
Data-Driven Musical
Version Identification:
Accuracy, Scalability, and Bias
Perspectives

M. Furkan Yesiler

TESI DOCTORAL UPF / 2021

Thesis Directors:

Dr. Emilia Gómez Gutierrez

Dept. of Information and Communication Technologies

Universitat Pompeu Fabra, Barcelona, Spain

Dr. Joan Serrà Julià

Dolby Laboratories, Barcelona, Spain

Dissertation submitted to the Department of Information and Communication Tech-
nologies of Universitat Pompeu Fabra in partial fulfillment of the requirements for the
degree of

DOCTOR PER LA UNIVERSITAT POMPEU FABRA

Copyright © 2021 by M. Furkan Yesiler

Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0,
with the exception of materials published and copyrighted by IEEE

(Chapters 2 and 4, Sections 1.2.1, 8.2 and 9.3, and Figure 1.2).

In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of Universitat Pompeu Fabra’s products or

services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional

purposes or for creating new collective works for resale or redistribution, please go
to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to

learn how to obtain a License from RightsLink.

Music Technology Group (http://mtg.upf.edu), Department of Information and Communication Tech-

nologies (http://www.upf.edu/dtic), Universitat Pompeu Fabra (http://www.upf.edu), Barcelona, Spain.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://mtg.upf.edu
http://www.upf.edu/dtic
http://www.upf.edu

V

This dissertation has been carried out at the Music Technology Group of Universitat
Pompeu Fabra in Barcelona, Spain, from Sep. 2018 to Nov. 2021. It has been su-
pervised by Dr. Emilia Gómez Gutierrez and Dr. Joan Serrà Julià. This research has
been supported by the European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant agreement No. 765068.

Acknowledgments

After scribbling and erasing words that couldn’t find their way to a complete sentence
for the better part of an hour, I have finally realized that my brain has completely wired
itself for “academic writing,” and coming up with something informal and heartfelt
is going to be rather difficult. So, bear with me while I express my sincere gratitude
to the wonderful human beings with whom I have had the utmost pleasure of sharing
joyful moments, memorable experiences, and horizon-widening ideas throughout my
journey here in Barcelona, one of the most marvelous cities in the world.

First and foremost, my supervisors Joan and Emilia. I cannot imagine a better com-
pany for my academic and professional development. Many thanks, Joan, for teaching
me how to aim for a high level of scientific integrity, for setting the bar high when
it comes to ideas and execution, for sharing your personal strive for excellence, for
showing me nothing is impossible when it comes to shortening the papers, for listen-
ing to my ideas and guiding my research in the best possible way. Many thanks,
Emilia, for supporting my career development and my research in an invaluable way,
for making me think about the impact of my work, for encouraging me to do an ISMIR
tutorial and an SPM paper, for introducing fairness and bias studies in my research,
for being there every time I come asking for your advice, and for showing me how to
aim for being a well-rounded researcher.

I would not have been working in the field of MIR if not for Barış Bozkurt and Xavier
Serra. Thanks, Barış, for your help and guidance that made me aware of this field,
for pointing me in the direction of MTG, and for all your support throughout my
academic journey. Thanks, Xavier, for providing me with the opportunity to join the
Master’s program, for all your guidance throughout my Ph.D., and for inspiring me
to prioritize the motivation aspect of my research.

I have had the pleasure and the privilege of sharing an office with Juan Gómez, Helena
Cuesta, and Lorenzo Porcaro. Without your great company, I surely would not look
at my experience of, although limited, working in an office as joyful as I do now.

I would also like to thank Emilio Molina, for showing me a sneak-peek into life in an
industrial working environment, for always supporting my ideas and developing them
further, and for giving me the opportunity to have an industrial aspect in my research.

Throughout my time at MTG, I have met and enjoyed the company of countless great
people. Without any particular order, I would like to thank António Ramires, Pablo
Alonso, Dmitry Bogdanov, Frederic Font, Marius Miron, Perfecto Herrera, Alastair
Porter, Philip Tovstogan, Minz Won, Pablo Zinemanas, Albin Correya, Xavier Favory,
Andrés Ferraro, Pritish Chandna, Olga Slizovskaia, and Jordi Pons, for sharing a
wealth of experiences that I will always cherish when I look back. I would also

VII

VIII

like to thank Sonia Espí, Cristina Garrido, Seva Eremenko, Thomas Nuttall, Merlijn
Blaauw, Guillem Cortès, Eduardo Fonseca, Behzad Haki, Alia Morsi, Jyoti Narang,
Genis Plaja, Miguel Pérez, Pedro Ramoneda, Nazif Can Tamer, Rafael Caro Repetto,
Aggelos Gkiokas, Blai Meléndez, Rong Gong, and Sergio Oramas, for leaving joyous
memories with me.

I have been extremely fortunate to be a part of perhaps the greatest training net-
work ever! Many thanks to Karim Ibrahim, Kilian Schulze-Forster, Giorgia Can-
tisani, Ondřej Cífka, Javier Nistal, Emir Demirel, Carlos Lordelo, Ruchit Agrawal,
Alejandro Delgado, Vinod Subramanian, Luís Carvalho, and Charles Brazier, for af-
fecting my life always in a positive way. Thanks to Alvaro Bort, Simon Dixon, Em-
manouil Benetos, Geoffroy Peeters, Gaël Richard, Gerhard Widmer, Sven Ahlbäck,
and Stefan Lattner, for all their efforts in making the MIP-Frontiers project possible.

During my research, I have had the privilege of working with many great researchers,
from whom I have learned a great deal. Many thanks to Guillaume Doras, Christopher
Tralie, Rachel Bittner, Diego Silva, Sertan Şentürk, Doğac Başaran, Brian McFee,
Frank Zalkow, Meinard Müller, Erling Wold, Juan José Bosch, Mohamed Sordo, and
Jan Van Balen.

Last but not least, I would like to thank my family and all my friends. I have felt their
support behind me every step of the way, and I surely could not have reached this
point without them.

Abstract

One of the key practices that enrich the world’s musical heritage is creating versions
of existing musical works (e.g., cover songs, acoustic versions, and live perform-
ances). In addition to establishing connections between musicians, such versions
provide listeners with an opportunity to rediscover a known tune. Due to a wide
range of musical characteristics that may show variations between versions (e.g., key,
tempo, structure, etc.), building computational systems to automatically identify ver-
sions of the same musical work is a challenging task. However, such systems open
doors to many applications ranging from musical plagiarism detection in media plat-
forms to assisting musicians in their creative process.

This dissertation aims at developing audio-based musical version identification (VI)
systems for industry-scale corpora. To employ such systems in industrial use cases,
they must demonstrate high performance on large-scale corpora while not favoring
certain musicians or tracks above others. Therefore, the three main aspects we address
in this dissertation are accuracy, scalability, and algorithmic bias of VI systems.

We first perform a large-scale analysis on the frequency and extent of the common mu-
sical changes between versions, by which we determine the crucial components of our
first system. Using the insights from the analysis, we propose a deep learning–based
model that incorporates domain knowledge in its network architecture and training
strategy. We design explicit modules to handle common transformations between
musical versions. We then take two main directions to further improve our model.
Firstly, we experiment with data-driven fusion methods to combine information from
models that process harmonic and melodic information, which greatly enhances iden-
tification accuracy. Secondly, we investigate embedding distillation techniques to
reduce the size of the embeddings produced by our model, which reduces the require-
ments for data storage and, more importantly, retrieval time. After exploring potential
improvements in accuracy and scalability, we analyze the algorithmic biases of our
systems and point out the impact such systems may have on various stakeholders in
the music ecosystem (e.g., musicians, composers) when used in an industrial context.
We conclude our research by analyzing the performance of our proposed systems on
two industrial use cases, in collaboration with a broadcast monitoring company.

Overall, our work addresses the research challenges of the next generation of VI sys-
tems. We show the feasibility of developing systems that are both accurate and scal-
able at the same time by carefully combining domain knowledge into data-driven
workflows. We believe that our contributions will accelerate the integration of VI
systems into industrial scenarios, and, thus, the impact of VI research on musicians
and listeners will be more eminent than ever.

IX

Resumen

Una de las prácticas clave que enriquecen el legado musical mundial es la creación
de versiones de obras musicales existentes (e.g. covers, versiones acústicas, e inter-
pretaciones en vivo). Además de establecer conexiones entre músicos, estas versio-
nes ofrecen a los oyentes la oportunidad de redescubrir un tema conocido. Debido
a la gran variedad de características musicales que pueden verse modificadas en las
versiones (ej. tonalidad, tempo, instrumentación o estructura), construir un algoritmo
capaz de identificar automáticamente versiones de una misma obra musical es un gran
reto. Sin embargo, tales sistemas abren las puertas a multitud de aplicaciones, desde
la detección de plagio musical en plataformas multimedia, a asistir a músicos durante
su proceso creativo.

Esta tesis doctoral tiene como objetivo desarrollar sistemas de identificación de ver-
siones musicales basados en audio y aplicables en un entorno industrial. Para emplear
estos sistemas en un entorno industrial, estos sistemas deben demostrar tener un alto
desempeño con grandes conjuntos de datos, y a la vez no deben favorecer ciertos mú-
sicos o temas musicales sobre otros. Por lo tanto, los tres aspectos que se abordan en
esta tesis doctoral son el desempeño, escalabilidad, y los sesgos algorítmicos en los
sistemas de identificación de versiones.

En primer lugar ésta tesis contribuye con un análisis a gran escala de la frecuencia
y la magnitud de los cambios musicales entre versiones, para lo cual se determinan
los componentes clave del primer sistema resultado de ésta investigación. A partir
de las observaciones de este primer análisis, se propone un modelo basado en apren-
dizaje profundo que incorpora conocimiento musical en su arquitectura de red y su
estrategia de entrenamiento. Para ello diseñamos módulos específicos para tratar con
transformaciones comunes entre versiones musicales. A continuación, escogemos dos
direcciones principales para mejorar nuestro modelo. En primer lugar, se experimen-
ta con métodos de fusión dirigidos por datos para combinar la información de los
modelos que procesan información melódica y armónica, lo cual produce un impor-
tante incremento en el desempeño de la identificación. En segundo lugar, se investigan
técnicas para la destilación de embeddings, con el objetivo de reducir el tamaño del
embedding producido por nuestro modelo, que reduce los requerimientos de almace-
namiento de datos, y lo que es más importante, del tiempo de búsqueda. Tras explorar
las mejoras potenciales en desempeño y escalabilidad, se analizan los sesgos algorít-
micos de nuestro sistema, y se señala el impacto que tales sistemas podrían tener en
los diferentes agentes del ecosistema musical (ej. músicos, compositores), cuando se
utiliza en un contexto industrial. Concluímos nuestra investigación analizando el ren-
dimiento de los sistemas propuestos en dos casos de uso industriales, en colaboración
con una compañía de monitorización de radiodifusión.

XI

XII RESUMEN

En general, la presente tesis doctoral aborda los retos de investigación de la siguiente
generación de sistemas de identificación de versiones. Demostramos que es factible
desarrollar sistemas que tanto acierten, como sean escalables, combinando cuidado-
samente conocimiento musical en flujos de trabajo dirigidos por datos. Creemos que
estas contribuciones acelerarán la integración de sistemas de identificación de ver-
siones en escenarios industriales, y por lo tanto, el impacto de la investigación en
identificación de versiones sobre músicos y oyentes será más relevante que nunca.

(Translated from English by Emilio Molina)

Contents

Abstract IX

Resumen XI

Contents XIII

List of Figures XVII

List of Tables XXI

List of Abbreviations and Symbols XXIII

1 Introduction 1
1.1 Motivation . 1
1.2 Key concepts . 4

1.2.1 Task definition . 4
1.2.2 Versions . 7
1.2.3 Musical work . 9

1.3 Scope and objectives . 12
1.4 Summary of the contributions . 13
1.5 Dissertation outline . 14

2 Scientific Background 17
2.1 Introduction . 17
2.2 A historical survey of version identification systems 18

2.2.1 1995–2005: Precursors of version identification systems . . . 18
2.2.2 2005–2010: The first version identification systems 20
2.2.3 2010–2015: Improving accuracy & scalability 21
2.2.4 2015–today: Transition to data-driven version identification . 23

2.3 Building blocks of version identification systems 25
2.3.1 Feature extraction . 25
2.3.2 Transposition invariance . 28
2.3.3 Tempo and timing invariance 29
2.3.4 Structure invariance . 31
2.3.5 Similarity estimation . 33

2.4 Beyond building blocks: accuracy and scalability improvements . . . 35
2.4.1 Version set enhancement . 35
2.4.2 Feature fusion . 35

XIII

XIV CONTENTS

2.4.3 Ensemble systems . 36
2.4.4 Pruning . 37
2.4.5 Fast indexing . 38
2.4.6 Data augmentation . 38

2.5 Datasets and evaluation metrics . 39
2.5.1 Datasets . 39
2.5.2 Evaluation metrics . 42

3 Toward Data-driven Version Identification 45
3.1 Introduction . 45
3.2 Curating a dataset . 46
3.3 Quantitative analysis of modifiable musical characteristics 47

3.3.1 Overview . 48
3.3.2 Analysis details . 48

3.4 Benchmarking existing systems . 53
3.5 Search for data-driven input features 55
3.6 Conclusion . 55

4 Musically Motivated Version Embeddings 57
4.1 Introduction . 57
4.2 Methods . 58

4.2.1 Input representation . 58
4.2.2 Network architecture . 59
4.2.3 Training strategy . 63

4.3 Results . 65
4.3.1 Evaluation methods . 65
4.3.2 Effect of embedding dimension 66
4.3.3 Ablation study . 66
4.3.4 Comparison with the state of the art 67
4.3.5 Error analysis . 68

4.4 Conclusion . 69

5 Improving Accuracy with Data-driven Fusion 73
5.1 Introduction . 73
5.2 Methods . 74

5.2.1 Input representations . 74
5.2.2 Network architecture . 75
5.2.3 Comparing features . 76
5.2.4 Combining features . 77

5.3 Results . 78
5.3.1 Evaluation methodology . 78
5.3.2 Comparing individual systems 78
5.3.3 Ensemble and fusion experiments 79

CONTENTS XV

5.3.4 Comparison with the state of the art 81
5.3.5 Error analysis . 82

5.4 Conclusion . 82

6 Improving Scalability with Embedding Distillation 85
6.1 Introduction . 85
6.2 Methods . 86

6.2.1 The base model . 87
6.2.2 Embedding distillation techniques 87
6.2.3 Training details . 92

6.3 Results . 92
6.3.1 Evaluation methods . 92
6.3.2 Embedding distillation experiments 92
6.3.3 Comparison with the state of the art 94
6.3.4 Error analysis . 96

6.4 Conclusion . 96

7 Exploring the Algorithmic Bias in Version Identification 97
7.1 Introduction . 97
7.2 Methods . 99

7.2.1 Systems . 99
7.2.2 Attributes . 99
7.2.3 Dataset and evaluation . 102

7.3 Results . 103
7.3.1 Main findings . 103
7.3.2 Discussion . 106

7.4 Conclusion . 109

8 Applications in Industrial Use Cases 111
8.1 Introduction . 111
8.2 Identifying setlists in live music recordings 112

8.2.1 Introduction . 112
8.2.2 Methods . 113
8.2.3 Results . 117
8.2.4 Conclusion . 121

8.3 Large-scale retrieval with an industrial corpus 121
8.3.1 Introduction . 121
8.3.2 Methods . 122
8.3.3 Results . 125
8.3.4 Conclusion . 127

8.4 Chapter conclusion . 127

9 Conclusion 129

XVI CONTENTS

9.1 Summary . 129
9.2 Contributions and key results . 130
9.3 Open issues, challenges, and future directions 133

9.3.1 Task definition . 133
9.3.2 Evaluation methodologies 134
9.3.3 Scalability trade-offs . 136
9.3.4 Accuracy gaps . 137
9.3.5 Emphasis on subfields and applications 138

Bibliography 143

A Publications by the Author 157

B Breakdown of Contributions by the Author 159

C Additional Contributions 161

List of Figures

1.1 Specificity–granularity plane where various MIR tasks can be situated
on. Taken from Grosche et al. (2012, licensed under Creative Commons
BY-ND) . 5

1.2 Examples of version types and the (subjective) degrees to which a list
of musical dimensions may be altered. Both the version types and the
musical dimensions are based on Serrà (2011) with a few additions. The
version type “Performance” refers to a recording of a written classical
work, while “Standard” refers to a recording of a folk or a jazz tune where
there are often improvisational aspects. 7

2.1 Milestones of VI research over the past 20 years. 18
2.2 Performance (as measured by mean average precision) of different VI

systems evaluated on several datasets (see Section 2.5.1) throughout the
years. 24

2.3 Overview of the building blocks of VI systems detailed in Sections 2.3
and 2.4. 25

2.4 Common input features for VI systems, extracted for the track “Don’t
Stop Believin”’ by Journey (included in the supplementary website). The
y-axes represent musical notes (in subfigures a, b, and d) and pitch classes
(in subfigure c), the x-axes represent time, and the color scale indicates
the energy/intensity of such notes/pitch classes on a given time frame. . . 26

3.1 (Left) Distribution of changes in semitones between key estimates for
version pairs with a reported key change. (Right) Distribution of tempo
ratios between version pairs. 48

3.2 An example of fused similarity matrices of “The Wizard” by Uriah Heep
(upper left), a version by Blind Guardian (lower left), and “Million Pieces”
by The Piano Tribute Players (upper right), which is unrelated to the other
two tracks. The corresponding ShapeDNAs are shown in the lower right. . 50

3.3 Distributions of ShapeDNA differences between pairs of tracks as a means
of assessing structural changes. 50

3.4 An example of R(t) estimates and their associated persistence diagrams
for the track “24 Hours” by Joy Division and Versus. Both tracks speed
up in the chorus and slow down in the verse; therefore, they each con-
tain several local minimums with high persistence that are born during
the verses. They each also contain some low amplitude wobbling which
shows up as dots near the diagonal. 51

XVII

XVIII LIST OF FIGURES

3.5 Persistence images corresponding to the diagrams in Figure 3.4. The
Versus version contains larger scale wobbles, leading to blobs further up
on the persistence axis. However, they both contain also smaller scale
wobbles. 52

3.6 Distribution of persistence image distances of lower star filtrations of re-
lative tempo functions between pairs of tracks. 52

3.7 Distributions of F-measures for version and non-version pairs regarding
the higher-level semantic aspects. 53

4.1 Block diagram of MOVE’s architecture. KS denotes kernel size. 58

4.2 The preprocessing of the input features for the transposition invariance
module (top). The resulting features of shape 23× T includes all the
possible transpositions of the original input (bottom). 59

4.3 The multi-channel adaptive attention module. 61

4.4 Two cases where items in the latent space are clustered well. Note that
the half of the space from the left figure is unused. 62

4.5 MAP with respect to embedding dimension d on validation data. 66

4.6 Randomly selected pairs of non-versions (the first three rows) and ver-
sions (the last three rows) for error analysis. The brighter colors indicate
higher values. The cremaPCP features of each pair are transposed to max-
imize their similarities. The distance values indicated between pairs are
obtained using MOVE. 70

5.1 The network architecture of MICE. KS denotes kernel size, and // denotes
the integer divide operation. 75

5.2 Comparison of the normalized distances computed for the pairs from
SHS4- (version pairs in green and non-version pairs in red) with different
features: dMel vs. mPitch (left), dMel vs. cremaPCP (middle), mPitch
vs. cremaPCP (right). For clarity, only 500 randomly picked pairs are
plotted (250 versions and 250 non-versions). 80

5.3 Dominant melody and cremaPCP features for two pairs of versions (a–h)
and two pairs of non-versions (i–p). The brighter colors indicate higher
values. Logarithm of the dominant melody features are taken for better
illustrations. The cremaPCP features of each pair are transposed to max-
imize their similarities. The distances between subfigures are computed
using MICE with dominant melody or cremaPCP inputs. 83

6.1 An overview of neural network–based embedding distillation methods.
The hollow arrows denote training process, the boxes with dashed and
with solid outlines denote feature extractors and fully connected layers,
respectively. 87

LIST OF FIGURES XIX

6.2 MAP with respect to embedding dimensionality d for Re-MOVE (red
stars), MOVE (blue squares), and other existing approaches (blue circles).
Notice the logarithmic axis. 95

7.1 Rank distributions for a selected set of experiments. The full set of
115 experiments is available in the project repository (see Appendix C). . 105

8.1 Overall block diagram of the proposed end-to-end workflow. Different
colors in query windows indicate different tracks, D indicates the distance
between that query window and the top returned track for that window. . . 114

8.2 Distance (left) and duration (right) distributions of TP and FP for Re-
MOVE - (120,30) (top) and Qmax - (120,60) (bottom). 118

8.3 DLP and FP values after the classifier for each concert evaluated with
Re-MOVE - (120,30), categorized by genre. 120

8.4 Evaluation results for the ANN experiments. The vertical yellow lines
indicate the average time per query for the brute-force approach. 126

A.1 Distribution of the number of tracks per clique for the training (left) and
the validation (right) partitions. 162

A.2 The landing page of the supplementary website for Yesiler et al. (2021a). . 163
A.3 The input options for the system demo based on the template provided by

Replicate.ai. 165
A.4 The output of the system demo obtained by comparing two versions of

the track “Like a Rolling Stone” by Bob Dylan and John Mayer. 166
A.5 The output of the system demo obtained by retrieving top-10 results from

the benchmark subset of Da-TACOS using a version of the track “Riders
on the Storm” performed by Dezperadoz. 167

List of Tables

2.1 Publicly available VI datasets. Values outside and inside the parentheses
indicate the number of tracks and unique cliques, respectively. 40

3.1 List of features provided in each subset of Da-TACOS along with the
software libraries used to extract them. 47

3.2 Performance statistics for the baseline systems using HPCP features as
input. 54

3.3 Performance statistics for the baseline systems implemented comparing
HPCP and cremaPCP features. H stands for HPCP, C for cremaPCP and
M for MFCC. 56

4.1 Ablation study. Performance on the validation set using d = 16k. 67
4.2 Comparison of MOVE and other state-of-the-art VI systems on the Da-

TACOS benchmark subset. Results for the proposed system are high-
lighted in bold. 68

4.3 Comparison of MOVE and other state-of-the-art VI systems on the You-
TubeCovers dataset. Results for the proposed system are highlighted in
bold. 69

5.1 Results on SHS4- for considered input features. 79
5.2 Comparison of ensemble systems with various input feature combinations

using the distance averaging scheme on SHS4-. O denotes “oracle” (see
Section 5.3.3.1). 79

5.3 Comparison of the considered ensemble and fusion schemes on the Da-
TACOS benchmark set (left) and SHS4- (right). Avg. and LF denote
distance averaging and late fusion, respectively. Note that cremaPCP and
dMel+cremaPCP (Avg.) scores are higher here than in Table 5.2 because
cremaPCP is now processed by MOVE. 81

5.4 Comparison of the proposed approaches and other state-of-the-art VI sys-
tems on the Da-TACOS benchmark subset. MOVE-512 and MOVE-16 k
denote MOVE models that produce embeddings of size 512 and 16 k,
respectively. Results for the proposed systems are highlighted in bold. . . 81

6.1 MAP for different embedding sizes d when training from scratch (top)
and when using pretrained models and embedding distillation (middle-
bottom). MAPs for the original MOVE-4k and MOVE-16k baselines are
0.495 and 0.507, respectively (values equal to or above MOVE-4k are
highlighted in bold). 93

XXI

XXII LIST OF TABLES

6.2 Comparison of Re-MOVE and other state-of-the-art VI systems on the
Da-TACOS benchmark subset. When not explicit, embedding sizes d are
estimated for a track duration of 3.5 min (see Section 6.3.3). MOVE-512
and MOVE-16 k denote MOVE models that produce embeddings of size
512 and 16 k, respectively. Results for the proposed system are high-
lighted in bold. 94

7.1 Summary of the experiments. Numbers indicate the considered systems:
Qmax (1), MOVE (2), MICE-M (3), MICE-C (4), and LF-c (5). The
bold and underlined text indicates that the results obtained with the cor-
responding system show a significant difference between G1 and G2. . . . 101

7.2 Sample sizes per group per experiment. 102
7.3 Detailed results. For each system and experiment, we report the raw p-

value of the KS test and the mean reciprocal rank of groups 1 and 2 (ψ̄-
G1 and ψ̄-G2). Bold text with * denotes statistical significance after the
Holm-Bonferroni correction. Overall system performance with the con-
sidered dataset is indicated in parenthesis in the top row. 104

8.1 Number of concerts per audio quality and genre. The numbers in par-
enthesis indicate the concerts in the development set. AQ-A contains
professional recordings from large venues, AQ-B professional recordings
from smaller venues, and AQ-C smartphones and video cameras. 116

8.2 Overall results for five configurations on the evaluation set. R, Q, and F
denote Re-MOVE, Qmax, and 2DFTM, respectively. The left/right values
denote the metrics before/after the classifier. 118

8.3 Results based on audio quality. R and Q denote Re-MOVE and Qmax,
respectively. The left/right values denote the metrics before/after the clas-
sifier. AQ-A contains professional recordings from large venues, AQ-B
professional recordings from smaller venues, and AQ-C smartphones and
video cameras. 119

8.4 Results based on genre. R and Q denote Re-MOVE and Qmax, respect-
ively. The left/right values denote the metrics before/after the classifier. . 119

8.5 Results of Re-MOVE - (120,30) on the MJD-expanded task. 120
8.6 Evaluation results for the baseline and two-step system experiments. R, 2-

S, and R+(2-S) denote Re-MOVE, the two-step system, and the ensemble
system that aggregates distances obtained from Re-MOVE and the two-
step system, respectively. 125

List of Abbreviations and Symbols

Abbreviations

Abbreviation Description

ACR Automatic chord recognition
ANN Approximate nearest neighbor
AP Average precision
API Application programming interface
ASCAP American Society of Composers, Authors and

Publishers
BY-NC Attribution-NonCommercial
BY-NC-SA Attribution-NonCommercial-ShareAlike
CENS Chroma energy normalized statistics
CQT Constant-Q transform
CRP Cross-recurrence plot
DAP Detected annotations percentage
DLP Detected length percentage
DM Distance matching
DP Dynamic programming
DRM Digital rights management
DTW Dynamic time warping
FLOPS Floating point operations per second
FP False positive
GRP Gaussian random projection
HPCP Harmonic pitch class profile
ICA Independent component analysis
IFPI International Federation of the Phonographic

Industry
ISRC International standard recording code
ISWC International standard musical work code
LDA Linear discriminant analysis
LSH Locality-sensitive hashing
MAP Mean average precision

XXIII

XXIV LIST OF TABLES

Abbreviation Description

MFCC Mel-frequency cepstral coefficients
MIDI Musical instrument digital interface
MIR Music information retrieval
MIREX Music information retrieval evaluation exchange
MLP Multilayer perceptron
MR1 Mean rank of the first relevant item
MRR Mean reciprocal rank
NCA Neighborhood component analysis
NP Non-deterministic polynomial-time
NRP@K The percentage of the queries for which no

relevant items are retrieved among the first K
results

PCA Principal component analysis
PCP Pitch class profile
PD Persistance diagram
Prec Precision
PReLU Parametric rectified linear unit
RankAcc Rank accuracy
ReLU Rectified linear unit
SACEM Société des auteurs, compositeurs et éditeurs de

musique (Society of Authors, Composers and
Publishers of Music)

SGAE Sociedad General de Autores y Editores
(General Society of Authors and Publishers)

SGD Stochastic gradient descent
SHS SecondHandSongs
SLI Setlist identification
TP True positive
TPP@K The percentage of the queries for which a

relevant item (a true positive) is returned at the
rank K

VI Version identification

LIST OF TABLES XXV

Mathematical Symbols

General

Example Symbol type Description

A,B,C Uppercase bold calligraphy letters Tensors
A,B,C Uppercase calligraphy letters Loss functions
A,B,C Uppercase sans serif letters Sets
A, B, C Uppercase bold letters Matrices
A,B,C Uppercase italic letters Constants, functions
a, b, c Lowercase bold letters Vectors

Specific

Symbol Description

B(t) Function of beat onset estimates
B′(t) Function of beat onset estimates [B(t)] convolved with

Gaussian derivative function [G(t)]
b Pruning iterations
C Set of all classes in the training set
Cfeatn MICE model trained using “feature n”
ci Centroid for the embeddings of the class of item i
c∗ Correct class for the input item
DBM Subset of the BMAT corpora used in the large-scale retrieval

experiment
DDT Subset of the Da-TACOS benchmark set used in the

large-scale retrieval experiment
d Hyperparameter for embedding size
E Normalized squared Euclidean distance function
EDA

i, j Distance between items i and j after distance averaging
scheme

F MOVE model
G(t) Gaussian derivative
H(i) The internal representation after ith set of convolution kernels

in MOVE

Ȟ(1)
The internal representation after the max-pooling layer (M) in
MOVE

H Hop size

XXVI LIST OF TABLES

Symbol Description

J Set of samples in a mini-batch
K Cut-off rank
LDB

i Cluster matching loss using Davies-Bouldin index for item i
LDM

i Distance matching loss function for item i
LG

i Group loss function for item i
LN

i NormalizedSoftmax loss function for item i
LNLL

i Negative log-likelihood loss function for item i
LP

i ProxyNCA loss function for item i

LTriplet
A, P, N Triplet loss function for the anchor A, the positive item P, and

the negative item N
L(i) ith set of convolution kernels in MOVE

L(i)
n nth kernel in ith set of convolution kernels in MOVE

L Late fusion model for the data-driven fusion scheme
M Max-pooling operation in MOVE
m Margin hyperparameter for the triplet loss
nnodes Number of nodes to search when querying an index with the

approximate nearest neighbor algorithm
ntrees Number of trees to construct an index for the approximate

nearest neighbor algorithm
p p-value

q(c)i Logit for the class c for item i
R(t) Function of tempo-normalized local tempo deviation
S2-S

i j Similarity score between items i and j using the two-step
system

SA
i j Refined similarity score between items i and j
SR

i j Similarity score between items i and j using Re-MOVE
T Number of frames
T ′ Number of time frames before the temporal aggregation

module in MICE
t Time point
vi Embedding vector for item i
W Weights of the final linear layer of MOVE
W Window size
X Feature matrix
X̂ Feature matrix containing all possible transpositions of X
Xfeatn

i Feature matrix of item i using “feature n”

LIST OF TABLES XXVII

Symbol Description

y Proxy vector for the class of item i
Z Set of proxy vectors for all the classes
Zi Set of proxy vectors for all the classes different than the one

of item i
α Learnable temperature parameter in the auto-pool function
ζi Average intra-class distance for the class of item i
σ Softmax function
τ Temperature parameter
ψ Reciprocal rank metric
ψ̄ Mean reciprocal rank metric

Chapter 1
Introduction

1.1 Motivation

“Songs need new voices to sing them in places they’ve never been sung in
order to stay alive.” – Emmylou Harris, as cited by Plasketes (2005)

Creating versions of existing musical works is and has always been an essential part
of musical practice. As Emmylou Harris puts it delicately, it allows songs and musical
works to remain “alive” for many decades or even centuries. In fact, before the advent
of recorded music, listening to a piece of music mostly meant listening to a version
of it, in many cases, performed by musicians other than the original composer or
performer. Versions that are reproduced faithfully with respect to the original works
are typically seen as tributes to honor the composers, and versions that are altered
with the limitless creativity of humans often demonstrate how an existing idea can
be transformed into something that goes beyond the original intention. Regardless of
the ways in which musical versions are created, they are fundamental to the world’s
musical heritage.

By definition, versions incorporate differences with respect to the “originals” —
sometimes just some slight changes in the mix, but some other times a reimagin-
ing of all of the original components. Regardless of the degree of difference, humans
have an innate ability to connect such versions to existing compositions (assuming
that they are familiar) rather than considering them as independent entities (see ref-
erences in Serrà, 2011). In fact, this ability is the reason why songs can stay alive
through their versions.

The reason why our brains are good at forming connections between a known track
and a newly heard version lies in a skill that is crucial for our cognition: categoriza-
tion (Zbikowski, 2002). Humans, like many other animals, are extremely adept in this
essential skill (Tversky & Hemenway, 1984). We form internal categories to under-
stand the world around us. Without them, our brains would have been overwhelmed

1

2 INTRODUCTION

by the amount of information that they receive. How we create such categories is still
an open question, but Rosch (1999) argues that a notion of similarity and an ability to
compare objects are required. As a result of such comparisons, we can automatically
form judgments regarding if an animal is a dog or if a song is a version of another.

Although categories are essential, they do not have to be unique or mutually exclusive.
Different taxonomic categories can be formed based on different notions of similarity
or different goals (Rosch et al., 1976; Tversky & Hemenway, 1984; Barsalou, 1991).
While we can categorize living organisms based on their size, color, family, or king-
dom, we can categorize pieces of music by their genres, artists, or instruments. The
particular notion of similarity that we use to connect versions to each other suggests
a notion of identity. Such versions may show drastic differences; yet, we somehow
recognize that they share some sort of identity or essence (usually, but not always,
transmitted through melody, harmony, or lyrics). As a result, we form various cat-
egories based on musical works that are familiar to us.

The ability to form categories of musical works may be a by-product of our innate cat-
egorization skills, but it is undoubtedly a valuable one. We can examine its value from
three perspectives. Firstly, versions provide a rewarding experience to both listeners
and musicians. For humans, connecting a new version to an existing category allows
an experience of “re-hearing” a known piece of music for the first time. Such an
experience positively stimulates us from two different perspectives: we hear some-
thing both familiar and novel at the same time. Our brains form expectations when
hearing familiar melodies or lyrics, and versions give us a certain amount of pleasure
by (although partly) fulfilling such expectations (Barrett et al., 2010; Huron, 2006;
Meyer, 1956). On the other hand, the deviations from our expectations often leave us
pleasantly surprised (Huron, 2006).

Like experiencing it, creating such a listening experience is also pleasing, from the
artists’ perspective. Many musicians, both amateur and professional, record and share
their interpretations of existing tunes. Enthusiasts in online communities1,2,3 annot-
ate such links between versions of their favorite tracks to add value to the listening
experience of others. Streaming services, in an effort to engage their users, curate
special playlists dedicated to versions (e.g., “acoustic versions,”4 “versions of Bob
Dylan tracks,”5 etc.). Taking these points into account, it is reasonable to argue that
the experience of versions brings undeniable value to musical practice.

Secondly, understanding the notion of similarity that allows us to form categories of
musical works is important for artists and composers to get the credit and recognition
they are due. Copyright laws are designed to protect the musical works of artists and

1https://secondhandsongs.com/ (All the URLs shared throughout this dissertation were checked at
the time of submission.)

2https://www.whosampled.com/
3https://cover.info/
4https://open.spotify.com/playlist/37i9dQZF1DWXmlLSKkfdAk
5https://open.spotify.com/playlist/37i9dQZF1DX0q1RHoDiZBg

https://secondhandsongs.com/
https://www.whosampled.com/
https://cover.info/
https://open.spotify.com/playlist/37i9dQZF1DWXmlLSKkfdAk
https://open.spotify.com/playlist/37i9dQZF1DX0q1RHoDiZBg

1.1 MOTIVATION 3

hinder cases of plagiarism. Note that the criteria for defining the identity of a musical
work from a copyright perspective may be different than our innate cognitive criteria
(see Section 1.2.3). However, having a grasp of abstract concepts like musical identity
or essence clearly facilitates any discussion around copyright protection for musical
works.

Lastly, understanding the links that connect the members of a musical category and
the boundaries that separate such categories into distinct entities is an important line
of research related to musicology, and music perception and cognition studies. Invest-
igating if categories based on musical identity would apply to all types of music or if
the properties of the links that connect the members of such categories are universal
would surely enhance our understanding of versions.

In the light of the aforementioned points, forming categories based on musical iden-
tity (therefore, having an appropriate notion of similarity) is undoubtedly valuable to
both listeners and musicians. While researchers from a wide range of disciplines in-
cluding, but not limited to, neuroscience, musicology, and legal studies investigate the
underlying processes and potential implications of having a notion of musical identity,
computer scientists approach this interesting element of musical practice from another
angle, by building systems that can automatically make judgments of similarity based
on that notion.

Apart from its philosophical value (i.e., to figure out whether computers can “think,”
or arrive at the same conclusions as humans), the quest for automating such judg-
ments of similarity is useful from several perspectives. Firstly, for the music ecosys-
tem, it would be useful for the detection of musical plagiarism in media platforms
(e.g., YouTube6, Apple Music7, and Spotify8) and for author and composer societies
(e.g., SACEM9, SGAE10, and ASCAP11). Due to the rapid increase in the amount of
new musical content created and uploaded to media platforms, automating plagiarism
detection processes is becoming increasingly important. Moreover, such automated
systems can be helpful for the organization of large catalogs of music. Due to cer-
tain complexities in the music industry, several rights or licenses for the same track
may be managed by different parties (e.g., publishers, labels, etc.). Consolidating vast
collections of music and linking related tracks (and their metadata) may facilitate the
process of music licensing and prevent potential issues during such processes.

Secondly, to enhance the listening experience, such a notion of similarity can be use-
ful for music discovery and recommendation scenarios. Above, we mentioned the
plausible experience of listening to a new version of a known track. Facilitating this
process may benefit both the listeners and artists, as it brings value to both parties.

6https://www.youtube.com/
7https://music.apple.com/
8https://www.spotify.com/
9https://www.sacem.fr/en

10http://www.sgae.es/en-EN/SitePages/index.aspx
11https://www.ascap.com/

https://www.youtube.com/
https://music.apple.com/
https://www.spotify.com/
https://www.sacem.fr/en
http://www.sgae.es/en-EN/SitePages/index.aspx
https://www.ascap.com/

4 INTRODUCTION

The existence of many websites dedicated to sharing lists of versions of compositions
can be seen as an indicator of user interest in finding versions in general. Moreover,
automatically creating playlists that are dedicated to versions of certain tracks or the
hits of a certain artist is a valuable service to the fans. Therefore, automating and
optimizing such discovery and recommendation systems would likely be useful in
industrial use cases.

Thirdly, automatically detecting versions of tracks or musical phrases can open up the
possibility of conducting large-scale, data-driven musicological research. By model-
ing the notion of similarity that gives us an understanding of musical identity with
computational tools, one may reach new insights on the subject. Moreover, by study-
ing a network consisting of versions of the same track, phylogenetic trees of musical
phrases or influences can be formed, through which researchers can delve deeper into
the origins of certain milestones in the history of music.

Lastly, having systems that can assess such a quality of similarity may assist mu-
sicians in their creative processes. Quantifying how much their creations resemble
existing tracks or musical phrases may be desirable when the goal is to create some-
thing truly unique. Also, an ideal system would help to understand how much change
in musical characteristics is acceptable for still being considered as a version, which
may guide artists that want to honor their influences while trying to express their own
styles.

1.2 Key concepts

In this dissertation, we consider a musical version to be “any rendition or perform-
ance of an existing musical work.” Although a simple one, this definition requires one
to have an understanding of the term “musical work.” Therefore, in this section, we
define the concepts that are relevant to the research presented in this dissertation. We
first introduce the computational task we address while explaining its connections to
other fields of research. Then, we discuss the concept of versions from both computa-
tional and musicological points of view and introduce alternative ways of defining the
concept of versions. Lastly, we introduce the concept of musical work and describe
its origins and implications from computational, musicological, and legal perspect-
ives. Although the discussions regarding musicological and legal perspectives around
versions are not essential to address the task from a computational standpoint, we be-
lieve that in interdisciplinary fields of research like ours, having a broader perspective
by understanding core concepts in related contexts may benefit one to gain unique
insights on the problem addressed.

1.2.1 Task definition

Studies in audio-based music information retrieval (MIR) focus on extracting inform-
ation from audio signals (tracks), which is then exploited to develop technologies that

1.2 KEY CONCEPTS 5

Figure 1.1: Specificity–granularity plane where various MIR tasks can be situated on. Taken
from Grosche et al. (2012, licensed under Creative Commons BY-ND)

can be used for various applications including music retrieval, recommendation, and
classification (Grosche et al., 2012). Following a query-by-example paradigm, such
applications require a notion of musical similarity. However, considering the com-
plexity of information carried by musical audio signals, defining a single notion of
similarity is a rather difficult and perhaps futile goal. Therefore, the scope of musical
similarity for various MIR tasks can be situated on a two-dimensional plane char-
acterized by specificity and granularity (see Figure 1.1; Grosche et al., 2012). The
two ends of the specificity axis contain high- and low-specificity systems that are
differentiated by the degree of similarity between their queries and targets. While
high-specificity systems aim to identify the exact musical tracks (e.g., music finger-
printing), low-specificity systems are concerned with broader descriptions of music
(e.g., genre, mood, and instruments) to retrieve tracks that are related to a given query
from high-level musical properties. In terms of granularity, MIR tasks are situated
on a spectrum that goes from fragment- to document-level retrieval scenarios. In
fragment-level scenarios, queries and targets are short fragments of audio tracks while
in document-level scenarios, they are mostly entire audio tracks.

Defining the concept of similarity that connects musical versions is a challenging task.
As humans, we can, in most cases, easily identify two tracks as versions of one an-

6 INTRODUCTION

other. However, considering the wide range of version types (Serrà et al., 2010), con-
structing a comprehensive similarity definition is extremely difficult12. Such versions
may incorporate various differences in musical dimensions, including differences in
timbre, tempo, structure, lyrics, recording conditions (“noise”), and so on (Serrà et al.,
2010). For example, a “radio edit” of a track may have minor differences in recording
quality, have sections removed, and have non-explicit lyrics, but all other musical di-
mensions may remain mostly unchanged. Live versions of a track often have higher
degrees of variation: they may have small differences in the melody, key, and lyr-
ics; more drastic variations in tempo, timing, structure, and timbre/instrumentation;
and lots of background noise from the live recording environment. Remixes, on the
other hand, may have very little in common with the original, sharing only lyrics and
melody for example, which may be superimposed on musical content from a different
track.

Due to such differences, the connections that link musical versions together vary de-
pending on each case. For instance, while some version pairs may share the same
melodic phrases, others may share only the lyrics. Therefore, modeling the informa-
tion shared by various types of versions requires a similarity notion that encompasses
multiple musical dimensions. Formulating such a notion from a computational per-
spective is the main focus of the line of research we refer to as version identification
(VI).

Note that in this dissertation, we focus on techniques that address a wide variety
of versions simultaneously. However, there are a number of subfields that are built
specifically for particular types of versions. On the previously mentioned specificity–
granularity plane, VI can be situated as a task that is mid-specificity and document-
level, as the degree of similarity is neither based on high-level concepts nor exact
characteristics of signals and the queries and targets are often entire tracks.

The first efforts toward VI emerged in the early 2000s (Foote, 2000), and it has re-
mained an active field of research ever since. VI systems are designed in a query-by-
example fashion: given a query, the goal is to retrieve all the different interpretations
of the same musical composition from a corpus. The main consideration for build-
ing a VI system is to overlook the differences in musical characteristics and focus
on the shared information connecting version pairs. However, instead of aiming to
directly quantify this shared information, such systems create representations that are
invariant to the aforementioned differences. In light of this, VI research, as other mu-
sic retrieval and classification studies in MIR, benefits from the advancements from
many scientific disciplines such as signal processing, machine learning, nonlinear
time series analysis, computational biology, etc.

12We provide examples for a wide range of version types in the following webpage: https://
furkanyesiler.github.io/musical_version_id_spm/ (see Appendix C)

https://furkanyesiler.github.io/musical_version_id_spm/
https://furkanyesiler.github.io/musical_version_id_spm/

1.2 KEY CONCEPTS 7

Melody 0 0 0 0 0 1 0 1 2 1 1 0 1 1 1 2 2 2

Harmony 0 0 0 0 0 1 0 1 0 0 2 0 1 1 2 2 2 3

Tempo 0 0 0 0 2 1 1 1 0 2 1 3 2 2 3 2 2 3

Timing 0 0 0 0 2 1 1 1 0 2 1 3 2 2 2 3 3 3

Structure 0 0 1 0 1 1 1 1 1 2 2 3 2 3 3 2 3 3

Lyrics 0 0 1 3 0 1 3 0 3 1 0 0 0 1 1 1 1 2

Key 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 3 3 3

Timbre 0 0 0 0 1 1 1 1 2 2 3 2 3 2 3 3 3 3

Noise 0 1 1 1 3 3 2 3 2 3 3 2 3 3 2 3 3 3

D
up

lic
at

e

R
em

as
te

r

R
ad

io
 E

di
t

Tr
an

sl
at

io
n

Pe
rf

or
m

an
ce

D
em

o

Pa
ro

dy

W
ith

in
-G

en
re

K
ar

ao
ke

Li
ve

St
an

da
rd

M
as

hu
p

A
co

us
tic

M
ed

le
y

R
em

ix

C
ro

ss
-G

en
re

A
rr

an
ge

m
en

t

Q
uo

ta
tio

n

Version Type

Musical
Characteristic

Degree of Potential
Difference

0 1 2 3

Likely the same May be variations May be major differences May be unrelated

Figure 1.2: Examples of version types and the (subjective) degrees to which a list of musical
dimensions may be altered. Both the version types and the musical dimensions are based
on Serrà (2011) with a few additions. The version type “Performance” refers to a recording of
a written classical work, while “Standard” refers to a recording of a folk or a jazz tune where
there are often improvisational aspects.

1.2.2 Versions

As noted at the beginning of this section, we favor a quite simple and inclusive defin-
ition for the concept of musical versions in this dissertation. However, it is hardly the
only way of defining such a concept. Therefore, we now introduce various definitions
of musical versions from both MIR and musicological perspectives.

1.2.2.1 Music information retrieval perspective

In MIR literature, many of the concepts around versions are overviewed by Serrà
(2011). After discussing several terms like cover songs, variations, and adaptations,
he argues that the term versions “globally encompasses” all renditions or reinterpret-
ations of a musical piece, regardless of the underlying motivations, historical periods,
musical characteristics, or styles. Following this idea, the dominant term that we use
in this dissertation is also versions.

Our definition of the term version, which has been mentioned earlier, is chosen to
be as inclusive as possible toward different styles or traditions of music. To categor-
ize such versions, we extend the taxonomy proposed by Serrà (2011) from 10 to 18
classes, which are not mutually exclusive (see Figure 1.2). Although different tax-
onomies exist in musicology research, MIR-oriented taxonomies can be considered

8 INTRODUCTION

more in the vein of tags or descriptive labels.

Although there are established definitions and taxonomies related to versions in MIR
literature, it is fair to say that most of those concepts serve practical needs and are
born of empirical observations. Claiming that those definitions and taxonomies are
superior to any of such proposed in musicology literature by any criteria is not a
position we favor.

1.2.2.2 Musicological perspective

Discussing the concept of versions and their function in musical practices from a
musicological perspective is at the same time a challenging and rewarding task. On
the one hand, it is challenging because there are disagreements between researchers
on what the term should encompass, mainly due to studying different musical tradi-
tions and periods, questioning (or not questioning) the use of widely accepted terms
like “cover songs,” and forming taxonomies based on different criteria. On the other
hand, it is rewarding because although versions form an inevitable part of the music
listening experience of many people, understanding their importance and significance
enhances the appreciation one may feel toward them even further.

Much of the musicological research regarding versions revolve around the concept of
“cover song.” Although it is perhaps the most recognizable term in daily culture com-
pared to its alternatives, from an academic point of view, we should not overlook the
ambiguities it carries (Mosser, 2008). Many researchers agree that the term signifies
a new recording or performance of an existing track, mainly in pop and rock music
genres, after the 1950s (Plasketes, 2005; Avram, 2011). However, other researchers
argue that the track that is “covered” needs to be a “hit” track (Cooper, 2018), that
cover songs have to be recorded as “tributes” to the originals (Avram, 2011), or that
the concept of “covering” dates back to the 1920s (Cooper, 2018). Also, it is not clear
whether the concept exists in genres like jazz and classical music or not (Gracyk,
2013). Should live performances be considered as covers? (Gracyk, 2013) Does the
term apply to instrumental music? (Mosser, 2008) Apart from such ambiguities re-
garding the definition of the term, some researchers offer different taxonomies while
categorizing types of covers (Magnus et al., 2013; Mosser, 2008). To avoid such dis-
cussions around the definition and typology of cover songs, we continue our discus-
sion using the term “versions,” to be as inclusive as possible with respect to different
genres, decades, and categorizations of music.

Regardless of the ways in which we may define versions, one crucial fact remains
the same: they form connections to existing pieces of music (Cusic, 2005; Plasketes,
2005; Gracyk, 2013). Creating versions is a powerful act that has many positive out-
comes for the artists on both sides of the established relationship. For the artists that
perform the versions, it is a means to, in most cases, pay respect and show the influ-
ences that shaped their music (Gracyk, 2013; Ortega, 2021). Through their versions,
they may teach their young listeners a history lesson by pointing them to artists that

1.2 KEY CONCEPTS 9

came before them (Cusic, 2005). They may also contribute to a song’s survival by
being a “reminder,” which Plasketes (2005) finds perhaps the most essential aspect of
versions. Such references to existing pieces of music reflect a complex act of commu-
nication that asks the listeners to consider the new version in light of the “original,”
and such an act could only get embraced by the masses when the pieces of music that
are being referred to could be available in recorded form (Gracyk, 2013).

Nowadays, the listeners’ perception of versions is mainly positive. The artists fully
embrace the act of paying respect to their influences, and their audiences respect this
act. In YouTube, many musicians, both amateur and professional, record themselves
playing versions, and this trend of “YouTube covers” is recognized as an entirely new
genre by some critics (Constandinides, 2019). However, listeners and musicians did
not always express a positive opinion toward versions (Avram, 2011; Cooper, 2018;
Dineley, 2014). Mainly after the success of artists like Bob Dylan, the Beatles, and
the Rolling Stones, who were writing and performing their own materials, the idea
of considering musicians who perform others’ tracks being lesser musicians started
to become widespread (Gracyk, 2013). Although some genres like jazz and Western
classical music were clearly not affected by such opinions, many genres in popu-
lar music were strictly requiring artists to write their own materials if they were to
succeed (Cusic, 2005). Such a view that undervalues the talent of non-composing
musicians has mostly been abandoned in recent decades.

It should be well-established by now that musical versions bring unequivocal value
to both the musicians and listeners. However, excluding the business perspective
in this discussion would be naive. Although the practice of “versioning” is at the
core of some traditions like folk or Western classical music, it mainly emerged as
a business strategy in popular music (Gracyk, 2013; Cusic, 2005; Plasketes, 2005).
Especially the term “cover song” comes from the act of “covering” a hit track with
other musicians. In the 1940s and 1950s, this strategy resulted in White musicians like
Elvis Presley and Pat Boone recording the hit tracks of Black musicians and taking
credit (Cooper, 2018). Even in cases that are not racially motivated, covering a hit
track that is already proven is a shortcut to more sales for music labels (Cusic, 2005).
Nevertheless, this does not mean that the act of creating versions does not benefit the
musicians from a business standpoint. The artists who create the versions increase
their chances of success, as they give their audiences something that they may be
familiar with (Avram, 2011). On the other hand, for the artists whose tracks are being
versioned, this act prolongs the life of their tracks, and it may even lead to their tracks
ending up as “classics” at one point (Cusic, 2005).

1.2.3 Musical work

Understanding the relationship between musical versions typically indicates an intu-
itive understanding of the concept of musical work. We tend to extend such relation-
ships in a transitive manner: for example, if tracks A and B are versions, and tracks B

10 INTRODUCTION

and C are versions, we typically think that tracks A and C should be versions, too. By
summarizing such transitive connections, we may easily think that tracks A, B, and
C are different interpretations of the same musical work. However, such an intuitive
understanding may fail in certain discourses. For that reason, we now overview vari-
ous ways of defining the concept of musical works in MIR, musicological, and legal
contexts.

1.2.3.1 Music information retrieval perspective

Like musical versions, the concept of musical works is considered from a pragmatic
view in MIR research, without strict definitions that limit the use of the term. Gener-
ally, in MIR tasks that are computational in nature, the evaluation of whether a system
performs a task sufficiently or not is done by using a dataset that is annotated accord-
ing to the task at hand. Ideally, such annotations should be supplied by the experts,
according to the proper definitions of labels. However, in lines of research where
large collections of data are required, such data are mostly annotated by nonexperts
(e.g., listeners, users of a platform, and enthusiasts).

Data-driven VI research (see Section 2.3.5.2) is among the MIR tasks where the
annotated data is acquired from online communities, the largest one being Second-
HandSongs13 (SHS). Although the editors of the website follow certain conventions
regarding the process of annotation, it may be difficult to pinpoint the basis of such
conventions in the formal literature around versions. The advantage here is that, as
mentioned earlier, humans have an extraordinary ability to make judgments about
whether two pieces of music are versions of each other or not. With that, the quality
of version annotations provided by experts and nonexperts is likely to be more sim-
ilar than that of melody or chord annotations provided by those groups, as the latter
concepts require a deeper understanding of musical constructs.

An important point to note about VI research is that the systems estimate similarities
between a set of tracks in a pairwise manner. Although we mostly consider that the
connections between versions have a transitive property and, therefore, they form sets
(or cliques) of musical works, the system evaluations consider only the pairwise labels
(“version” or “non-version”) and ignore the concept of musical works. Nevertheless,
the term musical work is often used in MIR research, although it is noteworthy to
point out that the way it is defined may not have any practical significance.

1.2.3.2 Musicological perspective

The MIR research lacks a formal definition of the musical work concept, and, con-
trarily, the musicology literature contains several. Before going into the differences
in the definitions, we can note that perhaps the only thing that all researchers agree
on is that the musical works are of an abstract nature: we perceive them through their

13https://secondhandsongs.com/

https://secondhandsongs.com/

1.2 KEY CONCEPTS 11

instances, be it their scores or performances; yet, their existence is independent of
such instances (Goehr, 1994; Levinson, 1980).

Setting aside the nature of musical works, arguments regarding their scope is the
chief issue that divides musicologists. One school of thought argues that the musical
work concept only applies to Western classical music after the 1800s, and it emerged
within the “romantic, aesthetic theory of fine art” (Goehr, 1994). They argue that it
is a “thick” concept that must be represented in the form of a written score with its
entirety, and the performers should comply with such scores perfectly.

Such a strict definition clearly does not apply to any musical genre other than West-
ern classical music. However, another school of thought argues that the musical work
concept exists in popular music and jazz (Dodd, 2014; Fisher, 2018; Butler, 2010).
They argue that although the term “work” is consciously avoided when discussing
popular music, the ideas and implications of it clearly exist in popular music prac-
tices (Butler, 2010). In fact, the existence of the concept of versions implies that the
musical work idea is applicable in popular music because such versions are seen as
entities related to the originals and not independent ones (Barron, 2006). As of West-
ern classical music, the composers of popular music can be thought to “own” their
works.

Apart from the differences in musical genres, arguing that the musical works ex-
ist only in written form may increase the significance of certain elements of music
(e.g., melody, rhythm, and lyrics) while hindering the significance of others (e.g., in-
strumentation; Brauneis, 2014). It is natural that the written scores were the dominant
form of creating an identity of musical works; however, the availability of recorded
music expands the possibilities regarding what should be considered as a part of a
work’s identity (Brauneis, 2014).

Regardless of the discussions around its origins and connotations, the term “musical
work” is an easily understood and useful one. To isolate it from any controversial
opinion, we can simply follow Tagg (2000)’s description of the term, which follows
as “a musical continuum of determinate duration and of sufficient internal structural
cohesion as to be understood as sonically identifiable in itself from whatever precedes
or follows it, as well as from other similarly integral sets of sequences of musical
sound.”

1.2.3.3 Legal perspective

Even if researchers do not always agree on the definition and scope of the musical
work concept, the majority of the music industry should at least recognize the import-
ance and implications of the term from a legal perspective, which does not differenti-
ate genres. The key concept in the legal discussions of musical work is the concept of
copyright. Here, we attempt to briefly discuss the relationship between musical work
and copyright concepts for two main reasons: (1) as mentioned earlier, one of the key
motivations for creating versions of existing pieces of music is business-related, and

12 INTRODUCTION

(2) detecting copyright infringements is one of the main goals of VI systems.

The concept of copyright for musical works formally emerged in 1777 in England,
as a result of a legal dispute involving Johann Christian Bach, the youngest son of
Johann Sebastian Bach (Carroll, 2005; Barron, 2006). The court decided that the
musical scores are also subject to the copyright protection that was granted to literary
works a few decades ago. This helped to establish (or to reinforce) the musical work
concept, as the composers could legally own and limit the use of their materials.
While increasing their wealth was certainly among the key motivations of composers,
another important outcome was that they now could control the means by which their
materials would be performed to the public (Carroll, 2005).

The modern copyright laws that are applied to music distinguish between two types
of material: musical work and sound recording (Carroll, 2003; Day, 2011). For a long
time, musical works were required to be in written form, which consequently affected
their definition from a legal perspective (Brauneis, 2014). The characteristics that
identify a work were melody, harmony, rhythm, and lyrics. The sound recordings, on
the other hand, were instances that capture certain performances of such works (Car-
roll, 2003).

To apply for copyright protection, the artists had to submit both the musical work in
writing and the sound recording in physical form (e.g., a phonogram). Nowadays,
however, in many jurisdictions, recorded music is accepted to represent both sound
recording and musical work. Therefore, submitting a transcribed version of a track is
no longer needed. While this facilitates the copyrighting process for the artists and
other parties, it also means that the elements of music that are protected under the
musical work concept now include previously ignored elements like instrumentation
and the recording process (e.g., mixing and mastering). This effectively changes what
the musical work means from a legal and perhaps a musicological perspective.

1.3 Scope and objectives

The main goal of this dissertation is to develop systems that can automatically assess
the similarity between musical tracks using a notion of musical identity (i.e., identi-
fying whether two tracks are versions of the same musical work) for industry-scale
corpora. The industrial scope of this dissertation is based on the fact that the research
was carried out as a part of the New Frontiers in Music Information Processing (MIP-
Frontiers) project, which is a research project funded by the European Union’s Hori-
zon 2020 research and innovation program under the Marie Skłodowska-Curie grant
agreement No. 765068. One of the main objectives of MIP-Frontiers is to encour-
age collaboration between academia and industry so that the outcomes of academic
research can foster industrial development and, as a result, have a larger impact.

To enable the use of audio-based VI systems in industrial use cases, such systems
must demonstrate satisfactory performance on large-scale corpora while not being

1.4 SUMMARY OF THE CONTRIBUTIONS 13

biased toward certain musicians or tracks. Therefore, the three main aspects we aim
to address in this dissertation are accuracy, scalability, and algorithmic bias of VI
systems. We hypothesize that incorporating domain knowledge–inspired design de-
cisions into data-driven workflows can blend the strengths of both knowledge- and
data-driven perspectives to result in systems that are both accurate and scalable. Since
such systems would have an impact on various stakeholders in the music ecosystem
(e.g., musicians and composers), it is highly important to be aware of the potential
issues of such systems with respect to their inherent biases based on any given criteria
(e.g., gender, popularity, etc.).

1.4 Summary of the contributions

This dissertation contributes to the field of audio-based music information research,
with a specific focus on the areas of machine learning for musical similarity applica-
tions, music recognition, data-driven music retrieval, and fairness and bias studies in
musical use cases. The main contributions of this dissertation can be summarized as
follows:

C.1 A discussion of the concepts of “musical version” and “musical work” from
MIR, musicological, and legal perspectives, in an attempt to bridge the gap
between the semantics of those concepts in different but related contexts.

C.2 A survey of the key ideas, techniques, datasets, and evaluation methods that
were proposed throughout two decades of VI research. To the best of our
knowledge, it is the only review that classifies individual modules of the VI
systems into an existing taxonomy of building blocks since 2010. Moreover,
it is the only survey that encompasses both the knowledge- and data-driven VI
strategies.

C.3 The first large-scale quantitative analysis on the frequency and extent of changes
in musical characteristics between pairs of versions.

C.4 A novel data-driven VI system that incorporates explicit, musically motivated
modules for handling the common changes in musical characteristics between
versions. Apart from such modules, the system also uses VI-specific data aug-
mentation strategies for improved robustness, and it demonstrated state-of-the-
art performance at the time of the publication.

C.5 A data-driven fusion approach to VI for achieving accuracy improvements by
combining the information from systems that process harmonic and melodic
characteristics of tracks.

C.6 Investigating methods for speeding up the retrieval phase of VI systems without
compromising the performance. A comparative analysis of existing and pro-

14 INTRODUCTION

posed embedding distillation techniques for shrinking the embeddings obtained
from VI systems to reduce required computations.

C.7 An investigation into the inherent algorithmic biases of five VI systems of dif-
ferent characteristics (e.g., melody- vs harmony-based, knowledge- vs data-
driven) using six relevant attributes of musicians or tracks (gender, popularity,
country, language, year, and prevalence). To the best of our knowledge, it is the
first work ever that studies algorithmic biases in a VI context.

C.8 Studies on the efficiency of our systems for industrial use cases in collaboration
with BMAT, a broadcast monitoring company:

C.8.1 Identifying the musical content in long audio tracks of live music events
by developing an end-to-end system that uses one of our VI models for
the music recognition module.

C.8.2 A large-scale retrieval study using an industrial corpus of close to one
million tracks.

C.9 A critical discussion on the current open issues and challenges of VI systems
along with potential future directions.

Apart from the main contributions that are outlined above, we created and publicly
shared three datasets, five code repositories, a website, and a system demo and presen-
ted a tutorial at an international conference (see Appendix C). The first dataset is cur-
ated for model development and evaluation, and it includes +110 k tracks with pre-
defined training, validation, and test partitions, the related metadata, and a wide range
of pre-extracted features. The second one is designed to investigate the algorithmic
bias in VI systems and includes +37 k tracks with pre-extracted features, the related
metadata, and annotations regarding gender, popularity, country, language, year, and
prevalence. The third one is designed for the setlist identification task and includes
metadata and timestamp annotations for 75 concerts in total and their respective refer-
ence tracks. The software repositories include the necessary code and model weights
to reproduce the experiments explained in this dissertation. The website includes
examples and other information regarding musical versions and aims to facilitate un-
derstanding some of the concepts mentioned throughout this dissertation.

1.5 Dissertation outline

This dissertation contains nine chapters each of which, excluding the introduction and
the conclusion, is based on our publications. We now briefly describe the structure of
the following chapters.

Chapter 2 (based on Yesiler et al., 2021a) includes a survey of the VI research in the
last 20 years. We start by giving an overview of the main trends organized as periods

1.5 DISSERTATION OUTLINE 15

of five-year intervals (Section 2.2). We then introduce the main building blocks of
the VI systems and describe various techniques used for each of the five components
(Section 2.3). We continue with explaining ideas that are independent of the building
blocks and were explored for achieving improvements in accuracy and scalability
(Section 2.4). We conclude this chapter with an overview of the publicly available
datasets and evaluation metrics used in VI research (Section 2.5).

Chapter 3 (based on Yesiler et al., 2019) starts with a brief overview of the VI re-
search when we first started to work on this dissertation. Based on our observations,
we point out four issues to address before developing our VI systems. Firstly, we cur-
ate a dataset with more than 110 k tracks for training and evaluating data-driven VI
models (Section 3.2). Secondly, we perform a large-scale quantitative analysis on the
frequency and extent of observed changes in musical characteristics, which helps us
to decide on which variations to address while developing our systems (Section 3.3).
Thirdly, we implement several state-of-the-art systems and conduct an initial bench-
marking study on our newly curated evaluation dataset to set baselines for our exper-
iments (Section 3.4). Lastly, we analyze the performance gains obtained from using
data-driven input representations rather than hand-crafted ones (Section 3.5).

Chapter 4 (based on Yesiler et al., 2020a) describes our first data-driven VI system de-
veloped for this dissertation. Based on the findings from the previous chapter, we ex-
plore incorporating musically motivated design decisions into a deep learning–based
workflow. The resulting model, called MOVE, encodes each track into a fixed-size
embedding vector regardless of the track duration. With this, similarity estimation
between tracks reduces down to a simple Euclidean distance computation, which al-
lows such a system to be used in large-scale retrieval scenarios. We explain our net-
work architecture, which contains explicit modules for achieving transposition and
structure invariance; and training strategy, which is based on a contrastive learning
paradigm and includes data augmentation strategies specifically designed for VI (Sec-
tion 4.2). We then evaluate our model by first conducting an ablation study to justify
our design decisions, and then by comparing it to the state-of-the-art VI systems (Sec-
tion 4.3).

Chapter 5 (based on Doras et al., 2020) consists of our investigations toward fur-
ther improving the accuracy of MOVE by building a data-driven fusion system that
exploits multiple sources of information. Although MOVE outperforms many state-
of-the-art VI systems, one of its main drawbacks is that it processes only harmonic
information from musical audio signals. Considering the complexity of variations
between versions, relying on only harmonic content is clearly suboptimal. Therefore,
we develop a VI system that can use any input representation regardless of its shape
and explore ideas of combining systems that process melodic and harmonic informa-
tion (Section 5.2). We create baselines by evaluating the systems that process single
input features and compare the performances of an ensemble system and a data-driven
fusion system with respect to those baselines (Section 5.3).

16 INTRODUCTION

Chapter 6 (based on Yesiler et al., 2020b) contains a comparative study of techniques
to further improve MOVE from a scalability perspective. For this, we assess a variety
of embedding distillation techniques, both existing and proposed ones, to reduce the
size of the embedding vectors our model encodes each track into, without comprom-
ising identification performance. For this, we first introduce a range of embedding
distillation techniques, two of which are proposed by us (Section 6.2). We then evalu-
ate their performances and choose the one that yields the best performance as a more
scalable alternative to MOVE (Section 6.3). Lastly, we compare this newly selected
model, called Re-MOVE, with the state of the art.

Chapter 7 (based on Yesiler et al., 2022) presents our efforts toward creating a frame-
work for evaluating the algorithmic bias of VI systems. In the potential case where
such systems are used in industrial applications, we expect them to surely have an
impact on certain stakeholders in the music ecosystem. By acknowledging the fact
that they are socio-technical systems rather than isolated technologies, we formulate
an analysis framework where we assess whether our systems favor certain groups of
musicians. We choose five VI systems of different characteristics and six attributes
for our analysis: gender, popularity, country, language, year, and prevalence (Sec-
tion 7.2). After presenting the results of a large set of experiments, we discuss our
hypotheses on the possible reasons for the observed disparities and a possible inter-
pretation of such results from a hypothetical fairness scenario (Section 7.3).

Chapter 8 details our experiments for applying one of our models (Re-MOVE, in par-
ticular) on two industrial use cases. Firstly (based on Yesiler et al., 2021b), we take
on the setlist identification task, where the goal is to identify the musical content,
ideally along with their start and end timestamps, in long recordings of live music
events (Section 8.2). We develop an end-to-end workflow that includes a VI sys-
tem to identify the content in overlapping windows of queries (Section 8.2.2.3). We
also develop a false positive filtering algorithm that combines heuristic- and learning-
based methods (Section 8.2.2.4). We compare the performances of three VI systems
in a wide range of use cases with varying audio qualities and genres (Section 8.2.3).
Secondly, we perform a large-scale retrieval study using a reference corpus of more
than 850 k tracks (Section 8.3). After comparing two VI systems in terms of per-
formance and runtime, we explore potential gains in accuracy by using both systems
sequentially one after the other (Section 8.3.3.1). Lastly, we experiment with an ap-
proximate nearest neighbor search algorithm to further improve the scalability of Re-
MOVE (Section 8.3.3.2).

Chapter 9 concludes this dissertation. We begin by summarizing the main objectives
and ideas that we aimed to pursue in this research and discuss our progress toward
them (Section 9.1). Then, we go over our main contributions and highlight the key
results for each (Section 9.2). Finally, we provide a discussion on the current open
issues, challenges, and future directions for VI research (Section 9.3).

Chapter 2
Scientific Background

2.1 Introduction

In this chapter, we provide a review of the key ideas and approaches proposed in 20
years of scientific literature around VI research. For more than a decade, VI sys-
tems suffered from the accuracy–scalability trade-off, with attempts to increase ac-
curacy that typically resulted in cumbersome, non-scalable systems. Recent years,
however, have witnessed the rise of deep learning–based approaches that take a step
toward bridging the accuracy–scalability gap, yielding systems that can realistically
be deployed in industrial applications. Although this trend positively influences the
number of researchers and institutions working on VI, it may also result in obscur-
ing the literature before the deep learning era. To appreciate two decades of novel
ideas in VI research and to facilitate building better systems, we now review some
of the successful concepts and applications proposed in the literature and study their
evolution throughout the years. To facilitate understanding some of the concepts men-
tioned in this chapter, we include audio examples on a supplementary website14 (see
Appendix C).

This chapter is based on Yesiler et al. (2021a)15 and organized as follows. We give
a chronological survey of the evolution of VI systems in Section 2.2. We introduce
the building blocks of VI systems and describe them in detail in Section 2.3. We
then introduce a set of ideas that can be used in any VI system regardless of their
building blocks in Section 2.4. Finally, we overview the publicly available datasets
and evaluation metrics for VI in Section 2.5.

14https://furkanyesiler.github.io/musical_version_id_spm/
15© 2021 IEEE. Reprinted, with permission, from Yesiler, F., Doras, G., Bittner, R. M., Tralie, C. J.,

& Serrà, J. (2021). Audio-based musical version identification: Elements and challenges. IEEE Signal
Processing Magazine, 38(6), 115–136.

17

https://furkanyesiler.github.io/musical_version_id_spm/

18 SCIENTIFIC BACKGROUND

2000
Spectrogram
frame comparison
via DP
(Foote, 2000)

2005
PCP sequences
comparison
(Müller et al., 2005)

2006
HPCP sequence

comparison via DP
(Gómez et al., 2006)

2009
Qmax

(Serrà et al., 2009a)

2010
Combination
of several input features
(Foucard et al., 2010)

2012
Compact input
representation comparison
(Bertin-Mahieux & Ellis, 2012)

2013
Large scale comparison
of data-driven learned
features
(Humphrey et al., 2013)

2018
Large scale
comparison of
learned spectral
embeddings
(Xu et al., 2018)

2021
Large scale representation
learning from
generic spectral features
(Du et al., 2021)

2020
Large scale metric
learning and combined
musical features
(Doras et al., 2020)

2019
Large scale

 musically informed
metric learning

(Doras & Peeters, 2019)

2008
Sequence
comparison via
DP-based local
alignment

(Serrà et al., 2008)

2010
Ensemble VI systems
(Ravuri & Ellis, 2010)

1995–2005: Precursors of
version identification systems

2005–2010: The first version
identification systems

2010–2015: Improving
accuracy & scalability

2015–today: Transition to data-driven
version identification

Figure 2.1: Milestones of VI research over the past 20 years.

2.2 A historical survey of version identification systems

This section aims to provide a survey of the evolution of VI systems across 20 years of
research (see Figure 2.1 for a timeline overview of important milestones). We discuss
how pioneering VI approaches were inspired by earlier music retrieval systems and
how they were continuously improved over time to address the complex VI use case.
Throughout this section, various system components will be referenced which are
later explained in Sections 2.3 and 2.4.

2.2.1 1995–2005: Precursors of version identification systems

Depending on the context, musical similarity is typically assessed from editorial or
social metadata such as tags or genre, from symbolic data such as Musical Instrument
Digital Interface (MIDI)16 representations, or from the audio content itself such as
waveform or spectral representations. Considering such kinds of similarity assess-
ments, pioneering works of VI mainly relied on symbolic and audio data.

Comparing discrete sequences — In the mid-1990s, pioneering music retrieval sys-
tems originally relied on symbolic musical representations, for instance, MIDI. In
this formalism, a musical excerpt was described as a series of symbols: for instance, a
monophonic melody could be described as a sequence of n-grams of intervals between
consecutive notes, and the same principle was extended to polyphonic lines, encod-
ing relative pitch values and durations in the n-gram. The similarity between musical
excerpts, each represented as a series of symbols, was then evaluated with stand-
ard text-based comparison methods, such as regular expressions. However, symbolic
representations only exist for very specific corpora, while audio content is now com-
monly available and often the main source of musical creation.

16https://en.wikipedia.org/wiki/MIDI

https://en.wikipedia.org/wiki/MIDI

2.2 A HISTORICAL SURVEY OF VERSION IDENTIFICATION SYSTEMS 19

The first attempts to establish musical similarity directly from audio content aimed at
reducing the problem to the already known symbolic case. For instance, for query-by-
humming applications, a short hummed or whistled audio input was processed with a
pitch tracker, and intervals between consecutive pitches were encoded into a series of
symbols and used to query a corpus of musical scores encoded in the same way. The
more complex case of polyphonic audio content was also reduced to the monophonic
symbolic case by extracting a sequence of the most salient pitches.

The conversion of salient pitches into sequences of symbols ultimately relied on the
limited efficiency of the then-available pitch estimation algorithms. It quickly ap-
peared that they were not accurate enough for strict string matching, which motivated
the introduction of sequence comparison algorithms based on dynamic programming
(DP; see Section 2.3.3). The principle was to estimate the similarity between two
sequences by counting the symbol insertions or deletions that are required to align
them. This method was well-suited for musical sequence comparison because sym-
bol (e.g., note) insertion and deletion could be penalized based on musical plausibility
(e.g., subsequent notes could be considered more likely to be within a small inter-
val; thus, large intervals could be more heavily penalized). Text-based comparison
methods were abandoned in favor of DP comparisons, and these became the de facto
standard for musical sequence comparison (see Doras, 2020 for a summary).

However, symbolic representations are inherently discrete and turned out not to be
expressive enough to embed all the musical complexity of real audio content. This
fostered the development of alternative, real-valued representations.

Comparing real-valued sequences — One of the first attempts at using real-valued
representations for VI purposes was proposed by Foote (2000). The idea was to rep-
resent an audio excerpt by its energy profile (the root-mean-square signal power over
short windows) and compare the resulting real-valued sequences via DP.

In a more musically motivated approach, another idea was to model music as a
stochastic process, in particular, as a Markov model where each state corresponds
to a chord. An audio excerpt was then represented as a Markov chain, and its similar-
ity with others was assessed with an appropriate metric, such as the Kullback-Leibler
divergence. To estimate chords more accurately, Bello & Pickens (2005) proposed
training a hidden Markov model based on a simple chord vocabulary using an initial
beat-synchronous pitch class profile (PCP, also known as “chroma”) sequence (see
Section 2.3.1). The idea was to use this model to infer the most probable chord se-
quence that could have generated an observed PCP sequence and to use such a chord
sequence as a proxy to evaluate musical similarity.

It then appeared that the PCP sequence itself was particularly well-suited for musical
comparison: it could be deterministically computed directly from the audio and ad-
equately represented the relative intensity of each pitch class of the equal-tempered
scale. This idea was used by Müller et al. (2005), who proposed assessing the sim-
ilarity between audio excerpts by comparing PCP features in a frame-wise manner,

20 SCIENTIFIC BACKGROUND

achieving tempo invariance using several representations of the same excerpt com-
puted at different sampling rates.

Although only tangentially related, music fingerprinting algorithms (Cano et al., 2005)
were proposed around the same time, which hash information from characteristic au-
dio “landmarks” (i.e., patterns of large spectral peaks). They focus on efficient re-
trieval of the music recordings that match the query in an exact or near-exact manner,
but they were not designed to be invariant to tempo, timbre, or pitch changes. Thanks
to their efficiency, they became the fundamental technology for the music recognition
industry. However, since they focus on exact or near-exact matches, they tend to fail
at music recognition cases where versions are involved.

2.2.2 2005–2010: The first version identification systems

In the mid-2000s, the topic of musical similarity was being studied from many dimen-
sions: from music fingerprinting to classifying musical genres. At the same time, VI
started to gain more attention from the community. Pioneering attempts were logic-
ally built upon existing music retrieval approaches: for instance, using pitch trackers
to extract dominant melodies (see Section 2.3.1) as a discrete input representation was
one of the first proposals for VI. However, the complexity of the task pushed research-
ers toward exploring solutions that were better suited for this particular problem.

Comparing harmonic features — Most of the first robust VI methods followed the
same principle: they used a harmonic progression (typically a sequence of enhanced
PCP), transposed it to ensure key invariance (see Section 2.3.2), and computed a sim-
ilarity score between pairs of those resulting sequences. For instance, Gómez et al.
(2006) proposed the use of an enhanced PCP-based representation, the harmonic pitch
class profile (HPCP; see Section 2.3.1). Key invariance was achieved by normaliz-
ing HPCP with its estimated global key, and similarity was assessed via DP. The same
year, an approach involving beat-synchronous PCP representations (see Section 2.3.3)
was proposed and later elaborated by Ellis & Poliner (2007). Key invariance was
achieved using each possible relative PCP rotation, and similarity was assessed via
cross-correlation between transposed sequences. This method yielded the best per-
formance on the first Music Information Retrieval Evaluation eXchange17 (MIREX)
“audio cover song identification” (i.e., VI) contest that took place in 2006. These
approaches were improved further for the following 2007 and 2008 MIREX editions.
For instance, Serrà et al. (2008) used another method to ensure key invariance, named
optimal transposition index (OTI; see Section 2.3.2), which transposed one track rel-
ative to the other so that they share the same common global key.

Improving dynamic programming — In the same work, Serrà et al. (2008) also in-
troduced DP-based local alignment with musically motivated constraints to account
for tempo and structure differences between versions, obtaining state-of-the-art res-

17https://www.music-ir.org/mirex

https://www.music-ir.org/mirex

2.2 A HISTORICAL SURVEY OF VERSION IDENTIFICATION SYSTEMS 21

ults in 2007 and 2008. The following year, Serrà et al. (2009a) adapted several con-
cepts commonly used to study recurrences in physical or biological systems. The
idea was to compare PCP sequences using a cross-recurrence plot (CRP), a repres-
entation highlighting common subsequences. The global similarity was assessed via
recurrence quantification analysis measurement, which in essence quantifies the im-
portance of the similarity patterns in the CRP. This algorithm was enhanced further
using similarity transitivity: if A and B are similar and B and C are similar, then it is
likely that A and C are similar too (Serrà et al., 2009b; see Section 2.4.1). The com-
bination of this algorithm with the previous approach (Serrà et al., 2009a), dubbed
Qmax*, remained the state-of-the-art method in VI for more than a decade.

2.2.3 2010–2015: Improving accuracy & scalability

By the early 2010s, successful VI systems based on harmonic representations and
local alignment had achieved promising accuracy. However, it appeared that har-
monic information was not the only musical facet that could be used to adequately
model music complexity. At the same time, DP algorithms were too computationally
expensive to address industrial applications and the ever-increasing size of modern
music corpora.

Improving accuracy — A strategy for improving accuracy was to investigate altern-
ative input features: for instance, some representations were designed to account for
the characteristics of the human auditory perception system (see Doras, 2020 for a
review).

Another strategy was to consider the combination of existing features: different fea-
tures embed complementary information, and combining them may improve the ac-
curacy compared with using each input feature separately (see Section 2.4.2). Several
combinations were investigated: for instance, HPCP extracted from the original mix-
ture, the separated vocals, and the separated accompaniment (Foucard et al., 2010);
dominant melody, bass line, and the harmony (i.e., HPCP; Salamon et al., 2012); or
timbral features and HPCP (Tralie, 2017). It was shown that these combined repres-
entations improved the accuracy compared with cases where each feature was con-
sidered alone.

A third strategy was derived from the observation that some methods performed bet-
ter for certain tracks than others and that an ensemble system could blend existing
systems’ strengths (see Section 2.4.3). Following this line of thought, different ap-
proaches based on classifiers (Ravuri & Ellis, 2010), rank aggregation (Osmalskyj
et al., 2016), and similarity network fusion (Tralie, 2017; Chen et al., 2018a) were
investigated to merge scores obtained from various systems. In all cases, ensemble
systems improved upon the accuracy of single systems.

Improving scalability — All successful VI algorithms described so far rely on vari-
ants of DP sequence comparison which scale quadratically with the length of the se-

22 SCIENTIFIC BACKGROUND

quences. This time complexity quickly becomes prohibitive when querying large cor-
pora; the sequence comparison computation with the query track must be done on the
fly for every track in the corpus. The problem of scalability is common to all inform-
ation retrieval systems: in order to scale, they generally require a very lightweight
similarity estimation function (e.g., a simple Euclidean distance), which in turn im-
plies a data representation that can be computed offline and conveniently stored for
fast lookup (e.g., a small vector of real numbers).

A first direction to improve scalability was to transform input features into a more
compact representation, ideally a lightweight matrix (or vector) that could be com-
pared via Frobenius norm (or Euclidean distance). A popular compacting transform-
ation was the 2D Fourier transform of the PCP sequences (see Section 2.3.2) because
it provides key and time-shift invariance with respect to the original input (Bertin-
Mahieux & Ellis, 2012).

Another approach to reducing the size of input features was based on the assumptions
that similarity between versions mainly depends on certain parts of the audio and
that comparing short segments should be more efficient than comparing an entire
track (see Section 2.3.4). Different methods were investigated, for instance, detecting
and isolating only the segments of interest, such as those exhibiting some degree of
repetition (Silva et al., 2015).

A second direction was directly inspired by fast indexing and retrieval methods that
proved their efficiency in text-based retrieval contexts: instead of comparing audio
features, the idea was to devise a hashing function and to store audio hashes in an
index (see Section 2.4.5). For instance, locality-sensitive hashing (LSH) was used to
obtain the same hash for similar audio shingles, allowing an extremely fast lookup
of musically similar audio excerpts (Casey & Slaney, 2006). Along the same vein,
inverted file indexing was also adapted to the music retrieval context. The original
idea was to index text documents by the keywords they contain. In a musical context,
a codebook of audio-based tags plays the role of the keywords. These tags were
obtained by vector clustering (Kurth & Müller, 2008) or seeding (indexing of fixed-
length short regions; Martin et al., 2012).

Both lightweight input features and fast indexing yielded efficient lookup times (as
fast as a few seconds on a one million track corpus) but exhibited poor accuracy
compared with previous systems.

Finally, a third direction was to combine different methods in a two-step pruning
approach: the first step aimed to discard tracks from the corpus that could be eas-
ily distinguished as non-versions using scalable systems (Cai et al., 2016) or “weak
rejectors” (Osmalskyj et al., 2016), while the second step involved a more accurate
method operating on the remaining candidates (see Section 2.4.4).

2.2 A HISTORICAL SURVEY OF VERSION IDENTIFICATION SYSTEMS 23

2.2.4 2015–today: Transition to data-driven version identification

In the mid-2010s, the VI community was confronted with a dilemma: accurate sys-
tems, which could not scale up to industry-sized corpora, versus fast systems, which
struggled in accuracy and were not suitable for practical use.

Many other MIR applications during this period were also confronted with a plateau
in their performance gains. Inspired by advances made in other fields (e.g., computer
vision, natural language processing, and speech processing), the community initiated
a paradigm shift from ad-hoc hand-crafted feature extraction toward data-driven fea-
ture learning. This new perspective created a new opportunity for VI: to build more
expressive representations of the audio, while still enabling a faster similarity estima-
tion function.

The use of feature learning — The representation learning paradigm aims at identi-
fying and disentangling the underlying structures in the original data that can explain
its relevant characteristics. Various attempts to learn a mid-level representation from
the PCP-based descriptors were previously proposed, for instance with Markov mod-
els or k-means. Humphrey et al. (2013) were however the first to explicitly propose us-
ing data-driven learned features to represent a track as a single embedding vector and
estimate similarities between tracks by computing Euclidean distance between such
embeddings. Their method used k-means and linear discriminant analysis (LDA) to
learn an embedding space and was the first to reach a meaningful accuracy on a very
large corpus (one million tracks).

The impressive results of the data-driven learning approaches in other fields also
fostered the use of representation learning in VI. A common approach became to
train a convolutional neural network (ConvNet) to extract a compact representation
(the embedding) out of a low- or mid-level spectral representation of the audio. For
instance, Xu et al. (2018) proposed training a ConvNet mapping PCP descriptors of
each version of a composition to the same class. More generic spectral representations
have also been investigated, such as the constant-Q transform (CQT; Yu et al., 2019b).
Different variants of ConvNets were proposed to address the tempo invariance prob-
lem, including temporal pyramid pooling (Yu et al., 2019b) or standard max-pooling
that have proven their efficiency in the image domain for dealing with different image
scales (see Section 2.3.3). These methods yielded promising accuracy and lookup
times on a large corpus of tens of thousands of tracks.

The rise of metric learning — Metric learning is a subset of representation learning
that aims to learn a compact data representation fitting a given similarity estimation
function (e.g., Euclidean distance). The underlying motivation is that the learned
representations and similarity estimation functions could yield better performances
for high-dimensional data, compared with their ad-hoc counterparts. Following this
idea, Doras & Peeters (2019) proposed learning an embedding of dominant melody,
while Yesiler et al. (2020a, see Chapter 4) proposed an approach based on a learned

24 SCIENTIFIC BACKGROUND

Figure 2.2: Performance (as measured by mean average precision) of different VI systems
evaluated on several datasets (see Section 2.5.1) throughout the years.

PCP feature that approximates estimated chords. In both cases, the principle was to
learn to project tracks into fixed-size embedding vectors (regardless of the duration of
the tracks) so that the pairwise distance (e.g., Euclidean or cosine distance) is smaller
for versions than for non-versions. This was typically achieved using an objective
function such as a triplet loss, yielding promising results on datasets of up to fifty
thousand tracks. In a similar vein, Zalkow & Müller (2020) proposed learning an
embedding of short audio shingles and demonstrated the efficiency of this approach
for Western classical music.

Recently, feature learning–based approaches have yielded the current state-of-the-art
performance. On the one hand, a musically informed approach combining various
complementary musical features, such as melody and harmony, yielded a competitive
accuracy and lookup times (Doras et al., 2020; see Chapter 5). On the other hand,
a very deep architecture applied to a generic spectral representation proved to be ex-
pressive enough to yield a similar accuracy without any prior musical knowledge (Du
et al., 2021).

Throughout the last 20 years, VI systems have evolved to improve their accuracy
on increasingly large corpora. This trend can be seen in Figure 2.2, which summar-
izes the mean average precision (MAP) scores that such systems obtained on differ-
ent VI datasets over the years (see Section 2.5.1 for details about these datasets and
Section 2.5.2 for details about MAP). While high performance scores could only be
obtained on smaller datasets with hundreds of tracks in the early years, recent VI sys-
tems are nowadays able to reach similar performances on datasets with thousands of

2.3 BUILDING BLOCKS OF VERSION IDENTIFICATION SYSTEMS 25

Essential blocks

Additional ideas

For improving scalability

Fast
indexing Pruning

For improving accuracy

Ensemble
systems

Feature
fusion

Version set
enhancement

Data
augmentations

Blocks used in rule-based systems Blocks used in learning-based systems Blocks used in both rule- and learning-based systems

Melody
Multi-pitch

Pitch class
profiles

Chords

Self-similarity

Constant-Q
transform

Input representations

Dynamic
programming

alignment

Vector
clusters

Model-based
error

Data projection

Classification-
based training

Conventional
similarity
measures

Similarity-based
training

Similarity estimation

For structure invariance

For transposition invariance For tempo/timing invariance

Transposition
to a common
key

Using magnitudes
of the 2D Fourier
transform

Optimal
transposition
index

Relative
feature
encoding

Exhaustive search
over all possible
transpositions

Using
convolutional and
pooling layers

Using global
pooling
operations

Sequence
windowing

Extracting
music
thumbnails

Using
attention
modules

Segmenting
sections

Dynamic
programming
alignment

Using dilated
convolutional

layers

Using
recurrent
kernels

Beat
synchronization

Increasing
strides in deep
neural layers

Techniques for achieving transformation invariances

Melody
Multi-pitch

Pitch class
profiles

Chords

Self-similarity

Constant-Q
transform

Transposition
to a common

key

Using magnitudes
of the 2D Fourier

transform

Optimal
transposition

index

Relative
feature

encoding

Exhaustive search
over all possible
transpositions

Using
convolutional and

pooling layers

Using global
pooling

operations

Sequence
windowing

Extracting
music

thumbnails

Using
attention
modules

Segmenting
sections

Dynamic
programming

alignment

Figure 2.3: Overview of the building blocks of VI systems detailed in Sections 2.3 and 2.4.

tracks.

2.3 Building blocks of version identification systems

Following the historical perspective presented in Section 2.2, we now present a deeper
dive into VI systems by dissecting them into their building blocks. Following the
literature, we consider five main components that are for (1) feature extraction, (2)
transposition, (3) tempo/timing and (4) structure invariance, and (5) similarity estim-
ation (see Figure 2.3). While each of these blocks addresses a key challenge in the VI
workflow and is proven to improve system accuracy, there is no requirement that VI
systems incorporate all of them. In fact, some of the techniques presented below may
address multiple challenges at once.

2.3.1 Feature extraction

Extracting useful information from high-dimensional audio signals is the first step in
VI systems. Considering the nature of the problem, the representations that are rich in
relevant characteristics (e.g., harmonic or melodic) and ignore the commonly varied
ones (e.g., timbre, harmonization, or noise) are favored.

Melody — Humans are very good at identifying a known track when the isolated
melody is played. Following this intuition, melody-based representations are a nat-
ural choice for VI systems and have been explored in the literature since the early

26 SCIENTIFIC BACKGROUND

0 10 20 30 40 50 60
Time (s)

(a)

C2

C3

C4

C5

C6

C7

N
ot

e

Dominant melody

0 10 20 30 40 50 60
Time (s)

(b)

C2

C3

C4

C5

C6

C7

N
ot

e

Multi-pitch

0 10 20 30 40 50 60
Time (s)

(c)

C

D

E
F

G

A

B

Pi
tc

h
cl

as
s

Pitch class profile

0 10 20 30 40 50 60
Time (s)

(d)

C2

C3

C4

C5

C6

C7

N
ot

e

Constant-Q transform

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.4: Common input features for VI systems, extracted for the track “Don’t Stop Be-
lievin”’ by Journey (included in the supplementary website). The y-axes represent musical
notes (in subfigures a, b, and d) and pitch classes (in subfigure c), the x-axes represent time,
and the color scale indicates the energy/intensity of such notes/pitch classes on a given time
frame.

days (Marolt, 2008; Salamon et al., 2012; Doras & Peeters, 2019). Early melody es-
timation systems were based on subharmonic summation while the recent systems are
typically implemented as ConvNets. Mainly, two types of melody representations are
considered: the dominant melody, which represents a single pitch trajectory that is
generated by the most dominant instrument (i.e., singing voice or a solo instrument),
and the bass melody, which encodes low-frequency bass information that may be
relevant for VI. An example of a dominant melody representation can be seen in Fig-
ure 2.4 (a). Melody representations are usually high-resolution features, both in time
and frequency, in order to model the subtle variations generated by continuous pitch
instruments like violin or singing voice. When used for VI, they are downsampled
along both axes, as such levels of granularity increase computational complexity and,
furthermore, incorporate detail that is detrimental to detecting variations of the same
underlying musical piece.

Multi-pitch — Another type of high-resolution feature is a multi-pitch represent-
ation, which captures information about the pitch trajectories for each source in a
track, covering both melodic and harmonic content (an example can be seen in Fig-
ure 2.4 (b)). Similar to dominant melody, multi-pitch representations are also typic-
ally downsampled along both axes and have been shown to be a useful feature for VI
(Doras et al., 2020; see Chapter 5).

2.3 BUILDING BLOCKS OF VERSION IDENTIFICATION SYSTEMS 27

Pitch class profile — Perhaps the most exploited musical characteristic in VI sys-
tems is the harmonic content (Ellis & Poliner, 2007; Serrà et al., 2008, 2009a; Bertin-
Mahieux & Ellis, 2012; Humphrey et al., 2013; Chen et al., 2018a). PCP has been the
primary representation used to analyze the harmonic content in musical audio record-
ings for a long time. They are derived frame-wise by collapsing the energies within
a certain frequency range (commonly 50 to 5,000 Hz) into an octave-independent and
usually 12-bin histogram that represents the relative intensities of the 12 semitones
found in the Western musical tradition (see Figure 2.4 (c) for an example). An im-
portant variant of PCP representations is the HPCP (Gómez et al., 2006; Serrà et al.,
2009a), which has been, and still is, used in VI extensively. It produces a more ro-
bust summary of the tonal content than plain PCP by incorporating additional steps
such as harmonic weighting and spectral whitening. Along with HPCP, another PCP
variant that has been used by many systems is chroma energy distribution normalized
statistics, or CENS (Müller et al., 2005). It is obtained by incorporating quantiza-
tion and smoothing operations that alleviate the issues with sensitive characteristics
of local PCP distributions, namely articulation variations and local tempo deviations.
However, the search for more robust PCP-like features is still ongoing. A recent
trend is to train neural networks to estimate “deep” PCP features from audio. For
example, cremaPCP is a learned variant of PCP that estimates pitch class informa-
tion needed to predict chord sequences, and it shows performance improvements over
PCP and HPCP features in the VI context (Yesiler et al., 2019; Doras et al., 2020; see
Chapters 3 and 5).

Chords — Another idea for exploiting the harmonic content is to extract chord pro-
gressions from the audio signals (Bello, 2007; Khadkevich & Omologo, 2013). They
can be seen as an abstraction over PCP features to obtain a more robust summary
of the harmonic content, and the fact that they can be represented as discrete codes
(i.e., chord symbols) makes them highly useful for reducing computational complex-
ity for similarity estimations and disk usage for data storage. Although the motivation
for using chord progressions can be easily justified, issues in chord estimation al-
gorithms make them less appealing for VI. For example, most research in automatic
chord estimation uses a rather small target vocabulary (24 chords), which is insuffi-
cient to correctly transcribe tracks from certain genres (e.g., jazz and blues) and may
lead to inaccurate input representations.

Self-similarity — An interesting way to make features more robust across musical
versions is to consider their evolution (Tralie & Bendich, 2015; Tralie, 2017). A com-
mon way to model musical structure is via self-similarity matrices, which represent
the distances between the feature vectors of each time frame and every other frame.
Self-similarity matrices are attractive input representations for VI systems because
they are invariant to several musical characteristics including timbre, transposition,
and noise, as they only encode relative differences between features from different
time frames, discarding their global offset.

28 SCIENTIFIC BACKGROUND

Constant-Q transform — For many years, the input representations for VI systems
were either mid- or high-level audio descriptors, mainly due to the fact that low-level
representations contained too many redundant and noisy signals for developing an
accurate system. However, as deep learning methods become more popular, VI re-
searchers have begun experimenting with low-level descriptors like CQT (Yu et al.,
2019b; Jiang et al., 2020). The CQT is a spectral representation of an audio signal,
which is obtained by using a set of frequency filters with a constant-Q factor (see
Figure 2.4 (d) for an example). The representation is quite convenient for considering
pitch transpositions, as the filters are logarithmically scaled and match the pitches on
the Western musical scale, which is an important advantage of CQT over other spec-
tral representations like plain short-time Fourier transform. Considering that many
deep melody- or harmony-based representations are extracted from the CQT, it has
become a natural choice for deep learning–based VI systems that follow a data-driven,
feature-learning paradigm.

2.3.2 Transposition invariance

Transposing a track to a different key is a common practice in musical performances
and is among the most common variations in musical versions. Thus, it is desirable
for VI systems to be completely invariant to transpositions. When not adequately
accounted for, transpositions can drastically lower a VI system’s performance.

Transposition to a common key — A straightforward idea to deal with transpositions
is to estimate the key of each track and transpose them to a common key (typically
C major or A minor; Gómez & Herrera, 2006). However, the accuracy of the key
estimation algorithm is critical to the success of this approach, as the errors propagate
to the overall system.

Relative feature encoding — When using dominant melody or chord representations
as input, instead of using the exact frequencies or chord symbols, the same inform-
ation can be represented as intervals, starting from a given offset (e.g., the first note,
the mean frequency, or the first chord of a track; Sailer & Dressler, 2006; Doras &
Peeters, 2019). With this, the representations are disentangled from their key offset,
which results in them being transposition-invariant.

Exhaustive search over all possible transpositions — Another approach to this
problem is to obtain similarity estimations between a track and all possible trans-
positions of the other track (Ellis & Poliner, 2007; Khadkevich & Omologo, 2013).
Especially when using 12-bin PCP representations as input, their octave-independent
characteristic limits the search space to 12 transpositions in total. This approach has
the advantage of being more robust than approaches based on direct key estimation
but requires a higher computation complexity in the similarity estimation step.

Optimal transposition index — A more computationally efficient approach for con-
sidering all possible transpositions is to estimate the OTI for a pair of tracks, which

2.3 BUILDING BLOCKS OF VERSION IDENTIFICATION SYSTEMS 29

indicates the pitch transposition interval needed to make the tracks at hand the most
similar (Serrà et al., 2008, 2009a). In practice, the similarity between global feature
vectors of the first track and the transposed versions of the second track is estimated
to find the index that results in the highest similarity. Previous works have shown that
OTI is very successful with PCP features (Serrà et al., 2009a).

Using magnitudes of the 2D Fourier transform — The magnitude and phase com-
ponents of the Fourier transform represent the energy of each sinusoidal frequency
and its rotational offset, respectively. Therefore, discarding the latter provides shift-
invariance with respect to the axes on which the Fourier transform is applied. In VI,
applying a 2D Fourier transform on short patches of PCP features and discarding the
phase is a practice that is used for obtaining representations invariant to pitch trans-
positions (Bertin-Mahieux & Ellis, 2012; Humphrey et al., 2013).

Using convolutional and pooling layers — A typical approach for achieving trans-
lation invariance in machine learning is to use convolutional and pooling layers. Con-
volutional layers aim to capture local information with kernels that traverse the entire
input, which in the case of VI are the 2D input representations presented in Sec-
tion 2.3.1. The output produced by convolutional layers can be aggregated using
pooling layers so that the results are invariant to the exact location of a pattern of
interest. The key point for translation invariance using this approach is to have ker-
nel sizes much smaller than the input representations, so that the kernels can model
similar patterns even when they are present at different locations of the input (Doras
& Peeters, 2019). In order to take advantage of the octave-independent character-
istic of PCP representations, convolution kernels can be combined with a simple pre-
processing step and max-pooling operation (Xu et al., 2018; Yesiler et al., 2020a; see
Chapter 4). First, PCP features are copied and concatenated in the pitch class dimen-
sion, so that the resulting representation contains all possible transpositions for each
track. Next, a series of convolution operations of size 12 in the pitch class dimen-
sion are applied, generating activations for each transposition. Finally, a max-pooling
layer of size (12× 1) selects the largest value across transpositions, which can be con-
sidered as the most useful transposition, for each activation. Although proven to be
useful for PCP representations, applying this technique for other input representations
is not straightforward and has not been tested in the literature.

2.3.3 Tempo and timing invariance

Other common types of transformations in musical performances are tempo and tim-
ing changes. Tempo differences can occur across entire tracks by changing the global
speed, or within certain segments with changes in local contexts. Timing differences
often occur on the note level and consist of sustaining, repeating, shortening, or re-
moving notes, mainly for conveying artistic expressions.

Beat synchronization — Tempo differences result from changes in the duration of

30 SCIENTIFIC BACKGROUND

bars; however, the number of bars is not affected by such changes. Therefore, by
using beat-synchronous features, the temporal content of the input can be represented
in units of beats, rather than units of seconds or frames (Ellis & Poliner, 2007; Bertin-
Mahieux & Ellis, 2012). To compute beat-synchronous features, a beat estimation
step is performed for each track, and the feature content that falls into each beat
interval is aggregated to obtain one feature vector per beat. While the efficiency of
this approach highly depends on the beat estimation algorithm, empirical results have
proven this technique to be helpful for handling variations in tempo.

Dynamic programming alignment — Perhaps the most standard way of dealing
with tempo and timing modifications is to perform alignment using DP algorithms.
Such algorithms aim to find the optimal alignment between a pair of time series given
certain constraints on the solution space. In the VI context, global alignment meth-
ods like dynamic time warping (DTW; Gómez & Herrera, 2006; Serrà et al., 2008)
and local alignment methods like the Smith-Waterman algorithm (SWA; Smith &
Waterman, 1981; Serrà et al., 2009a; Chen et al., 2018a) have been proven useful for
achieving tempo and timing invariance. Although resulting in higher system perform-
ances compared with other strategies against tempo and timing changes, DP methods
require higher (typically quadratic) computation costs.

Increasing strides in deep neural layers — The striding operation in neural net-
works is a common method for downsampling a given input, and it may be useful
for being robust to timing variations (Doras & Peeters, 2019). Although prone to
aliasing, this method of downsampling applied on abstract representations found in
deeper layers of neural networks is commonly seen in deep learning models, as well
as some VI systems.

Using recurrent kernels — In the machine learning community, recurrent kernels
are a popular choice for dealing with sequential data. They often incorporate a no-
tion of “memory” that facilitates differentiating between past and future events, which
gives them the capacity to preserve nonstationary characteristics. The classic formu-
lation of recurrent kernels is prone to a number of issues while training, including the
inability to consider long-term dependencies and not being suitable for parallel pro-
cessing. Considering that the VI systems typically process full-length tracks rather
than short fragments, the issues around recurrent kernels make them less appealing
for VI research; thus, they have been underexplored in the literature (Ye et al., 2019).

Using dilated convolutional layers — The receptive field of convolution kernels can
be increased by separating kernel elements from each other by a dilation factor while
keeping the number of parameters constant. Using multiple kernels with different
dilation rates can help efficiently process a given input for various tempi using con-
volutional kernels (Jiang et al., 2020).

2.3 BUILDING BLOCKS OF VERSION IDENTIFICATION SYSTEMS 31

2.3.4 Structure invariance

Another common source of variance across versions is the musical structure. This
includes removing, repeating, or changing the order of the existing sections, or intro-
ducing new ones.

Segmenting sections — An intuitive solution for dealing with structural changes is to
first perform segmentation in order to identify sections and later estimate the segment-
wise similarities between two tracks (Gómez et al., 2006; Cai et al., 2016). Although
this is an ideal solution for achieving structure invariance, segmentation algorithms
are currently error-prone, and comparing wrongly segmented sections may drastically
reduce the system performance.

Extracting music thumbnails — To avoid the computational complexity of using
all segments and performing segment-wise similarity estimation, some VI systems
extract single or multiple “thumbnails,” or short representative clips, for each track
and use them as a representation of it (Silva et al., 2018). Such thumbnails can be
selected using various criteria, the most common being selecting the most repeated
subsequences. This technique assumes (1) that the most repeated section will cor-
respond to the most informative or characteristic one, and (2) that all versions of a
particular track include that section due to its importance. While these assumptions
hold true for many versions of many popular tracks, extreme stylistic changes may
present difficulties for this method.

Sequence windowing — Following the idea of comparing subsequences rather than
entire tracks, this technique avoids a segmentation or thumbnailing step by dividing a
representation into short, overlapping segments of a fixed size (also called shingles)
using a predetermined hop length between offsets of consecutive windows (Müller
et al., 2005; Casey & Slaney, 2006; Bertin-Mahieux & Ellis, 2012). After obtain-
ing multiple shingles for each input, such shingles can be aggregated by computing
their mean or median (Bertin-Mahieux & Ellis, 2012), the distances obtained between
an item and multiple shingles can be aggregated (Zalkow & Müller, 2020), or each
shingle can be used individually for fragment-level retrieval.

Local alignment — Apart from being helpful for tempo and timing invariance, align-
ment algorithms can also be useful for achieving structure invariance (Serrà et al.,
2009a; Chen et al., 2018a). The key consideration for this is to avoid global align-
ment algorithms (e.g., DTW) since they struggle in cases with structural changes.
Local alignment algorithms (e.g., SWA), on the other hand, are ideal candidates for
achieving structure invariance due to their goal of finding alignments among sub-
sequences.

Using convolutional and pooling layers — As introduced in Section 2.3.2, convo-
lutional and pooling layers can be combined to achieve translation invariance. Such a
property can be useful for achieving structure invariance as it makes the VI systems
less sensitive to the exact locations of patterns (e.g., when the ordering of sections are

32 SCIENTIFIC BACKGROUND

changed). Moreover, to handle cases where certain sections of a track are repeated,
using max-pooling for downsampling can be useful.

Using global pooling operations — It is common practice to use local pooling oper-
ations for downsampling purposes. Global pooling, however, takes the downsampling
aspect a step further to aggregate information from an entire dimension to output a
single value (Xu et al., 2018; Yu et al., 2019b; Doras & Peeters, 2019). The main pur-
pose of this is to be invariant to track length and to obtain a fixed number of features
per track. Choosing the pooling operation is a crucial aspect of this technique and can
be done in an intuitive way. The average-pooling operation considers all the temporal
frames as equally important. On the one hand, this may hurt system performance
when versions include new or missing segments, but, on the other hand, the most re-
peated sections will contribute to the results more than the others. The max-pooling
operation chooses only the time frames with the highest value for each channel, and
assuming that the frames with the highest value are the most informative ones (per
channel), this operation is better suited against changes in structure. However, during
the backpropagation phase of training, the gradients will flow only from the selected
time frames for each channel, which may introduce some instability during earlier
training steps due to weights being randomly initialized and updated only through
such selected time frames.

Using attention modules — Although pooling operations have been the most popular
choice for structure invariance in deep learning–based VI, they consider each frame
independently and ignore their relationships. Attention modules address this issue by
inferring links between frames so that the models can select which frames to highlight
or ignore based on the information contained in each frame. A popular attention
technique in the machine learning community is self-attention, popularized by the
Transformer architecture (Vaswani et al., 2017). Self-attention passes information
about each frame to all the others and modifies the features in each time step using this
information. Ideally, only the most informative frames (e.g., the most repeated ones)
are highlighted, and the structural changes are overlooked. Although widely used in
the applied machine learning literature, the self-attention idea has been underexplored
in VI (Jiang et al., 2020). Multi-channel attention is another technique that can be
considered as a link between attention and global pooling techniques. The goal is to
learn a weighted average of time frames for each feature (or channels of convolutional
layers) independently (Yesiler et al., 2020a; see Chapter 4). Compared with self-
attention, there are two main differences: (1) different sets of kernels are trained to
learn the attention weights, which are later applied to the input of the module for
performing a weighted average, and (2) using convolution kernels for computing the
weights provides attention only within a local context.

2.3 BUILDING BLOCKS OF VERSION IDENTIFICATION SYSTEMS 33

2.3.5 Similarity estimation

The main goal of VI systems is to estimate similarities between pairs of tracks in a
way that versions of a musical composition return higher similarity scores than non-
versions. The techniques used for achieving invariances are crucial for this purpose.
However, the similarity estimation algorithm must also be chosen carefully to suc-
ceed. Based on the literature, we consider two main types of similarity estimation:
knowledge- and data-driven approaches.

2.3.5.1 Knowledge-driven approaches

Knowledge-driven approaches use heuristic-based algorithms that are often selected
based on domain knowledge. The characteristics of the invariant representations ob-
tained from the previous steps (e.g., whether representations lie in Euclidean space)
play an important role in the decision of which algorithm to use for this final step.

Conventional similarity measures — When the invariant representations obtained
from previous blocks are suitable, similarity measures such as cross-correlation (Ellis
& Poliner, 2007), the Euclidean distance (Marolt, 2008), or the dot product (Müller
et al., 2005) are simple, yet effective choices for similarity estimation.

Dynamic programming alignment — As described in Sections 2.3.3 and 2.3.4, DP
techniques are often used for tempo, timing, and structure invariance, and they elimin-
ate the need for adopting further similarity estimation steps as they provide a measure
of it. In the cases of alignment algorithms like DTW, the cost of the optimal solution
can be used as a distance measure (Foote, 2000; Gómez & Herrera, 2006; Gómez
et al., 2006). In the case of local alignment algorithms like SWA, the length of the
longest-aligned subsequence is typically considered as a measure of similarity (Serrà
et al., 2009a; Chen et al., 2018a; Tralie, 2017).

2.3.5.2 Data-driven approaches

Data-driven approaches aim to learn a function that transforms the data to facilitate
similarity estimation through conventional measures (e.g., Euclidean distance). Such
functions are learned using training data, in a supervised or unsupervised fashion.
In supervised cases, the semantic relationships (i.e., version or non-version) between
pairs of items are used for obtaining effective similarity functions. The learned func-
tions depend on the inductive biases of the models and the training process.

Data projection — Along with a few classification approaches, early works for data-
driven VI considered data projection algorithms like PCA and LDA (Bertin-Mahieux
& Ellis, 2012; Humphrey et al., 2013). They are used for transforming invariant rep-
resentations obtained in the previous blocks into more compact embedding vectors.
Such systems can be considered as hybrid approaches that connect knowledge- and

34 SCIENTIFIC BACKGROUND

data-driven similarity estimation, as they incorporate rule-based algorithms for their
initial steps.

Vector clusters — Another common approach to derive input representations was
based on vector clustering, such as k-means. A learned dictionary of cluster centroids
can be used to efficiently encode data with a small number of components. This
approach has been used to encode input representations into chord series (Bello &
Pickens, 2005), hashcodes (Kurth & Müller, 2008), or embedding vectors (Humphrey
et al., 2013).

Model-based error — Another early data-driven approach to VI was to study model-
based errors (Serrà et al., 2012; Foster et al., 2015). In this approach, a simple para-
metric model that describes the temporal evolution of the feature sequence is fit to the
data. This modeling can be performed on the basis of a single musical piece or from
multiple pieces that form a version clique. After that, the model is used to predict fu-
ture samples of a new feature sequence coming from a candidate piece (i.e., fragments
of the sequence are used as input to the model, and this outputs the most reasonable
continuation). If the model produces a small error, one concludes the candidate piece
is a version of the piece that was used to train the model.

Classification-based training — Classification-based training approaches are per-
haps the most popular in supervised learning. In VI, three main formulations exist.
Firstly, distance/similarity scores can be obtained from multiple systems and used
to train a classifier to make a final decision (see Section 2.4.3). Secondly, a cross-
similarity matrix of two tracks can be computed, and a convolutional network can be
used to determine whether the inputs are versions of each other or not (i.e., binary
classification; Lee et al., 2018). Although computing cross-similarity matrices intro-
duces a computational load for the similarity estimation step, convolutional networks
can replace the quadratic-complexity alignment algorithms like SWA, which results in
a considerable improvement in terms of overall computational requirements. Thirdly,
the training process can be formulated by considering each clique as a separate class
(i.e., multiclass classification; Xu et al., 2018; Yu et al., 2019b; Jiang et al., 2020).
One important consideration is that during inference, it is likely that the system will
encounter tracks from cliques that are not in the training data, and using a pure classi-
fication strategy, it would not be possible to correctly identify those cases. To handle
this, a typical solution is to consider the output of the penultimate layer of the model
as the embedding for each track. Training then aims to make the embeddings from
different classes linearly separable, which is a way of constructing a similarity func-
tion.

Similarity-based training — In recent years, the most popular training formulation
in VI is similarity-based, using metric learning approaches (Doras & Peeters, 2019;
Yesiler et al., 2020a; Jiang et al., 2020; see Chapter 4). The supervision signals in
this context only require the information about whether two items are similar (as in,
belong to the same clique) or not. During training, instead of predicting the classes

2.4 BEYOND BUILDING BLOCKS: ACCURACY AND SCALABILITY

IMPROVEMENTS 35

of each item, these systems focus on manipulating the distances of items directly by
pulling together similar items and pushing apart the dissimilar ones. The most popular
training objectives for this approach are contrastive and triplet losses.

2.4 Beyond building blocks: accuracy and scalability
improvements

This section introduces a set of ideas that can be incorporated in VI systems regard-
less of their building blocks, mainly for improving their accuracy or scalability. We
group these ideas into six main categories: version set enhancement, feature fusion,
ensemble systems, pruning, fast indexing, and data augmentation.

2.4.1 Version set enhancement

Versions of the same composition can be viewed as items of the same set, or clique.
Using this intuition, community detection algorithms have been studied to refine the
obtained distances between queries and items in a corpus. Specifically, one can con-
struct a fully connected graph based on similarities obtained with any system, elim-
inate certain edges based on a threshold of some quantity (e.g., a distance threshold),
and, assuming transitive relations, complete the missing links in this graph (Serrà
et al., 2009b). This process is highly efficient and can lead to better retrieval per-
formance by finding undetected versions and cleaning up the noisy results. As a side
benefit, it is possible to use measures of centrality on these completed graphs to es-
timate the original performance from which subsequent versions arose (Serrà et al.,
2009b).

2.4.2 Feature fusion

Considering the complexity of the VI task, no single feature has been able to capture
all possible transformations that exist across versions. For instance, while the majority
of VI systems work by matching sequences of pitch-based features, this leaves a blind
spot for certain genres where the notes do not carry the dominant musical expression
(e.g., 1980s hip-hop, and drum solos; Tralie, 2017). At the same time, features that
ignore notes are missing crucial information that helps much of the time (Tralie &
Bendich, 2015). Hence, intuitive solutions for such issues have been proposed to find
ways of combining information from various musical dimensions.

Early fusion — Music, in general, has repeated structures that can be represented as
a graph, where each node represents a small snippet of audio and edges exist with
high weights between snippets that are similar, according to some chosen features.
Different features can lead to different noisy observations of an ideal structure graph
and, in most cases, no single feature reliably picks up on all aspects of the complex
musical structure. To address this, it is possible to use a technique known as similarity

36 SCIENTIFIC BACKGROUND

network fusion (Tralie, 2017; Chen et al., 2018a) to reconstruct a cleaner graph from
these noisy observations, particularly if they contain complementary information. It
is possible to adapt these features so that cleaner cross-similarity measures can be
obtained between versions, and this can significantly improve the system accuracy
over each feature alone (Tralie, 2017).

Late fusion — Another possibility for feature fusion is to combine information from
various features at later stages of systems. For example, cross-similarity matrices for
the same pair of tracks but obtained with different features can be aggregated using
simple schemes like taking the maximum or the minimum (Foucard et al., 2010). In
addition, embedding vectors obtained with systems that use different features can be
concatenated and projected into a new space, which can then be shaped by combined
characteristics of all input features (Doras et al., 2020; see Chapter 5).

2.4.3 Ensemble systems

One common strategy to boost overall accuracy is to incorporate the output from mul-
tiple pipelines. Such systems, known as ensemble systems, thereby leverage the joint
strength of disparate workflows. Although the motivation behind some ensemble sys-
tems is similar to that of feature fusion (combining information from various musical
dimensions), here, we describe VI systems that combine multiple systems after they
return distance or similarity scores between queries and a corpus of tracks.

Training a classifier — A first approach for aggregating scores obtained from various
systems is to train a shallow classifier that takes a set of scores as input and returns
a binary decision (i.e., version/non-version). Depending on the characteristics of the
classifier, nonlinear relationships between the input scores may be explored. In VI,
this strategy has been explored to combine systems that use different input features
(e.g., PCP, dominant melody, and bassline; Salamon et al., 2012), and different sim-
ilarity estimation steps (e.g., local alignment and cross-correlation; Ravuri & Ellis,
2010).

Similarity normalization and aggregation — In cases where the distance scores
obtained from various systems are well-calibrated, aggregation of such distances can
be trivial with simple schemes like taking the mean, the maximum, or the minimum.
However, when there is a mismatch regarding the scale of such scores, extra opera-
tions like simple normalizations are needed to avoid the issue (Degani et al., 2013).

Another approach to handle scores of different scales is to consider the global ranking
of all tracks in a corpus for each system since rankings are automatically invariant to
the scale of the similarity scores obtained from a system. Rank aggregation can then
be used to create a global ranking that incorporates the individual ranks from each
system. The Kendall tau distance (Osmalskyj et al., 2016) is an objective function
for measuring the agreement of rankings and indicates the number of pairs of ranked
tracks that have a reversed order. A Kemeny optimal global ranking (Osmalskyj et al.,

2.4 BEYOND BUILDING BLOCKS: ACCURACY AND SCALABILITY

IMPROVEMENTS 37

2016) is a ranking that minimizes the Kendall tau distance to each individual sys-
tem’s rank. Unfortunately, finding such a ranking is NP-hard. However, using an
initial guess based on heuristics such as mean and median rank aggregation, followed
by local Kemenization, in which greedy swaps are performed until the Kendall tau
distance is minimized, can lead to superior performance over individual systems in
practice (Osmalskyj et al., 2016).

Late similarity network fusion — In addition to promoting cliques from a single
system, it is also possible to fuse graphs from multiple similarity networks. Similarity
network fusion can again be used to enhance cliques, but the algorithm operates at
the track level instead of the time frame level (as done in feature fusion). Due to
normalizations based on local neighborhoods within each network, this technique can
fuse similarity measures from any set of systems, and it has been shown in practice
to improve accuracy when fusing PCP-based systems that use different alignment
schemes (Chen et al., 2018a), as well as between systems built on timbral and PCP-
based features (Tralie, 2017).

2.4.4 Pruning

As many information processing systems suffer from the accuracy–scalability trade-
off, a plausible solution is to design multistep systems where the scalability and the
accuracy of multiple systems may complement one another. For this, fast algorithms
can prune the corpus to allow slow but better-performing systems to operate on a
reduced set of data for improving the computation times.

Scalable VI systems — Lately, deep learning–based VI systems have made substan-
tial contributions for bridging the accuracy–scalability gap, but before them, scalable
VI systems were not sufficient for obtaining confident results. However, considering
their far-from-random performances, such early systems became a natural choice to
be used as the first step of pruning-based, multistep systems (Cai et al., 2016). The
general tendency was to use systems that encode tracks into compact embedding vec-
tors as the first step, mainly to take advantage of the fast lookup times. Afterward,
local alignment–based systems were used on the pruned set of tracks to obtain the
final results. Pruning systems nonetheless need to have good recall (at the expense of
good precision, if necessary).

Weak rejectors — There is a multitude of features that are similar for versions of the
same track, but which are not strong enough indicators to confidently label them as
versions of one another. Still, having a large collection of such “weak rejectors” can
be used to narrow down candidates, leading to improved scalability. Among such fea-
tures are bag of words of PCP features, duration and tempo of a recording (Osmalskyj
et al., 2016), and structure-related descriptors (Yesiler et al., 2019; see Chapter 3). Al-
though not applicable in the audio-based VI literature, textual bag of words can also
be applied to title and lyrics information, if they are available (Correya et al., 2018).

38 SCIENTIFIC BACKGROUND

2.4.5 Fast indexing

Like every other information retrieval system, VI systems store and index tracks for
future lookup and comparison. This perspective motivated other strategies to devise
new music representations, inspired by text-based content indexing. Different kinds
of efficient text indexing algorithms were then adapted to music retrieval: for instance,
and among others, inverted file indexing and LSH.

Inverted file indexing — In a text-based indexing context, the idea is to establish a list
of keywords (the codebook) and to use these keywords to index the documents where
they appear. In a VI context, the codebook contains encodings of audio shingles,
which are used as indexes to the full audio tracks. For instance, a k-means approach
was proposed to learn a codebook from the set of all PCP vectors present in a corpus.
The inverted index was built using the closest code to each PCP frame as an index
to the full track (Kurth & Müller, 2008). Another proposal built the codebook en-
coding each PCP sequence as a major/minor chord series and then using short chord
subsequences as index entries (Martin et al., 2012).

Locality-sensitive hashing — The basic idea of LSH indexing is to devise a hashing
function that will guarantee that similar contents are encoded by the same hash with a
high probability, while the probability that different contents are mapped to the same
hash remains low. There are various ways to generate hashing functions that will sat-
isfy these properties (Casey & Slaney, 2006). Several authors adapted this principle to
the VI context and proposed encoding shingles of input representations with an LSH
scheme [e.g., using dominant melody (Marolt, 2008), chord progression (Khadkevich
& Omologo, 2013), or PCP (Casey & Slaney, 2006)].

The recent deep learning–based systems (see Section 2.3.5), which also encode tracks
into compact vector embeddings, have superseded these fast indexing approaches.
However, techniques like LSH could still be considered to further speed up the re-
trieval process of deep learning–based systems.

2.4.6 Data augmentation

With the increasing interest in data-driven VI systems, domain-specific strategies for
robust representation learning are becoming more important. For this, we now intro-
duce data augmentation strategies that are inspired by musical characteristics that can
be modified while creating versions of a composition.

Pitch transposition — To simulate pitch transpositions that are typically observed
between versions, different strategies can be used based on the input representation.
Firstly, regardless of the input representation, a pitch shift transformation can be ap-
plied to the audio signal before feature extraction. While this operation is universal
and does not depend on the type of input, it can introduce some artifacts on the sig-
nal and may require more computational resources than its alternatives. Secondly, if
the PCP features are used as input representations, a simple circular shift along the

2.5 DATASETS AND EVALUATION METRICS 39

frequency axis is sufficient to simulate a pitch shift operation, thanks to their octave-
independent characteristics (Xu et al., 2018; Yesiler et al., 2020a; see Chapter 4).
Lastly, if melody or CQT representations are used, shifting the values by a certain
number of rows along the frequency axis can be useful. However, unlike PCP features,
these representations are not octave-independent, and the behavior of this operation
at the boundary bins (the lowest and the highest) should be considered.

Time stretching — As with pitch shift transformations, increasing or decreasing the
tempo of a track can be done before the feature extraction step. A common alternative
to this is to apply interpolation functions (e.g., linear) to the 2D input representations
(e.g., PCP, melody, or CQT; Doras & Peeters, 2019).

Frame-level alterations — To simulate minor timing variations where some notes
are sustained, repeated, shortened, or removed, similar operations can be applied to
randomly selected frames from 2D input representations. For this, such frames can
be duplicated, silenced (by replacing them with zero vectors), or simply removed
(Yesiler et al., 2020a; see Chapter 4).

Input patch sampling — Similar to the idea of shingling, the input patch sampling
strategy is to randomly select fixed-size patches from the input representations to use
in the training process (Yesiler et al., 2020a; Yu et al., 2019b; see Chapter 4). This
can be viewed as simulating structural changes where some sections are removed
from a version. Note that the sizes of the patches for this strategy (e.g., 120–180 s)
are generally larger than the sizes used for shingling (e.g., 30–60 s).

Input length variation — While applying the input patch sampling transformation,
the sizes of the patches can be varied to mitigate bias toward a certain representation
length (Yu et al., 2019b).

Noise insertion — Lastly, several transformations to audio signals can be applied to
simulate the differences in recording conditions. Some examples are additive noise,
low-pass filters, and MP3 transcoding.

2.5 Datasets and evaluation metrics

This section presents an overview of the publicly available datasets and the most
widely used evaluation metrics for VI. Although there exist different datasets and
evaluation methods for various subproblems within VI (see Section 9.3.5), we here
focus only on the most frequently used ones.

2.5.1 Datasets

Finding data for developing and evaluating MIR systems is challenging, mainly due
to the fact that musical audio is often subject to copyright. Historically, the impact
of this issue on VI was that the researchers were limited to developing and evaluating

40 SCIENTIFIC BACKGROUND

Dataset Training
subset

Validation
subset

Test subset Content

MIREX collection - - 330 (30) +
670 noise
tracks

Proprietary collection

covers80 (Ellis, 2007) - - 160 (80) Full audio tracks and
metadata

SecondHandSongs
dataset
(Bertin-Mahieux et al.,
2011)

12,960
(4,128)

- 5,236
(1,726)

Pre-extracted features
(a wide range including
PCP, timbral features,
beat, etc.) and metadata

YouTubeCovers
(Silva et al., 2015)

100 (50) - 250 (50) Pre-extracted features
(three PCP variants) and
metadata

SHS-100K
(Xu et al., 2018; Yu
et al., 2019b)

84,340
(4,611)

10,883
(1,842)

10,547
(1,692)

YouTube URLs and
metadata

Da-TACOS
(Yesiler et al., 2019)

83,904
(14,499)

14,000
(3,500)

13,000
(1,000) +
2,000 noise
tracks

Pre-extracted features
(three PCP variants,
timbral features, and four
rhythm features) and
metadata

SHS5+ & SHS4-
(Doras & Peeters,
2019)

62,311
(7,460)

- 48,483
(19,445)

Pre-extracted features
(CQT, melody, multi-
pitch, and PCP variants)
and metadata

Table 2.1: Publicly available VI datasets. Values outside and inside the parentheses indicate
the number of tracks and unique cliques, respectively.

their systems using in-house private corpora, which made unified benchmarking of
systems a difficult task. These datasets had varying characteristics, such as the size
of the corpus, the cardinality of cliques, the distribution of musical genres, and so
on. However, with the help of online communities like SecondHandSongs (SHS),
where editors and users annotate musical versions in terms of their connections with
previous musical compositions, this issue is mostly alleviated today. Therefore, for
the remainder of this section, we focus only on the public benchmarks and publicly
available datasets that have been frequently used for VI. A summary of such datasets
can be seen in Table 2.1.

MIREX collection — The “audio cover song identification” competition in MIREX
stood out as the only platform for benchmarking in the early days of VI. The dataset
used in this competition is private and includes 1,000 tracks from a variety of genres.
670 among them are considered as “noise” tracks that do not belong to the same clique
as any others. The rest of the data is organized into 30 cliques with 11 versions each.
While the query set consists of only those with multiple versions (330 tracks), the
corpus includes the entire collection of 1,000 tracks. The inclusion of noise tracks
that are not queried is done mainly to imitate the distribution of industrial corpora,

2.5 DATASETS AND EVALUATION METRICS 41

and it influenced some of the forthcoming publicly available VI datasets.

covers80 — Apart from the MIREX collection, the first dataset curated for VI re-
search is covers80 (Ellis, 2007), and it was released publicly as opposed to the former.
It includes full-length audio files for 160 tracks divided into 80 cliques with two ver-
sions each and no noise tracks. The majority of this data is taken from the uspop2002
dataset18, and the rest was taken from a few commercial “cover albums.” The major
advantage of this dataset is that it includes audio files for all tracks, which enables re-
searchers to develop and evaluate systems that use novel input representations. How-
ever, the limited size is an important drawback as the reported results may not be
statistically significant for a true comparison of systems.

SecondHandSongs dataset — The next publicly available dataset for VI was the
SecondHandSongs dataset (SHS-data; Bertin-Mahieux et al., 2011). It is a subset of
the Million Song Dataset (Bertin-Mahieux et al., 2011)19, and the version annotations
are obtained using the SHS API20. It includes a training set with 12,960 tracks split
into 4,128 cliques and a test set with 5,236 tracks split into 726 cliques, without any
noise tracks. With the release of SHS-data, VI research entered into a new era, which
led to the development of scalable systems that can leverage and be evaluated on
large datasets. However, due to legal issues, this dataset includes only pre-extracted
features that were obtained using the, now obsolete, EchoNest API21. Therefore, the
VI systems developed and evaluated using this dataset have a strict limitation in the
input representations they can use, which may reduce accuracy and hinder system
deployment in the real world due to their proprietary nature.

YouTubeCovers — Following the idea of sharing pre-extracted features, the You-
TubeCovers dataset was released with a larger set of harmonic features compared to
SHS-data (Silva et al., 2015). It includes a total of 350 tracks from 50 cliques and
is further split into a training subset with 100 tracks (two per clique) and a test sub-
set with 250 tracks (five per clique) with no noise tracks. However, having the same
cliques in both training and test subsets may result in biased evaluations. Moreover,
like covers80, the rather small evaluation set may lead to statistically insignificant
results (Yesiler et al., 2019). Although there are still research papers using this data-
set, the URL shared in the original publication for obtaining the dataset is no longer
maintained.

SHS-100K — With deep learning–based systems getting more prominent, a need for
larger datasets has emerged. Addressing this need, SHS-100K includes a total of
108,869 tracks split into 9,202 cliques (no noise tracks), which was a considerable in-
crease compared to the largest dataset until then (Xu et al., 2018). The version annota-
tions are collected from SHS, and the dataset includes YouTube links for the tracks,

18https://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
19http://millionsongdataset.com/
20https://secondhandsongs.com/page/API
21https://en.wikipedia.org/wiki/The_Echo_Nest

https://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
http://millionsongdataset.com/
https://secondhandsongs.com/page/API
https://en.wikipedia.org/wiki/The_Echo_Nest

42 SCIENTIFIC BACKGROUND

rather than any pre-extracted features. It was initially divided into training, validation,
and test subsets with 101,968 tracks (8,177 cliques), 3,918 tracks (909 cliques), and
2,983 tracks (116 cliques), respectively. However, in a later publication, the dataset
was split in a different way mainly to have a larger test set, having 84,340 tracks
(4,611 cliques), 10,883 tracks (1,842 cliques), and 10,547 tracks (1,692 cliques) for
training, validation, and test, respectively (Yu et al., 2019b).

Da-TACOS — Another dataset that addressed the need for larger corpora is Da-
TACOS (Yesiler et al., 2019; see Chapter 3). It includes a benchmark subset with
15,000 tracks that split into 1,000 cliques with 13 versions each and 2,000 noise
tracks. Like many others, the version annotations are obtained using the API of SHS.
To enable researchers to experiment with not only harmonic but also rhythmic and
timbral characteristics, it includes a large set of pre-extracted features along with the
metadata that is linked to the composition and performance IDs used in SHS. There-
fore, even though the audio files are not available, researchers can use the detailed
metadata to recover the tracks themselves. Along with the benchmark set, the authors
also released a framework called “acoss” for feature extraction and benchmarking
designed for VI. It includes feature extraction functions with the hyperparameters
used for preparing Da-TACOS and open-source implementations for seven VI sys-
tems. Furthermore, a training set for Da-TACOS was recently released, containing
a training subset with 83,904 tracks (14,499 cliques), and a validation subset with
14,000 tracks (3,500 cliques).

SHS-5+ & SHS-4- — The last dataset we introduce in this section is SHS-5+ & SHS-
4- (Doras & Peeters, 2019). It includes a training subset, SHS-5+, with 62,311 tracks
in 7,460 cliques, and all the cliques have at least five versions each (hence the name).
The test subset, SHS-4-, includes 48,483 tracks in 19,445 cliques, with two to four
versions per clique, and it is the largest benchmark set for VI to date. Neither subset
includes noise tracks. The version annotations are obtained using the SHS API, and
the dataset includes a large set of pre-extracted features, including CQT and melodic
representations.

2.5.2 Evaluation metrics

As previously introduced, VI systems aim to model the shared information between
versions of the same underlying composition in order to provide a similarity score.
The ability of a system to correctly assess the similarities between a query track and
a corpus of tracks is usually evaluated by metrics that operate on a ranked sequence
of results. Such a ranked sequence is obtained by first estimating similarity scores
between a query and all the tracks in a corpus and then sorting the items in the corpus
with respect to their similarities to the query. Below, we introduce the set of metrics
typically used in VI.

Precision and recall — Being perhaps the most typical metrics in information re-

2.5 DATASETS AND EVALUATION METRICS 43

trieval, precision and recall provide rank-independent measures of system perform-
ance, which means that the order of the items does not affect the outcome. Precision
gives the ratio of the retrieved items that are relevant22 to all the retrieved ones (in
other words, the accuracy of the system’s predictions). Recall, on the other hand,
gives the ratio of the retrieved items that are relevant to all the relevant items in the
corpus (in other words, how well the system finds the relevant items). In VI, they are
typically computed as Precision@K (Prec@K) or Recall@K (R@K) at a cut-off rank
K = {1,5,10}, meaning only the first K results are considered. Note that although
precision and recall are rank-independent (i.e., the order of the items does not mat-
ter), Prec@K and R@K require a cut-off rank by definition and can be considered as
rank-aware (i.e., the items have to be placed below rank K).

Mean average precision — Although precision and recall are common metrics, their
rank-independent characteristics are not useful for tasks where the order of the re-
trieved items is important. A possible alternative for considering the ranks of the
results is mean average precision (MAP). For this, average precision (AP) scores for
all queries are computed and averaged. AP for a single query is obtained by averaging
Prec@K scores over all K where a relevant item is returned, which makes AP a rank-
aware metric in contrast to precision. Therefore, MAP assesses not only the number
of relevant items in the results but also their ranks.

Mean reciprocal rank — Another rank-aware metric for assessing system perform-
ances is mean reciprocal rank (MRR). It is the average of reciprocal rank scores ob-
tained for all the queries, where reciprocal rank is the multiplicative inverse of the
rank of the first relevant item. Therefore, this metric is more appropriate for cases
where either there is only one relevant item in the corpus, or if only the position of
the first relevant item is important. Note that when there is a single relevant item in
the corpus, MRR is equal to MAP.

Mean rank of the first relevant item — The last metric we introduce is the mean
rank of the first relevant item (MR1). As MRR, this metric also uses only the first rel-
evant item, and the only difference between them is the multiplicative inverse function
in MRR. However, MR1 may be easier to interpret as ranks are taken directly. Note
that the scale of differences between MR1 scores are the same everywhere, but such
differences between MRR scores are scaled-down when higher ranks are considered.
For example, when comparing two cases where the first relevant items have ranks 1
and 11, the reciprocal ranks are 1.00 and 0.09, respectively. On the other hand, when
comparing two cases where the ranks of the first relevant items are 40 and 50, the
reciprocal ranks are 0.025 and 0.020, respectively.

22Here, we use the term “relevant” to denote the items in the corpus that are versions of the query.

Chapter 3
Toward Data-driven Version

Identification

3.1 Introduction

When we started to work on the research presented in this dissertation, VI had been
an active research field for almost two decades. There were many existing algorithms
and datasets, widely accepted evaluation methodologies, and some promising ideas
for further improvements. The “audio cover song identification” contest in MIREX
had been running for more than a decade. There were two doctoral dissertations
dedicated to VI (Serrà, 2011; Osmalskyj, 2017).

Although the state of VI research described above suggests that there was enough in-
terest and consistent development in the field, certain paradigm shifts that were hap-
pening in the overall landscape of MIR were also influencing the VI research. The fact
that MIR applications were getting commercialized more and more each year resulted
in a shift toward data-driven and scalable systems for many tasks. The algorithms that
had been tested on “toy datasets” started to fail in terms of providing the developers
and users a realistic outlook on the performance in large-scale use cases. Therefore,
the community started to adopt such data-driven and scalable solutions (specifically,
deep learning–based ones) and to curate evaluation datasets that go beyond only a few
hundreds of examples.

Following this trend from the general MIR landscape, we believed that the next gen-
eration of VI systems had to adopt a data-driven paradigm if they were ever to over-
come the accuracy–scalability trade-off that previous VI systems had been struggling
with. That is, the systems that performed the best (i.e., the local alignment–based
ones) were the slowest ones in terms of computation times, and the fast systems
(i.e., embedding-based ones) were consistently being outperformed by their slower
alternatives. The pioneering deep learning–based VI systems showed that they were
strong contenders to be the “holy grail” of VI systems by being both accurate and
scalable at the same time; however, their generic model architectures and training

45

46 TOWARD DATA-DRIVEN VERSION IDENTIFICATION

methods mostly lacked any VI-related domain knowledge that the community had
established throughout the years (e.g., techniques against common transformations
between versions). Consequently, although being drastically faster compared with
their conventional counterparts, such “deep” VI systems could not catch up with the
performance of the local alignment–based methods yet.

Based on this, a natural starting point for this dissertation is to investigate ways to
incorporate domain knowledge into deep VI systems. However, before delving into
the machine learning part of our research, we first aim to address some other issues
with the state of VI. For this, we identify four main points that the current VI re-
search lacks: (1) widely accepted training and evaluation datasets, (2) a large-scale
quantitative analysis on common changes between version pairs, (3) reproducible im-
plementations of state-of-the-art algorithms for benchmarking, and (4) an analysis of
the recent, data-driven input representations. While working on such issues is not cru-
cial for developing novel VI systems, we consider them as a preliminary step that lays
the foundation on which we build our research. This chapter, based on Yesiler et al.
(2019), introduces the four aforementioned issues and our efforts to address each of
them.

3.2 Curating a dataset

Data is a crucial part of machine learning systems and is often necessary for both
model development and evaluation phases. Hence, our first step toward data-driven
VI consists of curating a dataset that would enable us to develop novel VI systems
and benchmarking existing systems to create baselines.

Although finding data of any modality (e.g., image, text, or audio) has become fairly
easy thanks to the world wide web, finding labeled data is still not straightforward.
Some companies have devoted substantial funds to annotate musical recordings in
terms of various characteristics (e.g., the music genome project23), but the process of
labeling is quite expensive for most academic, and even for some industrial, research.
However, VI has a certain advantage over other MIR tasks in terms of resources for
collecting labeled data. Since the early 2000s, there exist many user-driven websites
that contain information about versions of existing musical works. Among them,
SecondHandSongs24 (SHS) is the biggest and the most famous one among the VI
researchers. The version annotations are user-generated and verified by the website’s
editors, which assures that the data is of high quality. Each entry on the website
includes track titles, artist names, version relationships, and other editorial metadata,
along with YouTube and/or Spotify links for a high percentage of entries. The data
on the website is licensed under Creative Commons BY-NC 3.025.

23https://www.pandora.com/about/mgp
24https://secondhandsongs.com/
25https://creativecommons.org/licenses/by-nc/3.0/

https://www.pandora.com/about/mgp
https://secondhandsongs.com/
https://creativecommons.org/licenses/by-nc/3.0/

3.3 QUANTITATIVE ANALYSIS OF MODIFIABLE MUSICAL CHARACTERISTICS 47

Feature Subset Extraction library
Training Benchmark Version analysis

HPCP X X X Essentia (Bogdanov et al., 2013)
MFCC X X X Essentia (Bogdanov et al., 2013)
Key X X X Essentia (Bogdanov et al., 2013)
CENS X X X librosa (McFee et al., 2015)
Beat onsets X X X madmom (Böck et al., 2016)
Tempo X X X madmom (Böck et al., 2016)
cremaPCP X X X crema (McFee & Bello, 2017)
Auto-tags X CRNN (Choi et al., 2017)

Table 3.1: List of features provided in each subset of Da-TACOS along with the software
libraries used to extract them.

Using the SHS API, we collected version annotations and other editorial metadata
for 112,904 tracks in 20,999 cliques, which became our main source of data for our
research. We further split this data into several subsets for various purposes: (1) a
“version analysis” subset for the experiments quantifying the frequency and extent
of musical changes between versions (see Section 3.3); (2) a benchmark subset for
evaluating VI systems (see Section 3.4); and (3) training and validation subsets for
developing our deep learning–based models (see Chapters 4, 5, and 6). Using a set
of open-source MIR libraries, we extracted a wide range of audio descriptors (see
Table 3.1) and made them publicly available along with editorial metadata under Cre-
ative Commons BY-NC-SA 4.0 license26. We named this collection “Da-TACOS,”
which stands for “a dataset for cover song identification and understanding.” To this
day, it is the largest dataset curated for VI. More information on the dataset can be
found in Appendix C.

3.3 Quantitative analysis of modifiable musical
characteristics

Previous VI research repeatedly showed that having explicit mechanisms to obtain in-
variances against certain musical characteristics (e.g., key, tempo, and structure) res-
ults in considerable improvements to system performance. As shown in Figure 1.2,
such characteristics can be grouped into nine categories. Although it is fairly straight-
forward to find examples of version pairs where differences in one or a few of those
characteristics can be observed, there has not been any large-scale analysis that in-
vestigates how often and how drastically such differences occur. To address this, we
now analyze a large collection of version pairs to quantify the frequency and extent
of changes in five musical characteristics: key, tempo, timing, structure, and semantic
aspects. With this, we aim to determine which characteristics to focus on handling

2640https://creativecommons.org/licenses/by-nc-sa/4.0/

40https://creativecommons.org/licenses/by-nc-sa/4.0/

48 TOWARD DATA-DRIVEN VERSION IDENTIFICATION

Figure 3.1: (Left) Distribution of changes in semitones between key estimates for version
pairs with a reported key change. (Right) Distribution of tempo ratios between version pairs.

while developing our data-driven VI system.

3.3.1 Overview

We perform the analysis using the “version analysis” subset of Da-TACOS, which
contains 5,000 version pairs in 5,000 unique cliques. Quantifying the key and tempo
changes between pairs of versions is relatively straightforward using open-source
MIR software libraries. However, to analyze the changes in timing, structure, and
semantic aspects (e.g., instrumentation and genre), we devise custom distance meas-
ures. Apart from quantifying the changes in those characteristics between version
pairs, we also obtain distances from those measures for non-version (i.e., unrelated)
pairs. With this, we aim to show that the distances between unrelated pairs are higher
than those between version pairs, which can be considered as a confirmation that our
custom measures are appropriate27. We do this by forming distributions using the
obtained distances for version and non-version pairs. To quantify the extent to which
the distributions for versions and non-versions differ, we perform the two-sample
Kolmogorov-Smirnov (KS) test (Massey, 1951) and report the resulting score along
with its associated p-value, which indicates the statistical significance of the differ-
ence between the two distributions.

3.3.2 Analysis details

Key — Using a key estimation algorithm (Gómez, 2006), we consider all version
pairs exceeding a key estimation confidence of 0.75, which are 4,288 pairs. Among
these, 69.3% are reportedly in a different key. The distribution of semitone shifts
between version pairs can be seen in the left of Figure 3.1. Thus, the use of techniques
for handling transpositions between versions (see Section 2.3.2) is justified. One
limitation of our analysis is that the key estimation algorithm reports a single estimate

27Although we expect changes in musical characteristics between version pairs, we expect such pairs
to show more similar characteristics than unrelated pairs of tracks.

3.3 QUANTITATIVE ANALYSIS OF MODIFIABLE MUSICAL CHARACTERISTICS 49

that is either major or minor. Under this scheme, the used algorithm reports that
17.5% of the pairs shift from major to minor keys. However, manually checking, we
find that many of these examples are in modes beyond major and minor. To have
a more fine-grained analysis to determine the changes beyond simple transpositions,
more sophisticated algorithms or experts would be needed.

Tempo — We then examine tempo ratios between version pairs by picking out the
tempo with the maximum confidence using a state-of-the-art tempo estimator (Böck
et al., 2015; see the right of Figure 3.1). There is a slight peak around 2, which is
likely due to “octave errors” from pieces that can be subdivided into 4/4. Beyond
that, the changes in tempo that correspond to the first, second, and third quartiles
are 1.03x, 1.11x, and 1.53x, respectively. These results suggest that half of the pairs
are quite stable in terms of tempo; however, there are a fair number of pairs with a
considerable change in tempo between the second and third quartiles. In conclusion,
our analysis confirms that tempo stands out as a factor that needs to be considered
while building VI systems.

Structure — A notably successful approach for analyzing music structure is using the
eigenvectors of the graph Laplacian, or “spectral clustering” (McFee & Ellis, 2014).
While we can assess the results obtained from this technique by comparing them to
human-annotated labels for a particular set of tracks (McFee & Bello, 2017), using
those eigenvectors to estimate the structural similarities between pairs of versions
is not straightforward. Instead, we form vectors for each track using the eigenval-
ues of the graph Laplacian, and we compare the similarities of such vectors, and
thus, the structural similarities between tracks, using Euclidean distance. This tech-
nique was referred to as “ShapeDNA” in the context of 3D shape analysis of triangle
meshes (Reuter et al., 2006). For our analysis, we use feature-fused self-similarity
matrices (Tralie & McFee, 2019) that we downsample to a common dimension of
256× 256, and 30 eigenvalues of a random walk Laplacian to form the vectors per
track.

Figure 3.2 shows self-similarity matrices and ShapeDNAs of a pair of versions and a
third, unrelated track. We observe that the self-similarity matrices of the version pair
look much more similar to each other compared to that of the third track. Supporting
that observation, their ShapeDNAs demonstrate a similar outcome where the vec-
tors of the version pairs appear close while being considerably different from that of
the third track. Based on this, we hypothesize that computing similarities between
ShapeDNAs is an appropriate proxy for estimating structural similarities between
tracks. We then form distributions of ShapeDNA distances for version and non-
version pairs (see Figure 3.3). We see that although the obtained distances are higher
for unrelated pairs of tracks, structural differences exist between versions, which is
indicated by the distance scores. Lastly, the KS score between the two distributions
is 0.22 (p < 0.01), confirming that there are more drastic structure variations between
pairs of unrelated tracks while versions, although still incorporating differences, may

50 TOWARD DATA-DRIVEN VERSION IDENTIFICATION

0

50

100

150

200

250
0 100

Time
200

0 100
Time

200

0 100
Time

200

Original
Version
Non-version

Non-version

Version ShapeDNA

Original

T
im

e

0

50

0.8

0.6

0.4

0.2

0.0

100

150

200

250

T
im

e
E

ig
en

va
lu

e

0

50

100

150

200

250

T
im

e

0 10
Eigenvalue index

20 30

Figure 3.2: An example of fused similarity matrices of “The Wizard” by Uriah Heep (upper
left), a version by Blind Guardian (lower left), and “Million Pieces” by The Piano Tribute
Players (upper right), which is unrelated to the other two tracks. The corresponding ShapeD-
NAs are shown in the lower right.

Figure 3.3: Distributions of ShapeDNA differences between pairs of tracks as a means of
assessing structural changes.

have more in common regarding overall structure.

Timing — We now analyze variations in timing, which we define as local changes
in tempo over time. For this, we first extract N beat onset estimates B(t), where t =
1,2, ...,N using the algorithm proposed by Krebs et al. (2015), down to a resolution

3.3 QUANTITATIVE ANALYSIS OF MODIFIABLE MUSICAL CHARACTERISTICS 51

'Joy Division' Timing Persistence Diagrams

'Versus' Timing

Te
m

po
 R

at
io

1.05

0.97 1.05Time

Time

1.01
Birth

Birth

0.97

1.01
1.03

Te
m

po
 R

at
io

1.13

0.95

1.06

1.10
1.13

1.13

0.95

0.95

1.06

1.06

1.10

D
ea

th
D

ea
th

1.05

0.97

1.01
1.03

Figure 3.4: An example of R(t) estimates and their associated persistence diagrams for the
track “24 Hours” by Joy Division and Versus. Both tracks speed up in the chorus and slow
down in the verse; therefore, they each contain several local minimums with high persistence
that are born during the verses. They each also contain some low amplitude wobbling which
shows up as dots near the diagonal.

of 10 ms. We then obtain unit-less local tempo estimates by convolving B(t) with
a Gaussian derivative G(t) = −te−t2/2 to obtain B′(t) = B(t) ∗G(t) and smooth out
noise by applying a sliding window average of width 20. Finally, we divide B′(t) by
its median to obtain a relative, tempo-normalized local tempo deviation R(t), where
R(t)> 1 indicates that a track speeds up locally around time t, and R(t)< 1 indicates
a slowing down.

The left column of Figure 3.4 shows R(t) for two versions of the same track. Note the
multiscale features of R(t), from small wobbles to large changes that persist over a
section. To capture all scales in one distance measure that can tolerate missing beats
and structural changes (e.g., added/deleted sections), we use “lower star filtration,” a
watershed method from topological data analysis (Edelsbrunner & Harer, 2010). It
summarizes a time series in a “persistence diagram”28 (PD). It was previously used,
for instance, on quantifying driving behavior by analyzing the speed time series of
drivers (Rouse et al., 2015).

The right column of Figure 3.4 shows PDs for the R(t) for an example version pair,

28A multiset of points whose x-coordinates correspond to local minimums where pools of water
form as the water rises from bottom to top (“birth events”) and whose y-coordinates correspond to local
maximums paired to such minimums where two pools merge together (“death events”)

52 TOWARD DATA-DRIVEN VERSION IDENTIFICATION

Figure 3.5: Persistence images corresponding to the diagrams in Figure 3.4. The Versus
version contains larger scale wobbles, leading to blobs further up on the persistence axis.
However, they both contain also smaller scale wobbles.

Figure 3.6: Distribution of persistence image distances of lower star filtrations of relative
tempo functions between pairs of tracks.

with the birth and death values of the points with the four largest “persistence” (death-
birth) marked. To compare PDs of two different tracks, we use persistence images
(Adams et al., 2017; see Figure 3.5). They transform a PD into birth–persistence
space and place a Gaussian over each point, whose magnitude is proportional to the
persistence. Figure 3.6 shows the distributions of Euclidean distances between per-
sistence images for version and non-version pairs. Although the distributions look
quite similar, the KS score is 0.095 (p < 0.01), indicating that although variations in
timing are more drastic for unrelated tracks than for version pairs, such variations are
also observed between versions as the mode of the related distribution is greater than
0, which is also supported by Figure 3.4 where one track speeds up more in the chorus
relative to the other.

Semantic aspects — To analyze the similarities regarding the semantic aspects of the
tracks (e.g., mood, instrumentation, and genre) without explicitly defining them, we
use the auto-tagging model of Choi et al. (2017), which uses log-mel spectrograms as

3.4 BENCHMARKING EXISTING SYSTEMS 53

Figure 3.7: Distributions of F-measures for version and non-version pairs regarding the
higher-level semantic aspects.

input to return a set of tags that qualitatively describe a track. Since the model returns
many tags with low confidence, we only consider the ones that are in the 90th per-
centile over all confidence scores, which corresponds to a value of 0.062. If R1 is the
fraction of the tags obtained for track A that are also in the set of tags for track B, and
R2 is the fraction of tags obtained for track B that are also in the set of tags for track
A, then the F-measure between two tracks is defined as 2R1R2/(R1 +R2), which is 1
if they are in complete agreement and 0 if they have nothing in common. Figure 3.7
shows the distribution of F-measures between version and non-version pairs. While
the distributions are overall quite similar, the F-measures are skewed slightly lower
for non-versions. The KS score between the two distributions is 0.118 (p < 0.01), in-
dicating that these two distributions are statistically different and, therefore, stylistic
changes occur more drastically between unrelated tracks compared with between ver-
sion pairs. However, the fact that the mode of the F-measure distribution for version
pairs is far from 1 suggests the importance of variations in such semantic aspects
between versions.

3.4 Benchmarking existing systems

For many years, the lack of a unified and widely accepted evaluation setting remained
one of the main limitations of VI research. Firstly, the majority of existing VI sys-
tems did not have any open-source implementations, with only a few exceptions. This
means that researchers who wanted to benchmark their new approaches developed on
a new dataset had to first implement a large set of existing systems. Along with the
fact that such systems may incorporate many small details that are not described in
the corresponding research papers, it is known that such reimplementations gener-
ally include differences that can degrade the quality of the benchmarking. Secondly,

54 TOWARD DATA-DRIVEN VERSION IDENTIFICATION

MAP MR1
Individual systems

SSM (Tralie & Bendich, 2015) 0.096 434
2DFTM (Bertin-Mahieux & Ellis, 2012) 0.126 207
SiMPle (Silva et al., 2016) 0.165 358
Dmax (Chen et al., 2018a) 0.348 167
Qmax (Serrà et al., 2009a) 0.385 136
Qmax* (Serrà et al., 2009b) 0.390 131

Ensemble systems
SNF (Qmax + Dmax) (Chen et al., 2018a) 0.471 161

Table 3.2: Performance statistics for the baseline systems using HPCP features as input.

the then-available public datasets all had major drawbacks that pushed researchers to
use proprietary or newly curated data for system evaluation. Among such drawbacks
were the insufficient dataset size (e.g., only a few hundreds of tracks), the limited set
of shared features (e.g., only PCP feature variants), the use of proprietary algorithms
for extracting such features (e.g., the EchoNest API), and so on. Naturally, address-
ing this issue of not having a proper benchmarking setting becomes a priority for us
before developing any system. Considering both sides of the problem, we curated a
benchmark dataset and implemented seven state-of-the-art VI systems all of which
were made publicly available for the community.

The benchmark dataset, which is a subset of Da-TACOS, includes a total of 15,000
tracks: 13,000 tracks in 1,000 cliques with 13 tracks each, and 2,000 tracks that do
not belong to any other clique, acting as noise in the data (see Section 2.5.1). We used
open-source MIR libraries to extract a wide range of features that are commonly used
in VI literature. The code for the feature extraction and the parameters we used are
publicly available in the project repository29 (see Appendix C).

As for the open-source implementations of VI systems, we consider seven systems
that incorporate different techniques and provide different approaches to VI. While
systems like the ones proposed by Bertin-Mahieux & Ellis (2012) and Silva et al.
(2016) put more emphasis on the scalability aspect by focusing on reduced compu-
tation times, other systems proposed by Serrà et al. (2009a) and Chen et al. (2018a)
incorporate local alignment–based algorithms that provide slow but high-performance
results. By having reference implementations for such systems, we aim to encourage
VI researchers to conduct comprehensive benchmarking when developing and evalu-
ating novel systems.

Table 3.2 presents the initial benchmarking results of the implemented systems on the
Da-TACOS benchmark subset. The results are consistent with other benchmarks like
the MIREX competition. Qmax* outperforms all the individual systems by consider-

29https://github.com/furkanyesiler/acoss

https://github.com/furkanyesiler/acoss

3.5 SEARCH FOR DATA-DRIVEN INPUT FEATURES 55

able margins. However, the ensemble system proposed by Chen et al. (2018a), which
uses the similarity network fusion (SNF) technique to combine networks of pairwise
distances obtained with Qmax and Dmax algorithms (see Section 2.4.3) sets a strong
baseline by outperforming all the individual systems including Qmax*.

3.5 Search for data-driven input features

In VI literature, the most popular input features have been the PCP variants (see Sec-
tion 2.3.1). Although having been developed in the early years of MIR research,
they have proven their usefulness in many tasks over the years. However, seeing that
the latest developments in MIR point to the success of data-driven methods over the
knowledge-driven ones, we now aim to analyze whether some of the recently de-
veloped data-driven features would bring any performance gains in VI.

Focusing on PCP variants, our first candidate is the “deep-chroma” feature proposed
by Korzeniowski & Widmer (2016), which was shown by Silva et al. (2018) to out-
perform CENS features. Deep-chroma features are extracted using a multilayer per-
ceptron (MLP) model, which is trained for the automatic chord recognition (ACR)
task. Our second candidate is the pitch class features of the crema model, proposed
by McFee & Bello (2017). Crema is a convolutional recurrent neural network that was
also trained for the ACR task. However, by adopting a structured prediction strategy,
the crema model estimates the root, the bass, and the pitch classes for each frame,
which are later combined to output a single chord. Crema model is designed to tackle
the large-vocabulary ACR task, which considers 14 chord qualities as opposed to 2
qualities (i.e., major and minor) considered by the deep-chroma model.

After a set of preliminary experiments, we chose the pitch class features obtained
from the crema model, which we call cremaPCP in short, over the deep-chroma fea-
tures. For the main evaluation, we compare the performances of six state-of-the-
art VI systems with HPCP and cremaPCP features as input. As seen in Table 3.3,
cremaPCP constantly outperforms HPCP for all the considered systems with relative
increases varying between 13% and 118% in terms of MAP. These results suggest
that cremaPCP is a promising choice as an input representation for the first VI system
we develop (see Chapter 4).

3.6 Conclusion

In this chapter, we have described our efforts toward developing data-driven VI sys-
tems. Firstly, we have discussed the state of VI research when we began working on
this dissertation, along with the developments in the overall MIR landscape. We have
explained our intuitions regarding why a data-driven paradigm must be adopted to
tackle the struggles related to the accuracy–scalability trade-off. We have then identi-
fied four main issues to address before developing our VI systems. Our efforts toward

56 TOWARD DATA-DRIVEN VERSION IDENTIFICATION

Input MAP MR1
Individual systems

SSM (Tralie & Bendich, 2015) M 0.096 434

2DFTM (Bertin-Mahieux & Ellis, 2012)
H 0.126 207
C 0.275 155

SiMPle (Silva et al., 2016)
H 0.165 358
C 0.332 142

Dmax (Chen et al., 2018a)
H 0.348 167
C 0.398 167

Qmax (Serrà et al., 2009a)
H 0.385 136
C 0.437 138

Qmax* (Serrà et al., 2009b)
H 0.390 131
C 0.445 130

Ensemble systems

SNF (Qmax & Dmax) (Chen et al., 2018a)
H 0.471 161
C 0.533 139

Table 3.3: Performance statistics for the baseline systems implemented comparing HPCP and
cremaPCP features. H stands for HPCP, C for cremaPCP and M for MFCC.

such issues resulted in (1) the release of the largest dataset for VI, which contains pre-
determined training and evaluation subsets for data-driven model development; (2)
the first large-scale quantitative analysis on the frequency and extent of changes in
musical characteristics between versions, which has provided useful insights on the
importance of achieving invariances against certain variations when developing a VI
system; (3) a framework with reference implementations of a selected set of state-
of-the-art VI systems, which can facilitate reproducibility and benchmarking efforts
for VI researchers; and (4) a preliminary analysis that compares hand-crafted and
data-driven input features for VI, which has suggested performance improvements
achieved by replacing hand-crafted features with their data-driven counterparts. The
insights, tools, and datasets that we have described in this chapter constitute the found-
ation of our methods described in the following chapters of this dissertation.

Chapter 4
Musically Motivated Version

Embeddings

4.1 Introduction

In this chapter, we describe our first VI system, which lays the foundation for the rest
of our research. As mentioned in Chapter 3, the latest developments in MIR when we
started to work on the research presented in this dissertation suggested that the next
generation of VI systems had to build upon data-driven strategies. Therefore, using
the findings from the preliminary work introduced in Chapter 3, we now propose a
data-driven VI system that we call MOVE, which stands for “musically motivated
version embeddings.” MOVE achieves state-of-the-art performance on two publicly
available benchmark datasets by integrating domain knowledge into a data-driven
system design. Compared with existing alternatives, it demonstrates a substantial
improvement in accuracy while being suitable for large-scale use cases.

VI systems that encode full tracks into compact embedding vectors bring drastic bene-
fits in terms of scalability, as they allow for lightweight similarity estimation between
items. However, the pioneering systems that used such embedding-based approaches
had issues with finding effective ways for the encoding process. The later data-driven
systems addressed those issues by taking advantage of the developments in other data-
driven applications, mainly using more powerful network architectures and better op-
timization schemes. However, such systems mostly included general components that
were task-agnostic and, although improved upon their predecessors, reached only a
certain level of performance. In an effort to outperform that first generation of data-
driven VI systems, in this work, we put an emphasis on incorporating domain know-
ledge into data-driven workflows. Based on the results presented in Section 3.3, we
employ explicit strategies to handle common variations observed between versions.
With an ablation study, we justify each of such strategies (see Section 4.3.3).

Apart from combining domain knowledge with data-driven systems, another key as-
pect of MOVE is that it employs a contrastive learning objective for optimization. In

57

58 MUSICALLY MOTIVATED VERSION EMBEDDINGS

cremaPCP

23 x T

Input nodes: 256

Output nodes: d

KS: 12 x 180

Dilation: 1

Kernels: 256

Max-pooling

KS: 12 x 1

KS: 256 x 5

Dilation: 1

Filters: 256

KS: 256 x 5

Dilation: 20

Filters: 256

KS: 256 x 5

Dilation: 1

Filters: 256

KS: 256 x 5

Dilation: 13

Filters: 512

Convolution layer +

PReLU activation

Pooling layer

Linear layer +

Batch normalization

Multi-channel

adaptive

attention

Channel-wise

attention

Channel-

wise split

Auto-pool
Channels [:256]

Channels [256:]

Multi-channel adaptive attention

Final

embedding

v

Channel-wise

split

Auto-pool

Output shape:

256 x 12 x (T - 179)

Output shape:

256 x (T - 179)

Output shape:

256 x (T - 183)

Output shape:

256 x (T - 263)

Output shape:

256 x (T - 267)

Output shape:

256 x (T - 319)

Output shape:

256

Output shape:

d

Figure 4.1: Block diagram of MOVE’s architecture. KS denotes kernel size.

supervised learning, classification-based training is by far the most popular approach;
however, the way the optimization process is formulated may create issues when there
are a large number of classes30. By following a contrastive learning paradigm, we aim
to avoid any potential issues regarding the number of classes and the number of items
per class in our training dataset. We further discuss such potential issues and the
advantages of contrastive learning over classification-based training in Section 4.2.3.

This chapter is based on Yesiler et al. (2020a)31.

4.2 Methods

In this section, we describe and motivate our design decisions regarding the indi-
vidual components and the training strategies of our system. Overall, MOVE takes
cremaPCP features as input and processes them through five convolutional layers,
interleaved with two pooling layers and multiple nonlinearity functions to encode in-
put tracks into single embedding vectors of a fixed length. It has explicit modules
to handle pitch transpositions and structural changes. We use a metric learning ap-
proach for training by employing a triplet loss function. We also propose VI-specific
data augmentation strategies that aim to make MOVE more robust against changes in
pitch transpositions, tempo, and timing.

4.2.1 Input representation

Based on the preliminary results presented in Section 3.5, we choose cremaPCP as
the input representation of MOVE (see Section 3.5 for details). We use the pretrained

30Note that ImageNet, a popular and large-scale benchmark dataset for computer vision, has only
1,000 categories while the Da-TACOS training set includes 14,499.

31© 2021 IEEE. Reprinted, with permission, from Yesiler, F., Serrà, J., & Gómez, E. (2020). Ac-
curate and scalable version identification using musically-motivated embeddings. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 21–25.

4.2 METHODS 59

T = 1800 T = 1800

cremaPCP

cremaPCP
12

Duplicate &
Concatenate 12

12

Remove the
last row

23

Original +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11

T = 1800

Figure 4.2: The preprocessing of the input features for the transposition invariance module
(top). The resulting features of shape 23×T includes all the possible transpositions of the
original input (bottom).

model available at the related repository32. We denote the cremaPCP features for
a track by X ∈ [0,1]12×T , where T is the number of frames using a hop length of
93 ms. For training, we take random patches of T = 1800 frames after applying data
augmentation (see Section 4.2.3) to entire tracks. At inference time, we use entire
tracks without picking random patches of a particular length (preliminary experiments
showed that the temporal summarization strategy described below was also effective
with entire tracks at inference time).

4.2.2 Network architecture

MOVE consists of five convolutional blocks with parametric-ReLU (PReLU) activ-
ation functions and no padding, interleaved by two different pooling layers (Fig-
ure 4.1). A linear layer followed by nonparametric batch normalization produces the
final embeddings for each track. With the best setup, the total number of parameters
is 6.3 M. We now motivate and present the key components of MOVE.

Transposition invariance module — We have shown in Section 3.3 that key changes
are quite common between version pairs. Consequently, we use an explicit module
for achieving a certain degree of invariance against such changes, which combines
a convolutional and a max-pooling layer. Following the strategy proposed by Xu
et al. (2018), we change the shape of the cremaPCP inputs X from 12×T to 23×T
by concatenating two copies of X in the pitch class dimension and removing the
last pitch class. The resulting representation X̂ contains all possible transpositions
of the original input X (see Figure 4.2). Then, the first set of convolution kernels
L(1) = {L(1)

1 ,L(1)
2 , ...,L(1)

256}, where L(1)
n ∈ R12×180, traverse the modified input, go-

ing through all possible transpositions in the pitch dimension and outputting the
internal representation H(1) ∈ R256×12×(T−179). After a PReLU function, the sub-

32https://github.com/bmcfee/crema (version 0.1.0)

https://github.com/bmcfee/crema

60 MUSICALLY MOTIVATED VERSION EMBEDDINGS

sequent max-pooling operation M : R256×12×(T−179)→ R256×(T−179) keeps the trans-
position with the highest activation value, which results in the internal representation
Ȟ(1) ∈ R256×(T−179).

Expanding the receptive field — The four convolutional blocks applied to Ȟ(1)
(i.e.,

L(2) = {L(2)
1 ,L(2)

2 , ...,L(2)
256}, L(3) = {L

(3)
1 ,L(3)

2 , ...,L(3)
256}, L(4) = {L

(4)
1 ,L(4)

2 , ...,L(4)
256},

and L(5) = {L(5)
1 ,L(5)

2 , ...,L(5)
512}, where L(2)

n ,L(3)
n ,L(4)

n ,L(5)
n ∈ R256×5) are used to en-

code higher-level information and to increase the receptive field of the model (Fig-
ure 4.1). On the one hand, with the layers that have a dilation rate of 1 (i.e., L(2) and
L(4)), we aim to encode higher-level nonlinearities while expanding the temporal con-
text minimally. On the other hand, with the layers that have dilations 20 and 13 (i.e.,
L(3) and L(5), respectively), we swiftly increase the receptive field, which is 17 s per
frame at Ȟ(1)

, to approximately 30 s after L(5). Notice that this temporal span could
already be sufficient to detect musical versions, at least from a human perspective.
However, to process an even larger time span, to be able to deal with different lengths
T at test time, and to deal with structural changes, we still perform an additional step.

Summarizing the temporal content — Following the idea that deep neural net-
works provide an opportunity to learn useful features rather than using hand-crafted
ones, such models can be considered as having two parts: a feature extractor and a
classifier/projection head, which, generally speaking, consist of convolutional blocks
(e.g., convolutional layers, nonlinear activation functions, and normalization layers)
and fully connected layers, respectively. Therefore, the modules that have been intro-
duced above all fit into the “feature extractor” part of MOVE.

An ideal feature extractor for VI must handle a few important considerations. Firstly,
having explicit or implicit strategies against common changes in musical character-
istics is crucial for VI, which has been emphasized earlier. Secondly, VI is a task
where (usually) entire tracks are compared for similarity estimation. This naturally
requires a feature extractor that can deal with inputs of varying sizes. Note that this
requirement can be ignored with practical solutions: to use a feature extractor that
can process inputs of only a certain duration, one can randomly select patches of a
fixed size (for inputs with a longer duration than the required patch size) or pad the
input features to reach the required size (for inputs that are shorter than the required
patch size). However, this brings another point to consider. In cases where we ran-
domly select patches from a long input, we may miss important information that may
be helpful for the task. For example, in some live performances, performers may add
long, improvised solo sections that are not present in any other version of the same
track. If the VI system randomly selects only those solo sections to process, it may
be difficult to identify the relationship between version pairs. One must keep in mind
that when processing tracks for VI, we often do not have any information about which
parts of the tracks are more important or useful for the system. Therefore, designing
a feature extractor that can process tracks of varying lengths is highly desirable for
VI. A common way to do this is by summarizing or aggregating the information in

4.2 METHODS 61

256

256

256

256T'

T'

T'

T'

256

Split in half
Channel-wise
softmax
with learnable
temperature

Channel-wise
dot product

256

1

Figure 4.3: The multi-channel adaptive attention module.

the temporal dimension.

Previous techniques for summarizing the temporal information include average- and
max-pooling operations. Although they provide a solution for processing inputs of
varying sizes, they are not ideal for VI. When summarizing the temporal content, the
average-pooling operation considers all time steps as equally important. However,
this assumption does not hold well for many popular styles or genres. Generally, cer-
tain sections of tracks are more important than others: for example, the chorus, verse,
or bridge sections may hold more information for us to detect version pairs than the
intro or outro sections. The max-pooling operation, on the other hand, captures only
the most “informative” time step, which is the time step with the highest activation
value. Although the idea of identifying only the most important time step is more
plausible than considering all the time steps as equally important, it may still be prob-
lematic in certain cases as it limits the source of information to only a single time
step, and the gradient flow through that selected frame during backpropagation may
be suboptimal.

Considering the shortcomings of the average- and max-pooling operations, we use a
strategy that aims to let the network figure out which time steps are important and
how important they are. With this, one may incorporate several time steps while ag-
gregating information (as opposed to max-pooling) and at the same time indicate the
relative importance of those time steps (as opposed to average-pooling). We call this
solution multi-channel adaptive attention mechanism, which combines multi-channel
temporal attention (Serrà et al., 2018) with auto-pool (McFee et al., 2018). The first
idea is to let the network compute (and learn) the importance of each time step inde-
pendently for each feature with a local attention–like mechanism (Serrà et al., 2018).
The second idea is to apply a nonlinear, learnable pooling function that uses a scaling
parameter before the softmax function (McFee et al., 2018) such that depending on
the value of such parameter, the function pivots between average- and max-pooling.
In practice, temporal summarization is done by calculating channel-wise attention
weights, which correspond to the second half of the activation maps resulting from
the last convolutional layer (L(5)) H(5)

a ∈ R256×(T−319), where a = 257,258, ...,512,
with the auto-pool function, and using the result to weigh the second half of the ac-
tivation maps resulting from the same convolutional layer H(5)

b ∈R256×(T−319), where

62 MUSICALLY MOTIVATED VERSION EMBEDDINGS

Figure 4.4: Two cases where items in the latent space are clustered well. Note that the half
of the space from the left figure is unused.

b = 1,2, ...,256 (see Figure 4.3). This corresponds to

h(6)
i =

T−319

∑
t=1

σ(αH(5)
i+256)�H(5)

i , (4.1)

where i = 1,2, ...,256, the sum is taken across the temporal dimension, σ corres-
ponds to the softmax function, α is a learnable parameter which we initialize to 0
(which makes the operation equivalent to average-pooling), and � is the element-
wise product. The result of this mechanism is a fixed-size feature vector h(6) ∈ R256,
regardless of the duration T of the input track.

Standardizing embedding components — For deep metric learning approaches us-
ing a triplet loss, it is important to consider the characteristics of the latent space
where the embeddings lie, especially during training. Firstly, the volume of the latent
space should be controlled: for instance, in the case where a margin hyperparameter
is used in the loss function (e.g., the triplet loss), if the magnitude of the distances
and the margin are disproportionate, the training process may not be able to structure
the latent space in an effective way. Secondly, making sure that all the dimensions
of the latent space being utilized similarly may improve the expressivity of the em-
beddings. Figure 4.4 shows two cases where, although the items are clustered well in
both, half of the space on the left figure is not utilized, which may affect the inference
performance when dealing with unseen data.

With these motivations in mind, we use nonparametric batch normalization after the
linear layer that finalizes the encoding process. By doing so, we aim to obtain zero-
mean and unit-variance components in our embeddings, yielding a statistically stand-
ardized latent space volume and similarly utilized latent dimensions because dimen-
sions are treated i.i.d. This, together with dimension-normalized Euclidean distances,
also helps us to develop some intuition regarding the loss values and the correspond-
ing margin for the triplet loss.

4.2 METHODS 63

4.2.3 Training strategy

In supervised learning, training models using a classification approach is the most
common way. Many research datasets contain items that are categorized into dis-
tinct classes, which consequently encourages the development of classification-based
training objectives or evaluation methods. In VI, straightforward ways of formulating
the model training as a classification task are either by considering each clique as a
distinct class (i.e., multiclass classification) or by labeling track pairs as versions or
non-versions (i.e., binary classification; see Section 2.3.5.2).

An alternative to classification-based training is to use metric learning, which concep-
tually aims to learn linear or nonlinear distance functions that position semantically
related items closer than unrelated items in a latent space. Although strong connec-
tions exist between certain types of classification- and metric learning–based training
strategies and objective functions, we favored the latter while training MOVE for the
reasons outlined below.

Firstly, from a theoretical perspective, the large (and practically unbounded) number
of classes in VI makes it less suitable for classification-based training. To demonstrate
this, we can consider the most common multiclass classification objective function:
the negative log-likelihood, which is denoted as

LNLL
i =− log

(
exp(q(c

∗)
i)

∑c∈C exp(q(c)i)

)
, (4.2)

where c∗ is the correct class for item i, qc
i is the logit for the class c for item i, and

C is the set of all classes in the training set. The denominator of the softmax opera-
tion, which is necessary to scale the logits between 0 and 1 and to turn the logits into
“probabilities,” requires the summation of the exponentials of all the logits for all the
classes for a single input. In the case where the number of classes is large (e.g., in the
order of tens or hundreds of thousands), this computation becomes expensive from a
resource point of view. Secondly, while the objective function tries to bring all items
from the same class closer to each other, it pushes them away from all the other classes
at the same time. Therefore, the quality of the solution is not only determined by how
close the items of the same class are to each other but also by how far they are from
the items of the other classes. Although this may be a desirable property, finding solu-
tions that satisfy this may be difficult from an optimization perspective. Lastly, the
number of items per class in a training dataset is an important factor for the success
of classification-based training. In VI, it is common to have cliques of musical works
with a small number of tracks (e.g., less than 5). Although data augmentation tech-
niques can be used to increase the number of items per class (see below), alternative
methods that work well with small cliques may avoid this constraint.

The common objective functions for metric learning (e.g., the triplet loss) address
these issues by relaxing the training conditions. In particular, the triplet loss con-

64 MUSICALLY MOTIVATED VERSION EMBEDDINGS

siders triplets of items (an anchor, a positive, and a negative) and aims to make the
distance between the related items [i.e., the anchor (vA) and the positive (vP)] smaller
than the distance between the unrelated items [i.e., the anchor (vA) and the negative
(vN)] by a predetermined margin m. With this, the models only need to satisfy a re-
lative distance condition, rather than considering the absolute distances between the
items. Also, since only a triplet of items is needed to compute the loss, it is a much
cheaper operation than computing the softmax. However, the main problem with the
triplet loss is that the strategy for choosing which triplets to use for computing the
loss function (and, therefore, training the model) has a drastic impact on the training
performance, as we show in our ablation study (see Section 4.3.3).

Based on motivations outlined above, we use the triplet loss for training MOVE,
which is denoted as

LTriplet
A, P, N = max(E (vA,vP)−E (vA,vN)+m,0) , (4.3)

using

E(vi,v j) =
1
d
‖vi−v j‖2, (4.4)

where ‖ ‖ corresponds to the Euclidean norm and v denotes an embedding of size
d produced by the model. We now present our decisions regarding triplet mining,
training data, data augmentation, and hyperparameters.

Triplet mining — As discussed in previous works that employ a triplet loss, the
characteristics of the triplets in each mini-batch may have drastic effects on learning
performance (Schroff et al., 2015; Hermans et al., 2017). For our model, we employ
an online hard triplet mining strategy (Hermans et al., 2017). In our implementation,
we choose 16 unique cliques and 4 tracks per clique, forming a mini-batch of 64. For
the cliques that have less than 4 tracks, we choose among the already chosen tracks of
the same clique. Within a mini-batch, we consider all the examples as anchors (vA),
and select the positive/negative example that has the maximum/minimum distance to
the anchor (vP and vN, respectively). Although Schroff et al. (2015) point out that
the hardest examples may lead to local minima early in the training, our triplets can
be considered “moderate” (Hermans et al., 2017), as they are selected only from the
current mini-batch, and therefore, do not strictly correspond to the hardest triplets in
the dataset. This presumably avoids the aforementioned local minima.

Training data — For training, we use the training and validation subsets of Da-
TACOS (see Section 3.2), which include 14,499 cliques containing 83,905 tracks and
3,500 cliques containing 14,000 tracks, respectively. All audio files are encoded in
MP3 format and their sample rate is 44.1 kHz.

Data augmentation — In order to enhance the learning of MOVE, we apply to each
training example a data augmentation function specifically designed for VI. Consid-

4.3 RESULTS 65

ering the common transformations between version pairs, such function sequentially
and independently applies pitch transposition, time stretching, and time warping with
probabilities 1, 0.3, and 0.3, respectively. Transposition uses the octave-equivalent
characteristics of PCP representations and randomly rolls X in the pitch dimension
between 0 and 11 bins. Time stretching uses one-dimensional interpolations in the
temporal domain, with a random factor between 0.7 and 1.5. Time warping con-
sists of three mutually exclusive functions, which either silence, duplicate, or remove
frames with probabilities 0.3, 0.4, and 0.3, respectively (silence corresponds to zero-
ing out the entire frame). Once selected, these functions are applied on a per-frame
basis with a probability of 0.1, 0.15, and 0.1, respectively. All random numbers are
sampled using a uniform distribution.

Hyperparameters and optimization — We train MOVE for 120 epochs with plain
stochastic gradient descent (SGD), using an initial learning rate of 0.1 and decreasing
it by a factor of 5 at epochs 80 and 100. An epoch is completed when our data loader
goes through all possible cliques. However, an important detail to note is that we
include the cliques with sizes between 6 and 9 twice, the ones with sizes between 10
and 13 three times, and the ones with sizes 14 or above four times. This is done to
increase the probability of every track being introduced to the network at least once
per epoch. The margin value m for the triplet loss is 1. As mentioned, we use patches
of T = 1800 frames for training and an initial auto-pool parameter α = 0. If not
already specified in Figure 4.1, the remaining hyperparameters and implementation
details can be found at the project repository33 (see Appendix C). We study the impact
of the embedding dimension d in the next section.

4.3 Results

4.3.1 Evaluation methods

For studying the effect of embedding dimension and performing the ablation study,
we train MOVE with a subset of the training set, which includes 8,817 cliques and
44,909 tracks in total. The performance scores for those analyses are computed using
the validation set. For comparison to the state of the art, we use the entire training
set to train the model. We use the model weights obtained after the last epochs for all
the results presented in this section. Below, we use MAP and MR1 scores to report
performance (see Section 2.5.2).

For comparing the performance of MOVE with the state of the art, we use two
datasets: the benchmark subset of Da-TACOS, and YouTubeCovers (YTC; see Sec-
tion 2.5.1). To compare the performance on YTC with previous works, we follow
their approach of only querying the test set to retrieve the versions in the reference
set (Silva et al., 2016; Seetharaman & Rafii, 2017; Xu et al., 2018; Yu et al., 2019b).

33https://github.com/furkanyesiler/move

https://github.com/furkanyesiler/move

66 MUSICALLY MOTIVATED VERSION EMBEDDINGS

d
125 5k 10k 15k 20k 25k 30k

0.40

0.60

0.55

0.50

0.45

M
A
P

Figure 4.5: MAP with respect to embedding dimension d on validation data.

Moreover, in this case, we remove from our training data the 17 cliques that overlap
with YTC. After that, neither the benchmark subset of Da-TACOS nor YTC contains
any overlapping cliques with respect to our training and validation data.

4.3.2 Effect of embedding dimension
For any embedding-based system, the size of the embeddings d is a crucial hyper-
parameter, as it can have an important effect on model performance. Therefore, we
now study the model performance on the validation set with respect to it (Figure 4.5).
For this set of experiments, we consider d = {128,256,512,1k,2k,4k,8k,16k,32k}.
We observe that the performance continues to increase with the embedding dimen-
sionality until it saturates at d = 16k. We can place a knee in the curve between
d = 512 and d = 2k.

4.3.3 Ablation study

We then analyze the performance of the main components of MOVE by comparing
them to their potential alternatives (Table 4.1). With that, we aim to quantify the im-
portance of each decision. The first aspect we assess is the effect of the proposed data
augmentation strategy (1). We find that removing data augmentation yields a relative
decrease of 6% in MAP. The second aspect that we evaluate is the importance of the
transposition invariance module explained in Section 4.2.2 (2). As an alternative, we
consider the case where we do not preprocess the input by changing its shape and
remove the max-pooling layer after the first convolution. Although trained with a
much smaller learning rate (10−4) and the Adam optimizer, the model was not able to
properly learn an effective representation, even though multiple transpositions were
present in the data augmentation function. The third aspect we consider is temporal
summarization (3–6). We observe that the introduction of the auto-pool parameter α

to multi-channel attention does not really change the results (3). In contrast, substitut-
ing the proposed multi-channel attention by auto-, max-, or average-pooling clearly

4.3 RESULTS 67

MAP MR1
MOVE 0.575 156

Data augmentation
1: Without data augmentation 0.540 180

Transposition invariance
2: Without transposition invariance 0.154 399

Summarizing temporal content
3: Only multi-channel attention 0.575 153
4: Only auto-pool 0.563 145
5: Max-pooling 0.561 152
6: Average-pooling 0.491 197

Triplet mining strategies
7: Semi-hard mining 0.545 135
8: Random mining 0.427 167

Table 4.1: Ablation study. Performance on the validation set using d = 16k.

has a negative impact on performance (4–6). The final aspect we analyze is the ef-
fect of the triplet mining strategy (7–8). To do so, we train the network with online
semi-hard (7) and random (8) mining strategies. For semi-hard mining, we pick a
random positive example for each anchor and then select a negative example that sat-
isfies the condition E (vA,vN)≤ E (vA,vP). In case no such negative example can be
found, we pick a random one. For random mining, we randomly select one positive
and one negative example for each anchor. We see that semi-hard and random mining
result in a relative MAP decrease of 5 and 26%, respectively. Overall, our ablation
study shows that all introduced variations have a positive impact on performance. The
only exception is the mixing of the auto-pool parameter with multi-channel attention,
which nonetheless does not substantially affect the performance.

4.3.4 Comparison with the state of the art

We now compare the performance of MOVE with the state of the art. The results
on Da-TACOS (Table 4.2) show that MOVE clearly outperforms all the considered
VI systems, excluding the ensembles. The relative MAP difference with respect to
Qmax* (Serrà et al., 2009b), the most competing system, is over 13%. We also see
that although the best performance is achieved with a relatively large embedding di-
mension of 16 k, a smaller embedding size of 4 k can still outperform the state of the
art. When looking at the performance of ensemble systems, although MOVE yields
a worse performance than the similarity network fusion (SNF) algorithm applied on
Qmax and Dmax distances (Chen et al., 2018a), applying the same SNF algorithm on
Qmax and MOVE distances result in a drastic increase in terms of MAP. Note that
MR1 scores of both ensemble systems end up slightly higher than that of MOVE,

68 MUSICALLY MOTIVATED VERSION EMBEDDINGS

MAP MR1
Individual systems

2DFTM (Bertin-Mahieux & Ellis, 2012) 0.275 155
SiMPle (Silva et al., 2016) 0.332 142
Dmax (Chen et al., 2018a) 0.398 167
Qmax (Serrà et al., 2009a) 0.437 138
Qmax* (Serrà et al., 2009b) 0.445 130
MOVE w/ d = 4k 0.495 48
MOVE w/ d = 16k 0.507 46

Ensemble and fusion systems
SNF (Qmax & Dmax) (Chen et al., 2018a) 0.533 139
SNF (Qmax & MOVE w/ d = 16k) 0.651 62

Table 4.2: Comparison of MOVE and other state-of-the-art VI systems on the Da-TACOS
benchmark subset. Results for the proposed system are highlighted in bold.

which suggests that MOVE is better at retrieving versions at lower ranks compared
with those ensemble systems.

We also evaluate MOVE on YTC (Table 4.3). The results support the claim that
MOVE achieves state-of-the-art performance. However, we caution about the use of
YTC to report VI performance, as differences measured with this dataset may not be
significant due to the relatively small number of query and reference tracks (cf. Serrà,
2011). As an example, MOVE with d = 4k shows a similar result as the setting with
d = 16k on YTC, while in larger datasets (i.e., the validation and benchmark subsets
of Da-TACOS), the latter clearly outperforms the former.

4.3.5 Error analysis

Finally, we perform an error analysis to examine the failed cases and explore whether
certain patterns exist in them. Since we use a relatively large dataset for the evalu-
ation, our error analysis consists of randomly picked cases rather than an exhaustive
inspection. We examine version and non-version pairs that yield high and low dis-
tance scores, respectively, using MOVE. We plot cremaPCP features for the selected
pairs of failed cases to facilitate discovering any underlying patterns.

Figure 4.6 presents six pairs of tracks. The first three rows contain non-version
pairs. Upon listening to the audio files, we hear that although having differences
in rhythmic characteristics, the tracks in the second pair (“Poker Face” vs. “Need You
Right Now”) share the same chord progression almost throughout the entire duration.
Therefore, having a low pairwise distance score using a model that processes only
harmonic information is not unexpected. As for the first and the third pairs, we can-
not hear notable similarities as their musical styles, rhythmic properties, and lyrics

4.4 CONCLUSION 69

MAP MR1
SiMPle (Silva et al., 2016) 0.591 8
2DFTM sequences (Seetharaman & Rafii, 2017) 0.648 8
InNet (Xu et al., 2018) 0.660 6
SuCo-DTW (Silva et al., 2018) 0.800 3
CQT-TPPNet (Yu et al., 2019b) 0.859 3
MOVE w/ d = 4k 0.889 3
MOVE w/ d = 16k 0.888 3

Table 4.3: Comparison of MOVE and other state-of-the-art VI systems on the YouTubeCov-
ers dataset. Results for the proposed system are highlighted in bold.

are different. When we inspect Figure 4.6, we see resemblances in the cremaPCP
representations for the first two pairs (i.e., a-b, and c-d). For the third pair, we see
that cremaPCP representations are blurry, and we can confirm that the corresponding
audio files contain high levels of noise that may obscure the efficient extraction of
harmonic content.

The last three rows of Figure 4.6 contain version pairs to which MOVE assigns high
distance scores. The styles of the songs are quite different for all the pairs; therefore,
the results are not surprising. Apart from the differences in the harmonic content, the
tracks for the second pair (versions of “You’re the Cream in My Coffee”) have less
than optimal input representations, which may be the result of unusual equalization
and “vinyl noise.” When we check the cremaPCP representations for these pairs, we
see that they also reflect important differences with respect to each other. Based on
this analysis, we can conclude that using PCP representations as the only source of
information in VI systems may fail in the following ways: (1) non-version pairs that
have similar harmonic content can be mistaken as versions, (2) version pairs that have
substantial changes in their harmonic characteristics can yield high distance scores,
and (3) failing to extract useful harmonic information due to presence of noise or lack
of prominent harmonic characteristics may fail the systems that depend on such input
features.

4.4 Conclusion

In this chapter, we have proposed MOVE, a method for accurate and scalable version
identification using musically motivated embeddings, which achieves state-of-the-art
performance on two publicly available benchmark sets for VI. To make MOVE ro-
bust against common variations between versions, we have used explicit strategies for
handling changes in pitch transposition and structure. Moreover, we have employed
data augmentation functions that are particularly useful for VI. To train MOVE, we
have used a metric learning approach by optimizing a triplet loss function. After

70 MUSICALLY MOTIVATED VERSION EMBEDDINGS

Figure 4.6: Randomly selected pairs of non-versions (the first three rows) and versions (the
last three rows) for error analysis. The brighter colors indicate higher values. The cremaPCP
features of each pair are transposed to maximize their similarities. The distance values indic-
ated between pairs are obtained using MOVE.

4.4 CONCLUSION 71

motivating the components and training strategy of MOVE, we have performed an
ablation study to justify our decisions. We have also studied the relationship between
the embedding size and the performance of our model.

MOVE sets a strong baseline for data-driven VI research. Although it is considerably
better at performance and computation times compared with its conventional altern-
atives, there are still certain limitations to further address: (1) MOVE processes only
harmonic information from complex audio signals and, therefore, ignores an import-
ant portion of the potentially useful information, which is addressed in Chapter 5 by
investigating ways to combine harmonic and melodic information in VI systems; (2)
the size of the embeddings produced by MOVE is rather large compared to its altern-
atives, and this may result in increased storage size and longer retrieval times, which
is addressed in Chapter 6 by exploring techniques to shrink the embeddings while
maintaining the system performance; and (3) the network architecture, the training
strategy, or the training data may cause MOVE to favor certain groups of artists over
others, which is addressed in Chapter 7 by creating a framework to assess the al-
gorithmic bias in VI systems.

Chapter 5
Improving Accuracy with

Data-driven Fusion

5.1 Introduction

PCP variants have long been the most used features in VI (see Section 2.3.1), and
based on their previous success, we have decided to employ them as the input repres-
entation for MOVE. However, considering the complexity of musical audio signals,
using only a single source of information (i.e., harmonic) for identifying links between
version pairs is surely a suboptimal strategy. A number of possible issues that may
arise from using only harmonic features were outlined by Serrà (2011).

Contrarily to VI systems, which exploit harmonic features better than other sources of
musical information, humans can identify version pairs mostly using melodic or tex-
tual information (e.g., lyrics). Nevertheless, difficulties in obtaining and processing
such information (e.g., extracting melody or lyrics from polyphonic audio signals)
kept researchers from fully exploiting them in audio-based VI. While obtaining lyrics
from musical audio is still a significant challenge, there has been major progress in
melody estimation, which has also adopted data-driven solutions like VI.

On another note, before data-driven approaches became dominant, VI systems were
having difficulties in exceeding the accuracy scores obtained with local alignment–
based systems that used PCP variants as features. Although considerable progress
was made in terms of developing faster systems, developing more accurate systems
was problematic. To overcome this challenge, researchers investigated ways to com-
bine information obtained from separate systems, namely, feature fusion (see Sec-
tion 2.4.2) and ensemble methods (see Section 2.4.3).

On the one hand, feature fusion approaches investigated ways of combining inform-
ation at different stages of the VI workflow (i.e., early or late fusion) for a single
item without considering relationships between items. On the other hand, ensemble
approaches were designed to combine information from multiple systems after they

73

74 IMPROVING ACCURACY WITH DATA-DRIVEN FUSION

estimate separate similarity scores between pairs of items, to obtain a refined simil-
arity score. Both feature fusion and ensemble methods showed promising results for
accuracy improvements; however, they were struggling with the accuracy–scalability
trade-off, which made such systems almost impractical to use in large-scale use cases.

Recent years have provided researchers access to well-performing melody estimation
algorithms and both fast and accurate VI systems. Therefore, we believe that it is
a good time to reinvestigate feature fusion and ensemble methods to combine sys-
tems that process melodic and harmonic information extracted from musical audio
signals. In this chapter, we present our work toward this goal. For this, we select
four input representations (a dominant melody, a multi-pitch, and two harmonic fea-
tures) and design a novel deep learning–based VI system that can work with all the
selected features. Firstly, we train different instances of the same model with each
feature to determine their individual performances and to create baselines. Secondly,
after obtaining the baselines, we experiment with a simple distance averaging scheme
to combine pairwise distances obtained from different models (i.e., an ensemble ap-
proach). Finally, we propose a data-driven fusion scheme to let the individual models
learn a better way to combine the complementary information they carry for each item
(i.e., a feature fusion approach). Both the simple distance averaging and data-driven
schemes obtain state-of-the-art results on two publicly available datasets, with drastic
improvements in system accuracy.

This chapter is based on Doras et al. (2020).

5.2 Methods

The main goal of this study is to investigate whether combining information from sys-
tems that process different musical characteristics can increase the overall accuracy.
Since we aim to observe a performance improvement with respect to using individual
systems, our first task is to evaluate each of such systems to set a baseline. For this,
we train separate, randomly initialized instances of the same VI model with each fea-
ture alone. Although MOVE yields state-of-the-art performance, its initial layers are
specialized for processing PCP features. Therefore, we design a new VI model that
incorporates more generic layers to allow the processing of input features of different
characteristics and shapes. After training and evaluating this new model using each
input feature alone (i.e., creating the baselines), we design an ensemble and a fea-
ture fusion scheme to test our hypothesis that different musical characteristics carry
complementary information and combining such information may boost overall per-
formance.

5.2.1 Input representations

We consider a total of four features for this study: plain PCP (pPCP), cremaPCP,
dominant melody (dMel), and multi-pitch (mPitch). While the first two represent

5.2 METHODS 75

Input

Y x T

Multi-channel

adaptive

attention

KS: 1 x 3 x 3

Filters: 64

KS: 64 x 3 x 3

Filters: 128

KS: 128 x 3 x 3

Filters: 256

KS: 256 x 3 x 3

Filters: 512

KS: 512 x 3 x 3

Filters: 1024

Avg-pooling

KS: (Y // 32) x 1

Batch normalization +

Convolutional layer +

Pooling layer

Pooling layer

Batch normalization +

Linear layer

Input nodes:

1024

Output nodes:

1024

Channel-wise

attention

Channel-

wise split

Auto-pool
Channels [:512]

Channels [512:]

Multi-channel attention

L2-normalized

embedding

v

Channel-wise

split

Softmax

Output shape:

64 x (Y // 2) x (T // 2)

Output shape:

1024 x (T // 32)

Output shape:

512

Output shape:

128 x (Y // 4) x (T // 4)
Output shape:

256 x (Y // 8) x (T // 8)

Output shape:

512 x (Y // 16) x (T // 16)
Output shape:

1024 x (Y // 32) x (T // 32)

Output shape:

1024 x (T // 32)

Figure 5.1: The network architecture of MICE. KS denotes kernel size, and // denotes the
integer divide operation.

harmonic information in the musical audio, the third one represents the melodic in-
formation, and the last one contains both melodic and harmonic information (see Sec-
tion 2.3.1). All the features are extracted using a hop length of about 93 ms. As done
for MOVE, both PCP features are preprocessed to transform their shapes in the pitch
class dimension, from X ∈ [0,1]12×T to X̂ ∈ [0,1]23×T , so that they contain all pos-
sible transpositions of the original input (see Section 2.4.1). Both dMel and mPitch
are originally computed with a resolution of five bins per semitone across six octaves
(i.e., 360 bins), and we downsample them by a factor of 5 via linear interpolation.
For dMel, only the three octaves around the mean pitch are considered for each track
since it is a quite sparse representation. In summary, the shapes of the features in the
y-axis are 23, 23, 36, and 72 for pPCP, cremaPCP, dMel, and mPitch, respectively.
Finally, each input representation is normalized to have values between 0 and 1.

5.2.2 Network architecture

MOVE, as explained in Chapter 4, shows state-of-the-art performance thanks to the
musically motivated design decisions it incorporates. However, the transposition in-
variance module that it employs is specifically designed for processing PCP features.
Since our goal for the present study is to learn and combine models that process
different input features, we have to design a more generic network architecture that
can handle features other than PCPs as well. For this, we use the model proposed
by Doras & Peeters (2019) as a foundation and improve it using a few of the mod-
ules and training strategies of MOVE. We call the resulting model MICE: musically
informed cover embeddings (see Figure 5.1).

MICE consists of five convolutional blocks, each of which includes a batch normal-
ization layer, a convolutional layer with kernel shape 3× 3, and an average-pooling
layer with kernel and stride of 2× 2. The number of convolution kernels is doubled

76 IMPROVING ACCURACY WITH DATA-DRIVEN FUSION

at each level: the first block has 64 layers while the last one has 1024. The output of
the last convolutional block is averaged along the frequency axis, and a linear layer
is applied. After obtaining a representation with shape 1024× T ′, where T ′ is the
number of time frames, MICE uses the temporal aggregation module of MOVE (see
Section 4.2.2), to convert the representation into a vector of size 512, regardless of T ′.
The resulting vector is then L2-normalized and considered as the embedding vector
for the input track.

5.2.3 Comparing features

To set baselines for the ensemble and fusion experiments, we first train four separate
instances of MICE using each of the considered input representations. Since MICE
is designed to handle inputs of different shapes, no additional changes are made to
accommodate different features. To minimize the differences between the training
processes, the details described below are kept the same for all four models.

Objective function — We use a triplet loss function (see Equation 4.3) to train
MICE. However, there are two main differences compared with the process used
for training MOVE. Firstly, although we use the squared Euclidean distance func-
tion to compute distances between embeddings, we do not normalize the distance
scores by the embedding dimension. The reason for this is that since the embeddings
are L2-normalized, the distance scores are bounded between [0, 4] regardless of the
embedding size. Secondly, we use a slightly different online hard negative mining
scheme to select the triplets involved in the training process, in contrast to the on-
line hard triplet mining scheme used for training MOVE. For this, each item in a
mini-batch is considered as an anchor (A) and each of its versions in the mini-batch
is considered as a positive (P) example (as opposed to selecting the hardest positive
example). As the negative (N) example for each of the (A, P) pairs, we select the one
that yields the maximum distance with respect to the anchor while satisfying the con-
dition, ‖vA− vN‖2 < ‖vA− vP‖2, where ‖ ‖ corresponds to the Euclidean norm and
vA, vP, and vN denote the embedding vectors of A, P, and N, respectively (as opposed
to selecting the hardest negative example). If there are no such N, we select the one
with the lowest distance with respect to the anchor.

Training data — To train instances of MICE, we use the publicly available SHS5+
dataset (see Section 2.5.1), which includes +60 k tracks split into 7.5 k cliques. SHS5+
includes all the input features considered in this work in the pre-extracted form. We
create training and validation partitions from SHS5+ using a ratio of 4 to 1 with
respect to the number of cliques.

Hyperparameters and optimization — We train each model using the Adam op-
timizer, with an initial learning rate of 10−4. The learning rate is reduced by a factor
of 2 each time the validation loss stops decreasing for 5 k iterations. The models are
trained for 50 k iterations, or until the learning rate falls below 10−7. The size of the

5.2 METHODS 77

mini-batches is 64. The margin hyperparameter m in the triplet loss is set to 1.

5.2.4 Combining features

After obtaining our baselines, we start to investigate possible ensemble and fusion
schemes to combine information from models trained with different input features.
Below, we explain two main ideas that we explore in this work.

5.2.4.1 Distance averaging

The ensemble scheme we use is a simple distance averaging operation. Given two
instances of MICE models trained with different input features (i.e., Cfeat1 and Cfeat2),
a pair of items (i.e., i and j), and a pair of input features for each item (i.e., Xfeat1

i ,
Xfeat2

i , Xfeat1
j , and Xfeat2

j), the performed operation can be represented in mathematical
notation as,

EDA
i, j =

1
2
(‖Cfeat1(Xfeat1

i)−Cfeat1(Xfeat1
j)‖2+‖Cfeat2(Xfeat2

i)−Cfeat2(Xfeat2
j)‖2). (5.1)

We hypothesize that even such a simple averaging scheme can allow a model that is
confident (i.e., producing a very high or low distance) to affect the final decision in a
favorable way. The fact that the models are trained with features representing different
musical characteristics increases the chances of having at least one model producing
confident results. Moreover, this ensemble scheme does not require any retraining or
fine-tuning of the models, and we do not need to normalize the distance scores be-
fore averaging them since the range of distances is bounded due to L2-normalization
applied to the embeddings.

5.2.4.2 Data-driven late fusion

Our fusion idea is to learn a new embedding using the individual embeddings from
different models. Although requiring a training process, which is not the case for
the distance averaging scheme, this idea addresses some of the drawbacks of the first
approach. Firstly, distance averaging is likely a suboptimal strategy to combine in-
formation since it is a general approach that does not consider the characteristics of
the sources. A data-driven approach, on the other hand, optimizes the final embed-
dings in a way that the contribution of the individual embeddings is determined using
the training data. Secondly, the distance averaging scheme requires having multiple
embeddings for the same track and, thus, multiple comparisons for the same pair of
tracks34. Indexing several vectors and combining multiple results may complicate

34Note that this issue can be avoided by storing the concatenated embeddings per track and using
the squared Euclidean distance function as the squared Euclidean distance between the concatenated
embeddings corresponds to the sum of the squared Euclidean distances between individual embeddings
for two a pair of tracks. However, this practical consideration does not easily extend to some other
distance functions like the cosine distance.

78 IMPROVING ACCURACY WITH DATA-DRIVEN FUSION

the operational usage of the system. By having a single embedding, the data-driven
approach alleviates this complexity.

Given two models Cfeat1 and Cfeat2, and two input representations Xfeat1
i and Xfeat2

i for
the item i, this scheme can be represented as follows:

v̂i = L([Cfeat1(Xfeat1
i),Cfeat2(Xfeat2

i)]), (5.2)

where v̂i is the final embedding, L is the late fusion model to be trained, [.] is the
concatenation operation. The models Cfeat1 and Cfeat2 can be pretrained, or randomly
initialized and trained from scratch along with L.

For the experiments that use cremaPCP features, we use MOVE with the embedding
size d = 512. For all the other features, we use MICE. As the late fusion model, we
consider only a single linear layer without any activation function. The final embed-
dings are L2-normalized.

We consider three configurations for this set of experiments: (1) each branch model
(i.e., Cfeat1 and Cfeat2) is randomly initialized and trained from scratch along with the
late fusion model (LF-a), (2) each branch model is pretrained separately and fine-
tuned while the late fusion model is being trained (LF-b), and (3) each branch is
pretrained but their weights are frozen during the training of the late fusion model
(LF-c).

Objective function — We use a triplet loss function to train (or fine-tune) the con-
sidered models. All the training settings including the triplet mining strategies are the
same as explained in Section 5.2.3.

Training data — To test the robustness of the considered fusion schemes, we train
the models separately with both SHS5+ and the Da-TACOS training subset (see Sec-
tion 3.2).

Hyperparameters and optimization — The training procedure is the same as de-
scribed in Section 5.2.3, except that the learning rates for LF-b and LF-c are initialized
at 5×10−6 and 10−1, respectively.

5.3 Results

5.3.1 Evaluation methodology

To evaluate models trained with the Da-TACOS training subset and SHS5+, we use
the Da-TACOS benchmark subset and SHS4-, respectively (see Section 2.5.1). To
report the model performances, we use MAP and MR1 metrics (see Section 2.5.2).

5.3.2 Comparing individual systems

Our first set of experiments aim to compare the performances of four instances of
MICE, each trained with a different input feature. Table 5.1 presents the results of

5.3 RESULTS 79

Input MAP MR1
dMel 0.412 1431
mPitch 0.422 862
pPCP 0.174 1465
cremaPCP 0.499 1169

Table 5.1: Results on SHS4- for considered input features.

Input MAP MR1
dMel+mPitch 0.571 614
dMel+cremaPCP 0.679 529
mPitch+cremaPCP 0.627 593
dMel+cremaPCP (O) 0.873 115

Table 5.2: Comparison of ensemble systems with various input feature combinations using
the distance averaging scheme on SHS4-. O denotes “oracle” (see Section 5.3.3.1).

this set of experiments. The models trained with cremaPCP and mPitch outperform
their alternatives in terms of MAP and MR1, respectively. The performance dif-
ference between cremaPCP and pPCP confirms the findings from our initial experi-
ments presented in Section 3.5. The fact that cremaPCP and mPitch outperform dMel
highlights the importance of harmonic information for VI. In conclusion, the results
suggest that cremaPCP offers both higher performance and lower memory footprint
compared to its alternatives.

5.3.3 Ensemble and fusion experiments

5.3.3.1 Distance averaging

Table 5.2 presents the results of the experiments for the distance averaging scheme.
We consider all the combinations excluding the ones with pPCP due to its low per-
formance in the previous set of experiments. First of all, we see that all the com-
binations yield higher performance scores than the baselines, which confirms our
hypothesis on increasing accuracy by combining multiple sources of information.
Secondly, the combinations with cremaPCP yield notably higher scores than their
alternative. However, although cremaPCP and mPitch are the highest performing fea-
tures in the baseline (see Table 5.1), their combination is outperformed by the com-
bination of cremaPCP and dMel. This suggests that the information incorporated in
cremaPCP and dMel features are more complementary to each other than that of other
combinations.

To develop a better understanding of the results, Figure 5.2 illustrates the normalized
distances of randomly selected version and non-version pairs, obtained from MICE
models trained with cremaPCP, mPitch, and dMel features. Overall, all the models

80 IMPROVING ACCURACY WITH DATA-DRIVEN FUSION

Figure 5.2: Comparison of the normalized distances computed for the pairs from SHS4-
(version pairs in green and non-version pairs in red) with different features: dMel vs. mPitch
(left), dMel vs. cremaPCP (middle), mPitch vs. cremaPCP (right). For clarity, only 500
randomly picked pairs are plotted (250 versions and 250 non-versions).

yield normalized distance scores between 0.6 and 0.8 for non-version pairs. How-
ever, for version pairs, the points are more scattered in the middle figure that shows
the cremaPCP and dMel distances, which supports the empirical results on their com-
plementarity.

Lastly, the bottom row of Table 5.2 shows the performance of an “oracle” for the
cremaPCP and dMel combination, which chooses the lowest or highest distance ob-
tained from the source models for version or non-version pairs, respectively. The
performance gap between the distance averaging results and the oracle confirms our
hypothesis that this scheme is suboptimal for combining information from multiple
sources.

5.3.3.2 Data-driven late fusion

The results of the data-driven fusion experiments can be seen in Table 5.3. For this
set of experiments, we consider only the combination of cremaPCP and dMel since
it outperforms its alternatives for the distance averaging scheme. Note that we use
MOVE to process cremaPCP features instead of MICE.

Firstly, all the three late fusion schemes outperform the source models by large mar-
gins, which confirms that the models learn efficient ways of combining information
from their sources. Secondly, LF-a yields a worse performance than its alternatives,
which suggests that training the source models simultaneously with the late fusion
model hinders their effectiveness. Thirdly, while LF-b and LF-c yield similar per-
formances on SHS4-, the gap in MAP is larger on Da-TACOS. This suggests that
training only the final fusion layer (LF-c) is more effective than doing the same while
fine-tuning the source models (LF-b). Lastly, the distance averaging scheme outper-
forms all the data-driven fusion schemes on SHS4- while it is outperformed by LF-c
on Da-TACOS. This emphasizes the importance of evaluating VI models on multiple
datasets.

5.3 RESULTS 81

Da-TACOS SHS4-
Input MAP MR1 MAP MR1
dMel (MICE) 0.360 94 0.412 1431
cremaPCP (MOVE) 0.484 59 0.533 1188
dMel+cremaPCP (Avg.) 0.621 32 0.697 517
dMel+cremaPCP (LF-a) 0.570 29 0.617 686
dMel+cremaPCP (LF-b) 0.592 32 0.655 655
dMel+cremaPCP (LF-c) 0.635 30 0.660 657

Table 5.3: Comparison of the considered ensemble and fusion schemes on the Da-TACOS
benchmark set (left) and SHS4- (right). Avg. and LF denote distance averaging and late
fusion, respectively. Note that cremaPCP and dMel+cremaPCP (Avg.) scores are higher here
than in Table 5.2 because cremaPCP is now processed by MOVE.

MAP MR1
Individual systems

2DFTM (Bertin-Mahieux & Ellis, 2012) 0.275 155
SiMPle (Silva et al., 2016) 0.332 142
Dmax (Chen et al., 2018a) 0.398 167
Qmax (Serrà et al., 2009a) 0.437 138
Qmax* (Serrà et al., 2009b) 0.445 130
MOVE-512 0.484 59
MOVE-16 k 0.507 46

Ensemble and fusion systems
SNF (Qmax & Dmax) (Chen et al., 2018a) 0.533 139
SNF (Qmax & MOVE-16 k) 0.651 62
Avg. (MOVE-512 & MICE w/ dMel) 0.621 32
LF-c (MOVE-512 & MICE w/ dMel) 0.635 30

Table 5.4: Comparison of the proposed approaches and other state-of-the-art VI systems on
the Da-TACOS benchmark subset. MOVE-512 and MOVE-16 k denote MOVE models that
produce embeddings of size 512 and 16 k, respectively. Results for the proposed systems are
highlighted in bold.

5.3.4 Comparison with the state of the art

We now compare the performance of our ensemble and fusion systems to the state
of the art on the Da-TACOS benchmark set (Table 5.4). Both the distance averaging
and data-driven fusion schemes outperform all the individual systems by considerable
margins in both MAP and MR1. Compared with other ensemble systems, although
some similarity network fusion (SNF) methods output higher MAP scores, the ap-
proaches proposed in this chapter have a clear advantage in terms of MR1, which

82 IMPROVING ACCURACY WITH DATA-DRIVEN FUSION

suggests that the proposed approaches can retrieve a relevant result at lower ranks
than the alternatives. Moreover, SNF approaches are not suitable for cases where
only a single item is queried against a reference corpus because the SNF algorithm
requires fully connected graphs to process. Therefore, from a practical point of view,
our proposed solutions may be considered to provide a better alternative.

5.3.5 Error analysis

Lastly, we perform an error analysis to explore the cases where two models that use
different input representations result in contradicting decisions. For this, we select
two version pairs and two non-version pairs, and we plot the dominant melody and
cremaPCP features for each track. Although listening to the tracks can reveal im-
portant information for us to gain insight on possible reasons for the failed cases, our
models use such feature representations as input; therefore, inspecting those features
may facilitate our analysis.

Figure 5.3 presents the dominant melody and cremaPCP features for four pairs of
tracks. We see that for the first version pair, the cremaPCP features (subfigures c and
d) contain visible differences, which suggests differences in their harmonic charac-
teristics. Their dominant melody features (subfigures a and b), on the other hand,
demonstrate similar contours, which supports the low distance score obtained by us-
ing a model that processes melodic information. For the second version pair, the
situation is the opposite. While the cremaPCP features clearly resemble each other
(subfigures g and h), their melody features reflect more differences with respect to
each other. Therefore, it is a good idea to use melodic information for the first version
pair while harmonic information is more useful for identifying the second pair.

The last four rows of Figure 5.3 contains the same features for two non-version pairs.
We see that using cremaPCP features (subfigures k and l) may lead us to identify
this pair of tracks as versions; however, their melody features contain substantial
differences for us to reach the conclusion that these tracks are indeed not versions of
each other. For the last pair of tracks, we see that cremaPCP features result in a more
confident decision that these tracks are not versions compared to melody features. The
aforementioned observations on both version and non-version pairs suggest that using
a single musical characteristic (e.g., harmonic or melodic) for identifying versions is
certainly suboptimal due to the complexity of musical tracks and their relationships.

5.4 Conclusion

In this chapter, we have explored ensemble and fusion methods that combine inform-
ation from individual systems processing certain types of musical characteristics. In
particular, we have experimented with systems that use PCP, dominant melody, and
multi-pitch features as input. After setting baselines using different instances of the
same deep learning–based model, each trained with a different feature, we have evalu-

5.4 CONCLUSION 83

Figure 5.3: Dominant melody and cremaPCP features for two pairs of versions (a–h) and
two pairs of non-versions (i–p). The brighter colors indicate higher values. Logarithm of
the dominant melody features are taken for better illustrations. The cremaPCP features of
each pair are transposed to maximize their similarities. The distances between subfigures are
computed using MICE with dominant melody or cremaPCP inputs.

84 IMPROVING ACCURACY WITH DATA-DRIVEN FUSION

ated an ensemble and a feature fusion approach. For the ensemble approach, we have
aggregated pairwise distances obtained from two models trained with two different
features, which has yielded a substantial performance gain compared with the indi-
vidual models that form the ensemble. For the fusion approach, we have developed
a data-driven fusion system to obtain further improvements. Using two models that
process harmonic and melodic features, we have obtained two embeddings for each
track. We have then trained a linear layer to learn how to combine those embeddings
into a single one. The fusion approach has also resulted in drastic improvements in
performance, comparable to the distance aggregation scheme. We have evaluated the
proposed methods using two publicly available datasets and demonstrated state-of-
the-art performance.

The starting point for the experiments described in this chapter has been the fact that
MOVE (see Chapter 4) processes only harmonic information from the musical audio
signals. Through the experiments and the error analysis performed in this chapter,
we have shown the benefits of using multiple musical characteristics for a better per-
formance in VI. However, such accuracy improvements come at the expense of longer
computation times, and providing fast solutions is a crucial requirement for many in-
dustrial use cases. In the next chapter, we address the scalability aspect of VI systems
and investigate techniques to reduce the size of the embeddings obtained from neural
network–based VI models for speeding up the retrieval process.

Chapter 6
Improving Scalability with

Embedding Distillation

6.1 Introduction

Building systems that are both accurate and scalable is one of the main goals of this
dissertation. The reason for this is primarily related to the VI use cases in commercial
settings, an important one of which is to detect copyright infringement cases in media
streaming platforms and live performance events. Such application scenarios require
having fast and reliable solutions. For example, more than 500 h of video content
are uploaded to YouTube every minute35, and handling the music licensing aspect of
them (i.e., identifying the cases where a video includes a copyrighted piece of music)
requires having systems that can process a vast amount of data and still yield sufficient
performance.

We have mentioned in Section 2.2 that the early, alignment-based systems incorpor-
ated musical know-how to capture similarities between versions, resulting in strong
performances but long computation times. With the release of the Million Song Data-
set (Bertin-Mahieux et al., 2011), researchers were further encouraged to address the
scalability issue by exploring embedding-based systems that encode tracks into more
compact vectors. Although offering significant improvements for scalability, the per-
formance of such systems failed to match their predecessors (see Section 3.4). The
pioneering deep learning–based systems, on the other hand, showed substantial pro-
gress in both accuracy and scalability for VI (Doras & Peeters, 2019; Yu et al., 2019b;
Zalkow & Müller, 2020), but they were only evaluated in academic settings where the
size of the evaluation datasets was, at most, in the magnitude of tens of thousands.
With catalogs of such size, neither the required space for storing the embeddings nor
the required computation time for the retrieval process is critical. However, when

35https://www.cnbc.com/2018/03/14/with-over-1-billion-users-heres-how-youtube-is-keeping-
pace-with-change.html

85

https://www.cnbc.com/2018/03/14/with-over-1-billion-users-heres-how-youtube-is-keeping-pace-with-change.html
https://www.cnbc.com/2018/03/14/with-over-1-billion-users-heres-how-youtube-is-keeping-pace-with-change.html

86 IMPROVING SCALABILITY WITH EMBEDDING DISTILLATION

working with catalogs of millions of tracks, as in industrial applications, the size
of the embeddings in which the individual tracks are encoded may have a crucial
impact on both the storage space and the retrieval times. Therefore, developing spe-
cific methodologies for obtaining smaller embedding vectors without sacrificing the
system performance is, and further will be, important for deploying VI systems for
industrial applications.

In this chapter, we present our investigations toward improving the scalability of exist-
ing embedding-based VI systems that use neural networks as encoders. Specifically,
the goal of this study is to reduce the size of embedding vectors without comprom-
ising the accuracy of the systems. Since embeddings can be precomputed, reducing
their size is crucial to improve data storage and, more importantly, retrieval time.
For this purpose, we consider three core state-of-the-art strategies, namely, unsuper-
vised dimensionality reduction, neural network pruning, and knowledge distillation.
Apart from introducing a number of techniques from other fields to VI research, we
also consider a novel knowledge distillation loss for metric learning, which aims to
optimize a clustering evaluation metric. Moreover, inspired by transfer learning ap-
plications, we propose a technique called latent space reconfiguration, to show that
learning a compact and efficient latent space is facilitated by using a pretrained feature
extractor due to its stronger priors, compared with using a randomly initialized one.
The experiments reported here show that the performance of a pretrained network can
be preserved or even improved while shrinking the embedding vectors down to less
than 1% of their original sizes. We evaluate our approach on a publicly available test
set and share our code, instructions for using a newly contributed training dataset, and
supplementary materials on the project repository36 (see Appendix C).

This chapter is based on Yesiler et al. (2020b).

6.2 Methods

In this study, we focus on a set of techniques for improving the scalability of existing
VI systems in the retrieval phase by reducing the size of the embeddings, rather than
building a novel network architecture.37 We hypothesize that a high-capacity encoder
(i.e., the base model) is needed to extract the essential information from complex
and noisy signals such as current tonal representations. However, once a reliable en-
coder is obtained, it can be used for training a second model (i.e., the reduced model)
that outputs embeddings with a lower dimensionality, ideally without compromising

36https://github.com/furkanyesiler/re-move
37To illustrate the benefits of using smaller embeddings, consider computing distances between a

query and a reference database with 10 M embeddings. This takes us (with a simple brute-force, double-
loop Euclidean distance function) 0.32 s using d = 256, but the elapsed time increases up to 4.75 s for
d = 4k, and to 18.43 s for d = 16k (the embedding size of MOVE; see Chapter 4). Although the absolute
values are subject to change based on computational resources, for industrial applications on portable
devices, such differences in magnitude for the retrieval time (from 0.32 to 18.43 s) may drastically affect
user experience and product appeal.

https://github.com/furkanyesiler/re-move

6.2 METHODS 87

Randomly initialized weights MOVE-16k weights Newly learned weights

Select weights to

mask

++

Iteration 1, 2, …

+

Iteration 0

+ +

Teacher

model

Guide with

pairwise distances

+ +

Student

model

Student

model

+

Pretrained

model

Replace linear

layer

a) Network pruning b) Knowledge distillation c) Latent space reconfiguration

+ +

Student

model

Student

model

Figure 6.1: An overview of neural network–based embedding distillation methods. The hol-
low arrows denote training process, the boxes with dashed and with solid outlines denote
feature extractors and fully connected layers, respectively.

accuracy. Due to the goal of using large embeddings to have smaller ones that yield
similar performances, we call this set of methods “embedding distillation” techniques.

6.2.1 The base model

Our methods require starting from a pretrained and sufficiently reliable model. For
this, we use MOVE (see Chapter 4), together with its pretrained weights, which are
available publicly. Nonetheless, we believe that all the methods introduced in this sec-
tion can be applied to other embedding-based systems using neural networks (initial
results are available in the project repository; see Appendix C).

MOVE outputs embedding vectors v = F(X) ∈ Rd , where F is the MOVE model,
X is the input feature, and d is the embedding size. We have seen in Section 4.3.2
that the MAP scores increase with the size of the embeddings. Figure 4.5 shows
results for d between 128 and 32 k where a clear accuracy drop happens for d <
2048 (for the final model, we have chosen a rather high dimensionality d = 16 k).
In contrast, the dimensionalities we consider here for the reduced model are d =
{128,256,512,2048}.

6.2.2 Embedding distillation techniques

We now explain the embedding distillation techniques we consider in this study. We
experiment with a set of existing techniques that include classical dimensionality
reduction, neural network pruning, and knowledge distillation. We also propose a
knowledge distillation scheme based on internal cluster evaluation metrics and an-
other method that we call latent space reconfiguration, which is inspired by transfer

88 IMPROVING SCALABILITY WITH EMBEDDING DISTILLATION

learning schemes. Figure 6.1 illustrates an overview of the neural network–based
embedding distillation techniques.

6.2.2.1 Classical unsupervised techniques

Before going into complex solutions, we investigate the benefits of using classical
dimensionality reduction techniques for embedding distillation. For this, we use prin-
cipal component analysis (PCA), independent component analysis (ICA), and Gaus-
sian random projection (GRP) techniques. Each model is fit using the training set
embeddings obtained with MOVE and applied to the evaluation set embeddings. We
use the implementations from the scikit-learn library (Pedregosa et al., 2011) and
change only the number of target components.

6.2.2.2 Pruning

Pruning a large neural network can preserve the original performance while elim-
inating more than 90% of its weights (LeCun et al., 1989; Hanson & Pratt, 1988;
Han et al., 2015; Frankle & Carbin, 2019). The main challenge is to identify the im-
portance of weights and connections. Previous research explored the use of absolute
weight magnitudes (Hanson & Pratt, 1988; Han et al., 2015; Frankle & Carbin, 2019)
and the Hessian of the loss function (LeCun et al., 1989). Pruning operations can be
performed layer- or network-wise, in a one-shot or an iterative fashion, and combined
with quantization or clustering. To the best of our knowledge, at the time of this study,
network pruning had not been considered for VI, nor further explored in MIR systems
in general.

Based on the approach of Han et al. (2015), we investigate whether we can prune the
dimensions of the latent space constructed by MOVE in an iterative way. Although
pruning the weights of all layers throughout the network is the most common practice,
the underlying idea can be applied to only the final linear layer of the model in order
to obtain embeddings with fewer dimensions. Denoting the weights of the final linear
layer of MOVE as W ∈ Rd×256, where d is the size of the embeddings and 256 is the
number of input connections to the linear layer, our method computes the mean of the
absolute values per row for W and sorts the rows based on these mean values. At the
end of each iteration b (b ∈ {0,1, ...}), the weights of the top 50% rows are restored
to their initial values from iteration 0 and retrained. The weights of the bottom 50%
rows are zeroed-out and not considered for the next iterations (i.e., they are “pruned”;
see Figure 6.1(a)).

6.2.2.3 Knowledge distillation

Bucilă et al. (2006), and later Hinton et al. (2015), explored the idea where a small
neural network (i.e., a student model) is trained with the guidance from a wide, deep,
and better-performing network (i.e., a teacher model). In the metric learning context,

6.2 METHODS 89

some works explored this idea with a slightly changed formulation: classical know-
ledge distillation methods use teacher networks to guide the students on individual
examples, but metric learning methods exploit similarity relationships between pairs
(or groups) of samples. For this, researchers proposed methods that match a number
of properties between the embeddings obtained from the teacher and the student mod-
els, including the ranks of retrieved samples (Chen et al., 2018b), distances between
samples (Park et al., 2019), class likelihood distributions (Han et al., 2019), and ab-
solute positions of embeddings in the latent space (Yu et al., 2019a). With few excep-
tions (Meseguer-Brocal et al., 2018; Wu & Lerch, 2017), distillation techniques have
been largely underexplored in MIR, and we believe that no attempts have been done
within VI.

In this set of experiments, we consider MOVE as a teacher model, and our goal is
to train from scratch a student model of the same depth but with a lower embedding
dimensionality. Our approach is formulated in a deep metric learning setting where
the guidance of the teacher model is shaped by the distances between samples (see
Figure 6.1(b)). In the experiments we describe next, the weights of the teacher model
are frozen, and the weights of the student model are initialized randomly.

Distance matching — Perhaps the most intuitive way of guiding the student model
is to match the distances obtained from the student with the ones from the teacher,
allowing the two models to have different embedding sizes. In our implementation,
we pass the samples in each mini-batch to both models, compute in-batch pairwise
distances, and use the mean absolute error between the pairwise distance matrices
from the teacher model and the student model to train the latter:

LDM
i = ∑

j∈J

∣∣∣E(v(s)
i ,v(s)

j)−E(v(t)
i ,v(t)

j)
∣∣∣ , (6.1)

where E is the normalized squared Euclidean distance function defined in Equa-
tion 4.4, J is the set of samples in a mini-batch, and v(s)

i and v(t)
i are the embeddings

of track i obtained with the student and teacher models, respectively.

Cluster matching — Our second knowledge distillation scheme aims to obtain a
student model that constructs clusters with both low intra-class and high inter-class
distances. Assuming the teacher model holds this desired property, we take advantage
of this information to guide the student model. To the best of our knowledge, this
distillation criterion has not been explored in previous deep metric learning research.

Our criterion uses internal cluster evaluation metrics (Liu et al., 2010). In the ex-
periments reported here, we use the Davies-Bouldin (DB) index (Davies & Bouldin,
1979), but other cluster evaluation metrics can be used:

LDB
i = max

j 6=i

(
ζi +ζ j

E(ci,c j)

)
, (6.2)

where ζi denotes the average intra-class distance, computed with a suitable distance

90 IMPROVING SCALABILITY WITH EMBEDDING DISTILLATION

measure E, and ci denotes the centroid for class i. The DB index yields low values
for configurations that have low intra-class and high inter-class distances.

In our implementation, we precompute the class centroids using the MOVE embed-
dings from the entire training set. To match the dimensions of the centroids with the
student model embeddings, we train a linear projection simultaneously with the stu-
dent model. The intra-class and inter-centroid distances are computed using only the
samples present in the mini-batch and their respective centroids. DB scores for each
class in the mini-batch are computed and then averaged to obtain the final loss value.

6.2.2.4 Latent space reconfiguration

Transfer learning applications take advantage of the strong priors learned by the fea-
ture extractor parts of successful, high-capacity models that are trained on large data-
sets. Inspired by this idea, we hypothesize that by using the feature extractor of a pre-
trained model, we can obtain a better-structured and lower-dimensional latent space
that cannot be obtained by training a randomly initialized model from scratch.

To test this idea, we use the pretrained convolutional layers of MOVE as the fea-
ture extractor, remove the final linear layer, and let the network learn a new latent
space with a randomly initialized linear layer using a metric learning loss function
(see Figure 6.1(c)). Note that the original MOVE model is trained with a triplet loss,
meaning that it learned a distance metric parametrized by a neural network. Our idea
is to use the nonlinear part of that metric, and “reconfigure” the latent space and the
distance metric by optimizing a second loss function (hence the name latent space
reconfiguration, or LSR). Our motivation is based on two assumptions: (1) training
losses play an important role in shaping the latent space where the embeddings lie,
and (2) embeddings with lower dimensionalities may be sufficient to successfully rep-
resent semantically meaningful information, as long as the dimensions are effectively
utilized.

Although LSR follows the same procedure and shares the underlying idea of transfer
learning, we would like to point their differences. Firstly, transfer learning applica-
tions, by definition, require different tasks (i.e., source and target tasks) while LSR is
applied for the same task. Secondly, the input data distributions for the source and
target tasks for transfer learning are generally different, as opposed to the case of LSR
where the same data is used for training the base and the reduced models. Lastly, the
main purpose of transfer learning can be summarized as improving generalization in a
new setting. Focusing on metric learning schemes, the term LSR denotes the process
of starting with an already learned distance metric and modifying it to represent the
semantic relations in a more compact embedding space.

We consider four loss functions for training the reduced model, which we describe
below. The weights of the feature extractor are frozen during the first epoch and
updated with a lower learning rate during the rest of the training. Batch normalization
is applied after the linear layer as in MOVE (see Section 4.2.3). Apart from using

6.2 METHODS 91

the loss functions described below for LSR, we also use them individually and train
models from scratch with the same settings to set baseline models.

Triplet loss — We follow the triplet loss formulation denoted in Equation 4.3. Dis-
tances among vectors are computed using the normalized squared Euclidean distance
E as specified in Equation 4.4:

LTriplet
A, P, N = max(E (vA,vP)−E (vA,vN)+m,0) , (6.3)

where vA corresponds to the anchor, vP to the positive sample, vN to the negative
sample, and m = 1 is a margin hyperparameter. For selecting which triplets to use, we
follow the hard-positive, hard-negative mining strategy explained in Section 4.2.3.

ProxyNCA loss — ProxyNCA loss was introduced by Movshovitz-Attias et al. (2017)
as a nonlinear extension of the neighborhood component analysis (NCA; Goldberger
et al., 2004). Except being parametrized by nonlinear deep learning models, another
improvement ProxyNCA introduced over NCA is the concept of proxy vectors per
class. With this, distances are computed between items and proxy vectors rather than
between pairs of items as in the original NCA formulation. The authors reported
that this significantly reduces the amount of computation and also facilitates a faster
convergence.

Our implementation of ProxyNCA loss (Movshovitz-Attias et al., 2017) also uses the
normalized squared Euclidean distance E from Equation 4.4. Every class in our train-
ing set is represented with one proxy vector that is initialized randomly and trained
simultaneously with the model parameters. In mathematical notation, the ProxyNCA
loss can be expressed as:

LP
i =− log

(
exp(−E(vi,y))

∑z∈Zi exp(−E(vi,z))

)
, (6.4)

where y ∈ Rd denotes the proxy vector for the class of vi and Zi denotes the set of
proxies for all the classes different than the one of item i.

NormalizedSoftmax loss — Zhai & Wu (2019) introduced the NormalizedSoftmax
loss and showed that the regular classification setting provides a competitive baseline
against training a model with a metric learning setting. In multiclass classification
settings, normally, logits are computed with a dot product between the representation
from the penultimate layer of the network and the weights of the final linear layer.
The reason why we call this loss function “normalized” is based on the fact that the
logits are computed using the cosine similarity, which can be seen as a dot product
between L2-normalized vectors.

As proposed by Zhai & Wu (2019), we implement this function using the cosine
distance. We randomly initialize one proxy per class and update their parameters at
each training step. We use

LN
i =− log

(
exp(〈vi,y〉/τ)

∑z∈Z exp(〈vi,z〉/τ)

)
, (6.5)

92 IMPROVING SCALABILITY WITH EMBEDDING DISTILLATION

where 〈 〉 denotes cosine similarity, y ∈ Rd the proxy for the positive class, Z the set
of proxies for all classes, and τ = 0.05 the temperature parameter.

Group loss — Group loss was introduced by Elezi et al. (2020) in an attempt to
facilitate classification-based training by incorporating pairwise similarities between
items into the process. This is done by updating the initial likelihoods, computed with
a softmax function applied on logits, using replicator dynamics that help similar items
to have a high likelihood of being in the same class.

Following the approach of Elezi et al. (2020), we use Pearson’s correlation coefficient
as the similarity metric and replace the negative correlation scores with 0. We perform
three iterations for refining the class probabilities and, unlike the original implement-
ation, we select one anchor per class in each mini-batch. The main loss is regular
cross-entropy:

LG
i =− log

(
exp(q(c

∗)
i)

∑c∈C exp(q(c)i)

)
, (6.6)

where q(c)i denotes the logit of sample i with respect to the class c, c∗ denotes the
correct class for sample i, and C denotes the set of all classes in the training set.

6.2.3 Training details

We use the Da-TACOS training set (see Section 3.2) for developing the models. To
find a suitable learning rate and an optimizer for each experiment, we perform a
grid search over both SGD and Ranger (Wright, 2019) optimizers and initial learning
rates in {10−4,10−3,10−2,10−1}, using our validation set. The full training lasts for
70 epochs, and we decrease the learning rate by a factor of 10 at epochs 50 and 60.
We save the model weights that result in the best performance on the validation set.
The remaining training details and design decisions follow the ones used for training
MOVE (see Section 4.2.3). The hyperparameter values used for each experiment can
be found in the project repository (see Appendix C).

6.3 Results

6.3.1 Evaluation methods

All the models are evaluated on the Da-TACOS benchmark subset (see Section 3.2),
which contains a nonintersecting set of cliques with respect to our training and val-
idation data. As done previously, we report the experimental results using MAP and
MR1 metrics (see Section 2.5.2).

6.3.2 Embedding distillation experiments

Table 6.1 presents the exhaustive list of results for the methods described in Sec-
tion 6.2. The baseline results (top block) show that when training from scratch, chan-

6.3 RESULTS 93

Method d
128 256 512 2048

Baselines (no reduction, training from scratch)
Triplet 0.459 0.469 0.478 0.487
ProxyNCA 0.168 0.185 0.212 0.206
NormalizedSoftmax 0.445 0.470 0.475 0.422
Group 0.265 0.271 0.269 0.271
Unsupervised
PCA 0.494 0.507 0.507 0.507
ICA 0.456 0.425 n/a n/a
GRP 0.429 0.465 0.485 0.502
Knowledge distillation
Distance matching + Triplet 0.492 0.499 0.503 0.500
Cluster matching + Triplet 0.424 0.471 0.465 0.455
Latent space reconfiguration
Triplet 0.485 0.491 0.494 0.506
ProxyNCA 0.424 0.465 0.485 0.502
NormalizedSoftmax 0.513 0.524 0.525 0.525
Group 0.465 0.483 0.495 0.511

Table 6.1: MAP for different embedding sizes d when training from scratch (top) and when
using pretrained models and embedding distillation (middle-bottom). MAPs for the original
MOVE-4k and MOVE-16k baselines are 0.495 and 0.507, respectively (values equal to or
above MOVE-4k are highlighted in bold).

ging the loss function of a network causes significant accuracy differences. It should
be noted that all alternative losses we consider achieve state-of-the-art performances
in computer vision datasets. Nevertheless, our results suggest that they may not gen-
eralize across other types of data or tasks, or that they may be oversensitive to hyper-
parameters or architectural decisions.

For unsupervised dimensionality reduction (second block of Table 6.1), we see that
PCA successfully projected the information contained in MOVE embeddings, even
when using 256 dimensions. This suggests that although achieving a highly com-
petitive performance, MOVE embeddings contain redundant information that can be
drastically compressed. GRP reached a similar performance as PCA with d = 2048,
but the resulting performance decreased when using lower-dimensional embeddings.

The initial experiments on pruning reached the same performance as MOVE after one
iteration, that is, after reducing the dimensionality by 50%. However, further pruning
iterations drastically decreased MAP, up to the point of yielding useless embeddings.
Therefore, we decided to stop iterating and not report the corresponding results.

Among the considered knowledge distillation techniques (third block, Table 6.1), the

94 IMPROVING SCALABILITY WITH EMBEDDING DISTILLATION

d MAP MR1
Individual systems

2DFTM (Bertin-Mahieux & Ellis, 2012) 50 0.275 155
SiMPle (Silva et al., 2016) 2.2k 0.332 142
Dmax (Chen et al., 2018a) 5.5k 0.398 167
Qmax (Serrà et al., 2009a) 5.5k 0.437 138
Qmax* (Serrà et al., 2009b) 5.5k 0.445 130
MOVE-16 k 16k 0.507 46
Re-MOVE 256 0.524 43

Ensemble and fusion systems
SNF (Qmax & Dmax) (Chen et al., 2018a) 5.5 k 0.533 139
Avg. (MOVE-512 & MICE w/ dMel) 1 k 0.621 32
LF-c (MOVE-512 & MICE w/ dMel) 512 0.635 30
SNF (Qmax & MOVE-16 k) 21.5 k 0.651 62
SNF (MOVE-16 k & Re-MOVE) 16.3 k 0.595 65
SNF (Qmax & Re-MOVE) 5.7 k 0.660 61

Table 6.2: Comparison of Re-MOVE and other state-of-the-art VI systems on the Da-TACOS
benchmark subset. When not explicit, embedding sizes d are estimated for a track duration of
3.5 min (see Section 6.3.3). MOVE-512 and MOVE-16 k denote MOVE models that produce
embeddings of size 512 and 16 k, respectively. Results for the proposed system are highlighted
in bold.

additional distance matching loss clearly increases the model performance compared
with the case where the model is trained from scratch. However, the same advantage
is not observed with cluster matching using DB loss. We hypothesize that this may be
related to training an extra linear projection for compressing the centroid embeddings
to match the size of the embeddings obtained with the student model.

Latent space reconfiguration results seem to justify our hypothesis regarding the use
of strong priors of a pretrained feature extractor (last block, Table 6.1). All the con-
sidered alternatives outperform their baseline counterparts. Moreover, we find that
using probabilistic losses such as NormalizedSoftmax and Group loss for latent space
reconfiguration even outperform the original model while reducing the embedding
size by a large margin (128/16000= 0.8%). Note that in addition to these advantages,
latent space reconfiguration does not suffer from the setbacks of network pruning and
knowledge distillation methods, namely training a model for multiple iterations and
using two models simultaneously during training, respectively.

6.3.3 Comparison with the state of the art

Lastly, Table 6.2 compares the best result obtained in this chapter with state-of-the-art
methods. The second column, d, shows the size of the smallest representation (per

6.3 RESULTS 95

Figure 6.2: MAP with respect to embedding dimensionality d for Re-MOVE (red stars),
MOVE (blue squares), and other existing approaches (blue circles). Notice the logarithmic
axis.

track) required for each method to estimate pairwise similarities (equivalent to the
embedding dimensionality). As the results for the systems excluding MOVE and Re-
MOVE are computed with the publicly available acoss library (see Section 3.4), we
use those implementations for estimating the embedding sizes38. As the sizes of some
representations depend on the track duration or tempo, we use 3.5 min and 102 bpm
estimates, which correspond to the average track duration and bpm of the tracks in
the Da-TACOS benchmark set, respectively.

Re-MOVE, which stands for “reduced MOVE,” denotes the model trained with latent
space reconfiguration using NormalizedSoftmax. With d = 256, it demonstrates rel-
ative performance increases of 3% and 18% when compared with MOVE and Qmax*
systems, respectively (Table 6.2). Also, the ensemble of Qmax and Re-MOVE using
similarity network fusion yields a better performance compared to its alternatives, in-
cluding the ensemble of Qmax and MOVE. We also find that Re-MOVE improved
over MOVE for a wide range of dimensionalities d ∈ [32,2048] (Figure 6.2). Along
with its state-of-the-art performance, Re-MOVE provides a crucial advantage in terms
of scalability, which positions it as the most viable system from a practical point of
view compared to the considered alternatives.

38For 2DFTM, the acoss library uses a 450-dimensional embedding while the authors apply PCA to
reduce the dimensionality to 50.

96 IMPROVING SCALABILITY WITH EMBEDDING DISTILLATION

6.3.4 Error analysis

We conclude this section with an error analysis using Re-MOVE, as we have done for
MOVE (see Section 4.3.5). We randomly select non-version pairs that result in low
distances and version pairs that result in high distances. Our analysis confirms the
issues we have mentioned in Section 4.3.5, but we do not expand that list of issues
with this analysis. There are cases where Re-MOVE performs better than MOVE, but
we cannot see any pattern behind those cases. In total, there are 7091 queries with
higher AP scores for Re-MOVE compared to MOVE and 5338 queries for the op-
posite. Considering that we use the same training data and a similar training strategy
for Re-MOVE as we have done for MOVE, it is not surprising that the failed cases
follow similar patterns, and the differences between them may not result from solving
a particular problem of MOVE.

6.4 Conclusion

In this chapter, we have introduced a set of techniques for reducing the embedding
sizes of existing VI systems, which we have considered under the name embedding
distillation. We have claimed that by using a pretrained and high-capacity network,
it is possible to train a second network that yields smaller embedding vectors without
a decrease in performance. To investigate this idea, we have studied a wide range
of techniques, including classical dimensionality reduction, neural network pruning,
and knowledge distillation methods. Moreover, we have introduced latent space re-
configuration, which is a technique that builds upon the nonlinear part of a distance
metric learned by a pretrained network to construct a compact latent space with fewer
dimensions. Our results have shown the possibility of reducing the embedding dimen-
sionality of a model while maintaining, or even surpassing, its performance. With this,
we have obtained the Re-MOVE model, which improves upon the scalability aspect
of our baseline model, MOVE.

With the methods that improve accuracy (see Chapter 5) and scalability (described in
this chapter), we have aimed to take a step toward bridging the gap between academic
research and industrial applications. Although identification performance and pro-
cessing times are important requirements for industrial use cases, another point that
needs to be carefully investigated is the algorithmic bias in VI systems. In the next
chapter, we acknowledge the impact VI systems may have on musicians and analyze
whether current systems favor certain musicians over others, to foresee and mitigate
any undesired consequences.

Chapter 7
Exploring the Algorithmic Bias in

Version Identification

7.1 Introduction

Developing automatic systems for industrial use cases has been one of the main goals
of VI research since its inception, and it is one of the main goals of this dissertation in
particular. To this end, a great number of methods have been dedicated to improving
the systems from accuracy and scalability perspectives. Thanks to the recent devel-
opments in VI, to which this dissertation has also contributed, nowadays, VI systems
start being used in commercial applications, ranging from music recognition to music
discovery. Importantly, such usage can have an impact on various stakeholders in the
music ecosystem, especially regarding recognition and financial benefits.

Digital rights management (DRM) for musical recordings is a complex ecosystem,
where multiple types of royalties circulate between a large amount of stakeholders39.
When artists perform a version of an existing composition, they are obliged to pay
“mechanical royalties” to the holders of “the composition copyright.” With the help
of VI systems, detecting such cases can be automated. However, VI systems can-
not match a recording to a composition directly; instead, they match an unknown
recording to the known recordings of a composition. Therefore, we can identify
three main parties involved in the process: the performing artists of the unknown (or
query) recording, the performing artists of the known (or reference) recording, and
the composers of the composition. Taking into account the impact that VI systems
may have over such artists and composers, they can be considered as socio-technical
systems (Baxter & Sommerville, 2011; Selbst et al., 2019) rather than isolated tech-
nologies for such use cases.

Fairness and transparency is an emerging field that studies the societal implications
of algorithmic systems (Olteanu et al., 2021; Mehrabi et al., 2021). Any existing

39https://www.taxi.com/transmitter/1906/how-does-the-music-industry-work/

97

https://www.taxi.com/transmitter/1906/how-does-the-music-industry-work/

98 EXPLORING THE ALGORITHMIC BIAS IN VERSION IDENTIFICATION

biases in such systems may lead to favor certain individuals or groups over oth-
ers, which may result in “unfair” outcomes (Fletcher et al., 2021). Although al-
gorithmic decisions and their impact are closely related concepts, measuring fairness
is a domain- and context-dependent process, mainly due to the fact that investigat-
ing societal impact requires a certain legal, cultural, and ethical framework. How-
ever, quantifying algorithmic biases is a useful step for mitigating potential unfair de-
cisions. In music technology research, recent works have addressed potential issues in
music recommendation from both individual and group fairness perspectives (Choul-
dechova & Roth, 2020; Räz, 2021) by studying gender imbalance (Ferraro et al., 2021;
Shakespeare et al., 2020) and playlist diversity (Porcaro & Gómez, 2019; Robinson
et al., 2020). In a recommendation context, a fairness study may investigate whether
two potentially impacted groups are subject to the same exposure or not, assuming
more exposure leads to larger financial gains. Nonetheless, in a music recognition task
like VI, measuring fairness with respect to such exposure may not be meaningful, as
the main goal of VI systems is to correctly detect items that are objectively linked to
each other as “versions of the same composition.” However, this does not imply that
tasks like VI, which have objectively assigned labels, do not require any studies about
fairness or algorithmic biases. Potentially, a discrepancy in the identification perform-
ance of such VI systems with respect to some characteristics (e.g., demographics) of
the involved parties (e.g., performing artists or composers) may put some musicians
in a favored position (e.g., financially) compared to others. Therefore, an examination
into whether VI systems inherit any form of bias is necessary to study the potential
implications of such systems in the music ecosystem.

In this chapter, we propose a framework for investigating the performance discrepan-
cies of VI systems across a selected set of attributes, in order to explore their impact
on relevant parties. Although our main motivation is to raise awareness for developing
fair VI systems, we cannot reach any conclusions on the fairness qualities of existing
systems since such fairness measurements are context-dependent and we do not have
access to a system that is interacting with the parties we consider. Instead, we aim
to quantify the algorithmic bias by investigating the discrepancies in identification
performances of five state-of-the-art VI systems of different characteristics on pairs
of potentially impacted groups, mimicking a group fairness paradigm (Räz, 2021).
We categorize such groups using the three aforementioned parties (performing artists
and composers) and six relevant side attributes (gender, popularity, country, language,
year, and prevalence). To carry out our analyses, we developed the VI-Bias dataset,
for which we collected metadata in terms of the attributes we investigate and assigned
them to tracks of an existing dataset. We then gather performance data on pairs of
groups and analyze the existence of potential discrepancies using the Kolmogorov-
Smirnov test. Our results from a total of 115 experiments suggest that on the one
hand, the characteristics of a VI system may play a role in favoring a certain group
over its counterpart but that on the other hand, there also exist cases where all the VI
systems favor the same or no group. After presenting the results, we also share our

7.2 METHODS 99

hypotheses on the possible reasons for a subset of the observed disparities. To facil-
itate future research, we share the instructions on how to obtain the VI-Bias dataset
and the evaluation code at the project repository40 (see Appendix C).

This chapter is based on Yesiler et al. (2022).

7.2 Methods

7.2.1 Systems

In this study, we consider a range of VI systems with different characteristics, in terms
of whether they are learning- or rule-based, or whether they use melody- or chroma-
based inputs. With this, we aim to better understand and discuss the causes of possible
performance differences.

Qmax — Qmax (Serrà et al., 2009a) is a rule-based system that estimates similarities
between pairs of tracks using an elaborate local alignment scheme, which results in
a good performance but suffers from high computational cost. Nevertheless, it was
the best-performing VI system for more than a decade, until recently. For our experi-
ments, we use the implementation included in Essentia (Bogdanov et al., 2013), with
cremaPCP features (see Section 3.5).

MOVE — MOVE is a deep learning–based system that features musically motivated
design decisions to bring inductive biases to the model (see Chapter 4). It also uses
cremaPCP features as input and transforms them into fixed-size embedding vectors,
regardless of the input duration.

MICE-M and MICE-C — MICE is a deep learning–based system that combines
the design decisions of the model introduced by Doras & Peeters (2019) and MOVE
(see Chapter 5). Due to its input-agnostic design, MICE can be trained and used with
any input feature suitable for VI. Hence, we consider two variants of the algorithm:
MICE-M, which uses dominant melody features as input, and MICE-C, which uses
cremaPCP features.

LF-c — LF-c is a deep learning–based system designed to investigate the perform-
ance gains of combining models that use complementary features (see Chapter 5).
It concatenates the embeddings obtained by MOVE and MICE-M and projects these
into a new space, resulting in new embeddings.

7.2.2 Attributes

For each of the attributes presented below, we categorize recordings into two groups,
inspired by group fairness studies where the majority of literature considers binary
groups (Räz, 2021). Considering various parties involved in VI, these groups can be

40https://github.com/furkanyesiler/vi_bias

https://github.com/furkanyesiler/vi_bias

100 EXPLORING THE ALGORITHMIC BIAS IN VERSION IDENTIFICATION

created with respect to (1) the artist or the performance of the query track, (2) the
artist or the performance of the reference or “original” track, and (3) the composer or
the composition.

In the case of attributes that relate to persons (e.g., gender) rather than recordings
(e.g., language), if the artist of a recording is a person, we assign the label for that
recording as that of that person. If the artist is a band, we then collect the labels for all
the current and past band members. To have clear distinctions between groups, we do
not consider bands that have mixed labels (i.e., where some members belong to one
group while the others belong to the other group). We also exclude from our analyses
the cases where we cannot find a label for even a single member of a band.

We study differences in system performances by using binary labels (group 1, or G1,
and group 2, or G2) for each attribute. If not stated otherwise, such labels are derived
with respect to the query recordings or their artists (-Q), the reference recordings or
their artists (-R), and the compositions or their composers (-C). We also analyze the
performance differences where the query and the reference recordings or their artists
belong to the same vs. different groups (-SD). In the case where they belong to dif-
ferent groups, we also check if the direction of the change (i.e., the reference in G1
and the query in G2 or the reference in G2 and the query in G1) has any effect on the
performance (-D12). A summary of all the experiments and the considered attributes
can be seen in Table 7.1.

Note that for the -SD experiments, G1 denotes the cases where queries and references
belong to the same group (e.g., queries and references from male artists) while G2
denotes that they belong to different groups (e.g., queries from male artists and ref-
erences from female artists). For the -D12 experiments, G1 denotes the cases where
queries and references are in the first and the second groups of the -Q experiments, re-
spectively (e.g., queries from male artists and references from female artists); and G2
denotes cases where the queries and references are in the second and the first groups
of the -Q experiments, respectively (e.g., queries from female artists and references
from male artists).

Gender — The two groups we consider for gender are male (G1) and female (G2),
and the data is gathered from MusicBrainz (MB; Swartz, 2002). The experiments we
perform for this attribute are denoted as G-Q (queries from male vs. female artists), G-
R (references from male vs. female artists), G-C (compositions from male vs. female
composers), G-SD (queries and references from the same vs. different gender groups),
and G-D12 (queries from male and references from female artists vs. queries from
female and references from male artists).

Popularity — For this attribute, we categorize the recordings as popular (G1) and
“not so popular” (G2). We consider an artist (whether a person or a band) as popular
if they ever had a number-one selling single in the top-10 music markets found in the

7.2 METHODS 101

Feature Query Ref. Comp. Same-Dif. Dif. G
(-Q) (-R) (-C) (-SD) (-D12)

Gender (G-) 12345 12345 12345 12345 12345
Popularity (P-) 12345 12345 12345 12345 12345
Country (C-) 12345 12345 12345 12345 12345
Language (L-) 12345 12345 - - -
Year (Y-) 12345 12345 - 12345 -
Prevalence (V-) 12345 12345 12345 - -

Table 7.1: Summary of the experiments. Numbers indicate the considered systems: Qmax
(1), MOVE (2), MICE-M (3), MICE-C (4), and LF-c (5). The bold and underlined text
indicates that the results obtained with the corresponding system show a significant difference
between G1 and G2.

IFPI’s Global Music Report 202141 (excluding South Korea and China). By including
European and Far-eastern music markets, we aim to mitigate bias toward artists from
the United States. In the case of composers, we consider them popular if a popular
artist (as defined above) ever played a version of any of their compositions. The
number-one selling singles data is collected from Wikipedia, and the data for all the
compositions of every composer is collected from MB. Although there are many ways
to define popularity, our decision is based on the fact that number-one selling single
data is the only data that can be found consistently (as opposed to, e.g., top-10 singles)
for all the aforementioned music markets on Wikipedia, which in itself suggests a
distinction between the number-one selling artists and the rest. The experiments we
perform for this attribute are denoted as P-Q, P-R, P-C, P-SD, and P-D12.

Country — For studying the effect of the country, we divide recordings by the ones
whose artists or composers are from the United States or the United Kingdom (G1),
and the rest (G2), as the tracks in our dataset consist of mostly genres originated in
music traditions centered around those countries. In MB, there exist two annotations
for the country: “area,” the place where the artist currently resides, and the “begin-
area,” the place where the artist is originally from. In cases where an artist has both
annotations, we use the begin-area for our analysis. The experiments we perform for
this attribute are denoted as C-Q, C-R, C-C, C-SD, and C-D12.

Language — The two categories we consider for the language are English (G1) and
other (G2). The language data is gathered from SecondHandSongs (SHS). The exper-
iments for this attribute are denoted as L-Q and L-R. We exclude the other experiments
since we cannot obtain the data for the language of compositions (L-C) and we do not
have enough samples for analyzing L-SD and L-D12.

Year — For this attribute, we divide the recordings into two groups by whether they
are from the year 2000 or after (G1) or from before (G2). Although this threshold can

41https://gmr2021.ifpi.org/report

https://gmr2021.ifpi.org/report

102 EXPLORING THE ALGORITHMIC BIAS IN VERSION IDENTIFICATION

Exp. G1 G2 Exp. G1 G2
G-Q 8,067 3,296 C-C 13,200 3,535
G-R 11,976 2,954 C-SD 424 109
G-C 16,840 1,093 C-D12 26 83
G-SD 5,943 2,040 L-Q 18,765 2,069
G-D12 603 1,437 L-R 19,487 2,172
P-Q 2,964 17,200 Y-Q 9,310 12,019
P-R 6,432 13,505 Y-R 2,579 18,517
P-C 3,171 1,255 Y-SD 7,737 11,129
P-SD 11,638 6,360 V-Q 11,025 11,342
P-D12 1,608 4,752 V-R 10,211 9,882
C-Q 1,879 638 V-C 9,024 13,388
C-R 2,967 594

Table 7.2: Sample sizes per group per experiment.

be set in many different ways, we use the year 2000 since the peer-to-peer networks
that changed the music ecosystem drastically became popular by then. The release
year data is gathered from SHS. For this attribute, the experiments we perform are
denoted as Y-Q and Y-R. We also analyze the system performances in cases where the
year gap between the query and the reference recordings is less than 10 years (G1) vs.
greater than or equal to 10 years (G2) and denote the experiment as Y-SD.

Prevalence — This last attribute simply characterizes either how prevalent it is for
a composition to have a version, quantified by the number of versions a composition
has, or how prevalent it is for an artist to perform versions of other artists’ tracks,
quantified by the number of versions an artist performed. We include this attribute in
our analyses to see whether tracks that have been played by many artists (or artists
that have played tracks from many others) are in an advantageous position in terms of
DRM or not. The data we use to form the categories is collected from SHS. For the
artist prevalence experiments (V-Q and V-R), the two groups we consider are the artists
who performed less than or equal to 25 versions (G1) and more than 25 versions (G2).
For the composition prevalence experiment (V-C), the two groups we consider are the
compositions that have less than or equal to 5 versions (G1) and more than 5 versions
(G2). Thresholds 25 and 5 are chosen as they are the median values of their respective
distributions.

7.2.3 Dataset and evaluation

7.2.3.1 Dataset

We perform our analyses using a subset of the SHS4- dataset (Doras & Peeters, 2019),
for which we populate the metadata and label annotations. We publicly release this

7.3 RESULTS 103

subset under the name VI-Bias, with Creative Commons BY-NC-SA 4.0 license42.
The reference set of VI-Bias includes only one recording per composition, and we
specifically chose them as the original recordings for all the compositions (as stated
in SHS). Therefore, every query has exactly one correct item in the reference set. The
reason for this decision is simply to imitate industrial cases where it is common to
have only the original recording in the reference set. However, there can be multiple
queries that have the same reference recording as the correct item. The total number
of queries and references in VI-Bias is 22,428 and 15,293, respectively. All the deep
learning–based models are trained using the SHS5+ dataset (Doras & Peeters, 2019).
For the training details of the considered systems, see Chapters 4 and 5.

7.2.3.2 Evaluation

We assess system performances using the reciprocal rank metric, which we denote
by ψ . We motivate this choice by the fact that ψ penalizes the differences in lower
ranks more than the differences in higher ranks, which we consider as a good proxy
for real use cases (e.g., the difference between the correct answer being at rank 1 or
11 should have more impact than the difference of it being at rank 31 or 41). Note
that since there is only one correct item in the reference collection for each query, ψ

corresponds to the same score as average precision.

For each group in our study, we collect ψ scores for all the items belonging to
that group and use them to form performance distributions. To compare the ob-
tained distributions of two groups, we use the two-sample Kolmogorov-Smirnov (KS)
test (Massey, 1951), which has several characteristics that are desirable for our setup
(e.g., it is a nonparametric exact test, and it is not sensitive to imbalanced sample sizes
between groups). The null hypothesis of the KS test is that the samples are drawn
from the same distribution (i.e., that the underlying distribution is the same). To re-
ject the null hypothesis, we consider the threshold of 0.05 for the p-value; however,
since we test multiple hypotheses, we apply the Holm-Bonferroni correction (Holm,
1979). For computing the KS test and plotting rank distributions (see Figure 7.1), we
collapse all the ranks above 10, to remove potential differences in the tails (those are
the high ranks that are typically not going to be considered by practitioners). For each
analysis, we report sample sizes (see Table 7.2) and the mean ψ scores, ψ̄ , for each
group.

7.3 Results

7.3.1 Main findings

Table 7.3 presents the detailed list of results for all the experiments and the considered
VI systems, and Figure 7.1 presents rank distribution illustrations for a selected set

42https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

104 EXPLORING THE ALGORITHMIC BIAS IN VERSION IDENTIFICATION

Q
m

ax
(ψ̄

=0.42)
M

O
V

E
(ψ̄

=0.63)
M

IC
E

-M
(ψ̄

=0.50)
M

IC
E

-C
(ψ̄

=0.59)
L

F-c
(ψ̄

=0.75)
E

xp.
p

ψ̄
-G

1
ψ̄

-G
2

p
ψ̄

-G
1

ψ̄
-G

2
p

ψ̄
-G

1
ψ̄

-G
2

p
ψ̄

-G
1

ψ̄
-G

2
p

ψ̄
-G

1
ψ̄

-G
2

G-Q
<0.01

0.41
0.45

<0.01*
0.63

0.70
<0.01*

0.46
0.61

<0.01*
0.58

0.65
<0.01*

0.73
0.81

G-R
0.41

0.42
0.44

<0.01*
0.63

0.69
<0.01*

0.48
0.64

<0.01*
0.59

0.65
<0.01*

0.74
0.83

G-C
0.19

0.42
0.39

<0.01
0.63

0.67
<0.01*

0.49
0.60

<0.01
0.58

0.63
<0.01*

0.74
0.80

G-S
D

0.14
0.44

0.42
<0.01*

0.65
0.70

<0.01*
0.51

0.56
<0.01*

0.60
0.65

<0.01*
0.74

0.81
G-D

1
2

0.05
0.38

0.44
1.00

0.70
0.71

0.09
0.52

0.57
1.00

0.65
0.65

1.00
0.80

0.81
P-Q

0.06
0.44

0.42
<0.01*

0.71
0.62

<0.01*
0.58

0.49
<0.01*

0.66
0.57

<0.01*
0.82

0.74
P-R

<0.01*
0.47

0.40
<0.01*

0.70
0.60

<0.01*
0.55

0.48
<0.01*

0.66
0.56

<0.01*
0.80

0.72
P-C

0.57
0.41

0.39
<0.01

0.63
0.58

0.83
0.50

0.48
0.01

0.59
0.54

0.38
0.75

0.73
P-S

D
<0.01*

0.41
0.45

<0.01*
0.61

0.69
<0.01*

0.48
0.53

<0.01*
0.57

0.64
<0.01*

0.73
0.79

P-D
1
2

0.02
0.43

0.46
1.00

0.69
0.69

0.03
0.55

0.53
0.99

0.63
0.64

1.00
0.79

0.79
C-Q

0.96
0.42

0.41
1.00

0.61
0.61

0.98
0.43

0.45
0.78

0.55
0.57

0.54
0.69

0.73
C-R

0.72
0.43

0.44
0.34

0.61
0.65

0.78
0.43

0.45
0.02

0.57
0.63

0.89
0.71

0.73
C-C

0.62
0.41

0.42
<0.01

0.63
0.65

<0.01*
0.49

0.56
<0.01

0.58
0.61

<0.01*
0.74

0.79
C-S

D
1.00

0.45
0.47

0.30
0.65

0.58
0.88

0.42
0.39

0.63
0.60

0.56
0.66

0.72
0.69

C-D
1
2

0.66
0.59

0.44
0.22

0.73
0.54

1.00
0.40

0.39
0.54

0.67
0.53

1.00
0.69

0.69
L-Q

1.00
0.42

0.41
0.07

0.64
0.66

<0.01*
0.51

0.64
0.12

0.59
0.61

<0.01*
0.75

0.82
L-R

0.98
0.42

0.41
0.06

0.64
0.66

<0.01*
0.50

0.63
0.07

0.59
0.61

<0.01*
0.75

0.82
Y-Q

<0.01*
0.46

0.39
<0.01*

0.66
0.61

<0.01*
0.52

0.48
<0.01*

0.62
0.56

<0.01*
0.77

0.73
Y-R

<0.01*
0.48

0.41
<0.01*

0.67
0.63

<0.01*
0.64

0.48
<0.01*

0.65
0.58

<0.01*
0.82

0.73
Y-S

D
<0.01*

0.44
0.40

<0.01*
0.67

0.60
<0.01*

0.53
0.45

<0.01*
0.63

0.55
<0.01*

0.78
0.71

P
R-Q

<0.01*
0.43

0.40
0.16

0.62
0.64

<0.01*
0.49

0.52
0.37

0.58
0.59

0.18
0.74

0.75
P
R-R

0.11
0.43

0.41
<0.01*

0.62
0.65

<0.01*
0.49

0.52
0.04

0.58
0.60

<0.01
0.74

0.76
P
R-C

<0.01*
0.45

0.40
<0.01*

0.65
0.61

1.00
0.50

0.50
<0.01*

0.61
0.57

<0.01*
0.76

0.74

Table
7.3:

D
etailed

results.
For

each
system

and
experim

ent,w
e

reportthe
raw

p-value
of

the
K

S
testand

the
m

ean
reciprocalrank

of
groups

1
and

2
(ψ̄

-G
1

and
ψ̄

-G
2).B

old
textw

ith
*

denotes
statisticalsignificance

afterthe
H

olm
-B

onferronicorrection.O
verallsystem

perform
ance

w
ith

the
considered

datasetis
indicated

in
parenthesis

in
the

top
row

.

7.3 RESULTS 105

Figure 7.1: Rank distributions for a selected set of experiments. The full set of 115 experi-
ments is available in the project repository (see Appendix C).

of experiments. We include the rank distribution illustrations for all the experiments
along with the detailed scores in the project repository (see Appendix C). Here, we
highlight the main findings with respect to each considered attribute. Possible reasons
for the observed disparities are discussed in Section 7.3.2.1.

Gender — The results for G-Q, G-R, and G-C suggest that the identification perform-
ances of the learning-based models form two distinct distributions for most systems
(see Figure 7.1), and performances are significantly higher for the recordings per-
formed or composed by female artists (G2). On the contrary, for the only rule-based
system we consider, the obtained p-values for G-Q, G-R, and G-C do not suggest a dif-
ference between the performance for male (G1) and female (G2) artists/composers.
The results for G-SD and G-D12 show that the learning-based systems perform better
when the gender of the query and the reference artists are different (G2), and that the
direction of the change (female reference to male query, or male reference to female
query) does not create a significant difference.

Popularity — Results for the popularity attribute suggest that all the systems per-
form better for queries and references from popular artists (G1); only for P-Q using
Qmax does not result in a significant difference. However, such a difference between
groups is not observed for the composers (P-C). Moreover, when the artists of the
query and the reference tracks belong to different popularity groups (G2), identifica-
tion performance is higher (P-SD). As with the case with gender, the direction of the
change does not create an important difference (P-D12).

Country — Regarding the results for the country attribute, we do not see any differ-
ences between performances with respect to the country of the performing artists (C-Q
and C-R). However, MICE-M and LF-c systems show such a difference with respect
to the country of the composer, favoring composers from outside the US/UK (G2)
group (C-C). We also observe no differences for the cases where the query and the

106 EXPLORING THE ALGORITHMIC BIAS IN VERSION IDENTIFICATION

reference recordings belong to the same (G1) vs. different (G2) groups (C-SD) and
when the direction of the change is different (C-D12), but note that the sample sizes
for the last two experiments are smaller than the previous ones.

Language — The results for the language attribute suggest a performance difference
between groups for the systems that use melody-based features (i.e., MICE-M and
LF-c) but not for the ones that use only chroma-based features (L-Q and L-R).

Year — All the considered experiments for the year category suggest the same result
across all the systems: identification performance for queries and references after
2000 (G1) is higher compared to queries and references before that year (Y-Q and
Y-R). Also, when the year gap between the query and the reference tracks is less than
a decade (G1), the systems perform better.

Prevalence — We see no pattern behind the differences in the results for query re-
cordings from artists that perform versions of other artists’ compositions less (G1) or
more (G2) prevalently (V-Q): while the performances of the considered groups seem
similar for MOVE, MICE-C, and LF-c systems, MICE-M and Qmax favor different
groups. For the experiments that compare the same quality for reference recordings
(V-R), however, we see that the learning-based systems favor the cases where the ref-
erence recordings are from artists that perform versions more prevalently (G2) than
the others (G1), while Qmax favors the opposite (G1 over G2). Lastly, in terms of
comparing compositions with fewer (G1) or more (G2) versions (V-C), all the sys-
tems except MICE-M suggest a significant difference between the considered groups,
favoring compositions with fewer versions (G1) over the others (G2).

7.3.2 Discussion

Before entering into any discussion of the results, we shall first remind ourselves of
the limitations of our data collection process. Firstly, the data sources we used (MB,
SHS, and Wikipedia) contain human-annotated data, but we still would like to point
out the possibility of human error. Secondly, since we excluded the cases where we
could not find a label for a certain attribute, this may have created a potential bias on
the data we use. Lastly, although we implemented many heuristics to obtain the cor-
rect data from our sources, we only performed random checks whether we succeeded
on that, rather than checking all the obtained annotations one by one. Therefore, there
may have been a small amount of metadata matching problems. However, we assume
that even if such cases exist, they should not drastically affect our results. In addition
to the data collection process, the limitations of creating binary groups might also
have an impact on the results. For example, creating such binary groups based on
other criteria, or using nonbinary partitions might have changed the outcomes of the
presented analyses. Nevertheless, not using binary groups would have forced us to
perform a different statistical test, and such tests using multiple categories are less
standard and may be less reliable and harder to interpret. Keeping these in mind, we

7.3 RESULTS 107

now present our hypotheses on the causes of the observed disparities between groups
and discuss the potential fairness implications of the results.

7.3.2.1 Causes of disparities

Overall, we observe that the learning-based systems work better for underrepresented
groups (see, for instance, G-Q, G-R, P-Q, and L-Q). Our first hypothesis for this is that
the groups with fewer samples may show less variety between versions in terms of
the musical characteristics; thus, the identification performance may end up higher.
A second reason for this may be the sample sizes of the groups in the training set, but
we see that, for example, the gender ratio (G1 vs. G2) in the training set is 2.5, which
is not very different than the one of the analysis set, which is 3.2.

When analyzing the attributes separately, we observe that the performances of the
learning-based systems are higher for female artists and composers, but also the dif-
ferences between ψ̄ for G1 and G2 are higher for the systems that use melody features.
We think that this may be related to the differences between male and female voices
and the ability of the melody extraction algorithm to correctly estimate them. Also,
looking at the experiments where the query and the reference recordings belong to
the same vs. different groups for gender and popularity attributes (G-SD and P-SD),
we see that the learning-based systems perform better for the cases where they belong
to different groups (G2). We think that when the groups of the query and the reference
change, the resulting version may appear more faithful to the original, and this may
positively affect system performance.

For the popularity experiments, we see that all the systems tend to perform better for
popular artists and composers (G1), though not all the experiments show a significant
difference (P-Q and P-C). We hypothesize that this may be due to the input feature
extraction algorithms, and the fact that they may have been optimized using tracks
from such popular artists. Especially among the learning-based systems, MOVE and
MICE-C show larger disparities between groups, and the chord estimation model used
for cremaPCP was trained using a dataset including mainly popular tracks.

The results for the language experiments show disparities only for the systems using
melody features, with recordings in languages other than English (G2) having bet-
ter results than recordings in English (G1). A couple of reasons could be that, as
mentioned earlier, having fewer samples may cause less variety between versions,
and that the phonetic qualities of languages may affect the success of melody estim-
ation algorithms (for example, Italian is argued to be the most suitable language for
opera43).

In terms of the year attribute, we see that all the systems perform better for queries and
references released in the year 2000 or after (G1). Possible reasons for this include
the trends in the music creation process, which may affect the degree of variance

43https://www.melofonetica.com/italian-is-a-language-built-to-be-sung/

https://www.melofonetica.com/italian-is-a-language-built-to-be-sung/

108 EXPLORING THE ALGORITHMIC BIAS IN VERSION IDENTIFICATION

between versions of a composition; the fact that G1 spans over a narrower window
of years, which may naturally limit the possibility of having more different versions;
and having fewer samples for G1 (as discussed above). For the year gap experiments
(Y-SD), we argue that when the year gap between versions is longer (G2), it becomes
more probable to see versions that are less faithful to the original track, which may
cause lower system performances.

7.3.2.2 Considerations for fairness implications

Fairness evaluations are generally applied to systems that already interact with hu-
mans, where their direct impact on the considered groups is studied. In our case, how-
ever, we do not have access to a deployed VI system nor any real metrics on how the
considered groups are affected (e.g., real amount of circulated royalties). Therefore,
we now discuss the “potential” implications of the results presented in Section 7.3.1,
rather than evaluating a real industrial scenario. Although the following considera-
tions are speculative in nature, they are based on our quantitative analyses, and we
believe that not having access to a real industrial system should not preclude research
on such problems.

For interpreting the performance differences as fairness outcomes, we take the applic-
ation of VI in DRM. In our multi-stakeholder scenario, we assume a direct connection
between identification performance and the financial impact on various parties: if a
query is not correctly identified, the performing artist of the query does not pay and
the composer does not receive due royalties. To that extent, the reciprocal rank metric
may have opposite meanings for the involved parties. The artist of the query may
want a lower identification performance while the composer may desire the opposite.

To better illustrate this point, we can take a look at the gender experiments. We ob-
serve that the learning-based systems work better for female artists/composers com-
pared to males. While this implies that female composers are likely to be rewarded
more by these systems, in contrast, female artists that perform a version of an existing
composition (i.e., artists of the queries) are likely to pay more royalties. Therefore,
we here have a case where interpreting the fairness outcomes should be considered
independently for all the involved parties, as a result of having a multisided structure.

Lastly, we observe that both the learning- and the rule-based systems show perform-
ance disparities for certain groups. Specifically, the learning-based systems show
disparities for 54.4% of the cases while this ratio is only 30.4% for the rule-based
system. While this clearly presents a disadvantage for the learning-based systems,
their advantages regarding accuracy and scalability make them irreplaceable for the
industry. Therefore, to make sure such systems do not create any unfair conditions
that favor certain groups, evaluating VI systems that may have a real impact on musi-
cians should incorporate fairness and algorithmic bias metrics, along with metrics for
measuring accuracy and scalability.

7.4 CONCLUSION 109

7.4 Conclusion

In this chapter, we have explained our investigations regarding the disparities in the
performance of VI systems that may have an effect on fairness regarding the involved
stakeholders. We have used six attributes to create potentially impacted groups based
on the performing artists of the query, the performing artists of the reference, and the
composer of the composition, which we have identified as the relevant parties in a
VI workflow. For our analyses, we collected annotations for the attributes we have
considered and created the VI-Bias dataset, which we have publicly shared. As the
result of 115 experiments in total, we have seen that VI systems may indeed perform
differently on certain groups. Their behavior may vary depending on whether they
are learning- or rule-based, or whether they use melody- or chroma-based input fea-
tures, but potentially other design choices could have an impact. After presenting the
obtained results, we have proposed our hypotheses on the possible causes of such per-
formance disparities. We leave confirming or rejecting them as future work. Lastly,
we have discussed the potential implications of the obtained results on multiple stake-
holders involved in VI from a fairness perspective. We encourage future VI research
to use the VI-Bias dataset and incorporate fairness- and algorithmic bias–related eval-
uation metrics along with the existing accuracy- and scalability-related ones, to get
ahold of any wrongful practices.

With the experiments described in this chapter, we have concluded addressing the
three main aspects that we have specified at the beginning of our research (see Sec-
tion 1.3). Building upon our data-driven model MOVE (see Chapter 4), we have pur-
sued further improvements in accuracy (see Chapter 5) and scalability (see Chapter 6)
and investigated the inherent algorithmic biases of our proposed VI systems (de-
scribed in this chapter). In the next chapter, we analyze the efficacy of one of our
proposed systems on two industrial use cases. Although our methods described in
the previous chapters have introduced substantial improvements compared with the
conventional VI systems, we aim to analyze whether they meet the requirements for
industrial applications.

Chapter 8
Applications in Industrial Use

Cases

8.1 Introduction

Developing methods that are feasible for industrial use cases has been one of the main
objectives of this dissertation (see Section 1.3). Although we have pointed our efforts
toward advancing the state of the art in VI by addressing both accuracy and scalability
perspectives, our evaluation methods have mostly consisted of academic datasets and
performance metrics. Therefore, to have a better understanding of the state of VI
systems from an industrial point of view, we teamed up with BMAT, a Barcelona-
based music innovation company that focuses on music recognition and licensing
applications. BMAT is also the designated partner institution for our research in the
scope of the MIP-Frontiers project (see Section 1.3).

In this chapter, we introduce our attempts to evaluate one of our VI systems on two
industrial use cases. Firstly, in Section 8.2, we address the problem of identifying the
musical content in long recordings of live music events (i.e., concerts). There are two
main challenges to this particular use case: (1) live performances of tracks tend to
contain substantial differences compared to their studio-recorded counterparts, which
presents a challenge in the identification process; and (2) identification systems lack
the information regarding the start and end timestamps of the tracks present in such
long recordings, which creates an additional challenge of obtaining proper boundar-
ies for the list of identified musical content. Secondly, in Section 8.3, we design a
large-scale retrieval experiment with a reference corpus of more than 850 k tracks.
We first investigate potential gains in accuracy by using a sequential two-step system
that returns a set of K candidates with a fast VI system to be processed by a second
VI system to retrieve the correct item(s), which leverages an idea similar to “boost-
ing” (Schapire & Freund, 2012). We then experiment with an approximate nearest
neighbor search algorithm to further reduce the retrieval time per query. We conclude

111

112 APPLICATIONS IN INDUSTRIAL USE CASES

the chapter with our observations on the feasibility of current VI systems in industrial
applications.

8.2 Identifying setlists in live music recordings

8.2.1 Introduction

Identifying the presence of a known music track in an audio stream, ideally along
with its start and end timestamps, is one of the main concerns of music recognition
(or music identification) systems. While the most common and successful music re-
cognition technologies are audio fingerprinting systems (Cano et al., 2005) that can
identify recordings with slight degradations [e.g., background noise (Haitsma et al.,
2001), voiceovers (Wang, 2003), or pitch shifting (Fenet et al., 2011; Joren & Leman,
2014; Sonnleitner & Widmer, 2014)], they tend to perform poorly for live perform-
ance monitoring. Live performances can incorporate many alterations from the studio
recordings, including changes in tempo, key, structure, background noise, additional
applause and banters, and so on. Therefore, identifying live music content typically
requires VI systems, which are designed to go beyond near-exact duplicate detec-
tion (Serrà et al., 2009a; Bertin-Mahieux & Ellis, 2012; Doras & Peeters, 2019).

The setlist identification (SLI) of live music performances (i.e., full concerts) stands
as a challenging branch within music recognition. In the music information retrieval
community, SLI was formally defined by Wang et al. (2014) and divided into two
sequential subtasks, where the first task aims to retrieve only the related metadata
in the correct order, and the second task concerns further processing of the retrieved
items to obtain correct timestamps. The main applications of SLI systems include
automatic generation of metadata and timestamps for concerts in streaming platforms
(e.g., YouTube) and copyright management for the music industry. The vast variety
of music usage contexts in digital platforms makes it impossible to track music usage
manually and, therefore, highlights the necessity of automatic systems.

The work by Wang et al. (2014), together with a few submissions to MIREX 201544

is, to the best of our knowledge, the only one specifically targeting the SLI task.
Although some works in the VI literature address the use case of live performance
identification (Rafii et al., 2014; Tsai et al., 2017), the proposed approaches and eval-
uation contexts do not consider entire concerts nor retrieving timestamps. Therefore,
one cannot consider them as examples for SLI. Wang et al. (2014) assume that the
artist is known for each concert. For overlapping windows, a VI system is used to
return a set of candidates using thumbnails, and the final matches and their boundar-
ies are identified among those candidates using dynamic time warping. The system
is evaluated on a dataset of 20 concerts from 10 rock bands, using three metrics: edit
distance, boundary deviation, and frame accuracy. Although demonstrating a plaus-
ible performance, scaling such a system to reference databases of thousands of tracks

44https://www.music-ir.org/mirex/wiki/2015:Set_List_Identification

https://www.music-ir.org/mirex/wiki/2015:Set_List_Identification

8.2 IDENTIFYING SETLISTS IN LIVE MUSIC RECORDINGS 113

stands as a difficult challenge due to the computational complexities of the used al-
gorithms.

In this section, we study the efficacy of a set of current VI systems for SLI, considering
a range of use cases related to the monitoring of live performances. To mimic a real-
istic industrial scenario, our approach combines the subtasks proposed by Wang et al.
(2014) into a single task by creating an end-to-end workflow that takes audio signals
as input and creates a final document with the retrieved metadata and timestamps. By
using predetermined window and hop sizes, we compare the performances of three VI
systems that produce overlapping matches, which are further processed with a novel
algorithm that combines heuristic- and learning-based methods to filter out the noisy
matches and to create the final results. We develop and evaluate our system using a
new dataset of 75 concerts that are categorized by varying audio qualities and genres
and annotated in terms of the tracks played in each concert and their timestamps. We
study the impact of audio quality, genre, and reference set size (up to 56.8 k tracks)
on system performance. We report our findings using four evaluation metrics fol-
lowing industrial practices. We publish the dataset and evaluation code at the project
repository45 (see Appendix C).

This section is based on Yesiler et al. (2021b)46.

8.2.2 Methods

8.2.2.1 System overview

Our workflow consists of several steps for processing a query (i.e., audio file of a
concert) and a reference database to retrieve a list of tracks and their respective start
and end timestamps (Figure 8.1). Firstly, we process the audio queries with a sliding
window of size W and a hop size H (windowing is not applied to the reference tracks).
For each windowed query Qi, we use a VI system to retrieve the most similar item
from the reference database. After obtaining individual matches for each window, we
perform a number of postprocessing steps to consolidate and revise those and form a
final list of results. Lastly, we compute several evaluation metrics.

8.2.2.2 Input representation

The first step of our system is to extract useful information from music audio signals.
For this, we use cremaPCP representations (McFee & Bello, 2017), extracted with the
pretrained model shared in the project repository47 (see Section 3.5). We use a hop
size of 4,096 samples for audio signals sampled at 44.1 kHz.

45https://github.com/furkanyesiler/setlist_id
46© 2021 IEEE. Reprinted, with permission, from Yesiler, F., Molina, E., Serrà, J., & Gómez, E.

(2021). Investigating the efficacy of music version retrieval systems for setlist identification. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 541–545.

47https://github.com/bmcfee/crema

https://github.com/furkanyesiler/setlist_id
https://github.com/bmcfee/crema

114 APPLICATIONS IN INDUSTRIAL USE CASES

V
er

si
o

n
 i

d
en

ti
fi

ca
ti

o
n

M
at

ch
 c

o
n

so
li

d
at

io
n
 a

n
d

 r
ev

is
io

n

VI System

D: 0.1
D: 0.4

D: 0.5
D: 0.4

D: 0.4
D: 0.2

D: 0.5

D: 0.1
D: 0.4

D: 0.2

D: 0.1
D: 0.1
D: 0.4

D: 0.4
D: 0.4
D: 0.2

D: 0.2

D: 0.1
D: 0.1

D: 0.4
D: 0.2

D: 0.2

D: 0.1
D: 0.4

D: 0.2

Corpus

Query windowing

Passing the queries to a VI system

Potential matches for each window

Merging the consecutive matches that

return the same item

Splitting up the overlapped segments

Deciding the correct match for the

overlapped segments based on distances

Merging the consecutive matches that

return the same item

True/false classification of matches based

on distance and duration

Figure 8.1: Overall block diagram of the proposed end-to-end workflow. Different colors in
query windows indicate different tracks, D indicates the distance between that query window
and the top returned track for that window.

8.2 IDENTIFYING SETLISTS IN LIVE MUSIC RECORDINGS 115

8.2.2.3 VI systems

For obtaining pairwise distance values between query windows and references, we
compare three VI systems. We consider W = {120,180,240} s and H = {15,30,60} s.
We perform initial experiments on our development set to pick the best W and H val-
ues for each algorithm based on the total length of correctly identified segments (see
DLP metric in Section 8.2.2.6). The considered systems are:

Re-MOVE — Re-MOVE is a deep learning–based model that is trained with embed-
ding distillation techniques to further improve both the accuracy and the scalability
aspects of a state-of-the-art VI system (see Chapter 6). It encodes each track into an
embedding vector of size 256. We transfer the pretrained weights of the model shared
in the project repository48 into an equivalent Keras (Chollet et al., 2015) model (no
re-training or fine-tuning is performed). As the distance between embeddings, we use
cosine distance.

Qmax — Qmax refers to the VI system proposed by Serrà et al. (2009a). The similar-
ity estimation between two tracks is performed using a local alignment algorithm, and
the length of the longest aligned subsequence is considered as the distance between
the tracks after being normalized by the length of the reference track. We use the im-
plementation shared in Essentia (Bogdanov et al., 2013) with the default parameters.

2DFTM — 2DFTM refers to the embedding-based VI system proposed by Bertin-
Mahieux & Ellis (2012). It is one of the first algorithms proposed in the VI literature
to address large-scale retrieval scenarios. To use beat-synchronous features as the
proposed approach, we perform beat tracking on each query window and reference
using onset strength envelopes precomputed with librosa (McFee et al., 2015). As the
distance between embeddings, we use Euclidean distance.

8.2.2.4 Consolidation and revision of potential matches

Using the VI systems described above, we compute the distances between each query
window Qi and each item from the reference database. The reference track with the
lowest distance to Qi is considered as its potential match. However, using a window-
ing scheme can create several potential matches for query segments where the pro-
cessing windows are overlapped. To reduce the number of matches to a single match
for any given time frame, we perform a series of operations to consolidate and revise
the obtained potential matches. Note that although the VI system can be considered
as the main component of our entire workflow, this last step is highly important to
obtain a useful final list of results.

Our first step is to merge the consecutive overlapping matches that return the same
reference track, and the distance value for the merged match is selected as the low-
est distance among the respective matches. Next, to avoid the overlapping matches

48https://github.com/furkanyesiler/re-move

https://github.com/furkanyesiler/re-move

116 APPLICATIONS IN INDUSTRIAL USE CASES

Genre AQ-A AQ-B AQ-C Total
Pop/Commercial 8 (5) 3 3 14 (5)
Rock/Metal 8 (3) 7 6 21 (3)
Indie/Alternative 5 7 3 15
Hip-hop/Rap 5 (2) 0 3 8 (2)
Electronic 6 1 0 7
Total 32 (10) 18 15 65 (10)

Table 8.1: Number of concerts per audio quality and genre. The numbers in parenthesis
indicate the concerts in the development set. AQ-A contains professional recordings from
large venues, AQ-B professional recordings from smaller venues, and AQ-C smartphones and
video cameras.

that return different reference tracks, we obtain all possible overlaps and select the
reference track that comes from the match with the lowest distance for each overlap-
ping segment. Finally, we perform another merging step by joining any consecut-
ive matches that return the same reference and have no gap between them (i.e., the
matches that may be split in the previous step). The final results do not contain over-
lapping matches for any segment of the query.

Our initial experiments showed that this consolidation and revision step is useful for
filtering out many incorrect matches, however, along with a few correct ones. To
further reduce the number of incorrect matches, we simply train a support vector
machine model for binary classification (correct/incorrect) task, using the scikit-learn
library (Pedregosa et al., 2011) and the distance and duration values of correct and
incorrect matches as features.

8.2.2.5 Dataset

For our experiments, we collected and annotated a new dataset, ASID: automatic
setlist identification dataset. It contains pre-extracted features, metadata, YouTube
or Soundcloud links, and timestamp annotations for 75 concerts and all the relevant
reference tracks (i.e., the tracks that are played in each concert). Concert durations
range between 21.7 min and 2.5 h, with a total duration of 99.5 h. The total number
of reference tracks is 1,298, with a total duration of 90.1 h. We make this dataset
publicly available for the community under the Creative Commons BY-NC-SA 4.0
license49.

ASID includes a variety of use cases regarding audio quality and genres. For this,
we selected three categories for audio quality: AQ-A, AQ-B, and AQ-C. AQ-A con-
tains high-quality recordings, mainly coming from broadcast recordings or official
releases. AQ-B contains professionally recorded concerts, mainly from small ven-
ues (in general, we observe that the mixing/mastering quality for concerts in AQ-B

49https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

8.2 IDENTIFYING SETLISTS IN LIVE MUSIC RECORDINGS 117

is inferior to the ones in AQ-A). Lastly, AQ-C contains smartphone or video cam-
era recordings from varying-size venues/events. In terms of genre, we categorize the
concerts into five main groups: pop/commercial, rock/metal, indie/alternative, hip-
hop/rap, and electronic. The number of concerts for each audio quality and genre can
be seen in Table 8.1.

We use 10 concerts (14.3 h) as a separate development set to select W and H for each
VI system and to train a classifier for the match revision step. The references for
the development set include 180 tracks. The remaining 65 concerts (85.2 h) and the
related reference set are used for the main results. The total number of annotated
segments for the evaluation set is 1,138, with a duration of 80.6 h.

8.2.2.6 Evaluation metrics

Following common practice in industrial contexts, we evaluate our approach using:
(1) true positives (TP), the number of matches (after merging and removing overlaps)
that overlap the correct annotations in the ground truth (several correct matches that
overlap the same annotation are counted separately); (2) false positives (FP), the num-
ber of matches (after merging and removing overlaps) that do not correspond to the
related annotation; (3) detected annotations percentage (DAP), the ratio of the number
of detected annotations with respect to the total number of annotations in the ground
truth; and (4) detected length percentage (DLP), the ratio of the correctly identified
duration of all TP with respect to the total duration of annotations in the ground truth.
Moreover, we also compare the VI systems based on their required runtime to com-
plete all the queries.

8.2.3 Results

8.2.3.1 Overall results

Based on the DLP values obtained for the development set, we select (W,H) pairs for
each considered VI system. For Re-MOVE and Qmax, we select both (120,30) and
(120,60) since the DLP values using those pairs result in very minor differences, and
for 2DFTM, we select only (120,15). Due to the computation time needed to evaluate
Qmax on our test set (see Section 8.2.3.3), we compute results for only (120,30) and
simulate the results for (120,60) by skipping the matches for every second window.

The overall results for each considered system and (W,H) pair show that while the
performances of Re-MOVE and Qmax systems are fairly close, they both outperform
2DFTM by a considerable margin (Table 8.2). Both Re-MOVE and Qmax could
identify +78% of the annotated segments (DAP metric, before the classifier), which is
a considerably good performance albeit using arbitrary windows for retrieval instead
of clearly segmented ones. The differences between DAP and DLP values suggest
imprecise timestamp retrievals that result mainly from using fixed W and H values
without any fine-grained refinements on the timestamp resolution.

118 APPLICATIONS IN INDUSTRIAL USE CASES

VI Config. TP FP DAP (%) DLP (%)
R - (120,30) 936 / 771 1075 / 177 80.3 / 67.8 60.5 / 56.9
R - (120,60) 922 / 735 1013 / 112 79.8 / 64.6 60.3 / 54.8
Q - (120,30) 902 / 766 1217 / 132 78.3 / 67.8 60.8 / 57.5
Q - (120,60) 905 / 736 1039 / 75 78.4 / 64.9 60.9 / 56.0
F - (120,15) 736 / 524 2686 / 453 61.3 / 46.0 41.1 / 37.1

Table 8.2: Overall results for five configurations on the evaluation set. R, Q, and F denote Re-
MOVE, Qmax, and 2DFTM, respectively. The left/right values denote the metrics before/after
the classifier.

Figure 8.2: Distance (left) and duration (right) distributions of TP and FP for Re-MOVE -
(120,30) (top) and Qmax - (120,60) (bottom).

The values before and after the classifier show that even a simple classifier can re-
duce the number of FPs by more than 80% while reducing the TPs by only 15–20%
(excluding 2DFTM) and the DLPs by 4.5% on average. This suggests that the dis-
tance and duration distributions for TPs and FPs are different enough to enable useful
classification, especially for Qmax - (120, 60) (Figure 8.2).

8.2.3.2 Breakdown of results

Audio quality — We now present results separately for each audio quality, using a
limited set of configurations (Table 8.3). The total number of annotated segments
and the total duration of those (TA and TL, respectively) for categories AQ-A, AQ-B,
and AQ-C are (581, 48.8 h), (241, 15.8 h), and (316, 16.9 h), respectively. The results
suggest that, surprisingly, the audio quality is not the most crucial factor affecting
system performance as both systems result in higher DLP values for AQ-B and AQ-
C compared to AQ-A. This shows that our input representation performs robustly
against noise. We hypothesize that the low performance for AQ-A may mainly result
from the variety of included genres/styles.

Genre — The results categorized by genres can be seen in Table 8.4. TA and TL val-
ues for each category from top to bottom are (272, 17.1 h), (372, 25.6 h), (208, 12.3 h),
(171, 17.6 h) and (115, 8.0 h), respectively. We observe that the performances of both

8.2 IDENTIFYING SETLISTS IN LIVE MUSIC RECORDINGS 119

VI Config. TP FP DAP (%) DLP (%)
AQ-A

R - (120, 30) 480 / 412 586 / 96 80.6 / 71.1 55.6 / 53.2
Q - (120, 60) 458 / 393 572 / 47 77.5 / 67.6 55.5 / 52.3

AQ-B
R - (120, 30) 215 / 176 245 / 37 87.6 / 73.4 69.0 / 64.2
Q - (120, 60) 221 / 179 195 / 9 89.6 / 75.1 72.6 / 66.6

AQ-C
R - (120, 30) 241 / 183 244 / 44 74.4 / 57.6 67.3 / 61.1
Q - (120, 60) 226 / 164 272 / 19 71.5 / 51.9 65.8 / 56.8

Table 8.3: Results based on audio quality. R and Q denote Re-MOVE and Qmax, respectively.
The left/right values denote the metrics before/after the classifier. AQ-A contains professional
recordings from large venues, AQ-B professional recordings from smaller venues, and AQ-C
smartphones and video cameras.

VI Config. TP FP DAP (%) DLP (%)
Pop/Commercial

R - (120, 30) 238 / 207 221 / 40 87.5 / 77.2 75.5 / 72.4
Q - (120, 60) 231 / 192 231 / 27 85.7 / 72.1 76.8 / 71.1

Rock/Metal
R - (120, 30) 325 / 265 422 / 56 83.3 / 70.7 70.1 / 66.0
Q - (120, 60) 321 / 263 341 / 22 83.9 / 70.2 72.4 / 66.9

Indie/Alternative
R - (120, 30) 193 / 153 118 / 22 91.8 / 73.6 73.3 / 67.3
Q - (120, 60) 191 / 148 134 / 6 89.4 / 71.2 74.0 / 66.0

Hip-hop/Rap
R - (120, 30) 76 / 60 246 / 47 43.9 / 35.1 19.7 / 17.8
Q - (120, 60) 63 / 47 264 / 16 36.8 / 27.5 15.6 / 13.6

Electronic
R - (120, 30) 104 / 86 68 / 12 87.0 / 74.8 68.5 / 64.9
Q - (120, 60) 99 / 86 69 / 4 85.2 / 74.8 69.6 / 66.4

Table 8.4: Results based on genre. R and Q denote Re-MOVE and Qmax, respectively. The
left/right values denote the metrics before/after the classifier.

VI systems are consistent across genres, with “Hip-hop/Rap” being an outlier. Rely-
ing on only harmonic information for retrieval leads to a drastic performance decrease
for certain musical styles (i.e., hip-hop). However, the effect of genre on system per-
formance is not the only decisive factor. The results depicted in Figure 8.3 show that
the system performance can show a large variance among concerts even within the

120 APPLICATIONS IN INDUSTRIAL USE CASES

of FP

100
Electro
Hip-hop
Indie
Pop
Rock

80

60

40

20

0
0 2 4 6 8 10

D
L

P
(%

)

Figure 8.3: DLP and FP values after the classifier for each concert evaluated with Re-MOVE -
(120,30), categorized by genre.

Extra refs. TP FP DAP (%) DLP (%)
None 936 / 771 1075 / 177 80.3 / 67.8 60.5 / 56.9
15k 860 / 678 1606 / 220 73.6 / 59.5 53.0 / 48.8
30k 836 / 661 1738 / 217 71.6 / 58.1 51.6 / 47.4
45k 812 / 643 1785 / 241 69.8 / 56.6 49.9 / 45.9
55.7k 812 / 639 1841 / 244 69.7 / 56.2 49.6 / 45.5

Table 8.5: Results of Re-MOVE - (120,30) on the MJD-expanded task.

same genre, with “Pop/Commercial” having the most consistent results.

Reference set size — Although we evaluate our systems for each concert using the
entire reference set, a more realistic scenario should include a significantly larger ref-
erence set. For this, we gradually expand our reference set using the MTG-Jamendo
dataset (MJD; Bogdanov et al., 2019), which contains the full audio tracks of 55.7 k
royalty-free tracks. We assume that there is no intersection between ASID and MJD.
Due to computation requirements (see Section 8.2.3.3), we only evaluate the Re-
MOVE - (120,30) setting in this scenario. Table 8.5 shows that an increase in ref-
erence set size negatively affects the system accuracy. However, the system can still
correctly identify 70% of the annotated segments (before the classifier), and the de-
crease in performance seems to be saturating after 45 k references, at least for the
considered size regime.

8.2.3.3 Runtime comparison

Finally, we share our observations regarding algorithm runtimes. Since computation
requirements depend on W and H, we here consider W = 120 and H = 30. Using pre-
extracted cremaPCP features as input for each system and executing parallel compu-
tations with 32 cores, the Qmax algorithm takes approximately 20 days to complete

8.3 LARGE-SCALE RETRIEVAL WITH AN INDUSTRIAL CORPUS 121

the entire distance computations used for the main results in Table 8.2. Contrast-
ingly, both Re-MOVE and 2DFTM take only 11 min. For the full MJD-expanded
task in Table 8.5, the runtime of Re-MOVE only increases to 22 min (using precom-
puted embeddings). Although Re-MOVE and Qmax result in similar performances,
the drastic difference in their runtimes suggests that Re-MOVE is the only considered
system that both scales up to large-scale retrieval scenarios and achieves a plausible
accuracy.

8.2.4 Conclusion

In this section, we have investigated the effectiveness of VI systems for automatic SLI
in a wide range of use cases. For this, we have proposed an end-to-end workflow to
identify the metadata and timestamps of the tracks that are present in full concerts. For
the retrieval step, we have compared three VI systems in terms of accuracy and scalab-
ility. We have proposed a postprocessing algorithm that consolidates and revises the
initial retrieved matches to filter out possible false positives for the final results. We
have used a new dataset that contains 99.5 h of concerts, which we publicly share.
Our findings suggest that while the audio quality of queries does not have a crucial
effect on performance due to the robustness of our input representation against noise,
the changes in musical styles/genres can have a drastic impact as our system depends
solely on the harmonic information from the audio. For processing the audio quer-
ies, using predetermined window and hop sizes results in imprecise timestamps for
the retrieved matches. We have also shown that increasing the size of the reference
database negatively impacts system accuracy. Finally, the reported runtimes for the
considered configurations show a remarkable difference between using alignment-
based or embedding-based VI systems. Overall, using Re-MOVE for retrieval yields
promising results towards automatic SLI in large-scale contexts; however, further im-
provements for the general workflow are required to address real-world live perform-
ance monitoring use cases. For further improvements in performance, two potential
directions may be investigating the use of (1) an ensemble VI system that uses various
musical characteristics (e.g., melody, harmony) for the retrieval phase (see Chapter 5),
and (2) more elaborate false positive filtering schemes.

8.3 Large-scale retrieval with an industrial corpus

8.3.1 Introduction

Throughout this dissertation, we have designed and evaluated VI systems for retrieval
settings, where we aim to retrieve the versions of a query by estimating similarities
between the given query and all the tracks in a reference corpus. Although one of
our major intentions is to prepare VI systems for industry-scale corpora, the largest
reference set we have used so far contains roughly 56 k tracks. Considering that the
size of the corpora used by modern streaming services and media platforms are in the

122 APPLICATIONS IN INDUSTRIAL USE CASES

magnitudes of millions of tracks, our previous evaluation efforts may be viewed as
inadequate to infer any conclusion regarding the performance of our VI systems in
industrial applications.

In this section, we present our analysis on the efficacy of one of our systems when
used for large-scale corpora. We create a reference set consisting of 858,886 tracks
using one of the corpora of BMAT. We first compare two VI systems in terms of their
runtimes and demonstrate the drastic gap between computation time requirements of
approaches that are based on local alignment and embeddings. We then design a two-
step scheme where the fast, embedding-based system retrieves the top-K candidates,
which are later processed by the slow, local alignment–based system to produce the
final list of results. We witness certain gains in accuracy using this approach, but, at
the cost of increased runtimes. We also experiment with an off-the-shelf approximate
nearest neighbor method to further reduce the retrieval times for the embedding-based
system. With this, we obtain considerable gains in average computation time per
query while having a minimal loss in accuracy.

8.3.2 Methods

8.3.2.1 Baseline systems

Our first set of experiments aim to create performance baselines using two VI systems
we consider for this large-scale retrieval study. We compare the systems described
below using the evaluation metrics described in Section 8.3.2.5.

Re-MOVE — We use the Keras version of the model (see Section 8.2.2.3) and choose
cremaPCP as the input representation (see Section 3.5). Since the pairwise similar-
ities between tracks are computed using the cosine similarity function between their
embeddings, we precompute and store the embeddings for the entire reference corpus.
The embeddings for the queries are computed on the fly during the retrieval phase.

Qmax — We use an optimized implementation of the Qmax algorithm, which is de-
signed for reducing the computation time and made available to us by BMAT. We
choose cremaPCP as input, as done for Re-MOVE. We precompute and store the
cremaPCP features for the entire reference corpus since the similarity estimation with
Qmax requires performing an elaborate local alignment scheme on those input fea-
tures.

8.3.2.2 Two-step system

After setting the baselines, we investigate whether we can improve the overall accur-
acy by implementing a sequential two-step system. That is, we first use Re-MOVE
against the entire reference corpus to retrieve the top-K candidates per query. Then,
we use Qmax against this selected set of K candidates to obtain the final retrieval
results. To study the performance with respect to the size of the set of selected can-
didates, we perform experiments for K = {5,10,20,50,100,200,500,1000}.

8.3 LARGE-SCALE RETRIEVAL WITH AN INDUSTRIAL CORPUS 123

In addition to using Re-MOVE and Qmax sequentially, we also experiment with a
basic similarity aggregation scheme in which we refine the similarity scores between
a query and each item of the selected set of K candidates for that query using the sim-
ilarities obtained with Re-MOVE and the two-step system (Re-MOVE then Qmax).
In mathematical notation,

SA
i j =
SR

i j +S2-S
i j

2
, (8.1)

where SA
i j denotes the refined similarity score between the query i and reference item

j, and SR
i j and S2-S

i j denote the similarities obtained with Re-MOVE and the two-step
system, respectively. Before performing the aggregation, we make sure that the range
of similarity scores obtained from both methods is bounded between -1 and 150.

8.3.2.3 Approximate nearest neighbor search

Apart from investigating potential gains in accuracy with a sequential system, we also
explore potential gains in runtimes using an approximate nearest neighbor (ANN)
search algorithm. When using embedding-based methods, the typical brute-force re-
trieval process is first to compute similarity scores between a query and all the tracks
of the reference corpus, then to sort the reference items based on their similarities to
the query, and lastly to retrieve the top-K candidates. With an ANN algorithm, we
aim to avoid similarity computation and candidate sorting steps and directly retrieve
the top-K candidates.

As the ANN algorithm, we use ANNOY51, which is a publicly available C++ library
with Python bindings. Although it includes several distance functions, we consider
only the cosine distance. To use it, we first create an index using the embeddings
of the entire reference corpus, which is represented as a forest of ntrees trees. The
documentation denotes that using more trees results in higher precision but also a
larger index size. We try two indexes with ntrees = {200,2k}. After we obtain our
index, we can query it with any embedding of an appropriate size. When querying,
we specify the number of nodes the algorithm can inspect (nnodes). The documentation
denotes that searching more nodes returns more accurate results but requires a longer
runtime. In our experiments, we try nnodes = {20k,50k,100k,200k,500k,1M,2M}.

8.3.2.4 Dataset

To obtain a large collection of tracks, we combine a subset of the Da-TACOS bench-
mark partition (DDT) and a subset of one of the corpora from BMAT (DBM). DDT

50Due to the similarity estimation technique it uses, we cannot practically set a lower bound for
similarity scores obtained with Qmax (therefore, the two-step system). However, we observe that scores
below -1 form a very small portion of the pairwise similarities.

51https://github.com/spotify/annoy

https://github.com/spotify/annoy

124 APPLICATIONS IN INDUSTRIAL USE CASES

includes 12,152 tracks all of which have at least one other version in the dataset.
Since we have annotations only for DDT, we use this subset as the only query set.

DBM includes 846,734 tracks with only limited metadata (e.g., track title, artist title,
etc.) and without any annotations with respect to version relationships. Due to the lack
of annotations, we use DBM as a “noise” collection with which we increase the size
of the reference corpus. Note that a noise collection should not contain any versions
of the tracks in the query set. To ensure this, we compare the similarities between
the track titles of a large corpus of over 1.5 M tracks and the track and composition
titles of the query set, DDT, using the “difflib” library, which is a native Python library
that uses a modified version of the gestalt pattern matching algorithm (Ratcliff &
Metzener, 1988). We choose the tracks that score less than 0.6 and create DBM. The
reference corpus for our experiments contain both DDT and DBM.

8.3.2.5 Evaluation metrics

We evaluate the baseline and the two-step system experiments using MAP@K and
MR1@K (see Section 2.5.2), which are computed the same way as MAP and MR1
but consider only the first K elements of the sorted results. In addition to those, we
also compute the percentage of the queries for which a relevant item (a true positive)
is returned at the first rank (TPP@1) and the percentage of the queries for which no
relevant items are retrieved among the first K candidates (NRP@K).

To evaluate the systems from a runtime perspective, we precompute and store the
necessary representations (i.e., embeddings for Re-MOVE and cremaPCP features
for Qmax) for the reference corpus. Since both Re-MOVE and Qmax use cremaPCP
features in their workflows, we assume that we receive these features for each query
instead of the corresponding raw audio signals. Therefore, the runtime per query is
computed as (1) the time required to obtain embeddings, to compute all the similarity
scores, and to sort the items based on those similarities for Re-MOVE, and (2) the
time required to compute all the similarity scores and to sort the items based on those
similarities for Qmax.

For the ANN experiments, we evaluate the performance by measuring the differences
between the top-K items returned by the ANN algorithm and by the brute-force ap-
proach, considering the brute-force results as the target. We use two metrics for this:
the first one is precision at cut-off rank K (Prec@K), which measures the ratio of the
number of the items that are returned by both approaches over K without consider-
ing the order of the items (e.g., if both approaches return the same items but with a
different order, the score is 1); and the second one is rank accuracy at cut-off rank K
(RankAcc@K), which measures the ratio of the number of the items that are returned
at the same rank by both approaches over K (e.g., if both approaches return the same
items but with a different order, the score is 0).

All the measured runtimes are computed with a single thread using a CPU with a
clock speed of 2.60 GHz.

8.3 LARGE-SCALE RETRIEVAL WITH AN INDUSTRIAL CORPUS 125

K Sys. MAP@K MR1@K TPP@1 NRP@K K Sys. MAP@K MR1@K TPP@1 NRP@K

5
R 0.225 2 0.495 0.301

100
R 0.353 6 0.495 0.158

2-S 0.230 1 0.537 N/A 2-S 0.378 4 0.578 N/A
R+(2-S) 0.231 1 0.538 N/A R+(2-S) 0.391 4 0.584 N/A

10
R 0.321 2 0.495 0.259

200
R 0.345 10 0.495 0.133

2-S 0.333 2 0.552 N/A 2-S 0.371 7 0.586 N/A
R+(2-S) 0.334 2 0.551 N/A R+(2-S) 0.390 6 0.592 N/A

20
R 0.361 2 0.495 0.224

500
R 0.335 20 0.495 0.104

2-S 0.379 2 0.564 N/A 2-S 0.362 13 0.593 N/A
R+(2-S) 0.382 2 0.564 N/A R+(2-S) 0.388 12 0.601 N/A

50
R 0.359 4 0.495 0.184

1000
R 0.328 36 0.495 0.083

2-S 0.382 3 0.573 N/A 2-S 0.353 23 0.593 N/A
R+(2-S) 0.391 3 0.576 N/A R+(2-S) 0.385 21 0.606 N/A

Table 8.6: Evaluation results for the baseline and two-step system experiments. R, 2-S, and
R+(2-S) denote Re-MOVE, the two-step system, and the ensemble system that aggregates
distances obtained from Re-MOVE and the two-step system, respectively.

8.3.3 Results

8.3.3.1 Baseline and the two-step system experiments

Our initial experiments with Qmax yielded a runtime of (on average) 11.04 ms per
comparison. Considering the size of our reference corpus, each query is estimated
to require over 2.5 h for computing all the pairwise similarities. Due to this ineffi-
ciency, we decided to use only Re-MOVE to set the baseline for the two-step exper-
iments. Re-MOVE takes (on average) 1.2 s per query, which is several magnitudes
lower than the 2.5 h per query for Qmax. The baseline performance of Re-MOVE can
be seen in Table 8.6. Note that compared with its performance on smaller datasets like
Da-TACOS (see Chapter 6), the MAP score is considerably lower (0.524 vs. 0.328),
which confirms our doubts about results on smaller datasets not being appropriate for
inferring performance on large datasets.

After obtaining the baseline with Re-MOVE, we then move to the two-step system
experiments (see Table 8.6). For all the K values, the two-step system outperforms Re-
MOVE with relative increases varying between 2% to 8% in terms of MAP@K. The
scores for MR1@K indicate that the two-step system can locate the first relevant result
at lower ranks compared to Re-MOVE. In terms of TPP@1, the relative improvements
range from 8% to 20%, which shows that the two-step system is noticeably better at
returning a true positive at the first rank than Re-MOVE. Lastly, we see that Re-
MOVE could not find any relevant item in the top-K results for 8.3% of the queries
when K = 1000, which increases up to 30.1% for K = 5.

Finally, we see that a simple similarity aggregation scheme may result in considerable
improvements in performance. Note that this aggregation scheme uses the pairwise
similarities obtained with Re-MOVE and the two-step system, and, thus, it creates
only a negligible computational load on top of the retrieval process performed for the
two-step system. Compared to Re-MOVE, in terms of MAP@K and TPP@1, we ob-
serve up to 9% and 2% increases in performance, respectively, depending on K. From

126 APPLICATIONS IN INDUSTRIAL USE CASES

Average time per query in seconds Average time per query in seconds

Average time per query in secondsAverage time per query in seconds

0.6 0.7 0.8 0.9 1.0 1.1 1.2 0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.6 0.7 0.8 0.9 1.0 1.1 1.2

1.0

0.8

0.6

0.4

0.2

0.0 0.0

0.00.0

1.0

0.8

20k
50k
100k
200k
500k
1M
2M

Number of
nodes to search

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

Number of trees: 200 - Storage space: 3.1GB Number of trees: 2000 - Storage space: 24GB

Number of trees: 2000 - Storage space: 24GBNumber of trees: 200 - Storage space: 3.1GB

P
re

c@
10

00
 w

.r.
t.

B
ru

te
-f

or
ce

P
re

c@
10

00
 w

.r.
t.

B
ru

te
-f

or
ce

R
an

kA
cc

@
10

00
 w

.r.
t.

B
ru

te
-f

or
ce

R
an

kA
cc

@
10

00
 w

.r.
t.

B
ru

te
-f

or
ce

0.6 0.7 0.8 0.9 1.0 1.1 1.2

Figure 8.4: Evaluation results for the ANN experiments. The vertical yellow lines indicate
the average time per query for the brute-force approach.

a runtime point of view, for K = 1000, the two-step system increases the retrieval
time from 1.2 s to 12.24 s, which is a relative increase of 920%. Note that increasing
the size of the reference corpus would have a decreasing effect on this difference in
runtimes given that K is constant. Considering that the similarity aggregation scheme
provides relative increases of 17% and 22% in MAP@K and TPP@1, respectively,
compared to Re-MOVE, this trade-off in accuracy–scalability may seem reasonable
depending on the specific use case.

8.3.3.2 Approximate nearest neighbor experiments

We now turn to the ANN experiments for reducing retrieval time per query. For this
set of experiments, we consider only the case where K = 1000 as it yielded the best
performance in terms of TPP@1 and NRP@K while being close to its alternatives for
MAP@K (see Table 8.6). Figure 8.4 presents the results for the ANN experiments.
The space required for storing 859 k embeddings is 3.1 GB and 24 GB for ntrees values
of 200 and 2 k, respectively. In terms of average runtime per query, we observe im-
provements for all the ntrees and nnodes combinations, with values ranging from 0.56 s
to 0.73 s. However, for the cases where nnodes values are below 100 k, Prec@K scores

8.4 CHAPTER CONCLUSION 127

stay under 0.9 and reach around 1 only for nnodes ≥ 500k. RankAcc@K results,
on the other hand, show that for a score above 0.8, nnodes should be at least 2 M.
The discrepancies between Prec@K and RankAcc@K results suggest that the ANN
algorithm is useful for retrieving the same set of documents in a much faster way;
however, the order of the documents may show variations.

8.3.4 Conclusion

In this section, we have shared the results of a large-scale retrieval study using a ref-
erence corpus with more than 858 k tracks. We have shown that local alignment–
based systems, even with an optimized version for fast retrieval, are not suitable
for such large-scale corpora. Our embedding-based system, on the other hand, has
demonstrated computation times appropriate for such use cases. However, in terms
of identification performance, our system has resulted in a worse performance com-
pared with the evaluation scores shared in previous chapters, mainly due to perform-
ing against such a large-scale corpus. To improve the system performance, we have
proposed a two-step system, where the embedding-based model retrieves a set of top-
K candidates, and the local alignment–based method processes only that selected set
of candidates. With such a sequential system, we have demonstrated clear gains in
performance, however, at the cost of longer retrieval times per query. Finally, we
have experimented with an ANN algorithm to further reduce the retrieval time for our
embedding-based system.

8.4 Chapter conclusion

In this chapter, we have evaluated one of our VI systems in terms of identification
performance and runtime on two industrial use cases. Since the beginning of this
dissertation, we have touched on the industry aspect of our research, which arises
out of mainly two points: (1) the, perhaps, most important application scenario of
automatic VI systems is digital rights management, which is primarily an industrial
application, and (2) the MIP-Frontiers project, which includes our research, has an
emphasis on promoting collaboration between academia and industry. By collaborat-
ing with BMAT, we have identified and worked on two main use cases. Firstly, we
have proposed an end-to-end workflow to identify setlists of live concerts, which in-
corporates a VI system for identification and a heuristic-based algorithm for revising
and eliminating false positives to obtain a clean final report. We have tested our work-
flow on concerts of a variety of audio qualities and from different genres. Our results
have suggested that although our VI system, among the systems we considered, is
the most appropriate one for such a task in terms of accuracy and scalability, the
current performance may not be sufficient for using it in systems that interact with
clients. Secondly, we have set up a large-scale version retrieval study where we have
evaluated our VI system using a reference corpus of more than 858 k tracks. After ob-
taining the evaluation scores for our system, we have proposed a sequential two-step

128 APPLICATIONS IN INDUSTRIAL USE CASES

system to improve performance. We have observed certain increases in the accuracy,
however, along with certain decreases in the runtime efficiency. We have also exper-
imented with an approximate nearest neighbor search algorithm to further improve
the retrieval time of our embedding-based VI system. Overall, our findings for both
use cases suggest that although drastic improvements in retrieval speed have been
made in VI systems compared with the conventional local alignment–based ones, the
current level of identification performance may not be sufficient for deploying these
systems as-is. To bridge the gap between the goals of academic research and the re-
quirements of industrial applications, further research dedicated to addressing such a
gap is essential.

Chapter 9
Conclusion

9.1 Summary

We have begun this dissertation by motivating the reader on the vital role of mu-
sical versions in the world’s musical heritage. By doing that, we have aimed to shed
light on the fact that unlike many musical characteristics that may vary depending on
the musical tradition at hand, the intuition and skills for identifying musical versions
are rooted deep in certain cognitive skills that are crucial for our survival as species.
While being able to identify versions brings unequivocal value to our relationship
with music, efforts toward modeling such a skill to integrate it into automatic com-
putational systems may further advance our capabilities for creating, listening, and
appreciating music. Although one may lose sight of such motivations while build-
ing automatic version identification systems, we believe that delving into such philo-
sophical aspects of scientific research may help one to gain perspective toward their
ultimate goals.

Following the focus of the MIP-Frontiers project on further encouraging collaboration
between the academic and industrial institutions, we have set the main objective of
this dissertation to be the development of automatic version identification systems that
can be used for industry-scale corpora. Toward that objective, we have specified four
major ideas to focus on. Firstly, we have decided to concentrate our efforts on design-
ing data-driven systems since they had been proven effective in other MIR applica-
tions from both performance and computation speed perspectives. However, instead
of embracing a fully task-agnostic, data-driven approach, we have investigated ways
of incorporating task-specific domain knowledge into the data-driven models we have
developed. The results have demonstrated the effectiveness of that strategy. Secondly,
for a system to be approved for deployment in industrial use cases, it is required to
provide reliable results. Therefore, we have explored ideas to improve the accuracy
of data-driven VI systems. By exploiting feature fusion and ensemble approaches that
process different musical characteristics, we have achieved substantial improvements
in evaluation scores. Thirdly, the fact that the new content in music corpora increases

129

130 CONCLUSION

rapidly forces many retrieval systems to produce decisions as fast as possible. To
improve the retrieval speed of VI systems, we have explored and proposed embed-
ding distillation techniques through which we have demonstrated improvements in
the scalability of existing VI systems without experiencing a decrease in accuracy.
Lastly, to be aware of any harmful effects VI systems may have toward certain groups
of musicians, we have investigated the algorithmic bias of our VI systems. Since
our main objective is to use such systems in industrial use cases, preventing any un-
fair outcomes that may arise as a result of that should be of utmost importance for
a sustainable music ecosystem. Apart from the four major ideas outlined above, we
have also tested the effectiveness of our systems on two industrial use cases in a col-
laboration with a broadcast monitoring and licensing company. The results suggest
that our systems have made substantial progress in terms of being both accurate and
scalable; however, further research with the collaboration of academic and industrial
institutions seems to be required to deploy such systems for industrial applications.

improvements and optimizations seem to be required to deploy such systems for in-
dustrial applications.

We now provide an overview of our contributions and key results. With this, we aim
to concisely summarize the main takeaways that have been provided at the end of
each chapter. Finally, we conclude the dissertation by providing our views on open
issues, challenges, and future directions in VI research.

9.2 Contributions and key results

We now present an overview of the contributions of this dissertation. Complementary
to the summary that we have provided in Section 1.4, we here include a brief review
of the key results we have presented in each chapter. In addition to the overall contri-
butions outlined below, Appendix B contains the breakdown of specific contributions
of the author for each chapter.

C.1 A discussion of the concepts of “musical version” and “musical work” from
MIR, musicological, and legal perspectives — In Chapter 1, we have argued that in
MIR, the musical version and musical work concepts are defined based on the prac-
tical reasons such as how datasets are annotated. Although such definitions do not
correspond to how these concepts are defined in musicological and legal studies, find-
ing a universal definition is also a difficult task due to the complexity of the problem.
Therefore, by discussing these concepts from different contexts, we have aimed to in-
crease awareness of the richness of perspectives that exist when carrying out research
on the topic of musical versions.

C.2 A survey of the key ideas, techniques, datasets, and evaluation methods that
were proposed throughout two decades of VI research — In Chapter 2, we have
provided a detailed survey of the VI research from the 2000s up to the present. By
using an existing taxonomy, we have classified the individual components of the VI

9.2 CONTRIBUTIONS AND KEY RESULTS 131

systems. To the best of our knowledge, our survey is the only one that includes both
the knowledge- and data-driven modules designed for VI. We have also categorized
a number of ideas that had been proposed to improve the accuracy and scalability of
VI systems into six main categories. Lastly, we have reviewed the publicly available
datasets for VI, including the recent ones that consist of tens of thousands of tracks
for data-driven VI research.

C.3 A large-scale quantitative analysis on the frequency and extent of changes in
musical characteristics between version pairs — In Chapter 3, we have shared the
results of the first large-scale quantitative analysis for a better understanding of the
frequency and extent of changes in musical characteristics when musicians perform
versions. We have focused on five main characteristics: key, tempo, timing, structure,
and semantic aspects. We have devised custom measures for estimating pairwise
similarities in timing, structure, and semantic aspects. Our analysis has shown that
all the inspected characteristics show variations between versions on different levels.
Based on those results, we have argued that VI systems must incorporate strategies to
handle such variations for better performance.

C.4 A data-driven VI system that incorporates explicit, musically motivated mod-
ules for handling the common changes in musical characteristics between ver-
sions — In Chapter 4, we have proposed a novel, deep learning–based VI system
that combines knowledge-driven design decisions with a data-driven workflow. Our
system, MOVE, has been designed to encode each track into a fixed-size embedding
vector, regardless of the track duration. With this, computationally expensive simil-
arity estimation functions have been reduced to computing simple and fast functions
like Euclidean distance. Based on the findings from Chapter 3, we have used explicit
modules for handling transposition and structure changes that are common between
versions. We have also designed a data augmentation strategy that simulates changes
in key, tempo, and timing for each track, with the goal of making the proposed model
more robust against such changes. We have followed a metric learning approach to
train our network due to its advantages for dealing with a large number of classes.
The resulting model, MOVE, have achieved state-of-the-art performance by improv-
ing upon existing systems from accuracy and scalability perspectives.

C.5 A data-driven fusion approach to VI for achieving accuracy improvements
by combining the information from systems that process different musical char-
acteristics — In Chapter 5, we have studied possible means of further improving
the performance of MOVE by proposing a data-driven fusion approach. Although
achieving a plausible performance, MOVE extracts and processes only harmonic in-
formation from each track, which is suboptimal due to the complexity of connections
between versions. To address this, we have experimented with feature fusion and
ensemble approaches that combine two systems processing melodic and harmonic
features. Along with a simple distance averaging scheme, we have proposed a data-
driven approach for creating a fusion system, which has drastically improved the per-

132 CONCLUSION

formance of the individual systems that it consists of and has resulted in state-of-the-
art performances on two publicly available datasets.

C.6 An investigation toward methods for speeding up the retrieval phase of VI
systems without compromising the performance — In Chapter 6, we have invest-
igated a number of existing and proposed embedding distillation techniques to re-
duce the embedding size of data-driven VI systems while maintaining their accuracy.
While training MOVE, we have observed that larger embedding sizes have yielded
a better performance, however, at the cost of larger storage and longer runtime re-
quirements. With embedding distillation techniques, we have shown that learning a
more compact embedding space with fewer dimensions while preserving identifica-
tion performance is possible when the feature extractor part of the networks incorpor-
ates stronger priors rather than randomly initialized weights. We have obtained 99%
smaller embeddings that yielded up to a 3% performance increase. We have called
the resulting model Re-MOVE, which stands for “reduced MOVE.”

C.7 An investigation into the inherent algorithmic biases of VI systems — In
Chapter 7, we have conducted the first study ever to investigate the algorithmic bias in
VI systems. Acknowledging the impact that VI systems in industrial applications may
have on musicians, we have performed a large set of experiments by considering five
existing VI systems of different characteristics, six relevant attributes (year, popular-
ity, country, language, year, prevalence), and three stakeholders (performing artists
of the query and the reference tracks, and the composer). We have designed our ex-
periments with the purpose of evaluating whether any of the VI systems favor certain
groups of musicians or composers based on the attributes we have considered. Our
findings have shown that VI systems may indeed demonstrate discrepancies in identi-
fication performance based on their characteristics (e.g., using harmony- or melody-
based features, being learning- or heuristic-based, etc.), and certain characteristics of
the performing artists and composers. We have also shared our hypotheses on the
reasons for observed performance discrepancies for a number of cases.

C.8 Studies on the efficacy of our systems for industrial use cases — In Chapter 8,
we have evaluated one of our systems, Re-MOVE, on two industrial use cases: setlist
identification of live music events and large-scale version retrieval. Both of these
studies have been conducted in collaboration with BMAT.

In Section 8.2, we have proposed an end-to-end workflow for identifying the mu-
sical content and respective timestamps in long recordings of live music events. After
identifying the tracks in overlapped analysis windows using a VI system, our work-
flow further processes the initial candidates for consolidating and revising them using
a heuristic approach. We have also employed a simple classifier for reducing the num-
ber of false positives in the final list of results. We have compared three VI systems,
including Re-MOVE, while keeping the rest of the workflow the same. We have per-
formed our experiments on concerts of varying audio qualities and genres. Our results
have shown that among the ones we have considered, Re-MOVE was the only VI sys-

9.3 OPEN ISSUES, CHALLENGES, AND FUTURE DIRECTIONS 133

tem that has reached a promising performance while providing fast retrieval; however,
further improvements are needed to deploy such a system in industrial applications.

In Section 8.3, we have performed a large-scale retrieval study using a reference cor-
pus of more than 858 k tracks. After setting a baseline with Re-MOVE, we have pro-
posed a sequential two-step system, where Re-MOVE estimates similarities between
a query and the entire reference corpus and returns a set of candidates, and a second
system processes the same query and only the selected candidates to refine the results.
We have shown that such a sequential system brings slight improvements in perform-
ance but considerably increases the retrieval time. We have also investigated potential
gains in retrieval speed using Re-MOVE and an approximate nearest neighbor al-
gorithm. We have demonstrated a substantial decrease in runtime for the retrieval
phase compared with a brute-force approach.

C.9 A critical discussion on the current open issues and challenges of VI systems
along with potential future directions — In Section 9.3 (see below), we outline
some current open issues, challenges, and future directions in VI research. Apart
from the issues like the accuracy–scalability trade-off that has been discussed else-
where and many researchers are aware of, we discuss a number of issues that pre-
vious research had not addressed thoroughly. We categorize such issues and future
directions into five main groups: (1) the task definition, (2) evaluation methodologies,
(3) trade-offs regarding scalability, (4) accuracy gaps for underrepresented content,
and (5) applications of VI systems. By pointing out these issues and potential direc-
tions, we hope to contribute to better development practices in the field and increased
diversity on the topics VI research is involved with.

In addition to the contributions and key results described above, the research presented
in this dissertation resulted in three publicly available datasets, five code repositories,
a website, a system demo, and a tutorial at an international conference. The details of
these additional contributions can be found in Appendix C.

9.3 Open issues, challenges, and future directions

Although VI research has made substantial progress in the last 20 years, there are
many challenges that have yet to be addressed. We now outline some of such chal-
lenges and current open issues to provide guidance for researchers that are interested
in contributing to the field. These challenges include, but are not limited to, (1) the
task definition itself, (2) evaluation methodologies, (3) trade-offs that arise when scal-
ing VI systems, (4) accuracy gaps on certain underrepresented types of content, and
(5) the variety of applications and the different treatments they require.

9.3.1 Task definition

As discussed in Section 1.2.2, the definition of a musical version, especially a “cover
song,” may differ in various contexts. To avoid such differences, we have so far

134 CONCLUSION

favored a quite permissive definition in this dissertation, labeling all the tracks that
are derived from a musical composition as versions. Although this definition is con-
venient for introducing and discussing VI from an academic research point of view,
applications that consider legal aspects of VI (e.g., detecting copyright infringements)
may require different definitions that are more suitable for their purposes.

The definition of a version for legal applications often needs to be based upon the
rightsholders (typically songwriters and recording labels) rather than the musical con-
nections. For example, a composer may copyright a new arrangement of a folk song
that is in the public domain. According to our inclusive definition of a version, the
arrangement would be a version of the original, but legally, it may be a separate entity.
These rights themselves are often not well-defined, and there are a number of famous
lawsuits52 about whether or not the creators of a track must pay royalties to the right-
sholders. Publishing data, which provides a legal link between track metadata and
composition metadata, often exists in text form, linking songwriters/composers, track
titles, and recording/composition identifiers such as ISRCs/ISWCs53.

There are cases where this metadata is the only information separating two nearly
identical tracks (such as an original release and a remastered release) into different
legal entities. Thus, purely audio-based VI for legal applications is not possible in
many cases, and any successful system must consider additional information such as
editorial metadata to disambiguate unclear cases.

Apart from the legal perspective, current VI systems are typically built around a par-
ticular notion of which musical features are important for determining whether two
tracks are versions of one another. These notions fit well for some music traditions,
such as Western pop and classical music; however, there are other musical traditions
that break some of these assumptions. For example, in Indian art music, certain
melodic phrases or motifs are crucial for identifying the ragas (roughly speaking,
modes) that tracks belong to (Gulati et al., 2016). From a Western point of view,
two tracks that include versions of the same melodic phrase would mostly mean that
they originate from the same composition; however, in Indian art music, it can simply
mean that they belong to the same raga.

9.3.2 Evaluation methodologies

Evaluation of VI systems is typically performed on well-curated datasets (see Sec-
tion 2.5.1) using mostly rank-aware evaluation metrics (see Section 2.5.2). These
datasets are dominated by music with singing voice, music with well-defined ver-
sions, music from mostly pop, rock, and jazz genres, and generally do not contain
duplicates. Industry-scale music corpora, however, often have quite different distri-
butions. In such corpora, near-exact duplicates are very common, it is difficult to

52https://www.bbc.com/culture/article/20190605-nine-most-notorious-copyright-cases-in-music-
history

53https://isrc.ifpi.org/

https://www.bbc.com/culture/article/20190605-nine-most-notorious-copyright-cases-in-music-history
https://www.bbc.com/culture/article/20190605-nine-most-notorious-copyright-cases-in-music-history
https://isrc.ifpi.org/

9.3 OPEN ISSUES, CHALLENGES, AND FUTURE DIRECTIONS 135

apply the concept of versions for the majority of music, genres like rap and electronic
music constitute a large proportion of the data, plus a non-negligible subset of the
tracks does not contain singing voice. This presents a challenge when extrapolating
the performance of a system on an industry-scale corpus using evaluations performed
on well-curated datasets. Furthermore, there are several limitations of the commonly
used evaluation metrics. Firstly, they are highly sensitive to the number of relevant
tracks in the corpus per query, which may not be appropriate for VI since some com-
positions may have hundreds of versions while some others may have only a few, or
even zero. Additionally, the metrics mostly consider only the rank ordering of the
tracks and not the distances between the query and the retrieved items, which makes
it difficult to assess how well-separated the relevant items are from the irrelevant ones.

Near-duplicates (i.e., content that is the same but distorted enough so that a standard
music fingerprinting algorithm will not provide a match) present a particular chal-
lenge: given a query, VI systems will naturally assign a lower distance to a near-
duplicate compared to other versions that may contain several changes in musical
characteristics. This highlights both of the previously mentioned issues regarding the
evaluation metrics. For example, for precision at cut-off rank K (Prec@K; see Sec-
tion 2.5.2), the presence of duplicates can both increase and decrease the metric in an
unpredictable way, as this changes the number of relevant tracks for a given query.
Consider this toy example: corpus A has no duplicates, and corpus B is an extended
version of corpus A, where each item has one near-duplicate. Now consider a VI
system that, for a given query, would return 5 relevant results out of the first 10 for
corpus A (i.e., Prec@10 = 0.5). If the relevant results are in positions 1 through 5, the
equivalent query for corpus B would have 10 relevant results (i.e., Prec@10 = 1.0).
Conversely, if the relevant results are in positions 6 through 10 (for corpus A), the
equivalent query for corpus B would have 0 relevant results (i.e., Prec@10 = 0.0).

Music without well-defined versions, such as ambient music and soundscapes, leave
an open question: how should VI systems handle this type of content? Practically, a
VI system should not retrieve any matches when no versions are present. However,
this kind of content typically does not have clear melodic, harmonic, or structural
characteristics. As a result, the features VI has historically used are typically close
to zero everywhere and are confidently, and incorrectly, clustered together as a tight
group by VI systems.

The genre distributions of research datasets may introduce a bias toward certain input
representations and musical characteristics. For example, the success of PCP rep-
resentations in VI is fairly easy to explain for datasets having many tracks from the
pop, rock, and jazz genres. However, the performances of state-of-the-art systems
on other genres where rhythmic and timbral properties are highlighted is an under-
explored issue in VI (see Section 8.2). Considering the popularity of hip-hop and
electronic music genres (and their subgenres), this is clearly an issue to be addressed
in VI research to be useful in the current music ecosystem.

136 CONCLUSION

Finally, VI research, except for a subfield focusing on Western classical music, has
underexplored how systems behave for instrumental music, largely due to the existing
datasets being dominated by music with singing voice. As a result, the performance
of current VI systems on instrumental music is not well-understood, and thus the
performance on industry-scale corpora, which contain a considerable percentage of
instrumental content, cannot be inferred.

9.3.3 Scalability trade-offs

Although VI has clear industrial applications in the current music ecosystem, the
scope of scalability-related discussions in research papers is rather limited. It has been
demonstrated that vector-based techniques provide large benefits in computation and
memory requirements compared with alignment-based ones, but no systematic eval-
uation of vector-based techniques has been performed from a scalability perspective.
The scalability considerations in such works are typically limited to the size of the em-
bedding vectors. However, the computations that produce these vectors (e.g., feature
extraction algorithms, or deep neural network layers) are mostly ignored. Therefore,
here, we highlight two directions to cover this underexplored perspective.

Firstly, for the vector-based techniques, in particular, there is an additional accuracy–
scalability trade-off that arises especially in industry-scale datasets: retrieving the
k-nearest neighbors for a query. Consider a vector-based system, with vectors in Rd

under the Euclidean norm. In order to retrieve the k-nearest results from a corpus of N
items in an exact manner, at least O(N logN) operations are required, and these exact
algorithms are difficult to improve due to the “curse of dimensionality.” Even if prun-
ing techniques are employed to reduce N, when performing large numbers of lookups
for retrieving k-nearest neighbors, the computational efficiency can greatly influence
the speed and cost of deploying a VI system. In practice, approximate nearest neigh-
bor search algorithms54 are used (see Section 8.3). These algorithms provide effi-
cient approximations for finding the k-nearest neighbors for high-dimensional data
over large corpora and introduce a trade-off between the time per query and the re-
call (i.e., the percentage of true nearest neighbors returned): the higher the recall, the
slower the query. The degree of trade-off varies by algorithm and dataset, but roughly,
at 80% recall, these algorithms provide a speedup of a factor between 100 and 1000
over an exact computation. For a fixed speedup, the achieved recall typically de-
creases as the dimensionality of the vectors increases, which highlights an additional
motivation for the dimensionality reduction (see Chapter 6) or data projection meth-
ods (see Section 2.3.5).

Secondly, to better understand the time and memory complexities of VI systems, addi-
tional metrics such as floating point operations per second (FLOPS) and peak memory
usage can be reported. The goal then would be to use such metrics to compare entire
workflows when performing matching for many queries against a large corpus, from

54For example, https://github.com/erikbern/ann-benchmarks

https://github.com/erikbern/ann-benchmarks

9.3 OPEN ISSUES, CHALLENGES, AND FUTURE DIRECTIONS 137

feature extraction up through the final similarity estimation steps. Although not all VI
research needs to aim for industrial-level scalability, such information can be useful
for comparing application-oriented VI systems.

9.3.4 Accuracy gaps

Improving the accuracy of VI systems has been the main goal of most VI research, and
we now highlight a number of ideas to accelerate the progress toward this goal. The
commonly used features described in Section 2.3.1 have been successful at captur-
ing relevant information for quantifying similarities between versions for most main-
stream music. However, in some edge cases (e.g., cross-genre versions, a cappella
versions, and versions of drum solos), such features may fail drastically. Therefore,
to further improve the accuracy of current systems, other musical dimensions should
be considered. The biggest challenge here is to find ways to exploit these uncommon
musical characteristics while keeping in mind the principal invariances a VI system
must consider. For example, for certain cases, a particular rhythmic pattern may fa-
cilitate identification, but using only rhythmic information for identifying versions
would certainly fail in a large body of popular music where the rhythmic patterns are
similar for various compositions.

A musical dimension that has not been considered in previous works until very re-
cently is the lyrics. Lyrics could be a major factor for improving VI accuracy for
versions that share the same lyrics/rhyme patterns but little else, such as those with no
prominent melodic or harmonic characteristics to rely on, those with greatly varying
singing styles, or those with lyrics as the only connecting property. Estimating lyrics
from directly polyphonic audio is a challenging task that has been explored, but with
limited success. However, as has been done for harmony and melody, features cap-
turing approximate lyric information (e.g., phoneme-related features of the singing
voice) could be a useful, complementary signal to the existing feature set. Addition-
ally, onset and rhythm information is not yet well-captured by the existing features,
yet they are key features for determining similarity between certain types of music,
such as rap and electronic music.

Track metadata, such as tags describing the high-level musical properties, can also
be a powerful, underexplored signal for VI (Correya et al., 2018). Typically, systems
aim to be invariant to such high-level characteristics, but using tags such as “vocal”
or “instrumental” as a way of conditioning may improve system performances, as
they could inform the systems about what kind of properties they should focus on
exploiting.

As for more extreme examples, there are categories of music where none of the ex-
isting or aforementioned dimensions adequately capture what makes tracks similar or
not, such as sound art, soundscapes (e.g., rain sounds, city streets), ambient music
(e.g., singing bowls, drones), etc. In these cases, the composition is closely tied to the
properties of the recording itself, such as the precise sound qualities and placement

138 CONCLUSION

of events in time. To address such cases, music fingerprinting techniques could be
applied, e.g., as a preprocessing step of a VI system.

Another potential direction for improving accuracy is to fully embrace data-driven
representation learning. While hand-designing features has proven to be useful for
VI, it introduces a bias toward what VI systems are able to model. Alternatively,
end-to-end learning paradigms can be explored, where given a sufficient amount of
data, a system learns which properties of the track are most important for the task.
In particular, these techniques give systems the potential to uncover relations bey-
ond melody/harmony that are relevant for identifying matching versions. These tech-
niques have seen some success in other related domains such as speech recognition
and have not yet been explored for VI.

Finally, there is an opportunity for VI systems to place more focus on postprocessing
operations, such as version set enhancement methods. Such operations are generally
computationally cheap and are proven to improve accuracy. However, except for a
few research papers in the early 2010s, this research direction has been on standby.

9.3.5 Emphasis on subfields and applications

Most VI research focuses on the general problem of identifying and retrieving ver-
sions of tracks, but there are a number of underexplored subfields and practical applic-
ations of these systems. Certain subfields of VI focus on particular types of versions
in order to address or exploit specific characteristics and challenges. For example, in
versions of Western classical music (Zalkow & Müller, 2020; see the column “Per-
formances” in Figure 1.2), the musical variations are typically limited to those in
tempo, timing, key, “noise,” and possibly structure (e.g., the presence or absence of
repeats). Therefore, the systems designed to be used in such cases focus more on
being robust to noise and timing distortions while assuming melodic and harmonic
characteristics are likely to be shared between versions.

Rather than identifying full tracks, there is the interesting subproblem of identifying
versions of short queries, or phrases (e.g., 3–15 seconds; Müller et al., 2005). Consid-
ering the difficulties that music fingerprinting systems have with identifying versions
(even live performances), such an application scenario could address a particular need
for end-users. Moreover, given the ability to identify versions of short phrases, their
origins could be identified, which could enable musicologists to create phylogenetic
trees of musical phrases. Using these, musical influences within and between musical
genres and styles can be studied to have a better understanding of the evolution of
musical practice.

Another less-explored application is in “setlist identification,” wherein the task is to
identify versions from a long recording consisting of a sequence of versions of dif-
ferent tracks (see Section 8.2). The long recording could be, for example, a live
recording of a concert, a DJ set, or a medley. Such long recordings are usually pro-
cessed with overlapping windows that span typically 1–2 minutes. However, this is

9.3 OPEN ISSUES, CHALLENGES, AND FUTURE DIRECTIONS 139

error-prone, as the windows may cross multiple tracks. To avoid this, a segmentation
step can be performed beforehand, but such algorithms may also introduce erroneous
segments, especially when live tracks are interrupted briefly for banter or applause.
Therefore, solving problems other than identification performance may be crucial for
a VI system to be used for setlist identification.

In some applications, the typical setup of having a fixed corpus does not hold, and
instead, the VI problem exists in an “online” setting. In this case, the goal is to build
a graph of connections over time (e.g., as new tracks are added to a corpus) in an
online fashion. In this application, there are many open problems, such as how to
avoid error propagation (e.g., by applying version set enhancement methods), and
exploring efficient ways to perform the online steps.

Finally, applications that match audio to editorial metadata have not been widely ex-
plored. A common example is matching a registered “composition,” which exists
purely as text metadata, to a corpus of tracks. In this context, once there is at least one
track connected to a composition, standard VI techniques can be employed. Further, it
is common to match new tracks to existing “compositions” which already have several
matching tracks, moving the problem from track-to-track matching to track-to-clique
matching.

Version identification research has come a long way in the last 20 years: from com-
paring symbolic sequences to data-driven representation learning, a great number of
techniques and ideas have been studied to address this task that is deeply connected
to the history of musical practice. The quest for developing the perfect VI system
may never come to an end as the limitless creativity of musicians is most likely to
triumph no matter how well VI systems perform at their jobs. However, we shall
remind ourselves that this is not a zero-sum game: musicians getting more creative
with their versions leads to richer experiences for music listeners and more interesting
directions for VI research. The road so far has paved the way for a promising future
for the next generation of VI systems, but there is still a long way to go, because, all
in all, “there is nothing that says a great song cannot be interpreted at any time in
any way.”55

55Phil Ramone, as cited by Plasketes (2005).

M. Furkan Yesiler, Barcelona, November 18, 2021.

Bibliography

The numbers at the end of each bibliographic entry indicate the pages in which it is
cited.

Adams, H., Chepushtanova, S., Emerson, T., Hanson, E., Kirby, M., Motta, F.,
Neville, R., Peterson, C., Shipman, P., & Ziegelmeier, L. (2017). Persistence
images: A stable vector representation of persistent homology. The Journal of
Machine Learning Research, 18(1), 218–252. 52.

Avram, H. (2011). Cover & remix: Paradigms of adaptation in installation art. Cul-
tural Legitimation, 2(1), 6–30. 8, 9.

Barrett, F. S., Grimm, K. J., Robins, R. W., Wildschut, T., Sedikides, C., & Janata, P.
(2010). Music-evoked nostalgia: Affect, memory, and personality. Emotion, 10(3),
390–403. 2.

Barron, A. (2006). Copyright law’s musical work. Social & Legal Studies, 15(1),
101–127. 11, 12.

Barsalou, L. W. (1991). Deriving categories to achieve goals. Psychology of Learning
and Motivation, 27, 1–64. 2.

Baxter, G. & Sommerville, I. (2011). Socio-technical systems: From design methods
to systems engineering. Interacting with Computers, 23(1), 4–17. 97.

Bello, J. P. (2007). Audio-based cover song retrieval using approximate chord se-
quences: Testing shifts, gaps, swaps and beats. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), pp. 239–244. 27.

Bello, J. P. & Pickens, J. (2005). A robust mid-level representation for harmonic
content in music signals. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pp. 304–311. 19, 34.

Bertin-Mahieux, T. & Ellis, D. P. W. (2012). Large-scale cover song recognition using
the 2D Fourier transform magnitude. In Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR), pp. 241–246. 22, 27, 29, 30,
31, 33, 54, 56, 68, 81, 94, 112, 115.

143

144 BIBLIOGRAPHY

Bertin-Mahieux, T., Ellis, D. P. W., Whitman, B., & Lamere, P. (2011). The million
song dataset. In Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), pp. 591–596. 40, 41, 85.

Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F., & Widmer, G. (2016). Madmom:
A new Python audio and music signal processing library. In Proc. of the ACM
International Conference on Multimedia, pp. 1174–1178. 47.

Böck, S., Krebs, F., & Widmer, G. (2015). Accurate tempo estimation based on re-
current neural networks and resonating comb filters. In Proceedings of the Interna-
tional Society for Music Information Retrieval Conference (ISMIR), pp. 625–631.
49.

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G.,
Salamon, J., Zapata, J. R., & Serra, X. (2013). ESSENTIA: An audio analysis
library for music information retrieval. In Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR), pp. 493–498. 47, 99, 115.

Bogdanov, D., Won, M., Tovstogan, P., Porter, A., & Serra, X. (2019). The MTG-
Jamendo dataset for automatic music tagging. In Machine Learning for Music
Discovery (ML4MD) Workshop, International Conference on Machine Learning
(ICML). 120.

Brauneis, R. (2014). Musical work copyright for the era of digital sound technology:
Looking beyond composition and performance. Tulane Journal of Technology and
Intellectual Property, 17. 11, 12.

Bucilă, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression. In Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pp. 535–541. 88.

Butler, J. (2010). Musical works, cover versions and ‘Strange Little Girls’. Volume !,
7(1), 42–72. 11.

Cai, K., Yang, D., & Chen, X. (2016). Two-layer large-scale cover song identifica-
tion system based on music structure segmentation. In Proceedings of the IEEE
International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6. 22,
31, 37.

Cano, P., Batlle, E., Haitsma, J., & Kalker, T. (2005). A review of audio fingerprinting.
Journal of VLSI Signal Processing, 41(3), 271–284. 20, 112.

Carroll, M. W. (2003). A primer on U.S. intellectual property rights applicable to mu-
sic information retrieval systems. University of Illinois Journal of Law Technology
& Policy, 2003(2), 313–328. 12.

BIBLIOGRAPHY 145

Carroll, M. W. (2005). The struggle for music copyright. Florida Law Review, 57,
907–961. 12.

Casey, M. A. & Slaney, M. (2006). Song intersection by approximate nearest neighbor
search. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pp. 144–149. 22, 31, 38.

Chen, N., Li, W., & Xiao, H. (2018a). Fusing similarity functions for cover song
identification. Multimedia Tools and Applications, 77(2), 2629–2652. 21, 27, 30,
31, 33, 36, 37, 54, 55, 56, 67, 68, 81, 94.

Chen, Y., Wang, N., & Zhang, Z. (2018b). DarkRank: Accelerating deep metric learn-
ing via cross sample similarities transfer. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 2852–2859. 89.

Choi, K., Fazekas, G., Sandler, M., & Cho, K. (2017). Convolutional recurrent neural
networks for music classification. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2392–2396. 47,
52.

Chollet, F. et al. (2015). Keras. https://keras.io. 115.

Chouldechova, A. & Roth, A. (2020). A snapshot of the frontiers of fairness in ma-
chine learning. Communications of the ACM, 63. 98.

Constandinides, C. (2019). “You just got covered”: YouTube cover song videos as
examples of para-adaptation. In W. Schäfke-Zell & J. Fehrle (Eds.) Adaptation in
the Age of Media Convergence, pp. 111–132. Amsterdam University Press. 9.

Cooper, B. L. (2018). Cover me: The stories behind the greatest cover songs of all
time. Popular Music and Society, 41(2), 216–219. 8, 9.

Correya, A., Hennequin, R., & Arcos, M. (2018). Large-scale cover song detection
in digital music libraries using metadata, lyrics and audio features. arXiv preprint
arXiv:1808.10351. 37, 137.

Cusic, D. (2005). In defense of cover songs. Popular Music and Society, 28(2),
171–177. 8, 9.

Davies, D. L. & Bouldin, D. W. (1979). A cluster separation measure. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224–227. 89.

Day, B. (2011). In defense of copyright: Record labels, creativity, and the future of
music. Seton Hall Journal of Sports and Entertainment Law, 21(1), 61–103. 12.

Degani, A., Dalai, M., Leonardi, R., & Migliorati, P. (2013). A heuristic for distance
fusion in cover song identification. In Proceedings of the International Workshop
on Image Analysis for Multimedia Interactive Services (WIAMIS), pp. 1–4. 36.

https://keras.io

146 BIBLIOGRAPHY

Dineley, S. (2014). Covers uncovered: A history of the “cover version,” from Bing
Crosby to the Flaming Lips. Master’s thesis, The University of Western Ontario,
London, Ontario, Canada. 9.

Dodd, J. (2014). Upholding standards: A realist ontology of standard form jazz. The
Journal of Aesthetics and Art Criticism, 72(3), 277–290. 11.

Doras, G. (2020). Cover detection using deep learning. Ph.D. thesis, Sorbonne Uni-
versité, France. 19, 21.

Doras, G. & Peeters, G. (2019). Cover detection using dominant melody embeddings.
In Proceedings of the International Society for Music Information Retrieval Con-
ference (ISMIR), pp. 107–114. 23, 26, 28, 29, 30, 32, 34, 39, 40, 42, 75, 85, 99,
102, 103, 112.

Doras, G., Yesiler, F., Serrà, J., Gómez, E., & Peeters, G. (2020). Combining musical
features for cover detection. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pp. 279–286. 15, 24, 26, 27, 36, 74,
160.

Du, X., Yu, Z., Zhu, B., Chen, X., & Ma, Z. (2021). ByteCover: Cover song identific-
ation via multi-loss training. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 551–555. 24.

Edelsbrunner, H. & Harer, J. (2010). Computational topology: An introduction.
American Mathematical Society. 51.

Elezi, I., Vascon, S., Torcinovich, A., Pelillo, M., & Leal-Taixé, L. (2020). The
group loss for deep metric learning. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 277–294. 92.

Ellis, D. P. W. (2007). The “covers80” cover song data set. http://labrosa.ee.columbia.
edu/projects/coversongs/covers80/. 40, 41.

Ellis, D. P. W. & Poliner, G. E. (2007). Identifying ‘cover songs’ with chroma features
and dynamic programming beat tracking. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. IV, pp.
1429–1432. 20, 27, 28, 30, 33.

Fenet, S., Richard, G., & Grenier, Y. (2011). A scalable audio fingerprint method with
robustness to pitch-shifting. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pp. 121–126. 112.

Ferraro, A., Serra, X., & Bauer, C. (2021). Break the loop: Gender imbalance in music
recommenders. In Proceedings of the 2021 Conference on Human Information
Interaction and Retrieval (CHIIR), pp. 249–254. 98.

http://labrosa.ee.columbia.edu/projects/coversongs/covers80/
http://labrosa.ee.columbia.edu/projects/coversongs/covers80/

BIBLIOGRAPHY 147

Fisher, J. A. (2018). Jazz and musical works: Hypnotized by the wrong model. The
Journal of Aesthetics and Art Criticism, 76(2), 151–162. 11.

Fletcher, R. R., Nakeshimana, A., & Olubeko, O. (2021). Addressing fairness, bias,
and appropriate use of artificial intelligence and machine learning in global health.
Frontiers in Artificial Intelligence, 3. 98.

Foote, J. (2000). ARTHUR: Retrieving orchestral music by long-term structure. In
Proceedings of the International Society for Music Information Retrieval Confer-
ence (ISMIR). 6, 19, 33.

Foster, P., Dixon, S., & Klapuri, A. (2015). Identifying cover songs using information-
theoretic measures of similarity. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 23(6), 993–1005. 34.

Foucard, R., Durrieu, J.-L., Lagrange, M., & Richard, G. (2010). Multimodal sim-
ilarity between musical streams for cover version detection. In Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5514–5517. 21, 36.

Frankle, J. & Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, train-
able neural networks. In Proceedings of the International Conference on Learning
Representations (ICLR). 88.

Goehr, L. (1994). The Imaginary Museum of Musical Works: An Essay in the Philo-
sophy of Music. Oxford, UK: Clarendon Press. 11.

Goldberger, J., Roweis, S., Hinton, G., & Salakhutdinov, R. (2004). Neighbour-
hood components analysis. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 513–520. 91.

Gómez, E. (2006). Tonal description of polyphonic audio for music content pro-
cessing. INFORMS Journal on Computing, 18(3), 294–304. 48.

Gómez, E. & Herrera, P. (2006). The song remains the same: Identifying versions of
the same piece using tonal descriptors. In Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR), pp. 180–185. 28, 30, 33.

Gómez, E., Ong, B., & Herrera, P. (2006). Automatic tonal analysis from music sum-
maries for version identification. In Audio Engineering Society (AES) Convention
121. 20, 27, 31, 33.

Gracyk, T. (2013). Covers and communicative intentions. The Journal of Music and
Meaning, 11, 22–46. 8, 9.

148 BIBLIOGRAPHY

Grosche, P., Müller, M., & Serrà, J. (2012). Audio content-based music retrieval. In
M. Müller, M. Goto, & M. Schedl (Eds.) Multimodal Music Processing, Dagstuhl
Follow-Ups, vol. 3, pp. 157–174. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. XVII, 5, 159.

Gulati, S., Serrà, J., Ishwar, V., & Serra, X. (2016). Discovering rāga motifs by
characterizing communities in networks of melodic patterns. In Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 286–290. 134.

Haitsma, J., Kalker, T., & Oostveen, J. (2001). Robust audio hashing for content
identification. In International Workshop on Content-Based Multimedia Indexing
(CBMI). 112.

Han, J., Zhao, T., & Zhang, C. (2019). Deep distillation metric learning. In Proceed-
ings of the ACM Multimedia Asia (MMAsia). 89.

Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connec-
tions for efficient neural networks. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 1135–1143. 88.

Hanson, S. J. & Pratt, L. Y. (1988). Comparing biases for minimal network con-
struction with back-propagation. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 177–185. 88.

Hermans, A., Beyer, L., & Leibe, B. (2017). In defense of the triplet loss for person
re-identification. arXiv preprint arXiv: 1703.07737. 64.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531. 88.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand-
inavian Journal of Statistics, 6(2), 65–70. 103.

Humphrey, E. J., Nieto, O., & Bello, J. P. (2013). Data driven and discriminative
projections for large-scale cover song identification. In Proceedings of the Interna-
tional Society for Music Information Retrieval Conference (ISMIR), pp. 4–9. 23,
27, 29, 33, 34.

Huron, D. (2006). Sweet Anticipation: Music and the Psychology of Expectation.
Cambridge, Massachusetts: The MIT Press. 2.

Jiang, C., Yang, D., & Chen, X. (2020). Learn a robust representation for cover
song identification via aggregating local and global music temporal context. In
Proceedings of IEEE International Conference on Multimedia and Expo (ICME),
pp. 1–6. 28, 30, 32, 34.

BIBLIOGRAPHY 149

Joren, S. & Leman, M. (2014). Panako - A scalable acoustic fingerprinting system
handling time-scale and pitch modification. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), pp. 259–264. 112.

Khadkevich, M. & Omologo, M. (2013). Large-scale cover song identification using
chord profiles. In Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), pp. 233–238. 27, 28, 38.

Korzeniowski, F. & Widmer, G. (2016). Feature learning for chord recognition: The
deep chroma extractor. In Proceedings of the International Society for Music In-
formation Retrieval Conference (ISMIR), pp. 37–43. 55.

Krebs, F., Böck, S., & Widmer, G. (2015). An efficient state-space model for joint
tempo and meter tracking. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pp. 72–78. 50.

Kurth, F. & Müller, M. (2008). Efficient index-based audio matching. IEEE Transac-
tions on Audio, Speech, and Language Processing, 16(2), 382–395. 22, 34, 38.

LeCun, Y., Denker, J. S., & Solla, S. A. (1989). Optimal brain damage. In Advances
in Neural Information Processing Systems (NeurIPS), pp. 598–605. 88.

Lee, J., Chang, S., Choe, S. K., & Lee, K. (2018). Cover song identification using
song-to-song cross-similarity matrix with convolutional neural network. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 396–400. 34.

Levinson, J. (1980). What a musical work is. The Journal of Philosophy, 77(1), 5–28.
11.

Liu, Y., Li, Z., Xiong, H., Gao, X., & Wu, J. (2010). Understanding of internal
clustering validation measures. In IEEE International Conference on Data Mining
(ICDM), pp. 911–916. 89.

Magnus, C., Magnus, P. D., & Uidhir, C. M. (2013). Judging covers. The Journal of
Aesthetics and Art Criticism, 71(4), 361–370. 8.

Marolt, M. (2008). A mid-level representation for melody-based retrieval in audio
collections. IEEE Transactions on Multimedia, 10(8), 1617–1625. 26, 33, 38.

Martin, B., Brown, D. G., Hanna, P., & Ferraro, P. (2012). BLAST for audio se-
quences alignment: A fast scalable cover identification. In Proceedings of the In-
ternational Society for Music Information Retrieval Conference (ISMIR), pp. 529–
534. 22, 38.

Massey, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of
the American Statistical Association, 46(253), 68–78. 48, 103.

150 BIBLIOGRAPHY

McFee, B. & Bello, J. P. (2017). Structured training for large-vocabulary chord recog-
nition. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pp. 188–194. 47, 49, 55, 113.

McFee, B. & Ellis, D. P. W. (2014). Analyzing song structure with spectral cluster-
ing. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pp. 405–410. Taipei, Taiwan. 49.

McFee, B., Raffel, C., Liang, D., Ellis, D. P. W., McVicar, M., Battenberg, E., & Ni-
eto, O. (2015). librosa: Audio and music signal analysis in python. In Proceedings
of the Python in science conference (SciPy), pp. 18–25. 47, 115.

McFee, B., Salamon, J., & Bello, J. P. (2018). Adaptive pooling operators for weakly
labeled sound event detection. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 26(11), 2180–2193. 61.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey
on bias and fairness in machine learning. ACM Computing Surveys, 54(6). 97.

Meseguer-Brocal, G., Cohen-Hadria, A., & Peeters, G. (2018). DALI: A large data-
set of synchronized audio, lyrics and notes, automatically created using teacher-
student machine learning paradigm. In Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR), pp. 431–437. 89.

Meyer, L. B. (1956). Emotion and Meaning in Music. Chicago, USA: The University
of Chicago Press. 2.

Mosser, K. (2008). Cover songs: Ambiguity, multivalence, polysemy. Philosophy
Faculty Publications. 8.

Movshovitz-Attias, Y., Toshev, A., Leung, T. K., Ioffe, S., & Singh, S. (2017). No
fuss distance metric learning using proxies. In Proceedings of the International
Conference on Computer Vision (ICCV), pp. 360–368. 91.

Müller, M., Kurth, F., & Clausen, M. (2005). Audio matching via chroma-based stat-
istical features. In Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), pp. 288–295. 19, 27, 31, 33, 138.

Olteanu, A., Garcia-Gathright, J., de Rijke, M., Ekstrand, M. D., Roegiest, A., Lipani,
A., Beutel, A., Olteanu, A., Lucic, A., Stoica, A.-A., Das, A., Biega, A., Voorn,
B., Hauff, C., Spina, D., Lewis, D., Oard, D. W., Yilmaz, E., Hasibi, F., Kazai,
G., McDonald, G., Haned, H., Ounis, I., van der Linden, I., Garcia-Gathright, J.,
Baan, J., Lau, K. N., Balog, K., de Rijke, M., Sayed, M., Panteli, M., Sanderson,
M., Lease, M., Ekstrand, M. D., Lahoti, P., & Kamishima, T. (2021). FACTS-
IR: Fairness, accountability, confidentiality, transparency, and safety in information
retrieval. ACM SIGIR Forum, 53(2), 20–43. 97.

BIBLIOGRAPHY 151

Ortega, J. L. (2021). Cover versions as an impact indicator in popular music: A
quantitative network analysis. PLoS ONE, 16(4), e0250212. 8.

Osmalskyj, J. (2017). A Combining Approach to Cover Song Identification. Ph.D.
thesis, University of Liege, Belgium. 45.

Osmalskyj, J., Van Droogenbroeck, M., & Embrechts, J.-J. (2016). Enhancing cover
song identification with hierarchical rank aggregation. In Proceedings of the In-
ternational Society for Music Information Retrieval Conference (ISMIR), pp. 136–
142. 21, 22, 36, 37.

Park, W., Kim, D., Lu, Y., & Cho, M. (2019). Relational knowledge distillation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3967–3976. 89.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12, 2825–
2830. 88, 116.

Plasketes, G. (2005). Re-flections on the cover age: A collage of continuous coverage
in popular music. Popular Music and Society, 28(2), 137–161. 1, 8, 9, 139.

Porcaro, L. & Gómez, E. (2019). 20 years of playlists: A statistical analysis on
popularity and diversity. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pp. 130–136. 98.

Rafii, Z., Coover, B., & Han, J. (2014). An audio fingerprinting system for live ver-
sion identification using image processing techniques. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 644–648. 112.

Ratcliff, J. W. & Metzener, D. (1988). Pattern matching: The gestalt approach. Dr.
Dobb’s Journal, 13(7), 46–51. 124.

Ravuri, S. & Ellis, D. P. W. (2010). Cover song detection: From high scores to general
classification. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 65–68. 21, 36.

Räz, T. (2021). Group fairness: Independence revisited. In Proceedings of the ACM
Conference on Fairness, Accountability, and Transparency, pp. 129–137. 98, 99.

Reuter, M., Wolter, F.-E., & Peinecke, N. (2006). Laplace–Beltrami spectra as
‘Shape-DNA’ of surfaces and solids. Computer-Aided Design, 38(4), 342–366.
49.

152 BIBLIOGRAPHY

Robinson, K., Brown, D., & Schedl, M. (2020). User insights on diversity in mu-
sic recommendation lists. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pp. 446–453. 98.

Rosch, E. (1999). Reclaiming concepts. Journal of Consciousness Studies, 2(11–12),
61–77. 2.

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976).
Basic objects in natural categories. Cognitive Psychology, 8(3), 382–439. 2.

Rouse, D., Watkins, A., Porter, D., Harer, J., Bendich, P., Strawn, N., Munch, E.,
DeSena, J., Clarke, J., Gilbert, J., Chin, S., & Newman, A. (2015). Feature-aided
multiple hypothesis tracking using topological and statistical behavior classifiers.
In Signal Processing, Sensor/Information Fusion, and Target Recognition XXIV,
pp. 189–200. 51.

Sailer, C. & Dressler, K. (2006). Finding cover songs by melodic similarity. Music
Information Retrieval Evaluation eXchange (MIREX). 28.

Salamon, J., Serrà, J., & Gómez, E. (2012). Melody, bass line, and harmony rep-
resentations for music version identification. In Proceedings of the International
World Wide Web Conference (WWW): International Workshop on Advances in Mu-
sic Information Research (AdMIRe), pp. 887–894. 21, 26, 36.

Schapire, R. E. & Freund, Y. (2012). Boosting: Foundations and Algorithms. Cam-
bridge, Massachusetts: The MIT Press. 111.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding
for face recognition and clustering. In Proceedings of the International Conference
on Computer Vision (ICCV), pp. 815–823. 64.

Seetharaman, P. & Rafii, Z. (2017). Cover song identification with 2D Fourier trans-
form sequences. In Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 616–620. 65, 69.

Selbst, A. D., Boyd, D., Friedler, S. A., Venkatasubramanian, S., & Vertesi, J. (2019).
Fairness and abstraction in sociotechnical systems. In Proceedings of the Confer-
ence on Fairness, Accountability, and Transparency, pp. 59–68. 97.

Serrà, J. (2011). Identification of Versions of the Same Musical Composition by Pro-
cessing Audio Descriptions. Ph.D. thesis, Universitat Pompeu Fabra, Spain. XVII,
1, 7, 45, 68, 73.

Serrà, J., Gómez, E., & Herrera, P. (2010). Audio cover song identification and sim-
ilarity: background, approaches, evaluation, and beyond. In Z. W. Ras & A. A.
Wieczorkowska (Eds.) Advances in Music Information Retrieval, Studies in Com-
putational Intelligence, vol. 16, chap. 14, pp. 307–332. Berlin, Germany: Springer.
6.

BIBLIOGRAPHY 153

Serrà, J., Gómez, E., Herrera, P., & Serra, X. (2008). Chroma binary similarity and
local alignment applied to cover song identification. IEEE Transactions on Audio,
Speech, and Language Processing, 16(6), 1138–1151. 20, 27, 29, 30.

Serrà, J., Kantz, H., Serra, X., & Andrzejak, R. G. (2012). Predictability of music
descriptor time series and its application to cover song detection. IEEE Transac-
tions on Audio, Speech, and Language Processing, 20(2), 514–525. 34.

Serrà, J., Pascual, S., & Karatzoglou, A. (2018). Towards a universal neural network
encoder for time series. In Artificial Intelligence Research and Development, Fron-
tiers in Artificial Intelligence and Applications, vol. 308, pp. 120–129. Amsterdam,
The Netherlands: IOS Press. 61.

Serrà, J., Serra, X., & Andrzejak, R. G. (2009a). Cross recurrence quantification for
cover song identification. New Journal of Physics, 11, 093017. 21, 27, 29, 30, 31,
33, 54, 56, 68, 81, 94, 99, 112, 115.

Serrà, J., Zanin, M., Laurier, C., & Sordo, M. (2009b). Unsupervised detection of
cover song sets: Accuracy improvement and original identification. In Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR),
pp. 225–230. 21, 35, 54, 56, 67, 68, 81, 94.

Shakespeare, D., Porcaro, L., Gómez, E., & Castillo, C. (2020). Exploring artist
gender bias in music recommendation. In Proceedings of the ImpactRS Workshop
at ACM Recommender Systems. 98.

Silva, D. F., Chin-Chia, M. Y., Batista, G. E. A. P. A., & Keogh, E. J. (2016). SiMPle:
Assessing music similarity using subsequences joins. In Proceedings of the Inter-
national Society for Music Information Retrieval Conference (ISMIR), pp. 23–29.
54, 56, 65, 68, 69, 81, 94, 159.

Silva, D. F., de Souza, V. M. A., & Batista, G. E. A. P. A. (2015). Music shapelets for
fast cover song recognition. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pp. 441–447. 22, 40, 41.

Silva, D. F., Falcão, F. V., & Andrade, N. (2018). Summarizing and comparing music
data and its application on cover song identification. In Proceedings of the Interna-
tional Society for Music Information Retrieval Conference (ISMIR), pp. 732–739.
31, 55, 69.

Smith, T. F. & Waterman, M. S. (1981). Identification of common molecular sub-
sequences. Journal of Molecular Biology, 147(1), 195–197. 30.

Sonnleitner, R. & Widmer, G. (2014). Quad-based audio fingerprinting robust to time
and frequency scaling. In Proceedings of the International Conference on Digital
Audio Effects (DAFx), pp. 1–8. 112.

154 BIBLIOGRAPHY

Swartz, A. (2002). MusicBrainz: A semantic web service. IEEE Intelligent Systems,
17(1), 76–77. 100.

Tagg, P. (2000). ‘The Work’: An evaluative charge. In M. Talbot (Ed.) The Musical
Work: Reality or Invention?, pp. 153–167. Trowbridge: Liverpool University Press.
11.

Tralie, C. J. (2017). Early MFCC and HPCP fusion for robust cover song identifica-
tion. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pp. 294–301. 21, 27, 33, 35, 36, 37.

Tralie, C. J. & Bendich, P. (2015). Cover song identification with timbral shape se-
quences. In Proceedings of the International Society for Music Information Re-
trieval Conference (ISMIR), pp. 38–44. 27, 35, 54, 56.

Tralie, C. J. & McFee, B. (2019). Enhanced hierarchical music structure annotations
via feature level similarity fusion. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 201–205. 49.

Tsai, T., Prätzlich, T., & Müller, M. (2017). Known-artist live song identification
using audio hashprints. IEEE Transactions on Multimedia, 19(7), 1569–1582. 112.

Tversky, B. & Hemenway, K. (1984). Objects, parts, and categories. Journal of
Experimental Psychology, 113(2), 169–193. 1, 2.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 6000–6010. 32.

Wang, A. (2003). An industrial-strength audio search algorithm. In Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 112.

Wang, J.-C., Yen, M.-C., Yang, Y.-H., & Wang, H.-M. (2014). Automatic set list
identification and song segmentation for full-length concert videos. In Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR),
pp. 239–244. 112, 113.

Wright, L. (2019). Ranger - a synergistic optimizer. https://github.com/lessw2020/
Ranger-Deep-Learning-Optimizer. 92.

Wu, C.-W. & Lerch, A. (2017). Automatic drum transcription using the student-
teacher learning paradigm with unlabeled music data. In Proceedings of the In-
ternational Society for Music Information Retrieval Conference (ISMIR), pp. 613–
620. 89.

https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer

BIBLIOGRAPHY 155

Xu, X., Chen, X., & Yang, D. (2018). Key-invariant convolutional neural network
toward efficient cover song identification. In Proceedings of IEEE International
Conference on Multimedia and Expo (ICME), pp. 1–6. 23, 29, 32, 34, 39, 40, 41,
59, 65, 69.

Ye, Z., Choi, J., & Friedland, G. (2019). Supervised deep hashing for highly effi-
cient cover song detection. In Proceedings of the IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR), pp. 234–239. 30.

Yesiler, F., Doras, G., Bittner, R. M., Tralie, C. J., & Serrà, J. (2021a). Audio-based
musical version identification: Elements and challenges. IEEE Signal Processing
Magazine, 38(6), 115–136. XIX, 14, 17, 159, 160, 163.

Yesiler, F., Miron, M., Serrà, J., & Gómez, E. (2022). Assessing algorithmic biases
for musical version identification. In ACM International Conference on Web Search
and Data Mining (WSDM). (to appear). 16, 99, 160, 163.

Yesiler, F., Molina, E., Serrà, J., & Gómez, E. (2021b). Investigating the efficacy of
music version retrieval systems for setlist identification. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 541–545. 16, 113, 160, 163.

Yesiler, F., Serrà, J., & Gómez, E. (2020a). Accurate and scalable version identi-
fication using musically-motivated embeddings. In Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
21–25. 15, 23, 29, 32, 34, 39, 58, 159, 162.

Yesiler, F., Serrà, J., & Gómez, E. (2020b). Less is more: Faster and better music ver-
sion identification with embedding distillation. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), pp. 884–892. 16, 86,
160, 163.

Yesiler, F., Tralie, C., Correya, A. A., Silva, D. F., Tovstogan, P., Gómez, E., & Serra,
X. (2019). Da-TACOS: A dataset for cover song identification and understand-
ing. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pp. 327–334. 15, 27, 37, 40, 41, 42, 46, 159, 162.

Yu, L., Yazici, V. O., Liu, X., van de Weijer, J., Cheng, Y., & Ramisa, A. (2019a).
Learning metrics from teachers: Compact networks for image embedding. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2907–2916. 89.

Yu, Z., Xu, X., Chen, X., & Yang, D. (2019b). Temporal pyramid pooling convolu-
tional neural network for cover song identification. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 4846–4852. 23, 28,
32, 34, 39, 40, 42, 65, 69, 85.

156 BIBLIOGRAPHY

Zalkow, F. & Müller, M. (2020). Learning low-dimensional embeddings of audio
shingles for cross-version retrieval of classical music. Applied Sciences, 10(1). 24,
31, 85, 138.

Zbikowski, L. M. (2002). Conceptualizing Music: Cognitive Structure, Theory, and
Analysis. Oxford, UK: Oxford University Press. 1.

Zhai, A. & Wu, H. (2019). Classification is a strong baseline for deep metric learning.
In Proceedings of the British Machine Vision Conference (BMVC). 91.

Appendix A
Publications by the Author

Peer-reviewed journals

Yesiler, F., Doras, G., Bittner, R. M., Tralie, C. J., & Serrà, J. (2021). Audio-based
musical version identification: Elements and challenges. IEEE Signal Processing
Magazine, 38(6), 115–136.

Full articles in peer-reviewed conferences

Yesiler, F., Miron, M., Serrà, J., & Gómez, E. (2022). Assessing algorithmic bi-
ases for musical version identification. In Proceedings of the ACM International
Conference on Web Search and Data Mining (WSDM). (to appear).

Yesiler, F., Molina, E., Serrà, J., & Gómez, E. (2021). Investigating the effic-
acy of music version retrieval systems for setlist identification. In Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 541–545.

Yesiler, F., Serrà, J., & Gómez, E. (2020). Less is more: Faster and better music
version identification with embedding distillation. In Proceedings of the Interna-
tional Society for Music Information Retrieval Conference (ISMIR), pp. 884–892.

Doras, G., Yesiler, F., Serrà, J., Gómez, E., & Peeters, G. (2020). Combining
musical features for cover detection. In Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR), pp. 279–286.

Yesiler, F., Serrà, J., & Gómez, E. (2020). Accurate and scalable version identi-
fication using musically-motivated embeddings. In Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
21–25.

157

158 PUBLICATIONS BY THE AUTHOR

Yesiler, F., Tralie, C., Correya, A. A., Silva, D. F., Tovstogan, P., Gómez, E., &
Serra, X. (2019). Da-TACOS: A dataset for cover song identification and under-
standing. In Proceedings of the International Society for Music Information Re-
trieval Conference (ISMIR), pp. 327–334.

Yesiler, F., Bozkurt, B., & Serra, X. (2018). Makam recognition using extended
pitch distribution features and multi-layer perceptrons. In Proceedings of the Sound
and Music Computing Conference (SMC), pp. 249–253.

Yesiler, F., & Ramirez, R. (2018). A machine learning approach to classification
of phonation modes in singing. In Proceedings of the Sound and Music Computing
Conference (SMC), pp. 362–367.

Theses

Yesiler, F. (2018). Analysis and automatic classification of phonation modes in
singing. Master’s thesis, Universitat Pompeu Fabra, Barcelona, Spain.

Additional and up-to-date information about the author may be found at the author’s
web page56

56https://furkanyesiler.github.io/

https://furkanyesiler.github.io/

Appendix B
Breakdown of Contributions by

the Author

Below is the list of specific contributions of the author (F.Y.) for each of the chapters
in this dissertation:

Chapter 1 — Parts of this chapter are based on Yesiler et al. (2021a), which was
led by F.Y. Specifically, F.Y. and Rachel Bittner (R.B.; Spotify, France) prepared Fig-
ure 1.2. F.Y. drafted and finalized all the written content in this chapter that is based
on Yesiler et al. (2021a). Moreover, Figure 1.1 is taken from Grosche et al. (2012),
which is licensed under Creative Commons BY-ND.

Chapter 2 — This chapter is based on Yesiler et al. (2021a), which was led by F.Y.
Specifically, F.Y., R.B., Guillaume Doras (G.D.; IRCAM, France), and Christopher
Tralie (C.T.; Ursinus College, USA) wrote the initial draft. G.D. and F.Y. prepared
Figures 2.1 and 2.2. F.Y., G.D., R.B., C.T., and Joan Serrà (J.S.; Dolby Laboratories,
Spain) contributed to the final version of the article.

Chapter 3 — This chapter is based on Yesiler et al. (2019), which was led by F.Y.
Specifically, F.Y., C.T., Albin Correya (A.C.; Moodagent, Denmark), Diego F. Silva
(D.S.; Federal University of São Carlos, Brazil), and Philip Tovstogan (P.T.; Uni-
versitat Pompeu Fabra, Spain) wrote the initial draft. F.Y. curated the dataset, organ-
ized the metadata, and extracted the shared features. C.T. developed the techniques
for structure, timing, and semantic aspect analysis outlined in 3.3 and prepared Fig-
ures 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7. A.C. and C.T. led the implementation of exist-
ing algorithms outlined in Section 3.4. D.S. implemented the algorithm SiMPle (Silva
et al., 2016). F.Y., C.T., A.C., D.S., and P.T. contributed to the final version of the pa-
per. Emilia Gómez (E.G.; Universitat Pompeu Fabra, Spain) and Xavier Serra (X.S.;
Universitat Pompeu Fabra, Spain) supervised the project.

Chapter 4 — This chapter is based on Yesiler et al. (2020a), which was led by F.Y.
Specifically, F.Y. designed and performed the experiments. F.Y. and J.S. contributed
to the final version of the paper. J.S. and E.G. supervised the project.

159

160 BREAKDOWN OF CONTRIBUTIONS BY THE AUTHOR

Chapter 5 — This chapter is based on Doras et al. (2020), which was led by G.D.
Specifically, G.D. and F.Y. formulated the research problem and the experimental
design. G.D. and F.Y. performed the feature extraction for the datasets SHS4- and Da-
TACOS, respectively. G.D. and F.Y. designed the neural network model MICE. G.D.
designed and implemented the distance averaging scheme. G.D. and F.Y. designed the
data-driven late fusion scheme, and G.D. performed the experiments. G.D. and F.Y.
analyzed and discussed the results. G.D. prepared Figure 5.2. G.D. wrote the initial
draft of the paper. G.D., F.Y., J.S., E.G., and Geoffroy Peeters (G.P.; TelecomParis,
France) contributed to the final version of the paper. J.S., E.G., and G.P. supervised
the project. F.Y. performed the error analysis in Section 5.3.5, using the pairs of tracks
provided by G.D.

Chapter 6 — This chapter is based on Yesiler et al. (2020b), which was led by F.Y.
Specifically, F.Y. designed and performed the experiments. F.Y. and J.S. contributed
to the final version of the paper. J.S. and E.G. supervised the project.

Chapter 7 — This chapter is based on Yesiler et al. (2022), which was led by F.Y.
Specifically, F.Y. designed and performed the experiments. F.Y., J.S., and Marius
Miron (M.M.; Universitat Pompeu Fabra, Spain) discussed the experimental results.
M.M. contributed to the fairness and bias aspects of the paper. F.Y. and J.S. contrib-
uted to the final version of the paper. M.M., J.S., and E.G. supervised the project.

Chapter 8 — Section 8.2 of this chapter is based on Yesiler et al. (2021b), which
was led by F.Y. Specifically, F.Y. designed and performed the experiments. F.Y. and
Emilio Molina (E.M.; BMAT, Spain) contributed to the dataset design and curation.
F.Y. and E.M. discussed the experimental results. F.Y., E.M., and J.S. contributed to
the final version of the paper. E.M., J.S., and E.G. supervised the project. Section 8.3
of this chapter is based on a work F.Y. did under the supervision of E.M. at BMAT.
Specifically, F.Y. and E.M. designed the experiments. F.Y. and Guillem Cortès (G.C.;
Universitat Pompeu Fabra, Spain) prepared the dataset. F.Y. performed the experi-
ments and analyzed the results.

Chapter 9 — Section 9.3 of this chapter is based on Yesiler et al. (2021a), which was
led by F.Y. Specifically, R.B. and F.Y. wrote the initial draft. F.Y., R.B., G.D., C.T.,
and J.S. contributed to the final version of the article.

Appendix C
Additional Contributions

Datasets

Da-TACOS — To address the need for a large dataset designed for training and eval-
uating VI systems, we collected and publicly shared Da-TACOS under Creative Com-
mons BY-NC-SA 4.0 license. It includes training, validation, and benchmark parti-
tions with 83,904 tracks (14,499 cliques), 14,000 tracks (3,500 cliques), and 15,000
tracks (3,000 cliques), respectively. All the aforementioned partitions include disjoint
sets of musical works to avoid evaluation bias. The version annotations are obtained
using the API of SHS, and they are shared under the Creative Commons BY-NC 3.0
license. Due to legal constraints, we share pre-extracted features rather than audio
files. All audio files used for computing the features are encoded in MP3 format with
varying bit rates, and their sample rate is 44.1 kHz. Along with the features, we share
the metadata that is linked to the composition and performance IDs used in SHS. The
list of pre-extracted features, details about the included metadata, and the instruc-
tions on how to obtain the dataset can be found at the supplementary website of the
project57.

Figure A.1 shows the distributions of tracks per clique for the training (83.9 k tracks,
left) and the validation partitions (14.0 k tracks, right). The number of tracks per
clique ranges from 2 to 109 in the training set, and from 2 to 11 in the validation
set. Our intention was to mimic real-world data where it is more likely to have more
unique works with less number of versions, rather than having a balanced dataset in
terms of the number of tracks per clique. In the benchmark partition, however, we
aimed for a more balanced distribution in terms of the number of tracks per clique.
This partition includes 13,000 tracks in 1,000 cliques (13 tracks for each clique), and
2,000 noise tracks that do not belong to any other clique. By having more tracks
per clique, we aimed to increase the chances of including challenging cases that may
confuse the VI systems.

57https://mtg.github.io/da-tacos/

161

https://mtg.github.io/da-tacos/

162 ADDITIONAL CONTRIBUTIONS

Clique sizes0

500

1000

1500

2000

2500

3000

3500
Nu

m
be

r o
f c

liq
ue

s

Clique sizes0

200

400

600

800

1000

1200

Nu
m

be
r o

f c
liq

ue
s

Figure A.1: Distribution of the number of tracks per clique for the training (left) and the
validation (right) partitions.

VI-Bias — For analyzing the algorithmic bias in VI systems, we created the VI-Bias
dataset. We used a subset of the SHS4- dataset (see Section 2.5.2) and annotated
the tracks in terms of their metadata and label categories we used in our experiments
(gender, popularity, country, language, year, prevalence). We share the VI-Bias data-
set publicly under Creative Commons BY-NC-SA 4.0 license. More information on
the dataset can be found in Section 7.2.3.1. The instructions on how to obtain the
dataset can be found at the project repository58.

ASID — For developing and evaluating our setlist identification system, we created
the ASID dataset. It contains 75 concerts and all the tracks that are played in those
concerts. Due to legal constraints, we share pre-extracted features, metadata, You-
Tube or Soundcloud links for the concerts and individual tracks under Creative Com-
mons BY-NC-SA 4.0 license. More information on the dataset can be found in Sec-
tion 8.2.2.5. The instructions on how to obtain the dataset can be found at the project
repository59.

Code repositories

acoss (https://github.com/furkanyesiler/acoss) — This repository contains the code
for reproducing the feature extraction for preparing the Da-TACOS dataset and the
benchmarking experiments described in Yesiler et al. (2019). The feature extraction
part uses open-source libraries from the MIR community. The benchmarking part
contains implementations of seven knowledge-driven VI systems for facilitating re-
producible evaluation in VI research.

move (https://github.com/furkanyesiler/move) — This repository contains the code
for reproducing the model training and evaluation described in Yesiler et al. (2020a).
Along with detailed explanations for how to use the code, the repository contains the
pretrained weights for the MOVE model (see Chapter 4).

58https://github.com/furkanyesiler/vi_bias
59https://github.com/furkanyesiler/setlist_id

https://github.com/furkanyesiler/acoss
https://github.com/furkanyesiler/move
https://github.com/furkanyesiler/vi_bias
https://github.com/furkanyesiler/setlist_id

ADDITIONAL CONTRIBUTIONS 163

Figure A.2: The landing page of the supplementary website for Yesiler et al. (2021a).

re-move (https://github.com/furkanyesiler/re-move) — This repository contains the
code for reproducing the model training and evaluation described in Yesiler et al.
(2020b). It contains the detailed explanations for how to use the code and the pre-
trained weights for the Re-MOVE model (see Chapter 6).

vi_bias (https://github.com/furkanyesiler/vi_bias) — This repository contains the
code for reproducing the algorithmic bias evaluation experiments described in Yesiler
et al. (2022), and instructions on how to obtain the VI-Bias dataset.

setlist_id (https://github.com/furkanyesiler/setlist_id) — This repository contains the
code for reproducing the setlist identification experiments described in Yesiler et al.
(2021b), and instructions on how to obtain the ASID dataset.

Other

Website on versions (https://furkanyesiler.github.io/musical_version_id_spm/) —
We created a supplementary website to facilitate understanding some of the concepts
mentioned in Yesiler et al. (2021a). The landing page can be seen in Figure A.2. The
content in the website can be categorized into seven main groups:

Version types: This part contains a number of version pairs that are challenging
for the VI systems to identify. Moreover, we include 50 different versions of
the track “Total Eclipse of the Heart” by Bonnie Tyler, annotated by the types
of versions.

Input representations: This part contains four types of input representations

https://github.com/furkanyesiler/re-move
https://github.com/furkanyesiler/vi_bias
https://github.com/furkanyesiler/setlist_id
https://furkanyesiler.github.io/musical_version_id_spm/

164 ADDITIONAL CONTRIBUTIONS

that VI systems use, extracted for the track “Don’t Stop Believin”’ by Journey.

Melody vs. Harmony: This part contains a number of version and non-version
pairs that would cause contradicting outcomes for VI systems that process
melodic information and harmonic information.

Public domain arrangements: This part contains two examples of public do-
main arrangements that are protected by copyright.

Music copyright lawsuits: This part contains tracks from a number of famous
music copyright lawsuits.

Music publishing metadata: This part contains an example of the music pub-
lishing metadata and how unorganized it can be.

Publicly available datasets: This part contains a list of publicly available data-
sets for VI.

System demo (https://replicate.ai/mtg/musical-version-identification) — We created
an online demo of one of our VI systems using the templates from Replicate.ai60 (see
Figure A.3). Our system demo provides two use cases:

Users can provide two tracks by either uploading audio files or by indicating
YouTube links. We then extract the embeddings of the both tracks and compute
a similarity score. The resulting score is compared to similarity distributions
of version and non-version pairs computed using the Da-TACOS benchmark
subset (see Figure A.4).

Users can provide a single track by either uploading an audio file or by indicat-
ing a YouTube link. We then extract the embedding of that track and compute
its similarity against a reference corpus that contains precomputed embeddings.
Users can choose between the Da-TACOS benchmark subset or the entire Da-
TACOS dataset as the reference corpus. The results are returned in a table
format (see Figure A.5).

Tutorial (https://bit.ly/versions-tutorial) — We presented a tutorial on musical ver-
sion identification in the scope of the International Society of Music Information Re-
trieval Conference (ISMIR) in 202061. The presentation slides are publicly available.

60https://replicate.ai/
61https://program.ismir2020.net/tutorials.html

https://replicate.ai/mtg/musical-version-identification
https://bit.ly/versions-tutorial
https://replicate.ai/
https://program.ismir2020.net/tutorials.html

ADDITIONAL CONTRIBUTIONS 165

Figure A.3: The input options for the system demo based on the template provided by Rep-
licate.ai.

166 ADDITIONAL CONTRIBUTIONS

Figure A.4: The output of the system demo obtained by comparing two versions of the track
“Like a Rolling Stone” by Bob Dylan and John Mayer.

ADDITIONAL CONTRIBUTIONS 167

Figure A.5: The output of the system demo obtained by retrieving top-10 results from the
benchmark subset of Da-TACOS using a version of the track “Riders on the Storm” performed
by Dezperadoz.

	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	List of Abbreviations and Symbols
	Introduction
	Motivation
	Key concepts
	Task definition
	Versions
	Musical work

	Scope and objectives
	Summary of the contributions
	Dissertation outline

	Scientific Background
	Introduction
	A historical survey of version identification systems
	1995–2005: Precursors of version identification systems
	2005–2010: The first version identification systems
	2010–2015: Improving accuracy & scalability
	2015–today: Transition to data-driven version identification

	Building blocks of version identification systems
	Feature extraction
	Transposition invariance
	Tempo and timing invariance
	Structure invariance
	Similarity estimation

	Beyond building blocks: accuracy and scalability improvements
	Version set enhancement
	Feature fusion
	Ensemble systems
	Pruning
	Fast indexing
	Data augmentation

	Datasets and evaluation metrics
	Datasets
	Evaluation metrics

	Toward Data-driven Version Identification
	Introduction
	Curating a dataset
	Quantitative analysis of modifiable musical characteristics
	Overview
	Analysis details

	Benchmarking existing systems
	Search for data-driven input features
	Conclusion

	Musically Motivated Version Embeddings
	Introduction
	Methods
	Input representation
	Network architecture
	Training strategy

	Results
	Evaluation methods
	Effect of embedding dimension
	Ablation study
	Comparison with the state of the art
	Error analysis

	Conclusion

	Improving Accuracy with Data-driven Fusion
	Introduction
	Methods
	Input representations
	Network architecture
	Comparing features
	Combining features

	Results
	Evaluation methodology
	Comparing individual systems
	Ensemble and fusion experiments
	Comparison with the state of the art
	Error analysis

	Conclusion

	Improving Scalability with Embedding Distillation
	Introduction
	Methods
	The base model
	Embedding distillation techniques
	Training details

	Results
	Evaluation methods
	Embedding distillation experiments
	Comparison with the state of the art
	Error analysis

	Conclusion

	Exploring the Algorithmic Bias in Version Identification
	Introduction
	Methods
	Systems
	Attributes
	Dataset and evaluation

	Results
	Main findings
	Discussion

	Conclusion

	Applications in Industrial Use Cases
	Introduction
	Identifying setlists in live music recordings
	Introduction
	Methods
	Results
	Conclusion

	Large-scale retrieval with an industrial corpus
	Introduction
	Methods
	Results
	Conclusion

	Chapter conclusion

	Conclusion
	Summary
	Contributions and key results
	Open issues, challenges, and future directions
	Task definition
	Evaluation methodologies
	Scalability trade-offs
	Accuracy gaps
	Emphasis on subfields and applications

	Bibliography
	Publications by the Author
	Breakdown of Contributions by the Author
	Additional Contributions

