze the last glycolytic step. There are four different pyruvate kinases: PKM1, PKM2, PKR and PKL. They can be activated by direct

binding of both, F 1,6-biP and serine; and inhibited by phosphorylation at Y105 or binding to phosphotyrosine peptides. PKM activity can be also modulated by high levels of reactive oxygen species (ROS), resulting in the derivation of metabolites to alternative pathways in order to generate NADPH to combat oxidative stress^{103,121}. Cancer cells usually express pyruvate kinase PKM2, which is characterized by its low affinity for PEP and results in the attenuation of this step¹²². This suggests the existence of an alternative mechanism for the conversion of PEP into pyruvate. This reaction depends on PGAM1, the enzyme that catalyzes the conversion of 3PG into 2PG in the pathway. This enzyme, moreover, is able to generate pyruvate from PEP¹²³. The attenuation of this step diverts metabolites into the branching pathways, such as the PPP and the serine biosynthesis pathway, in order to produce enough metabolic intermediates to sustain cell growth and proliferation.

3.3.2. Regulation of glucose metabolism in cancer

There is not a common mechanism for all cancer cells to regulate and reroute glucose metabolism, but some frequent strategies have been observed to occur in a significant number of tumors¹⁰³.

Many malignant cells are characterized by an increased glucose uptake. Moreover, there are additional mechanisms that modify the glycolytic flux for an efficient adaptation to the changeable metabolic needs. These mechanisms are mainly focused in the regulation of the expression and activity of the three glycolytic pivotal enzymes. In one way, higher expression of hexokinases, being HK2 the most relevant isoform in cancer, has been described¹¹⁹. The second committed step of glycolysis is dependent on PFK-1, which catalyzes the conversion of F6P into F 1,6-biP. Cancer cells show increased activity of this enzyme due to the regulation of PFKFB1-4 enzymes, which produces F 2,6-biP, an allosteric regulator of PFK-1, being PFKFB3 isoform the most expressed one in tumor cells due to the higher kinase/phosphatase activity ratio of this isoform^{124,125}. The third pivotal step of the glycolytic pathway is catalyzed by pyruvate kinases, converting PEP into pyruvate. In the case of this step, an attenuation of the reaction has been described in cancer cells, what is explained by a preference for cancer cells of using PKM2, an isoform presenting a lower affinity for PEP¹²². This attenuation results in higher flux of glycolysis-derived metabolites to branching pathways.

As previously mentioned, one of the most relevant mechanisms involved in the adaptation of general metabolism and specifically, glucose metabolism, is oncogene-dependent metabolic rewiring. Some of the most studied oncogenes until now, including *KRAS*, *BRAF*, *AKT and MYC*, have been described to regulate glucose transporters^{117,118,126}. Tumor suppressors also play an important role in the regulation of metabolism. *TP53* induces the expression of TP53-induced glycolysis and apoptosis regulator (TIGAR)¹²⁷, which can decrease the levels of F 2,6-biP, and as a consequence decrease PFK-1 activity. *TIGAR* can also regulate HK2, promoting its activity in a PFKFB-independent manner¹²⁸. PFKFB isozymes have been described to be relevant for malignancy acquisition, specifically *PFKFB2* and *PFKFB3*, which have been observed to be upregulated in cancer cells, are under the control of AKT¹²⁹.

Environmental stressors, like hypoxia, and one of the most well-known hypoxia inducible factors, HIF1 α , have been also described to accelerate glucose metabolism by a wide range of different mechanisms. One example is the increase in the expression of *GLUT1* and *HK2*¹³⁰.

Events following glycolysis are also differentially regulated in cancer cells. Pyruvate conversion into lactate is increased in tumoral versus non-tumoral cells by an increased expression of lactate dehydrogenases (LDHs)¹³¹. These enzymes are bidirectional and different isoforms present different affinity for pyruvate and lactate. LDHA has higher affinity for pyruvate while LDHB present higher affinity for lactate. Depending on the most expressed isoform, the flux will go in one sense or another. The most expressed isoform in cancer is LDHA, what explains the increased flux from pyruvate to lactate in these cells. The produced lactate is mainly secreted to the extracellular media thanks to the presence of specific carriers known as monocarboxylate transporters (MCTs). Diminishing intracellular accumulation of lactate is essential in order to maintain low acidic environment as well as to avoid PFK-1 inhibition by this metabolite¹³². Lactate secretion also has some advantages for the extracellular environment including regulation of invasion¹³³ and its use as an energy source for adjacent cells¹³⁴. Both,

LDHA and MCTs, can be regulated by HIF1 α and MYC^{130,135}.

GAPDH, even it is not considered a pivotal enzyme in glycolysis regulation, is also relevant in terms of glucose diversification as its inhibition can reroute glucose to the PPP in order to generate reduction power. Under oxidative stress conditions, the channeling of metabolites to the PPP is further increased by the oxidative inhibition of GAPDH activity¹³⁶.

Moreover, glycolytic enzymes present alternative functions that are not related to metabolism and promote malignant transformation¹³⁷ (Figure I.5). These functions are mainly associated with transcriptional regulation, cell cycle regulation and chemoresistance.

Figure I.5. Non-metabolic functions of glycolytic enzymes and metabolic intermediates in cancer cells. *Ganapathy-Kanniappan and Geschwind, 2013.*

3.3.2.1. Warburg effect

All these molecular changes taking place in malignant cells lead to an increase in glycolytic flux. However, this does not always result in an increase in oxidative phosphorylation (OXPHOS). Otto Warburg described this phenomenon in the late 1920s and since then it has been known as *Warburg effect* and it has been considered one of the most accepted and well-described cancer hallmarks¹⁰¹.

Introduction

The rationale of regulating glucose metabolism in this way is that cancer cells present a high demand of energy, reduction power and building blocks for anabolic processes in order to sustain high proliferation rates and tumor growth. This means that glycolysis is accelerated in cancer cells to feed the branching pathways that generate enough biomass to sustain nucleic acid, protein and membrane synthesis, allowing tumor maintenance and growth. Even the yield of ATP per glucose molecule consumed is lower than through complete OXPHOS, it can surpass that produced from OXPHOS if the glycolytic flux is high enough. In summary, the *Warburg effect* has a positive impact on energy production, biomass generation and detoxification of reactive oxygen species (ROS) through the generation of reduction power¹³⁸.

This discovery has been contemplated as an opportunity for the specific targeting of these cells and has been also used for many years for the development of tumor detection using image techniques. This difference in glucose consumption in tumoral versus non-tumoral cells can be used for the specific detection of tumors through positron emission tomography (PET), which is based in the use of labeled glucose analogue [¹⁸F] fluorodeoxyglucose (FDG), whose uptake is higher by high proliferative cells¹³⁹.

3.3.2.2. Glucose deprivation

Glucose deprivation is one of the most common environmental factors affecting tumor cells. This occurs in tumors with high growth rate, where cells that stay in the middle of the tumor mass are not well irrigated. This situation is especially harmful for cancer cells due to its dependence on glucose to maintain cell proliferation and survival. At the molecular level, glucose starvation results in the reduction of intracellular ATP and NADPH, generating an energetic imbalance and a stress condition derived from ROS intracellular accumulation, what can lead to cell death. In order to overcome this situation, cells activate AMP-activated protein kinase (AMPK). AMPK inhibits acetyl-CoA carboxylase 1/2 (ACC1/2), an essential enzyme for the regulation fatty acid synthesis (FAS) and fatty acid oxidation (FAO). As a consequence of this change in fatty acids synthesis regulation, NADPH consumption decreases. Moreover, NADPH synthesis is promoted upon FAO

Introduction

induction and the activation of the folate pathway¹⁴⁰. Glucose starvation can also promote the use of other alternative energy sources, like aminoacids. Many tumor cells rely on glutamine metabolism to fuel their cellular bioenergenicts, especially under energy stress conditions. Through conversion from glutamine to glutamate and α -ketoglutarate, cells can fuel the TCA cycle. Glutamine metabolism has been described to be regulated by MYC, which can promote glutamine uptake, as well as glutamine catabolism. Serine and glycline are some other examples of alternative energy sources for cancer cell metabolism^{53,106}.

3.3.3. Targeting metabolism as a novel therapeutic approach

The exploitation of metabolic reprogramming may provide attractive and effective therapeutic approaches for the selective targeting of cancer cells. However, to be effective, there are different issues to consider: the efficacy of metabolic routes, in particular glycolysis, is in part due to the existence of several isoforms of the different glycolytic enzymes. Additionally, inhibitors may not distinguish between the cancer-specific isoform and the isoforms expressed by normal cells, and even if specificity could be achieved, the expression of the other isoforms could be induced in response to inhibition of the cancer-specific isoform, what would compensate the function of the inhibited isoform. Another concern is related to metabolic heterogeneity of the tumors. This condition can overwrite the inhibition of one metabolic pathway by the upregulation of alternative routes. To avoid this, different metabolic pathways should be inhibited at the same time.

4. Phosphofructokinase (PFK-1)

4.1. Isozymes and structure

PFK-1 enzymes, kinases involved in the phosphorylation of F6P to F 1,6-biP, are expressed by three different tissue-specific genes: *PFKM* in muscle, *PFKL* in liver and *PFKP* in platelets. The molecular weight of each subunit varies being 82.5 kDa, 77 and 86.5 respectively¹²⁴. For the enzyme to be active, each subunit has to dimerize with three more subunits forming homo- or hetero-tetramers, depending on the cell type¹⁴¹. The main isoenzymes expressed in tumor cells are PFKP and PFKL. On the other hand, fructose 1,6-bisphosphatases (FBPases) catalyzes the opposite reaction in which F 1,6-biP is dephosphorylated back to F6P during the

Gene name	Chromosomal location (human)	Kinase/phosphatase activity	Regulation
PFKM	12q13.11	Kinase	РКА, РКС, АМРК
PFKL	21q22.3	Kinase	RAS, Src, HIF1α
PFKP	10p15.2	Kinase	AKT, EGFR, HIF1α, Glycosylation, Snail
FBPase1	9q22.32*	Phosphatase	Snail
FBPase2	9q22.32*	Phosphatase	Not described

gluconeogenesis pathway¹²⁴ (Table I.4).

Table I.4. Phosphofructokinase (PFK-1) and fructose-1,6-bisphosphate (FBPase)isoforms. Table includes chromosomal location, enzyme acvtivity and known regulationmechanisms. *Same chromosomal region, different locus. Modified from Bartrons et al., 2018124.

4.2. *Regulation* and role in cancer

As previously mentioned, glycolysis is a tightly regulated process where the irreversible steps are key for the control of the pathway. The step catalyzed by PFK-1 is the most important one due to its role in the redirection of the glycolytic metabolites to branching metabolic pathways, which is essential for rapid proliferating cells to generate enough reduction power and biomass to sustain tumor growth.

This enzyme is subjected to a complex regulation process. Its functionality and regulatory characteristics depend on the composition of the different subunits forming the active tetramer. Furthermore, PFK-1 can be also regulated by different allosteric effectors, including negative (citrate, ATP, PEP, and [H⁺]) and positive effectors (F 2,6-biP, AMP, F 1,6-biP, G 1,6-biP, NH₄⁺, and P_i). This fact results in the coordination of the response to the energy status of the cell¹⁴¹. Moreover, the presence of high amounts of lactate induces the dissociation of the tetramers reducing its enzymatic activity and consequently, reducing glycolytic flux¹³².

PFK-1 activity can be also induced by different oncogenes as well as cancerrelated transcription factors. Overexpression of RAS, Src or HIF1 α has been described to be involved in the regulation of PFK activity^{142,143}. The transcriptional repressor Snail can also reprogram glucose metabolism by suppressing lactate production and, as a consequence, PFKP¹⁴⁴. Postranslational modifications, such as glycosylation and phosphorylation, also modulate the activity of this enzyme. Glycosylation can occur in response to hypoxic stress, which results in the inhibition of PFK-1 activity and the consequent redirection of the glycolytic flux toward the PPP¹²⁰. PFK-1 isozymes can be phosphorylated by different kinases but this does not have significant effects in the enzyme activity^{145,146}. AKT can bind to and phosphorylate PFKP at S386, which inhibits its binding to TRIM21 E3. This results in the inhibition of PFKP polyubiquitylation and subsequent degradation, so an increase in glycolytic flux can be observed¹⁴⁷. The enzyme location is also important for its regulation. PFKM activity has been observed to increase upon localization to the actin filaments of the cytoskeleton¹⁴⁸.

PFKFB1-4 enzymes, which are characterized by dual kinase/phosphatase activity, as well as TIGAR, catalyze fructose-6-phosphate/fructose-2,6-bisphosphate cycle, thus playing a key role in the control of PFK-1 and consequently, of the glycolytic rate¹²⁴ (Figure I.6).

Figure I.6. Regulation of the F6P/F 1,6-BP substrate cycle. *Bartrons et al. 2018.*

As stated above, targeting metabolic enzymes as a therapeutic strategy against tumor cells may not be a good approach as normal cells also express the same enzymes and it could result in non-tolerable toxicity. Targeting specific mechanisms involved in the regulation of these enzymes in tumor cells, instead of directly targeting the glycolytic enzymes, could overcome these unspecific effects. Following this rational, PFK-1 enzyme could be inhibited by directly targeting PFKFB enzymes, specifically those isoforms preferentially expressed by cancer cells. PFKFB enzymes product F 2,6-biP concentration inside the cell depends on the relative kinase and phosphatase activities of the different PFKFB isoforms so, specific inhibition of the kinase activity would result in a decrease of F 2,6-biP amount and the subsequent inhibition of PFK-1 activity. Thus, the use of small-molecule inhibitors that inhibit the kinase activity of cancer-specific PFKFB isoforms has been proposed as a possible therapeutic approach for the inhibition of PFK-1 in cancer cells¹⁴⁹.

5. PFKFB (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) enzymes

5.1. Isoenzymes and structure

PFKFB enzymes are structured in two tandem domains with opposing activities. The first one, with kinase activity, is able to phosphorylate F6P to F 2,6-biP; and the second one, with phosphatase activity, dephosphorylates F 2,6-biP back to F6P. Because F 2,6-biP has an allosteric effect in PFK-1 activity, the relative kinase to phosphatase activity ratio of PFKFB enzymes plays an essential role in the regulation of PFK-1 activity, modulating the intracellular levels of F6P and F 1,6-biP and consequently, regulating the glycolytic flux.

Gene name	Chromosomal location (human)	Kinase/phosphatase ratio	Regulation	
PFKFB1	Xp11.21	1.2 (bovine liver), 2.5 (rat liver), 0.4 (rat muscle)	PKA, PP2A	
PFKFB2	1q32.1	1.8 (bovine liver)	AMPK, PKA, AKT, PKC, RSK, Glucocorticoids, Androgens	
PFKFB3	10p15.1	710 (human placenta), 3.1 (bovine brain)	AMPK, PKA, AKT, PKC, Smad, RSK, p38- MK2, Estrogens, Adenosine, LPS, P53, S- glutathionylation, demethylation	
PFKFB4	3p21.31	0.9 (human testis), 4.1 (rat testis)	HIF1α, P-PPARγ, testosterone, p53	

Table I.5. Phosphofructokinase-2 isoforms. Table includes information regarding chromosomal localization of the different PFKFB isoforms, kinase to phosphatase activity ratio and known regulators. *Modified from Bartrons et al., 2018*¹²⁴.

There are four isoforms of PFKFB (PFKFB1–4), each one encoded by a separate gene. The relative kinase to phosphatase activity of each isoform varies as well as their relative expression levels, which are tissue-specific (Table I.5, Figure I.6). It is important to remark the higher kinase to phosphatase ratio of PFKFB3

(710) in comparison with the rest of the isoforms, what explains why cancer cells preferentially express it.

PFKFB proteins are known to be homodimeric, composed of two 55 KDa subunits. Each monomer present both kinase and phosphatase domains within the same polypeptide chain, with the kinase domain at the N-terminal end of the protein and the phosphatase domain at the C-terminal end¹⁵⁰.

5.2. Regulation and role in cancer

As previously explained, PFKFB enzymes are regulators of PFK-1 through the generation of fructose 2,6-bisphosphate. This metabolite is a known allosteric regulator of PFK-1, which results in the increase of the affinity of PFK-1 for F6P and the modulation of ATP-mediated inhibition of PFK-1. It can also synergistically increase the affinity of PFK-1 for AMP, a positive allosteric effector of the enzyme. Moreover, it is involved in the inhibition of the phosphatase activity of the enzyme¹²⁴. Furthermore, F 2,6-biP stabilizes PFK-1 and promotes its association into tetramers and higher oligomers with enhanced activity^{124,141,148}. Therefore, changes in the concentration of this metabolite regulate the activity of PFK-1 and FBPase1, thereby conferring a key role of F 2,6-biP in the regulation of the glycolytic flux. These enzymes are mainly regulated by phosphorylation and its regulation varies depending on the isoform¹²⁴ (Figure I.7).

PFKFB1 can be phosphorylated at residue S32 by cAMP-dependent protein kinase (PKA), in response to glucagon, and dephosphorylated by protein phosphatase 2A (PP2A), activating the bisphosphatase and inhibiting the kinase activity respectively. This one is the only isoform that has not been found to be overexpressed in cancer cells¹²⁴.

PFKFB2 has been described to be expressed in cancer cells^{151,152}. This enzyme can undergo phosphorylation in different sites, integrating signals from many pathways. S466, T475 and S483 can be phosphorylated by 3-phosphoinositide-dependent kinase 1 (PDPK-1), AMP-activated protein kinase (AMPK), PKA, PKB/AKT, PKC, p70 ribosomal protein S6 kinase (S6K1), calcium-calmodulin-dependent protein kinase (Ca/CAMK) and p90 ribosomal protein S6 kinase (RSK). Phosphorylation at these residues results in the activation of the

52

enzyme¹⁵⁰. This enzyme is also subjected to transcriptional regulation. Regarding promotion of cancer phenotype, it has been described that PFKFB2 can contribute to metabolic reprogramming through the activation of the SLIT2/ROBO1 axis promoting proliferation, apoptosis and inducing the *Warburg effect* through the activation of the Src/ERK/MYC/PFKFB2 axis¹⁵³. Additional regulation mechanisms, like non-coding RNAs can be also involved in PFKFB2 regulation^{154,155}.

Figure I.7. Domains organization of PFKFB enzymes. Regulatory regions with residues susceptible of phosphorylation by different protein kinases are shown in blue. *Modified from Bartrons et al., 2018.*

PFKFB3 is the most expressed isoform in cancer cells. Like many protooncogenes PFKFB3 has many copies of the AUUUA sequence in their 3'UTR, which confers instability and enhanced translational activity¹⁵⁶. PFKFB3 expression has been described to be regulated by several mechanisms, including response to stress, pro-inflamatory molecules and hormones, among others¹⁵⁶⁻¹⁵⁸. As well as the other isoforms, PFKFB3 activity can be modulated by phosphorylation at distinct sites. Different protein kinases, such as AMPK, PKA, AKT, PKC and RSK have been described to phosphorylate PFKFB3. Additional mechanisms of PFKFB3

Introduction

regulation includes ROS-mediated S-glutathionylation and demethylation, both resulting in the inhibition of PFKFB3 kinase activity and the derivation of glycolysis intermediates to the pentose phosphate pathway (PPP)^{124,159}. Due to its role in metabolism reprogramming in cancer cells, PFKFB3 has been proposed as a possible target for the establishment of novel therapeutic approaches¹⁴⁹. Indeed, downregulation of *PFKFB3* expression with siRNAs has been reported to decrease cell viability in cancer cells¹⁶⁰. Moreover, PFKFB3 small molecule inhibitors have been developed¹⁴⁹. Recent studies in patients suggest significant effects in combination with standard chemotherapeutics in the treatment of recurrent tumors¹⁶¹.

PFKFB4 has been described to be upregulated in cell lines coming from prostate, liver, colon, bladder, stomach and pancreas tumors and its expression can be modulated by HIF1 α , PPARY and p53^{124,151}.

HYPOTHESIS AND OBJECTIVES

BRAF and *NRAS* are the most commonly found mutated genes in melanoma, with an incidence of 50% and 20%, respectively. In both cases, alterations in these genes result in the constitutive activation of the RAS-ERK1/2 pathway, with a consequent increase in proliferation and survival deriving in increased tumorigenesis. However, even the same signaling pathway is affected, both types of tumors have been widely described to be different entities at clinical and molecular levels, which results in distinct signaling patterns as well as different biological behavior. Until now, several therapies against *BRAF* mutant tumors have been developed with some of them showing a high success rate. Surprisingly, for *NRAS* mutant tumors, there are no available specific therapies and these tumors are currently treated using more general approaches, including chemotherapy and immunotherapy, showing low response rates and toxicity.

Previous results in our group, together with additional investigations, have highlighted the presence of different metabolic settings subjected to *BRAF* oncogene regulation. However, little is known about the role of *NRAS* mutations in metabolic rewiring. Deciphering metabolic settings in *NRAS* mutant melanomas could provide new avenues for the establishment of specific therapeutic approaches against these, until now, untargetable tumors.

For this reason, the main aim of this thesis is to unveil new metabolic targets for therapy by the establishment of different metabolic settings under *NRAS* regulation.

Metabolic stress, specifically energy stress induced by either glucose removal or metformin treatment, has been observed to promote a differential response in BRAF^{V600E} vs. NRAS^{Q61} mutant cells, which results in the acquired sensitivity of NRAS^{Q61} mutant cells to Sorafenib treatment, a multi-kinase inhibitor. To further study the differential metabolic settings among both groups of cells, and the molecular implications of energy stress, together with the its relationship with RAS-ERK1/2 pathway regulation, the following objectives are proposed.

Objectives:

- 1. To elucidate the underlying mechanism in the differential response to metabolic stress of melanoma cells harboring NRAS^{Q61} and BRAF^{V600E} mutations and to establish the impact of glucose starvation in the regulation of the RAS-ERK1/2 pathway.
- 2. To study differences existing in the metabolic settings of NRAS^{Q61} and BRAF^{V600E} mutant melanoma cells.
- To describe the link existing between metabolic stress, RAS-ERK1/2 pathway regulation, and cell death, as well as its differential regulation in NRAS^{Q61} and BRAF^{V600E} mutant melanoma cells.
- 4. To establish therapeutic approaches based on the differential metabolic features of NRAS^{Q61} mutant tumors.

RESULTS

The RAS-ERK1/2 pathway is differentially regulated in NRAS^{Q61R} and BRAF^{V600E} mutant cells in response to metabolic stress

Previous results from our group established that BRAF^{V600E} mutant cells are not able to sense low energy levels due to an uncoupling in the LKB1-AMPK axis¹⁰⁷. Consequently, these cells do not activate the expected apoptotic response under energy stress conditions. This phenotype, which is oncogene-dependent, was rescued upon treatment with Sorafenib, a multi-kinase inhibitor that targets vascular endothelial growth factor receptors (VEGFR) 2/3, platelet-derived growth factor receptor β (PDGFRβ), KIT, Fms related receptor tyrosine kinase 3 (FLT3), BRAF and CRAF proteins. This phenomenon was interpreted as an opportunity for the specific targeting of these cells as combination of energy stress (glucose starvation, metformin, phenformin) and RAS-ERK1/2 pathway inhibition (Sorafenib plus U0126, a MEK inhibitor) triggered apoptosis¹⁰⁷. Effects of the combination of metformin, an AMPK activator mimicking low energy stress, and the inhibition of the RAS-ERK1/2 pathway, were evaluated in cells carrying mutations in *NRAS* and *BRAF*, the two most commonly altered components of the RAS-ERK1/2 pathway (TCGA database). The combined treatment resulted in cytotoxicity in both NRASQ61 and BRAFV600E mutant cells but surprinsingly, NRAS^{Q61} mutant cells showed higher sensitivity to the combined treatment (Esteve-Puig R. Doctoral thesis 2011).

To further analyze the molecular implications of metabolic stress in the regulation of the RAS-ERK1/2 pathway, the role of RAS-ERK1/2 pathway regulating the metabolic response to the stress, as well as the oncogene-mediated contributions to this process, we analyzed the effect of glucose withdrawal in different cell lines carrying mutations in *NRAS* and *BRAF*.

RAS-ERK1/2 pathway activation status was evaluated in *SKMel103* (NRAS^{Q61R}), *SKMel147* (NRAS^{Q61R}), *SKMel28* (BRAF^{V600E}) and *UACC903* (BRAF^{V600E}) cells in response to glucose starvation. To that end, cells were subjected to glucose withdrawal during 30 minutes, 1 hour, 2 hours, 3 hours and 4 hours and ERK1/2 phosphorylation at residues T202/Y204 was analyzed by Western Blot. Quantification of the obtained signal showed that NRAS^{Q61} mutant cells experiment

a more than twenty-fold increase of ERK1/2 phosphorylation after 30 minutes of glucose starvation and that this activation is sustained during time. BRAF^{V600E} mutant cells, which already present high-phosphorylated ERK1/2 amounts, did not respond to the treatment (Figure R.1). Thus, these data suggest an oncogene-mediated differential regulation of the RAS pathway in response to metabolic stress.

Figure R.1. RAS-ERK1/2 regulation upon metabolic stress in NRAS^{Q61R} **and BRAF**^{V600E} **mutant melanoma cells.** Western Blot showing ERK1/2 phosphorylation in response to glucose starvation. The bars graph represents quantification of ERK1/2 phosphorylation. Gluc.=Glucose.

Activated ERK1/2 localization upon metabolic stress is predominantly cytoplasmic

In order to determine the correct function of ERK after its activation we analyzed ERK1/2 localization in response to metabolic stress. In resting conditions, ERK localizes in the cytoplasm due to its interactions with anchoring proteins. Upon stimulation, it is activated by phosphorylation at residues T202 and Y204. This phosphorylation induces conformational changes and ERK is released from anchoring proteins and translocated to the nucleus. Nuclear translocation is

required to active ERK1/2 nuclear substrates and regulates proliferation and other relevant cellular processes¹⁶².

To establish ERK1/2 localization within the cell we proceeded to the fractionation of protein lysates. *SKMel103* (NRAS^{Q61R}), *SKMel147* (NRAS^{Q61R}), *SKMel28* (BRAF^{V600E}) and *UACC903* (BRAF^{V600E}) cells were subjected to glucose starvation for 1 and 3 hours and both, nuclear a cytoplasmic protein lysates were obtained. Protein extracts were subjected to electrophoresis and ERK1/2 phosphorylation was analyzed by Western Blot. In all cell lines phosphorylated ERK1/2 was observed to be located in both, nucleus and cytoplasm. Interestingly, phosphorylation increase was observed to be more evident in the cytoplasmic fraction of NRAS^{Q61R} mutant cells. Lamin A/C and GAPDH, used as nuclear and cytoplasmic markers, confirmed the purity of the protein extracts (Figure R.2). Hence, these data indicates that activated ERK1/2 localization upon metabolic stress is predominantly cytoplasmic in NRAS^{Q61R} mutant cells.

	NRAS ^{Q61R}		BRAF ^{V600E}	
	SKMel103	SKMel147	SKMel28	UACC903
High Gluc. w/o Gluc. 1h	+ +	++	++	+ +
w/o Gluc. 3h	+ + N C N C N C	+ + N C N C N C	+ + N C N C N C	+ + N C N C N C
p-ERK1/2				
ERK2				
Lamin A/C				
GAPDH				

Figure R.2. Subcellular localization of p-ERK1/2 upon metabolic stress. Western Blot showing ERK1/2 phosphorylation in nuclear and cytoplasmic protein extracts in response to metabolic stress. Lamin A/C and GAPDH are used as nuclear and cytoplasmic markers, respectively. Gluc.=Glucose, N=Nucleus, C=Cytoplasm.

Hyperactivation of the RAS-ERK1/2 pathway sensitizes NRAS^{Q61R} mutant cells to treatment with the multi-kinase inhibitor Sorafenib

As previously explained, Sorafenib, a multi-kinase inhibitor targeting RAF molecules, is able to sensitize *BRAF* mutant cells to low energy conditions¹⁰⁷. Moreover, it has been observed that *NRAS* and *BRAF* mutant cells undergo a

Results

differential response to glucose starvation regarding the hyperactivation of the RAS-ERK1/2 pathway. We wondered then if this differential behavior could have any impact in cell sensitivity in respect to the inhibition of the pathway.

Thus, *SKMel103* (NRAS^{Q61R}), *SKMel147* (NRAS^{Q61R}), *SKMel28* (BRAF^{V600E}) and *UACC903* (BRAF^{V600E}) cells were subjected to Sorafenib treatment in the presence and absence of glucose during 4 hours and pathway activation was determined analyzing ERK1/2 phosphorylation by Western Blot. Hyperactivation of the pathway upon glucose withdrawal was confirmed in NRAS^{Q61R} mutant cells. Surprisingly, glucose starvation resulted in the sensitization of these cells to Sorafenib treatment and the complete ablation of ERK1/2 phosphorylation in response to the combined treatment. This effect, even less accentuated was also observed in BRAF^{V600E} mutant cells, which are known to be sensitive to RAS pathway inhibition upon normal conditions²⁹ (Figure R.3). Altogether, the data suggest that NRAS^{Q61R} mutant cells are sensitized to treatment with Sorafenib upon glucose starvation conditions.

Figure R.3. Glucose withdrawal sensitizes NRAS^{Q61R}-mutated melanoma cells to treatment with Sorafenib. Western Blot showing ERK1/2 phosphorylation in response to glucose starvation and treatment with Sorafenib (15 μ M, 4 hours). GAPDH is shown as a loading control. The bars graph represents quantification of ERK1/2 phosphorylation. Gluc.=Glucose, SF=Sorafenib.

Sorafenib is the only inhibitor promoting synthetic lethality in NRAS^{Q61R} mutant cells

To determine whether the different targets of Sorafenib could be responsible of the hyperactivation of the RAS pathway and the consequent inhibition upon glucose starvation plus Sorafenib conditions we tested the effect of different inhibitors against the different Sorafenib targets. Thus, SKMel103 (NRAS^{Q61R}), SKMel147 (NRAS^{Q61R}), SKMel28 (BRAF^{V600E}) and UACC903 (BRAF^{V600E}) cells were subjected to glucose starvation in combination with Sorafenib (SF), Vemurafenib (VE), Trametinib (TR), Axitinib (AX), Avastin (AV), Lenvatinib (LEN), Sunitinib (SU) and CCT196969 (CCT). The rationale for the use of these inhibitors was to cover the whole range of Sorafenib targets. AX, AV, LEN and SU were used for the inhibition of receptor tyrosine kinases (RTKs). AX targets vascular endothelial growth factor receptors (VEGFR) 1/2/3, platelet-derived growth factor receptors (PDGFR) α/β and KIT. AV is an anti VEGF-A antibody. LEN targets VEGFR1/2/3, PDGFR α/β , KIT, Fibroblast growth factor receptor 1 (FGFR1) and RET. SU targets VEGFR2, PDGFR_β, KIT and FLT3. CCT is a PanRAS inhibitor. VE was used for the specific targeting of BRAF^{V600E}, TR was used for the inhibition of MEK and SF was used for the inhibition of both RTKs and RAF proteins, including BRAF^{V600E}.

Analysis of ERK1/2 phosphorylation by Western Blot showed ERK1/2 inhibition by SF, TR and CCT in all cell lines. VE effect, as expected, was only appreciated in cells carrying the BRAF^{V600E} mutation. AX, AV, SU and LEN, did not show inhibition at ERK1/2 level, even more, an increase was appreciated in all cell lines with the exception of *UACC903* in the case of AX and AV, probably due to the upregulation of alternative RTKs and other elements of the pathway in response to the treatment (Figure R.4 and Supplementary Figure 1).

	NRAS ^{Q61R}		BRAF ^{V600E}	
	SKMel103	SKMel147	SKMel28	UACC903
	High Gluc. High Gluc. + SF w/o Gluc. w/o Gluc. + VE w/o Gluc. + VE w/o Gluc. + AX w/o Gluc. + AX	High Gluc. High Gluc. + SF wo Gluc. wo Gluc. + SF wo Gluc. + VE wo Gluc. + AX wo Gluc. + AX wo Gluc. + AX	High Gluc. High Gluc. + SF w/o Gluc. w/o Gluc. + SF w/o Gluc. + VE w/o Gluc. + AX w/o Gluc. + AX	High Gluc. High Gluc. + SF w/o Gluc. + SF w/o Gluc. + SF w/o Gluc. + VE w/o Gluc. + AX w/o Gluc. + AX
p-ERK1/2 SE				
p-ERK1/2 LE				8-8 88
ERK2				
GAPDH				

Figure R.4. Molecular response to RAS-ERK1/2 pathway inhibition. Western Blot showing ERK1/2 phosphorylation in response to glucose starvation and RAS-ERK1/2 pathway inhibition. Cells were treated with SF (15 μ M), VE (5 μ M), TR (100 nM), AX (10 μ M) and AV (0.5 mg/ml) during four hours, either with and without glucose. GAPDH is shown as a loading control. Gluc.=Glucose, SF=Sorafenib, VE=Vemurafenib, TR=Trametinib, AX=Axitinib, AV=Avastin, SE=Short exposure, LE=Long exposure.

Concomitant to the inhibition of ERK1/2 by Sorafenib upon metabolic stress, NRAS^{Q61R} mutated cells were detached from the plate showing a phenotype compatible with cell death. Thus, we evaluated simultaneously by flow cytometry the apoptosis triggered by the different assayed conditions. All the samples showed between 1-4% of basal cell death. Neither glucose starvation nor Sorafenib treatment produced any effect in cell viability. However, the combination of both resulted in an increase of cell death in NRAS^{Q61R} mutant cells (42.7% and 46.88% in SKMel103 and SKMel147, respectively), generating a condition of synthetic *lethality*. This behavior was not observed in BRAF^{V600E} mutant cells, where cell death did not increase in response to combined treatment (3.92% and 3.40% in SKMel28 and UACC903, respectively). Regarding the rest of the inhibitors, cell death percentages from 2 to 7% were detected in NRAS^{Q61R} mutant cells, showing no synergy between glucose starvation and the different inhibitors. BRAF^{V600E} mutant cells showed between 2 and 12% of cell death, being VE and TR the most lethal inhibitors (Figure R.5). Overall, these data support the higher sensitivity of BRAF^{V600E} mutant cells to the inhibition of the RAS-ERK1/2 pathway and propose Sorafenib as the only inhibitor promoting synthetic lethality in NRASQ61R mutant cells upon metabolic stress.

Hyperactivation of the RAS-ERK1/2 pathway is NRAS^{061R}-dependent and involves a switch from CRAF- to BRAF-dependent signaling

Altogether these results suggest the existence of oncogene-dependent metabolic settings in NRAS^{Q61R} mutant cells. To investigate NRAS^{Q61R} role in the ERK1/2 hyperactivation upon glucose starvation, we depleted NRAS^{Q61R} oncogene using specific siRNAs in *SKMel103* and *SKMel147* NRAS^{Q61R} mutant cells. Three different siRNAs were used for *NRAS* knockdown and a scrambled siRNA was used as a negative control. NRAS downregulation at protein level and the status of the RAS-ERK1/2 pathway activation under the different conditions were analyzed by Western Blot.

Both, non-transfected (N/T) and scramble-transfected NRAS^{Q61R} mutant cell lines (*SKMel103* and SKMel147) showed ERK1/2 hyperactivation upon glucose withdrawal. In contrast, in NRAS depleted cells this response to metabolic stress was dramatically decreased. The observed effect associated to the knockdown of *NRAS* was consistent within the three different siRNAs, confirming the specificity of the assay (Figure R.6). Thus, the hyperactivation of the RAS-ERK1/2 pathway upon metabolic stress seems to be *NRAS* oncogene-dependent.

Figure R.6. NRAS^{Q61R} **mutant cells do not respond to metabolic stress upon NRAS downregulation.** Western Blot showing ERK1/2 phosphorylation in response to metabolic stress upon NRAS silencing with three different siRNAs (NRAS siRNA#1, NRAS siRNA#2 and NRAS siRNA#3). GAPDH is shown as a loading control. Gluc.=Glucose. N/T=Non-transfected cells, Scramble=Cells transfected with scrambled siRNA.

The above results suggested the direct participation of the oncogene in the observed response. To further investigate the molecular mechanisms involved in the hyperactivation of the pathway we measured changes in NRAS activation in response to metabolic stress. As previously explained NRAS belongs to a family of small GTPases and it is activated upon binding to GTP. NRAS^{Q61} mutation disrupts GTPase activity of NRAS. Thus, when NRAS^{Q61} is activated in response to any stimulus, it binds to GTP and it becomes locked in its active conformation^{33,34}. To establish NRAS activation status we performed a RAS activation assay based in RAS-GTP precipitation using agarose beads bound to a RAS-binding domain (RBD-agarose). Once precipitated, lysates were resolved by electrophoresis and NRAS was detected by Western Blot (Figure R.7A).

В

Figure R.7. NRAS activation in response to metabolic stress. (A) Diagram representing the experimental procedure followed to determine RAS activation. (B) Western Blot showing NRAS activation upon metabolic stress. GAPDH is shown as a loading control. Gluc.=Glucose, RBD=RAS binding domain, PD=Pull down.
To assess RAS activation at early time point cells were subjected to glucose withdrawal for 15 and 30 minutes. An increase in RAS binding to GTP was observed after 30 minutes of glucose starvation in both, *SKMel103* and *SKMel147* NRAS^{Q61R} mutant cell lines (Figure R.7B), confirming NRAS activation in response to metabolic stress.

As stated above one of the characteristics of *NRAS* mutant cells is the molecular switch taking place from BRAF- to CRAF-dependent signaling⁴². We wondered if the observed NRAS^{Q61R}-dependent metabolic settings and the acquisition of RAS-ERK1/2 inhibition sensitivity derived from them could involve changes in *NRAS* mutant cells signaling regulation.

It is widely described that CRAF is tightly regulated by activating and inhibiting phosphorylation at different sites. One of the key modifications involved in the regulation of CRAF is inactivating phosphorylation at S259, which can be driven by AKT and PKA. Phosphorylation at this point results in the binding to inhibitory 14-3-3 proteins and the disruption of the RAS-RAF complexes, thus resulting in the inhibition of CRAF catalytic activity^{30,42} (Figure R.8A). In order to establish CRAF S259 phosphorylation status *SKMel103* NRAS^{Q61R} mutant cells were subjected to glucose starvation for 4 hours and CRAF phosphorylation at residue S259 was analyzed by Western Blot. Phosphorylation was observed to increase in response to metabolic stress, suggesting the inhibition of CRAF activity upon this condition (Figure R.8B).

Figure R.8. Metabolic stress promotes a switch from CRAF to BRAF signaling in NRAS^{Q61R} **melanoma cells.** (A) Scheme indicating RAF dimerization regulation in response to phosphorylation at S259. (B) Western Blot showing CRAF phosphorylation at residue Ser259 in response to metabolic stress. GAPDH is shown as a loading control. (C) Western blot showing immunoprecipitated BRAF and CRAF in response to metabolic stress. The bars graphs represent quantification of BRAF and CRAF proteins amount. (D) Kinase assay showing MEK phosphorylation as a readout of BRAF and CRAF kinase activity in the presence and absence of glucose. The bars graphs represent quantification of phosphorylated MEK amount upon BRAF and CRAF immunoprecipitation. Three different replicates are showed. RBD=RAS Binding Domain, IP=Immunoprecipitation, Gluc.=Glucose, SE=Short exposure, LE=Long exposure, *=p-value<0.05, **=p-value<0.01.

Results

To investigate the consequences of CRAF inactivation in the dimerization of RAF proteins and the activation of the pathway we analyzed the composition of the dimers under normal conditions and in response to metabolic stress in *SKMel103* NRAS^{Q61R} mutant cells. To that end we immunoprecipitated BRAF and CRAF upon 15 minutes, 30 minutes, 1 hour, 2 hours and 4 hours of glucose starvation and a Western Blot was performed. BRAF-immunocomplexes showed an increasing amount of BRAF molecules in response to metabolic stress, concomitant to a decrease of CRAF molecules bound to BRAF after 2 and 4 hours of glucose withdrawal (Figure R.8C). This observation suggested an increase in BRAF homodimers together with a decrease in BRAF-CRAF heterodimers. CRAF homodimers amount did not change (Figure R.8C). The decrease in BRAF-CRAF heterodimers formation could be also appreciated in this case (CRAF immunocomplexes). Altogether, the data suggest that, in NRAS^{Q61} mutant cells, metabolic stress promotes a switch in the use RAF signaling isoforms from CRAF to BRAF. This observation was confirmed by an increased BRAF kinase activity and a decreased CRAF kinase activity in NRAS^{Q61R} mutant cells subjected to four hours of glucose starvation (Figure R.8D).

NRAS^{Q61R} and BRAF^{V600E} mutant cells differentially express metabolism-related genes

Next, we aim to characterize *NRAS mutant cells*-specific metabolic settings. To that end, we performed a microarray study in two different NRAS^{Q61R} mutant cells (*SKMel103* and *SKMel147*) and two different BRAF^{V600E} mutant cells (*SKMel28* and *UACC903*), upon normal conditions and in response to glucose starvation. Data analysis showed that the 400 top differentially expressed genes among NRAS^{Q61R} and BRAF^{V600E} mutant cells under basal conditions were significantly associated with metabolism-related categories, including cellular components organization or biogenesis, metabolic processes and detoxification (Figure R.9A and Supplementary Table 1).

Moreover, response to metabolic stress was observed to be differential when comparing NRAS^{Q61R} and BRAF^{V600E} mutant cells (Figure R.9B and Supplementary Table 2). Comparison of upregulated and downregulated genes among NRAS^{Q61R} and BRAF^{V600E} mutant cells indicated than only a small

72

percentage of genes was common to both groups of cells (26.9% and 5.5% of upregulated genes in *NRAS* and *BRAF* mutant cells, respectively, and 22.9% and 7.8% of downregulated genes in *NRAS* and *BRAF* mutant cells). These data support the existence of metabolic settings that are under the regulation of the oncogene.

Figure R.9. Differential expression of metabolism-related genes among NRAS and BRAF mutant cells. (A) On the left, a heatmap representing the 400 most differentially expressed genes under basal conditions in *NRAS* vs. *BRAF* mutant melanoma cell lines (n=3). On the right, gene ontology (GO) processes obtained from the analysis of upregulated and downregulated genes using *Metascape.org*. (B) On the top, scheme showing the flow followed to compare *NRAS* and *BRAF* mutant cells regulated genes in response to metabolic stress. On the bottom, Venn diagrams indicating upregulated (log₂FC > 0.265) and downregulated (log₂FC < -0.265) genes in response to glucose withdrawal in NRAS^{Q61R} and BRAF^{V600E} mutant melanoma cells.

Mitochondrial response capacity *is compromised in NRAS*^{Q61} *mutant cells*

To further characterize the NRAS^{Q61} oncogene-dependent metabolic features, we used Seahorse technology to profile the functional mitochondrial capacity of melanoma cells according to their mutational status (NRAS^{Q61} vs. BRAF^{V600E}). This technology is based in the establishment of key parameters of mitochondrial function by directly measuring the oxygen consumption rate (OCR) of cultured cells. To modulate the respiratory chain we added different regulators of respiration including oligomycin, phenylhydrazona (FCCP), rotenone and antimycin A to cells in culture. Olygomycin is used for the inhibition of ATP synthase (Complex V). It is involved in the decrease of electron flow through the respiratory chain resulting in the reduction of mitochondrial respiration and as a consequence the OCR. This decrease in OCR is linked to cellular ATP production. FCCP is an uncoupling agent that collapses the proton gradient and disrupts the mitochondrial membrane potential. It reverses the inhibition of respiratory chain and oxygen consumption by complex IV reaches the maximum. This allows the calculation of spare capacity, defined as the ability of the cell to respond to increased energy demand. Finally, rotenone and antimycin A are complex III inhibitors, which shut down mitochondrial respiration and enable the calculation of non-mitochondrial respiration driven by processes outside the mitochondria.

Cells were treated first with oligomycin following basal measurements. Then, FCCP, rotenone and antimycin were added successively. We measured mitochondrial respiration related parameters in *SKMel103* (NRAS^{Q61R}), *SKMel147* (NRAS^{Q61R}), *SKMel28* (BRAF^{V600E}), *UACC903* (BRAF^{V600E}), *A375* (BRAF^{V600E}) and *G361* (BRAF^{V600E}), as well as in patient-derived cell lines *Mmln9* (NRAS^{Q61}) and *Mmln10* (NRAS^{Q61}). Mitochondrial response capacity of NRAS^{Q61} mutant cells was much more reduced when compared with BRAF^{V600E} mutant cells (Figure R.10A). Furthermore, NRAS^{Q61} mutant cells showed lower maximal and ATP-linked respiration together with an increased proton leak (Figure R.10B). Overall, this data highlight that NRAS^{Q61} mutant cells have a reduced mitochondrial response capacity in comparison with BRAF^{V600E} mutant cells.

Figure R.10. Mitochondrial response capacity is compromised in NRAS^{Q61} **mutant cells.** (A) Graphs representing oxygen consumption rate (OCR) in NRAS^{Q61} (blue) and BRAF^{V600E} (red) mutant melanoma cells. The yellow area represents the spare respiration capacity. (B) Graph showing quantification of oxygen consumption-associated parameters including proton leak, mitochondrial maximal respiration and ATP-linked respiration. (n=5 ± SD; p-value was calculated by Student's t-test).

NRAS^{Q61R} mutant cells are less flexible than BRAF^{V600E} mutant cells using alternative fuels in the absence of glucose

Metabolic plasticity characterize tumor cells, as they need to rewire metabolic settings in an attempt to adapt to stress and low energy conditions at the same time that they have to maintain high proliferation rates to sustain tumor growth. This plasticity is possible due to tumor cells high capacity and flexibility metabolizing different energy sources. As these cells need to adapt to continuously changeable environments, in the absence of any metabolite or energy source, cells have to reprogram its metabolism settings in order to survive^{53,54,103}.

Results

We assessed then how dependent, capable and flexible, NRAS and BRAF mutant cells were metabolizing the three most important energy sources for human cells metabolism: glucose, glutamine and long-chain fatty acids. Thus, we performed OCR measurements using Seahorse technology to determine the rate of oxidation of each fuel in the presence and absence of inhibitors of the different metabolic pathways: UK5099, an inhibitor of the mitochondrial pyruvate carrier (MPC), that inhibits glucose oxidation; BPTES, an inhibitor of glutaminase (GLS1) and consequently of glutamine oxidation; and etomoxir, a carnitine palmitoyltransferase 1A (CPT1A) inhibitor that promotes the inhibition of long chain fatty acids oxidation. All measurements were taken in the presence and absence of glucose in the culture media. Inhibition of the pathway of interest followed by the two alternative pathways enabled the establishment of how cells depend on the pathway of interest to meet energy demand. Inhibiting the two alternative pathways followed by the pathway of interest enabled the establishment of cell capacity. Fuel flexibility was calculated subtracting fuel dependency from fuel capacity for each metabolic pathway.

Interestingly, NRAS^{Q61} mutant cells were less efficient using alternative fuels in the absence of glucose than BRAF^{V600E} mutant cells (Figure R.11), suggesting higher limitations of NRAS^{Q61} mutant cells to meet energy demand upon glucose starvation conditions.

Figure R.11. NRAS^{Q61} mutant cells are less flexible using alternative fuels in the absence of glucose than BRAF^{V600E} mutant cells. On the top, from left to right, graphs represent NRAS^{Q61} mutant cells flexibility metabolizing alternative fuels upon inhibition of glutamine (Gln), fatty acids (FA) and Glucose (Gluc.) metabolizing alternative fuels upon inhibition of glutamine (Gln), fatty acids (FA) and Glucose (Gluc.) metabolizing alternative fuels upon inhibition of glutamine (Gln), fatty acids (FA) and Glucose (Gluc.) metabolizing alternative fuels upon inhibition of glutamine (Gln), fatty acids (FA) and Glucose (Gluc.) metabolizing alternative fuels upon inhibition of glutamine (Gln), fatty acids (FA) and Glucose (Gluc.) metabolism (n=5).

Addition of glucose but not pyruvate is able to revert the RAS-ERK1/2 hyperactivation observed upon metabolic stress, as well as Sorafenibinduced apoptosis

The above data suggests that NRAS^{Q61} mutant cells depend on glucose as an energy source, but it seems that glucose is not oxidized to carbon dioxide and water through the TCA, due to the low mitochondrial response capacity previously demonstrated within these cells. This is also supported by the observation showing that they are not capable to compensate the lack of glucose through the use of alternative energy sources. As stated by Otto Warburg, cancer cells are characterized by an increased aerobic glycolysis, meaning that even in the presence of enough oxygen, glucose is metabolized until pyruvate and then converted to lactate but it does not go through oxidative phosphorylation¹⁰¹. The objective of this metabolic strategy is to produce enough reduction power and building blocks for the maintenance of high proliferative rates.

If glucose were oxidized to carbon dioxide and water, addition of either glucose or pyruvate to starved cells would result in the reconstitution of the phenotype. However, this reconstitution would not be observed in response to pyruvate addition if glucose were derived to branching pathways, what would support the use of glucose essentially to generate building blocks and/or reduction power.

To confirm NRAS^{Q61} mutant cells behavior regarding glucose metabolism and its relationship with RAS-ERK1/2 pathway regulation and sensitivity acquisition to Sorafenib, we followed two different strategies. In one hand we treated cells with Sorafenib and increasing concentrations of glucose or pyruvate in culture media lacking both, glucose and pyruvate. On the other hand, we tested whether inhibition of first and last glycolytic steps could mimic the lack of glucose. Combination of Sorafenib and agents mimicking low glucose conditions should result in the induction of apoptosis. Thus, cells were treated with 3bromopyruvate (3BP), an hexokinase 2 inhibitor, and dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase (Figure R.12A) and cell viability was assessed upon fluorescence detection after addition of acridine orange (AO) and ethidium bromide (EB) (Figure R.12B). Addition of glucose was related with an increase of cell viability in a dose-dependent manner, an effect that was not observed upon pyruvate addition to the cells (Figure R.12C). In line with this, 3BP and Sorafenib combined treatment resulted in a dose-dependent increase of cell death while DCA addition did not produce any change in cell phenotype (Figure R.12D). These results indicated an important role of glycolysis in NRAS^{Q61} mutant cells, likely involving the upper glycolytic steps rather than the lower part of the pathway and consequently glucose derivation to branching pathways rather than oxidative phosphorylation.

SKMel103 NRASQ61R

Figure R.12. Sorafenib effects in combination with glucose, pyruvate, 3-bromopyruvate (3BP) and dichloroacetate (DCA). (A) Schematic representation of the glycolytic pathway. (B) Scheme showing the procedure used for the analysis of cell death. (C) Cell pictures showing cell viability in response to Sorafenib (15 μ M) either alone or in combination with increasing concentrations of glucose and sodium pyruvate. (D) Cell pictures showing cell viability in response to Sorafenib (15 µM) either alone or in combination with increasing concentrations of 3-bromopyruvate (3BP) and dichloroacetate (DCA). G6P=Glucose 6-phosphate, F6P=Fructose 6phosphate, F1,6-biP=Fructose 1,6-bisphosphate, DHAP=Dihydroxyacetone phosphate, GA3P=Glyceraldehyde 3-phosphate, 3PG=3-Phosphoglycerate, OAA=Oxaloacetate, SucCoA=Succinyl-CoA, α -KG= α -ketoglutarate, AO=Acridine Orange, EB=Ethidium Bromide, Gluc.=Glucose, Pyr.=Pyruvate.

To investigate whether the observed changes in cell viability correlated with the loss of cell sensitivity to the inhibition of the RAS-ERK1/2 pathway with Sorafenib, we also studied the phosphorylation status of ERK1/2 in Sorafenib-treated cells upon the addition of increasing concentrations of either glucose or pyruvate (Figure R.13A).

Addition of glucose, but not pyruvate resulted in the decrease of RAS-ERK1/2 pathway hyperactivation in a dose-dependent manner, and the loss of sensibility to Sorafenib. These molecular effects were not appreciable in pyruvatetreated cells (Figure R.13B). Overall, these data highlight the relevance of glucose metabolism in NRAS^{Q61} mutant cells. Moreover, the data provide evidence regarding the preferential glucose derivation to branching pathways rather than conversion to pyruvate for oxidative phosphorylation.

Figure R.13. Sorafenib does not produce ERK1/2 inhibition in combination with glucose but it does when combined with sodium pyruvate. (A) Scheme showing the followed experimental procedure. (B) Western Blot showing ERK1/2 phosphorylation in response to Sorafenib treatment, either alone or in combination with metabolic stress. Glucose and pyruvate concentrations correspond to 5 mM, 10 mM, 20 mM and 50 mM. Sorafenib was added at 15 μ M. GAPDH is shown as a loading control. Gluc.=Glucose, Pyr.=Pyruvate, SF=Sorafenib.

Several glycolytic (ALDOB, ENO2, ENO3, G6PC2, PGAM2 and PKLR) and glucose metabolism-related genes (FBP1, FBP2, G6PD, LDHC, MPC2, PFKFB2 and PFKFB4) are regulated in NRAS^{Q61R} mutant cells in response to metabolic stress

Due to the observed relevance of the glycolytic pathway in NRAS^{Q61R} mutant cells and using the gene expression profiles generated, we investigated the transcriptional regulation of several glycolytic enzymes involved in the conversion from glucose to pyruvate (purple) and the derivation to branching pathways (orange) in NRAS^{Q61R} mutant cells (*SKMel103* and *SKMel147*) (Figure R.14A).

PGAM2, PFKFB2, G6PD, G6PC2, FBP2, FBP1 and *ENO2* were upregulated in glucose-starved versus non-starved cells in at least one NRAS^{Q61R} mutant cell line ($log_2FC > 0.265$). On the other hand *PKLR, PFKFB4, MPC2, LDHC* and *ALDOB* were downregulated ($log_2FC < -0.265$) upon glucose starvation. *ENO3* was regulated oppositely in the two investigated NRAS^{Q61R} mutant cells, being upregulated in *SKMel147* and downregulated in *SKMel103* cells (Figure R.14B). Interestingly, upregulated genes were related with the metabolization of glucose to pyruvate or derivation of glycolysis intermediates to branching pathways. However, downregulated genes were mainly related to the use of pyruvate in the mitochondria (OXPHOS) or the conversion of pyruvate to lactate. Thus, metabolic stress is involved in the regulation of several glycolytic and glucose metabolism-related genes in NRAS^{Q61R} mutant cells suggesting an increased glycolytic phenotype in response to glucose starvation.

Figure R.14. Glycolysis-related genes regulation in response to metabolic stress. (A) Schematic representation of the glycolytic pathway, highlighting enzymes involved in glucose to pyruvate conversion (purple) and the derivation to branching pathways (orange). (B) Graph showing glycolysis-related genes regulation upon metabolic stress in NRAS^{Q61R} mutant cells. In red, significantly upregulated genes (log₂FC > 0.265) in starved vs. non-starved cells. In blue, significantly downregulated genes (log₂FC < -0.265) in starved vs. non-starved cells. Gluc.=Glucose, FC=Fold change.

Upregulation of PFKFB2 enzyme, which is regulated in response to metabolic stress, shows a significant tendency to co-occur with NRAS^{Q61} mutations

Upregulated enzymes in response to metabolic stress were subjected to a deeper analysis with the objective to establish its role in human melanoma biology. To this end, the enzymes genetic status was investigated in the *TCGA database (Melanoma Firehose Legacy study,* 287 complete samples). *PKLR, PFKFB2* and *MPC2* were observed to be altered, mainly upregulated, in more than 10% of melanoma cases (Figure R.15A). Moreover, *PFKFB2* showed a significant tendency (*q-value<0.05*) to co-occur with *NRAS* mutations (Figure R.15B), what suggested a relevant role of this enzyme in *NRAS* mutant backgrounds.

Α	В	Neither	A Not B	B Not A	Both	q-Value	Tendency
BRAF	NRAS	56	133	78	20	< 0.001	Mutual exclusivity
NRAS	PFKFB2	174	78	15	20	0.044	Co-ocurrence

Figure R.15. Mutational status of glycolysis-related genes in human cutaneous melanoma. (A) Genetic alterations of glycolysis-related genes in human samples obtained from *TCGA (Firehose Legacy study, 287 complete samples)*. Purple arrows indicate those genes altered in >10% of the samples. (B) Table showing co-ocurrence tendency of *PFKFB2* and *NRAS* genetic alterations. Data obtained from *TCGA (Firehose Legacy study, 287 complete samples)*.

This co-occurrence was confirmed at the copy-number variant level, where a positive correlation tendency could be observed more clearly in *NRAS* mutant tumors than in *BRAF* mutant tumors (Figure R.16).

NRAS: Capped relative linear copy-number values

Figure R.16. Positive correlation of *NRAS* and *PFKFB2* copy number variations in human cutaneous melanoma. Graphs represent *BRAF* copy number variation (CNV) relationship with *PFKFB2* CNV (top) and *NRAS* CNV relationship with *PFKFB2* CNV (bottom). Data obtained from *TCGA database (Firehose Legacy study,* 287 complete samples).

PFKFB2 is an important enzyme in terms of glycolytic regulation, as it is involved in the conversion from F6P to F 2,6-biP, an important allosteric regulator of PFK-1. PFK-1 is involved in one of the three most important steps in glycolysis regulation, being responsible of the redirection of metabolites to glycolysis branching pathways when reduction power and biomass are needed¹²⁴.

To further confirm *PFKFB2* upregulation taking place in *NRAS* mutant cells we analyzed PFKFB2 expression at protein level in two cell line panels, including

patient-derived cell lines. Cell lines were classified in non-tumoral cells (N-T), *BRAF* mutant cells (BRAF^{V600E}), *NRAS* mutant cells (NRAS^{Q61}) and tumor cells lacking both, *NRAS* and *BRAF* mutations (NRAS^{WT}/BRAF^{WT}). A clear tendency of NRAS^{Q61} mutant cells expressing higher PFKFB2 amounts was observed in both panels (Figure R.17). Altogether, these data provide evidence about co-ocurrence of *NRAS* mutations and PFKFB2 upregulation at protein level.

Figure R.17. PFKFB2 is upregulated in NRAS^{Q61} mutant cells. On the left, commercial melanoma human cell lines panel. On the right, non-tumoral (N-T) human melanocytes and patient-derived cells. GAPDH and β -Actin are shown as loading controls.

PFKFB2 phosphorylation is regulated in response to metabolic stress and Sorafenib treatment

Once established PFKFB2 relevance in *NRAS* mutant cells we investigated its regulation in response to metabolic stress and RAS-ERK1/2 pathway inhibition conditions. PFKFB2 has a dual role in glucose metabolism. Depending on its phosphorylation status it can act as a kinase, increasing the glycolytic flux, or as a phosphatase, promoting gluconeogenesis. It has been described that PFKFB2 kinase activity is mainly regulated by phosphorylation at residue S483, and that this regulation can be driven by PKA PKC, AKT, Ca/CAMK, S6K1 and RSK¹²⁴.

In order to determine whether RAS-ERK1/2 pathway activation could be involved in PFKFB2 regulation, phosphorylation at S483 was analyzed by Western Blot in *SKMel103* (NRAS^{Q61R}), *SKMel147* (NRAS^{Q61R}), *SKMel28* (BRAF^{V600E}) and *UACC903* (BRAF^{V600E}) cell lines. Cells were subjected to one, two, three and four hours of glucose starvation alone and in combination with the RAS-ERK1/2 pathway inhibitors Sorafenib (SF) and Trametinib (TR). PFKFB2 phosphorylation at residue S483 was increased in all cell lines in response to metabolic stress; being *SKMel147* (NRAS^{Q61R}) the cells showing the highest response with a 2-fold

increase of PFKFB2 phosphorylation (Figure R.18A). Moreover, phosphorylation was completely inhibited by Sorafenib upon glucose starvation in all cell lines (Figure R.18B). This phosphorylation inhibition was not observed in the rest of the treatments.

Figure R.18. PFKFB2 regulation upon metabolic stress and RAS-ERK1/2 inhibition. (A) Western Blot showing PFKFB2 phosphorylation at residue S483 and total PFKFB2 amount. The bars graph represents quantification of PFKFB2 phosphorylation. (B) Western Blot showing ERK1/2 and PFKFB2 phosphorylation at residue S483 in response to glucose starvation, Sorafenib (SF) and Trametinib (TR). Gluc.=Glucose.

These results suggest the existence of a link between glycolysis and the RAS-ERK1/2 pathway. In one hand, PFKFB2 could be mediating the hyperactivation of the RAS-ERK1/2 pathway in response to metabolic stress and

on the other hand, RAS-ERK1/2 inhibition with Sorafenib but not with Trametinib promotes inhibition of PFKFB2 phosphorylation, suggesting that RAS-ERK1/2-driven regulation of PFKFB2 is likely, carried out by the RAF family of protein kinases.

Glucose withdrawal induces PFK-1 activation through co-localization with actin fibers

As previously mentioned, PFKFB2 is involved in the synthesis of one of the main regulators of PFK-1, fructose 2,6-bisphosphate. It has been described that PFK-1 tetramerization and co-localization with actin fibers has been associated with enzyme activation¹⁴⁸. In order to prove that changes in PFKFB2 phosphorylation were related to changes in PFK-1 activity (Figure R.19A), we analyzed whether metabolic stress caused differential changes in PFK-1 localization according to the cells genotype (*SKMel103* (NRAS^{Q61R}), *SKMel147* (NRAS^{Q61R}), *SKMel28* (BRAF^{V600E}) and *UACC903* (BRAF^{V600E})).

The results showed that while NRAS^{Q61R} mutant cells (*SKMel103* and *SKMel147*) increased PFK-1 activity in response to metabolic stress according to its co-localization with actin fibers, no changes were detected in BRAF^{V600E} mutant cells (*SKMel28* and *UACC903*) (Figure R.19B). Thus, these results indicate that glucose starvation induces PFK-1 activation through co-localization with actin fibers in NRAS^{Q61R} mutant cells.

Results

Α

Β

NRAS^{Q61R}

BRAFV600E

Figure R.19. PFKM and actin fibers co-localization in response to metabolic stress. (A) Schematic representation of activation mechanisms of PFK-1 activity. (B) Representative immunofluorescence images showing PFKM (Red) and actin fibers (Green) co-localization in NRAS^{Q61R} and BRAF^{V600E} mutant cells in response to glucose starvation.

Fructose 1,6-bisphosphate produces an increase in ERK1/2 phosphorylation

Fructose 1,6-bisphosphate, the product of PFK-1 has been described to activate RAS through the activation of *Cdc25*, the yeast ortholog of *SOS1* (Figure R.20A)¹⁶³. The above results demonstrated that PFK-1 activity is upregulated upon metabolic stress. Thus, we investigated whether the increased production of F 1,6-biP could be part of the mechanism responsible for RAS pathway activation upon glucose starvation. To that end, we mimicked PFK-1 activation by the treatment of cells with F 1,6-biP and investigated whether we could recapitulate the activation of the RAS-ERK1/2 pathway.

В

SKMel103	NRAS ^{Q61R}
----------	----------------------

	High Gluc.	Low Gluc.	High Gluc.	w/o Gluc.	
	F 1,6-biP	F 1,6-biP	F 1,6-biP	F 1,6-biP	
	Control 5 mM 10 mM 20 mM 50 mM				
p-ERK1/2					
ERK2					
GAPDH					

Figure R.20. Fructose 1,6-bisphosphate induces RAS-ERK1/2 pathway activation. (A) Schematic representation of glycolysis and the RAS-ERK1/2 pathway and possible described link among them. (B) Western Blot showing ERK1/2 phosphorylation regulation upon treatment with Fructose 1,6-bisphosphate (F 1,6-biP) at 5, 10, 20 and 50 mM in combination with high glucose (25 mM), low glucose (5 mM) and no glucose conditions. GAPDH is shown as a loading control.

SKMel103 cells (NRAS^{Q61R}) were treated with increasing concentrations of F 1,6-biP in media containing no glucose, low glucose (5 mM) or high glucose (25 mM). The results showed that ERK1/2 phosphorylation increased in cells treated with F 1,6-biP plus no glucose and low glucose containing media (Figure R.20B). Thus, these results indicate that increased production of F 1,6-biP derived from increased PFK-1 activity promotes the hyperactivation of the RAS-ERK1/2 pathway in response to metabolic stress.

In silico analysis shows PFKFB2 putative target sequences for confirmed kinases and new phosphorylation sites that may be regulated by RAF and ERK1/2 phosphorylation

These findings link glycolytic activation through PFK-1 activation and increased production of F 1,6-biP with the hyperactivation of the RAS-ERK1/2 pathway. Moreover, we have previously demonstrated that RAS-ERK1/2 inhibition with Sorafenib in combination with metabolic stress results in the inhibition of PFKFB2 phosphorylation. As PFKFB2 regulation is mainly governed by phosphorylation at different residues (Figures R.21A and R.21B), we wondered whether RAF or downstream kinases might be involved in the regulation of PFKFB2 by direct phosphorylation.

We performed an *in silico* phosphorylation analysis of PFKFB2 using the *GPS 5.0* software^{164,165}. This algorithm has the ability of predicting potential protein kinase-specific phosphorylation sites from protein sequences. The prediction resulted in the generation of several parameters including score and cutoff for each predicted phosphorylation site. The score parameter represents the possibility that a specific sequence is a phosphorylation site peptide for a given kinase. If the score of a peptide sequence is high enough to bypass the cutoff value, we may estimate that it is a potential phosphorylation site of the analyzed kinase. The analysis was performed using the high threshold, which corresponds to a theoretically maximal false positive rate (FPR) of 2% for serine/threonine kinases and 4% for tyrosine kinases. Ten kinases showing the highest score after subtracting the cutoff value were represented for each phosphorylation site. Some of the already described kinases phosphorylating PFKFB2 came out from the analysis, including CAMK, RSK and AKT. Interestingly, ERK1/2 and RAF proteins

also appeared as possible regulators, being ERK1 the kinase showing the highest score at position S493, a PFKFB2 residue that had not been previously described to be involved in its regulation (Figure R.21C). Hence, *in silico* analysis proposed ERK1/2 and RAF proteins as possible kinases phosphorylating PFKFB2, highlighting the possible role of ERK1/2 in the phosphorylation of residue S493, a phosphorylation site that has not been described so far.

Figure R.21. Computational prediction of kinases involved in PFKFB2 phosphorylation. (A) Schematic representation of PFKFB2 regulation and its consequences in glycolysis regulation through modulation of PFK-1 activity. (B) Table indicating PFKFB2 already described phosphorylation sites and kinases involved in its phosphorylation. (C) Barr graph indicating the probability for each kinase to phosphorylate PFKFB2 at each specific site. Analysis performed using *GPS 5.0 software.*

Mass Spectrometry analysis reveals ERK2 and PFKFB3 as possible PFKFB2-interacting proteins as well as novel PFKFB2 phosphorylation sites, which are regulated in response to metabolic stress and Sorafenib treatment

To confirm RAF and ERK proteins as interacting partners of PFKFB2, as well as to further study PFKFB2 phosphorylation regulation, we performed a mass spectrometry assay. To that end we generated an inducible lentiviral construct expressing His-tagged PFKFB2 (*pLenti-rtTA2-His-PFKFB2-IRES-GFP*) (Supplementary Figure 2A). *SKMel103* (NRAS^{Q61R}) and *UACC903* (BRAF^{V600E}) cells were infected with this construct and upon induction with doxycycline His-tagged PFKFB2 was expressed together with GFP, which was used for the establishment of infection and expression efficacy (Supplementary Figure 2B).

Next, cells were subjected to metabolic stress and to treatment with Sorafenib; and His-tagged PFKFB2 was pulled down using magnetic beads (Supplementary Figure 2C). Total lysates were analyzed by Western Blot to confirm RAS-ERK1/2 pathway hyperactivation in response to glucose starvation and ERK1/2 inhibition upon Sorafenib treatment (Supplementary Figure 3) and pulled down samples were subjected to mass spectrometry analysis.

Mass spectrometry analysis of obtained lysates after His-tag PFKFB2 pull down in *SKMel103* (NRAS^{Q61R}) and *UACC903* (BRAF^{V600E}) cell lines revealed the presence of ERK2 and PFKFB3 as possible direct or indirect interacting partners of PFKFB2 (Figure R.22A and Supplementary Table 3). Further validation by Western Blot in *SKMel103* (NRAS^{Q61R}), *SKMel147* (NRAS^{Q61R}), *SKMel28* (BRAF^{V600E}) and *UACC903* (BRAF^{V600E}) cell lines confirmed the presence of both proteins (Figure R.22B) and also revealed BRAF as a possible PFKFB2 interacting partner. Interestingly, BRAF-PFKFB2 immunocomplex was stabilized in response to Sorafenib treatment in NRAS^{Q61R} mutant cells and not in BRAF^{V600E} mutant cells. These results suggest the presence of BRAF and ERK2 as possible PFKFB2 phosphorylating kinases in *NRAS* mutant melanoma cells. Moreover, PFKFB3 may be forming heterodimers with PFKFB2, what would have implications at functional level due to the differential kinase/phosphatase activity ratio of these enzymes¹²⁴, and what would involve a novelty in the field, as PFKFB2 has been only described to homodimerize in order to be active¹²⁴.

Figure R.22. ERK2 and PFKFB3 are present in the same immunocomplex than PFKFB2. (A) Heatmap representing mass spectrometry peptide counts (B) Western Blot showing proteins detected after His-tagged PFKFB2 pull down in response to metabolic stress and Sorafenib treatment (15 μ M, 4 hours). Gluc.=Glucose, SF=Sorafenib, SE=Short Exposure, LE=Long Exposure.

Enrichment in phosphorylated peptides using titanium dioxide (TiO₂) followed by mass spectrometry and semi-quantitative analysis allowed us to infer phosphorylated changes of PFKFB2 in response to glucose starvation and Sorafenib treatment. Phosphorylation of PFKFB2 at residues S466, T468, S483,

S486 and S493 was detected, confirming S493 as a new PFKFB2 phosphorylation site (Figure R.23 and Supplementary Table 4). Moreover, S483 and S493 were found to be simultaneously phosphorylated (Figure R.23 and Supplementary Table 4).

Figure R.23. Identification of novel PFKFB2 phosphorylation sites. Graphs showing the fragmentation spectrum of the phosphorylated PFKFB2 peptides identified by mass spectrometry. m/z=mass/charge ratio.

Phosphorylation at S466 was observed to increase in response to glucose withdrawal, as well as in response to Sorafenib, however, it was inhibited by the combination of both treatments. T468 residue could not be individually analyzed due to technical issues and obtained data could not discriminate among S466 and T468 phosphorylation. Something similar occurred in the case of S483, S486 and S493 residues, where phosphorylated peptides in either residue were indistinguishable. Analysis of all residues together showed the same tendency previously observed, an increase upon metabolic stress together with a marked decrease upon metabolic stress and Sorafenib treatment. Phosphorylation regulation at S483 and S493 residues could not be individually investigated however, S483 and S493 biphosphorylated peptides were detected and the

amount of them was increased in response to metabolic stress and decreased upon both, Sorafenib treatment and the combination of metabolic stress and RAS-ERK1/2 pathway inhibition (Figure R.24).

Figure R.24. PFKB2 phosphorylation regulation in response to metabolic stress and treatment with Sorafenib. Graphs indicate the ratio of phosphorylated/unphosphorylated PFKFB2 at residues S466, T468, S483, S486 and S493 in response to metabolic stress and Sorafenib (15 μ M, 4 hours). Gluc.=Glucose, SF=Sorafenib.

Overall, these data confirm that PFKFB2 phosphorylation is regulated in response to metabolic stress and RAS-ERK1/2 pathway inhibition. This regulation involves phosphorylation changes in residues S466, S483 and S493, being this last residue an unknown PFKFB2 phosphorylation site until now. Mass spectrometry analysis, followed by Western Blot validation, also identified BRAF, ERK2 and PFKFB3 as putative interaction partners of PFKFB2.

PFKFB2 and PFKFB3 seem to be able to form heterodimers

As previously explained, PFKFB family of enzymes (PFKFB1-PFKFB4 isoforms), which shows around 70% of sequence identity approximately among its members (Figure R.25A), has been described to be activated through homodimerization¹²⁴. The above results generated from mass spectrometry analysis and Western Blot, suggest the possible heterodimers formation of PFKFB2-PFKFB3 isoforms in four different melanoma cell lines.

To confirm the existence of PFKFB2-PFKFB3 heterodimers we designed an inducible lentiviral construct expressing Flag-tagged PFKFB3 (*pLenti-rtTA2-Flag-PFKFB3-IRES-GFP*). *SKMel103* (NRAS^{Q61R}) mutant cells were simultaneously infected with both *pLenti-rtTA2-His-PFKFB2-IRES-GFP* and *pLenti-rtTA2-Flag-PFKFB3-IRES-GFP*. Infection and expression efficacy were assessed by Western Blot and GFP detection (Figure R.25B and Figure R25C). Both, His-tag and Flag-tag pull down assays were performed. Moreover, a double consecutive pull down was performed in order to assure the interaction between both proteins (Figure R.25D).

Presence of both, PFKFB2 and PFKFB3 was detected by Western Blot after His-tag pull down and Flag-tag pull down. Double His-tag pull down followed by Flag-tag pull down also revealed the presence of both proteins, supporting the previous observation that PFKFB2-PFKFB3 proteins may be interacting forming heterodimers (Figure R.25E).

Figure R.25. PFKFB2 dimerizes with PFKFB3. (A) Table showing identity percentages obtained from the comparison between PFKFB2 and PFKFB3 isozymes. (B) Western Blot showing cells infected with His-tagged PFKFB2 and Flag-tagged PFKFB3 constructs. GAPDH is shown as a loading control. (C) Expression of GFP in induced cells infected with the different constructs. (D) Scheme representing possible scenarios after His-tag (D1), Flag-tag (D2) and double pull down (D3) assays. (E) Western Blot showing obtained proteins after flag-tagged PFKFB3 pull down, Histagged PFKFB2 pull down and Flag-tagged PFKFB3 followed by His-tagged PFKFB2 pull down, in response to one hour of glucose starvation. Gluc.=Glucose, PD=Pull down, SE=Short exposure, LE=Long exposure.

PFKFB2 and PFKFB3 downregulation produces a decrease in ERK1/2 phosphorylation upon metabolic stress in NRAS^{061R} *mutant cells*

Taking into account the possible interaction between PFKFB2 and PFKFB3 which would promote the upregulation of PFK-1 activity in response to metabolic stress and consequently the RAS-ERK1/2 pathway activation due to increased levels of F 1,6-biP, we wondered whether the depletion of PFKFB2 or PFKFB3 could have any impact in the observed ERK1/2 hyperactivation in response to glucose deprivation.

To that end we transfected *SKMel103* (NRAS^{Q61R}) and *UACC903* (BRAF^{V600E}) cell lines with *PFKFB2* and *PFKFB3* siRNAs. Activation status of the RAS-ERK1/2 pathway, as well as efficacy of the siRNAs, were analyzed by Western Blot. Depletion of either PFKFB2 or PFKFB3 resulted in the inhibition of RAS-ERK1/2 pathway hyperactivation in response to metabolic stress in NRAS^{Q61R} mutant cells, while no effect was observed in BRAF^{V600E} mutant cells (Figure R.26). This effect appeared to be more pronounced when we depleted PFKBF3, which has been described to have the highest kinase activity of all isoforms of the PFKFB family. Thus, these results confirm the role of PFKFB2 and PFKFB3 in the hyperactivation of the RAS-ERK1/2 pathway in response to metabolic stress.

Figure R.26. PFKFB2 and PFKFB3 downregulation impedes RAS-ERK1/2 activation upon metabolic stress in NRAS^{Q61R} mutant cells. Western Blot showing PFKB2/PFKFB3 expression and ERK1/2 phosphorylation upon transient *PFKFB2* and *PFKFB3* silencing using specific siRNAs, both under basal conditions and in response to metabolic stress and treatment with Sorafenib (15 μ M, 4 hours). GAPDH is shown as a loading control. Gluc.=Glucose. SF=Sorafenib.

2-Deoxy-D-glucose (2DG) mimics the low glucose effect in vitro.

The above results suggested that a therapeutic strategy combining metabolic stress and Sorafenib treatment might be an effective treatment against *NRAS* mutant melanomas. To translate the observed mechanism to an *in vivo* system we tested the efficacy of 2-deoxy-D-glucose (2DG) in an attempt to mimic glucose starvation derived effects. Over the last years, 2DG has been tested in clinical trials and overall, well toleration and non significant effects in tumor growth have been described when administered as a single agent¹⁶⁶.

Figure R.27. 2-Deoxy-D-glucose (2DG) mimics the glucose starvation effect *in vitro*. (A) Western Blot showing ERK1/2 phosphorylation in response to glucose starvation and 2-Deoxy-D-glucose (2DG) treatment. (B) Graphs showing cell apoptosis measured by flow cytometry comparing glucose withdrawal and 2DG treatment (30 mM) in combination with either vehicle (0.05% DMSO) or Sorafenib (15 μ M, 4 hours). Gluc.=Glucose, SF=Sorafenib, PI=Propidium Iodide, Annexin V=GFP-annexin V.

To confirm 2DG efficacy *in vitro SKMel103* NRAS^{Q61R} cells were treated with 30 mM 2DG and subjected to Western Blot and flow cytometry analysis. In a similar manner than glucose starvation, 2DG treatment increased ERK1/2 phosphorylation (Figure R.27A). Moreover, combination of 2DG and Sorafenib resulted in an increase in cell death (17.58%) (Figure R.27B). These results support the potential use of 2DG as a glucose starvation-mimicking agent for *in vivo* treatment.

Combination of 2DG and Sorafenib has a synergistic effect in NRAS^{Q61} mutant cells in vivo, including patient-derived cells

SKMel103 (NRAS^{Q61R}) and *SKMel28* (BRAF^{V600E}) cells were subcutaneously inoculated in immunosuppressed mice for the evaluation of 2DG and Sorafenib treatments *in vivo*. When the tumors reached a volume between 50-100 mm³, mice with similarly sized tumors were randomized into treatment groups (n= 5 per group). Treated groups received glucose starvation treatment by the addition of 1000 mg/kg 2DG to drinking water and an intraperitoneal injection of 10 mg/kg Sorafenib every day. Control groups were treated with vehicle (PBS with 5% (v/v) DMSO).

Either Sorafenib or 2DG single treatment promoted a decrease in tumor growth in both, NRAS^{Q61R} and BRAF^{V600E} mutant cells. However, in the case of NRAS^{Q61R} mutant cells a significant additive effect was observed in response to the combination of both treatments, metabolic stress and Sorafenib (*q-value<0.0001* compared to 2DG and *q-value<0.001* compared to SF) (Figure R.28A). Further analysis of obtained tumors by immunohistochemistry confirmed ERK1/2 hyperactivation in response to 2DG in NRAS^{Q61R} mutant cells and the expected inhibition of this phosphorylation upon combined treatment. These data correlated with a decrease in Cyclin D1 expression in treated cells, confirming the inhibition of cell division capacity in response to 2DG, SF and 2DG + SF treatments. In contrast, no regulation of these markers was appreciated in BRAF^{V600E} mutant cells (Figure R.28B).

Figure R.28. Combination of 2-Deoxy-D-glucose (2DG) and Sorafenib has a synergistic effect *in vivo* in NRAS^{Q61R} mutant cells. (A) Graphs showing *in vivo* tumor growth upon treatment with Sorafenib, 2DG and the combination of both (n=5 \pm SD). Vehicle-treated cells are shown as control cells. (B) Representative images of p-ERK1/2 and Cyclin D1 immunostaining of tumors are shown. SF=Sorafenib; ns=non-significant;***=q-value<0.001; ****=q-value<0.0001.

To further validate the efficacy and specificity of the proposed combined therapy in a patient-derived xenograft (PDX) model, we used NRAS^{Q61} mutant patient-derived cells (*Mmln9*). As expected, significant decrease in tumor growth could be observed when we compared the combination of 2DG and SF with individual treatments (*q-value<0.001* compared to 2DG and *q-value<0.01* compared to Sorafenib). Moreover, necrotic areas could be detected in those tumors resulting for the double-treated mice (Figure R.29).

Figure R.29. Combination of 2-Deoxy-D-glucose (2DG) and Sorafenib has a synergistic effect *in vivo* in patient-derived NRAS^{Q61R} mutant cells. On the left, graph shows *in vivo* tumor growth of *Mmln9* (patient-derived) cells upon treatment with Sorafenib, 2DG and the combination of both (n=5± SD). Vehicle-treated cells are shown as control cells. On the right, a representative tumor picture of a necrotic tumor from mice treated with 2DG + SF. SF=Sorafenib; **=q-value<0.01; ***=q-value<0.001.

Overall, these data support the *in vivo* tolerability and efficacy of the combination of 2DG and Sorafenib, which involves a dramatic decrease of tumor growth in NRAS^{Q61} mutant cells while non-significant effects are observed in BRAF^{V600E} mutant cells.

DISCUSSION

Activating mutations in *BRAF* and *NRAS* oncogenes are the most common genetic alterations in cutaneous melanoma (*TCGA database*). Both modifications lead to the constitutive activation of the RAS-ERK1/2 pathway¹⁹, however, it has been also noticed that *BRAF* and *NRAS* mutant tumors constitute two different tumoral entities at molecular and clinical levels^{40,44}. An important consequence of this molecular scenario is the availability of targeted therapies against *BRAF* mutant melanomas, while *NRAS* mutant tumors are treated with the standard of care, showing low response rates and high toxicity^{29,34,40,44}. Thus, understanding the molecular mechanisms governing *NRAS* mutated melanomas compared to *BRAF* mutant tumors would be essential to improve the therapeutic opportunities for the treatment of patients carrying *NRAS* mutations.

During the last years, an increased interest in how cancer cells regulate metabolism has emerged^{53,54}. Moreover, evidence is growing on the fact that metabolic reprogramming can be subjected to regulation by oncogenes^{102,103}. Recently, it has been described that metabolic settings can be driven by oncogenes in melanoma^{52,53,57,107}, nevertheless, these findings are almost totally related to *BRAF* oncogenic activation, and little is known about the role of *NRAS* mutations in metabolism rewiring. In this matter, deciphering the metabolic settings of *NRAS* mutant melanomas could provide new avenues for the establishment of specific therapeutic approaches against these tumors.

Adaptation of glucose metabolism has been established as the most important cancer hallmark regarding metabolic reprogramming. In fact, glucose starvation is one of the most relevant stressors affecting tumor cells, due to its dependence on glucose to maintain cell proliferation. Previous results from our group established that BRAF^{V600E} mutant cells are not able to sense low energy levels derived from glucose deprivation due to an uncoupling in the LKB1-AMPK axis promoted by BRAF^{V600E} oncogene. In turn, these cells do not activate the expected apoptotic response under energy stress conditions¹⁰⁷. This phenotype is BRAF-dependent and it can be restored upon treatment with Sorafenib, a multikinase inhibitor targeting RAF. Overall, this phenomenon was interpreted as an opportunity for the specific targeting of these cells, since the combination of energy stress and RAS-ERK1/2 pathway inhibition triggered apoptosis¹⁰⁷.
Discussion

Surprisingly, combination of metformin, an AMPK activator mimicking low energy stress, and the inhibition of the RAS-ERK1/2 pathway, resulted in an unexpected increased cytotoxicity in NRAS^{Q61} mutant cells compared to *BRAF* mutant cells¹⁶⁷. These results showed a differential response to metformin in NRAS^{Q61} and BRAF^{V600E} mutant cells that may be exploited for the direct targeting of tumors carrying *NRAS* mutations. Interestingly, these results are in agreement with improved disease control rate in *KRAS* mutant non-small cell lung cancer patients treated with metformin plus Sorafenib in comparison with Sorafenib as a single agent¹⁶⁸. Thus, we investigated the molecular implications of glucose starvation in NRAS^{Q61} mutant cells in order to establish whether the presence of NRAS-dependent metabolic settings can be exploited for the development of targeted therapies against *NRAS* mutant melanomas.

Our results confirmed that NRAS^{Q61} and BRAF^{V600E} mutant melanoma cells experiment a differential response to glucose deprivation that results in the hyperactivation of the RAS-ERK1/2 pathway in NRAS^{Q61} mutant cells. Upon activation, phosphorylated ERK1/2 translocates to the nucleus¹⁶², however, NRAS^{Q61} mutant cells subjected to metabolic stress showed a predominant cytoplasmic localization of activated ERK1/2. This unexpected localization may be related to the regulation of ERK1/2 cytoplasmic substrates and/or the saturation of the translocation systems to the nucleus within the cell. These results are in agreement with the described increased ERK1/2 cytoplasmic activity in myeloid leukemia cells describing a protection mechanism against apoptosis caused by prolonged serum starvation¹⁶⁹. Moreover, deregulation of reactive oxygen species (ROS), a situation that can be promoted by glucose starvation, could be involved in the regulation of ERK1/2 activity in the cytoplasm¹⁷⁰.

In line with previous results and the above data^{107,167}, metabolic stress resulted in NRAS^{Q61} mutant cells acquisition of sensitivity to Sorafenib treatment. Intriguingly, inhibition of the different Sorafenib targets using receptor tyrosine kinases inhbitors Axitinib, Avastin, Lenvatinib and Sunitinib; BRAF^{V600E} inhibitor Vemurafenib; PanRAS inhibitor CCT196969; and MEK inhibitor Trametinib, did not mimic Sorafenib effect *in vitro*. The resulting phenotype may be the consequence of a higher Sorafenib efficiency in the inhibition of one or more of its targets upon glucose starvation. It is important to remark that contrary to the rest of the tested inhibitors, Sorafenib is a known type II inhibitor, able to bind targets in their inactive conformation (*DGF-out*) occupying the hydrophobic pocket adjacent to the ATP binding site¹⁷¹. This feature, that has been demonstrated to confer efficacy and specificity, would explain why Sorafenib is so effective against certain molecular scenarios. Conformational changes of the different Sorafenib targets in response to metabolic stress may explain different affinity and consequently higher efficacy of Sorafenib in NRAS^{Q61} mutant glucose-deprived cells. In line with this, Verlande et al. have described differential response to several metabolic stressors governed by RAF-KSR dimerization (CRAF in NRAS mutant cells and BRAF in BRAF mutant cells). The authors suggest that this differential association may be responsible of either conformational changes that involve regulation of RAF susceptibility to phosphorylation, or the stabilization of active-CRAF. Both events contemplate the hyperactivation of ERK1/2 in response to metabolic stress in NRAS mutant cells. However, contrary to our data, the authors describe this process as an *NRAS*-independent process¹⁷².

Concomitant to the inhibition of ERK1/2, sensitivity acquisition of NRAS^{Q61} mutant cells resulted in the generation of a *synthetic lethality* condition, being cell death detected exclusively in NRAS^{Q61} mutant cells subjected to glucose starvation and Sorafenib treatment. Remarkably, this effect was not observed in BRAF^{V600E} mutant cells, which are known to be sensitive to the inhibition of the RAS-ERK1/2 pathway under normal conditions. The synergistic effect of Sorafenib and metabolic stress observed in NRAS^{Q61} mutant cells provide a new therapeutic opportunity for the targeting of *NRAS* mutant melanomas, repurposing the use of drugs previously discarded for this disease¹⁷³.

At the molecular level, these results suggest the existence of oncogenedependent metabolic settings in NRAS^{Q61R} mutant cells. In fact, the extraordinary decrease of ERK phosphorylation observed in *NRAS*-depleted cells in response to metabolic stress confirmed that the hyperactivation of the RAS-ERK1/2 pathway is an *NRAS* oncogene-dependent process.

Mutation of *NRAS* at residue Q61 is responsible for the disruption of the GTPase activity of the protein. Upon GTP binding to NRAS, this modification locks

Discussion

the protein it in its active conformation resulting in the constitutive activation of the RAS-ERK1/2 cascade and the subsequent biological effects in cell proliferation and survival^{34,40}. Thus, NRAS^{Q61} mutations do not involve the direct activation of RAS. In other words, RAS has to be previously recruited to the membrane and activated (GTP-charged) by different stimuli within the cell and then, NRAS^{Q61} mutation will be responsible for the sustained signal blocking RAS in the active or RAS-GTP conformation. Analysis of RAS-GTP binding in response to glucose starvation revealed an increased RAS binding to GTP, which correlates with previously obtained data and highlights the direct participation of RAS in the response to metabolic stress.

One of the molecular peculiarities of *NRAS* mutant cells is the use of CRAF instead of BRAF to transmit the downstream signal⁴². Our results demonstrate that there is a switch in the use of the RAF isoforms from CRAF to BRAF in response to glucose deprivation. This is supported by the increased phosphorylation of CRAF at S259 residue in response to metabolic stress, which leads CRAF to an inhibitory state^{30,42}. In addition to this, CRAF inactivation is associated to the disruption of BRAF-CRAF heterodimers concomitant to the formation of BRAF homodimers. Moreover, the regulation of RAF activity and dimerization patterns upon glucose deprivation results in an increased BRAF kinase activity and a decreased CRAF kinase activity. Altogether, these data strongly support the existence of a specific NRAS-dependent signaling regulation in response to metabolic stress.

The analysis of the top 400 differentially expressed genes among NRAS^{Q61} and BRAF^{V600E} mutant cells in basal conditions, shows a significant association of these genes with metabolism-related processes, including metabolic process, cellular component organization or biogenesis and detoxification GO categories, thus involving *NRAS* mutant cells-specific metabolic settings. Moreover, in response to metabolic stress, only a small percentage of regulated genes were common to NRAS^{Q61} and BRAF^{V600E} mutant cells. To further analyze the metabolic implications of these molecular differences, we used a total of four BRAF^{V600E} and four NRAS^{Q61} mutant cell lines, including patient-derived cells. We have established that NRAS^{Q61} mutant cell lines show a consistent reduced mitochondrial response capacity compared to BRAF^{V600E} mutant cells. Several

108

studies have highlighted the presence of high mitochondrial capacity of BRAF^{V600E} mutant cells, involving high oxidative phosphorylation rates, especially in response to BRAF^{V600E} inhibition with Vemurafenib¹⁷⁴⁻¹⁷⁶. Regarding regulation of mitochondrial function in *RAS*-mutated backgrounds, attenuation of mitochondrial capacity has been described in glioblastoma, due to the inhibition of PDH phosphatase (PDP)¹⁷⁷. Moreover, additional studies^{178,179} have demonstrated a relationship existing between the presence of *KRAS* mutations and both, general autophagy and selective mitophagy, involving a glycolytic metabolic shift in breast and pancreatic cancers. Altogether these data strongly support that cells carrying *NRAS* mutations are characterized by a compromised mitochondrial capacity, contrary to BRAF^{V600E} mutant cells. Furthermore, cells carrying *NRAS* mutations are not very efficient metabolizing alternative energy sources in the absence of glucose. This low metabolic flexibility is manifested in glucose deprived NRAS^{Q61} mutant cells subjected to the metabolic inhibition of glucose, glutamine and long chain fatty acids catabolism, the most relevant energy sources used to meet energy demand in human cells. Overall, these data provide strong evidence supporting glycolysis regulation as a key process for NRAS^{Q61} mutant cells.

It is important to highlight that glucose seems not to be preferentially metabolized to CO₂ and H₂O due to the low mitochondrial capacity characterizing these cells. The importance of glucose as a fuel source resides in the different steps of glycolysis rather than in the full oxidation of glucose through oxidative phosphorylation, a phenomenon known as "Warburg effect"¹⁰¹. Increased glycolytic flux either can derive in glucose conversion to pyruvate and then to lactate; or glucose can be derived to glycolysis branching pathways in order to generate reduction power and building blocks for the maintenance of high proliferation rates. The addition of glucose but not pyruvate to cells growing in glucose and pyruvate free media in the presence of Sorafenib, is able to rescue the apoptosis induced by the combination of metabolic stress and Sorafenib, increasing cell viability in a dose-dependent manner. This piece of data allowed us to reinforce the fact that glucose is not fully metabolized through oxidative phosphorylation. Moreover, it can neither be converted into pyruvate and lactate, being likely derived to the branching pathways of the glycolysis to generate reduction power and tumor biomass. Consequently, the addition of 3BP, an

Discussion

hexokinase 2 (HK2) inhibitor, is able to mimic glucose starvation-induced cell death in combination with Sorafenib, while DCA, a pyruvate dehydrogenase inhibitor, is not. Importantly, these phenotypic effects (increased cell viability and the loss of sensitivity to Sorafenib) also correlated with molecular changes in the RAS-ERK1/2 pathway. In this matter, the addition of glucose but not pyruvate is able to restore ERK1/2 phosphorylation. Moreover, in combination with Sorafenib, glucose addition can recover ERK1/2 phosphorylation basal levels while pyruvate can not. Thus, these data emphasize glucose metabolism relevance in NRAS^{Q61} mutant cells and support the preferential metabolization of glucose to the branching pathways rather than conversion to pyruvate and later oxidative phosphorylation. These results are in agreement with previously described glycolysis intermediates channeling to the pentose phosphate pathway and hexosamine pathway in *KRAS* mutant pancreatic and colorectal cancers^{180,181}.

Transcriptional analysis of the regulation of glycolytic and glycolysisrelated genes has revealed *PFKFB2* as a key player in the regulation of glycolysis in NRAS^{Q61R} mutant cells, which becomes upregulated in response to glucose deprivation. PFKFB2 has dual kinase and phosphatase activity and it is involved in the conversion from F6P to F 2,6-biP and vice versa. F 2,6-biP is an allosteric regulator of PFK-1. PFK-1 catalyzes one of the three most important steps in glycolysis regulation¹²⁴. We have investigated the incidence of PFKFB2 alterations in human melanoma. PFKFB2 appears to be altered, mainly amplified, in 12% of cutaneous melanoma patients (TCGA database). Interestingly, these alterations show a significant tendency to co-occur with *NRAS* mutations (*q-value < 0.05*). This observation has been confirmed at the protein level, where NRAS^{Q61} mutant cells tend to express larger amounts of PFKFB2. Furthermore, PFKFB2 activity is regulated by increased phosphorylation at residue S483, a phosphorylation site promoting kinase activity, in response to metabolic stress. Of note, these changes in PFKFB2 phosphorylation promote the activation of PFK-1 through colocalization with actin fibers in NRAS^{Q61R} mutant cells and not in BRAF^{V600E} mutant cells. This observation is in agreement with previous reports that have correlated PFK-1 tetramerization and co-localization to cytoskeleton with higher activity rates¹⁴⁸.

A possible link existing among phosphofructokinase increased activity and RAS-ERK1/2 pathway activation has been described by Peeters et al¹⁶³. The authors established that F 1,6-biP, the product of PFK-1 activity, can activate RAS through the activation of Cdc25 (yeast ortholog of SOS1), a GTPase accelerating protein¹⁶³. We have reinforced these data by demonstrating ERK1/2 hyperactivation in response to F 1,6-biP treatment, providing a possible mechanism by which the activation of the kinase activity of PFKFB2 upon metabolic stress and the consequent allosteric activation of PFK-1 by F 2,6-biP, results in the increased production of F 1,6-biP leading to the hyperactivation of the RAS pathway. The activation mechanism is NRAS-dependent and involves increased RAS binding to GTP, likely mediated by SOS1, as well as changes in NRAS-dependent signaling patterns.

In addition to this, combination of metabolic stress and Sorafenib results in the inhibition of PFKFB2 phosphorylation establishing that activation of PFKFB2 is related with RAS-ERK1/2 pathway regulation. Intriguingly, combination of metabolic stress and RAS-ERK1/2 pathway inhibition downstream RAF with Trametinib does not have any effect in PFKFB2 phosphorylation. Known kinases phosphorylating PFKFB2 include PKA, PKB/AKT, PKC, Ca/CAMK, S6K1 and RSK¹²⁴. Among these enzymes, the only one targetable by Sorafenib would be RSK¹⁸², which can be activated by ERK. We discarded this possibility because ERK inhibition with Trametinib does not have any effect in PFKFB2 phosphorylation. Our data provide new evidence about the existence of alternative protein kinases involved in PFKFB2 phosphorylation under certain metabolic situations, and these kinases may be targetable by Sorafenib and not by Trametinib.

A predictive phosphorylation analysis to establish putative kinases able to modify specific PFKFB2 residues, not only showed already described kinases including CAMK, RSK and AKT, but also disclosed ERK1/2 and RAF proteins as possible kinases of PFKFB2. In relation to this, ERK1 was the kinase showing the highest score able to phosphorylate the S493 position, a residue that has not been previously described to be involved in its regulation. Mass spectrometry and Western Blot analyses have confirmed the presence of BRAF and ERK2 in the same immunocomplex than PFKFB2, suggesting a new role of BRAF and ERK2 in the phosphorylation and regulation of PFKFB2. This observation is in agreement with previously described cytoplasmic localization of ERK1/2 in NRAS^{Q61} mutant cells subjected to metabolic stress.

Mass spectrometry analysis also highlighted the changes in PFKFB2 phosphorylation in response to both, metabolic stress and RAS-ERK1/2 pathway inhibition with Sorafenib. In line with the observed post-translational modifications of PFKFB2 by Western Blot, PFKFB2 phosphorylation is increased in response to glucose starvation and inhibited in cells subjected to glucose deprivation and Sorafenib treatment. Mass spectrometry data also confirms the existence of residue S493 as a new PFKFB2 phosphorylation site, whose regulation can be driven by metabolic stress and RAS-ERK1/2 pathway inhibition. Moreover, we provide evidence of simultaneous phosphorylation of S483 and S493. Additional investigation about the specific role of each phosphorylation site under both, basal and glucose starvation conditions will provide new insights into the regulation mechanisms of PFKFB2.

It has been widely described that PFKFB proteins are activated upon homodimerization¹²⁴. Surprinsingly, mass spectrometry analysis also showed PFKFB3 as a possible interacting protein partner of PFKFB2. Presence of PFKFB3 in PFKFB2 immunocomplex was further confirmed by Western Blot after PFKFB2 pull down, PFKFB3 pull down and consecutive double pull down. This observation, together with the fact that all PFKFB family members share around 70% of identity, strongly suggest the formation of PFKFB2-PFKFB3 heterodimerization capability. However, with these data we cannot conclude direct interaction between both molecules. Heterodimers formation capability would have an enormous impact in cell biology. As previously explained, PFKFB3 is the isoform showing the highest kinase to phosphatase activity ratio within the family, thus increased activation of this isoform would result in increased glycolytic flux. Depletion of either PFKFB2 or PFKFB3 results in the inhibition of the RAS pathway hyperactivation in response to metabolic stress in NRAS^{Q61} mutant cells, highlighting the role of both isoforms in response to glucose starvation. Altogether, these data emphasize PFKFB2 and PFKFB3 as key players, probably forming heterodimers, of glycolysis regulation in NRAS^{Q61} mutant cells, especially under glucose starvation stress.

To translate the generated knowledge into a possible therapeutic strategy we used 2-deoxy-D-glucose (2DG) as a glucose starvation-mimicking agent. 2DG treatment not only promoted the hyperactivation of the RAS-ERK1/2 pathway, but also sensitizes cells to Sorafenib treatment inducing apoptosis. In line with previous in vitro data, Sorafenib treatment in combination with 2DG promotes a significant decrease of tumor growth in NRAS^{Q61R} mutant cells (*q-value<0.001*) but not in BRAF^{V600E} mutant cells (*q-value=ns*). Interestingly, these results have been confirmed in an NRAS^{Q61R} mutated patient-derived xenograft model (PDX) (qvalue<0.01). Moreover, ERK1/2 phosphorylation in tumors follows the same regulation pattern previously described in response to both, metabolic stress and RAS-ERK1/2 pathway inhibition. The synergistic effect of Sorafenib and metabolic stress observed in NRAS^{Q61} mutant cells provide a new therapeutic opportunity for the targeting of NRAS mutant melanomas. It is important to remark that both, 2DG and Sorafenib, have been already tested in clinical trials for the treatment of different tumors. In fact, synergistic effect of 2DG plus Sorafenib has been observed both, in vitro and in vivo, in papillary thyroid carcinoma and hepatocellular carcinoma. However, 2DG plus Sorafenib efficacy has been attributed to Sorafenib-induced mitochondrial damage and derived-energetic shift toward aerobic glycolysis in these particular type of cells, which results in increased glucose consumption and thereby, sensitivity to glucose metabolism inhibition by 2DG, and not to RAS mutant genetic backgrounds¹⁸³⁻¹⁸⁷. Moreover, the observed Sorafenib-induced metabolic reprogramming has been confirmed in patients by an increased [¹⁸F] fluorodeoxyglucose consumption¹⁸⁸. These and other studies have shown that, in both cases (2DG and Sorafenib), tolerability has been acceptable but low efficacy has been achieved by its individual administration^{166,173,189-192}. However our investigation posit the combination of 2DG and Sorafenib as a treatment for the specific targeting of NRAS mutant melanomas. This become particularly relevant knowing that both drugs are safe and have been authorized for human use.

Discussion

Additionally, due to the described role of PFKFB2 and PFKFB3 in the regulation of the RAS-ERK1/2 pathway in response to stress, the development of inhibitors targeting these enzymes or their heterodimerization could be also relevant and effective. In the case of PFKFB3, some inhibitors are already available¹⁹³. Due to the observed PFKFB2 activation in response to metabolic stress, as well as PFKFB2 and PFKFB3 dependency in the hyperactivation of the RAS pathway, an alternative approach would be to combine metabolic stress with the inhibition of PFKFB2 and/or PFKFB3.

Overall, in this study we have demonstrated the presence of *NRAS* oncogene-dependent metabolic settings. NRAS^{Q61} mutant cells show a differential response to metabolic stress that results in the hyperactivation of the RAS-ERK1/2 pathway and the sensitization to the multi-kinase inhibitor Sorafenib. PFKFB2, PFKFB3 and PFK-1 are key players in the regulation of this process, which is NRAS-dependent and involves NRAS activation and changes in the signaling and dimerization patterns of RAF proteins. We also provide evidence about the possibility of PFKFB2 regulation by BRAF and ERK2 phosphorylation. Furthermore, we propose for the first time the possible formation of PFKFB2-PFKFB3 heterodimers. Finally, we have suggested a therapeutic approach for the specific targeting of *NRAS* mutant melanoma tumors, based on the combination of 2DG and Sorafenib. Interestingly, most of the described mechanisms are specific for *NRAS* mutant cells, highlighting that *NRAS* and *BRAF* mutant tumors are different entities at different levels, not only at molecular and clinical levels but also at metabolic level.

CONCLUSIONS

- 1. The RAS-ERK1/2 pathway is hyperactivated in response to metabolic stress in NRAS^{Q61R} mutant cells, generating a *synthetic lethal* condition that sensitizes these cells to Sorafenib.
- 2. Hyperactivation of the RAS-ERK1/2 pathway is *NRAS* oncogene-dependent and involves a switch from CRAF- to BRAF-dependent signaling.
- 3. NRAS^{Q61} and BRAF^{V600E} mutant cells present distinct metabolic settings and differentially regulate glycolytic enzymes as well as glucose metabolism-related genes in response to metabolic stress.
- 4. NRAS^{Q61} mutant cells seem to have a compromised mitochondrial respiration capacity response and a diminished flexibility in metabolizing alternative energy sources in the absence of glucose.
- 5. PFKFB2 and PFK-1 are activated in response to metabolic stress in NRAS^{Q61R} mutant cells resulting in the hyperactivation of the RAS-ERK1/2 pathway likely promoted by an increase in fructose 1,6-bisphosphate amount.
- Phosphorylation of PFKFB2 residues related to its activity is regulated in response to metabolic stress and Sorafenib treatment, likely involving BRAF and ERK2 protein kinases.
- 7. PFKFB2 and PFKFB3 are involved in RAS-ERK1/2 hyperactivation in response to glucose starvation, probably through the formation of heterodimers.
- 8. 2-Deoxy-D-glucose (2DG) is able to mimic glucose starvation effect *in vitro* and *in vivo*, resulting in an additive effect in tumor growth inhibition in combination with Sorafenib in NRAS^{Q61} mutant tumors, including patient-derived xenografts (PDX), but not in BRAF^{V600E} mutant tumors.

METHODOLOGY

Methodology

Cell culture and treatments

SKMel103 and *SKMel147* cells were obtained from M. Soengas (CNIO Madrid, Spain). *UACC903* cells were a gift from J. Trent (P. Pollock, Tgen, Phoenix, AZ, USA). *SKMel28, A375* and *G361* were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). *NHEM* were purchased from PromoCell (Heidelberg, Germany). Patient-derived cell lines, including *Mmln1, Mmln9, Mmln10, Mmln14, Mmln16, Mmln23, Mmln24, Mmln30, Mmln31, Mmgp3, Mmsk8, Mmsk22* and *Mmsk29,* were derived from patients after tumor surgery (Supplementary Table 5). All samples were obtained upon the informed consent of the patients and the Vall d'Hebron Hospital ethical committee approval. Tumors were disaggregated by mechanical disruption and cultured in Dulbecco's Modified Eagle Media (DMEM) (Biowest, Riverside, MO, USA) supplemented with 20% fetal bovine serum (FBS) (Gibco, Waltham, MA, USA), 2 mM L-Glutamine (Gibco), 100 U/ml penicillin, 100 μ g/m streptomycin (Gibco) and 5 μ g/ml Plasmocin (InvivoGen, Toulouse, France).

SKMel103, SKMel147, A375 and *G361* cells were grown in Dulbecco's Modified Eagle Media (DMEM). *UACC903* cells were cultured in Roswell Park Memorial Institute (RPMI) media (Biowest). *SKMel28* cells were cultured in Eagle's Minimum Essential Media (EMEM)(ATCC). In all the cases media was supplemented with 10% FBS, 2 mM L-Glutamine, 100 U/ml penicillin, 100 μ g/m streptomycin and 5 μ g/ml Plasmocin. All cells were maintained at 37°C in a 5% CO₂ incubator.

For glucose starvation experiments cells were cultured in DMEM without glucose (Gibco). Sorafenib was obtained from Santa Cruz Biotecnology (SCBT, Santa Cruz, CA, USA). Trametinib was purchased from Deltaclon (Deltaclon, Madrid, Spain). Vemurafenib, Axitinib, Avastin, Lenvatinib, Sunitinib and CCT196969 were obtained from Selleckchem (Selleckchem, Houston, TX, USA). Sodium Pyruvate was purchased from Biowest. D-Glucose, Dichloroacetate (DCA), Fructose 1,6-bisphosphate (F 1,6-biP) and 2-Deoxy-D-Glucose (2DG) were obtained from Sigma (Sigma, St Louis, MO, USA). 3-Bromopyruvate (3BP) was obtained from Millipore (Millipore, Burlington, MA, USA).

Protein isolation and Immunoblotting

Cells were washed twice with phosphate-buffered saline (PBS) and lysed using a scraper in NP-40 lysis buffer (150 mM NaCl, 50 mM Tris, 1 mM EDTA and 1% (v/v) NP-40) containing protease and phosphatase inhibitor cocktails (Millipore). After an incubation of 20 minutes on ice for a highly efficient cell lysis, samples were centrifuged 30 minutes at 15.000 rpm. Then, supernatant was collected into a new tube and protein concentration was calculated using the Pierce BCA Protein Assay Kit (Thermo Fisher, Waltham MA, USA). Equal amounts of protein (30-50 µg) were denatured by addition of Laemmli sample buffer 1X (62.5 mM Tris-HCl, 25% (v/v)glycerol, 2% (w/v) SDS, 0.01% (w/v) Bromophenol Blue and 5% (v/v) βmercaptoethanol) and incubated at 95 °C during 5 minutes. Samples were next subjected to 8-12% SDS-PAGE and proteins were transferred to a previously activated PVDF membrane (Millipore) at a voltage of 400 mA during 90 minutes. Membranes were activated with methanol (Sigma) for one minute. Both electrophoresis and transfer were performed using mini-gel Bio-Rad (Bio-Rad, Hercules, CA, USA) equipment. Membranes were blocked with 5 % non-fat dry milk (SCBT) dissolved in 0.1% (v/v) Tween (Sigma) Tris-buffered saline (TBS-T) for one hour at room temperature. The membrane was rinsed three times with TBS-T and incubated with the primary and secondary horseradish peroxidase (HRP)-conjugated antibodies at the optimized concentrations (Table M.1). Primary antibodies against p-ERK1/2 T202/Y204, p-CRAF S259, PFKFB2 and p-PFKFB2 S483 were purchased from Cell Signaling (Cell Signaling, Danvers, MA, USA). ERK2, Lamin A/C, NRAS, BRAF and CRAF were purchased from SCBT. PFKFB3 and GAPDH were obtained from Proteintech (Rosemont, IL, USA). PanRAS was obtained from Millipore. β-Actin was obtained from Sigma. Secondary antibodies were obtained from GE Healthcare (Chicago, IL, USA). Incubation was at 4°C overnight for primary antibodies and one hour at room temperature for secondary antibodies. After incubation protein was detected using ECL (GE Healthcare).

Antibody	Application	Dilution	Commercial Reference	Commercial Source
BRAF	WB/IP	1:500/1ug/ml	sc-5284	SCBT
p-CRAF S259	WB	1:1000	#9421	Cell Signaling
CRAF	WB/IP	1:500/1ug/ml	sc-133	SCBT
p-ERK1/2	WB	1:1000	#9101	Cell Signaling
ERK2	WB	1:1000	sc-154	SCBT
NRAS	WB	1:200	sc-31	SCBT
PanRAS	WB	1:1000	05-516	Millipore
p-PFKFB2 S483	WB	1:1000	#13064	Cell Signaling
PFKFB2	WB	1:1000	#13029	Cell Signaling
PFKFB3	WB	1:1000	13763-1-AP	Proteintech
Lamin A/C	WB	1:500	sc-6215	SCBT
GAPDH	WB	1:10000	60004-1	Proteintech
β-Actin	WB	1:10000	A3854	Sigma
PFK-1	ICC	1:100	sc-67028	SCBT
Actin	ICC	1:100	sc-1615	SCBT
p-ERK 1/2	IHC	1:400	#4370	Cell Signaling
Cyclin D1	IHC	1:50	#2926	Cell Signaling
Rabbit igG HRP-linked	WB/IHC	1:10000	NA934	GE Healthcare
Mouse IgG HRP-linked	WB/IHC	1:10000	NA931	GE Healthcare

Table M.1. Antibodies information. In this table it is showed antibodies dilutions used in this work for the different applications, including Western Blot (WB), Immunohistochemisty (IHC), Immunocytochemistry (ICC) and immunoprecipitation (IP). Commercial references and sources are also indicated.

Nuclear/Cytoplasmic protein purification

SKMel103, SKMel147, SKMel28 and *UACC903* cells were plated in p100 plates (VWR, Radnor, PA, USA) at a 70% confluence, incubated overnight and subjected to treatment with glucose starvation for one and three hours. Nuclear and cytoplasmic protein lysates were obtained using the NE-PER Extraction Kit from Thermo Fisher following manufacturer's indications. The procedure is based on a first membrane disruption and release of cytoplasmic contents using a hypotonic buffer (CERI and CERII). Then, nuclei are recovered from the cytoplasmic extract by centrifugation, and independently lysed using NER buffer. This way, two different protein lysates were subjected to quantification and immunoblot as

previously explained.

Apoptosis assays

SKMel103, SKMel147, SKMel28 and *UACC903* cells were plated in p60 plates (Sarstedt, Nümbrecht, Germany) at a 70% confluence and incubated overnight. Then, cells were subjected to treatment with glucose starvation and the different RAS-ERK1/2 pathway and upstream inhibitors including Sorafenib (SF), Vemurafenib (VE), Trametinib (TR), Axitinib (AX) and Avastin (AV) for four hours.

Apoptosis detection is based on the observation that early apoptotic cells translocate the membrane phospholipid phosphatidylserine (PS) from the inner face to the cell surface. Once on the cell surface, PS can be easily detected by annexin V, a protein showing a strong natural affinity for PS. Thus, annexin V-EGFP fusion allows specific staining of apoptotic cells. Further distinction among apoptotic and necrotic cells is possible when combining annexin V with propidium iodide (PI). PI is a DNA-binding molecule that can enter to the cells depending on the membrane permeability. Alive and early apoptotic cells, with intact plasma membrane, cannot be stained with PI. However, ruptured membranes, which characterize late apoptotic and necrotic cells, allow PI to pass and intercalate into nucleic acids.

Cells were detached using trypsin and washed twice with PBS. To measure apoptosis, cells were stained with annexin V–EGFP and PI according to the manufacturer's protocol (Biovision, Milpitas, CA, USA). Apoptosis was then evaluated by flow cytometry using the analyzer FACSCalibur (BD Biosciences, San Jose, CA, USA).

siRNA transfection

SKMel103 and *SKMel147* cells were plated in p100 plates at a 70% confluence and incubated overnight. Transfection was performed during 8 hours with Lipofectamine® RNAiMAX (Thermo Fisher) following manufacturer's recommendations and cells were incubated for 60 hours before performing glucose starvation treatments. For *NRAS* downregulation three different siRNAs against *NRAS* were used (Table M.2). A total amount of 100 nM of siRNA was

transfected into the recipient cells. For *PFKFB2* and *PFKFB3* downregulation, 5 nM of siRNA were transfected to the cells (Table M.2). A scrambled siRNA was used as a control of cell transfection. All siRNAs were purchased from Invitrogen (Thermo Fisher). After the treatments, cells were subjected to protein isolation and western blotting as explained above.

siRNAs	Sense sequence (5' \rightarrow 3')	C. Reference	C. Source
NRAS	CAAGUGUGAUUUGCCAACAAGGACA	HSS181572	Thermo Fisher
	CAAGAGUUACGGGAUUCCAUUCAU	HSS181573	Thermo Fisher
	AGUCAUUUGCGGAUAUUAACCUCUA	HSS107313	Thermo Fisher
PFKFB2	CCAAGAAACUAACACGCUA	s10356	Thermo Fisher
PFKFB3	GAGGAUCAGUUGCUAUGAA	s10358	Thermo Fisher

Table M.2. siRNAs information. Table includes sense siRNA sequences, commercialreferences and commercial sources.

Ras activation Assay

SkMel103 and *SKMel147* cells were seeded at a 70% confluence in p100 plates and incubated overnight. After glucose starvation treatment (15 minutes and 30 minutes), it was proceeded to measure RAS activation using the RAS Activation Assay Kit #17-218 (Millipore) following the manufacturer's recommendations.

RAS activation assay is based in RAS-GTP precipitation using agarose beads bound to the CRAF RAS-binding domain (RBD-agarose). To do so, protein lysates from untreated and treated cells were obtained. For cell lysis, culture media was removed and cells were rinsed twice with ice-cold PBS. Then, ice-cold MLB buffer containing proteases and phosphatases inhibitor cocktail (Millipore) was added to cells on ice and cells were detached using a cell scraper. Lysates were then transferred to microcentrifuge tubes on ice and cleared of insoluble cell debris by centrifugation (5 minutes, 14.000xg, 4°C). Immediately after centrifugation, supernatant was recovered and protein was quantified as explained above. 1 mg of total protein lysate was diluted in 500 μ l ofbuffer. To each condition, 7.5 μ l of the CRAF RBD-agarose reagent were added and reaction mixtures were incubated at 4°C for 45 minutes with gentle agitation. Agarose beads were then pelleted by brief centrifugation (10 seconds, 14000xg, 4°C). After discarding the supernatant, beads were washed three times with MLB buffer and boiled in Laemmli buffer 2X at 95°C for 5 minutes. Finally, the supernatant and the agarose pellet were mixed and loaded and resolved by electrophoresis, transferred to a PVDF membrane and probed with anti-NRAS and PanRAS antibodies as previously explained.

Immunoprecipitation (IP)

Immunoprecipitations were performed in NP-40 lysis buffer after the addition of Protein A/G agarose PLUS (SCBT). Immunoprecipitated samples were subjected to electrophoresis and proteins were visualized by Western Blot as described above.

SKMel103 cells were seeded in p100 plates at a 70% confluence and incubated overnight. Cells were subjected to glucose starvation for 15 minutes, 30 minutes, 1 hour, 2 hours and 4 hours. Then, protein was isolated and quantified as previously explained. 800 μ g of total protein were incubated with 10 μ l of agarose beads for one hour at 4°C in order to avoid unspecific binding of the beads. After incubation, samples were centrifuged (300 rpm, 5 minutes) and supernatant was transferred to a clean tube. At that point, BRAF and CRAF antibodies were added to each sample at a concentration of 1 μ g/ml and samples were incubated overnight at 4°C. The following day, 20 μ l of beads were added to each condition and incubated 1 hour at 4°C. Samples were centrifuged in order to isolate the incubated beads-antibody-protein complexes. Then, supernatant was discarded and centrifuged beads were washed three times with NP-40 lysis buffer. Next, samples were subjected to denaturing conditions, including the addition of Laemmli buffer 2X and the incubation of the samples at 95°C during 5 minutes, and subjected to following applications.

Kinase activity assay

RAF kinases assays were performed with immunoprecipitated BRAF or CRAF as described in Wan et al.¹⁹⁴ The kinase activity of these proteins was determined by measuring their ability to directly phosphorylate kinase dead GST-MEK (^{KD}MEK).

SKMel103 cells were seeded in p100 plates at a 70% confluence. After overnight incubation, cells were subjected to glucose starvation for four hours. BRAF and CRAF proteins were immunoprecipitated as described above. The obtained immunoprecipitates were washed 3 times using 500 μ l of wash buffer

(30 mM Tris HCl, 0.2 mM EDTA, 0.3% (v/v) β -mercaptoethanol, 10% (v/v) glycerol, 0.1% (v/v) Triton X-100, 5 mM NaF and 0.2 mM Na₃VO₄) containing decreasing concentrations of KCl (1.0 M, 0.1 M and 0 M). Immunoprecipitates were resuspended in 25 µl A/B Buffer (50 mM Tris [pH 7.5], 100 mM NaCl, 0.1% TX-100, 0.1 mM EDTA, 3% (v/v) β -mercaptoethanol, 50 mM NaF, 1 mM Na₃VO₄ and 36 µM GST-^{KD}MEK (kinase dead MEK)) and reactions were initiated by the addition of 5 µl ATP buffer (500 µM ATP, 75 mM MgCl₂ in A/B buffer w/o MEK kinase). Obtained products were resolved by SDS-PAGE and an immunoblot was performed against p-MEK1/2 as previously described. All experiments were performed in triplicates.

RNA isolation, quantification and quality control

SKMel103, SKMel147, SKMel28 and UACC903 cells were seeded in p60 plates at a 70% confluence and incubated overnight. Cells were subjected to glucose withdrawal for one hour and total RNA was isolated. For RNA purification the Direct-Zol RNA kit (Zymo Research, Irvine, CA, USA) was used. The isolation procedure was performed according to the manufacturer's recommendations. RNA was analyzed using a 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) to confirm amount and integrity of the sample. Only high quality samples (RNA Integrity Number (RIN) \geq 9) were used for following applications. Each condition was performed in triplicates in order to obtain statistically significant data.

Microarray

Gene expression was analyzed using a *Clariom S Human Array* (Affymetrix Santa Clara, CA, USA). Raw data generated from the array were processed using the freesource software R studio. Intensity values were converted into gene expression values using Robust Multi-array Average (RMA) through the *BioConductor* package *oligo*, which consists on background correction, logarithmic transformation, quantile normalization and probe normalization.

Identification of differentially expressed genes (DEG) was carried out using the *limma* package. A moderated *t-test* was applied for each comparison based on the empirical *Bayes* method. Then, top tables were generated, with genes sorted from most to least differentially expressed genes according to the log₂FC value.

The Agilent AF MILO SUESS INT MEASURES KEY parameters of mitochondrial function by directly measuring the oxygen consumption rate (OCR) of cultured cells. Different modulators of respiration, including oligomycin, phenylhydrazone (FCCP), rotenone and antimycin A are added to cells (Figure M.1) to modulate the respiratory chain.

Figure M.1. Agilent Seahorse XF Cell Mito Stress Modulators of the electron transport chain. *Seahorse, Agilent.*

SKMel103, SKMel147, Mmln9, Mmln10, SKMel28, UACC903, A375 and G361 cells were cultured on Seahorse XFe-24 plates (Agilent) at a density of 80.000 cells per well. On the day of metabolic flux analysis, cells were changed to unbuffered DMEM (DMEM base medium supplemented with, 1 mM sodium pyruvate, 2 mM Glutamine, pH 7.4)(Agilent) with or without 10 mM glucose (Sigma), and incubated at 37 °C in a non-CO₂ incubator for 1 h. Four baseline measurements of OCR were taken before and after sequential injection of mitochondrial inhibitors (1 μ M oligomycin, 0.5 μ M FCCP, 0.5 μ M rotenone and 0.5 μ M antimycin A). OCR was automatically calculated and recorded by the Seahorse XF-24 software (Figure M.2). After the assay, plates were saved and protein readings were measured for each well to normalize obtained data. The percentage of change

compared with the basal rates was calculated as the value of change divided by the average value of baseline readings.

Figure M.2. Seahorse XF Cell Mito Stress Test profile. Parameters related to mitochondrial function are showed. *Seahorse, Agilent.*

For the study of dependency, capacity and flexibility of the different cell lines we used the XF Mito Fuel Flex Kit following manufacturer's recommendations. This assay determines the rate of oxidation of each fuel, including glucose, fatty acids and glutamine, by measuring cells OCR in the presence or absence of the different pathways inhibitors (Figure M.3).

combined with absence of flexibility indicate that the mitochondria require that fuel pathway to maintain basal OCR.

Figure M.3. Agilent Seahorse XF Mito Fuel Flex Test. Alternative sources for mitochondrial respiration and energy production. *Seahorse, Agilent.*

Three different inhibitors were used in order to establish dependency, capacity and flexibility of *NRAS* and *BRAF* mutant cells for glucose, glutamine and long chain fatty acids metabolism; UK5099, which blocks the mitochondrial pyruvate carrier (MPC), thus inhibiting glucose oxidation; BPTES, which inhibits glutamine oxidation by inhibiting glutaminase (GLS1) and etomoxir, an inhibitor of long chain fatty acid oxidation through the inhibition of carnitine palmitoyl-transferase 1A (CPT1A), a critical step for the translocation of fatty acids from the cytosol to the mitochondria for β -oxidation.

For the assay *SKMel103*, *SKMel147*, *Mmln9*, *Mmln10*, *SKMel28*, *UACC903*, *A375* and *G361* cells were cultured on Seahorse XFe-24 well plates at a density of 80.000 cells per well and incubated overnight at 37°C in a 5% CO₂ incubator. On the day of the assay, cells were changed to unbuffered DMEM (DMEM base medium supplemented with, 1 mM sodium pyruvate, 2 mM Glutamine, pH 7.4) with or without 10 mM glucose, and incubated at 37 °C in a non-CO₂ incubator for 1 h. All medium and injection reagents were adjusted to pH 7.4 on the day of assay. Four baseline measurements of OCR were taken before and after sequential injection of inhibitors, including UK5099 (3 μ M), BPTES (4 μ M) and etomoxir (2 μ M). Inhibitors were added following all possible sequence combinations in order to determine the different parameters for the three different assayed fuels:

glucose, glutamine and long chain fatty acids. OCR was automatically calculated and recorded by the Seahorse XF-24 software. After the assay, plates were saved and protein readings were measured for each well to normalize obtained data. Dependency, capacity and flexibility parameters were calculated using the following formulas:

$$Dependency \% = \left[\frac{Baseline \ OCR - Target \ inhibitor \ OCR}{Baseline \ OCR - All \ inhibitors \ OCR}\right] * 100$$

$$Capacity \% = \left[1 - \left[\frac{Baseline \ OCR - Other \ two \ inhibitors \ OCR}{Baseline \ OCR - All \ inhibitors \ OCR}\right]\right] * 100$$

$$Flexibility \% = Capacity \% - Dependency \%$$

Cell viability

Acridine orange (AO) is a vital dye that stains both alive and dead cells. Ethidium bromide (EB) stains only cells that have lost membrane integrity, meaning apoptotic cells. Untreated and treated *SKMel103* cells were detached with trypsin and 500.000 cells were resuspended in 50 μ l PBS. Cell suspension was stained with 50 μ l of staining solution (5 μ g/ml AO and 3 μ g/ml EB in PBS) and placed on a microscope slide with a glass coverslip. Live cells appeared uniformly green while apoptotic cells also incorporated ethidium bromide and therefore stained red.

Immunocytochemistry (ICC)

SKMel103, SKMel147, SKMel28 and *UACC903* cells were seeded directly on cover slides in a 24-well plate (Sarstedt) at a 50% confluence and incubated overnight. Once attached cells were subjected to glucose withdrawal for four hours. After treatment, cells were rinsed twice with PBS and fixed with 4% paraformaldehyde (PFA) in PBS for ten minutes at room temperature. Once fixated, cells were washed three times with PBS (5 minutes/each), permeabilized using TBS 0.2% Triton for 5 minutes and blocked with TBS containing 1% BSA (Sigma) and 10% Horse Serum (ATCC) for one hour at room temperature. Following blocking incubation the primary antibody (diluted in TBS 1% BSA) was added to the samples at the optimized concentrations (Table M.1) and incubated overnight at 4°C. After two five minute-washes with TBS 0.025 % (v/v) Triton X-100 (Sigma) (TBS-Triton) samples were incubated with TBS-Triton containing the secondary antibody and 1 mg/ ml Hoescht for one hour at room temperature. To finish, covers were washed

three times with TBS-Triton and mounted with Vectashield fluorescent media (Vector Laboratories, Burlingame, CA, USA). Image acquisition was performed using the Spectral confocal microscope FV1000 (Olympus).

Computational analysis of phosphorylation sites

Analysis of PFKFB2 putative phosphorylation sites was performed using the *GPS 5.0* software^{164,165}. This algorithm, known as Group-based Prediction System (GPS) has the ability of predicting potential protein kinases-specific phosphorylation sites from protein sequences by the combination of two different methods: position weight determination (PWD) and scoring matrix optimization (SMO).

The algorithm is based in 617 single predictors for the computational identification of specific phosphorylation sites of 479 human protein kinases. The prediction results in the generation of several parameters including position, protein kinase, flanking peptide, score and cutoff for each predicted phosphorylation site. The score parameter represents the possibility that a specific sequence is a phosphorylation site peptide for a given kinase. If the score of a peptide sequence is high enough, bypassing the cutoff value, we may estimate that it is a potential phosphorylation site of the analyzed kinase. The analysis was performed using the high threshold, which corresponds to a theoretically maximal false positive rate (FPR) of 2% for serine/threonine kinases and 4% for tyrosine kinases.

Lentiviral Transduction for overexpression of PFKFB2 and PFKFB3

The *pLenti-rtTA2-IRES-H2B-GFP* doxycycline-inducible plasmid was obtained from *S. Tenbaum, HG Palmer's Laboratoty* (Vall d'Hebron Institute of Oncology, VHIO). Human *PFKFB2* and *PFKFB3* sequences were subcloned from *pCR4-TOPO-PFKFB2* (MHS6278-202856883) and *pBluescriptR-PFKFB3* (MHS6278-202808447) (Horizon Discovery, Cambridge, UK) to obtain *pLenti-rtTA2-His-PFKFB2-IRES-GFP* and *pLenti-rtTA2-Flag-PFKFB3-IRES-GFP*, respectively. During the cloning process a His-tag was added to the N-terminal end of the PFKFB2 protein and a Flag-tag was added to the N-terminal end of the PFKFB3 protein. Obtained constructs were validated by restriction analysis and sequencing.

To produce lentivirus, three millions *HEK-293-T* cells were seeded in p100 plates in 8 ml of DMEM supplemented with 10% FBS. One hour before transfection, media was replaced by DMEM supplemented with 10% FBS (Complement Inactivated) and Chloroquine (Sigma) at 25 µM final concentration. 50 μg of total DNA (25 μg lentiviral vector, 18.75 μg pPAX2 and 6,25 μg pMD2.G) were added to 150 mM sodium chloride (NaCl) in a final volume of 800 µl. Then, 200 µl of PEI transfection reagent (1mg/ml) (Sigma) were added to the DNA solution and the mix was incubated at room temperature for 15 minutes. The mix was added to the cells drop by drop and incubated overnight at 37°C. Medium was then replaced by DMEM supplemented with 2% FBS (Complement Inactivated) and 5 mM Sodium Butyrate (Sigma). After 24 hours the supernatant containing the produced virus was collected and fresh media was added back to the cells. The collected supernatant was centrifuged five minutes at 1000 rpm and passed through a 0.2 µm filter (Sarstedt). Cells were incubated for another 24 hours and the collection procedure was repeated. For cell infection, the processed supernatant containing 8 µg/ml polybrene (SCBT) was added to the recipient cell lines. Infection efficacy was assessed after doxycycline (Sigma) induction through detection of the GFP signal.

His-tag pull down

SKMel103, SKMel147, SKMel28 and *UACC903* cells were infected with the doxycycline-inducible construct *pLenti-rtTA2-His-PFKFB2-IRES-GFP* as previously explained. Infected cells were plated in p100 plates at a 50% confluence and induced with 1 μ g/ml doxycycline (Sigma) for 24 h. Then, cells were subjected to glucose withdrawal and Sorafenib treatment (15 μ M) for one hour and it was proceeded to the pull down of the His-tagged PFKFB2 proteins.

For the pull down Dynabeads[™] (Invitrogen, Thermo Fisher) were used. This technology is based in optimized cobalt-based immobilized metal affinity chromatography (IMAC). Cells were washed twice with PBS and lysed with 500 µl of Wash/Binding buffer (100 mM sodium-phosphate pH 8.0, 600 mM NaCl, 0.02% (v/v) Twenn-20). 40 µl of Dynabeads were added to each condition and samples were incubated 10 minutes at 4°C. After incubation, samples were cleared using a magnet. Beads were washed four times with Wash/Binding buffer and 50 µl of His

Methodology

elution buffer (300 mM imidazole, 50 mM sodium-phosphate pH 8.0, 300 mM NaCl, 0.01 % Tween-20) were added to elute the His-tagged proteins from the magnetic beads. Eluted His-tagged proteins were used for following applications, including immunoblot and mass spectrometry.

Flag- tag pull down

SKMel103 cells were infected with the doxycycline-inducible construct *pLenti-rtTA2-Flag-PFKFB3-IRES-GFP* as previously explained. Infected cells were plated in p100 plates at a 50% confluence and induced with 1 μ g/ml doxycycline for 24 h. Then, cells were subjected to glucose withdrawal for one hour and it was proceeded to the pull down of the Flag-tagged PFKFB3 proteins.

To pull down Flag-tagged proteins, anti Flag M2 Affinity Gel Kit was used (Invitrogen, Thermo Fisher). Cells were washed twice with PBS, lysed in NP-40 lysis buffer and centrifuged 30 minutes at 15000 rpm. Supernatant was transferred to a new tube and it was proceeded to the pull down assay. 40 μ l of resin were used for each condition. Before adding the beads they were washed twice with TBS. Quantified cell lysates were added to the washed resin and incubated two hours at 4°C with constant agitation. Solution was then centrifuged (30 seconds, 8000xg) and supernatant was discarded. After three washes with TBS proteins were eluted by competition with Flag peptide. Flag-peptide stock elution solution was prepared by dissolving the Flag peptide in 0.5 M Tris HCl pH 7.5, 1 M NaCl at a concentration of 5 μ g/ μ l. For elution, 3 μ l of 5 μ g/ μ l peptide stock solution were diluted in 100 μ l of TBS (150 ng/ μ l final concentration) and added to the washed resin. Samples were incubated at 4°C during 30 minutes with gentle shaking. Finally, resin was centrifuged for 30 seconds and supernatant containing eluted proteins was transferred to a new tube.

For combined pull down assays cells were infected with both constructs (*pLenti-rtTA2-His-PFKFB2-IRES-GFP and pLenti-rtTA2-Flag-PFKFB3-IRES-GFP*) and His-tag pull down procedure started from the Flag-tagged eluted proteins.

Mass Spectrometry

After infection with *pLenti-rtTA2-His-PFKFB2-IRES-GFP*, *SKMel103* and *UACC903* cells were subjected to one hour of glucose withdrawal and/or Sorafenib

treatment (15 μ M) and a His-tag pull down was performed for both, untreated and treated cells following the procedure explained above. Obtained lysates were subjected to proteomic analyses following two different approaches, a first one looking for PFKFB2 protein partners and a second one following phosphorylated peptides enrichment to analyze changes in PFKFB2 phosphorylation in response to glucose starvation and Sorafenib treatment.

Sample preparation and trypsion digestion

His-tagged PFKBF2 was enriched by Ni-IMAC chromatography using His-Trap columns (Sigma). Samples were concentrated and buffer exchanged to 6 M Urea 50 mM ammonium bicarbonate using 0.5 ml 3KDa cut-off Amicon Ultra ultrafiltration devices (Millipore). Total protein content was quantified using RCDC kit (Bio-Rad), and around 5 mg of each sample were taken for tryptic digestion. Samples were first reduced with dithiothreitol (DTT) to a final concentration of 10mM, for 1h at room temperature, and then alkylated with 20 mM of iodoacetamide (IAA) for 30 min at room temperature in the dark. Carbamidomethylation reaction was quenched by addition of N-acetyl-L-cysteine to a final concentration of 35 mM followed by incubation for 15 min at room temperature in the dark. Samples were diluted with 50 mM ammonium bicarbonate to a final concentration of 1 M Urea, and then modified porcine trypsin (Promega) was added in a ratio of 1:10 (w/w), and the mixture was incubated overnight at 37°C. The reaction was stopped with formic acid to a final concentration of 0.5%. The digests were finally purified on reverse phase C18 micro columns (ZipTip, Millipore), and kept at -20°C until further analysis.

Phosphopeptide enrichment using titanium dioxide

Phosphopeptide enrichment was performed according to Thingholm and Larsen¹⁹⁷, with some modifications. TiO₂ beads at 0.50 mg/µl were previously equilibrated in 1M glycolic acid, 80% acetronitrile (ACN) and 1% trifluoroacetic acid (TFA). Peptides were diluted in 60% ACN with 1% TFA and added to 0.5 mg TiO₂. The suspension was incubated during 20 minutes at room temperature, with end-over-end rotation for phosphopeptide binding. The mixture was then centrifuged at 13000 rpm and supernatant containing non-phosphorylated peptides was discarded. TiO₂ beads with phosphopeptides were loaded on

Methodology

previously prepared home made constructed stage tips (made using high performance C18 extraction disks into pipette tips). After two successive washes with 60% ACN and 1% TFA, bound phosphopeptides were eluted first with 5% NH₄OH and then with 10% NH₄OH with 25% ACN. Eluted phosphopeptides were evaporated, resuspended in 0.1% FA and stored at -20°C until further analysis.

LC-MS analysis

Tryptic digests were analyzed using a linear ion trap Velos-Orbitrap mass spectrometer (Thermo Fisher Scientific). Instrument control was performed using Xcalibur software package, version 2.2.0 (Thermo Fisher Scientific). Peptide mixtures were fractionated by on-line nanoflow liquid chromatography using an EASY-nLC 1000 system (Proxeon Biosystems, Thermo Fisher Scientific) with a two-linear-column system. Digests (aprox. 500 ng) were loaded onto a trapping guard column (Acclaim PepMap 100 nanoviper, 2 cm long, inner diameter 75 µm packed with C18, 3 µm particle size from Thermo Fisher Scientific) at 4 ml/min. Then, samples were eluted from the analytical column (25 cm long, inner diameter 75 μm packed with Reprosil Pur C18-AQ, 3 μm particle size, *Dr. Maisch*). Elution was achieved by using a mobile phase from 0.1% FA (Buffer A) and 100% acetonitrile with 0.1% FA (Buffer B) and applying a linear gradient from 0 to 35% of buffer B for 60 min at a flow rate of 300 nl/min. Ions were generated applying a voltage of 1.9 kV to a stainless steel nano-bore emitter (Proxeon, Thermo Fisher Scientific), connected to the end of the analytical column, on a Proxeon nano-spray flex ion source.

The LTQ Orbitrap Velos mass spectrometer was operated in datadependent mode. A scan cycle was initiated with a full-scan MS spectrum (from m/z 300 to 1600) acquired in the Orbitrap with a resolution of 30.000. The 20 most abundant ions were selected for collision-induced dissociation fragmentation in the linear ion trap when their intensity exceeded a minimum threshold of 1000 counts, excluding singly charged ions. Accumulation of ions for both MS and MS/MS scans was performed in the linear ion trap, and the automatic gain control (AGC) target values were set to 1×10^6 ions for survey MS and 5000 ions for MS/MS experiments. The maximum ion accumulation time was 500 and 200 ms in the MS and MS/MS modes, respectively. The normalized collision energy was set to 35%, and one microscan was acquired per spectrum. Ions subjected to MS/MS with a relative mass window of 10 ppm were excluded from further sequencing for 20 s. For all precursor masses a window of 20 ppm and isolation width of 2 Da was defined. Orbitrap measurements were performed enabling the lock mass option (m/z 445.120024) for survey scans to improve mass accuracy.

Bioinformatics for peptide and protein identification and quantitation

LC-MS/MS data were analyzed using the Proteome Discoverer software (Thermo Fisher Scientific) to generate mgf files. Processed runs were loaded to ProteinScape software (Bruker Daltonics, Bremen, Germany) and peptides were identified using Mascot (Matrix Science, London UK) to search the SwissProt database, restricting taxonomy to human proteins. MS/MS spectra were searched with a precursor mass tolerance of 10 ppm, fragment tolerance of 0.8 Da, trypsin specificity with a maximum of 2 missed cleavages, cysteine carbamidomethylation set as fixed modification and methionine oxidation, serine, threonine or tyrosine phosphorylation as variable modifications. Significance threshold for the identifications was set to *p*<0.05 for the probability-based Mascot score, minimum ions score of 20, and the identification results were filtered to 1% FDR at peptide level, based on searches against a Decoy database. Relative quantification of the peptides corresponding to PFKFB2 phosphorylation sites was based on the integrated areas of the extracted ion chromatograms for each of the corresponding observed m/z values. The areas for the signals corresponding to both the unphosphorylated and phosphorylated peptides observed were measured for each of the samples.

In vivo

All mice were cared for and maintained in accordance with animal welfare regulations under an approved protocol by the Institutional Animal Care and Use Committee of Vall d'Hebron Research Institute (VHIR). For xenograft animal models, 5×10^5 human *SKMel103*, *SKMel28*, or *Mmln9* cells were subcutaneously implanted in eight-week-old athymic Nude-*Foxn1^{nu}* mice (Envigo, Indianapolis, IN, USA). Tumors were measured with a digital Vernier caliper, and the mice were weighed twice a week. Tumor volume was calculated as $L \times w \times h$, where "L" was the major diameter, "w" the minor diameter and "h" the third axis of the tumor

mass.

When the tumors reached a volume between 50-100 mm³, mice with similarly sized tumors were randomized into treatment groups (n= 5 per group). Treated groups received glucose starvation treatment by the addition of 1000 mg/kg 2DG to drinking water and an intraperitoneal injection of 10 mg/kg Sorafenib every day. Control groups were treated with vehicle (PBS with 5% (v/v) DMSO).

Representative tumor pictures were taken and tumor samples were obtained for further analysis. The results are presented as tumor volume mean ± SD.

Immunohistochemistry (IHC)

Paraffin-embedded tumor samples were subjected to immunohistochemistry according the manufacturer's antibody protocol. Samples were developed using secondary antibodies linked to horseradish peroxidase (HRP).

At the endpoint of the *in vivo* experiment, tumors were excised and fixed for 24 hours in formaldehyde (Sigma). Then, samples were embedded in paraffin blocks and sections of 4 µm of thickness were obtained using Microm HM355S microtome (Thermo Fisher). Previous staining, samples were deparaffinated and rehydrated. To that end, paraffin sections were incubated at 56°C overnight. The deparaffination step was performed by two incubations in 100% xylol for 10 minutes at room temperature, followed by the ethanol rehydration chain, consisting in 5 minute-washes with 100% (v/v), 96% (v/v) and 70% (v/v) ethanol. Finally, samples were incubated 10 minutes in water. Then, samples were subjected to antigen retrieval using pH6 antigen retrieval solution (Agilent,) at 100 °C. After cool down samples were permeabilized. To do so, slides were washed with TBS 0.2% (v/v) Triton for 5 minutes at room temperature and samples were blocked for 1 hour in TBS containing 1% (w/v) BSA and 10% (v/v) goat serum. Then, slides were incubated overnight at 4°C with the primary antibody diluted in 1% (v/v) BSA, washed twice with TBS 0.025% (v/v) Triton (5 minutes/each) and incubated with HRP-linked secondary antibodies (Table M.1). Slides were developed using the Vector Laboratories 3-3'-diaminobenzidine (DAB) substrate

Kit. Substrate working solution was prepared by adding 2 drops of buffer stock solution, 4 drops of DAB stock solution and 2 drops of hydrogen peroxide solution to 5 ml of distilled water. Samples were incubated from 2 to 10 minutes at room temperature with the substrate working solution and washed in distilled water for 5 minutes. Finally samples were mounted by the addition of mounting media (Vector Laboratories). p-ERK 1/2 T202/Y204 antibody (Cell Signaling #4370) was used to confirm the response to glucose starvation and Sorafenib treatment; and Cyclin D1 (Cell Signaling #2926) was used as an indicator of proliferating cells.

Statistical analysis

ImageJ software was used for the quantification of the Western Blot signal and GraphPad Prism v6.0c was used for the graphic representation and statistical analysis of the data. Comparisons between groups were performed with Student's t test using GraphPad Prism v6.0c. The differences were considered significant if the *p*-value or *q*-value was \leq 0.05.

SUPPLEMENTARY INFORMATION
ABBREVIATIONS LIST

1,3-biPG: 1,3-bisphosphoglycerate **2DG:** 2-deoxy-D-glucose **2PG:** 2- phosphoglycerate **3'UTR:** 3' untranslated region **3BP:** 3-bromopyruvate **3PG:** 3-phosphoglycerate **ACC:** Acetvl-Coa carboxvlase **ACN:** Acetonitrile AGC: Automatic gain control AJCC: American joint committee on cancer **AKT/PKB:** Protein kinase B ALDO: Aldolase **AMPK:** AMP-activated kinase AO: Acridine orange **ARAF:** ARAF serine/threonine kinase **ATP:** Adenosine triphosphate AV: Avastin **AX:** Axitinib BCC: Basal cell carcinoma **BPTES:** bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide **BRAF:** BRAF serine/threonine kinase **BSA:** Bovine serum albumin Ca/CAMK: Calcium-calmodulindependent protein kinase adenosine cAMP: Cyclic monophosphate CAR-T: Chimeric antigen receptor Tcells **CCT:** CCT196969 nucleotide Cdc25: **RAS-specific** exchange factor Cdc25 **CNV:** Copy number variation CPT1A: palmitoyl-Carnitine transferase 1A **CRAF:** CRAF serine/threonine kinase CTLA-4: Cytotoxic T-lymphocyte associated protein 4 DAB: 3,3'-diaminobenzidine **DCA:** Dichloroacetate **DCs:** Dendritic cells **DEG:** Differentially expressed genes DGF: Aspartic acid-phenylalanine-Glvcine **DHAP:** Dehydroxyacetone phosphate

DMEM: Dulbecco's modified Eagle media **DMSO:** Dimethyl sulfoxide **DNA:** Deoxyribonucleic acid **DTT:** Dithiothreitol **EB:** Ethidium bromide EDTA: Ethylenediaminetetraacetic acid **EGFP:** Enhanced green fluorescent protein **EMEM:** Eagle's Minimum Essential Media **ERK:** Extracellular signal-regulated kinase **F 1,6-biP:** Fructose 1,6-bisphosphate F 2,6-biP: Fructose 2,6-bisphosphate **F6P:** Fructose 6-phosphate FAO: Fatty acid oxidation FAS: Fatty acid synthesis **FBP/FBPase**: Fructose 1,6bisphosphatase FBS: Fetal bovine serum FC: Fold change Trifluoromethoxy FCCP: carbonylcyanide phenylhydrazone **FDA:** Food and drug administration **FDG:** Fluorodeoxyglucose FDR: False discovery rate **FGFR:** Fibroblast growth factor receptor FLT3: Fms related receptor tyrosine kinase 3 FoxP3: Forkhead box P3 **FPR:** False positive rate **G 1,6-biP:** Glucose 1,6-bisphosphate **G6P:** Glucose 6-phosphate G6PC: Glucose 6-phosphatase catalytic subunit G6PD: Glucose 6-phosphate dehydrogenase **GA3P:** Glyceraldehyde 3-phosphate **GAP:** GTPase-accelerating proteins GAPDH: Glyceraldehyde -3phosphate dehydrogenase **GDP:** Guanosine diphosphate **GEF:** GDP exchange factor **GFP:** Green fluorescent protein

GLS1: Glutaminase 1 Gluc.: Glucose **GLUT:** Glucose Transporter **GM-CSF:** Granulocyte-macrophage colony-stimulating factor **GNA11:** G protein subunit alpha 11 **GNAQ:** G protein subunit alpha Q **GO:** Gene ontology **GPI:** Glucose phosphate isomerase **GPS:** Group-based prediction system **GRB2:** Growth factor receptor bound protein 2 **GST:** glutathione S-transferase **GTP:** Guanosine triphosphate H2B: Histone 2B **HGFR/MET:** Hepatocyte growth factor receptor. **HIF1α:** Hypoxia inducible factor 1 subunit α **HK:** Hexokinase HMGCL: Hydroxyl-3-methylglutaryl-CoA lyase HRAS: Harvey Rat Sarcoma Viral **Oncogene Homolog HVR:** Hypervariable Region IAA: Indolacetamide **ICC:** Immunocytochemistry **IGF1R:** Insulin-like growth factor 1 receptor **IHC:** Immunohistochemistry **IL:** Interleukin **IMAC:** Immobilized metal affinity chromatography **IP:** Immunoprecipitation **IRES:** Internal ribosome entry site **KDMEK:** Kinase dead MEK **KIT:** KIT tyrosine kinase KRAS: Kirsten Rat Sarcoma Viral **Oncogene Homolog** LAG-3: Lymphocyte activation gene-3 LDH: Lactate dehydrogenase **LE:** Long exposure **LEN:** Lenvatinib LKB1: Liver kinase B1 Mitogen-activated MAPK: protein kinase MCT: Monocarboxylate transporter Mitogen-activated MEK: protein kinase kinase

MHC: Major histocompatibility complex MITF: Melanocyte inducing transcription factor MPC: Mitochondrial pyruvate carrier **MYC:** MYC proto-oncogene Nicotinamide NADPH: adenine dinucleotide phosphate NF1: Neurofibromin 1 **NHEM:** Normal human epidermal melanocytes NP-40: Nonidet P-40 NRAS: Neuroblastoma RAS viral oncogene homolog **OAA:** Oxaloacetate **OCR:** Oxygen consumption rate **OIS:** Oncogene-induced senescence **ORR:** Objective response rate **OXPHOS:** Oxidative phosphorylation **PBS:** Phosphate-buffered saline **PD-1:** Programmed cell death protein 1 **PD-L1:** Programmed cell death 1 ligand 1 **PDGFR:** Platelet-derived growth factor receptor **PDH:** Pyruvate dehydrogenase **PDK:** Pyruvate dehydrogenase kinase PDP: Pyruvate dehydrogenase phosphatase PDPK-1: 3-phosphoinositidedependente kinase 1 **PEP:** Phosphoenolpyruvate **PET:** Positron emission tomography **PFA:** Paraformaldehyde **PFK-1:** Phosphofructokinase 1 PFKFB/PFK-2: 6-phosphofructo, 2kinase/fructose, 2,6-bisphosphatase **PFKL:** Phosphofructokinase, liver **PFKM:** Phosphofructokinase, muscle **PFKP:** Phosphofructokinase, platelet **PFS:** Progression-free survival **PGAM:** Phosphoglycerate mutase **PGC1α:** Peroxisome proliferatoractivated receptor gamma coactivator 1α **PGK:** Phosphoglycerate kinase PI3K: Phosphatidylinositol 3-kinase

PKA: cAMP-dependent protein kinase catalytic subunit α PKC: Protein kinase C **PKLR:** Pyruvate kinase isozyme L/R **PKM:** Pyruvate kinase **PP2A:** Protein phosphatase 2A **PPARy:** Peroxisome proliferator activated receptor γ ppm: Parts per million PPP: Pentose phosphate pathway **PS:** Phosphatidylserine PTEN: Phosphatase and tensin homolog **PVDF:** Polyvinylidene difluoride **PWD:** Position weight determination **Pyr.:** Pyruvate **RASGRF10:** RAS protein specific guanine nucleotide releasing factor 10 **RBD:** RAS binding domain **RET:** Proto-oncogene tyrosineprotein kinase receptor RET **RET:** Receptor tyrosine kinase RET **RIN:** RNA integrity number **RMA:** Robust multi-array average **RNA:** Ribonucleic acid **ROS:** Reactive oxygen species **Rpm:** Revolutions per minute **RPMI:** Roswell Park Memorial Institute **RSK:** Ribosomal protein S6 kinase **RTK:** Receptor Tyrosine Kinase rtTA2: Tetracycline-controlled transcriptional activator 2 **S6K1:** P70 ribosomal S6 kinase **SCC:** Squamous cell carcinoma **SD:** Standard deviation **SDS-PAGE:** SDS-polyacrylamide gel electrophoresis

SDS: Sodium dodecyl sulfate **SE:** Short exposure SF: Sorafenib **SH2:** Src homology 2 domain siRNA: small interfering RNA **SMO:** Scoring matrix optimization **SOS:** Son of sevenless homolog Src: Tyrosine kinase Src **SU:** Sunitinib SucCoA: Succinyl-CoA **T-VEC**: Talimogene laherparepvec **TBS:** Tris-buffered saline saline TCA cycle: Tricarboxylic acid cycle **TCGA:** The cancer genome atlas **TCR:** T-cell receptors TFA: Trifluoroacetic acid TIGAR: TP53-induced glycolysis and apoptosis regulator TIM-3: T-cell immunoglobulin and mucin-domain containing-3 **TP53:** Tumor suppressor P53 **TPI:** Triosephosphate isomerase **TR:** Trametinib TRIM21 E3: E3 ubiquitin-protein ligase TRIM21 UV radiation: Ultraviolet radiation **VE:** Vemurafenib **VEGF:** Vascular endothelial growth factor VEGFR: Vascular endothelial growth factor receptor VHIO: Vall d'Hebron oncology institute VHIR: Vall d'Hebron research institute **\alpha-KG:** α –Ketoglutarate

Supplementary Figure 1. RAS-ERK1/2 pathway activation status upon inhibition with Sorafenib (SF), CCT196969 (CCT), Sunitinib (SU) and Lenvatinib (LEN). Western Blot showing ERK1/2 phosphorylation status in response to glucose starvation in combination with SF (15 μ M), CCT (10 μ M), SU (10 μ M) and LEN (20 μ M)(4 hours). GAPDH is shown as a loading control. Gluc.=Glucose; SE=Short exposure; LE=Long exposure.

Supplementary Figure 2. His-tagged PFKFB2 obtention and pull down. (A) Lentiviral inducible His-*PFKFB2* IRES-EGFP vector map. (B) Representative pictures of uninduced and induced infected cells. (C) Schematic representation of the procedure followed to pull down His-tagged PFKFB2 for further identification of interacting proteins and phosphorylation status.

SKMeI103 NRASQ61R UACC903 BRAFV600E

Supplementary Figure 3. His-tagged PFKFB2 infected cells. Western Blot showing regulation of PFKFB2 phosphorylation at residue Ser483 and ERK1/2 phosphorylation in response to metabolic stress and treatment with Sorafenib (15 μ M, 1 hour). Three different biological replicates are represented (R1, R2 and R3). GAPDH is shown as a loading control. At the bottom representative pictures of infected induced cells are shown. Gluc.=Glucose, SF=Sorafenib, SE=Short Exposure, LE=Long Exposure.

Symbol	Gene description	log ₂ FC	p-value	adj.p-value
TGFBI	transforming growth factor beta induced	-7.721	3.2E-16	9.6E-13
SLC14A1	solute carrier family 14 member 1 (Kidd blood group)	-6.476	5.5E-17	2.2E-13
5100A16	S100 calcium binding protein A16	-6.379	2.7E-20	7.4E-16
CUPP1	transmembrane serine protease 15	-6.212	3.9E-10	9.2E-08
GLIPR1	GLI pathogenesis related 1	-6.116	5.4E-11	1.9E-08
	lymphocyte antigen 6 family member K	-5.835	1 1E-11	4.3L-10
	major histocomnatibility complex class IL DR alpha	-5 795	6 2E-05	1.5E-03
PNP	purine nucleoside phosphorylase	-5.756	5.8E-11	2.0E-08
SERPINB7	serpin family B member 7	-5.558	5.7E-17	2.2E-13
DKK3	dickkopf WNT signaling pathway inhibitor 3	-5.493	1.1E-12	8.3E-10
VEPH1	ventricular zone expressed PH domain containing 1	-5.448	9.3E-11	2.9E-08
PDE1C	phosphodiesterase 1C	-5.380	2.0E-12	1.4E-09
BCAT1	branched chain amino acid transaminase 1	-5.355	2.7E-13	2.4E-10
PRTFDC1	phosphoribosyl transferase domain containing 1	-5.265	1.0E-09	2.1E-07
IL24	interleukin 24	-5.204	3.5E-11	1.3E-08
MMP2	matrix metallopeptidase 2	-5.165	2.2E-16	7.5E-13
GALN114	polypeptide N-acetylgalactosaminyltransferase 14	-5.158	7.8E-13	6.1E-10
	paired DOX 6 major histocompatibility complex, class IL DR beta 1	-5.028	1.7E-15 3.3E-17	3.0E-12 2.2E-13
ARNTI 2	aryl hydrocarbon recentor nuclear translocator like 2	-4 961	1 8E-14	2.2E 15
S100A2	\$100 calcium binding protein A2	-4.955	1.1E-10	3.2F-08
NCAM1	neural cell adhesion molecule 1	-4.953	2.2E-09	4.1E-07
XAGE1A	X antigen family member 1A	-4.913	2.9E-10	7.3E-08
TRHDE	thyrotropin releasing hormone degrading enzyme	-4.859	1.9E-12	1.3E-09
CDKN1A	cyclin dependent kinase inhibitor 1A	-4.853	1.2E-14	2.1E-11
XAGE1B	X antigen family member 1B	-4.852	2.0E-10	5.5E-08
ERRFI1	ERBB receptor feedback inhibitor 1	-4.785	8.1E-04	1.0E-02
RUNX1	RUNX family transcription factor 1	-4.746	5.8E-11	2.0E-08
ODC1	IVIDS1 and EVI1 complex locus	-4.737	5.9E-12	3.4E-09
CDCI	formitin family member 1	-4./29	3.3E-U5	1.4E-U3
	lavilin	-4.727	1.0E-14	2.0E-11 1 1E-10
SPTLC3	serine palmitovltransferase long chain base subunit 3	-4.675	1.3F-11	6.0F-09
KRTAP2-3	keratin associated protein 2-3	-4,666	7.3F-08	7.5E-06
KRT80	keratin 80	-4.632	1.2E-11	5.8E-09
NGFR	nerve growth factor receptor	-4.614	1.9E-10	5.2E-08
STEAP3	STEAP3 metalloreductase	-4.605	4.3E-13	3.6E-10
NRP1	neuropilin 1	-4.564	1.3E-09	2.5E-07
PMEPA1	prostate transmembrane protein, androgen induced 1	-4.563	4.7E-11	1.7E-08
ADGRL4	adhesion G protein-coupled receptor L4	-4.549	2.9E-07	2.2E-05
ZEB1	zinc tinger E-box binding homeobox 1	-4.529	1.2E-15	2.4E-12
SIPK1	springosine-1-prospriate receptor 1	-4.512	4.9E-06	2.2E-04
GDRCEA	armetnyrarginine armetnyraminonydrolase 1	-4.503	1.1E-05	4.2E-04
TM4SF1	transmembrane 4 Lisix family member 1	-4.503	2.2E-10 8.4F-02	3.7E-U8
117R	interleukin 7 recentor	-4.493	5.4L-03	9.2E-07
SAMHD1	SAM and HD domain containing dNTP triphosphohydrolase 1	-4.461	5.7E-00	2.0E-08
FADS2	fatty acid desaturase 2	-4.446	1.7E-11	7.2E-09
ITGA3	integrin subunit alpha 3	-4.433	1.7E-08	2.4E-06
твхз	T-box 3	-4.426	3.2E-10	8.1E-08
LAPTM5	lysosomal protein transmembrane 5	-4.415	8.9E-11	2.8E-08
SERPINE1	serpin family E member 1	-4.356	2.6E-08	3.4E-06
HLA-DPB1	major histocompatibility complex, class II, DP beta 1	-4.318	2.8E-09	5.1E-07
WDR66	WD repeat domain 66	-4.299	2.1E-11	8.4E-09
	inhibin subunit beta A	-4.292	4.3E-07	3.1E-05
IL31KA	interieukin 31 receptor A	-4.289	2.4E-14	3.1E-11
	interferon induced transmembrane protein 3	-4.280	2.4E-07 8.4E-06	2.0E-05 3.3E-04
	CXADR like membrane protein	-4.208	3.4L-00	5.5E-07
DBNDD2	dysbindin domain containing 2	-4.184	5.3E-16	1.4F-12
NID1	nidogen 1	-4.184	8.9E-09	1.4E-06
CLDN4	claudin 4	-4.154	1.1E-11	5.7E-09
IL1B	interleukin 1 beta	-4.123	1.7E-03	1.7E-02
SLFN11	schlafen family member 11	-4.122	1.6E-09	3.0E-07
ANXA1	annexin A1	-4.120	7.9E-03	4.5E-02
BEX1	brain expressed X-linked 1	-4.116	1.5E-11	6.7E-09
RPS24	ribosomal protein S24	-4.086	1.7E-02	6.8E-02
NRG1	transforming growth factor beta 2	-4.078	1.8E-10	4.9E-08
SMURE?	SMAD specific F3 ubiquitin protein ligase 2	-4.074	2 6F-09	4.46-11 3.4F-06
NFASC	neurofascin	-4,039	1.4F-10	4.1E-08
ANXA3	annexin A3	-4.033	1.5E-05	5.3E-04
CDH13	cadherin 13	-4.025	1.2E-09	2.5E-07
TPM1	tropomyosin 1	-4.006	1.2E-09	2.5E-07
E2F4	E2F transcription factor 4	-3.994	1.8E-04	3.5E-03
ADAM12	ADAM metallopeptidase domain 12	-3.993	6.9E-06	2.9E-04
ELL2	elongation factor for RNA polymerase II 2	-3.988	2.2E-07	1.8E-05
PAQR3	progestin and adipoQ receptor family member 3	-3.976	6.1E-06	2.6E-04
FLI1	FII-1 proto-oncogene, ETS transcription factor	-3.955	2.0E-14	2.9E-11
DCF2	uncoupling protein 2	-3.939	2.2E-13	2.1E-10
	prateret derived growth ractor subunit A AXI recentor tyrosine kinase	-3.929	1.3E-Ub	5.UE-U4 4.1F-04
MDK	midkine	-3 975	5.8F-06	2.5F-04
KCNMA1	potassium calcium-activated channel subfamily M alpha 1	-3.923	1.1E-10	3.5E-04
STC1	stanniocalcin 1	-3.909	1.3E-09	2.7E-07
NEXN	nexilin F-actin binding protein	-3.893	1.0E-15	2.2E-12
THBS1	thrombospondin 1	-3.878	2.6E-03	2.2E-02
AMIGO2	adhesion molecule with Ig like domain 2	-3.877	9.6E-16	2.2E-12
DCBLD2	discoidin, CUB and LCCL domain containing 2	-3.859	3.8E-03	2.8E-02
TMEM154	transmembrane protein 154	-3.858	1.2E-12	8.6E-10
CLU	clusterin	-3.854	4.1E-11	1.5E-08
SNRPB2	small nuclear ribonucleoprotein polypeptide B2	-3.845	9.6E-03	5.0E-02
SIVIN1	survival of motor neuron 1, telomeric	-3.831	1.8E-03	1.7E-02
RARGETP	Rah geranulgeranultransferase subunit bota	-3.828	3.UE-06	1.5E-04
IFI16	interferon gamma inducible protein 16	-3 700	5.6F-02	3.6F-02
CALB2	calbindin 2	-3,788	4.6F-07	3.3E-05
CD24	CD24 molecule	-3,766	2.8F-08	3.6E-06
MX2	MX dynamin like GTPase 2	-3.759	3 0E-09	5.4E-07

Supplementary Table 1 (1/4). 400 top differentially expressed genes in BRAFV600E vs. NRAS^{Q61R} mutant cells.

Symbol	Gene description	$\log_2 FC$	p-value	adj.p-value
MRPL51	mitochondrial ribosomal protein L51	-3.759	6.7E-03	4.1E-02
STC2	stanniocalcin 2	-3./38	8.0E-05	2.0E-03 7.8F-07
HLA-DMA	major histocompatibility complex, class II, DM alpha	-3.729	9.0E-04	1.1E-02
MLLT11	MLLT11 transcription factor 7 cofactor	-3.727	9.4E-05	2.1E-03
UBE2T	ubiquitin conjugating enzyme E2 T	-3.722	4.5E-03	3.1E-02
ABCA13 KRTAD2-1	ATP binding cassette subfamily A member 13	-3.720	9.9E-09	1.5E-06 3.8E-04
RPS29	ribosomal protein S29	-3.709	9.8E-03	5.0E-02
SKP2	S-phase kinase associated protein 2	-3.709	4.3E-04	6.4E-03
TFB2M	transcription factor B2, mitochondrial	-3.704	2.7E-04	4.6E-03
TMEM123	transmembrane protein 123	-3.699	3.8E-12 1.4F-02	2.4E-09 6.0F-02
ALCAM	activated leukocyte cell adhesion molecule	-3.692	4.6E-05	1.2E-03
SLC38A1	solute carrier family 38 member 1	-3.686	2.2E-06	1.2E-04
GJA1	gap junction protein alpha 1	-3.678	5.4E-05	1.4E-03
TMEM14B	transmembrane protein 14B	-3.665	1.4E-02	6.2E-02
SDC4	syndecan 4	-3.664	7.8E-05	1.8E-03
CACNA2D4	calcium voltage-gated channel auxiliary subunit alpha2delta 4	-3.661	6.5E-11	2.2E-08
ZNF804A	zinc finger protein 804A	-3.647	3.4E-09 3.7E-11	1.4E-08
CLDND1	claudin domain containing 1	-3.643	3.7E-03	2.8E-02
MCL1	MCL1 apoptosis regulator, BCL2 family member	-3.643	1.9E-03	1.8E-02
LIMCH1	LIM and calponin homology domains 1	-3.641	7.1E-09	1.1E-06
PDZD8	PDZ domain containing 8	-3.628	9.4E-04	1.1E-02
FOSL1	FOS like 1, AP-1 transcription factor subunit	-3.624	3.2E-05	9.3E-04
UQCRQ	ubiquinol-cytochrome c reductase complex III subunit VII	-3.623	1.5E-02	6.4E-02
HIGD14	tetraspanin 5 HIG1 hypoxia inducible domain family member 14	-3.615	1.0E-10 1.5E-02	3.1E-08 6.4F-02
CRIM1	cysteine rich transmembrane BMP regulator 1	-3.608	9.5E-10	2.0E-07
SLC38A2	solute carrier family 38 member 2	-3.603	8.8E-04	1.1E-02
KRTAP2-2	keratin associated protein 2-2	-3.601	3.0E-06	1.5E-04
HIST1H4C	histone cluster 1 H4 family member c	-3.594	1.0E-08 2.9E-02	2.3E-Ub 8.8E-02
DIS3	DIS3 homolog, exosome endoribonuclease and 3'-5' exoribonuclease	-3.587	2.9E-08	3.7E-06
OCIAD2	OCIA domain containing 2	-3.584	7.0E-13	5.6E-10
PRPF4	pre-mRNA processing factor 4	-3.583	1.4E-03	1.4E-02 8.1E-02
CDC123	cell division cycle 123	-3.569	4.0E-03	2.9E-02
NEGR1	neuronal growth regulator 1	-3.565	1.1E-12	8.3E-10
RFPL4A	ret finger protein like 4A	-3.552	3.8E-10	9.0E-08
SYT1	synaptotagmin 1	-3.546	1.7E-02	7.1E-05
SH3BGRL2	SH3 domain binding glutamate rich protein like 2	-3.535	5.3E-12	3.2E-09
TBL1X	transducin beta like 1 X-linked	-3.535	2.3E-07	1.9E-05
TMEM140	transmembrane protein 14C	-3.529	4.8E-03 8.6E-03	4.7E-02
H1F0	H1 histone family member 0	-3.524	1.2E-06	7.1E-05
ITPRIPL1	ITPRIP like 1	-3.524	4.2E-08	4.9E-06
RPL3	ribosomal protein L3	-3.524	2.4E-02	1.4E-03 8.1E-02
COL12A1	collagen type XII alpha 1 chain	-3.521	1.5E-10	4.3E-08
PHLDB2	pleckstrin homology like domain family B member 2	-3.516	8.1E-12	4.6E-09
GDI2	GDP dissociation inhibitor 2	-3.509	4.1E-04 1.9E-02	6.2E-03 7.1E-02
BASP1	brain abundant membrane attached signal protein 1	-3.503	3.5E-04	5.6E-03
KNSTRN	kinetochore localized astrin (SPAG5) binding protein	-3.501	1.3E-03	1.4E-02
KRT18	pentraxin 3 keratin 18	-3.496	1.1E-07 1.9E-06	1.1E-05 1.0E-04
TAF9	TATA-box binding protein associated factor 9	-3.492	5.7E-03	3.7E-02
PRKACB	protein kinase cAMP-activated catalytic subunit beta	-3.482	2.0E-03	1.9E-02
CYB5R2	UTP4 small subunit processome component	-3.482	4.0E-04 8.4E-10	6.1E-03 1.8E-07
MRFAP1	Morf4 family associated protein 1	-3.472	9.1E-04	1.1E-02
NTM	neurotrimin	-3.467	5.9E-08	6.3E-06
ZNF883 HLA-DOA1	zine ringer protein 883 major histocompatibility complex, class IL DO alpha 1	-3.458	4.6E-11 1.2F-07	1.7E-08 1.1E-05
AKAP12	A-kinase anchoring protein 12	-3.436	7.2E-03	4.2E-02
FLRT3	fibronectin leucine rich transmembrane protein 3	-3.431	3.6E-10	8.7E-08
SRP72 PAK1IP1	signal recognition particle 72 PAK1 interacting protein 1	-3.430	1.0E-02 8.4F-04	5.1E-02
NGDN	neuroguidin	-3.423	5.7E-04	7.7E-03
SLIRP	SRA stem-loop interacting RNA binding protein	-3.421	5.6E-03	3.6E-02
EBNA1BP2	EBNA1 Dinding protein 2	-3.419	1.9E-02	7.2E-02
LDHB	lactate dehydrogenase B	-3.417	2.4E-02	4.5E-02 8.1E-02
TOMM5	translocase of outer mitochondrial membrane 5	-3.399	6.0E-03	3.8E-02
NREP	neuronal regeneration related protein	-3.399	9.3E-09	1.4E-06
JUN	Jun proto-oncogene, AP-1 transcription factor subunit	-3.390	4.1E-13	3.6E-10
NUP188	nucleoporin 188	-3.390	4.7E-03	3.3E-02
NIFK	Inucleolar protein interacting with the FHA domain of MKI67	-3.389	8.9E-03	4.8E-02
CIAO2B	cytosolic iron-sulfur assembly component 2B	-3.364	5.9E-08 7.5E-04	4.7E-06 9.5E-03
TXN	thioredoxin	-3.362	2.4E-02	8.0E-02
SMAD5	SMAD family member 5	-3.355	1.1E-02	5.2E-02
HIST1H2BK	histone cluster 1 H2B family member k	-3.353	4.7E-02 9.8F-03	1.1E-01 5.0F-02
ADORA2B	adenosine A2b receptor	-3.344	6.7E-16	1.7E-12
SUB1	SUB1 homolog, transcriptional regulator	-3.338	3.6E-03	2.8E-02
KIF20A	kinesin ramily member 20A DLG associated protein 5	-3.337	5.0E-03	3.4E-02 6.6F-02
HACD2	3-hydroxyacyl-CoA dehydratase 2	-3.327	4.7E-02	3.3E-02
DPYD	dihydropyrimidine dehydrogenase	-3.326	6.1E-09	9.9E-07
SCMI 1	mitocrionariai ribosomai protein L42 Scm polycomb group protein like 1	-3.322	1.3E-03	1.4E-02 3.0F-07
MT2A	metallothionein 2A	-3.321	1.8E-02	7.0E-02
C12orf75	chromosome 12 open reading frame 75	-3.320	5.1E-04	7.1E-03

Supplementary Table 1 (2/4). 400 top differentially expressed genes in BRAFV600E vs. NRASQ61R mutant cells.

Symbol	Gene description	log ₂ FC	p-value	adj.p-value
NR4A3	nuclear receptor subfamily 4 group A member 3	2.560	3.3E-03	2.6E-02
ASRGL1	asparaginase like 1	2.562	4.8E-05	1.3E-03
RAB11FIP4	RAB11 family interacting protein 4	2.568	1.4E-03	2.8E-03
HERC5	HECT and RLD domain containing E3 ubiquitin protein ligase 5	2.571	1.2E-03	1.3E-02
LPAR1	lysophosphatidic acid receptor 1	2.574	4.9E-06	2.2E-04
FRAS1	Fraser extracellular matrix complex subunit 1	2.581	2.9E-08	3.6E-06
ARPC1B	actin related protein 2/3 complex subunit 1B	2.587	1.7E-11	7.2E-09
CKMI1B	creatine kinase, mitochondrial 18 TNE receptor superfamily member 19	2.599	5.0E-07	3.6E-05
FLOVL2	FLOVL fatty acid elongase 2	2.620	3.1E-04	5.0E-03
CPT1A	carnitine palmitoyltransferase 1A	2.635	5.8E-05	1.5E-03
ATP6V0D2	ATPase H+ transporting V0 subunit d2	2.640	7.5E-03	4.3E-02
CA8	carbonic anhydrase 8	2.641	6.7E-03	4.1E-02
ST8SIA6	ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 6	2.645	1.1E-07	1.0E-05
RGMA	repulsive guidance molecule BMP co-receptor a	2.648	2.2E-02	7.7E-02
NK4A1	nuclear receptor subfamily 4 group A member 1 solute carrier family 22 member 23	2.650	2.2E-05	7.1E-04 1.2E-02
GSTM2	glutathione S-transferase mu 2	2.660	1.9E-05	6.2F-04
CHST11	carbohydrate sulfotransferase 11	2.673	1.4E-04	2.9E-03
LCP2	lymphocyte cytosolic protein 2	2.684	2.9E-04	4.8E-03
EIF1AY	eukaryotic translation initiation factor 1A Y-linked	2.687	6.6E-07	4.5E-05
RPS4Y1	ribosomal protein S4 Y-linked 1	2.690	8.8E-03	4.7E-02
	leucine rich repeat kinase 1	2.691	1.0E-06	0.2E-05
ΤΕΔΡ2Δ	transcription factor AP-2 alpha	2.098	1.8L-08	1 3E-10
FBLN5	fibulin 5	2.710	4.4E-08	5.1E-06
GATA4	GATA binding protein 4	2.712	2.1E-10	5.5E-08
CD200	CD200 molecule	2.717	2.2E-02	7.6E-02
PRKG2	protein kinase cGMP-dependent 2	2.719	2.6E-05	7.8E-04
SPSB1	spIA/ryanodine receptor domain and SOCS box containing 1	2.722	9.7E-05	2.2E-03
	crassient receptor potential cation channel subtamily M member 1 caspase 1	2.728	2.0E-04	3.7E-U3
IL16	interleukin 16	2.750	2.3E-03	2.1E-02
TMEM198	transmembrane protein 198	2.758	9.4E-04	1.1E-02
ITGB3	integrin subunit beta 3	2.760	1.0E-03	1.2E-02
GPM6B	glycoprotein M6B	2.763	8.1E-05	1.9E-03
PNKD	PNKD metallo-beta-lactamase domain containing	2.767	2.2E-08	2.9E-06
	LIM nomeobox 8 histopa dustor 1 H2 family member i	2.768	2.1E-03	2.0E-02
LRRC61	leucine rich repeat containing 61	2.76	5.3E-07	2.0E-03
ANKRD30B	ankyrin repeat domain 30B	2.778	1.6E-02	6.6E-02
PPP2R5A	protein phosphatase 2 regulatory subunit B'alpha	2.779	3.7E-07	2.8E-05
TMEM167B	transmembrane protein 167B	2.780	1.3E-06	7.7E-05
SESN3	sestrin 3	2.783	2.3E-03	2.1E-02
KAZN CVD7R1	kazrin, peripiakin interacting protein	2.790	1.6E-11	7.1E-09
ENDC10	fibronectin type III domain containing 10	2.790	6.2E-08	6.9E-05
GPC4	glypican 4	2.797	7.9E-04	9.9E-03
TBC1D16	TBC1 domain family member 16	2.799	9.1E-05	2.1E-03
ACP5	acid phosphatase 5, tartrate resistant	2.814	8.9E-06	3.5E-04
FCRLA	Fc receptor like A	2.818	1.2E-07	1.1E-05
HIST1H3G	histone cluster 1 H3 family member g	2.821	2.5E-04	4.3E-03
VAMP8	vesicle associated membrane protein 8	2.825	1.3E-03 6.0F-05	1.5E-03
BMT2	base methyltransferase of 25S rRNA 2 homolog	2.830	2.2E-04	3.9E-03
SLC17A9	solute carrier family 17 member 9	2.831	5.4E-05	1.4E-03
CSPG4	chondroitin sulfate proteoglycan 4	2.842	4.2E-06	2.0E-04
VAV3	vav guanine nucleotide exchange factor 3	2.844	4.1E-03	3.0E-02
	HEN mothyltransforase 1	2.849	1.1E-04	2.4E-03
CCNA1	cyclin A1	2.855	3.6E-10	8.7E-08
TRIM63	tripartite motif containing 63	2.859	2.2E-03	2.0E-02
MERTK	MER proto-oncogene, tyrosine kinase	2.868	7.0E-03	4.2E-02
SLC2A11	solute carrier family 2 member 11	2.871	2.4E-05	7.5E-04
GLB1L2	galactosidase beta 1 like 2	2.871	4.3E-06	2.0E-04
CKMT14	creatine kinase, mitochondrial 14	2.8/5	3.3E-02	1.2E-01 1.6E-04
GNG7	G protein subunit gamma 7	2.907	6.0E-05	1.5E-03
NFATC2	nuclear factor of activated T cells 2	2.922	4.1E-03	3.0E-02
OCA2	OCA2 melanosomal transmembrane protein	2.923	5.1E-04	7.2E-03
ENOSF1	enolase superfamily member 1	2.931	1.9E-05	6.3E-04
GRAMD4	GRAM domain containing 4	2.931	9.0E-U3	4.4E-02
BMP7	bone morphogenetic protein 7	2.953	2.7F-07	4.52-02 2.1E-05
COL19A1	collagen type XIX alpha 1 chain	2.950	9.5E-03	5.0E-02
SGCD	sarcoglycan delta	2.970	1.8E-03	1.7E-02
OSR1	odd-skipped related transcription factor 1	2.976	4.0E-02	1.0E-01
MASP1	mannan binding lectin serine peptidase 1	2.979	1.9E-02	7.2E-02
ZNF280B	protein tyrosine priosphatase non-receptor type 3 zinc finger protein 280B	2.984	1.9E-04	5.5E-03 4.7F-03
GABARAPL1	GABA type A receptor associated protein like 1	3.011	2.6E-04	4.5E-03
RXRG	retinoid X receptor gamma	3.018	1.6E-04	3.2E-03
H2AFJ	H2A histone family member J	3.021	8.2E-07	5.4E-05
SLCO2B1	solute carrier organic anion transporter family member 2B1	3.035	2.1E-06	1.1E-04
	ISOCILITATE GENYGROBERSE (NADP(+)) 2, mitochondrial	3.036	1.2E-11	5.8E-09
P3H2	prolyl 3-hydroxylase 2	3.041	1.0F-02	5.1F-02
LXN	latexin	3.044	1.0E-02	5.1E-02
TSTD1	thiosulfate sulfurtransferase like domain containing 1	3.045	1.6E-04	3.1E-03
ITGA9	integrin subunit alpha 9	3.053	1.0E-07	9.8E-06
LAMA4	laminin subunit alpha 4	3.056	9.7E-07	6.1E-05
NDN EN1	necαin, MAGE tamily member fibronactin 1	3.066	2.3E-05	7.2E-04
CYP2741	cytochrome P450 family 27 subfamily & member 1	3.075	1.4E-02	0.1E-02 8.0F-02
TGFBR3	transforming growth factor beta receptor 3	3.088	9.1E-04	1.1E-02
CEACAM5	carcinoembryonic antigen related cell adhesion molecule 5	3.095	4.4E-03	3.1E-02
BIRC7	baculoviral IAP repeat containing 7	3.108	3.0E-10	7.6E-08
CTNNBIP1	catenin beta interacting protein 1	3.120	5.3E-10	1.2E-07

 Supplementary Table 1 (3/4). 400 top differentially

 expressed genes in BRAFV600E vs. NRASQ61R mutant cells.

Symbol	Gene description	log ₂ FC	p-value	adj.p-value
FYN	FYN proto-oncogene, Src family tyrosine kinase	3.133	9.3E-12	5.2E-09
HTR2B	5-hydroxytryptamine receptor 2B	3.135	9.1E-04	1.1E-02
ALDH1A1	aldehyde dehydrogenase 1 family member A1	3.161	4.7E-04	6.8E-03
SPRR2D	small proline rich protein 2D	3.179	1.7E-05	5.8E-04
PSCA	prostate stem cell antigen	3.184	1.3E-04	2.7E-03
DAPK1	death associated protein kinase 1	3.193	1.2E-07	1.1E-05
ABCB5	ATP binding cassette subfamily B member 5	3.197	2.8E-04	4.7E-03
GDF15	growth differentiation factor 15	3.210	2.1E-07	1.7E-05
CST1	cystatin SN	3.212	1.1E-02	5.3E-02
QPRT	quinolinate phosphoribosyltransferase	3.245	5.9E-06	2.6E-04
STINIVI	synemin kvingle containing transmombrane protein 1	3.251	3.6E-07	2.7E-05
MMP17	matrix metallonentidase 17	3 257	3.2E-12 4.4E-06	2.0E-09
A2M	alpha-2-macroglobulin	3 265	1.7E-04	3 35-03
DIPK1B	divergent protein kinase domain 1B	3 268	3 3E-05	9.6E-04
PYCARD	PYD and CARD domain containing	3.273	4.4F-05	1.2E-03
SIRPA	signal regulatory protein alpha	3.303	4.0E-03	2.9E-02
IGFBP7	insulin like growth factor binding protein 7	3.305	8.3E-05	1.9E-03
BAMBI	BMP and activin membrane bound inhibitor	3.315	9.4E-05	2.1E-03
FRMD4B	FERM domain containing 4B	3.324	4.2E-03	3.0E-02
GPRC5B	G protein-coupled receptor class C group 5 member B	3.327	6.3E-14	7.1E-11
ABCC2	ATP binding cassette subfamily C member 2	3.329	8.6E-04	1.0E-02
PCDH7	protocadherin 7	3.339	4.2E-07	3.1E-05
SLCIA4	solute carrier family 1 member 4	3.354	3.9E-03	2.9E-02
APUE	apolipoprotein E	3.372	8.5E-07	5.5E-05
TNIEE 19B	microRNA 6809	3.374	5.0E-07	5.0E-05
PI15	peotidase inhibitor 15	3 3 2 8 7	2.8F-04	4.7F-04
	Jaminin subunit alpha 1	3.387	1 4E-02	6.2E-02
SLC45A2	solute carrier family 45 member 2	3.434	7.8E-04	9.8E-03
IGSF11	immunoglobulin superfamily member 11	3.435	2.4E-05	7.5E-04
ITIH5	inter-alpha-trypsin inhibitor heavy chain 5	3.439	1.7E-08	2.3E-06
ADAMTS17	ADAM metallopeptidase with thrombospondin type 1 motif 17	3.440	1.7E-13	1.7E-10
MYLIP	myosin regulatory light chain interacting protein	3.445	7.9E-07	5.2E-05
TNFRSF14	TNF receptor superfamily member 14	3.454	9.4E-05	2.1E-03
TBX2	T-box 2	3.462	1.7E-08	2.4E-06
SCML4	Scm polycomb group protein like 4	3.483	4.4E-06	2.0E-04
PDE4B	pnospnodiesterase 4B	3.505	1.8E-07	1.5E-05
SCIN	scinderin	3.528	7.1E-03	4.2E-02
PCSK2	proprotein convertase subtilisin/kexin type 2	3.546	1.1E-03	1.2E-02
CDN1	golgi phosphophotelli S like	2 571	0.0E-11	2.02-08
DAAM2	dishevelled associated activator of morphogenesis 2	3 5 9 8	9.0E-04	1.1E-02 1.1E-02
NEO1	neogenin 1	3 618	9.4E-07	6.0E-05
BAIAP2L2	BAI1 associated protein 2 like 2	3.626	9.7E-05	2.2E-03
HAS2	hyaluronan synthase 2	3.634	1.5E-03	1.5E-02
PMP2	peripheral myelin protein 2	3.644	1.1E-03	1.2E-02
PLXNC1	plexin C1	3.676	2.9E-03	2.4E-02
СТЅН	cathepsin H	3.679	7.8E-03	4.4E-02
SOX6	SRY-box 6	3.698	2.2E-05	7.1E-04
MMP8	matrix metallopeptidase 8	3.725	1.7E-02	6.8E-02
CTSK	cathepsin K	3.732	2.0E-04	3.7E-03
SDC3	syndecan 3	3.733	5.9E-03	3.7E-02
SLC2/A3	solute carrier tamily 27 member 3	3.747	3.3E-04	5.3E-03
DPDM7	BR/SET domain 7	2 762	7.25.05	1.9E-02
NRCAM	neuronal cell adhesion molecule	3 797	6 5E-05	1.7E-03
LGALS3	galectin 3	3.799	8.6E-03	4.7E-02
RUNX3	RUNX family transcription factor 3	3.850	5.6E-06	2.5E-04
CARD16	caspase recruitment domain family member 16	3.890	1.9E-05	6.4E-04
C1orf21	chromosome 1 open reading frame 21	3.908	4.1E-08	4.8E-06
IRF4	interferon regulatory factor 4	3.921	6.1E-07	4.2E-05
ENTPD1	ectonucleoside triphosphate diphosphohydrolase 1	3.992	1.2E-03	1.3E-02
RCN3	reticulocalbin 3	4.009	7.2E-06	3.0E-04
DCT ENIX10	dopachrome tautomerase	4.019	1.6E-02	6.5E-02
STECALNACO	sorung nexifi 10	4.020	2.1E-04	3.9E-U3
BEST1	hestronhin 1	4.022	0.5E-00	2.7E-04
GYG2	glycogenin 2	4.045	4.6E-03	3.2E-02
C10orf90	chromosome 10 open reading frame 90	4.059	1.3E-03	1.4E-02
TTYH2	tweety family member 2	4.109	1.3E-07	1.2E-05
CELF2	CUGBP Elav-like family member 2	4.118	2.4E-05	7.5E-04
FXYD3	FXYD domain containing ion transport regulator 3	4.155	2.3E-05	7.3E-04
S100B	S100 calcium binding protein B	4.183	1.0E-03	1.2E-02
TMTC1	transmembrane and tetratricopeptide repeat containing 1	4.234	2.2E-05	7.1E-04
GAPDHS	glyceraldehyde-3-phosphate dehydrogenase, spermatogenic	4.266	9.4E-04	1.1E-02
S100A1	Studicalcium binding protein A1	4.297	2.4E-06	1.3E-04
UNCOOFO4	o protein-coupled receptor 143	4.409	8.4E-04	1.0E-02
LINCOUSU4	solute carrier family 16 member 6	4.411	3.3E-03	2.6E-02
TYRP1	tyrosinase related protein 1	4,512	2.4F-05	7.5F-04
CAPN3	calpain 3	4.590	1.7E-03	1.7E-02
GJB1	gap junction protein beta 1	4.745	2.9E-04	4.8E-03
SEMA6A	semaphorin 6A	4.900	5.6E-08	6.3E-06
GPNMB	glycoprotein nmb	5.065	1.5E-04	3.1E-03
PLA1A	phospholipase A1 member A	5.078	5.0E-04	7.1E-03
TYR	tyrosinase	5.101	6.5E-06	2.8E-04
ERBB3	erb-b2 receptor tyrosine kinase 3	5.230	6.7E-11	2.2E-08
SLC24A5	solute carrier family 24 member 5	5.237	1.8E-04	3.5E-03
ISPAN7	tetraspanin /	5.275	2.7E-06	1.4E-04
CEACANCE	potassium voltage-gated channel subtamily A regulatory beta subunit 2	5.288	1.4E-05	4.9E-04
	anolinoprotein D	5 266	3.9E-03	2.9E-02 3 5E-02
CAPG	canning actin protein gelsolin like	5,500	2 7F-07	2 1 5-05
OPCT	glutaminyl-peptide cvclotransferase	5,621	1.1F-03	1.2F-02
SLC7A8	solute carrier family 7 member 8	5.964	1.9E-05	6.4E-04
MLANA	melan-A	6.195	1.6E-03	1.6E-02
МВР	myelin basic protein	6.244	1.0E-07	9.8E-06
PLP1	proteolipid protein 1	6.412	2.4E-19	3.3E-15
PMEL	premelanosome protein	6.797	1.4E-04	2.9E-03

Supplementary Table 1 (4/4). 400 top differentially expressed genes in BRAFV600E vs. NRASQ61R mutant cells.

Α

	U	pregulated i		В	Upregulated and BRAF ^{V600}	in NRAS ^{Q61R} ^E mutant cells			
A2M	CEACAM8	FCHSD2	KCNJ11	NR5A1	RHBDD1	TFCP2L1		AGRP	MDFI
ABAT	CEL	FFAR1	KCNQ4	NRG3	RHO	TFEB		ALDH5A1	MGAM
ABCC6	CER1	FGF11	KCTD18	NSUN5P2	RILP	TFPI		ALKBH6	MRGPRX4
ACE	CES1P1	FGF2	KCTD8	NUP210	RNASE13	THEG		ANKFN1	MS4A15
ACO2	CFAP43	FGR	KIAA1107	NYX	RNASE7	THNSL2		APOC1	MT1HL1
ACP5	CFAP52	FIGLA	KIZ	OARD1	RNASEK	TNACE10		ARHGAP6	MUC6
ACSS2	CFAP74		KLF1	OGEOD1	RND3 RNE10A	TM65E2		ATPSIVIE-PICDI	NCP2
	CGB1	FOS	KI HI 30	OPN3	RPH3A	TMCO2		BAG6	NDRG2
ADAMTS17	CGB2	FOXI3	KNDC1	OR10H5	RPP40	TMEM11		BAIAP2	NIM1K
ADGRF5	CGB3	FOXQ1	KRT27	OR10W1	RSPO2	TMEM132C		BCKDHA	NR4A3
ADIPOR1	CGB5	FRAS1	KRTAP3-1	OR1D2	RTCB	TMEM139		BCL6	NRM
ADM	CGB8	FRRS1L	LAMA1	OR1J4	RTL4	TMEM150A		C1QL1	OIT3
ADM2	CHCHD2	FRZB	LANCL3	OR1S1	RTN1	TMEM151B		C1orf56	OPRD1
ADORA2A	CHRDL1	FSCB	LAT	OR2AP1	SAA2	TMEM156		C9orf116	OSCP1
ADRB2	CKMT1A	FST	LAYN	OR2F1	SAMD5	TMEM198		CACNG7	PAEP
AGTRAP	CLDN1	FUT10	LCE1D	OR2L3	SAP25	TMEM234		CADM3	PARM1
AGX12	CLEC4A	GABRA1	LCE1F	OR2133	SBSN	TMEM38B		CALHM3	PDE9A
	CLEC4D CLEC4G	GABRB2	LENDO	OR2V1	SELENOM	TMEM88		CAPINS CASTOR1	PEDP4 DEV16
	CLIC2	GADD45B	LEAF2	OR4C6	SELENOIN	TNIP3		CRIC	PHOX2B
ALG10B	CLIP2	GALNT16	LGAIS3	OR4E2	SERINC2	TNNT1		CCDC140	PIGU
AMBN	CMBL	GALNT6	LGI3	OR51G2	SERPINA6	TOP3B		CCDC17	PIWIL2
AMBP	CMC4	GAREM1	LILRA1	OR52R1	SERPINA9	TPP1		CCDC180	PLAAT1
AMN1	CNTNAP3B	GAREM2	LINC00504	OR5B12	SERPINB3	TPSB2		CCL23	PNMA2
AMY2A	CNTNAP5	GATA6	LINC01235	OR5K2	SERPINC1	TRAIP		CD207	PNPLA6
ANKRD1	COL16A1	GDF15	LINC01588	OR8B8	SH2D1B	TRAP1		CD300E	POLR2E
ANKRD6	COL1A1	GDF9	LMF2	OSBPL1A	SH3BGRL3	TSLP		CD84	POR
APC2	COL8A1	GFI1B	LNX1	OSTF1	SH3D21	TSSK6		CDH18	PORCN
APOC3	CPM	GIMAP2	LOC100505841	OTOF	SHCBP1L	TST		CDH20	PPDPF
AQP1	CPNE9	GIN1	LOC100652768	UXER1	SHISA5	TUPA25		CHAC1	PPP1R15A
AQPIO	CPVL	GJA4	LOC286238	PBXIP1	SHKBPI	TUBA3E		CHACI CLONIT	PRSS50
AQPS	CRACK2D	GIB3	1005650293	PCDHB11	SIAF	TUBA4A TVW/1			PSGI
ARMCX4	CRYGN	GKN1	LOR	PDF10A	SIGLEC15	UBALD2		CLNG	REC114
ARRDC3	CSRNP3	GLB1	LRATD1	PDE6G	SIGLEC7	UBTFL1		CLPTM1	RELA
ARSE	CST9	GLCCI1	LRP5L	PDIA2	SIK1	UMODL1		CLTRN	S100A4
ART1	CT47A10	GLIS1	LRRC6	PEAR1	SIX2	UNC93B1		CNNM3	SCD5
ART4	CT47A12	GNA15	LRRC71	PEX3	SLC10A6	UPK3BL1		COMTD1	SDCBP2
ASAP3	CT47A3	GNG3	LRTM1	PFKFB2	SLC12A5	URAD		COX7A1	SEC14L5
ASIC2	CT47A6	GNGT2	LTA4H	PHGR1	SLC13A1	USP17L15		CPA4	SEMA4G
ASXL3	CT47A7	GP6	LTBP1	PI15	SLC17A7	USP17L28		CT47A5	SERPINB9
ATCU7	CT47A9	GPAA1		PIGV	SLC1A4	USP28		CXCL3	SIM1
ATD11AUN	CISE	GPR158-AS1	LUKAPI	PITX2	SLC2UAZ	USPSI		DDI13	SLC10A2
ATP5F1D		GPR42		PLA2G2D	SLC26A1	VAX2		DET1	SLC36A1
ATP6V0D2	CXCL5	GPR45	LYZ	PLA2G4E	SLC26A10	VPS28		DEXI	SLC4A11
ATP8A2	CXCL8	GPR89B	MAB21L1	PLA2G5	SLC26A4	VPS9D1		DHRS12	SLCO2A1
B3GALT2	CYB5R1	GPRASP2	MAB21L3	PLAC4	SLC30A2	VSNL1		DIRAS1	SMPD3
BBOF1	CYLC2	GPX6	MAGEB17	PLAGL1	SLC30A3	VSTM4		DMRTC1	SNCAIP
BBS12	CYP2J2	GRB7	MAGED4B	PLCL2	SLC35D3	VXN		DNAL4	SNTG2
BCKDK	DBX1	GRIA2	MAMDC2	PLEKHN1	SLC35F2	WBP2		DPYSL5	SPACA9
BDKRB2	DCAF17	GRM5	MAN2A2	PLP1	SLC38A3	WDR13		DRD5	SPANXC
BMPER	DCHS2	GRM8	MAPK11	PLPPR2	SLC38A8	WDR48		DUSP1	SPHKAP
BULAI BRIND1	DECR2	GEDMA	MARKS	PIVIEL POC1A	SLC44AZ	WEDC10P		EFCABII	SPRIN
BRINF1 BRSK1	DEFB100B	HAPI N2	MATN2	POU3F4	SIC6A4	WEDC13		EHE	SUITER1
BTNL8	DEFB126	HCG2040054	MBD3L3	PPM1M	SLC7A10	WFDC2		EMD	TBC1D21
C10orf90	DEFB4B	HCN2	MCTP1	PPP1R1B	SLC7A14	WIPF3		EPB41L4B	TBCE
C16orf71	DEPDC4	HCN4	MDH2	PPP4R1	SLC8A3	WNT10B		EPHB2	TCF7
C16orf86	DEPTOR	HEXA	MDP1	PRAC2	SLCO1B3	XG		FAM180A	TCP10L
C16orf90	DLX3	HEXB	METTL7B	PRB2	SMIM22	XKR9		FAM219A	TCTN2
C16orf92	DMRT2	HHIP	MFGE8	PRDM1	SMIM27	YIPF6		FFAR3	TEX29
Clort127	DNAAF4	HINFP	MFNG	PRDM16-DT	SNAP47	YPEL1		FOLR1	TEX36
C10rt54	DNAL1	HIST3H3	MIR205HG	PROC PROK1	SUX15	2B1B22		FUXD4L5	IEX38
C1QL4 C21orf62	DRD1	HMOX1	MIR99AHG	PROK2	SPATA12	70386		GADD45A	TMC2
C3	DUSP5	HMX2	MMGT1	PROM1	SPDYE5	ZC4H2		GATA1	TMEM102
C4orf50	DUSP6	HOPX	MORN2	PRR23B	SPEF2	ZFP36		GCFC2	TMEM170B
C8orf89	DUX4	HPN	MOSPD1	PRR5	SPINK1	ZFPL1		GLMP	TMEM174
CA4	ECEL1	HPS1	MROH8	PRSS27	SPINT3	ZNF154		GLYATL2	TMEM179B
CACNA1A	EFS	HSD3B1	MRPL4	PRSS38	SPIRE1	ZNF280A		GPR12	TMEM247
CACNG8	ELF5	HYAL3	MTHFD2L	PRSS56	SPNS1	ZNF296		GPR162	TMUB1
CALML3	ELOVL2	IFIH1	MTM1	PRUNE2	SPRY1	ZNF423		GPR89A	TNFSF9
CAMK2A	EMC9		MTRNR2L4	PSG9	SRPK2	ZNF442		HHLA3	TOMILI
CARD16			MV/K	PTCDS	SRPAZ	ZINF501 ZNEE02			TPINAGAD
CASKIN1	ERGIC1	IFT22	MVP	PTGER4	SRRM5	ZNF541		HSPA12B	TRIM7
CASP1	ERLIN2	IGDCC3	MYC	PTH1R	SSTR4	ZNF577		HTRA1	TRY2P
CASQ1	ERVFRD-1	IL15RA	MYCT1	PTN	SSX3	ZNF593		IFNL4	TTYH2
CBFA2T2	ESRP2	IL17A	MYLK3	PTOV1	SSX5	ZNF596		IGFBP1	VPS52
CBS	ETV2	IL17REL	MYOG	PTPN3	ST8SIA5	ZNF705B		ITIH4	WDR72
CCDC102B	EXD1	IL18RAP	MYOM1	PTPN5	SUN3	ZNF729		KBTBD8	WNT3
CCDC142	F2RL2	IL27RA	N4BP2L1	PTPRE	SUPT20HL2	ZYG11A		KCNG4	XPO4
CCDC169	FABP4	IL2KA	NALCN	PIPKR	SYNPOZL			KCNK2	
CCDC1/3	FAMILU/A	11.78	NRDE7	DVCAPD	STINPK			KIAA1211L	
CC13	FAM180A2	119	NDUFA412	RAB15	TAGIN			KRT38	
CCN2	FAM189R	INHBB	NENE	RABAC1	TAGLNR			KRTAP3-2	
CCR7	FAM215A	INKA1	NFKBIZ	RABGGTA	TAS1R2			LAMA4	
CCR9	FAM25G	INO80B	NINJ1	RAC2	TBC1D10C			LAMB4	
CD248	FAM30A	IRF3	NIPAL2	RAPGEF4	TBX1			LCN2	
CD300C	FAM53A	ISLR2	NKX2-4	RASSF3	TBX5			LOC388780	
CD79A	FAM83A	ITIH3	NLGN4X	RBMY1J	TCIM			LRRC20	
CDH16	FAM98B	ITLN1	NMBR	RBP1	TCN1			LRRC72	
CDH7	FBX016	KBIBD11	NME9	RCE1	ICIE1			LKKC8E	
CDIP1	FBXU41	KCNA5	NUS1AP	REG18	TENTER				
CEACAMAI	FDAW4	KCNF2		REFER	TESKO				
CEACAMB	ECGR2A	KCNH7	NROB2	RGS2	TESDA1			MBD312	

 CEACAM3
 FCGR2A
 KCNH7
 NROB2
 RGS2
 TESPA1
 MBD3L2

 Supplementary Table 2 (1/9). Upregulated genes in response to metabolic stress
 (Log₂FC>0.265)
 (A) NRASQ61R mutant cells. (B) NRASQ61R and BRAFV600E mutant cells.

Upregulated in BRAF ^{V600E} mutant cells											
AGO2	AKR7A3	ARL5C	BLOC1S2	CACHD1	CDC25A	CLINT1	CXCL16	DLG2	EIF3F	FAM170B	FRK
AGO3	AKT1S1	ARL6IP1	BLOC1S3	CACNA1B	CDC25C	CLIP3	CXCL6	DLGAP2	EIF3G	FAM177B	FRMD4B
AADACL2	AKTIP	ARMC12	BMERB1	CACNA1I	CDC42EP2	CLK1	CXCL9	DLGAP4	EIF4E1B	FAM180B	FRMD6
AADACL4	ALAS1	ARMC3	BMP6	CACNB1	CDC42SE1	CLN8	CXCR5	DLK2	EIF4E3	FAM181A	FRMPD1
AADAT	ALDH18A1	ARMC4	BOD1	CACNG1	CDCA2	CLNK	CYB561	DLL4	EIF5AL1	FAM181B	FRMPD3-AS1
AAGAB	ALDH9A1	ARMC9	BOK	CACNG3	CDCP1	CLRN2	CYBRD1	DLST	EIF6	FAM182B	FRYL
AAK1	ALLC	ARMH3	BORCS7	CACTIN-AS1	CDH12	CLTC	CYLD	DLX4	ELAVL2	FAM184A	FTCD
AAMDC	ALOX15B	ARPIN-AP352	BORCS8	CACYBP	CDH22	CMC1	CYP19A1	DLX5	ELAVL4	FAM204A	FIH1P18
AARS		ARVCF	BPIFA2 BDIEB1	CAUR1	CDH25	CMTM5	CYP21A1P	DMGDH	ELK5 FUI3	FAM210A	FUEPS FLICA2
ABCA10	ALPP	AS3MT	BPY2B	CALB2	CDH4	CNDP1	CYP21A2	DMWD	ELMOD2	FAM210B	FUT11
ABCA13	ALX3	ASAH1	BRAF	CALHM4	CDIP1	CNGA4	CYP24A1	DNAAF5	ELMSAN1	FAM217B	FUT9
ABCA2	AMBRA1	ASAP2	BRAP	CALN1	CDK11B	CNGB3	CYP2A7	DNAJA4	ELOA	FAM221B	FXN
ABCC12	AMIG01	ASB14	BRD2	CAMK2D	CDK15	CNIH1	CYP2C19	DNAJB11	ELOB	FAM222A	FXYD7
ABCG1	AM71	ASB10 ASB2	BRICDS	CAND1	CDKN2D	CNOT10	CTP251 CVP2111	DNAJB2	ELOVLS FLDS	FAIVIZZ7B	FTD1 F7D3
ABCG4	ANAPC10	ASB8	BRK1	CAND1.11	CDO1	CNOT3	CYP46A1	DNAJB6	ELSPBP1	FAM234B	FZD9
ABHD1	ANAPC11	ASPHD1	BRPF3	CAPN1	CDON	CNOT9	CYP4A22	DNAJB9	EMC1	FAM241B	GABPA
ABHD13	ANAPC16	ASS1	BSND	CAPN6	CDRT15	CNPPD1	CYP4B1	DNAJC18	EMC2	FAM25A	GABRA6
ABHD16A	ANAPC4	ASTE1	BST1	CAPSL	CDRT15L2	CNPY4	CYP4F11	DNAJC19	EMC8	FAM27E5	GABRD
ABHD17B	ANGP12	ATADS	BIBD10	CAPZA2	CDSN	CNR1 CNTNA	CYP4F12	DNAJC22	EMICN	FAM3B	GABRE
ABHD2 ABHD3	ANGPTLS ANGPTL4	ΔTF5	BTE3L4	CARD10	CEACAM6	CNTROB	CYP4F22 CYP4V2	DNAICS	EMI2	FAM47C	GABRG2
ABHD6	ANGPTL6	ATF7IP	BTG4	CARD18	CEBPZ	COBLL1	CYP51A1	DNASE1	EMP3	FAM49A	GABRR2
ABI1	ANGPTL7	ATG14	BTNL10	CARHSP1	CEBPZOS	COCH	DAAM1	DNASE2B	EN2	FAM50B	GABRR3
ABI3	ANK1	ATG7	BUB1B-PAK6	CARMIL2	CECR2	COG1	DAB2IP	DNER	ENC1	FAM57A	GAD2
ABR	ANK2	ATOH8	BUD13	CARNMT1	CELA3B	COG2	DACH2	DNLZ	ENDOG	FAM57B	GADD45GIP1
ABRACL ABRAYAS1	ANKHD1 ANKRA2	ATP1345-451	C100ff142	CARS CASC1	CELF3 CELSR1	0065	DAUA	DNM2 DNM3	ENG ENPP1	FAM71F2	GAGE10
ACACA	ANKRD10	ATP1A4	C11orf86	CASD1	CELSR2	COL11A2	DAZL	DNMT1	ENPP3	FAM78A	GALNTL5
ACAD10	ANKRD13D	ATP1B3	C11orf87	CASP10	CELSR3	COL19A1	DBF4	DNMT3L	ENTPD4	FAM86B1	GAMT
ACADVL	ANKRD23	ATP2B2	C11orf94	CASP8	CENPF	COL27A1	DBNDD1	DNPEP	ENTPD7	FAM89A	GAN
ACBD5	ANKRD34B	ATP2C1	C11orf97	CASS4	CENPJ	COL4A5	DBNDD2	DOCK10	EOMES	FAM92B	GAPVD1
ACBD6	ANKRD36C	ATP2C2	C12orf29	CATEPED	CENPP	COLGAG	DCAF10		EP400P1		GASK1A
ACCS	ANKRD40	ATP4A ATP5F1C	C120r150	CATSPERI	CENPW CEP112	COLGALTI	DCAF12 DCAF12L1	DOP1B	EPRATI 1	FAINKI	GATD1
ACKR1	ANKRD40CL	ATP5F1EP2	C12orf65	CATSPERB	CEP120	COMMD1	DCAF4	DPCD	EPB41L2	FATE1	GATD3A
ACOX2	ANKRD44	ATP5MPL	C12orf75	CATSPERE	CEP128	COMMD8	DCAF5	DPH7	EPGN	FBL	GATM
ACSBG1	ANKRD46	ATP5PB	C14orf132	CATSPERZ	CEP152	COPG1	DCAF8L1	DPP9-AS1	EPHA1	FBP1	GBP1
ACSM3	ANKRD52	ATP6AP1L	C15orf54	CBL	CEP170	COPZ1	DCC	DPY19L4	EPHA3	FBXL14	GC
ACTBL2	ANKRD63	ATP6AP2	C16orf46	CBLB	CEP63	COX11	DCD	DPYD DRAM1	EPHA7	FBXL3	GCA
ACTL7B	ANKS1B ANKS3	ATP6V1B1	C17orf107	CBR1	CEP 85L	COX7B2	DCHS1	DRC3	EPHX2	FBXO32	GCDH
ACTN2	ANKZF1	ATP6V1C2	C17orf75	CBWD6	CERCAM	CPA3	DCLK1	DRG2	EPHX3	FBXO36	GCGR
ACTR10	ANO1	ATP6V1F	C17orf80	CBX8	CERS6	CPAMD8	DCLK2	DSCAM	EPN1	FBXO42	GCNA
ACTR3B	ANO3	ATP7A	C17orf98	CCDC105	CETN1	CPB1	DCLRE1B	DSCR4	EPRS	FBXO5	GCNT7
ACTR6	ANO4	ATP9B	C19orf47	CCDC107	CETN2	CPB2	DCLRE1C	DSEL	EPS15L1	FBXW12	GCOM1
ACVR1 ACVR2B		ATPAFI	C1D C1orf105	CCDC12	CEAP125	CPNEZ	DCP1A DCTN1		EPS8L1 EPS8L2	FCAR FCF1	GDA
ADAD2	ANTXR1	ATXN1	C1orf162	CCDC122	CFAP44	CPSF3	DCTN2	DTNB	ERAL1	FCGRT	GDI1
ADAL	ANTXR2	ATXN2	C1orf167	CCDC183	CFAP46	CPSF4	DCUN1D2	DTWD2	ERAP2	FCN2	GDNF-AS1
ADAM11	ANXA2R	ATXN7	C1orf198	CCDC185	CFAP77	CPSF4L	DCXR	DTX3L	ERBIN	FCRL2	GFER
ADAM12	ANXA8	ATXN7L1	C1orf216	CCDC187	CFAP97	CPT2	DDAH1	DTX4	ERCC1	FDFT1	GFOD1
ADAM15	AP1G1	AURKAIP1	C1orf220	CCDC188	CFDP1	CPXM1	DDAH2	DUS2	ERCC4	FEM1A	GGA1
ADAMTS14	AP1M1 AP1M2	AWAT1	Clorf50	CCDC30	CHD5	CRACK2A CRAMP1	DDI1D2	DUSP18	FRH	FER1L6	GGH
ADAMTS2	AP2A2	B3GALT4	C1orf61	CCDC33	CHD9	CREG1	DDIT4	DUSP22	ERI1	FER1L6-AS1	GGT7
ADAMTS5	AP2M1	B3GALT6	C1orf94	CCDC47	CHEK1	CREG2	DDRGK1	DUXAP10	ERMARD	FERMT2	GHR
ADAMTS7	AP3D1	B3GNT5	C1QL2	CCDC50	CHFR	CRHR1	DDX12P	DXO	ERVV-1	FFAR2	GHRHR
ADAMTSL1	AP3M2	B3GNT6	C1QTNF5	CCDC51	CHGB	CRK	DDX18	DYNC1H1	ESM1	FGB	GIMAP8
ADAMISL4	ΔP4B1 ΔP4F1	B3GNT/ B3GNTI1	CIQINF/	CCDC59	CHIDI	CREFI	DDX19A	DYNCIII DYRK1B	ESR1 ESR2	FGF17 FGF7	GIPCZ
ADCY10	APAF1	B4GALT7	C20orf173	CCDC63	CHMP2B	CRTC1	DDX28	DYRK2	ESRP1	FGFR4	GJB6
ADCY7	APBB2	B4GAT1	C20orf78	CCDC65	CHMP3	CRYBB1	DDX41	DZANK1	ETAA1	FGFRL1	GKAP1
ADD1	APCDD1	B9D2	C20orf85	CCDC74B	CHMP7	CRYBG1	DDX43	E2F1	ETNPPL	FGL1	GLA
ADGRD1	APCS	BACH1	C22orf39	CCDC77	CHODL	CRYBG3	DDX51	E2F4	ETV5	FHDC1	GLB1L3
ADGRE2		BAHCC1	C2CD3	CCDC80	CHRM1	CSE2RA	DEAE1	E2F5	ELVO EVA1C	FIBCD1	GLS
ADGRF1	APOA2	BAHD1	C2orf50	CCDC81	CHRNA10	CSPG4P1Y	DEF8	E2F7	EVC	FILIP1L	GLT8D2
ADH7	APOBEC2	BAK1	C2orf66	CCDC88A	CHRNA5	CST1	DEFB104A	EAF2	EVI2A	FITM2	GLTPD2
ADHFE1	APOBEC3F	BANF2	C2orf69	CCKAR	CHRNB3	CST7	DEFB108B	EAPP	EVI5L	FJX1	GMEB2
ADORA1	APOC2	BAP1	C2ort74	CCL26	CHRNB4	CSTA CSTE1	DEFB123	EARS2	EXO5	FKBP11	GMIP
ADRA2B		BATE2	C201185	CCI4I2	CHEVE	CT45A10	DEFB131B	EBF4 FBI3	EXOC5	FKBP14 FKBP15	GNAC
ADRB3	APOL3	BAZ2B	C3orf36	CCL5	CHTF18	CT45A2	DENND2A	EBPL	EXOSC7	FKBP3	GNAT3
AFAP1L1	APOL4	BBC3	C3orf49	CCL8	CIAPIN1	CT45A3	DENND2C	ECE1	EXOSC9	FKBP4	GNAZ
AFF1	APPBP2	BBS4	C3orf56	CCN1	CIB2	CT45A5	DENND5A	ECH1	EXPH5	FKBP5	GNB5
AFF3	APPL1	BCAR1	C4orf17	CCND3	CIB3	CT45A6	DENND6B	ECHDC2	EXT2	FLG2	GNL2
AFP AGBL3	APPLZ AOP124	BCAT1	C40IT19	CCNF	CIP24	CT45A7	DEPUCIB	EDIL3	ETAL F13B	FLI45513	GNPA1 GNRH1
AGL	AQP12B	BCHE	C5orf30	CCNT1	CIRBP	CT45A9	DGAT1	EDN2	FA2H	FMO4	GOLGA1
AGR2	AQP4	BCL10	C5orf49	CCP110	CIT	CT47B1	DGCR6	EEF1B2	FAAP100	FMO5	GOLGA2P5
AGR3	AREL1	BCL2L10	C5orf52	CCR2	CITED2	CTBP1	DGKK	EEF1E1-BLOC1S5	FAAP24	FMO6P	GOLGA3
AGT	ARGLU1	BCL2L15	C6	CCR5	CKB	CTBP1-DT	DGKZ	EEF2KMT	FAH	FMOD	GOLGA4
	AKHGAP24	BCB	CTorf25	CCT8	CLDN11	CTLA4	DHRS1	EEFSEU FECAB12	FAIVI104A	FNJK	GOLGABA
AJAP1	ARHGAP27	BDH2	C7orf26	CCT8L2	CLDN20	CTNNBI 1	DHRS7B	EFCAB7	FAM114A2	FNDC3A	GOLGA8S
AK2	ARHGAP35	BDKRB1	C7orf50	CD1D	CLDN6	CTNND1	DHX34	EFEMP1	FAM120B	FNIP2	GOLGB1
AK4	ARHGAP44	BECN2	C7orf69	CD200R1L	CLDN8	CTPS1	DHX58	EFHB	FAM122C	FNTB	GOLIM4
AK5	ARHGAP5	BEGAIN	C8orf31	CD244	CLDN9	CTR9	DHX8	EFL1	FAM124B	FOLR2	GOLPH3L
AK8	ARHGDIG	BEST4	C8orf97	CD2AP	CLDND1	CTRC	DIAPH3	EFTUD2	FAM131A	FOPNL	GORASP2
AKAIN1 AKAP10	ARHGEF20	BEAD BHLHE22	C90rf135	CD300LF	CLEC12A CLEC14A	CTSW/	DIDO1	EGELAIVI EGEN3	FAM135A	FOXES	GP2
AKAP12	ARHGEF6	BICD2	C9orf50	CD3G	CLEC17A	CUL2	DIP2B	EGR2	FAM135B	FOXF2	GPATCH1
AKAP13	ARID3B	BICDL1	C9orf57	CD4	CLEC1A	CUTA	DIS3	EGR3	FAM149A	FOXI1	GPATCH4
AKAP14	ARID4A	BICRAL	CA1	CD40LG	CLEC3A	CWF19L2	DIS3L	EHD2	FAM149B1	FOXK1	GPC4
AKR1A1	ARL13A	BIRC5	CAB39L	CD72	CLEC3B	CXADR	DIS3L2	EIF2B2	FAM155A	FOXL1	GPD1
AKR1B15	ARL13B	BLCAP	CABLOCO1	CD99	CLEC6A	CXCL10		EIF2D FIF3A	FAM155B	FUXL2	GPR101
AKR1E2	ARL2	BLM	CABYR	CDC14R CDC14B	CLGN	CXCL12	DLD	EIF3C	FAM170A	FPR3	GPR132

Supplementary Table 2 (2/9). Upregulated genes in response to metabolic stress ($Log_2FC>0.265$) in BRAFV600E mutant cells.

BRIER MURDER MURDER MURDER MURDER <th colspan="12">Upregulated in BRAF^{V600E} mutant cells</th>	Upregulated in BRAF ^{V600E} mutant cells											
chartsNUMBARNUMB	GPR146	HIST2H2AA3	INO80E	KIF23	LINC00612	MAGEC1	MPC1L	NDNF	NUDT3	PDPN	РОМК	PSMG3-AS1
GHEDS NUTS NUTS <t< td=""><td>GPR15</td><td>HIST2H2AB</td><td>INPP1</td><td>KIF26B</td><td>LINC00663</td><td>MAGEC2</td><td>MPDU1</td><td>NDOR1</td><td>NUDT8</td><td>PDYN</td><td>POP7</td><td>PSORS1C1</td></t<>	GPR15	HIST2H2AB	INPP1	KIF26B	LINC00663	MAGEC2	MPDU1	NDOR1	NUDT8	PDYN	POP7	PSORS1C1
SHEEDNUMPLYNUMPL	GPR150	HIST2H2BE	INSM2	KIF2A	LINC00668	MAGED4	MPEG1	NDRG1	NUP155	PDZD2	POSTN	PSPC1
SchuleKAANICE	GPR160	HIST3H2BB	INTS14	KIF5C	LINC00851	MAGIX	MPHOSPH8	NDRG4	NUP188	PDZD8	POT1	PSPH
Birls Birls <th< td=""><td>GPR171 GPR180</td><td>HIVEP2 HIA-B</td><td>INTSE</td><td>KIFAP3</td><td>LINC00934</td><td>MAN1A2</td><td>MPP4 MPPED1</td><td>NDUFAF2 NDUER6</td><td>NUP43 NUP54</td><td>PEBP1 DELI1</td><td>POTEB2 POTEB3</td><td>PSPN PTCD2</td></th<>	GPR171 GPR180	HIVEP2 HIA-B	INTSE	KIFAP3	LINC00934	MAN1A2	MPP4 MPPED1	NDUFAF2 NDUER6	NUP43 NUP54	PEBP1 DELI1	POTEB2 POTEB3	PSPN PTCD2
BARDER MAX BARDER BARDER BARDER BARDER	GPR20	HLA-DMA	INTS7	KISS1R	LINC01205	MAN1B1	MPPED2	NDUF53	NUPR1	PELI2	POTEC	PTDSS1
DisplayHa-ADBHa-ADBHa-ADBHa-ADBHa-ADBHa-ADBHA-	GPR34	HLA-DRB1	INVS	KITLG	LINC01276	MANE	MRGBP	NDUFV1	NXNL2	PELI3	POTED	PTDSS2
DinkHIXSHIXSHIXSHORAHORAHORACACAPRIDPTTA<DIRAHIXSHORAHORAHORAHORAHORAHORAHORAHORAHORACHILSHIXSHURAHORA <td>GPR37</td> <td>HLA-DRB5</td> <td>IP6K1</td> <td>KLC1</td> <td>LINC01342</td> <td>MAP1LC3B</td> <td>MRGPRF</td> <td>NDUFV3</td> <td>OAS2</td> <td>PENK</td> <td>POTEE</td> <td>PTER</td>	GPR37	HLA-DRB5	IP6K1	KLC1	LINC01342	MAP1LC3B	MRGPRF	NDUFV3	OAS2	PENK	POTEE	PTER
CHARD MMODE MMODE MMODE MADDEL COCAL MEDDEL PORT PMODE CHERD MMODEL COCAL NEXL MUCELS MADREL MUCELS COCAL PERL CULL PERL CULL PERL CULL PERL CULL PERL PER	GPR6	HLCS	IP6K2	KLC2	LINC01359	MAP2K1	MRLN	NECAP2	OCA2	PER3	POTEG	PTF1A
Displic Holzet	GPR68	HMGB2	IPO4	KLF12	LINC01496	MAP2K5	MROH1	NEDD4	OCIAD1	PES1	POTEH	PTGDR
CHP2 NMCCL BOD NMCD MCD ULD DDD PLD PDD	GPR88	HMGB4	IQCA1	KLF6	LINC01549	MAP3K13	MROH2A	NEGR1	ODAM	PEX11A	POU3F3	PTGER3
Display Non-Col Non-Col <t< td=""><td>GPRC5C</td><td>HMGCL</td><td>IQCF1</td><td>KLHDC2</td><td>LINC01590</td><td>MAP3K19</td><td>MROH2B</td><td>NEIL3</td><td>ODC1</td><td>PEX12</td><td>POU4F3</td><td>PTGES</td></t<>	GPRC5C	HMGCL	IQCF1	KLHDC2	LINC01590	MAP3K19	MROH2B	NEIL3	ODC1	PEX12	POU4F3	PTGES
OPF INFOLD DOCL DOCL DOCL DOCL PDR10 PPR12 PPR22 GRAN HMM1 RT KUR2300 MAX4 MM212 RUD OM101 PR0101 PPR11 PPR12 GRAN HMM12 RGA CANA MAX44 GRAN PR011 PPR12 PPR12 GRAN HMM12 RGA RGA MAX44 MAX44 MAX44 GRAN PR011 PPR12 PPR12 GRAN HMM14 RGA RGA MAX44 MAX44 GRAN PR011 PPR12 PPR14 PPR14 PPR14 <	GPSZ GPSM1	HMGCS2	IQCF4	KLHL12	LINC02347	MADAK5	MRDI 15	NEMP2	OLFIVI4	PENS	PPAN-P2RTII	PTGESZ
OPAC MADA MIRE LUC2D MADAS MA	GPT	HMGN1	IOSEC2	KLHL15	LINC02370	MAPK10	MRPL19	NEO1	OLIG2	PGAP3	PPFF1	PTGS2
BAPPAIMPRIDIMPRIDIMPRIDIMPRIDOPENIDOPENIDPERIDPPRIDPPRIDCHAPINCOREINCOREINCOREINCOREINCOREINCOREPPRIDPPRIDCHAPINCOREINCOREINCOREINCOREINCOREINCOREPPRIDPPRIDCHAPINCOREINCOREINCOREINCOREINCOREINCOREPPRIDPPRIDCHAPINCOREINCOREINCOREINCOREINCOREINCOREPPRIDPPRIDCHAPINCOREINCOREINCOREINCOREINCOREINCOREINCOREPPRIDCHAPINCOREINCOREINCOREINCOREINCOREINCOREINCOREPPRIDCHAPINCOREINCOREINCOREINCOREINCOREPPRIDPPRIDPPRIDCHAPINCOREINCOREINCOREINCOREINCOREPPRIDPPRIDPPRIDCHAPINCOREINCOREINCOREINCOREINCOREPPRIDPPRIDPPRIDCHAPINCOREINCOREINCOREINCOREINCOREPPRIDPPRIDPPRIDCHAPINCOREINCOREINCOREINCOREINCOREPPRIDPPRIDPPRIDCHAPINCOREINCOREINCOREINCOREINCOREPPRIDPPRIDPPRIDCHAPINCOREINCOREINCOREINCOREINCOREPPRIDPPRIDPPRIDPPRIDCHAPINCOREINCOREIN	GPX3	HMGN4	IRF1	KLHL20	LINC02444	MAPK4	MRPL22	NEPRO	OPHN1	PGBD1	PPFIBP1	PTPN1
GALZ INNCL	GRAP	HMHB1	IRF8	KLHL21	LINC02583	MAPK9	MRPL23	NEUROD2	OPN1LW	PGBD4	PPIC	PTPRC
OBDE HIMBEG1 MURCH MURCH <t< td=""><td>GRASP</td><td>HMX1</td><td>IRGC</td><td>KLHL24</td><td>LINC02687</td><td>MARCH4</td><td>MRPS16</td><td>NEUROD6</td><td>OPRM1</td><td>PGBD5</td><td>PPIG</td><td>PTPRN</td></t<>	GRASP	HMX1	IRGC	KLHL24	LINC02687	MARCH4	MRPS16	NEUROD6	OPRM1	PGBD5	PPIG	PTPRN
GRAM. IOMAL IDMAL IMMAL IMMAL MARCE Column PROAL PROAL <t< td=""><td>GRB10</td><td>HNRNPCL3</td><td>IRGM</td><td>KLHL28</td><td>LINGO4</td><td>MARCH6</td><td>MRPS18A</td><td>NEXN</td><td>ORM1</td><td>PGLS</td><td>PPIL3</td><td>PTPRN2</td></t<>	GRB10	HNRNPCL3	IRGM	KLHL28	LINGO4	MARCH6	MRPS18A	NEXN	ORM1	PGLS	PPIL3	PTPRN2
CHUZE NUMAL LINIT LINIT MARCE MARCE <th< td=""><td>GREM1</td><td>HOMER1</td><td>ISL2</td><td>KLHL4</td><td>LIPM</td><td>MARCH9</td><td>MRPS18B</td><td>NFAM1</td><td>OSBP2</td><td>PGM2L1</td><td>PPIP5K1</td><td>PTPRZ1</td></th<>	GREM1	HOMER1	ISL2	KLHL4	LIPM	MARCH9	MRPS18B	NFAM1	OSBP2	PGM2L1	PPIP5K1	PTPRZ1
SHORM HOLE MATLE MATLE MARLE	GRID2	HOXA11	ISX	KLHL42	LIPN	MARF1	MRPS25	NFASC	OSBPL6	PGM5	PPL	PUS3
ONDER NOCE NATE LOPE NATE MARE MARE NUME PRIAR PUILSP PPUILSP PPUILSP <th< td=""><td>GRIFIN</td><td>HOXB/</td><td>ISYNA1</td><td>KM12A</td><td>LMANZL</td><td>MARK1</td><td>MRPS33</td><td>NFATC2</td><td>OSBPL7</td><td>PHAX</td><td>PPM1D DDM1E</td><td>PVRIG DM/M/D2A</td></th<>	GRIFIN	HOXB/	ISYNA1	KM12A	LMANZL	MARK1	MRPS33	NFATC2	OSBPL7	PHAX	PPM1D DDM1E	PVRIG DM/M/D2A
ONUMP: HORD MATH4 MASTA MASSA NUMPLE MASTA MASTA <t< td=""><td>GRIN2A GRIN2B</td><td>HOXD30</td><td>ITGA7</td><td>KINT2C</td><td>LIVIERD2</td><td>MASIL</td><td>MSAA3</td><td>NFKB2</td><td>OTOR</td><td>PHEA DHE1/</td><td>PPIVI1F DDM1H</td><td>PWWP3A DW/WD3B</td></t<>	GRIN2A GRIN2B	HOXD30	ITGA7	KINT2C	LIVIERD2	MASIL	MSAA3	NFKB2	OTOR	PHEA DHE1/	PPIVI1F DDM1H	PWWP3A DW/WD3B
DBMAR INDU INDU MADE MADE <t< td=""><td>GRIN3B</td><td>HOXD12</td><td>ITGAS</td><td>KMT5B</td><td>LMO7</td><td>MATNA</td><td>MSH3</td><td>NFKBIA</td><td></td><td>PHIDR2</td><td>PPM1K</td><td>PXK</td></t<>	GRIN3B	HOXD12	ITGAS	KMT5B	LMO7	MATNA	MSH3	NFKBIA		PHIDR2	PPM1K	PXK
ORK7 HPC02 INSTIM INSTIM <td>GRIPAP1</td> <td>HOXD4</td> <td>ITGAL</td> <td>KNOP1</td> <td>LMOD2</td> <td>MB</td> <td>MSI2</td> <td>NGEF</td> <td>OTUD5</td> <td>PHLPP1</td> <td>PPOX</td> <td>PYCARD-AS1</td>	GRIPAP1	HOXD4	ITGAL	KNOP1	LMOD2	MB	MSI2	NGEF	OTUD5	PHLPP1	PPOX	PYCARD-AS1
CHUM HFGA ITGS RFMA LOC20033080 BHZ MTA3 NHUEC3 COULS PPECA PPECA GMM HFR TIRG REACA LCC20131355 MCAA MTA3 NHUEC3 PEACA PPETA PPETA GMM HFR TIRG REACA LCC20131355 MCAA MTA3 NHUEC3 PEACA PPETA PPETA GGA HS3T1 CLC200123581 MCMA MTA3 NHUEC3 PEACA PPETA PPETA GSG1 HS3T1 CLC200127272 MCMA MTMM1 NHUEL3 PEAC PPETA PPETA GST4 HS3T1 LLC200127272 MCMA MTM1 NAUA PAECL3 PEAC PPETA PETA PETA <td>GRK1</td> <td>HOXD9</td> <td>ITGB3</td> <td>KNSTRN</td> <td>LNP1</td> <td>MBD3L1</td> <td>MSL3</td> <td>NGF</td> <td>OVGP1</td> <td>PHOSPHO1</td> <td>PPP1CA</td> <td>PYCR1</td>	GRK1	HOXD9	ITGB3	KNSTRN	LNP1	MBD3L1	MSL3	NGF	OVGP1	PHOSPHO1	PPP1CA	PYCR1
CHAM HPG HPGA LCC00313466 MLAC3 MTA NULC3 P12X PPLA PPTLA P	GRK7	HPCA	ITGB5	KPNA4	LOC100130880	MBL2	MTA1	NHLRC2	OXSR1	PHYHIP	PPP1CB	PYCR3
GMMCPFMCRMDRMD10RDXCPRXCPMACPPFD1120PFD120PFD120GMC12HATTTUTM01KTTLOCUM21335MCM01MTT01NUPALPS774PG30PMACP2PFD120PFD120GMC2HATTLOCUM21355MCM01MCM10MTT01NUPALPS774PG30PFD120PFD120PFD120GS11HS317LOCUM21355MCM01MCM10NUPALNUPALPG784PG30PPD120PFD120GS11HS315LOCUM21355MCM01MTM14NUPALPG32PG61PPD127CTT1GS11HS315LOCUM21355MCM01MTM14NUPALPG32PG61PPD127CTT1GS11HS31AUG13RTT3LOCU272457MCM14MTM18NUPL1PAECL3PG61PPD126HA122GT724HS46MAT0RTT3LOCU272457MCM14MTT2NUR27PG61PPD126HA122GT724HS46MAT0RTT3LOCU272457MCM14MCC2NUR21PG62PR021PMAC14HA122GT724HS46MAT0RTT3LOCU272457MCM14MCC2NUR21PG21PMC14HA22GT724HS46MAT0RTT3LOCU272457MCM14MCC2NUR21PG21PMC14HA23GT724HS46MTT3LOCU272457MCM14MCC2NUR21PG21PMC14HA23GT724HS46MTT3 <td< td=""><td>GRM1</td><td>HPGD</td><td>ITGB6</td><td>KPNA7</td><td>LOC100131496</td><td>MBLAC1</td><td>MTA3</td><td>NHLRC3</td><td>P2RX1</td><td>PI4K2A</td><td>PPP1R12A</td><td>PYDC1</td></td<>	GRM1	HPGD	ITGB6	KPNA7	LOC100131496	MBLAC1	MTA3	NHLRC3	P2RX1	PI4K2A	PPP1R12A	PYDC1
CHEAL HERT HERE KUTA LOCID28856 MCFA2 MTRAT NUAL PEAC PEAC PEIL2 PUIL3 COUCL KASIT TUTMAD LOCID28856 MCGA2 MTGA2 PEAC PEAC PEIL3 PUIL3 COULL KASIT LUXMOD4 HETAL LOCID285654 MCMA MTMAEL NUAAL PEAC PEIL2 PUIL3 PUIL3 CSTA HSSTS AGIC HTTAL LOCID283563 MCMA MTMME NUAAL PEAC PEIL2 REAC HSMCT LOCID393882 MCMA MTMME NUAAL PEAC PEIL2 REAC HSMCT HSMCT HSMCT PEAC HSMCT HSMCT PEIL2 PEIL2 REAC HSMCT HSMCT HSMCT PEAC HSMCT	GRM6	HPR	ITPKC	KRBOX4	LOC100133315	MCAM	MTF1	NIBAN2	P2RX2	PI4KA	PPP1R16B	PYGB
GKUCZ HSIPPI NTTAL DEX PPIRAZ PPIRAZ PPIRAZ PPIRAZ	GRPEL2	HPRT1	ITPRIP	KRI1	LOC100288966	MCF2L2	MTFMT	NID1	P2RX3	PI4KAP2	PPP1R2	PYGL
Chi-L TRUMON KTTISA LOCIDADISSA MAMAL MIPSD NIPALIA P27142 PERA PPERA	GRXCR2	HS1BP3	ITPRIPL1	KRT10	LOC100419583	MCM10	MTG2	NIPA2	P2RX5	PIAS2	PPP1R27	PYHIN1
CBS1. CBS1. CLUMONU MITLA LUCLAMORE/A MIMAIL NUMBAL P2178 PCR P72188 P77188 CSTI MITLA LUCLAMORE/A MITLA LUCLAMORE/A MITLA LUCLAMORE/A MITLA LUCLA CSTI MITLA LUCLAMORE/A MITLA LUCLAMORE/A MITLA LUCLAMORE/A MITLA LUCLAMORE/A MITLA MITLA LUCLAMORE/A MITLA LUCLAMORE/A MITLA MITLA LUCLAMORE/A MITLA LUCLAMORE/A MITLA MITLA MITLA LUCLAMORE/A MITLA	GSC2	HS2ST1	IZUMO3	KRT18	LOC100421561	MCM3	MTHFSD	NIPAL1	P2RY14	PIGA	PPP1R36	PYROXD2
Soft M FIGS M MACH M MUMBER MUMBER<	GSG1	HS3ST1	IZUMO4	KRT19	LOC100506124	MCM3AP	MTMR11	NIPSNAP1	P2RY8	PIGB	PPP1R3B	PYY
Signal High Kiga <	GSN	HS3ST3B1	JADE1	KRIJJA	LOC101927572	MCM6	MIMR14	NKAIN2	P3H2	PIGC	PPP1R7	QIRI1
STOT HSPILI JACNIL RTTR2 LOCI0272497 MCDAN2 MTRNIB MARIL PABECA PEN PEPSCE MABIJE GTTZ-L HSDL2 MMDB KRT73 LOC203316 MOD1 MTREX NK07 PAGCA PEW PPPSCE MABIJE GTTZ-L HSDL2 MMDB KRT83 LOC203312 MON1 MTREX NK07 PAGUA PEW PPPSCE MABIJE GTTZ-LL HSTRA LOC240328 MMD1 MTREX NK07 PAGUA PHA1 PFW BABIJE GTTZ-LL HSTRA LOC240328 MCD1 MK12 PAGUA PHA1 PLC1 ABA334 GTTZ-RD28 HTRL HIK KRTA LOC14 MAB28 MK12 PLA12 PHA14 PAGUA P	GSTMA	H53515 H565T2	JADE2	KRI34 KRT5	LOC101928882	MCMDC2	MTMR8	NKAINJ	PAZG4 PARPC112A	PIGG	PPP2R2B PPP2R2C	R3HCC1L R3HDM2
ISTT IST INGL MAG MTO MTO MTO PARSIM PRE PPER PPER PRE PPER PRE PPER RE312 GTF2AL ISSS MUD2 KRT83 LOC480233 MEIL MUC16 NRF PAGIL PHID PPER AB312 GTF2AL ISSS MUD2 KRT83 LOC440238 MEIL MUC16 NRF PAGIL PHID PPER AB324 GTF2AL ISSSA RKT84 LOC740528 MEIL MUC16 NRF PAGIL PHID PDE AB338 GTF2AS ITTAL ISSA KRA47+11 LOC730568 MEID2 MARA PARA PRAMFF33 AB336 GTF2AS ITTAL LINK KRT87133 LUNA METR MARA PARA PRAMFF33 AB336 GTF2AS ITTAL LINK KRT87133 LUNA METR MARA PARA PRAMFF33 AB336 GTF2AS ITTAL	GST01	HSRP111	JAG1 JAGN1	KRT6C	100102723701	MCOLN2	MTNR1R	NKAPI	PARPC1L2A	PIGN	PPP2R50	RAR11FIP2
CTUCL HODE KTAD LOC49332 MIN1 MTRX KKG7 PASAL PIGW PPSR1 RAB17 CT72AL HSFA MUD8 KTR3 LOC442028 MEL MUC17 NKTR PAGL PIGL3 PIGL3 <td>GSTT2</td> <td>HSD11B1L</td> <td>JAGINI JAK3</td> <td>KRT73</td> <td>100339166</td> <td>MDC1</td> <td>MT01</td> <td>NKD1</td> <td>PABPC4</td> <td>PIGR</td> <td>PPP3CC</td> <td>RAB12</td>	GSTT2	HSD11B1L	JAGINI JAK3	KRT73	100339166	MDC1	MT01	NKD1	PABPC4	PIGR	PPP3CC	RAB12
GT72AL HS75 MUD7 KTR3 LOC44202 ML1 MUC6 KKFF PAG1 PH1D1 PPSR3 RAB23 GT72AL HS7A6 MVY KTR3 LOC246835 MED21 MUC2 NKC1-1 PAG2 PM1 PQ1P1 RAB23 GT72AL HS7A6 MVY KTR3 LOC272654 MED21 MUD NKC1-1 PAG2 PM1 PG1P1 RAB33 GT72AL HS7A5 MTA KTR47151 LOC3 MED21 MUC2 NKC1-1 PAG2 PM19 PM30 PM30F18 RAB34 GT72AL HS7A5 MTA KTR47151 LA MET24 MK74 PM10 PM30F18 RAB34 RAB34 RAB34 RAB34 RAB34 RAB34 RAB34 RAB34 RAB34 RAB44	GTDC1	HSDL2	JMJD6	KRT80	LOC403312	MDN1	MTREX	NKG7	PACSIN3	PIGW	PPP6R1	RAB17
GTF2AL HSPA4 JMIDB KITAS LOC646283 MED12 MUC17 KITR PAGE PMIA PPY RAB24 GTF2AL HSPA4P1 JCC72SS54 MED23 MUD NKC6-1 PAG. PIA1 PICL RAB3A GTF2AG HTM1 JPCL KRTAP14 LOC3 MED23 MAL NKC6-1 PAG. PIA1 PIA1 PIA1 RAB3A GTF2AG HTMS KRTAP143 LOX MED23 MAL NKK6-1 PIA1	GTF2A1	HSF5	JMJD7	KRT81	LOC442028	ME1	MUC16	NKRF	PADI1	PIH1D1	PPP6R3	RAB19
GT2AL HSPA6 MV KTAPL UCC23658 MED23 MVL2 NKC1-1 PAG28 PMA2 PGP21 RAB3A GT2FAL HSPA1 JHX KTAP14.1 LOX26658 MED23 MVL NKL PAL28 PRIACE3 PRAME54 RAB33A GT2FAL HSTA LOX1 MED23 MVL NLK PAL28 PRAME54 RAB33A GT2FAL HSTA LOX1 META MUL PAL28 PRAME54 PRAME54 RAB34 GT2FAL HSTA MIXA MTA MUL PAL2 PAL4 PTAME54 RAB34 GT2FAL HSTA META META META META META PRAME54 RAG3 RAG3 RAG3 RAG4 RAF4	GTF2A1L	HSPA4	JMJD8	KRT83	LOC646938	MED19	MUC17	NKTR	PAGE1	PIM1	PPY	RAB23
CH72H1 HSPLAP1 JPH4 RETAP1-1 LOC7.066 MED23 MUD NNS6-1 PAX1 PIN12 PIAX3 PIAX4 PIAX3 PIAX4 PIAX3 PIAX4 PIAX3 PIAX4 PIAX3 PIAX4	GTF2A2	HSPA6	JMY	KRT85	LOC728554	MED21	MUC2	NKX1-1	PAGE2B	PIM2	PQBP1	RAB24
CH72H2DE HTN1 JPT2 KRTAP1-4 LOX MED23 MXL NLK PAAL PPAL7 PAALF14 RAB334 CT72HD2D HTRSA-KS1 LUN KRTAP132 LUA MED23 MKRAP3 NLIP1 PAALS PPA17 PAALF33 RAB344 CT72HD2 HTRSA-KS1 LUN KRTAP135 LUA MED21 MIT14 MIT14 PAALS PPA17 PAALF33 RAB354 CUCADB KKTAP157 LINIS1 MED11 MT12 NUN17 PAALF31 PAALF34 RAB354 CUCADB KKTAP157 LINIS1 MED11 MT12 NUN17 PAAF51 PRIM2 RAG374 LIFAT LIFAT KKTAP13 LIF11 MT12 NUN18 NUN18 PAALF34 PRAD42 PRAD42 PRAD43 RAG324 LIFAT KKTAP13 LIF12 MT128 NU012 NU11 PAAF54 PRAD43 RAG34 RAG34 LIFAT KKTAP13 LIF12 MT128 MT128	GTF2H1	HSPBAP1	JPH4	KRTAP1-1	LOC730668	MED23	MVD	NKX6-1	PAK1	PIN1	PQLC1	RAB33A
GTF2AC HTR4 JRK KKTAP103 LOX1 MED2 MXRAS NLIP11 PAL2 PIR42 PIRAS PRABIA	GTF2H5	HTN1	JPT2	KRTAP1-4	LOX	MED28	MX1	NLK	PAK3	PIP4K2B	PRAMEF14	RAB33B
CHT342 HTRS.A.S.1 JUN RRAF33 DEA ME2V MTCBPAP NUM2 PDAU	GTF2IRD2B	HTR4	JRK	KRTAP10-3	LOXL1	MED29	MXRA5	NLRP11	PALB2	PIP4P1	PRAMEF18	RAB34
Lipszy HIRAS JUNU MILPL3 LIPA MILPL3 MILPL3 MILPL3 MIRLS PARKA PIRCL REABUA CIGUAZB LICAMA KARS KETAP2.3 LBES1 MIT12 NMRA12 PARS2 PRB PRDM12 RASEC CYPE LICAMA KARS KETAP2.3 LBT2 MEM01 MY12 NMRA11 PARS2 PRB PRDM2 RACCAP1 H1FNT IDH3G KAT6B KETAP3.3 LBT1 MET1 MY12 NMRA1 PARS2 PRB PRDM2 RACCAP1 H1FNT IDH3G KAT6B KETAP5.3 LBF11 MET12 MY12 NMRA1 PARA2 PRDM3 RAS211 HAAD IFRA21 KCAAB KETAP5-3 LBF2 MF241 MY12 NMR1 PARA2 PREV2 RA2211 HAAD2 IFRA1 KCATA KETAP5-3 LBF2 MF241 MY10 NU12 PARA4 PLAC51 PRA23 RA24 PLA23 RA24	GTF3C3	HTR5A-AS1	JUN	KRTAP13-2	LPA	MEF2C	MYCBPAP	NLRP3	PAN3	PISD	PRAMEF33	RAB3GAP2
CUCADE FUN_L DUM DUM DUM DUM PROPS1 FUN_L PROM15 DUR CYPTE ICAMA KASE KATRA KERAP20-3 LBT2 MEMOI MYUT MYUT PARSE PROM15 RAC2 H1FO ICIE2 KATRA KERAP20-3 LBT3 MEMI MYUF NNARL PARSE PREDM PROM15 RAC23 H1FO ICIE2 KATRA KERAP20-3 LBT3 MEMI MYUF NOLL PARSE PREDM RAC23 H1ADH IFNA1 KATAP3-3 LBP10 METTLB MYUF NOLB PARDA PLAAS PREP RAC11 HADH IFNA1 KCIAP3 LBP10 METTLB MYOE NOSL PARP11 PALAB PREP RAC11 HADL IFTNA1 KCIAP3 LBP2 MFA1 MYOE NOSL PARP1 PALAS PRALA RALA HADL IFTA KCIAP3 KRTAP3-4 LBP41	GTPBP2 CTDDD2	HIRA3	JUND	KRIAP13-3	LRFN4	MEFV	MYH1 MYH12	NIVIE4	PANK2	PITHD1	PRCP	RAB40A
CYPE ICAM4 KAGS KRTAP2-3 LBT2 MEM1 MYLF NMRAL1 PAGS2 PRIM PRDM2 RACCA H1FD ICT2 KATB KRTAP4-11 IRF1 MEPL MYLF NOD1 PAGR5 PRDM2 RACCAP1 H1FM IDH3G KATB KRTAP4-11 RP1 MEPL MYLF NOD1 PAGR5 PRDM3 RAD211 HARH IFNA21 KCNA1 KRTAP5-3 IRP11 METTL3 MYO12 NO14 PARN PLAAS PREV2 RAT3 HAAD IFNA21 KCNA1 KRTAP5-9 IRP2 MFP1 MYO5 NOTCH2 PARP1 PLAAS PREV2 RALP HAAD2 IFNN KCNA8 KRTAP5-9 IRP2 MFP1 MYO21 NOXA1 PAR1 PLAAS PREVA1 RACB HAD2 IFN1 KCNA1 KRTAP5-9 IRP3 MYO21 NOXA1 PAR1 PLAAS RALP1 HAD2 KCNH4 KRTAP5-7 <td>GUCA2B</td> <td></td> <td>JOP</td> <td>KRTAP10-1</td> <td>LRG1</td> <td>MEIS1</td> <td>MVH2</td> <td>NMNAT2</td> <td>PAINK4 DADSS1</td> <td>PITPINA DITY1</td> <td>PRDIVI10</td> <td>RAB42 RAB6C</td>	GUCA2B		JOP	KRTAP10-1	LRG1	MEIS1	MVH2	NMNAT2	PAINK4 DADSS1	PITPINA DITY1	PRDIVI10	RAB42 RAB6C
HIPO ICE2 KATGA KRTAP2.03 KIT3 MEL MYLK NNAT PADRS PRP3 PRP042 RAC2AP1 HIPNT INHAG KATAP LRT14 MEPE MVIF NODIL PADRS PLACGS PRDM9 RAD211 HADH IFNAR1 KATAP5 LRP10 METTL3 MYOIG NOL4 PARP4 PLACGS PRRV2 RALT HADH IFNAR1 KCMA7 KRTAP5-8 LRP18 METTL3 MYOGC NOTCL PARP14 PLACGS PRRV2 RALT HADD_ASI IFNAR KCMA3 KRTAP5-9 LRP18 MYFF MYOOI NOX1 PARP4 PLAC3 PRRV2 RAL HADLASI IFT74 KCMG3 KRTAP5-9 LRR15 MYOD NOX1 PAR3 PLAC3 PRRAL RANL HAIM IFT74 KCMG3 KRTAP5-1 LRR20 MFSD1A MYOO NOX1 PAR3 PLCD4 PRKAL3 RANL21 HAIMA	GYPE	ICAM4	KARS	KRTAP2-3	LRIT2	MEMO1	MYL7	NMRAL1	PAPSS2	PKIB	PRDM12 PRDM15	RAC3
H1H71 IDH36 KAT68 KRTAP-41 MP12 MPER MV1PF NOL1 PAQR7 PLAC27 PRDM RAD518 HADH IFNA21 KCNA1 KRTAP-53 IPP11 METTL38 MY01C NOL4 PARN PLAA PRDS PRAD518 HADA IFNA21 KCNA1 KRTAP-53 IPP11 METTL3 MY01C NO12 PARN PLAA PRDS RAD518 HADA IFNA KCNA18 KRTAP-59 IRP1 MY01C NOX1 PARH PLAC31 PRDA RAL9 HAD2 IFNE KCN14 KRTAP-91 IRP20 MY01 NOX1 PARH PLAC31 RAL9 RAL9 HADS4 IFT80 KCN14 KRTAP-91 LRRC17 MFD31A MY021 NOX1 PAR3 PLC14 RRAA2 RAL9 RAL9 <td>H1F0</td> <td>ICE2</td> <td>KAT6A</td> <td>KRTAP20-3</td> <td>LRIT3</td> <td>MEN1</td> <td>MYLK</td> <td>NNAT</td> <td>PAQR6</td> <td>PKP3</td> <td>PRDM2</td> <td>RACGAP1</td>	H1F0	ICE2	KAT6A	KRTAP20-3	LRIT3	MEN1	MYLK	NNAT	PAQR6	PKP3	PRDM2	RACGAP1
IPAACHIRNA1KAZ0NKRTAP-43JRP10METTL3BMYOLENOLAPARADAPLAC3BPRDM9RAGET1GHADHIFNARLKCMA7KRTAP-53IRP11BMETTL3MYOCNOLBPARP11PLAC3BPRDP2RAGET3GHAND2-AS1IFNARLKCMA7KRTAP-54IRP1BMETTL3MYOGNOTCH2PARP11PLAC3BPRDP2RALAHAND2-AS1IFNARLKCM33KRTAP-75IRP2BPMFPLMYOGNOC1PARP4PLAC3PRBL2RALAHAND4KITAP-75IRP3DPRFPLMYODNOC1PARP4PLAC3PRLAC1RALAHAND4KITAP-74IRR15MFPLMYODNOC3PARA1PLAC3PRLAC1RALAHABMIFT3KCM53KRTAP-94IRR15MFSD1AMYODNOC31PARA3PLCD4PRLAC1RAND2HBBZIGF1RKCM51LARC3IRR20MFSD1AMYPONPFFR1PARA3PLCD4PRLAC2RAND2HG2C1IGF1RKCM10LARC3IRR20MGAT4MT1NPIPA1PLCD4PRLAC1RASGET1AHG2C3IGF2ASKCM10LARC3IRR20MGAT4MT1NPIPA3PCDH11YPLC1PRCACRASGET1AHG2C4IGF1RKCM13LARP3LIRR23MGAT4MT21NPIPA3PCDH13PLC14RASGET1AHG2C4IGF1RKCM13LARP3LIRR23MGAT4MT21NPIPA3PCDH14	H1FNT	IDH3G	KAT6B	KRTAP4-11	LRP1	MEPE	MYLPF	NOD1	PAQR7	PLA2G2F	PRDM6	RAD21L1
HAALIFNA21KCNA1KRTAP5-3LAP11MTTL2BMY01CNOLEPARNPLAAPREPPREPRAETIGHAMD_AS1IKNATKRTAP5-9LAP2MAFTL3MY05CNO7L2PABP14PLACBLPRG2RALAHAMD_AS1IKNUKKTAP5-91LBP2MFFMY06NOXL1PABP4PLACBLPRG2RALAHAP2IKR0KRTAP5-91LBP2MFFMY06NOXL1PABP4PLACBLPRG2RALAHADS4IFT80KCNE1KRTAP5-91LBP4MFS013MY07NOXL1PABV5PLAUPRICALSRALYHBP1IFT80KCNH4KRTAP5-71LBRC17MFS013AMY022NOXL1PATPLC18PRKAA2RANHBP1IFT80KCNH4LARC15LBRC30MFS013AMY022NDK01PASPLC14PRKA2RANEP3HBP2IFT80KCNH4LAG3LBRC30MGAT4BMT1NPPA3PCD111PLC31PRKA2RASEF14HOAC2IGF18KCN13LAMP5LBRC34MGAT4BNA11NPPA3PCD111PLC51PRC16PARJRASEF14HOAC3IGS10KCN13LAMP5LBRC34MIA1MAP1NPPA3PCD112PLC61PKA3RASEF14HOAC3IGS10KCN13LAMP5LBRC34MIA1MA16NP14PCD111PLC3RASEF14HOAC3IGS10KCN13LAMP5LBRC34MIA1NA16	H2AFX	IFNA1	KAZN	KRTAP4-3	LRP10	METTL11B	MYO1B	NOL4L	PARD6A	PLA2G3	PRDM9	RAD51B
HALDINNARIKCNA7KRTAPS-8LBP18MFTLSMYOSCNOPC12PARP14PLAC8PREX2MA2HADD2-ASIINNKKCNA83KRTAPS-9LBP28MFAMYOD1NOX1PABP4PLAC9PRI-1RALBP1HADLA4KTAPS-12LBP28PMFFMYOD1NOX1PABP4PLAC9PRI-1RALBP1HADLA4KTAPS-9LBR2MFFMYOD1NOX1PABV5PLAUPRIAC4RALBP1HADLA4KTAPS-9LBRC15MFSD13MYO21NOX11PASD1PLAURPRKAA1RAMACHBMIF780KCN16LACRTLBRC30MFSD14MYO21NOX11PASD1PLAURPRKA31RAMACHBF2IGF2-ASKCN171LACRTLBRC30MFSD14MYPNNEPF51PAX3PLC14PRKA52RAMBP1HCC27IGF2-ASKCN181LACR42LBRC30MGAM2MYT1NPPA14PLASPLC14PRKC1RASGEF14HDAC4IGG153KCN13LAMB3LBRC40MGAT4MZ72NPA54PCDH114PLAC1RASGEF14HDAC4IGG154KCN13LAMB3LBRC45MIB1NAA11NPPA5PCDH12PLEKH4PKK10RASGEF14HDAC4IGG154KCN14LARC45MIB1NAA11NPA54PCDH14PLC54PKK11RASGEF14HDAC4IGG154KCN14LBRC45MIC0514NAA60NPG14PCDH14PLC44PKK11RA	HADH	IFNA21	KCNA1	KRTAP5-3	LRP11	METTL2B	MYO1C	NOL8	PARN	PLAA	PREP	RAET1G
HAND_SASI IFNV1 KKNAB KRTAPS-9 LP2 MFAP1 MY06 NOTL2 PARP4 PLACB PFR1 PRA20 PLA02 IPN1 RALP HAPLM4 IFN02 KKN18 KRTAP-71 LP2PP MFP MY0F NOX1 PARP4 PLACB PLAU PRICKLE3 RALP HAUSA IFT30 KKN18 KKR14 LRRC15 MFS010 MY021 NOX11 PARD4 PLAU PRIKA12 RAMAC HBP1 IFT80 KKN14 LRRC15 MFS01A MY021 NOX11 PAR1 PLCB4 PRIKA2 RAMAC HBP1 IFT88 KKN19 LAG3 LRRC30 MFS02A MY070 NPTP31 PAX3 PLCB4 PRKA2 RAMP17 HC227 IGF1A KKN10 LAM32 LRRC38 MGA18 NZ1 NPTP31 PDCL1 PKK1 RASQEF14 HC32 IGF13 KKN11 LARC3 MIA1 NABP1 NPDA3 POL11 PLK141	HAL	IFNAR1	KCNA7	KRTAP5-8	LRP1B	METTL5	MYO5C	NOP2	PARP11	PLAC8	PREX2	RAI2
HAO2 FINU1 KCNB1 KRTAP-11 LRP2DP MFF MYOD1 NOX1 PARVG PLAU PICLE PIAL	HAND2-AS1	IFNK	KCNAB3	KRTAP5-9	LRP2	MFAP1	MYO6	NOTCH2	PARP14	PLAC8L1	PRG2	RALA
HARLM IFR2 KCNE1 KRTAP3-3 LIRP4 MTN2 MYOF NOX3 PARVG PLAU PRIKAL RALY HBM IFT34 KCNG3 KRTAP3-4 LRRC15 MTSD10 NYO21 NOXA1 PAIU PLC14 PRIKAA1 RAMAC HBP1 IFT88 KCNH5 LACT LRRC15 MTSD14 NYPN NPEPF5 PAX3 PLC14 PRIKAA1 RAMP17 HE2 IGF18 KCNH71 LAG3 LRRC36 MTSD14 NYPOP NPFFF1 PAX4 PLC151 PRIKA1 RASA12 HCG77 IGF13 KCNH14 LAM2 LRRC39 MGAT48 MZT1 NPFPA1 PCDH11 PLKA1 PRK51 RASGF11 HDAC4 IGGN510 KCN13 LAMP5 LRRC43 MIA N48P1 NPFA3 PCDH11 PLKH61 PRKA1 RASGF11 HDAC5 IGG14 KKR18 LAMP4 LRRC43 MIA1 NPEP4 PCDH12 PLKL14 RASGF13 KA	HAO2	IFNW1	KCNB1	KRTAP7-1	LRP2BP	MFF	MYOD1	NOX1	PARP4	PLAC9	PRH1	RALBP1
HADA IP1/4 KCNG3 KR1AP3-4 LRRC15 MTSD1U MTSD1 PADA1 PADA1 RAMA HBM IFT80 KCNH4 KRTP3-7 LRRC17 MTSD13A MYO21 NOXA1 PATA1 PATA1 RAMA HBP1 IFT80 KCNH4 KTTP3-7 LRRC16 MTSD14C MYFN PPEPS PAX3 PLCD4 PRKA41 RAMB73 HCG27 IGF1R KCNIP1 LAGE3 LRRC30 MGTA1 MYT1 NPHP3-ACD11 PAX8 PLCL1 PRKAC RAMB73 HCCT1 IGF2A KCNI13 LAM2 LRRC30 MGAT4 MYT1 NPHP3-ACD11 PAX8 PLCL1 PRKAC RASGF1 HDAC4 IGRC40 MGMT MZT2 NPIPA3 PCDH11Y PLD2 PRKAC RASGF1 HDAC4 IGRC40 MGG10-MAA0 NPT2 PCDH8 PLESHM1 NAA6 NPT3 RASGF1 HDAC4 IGRC43 MIA LRRC48 MIC010-NIA1 NAA6	HAPLN4	IFRD2	KCNE1	KRTAP9-3	LRP4	MFN2	MYOF	NOX3	PARVG	PLAU	PRICKLE3	RALY
Instr Instr KM (MP = // LARL // MIGUZ MIGUZ PADJ PADJJ PADJ PADJJ PADJ PADJ<	HAUS4	IFT74	KCNG3	KRTAP9-4	LRRC15	MFSD10	MYOZ1	NOXA1	PASD1	PLAUR	PRKAA1	RAMAC
HBZ IGF1R NUMBED INTERIOR INTERIOR <thinterior< th=""> <thinterio< td=""><td>HRP1</td><td>IFT88</td><td>KCNH5</td><td>LACRT</td><td>LRRC30</td><td>MESD100</td><td>MYPN</td><td>NPEPPS</td><td>PAX3</td><td>PI CD/</td><td>PRKAR1</td><td>RANRP17</td></thinterio<></thinterior<>	HRP1	IFT88	KCNH5	LACRT	LRRC30	MESD100	MYPN	NPEPPS	PAX3	PI CD/	PRKAR1	RANRP17
HCG27 HCM101 HCM21 PRK12 PRK12 RASD1 HCKTR1 IGF2AS KCNI93 LAGE3 LRRC39 MGAT48 MZT1 NPIPA1 PCCM11V PLC20 PRK02 RASD1 HDAC2 IGF13 KCN131 LAMP5 LRRC43 MIA N4821 NPIPA3 PCCH12 PLEXHAP PRK01 RASGF12 HDAC5 IGS710 KCN134 LARP1 LRRC45 MIB1 NAA11 NPIPA5 PCCH12 PLEXHAP PRK01 RASGF12 HDAC5 IGS710 KCN13 LARP6 LRRC75 MIC0513 NAA80 NPT2 PCDH81 PLEXHAP1 PRK02 RASGF12 HDH05 IKBK8 KCN13 LARP6 LRRC75 MIC0513 NAA20 NPTS PCDH81 PLEXHAP1 PRK07 RASGF12 HH105 KBK8 KCN03 LC22 LRR193 <td>HBZ</td> <td>IGF1R</td> <td>KCNIP1</td> <td>LAG3</td> <td>LRRC36</td> <td>MFSD2A</td> <td>MYPOP</td> <td>NPEFR1</td> <td>PAX4</td> <td>PLCG1</td> <td>PRKAG?</td> <td>RANBP3</td>	HBZ	IGF1R	KCNIP1	LAG3	LRRC36	MFSD2A	MYPOP	NPEFR1	PAX4	PLCG1	PRKAG?	RANBP3
HCRTR1 IGF8PL1 KCNIP4 LAMA2 LBRC30 MGAT4B MZ11 NIPA1 PCD111X PLCXD1 PMKCZ RASD1 HDAC4 IGL0N5 KCNI13 LAMP5 LBRC30 MGAT4B NIPA3 PCD111X PLCXD1 PMKCZ RASD1 HDAC4 IGL0N5 KCN113 LAMP5 LBRC33 MIA N4EP1 NIPA3 PCD112 PLEKH41 PMKC2 RASD1 HDAC4 IGL0N5 KCN13 LAMP5 LBRC35 MIC510-MBL1 NA16 NPFA3 PCDH8 PLEKH41 PMKC7 RASD1 HDA5 IKBK6 KCNK13 LARP4 LBRC38 MIC511-ML1 NA16 NPFA3 PCDH8 PLES PROR1 RASD118 HEATR58 IKZF5 KCN03 LC2C 2 LBRR04 MICA1 NAAD2 NPSR PCDH8 PLP1 PROK7 RASSF6 HEATR58 IKZF5 KCN03 LC2C 2 LBRR04 MICA1 NAACA NRAS PCGF3 PLP14 PROSE1	HCG27	IGF2-AS	KCNIP3	LAGE3	LRRC38	MGAM2	MYT1	NPHP3-ACAD11	PAX8	PLCL1	PRKCH	RASAL2
HDAC2 IGF13 KCNU10 LAMB3 LRRC40 MGMT MZT28 NPIPA3 PCDH112 PLD2 PRACC RASCEF1A HDAC4 IGLNIS KCN113 LAMP5 LRRC43 MIA N4BP1 NPIPA5 PCDH12 PLEXHA4 PRKC1 RASCEF1A HDAC5 IGS110 KCN141 LRRC45 MIE1 NA11 NPIPA3 PCDH8 PLEKHA1 PRKC1 RASCEF1A HDD65 IKBK8 KCNX13 LARP6 LRRC57B MICOS10-NBL1 NAA80 NPTX2 PCDH814 PLK5 PROR1 RASCRF2 HDD105 IKBK8 KCNX3 LAX1 LRRC36 MIEN1 NAAA0 NR01 PCGF1 PLP2 PROR2 RASSF6 HEATRSA IKZF1 KCN01 LBP LRRRP1 MIER3 NACA NR02 PCGF1 PLP4 PROR2 RASSF5 HEATRSA IKZP1 LCN1 LRRC43 MIA1 NACA NRA23 PCGF1 PLP4 PROR3 RAVER2	HCRTR1	IGFBPL1	KCNIP4	LAMA2	LRRC39	MGAT4B	MZT1	NPIPA1	PCDH11X	PLCXD1	PRKCZ	RASD1
HDAC4 IGUN5 KCN13 LAMC5 LIRC43 MIA N4P NPIPAS PCDH2 PLEKHA1 PRK51 RASGEF18 HDAC5 IGSF10 KCN114 LARP1 LIRC45 MIB1 NAA11 NPIPB3 PCDH8 PLEKHA1 PRMT3 RASGEF1 HDGF HH KCNK13 LARP4 LIRC458 MICOS10-NBL1 NAA60 NPTM2 PCDH81 PLEKHA1 PRMT3 RASGEF2 HDHD5 IKBK6 KCNK13 LARP4 LIRC758 MICOS13 NAA0 NPTM2 PCDH81 PLEKHA1 PROK12 RASGEF3 HEATR58 IKZF5 KCN01 LEP LARR14 MIEN1 NACA NR081 PCGF3 PLP12 PROK12 RASGF7 HEATR58 IKZF5 KCN03 LCZ12 LRR04 MIIP NADK NR051 PLC672 PLP44 PROP1 RASGF1 HEATR58 IKZF5 KCN01 LCN1 LRR04 MIIN1 NAT63 NRACM PLCF13 NRACM <td>HDAC2</td> <td>IGFL3</td> <td>KCNJ10</td> <td>LAMB3</td> <td>LRRC40</td> <td>MGMT</td> <td>MZT2B</td> <td>NPIPA3</td> <td>PCDH11Y</td> <td>PLD2</td> <td>PRKDC</td> <td>RASGEF1A</td>	HDAC2	IGFL3	KCNJ10	LAMB3	LRRC40	MGMT	MZT2B	NPIPA3	PCDH11Y	PLD2	PRKDC	RASGEF1A
HDAGS IGS10 KCN14 LARP1 LRRC45 MIB1 NA16 NPIB3 PCDHB PLEKHG1 PRNT3 RASGEF1C HDGF IHH KCNN13 LARP6 LRRC4B MICOS10-NBL1 NAA16 NPM1 PCDHB14 PLC4 PRNT3 RASGEF1 HDHD5 IKBK6 KCNN3 LAX1 LRRC4B MIEN1 NAA80 NPTX2 PCDHB14 PLZ PROKR1 RASGEF12 HEATRSA KKZ71 KCN03 LEP LRRC4B MIEN1 NAA20 NPTSR PCOF1 PLPS1 PROKR1 RASSF5 HEATRSA IKZ71 KCN03 LEP2 LRRIQ4 MIIP NACA NR123 PCGF3 PLPS PROSER1 RASSF6 HEG1 IL174 KCT012 LCN1 LRRN2 MINP1 NACA NR123 PCGF6 PLPNF4 PRF4 RAS HEKC1 IL136 KCT012 LCN1 LRRN4 MIR1-1HG-AS1 NANOS3 NREP PCGF6 PLPN4 <td< td=""><td>HDAC4</td><td>IGLON5</td><td>KCNJ13</td><td>LAMP5</td><td>LRRC43</td><td>MIA</td><td>N4BP1</td><td>NPIPA5</td><td>PCDH12</td><td>PLEKHA4</td><td>PRKG1</td><td>RASGEF1B</td></td<>	HDAC4	IGLON5	KCNJ13	LAMP5	LRRC43	MIA	N4BP1	NPIPA5	PCDH12	PLEKHA4	PRKG1	RASGEF1B
HD6F IHH KCN13 LARP4 IRRC75B MICOS10-NBL1 NA16 NPM1 PCDHB1 PLEHIM1 PNT72 PRCDH2 PRCMP1 PRCMP1 RASGRF1 HDHD5 IK8KG KCN13 LAX1 LRRC75B MICOS10 NAA80 NPTX2 PCDHB14 PLX5 PRCMP1 RASGRF1 HEATRSB IKZF1 KCN01 LBP LRR1P1 MIER3 NACA NR0B1 PCGF1 PLP14 PROKR1 RASSF5 HEATRSB IKZF5 KCN03 LC2C RR1Q3 MIGA1 NACAD NR12 PCGF2 PLP44 PROF1 RASSF5 HELT IL13RA KCTD17 LOAH LRRN2 MINA1 NA1 NRARP PCGF6 PLPPR4 PRF3 RASK HERC1 IL13RA KCTD17 LDAH LRRN4 MIN12 NA13 NREP PCSK5 PLX18 RBAK HERC3 IL17B KCTD6 DLR LRRTM1 MIS12 NAND3 NREP PCSK5 <td>HDAC5</td> <td>IGSF10</td> <td>KCNJ14</td> <td>LARP1</td> <td>LRRC45</td> <td>MIB1</td> <td>NAA11</td> <td>NPIPB3</td> <td>PCDH8</td> <td>PLEKHG1</td> <td>PRMT3</td> <td>RASGEF1C</td>	HDAC5	IGSF10	KCNJ14	LARP1	LRRC45	MIB1	NAA11	NPIPB3	PCDH8	PLEKHG1	PRMT3	RASGEF1C
HUHUZ IKBKG KKI13 LAR LRRCSA MICOS13 NAAB0 NPTX2 PCDH614 PLK5 PRODH2 RASGRF2 HDHDS IKBKG KCNK3 LAX1 LRRCSA MIEN1 NAALAD2 NPTX2 PCGF1 PLP1 PROKR2 RASSF5 HEATRSA IKZF1 KCNQ3 LCZC LRRQ3 MIGA1 NACAD NR1H2 PCGF1 PLP4 PROP1 RASSF5 HEG1 IL10R8 KCN03 LCR12 LRR1Q4 MIIP NAACAD NR1H2 PCGF3 PLP5 PROSEN1 RASSF7 HEK1 IL11AR KCTD12 LCN15 LRRN4 MINAR1 NAF1 NRAPP PCGF6 PLPR4 PRP3 RASCF2 HEK2 IL13F KCTD10 LDB1 LRRN4 MIR1-1HG-AS1 NAND3 NREP PCSK5 PLXNB3 PRR14 RBBF6 HERC3 IL17F KOM18 NAP113 NRIP1 PCSK5 PLXNB3 PRR14 RBM24 HERC6<	HDGF	IHH	KCNK13	LARP4	LRRC4B	MICOS10-NBL1	NAA16	NPM1	PCDHB1	PLEKHM1	PRMT9	RASGRF1
INDUD INDUD <th< td=""><td>HDHD2</td><td>IKBKB</td><td>KCNK18</td><td>LARP6</td><td>LRRC75B</td><td>MICOS13</td><td>NAA80</td><td>NPTX2</td><td>PCDHB14</td><td>PLK5</td><td>PRODH2</td><td>KASGRF2</td></th<>	HDHD2	IKBKB	KCNK18	LARP6	LRRC75B	MICOS13	NAA80	NPTX2	PCDHB14	PLK5	PRODH2	KASGRF2
INDUM INDUM LUT LUT PLOATES MACA NNUBL PLOFI PLUP1 PLURK2 RASSF5 HEATRSB KCN03 LCE2C LRRIQ3 MIGA1 NACA NNUBL PLOF1 PLOF1 PASSF5 HEG1 IL10R8 KCN01 LCN1 LRRIQ4 MIIP NAOK NR2E3 PCGF3 PLPP4 PROP1 RASSF5 HEK1 IL13RA KCTD12 LCN15 LRRV2 MINAR1 NAF1 NRARP PCGF3 PLP4 PRP53 RAVER2 HEKC1 IL13RA KCTD12 LDA1 LRRV1 MIN21 NAPP NRCAM PCMT1 PLSCR5 PRP14 RBAS HERC2 IL17F KDM1B LDRAD3 LRWD1 MITT NAPPLD NRP2 PCTP PMACH PRR14 RBR14 RBM34 HERC3 IL17F KDM4B LEPG0T11 MRAP1 NAPFD NRROS PCY21 PMACA PRR31 RBM24 HES7 I		IKBKG	KCNK3	LAX1	LKKC8A	MIEN1	NAALADZ	NPY5R	PCDHB5	PLP2	PROKR1	KASL11B
Inclus Inclus<	HEATRED		KCNQ1	LEP	LKKFIP1	WIEK3		NR1H2	PCGE2	PLPP1	PRORIZ	RASSES
Interna Interna <t< td=""><td>HEG1</td><td>ILLIORR</td><td>KCNV1</td><td>LCL2C</td><td>LRRIO4</td><td>MIP</td><td>NADK</td><td>NR2F3</td><td>PCGF3</td><td>PLPP5</td><td>PROSER1</td><td>RASSE7</td></t<>	HEG1	ILLIORR	KCNV1	LCL2C	LRRIO4	MIP	NADK	NR2F3	PCGF3	PLPP5	PROSER1	RASSE7
HEMK1 ILIBAC INNER INNER <t< td=""><td>HELT</td><td>IL11RA</td><td>KCTD12</td><td>LCN15</td><td>LRRN2</td><td>MINAR1</td><td>NAF1</td><td>NRARP</td><td>PCGF6</td><td>PLPPR4</td><td>PRPF3</td><td>RAVFR2</td></t<>	HELT	IL11RA	KCTD12	LCN15	LRRN2	MINAR1	NAF1	NRARP	PCGF6	PLPPR4	PRPF3	RAVFR2
HERC1 ILIG KCTD19 LDB1 LRN4 MIR1-1HG-AS1 NAND33 NREP PCKS5 PLXNB3 PRR14 BBP6 HERC2P2 IL17B KCTD6 LDLR LRRTM1 MIS12 NAP113 NRIP1 PCKS5 PLXNB3 PRR14 RBP6 HERC3 IL17F KDT16 LDLR LRW11 MIS12 NAP116 NRP2 PCTP PMAIP1 PRR26 RBK5 HERC3 IL17F KDM18 LENG1 LSMEM1 MITF NAPEPLD NRR05 PCVX1 PMCH PRR7 RBM14-RBM4 HES7 IL1F0 KDM28 LENG9 LSR MKRN2 NAPET NRSN1 PCVT2 PMCA PRR31 RBM22 HEY2 IL32 KDM8 LFM11 LV6H MLST8 NAT9 NRTN PDC PMPCA PRR31 RBM32 HFM1 IL36 KEAP1 LGALS LV75-CD302 MLVCD NAXD NSG1 PDE12 PNMA8 PRS21	HEMK1	IL13RA2	KCTD17	LDAH	LRRN3	MINDY2	NAIP	NRCAM	PCMTD1	PLSCR5	PRPF4	RBAK
HERC2P2 IL17B KCTD6 LDLR LRRTM1 MIS12 NAP1L3 NRIP1 PCSK6 PM20D2 PR19 RBS HERC3 IL17F KDM1B LDLRAD3 LRWD1 MITD1 NAP1L5 NRP2 PCTP PMAIP1 PRR26 RBK5 HERC6 IL1A KDM2A LENG1 LSMEM1 MITF NAPELD NRR05 PCV01 PMCH PRR7 RBM14-RBM4 HES7 IL1F10 KDM2B LENG9 LSR MKRN2 NAPRT NRSN1 PCVT2 PMCAP PRR31 RBM22 HEY2 IL32 KDM8 LEFM11 LY6H MLST8 NAT9 NRTN PDC PMPCA PRR31 RBM22 HEY2 IL38 KHDC3L LGALS4 LY75-C302 MLXIP NAT01 NSF PDC13 PNMA8A PRS541 RBM39 HG61 IL36RN KHDC3L LGALS8 LY96 MMAA NBL1 NSG2 PDE3A PNP PRS554 RBM	HERC1	IL16	KCTD19	LDB1	LRRN4	MIR1-1HG-AS1	NANOS3	NREP	PCSK5	PLXNB3	PRR14	RBBP6
HERC3IL17FKDM1BLDLRAD3LRWD1MITD1NAP1L6NRP2PCTPPMAIP1PRR26RBK5HERC6ILLAKDM2ALENG1LSMEM1MITFNAPEPLDNRROSPCVT1BPMCHPRR7RBM14-RBM4HES7IL1F10KDM2BLENG9LSRMKRN2NAPEPLDNRROSPCVT1BPMCAHPRR1RBK13HEXDIL1F10KDM2BLENG9LSRMKRN1NATBNRSN2-AS1PCVT2PMPCAPRR13RBM28HEY2IL32KDM8LETM1LYGHMLST8NAT9NRTNPDC13PMPCBPRR31RBM28HFM1IL34KEAP1LGALS4LY75-C0302MLYDNAT01NSFPDC13PNMA3PRK22RBM34H6FIL36RNKHDC1LGALS7LY9MLYCDNAXDNSG1PDE13PNMA8PRS541RBM36H65ILSRAKHDR852LGR6LYG1MMENBF4NSMAFPDE38PNPPRS555RBM46H65ILSRAKHA0040LGSNLYPD1MMP15NCAM10NSMCE1PDE48PNPLA2PRX12ARBMX2HP11IMMP11KIAA0040LK83LYRM9MMP8NCAPLNT5C1APDE6APNPLA7PSD3RBX14HFK1IMPD14KIAA1191LIMA1LY24MMS12LNCAP2NT5C3BPDE7APOLR20PSKN1RC11HISTH12ACIMP614KIAA1191LIMA4MAS21LNC	HERC2P2	IL17B	KCTD6	LDLR	LRRTM1	MIS12	NAP1L3	NRIP1	PCSK6	PM20D2	PRR19	RBIS
HERG6 ILA KDM2A LENG1 LSMEM1 MTF NAPEPLD NRROS PCVDX1 PMCH PRR7 RBM14-RBM4 HES7 ILIF10 KDM2B LENG9 LSR MKRN2 NAPRT NRSN1 PCVT1B PMCA PRR71 RBM18 HEX0 ILIRN KDM4B LEPR0TL1 LURAP1L MLH1 NATS NRSN2-AS1 PCVT2 PMPCA PRR73 RBM22 HFY2 IL32 KDM8 LETM1 LV6H MLST8 NAT9 NRTN PDC PMPCA PRR2 RBM34 H6F1 IL36RN KHDC1 LGALS4 LY9-5C0302 MLYCD NAXD NSG1 PDE12 PNMA3A PRS24 RBM34 H6F IL36RN KHDC1 LGALS4 LY9-6 MMAA NBL1 NSG2 PDE3A PNOC PRS555 RBM46 H65 ILSRA KHDRB22 LK6 LY901 MMP15 NCAM1 NSMC21 PDE48 PNPLA2 PRX12A <td< td=""><td>HERC3</td><td>IL17F</td><td>KDM1B</td><td>LDLRAD3</td><td>LRWD1</td><td>MITD1</td><td>NAP1L6</td><td>NRP2</td><td>PCTP</td><td>PMAIP1</td><td>PRR26</td><td>RBKS</td></td<>	HERC3	IL17F	KDM1B	LDLRAD3	LRWD1	MITD1	NAP1L6	NRP2	PCTP	PMAIP1	PRR26	RBKS
HE57 ILJF10 KDW2B LENG9 LSR MKRN2 NAPRT NRSN1 PCYT1B PMEPA1 PRRG1 RBM18 HEXD ILIRN KDM4B LEPROTL1 LURAP1L MLH1 NAT8 NRSN2-AS1 PCYT2 PMPCA PRRG1 RBM22 HFW1 IL32 KDM8 LETM1 LV6H MLST8 NAT9 NRTN PCC PMPCB PRRX1 RBM28 HFM1 IL34 KEAP1 LGALS4 LV75-C0302 MLXIP NAT0 NSF PDC13 PNMA3 PRRX2 RBM34 HGF IL36RN KHDC1 LGALS4 LV75-C0302 MLYIP NAT0 NSG1 PDE12 PNMA3 PRX2 RBM34 HGF1 ILSRA KHDC1 LGALS4 LV96 MMAA NBL1 NSG2 PDE38 PNP PSS55 RBM46 HGF1 ILVBL KIAA0319 LK61 VY01 MMP15 NCAM1 NSMCE1 PDE38 PNPL2 PSD2 RBMX2	HERC6	IL1A	KDM2A	LENG1	LSMEM1	MITF	NAPEPLD	NRROS	PCYOX1	PMCH	PRR7	RBM14-RBM4
HEXD ILIRN KDMAB LEPROTL1 LURP1L MLH1 NATS NRSN2-AS1 PCYT2 PMPCA PRRT3 RBM22 HEY2 IL32 KDMAB LETM1 LY6H MLSTS NATS NRTN PDC PMPCA PRRT3 RBM28 HFM1 IL34 KEAP1 LGALS4 LY75-CD302 MLXIP NATD1 NSF PDC13 PNMA3 PRSX2 RBM34 H6F IL36N KHDC1 LGALS4 LY75-CD302 MLYCD NAXD NSG1 PDE13 PNMA3 PRSS41 RBM39 H6F1 IL3RA KHDC1 LGALS4 LY75-CD302 MLYCD NAXD NSG1 PDE13 PNMC4 PRSS41 RBM39 H6F1 IL3RA KHDC1 LGALS7 LY9 MMVE NSG1 PDE12 PNMA8A PRSS41 RBM32 H6S ILSRA KHDRB52 LGG6 LYG1 MME NSMAF PDE38 PNPLA2 PRSL2A RBM42 H	HES7	IL1F10	KDM2B	LENG9	LSR	MKRN2	NAPRT	NRSN1	PCYT1B	PMEPA1	PRRG1	RBM18
H+Y2 IL32 KDM8 LETM1 LY6H MLST8 NAT9 NRTN PDC PMPCB PRRX1 RBM28 HFM1 IL34 KEAP1 LGALS4 LY75-C0302 MLXIP NAT9 NRTN PDC PMPCB PRRX1 RBM34 HGF IL36RN KHDC1 LGALS4 LY75-C0302 MLYCD NAXD NSG1 PDE12 PNMA8A PRS24 RBM34 HGF IL3RA KHDC3L LGALS8 LY96 MMAA NBL1 NSG2 PDE3A PNOC PRS554 RBM46 HGS ILSRA KHDRBS2 LK66 LY91 MMP16 NSG2 PDE3B PNP PRS25 RBM42 HHP1 IMMP11 KIA0040 LGSN LYPD1 MMP15 NCAPL2 NSUC1 PDE4B PNPLA2 PRX12A RBMX13 HIP1 IMMP11 KIA0040 LWB3 LYRM9 MMP8 NCAPH2 NTSC1A PDE6A PNPLA7 PSD3 RBM11	HEXD	IL1RN	KDM4B	LEPROTL1	LURAP1L	MLH1	NAT8	NRSN2-AS1	PCYT2	PMPCA	PRRT3	RBM22
In-set KEAP1 LogALS4 LT/S-LO3U2 IMLAIP NATU1 NS+ PDLLS PNIMAS PRRX2 RBM34 HGF LIJGRN KHDC1 LGALS7 LY9 MLYCD NAXD NSG1 PDE12 PNIMAS PRRX2 RBM34 HGF1 ILJ3RA KHDC3L LGALS7 LY96 MMXA NBL1 NSG2 PDE3A PNOC PRSS41 RBM34 HGS ILSRA KHDC3L LGALS8 LY96 MMME NBPF4 NSMAF PDE3B PNP PRSS54 RBM46 HHAT ILVBL KIAA0040 LGSN LYPD1 MMP15 NCAM NSMAF PDE3B PNP PRSS54 RBM23 HHP1 IMMP11 KIAA0733 LIRB3 LYPD3 MMP19 NCAPH2 NTSC1A PDE4D PNPLA3 PSD2 RBMXL3 HHPK1 IMPD11 KIAA1191 LV24 MMS19 NCAPH2 NTSC1A PDE4A PNLA3 PSD3 RBM31 RBM34	HEY2	IL32	KDM8	LETM1	LY6H	MLST8	NAT9	NRTN	PDC	PMPCB	PRRX1	RBM28
ILGUNN KHDC1 LGALS7 LT9 INTCD NAD NSG1 PDL12 PN0MA8A PRSM1 RBM39 HGH1 LI3RA KHDC3 LGALS8 LY96 MMAA NBL1 NSG1 PDL12 PN0MA8A PRSM1 RBM39 HGS1 LI3RA KHDC3L LGALS8 LY96 MMAA NBL1 NSG2 PDE3A PN0C PRSS55 RBM46 HGS1 LIVBL KIAA0040 LGSN LYP1 MMP16 NSG1 PDE4B PNPL2 PRXL2A RBMX2 HIP1R IMMP1L KIAA039L LKK LYP01 MMP19 NCAPL NSMCE1 PDE4B PNPL2 PRXL2A RBMX13 HIP1R IMPD11 KIAA0753 LLRB3 LYPD3 MMP19 NCAPL NTSC1A PDE6A PNPLA7 PS02 RBMX13 HIFX1 IMP011 KIAA1109 LIMA1 LY214 MMS12 NCAPH NTSC38 PDE7A POL71 PS03 RBX14	HENI	1L34	KEAP1	LGALS4	LT/5-CD302		NAIDI	INSE	PULLS PDE12	PINIVIA3	PKKAZ	KBIVI34
HGS LISRA INDUCL LISD INDUCL LISD INDUCL PDEA PDC-D P	HGH1	IL 30KIN	KHDC3	LGALS/	1796	MMAA	NRI 1	NSG2	PDE3A	PNOC	PR\$\$54	RBM46
IHAT ILVBL IKIAO ILVD <	HGS	ILSRA	KHDRRS2	LGR6	LYG1	MMF	NBPF4	NSMAF	PDF3R	PNP	PRSS55	RBM4B
Impla Impla <th< td=""><td>HHAT</td><td>ILVBL</td><td>KIAA0040</td><td>LGSN</td><td>LYPD1</td><td>MMP15</td><td>NCAM1</td><td>NSMCF1</td><td>PDF4R</td><td>PNPLA2</td><td>PRXL2A</td><td>RBMX2</td></th<>	HHAT	ILVBL	KIAA0040	LGSN	LYPD1	MMP15	NCAM1	NSMCF1	PDF4R	PNPLA2	PRXL2A	RBMX2
HIPK1 IMPDH1 KIAA0753 LILRB3 LYRM9 MMP8 NCAPH NTSCIA PDEGA PNFLA7 PS03 RBX1 HIPK2 IMPDH2 KIAA1109 LIMA1 LYZL4 MMS19 NCAPH2 NTSC2 PDEGA PNFLA7 PS03 RBX1 HIST1H1C IMPG1 LIMA1 LYZL4 MMS19 NCAPH2 NTSC2 PDEGA POR2D PSSN2 RC3H1 HIST1H1C IMPG1 LIMA1 LVZL4 MMS19 NCAPH2 NTSC3 PDEFA POLR2D PSSNEN RCC1L HIST1H2AC IMAFM1 KIAA1328 LIMS4 MACROD1 MNDA NCBP3 NTSM PDEBA POLR2D PSKH2 RCN3 HIST1H2AG INAFM2 KIAA1549 LIN28 MAEA MOAP1 NCEH1 NTMT1 PDF POLR2H PSMB8-AS1 RCOR1 HIST1H2BE ING2 KIAA1549 LIN7C MAFA MOB3A NCCA4 NUDC01 PDGFD POLR2H PSMC1 RDH	HIP1R	IMMP1L	KIAA0319I	LHX6	LYPD3	MMP19	NCAPD2	NSUN5	PDE4D	PNPLA3	PSD2	RBMXL3
HIPK2 IMPDH2 KIAA1109 LIMA1 LYZL4 MMS19 NCAPH2 NT5C2 PDE6H POLA1 PSEN2 RC3H1 HIST1H1C IMPG1 KIAA1191 LIMD1 MAB21L4 MMS22L NCBP2 NT5C3B PDE7A POLR2D PSEN2 RC3H1 HIST1H2AC INAFM1 KIAA1191 LIMD1 MAB21L4 MMS22L NCBP2 NT5C3B PDE7A POLR2D PSEN2 RC3H1 HIST1H2AC INAFM1 KIAA1328 LIMS4 MACROD1 MNDA NCBP3 NT5M PDE8A POLR2G PSKH2 RC03 HIST1H2AC INAFM2 KIAA1549 LINZC MAFA MOB3A NCKAP5 NTSN1 PDGFD POLR2H PSMC1 RDH10-AS1 HIST1H2BK ING5 KIF18A LINC00243 MAGEA2 MOB3B NCO44 NUDCD1 PDGFA POLR3F PSMD6 RDH3 HIST1H2B0 INHBA KIF21B LINC00313 MAGEB16 MOCOS NCSTN NUDCD2 <	HIPK1	IMPDH1	KIAA0753	LILRB3	LYRM9	MMP8	NCAPH	NT5C1A	PDE6A	PNPLA7	PSD3	RBX1
HIST1H1C IMPG1 KIAA1191 LIMD1 MAB21L4 MMS22L NCBP2 NT5C3B PDE7A POLR2D PSENEN RCC1L HIST1H2AC INAFM1 KIAA1328 LIMS4 MACROD1 MNDA NCCBP3 NT5M PDE7A POLR2D PSENEN RCC1L HIST1H2AC INAFM1 KIAA1328 LINS4 MACROD1 MNDA NCCBP3 NT5M PDE8A POLR2D PSENEN RCC1L HIST1H2BK INAG2 KIAA1549L LINSC MAFA MOB3A NCKAP5 NTSR1 PDGFD POLR2H PSMC1 RDH10-A51 HIST1H2BK ING5 KIF18A LINC00243 MA6FA2 MOB3B NCOA4 NUDC01 PDGFRA POLR2H PSMD13 RDH1 HIST1H2BK ING5 KIF2A0 LINC00243 MA6FA2 MOB3B NCOA4 NUDC10 PDGFRA POLR3F PSMD13 RDH13 HIST1H2BK ING6 KIF2A0 LINC00313 MA6FB16 MOCGA11 NUDT10 PDH3 <td>HIPK2</td> <td>IMPDH2</td> <td>KIAA1109</td> <td>LIMA1</td> <td>LYZL4</td> <td>MMS19</td> <td>NCAPH2</td> <td>NT5C2</td> <td>PDE6H</td> <td>POLA1</td> <td>PSEN2</td> <td>RC3H1</td>	HIPK2	IMPDH2	KIAA1109	LIMA1	LYZL4	MMS19	NCAPH2	NT5C2	PDE6H	POLA1	PSEN2	RC3H1
HISTIH2AC INAFM1 KIAA1328 LIMS4 MACROD1 MNDA NCBP3 NT5M PDEBA POLR2G PSKH2 RCN3 HISTIH2AC INAFM2 KIAA1549 LIN28A MAEA MOAP1 NCEH1 NT5M1 PDF POLR2G PSKH2 RCN3 HISTIH2AB ING2 KIAA1549 LIN26A MAEA MOBA1 NCCH1 NTMT1 PDF POLR2H PSMC1 ROH10-AS1 HISTIH2BB ING2 KIAA1549L LIN7C MAFA MOB3A NCCA4 NUDCD1 PDGFD POLR24 PSMD13 RDH10-AS1 HIST1H2BK ING5 KIF18A LINC00243 MAGEA2 MOB3B NCOA4 NUDCD1 PDGFD POLR24 PSMD13 RDH11 HIST1H2BC INIGS KIF20A LINC002437 MAGEA2 MOCS NCON NUDCD1 PDGFD POLR34 PSMD5 RDH3 HIST1H2BC INHBC KIF21B LINC00337 MAGEB16 MOGA11 NDE1 NUD10	HIST1H1C	IMPG1	KIAA1191	LIMD1	MAB21L4	MMS22L	NCBP2	NT5C3B	PDE7A	POLR2D	PSENEN	RCC1L
HIST1H2AG INAFM2 KIAA1549 LIN28A MAEA MOAP1 NCEH1 NTMT1 PDF POLR2H PSMB8-AS1 RCOR1 HIST1H2BB ING2 KIAA1549L LIN7C MAFA MOB3A NCKAP5 NTSN1 PDGFD POLR2H PSMB8-AS1 RDH10-AS1 HIST1H2BB ING5 KIF18A LINC00243 MAGEA2 MOB3B NCOA4 NUDCD1 PDGFA POLR2K PSMD13 RDH11 HIST1H2B0 INHBA KIF20A LINC00243 MAGEB10 MOCOS NCSTN NUDCD2 PDHA1 POLR3K PSMD6 RDH3 HIST1H31 INHBC KIF21B LINC00337 MAGEB16 MOCAS1 NUDT10 PDH8 POLR3K PSME1 REEP2	HIST1H2AC	INAFM1	KIAA1328	LIMS4	MACROD1	MNDA	NCBP3	NT5M	PDE8A	POLR2G	PSKH2	RCN3
HIST1H2BB ING2 KIAA1549L UN7C MAFA MOB3A NCKAP5 NTSh1 PDGFD POLR2/4 PSMC1 RDH10-AS1 HIST1H2BK ING5 KIF18A LINC00243 MAGEA2 MOB3B NCOA4 NUDCD1 PDGFA POLR2/4 PSMC1 RDH10-AS1 HIST1H2BK ING5 KIF20A LINC00243 MAGEB10 MOCOS NCSTN NUDCD2 PDHA1 POLR3F PSMD6 RDH8 HIST1H2B0 INHBA KIF220A LINC00337 MAGEB16 MOCOS NCSTN NUDC12 PDH3 POLR3F PSMD6 RDH8 HIST1H31 INHBC KIF21B LINC00337 MAGEB16 MOCOS NUDT10 PDH8 POLR3G PSME1 REEP2	HIST1H2AG	INAFM2	KIAA1549	LIN28A	MAEA	MOAP1	NCEH1	NTMT1	PDF	POLR2H	PSMB8-AS1	RCOR1
HIST1H2BK ING5 KIF18A LINC00243 MAGEA2 MOB3B NCOA4 NUDCD1 PDGFRA POLR2K PSMD13 RDH11 HIST1H2BO INHBA KIF20A LINC00311 MAGEB10 MOCOS NCSTN NUDCD2 PDHA1 POLR3F PSMD6 RDH8 HIST1H31 INHBC KIF21B LINC00337 MAGEB16 MOGAT1 NDE1 NUDT10 PDH8 POLR3GL PSME1 REEP2	HIST1H2BB	ING2	KIAA1549L	LIN7C	MAFA	MOB3A	NCKAP5	NTSR1	PDGFD	POLR2J4	PSMC1	RDH10-AS1
HIST1H2BO INHBA KIF20A LINC00311 MAGEB10 MOCOS NCSTN NUDCD2 PDHA1 POLR3F PSMD6 RDH8 HIST1H31 INHBC KIF21B LINC00337 MAGEB16 MOGAT1 NDE1 NUDT10 PDHB POLR3GL PSME1 REEP2	HIST1H2BK	ING5	KIF18A	LINC00243	MAGEA2	MOB3B	NCOA4	NUDCD1	PDGFRA	POLR2K	PSMD13	RDH11
HISTILHSI INHBC KIF21B LINC00337 MAGEB16 MOGATI NDE1 NUDTIO PDHB POLR3GL PSME1 REEP2	HIST1H2BO	INHBA	KIF20A	LINC00311	MAGEB10	MOCOS	NCSTN	NUDCD2	PDHA1	POLR3F	PSMD6	RDH8
HINTLERIC INKAZ KIEZZ UNICINIZZZ MAGERE MADVIE NICEDO MUDITAZ DOVO DOLDOV DEMEZ DEFEO	HIST1H3I	INHBC	KIF21B	LINC00337	MAGEB16	MOGAT1	NDE1	NUDT10	PDHB	POLR3GL	PSME1	REEP2

Supplementary Table 2 (3/9). Upregulated genes in response to metabolic stress (Log₂FC>0.265) in BRAF^{V600E} mutant cells.

	Upregulated in BRAF ^{V600E} mutant cells											
REEP4	\$100G	SIX1	SMG5	STC1	TFPI2	TOR3A	UBXN6	WIF1	ZNF394			
RELL2	SAFB2	SKIDA1	SMG7	STEAP2	TGFBR1	TP53BP2	UCP2	WIPF2	ZNF410			
REP15	SAGE1	SKIL	SMIM14	STEAP3	TGFBR3L	TP53I13	UFD1	WLS	ZNF418			
REPIN1	SAMD8	SKOR1	SMIM15	STH	TGIF2LY	TP53TG3B	UFM1	WNT10A	ZNF429			
RERG	SRF2	SLAZ SLAME1	SMO	STIM1	TGM4	TP63	UGT2B11	WNT2B	ZINF45 ZNF443			
RERGL	SBK3	SLAMF9	SMOC2	STK11	TH	TPD52L1	UGT2B15	WTAP	ZNF446			
RESF1	SCAMP2	SLC10A5	SNAI3	STK26	THBS1	TPH2	UHRF1	WWC3	ZNF469			
REV1	SCAMP3	SLC12A1	SNAP29	STK38L	THBS3	TPM1	ULBP1	WWP2	ZNF487			
REV3L	SCAND1	SLC12A6	SNAPC5	STMND1	THEM5	TPP2	ULBP3	XAGE1B	ZNF503-AS2			
REXO4	SCAPER	SLC12A8	SNF8	STN1	THOC1	TPPP2	ULK4	XAGE2	ZNF512B			
REK	SCARA3	SLC12A9	SNORD89	STUN2 STUC2	THOCS	TPRG1L	UMODL1-AS1	XDH	ZNF514			
RENG	SCD	SLC15A1	SNRNP200	STRC	THRB	TPSD1	UNC5C	XK	ZNF545 ZNF550			
RFPL3S	SCEL	SLC16A11	SNX19	STX11	THSD1	TPST1	UNCX	XKR3	ZNF555			
RFPL4AL1	SCG3	SLC16A13	SNX25	STX18	THSD7B	TPX2	UPF3B	XKR8	ZNF556			
RGPD4	SCG5	SLC16A14	SNX29	STX2	THUMPD3	TRA2B	UPK1A	XKRX	ZNF560			
RGPD5	SCGB2A1	SLC16A7	SNX29P2	STXBP4	TICAM1	TRABD2B	UQCC1	XKRY2	ZNF575			
RGPD6	SCGBZAZ	SLC16A9	SNXD	SUCC	TIGDS	TRAF3IP1	UQCRIU	XPU5	ZNF582-A51 7NEE 92			
RGS10	SCMH1	SLC17A6	SOAT1	SULT2B1	TIGD7	TRAM2	UROD	YARS2	ZNF584			
RGS17	SCN1A	SLC18A2	SOBP	SUN2	TIMD4	TRAPPC12	USE1	YBEY	ZNF600			
RGS18	SCN9A	SLC18A3	SOCS2	SUPT20H	TIMM17B	TRDN	USF3	YIPF1	ZNF605			
RGS22	SCP2D1	SLC19A1	SOD3	SUPT7L	TIMM29	TREM2	USH1G	YIPF5	ZNF609			
RGS9	SCRIB	SLC19A2	SOGA3	SUPV3L1	TJP3	TRHDE-AS1	USP12	YPEL2	ZNF614			
KHBDF1	SCRN2	SLC1A2	SURL1	50503		TRIB1	USP13	YPEL3	ZNF618			
RHCF	SCYL3	SLC22A14	SOS2	SV2A	TLF6	TRIM2	USP17L11	YWHAG	ZINF025 ZNF628			
RHD	SDF2L1	SLC22A16	SOWAHA	SVIL	TLL1	TRIM22	USP17L2	ZAN	ZNF630			
RHOC	SDHD	SLC22A17	SOX12	SWI5	TLR1	TRIM23	USP17L20	ZBED1	ZNF638			
RHOH	SEBOX	SLC22A18	SOX21	SYCE1	TLR3	TRIM33	USP17L21	ZBED4	ZNF660			
RHOT1	SEC13	SLC22A20P	SOX6	SYCP3	TLX3	TRIM35	USP20	ZBTB10	ZNF664-RFLNA			
RICTOR	SEC14L3	SLC25A15	SP100	SYDE2	TM6SF1	TRIM38	USP30	ZBTB2	ZNF669			
RIDA RIN1	SEC14Lb	SLC25A16 SLC25A22	SP7 SP8	SYNGR4	TM95F2	TRIMAG	USP32P2	2B1B3 78TB44	ZNF675			
RLN3	SEC22C	SLC25A24	SPA17	SYNPO	TMCC3	TRIM59	USP45	ZBTB44	ZNF682			
RMI1	SEC23B	SLC25A29	SPACA4	SYPL1	TMED4	TRIM62	USP47	ZBTB47	ZNF705D			
RMND5B	SEC24C	SLC25A32	SPAG6	SYVN1	TMED5	TRIM64C	USP50	ZBTB9	ZNF705G			
RNASE6	SEC62	SLC25A39	SPANXA1	TAF11	TMED8	TRIM71	USP54	ZC3H10	ZNF71			
RNF103	SELENBP1	SLC25A44	SPANXD	TAF1L	TMEM101	TRIM72	UTF1	ZC3H12C	ZNF711			
RNF113B	SEMAJA	SLC25A52	SPANXN3	TAF2	TMEM104	TRIM///	UTP20	ZC3H4 7C2H7A	ZNF/14			
RNF113	SEMA4R	SI C 29A1	SPATA16	TAF8	TMEM106B	TRIP4	LIVRAG	2C3117A 7CCHC14	ZNF74 ZNF740			
RNF141	SEMA5A	SLC29A2	SPATA21	TANGO6	TMEM120A	TRIP6	UVSSA	ZCCHC17	ZNF75D			
RNF144B	SEMA6C	SLC2A10	SPATA31A1	TARSL2	TMEM120B	TRMO	UXS1	ZCCHC24	ZNF783			
RNF157	SEMG1	SLC2A13	SPATA31A3	TAS1R1	TMEM121B	TRMT44	UXT-AS1	ZDBF2	ZNF787			
RNF170	SENP7	SLC2A2	SPATA31A5	TAS2R1	TMEM135	TRPC4AP	VAC14	ZDHHC14	ZNF792			
RNF2 PNE212	SEPTIN10	SLC2A6	SPATA31C2	TAS2R13	IMEM147	TRPM4	VANGL2	ZDHHC18	ZNF/93			
RNF212 RNF216	SEPTIN12 SEPTIN14	SLC2A7	SPATA40	TAS2R20 TAS2R30	TMEM161A	TRPV5	VASH2 VAT1	ZDHHC23	ZNESOAB			
RNF26	SEPTIN3	SLC2A9	SPATA5	TAS2R41	TMEM168	TRUB1	VAV2	ZDHHC4	ZNF812P			
RNF4	SERAC1	SLC30A4	SPATA9	TAS2R60	TMEM169	TSACC	VAV3	ZER1	ZNF814			
RNF41	SERPINA13P	SLC30A8	SPATC1L	TAT	TMEM176A	TSHZ2	VAX1	ZFAND2B	ZNF837			
RNF44	SERPINA4	SLC31A1	SPATS1	TBATA	TMEM184B	TSHZ3	VCAM1	ZFAND3	ZNF852			
RNF6	SERPINB13	SLC35A3	SPCS1	TBC1D1	TMEM184C	TSKS	VCX	ZFAND4	ZNF860			
RNF7 RNMT	SERPINE2	SLC35B2 SLC35B3	SPDYE1 SPDYE3	TBC1D10B	TMEM200B	TSPAN11	VCX3B	ZFAT ZFHX2	ZNF878 ZNF93			
RNPC3	SESN1	SLC35D1	SPIN2A	TBC1D13	TMEM201	TSPAN14	VDAC2	ZFP28	ZNHIT6			
RO60	SETD4	SLC35E1	SPIN2B	TBC1D15	TMEM210	TSPAN17	VDR	ZFP3	ZNRF4			
ROCK1	SETD7	SLC35E2A	SPINK13	TBC1D22A-AS1	TMEM219	TSPAN3	VGF	ZFP30	ZP3			
ROCK2	SETX	SLC35E2B	SPINK14	TBC1D22B	TMEM223	TSPOAP1	VGLL1	ZFP42	ZRANB1			
ROPN1	SF3B3	SLC35F1	SPINK2	TBC1D23	TMEM229A	TSPYL4	VGLL4	ZFP57	ZSCAN22			
ROR1-AS1	SET2D3	SIC3845	SPOCD1	TBC1D20	TMEM238	TSSK2	VII 1	2FP03B 7FP82	ZSCAN32			
RP9	SGMS2	SLC39A14	SPOCK1	TBC1D3B	TMEM255B	TTC23	VIP	ZFP92	ZZZ3			
RPGRIP1	SGO1	SLC39A9	SPPL2A	TBCC	TMEM259	TTC27	VKORC1L1	ZFPM2				
RPL10L	SGPP1	SLC43A1	SPPL2C	TBR1	TMEM268	TTC29	VPREB3	ZFR2				
RPL22L1	SGSM1	SLC4A2	SPR	FBRG1	IMEM270	TTC32	VPS13D	ZFY				
RPL39 RDS10 NUIDT2	SGSIVIS	SLC52A2	SPRED3	TBX10	TMEN/2/2	TTE1	VPS18	ZFYVEZ/				
RPS19BP1	SH2D3A	SLC5A6	SPRR2E	TBX22	TMEM50A	TTN	VRK1	ZKSCAN2				
RPS27L	SH2D3C	SLC6A15	SPRR2G	TBX4	TMEM59	TUBA3D	VRK2	ZMYND19				
RPS6KA4	SH2D6	SLC6A20	SPRY4	TBXAS1	TMEM74B	TUBA4B	VRK3	ZNF133				
RPTOR	SH3D19	SLC6A6	SPTBN2	TCEA3	TMEM79	TUBAL3	VSTM2A	ZNF135				
RRAGA RRD12	SH3GL2	SLC6A7	SPTLC3	I CEAL1	IMEM87B	TUBGCP2	VSTM5	ZNF18 ZNE190				
RRP36	SH3RF3	SLC7ATI	SPX	TCF3	TMEM8A	TULP1	VTCN1 VTI1A	ZNF100 ZNF195				
RRP8	SHANK1	SLC8A1	SRARP	TCF7L1	TMEM91	TUSC1	VWA2	ZNF215				
RSBN1	SHF	SLC8A2	SRM	TCF7L2	TMEM92	TUSC3	VWA5B1	ZNF226				
RSBN1L	SHISA6	SLC9A1	SRPK3	TCHHL1	TMEM94	TWSG1	WAPL	ZNF227				
RSPO1	SHISA7	SLC9A2	SRRM2	TCN2	TMPRSS11B	TXLNG	WARS2	ZNF236				
RSPO3	SHISAL1	SLC9A3R2	SRXN1	TCP1	TMPRSS11E	TXNDC2	WASHC2A	ZNF239				
RTCA	SHLD1	SLC9A0	SS1812	TDRD3	TMSB15R	TYMP	WDHD1	ZNF257D-451				
RTL1	SHMT1	SLCO1A2	SSH1	TDRD5	TMX3	TYRO3	WDR26	ZNF28				
RTL6	SHROOM4	SLCO4A1-AS1	SSRP1	TDRD6	TNFAIP2	TYROBP	WDR38	ZNF280B				
RTL8B	SI	SLCO5A1	SSX4B	TEAD3	TNFRSF11B	TYW5	WDR4	ZNF280C				
RTN4RL2	SIDT2	SLFN11	ST20-AS1	TEK	TNFSF10	U2AF1	WDR45B	ZNF282				
RTP3	SIGLEC9	SLEN14	ST3GAL2	TENT2	INFSF12-TNFSF13	UBASH3B	WDR49	ZNF317				
RUNX1	SIK3	SLIT2	STEGALS	TES	TNIK	UBE2C	WDR59	211532-A53 7NF324				
RUNX2	SIKE1	SLITRK1	ST6GALNAC1	TEX19	TNKS1BP1	UBE2W	WDR5B	ZNF335				
RUSC1-AS1	SIL1	SLN	ST6GALNAC5	TEX264	TNNC1	UBE3C	WDR66	ZNF33B				
RUSC2	SIM2	SLX1A-SULT1A3	ST7L	TEX33	TNNC2	UBE3D	WDR78	ZNF354C				
RUVBL1	SIN3B	SLX4	ST8SIA4	TEX35	TNNI3	UBE4B	WDR81	ZNF358				
RWDD2A	SIPA1L2	SMAD2	STAG3L4	TEX50	TNNI3K	UBN2	WDR83OS	ZNF362				
KXRG	SIPA1L3	SMAGP	STARD3	IFB1M	I UMM22	UBOX5	WDYHV1	ZNE37A				
5100A1 \$100A3	SIRT4	SMARCA2	STALSA STALI1	TFD2/VI	TOPBP1	UBP1 UBR2	WEDC11	ZINF 383 ZNF 384				
\$100A7A	SIRT7	SMC6	STAU2	TFG	TOPORS	UBR7	WHRN	ZNF385D				

Supplementary Table 2 (4/9). Upregulated genes in response to metabolic stress (Log₂FC>0.265) in BRAF^{v600E} mutant cells.

	Downregulated in NRAS ^{Q61R} mutant cells											
AGO2	BASP1	CREBBP	FOXK1	INPPL1	MCM3AP-AS1	PAGE2	RCOR1	SPRED3	TULP4	ZNF586		
AGO3	BAZ2B	CRP	FOXK2	INSIG2	MDFIC	PAK2	RDH13	SPTAN1	UBE2J2	ZNF587		
AAK1 AAMDC	BCOP BCOP	CRYBG2	FOXO1 FUIT11	INTS5	MECP2 MED22	ΡΑΚ3 ΡΔΩΡ7	RELCH	SPTB	UBN1	ZNF592 ZNF605		
AARS2	BCOR 1	CRYGS	FZD4	IQCI	MED22 MED23	PARD6A	RERE	SRC	ULK1	ZNF609		
AASS	BDP1	CSKMT	GAL3ST3	ITIH6	MEPCE	PARD6B	RETREG2	SREBF1	UMODL1-AS1	ZNF611		
ABCB6	BIRC3	CTAGE9	GALNT2	ITM2A	METTL25	PARG	RGS19	SRGAP1	UNC80	ZNF625		
ABCD2	BIRC7	CYP20A1	GCNA	ITPKA	METTL27	PARP14	RHBDL1	SS18L1	UPF1	ZNF625-ZNF20		
ABHD13 ABHD15	BIVM-ERCC5 BMPR2	CYP2R1 CYP471	GCN14 GDPD5	IVL IAKMIP2-AS1	MFAP1 MFSD9	PASK PCDHR2	RHOBIB1 RHPN2	STAC3 STARD13	UPK1A URB1	ZNF654 ZNF660		
ABHD16B	BPTF	CYTH1	GEMIN8	JAM2	MGAT4B	PCF11	RIPOR1	STARD8	URB2	ZNF671		
ACAD10	BRAF	CYTH3	GFOD1	JARID2	MGC27345	PCNX1	RIT1	STK35	URGCP	ZNF682		
ACAP2	BRD3	DENND4C	GH1	JRK	MIB1	PCNX3	RLF	STK4	USP49	ZNF684		
ACSE3	BRPF1 BRDF3	DENND6B	GHR GIGVE1	KALRN KANK1	MICAL3 MIDN	PDCD7	RNF111 RNF149	STR40	UVSSA VAV2	ZNF691 7NF713		
ACTR3B	BRWD3	DGKO	GIPC1	KAT6B	MINDY1	PDL5A PDIK1L	RNF213	STRN3	VCPIP1	ZNF713 ZNF714		
ACVR1B	BTBD9	DHRS2	GJC1	KBTBD6	MINDY2	PDK3	RNF34	STX11	VEGFA	ZNF720		
ACVRL1	BTG2	DID01	GK	KBTBD7	MIOX	PDPK1	RO60	STX12	VHL	ZNF727		
ADAMTS4	BTK	DID2	GLDC	KCNA2	MIR1915HG	PDZD2	ROCK2	STX16	VKORC1L1	ZNF736		
ADAMTSI 4	C10orf105	DIF2C	GOLGAS	KCNO3	MMP17	PERZ PEKERA	RPI 39I	STXRP4	VPS15B VPS39	ZNF772 ZNF776		
ADCY7	C12orf60	DLGAP2	GPCPD1	KCP	MOB1B	PHACTR4	RPP25	SUCO	VPS50	ZNF778		
ADGRA2	C12orf77	DLX2	GPD1	KCTD7	MOCS3	PHF12	RRBP1	SULT1A1	VPS54	ZNF789		
ADGRG6	C14orf28	DMXL2	GPR21	KDM2A	MOV10	PHF23	RSC1A1	SURF6	WAPL	ZNF791		
ADGRL1	C160rf91	DNAAF3	GPRIN1 GDSM2	KDM3A	MPRIP MPOH7	PHLPP2	RIELI	SUSD2	WDR17	ZNF 793		
ADGRU1	C190/137	DNAJC21 DNAJC6	GRAPL	KIAA1109	MRPS18C	PIGBOS1	RUBCN	SVIL	WDR26	ZNF800		
ADNP	C1orf226	DNASE1L2	GRB10	KIAA1549L	MRTFB	PIK3C2B	RUNX3	SYCE2	WDR91	ZNF81		
ADNP2	C1QTNF6	DNM1	GRIN2B	KIAA1841	MSANTD3-TMEFF1	PKD2	RUSC2	SYNGR4	WDR93	ZNF816-ZNF321P		
ADPRH	C2orf49	DNM3	GRK5	KIF13A	MTMR10	PLAG1	RXFP1	SYNJ2	WFDC11	ZNF827		
AFDN AFF4	C501102 C60rf222	DOCK1 DOCK5	GST71	KIF14 KIF15	MUC5B	PLAGEZ PLCB4	SACS	TACC1	XIAP	ZNF841		
AGAP1	C8orf48	DOP1B	GTF2A1	KIF26B	MX1	PLCE1	SAMD13	TANC2	YLPM1	ZNF85		
AGAP4	C9orf50	DPY19L1	GTPBP2	KIF7	MYH11	PLEC	SAV1	TANGO6	YY1	ZNF850		
AGL	CAPN6	DPY19L2	GUCD1	KIN	MYLK2	PLEKHG2	SBF1	TAOK1	ZBTB10	ZNFX1		
AHDC1	CARD6	DRAM1	HAGHL	KLHL11 KLHL36	MYRF NABD1	PLEKHG4B	SCAF11	TAOK3 TAS2R14	ZBTB17 7BTB43	ZNRF1 ZNRF3		
AHSA2P	CBR4	DSTYK	HA01	KLHL42	NACC2	PLEKHH1	SCARB2	TASOR	ZBTB47	ZSCAN21		
AK8	CCDC103	DUS2	HAUS1	KLKB1	NAIP	PLEKHH3	SCN10A	TATDN2	ZBTB5	ZSCAN31		
AKAP13	CCDC12	DYNAP	HCLS1	KMT2A	NAPB	PLGLB1	SCN8A	TBC1D24	ZBTB7A	ZSWIM3		
AKIRIN2	CCDC122	DZIP1	HDAC4	KMT2B	NAV1	PLXNB1 PM20D2	SCT	TBC1D3B	ZBTB9	ZSWIM6		
ALB	CCDC144A CCDC167	EDEM1	HECTD1	KMT2D	NBPF1	PMEPA1	SEC61A2	TCF20	ZC3H12C	222171		
ALG6	CCDC186	EDN2	HELB	KMT2E	NBPF6	PNPLA3	SEPSECS	TCF3	ZC3HAV1			
ALMS1	CCDC71	EFCAB14	HIC2	KMT5C	NBPF9	POLD1	SESN1	TCP11L1	ZCCHC14			
ALPL	CCDC74B	EFCAB7	HIP1	KRIT1	NCKAP5	POLG	SESTD1	TEAD3	ZCCHC2			
AMMECR11	CCDC84 CCDC92	EFHB FFNA4	HIPK1 HIPK2	KRT14 KRT15	NDP	POLQ POM121C	SGTR	TEN14A TET3	ZFC3H1 ZFP30			
AMN	CCL1	EHHADH	HIST1H1C	KRT24	NEK11	POMK	SH3PXD2A	THAP6	ZFP36L2			
AMOT	CCL11	ELMOD2	HIST1H1D	KRTAP10-3	NEK9	PPM1F	SH3RF2	THRA	ZFP69B			
AMPD3	CCND2	ELMSAN1	HIST1H2AB	L2HGDH	NELFB	PPM1J	SHPK	TIAM1	ZFP90			
ANK3 ANKEE1	CCNF CCNVL1	ENKD1 ENDD4	HIST1H2AE	LARP1	NF1 NEATS	PPP1R16B	SHROOM2	TIGDS	ZFX ZEVVE27			
ANKRD16	CCP110	EP300	HIST1H2AJ	LCOR	NFXL1	PPP1R3B	SIK2	TLN1	ZKSCAN1			
ANKRD18B	CD6	EPHA7	HIST1H2AK	LDHC	NGB	PPP1R9B	SIK3	TMCC1	ZKSCAN4			
ANKRD27	CDC42BPB	EPOP	HIST1H2BB	LENG9	NHSL1	PPP2CB	SIPA1L2	TMEFF1	ZKSCAN5			
ANKRD33B	CDC42EP4	ERC1	HIST1H2BD	LGALS9C	NIPAL1	PPP4R3A	SIX4	TMEM105	ZMYND12			
ANKRDS0C	CDH19	FSAM	HIST1H2BG	LINCO0550	NKX6-1	PPPOR1 PRAG1	SKIV2I	TMEM129	ZNF124 ZNF133			
ANKRD52	CDK19	ETV3	HIST1H2BL	LINC00649	NLGN2	PRDM2	SLAIN1	TMEM141	ZNF14			
ANKRD54	CDK6	ETV3L	HIST1H3D	LINC01126	NLRX1	PRELID3A	SLC16A5	TMEM170A	ZNF141			
ANKRD63	CELSR1	EVA1A	HIST1H3H	LINC01561	NMRK1	PRKAA2	SLC16A9	TMEM260	ZNF2			
AP1S3	CENPO CENPS-CORT	EVC	HIST1H4A	LINC01/11	NOD1 NOL3	PRKCE	SLC17A4	TMEM265	ZNF200 ZNF205			
API5	CEP135	EXPH5	HIST2H2AA3	LIPT2	NOTCH2	PRKDC	SLC25A2	TMIGD2	ZNF222			
APPL2	CEP164	F11-AS1	HIST2H2AA4	LMNTD2	NOX4	PRR12	SLC25A29	TMPRSS13	ZNF223			
ARFGEF1	CEP170	FAAP100	HIST2H2AB	LNPEP	NPAS3	PRR18	SLC2A11	TNC	ZNF229			
ARFGEF3	CEP170B	FAM102A	HIST2H2BE	LOC100506639	NPAS4	PRR34	SLC2EEF	INFAIP6	ZNF233			
ARHGAP31	CERS1	FAM167A	HIST2H4A	LOC101928168	NPIPA3	PRRC2C	SLC35F5	TNKS	ZNF250 ZNF254			
ARHGAP45	CES3	FAM172A	HIST2H4B	LOC389834	NPIPA5	PRRG4	SLC7A1	TNP2	ZNF260			
ARHGEF12	CFAP46	FAM182B	HIST3H2A	LOC646938	NPIPA7	PRRT1	SLC9A1	TNRC18	ZNF284			
ARHGEF17	CFH	FAM20C	HIVEP2	LPCAT1	NPIPB11	PRTG	SLCO5A1	TNRC6A	ZNF285			
ARHGEF4		FAM214A	HOUK3	LRCH2	NPIPB13 NPIPB2	PRY	SLIIRD1	INKC6B TOR2	ZNF287 7NF319			
ARID2	CHCHD6	FAM243A	HOXA2	LRRC10B	NPIPB4	PTGFR	SLX4	TOP2B	ZNF322			
ARID4A	CHD4	FAM76B	HOXA6	LRRC23	NPIPB5	PTPDC1	SLX4IP	TP53I13	ZNF37A			
ARMC4	CHFR	FAM78A	HOXB5	LRRC37A2	NPLOC4	PTPN14	SMCHD1	TP53TG5	ZNF394			
ARNT2 ARR3	CHRFAM7A	FAM83B	HUXB6	LKKC57	NPPA NR1H2	PTPN21	SMUPE1	IPH1 TPRG1	ZNF404 ZNF407			
ARRDC2	CHST3	FAM83G	HSPA12A	LTBP4	NR2F1	PTPRG	SNPH	TPRN	ZNF415			
ARRDC4	CHST6	FAN1	HSPG2	LYNX1	NRSN2-AS1	PURB	SNX25	TPST1	ZNF416			
ARSG	CHST9	FASTKD3	ICA1L	LZTS1	NSD1	PUS3	SNX33	TPTE	ZNF417			
ARTN	CHSY1	FBLN7	ICAM4	MACROD1	NSUN5P1	PVRIG	SOCS2	TRAF3	ZNF420			
ASAP1 ASAP2	CLUUIOS	FBXL20	IFT74	MAGEA12	NT5DC3	PVVP2 OSOX2	SOGAS	TRAF5	ZINF432 7NF445			
ASH1L	CLN8	FBXO25	IFT88	MAGI1	NT5M	QTRT2	SON	TRAK1	ZNF460			
ASMTL	CMC1	FBXW7	IGFN1	MAN1A1	NUAK1	R3HCC1L	SOS1	TRAPPC8	ZNF468			
ASPM	CNST	FCRL4	IKBKG	MAN1C1	OR11L1	RAB12	SOS2	TRERF1	ZNF470			
ATAD2B	CNTF	FDXACB1	IL10RB	MAN2C1	OR2T27	RAB20	SOX11	TRIB2	ZNF483			
ATG2R	COA5	FEIVILA	IL15	MAP3K1	OR4F15 OR51B2	RAD54L2	SP4	TRIM56	ZINF490 7NF493			
ATP11A	COL12A1	FHDC1	IL17RC	MAP3K4	OR5111	RALGAPA2	SPANXN3	TRIM6	ZNF507			
ATP11C	COL27A1	FMN1	IL36RN	MAPK7	OR52B2	RANBP3L	SPATA31A3	TRPS1	ZNF512B			
ATP6V1E2	COL5A1	FMNL1	IL6R	MARCH4	OR52D1	RAPGEF1	SPATA46	TRPV1	ZNF517			
ΑΤΡ ΔΤΡ	COL6A6	FN1 FNRD1	INAEM1	MAST2 MAST4	OSBPL5	RAPH1 RASA1	SPEN SPG11	TSH71	2NF518A 7NF526			
AZI2	CPOX	FNIP1	INKA2	MBD3	OTUD3	RASA2	SPICE1	TTF2	ZNF549			
B4GAT1	CRAMP1	FOXD1	INO80D	MBD5	OTUD4	RBIS	SPIN3	TTL	ZNF565			
BAG1	CREB31/	FOXD413	INIDD/IA	MCM10	OYGR1	RBMS1	SDINT1	ττρα	ZNE570			

 BAG1
 CREB3L4
 FOXDAL3
 INPP4A
 MCM10
 OXGR1
 RBMS1
 SPINT1
 TTPA
 ZNF570

 Supplementary Table 2 (5/9). Downregulated genes in response to metabolic stress

 (Log₂FC<-0.265) in NRAS^{Q61R} mutant cells.

Downregula BRAF ^{v6}	ted in NRAS ^{Q61R} ^{00E} mutant cells	and
ABL2	ІТРКВ	TRIM41
ADAM23	ITPRID2	TRIM65
ADAMTS16	JMJD4	TRIM66
ADARB1 ADCYAP1R1	KIAA2015 KLHL25	TRRAP
AFF1-AS1	KLHL33	TXNIP
ALG12	LMNB2	UBAP1L
AMDHD2	LPO	UBE20
ANGPT4	LKIF1 I TRP2	UGG12
ANKRD17	LZTS2	USP40
ANKRD20A3	MAB21L2	USP53
ANKRD36B	MAGEL2	VPS13C
ARAP1 ARHGAD11B	MAPK8IP3	VPS37D WWC1
ARHGAP17	MEX3C	ZBTB18
ARHGAP32	MKI67	ZBTB24
ARHGAP40	MMEL1	ZBTB39
ARHGEF1	MRPL33	ZFHX3
ATRX	MTLN	ZNF107
AUTS2	MZF1	ZNF142
BBS9	NAA40	ZNF175
BORCS5	NACC1	ZNF275
C1OTNE3-AMACR	NANOG NBRE10	ZNF283 7NF292
C22orf46	NBPF14	ZNF304
C2orf81	NBPF8	ZNF316
C8orf58	NCOA6	ZNF318
CAPN10	NEK10	ZNF35
CCL25	NES NEURI 4	ZNF462 ZNF574
CD8B	NLRP1	ZNF624
CDAN1	NPIPB6	ZNF646
CDC42BPA	NPIPB8	ZNF652
CDKN1P	NPIPB9	ZNF730
CEP97	NR2C2	ZNF775
CERK	OGA	ZNF777
CHGA	OPRL1	
CHRM4	PCDHB9	
CNKSR3	PGAP1 PGBD2	
CNPY1	PHOSPHO2-KLHL23	
CRB1	PI4KB	
CSF1R	PIF1	
DCST1	PIK3R4 PLD5	
DDHD1	PLEKHM3	
DDR1	PNLIPRP2	
DEFB113	PRDM11	
DIAPH1 DIFU2	PROSER2	
DMPK	PRRG2	
DMRTA1	PRSS53	
DOCK4	PSG5	
DOP1A	PTPRJ	
DUSP19 DUSP7	PIPRO	
DVL1	PYM1	
DYNC2LI1	PZP	
E2F8	RBP3	
EUKE1 FENA1	RDH5	
EFNB1	REL	
EFNB2	RNASEL	
ELFN1	RNF145	
ELP1	RNF180	
FAM150B	RPS6KC1	
FAM200A	SARM1	
FANCF	SCG2	
FBXO30	SCUBE2	
FGD4	SEMA3B	
FUVCR1 FUT2	SERTAD3	
FUT3	SETD1B	
GATA5	SFMBT2	
GATAD1	SLC25A35	
GR5 GOLGARH	SLC29A4 SLC2A5	
GPR135	SMCR8	
GRIP1	SNX15	
GSC	SNX27	
HABP4	SNX9 SPATA13	
HAUS5	SPATA15	
HCP5	SPATA2L	
HERC2P3	STAG3L1	
HIST1H1B	SYNGAP1	
HIST1H2BM HIST1H3A	1AB2 TAF1A	
HIVEP3	TBC1D3	
HMGXB3	TBC1D3L	
HRCT1	TBX15	
HTT	ICAF2	
IL18BP	TMEM200A	
INPP5J	TOB1	
IRE2RDI	TRAF1	

Supplementary Table 2 (6/9). Downregulated genes in response to metabolic stress (Log₂FC<-0.265) in NRAS^{Q61R} and BRAF^{V600E} mutant cells.

Downregulated in BRAF ^{V600E} mutant cells											
A2ML1	AK7	ASH1L-AS1	C11orf53	CATSPER2	CES5A	CRBN	DICER1	EME2	FCAMR	GJB1	HIPK4
AACSP1	AK9	ASNA1	C12orf10	CATSPERG	CFAP206	CREB3L1	DIMT1	EMILIN2	FCGR3B	GJB7	HIST1H1A
AANAT	AKAP11	ASPRV1	C12orf49	CAV3	CFAP43	CREB5	DIO3	EML1	FCRL3	GJC2	HIST1H2AM
AASDH	AKAP6	ASXL2	C12orf57	CBFA2T2	CFAP45	CREBL2	DIPK1B	EML4	FCRLA	GJD2	HIST1H4C
ABCB1	AKAP7	ATAD2	C12orf71	CBWD1	CFAP61	CRLF3	DIPK2B	ENDOV	FDPS	GLCE	HIST1H4E
ABCB11	AKIP1	ATE1	C12ort73	CBWD5	CFAP73	CRTAP	DIRAS2	ENGASE	FEM1C	GLI2	HIST1H4G
ABCC10	AKR1C2	ATEG	C120/178	CCDC116	CEHRS	CRYGR	DIRC1	ENKOR ENO1	FERMT3	GLIPRILZ GLIPR2	нізтана
ABCC2 ABCC8	AKR7A2	ATG13	C15orf39	CCDC120	CFL1	CRYL1	DKC1	ENPP5	FEZ1	GLMN	HJURP
ABCE1	AKT1	ATG4A	C15orf41	CCDC126	CH25H	CSAG3	DKFZp779M0652	ENTPD1	FEZF1	GLP1R	НКЗ
ABCF2	AKT3	ATL3	C15orf56	CCDC127	CHAF1B	CSDE1	DKK1	ENTPD5	FGD1	GMFB	HKDC1
ABCG2	ALDH1A2	ATMIN	C15orf61	CCDC13	CHAMP1	CSF2RB	DLAT	ENTPD6	FGF13	GMFG	HLA-A
ABHD14A	ALDH1L1	ATN1	C16orf54	CCDC136	CHCHD10	CSK	DLC1	EPHA5	FGF16	GML	HLA-C
ABHD17C	ALDH3A1	ATOX1	C16ort92	CCDC14	CHCHD4	CSMD2	DLL3	EPHB4	FGF23	GMNN	HLA-DMB
ABHD18	ALDH3B1	ATP11AUN	C17orf102	CCDC146	CHD6	CSN3	DLX6	EPHX4	FGF4	GMPPB	HLA-DOA
ABI IM2	ALDH/AI	ATP11D ATP1A1	C170/156	CCDC151	CHU312	CSP05	DMBT1	EPPIN EDS813	FGFR3	GMPR2	HLA-DQB1
ABLIM2	ALG10	ATP2B1	C19orf24	CCDC160	CHIT1	CST3	DMRTA2	FREG	FGL2	GMPS	HMG20B
ABO	ALG13	ATP5F1A	C19orf73	CCDC162P	СНКВ	CST6	DNAH12	ERI2	FIG4	GNB1	HMGA2-AS1
ABT1	ALG14	ATP5IF1	C1GALT1C1	CCDC166	CHKB-CPT1B	CST8	DNAH3	ERICH4	FILIP1	GNB3	HMGCS1
ACAA1	ALG1L2	ATP5MC1	C1orf109	CCDC178	CHMP4C	CST9L	DNAH5	ERICH6	FKBP1A	GNL1	HMGN2
ACAA2	ALG8	ATP5MD	C1orf131	CCDC179	CHORDC1	CSTB	DNAI1	ERLIN2	FKBP1A-SDCBP2	GNLY	HMGN3
ACACB	ALG9	ATP5MGL	C1orf158	CCDC18	CHPF2	CSTF2	DNAJB8	ERMN	FKBP2	GNPDA2	HMX3
ACBD4	ALKBH3	ATP5PD	C1ort185	CCDC190	CHRD	CSTL1	DNAJC12	ERMP1	FKBP6	GNPNAT1	HNF1A
ACE	ALOX12B	ATPSPF	Clorf229	CCDC25	CHRNA3	CT47A10	DNAJC15	ERP27	FKBP8	GNRH2	HNF4A
ACIN1	ALPKZ	ATPOAPI	C10/1/4	CCDC28B		CT47A12	DNAJCIO	ESCOI ESE1	FLJ50079	GOLGABLS	
ACIN1 ACKR4	AMRN	ATP6V0A4	CIORP	CCDC34	CINP	CT47A5	DNAJC27	ESYT3	FLT3	GOLGASA	HNRNPAILZ
ACLY	AMBP	ATP6V1B2	C1QTNF8	CCDC39	CIR1	CT47A7	DNAJC28	EVX1	FLT4	GOLGA8F	HNRNPLL
ACOT1	AMD1	ATP6V1E1	C20orf197	CCDC58	CITED1	CT47A9	DNAJC9	EXOC3-AS1	FLYWCH1	GP1BA	HOMEZ
ACOT12	AMH	ATP8B1	C20orf202	CCDC85B	CITED4	CT62	DNAL1	EXOC4	FMNL2	GPATCH2	HORMAD1
ACOT4	AMN1	ATP8B3	C20orf203	CCDC88B	CKAP2L	CTAG1B	DND1	EXOC6	FMO2	GPATCH3	HOXA4
ACOT6	ANAPC15	ATPAF2	C22orf31	CCDC90B	CKLF	CTAGE15	DNMBP	EXOSC1	FOSL1	GPHB5	HOXA7
ACOT7	ANKRD11	ATRAID	C2CD2L	CCDC91	CKMT1B	CTBS	DNTTIP1	EXOSC10	FOXB2	GPIHBP1	HOXB-AS3
ACSBG2	ANKRD18A	AUNIP	C2CD4B	CCK	CKS2	CTDSP1	DOCK8	EXOSC2	FOXD4	GPN1	HOXB13
ACSL1	ANKRD20A4	AURKB	C2orf16	CCKBR	CLC	CTSB	DOCK8-AS1	EXOSC4	FOXI3	GPN3	HOXB3
ACSL3	ANKRD22	AURKC	C2ort42	CCL16	CLCA2	CISL	DOK3	EYAZ	FOX11	GPNMB CDD142	HOXC12
ACSL0		AVEN	C201108	CCL27		C135	DOLDR1		FOXINS	GPR145	HPSI
ACSIVI1 ACSM4	ANKKDO1 ANKS1A	AVIL	C3orf20	CCNR1IP1	CLONKA	CUL4A CUL4B	DOLPPI	EZRIP	FOXIN4	GPR146	HRH1
ACSM5	ANIN	AXDND1	C3orf22	CCND1	CLENKR	CWH43	DPAGT1	F10	FOXP1	GPR158-451	HRH4
ACTG1	ANP32B	AXIN2	C3orf70	CCNE2	CLDN12	CXCL1	DPEP2NB	F12	FOXR1	GPR173	HS3ST3A1
ACTL10	ANXA5	B2M	C3orf80	CCNL2	CLDN15	CXCL17	DPH1	F2	FOXRED2	GPR176	HS3ST6
ACTL6B	ANXA7	B3GNT3	C3orf85	CCNQ	CLIC1	CXorf49B	DPH2	F7	FPGS	GPR179	HSBP1
ACTN3	AOAH	B3GNT9	C4BPB	CCR4	CLIC3	CXorf51A	DPH3	FAAH	FRAS1	GPR50	HSD17B1
ACVR2A	AOX1	B4GALNT1	C4orf47	CCR9	CLIC5	CXXC4	DPH5	FADD	FRAT1	GPRIN2	HSD17B10
ACY3	AP2B1	B4GALT2	C5AR1	CCSER1	CLIC6	CYB561A3	DRAM2	FAF2	FRG2	GPRIN3	HSD17B13
ACYP1	AP3M1	BAALC	C5orf15	CCT2	CLIP4	CYB561D1	DRC7	FAHD2B	FRMD4A	GPS1	HSD17B6
ADAM2	AP5Z1	BABAM2	C5ort22	CCT5	CLLU1	CYB561D2	DRG1	FAIM2	FRMPD2	GPX8	HSD3B1
ADAM20	APELA	BAGS	CEorf62	CCTZ	CLIVIN CLIVIN	CYB5A CYB5P1	DRICH1	FAMILIUC	FRIVIPU3	GRAMD2B	
	APLP2 APOA5	BAGS BAIAP2L2	C60rf136	CC71	CLPI	CYBA	DSCAWLL	FAM120AOS	FSD1	GRHPR	HSF4
ADAMTS	2 APOBEC3D	BCAP31	C6orf141	CD163L1	CLPSL2	CYC1	DSG1	FAM136A	FSIP2	GRID2IP	HSPA13
ADAMTS	3 APOE	BCAR3	C6orf223	CD24	CLSTN2	CYP26A1	DSN1	FAM13C	FTCDNL1	GRIK1-AS2	HSPA1L
ADAMTS	7 APOLD1	BCAS1	C6orf226	CD300LD	CLUL1	CYP27C1	DSPP	FAM151B	FTL	GRIN3A	HSPA4L
ADAMTS	9 AQR	BCDIN3D	C6orf99	CD33	CMAS	CYP2A13	DTD1	FAM153CP	FTSJ1	GRM5	HSPA8
ADAMTSI	2 ARAP2	BCL2L1	C7	CD3D	CMKLR1	CYP2B6	DTWD1	FAM162A	FUNDC2	GRSF1	HSPA9
ADAMTSI	.3 ARC	BCL2L11	C7orf61	CD3E	CMTM1	CYP2C18	DTX2	FAM168B	FUT10	GSDMC	HSPB6
ADAP2	ARCN1	BCL2L13	C7orf66	CD3EAP	CNGB1	CYP2C8	DUOX2	FAM171A1	FUT4	GSPT2	HSPD1
ADAT1	ARF1	BCS1L	C8A	CD47	CNIH4	CYP3A5	DUS4L	FAM171B	FXR1	GSTM1	HSPE1
ADCK1	ARF4	BDKRB2	C8ort74	CD5	CNKSR1	CYP7A1	DUSP11	FAM174B	FZD1	GST02	HTATIP2
ADCK5	AREGAP3	BEANI-ASI	COorf131	CD55	CNN2 CNOT7	CYILI	DUSP13	FAIVI185A	F2D10	GTF2E1	HIRID
	ARHGAD1	RFT1	C9orf152	CD79A	CNP	DAAIVIZ	DUSP21	FAM1200D	G6PC3	GTE2IRD1	HTR3D
ADGRA1	ARHGAP1	BEX4	C9orf64	CD8A	CNTN3	DRH	DUT	FAM205A	GAR4	GTF2IRD1	HTR54
ADGRF5	ARHGAP22	BHLHE40	C9orf78	CD99L2	CNTN6	DBR1	DUX4	FAM207A	GABBR1	GTF3A	HYDIN
ADGRG1	ARHGAP30	BIN3-IT1	CA12	CDC42EP5	CNTNAP1	DCAF11	DVL3	FAM215A	GABRQ	GTF3C6	IAPP
ADGRG5	ARHGAP4	BLACE	CA7	CDCA3	COA3	DCAF15	DYNLL1	FAM216A	GABRR1	GUCY1A2	ICMT
ADGRL4	ARHGEF10	BLOC1S5-TXNDC5	CA9	CDCA8	COA7	DCST2	DYNLL2	FAM219B	GADD45B	GUCY1B1	ICOSLG
ADH1C	ARHGEF2	BLOC1S6	CABP1	CDH17	COBL	DCT	DYRK4	FAM222B	GAK	GUSBP2	ID1
ADH6	ARHGEF35	BMP2K	CABS1	CDH24	COG3	DCTD	E2F2	FAM229A	GALNT12	GVQW3	ID2
ADIPOR2	ARHGEF3/	BMD8A	CACNA1D		COL13A1	001	EBLINZ FRD	FAIVI24B	GANAP	GVS1	
	ARHGEF40	BMPER		CDK10	COL15A1	DDX17	ECHDC1	FAM20A	GANC	G7MM	IDNK
ADORA3	ARHGEF7	BMPR1A	CACNA2D3	CDK10	COL4A3RP	DDX31	EDARADD	FAM47A	GAPDH	H1FX	IDUA
ADPGK	ARHGEF9	BNC1	CACNG4	CDK2	COL4A4	DDX49	EDC3	FAM50A	GAS6	H2AFB1	IER2
ADPRHL1	ARID1B	BNC2	CACNG5	CDK2AP1	COL5A2	DDX53	EDN1	FAM53C	GATB	H2AFJ	IER3
ADPRHL2	ARID4B	BOC	CALCB	CDK5RAP1	COL8A1	DECR1	EEF1E1	FAM71F2	GBA	H2AFZ	IFI35
ADRA1A	ARL2-SNX15	BOLA2	CALCOCO1	CDK7	COMMD5	DEF6	EEF1G	FAM76A	GBP3	H3F3B	IFI6
ADRA2A	ARL3	BORA	CALHM1	CDK8	COPS8	DEFA1	EFCAB2	FAM83A	GBP6	HAAO	IFITM2
ADRB1	ARL4C	BORCS6	CALHM5	CDKN2A	COQ4	DEFA1B	EFNA5	FAM86B2	GCC2	HABP2	IFITM3
AEBP2	ARL5B	BPIFB2	CALR	CDKN2AIP	COQ7	DEFA3	EGLN1	FAM86C1	GCK	HACD3	IFITM5
AEN	ARL6	BRD9	CAMK2A	CDKN2C	COQ8B	DEFA4	EGR4	FAM91A1	GCLM	HAS1	IFNA13
AFG1L	ARIVIH1 ARNT	BRID1	CANK2G	CDR1	COTLI	DEEP125	EIZ4 FID1	FAIVI98A	GCN13 GCSAMI	HALIS?	IFNAZ
AGAP9	ARPC2	BRIX1	CAMIG	CDT1	COX6C	DEFB125	FID2B	FANCOZOS	GDAP111	HAX1	IFT46
AGER	ARPC4	BROX	CAMTA2	CDYL	COX7C	DEFR4R	EIF1AY	FAR1	GDAP2	HBE1	IFT57
AGGF1	ARRDC3	BSG	CANX	CEACAM19	COX8A	DEK	EIF2B3	FAR2	GDF11	HBQ1	IGF1
AGPAT1	ARRDC5	BSN	CAP1	CEACAM21	CPA5	DENND1C	EIF3H	FASTKD2	GDF15	HBS1L	IGF2BP2
AGPAT2	ARSF	BTBD19	CAPN12	CEACAM8	CPLANE1	DENND2D	EIF4A2	FAT3	GDPD3	HCFC1R1	IGF2R
AGPAT5	ARV1	BTBD6	CAPN2	CEBPB	CPNE3	DENND3	EIF4EBP1	FBH1	GEMIN6	HCG22	IGFL4
AGTRAP	ASAP3	BTG3	CAPNS2	CEBPG	CPNE4	DENND5B	EIF4G3	FBLL1	GFI1B	HEATR6	IGIP
AGXT	ASB15	BTLA	CAPS2	CELF4	CPNE6	DEPTOR	ELL	FBN3	GFPT1	HECW1	IGLL5
AGXT2	ASB5	BTN2A2	CAPZA1	CENPK	CPPED1	DGAT2L6	ELL2	FBXL12	GFRA1	HELQ	IKZF2
AHCYL1	ASB6	BTN3A3	CARD19	CENPU	CPQ	DGKB	ELMO3	FBXL17	GGN	HES1	IL12RB2
AHRR	ASB7	BUB1	CARD9	CEP104	CPSF6	DGKI	ELN	FBXL18	GGT1	HEXIM2	IL17RA
AHSA1	ASCC1	BUD31	CASC4	CEP19	CPT1B	DGUOK	ELOC	FBXL7	GGT6	HEY1	IL17RD
AIFM2	ASF1B	BZW2 C11orf24	CASP4	CEP85	CPXM2	DHFR	EMC4	FBX011	GHIIM GIT1	HIGD1C	IL1/REL
AK1	ASGR1 ASGR2	C110rf44	CASO1	CERS5	CRB2	DHX37	EMC9	FBXO44	GIT2	HIPK3	IL20RB

Supplementary Table 2 (7/9). Downregulated genes in response to metabolic stress ($Log_2FC<-0.265$) in BRAFV^{600E} mutant cells.

	Downregulated in BRAF ^{V600E} mutant cells											
IL21	KLRG2	LOC100506403	ME2	MRVI1	NEU1	OSTN	PJA1	PRELP	RAPGEF5	RPL35	SFTA2	
IL22RA1	KPNA6	LOC100506422	MEAF6	MS4A2	NFURL1B	OTOG	PKD1	PRIMPOL	RASAL1	RPL36A	SEXN2	
11.27	KPNB1	LOC101927178	MFAK7	MS4A7	NFUROD1	OTOP2	PKDCC	PRKCG	RASD2	RPL36AL	SEXN5	
IL27RA	KRAS	LOC101927322	MECR	MSANTD3	NF2	OTOP3	PKDREJ	PRKCQ	RASL11A	RPL37	SGCB	
IL2RG	KRT16	LOC101927844	MED1	MSANTD4	NFKBID	OTUB2	PKIG	PRLHR	RAVER1	RPL38	SGCD	
IL31RA	KRT222	LOC101928436	MED10	MST1	NFKBIE	OTUD7B	PKLR	PRM3	RBBP8	RPL41	SGK1	
ILDR1	KRT33B	LOC145783	MED15	MSTO1	NFYB	OTX2	PKNOX1	PRNT	RBCK1	RPL5	SGMS1	
ILE3	KRT40	LOC149373	MED16	MT1B	NGFR	OXA1L	PLA2G12A	PROS1	RBFA	RPL7	SH2B3	
IMMP2L	KRT75	LOC339803	MED17	MT1F	NHLH2	P3H3	PLA2G2D	PROX1	RBFOX1	RPL8	SH2D1B	
IMPA1	KRT77	LOC389199	MED18	MT1H	NIBAN3	P3H4	PLA2G4E	PROZ	RBM11	RPLPO	SH2D2A	
INHA	KRT84	100389895	MED20	MTCH2	NID2	P4HA2	PLA2R1	PRPS1	RBM12	RPLP2	SH3D21	
INO80	KRTAP1-5	LOC441155	MED30	MTERE1	NIPBL	P4HA3	PLCD1	PRPS1L1	RBM20	RPRD1B	SHANK2-AS3	
INO80C	KRTAP12-1	100728743	MED7	MTHED2	NIT1	P4HTM	PLFK	PRPSAP1	RBM27	RPS13	SHC3	
INPP5A	KRTAP19-4	LOC730183	MEF2D	MTMR2	NKX2-8	PABPC1L	PLEKHA1	PRPSAP2	RBM45	RPS15	SHCBP1	
INPP5E	KRTAP21-1	LOC79999	MEGF6	MTRF1	NKX3-1	PABPN1L	PLEKHA3	PRR11	RBM5	RPS15A	SHD	
INSC	KRTAP21-3	LOXL4	MEIOB	MTRNR2L7	NLRC5	PADI3	PLEKHG6	PRR13	RBM7	RPS16	SHFL	
INSL4	KRTAP23-1	LPAR2	MELTF	MTRNR2L8	NLRP4	PAH	PLEKHH2	PRR15L	RBMS3	RPS23	SHH	
INSL5	KRTAP24-1	LPAR3	MEOX1	MTRNR2L9	NLRP5	PAK4	PLEKHM2	PRR23A	RBMY1D	RPS26	SHISA5	
INSYN1	KRTAP25-1	LPAR4	MEP1A	MTRR	NLRP9	PALLD	PLEKHO1	PRR30	RBMY1F	RPS28	SHKBP1	
INTS9	KRTAP26-1	LPAR6	MESP1	MTTP	NMB	PALM2	PLIN1	PRR5L	RBP2	RPS4X	SHOC1	
IPP	KRTAP4-1	LRAT	MET	MTX3	NME1	PAM	PLK2	PRRG3	RBP7	RPS6KB2	SHPRH	
IPPK	KRTAP4-12	LRGUK	METAP1D	MUC19	NNMT	PANO1	PLK3	PRSS12	RCAN1	RRAGD	SHQ1	
IQCC	KRTAP4-2	LRMDA	METTL21A	MUC3A	NOBOX	PANX1	PLPP6	PRSS16	RCAN2	RREB1	SIAE	
IRAK4	KRTAP4-4	LRMP	METTL21C	MUCL1	NODAL	PANX2	PLS1	PRSS21	RCCD1	RRM2B	SIAH1	
IREB2	KRTAP9-2	LRP5L	METTL2A	MVB12A	NOL11	PANX3	PLSCR2	PRSS22	RCHY1	RRN3	SIGLEC10	
IRF2	KRTAP9-8	LRRC18	METTL7A	MYBL2	NOP10	PAQR4	PLXDC1	PRSS27	RCN1	RRP15	SIGLEC6	
IRF2BP2	КҮ	LRRC2	METTL9	MYBPH	NOP56	PAQR8	PLXDC2	PRSS3	RCN2	RRP9	SIK1	
IRF7	KYAT1	LRRC26	MEX3D	MYBPHL	NOP58	PARD3B	PLXNA2	PRSS56	RCOR2	RRS1	SIMC1	
IRX1	KYAT3	LRRC27	MFAP3L	MYC	NOXRED1	PARL	PMEL	PRUNE2	RDM1	RSF1	SIPA1	
ISCA1	L3MBTL4	LRRC3	MFAP5	MYCL	NPBWR1	PARP10	PMFBP1	PSCA	REC8	RSL24D1	SIRPD	
ISCU	LALBA	LRRC32	MFGE8	MYDGF	NPC2	PARS2	PNISR	PSG11	RECQL	RSPH9	SIRT5	
ISG20L2	LAMA3	LRRC37B	MFSD12	MYEF2	NPDC1	PARVB	PNLIPRP3	PSMA1	RECQL5	RSRC1	SIRT6	
ISL1	LAMC3	LRRC46	MFSD14A	MYEOV	NPFFR2	PATE4	PNMA6A	PSMA4	REEP1	RSRP1	SKAP2	
ISM2	LAMTOR1	LRRC47	MGAT4D	MYF5	NPHP1	PAX1	PNMT	PSMB1	REN	RTL8A	SLAIN2	
ISOC1	LAMTOR3	LRRC6	MGAT5	MYH9	NPHS2	PAX5	PNRC2	PSMB10	REPS1	RTL8C	SLBP	
ITGAD	LAMTOR5	LRRC8C	MGAT5B	MYL10	NPIPB15	PAX9	POC1B	PSMB4	REXO1L2P	RTL9	SLC10A3	
ITGB7	LANCL1	LRRTM3	MGST1	MYL12A	NPM2	PAXBP1	PODNL1	PSMC5	RFC1	RTN3	SLC10A6	
IIK	LAPTIVI4B	LRR I IVI4	MICALI	MITLIZB	NPIVI3	PAXX	PODXL	PSIVID10	RFC4	RIN4RLI	SLC12A2	
ITLNI	LARP7	LSIVID	MICALZ	IVIYL3	NPPB	PCDHB12	POGK	PSIVIDII	RFFL	RWDD4	SLC14A1	
ITLNZ	LARS	LSIVI8	MICALCL	NIYLOB	NPR1	PCDHB15	POGZ	PSIVID12	KFI1	S100A11	SLC15A4	
111V12B	LARSZ		MICH	MYLID	NPRZ NDPL2	PCDHB4	POLD3	PSIVID2 DSMDE	REXE	S100A12	SLC15A5	
17111001	LAT	LTD4N	MID1	MVLV2	NDCD1	PCD/1B0	POLL2	PSIVIDS DCTDID1	PCMP	\$100A14	SIC10A0	
12010101	LATIN	ITE	MIEE1	MYO1EA	NDTV1		POLNIA	DTDD1	PCP	\$100AZ	SLC15A5	
	LEAZ	LTV/1	MILP1	MYO15A	NEV	PCOLCL-ASI	POLINZC	PTOP1	PCC2	\$100A7L2	SICIAL	
JADES	LCE2D		MINDV3	MYO3B	NDVAR	PCF4	POLKZI	PTCHD3	RGS5	\$100A8	SLC22A1	
IDP2	LCE3E	LUM	MIP	MY05A	NOO1	PDAP1	POLR3H	PTGDR2	RGS8	S100PBP	SLC22A1	
IKAMP	LCN9	LURAP1	MIPOL1	MY07A	NR0B2	PDCD5	POM121L12	PTGDS	RHBDL3	S1PR4	SLC22A9	
KANK3	LCP2	LY6G6C	MIR1247	MYO9B	NR1D2	PDE1A	PON2	PTGFRN	RHBG	SAMD11	SLC23A3	
KANSL1L	LDHB	LY6K	MIR17HG	MYOC	NR2C2AP	PDE1B	PON3	PTGR1	RHEB	SAMD9	SLC25A11	
KANSL3	LDHD	LYN	MIR22HG	MYOCD	NR3C2	PDE6G	POP1	PTH1R	RHOB	SAP30BP	SLC25A12	
KATNAL1	LDOC1	LYSMD4	MIR7162	NAA20	NR4A1	PDE8B	POU1F1	PTN	RHOJ	SAPCD2	SLC25A25	
KBTBD12	LEF1	LZTFL1	MIR99AHG	NAA35	NRAS	PDGFB	POU2F1	PTPN2	RHOU	SASH3	SLC25A28	
KBTBD3	LEMD1	MAD2L1BP	MLANA	NAA38	NRK	PDHX	POU3F1	PTPN20	RIBC2	SASS6	SLC25A3	
KBTBD4	LEMD3	MAF	MLF2	NAAA	NRSN2	PDIA3	POU4F1	PTPN3	RIIAD1	SBDS	SLC25A30	
KCNA3	LENEP	MAFB	MLLT10	NADSYN1	NSMCE4A	PDIA6	POU5F1	PTPN7	RIMBP3C	SBK1	SLC25A31	
KCNAB1	LENG8	MAGEA10-MAGEA5	MLN	NAGS	NSRP1	PDRG1	POU5F1B	PTPRT	RIMS1	SBK2	SLC25A34	
KCNAB2	LEPR	MAGEB1	MMD	NAMPT	NSUN7	PDS5B	POU6F1	PTRH1	RIOK1	SCAF1	SLC25A40	
KCNC3	LEXM	MAGEB18	MMP1	NANOS1	NTF4	PDZD7	PP2D1	PTRHD1	RIPK1	SCAF4	SLC25A45	
KCND1	LFNG	MAGEB2	MMP10	NANS	NTN4	PDZRN3	PPA1	PTTG1	RIPK2	SCARF1	SLC25A46	
KCNF1	LGALS1	MAGED1	MMP11	NAP1L2	NTNG2	PEA15	PPARGC1B	PTTG1IP	RIPPLY2	SCARF2	SLC25A6	
KCNG2	LGI1	MALSU1	MMP20	NAT10	NTPCR	PEPD	PPFIA3	PTX3	RIT2	SCGB1C1	SLC26A10	
KCNIP2	LGI2	MAMDC2	MMP3	NAT16	NTRK1	PEX11B	PPIAL4A	PUF60	RLIM	SCGB3A2	SLC26A11	
KCNJ1	LGI4	MAMSTR	MNT	NAXE	NTS	PEX2	PPIAL4C	PUM1	RLN1	SCGN	SLC26A5	
KCNJ3	LGR5	MAN1B1-DT	MOGS	NBEAL1	NUAK2	PEX3	PPIAL4E	PUM3	RMDN1	SCLY	SLC26A9	
KCNJ5	LHFPL3	MAN2A2	MORC2	NBEAL2	NUBP1	PFAS	PPIAL4F	PURG	RMDN2	SCML1	SLC2A14	
KCNJ8	LIF	MANEA	MORN2	NBN	NUBPL	PFN2	PPIB	PUS7	RMDN3	SCN11A	SLC30A3	
KCNK6	LIG3	MAP11	MORN3	NBPF12	NUDT13	PGAM1	PPIE	PVALB	RMND1	SCN2B	SLC33A1	
KCNMB2	LILRB1	MAP1A	MPC1	NBPF20	NUDT15	PGGHG	PPIL2	PWP1	RNASE3	SCN4A	SLC35E4	
KCNN1	LIN37	MAP3K15	MPDZ	NBR1	NUDT4B	PGGT1B	PPIP5K2	PWWP2A	RNASEH2A	SCNN1D	SLC35F2	
KCID11	LIN54	MAP4K3	MPHOSPH10	NCBP2AS2	NUDT5	PGLYRP4	PPM1M	PYGO2	RNASEK	SCRN3	SLC35F3	
KCID13	LIN9	IVIAP /	MPP1	NCCRP1	NUDT9	PGM1	PPME1	QPCIL	KNF114	SUYLI	SLC35G4	
KCTD20	LINCUU222	WAP9	MPP2	NCK1	NUMB	PGPEP1	PPP1R15B	QRICH1	KNF122	SDC1	SLC36A2	
KCTD21-AS1	LINCUU273	WAPK15	MPP3	NCKAP1	NUP205	PHACTR1	PPP1R18	K3HCC1	KNF123	SDC3	SLC38A4	
KCIU5	LINCOU494	WAPNEP1	IVIPP5	NCIN	NUP35	PRACINZ	PPP1K32	RADIID	RINF105	SDUCBY	SLC38A9	
KDMED	LINC00504	MADRE?	MDV/17	NCOA2	NUDGOCI	PHC2	DDD1D2F	RAP374	RNE10C	SDK1	SIC39A10	
		WAPRES		NCOA5	NUP02CL	PHUS	PPP1K3F	RADZ7A	RINF180	SDR160	SLC39Ab	
		MARCKS	MDEAD111	NOAS	NUP65	PHEIAL	LLLTUQ	11AD2/B	DNE224	SECTOR	SLC39A/	
KIAA1237	LINC00532	MARK3	MRM2	NDST?	NVI	PHF11	PPP2R5R	RAB31	RNF43	SEC2/R	SICATA1	
KIA42026	LINC00656	MARS2	MRNIP	NDST4	NXF5	PHE5A	PPP5D1	RARSC	RNFT2	SELP	SLC44A2	
KIF16R	LINC01089	MATN2	MROH5	NDUFA10	NXNI 1	PHLDA1	PPTC7	RAR3II 1	RNPFP	SEM45R	SLC45A3	
KIF17	LINC01521	MATN3	MROH6	NDUFA6	NYAP1	PHLDB1	POLC2L	RAB9A	ROBO3	SENP3	SLC45A4	
KIF1C	LINC01537	MBD2	MRPL13	NDUFA8	OAS1	PHRF1	PQLC3	RABEP1	ROGDI	SENP6	SLC47A2	
KIF24	LINC02210-CRHR1	MBNL2	MRPL14	NDUFAF1	OAS3	PI4K2B	PRAC2	RABEPK	ROMO1	SEPHS1	SLC4A1AP	
KIFC3	LIPF	MBNL3	MRPL24	NDUFB2	OASL	PI4KAP1	PRAMEF1	RABL2B	ROR1	SEPTIN2	SLC4A9	
KIR2DS5	LITAF	MBTD1	MRPL40	NDUFB8	OAT	PIANP	PRAMEF4	RAD51AP2	RPAP2	SEPTIN7	SLC5A10	
KLF1	LLCFC1	MC2R	MRPL46	NDUFS6	OBP2A	PIDD1	PRAMEF5	RAD51C	RPAP3	SEPTIN9	SLC5A3	
KLF17	LLGL1	MCEE	MRPL47	NECTIN1	OCSTAMP	PIGO	PRAMEF6	RAD52	RPARP-AS1	SERINC2	SLC6A12	
KLHDC7A	LLPH	MCEMP1	MRPL49	NECTIN4	ODAPH	PIH1D2	PRAMEF9	RADIL	RPEL1	SERPINA2	SLC6A14	
KLHDC7B	LMAN2	MCF2L	MRPL58	NEDD1	ODF3L2	PIK3CD	PRB1	RAI1	RPGR	SERPINA7	SLC6A17	
KLHL14	LMBRD1	MCFD2	MRPL9	NEDD4L	ODR4	PIK3R6	PRB2	RALGPS1	RPH3AL	SERPINA9	SLC7A6	
KLHL22	LMNA	MCHR1	MRPS10	NEFL	OLA1	PIKFYVE	PRB3	RAMP1	RPL10A	SERPINB11	SLC7A8	
KLHL31	LM01	MCTP1	MRPS11	NEK6	OLFM1	PILRB	PRDM14	RAMP3	RPL13A	SERPINB8	SLC9A3R1	
KLHL5	LMO2	MCTS1	MRPS12	NEK7	OPN3	PIP	PRDM16-DT	RANBP10	RPL14	SERPINC1	SLCO1B3	
KLK12	LM07DN	MDGA1	MRPS14	NEK8	ORC2	PIP4K2C	PRDM5	RANGRF	RPL18	SERTM1	SLITRK5	
KLK14	LOC100130370	MDH1	MRPS21	NELFE	ORMDL3	PIPOX	PRDM8	RAP1A	RPL18A	SF3A1	SLK	
KLK4	LOC100287036	MDH2	MRPS22	NELL1	OSBPL11	PITPNM2	PRDX1	RAP2B	RPL22	SFI1	SMARCA4	
KLK5	LUC100505549	WDM4	MRPS28	NEMF	OSGIN2	PHRM1	PRDX5	RAPGEF2	RPL23A	SERP1	SMARCA5	
KLKÖ	LOC100206388	IVIUPI	WIKP530	INE LUZ	OZIVI	PIWIL4	PKUXD	KAPGEF3	rtplzd	3F12D2	SIVIAKCB1	

Supplementary Table 2 (8/9). Downregulated genes in response to metabolic stress (Log_2FC <-0.265) in BRAF^{V600E} mutant cells.

Downregulated in BRAF ^{V600E} mutant cells							
SMC2	STYX	TIMM10	TPO	UBTFL1	YIPF4	ZNF589	
SMC3	STYXL1	TIMM10B	TPPP3	UBXN1	YKT6	ZNF599	
SMG6 SMIM10	SUCLA2	TIMM21 TIMP1	TPRXL TPTEP2	UBXN2A	YME1L1 VTHDE1	ZNF606 ZNF607	
SMIM10L2A	SULT1E1	TIMP4	TRAK2	UCKL1	ZACN	ZNF621	
SMIM10L2B-AS1	SUN5	TINAG	TRAM1L1	UCN	ZADH2	ZNF622	
SMIM11A	SUPT16H	TIPRL	TRAPPC13	UCP1	ZAP70	ZNF641	
SMIM2 SMIM25	SUP13H SURF1	TK2 TKTL2	TRAPPC2 TRAPPC5	UEVLD UESP2	ZBED2 ZBED3	ZNF658B ZNF667	
SMIM26	SURF2	TLDC2	TRAPPC6B	UGGT1	ZBED6CL	ZNF680	
SMIM29	SURF4	TLE1	TREH	UGT2B28	ZBED8	ZNF681	
SMIM4	SVEP1	TLK1	TRHR	UGT2B7	ZBTB32	ZNF683	
SMN1	SWSAP1 SWT1	TLK2 TLL2	TRIM13	UNC119B	ZBTB33 ZBTB40	ZNF687 ZNF688	
SMPD1	SYCE1L	TLNRD1	TRIM17	UNC13C	ZBTB41	ZNF692	
SMYD3	SYK	TLR2	TRIM26	UNC93A	ZBTB42	ZNF697	
SNAP25	SYNPO2L	TM2D2	TRIM28	UQCR11	ZBTB49	ZNF70	
SND1	SYT9	TM4SF1-AS1 TM4SF18	TRIM39-RPP21	UQCRHL	ZC3H12A	ZNF701 ZNF705B	
SNHG32	SZRD1	TM4SF19-TCTEX1D2	TRIM40	URAD	ZC3H18	ZNF708	
SNRNP40	TAF7	TM4SF20	TRIM54	URM1	ZC3H6	ZNF709	
SNRNP48	TAF7L TAFA4	TM7SF2 TM9SE3	TRIM6-TRIM34	USF1	ZC3H7B ZCCHC18	ZNF718 7NF724	
SNRPD2	TANC1	TMC01	TRIM9	USP15	ZCCHC7	ZNF746	
SNRPD3	TANGO2	TMEM114	TRIML1	USP16	ZCRB1	ZNF761	
SNRPE	TANK	TMEM132D	TRMT13	USP17L24	ZDHHC1	ZNF764	
SNKPN SNTR2	TARP TARS2	TMEN138	TRPC5	USP17L25	ZDHHC11 ZDHHC12	ZNF765 ZNF768	
SNUPN	TAS2R4	TMEM161B	TRPM8	USP17L7	ZDHHC17	ZNF77	
SNX1	TAS2R42	TMEM167A	TSEN34	USP21	ZDHHC19	ZNF773	
SNX10	TASP1	TMEM173	TSN	USP27X	ZDHHC3	ZNF780A	
SNX11 SNX14	TRC1D16	TMEN1178A	TSNAREI	USP34 LISP37	ZDHHC7 ZEP36	ZNF785 7NF788P	
SNX2	TBC1D2	TMEM181	TSNAX-DISC1	USP39	ZFP37	ZNF790	
SNX7	TBC1D20	TMEM184A	TSNAXIP1	USP43	ZFP91	ZNF816	
SOAT2	TBC1D22A	TMEM187	TSPAN33	USP6NL	ZFP91-CNTF	ZNF829	
SOD1	TBC1D31 TBC1D3C	TMEM191B	TSPY8	USP8 USP9X	ZG16 ZGRF1	ZNF859 ZNF862	
SOD2	TBC1D3H	TMEM191C	TSPYL1	VAMP3	ZIC1	ZNF865	
SOHLH2	TBC1D3P5	TMEM192	TSPYL5	VANGL1	ZKSCAN7	ZNF879	
SORD	TBC1D5	TMEM198	TSSC4	VAPA	ZMAT4	ZNF880	
SOWAHB	TBCID	TMEM200C	TSTD2	VBP1	ZNF10	ZNF91	
SOX1	TBL1XR1	TMEM205	TTBK1	VCL	ZNF101	ZNF92	
SOX14	TBL3	TMEM206	TTC1	VCP	ZNF131	ZNF98	
SOX30 SPAG5	TBP TBY18	TMEM209 TMEM211	TTC14	VCPKMT	ZNF157 ZNF174	ZNF99 ZNRE2	
SPANXB1	TBXID	TMEM214	TTC21B	VEZT	ZNF182	ZP2	
SPATA25	TCEAL4	TMEM220	TTC36	VGLL2	ZNF185	ZPBP2	
SPATA3	TCEAL5	TMEM225B	TTC37	VIPR1	ZNF189	ZRANB2	
SPATA31A7	TCERG1	TMEM231	TTC8	VKORC1 VMP1	ZNF197 ZNF208	ZSWIM4 ZSWIM5	
SPATA7	TCFL5	TMEM243	TTC9	VN1R2	ZNF211	ZSWIM7	
SPC25	TCIM	TMEM244	ТТС9В	VN1R5	ZNF217	ZUP1	
SPCS2	TCP10L2	TMEM25	TTC9C	VOPP1	ZNF224	ZW10	
SPDYE6 SPECC11	TCTE1	TMENI267	TTI2	VPREB1 VPS130	ZNF225 7NF251		
SPG21	TCTEX1D2	TMEM30B	ттк	VPS16	ZNF257		
SPINK4	TDGF1	TMEM35B	TTLL10	VPS4B	ZNF263		
SPIRE1	TDO2	TMEM37	TTLL3	VSIG10L	ZNF264		
SPOUT1	TECRL	TMEM41A	TUB	VSTM1	ZNF267		
SPRR2D	TEDDM1	TMEM42	TUBA3C	VTN	ZNF268		
SPRR4	TEKT1	TMEM45A	TUBB	VWA3B	ZNF273		
SPRIN SPTRN5	TEKT2 TEKT2	TMEM52B TMEM54	TUT1 TVP234	WASE2	ZNF274 ZNF276		
SPTLC1	TERF1	TMEM61	TVP23B	WASHC1	ZNF280D		
SPTSSB	TERF2IP	TMEM62	TWF2	WASHC2C	ZNF302		
SRD5A3	TESPA1	TMEM65	TWIST2	WASHC4	ZNF324B		
SRP14	TEX28	TMEM74	TXINB	WDF11 WDR19	ZNF329 ZNF331		
SRP19	TEX30	TMEM86B	TXN2	WDR35	ZNF337		
SRRM3	TEX46	TMEM97	TXNDC15	WDR41	ZNF33A		
SKRM5 SSR	TEAD2E	TMPRSS11A TMPRSS6	TXNDC5	WDR47 WDR62	ZNF354A 7NF391		
SSBP2	TFCP2	TMSB15A	TYMS	WDR02 WDR7	ZNF431		
SSC4D	TFCP2L1	TMTC2	TYR	WDR74	ZNF436		
SSH2	TFDP3	TMX1	TYRP1	WDR89	ZNF438		
SSR4 SSTR2	TFPT	TNERSE13C TNESE13B	IYSND1 HAP1L1	WDR92 WDSUB1	ZNF440 ZNF442		
SSTR3	TGFA	TNIP3	UBA52	WFDC10B	ZNF45		
SSX2	TGFB2	TNP1	UBA6	WIPI1	ZNF474		
SSX2B	TGFB3	TNS2	UBAC1	WNK2	ZNF479		
ST13	TGM1	TOGARAM2	UBE2D3-AS1	WNT10B	ZNF491 ZNF492		
ST3GAL4	TGM2	TOMM20	UBE2E1	WNT16	ZNF510		
ST8SIA6	THAP2	TOMM20L	UBE2E3	WSB1	ZNF525		
STAG3L3	THAP7-AS1	TOMM34	UBE2G1	XIRP1	ZNF529		
STARD5	THBS4	TOMM70	UBE2NL	XPN XPNPEP1	ZINF529-AS1 ZNF534		
STARD6	THEG	ТОРЗА	UBE2Q2L	XPO6	ZNF544		
STATH	THEG5	ТОРЗВ	UBE2S	XPOT	ZNF547		
STK10 STK31	THEGL	TOPAZ1	UBE2U	XRCC5	ZNF548		
STK33	THEMIS2	TOR2A	UBL4B	YAE1	ZNF57		
STK36	THNSL1	TOX3	UBL5	YAF2	ZNF572		
STOM	THOC6	TP53INP1	UBLCP1	YARS	ZNF576		
STXBP2	TIAM?	TP73-AS1	UBQLN3	YFATS2	21NF582 ZNF5854		

Styrin Tigoz TPBG UBRS VIFIB ZNF5878 Supplementary Table 2 (9/9). Downregulated genes in response to metabolic stress (Log₂FC<-0.265) in BRAFV600E mutant cells.

Duratain	Description	Wah Chus	lunda Chua	SKMel103	where the second	Ulah Chua	luida Chua	UACC903	
Protein	Description	High Gluc.	w/o Gluc.	High Gluc. + SF	w/o Gluc. + SF	High Gluc.	w/o Gluc.	High Gluc. + SF	w/o Gluc. + SF
АСТВ	Actin, cytoplasmic 1	0	21	4	11	3	4	3	5
AHNAK	Neuroblast differentiation-associated protein AHNAK	0	0	0	0	5	/	12	6
	A-Kinase anchor protein 2	0	8	11	5	15	0	2	7
	Appovin A2	0	12	4	14 6	15	2	5	7
	Attaxin 2	1	12	2	0	6	6	6	5
ATXN2	Ataxin-2-like protein	26	31	25	27	49	44	52	38
BAG3	BAG family molecular chaperone regulator 3	115	55	102	80	114	111	121	117
BCLAF1	Bcl-2-associated transcription factor 1	40	28	42	12	36	36	29	21
BRD4	Bromodomain-containing protein 4	19	16	19	21	17	17	18	14
C20orf27	UPF0687 protein C20orf27	10	16	8	11	4	7	5	6
CALM1	Calmodulin-1	20	14	21	21	17	19	17	19
CALU	Calumenin	4	0	6	2	8	9	10	10
CAMSAP2	Calmodulin-regulated spectrin-associated protein 2	1	11	1	9	0	0	0	0
CASC3	Protein CASC3	15	10	15	11	12	11	15	14
CCAR2	Cell cycle and apoptosis regulator protein 2	8	29	7	0	5	6	4	4
CCDC50	Colled-coil domain-containing protein 50	53	29	53	47	4/	46	55	53
CCDC6	Colled-coll domain-containing protein 6	24	22	30	34	16	9	12	22
CCDC9	Colled coll domain-containing protein 9	18	°	19	14	10	14	14	20
CCT2	T-complex protein 1 subunit beta	0	12	0	3	0	0	0	0
CDC37	Hsp90 co-chaperone Cdc37	10	7	10	10	6	7	9	8
CDK11B	Cyclin-dependent kinase 11B	0	16	3	16	0	0	2	0
CDK12	Cyclin-dependent kinase 12	2	17	3	0	5	5	5	4
CEP170	Centrosomal protein of 170 kDa	14	27	16	7	45	45	38	42
CEP55	Centrosomal protein of 55 kDa	8	5	11	6	9	11	16	15
CKAP4	Cytoskeleton-associated protein 4	32	35	32	37	30	32	32	33
CKS2	Cyclin-dependent kinases regulatory subunit 2	11	11	12	8	9	6	7	6
CLPB	Caseinolytic peptidase B protein homolog	0	10	0	2	0	0	0	0
CNN2	Calponin-2	7	2	7	2	11	5	9	3
CORO1C	Coronin-1C	1	14	2	8	0	0	0	0
CPSF6	Cleavage and polyadenylation specificity factor subunit 6	13	24	18	15	10	14	18	15
CPSF/	Creavage and polyadenyiation specificity factor subunit /	12	18	11	13	13	14	10	- 11 F
CSTF2	Cleavage stimulation factor subunit 2	11	6	13	9	2	4	10	6
CTTN	Src substrate cortactin	69	65	78	69	83	75	82	75
CWC22	Pre-mRNA-splicing factor CWC22 homolog	4	12	3	16	4	4	2	2
CYR61	Protein CYR61	45	31	36	30	15	11	13	18
DAP	Death-associated protein 1	19	8	17	11	2	5	5	10
DBR1	Lariat debranching enzyme	6	15	5	12	4	3	3	4
DDX1	OS=Homo sapiens OX=9606 GN=DDX1 PE=1 SV=2	0	16	0	6	2	3	1	1
DDX18	ATP-dependent RNA helicase DDX18	0	13	0	5	0	0	0	0
DDX3X	ATP-dependent RNA helicase DDX3X	0	32	0	16	0	1	0	0
DDX42	ATP-dependent RNA helicase DDX42	21	46	19	44	24	24	22	22
DDX47	Probable ATP-dependent RNA helicase DDX47	1	15	1	6	0	0	0	0
DDX6	Probable ATP-dependent RNA helicase DDX6	3	24	1	/	1	2	1	1
DHX15	Pre-mkNA-splicing factor ATP-dependent kNA helicase DHX15	6	50	5	20	2	2	2	3
DHX36	ATP-dependent DNA/RNA helicase DHX36	1	20	0	5	1	2	0	1
DHX38	Pre-mRNA-splicing factor ATP-dependent RNA belicase PRP16	0	20	0	12	0	2	0	1
DNAJA1	DnaJ homolog subfamily A member 1	16	10	14	13	14	17	17	24
DNAJB11	DnaJ homolog subfamily B member 11	6	7	4	3	8	13	10	10
ECM1	Extracellular matrix protein 1	18	6	16	11	44	41	49	48
EEF1A1	Elongation factor 1-alpha 1	17	24	19	25	21	16	17	13
ELAVL1	ELAV-like protein 1	3	12	1	7	0	1	1	1
ELOA	Elongin-A	6	11	7	6	11	11	13	11
FAU	40S ribosomal protein S30	6	6	7	6	10	9	11	11
FIP1L1	Pre-mRNA 3'-end-processing factor FIP1	21	13	21	8	30	33	29	18
FUBP1	Far upstream element-binding protein 1	9	3	13	7	4	5	5	4
GAPDH	Glyceraldenyde-3-phosphate denydrogenase	/	12	8	5	8	9	6	5
GPATCH4 GPNMB	Transmembrane glycoprotein NMB	0	0	0	5	11	12	20	10
GRN	Granulins	26	18	21	19	31	30	33	29
HEXIM1	Protein HEXIM1	16	12	12	16	32	22	27	32
HEXIM2	Protein HEXIM2	4	0	4	2	10	12	15	12
HLA-DRB1	HLA class II histocompatibility antigen, DRB1-1 beta chain	0	2	0	0	10	10	9	8
HMGB1	High mobility group protein B1	13	4	13	9	6	5	11	8
HMGB2	High mobility group protein B2	8	2	10	7	0	0	3	0
HMMR	Hyaluronan mediated motility receptor	25	12	22	17	20	17	19	17
HNRNPH1	Heterogeneous nuclear ribonucleoprotein H	4	19	3	13	6	8	4	4
HNRNPL	Heterogeneous nuclear ribonucleoprotein L	8	33	13	26	10	13	13	b 2
HNRNPLL	Heterogeneous nuclear ribonucleoprotein L-like	25	51	30	3	15	2	10	21
HOMER3	Homer protein homolog 3	11	8	6	5	6	5	4	4
HOXC4	Homeobox protein Hox-C4	16	7	18	9	14	12	12	14
HSP90AA1	Heat shock protein HSP 90-alpha	13	19	22	21	6	11	12	12
HSP90AB1	Heat shock protein HSP 90-beta	14	17	19	18	13	17	21	19
HSPA1A	Heat shock 70 kDa protein 1A	0	13	0	13	9	11	0	4
HSPA2	Heat shock-related 70 kDa protein 2	0	0	0	0	0	11	0	0
HSPA5	Endoplasmic reticulum chaperone BiP	26	31	30	20	42	44	34	40
HSPA8	Heat shock cognate 71 kDa protein	24	50	28	40	31	35	27	23
IGF2BP2	Insulin-like growth factor 2 mRNA-binding protein 2	2	15	4	9	4	5	2	1
ILF3	Interleuxin ennancer-binding factor 3	2	10	3	y 22	U 1	U	U	U 2
KAZN	Kazrin		18	0	0	11	8	11	2
KIESB	Kinesin-1 heavy chain	2	19	1	16	1	1	1	
KNOP1	Lysine-rich nucleolar protein 1	8	6	6	9	12	10	8	6
KRT1	Keratin, type II cytoskeletal 1	33	15	23	40	16	7	27	39
KRT10	Keratin, type I cytoskeletal 10	20	8	15	21	14	12	18	28
KRT13	Keratin, type I cytoskeletal 13	0	0	0	0	0	0	0	14
KRT14	Keratin, type I cytoskeletal 14	24	0	0	7	0	0	0	8
KRT16	Keratin, type I cytoskeletal 16	34	0	0	8	0	0	0	8
KRT17	Keratin, type I cytoskeletal 17	13	0	0	0	0	0	0	0
KRT2	Keratin, type II cytoskeletal 2 epidermal	9	4	5	24	6	3	9	27
KRT4	Keratin, type II cytoskeletal 4	0	0	0	0	0	0	0	14
KR15	Keratin, type II cytoskeletal 5	10		0	4	0	0	Ů	y 10
KRTEC	Keratin, type II cytoskeletal 60	25	0	0	/	0	0	0	0
KRT9	Keratin, type il cytoskeletal 9	23	1	8	35	6	2	20	12
LANCI2	LanC-like protein 2	21	11	0		0	3 1	1	2
	and me protein 2				,				
Supplei	mentary Table 3 (1/3). LC-MS/MS	s obta	ined i	peptide	counts.	Gluc.=	Gluco	se, SF=S	orafenib

				SKMel103				UACC903	(
Protein	Description	High Gluc.	w/o Gluc.	High Gluc. + SF	w/o Gluc. + SF	High Gluc.	w/o Gluc.	High Gluc. + SF	w/o Gluc. + SF
LEF1	Lymphoid enhancer-binding factor 1 Prelamin_A/C	9 126	4	9	9	268	22	20	203
LRPAP1	Alpha-2-macroglobulin receptor-associated protein	43	34	43	37	42	40	45	45
LUC7L	Putative RNA-binding protein Luc7-like 1	19	12	18	6	12	12	14	14
LUC7L2	Putative RNA-binding protein Luc7-like 2	40	34	42	20	36	42	38	39
	Cell growth-regulating nucleolar protein	5	21	5	5	1/	1/	14	11
MAP2	Microtubule-associated protein 2	15	0	2	0	5	8	7	14
MAPK1	Mitogen-activated protein kinase 1	0	17	0	11	0	0	0	2
MATR3	Matrin-3	0	17	1	3	3	3	1	2
MAX	Protein max DNA replication licensing factor MCM2	16	9	18	16	17	16	17	18
MCM5	DNA replication licensing factor MCM5	0	30	0	22	23	4	1	3
MCRIP1	Mapk-regulated corepressor-interacting protein 1	34	17	33	28	15	20	18	15
MFAP1	Microfibrillar-associated protein 1	17	13	18	23	12	12	13	13
MFGE8 MID1	Lactadherin E3 ubiquitin-protein ligase Midline-1	2	11	2	5	0	0	0	0
MTHFD1L	Monofunctional C1-tetrahydrofolate synthase, mitochondrial	0	10	0	2	0	0	0	0
МҮСВР	c-Myc-binding protein	9	9	11	11	9	10	12	10
MYL6	Myosin light polypeptide 6	15	11	13	11	13	13	12	13
NCL NDF1	Nucleolin	7	2	11	7	8	11	9	10
NHP2	H/ACA ribonucleoprotein complex subunit 2	8	8	10	5	6	7	7	6
NOB1	RNA-binding protein NOB1	3	14	3	11	4	5	3	0
NONO	Non-POU domain-containing octamer-binding protein	79	84	62	73	58	66	57	42
NOTCH2 NPM1	Neurogenic locus notch homolog protein 2	6	5	6 11	2	8	14	16	9
NRP1	Neuropilin-1	1	10	1	9	0	1	0	1
NSRP1	Nuclear speckle splicing regulatory protein 1	29	14	34	26	29	24	28	28
NUCB1	Nucleobindin-1	59	50	64	80	35	43	34	63
NUCB2 NUDT21	NULLEODINGIN-2 Cleavage and polyadenylation specificity factor subunit 5	3	3 21	4	4	8	16	15	32 9
NUFIP2	Nuclear fragile X mental retardation-interacting protein 2	7	6	6	7	19	21	26	20
NUSAP1	Nucleolar and spindle-associated protein 1	11	8	9	10	4	2	6	2
OGFR	Opioid growth factor receptor	15	7	14	7	13	8	10	9
PABPCI	Polyadenylate-binding protein 1 Palladin	1 14	15	1	14	23	20	1	U 17
PBXIP1	Pre-B-cell leukemia transcription factor-interacting protein 1	9	10	10	8	8	9	9	10
PDLIM4	PDZ and LIM domain protein 4	35	35	37	33	29	29	29	29
PELO	Protein pelota homolog	4	15	6	10	4	1	1	1
PFKFB2 PFKFB3	6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2	47	135	43	95	0	0	0	47
PHF6	PHD finger protein 6	13	20	13	15	5	10	5	3
PIP4K2C	Phosphatidylinositol 5-phosphate 4-kinase type-2 gamma	2	10	1	4	1	1	2	3
PITHD1	PITH domain-containing protein 1	2	10	3	6	2	6	4	3
POLDIP2 PPIL4	Peptidyl-prolyl cis-trans isomerase-like 4	12	22	11	12	10	16	11	12
PPP1R10	Serine/threonine-protein phosphatase 1 regulatory subunit 10	11	12	6	9	15	12	15	10
PQBP1	Polyglutamine-binding protein 1	21	19	19	22	21	20	18	21
PRDX1 PRKAA1	Peroxiredoxin-1 5'-AMP-activated protein kinase catalytic subunit alpha-1	6	12	6	8	5	5	4	7
PRPF38B	Pre-mRNA-splicing factor 38B	3	10	4	3	2	2	2	2
PRPF40A	Pre-mRNA-processing factor 40 homolog A	9	16	12	18	10	12	8	3
PRRC2C	Protein PRRC2C	3	1	0	5	6	7	8	19
PSAP	Prosaposin 265 proteasome pon-ATPase regulatory subunit 9	12	4	14	9	10	7	10	15
PSPC1	Paraspeckle component 1	28	29	28	26	28	28	27	25
RAI1	Retinoic acid-induced protein 1	0	0	1	1	13	7	10	7
RAVER1	Ribonucleoprotein PTB-binding 1	3	16	2	7	2	4	0	2
RBIVI25 RBM27	RNA-binding protein 25 RNA-binding protein 27	15	29	13	32	20	15	18	14
RBM33	RNA-binding protein 33	6	5	5	5	12	9	16	6
RCN1	Reticulocalbin-1	16	12	17	13	9	16	11	12
RNF20	E3 ubiquitin-protein ligase BRE1A	2	11	3	6	0	2	1	1
RPL23A	60S ribosomal protein L23a	9	12	11	11	12	12	14	8
RPL31	60S ribosomal protein L31	10	9	8	9	10	8	7	12
RPL9	60S ribosomal protein L9	1	10	1	4	2	1	0	3
RPLP2	605 acidic ribosomal protein P2	14	11	16	11	11	11	14	15
RPS10	40S ribosomal protein S10	10	10	2	6	5	4	1	3
RPS14	40S ribosomal protein S14	12	14	10	12	12	12	9	11
RPS15A	405 ribosomal protein S15a	6	16	6	9	6	7	5	7
RPS17 RPS19	405 ribosomal protein S17 405 ribosomal protein S19	32	21	9 21	21	22	20	20	24
RPS2	40S ribosomal protein S2	2	19	2	13	3	4	1	3
RPS20	40S ribosomal protein S20	9	11	8	8	7	8	9	8
RPS21 RPS3	405 ribosomal protein S21 405 ribosomal protein S3	9	10	11	10	21	10	8	21
RPS3A	40S ribosomal protein S3a	13	45 36	14	26	17	20	14	16
RPS4X	40S ribosomal protein S4, X isoform	6	36	9	31	6	10	8	11
RPS5	40S ribosomal protein S5	15	17	18	14	11	16	13	10
RSRC2 RTCR	Arginine/serine-rich coiled-coil protein 2	17	8	14	0	13	13	13	17
RTRAF	RNA transcription, translation and transport factor protein	26	19	31	24	29	32	31	30
RUVBL1	RuvB-like 1	2	16	6	6	4	3	0	1
RUVBL2	RuvB-like 2	5	17	3	12	1	1	0	0
SAFB SAFR2	Scatfold attachment factor B1	14	9	14	13	13	12	10 0	6
SAPB2 SAP30BP	SAP30-binding protein	9	б 9	14	7	7	7	8	6
SART1	U4/U6.U5 tri-snRNP-associated protein 1	60	55	57	42	53	54	53	42
SASH1	SAM and SH3 domain-containing protein 1	1	0	0	0	12	15	14	13
SCAF8	Protein SCAF8 Protein transport protein Sec16A	3	3	7	5	25	12	12	9
SEC31A	Protein transport protein Sec31A	10	16	0	9	0	0	20	10
SERBP1	Plasminogen activator inhibitor 1 RNA-binding protein	112	92	110	121	79	97	92	106
SERPINH1	Serpin H1	17	47	19	20	26	40	22	30
SF1 SF3A1	Splicing factor 1 Splicing factor 34 subunit 1	84	60	82	69	54	/3	/7	/6
SF3A2	Splicing factor 3A subunit 2	16	13	13	9	10	12	9	8
						•			

Supplementary Table 3 (2/3). LC-MS/MS obtained peptide counts. Gluc.=Glucose, SF=Sorafenib

		SKMel103			UACC903				
Protein	Description	High Gluc.	w/o Gluc.	High Gluc. + SF	w/o Gluc. + SF	High Gluc.	w/o Gluc.	High Gluc. + SF	w/o Gluc. + SF
SE3A3	Splicing factor 3A subunit 3	25	26	19	26	18	18	15	17
SE3R1	Splicing factor 3B subunit 1	7	53	1	30	20	2	3	5
51301	Splicing factor 3D subunit 3	, ,	50	-	55	40	61	42	40
5F3D2	Splicing factor 3D subunit 2	10	49	30	33	40	5	42	40
5F3D3	Splicing factor SB suburit 5	10	46	0	33	3	5	0	4
5F3B4	Splicing factor 3B subunit 4	19	21	1/	10	18	16	11	11
SF3B5	Splicing factor 3B subunit 5	10	9	8	9	/	/	6	10
SFPQ	Splicing factor, proline- and glutamine-rich	90	95	88	103	102	105	89	89
SKP1	S-phase kinase-associated protein 1	12	4	9	9	5	6	7	8
SLC9A3R2	Na(+)/H(+) exchange regulatory cofactor NHE-RF2	26	17	28	26	29	27	29	29
SMAP	Small acidic protein	19	14	19	16	9	10	8	16
SMARCC1	SWI/SNF complex subunit SMARCC1	1	10	0	9	0	3	0	0
SMARCE1	SWI/SNF matrix-assoc actin-dependent regulator of chromatin E1	12	10	11	9	13	14	12	10
SNRPA1	U2 small nuclear ribonucleoprotein A'	3	6	3	10	4	4	4	7
SNW1	SNW domain-containing protein 1	15	15	12	25	11	16	15	22
SORBS2	Sorbin and SH3 domain-containing protein 2	6	5	5	3	17	13	11	13
SOX10	Transcription factor SOX-10	17	15	18	14	20	24	26	19
SOX5	Transcription factor SOX-5	0	0	0	0	8	8	7	6
SPATS2L	SPATS2-like protein	6	15	7	6	8	10	11	12
SPTY2D1	Protein SPT2 homolog	11	3	9	5	7	6	10	8
SRPK1	SRSF protein kinase 1	12	22	13	17	4	6	6	7
SRPK2	SRSF protein kinase 2	0	10	0	8	4	3	4	7
SRRM1	Serine/arginine repetitive matrix protein 1	6	2	8	25	5	7	6	14
SRRT	Serrate RNA effector molecule homolog	8	23	7	19	4	12	5	8
SYNJ2	Synaptojanin-2	0	10	0	3	0	0	0	0
SYNM	Svnemin	0	0	0	0	11	8	6	4
TAOK1	Serine/threonine-protein kinase TAO1	0	14	3	7	2	0	2	2
TCE20	Transcription factor 20	0	0	0	0	12	7	7	4
THRADS	Thursdiption factor 20	23	23	32	7	33	36	24	20
TIAD1	Tight junction accordated protein 1	17	2.5	16	15	30	21	10	10
TID1	Tight junction protein 70.1	11	37	10	16	20	6	6	2
TIDO	Tight junction protein 20-1	22	2/	20	21	2	0	2	2
TIPZ	Tight junction protein 20-2	22	54	29	51	2	4	2	2
TIMA16	Translation machinery-associated protein 16	1/	14	1/	17	26	21	23	23
TIVISB4X	Inymosin beta-4	8	5	10	10	5	5	8	/
TNIP1	INFAIP3-interacting protein 1	14	5	14	/	10	10	10	9
TOP1	DNA topoisomerase 1	1/	41	14	33	/	18	8	g
TPM1	Iropomyosin alpha-1 chain	8	0	10	0	8	9	8	8
TPM3	Tropomyosin alpha-3 chain	16	8	17	14	12	14	15	16
TPM4	Tropomyosin alpha-4 chain	20	13	26	18	14	17	11	17
TPX2	Targeting protein for Xklp2	33	15	25	23	17	21	22	18
TRA2B	Transformer-2 protein homolog beta	17	7	15	9	14	13	10	8
TRIM28	Transcription intermediary factor 1-beta	2	12	4	4	0	3	1	1
TSR1	Pre-rRNA-processing protein TSR1 homolog	5	28	6	21	3	6	3	2
TUBA1B	Tubulin alpha-1B chain	0	30	13	23	11	15	0	16
TUBA1C	Tubulin alpha-1C chain	11	32	13	24	0	13	0	0
TUBB	Tubulin beta chain	23	48	20	38	17	18	14	15
TUBB2A	Tubulin beta-2A chain	0	32	0	0	0	0	0	0
TUBB4B	Tubulin beta-4B chain	21	42	20	38	15	16	12	13
TUBB6	Tubulin beta-6 chain	0	13	0	10	0	0	0	0
TUFM	Elongation factor Tu, mitochondrial	14	35	12	27	12	18	13	18
U2AF2	Splicing factor U2AF 65 kDa subunit	10	20	9	16	8	11	7	10
U2SURP	U2 snRNP-associated SURP motif-containing protein	4	20	6	20	5	5	5	1
UBAP2	Ubiquitin-associated protein 2	5	12	7	9	12	13	10	8
UBAP2L	Ubiquitin-associated protein 2-like	40	28	36	30	33	28	32	25
USP7	Ubiquitin carboxyl-terminal hydrolase 7	0	27	0	10	1	2	1	2
VGLL4	Transcription cofactor vestigial-like protein 4	16	8	14	15	20	22	20	22
VIM	Vimentin	73	90	76	21	75	71	54	32
WBP11	WW domain-binding protein 11	18	12	15	23	12	18	12	29
WDR33	pre-mRNA 3' end processing protein WDR33	6	5	12	10	19	16	14	8
WDR82	WD repeat-containing protein 82	0	11	0	6	0	0	0	0
WTAP	Pre-mRNA-splicing regulator WTAP	15	9	18	11	19	15	16	13
WWTR1	WW domain-containing transcription regulator protein 1	27	16	32	19	20	17	20	21
YBX1	Nuclease-sensitive element-binding protein 1	28	14	21	16	18	14	24	17
YY1	Transcriptional repressor protein YY1	14	11	15	8	12	11	10	12
703H4	Zinc finger CCCH domain-containing protein 4	18	23	33	32	20	28	23	17
7FP91	F3 ubiquitin-protein ligase 7EP91	7	6	6	6	5	5	4	3
ZNE593	Zinc finger protein 593	0	5	11	7	0	10	10	7
ZNF333	Zinc hinger protein 355	11	7	8	8	7	6	10	,
LINI / 0/	Entermber protein vov			0	J	,	5	+	J

Supplementary Table 3 (3/3). LC-MS/MS obtained peptide counts. Gluc.=Glucose, SF=Sorafenib

	Score	Mr calc.	Delta	Sequence	Site Analysis
	53.7	1502.6766	-0.0001	NSFTPLSSSNTIR	Phospho S2 99.12%
	33.1	1502.6766	-0.0001	NSFTPLSSSNTIR	Phospho T4 0.86%
	16.1	1502.6766	-0.0001	NSFTPLSSSNTIR	Phospho S7 0.02%
	14.2	1502.6643	0.0122	ASLRAKTSPEGAR	
\$466	11.9	1502.6766	-0.0001	GSEGTPDSLHKAPK	
3400	10	1502.6766	-0.0001	NSFTPLSSSNTIR	Phospho S8 0.00%
	8.8	1501.6674	1.009	ASTHDSLAHGASLR	
	6.1	1502.6701	0.0064	YPIRSGMVSSGNR	
	5.4	1502.6766	-0.0001	NSFTPLSSSNTIR	Phospho S9 0.00%
	5	1502.6766	-0.0001	KSSINEQFVDTR	
	26.7	1658.7777	-0.0013	RNSFTPLSSSNTIR	Phospho T5 49.85%
	26.6	1658.7777	-0.0013	RNSFTPLSSSNTIR	Phospho S3 49.05%
	12.1	1658.7681	0.0082	IKSTNPGISIGDVAK	
	7.1	1658.7777	-0.0013	RNSFTPLSSSNTIR	Phospho S9 0.55%
T468	5.8	1658.7699	0.0065	RLGSDLTSAQKEMK	
1400	5.8	1658.7699	0.0065	RLGSDLTSAQKEMK	
	4.8	1657.7865	0.9899	GGPLDFSSIPSRAFK	
	3.3	1657.76	1.1064	ADIIASSDIEEFLR	
	2.9	1657.76	1.1064	ADIIASSDIEEFLR	
	2.9	1658.7777	-0.0013	RNSFTPLSSSNTIR	Phospho S8 0.21%
	34.7	1862.9767	0.0011	NYSVGSRPLKPLSPLR	Phospho S3 95.97%
	20.9	1862.9767	0.0011	NYSVGSRPLKPLSPLR	Phospho S6 3.99%
	10.7	1862.9615	0.0163	SHLSLVGTASGLGSNKKK	
	6	1861.9646	1.0132	IDDGQGQVSAILGHSLPR	
S483	3.7	1862.9924	-0.0146	QEYETKLKGLMPASLR	
	3.5	1861.9597	1.0181	RMHTAVKLNEVIVTR	
	3.1	1862.9615	0.0163	SHLSLVGTASGLGSNKKK	
	3.1	1861.9777	1.0001	ISSISKIFPVLMLYR	
	1.9	1862.9615	0.0164	AQLEKLQAEISQAARK	
	1.6	1862.9625	0.0153		
	20.4	1862.9767	0.0007		
	20.3	1862.9767	0.0007		
	0.9 7 0	1961.0646	-0.0149		
	7.2	1962 0615	0.0150		
S486	5.1	1862 97/6	0.0139		
	3.1	1862 9615	0.0020		
	3.1	1861,9568	1.0207		
	2.6	1862.9729	0.0045	AFHLLOKLLTMDPIK	
	1.7	1862.9811	-0.0037		
	27.3	1862.9767	0.0029	NYSVGSRPLKPLSPLR	Phospho S13 99.53%
6402	2.4	1862.9767	0.0029	NYSVGSRPLKPLSPLR	Phospho S6 0.32%
5495	1.2	1861.9591	1.0206	TVQFGGTVTEVLLKYK	•
	0.1	1862.9823	-0.0027	ARGAAAGSGVPAAPGPSGRTR	
	27.6	1942.9431	0.0017	NYSVGSRPLKPLSPLR	Phospho S3, S13 88.19%
	17.3	1942.9431	0.0017	NYSVGSRPLKPLSPLR	Phospho S3, S6 8.29%
	13.6	1942.9431	0.0017	NYSVGSRPLKPLSPLR	Phospho S6. S13 3.52%
6402.	6.4	1942.9497	-0.0049	HGAGAEISTVNPEQYSKR	
5483+	5.2	1942.9352	0.0096	AEALVLMGTKANLVTPR	
S493	1.8	1942.9278	0.017	ASLIGTPSRASLIGTPSR	
	1.5	1942.9278	0.017	ASLIGTPSRASLIGTPSR	
	1.2	1942.9587	-0.0139	QEYETKLKGLMPASLR	
	1.2	1942.9278	0.017	ALRLGDAILSVNGTDLR	
	1	1942.9634	-0.0186	ASIMRLTISYLRMHR	

Supplementary Table 4. Phosphorylation of PFKFB2 peptides identified by mass spectrometry. Monoisotopic mass of neutral peptide (Mr calc.) values are represented along with the observed deviation of the measured values from the theoretical mass of the peptides (delta) and sequence. Score indicates how well the observed spectrum matches to the stated peptide. Large score differences will strongly favor one arrangement over the other (site analysis).

Cell line	Organism	Tissue	NRAS/BRAF mutational status	Culture media
SKMel103	H. sapiens	Skin	NRAS ^{Q61R}	DMEM 10% FBS
SKMel147	H. sapiens	Skin	NRAS ^{Q61R}	DMEM 10% FBS
SKMel28	H. sapiens	Skin	BRAFV600E	EMEM 10% FBS
UACC903	H. sapiens	Skin	BRAFV600E	RPMI 10% FBS
A375	H. sapiens	Skin	BRAF ^{V600E}	DMEM 10% FBS
G361	H. sapiens	Skin	BRAFV600E	DMEM 10% FBS
NHEM	H. sapiens	Skin	-	M2 media
НЕК-293-Т	H. sapiens	Kidney	-	DMEM 10% FBS
Mmln1	H. sapiens	Skin	-	DMEM 20% FBS
Mmgp3	H. sapiens	Skin	-	DMEM 20% FBS
Mmsk8	H. sapiens	Skin	-	DMEM 20% FBS
Mmln9	H. sapiens	Skin	NRAS ^{Q61}	DMEM 20% FBS
Mmln10	H. sapiens	Skin	NRAS ^{Q61}	DMEM 20% FBS
Mmln14	H. sapiens	Skin	-	DMEM 20% FBS
Mmln16	H. sapiens	Skin	NRAS ^{Q61}	DMEM 20% FBS
Mmsk22	H. sapiens	Skin	-	DMEM 20% FBS
Mmln23	H. sapiens	Skin	-	DMEM 20% FBS
Mmln24	H. sapiens	Skin	-	DMEM 20% FBS
Mmsk29	H. sapiens	Skin	-	DMEM 20% FBS
Mmln30	H. sapiens	Skin	-	DMEM 20% FBS
Mmln31	H. sapiens	Skin	-	DMEM 20% FBS

Supplementary Table 5. Cell lines information. Compilation of cell lines information including organism and tissue of origin; mutational status for *BRAF* and *NRAS*; and cell culture media.

BIBLIOGRAPHY

- 1. Bray, F. *et al.* Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA. Cancer J. Clin.* 68, 394–424 (2018).
- 2. Nehal, K. S. & Bichakjian, C. K. Update on keratinocyte carcinomas. *N. Engl. J. Med.* 379, 363–374 (2018).
- 3. American Cancer Society. http://cancerstatisticscenter.cancer.org.
- 4. The Skin Cancer Foundation. http://skincancer.org.
- 5. Lo, J. A. & Fisher, D. E. The melanoma revolution: From UV carcinogenesis to a new era in therapeutics. *Science (80-.).* 346, 945–949 (2014).
- 6. Miller, Arlo J.; Mihm, M. C. Melanoma. *N. Engl. J. Med.* 355, 51–65 (2006).
- Whiteman, D. C., Whiteman, C. A. & Green, A. C. Childhood sun exposure as a risk factor for melanoma: A systematic review of epidemiologic studies. *Cancer Causes Control* 12, 69–82 (2001).
- 8. Alexandrov, L. B. *et al.* Signatures of mutational processes in human cancer. *Nature* 500, 415–421 (2013).
- 9. Hayward, N. K. *et al.* Whole-genome landscapes of major melanoma subtypes. *Nature* 545, 175–180 (2017).
- 10. Clark, W. H. *et al.* A study of tumor progression: The precursor lesions of superficial spreading and nodular melanoma. *Hum. Pathol.* 15, 1147–1165 (1984).
- 11. Gray-Schopfer, V., Wellbrock, C. & Marais, R. Melanoma biology and new targeted therapy. *Nature* 445, 851–857 (2007).
- 12. Ward, William H.; Lambreton, Fernando; Goel, Neha;Yu, Jian Q.; Farma, J. M. Clinical Presentation and Staging of Melanoma. *Round Table Ser. R. Soc. Med.* 39-47 (1987) doi:10.1007/978-3-642-96258-5_8.
- 13. Seuradge, J. & Wong, E. www.pathophys.org/melanoma/. www.pathophys.org/melanoma/.
- 14. Pollock, P. M. *et al.* High frequency of BRAF mutations in nevi. *Nat. Genet.* 33, 19–20 (2003).
- 15. Michaloglou, C. *et al.* BRAFE600-associated senescence-like cell cycle arrest of human naevi. *Nature* 436, 720–724 (2005).
- 16. Marks, R., Dorevitch, A. B. E. P. & Mason, G. DO ALL MELANOMAS COME FROM "MOLES "? A STUDY OF THE HISTOLOGICAL ASSOCIATION BETWEEN MELANOCYTIC NAEVI AND MELANOMA. 77–80 (1990).
- 17. Bevona, C., Goggins, W., Quinn, T., Fullerton, J. & Tsao, H. Cutaneous Melanomas Associated With Nevi. 139, (2016).
- 18. Gershenwald, J. E. *et al.* Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. *CA. Cancer J. Clin.* 67, 472–492 (2017).
- 19. Davies, H. *et al.* Mutations of the BRAF gene in human cancer. *Nature* 417, 949–954 (2002).
- 20. Curtin, J. A., Busam, K., Pinkel, D. & Bastian, B. C. Somatic activation of KIT in distinct subtypes of melanoma. *J. Clin. Oncol.* 24, 4340–4346 (2006).
- 21. Furge, K. A. *et al.* Suppression of Ras-mediated tumorigenicity and metastasis through inhibition of the Met receptor tyrosine kinase. *Proc. Natl. Acad. Sci. U. S. A.* 98, 10722–10727 (2001).
- 22. Gille, J. *et al.* Simultaneous blockade of VEGFR-1 and VEGFR-2 activation is necessary to efficiently inhibit experimental melanoma growth and metastasis formation. *Int. J. Cancer* 120, 1899–1908 (2007).
- 23. Van Raamsdonk, C. D. *et al.* Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. *Nature* 457, 599–602 (2009).
- 24. Stahl, J. M. *et al.* Deregulated Akt3 activity promotes development of malignant melanoma. *Cancer Res.* 64, 7002–7010 (2004).
- 25. Stark, M. & Hayward, N. Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays. *Cancer Res.* 67, 2632–2642 (2007).
- 26. McKay, M. M. & Morrison, D. K. Integrating signals from RTKs to ERK/MAPK. *Oncogene* 26, 3113–3121 (2007).
- 27. McGrath, J. P. *et al.* Structure and organization of the human Ki-ras proto-oncogene and a related processed pseudogene. *Nature* 304, 501–506 (1983).
- 28. Malumbres, M. & Barbacid, M. RAS oncogenes: The first 30 years. *Nat. Rev. Cancer* 3, 459–465 (2003).
- 29. Durrant, D. E. & Morrison, D. K. Targeting the Raf kinases in human cancer: The Raf dimer dilemma. *Br. J. Cancer* 118, 3–8 (2018).

- 30. Lavoie, H. & Therrien, M. Regulation of RAF protein kinases in ERK signalling. *Nat. Rev. Mol. Cell Biol.* 16, 281–298 (2015).
- 31. Dougherty, M. K. *et al.* Regulation of Raf-1 by direct feedback phosphorylation. *Mol. Cell* 17, 215–224 (2005).
- 32. Ascierto, P. A. *et al.* The role of BRAF V600 mutation in melanoma. *J. Transl. Med.* 10, 1–9 (2012).
- 33. Lowy, D. R. & Willumsen, B. M. Function and regulation of Ras. *Annu. Rev. Biochem.* 62, 851–891 (1993).
- 34. Fedorenko, I. V., Gibney, G. T. & Smalley, K. S. M. NRAS mutant melanoma: Biological behavior and future strategies for therapeutic management. *Oncogene* 32, 3009–3018 (2013).
- 35. Buday, L. & Downward, J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. *Cell* 73, 611–620 (1993).
- 36. Hobbs, G. A., Der, C. J. & Rossman, K. L. RAS isoforms and mutations in cancer at a glance. *J. Cell Sci.* 129, 1287–1292 (2016).
- 37. Castellano, E. & Santos, E. Functional specificity of Ras isoforms: So similar but so different. *Genes and Cancer* 2, 216–231 (2011).
- 38. Muñoz-Maldonado, C., Zimmer, Y. & Medová, M. A comparative analysis of individual ras mutations in cancer biology. *Front. Oncol.* 9, 1–22 (2019).
- 39. Whitwam, T. *et al.* Differential oncogenic potential of activated RAS isoforms in melanocytes. *Oncogene* 26, 4563–4570 (2007).
- 40. Muñoz-Couselo, E., Adelantado, E. Z., Ortiz, C., García, J. S. & Perez-Garcia, J. NRAS-mutant melanoma: Current challenges and future prospect. *Onco. Targets. Ther.* 10, 3941–3947 (2017).
- 41. Drosten, M. *et al.* Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. *EMBO J.* 29, 1091–1104 (2010).
- 42. Dumaz, N. *et al.* In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. *Cancer Res.* 66, 9483–9491 (2006).
- 43. Ritt, D. A., Monson, D. M., Specht, S. I. & Morrison, D. K. Impact of Feedback Phosphorylation and Raf Heterodimerization on Normal and Mutant B-Raf Signaling. *Mol. Cell. Biol.* 30, 806–819 (2010).
- 44. Devitt, B. *et al.* Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. *Pigment Cell Melanoma Res.* 24, 666–672 (2011).
- 45. Colebatch, A. J. *et al.* Molecular Genomic Profiling of Melanocytic Nevi. *J. Invest. Dermatol.* 139, 1762–1768 (2019).
- 46. Maldonado, J. L. *et al.* Determinants of BRAF mutations in primary melanomas. *J. Natl. Cancer Inst.* 95, 1878–1880 (2003).
- 47. Thumar, J., Shahbazian, D., Aziz, S. A., Jilaveanu, L. B. & Kluger, H. M. MEK targeting in N-RAS mutated metastatic melanoma. *Mol. Cancer* 13, 1–10 (2014).
- 48. Goel, V. K., Lazar, A. J. F., Warneke, C. L., Redston, M. S. & Haluska, F. G. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. *J. Invest. Dermatol.* 126, 154–160 (2006).
- 49. Castellano, E. & Downward, J. Ras interaction with PI3K: More than just another effector pathway. *Genes and Cancer* 2, 261–274 (2011).
- 50. Jakob, J. A. *et al.* NRAS mutation status is an independent prognostic factor in metastatic melanoma. *Cancer* 118, 4014–4023 (2012).
- 51. Edlundh-Rose, E. *et al.* NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: A study based on mutation screening by pyrosequencing. *Melanoma Res.* 16, 471–478 (2006).
- 52. Ferretta, A. *et al.* New insight into the role of metabolic reprogramming in melanoma cells harboring BRAF mutations. *Biochim. Biophys. Acta Mol. Cell Res.* 1863, 2710–2718 (2016).
- 53. Ratnikov, B. I., Scott, D. A., Osterman, A. L., Smith, J. W. & Ronai, Z. A. Metabolic rewiring in melanoma. *Oncogene* 36, 147–157 (2017).
- 54. Fischer, G. M. *et al.* Metabolic strategies of melanoma cells: Mechanisms, interactions with the tumor microenvironment, and therapeutic implications. *Pigment Cell Melanoma Res.* 31, 11–30 (2018).
- 55. Smith, L. K., Rao, A. D. & McArthur, G. A. Targeting metabolic reprogramming as a potential therapeutic strategy in melanoma. *Pharmacol. Res.* 107, 42–47 (2016).

- 56. Ruocco, M. R. *et al.* Metabolic flexibility in melanoma: A potential therapeutic target. *Semin. Cancer Biol.* (2019) doi:10.1016/j.semcancer.2019.07.016.
- 57. Haq, R. *et al.* Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. *Cancer Cell* 23, 302–315 (2013).
- 58. Luke, J. J. & Schwartz, G. K. Chemotherapy in the management of advanced cutaneous malignant melanoma. *Clin. Dermatol.* 31, 290–297 (2013).
- 59. Ambrosi, L., Khan, S., Carvajal, R. D. & Yang, J. Novel Targets for the Treatment of Melanoma. *Curr. Oncol. Rep.* 21, 1–16 (2019).
- 60. Hauschild, A. *et al.* Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, openlabel, phase 3 randomised controlled trial. *Lancet* 380, 358–365 (2012).
- 61. Chapman, P. B. *et al.* Improved survival with vemurafenib in melanoma with BRAF V600E mutation. *N. Engl. J. Med.* 364, 2507–2516 (2011).
- 62. Sullivan, R. J. & Flaherty, K. T. Resistance to BRAF-targeted therapy in melanoma. *Eur. J. Cancer* 49, 1297–1304 (2013).
- 63. Su, F. *et al.* RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. *N. Engl. J. Med.* 366, 207–215 (2012).
- 64. Mattei, P. L. *et al.* Cutaneous effects of BRAF inhibitor therapy: A case series. *Ann. Oncol.* 24, 530–537 (2013).
- 65. Johnson, D. B. *et al.* Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. *Eur. J. Cancer* 51, 2792–2799 (2015).
- 66. Villanueva, J. *et al.* Acquired Resistance to BRAF Inhibitors Mediated by a RAF Kinase Switch in Melanoma Can Be Overcome by Cotargeting MEK and IGF-1R/PI3K. *Cancer Cell* 18, 683–695 (2010).
- 67. Paraiso, K. H. T. *et al.* PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. *Cancer Res.* 71, 2750–2760 (2011).
- 68. Haq, R. *et al.* BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. *Proc. Natl. Acad. Sci. U. S. A.* 110, 4321–4326 (2013).
- 69. Smalley, K. S. M. *et al.* Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. *Mol. Cancer Ther.* 7, 2876–2883 (2008).
- 70. Nazarian, R. *et al.* Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. *Nature* 468, 973–977 (2010).
- 71. Wagle, N. *et al.* Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. *J. Clin. Oncol.* 29, 3085–3096 (2011).
- 72. Hernandez-Davies, J. E. *et al.* Vemurafenib resistance reprograms melanoma cells towards glutamine dependence. *J. Transl. Med.* 13, 1–11 (2015).
- 73. Ross, K. C., Andrews, A. J., Marion, C. D., Yen, T. J. & Bhattacharjee, V. Identification of the serine biosynthesis pathway as a critical component of BRAF inhibitor resistance of melanoma, pancreatic, and non-small cell lung cancer cells. *Mol. Cancer Ther.* 16, 1596–1609 (2017).
- 74. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. *Nature* 464, 427–430 (2010).
- 75. Heidorn, S. J. *et al.* Kinase-Dead BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF. *Cell* 140, 209–221 (2010).
- 76. Cope, N. *et al.* Mechanism of BRAF Activation through Biochemical Characterization of the Recombinant Full-Length Protein. *ChemBioChem* 19, 1988–1997 (2018).
- 77. Flaherty, K. T. *et al.* Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. *N. Engl. J. Med.* 367, 1694–1703 (2012).
- 78. Robert, C. *et al.* Improved overall survival in melanoma with combined dabrafenib and trametinib. *N. Engl. J. Med.* 372, 30–39 (2015).
- 79. Long, G. V. *et al.* Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAFmutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. *Lancet* 386, 444–451 (2015).
- 80. Basso, A. D., Kirschmeier, P. & Bishop, W. R. Farnesyl transferase inhibitors. *J. Lipid Res.* 47, 15–31 (2006).
- 81. Ryan, M. B. & Corcoran, R. B. Therapeutic strategies to target RAS-mutant cancers. *Nat. Rev. Clin. Oncol.* 15, 709–720 (2018).
- 82. Konstantinopoulos, P. A., Karamouzis, M. V. & Papavassiliou, A. G. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. *Nat.*

Rev. Drug Discov. 6, 541–555 (2007).

- 83. Kim, K. B. *et al.* Phase II trial of imatinib mesylate in patients with metastatic melanoma. *Br. J. Cancer* 99, 734–740 (2008).
- 84. Wyman, K. *et al.* Multicenter phase II trial of high-dose imatinib mesylate in metastatic melanoma: Significant toxicity with no clinical efficacy. *Cancer* 106, 2005–2011 (2006).
- 85. Carvajal, R. D. *et al.* Phase II study of nilotinib in melanoma harboring KIT alterations following progression to prior KIT inhibition. *Clin. Cancer Res.* 21, 2289–2296 (2015).
- 86. Atkins, M. B. *et al.* High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993. *J. Clin. Oncol.* 17, 2105–2116 (1999).
- 87. Topalian, S. L. *et al.* Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. *N. Engl. J. Med.* 366, 2443–2454 (2012).
- 88. Hamid, O. *et al.* Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. *N. Engl. J. Med.* 369, 134–144 (2013).
- 89. Hodi, F. S. *et al.* Improved survival with ipilimumab in patients with metastatic melanoma. *N. Engl. J. Med.* 363, 711–723 (2010).
- 90. Amaria, R. N. *et al.* Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. *Nat. Med.* 24, 1649–1654 (2018).
- 91. Wolchok, J. D. *et al.* Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. *N. Engl. J. Med.* 377, 1345–1356 (2017).
- 92. Luke, J. J., Flaherty, K. T., Ribas, A. & Long, G. V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. *Nat. Rev. Clin. Oncol.* 14, 463–482 (2017).
- 93. Leonardi, G. C., Candido, S., Falzone, L., Spandidos, D. A. & Libra, M. Cutaneous melanoma and the immunotherapy revolution. *Int. J. Oncol.* 57, 609–618 (2020).
- 94. Skoulidis, F. *et al.* STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. *Cancer Discov.* 8, 822–835 (2018).
- 95. Falchook, G. S. *et al.* Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: A phase 1 dose-escalation trial. *Lancet Oncol.* 13, 782–789 (2012).
- 96. Yeh, T. C. *et al.* Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. *Clin. Cancer Res.* 13, 1576–1583 (2007).
- 97. Adjei, A. A. *et al.* Phase I pharmacokinetic and pharmacodynamic study of the oral, smallmolecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. *J. Clin. Oncol.* 26, 2139–2146 (2008).
- 98. Rinehart, J. *et al.* Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. *J. Clin. Oncol.* 22, 4456–4462 (2004).
- 99. Lebb, C. *et al.* Pimasertib Versus Dacarbazine in Patients With with Crossover. 1–11 (2020).
- 100. Dummer, R. *et al.* Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. *Lancet Oncol.* 18, 435–445 (2017).
- 101. Warburg, O., Wind, F. & Negelein, E. The Metabolism of Tumors in the Body. *J. Gen. Physiol.* 8, 519–530 (1927).
- 102. Hsu, P. P. & Sabatini, D. M. Cancer cell metabolism: Warburg and beyond. *Cell* 134, 703–707 (2008).
- 103. Hay, N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? *Nat. Rev. Cancer* 16, 635–649 (2016).
- 104. Dang, C. V., Le, A. & Gao, P. MYC-induced Cancer Cell Energy Metabolism and Therapeutic Opportunities. *Clin. Cancer Res.* 15, 6479–6483 (2009).
- 105. Semenza, G. L. Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. *EMBO J.* 36, 252–259 (2017).
- 106. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. *Cell Metab.* 7, 11–20 (2008).
- 107. Esteve-Puig, R., Canals, F., Colomé, N., Merlino, G. & Recio, J. Á. Uncoupling of the LKB1-AMPKα energy sensor pathway by growth factors and oncogenic BRAFV600E. *PLoS One* 4, (2009).
- 108. Olenchock, B. A. & Vander Heiden, M. G. XPyruvate as a pivot point for oncogene-induced senescence. *Cell* 153, 1429 (2013).
- 109. Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in

oncogene-induced senescence. Nature 498, 109-112 (2013).

- 110. Patel, M. S. & Korotchkina, L. G. Regulation of the pyruvate dehydrogenase complex. *Biochem. Soc. Trans.* 34, 217–222 (2006).
- 111. Michelakis, E. D., Webster, L. & Mackey, J. R. Dichloroacetate (DCA) as a potential metabolictargeting therapy for cancer. *Br. J. Cancer* 99, 989–994 (2008).
- 112. Kang, H. B. *et al.* Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling. *Mol. Cell* 59, 345–358 (2015).
- 113. Yuan, P. *et al.* Phenformin enhances the therapeutic benefit of BRAFV600E inhibition in melanoma. *Proc. Natl. Acad. Sci. U. S. A.* 110, 18226–18231 (2013).
- 114. Niehr, F. *et al.* Combination therapy with vemurafenib (PLX4032/RG7204) and metformin in melanoma cell lines with distinct driver mutations. *J. Transl. Med.* 9, 1–13 (2011).
- 115. Janzer, A. *et al.* Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. *Proc. Natl. Acad. Sci. U. S. A.* 111, 10574–10579 (2014).
- 116. Baenke, F. *et al.* Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. *Mol. Oncol.* 10, 73–84 (2016).
- 117. Yun, J. *et al.* Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. *Science (80-.).* 325, 1555–1559 (2009).
- 118. Szablewski, L. Expression of glucose transporters in cancers. *Biochim. Biophys. Acta Rev. Cancer* 1835, 164–169 (2013).
- 119. Patra, K. C. *et al.* Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. *Cancer Cell* 24, 213–228 (2013).
- 120. Yi, W. *et al.* Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. *Science (80-.).* 337, 975–980 (2012).
- 121. Anastasiou, D. *et al.* Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses. *Science (80-.).* 334, 1278–1283 (2011).
- 122. Israelsen, W. J. & Vander Heiden, M. G. Pyruvate kinase: Function, regulation and role in cancer. *Semin. Cell Dev. Biol.* 43, 43–51 (2015).
- 123. Vander Heiden, M. G. *et al.* Evidence for an alternative glycolytic pathway in rapidly proliferating cells. *Science (80-.).* 329, 1492–1499 (2010).
- 124. Bartrons, R. et al. Fructose 2, 6-Bisphosphate in Cancer Cell Metabolism. 8, (2018).
- 125. Atsumi, T. *et al.* High Expression of Inducible 6-Phosphofructo-2-Kinase / Fructose-2 , 6-Bisphosphatase. *Cancer Res.* 62, 5881–5887 (2002).
- 126. Von Der Crone, S. *et al.* Glucose deprivation induces Akt-dependent synthesis and incorporation of GLUT1, but not of GLUT4, into the plasma membrane of 3T3-L1 adipocytes. *Eur. J. Cell Biol.* 79, 943–949 (2000).
- 127. Bensaad, K. *et al.* TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis. *Cell* 126, 107–120 (2006).
- 128. Cheung, E. C., Ludwig, R. L. & Vousden, K. H. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. *Proc. Natl. Acad. Sci. U. S. A.* 109, 20491–20496 (2012).
- 129. Ros, S. & Schulze, A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. *Cancer Metab.* 1, 1–10 (2013).
- 130. Semenza, G. L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations Find the latest version : Review series HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. *J. Clin. Invest.* 123, 3664–3671 (2013).
- 131. Feng, Y. *et al.* Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. *Cancer Med.* 7, 6124–6136 (2018).
- 132. Costa Leite, T., Da Silva, D., Guimarães Coelho, R., Zancan, P. & Sola-Penna, M. Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1- kinase tetramers down-regulating the enzyme and muscle glycolysis. *Biochem. J.* 408, 123–130 (2007).
- 133. Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B. & Gillies, R. J. Acid-mediated tumor invasion: A multidisciplinary study. *Cancer Res.* 66, 5216–5223 (2006).
- 134. Feron, O. Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. *Radiother. Oncol.* 92, 329–333 (2009).
- 135. Stine, Z. E., Walton, Z. E., Altman, B. J., Hsieh, A. L. & Dang, C. V. MYC, metabolism, and cancer. *Cancer Discov.* 5, 1024–1039 (2015).
- 136. Seidler, N. W. *GAPDH: Biological Properties and Diversity. Advances in experimental medicine and biology* vol. 985 (2013).

- 137. Ganapathy-kanniappan, S. & Geschwind, J. H. Tumor Glycolysis as a Target for Cancer Therapy: Progress and Prospects. *Mol. Cancer* 12, 152 (2013).
- 138. Liberti, M. V. & Locasale, J. W. The Warburg Effect: How Does it Benefit Cancer Cells? *Trends Biochem. Sci.* 41, 211–218 (2016).
- 139. Kostakoglu, L., Agress, H. & Goldsmith, S. J. Clinical Role of FDG PET in Evaluation of Cancer Patients. *Radiographics* 23, 315–340 (2003).
- 140. Jeon, S. M., Chandel, N. S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. *Nature* 485, 661–665 (2012).
- 141. Dunaway, G. A., Kasten, T. P., Sebo, T. & Trapp, R. Analysis of the phosphofructokinase subunits and isoenzymes in human tissues. *Biochem. J.* 251, 677–683 (1988).
- 142. Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. *J. Biol. Chem.* 269, 23757–23763 (1994).
- 143. Kole, H. K., Resnick, R. J., Van Doren, M. & Racker, E. Regulation of 6-phosphofructo-1-kinase activity in ras-transformed rat-1 fibroblasts. *Arch. Biochem. Biophys.* 286, 586–590 (1991).
- 144. Kim, N. H. *et al.* Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. *Nat. Commun.* 8, 1–12 (2017).
- 145. Staal, G. E. J., Kalff, A., Heesbeen, E. C., Van Veelen, C. W. M. & Rijksen, G. Subunit Composition, Regulatory Properties, and Phosphorylation of Phosphofructokinase From Human Gliomas. *Cancer Res.* 47, 5047–5051 (1987).
- 146. Foe, L. G. & Kemp, R. G. lsozyme Composition and Phosphorylation of Brain Phosphofructokinase. 228, 503–511 (1984).
- 147. Lee, J. H. *et al.* Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. *Nat. Commun.* 8, 1–14 (2017).
- 148. Sola-Penna, M., Da Silva, D., Coelho, W. S., Marinho-Carvalho, M. M. & Zancan, P. Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism. *IUBMB Life* 62, 791–796 (2010).
- 149. Clem, B. F. *et al.* Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. *Mol. Cancer Ther.* 12, 1461–1470 (2013).
- 150. Rider, M. H. *et al.* 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: Head-to-head with a bifunctional enzyme that controls glycolysis. *Biochem. J.* 381, 561–579 (2004).
- 151. Minchenko, O., Opentanova, I. & Caro, J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1-4) expression in vivo. *FEBS Lett.* 554, 264–270 (2003).
- 152. Okar, D. A. *et al.* PFK-2/FBPase-2: Maker and breaker of the essential biofactor fructose-2,6bisphosphate. *Trends Biochem. Sci.* 26, 30–35 (2001).
- 153. Zhao, S. J. *et al.* SLIT2/ROBO1 axis contributes to the Warburg effect in osteosarcoma through activation of SRC/ERK/c-MYC/PFKFB2 pathway. *Cell Death Dis.* 9, (2018).
- 154. He, Z., You, C. & Zhao, D. Long non-coding RNA UCA1/miR-182/PFKFB2 axis modulates glioblastoma-associated stromal cells-mediated glycolysis and invasion of glioma cells. *Biochem. Biophys. Res. Commun.* 500, 569–576 (2018).
- 155. Zhao, L. *et al.* Long noncoding RNA LINC00092 acts in cancer-associated fibroblasts to drive glycolysis and progression of ovarian cancer. *Cancer Res.* 77, 1369–1382 (2017).
- 156. Chesney, J. *et al.* An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: Role in tumor cell glycolysis and the Warburg effect. *Proc. Natl. Acad. Sci. U. S. A.* 96, 3047–3052 (1999).
- 157. Imbert-Fernandez, Y. *et al.* Estradiol stimulates glucose metabolism via 6-phosphofructo-2-kinase (PFKFB3). *J. Biol. Chem.* 289, 9440–9448 (2014).
- 158. Novellasdemunt, L. *et al.* PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. *Biochem. J.* 452, 531–543 (2013).
- 159. Seo, M. & Lee, Y. H. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. *J. Mol. Biol.* 426, 830–842 (2014).
- 160. Calvo, M. N. *et al.* PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells. *FEBS Lett.* 580, 3308–3314 (2006).
- 161. Mondal, S. *et al.* Therapeutic targeting of PFKFB3 with a novel glycolytic inhibitor PFK158 promotes lipophagy and chemosensitivity in gynecologic cancers. *Int. J. Cancer* 144, 178–189 (2019).
- 162. Maik-Rachline, G., Hacohen-Lev-Ran, A. & Seger, R. Nuclear erk: Mechanism of translocation, substrates, and role in cancer. *Int. J. Mol. Sci.* 20, 1–18 (2019).

- 163. Peeters, K. *et al.* Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. *Nat. Commun.* 8, (2017).
- 164. Zhou, F. F., Xue, Y., Chen, G. L. & Yao, X. GPS: A novel group-based phosphorylation predicting and scoring method. *Biochem. Biophys. Res. Commun.* 325, 1443–1448 (2004).
- 165. Wang, C. *et al.* GPS 5.0: An Update on the Prediction of Kinase-specific Phosphorylation Sites in Proteins. *Genomics, Proteomics Bioinforma.* 18, 72–80 (2020).
- 166. Pajak, B. *et al.* 2-Deoxy-D-Glucose and its analogs: From diagnostic to therapeutic agents. *Int. J. Mol. Sci.* 21, (2020).
- 167. Esteve-Puig, R. Nuevo mecanismo de evasión a estrés energético en melanoma. (2011).
- 168. Groenendijk, F. H. *et al.* Sorafenib synergizes with metformin in NSCLC through AMPK pathway activation. *Int. J. Cancer* 136, 1434–1444 (2015).
- 169. Ajenjo, N. *et al.* Subcellular localization determines the protective effects of activated ERK2 against distinct apoptogenic stimuli in myeloid leukemia cells. *J. Biol. Chem.* 279, 32813–32823 (2004).
- 170. Rosseland, C. M. *et al.* Cytoplasmic retention of peroxide-activated ERK provides survival in primary cultures of rat hepatocytes. *Hepatology* 42, 200–207 (2005).
- 171. Zhao, Z. & Bourne, P. E. Overview of Current Type I/II Kinase Inhibitors. *Next Gener. Kinase Inhib.* 13–28 (2020) doi:10.1007/978-3-030-48283-1_2.
- 172. Verlande, A. *et al.* Metabolic stress regulates ERK activity by controlling KSR-RAF heterodimerization. *EMBO Rep.* 19, 320–336 (2018).
- 173. Eisen, T. *et al.* Sorafenib in advanced melanoma: A Phase II randomised discontinuation trial analysis. *Br. J. Cancer* 95, 581–586 (2006).
- 174. Corazao-Rozas, P. *et al.* Mitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor. *Oncotarget* 4, 1986–1998 (2013).
- 175. Wu, L. W., Zhang, G. & Herlyn, M. Mitochondrial biogenesis meets chemoresistance in BRAFmutant melanoma. *Mol. Cell. Oncol.* 3, 1–2 (2016).
- 176. Ferraz, L. S. *et al.* Targeting mitochondria in melanoma: Interplay between MAPK signaling pathway and mitochondrial dynamics. *Biochem. Pharmacol.* 178, 114104 (2020).
- 177. Prabhu, A. *et al.* Ras-mediated modulation of pyruvate dehydrogenase activity regulates mitochondrial reserve capacity and contributes to glioblastoma tumorigenesis. *Neuro. Oncol.* 17, 1220–1230 (2015).
- 178. Humpton, T. J. *et al.* Oncogenic KRAS induces NIX-mediated mitophagy to promote pancreatic cancer. *Cancer Discov.* 9, 1268–1287 (2019).
- 179. Lock, R. *et al.* Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. *Mol. Biol. Cell* 22, 165–178 (2011).
- 180. Ying, H. *et al.* Oncogenic kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. *Cell* 149, 656–670 (2012).
- 181. Josiah, E. H. *et al.* Oncogenic KRAS and BRAF drive metabolic reprogramming in colorectal cancer. *Mol. Cell. Proteomics* 15, 2924–2938 (2016).
- 182. Houles, T. *et al.* RSK regulates PFK-2 activity to promote metabolic rewiring in melanoma. *Cancer Res.* 78, 2191–2204 (2018).
- 183. Tesori, V. *et al.* The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing. *Sci. Rep.* 5, 1–9 (2015).
- 184. Tomizawa, M. *et al.* 2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells. *Oncol. Lett.* 13, 800–804 (2017).
- 185. Reyes, R., Wani, N. A., Ghoshal, K., Jacob, S. T. & Motiwala, T. Sorafenib and 2-deoxyglucose synergistically inhibit proliferation of both sorafenib-sensitive and -resistant HCC cells by inhibiting ATP production. *Gene Expr.* 17, 129–140 (2017).
- 186. Wang, L., Yang, Q., Peng, S. & Liu, X. The combination of the glycolysis inhibitor 2-DG and sorafenib can be effective against sorafenib-tolerant persister cancer cells. *Onco. Targets. Ther.* 12, 5359–5373 (2019).
- 187. Wang, S. Y. *et al.* 2-Deoxy-D-glucose can complement doxorubicin and sorafenib to suppress the growth of papillary thyroid carcinoma cells. *PLoS One* 10, 1–15 (2015).
- 188. Castello, A. *et al.* Metabolic Switch in Hepatocellular Carcinoma Patients Treated with Sorafenib: a Proof-of-Concept Trial. *Mol. Imaging Biol.* 22, 1446–1454 (2020).
- 189. Stein, M. *et al.* Targeting tumor metabolism with 2-deoxyglucose in patients with castrateresistant prostate cancer and advanced malignancies. *Prostate* 70, 1388–1394 (2010).
- 190. Raez, L. E. *et al.* A phase i dose-escalation trial of 2-deoxy-d-glucose alone or combined with docetaxel in patients with advanced solid tumors. *Cancer Chemother. Pharmacol.* 71, 523–
530 (2013).

- 191. Llovet, J. M. *et al.* Sorafenib in Advanced Hepatocellular Carcinoma. *N. Engl. J. Med.* 359, 378–390 (2008).
- 192. Ratain, M. J. *et al.* Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. *J. Clin. Oncol.* 24, 2505–2512 (2006).
- 193. Wang, Y., Qu, C., Liu, T. & Wang, C. PFKFB3 inhibitors as potential anticancer agents: Mechanisms of action, current developments, and structure-activity relationships. *Eur. J. Med. Chem.* 203, 112612 (2020).
- 194. Wan, P. T. C. *et al.* Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. *Cell* 116, 855–867 (2004).
- 195. Zhou, Y. *et al.* Metascape provides a biologist-oriented resource for the analysis of systemslevel datasets. *Nat. Commun.* 10, (2019).
- 196. Babicki, S. *et al.* Heatmapper: web-enabled heat mapping for all. *Nucleic Acids Res.* 44, W147–W153 (2016).
- 197. Thingholm, T. E., Jørgensen, T. J. D., Jensen, O. N. & Larsen, M. R. Highly selective enrichment of phosphorylated peptides using titanium dioxide. *Nat. Protoc.* 1, 1929–1935 (2006).