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Abstract  

 
Due to its large and growing population and economy, India is pivotal for climate change 

mitigation globally. However, like other low- and middle-income countries (LMICs), India is 

also facing many other pressing development challenges. Country-level studies are needed to 

assess both the scale of India´s vulnerability to climate change as well as the extent to which 

mitigation actions can be reconciled with its development objectives. Given the complexity 

of projecting the interplay of human and environmental systems, studies with strong 

interdisciplinary foundations are required. 

 

The first study in this PhD thesis systematically reviewed and quantitatively assessed the 

evidence on the association between ambient temperatures and heat waves, and all-cause 

mortality in South Asia. The results indicated that both high and low ambient temperatures 

and heatwaves are risk factors for all-cause mortality, with mortality risk increasing more 

steeply at higher temperatures. The second study used a demographic projection linked to 

an integrated assessment model (IAM) to forecast the future localised health co-benefits 

from reduced ambient fine particulate matter (PM2.5) in India under global climate change 

mitigation scenarios and national scenarios for maximum feasible air quality control. 

Findings suggested that the reduction of ambient PM2.5 under the Paris Agreement targets 

can lengthen life expectancy (LE) at birth and substantially reduce premature mortality from 

PM2.5 in India by 2050 compared to the business-as-usual. Complementing mitigation 

measures with end-of-pipe air quality control can maximise these co-benefits, especially for 

regions with lower socio-economic development. The third study employed a static 

microsimulation model with a link to an IAM and a demographic projection to assess the 

future localised net benefits for child linear growth from changes in ambient PM2.5 and 

household air pollution (HAP) under a combination of scenarios for climate change 

mitigation, ambient PM2.5 control, and clean cooking access. The results suggested that the 

increase in child stunting from higher HAP due to higher fuel costs under the 2°C mitigation 

target can outweigh the reduction in the burden from ambient PM2.5 by 2050. However, 

benefits for child linear growth, especially among the most disadvantaged, can still be realised 

if mitigation efforts are complemented either with additional ambient PM2.5 controls or 

policies to support access to clean cooking.  
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Resumen 

 

Debido a su gran y creciente población y economía, la India es fundamental para la mitigación 

del cambio climático a nivel mundial. Sin embargo, al igual que otros países de renta baja y 

media, la India se enfrenta a otros muchos y acuciantes retos de desarrollo. Se necesitan 

estudios a nivel de país para evaluar tanto la magnitud de la vulnerabilidad de la India al 

cambio climático como la medida en que las acciones de mitigación pueden conciliarse con 

sus objetivos de desarrollo. Dada la complejidad de la interacción de los sistemas humanos 

y ambientales, se requieren estudios con una sólida base interdisciplinaria. 

 

El primer estudio de esta tesis doctoral revisó sistemáticamente y evaluó cuantitativamente 

las evidencias sobre la asociación entre las temperaturas ambientales y las olas de calor, y la 

mortalidad por todas las causas en el sur de Asia. Los resultados indicaron que tanto las 

temperaturas ambientales altas como las bajas y las olas de calor son factores de riesgo de 

mortalidad por todas las causas, y que el riesgo de mortalidad aumenta de forma pronunciada 

a temperaturas más altas. El segundo estudio utilizó una proyección demográfica vinculada 

a un modelo de evaluación integrado para pronosticar los futuros beneficios colaterales para 

la salud de la reducción de las partículas finas (PM2.5) en el aire de la India, según los 

escenarios de mitigación del cambio climático global y los escenarios nacionales de control 

máximo de la calidad del aire. Los resultados sugieren que la reducción de las PM2.5 

ambientales, según los objetivos del Acuerdo de París, puede alargar la esperanza de vida al 

nacer y reducir sustancialmente la mortalidad prematura por PM2.5 en la India para 2050, en 

comparación con el statu quo. Complementar las medidas de mitigación con el control de la 

calidad del aire al final de la cadena puede maximizar estos beneficios colaterales, 

especialmente en las regiones con menor desarrollo socioeconómico. El tercer estudio 

empleó un modelo de microsimulación estático con un enlace a un IAM y una proyección 

demográfica para evaluar los futuros beneficios netos localizados para el crecimiento lineal 

de los niños a partir de los cambios en las PM2.5 ambientales y la contaminación del aire en 

los hogares (HAP) bajo una combinación de escenarios para la mitigación del cambio 

climático, el control de las PM2.5 ambientales y el acceso a la cocina limpia. Los resultados 

sugieren que el aumento del retraso en el crecimiento de los niños debido a un mayor coste 

del combustible en el marco del objetivo de mitigación de 2°C puede superar la reducción 

de la carga de las PM2.5 ambientales para 2050. Sin embargo, los beneficios para el crecimiento 



 x 

lineal de los niños, especialmente entre los más desfavorecidos, todavía pueden ser realizados 

si los esfuerzos de mitigación se complementan con controles adicionales de PM2.5 en el 

ambiente o con políticas para apoyar el acceso a la cocina limpia.  
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Chapter 1: RESEARCH IN CONTEXT  
 

1.1 Climate change and health 
 
 
Climate change has been widely recognised as one of the single most important threats for 

humanity today. The last decade (2011-2020) has been the hottest on record, with mean 

global near-surface temperatures reaching 0.95–1.20°C above pre-industrial levels (IPCC, 

2021). The steep rise in greenhouse gases (GHGs) from human activity since the mid-20th 

century, mainly carbon dioxide (CO2), has been the dominant cause of the observed climate 

warming and of the associated increase of extreme weather events (IPCC, 2021). Without a 

substantial transformation of our societies and reduction in emissions, continued global 

warming is projected to increase climate-related risks to health, livelihoods, food security, 

water supply, human security, and economic development, affecting the low income and 

marginalised populations the most (IPCC, 2014a). 

 

In recent years the climate change emergency, along with other interferences in the Earth´s 

system, including biodiversity loss, land and water degradation, and chemicals accumulation, 

have been increasingly framed as a central public health issue, whereas disruptions to the 

Earth´s natural system might reverse historically recent progress in health and endanger our 

own wellbeing and survival as species (Horton et al., 2014; Whitmee et al., 2015). The 

multitude of potential impacts of climate change on human health has been extensively 

documented (Ebi et al., 2018; Watts et al., 2019, 2018, 2017, 2016, 2015; WHO, 2018a). Such 

impacts can occur through various pathways and are modulated both by ecological and socio-

economic factors (Figure 1.1). Changes in surface temperatures and precipitation as well as 

the frequency, intensity, and duration of heat waves, floods, storms, wildfires, and other 

extreme weather events have direct and immediate effects on mortality and morbidity. 

Variations in temperatures and rainfall may increase the incidence of vector-borne and water-

borne diseases by affecting the distribution of disease vectors such as malaria or dengue. The 

increase in GHG emissions and associated warming can aggravate air quality both directly – 

through the increased emissions of air pollutants –  and indirectly –  by altering atmospheric 

ventilation and dilution, precipitation, and other removal processes (Fiore et al., 2015).  Acute 

air pollution episodes as a result of wildfires or prolonged heat waves can also affect 

population health (Smith et al., 2015). Furthermore, by affecting biodiversity and ecosystems, 
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climate change can endanger the goods and services that human health depends on, thus 

threatening livelihoods, food security, and driving population displacement and conflicts. 

The overall health burden of climate change could be substantial. According to a 2018 World 

Health Organisation (WHO) assessment based on a conservative subset of climate-sensitive 

health risks (malnutrition, malaria, diarrhoea, and heat stress), unchecked climate change 

could lead to 250,000 excess deaths per year between 2030 and 2050 (WHO, 2018b).  

 

Figure 1.1: Major health risks associated with climate change 

 
Source: Watts et al. (2015)  

 

The potential burden of climate-related health impacts is unevenly distributed across 

communities and depends strongly on the interaction between exposure to extreme and non-

extreme weather and climate events and to underlying socioeconomic conditions and 

processes. In this respect, the social cost from climate change will be borne most heavily by 

LMICs both due to their geo-climatic characteristics and low adaptive capacities (Costello et 

al., 2009).  

 

Current research on the impacts of climate change on health focuses on three main areas - 

current and historical associations between climate-related exposures and disease, attribution 
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of anthropogenic climate change on health, and projections of future impacts of climate 

change on health. This thesis will mainly focus on the first and last topics. 

1.2 Reversing the threat – The Paris Agreement 

 
The collective global response to climate change is likely to shape the health of populations 

across diverse geographies and generations. The international community has committed to 

substantially reduce climate-warming GHG emissions, stabilize temperature increase to 

below 2°C relative to pre-industrial levels and seek to further limit the increase to 1.5°C. 

These objectives were enshrined in the Paris Agreement adopted by 196 countries at the 

United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of 

the Parties (COP) in 2015 (UNFCCC, 2016). To deliver on these ambitious goals the 

Agreement foresees reaching peak emissions as soon as possible and achieving climate 

neutrality by 2050 (Figure 1.2). The main instrument for achieving the Paris Agreement is 

the Nationally Determined Contributions (NDCs), in which countries´ have to determine, 

plan and regularly report the actions they will take to mitigate their CO2 emissions. The 

NDCs should be communicated every five years and, although there is no mechanism 

forcing countries to set specific emission targets, ambitions set in the NDCs should be 

“progressive” and increase over time. The Agreement essentially represents a “bottom-up” 

approach to climate mitigation, where the ability of countries to increase their ambitions and 

deliver on their commitments jointly will determine whether the goals could be met. The 

Paris Agreement retains the principle of “common but differentiated responsibility” 

enshrined in Article 3(1) of the 1992 UNFCCC. However, it departs from the rigid 

distinction between “developed” and “developing” countries set in the Kyoto Protocol by 

requiring all parties to submit plans for emission reductions and to increase their ambition 

over time (Pauw et al., 2019).  

 

The Paris Agreement is seen as a milestone in international climate negotiations, as it brings, 

for the first time, all nations under a binding agreement for climate change mitigation. 

However, current assessments show that collective commitments under the NDCs are very 

low and insufficient for delivering on the Paris Agreement goals (Roelfsema et al., 2020; 

Rogelj et al., 2016; Vrontisi et al., 2018). Even if NDCs are fully implemented, the global 

average temperature is still set to increase to at least to 3.2°C (range: 3.0–3.5°C) by the end 

of the century (with 66 per cent probability) (United Nations Environment Programme, 

2020). Furthermore, there is also inconsistency between the emission levels implied by 
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current policies and those projected under current NDCs by 2030. Therefore, a significant 

acceleration of efforts is needed if the long-term temperature goals of the Paris Agreement 

are to be achieved. United Nations Environment Programme´s (UNEP) latest Emissions  

 

Figure 1.2: The cycle of ambition of the Paris Agreement 

 
Source: https://www.expertisefrance.fr/en/actualite?id=806462  

 

Gap Report estimates that staying on track with the 2°C goal and the 1.5°C climate mitigation 

goals would require countries to collectively increase their NDCs ambitions threefold and 

fivefold, respectively (United Nations Environment Programme, 2020). Neither of the two 

targets marks a threshold below which climate change will have no harmful effects. As 

extensively documented in the 1.5°C report from the Intergovernmental Panel on Climate 

Change (IPCC), even limiting global warming to 1.5°C will have substantial consequences 

for the environment and human health (IPCC, 2018), and will therefore still require 

adaptation measures. In fact, even if anthropogenic emissions are suddenly eliminated, 

changes in the climate are still expected to continue for hundreds of years due to the inherent 

inertia in the climate system (IPCC, 2007; Matthews and Caldeira, 2008). 

https://www.expertisefrance.fr/en/actualite?id=806462
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1.3 Health co-benefits of climate change mitigation 

 

Despite the urgent need to curb climate change, progress on climate targets over the last 

decades has been very slow and uneven. Climate change is often described as a “wicked 

problem” due to its complexity, deep uncertainty, and the ethical dilemmas that it poses. It 

is also a collective-action problem, whereas joint action on curbing emissions will benefit all 

parties, while individual action alone will be insufficient to solve the problem and, despite 

large costs, will likely not bring direct, discernible, and immediate effects for the individual 

party. What is more, decarbonisation might be of low political priority in LMICs, in 

particular, which have low historical responsibility for the problem and more pressing 

development needs. 

 

Over the past two decades, a new discourse in the scientific community has considerably 

shifted some of the cost-benefit considerations of climate change mitigation by shedding 

light on some important non-climate benefits that emission reductions will have in addition 

to reducing the risk of climate change, so-called co-benefits or ancillary benefits (Bollen et 

al., 2009; Gao et al., 2018; Karlsson et al., 2020; Mayrhofer and Gupta, 2016; Pittel and 

Rübbelke, 2008; Rübbelke, 2002). The concept of co-benefits is centrally featured in the 

IPCC reports, where it has been defined as “the positive effects that a policy or measure 

aimed at one objective might have on other objectives, irrespective of the net effect on 

overall social welfare” (IPCC, 2014b, p.14). Beyond this broad definition, three diferent 

strands of understanding of the concept of co-benefits exist in the acedemic literature 

(Mayrhofer and Gupta, 2016). By taking a ‘development first’ approach, some scholars define 

co-benefits as the impacts that development or sectoral policies could have on global climate 

change. A second, ‘climate first’ approach, which is most widely used in the literature and 

also adopted throughout this thesis, defines co-benefits as the positive local impacts resulting 

from policies whose primary goal is climate change mitigation (also ancillary benefits). A 

third strand of research uses the term co-benefits without defining the specific priotarisation 

of either goal. Irrespective of the exact definition, ancillary benefits of climate policy 

encompass diverse sectors and can be grouped into four main categories – economic, 

environmental, social (including health), and political and institutional (Figure 1.3). Due to 

these positive synergistic effects, the IPCC has concluded that well-designed climate 

mitigation policies can support and accelerate progress on many dimensions of sustainable 
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development such as poverty alleviation, food security, healthy ecosystems, and equality (Roy 

et al., 2018).  

 

Some of the most well-studied co-benefits to date are those related to human health (Chang 

et al., 2017; Gao et al., 2018; Hosking and Campbell-Lendrum, 2012; Smith et al., 2016). In 

addition to the avoided damages of climate change, positive consequences of climate policies 

on human health can occur through various pathways (Figure 1.4). For instance, urban 

 

Figure 1.3: Types of climate change co-benefits 

 
Source: Adapted from Mayrhofer and Gupta (2016) 

 
planning programs that encourage “active transport” (walking and cycling) instead of the use 

of motorised vehicles will reduce climate-altering pollutants, while also directly benefiting 

population health through increased physical activity, reduced air pollution, and traffic noise. 

Shifting diets away from high meat and dairy consumption towards healthy plant-based 

alternatives will help reduce climate-warming methane emissions as well as the large burden 

of some chronic diseases such as ischemic heart disease (IHD), diabetes, and some types of 
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cancer. Provision of reproductive health services in LMICs, including family planning, will 

not only help slow down population growth and its associated energy demands but can also 

reduce the burden of child and maternal mortality through birth spacing. Nearly all climate-

altering pollutants, other than CO2, not only have major implications for climate change but 

are also damaging to health, either directly or by contributing to the formation of secondary 

pollutants in the atmosphere. Thus, improvements in energy efficiency and a shift to cleaner 

energy sources will reduce GHG emissions, but also fine particles and other health-damaging 

pollutants that are emitted from many of the same sources. Lelieveld et al. (2019), for 

instance, showed that complete phaseout of fossil-fuel-related emissions can prevent an 

excess mortality rate of 3.61 (2.96–4.21) million per year related to outdoor air pollution 

worldwide. According to the latest Global Burden of Disease (GBD) study 2.31 million 

people die prematurely due to exposure to HAP (Health Effects Institute, 2020). Replacing 

biomass or coal stoves with cleaner cooking fuels will contribute to climate mitigation by 

reducing climate-altering pollutants such as CO2, carbon monoxide (CO), black carbon, while  

 

Figure 1.4: Examples of health co-benefits of climate change mitigation 

 
Source: thebmj (2016)  

 
at the same time reducing the health burden from HAP for poor populations in LMICs, in 

particular for women and children. Increasing green spaces in urban areas will improve 

https://www.bmj.com/content/352/bmj.i1781.full
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population health by reducing the urban heat island (UHI) effect, reducing noise, and 

promoting physical activities, but it will also help reduce atmospheric CO2 via carbon 

sequestration in plant tissue and soil (Smith et al., 2014). Due to these large health co-

benefits, climate change mitigation has been characterised as “the biggest global health 

opportunity of the 21st century” in the first 2015 report by the Lancet Commission (Watts 

et al., 2015). 

 

Co-benefits can serve as an important imperative for climate action by helping resolve some 

of the temporal and spatial discrepancies between climate mitigation costs and climate policy 

benefits/impacts  (Mayrhofer and Gupta, 2016). First, while impacts of climate change occur 

over long-term horizons and involve large uncertainties, co-benefits can deliver easily 

predictable and measurable improvements in the short to medium term. Second, while the 

climate is a common good and emission reductions in one place might bring benefits 

somewhere else, co-benefits occur within regional and national boundaries and close to the 

sources of emission reductions (Table 1.1). Lastly, the existence of co-benefits implies large 

potential reductions in the cost of reducing carbon. Hence, co-benefits can have economic, 

political, and social appeal by diminishing the social cost of climate change, incentivising 

stricter GHG control, and legitimising governmental policy action to the wider public 

(Mayrhofer and Gupta, 2016). That means that by integrating health and other local co-

benefits in cost-benefit analysis of climate action countries will have strong incentives to be 

ambitious, and increasingly so over time, in their efforts to reduce their GHGs, irrespective 

of what other countries do (Boyd et al., 2015).  

 

Table 1.1: Comparison of costs and benefits of climate mitigation and co-benefits. 

 Spatial scale Temporal scale Certainty 

Climate change 
mitigation 
Benefits 

Global Delayed More uncertain and 
harder to quantify 

Climate change co-
benefits 

Local Immediate Certain and easier to 
quantify 

Climate change 
mitigation 
Costs 

Local Immediate Certain and easier to 
quantify 

Source: adapted from Mayrhofer and Gupta (2016) 

 
Although there can be some significant variations across countries, studies have shown 

health co-benefits from air pollution alone to be of the same order of magnitude, or in some 

cases even larger, as estimated mitigation costs (Karlsson et al., 2020). In this respect, it has 

been argued that air pollution-related co-benefits, in particular, can provide a strong incentive 
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for climate action among some LMICs with both high air pollution levels and rapidly 

increasing GHG emissions such as China and India This thesis will address in particular the 

issue for air pollution-related health co-benefits for LMICs by taking India as a case study. 

Despite the overwhelming evidence of the potentially large health co-benefits from climate 

mitigation, these remain largely unaccounted for in economic models of climate change 

mitigation (Cromar, 2021; Rogelj et al., 2018). Evidence of co-benefits also remains largely 

overlooked in decision-making, thus distorting the identification of optimal policies (Nemet 

et al., 2010; Workman et al., 2018). Different explanations for why this may be the case have 

been put forward, the most prominent being lack of policy integration (i.e. failure to take 

several objectives into consideration simultaneously when designing a policy) due to 

fragmented institutional regimes with a number of isolated ministries focusing on specific 

issues. Limited communication between different academic disciplines and various 

methodological shortcomings – lack of up-to-date and coherent concepts, methods, and 

approaches and lack of quantification and monetisation of co-benefits – are another reason 

for the limited consideration of co-benefits in policy (Karlsson et al., 2020). 

 

1.4 Co-harms of climate change mitigation 

 
There are not only co-benefits, but also potential negative externalities or trade-offs 

associated with the rapid pace and magnitude of the required mitigation actions. One 

example is the transformation of natural forests, agricultural areas, and indigenous or 

privately-owned land into plantations for bioenergy production, which, without careful 

management, could undermine food and water security, create conflict over land rights and 

cause biodiversity loss. Negative social externalities could also occur if the energy transition 

from fossil fuels to cleaner sources is carried out without the necessary planning for the 

labour force re-training, infrastructure replacement, and shift in investment patterns (Rogelj 

et al., 2018).  

 

Air pollution reduction can also pose a trade-off between protecting public health and the 

climate. Apart from their adverse health effects, many air pollutants can also induce changes 

in the climate by affecting the amount of incoming sunlight that is reflected or absorbed by 

the atmosphere (aerosol-radiation interactions) or by modifying cloud microphysics and 

precipitation processes (aerosol-cloud interactions) (Zhao et al., 2019). Reduction in certain 

air pollutants with warming properties, black carbon being the most prominent, will benefit 
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the climate, while the reduction in others such as sulphates is likely to contribute to increases 

in global temperatures in the short term. Overall, aerosol emissions have a net cooling effect 

on the Earth, having counteracted almost a third of the warming from anthropogenic GHGs 

since the 1950s  (Zhao et al., 2019).  Lelieveld et al. (2019) showed that complete phase-out 

of fossil fuels globally, which is necessary to meet the Paris Agreement objectives, could lead 

to 0.51(±0.03) °C of warming, while removal of all anthropogenic aerosols can induce a 

0.73(±0.03) °C warming. In order to accommodate this increase in warming from reduced 

air pollution, it has been argued that climate mitigation policies need to be designed with a 

“pollution safety margin”, i.e. with additional GHG emission reductions (Arneth et al., 2009).  

 

Another risk related to mitigation policies, which is frequently overlooked in current debates, 

is the potential increase in energy prices and the resulting energy access and distributive 

impacts. There is a clear potential of reconciling mitigation actions and energy access through 

a cost-efficient off-grid provision of electricity through some renewable energy technologies 

in less densely populated areas. However, climate change mitigation could also increase the 

price of some “clean” forms of energy in LMICs either as a result of carbon pricing to curb 

GHG emissions from fossil fuels or because of the uptake of low-carbon but more expensive 

energy sources such as solar and wind power (Jakob and Steckel, 2014). Liquified Petroleum 

Gas (LPG) is an example of the former – despite being a fossil fuel (a by-product from the 

petroleum extractive industry), cooking with LPG causes minimal HAP and health impacts 

and produces lower emissions than any cooking fuel and technology other than solar and 

electricity (Norwegian Agency for Development Cooperation, 2020). For these reasons LPG, 

is often seen as an important transition fuel in LMICs. However, modelling studies have 

shown that ambitious mitigation policies, which would affect energy prices, could 

substantially slow down the transition to cleaner cooking fuels such as LPG and electricity 

in LMICs, with potential negative effects on health and poverty. Nevertheless, it has also 

been demonstrated that these risks can be successfully managed with redistribution measures 

to mitigate impacts on the most vulnerable populations (Roy et al., 2018). 

 

Given the large and irreversible impacts of climate inaction, these and other existing trade-

offs between climate change mitigation and sustainable development do not present a reason 

to abstain from more stringent mitigation, but rather for careful planning and design of 

parallel compensatory policies that protect the most vulnerable. Scenario-based analysis has 

shown that investment in such complementary policies would be much lower compared to 
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the required mitigation investment (McCollum et al., 2018). Most importantly, after carefully 

examining existing synergies and trade-offs between climate mitigation and the multiple 

objectives of the sustainable development agenda, the IPCC report on 1.5 °C of warming 

concludes that, without the necessary reductions in GHGs to reach the Paris Agreement 

climate targets, “sustainable development will be exceedingly difficult, if not impossible to 

achieve” (Roy et al., 2018, p.448). 

 

1.5 The case of India 

 

1.5.1 Health impacts of climate change in India – evidence from the 

recent past and future projections 

 
With over a billion population, a developing economy, and large levels of poverty and 

inequality, India stands out as one of the most vulnerable countries to climate change. Given 

its large territory comprising a wide range of topographies and climatic zones, from humid 

subtropical and tropical regions to alpine landscapes and semi-arid deserts, the potential 

climate change impacts in India are diverse. Intense heatwaves, droughts, and floods related 

to changes in the monsoon, the melting of the Himalayan glaciers, and sea level rise are 

considered to be the most pressing climate change threats for human health and livelihoods 

in India (Carabine et al., 2014). Changes in temperature and precipitation patterns are also 

projected to expand the transmission window and geographical spread of vector-borne 

diseases in India such as malaria and dengue fever (Dhiman et al., 2010). However, discussion 

on the impacts of climate change on vector-borne, zoonotic, and infectious diseases in India 

is outside the scope of this thesis. 

 

Changes in temperature and heat waves 

 

India is already experiencing the consequences of global warming. According to recent 

government data, average temperatures across India have increased by 0.62°C during the 

period 1901-2020, with the past decade (2011-2020) being the warmest on record 

(Government of India, 2021). The rising temperatures have led to more frequent and severe 

heatwaves across the country. Heat waves are a prolonged period of abnormally high surface 

temperatures, which are normally characterised both by their intensity and duration. Between 

1985 and 2009 western and southern India have experienced a 50 % increase in the number 
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of heatwaves (Picciariello et al., 2021). Both high daily temperatures, as well as heat waves, 

have severe impacts on human health, manifesting in higher mortality from cardiovascular, 

cerebrovascular, and respiratory diseases (Gasparrini et al., 2015). Heatwaves in 2013 and 

2015 claimed more than 1,500 and 2,000 lives across India (Mazdiyasni et al., 2017), with 

these numbers likely to be conservative considering the lack of official surveillance and 

misreporting of heat-related deaths. Heatwaves could also have nonfatal health impacts such 

as heat stroke, dehydration, and heat exhaustion, which can also affect labour productivity. 

Urban areas tend to be relatively warmer than surrounding suburban areas, a phenomenon 

known as the urban heat island effect (UHI). A recent study, analysing 44 major Indian cities, 

showed that night-time surface UHI intensity (the difference between urban and surrounding 

rural land surface temperatures) has increased by 0.64°C between 2000 and 2017, largely 

driven by rapid urbanisation (Raj et al., 2020).  

 

In a world where global carbon emissions continue unabated, it is projected that by 2064 the 

population in India will be exposed to at least two additional heatwaves per year, which will 

be on average 12-18 longer in duration (Rohini et al., 2019). The UHI is likely to intensify 

heat waves, particularly in densely populated urban areas. The difference in heatwave days 

between Delhi and surrounding rural areas, which is currently 2.9, is projected to increase to 

more than 13.8 by the end of the century under a high emissions climate scenario 

(Representative Concentration Pathway (RCP) 8.51 (Sharma et al., 2018). In the absence of 

adaptation responses, even limiting global warming to 2°C could lead to annual heat episodes 

in Karachi (Pakistan) and Kolkata (India) by 2050 equivalent to their deadly 2015 heat waves 

(Hoegh-Guldberg, O., D. Jacob et al., 2018). Due to the projected extreme heat and high 

humidity, which makes body temperature regulation more challenging (Sherwood, 2018), 

large parts of the country risk becoming uninhabitable by the end of the century without 

large-scale deployment of cooling technologies (Zhang et al., 2021). A recent study projects 

that by 2100, without any mitigation measures around 1.5 million more people will die each 

year in India due to high ambient temperatures, at a rate comparable to the current death 

rate from all infectious diseases in the country (Carleton et al., 2019). The health risks related 

to the direct exposure to high temperatures are likely to affect India´s large agricultural 

 
1 The RCPs represent four future GHG emissions trajectories and span the full range of total anthropogenic 
radiative forcing found in the scientific literature. The RCPs are named after the possible range in radiative 
forcing (energy imbalance imposed on the climate system either externally or by human activities) in the year 
2100 compared to pre-industrial values, spanning from very low levels of radiative forcing in the mitigation 
scenario RCP2.6 to medium levels in the two stabilisation scenarios (RCP4.5, RCP6.0), to high levels in the 
very high emissions scenario RCP8.5. 
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workforce (43 %) (World Bank, 2019), with the country projected to lose 5.8 % of working 

hours by 2030 due to increased heat stress (ILO, 2019). The urban poor, often living in 

overcrowded, poorly ventilated environments, without access to electricity or clean drinking 

water, as well as the elderly and those with pre-existing health conditions are particularly 

vulnerable to the projected temperature increases (Mahadevia and Pathak, 2020; Picciariello 

et al., 2021).  

 

Changes in precipitation patterns 

 

The warming of air and ocean temperatures, which increases atmospheric moisture content 

and evaporation of water, has contributed to more frequent and severe rainfall events in 

certain parts of the subcontinent. A threefold increase in extreme rainfall has been recorded 

over central India during 1950–2015, which has claimed at least 69,000 lives and led to the 

displacement of millions (Picciariello et al., 2021; Roxy et al., 2015). The rise in the magnitude 

and frequency of extreme rainfall events has occurred concurrently with a decline in total 

rainfall in many parts of the country. Average summer monsoon precipitation is estimated 

to have declined by around 6 % between 1951 and 2015 (Krishnan et al., 2020). This decline 

has been attributed to a weakening monsoon circulation due to a variety of factors, including 

warming of the Indian Ocean, increased magnitude and frequency of El Niño events, 

increased air pollution, and land-use changes (Roxy et al., 2015). The decline in precipitation 

is putting strains on freshwater supply, with a billion people in the country already facing 

severe water scarcity for at least one month of the year and 180 million – all year round 

(Mekonnen and Hoekstra, 2016). With 56 % of the country’s total agricultural area being 

rainfed, it is also threatening agricultural livelihoods and food security (Picciariello et al., 

2021). An increase in mental disorders and suicidal tendencies with more severe droughts 

have also been observed in parts of India (Carleton, 2017; Das, 2018). 

 

With continued warming and the anticipated reduction in anthropogenic aerosols, which 

weaken the hydrologic cycle, more severe rainfall events concentrated within a shorter period 

are expected (Krishnan et al., 2020; Picciariello et al., 2021). Parallel to this, mean summer 

monsoon precipitation is expected to decline in parts of the subcontinent, leading to an 

increased probability of droughts. The overall reduction in rainfall coupled with the 

diminishing snowfall and glacier in the Hindu-Kush Himalaya is projected to decrease water 

flow in the Ganges and Brahmaputra by 17.6 % and 19.6 %, respectively, by 2050 compared 
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to the previous century (Picciariello et al., 2021). These rainfall extremes will increase the risk 

of both water shortages and flooding, with devastating impacts on human lives, health, 

infrastructure, and livelihoods. Both deficient and extreme precipitation are expected to 

affect food production and degrade water quality, thus increasing the already high burden of 

diarrheal diseases and malnutrition in the country (Dhiman et al., 2010; Dimitrova, 2020).   

 

Melting of glaciers 

 

As an area, the Hindu-Kush Himalaya contains approximately half of all the glaciers outside 

the polar regions, with the population in the region being highly dependent on their run-off 

for meeting their freshwater demands. However, evidence from the last four decades 

indicates that those glaciers have retreated with an average rate of 18 meters a year, with 

implications for the freshwater supply, livelihoods, and economy of densely populated 

downstream regions (Singh et al., 2016). The Hindu Kush Himalayan region is extremely 

susceptible to global temperature increases, projected to experience the highest average 

temperature increases in the region (Carabine et al., 2014).  

 

With climate change unchecked, the IPCC concludes that the glacier retreat in the Hindu-

Kush Himalaya will continue, with the risk that by the end of the century the region loses 

60 % of its glaciers (Hock et al., 2019). While the increase in river flows due to the rapid 

melting of glaciers will pose a risk for human health through more frequent floods and 

landslides in the medium-term (2050-60), the declining water levels and droughts in the long 

term will threaten the availability of water for domestic use, agriculture and hydroelectricity 

for the 2 billion population in the region currently relying on it (Wester et al., 2019). 

 

Coastal flooding 

 

Sea level rise is another major threat, with a third of the Indian population estimated to live 

along the coast (Krishnan et al., 2020). The north Indian Ocean has risen by 3.3 mm per year 

on average in the recent decades (1993-2012), both due to ocean thermal expansion and the 

melting of ice sheets (Krishnan et al., 2020). As seasonal cycles of sea-level rise coincide with 

monsoon rains, the rising sea levels pose a risk of prolonged inundation, while also causing 

higher storm surges and more intense cyclones. By interacting with other climatic, geological, 
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and human-induced factors, sea level rise also causes seawater intrusion, making coastal 

groundwater and soil unusable for agricultural and other uses (Prusty and Farooq, 2020).  

 

Climate models project that under a mid-range emission scenario (RCP4.5) and excluding ice 

melt contributions, sea levels along the Indian coast are likely to increase by 20–30 cm by the 

end of the century relative to 1986–2005 levels (Krishnan et al., 2020). This will have 

devastating implications for human health and security, assets, and agricultural land, 

especially so for the low-lying and densely populated coastal cities such as Mumbai, Chennai, 

and Kolkata. 

 

1.5.2 India´s stance in global climate negotiations – reconciling 

mitigation and development 

 
Despite its high vulnerability to climate change, India´s historical and per capita emissions 

are low. The country hosts 17.8 % of the world’s population, but accounts for only 3.2 % of 

cumulative emissions and has GHG per capita emissions seven times lower than the United 

States of America (USA) and less than half of the world average (Figure 1.5)(Picciariello et 

al., 2021; Global Change Data Lab, 2021; CarbonBrief, 2019). Thus, by the principle of 

“common but differentiated responsibility” established in the global climate accord, the 

country has less of an obligation for mitigating climate change. Furthermore, as a developing 

economy with large poverty and inequality, India faces many other pressing priorities such 

as the provision of clean energy, decent housing, access to improved water and sanitation, 

and expansion of healthcare and welfare access. However, there is another side of the coin. 

With over a billion population, India´s total annual CO2 emissions are the third largest2 and, 

although still being a long way behind China and the USA, they have been increasing rapidly 

(Figure 1.6). India´s energy use has doubled since 2000 and 80 % of its demand is still being 

met by coal, oil, and solid biomass (Figure 1.7; IEA, 2021a). Growth in demand for electricity, 

vehicles, housing, domestic appliances, and air conditioners is set to expand, with India soon 

expected to surpass China as the most populous country (K. C. et al., 2018). The growing 

population and urbanisation and the rapidly expanding and still industrialising economy 

mean that India´s future development trajectory (and hence emissions) will be crucial for 

global mitigation goals. This places the country in an intriguing dual position in climate 

 
2 Fourth largest if EU-28 are considered altogether. 
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negotiations, whereas the equity frame entails a more modest contribution to climate 

mitigation efforts, but its increasing emissions call for a more proactive role (Dubash, 2013).  

 

Figure 1.5: CO2 emissions per capita in 2018, by region 

 

Source: Thomas Shulz, 25-Oct-2020, AQAL Capital GmbH. Based on IEA data from (IEA, 2020). 

1Middle East A: Bahrain, Oman, Kuwait, Katar, United Arab Emirates 
2Middle East B: Israel, Jordan, Lebanon, Syrian Arab Republic, Yemen 
3Asia A: Brunei Darussalam, Malaysia, Mongolia, Singapore 
4Asia B: Asia without Asia A, China, India, Thailand, Chinese Taipei, Indonesia, S. Korea, Japan 
5China: People´s Rep. of China, Hong Kong 
Notes: Energy-related CO2 emissions only; no other GHG or natural sources; aviation and marine bunkers 
not shown as territory, but included I average and totals  

 

The recent emergence of the concept of ‘co-benefits’ from actions that can deliver both 

development and climate gains has recently offered an opportunity to reconcile these two 

opposing perspectives. Low carbon development pathways hold the promise of yielding a 

range of benefits for the country such as cleaner air, job creation, and greater energy, food, 

and water security (Picciariello et al., 2021; Dubash, 2013). Parallel to this, there has been a 

growing recognition that minimising the effects of climate change will crucially determine 

the country´s prospects of meeting many of its development objectives, including those 

related to public health as discussed above, but also poverty and inequality (Muthukumara et  

al., 2018). These are two compelling reasons for India to boost its commitments and they 

have already influenced ongoing discussions of the adoption of a net-zero 2050 target, much 

ahead of China (Chaudhary, A., Rathi, A. and Singh, 2021). Co-benefits, understood as 

https://aqalgroup.com/2018-worldwide-co2-emissions/
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development actions that also bring climate gains3, are also explicitly recognised as the main 

policy driver within India’s National Action Plan on Climate Change (Atteridge et al., 2012; 

Dubash, 2013; Ürge-Vorsatz et al., 2014). 

 

Figure 1.6: Annual CO2 emissions from the burning of fossil fuels for energy and cement production, 

by country/region 

 

Source: Our World in Data, data based on Global Carbon Project, Carbon Dioxide Information Analysis 
Centre. 

Note: CO₂ emissions are measured on a production basis, meaning they do not correct for emissions 
embedded in traded goods. Emissions from land use change are not included. 

 

Figure 1.7: India´s population, Gross Domestic Product (GDP) and energy demand, 2000, 2010 and 

2019 

 

Source: IEA (2021a) 

 
3 Although similar, the formulation of co-benefits used in India’s National Action Plan on Climate Change 
differs from the definition used throughout this thesis. Namely, co-benefits are understood as the potential 
impact of development objectives on global climate change and not the other way around. 

https://ourworldindata.org/co2/country/india
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1.5.3 Ambient air pollution and related health co-benefits in India 

 
Ambient air pollution 

 

One of the most well-studied climate co-benefit actions for India, which can help directly 

deliver on some of its development objectives, is air pollution reduction. India has some of 

the highest air pollution levels globally, hosting 13 out of 20 of the most polluted cities in 

the world (Purohit et al., 2019). Air pollution levels are also relatively high in rural areas, with 

overall less than 1 % of the population in the country living in areas in compliance with the 

former WHO’s Air Quality Guideline (WHO-AQG) for annual mean concentrations of 

ambient PM2.5
4 of 10 μg/m3 (GBD MAPS Working Group, 2018). More than 50 % of the 

population in the country (677 million people) experiences air quality that does not conform 

to the Indian National Ambient Air Quality Standards (NAAQS) – India´s more conservative 

PM2.5 standard of 40 μg/m3 (Purohit et al., 2019). Although all parts of the country are 

affected, northern states have especially high levels of air pollution, with particular acuteness 

in the winter months (Figure 1.8).  Most air quality health impact assessment studies in India 

to date have focused on particulate matter (PM) or ozone (O3). The analysis in this thesis 

and the rest of this chapter focuses on PM2.5 and its related health burden (Box 1). 

 

Figure 1.8: Ambient PM2.5 concentrations (annual mean concentrations), 2015 

 

Source: IIASA and CEEW (2019) 

 
4 As of 2021 the WHO guideline for annual average concentrations of PM2.5 has been updated to 5 µg/m3. 
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Sources of ambient PM2.5 in India 

 

Anthropogenic sources are the main contributor to the high ambient PM2.5 concentrations in 

India, estimated to account for 60 % of mean population-weighted exposure (Venkataraman 

et al., 2018). Leading sectors influencing ambient PM2.5 are residential biomass combustion 

(for cooking, space- and water-heating and lightning) and fossil fuel combustion in power 

generation, industrial processes, and road transport (Figure 1.9) (Amann et al., 2017; 

Conibear et al., 2018a; Gordon et al., 2018; IIASA and CEEW, 2019; Venkataraman et al., 

2017). Several recent studies have identified residential biomass fuel use as the single largest 

contributor to ambient PM2.5 in India (20-50 % of total concentrations) (Butt et al., 2016; 

Conibear et al., 2018a; Lelieveld et al., 2015; Venkataraman et al., 2018; Chowdhury et al., 

2019; Apte and Pant, 2019; Rao et al., 2021).  

 

Box 1: Ambient air pollution 

 

Ambient air pollution is comprised of many particles and gases, whose composition and 

sources vary over space and time. Air pollution and the major sources contributing to it are 

normally measured and detected by a small subset of these gases and particles in the 

atmosphere. Fine particles with aerodynamic diameters ⩽2.5 μm (PM2.5) and tropospheric 

O3 are two of the most widely used air quality indicators to quantify exposure to outdoor air 

pollution.  

 

Ambient PM2.5 concentrations are a complex mixture of solid and liquid aerosols, which 

originate from a variety of sources and can be either directly emitted (primary – e.g. black 

carbon and organic carbon emitted from biomass burning; sea salt; soil; road dust, etc) or 

formed in the atmosphere through chemical reactions between gaseous precursor emissions 

(secondary – e.g. ammonia (NH3) emitted primary from agricultural sources, sulfur dioxide 

(SO2) and nitrogen oxides (NOx) from fuel combustion, and non-methane volatile organic 

compounds (NMVOCs)). Secondary particles comprise about one-third of ambient PM2.5 

(IIASA and CEEW, 2019). 

 

Due to their small size, PM2.5 particles penetrate deep into the lungs, where they can cause a 

wide range of adverse health impacts. Epidemiological studies show consistent and robust 

associations between long-term exposure to PM2.5 and increased risk of mortality from IHD, 
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stroke, Chronic Obstructive Pulmonary Disease (COPD), Lower Respiratory Infections 

(LRIs), and lung cancer (LC) (Health Effects Institute, 2018). Short-term exposure has been 

associated with an increased risk of respiratory and cardiovascular morbidity, including 

aggravation of asthma, respiratory infections, and hypertension (WHO, 2013). A wide range 

of other chronic health effects of PM2.5 exposure have also been documented, affecting 

reproductive, maternal (short gestation, decreased fetal growth), child (low birth weight, 

pneumonia, respiratory infections, reduced growth in lung function), and adult (diabetes, 

neurodegenerative diseases, high blood pressure, pneumonia) health (Thurston et al., 2017). 

Both for short-term and long-term exposure to PM2.5 there has been no evidence of a safe 

level of exposure, with adverse health impacts occurring even at very low levels (WHO, 

2016).  

 

Ozone (O3), is a gas formed in the atmosphere as a secondary reaction of several precursor 

pollutants, which have both natural and man-made sources. O3, which is high up in the 

atmosphere (in the stratosphere) has a protective role, shielding the Earth from harmful rays 

and ultraviolet radiation. However, O3 which is near ground level (in the troposphere) acts 

as a GHG and a health-damaging air pollutant (Health Effects Institute, 2019). Most ground-

level ambient O3 is produced when precursor pollutants (mainly, volatile organic compounds 

and NOx) emitted from human activities (e.g. transport vehicles, power plants, factories, and 

other sources) react in the presence of sunlight with hydrocarbons emitted from diverse 

sources (Pandey et al., 2021). O3 has been associated with increases in morbidity and 

mortality from respiratory causes (Jerrett et al., 2009), specifically chronic obstructive 

pulmonary disease, and also with a reduction in crop productivity (Emberson et al., 2018). 

As O3 concentrations are highly seasonal, peaking in the summer in mid-latitudes, exposure 

measurements in epidemiological studies normally focus on the warm season rather than 

annual averages. 

 

Hence, high ambient air pollution (AAP) is highly interrelated with the problem of energy 

poverty and the high indoor air pollution in India, which already contributes significantly to 

the disease burden in the country (see section 1.5.4). The majority of electricity in the country 

is produced by coal (57 %), with thermal power plants characterised by low adherence to 

existing regulations, lack of flue-gas desulphurisation, and low energy efficiencies (Conibear, 

2018). Informal activities such as open waste and agricultural burning, fired-brick production 

that is based predominantly on traditional technologies, and unregulated use of personal 
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diesel generator sets, are other important sources of particulate pollution (Gordon et al., 

2018; Venkataraman et al., 2017). In some areas, such as construction sites and places 

characterised by little green cover and resuspension of road dust, ambient PM levels are also 

aggravated by dust sources (Gordon et al., 2018).  

 

Transboundary emissions, especially dust originating from West Africa and the Middle East, 

have also been identified as an important source of PM2.5 in the Indian sub-continent (Liu et 

al., 2009). Because of their small size and thermodynamic properties, PM2.5 particles remain 

in the atmosphere for several days, and during this period they can be transported over 

several hundreds of kilometers (Purohit et al., 2019). As a result, a large share of the particles 

found in a specific location at a certain point in time originates from distant sources. 

Transboundary pollution is especially high in north-western regions in India, where it 

contributes 15-30 % of total ambient PM2.5 (Venkataraman et al., 2017). According to Zhang 

et al. (2017), in 2007, PM2.5 generated within India contributed to 75 thousand premature  

 

Figure 1.9: National emissions of PM2.5 and precursor gases for 2015 (Mt yr-1). 

 

Source: Venkataraman et al. (2017) 

 

deaths outside of the country, while PM2.5 generated outside of India contributed to 67 

thousand premature deaths inside the country. A recent analysis by Purohit et al. (2019) 
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demonstrated that also within many of the administrative states in India dominant 

contributor sources to ambient PM2.5 are emissions originating outside of their immediate 

jurisdictions. The transboundary nature of ambient PM2.5 underscores the need for strong 

regional cooperation for the successful improvement in local air quality. 

 

The public health burden from AAP 

 

The public health burden of air pollution in India is significant. Exposure to air pollution 

(both ambient and household) in India is ranked as the second most important contributor 

to mortality and morbidity, after malnutrition and dietary risks (IHME, 2019) and it also 

accounts for 25 % of the global disease burden attributable to air pollution (Conibear, 2018). 

Ambient air pollution is estimated to cause between 483 thousand and 1.2 million5  (IIASA 

and CEEW, 2019; Pandey et al., 2021) premature deaths annually in India, with ambient 

PM2.5 accounting for 10.4 % (8.4-12.3%) and O3 for 1.8 % (0.9-2.7%) of total deaths in the 

country, respectively. This burden is mainly attributable to stroke, heart attack, chronic 

obstructive pulmonary disease (COPD), LC, and respiratory diseases. When additional 

causes of death than those considered previously are included, this death toll is estimated to 

be as high as 2.2 million (Burnett et al., 2018). Rural regions in India are shown to experience 

the majority of deaths from PM2.5 and O3 (Karambelas et al., 2018), which might be due to 

their larger population size and lower LE compared to urban areas. In terms of morbidity, 

in 2017 the DALY (disability-adjusted life years) rate attributable to ambient PM2.5  in India 

was 2,239 (1,768–2,699) and for O3 – 220 (108-347) (Balakrishnan et al., 2019). It has been 

estimated that within the last decade (1990-2019) the death rate from ambient PM and O3 

pollution in the country has increased by 115 % (95% uncertainty interval (UI): 28–344) and 

139 % (97–196), respectively (Pandey et al., 2021). According to different estimates, exposure 

to ambient PM2.5 reduces the LE of the population in India by 0.9-4.3 years on average (Apte 

et al., 2018; Balakrishnan et al., 2019; Ghude et al., 2016; Greenstone and Fan, 2018; Guo et 

al., 2018; Lelieveld et al., 2020). These health impacts also cause a significant burden on the 

economy: in 2019, the total loss of output due to the premature mortality and disease burden 

in the country was estimated at $37 billion (27–48), which was 1.36 % of GDP (Pandey et 

al., 2021). 

 

 
5 The large differences in estimates are explained by variations in baseline ambient PM2.5, health, and 
population data as well as the epidemiological functions linking PM2.5 and mortality and the diseases 
considered. 
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Extrapolation of global exposure-response functions to the Indian context 

 

A major source of uncertainty in the estimates of the mortality burden of ambient PM2.5 in 

India reported above is the exposure-response function (ERF), relating ambient air 

pollutants to mortality risks, used for these quantifications. Due to the lack of India-specific 

epidemiological studies on the mortality effects from long-term exposure to air pollution, 

existing disease burden estimates for India have been based on ERFs from other parts of the 

world, mostly Europe and North America.  This is a major limitation since estimates from 

high-income countries might not be readily transferrable to the Indian context for a variety 

of reasons, including differences in concentration ranges (observed ambient PM2.5 exposures 

in India being several-folds higher), source mixtures, demographics, activity patterns, 

underlying health status, and healthcare systems. It has been argued, however, that similarities 

in risk estimates for effects of short-term exposure on daily mortality in Indian and global 

studies support the temporary use of such global ERFs for quantifying the disease burden in 

India (Gordon et al., 2018). 

 

Most estimates of the number of deaths attributable ambient PM2.5 in India to date, including 

those from the GBD, have been based on the Integrated Exposure-Response (IER) model, 

which combines evidence on exposure and risk of mortality from five causes of death (IHD, 

LC, stroke, COPD and LRIs) derived from epidemiological studies on AAP and HAP as 

well as second hand and active smoking (Burnett et al., 2014). This model is based on the 

strong assumption of equal toxicity of PM2.5 per total inhaled dose from these different 

sources. The non-linear shape of the IER function has major implications for the 

quantification of the disease burden of PM2.5 in highly polluted areas as it generally leads to a 

decreasing marginal risk of mortality per increment in PM2.5 at high concentrations. The 

Global Exposure Mortality Model (GEMM) has been developed more recently, which is 

based only on AAP cohort studies and covers much of the global PM2.5 exposure range, thus 

allowing to relax many of the underlying assumptions in the IER model (Burnett et al., 2018). 

The near-linear shape of the GEMM model at higher concentrations and the inclusion of 

additional causes of death than those considered by the IER model implies a much larger 

burden of ambient PM2.5 than previous estimates, and especially so for highly polluted 

regions such as India. 
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Air pollution epidemiology in India 

 

Epidemiological studies on the adverse health effects of air pollution in India have been 

growing over the last years (Balakrishnan et al., 2019; Gordon et al., 2018). However, several 

reviews of the existing evidence on the health effects of air pollution exposure in India have 

highlighted that the available literature is still inadequate in terms of the number of studies 

and scope (Khilnani and Tiwari, 2018; Pant et al., 2016; PHFI&CEH, 2017; Rajak and 

Chattopadhyay, 2020). A vast majority of the existing epidemiological studies were based on 

data from large urban centres (Delhi, Mumbai, Bangalore, Chennai, Kolkata), and most 

reported on the prevalence of respiratory symptoms such as cough and wheeze, asthma in 

children and adults, and diminished lung function (Pant et al., 2016; Gordon et al., 2018). 

Health effects in smaller cities and towns and rural areas have been less researched (Tirado, 

2019). Most of the literature was limited to coarse PM (PM10 or PM5), while little research 

has been carried out on the exposure to fine and ultrafine PM. Furthermore, only a few 

cohort studies to date have reported mortality effects related to long-term exposure to air 

pollution (Rajak and Chattopadhyay, 2020). The main barriers for air pollution epidemiology 

remain the lack of routinely collected health data as well as the still very limited routine 

monitoring of air quality, with current monitoring nearly exclusively confined to urban 

centres. To overcome the barrier in exposure assessment, hybrid models which combine data 

from chemical transport modelling with satellite retrievals and available monitoring data have 

been developed (Brauer et al., 2012; Dey et al., 2012; Shaddick et al., 2018; van Donkelaar et 

al., 2010). New epidemiologic cohort studies on both urban and rural populations have also 

been launched in an effort to provide estimates of the long-term effect of AAP on different 

child (birth weight), maternal (acute respiratory infections) and adult health outcomes 

(chronic respiratory symptoms, lung function, cardiovascular function, mineral density) 

(Balakrishnan et al., 2015; Ranzani et al., 2020a; Ranzani et al., 2020b; Gordon et al., 2018).  

 

Scenario analysis of air pollution interventions 

 

Previous studies have demonstrated the large potential health benefits from alternative air 

pollution interventions in India, with all of them focusing either on PM2.5 or O3. Scenario 

analysis in relation to air pollution in India has focused either on the impacts of targeted air 

quality controls (Chowdhury et al., 2019; Conibear et al., 2018b; GBD MAPS Working 

Group, 2018; IEA, 2021a, 2016; Limaye et al., 2019; Purohit et al., 2019; Sanderson et al., 
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2013; Venkataraman et al., 2017) or on co-benefits from climate change mitigations 

(Chowdhury et al., 2018; Dholakia et al., 2013; Hamilton et al., 2021; IEA, 2021b; Rafaj et 

al., 2018, 2013; Sampedro et al., 2020; Silva et al., 2016; Tibrewal and Venkataraman, 2021; 

Vandyck et al., 2018; West et al., 2013). 

 

➢ Health benefits of targeted AAP controls 

 

The International Energy Agency (IEA) developed a New Policy Scenario (NPS), which 

considers all relevant existing and planned policies as of 2016, and the Clean Air Scenario 

(CAS), which represents ambitious policy measures based on proven energy policies and 

technologies tailored to national circumstances (IEA, 2016). Evaluation of the health 

implications of these scenarios suggests a +53 % increase in the disease burden from air 

pollution under the NPS or a -5 % reduction under the CAS scenarios by 2040 compared to 

2015.   

 

Conibear et al., (2018b) re-evaluated IEA´s NPS and CAS scenarios using a higher spatial 

resolution air pollution model and updated baseline mortality data and ERFs. Similarly, the 

authors demonstrated a large potential for reduction in premature mortality from AAP by 

2050 under the CAS scenario compared to NPS (-35 %), but an increase in the total burden 

relative to 2015 even under this aspirational scenario (+7 %).  

 

More recently, the IEA produced new scenarios for the future of India´s energy sector, 

considering the potentially far-reaching impacts of the COVID-19 pandemic: Stated Policies 

Scenario (STEPS), which represents current policy ambitions and effective COVID-19 

management in 2021; India Vision Case (IVC), which foresees a more swift recovery from 

the pandemic, faster economic growth, and more complete realisation of policy objectives 

and the Sustainable Development Scenario (SDS), which envisions accelerated efforts 

towards meeting the 2°C climate targets and other sustainable development objectives (IEA, 

2021a). Despite the realised air pollution reduction in the STEPS scenario, premature deaths 

from energy-related AAP are projected to increase by +50 % by 2040 compared to 2019 due 

to population growth. However, the more substantial reductions in air pollutants under the 

IVC and SDS can reduce this burden by -17 %.  
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Purohit et al. (2019) explored two ambitious air pollution reduction pathways in India – 

implementation of Advanced Emission Control (AEC) technologies as those already widely 

adopted in industrialised countries and AEC plus the additional implementation of 

sustainable development policies, including the 2 °C climate target – and compared them to 

the evolution of air quality under current legislation (20156 and 2018 legislation). While an 

AEC pathway could provide NAAQS-compliant air quality for 60 % of the Indian 

population by 2050, when complemented with national sustainable development policies this 

could increase to 85 %, thus reducing current population exposure to above-NAAQS air 

quality by two-thirds (IIASA and CEEW, 2019).  

 

The GBD MAPS Working Group developed another set of scenarios for India´s air quality 

throughout 2050, including a business-as-usual reference scenario, an ambitious scenario 

reflecting stringent emission standards, and an aspirational scenario (GBD MAPS Working 

Group, 2018). The study projected increases in total annual premature mortality from 

ambient PM2.5 exposure between 2015 and 2050 under all PM2.5 pathways (+234 % in the 

business-as-usual, +194 % in the ambitious, and +125 % in the aspirational scenarios), 

despite the estimates of a 35 % reduction in population-weighted ambient PM2.5 

concentrations under the aspirational scenario. The authors attributed these increases largely 

to the rapid growth and aging of the population.  

 

Chowdhury et al (2019) developed seven different scenarios of mitigating household PM2.5 

sources –– biomass for cooking, space and water heating, and kerosene for lighting. Using 

these as a counterfactual to the present level of PM2.5 exposure and disease burden, they 

demonstrated that the NAAQS is achievable through a cleaner energy transition of 

households and could translate to a ∼13 % reduction in premature mortality from ambient 

PM2.5.  

 

Overall, all the above-mentioned modelling studies demonstrated that while current 

legislation would not be sufficient to deliver significant air quality improvements, large 

potential public health benefits relative to the business-as-usual can be realised through 

stringent air quality management. Another consistent finding is that the capacity for 

reduction of PM2.5 and its related mortality burden over time will be somewhat limited due to 

the impacts of rapid economic growth, urbanisation, population growth, and aging. While 

 
6 The 2015 legislation scenario is in line with IEA´s CAS scenario mentioned above. 
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the expansion of economic activity is projected to offset some of the impacts of new 

emission controls, demographic change is expected to compensate even for more ambitious 

air quality improvements. 

 

➢ Health co-benefits of climate change mitigation 

 

Health co-benefits related to air pollution reduction from climate change mitigation have 

also been analysed for India, although mainly as part of large global studies. The potential air 

pollution-related co-benefits from climate change mitigation for a certain country depend on 

many factors, including not only the global temperature target and associated GHG 

emissions reductions, but also on the temporal and spatial allocation of the global carbon 

budget and the technological pathway for achieving these reductions (Sampedro et al., 2020). 

In this respect, modelling studies based on the Paris Agreement have demonstrated that India 

can realise some of the largest air pollution-related health co-benefits with ambitious climate 

change mitigation by mid-century, irrespective of the global burden-sharing mechanism 

(Markandya et al., 2009) and the mitigation technologies used (Sampedro et al., 2020). Studies 

have also shown that when monetised these co-benefits will largely exceed climate change 

mitigation costs even under most aspirational scenarios (Markandya et al 2018, Sampedro et 

al 2020).  For instance, Sampedro et al. (2020) estimate that with a “least-cost approach of 

mitigation” and under a range of technological pathways consistent with the 2°C mitigation 

target, India is expected to account for 33–37 % of the global health co-benefits related to 

PM2.5 and O3, while bearing only 14 % of the global mitigation costs. Analyses of India´s 

NDCs7 show that the country´s currently outlined carbon mitigation plans would be 

insufficient for achieving notable air quality co-benefits as compared to a business-as-usual 

scenario (Hamilton et al., 2021; Markandya et al., 2018; Vandyck et al., 2018). Hamilton et al. 

(2021) compared health co-benefits related to air pollution, active travel, and diet for nine 

high emission countries, including India. Based on a sustainable development pathway 

scenario compatible with the 2°C target, it was estimated that in 2040 health co-benefits 

related to air pollution will be the second most important for India after those from 

improvements in diet (434 thousand avoided deaths from air pollution improvement 

compared to 1.7 million from diet and 365 thousand from active travel). 

 
7 Refers to the 2015 NDCs, the updated 2021 NDCs of India were still not available at the writing of this thesis. 
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Two studies considered the impact of climate changes on future air quality, using an 

ensemble of climate-chemistry models and a different set of global scenarios – the RCPs 

(Silva et al., 2016; Chowdhury et al., 2018). Overall, the effect of climate-driven meteorology 

on future concentrations of O3 and PM2.5 is shown to be relatively smaller compared to the 

effect of changes in anthropogenic emissions. However, Chowdhury et al. (2018) estimated 

that climate-induced meteorology can potentially mitigate about 7 %–17 % of the rise in 

PM2.5 concentrations in the future under the RCP4.5 scenario. Silva et al. (2016) projected 

that although the premature mortality burden of both O3 and PM2.5 will increase in the 

medium term (i.e. 2030-2050) in India in most scenarios, stringent climate action (RCP2.6) 

can still help prevent 102 thousand premature deaths from O3 and 315 thousand from 

ambient PM2.5 in 2050 compared to a high emissions scenario (RCP8.5). Focusing exclusively 

on India, Chowdhury et al. (2018) considered not only different climate change scenarios 

(RCP4.5 and RCP8.5) but also socio-economic and demographic scenarios (Shared 

Socioeconomic Pathways - SSPs)8. Considering all plausible SSPs combinations, the 

premature mortality burden from PM2.5 in India was estimated to be 9.7–17.9 % and 28.5–

38.8 % higher under RCP8.5 scenario relative to RCP4.5 scenario in 2050 and 2100, 

respectively. It should be noted that a major limitation in the RCP scenarios is that they 

assume a decrease in emissions of air pollutants globally over time due to increasingly 

stringent air pollution control policies in line with rising income levels (van Vuuren et al., 

2011). As such, the RCPs do not span the full range of plausible future air-pollutant pathways 

found in the literature (Rogelj et al., 2014).  

 

Several studies considered the impact of climate change mitigation along with or in 

comparison to targeted air pollution control measures (Purohit et al., 2019; IEA, 2021a; 

Dholakia et al., 2013;). As outlined in the previous section both Purohit et al. (2019) and IEA 

(2021a) demonstrated that while 2°C-compatible climate action and additional sustainable 

development policies will help reduce PM2.5 exposure and the associated mortality burden in 

India, the largest benefits in the future occur with the concurrent adoption of advanced 

emission controls. A 2013 study focused on Delhi showed that climate change mitigation 

policies will have only a modest impact on reducing PM2.5 concentrations and the associated 

mortality burden in the capital, while city-specific policies related to the transport, waste, 

 
8 The Shared Socioeconomic Pathways (SSPs) are scenarios of projected socioeconomic global changes up to 
2100 in the absence of climate policy. The SSPs provide narrative storylines of alternative socio-economic 
developments that pose different challenges to adaptation and mitigation of climate change (O’Neill et al., 
2014), many elements of which have been quantified. 
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energy, and other sectors can bring much larger improvements in local air quality, with trans-

boundary pollution measures potentially playing a critical role as well (Dholakia et al., 2013). 

Overall, existing studies have highlighted the importance of complementing GHG mitigation 

strategies with air pollution control measures in order to achieve more substantial health 

benefits. At the same time, it has been highlighted that advanced air quality technologies 

alone will not be sufficient to substantially reduce the PM2.5 mortality burden everywhere in 

the country, especially in regions where major sources are related to poverty and 

underdevelopment rather than industrial development and more affluent lifestyles (Purohit 

et al., 2019). 

 

1.5.4 Household air pollution 

 
Context and characteristics  

 

Around 660 million people or half of India´s households are estimated to live without access 

to modern clean cooking fuels or technologies (IEA, 2021a). Energy poverty is especially a 

problem for rural areas in the country, where more than 90 % of the population lives without 

access to clean cooking. Solid fuel use is geographically concentrated in the Indo-Gangetic 

Plain (IGP), with ten states accounting for 75 % of all solid fuel use in the country (Uttar 

Pradesh, Bihar, West Bengal, Andhra Pradesh, Madhya Pradesh, Maharashtra, Rajastan, 

Odisha, Tamil Nadu, Karnataka) (Conibear, 2018). LPG has been prioritised as the main 

cleaner alternative to solid fuel use in India. However, its widespread adoption is hampered 

by the high upfront connection and recurring fuel costs, as well as lack of distribution in rural 

areas (Conibear, 2018; Edwards et al., 2014; Jain et al., 2015; Smith and Sagar, 2014; Smith, 

2017). In low-income rural areas, biomass and other traditional fuels are preferred as these 

are abundantly available at no or minimal monetary cost compared to the much more 

expensive LPG. It has been documented that as households get wealthier, they tend to switch 

to cleaner and easier to use fuels, thus ascending a metaphorical “energy ladder” as they get 

richer (Figure 1.10). 

 

Incomplete combustion from the burning of solid cooking fuels (mostly bushwood, but also 

charcoal and coal, animal dung, and crop residues) in traditional stoves results in the emission 

of hundreds of different chemical substances, including health-damaging PM2.5, CO, nitrogen 

dioxide (NO2), SO2 and others (Gordon et al., 2018). According to estimates based on an 
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Figure 1.10: The energy ladder 

 

Source: Rehfuess (2006); Gordon et al. (2014) 

 

India exposure model, PM2.5 concentrations in households using solid-fuels could reach up 

to 337 μg/m3 (Balakrishnan et al., 2013; Gordon et al., 2018), far exceeding the current 

WHO-AQG interim target 19 of 35 μg/m3 and the Indian NAQQ standard of 40 μg/m3. 

Individual exposure to HAP is shown to depend on a variety of factors including fuel/stove 

type and fuel quantity, ventilation of kitchen area, and time spent near the cooking area 

(Gordon et al., 2018; Milà et al., 2018). As women tend to spend longer time at home and 

cooking, while also taking care of young children and infants, they are disproportionately 

exposed to high levels of HAP. In addition to the multitude of damaging health impacts, 

residential biomass use in India also imposes a cost on women’s and children’s productive 

time, due to the time and effort involved in the wood collection, and on the environment 

due to its effects on deforestation and the climate (IEA, 2021a). 

 

 

 
9 The WHO-AQG interim targets are not end targets, but rather serve as incremental steps towards ultimately 
achieving the stipulated AQG levels. 
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Household air pollution interventions 

 

Solid fuel interventions aim at helping households “ascend the energy ladder” before they 

get wealthy. This is accomplished either by making the available clean, i.e. promoting the 

adoption of more efficient biomass cookstoves that lower particulate emissions, or making 

the clean available, i.e. through price support or direct subsidies for cleaner cooking fuels (Smith 

and Sagar, 2014). About 10 % of solid fuel users in India use improved biomass cookstoves, 

which can come in many varieties (e.g. with chimneys, fans, combustion chamber insulation) 

and have different performance characteristics and emissions (Venkata Ramana et al., 2015). 

Although improved cookstoves are seen as an important short-term strategy to reduce HAP, 

results from field studies suggest emission reductions of these are substantially lower than 

observed under controlled conditions in laboratory studies (Edwards et al., 2014; 

Muralidharan et al., 2015; Patange et al., 2015). Furthermore, evidence on their health 

benefits is mixed (Conibear, 2018; Gordon et al., 2017; Hanna et al., 2016) and it has been 

suggested that “improved” cookstoves may not reach sufficiently low emission levels to 

generate meaningful health benefits (Venkata Ramana et al., 2015).  Between 1984 and 2001 

the Indian government launched a national campaign on improved cookstoves, introducing 

32 million improved cookstoves into rural areas through the National Programme on 

Improved Chulha (NPIC). The programme, which reached only 27 % of its aim, is widely 

considered as unsuccessful due to its top-down approach, limited feedback, and poor-quality 

materials (Conibear, 2018; Gifford, 2010; Venkataraman et al., 2010). Some of the distributed 

improved cookstoves were even reported to have higher air pollutant emissions and similar 

efficiencies as the traditional biomass stoves (Conibear, 2018; Smith, 1989).  

 

The Indian government has recently established two subsidy programmes to increase the 

adoption and regular use of LPG in rural areas: Pradhan Mantri Ujjwala Yojana (PMUY) and 

Pratyaksh Hanstantrit Labh schemes (PAHAL). The PMUY scheme, originally launched in 

2016, initially aimed at providing 50 million LPG connections by 2019 and was later increased 

to 80 million connections by 2020, with the latter target already achieved ahead of schedule. 

The initiative provides an interest-free loan facility for the cost of an LPG stove and first 

refill and is targeted at households living below the poverty line. The Direct Benefit Transfer 

of LPG scheme, also known as PAHAL, was launched in stages in 2013 and expanded as a 

national scheme in 2015. This scheme is eligible for all consumers and it provides a subsidy 

for the purchase of LPG fuel. A “Give It Up” campaign launched by the government has 
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persuaded 10 million households to opt out of the subsidy (IEA, 2021). It has been estimated 

that the expansion of clean cooking fuels, largely supported by these initiatives, has helped 

prevent more than 200 thousand premature deaths in the country between 2010 and 2019 

(Health Effects Institute, 2020). Even with these schemes in place, household surveys reveal 

that cooking with biomass remains widespread. Although affordability, especially the large 

upfront payments for LPG, is a fundamental reason for the continued use of solid fuels, 

other barriers to access have also been identified, including volatile fuel supplies and prices 

and household incomes, long distances to LPG distributors, and cultural factors (Van Der 

Kroon et al., 2013). For instance, even as household incomes increase some still opt for using 

LPG along with biomass or other fuels because of their cooking preferences for certain 

dishes, a practice known as “fuel stacking” (using multiple fuels for the same purpose). 

 

Health impacts of HAP  

 

The prolonged exposure to HAP, especially PM2.5 is associated with an increased risk of a 

wide range of health outcomes, including respiratory tract infections, exacerbations of 

inflammatory lung conditions, cardiac events, stroke, eye disease, tuberculosis, and cancer 

(Gordon, 2014).  According to recent GBD estimates, the death rate due to HAP in India 

decreased by 64 % (95 % UI: 52–74 %) between 1990 and 2019. The total mortality burden, 

however, is still very high, amounting to 0.61 million deaths (95 % UI: 0.39–0.86) or 6.5 % 

(95 % UI: 4.3-9.0%) of total mortality in the country. The high exposure to smoke of 

pregnant women and young children is a particular matter of concern. Due to their 

developmental susceptibility early in life, air pollution exposure can have long-lasting 

detrimental effects on children's health and human capital formation (Backes et al., 2013). 

While AAP studies have measured exposure based on estimated levels of PM and other 

pollutants, most of the epidemiological studies on HAP that have been conducted in India 

have used qualitative indicators to characterise exposure, for instance, use of solid vs. clean 

cooking fuels, involvement in cooking, or proximity to the stove. Although the health burden 

of HAP in India is also quantified using global models such as the IER, several 

epidemiological studies for India are incorporated in the systematic reviews/meta-analyses 

for these global models (Gordon et al., 2018; Smith et al., 2014). 

 

According to a recent study, the lower-income households in India not only bear the brunt 

of HAP due to their energy poverty as discussed above, but they are also disproportionately 



 

 33 

affected by exposure to air pollution from the household consumption of richer-income 

groups (Rao et al., 2021). As a result of this double burden, the poorest in India are estimated 

to be nine times more likely to die from air pollution, compared with the richest, considering 

each income group’s relative contribution to air pollution.  

 

Scenario analysis 

 

Projections of HAP and related health impacts have been more limited compared to AAP 

and most of the studies on AAP have not considered changes in HAP. One study 

investigated access to clean cooking in South Asia between 2010 and 2030 under four 

increasingly stringent climate change mitigation scenarios and different clean fuel and stove 

price support policies and quantified the associated mortality burden and the cost of support 

policies (Cameron et al., 2016). The authors found that in 2030 climate policy in line with a 

66 % probability of reaching the 2°C target, without compensatory measures, will increase 

the average cost to cook with LPG by 38 %, making LPG unaffordable for 21 % of the 

population and potentially leading to 0.40 million (UI: 0.22- 0.44) premature deaths from 

solid fuel use compared to the business-as-usual. Climate policy with the provision of 

additional clean fuel and stove subsidies can reduce the number of premature deaths from 

HAP by 0.68 million (UI: 0.31- 0.84) compared to the business-as-usual but would cost 

governments between US$29 billion and US$38 billion depending on the choice of access 

policy instrument. 

 

The recent scenarios developed by the IEA as described earlier (see section 1.5.3) also 

included projections of access to clean cooking fuel and the associated disease burden from 

energy-related HAP (IEA, 2021a). The authors project that in 2040 under the current policies 

scenario (STEPS) the total number of premature deaths from energy-related HAP will fall 

by only 0.1 million compared to 2019. Additional interventions both under the SDS and IVC 

scenarios (innovative subsidy schemes supporting the sustained use of LPG and eliminating 

fuel stacking; investments and incentives to expand infrastructure for LPG bottling and 

distribution and for the repair and replacement of broken stoves) are projected to lead to 

universal access to clean cooking by 2030 and thus reduce the mortality burden from HAP 

in 2040 by 0.5 million compared to 2019. 

 



 

 34 

1.5.5 The role of socio-demographic factors in climate risk 

assessment 

 

Within the IPCC framework, the risk of climate-related impacts results from the interaction 

of weather or climate-related hazards with vulnerability and exposure of human and natural 

systems (Figure 1.11). Vulnerability has been defined as “the propensity or predisposition to 

be adversely affected”, which could refer to personal or group characteristics, while exposure 

has been formulated as the “presence (location) of people, livelihoods, environmental 

services and resources, infrastructure, or economic, social, or cultural assets in places that 

could be adversely affected by physical events” (IPCC, 2012, p.32). In this context, a realistic 

assessment of future health impacts of climate change requires not only advanced modelling 

of future environmental hazards (i.e. climate events or trends) but also consideration of 

potential interactions of these hazards with future socio-economic and demographic 

developments, which determine the vulnerability and exposure drivers of climate risks. This 

is particularly the case for LMICs such as India, which are not only recognised as highly 

vulnerable to climate risks (Watts et al., 2015) but also expected to experience dramatic socio-

economic, health, and demographic transformations in the next decades.  

 

Figure 1.11:  Definition of climate risk within the IPCC framework 

 

Source: Davis-Reddy and Vincent (2017) 
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The population in India is projected to grow from 1.2 billion in 2011 to almost 1.7 billion in 

2050 (KC et al., 2018), while the share of the urban population is expected to grow from 

31.3 % in 2011 to 52.8 % in 2050. These trends will have paramount implications for 

economic growth, energy use, and GHG emissions. However, they can also amplify potential 

 

climate risks since a larger population will be exposed to the expected climate hazards, many 

of which will be concentrated in urban areas (e.g. UHI effect, air pollution, floods). 

Furthermore, the rising levels of cardio-metabolic diseases and ageing of the population, 

associated with the undergoing demographic and epidemiological transitions in India, are 

likely to further amplify climate risks by increasing the share of those most vulnerable 

(Dandona et al., 2017).  As India continues to develop economically there are likely to be 

also positive developments in the opposite direction – reduction in poverty and 

improvements in education, access to healthcare, water, sanitation, and clean energy. For 

instance, previous studies have shown that education has important mediating effects on 

climate hazards (Dimitrova and Muttarak, 2020; Lutz et al., 2014; O’Neill et al., 2020). 

Understanding the potential interplay of population dynamics and environmental health 

hazards such as air pollution is crucial for reducing a major source of uncertainty in future 

climate change vulnerability assessments (Madaniyazi et al., 2015). Projections that explore 

these interactions at the sub-national level are particularly needed to help determine regional 

or local priorities for improving public health through mitigation or adaptation measures.  

 

1.6 Overview of existing methodologies for forecasting 

environmental health impacts 

 

What is Health Impact Assessment? 

 

The most commonly used formulation of Health Impact Assessment (HIA) to date emerged 

from the Gothenburg Consensus meeting in 1999, which defined HIA “as a combination of 

procedures, methods, and tools, by which a policy, programme or project may be judged as 

to its potential effects on the health of the population, and the distribution of those effects 

within the population” (European Centre for Health Policy, 1999). Several other definitions 

have been proposed, but as highlighted by Veerman (2007) and Kemm (2003) the two 

defining characteristics of HIA are that (1) it seeks to predict the future consequences for 
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health of a potential project, programme, or policy decisions and that (2) it seeks to inform 

decision-making on the basis of these predictions. Typically, HIA considers interventions 

outside of the health sector, which have unintended consequences on human health 

(Veerman, 2007).  

 

The origins of HIA can be traced back to two prior developments. On the one part, HIA 

represents a natural development of Environmental Impact Assessment (IEA). IEA used to 

inform decision-makers about the consequences of development projects on the physical 

and chemical environment since the seventies. The aspect of health was first applied in EIAs 

of construction projects in low-income countries (e.g. construction of dams, irrigation 

schemes, etc.) when the large health consequences of such projects became apparent and 

was later expanded to EIA in high-income countries as well (Birley, 1995). A second 

movement that HIA is rooted in is related to the (social) determinants of health and healthy 

public policy (Lalonde, 1974) and the WHO Healthy Cities Initiative (Veerman, 2007). This 

tradition puts forward a holistic view of health, recognizing the importance of factors at the 

individual, communal, and macro-level that shape population health. Special emphasis is 

placed on the social, environmental, and behavioral determinants of health and their 

interactions. 

 

HIA approaches can be classified into two broad disciplinary groups – one is based on 

epidemiology and toxicology, while the other – on social sciences. HIAs can also be 

distinguished by their application  – they can be applied either to specific projects or to 

broader policies and strategies (Kemm, 2003). Given the different disciplinary roots of HIA 

and the diverse types of projects and policies that it applies to, it is not surprising that many 

different HIA methods have been developed.  Although levels of detail and rigor in 

conducting a HIA vary depending on specific needs and available resources, most HIA 

processes share five key steps: screening, scoping, effect analysis, interaction with the policy 

process, and monitoring and evaluation. The screening phase involves judgment of the 

potential consequences of policy proposals on human health, on the one hand, and the 

potential of HIA to influence decision making, on the other. In the scoping phase, for HIAs 

deemed useful, the research question, the study design, and the partners to be involved are 

decided. Normally, these two stages benefit from the involvement of a wide range of 

stakeholders, including those whose health is likely to be affected by the proposed policy, 

programme, or project (European Centre for Health Policy, 1999). In the effect analysis 
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phase, the nature and size of the health impacts are estimated along with their distribution 

across population groups. This is normally done by linking (i) predictions of how the 

proposed policies will affect the determinants of health with (ii) estimates of how changes in 

these determinants affect population health (Fehr et al., 2012). In doing so, HIA relies on 

evidence on causal links between exposure and outcomes (exposure-response relationships) 

from epidemiology and toxicology. Recommendations based on the assessment of health 

gains and losses of proposed actions are communicated to policy-makers and other 

stakeholders. If deemed necessary, this can lead to the further monitoring of the health 

impacts and relevant exposures and to an evaluation of the HIA (Veerman, 2007).  

 

Quantitative HIAs 

 

Quantitative HIA can complement qualitative analysis by offering several important 

advantages. First, quantitative HIA can provide a very specific numerical description of 

health effects compared to qualitative analysis only. This can help decision-makers in 

distinguishing between minor and major issues that need to be addressed, understanding 

trade-offs that policies may entail, and allocating resources accordingly. Second, 

quantification of negative and positive effects permits the use of economic instruments, for 

example, cost-effectiveness analysis, which can further aid decision-making. Quantitative 

impact estimates are likely to be more influential in policy discussions, in particular when 

these could be weighed against economic or other nominal benefits or costs of proposed 

policies (Fehr et al., 2012). However, the drawbacks that arise from quantification should 

also be considered. Quantification can lead to an unwarranted impression of accuracy and to 

the so-called “quantification bias”, i.e. focusing only on issues and parameters where data are 

available (Fehr, 2010). Quantitative assessment alone cannot capture the manifold and 

complex drivers of health impacts since not all health effects are quantifiable. Therefore, due 

attention should be paid to all aspects of the decision-making process, whether these are 

qualitative or quantitative. Quantitative HIAs inevitably involve approximations and 

uncertainties, which are important to address and communicate. As Kemm (2003) concludes, 

quantitative HIAs do not offer certainty in their predictions, nor do they remove the need 

for judgment in decision-making. They could only reduce uncertainties and inform public 

debate and judgments that are for political decision-makers to make.  
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Projecting climate-related health impacts 

 

As climate impact assessment is primarily a model-based exercise, HIAs of the potential 

disease burden of climate change are mainly quantitative. In comparison to other risk factors 

to human health, impacts of climate change on health outcomes are mediated by a diversity 

of causal pathways and typically involve a long delay between cause and effect (McMichael 

et al., 2004). Thus, climate related HIAs inevitably involve large uncertainties with respect to 

the magnitude, and distribution of future hazards, the size, characteristics and distribution of 

exposed population, and the future vulnerability of the exposed population. Therefore, HIAs 

of climate change needs to address many additional complexities compared to traditional 

HIA of projects and policies. One main difference with “traditional” HIAs is that the 

projected exposures (meteorological or other variables) are generated through global climate 

models or Integrated Assessment Models (IAMs) (Box 2). These projected exposures are 

then linked with ERFs from historical data to quantify human health impacts. ERFs describe 

how the likelihood of an adverse health effect (outcome) is related to an environmental 

hazard (exposure). There are three sources of exposure-outcome association, which are 

normally used in climate-related HIA: i) locally derived; ii) pooled from the literature (i.e. 

meta-analyses of epidemiological studies) or iii) mathematically modelled (Hess et al., 2016). 

ERFs derived from meta-analyses can provide more reliable risk estimates for projecting 

future health impacts than individual studies as they combine results from multiple studies. 

Meta-analyses can be particularly informative when based on systematic reviews that provide 

both quantitative (e.g. size of the cohort) and qualitative (e.g. the quality of the analyses) 

weight of studies (van den Brenk, 2018). As with other HIAs, studies on climate-related 

health impacts should draw from the most recent epidemiological evidence, preferably based 

on a similar population.  

 

The extrapolation of short-term and historical associations between climate variation and 

health to the long-term and future effects of climate change is one of the principal sources 

of uncertainty in climate related HIAs. Therefore, a particular challenge in this type of HIAs 

is to consider and model potential autonomous or planned adaptations, which might change 

this association. This requires the need to account for interactions between the effects of 

climate change and other changes to human populations (e.g. investment in health 

infrastructure, level and equity in the distribution of wealth, education, housing, etc) 

(McMichael et al., 2004). Furthermore, the fact that future health impacts are based on 
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observed causal associations means that not all probable health outcomes, with nevertheless 

large consequences (e.g. impact of sea level rise on displaced population), can be easily 

quantified and modelled (McMichael et al., 2004). 

 

Box 2: Integrated Assessment Models 

 

Integrated Assessment Models (IAMs) are scientific models that combine knowledge from 

multiple academic disciplines to arrive at a mathematical representation of the world. The 

main aim of IAMs is to support informed decision-making, normally in the context of climate 

change but also in relation to various other human-environment interactions. IAMs link the 

main features of human systems (e.g. society, economy, energy systems, land-use, agriculture) 

with natural systems (e.g. the biosphere and atmosphere) into a single “integrated” modelling 

framework. IAMs can either be “simple” – relying on simplified equations for comparing the 

costs and benefits of avoiding different levels of warming – or “complex” – modelling the 

detailed processes and relationships of the different human and environmental systems using 

linked “modules”. Complex IAMs can be used to answer more general “what if” policy 

questions such as: What will be the implications of not taking actions on climate change? What measures 

and actions are needed for the world to stay within the 1.5°C and 2°C climate mitigation targets? or more 

specific ones such as: What will happen if a universal price of $100 per tonne of CO2 emissions is set by 

2030? How can climate change be mitigated if certain technologies such as carbon capture and storage are not 

available? Importantly, IAMs do not aim at providing a prediction of the future but rather 

estimates under potential scenarios that can guide policy decisions between different choices. 

A main advantage of IAMs because of their complex linkages is the ability to trace feedbacks 

and tradeoffs between different policy decisions with regard to the economy, energy system, 

and environment. For instance, IAMs can explore co-benefits or unintended consequences 

of climate change mitigation policies in different sectors and geographic areas and thus, 

assess net costs and benefits of climate action. For more information see CarbonBrief (2018) 

 

Modelling techniques for forecasting health impacts of climate change 

 

A multitude of tools for health impact quantification have been developed, partly enabled by 

the increase in computing power in the last decades.  Briggs et al. (2016) provide a 

comprehensive review and a taxonomy of existing methods for the quantitative evaluation 

of public health interventions related to non-communicable diseases (NCDs). The focus of 

https://www.carbonbrief.org/qa-how-integrated-assessment-models-are-used-to-study-climate-change
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their review is on economic evaluation, which includes quantification of health impacts as 

well and economic costs. Briggs´s taxonomy of quantitative health impact assessment models 

is presented in Table 3. Horizontally, the model structures are ordered based on the unit of 

analysis, ranging from population- (columns A and B) to individual-level models (columns C 

and D), and based on their ability to incorporate randomness. Vertically, the model structures 

are categorised depending on whether they include interaction elements (no interaction, 

interaction between entities within the model and between entities and the environment) and 

on how they treat time (untimed, timed, discrete time or continuous time). Briggs et al. (2016) 

summarise the main advantages and disadvantages of these different modelling structures. 

Here, we will briefly discuss the characteristics and some of the advantages and disadvantages 

of the methods we consider most relevant for forecasting health impacts and co-benefits of 

climate change mitigation. However, this is not an exhaustive review of all modeling 

structures that can be applied. 

 

Table 1.1: Taxonomy of model structures  

   A B C 

 

D 

 

   Cohort/aggregate-level/counts Individual-level 

   Expected value, 

continuous 

state, 

deterministic 

Markovian, 

discrete state, 

stochastic 

Markovian, 

discrete 

state 

Non-

Markovian, 

discrete 

state 

1 No interaction 

  

Untimed Decision tree 

rollback or 

comparative 

risk assessment 

Simulation 

decision tree or 

comparative 

risk assessment 

Individual sampling model: 

simulated patient-level 

decision tree or 

comparative risk 

assessment 

2 Timed Markov model 

(deterministic) 

Simulation 

Markov Model 

Individual sampling model: 

Simulated patient-level 

Markov model 

3 Interaction 

entity and the 

environment 

Discrete 

time 

System 

dynamics  

(finite 

difference 

equations) 

Discrete time 

Markov chain 

model 

Discrete 

time 

individual 

event 

Discrete 

time 

discrete 

event 

simulation 
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history 

model 

4 Continuous 

time 

System 

dynamics 

(ordinary 

differential 

equations) 

Continues time 

Markov chain 

model 

Continuous 

time 

individual 

event 

history 

model 

Continuous 

time 

discrete 

event 

simulation 

5 Interaction 

between 

hetero- 

geneous 

entities 

x X X Agent-

based 

simulation 

Source: adopted from (Briggs et al., 2016).  

 

i) Comparative risk assessment 

 

Comparative risk assessment (CRA) models (corresponding to sections A1, B1, C1 and D1 

in Table 3) are aggregate-level model widely used in the HIA literature (Mueller et al., 2015; 

Nieuwenhuijsen et al., 2017). The Global Burden of Diseases, Injuries, and Risk Factors 

Study (GBD), which estimates levels and trends in exposure, attributable deaths, and 

attributable disability-adjusted life-years (DALYs) for a wide range of behavioural, 

environmental, occupational, and metabolic risks, is the largest global project using a CRA 

framework (GBD 2019 Diseases and Injuries Collaborators, 2020). CRA involves mapping 

alternative population health scenarios based on a different distribution of exposure to a risk 

factor over time and using Population Attributable Fractions (PAFs) to estimate the change 

in health outcome for each scenario (Murray et al., 2003). CRA models can be adapted to 

include a time component (see the section on multistate life tables below) or to simulate 

individuals when combined with microsimulation (see the section on microsimulation 

below). Although CRA models do not allow for interactions, they can be used to simulate 

age- and sex-specific effects of changes in population exposure to multiple risk factors and 

disease processes simultaneously (Briggs et al., 2016). Health inequalities can also be 

estimated with this approach by applying the same method to other population strata.  

 

CRA is the most widely used method for quantifying health impacts and co-benefits of 

climate change mitigation (Rai et al., 2019; Silva et al., 2016) and guidelines for this specific 
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application of the method have been previously published (Campbell-Lendrum and 

Woodruff, 2006; Hess et al., 2020, 2016; Kovats et al., 2003). Studies using this approach 

normally consider demographic change by incorporating population and mortality 

projections in the estimation of attributable mortality or disease burden. However, future 

mortality rates and population size are assumed to be equal across different (emission) 

scenarios, with only the proportion of attributable disease burden changing. Thus, this 

method can be misleading for long-term predictions or for locations with high exposures 

and associated hazard risks since it does not consider changes in mortality and population 

survival over time induced by changes in exposures (Miller and Hurley, 2003). 

 

ii) Macrosimulation 

 

Macrosimulation or multi-cohort method (row 2, column A, B) is an aggregate level Markov 

model10 for projecting future population and population health, with the unit of analysis 

referring to entire populations or population sub-groups. Typically, two populations are 

modelled — the population of interest as it is, and an identical population that has been 

exposed to changes in the risk factors. Each of these populations can be modelled through 

a standard life table, where changes in exposure to a risk factor over time impact survivorship 

and all-cause mortality rates in the population (Miller and Hurley, 2003). The population is 

classified by sex and age group or other relevant characteristics (cohorts) and transition 

probabilities are repeatedly applied (for example, incidence or mortality hazards), which 

determine how cohorts move between states (alive and death) at specific time intervals. 

 

Proportional multi-state life table (MSLT) is an extension of the multi-cohort method as it 

allows for the incorporation of morbid states and not only mortality outcomes. The MSLT 

is termed ‘proportional’ as it allows to model a number of diseases simultaneously while also 

allowing for co-morbidity (Barendregt et al., 1998). In the proportional MSLT model, two 

populations are simulated through a standard life table with all-cause mortality and sub-life 

tables for each one of the diseases causally related to the modelled risk factors. Transition 

 
10 A Markov model is a stochastic method used to model randomly changing systems. In a Markov model 
system behaviour is represented with a set of states and interstate transitions and probabilities between them, 
where the probability to move to a new state only depends on the current state, but not on any previous state. 
Markov models have applications in many fields, including medical research and health economics. An 
example of a simple Markov model in medical research is the modelling of health states that might be 
included in a study on a cancer intervention: progression-free, post-progression, and dead. 
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probabilities are repeatedly applied (for example, incidence or mortality hazards), which 

determine how cohorts move between health states (presence or absence of modelled 

diseases and death) at specific time intervals (for example, annually). The Potential Impact 

Fraction (PIF) is used to link changes in exposure to the determinant of health and incidence 

of related diseases (Zapata-Diomedi, 2017).  

 

The multi-cohort method originally stems from demography and medical demography, 

where it is used for modeling the effects of morbidity, disability, and mortality on the size, 

composition, and structure of the population (Lhachimi, 2011). In comparison to CRA 

models, MSLT models allow for the simulation of more complex scenarios by incorporating 

multiple disease outcomes, the possibility of relapse, and outcomes over different time 

horizons (Briggs et al., 2016). However, this comes at the expense of increased data 

requirements since exposure, morbidity, and mortality data need to be age specific. Also, the 

model is more complex compared to CRA, which might decrease transparency and increase 

the probability of error (Veerman, 2007). On the other hand, MSLT models can be 

implemented in a spreadsheet, which increases their flexibility and transparency. An 

important advantage of MSLT models is that outcomes can be expressed not only in terms 

of the number of deaths or prevalence of a disease but also using summary metrics of 

population health such as Years of Life Lost (YLL), Healthy Life Expectancy (HLE), 

DALYS. These are more informative measurements of premature mortality, which allow to 

account for the extent to which lives are shortened by exposure to temperature and air 

pollution. The Markov model is considered especially useful for modeling processes that 

progress over time, such as chronic diseases, and has been applied in projection studies for 

diabetes (Murakami and Ohashi, 2001), cardiovascular diseases (Moran et al., 2010), and 

health outcomes related to physical activity such as IHD, stroke, type 2 diabetes, breast 

cancer and colon cancer (Cobiac et al., 2009). 

 

iii) Microsimulation 

 

Macro- and microsimulation models have certain features in common — both approaches 

represent a simplified, quantitative description of reality, which determines populations 

structure and health, and both rely on hypotheses about future values of model parameters 

(van Imhoff and Post, 1998). However, the two approaches also have major differences. 

Dynamic microsimulation techniques model individual life courses (rather than the total 
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population), where transition probabilities guide shifts between different states (for example, 

exposed, unexposed, healthy, diseased, and dead). Microsimulation models (corresponding 

to sections C1-4 and D1-2 in Table 3) normally use a sample rather than the total population 

and rely on repeated random experiments rather than on average fractions (van Imhoff and 

Post, 1998). Microsimulations can be static or dynamic, depending on how population aging, 

and individual interactions are modeled. Static models usually take a cross-section of the 

population at a specific point in time and apply program rules to the individual units 

(Lambert et al., 1994). As opposed to dynamic microsimulation models, which alter the 

relevant population by applying deterministic probabilities that a certain event may or may 

not occur, static microsimulations use static aging techniques, which age the population by 

“reweighing” and “uprating” based on exogenous demographic or economic projections. If 

we assume that an individual is a combination of certain characteristics, by altering the 

weights of the individuals in the dataset static microsimulation models change the 

combination of these characteristics, but not the characteristics themselves. Static 

microsimulation techniques originate and have been mostly applied in economic studies 

evaluating the redistributive effects of taxes and benefits over the life-course (National 

Research Council, 1991). 

 

In a dynamic microsimulation, each event (e.g. mortality, change in health status and 

socioeconomic status, fertility, migration, etc.) is modelled through a Monte Carlo process, 

which allows for the estimation of stochastic uncertainty (uncertainty resulting from two 

individuals being in the same situation, but having different outcomes by chance) and 

parametric uncertainty (uncertainty in the estimates of model parameters) (Briggs et al., 

2016). The model is run either until a specific outcome occurs or until a certain length of 

time has elapsed. Results of the simulations can be aggregated at the population level or 

variations in results across individuals can be reported (Briggs et al., 2016). Dekkers (2015) 

compares in detail the static and dynamic types of microsimulations and argues that although 

they are technically different, the dynamic and static methods are very similar in terms of 

their simulation properties. Properties of static models are very similar to those of dynamic, 

in particular (i) if the number of dimensions that have to be modified to capture ‘the future’ 

is limited and (ii) if future types of individuals are present in the baseline dataset. Due to the 

common model properties and the lower data, development, maintenance, and time 

requirements of the static approach, Dekkers (2015) recommends the use of static models 

unless otherwise justified.  
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Microsimulation models, in general, are considered an appropriate technique for modelling 

a large number of individual attributes (e.g. age, sex, education, health status, activity, religion, 

etc.) and thus, analyzing the distribution of health effects within the population (e.g. by socio-

economic status) (Veerman, 2007). Further advantages of microsimulation models include 

the fact that they can manage continuous covariates and can provide a much richer output. 

Since microsimulation models require detailed individual-level information they normally 

draw empirical data from sample surveys, either cross-sectional surveys or longitudinal panels 

(van Imhoff and Post, 1998). This highlights a major tradeoff between macro- and 

microsimulation models, namely information loss in macro-models versus high data 

requirements and larger influence of error terms in micro models (van Imhoff and Post, 

1998).  

 

iv) Agent-based models 

 

An important feature that distinguishes an agent-based simulation (ABS) (row 5, column D 

on Table 3) from the methods previously described is that it allows for the probability of 

events occurring within the system that is modelled to change over time and as a result of 

interactions of individuals (agents) with other agents and with the environment (Briggs et al., 

2016). This is done by modelling heterogeneous agents or groups of agents, whose 

behavioural responses depend on their characteristics, which can change over time as a result 

of interactions with the environment or other agents. Therefore, ABSs are particularly well 

suited for modelling multi-component interventions, feedback loops, and layers of complex, 

interacting components (Silverman, 2021). ABSs can offer a rich output, similar to 

microsimulations, and a more accurate representation of spatial effects, such as social 

networks (Squires, 2014). In addition, since ABSs can model explicitly individual-level 

decision-making, they can reveal unexpected emergent effects at the population level 

(Silverman, 2021). The main disadvantage of ABSs is the requirement of large amounts of 

data and processing power. Silverman (2021) describes in detail the advantages of using ABSs 

in public health research, in particular in relation to complex problems arising from various 

sources such as behavioural and social influence, and environmental interaction. In the 

climate-population literature, among others, ABSs have been applied in the study of the 

climate-agriculture-nutrition-health nexus (Lloyd et al., 2018) and climate-induced migration 

(Entwisle et al., 2016) 
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Chapter 2: RATIONALE 

 

Over the last decades, socio-economic development in India has brought improvements in 

living standards and a range of health outcomes. The LE in the country has increased from 

49.7 in 1970-1975 to 69.0 years in 2013-2017 (Government of India, 2020). However, two-

thirds of Indian households continue to rely primarily on polluting solid fuels to meet their 

energy needs and, in absolute terms, the number of solid fuel users has remained largely 

unchanged in the past 30 years (Conibear, 2018). At the same time, the large growth in the 

economy, the industrial, power generation, and transport sectors, partly driven by rapid 

population growth and urbanisation, has resulted in high levels of CO2 emissions and 

deterioration of ambient air quality (Dey et al., 2012; GBD MAPS Working Group, 2018). 

Exposure to air pollution is the second leading risk factor for disease burden in the country 

and AAP alone is estimated to shorten population LE by up to 4.3 years (Greenstone and 

Fan, 2018). Emissions of air pollutants are predicted to grow substantially in India over the 

next decades, but so are also other environmental health threats related to climate change as 

outlined in the previous chapter. Due to its current geography and climate and low adaptive 

capacity, India is recognised as one of the countries most vulnerable to the future impacts of 

climate change (Carabine et al., 2014). The interrelated nature of all these challenges — HAP, 

AAP, climate change, and development — provides an opportunity to devise policies that 

deliver on multiple sustainable development objectives. In particular, reduction in air 

pollutants and GHG emissions can improve population health and human capital, while 

minimising future risks of climate change. Current cost-benefit analyses of climate policies 

rarely consider the health implications of policies, even though co-impacts, especially those 

related to health, have been shown to significantly change the outcome of cost-benefit 

evaluations (Ürge-Vorsatz et al., 2014). Studies that assess the potential impacts of climate 

change on population health and the health co-benefits of climate change mitigation are 

needed to assist governments in their risk-benefit analysis. In low-income settings, studies 

that evaluate both the synergistic and opposing effects of climate policies, especially among 

the most vulnerable, are needed to ensure that development objectives are not compromised, 

and scarce public resources are spent efficiently. By demonstrating the localised health 

impacts and co-benefits for current generations, such studies can also legitimise 

governmental policy actions to the wider public and provide incentives for more ambitious 

mitigation measures. 
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This thesis will address the topic of health impacts of climate change and health co-benefits 

of climate change mitigation in India by focusing on two specific exposures – ambient 

temperatures and air pollution. This is motivated by the fact that increasing ambient 

temperatures are one of the main risk factors of climate change in the country, while AAP 

levels in India are some of the highest in the world. In this thesis, the terms ‘AAP’ and ‘PM2.5’ 

will be used interchangeably since PM2.5 was applied as a proxy for the overall AAP exposure 

of the population. This is a common practice in the co-benefits literature since the disease 

burden of PM2.5 exceeds those of other major pollutants. Climate change refers to long-term 

averages of weather conditions (e.g. several decades). However, this thesis also refers to 

“climate impacts” when discussing the association between mortality and shorter-term 

fluctuations in weather conditions in the recent past. This is because, as discussed in Chapter 

1, this historical quantitative relationship is normally applied to future climate scenarios to 

project the potential disease burden of climate change.  

 

This thesis aims to address some of the following research gaps in the literature established 

in the previous chapter: 

 

a. The lack of robust population-specific ERFs on the association between ambient 

temperatures and air pollution and mortality is a major source of uncertainty in 

current health impact projection studies in India and South Asia, in general. 

b. The HIA methodologies adopted by most projection studies in India do not 

comprehensively represent the interplay between future environmental hazards, 

population dynamics, and socio-economic developments. 

c. Most assessments of air pollution health co-benefits from climate change 

mitigation to date have focused on mortality outcomes and on adult populations. 

This leads to an underestimation of the total co-benefits. Also, mortality metrics 

do not show the extent to which air pollution represents a significant shortening 

of human life as opposed to a relatively short advance of deaths of fragile 

individuals. 

d. Existing studies of air pollution-related health co-benefits in India report 

population-specific impacts by state and age, but not by other relevant population 

characteristics such as sex, urban/rural residence, income, social group, or 

education.  
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e. Existing projection studies have largely focused on a single exposure pathway 

and rarely considered concurrent effects of multiple exposures.  

 

The rest of this thesis is structured as follows: Chapter 3 introduces the specific objectives 

of the analyses, Chapter 4 describes the general methodology, Chapter 5 presents the three 

research articles that comprise this thesis. Research Article I and II have been published, 

while at the time of writing this thesis Research Article III has been submitted to a journal 

for review. Research Article II is complemented with two unpublished analyses on the total 

projected decrements in LE from PM2.5 under the modelled scenarios (section 5.2.1) and on 

comparison of the applied dynamic health impact assessment method with the conventional 

CRA approach (5.2.2). Finally, Chapter 6 summarises and discusses the findings of this thesis 

and the uncertainty in the health impact projections. It also highlights policy implications 

and directions for future research. 
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Chapter 3: OBJECTIVES 

 
The overall objectives of this thesis were twofold — first, to investigate the association 

between ambient temperature and mortality in South Asia, and second, to quantify future 

air pollution-related health co-benefits and trade-offs in India under different global climate 

change mitigation and complementary national policy scenarios. The specific objectives of 

this research are as follows: 

 

Objective 1: To systematically review and quantitatively assess the current evidence on the 

association between ambient temperature and heat waves, and all-cause mortality in South 

Asia. [Research Article I] 

 

Objective 2: To project the future localised (i.e. by state and urban-rural level) benefits in 

terms of LE gains and avoided premature mortality from reduced ambient PM2.5 in India 

under global climate change mitigation scenarios in line with the Paris Agreement targets 

and national scenarios for maximum feasible air quality control. [Research Article II] 

 

Objective 3: To project the future localised (i.e. by district and urban-rural level) net 

benefits for child linear growth from changes in AAP and HAP under a combination of 

scenarios for climate change mitigation, AAP control, and clean cooking access (CCA) 

[Research Article III] 

 

In order to address these objectives, this thesis integrates conceptual and technical 

knowledge from various disciplines, spanning from environmental epidemiology and 

demography to economic, atmospheric, and climate modelling.
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Chapter 4: GENERAL METHODOLOGY 
 
The three studies undertaken during this PhD were based on three different methods (see 

Table 4.1). Research Articles II and III shared some common data sources and explored 

some of the same or similar scenarios. This section provides an overview of the general 

methodology applied to address each of the three research objectives, while detailed 

information on the methods, data sources, and scenarios used in each article can be found 

in Chapter 5. 

 

To identify epidemiological studies on the association between ambient temperatures and 

heat waves, and all-cause mortality in South Asia a systematic search of four electronic 

databases — Pubmed, Web of Science, Scopus, Embase — was performed. The search was 

restricted to peer-reviewed articles published in English between January 1990 and August 

2020. Two reviewers independently assessed full texts for eligibility, based on pre-defined 

inclusion and exclusion criteria, previously published in a PRISMA protocol (Dimitrova, A. 

and Tonne, 2018). The Navigation Guide methodology was applied in order to evaluate the 

quality and strength of the evidence for each exposure (Johnson et al., 2014). Those studies 

that were sufficiently compatible in terms of study design, outcome and exposure measures, 

and lag structure, were included in a random-effects point-wise meta-analysis. The meta-

analysis was based on a novel approach that allows for combining nonlinear exposure-

response associations without access to data from individual studies. 

 

To quantify the health benefits from reduced ambient PM2.5 in India under global climate 

change mitigation scenarios in line with the Paris Agreement targets and national scenarios 

for targeted ambient air quality control, a previously developed multidimensional population 

projection was linked with projections of gridded urban/rural PM2.5 concentrations from the 

GAINS-MESSAGEix-GLOBIOM IAM. Assuming that the demographic projection reflects 

only socio-economic but not environmental drivers (i.e. air pollution) of population change 

over time, the population projection was re-run for each policy scenario by adjusting 

mortality rates to account for the risk of mortality associated with ambient PM2.5 exposure, 

while keeping all other drivers of population change constant (i.e. fertility, education, and 

migration). This dynamic approach allowed us to account for changes in population survival 

over time, resulting in different mortality rates, size, and structure of the population for each 

scenario. We applied the GEMM for PM2.5, which includes cohort studies at much higher 
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concentration ranges and accounts for a larger set of causes of death than considered 

previously. In addition, we accounted for the differential risk of mortality by age, urban/rural 

residence, and state and developed and incorporated projections of changes in disease 

burden over time. The future impacts of ambient PM2.5 exposure on mortality, LE, and 

population change were estimated as the difference between each policy scenario and the 

original demographic projection.  

 

Table 4.1. Overview of methods, data and data sources analysed in in this PhD thesis. 

Research 

Article 

Method Data Data sources 

I - Systematic review 

and quality and 

strength of 

evidence 

assessment as per 

Navigation Guide 

methodology 

- Meta-analysis 

- 27 studies included 

in qualitative 

synthesis 

- 5 studies included in 

quantitative 

synthesis 

- 4 databases: Pubmed, 

Web of Science, 

Scopus, Embase 

- 8 countries covered 

II Population projection 

method 

- Gridded projections 

of annual average 

PM2.5 concentrations 

for urban and rural 

areas (2010-50) 

- Multi-dimentional 

demographic 

projection (age, sex, 

urban/rural 

residence, maternal 

education, state) 

(2010-50) 

- Global exposure 

mortality model 

(GEMM) 

- GAINS-

MESSAGEix-

GLOBIOM IAM 

 

 

- K. C. et al. (2018) 

 

 

 

 

 

- Burnett et al. (2018) 

 

 

- GBD 
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- Share of deaths 

from NCDs and 

LRIs (2015-17) 

III Static microsimulation - Height-for-age Z 

score and individual 

and household 

characteristics, 

including primary 

cooking fuel type 

(2015-16) 

- Annual average 

gridded PM2.5 

concentrations 

(2009-16) 

- Projections of clean 

fuel use and poverty 

levels (2010-50) 

- Multi-dimentional 

demographic 

projection (age, sex, 

urban/rural 

residence, maternal 

education, state) 

(2010-50) 

- India´s National 

Family Health Survey 

(NFHS-4) 

 

 

 

 

- Atmospheric 

Composition Analysis 

Group 

 

- MESSAGE-Access-

GLOBIOM IAM 

 

- K. C. et al. (2018) 

 

 

To project the future net benefits for child linear growth from changes in AAP and HAP 

under a combination of scenarios for climate change mitigation, AAP control, and CCA, we 

applied a static microsimulation. The analysis was performed in two stages. First, we 

empirically examined the association between early-life exposure to AAP (ambient PM2.5) 

and HAP (type of fuel used for cooking) and stunting in a large nationally representative 

survey of children under-5 years in India (NFHS-4), using modelled ambient PM2.5 

concentrations and a binomial logistic regression. In the second stage, under each future 

scenario, we generated synthetic datasets with identical individuals as those in the stage I 

dataset. We adjusted the individual sample weights in those synthetic datasets to reproduce 
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the changes in the demographic characteristics of children under-5 over time (age, sex, state, 

residence, maternal education) as forecasted by the multi-dimensional demographic 

projection. We linked the epidemiological model developed in stage I and the synthetic 

datasets with projections of ambient PM2·5 concentrations, clean fuel use, and poverty levels 

from an IAM to project the prevalence of child stunting at the local level and for distinct 

population groups under four scenarios combining climate change mitigation, air quality 

control, and policies to support CCA.
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(i) Total decrements of LE due to ambient PM2.5 
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5.1 Association between ambient temperature and heat waves 
with mortality in South Asia: Systematic review and meta-
analysis 
 
 
 
 
 
 

 
 

Bibliographic reference 

Dimitrova A, Ingole V,  Basagaña X,  Ranzani O,  Milà C,  Ballester J,  Tonne C. 

Association between ambient temperature and heat waves with mortality in South Asia: 

Systematic review and meta-analysis. Environment International. 2021; 146 106170. 

 

Digital object identifier (DOI) 

 

https://doi.org/10.1016/j.envint.2020.106170 

 

Author contributions 

 

AD designed the study, screened all titles and abstracts, assessed full texts for eligibility, 

conducted the quality and strength of evidence assessment, interpreted the results, wrote 

the original draft. VI assessed full texts for eligibility; XB developed and wrote the script 

for the meta-analysis, and advised on the quality assessment criteria; OR advised on the 

design of methods and quality assessment criteria; CM advised on the quality assessment 

criteria and assisted with the graphical presentation of the meta-analysis; JB advised on 

the quality assessment criteria and provided scientific input in the interpretation of the 

results; CT advised on the study design, screened a sample of the abstracts, crticially 

reviewed and edited the manuscript. All authors contributed to the submitted version of 

the manuscript and approved the final version. 

 

Copyright 

 

Open Access article under the CC BY-NC-ND license 

https://www.sciencedirect.com/science/article/pii/S0160412020321255
https://www.sciencedirect.com/science/article/pii/S0160412020321255
https://doi.org/10.1016/j.envint.2020.106170


Environment International 146 (2021) 106170

Available online 14 December 2020
0160-4120/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Review article 

Association between ambient temperature and heat waves with mortality in 
South Asia: Systematic review and meta-analysis 
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b Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10, 08002 Barcelona, Spain 
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A B S T R A C T   

Background: South Asia is highly vulnerable to climate change and is projected to experience some of the highest 
increases in average annual temperatures throughout the century. Although the adverse impacts of ambient 
temperature on human health have been extensively documented in the literature, only a limited number of 
studies have focused on populations in this region. 
Objectives: Our aim was to systematically review the current state and quality of available evidence on the direct 
relationship between ambient temperature and heat waves and all-cause mortality in South Asia. 
Methods: The databases Pubmed, Web of Science, Scopus and Embase were searched from 1990 to 2020 for 
relevant observational quantitative studies. We applied the Navigation Guide methodology to assess the strength 
of the evidence and performed a meta-analysis based on a novel approach that allows for combining nonlinear 
exposure–response associations without access to data from individual studies. 
Results: From the 6,759 screened papers, 27 were included in the qualitative synthesis and five in a meta-analysis. 
Studies reported an association of all-cause mortality with heat wave episodes and both high and low daily 
temperatures. The meta-analysis showed a U-shaped pattern, with increasing mortality for both high and low 
temperatures, but a statistically significant association was found only at higher temperatures — above 31◦ C for 
lag 0–1 days and above 34◦ C for lag 0–13 days. Effects were found to vary with cause of death, age, sex, location 
(urban vs. rural), level of education and socio-economic status, but the profile of vulnerabilities was somewhat 
inconsistent and based on a limited number of studies. Overall, the strength of the evidence for ambient tem
perature as a risk factor for all-cause mortality was judged as limited and for heat wave episodes as inadequate. 
Conclusions: The evidence base on temperature impacts on mortality in South Asia is limited due to the small 
number of studies, their skewed geographical distribution and methodological weaknesses. Understanding the 
main determinants of the temperature-mortality association as well as how these may evolve in the future in a 
dynamic region such as South Asia will be an important area for future research. Studies on viable adaptation 
options to high temperatures for a region that is a hotspot for climate vulnerability, urbanisation and population 
growth are also needed.   

1. Introduction 

Expected increases in temperature and the intensity and frequency of 
heat waves due to climate change have become a matter of growing 
public health concern (IPCC, 2014; Watts et al., 2017; Ebi et al., 2018; 
Maycock et al., 2018; Watts, 2019). Along with other climatic changes 
such as precipitation and atmospheric circulation patterns, temperature 
increases can affect human health and wellbeing through various 

pathways, including heat stress, increases in wildfires, spread of vector- 
borne and water-borne diseases, crop failure and its potential impact on 
food prices, nutrition, incomes, population displacement and conflict 
(Watts et al., 2017; Ebi, Campbell-Lendrum and Wyns, 2018). One of the 
most direct, and therefore, well-studied mechanisms through which 
changes in average weather impact human health is ambient 
temperature. 

An extensive body of epidemiological literature has documented the 
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adverse impacts of ambient high and low temperatures and isolated 
events such as heat waves and cold spells (normally defined as a pro
longed period of abnormally high/low temperatures, with the exact 
number of days and temperature thresholds varying by study design) on 
human health in terms of increases in cardiovascular (Moghadamnia 
et al., 2017), respiratory, and all-cause mortality (Oudin Åström, Bertil 
and Joacim, 2011; Yu et al., 2012; Ryti, Guo and Jaakkola, 2016), as well 
as increases in emergency department visits and hospital admissions 
(Mastrangelo et al., 2007; Phung et al., 2016). Most of these studies have 
been conducted in countries with temperate climates in the Global North 
(mostly North America and Europe) and more recently China (Chen, 
2018; Han et al., 2017; Zhang et al., 2014). Evidence on the relationship 
between temperature and health risks in low- and middle- income 
countries (LMICs) and hot climates, albeit growing, is still limited, even 
though the highest temperature increases and the global hotspots of 
population growth and urbanisation will occur there (IPCC, 2014; 
UNDESA, 2018; European Commission, Joint Research Centre, 2018). 

Although two recent reviews have summarised the body of literature 
on temperature and mortality for LMICs and tropical countries (Burkart 
et al., 2014a; Green et al., 2019), a comprehensive review on one of the 
most vulnerable geographical regions in the world — South Asia — is 
still lacking (Mora et al., 2017; Byers et al., 2018; Muthukumara et al., 
2018). South Asia is recognised as being at high risk of climate impacts 
due to the combination of its climate and geography (occupying areas 
with high year-round temperatures and humidity), large and growing 
population, rapid urbanisation, relatively low adaptive capacity in terms 
of high levels of poverty and inequality, poor health infrastructure, 
scarcity of resources and livelihood dependence on agriculture, which 
implies large occupational exposure to outdoor temperature. With a 
population of about 1.8 billion (World Bank, 2019b), South Asia, which 
comprises Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, 
Pakistan, and Sri Lanka (World Bank definition), is the most densely 
populated and the second most populous region in the world (after East 
Asia&Pacific). The region accommodates the second highest number 
and proportion of people in extreme poverty (defined as living below $1 
per day) (Islam, Newhouse, Yanez-Pagans, 2018) and 43% of its labour 
force works in agriculture (World Bank, 2019a). 

South Asia has a diverse geography and climate, covering the 
glaciated and sparsely populated regions of the Himalayas, Karakoram, 
and Hindu Kush mountain, with annual average temperatures around 
0 ◦C, as well as vast tropical and sub-tropical regions, with annual 
temperatures averaging between 25 ◦C and 30 ◦C (Mani et al., 2018). 
Given these characteristics, both high and low temperatures are likely 
to affect population health. Similar to other regions, South Asia has 
experienced a clear and considerable upward trend in annual average 
temperatures, albeit unevenly distributed geographically. Most pro
nounced increases over the period 1950–2010 have been observed in 
Western Afghanistan and southwestern Pakistan, ranging from 1.0 ◦C 
to 3.0 ◦C. Within the same decades, average annual temperatures have 
shifted upward by 1.0 ◦C to 1.5 ◦C in Southeastern India, western Sri 
Lanka, northern Pakistan, and eastern Nepal (Mani et al., 2018). These 
trends are projected to continue in the future. The Intergovernmental 
Panel on Climate Change (IPCC) indicates that, compared to the 
average in the 20th century, average annual temperatures in the region 
could rise by >2 ◦C over land by the mid-21st century, and exceed 3 ◦C 
over high latitudes, by the late 21st century under a high-emissions 
scenario (Carabine, 2014). Importantly, rising humidity, especially in 
regions with routinely warm and humid weather, can further amplify 
the health impacts of higher temperatures by compromising humańs’ 
ability to dissipate heat through sweating (Gosling et al., 2009; Im, Pal 
and Eltahir, 2017). 

The threat of aggravating heat is also reflected in the increasing 
death toll reported from extreme temperatures in the region according 
to the Emergency Events Database (EM-DAT) (See Fig. 1). Some of the 
most notable historical episodes, which claimed thousands of human 
and livestock lives, include: the severe heat waves reported around 

Odisha (eastern India) in 1998, in Andhra Pradesh (2003), Ahmadabad 
(2010) and other parts of Gujarat (western India), the 2008 Afghanistan 
blizzard, and the more recent 2015 heat wave, which hit large parts of 
India and Pakistan, resulting in about 3500 deaths (Im, Pal and Eltahir, 
2017). These figures are likely to be conservative and underestimate the 
total health burden of extreme heat, given the lack of official surveil
lance and misreporting. Furthermore, they do not capture the impact of 
moderate non-extreme temperatures, which are much more frequent, 
and therefore, contribute considerably to total heat and cold-related 
deaths (Gasparrini et al., 2015). 

Although geographic location, climate, and latitude are of crucial 
importance, the literature has shown the pattern and magnitude of 
temperature-mortality effects are also highly dependent on local contexts 
and strongly influenced by the interaction of non-atmospheric factors 
such as demographic, socio-economic, and lifestyle characteristics, un
derlying disease burdens of the population, features of the built envi
ronment, and others (Uejio et al., 2011; Xu et al., 2013; Zanobetti et al., 
2013). For instance, it has been demonstrated that exposure–response 
functions can differ even for populations within the same geographic or 
climatic area (Michelozzi, 2006; Anderson & Bell, 2009; Hajat & Kosatky, 
2010). 

It is also well known that populations are usually well adapted to the 
most frequent and/or moderate temperatures in their local climates, 
which explains higher thresholds for heat-related mortality in warmer 
climates and lower thresholds for cold-related mortality in colder climates 
(Gosling et al., 2009). Studies have also reported that exposure–response 
functions can change over time, highlighting the scope for adaptation and 
acclimatization (Hondula et al., 2015; Kinney, 2018a; Petkova et al., 
2014). However, the speed at which adaptation is likely to take place and 
whether it can outpace future temperature changes are poorly under
stood. Furthermore, the scope of further acclimatization and adaptation 
for populations living in hot, and especially hot and humid climates, 
where heat adaptations and lifestyle modifications already exist, is likely 
to be more limited (Hanna and Tait, 2015). According to a climate 
simulation study, under the current business-as-usual trajectory of carbon 
emissions, by the end of the century some of the population in South Asia 
may experience hot and humid temperatures that exceed the “upper limit 
on human survivability “(Im, Pal and Eltahir, 2017). In this context, it has 
been argued that the population in the region might need to rely mainly 
on technological and behavioural adaptations in the future (Hanna and 
Tait, 2015). 

In the context of climate change and the vulnerabilities in South Asia 
it is crucial to provide a comprehensive analysis on the region-specific 

Fig. 1. Deaths from extreme temperature events in South Asia. Source: Own 
figure, EM-DAT database* (Centre for Research on the Epidemiology of Di
sasters CRED, 2019) *The data in the database are compiled from various 
sources, including UN agencies, non-governmental organizations, insurance 
companies, research institutes and press agencies. An extreme event is 
considered in the database only if >10 fatalities were reported. Annotations of 
major heat and cold events in the figure are added by the authors. 
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temperature-mortality effects in order to guide adaptation planning, 
inform targeted health interventions, and support sound and evidence- 
based health impact projections. To address this need and to establish 
the state of the available evidence, identify knowledge gaps, and high
light future research directions, we systematically reviewed the existing 
literature on temperature-related mortality in South Asia. Through a 
systematic review and a meta-analysis we investigated the following 
hypothesis: “Are ambient temperature (high and low), and heat wave 
events associated with increased all-cause mortality in the general 
population in South Asia?”. We developed a “Population”, “Exposure”, 
“Comparator”, and “Outcomes” and “study design” (PECOs) statement 
as follows:  

▪ Population: the general population in South Asia (as defined 
by the World Bank in August 2018: Afghanistan, Bangladesh, 
Bhutan, India, Maldives, Nepal, Pakistan, Sri Lanka)  

▪ Exposure: high and low ambient temperatures (defined as 
daily/weekly/monthly/annual mean/max/min temperatures 
or a composite index of temperature and other weather vari
able) and heat wave events.  

▪ Comparators: A comparable population not exposed to the 
same temperature or heat wave event or the same population at 
a time when it was not exposed to the same ambient tempera
ture or heat wave event.  

▪ Outcome: all-cause or cause-specific mortality, Years of Life 
Lost (YLL), changes in life expectancy  

▪ Study design: quantitative observational studies 

We also perform more narrative review on the following exploratory 
research questions: i) “Are ambient temperatures (high and low), and 
heat wave events associated with increased cause-specific mortality in 
the general population in South Asia?”, ii) Are certain population groups 
at higher risk of mortality from exposure to ambient temperature?”, iii) 
At what time lags do temperature effects on mortality occur for the 
population in South Asia?” 

We add to previous systematic reviews conducted for tropical regions 
(Burkart et al., 2014a), LMICs (Green et al., 2019) and India (Salve et al., 
2018) by covering both effects from heat wave episodes and ambient 
temperature, assessing the strength and quality of the body of evidence, 
and including a meta-analysis of exposure–response functions based on a 
novel approach that allows combining nonlinear exposure–response 
associations without access to data from individual studies. We also 
identify key areas for future research. 

2. Methods 

2.1. Search strategy 

We performed a systematic search of four electronic databases - 
Pubmed, Web of Science, Scopus, Embase – in order to identify epide
miological studies examining the direct relationship between ambient 
temperature and all-cause and cause-specific mortality in South Asia. 
We restricted the search to peer-reviewed articles published in English 
between January 1990 and August 2020. The search was initially run on 
16 August 2018, and later updated on 13 August 2020. The systematic 
review followed the Preferred Reporting Items for Systematic Reviews 
and Meta-Analysis (PRISMA) guidelines and was based on a registered 
review protocol accessible online (PROSPERO CRD42018105730) 
(Dimitrova and Tonne, 2018). To ensure that all relevant articles were 
identified, we screened bibliographic reference lists of all included 
studies manually. Example of an exact electronic search strategy is 
provided in Supplementary Table S1. 

2.2. Selection of studies 

We considered peer-reviewed studies published since 1990 in 

English, which examined any of the eight countries in the region as 
defined by the World Bank in August 2018 (Afghanistan, Bangladesh, 
Bhutan, India, Maldives, Nepal, Pakistan, Sri Lanka), South Asia as a 
whole, or studies on a global level, which included at least one country 
of the region. We included only quantitative observational studies, 
which present results for the general population. Epidemiological 
studies based on medical records were also included when these stem
med from a representative number of hospitals in a country or from the 
leading hospitals in an urban area, that has a catchment area repre
sentative of the target population. In terms of outcome measures, we 
included studies using mortality counts as well as alternative population 
health metrics such as YLL or life expectancy. We excluded studies 
investigating morbidity effects only or those investigating indirect ef
fects of temperature on mortality, for example through changes in crop 
yields, forest fires, droughts and water shortages, and others. We did not 
apply restrictions on the type or the timeframe of effects and exposure 
measures (e.g., year-round hot or cold temperatures, heat waves or cold 
spells). 

We included studies based on daily, weekly, monthly or annual 
temperatures, and those combining measures of temperature and hu
midity (apparent temperature, Humidex, Heat Index, Wet Bulb Globe 
Temperature, etc.). Since there is no standard definition of heat waves 
with respect to human health in the literature, we included all studies 
referring to heat wave episodes. We excluded studies looking only at 
seasonal effects on mortality without explicitly considering tempera
tures. Regarding types of study design, we considered time series 
studies, case-crossover studies as well as single episode analyses. Since 
the focus was on studies examining the quantitative association between 
ambient temperature and mortality, we excluded discussion articles, 
case studies, and articles featuring descriptive analysis only (See Table 
S2). 

After we combined the search results and removed duplicates, one of 
the reviewers (AD) screened all the titles and abstracts and assessed their 
relevance against the inclusion criteria (see Table S2). To validate these 
results a second reviewer (CT) screened a sample of 20% of all retrieved 
titles and abstracts. Independent judgment of the two reviewers differed 
for 0.3% of the titles and abstracts, but perfect agreement on which 
studies should be selected was reached through discussion. Two re
viewers (AD and VI) separately assessed full texts for eligibility, based on 
the pre-defined inclusion and exclusion criteria. In the case of discrep
ancies, disagreements were resolved with the involvement of a third 
senior investigator (CT). 

2.3. Data extraction 

Both investigators independently retrieved the main characteristics 
and results of the included studies using a standardised data extraction 
form. The following information was retrieved from each article: loca
tion and study period, study design, statistical methods and sensitivity 
analysis, inclusion of lagged effects, control of confounding and modi
fying factors, exposure and outcome measure(s) and their data source(s), 
observed temperature and humidity ranges, minimum mortality tem
perature (MMT), reported effect estimates, subgroup analysis, mortality 
displacement, key findings, and modeled or suggested adaptation stra
tegies. We pilot tested the data extraction form to ensure accuracy and 
consistency during the entire process. Data collected by both reviewers 
were compared and any discrepancies were resolved through discussion 
and consensus. In several instances, study authors were contacted to 
obtain additional data necessary for the analysis or to clarify ambiguous 
information. 

2.4. Assessment of evidence 

We assessed the quality and strength of the evidence separately for 
the association between ambient temperature and all-cause mortality 
and heat wave events and all-cause mortality following the Navigation 
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Guide framework (Johnson et al., 2014; Woodruff and Sutton, 2014). 
The Navigation Guide methodology has been specifically developed for 
the assessment of the quality and strength of the evidence of research in 
the environmental health field (Johnson et al., 2014). The assessment 
proceeded in three stages: i) rating the Risk of Bias (RoB) for each in
dividual study, ii) rating the quality of the evidence across all studies, 
and iii) rating the strength, or certainty, of the evidence across all 
studies. 

2.4.1. Assessment of the risk of bias in individual studies 
We assessed the quality of individual studies using the Office of 

Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for 
Human and Animal Studies. Since OHAT does not specifically consider 
time series environmental health study designs, in collaboration with 
subject-matter experts (CT, XB, OR, JB) we adapted some of its domains 
to better tailor it to our research question (See Table S3). We evaluated 
each study against the following six domains of Risk of Bias (RoB): se
lection, confounding, exposure assessment, outcome assessment, selec
tive reporting and other bias (appropriateness of statistical methods). 
For each of these possible sources of bias we rated the RoB as definitely 
low, probably low, probably high and definitely high. The rating scale is 
based on a conservative approach, where insufficient information to 
judge the risk of bias for specific domain results in a rating of probably 
high risk of bias. The two reviewers (AD, VI) independently performed 
the risk of bias assessment and discussed results with the other co- 
authors in case consensus could not be reached. Following the Naviga
tion Guide Methodology, we considered an individual study to have a 
definitely low or probably low RoB if all domains of assessment were rated 
as definitely low or probably low. Due to the very limited number of 
studies the results of the RoB assessment were not used to exclude 
studies from the quantitative synthesis. 

2.4.2. Assessment of the quality of the evidence across studies 
We rated the overall quality of the evidence for studies on ambient 

temperature and heat wave episodes separately. Rating categories 
included high, moderate, or low. Following the approach in the Naviga
tion Guide, we initially rated the body of evidence as moderate and then 
“downgraded” or “upgraded” this rating based on eight factors. The 
downgrading factors included risk of bias across studies, indirectness, 
inconsistency, imprecision, publication bias, and the upgrading factors 
consisted of size of the effect, dose response pattern and possibility of 
confounding minimizing effects. We assessed the RoB across studies 
based on the RoB rating of individual studies, as outlined above. As 
recommended in the Navigation Guide, the RoB across studies was 
judged on the basis of each study, but with more weight placed on high 
quality studies. 

2.4.3. Assessment of the strength of the evidence across studies 
We also rated the strength of the body of evidence, separately for 

ambient temperature and heat wave episodes, based on the following 
four considerations outlined in the Navigation Guide: i) quality of the 
body of evidence (i.e., rating from previous assessment stage), ii) di
rection of effect, iii) confidence in the effect (likelihood that a new study 
would change our conclusions) and iv) any other attributes of the data 
that might affect certainty. 

2.5. Meta-analysis 

From the studies included in the review, we selected those that were 
sufficiently compatible in terms of study design, outcome and exposure 
measures, and lag structure, in order to conduct a meta-analysis of the 
association between temperature and mortality. After screening all 
studies, we identified that the most common choice of study design, 
outcome and exposure variables, and lag structure was the following: 
time series studies using daily all-cause mortality and daily mean tem
perature and reporting effects for lag 0–1 and lag 0–13 days. Hence, we 

limited our choice to studies with these characteristics (Burkart et al., 
2011; Fu et al., 2018; Hashizume et al., 2009; Ingole et al., 2017; 
McMichael et al., 2008). For studies that included a plot of the 
temperature-mortality association, we extracted numerical representa
tion of the exposure–response curves and their confidence intervals at 
every 0.5 increment of the temperature values using the web-based tool 
WebPlotDigitizer (Rohatgi, 2014). Authors of two studies that did not 
include such visualizations were contacted to acquire the necessary 
data. We also extracted the following data: i) average number of daily 
deaths, ii) number of days analysed in the study and iii) range of the 
distribution of exposure variables. The analysis was performed sepa
rately for the exposure response curves at lag 0–1 days and lag 0–13 
days. Since the reference value used across studies differed (in most 
cases this was the MMT), recalculation of the curves and standard errors 
using a common reference value was necessary before combining the 
curves. We set the reference values for re-centering the curves to be 
equal to the average MMT across the included studies. This corre
sponded to 24.5 ◦C for the exposure response curves at lag 0–1 days and 
26.5◦C at lag 0–13 days. Even though the selected studies include lo
cations within different climatic zones, they have comparable temper
ature distributions and all of them included the reference temperature 
values for the meta-analysis. Although the estimates across a single 
exposure–response curve are correlated because they share the same 
reference category, without available data on these correlations, it is not 
possible to compute the standard errors that would result from re- 
centering the curve to another reference value. To overcome this chal
lenge and calculate the standard errors after re-centering the curves 
without access to the individual-level data, we applied the recently 
developed methodology by Basagaña (2019). Using the extracted data 
described above, the method allows to simulate individual datasets in 
order to change the reference category and approximate the confidence 
intervals (Basagaña, 2019). In brief, the approach consists in the gen
eration of a dataset, which has an identical number of observations as 
the original one and upon analysis produces a good approximation of the 
exposure–response function and confidence interval reported by the 
study. A more detailed description of the methodology, including a 
reproducible example with R software code, is available in the publi
cation Basagaña (2019). After calculating the standard errors and the 
exposure–response estimates at each temperature increment, we com
bined the non-linear exposure–response curves of the individual studies 
using a meta-smoothing approach (Schwartz and Zanobetti, 2000). The 
latter method consisted of conducting a random-effects point-wise meta- 
analysis for each exposure level (Schwartz and Zanobetti, 2000). The 
analysis was performed using the R (version 3.6.1) package ’metafor’ 
(Viechtbauer, 2010). The datasets and the R software code for con
ducting the analysis are available in the Supplementary Material of this 
publication. 

3. Results 

3.1. Literature search 

We identified a total of 10, 713 references from the electronic da
tabases’ search and through other sources, after removal of duplicate 
entries. After screening these for relevance based on title and abstract, 
we selected 50 articles for in-depth review. A detailed evaluation of the 
content against the inclusion criteria resulted in 27 studies being 
included in the final analysis. The flow diagram in Fig. 2 illustrates in 
detail the literature search and the selection process. 

3.2. Characteristics of included studies 

Among the included studies, about half (n = 15; 56%) examined the 
effects of both heat and cold on mortality, five (19%) focused only on 
heat effects and one on cold effects, while nine studies (33%) assessed 
the association of heat waves with mortality and one addressed the 
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association between cold spells and mortality (See Table 1 for a more 
detailed description). The studies used diverse approaches for defining 
hot and cold temperature effects — based on the MMT, a specific 
percentile of the temperature distribution, an arbitrary temperature 
threshold, the season (summer/winter months), deviation of tempera
tures from their annual average, or simply based on the pattern of the 
temperature-mortality relationship. The definition of heat waves was 
not uniform across studies. Five used the conventional approach of 

considering both the duration and intensity of a heat wave (Mazdiyasni 
et al., 2017; Nissan et al., 2017; Nori-Sarma et al., 2019a; Singh et al., 
2019; Nori-Sarma et al., 2019b), while the rest considered only its in
tensity. Four studies used the heat wave definition by the India Meteo
rological Department (IMD) based only on maximum temperature 
thresholds (Azhar et al., 2014; Murari et al., 2015; Nori-Sarma et al., 
2019a; Nori-Sarma et al., 2019b) and one study did not provide a spe
cific definition, but analysed maximum temperatures and heat-induced 
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(n = 10, 713 ) 
Pubmed: n = 3, 606 

Web of Science: n = 3, 173 
Scopus: n = 2, 824 
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Additional records identified 
through lateral reference 

search in the included studies  
(n = 2) 

Records after duplicates removed 

(n = 6,759) 

Records screened 

(n = 6, 759) 

Records excluded 

(n = 6, 709) 

Full-text articles 

assessed for eligibility  

(n = 50) 

Full-text articles excluded, 
with reasons (Table S4)  

(n = 23) 

Studies included in the 

qualitative synthesis  

(n = 27) 

Studies included in the quantitative 

synthesis (meta-analysis) 

(n = 5, Hashizume et al., 2009; Burkart 

et al., 2011; McMichael et al., 2008; 

Ingole et al., 2017; Fu et al., 2018) 

Fig. 2. Flow diagram of literature search and study selection process.  
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Table 1 
Characteristics of reviewed studies and main findings.  

Reference Methods      Exposure Outcome Main findings  
Study population 
and location 

Category of 
effect 

Study period Study design and 
statistical method 

Lag structure Control variables 
(confounders and 
effect modifiers) 

Measure and source Measure and source  

Rural areas 
Alam et al. 

(2012) 
General 
population 
Abhoynagar, 
Bangladesh 

Heat and cold 
effects 
(continuous 
temperature) 

1983–2009 Time series 
analysis, Poisson 
generalized 
additive model 
(GAM) 

Lag 0–1 week, lag 
0–2 week, lag 
0–3 week 

Time trend, seasonal 
pattern 

Average weekly mean 
temperature 
Bangladesh 
Meteorological 
Department 

All-cause mortality (n =
4,850) 
ICDRR, B́s Sample Vital 
Registration System 
(SVRS) in Abhoynagar 
subdistrict 

Weekly mean temperatures 
(lag 0) below the 25th 
percentile and between the 
25th (23 ◦C) and 75th 
percentiles (29.6 ◦C) were 
associated with increased 
mortality risk, particularly in 
females and adults aged 
20–59 years by 2.3–2.4% 
(CI: 4.4, 0.1) for every 1 ◦C 
decrease. Temperature 
above the 75th percentile 
(29.6 ◦C) did not increase 
the risk. 

Hashizume 
et al. 
(2009) 

General 
population 
Matlab, 
Bangladesh 

Heat and cold 
effects 
(continuous 
temperature) 

1994–2002 Time series 
analysis, Poisson 
generalized linear 
model 

Lag 0–1 days, lag 
0–13 days 
(cumulative) 

Year, season, day of 
the week, public 
holiday 

Daily mean temperature 
Bangladesh 
Meteorological 
Department 

All-cause mortality 
excluding external causes 
(n = 13, 270) and cause- 
specific mortality 
(cardiovascular, 
respiratory, perinatal, 
infectious and parasitic 
mortality and others) 
ICDRR, B́s Health and 
Demographic 
Surveillance System 
(HDSS) in Matlab 

Every 1 ◦C decrease in mean 
temperature (lag 0–13) was 
associated with a 3.2% (95% 
CI 0.9, 5.5) increase in all- 
cause mortality. There was 
no clear heat effect on all- 
cause mortality for any of 
the lags examined. Heat 
effect was observed only for 
cardiovascular mortality (lag 
0–1), mortality from 
infectious diseases (lag 
0–13) and mortality in 
elderly people (lag 0–1). 

Sewe et al. 
(2018) 

General 
population 22 
villages in Pune 
district, India 

Heat and cold 
effects 
(continuous 
temperature) 

2003–2012 Time series 
analysis, Quasi- 
Poisson 
distributed-lag 
non-linear models 
(DLNM) 

Lag 0–14 
(separate) 

Trend, season, day of 
the week, indicator 
for “heaping days” 

Daily max temperature 
National Oceanic and 
Atmospheric 
Administration (NOAA) 

All-cause mortality (daily 
mean number of deaths: 
0.9, n = 2,958) 
Vadu HDSS 

Heat (lag 0–14) was 
associated with YLL (26.03 
YLL; 95% CI: − 0.36, 52.42 at 
the 95th percentile, 39 ◦C 
compared to 30 ◦C), but 
there was no evidence of an 
association with cold. 

Ingole et al. 
(2017) 

General 
population aged 
15 and older 22 
villages in Pune 
district, India 

Heat and cold 
effects (summer 
and winter 
months) 

2004 – 2013 Case-crossover 
study, Quasi- 
Poisson regression 
(1st stage 
analysis) and 
Conditional 
logistic regression 
model (2nd stage 
analysis) 

Lag 0–1 days and 
lag 0–13 days 
(cumulative) 

Season, time trend, 
education, 
occupation and 
ownership of 
agricultural land; 
potential temporal 
confounders and 
time-invariant 
confounders 
controlled for “by 
design” 

Daily mean temperature 
National Oceanic and 
Atmospheric 
Administration NOAA and 
India Meteorological 
Department 

All-cause mortality (n =
3,079) Vadu HDSS 

Temperature above a 
threshold of 31 ◦C was 
associated with total 
mortality (OR 1.48, CI: 1.05, 
2.09) per 1 ◦C increase in 
daily mean temperature. 
Odds ratios were higher 
among females, those with 
low education, those owing 
larger agricultural land, and 
farmers. In winter, per 1 ◦C 
decrease in mean 
temperature, OR for total 
mortality was 1.06 (CI =
1.00–1.12) in lag 0–13 days, 
with higher risk observed 

(continued on next page) 
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Table 1 (continued ) 

Reference Methods      Exposure Outcome Main findings  
Study population 
and location 

Category of 
effect 

Study period Study design and 
statistical method 

Lag structure Control variables 
(confounders and 
effect modifiers) 

Measure and source Measure and source  

among people occupied in 
housework. 

Ingole et al. 
(2012) 

General 
population 22 
villages in Pune 
district, India 

Heat and cold 
effects 
(continuous 
temperature) 

Jan 2003 - May 
2010 

Time series 
analysis, Poission 
regression model 

lag 0–1 days, lag 
2–6 days, lag 
7–13 days 
(cumulative) 

Season, time trends Daily mean temperature 
India Meteorological 
Department 

All-cause mortality 
(n = 1 ,662) 
Vadu HDSS 

Both high and low 
temperatures were 
associated with all-cause 
mortality over all age 
groups, with children aged 5 
years or below being 
particularly affected. In the 
age group 20–59, 1 ◦C 
increase in temperature was 
associated with 9.4% 
increase in RR (95%CI: 3.6, 
15.5) for lag 0–1 and 1 ◦C 
decrease in temperature 
with RR= − 9.5 (95%CI: 
− 15.5, − 3.2) for lag 2–6. 

Ingole et al. 
(2015) 

General 
population aged 
12+
22 villages in 
Pune district, 
India 

Heat and cold 
effects 
(continuous 
temperature) 

Jan 2003 to Dec 
2012 

Time series 
analysis, 
Quasi-Poisson 
model and 
Logistic regression 
model 

Lag 0–1 days, lag 
0–4 days 
(cumulative) 

Day of week, time 
trend 

Daily maximum 
temperature 
India Meteorological 
Department 

All-cause mortality (n =
2,302) and cause-specific 
mortality (infectious 
diseases, non-infectious 
diseases and mortality 
from external causes) 
Vadu HDSS 

Heat was significantly 
associated with total 
mortality (RR = 1.33; 95% 
CI: 1.07, 1.60) and mortality 
from non-infectious diseases 
(RR = 1.57; CI: 1.18, 2.10) 
for lag 0–1. Men and people 
in the age group 12–59 
showed elevated risk for 
total mortality. No 
association between total 
and cause-specific mortality 
was found for cold 
temperature. 

Lindeboom 
et al. 
(2012) 

General 
population 
Matlab, 
Bangladesh 

Heat and cold 
effects 
(continuous 
temperature) 

1983–2009 Time series 
analysis, 
Poisson 
generalized 
additive model 
(GAM) 

Lag 0–21 days, 
(separate) 

Time trend, season, 
public holiday, 
festivals, cyclones 

Daily mean temperature, 
daily max temperature 
and daily min 
temperature 
Bangladesh 
Meteorological 
Department 

All-cause mortality (n =
48,238) 
ICDRR, B́s (HDSS) in 
Matlab 

1.4% (95 %CI: 0.7, 2.0) 
increase in mortality with 
every 1 ◦C decrease in mean 
temperature below 29.2 ◦C, 
and 0.2% (95% CI:0.1,0.3) 
increase in mortality with 
every 1 ◦C increase in mean 
temperature above 29.2 ◦C 
for lag 0. Elderly, aged 60 
years and above, were most 
affected at lower 
temperatures, with a 5.4% 
(95% CI: − 7.0, − 3.5) 
increase in mortality with 
every 1 ◦C decrease in 
temperature below 23 ◦C 
(combined lag 0 and lag 
1–5). 

Babalola 
et al. 
(2018) 

Infants and 
children under 5 
years 

Heat and cold 
effects 
(continuous 
temperature) 

1982 – 2008 Time series 
analysis, 
OLS regression 

Lag 0 months and 
lag 0–1 months 

Month, age and 
gender 

Monthly mean 
temperature, monthly 
max temperature 
Bangladesh 

All-cause mortality 
(n = 49,426) 
ICDRR, B́s HDSS in 
Matlab 

Each 1 ◦C increase in mean 
monthly temperature 
reduced monthly mortality 
by 3.7 (SE 1.5, p < 0.05) 

(continued on next page) 
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Table 1 (continued ) 

Reference Methods      Exposure Outcome Main findings  
Study population 
and location 

Category of 
effect 

Study period Study design and 
statistical method 

Lag structure Control variables 
(confounders and 
effect modifiers) 

Measure and source Measure and source  

Matlab, 
Bangladesh 

with ARIMA 
errors 

Meteorological 
Department 

points. Effect sizes of mean 
monthly temperature were 
larger for neonates at 1.1 (SE 
0.5, p < 0.05) than for post 
neonates at 0.9 (SE 0.3, p <
0.05) reductions in mortality 
per 1 ◦C. 

Urban areas          
Hajat et al. 

(2005) 
General 
population Delhi, 
India 

Heat effects 
(continuous 
temperature) 

1991–1994 Time series 
analysis, 
Poisson 
generalized linear 
model 

Lag 0 days, lag 
0–1 week, lag 
0–4 weeks 
(cumulative) 

Season, time trend, 
relative humidity, 
rainfall, particulate 
air pollution, day of 
the week, public 
holidays 

Daily mean temperature 
India Meteorological 
Department 

All-cause mortality, 
excluding violent deaths 
(mean daily number of 
deaths: 25, n ~ 36,500) 
and cause-specific 
mortality 
(cardiovascular, 
respiratory and other 
non-violent deaths) 
data from the New Delhi 
Municipal Committee 
(NDMC) provided by the 
World Bank 

All-cause mortality 
increased by 3.2% (95%CI: 
1.8, 4.5) per 1 ◦C increase in 
temperature above 20 ◦C 
(lag 0–7 days). 
Cardiovascular mortality 
increased by 4.3% (95%CI: 
1.1, 7.6) per 1 ◦C increase in 
temperature above 20 ◦C 
and respiratory by 4.5% 
(95%CI: 0.0, 9.2) over the 
same lag. Heat effects were 
sustained up to 3–4 weeks 
for non-respiratory deaths. 
Children aged 0–14 years 
and elderly faced the highest 
risk, for children sustained 
up to 4 weeks. 

McMichael 
(2008) 

General 
population Delhi, 
India 

Heat and cold 
effects 
(continuous 
temperature) 

1991–1994 Time series 
analysis, 
Poisson 
generalized linear 
model 

Lag 0–1 days, lag 
0–13 days 
(cumulative) 

Season, daily relative 
humidity, day of the 
week, public 
holidays, daily, 
particulate pollution 
concentration 

Daily mean temperature 
India Meteorological 
Department 

All-cause mortality, 
excluding external causes 
(mean daily number of 
deaths: 25, n ~ 36,500) 
and cause-specific 
mortality (cardio- 
respiratory and non- 
cardio-respiratory) 
data from the NDMC 
provided by the World 
Bank 

All non-external causes of 
death increased by 3.9% 
(95%CI: 2.8, 5.1) for each 1 
◦C increase in temperature 
above 29 ◦C (95%CI: 8, 30) 
for lag 0–1 days and by 2.8% 
(95%CI: 0.7, 4.9) for each 1 
◦C decrease in temperature 
below 19 ◦C (95%CI:.–39) 
for lag 0–14 days. 
Cardiorespiratory mortality 
was found to increase by 
203% (95%CI: 41.2, 553) for 
each 1 ◦C below a cold 
threshold of 12 ◦C (95%CI:. 
–13) and by 3.94% (95%CI: 
2.38–5.53) above a heat 
threshold of 17 ◦C (95%CI: 
12,19). Non-cardio- 
respiratory mortality 
increased by 2.7% (95%CI: 
0.21, 5.16) for each 1 ◦C 
below 19 ◦C (.–30) and by 
4.3% (95%CI: 2.89, 5.72) for 
each 1 ◦C above 30 ◦C (95% 
CI: 27, 31). 
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Table 1 (continued ) 

Reference Methods      Exposure Outcome Main findings  
Study population 
and location 

Category of 
effect 

Study period Study design and 
statistical method 

Lag structure Control variables 
(confounders and 
effect modifiers) 

Measure and source Measure and source  

Desai et al. 
(2015) 

General 
population Surat, 
India 

Heat effects 
(summer 
months) 

2001–2012 Time series 
analysis, Studentś 
t-test, correlation 
analysis (lag 0, lag 
1.) 

Lag time 
correlation for 
one, two, three- 
and four-days lag 

NA Daily max T and heat 
index (HI) 
Tutiempo Network, S.L 
website, based on data 
exchanged under the 
World Meteorological 
Organization (WMO) 
World Weather Watch 
Program, local weather 
station 

All-cause mortality (n =
36,167) 
Birth and Death 
Registration 
Department of Surat 
Municipal Corporation 
(SMC) 

Daily mean number of 
deaths were 11% higher for 
days with maximum 
temperature above 40 ◦C 
compared to days with 
maximum temperature 
below 35 ◦C. Mean number 
of deaths were 9% higher 
during danger-level heat-risk 
days (HI = 41–54 ◦C) and 
8% higher during high risk/ 
extreme danger heat days 
(HI = 41–54 ◦C), 
respectively, compared to 
mean number of deaths 
during less risky or caution 
days (HI = 27–31 ◦C). 

Rathi et al. 
(2017) 

General 
population Surat, 
India 

Heat effects 
(summer 
months) 

2014 – 2015 
(March to May) 

Time series 
analysis 
Analysis of 
variance, Student 
t-test, Turkeyś 
multiple 
comparison post 
hoc test, Pearson 
correlation 
analysis 

Lag time 
correlation for 
one, two, three- 
and four-days lag 

NA Daily max temperature, 
heat index (HI) 
Tutiempo Network, S.L 
website, based on data 
exchanged under the 
WMO World Weather 
Watch Program, local 
weather station 

all-cause mortality 
(n = 9,237) 
Health Department of 
SMC 

The mean daily number of 
deaths for days with 
maximum temperature 
below 35 ◦C was 48.0 ± 7.7, 
which was 20% lower 
compared to the mean daily 
number of deaths for days 
with maximum temperature 
above or equal to 40 ◦C 
(57.3 ± 7.2). 

Azhar 
(2014) 

General 
population 
Ahmedabad 
India 

Heat wave event May 2010 Heat-episode 
analysis 
7-day moving 
average; monthly 
rate ratio analysis; 
month-wise 
correlation 

NA NA Daily max and monthly 
max temperature 
Heat wave definition: An 
excess of 5 ◦C over a 
normal daily historical 
maximum temperature 
(30-year average) of<40 
◦C; or an excess of 4 ◦C 
over a normal historical 
maximum temperature 
of>40 ◦C. If the actual 
maximum temperature is 
above 45 ◦C,a heatwave is 
declared irrespective of 
the normal historical 
maximum Temperature.  
Indian Meteorology 
Department’s 
Meteorological 
Aerodrome Report, 
station at Ahmedabad 
airport 

all-cause mortality 
(n = 4,462) 
Death records of 
Ahmedabad Municipal 
Corporation (AMC) 
Office of the Registrar of 
Births and Deaths 

Excess mortality in May 
2010 was estimated to be 
1,344 deaths, or 43.1% 
above the reference period 
(May 2009 and May 2011). 
Mortality rate ratios for 
heatwave days (May 19–25, 
2010) in 2010 were 1.76 
(95% CI: 1.67, 1.83) 
compared to reference 
period 1 (May 12–18, 2010) 
and 2.12 (95% CI: 2.03, 
2.21) compared to reference 
period 2 (May 19–25 from 
2009 and 2011). The gender 
distribution highlights 
significantly more female 
deaths in the summer 
months and in the heatwave 
period. 

Ghumman 
and 
Horney 
(2016) 

General 
population 
Karachi, Pakistan 

Heat wave event June 2015 Heat-episode 
analysis 
Risk difference 

NA NA Daily max temperature 
AccuWeather, 
State College, 
Pennsylvania USA 

Deaths attributable to 
heat wave 
(n = 1,220) 
Official death certificates 

Residents of Karachi were 
approximately 17 times as 
likely to die of a heat-related 
cause of death during June 
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Table 1 (continued ) 

Reference Methods      Exposure Outcome Main findings  
Study population 
and location 

Category of 
effect 

Study period Study design and 
statistical method 

Lag structure Control variables 
(confounders and 
effect modifiers) 

Measure and source Measure and source  

and rate ratio 
calculation 

from public and private 
hospitals 

2015 (RR = 17.68; 95% CI: 
13.8, 22.53) when compared 
with the reference period of 
June 2014. An excess risk of 
mortality from heat-related 
illness was found among the 
poor and those with lower 
levels of education during 
the 2015 heatwave period 
when compared with the 
reference period. 

Hess et al. 
(2018) 

General 
population 
Ahmedabad 
(Gujarat), India 

Heat wave 
events 

1 April to 30 June 
for 2007–2010 
and 2014–15 

Heat-episode 
analysis 
Distributed Lag 
Nonlinear Model 

Up to 5 days lag NA Daily max temperature 
Meteorological Aviation 
Report (METAR) system 

All-cause mortality 
Registrar of Births and 
Deaths office of AMC 

Before the Heat Action Plan 
(HAP), the RR of mortality 
increased monotonically 
over 40 ◦C with maximum 
effect (RR of 2.34; 95% CI 
1.98, 2.76) at 47 ◦C, lag 0. 
After the HAP, the RR also 
increased monotonically 
over 40 ◦C, but with a 
substantially lower 
maximum effect (RR of 1.25; 
1.02, 1.53) estimated at 47 
◦C. 

Nori-Sarma 
et al. 
(2019a) 

General 
population 
(Mumbai ≥ 35 
years old) 
Five cities in 
Northwest India: 
Jaipur, Churu, 
Idar, 
Himmatnag-ar, 
Mumbai 

Heat wave 
episodes and 
continuous 
temperature 

2000–2012 Time series 
analysis 
Generalized linear 
model for heat 
wave analysis and 
over-dispersed 
Poisson regression 
for continuous 
temperature 
analysis 

NA Day of the week, 
time trend, daily 
max temperature for 
a community at a 
specific lag (same 
day or previous day), 
adjusted dewpoint 
temperature, 
population offset 

Daily max temperature, 
dewpoint temperature 
Heat wave definitions: 
1) ≥ 2 consecutive days 
with daily maximum 
temperature (Tmax) 
higher than the 
community’s 97th 
percentile Tmax. 2) 
Modified IMD definition: 
hill stations - Tmax of 5–6 
◦C or more above 
“normal” baseline 
temperature (over entire 
temperature record); 
plains stations - Tmax of 
4–5 ◦C or more above 
“normal” baseline 
temperature (over entire 
temperature record) 
India Meteorological 
Department, NOAA’s 
Global Summary of the 
Day (GSOD) 

All-cause mortality 
(n = 389,665) 
Local municipal 
governments 

Overall, across the four 
communities, mortality risk 
is estimated at 18.11% 
higher [95% interval −
5.31%, 47.33%] on 97PoT 
heatwave days compared to 
non-heatwave days. Using 
the IMD heatwave 
definition, estimated risk of 
mortality is 15.46% 
[− 0.929%, 34.556%] 
comparing heatwave days to 
non-heatwave days. Limited 
evidence of effect 
modification by heatwave 
characteristics (intensity, 
duration, and timing in 
season) was found, but 
central estimates suggest 
more harmful heatwaves 
later in the warm season. 

Nori-Sarma 
et al. 
(2019b) 

General 
population 
(Mumbai ≥ 35 
years old) 
Five cities in 

Heat wave 
episodes 

Jaipur 
(2005–2012); 
Churu 
(2003–2012); Idar 
and Himmatnagar 

Time series 
analysis 
Propensity Score 
Matching, Quasi- 

lag 0–14 time trend; seasonal 
and cyclical 
variation; days of the 
week; adjusted dew 
point temperature 

Daily max temperature 
Heat wave definitions: 
1) IMD heat wave 
definition; 2) > 2 days 
exceeding the 90th T 

All-cause mortality 
(n = 389,665) 
Local municipal 
governments 

There is a wide variation in 
the RR associated with heat 
waves depending on the 
criteria used for defining 
heat waves. RR of mortality 
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Table 1 (continued ) 

Reference Methods      Exposure Outcome Main findings  
Study population 
and location 

Category of 
effect 

Study period Study design and 
statistical method 

Lag structure Control variables 
(confounders and 
effect modifiers) 

Measure and source Measure and source  

Northwest India: 
Jaipur, Churu, 
Idar, 
Himmatnag-ar, 
Mumbai 

(2006–2012); 
Mumbai 
(2000–2012) 

Poisson regression 
model 

percentile; 3) > 3 days 
exceeding the 90th T 
percentile; 4) > 4 days 
exceeding the 90th T 
percentile; 5) > 2 days 
exceeding the 92.5th T 
percentile; 6) > 3 days 
exceeding the 92.5th T 
percentile; 7) > 4 days 
exceeding the 92.5th T 
percentile; 8) > 2 days 
exceeding the 95th T 
percentile; 9) > 3 days 
exceeding the 95th T 
percentile; 10) > 4 days 
exceeding the 95th T 
percentile; 11) > 2 days 
exceeding the 97.5th T 
percentile; 12) > 3 days 
exceeding the 97.5th T 
percentile; 13) > 4 days 
exceeding the 97.5th T 
percentile; 
India Meteorological 
Department, NOAA’s 
GSOD 

ranged from 1.28 [95% 
CI:1.11, 1.46] in Churu 
under the 95%_2d heat wave 
definition to 1.03 [95% CI: 
0.87, 1.23] in Idar and 
Himmatnagar under the 
95%_4d definition. Some 
heat wave definitions were 
associated with a high RR; 
but lower attributable 
mortality because few days 
on record match those 
criteria. Heat waves that 
occur later in the season 
have a higher impact on 
health (higher RR) than 
those that occur earlier in 
the season. 

Singh et al. 
(2019) 

General 
population 
Varanasi, India 

Continuous 
temperature 
(summer, 
winter, other 
months), heat 
wave episodes 
and cold spells 

2009–2016 Time series 
analysis 
Semipara-metric 
quasi-Poisson 
regression model 

A restricted 
distributed lag 
model up to 7 
days’ lag with 
polynomial of 
degree two and 
single lag model 
up to 7 days lag 

Time trend, relative 
humidity, ambient 
air pollution and 
days of the week. 

Daily min, max and mean 
temperature, diurnal 
temperature variations 
(DTV) 
Heat wave definition: an 
event during summer with 
daily mean temperature 
remaining equal to or 
above the 95th percentile 
of annual mean 
temperature (≥34.5 ◦C) 
for at least 3 consecutive 
days 
Cold spell definition: an 
event during winter with 
daily mean temperatures 
equal to or below the 5th 
percentile of annual mean 
temperature (≤14.7 ◦C) 
for at least 3 consecutive 
days [moving average lag 
(0–2)]. 
India Meteorological 
Department 

All-cause mortality 
(n = 64,712) 
Municipal Corporation of 
Varanasi 

During summer, a unit 
increase in daily 
temperature was associated 
with 5.6% increase in all- 
cause mortality (95% CI: 
4.69, 6.53%). During winter, 
a unit decrease in daily 
temperature was associated 
with 1.5% increase in all- 
cause mortality (95% CI: 
0.88, 2.18%). Increase in all- 
cause mortality was highest 
for people ≥ 65 years of age 
(− 2.71% in winter to 6.83% 
in summer) and gradually 
reduced with the decrease in 
age, except for 0–4 years age 
group. Higher mortality 
found for non-institutional 
deaths (those dying outside 
the hospital) compared to 
institutional deaths (those 
dying within the hospital). 
RR of 1.13 (95% CI: 1.04, 
1.22) for heat wave days vs. 
non-heat wave days and RR 
of 1.06 (95% CI: 0.98, 1.14) 

(continued on next page) 
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Table 1 (continued ) 

Reference Methods      Exposure Outcome Main findings  
Study population 
and location 

Category of 
effect 

Study period Study design and 
statistical method 

Lag structure Control variables 
(confounders and 
effect modifiers) 

Measure and source Measure and source  

for cold spell days vs. non- 
cold spell days. Higher RR 
for heat waves for females 
(RR 1.22, 95% CI: 
1.09–1.37) compared to 
males (RR 1.09, 95% CI: 
0.99–1.20), no significant 
difference for cold spells. 
Highest RR for heat waves 
for age group <4 years (RR 
1.39, 95% CI: 1.16–1.69), 
and for cold spells − 45–64 
years age group (RR 1.17, 
95% CI: 1.03–1.33). 
The DTV showed a negative 
association with all-cause 
mortality. 

Dutta et al. 
(2020) 

General 
population 
Bhubaneswar 
city (Odisha), 
India 

Continuous 
temperature 
(summer 
months) 

March to July 
(2007 – 2014) 

Time series 
analysis 
Generalized 
Additive Model 
with quasi-Poisson 
distribution, 
DLNM 

Lag 0 and lag 0–1 
days 

lLLong-term trend, 
seasonality, day of 
the year, day of the 
week, relative 
humidity 

Daily max and daily min 
temperature 
Bhubaneswar 
Meteorological Centre of 
the Indian Meteorological 
Department 

All-cause mortality 
(n = 16,033) 
Bhubaneswar Municipal 
Corporation 

Two ‘thresholds’ of max 
temperatures were 
identified, beyond which 
mortality increases – lower 
at 36.2 ◦C and upper at 40.5 
◦C. Every degree rise of T- 
max above 36.2 ◦C increased 
the mortality risk by 2% (RR: 
1.02; 95% CI 1.01, 1.03) and 
each degree rise of T-max 
above 40.5 ◦C increased it by 
6% (RR: 1.0616, 95% CI: 
1.03, 1.09). Daily T-max had 
significantly more effect on 
daily all-cause mortality 
rates when the minimum T- 
min was above its median 
value (25.6 ◦C) as compared 
to when it was below the 
median. 

Urban and 
rural 
areas          

Burkart et al. 
(2014b) 

General 
population 
Bangladesh 

Heat and cold 
effects 
(continuous 
temperature) 

2003–2007 Time series 
analysis, 
Semi-parametric 
Poisson DLNM 

Lag 0–1 days, lag 
0–4 days for 
children and 
youths 
(cumulative) 

Time trend, season, 
and day of the week 

Daily mean values of the 
universal thermal climate 
index (UTCI) 
Bangladesh 
Meteorological 
Department 

All-cause mortality, 
excluding accidental and 
maternity-related deaths 
and deaths of infants 
younger than 1 year of 
age (n = 22,840) and 
cause-specific mortality 
(cardiovascular and 
infectious diseases) 
ICDRR, B́s SVRS in 
Bangladesh 

All-cause mortality and 
mortality from 
cardiovascular and 
infectious diseases were 
positively associated with 
UTCI below and above a 
threshold, ranging between 
34 and 35 ◦C UTCI. All-cause 
mortality increased by 
31.3% (95%CI: 24.5 – 44.3) 
per 1 ◦C increase in UTCI 
above breakpoint (lag 0–1). 
Heat effects were strongly 

(continued on next page) 
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Table 1 (continued ) 

Reference Methods      Exposure Outcome Main findings  
Study population 
and location 

Category of 
effect 

Study period Study design and 
statistical method 

Lag structure Control variables 
(confounders and 
effect modifiers) 

Measure and source Measure and source  

pronounced for the elderly, 
for males, and for those 
living in urban and high 
socio-economic status areas. 

Burkart et al. 
(2011) 

General 
population 
Bangladesh 

Heat and cold 
effects 
(continuous 
temperature) 

2003–2007 Time series 
analysis, 
Poisson 
generalized 
additive model 

Lag 0–1 days, lag 
0–6 days and lag 
0–13 days 
(cumulative) 

Time trend, season, 
day of the month 

Heat Index (HI), 
physiological equivalent 
temperature (PET), 
universal thermal climate 
index (UTCI) 
Bangladesh 
Meteorological 
Department 

All-cause mortality, 
excluding accidental, 
maternity related and 
infant mortality 
(n = 21, 655) and cause- 
specific mortality 
(cardiovascular 
mortality) 
ICDRR,B́s SVRS in 
Bangladesh 

Mortality increased by 4.4% 
(95%CI: +/-5.4) per 1 ◦C 
increase in temperature 
above a specific threshold in 
rural areas and 13.7% (95% 
CI: +/-10.9) in urban areas 
(lag 0–1). Mortality 
increased by 2.6 (95%CI: 
+/-0.6) per 1 ◦C decrease in 
temperature below 
threshold in rural areas and 
by 3.3% (95%CI: +/-1.8) in 
urban areas (lag 0–13), 
respectively. A heat effect on 
cardiovascular mortality was 
only observed in urban 
areas. 

Fu et al. 
(2018) 

General 
population India 

Heat and cold 
effects 
(continuous 
temperature) 

2001–2013 Case-crossover 
study, DLNM 

Lag 0–21 days 
(cumulative) 

Potential temporal 
confounders and 
time-invariant 
confounders 
controlled for “by 
design” 

Daily mean temperature 
India Meteorological 
Department 

All-cause mortality at all 
ages, excluding injury 
and ill-defined medical 
causes (n = 411,613) 
and cause-specific 
mortality (ischemic heart 
disease, respiratory 
diseases, malaria and 
cancer among adults 
aged 30–69) 
India’s Million Death 
Study, Sample 
Registration System, 
Registrar General of India 

For all medical causes and 
ages, moderately cold 
temperature was associated 
with a higher attributable 
risk (OR) (6.3%, 95% CI: 1.1, 
11.1) than extremely cold, 
moderately hot, and 
extremely hot temperatures, 
each of which were<0.6%. 
The risk related to 
moderately cold 
temperature was most 
pronounced for the 
population aged 30–69 years 
and 70 + . For cause-specific 
deaths at ages 30–69 years, 
moderately cold 
temperature was associated 
with attributable risks of 
27.2% (95% CI: 11.4, 40.2) 
for stroke, 9.7% (95% CI: 3.7 
to 15.3) for IHD, and 6.5% 
(95% CI: 3.5, 9.2) for 
respiratory diseases. 

Burkart and 
Kinney 
(2017) 

General 
population 
Bangladesh 

Cold effects 
(continuous 
temperature and 
seasonal 
temperature) 

2003–2007 Time series 
analysis, 
Poisson GAM and 
Poisson DLNM 

Lag 0–1 days, lag 
0–2 days, lag 0–4 
days, lag 0–7 
days, lag 0–14 
days and lag 
0–21 days 
(cumulative) 

Time trend, season, 
day of the month 

Daily mean temperature, 
daily max temperature, 
daily min temperature, 
diurnal temperature range 
(DTR) 
Bangladesh 
Meteorological 
Department 

All-cause mortality, 
excluding external causes 
and maternity-related 
deaths (n = 25, 226) 
ICDRR, B́s SVRS in 
Bangladesh 

During the winter season, 
mortality increased with 
1.7% (95% CI =
0.86–2.54%) per 1 ◦C 
decrease in temperature (lag 
0–1 days). Heat effects 
observed during the summer 

(continued on next page) 
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Table 1 (continued ) 

Reference Methods      Exposure Outcome Main findings  
Study population 
and location 

Category of 
effect 

Study period Study design and 
statistical method 

Lag structure Control variables 
(confounders and 
effect modifiers) 

Measure and source Measure and source  

season were stronger than 
over the entire year. 

Shrestha 
et al. 
(2017) 

General 
population Nepal 

Heat and cold 
effects 
(continuous 
variable) 

2009–2014 Time series 
analysis 
Generalized linear 
model (GLM) with 
log link function 
(Poisson model) 

3-day prior 
moving average 
for all-cause 
mortality; 7-day 
geometrical 
decay effect for 
water- and 
vector- borne 
mortality 

Seasonal dummy 
variables, day of 
week (Saturday) and 
secular trend, 
humidity, wind [for 
all-cause mortality]; 
wind, time trend [for 
water- and vector- 
borne mortality] 

Daily average 
temperature 
weekly data of the number 
of days of occurrence of 
extreme events 
Department of Hydrology 
and Meteorology (DHM), 
Kathmandu, 16 
meteorological stations in 
the country 

All-cause mortality (n =
10,000) 
and cause-specific 
mortality (vector-bore 
and water-borne 
diseases) 
inpatient records from 22 
hospitals in Nepal 

All-cause mortality 
increased by 1.4% per 1 ◦C 
increase in the absolute 
difference of average 
temperature with its overall 
average (20 ◦C) (3-day prior 
moving average) (parameter 
estimate: 0.014, 95% CI: 
0.002, 0.026). All-cause 
mortality also increased with 
decreasing temperature 
relative to overall average 
condition (20 ◦C). Mortality 
from water-borne and 
vector-borne diseases 
increased by 3.7% per 1 ◦C 
rise in daily average 
temperature (7-day 
geometrical decay effect). 
Association between 
mortality from water-borne 
and vector-borne diseases 
and extremely cold days 
(<4.6 ◦C) was also reported, 
as well as between mortality 
from water borne and renal 
diseases and extremely hot 
days (above 95 percentile of 
maximum temperature). 

Mazdiyasni 
et al. 
(2017) 

General 
population India 

Heat wave 
episodes 

1960–2009 Annual time series 
analysis 
Correlation 
analysis, 
Kolmogorov- 
Smirnov test; 
Man-Kendall Test 
and Conditional 
probabilistic 
model 

NA NA Daily mean and max 
temperature (summer 
months) 
Heat wave definition: 
Three or more consecutive 
days of temperatures 
above the 85th percentile 
of the hottest month for 
each specific location. 
Four different heatwave 
properties are assessed: (i) 
accumulated heatwave 
intensity, (ii) annual 
heatwave count, (iii) 
mean heatwave duration, 
and (iv) heatwave days. 
India Meteorological 
Department 

heat-related mortality 
(n = 10, 619) 
India Meteorological 
Department, annual 
reports 

The increase in summer 
mean temperature in India 
over 1960–2009 
corresponds to a 146% 
increase in the probability of 
heat-related mortality events 
of >100 people. 

Murari et al. 
(2014) 

General 
population Four 
states in India: 
Delhi, Rajasthan, 

Heat wave 
episodes 

1997–2009 Annual Time 
series analysis 
OLS regression 

NA NA Annual number of severe 
heat wave days (HWD) 
Heat wave definition: If 
the maximum 

Heat wave-induced 
mortality (number of 
deaths not reported) 
Mortality records, 

Positive significant 
association (90% CI) 
between annual mortality 
rates and annual number of 

(continued on next page) 

A
. D

im
itrova et al.                                                                                                                                                                                                                              



EnvironmentInternational146(2021)106170

15

Table 1 (continued ) 

Reference Methods      Exposure Outcome Main findings  
Study population 
and location 

Category of 
effect 

Study period Study design and 
statistical method 

Lag structure Control variables 
(confounders and 
effect modifiers) 

Measure and source Measure and source  

Maharashtra and 
Orissa 

temperature of a day 
exceeds 45◦ C, 
irrespective of the normal 
maximum temperature of 
a region, that day is 
defined as a severe HWD. 
In case a day’s maximum 
temperature is<45◦ C, 
that day is defined as a 
severe HWD when (1) the 
day’s maximum 
temperature is at least 7◦

C greater than the normal 
temperature, and (2) the 
maximum temperature of 
that day is above 40◦ C. 
Three different heat wave 
properties are 
characterised: (i) severe 
heat wave intensity, (ii) 
duration and (iii) 
frequency 
India Meteorological 
Department 

obtained from the 
Ministry of Home Affairs 
(Government of India) 

severe HWDs is found for 
Delhi (3.1, SE: +/-1.45), 
Rajasthan (5.6, SE:+/-1.46), 
and Maharashtra (2.3, 
SE:+/-1.46). 

Nissan et al. 
(2017) 

General 
population 
Bangladesh 

Heat wave 
episodes 

1989–2011 Time series 
analysis 
Generalized 
additive 
regression models 

NA NA Daily max temperature, 
max and min day-and- 
night temperature, daily 
max heat index, daily max 
and min heat index, daily 
average temperature, 
average heat index 
Heat wave definition: 
Definitions of six heat 
wave indices are proposed 
and assessed, 
incorporating a range of 
conditions known to be 
important for heat stress: 
day- and nighttimes 
temperatures, humidity, 
and duration. According 
to all indices, a heat-wave 
day is declared on the 
third consecutive day on 
which one (or two) 
variables exceed the 95th 
percentile of daily values. 
[Calculated according to 
the formulation used by 
the U.S. National Weather 
Service] 
Bangladesh 
Meteorological 
Department 

All-cause mortality, 
excluding maternal and 
accidental deaths 
(n = 25,223) 
ICDRR, B́s Sample Vital 
Registration System 
(SVRS) in Bangladesh 

All proposed indices are a 
statistically significant 
predictor of mortality in 
Bangladesh, with effect 
estimates ranging between 
10.4% and 24.0% increase in 
mortality during heat wave 
vs. non-heat wave days. The 
study findings recommend 
using the day-and-night 
index, which defines a heat 
wave as elevated day- and 
night-time temperatures 
above the 95th percentile for 
3 consecutive days (22.3% 
increase in mortality, CI: 8.2, 
38.2). The proposed 
definition is deemed 
appropriate for preparedness 
measures in a heat early 
warning system (HEWS) 
because it is both related to 
human health outcomes and 
forecastable.  
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mortality (Ghumman and Horney, 2016). 
In terms of geographical coverage, 63% (n = 17) of the selected 

studies focused on India, eight on Bangladesh and one on Pakistan and 
Nepal, respectively. It is important to note that no epidemiological 
studies on the association between ambient temperature and mortality 
were identified for half of the countries in the region, namely 
Afghanistan, Bhutan, Maldives, and Sri Lanka. Eight of the studies 
included in this review (30%) focused solely on rural populations and 
eleven (40.7%) on urban, while eight studies (30%) evaluated the as
sociation between ambient temperature or heat waves and mortality for 
the general population in a country (including urban and rural areas). 
All the included studies on ambient temperature and heat waves are 
summarised in Table 1. 

In total, the included studies analysed >1.5 million deaths. However, 
eleven (41%) of the selected articles were based on identical pop
ulations, analysed over the same or an overlapping period. The most 
extensive datasets were provided by the Matlab́s Health and De
mographic Surveillance System (HDSS) (around 49 thousand deaths), 
which is the oldest field site in the region dating back to 1966 and 
maintained by the International Centre for Diarrheal Disease Research, 
Bangladesh (ICDRR,B), and India’s Million Death Study (around 412 
thousand deaths), which is based on one of the largest Sample Vital 
Registration Systems (SVRS) in the world. Other data sources included 
several smaller HDSSs, ICDRR,Bs SVRS in Bangladesh, inpatient hospital 
records, death records from municipal registrars and heat-related mor
tality statistics compiled by the IMD. Apart from all-cause mortality, 
eight studies reported effects of temperature on cause-specific mortality, 
with the most commonly examined causes being cardiovascular, respi
ratory, and infectious disease mortality. Outcomes related to perinatal 
mortality, ischemic heart disease, cancer, malaria, parasitic, vector- 
borne and water-borne diseases, and external causes were also 
assessed. Some studies on heat waves analysed specifically heat- 
attributable deaths (Murari et al., 2015; Ghumman and Horney, 2016; 
Mazdiyasni et al., 2017) 

Most selected articles (n = 24; 89%) examined the effects of short- 
term variations of temperature on mortality, thus measuring heat and/ 
or cold exposure as daily temperature. However, several studies applied 
a different timeframe for assessing temperature-mortality effects: Alam 
et al. (2012) analysed effects based on weekly mean temperature “to 
minimise fluctuations due to small number” of observations, Babalola 
et al. (2018) used monthly mean and maximum temperature as a unit of 
analysis to investigate effects on infant and child mortality, while Murari 
et al. (2015) and Mazdiyasni et al. (2017) analysed annual (summer) 
mortality and occurrences of heat waves and heat wave days. The ma
jority of articles considering continuous temperature effects (n = 11; 
55%) used mean temperature as it was demonstrated to be a better 
predictor of the temperature-mortality relationship compared to 
maximum and minimum temperatures, or because it permitted better 
comparability with other studies. Several studies (n = 9; 45%) used 
maximum and minimum daily temperature, in some cases as a sensi
tivity analysis. Five articles evaluated the combined effect of other 
meteorological parameters such as humidity, wind speed, and mean 
radiant temperature with temperature by using an index (Heat Index, 
Universal Thermal Climate Index, Physiological Equivalent Tempera
ture). Two studies also investigated the impact of temperature vari
ability, i.e., the difference between daily maximum and minimum 
temperatures, or diurnal range. Excluding studies on heat waves, three 
of the selected articles limited their analysis to summer months and two 
to summer and winter months to isolate heat and cold effects. Also, the 
indices adopted by Nissan et al. (2017) incorporated relative humidity 
and day-time as well as night-time conditions. 

About 80% of the studies used data from local stations obtained from 
a national meteorological department. Two studies relied on climatic 
records from weather websites provided from the World Meteorological 
Organization (WMO) under the World Weather Watch Program, one 
from a weather website, whose exact source we could not trace, and four 

on data from the National Oceanic and Atmospheric Administration 
(NOAA), which are collected from local airports. The period analysed in 
the time series studies ranged from several months to 49 years (Maz
diyasni et al. 2017). 

Different approaches were used to determine a threshold for hot and 
cold effects and to quantify the temperature-mortality association. In 
general, threshold values were determined based on a specific percentile 
of the temperature data, through visual inspection of the temperature- 
mortality plots, or using statistical procedures such as maximum likeli
hood estimation. Four of the studies on heat waves selected thresholds 
based on an existing national heat wave definition and four based on a 
specific percentile of the data. MMTs in the included studies were highly 
dependent on the temperature and mortality measures, the health 
outcome of interest, the statistical analysis (non-linear, semi-linear or 
linear models) and the considered lag structure. Therefore, it is difficult 
to draw comparisons of the threshold values across studies directly. For 
articles using mean daily temperature and all-cause daily death counts 
the temperature threshold values below which mortality started to rise 
ranged from 19 ◦C to 30 ◦C for lags 0–13 and lag 0–14 (cold effects). The 
threshold above which deaths started to increase ranged from 20 ◦C to 
31 ◦C for lag 0–1 days (heat effects). Outcomes were reported using a 
variety of metrics such as relative risk (RR), odds ratio (OR), percentage 
change in mortality, regression coefficients, and probability of a certain 
number of deaths. 

As expected, there were wide variations in observed temperature 
ranges across studies and locations. For the articles reporting these, daily 
maximum temperatures varied between 37.8 ◦C and 46.2 ◦C (n = 9), 
daily minimum temperatures between 8.6 ◦C and 28.5 ◦C (n = 6) and 
daily mean temperatures were in the range of 13.2 ◦C and 35.6 ◦C (n =
10). These temperature ranges corresponded to the diverse climatic 
conditions in the region. Study locations covered eight main climatic 
zones based on the Koeppen-Geiger climate classification and were 
dominated by four main climatic zones: tropical wet and dry, humid 
subtropical, warm semi-arid and warm desert (see Fig. 3). Areas in the 
tropical zone, found along the southern parts of India and in Bangladesh, 
experience mostly hot summers and receive heavy rainfall during the 
monsoon periods. The humid subtropical zone, which spans the Indo- 
Gangetic plains, is also characterized by hot summers, but cooler win
ters. The warm semi-arid climate, found in some parts of India, tends to 
have hot summers and warm to cool winters, with very little precipi
tation. Finally, the warm desert climatic zone, found in the northern 
edge of India and most of Pakistan, is characterized by extreme tem
perature variations, with hot summers and cool or cold winters, and 
minimal precipitation. 

Concerning study design, articles evaluating the impact of heat and/ 
or cold on mortality were based either on time series or case-crossover 
design. As previously noted by Basu (2009) and demonstrated in 
several studies on temperature and mortality, study results should be 
similar irrespective of whether they are based on time series or case- 
crossover design. Studies investigating heat wave effects were based 
either on episode analysis, comparing deaths in a heat wave vs. matched 
non-heat wave period/days, or on time series analysis, regressing daily 
or annual mortality with heat wave/non-heat wave days or an annual 
number of heat waves. 

Most time series studies included season and time trend as con
founding variables in their models, using smoothing functions with 
specified degrees of freedom, while several studies considered addi
tional confounders such as day of the week, public holidays, humidity, 
rainfall, and particulate air pollution. Control for most of these con
founders was not necessary for case-control/case crossover studies since 
they controlled for potential temporal confounders “by design”, i.e., by 
matching control days by day of the week and month across years. Also, 
in the case of case-crossover studies as well as time series controlling for 
trend, biases due to individual characteristics such as genetics, behav
iours and physiological differences are also inherently accounted for by 
study design. 
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The majority of included time series studies also examined harvest
ing and delayed effects of non-optimum temperature exposure and re
ported cumulative impacts over periods prior to the mortality event, 
with the considered lag structure ranging from a single day for high 
temperatures to 28 days for low temperatures. Harvesting or mortality 
displacement effects are characterised as excess mortality over the first 
few days of relatively high temperature being offset by reduced mor
tality in the following days of lower temperatures. Analysing harvesting 
is essential for determining the full magnitude of the public health issue, 
since its presence indicates that frail individuals were the only major 
population subgroup affected by the exposure and that their deaths were 
brought forward by a certain number of days (Gasparrini, Armstrong 
and Kenward, 2010; Hajat and Kosatky, 2010). 

3.3. Assessment of the risk of bias in individual studies 

We found substantial variation in the quality of the included articles 
as shown in the summary table for all studies (Table 2) and in the 
summary tables for individual assessments (Supplementary Table S5- 
S31). We identified measurement of exposure, measurement of 
outcome, and appropriateness of statistical method as the most common 
weakness in the quality of the body of evidence. In particular, twelve 
studies were judged to have definitely high or probably high risk of 
exposure measurement bias. These low ratings were related to the use of 
weekly or monthly temperature observations as opposed to daily time 
series, which might attenuate the true temperature effect or capture 
seasonal effects rather than true temperature effects, as well as large 
spatial aggregation of exposure data, which might conceal local tem
perature effects on mortality, and lack of sufficient information on data 
source and quality control of the data. Fourteen studies were rated as 
having a definitely high or probably high risk of measurement bias due to 
the use of data from unofficial sources with low reliability (e.g. news
papers, unofficial reports) or the use of municipal and vital registry data, 
which is considered as incomplete and under-representative for the 
countries in the region as large number of people die outside hospitals 
and without being registered (Setel et al., 2007; Jha, 2014; Mikkelsen 
et al., 2015). Seven of the studies were judged to have definitely high or 
probably high risk of bias for using an inappropriate statistical method. In 
most cases this was related to the use of statistical methods not appro
priate for count data (e.g. OLS regression, Pearson correlation coeffi
cient, ANOVA analysis, t-test, etc.) or inference of a causal association 
based on inappropriate study design or method. 

Four of the included studies were identified as being at probably high 
risk of selection bias. Eight of the studies did not control for some of the 
primary confounders (seasonality or time trend) or any confounders at 
all and were, therefore, rated as being at definitely high or probably high 
risk of confounding bias based on our assessment criteria. One study was 
evaluated as being at definitely high risk of bias due to inconsistencies in 
reporting. 

Seven of the overall 20 studies that examined risk of mortality with 
continuous exposure to ambient temperature, were judged to have 
definitely low or probably low risk of bias across all the risk of bias do
mains. In contrast, all the nine studies focusing on the mortality risk of 
heat wave episodes received probably high or definitely high risk of bias 
rating for one or more of the domains. 

3.4. Synthesis of findings on primary research question 

3.4.1. Synthesis of findings on temperature and all-cause mortality 
Included studies suggest that both hot and cold temperatures are 

associated with mortality in the South Asian population. However, re
sults across studies were not homogenous in terms of the direction 
(increasing mortality with decreasing or increasing temperatures 
beyond cold and heat thresholds) and magnitude of effects. Further
more, estimates from the meta-analysis confirm evidence of impacts for 
high temperatures only. 

From the eight studies, which analysed the susceptibility of rural 
populations to non-optimum temperature, six found an association be
tween cold temperature and mortality, while five found a heat effect. All 
studies on urban areas apart from two focused solely on heat effects and 
showed evidence for heat-related mortality, while two documented both 
heat and cold-related mortality (McMichael et al., 2008; Singh et al., 
2019). Burkart et al. (2011) specifically examined and contrasted the 
temperature effects for urban and rural areas in Bangladesh. Although 
they observed an increase in mortality at high and low temperatures for 
both rural and urban areas, urban areas were found to exhibit generally 
stronger and longer lasting heat effects. The other four studies (Burkart 
et al., 2014b; Burkart and Kinney, 2017; Fu et al., 2018; Shrestha et al., 
2017), which examined the relationship between temperature and 
excess mortality at a national scale, also ascertained both heat and cold 
effects. Overall, studies in India found that substantial health impacts 
occur even at temperatures lower than those specified in the national 
heat wave definition. 

Results across studies also varied considerably in terms of the 
magnitude of the observed heat and cold effects. The heterogeneity of 
studies in terms of outcome and exposure metrics, temperature thresh
olds and lags examined did not permit direct comparison of effect esti
mates across studies. The mortality increases due to elevated daily mean 
temperatures in the included studies using linear approximation ranged 
from 0.2% to 3.2% per 1◦ C increase in temperature above a MMT 
threshold (n = 5), while for cold effects excess mortality was in the range 
of 1.4% − 3.2% per 1◦ C decrease in temperature below a MMT 
threshold (n = 4). While Burkart et al. (2011); Ingole et al. (2017); 
McMichael et al. (2008) found heat effects to outweigh cold effects in 
Vadu, Bangladesh, and Delhi, and Ingole et al. (2012) observed com
parable effects of heat and cold in Vadu, Lindeboom et al. (2012) and Fu 
et al. (2018) found stronger effects for cold and moderately cold tem
peratures compared to hot temperatures in Matlab and India, respec
tively. Some inconsistencies in the reported results across studies may be 
partly attributed to differences in methodology and model specification 
(e.g., statistical method, adjustment for confounders, lag structure and 
thresholds used), but also specific characteristics of the locations or the 
populations that might determine vulnerability. Four of the twenty 
studies on ambient temperature and all-cause mortality were judged to 
have probably high or definitely high risk of bias by at least two of the 
assessment criteria. 

Only five of the studies on all-cause mortality and ambient tem
perature were judged as homogenous enough to be combined in one 
meta-analysis. Only two of these were judged to have probably high or 
definitely high risk of bias based on one of the assessment criteria. 
Fig. 4 shows the pooled estimates of the association at every 0.5◦ C 
increment of temperature with reference to a common threshold of 
24.5◦ C (lag 0–1) and 26.5◦ C (lag 0–13). Since not all studies cover the 
same temperature range, the colour shades and the legend underneath 
indicate how many and which studies specifically contribute to the 
pooled effect estimates at different temperature increments. The 
pooled RR estimates at different temperatures represent the meta- 
analysed RR estimates of individual curves at these points. The meta- 
analysis shows a U-shaped temperature-mortality relationship, with a 
temperature band of minimum mortality of 22◦ C – 25◦ C for lag 0–1 
days and 25◦ C – 28◦ C for lag 0–13 days, respectively. However, a 
statistically significant association was found only at temperatures 
above the upper limits of these bands, i.e. indicating heat effects. In 
particular, a significant positive association can be observed at tem
peratures above 31◦ C for lag 0–1 days and above 34◦ C for lag 0–13 
days. For lag 0–1 days, 10◦ C increase in temperature above 25◦ C was 
associated with a 22% (RR = 1.22, 95% CI: 1.10–1.36) increase in the 
risk of mortality, with the RR increasing steeply at higher tempera
tures. For lag 0–13 days, 5.5◦ C increase in temperature above 26.5◦ C 
was associated with a 23% (RR = 1.23, 95% CI: 1.11–1.37) increase in 
the risk of mortality, with the effect increasing even more steeply at the 
higher range of the exposure, but the precision of estimates decreasing 
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due to the small number of studies reporting effects at these ranges. 

3.4.2. Synthesis of findings on heat wave events and all-cause mortality 
All nine studies, which examined the effect of heat waves on all- 

cause mortality find a positive association. Six of these studies refer 
directly to all-cause mortality, while three studies refer to all-cause 
mortality indirectly, by considering heat wave-induced, heat-related 
or heat-attributable mortality. Since none of the studies provides specific 
information on which causes of death were classified as “heat-related”, 
we consider them as a proxy of all-cause mortality, but note that the 
selection criteria in these studies are likely to be arbitrary and to exclude 
unreported deaths or indirect causes of death. The reported RR of all- 
cause mortality during a heat wave vs. non-heat wave period/days in 
studies ranges between 1.03 and 2.34 (Hess et al., 2018; Nori-Sarma 
et al., 2019a; Singh et al., 2019). Nori-Sarma et al. (2019a) demon
strates that the estimated RR from heat waves depends considerably on 
the exact definition of heat waves, which highlights the difficulty of 
comparing results across studies with very heterogenous definitions. 

Several studies report results using alternative effect estimates to risk 
ratios. For example, Azhar et al. (2014) report a 43.1% increase in all- 
cause deaths during the 2010 Ahmedabad heat wave compared to the 
reference period. Mazdiyasni et al. (2017) find that the increase in 
summer mean temperature in India over 1960–2009 corresponded to a 
146% increase in the probability of heat-related mortality events of 
>100 people. Ghumman and Horney (2016) find that residents of Kar
achi were approximately 17 times as likely to die of a heat-related cause 
of death during the June 2015 heatwave when compared to a reference 
period of June 2014. Although all studies find a positive association 
between mortality and heat wave episodes, the different methodological 

approaches, study designs, definitions of heat waves and heat wave- 
related mortality do not allow for a direct comparison of effect esti
mates across studies. Five of the nine studies on heat waves were judged 
to have probably high or definitely high risk of bias by at least two of the 
assessment criteria, with three of them by five of the assessment criteria. 

3.5. Additional analyses 

3.5.1. Temperature and cause-specific mortality 
Five studies reported a pronounced heat effect on cardiovascular 

disease (CVD) mortality, with effects ranging from 1.9% increase in 
mortality with every 1 ◦C increase in temperature above specific 
threshold in Delhi (Hajat et al., 2005) to 62.9% in Bangladesh (Hashi
zume et al., 2009). Burkart et al. (2011, 2014b) found severe heat effects 
on CVD mortality particularly in urban areas as opposed to rural areas. 
The analysis of Burkart et al. (2014b) also revealed a higher risk of heat- 
related CVD mortality among males than females. In comparison, only 
two studies reported cold effects on CVD mortality, but these were much 
weaker, 1% and 9.9%, respectively (Burkart et al., 2011; Hashizume, 
2009). Fu et al. (2018) also documented both a cold and heat association 
of temperature with Ischemic Heart Disease (IHD)-related mortality. 

Temperature effects on respiratory mortality were also mixed. 
Hashizume et al. (2009) reported strong cold effects (17.5% increase in 
mortality for each 1 ◦C decrease in temperature below a threshold), but 
no heat effects, while Hajat et al. (2005b) and Fu et al. (2018) demon
strated both heat and cold effects. 

Regarding mortality from infectious diseases, both Burkart et al. 
(2014) and Hashizume et al. (2009) showed marked heat effects, with 
83.4% (lag 0–13 days) and 10.4% increase in mortality above a 

Fig. 3. Map of the climatic zones and the number of studies conducted in each country by category of effect. Source: Own figure, climatic zones based on Köppen- 
Geiger climate classification maps (Beck et al., 2018). 
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Table 2 
Summary of the results of the risk of bias assessment in individual studies.  

(2014b)

DL = Definitely Low RoB; PL = Probably Low RoB; PH = Probably High RoB; DH = Definitely High RoB; 
*The study examined both effects of heat wave episodes and continues temperature, therefore they have been included twice in the table. 
The underlined studies are those included in the meta-analysis. 
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threshold per 1 ◦C in (equivalent) temperature, respectively. As opposed 
to the higher risk of heat-related all-cause and cardiovascular mortality 
observed in urban areas, Burkart et al. (2014) found a significant in
crease in infectious disease mortality only for rural areas. Ingole et al. 
(2015) did not find any association of deaths from infectious causes with 
heat or cold, considering delayed effects of up to 4 days. 

With respect to the other examined causes of death, strong cold effects 
were found for perinatal mortality (Hashizume et al., 2009). Modest in
creases in risk of malaria deaths were observed at 14 ◦C − 20 ◦C (Fu et al., 
2018). Statistically significant positive associations were shown for 
temperature and water- and vector-borne disease mortality (Shrestha 
et al., 2017) and no association was found for temperature with external 
causes of death (Ingole et al., 2015) and cancer (Fu et al., 2018). 

3.5.2. Lagged effects and mortality displacement 
Most of the studies also investigated the lag structure and some also 

the temporal displacement of heat and cold effects. In most studies hot 
temperatures were shown to have a more immediate effect, lasting from 
1 to 6 days, but several studies (n = 4) showed heat effects over a sus
tained period of time (up to 21 days). Studies reported sustained impacts 
of cold temperatures over 4 to 14 days after exposure. The duration of 
temperature effects seemed to differ considerably across causes of death, 
age and sex. For instance, Burkart et al. (2014) reported more delayed 
heat effects in children and younger adults, and Hajat et al. (2005b) 
demonstrated more sustained risks for children and non-respiratory 
diseases. Babalola et al. (2018), who considered monthly infant mor
tality, found evidence for cold effects for lag 0 months. None of the five 
studies, which focused on mortality related to heat waves, formally 
modeled delayed effects of exposure. Azhar et al. (2014) assessed 
possible delayed effects graphically but did not find any evidence for 
these. Considering this methodological shortcoming, one cannot exclude 
that the reported excess mortality in the included heat wave studies 
represents, at least to a certain extent, a harvesting effect rather than a 
substantial increase in mortality. However, it has been shown that the 
more extreme weather events are, the smaller the harvesting effect is 
(Saha, Davis and Hondula, 2014). 

3.5.3. Vulnerable populations 
The identification of specific segments of the population most 

vulnerable to non-optimum temperatures has been of specific interest in 
most of the included studies as in climate-related research in general. 
However, results across studies do not provide a homogenous picture 

regarding vulnerabilities, and this is true even for studies based on the 
same population, but using different study design and/or statistical 
method. Most of the reviewed studies explored only vulnerabilities 
based on age and sex and cause of death, possibly due to the lack of 
sufficient data on socio-economic and other characteristics. Only Bur
kart et al. (2014) and Ingole et al. (2017) also analysed differences due 
to other individual or intra-population characteristics such as socio- 
economic status, education, occupation, housing, or level of urbanisa
tion. Cold effects have been shown to be most pronounced among infants 
and children younger than 5 years (Ingole et al., 2012; Babalola et al., 
2018) or <15 years (Hashizume, 2009), the elderly (Lindeboom et al., 
2012; Ingole et al., 2017; Fu et al., 2018), adults aged 20–69 (Alam et al., 
2012; Fu et al., 2018), and those employed in housework (Ingole et al., 
2017). Alam et al. (2012) found cold to exert a stronger effect on fe
males, while Ingole et al. (2017, 2012) and Singh et al. (2019) did not 
find any gender differences. Stronger heat effects were demonstrated for 
children aged 0–14 (Hajat et al., 2005; Sewe et al., 2018; Singh et al., 
2019), adults aged 20–59 (Ingole et al., 2012) and the elderly (Burkart 
et al., 2014b; Singh et al., 2019). However, no such association was 
found by Ingole et al. (2015) for the elderly (60 and older) in Vadu 
HDSS. Burkart et al. (2014) and Ingole et al. (2015) showed that males in 
Bangladesh, particularly the elderly, and males in Vadu HDSS appear to 
face increased mortality risk on hot days. However, Ingole et al. (2017) 
demonstrated the opposite for women in Vadu (results were not statis
tically significant), and Ingole et al. (2012) did not find any significant 
association by gender. In terms of socio-economic factors, findings from 
Burkart et al. (2014) suggest a more pronounced risk of heat-related all- 
cause mortality for people living in urban and in high socio-economic 
status areas, especially among the elderly, as compared to rural and 
low socio-economic status areas. The higher heat-related risks for urban 
areas in Bangladesh were also demonstrated in a previous study by 
Burkart et al. (2011). Singh et al. (2019) report higher mortality for non- 
institutional deaths (those dying outside a hospital) compared to insti
tutional deaths (those dying within a hospital), which the authors 
broadly attribute to lower socio-economic status. In a study conducted at 
the individual level in a rural setting in western India, stronger heat 
effects were observed among farmers, those with low educational 
attainment as well as those owing more agricultural land (Ingole et al., 
2012). 

Only a few studies on heat wave episodes investigated the role of 
non-atmospheric factors on the temperature-mortality relationship. 
Both Azhar et al. (2014) and Singh et al. (2019) report a higher RR of 

Fig. 4. Pooled estimates of the temperature-all-cause mortality association at (A) lag 0–1 days and (B) lag 0–13 days. Studies included in the meta-analysis: Burkart 
and Kinney (2017), Fu et al. (2018), Hashizume et al. (2009), Ingole et al. (2017), McMichael et al. (2008). 
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mortality from heat waves for females compared to males. Analysis of 
the deadly heat wave in Karachi, Pakistan during 2015, revealed excess 
risk of heat-related mortality among the poor and those with lower 
levels of education, but no effect of fasting during Ramadan was found as 
initially hypothesised. 

3.6. Quality of the evidence 

Table 3 summarizes the overall quality of the evidence on the asso
ciation between ambient temperature and heat wave episodes and all- 
cause mortality for the general population in the countries in South 
Asia. We downgraded the overall quality of the evidence for studies on 
ambient temperature by the criterion on imprecision as several studies 
had large confidence intervals and two did not report any confidence 
intervals. We downgraded the overall quality of the evidence for studies 
on heat wave episodes for three of the criteria: risk of bias – due to the 
substantial risk of bias across studies, indirectness – due to ambiguity of 
outcome definition and imprecision – due to several studies having large 
confidence intervals and one not reporting any confidence intervals. We 
upgraded the quality of the evidence on ambient temperature since most 
studies reported a broadly consistent dose–response pattern, with risk of 
mortality increasing with increases and decreases of ambient tempera
tures beyond a certain threshold. The resulting overall quality of the 
evidence was judged as moderate for studies on ambient temperature and 
low for studies on heat wave episodes. 

3.7. Strength of the evidence 

Table 3 also summarizes the rating of the strength of the body of 
evidence. Our judgements were based on the following considerations:  

● Quality of the body of evidence: moderate for studies on ambient 
temperature and low for studies on heat waves (as explained above). 

● Direction of effect estimates was largely as expected – risk of mor
tality increasing with higher and lower ambient temperature beyond 
a threshold and with more frequent or intense heat wave episodes.  

● Confidence in effect estimate: unlikely that a new study on ambient 
temperature and all-cause mortality would have an effect estimate 
that would make the results null or statistically insignificant. For 
heat wave exposure, due to the methodological deficiencies of the 
studies it cannot be ruled out that new studies might show different 
effects.  

● Other compelling attributes of the data that may influence certainty: 
for ambient temperature studies, differences in exposure measure
ment, statistical methods, and contextual factors (completeness in 
mortality counts, population exposure level, vulnerability and 
physical and physiological adaptation) make interpretation and 
comparison difficult. Similarly, the included heat wave episode 
studies are very heterogenous in terms of heat wave definitions, 
consideration of lagged effects and mortality displacement, study 
design and contextual factors (completeness in mortality counts, 
population exposure level and vulnerability, physical and physio
logical adaptation), which makes interpretation less certain and 
clear. For both ambient temperature and heat wave exposure, evi
dence is based only on a few countries in the regions, with the vast 
majority of countries not being represented. 

We compared these considerations to the strength of evidence defi
nitions specified in the Navigation Guide (Table S32) and concluded that 
for high and low ambient temperatures there was sufficient human evi
dence that exposure affects all-cause mortality in South Asia and for heat 
waves – limited evidence. 

4. Discussion 

4.1. Summary of evidence 

Our systematic review and meta-analysis resulted in five main find
ings. First, we found only a limited number of studies (n = 27), which 
have attempted to quantify the mortality effects of temperature and heat 
waves in South Asia. Studies were limited geographically, with half of 
the countries in the region not represented and two countries covered by 
only one study. Seven populations were analyzed more than once (e.g. 
four separate analyses based on the Vadu population, three based on the 
Matlab population, three on the total population of Bangladesh and two 
on Delhi, Surat, Ahmedabad and five Indian cities). Second, as sum
marised in Table 4 below, the strength of the evidence on ambient 
temperature as a risk factor for all-cause mortality was sufficient and on 
heat wave episodes — limited. The latter rating is not to suggest that heat 
waves are not a risk a factor for all-cause mortality in South Asia, but 
rather reflects the lack of a sufficient number of robust studies in a re
gion with very heterogenous contexts and a challenging environment for 
health data collection. Third, individual studies reported an association 
of all-cause mortality with both high and low temperatures and heat 
waves for the population in South Asia. However, our meta-analysis, 
indicated evidence of an association for high temperatures only, both at 
shorter and longer lags, possibly due to the very small number (n = 5) 
and skewed geographical representation of the included studies. In 
particular, steep supra-linear increase in risk was observed at tempera
tures above 31◦ C for lag 0–1 days and above 34◦ C for lag 0–13 days, 
with the risk being higher for longer lags. Fourth, in terms of cause- 
specific mortality, studies found evidence for both heat and cold ef
fects on CVD, IHD and respiratory mortality. Heat effects were also 
identified for mortality related to infectious diseases and water- and 
vector-borne diseases, while cold effects were also found for perinatal 
mortality. Lastly, the profile of vulnerabilities identified in the reviewed 
studies is fragmented and sometimes conflicting, possibly due to dif
ferences in contexts, heterogeneity in study designs and limitations in 
data collection. 

4.2. Comparison with other systematic reviews 

Results from the meta-analysis are in contrast to findings from other 
systematic reviews on LMICs (Burkart et al., 2014a; Amegah, Rezza and 
Jaakkola, 2016), and evidence from higher income low-latitude coun
tries in Europe and North America (The Eurowinter Group, 1997; Gas
parrini et al., 2015), which found mortality effects for both hot and cold 
temperatures. The presence of cold effects in South Asia is plausible and, 
similar to populations in moderate climates, might be related to poor 
physiological and physical adaptation to cold weather, for instance, 
concerning thermal efficiency of housing and clothing (The Eurowinter 
Group, 1997; Healy, 2003; Burkart and Kinney, 2017) and relative per
ceptions of risk and vulnerability (Sperber and Weitzman, 1997). Other 
mechanisms have also been suggested to explain the somewhat coun
terintuitive cold effects on mortality in tropical and sub-tropical climates: 
the higher proportion of moderately cold than extremely cold or hot days 
(Fu et al., 2018), the importance of relative rather than absolute drop in 
temperatures (Burkart et al., 2014a; Guo et al., 2016), and insufficient 
control for seasonal confounding (Kinney et al., 2015). For instance, 
influenza outbreaks (Burkart et al., 2014a; Yang et al., 2009) and 
household air pollution due to biomass use for cooking and heating, could 
affect cold-related mortality due to their potential seasonal variations 
(Egondi et al., 2012; Ingole et al., 2017), but these have been poorly 
investigated in the included studies and in LMICs in general, possibly due 
to lack of routine data. Possible explanations for why we did not observe 
cold-related increase in mortality risk despite observations from indi
vidual studies in this review and evidence from the literature include the 
small number and limited geographical coverage of studies included in 
the meta-analysis as well as their large within-study standard errors at the 
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lower temperature range. Further studies with large sample sizes and 
using comparable and advanced methodologies are necessary in order to 
understand better the direction and magnitude of temperature effects on 
mortality in the region, particularly for the six countries with limited or 
no epidemiological studies, namely Pakistan, Nepal, Afghanistan, 
Bhutan, Maldives, and Sri Lanka. 

Interestingly, two of the included studies found only cold but no heat 
effects on mortality (Alam et al., 2012; Hashizume et al., 2009). Since 
both of them were conducted in rural areas (humid sub-tropical areas of 
Bangladesh), these results might be partly explained by the lower den
sity, higher vegetation cover, and associated lack of urban heat island 

(UHI) in the study areas. However, other factors such as the population- 
specific acclimatization and adaptation to hot and cold weather, the 
demographic and health profile of the study populations as well as 
insufficient control for confounding cannot be excluded as possible 
explanations. 

Our findings on cause-specific mortality are in line with systematic 
reviews on other tropical and sub-tropical regions and LMICs (Burkart 
et al., 2014a; Amegah, Rezza and Jaakkola, 2016; Green et al., 2019). 
Impacts of temperature on cardiovascular and respiratory mortality are 
some of the most well documented in the epidemiological literature. 
Cardiovascular impacts have been related to a range of physiological 

Table 3 
Summary of the assessment of the quality and strength of the evidence on ambient temperature and heat wave events as a risk factor for all-cause mortality.  

Reference Ambient temperature (n = 20) Heat wave events (n = 9) 
Rating Basis Rating Basis 

Quality of evidence assessment 

i. Downgrade considerations 
Risk of bias across 

studies 
0 Among all, one study with large sample size judged to have low 

risk of bias. 
− 1 There is a substantial risk of bias across most studies. 

Indirectness 0 All-cause mortality was appropriate outcome, studies 
conducted in the population of interest, mostly direct measures 
of exposure. 

− 1 Three of the studies used “heat-related mortality”/” heat- 
induced mortality”/” heat-attributable mortality”, which was 
not well defined and is not directly comparable to the outcome 
of interest. 

Inconsistency 0 The magnitude of effect estimates likely to differ because of 
differences in study methods (study design, statistical methods, 
lag structure considered, method for determining MMT) and 
not be driven by unexpected heterogeneity. 

0 Effect estimates likely to differ because of differences in study 
methods (study design, statistical methods, study definition of 
heat waves) and not be driven by unexpected heterogeneity. 

Imprecision − 1 Three studies had wide confidence intervals and two did not 
provide any confidence interval estimates. 

− 1 Two studies had wide confidence intervals and one did not 
provide any confidence interval estimates. 

Publication bias 0 No evidence for publication bias for studies that would meet 
our inclusion criteria. 

0 No evidence for publication bias for studies that would meet our 
inclusion criteria. 

ii. Upgrade considerations 
Size of the effect 0 Effect sizes are small in most studies. 0 Confounding alone cannot be ruled out as an explanation for 

large effect estimates. 
Dose response pattern 1 Most studies report broadly similar dose–response pattern, with 

risk of mortality increasing with increases and decreases of 
ambient temperatures beyond a certain threshold. 

0 Dose response relationship is difficult to compare across studies 
due to differences in contexts, study designs and methods used. 

Confounding 
minimises effect 

0 No evidence found to suggest that possible residual confounders 
would reduce effect estimates. 

0 No evidence found to suggest that possible residual confounders 
would reduce effect estimate. 

iii. Summary of the quality assessment 
Overall quality of 

evidence starts: 
Moderate 

Moderate Moderate + (1) +(-1) = Moderate. Downgrading/upgrading 
resulted in moderate rating for the quality of evidence. 

Low Moderate + (-1) + (-1) + (-1) = Low. Downgrading changed the 
quality from moderate to low. 

Summary of findings n/a Overall moderate quality of the evidence of higher risk of all- 
cause mortality for high and low ambient temperature 
exposure. 

n/a Overall low quality of the evidence of higher risk of all-cause 
mortality during heat wave episodes. 

Strength of evidence assessment 
Quality of evidence Moderate  Low  
Direction of effect 

estimates 
n/a Direction largely as expected: higher risk of mortality at high 

and low ambient temperatures. 
n/a Direction largely as expected: higher risk of mortality during 

heat wave episodes. 
Confidence in effect 

estimate 
n/a Studies on ambient temperature measure directly the outcome 

of interest, direction of effect is largely consistent, majority 
score low on risk of bias, in particular one study with a large 
sample size, but several studies have large confidence intervals 
or do not report confidence intervals at all. It is unlikely that a 
new study on ambient temperature and all-cause mortality 
would have an effect estimate that would make the results null 
or statistically insignificant. 

n/a Most studies have high RoB, do not measure directly the 
outcome of interest and not all potential confounders are 
controlled for. Due to these methodological deficiencies it 
cannot be ruled out that new studies might show different effect 
estimates. 

Other aspects n/a Differences in exposure measurement, statistical methods, and 
contextual factors, including completeness in mortality counts, 
population exposure level and vulnerability, differences in 
physical and physiological adaptation across study populations 
make interpretation and comparison difficult. 

n/a Differences in heat wave definitions, consideration of lagged 
effects and mortality displacement, study design, contextual 
factors, including completeness in mortality counts, population 
exposure level and vulnerability, physical and physiological 
adaptation across study populations make interpretation and 
comparison difficult. 

Overall strength of 
evidence 

Sufficient We found sufficient evidence that ambient low and high 
temperatures are positively associated with all-cause mortality 
for the population in South Asia, where chance, bias, and 
confounding can be ruled out with reasonable confidence. The 
available evidence includes results from one or more well- 
designed, well conducted studies, and the conclusion is unlikely 
to be strongly affected by the results of future studies. Due to 
lack of comparability across studies quantitative estimates can 
only be interpreted in broad terms. 

Limited We found limited evidence that heat wave exposure is associated 
with all-cause mortality for the population in South Asia. A 
positive association is observed between exposure and outcome; 
however, chance, bias, and confounding cannot be ruled out 
with reasonable confidence. Confidence in the association is 
constrained by the limited number and size of studies and the 
low quality of individual studies. Further studies, particularly 
with more rigorous control for confounding, high quality 
outcome data and consideration of temporal aspects of the 
association may allow an assessment of effects.  
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changes in the human body such as increased plasma viscosity, blood 
pressure, and elevated cholesterol levels (Basu, 2009; Moghadamnia 
et al., 2017; Zhang et al., 2014; Zhang et al., 2014). Cold has been 
associated with an increased risk of respiratory infections through 
bronchoconstriction and changes in immunological reactions (Gas
parrini et al., 2015), while physiological stress of heat on the respiratory 
systems is less well understood (Seltenrich, 2015). Several causes of 
death, which have been associated with temperature in other epidemi
ological studies, namely deaths from cerebrovascular diseases (Stafoggia 
et al., 2006), diabetes (Seposo, Dang and Honda, 2017), pre-existing 
psychiatric disorders (Stafoggia et al., 2006) and adverse birth out
comes (Son et al., 2019), were not investigated in any of the included 
studies. 

4.3. Vulnerabilities and modifying factors 

The studies included in this review identified infants, children, the 
elderly, adults and people occupied in housework as more vulnerable to 
the impacts of low temperatures and children, adults, farmers, people 
with low educational attainment, and those owning agricultural land or 
living in urban areas as more susceptible to the impacts of high tem
peratures. Overall, women and people with lower socio-economic status 
were reported as more susceptible to the impacts of heat waves. How
ever, evidence on certain vulnerabilities is often based on single studies 
and findings for some sub-groups (especially gender and age groups) are 
inconsistent, which warrants further investigation. Furthermore, some 
of the underlying factors shaping vulnerabilities are poorly understood 
and many questions are still to be elucidated — for instance, are people 
in urban areas more affected by heat because of higher exposure (e.g., 
UHI effect) or because of differences in age and disease patterns (Burkart 
et al., 2014b)? Are adults at higher risk because they are more involved 
in outdoor occupational activities? Are gender differences in vulnera
bility due to physiological predispositions, occupational differences or 
differences in treatment seeking behaviour? Are less educated people at 
higher risk because of occupation, their health status, access to resources 
(water, housing, information, health care, etc.), or heat-health aware
ness? How does personal perception of risk shape vulnerabilities? 
Answering these questions would require better understanding of 
contextual factors that moderate vulnerabilities. 

Besides population characteristics, the built environment, in partic
ular, building features, urban form, and density of green spaces, has also 
been shown to be an important determinant of temperature-related 
health risks (Scovronick & Armstrong, 2012; Dang et al., 2017; Lu 
et al., 2018; Horrison & Amirtham, 2016), but its modifying effect in the 
included studies and in LMICs in general has not been well investigated 
(Pramanik and Punia, 2019). One of the studies in this review (Alam, 
et al. 2012) hypothesised that differences in thermal efficiency of 

housing might be a possible explanation of the more marked effects of 
low temperatures on mortality in Matlab as opposed to Abhoyangar. 
However, Ingole et al. (2017) did not find mortality outcomes in the 
summer months in Vadu HDSS to be related to housing characteristics. 

In terms of vulnerabilities, another important knowledge gap to be 
addressed are the temperature effects for the population living in sub
standard housing conditions in the region. 30.4% of the urban popula
tion in South Asia lives in informal settlements, with this share being 
particularly high in some countries such as Afghanistan (62.7%), 
Bangladesh (55.1%), Nepal (54.3%) and Pakistan (45.5%) (World Bank, 
2014). Populations living in informal housing might be particularly 
vulnerable to non-optimum temperatures due to overcrowding, the poor 
quality and limited insulation of the housing, but also as a result of other 
interrelated factors such as poverty, lack of access to health care, sani
tation and information on heat wave risks, limited access to clean 
drinking water and electricity, and restricted household ventilation. 
Two studies investigating how heat varies within the cities of Nairobi, 
Kenya and Ahmadabad, India, respectively, demonstrated higher local 
temperature exposure in informal settlements compared to other city 
areas, with average difference between 5 to almost 10 ◦F in the case of 
Nairobi (Scott et al., 2017; Wang et al., 2019). We found only one study 
globally, which has investigated the temperature effects on mortality in 
informal settlements, but this was based in Nairobi (Egondi et al. 2012). 
Clearly, the lack of routinely collected health data for populations in 
informal settlements hinders scientific studies. To overcome this, 
Scovronick et al. (2015) provide an overview of available data sources 
and epidemiological designs with modest data requirements, which 
could potentially be deployed for investigating the association between 
weather and health in these understudied populations. 

Comprehensive analysis of vulnerabilities and their determinants 
could help identify more targeted and cost-effective adaptation strate
gies, which is particularly important for low income settings. Research 
in this direction can benefit from different study designs (e.g. case 
studies, mixed methods, personal temperature measures, etc.) as well as 
insights from other disciplines than public health such as exposure sci
ence, sociology, behaviour studies, economics, architecture, urban 
design, etc. (Maller and Strengers, 2011; Milà et al., 2020). 

4.4. Adaptation and policy implications 

The role of adaptation for minimising health impacts of non- 
optimum temperatures is poorly investigated in the reviewed articles. 
Nevertheless, the included studies propose a range of interventions 
based on their findings. Most of these are related to increasing public 
awareness of the problem through public messaging or health education 
campaigns; encouraging preventative measures (e.g. wearing light, 
bright-coloured and sun-protective clothing, avoiding physical activity 

Table 4 
Summary of findings.  

Summary of finding Studies contributing to the findings Certainty in the 
evidence 
(Navigation Guide) 

Brief rationale of the rating around the certainty of the 
evidence 

Ambient temperature: 
Positive association of all-cause 
mortality with temperatures 
below and above a MMT 
threshold. 

Alam et al. (2012); Hashizume et al. (2009); Sewe 
et al. (2018); McMichael (2008);Burkart et al. (2014b) 
; Burkart et al. (2011); Ingole et al. (2017, 2012, 
2015); Hajat et al. (2005); Fu et al. (2018); Lindeboom 
et al. (2012); Desai et al. (2015); Burkart and Kinney 
(2017); Babalola et al. (2018); Rathi et al. (2017); 
Shrestha et al. (2017); Dutta et al. (2020); Nori-Sarma 
et al. (2019a); Singh et al. (2019) 

Sufficient Findings based on studies of large sample size and mostly of 
good quality. Overall, direction of effect was consistent 
across studies, but there was a lack of estimate 
comparability due to methodological differences. Evidence 
of an exposure–response pattern was found. Studies were 
very skewed geographically. 

Heat wave episodes: 
Heat waves are associated with 
increases n all-cause mortality 

Azhar (2014); Ghumman and Horney (2016); 
Mazdiyasni et al. (2017); Murari et al. (2014);Nissan 
et al. (2017); Hess et al. (2018); Nori-Sarma et al. 
(2019a); Singh et al. (2019); Nori-Sarma et al. (2019b) 

Limited Findings are consistent, but based on a small number of 
studies, many of which score high on risk of bias and have 
methodological weaknesses, thus chance cannot be ruled 
out. Studies were very skewed geographically and effect 
estimates were not comparable due to differences in study 
design and methods.  
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or outdoor work during the hottest hours, staying hydrated), especially 
among the elderly, outdoor workers and those with existing cardiovas
cular, respiratory and other chronic diseases; enhancing response ca
pacity and coordination of public health centers; distribution of electric 
fans; setting-up of cooling centers — air conditioned sites designated as 
shelters during extreme heat (Widerynski et al., 2016), and introducing 
early warning systems. 

We note that some of the proposed technological cooling in
terventions are to be viewed with caution due to their limited scope and 
undesirable consequences. Although studies have shown the protective 
effect of the use of air conditioning units during heat waves (Barreca 
et al., 2016) and air conditioning is growing rapidly in South Asia, this 
solution still remains out of reach for the majority of the population due 
to its high operational costs (Mastrucci et al., 2019). Increased use of air 
conditioning units in urban areas is also shown to contribute to increase 
in outdoor temperatures by one degree or more (Lundgren and Kjell
strom, 2013), it leads to increased risk of power outages as a result of 
higher pressure on energy grids and, most importantly, it further con
tributes to climate change through upsurge in electricity consumption 
(Gupta et al., 2012). Use of electric fans has often been proposed as a 
more affordable alternative to air conditioning in low resource settings. 
However, a 2012 Cochrane systematic review showed that the benefits 
of using electric fans during heat waves are uncertain and may actually 
increase mortality risk, especially if ambient temperature is above body 
temperature (35◦ C), by contributing to an increased rate of dehydration 
and increased convective heat gain (Gupta et al., 2012). 

A few formal evaluations of heat-health warning systems have been 
conducted so far, and they appear to show a notable reduction in excess 
mortality following a heat wave (Ebi et al., 2004; Martínez-Solanas and 
Basagaña, 2019). The first Heat Action Plan, including an early heat 
warning system, in South Asia was implemented in the city of Ahme
dabad, in India’s western province of Gujarat, following the deadly heat 
wave of May 2010. According to a pilot formal evaluation of the plan, it 
has been effective in averting 1190 (95%CI 162–2218) average annu
alized deaths two years after its implementation (Hess et al., 2018). 
Following the experience of Ahmedabad, the government is currently 
working with over 100 cities and districts within 23 states towards 
scaling up heat action plans and early warning systems across India 
(Pradesh et al., 2019). In light of the findings in this review, which 
demonstrated that temperature thresholds can differ substantially be
tween regions in the same country and that health effects may occur at a 
temperature below those specified in national heat wave definitions, 
there is a need for more local epidemiological studies to establish 
appropriate temperature thresholds, which can inform such early 
warning systems. 

Beyond the more immediate and upfront interventions mentioned 
above, long-term strategies for reducing temperature vulnerabilities are 
rarely discussed in the included studies. Evidence from other studies 
shows that improvement of public infrastructure, expansion of public 
transport, and reduction of the UHI effects through increase in tree 
canopy, deployment of heat-reflective surfaces on roofs and roads have 
the potential to decrease heat stress, especially in densely built urban 
and peri-urban areas (Rizwan, Dennis and Liu, 2008; Garg et al., 2016; 
Deilami, Kamruzzaman and Liu, 2018). Previous research has suggested 
that addressing broader development challenges such as economic 
diversification and shifting of labour away from the agricultural sector 
(Green et al., 2019), improvement in educational attainment (Lutz, 
Muttarak and Striessnig, 2014), expansion of essential healthcare, set-up 
of other social protection programmes and provision of access to elec
tricity (Mastrucci et al., 2019) could be important for decreasing the 
human cost of climate-related threats. 

4.5. Potential interactive effects of temperature and particulate or ozone 
air pollution 

Another important avenue for future research is to explore the 

potential interactions between temperature or heat waves and particu
late or ozone air pollution on mortality. Ambient air pollution is a major 
public health concern in the region: the 2015 iteration of the Global 
Burden of Disease project estimated that almost 60% of deaths attrib
utable to PM2.5 globally happened in South Asia (Cohen et al., 2017). 
McMichael et al. (2008) included particulate air pollution in their model 
for Delhi but found a minimal impact on the temperature effect estimate, 
while Singh et al. (2019) observed that the associations between mor
tality and extreme temperature in Varanasi, India are substantially 
confounded by different air pollutants, in particular PM10. There is 
emerging evidence that the adverse effects of hot temperature or heat 
waves on human health can be amplified by high air pollution levels, 
and vice versa – the harmful effects of air pollution are enhanced by high 
temperature (Analitis et al., 2018; Burkart et al., 2014b; Kinney, 2018b). 
Various mechanisms have been identified as a possible explanation of 
these synergistic effects. Hot days might be associated with higher 
emissions of certain pollutants since ozone and secondary particles are 
generated faster in the atmosphere in the presence of sunlight and 
higher temperatures (Ebi and McGregor, 2008; Kinney, 2018b). 
Behavioural responses to hot temperatures, e.g., increased use of (air- 
conditioned) cars, can also increase emissions of air pollutants. Physi
ological stress in the body due to extreme heat may also make in
dividuals more sensitive to air pollution exposure and allergens, or vice 
versa (Gordon, 2003; Ren et al., 2011). However, not all studies have 
identified synergistic effects of temperature and air pollution (Basu, 
Feng and Ostro, 2008; Zanobetti and Schwartz, 2008) and further 
research is warranted, particularly in South Asia. 

4.6. Need for improved environmental and health monitoring 

We identified the lack of reliable and regularly collected data on 
mortality and temperature as a major obstacle for conducting analysis in 
the region. Comprehensive analysis of temperature-related mortality 
requires daily all-cause or cause-specific mortality data, which are not 
readily available for most countries in South Asia. Similar to most 
LMICs, majority of deaths in countries of the region occur at home and 
remain undocumented or without a medically certified cause of death, 
hence the reliance on HDSSs and SVRSs for studying premature mor
tality (Jha et al., 2006). All countries in the region have some form of a 
vital registration system (UN DESA, 2010), but these have been rated as 
poorly functioning with the exception of the Maldives and Sri Lanka 
(Mikkelsen et al., 2015). Continued efforts to strengthen vital registra
tion systems are important not only for mapping vulnerabilities due to 
temperatures but also to other climate-related health impacts. 

4.7. Strengths and limitations 

This review covered a region highly vulnerable to climate change but 
relatively understudied. Our review synthesises evidence from studies on 
ambient temperature, heat waves, and studies with different methodo
logical approaches: a more inclusive approach than previous reviews 
(Green et al., 2019). We assessed the overall quality and strength of the 
evidence following the Navigation Guide, specifically developed for 
environmental health research. Finally, we used a new, flexible statistical 
approach, which allowed us to pool estimates of non-linear exposure 
response functions and calculate MMT across studies without having ac
cess to individual study data. In contrast, previous meta-analyses based on 
summary results from the literature relied on more simplified methods 
that did not account for non-linear and delayed effects. 

Our study also has some limitations. The considerable heterogeneity 
of the included studies in terms of study design, lagged effects, outcome 
and exposure metrics, and the overlap of populations across publications 
limited the number of studies that could be included in the meta-anal
ysis. Furthermore, although we tried to select studies with comparable 
designs, differences across studies remained: one study in the meta- 
analysis reported effects stratified by season as opposed to year-round 
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effects (Ingole et al., 2017) and one reported cold effects for lag 0–14 
instead of lag 0–13 days (Burkart and Kinney, 2017). A meta-regression 
could have elucidated differences due to methods, exposure measures, 
latitude, temperature thresholds, and others, but was not possible given 
the small number of eligible studies. Half of the studies included in the 
review and three in the meta-analysis were conducted in India. There
fore, generalizability of our findings might be somewhat limited since 
the countries in the region differ in terms of their climate, geography and 
topology, as well as culture, demography, economic development, and 
other population characteristics. This review has focused on excess 
mortality associated with temperature variability and extreme temper
atures, not accounting for other potential health effects related to non- 
fatal conditions and psychological stress (Carleton, 2017; Pailler and 
Tsaneva, 2018). 

Finally, we may have missed some relevant publications since the 
review did not cover research published in other languages than English. 
Also, given the policy relevance of this topic and the scientific practices 
in the region, it is likely that relevant publications in the grey literature 
have been excluded (e.g. reports from government or non-profit or in
ternational organisations). However, it is highly unlikely that their in
clusion would appreciably change the conclusions in this review since 
high quality quantitative epidemiological studies are mainly published 
in peer-reviewed journals. 

4.8. Conclusions 

We found a limited number of studies, which have attempted to 
quantify the mortality effects of temperature in South Asia. The existing 
body of evidence, focused mainly on India and Bangladesh, points to 
excess mortality associated with hot and cold temperatures as well as 
heat waves, but our meta-analysis based on five of the included time 
series studies confirmed evidence for high temperatures only. More 
evidence is needed to reduce uncertainty in the shape and size of the 
temperature-mortality association in a region that is a hotspot for 
climate vulnerability and experiencing rapid population growth and 
urbanisation. In particular, a better understanding of the modifying 
factors of the temperature-mortality relationship is necessary to inform 
targeted interventions in the region. In light of slow progress in 
achieving greenhouse gas emission reduction targets, more evidence on 
viable adaptation options for the population in South Asia is particularly 
important. More robust exposure–response functions are also essential 
for health impact assessments of temperature-related mortality and 
morbidity burdens under different climate change mitigation or adap
tation scenarios to inform decision making. 

Funding 
VI gratefully acknowledges funding from the European Union’s 

Horizon 2020 research and innovation programme under grant agree
ment No 730,004 (project PUCS). JB gratefully acknowledges funding 
from the European Union’s Horizon 2020 research and innovation 
programme under grant agreements No 865,564 (European Research 
Council Consolidator Grant EARLY-ADAPT), 727,852 (project Blue- 
Action) and 730,004 (project PUCS). CT was funded through a Ramón 
y Cajal fellowship (RYC-2015–17402) awarded by the Spanish Ministry 
of Economy and Competitiveness. 

Declaration of Competing Interest 

The authors declared that there is no conflict of interest. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envint.2020.106170. 

References 

Alam, N., Lindeboom, W., Begum, D., Kim Streatfield, P., 2012. The association of 
weather and mortality in Bangladesh from 1983–2009. Global Health Action 5 (1), 
19121. https://doi.org/10.3402/gha.v5i0.19121. 

Amegah, A.K., Rezza, G., Jaakkola, J.J.K., 2016. Temperature-related morbidity and 
mortality in Sub-Saharan Africa: a systematic review of the empirical evidence. 
Environ. Int. 91, 133–149. 

Analitis, A., de’ Donato, F., Scortichini, M., Lanki, T., Basagana, X., Ballester, F., 
Astrom, C., Paldy, A., Pascal, M., Gasparrini, A., Michelozzi, P., Katsouyanni, K., 
2018. Synergistic effects of ambient temperature and air pollution on health in 
europe: results from the PHASE project. IJERPH 15 (9), 1856. https://doi.org/ 
10.3390/ijerph15091856. 

Anderson, B.G., Bell, M.L., 2009. Weather-related mortality: how heat, cold, and heat 
waves affect mortality in the United States. Epidemiology 20 (2), 205–213. 

Azhar, G.S., et al., 2014. Heat-related mortality in India: Excess all-cause mortality 
associated with the 2010 Ahmedabad heat wave. PLoS ONE. https://doi.org/ 
10.1371/journal.pone.0091831. 

Babalola, O., Razzaque, A., Bishai, D., 2018. Temperature extremes and infant mortality 
in Bangladesh: Hotter months, lower mortality. PLoS ONE 13 (1), 1–9. https://doi. 
org/10.1371/journal.pone.0189252. 

Barreca, A., Clay, K., Deschenes, O., Greenstone, M., Shapiro, J.S., 2016. Adapting to 
climate change: the remarkable decline in the US temperature-mortality relationship 
over the twentieth century. J. Political Economy 124 (1), 105–159. 

Basagaña, X., 2019. Re-centering exposure–response curves without access to individual- 
level data. Epidemiology 1. https://doi.org/10.1097/ede.0000000000001111. 

Basu, R., 2009. High ambient temperature and mortality: a review of epidemiologic 
studies from 2001 to 2008. Environ. Health: A Global Access Science Source 8 (1), 
40. https://doi.org/10.1186/1476-069X-8-40. 

Basu, R., Feng, W.-Y., Ostro, B.D., 2008. Characterizing temperature and mortality in 
Nine California Counties. Epidemiology 19 (1), 138–145. 

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F., 
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Tobias, A., Tong, S., Rocklöv, J., Forsberg, B., Leone, M., De Sario, M., Bell, M.L., 
Guo, Y.-L., Wu, C.-f., Kan, H., Yi, S.-M., de Sousa Zanotti Stagliorio Coelho, M., 
Saldiva, P.H.N., Honda, Y., Kim, H.o., Armstrong, B., 2015. Mortality risk 
attributable to high and low ambient temperature: a multicountry observational 
study. The Lancet 386 (9991), 369–375. 

Gasparrini, A., Armstrong, B., Kenward, M.G., 2010. Distributed lag non-linear models. 
Statist. Med. 29 (21), 2224–2234. 

Ghumman, U., Horney, J., 2016. Characterizing the impact of extreme heat on mortality, 
Karachi, Pakistan, June 2015. Prehosp. Disaster med. 31 (3), 263–266. 

Gordon, C.J., 2003. Role of environmental stress in the physiological response to 
chemical toxicants. Environ. Res. 92 (1), 1–7. 

Gosling, S.N., Lowe, J.A., McGregor, G.R., Pelling, M., Malamud, B.D., 2009. 
Associations between elevated atmospheric temperature and human mortality: a 
critical review of the literature. Clim. Change 92 (3-4), 299–341. https://doi.org/ 
10.1007/s10584-008-9441-x. 

Green, H., Bailey, J., Schwarz, L., Vanos, J., Ebi, K., Benmarhnia, T., 2019. Impact of heat 
on mortality and morbidity in low and middle income countries: a review of the 
epidemiological evidence and considerations for future research. Environ. Res. 171, 
80–91. 

Guo, Y., et al., 2016. Temperature variability and mortality: a multi-country study. 
Environ. Health Perspect. 124 (10), 1554–1559. 

Gupta, S., et al., 2012. Electric fans for reducing adverse health impacts in heatwaves. 
Cochrane Database of Systematic Reviews 2017 (7). https://doi.org/10.1002/ 
14651858.CD009888.pub2. 

Hajat, S., Armstrong, B.G., Gouveia, N., Wilkinson, P., 2005. Mortality displacement of 
heat-related deaths: a comparison of Delhi, São Paulo, and London. Epidemiology 16 
(5), 613–620. 

Hajat, S., Kosatky, T., 2010. Heat-related mortality: a review and exploration of 
heterogeneity. J. Epidemiol. Community Health 64 (9), 753–760. 

Han, J., Liu, S., Zhang, J., Zhou, L., Fang, Q., Zhang, J.i., Zhang, Y., 2017. The impact of 
temperature extremes on mortality: a time-series study in Jinan, China. BMJ Open 7 
(4), e014741. https://doi.org/10.1136/bmjopen-2016-014741. 

Hanna, E.G., Tait, P.W., 2015. Limitations to thermoregulation and acclimatization 
challenge human adaptation to global warming. Int. J. Environ. Res. Public Health 
12 (7), 8034–8074. https://doi.org/10.3390/ijerph120708034. 

Hashizume, M., et al., 2009. The effect of temperature on mortality in rural Bangladesh-a 
population-based time-series study. International Journal of Epidemiology 38 (6), 
1689–1697. https://doi.org/10.1093/ije/dyn376. 

Healy, J.D., 2003. Excess winter mortality in Europe: a cross country analysis identifying 
key risk factors. J. Epidemiol. Community Health 57 (10), 784–789. 

Hess, J.J., LM, S., Knowlton, K., Saha, S., Dutta, P., Ganguly, P., Tiwari, A., Jaiswal, A., 
Sheffield, P., Sarkar, J., Bhan, S.C., Begda, A., Shah, T., Solanki, B., Mavalankar, D., 
2018. Building resilience to climate change: pilot evaluation of the impact of india’s 
first heat action plan on all-cause mortality. J. Environ. Public Health 1–8. 

Hondula, D.M., Balling Jr., R.C., Vanos, J.K., Georgescu, M., 2015. Rising temperatures, 
human health, and the role of adaptation. Curr. Clim. Change Rep. 1 (3), 144–154. 
https://doi.org/10.1007/s40641-015-0016-4. 

Horrison, E., Amirtham, L.R., 2016. Role of built environment on factors affecting 
outdoor thermal comfort – A case of T. Nagar, Chennai, India. Indian J. Sci. Technol. 
9 (5), 3–6. https://doi.org/10.17485/ijst/2016/v9i5/87253. 

Im, E.S., Pal, J.S., Eltahir, E.A.B., 2017. Deadly heat waves projected in the densely 
populated agricultural regions of South Asia. Sci. Adv. 3 (8), 1–8. https://doi.org/ 
10.1126/sciadv.1603322. 

Ingole, V., Juvekar, S., Muralidharan, V., Sambhudas, S., Rocklöv, J., 2012. The short- 
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2017. Socioenvironmental factors associated with heat and cold-related mortality in 

Vadu HDSS, western India: a population-based case-crossover study. Int. J. 
Biometeorol. 61 (10), 1797–1804. https://doi.org/10.1007/s00484-017-1363-8. 

IPCC, 2014. Climate Change 2014 – Impacts, Adaptation and Vulnerability: Part A: 
Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth 
Assessment Report. Cambridge University Press, in. Cambridge. https://doi.org/ 
10.1017/CBO9781107415379.  

https://openknowledge.worldbank.org/handle/10986/31085, 2018. 
IPCC. 2018. Global Warming of 1.5◦C. An IPCC Special Report on the impacts of global 

warming of 1.5◦C above pre-industrial levels and related global greenhouse gas 
emission pathways, in the context of strengthening the global response to the threat 
of climate change,. [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, 
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Supplementary Material 
 
 
 

Table S1. Example of the full search strategy, used in Embase.  

Search EMBASE 

#1 Exposure 

terms  
('temperature*':ti,ab,kw OR 'weather':ti,ab,kw OR 

'season*':ti,ab,kw OR 'heat wave':ti,ab,kw OR 

'heatwave*':ti,ab,kw OR 'heat*':ti,ab,kw OR 'humidex':ti,ab,kw 

OR 'climate*':ti,ab,kw OR 'climatic':ti,ab,kw OR 'wet 

bulb':ti,ab,kw)  
#2 Outcome 

terms 
('mortality':ti,ab,kw OR 'death*':ti,ab,kw OR 'years of life 

lost':ti,ab,kw OR 'life expectancy':ti,ab,kw OR 'yll':ti,ab,kw OR 

'hyperthermia':ti,ab,kw OR 'heat stroke':ti,ab,kw OR 'thermal 

stress':ti,ab,kw) 
#3 South Asia 

country terms 
('afghanistan':ti,ab,kw OR 'bangladesh':ti,ab,kw OR 

'bhutan':ti,ab,kw OR 'india':ti,ab,kw OR 'maldives':ti,ab,kw OR 

'nepal':ti,ab,kw OR 'pakistan':ti,ab,kw OR 'sri lanka':ti,ab,kw OR 

'south asia':ti,ab,kw) 
#6 Studies 

published 

over 1990–

2018 

 [1990-2018]/py AND [english]/lim AND [1-1-1990]/sd NOT 

[16-8-2018]/sd 
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Table S2. Study inclusion and exclusion criteria.  
   Inclusion criteria  Exclusion criteria  

Literature 

type 
-   Peer-reviewed papers 

reporting empirical 

observational studies 

-   Commentaries, discussion articles, 

editorials, literature reviews, case 

studies, articles with descriptive 

analysis only 
-   News reports and book chapters  
-   Non-peer-reviewed literature  

Population - Human - Non-human  

- General population 

in the South Asia 

region, country in 

the South Asia 

region, city, 

county/state or rural 

areas   

- Patients from a specific hospital 

 
- Patients from a 

representative 

number of hospitals 

in a area, that has a 

catchment area 

representative of the 

target population 

- Patients from private clinics or a 

hospital that are not representative 

for the country population 

Exposure 

measure 
- Temperature 

(daily/weekly, 

monthly/annual) 

- No measure of temperature and/or 

heatwave exposure 

- Composite indices 

of temperature and 

other weather 

variables such as 

humidity, radiation, 

wind speed, etc 

 

- Heatwave event 
 

Outcome 

measure 
- All-cause or cause-

specific mortality 

counts 

- Morbidity outcomes 

- Years of Life Lost 

(YLL) 

 

- Life expectancy 
 

Country of 

study 
-   South Asia as 

classified by the 

World Bank 

(Afghanistan, 

Bangladesh, Bhutan, 

India, Maldives, 

Nepal, Pakistan, and 

Sri Lanka) 

-   Countries in any other regions as 

classified by the World Bank  

Year of 

publication 
-   1990 (incl.)– 
    13th August 2020 

-   Prior to 1990  

Language 

of 

publication 

-   English  -   Languages other than English  
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Table S3. Instructions for the Risk of Bias Assessment in individual studies 

 

Adapted from: Office of Health Assessment and Translation (OHAT) Risk of Bias 

Rating Tool for Human and Animal Studies  
 

 Judgement criteria 

Selection: Did selection of study participants result in appropriate comparison groups? 

Definitely 

Low risk of 

bias 

 There is direct evidence that inclusion of deaths in each time period (e.g. 

day/week/month) is not based on any factor associated with exposure 

(ie. Inclusion of deaths varies during summer/holidays). 

 

Example: There is evidence that deaths were consistently counted each time 

period. 

Probably Low 

risk of bias 

 There is indirect evidence that inclusion of deaths in each time period 

(e.g. day/week/month) is not based on any factor associated with 

exposure 

 

Example: There is no direct evidence that deaths were consistently counted 

each time period. However, for data collected through a routine and 

established surveillance systems (e.g. HDSS, SVRS, vital registry, census 

data and municipal data) there is no reason to suspect important temporal 

variation in inclusion of deaths.  

Probably High 

risk of bias 

 There is indirect evidence that the inclusion of deaths in each time 

period (e.g. day/week/month) is based on some factor associated with 

exposure. 

OR 

 There is insufficient information provided about the consistency of 

inclusion of deaths over the study period (record “NR” as basis for 

answer). 

 

Example: There is no evidence that inclusion of deaths was consistent across 

time periods. However, for data collected through unofficial sources (e.g. 

newspapers) the possibility of an important variation in inclusion of deaths 

linked exposure cannot be excluded. 

 

Definitely 

High risk of 

bias 

 There is direct evidence that the inclusion of deaths is based on some 

factor associated with exposure.  

 

Example: There is evidence that the identification of deaths varied with 

exposure (e.g. plots of time series showing unusual patterns). 

Confounding: Did the study design or analysis account for important confounding and 

modifying variables? 

Definitely 

Low risk of 

bias 

 There is direct evidence that appropriate adjustments or explicit 

considerations were made for primary covariates and confounders in the 

final analyses through the use of statistical models to reduce research-

specific bias including standardization, matching, adjustment in 

multivariable model, stratification, propensity scoring, or other methods 

that were appropriately justified.  

AND 

 There is direct evidence that primary covariates and confounders were 

assessed using valid and reliable measurements,  

AND  

 There is direct evidence that other exposures anticipated to bias results 

were not present or were appropriately measured and adjusted for 
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Example: The study controlled for primary confounders (time trend and 

season) and other potential confounders (e.g., day of the week, air pollution, 

latitude, public holiday.) using valid and reliable measurements and 

appropriate methods. 

 

Probably Low 

risk of bias 

 There is indirect evidence that appropriate adjustments were made,  

OR 

 It is deemed that not considering or only considering a partial list of 

covariates or confounders in the final analyses would not appreciably 

bias results.  

AND  

 There is evidence (direct or indirect) that primary covariates and 

confounders were assessed using valid and reliable measurements,  

OR  

 It is deemed that the measures used would not appreciably bias results 

(i.e., the authors justified the validity of the measures from previously 

published research),  

AND  

 There is evidence (direct or indirect) that other co-exposures anticipated 

to bias results were not present or were appropriately adjusted for,  

OR 

 It is deemed that co-exposures present would not appreciably bias 

results. 

Example: The study controlled for primary confounders (time trend and 

season) through the use of statistical models or by design, but did not 

control for other potential confounders. 

Probably High 

risk of bias 

 The study did not account for any or accounted for some but not all of 

the primary confounders  

AND  

 This lack of accounting may have introduced substantial bias, 

OR  

 There is indirect evidence that primary covariates and confounders were 

assessed using measurements of unknown validity, 

OR 

 There is insufficient information provided about the measurement 

techniques used to assess primary covariates and confounders (record 

“NR” as basis for answer). 

 

Example: The study adjusted for confounders deemed as primary by topic 

experts – time trend and season, but an inadequate method was used to do 

so. 

Definitely 

High risk of 

bias 

 The study did not account for any or evaluate important potential 

confounders 

AND 

 There is direct evidence that this lack of accounting may have 

introduced substantial bias 

OR 

 There is direct evidence that primary covariates and confounders were 

assessed using non valid measurements. 

 

Example: The study did not adjust for any of the confounders deemed as 

primary by topic experts – time trend and season. 

Exposure assessment: Can we be confident in the exposure characterization? 
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Definitely 

Low risk of 

bias 

 There is direct evidence that the exposure was consistently assessed 

using well-established methods that directly measure exposure,  

OR  

 Exposure was assessed using indirect measures (e.g., questionnaire or 

occupational exposure assessment by a certified industrial hygienist) 

that have been validated or empirically shown to be consistent with 

methods that directly measure exposure (i.e., inter-methods validation: 

one method vs. another).  

AND 

 Quality control procedure on the temperature series has been carried 

out, e.g. data have been explored for missing values and these have been 

handled in the initial data processing (employing rules, algorithms or 

models to impute missing values). 

AND 

 If there are missing observations from the time series, there is evidence 

that missingness is not related to exposure (e.g missing data during 

unusual weather)  

Example: Daily temperature data obtained from a nearby local weather 

station or other reliable source. If online data were used these have been 

validated against background data.  

Probably Low 

risk of bias 

 There is indirect evidence that exposure was consistently assessed using 

well established methods that directly measure exposure, 

OR  

 Exposure was assessed using indirect measures that have been validated 

or empirically shown to be consistent with methods that directly measure 

exposure (i.e., inter-method validation). 

Probably High 

risk of bias 

 There is indirect evidence that the exposure was assessed using poorly 

validated methods that directly measure exposure, 

OR  

 There is direct evidence that the exposure was assessed using indirect 

measures that have not been validated or empirically shown to be 

consistent with methods that directly measure exposure, 

OR  

 There is insufficient information provided about the exposure 

assessment, including validity and reliability, but no evidence for 

concern about the method used. 
Definitely 

High risk of 

bias 

 There is direct evidence that the exposure was assessed using methods 

with poor validity, 

OR  

 Evidence of exposure misclassification 

Example: The study did not used daily data, but weekly, monthly, yearly 

data etc. 

 

Outcome assessment: Can we be confident in the outcome assessment? 

Definitely 

Low risk of 

bias 

 Outcome data on all cause mortality stem from a reliable data source  
AND 

  Studies provide evidence of quality assurance of outcome data  

 

Example: Outcome data were collected through routine and long-term 

surveillance systems (e.g. HDSS, SVRS) and there is evidence that date of 

death was correctly recorded and not falsified, e.g. showing counts in the 

time series and checking for unrealistic patterns. 
Probably Low 

risk of bias 

 There is indirect evidence that the outcome was assessed using 

acceptable methods, 

OR  
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 It is deemed that the outcome assessment methods used would not 

appreciably bias results. 

 

Example: Outcome data were collected through routine and long-term 

surveillance systems (e.g. HDSS, SVRS) the outcome assessment method 

can be deemed adequate, but there is no direct evidence that date of death 

was correctly recorded and not falsified.   

Probably High 

risk of bias 

 There is indirect evidence that the outcome assessment method is an 

insensitive instrument. 

OR 

 There is insufficient information provided to judge that deaths were 

correctly recorded (record “NR” as basis for answer). 

 

Example: There is no direct evidence that the outcome was assessed using 

acceptable methods. However, since vital registries in all of the countries in 

the region are considered by experts as poorly functioning and not reliable 

(Mikkelsen et al., 2015), the outcome assessment method will be deemed as 

“probably high risk of bias” when based on these sources.  

Definitely 

High risk of 

bias 

 There is direct evidence that the outcome assessment method is an 

insensitive instrument. 

 

Example: Outcome data stem from unofficial sources (e.g. newspapers, 

media, unofficial reports), which are very likely to show inaccurate data. 

 

Selective reporting: Were all measured outcomes reported? 

Definitely 

Low risk of 

bias 

 There is direct evidence that all of the study’s measured outcomes 

(primary and secondary) outlined in the protocol, methods, abstract, 

and/or introduction (that are relevant for the evaluation) have been 

reported. This would include outcomes reported with sufficient detail to 

be included in meta-analysis or fully tabulated during data extraction 

and analyses had been planned in advance. 

Probably Low 

risk of bias 

 There is indirect evidence that all of the study’s measured outcomes 

(primary and secondary) outlined in the protocol, methods, abstract, 

and/or introduction (that are relevant for the evaluation) have been 

reported,  

OR  

 Analyses that had not been planned in advance (i.e., retrospective 

unplanned subgroup analyses) are clearly indicated as such and it is 

deemed that the unplanned analyses were appropriate and selective 

reporting would not appreciably bias results (e.g., appropriate analyses 

of an unexpected effect). This would include outcomes reported with 

insufficient detail such as only reporting that results were statistically 

significant (or not). 

Probably High 

risk of bias 

 There is indirect evidence that all of the study’s measured outcomes 

(primary and secondary) outlined in the protocol, methods, abstract, 

and/or introduction (that are relevant for the evaluation) have not been 

reported,  

OR 

 There is indirect evidence that unplanned analyses were included that 

may appreciably bias results,  

OR  

 There is insufficient information provided about selective outcome 

reporting (record “NR” as basis for answer). 
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Definitely 

High risk of 

bias 

 There is direct evidence that all of the study’s measured outcomes 

(primary and secondary) outlined in the protocol, methods, abstract, 

and/or introduction (that are relevant for the evaluation) have not been 

reported. In addition to not reporting outcomes, this would include 

reporting outcomes based on composite score without individual 

outcome components or outcomes reported using measurements, 

analysis methods or subsets of the data (e.g., subscales) that were not 

pre-specified or reporting outcomes not pre-specified, or that unplanned 

analyses were included that would appreciably bias results. 

Other bias: Were statistical methods appropriate? 

Definitely 

Low risk of 

bias 

 There is direct evidence that the statistical method used was appropriate. 

 

Example: The selected statistical model is appropriate and its suitability and 

robustness has been checked (e.g. initially fitting a smooth function to 

explore the shape of the temperature-mortality relationship, comparing 

model fit statistics of smoothed functions and adjusted linear 

approximations, checking the robustness of the model, analyzing the 

relationship of interest within strata of the confounder, etc.) 

Probably Low 

risk of bias 

 There is indirect evidence that the statistical method used was 

appropriate. 

 

Example: There is no direct evidence for the suitability or robustness of the 

model. However, the selected model seems appropriate. 

Probably High 

risk of bias 

 There is indirect evidence that the statistical method used was not 

appropriate. 

OR 

 There is insufficient information (e.g., not reported or “NR”) provided 

to judge the appropriateness of the statistical method. 

 

Example: Reporting results when it is likely that two or more of the 

explanatory variables included in the model are highly correlated (although 

there is no direct evidence), which might cause multicollinearity problems. 

Reporting of statistical tests that require normally distributed data (e.g., t-

test or ANOVA) when using count data (e.g. number of deaths per day); 

also using Pearson correlation instead of Spearman for count data. 

Definitely 

High risk of 

bias 

 There is direct evidence that the statistical method used was not 

appropriate for addressing the research question. 

 

Example: Inferring a causal relationship between temperature and mortality 

when performing a correlation analysis only.  
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Table S4. Reasons for study exclusion at the stage of the full text review. 
 

Reason for exclusion Studies (Author, year) 

Not published in a 

peer reviewed 

journal/Conference 

abstracts/Book 

chapters 

Kovats and Wilkinson (2004); Aakanksha; Hudda, V.; 

Nithiyanandam, (2017); Dholakia, H.H., and A Garg (2018); 

Raju (2018) 

Not reporting 

outcomes related to 

mortality, YLL or life 

expectancy 

Mall et al. (2017); Aakanksha; Hudda, V.; Nithiyanandam, 

(2017); Sun et al., (2019) 

Not reporting 

empirical study 

results 

Dear (2009); Azhar et al. (2014b); The Lancet, (2018); Sun et 

al., (2019) 

No measure of 

ambient temperature 

and/or heatwave 

exposure 

Burkart et al. (2011); Becker, (2002); Cecinati et al., (2019); 

Banerjee and Maharaj, (2020) 

Correction of an 

earlier published 

version of an already 

included study 

The PLOS ONE Staff (2014) 

Presents only 

descriptive analysis 

Chaudhury et al. (2000); Ray-Bennett, (2018); Mahapatra et al., 

(2018); Vittal et al., (2020) 

Not representative of 

the general 

population 

Mall et al. (2017); van der Linden et al., (2019) 

Duplicate Azhar et al. (2014a) 

Not specific to South 

Asian countries 
Takahashi et al. (2007); Gasparrini et al., (2017) 
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Table S5. Risk of bias assessment summary for Alam et al. (2012) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of 

deaths in each time period is not based on any 

factor associated with exposure. Since the data 

comes from a Sample Vital Registration System 

(SVRS) we assume the risk of bias is probably 

low. 

No/Inadequate 

control of 

confounding 

Probably low risk The study controlled for all the primary 

confounders (time trend and seasonal pattern). 

Possibility of 

detection bias 

(exposure) 

Definitely high risk The study used weekly temperature data for 

measuring exposure, which might attenuate the 

true temperature effect. Also, no quality control 

of the temperature data is reported. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably low risk Outcome data are based on a SVRS, which it is 

routine and long-term and, thus, likely to be more 

reliable than other data collection systems. 

However, the study does not provide quality 

assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported. However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.  

 

Other bias 

(Inappropriate 

statistical 

methods) 

Probably low risk Poisson generalized additive model (GAM) is an 

appropriate method for analyzing time series 

count data. However, no tests or sensitivity 

analysis for checking the appropriateness of the 

model is reported. Hence, there is only indirect 

evidence that the method is appropriate. 
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Table S6. Risk of bias assessment summary for Hashizume et al. (2009) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of deaths 

in each time period is not based on any factor 

associated with exposure. Since the data comes 

from a Health and Demographic Surveillance 

System (HDSS) we assume the risk of bias is 

probably low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study controlled for all the primary 

confounders (time trend and season) and also for 

day of the week and public holiday. 

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily temperature data for 

measuring exposure. Data was obtained from 

official sources – the Bangladesh Meteorological 

Department. However, it is not specified whether 

a quality control procedure was carried out and if 

the data have been explored for missing values. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably low risk Outcome data are based on a HDSS, which it is 

routine and long-term and, thus, likely to be more 

reliable than other data collection systems. 

However, the study does not provide quality 

assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the 

abstract and methods sections are explicitly 

reported. However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

 

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk Poisson generalized linear model is an appropriate 

method for analyzing time series count data. 

Different sensitivity analyses of the model were 

performed, which provide direct evidence that the 

used method was appropriate.  



 

 97 

 

Table S7. Risk of bias assessment summary for Azhar et al. ( 2014a) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Definitely low risk The daily mortality time series that are presented 

on Figure 1 show a reasonable distribution, hence 

providing evidence that inclusion of deaths in each 

time period is not based on any factor associated 

with the exposure. 

 

No/Inadequate 

control of 

confounding 

Probably high risk The study did not account for any of the primary 

of additional confounders. 

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily temperature data for 

measuring exposure. Data was obtained from 

official sources – the Indian Meteorology 

Department. However, it is not specified whether 

a quality control procedure was carried out. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably high risk Death records from the Ahmedabad Municipal 

Corporation Office of the Registrar of Births and 

Death are used. Given the probably low reliability 

of vital registry and municipal data from countries 

in the region, there is a possibility that not all 

deaths in the study period have been captured, 

which can affect the final study results.  

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely high risk The study makes inferences about the association 

between temperature and mortality based on 

correlation analysis. Also, Pearson correlation is 

not an appropriate method to use for count data 
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Table S8. Risk of bias assessment summary for Sewe et al. (2018) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Definitely low risk The daily mortality time series that are presented 

on Figure S1 show a reasonable distribution, hence 

providing evidence that inclusion of deaths in each 

time period is not based on any factor associated 

with the exposure. 

 

No/Inadequate 

control of 

confounding 

Definitely low risk The study controlled for all the primary 

confounders (time trend and season) and also for 

day of the week and “heaping days”. 

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily temperature data for 

measuring exposure. Data was obtained from the 

nearest weather station for each study site. 

However, it is not specified whether a quality 

control procedure was carried out. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Definitely low risk Outcome data are based on a HDSS, which is a 

routine and long-term and, thus, likely to be more 

reliable than other data collection systems. Plots 

of daily death counts are included in Figure S1, 

which show a reasonable distribution and hence, 

provide direct evidence that outcome was 

correctly measured. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the 

abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

 

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk Quasi-Poisson distributed-lag non-linear model 

(DLNM) is an appropriate method for analyzing 

time series count data. Different sensitivity 

analyses of the model were performed, which 

provide direct evidence that the used method was 

appropriate. 
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Table S9. Risk of bias assessment summary for McMichael et al.( 2008) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of deaths 

in each time period is not based on any factor 

associated with exposure. Since the data comes 

from official sources (the New Delhi Municipal 

Committee) we assume the risk of bias is probably 

low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study controlled for all the primary 

confounders (secular trend and season) and also 

for daily relative 

humidity, day of week, public holidays, daily 

particulate 

pollution concentration. 

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily temperature data for 

measuring exposure. Data was obtained from 

local meteorological stations (India 

Meteorological Department). Appropriate quality 

control procedure on the time series data has been 

carried out. However, there is no evidence that the 

71 days with missing observations for Delhi are 

not related to unusual weather or to holidays. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Definitely high risk Municipal data is used for measuring mortality 

counts. Given the probably low reliability of vital 

registry and municipal data from countries in the 

region, there is a possibility that not all deaths in 

the study period have been captured, which can 

affect the final study results. Also, there is some 

direct evidence that the outcome assessment 

method is insensitive. Table 1 shows that only 

13 % of total deaths in the series were in the age 

group 65+ and almost 50 % in the age group 0-14, 

which is very unbalanced even for a LMIC and 

points to problems with incompleteness of data. 
 “There was limited information on the quality of 

the death registration data, but there are likely to 

have been problems with completeness and with 

certification of cause of death, particularly in the 

Indian and Thai cities.” Also, the study does not 

provide quality assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the 

abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

 

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk Poisson generalized linear model is an appropriate 

method for analyzing time series count data. 

Different sensitivity analyses of the model were 

performed, which provide direct evidence that the 

used method was appropriate. 
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Table S10. Risk of bias assessment summary for Burkart et al. (2013) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of deaths 

in each time period is not based on any factor 

associated with exposure. Since the data comes 

from a Sample Vital Registration System (SVRS) 

we assume the risk of bias is probably low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study controlled for all the primary 

confounders (time trend and season) and also for 

day of the month. 

 

Possibility of 

detection bias 

(exposure) 

Probably high risk The study used daily temperature data for 

measuring exposure. Data was obtained from 

local meteorological stations (Bangladesh 

Meteorological Department). Appropriate quality 

control procedure on the time series data has been 

carried out.  However, average mean temperature 

was aggregated for the whole country and 

regional meteorological variations were not 

considered, which might conceal true 

temperature-mortality associations in some 

locations. Also, there is no evidence that the 

missing observations in the data (17 %) are not 

related to unusual weather or to holidays. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably low risk Outcome data are based on a SVRS, which it is 

routine and long-term and, thus, likely to be more 

reliable than other data collection systems. 

However, the study does not provide quality 

assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

 

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk Poisson distributed lag non-linear model (DLNM) 

is an appropriate method for analyzing time series 

count data. Different sensitivity analyses of the 

model were performed, which provide direct 

evidence that the used method was appropriate. 
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Table S11. Risk of bias assessment summary for Burkart et al. (2011) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Definitely low risk The daily mortality time series that are presented 

on Figure S1 show a reasonable distribution, hence 

providing evidence that inclusion of deaths in each 

time period is not based on any factor associated 

with the exposure. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study controlled for all the primary 

confounders (time trend and season) and also for 

day of the month. 

 

Possibility of 

detection bias 

(exposure) 

Probably high risk The study used daily temperature data for 

measuring exposure. Data was obtained from 26 

local meteorological stations (Bangladesh 

Meteorological Department) and used to calculate 

spatial average daily mean temperature values. 

Appropriate quality control procedure on the time 

series data has been carried out. However, 

average mean temperature was aggregated for the 

whole country and regional meteorological 

variations were not considered, which might 

conceal true temperature-mortality associations in 

some locations. Also, there is no evidence that the 

missing observations in the data (17 %) are not 

related to unusual weather or to holidays. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Definitely low risk Outcome data are based on a HDSS, which is a 

routine and long-term and, thus, likely to be more 

reliable than other data collection systems. Plots 

of daily death counts are included in Figure S1, 

which show a reasonable distribution and hence, 

provide direct evidence that outcome was 

correctly measured. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

 

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk Poisson generalized additive model (GAM) is an 

appropriate method for analyzing time series 

count data. Different sensitivity analyses of the 

model were performed, which provide direct 

evidence that the used method was appropriate. 
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Table S12. Risk of bias assessment summary for Ingole et al. (2017) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of deaths 

in each time period is not based on any factor 

associated with exposure. Since the data comes 

from a Health and Demographic Surveillance 

System (HDSS) we assume the risk of bias is 

probably low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study used a case-cross-over study design, 

where controls for each case were selected for the 

same year, month and day of the week as the case. 

Also, a cubic spline function was used to adjust for 

season and time trend. Hence, the study controlled 

for the primary confounders and for day of the 

week. 

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily temperature data for 

measuring exposure. Data was obtained from the 
National Oceanic and Atmospheric Administration 

and it was validated against   data from the local 
meteorological office of the Indian Meteorological 
Department, showing good agreement. However, 

it is not specified whether other quality control 

procedure was carried out. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably low risk Outcome data are based on a HDSS, which it is 

routine and long-term and, thus, likely to be more 

reliable than other data collection systems. 

However, the study does not provide quality 

assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in the 

abstract and methods sections are explicitly 

reported. However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.    

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk Quasi-Poisson regression and conditional logistic 

regression model used in a case-crossover study 

design are an appropriate method for analyzing 

time series count data. Different sensitivity 

analyses of the model were performed, which 

provide direct evidence that the used method was 

appropriate. 
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Table S13. Risk of bias assessment summary for Ingole et al. (2012)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Definitely low risk The daily mortality time series that are presented 

on Figure 1 show a reasonable distribution, hence 

providing evidence that inclusion of deaths in each 

time period is not based on any factor associated 

with the exposure. 

 

No/Inadequate 

control of 

confounding 

Probably low risk The study controlled for the primary confounders 

only – season and time trend. 

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily temperature data for 

measuring exposure. Data was obtained from a 

local meteorological office of the Indian 

Meteorological Department. However, it is not 

specified whether a quality control procedure was 

carried out. 
Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Definitely low risk Outcome data are based on a HDSS, which is a 

routine and long-term and, thus, likely to be more 

reliable than other data collection systems. Plots 

of daily death counts are included in Figure S1, 

which show a reasonable distribution and hence, 

provide direct evidence that outcome was 

correctly measured. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

 

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk A Poisson regression model is an appropriate 

method for analyzing time series count data. 

Different sensitivity analyses of the model were 

performed, which provide direct evidence that the 

used method was appropriate. 
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Table S14. Risk of bias assessment summary for Ingole et al. (2015)  
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of deaths 

in each time period is not based on any factor 

associated with the exposure. Since the data comes 

from a Health and Demographic Surveillance 

System (HDSS) we assume the risk of bias is 

probably low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study controlled for only the primary 

confounders –seasonality, time trend and in 

addition – day of the week. 

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily temperature data for 

measuring exposure. Data was obtained from a 

local meteorological office of the Indian 

Meteorological Department. However, it is not 

specified whether a quality control procedure was 

carried out. 
Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably low risk Outcome data are based on a HDSS, which it is 

routine and long-term and, thus, likely to be more 

reliable than other data collection systems. 

However, the study does not provide quality 

assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

 

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk Quasi-Poisson regression is an appropriate 

method for analyzing time series count data. 

Sensitivity analyses of the model were performed, 

which provide direct evidence that the used 

method was appropriate. 
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Table S15. Risk of bias assessment summary for Hajat et al. (2005) 
 

 

 

  Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of deaths 

in each time period is not based on any factor 

associated with the exposure. Since the data comes 

from official sources (the New Delhi Municipal 

Committee) we assume the risk of bias is probably 

low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study controlled for all the primary 

confounders (time trend and season) and also for 

relative humidity, rainfall, particulate air 

pollution, day of the week and public holidays. 

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily temperature data for 

measuring exposure. Data was obtained from a 

local meteorological station. However, it is not 

specified whether a quality control procedure was 

carried out. 
Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably high risk Municipal data is used for measuring mortality 

counts. Given the probably low reliability of vital 

registry and municipal data from countries in the 

region, there is a possibility that not all deaths in 

the study period have been captured, which can 

affect the final study results. Also, it is hard to 

confirm to what extent the mortality data used is 

representative for the whole city: “the Delhi data 

relate to one of three districts in the National 

Capital Territory and include approximately 25% 

of the deaths in the city as a whole”.  

The study does not provide quality assurance of 

the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

 

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk Poisson generalized linear regression is an 

appropriate method for analyzing time series 

count data. Sensitivity analyses of the model were 

performed, which provide direct evidence that the 

used method was appropriate. 
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Table S16. Risk of bias assessment summary for Fu et al. (2018) 
 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of 

deaths in each time period is not based on any 

factor associated with the exposure. Since the data 

comes from India´s Sample Registration System 

we assume the risk of bias is probably low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study used a case-cross-over study design, 

where controls for each case were matched to the 

same day of the week within the same month as 

when the death occurred. In addition, the study 

used DLNM, thus controlling at the same time for 

seasonality and long-term trend. Hence, the study 

controlled for all the primary confounders (time 

trend and season), but also for day of the week by 

design. 

 

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily temperature data for 

measuring exposure. Data was obtained from the 

India Meteorological Department. However, it is 

not specified whether a quality control procedure 

was carried out. 
Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably low risk Outcome data are based on a Sample Registration 

System, which is routine and long-term and, thus, 

likely to be more reliable than other data 

collection systems. However, the study does not 

provide quality assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

 

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk Distributed-lag nonlinear model (DLNM) within 

a case-crossover study design is an appropriate 

method for analyzing time series count data. 

Sensitivity analyses of the model were performed, 

which provide direct evidence that the used 

method was appropriate. 
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Table S17. Risk of bias assessment summary for Ghumman and Horney (2016) 
 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably high risk The study compares number of deaths in June 2015 

(heat wave period) to number of deaths in June 

2014 (chosen as a reference period). However, the 

authors point out as a limitation: "Due to the large 

number of excess deaths, the burden of record 

keeping during a public health emergency, and the 

decision to use only death certificates with 

complete information, these data are almost 

certainly an underestimate of total mortality." 

Hence, we cannot exclude the likelihood that 

counted deaths depended on some factor 

associated with the exposure. 

No/Inadequate 

control of 

confounding 

Probably high risk The study did not control for any of the primary 

confounders. 

Possibility of 

detection bias 

(exposure) 

Probably high risk The study used daily temperature data for 

measuring exposure. Data was obtained from an 

online source: AccuWeather.com (AccuWeather; 

State College, Pennsylvania USA). However, it is 

not clear whether the data has been collected from 

local meteorological stations or validated with 

local data.  

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably high risk Data are obtained from medical certificates from 

7 leading public and private hospitals in the city:  
“A record of deaths attributable to the heat wave 

by attending medical personnel in seven public 

hospitals and private clinics were obtained via an 

in-person examination of the death certificates by 

a trained physician”; “Mortality data were 

collected by a trained physician who examined 

death certificates at hospitals and private clinics; 

however, those who died at home or in other 

facilities not visited are also not included”. It is 

not defined what is meant by “deaths attributable 

to heat wave” and “deaths with a primary cause of 

death of heat-related illness”, data likely to be an 

underestimate if only deaths from heatstroke are 

considered and if deaths happening outside 

hospitals are not counted.  Also, the study does 

not provide quality assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.  

 

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely high risk The study makes inferences about the association 

between temperature and mortality risk based 

only on calculation of risk difference and rate 

ratios for total number of deaths during a 

heatwave period and a reference period, without 

adjusting for any confounders.  
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Table S18. Risk of bias assessment summary for Mazdiyasni et al. (2017)  
 

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably   high risk Mortality data were obtained from “the India 

Meteorological Department and from annual 

reports, which compiled information from 

newspaper and other sources about mortality 

during specific extreme heat events”. Since these 

are unofficial sources, the possibility that the 

number of deaths measured each day depended on 

some factor associated with the exposure (daily 

temperature) cannot be excluded.     

No/Inadequate 

control of 

confounding 

Probably high risk The study did not adjust for any of the primary 

confounders. 

Possibility of 

detection bias 

(exposure) 

Definitely high risk The study used daily temperature data from 395 

local stations of the India Meteorological 

Department in order to estimate mean summer 

temperature and heatwave days. Averaging 

temperature values over all summer months might 

attenuate the true temperature effect. Also, 

temperature data were aggregated for the whole 

country, which might conceal true temperature-

mortality effects for some locations. It is not 

specified whether a quality control procedure was 

carried out. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Definitely high risk Data are obtained from unofficial sources, which 

are highly unlikely to capture mortality during 

specific extreme heatwave events. No information 

is provided on where the data in newspapers and 

annual reports were compiled from. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are reported. 

Analysis of the underlying mechanisms of the 

temperature effects related to income were not 

pre-specified in the abstract or the methods 

section, but these are appropriate and selective 

reporting is not likely to bias the final results.   

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely high risk The study uses Pearson correlation of annual 

mortality and mean annual summer temperature 

and a probabilistic model to infer causality. 
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Table S19. Risk of bias assessment summary for Lindeboom et al. (2012) 
 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of deaths 

in each time period is not based on any factor 

associated with the exposure. Since the data comes 

from India´s ICDRR,B´s Health and Demographic 

Surveillance System (HDSS) we assume the risk 

of bias is probably low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study controlled for all the primary 

confounders (time trend and season) and also for 

public holiday, festivals and cyclone. 

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily temperature data for 

measuring exposure. Data was obtained from a 

local meteorological office of the Indian 

Meteorological Department. Missing values have 

been replaced through linear interpolation. 

However, there is no evidence that missing values 

are not related to the days excluded (holidays or 

days with unusual weather). 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably low risk Outcome data are based on a HDSS, which it is 

routine and long-term and, thus, likely to be more 

reliable than other data collection systems. 

However, the study does not provide quality 

assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk Poisson generalized additive model (GAM) is an 

appropriate method for analyzing time series 

count data. Sensitivity analyses of the model were 

performed, which provide direct evidence that the 

used method was appropriate.  
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Table S20. Risk of bias assessment summary for Desai et al. (2015) 
 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably high risk There is no direct evidence that inclusion of deaths 

in each time period is not based on any factor 

associated with exposure. The mortality data of the 

city were obtained from the Birth and Death 

Registration Department of SMC. Before data 

analysis, non-resident Surat city deaths were 

excluded from the data set through sorting the 

place of residence (town/village). It is not clear 

why non-resident deaths were excluded. If there 

was a reason that on days with high temperature 

there were more visitors/migrants (e.g. seasonal 

work), this might potentially lead to selection bias.  

No/Inadequate 

control of 

confounding 

Definitely high risk The study did not adjust for any of the primary 

confounders. 

Possibility of 

detection bias 

(exposure) 

Probably high risk Daily maximum temperature data were obtained 

from Tutiempo Network, S.L website. It is not 

specified in the paper whether the data originate 

from official weather stations or if it has been 

validated with such data. Days with missing data 

for temperature and/or humidity were excluded 

from the analysis and there is no evidence that 

missing values are not related to the days 

excluded (holidays or days with unusual weather). 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably high risk Death records from the Birth and Death 

Registration Department of SMC are used. Given 

the probably low reliability of vital registry and 

municipal data from countries in the region, there 

is a possibility that not all deaths in the study 

period have been captured, which can affect the 

final study results. Also, the study does not 

provide quality assurance of the outcome data. 

Possibility of 

reporting bias 

Definitely high risk In the methods section the study specifies that 

they use unconstrained distributed lag model to 

assess mortality displacement, but in the results 

section only correlation analysis with mortality 

and temperature/humidity at different lags is 

reported. 

Also, in the abstract and methods section the 

study states that it analyzes the whole period 

2001-2012, but correlation analysis is performed 

only for the year 2010. 

Other bias 

(Inappropriate 

statistical 

methods) 

Definitely high risk The study makes inferences about the association 

between temperature and mortality based on 

correlation analysis. Also, Pearson correlation is 

not an appropriate method to use for count data. 
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Table S21. Risk of bias assessment summary for Burkart and Kinney (2017) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Definitely   low risk The daily mortality time series that are presented 

on Figure 1 show a reasonable distribution, hence 

providing evidence that inclusion of deaths in each 

time period is not based on any factor associated 

with the exposure 

 

No/Inadequate 

control of 

confounding 

Definitely low risk The study controlled for all the primary 

confounders (time trend and season) and also for 

day of the month.  

 

Possibility of 

detection bias 

(exposure) 

Probably high risk The study used daily temperature data for 

measuring exposure. Data was obtained from 26 

meteorological stations (Bangladesh 

Meteorological Department) if at least 75% of the 

measurements for a day were available. Average 

mean temperature was aggregated for the whole 

country and regional meteorological variations 

were not considered, which might conceal true 

temperature-mortality associations in some 

locations. Also, number of days with missing 

values is not reported.  

 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Definitely low risk  

 

Outcome data are based on a SVRS, which is a 

routine and long-term surveillance system and, 

thus likely to be more reliable than other data 

collection systems. Plots of daily death counts are 

included in Figure 1, which show a reasonable 

distribution and hence, provide direct evidence 

that outcome was correctly measured.  

Possibility of 

reporting bias 

Probably low risk  

 
All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.      
Other bias 

(Inappropriate 

statistical 

methods) 

Definitely low risk  

 

Poisson generalized additive model (GAM) and 

Poisson Distributed Lag Nonlinear Model 

(DLNM) are appropriate methods for analyzing 

time series count data. Different sensitivity 

analyses of the model were performed, which 

provide direct evidence that the used method was 

appropriate. 
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Table S22. Risk of bias assessment summary for Babalola et al. (2018) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Definitely low risk The monthly mortality counts that are presented on 

Table S1 show a reasonable distribution, hence 

providing evidence that inclusion of deaths in each 

time period is not based on any factor associated 

with the exposure 

 

No/Inadequate 

control of 

confounding 

Probably high risk The study adjusted for only one of the primary 

confounders, namely, season (by adjusting for 

month). 

Possibility of 

detection bias 

(exposure) 

Definitely high risk The study used monthly temperature data for 

measuring exposure, which might attenuate the 

true temperature effect or capture seasonal effects 

rather than true temperature effects. Also, no 

quality control of the temperature data is reported. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Definitely low risk Outcome data are based on a HDSS, which is a 

routine 

and long-term and, thus, likely to be more reliable 

than other data collection systems. Monthly 

mortality counts are included in Table S1 and 

these show a reasonable distribution and hence, 

provide direct evidence that outcome was 

correctly measured. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.  

Inappropriate 

statistical 

methods 

Probably high risk The use of Pearson correlation and linear 

regression is not appropriate for count data. 
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Table S23. Risk of bias assessment summary for Rathi et al. (2017) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of deaths 

in each time period is not based on any factor 

associated with exposure. Since the data are 

collected through a routine and established 

surveillance system (the Health Department of 

Surat Municipal Corporation) we assume the risk 

of bias is probably low.  

No/Inadequate 

control of 

confounding 

Probably high risk The study did not adjust for any of the primary 

confounders. 

Possibility of 

detection bias 

(exposure) 

Probably high risk Daily maximum temperature data were obtained 

from Tutiempo Network, S.L website. It is not 

specified in the paper whether the data originate 

from official weather stations or if it has been 

validated against such data. Days with missing 

data for temperature and/or humidity were 

excluded from the analysis and there is no 

evidence that missing values are not related to the 

days excluded (holidays or days with unusual 

weather). 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably high risk Death records from the Birth and Death 

Registration Department of SMC are used. Given 

the probably low reliability of vital registry and 

municipal data from countries in the region, there 

is a possibility that not all deaths in the study 

period have been captured, which can affect the 

final study results. Also, the study does not 

provide quality assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

Inappropriate 

statistical 

methods 

Definitely high risk The study makes inferences about the association 

between temperature and mortality based on 

correlation analysis. Also, Pearson correlation is 

not an appropriate method to use for count data. 
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Table S24. Risk of bias assessment summary for Murari et al. (2015)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 
Probably high risk 

Data on heat-wave induced mortality are obtained 

from the Ministry of Home Affairs (Government 

of India) for Delhi, Rajasthan, Maharashtra and 

Orissa. Since it is not specified how heat-related 

mortality is classified and measured, the 

possibility that the number of deaths measured 

each day depended on some factor associated 

with the exposure (daily temperature) cannot be 

excluded 

No/Inadequate 

control of 

confounding 

Probably high risk The study did not adjust for any of the primary 

confounders. 

Possibility of 

detection bias 

(exposure) 

Probably high risk The study used daily gridded temperature data for 

calculating number of heat waves per year. Data 

were obtained from a 395 meteorological stations 

of the Indian Meteorological Department.  

Gridded daily temperature data were aggregated 

for each of the states, which might conceal true 

temperature-mortality associations in some 

locations. Sheppard’s angular distance weighting 

Algorithm is an interpolation method. 
Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Definitely high risk Data on heat-wave induced mortality are obtained 

from the Ministry of Home Affairs (Government 

of India) for Delhi, Rajasthan, Maharashtra and 

Orissa. Since it is not specified how heat-related 

mortality is specified, the possibility that  

not all deaths in the study period have been 

captured cannot be excluded. Also, the study does 

not provide quality assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.  

Inappropriate 

statistical 

methods 

Definitely high risk The study performed a linear regression of 

number of heatwave days per year and annual 

mortality rates 1985-1999 to infer a causal 

association between the heatwave episodes and 

mortality. 
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Table S25. Risk of bias assessment summary for Nissan et al. (2017)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of deaths 

in each time period is not based on any factor 

associated with exposure. Since the data are 

collected through a routine and established 

surveillance system (a Sample Vital Registration 

System) we assume the risk of bias is probably 

low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study adjusted for all primary and some 

additional confounders - day of the week and 

month, seasonal cycle, and long-term trend. 

Possibility of 

detection bias 

(exposure) 

Probably high risk Daily minimum and maximum temperature for 35 

weather stations across Bangladesh were obtained 

from the Bangladesh Meteorological Department. 

Anomalous values, identified by flagging 

repeated values and time steps where Tmin 

exceeded Tmax, were checked manually. Outliers 

were either replaced with missing values or were 

corrected where obvious data-entry errors had 

occurred.  However, station values were averaged 

to create daily time series of temperature for the 

whole country, which might conceal true 

temperature-mortality associations in some 

locations. Also, for days with missing data that 

were excluded from the analysis there is no 

evidence that missing values are not related to the 

days excluded (holidays or days with unusual 

weather). 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably low risk Outcome data are based on a SVRS, which it is 

routine and long-term and, thus, likely to be more 

reliable than other data collection systems. 

However, the study does not provide quality 

assurance of the outcome data. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.    

Inappropriate 

statistical 

methods 

Definitely low risk A generalized additive regression model is an 

appropriate method for analyzing time series 

count data. Different sensitivity analyses of the 

model were performed, which provide direct 

evidence that the used method was appropriate. 
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Table S26. Risk of bias assessment summary for Shrestha et al. (2017) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of 

deaths in each time period is not based on any 

factor associated with exposure. Since the data are 

collected through a routine and established 

surveillance system (hospital records) we assume 

the risk of bias is probably low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study did adjust for primary confounders - 

seasonal dummy variables and secular trend. -  

and for day of week (Saturday) to account holiday 

effect.  

Possibility of 

detection bias 

(exposure) 

Probably high risk Daily temperature data for 16 meteorological 

stations in the country were obtained from 

Department of Hydrology and Meteorology.  

However, it seems station values were averaged 

to create daily time series of temperature for the 

whole country, which might conceal true 

temperature-mortality associations in some 

locations. Also, it is not specified whether a 

quality control procedure was carried out. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably high risk Outcome data were obtained from inpatient 

records from 22 hospitals (public, teaching,  

private) in Nepal. The possibility that not all 

deaths are captured, i.e. those which happened 

outside hospitals, cannot be excluded. Also, the 

study does not provide quality assurance of the 

outcome data.  

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

Inappropriate 

statistical 

methods 

Definitely low risk A generalized linear model with log link function 

(Poisson model) is an appropriate method for 

analyzing time series count data. Different 

sensitivity analyses of the model were performed, 

which provide direct evidence that the used 

method was appropriate. 
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Table S27. Risk of bias assessment summary for Hess et al. (2018) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of 

deaths in each time period is not based on any 

factor associated with exposure. Since the data are 

collected through a routine and established 

surveillance system ( Registrar of Births and 

Deaths office of AMC) we assume the risk of bias 

is probably low. 

No/Inadequate 

control of 

confounding 

Probably high risk The study did not adjust for any of the primary 

confounders. 

Possibility of 

detection bias 

(exposure) 

Probably low risk Daily max temperature data were obtained from 

the Meteorological Aviation Report (METAR) 

system, from a weather station located at 

Ahmedabad’s Sardar Vallabai Patel International 

Airport. However, it is not specified whether a 

quality control procedure was carried out and if 

the data have been explored for missing values 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably high risk Outcome data collected from local municipal 

governments are used. Given the probably low 

reliability of vital registry and municipal data 

from countries in the region, there is a possibility 

that not all deaths in the study period have been 

captured, which can affect the final study results. 

Also, the study does not provide quality assurance 

of the outcome data.    

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

Inappropriate 

statistical 

methods 

Probably low risk Distributed lag non-linear model (DLNM) is an 

appropriate method for analysis time series 

temperature data. However, the study does not 

adjust for any potential confounders and no 

comprehensive sensitivity analysis is performed. 
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Table S28. Risk of bias assessment summary for Nori-Sarma et al. (2019a) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of 

deaths in each time period is not based on any 

factor associated with exposure. Since the data are 

collected through a routine and established 

surveillance system (local municipal 

governments) we assume the risk of bias is 

probably low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study adjusted for the primary confounders 

and for day of week. 

Possibility of 

detection bias 

(exposure) 

Definitely low risk The study used daily max temperature data for 

measuring exposure. Data was obtained from the 

India Meteorological Department and 

supplemented with data from the National 

Oceanic and Atmospheric Administration’s 

(NOAA) Global Summary of the Day (GSOD). 

Very good agreement between the two datasets is 

demonstrated.  

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably high risk Outcome data collected from local municipal 

governments are used. Given the probably low 

reliability of vital registry and municipal data 

from countries in the region, there is a possibility 

that not all deaths in the study period have been 

captured, which can affect the final study results. 

Also, the study does not provide quality assurance 

of the outcome data.   

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

Inappropriate 

statistical 

methods 

Definitely low risk The generalized linear and the over-dispersed 

Poisson regression models are appropriate 

methods for analyzing time series count data in 

relation to heatwave and continuous temperature, 

respectively. Different sensitivity analyses of the 

model were performed, which provide direct 

evidence that the used method was appropriate. 
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Table S29. Risk of bias assessment summary for Nori-Sarma et al. (2019b) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of 

deaths in each time period is not based on any 

factor associated with exposure. Since the data are 

collected through a routine and established 

surveillance system (local municipal 

governments) we assume the risk of bias is 

probably low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study used Propensity Score Matching to 

control for confounding factors such as time 

trend, seasonal and cyclical variations, calendar 

effects, including day of the week, weekend 

versus weekday, and adjusted dew point 

temperature. Thus, all main confounders and 

additional confounders were controlled for.  
  

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily max temperature data for 

measuring exposure. Data was obtained from the 

India Meteorological Department and 

supplemented with data from the National 

Oceanic and Atmospheric Administration’s 

(NOAA) Global Summary of the Day (GSOD). 

However, it is not specified if quality control 

procedure was carried out (e.g. agreement 

between the datasets) 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably high risk Outcome data collected from local municipal 

governments are used.  Given the probably low 

reliability of vital registry and municipal data 

from countries in the region, there is a possibility 

that not all deaths in the study period have been 

captured, which can affect the final study results. 

Also, the study does not provide quality assurance 

of the outcome data.  

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

Inappropriate 

statistical 

methods 

Definitely low risk Propensity Score Matching and Quasi-Poisson 

regression are appropriate methods for analyzing 

time series count data in relation to heatwave 

days. Different sensitivity analyses of the model 

were performed, which provide direct evidence 

that the used method was appropriate. 
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Table S30. Risk of bias assessment summary for Singh et al. (2019) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Definitely low risk The daily mortality counts that are presented on 

Fig 1 show a reasonable distribution, hence 

providing evidence that inclusion of deaths in each 

time period is not based on any factor associated 

with the exposure 

 

No/Inadequate 

control of 

confounding 

Definitely low risk The study did adjust for primary confounders - 

seasonal dummy variables and time trend, and for 

ambient air pollution, relative humidity and day 

of the week.  

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily min, max and mean 

temperature, diurnal temperature variations. Data 

was obtained from the India Meteorological 

Department.  However, it is not specified whether 

a quality control procedure was carried out and if 

the data have been explored for missing values. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably high risk Data from the Municipal Corporation of Varanasi 

are used for measuring mortality counts. Given 

the probably low reliability of vital registry and 

municipal data from countries in the region, there 

is a possibility that not all deaths in the study 

period have been captured, which can affect the 

final study results. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

Inappropriate 

statistical 

methods 

Definitely low risk Semipara-metric quasi-Poisson regression model 

is appropriate for analyzing time series count data 

in relation to continuous temperature and 

heatwave days. Different sensitivity analyses of 

the model were performed, which provide direct 

evidence that the used method was appropriate. 
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Table S31. Risk of bias assessment summary for Dutta et al. (2020) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

bias 
Rating Support for the judgement 

Possibility of 

selection bias 

Probably low risk There is no direct evidence that inclusion of deaths 

in each time period is not based on any factor 

associated with exposure. Since the data are 

collected through a routine and established 

surveillance system (local municipal governments) 

we assume the risk of bias is probably low. 

No/Inadequate 

control of 

confounding 

Definitely low risk The study did adjust for primary confounders - 

time trend and seasonality, and for day of the 

year, day of the week and relative humidity.  

Possibility of 

detection bias 

(exposure) 

Probably low risk The study used daily max and daily min 

temperature, which were obtained from the 

Bhubaneswar Meteorological Centre of the Indian 

Meteorological Department. However, it is not 

specified whether a quality control procedure was 

carried out and if the data have been explored for 

missing values. 

Possibility of 

detection bias 

(outcome: all-

cause 

mortality) 

Probably high risk Data from the Bhubaneswar Municipal 

Corporation are used for measuring mortality 

counts. Given the probably low reliability of vital 

registry and municipal data from countries in the 

region, there is a possibility that not all deaths in 

the study period have been captured, which can 

affect the final study results. 

Possibility of 

reporting bias 

Probably low risk All the outcomes that the study pre-specified in 

the abstract and methods sections are explicitly 

reported.  However, there is no previously 

published study protocol to compare reported 

outcomes with pre-specified analysis.   

Inappropriate 

statistical 

methods 

Probably low risk Distributed Lag Non-linear Model model is 

appropriate for analyzing time series count data in 

relation to continuous temperature and heatwave 

days. However, no sensitivity analyses of the 

model were performed. 
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Table S32.  Strength of evidence definitions for human evidence according to the 

Navigation Guide (Johnson et al., 2014). 
 

Strength rating Definition 

Sufficient evidence of toxicity A positive relationship is observed between 

exposure and outcome, where chance, bias, and 

confounding can be ruled out with reasonable 

confidence. The available evidence includes 

results from one or more well-designed, well 

conducted 

studies, and the conclusion is “unlikely to be 

strongly affected by the results of future studies.” 

Limited evidence of toxicity A positive relationship is observed between 

exposure and outcome, where chance, bias, and 

confounding cannot be ruled out with reasonable 

confidence. Confidence in the relationship is 

constrained by factors such as “the number, size, 

or quality of individual studies” or “inconsistency 

of findings across individual studies.” As more 

information becomes available, the observed 

effect could change, and this change may be large 

enough to alter the conclusion. 

Inadequate evidence of toxicity “The available evidence is insufficient to assess 

effects” of the exposure. The evidence is 

insufficient because of “the limited number or 

size of studies,” low quality of individual studies, 

or “inconsistency of findings across individual 

studies.” More information may allow an 

assessment of effects. 

Evidence of lack of toxicity No relationship is observed between exposure and 

outcome; and chance, bias, and confounding can 

be ruled out with reasonable confidence. The 

available 

evidence includes consistent results from more 

than one well-designed, well conducted study at 

the full range of exposure levels that humans are 

known to 

encounter, and the conclusion is unlikely to be 

strongly affected by the results of future studies. 

The conclusion is limited to the age at exposure 

and/or other conditions and levels of exposure 

studied. 
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R code for conducting the meta-analysis 

Changing the reference temperature 
 
# Functions to generate random numbers following 
# over-dispersed Poisson distributions 
# based on using a standard negative binomial, 
# but choosing the scale parameter to give the desired mean/variance 
# ratio at the given value of the mean. 
 
rpois.od<-function (n, lambda,d=1) { 
    if (d==1) 
       rpois(n, lambda) 
    else 
       rnbinom(n, size=(lambda/(d-1)), mu=lambda) 
} 
 
## Function to reproduce a given curve by generating overdispersed Poisson 
## data for a given overdispersion 
 
reproduceCurves=function(cases,days,predvar,overdis,df,cen) { 
  # This function is for studies that calculated RRs taking one value as  
  #   the reference. In other words, there are no confidence intervals for  
  #   the reference value (or, equivalently, its s.e. is zero) 
 
  if (days[1]>0) { 
    vec.cases=rpois.od(days[1],cases[1],d=overdis) 
    vec.predvar=rep(predvar[1],days[1]) 
  } else { 
    vec.cases=NA 
    vec.predvar=predvar[1] 
  } 
  for (i in 2:length(cases)) { 
    if (days[i]>0) { 
      vec.cases=c(vec.cases,rpois.od(days[i],cases[i],d=overdis)) 
      vec.predvar=c(vec.predvar,rep(predvar[i],days[i])) 
    } else { 
      vec.cases=c(vec.cases,NA) 
      vec.predvar=c(vec.predvar,predvar[i]) 
    } 
  } 
  dsim=data.frame(cases=vec.cases,predvar=vec.predvar) 
  modglm=glm(cases~ns(predvar,df),data=dsim,family="quasipoisson") 
  X=model.matrix(modglm) 
 
  Xcen=matrix(X[which(dsim$predvar==cen)[1],],byrow=T,ncol=7,nrow=dim(X)[1]) 
  b=coef(modglm) 
  V=vcov(modglm) 
  RR=exp((X-Xcen)%*%b) 
  vv=sqrt(diag((X-Xcen) %*% V %*% t((X-Xcen)))) 
  RRlow=exp(log(RR)-1.96*vv) 
  RRhi=exp(log(RR)+1.96*vv) 
  ddpreds=data.frame(predvar=dsim$predvar[!is.na(dsim$cases)],logrr=log(RR),l
ogrr.low=log(RR)-1.96*vv, 
    se=vv ) 
  ddpreds.short=ddpreds[!duplicated(ddpreds$predvar),] 
  ddpreds.short=merge(ddpreds.short,data.frame(predvar=seq(range(vec.predvar)
[1],range(vec.predvar)[2],by=.5)),by="predvar",all.y=T) 
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} 
 
 
reproduceCurvesScaled=function(cases,days,predvar,overdis,df,cen) { 
  # This function is for studies that calculated RRs by scaling the predicted 
  #   counts with the counts at the reference value. In this case, they repor
t 
  #   confidence intervals for the reference value (or, equivalently, s.e.  
  #   greater than zero for the reference value) 
 
  if (days[1]>0) { 
    vec.cases=rpois.od(days[1],cases[1],d=overdis) 
    vec.predvar=rep(predvar[1],days[1]) 
  } else { 
    vec.cases=NA 
    vec.predvar=predvar[1] 
  } 
  for (i in 2:length(cases)) { 
    if (days[i]>0) { 
      vec.cases=c(vec.cases,rpois.od(days[i],cases[i],d=overdis)) 
      vec.predvar=c(vec.predvar,rep(predvar[i],days[i])) 
    } else { 
      vec.cases=c(vec.cases,NA) 
      vec.predvar=c(vec.predvar,predvar[i]) 
    } 
  } 
  dsim=data.frame(cases=vec.cases,predvar=vec.predvar) 
  modglm=glm(cases~ns(predvar,df),data=dsim,family="quasipoisson") 
  dat.pred=data.frame(predvar=seq(min(predvar),max(predvar),by=0.5)) 
  preds=predict(modglm,newdata=dat.pred,se.fit=T) 
  ddpreds.short=data.frame(predvar=dat.pred$predvar,logrr=preds$fit,se=preds$
se.fit) 
} 
 
 
 
changeRefTemp = function(predvar,logrrs,ses,cen,avgDailyCases,ndays,avgTemp,n
ewCen,scaled=0) { 
  # predvar: vector of temperatures where you want to predict for that study 
  # logrrs: vector of the same length as predvar, with corresponding log(RR) 
  # ses: vector of the same length as predvar, with standard errors 
  # avgDailyCases: average number of daily cases in the study 
  # ndays: number of days in the study 
  # avgTemp: average temperature in the study 
  # newCen: new temperature at which we want to center the curve 
 
 
  # Calculate average of logRR. I make the assumption it will be the 
  #  place in which number of deaths is equal to the average number of deaths 
  pos=which(predvar==newCen) 
  RRaux=exp(logrrs-logrrs[pos]) 
  cases=avgDailyCases*RRaux 
  # value of temperature at which the curve for RRs is centered in the study 
  cen= predvar[which(predvar==cen)] 
  # df to fit the curve 
  df=6 
 
  # Number of days with a given temperature. I assume temperature is normally 
  #   distributed with the mean provided. I derive sd from the range of  
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  #   temperatures provided in predvar. Assume range=8*sd 
 
  sdTemp=(max(predvar)-min(predvar))/8 
  temps=rnorm(n=ndays,mean=avgTemp,sd=sdTemp) 
 
  days=as.numeric(table(cut(temps, c(predvar[1]-1,predvar) ))) 
  # ensure there are days in the entire range 
  days[days==0]=3 
 
  # Find the optimal overdispersion parameter to reproduce the curve and  
  #   standard errors 
 
  overdis.vec=c(seq(1,1.9,by=.1),2:30) 
  search.vec=vector() 
  if (scaled==1) { 
    for (i in 1:length(overdis.vec)) { 
      res=reproduceCurvesScaled(cases=cases,days=days,predvar=predvar,overdis
=overdis.vec[i],df=df,cen=cen)   
      search.vec[i]=sqrt(sum((res$se - ses)^2,na.rm=T))  
    } 
  } else { 
    for (i in 1:length(overdis.vec)) { 
      res=reproduceCurves(cases=cases,days=days,predvar=predvar,overdis=overd
is.vec[i],df=df,cen=cen)   
      search.vec[i]=sqrt(sum((res$se - ses)^2,na.rm=T))  
    } 
  } 
  overdis=overdis.vec[which.min(search.vec)] 
  
  # now simulate the data several times, change the centering value, 
  #   and average the results 
 
  nsim=50 
   
  logrrs.cen=matrix(NA,nrow=length(predvar),ncol=nsim) 
  ses.cen=matrix(NA,nrow=length(predvar),ncol=nsim) 
 
  for (i.sim in 1:nsim) { 
    vec.cases=rpois.od(days[1],cases[1],d=overdis) 
    vec.predvar=rep(predvar[1],days[1]) 
    for (i in 2:length(cases)) { 
      vec.cases=c(vec.cases,rpois.od(days[i],cases[i],d=overdis)) 
      vec.predvar=c(vec.predvar,rep(predvar[i],days[i])) 
    } 
    dsim=data.frame(cases=vec.cases,predvar=vec.predvar) 
    modglm=glm(cases~ns(predvar,df=df),data=dsim,family="quasipoisson") 
    X=model.matrix(modglm) 
    Xcen=matrix(X[which(dsim$predvar==newCen)[1],],byrow=T,ncol=df+1,nrow=dim
(X)[1]) 
    b=coef(modglm) 
    V=vcov(modglm) 
    logRR=(X-Xcen)%*%b 
    vv=sqrt(diag((X-Xcen) %*% V %*% t((X-Xcen)))) 
 
    ddpreds=data.frame(predvar=dsim$predvar,logrr=logRR,se=vv ) 
    ddpreds.short=ddpreds[!duplicated(ddpreds$predvar),] 
  
    logrrs.cen[,i.sim]=ddpreds.short$logrr 
    ses.cen[,i.sim]=ddpreds.short$se 
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  }  
 
  logRRcen=apply(logrrs.cen,1,mean) 
  secen=apply(ses.cen,1,mean) 
 
  return(list(logRRcen=logRRcen,secen=secen)) 
 
} 

 

 

 

Meta-analysis at lag 0-1 days 
 

 

 

library(dplyr) 
library(tidyr) 
library(tidyverse) 
library(viridis) 
library(cowplot) 
 
 
# First, run the "changeRefTemp.r" file to use the functions defined there 
 
source("changeRefTemp.r") 
 
Lag_0_1 <- read.csv("lag_0-1.csv",sep=";",dec=",")  
Lag_0_1=Lag_0_1[1:315,1:6] 
 
#Set all the characters as numeric 
Lag_0_1 <- within(Lag_0_1, {  
  T <- as.numeric(gsub(",", ".", as.character(T)) ) 
 
}) 
 
summary(Lag_0_1) 
Lag_0_1 <- round(Lag_0_1,2) 
 
#Take exponential of the RR estimates in study 2 (Ingole(2017)) 
 
Lag_0_1[Lag_0_1$Study=="2",c("RR", "RR_low", "RR_high")] <- exp(Lag_0_1[Lag_0
_1$Study=="2",c("RR", "RR_low", "RR_high")]) 
Lag_0_1 <- round(Lag_0_1,4) 
 
#Divide all RR values in the study 6 by McMichael (estimate refers to percent
age increase in mortality above average) by 100 to get the RR values  
Lag_0_1[Lag_0_1$Study=="6",c("RR", "RR_low", "RR_high")] <- Lag_0_1[Lag_0_1$S
tudy=="6",c("RR", "RR_low", "RR_high")] /100 
Lag_0_1 <- round(Lag_0_1,4) 
 
#  Select a new reference T (start by selecting, for example, the average MMT 
from all studies). Create a new column with a new reference T for all studies 
meant_MMT<- mean(Lag_0_1$MMT) 
Lag_0_1$MMT_new <- meant_MMT 
 
# Note: We need to know where the curve is centered, sometimes it is the MMT, 
but sometimes not (e.g. Study 3 or 6) 
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Lag_0_1$cen=Lag_0_1$MMT 
Lag_0_1$cen[Lag_0_1$Study==3]=27 
Lag_0_1$cen[Lag_0_1$Study==6]=28 
 
 
#Recalculate the table based on the new reference T 
# For logRR just done by subtracting the value at the new reference 
# For se, need the more complicated approach 
 
# RR 
Lag_0_1$logRR=log(Lag_0_1$RR) 
Lag_0_1$se= (log(Lag_0_1$RR)-log(Lag_0_1$RR_low))/1.96 
 
Lag_0_1_new=Lag_0_1 
Lag_0_1_new$isNewCen=Lag_0_1_new$T==Lag_0_1_new$MMT_new 
 
Lag_0_1_new$RRref=NA 
for (i in c(1:3,5:6)) { 
  Lag_0_1_new$RRref[Lag_0_1_new$Study==i]=rep(Lag_0_1_new$RR[Lag_0_1_new$Stud
y==i & Lag_0_1_new$isNewCen==T],length(Lag_0_1_new$RRref[Lag_0_1_new$Study==i
])) 
} 
 
Lag_0_1_new$RRcen=Lag_0_1_new$RR/Lag_0_1_new$RRref 
Lag_0_1_new$logRRcen=log(Lag_0_1_new$RRcen) 
 
# Standard errors 
 
# Study 1 scaled results against the mean daily mortality  (Fig 2 legend) 
#   but the s.e. are not 0 at the reference temp. Then, I'm guessing they jus
t 
#   divided the predicted number of cases for each temperature by the mean mo
rtality 
#   and they did the same with the standard errors. In that case, the s.e. 
#   does not change by changing the reference category 
 
Lag_0_1_new$secen=NA 
 
# The field "scaled" indicates if the RR is calculated by dividing predicted  
#  counts by counts at reference value, and therefore they provid s.e.>0 fore 
#  the reference value (scale=1). Otherwise, they take one value as reference 
#  value and the s.e. for the reference category is 0 (scale=0) 
 
# One could add avgTemp to auxinfo, and then take this value when avgTemp is  
#  defined below 
 
auxinfo=data.frame(Study=c(1,2,3,5,6),ndays=c(3286,1220,1461,4747,1460), 
                   avgDailyCases=c(4,.8,17.3,86.7,25),scaled=c(1,1,0,0,1),avg
Temp=c(24,27.9,24,25.4,25)) 
 
library(splines) 
for (i in c(1:3,5:6)) { 
  dati=Lag_0_1_new[Lag_0_1_new$Study==i,] 
  dati=dati[!is.na(dati$RR),] 
  predvar=dati$T 
  logrrs=log(dati$RR) 
  ses=((log(dati$RR)-log(dati$RR_low))/1.96) 
  cen=dati$cen 
  avgDailyCases=auxinfo$avgDailyCases[auxinfo$Study==i] 
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  ndays=auxinfo$ndays[auxinfo$Study==i] 
  scaled=auxinfo$scaled[auxinfo$Study==i] 
  # this can be replaced by the true mean temp if this info is available in a
uxinfo 
  if (scaled==1) avgTemp=predvar[which.min(ses)] else avgTemp=mean(predvar) 
  newCen=Lag_0_1_new$MMT_new[1] 
  vals=changeRefTemp(predvar=predvar,logrrs=logrrs,ses=ses,cen=cen, 
                     avgDailyCases=avgDailyCases,ndays=ndays,avgTemp=avgTemp,
newCen=newCen,scaled=scaled)  
  Lag_0_1_new$secen[Lag_0_1_new$Study==i & !is.na(Lag_0_1_new$RR)]=vals$secen 
} 
 
Lag_0_1_new <- mutate(Lag_0_1_new, se = round(se,4)) 
 
 
 
# Now one needs to use Lag_0_1_new$logRRcen and Lag_0_1_new$secen in the 
#  meta-analysis 
 
# Perform the meta-analysis for each T (using a loop) 
library(metafor) 
 
meta_analyse_temp <- function(df){ 
   
  # Run meta-regression 
  meta <- suppressWarnings(rma(yi= logRRcen, sei= secen, data=df, method="DL"
)) 
   
  # Retrieve results               
  tibble(Temp = unique(df$T), 
         k = meta$k, 
         beta = meta$beta, 
         se = meta$se, 
         zval = meta$zval, 
         pval = meta$pval, 
         ci.lb = meta$ci.lb, 
         ci.ub = meta$ci.ub, 
         tau2 = meta$tau2)  
} 
 
# Find and exclude the values where secen=0 
 
Lag_0_1_new <- filter(Lag_0_1_new, secen!=0|is.na(secen)) 
 
#Lag_0_1_new[Lag_0_1_new$logRRcen == 0, "logRRcen"] <- 1 
 
results <- Lag_0_1_new %>% 
  split(.$T) %>% 
  map_df(meta_analyse_temp) 
 
results <-  
  bind_rows(results, 
            data.frame(Temp = 24.5, beta = 0, ci.lb = 0, ci.ub = 0, k = 5)) 
 
results <- mutate(results, k = as.character(k), 
                  col = case_when(Temp == 24.5 ~ "Reference", 
                                  Temp < 24.5 ~ "Cold", 
                                  Temp > 24.5 ~ "Heat")) 
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mainplot <- results %>% 
  mutate_at(vars(beta, ci.lb, ci.ub), exp) %>% 
  ggplot() +  
  geom_hline(yintercept = 1, colour = "grey70") + 
  geom_vline(xintercept = 24.5, colour = "grey10", lty = "dotted") + 
  geom_point(aes(x = Temp, beta, colour = col)) + 
  geom_linerange(aes(x = Temp, ymin = ci.lb, ymax = ci.ub, alpha = k, colour 
= col), lwd = 1) +  
  xlab("Temperature (°C)")+ 
  ylab("RR (95% CI)")+ 
  labs(k = "Number of included studies") + 
  # scale_colour_brewer(palette = "Reds") + 
  # scale_colour_viridis(end = 0.9, discrete = T, direction = -1) + 
  scale_alpha_discrete(range = c(0.25, 1)) + 
  scale_colour_manual(values = c("#1A62D0", "#DB0202", "black")) + 
  theme_bw(base_size=11) + 
  theme(legend.position = "bottom") + 
  guides(colour = "none", alpha = "none") + 
  NULL 
legend0 <- ggplot() + theme_void(base_size=11)  
 
legend1 <- results %>% 
  mutate_at(vars(beta, ci.lb, ci.ub), exp) %>% 
  ggplot() +  
  geom_hline(yintercept = 1, colour = "grey70") + 
  geom_point(aes(x = Temp, beta), colour = "#1A62D0") + 
  geom_linerange(aes(x = Temp, ymin = ci.lb, ymax = ci.ub, alpha = k), lwd = 
1,  
                 colour = "#1A62D0") +  
  xlab("Temperature (°C)")+ 
  ylab("RR (95% CI)")+ 
  labs(k = "Number of studies") + 
  # scale_colour_brewer(palette = "Reds") + 
  # scale_colour_viridis(end = 0.9, discrete = T, direction = -1) + 
  scale_alpha_discrete(range = c(0.25, 1)) + 
  # scale_colour_manual(values = c("#1A62D0", "#DB0202", "black")) + 
  theme_bw(base_size=11) + 
  theme(legend.position = "bottom") + 
  labs(alpha = "") 
legend1 <- get_legend(legend1) 
 
 
legend2 <- results %>% 
  mutate_at(vars(beta, ci.lb, ci.ub), exp) %>% 
  ggplot() +  
  geom_hline(yintercept = 1, colour = "grey70") + 
  geom_point(aes(x = Temp, beta), colour = "#DB0202") + 
  geom_linerange(aes(x = Temp, ymin = ci.lb, ymax = ci.ub, alpha = k), lwd = 
1,  
                 colour = "#DB0202") +  
  xlab("Temperature (°C)")+ 
  ylab("RR (95% CI)")+ 
  # scale_colour_brewer(palette = "Reds") + 
  # scale_colour_viridis(end = 0.9, discrete = T, direction = -1) + 
  scale_alpha_discrete(range = c(0.25, 1)) + 
  # scale_colour_manual(values = c("#1A62D0", "#DB0202", "black")) + 
  theme_bw(base_size=11) + 
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  theme(legend.position = "bottom") + 
  labs(alpha = "Number of studies") 
 
legend2 <- get_legend(legend2) 
 
# rel_widths =  c(0.35, 0.35, 0.8, 0.2) 
complot_1 <-  
   
  plot_grid(mainplot, 
                     plot_grid(legend0, legend1, legend2, legend0, 
                               nrow = 1, rel_widths =  c(0.28, 0.075, 0.75, 0
.0)), 
                     ncol = 1, rel_heights = c(0.9, 0.1)) 
#cowplot::ggsave(complot, filename = "lag_0-1.png", dpi = 500, width = 7, hei
ght = 5) 
ggsave(complot_1, filename = "lag_0-1.png", dpi = 500, width = 7, height = 5) 

 

 

 

 

Meta-analysis at lag 0-13 days 
 

 

# First, run the "changeRefTemp.r" file to use the functions defined there 
 
source("changeRefTemp.r") 
 
#Lag_0_1 <- read_excel("lag 0-1.xlsx") 
Lag_0_13 <- read.csv("lag_0-13.csv",sep=";",dec=",")  
Lag_0_13=Lag_0_13[1:300,1:6] 
 
#Set all the characters as numeric 
Lag_0_13 <- within(Lag_0_13, {  
  T <- as.numeric(gsub(",", ".", as.character(T)) ) 
}) 
 
summary(Lag_0_13) 
Lag_0_13 <- round(Lag_0_13,2) 
 
#Take exponential of the RR estimates in study 2 (Ingole(2017)) 
 
Lag_0_13[Lag_0_13$ID=="2",c("RR", "RR_low", "RR_high")] <- exp(Lag_0_13[Lag_0
_13$ID=="2",c("RR", "RR_low", "RR_high")]) 
Lag_0_13 <- round(Lag_0_13,4) 
 
#Divide all values in the study 6 by McMichael (refers to percentage increase 
in mortality above average) by 100 to get the RR values  
Lag_0_13[Lag_0_13$ID=="6",c("RR", "RR_low", "RR_high")] <- Lag_0_13[Lag_0_13$
ID=="6",c("RR", "RR_low", "RR_high")] /100 
Lag_0_13 <- round(Lag_0_13,4) 
 
#  Select a new reference T (start by selecting, for example, the average MMT 
from all studies). Create a new column with a new reference T for all studies 
meant_MMT<- mean(Lag_0_13$MMT) 
Lag_0_13$MMT_new <- meant_MMT 
 
# Note: We actually need to know where the curve is centered (sometimes it is  
#   the MMT, but sometimes it is not (e.g. Study 3 or 6) 
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Lag_0_13$cen=Lag_0_13$MMT 
Lag_0_13$cen[Lag_0_13$ID==1]=24 
Lag_0_13$cen[Lag_0_13$ID==2]=21.5 
Lag_0_13$cen[Lag_0_13$ID==3]=27 
Lag_0_13$cen[Lag_0_13$ID==6]=26 
 
 
#Recalculate the table based on the new reference T 
# For logRR just done by subtracting the value at the new reference 
# For se, need the more complicated approach 
 
# RR 
Lag_0_13$logRR=log(Lag_0_13$RR) 
Lag_0_13$se= (log(Lag_0_13$RR)-log(Lag_0_13$RR_low))/1.96 
 
Lag_0_13_new=Lag_0_13 
Lag_0_13_new$isNewCen=Lag_0_13_new$T==Lag_0_13_new$MMT_new 
 
Lag_0_13_new$RRref=NA 
for (i in c(1:3,5:6)) { 
  Lag_0_13_new$RRref[Lag_0_13_new$ID==i]=rep(Lag_0_13_new$RR[Lag_0_13_new$ID=
=i & Lag_0_13_new$isNewCen==T],length(Lag_0_13_new$RRref[Lag_0_13_new$ID==i])
) 
} 
 
Lag_0_13_new$RRcen=Lag_0_13_new$RR/Lag_0_13_new$RRref 
Lag_0_13_new$logRRcen=log(Lag_0_13_new$RRcen) 
 
# Standard errors 
 
# Study 1 scaled results against the mean daily mortality  (Fig 2 legend) 
#   but the s.e. are not 0 at the reference temp. Then, I'm guessing they jus
t 
#   divided the predicted number of cases for each temperature by the mean mo
rtality 
#   and they did the same with the standard errors. In that case, the s.e. 
#   does not change by changing the reference category 
 
Lag_0_13_new$secen=NA 
 
# The field "scaled" indicates if the RR is calculated by dividing predicted  
#  counts by counts at reference value, and therefore they provid s.e.>0 for 
#  the reference value (scale=1). Otherwise, they take one value as reference 
#  value and the s.e. for the reference category is 0 (scale=0) 
 
# One could add avgTemp to auxinfo, and then take this value when avgTemp is  
#  defined below 
 
auxinfo=data.frame(ID=c(1,2,3,5,6),ndays=c(3286,1133,1461,4747,1460), 
                   avgDailyCases=c(4,.9,17.3,86.7,25),scaled=c(1,0,0,0,1),avg
Temp=c(24,21.4,24,25.4,25)) 
 
library(splines) 
for (i in c(1:3,5:6)) { 
  dati=Lag_0_13_new[Lag_0_13_new$ID==i,] 
  dati=dati[!is.na(dati$RR),] 
  predvar=dati$T 
  logrrs=log(dati$RR) 
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  ses=((log(dati$RR)-log(dati$RR_low))/1.96) 
  cen=dati$cen 
  avgDailyCases=auxinfo$avgDailyCases[auxinfo$ID==i] 
  ndays=auxinfo$ndays[auxinfo$ID==i] 
  scaled=auxinfo$scaled[auxinfo$ID==i] 
  # this can be replaced by the true mean temp if this info is available in a
uxinfo 
  if (scaled==1) avgTemp=predvar[which.min(ses)] else avgTemp=mean(predvar) 
  newCen=Lag_0_13_new$MMT_new[1] 
  vals=changeRefTemp(predvar=predvar,logrrs=logrrs,ses=ses,cen=cen, 
                     avgDailyCases=avgDailyCases,ndays=ndays,avgTemp=avgTemp,
newCen=newCen,scaled=scaled)  
  Lag_0_13_new$secen[Lag_0_13_new$ID==i & !is.na(Lag_0_13_new$RR)]=vals$secen 
} 
 
Lag_0_13_new <- mutate(Lag_0_13_new, se = round(se,4)) 
 
 
 
# Now one need to use Lag_0_13_new$logRRcen and Lag_0_13_new$secen in the 
#  meta-analysis 
 
# Perform the meta-analysis for each T (using a loop) 
library(metafor) 
 
meta_analyse_temp <- function(df){ 
   
  # Run meta-regression 
  meta <- suppressWarnings(rma(yi= logRRcen, sei= secen, data=df, method="DL"
)) 
   
  # Retrieve results               
  tibble(Temp = unique(df$T), 
         k = meta$k, 
         beta = meta$beta, 
         se = meta$se, 
         zval = meta$zval, 
         pval = meta$pval, 
         ci.lb = meta$ci.lb, 
         ci.ub = meta$ci.ub, 
         tau2 = meta$tau2)  
} 
 
# Find and exclude the values where secen=0 
 
Lag_0_13_new <- filter(Lag_0_13_new, secen!=0|is.na(secen)) 
 
 
 
results <- Lag_0_13_new %>% 
  split(.$T) %>% 
  map_df(meta_analyse_temp) 
 
results <-  
  bind_rows(results, 
            data.frame(Temp = 26.5, beta = 0, ci.lb = 0, ci.ub = 0, k = 5)) 
 
results <- mutate(results, k = as.character(k), 
                  col = case_when(Temp == 26.5 ~ "Reference", 
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                                  Temp < 26.5 ~ "Cold", 
                                  Temp > 26.5 ~ "Heat")) 
 
 
mainplot <- results %>% 
  mutate_at(vars(beta, ci.lb, ci.ub), exp) %>% 
  ggplot() +  
  geom_hline(yintercept = 1, colour = "grey70") + 
  geom_vline(xintercept = 26.5, colour = "grey10", lty = "dotted") + 
  geom_point(aes(x = Temp, beta, colour = col)) + 
  geom_linerange(aes(x = Temp, ymin = ci.lb, ymax = ci.ub, alpha = k, colour 
= col), lwd = 1) +  
  xlab("Temperature (°C)")+ 
  ylab("RR (95% CI)")+ 
  labs(k = "Number of included studies") + 
  # scale_colour_brewer(palette = "Reds") + 
  # scale_colour_viridis(end = 0.9, discrete = T, direction = -1) + 
  scale_alpha_discrete(range = c(0.25, 1)) + 
  scale_colour_manual(values = c("#1A62D0", "#DB0202", "black")) + 
  theme_bw(base_size=11) + 
  theme(legend.position = "bottom") + 
  guides(colour = "none", alpha = "none") + 
  NULL 
legend0 <- ggplot() + theme_void(base_size=11)  
 
legend1 <- results %>% 
  mutate_at(vars(beta, ci.lb, ci.ub), exp) %>% 
  ggplot() +  
  geom_hline(yintercept = 1, colour = "grey70") + 
  geom_point(aes(x = Temp, beta), colour = "#1A62D0") + 
  geom_linerange(aes(x = Temp, ymin = ci.lb, ymax = ci.ub, alpha = k), lwd = 
1,  
                 colour = "#1A62D0") +  
  xlab("Temperature (°C)")+ 
  ylab("RR (95% CI)")+ 
  labs(k = "Number of studies") + 
  # scale_colour_brewer(palette = "Reds") + 
  # scale_colour_viridis(end = 0.9, discrete = T, direction = -1) + 
  scale_alpha_discrete(range = c(0.25, 1)) + 
  # scale_colour_manual(values = c("#1A62D0", "#DB0202", "black")) + 
  theme_bw(base_size=11) + 
  theme(legend.position = "bottom") + 
  labs(alpha = "") 
legend1 <- get_legend(legend1) 
 
 
legend2 <- results %>% 
  mutate_at(vars(beta, ci.lb, ci.ub), exp) %>% 
  ggplot() +  
  geom_hline(yintercept = 1, colour = "grey70") + 
  geom_point(aes(x = Temp, beta), colour = "#DB0202") + 
  geom_linerange(aes(x = Temp, ymin = ci.lb, ymax = ci.ub, alpha = k), lwd = 
1,  
                 colour = "#DB0202") +  
  xlab("Temperature (°C)")+ 
  ylab("RR (95% CI)")+ 
  # scale_colour_brewer(palette = "Reds") + 
  # scale_colour_viridis(end = 0.9, discrete = T, direction = -1) + 
  scale_alpha_discrete(range = c(0.25, 1)) + 
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  # scale_colour_manual(values = c("#1A62D0", "#DB0202", "black")) + 
  theme_bw(base_size=11) + 
  theme(legend.position = "bottom") + 
  labs(alpha = "Number of studies") 
 
legend2 <- get_legend(legend2) 
 
#rel_widths = c(0.04, 0.51, 0.25, 0.2) 
par(bg = 'white') 
 
complot_2 <- plot_grid(mainplot,  plot_grid(legend0, legend1, legend2, legend
0, 
                               nrow = 1, rel_widths =  c(0.09, 0.25, 0.5, 0.0
) 
                              ), 
                     ncol = 1, rel_heights = c(0.9, 0.1))  
 
ggsave(complot_2,  filename = "sysplot.png", dpi = 500, width = 7, height = 5
) 
 
p <- plot_grid(complot_1, complot_2, labels = "AUTO") 
save_plot("meta-results.png", p, ncol = 2) 
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Abstract
Despite low per capita emissions, with over a billion population, India is pivotal for climate change
mitigation globally, ranking as the third largest emitter of greenhouse gases. We linked a previously
published multidimensional population projection with emission projections from an integrated
assessment model to quantify the localised (i.e. state-level) health benefits from reduced ambient
fine particulate matter in India under global climate change mitigation scenarios in line with the
Paris Agreement targets and national scenarios for maximum feasible air quality control. We
incorporated assumptions about future demographic, urbanisation and epidemiological trends
and accounted for model feedbacks. Our results indicate that compared to a business-as-usual
scenario, pursuit of aspirational climate change mitigation targets can avert up to 8.0 million
premature deaths and add up to 0.7 years to life expectancy (LE) at birth due to cleaner air by 2050.
Combining aggressive climate change mitigation efforts with maximum feasible air quality control
can add 1.6 years to LE. Holding demographic change constant, we find that climate change
mitigation and air quality control will contribute slightly more to increases in LE in urban areas
than in rural areas and in states with lower socio-economic development.

Abbreviations

CO2 carbon dioxide
GAINS greenhousegas air pollution

interaction and synergies
GBD global burden of disease
GEMM global exposure mortality model
GHGs greenhouse gases
NAAQS Indian national ambient air quality

standard
INDC intended nationally determined

contributions
LE life expectancy
LRIs lower respiratory infections
MFR maximum feasible reduction
NCDs noncommunicable diseases
NPi national policy implementation
PM2.5 fine particulate matter

1. Introduction

Socio-economic development in India has been
accompanied by gains in life expectancy (LE) and
improvements in a range of health outcomes over
the past decades (Samir et al 2018). However, these
developments have occurred in parallel with grow-
ing environmental challenges, including rising CO2

emissions and deterioration of air quality (Dey et al
2012, GBD MAPS Working Group 2018). Currently,
99.9% of the Indian population lives in areas exceed-
ing the World Health Organization’s Air Quality
Guideline for annual mean concentrations of ambi-
ent fine particulate matter (PM2.5) of 10 µgm−3

(GBDMAPSWorking Group 2018), and the country
hosts 13 out of 20 of the world’s most polluted cities
(Purohit et al 2019).
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PM2.5 (particulate matter with diameter
⩽2.5 µm) comprises a complex mixture of solid
and liquid aerosols arising from natural sources
(e.g. wind-blown dust, sea salt and biogenic sources)
and anthropogenic activities (WHO 2016). Residen-
tial energy use has been identified as the dominant
contributing sector in India (Lelieveld et al 2015,
Conibear et al 2018a, Purohit et al 2019). Both short-
term and long-term exposure to PM2.5 have been
associated with adverse health impacts that can occur
even at very low levels (WHO 2016). In India, air
pollution was ranked as the second most import-
ant contributor to mortality and morbidity in 2017,
after malnutrition and dietary risks (IHME 2019)
and PM2.5 was estimated to account for 12.5% of
total deaths (Balakrishnan et al 2019). Estimates of
the annual premature mortality burden from ambi-
ent PM2.5 in India range between 392 thousand and
2.2 million (Burnett et al 2018, Conibear et al 2018a),
with differences explained by variations in ambi-
ent PM2.5 estimates, baseline health and population
data, PM2.5-mortality functions and methodological
approaches.

Climate change and air quality have an import-
ant potential for co-control since emissions of CO2

and many health-damaging air pollutants such as
nitrogen oxides, sulphur dioxide and particulate mat-
ter are generated through many of the same com-
bustion processes (Li et al 2018). While the health
impacts from reductions in CO2 emissions involve
large uncertainties and occur over long-time horizons
and on a global scale, those from improved air quality
are more immediate and localized (Nemet et al 2010,
West et al 2013). Thus, health co-benefits of climate
change mitigation due to air pollution reduction can
serve as a catalyst for more stringent climate policy
and provide an incentive for stronger cooperation,
especially from low- and middle-income countries,
where air pollution levels and the associated benefits
of improving air quality are high, but the perceived
responsibility for climate actionmay be limited due to
low current and past per capita emissions (Nemet et al
2010, The World Bank 2020). In this respect, India is
pivotal for climate change mitigation globally, being
the third largest emitter ofGHGs (CarbonBrief 2019).

Global modelling studies based on the Represent-
ative Concentration Pathways and the Paris Agree-
ment have demonstrated that India can reap some
of the largest medium-term (i.e. by 2050) health co-
benefits from lower PM2.5 concentrations with ambi-
tious climate change mitigation (West et al 2013,
Silva et al 2016, Rafaj et al 2018 Vandyck et al 2018)
and these can fully compensate the mitigation costs
even under most aspirational scenarios (Markandya
et al 2018, Sampedro et al 2020). Chowdhury et al
(2018) projected reductions in premature mortal-
ity from PM2.5 in India in 2050 compared to 2010
across a range of climate change and socio-economic
scenarios and despite trends in population growth

and aging. Studies focusing specifically on air qual-
ity policies in India project increases in PM2.5 concen-
trations and associated premature mortality by 2050
under business-as-usual scenarios, while demon-
strating a large scope for minimizing this burden
under more stringent air quality control measures
(Sanderson et al 2013, International Energy Agency
2016, Venkataraman et al 2017, Chowdhury et al
2018, Conibear et al 2018b, Limaye et al 2019, Purohit
et al 2019). However, even under most aspirational
scenarios several studies suggest the PM2.5-mortality
burden will not fall below present levels as a result of
population growth and aging offsetting reductions in
air pollution emissions (International Energy Agency
2016, GBD MAPS Working Group 2018, Conibear
et al 2018b). While previous projection studies have
considered demographic change, a major gap in the
current literature is the failure to account for the
feedback effects of changes in air pollution on future
mortality rates and population, i.e. studies assume
the same future mortality rate and population under
alternative PM2.5 scenarios. This can be misleading,
especially for long-term projections in settings with
high air pollution (Miller and Hurley 2003). Sander-
son et al (2013) incorporated the feedback effects of
changes in air pollution on future mortality rates
under different air quality control, but not mitiga-
tion, scenarios at the national level. A more compre-
hensive modelling framework is needed to quantify
the health co-benefits of climate change mitigation
at the sub-national level accounting for these feed-
backs while also incorporating newly available epi-
demiological evidence and more advanced demo-
graphic projections.

We advance on previous studies in several ways
by (a) estimating future health co-benefits related to
PM2.5 dynamically by accounting for changes in pop-
ulation and mortality rates induced by changes in
PM2.5 levels; (b) calculating co-benefits from PM2.5

reduction on LE and on avoidable premature mor-
tality in the context of the Paris Agreement and at
more spatially disaggregated levels (e.g. by state and
urban and rural residence); and (c) exploring syn-
ergies between global climate change mitigation and
national air quality control at the local level. The
main contribution of this study is the consistent
and dynamic integration of future trends in demo-
graphics, urbanization, and disease burdens in the
health impact assessment, which allows us to isol-
ate the impacts of air pollution on mortality from
population aging effects and to account for the feed-
back effects of PM2.5 exposure on population sur-
vival over time. As demographic change is a main
determinant of future trajectories of exposure and
vulnerability to environmental hazards, comprehens-
ive modelling of the interplay of population dynam-
ics and air pollution can support more realistic health
impact assessments and better informed decision
making.
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The paper is organized as follows: section 2
describes the different models and datasets and how
they are linked; sections 3.1 and 3.2 report the
health co-benefits in terms of LE gains and avoided
premature deaths across scenarios compared to the
business-as-usual, and section 3.3 reports results
according to region. In section 3.4, we show the
implications of changing PM2.5 exposure on pop-
ulation size. In section 4, we discuss the relev-
ance and implications of our findings. We focus on
PM2.5 because of the well-established literature link-
ing exposure to mortality, and because its mortal-
ity burden exceeds those of other major pollutants
in India such as ozone (Balakrishnan et al 2019). We
use the term premature mortality to refer to deaths
brought forward in time due to air pollution expos-
ure across all ages and avoidable premature mortality
to refer to deaths that can be averted with respect to
the business-as-usual scenario.

2. Material andmethods

2.1. Scenario definition
Table 1 describes the modelled scenarios. These
have been developed in the MESSAGEix-GLOBIOM
global energy-economy framework (International
Institute for Applied Systems Analysis 2019) as part
of the CD-LINKS (Linking Climate and Devel-
opment Policies—Leveraging International Net-
works and Knowledge Sharing) project (CD-LINKS
2019). The National Policy implementation (NPi), or
business-as-usual scenario, specifies the implement-
ation of currently announced targets for climate,
energy, environment (air pollution) and develop-
ment policies up to 2030 in all countries and equival-
ent effort to no climate policy beyond 2030 (based on
a policy database for G20 countries with a cut-off year
of 2015 (New Climate Institute 2020)). The Intended
Nationally Determined Contributions (INDC) scen-
ario assumes that policy commitments specified in
countries’ INDCs are implemented by 2030, but no
further intensification of emission reduction com-
mitments beyond this point is undertaken. The more
aspirational scenarios of 2◦C and 1.5◦C are based on
the NPi scenario. They stipulate implementation of
national policies until 2020 and radical policy action
for transitioning to global CO2 budgets consistent
with limiting global long-term temperature increases
to 2 ◦C and 1.5 ◦C thereafter (cumulative 2011–2100
global CO2 budget of 1000 GtCO2 and 400 GtCO2 for
the 2◦C and 1.5◦C targets, respectively (McCollum
et al 2018)). These scenarios have been implemen-
ted in MESSAGE-GLOBIOM based on global cost-
effective pathways for staying within the specified
global CO2 budgets as well as national objectives and
capabilities for implementing mid-century emissions
strategies. The NPi, INDC, 2◦C and 1.5◦C scenarios
are combined in GAINS with a set of air pollution
measures assuming a compliance with the current

Table 1. Scenario descriptions.

Scenario Description

NPi National Policies until 2030, no climate
policy after 2030

INDC National Policies until 2020, after which
implementation of Intended Nationally
Determined Contributions (INDCs)
until 2025/2030

2 ◦C National Policies until 2020, after which
mitigation measures in line with a >66%
chance of staying below 2 ◦C throughout
21st century

1.5 ◦C National Policies until 2020, after which
mitigation measures in line with a >66%
chance of staying below 1.5 ◦C in 2100

INDC—MFR
2 ◦C—MFR
1.5 ◦C—MFR

Same as above, but combined with the
implementation of measures for
maximum feasible reduction of air
pollution in India

air pollution legislation in each country. The three
additional scenarios correspond to the CO2 emission
mitigation pathways described above, but are com-
plemented with implementation of explicit control
measures for maximum feasible reduction of air pol-
lutants in India, hereafter referred to as MFR (Rafaj
et al 2018, Purohit et al 2019). The energy use by fuel
type and the sector-specific PM2.5 emissions under
each scenario can be found in figures SI.1–2 (available
online at stacks.iop.org/ERL/16/054025/mmedia).

2.2. Ambient PM2.5 concentrations
Projections of anthropogenic emissions, as well as
historical and future (2010–2050) gridded annual
ambient PM2.5 concentrations (figure 1) under each
modelled scenario for India were derived from
the GAINS model. These were based on region-
alised economic activities of different types either
developed in MESSAGEix-GLOBIOM (energy sup-
ply and demand, transport) or derived from the
GAINS databases (industrial production, agricul-
ture). To arrive at the PM2.5 emissions in each scen-
ario, a few hundred end-of-pipe national air qual-
ity control measures in the industry, power plant,
household and agricultural sectors were applied in
GAINS. ForMFR variants these refer to the best avail-
able technical measures to capture SO2, NOx, VOCs,
NH3 and PM emissions at their sources before they
enter the atmosphere and without structural changes
in the economyor energy systems (see table SI.1 for an
illustrative list). Comparison of modelled concentra-
tions against observational data shows relatively good
agreement (figure SI.3).

To determine population-weighted concentra-
tions for urban and rural areas, the gridded PM2.5

concentrations were intersected with urban poly-
gon shapes from Global Rural-Urban Mapping Pro-
ject (NASA 2020), gridded population data from the
Joint Research Centre, and from WorldPop (2020).
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Figure 1.Modelled annual mean ambient PM2.5 concentrations (µg m−3) over the Indian landmass for scenario (a) NPi, 2010,
(b) NPi, 2050, (c) 1.5 ◦C, 2050 and (d) 1.5 ◦C—MFR, 2050.

Urban regions were defined as towns and cities with
>100 000 inhabitants and densities >1000 people km2

and the rest were classified as rural. The urban–rural
distribution from the gridded data was adjusted to
ensure consistency with percent rural area classific-
ation in the 2001 Indian census.

The projected PM2.5 exposures under each scen-
ario can be found in figure SI.4 and more details on
the methods—in section S1.1 of the supplementary
material.

2.3. Demographic projection
To estimate how changes in air pollution will affect
future LE, age-specific mortality, as well as the
structure and size of the population, we used the
five-dimensional population projection for India
developed by Samir et al (2018), which projects
India’s population by state, urban/rural place of resid-
ence, age, sex and level of education, using sub-group
specific fertility, mortality, education and migration
rates. The initial data for the population projection
has been derived from the two most recent Indian
censuses (2001 and 2011) and vital rates from the
India Sample Vital Registration System (1999–2013).
The urban–rural designation applied in the popu-
lation projection differs from the one used for the
exposure assessment described above as it also con-
siders population density and share of employment

in non-agricultural work. Further explanation of the
method and data sources used in the population pro-
jection can be found in the supplementary mater-
ial (section S1.2) and in the appendix of Samir et al
(2018).

2.4. Exposure response function
To quantify the mortality impacts of exposure to
outdoor PM2.5 due to Noncummunicable Diseases
(NCDs) and Lower Respiratory Infections (LRIs), we
apply the Global ExposureMortalityModel (GEMM)
(Burnett et al 2018) (figure SI.5):

HR(z) = exp

 θ log
(

z
α + 1

)
1+ exp

{
− (z−µ)

v

}
 ,

where HR denotes the mortality hazard ratio (relat-
ive risk of mortality at any concentration compared
to the counterfactual of 2.4 µg m−3) for a specific
annual exposure to PM2.5, z is population-weighted
PM2.5 exposure z=max(0, PM2.5− 2.4 mg /m−3)
and θ, z, α, µare age-specific and disease-specific
parameters. The counterfactual was selected as the
lowest observed concentration in any of the 41 obser-
vational studies, included in the GEMM develop-
ment; below the counterfactual, GEMM assumes no
change in the hazard ratio.
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Figure 2. Schematic model of the dynamic health impact assessment approach.

2.5. Projection of future disease burden
To account for future trends in disease patterns in
India, we modelled the burden of NCDs and LRIs
deaths based on the projected changes in LE at birth
from the demographic projection. We used sex- and
age-specific (5 years age groups) data on the per-
centage of all deaths due to NCDs and LRIs for
31 of the states and union territories in India for
2015–2017 from the Global Burden of Disease (GBD)
project (Indian Council of Medical Research, Pub-
lic Health Foundation of India and IHME 2017).
We assumed that if a state reached the LE at birth
in 2050 that another state had in 2015, it will also
have the same age- and sex-specific percentage of
deaths due to NCDs and LRIs as the other state
in 2015. Thus, for each state and sex, we matched
projected LE at birth in the year 2050 with the
state with the closest LE at birth in 2015 (within
3 years band) and assigned the 2050 NCDs and
LRIs mortality burden accordingly. The values for all
the years in-between were interpolated. States with
the highest LE at birth that could not be matched
with past LE in any state were matched to other
countries in Southern Asia with similar LE at birth
(table SI.2).

2.6. Health impact estimation
We linked all models described above in an integrated
framework, using a dynamic health impact assess-
ment approach (see figures 2 and SI.6). Firstly, we
presume that the future mortality assumptions in
the demographic projection reflect only future socio-
economic prospects, but not the impact of changes
in air pollution (Miller and Hurley 2003). We then
re-ran the population projection for each emission

scenario, adjusting age-specific mortality rates for
each state and urban/rural residence at every 5 year
period from 2010 to 2050 to the changes in risk of
mortality associated with the changing PM2.5 concen-
trations over time:

mscen
a,r,s (t) =mbase

a,r,s (t)× ShareNCD+LRI
HRa,r,s (t)

HRa,r,s (2010)

+mbase
a,r,s (t)×

(
1−mbase

a,r,s (t)× ShareNCD+LRI

)
.

a= age, r= residence, s= state

wheremscen
a,r,s indicates the age-, urban/rural residence-

and state-specific mortality rate in the respective
emission scenario and mbase

a, r, s in the population pro-
jection. ShareNCD+LRI is the projected age-, sex- and
state-specific share of NCDs and LRIs in all-cause
mortality. HRa, r,s denotes the age-specific hazard
ratio associated with the PM2.5 exposure in each
domain (urban/rural residence and state). Rescal-
ing the mortality rates in this way, without chan-
ging any other demographic drivers in the projection
(i.e. fertility, migration), entails distinct LEs, num-
ber of deaths, and population size under each scen-
ario that can be attributed to the differences in PM2.5

exposure levels.
The health impact estimation was based on

aggregated population-weighted concentrations for
urban and rural areas in each state, respectively.
The population projections under each scenario
were implemented in R using version 0.0.4.1 of the
MSDem (multi-state demography) package (Wurzer
and Samir 2018). In the following sections we com-
pare the projected LE at birth, total number of deaths
and population under each of the scenarios with
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Figure 3. Projected changes in LE at birth from 2010 to 2050 ((a) females and (c) males) and total gains in LE between 2010 and
2050 ((b) females and (d) males) under climate change mitigation and air quality control scenarios according to sex.

those in the demographic projection that assumes
2010 constant PM2.5 levels. We also draw com-
parison across scenarios to illustrate the potential
health co-benefits of stricter climate change mitiga-
tion against the NPi.

3. Results

3.1. Gains in life expectancy
Figure 3 and table SI.4 show the projected gains in LE
up to 2050 for each scenario. In the period 2010–2050
LE at birth for both females andmales in India is pro-
jected to increase under all scenarios. These increases
reflect the underlying assumption of improving LE
in the demographic projection as well as the impacts
of changing PM2.5 levels. There are substantial differ-
ences in the projected LE trajectories across emission
scenarios as a result of deaths being brought forward
in time or delayed due to changes in PM2.5 expos-
ure. With continuation of current policy and no fur-
ther efforts for mitigating climate change globally or
addressing air pollution locally (NPi scenario), the
increase in LE at birth between 2010 and 2050 is pro-
jected to be 9.1 years for females and 7.6 years for
males (LE at birth in 2010 was 68.5 years for females

and 65.1 for males). Pursuit of carbon emission tar-
gets can bring substantial health co-benefits through
cleaner air by adding 0.4 (under 2◦C) or 0.7 (under
1.5◦C) years to the average (both sexes) projected LE
in 2050. These LE gains account for 4.2% and 7.4% of
the total increases in LE under each of these scenarios,
respectively.

The results in figure 3 demonstrate that under
the 1.5◦C—MFR scenario increases in LE at birth
between 2010 and 2050 would be 1.6 years higher
compared to the NPi scenario (15.5% of the total
increase in LE at birth between 2010 and 2050). There
was essentially no difference in LE gains between the
INDC and NPi scenarios.

Under all scenarios total increases in LE between
2010 and 2050 are projected to be larger for women
than for men and for rural residents than for
urban (figure 4(a)). Comparing LE changes across
scenarios with those of the demographic projec-
tion allows us to isolate the impacts of changing
PM2.5 levels on LE from those of the underly-
ing demographic assumptions (figure 4(b)). Holding
demographic changes constant, the relative impact
of climate change mitigation and air quality con-
trol is almost the same for men and women,
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Figure 4. Projected changes in LE at birth (from 2010 to 2050) in years under different climate change mitigation and air quality
control scenarios according to sex and urban/rural residence (a) due to changes in demographic assumptions and changes in
PM2.5 concentrations and (b) only due to changes in PM2.5 concentrations.

which is expected considering that there are no sex-
differentiated hazard ratios in GEMM. However,
improvements in PM2.5 levels associated with these
measures contribute more to LE increases for urban
residents.

3.2. Avoidable premature deaths due to PM2.5

reductions
Our projections indicate that number of premature
deaths due to PM2.5 exposure will increase by 5.6 mil-
lion and 5.3million between 2010 and 2050 under the
NPi and INDC scenarios, respectively (figure 5 and
table SI.5). Taking ambitious action to prevent cli-
mate change can generate clear health co-benefits:
under the 2◦ scenario we project the number of pre-
mature deaths from PM2.5 in the period 2010–2050
to be 3.9 million lower compared to the NPi scen-
ario and 8.0 million lower under the 1.5◦C scen-
ario. Combining climate change mitigation efforts
with measures targeting air pollution can bring the
largest reduction in prematuremortality due to PM2.5

exposure: 2.6–4.8 times larger in magnitude than
the avoided premature mortality through climate
change mitigation alone. Compared to the NPi scen-
arios, aggressive GHG emission reductions plus air
quality control can avert up to 20.8 million pre-
mature deaths by 2050, with larger benefits among
rural residents (11.2 million in rural vs. 9.5 mil-
lion in urban areas). Even under current national
mitigation commitments (scenario INDC), targeted

air quality control can avert substantial premature
deaths by 2050, comparable in magnitude to avoid-
able premature deaths from PM2.5 under 2 ◦C—MFR
scenario (10.9 million under INDC-MFR com-
pared to 13.3 million under 2 ◦C—MFR, see table
SI.5).

Our results indicate that without any further
policy action between 2010 and 2050 premature
deaths due to PM2.5 exposure will increase the most
in rural areas, but with aggressive climate action and
air quality control they can be reduced the most in
urban areas (figures 5(b) and (c)).

The reduction in premature deaths from lower
PM2.5 concentrations occurmainly among those aged
50–70 (47.4% of the reduction in premature deaths
over 2010–2050 under the 1.5◦C—MFR scenario)
and 70–90 (43.5% of the reduction premature deaths
over 2010–2050 under the 1.5◦C—MFR scenario)
as shown in figure 6. Under all scenarios coup-
ling mitigation efforts with targeted air quality con-
trol, premature deaths across all age groups are pro-
jected to fall in the period 2010–2050 apart from
the oldest (90+). In contrast, in the NPi, INDC
and 2◦C scenarios, premature deaths from PM2.5

are expected to increase for all age groups, but the
eldest (90+).

3.3. Regional differences
State-level analyses revealed some regional variations
in projected LEs (figure 7). LE gains from CO2 and

7
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Figure 5. Projected change in the cumulative number of premature deaths due to PM2.5 exposure under modelled scenarios
(2010–2050) for (a) India; (b) all urban areas; (c) all rural areas. Note: Deaths are calculated relative to the demographic
projection, assuming 2010 PM2.5 levels remain constant for India.

PM2.5 emission controls were negatively correlated
with baseline LE at birth and positively correlated
with baseline PM2.5 levels across states (figure 8).
States with the highest potential gains in longevity
through improvements in air quality were situated
around the Indo-Gangetic Plain and East India, in
particular West Bengal, Jharkhand, Bihar, Odisha,
Uttar Pradesh and Chhattisgarh (figures 7, 8 and
SI.7).

These states are at multiple disadvantages — they
are highly polluted and are projected to experience the
largest increases in PM2.5 with climate change (NPi

scenario); they are some of the most populated, have
relatively low LE and have a large share of households
using solid fuels for heating and cooking. Neverthe-
less, differences in overall state-level health inequal-
ities across scenarios were small based on the coef-
ficient of variation and absolute and relative LE gap
between states (table SI.7).

To explore the relative importance of climate
policy versus air pollution control at state-level,
we compared gains in LE relative to NPi scenario
between the INDC-MFR and 1.5 ◦C-MFR scenarios,
which only differ in the climate change mitigation

8
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Figure 6. Projected change in premature deaths (in thousands) due to PM2.5 exposure from 2010 to 2050 for each scenario
according to sex and urban/rural residence.
Note: Deaths are calculated relative to the demographic projection, assuming 2010 PM2.5 levels remain constant

Figure 7. Difference in LE at birth in 2050 between scenarios NPi, 1.5 ◦C and 1.5 ◦C—MFR relative to the demographic
projection.
Note: Estimates calculated as population-weighted values for females, males and urban and rural residents

ambition. Although air quality policies seem to dom-
inate the LE gains for India overall, we find that
the cleaner energy transition as envisioned in the
1.5 ◦C-MFR scenario can double these potential gains
in many urban regions, especially those in Northeast
India, where the overall PM2.5 burden is the largest
(table SI.8).

3.4. Implications for population size
In our dynamic method, PM2.5 levels affect popula-
tion survival in each specific age interval; i.e. deaths
due to PM2.5 in a population subgroup (sharing
the same characteristics such as age, sex, education,

residence) in one projection period will affect the
shape and size of the population in subsequent peri-
ods. Therefore, the different emission scenarios mod-
elled resulted in distinct total population sizes and
structures. In the most aspirational scenario, the total
population in 2050 is projected to be 16.2 million lar-
ger compared to the NPi scenario (table SI.9). Dif-
ferences in population survival will also slightly affect
the structure of the population. For instance, the per-
centage of the population aged 65+, which was 5.5%
in 2010, is projected to reach 15.9% in 2050 under
the NPi scenario and 16.5% under the 1.5◦C—MFR
scenario.

9
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Figure 8. Gains in LE at birth in 2050 (1.5◦C—MFR scenario compared to NPi scenario) against (a) LE at birth in 2010 and
(b) population-weighted PM2.5 in 2010.
Note: Size of the circles indicates baseline population size (in 100 000) and colour indicates state ranking based on the
Socio-demographic Index (SDI) levels as calculated by GBD 2017 (Balakrishnan et al 2019), which is based on lag-distributed
per-capita income, mean education in people aged 15 years or older, and total fertility rate in people younger than 25 years. LE at
birth and gains in LE are calculated as a population-weighted average of female and male LE at birth.

4. Discussion

Our study estimates gains in LE and avoidable prema-
ture deaths from reduced fine particle concentrations
in India under different climate change mitigation
scenarios using an integrated framework that incor-
porates demographic dynamics. Most prior research
on future health benefits of air quality improvement
has relied on more static methods that assume future
population structure and mortality rates are inde-
pendent from changes in exposure. In contrast, we
assessed the feedback effects of air pollution on LE
and population size and structure, a largely neglected
aspect in the co-benefits literature. We find compel-
ling evidence for the health co-benefits related to air
quality improvement under the aspirational 2◦C and
1.5◦C climate change mitigation targets laid out in
the Paris Agreement. In particular, a child born in
India under these low emission pathways in 2050
could expect to live on average 0.4 or 0.7 years longer,
respectively, than if she were born in a world fol-
lowing a business-as-usual trajectory. Furthermore,
meeting the Paris Agreement targets has the potential
to avert between 3.9 million and 8.0 million prema-
ture deaths due to PM2.5 exposure in the country over
the period 2010–2050 compared to the NPi scenario.
These immediate and localised health co-benefits of

cleaner air provide a strong incentive for climate
action from the third largest CO2 emitting nation.

Our results indicate that with maximum and
coordinated efforts of both climate change mitiga-
tion and end-of-pipe air quality control, LE increases
between 2010 and 2050 could be 1.6 years higher
compared to the NPi scenario, which is far beyond
current estimates of the LE impacts of tobacco or all
cancer in South Asia (Apte et al 2018). Avoided pre-
mature deaths between 2010 and 2050 can amount
to 20.8 million. This is of particular relevance, con-
sidering that policy responses to air pollution and
climate change are often formulated independently
by different policy departments. While further stud-
ies are needed to compare the financial viabilit-
ies of such measures and identify a portfolio of
most cost-effective controls, implementation of any
policies in this direction is likely to bring substantial
gains for public health. A previous study demon-
strated that the economic costs of MFR policies
in India would still be extremely low compared to
the economic benefits of cleaner air associated with
higher productivity through reduction in mortality
and work absenteeism (Sanderson et al 2013) and
this has been confirmed for climate change mitig-
ation efforts (Markandya et al 2018). Although our
results suggest that targeted air pollution control
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might be more effective in reducing premature mor-
tality from PM2.5, stronger coordination with cli-
mate change mitigation is indispensable considering
the multiple additional health, socio-economic and
environmental benefits of limiting climate change.
Furthermore, we show that purely technical end-
of-pipe emission control measures without a large-
scale transformation in the energy systemwould have
muchmore limited scope for reducing the health bur-
den of PM2.5 throughout the most highly affected
areas in Delhi and in Northeastern India. In addi-
tion, it has been recently demonstrated that these one-
way solutions would be associated with higher imple-
mentation costs (Purohit et al 2019).

In line with recent scenario-based studies (GBD
MAPS Working Group 2018, Karambelas et al 2018),
we find that without climate changemitigation efforts
premature deaths from PM2.5 will increase the most
in rural areas. Despite their lower ambient air pol-
lution levels, rural areas have higher PM2.5 related
health burden due to their larger population and
lower baseline LE compared to urban areas. Previous
studies estimate the total mortality burden of air pol-
lution in rural areas to be three to five times larger
than in urban areas (GBD MAPS Working Group
2018, Karambelas et al 2018). Holding demographic
change constant, we find that climate change mitiga-
tion can contribute slightly more to LE increases and
avoided premature deaths for urban residents over the
period 2010–2050, likely due to larger improvements
in PM2.5. We note that our results likely underestim-
ate impacts at highly polluted urban areas due to the
logarithmic form of the exposure-response function
at concentrations above 84 µgm−3, implying impacts
at lower exposures increase more rapidly compared
to higher exposures, and the fact that we average con-
centrations across urban grid cells. Quantifying the
health impacts at grid level would have involved an
additional set of assumptions regarding spatial dis-
tribution of future population growth and mortal-
ity. Modelling not only improvements in outdoor
but also indoor air quality associated with decreas-
ing use of solid fuels for household energy would
likely demonstrate even greater health co-benefits in
rural areas, especially in some less-developed states,
where the proportion of people using solid fuels for
heating and cooking is as high as 75% (Balakrishnan
et al 2019). For instance, one study estimated that
household air pollution in India shortens the aver-
age lifespan by 0.7 years (Balakrishnan et al 2019).
We do not find substantial differences in health co-
benefits according to sex; however, this could change
when accounting for changes in indoor air pollution
levels, which mostly affect children and women in
India (Balakrishnan et al 2019).

In agreement with previous studies (Chowdhury
et al 2018, Balakrishnan et al 2019, Limaye et al 2019,
Purohit et al 2019) we find that regions with lower
socio-economic development, especially those along

the Indo-Gangetic Plain, would reap the largest bene-
fits with relation to LE gains and avoided premature
mortality from reaching stringent targets on emis-
sions. Although these regions have a lower incid-
ence of NCDs, they have large health burdens because
of their larger population size, lower LE and higher
PM2.5 concentrations (Purohit et al 2019). These het-
erogeneous regional effects have important implica-
tions for geographical equity in health and economic
and social development.

Our results should be interpreted in light of the
following main limitations. Firstly, the GEMM func-
tion considers only health impacts in adults, but in
many regions in India mortality from LRIs in chil-
dren is high, and childhoodmortality has been shown
to contribute to about 10% of the loss in LE in India
(Apte et al 2018). Hence, our estimates should be
considered as a lower bound of potential LE gains
from improving air quality. Secondly, we did not
consider possible climate-change-induced meteoro-
logical impacts on PM2.5 concentrations as well as the
feedback effects of stricter air quality control on the
climate (although these are likely to be smaller and
more local compared to changes in GHG emissions).
Although uncertainties in estimating these are still
very large, especially at the regional and local level,
a previous study (Chowdhury et al 2018) estimated
that climate change might diminish the rise in sur-
face PM2.5 over India by 7%–17% through its effects
on local meteorology. Lastly, quantitative uncertainty
analysis of our results was beyond the scope of this
study due to the complexity of the linked models
and lack of uncertainty bounds for important para-
meters, e.g. in the population projection, integrated
assessment model and air pollution model. Uncer-
tainty in ourmodel will likely stem from assumptions
and parameters related to (a) baseline populations,
emissions and disease burden data; (b) the integ-
rated assessmentmodel, (c) theGAINSmodel, (d) the
demographic projection model, (e) the disease bur-
den projection, (f) the GEMM model and its extra-
polation in the future, beyond observed PM2.5 ranges,
and to settings with very different population and air
pollution characteristics, (g) the calculation of health
impacts at aggregate level (state and urban/rural res-
idence) and (h) the assumption of constant air pollu-
tion in the demographic projection. Due to the large
uncertainties inherent in our model, the study results
should not be considered as predictions or forecasts,
but rather as plausible future outcomes that are most
appropriate for relative comparisons between scen-
arios and for providing insights regarding the range
of potential health implications of global and national
policy decisions.

Our integrated and dynamic approach allowed us
to: (a) report the impacts of air pollution on mor-
tality independent of demographic change; and (b)
explore feedback effects of climate change mitigation
and PM2.5 emissions control on future population
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size and structure. In contrast to previous studies,
which report an increasing burden of PM2.5-related
mortality even with reduction in emissions (Inter-
national Energy Agency 2016, GBD MAPS Working
Group 2018, Conibear et al 2018b), we find that emis-
sion controls can reduce the number of premature
deaths from PM2.5 in India. These contrasting results
can be explained by differences in the definition of
premature deaths as well as overall methodological
approach. Our results also suggest that while most
aspirational policies will contribute to improving LE,
this will also have the effect of increasing population
size and the proportion of the population at older
ages. Larger populations can in turn produce addi-
tional feedback mechanisms on the climate system
through higher energy use and CO2 emissions, which
should be examined in future studies. Two policy
questions that arise in this respect are (a) whether
changes in population size and structure delivered
by reduction in premature mortality from climate
change mitigation and air quality control can make
meeting CO2 reduction targets more challenging and
(b) if the productivity gains from lower mortality and
morbidity will outweigh the higher social and health-
care costs of sustaining a larger elderly population.
While public policy strives to improve population
health and prolong LE, it is important, especially in
a dynamic country such as India, that this progress
is accompanied by measures for reducing the carbon
footprint of individuals and decoupling increases in
GHG emissions and air pollutants from economic
growth.
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Supplementary Information: Health impacts of fine particles 
under climate change mitigation, air quality control, and 
demographic change in India 
 

 
S1. Input data and methods 
 
S1.1. Ambient PM2.5 concentrations 
 
 

Air quality implications in the scenarios analysed in this paper are based on over 

1000 technical control measures simulated by GAINS, which include structural 

measures and end-of-pipe solutions such as improved cook stoves, flue-gas 

desulfurization, ban on open burning of agricultural residues, improved emission 

standards for vehicles, etc. The measures for reducing precursor emissions 

simulated by GAINS refer to application of technologies, commercially available 

in India today; non-technical options such as changes in behaviour and 

preferences were not modelled. A more complete list of assumed control 

measures/policies under the current legislation as well for the MFR scenarios can 

be found in Purohit et. al (2019).  

Our analysis is based on India-specific version of the GAINS model, where the 

national energy and emission projections are disaggregated across 23 main sub-

regions (states) of the country. Modelling of PM concentrations follows the 

methodology described by Purohit et al. (2019). GAINS uses linear transfer 

coefficients, describing the spatial response of an air quality indicator to changes 

in precursor emission at each source throughout the model domain, which have 

been derived from the European Monitoring and Evaluation Programme (EMEP) 

chemistry transport model (Simpson et al., 2012). The model estimates ambient 

PM2.5 concentrations from the following sources: (i) primary ambient PM emitted 
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directly to the atmosphere from anthropogenic sources, (ii) secondary PM formed 

in the atmosphere through chemical reactions of precursors gasses such as SO2, 

NOx and NH3, (iii) PM originating from natural sources such as solid dust, sea salt 

and biogenic sources. PM and its precursor emissions are estimated at a 

0.50×0.50 longitude–latitude resolution (Klimont et al., 2017).  

 

To determine concentrations for urban and rural areas, the gridded PM2.5 

concentrations were intersected with urban polygon shapes from Global Rural-

Urban Mapping Project (NASA, 2020), 250m gridded population data from the 

Joint Research Centre, and 100x100m gridded population data from WorldPop 

(WorldPop, 2020). Population-weighted exposure for a given year and emission 

scenario was calculated separately for urban and rural areas within each state as 

follows: 

 

𝑃𝑊𝐸𝑗 =
∑ 𝑃𝑖,𝑗𝐶𝑖,𝑗 

𝑛
𝑖=1

∑ 𝑃𝑖,𝑗
𝑛
𝑖=1

 

 

where 𝑃𝑊𝐸𝑗 denotes the domain of interest (all urban/rural areas within each 

state), 𝑃𝑖,𝑗 is the population and 𝐶𝑖,𝑗 the PM2.5 the concentration in each grid cell 

within this domain. Smaller states were grouped together when estimating 

population-weighted exposure. The population-weighted PM2.5 exposure for all 

years was based on the 2000 population, therefore population growth over time 

was not considered; however, as shown previously the population-weighted 

mean will not be affected by increases in the absolute population size but rather 



 

 157 

by changes in population distribution relative to the distribution of particles (e.g. 

internal migration) (Stedman et al., 2002). 

 

Fig. SI.4 depicts the modeled average annual-population-weighted PM2.5 

exposure over time under each emission scenario for India overall and separately 

for all urban and rural areas. In 2010, simulated PM2.5 exposure was 67.7 μg/m3 

for urban areas, 36.2 μg/m3 for rural areas and 41.3 μg/m3 for the whole of India. 

With only implementation of current legislation (NPi scenario) by 2050 PM2.5 

concentrations over the Indian landmass are projected to steadily increase and 

reach 57.4 μg/m3 (39.0 % increase), driven by larger increases in rural areas 

(34.7 %) than in urban areas (20.0 %) (See Table SI.3). India´s current emission 

pledges under the Paris Agreement (INDC scenario) will have negligible impact 

on this upward trajectory.  

 

Under global mitigation efforts in line with the 2°C target, PM2.5 levels in India 

are projected to continue increasing steadily up to 2040 before starting to decline 

afterwards. These air quality improvements are mainly driven by slight reductions 

in average population-weighted PM2.5 levels in urban areas by 2050 (-7.0 %), 

offsetting the increases in rural areas (9.7 %). More aggressive CO2 reductions 

in accordance with the 1.5°C target generate steady declines in PM2.5 levels over 

time (2010-2050) both for urban (-20.3 %) and rural areas (-9.9 %) and ensure 

that the India-wide average is below National Ambient Air Quality Standard 

(NAAQS) of 40 μg/m3.  
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The largest improvements in air quality over this period, however, are achieved 

in the scenarios combining climate change mitigation efforts with maximum 

feasible control of air pollutants (MFR scenarios), with population-weighted 

concentrations reaching 22.0 μg/m3 in the 2°C - MFR and 19.7 μg/m3 in the 

1.5°C - MFR scenario, levels considerably below the India-wide NAAQ standard 

of 40 μg/m3 and the World Health Organisation´s Interim target of 35 μg/m3.  In 

contrast to the climate mitigation scenarios, the PM2.5 reductions in the MFR 

scenarios are almost equally distributed across urban and rural areas, ranging 

between -49.3 % and -57.3 %. As shown in Fig.1 there were large 

heterogeneities in PM2.5 levels across India in 2010, with the regions along the 

Indo-Gangetic Plain recording some of the highest PM2.5 levels. The potential 

future reductions across states are also not uniform. Climate action, especially 

when combined with air quality control measures, has the potential to 

substantially improve air quality across all regions, but most notably for the states 

in the Indo-Gangetic Plain. The projected differences in reductions across regions 

are related to state-specific level of decarbonization of industry, elimination of 

fossil fuels from the energy mix, transition in demand patterns in the household 

and transport sectors. 

 
S1.2. Demographic projection 
 
The cohort-component model by KC et. al (2018) projects India´s population by 

state, rural/urban place of residence, age, sex and level of education, using 

differential fertility, mortality and migration rates. Compared to the conventional 

approach of only considering the age and sex structure of the population at 

national level, this projection model accounts explicitly for other sources of 
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population heterogeneity, which notably affect population forecasts. The 

definition of urban inhabitants used in the projection is in accordance with the 

2011 Census definition. Assumptions of future trajectories of fertility, mortality, 

education and urban-rural migrations are based on observations of past trends 

as well several rounds of consultations with population experts (KC and Lutz, 

2017). The main future assumptions in the model are as follows: declining 

education-specific fertility pathways for urban and rural types of residence, with 

total fertility rate (TFR) converging to 1.75 in urban and 2.08 in rural areas; 

increasing sex-specific life expectancy (LE) at birth, with average rate of gains in 

LE at birth converging to 0.75 years per five years for males and 1 year for 

females; no international migration, constant age‐ and sex‐specific migration 

rates. The assumptions in the demographic projection as well as the population 

and socio-economic development trajectories embedded in all the emission 

scenarios are in line with the ‘middle-of-the-road’ storyline of the Shared 

Socioeconomic Pathways (SSP2)(Riahi et al., 2017). 
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Section S2. Figures and tables 
 

 
Fig. SI.1: Energy use by key fuel type at the national level – 2010, 2050 by scenario 

Note: Baseline and future fuel use are exogenous to GAINS and derived from CD-

LINKS scenarios  

 

 

 
Fig. SI.2: Sector-specific PM2.5 emissions by scenario and year at the national level 
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Fig. SI.3: Comparison of 2015 modelled PM2.5 concentrations calculated with the 

GAINS model (NPi scenario) with observations collected from ground based sources 

(2014-2018).  

Note: Readings from different stations in the same city, as well as from different years 

for the same city, are connected with lines to show spatio-temporal variability within a 

city. CPCB_Auto: Central Pollution Control Board – Automatic stations; 

CPCB_Manual: Central Pollution Control Board – Manual stations; WHO: WHO 

AAP database 2018 
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Fig. SI.4: Projected population-weighted ambient PM2.5 concentrations through 2050 

under all modelled scenarios averaged over (a) India; (b) all urban areas in India; (c) 

all rural areas in India. Dotted lines represent annual average PM2.5 levels set in the 

World Health Organisation´s Air Quality Guideline and the Indian National Ambient 

Air Quality Standard (NAAQS), respectively. 
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Fig. SI.5: Age-specific GEMM hazard ratio over PM2.5 range for NCDs and LRIs. 

Note: Curves beyond the dashed line represent extrapolations. 

 

 

 

 
Fig. SI.6: Proposed health impact assessment framework. 
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Fig. SI.7: Difference in life expectancy at birth in 2050 between the demographic 

projection and scenario 1.5°C - MFR according to sex and urban/rural residence 
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Table SI.1: List of policies and measures assumed under current air pollution 

legislation (CLE) and maximum feasible reduction (MFR). Adapted with permission 

from International Institute for Applied Systems Analysis and Council on Energy and 

Water (2019)  

CLE MFR 

Power Plants Power Plants 

▪ Complete move towards 

supercritical technologies in coal 

power plants 

▪ High-efficiency PM controls at 

power plants 

▪ Reverse bidding of solar and 

wind power plants 

▪ Selective catalytic reduction at 

existing and new oil and gas power 

plants 

▪ Flue gas desulphurisation for 

SO2 

 

▪ Selective catalytic reduction 

(SCR) and selective non-

catalytic reduction (SNCR) for 

NOx 

 

Industry Industry 

▪ Full compliance with the PAT-I5 

and PAT-II cycle 

▪ High-efficiency PM controls for 

boilers 

▪ Zig-zag or vertical shaft kilns for 

all new brick production 

installations 

▪ More stringent PM controls for 

furnaces 

▪ New emission standards for SO2 

and NOx for five industries 

(ceramics, foundries with 

furnaces based on fuel, glass 

foundries, lime kilns, and 

reheating furnaces) 

▪ Combustion modification and 

selective catalytic reduction in oil 

and gas boilers and furnaces 

▪ Ban of coke and furnace oil in 

industry in the NCR districts 

▪ Stringent emission controls for 

industrial processes, including: 

o Ferrous and non-ferrous 

industries 

o Refineries 

o Coke plants 

o Carbon black production 

o Fertiliser plants 

o Brick kilns (by increasing 

capacity of tunnel kilns) 

 ▪ Improved control of flaring in 

refineries 
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 ▪ Suppressing fugitive emissions 

during coal handling 

Mobile sector Households 

▪ BS VI controls (all road 

vehicles) from 2020 onwards 

▪ Annual inspection and maintenance 

of residential oil boilers 

▪ Bharat (Trem) Stage IV controls 

(non-road machinery) from 2020 

onwards, and Stage V from 2024 

▪ Replacement of wick kerosene 

lamps with hurricane lanterns 

▪ FAME scheme 1: Incentives for 

increasing the adoption of 

electric vehicles and push to 

remove infrastructure barriers in 

India 

▪ Nationwide ban on open burning of 

solid waste (trash) 

Agriculture and other sectors Agriculture and other sectors 

▪ Ban of open burning of waste 

(trash) in Indian cities and crop 

residue burning in NCR districts 

▪ Improved enforcement of bans on 

burning of agricultural waste 

▪ Solid Waste Management Rules 

2016 

▪ Improved manure management in 

livestock production 

 ▪ Efficient use of urea-based mineral 

fertilisers 

 ▪ Suppressing dust emissions from 

storage and handling of agricultural 

crops 

 ▪ Low-till farming, alternative cereal 

harvesting 
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Table SI.2: List of Indian states with 2050 LE at birth (ex0 ) matching with 2015 LE 

at birth of other Indian states or countries in South Asia. 

A. Females 

 

State 2015 ex0  2050 ex0  State/country with matching ex0 

Assam 66 75 Mizoram 

Chhattisgarh 66 74 Pondicherry 

Madhya Pradesh 66 75 Mizoram 

Uttar Pradesh 66 75 Mizoram 

Odisha 67 76 Kerala 

Meghalaya 69 76 Kerala 

Jharkhand  69 77 Delhi 

Rajasthan 69 77 Delhi 

Bihar 68 76 Kerala 

Andhra Pradesh 70 80 Chandigarh 

Gujarat 70 77 Delhi 

Haryana 70 79 Chandigarh 

Karnataka 70 77 Delhi 

West Bengal 70 76 Kerala 

Arunachal Pradesh 71 80 Chandigarh 

Himachal Pradesh 71 80 Chandigarh 

Tamil Nadu 71 80 Chandigarh 

Dadra and Nagar 

Haveli 

73 82 Chandigarh 

Punjab 73 83 Maldives 

Maharashtra 72 81 Chandigarh 

Sikkim 72 82 Chandigarh 

Goa 73 83 Maldives 

Nagaland 73 83 Maldives 

Jammu and 

Kashmir 

73 83 Maldives 

Manipur 73 84 Maldives 

Tripura 73 84 Maldives 

Uttarakhand 73 83 Maldives 

Pondicherry 74 83 Maldives 

Daman and Diu 75 86 Maldives 

Mizoram 75 85 Maldives 

Kerala 76 84 Maldives 

Delhi 78 88 Maldives 

Chandigarh 79 88 Maldives 

Note: Matching in ex0 with other states in India was performed within 3 years 

tolerance range, and with countries in South Asia within 6 years tolerance range. 
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B. Males 

 

State 2015 ex0  2050 ex0  State/country with matching ex0 

Assam 63 69 Nagaland 

Chhattisgarh 63 69 Nagaland 

Madhya Pradesh 63 70 Pondicherry 

Uttar Pradesh 63 71 Kerala 

Odisha 64 71 Kerala 

Meghalaya 64 71 Kerala 

Jharkhand  65 72 Kerala 

Rajasthan 65 72 Kerala 

Bihar 66 73 Delhi 

Andhra Pradesh 66 75 Chandigarh 

Gujarat 66 72 Kerala 

Haryana 66 74 Delhi 

Karnataka 66 73 Delhi 

West Bengal 67 72 Kerala 

Arunachal Pradesh 67 75 Chandigarh 

Himachal Pradesh 68 74 Delhi 

Tamil Nadu 68 75 Chandigarh 

Dadra and Nagar 

Haveli 

68 77 Chandigarh 

Punjab 68 77 Chandigarh 

Maharashtra 69 76 Chandigarh 

Sikkim 69 77 Chandigarh 

Goa 69 77 Chandigarh 

Nagaland 69 78 Chandigarh 

Jammu and 

Kashmir 

70 79 Maldives 

Manipur 70 79 Maldives 

Tripura 70 79 Maldives 

Uttarakhand 70 79 Maldives 

Pondicherry 70 78 Chandigarh 

Daman and Diu 71 80 Maldives 

Mizoram 71 79 Maldives 

Kerala 71 78 Chandigarh 

Delhi 74 82 Maldives 

Chandigarh 75 82 Maldives 

Note: Matching in ex0 with other states in India was performed within 3 years 

tolerance range, and with countries in South Asia within 6 years tolerance range. 
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Table SI.3: Change in population-weighted annual mean PM2.5 concentrations 

between 2010 and 2050 according to urban/rural residence and scenario 
 

  NPi INDC 2°C  1.5°C  INDC-MFR 2°C – 

MFR 

1.5°C - 

MFR 

India 2010 41.3 41.3 41.3 41.3 41.3 41.3 41.3 

2050 57.4 57.0 45.9 38.3 27.2 22.0 19.7 

% Δ 38.8% 37.8% 11.0% -7.4% -34.2% -46.9% -52.4% 

Urban 

areas 

2010 67.7 67.7 67.7 67.7 67.7 67.7 67.7 

2050 81.2 80.7 63.0 53.9 42.8 31.9 28.9 

% Δ 20.0% 19.2% -7.0% -20.3% -36.7% -52.9% -57.3% 

Rural areas 2010 36.2 36.2 36.2 36.2 36.2 36.2 36.2 

2050 48.8 48.3 39.7 32.6 21.5 18.4 16.4 

% Δ 34.7% 33.6% 9.7% -9.9% -40.6% -49.3% -54.8% 
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Table SI.4: Change in life expectancy at birth for all of India between 2010 and 2050 

according to sex, urban/rural residence and scenario 

 

A. Females 

    NPi INDC 2°C  1.5°C  INDC-

MFR 

2°C - 

MFR 

1.5°C 

- MFR 

India 2010 68.5 68.5 68.5 68.5 68.5 68.5 68.5 

2050 77.7 77.7 78.0 78.3 78.7 79.0 79.1 

Total 

change 

2010-2050 

(years) 

9.1 9.2 9.5 9.8 10.2 10.5 10.6 

Urban 

areas 

2010 71.1 71.1 71.1 71.1 71.1 71.1 71.1 

2050 79.6 79.6 80.0 80.3 80.6 80.9 81.1 

Total 

change 

(years) 

8.5 8.5 8.9 9.2 9.5 9.9 10.0 

Rural 

areas 

2010 67.1 67.1 67.1 67.1 67.1 67.1 67.1 

2050 75.7 75.7 76.1 76.4 76.9 77.0 77.2 

Total 

change 

(years) 

8.6 8.7 9.0 9.3 9.8 10.0 10.1 

 

B. Males 

    NPi INDC 2°C  1.5°C  INDC-

MFR 

2°C - 

MFR 

1.5°C 

- 

MFR 

India 2010 65.1 65.1 65.1 65.1 65.1 65.1 65.1 

2050 72.8 72.8 73.2 73.6 74.1 74.4 74.5 

Total 

change 

2010-2050 

(years) 

7.6 7.7 8.1 8.4 9.0 9.3 9.4 

Urban 

areas 

2010 68.0 68.0 68.0 68.0 68.0 68.0 68.0 

2050 74.8 74.8 75.3 75.6 76.1 76.5 76.6 

Total 

change   

(years) 

6.8 6.8 7.3 7.6 8.1 8.5 8.6 

Rural 

areas 

2010 63.6 63.6 63.6 63.6 63.6 63.6 63.6 

2050 70.7 70.8 71.2 71.5 72.1 72.3 72.4 

Total 

change 

(years) 

7.2 7.2 7.6 7.9 8.5 8.7 8.9 
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Table SI.5: Change in cumulative number of premature deaths due to PM2.5 exposure 

(in millions) between 2010 to 2050 relative to the demographic projection, assuming 

2010 PM2.5 levels remain constant   

 

  Year NPi INDC 2°C 1.5°C INDC-

MFR 

2°C - 

MFR 

1.5°C - 

MFR 

India 2010 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2030 1.2 1.0 0.8 0.1 -1.6 -1.8 -2.3 

2050 5.6 5.3 1.7 -2.4 -10.9 -13.3 -15.2 

Urban 

areas 

2010 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2030 0.0 -0.1 -0.2 -0.4 -1.1 -1.2 -1.4 

2050 1.5 1.4 -0.5 -2.2 -5.5 -7.1 -8.0 

Rural areas 2010 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2030 1.3 1.1 1.0 0.5 -0.4 -0.5 -0.9 

2050 4.0 3.8 2.2 -0.3 -5.4 -6.2 -7.2 

 

 

Table SI.6: Change in cumulative number of avoidable premature deaths due to 

PM2.5 exposure between 2010 and 2050 relative to NPi scenario (in millions)  

 
  Year INDC 2°C 1.5°C INDC-

MFR 

2°C - 

MFR 

1.5°C - 

MFR 

India 2010 0.0 0.0 0.0 0.0 0.0 0.0 

2030 -0.2 -0.5 -1.1 -2.8 -3.0 -3.5 

2050 -0.3 -3.8 -8.0 -16.4 -18.9 -20.8 

Urban 

areas 

2010 0.0 0.0 0.0 0.0 0.0 0.0 

2030 -0.1 -0.2 -0.4 -1.1 -1.2 -1.4 

2050 -0.1 -2.0 -3.7 -7.0 -8.7 -9.6 

Rural 

areas 

2010 0.0 0.0 0.0 0.0 0.0 0.0 

2030 -0.2 -0.3 -0.7 -1.7 -1.8 -2.2 

2050 -0.2 -1.8 -4.3 -9.4 -10.2 -11.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 172 

Table SI.7: Indicators of inequalities in life expectancy at birth in 2050 according to 

sex and scenario 

A. Females 

 

Scenario Mean 

average 

ex0 

Maximum 

average 

ex0 

Minimu

m 

average 

ex0 

Standard 

deviation 

(sd) 

Coefficien

t of 

variation 

(CV) * 

Absolut

e ex0  

gap**   

Relative 

ex0  

gap*** 

NPi 80.4 87.5 73.5 4.1 0.1 14.0 1.2 

INDC 80.4 87.5 73.5 4.1 0.1 14.0 1.2 

2°C  80.7 88.0 74.1 4.0 0.0 13.9 1.2 

1.5°C  81.0 88.2 74.5 4.0 0.0 13.7 1.2 

INDC-MFR 81.2 81.2 74.9 3.8 0.0 13.4 1.2 

2°C - MFR 81.5 88.8 75.1 3.9 0.0 13.8 1.2 

1.5°C - 

MFR 

81.6 88.9 75.2 3.9 0.0 13.8 1.2 

 

 

B. Males 

 

Scenario Mean 

average 

ex0 

Maximum 

average 

ex0 

Minimu

m 

average 

ex0 

Standard 

deviation 

(sd) 

Coefficien

t of 

variation 

(CV) * 

Absolut

e ex0  

gap** 

Relative 

ex0  

gap***   

NPi 75.2 81.2 68.4 3.8 0.1 12.7 1.2 

INDC 75.3 81.2 68.5 3.8 0.1 12.7 1.2 

2°C  75.7 81.8 69.1 3.8 0.0 12.7 1.2 

1.5°C  75.9 82.1 69.5 3.7 0.0 12.6 1.2 

INDC-MFR 76.3 82.2 70.0 3.6 0.0 12.2 1.2 

2°C - MFR 76.6 82.9 70.2 3.6 0.0 12.7 1.2 

1.5°C - 

MFR 

76.7 83.1 70.3 3.6 0.0 12.8 1.2 

 

 

* The Coefficient of Variation (CV) is a normalised measure of dispersion and it is defined as the ratio of the standard 

deviation to the average value of the distribution (ref). 

** Refers to the difference in ex0 between the regions with highest and lowest ex0. 

*** Refers to the ratio of ex0 between the regions with highest and lowest ex0. 
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Table SI.8: Comparison of gains in life expectancy at birth between 1.5°C-MFR 

scenario and scenario INDC-MFR according to sex, urban/rural residence and state 

  Females Males 

State 

Rural 

areas 

Urban 

areas 

Rural 

areas 

Urban 

areas 

Andhra Pradesh 1.2 1.3 1.2 1.3 

Arunachal Pradesh 1.2 2.0 1.2 2.1 

Assam 1.2 1.3 1.2 1.3 

Bihar 1.2 1.3 1.2 1.3 

Chandigarh 1.6 1.9 1.3 1.8 

Chhattisgarh 1.2 1.3 1.2 1.3 

Daman and Diu 1.1 1.4 1.1 1.3 

Delhi 2.0 2.2 2.3 2.1 

Dadra and Nagar Haveli 1.0 1.4 1.1 1.3 

Goa 1.2 1.9 1.3 1.9 

Gujarat 1.2 1.5 1.2 1.5 

Himachal Pradesh 1.4 0.8 1.4 1.5 

Haryana 1.3 2.0 1.3 2.0 

Jharkhand 1.2 1.3 1.2 1.3 

Jammu and Kashmir 1.4 1.7 1.4 1.7 

Karnataka 1.2 1.4 1.2 1.4 

Kerala 1.4 2.6 1.4 2.6 

Maharashtra 1.2 1.3 1.2 1.3 

Meghalaya 1.2 2.1 1.2 2.1 

Manipur 1.2 2.1 1.2 2.1 

Madhya Pradesh 1.2 1.3 1.2 1.3 

Mizoram 1.2 2.1 1.2 2.1 

Nagaland 1.2 2.1 1.2 2.1 

Odisha 1.2 1.3 1.2 1.3 

Punjab 1.3 1.8 1.3 1.8 

Pondicherry 1.4 1.7 1.4 1.7 

Rajasthan 1.2 1.4 1.2 1.5 

Sikkim 1.2 2.1 1.2 2.1 

Tamil Nadu 1.3 1.7 1.3 1.7 

Tripura 1.2 2.1 1.2 2.1 

Uttar Pradesh 1.2 1.3 1.2 1.3 

Uttarakhand 1.3 1.6 1.3 1.6 

West Bengal 1.3 1.3 1.3 1.3 

 

Note: Numbers indicate the ratio of gains in life expectancy at birth (2010-2050 

relative to NPi) between 1.5°C-MFR and INCD-MFR scenarios. 
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Table SI.9: Difference in total population size compared to NPi scenario for India (in 

millions) 

 

 

Scenario Population size over NPi 

INDC  0.3 

2°C 2.0 

1.5°C 5.3 

INDC – MFR 13.1 

2°C – MFR 14.5 

1.5°C - MFR 16.2 
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5.2.1 Total decrements in LE due to ambient PM2.5 
 

For purposes of comparability with others studies, we also estimate the total loss in LE due 

to ambient PM2.5 across all scenarios modelled in Research Article II by comparing results 

with a counterfactual scenario, assuming a theoretical minimum risk exposure level 

(TMREL), below which there is no evidence of PM2.5 impacts on mortality (Burnett et al., 

2018). 

 

Method 

 

To estimate LE and population size under the TMREL of ambient PM2.5, we adjusted the 

age-, residence- and state-specific mortality rates to eliminate PM2.5 as health risk factor as 

follows: 

 

𝑚𝑎,𝑟,𝑠
𝑠𝑐𝑒𝑛(𝑡) = (

𝑚𝑎,𝑟,𝑠
𝑏𝑎𝑠𝑒(𝑡) ∗ 𝑆ℎ𝑎𝑟𝑒𝑁𝐶𝐷+𝐿𝑅𝐼

𝐻𝑅𝑎,𝑟,𝑠(2010)
) + 𝑚𝑎,𝑟,𝑠

𝑏𝑎𝑠𝑒(𝑡) ∗ (1 − 𝑚𝑎,𝑟,𝑠
𝑏𝑎𝑠𝑒(𝑡) ∗ 𝑆ℎ𝑎𝑟𝑒𝑁𝐶𝐷+𝐿𝑅𝐼) 

 

Based on these new probabilities of death, we reconstructed the state-specific life tables to 

calculate the hypothetical future life expectancies in the absence of ambient PM2.5. Since all 

other assumptions of population change remain unchanged, we attribute the difference 

between LE in the demographic projection and the LE under the PM2.5 TMREL as the loss 

of LE due to PM2.5 exposure. This approach is similar to the one used by the GBD 

(Balakrishnan et al., 2019). 

 

Results 

 

We find that PM2.5 levels in 2010 reduced LE in India by 2.3 years, with state-level decrements 

ranging between 1.2 and 5.6 years (Figure 5.1). This estimate falls within the range of outputs 

from other modeling studies in India (0.9-4.3 years (Table 5.1)). The largest LE losses in 2010 

occurred in urban populations (women: 2.7 urban vs 2.0 years rural, men: 3.0 urban vs 2.2 

rural years). We estimated that under the NPi scenario loss in LE due to PM2.5 in India can 

reach ~3 years, while pursuit of most aspirational policy (1.5° – MFR) can reduce it to ~1.4 

years (Table 5.2). In terms of population size, we find that bringing ambient PM2.5 to the 

TMREL of 2.4 μg/m3, India´s population would be almost 40.1 million above the business-
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as-usual projections (Figure 5.2). Furthermore, when ambient PM2.5 is completely eliminated 

as a health risk factor, the share of the elderly population (age 65+), is projected to reach 

17.5 % from 5.5 % in 2010. 

 

Figure 5.1: Loss in LE at birth from PM2.5 in 2010 compared to the TMREL of 2.4 μg/m3. 

 

Figure 5.2: India´s total projected population under all modelled ambient PM2.5 scenarios, including a 

counterfactual scenario, assuming a TMREL of 2.4 μg/m3. 
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Table 5.1: Comparison of methods and PM2.5-attributable loss in LE from this study with other studies 

on India 

Study Year Air 

pollutant 

LLE 

(years) 

TMREL 

for PM2.5 

Exposure-

response 

function 

Modelled 

mortality 

causes 

Method 

Balakri
shnan 
et al. 
(2019) 

2017 ambient 
PM2.5  

0.9 2.4 - 5.9 
μg/m³ 

IER ALRIs 
(infants); 
IHD, 
stroke, 
COPD, 
lung, 
cancer, and 
diabetes(ad
ults) 

Cause-deleted 
life table 
approach; 
reporting 
separate impact 
of ambient PM2.5 

and HAP, 
avoiding 
overestimation 
due to exposure 
to both 

Apte et 
al. 
(2018) 

2015 ambient 
PM2.5  

1.53 2.4 - 5.9 
μg/m³ 

IER ALRIs 
(infants); 
IHD, 
stroke, 
COPD, 
lung, 
cancer 
(adults) 

Cause-deleted 
life table 
approach 
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Guo et 
al. 
(2018) 

2010 ambient 
PM2.5 

1.98 2.4 - 5.9 
μg/m³ 

IER ALRIs 
(infants); 
IHD, 
stroke, 
COPD, 
lung, 
cancer 
(adults) 

Summation of 
the number of 
deaths at each 
age group 
multiplied by the 
number of years 
remaining (i.e. e0 
for India) 

This 
study 

2010 ambient 
PM2.5 

2.3 2.4 
μg/m³ 

GEMM NCDs, 
LRIs 
(adults) 

Cause-deleted 
life table 
approach 

Ghude 
et. al 
(2016) 

2010 ambient 
PM2.5 

3.4 NA Pope et al. 
(2009)  

all-cause 
mortality 
(all ages) 

Applying a linear 
unit PM2.5-LLE 
association from 
high-income 
countries  

Lelieve
ld et al. 
(2020) 

2015 ambient 
O3 and 
PM2.5 

3.85 2.4 
μg/m³ 

GEMM 
and Jerrett 
et al. (2009) 

LRIs, 
COPD, 
IHD, 
stroke, and 
LC, other 
NCDs 
(adults) 

Based on 
calculations of 
PM2.5- and O3-
attributable YLL, 
normalised by 
population size 
and multiplied 
by reference 
maximum LE of 
91.9 

Greens
tone 
and 
Fan 
(2018) 

2011 ambient 
PM2.5  

4.3 10μg/m³ 
(WHO 
standard) 

Chen, et al. 
(2013)  

all-cause 
mortality 

Applying an 
association of 
particulate 
matter and LE 
derived from a 
quasi-
experimental 
empirical study 
based on China’s 
Huai River 
policy 

Note: IER – Integrated Exposure Response function, GEMM -Global Exposure Mortality Model, (A)LRIs – (Acute) Lower 

Respiratory Infections, COPD - Chronic Obstructive Pulmonary Disease, IHD – Ischemic Heart Disease, LC – Lung Cancer, 

NCDs – Non-communicable Diseases, LLE – Loss in Life Expectancy at Birth 
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Table 5.2: Decrements in LE at birth due to PM2.5 exposure above the TMREL for India by residence 

and sex under all modelled scenarios 

 

C. Females 

    NPi INDC 2°C  1.5°C  INDC-

MFR 

2°C - 

MFR 

1.5°C - 

MFR 

India 2010 2.2 2.2 2.2 2.2 2.2 2.2 2.2 

2050 2.7 2.7 2.4 2.1 1.7 1.4 1.3 

Urban 

areas 

2010 2.7 2.7 2.7 2.7 2.7 2.7 2.7 

2050 2.8 2.8 2.4 2.1 1.8 1.5 1.3 

Rural 

areas 

2010 2 2 2 2 2 2 2 

2050 2.6 2.6 2.2 1.9 1.4 1.3 1.1 

 

D. Males 

    NPi INDC 2°C  1.5°C  INDC-

MFR 

2°C - 

MFR 

1.5°C - 

MFR 

India 2010 2.4 2.4 2.4 2.4 2.4 2.4 2.4 

2050 3.3 3.3 2.9 2.5 2 1.7 1.6 

Urban 

areas 

2010 3 3 3 3 3 3 3 

2050 3.5 3.5 3 2.7 2.2 1.8 1.7 

Rural 

areas 

2010 2.2 2.2 2.2 2.2 2.2 2.2 2.2 

2050 3.1 3 2.6 2.3 1.7 1.5 1.4 
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5.2.2 Comparison of the static and dynamic health impact 

assessment approaches 
 
Motivation 

 

We were interested in comparing the results of the dynamic estimation of the health burden 

of PM2.5 used in Research Article II with the static health impact assessment approach (CRA) 

that most of the existing projection studies on air pollution and temperatures are using. In 

the conventional approach mortality due to air pollution is quantified as a fraction of total 

mortality that can be attributed to the exposure to PM2.5: 

 

𝑀𝑎𝑡𝑡𝑟(𝑡) = 𝑃𝑜𝑝(𝑡)𝑚(𝑡)
𝐻𝑅(𝑡) − 1

𝐻𝑅(𝑡)
 

 

where Pop is the population size and 𝑚 is the baseline mortality rate for a specific year. The 

reference point of this static estimation is a counterfactual where air pollution is at its 

theoretical minimum, below which no health effects are assumed (a TMREL of 2.4 μg/m3 

in the GEMM). In this approach, future mortality rates and population estimates are based 

on assumptions of future demographics only and do not change across emission scenarios, 

but only the proportion of deaths that can be attributed to air pollution changes, hence the 

term “static” that we use. This method can be misleading for long term predictions since it 

does not consider changes in mortality and population survival induced by changes in 

exposure. For instance, using the static approach total number of deaths in a high and low 

emission scenario will be the same but a larger share of these deaths will be attributed to air 

pollution in the high emission than in the low emission scenario. Furthermore, summing up 

avoidable premature deaths from air pollution over time with this approach would not be 

appropriate, because population survival in one period would have affected future 

population size, structure, and deaths.  

 

Method 

 

For comparison between the static and the dynamic approach we selected only one of the 

air pollution scenarios modelled in Article II, namely the INDC scenario. First, we projected 

total attributable deaths due to ambient PM2.5 based on the static approach described above, 

using age-, sex-, urban-rural and state-specific mortality and population estimates from the 
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demographic projection and hazard risk estimates based on the GEMM and the projected 

population-weighted exposures under the INDC scenario. Second, we also projected the 

total deaths that could be attributed to ambient PM2.5 using the dynamic approach. For this 

purpose, we ran the population projection and estimated future changes in LE and deaths 

under a counterfactual scenario of TMREL to PM2.5 (<2.4 μg/m3), beyond which no health 

effects are assumed11. In other words, this is a hypothetical scenario where AAP is eliminated 

as a health risk factor and the risk-deleted mortality rate reflects the rate that would be 

observed if PM2.5 exposure levels were brought to their theoretical minimum. For each future 

year the mortality rate was calculated as follows: 

 

𝑚𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒
𝑠𝑐𝑒𝑛 (𝑡) =

𝑚𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒
𝑏𝑎𝑠𝑒 (𝑡)

𝐻𝑅𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒(2010)
 

 

We then compared the total projected mortality under this counterfactual scenario with the 

projected mortality under the INDC scenario as described in Research Article II12. While 

comparison of the INDC scenario with the demographic projection provides estimates of 

the health impacts due to changes in PM2.5 after 2010, the comparison of the INDC scenario 

with the counterfactual scenario shows total health impacts attributable to PM2.5. By 

estimating total mortality burden due to PM2.5 under the dynamic approach in this way we 

were able to compare it with attributable number of deaths calculated for the same scenario 

with the static approach. 

 

Results 

 

The static and dynamic methods produce very different results in terms of total number of 

attributable deaths. Although the two estimates are very similar in the base year (2010), the 

further one goes in time, the higher their difference becomes, with attributable deaths in the 

static approach increasing over time and in the dynamic ― decreasing and stabalising (Figure 

5.2). In 2050, attributable deaths in the static model are three times higher than in the 

dynamic one. The outcomes of the dynamic method seem counterintuitive at first since they 

show reduction in the mortality burden of air pollution against a trend of increasing 

concentrations. 

 
11 Based on the GEMM model described above. 
12 Note that in this illustrative example cause-specifc mortality was not considered as in section 5.2.1 
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Figure 5.2: Deaths attributable to air pollution 2010-2050, INDC scenario, based on the two estimation 

methods 

 

 

 

The reason behind this surprising result becomes clear when looking at the age distribution 

of number of deaths estimated through the dynamic method. Attributable deaths are 

estimated as the age-specific difference in total deaths between a counterfactual scenario 

without air pollution (risk-deleted mortality) and the INDC scenario with increasing air 

pollution (mortality adjusted to changes in risk factor). Since LE at birth in the counterfactual 

scenario without air pollution will be higher, deaths will be delayed in time and will take place 

mainly among the elder age groups. Conversely, in the scenario with increasing air pollution  

 

Figure 5.3: Estimation of deaths attributable to air pollution in dynamic method. 
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(INDC scenario) LE would be lower, which will bring deaths forward in time. Thus, 

subtraction of age-specific number of deaths between the two scenarios results in negative 

numbers for the older age groups. Thus, the summation of total number of deaths due to 

ambient PM2.5 across all age groups diminishes over time, explaining the declining trend in 

attributable deaths in the dynamic method (Figure 5.3). The static model does not reflect at 

all these changes in mortality and the structure of the population, induced by changes in 

exposure. As a direct function of population size, mortality rate and the exposure, 

attributable deaths in this method increase over time. 

 

Discussion 

 

We compared two different methodologies ― dynamic and static ― for projecting health 

impact against a common counterfactual scenario where air pollution is reduced to its 

theoretical minimum. Although the dynamic method has been already applied in previous 

studies, to our knowledge the outcomes of the two methods have not been comprehensively 

compared and the static method of projection of health impacts continues to be the norm. 

While the dynamic model considers changes in mortality and population survival induced by 

changes in exposure, in the static model these dynamics are not reflected. Outputs of the 

two methods in terms of total number of attributable deaths differed both in the direction 

and magnitude of the projected impacts. We argue that the two methods offer different tools 

for assessing two different policy questions. The static method allows assessing total number 

of deaths in a certain period if air pollution, only in this but no previous or subsequent 

periods, is eliminated as a risk factor (thus not changing population structure over time). The 

dynamic method, on the other hand, allows assessing total premature mortality attributable 

to PM2.5 compared to a counterfactual scenario where air pollution is eliminated in the 

current and every subsequent period. Thus, the static method is appropriate for assessing 

impacts of policy interventions at one point in time, while the dynamic method is more 

appropriate for assessing feedback effects of a policy over time. Summing up avoided deaths 

from air pollution over time in the static method theoretically leads to overestimation of 

number of deaths as it does not consider that if deaths from air pollution were avoided in 

one period they might still have occurred at a later stage due to other unrelated causes, 

affecting future population size and mortality. However, due to the somewhat 

counterintuitive results when using the dynamic method to assess attributable number of 

deaths ― decrease in total deaths attributable to air pollution in a scenario with increasing air 
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pollution ― we argue that a different indicator of health outcomes might be more appropriate 

for comparison of the dynamic and static method, e.g. total person-years of life lived, healthy 

life years, etc. Comparison of the two methods using such metric was, however, beyond the 

scope of this thesis. 
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5.3 The impact of air pollution on child stunting in India – 
synergies and trade-offs between climate change mitigation, 
ambient air quality control, and clean cooking access 
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Abstract 

 

Background: Many children in India face the double burden of high exposure to ambient 

(AAP) and household air pollution (HAP), which can affect child linear growth. Although 

climate change mitigation is expected to decrease AAP, climate policies could increase 

the cost of clean cooking fuels. We aimed to project the future air pollution related burden 

of child stunting in India, accounting for synergies and trade-offs between climate policy, 

AAP control, and a clean cooking access support intervention. 

 

Methods: We linked data from a nationally representative survey (NFHS-4) with 

satellite-based estimates of fine particulate matter (PM2·5) and used a Binomial Logistic 

regression to quantify the association between in-utero exposure to ambient PM2·5, 

cooking fuel type, and stunting among children under-5 years. Ambient PM2·5 and clean 

cooking access were projected up to 2050 with an integrated assessment model under four 
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scenarios combining climate change mitigation (2°C target) with national policies for 

AAP control and subsidised access to clean cooking. We developed a static 

microsimulation model to quantify the potential impacts on child stunting due to changes 

in both outdoor and indoor air pollution under each scenario, accounting for differential 

effects of air pollution across population groups and for socio-economic and demographic 

change over time.   

 

Findings:  In-utero exposure to ambient PM2·5 significantly increased the odds of stunting 

(Odds Ratio (OR): 1·04, 95%CI: 1·04-1·05 per 10 μg/m3 PM2·5) and clean compared to 

polluting cooking fuel decreased the odds (OR: 0·81, 95%CI: 0·79-0·84) in confounder-

adjusted models. The positive effects on child linear growth from reductions in AAP 

under the 2°C Paris Agreement target could be fully offset by the negative effects of 

mitigation through reduced clean cooking access. Targeted AAP control or subsidised 

access to clean cooking could shift this trade-off to result in net benefits of 2·8 (95% 

uncertainty interval [UI]: 1·4, 4·2) or 6·5 (UI: 6·3, 6·9) million cumulative prevented 

cases of child stunting between 2020-50 compared to business-as-usual. Implementation 

of integrated climate, air quality, and energy access interventions had a synergistic 

impact, reducing cumulative number of stunted children by 12·1 (UI: 10·7, 13·7) million 

compared to business-as-usual, with the largest health benefits experienced by the most 

disadvantaged children and geographic regions. 

 

Interpretation: Findings underscore the importance of complementing climate change 

mitigation efforts with targeted air pollution and energy access policies to concurrently 

deliver on carbon mitigation, air pollution, energy poverty and health goals in India.  

 

Funding:  The development of the scenarios presented in this work has been supported 

through a project funded by the European Union's Horizon 2020 Research and Innovation 

Programme under grant agreement No. 642147 (CD-LINKS) and No 821471 

(ENGAGE). CT was funded through a Ramón y Cajal fellowship (RYC-2015-17402) 

awarded by the Spanish Ministry of Economy and Competitiveness. We acknowledge 

support from the Spanish Ministry of Science and Innovation through the “Centro de 

Excelencia Severo Ochoa2019–2023” Program (CEX2018-000806-S), and support from 

the Generalitat de Catalunya through the CERCA Program. 

Key words: stunting, air pollution, India, climate change mitigation 
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Research in context 

 

Evidence before this study 

 

Most assessments of air pollution health co-benefits from climate change mitigation to 

date have focused on mortality outcomes and on adult populations. These estimates 

underestimate the health burden from air pollution by not accounting for the multitude of 

relevant morbidity impacts. The potential lifelong consequences for future generations of 

children are still very poorly reflected in particular, even though these populations will 

bear a disproportionate share of the disease burden from environmental change. 

Furthermore, existing health co-benefit projections are based on comparative risk 

assessment or life table methods, which do not allow for more detailed analysis of health 

inequalities across socio-demographic groups and geographical areas. Lastly, the health 

co-benefits literature has largely focused on single exposure pathways and rarely 

considered concurrent effects of multiple exposures. A few microsimulation models 

analysing health outcomes under air pollution control have been developed for some high-

income countries, but models focusing on health co-benefits from climate change 

mitigation and on Low and Middle-Income countries are still lacking. We searched 

PubMed with the search terms (“co-benefits” OR “air pollution” OR “particulate matter” 

OR “PM” OR “cooking fuel”) AND (“stunting” OR “height” OR “growth” OR “HAZ”) 

AND (“climate” OR “mitigation” OR “projection” OR “forecast”) AND (“India”) for 

articles published in any language up to July 1, 2021. Our search returned no published 

articles on the topic. 

 

Added value of this study 

 

We quantified the impacts of climate change mitigation and complementary policy 

interventions on reducing the burden of child stunting from air pollution in India. We 

focused on an important health outcome, with significant long-term human capital and 

economic consequences at the individual, household, and national level, not previously 

included in co-benefits analysis. Our analysis makes use of a large nationally 

representative, individual-level dataset and advanced analytical techniques, which 
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allowed us to incorporate population-specific exposure response functions, differential 

impacts across population groups and geographical areas, and to consider simultaneous 

effects of indoor and outdoor air pollution. We used a static microsimulation, an 

integrated assessment model, and a multi-dimensional demographic projection in this first 

study to provide a detailed assessment of some of the counteracting and synergistic effects 

of climate change mitigation, ambient air quality, energy access, and socio-economic 

change on child health. 

 

Implications of all the available evidence 

 

While delivering on the Paris Agreement is projected to lead to a moderate decrease in 

exposure to ambient air pollution in India, household air pollution exposure is expected 

to increase due to reduced affordability of clean cooking fuels. This study showed that 

the benefits for child linear growth from reduced ambient air pollution under climate 

change mitigation in line with the Paris Agreement could be completely offset by 

projected increases in household air pollution without additional policy action. 

Appreciable co-benefits for child growth can be realised when global mitigation measures 

are accompanied by additional targeted end-of-pipe air quality control or policies to 

increase access to clean cooking. Child health benefits would be maximised with the 

coordinated implementation of climate, air quality, and energy access policies, with the 

largest health benefits among the most disadvantaged children. Findings from this study 

can help inform multisectoral national policies to protect child health while meeting the 

Paris Agreement targets.  

 

Introduction 

 

The 25 million children born annually in India are exposed to some of the highest levels 

of ambient air pollution (AAP) in the world, several-fold greater than current WHO 

guidelines. With 56 % of households in the country relying on highly polluting solid fuels 

to meet household energy needs, many children bear the double health burden of both 

high AAP and household air pollution (HAP)(International Institute for Population 

Sciences (IIPS) and ICF, 2017). Air pollution (both AAP and HAP) is currently 

recognised as the second leading risk factor for disease burden and mortality in India, 
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surpassed only by malnutrition (IHME, 2019). A recent India Disease Burden study 

attributed 4·8 % (95% UI 3·6-6·0) of all under-5 deaths in the country to AAP and 4·0 % 

(95% UI 3·0-5·1) to HAP (India State-Level Disease Burden Initiative Child Mortality 

Collaborators, 2020). Exposure to air pollutants in-utero and early in life can be especially 

detrimental for children´s health because of their biological vulnerability and rapid 

development resulting in a range of adverse health outcomes (Perera, 2017; Backes et al., 

2013). These include adverse birth outcomes, including low birth weight and pre-term 

birth, respiratory diseases such as pneumonia, asthma and bronchitis, impaired cognitive 

and neurological development. In addition to these well-established health outcomes, 

there is accumulating evidence that in-utero and early life exposure to AAP and HAP are 

also associated with child linear growth retardation (Zhu et al., 2015; Yuan et al., 2019; 

Bruce et al., 2013; Pun et al., 2021). 

 

Stunting, defined as being too short for one´s age, is a largely irreversible linear growth 

impairment that can have severe long-lasting impacts on child health and human capital 

formation. In childhood, stunting is associated with poor cognitive development (Poveda 

et al., 2021) and a  higher risk of mortality and susceptibility to infectious diseases such 

as pneumonia and diarrhoea. Later in life stunting can lead to lower productivity and 

earnings and increased risk of metabolic diseases (Prendergast and Humphrey, 2014). 

Although the biological mechanisms underlying the effects of air pollution on stunting 

are yet to be fully understood, it is recognised that these start during the in-utero period. 

Particles or their components can reach beyond the lungs of pregnant women to induce 

systemic inflammation or oxidative stress, leading to poor foetal growth (Backes et al., 

2013). Postnatally, environmental exposure to air pollution may compound the adverse 

effects of poor nutrition and pathogens on immune development and function, resulting 

in a cycle of recurrent disease and malnutrition (Dewey and Mayers, 2011). More 

specifically, recurrent respiratory infections caused by air pollution may lead to 

suppressed appetite, impaired absorption of nutrients, increased nutrient losses and 

diversion of nutrients towards immune response and away from growth (Dewey and 

Mayers, 2011). Several observational studies from India, where child undernutrition is 

among the highest in the world, reported consistent results for the association between 

child stunting and early-life exposure to AAP (Singh et al., 2019; Spears et al., 2019) and 

HAP, defined as use of unclean cooking fuels, compared with cleaner alternatives (Islam 

et al., 2021; Fenske et al., 2013; Tielsch et al., 2009). The epidemiological evidence 
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linking AAP and HAP with prenatal (small for gestational age) or postnatal (low height-

for-age z-score) stunting has been summarised by several meta-analyses (Zhu et al., 2015; 

Yuan et al., 2019; Bruce et al., 2013; Pun et al., 2021). According to the most recent 

pooled estimates a 10 μg/m3 increase in ambient PM2·5 over the entire pregnancy 

increased the odds of prenatal stunting by 8 % (95% CI: 3–13 %)(Pun et al., 2021), while 

postnatal exposure to HAP from solid fuel use compared to cleaner fuels increased the 

risk of postnatal stunting by 19 % (95% CI: 10-29 %).  

 

Previous studies have shown that reductions in greenhouse gas (GHG) emissions in line 

with climate change mitigation targets can bring substantial AAP improvements and 

health benefits in India, so-called co-benefits (West et al., 2013; Silva et al., 2016; 

Vandyck et al., 2018; Markandya et al., 2018; Sampedro et al., 2020; Chowdhury et al., 

2018), and even more so when combined with stricter national measures for air quality 

control (Dimitrova et al., 2021). However, scenario analysis from six different Integrated 

Assessment Models (IAMs), which quantified the interactions between climate change 

mitigation and energy access suggest that stringent climate policy might significantly 

slow down the transition to clean cooking fuels by affecting energy prices (McCollum et 

al., 2018). Thus, climate change mitigation is likely to have opposing effects on the levels 

of AAP and HAP exposure and the associated health and developmental outcomes for 

future generations of children.  

 

We used a novel analytical method and outputs from an IAM and a multi-dimensional 

demographic projection to investigate, for the first time, how the synergies and trade-offs 

between climate change mitigation, targeted ambient PM2·5 control and energy access 

support policies could affect future child stunting in India.  

 

Methods 

 

Study design 

 

Our analysis proceeded in two stages. First, we examined the association between early-

life exposure to AAP, as measured by ambient PM2·5, and HAP, as measured by type of 

fuel used for cooking, and stunting in a large dataset of children under-5 years in India. 
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In the second stage, we developed a static microsimulation model of child stunting based 

on the survey data, a multi-dimensional population projection and projections of ambient 

PM2·5 concentrations, clean fuel use and poverty levels from an IAM. We used the model 

to project the prevalence of child stunting at local level and for distinct population groups 

under four scenarios combining climate change mitigation, air quality control and policies 

to support clean cooking access (CCA). A detailed description of the data sources and 

methods is provided in the appendix. 

 

Stage one: Epidemiological analysis 

 

We used nationally representative anthropometric and household data of children under-

5 from India´s 2015-16 National Family Health Survey (NFHS-4). The outcome variable 

in our analysis was child stunting, defined as height-for-age z- score (HAZ) below minus 

two standard deviations from the median of the WHO Child Growth Standards. We linked 

the individual data with high resolution annual average PM2·5 concentrations for the 

period 2009-2016 from the Atmospheric Composition Analysis Group (Hammer et al., 

2020). The data are based on satellite observations and chemical transport modelling and 

calibrated against available ground-based measurements (Hammer et al., 2020). Each 

child was assigned average PM2·5 exposure for the in-utero period based on the location 

of their household cluster, date of birth and pregnancy duration. For pregnancies spanning 

two years, a month-weighted average was constructed (appendix 1.1). 

 

As a proxy of exposure to HAP, we used primary cooking fuel type as reported by each 

household in the survey data. We analysed the effect on child stunting of cooking with 

clean fuels (electricity, Liquefied Petroleum Gas (LPG), natural gas and biogas) 

compared to high-polluting fuels (kerosene, coal, charcoal, wood, straw, crop waste and 

dung). We fitted a Binomial Logistic regression with a random intercept for 

administrative district and penalized spline for age to estimate the effects of both PM2·5 

exposure in-utero and type of cooking fuel on child stunting, adjusting for confounders 

and accounting for interaction effects between exposures and socio-economic variables 

(see appendix 1.1). We performed a series of model specification checks by including a 

larger set of covariates in the model, adjusting for seasonality, and estimating effects of 

life-course PM2·5 exposure (appendix 1.1). 
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Stage two: Projections 

 

Scenarios We developed four hypothetical pathways for India to deliver on the Paris 

Agreement target and compared them to a reference scenario (Table 1). “NPi without 

access policy” specifies a business-as-usual pathway of global GHG emissions based on 

currently announced climate policies till 2030, current AAP legislation and no additional 

support for CCA. We explore four mitigation pathways, which differ from the NPi in that 

they assume the implementation of a carbon price of US$40 per ton CO2 equivalent in the 

year 2020 that increases at the social discount rate through until the end of the century.  

These pathways are consistent with a >66% chance of limiting global mean temperature 

increases to 2°C relative to pre-industrial levels throughout the end of the century. The 

four mitigation pathways differ between each other only with respect to the AAP control 

and compensatory energy access policies implemented at the national level. The 2°C 

scenarios assume compliance with current air pollution legislation only, while the 2°C 

MFR (Maximum Feasible Reduction) scenarios model implementation of additional few 

hundred end-of-pipe national air quality control measures in industrial, power generation, 

household, and agricultural sectors. The “no access” scenarios assume no 

counterbalancing price support policies on clean fuels and stoves, while the two “access” 

scenarios model a universal subsidy covering 15% of the cost of LPG cooking stoves and 

75% of the cost of LPG fuel.  

 

The AAP and CCA scenarios were developed independently in the MESSAGE-

GLOBIOM global energy-economy IAM framework (IIASA, 2021) based on the same 

national CO2 budget constraints and projections of population growth, urbanisation and 

various regionalised economic activities. The AAP projections were generated within the 

Greenhouse-Gas Air Pollution Interaction and Synergies (GAINS) module, while the 

clean access transitions were modelled within the Access household fuel-choice module 

of MESSAGE-GLOBIOM. More details on the climate-energy modelling and the 

linkages of the different modules can be found elsewhere (Cameron et al., 2016; Purohit 

et al., 2019). 

 

Static microsimulation For each year and scenario, we generated datasets with individuals 

with identical characteristics to those in the stage one dataset. We applied a reweighting 
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Scenario Climate Change 

Mitigation  

Ambient Air 

Pollution Control  

Clean Cooking Access  

NPi without 

access policy 

National Policies 

for climate, 

energy, 

environment and 

development until 

2030, no climate 

policy after 2030. 

Current air pollution 

legislation 

No additional clean 

cooking access support 

policy 

2° C without 

access policy 

National Policies 

until 2020, after 

which mitigation 

measures in line 

with a >66% 

chance of staying 

below 2°C 

throughout 21st 

century.  

No additional clean 

cooking access support 

policy 

2° C with 

access policy 

15 % LPG cooking 

stove & 75 % LPG cost 

subsidies available to all 

households  

2° C MFR 

without access 

policy 

Maximum Feasible 

Reduction (MFR) of 

air pollution 

No additional clean 

cooking access support 

policy 

2° C MFR with 

access policy 

15 % LPG cooking 

stove & 75 % LPG cost 

subsidies available to all 

households  

Table 1: Scenarios description 

NPi – National Policy Implementation, MFR – Maximum Feasible Reduction 
 

procedure to reproduce the changes in the demographic characteristics of children under-

5 over time (age, sex, state, residence, maternal education) as forecasted by a multi-

dimensional demographic projection for India (K. C. et al., 2018). The population 

projection assumes a continuation of past demographic trends, leading to a decline in 

fertility and in child mortality, improvement in educational attainment and increase in 

urbanisation (Table S2). In each simulated dataset we altered the individual PM2·5 

exposure during pregnancy, the income category and the primary cooking fuel of the 

household based on the projections from the IAM, keeping other covariates fixed. 

 

Gridded annual mean PM2·5 concentrations under each scenario were obtained separately 

for urban and rural locations for the period 2010-2050 from the GAINS model and 
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matched with the simulated datasets based on the geographic coordinates and urban-rural 

designation of NFHS-4 clusters. In-utero PM2·5 exposure for each individual in our 

simulated datasets was then calculated, assuming no change in pregnancy duration and 

the seasonality of births.  

 

We used data on changes in poverty levels and uptake of clean cooking fuels under the 

policy pathways described above, generated in the MESSAGE-Access household fuel-

choice model (Cameron et al., 2016). Data were available for the whole of India and 

distinguished energy use patterns of four socio-economic groups based on rural-urban 

residence and daily per-capita expenditure threshold (PPP$2 per day in rural and PPP$5 

per day in urban areas (PPP, Purchasing Power Parity)). We translated aggregate level 

projections into individual cooking fuel choices based on several assumptions. First, due 

the aggregate level of income and clean fuel projections we assumed the same rate of 

poverty reduction and uptake of cleaner cooking fuels for all regions. Second, since 

NFHS-4 includes data on relative poverty only (i.e., a composite wealth index), for each 

future year and scenario we generated an indicator of absolute poverty based on the 

household wealth index and the projected population distribution in each poverty 

category from the IAM. Third, we ranked fuel preferences following the theory of the 

“energy ladder” and assumed that as households´ economic status improves they tend to 

gradually shift to cleaner fuels (Van Der Kroon et al., 2013) (appendix 1.2). To also 

account for the importance of socio-demographic factors in determining household fuel 

choice, we conditioned transition to clean cooking on maternal educational level. For 

example, as energy access increased over time, we selected households which used 

kerosene and ranked highest on maternal education to transition to cleaner fuels first; after 

all kerosene users had transitioned, we selected those using charcoal and ranked highest 

on maternal education to transition, and so on until the projected share of clean fuel users 

for a specific socio-demographic group from MESSAGE-Access was reached. This 

procedure was done separately for each year, scenario, state, residence, and income group. 

We used the regression model specified in the epidemiologic analysis (Stage one) to 

predict the probability of stunting under the specified scenarios for each individual in the 

dataset. The adjusted sampling weights were then applied to estimate the stunting 

prevalence in the population under each scenario.  
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We performed posterior simulations to derive 95 % UIs (appendix 1.3). Lack of 

confidence bounds in the projections of ambient PM2·5, access to clean cooking fuels, 

income, and population change limited our ability to incorporate these uncertainties in 

our final estimates. We performed a sensitivity analysis by re-running the simulations 

after calibration of modelled PM2·5 concentrations in GAINS with those from the 

Atmospheric Composition Analysis Group (appendix 1.4). 

 

Results 

 

Epidemiological analysis 

 

203,870 children from the NFHS-4 dataset were included in our final sample, after 

removing missing observations, children that had died or were reallocated since their 

birth. Summary statistics for the exposure variables and other covariates by stunting status 

are presented in Table S1. Children in our sample were on average exposed to 73·6 g/m3  

 

 

Figure 1: Map of India showing (a) children’s district-level mean ambient PM2·5 

exposure in-utero (g/m3) and households using unclean cooking fuel (%) in 2015, 

and (b) district-level prevalence of stunting among children under-5 in 2015. 

All values are weighted using sampling weights of NFHS-4. 
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PM2·5 in-utero, while 67 % of them lived in households without CCA. There were large 

regional variations in AAP and HAP exposure as well as in stunting prevalence (Figure1). 

After adjustment for confounders, our model showed that in-utero exposure to ambient 

PM2·5 significantly increased the odds of child stunting (OR: 1·04, 95% CI: 1·03-1·05 per 

10 μg/m3 increase in PM2·5), while clean compared to polluting cooking fuel decreased 

the odds of stunting (OR: 0·81, 95% CI: 0·79-0·84) (Table S3). We observed 

modification of the effect of in-utero PM2·5 exposure on stunting by sex, residence 

(urban/rural), maternal education, caste, and household income. The effect of CCA was 

modified by sex and caste. In particular, female children, those living in urban areas, born 

to less educated mothers, belonging to more disadvantaged castes and to lower income 

households were more susceptible to the harmful effects of PM2·5 on linear growth. 

Conversely, the beneficial effects of CCA on child stunting were more pronounced for 

children that were female and that did not belong to socially disadvantaged castes. Similar 

to Spears et al. (2019), we did not find evidence for a non-linear association between 

PM2·5 in-utero exposure and child stunting. Seasonal effects of PM2·5 exposure in-utero 

were not detected after adjusting for month of birth, and inclusion of the additional co-

variates had minimal effect on the exposure effect estimates (Figure S1). As we used 

annual PM2·5 data in the analysis, we could not test the effect of PM2·5 exposure in 

different trimester periods on child stunting. In-utero exposure to ambient PM2·5 was more 

strongly associated with child linear growth than life-course exposure (in-utero and after 

birth) (Figure S1).  

 

Projections of impacts on stunting 

 

Projected in-utero ambient PM2·5 exposure and the share of population with CCA by 

residence and year are shown in Table 2. Under all scenarios ambient PM2·5 is projected 

to decrease and CCA to increase over time. The largest reductions in ambient PM2·5 are 

observed in the scenarios where climate change mitigation is accompanied by end-of-

pipe AAP controls, while population access to clean cooking is maximised in those 

modelling the adoption of additional access support policies. The projected characteristics 

of children under-5, which are identical across all modelled scenarios, are shown in Table 

S2. 

 



 

 202 

Scenario    Year Average in-utero PM2·5 

(μg/m3) 

Share of children living in 

households with CCA (%) 

    Rural   Urban   Rural   Urban 

 2015 75 70 17 73 

      

NPi without 

access policy 

2030 50 61 53 90 

2050 57 73 65 95 

2° C without 

access policy 

2030 48 59 36 80 

2050 49 60 49 90 

2° C with access 

policy  

2030 48 59 77 96 

2050 49 60 

 

90 97 

2° C MFR 

without access 

policy  

2030 39 48 36 80 

2050 22 

 

30 49 90 

2° C MFR with 

access policy 

2030 39 48 77 96 

2050 22 

 

30 90 97 

Table 2: Baseline and projected exposure variables according to scenario and year 

The 2015 values for CCA and in-utero PM2·5 are calculated based on the NFHS-4 data 

and the Atmospheric Composition Analysis Group data, respectively, applying sample 

weights. All future values are based on modelled CCA and PM2·5 concentrations, 

applying adjusted sample weights to account for changes in demographics, urbanisation 

and maternal education over time. 

 

Figure 2 and Table S4 show the cumulative (2020-50) preventable number of stunted 

children over time under each intervention scenario compared to NPi and disaggregated 

by the contribution of changes in AAP and HAP. In the 2°C scenario without access 

policy, the increase in child stunting from higher HAP (+ 4 million) is larger than the 

reduction in the burden from AAP (-1·2 million), leading to an overall higher cumulative 

number of stunted children compared to NPi (2·9 million, UI: 2·8, 3·0). However, 

accompanying the 2°C mitigation efforts with additional AAP control or CCA support is 

projected to reduce the overall burden of child stunting from air pollution compared to 

NPi. Implementation of national policies for maximum feasible reduction of AAP can 

help prevent 2.8 (UI: 1·4, 4·2) million cases of child stunting between 2020-50, while 

compensatory subsidies for LPG cooking fuel and stoves can avert growth faltering in 

6·5 (UI: 6·3, 6·9) million children. The joint implementation of the two policies along 

with mitigation efforts will have synergistic effects for child growth and prevent linear 

growth impairment in 12·1 (UI: 10·7, 13·7) million children overall compared to NPi.  

 

Table S5 and S11 show the projected stunting prevalence over time and across scenarios 

with the uncalibrated and calibrated ambient PM2·5 data. Sensitivity analysis with 

calibration of the modelled data did not notably affect our final results (S12). 
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Figure 2: Cumulative preventable number of stunted children (in million) from 

changes in household air pollution (orange), ambient air pollution (green) and 

household and ambient air pollution combined (dashed black line) according to 

mitigation scenario and year relative to NPi scenario. 

 

The benefits of the most aspirational scenario (2°C MFR with access policy) compared 

to NPi differed by population groups (Figure 3 and Tables S6-S10). While all children 

benefited from improvements in indoor and outdoor air quality under the 2°C MFR with 

access policy scenario compared to NPi, child linear growth improved the most among 

more disadvantaged groups with the highest prevalence of stunting in 2015. Larger 

difference in the prevalence of child stunting in 2050 between the 2°C MFR with access 

policy and the NPi were estimated for children living in poorer households (- 6·3 % 

compared to – 2·3 % for richer households), belonging to a scheduled caste or tribe 

(- 3·6 % compared to – 1·6 % for those from other castes) or having an uneducated 

mother (- 5·8 % compared to - 2·2 % for those with highest maternal education). The 

benefits of the 2°C MFR with access policy scenario in 2050 were similar for both sexes 

and for urban and rural residents, thus only marginally reducing existing disparities in 

child stunting among these groups.  
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Figure 3: Projected trends in stunting prevalence (children under-5) by population 

sub-group under NPi and 2°C MFR with access policy scenarios 

 

Similarly, implementation of the 2°C MFR with access policy scenario was projected to 

reduce stunting prevalence in the districts with the highest burden of child stunting in 

2015, especially in North-eastern India and around the Indo-Gangetic Plain (Figure 4). In 

2050, largest reductions in the prevalence of child stunting were recorded in the Purbi 

Singhbhum and Saraikela Kharsawan districts in Jharkhand (- 6 %) and in the districts 

within the National Capital Territory of Delhi (-7 %), almost three times higher than the 

India average (-2·5%) (Figure 4). 
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Figure 4: Percent difference in projected prevalence of child stunting in 2050 

between the 2°C MFR with access policy and NPi scenarios according to 

administrative district.  

 

Discussion  
 

We used a static microsimulation model to assess the potential impacts of changes in AAP 

and HAP on child linear growth impairment in India under four policy scenarios for 

delivering on the Paris Agreement climate change mitigation target. Our analysis resulted 

in several key findings. First, the slower transition to clean cooking fuels under climate 

change mitigation could fully cancel out projected benefits for child linear growth due to 

reduced AAP without additional policies. Second, net benefit for health would result if 

stringent climate policy were complemented by either national end-of-pipe air quality 

control or policies to support clean cooking access. These policies would prevent stunting 

in 2·8 (UI: 1·4, 4·2) million and 6·5 (UI: 6·3, 6·9) million children between 2020-2050, 

respectively, compared to the business-as-usual. Third, optimal results for child growth 

can be achieved when mitigation action is combined with both complementary policies 

(stunting avoided in 12·2 (UI: 10·7, 13·7) million children). This policy pathway will also 

provide an opportunity to reduce inequalities in health and human capital early in life by 

benefiting the most underprivileged children – those with lowest household income, 

maternal education, and social status. In terms of geographical impacts, we estimated that 

the implementation of integrated climate, air quality and energy access policies would 

help reduce stunting where it is currently most prevalent – the regions along the Indo-

Gigantic Plain and in north-eastern India. Due to the high concentrations of ambient PM2.5 
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and the high levels of poverty and hence reliance of unclean cooking fuels, children 

growing up in these regions are likely to particularly benefit from the combined ambient 

air pollution controls and CCA policies. 

 

We used a novel health impact modelling approach, which allows for an in-depth 

assessment of the interactions of complex population-environment dynamics and multiple 

exposure pathways on human health, not captured by comparative risk assessment 

methods. A particular advantage of the applied static microsimulation model is the more 

modest modelling and computational requirements compared to dynamic 

microsimulations and agent-based models, which still allow for comprehensive 

evaluation of the distributional effects of policies. We identified a number of socio-

economic effect modifiers for the two exposure variables in the first stage of the analysis 

- sex, residence, maternal education, caste, and household income for in-utero PM2·5 

exposure and sex and caste for CCA. The static microsimulation approach allowed us to 

reflect these heterogenous individual effects in the health impact assessment without the 

full computational burden of a dynamic microsimulation. By using a re-weighting 

procedure, we were able to account for changes in many important socio-demographic 

characteristics of the population – age, sex, urban residence, region, and maternal 

education – without having to perform a multidimensional demographic projection. The 

combination of static microsimulation with integrated assessment models and 

demographic projections offers a flexible and efficient approach for meeting the 

increasing demand of policy makers for projections that assess long-term health impacts 

and differential population vulnerabilities related to climate change.  

 

Overall, our findings underscore the importance of complementing climate change 

mitigation efforts with targeted air pollution and energy access policies to improve child 

health in India. We identified population groups and regions where combined policies 

could deliver the largest health benefits, which could be valuable for more targeted 

national- or local-level efforts to improve air quality and clean cooking access. As 

highlighted by previous studies, health benefits of these combined policies crucially 

depend on effective enforcement and overcoming of legal, financial, social and other 

barriers for their sustained implementation (Peng et al., 2020).  
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Our analysis has a number of limitations. First, although the ambient PM2·5 and the CCA 

projections in our model were developed within the same IAM, they were not fully 

integrated. The effect of clean energy uptake on ambient PM2·5 exposure was not 

considered, leading to a possible underestimation in the reductions in ambient PM2·5. 

Chowdhury et. al. (2019) showed that complete mitigation of biomass emissions from 

cooking in 2015 would have reduced ambient PM2·5 concentrations in India by 17.5%. 

The likely underestimation in our analysis would be smaller since the difference in CCA 

in our mitigation scenarios with and without access in 2050 was 29% rather than 100%. 

Ambient PM2·5 reductions from end-of-pipe air quality control on indoor air quality were 

not reflected in the MFR scenarios since we used CCA as a proxy of indoor air pollution 

exposure. The adoption of more efficient biomass cookstoves modelled in the MFR 

scenarios was also not implemented as NFHS does not include data on type of cooking 

stove. However, this effect is likely to be small as improved biomass cookstoves have 

resulted in minimal health benefits (Sambandam et al., 2015). Second, we did not 

explicitly model fuel stacking due to lack of data on use of multiple fuels in NFHS-4. 

Fuel stacking is a well-documented behavioural response to volatile fuel supplies and 

prices, household incomes, or a result of cultural preferences (Van Der Kroon et al., 

2013). Accounting for fuel stacking would likely lead to somewhat smaller estimated 

benefits of CCA policies on child stunting given that some households might not use 

clean fuels exclusively. Third, projected trends in poverty and clean fuel use were 

available only at aggregate level from the IAM. Differences in trends in income and CCA 

across states in our model thus only reflect disparities in 2015. As higher resolution 

energy, population and income projections from IAMs and demographic models become 

available in the future, more refined geographical variations in health impacts could be 

assessed. Finally, the population, energy and income projections in our model also do not 

reflect the catastrophic effects that COVID-19 has recently had on population health, the 

economy of India, and clean energy access. Although the full impacts of the crisis are still 

to be fully evaluated, research has suggested that the pandemic might slow down the 

transition to clean cooking fuels and other development objectives in the country 

(Ravindra et al., 2021) and affect global investments in emission reductions (Reilly et al., 

2021).  

 

Future extensions of this modelling approach could focus on incorporating dynamic 

feedback effects and behavioural responses such as the effects of air pollution on child 



 

 208 

survival over time or the influence of child stunting on educational attainment and adult 

survival later in life. In addition, an extension of this model could also evaluate the 

balance of costs between scenarios. Both the end-of-pipe air quality measures and the 

CCA subsidies presented here entail additional policy costs besides mitigation finance. 

However, previous research has shown that avoided premature mortality through climate 

change mitigation or MFR in India will considerably outweigh the potential 

implementation costs (Sanderson et al., 2013; Markandya et al., 2018). Furthermore, as 

highlighted previously, additional finance to cover subsidies for universal CCA could be 

mobilised through effort-sharing international climate regimes (Cameron et al., 2016). 

Besides these, the anticipated improvements in child linear growth, both through the air 

pollution co-benefits analysed here and through the avoided impacts from climate change 

via income and food prices previously demonstrated (Lloyd et al., 2018), represent a 

human capital investment, which is likely to bring to substantial savings through higher 

productivity, reduced morbidity, work absenteeism and associated health care costs. 
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1. Detailed information on data and methodology 
 

1.1 Epidemiological analysis  
 

Observed population data NFHS is a nation-wide, multi-round, two-stage stratified 

survey conducted in a representative sample of women of reproductive age1. Using 

NFHS´s child anthropometric data, we defined stunting as height-for-age z score 

(HAZ) below minus two standard deviations from the median of the WHO Child 

Growth Standards. To avoid exposure misspecification, we excluded observations for 

households, which were visitors or were not residing at the site at the time of birth of 

the child.  

 

Baseline ambient PM2.5 and clean cooking access data Due to the lack of direct 

ground-based PM2.5 observations for India, we retrieved high resolution annual 

average PM2.5 concentrations (0.01 ° x 0.01°) for the period 2009-2016 from the 

Atmospheric Composition Analysis Group (ACAG)2. The data are based on satellite 

observations and chemical transport modelling and calibrated against available 

ground-based measurements2. Each child in our sample was assigned average PM2.5 

exposure in-utero based on their date of birth, pregnancy duration and the geo-location 

of their household cluster. For pregnancy spanning two years, a month-weighted 

average was constructed as follows: 

 

𝑃𝑀2.5𝑖𝑛−𝑢𝑡𝑒𝑟𝑜  =
𝑃𝑀2.5𝑦𝑐𝑜𝑛𝑐𝑒𝑝 ∗ (12 − 𝑚𝑜𝑛𝑡ℎ𝑝𝑟𝑒𝑔 𝑠𝑡𝑎𝑟𝑡) +  𝑃𝑀2.5𝑦𝑏𝑖𝑟𝑡ℎ ∗ 𝑚𝑜𝑛𝑡ℎ𝑏𝑖𝑟𝑡ℎ

𝑝𝑟𝑒𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 

 

 

Where 𝑃𝑀2.5𝑖𝑛−𝑢𝑡𝑒𝑟𝑜  stands for PM2.5 exposure in the in-utero period, 𝑃𝑀2.5𝑦𝑐𝑜𝑛𝑐𝑒𝑝 – for 

annual average PM2.5 exposure in the year of conception of the child, 𝑃𝑀2.5𝑦𝑏𝑖𝑟𝑡ℎ – for 

annual average PM2.5 exposure in the year of birth of the child, 𝑝𝑟𝑒𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 – for 

duration of the pregnancy and 𝑚𝑜𝑛𝑡ℎ𝑝𝑟𝑒𝑔 𝑠𝑡𝑎𝑟𝑡 and 𝑚𝑜𝑛𝑡ℎ𝑏𝑖𝑟𝑡ℎ –  for the month of the 

start of the pregnancy and the month of birth, respectively. 

As a proxy of exposure to HAP we used the type of primary coking fuel of the 

households in the survey data. We assumed households used the same fuel at the time 

of birth of the child as reported at the time of interview as previous studies have shown 

that cooking fuel transitions are relatively slow. We analysed the effect on child 

stunting of cooking with clean cooking fuels (electricity, LPG, natural gas and biogas) 

compared to high-polluting fuels (kerosene, coal, charcoal, wood, straw, crop waste 

and dung). 

 

Statistical analysis We estimated the effect of PM2.5 exposure in-utero and type of 

cooking fuel using a Binomial Logistic regression, with random intercept for 

administrative district (63 districts) to account for clustering. Similar to Spear et al. 

(2019) 3, we did not use the NFHS-4 sampling weights in our statistical models. Based 

on the literature, we identified and adjusted for the following confounders: age and 

sex of the child, age, education and caste of the mother, household income category 

(based on the household wealth index as shown in the next section) and urban-rural 
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residence. Following the NFHS methodology, we re-calculate the wealth index using 

Principal Component Analysis but excluding type of cooking fuel use.  

We included a penalized spline for age and interaction terms between PM2.5 in-utero 

with sex of the child, urban-rural residence, maternal education, household income 

category and caste and interaction terms between clean fuel use with sex of the child 

and caste in order to account for differential vulnerabilities to air pollution across 

different socio-demographic groups. The analysis was performed with R (version 

3.6.1), using the package mgcv4. 
 

Our final model had the following form: 

ln (
Pr(𝑠𝑡𝑢𝑛𝑡𝑒𝑑𝑖 = 1)

Pr(𝑠𝑡𝑢𝑛𝑡𝑒𝑑𝑖 = 0)
=  𝛽0 + 𝛽1𝑃𝑀2.5 𝑖 + 𝛽2𝑃𝑀2.5 𝑖 ∗ 𝑆𝑒𝑥𝑖 + 𝛽3𝑃𝑀2.5 𝑖 ∗ 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑖

+ 𝛽4𝑃𝑀2.5 𝑖 ∗ 𝐸𝑑𝑢𝑐𝑀𝑜𝑡ℎ𝑒𝑟𝑖 + 𝛽5𝑃𝑀2.5 𝑖 ∗ 𝐼𝑛𝑐𝑜𝑚𝑒𝐺𝑟𝑜𝑢𝑝𝑖  
+ 𝛽6𝑃𝑀2.5 𝑖 ∗ 𝐶𝑎𝑠𝑡𝑒𝑖 + 𝛽7𝑠(𝐴𝑔𝑒𝑖,  8𝑑𝑓) + 𝛽8𝑆𝑒𝑥𝑖 +  𝛽9𝐴𝑔𝑒𝑀𝑜𝑡ℎ𝑒𝑟𝑖

+  𝛽10𝐸𝑑𝑢𝑐𝑀𝑜𝑡ℎ𝑒𝑟𝑖 + 𝛽11𝐶𝑎𝑠𝑡𝑒𝑖 +  𝛽12𝐶𝑙𝑒𝑎𝑛𝐹𝑢𝑒𝑙𝑖

+ 𝛽13𝐶𝑙𝑒𝑎𝑛𝐹𝑢𝑒𝑙𝑖 ∗ 𝑆𝑒𝑥𝑖 + 𝛽14𝐶𝑙𝑒𝑎𝑛𝐹𝑢𝑒𝑙𝑖 ∗ 𝐶𝑎𝑠𝑡𝑒𝑖

+ 𝛽15𝐼𝑛𝑐𝑜𝑚𝑒𝐺𝑟𝑜𝑢𝑝𝑖  + 𝛽16𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑖 + 𝑠(𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑖) 

 

 

1.2 Microsimulation model 
 

AAP projections Gridded annual mean PM2.5 concentrations at 0.5° x 0.5° resolution 

under each scenario were generated from the GAINS model for the period 2010-2050. 

PM2.5 concentrations were estimated separately for urban and rural areas by 

intersecting the gridded PM2.5 data with urban polygons5 and gridded population data6. 

Each individual in our dataset was allocated year- and scenario-specific PM2.5 

exposure by matching the GPS coordinates and urban-rural designation of their 

clusters with those in the modelled data. For the 10.5 % (n=2,686) of clusters where 

the NFHS-4 and the modelled urban-rural classification differed, the NFHS-4 

classification of clusters was preserved. In-utero PM2.5 exposure was calculated for 

each individual, assuming no change in the seasonality of births and pregnancy 

duration. 

  

Clean cooking fuel projections We used previously published data on the uptake of 

clean cooking fuels under the modelled scenarios generated in the MESSAGE-Access 

household fuel-choice model7. In brief, the model determines demand for clean 

cooking fuels for different socio-economic groups on the basis of fuel prices and 

household preferences and financial means7. The data were available for the whole of 

India and distinguished energy use patterns of four socio-economic groups based on 

rural-urban residence and daily per-capita expenditure thresholds (PPP$2 per day in 

rural and PPP$5 per day in urban areas). We also used projections of changes in the 

population distribution according to each of these groups generated with the 

MESSAGE-Access model. These projections were identical for each policy scenario 

and in line with the ‘middle-of-the-road’ storyline of the Shared Socioeconomic 

Pathways (SSP2)8. 
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Since NFHS-4 includes data on relative poverty only (i.e. wealth index summarising 

household ownership of various assets), we linked each child in the NFHS-4 survey 

with the modelled CCA data by firstly generating an indicator of absolute poverty for 

the base year and for each future period. We first ranked individuals in the dataset 

based on their household wealth score and then assigned them an income group by 

applying the absolute poverty thresholds such that the distribution of the population 

in each category matched the population distribution in the absolute poverty 

projections from the model. This approach also allowed us to account for changes in 

the socio-economic position of households over time. Income projections were 

available only at the national-level; we therefore assumed the same rate of uptake of 

cleaner cooking fuels for all regions.  

 

Having defined an income group for each individual, we translated the aggregate level 

projections into individual cooking fuel choices in our dataset. A common simplified 

model for explaining household fuel choices in low income countries assumes that as 

households´ economic status improves they tend to gradually shift to cleaner fuels i.e. 

ascending a metaphorical “energy ladder”9. Beyond income and fuel prices, studies 

have also found that socio-demographic factors such as education and sex of the head 

of the household and household size are also important determinants of household 

fuel choice9. We accounted for some of these empirical observations in our model by 

conditioning household adoption of clean cooking fuels on their current fuel use and 

maternal educational level. Based on the theory of the “energy ladder”, we ranked fuel 

preferences in the following order: dung/crop/ waste, wood, charcoal, coal, kerosene, 

gas, LPG, biogas, electricity. As an example, as energy access increased over time we 

selected households´ which use kerosene and rank highest on maternal education to 

transition to cleaner fuels first, after all kerosene users have transitioned, we selected 

those using charcoal on the basis of maternal education to transition, and so on until 

the projected share of clean fuel users for a specific socio-demographic group from 

MESSAGE-Access was reached. This procedure was done separately for each year, 

scenario, state, residence and income group. Since NFHS-4 includes data only on 

primary cooking fuel we could not account for multiple fuel use, which is a 

widespread household behaviour9. 

Static microsimulation procedure We developed a static microsimulation model to 

quantify the potential impacts on child stunting due to the projected changes in 

ambient PM2.5 and clean cooking access under each scenario, accounting for 

differential effects across population groups and for socio-economic and demographic 

change over time.  For each five-years period we generated a dataset of individuals 

identical to the ones in NFHS-4 dataset. To account for demographic change, we 

updated the simulated population each future period by modifying the individual 

sampling weights to reflect changes in the total population and the weighted 

characteristics of children (e.g. sex, age, state, urban/rural residence, education of the 

mother) from an existing advanced population projection model. The individual 

sampling weights from the survey were re-scaled as follows: 

𝑤𝑖,𝑦,𝑎,𝑠,𝑒,𝑟,𝑡 = 𝑤𝑖,2015,𝑎,𝑠,𝑒,𝑟,𝑡 ∗
𝑃𝑦,𝑎,𝑠,𝑒,𝑟,𝑡

𝑃2015,𝑎,𝑠,𝑒,𝑟,𝑡
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Where 𝑤𝑖,𝑦,𝑎,𝑠,𝑒,𝑟,𝑡 stands for the sampling weight of individual i in year y, with age a 

and sex s, maternal educational level e, living in residence r and state t; 𝑤𝑖,2015,𝑎,𝑠,𝑒,𝑟,𝑡 

is the sampling weight of an individual with the same characteristics in 2015, 

𝑃2015,𝑎,𝑠,𝑒,𝑟,𝑡 and 𝑃𝑦,𝑎,𝑠,𝑒,𝑟,𝑡  are the size of the total population in 2015 and in the future 

year y, respectively, with the same age, sex, maternal education, residence and state 

characteristics as individual i.  

 

To estimate the potential reduction in child stunting due AAP and HAP that could be 

achieved under the scenarios described previously we ran simulations with the micro-

datasets with altered exposures and sampling weights. We also accounted for 

economic development over time by altering each year the household income category 

variable based on the MESSAGE-Access projections and the household wealth index 

as described above. Simulations on the “aged” microdata were performed as follows: 

for each future year and scenario the effect estimates from the multivariable model 

specified above were used to predict the probability of stunting for each child under 

the new exposure patterns for AAP and clean fuel uptake, keeping other individual 

characteristics constant. The individual outcomes were then averaged, applying the 

altered sampling weights, to estimate the population level prevalence of stunting 

under each scenario. Finally, results were compared between the mitigation scenarios 

and the NPi scenario, where only the exposure variables between them differ, in order 

to isolate the effect of changes in AAP and clean cooking access on child stunting. 

The cumulative prevented number of stunted children for a certain year was calculated 

for each scenario by adding up the number of prevented cases of child stunting in the 

respective year with the number in all preceding years. 

 

In order to disentangle the contribution of AAP and HAP to changes in the burden of 

child stunting over time we ran additional simulations for each scenario. In the first 

set of simulations we only altered individual AAP exposure, income category and 

sampling weight, keeping household fuel use constant to the baseline year. Comparing 

results of these simulations with the simulations where all variables were altered, 

allowed us to isolate the impacts of changes in HAP on child stunting. Conversely, 

the impacts of changes in AAP on child stunting were isolated by running simulations 

where only individual household fuel type, income category and sampling weight 

were altered, keeping AAP exposure constant to the baseline year, and comparing 

results with the simulations where all variables were altered.   

 

1.3 Quantification of uncertainty 
 

We quantified the uncertainty in the estimated average stunting probability for the 

whole population by performing posterior simulations of the model parameters and 

computing the desired population average probabilities. Specifically, we simulated 

500 draws from the approximate multivariate normal distribution of the parameters 

with the estimated mean and variance-covariance matrix from the model. Predicted 

probabilities were computed for each draw of simulated parameters and each 

individual. Population average probabilities were then computed for each draw 

accounting for the sampling weights. The upper and lower bounds of the confidence 

intervals were estimated by calculating the 2.5th and 97.5th percentiles of the sample 



 

 218 

of average probabilities. Uncertainty in our results is also likely to stem from the 

modelling and projections of ambient PM2.5, access to clean cooking fuels, income, 

and population change. However, the lack of confidence bounds in these projections 

did not allow us to incorporate these set of uncertainties. 

 

1.4 Sensitivity analysis 
 

Annual ambient PM2.5 concentrations from the model used in the first stage (ACAG) 

and the second stage of the analysis (GAINS) were available for the years 2010 and 

2015. Comparison of the two models showed substantial differences across space, in 

particular for rural areas and regions in (Figure S2).  

We did not perform data calibration in the main analysis since i) both datasets were 

based on different models, with their own assumptions and uncertainties, which made 

it difficult to identify a superior model and ii) the geographical resolution of the two 

models was very different, thus making a direct comparison difficult. However, as a 

sensitivity analysis we ran the simulations again after calibrating the modelled PM2.5 

concentrations in GAINS with the data from ACAG. We selected the ACAG data for 

the calibration as their model was already calibrated against historical monitoring 

data. We calibrated the two datasets by calculating the mean residence- and district-

specific difference in PM2.5 concentrations between the two models for the years 2010 

and 2015 and then applied this offsetting factor to additively correct the projected 

GAINS time series for each cluster: 

 

𝑃𝑀2.5
𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑(𝑦, 𝑠, 𝑟, 𝑑, 𝑐) =

1

𝑛𝑐 (𝑟,𝑑)
∑

𝑃𝑀2.5 (2010)
𝐴𝐶𝐴𝐺𝑚𝑜𝑑𝑒𝑙+𝑃𝑀2.5 (2015)

𝐴𝐶𝐴𝐺𝑚𝑜𝑑𝑒𝑙

2
 −𝑛𝑐 (𝑟,𝑑)

 
𝑃𝑀2.5 (2010)

𝐺𝐴𝐼𝑁𝑆𝑚𝑜𝑑𝑒𝑙+ 𝑃𝑀2.5 (2015)
𝐺𝐴𝐼𝑁𝑆𝑚𝑜𝑑𝑒𝑙

2
+ 𝑃𝑀2.5

𝐺𝐴𝐼𝑁𝑆𝑚𝑜𝑑𝑒𝑙(𝑦, 𝑠, 𝑟, 𝑑, 𝑐) 

 

 

Where y- stands for year, s- for scenario, r- for urban/rural residence, d- for district 

and c- for cluster. This correction forces the mean bias at each residence and district 

to be zero, using bias detected from the two years period for each district and 

residence. The main underlying assumption in this data calibration method is that 

model bias remains stationary in time. As shown on table S11 and S12, the calibration 

resulted in slightly different stunting prevalence rates across scenarios compared to 

the original simulations. However, this did not lead to substantial differences in our 

final results (0.1 percentage points difference in projected prevalence of stunting due 

to air pollution for all scenarios), possibly due to the linear exposure response function 

between stunting and PM2.5 and the fact that deviation between the prevalence rates 

in the calibrated and uncalibrated models was of almost equal size for each scenario, 

thus cancelling out when results from the NPi and any of the other mitigation scenarios 

are subtracted. 
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2. Supplementary Tables S1-S12 
 

Table S1. Characteristics of children under-5 by stunting status, India, 2015-16 

Summary Statistics 

Not Stunted (N = 

125108) 

Stunted (N = 

78762) 

PM2.5 in-utero†       

   mean (sd) 66.78 (30.62) 73.15 (31.26) 

Use of clean fuel for cooking       

   n (%) 40,595 (32%) 15,775 (20%) 

Child sex       

   Female (%) 61,234 (49%) 37,141 (47%) 

Child age in months       

   mean (sd) 28.39 (17.55) 32.20 (15.68) 

Urban residence       

   n (%) 31,610 (25%) 14,563 (18%) 

Mother´s age at birth       

   mean (sd) 27.22 (5.09) 27.45 (5.27) 

Mother´s educational level       

   No education (%) 32,546 (26%) 31,864 (40%) 

   Primary education (%) 16,875 (13%) 12,906 (16%) 

   Secondary education (%) 61,581 (49%) 30,182 (38%) 

   Higher education (%) 14,106 (11%) 3,810 (5%) 

Mother´s social group‡       

   Schedule caste or schedule tribe (%) 46,718 (39%) 33,227 (44%) 

   Other backward class (%) 47,921 (40%) 31,690 (42%) 

   Other (Other ‘general’ caste or “Don´t 

know”) (%) 

25,181 (21%) 11,316 (15%) 

Wealth quintile of household       

   Poorest (%) 23,054 (18%) 22,812 (29%) 

   Poor (%) 24,680 (20%) 19,290 (24%) 

   Middle (%) 25,014 (20%) 15,327 (19%) 

   Rich (%) 25,337 (20%) 12,193 (15%) 

   Richest (%) 27,023 (22%) 9,140 (12%) 

Income group       

   Above absolute poverty threshold (%) 53,886 (43%) 22,008 (28%) 

   Below absolute poverty threshold (%) 71,222 (57%) 56,754 (72%) 

Note: Sample means, standard deviations and proportions are computed without adjustment for 

sampling weights.  

† Missing data n =1569 (< 1%)  

‡ Missing data n = 7817 (3.8 %)    
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Table S2. Projected characteristics of children under-5 by year, India, 2030-50 

Summary Statistics 2020 2030 2050 

Child sex         

   Female   

   Male                                                                    

48 % 

52 % 

47.7 % 

52.3 % 

47.5 % 

52.5 % 

Child age in months 
  

 

   mean (sd) 16.9 (4.9) 16.9 (4.6) 16.8 (4.4) 

Residence          

   Urban  

   Rural  

28 % 

72 % 

31.5 % 

         68.5 % 

36 % 

64 % 

Mother´s educational level          

   No education  22 % 9.5 % 1.1 % 

   Primary education  13.7 % 10.9 % 4.8 % 

   Secondary education  52.8 % 64.6 % 74.8 % 

   Higher education  11.5 % 15 % 19.4 % 

Wealth quintile of household          

   Poorest  19.8 % 15.4 % 11.3 % 

   Poor  20.3 % 19 % 17.6 % 

   Middle  19.9 % 20.5 % 20.9 % 

   Rich  20.5 % 22.5 % 24.3 % 

   Richest  29.5 % 22.6 % 25.9 % 

Income group          

   Above absolute poverty 

threshold (%) 

45.1 % 19.9 % 0.5 % 

   Below absolute poverty 

threshold (%) 

54.9 % 80.1 % 95.1 % 

Total projected number of 

children under-5 

117 million 104 million 94 million 

Note: These projections are identical across all modelled scenarios. Sample means, standard deviations 

and proportions are computed using the adjusted sampling weights. The total projected number of 

children under-5 refers to India and not the synthetic datasets. 

 

 

Table S3. Association between cluster-level PM2.5 exposure during pregnancy and 

household clean cooking fuel use with child stunting   
(1) (2) (3) (4) (5) (6) 

PM2.5 in-utero (per 10 

ug/m3)  
1.04*** 

(1.04, 

1.05) 

1.04*** 

(1.03, 

1.05) 

1.06*** 

(1.05, 

1.06) 

1.06*** 

(1.05, 

1.07) 

1.04*** 

(1.03, 

1.05) 

1.05*** 

(1.04, 

1.06) 

Clean cooking fuel use 

(ref. = Unclean cooking 

fuel use) 

0.81*** 

(0.79, 

0.84) 

0.81*** 

(0.79, 

0.84) 

0.81*** 

(0.79, 

0.83) 

0.81*** 

(0.79, 

0.83) 

0.81*** 

(0.79, 

0.83) 

0.73*** 

(0.69, 

0.77) 

Male child (ref. = 

Female) 
1.09*** 

(1.07, 

1.12) 

1.09*** 

(1.07, 

1.12) 

1.1*** 

(1.07, 

1.12) 

1.1*** 

(1.08, 

1.12) 

1.1*** 

(1.08, 

1.12) 

1.17*** 

(1.12, 

1.23) 
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Age of mother 0.99*** 

(0.99, 1) 

0.99*** 

(0.99, 1) 

0.99*** 

(0.99, 1) 

0.99*** 

(0.99, 

0.99) 

0.99*** 

(0.99, 

0.99) 

0.99*** 

(0.99, 1) 

Highest educational 

level of mother (ref. = 

No education) 

      

Primary 0.88*** 

(0.85, 

0.9) 

0.88*** 

(0.85, 

0.9) 

0.97 

(0.89, 

1.04) 

0.95 

(0.88, 

1.03) 

0.95 

(0.88, 

1.03) 

0.95 (0.88, 

1.03) 

Secondary 0.69*** 

(0.67, 

0.71) 

0.69*** 

(0.67, 

0.71) 

0.82*** 

(0.78, 

0.88) 

0.79*** 

(0.74, 

0.84) 

0.78*** 

(0.73, 

0.83) 

0.78*** 

(0.73, 

0.83) 

Tertiary 0.48*** 

(0.46, 

0.5) 

0.48*** 

(0.46, 

0.5) 

0.65*** 

(0.59, 

0.72) 

0.6*** 

(0.53, 

0.66) 

0.59*** 

(0.53, 

0.66) 

0.59*** 

(0.53, 

0.66) 

Urban residence (ref. = 

Rural residence)  
0.87*** 

(0.84, 

0.89) 

0.77*** 

(0.73, 

0.82) 

0.75*** 

(0.7, 0.8) 

0.77*** 

(0.72, 

0.82) 

0.76*** 

(0.71, 

0.81) 

0.76*** 

(0.71, 

0.81) 

Higher income group 

(ref. = Lower income 

group) 

0.71*** 

(0.69, 

0.73) 

0.71*** 

(0.69, 

0.72) 

0.71*** 

(0.69, 

0.72) 

0.81*** 

(0.77, 

0.86) 

0.8*** 

(0.75, 

0.85) 

0.8*** 

(0.75, 

0.85) 

Social Group (ref. = 

Other 

      

Scheduled caste or 

scheduled tribe  
1.27*** 

(1.24, 

1.31) 

1.27*** 

(1.24, 

1.31) 

1.27*** 

(1.23, 

1.31) 

1.27*** 

(1.23, 

1.3) 

1.06 

(0.98, 

1.13) 

1.03 (0.96, 

1.11) 

Other backward caste  1.14*** 

(1.11, 

1.17) 

1.14*** 

(1.11, 

1.17) 

1.13*** 

(1.1, 

1.17) 

1.13*** 

(1.1, 

1.16) 

1.04 

(0.97, 

1.12) 

1 (0.93, 

1.08) 

PM2.5 in-utero (per 10 

ug/m3): Urban residence 

 
1.02*** 

(1.01, 

1.02) 

1.02*** 

(1.01, 

1.03) 

1.02*** 

(1.01, 

1.03) 

1.02*** 

(1.01, 

1.03) 

1.02*** 

(1.01, 

1.03) 

PM2.5 in-utero (per 10 

ug/m3): Highest 

educational level of 

mother (ref. = PM2.5 in-

utero (per 10 ug/m3): No 

education) 

      

PM2.5 in-utero: Primary 
  

0.99* 

(0.98, 1) 

0.99* 

(0.98, 1) 

0.99* 

(0.98, 1) 

0.99* 

(0.98, 1) 

PM2.5 in-utero: Secondary 
  

0.98*** 

(0.97, 

0.98) 

0.98*** 

(0.98, 

0.99) 

0.98*** 

(0.98, 

0.99) 

0.98*** 

(0.98, 

0.99) 

PM2.5 in-utero: Tertiary 
  

0.96*** 

(0.95, 

0.97) 

0.97*** 

(0.96, 

0.99) 

0.97*** 

(0.96, 

0.99) 

0.98*** 

(0.96, 

0.99) 

PM2.5 in-utero (per 10 

ug/m3): Higher income 

group (ref. = PM2.5 in-

utero (per 10 ug/m3): 

Lower income group) 

   
0.98*** 

(0.97, 

0.99) 

0.98*** 

(0.97, 

0.99) 

0.98*** 

(0.97, 

0.99) 

PM2.5 in-utero (per 10 

ug/m3): Social Group 
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(ref. = PM2.5 in-utero 

(per 10 ug/m3): Other) 

PM2.5 in-utero: Scheduled 

caste or scheduled tribe 

  

    
1.03*** 

(1.02, 

1.04) 

1.03*** 

(1.02, 

1.04) 

PM2.5 in-utero: Other 

backward caste  

    
1.01** 

(1, 1.02) 

1.01**(1, 

1.02) 

PM2.5 in-utero (per 10 

ug/m3): Male Child (ref. 

= PM2.5 in-utero (per 10 

ug/m3): Female child) 

     
0.99*** 

(0.98, 

0.99) 

Clean cooking fuel use: 

Social Group (ref. = 

Unclean cooking fuel 

use: Other) 

      

Clean cooking fuel use:  

Scheduled caste or 

scheduled tribe  

     
1.09** 

(1.02, 

1.16) 

Clean cooking fuel use:  

Other backward caste 

     
1.11*** 

(1.05, 

1.18) 

Clean cooking fuel use: 

Male child (ref. = 

Unclean cooking fuel 

use: Female child) 

     
1.05* 

(1.01, 1.1) 

Spline for child age in 

months 

Yes Yes Yes Yes Yes Yes 

District random effects Yes Yes Yes Yes Yes Yes 

Note: Each column presents a Binomial Logistic regression model with the child’s stunting as the 

dependent variable and with a random intercept for administrative district. The highlighted model is the 

one used in the projections. Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  

 
 

Table S4. Cumulative number of preventable or excess cases of child stunting (in 

million, 95% UI) from changes in household and ambient air pollution combined 

for all of India according to mitigation scenario and year relative to NPi scenario. 

Year 2°C without 
access 

2°C with access 2°C MFR without 
access 

2°C MFR with access 

2020 -0.3 (-0.3, -0.3) 1.4 (1.4, 1.5) -0.3 (-0.2, -0.3) 1.4 (1.4, 1.5) 

2025 -0.8 (-0.7, -0.8) 2.7 (2.6, 2.8,) -0.5 (-0.4, -0.5) 2.9 (2.9, 3) 

2030 -1.3 (-1.2, -1.3) 3.6 (3.5, 3.8) -0.4 (-0.2, -0.6) 4.5 (4.3, 4.8) 

2035 -1.8 (-1.8, -1.9) 4.4 (4.3, 4.6) 0 (-0.4, 0.4) 6.2 (5.8, 6.7) 

2040 -2.5 (-2.4, -2.5) 5.1 (4.9, 5.3) 0.6 (0, 1.3) 8 (7.4, 8.9) 

2045 -2.9 (-2.9, -2.9) 5.4 (5.3, 5.7) 1.6 (0.6, 2.6) 9.8 (8.8, 11) 

2050 -2.9 (-2.8, -3) 6.5 (6.3, 6.9) 2.8 (1.4, 4.2) 12.1 (10.7, 13.7) 

Note: Positive values indicate preventable cases relative to the NPi scenario, while negative values show 

excess cases relative to the NPi scenario 
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Table S5. Projected prevalence of child (<5 years) stunting (%, 95% UI) in India, 

by year and scenario 

 

 

Table S6. Projected prevalence of child (<5 years) stunting in India (%, 95% UI) 

by sex, year and scenario 

 

 

Table S7. Projected prevalence of child (<5 years) stunting (%, 95% UI) in India 

by residence, year and scenario 

 

Residence Year 2°C MFR with access NPi 

Rural 2015 41.6  41.6  

Rural 2020 34.6 (34, 35.2) 36.1 (35.5, 36.6) 

Rural 2035 28.6 (27.8, 29.4) 30.3 (29.8, 30.8) 

Rural 2050 26.4 (25.4, 27.3)  28.7 (28.2, 29.2)  

Urban 2015 31.2  31.2  

Urban 2020 27.7 (27.1, 28.2) 28.3 (27.8, 28.8) 

Urban 2035 23.5 (22.9, 24.3) 25.1 (24.6, 25.7) 

Urban 2050 22 (21.2, 22.8)  24.7 (24.2, 25.2)  

 

Year NPi 2°C without 
access 

2°C with 
access 

2°C MFR without 
access 

2°C MFR 
with access 

2020 33.9  
(33.5, 34.4) 

34.2  
(33.7, 34.7) 

32.7  
(32.2, 33.2) 

34.2  
(33.7, 34.7) 

32.7  
(32.2, 33.2) 

2025 31.8 
(31.4, 32.3) 

32.2  
(31.7, 32.7) 

30.7  
(30.2, 31.2) 

32  
(31.5, 32.5) 

30.5  
(30, 31) 

2030 29.9  
(29.4, 30.3) 

30.3  
(29.9, 30.8) 

28.9  
(28.4, 29.4) 

29.7  
(29.2, 30.4) 

28.3  
(27.7, 28.9) 

2035 28.6  
(28.2, 29.1) 

29.2  
(28.7, 29.7) 

27.8  
(27.4, 28.3) 

28.2  
(27.6, 28.9) 

26.9  
(26.2, 27.6) 

2040 27.7  
(27.2, 28.1) 

28.3  
(27.9, 28.8) 

27  
(26.5, 27.5) 

27.1  
(26.3, 27.8) 

25.8  
(25, 26.5) 

2045 26.9  
(26.5, 27.4) 

27.4  
(26.9, 27.8) 

26.6  
(26.1, 27) 

25.9  
(25.1, 26.7) 

25.1  
(24.3, 25.9) 

2050 27.3  
(26.9, 27.7) 

27.3  
(26.8, 27.8) 

26.1  
(25.6, 26.6) 

26  
(25.1, 26.8) 

24.8  
(24, 25.6) 

Sex Year 2°C MFR with access NPi 

Female 2015 38.3  38.3  

Female 2020 31.5 (30.9, 32) 32.9 (32.5, 33.6) 

Female 2035 25.4 (24.8, 26) 27.5 (27, 28.2) 

Female 2050 23.2 (22.5, 23.7) 26.2 (25.9, 26.5) 

Male 2015 39.3  39.3  

Male 2020 33.9 (33.2, 34.3) 35.1 (34.7, 35.8) 

Male 2035 28.2 (27.7, 28.9) 29.8 (29.3, 30.2) 

Male 2050 26.2 (25.4, 26.7) 28.2 (27.9, 28.5) 
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Table S8. Projected prevalence of child (<5 years) stunting (%, 95% UI) in India 

by income category, year and scenario 

 

Income category Year 2°C MFR with access NPi 

Poorer 2015 44.9  44.9  

Poorer 2020 39.5 (38.9, 40.2) 41.1 (40.5, 41.7) 

Poorer 2035 34.9 (34.2, 35.7) 39 (38.4, 39.4) 

Poorer 2050 30.6 (29.7, 31.6) 36.9 (36.4, 37.5) 

Richer 2015 29.1  29.1  

Richer 2020 27 (26.5, 27.6) 28 (27.5, 28.5) 

Richer 2035 25.6 (24.9, 26.3) 27 (26.5, 27.4) 

Richer 2050 24.5 (23.7, 25.3) 26.8 (26.4, 27.2)      

 

 

Table S9. Projected prevalence of child (<5 years) stunting (%, 95% UI) in India 

by maternal education, year and scenario 

 

Maternal education Year 2°C MFR with access NPi 

No education 2015 50.8  50.8  

No education 2020 44.6 (43.8, 45.3) 45.5 (44.7, 46.2) 

No education 2035 39.8 (38.7, 40.9) 43.3 (42.5, 43.9) 

No education 2050 36 (34.7, 37.2) 41.8 (41.2, 42.4)       

Primary 2015 43.9  43.9  

Primary 2020 38.7 (37.8, 39.5) 40.2 (39.4, 41) 

Primary 2035 34.7 (33.6, 35.7) 37.8 (37.1, 38.5) 

Primary 2050 32.3 (30.9, 33.7) 37 (36.3, 37.7) 

Secondary 2015 33  33  

Secondary 2020 29 (28.5, 29.5) 30.5 (30, 31) 

Secondary 2035 26.7 (26, 27.4) 28.3 (27.8, 28.8) 

Secondary 2050 25.7 (24.8, 26.5) 28.3 (27.9, 28.8) 

Higher 2015 21  21  

Higher 2020 19.6 (18.9, 20.3) 19.8 (19.1, 20.5) 

Higher 2035 19 (18.1, 19.9) 19.6 (18.9, 20.4) 

Higher 2050 18.8 (17.7, 19.9) 20 (19.3, 20.6)           

 

 

Table S10. Projected prevalence of child (<5 years) stunting (%, 95% UI) in India 

by caste, year and scenario 

 

Caste Year 2°C MFR with access NPi 

Other backward class 2015 39.3  39.3  

Other backward class 2020 33.4 (32.7, 34) 34.4 (33.8, 35) 

Other backward class 2035 27.8 (26.9, 28.7) 29.4 (28.8, 30) 

Other backward class 2050 25.7 (24.8, 26.7) 28.1 (27.6, 28.7) 

Other 2015 31.1  31.1  
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Other 2020 26.9 (26.2, 27.6) 28.1 (27.5, 28.7) 

Other 2035 23 (22.1, 23.9) 24.1 (23.5, 24.8) 

Other 2050 21.7 (20.6, 22.6) 23.3 (22.7, 23.9) 

Schedule caste/tribe 2015 43.5  43.5 

Schedule caste/tribe 2020 36.3 (35.6, 36.9) 37.8 (37.2, 38.4) 

Schedule caste/tribe 2035 29.4 (28.5, 30.2) 31.8 (31.2, 32.4) 

Schedule caste/tribe 2050 26.5 (25.4, 27.6) 30.1 (29.5, 30.7)   

 

Table S11. Projected prevalence of child (<5 years) stunting (%, 95% UI) in India, 

by year and scenario based on calibrated PM2.5 exposure 

 

Year NPi 2°C without 
access 

2°C with 
access 

2°C MFR without 
access 

2°C MFR with 
access 

2020 35.8  
(35.5, 36.1) 

36.1  
(35.8, 36.4) 

34.6  
(34.2, 34.9) 

36.1  
(35.8, 36.4) 

34.6  
(34.2, 34.9) 

2025 33.5  
(33.2, 33.8) 

33.8  
(33.5, 34.1) 

32.3  
(32, 32.7) 

33.6  
(33.3, 33.9) 

32.1  
(31.8, 32.5) 

2030 31.2  
(30.9, 31.5) 

31.7  
(31.4, 32) 

30.3  
(29.9, 30.6) 

31.1  
(30.7, 31.5) 

29.7  
(29.2, 30.1) 

2035 29.8  
(29.5, 30.2) 

30.4  
(30.1, 30.7) 

29  
(28.6, 29.4) 

29.4  
(29, 29.8) 

28.1  
(27.6, 28.5) 

2040 28.7  
(28.3, 29.1) 

29.4  
(29.1, 29.8) 

28.1  
(27.7, 28.5) 

28.1  
(27.6, 28.6) 

26.8  
(26.3, 27.3) 

2045 27.9  
(27.5, 28.4) 

28.4  
(28, 28.8) 

27.6  
(27.1, 28) 

26.9  
(26.3, 27.4) 

26.1  
(25.5, 26.6) 

2050 28.3  
(27.8, 28.7) 

28.2  
(27.9, 28.6) 

27  
(26.6, 27.5) 

26.9  
(26.3, 27.5) 

25.7  
(25.1, 26.3) 

 

 

Table S12. Difference in projected prevalence of child (<5 years) stunting in India 

between NPi and mitigation scenarios based on calibrated and uncalibrated PM2.5 

exposure in percentage points  
Model with calibrated PM2.5 exposure Model with uncalibrated PM2.5 

exposure 

Year 2°C 
without 
access 

2°C 
with 
access 

2°C MFR 
without 
access 

2°C MFR 
with 
access 

2°C 
without 
access 

2°C 
with 
access 

2°C MFR 
without 
access 

2°C MFR 
with 
access 

2020 -0.3 1.2 -0.3 1.2 -0.3 1.2 -0.3 1.2 

2025 -0.3 1.2 -0.1 1.4 -0.4 1.1 -0.2 1.3 

2030 -0.5 0.9 0.1 1.5 -0.4 1 0.2 1.6 

2035 -0.6 0.8 0.4 1.7 -0.6 0.8 0.4 1.7 

2040 -0.7 0.6 0.6 1.9 -0.6 0.7 0.6 1.9 

2045 -0.5 0.3 1 1.8 -0.5 0.3 1 1.8 

2050 0.1 1.3 1.4 2.6 0 1.2 1.3 2.5 
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3. Supplementary Figures S1-S2 
 

Figure S1. Model specification checks 

 
Note: Model 1 is identical to Model 1 in Table S3 (main model without interaction 

terms); Model 2 is identical to Model 1, but controls additionally for the following co-

variates: birth order of the child, multiple birth, mother´s age, short maternal stature, 

male household head and number of children under-5 in the family; Model 3 is identical 

to Model 1, but controls additionally for month of birth of the child; Model 4 is 

identical to Model 1, but ambient life-course PM2.5 exposure (averaged PM2.5 exposure 

over the in-utero and after birth period)  instead of in-utero exposure is used as a 

dependent variable. 
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Figure S2. Comparison of PM2.5 concentrations modelled in GAINS (PM2.5 CD-

LINKS) and ACAG (PM2.5 ACAG) for 2010 and 2015 
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Chapter 6: DISCUSSION AND CONCLUSIONS 
 

6.1 Main findings and contribution to current knowledge 
 
This thesis explored some of the health implications of climate change and co-benefits of 

climate change mitigation in India by taking ambient temperatures and air pollution as case 

studies. The research questions posed in the introduction were addressed in three thematic 

chapters. The first thematic chapter systematically reviewed and meta-analysed the 

association between ambient temperatures/heatwaves and mortality in South Asia, while the 

other two projected air pollution-related health co-benefits of climate change mitigation in 

India in terms of gains in LE, avoided premature deaths, and prevented cases of child 

stunting. The main findings of each of the three studies with respect to the pre-specified 

objectives are summarised below. 

 

The first study systematically reviewed and quantitatively assessed the current evidence on 

the association between ambient temperature and heat waves, and all-cause mortality in 

South Asia. First, individual studies reported high and low ambient temperatures and 

heatwaves as a risk factor for all-cause mortality. Second, the strength of the evidence on 

ambient temperature as a risk factor for all-cause mortality was judged as sufficient and on heat 

wave episodes — as limited. This was mainly due to the limited number of studies (n=27), 

their skewed geographical distribution, and methodological weaknesses. Third, the meta-

analysis on daily ambient temperature and risk of mortality resulted in a U-shaped ERF, with 

increasing mortality for both high and low temperatures, but a statistically significant 

association only at higher temperatures – above 31°C for lag 0-1 day and above 34°C for lag 

0–13 days. Lastly, temperature effects varied with the cause of death, age, sex, location (urban 

vs. rural), level of education, and socioeconomic status, but overall evidence of vulnerabilities 

was fragmented and inconsistent across studies.  

 

The second study projected the future localised (i.e. state and urban-rural level) health co-

benefits from reduced ambient PM2.5 in India under global climate change mitigation 

scenarios in line with the Paris Agreement targets and national scenarios for maximum 

feasible air quality control. First, we found that reduction of ambient PM2.5 under the 

aspirational 2°C and 1.5°C climate change mitigation targets laid out in the Paris Agreement 

can lengthen LE at birth in India in 2050 by 0.4 and 0.7 years, respectively, compared to the 
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business-as-usual. Additionally, meeting these targets can prevent between 3.9 million and 

8.0 million premature deaths overall in the period 2010-50. Second, complementing the Paris 

Agreement targets with maximum feasible end-of-pipe air quality control can result in up to 

1.6 years of gains in LE and up to 20.8 million averted deaths between 2010 and 2050 

compared to the business-as-usual. Third, the largest gains in LE from cleaner air due to 

climate change mitigation and air quality control will occur in urban areas and in states with 

lower socio-economic development. Fourth, we investigated total loss in LE under each 

scenario and found that loss in LE from ambient PM2.5 in India could increase from 2.3 years 

in 2010 to 3 years in 2050 without any climate mitigation or stricter air quality control, a 

matter of concern, considering India´s low ranking in LE globally (United Nations 

Development Programme, 2019). However, it was shown that this loss could be reduced to 

1.4 years under the most aspirational scenario, which is comparable to current PM2.5 

decrements in LE in North America (Lelieveld et al 2020). Finally, the higher LE in the 

modelled aspirational scenarios also results in larger population size and proportion of the 

elderly in the total population compared to the business-as-usual, with potential implications 

for energy and resource use, and social planning. 

 

The third study projected the future localised (i.e. district and urban-rural level) net benefits 

for child linear growth from changes in AAP and HAP under a combination of scenarios for 

climate change mitigation, AAP control, and CCA. First, the increase in child stunting from 

higher HAP (+ 4 million) under the 2°C Paris Agreement target is projected to outweigh the 

reduction in the burden from AAP (-1.2 million) in the period 2020-50, leading to an overall 

higher cumulative number of stunted children compared to the business-as-usual (2.9 

million, UI: 2·8, 3·0). Second, complementing the 2°C mitigation efforts either with 

maximum feasible control of AAP or compensatory LPG stove and fuel subsidies is 

projected to reduce the overall burden of child stunting from air pollution by 2.8 (UI: 1.4, 

4.2) or 6.5 (UI: 6.3, 6.9) million, respectively, compared to the business-as-usual. Third, 

complementing mitigation efforts with both targeted air quality control and CCA support 

will produce a synergistic impact by averting 12.1 (UI: 10.7, 13.7) million cases of child 

stunting. Finally, this synergistic effect will help reduce health inequalities early in life by 

benefitting the most disadvantaged children and geographic regions. 
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6.2 Contribution to current research 
 

The analyses undertaken in this thesis contributed to the advancement of the research field 

on the health impacts of climate change and co-benefits of climate change mitigation in 

several ways, which are summarised below. 

 

Research Article I 

 

An important element in estimating the potential disease burden from climate change is the 

availability of robust and setting-specific ERFs. As daily temperature and mortality data series 

are still missing for many countries in South Asia due to underdeveloped monitoring systems, 

population-specific ERFs cannot always be estimated. Where such ERFs exist, they are often 

based on populations of small size and using observations from a limited number of years. 

These gaps either hinder the development of future temperature-related projections or add 

a large uncertainty to projected estimates. The first article included in this thesis provided 

meta-analysed estimates from the best available time-series studies on temperature and all-

cause mortality in the region. This meta-analysis addresses an important data gap and 

supports future health impact assessment studies in a “data-scarce” region, which is a hotspot 

of climate change and urgently needs such projections for future planning. Furthermore, our 

systematic review complements other existing reviews (Burkart et al., 2014; Green et al., 

2019; Salve et al., 2018) by assessing the strength and quality of the body of evidence, which 

is of central importance when informing policy and programming decisions. 

Methodologically, we demonstrated the application of a novel meta-analytic method for 

combining ERFs without access to individual study data. The study also summarised research 

gaps and needs of particular policy priority, namely the role of modifying factors, vulnerable 

population groups, and interactive effects with other environmental exposures. 

 

Research Article II 

 

As India has low historical emissions of GHGs, wider development impacts of climate 

change mitigation (co-benefits) are recognised as the main policy motive for cooperation in 

climate negotiations (Dubash, 2013). The second article included in this thesis demonstrated 

the health co-benefits of climate change mitigation related to the largest environmental 

contributor to the disease burden currently in the country, namely air pollution. Although 
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prior co-benefit studies on India exist, we reported impacts for distinct population groups 

(age, sex, urban-rural residence) and at a lower aggregation than previously estimated (state 

level). In addition, health co-benefit estimates were reported as gains in LE, which is a more 

informative summary measure of population health than premature mortality. By modelling 

both climate change mitigation policies and targeted air quality control, we demonstrated a 

wider set of tools available for reducing the high burden of air pollution in the country. Most 

co-benefits studies rarely consider such interactive effects or compare global mitigation with 

national policy measures. Results demonstrated that targeted air quality control policies 

matter more for reducing the burden of air pollution than climate change mitigation, but not 

for all regions in the country. These findings suggest that although climate mitigation can 

support public health policy, it might not be sufficient for addressing public health 

challenges. Our findings also revealed an unexpected effect of climate change mitigation on 

population size and structure, which has not been reported before or considered in integrated 

modelling. Methodologically, we linked in a consistent way a multi-dimensional demographic 

projection and an IAM and accounted for feedback effects of air pollution on population 

survival over time, thus providing more realistic estimates on the interplay between exposure 

and population dynamics over time. This has previously been applied only by one study on 

India, but under different scenarios and using more aggregate country-level data (Sanderson 

et al., 2013). Furthermore, we provided updated estimates using the latest ERF based on an 

unprecedented number of cohort studies and covering a higher exposure-response range. 

 

Research Article III 

 

Climate change mitigation can produce not only unintended positive impacts but also pose 

trade-offs with other policy objectives.  The third article included in this thesis investigated 

the potential trade-offs between climate change mitigation and clean energy access for child 

linear growth in addition to the positive co-benefits of AAP reduction. One study has 

previously investigated this trade-off, but for South Asia overall and considering only 

mortality from HAP, but no morbidity or AAP impacts (Cameron et al., 2016). Integrated 

assessments of such co-benefits and trade-offs can better support decision-making and 

inform complementary adaptation policies in advance. Furthermore, responding to the 

accumulating evidence on the association between early-life exposure to HAP and AAP and 

child linear growth retardation, this is the first study to attempt to project the future impacts 

of air pollution on child stunning. Lastly, the study demonstrated the application of a novel 
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health impact modelling approach, which allows for the integration of complex population-

environment interactions, multiple exposures pathways, and differential population 

vulnerabilities. A few dynamic microsimulation models analysing health outcomes under air 

pollution control scenarios have been developed for some high-income countries (Pimpin et 

al., 2018; Symonds et al., 2019). However, the author is not aware of other studies using a 

microsimulation approach to project future health impacts of air pollution in LMICs. 

Particular advantages of the approach compared to a dynamic microsimulation are the lower 

data, time, and computer processing requirements. 

 

6.3 Uncertainty 

 
Uncertainty is a major concern when projecting any future impacts of climate change due to 

the inherent complexity and uncertainty of the modelled processes. Comprehensive 

uncertainty analysis for HIAs is generally desirable to better support quantitative risk 

assessments. Quantitative uncertainty analysis was not undertaken in Research Article II due 

to the complexity of the applied method, while Research Article III reported uncertainty 

bounds related to parameters in the ERF only. The lack of uncertainty bounds for other 

important parameters in the HIA such as the modelled air pollution concentrations, income, 

energy access, and population projections, hindered a more complete treatment of 

uncertainty in our estimates. Here, the main uncertainties in the model and how they can 

potentially be addressed in the future are discussed qualitatively. 

 

The uncertainty in the final estimates from our modeling studies (Research Article II and 

Research Article III) stem from the following key sources: (i) baseline and projected GHG 

emissions, clean fuel use, and income data from the IAM (ii) projected ambient PM2.5 

concentrations from the GAINS air pollution model, (iii) the ERFs and their extrapolation 

to future populations, (vi) baseline and projected population and disease burden data. Each 

of these uncertainties flows from one model component to the next, thus producing a 

cascading effect (Figure 6.1). 

 

Large uncertainties in the air pollutant pre-cursors, clean energy access, and income 

projections in our models stem from the IAM used to simulate the future climate, economy, 

and energy systems (MESSAGE-GLOBIOM). Since IAMs are “simplified, stylised 
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numerical approaches to represent enormously complex physical and social systems” they 

are built on a large number of assumptions (Clarke et al., 2015, p.422). These include many 

 

Figure 6.1: The cascading effects of uncertainty for assessing the future impacts of co-benefits of climate 

change mitigation. 

 

Source: Adapted from Gosling et al. (2009) 

 

input assumptions regarding changes in population, resources, technology, baseline 

economic growth, and mitigation policy. IAMs do not structurally represent many dynamic 

and deeply uncertain social and political processes, which can influence how the world 

evolves such as habits, social customs, political shocks, disruptive innovation, or socio-

economic shocks such as the COVID-19 pandemic. Since IAMs use Neoclassical economic 

theory as the basis for decision making, they assume fully functioning markets and 

competitive market behavior as well as rational, welfare-maximizing individuals with perfect 

foresight (Clarke et al., 2015). Furthermore, although climate change mitigation targets can 

be reached in a large variety of ways, most IAMs, including MESSAGE-GLOBIOM, are 

based on the minimisation of aggregate economic costs. Another main limitation of IAMs is 

that only abatement costs are considered, while the economic costs and benefits of climate 

damages and co-benefits of efforts to limit warming are normally not reflected. When 

interpreting the results of the two modelling studies included in this PhD thesis it is also 

important to bear in mind the political-economy constraints and assumptions that 

MESSAGE-GLOBIOM implies, and more specifically the use of an economy-wide global 

carbon price when developing future emission pathways to meet temperature limits. A 

complete review of the assumptions and uncertainties related to IAMs is provided in Chapter 

2 of the IPCC´s 1.5C report (Forster et al., 2018). One way in which uncertainty in IAMs 
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can be managed is by comparing findings from different models and based on different 

assumptions about the future. Since each IAM has its specific characteristics and 

assumptions, areas of consensus provide more robust evidence for policymaking. 

Concerning the projections used in this thesis, the inadequacy of current NDCs to set the 

world on a 2°C trajectory and achieve notable air pollution co-benefits, is a robust finding 

across different IAMs (IPCC, 2018; Rafaj et al., 2021). 

 

Additional uncertainty in our estimates stems from the air quality module of the IAM 

considered in this thesis, GAINS. This uncertainty is related to the reduced-form source-

receptor relationships used to quantify the spatial response of PM2.5 concentrations to 

changes in precursor emissions, the downscaling technique used to calculate ambient 

concentrations at higher spatial resolution (urban/rural), the baseline activity and technology 

data and assumptions on the applications and effectiveness of technical measures. Despite 

these limitations, a comparison of observational PM2.5 data for India with modelled data has 

shown relatively good agreement (Chapter 5). In Research Article III, projected 

concentrations in GAINS differed from modelled concentrations in the epidemiological 

stage of the analysis. However, it was demonstrated that calibration of the projected data 

with baseline data did not affect our findings. 

 

As discussed in section 1.5.3, air pollution ERFs may differ among areas and populations 

due to a range of factors such as differences in concentration ranges, the composition and 

toxicity of air pollutants, population structure, baseline health status, and time-activity 

patterns of the population, quality, and access to health care. In the absence of regional 

epidemiological studies on the relationship between long-term exposure to PM2.5 and 

mortality, in Research Article II we were restricted to use available ERFs from cohort studies 

conducted in other parts of the world. However, unlike most existing studies on India, we 

used the latest available ERF, which covers a larger exposure range, thus providing more 

certainty in the shape of the function at higher concentrations. Epidemiological studies on 

air pollution and mortality from India and other LMICs will be needed to provide more 

robust evidence for future HIAs. In Research Article III a population-specific ERF for the 

association between in-utero PM2.5 exposure and child stunting was derived, thus partly 

reducing overall uncertainty. It should be mentioned, however, that ERFs can also change 

over time due to socioeconomic, demographic, behavioral, and political changes (Madaniyazi 

et al., 2015). While some projections studies on the mortality impacts of temperature changes 
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account for this by incorporating assumptions on adaptation, this aspect is generally not 

considered in air pollution studies. 

 

The uncertainty in the population modelling stems from uncertainty in the baseline disease 

burden and population data as well as in the projections of future disease burdens and size, 

characteristics, and geographic distribution of the population. We aimed to minimize 

uncertainties in the baseline population data by relying on official government census data 

(Research Article II) and a large population-representative survey (Research Article III). 

However, in the absence of cause-specific mortality data in the region, especially at the 

regional and urban/rural level, we were restricted by the assumptions of the available 

modelled data from the India State-level GBD. Furthermore, the population projections 

integrated in the two HIA studies are based on some of the most advanced methods to date 

and are consistently used by the climate modelling community. However, since the 

assumptions of demographic drivers are partly based on past trends and on expert 

consultation, uncertainty related to unexpected socio-economic developments is inevitable. 

We selected to model a middle-of-the-road scenario for population change in order to ensure 

consistency between projections of exposed population and population projections driving 

the energy, land, and resource demand in the IAM. Future studies can incorporate 

uncertainty in the main drivers of population change by considering the alternate 

demographic pathways embedded in the SSPs or estimates from other population projection 

models. Retrospective validation of the macro- and microsimulation can also be undertaken 

in the future. Such an exercise was currently not possible due to the lack of comparable data 

from past censuses and from the NFHS. 

 

Due to the large uncertainties inherent in our model, the findings of this PhD thesis should 

not be considered as predictions or policy blueprints. The quantitative estimates, however, 

provide an indication of the magnitude of expected health impacts based on the best available 

evidence and enable informed comparisons of alternate policy portfolios against one another. 

As such, the scenarios analyses presented in this thesis could help judge which policy actions 

can reduce the health burden of air pollution in India the most and make choices that avoid 

future carbon lock-ins.  
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6.4 Policy implications  
 

Ambient temperatures 

 

The findings of this doctoral thesis confirmed that both high and low ambient temperatures 

are risk factors for mortality in India. However, the very steep increase in mortality risk at 

higher temperatures and the projected increase in the frequency, intensity, and duration of 

heatwaves in the country suggest that particular attention should be placed on adaptation 

measures to high temperatures. Such measures could include public awareness of the health 

risks of high temperatures through public messaging or health education campaigns; 

encouragement of individual preventative measures (e.g. hydration, appropriate clothing, 

reduced physical activity or outdoor work during intense heat); distribution of electric fans; 

setting-up of public cooling centres to be used during extreme heat, implementation of 

outdoor occupational heat standards. The planned development of heat action plans and 

early warning systems across India should continue and be expanded to a larger number of 

urban as well as rural areas. Adaptation measures should specifically target the elderly, 

outdoor workers, people with pre-existing cardiovascular, respiratory, and other chronic 

diseases, as well as populations living in informal housing. Enhancement of response capacity 

and coordination of public health centres should also be an important priority. Given the 

limits of these upfront interventions, long-term strategies to reduce temperature 

vulnerabilities should also be devised in collaboration with different policy departments, 

urban planners, scientists, labour, and civil society organisations. These could include 

infrastructural improvements such as an expansion of public transport, increase in the tree 

canopy, deployment of heat-reflective surfaces on roofs and roads, but also restructuring of 

agricultural labour and reductions in potential drivers of vulnerability such as poverty and 

inequality in access to healthcare and education. Considering the limits to physical adaptation 

to extreme temperatures and humidity, ultimately increase in ambition of climate change 

mitigation commitments through the reduction in GHG emissions should be the safest and 

preferred course of action to avoid impacts of high ambient temperatures on population 

health in the country. 
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Climate action and air pollution co-benefits 

 

Current global and India-specific commitments under the Paris accord are insufficient to 

meet the envisioned temperature targets of 1.5° C or 2°C. Based on currently announced 

measures increases in GHG emissions are expected to lead to a temperature rise in excess of 

3°C by the end of this century (United Nations Environment Programme, 2020). India still 

has not submitted its NDCs with updated 2030 targets. Not only are India´s current NDC 

pledges inconsistent with the Paris Agreement 1.5°C temperature limit, but they will also not 

bring any improvements in population LE and the number of deaths from reduced AAP. 

The inadequacy of current actions represents a missed opportunity to improve public health. 

By raising its ambition in line with the 2°C and 1.5°C climate change mitigation targets laid 

out in the Paris Agreement, India will not only prevent irreversible health damages for future 

generations but will also realise local near-term health benefits by substantially increasing the 

LE and mortality from AAP. Stricter mitigation policies will help reduce some of the large 

health inequalities in the country by bringing larger reductions in the mortality burden and 

LE loss from air pollution in less wealthy regions. Such a course of action will also make 

economic sense since the monetised health benefits have been consistently shown to exceed 

the mitigation costs. Concrete actions that could be implemented, potentially with 

international support, include scale-up of fiscal incentives for renewable energies, reduction 

in coal production and expansion of coal plants to avoid fossil fuel lock-in, transfer of 

subsidies from fossil to non-fossil sources, or introduction of a tax on electricity generated 

from coal to reflect the value of health damages. Overall, India as well as other countries 

should more clearly embrace such public health co-benefits in climate policies and explicitly 

include health considerations in the updated round of their NDCs, as recommended by the 

WHO (WHO, 2020). Dialogue and consultation with scientists, health professionals, 

economists, energy and transport experts, and close collaboration of different policy 

departments can help streamline such health co-benefits in the NDCs and in different areas 

of policy. Better aligning climate with health policy can also serve governments by providing 

greater public support for their actions. 

 

The need for complementary policies 

 

India can better tailor mitigation policies to its development objectives through the 

implementation of complementary policy measures that maximise co-benefits and minimise 
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potential trade-offs. We showed that the application of the full spectrum of end-of-pipe air 

quality controls in line with the most efficient, feasible, and currently available technologies 

on the market will more than double gains in LE from mitigation action alone. Such policies 

include installation of high-efficiency PM controls at power plants, stringent emission 

controls for industrial processes, improved enforcement of bans on burning of agricultural 

waste, improved emission standards for vehicles.  

 

Since mitigation policies might increase the cost of some transition fuels such as LPG, 

counterbalancing policies should be put in place for supporting clean energy access, 

especially among the most disadvantaged. Provision of price support policies for LPG 

cooking stoves and fuel can prevent switching to cheaper polluting fuels, reduce exposure to 

harmful household air pollutants and improve health, especially among women and children. 

We showed, in particular, that combining climate change mitigation either with 

counterbalancing clean cooking fuel policy or end-of-pipe air quality control can help reduce 

the large projected burden of child stunting in the country. Design of mitigation policies with 

both complementary measures is recommended due to the potential of synergistic effects 

and the large impact on the reduction of health inequalities early in life. This is of particular 

policy relevance as reduction of child stunting can, in the future, reduce the burden and 

healthcare costs from cardiovascular diseases, improve human capital formation and increase 

earnings and productivity. Although not investigated here, other maternal and child health 

outcomes that are sensitive to both HAP and AAP and have a large public health significance, 

such as pre-term birth, pneumonia, and other LRIs are likely to similarly benefit from such 

complementary policies. Additional financial resources to cover the expenses of such policies 

could be mobilised through effort-sharing international climate regimes. Finally, as the 

success of any of these complementary policies hinges upon effective enforcement and 

sustained implementation, it would require careful planning, coordination of multiple policy 

departments, and identification of any legal, financial, social, and other barriers. 
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6.5 Directions for future research 

 

The studies carried out in the course of this doctoral thesis have identified important 

knowledge gaps and opened up a wide range of new research questions, which are 

discussed in this section. 

 

• Robust and population-specific ERFs 

 

A major limitation in existing air pollution co-benefit studies in India and other regions with 

high air pollution levels is the uncertainty in the shape of the ERF linking long-term exposure 

to ambient PM2.5 and mortality. As discussed in Chapter 1.5 of this thesis the most commonly 

used ERF in the literature is based on the strong assumption of equal toxicity of PM2.5 per 

total inhaled dose from different sources. The non-linear shape of this function has major 

implications for HIAs and policy in settings with high air pollution levels such as India since 

it implies the need for significant reductions in ambient PM2.5 below current levels to achieve 

any notable reductions in the attributable mortality burden of this pollutant (Conibear, 2018). 

Although in Research Article II included in this thesis we used a more recent ERF covering 

a wider exposure range, large uncertainties remain due to the extrapolation of the ERF to 

very different settings and populations. Furthermore, the lack of agreement between these 

two ERFs, especially in terms of functional form and age groups and causes of death 

considered, is shown to lead to very large differences in the estimates of the final attributable 

burden to ambient PM2.5 (Burnett et al., 2018). Thus, future epidemiological studies 

conducted in India will be crucial to reduce this uncertainty and provide more consistent 

policy messages. Recently, the first India-based study on short-term exposure to ambient 

PM2.5 exposure and risk of non-accidental mortality in Delhi was released, suggesting a non-

linear exposure-response curve and smaller effects than those observed in western Europe 

and the USA (Krishna et al., 2021). Larger cohort studies investigating long-term exposures 

both in urban and rural areas are warranted to complement these findings. Although the co-

benefits analyses in this doctoral thesis focused only on the risk of mortality related to 

exposure to ambient PM2.5, there is also a lack of population-specific ERFs for other air 

pollutants such as ground-level O3 and NO2. 
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A larger number of studies characterising the temperature-mortality association in India and 

other countries in the region are also needed. Although a meta-analysis of existing studies in 

the region was performed in Study I, the small number of research articles resulted in 

relatively large confidence intervals in the final estimates. A meta-regression to identify study-

level factors that might drive heterogeneities in effects was also not possible due to the 

scarceness of eligible studies. Local epidemiological studies (based on certain cities or rural 

areas) with good quality health and temperature data can support the design of more effective 

and efficient adaptation measures, for instance, temperature thresholds at which heat action 

plans are to be activated, location and characteristics of the most vulnerable populations in 

the area. On the other hand, large-scale country-level studies can support the estimation of 

more robust ERFs and hence HIAs. These can help demonstrate the magnitude of current 

and future vulnerabilities to heat stress at the national level, where decision power regarding 

mitigation policies is mainly concentrated. Such large-scale studies can also help guide 

adaptation measures for administrative districts with too limited resources for conducting 

their analysis. Importantly, a major barrier for conducting epidemiological studies on 

temperature or air pollution exposure in the region is the poor vital statistics system and the 

lack of other reliable, regularly collected, and publicly available mortality and morbidity data.  

 

Population-specific evidence on the associations between air pollution and ambient 

temperatures with non-fatal outcomes such as hospital admissions, doctor visits or work 

absenteeism can also support future HIAs and cost-benefit analyses. Due to the lack of such 

ERFs, most studies on India are limited to reporting only mortality impacts of different 

GHG emission scenarios, thus substantially underestimating the full health burden and 

associated economic costs of air pollution and temperature increases. Moreover, studies that 

examine in more detail the role of socio-economic and other mediating factors (e.g. 

education, sex, income, access to healthcare, housing) on the association between air 

pollution or temperature exposures and mortality or morbidity will be particularly valuable 

for future HIAs and for informing adaptation policies in the country. 

 

• Development of advanced HIA methodologies that can incorporate 

interactions of multiple exposures and heterogenous effects across 

population groups 
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Most existing health impact projections related to climate change tend to focus on a single 

exposure pathway and report aggregate population-level effects. However, climate impacts 

are mediated by a diversity of often complex causal pathways and populations might be 

exposed to several risk factors simultaneously such as high AAP, prolonged heatwaves, more 

frequent wildfires, and food insecurity. Simply adding up independently projected health 

impacts leads to double counting and does not account for potential synergistic effects. 

Projections of aggregate population-level impacts, on the other hand, do not provide 

information on the distributional effects of policies. Comprehensive mitigation and 

adaptation planning require an understanding of the interactive effects of multiple exposures 

and differential population impacts (e.g. sex, income, urban-rural residence) at different 

geographical scales. As demonstrated in section 1.6 of this thesis, a broad range of mature 

and well-established methods beyond CRA are available for investigating such complexities. 

Where the large research and data requirements for such methods is a barrier, development 

of easy-to-use tools and open-source and portable models similar to the dynamic 

microsimulations “The Lives Saved Tool” or “DYNAMIS-POP” might be particularly 

valuable for supporting policy decisions (Bollinger et al., 2021; Spielauer and Dupriez, 2019). 

The static microsimulation developed as part of this thesis also incorporates such 

complexities, while having more modest modelling and computational requirements than 

dynamic microsimulation or ABSs. This model could potentially be expanded in the future 

to account for the burden of other health outcomes sensitive to HAP and AAP, to 

incorporate other climate feedbacks on child stunting or dynamic feedbacks on population 

change. 

 

• Integrated assessment of health co-benefits and trade-offs  

 

Similar to impacts of climate change, projections of health co-benefits have also been mostly 

restricted to a single exposure, in most cases air pollution. While the especially high health 

burden from air pollution in India justifies this choice, new methods and studies that 

examine, quantify, and potentially monetise multiple co-benefits of climate change mitigation 

can strengthen the case for climate action and increase policy ambition. An example is a 

recently published paper by Hamilton et al. (2021) that projected the combined national-level 

co-benefits related to air pollution, diet, and physical activity for nine high emission 

countries, including India, under the NDCs and the 2°C Paris Agreement target. The study, 

however, did not account for the interaction effects between changing dietary risks and 
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changing physical activity or active travel and air pollution. Less studied co-benefits of 

climate change mitigation for India that could be additionally explored include green spaces, 

the UHI effect, noise pollution, improved road safety, employment, energy security, and food 

and water security. Furthermore, studies that consider health co-benefits and trade-offs in a 

unified framework, including their interactions and feedbacks, are rare. As highlighted 

previously, more research in this domain might be especially important for LMICs such as 

India, where resources are scarce and development objectives remain the main priority. Such 

research undertakings would require frameworks and collaboration of scientists from 

multiple disciplines, including public health, climate, and atmospheric science, economics, 

demography, energy modelling, and agronomy. 

 

• Consideration of demographic and socio-economic dynamics and improved 

integration of knowledge in the climate-population-health domain 

 

Similar to other LMICs, India is undergoing important societal transformations, including a 

fall in fertility, increase in LE, improvements in educational and income levels, rapid rural-

to-urban migration, increase in the burden of NCDs, increase in the quality and access to 

healthcare services. As discussed in section 1.5.5 of this thesis, these factors will be crucial in 

determining exposure and vulnerabilities to future environmental risk factors. Some studies, 

for instance, have found larger sensitivity in their estimates in relation to socio-economic 

development trajectories than ERFs (Hodges et al., 2015) or even emission pathways (Lloyd, 

2020). Current projections of health impacts, however, consider socio-economic 

developments to a very limited extent. A potential reason for this is the need for the 

integration of knowledge from very different disciplines and the use of more advanced 

methodologies. Interdisciplinary studies examining the interplay of environmental threats 

and socio-economic dynamics will be valuable in providing a more comprehensive 

assessment of future risks. Furthermore, modelling of more easily modifiable socio-

economic factors (e.g. access to education, health care) under different policy scenarios can 

provide insights into potential adaptation strategies. 

 

The interdisciplinary nature of this thesis opened interesting lines of research also in the field 

of demography. Future studies can expand on the population projection model applied in 

this thesis to incorporate the combined impacts of outdoor and indoor air pollution, ambient 

temperature increases, and other environmental stressors on LE. There are a number of 
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recent studies linking both temperatures and air pollution with adverse birth outcomes and 

infertility (Carré et al., 2017; Cho, 2020; Conforti et al., 2018; Jensen et al., 2021). Indirect 

influences of climate change on fertility through reproductive choices have also been 

reported by empirical studies (Eissler et al., 2019; Sellers and Gray, 2019; Simon, 2017). Thus, 

in future work, the impact of climate change not only on mortality but also fertility can be 

explored. Future research can investigate how environmental stressors in the country (e.g. 

temperature increases, floods) might affect also migration flows and the health and wellbeing 

of affected populations. Finally, another emerging topic in this domain is how adverse 

climate-related health outcomes such as malnutrition, infectious disease outbreaks, or 

weather and climate disasters can affect social stability (Sellers et al., 2019). 

 

• Participatory HIAs of climate change mitigation policies 

 

Another important avenue for future research is the development of participatory HIAs in 

relation to climate change mitigation. Although health co-benefits are shown to be one of 

the largest and most important categories of co-benefits, these are in general still rarely 

considered in climate policy and are poorly, if at all, reflected in NDCs. The involvement of 

policymakers, civil society organisations, and other relevant stakeholders at an early stage of 

the development of HIAs can help ensure that the modelled assumptions and scenarios are 

feasible, transparent, publicly acceptable, and responsive to policy needs. Furthermore, 

participatory HIAs can help raise public awareness of the relevance of climate change for the 

health of current and future generations and the urgent need for action. Wider awareness can 

in turn promote ownership and strengthen support for national mitigation commitments. 

 

Despite their invaluable contribution in the field of climate change, one key criticism of IAMs 

themselves is the insufficient or non-existent involvement of policymakers and other 

stakeholder groups in modelling activities (Doukas et al., 2018). Many of the assumptions 

embedded in IAMs are often formalised without stakeholder consultations and not clearly 

presented to policymakers along with modelling results. The lack of flexibility of the 

formalised frameworks for modelling the large diversity of available policy instruments has 

also been criticised (Doukas et al., 2018). In this context, uptake of participatory approaches, 

not only in the design of HIAs of mitigation policies but also in the development of the 

IAMs that they are often based on, will be a crucial step for ensuring that future research can 

effectively contribute to the climate action talks and inform policymaking processes. 
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6.6 Concluding remarks 

 

Although India might have a lower historical responsibility for mitigating climate change, the 

future health and prosperity of its population will depend on the provision of clean, 

affordable, and reliable energy. Failing to rapidly decarbonise its growing economy, India will 

endanger the health and wellbeing of future generations, potentially undermining some gains 

in LE and other development progress over the last years. By focusing on ambient 

temperatures and heatwaves, in particular, this thesis demonstrated that the country is highly 

vulnerable to climate change. On the other hand, the scenario analyses undertaken as part of 

the thesis showed that mitigation actions, especially when complemented with targeted 

pollution and social support policies, could provide an opportunity to improve the health of 

not only future but also current generations by reducing the large health burden of air 

pollution in the country. This doctoral thesis, therefore, strengthened the case that, when 

carefully planned, ambitious climate change mitigation in line with the Paris Agreement can 

help accelerate progress on India´s development objectives and the sustainable development 

goals.  
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