
Neural Networks For Singing Voice
Extraction In Monaural Polyphonic Music

Signals

Pritish Chandna

TESI DOCTORAL UPF / 2021

Thesis Directors:

Dr. Emilia Gómez

Music Technology Group

Dept. of Information and Communication Technologies

Universitat Pompeu Fabra, Barcelona, Spain





Dissertation submitted to the Department of Information and Communication Techno-

logies of Universitat Pompeu Fabra in partial fulfillment of the requirements for the

degree of

DOCTOR PER LA UNIVERSITAT POMPEU FABRA

Copyright c© 2021 by Pritish Chandna

Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0

Music Technology Group (http://mtg.upf.edu), Department of Information and Communication Techno-

logies (http://www.upf.edu/dtic), Universitat Pompeu Fabra (http://www.upf.edu), Barcelona, Spain.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://mtg.upf.edu
http://www.upf.edu/dtic
http://www.upf.edu




III

The doctoral defense was held on ......................... at the Universitat Pompeu Fabra and

scored as ...........................................................

Dr. Emilia Gómez Gutierrez

(Thesis Supervisor)

Universitat Pompeu Fabra (UPF), Barcelona, Spain

Dr. Antoine Liutikus

(Thesis Committee Member)

Inria, Montpellier, France

Dr. Marius Miron

(Thesis Committee Member)

Universitat Pompeu Fabra (UPF), Barcelona, Spain

Dr. Estefanía Cano

(Thesis Committee Member)

AudioSourceRE, Singapore



IV

This thesis has been carried out at the Music Technology Group (MTG ) of Universitat

Pompeu Fabra in Barcelona, Spain, from Feb. 2017 to Mar. 2021. It is supervised by

Dr. Emilia Gómez.

This work has been supported by the Department of Information and Communica-

tion Technologies (DTIC ) PhD fellowship (2017-21), Universitat Pompeu Fabra, the

TROMPA (TROMPA H2020 770376) Project.



Acknowledgments

The PhD journey over the last four years was a transformative and challenging one.

I am grateful to have received support and guidance from a plethora of people both

academic and personal during this period. I am extremely grateful to Dr. Emilia Gómez

for having recognized within me a potential that. even I never thought possible and to

Dr. Xavier Serra for accepting me into the masters’ program where the journey began.

I was lucky to share an office with the brilliant minds of Dr. Jordi Bonada and Merlijn

Blaauw, from whom I tried to absorb as much knowledge as I could.

The Music Technology Group is filled with exceptional talent that I had the privilege

to interact with over the last six years. Such interactions fostered friendships which

will last a lifetime and which I will always be thankful for. It is an impossible task

to comprehensively list each individual, but I will always remember the time spent

with Pablo Alonso, Dmitry Bogdano, Xavier Favory, Helena Custa, Marius Miron,

Lorenzo Porcaro, Olga Slizovskaia, Jordi Pons, Rong Gong, Antonio Ramires and

Furkan Yessler, among many many others.

Friendships are the strongest pillars of support that carries one through life and I would

like to express my gratitude to all my friends in Barcelona and Delhi who have con-

stantly supported me throughout the crests and troughs of life. To name but a few would

be unfair and for that I will, with sincerest apologies, forgo the tradition of listing out

names.

Finally, I would like to thank my parents, who encouraged and supported my decision

to quit a job in the high paying financial sector pursue higher studies. My mother, Dr.

Nirupma Chandna, is by far the kindest and strongest person I have come come to know

in my life. Her love, nurturing and intellectual influence has made me everything I am

V



VI

and will be in the future. Words fail me as I try to express my gratitude towards her

and my father, Dr. Chandesh Chandna, to whom I would like to dedicate this thesis.

The man was there for me, each step of my life from the day I was born, through my

intolerable adolescence and the early stages of my adult life. Not a single day goes

by that I do not remember his smiling face, wishing to see it again. His exceptional

intellect and knowledge could only be matched by his compassion and values. I only

hope to live up to be half the man he was. I remember his joy when I told him that I

would try to add the doctor prefix to my name and it is a shame that he will not be with

us when the day comes to pass. I hope not to disappoint and to honour and cherish his

memory forever.



Abstract

This thesis dissertation focuses on singing voice extraction from polyphonic musical

signals. In particular, we focus on two cases; contemporary popular music, which typ-

ically has a processed singing voice with instrumental accompaniment and ensemble

choral singing, which involves multiple singers singing in harmony and unison.

Over the last decade, several deep learning based models have been proposed to separ-

ate the singing voice from instrumental accompaniment in a musical mixture. Most of

these models assume that the musical mixture is a linear sum of the individual sources

and estimate time-frequency masks to filter out the sources from the input mixture.

While this assumption doesn’t always hold, deep learning based models have shown

remarkable capacity to model the separate sources in a mixture.

In this thesis, we propose an alternative method for singing voice extraction. This

methodology assumes that the perceived linguistic and melodic content of a singing

voice signal is retained even when it is put through a non-linear mixing process. To

this end, we explore language independent representations of linguistic content in a

voice signal as well as generative methodologies for voice synthesis. Using these, we

propose the framework for a methodology to synthesize a clean singing voice signal

from the underlying linguistic and melodic content of a processed voice signal in a

musical mixture.

In addition, we adapt and evaluate state-of-the-art source separation methodologies

to separate the soprano, alto, tenor and bass parts of choral recordings. We also use

the proposed methodology for extraction via synthesis along with other deep learning

based models to analyze unison singing within choral recordings.
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Resum

Aquesta tesi se centra en l’extracció de veu cantada a partir de senyals musicals poli-

fònics. En particular, ens centrem en dos casos; música popular contemporània, que

normalment té una veu cantada processada amb acompanyament instrumental, i cant

coral, que consisteix en diversos cantants cantant en harmonia i a l’uníson. Durant

l’última dècada, s’han proposat diversos models basats en l’aprenentatge profund per

separar la veu de l’acompanyament instrumental en una mescla musical. La majoria

d’aquests models assumeixen que la mescla és una suma lineal de les fonts individuals

i estimen les màscares temps-freqüència per filtrar les fonts de la mescla d’entrada. Tot

i que aquesta assumpció no sempre es compleix, els models basats en l’aprenentatge

profund han demostrat una capacitat notable per modelar les fonts en una mescla. En

aquesta tesi, proposem un mètode alternatiu per l’extracció de la veu cantada. Aquesta

metodologia assumeix que el contingut lingüístic i melòdic que percebem d’un senyal

de veu cantada es manté fins i tot quan es tracta d’una mescla no lineal. Per a això,

explorem representacions del contingut lingüístic independents de l’idioma en un se-

nyal de veu, així com metodologies generatives per a la síntesi de veu. Utilitzant-les,

proposem una metodologia per sintetitzar un senyal de veu cantada a partir del contin-

gut lingüístic i melòdic subjacent d’un senyal de veu processat en una mescla musical.

A més, adaptem i avaluem metodologies de separació de fonts d’última generació per

separar les parts de soprano, contralt, tenor i baix dels enregistraments corals. També

utilitzem la metodologia proposada per a l’extracció mitjançant síntesi juntament amb

altres models basats en l’aprenentatge profund per analitzar el cant a l’uníson dins dels

enregistraments corals.

(Translated from English by Helena Cuesta)
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Resumen

Esta disertación doctoral se centra en la extracción de voz cantada a partir de señales

musicales polifónicas de audio. En particular, analizamos dos casos; música popular

contemporánea, que normalmente contiene voz cantada procesada y acompañada de

instrumentación, y canto coral, que involucra a varios coristas cantando en armonía y

al unísono.

Durante la última década, se han propuesto varios modelos basados en aprendizaje

profundo para separar la voz cantada del acompañamiento instrumental en una mez-

cla musical. La mayoría de estos modelos asumen que la mezcla musical es una suma

lineal de fuentes individuales y estiman máscaras de tiempo-frecuencia para extraer-

las de la mezcla. Si bien esta suposición no siempre se cumple, los modelos basados

en aprendizaje profundo han demostrado tener una gran capacidad para modelar las

fuentes de la mezcla.

En esta tesis proponemos un método alternativo para extraer voz cantada. Esta técnica

asume que el contenido lingüístico y melódico que se percibe en la voz cantada se

retiene incluso cuando la señal es sometida a un proceso de mezcla no lineal. Con este

fin, exploramos representaciones del contenido lingüístico independientes del lenguaje

en la señal de voz, así como metodos generativos para síntesis de voz. Utilizando estas

técnicas, proponemos la base para una metodología de síntesis de voz cantada limpia a

partir del contenido lingüístico y melódico subyacente de la señal de voz procesada en

una mezcla musical.

Además, adaptamos y evaluamos metodologías de separación de fuentes de última ge-

neración para separar las voces soprano, alto, tenor y bajo de grabaciones corales. Tam-

bién utilizamos la metodología propuesta para extracción mediante síntesis junto con

XI
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otros modelos basados en aprendizaje profundo para analizar canto al unísono dentro

de grabaciones corales.

(Translated from English by Pablo Alonso-Jiménez)
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Chapter 1
Introduction

The voice has been one of the fundamental means of communication between humans

since the emergence of our species. The ability to produce and distinguish distinct

sequences of sounds has allowed for the formation of language and the subsequent the

evolution of society and technology. While language and speech are the de facto means

of human communication, there are some abstract concepts, like emotions (Scherer

et al., 2003), that are not well encapsulated by language alone, leading to a so called

semantic gap. Music, and in particular singing, provides a bridge across this gap and

has been practiced both as a means of social entertainment and the passage of ideas

across geographies and generations.

Various forms of singing exist across cultures around the world; from the katajjaq

singing of the Inuit tribes of the northern Tundra regions of Canada to the polyphonic

yodeling of the Ituri people in the forests of the Democratic Republic of Congo (Potter

& Sorrell, 2012). Evidence has been found that singing traditions existed since ancient

times, allowing for communication of ideas from mouth to mouth before the invention

of written textual culture. While song and music are generally dismissed as a leisurely

or extracurricular activities with limited value, singing has often served as a powerful

means of spreading revolutionary propaganda especially in opposition to oppression.

The French revolution in the 1790s was inspired by several songs including the famous

5
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La Marseillaise, and other hymns such as Chant du départ and Carmagnole. The Span-

ish socialist revolution was accompanied by the A Las Barricadas anthem, whereas the

American struggle for independence was inspired by songs such as Free America and

Poor Old Tory. The Indian equivalent of the same also had its revolutionary coun-

terparts including Aye mere watan ke logo and Ye desh hai veer jawaano ka. Even in

modern times, singing retains an important cultural significance. Various artists like the

Sex Pistols, Bob Dylan and more recently, Donald Glover and Kendrick Lamar have

used singing and music to bring attention to social injustice and invoke political change

through massive public movements. Such artists use the singing voice as an instrument

within the music they compose to convey information that words alone are not suf-

ficient to transmit. In addition, music and singing has been noted to have therapeutic

effects related to speech deficits associated with conditions such as Parkinson’s disease,

autism and brain lesions (Monroe et al., 2020; Wan et al., 2010). Such activity has been

linked to the brain’s emotional and cognitive functioning, and has been explored in the

Banda Sonora Vital (Personal Life Soundtrack) project (Navarro, 2013).

As such, analysing the singing voice provides an avenue into understanding human

nature. Singing and music have had an important role to play in man’s evolution.

While Charles Darwin proposed the the role of music was to attract the opposite sex,

philosophers such as Pythagoras believed that studying music and the mathematical

structures within was fundamental to understanding the fundamental concepts of real-

ity. Indeed the first analysis of the human voice was of a ten-second fragment of the

French folk song Au Clair de la Lune, by Edouard-Leon Scott (de Martinville, 1860)

in 1860. The French inventor used stenographic device to inscribe the waveform of the

sound produced while singing the song on a glass plate. Since then, audio recording

and analysis technologies have improved leaps and bounds and have evolved into a

field of research and application known commonly as audio signal processing or audio

processing (AP). Researchers have used audio processing to represent and understand

intrinsic aural structures present in the voice, providing insight into the perceptual qual-
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ities of the voice. This understanding has opened the door for several practical branches

of audio processing for the voice including:

Source separation which deals with separating the voice signal from other signals

like noise or musical instruments. The sub-branch applied to musical signals is

often referred to as musical source separation and involves separating the various

instruments in a musical mixture. Speech source separation aims the signals

pertaining to the voices to two or more speakers speaking asynchronously at the

same time.

Voice synthesis is the task of generating a speech signal given certain parameters

like linguistic content and a speaker identity. It includes text to speech (TTS)

synthesis and singing voice synthesis (SVS).

Music Information Retrieval is the branch of signal processing the extract in-

formation from a musical signal in a way that it can be interpreted by humans.

In the case of the singing voice, this can include information like the melody,

linguistic information and the identity of the speaker.

Voice conversion is the task of changing the perceived speaker of the voice signal

while retaining the intelligible linguistic content.

While this thesis utilizes concepts from each of these branches, it primarily focuses on

source separation. Source separation is a particularly important and well researched

branch of audio signal processing that aims to separate the individual sound sources

from a mixture of sources. Although the field has received attention from researchers

through the last century, data-driven deep learning approaches have led to a significant

improvement in performance and results over the last decade. Such algorithms gener-

ally assume that the mixture is a linear sum of the individual sources and use spectral

filtering to separate the sources. Such a process is based on the auditory masking pro-

cess, wherein an audio source that has dominant energy in a frequency band masks
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other sources within the band (Moore et al., 2009). The limitation of such methodolo-

gies is that they can only extract the processed form of the vocal signal present in the

mixture, which may or may not be desirable for the end application.

This thesis aims to overcome this limitation for singing voice extraction in two differ-

ent contexts; contemporary popular music which includes the singing voice with effects

combined with an instrumental accompaniment and ensemble choral singing. In Part

II, we propose a methodology to synthesize the vocal signal present in the input mixture

such that the perceptual content of the signal is retained in the output. This method-

ology is motivated by the analysis by synthesis theory of speech perception (Stevens,

1972, 1960), which states that humans use mental synthesis to identify the linguistic

content of a speech signal. We assume that the perceived content of a singing voice

signal remains unchanged when it is mixed with instrumental accompaniment. To this

end, we study speech and singing voice synthesis methodologies, representations of

content used for synthesis and information retrieval techniques to extract such content

from a signal.

In Part III, we apply state-of-the-art (SOTA) source separation algorithms in conjunc-

tion with our proposed methodology to separate the individual voices in ensemble

choral singing in the soprano, alto, tenor bass format. This format of choir singing

involves groups of multiple singers singing simultaneously in four parts which are ar-

ranged in harmony. Within each part, there might be multiple singers singing in unison.

As the mixture of the 4 distinct parts can be assumed to be a linear mixture, we adapt

mask-based source separation algorithms to separate these parts from a mixture re-

cordings. The individual voices within a unison mixture are indistinguishable, but are

perceived to be singing the same melodic and linguistic content. As such, we use the

methodology proposed in Part II to model the unison singing signal.

In the rest of this chapter, we look at past analysis of the voice including the produc-

tion mechanism, tools used for analysis, distinguishable features, differences between

speech and singing and methodologies for separating the voice from other sources. We
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then discuss the motivation for the research carried out in this thesis and the context in

which it can be applied. This is followed by a list of contributions and the objectives

and structure of the rest of the thesis.

1.1 The voice as a signal

The media for distribution and transmission have evolved over the centuries. While

early music was transmitted purely by word-of-mouth means, written representations

were invented and iteratively formalized to represent the content of musical pieces

known as songs. Such a representation is called a score. The oldest known form of a

score can be dated back to 1400 BC (Kilmer & Civil, 1986) and provides instructions

for performing a piece of music in an organized melodic format. The commonly ac-

cepted modern form a score developed around the 14th century and provides a system

for representation of melodic, rhythmic and linguistic content to be sung by the singer

or played on various instruments for a performance of a song. Scores generally provide

guidelines for singing and can be interpreted by artists.

More recent advancements of technology have allowed us to represent audio and music

in a reproducible machine readable format, known as a signal.The act of encapsulating

the audio information in such a format is called recording. Music and singing it self

has evolved with such technology, which allows opens new avenues for understanding

and producing audio, voice and music. In the next section, Section 1.1.1, we briefly

discuss the production mechanism of the human voice, followed by a summary of the

methodologies used for analysis of the same.

1.1.1 Voice production mechanism

The human voice is generated by a combination of the lungs, the larynx, the pharynx,

the nose and the mouth. The lungs start out by generating an air-stream through an ex-

cess of pressure (Sundberg & Rossing, 1990). The larynx contains mucous membrane

lining, which are commonly known as vocal cords or folds and the opening between
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them is known as the glottis. These folds open and close as the air-stream passes

through them, creating a pulse, with a frequency that depends on the air pressure in the

lungs as well the vocal folds. This pulse passes through the vocal tract, consisting of

the larynx, the pharynx and the mouth. The tract acts as a resonance chamber, which

amplifies certain frequencies. This leads to a periodic waveform with a distinct har-

monic spectral structure. Sounds created in this manner are generally termed as voiced

sounds and include vowel sounds and can be sustained over long periods of time.

Other mechanisms for voice sounds creation include closing various parts of the mouth

structure like the tongue, alveolar ridge and the lips, to stop the flow of air. Such

sounds are termed as plosives. Sounds which are created using partially blocked air

flow include fricatives and affricates. Nasal sounds are created by diverting the flow

of air through the nose instead of the mouth while flow of air through the sides of

the tongue generates lateral sounds. Approximant sounds are created with interactions

between the tip of the tongue and the alveolar area of the mouth. Such sounds are

typically classified as consonants. While most consonant sounds are unvoiced, some

like the fricatives are classified as voiced.

1.1.2 Analyzing the voice

Like all sounds, the human voice propagates through the air through fluctuations in air

pressure. When these fluctuations reach a human ear, they cause the tympanic mem-

brane inside to vibrate. These vibrations are transmitted through the cochlea, which

contains a Reissner’s membrane and basilar member, the later of which transduces the

vibrations into neural activity, via inner hair cells, different groups of which react to

distinct frequencies present in the vibrations, through a phenomenon known as phase

locking. Following the encoding of the physical vibrations by the ear mechanism, it has

been observed that the human central nervous system uses a tonotopic (Young, 2008)

representation for interpretation of the audio received by the ear. Such a representation

consists of frequency-based clustering in the activation of the neural population in the
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system.

A similar mechanism for recording and analysing sounds is used technologically. A

microphone used for recording sounds consists of a membrane that vibrates, deviat-

ing from the central position. Such deviations are sampled at regular intervals 1 and

the resulting recorded signal is termed as a waveform. Signals are sequences of ob-

servations which are distributed over time. In signal processing, it is common to use

n ∈ {1,2,3...N} as a representation of discrete time and t ∈ {1,2,3...T} as that of

continuous time. For the context of this thesis, we will cover discrete-time signals,

generally represented by the symbols a and c. The signal pertaining to the clean voice

is represented by x. A sample of the voice signal, x at time n is represented as x(n).

However, for the sake of convenience, we will use the shorthand x.

Modelling the human nervous model, a computationally recorded waveform is often

analyzed through convolutions with complex sinusoidal basis functions. This opera-

tion, known as the Fourier Transform results in the projection of the signal onto the

basis function, and gives us a distribution of the audio signal over various frequencies.

The same operation carried over overlapping windowed frames allows us to analyze

the evolution of the frequency distribution in the signal over time and is known as the

Short-Time Fourier Transform (STFT) (McAulay & Quatieri, 1986). The resulting

complex matrix has one axis representing time and the other frequency and is often

called the spectrogram. We refer to the spectrogram of a signal a as A and for the

voice signal, x as X. Generally, the magnitude part of the spectrogram, |A|, can be

used to visualize the distribution of energy across frequency bands and time in a signal.

The logarithm of the spectrogram is often used for visualisation and analysis as the log-

arithmic scale has been shown to be closely related to human perception (Stevens et al.,

1937; Sundberg & Rossing, 1990). In thesis, we will refer to the linear spectrogram of

a signal as its spectrogram.

1Sampling frequencies of 44.1 kHz or 48kHz are used for musical signals whereas 8kHz or 16kHz
are used for transmission of speech in telephony.
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Various structures can be seen in frequency distribution of a voice signal. The voiced

parts of a voiced signal show a harmonic nature with energy distribution over multiples

of a frequency, known as harmonics. The lowest common denominator of the harmon-

ics is often termed as the fundamental frequency (f0). This frequency is determined

by the vibration of the vocal folds. The perceived pitch of a signal has been shown to be

related to the logarithm of the fundamental frequency (Stevens et al., 1937; Sundberg

& Rossing, 1990).

The frequencies amplified by the human resonant tract and the articulators can be ob-

served as peaks within the frequency spectrum of the voice signal and are often term

as formants. The relative position of the two lowest formants in a segment of a speech

signal has been shown to be a determinant factor in the perception of the vowel sound

for that segment. Non-voiced parts of human speech are generally less harmonic in

nature and their perception is usually affected by the transition from a voiced to un-

voiced segment to speech or vice-versa (Sundberg & Rossing, 1990). It can be seen

from Figure 1.1 that the human voice is a combination of harmonic and inharmonic

parts. As such, the voice is often modeled as a combination of pure tone sinusoids, a

sample for which can easily be determined from knowledge of previous samples and

noise, any sample of which is completely independent of past samples (Rafii et al.,

2018).

A common model used for the human voice is called the source-filter model (Fant,

2001; Dudley, 1939). This model comprises of an excitation signal, representing the

vibration of the vocal folds. Such an excitation signal might have a periodic nature,

representing voiced parts of the human speech, or be more noise-like, representing

unvoiced parts of speech. The excitation signal is passed through a series of band-pass

filters (Dudley, 1939), mimicking the filtering process of the vocal tract. This gives a

distinct spectral structure to the generated signal, with certain frequencies representing

formants being amplified. Such a structure is often termed as the spectral envelope of

the voice signal and is used in both analysis of voice recordings and the synthesis of
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new voice signals. Models used for synthesis of speech in this manner are known as

vocoders and are discussed in Section 2.4.1.

Analysis of the voice is also commonly done via Mel-frequency cepstral coefficients

(MFCCs) (Davis & Mermelstein, 1980), which make use of a logarithmic scale of

frequencies known as the mel-scale (Stevens et al., 1937). The mel-scale has been

closely linked to human perception of audio, with consecutive units in the scale be-

ing perceived at an equal distance of separation by listeners. MFCCs are coefficients

of the of the mel-frequency cepstrum (MFC) calculated by taking the discrete cosine

transform (DCT) of the of the logarithm of the spectrogram of a signal on a mel-scale.

These coefficients model the response of the human auditory system and have proven

to be useful in several applications such as voice recognition (Chakraborty et al., 2014),

sound classification and instrument recognition (Müller, 2007) among others. The mel-

scale spectrogram is often termed as the mel-spectrogram and is also useful for speech

analysis (Qian et al., 2019).

1.1.3 Components of voice signals

Humans can interpret speech signals to derive information pertaining to the speaker’s

identity, emotional state and physical location (Holt & Lotto, 2010). However, the

primary function of speech is to transmit the intended information of the speaker

(Moore et al., 2009), typically through the medium of language. Speech and language

have been the focus of much research, through two distinct branches of study. The

branch of auditory speech perception deals with perceptual mapping from acoustic

signals to a sequential and categorical representation such as words, syllables or phon-

emes. Such a representation is referred to as the linguistic content of a speech signal.

Psycholinguistics is the study of interpretation of meaning from the linguistic content

of a signal.

Much research in the field of auditory speech perception has been dedicated to the study

of phonemes, which are defined as "the smallest linguistic unit that changes meaning
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within a particular language" (Holt & Lotto, 2010). The auditory mapping process

from acoustic signal to a phonetic representation is quite complex as the acoustic signal

is subject to high variability both inter-speaker and intra-speaker. Humans are capable

of speech perception, under robust conditions including in the presence of noise and

distortions (Diehl, 2008). This process of perception takes into account acoustic fea-

tures in the speech signal such as changes in formant patterns, fundamental frequency,

formant transition duration, voice onset time (VOT), among others to form a represent-

ation of linguistic features.

Phonemes include voiced vowels and voiced and unvoiced consonants, as discussed

in Section 1.1.1. Each language uses distinct combinations of various voiced and un-

voiced phonemes. If two speakers of similar linguistic background were to read the

same line of text at a constant pace, then the phonetic sequence and the phonological

content for both speakers would be the same (Raphael et al., 2007). The sequence of

phonemes is parsed by the human cognitive mechanism to form meaningful language

representations like words. Such a parsing process is language dependent and requires

knowledge of the language being heard. While full details of linguistic perception

are outside the scope of this thesis, we define the linguistic content as the speaker

independent phonological content of a voice signal. In the context of this thesis, the

linguistic content of a signal is denoted by Z.

As seen in Figure 1.1, the signals for different speakers reading the same text is signific-

antly different. This leads to the second element of speech that we consider, prosody.

This is a combination of elements like intonation, emphasis and rhythm (Silverman

et al., 1992), which are almost completely dependent on the speaker and may be influ-

enced by variable factors such as emotions of the speaker at the time of speech. Inton-

ation is defined is that variation in the pitch of a voice, which is a perceptual quality of

sounds that humans can perceive as being high or low. The sensation of pitch is closely

related to the fundamental frequency (f0) of the air pressure pulses created in the vo-

cal folds, particularly for voiced sounds. In general, the f0 is defined as the lowest rate
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Figure 1.1: Log-scale spectrograms of the speech signals of three speakers, a female and 2
males saying the phrase "Please call Stella". The speech samples were taken from the VCTK
corpus (Yamagishi et al., 2019).

of repetition of the cycles of air pressure in a sound signal and is generally expressed

in Hertz, which is the number of cycles of a periodic signal per second. The perceived

pitch of a signal has been shown to be correlated to the logarithm of the f0, defined in

Hertz (Stevens et al., 1937). A signal with a higher f0 is generally perceived to have

a higher pitch than a signal with lower f0. The f0 of a voice signal can be calculated

through mathematical tools such as auto-correlation, discussed in Section 2.5.2.

The f0 has been shown to be linguistically insignificant for speech perception (Klatt

& Klatt, 1990) although relative pitch changes do have an influence on acoustic per-

ception (House & Fairbanks, 1953). The intrinsic f0 or the intrinsic pitch is also a

physiologically driven factor effecting the f0 of a speech signal (Chen et al., 2021). An

f0 curve, as the one shown in Figure 1.3 represents the evolution of the f0 across time

and by doing so, also captures rhythmic information, which is the temporal structure

of the sound. The emphasis component of prosody can be measured by the energy of

the signal or by its loudness.

Like musical instruments, the voice signal has a certain distinguishable quality which
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Figure 1.2: A score providing the vocal melody and the lyrics for a popular song.

allows one to distinguish between speakers, not taking into account the linguistic fea-

tures and the quantifiable elements of prosody, like the f0. This distinctive feature is

often termed as the voice quality or timbre of the voice, and is generally speaker spe-

cific. Formant frequencies higher than the first two formants typically contribute to

this feature, although influence the perceived quality of voice (Sundberg & Rossing,

1990). Discounting emotional changes and changes in the pace of speaking, the timbre

is a characteristic feature of the identity of the speaker. In this thesis, we will use the

symbol ψ to denote the identity of a person, who can be a speaker or a singer.

1.1.4 Differences between speech and signing

Singing generally takes advantage of the harmonic nature of the voiced human sound,

for musical effect. The fundamental frequencies of the singing voice signal show much

higher variance than those for a speech signal. The range of fundamental frequencies

for speech signals is around 110 Hz - 200 Hz for males and 200 Hz - 350 Hz for females.

Whereas for singing, the fundamental frequency can go as high as 1400 Hz for soprano

singing and 523 Hz for tenors (Sundberg & Rossing, 1990). As such, singing generally

also has longer vowel lengths as compared to speech (Duan et al., 2013). While 60% of

speech signals comprise of harmonic voiced sounds, the singing voice signal has been

shown to be comprised of 90% voiced sounds (Sundberg & Rossing, 1990; Sundberg,

1987). This can be seen in Figure 1.4, where a phrase is both spoken and sung by the

same person. It can be seen that the duration of the voiced phonemes is substantially

longer in the sung version of the phrase than in the spoken version.

While the prosody and f0 of speech is speaker dependent, the pitch and emphasis of

the singing voice is guided by melody provided in a musical score. As shown in Figure
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1.2, a musical score generally provides information pertaining to linguistic information,

pitch and timing. Linguistic information in a score is generally termed as the lyric

and the pitch and timing information comprise the melody. As it is related to the

perceived pitch, the f0 of a singing voice signal provides an estimation of the melody

of the signal. In a real performance, the pitch or the f0 of singer can deviate from

the melodic guideline provided by the score, both in terms of the pitch and timing.

These deviations provide both an artistic outlet for the interpreter and are dependent

on the singer. Artistic deviations to the pitch for example include vibrato (Seashore,

1932), which is a rhythmic and periodic fluctuation of the sung pitch from the pitch

indicated in a score. Other identified deviations from the score include the overshoot

(De Krom, 1995), which occurs just after a change in note, a preparation, which is a

change in pitch opposite to the direction of a note change, right before the change and

fine fluctuation (Akagi & Kitakaze, 2000), which includes irregular fluctuations higher

than 10 Hz. These deviations are shown in Figure 1.3.

The f0 curve of a singing voice signal, as shown in Figure 1.3, captures the temporal

evolution of the perceived pitch of an unaccompanied a capella singing voice signal.

In doing so, it also represents the rhythmic information present in the signal and thus

the main melody of the same. In this thesis, we will use the f0 curve to represent the

melodic content of a singing voice signal, denoted by the symbol η .

In addition, the singing voice signal also has a slightly different spectral structure from

the speech signal. In particular, the frequency of the first formant, which is crucial for

vowel identification, has been shown to be varied by singers, according to the funda-

mental frequency being sung. This is generally done through a change in articulations

by the singer. Despite this, vowel intelligibility has been shown to be high for the

singing voice (Sundberg & Rossing, 1990). A spectral peak at 3 kHz, often termed as

the singing formant (Sundberg & Rossing, 1990) has also been observed in recordings

of the singing voice. Additionally, it has been shown that the formant amplitude of a

singing voice signal modulates in synchronization with modulations in frequency (On-
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Figure 1.3: The identifiable deviations of a singing voice f0 contour from the melodic
guidelines provided by the score. The f0 contour is shown in MIDI notes, using the formula
η = 12 · log2

ηhertz−69
440 , where ηhertz is the value of the f0 in Hertz.

cley, 1971), especially when the singer is performing a vibrato. Other contemporary

artistic modulations can be added by the singer including variations in dynamics like

tremolo or timbre via techniques like growling or screaming. These modulations al-

low the singer to communicate abstract information like emotion which cannot fully

be encoded by the lyrics or melody and are discussed in Section 1.2.1. We note that

despite these deviations in spectral characteristics, the perceived linguistic content of

the singing voice is quite similar to that of normal speech. This can be observed in

Figure 1.4, which shows the spectrogram of the phrase "It’s late in the evening, she’s

wondering what clothes to wear" being spoken and sung by the same speaker. While

there are clear differences in the vowel duration, spectral structures and the funda-

mental frequencies, the perceived linguistic content, Z, from both audio examples is

the same.

We thus define the singing voice signal to be composed of three key elements, the

linguistic content, Z, the melodic content, η , and the timbre. While the linguistic and

melodic content are to a large degree independent of the singer, the timbre is a personal

quality of the singer, ψ .

1.1.5 Separating the voice signal from other sources

In the early 20th century, Hermann von Helmholtz remarked upon what is called the

cocktail party problem (Von Helmholtz, 1912; Cherry, 1966; Bregman, 1994). This

problem constitutes of the interior of a ball room with multiple speakers speaking sim-

ultaneously, along with musical instruments and other noises commonly heard during
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Figure 1.4: Log-scale spectrograms of Speech and singing voice experts of the same phrase,
taken from (Duan et al., 2013)

a party of the era. Helmholtz states that the most important human facility is to dis-

tinguish various sounds in such an environment. Colin Cherry (Cherry, 1966) also

commented on the human ability to comprehend speech even with the presence of

other sound sources. The human brain’s ability to distinguish individual sound sources

within a complex acoustic environment has been researched over the decades. It has

been postulated that the human auditory system first segments the auditory inform-

ation received by the ear and then groups the segments into individual stream in a

process termed as auditory scene analysis (ASA) (Bregman, 1994). The ASA process

uses auditory cues like proximity in time and frequency, harmonicity, onsets and prior

knowledge such as language.

Attempts to computationally replicate this process fall in the field of computational

auditory scene analysis (CASA) (Weintraub, 1985; Bregman, 1994). In the later part

of the 20th century, several models were proposed for grouping and segmenting aud-

itory streams, particularly in single microphone monaural audio recordings. A fun-

damental principle used in CASA is that of auditory masking (Moore, 2012), which
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suggests audio sources with higher energy content in a frequency band tend to mask

other sources which might have lower energy content in that band. This has led to the

proposition of an ideal binary mask or time frequency (TF) mask (Weintraub, 1985;

Brown & Cooke, 1994; Wang, 2005). Such masks are calculated for each of the source

to be separated from the mixture and are generally applied to the spectrogram of a mix-

ture signal. The mask for a source has a value of either 0 or 1 for each frequency bin

of the mixture at each time step, indicating whether the bin contributes to the source

the mask corresponds to or not. Applied as such, binary masks were used by early

CASA models estimate binary TF masks to separate speech signals from noise (Brown

& Cooke, 1994) for speech enhancement.

Binary masks impose strict constraints on the separation process; a TF bin of a spec-

trogram either pertains to a source or it does not. However, such an approach adds

artifacts to the output signal as it leads to abrupt changes in amplitude and phase. To

alleviate this problem, soft masks like the generalized Wiener filter (Liutkus & Badeau,

2015a; Wiener et al., 1949; Wiener, 1950) have been proposed. Unlike a binary mask,

a soft mask allows continuous values between 0 to 1 for each time frequency bin. The

ideal ratio mask (Liutkus & Badeau, 2015a) (IRM) for a source is typically calculated

as the ratio of the spectrogram of that source over the sum of the spectrograms of all

sources in the mixture. Source separation algorithms typically estimate a soft mask

emulating the IRM for separating the sources from an audio mixture. In this thesis, we

use ω to represent a general soft mask. Each TF bin of a soft mask has a value in the

range of 0 to 1 and the sum of all the masks for a mixture is 1 for each bin. Such a

filtering approach assumes that the mixture is a linear sum of the individual sources to

be separated.

The field of separating audio sources from a mixture is known as audio source sep-

aration. Along with the CASA inspired TF mask estimation approach detailed above,

the field uses statistical approaches like independent component analysis (Hyvarinen,

1999; Hyvärinen & Oja, 2000) (ICA) and principal component analysis (Candès et al.,
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2011; Huang et al., 2012; Sprechmann et al., 2012; Recht et al., 2010) (PCA). Innova-

tions in the field of audio source separation have inspired research in the related field of

music source separation. This field focuses on extracting the various musical sources

in a musical recording. Due to its importance, extracting the singing voice from the

musical mixture has received much interest in particular. Knowledge based algorithms

have been applied to this task, exploiting the unique harmonic nature of the human

voice using an analysis-synthesis approach (Miller, 1973; Maher, 1989; Wang, 1994,

1995). Other methodologies incorporating musical knowledge into the extraction pro-

cess include the repeating pattern extraction technique (REPET) (Rafii & Pardo, 2011,

2012; Rafii et al., 2014) and its generalization, kernel additive modeling (KAM) (Li-

utkus et al., 2014b,a). Non-negative matrix factorization (Lee & Seung, 1999; Févotte

& Idier, 2011; Vembu & Baumann, 2005; Virtanen, 2007; Févotte et al., 2009; Ozerov

et al., 2012), which decomposes the musical signal into basis and activation functions

has seen particular success for musical source separation. Closely related to the field

of music source separation is the field of speech source separation, which involves

separate the individual voices in a mixture of 2 or more speech recordings.

Over the last decade, deep learning based algorithms for music and speech source sep-

aration have led to significant improvements to the performance of source separation

algorithms (Rafii et al., 2018). Such algorithms, discussed in Section 2.1, typically

use deep neural networks to estimate TF masks given the magnitude component of

the spectrogram of the mixture signal. The limitation to this data-driven filtering ap-

proach is that it can only extract what the models have been trained to extract, (Naray-

anaswamy et al., 2020) i.e, a deep learning model trained on separating vocals from an

instrumental backing will extract the vocal stem signal, ŷ, with any effects and spectral

distortion from the singer added during the mixing stage. Also, there is dependency

on the training data used for the training phase, in that a model trained to separate the

vocal, bass and drum stems from a contemporary musical mixture cannot separate the

soprano, alto, tenor and bass voices from an SATB recording. This leads to the mo-
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tivation for the work presented in this thesis. We propose a system to synthesize the

voice signal given a mixture spectrogram, allowing us to extract an estimation of the

raw vocal signal, x̂, present in a polyphonic mixture. The proposed methodology can

be applied to both contemporary popular music to remove the effects discussed in Sec-

tion 1.1.3 and to synthesize a prototypical single voice signal representative of unison

singing typically seen in choirs, as discussed in Section 1.2.2.

1.2 Motivation

Extracting the vocal signal from a mixture is the first step towards many applications

such as analysis, improved listening through hearing aids (Pons et al., 2016; Edwards,

2007; Reindl et al., 2010), active music listening (Goto, 2007), generating new data

for artistic purposes (Fitzgerald, 2011), karaoke and practice. For many of these ap-

plications, the processed stem signal, ŷ, extracted by the filtering approach discussed

in the previous section are acceptable. However, for several purposes, such as modula-

tions, re-mixing with effects, melody enhancement, the processing effects retained in

the extracted stem might be undesirable.
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Figure 1.5: The analysis background for Part II of the thesis.
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To extract a clean vocal signal free from modulations and effects from a polyphonic

mixture, we propose a methodology to synthesize a signal x̂. The methodology aims

to retain the linguistic and melodic content of the vocal signal present in a musical

mixture. The approach is inspired by auditory scene analysis (ASA) (Bregman, 1994)

and the analysis by synthesis theory of speech perception (Stevens, 1972, 1960).

We hypothesize that the perceived content consists of the linguistic content, the melodic

content and the timbre and personal variations of the singer. As shown in Figure 1.5, we

assume that this content, represented by Z,ηandψ , respectively, remains the same for

a singing voice signal even when the signal is processed and mixed with instrumental

accompaniment. In this dissertation, we focus primarily on monaural signals which

have a single channel in the audio mixture. We aim to computationally replicate human

perception by deriving the linguistic and melodic content as well as the singer identity

directly from a mixture signal and synthesize the clean vocal signal based on this con-

tent. While interesting research in itself, it can also have several practical applications

such as:

Synthesized versions of the vocal signal in contemporary musical mixtures could

allow for more detailed analysis of the spectral distortions in the signal that vocal

techniques such as growling produce as well as easier transcription and lyrics

alignment.

For enhanced hearing via audio aids, a vocal signal without effects might al-

low for easier melody and lyrical following, especially for people with hearing

disorders.

Active listening, which involves focusing attention on a particular element of

music for enhanced appreciation, can benefit from mixing a clean version of the

vocals with the song, especially for contemporary pop music.

Teaching applications, such as the one we propose in this paper can be designed
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allowing teachers or students to modify recorded practice corpora to the student’s

ability.

We apply this methodology to two main contexts in which the singing voice is present;

contemporary popular music and ensemble singing.

1.2.1 Contemporary popular music

The singing voice is usually accompanied by music. Ancient forms of flutes and drums

have been found by archaeologists, showing the capacity for humans to produce music

of both a melodic and percussive nature. Through the ages, the instruments accompa-

nying the voice have evolved with changes in technology. In contemporary music, we

see various kinds of musical instruments including acoustic instruments like the violin,

instrument utilizing electronic amplification like electric guitars, synthetic instruments

like synthesizers and percussive instruments like drums. Musical composition and pro-

duction using such instruments takes into the abstract characteristics of the sound, often

called timbre along with the rhythmic, harmonic and melodic qualities for an arrange-

ment. In a contemporary popular music recording, such signals from recordings or

synthesis of such instruments are mixed along with the voice signal. This is a ded-

icated process which involves attention to detail in many aspects including frequency

spectral balance between instruments, for which equalization is often used. While mix-

ing, mastering and production are dedicated art forms in themselves, for the purpose of

this study, we will call the entire process as mixing.

Signal processing has also opened avenues for using the singing voice as an instrument,

whose sound can be modified. Some common effects used include reverb, echo and

delay, but more artistic effects are also commonly used in modern music. From the

1970s, artists like Led Zeppelin and The Beatles utilized production techniques such as

double tracking and rotating speakers to increase the fatness of the sound. In the 1980s,

artists like Bon Jovi used effects like the talk box to merge the timbre of the voice with

the sound of other instruments. More contemporary artists from the 21st century like
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Figure 1.6: The mix for a contemporary popular music song. Log scale spectrgrams for the
respective signals can be seen in the Figure, with a) showing the specrogram of the clean vocal
signal, b) showing the spectogram of the backing track and c) showing the spectrogram of the
mixture generated by a linear sum of the two tracks.

Muse and Childish Gambino use complex effects like overdrive, ring modulators, pitch

shifting and formant shifting to shape the sound of their voice. The signal processed

in such a way is often called as the stem. The stem signal is mixed with sounds from

other instruments which may or may not have a harmonic structure. This process is

commonly known as mixing. Along with effects, several non-traditional techniques are

commonly applied by the singers themselves to alter the timbre or the spectral shape

of the voice. In cases such as growling, grunting or screaming the harmonic structure

of the voice, as described in the previous section is no longer retained. Artists such as

Rage Against The Machine and Opeth have used such vocal techniques as a tool for

expression within the song that cannot be covered by melody or lyrics alone.

From a spectral point of view, it can be observed from Figure 1.7 that the harmonic

structure for processed vocals deviates from structure observed for the traditionally

studied for the singing voice. Despite the spectral alterations associated with such

techniques, effects and mixing, the intelligibility of the vocals is usually retained in a
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Figure 1.7: Log-scale spectrograms of vocals with various effects, including phasor, reverb,
growling and multiple effects. The last two samples shown were taken from real world com-
mercial recordings.

contemporary popular music mixture. For the rest of this thesis, we will use the symbol

y= process(x) to denote the processed vocal stem signal, where process() is a function

covering the covering the effects discussed in this section. The backing instrumental

track is represented by b and the mixture, m, is considered to be a sum of the backing

track and the processed vocal signal, m = mix(y,b), where mix is the mixing process

which may or may not be a linear sum.

The methodology we propose for synthesizing the voice signal assumes that the lin-

guistic content of x is retained even though modulations are added to the signal. This

linguistic content remains the same even for the mixture signal. i.e.: Zx = Zy = Zm =

Z. The melodic content can also be considered to be consistent, ηx = ηy = ηm = η ,

although this is not necessarily always the case as many vocal effects like growling and

formant shifting effect the perceived pitch of a signal even though the linguistic content

is maintained.
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Figure 1.8: The log-scale spectrograms of the soprano, alto, tenor and bass parts of an SATB
choir, along with the quartet mixture and the full choir mixture.

1.2.2 Ensemble singing and choirs

Singing has often been practiced as a social activity, with groups of multiple people

getting together to sing in harmony. Such co-operative activity is termed as ensemble

singing. Choral singing is the most popular format of ensemble singing, particularly

in the western culture. As a social and at times religious activity, choral singing is

studied and practiced in conservatories across the world. There are several formats for

this type of singing, with different singing voices classified by the range of the singers.

The most typical format of choral singing involves involves four distinct voices, with

complimentary melodies and an associated vocal range for each voice.

As they sing simultaneously, the melodies for each of the voices are composed so as

to be complementary. While the content sung by the distinct voices might differ, they

are generally complementary; harmonically, rhythmically and lyrically. This means

that the audio signal for the different voices has overlapping energy content in both the

frequency and time domain, making source separation task for the case of choirs more

challenging than for speech or music source separation. However, the difference in the

vocal range between the voices makes for an important distinction that can be modelled

by sufficiently power deep learning models.
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Within each voice, there can be multiple singers singing the same melodic and lyrical

content, simultaneously. Although choral singers practice to blend together as a single

voice, there are some deviations in pitch and timing, which along with the ensemble of

timbres leads to the perception of a unison. The singers in the unison are perceived to

be singing a single pitch contour (Ternström, 1991) and the linguistic content is also

consistent throughout. The similarity in timing, pitch, spectral characteristics and con-

tent makes the task of separating the individual voices in the unison all but impossible

for source separation methodologies. However, we hypothesize that the intelligibility

and the perceived pitch of the unison can be modelled via deep learning models to

synthesize a single voice representative of the perceived pitch of the unison.

An SATB choir with just one singer per voice is often termed as a quartet. But an SATB

choir could also have multiple singers in unison across each voice. AS seen in Figure

1.8, a recording of a full choir would have overlapping harmonics in the frequency

dimension and blended temporal cues across time.

1.2.3 The TROMPA project

The Towards Richer Online Music Public-domain archives (TROMPA H2020 770376)

or TROMPA is a multi-disciplinary project funded by the European Commission under

the Horizon 2020 Research and Innovation program. The project aims to leverage large

scale public musical data and state-of-the-art Music Information Retrieval (MIR) tech-

nology with the goal of democratizing publicly available European cultural heritage.

Various partners across academia and industry are involved with the project, with the

goal of utilizing state-of-the-art technology across modalities to connect five distinct

classes of users; music scholars, music enthusiasts, choir singers, content owners and

instrument players

This thesis falls withing the choir use case, which aims to assist choir singers in their

individual practice. We propose the framework for a methodology to allow choir sing-

ers to practice at home when they do not have a digitized score of the choral song but
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rather a recording of a chorus. We propose a methodology incorporating blind source

separation to separate the soprano, alto, tenor and bass voices from an SATB mixture.

These voices are then analyzed to extract the linguistic and melodic content, which are

used to synthesize alternate versions of the voices that can be modified and remixed

according to the users’ ability.

1.3 Research questions

We hypothesize that the vocal signal present within a musical mixture can be synthes-

ized by extracting the underlying perceptual features from the mixture signal. Such

a framework can also be applied to synthesizing a single voice signal from a unison

singing signal commonly seen in ensemble singing. This thesis aims to answer the

following research questions:

Can a singing voice signal be synthesized from a musical mixture by using lan-

guage independent representations of the perceived content of the signal?

• Is it possible to extract synthesis parameters pertaining to the singing voice

from a polyphonic contemporary music mixture?

• How can the voice signal extracted using such a methodology be evaluated?

• How can a feedforward neural network be used for singing voice synthesis

given an input of linguistic content, singer identity and the f0 curve?

• Can the linguistic content of a singing voice signal be represented in a lan-

guage independent manner from which a voice signal can be synthesized?

• Is it possible to extract such a representation of the linguistic content from

a polyphonic contemporary music mixture?

• How can we derive a representation of the singer identity for the voice

synthesis process?

• What are the potential applications of such a methodology?
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Can the individual voices in an ensemble choral singing recording be separated,

given limited training data?

• Can waveform based source separation algorithms work as well as spectro-

gram based models for choral part separation?

• Are music source separation algorithms better suited to choral voice separ-

ation or should speech source separation algorithms be used?

• How can we curate data from varied datasets which has been recorded un-

der different conditions?

• Can quartet based data with a single singer per part be used to train deep

learning based algorithms for voice separate even with multiple singers per

part in unison?

• Is it possible to separate a single voice from within the unison singing sig-

nal?

• What are the perceptual qualities of a unison signal that distinguish it from

a signal voice singing signal?

• How can choral source separation be useful?

1.4 Structure of the thesis

The rest of the thesis is structured as follows:

A summary of musical source separation, voice synthesis and music information

retrieval methodologies, particularly for the linguistic and melodic content and

the singer identity is presented in Chapter 2.

Chapter 3 lists the datasets relevant to our study as well as evaluation strategies

used for source separation and voice synthesis algorithms.
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Part II of the thesis presents the framework for a methodology to synthesize a

clean singing voice signal from a popular music mixture, using the underlying

content. Chapter 4 provides an introduction to this part of the research.

We present a deep learning based methodology to extract voice synthesis para-

meters from a contemporary popular musical mixture in Chapter 5.

A multi-singer singing voice synthesizer based on a generative network in presen-

ted in Chapter 6. This synthesizer takes as input the linguistic and melodic con-

tent pertaining to the voice signal as well as the identity of the singer as a one-hot

vector.

Chapter 7 presents a methodology to extract the underlying language independ-

ent linguistic content and singer identity from mixture signal and synthesize the

clean singing voice signal based on this content.

Part III presents the application of source separation algorithms applied to choral

singing. An introduction to this part of the research is provided in Chapter 8.

We adapt and evaluate some the best performing methodologies for speech and

musical source separation to separate the individual parts in an SATB choir. This

study is presented in Chapter 9.

We apply the methodology presented in Chapter 7 to synthesize a single voice

signal from a unison mixture as well as to generate a unison signal from a single

voice. This research is presented in Chapter 10,

Applications for the methodologies presented in this thesis are discussed in Chapter

11. These include a choir practice tool using source separation, described in

Section 11.2 and the application of analysis and synthesis to modern musical

elements like percussive sounds and loops, presented in Section 11.3.
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Audio examples associated with this thesis are presented at https://pc2752.github.io/

thesis_examples/.

https://pc2752.github.io/thesis_examples/
https://pc2752.github.io/thesis_examples/


Chapter 2
Scientific background

This chapter provides a brief overview of the scientific background for the rest of this

thesis. We start with a brief look at audio source separation through knowledge based

algorithms in Section 2.1, following which we introduce some deep learning concepts

in Section 2.2 and the application of such to audio source separation in Section 2.3.

We then take a look at voice synthesis algorithms, which are used for generating speech

and singing voice signals from text and scores in Section 2.4. Singing voice synthesis

algorithms are particularly pertinent to our task and we observe that they typically

derive linguistic and melodic information from the input score and use this information

along with a singer identity representation to synthesize a voice signal.

Section 2.5 discusses music information retrieval (MIR) techniques relevant to our sub-

ject, particularly looking at the extraction of linguistic content in Section 2.5.1, melodic

content in Section 2.5.2 and singer identity representation in Section 2.5.2.

2.1 Knowledge based source separation

As discussed in Section 1.1.5, source separation is the task of separating the individual

sources in a mixture of the same. Musical source separation and speech source separ-

ation are two fields of audio source separation, which focus on musical mixtures and

33
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asynchronous speech mixtures, respectively. Statistical algorithms such as independ-

ent component analysis (Hyvärinen & Oja, 2000) (ICA) are typically used for source

separation in several audio fields. ICA assumes statistical independence amongst the

source signals in the mixture. This assumption applies to speech separation but not

necessarily to music source separation. Musical mixtures typically consist of harmonic

instruments including the singing voice, guitars, piano and bass as well as percussive

inharmonic instruments like drums, which are synchronized in time, leading to fre-

quency and temporal correlations between the individual signals.

While the unique nature of music hinders the application of source separation methodo-

logies like the ICA, it opens up avenues for the use of innovative algorithms specifically

tailored to the musical domain. The repeating pattern extraction technique (REPET)

(Rafii & Pardo, 2012) is one such algorithm which leverages the fact that the instru-

mental accompaniment in a musical song has a short time repetitive nature, while the

singing voice is generally more robust over this short period of time. Algorithms using

REPET typically use MIR methodologies to identify repetitions like the beat spectrum

(Foote & Uchihashi, 2001) within the mixture. Such repetitions are then used to estim-

ate the accompaniment by averaging, typically over spectrograms. Extensions to the

basic REPET technique have been proposed to handle non-periodic structure by using

a self-similarity matrix (Rafii et al., 2014), in a methodology known as REPET-SIM.

A generalization of the REPET methodology is the use of kernel additive modelling

(Liutkus et al., 2014b,a) (KAM), which uses source specific kernels to model a source

at various points in the spectrogram, allowing the identification of multiple repeating

patterns within the accompaniment.

Comb-filtering and synthesis based approaches specifically for extracting the singing

voice from a musical mixture exploit the harmonic nature of the singing voice. Syn-

thesis based methods typically identify the fundamental frequency of the singing voice

within the and use source-filter models to synthesize the singing voice signal. Such

models are discussed further in Chapter 4. Comb-filtering involves a similar procedure,
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but uses the voice model to create a filter for separating the voice and accompaniment

signals.

One of the most successful methodologies applied to musical source separation is

non-negative matrix factorization (NMF) (Lee & Seung, 1999; Févotte & Idier, 2011;

Vembu & Baumann, 2005; Virtanen, 2007; Févotte et al., 2009; Ozerov et al., 2012).

NMFs exploit low-rank assumptions to separate components of the mixture using non-

negative constraints. The algorithm used for source separation via NMF involves de-

composing the input mixture spectrogram, M, into two non-negative matrices, known

as the basis or spatial matrix, N, and the temporal or activation matrix, Q, as M = NQ.

Given an input spectrogram matrix with ϒ frequency bins across T time frames, basis

matrices for each instrument to be separated are calculated, with a shape of Ψxϒ, where

Ψ represents the number of bases computed. As shown in Figure 2.1, the time wise ac-

tivation for each of these bases is represented by the activation matrix, which has a

shape of T xΨ. For musical source separation, the basis function is often assumed to

represent the pitch of the instrument to be separated while the activation matrix rep-

resents the onset and offset time (Carabias-Orti et al., 2013). Such factorization allows

for the estimation of Weiner filters, which can be applied to the mixture spectrogram to

separate the individual sources.

NMFs have been applied to the task of musical source separation, particularly for sep-

arating the singing voice and instrumental accompaniment (Vembu & Baumann, 2005).

Probabilistic latent component analysis (Smaragdis et al., 2007) (PLCA), an equivalent

of NMF has also been proposed for musical source separation. NMFs have also been

supplemented with pitch and timing information provided by a musical score (Joder &

Schuller, 2012; Zhao et al., 2014) along with source-filter models of the voice (Dur-

rieu et al., 2011, 2009; Janer & Marxer, 2013). The Flexible Audio Source Separation

Toolbox (FASST) (Ozerov et al., 2012; Salaün et al., 2014) provides a version of the

NMF algorithm for source separation using an algorithm for generalized expectation-

maximization (GEM) from incomplete data (Dempster et al., 1977). Application of
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Figure 2.1: Source separation via Non-Negative Matrix Factorization (NMF) involves decom-
posing the mixture spectrogram into bases and activation matrices.

NMFs to musical source separation makes a low-rank assumption for both the vocals

and accompaniment. However, models proposing a sparsity constraint on the vocals

have been proposed for source separation (Huang et al., 2012; Sprechmann et al., 2012;

Jeong & Lee, 2014; Yang, 2013) using robust principal component analysis (Candès

et al., 2011) (RPCA). Additionally, NMFs have been applied forsource separation of

other instruments in a mixture (Miron et al., 2016).

Over the last decade, data-driven deep learning (DL) methodologies have been applied

to the source separation problem and have shown to outperform other methodologies.

Deep learning is a term generally given to Artificial Neural Networks with sufficient

depth. Such networks are able to internally model patterns in data given a sufficiently

large amount of data to learn from as well as a training objective. Knowledge inter-

vention is minimal in this case, but the models are generally domain specific, i.e. they

are only able to separate the sources that they have been trained to separate and need

adaptations for different sources.

2.2 A brief introduction to deep learning

Deep Learning is name given to data-driven machine learning algorithms that are based

on the biological neural networks used by the human brain. In general, the interconnec-

ted neuron graph structure that is observed in the brain is computationally replicated

in an artificial neural network in a series of nodes representing neurons. The simplest



2.2 A BRIEF INTRODUCTION TO DEEP LEARNING 37

Input Layer Hidden Layer Output Layer

𝑎!

𝑎"

𝑎#

𝑎$

𝑎%

𝑐

Figure 2.2: Basic Neural Network: connections are shown between neurons for the input layer,
the hidden layer and the output layer. Note that each node in the input layer is connected to
each node in the hidden layer and each node in the hidden layer is connected to each node in
the output layer.

artificial neural network is consists of three layers, an input layer, a hidden layer and

an output layer.

The input layer contains as many nodes has the dimensions of the input features. As

can be seen in Figure 2.2, each node of of the hidden layer is connected to each layer

of the input layer and calculates a weighted sum of the input nodes, in a topology often

referred to as the Restricted Boltzmann Machine (RBM). The weights of these layers

are often known as the parameters of the network and can be modified and learned

using an optimization algorithm. As such, such a network topology is called a fully-

connected network. The number of nodes in the hidden layer is often termed as the

width of the network at the layer. A non-linearity such as the Rectified Linear Unit

(ReLU) can be applied to the weighted sum. This non-linearity is often termed as

an activation function or a transfer function. Other non-linearities that are often used

include the tanh activation function, the sigmoid activation function and variations of

the ReLU function like the Leaky-ReLU and the parameterized-ReLU. A similar



38 SCIENTIFIC BACKGROUND

connection exists between each node of the hidden layer and the nodes of the output

layer, along with an output.

Such a connected graph structure allows the network to express complex non-linear

functions of the input features. The universal approximation theorem shows that such

neural networks can approximate continuous functions. I has been shown that any

Lebesgue integrable function can be approximated by a width bound neural network

with ReLU activations of sufficient depth (Lu & Lu, 2020). As such, a network with

sufficient depth is commonly known as a Deep neural Network, leading to the Deep

Learning nomenclature.

Generally, neural networks are used to learn mappings between an input data distribu-

tion and a target distribution. To do so, the weights of the neural network are modified

using optimization algorithms to minimize the error between the output of the network

and the target data. Such an error is expressed as loss function, which can express the

difference between the output of the network and the target. The main aim of these

loss functions is to model the output distribution given the input distribution, or max-

imizing the probability of the output distribution, ĉ, matching the target distribution,

c, given the input distribution, a by optimizing the model parameters, θ . The most

intuitive way to do this is to represent the target distribution as a normal distribution

with mean µ and standard deviation σ , a ∼ N (µ,σ) and maximize the likelihood,

∏
1√

2πσ2 e− (µ−c)2

σ2 . Minimizing the log-likelihood is one way to do so as it allows the

loss function to be expressed as a sum, as shown in Equation 2.1. Another approach

is to assume unit variance, σ2 = 1, which gives us the Mean Squared Error (MSE),

shown in Equation 2.2.

Lnll = ∑

(
log
(

1√
2πσ2

)
+

(µ− c)2

σ2

)
(2.1)

LMSE =
1
N

N

∑
i=1
‖ci− ĉi‖2 (2.2)
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Where N is the total number of samples in the distribution of a and ai and ci refer to the

ith samples of the respective distributions. Another commonly used loss function for

continuous data used in the case of regression is the Mean Absolute Error (MAE),

shown in Equation 2.3.

LMAE =
1
N

N

∑
i=1
‖ci− ĉi‖ (2.3)

Binary Cross Entropy is often used when the target can be expressed as a binary

(yes/no) value. Such data is often used in binary classification and the output layer

in this case usually has a sigmoid activation. Multi-class classification is also done

using neural networks, using a softmax activation in the final layer. Categorical Cross

Entropy is the loss function used in this case. These can also be shown to be forms of

maximizing the log-likelihood of the output distribution given the input distribution.

Backpropogation of gradient of the loss function through the layers is used to optim-

ize the parameters of the networks over numerous iterations (Rumelhart et al., 1985).

This optimization phase is generally called the training phase and is generally done

in batches of input and target pairs using an algorithm known as stochastic gradient

descent (SGD). The basic optimization algorithm can be augmented using momentum

(Qian, 1999), which takes into account prior optimization steps while updating the net-

work parameters for the current step. Adagrad (Duchi et al., 2011), Adadelta (Zeiler,

2012) and Adam (Kingma & Ba, 2014) algorithms have been proposed for parameter

optimization. Normalization techniques such as batch normalization, instance nor-

malization and layer normalization are often applied during the training phase. Nor-

malization involves shifting and scaling the internal representations of the neural net-

work using the mean and standard deviation of the the features calculated across vari-

ous dimensions. Such normalization technique have been introduced to mitigate train-

ing problems such as the internal covariate shift (Ioffe & Szegedy, 2015) in the data

and also lead to a smoother objective function used for optimization of the network

(Santurkar et al., 2018). Normalization also helps with over-fitting and vanishing and
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exploding gradients (Salimans & Kingma, 2016).

For evaluation and application, the input can be fed through the network in a feedfor-

ward manner. This process where the inputs are fed through the network to generate

outputs is known as inference. More hidden layers can be added to the basic structure

shown in Figure 2.2, adding depth to the network. Such feedforward networks are often

termed as multi-layer perceptrons (MLPs)

2.2.1 Unsupervised learning

Deep learning can be supervised or unsupervised, both terms pertaining to the train-

ing stage. In the supervised case the desired target for a given input is explicitly used

for optimizing network parameters, whereas in the unsupervised case, the network has

to implicitly learn desirable features from the data presented. One of the most suc-

cessfully applied unsupervised methodologies is the autoencoder network (Rumelhart

et al., 1985; Baldi, 2012). The input and target for an autoencoder network are the

same. Constraints such as width limitation, shown in in Figure 2.3, are imposed on

the hidden layer allowing it to learn implicit structures within the data that can be used

for a representation of the data from which it can be reconstructed. The design of the

autoencoder architecture is important for the learned representation, often termed as

the latent representation, to be meaningful for the desired task of the autoencoder.

The architecture for most deep neural networks used for processing audio is based on

the concept of convolutional neural networks (CNNs) and recurrent neural networks

(Medsker & Jain, 2001) (RNNs).

2.2.2 Recurrent neural networks

Recurrent neural networks (Rumelhart et al., 1985; Jordan, 1997) (RNNs) are neural

networks that take a time series as input and output a time series. Considering a simple

three layer architecture, each node of the the hidden layer maps a function of the input

nodes at the current time step and the hidden node of the previous time step, as shown
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Figure 2.3: The framework of an autoencoder, with an encoder and a decoder. The input and
the target vector are the same data and the latent embedding has some restrictions imposed to
allow it to learn meaningful structures from the data
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Figure 2.4: The cells used for Recurrent Neural Networks (RNNs) with Long Short Term
Memory Networks (LSTMs) and the RNN unrolled.

in Figure 2.4. Since an equal weight is given to each of the time steps, this network has

infinite memory, but is vulnerable to exploding or vanishing gradients due to propaga-

tion of information over a long time series. One of the solutions to such problems is

to use learnable gated weights for the previous steps. Long short term memory net-

works (Hochreiter & Schmidhuber, 1997) (LSTMs) and gated recurrent unit (GRUs)

are often used to this effect. The architecture for LSTMs includes a cell state, shown in

Figure 2.4, the weight parameters of which decide the degree of influence a time step

in a series has on other time steps. Bidirectional LSTMs or BLSTMs have also been

proposed. Such networks process the time series in both the forward and backward dir-
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Figure 2.5: Convolutional Neural Networks: Local Receptive Field

ection and have been used for various audio processing applications including source

separation.

2.2.3 Convolutional neural networks

Convolutional neural networks (Fukushima, 1988) (CNNs) are inspired by the hu-

man visual cortex, convolving a bank of two-dimensional filters on the two-dimensional

input, commonly seen in images. The coefficients of the filter kernels are optimized in

the same manner as the weights of an artificial neural network. The distinction between

a fully connected network and an convolutional neural network is that the each neuron

of the hidden layer is only connected to a localized set of the nodes of the input layer,

known as the local receptive field. Multiple filters of the same shape and size are con-

volved on each layer, the output feature map formed by each such filter is commonly

known as a channel.

CNNs have been adapted to the audio domain as well, either by using two-dimensional

filters over time-frequency representations like the sepctrogram of an audio or by using

one-dimensional filter convolutions directly over the waveform. Temporal convolu-
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Figure 2.6: Sequence to Sequence modelling

tional network (TCNs) (Lea et al., 2016) use causal convolutions to model time series.

Such networks have been used for source separation and speech enhancement. An

autoregressive neural network is one such example of a CNN, which uses a series of

causal convolutions over time to model the time series in a manner similar to the RNNs.

The receptive field of an autoregressive CNN is increased using dilated convolutions

and with skip and residual connections.

The limitation of using such models for temporal modelling is that the length of the

output sequence along time is dependent on the temporal dimension of the the input se-

quence. However, this condition does not always hold for all temporal sequences that

can be mapped. For example, for text to speech (TTS) synthesis, the input sequence of

linguistic features like phonemes has a smaller length than the output sequence pertain-

ing to acoustic features 2. For such sequences, a technique called sequence-to-sequence

(seq2seq) modelling has been proposed. Initially used for machine translation (Bah-

danau et al., 2015), the basic structure of the model is shown in Figure 2.6 and includes

an RNN based encoder which generates a summary vector that is fed to an RNN based

decoder. The decoder generates the output sequences until a < STOP > character is

generated. This technique can be extended further using attention (Vaswani et al.,

2017). As seen in Figure 2.7, using attention involves calculating a weight matrix for

2TTS synthesis is discussed in section 2.4
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Figure 2.7: Sequence to Sequence modelling with attention

the input sequence which assigns a different weight to influence each time step of the

input sequence has on a step of the output sequence.

2.2.4 Generative networks

Generative modeling is a form of probabilistic modeling which can define the under-

lying probability distribution of data. In general, generative models are used for gen-

erating new data from the probability distribution, but also help discover underlying

correlations and structures of interest within the data. within the data. Statistical mod-

els like Gaussian Mixture Models and Hidden Markov Models have been used in the

past for generative modeling, in particular for speech synthesis.

With deep neural networks, new possibilities have opened up for generative model-

ling. One of the most common methodologies used for generative modelling is the

variational autoencoder (Kingma & Welling, 2014) (VAEs). While various architec-

tures have been used within the VAE framework, the common structure consists of an

encoder and a decoder, both of which use neural networks as parameterized function

estimators. The encoder part of the network models a posterior distribution of a random
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Figure 2.8: The Generator and Discriminator networks used in Generative Adversarial Net-
works (GANs).

latent variable, V, over input data, a, as p(V|a). The latent variable is typically of lower

dimensions than the input data and is assumed to be standard normal with a diagonal

covariance, V ∼ N (0,1). The decoder learns a distribution of the input data over the

latent variable. The latent variable can then be sampled to generate new data from the

distribution. Normalizing flows offer an extension of this generative methodology.

The generative adversarial network (Goodfellow et al., 2014) (GANs) is another

generative model that is based on an adversarial training scheme. The methodology was

initially proposed for generating image samples and consisted of a generator network,

gen and a discriminator network, dis, which are trained simultaneously. The generator

takes a noise vectors as input and generates image samples while the discriminator is

trained to distinguish between the images generated by the generator and a set of real

image samples, as shown in Figure 2.8. The authors showed that the networks can be

optimized through backpropogation to an equilibrium between the networks wherein

the Generator is able to model the probability distribution of the real image data such

that the output of the discriminator is 1/2 for all samples.

The two-player non-cooperative training that tries to minimize the divergence between

a parameterized generated distribution ρg and a real data distribution, ρr, as shown in

Equation 2.4.

LGAN = min
gen

max
dis

Ec∼ρr [log(dis(c))]

+Ea∼ρa [log(1−dis(gen(a)))] (2.4)
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Where c is a sample from the real distribution and a is the input to the generator, which

may be noise or conditioning as in the Conditional GAN (Mirza & Osindero, 2014)

and is taken from a distribution of such inputs, ρa.

While GANs have been shown to produce realistic images, there are difficulties in

training including vanishing gradient, mode collapse and instability. To mitigate these

difficulties, several adaptations of the GAN methodology have been proposed like the

Laplacian pyramid GAN (Wang et al., 2019) (LAPGAN), the deep convolutional gen-

erative adversarial network (DCGAN) (Radford et al., 2016), generative recurrent ad-

versarial network (GRAN) (Wang et al., 2020a) and the Wasserstein GAN (WGAN)

(Arjovsky et al., 2017).

Another form of generative modelling that has been particularly useful for audio applic-

ations is the autoregressive framework, which has long been used to model. time series

in fields like economics. In the adaptation for audio, either RNNs or causal CNNs are

used to model one sample of the audio time series as a function of the previous samples.

Conditional autoregressive models are often used in speech synthesis, particularly for

inverting time-frequency representations like the mel-spectrogram to the corresponding

waveform. The WaveNet (van den Oord et al., 2016a), described in Section 2.4.4 is an

example of an autoregressive convolutional network used for speech synthesis. Gen-

erative modelling has been applied to the audio and music domain (Dieleman et al.,

2018; Zukowski & Carr, 2018; Engel et al., 2020b; Défossez et al., 2018).

2.3 Data-driven source separation with deep learning

While signal processing based algorithms like those described in Section 2.1 have per-

formed well, data-driven deep learning based models have led to significant improve-

ments in the field of audio source separation. Several models using recurrent neural

networks, LSTMs or convolutional neural networks (CNNs) to model time-frequency

correlations in the signal have been proposed for the related tasks of speech enhance-



2.3 DATA-DRIVEN SOURCE SEPARATION WITH DEEP LEARNING 47

ment, musical source separation and speech source separation. While several models

have been proposed, we look briefly at some of the models that are used within the

scope of this thesis.

The commonly used deep learning pipeline involves the use of TF masks that are ap-

plied to the input mixture signal, with the assumption that the mixture, m of sources

is a linear sum of the sources si; m = ∑
K
i=1 si, where i is the index of the K sources.

Deep neural networks are then trained to estimate soft TF masks, ωi, that are generally

applied to magnitude component of the spectrogram, M, for each of the sources to be

separated. This results in estimates, ‖Ŝi‖, as shown in Equation 2.5. As the mixture

is a linear sum, the sum of the masks for the individual sources is 1. The separated

sources are synthesized with the phase component of the mixture spectrogram, using

the Inverse Short Time Fourier Transformation (ISTFT).

|Ŝi|= ωi
⊙
|M|, for i = {1,2...K}

K

∑
i=1

ωi = 1

ŝi = IST FT (|Ŝi|,∠M)

(2.5)

Where IST FT () represents the Inverse Short Time Fourier Transformation. For most

source separation algorithms pertaining to contemporary polyphonic music, the mix-

ture, m, of processed vocals, y and a backing track, b is approximated as a linear

mixture, m ≈ y+b. Deep neural network models, represented by nn(), are generally

used to estimate a TF mask for the vocal stem, ωvocal , given the mixture signal as an

input. The mask is applied to the mixture signal to generate the separated output. The

resulting separated vocal track is an approximation of the magnitude component of the

processed vocal stem signal, |Y|, as shown in Equation 2.6. The phase component of

the mixture spectrogram is typically used to synthesize the waveform of the estimated

sources, using the Inverse Short Time Fourier Transformation (ISTFT), as shown in

Figure 2.9.
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Figure 2.9: The pipeline for source separation using TF masks.

ωvocal = nn(|M|)

|Ŷ|= ωvocal
⊙
|M|

|B̂|= (1−ωvocal)
⊙
|M|

ŷ = IST FT (|Ŷ|,∠M)

b̂ = IST FT (|B̃|,∠M)

(2.6)

Where IST FT () represents the Inverse Short Time Fourier Transformation. For train-

ing, the ground-truth sources to be estimated are required. On inference, the Time-

Frequency masks are computed via the neural network, given the mixture as an input.

The general sequence of deep learning based source separation algorithms is shown in

Figure 2.9. Deep neural networks using the phase information (Roux et al., 2018) as

well as directly operating on the waveform (Stoller et al., 2018) have also been pro-

posed. But even such algorithms work on a form of filtering in the waveform domain

assuming that the mixture is a linear sum of the sources.

A deep learning based for estimating Ideal Binary Masks (IBMs) to separate speech

signals from a noisy mixture was proposed by (Wang et al., 2014). While one of the
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Figure 2.10: The DeepConvSep architecture for source separation (Chandna, 2016), utilizing
a convolutional encoder and a decoder to generate soft TF masks for source separation.

first applications of Deep Learning to musical source separation used a simple archi-

tecture comprising of 3 layers (Huang et al., 2014). The first layer is a fully connected

layer, used as a feature extractor over the frequency dimension of the input mixture

sepctrogram. This feature map is passed through a Recurrent Neural Network to model

the temporal dependencies with past samples and finally another fully connected layer

is used to estimate TF masks with the same dimensions as the input.

One of the first models using Convolutional Neural Networks, commonly known as

DeepConvSep, was proposed by us (Chandna, 2016). It used an autoencoder inspired

bottleneck. Convolutions across frequency and time are used to learn a compressed

representation of the input spectrogram, which is then upsampled by the corresponding

convolutions to generate TF masks for the sources to be separated. As seen in Figure

2.10, the architecture is composed of two stages, namely the encoder, which encodes

the input spectrogram into a lower dimension or latent representation and the decode,

which generates the masks from the latent representation. The intuition behind this

model is that the lower dimension representation can be used by the network to distin-

guish between the individual sources. The output of the network, γn, is used to estimate

a soft mask, ω
DeepConvSep
i as shown in Equation 2.7:
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Figure 2.11: The U-Net architecture for source separation (Jansson et al., 2017)

ω
DeepConvSep
i =

|γi|
∑

K
i=1 |γn|

(2.7)

where γi represents the output of the network for the ith source and K is the total number

of sources to be estimated.

The estimated mask is then applied to the input mixture signal to estimate the sources

ŝn.

|ŜDeepConvSep
i |= ω

DeepConvSep
i .|M| (2.8)

The model was trained to minimize the MSE between the estimated magnitude of the

spectrograms of the respective sources and the corresponding ground truths.

LDeepConvSep = E‖|ŜDeepConvSep
i |− |Si|‖2 (2.9)

A similar methodology was used by the the U-Net architecture The architecture, ini-

tially proposed for medical image segmentation (Ronneberger et al., 2015), includes

skip connections between the corresponding layers of the encoder and decoder stages

of the convolutional neural network, thus allowing for propagation of information and
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gradients between the encoder and decoder layers. When applied to source separation

(Jansson et al., 2017), the model takes as input the mixture spectrogram and produces

the corresponding masks to be applied for extracting the sources. The intermediate

layers of the model consist 2D convolutional layers, as seen in Figure 2.11. The convo-

lutional filter in the first layer is applied across both the frequency and time dimensions

of the input spectrogram, with successive layers building on top of the representation

learned by this layer. The model is trained to minimize the MAE between the estimated

sources, |ÂUNet
i |, and the corresponding ground truths, as shown in Equation 2.10.

LUNet = E‖|ŜUnet
i |− |Si|‖ (2.10)

The U-Net model was originally proposed for separating the singing voice from a mu-

sical mixture and used two separate networks to predict the masks for the vocal and

instrumental accompaniment stems (Jansson et al., 2017). Deezer has also applied this

model for a product known as spleeter (Hennequin et al., 2020), that is commonly used

for source separation amongst artists. The model follows the U-Net architecture (Jans-

son et al., 2017) with the specifications published by (Prétet et al., 2019) and has been

shown to perform at very high speeds and efficiency. Conditional (Meseguer-Brocal &

Peeters, 2019) versions of the U-Net have also been proposed, using a Feature-wise

Linear Modulation (FiLM) (Perez et al., 2018a) layers.

A limitation of such methodologies using the spectrogram was that they only modelled

the magnitude part of the complex spectrograms, disregarding phase information. A

few models have been proposed for including phase information in the source separa-

tion process (Rennie et al., 2005; Liutkus et al., 2018; Roux et al., 2018; Williamson

et al., 2015). One methodology for modelling the complex spectrogram is to use com-

plex ratio mask, wherein the TF masks applied to the mixture spectgrogram can take

complex values (Williamson et al., 2015; Roux et al., 2018). Other models estimate the

magnitude spectrogram and the phase difference between consecutive frames of the

sources to generate the individual signals (Afouras et al., 2018). The PhaseNet model
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(Takahashi et al., 2018a) estimates a discrete representation of the phase of the output

spectrogram.

The Wave-U-Net (Stoller et al., 2018), as seen in Figure 2.12 is one such model, ap-

plying the U-Net architecture to the waveform of a musical mixture signal. The model

introduces learned upsampling using linear interpolation in the decoder allowing the

feature maps to have meaningful representations. To this end, an interpolated feature

ft+0.5 is computed between neighbouring features, ft and ft+1 for each time step in

each feature map of the decoder layers, using a parameter, w constrained by a sigmoid

non-linearity as shown in Equation 2.11. The last layer of the Wave-U-Net model uses

a tanh non-linearity and enforces an energy-conserving criteria using a difference out-

put layer. This is done by estimating K−1 source signals and estimating the last signal

as m−∑
K−1
i=1 âi. In doing so, the model maintains the linear sum assumption and rep-

licates the TF masking process that is used in the models discussed previously, while

estimating the waveform of the signals to be separated.

ft+0.5 = σ(w)
⊙

ft +(1−σ(w))
⊙

ft+1 (2.11)

The learned interpolation is implemented as a 1D convolution with constraints and

allows convex combinations of weight, leading to a generalization of simple linear

interpolation wherein w = 1.

While several such models for source separation have been proposed, the data-driven

nature of such methodologies requires that the datasets used for training and evalu-

ation be standardized, along with the methodologies used for evaluation. As such,

a community based effort for standardization of the source separation paradigm has

taken shape. This led to asks within Music Information Retrieval Evaluation eXchange

(Downie, 2008) (MIREX) campaign and Signal Separation Evaluation Campaign (Vin-

cent et al., 2009, 2012; Araki et al., 2012; Liutkus et al., 2017; Stöter et al., 2018) (SI-

SEC), which is conducted every few years. The musical source separation task of the
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Figure 2.12: The Wave-U-Net architecture (Stoller et al., 2018)

SiSEC campaign consists of two sub tasks; separating the vocals and accompaniment

stems from a stereo mixture of contemporary popular music and separating the vocals,

drums, bass and others stems from a mixture of the same. The MUSDB18 dataset,

discussed in Section 3.1, is used in the more recent iterations of the campaign and the

performance of the algorithms is evaluated using the bss_eval_sources set of metrics

(Vincent et al., 2006), discussed in Section 3.3.2. Source separation algorithms submit-

ted in the campaign are compared against oracle source separation methods which use

the ground truth stems to estimate TF masks like the Ideal Binary Mask (Wang, 2005)

(IBM), the Ideal Ratio Mask (Liutkus & Badeau, 2015b) (IRM) or the α-Wiener filter

and the Multichannel Wiener Filter (MWF) (Duong et al., 2010).

Such campaigns have fuelled research in the domain of music source separation, and

have seen deep learning based models for source separation outperform classical signal

processing based models over the last few years. Many of these algorithms use com-

binations of fully-connected layers, LSTMs and CNNs. Over the last few iterations, a

network blending a feedforward network with a BLSTM to predict MWFs for the in-

put mixture spectrogram has consistently been amongst the best performing algorithms
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evaluated in this campaign (Uhlich et al., 2017). However, the algorithm is also trained

on additional proprietary data. The same applies to other algorithms that have per-

formed well in the campaign, including the use of a densely connected convolutional

network (DenseNet) (Takahashi & Mitsufuji, 2017) and the MMDenseNet (Takahashi

et al., 2018b).

Along with the use of external data for training another problem faced by researchers

building on the SiSEC campaign is that many of the best performing algorithms are not

accompanied by open source implementations. As such researchers in the field face

issues while using a benchmark for their own algorithms. This had a negative impact

on research as researchers have had to compare their own proposals with open source

implementation of models which were not quite the state-of-the-art (Stöter et al., 2019).

Open-Unmix (Stöter et al., 2019) is an open source model proposed for providing the

state-of-the-art benchmark in the musical source separation domain in 2019. As shown

in Figure 2.13, the model uses a combination of fully connected time-distributed layers,

along with skip connections, LSTMs and batch normalization to estimate multichannel

Wiener filters (MWFs) (Nugraha et al., 2016) for each of the sources from the input

mixture spectrogram . The MWFs are calculated by combining the output of all estim-

ated sources to filter the input mixture spectrogram. This model outperformed the best

models proposed in the 2018 SiSEC campaign, establishing the state-of-the-art open

source source separation system for musical signals.

The Conv-TasNet (Luo & Mesgarani, 2019) was proposed for speech source separation

in the waveform domain and was shown to outperform the ideal TF mask. Adapting the

idea from the TasNet (Luo & Mesgarani, 2018), the model applies 1-D convolutions,

called encoder basis functions, to overlapping chunks of the input waveform. This gen-

erates an intermediate representation similar in form to the spectrogram estimated via

the convolutions of the STFT. A ReLU non-linearity is used to ensure non-negativity in

the basis functions. A temporal convolutional network (Lea et al., 2016) (TCN) is used

to estimate masks which are applied to the intermediate representation, similar to the
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Figure 2.13: The Open Unmix architecture (Stöter et al., 2019)

TF masks estimated for spectrogram based source separation. The resulting representa-

tions are inverted to waveforms for the sources to be separated using a 1-D convolution

with decoder basis functions, as shown in Figure 2.14. The weights of the encoder

and decoder basis functions are learned during training. The networks are optimized

by using the scale-invariant source-to-noise ratio (SI-SNR) loss function instead of the

MAE or MSE loss functions that are typically used for source separation algorithms.

The Conv-TasNet model has been adapted to music source separation (Samuel et al.,

2020), through the use of a meta-nueral network.

starget
i =

〈ŝi,si〉si

‖si‖2

enoise
i = ŝi− starget

i

Lsisnr = 10log10
‖starget

i ‖2

‖enoise
i ‖2

(2.12)

Demucs (Défossez et al., 2019) is another deep learning based algorithm for source sep-

aration that uses a variant of the Wave-U-Net (Stoller et al., 2018) with BLSTM layers

the middle of the U-Net architecture. The Demucs model has an encoder comprising of
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Figure 2.14: The basis functions framework used for the TasNet (Luo & Mesgarani, 2018) and
Conv-TasNet (Luo & Mesgarani, 2019) models.

6 1D convolutional layers, each with a gated linear unit (GLU) (Dauphin et al., 2017)

activation function. The encoder is followed by 2 BLSTM layers, the dimensions of the

output of which are reduced using a fully connected layer. This output is then passed

through a decoder network using transposed convolutions. The decoder mirrors the

encoder network and there are skip connections between the corresponding layers of

the two networks. Ablation studies with the model showed that optimizing the network

with either the MAE or the MSE was nearly equivalent in terms of performance. The

significance of the GLU non-linearity was also highlighted in this study.

Generative models have been used for audio source separation as well. In particular

for unsupervised audio source separation using generative priors instead of predefined

ones as used by most of the algorithms listed above (Narayanaswamy et al., 2020). The

SVSGAN (Fan et al., 2018) model has been used to separate the singing voice from

instrumental accompaniment using a GAN based training methodology. However, the

system itself is not generative and uses the adversarial loss to compliment the MSE

while estimating TF masks for the individual sources to be separated.
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Figure 2.15: The Text-to-Speech (TTS) synthesis pipeline

2.4 Voice synthesis

Along with speech, written text is the most common means of communication for hu-

mans and both can be seen as representations of the same information. Due to the

importance of the two forms of media, inter-conversion via machines between them

has been a field of interest for researchers for decades. Text-to-Speech (TTS) synthesis

is the field of research which aims to generate a voice signal from textual data, stored

in machine readable form. TTS uses a combination of Natural Language Processing

(NLP) and Digital Signal Processing (DSP). NLP is used for processing the linguistic

information in text and consists of three phases, as shown in Figure 2.15

1. Text analysis: Linguistic information in the text can be deciphered in the form

of graphemes, which are the smallest contrasting units in the writing system.

Syntactic and semantic analysis are used to normalize the text and to model the

context underlying the input text and generate a sequence of graphemes.
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2. Phonetic Analysis: The pronunciation for grapheme units units is context de-

pendent, both long-term, influenced by semantics and syntax and short-term,

with the various combinations of the grapheme units. The phonetic analysis

stage of the TTS pipeline formalizes the representation of the pronunciation of

the normalized text with grapheme-to-phoeneme conversion. The output of this

stage is a sequence of phonemes.

3. Prosodic Analysis: As discussed in Section 1.1.3, the prosodic component of the

speech signal includes the fundamental frequency, the dynamics and the dura-

tion of the individual phonemes in sequence. The prosodic analysis of the TTS

pipeline models these elements from the sequence of phonemes generated by the

previous stage. The output of the prosodic analysis is generally a sequence of

phonemes with duration assigned and a F0 curve.

For the context of this thesis, the DSP part of the TTS is the most pertinent and is

discussed in greater detail. In this phase, synthesis algorithms like concatenate or para-

metric synthesis are used to generate the speech signal from the features derived by the

prosodic analysis. Concatenate synthesis using Unit Selection based Synthesis (USS)

methods have long been used for speech synthesis. USS consists of a pre-recorded

set of speech recordings corresponding to various phonological units like phonemes,

diphones, syllables, words, phrases and even sentences. For synthesis, such. units are

concatenated together , often with modifications, to generate the desired speech con-

tent. Forced alignment of linguistic units to the corresponding speech segments is often

done through Hidden Markov models (HMMs). Such models are used to select the se-

quence of units closest in correspondence to the sequence of linguistic and prosodic

information provided as input (Gonzalvo et al., Proc. Interspeech 2016). This process

is often termed ass unit selection.

Parametric synthesis (Black et al., 2007; Zen et al., 2007) has been successfully used

for TTS in the past. Such synthesis uses generative models like HMMs to generate a set
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Figure 2.16: The framework for training and synthesis from Hidden Markov models (HMMs)

of acoustic parameters given linguistic and prosodic information. As shown in Figure

2.16, for training an HMM-based TTS system, typically mel-cepstral parameters and

the log f0 is extracted from the ground truth voice signal and used to fit the parameters

of a combination of context-dependent HMMs using the maximum log likelihood cri-

teria. Such HMMs are used to model various combinations of sequences in the input

linguistic information. Clusters of Gaussian mixture models (GMMs), assigned using

top-down decision-tree-based context clustering are used to reduce the total number of

combinations of input contexts. For synthesis, linguistic and melodic information from

the musical score to be synthesized is converted to a context-dependent sequence of

linguistic content labels. This sequence is used to generate a state sequence by con-

catenating the corresponding context-dependent HMMS, the duration of each of which

are determined using the previously trained models. The sequence of HMMs is then

used to generate synthesis parameters often termed as acoustic parameters or vocoder

parameters. Vocoders are used for compact representation of the speech signal and are

inspired by the source-filter model of human voice production (Dudley, 1939, 1938;

Dudley et al., 1939; Dudley, 1958; McAulay & Quatieri, 1986).
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2.4.1 Vocoder parameters for voice synthesis

Acoustic features or parameters used for synthesizing the human voice are often known

as vocoders. Such parameters are often used for speech transmission (Dudley, 1940;

Atal, 2018), analysis and synthesis (Dudley, 1939). The idea of the vocoder is based on

the human vocal system, described in section 1.1.1, and the source-filter model of the

human voice. The first vocoder was developed by Homer Dudley (Dudley, 1939, 1938;

Dudley et al., 1939; Dudley, 1958) in the 1930s, using a series of band-pass filters to

model the spectral envelope of the speech signal. In doing so, the vocoder system was

able to isolate the f0 and the spectral envelope components of the signal in a manner

that signal could be re-synthesized from information about the components. It was also

shown that the spectral envelope was correlated to the perceived linguistic content of

the speech signal the f0 to the emotional content (Dudley, 1939). The basic system has

some key drawbacks; the spectral envelope estimated in this case was not completely

robust to changes in the f0 and the unvoiced segments of the voice signal were not fully

represented. However, the system proposed by Dudley led to conception of the idea of

channel vocoders for speech transmission and synthesis.

Claude Shannon (Shannon, 1949), advocated the use of white Gaussian noise to model

the aperiodic elements of speech and the use of all-pole filters for modelling the spectral

envelope. This lead to the code-excited linear prediction (CELP) and the idea of linear

predictive coding (Makhoul, 1975) (LPC). Within an LPC model, a speech signal is

represented by the convolution of a source or excitation signal and a series of all-pole

infinite impulse response (IIR) filters which models the resonance characteristics of

the human vocal tract as the spectral envelope. The excitation signal is modeled via

an impulse train or white noise with certain characteristics. The filter is used to shape

the spectral characteristics of the signal. Such a system allows for paramterized speech

encoding and synthesis as the coefficients of the all-pole filters are used as parameters

for synthesis. Linear regression is typically used to estimate these parameters for a

voice signal by minimizing the least squares error between the signal estimated by the
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model. Since the output of the IIR filters depends on the current and previous values of

the excitation signal, the system is often termed as auto-regressive.

Modern vocoder systems build on LPC idea, particularly for improving the quality of

unvoiced sounds using dynamic excitation modelling (Chung & Schafer, 1990) and

mixed excitation (McCree & Barnwell, 1995). Such systems include the cepstral vo-

coder (Vích & Vondra), the homomorphic vocoder (Chung & Schafer, 1989; Weinstein

& Oppenheim, 1971) the STRAIGHT vocoder (Banno et al., 2007), the TANDEM-

STRAIGHT vococer (Kawahara et al., 2008) and the WORLD vocoder (Morise et al.,

2016).

The WORLD vocoder has been shown to be particularly effective for singing voice

synthesis (Blaauw & Bonada, 2016, 2017) and is used throughout this thesis. The ana-

lysis phase of this vocoding algorithm involves estimation the fundamental frequency

of the speech signal to be analyzed. The original framework for the vocoder proposes

the use of an algorithm known as DIO. (Morise et al., 2009) for f0 estimation. The f0

is then used to estimate the spectral envelope using a pitch adaptive analysis (Mathews

et al., 1961) based model known as CheapTrick (Morise, 2015a). The model estimates

the power spectrum of a windowed waveform using pitch information to negate the ef-

fects of spectral leaks at the boundaries of the windowed frame. This power spectrum

is referred to as the harmonic component of the vocoder parameters and is used to filter

the excitation signal.

Using this information, the next step of the analysis is to model the aperiodic elements

of the speech signal. This is done using an algorithm known as Definitive Decompos-

ition Derived Dirt-Cheap (D4C) (Morise, 2016). This algorithm estimates the band

aperiodicity for a voice signal using a sinusoidal model based on pitch synchronous

analysis (Mathews et al., 1961) and a parameter based on the temporally static group

delay (Kawahara et al., 2012). This model provides the periodic power component for

each of the frequency bands analyzed. A ratio between the total power and the periodic

power components is used to calculate the band aperiodicity.



62 SCIENTIFIC BACKGROUND

Cheaptrick –
Spectral 
Envelope

DIO  – f0

D4C  –
Aperiodic 

Parameters

Clean vocal 
signal 
x

Synthesized 
vocal signal 

!𝑥*
Excitation 
Signal

Minimum phase response

Figure 2.17: The frameworkrk for the WORLD vocoder (Morise et al., 2016)

For synthesis, the band aperiodicity coefficients are used along with the f0 to generate

the excitation signal for the vocoder model. A convolution between the excitation sig-

nal and the harmonic spectral envelope is used to generate the speech signal. As such,

the vocoder allows a parametereized representation of the voice signal, with three com-

ponents; the f0, the harmonic component and the aperiodic component. This process is

shown in Figure 2.17.

The WORLD vocoder has been effectively used for speech and singing voice synthesis.

For singing voice synthesis with the WORLD vocoder, it is common to compress the

harmonic and aperiodic components (Blaauw & Bonada, 2016) of the vocoder para-

meters. The dimensionality of the harmonic component is reduced using truncated

frequency warping in the cepstral domain (Tokuda et al., 1994) with an all-pole fil-

ter with warping coefficient of α = 0.45. This leads to 60 log Mel-Frequency Spec-

tral Coefficients (MFSCs), representing the harmonic component of the WORLD vo-

coder parameters. Bandwise aperiodic analysis is used to reduce the dimensions of the

aperiodic component of the parameters to 4. The compressed harmonic and aperiodic

components are concatenated together to form a 64 dimension feature that we utilize
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throughout this thesis, referred to as the compressed spectral envelope, Xvoc.

Other methodologies have been proposed to improve the quality of the synthesis of

the channel vocoder, including the phase vocoder (Flanagan & Golden, 1966), Pitch-

synchronous overlap add (PSOLA) (Moulines & Charpentier, 1990) and sinusoidal

models of the voice (McAulay & Quatieri, 1986).The magnitude component of the

spectrogram is also used as a type of vocoder and can be inverted to the waveform

using the Griffin Lim (Griffin & Lim, 1984) algorithm. Over the last few years, deep

neural networks have also been used as vocoder models.

2.4.2 Neural vocoders

The idea of learning low dimension representations of the acoustic features has also

been explored using Deep Learning based algorithms, often termed as Neural Vocoders.

The first such neural vocoder (Shen et al., 2018) used an adaptation of the WaveNet

(van den Oord et al., 2016a) architecture, with upsampling, to invert spectrograms on

a mel-frequency scale to corresponding speech waveform. In doing so, the WaveNet

vocoder models the auto-regressive nature of the LPC based vocoder.

A number of neural vocoders have been proposed, including ones that use the source-

filter model as described in the previous sections. Such neural vocoders include the

LPCNet (Valin & Skoglund, 2019), GELP (Juvela et al., 2019a) , GlotGAN (Juvela

et al., 2019b), Neural Homomorphic Vocoder (Liu et al., 2020) and Differentiable Di-

gital Signal Processing (DDSP) (Engel et al., 2020a).

While such models have been quite effective for speech synthesis, their use for singing

voice synthesis was still under investigation during the course of this thesis. The meth-

odology we present in this thesis uses the WORLD vocoder, but is vocoder agnostic

and can be replaced by a neural vocoder in the future.
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2.4.3 Singing voice synthesis

TTS synthesis has several applications in public communication, pedagogy and ac-

cessibility for disabled persons. Artistic applications have also been researched, par-

ticularly for the singing voice. Generating a voice signal replicating the sound of a

particular singer singing from a score is a research field onto itself, known as singing

voice synthesis (SVS). Like its textual counter-part, SVS typically uses linguistic in-

formation in the form of a sequence of phonemes. However, the pitch is not dependent

on the prosody, but is guided by the melodic information provided by the score. As

discussed in Section 1.1.4, the f0 curve of a singing voice signal follows the melodic

guidelines of the score with added embellishments and natural deviations of the singer.

SVS aims to model both the f0 curve and the timbre of a singer given an input score in a

machine-readable format such as MusicXML. SVS has been applied to commercial ap-

plications like Vocaloid (Kenmochi & Ohshita, 2007), Sinsy3, Melodyne 4, Utan 5 and

CeVIO 6. Methodologies applied in this field include unit selection and concatenation

(Bonada et al., 2016), HMM based synthesis (Saino et al., 2006; Oura et al., 2012) and

in more recent years, deep learning based models like the Neural Parametric Singing

Synthesizer (NPSS) (Blaauw & Bonada, 2017). Deep learning based SVS algorithms

are discussed in detail in Section 2.4.5.

2.4.4 Synthesis with deep learning based models

The modelling capability of deep learning based models has opened by new avenues

in the field of TTS and SVS. End-to-end TTS synthesizers capable of mapping the

text directly to the speech waveform have been proposed, along with several other

methodologies for modelling the various stages of the TTS pipeline.

Parametric TTS using deep learning (Zen et al., 2016; Ze et al., 2013) uses neural net-

3http://www.sinsy.jp/
4https://www.celemony.com/en/melodyne/what-is-melodyne
5http://utau.us/
6https://cevio.jp/

http://www.sinsy.jp/
https://www.celemony.com/en/melodyne/what-is-melodyne
http://utau.us/
https://cevio.jp/
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works to map a sequence of input linguistic and prosodic information to acoustic para-

meters used for synthesis of the voice signal. The WaveNet model (van den Oord et al.,

2016a) introduced the concept of autoregressive convolutional neural networks. The

model was used for waveform generation for speech and music. In the text-conditioned

form of the model, local conditioning in the form of linguistic information and global

conditioning the form of a vector representing the speaker identity is provided to the

autoregressive network. The linguistic features are represented by a sequence of phon-

emes across time, while the speaker identity is represented as a one-hot vector that

is assumed to be constant throughout the time. The global conditioning vector was

broadcast throughout the time context of the linguistic features. The concatenated vec-

tor containing the global and local conditioning is up-sampled to the frequency to the

desired waveform using transposed convolution. The output of the network at each

time-step is conditioned on the conditioning vector for that time step and the output

of the network at a series of previous time steps, the number of which pertains to the

receptive field of the network. The output vector is a softmax distribution, representing

the probability distribution of the output frame over 256 possible values of the µ law

companding transformation of the waveform pertaining to the speech signal.

DeepVoice (Arik et al., 2017b) is a TTS model uses deep neural networks to model the

various stages of the traditional TTS pipeline; it first converts the sequence of graph-

emes found in text to a sequence of phonemes. For the training phase, this sequence

of phonemes is temporally aligned to the spectrogram of the audio using connection-

ist temporal classification (CTC) (Graves et al., 2006) loss. This alignment is used

to train the subsequent components of the model, which include a phoneme duration

model, which assigns a duration to the sequence of phonemes found in the input us-

ing the previous alignment. A fundamental frequency (f0) curve corresponding to the

sequence of phonemes is also generated in this phase. This model is trained on the

ground truth f0 of the speech signal, extracted via an external model. Finally, a syn-

thesis model, that uses an architecture. similar to the WaveNet is used to generate the
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Spectogram of the speech signal. The Griffin-Lim algorithm (Griffin & Lim, 1984) is

used to synthesize the speech waveform from this output. DeepVoice 2 (Arik et al.,

2017a) follows a similar structure to DeepVoice, except that the phoneme duration

model and the f0 curve generation models are separated, with the output of the phon-

eme duration model being fed to the f0 curve generation model. The synthesis part of

the architecture generates the waveform from the Spectrogram using an autoregress-

ive network instead of the Griffin-Lim algorithm. Such a network is often called a

neural vocoder and is discussed in detail in Section 2.4.2. DeepVoice 3 (Ping et al.,

2018) utilizes an internal representation of linguistic features learned from the input

sequence of characters and decodes this representation via an autoregressive network.

The architecture used in this model is comprised solely of convolutional layers.

The Tacotron (Wang et al., 2017) model and Tacotron 2 (Shen et al., 2018) models

introduced end-to-end TTS synthesis, synthesizing speech signals directly from text.

The first of these takes as input a sequence of text characters and passes them through

an encoder network, comprising of a series of LSTMs. A decoder layer which uses an

attention mechanism is used to generate the linear scale spectrogram from the output

of the encoder. Griffin-Lim (Griffin & Lim, 1984) is used to synthesize the waveform

for the speech signal from the spectogram output. Tacotron 2 utilizes a neural vocoder

based on the autroregressive architecture to synthesize the waveform from the Mel

scale spectrogram that is generated by the decoder network.

Other deep learning based TTS system include the Char2Wav (Sotelo et al., 2017)

model which is also an end-to-end TTS synthesis system that generates neural vocoder

parameters given an input sequence of characters, and FastSpeech (Ren et al., 2019),

which uses a feedforward transformer network for generating a Mel-Spectrogram from

an input sequence of phonemes.
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2.4.5 Neural networks for singing voice synthesis

Deep learning architectures have been applied to singing voice synthesis (SVS) over

the last few years. One of the first such models (Nishimura et al., 2016)uses a series of

fully-connected layers to map frame-wise linguistic and melodic features like current

phoneme identity, absolute pitch of current musical note to STRAIGHT (Kawahara

et al., 1999) vocoder parameters. These parameters are used to synthesize the waveform

of the singing voice signal.

The Neural Parametric Singing Synthesizer (NPSS) (Blaauw & Bonada, 2016) used a

WaveNet (van den Oord et al., 2016a) style autoregressive architecture to map frame-

wise contextual linguistic features like the current phoneme identity, the previous phon-

eme identity and the next phoneme identity. These features are represented as one-hot

encoded vectors. The normalized position of the current input frame is also input to

the system, represented by a 3-state coarse coded vector. A multi-stream architecture is

used to predict parameters of the WORLD (Morise et al., 2016) vocoder, which is used

for synthesis of the singing voice signal. Unlike the WaveNet, which uses a categor-

ical distribution as the output, the NPSS output was modeled as a continuous mixture

density output (Salimans et al., 2017), with a combination of four continuous Gaussian

components constrained to four parameters. The model was optimized to maximize

the log-likelihood of the output distribution given the ground truth target distribution

of vocoder features.

An extension of the model with phoneme duration and pitch prediction models was also

proposed by (Blaauw & Bonada, 2017), which information from the score to generate a

sequence of phonemes and a f0 curve that was fed into the previously described model.

The full model, shown in Figure 2.19 was one of the first end-to-end Deep Learning

based singing voice synthesis models, capable of generating a singing voice signal

directly from an input score. Other singing voice synthesizers based on convolutional

autoregressive networks have also been proposed by (Bous & Roebel, 2019; Yi et al.,

2019).
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Figure 2.18: The Neural Parametric Singing Synthesizer (NPSS) proposed by (Blaauw & Bon-
ada, 2016)

Figure 2.19: The full Neural Parametric Singing Synthesizer (NPSS) with phonetic timing and
pitch prediction models proposed by (Blaauw & Bonada, 2017)
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Figure 2.20: A transformer (Vaswani et al., 2017) based sequence-to-sequence model for
singing voice synthesis, proposed by (Blaauw et al., 2019)

Feedforward convolutional neural networks have also been used for singing voice syn-

thesis, principally by (Nakamura et al., 2019). The model proposed by the researchers

models segments of several seconds of input frames containing linguistic and melodic

information derived from the score using a series of convolutional layers. The CNN

maps these input segments to the corresponding STRAIGHT (Kawahara et al., 1999)

vocoder parameters, which are used for synthesis of the singing voice signals.

Sequence-to-sequence (seq2seq) models for singing voice synthesis have been pro-

posed; (Blaauw et al., 2019) proposed a model based on the transformer network

(Vaswani et al., 2017) with self-attention and convolutional layers, as shown in Fig-

ure 2.20. Such models do not require a pre-allignment for the linguistic and acoustic

features and can produce the singing voice signal in an end-to-end manner. Other

sequence-to-sequence SVS systems include the model proposed by (Lee et al., 2019a),

which uses an adversarial trained system exploiting the syllable structure specific to

the Korean language. Adversarial training methodology was also used by (Hono et al.,

2019) to training a network for singing voice synthesis.
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2.5 Music information retrieval

Music information retrieval (Müller, 2007) (MIR) is the field of research that leverages

advancements in fields like signal processing, musicology, machine learning, psycho-

logy and psycho-acoustics to computationally extract information from musical rep-

resentations in various forms. In the context of this thesis, we focus on retrieval of

linguistic, melodic and singer identity related information given a polyphonic musical

mixture as an input.

2.5.1 Linguistic features

Linguistic features pertain to the content of speech that humans can interpret when

listening to each other talk. As discussed in Section 1.1.3, the study of linguistic fea-

tures in speech perception has been dedicated to the identification of phonemes. Each

language has its own set of phonemes, with their own pronunciation, although overlap

has been found. The pronunciation of certain phonemes within a language might also

depend on the accent of the speaker and emphasis that the speaker might be putting

on certain parts of the speech. Lexicons like the Carnegie Mellon University (CMU)

Pronouncing Dictionary7 provide standardized definitions for phonetic pronunciations

of words for some of the well studied and documented languages around the world like

English, Spanish and Japanese.

Such lexicons are used in automatic speech recognition (ASR), which is a field of

research that aims to derive the textual transcription from a speech signal. The cor-

responding field for the singing voice signal is known as automatic lyrics transcrip-

tion (ALT). ASR and ALT methodologies use to derive sequences of phonemes from

acoustic representations of the voice signal, like MFCCs. Phoneme sequences can

then be mapped to words using lexicons. Such phoneme sequences are also used for

voice synthesis, discussed in Section 2.4. Gaussian mixture model-Hidden Markov

7The CMU Pronouncing Dictionary provides definitions for pronunciations of North American Eng-
lish
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Models (GMM-HMM) trained with Maximum Linear Likelihood Regression (MLLR)

(Mesaros & Virtanen, 2009) have been used for both ASR and ALT. For the singing

voice, most of the research haw been applied to monophonic a capella signals, with

some researchers using source separation as an intermediate step (Mesaros, 2013).

Over the last few years, Deep Learning based models have been applied to ALT, in-

cluding bootstrapping combinations of HMMs and DNNs (Kruspe & Fraunhofer, 2016;

Gupta et al., 2018a,b). Other Deep Learning based methodologies use Dilated Convolu-

tional Neural Networks with Self-Attention (Demirel et al., 2020) and TDNN-BLSTM

neural networks (Tsai et al., 2018). Training such systems requires expert aligned lex-

ical annotations, typically in the form of phonemes.

Alternate representations of linguistic representation have been explored in the related

tasks of zero resource synthesis (Jansen et al., 2013; Glass, 2012; Dunbar et al., 2019)

and voice conversion (VC) (Mohammadi & Kain, 2017). Both tasks involve the extrac-

tion of speaker independent linguistic content from a speech signal and the subsequent

synthesis of an intelligible speech signal with the linguistic content.

The task of zero resource synthesis is motivated by the linguistic representation learned

by children learning to talk, without lexical knowledge. While not being able to com-

pletely understand language, infants are able to distinguish phonological sub-word

units of speech (Kuhl et al., 2008), often termed as proto-phonemes (Dunbar et al.,

2019). Discovering such units for synthesis from a speech signal is a task addressed

by the The Zero Resource Speech Challenge. This challenge is typically organized in

conjunction with the INTERSPEECH conference (Versteegh et al., 2015; Dunbar et al.,

2017, 2019, 2020). Participants in the challenge are required to propose a synthesis

system that can synthesize a speech signal from a language different to the one used

for training the system. The proposed system is also required to synthesize a speech

signal which retains the linguistic content of the input speech signal while changing the

perceived identity of the speaker of the signal. The re-synthesized signal is evaluated

through MOS based subjective listening tests with judges with native-level language
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competency. The criteria for evaluation includes intelligibility, naturalness and speaker

similarity.

Voice conversion is a closely related task aims to modify a voice signal in such a way

that the perceived source speaker is changed to a target speaker, which maintaining

the linguistic information that can be interpreted while listening to the audio. Con-

temporary methodologies for voice conversion. While voice conversion can be viewed

as signal manipulation, most of the recently proposed algorithms use synthesis as a

part of the process (Wu & Lee, 2020; Wu et al., 2020; Qian et al., 2019; Ganin et al.,

2016; Nachmani & Wolf, 2019; Chou et al., 2018). The Voice Conversion Challenge

(Yi et al., 2020; Lorenzo-Trueba et al., 2018; Wester et al., 2016) is also organized as a

satellite workshop of the INTERSPEECH conference. Over the last few iterations, the

task has evolved from parallel to non-parallel conversion, with multiple speakers. Most

of the models proposed over the last few iterations have used deep learning based mod-

els. The evaluation of the participating system in this challenge is also via subjective

listening tests.

The idea behind zero resource synthesis (Glass, 2012; Jansen et al., 2013) is that de-

cipher based speech processing can be used to identify recurring structures or motifs

within a speech signal. Such structures can can be used to define an appropriate set

of sub-word units within a languages for which expert based phonetic pronunciation

annotations are not easily available. Several methodologies have been proposed to dis-

cover such units (Chiu et al., 2003; Park & Glass, 2007; Zhang & Glass, 2010; Jansen

et al., 2010; Siu et al., 2011), often referred to as self-organizing units (Glass, 2012)

(SOUs). Such units form abstract representations of linguistic content that can be dis-

creet or continuous in nature (Dunbar et al., 2019). Such representations have been

used for applications like spoken query retrieval (Muscariello et al., 2009) and topic

segmentation (Dredze et al., 2010) and classification.

To obtain such an abstract representation of linguistic content, several deep learning

based models have been proposed to disentangle speaker specific information from the
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linguistic content of a voice signal. In particular, unsupervised learning with autoen-

coders (Dunbar et al., 2019) has been applied to this task, with the hypothesis that a

speech signal, x, can be represented by an invertible low dimensional embedding vec-

tor, V, and shown in Equation 2.13.

V = enc(x)

x̂ = dec(V)
(2.13)

Where enc() represents the encoder of an autoencoder and dec() represents its decoder.

The low dimensional vector representation, often termed as the latent embedding, is

assumed to fully represent speaker specific information like prosody and timbre, as

well as speaker independent linguistic information, as described in Section 1.1.3. Con-

straints like vector quantization (Wu & Lee, 2020; Wu et al., 2020) (VQ), instance

normalization (Chou et al., 2019) (IN), dimensional restrictions (Qian et al., 2019), do-

main confusion (Ganin et al., 2016; Nachmani & Wolf, 2019) and adversarial training

(Chou et al., 2018) are applied to the latent embedding to allow for disentanglement of

the speaker specific components of the signal and the speaker independent components

of the signal, as shown in Figure 2.21.

Vector quatization involves discretisation of the latent space of an autoencoder. Ini-

tially proposed as a generative model (Oord et al., 2017) for text, images and speech,

the vector quantised variational autoencoder (VQ-VAE) consists of an encoder, a latent

space and a decoder. The latent space is used as a lookup table for a set of one-hot vec-

tors, known as the posterior categorical distribution, which quantizes the output of the

encoder. This quantization is done giving a value of 1 to the category, the correspond-

ing embedding of which in the latent space has the minimum distance to the output of

the encoder. This embedding is fed to the decoder, which regenerates the input. Such

an architecture can be seen as an autoencder with a non-linearity, represented by q(),

that maps the continuous latent space to a discrete one-hot vector.

The vector quantization concept was adapted for the acoustic unit discovery in the
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Figure 2.21: Voice Conversion via auntoencoders

ZeroSpeech 2020 challenge (van Niekerk et al., 2020) and subsequently for voice con-

version (Wu & Lee, 2020; Wu et al., 2020). The VQVC and VQVC + models are two

such Voice Conversion algorithms using VQ that assume that the discrete representa-

tion for each time step of a given input acoustic features from a voice signal represents

the linguistic information in the signal. The model also assumes that speaker specific

information is encoded in the difference between the continuous encoder output and

the linguistic information. VQVC uses instance normalization (Ulyanov et al., 2017)

for One-Shot Voice Conversion. VQVC+ (Wu et al., 2020) expands on this idea by us-

ing a U-Net architecture along with discretization along each layer of the encoder side.

This operation is shown in Equation 2.14, with the encoder, evqvc+() and the decoder

dvqvc+() for a voice signal x with mel-spectogram features, Xmel over T time frames.
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Vvqvc+ = evqvc+(Xmel)

Zvqvc+ = q(Vvqvc+)

svqvc+
x = E[‖Vvqvc+−Zvqvc+‖]

Svqvc+ = {svqvc+
x ,svqvc+,svqvc+.....svqvc+}︸ ︷︷ ︸

T times

X̂vqvc+
mel = dvqvc+(ψ

vqvc++Zvqvc+)

(2.14)

The network is trained using a reconstruction loss, Lvqvc+
recon and a latent loss, Lvqvc+

latent , the

weighted sum of which gives the final loss used for training, Lvqvc+
f inal . This loss is shown

in Equation 2.15.

Lvqvc+
recon = E[‖X̂vqvc+

mel −Xmel‖1
1]

Lvqvc+
latent = E[‖IN(V )−Zvqvc+‖2

2]

Lvqvc+
f inal = Lvqvc+

recon +λvqvc+Lvqvc+
latent

(2.15)

Where IN() represents the Instance Normalization layer and lambdavqvc+ represents

the weight given to the latent loss. The mel-spectrogram features are used to gener-

ate the waveform of the voice signal using a WaveNet vocoder 8 (Shen et al., 2018).

(van den Oord et al., 2016a).

The AutoVC (Qian et al., 2019) model is another effective methodology for zero-shot

voice conversion. One-shot and zero-shot conversion refers to a conversion from a

voice sample where both the source and target speakers may be from outside the train-

ing dataset. The model also utilises an autoencoder framework with an encoder, a

bottleneck and a decoder. As shown in in Figure 2.22, the input to the system as well

as the target is the mel-spectrogram representation of the voice signal, Xmel, pertaining

to samples of a voice signal. These features, along with a speaker identity representa-

tion vector, ψ are passed through a content encoder, eautovc, which consists of a series

8Vocoders are discussed in Section 2.4.1
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of convolutional layers followed by batch normalization and a BLSTM. This encoder

produces a latent embedding, Vautovc.

A bottleneck size restriction is imposed on the latent embedding of the autoencoder, by

using downsampling by a factor of 32, leading to a content embedding, Zautovc. This

constraint limits the capacity of the embedding to represent information from which

the decoder can reconstruct the input features. The content embedding is upsampled

by repetition to the the size of the input, resulting in a vector, Ṽautovc, which is passed

along with the singer identity vector to the decoder, which is trained to reproduce the

mel-spectrogram, X̂autovc
mel , as shown in Equation 2.16. This is inverted to the waveform

using a WaveNet vocoder (van den Oord et al., 2016a), to produce the output signal, x̂.

The researchers who proposed the model prove that by imposing a such a limitation on

the bottleneck forming the latent space of the autoencoder constraints it to learn only

the speaker independent linguistic information, if the speaker identity is provided to

the decoder of the autoencoder.

Vautovc = eautovc(Xmel)

Zautovc = downsample(Vautovc)

Ṽautovc = upsample(Zautovc)

X̂autovc
mel = dautovc(ψ +Zautovc)

(2.16)

Where downsample() and upsample() represent the downsampling and upsampling

operations respectively. For training the model, a reconstruction loss, Lautovc
recon and a

content loss Lautovc
content , resulting in the final loss, Lautovc

f inal
9. The content loss maintains

cyclical consistency between the input signal, x and the output x̂, and is calculated by

passing the output mel-spectrogram through the content encoder.

9A post-net is also used in the AutoVC model, but is omitted here for simplicity



2.5 MUSIC INFORMATION RETRIEVAL 77

5 ×
1 C

onvN
orm

×
3

BLSTM
 ×

2

D
ow

n1
D

ow
n2

512 32x2

U
p1

U
p2

C
opy

C
oncatenate

5 ×
1 C

onvN
orm

×
3

LSTM
 ×

3

1 ×
1 C

onv

5 ×
1 C

onvN
orm

×
4

5 ×
1 C

onvN
orm

×
4

+

320 512 1024 80 512 80

D
ow

n1

U
p1

D
ow

n2

U
p2

M
el-spectrogram

𝑋
!
"#

Singer identity
𝜓

M
el-spectrogram

#𝑋!
"#

Synthesized 
speech signal

$𝑥

Speech signal
𝑥

D
econv

×
4

W
aveN

et

Figure 2.22: The AutoVC architecture for Zero Shot Voice Converstion (Qian et al., 2019)

Lautovc
recon = E[‖X̂autovc

mel −Xmel‖2]

Lautovc
content = E[‖Zautovc−downsample(eautovc(X̂autovc

mel )‖]

Lautovc
f inal = Lautovc

recon +λautovcLautovc
content

(2.17)

For inference, the vector passed to the decoder is one that represents the identity of

the target speaker. Such vectors representing speaker identity are commonly known

as speaker embeddings and are discussed in Section 2.5.3. The AutoVC architecture

has been tried with one-hot speaker representations as well as speaker embeddings dir-

ectly derived from audio, which allow it to perform zero-shot voice conversion. These

speaker embeddings are discussed in Section 2.5.3.

The AutoVC architecture has been extended to disentangle linguistic content, timbre,

pitch and rhythm from a speech signal, using a triple information bottleneck (Qian

et al., 2020). This includes a random shuffling of the input time series so that it only

retains linguistic content and not rhythmic content. Other deep learning methodologies

proposed for Voice Conversion include the use of GANs (Kameoka et al., 2018b),

Instance Normalization (Chou et al., 2019), sequence-to-sequence networks (Huang

et al., 2020; Hwang et al., 2020) and Normalizing Flow (Serrà et al., 2019).

As such, these methodologies provide us a means to represent linguistic information of
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a voice signal in an abstract and language independent manner. Additionally, such as

representation does not require labelled data, which is hard to obtain. However, these

techniques have been proposed for the speech signal, which, as discussed in Section

1.1.3, differs from the singing voice signal. In Chapter 7, we study how such method-

ologies can be adapted for the case of the singing voice.

2.5.2 Melody

The melody of a musical piece is musicological concept, defined in different contexts

(Poliner et al., 2007; Typke, 2007; Ryynänen & Klapuri, 2008). One commonly accep-

ted definition is related to the pitch sequence perceived by a listener, as "the melody

is the single (monophonic) pitch sequence that a listener might reproduce if asked to

whistle or hum a piece of music, and that a listener would recognise as being the es-

sence of that music when heard in comparison" (Poliner et al., 2007). The perceived

pitch, as discussed in Section 1.1.3, is related to the fundamental frequency (f0) of

the signal. Research has focused on extracting the f0 of monophonic signal.Since the

f0 is a measure of the rate of repetitions within a signal, the auto-correlation func-

tion is the most intuitive method for its computation. Auto-correlation is a measure of

the similarities between observations of a signal across time, calculated by the taking

the correlation of a signal with a delayed version of itself. Auto-correlation in both

the time (Dubnowski et al., 1976) and frequency domains (Rahman & Shimamura,

2010) has been proposed for f0 estimation (Lahat et al., 1987). Like auto-correlation,

the cepstrum (Noll, 1967) or the inverse Fourier transform of the log-scale magnitude

component of the spectrum of a signal, also provides information about the periodicity

of a signal and is used for f0 estimation.

The auto-correlation function however, is suspect to peak amplitude changes and cal-

culating the f0 in such a manner is prone to octave errors. The Yin (De Cheveigné

& Kawahara, 2002) algorithm was proposed to alleviate this problem by using the

cumulative mean normalized difference function with the auto-correlation function to
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estimate the f0. The pYin (Mauch & Dixon, 2014) algorithm expands on this idea by

estimating a probability distribution over a range of f0 candidates, followed by HMM

based pitch tracking to pick out the most probable f0 contour. HMMs can also then be

used for melody note annotation (Mauch et al., 2015). Other algorithms proposed for

monophonic f0 estimation include the average magnitude difference function (AMDF)

(Ross et al., 1974), the normalized cross-correlation function (NCCF) (Talkin & Kleijn,

1995), DIO (Morise et al., 2009) and SWIPE (Camacho & Harris, 2008) which matches

the input signal with templates of a sawtooth waveform.

While such methodologies work for monophonic signals, they are not applicable to

polyphonic signals. Indeed, the definition of the melody for a polyphonic context is

different as there might be several melodic or harmonic instruments playing simultan-

eously in a musical piece. The concept of predominant melody has been proposed as

the principle melody that a listener would recognize when listening to a piece of mu-

sic (Poliner et al., 2007). In particular, it has been compared to the monophonic pitch

sequence of the predominant melodic source present in a musical mixture. Methodolo-

gies using spectral peaks as f0 candidates have been proposed for predominant melody

estimation (Ryynänen & Klapuri, 2008; Goto, 2004; Salamon & Gómez, 2012; Sala-

mon et al., 2013b; Paiva et al., 2006; Dressler & Fraunhofer, 2009; Klapuri, 2006).

The f0 contour of the predominant melody is then estimated from these candidates by

using various heuristics including probabilities weighted on the presence of harmonics

(Goto, 2004; Klapuri, 2006).

One such algorithm is called Melodia (Salamon & Gómez, 2012; Salamon et al.,

2013b). In this algorithm, shown in Figure 2.23, the polyphonic mixture signal is

first passed through an equal-loudness filter and an STFT transformation, followed by

frequency and amplitude correction. Harmonic weighting is used to compute to sa-

lience function, from which the pitch contour is extracted using peak detection and

contour characterization. Finally, an f0 contour is estimated using iterative melodic

peak selection. Other methodologies for estimating the predominant pitch in a poly-
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Figure 2.23: The framework for Melodia algorithm (Salamon & Gómez, 2012)

phonic musical signal include the use of the source-filter model (Bosch et al., 2016),

Support vector machines (SVM) for classification of pitch contours (Ellis & Poliner,

2006; Poliner & Ellis, 2005) as well as hand-crafted features (Bittner et al., 2015).

Over the last few years, deep learning based algorithms have been applied to the task

of f0 estimation for monophonic signals. The convolutional representation for pitch

estimation (Kim et al., 2018a) (CREPE) is one such algorithm, taking the waveform

of a musical signal as input. The architecture for this model consists of a series of

convolutions, the end result of which is a 360-dimensional vector. The bins of this

vector represent the probability distribution of f0 values defined in cents. The 360 bins

cover a range between 32.70 Hz and 1975.5 Hz with a resolution of 20 cents per bin.
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Binary cross entropy is used to train the network with a ground truth target distributed

over the bins as a one-hot vector with Gaussian blurring with a standard deviation of 25

cents The SPICE (Gfeller et al., 2020) is another deep learning based algorithm that

makes innovative use of data without annotations by applying a determined amount

of pitch shift to the Constant-Q Transform (CQT) (Velasco et al., 2011) of the input

signal. The difference between the f0 estimate for the original signal and the pitch-

shifted signal is used to train the network.

Deep Learning has also been applied to predominant melody estimation for polyphonic

signals, particularly for estimating the vocal melody in a polyphonic mixture (Rigaud

& Radenen, 2016; Kum et al., 2016; Su, 2018; Dong et al., 2019; Jansson et al., 2019).

Methodologies proposed include the use of a residual convolutional network (ResNet)

(Doras et al., 2019) which uses skip connections between consecutive convolutional

layers to allow for deeper propagation of information. Joint estimation of the f0 con-

tour corresponding to the the vocals as well as source separation has been proposed

(Jansson et al., 2019; Gao et al., 2021). The harmonic constant-Q transform (HCQT)

has been proposed for f0 estimation, involving multiple CQTs over different frequency

ranges to provide higher resolution. Deep salience representations (Bittner et al., 2017)

have been proposed for representing the output of neural networks for this task in a cat-

egorical format and have been used for multiple pitch estimation (Cuesta et al., 2020)

as well as vocal melody extraction using a U-Net architecture (Doras et al., 2019).

Aside from predominant pitch estimation, the estimation of the f0 of multiple melodic

instruments playing simultaneously in polyphony has also been addressed (Cañadas Quesada

et al., 2010; Arora & Behera, 2015; Bittner et al., 2017). Such algorithms try to discern

the various pitch contours that might be present in a signal at a given time.

2.5.3 Singer identity

Speaker identification is a field of research that aims to obtain a low dimension rep-

resentation of speaker specific characteristics from a voice signal. Such a represent-
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ation should allow distinction between various speakers regardless of the content of

the voice signal. Joint factor analysis (JFA), representing the signal using a set of

low-dimensional total variability factors has been proposed for this task. The low di-

mension representation obtained using such an approach is commonly known as an

i-vector (Dehak et al., 2010). Deep neural networks have also been applied to this

task, extracting representations known as d-vectors (Variani et al., 2014).

Such low dimensional embeddings are not only useful for speaker identification, but

have also been applied for zero-shot voice conversion, most notably in the AutoVC

(Qian et al., 2019) model. The AutoVC model uses a 256 unit represent ion of speaker

identity (Wan et al., 2018) which is derived using a stack of 2 LSTM layers trained

using a generalized end-to-end (GE2E) loss. The idea behind the loss is to build

a similarity matrix to define the similarities between various utterances by a single

speaker. The VQVC (Wu & Lee, 2020) and VQVC+ (Wu et al., 2020) models for

voice conversion model such speaker identity representation vectors as the difference

between the latent representation of the speech signal and the quantized representation

of the linguistic content.

Deep Learning methodologies have also been applied to derive vectors for represent-

ing singer identity, both from monophonic a capella singing and polyphonic musical

mixtures (Lee & Nam, 2019). The model is trained using a margin-based hinge rank

loss with cosine similarity (Frome et al., 2013) using an anchor, a positive example and

multiple negative examples.

2.6 Summary

Source separation has been applied to the voice signal, particularly in the context of

the singing voice mixed with instrumental accompaniment. Over the last decade, deep

learning based algorithms have shown high potential to separate the voice signal from

other instruments. However, most of these algorithms are based on the estimation of
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time-frequency (TF) masks, which are applied to the mixture to filter out the voice

signal. Such algorithms assume that the musical mixture is a linear sum of the sources.

We have also studied voice synthesis algorithms, which have also been revolutionized

by the advent of deep learning. We note that singing voice synthesis algorithms typ-

ically take three components of the voice as input; the singer independent linguistic

and melodic content and the singer identity, which is used to generate the timbre for

the voice signal. We also note that low dimensional representations, known as vocoder

parameters, of the voice signal are often used for voice synthesis and analysis.

Research in the MIR field has been focused on estimating perceptually relevant fea-

tures from a musical signal. For contemporary popular music, such features include

the predominant melody, the lyrics and the identity of the singer singing a song. Deep

learning based algorithms have been proposed for all three of these tasks, which are

pertinent to our thesis. Automatic lyrics transcription algorithms, which extract the

linguistic content from a signal, generally estimate a sequence of phonemes present in

the signal. This imposes language constraints on the algorithm. To overcome these

constraints, we explore a more abstract representation of linguistic content, which is

often used in low resource synthesis and voice conversion algorithms. Deep learning

algorithms have been proposed to estimate such representation via autoencoders with

restraints on the bottleneck. We propose to combine such representations with syn-

thesis methodologies to synthesize the underlying vocal signal in a musical mixture.

The framework for such a methodology is presented in Part II.

We also believe that TF mask based source separation methodologies can be applied

to separate the individual parts within an SATB ensemble choir recording, that gener-

ally involves a linear sum of the individual soprano, alto, tenor and bass parts. Within

the separated parts, there are often multiple singers simultaneously singing the same

content in unison. We apply the methodology proposed in Part II to synthesize a pro-

totypical single singing voice signal representative of the unison. The framework for

separate the individual parts and synthesizing the prototypical signal is presented in
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Part III.



Chapter 3
Datasets and evaluation strategies

Algorithms using data-driven deep learning based methodologies generally require

large scale specialized datasets, typically with annotations. In this thesis we focus

on contemporary popular music as well as choral singing. For contemporary popular

music, we require datasets with clean unprocessed singing voice signals from multiple

singers along with instrumental accompaniment and phonetic annotations. We initially

tried recording such a dataset with sufficient and balanced coverage of linguistic and

musical features. However, due to unprecedented circumstances encountered during

the process, we could only record 9 songs, which is not sufficient for data-driven al-

gorithms. Instead, we decided to leverage publicly available datasets which met our

requirements.

In this Chapter, we look at some datasets for the singing voice, particularly in the

context of contemporary popular music in Section 3.1 and choral singing in the SATB

format in Section 3.2. We also look at evaluation strategies for voice synthesis and

source separation algorithms in Section 3.3.

3.1 Contemporary popular music

One of the first publicly available datasets with separate singing voice and instru-

mental accompaniment stems was the Music Audio Signal Separation (MASS) data-

85
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set (Vinyes, 2008), developed at the Music Technology Group (MTG) in the Universitat

Pompeu Fabra (UPF). It only contained 2.5 minutes of data and later evolved into the

QUASI dataset (Araki et al., 2012), with 11 tracks by professional sound engineers and

was used in the 2010 and 2011 SiSEC evaluation campaigns.

Larger scale datasets were later developed including the MIR-1K dataset (Hsu & Jang,

2009) and the ccMixter dataset (Liutkus et al., 2015), which has 50 stereo tracks. The

iKala dataset (Chan et al., 2015) is also one such dataset, which we use in this thesis.

It contains 252 tracks, each of 30 seconds in duration. Clean unprocessed vocals and

musical accompaniment are present for the songs in this dataset, along with manually

annotated MIDI-note pitch annotations for each of the vocal tracks. The majority of

the songs in the corpus are in the Chinese Mandarin language, although there are some

English language songs as well. Both male and female singers are present in the data-

set, which we use for training and evaluating one of our first systems for estimating

synthesis parameters from musical mixtures, presented in Chapter 5.

The DSD100 dataset (Liutkus et al., 2017) contains 100 tracks with vocals, bass drums

and others stems from Mixing Secret Free Multitrack Download Library of the Cam-

bridge Music Technology group. While it is one of the largest and commonly used

datasets for evaluating source separation algorithms, it was unfeasible for our study

as the raw vocal tracks are not available. This problem is solved by the MedleyDB

dataset (Bittner et al., 2014). This dataset contains 109 songs with raw recordings and

processed stems for each of the individual instruments including the vocals. Vocals are

present in 59 of the songs. We use this dataset for evaluation of our system for synthes-

izing the vocal signal from linguistic and melodic information extracted from a musical

mixture, presented in Chapter 7. The MUSDB18 (Rafii et al., 2017) dataset combines

the MedleyDB and DSD100 datasets to present a collection of 150 full-length tracks

with individual stems.

An English language dataset with phonetic annotations used in this thesis is the Na-

tional University of Singapore sung and spoken lyrics corpus (Duan et al., 2013)
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(NUS corpus), which consists of 48 popular English songs both sung and spoken by

12 non-professional singers, who were non-Native English speakers. Phonetic annota-

tions are present for this dataset, with 25474 phoneme annotations for a set of 20 songs.

There are 6 male and 6 female singers, each of whom sing and speak the lyrics of 4

distinct songs from the set of 20 songs. We use this dataset for training and evaluating

a multi-singer singing voice synthesizer trained with the Wasserstein-GAN methodo-

logy, presented in Chapter 6.

Other datasets pertaining to the singing voice in the context of contemporary popular

music include the DAMP (Smith, 2013), DALI (Meseguer-Brocal et al., 2019), IRMAS

(Bosch et al., 2012) and JVS-Music (Tamaru et al., 2020) datasets a summary of which

is presented in Table 3.1.

3.2 Choral singing

Recording the individual singers of a choir ensemble in a realistic setting is a chal-

lenging task. The musical arrangement of a choir requires multiple singers to sing in

synchronization. This involves interaction between the individual singers in the choir

(Ternström, 2002), which needs to be captured in a realistic recording of a choir. Re-

cording individual singers within the full choir setting can lead to signal leakage within

the recordings. In the last few years, some attempts have been made to record indi-

vidual singers within the choral setting, by using special directional microphones and

singer isolation configurations.

The Choral Singing Dataset (CSD) (Cuesta et al., 2018) is one such recently published

dataset. Initially proposed for the purpose of analyzing unison singing, the dataset

contains a total of 7 min of audio recordings of 16 individual singers singing 3 songs

in the SATB format. Each of the parts; soprano, alto, tenor and bass, was recorded

in isolation, with 4 singers per part. Individual singers within the parts were recorded

with dynamic handheld microphones, to minimize signal leakage between the singers
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singing in unison. The 3 songs in the dataset are Niño Dios, in the Spanish language,

El Rossinyol, in the Catalan language and Locus Iste in Latin. The dataset includes

aligned annotations related to the f0 and MIDI notes as well as singer identity for each

of the tracks.

The Dagstuhl ChoirSet (Rosenzweig et al., 2020) (DCS) is another dataset with 55 min

of recordings pertaining to SATB choral singing. The dataset includes 2 songs; Locus Iste

and Tebe Poem, a Bulgarian song. These songs were recorded with 13 singers, distrib-

uted into the soprano, alto, tenor and bass parts with a variable number of singers per

part. All singers were recorded simultaneously, with different types of microphones

including dynamic, handset and throat microphones. While the handset microphones

provides recordings of each of the individual singers, the level of inter-singer leakage is

higher than that in the CSD. We also note that a high amount of the 55 min of recording

pertains to vocal exercises which cannot be used to distinguish parts in an SATB choir

setting.

Other proprietary datasets pertaining to SATB choral singing include the ESMUC

Choral Dataset (ECD), which is a proprietary dataset of the Escola Superior de Música

de Catalunya (ESMUC) and the Bach Chorales Dataset (BCD). The ECD contains

20 min of recordings of 13 singers singing 3 songs in the German and Latin languages

in the SATB format. The singers were recorded simultaneously with handheld dynamic

microphones to reduce inter-singer leakage. However, it must be noted that the indi-

vidual tracks in this dataset have significantly higher leakage than those in the CSD and

DCS datasets. The BCD has 20 min of recordings of 4 singers performing 26 songs in

individual isolated setups. This dataset has the least amount of inter-singer leakage

and has been used for transcription experiments (Schramm & Benetos, 2017; McLeod

et al., 2017).
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3.3 Evaluation Strategies

Evaluation of synthesis and source separation methodologies is highly subjective and

often depends on the end application that the methodology is designed for. A voice

synthesis algorithm designed for a public announcement system, might need the syn-

thesis to be clear and intelligible while transmitting the desired information to the

public. On the other hand, some systems need the sound to sound more natural or in-

deed be representative of the prosodic and timbrel voice identity of a certain individual.

Although hard to define objectively 10, a high quality voice synthesis is generally de-

sired. Source separation algorithms might require the signal to be completely free of

artifacts and interference from other sources while preserving the quality of the sig-

nal. However, different algorithms might have different levels of compromise between

these criterion.

A common methodology used for quantifying such an evaluation for both synthesis

and source separation algorithms is to have listening tests wherein various participants

are explained certain criteria and listen to a few audio examples. The participants are

asked to rate each of the examples on a scale that. generally goes from a low number

to a higher number, indicative of the participants opinion of the audio example based

on the criteria provided. An arithmetic mean is usually taken to represent the opinion

of the set of the participants and is called the mean opinion score (MOS).

3.3.1 Voice synthesis evaluation

Voice quality assessment is an important task for voice transmission and standards and

guidelines for such are usually set by the International Telecommunication Union. The

MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) (Schoeffler et al.,

2015) methodology is a variation of the MOS listening test. It is defined by ITU-

R recommendation BS.1534-3 and provides guidelines for trained expert listeners to

10For some artistic applications, particularly in the case of music, certain degrees of change in what
would normally be called quality could be desired.
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evaluate the perceived quality of a speech speech signal. Such tests were tradition-

ally carried out in controllable conditions, following standards like the ITU-T Recom-

mendation P.800. Recently, crowdsourced evaluation (Naderi et al., 2020), allowing

anonymous users to participate in evaluation processes has recently come to the fore.

Standards such as the ITU-T Recommendation P.808 have been provided to allow for

quality evaluation. High quality evaluations use around 100 participants sampled from

a selected demographics (Naderi et al., 2020).

In practice however, such standards are hard to meet for evaluation of multiple sys-

tems. To get a statistically significant result from such listening test, a large number of

participants is required. The demographic of participants for such subjective listening

tests is very important and depends on the application intended. Also, the listening

environment and other external conditions for the participants must be controlled and

homogeneous to allow for fair and unbiased comparisons between systems. The Bliz-

zard TTS challenge (Zhou et al., 2020; Wu et al., 2019; Karaiskos et al., 2008), which

is a community based challenge to evaluate TTS systems stipulated a minimum of 10

participants per system for evaluation. Such participants included self-declared speech

experts, volunteers recruited via social media and paid university students. The two

branches of the evaluation campaign consisted of 6 and 7 sections, 17 and 9 samples,

respectively.

Another form of subjective tests is the AB testing, which can be used to compare one

synthesis system to another. The participants in this case are provided sets of examples

of the two systems to be evaluated, without the knowledge of which one corresponds

to which system. As shown in in Figure 3.1, the examples are generally labelled A and

B and the participant is asked to choose one of them based on preference with respect

to a provided criteria. A reference example to allow the participant to better judge the

samples based on the criteria is often provided.

Given the difficulty in carrying out subjective listening tests, several perceptually mo-

tivated objective metrics have been proposed to judge the quality of a given speech
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signal. Perceptually motivated measures, based on psycho-acoustics, have been pro-

posed using models like the gammatone filter bank, one-third octave band filter bank,

articulation index (AI) (French & Steinberg, 1947), speech-transmission index (STI)

(Steeneken & Houtgast, 1980). Such measures include the perceptual speech quality

measure (PSQM) (Beerends & Stemerdink, 1994), which was adapted as the (ITU-

T) recommendation P.861 in 1996, along with measuring normalizing blocks (MNB)

(Voran, 1999). Further metrics like the perceptual evaluation of audio quality (PEAQ)

(Thiede et al., 2000) and the perceptual audio quality measure (PAQM) (Beerends &

Stemerdink, 1992) were later adapted as ITU-R recommendation BS.1387 in 1999.

Further extensions to the perceptual models for speech quality evaluation include the

the bark spectral distortion (BSD) (Wang et al., 1992) and the perceptual analysis meas-

urement system (PAMS) (Hollier et al., 1993). The perceptual evaluation of speech

quality (PESQ) (Rix et al., 2001) uses a combination of several perceptual models and

is one of the most widely used evaluation metrics, following adaptation in the ITU-T

recommendation P.862. The Perceptual Evaluation of Audio Quality (PEAQ) (Thiede

et al., 2000) metric has been proposed to assess the objective quality of a distorted

audio signal, given a high quality signal. This metric follows the listening test stand-

ards for ITU-R BS.1116. Another metric commonly used is the PEMO-Q (Huber &

Kollmeier, 2006), which uses representations based on psycho-acoustically motivated

cognitive aspects of the signal to calculate a perceptual similarity measure (PSM). The

short-time objective intelligibility (STOI) (Taal et al., 2010) metric is a robust speech

intelligibility measure that has been widely used. It has shown to be language invariant.

While these metrics require a ground truth reference to compare the signal to be eval-

uated against, some non-intrusive measures for speech audio quality have also been

proposed. One such measure is the speech-to-reverberation modulation energy ratio

(SRMR) (Falk et al., 2010) metric, which uses an auditory-inspired modulation spec-

trum representation with 23 gammatone filterbank channels to represent the signal and

takes the ratio of the average modulation energy content in the first four bands to the last
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four bands. Further improvements to this model have been proposed, including some

specifically for cochlear implants (Santos et al., 2014; Santos & Falk, 2014). The non-

intrusive codebook-based STOI (NIC-STOI) (Sorensen et al., 2017) uses codebooks of

filter coefficients to model the spectral envelope of the speech and noise content in a

signal. These are used to estimate a measure similar to the STOI.

Deep neural networks have also been used to directly evaluate the quality of a speech

signal, the DNSMOS (Reddy et al., 2020) uses a CNN to map audio samples to rat-

ings obtained using the MOS methodology following the ITU-T P.808 standard. The

MOSNet (Lo et al., 2019) has been proposed to objectively evaluate Voice Conversion

algorithms based on MOS ratings. Other objective metrics that have been proposed

for assessing speech quality include Perceptual Objective Listening Quality Analysis

(POLQA) (Beerends et al., 2013).

Objective measures for evaluating general audio quality using the distance between

intermediate layers of neural networks trained for audio classification have also been

proposed. The intuition between using this is that the intermediate layers of deep neural

networks inherently learn representation of the audio data that are perceptually relevant.

The discriminators used in training of GANs are also used for providing measures of

audio and speech quality. Metrics such as the Inception Score (Salimans et al., 2016),

Fréchet Audio Distance (FAD) (Kilgour et al., 2019) and the Kernel Inception Distance

(KID) (Bińkowski et al., 2018) are often used as subjective measures of audio quality.

For speech signals, the Fréchet Deep Speech Distance (Bińkowski et al., 2019) and

Kernel Deep Speech Distance, have been proposed as metrics of audio quality.

While these metrics work well for estimating the perceived quality of a speech signal,

the differences in speech and singing voice signals, listed in Section 1.1.4, make them

incompatible for assessing the quality of a singing voice signal The mel-cepstral dis-

tance (MCD). has been used to provide an estimate of the quality of a singing voice

signal (Blaauw & Bonada, 2016). Computation of the metric involves calculating the

difference between the two signals, aligned in time, in the mel-cepstral domain. How-
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ever, it has several limitations and cannot be considered an absolute criteria for evalu-

ation.

3.3.2 Source separation evaluation

An ideal algorithm would be able to extract the exact signal that was used for the

mixing procedure, without the presence of any of he other signals. However, most

source separation algorithms introduce some form of artificial noise to the target signal

and might also have some interference from the other signals in the mixture. These

components can be quantified for the extracted signal, given the ground truth version

of the individual signals present in the mixture and can be used for evaluation of source

separation algorithms.

More importantly however, it is important to evaluate the perceived quality and isola-

tion of the extracted signal. For singing voice or speech signal separation, intelligib-

ility of the separated signal is also an important perceptual criteria. For these criteria,

listening tests such as MUSHRA (Schoeffler et al., 2015) and MOS tests have been

proposed. Such tests ask expert listeners to listen to different audio samples and rate

them on a fixed scale based on various criteria.

However, such tests are quite subjective as the testing conditions and the exact stimuli

provided for different models might not be exactly the same. Also, the conducting

such listening tests at scale can be quite expensive, especially. since expert listeners

are required to meet the requirements for the test. Therefore, it is also important to

have objective evaluation metrics. One such set of metrics that is commonly used

throughout the source separation community and indeed in the SiSEC campaign is the

Blind Source Separation Evaluation (BSS Eval) (Vincent et al., 2006). The BSS eval

performance metrics includes three sets of metrics; bss_eval_sources, pertaining to

single-channel source signals, bss_eval_images, for multichannel spatial source signals

and bss_eval_mix for mixing filters. As mention in Section 1.1.5, this thesis focuses on

monoaural source separation for the voice signal and thus uses the bss_eval_sources
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set of evaluation metrics.

For these evaluation metrics, a mixture of signals, m is assumed to be a linear sum

of sources, si; m = ∑
K
i=1 si, where i is the index of the K sources. Additionally, some

noise might be present in the signal. The idea behind the evaluation methodology is to

decompose the error between the estimated source and the target source into three com-

ponents, the filtering and spatial errors, the artifacts or the artificial noise present in the

estimated signal and interference from the other sources present in the estimated signal.

Within this evaluation methodology, the estimated source, s̃i, is first decomposed into

four constituents as:

s̃i = starget
i + einter f

i + enoise
i + earti f

i (3.1)

starget
i is a modified version of si, which may contain certain allowed distortions, F .

einter f
i represents interference coming from unwanted sources (si′)i′ 6=i which might be

mixed along with s̃i. enoise
i represents noises such as forbidden distortions, not in the

set F and earti f
i represents burbling and other artifacts that might be introduced by the

process of source separation.

Using these values, the following evaluation measures can be computed:

1. Source to Distortion Ratio (SDR):

SDRi := 10log10
‖starget

i ‖2

‖einter f
i + enoise

i + earti f
i ‖2

(3.2)

This measure represents the overall performance of the source separation al-

gorithm for the source indexed by i.

2. Source to Interferences Ratio (SIR):

SIRi := 10log10
‖starget

i ‖2

‖einter f
i ‖2

(3.3)

This metric measures the amount of interference in the estimation of the source

indexed by i from other sources present in the mixture.
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3. Signal to Noise Ratio (SNR):

SNRi := 10log10
‖starget

i + einter f
i ‖2

‖enoise
i ‖2 (3.4)

4. Sources to Artifacts Ratio (SAR):

SARi := 10log10
‖starget

i + einter f
i + enoise

i ‖2

‖earti f
i ‖2

(3.5)

This measure provides an estimate of artifacts in the estimated sourced, intro-

duced by the source separation process.

A perceptually motivated adaptation of the BSS metrics, called the Perceptual Eval-

uation method for Audio Source Separation (PEASS) (Vincent, 2012; Emiya et al.,

2011) has also been proposed recently. like the BSS metrics, this set of metrics extracts

three distortion components from the signal to be evaluated. The saliance of these

distortion components is computed by the PEMO-Q (Huber & Kollmeier, 2006) met-

ric for audio quality assessment and these are then passsed through a neural network to

compute three metrics; Target-related Perceptual Score (TPS), Artifacts related Percep-

tual Score (APS), Interference-related Perceptual Score (IPS), and Overall Perceptual

Score (OPS). These metrics have shown higher correlation to the MOS obtained from

MUSHRA tests. However, recent studies have shown that neither the BSS nor the

PEASS set of metrics show strong correlation with the subjective rating provided by

human listening tests and as such do not generalize well for different algorithms (Cano

et al., 2016; Ward et al., 2018).

3.4 Summary

Our research focuses on source separation in two distinct domains, contemporary pop-

ular music and ensemble choral singing. As such we require two kinds of datasets for

our study. The first kind is popular music datasets with the clean and processed singing

voice stems, instrumental backing track and annotations pertaining to melodic and lin-

guistic content, in the form of phonetic annotations. We note that the MedleyDB dataset
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(Bittner et al., 2014) fulfills the first of these requirements, but does not have phonetic

annotations. We also note that the number of tracks containing the singing voice in

this dataset is quite low to efficiently train a deep learning based algorithm, but it can

be used for evaluation. The iKala dataset (Chan et al., 2015) is another dataset which

meets our requirement for singing voice without processing effects present along with

the backing track. The NUS corpus (Duan et al., 2013) presents singing voice data with

phonetic annotations but does not have an accompanying backing track. The amount

of data present in this corpus is also limited.

We attempted by record a dataset to meet our requirements, but personal and global

conditions imposed constraints on the author which prevented the fulfillment of this

dataset. Fortunately, a proprietary dataset was provided to us for the purpose of training

our models. This dataset consists of 12 hours of data, with 205 songs by 45 distinct

male and female professional singers. The voice is presented without any effects and an

instrumental backing track is included for each of the songs. The songs in this dataset

are in the English and Japanese language.

For choral singing, we leverage some of the recently recorded datasets, including the

Choral Singing Dataset (CSD) (Cuesta et al., 2018), the Dagstuhl ChoirSet (Rosenz-

weig et al., 2020), the ESMUC dataset and the Bach Chorales Dataset (BCD).

We also study evaluation methodologies for voice synthesis and source separation al-

gorithms and note that while a number of objective metrics have been proposed for

evaluation, subjective listening tests are the most practical methodology available for

evaluation.

Throughout this thesis, we will use subjective tests following the AB format. For most

of our experiments, 15− 20 participants from a limited demographic were asked to

evaluate. We used the BeaqleJS (Kraft & Zölzer, 2014) JavaScript-based framework

for subjective audio quality evaluations, with functionality as shown in Figure 3.1.
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Figure 3.1: An example of an AB test using the BeaqleJS framework (Kraft & Zölzer, 2014).
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List of symbols

a A representation a general signal.

A Spectogram of the signal denoted by a.

c A representation of a general signal, different from a.

C Spectrogram of the signal denoted by c.

s The time domain waveform of an arbitrary source mixed in a musical mixture.

S Spectrogram of the source denoted by s.

x Time-domain waveform of voice signal, could be speech or singing.

X Spectrogram of the voice signal denoted by x.

Xvoc Compressed spectral envelope pertaining the voice signal denoted by x.

Xmel Mel-scale spectrogram pertaining to the voice signal denoted by x.

y Time-domain waveform of voice signal with modulations added.

Y Spectrogram of the voice signal with modulations added, y.

x̂ Time-domain waveform of an output voice signal.

X̂ Spectrogram of the output voice signal denoted by x̂.

X̂voc Compressed spectral envelope pertaining to the voice signal denoted by x̂.

X̂mel Mel-scale spectrogram pertaining to the voice signal denoted by x̂.

ŷ Time-domain waveform of an output voice signal, which has effects and modulations

added.

Ŷ Spectrogram of the output voice signal with modulations added, ŷ.
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b Time-domain waveform of musical instrumental backing track.

B Spectogram of musical instrumental backing track

m The mixture signal formed by mixing y with b, the mix does not necessarily have

to be a linear mixture.

M Spectogram of the mixture signal denoted by m.

enc The encoder network of an autoencoder.

dec The decoder network of an autoencoder.

V The latent embedding of an autoencoder.

gen The generator network of a GAN.

dis The discriminator network of a GAN.

Z The linguistic content of the voice signal, x.

η The melodic content of the voice signal, x.

ψ A representation of a singer or speaker, who is the source of x.

ω A soft-mask or Wiener filter used for source separation.



Chapter 4
Introduction

In Chapter 2, we observed that most musical source separation algorithms proposed

for separating the singing voice from a musical mixture assume that the mixture is a

linear sum of the individual sources. With this assumption, most algorithms use time-

frequency (TF) masks to filter the singing voice from the mixture, typically applied to

the magnitude component of the spectrogram of the mixture signal.

However, most contemporary popular music involves the application of processing ef-

fects like flanger, phasor, reverb or delay, which modify the voice signal. In addition,

the singer might employ techniques like growling or screaming, which deviate from the

typical voice production mechanism, to augment the content of the lyrics in a mean-

ingful way. Contemporary music also utilizes a non-linear mixing process, along with

mastering and post-production techniques, which violate the leaner sum assumption of

source separation algorithms. Deep learning based music source separation algorithms,

discussed in Section 2.3 have shown remarkable robustness to such vocal effects and

mixing conditions. However, the TF mask based source separation algorithms have a

limitation in that they can only filter out the processed form of the signal, which might

be undesirable in some cases.

To overcome this limitation, we propose the framework for a system to synthesize a

clean voice signal from a mixture signal, based on the underlying content. The pro-
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posed methodology is based on a human listeners’ process while trying to to replicate

the singing voice signal in a musical song that he or she is listening to by parsing the

linguistic and melodic content of the song and singing the same. We note that the non-

linear processing and mixing applied to the voice signal does not alter its perceptual

qualities and a human listener is able to discern the content despite these effects. Based

on this, we propose a methodology to synthesize the clean singing voice signal from

a musical mixture using the underlying perceptual content. In Chapter 5, we propose

a methodology to extracted synthesis parameters directly from a musical mixture. In

Chapter 6, we use a feedforward network optimized using adversarial training to map

the linguistic and melodic content derived from a score, along with a representation

of the singer identity to synthesis parameters. Chapter 7 presents a methodology to

extract linguistic content and the singer identity from a mixture signal and use these

to generate the synthesis parameters from which a clean singing voice signal can be

generated.

We note that synthesis has previously been applied to the problem of separating the

voice from a musical mixture. Sinusoidal models (Maher, 1989) for synthesis of the

singing voice from a mixture after estimating the fundamental frequency of the sig-

nal and segregation using heuristics was amongst the first models proposed for singing

voice separation. Similar approaches based on the fundamental frequency, combined

with a frequency-locked loop algorithm and harmonically constrained trackers (Wang,

1994, 1995) have been proposed. Information from scores has been used for synthesis

based separation approaches (Meron & Hirose, 1998), combined with sinusoidal mod-

els of speech information representation (Quatieri & McAulay, 1992) to separate the

voice signal from a piano accompaniment. Other models include using a filter based

on a harmonic model of the voice (Ben-Shalom & Dubnov, 2004), peak clustering

and harmonic re-synthesis (Duan et al., 2008), synthesis using sinusoidal models of

the voice (Mesaros et al., 2007; Fujihara et al., 2005, 2010). and spectral peak de-

tection using with cross-correlation (Lagrange & Tzanetakis, 2007; Lagrange et al.,
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2008) along with quadratic interpolation (Smith & Serra, 1987) and phase generation

(Slaney et al., 1994). Source-filter models of the human voice have been used to es-

timate Wiener masks for singing voice separation as well (Durrieu et al., 2010). A

more recent model for singing voice separation using synthesis (Rao et al., 2014) uses

adaptive sinusoidal components activation with predominant f0 estimation followed by

peak picking (Griffin & Lim, 1988). The singing voice signal is then synthesized using

a harmonic sinusoidal model (HSM) with linear interpolation of amplitudes and cubic

phase interpolation.





Chapter 5
Synthesis parameter estimation

Deep learning based methodologies have shown great potential to model the singing

voice. Data-driven models have been shown to be robust enough to model TF masks for

the singing voice even when the spectral structure of the singing voice is altered through

effects like those discussed in Section 1.2.1. On the other hand, generative algorithms

to synthesize the singing voice from an input context have also produced astounding

results (Blaauw & Bonada, 2016, 2017; Blaauw et al., 2019). In this chapter, we com-

bine the modeling ability of deep neural networks with the synthesis methodology used

for generating voice signals. We note that while established evaluation metrics exist

for TF mask based source separation, evaluation of singing voice synthesis is typically

done through subjective listening tests.

We propose a methodology to estimate synthesis parameters from a musical mixture

signal using a deep neural network as a function approximator. The methodology we

propose is closest to one of the oldest models for singing voice separation, (Miller,

1973), which used a homomorphic vocoder (Oppenheim & Schafer, 1968) to synthes-

ize the singing voice in a musical mixture signal after segmentation of parts based on

heuristics and cepstral liftering to account for the accompaniment. The homomorphic

vocoder used by Miller is one of several acoustic features that have been proposed to

represent the synthesis parameters of the voice signal. Recently, a similar methodology
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Figure 5.1: The framework for the proposed model. We use a non-autoregressive variant of the
WaveNet (van den Oord et al., 2016a) architecture to estimate the compressed spectral envelope
synthesis parameters as well as the f0

has recently been proposed for speech denoising (Maiti & Mandel, 2019).

The research presented in this chapter aims to answer the following questions:

Is it possible to extract synthesis parameters pertaining to the singing voice from

a polyphonic contemporary music mixture?

How can the voice signal extracted using such a methodology be evaluated?
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5.1 Synthesis parameters

For our case, we propose the use of the WORLD (Morise et al., 2016) vocoder, which

was originally proposed for real-time synthesis of speech signals and has since been

successfully adapted for singing voice synthesis (Blaauw & Bonada, 2017, 2016).

The vocoding algorithm uses an f0 estimation known as DIO (Morise et al., 2009)

to model the fundamental frequency of the voice signal. This information is used to

estimate the spectral envelope, also known as the harmonic component of the signal,

using the CheapTrick (Morise, 2015b) algorithm. Finally, the aperiodic component of

the speech signal is estimated using the Definitive Decomposition Derived Dirt-Cheap

(D4C) (Morise, 2016) algorithm. The harmonic and aperiodic components are distrib-

uted over 1024 bins for each time frame of the signal analyzed.

For synthesis, shown in Figure 2.17, the aperiodic element is used as the excitation

signal that is convolved with the minimum phase response of the spectral envelope to

estimate the vocal cord vibrations in the vocal signal.

As such, the vocoder allows for modelling the f0 independently, within limits, of the

harmonic and aperiodic content of the speech signal which is desirable for singing

voice synthesis. For estimation via neural networks, the dimensions of the harmonic

and aperiodic components are usually reduced; the NPSS model uses 60 features for

the harmonic component and 4 for the aperiodic component. We also use these 64

features in our methodology and refer to the combination as the compressed spectral

envelope, Xvoc.

5.2 Parameter estimation

We use a temporal convolutional neural network (TCN) (Lea et al., 2016) based on the

WaveNet (van den Oord et al., 2016a) architecture for synthesis parameter estimation.

Our architecture is not autoregressive. Such an architecture has been used for speech

de-noising (Rethage et al., 2018). We use dilated convolutions with a gated activation,
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Figure 5.2: The convolutional block used in our model

as used by (Van Den Oord et al., 2016; van den Oord et al., 2016b). However, we

do not enforce causality in the convolutional layers, but use zero-padding to ensure

to ensure dimensional consistency in the time dimension between consecutive layers.

The individual blocks of the architecture, as shown in Figure 5.2, also borrow from

the WaveNet. The input to our model is the spectrogram of a linear mixture of an

instrumental backing track and a clean singing voice signal and the output is the 64

dimension compressed spectral envelope, Xvoc, as described in Section 5.1. We treat

the frequency bins of the spectrogram as different channels, like (Blaauw & Bonada,

2017), and thus each convolutional layers consist of 1-D convolutions across the time

dimension.

As shown in Figure 5.2, we use kss blocks of convolutional layers with skip and resid-

ual connections and gated dilated convolutions. For training, we use Nss consecutive

frames of the mixture spectrogram as input to the network. This leads to an input of

dimensions Nss×D, where D is the number of bins in the spectrogram. The first layer

of the network are 1× 1 convolutional layer, the output of which is Nss×D1. This is

followed by a series of gated stacks of 2×1 dilated convolutions (denoted by ∗), each
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with D1 units and a sigmoid (denoted by σ ) non-linearity. A similar operation is car-

ried out with a tanh non-linearity and an element-wise multiplication (denoted by �)

to apply a gated non-linearity (van den Oord et al., 2016a; Dauphin et al., 2017). This

operation is mathematically represented by Equation 5.1.

out = tanh(Wτ,k ∗ in)�σ(Wρ,k ∗ in) (5.1)

Where W denotes a convolution filter and τ and ρ represent filter and gate layers,

respectively. The input and output of each layer are represented by in and out, re-

spectively. To increase the receptive filed of each block, the dilation factor is increased

exponentially by 2 after each block. We apply two 1× 1 convolutional layers, after

the series of stacked convolutions. This ensures that the output of the network, X̂voc,

has the same dimensions as the target compressed spectral envelope, Xvoc. We use the

MAE between the output of the network and the target as the loss function for the net-

work, as shown in Equation 5.2 and optimize it using an ADAM optimizer (Kingma &

Ba, 2014).

LSS = E[‖X̂voc−Xvoc‖] (5.2)

5.3 Fundamental frequency estimation

We use a separate model for f0 estimation from the polyphonic mixture, which follows

a similar architecture. We used a continuous representation of the f0, expressed in the

logarithmic formula for MIDI notation, shown in Equation 5.3

ηMIDI = 12 · log2
ηhertz−69

440
(5.3)

Where ηhertz is the f0 value in Hertz. The value was normalized to the range 0-1, using

min-max normalization across the dataset. Heuristically, we found synthesis quality to
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be better with such a representation than the discrete representation used in other deep

learning based models (Bittner et al., 2017; Doras et al., 2019; Jansson et al., 2019;

Kim et al., 2018a) 11 The f0 for the voiced frames was interpolated across the unvoiced

frames, similar to the work done by (Blaauw & Bonada, 2016, 2017). We also used a

separate network to predict a binary voiced/unvoiced feature for each frame of the out-

put, which was optimized with a binary classification loss. Like (Blaauw & Bonada,

2016), we used a chain of networks wherein the output of the vocoder parameter estim-

ation network was fed along with the mixture spectrogram to the f0 estimation network

and the output of these two networks was fed into the the voiced/unvoiced prediction

network.

5.4 Experiments

5.4.1 Baseline models

While Deep Learning based algorithms have exploded in the source separation field

over the last few years, there were few open source implementations available at the

time we first proposed our methodology. As such, we used a benchmark based on the

NMF methodology, named the Flexible Audio Source Separation Toolbox (FASST)

(Ozerov et al., 2012). In addition, we used a Deep Learning based methodology pro-

posed by us, called the DeepConvSep (Chandna, 2016) algorithm as a Deep Learning

based benchmark to compare our proposed methodology against. For evaluation, we

term our proposed methodology as separation-via-synthesis, (SS).

We compare the f0 estimation model against the Melodia (Salamon et al., 2013b; Sala-

mon & Gómez, 2012) algorithm for predominant melody estimation.

11Research on f0 estimation from polyphonic signals for the purpose of synthesis is being carried out
by a masters’ student in the Universitat Pompeu Fabra, under the supervision of the author of this thesis.
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5.4.2 Datasets

We use the iKala dataset (Chan et al., 2015) for evaluation of our proposed methodo-

logy, as it contains vocal tracks without external effects like reverb or compression. We

use a subset of 226 songs from the iKala dataset for training the proposed model and

another subset of 15 for validation and 11 for testing.

For pre-processing the tracks, we compute a Short Time Fourier Transform (STFT),

with an FFT-size of 1024, leading to D= 513 frequency bins. A hop time of 5 miliseconds

is used for this calculation as well as for estimating the WORLD parameters that are

used as the target. All features are normalized by using min-max Normalization, con-

straining the input and output features to the range 0 to 1.

5.4.3 Analysis and network hyperarameters

We trained the network for 50k iterations, using minibatch training with a batch size

of 30 batches per iteration. Each batch contained Nss = 128 consecutive time frames,

randomly sampled from the training set. The networks had kss = 5 blocks of gated

convolutions and C = 128 filter channels for each of the convolutional layers except

the final layer. All input and output features were normalized to the range 0 to 1 using

min-max normalization.

5.4.4 Evaluation methodology

As discussed in Section 3.3.1, evaluating a synthesized voice signal is not trivial. For

our algorithm there are three aspects to evaluation; intelligibility, separation from

backing track and audio quality. The Source to Interferences Ratio (SIR) metric

from the BSS Eval set of metrics (Vincent et al., 2006) provides an objective estimate

of the degree of interference from the backing track present in the output signal. Addi-

tionally, we use the mel-cepstral distortion (MCD) as a measure of the quality of the

synthesized audio compared to the ground truth vocal track. Since the vocoder used for

synthesis introduces degradation to the output quality, we use a version of vocal signal
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re synthesized by the WORLD vocoder as an upper limit reference. This allows use to

evaluate the estimation of the network.

Intelligibility of the synthesized signal is a subjective matter and depends on external

factors such as familiarity of the listener with the song and the language used. As

such, we use a comparative AB preference listening test, as described in Section 3.3.1

for evaluation of intelligibility as well as separation/interference and audio quality. In

our experiments, we paired each of the three systems to be compared, leading to 3

pairs, with 5 samples per criteria, resulting in a total of 45 preference questions. The

listener was presented with a clean vocal signal reference for questions pertaining to

the audio quality criteria, whereas mixture audio was provided as reference for inter-

ference related questions. The participant was asked to choose the example which had

less interference from the backing track in the later case. For the questions related to

intelligibility, the listener was asked to choose the system which was more easily un-

derstandable. In this case, the reference audio might have caused a bias and was hence

omitted from the question. We used 5 s samples from songs in the test set, not used for

training the model. The online listening test, was presented in the Mandarin Chinese

language.

For evaluation of the f0 model, we used the raw pitch accuracy (RPA), voicing false

alarm (VFA) and overall accuracy (OA) (Bittner & Bosch, 2019) metrics from the

mir_eval library (Raffel et al., 2014). We used the MIDI note annotations provided

in the iKala dataset as reference.

5.4.5 Results

The results of the f0 evaluation are shown in Table 5.1. It can be seen that our proposed

model slightly outperforms the knowledge based baseline (Salamon & Gómez, 2012;

Salamon et al., 2013b) in terms of RPA and OA. The improved performance might be

due to dataset bias, since our algorithm was tested on the same dataset that it was trained

on. We also note that the VFA metric is lower for the Melodia algorithm than our pro-
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posed network, this suggests that a higher number of frames were mis-classified by the

proposed network for voiced/unvoiced classification. This is classification undesirable

for synthesis in our proposed methodology. Further investigation into f0 estimation

for the singing voice in polyphonic musical signals is currently being carried out by as

Masters’ student in the Universitat Pompeu Fabra under the supervision of the author

of this thesis (Stillings, 2021).

Model RPA VFA OA

SS 85.5±5.0% 30.5±17.8% 82.2±8.2%
Melodia (Salamon et al., 2013b) 80.0±12.9% 27.6±16.9% 74.3±15.90%

Table 5.1: The evaluation metrics for pitch accuracy comparing the proposed methodology,
SS, with the Melodia algorithm (Salamon et al., 2013b) for predominant melody estimation.
The values shown are the mean ± standard deviation.

The SIR metric for the three models compared is shown in Figure 5.3. It can be seen

that the proposed model, termed SS outperforms the NMF based model, FASST, and

the Deep Learning mask based model, DeepConvSep. This can be attributed to the

synthesis methodology used, which only generates the vocal signal and not the accom-

panying track, which causes interference in the other two models.

The SDR mteric is shown in Figure 5.5, while the SAR is shown in Figure 5.6. We

observe that the proposed model, SS, fall behind both the DeepConvSep and FASST

algorithms in these objective metrics. We believe this is possibly due to variability in

the synthesized version of the signal which, while perceptually similar to the ground

truth signal, is not exactly the same signal. Mask based algorithms perform better on

these metrics as they are estimations of the same sginal that was used for creating the

mix. The MCD metric is shown in Figure 5.4 and shows similarity in the objective

quality of the vocal signal extracted by all three models under consideration.

For the subjective listening test, we received responses from 16 participants, all of

whom were native Chinese Mandarin language speakers. The results of this test are

shown in Figure 5.7. We can observe that a clear preference is given to the pro-
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Figure 5.3: The SIR metric from the BSS Eval toolkit for the three systems to be compared.
It can be observed that the proposed model, SS, achieves a higher score in this metric than
the other two systems. This is expected since the use of voice specific vocoder features in our
system prevents interference from other sources in the output.

Figure 5.4: The Mel Cepstral Distortion (MCD), in dB, comparing the proposed model, SS
with the separated singing voice signal from the DeepConvSep (Chandna et al., 2017) and the
FASST (Ozerov et al., 2012) source separation algorithms.
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Figure 5.5: The SDR metric from the BSS Eval toolkit comparing the proposed model, SS
with the separated singing voice signal from the DeepConvSep (Chandna et al., 2017) and the
FASST (Ozerov et al., 2012) source separation algorithms.

Figure 5.6: The SAR metric from the BSS Eval toolkit comparing the proposed model, SS
with the separated singing voice signal from the DeepConvSep (Chandna et al., 2017) and the
FASST (Ozerov et al., 2012) source separation algorithms.
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Figure 5.7: Results of the listening test comparing the proposed model, SS with the separated
singing voice signal from the DeepConvSep (Chandna et al., 2017) and the FASST (Ozerov
et al., 2012) source separation algorithms.

posed methodology over the NMF based methodology, particularly for the intelligib-

ility and interference criterion, corroborating the objective results. DeepConvSep re-

ceived higher preference in terms of intelligibility and audio quality over the proposed

methodology, but SS was preferred over it in terms of interference from the accom-

paniment. The objective evaluation via the SDR and SAR metrics, shown in Figures

5.5 and 5.6, respectively, do not completely agree with these findings.

It can be seen that while DeepConvSep is preferred over our proposed model for the

intelligibility and audio quality criterion, SS is perceived to perform better in terms of

interference, by a majority of the people participating in the listening test.

5.5 Conclusions

We show that using deep neural networks as function approximators, we can directly

estimate the synthesis parameters for the singing voice from a polyphonic popular mu-

sic mixture, containing vocals. To this end, we use a non-autoregressive version of

the WaveNet architecture, with skip and residual connections for effective information
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propagation. The input to the proposed network is the magnitude component of the

spectrogram of the musical mixture. The network is trained to predict the WORLD

vocoder features, compressed via dimensionality reduction techniques and the MAE

loss is used for this optimization. We use a separate network for prediction of the f0 of

the signal, which is expressed in a continuous MIDI note format, as well as for predic-

tion of the voiced and unvoiced nature of a frame within the signal. We note that this

network performs comparably to one of the best knowledge based methodologies for

predominant pitch estimation, while taking dataset bias into account. We are now in a

position to answer the research questions presented in the introduction to this chapter:

Is it possible to extract synthesis parameters pertaining to the singing voice from

a polyphonic contemporary music mixture?

We see that using deep neural networks, it is possible to map the magnitude com-

ponent of the linear spectrogram of musical mixture signal to the corresponding

synthesis parameters. While there is on going research on various synthesis para-

meters, in our case, we use the compressed spectral envelope of the WORLD

vocoder features.

How can the voice signal extracted using such a methodology be evaluated?

We note that the objective evaluation metrics typically used for source separa-

tion (Vincent et al., 2006) do not agree with the subjective evaluation done via

listening tests. We acknowledge that there are other metrics for evaluation of for

both source separation and synthesis, as listed out in Section 3.3.2. However, the

reliability of such metrics is still under debate (Cano et al., 2016). For the rest

of this part of the thesis, we will use listening tests similar to those used in this

chapter for subjective evaluation of the proposed synthesis methodologies.

The singing voice signal generated using the proposed methodology is completely free

of interference from the backing track. This is one of the biggest problems observed
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with the filtering masked based approach, commonly used for source separation. This

is observed through both subjective and objective comparison with both a knowledge

based source separation algorithm and a deep learning based source separation al-

gorithm.

However, there is notable degradation in the quality of the synthesized signal, possibly

due to the nature of the vocoder parameters used for synthesis. We note that the pro-

posed methodology provides a framework wherein the individual components namely

the architecture used for prediction, the f0 estimation and the vocoder parameters used

for synthesis can be replaced with improved versions as research in the field evolves.



Chapter 6
Synthesis parameter generation

Singing voice synthesis (SVS) systems have become popular over the last decade, par-

ticularly with commercial applications like the Vocaloid (Kenmochi & Ohshita, 2007)

and Melodyne. SVS systems take as input a score which provides linguistic, melodic

and rhythmic information. From this information, an SVS system must generate a sig-

nal that follows the musical guidelines provided by the score. Additionally, the SVS

system must also sound natural and in doing so, emulate the timbre and pitch inflec-

tions pertaining to a particular target singer. A singer following a score would generally

not sing the exact same way twice, owing to natural timing and pitch deviations. As

pitch deviations like overshoot, preparation and fine fluctuations, discussed in Section

1.1.3 are natural and at times involuntary. Vibrato is introduced voluntarily by a singer

for artistic effect, but the phase of the vibrato might change amongst two different takes

of a song. On the other hand, the timbre of the singer is generally consistent through

multiple takes and across songs. As such, modelling pitch and timbre are two different

tasks within the field of singing voice synthesis. Methodologies have been proposed to

generate an expressive pitch contour emulating a specific singer singing a given score

(Bonada & Blaauw, 2020). On the other hand, models like the NPSS (Blaauw & Bon-

ada, 2016) take f0 curve and linguistic features as input to generate the singing voice

signal modelling the timbre of a target singer and the linguistic content presented as the

input. Such timbre models are pertinent to the topic covered in this thesis as we aim

121
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to synthesize a signal that retains linguistic and melodic content of the singing voice

signal in a polyphonic mixture whilst modelling the timbre of multiple singers. The

melodic content is generally modelled as the f0 curve, which can be extracted from the

polyphonic mixture, while the linguistic content is represented by a sequence of phon-

emes. In this chapter, we present a model for multi-singer singing voice synthesis that

can generate a natural singing voice signal emulating the timbre of multiple singers.

The framework for this model is shown in Figure 6.1

In this chapter, we present a methodology for multi-singer singing voice synthesis using

a feedforward network. The linguistic content, the melody and the singer identity are

provided to the network as input and it generates the compressed spectral envelope as

the output. We train the network via an adversarial training methodology (Arjovsky

et al., 2017). This chapter tries to answer the following research question:

How can a feedforward neural network be used for singing voice synthesis given

an input of linguistic content, singer identity and the f0 curve?

6.1 Generative networks for voice synthesis

Deep Learning based generative networks like the autoregressive WaveNet model (van den

Oord et al., 2016a), variational autoencoders, normalizing flows and generative ad-

versarial networks (GANs) have opened up new avenues for voice synthesis. Several

Text-To-Speech (TTS) and Singing Voice Synthesis (SVS) methodologies, utilizing

such generative models, have been proposed over the last few years. Most of these

models use large volumes of data; the WaveNet (van den Oord et al., 2016a) model

was trained using the English multi-speaker corpus from CSTR voice cloning toolkit

(VCTK) dataset (Veaux et al., 2017) which consists of 44 hours of speech recordings

from 109 speakers, while the Deep Voice models also used the LibriSpeech dataset

(Panayotov et al., 2015), which has around 820 hours of data available. As noted in
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Figure 6.1: The framework for the singing voice synthesizer we propose. The proposed model
is used for acoustic parameter generation of the compressed spectral envelope from the melodic
content, linguistic content and the singer identity.

Chapter 3, such large volumes of data are not easy to obtain for the singing voice, es-

pecially with the linguistic annotations required for synthesis. The NUS corpus (Duan

et al., 2013) that we use in this study has a total of 169 minutes of recordings, which

is very little compared to the amount of data used for training TTS systems. To over-

come the lack of data, we use data augmentation by using random sampling from the

dataset and also use adversarial training in the form of the Wasserstein GAN to train a

feedforward convolutional neural network to generate a singing voice signal given an

f0 contour and linguistic annotations.

The Wasserstein GAN (WGAN) (Arjovsky et al., 2017) is an adaptation of the Gen-
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erative Adversarial Network (GAN) (Goodfellow et al., 2014) framework for training

neural networks to model data distributions to allow for generation. The GAN is a

optimization methodology for training generative networks involving two neural net-

works, a generator, gen() and a discriminator, dis(). As suggested by the name, the

generator model takes as input either randomly sampled noise or certain constraints

and conditions for the target output data and generates samples that try to match the

target distribution under the constraints. In the case of the voice signal, such condi-

tions could be the linguistic features and speaker identity. The second network, known

as the discriminator, estimates the probability of an input sample either coming from

the real target distribution or having been generated by the generator network. In other

words, the discriminator tries to identify the generated samples from real samples while

the generator tries to fool the discriminator and the two networks play an adversarial

min-max game. This is represented by the loss function shown in Equation 6.1

LGAN = min
gen

max
dis

Ea∼Pa‖log(dis(a))‖

+Ec∼Pc‖ log(1−dis(gen(c)))‖ (6.1)

Where a is a sample from the real distribution and c is the input to the generator, which

may be noise or conditioning as in the Conditional GAN (Mirza & Osindero, 2014) and

is taken from a distribution of such inputs, Pc. It has been shown that under optimal

training conditions, when the two networks reach a Nash equilibrium, the loss function

of the GAN represents the Jensen–Shannon Divergence between the generated data

distribution and the real target data distribution. However, training a GAN can be quite

difficult, as insufficient support for a lower dimension manifold of the data can lead to

instability as well as other problems like vanishing gradient and mode collapse.

To alleviate such problems, the use of the Earth-Mover distance or the Wasserstein

distance along with gradient clipping has been suggested as an effective alternative.

The loss function for the WGAN is shown in equation 6.2. In this version of the GAN,

the discriminator network is replaced by a network termed as critic, also represented by
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dis(), which can be trained to optimality and does not saturate, converging to a linear

function. Adversarial losses are often complemented with guidance losses like the

MAE or the MSE, especially when used for conditional synthesis like in the WaveGAN

(Donahue et al., 2019) and GANSynth (Engel et al., 2019) models.

LWGAN = min
gen

max
dec

Ea∼Pa‖dis(a)‖−Ec∼Pc‖dis(gen(c))‖ (6.2)

Such methodologies have also been applied to TTS synthesis, particularly with recur-

rent architectures (Zhao et al., 2018; Yang et al., 2017; Ma et al., 2019). GANs have

also been used as post-filters to overcome oversmoothing effects present in acoustic

synthesis models (Kaneko et al., 2017b,a). Reasearch has also shown that the GAN

methodology can be applied for singing voice synthesis (Hono et al., 2019), by model-

ling the inter-feature dependencies with each from of the output of the model.

Conditioning Vector
Continuous f0 contour

Singer Identity

Phoneme as a one-hot vector

Generator

Generated Sample

Real Sample

Critic

Noise

Figure 6.2: The conditioning vector for the generator and critic networks of our proposed
model. A conditioning vector, consisting of frame-wise phoneme and f 0 annotations along
with speaker identity is passed to the generator. The critic is trained to distinguish between the
generated sample and a real sample.



126 SYNTHESIS PARAMETER GENERATION

6.2 Proposed model for singing voice synthesis

We propose a convolutional architecture, similar to the DCGAN (Radford et al., 2016),

using an encoder-decoder schema as shown in Figure 6.3. Both the encoder and the

decoder in this architecture have kwgan layers with a filter size of 3. Skip connections

between corresponding layers of the encoder and decoder are implemented by concat-

enating the encoder layer with the decoder layer (Ronneberger et al., 2015). Strided

convolution is used for downsampling in the encoder (Radford et al., 2016) and the

decoder uses linear interpolation followed by convolution for downsampling. This has

been shown to reduce high frequency artifacts in the output that can be caused by trans-

posed convolutions (Stoller et al., 2018). ReLU activation is used in all the layers of the

network except the output layer, which uses a tanh activation that is commonly used in

adversarial networks.

To model a voice signal, x, the input conditioning to our system consists of frame-wise

phoneme annotations, Zphone, represented as a one-hot vector and continuous funda-

mental frequency extracted by the spectral autocorrelation (SAC) algorithm, η f 0 . This

conditioning is similar to the one used in NPSS (Blaauw & Bonada, 2016). In addition,

we condition the system on the singer identity, as a one-hot vector, ψonehot , broadcast

throughout the time dimension. This approach is similar to that used in the WaveNet

(van den Oord et al., 2016a). The three conditioning vectors are then passed through

a 1× 1 convolution and concatenated together along with noise sampled from a uni-

form distribution and passed to the generator as input. For simplicity, this concatenated

input, shown in Figure 6.2, is represented by U .

For the target of the model, we use the WORLD vocoder (Morise et al., 2016) for

acoustic modelling of the singing voice. We apply dimensionality reduction to the

vocoder features, as described in Section 5.1, resulting in a 64 dimension compressed

spectral envelope, referred to as Xvoc.

To optimize the network, we compliment the WGAN loss with a reconstruction MAE
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loss, as shown in Equation 6.3. Such a loss is often used in conditional image genera-

tion models using the adversarial framework (Lee et al., 2019b).

X̂voc = gen(U)

LWGAN = min
gen

max
dis

EXvoc∼PXvoc‖dis(Xvoc)‖−Eu∼Pu‖dis(X̂voc)‖

Lrecon = min
gen

Eu,Xvoc‖X̂voc−Xvoc‖

Ltotal = LWGAN +λreconLrecon

(6.3)

Where λrecon is the weight given to the reconstruction loss. Both the generator and net-

works are optimized following the Wasserstein GAN schema (Arjovsky et al., 2017).

The critic for our system uses an architecture similar to the encoder part of the gener-

ator, but uses LeakyReLU activation instead of ReLU (Radford et al., 2016).

Conditioning 
Vector

64

32

64
128

256
512

Generated 
Sample

Conv Layer, size=1, stride=1 Conv Layer, size=3, stride=2

256
128

64

32

64 64

Upsample and Conv Layer, size=3

Figure 6.3: The architecture for the generator of the proposed network. The generator consists
of an encoder and a decoder, based on the U-Net architecture (Ronneberger et al., 2015).
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6.3 Experiments

6.3.1 Baseline models

We compare the proposed methodology for singing voice synthesis with the NPSS

model (Blaauw & Bonada, 2016), described in Section 2.4.3. The input conditioning

and the output synthesis parameters of the two systems are quite similar, thus allowing

for a fair comparison.

6.3.2 Datasets

We use the NUS (Duan et al., 2013) dataset for training and evaluation of our proposed

methodology. As mentioned in Section 3.1, this dataset contains of 48 popular English

songs both sung and spoken by 12 non-native English speakers. Since the size of

the dataset is quite small, as compared to datasets typically used for TTS and SVS

synthesis, we use all but two songs, for training. The two songs held out for evaluation

are Song 05 by a male singer, JLEE and Song 04 by a female singer, MCUR.

Along with the NPSS, we use a re-synthesis with the WORLD vocoder as the baseline

as this is the upper limit of the performance of our system.

6.3.3 Analysis and network parameters

A hoptime of 5 ms was used for extracting the vocoder features and the conditioning.

We used a block size of N = 128 for training the network.

A weight of λrecon = 0.0005 was used for Lrecon and the network was trained for 3000

epochs. We used the RMSProp optimizer for network optimization, with a learning

rate of 0.0001.

This is the optimizer recommended by the researchers who proposed the Wasserstein

GAN methodology (Arjovsky et al., 2017).
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6.3.4 Evaluation methodology

As in Chapter 5, we use the mel-cepstral distortion (MCD) metric to give an indication

of the quality of the synthesized singing voice signal. This metric is presented in table

6.1. We used a comparative online AB test for subjective evaluation. The participants

in the listening test were presented two 5 s to 7 s phrases from the songs12. The parti-

cipants were asked to select the preferred example in terms of Intelligibility and Audio

Quality. We compared 3 pairs for this evaluation:

WGANSing - Original song re-synthesized with WORLD vocoder.

WGANSing - NPSS

WGANSing, original singer - WGANSing, sample with different singer.

The participants were presented with 5 questions for each of the pairs, for each criteria.

This lead to a total of 15 questions per criteria, with 30 questions overall. For the

synthesis with a changed singer, we included samples with both singers of the same

gender as the original singer and of a different gender, from within the dataset. To

account for the natural differences in the ranges, the f0 input to the system was adjusted

by an octave.

6.3.5 Results

We received responses from 27 participants from 10 nationalities for the listening test.

Most of the participants were from native English speaking countries like England and

the USA and the ages varied from 18 to 37. The results of the tests are shown in Figure

6.4.

12We found that WGANSing without the reconstruction loss as a guide did not produce very pleas-
ant results and did not include this in the evaluation. However, examples for the same can be heard at
https://pc2752.github.io/sing_synth_examples/

https://pc2752.github.io/sing_synth_examples/
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Figure 6.4: Results of the listening test comparing the proposed models, WGANSing with
the NPSS (Blaauw & Bonada, 2016), the re-synthesized original and synthesis with the singer
changed.

We observe from the results that while a preference is given to the NPSS, our proposed

system is comparable to it in terms of both intelligibility and audio quality. Nearly half

of the participants showed either no preference or preference towards our proposed

methodology over NPSS. This result is in accordance with the objective evaluation

shown in Table 6.1. It can be seen that both quality and intelligibility of the synthesis is

compromised in comparison with the re-synthesized ground truth, which is an expected

compromise in this case. We also observe a slight preference towards the synthesis of

the songs with the original singer over the synthesis with a change in singer.

The subjective nature of the listening test as well as the diversity of the participants

explains the variability in the observed results to an extent. However, we believe that

while the quality is note quite state-of-the-art, it is still acceptable for a synthesis system

trained with a small dataset.
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Song WGAN + Lrecon WGAN NPSS

Song 1 JLEE 05 5.36 dB 9.70 dB 5.62 dB

Song 2 MCUR 04 5.40 dB 9.63 dB 5.79 dB

Table 6.1: The MCD metric for the two songs used for validation of the model. The three
models compared are the NPSS(Blaauw & Bonada, 2017) and the WGANsing model with and
without the reconstruction loss.

6.4 Conclusions

We propose a system for feedforward voice synthesis of the singing voice signal for

multiple singers. We used a U-Net based architecture to map the phoneme based an-

notation of the linguistic content Zphone, the f0 representation of the melodic content,η f 0

and a one-hot representation of singer identity, ψonehot to the WORLD vocoder features,

which were used for synthesis of the corresponding singing voice signal. The WORLD

vocoder features were compressed using the dimensionality reduction techniques de-

scribed in Chapter 5.

We use a U-Net based architecture, with connections between the corresponding layers

of the encoder and decoder to generate the vocoder features given the contextual input.

The network was trained on a small corpus of annotated singing data using the Wasser-

stein GAN methodology, which is an adversarial methodology that alleviates some of

the issues faced while training GANs.

We used subjective and objective evaluation to compare the proposed system to a SOTA

autoregressive singing voice synthesizer, the NPSS, and found the two systems to be

comparable in performance. We also note that the use of a complementary MAE re-

construction loss improved the performance of the proposed system over just using the

Wasserstein GAN loss. As such, the Wasserstein GAN loss can be seen as a compli-

mentary loss to the reconstruction which guides the model for generation of the vocoder

parameters used for synthesis. We are now in a position to answer the research question

presented in the introduction to the chapter:
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How can a feedforward neural network be used for singing voice synthesis given

an input of linguistic content, singer identity and the f0 curve?

We believe that adversarial training is one of the possible methodologies for

training a feedforward network for singing voice synthesis. We note that since

the proposal of this methodology, several other deep learning based singing voice

systems (Blaauw et al., 2019; Lee et al., 2019a; Hono et al., 2019; Ogawa &

Morise, 2021) as well as music audio generation algorithms have been proposed

(Dieleman et al., 2018; Zukowski & Carr, 2018; Engel et al., 2020b; Défossez

et al., 2018). Several such models use an auxiliary loss along with the MAE

or MSE reconstruction loss. We believe the Wasserstein GAN loss used in this

chapter can be viewed as such an auxiliary loss, which is used to guide the model

to model high frequency features of the compressed spectral envelope.



Chapter 7
Generation of synthesis parameters

from content representations

The perceived content of a singing voice signal in a contemporary polyphonic mix-

ture remains unchanged despite the use of spectral alterations and mixing process. To

leverage this, we propose a system for synthesizing the singing voice signal, x from

a polyphonic mixture, m by extracting the underlying linguistic Zx and melodic con-

tent ηx. We hypothesize that the linguistic and melodic content of a voice signal is

retained even after it is processed through effects as described in Section 1.2.1 and

is mixed using non-linear mixing processes with an instrumental accompaniment, ie

Zx = Zy = Zm = Z and PX = PX = PM = η . We investigate how this content can be

extracted from a polyphonic mixture. The melodic content can be extracted through f0

estimation13. Estimating the linguistic content for the purpose of synthesis however is

a challenging task that we address in this chapter. Concretely, in this chapter, we will

address the following research questions:

Can the linguistic content of a singing voice signal be represented in a language

independent manner from which a voice signal can be synthesized?
13Research on extracting f0 of a vocal signal from a polyphonic musical mixture is carried out by a

masters’ student, Logan Stillings, under the supervision of the author of this thesis and results of the finds
are excluded from this thesis.

133
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Is it possible to extract such a representation of the linguistic content from a

polyphonic contemporary music mixture?

How can we derive a representation of the singer identity for the voice synthesis

process?

Our initial experiments used explicit phonetic annotations with phonemes represen-

ted as one-hot vectors. We used deep learning based methodologies for this purpose

including networks designed by us and other state-of-the-art methodologies (Demirel

et al., 2020) for singing voice transcription to extract phoneme annotations from a

polyphonic mixture. However, we found that accurately estimating the ground truth

phonemes from a polyphonic mixture had some limitations; data-driven algorithms for

such a task require a large volume of data to train a Deep Learning based methodology

and the best performing polyphonic singing lyrics transcription methodologies do not

have sufficiently high accuracy to allow for the methodology we propose. Additionally,

the language of the data used for training imposes a constraint on the system used for

synthesis. To overcome these limitations, we propose a system based on abstract rep-

resentations of linguistic features often used in zero-resource synthesis (Glass, 2012;

Jansen et al., 2013) and voice conversion (Mohammadi & Kain, 2017), as discussed in

Section 2.5.1. We investigated the capability of voice conversion systems proposed for

speech conversion to represent the linguistic content present in a singing voice signal

and used one such state-of-the-art algorithm proposed for zero-shot voice conversion

as a part our methodology. The framework we propose is shown in Figure 7.1. While

we use the WORLD vocoder parameters for synthesis and for disentangling melodic

information from the rest of the signal and AutoVC (Qian et al., 2019) voice conver-

sion model for disentangling linguistic information, we believe the framework in itself

is agnostic to these models.
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Figure 7.1: The proposed framework for synthesizing a clean singing voice signal from a
mixture signal using the underlying perceptual content.

7.1 Representing linguistic content in a voice signal

A voice signal is generated by recording a person singing or speaking. In the case

of speech, the signal possess certain characteristics such as timbre and prosody that

allow the speaker to be identified as the source of the signal. Voice conversion is a

field of audio processing that involves applying transformations to the voice signal so

that the perceived source of the signal is changed to a target speaker (Mohammadi &

Kain, 2017). It is important that the linguistic content of the signal is preserved through

this transformation while the prosody and timbre of the signal is modified. These two

characteristics can be represented by the fundamental frequency f0 and the spectral
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envelope of the signal, respectively.

The first voice conversion algorithms proposed were trained to convert using parallel

recordings, i.e. recordings from different speakers wherein the linguistic content was

common amongst two pairs of recordings. non-parallel voice conversion algorithms

were subsequently proposed, a common one using maximum likelihood constrained

adaptation (Mouchtaris et al., 2004). As voice conversion requires the linguistic con-

tent to be retained, most algorithms proposed for this task require some estimation of

linguistic features and most early algorithms required annotations of text transcriptions

for conversion. Text independent voice conversion was first introduced in 2004 by (Ney

et al., 2004), using a linear transformation of the spectral envelope of the signals. With

the emergence of data modelling techniques using deep learning, several methodolo-

gies have been proposed separating the linguistic content of a voice signal from other

properties of the signal, in a process commonly termed as disentanglement. Vari-

ational autoencoders have been used to learn a latent encoding to this end (Hsu et al.,

2016; Huang et al., 2018), often including adversarial training (Hsu et al., 2017). Aux-

iliary classifiers have also been adapted for the voice conversion task (Kameoka et al.,

2018a; Chou et al., 2018), as have Generative Adversarial Networks (GANS), with

models like the StarGAN (Kameoka et al., 2018b; Kaneko et al., 2019b; Wang et al.,

2020b) and the CycleGAN (Kaneko & Kameoka, 2017, 2018; Kaneko et al., 2019a;

Fang et al., 2018).

Zero-shot and one-shot voice conversion has also been achieved using autoencoder

inspired methodologies like the AutoVC (Qian et al., 2019) and the VQVC (Wu et al.,

2020; Wu & Lee, 2020). The AutoVC model imposes an information bottleneck on the

latent layer of an autoencoder while the VQVC and the VQVC+ model use a quantized

latent code. As described in Section 2.5.1, both the AutoVC and the VQVC models use

neural vocoders conditioned on mel-scale spectrogram representations of the speech

signals. In doing so, both models effectively disentangle linguistic content and prosody

from speaker identity in a speech signal.
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While such methodologies work well for speech voice conversion, where prosody as

well as timbre need to be converted, singing voice conversion requires the melodic

information of the signal to be retained while modifying the timbre. To achieve this, the

f0 needs to be disentangled from the spectral envelope. This can be achieved through

a vocoder system like the WORLD (Morise et al., 2016) system used throughout this

thesis.

7.2 Modifications to the AutoVC architecture

We adapt the AutoVC (Qian et al., 2019) architecture to take compressed spectral en-

velope, Xvoc, as defined in Section 5.1 as input. This modification is shown as shown in

Figure 7.2. The encoder, encautovca(), encodes the linguistic information present in the

input as Zautovca, while the decoder, decautovca(), takes this representation along with a

singer representation, ψ to regenerate the compressed spectral envelope, X̂autovca
voc .

Heuristically, we found that changing the sampling rate of the information bottleneck

to 16 instead of 32 led to better results when using the compressed spectral envelope

as the input and target. The vocoder parameters pertaining to the compressed spectral

envelope can directly be used for re-synthesis of the singing voice signal without the

need for the WaveNet vocoder.

We tried various representations of the singer identity, including the one-hot vector

encoding, the GE2E loss (Wan et al., 2018) based encoding that were used in the ori-

ginal AutoVC (Qian et al., 2019) and the Joint Embedding (JE) proposed for singer

representation in both monophonic and polyphonic contexts (Lee & Nam, 2019). The

methodology for deriving these speaker/singer representation embeddings is described

in Section 2.5.3. In addition, we adapted the VQVC+ (Wu et al., 2020) model to take

the compressed spectral envelope as input and target features.

We compared the adapted models to a SOTA singing voice conversion algorithm (Nachmani

& Wolf, 2019) using subjective listening tests. The evaluation of the methodologies for
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Figure 7.2: The proposed modifications to the AutoVC (Qian et al., 2019) architecture.

singing voice conversion is excluded from this thesis as it was carried out by a masters’

student under the guidance of the author and is published separately (Apisov, 2020).

We provide a brief summary of the results in Appendix C 14. We observed that the ad-

apted AutoVC models trained with GE2E and one-hot encoding singer representations

out-performed the other models evaluated. As such, we decided to use the AutoVC

model with one-hot singer representation for the rest of our research.

7.3 Deriving linguistic content from a polyphonic mixture

We see that the linguistic content in a clean singing voice signal can be represented by

using abstract representations as those used in voice conversion. We propose a meth-

odology to extract these representations from a polyphonic mixture signal by training

a neural network using the adapted AutoVC models as a teacher network.

We use the AutoVC architecture, adapted for singing voice conversion, to train a Singer

Dependent Network (SDN). The network has an encoder-decoder architecture similar

to the adapted AutoVC, shown in Figure 7.2. The encoder part of this network, encling()

takes as input the magnitude component of the spectrogram of the polyphonic mixture

signal, M and is trained to replicate the linguistic content representation, Zautovca, as
14We note that a similar study using an architecture very similar to the one proposed was also conduc-

ted independelty by the research group at iZotope (Nercessian, 2020).
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ZSDN . The decoder of the network, dSDN(), generates the compressed spectral en-

velope, X̂SDN
voc , given the linguistic content ZSDN and a one-hot representation of the

singer identity, ψonehot , as shown in Equation 7.1. It should be noted that the encoder,

encling(), is not provided any representation of the singer identity and is thus singer

independent, while the decoder decSDN() reconstructs the signal in a singer dependent

manner.

VSDN = encling(|M|)

ZSDN = downsample(VSDN)

ṼSDN = upsample(ZSDN)X̂SDN
voc = dSDN(ṼSDN ,ψonehot)

(7.1)

The network is trained to replicate the content embedding using a loss replication loss

LSDN
replicate, reconstruct the vocoder features using a reconstruction loss, LSDN

recon and main-

tain content consistency using a content loss, LSDN
content . The weighted sum of these

losses results in the final loss of the network, LSDN
f inal , as shown in Equation 7.2. Used as

such, the content loss acts as a complimentary loss to reconstruction loss, performing

a function similar to the Wasserstein GAN loss in the Chapter 6

LSDN
recon = E[‖X̂SDN

voc −Xvoc‖2]

LSDN
content = E[‖ZSDN−downsample(encling(X̂SDN

voc ))‖]

Zautovca = encautovca(Xvoc)

LSDN
replicate = E[‖ZSDN−Zautovca‖]

LSDN
f inal = LSDN

recon +λSDNLSDN
content +µSDNLSDN

replicate

(7.2)

Where λSDN and µSDN represent the weights given to the replication and content losses,

respectively.

We then train a Singer Independent Network (SIN), which shares the linguistic en-

coder, encling() with the SDN. This leads to a shared linguistic content, ZSIN = ZSDN =

encling(M). The distinction between the networks is the use of a singer encoder net-
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work, encsinger(), to learn the singer identity, ψSIN , directly from the mixture input.

This network has the same architecture as the encoders of the SDN and the AutoVC

models, thus ensuring that the embedding extracted is of the same size as the linguistic

content embedding. The decoder of the network, decSIN(), takes as input the linguistic

content, ZSIN and the singer representation, ψSIN , to generate the corresponding com-

pressed spectral envelope, X̂SIN
voc . This is shown in Equation 7.3. Since we provide the

linguistic content, ZSIN , to the decoder of the autoencoder, we hypothesize that the

bottleneck restriction will force the learned latent embedding to represent information

pertaining to singer identity, ψSIN , given the input mixture spectrogram.

ψSIN = downsample(encsinger(|M|))

ZSIN = ZSDN = encling(|M|)

ṼSIN = upsample(ZSIN)

X̂SIN
voc = decSIN(ṼSIN ,upsample(ψSIN))

(7.3)

The network is trained using a reconstruction loss, LSIN
recon and a content consistency

loss, LSIN
content , with a weight λSIN , as shown in Equation 7.4.

LSIN
recon = E[‖X̂SIN

voc −Xvoc‖2]

LSIN
content = E[‖ZSIN−downsample(decSDN(X̂SIN

voc )‖]

LSIN
f inal = LSIN

recon +λSINLSIN
content

(7.4)

In addition, we also trained decoder networks which take GE2E (Wan et al., 2018) and

Joint Embeddings specifically proposed for singer identification (Lee & Nam, 2019),

ψJE , along with an adaptation of the VQVC+ model to derive the linguistic content

for synthesis from a polyphonic mixture signal, using the same principle. We found

that the proposed SIN methodology outperformed the adapted VQVC+ model as well

as the GE2E (Wan et al., 2018) and Joint Embeddings for singer identification (Lee &

Nam, 2019).
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Figure 7.3: The framework for extracting linguistic content from a polyphonic mixture signal
for synthesis of the singing voice.

For f0 estimation, we use the same model as proposed in Chapter 5.

7.4 Experiments

7.4.1 Baseline models

We compare our proposed model to the previously proposed methodology for source

separation via synthesis, presented in Chapter 5, which we term as SS. We also compare

our proposed model with the U-Net model (Jansson et al., 2017), which at the time was

one of the best performing algorithms for source separation, particularly for the case of

the singing voice.

7.4.2 Datasets

We use the proprietary dataset, described in Section 3.4, for training the model and the

MedleyDB dataset (Bittner et al., 2014) for evaluation. The training set consists of 205

songs by 45 distinct male and female singers, with a total of around 12 hours of data.

the songs are mostly pop songs in the English and Japanese languages. We use 90 %
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of the proprietary dataset for training and 10 % for validation, which we use for early

stopping during training of the model. We have access to the raw vocal track in this

training set as well as annotation of the singers, which makes it ideal for our proposed

model.

For testing, we use the the MedleyDB dataset, which contains 122 songs. The raw

audio tracks and the mixing stems for which are present. We use the raw audio vocal

tracks of 6 of the songs for computing the vocoder features, which are used to re-

synthesise the singing track and are used as a reference during evaluation. To the best

of our knowledge, there is no overlap amongst the singers in the training set and the

singers present in MedleyDB. Therefore the use of this dataset for evaluation makes

sense as we are using both songs and singers not seen by the model during training.

For reconstructing the voice signal with the SDN network a singer of the same gender

as the target singer, from the training dataset, was provided to the decoder of the SDN

network, dSDN .

7.4.3 Analysis and network parameters

We used a sampling rate of 32 kHz, with a Hanning window of size 1024 for the short

time Fourier transform (STFT) of the mixture spectrogram. The vocoder features and

the STFT were calculated with a hoptime of 5 ms. We use dimensionality reduction

described in Chapter 5, leading to 64 synthesis parameters.

We use λSDN = 1 and µSDN = 1, as in the original AutoVC (Qian et al., 2019).

7.4.4 Training

We use the Adam (Kingma & Ba, 2014) optimizer for training the various networks

with batch size of 30. The training batch were randomly sampled from the tracks, with

a length 640 ms. Variable gains were applied to the vocal and accompaniment tracks

during the training to allow of data augmentation.
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7.4.5 Evaluation

As in Chapter 5, we use mel-cepstral distortion as an objective measure of the quality

of the synthesized voice signal and an AB preference test to subjectively evaluate the

output on the criteria of intelligibility, audio quality and isolation from the backing

track. The three models to be evaluated were grouped into pairs. As the listening tests

are demanding to carry out, we chose to compare the SDN and SIN models with the

U-Net model for the audio quality criteria, whereas the SDN, SIN and SS models were

compared with the U-Net for source isolation. For intelligibility, we compared the

SDN, SIN and the SS models.

7.4.6 Results

There were 25 participants, claiming proficiency in the English language, participated

in our listening test, from various countries. 18 of the participants had previous musical

training. The results of the listening test are shown in Figure 7.4.

We observe that all three proposed synthesis models outperform the mask based model,

U-Net, on isolating the vocal signal from the mixture. This also shows the robustness

of the models as the evaluation set has no overlap in terms of singers or songs with the

training set.

We note that the SDN and SIN network perform better than the model previously pro-

posed in Chapter 5, showing the effect of the added linguistic information extracted

using the voice conversion algorithm. We can see that both the SDN is ranked higher

on intelligibility than SS, thus showing that the content encoder is able to effectively

extract the underlying linguistic features from the input mixture spectrogram. The SIN

also outperforms the SS model showing that the network can even for singers not seen

during training and for a mixed and processed vocal track. We observe that the SIN

model outperforms the SDN model. This suggests that the singer encoder, esinger learns

more than just the singer identity from the input mixture spectrogram. However, for

the purpose of source separation using synthesis, we believe this to be acceptable. Al-
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Model MCD (dB)

SS 7.39 ± 1.25

SDN 7.55 ± 0.63

SIN 6.45 ± 0.75

U-Net 6.58 ± 1.88

Table 7.1: The Mel Cepstral Distortion (MCD) metric in dB, comparing the proposed models,
SDN and SIN with our previous model, SS, and the U-Net (Jansson et al., 2017)

Figure 7.4: Results of the listening test comparing the proposed models, SDN and SIN with
our previous model, SS, and the U-Net (Jansson et al., 2017).

though further tests on the singer representation need to be carried out in the future.

Audio quality for the proposed models still lags behind the mask based U-Net sep-

aration algorithm. This is partly due to the degradation introduced by the synthesis

process, but can be improved by using more effective neural vocoder methodologies

like the WaveNet vocoder (Shen et al., 2018).
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7.5 Conclusions

We propose a methodology for singing voice separation using synthesis by extracting

the underlying linguistic and melodic information from a polyphonic musical signal.

We use an abstract representation of the linguistic content, based on voice conversion.

This representation is used for voice conversion based on an autoencoder methodology.

The speaker independent linguistic component of a voice signal is disentangled from

the speaker dependent components like timbre and prosody, by imposing a bottlenecks

constriction on the latent embedding of the autoencoder. While such models work well

for voice conversion in the context of speech, they need to be modified to preserve the

melody in the of the singing voice. To this end, we adapt voice conversion models

for the singing voice using the WORLD vocoder (Morise et al., 2016) that also disen-

tangles the effect of the f0 from the timbre of the voice. The evaluation of these models

is published in a separate publication and in Appendix C.

We then use the modified voice conversion algorithm as a teacher network to train

a network with a similar architecture to extract the linguistic content from a mixture

spectrogram in a singer-independent manner, while synthesizing the voice signal in a

singer-dependent manner and is termed SDN. We also propose a methodology based

on the autoencoder bottleneck to directly extract the singer identity from the mixture

spectrogram, as the speaker independent linguistic content is provided to the decoder.

This model is capable of synthesizing the voice signal in a singer-independent manner

is as termed SIN. We note that the network optimization in both networks is done via

a reconstruction loss complimented by a content consistency loss. This loss functions

similar to the Wasserstein GAN loss in Chapter 6, and follows the principle used in

(Bińkowski et al., 2019), namely that intermediate layers of a deep neural network

trained on audio inherently learn perceptually relevant features of the audio data. In this

case, the perceptually relevant features pertain to the linguistic content of the singing

voice signal, which is consistent in the input and output.
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Through subjective evaluation, we observe that the proposed methodology improves

over the results presented in Chapter 5. As the SDN network is able to reproduce the

singing voice signal, we can confirm that the singer independent linguistic encoder of

the network is able to encapsulate the linguistic information from the mixture spec-

trogram. However, we note that the singer identity representation learned by the SIN

model might be encapsulating more information than just the singer identity, although

this functions quite effectively for the purpose of source separation. We also note that

there is still room for improvement, particularly concerning the synthesis of the final

vocal signal. This can be improved by using more effective vocoder representations

like those discussed in Section 2.4.2. For robustness to language and recording ef-

fects, we performed several tests with songs from various languages including Hindi,

Catalan, Spanish, Latin and German along with popular English songs which have ef-

fects added. While we were not able to properly evaluate the output of the SDN ans

SIN models using listening tests, we do provide examples on our supplementary web-

site https://pc2752.github.io/sep_content/. We note that while the quality of the output

can be improved, the synthesized signal even in languages not used for training is intel-

ligible for native language listeners. We also note that the f0 estimation system needs

further improvement, indeed for some songs with multiple vocal effects, the perceived

pitch is indescribable (Nieto, 2013) and synthesizeing a clean vocal signal for such

songs would require a f0 generation model for the synthesis methodology proposed.

We are currently working on improving the f0 estimation methodology. The frame-

work for our methodology, shown in Figure 7.1, has three main components, each of

which can be replaced by newer components as research proceeds in the fields of voice

representation via vocoders, linguistic representation and speaker/singer identity rep-

resentation.

We are now. in a position to answer the research question presented in the introduction

to this chapter:

Can the linguistic content of a singing voice signal be represented in a language

https://pc2752.github.io/sep_content/
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independent manner from which a voice signal can be synthesized?

Zero resource synthesis and voice conversion are two fields of research which

aim to disentangle the speaker independent linguistic content from the speaker

dependent content of a speech signal. Deep learning based models from both

these fields use unsupervised training with autoencoders. Constraints are applied

to the latent embedding of the autoencoder to separate the linguistic content from

the speaker dependent features of the signal. As the end goal of these models is

to synthesize a voice signal, we believe the intermediate of the same can be used

for singing voice synthesis.

Is it possible to extract such a representation of the linguistic content from a

polyphonic contemporary music mixture?

We show that by adapting a voice conversion model for the singing voice, we

can use it as a teacher network to train another network to extract the linguistic

content from a mixture signal. In our first experiment, we use a one-hot encoding

of the singer identity along with the extracted linguistic features to generate the

compressed spectral envelope for synthesis.

How can we derive a representation of the singer identity for the voice synthesis

process?

We test a number of methodologies for singer identity representation and we also

propose our own methodology for the same. The proposed methodology is based

on the assumptions used in both the VQVC (Wu et al., 2020; Wu & Lee, 2020)

models and the AutoVC (Qian et al., 2019) model for voice conversion. While

our proposed methodology works well for the task at hand, we believe that it

extracts more information than just the singer identity from the input mixture

signal.





Part III

Source Separation For Ensemble

Singing

149





7.5 CONCLUSIONS 151

List of symbols

a A representation a general signal.

A Spectogram of the signal denoted by a.

c A representation of a general signal, different from a.

C Spectrogram of the signal denoted by c.

s The time domain waveform of an arbitrary source mixed in a musical mixture.

S Spectrogram of the source denoted by s.

x Time-domain waveform of voice signal, could be speech or singing.

X Spectrogram of the voice signal denoted by x.

Xvoc Compressed spectral envelope pertaining the voice signal denoted by x.

Xmel Mel-scale spectrogram pertaining to the voice signal denoted by x.

y Time-domain waveform of voice signal with modulations added.

Y Spectrogram of the voice signal with modulations added, y.

x̂ Time-domain waveform of an output voice signal.

X̂ Spectrogram of the output voice signal denoted by x̂.

X̂voc Compressed spectral envelope pertaining to the voice signal denoted by x̂.

X̂mel Mel-scale spectrogram pertaining to the voice signal denoted by x̂.

ŷ Time-domain waveform of an output voice signal, which has effects and modulations

added.

Ŷ Spectrogram of the output voice signal with modulations added, ŷ.



152GENERATION OF SYNTHESIS PARAMETERS FROM CONTENT REPRESENTATIONS

b Time-domain waveform of musical instrumental backing track.

B Spectogram of musical instrumental backing track

m The mixture signal formed by mixing y with b, the mix does not necessarily have

to be a linear mixture.

M Spectogram of the mixture signal denoted by m.

enc The encoder network of an autoencoder.

dec The decoder network of an autoencoder.

V The latent embedding of an autoencoder.

gen The generator network of a GAN.

dis The discriminator network of a GAN.

Z The linguistic content of the voice signal, x.

η The melodic content of the voice signal, x.

ψ A representation of a singer or speaker, who is the source of x.

ω A soft-mask or Wiener filter used for source separation.



Chapter 8
Introduction

A musical ensemble of singers singing simultaneously is commonly known as a choir.

Choral music is a tradition that has been practiced throughout society from the medi-

eval ages to modern times, involving diverse groups of singers of various capabilities

and ranges. As such, choral singing is a social activity that can be performed in vari-

ous arrangements with or without instrumental accompaniment. The earliest form of

ensemble choir singing can be traced back to the Gregorian chants of the 4th century,

which involved multiple singers singing the same content simultaneously, in unison.

Evidence of polyphony, with more than one part or divisi can be found in the 14th

century English sacred music manuscript known as the Old Hall Manuscript. The use

of multiple parts and polyphony in ensemble singing composition continued through

the Renaissance and Baroque periods with the works of composers like Claudio Mon-

teverdi, Heinrich Schütz and Johann Sebastian Bach. Wolfgang Amadeus Mozart,

Louis-Hector Berlioz and others like Johannes Brahms and Franz Peter Schubert con-

tinued to evolve compositions of ensemble choral singing through the Romance period.

Such compositions are practiced widely even today in dedicated conservatories across

the world.

Being a social activity, one of the most popular formats of choral singing makes use of

the distinct male and female vocal range, with female singers capable of singing high
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pitches arranged in parts known as soprano and alto, while male singers are consigned

to tenor and bass parts. The soprano part is typically for singers comfortable in the

260 Hz to 880 Hz vocal range. For the Alto section, the associated range is 190 Hz-

660 Hz. Singers comfortable in the lower ranges 145 Hz-440 Hz and 90 Hz-290 Hz are

generally assigned the Tenor and Bass voices, respectively (Scirea & Brown, 2015).

An SATB choir can have just four singers, one singing each of the parts, resulting in

a quartet arrangement. It is also common to have multiple singers singing in unison

in each of the parts, resulting in even more pronounced choral effect. Choirs typically

perform in large chambers which add natural reverberation to to choral mixture.

Despite its cultural and historical significance, choral music has largely been under-

studied in the Music Information Retrieval field, largely due to a lack of datasets

and sufficient technological advancements to study such complex musical arrange-

ments. Recently however, efforts have been made to create datasets, including the

Choral Singing Dataset (Cuesta et al., 2018), Dagstuhl ChoirSet (Rosenzweig et al.,

2020) and the ESMUC Choral Dataset have been published and are discussed in Sec-

tion 3. Along with data-driven deep learning methodologies, this opened the door to

studies of choral singing; initial research has focused on separating the individual parts

(Petermann et al., 2020; Gover & Depalle, 2019, 2020) in SATB arrangements and es-

timating the fundamental frequencies of the individual voices (Cuesta et al., 2020). We

leverage and further this research particularly for the case of separating the individual

voices using some of the recently proposed Deep Learning based source separation

algorithms proposed for musical source separation and speech source separation and

adapting them to the case of SATB choir music.

We denote the voice signal of a singer in the soprano parts as x j
So, where j = 1, ..,J, with

J being the number of singers singing in unison in the soprano voice. The signal for the

unison of sopranos, xU
So, is a linear mixture of the individual singers, xU

So = ∑
J
j=1 x j

So.

We assume that the linguistic content for each of the individual signals is the same

and is that of the unison signal, i.e.: Z j
So = ZU

So∀ j. Similarly, the individual voice
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signals of the singers in the alto, tenor and bass voices are denoted as x j
Al , x j

Te and x j
Ba,

respectively. The unison signals for the respective parts are denoted by xU
Al , xU

Te and

xU
Ba.

As a choir singing group participates simultaneously, the choral mixture can generally

be assumed to be a linear mixture, albeit with reverberation from the the surroundings,

which are typically enclosed. In our study case, the datasets we used were recorded

under special conditions with limited reverberation, particularly on the choral mixture.

As such, we assume a linear mixture wherein the sum of the unison signal gives us

the choral mixture signal; mchorus = xU
So + xU

Al + xU
Te + xU

Ba. As this follows the typical

assumption of the source separation algorithms discussed in Section 2.3, we can use TF

mask based source separation algorithms to separate the individual voices within the

mixture. To this end, we adapt some of the state-of-the-art deep learning based model

for music and source separation to the task of voice separation in SATB choirs. As

research in this field is still in its nascent phase, we conduct some initial experiments

in Chapter 9 that allow us to asses the type of models that can be used for choral voice

separation as well as the quality of the data needed for further research.

Such a voice separation procedure estimates of the unison components in the mixture,

mchorus −→ x̂U
So, x̂

U
Al, x̂

U
Te, x̂U

Ba. We further propose a methodology to synthesize a proto-

typical single voice representation of unison singing within an SATB choir recording

to allow for audio manipulations and remixing. To this end, we use the model proposed

in Chapter 7, to model the linguistic content Zh, where hin{So,Al,Te,Ba} of the uni-

son signals pertaining to the individual parts. We also model the melodic content, ηh

and use these to synthesize a prototypical single voice signal representing the pitch and

lyrical content of the unison signal. The result of this synthesis is a single voice that

can easily be transformed, e.g., pitch shifted, for creative and educational applications.

This research is presented in Chapter 10. We also analyze unison singing recordings

from the CSD.





Chapter 9
Choral voice separation

Source separation in the audio domain has been extensively studied for contemporary

popular musical mixtures and speech signals, as discussed in Section 2.3. In the case

of contemporary music source separation, the sources typically considered are vocals,

drums, bass and other instruments that are typically grouped together as others. These

four sources, often termed as stems, are used in the Signal Separation Evaluation Cam-

paign (SiSEC) to benchmark source separation algorithms. While the musical mixture

in this case comprises of melodic instruments, like the bass, the voice , synthesizers,

piano and guitar, each of these instruments typically have distinct harmonic structures

which are exploited for source separation, particularly by knowledge driven algorithms

(Virtanen, 2007; Févotte et al., 2009; Ozerov et al., 2012; Candès et al., 2011; Huang

et al., 2012).

In the case of SATB choirs, we would like to separate the soprano, alto, tenor and bass

voices from a mixture signal. In this case, the sources to be separated are all voice

signals, the harmonic structures of which share similarities. Additionally, singers in

choir generally try to blend their voices together while singing in a choir. Voiced parts

are longer in choral singing as the composition makes use of the harmonic structure of

the voice. This also leads to overlapping harmonics amongst the individual parts, mak-

ing it a harder task than source separation for contemporary popular music or speech.
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However, one distinguishing feature that can be exploited for source separation is the

distinction in the vocal range of the individual voices of an SATB mixture.

Speech source separation is a task similar to separating the voices in an SATB mixture.

However, scenarios in which speech separation is applied like conversations or the

cocktail party problem, where multiple speakers might be speaking simultaneously,

generally do not involve synchronization between the different speakers. This allows

for temporal cues which can be exploited by source separation algorithms. In addition,

the voices of the speakers in the mixture have distinct timbres and frequency ranges.

Data-driven deep learning based algorithms, while often considered to be black boxes

have shown the capability to inherently model distinguishing features within data to

outperform knowledge based algorithms in the musical and speech domain. Most of

these algorithms assume a linear mixture of sources and filter the mixture signal to

separate the individual sources. Since the choral mixture can under reasonable lim-

its, be considered a linear mixture, we hypothesize that such algorithms can also be

effectively be applied to voice separation for the case of SATB choirs. We adapt and

evaluate some of the state-of-the-art source separation algorithms from both the music

and speech domains for this task. As research in source separation for ensemble mix-

tures is still in its nascent stage, we propose some initial experiments to asses the deep

learning based models that can be adapted for choral voice separation and the quality

of data required. We also note that data, as presented in Section 3.2, is quite limited and

under varying recording conditions. We also note that it is easier to record a quartet,

or a choral ensemble of a single singer per part, than it is to record a full choir. In this

study, we answer the following research questions:

Can waveform based source separation algorithms work as well as spectrogram

based models for choral voice separation?

Are music source separation algorithms better suited to choral voice separation

or should speech source separation algorithms be used?
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How can we curate data from varied datasets which has been recorded under

different conditions?

Can quartet based data with a single singer per part be used to train deep learn-

ing based algorithms for voice separation even with multiple singers per part in

unison?

9.1 Related work

Source separation for synthetic choral data has been studied using score-informed Non-

Negative Matrix Factorization (NMFs) and the Wave-U-Net architectures (Gover &

Depalle, 2019, 2020). In this case, the researchers synthesized 371 pieces of choral

compositions by Bach using a commercial MIDI synthesizer named FluidSynth. This

allowed for synthesized choral mixes and stems aligned with score information. Fol-

lowing this, the Wave-U-Net (Stoller et al., 2018) architecture was adapted to accepted

temporal conditioning. The conditioning was applied both at the input and output lay-

ers, as well as the downsampled bottleneck layer. It was shown that the Wave-U-Net

architecture outperformed the NMF based baseline, even without the conditioning.

Voice separation in real world recordings of SATB choirs has been studied using trans-

fer learning (Bugler et al., 2020), with a ChimeraNet model (Luo et al., 2017) pre-

trained on the MUSDB and Slakh (Manilow et al., 2019) datasets. This model was then

fine tuned to separate the male and female voices in SATB recordings in the Daghs-

tuhl dataset. Another model for voice separation for real world recordings of SATB

choirs was proposed by us (Petermann et al., 2020), using a conditioned variant of the

U-Net model (Meseguer-Brocal & Peeters, 2019). In this case, a feature-wise linear

modulation (FiLM) layer (Perez et al., 2018b). This layer uses an affine transform

across the model architecture, allowing for the application of linear transformations

to intermediate feature maps. These specialized layers conserve the shape of the ori-

ginal intermediate feature input while modifying the underlying mapping of the filters
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Figure 9.1: C-U-Net Control Mechanism adapted for voice separation in SATB choirs, using
the oracle f0 as a condition for separating the voices (Petermann et al., 2020).

themselves This work was carried out by a masters’ student in the Universitat Pompeu

Fabra, under the supervision of the author of this thesis. A brief overview of this model

is presented in Appendix D.

9.2 Source separation algorithms for voice separation

While several models have been proposed for music and speech source separation, we

chose 4 to answer the research questions highlighted in this chapter. We compare the

U-Net (Jansson et al., 2017) algorithm with its waveform equivalent, the Wave-U-Net

(Stoller et al., 2018). While the original U-Net (Jansson et al., 2017) used separate net-

works for estimating the masks for the vocals and instrumental accompaniment stems,

we used a single network with 4 output layers to predict the masks for each of the parts

to be separated. We do this since we want to directly compare the waveform based



9.3 EXPERIMENTS 161

Wave-U-Net model with the spectrogram based U-Net model.

We also use the Open-Unmix (Stöter et al., 2019) model which is one of the best per-

forming models for music source separation and compare it with the Conv-TasNet (Luo

& Mesgarani, 2019) model, which was proposed for asynchronous speech source sep-

aration. While the Conv-TasNet has been adapted for music source separation (Samuel

et al., 2020; Défossez et al., 2019), we specifically use the version proposed for speech

source separation since we want to want to asses which domain is better suited to

choral voice separation, which has elements of both music and speech sources. We

use the single channel version of the Open-Unmix model, which uses single channel

Wiener filters instead of multichannel Wiener filter (MWF) (Nugraha et al., 2016). The

Open-Unmix model uses separate networks for each of the voices to be separated. The

models used are summarized in Table 9.1.

Model Input Originally Proposed For
U-Net15 Spectrogram Music Source Separation
Wave-U-Net16 Waveform Music Source Separation
Open-Unmix17 Spectrogram Music Source Separation
Conv-TasNet18 Waveform Speech Separation

Table 9.1: The deep learning based source separation models we adapt for voice separation in
SATB choirs, along with the input type and the context they were originally proposed for.

9.3 Experiments

9.3.1 Datasets and training

As observed in Section 3, there is a dearth of data available for ensemble singing, as

compared to the data available for contemporary polyphonic music. The models we

wish to adapt for voice separation in ensemble singing, were initially trained with large

datasets. For our study, we used the Choral Singing Dataset (CSD), the Daghstuhl

Dataset (DSD), the Bach Chorales Dataset (BCD) and the ECD for training and eval-

uation of the models. For consistency, we re-sample all data to 22.05 kHz and use

different combinations of singers within the datasets to augment the data for training.
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Since each of these datasets had distinct recording settings and varying amounts of data,

they provide us an opportunity to effect of incrementally increasing the data required

for training the various models. Additionally, different combinations of singers within

songs can add variations in pitch timing and timbre, leading to slight differences in the

input and target signals.

We define two variations of the data; case_1 includes all combinations of quartets

within the datasets, limiting the number of singers per voice to 1 and case_2, in which

we train the models with all possible combinations of singers for a song. This allows

us to assess the impact of training the source separation models with quartets while

evaluating the models on separation for full choirs, i.e. mixtures which might have

unison signals of two or more singer present per part.

We train the models with the CSD dataset, using the nomenclature modelnameC and

with the CSD and BCD, named modelnameCB. Where modelname ∈

{UNet,WaveUNet,Unmix,CanvTasNet}. Since the BCD only contains quartets, this

allows us to evaluate the impact of augmenting full choir data from the CSD with quar-

tet data for separating the parts in mixtures which have unison singing present. On

initial evaluation, we found the UnmixCB model to be the best performing of these

models. We use this model to clean the individual parts of the ECD, which had signi-

ficantly higher leakage amongst the individual parts than the CSD dataset. We do this

by passing the stems of each of the singers of each of the parts through the correspond-

ing model of the trained UnmixCB model. This allows us to filter out interference from

parts of the choir that do not pertain to the target part. We use this dataset for evaluation

of the trained models.

We use early stopping for training the U-Net, Wave-U-Net and Open-Unmix models,

using one singer per part of one song from the CSD dataset for validation while training

the modelnameC models. For training the modelnameCB models, we use one song

from the BCD dataset as well as the validation set from the modelnameC models. We

use a patience of 50 epochs for the U-Net and Wave-U-Net models and a patience of
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200 epochs for the Open-Unmix model. The Conv-TasNet model is trained for 2000

epochs, without early stopping.

9.3.2 Evaluation

We use the Source to Distortion Ratio (SDR), Source to Interferences Ratio (SIR) and

Sources to Artifacts Ratio (SAR) metrics from the bss_eval_sources set of evaluation

metrics (Vincent et al., 2006) for evaluation of the adapted models. While we calculated

these metrics for all models, we only present the evaluation of the models trained with

case_2. We found that there was a slight improvement in the models trained using

case_2 over the models trained with case_1 data, showing that given additional quartet

based data, we can further train the models to improve performance, even for separating

the parts in a full choir with unison singing in the individual parts.

9.3.3 Results

The results of the evaluation of the first experiment, with the modelnameC and modelnameCB

models evaluated using the bss_eval_sources set of metrics (Vincent et al., 2006) are

shown below. Figure 9.2 shows the SDR metric for the four models, trained with

case_2 data, while Figures 9.3 and 9.4 show the SAR and SIR metrics, respectively.

The evaluation metrics were calculated over the entire cleaned version of the ECD,

using full choirs, i.e. with 16 singers in unison per part.

We observe that the modelnameCB models significantly outperformed the modelnameC

models, particularly in terms of SIR and SDR. This shows that the quartet data that was

present in the BCD dataset was sufficient for training the models to separate the parts

in a full choir containing unison. We also note that the UnmixCB has the best overall

performance, which is expected since this model outperformed the others on the task

of musical source separation. The performance of the UNet and WaveUNet models is

comparable for each of the metrics calculated. This shows us that both waveform based

and spectrogram based source separation models can effectively be used for separating
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Figure 9.2: The SDR metric evaluated on the cleaned ECD for the four models trained with
case_2 data.

the parts in an SATB mixture. Although we note that the ConvTasNet does not perform

well on the SDR and SIR metrics, but outperforms the other models on the SAR metric.

This result suggests that music source separation algorithms are better suited to voice

separation for the case of SATB choirs than those proposed for asynchronous speech

separation. We also observe that the SIR and SDR for the tenor parts of all models

is significantly lower than that for the other parts. We believe this is in part due to

the overlap between the vocal range for the alto and tenor parts. Since the f0 is a

major distinguishing feature between the parts, we believe that the various models are

confused between these parts. On further analysis, we found that there was indeed

confusion between these parts in the separated voices, particularly with segments of

the alto part being separated as the tenor part. This can also be observed in the SIR

plot which has a much higher variance for the tenor part than it does for the alto part,

especially for the modelnameCB models.

9.4 Conclusions

We adapted and evaluated four open source deep learning based models for music and

speech source separation for the case of voice separation for SATB choirs. The mod-

els are trained using data from four recently recorded datasets, which have different

recording conditions and combinations of singers within each of the parts. The size of
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Figure 9.3: The SAR metric evaluated on the cleaned ECD for the four models trained with
case_2 data.

Figure 9.4: The SIR metric evaluated on the cleaned ECD for the four models trained with
case_2 data.

the datasets used, even after consolidation, is relatively small compared to the size of

the datasets used to train the models for music and source separation. However, allow-

ing different combinations of singers during training allows us to augment the data. We

are now in a position to answer the research questions presented in the introduction to

this chapter:

Can waveform based source separation algorithms work as well as spectrogram

based models for choral voice separation?

We observe that the performance of the waveform based Wave-U-Net (Stoller

et al., 2018) is comparable to that of the spectrogram U-Net (Jansson et al., 2017)

when both are adapted under similar conditions for the task for voice separation
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in SATB choral mixtures.

Are music source separation algorithms better suited to choral voice separation

or should speech source separation algorithms be used?

We observe that the music source separation algorithms, particularly the Open-

Unmix (Stöter et al., 2019) model, outperform the model proposed. for asyn-

chronous speech source separation, Conv-TasNet (Luo & Mesgarani, 2019). Al-

though we note that an adapted version of the Conv-TasNet model outperforms

the Open-Unmix model on the task of music source separation, the model pro-

posed for speech source separation has been shown to under perform.

How can we curate data from varied datasets which has been recorded under

different conditions?

We observe that by using a preliminary model trained on the dataset with least

leakage, the CSD, we were able to reduce the inter-singing leakage in the indi-

vidual tracks of the ECD and use the data for further training and evaluation of

the models.

Can quartet based data with a single singer per part be used to train deep learn-

ing based algorithms for voice separation even with multiple singers per part in

unison?

We observe that the best strategy to use is to use all possible combination of sing-

ers from within a song. From the first experiment, we can observe that quartet

based data can be used to augment data for which multiple singers are available

per part. Such data augmentation leads to significant improvement in the per-

formance of the separation system when applied to a full choir with multiple

singers per part. We also observe that using all possible combinations of singers

per part leads to a slight improvement in results over restricting the number of

singers per part to 1.
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We believe this study to be an initial foray into the domain of voice separation for

SATB choirs. We hope it provides a baseline for future work in this direction as al-

gorithms for musical source separation evolve and more datasets for SATB choirs are

made available.





Chapter 10
Analysis of unison singing

Choir singing is a group activity with multiple singers from diverse background coming

together to sing. In Chapter 9, we discussed choir singing in harmony. In this chapter,

we will cover multiple singers simultaneously singing the same melodic and linguistic

content, leading to a an effect known as unison. We will denote the signals of the

individual singers within the unison as x j where j = 1,2...K, where K is the total

number of singers in the unison. We also denote the unison signal as xU = ∑ j = 1Kx j.

We note that while the unison signal is a linear sum of the individual signals, a filtering

approach cannot be used to separate the individual signals since they are very similar

in content. As such, we use the methodology proposed in Chapter 7 to model the

linguistic content, ZU , of the signal. We also model the melodic content, ηU of the

signal and use these to synthesize a prototypical single voice signal representative of

the content of a unison input. We term the framework for this synthesis as Unison to

Solo (UTS). We this model to study the perceptual pitch of the unison mixture.

We also analyze real world recordings of unison singing from the Choral Singing Data-

set (CSD), studying the inter-singer timing and pitch deviations and use these to pro-

pose a methodology for generating a signal with the unison effect from an a capella

input. We term this methodology as the Solo to Unison (UTS) model. In concrete, this

chapter attempts to answer the following research questions:

169
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Is it possible to separate a single voice from within the unison singing signal?

What are the perceptual qualities of a unison signal that distinguish it from a

signal voice singing signal?

10.1 Related work

Unison singing has been studied in the past with the use of vowel based singing voice

synthesizers (Ternström, 1991) with listening tests involving expert listeners. The stud-

ies show that even though multiple voices are present in a signal pertaining to unison

singing, a listener only perceives a single pitch. Properties of the singing voice sig-

nal like pitch, timing, loudness and timbre can be defined as statistical distributions

for ensemble unison singing. The researchers investigated pitch dispersion within the

unison, defining it as the the bandwidth of the fundamental frequency and its harmonic

partials across individual singers in a unison. This dispersion is related to small vari-

ations in the f0 that are considered too fast to be perceived as variations in pitch. Such

variations are termed as flutters. The deviation of individual f0 contours over the mean

of the individual contours in the unison is termed as scatter and a preference of 0 cents

to 5 cents was shown by the participants in the listening test while 5 cents to 14 cents

was shown to be the upper limit of tolerance of consonance. Studies of modelling scat-

ter have also been conducted with real world choral recordings using small windows

to compute the standard deviation between individual f0s in the unison signal (Cuesta

et al., 2018). The pitch dispersion was found to be in the range of 20 cents to 30 cents

for the recordings considered in the study.

Other studies of ensemble singing include an attempt to measure intonation quality

within choral recordings (Weiss et al., 2019). The deviation of each individual f0 value

was calculated from an ideal 12-tone equal temperament grid, allowing the analysis of

the overall intonation of a full choir recording.

We further the analysis done by (Ternström, 1991) using the methodology proposed
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in Chapter 7 for synthesizing a single singer representation of a unison singer from an

SATB choir recording. This allows us to analyze the perceptual qualities of the unison

via listening tests. Further, the methodology can also be applied for synthesizing a

unison signal from an a capella singing voice recording.

10.2 Unison to solo

To synthesize a single singer representation of the content of a unison signal, we need

to extract the linguistic and melodic content. We use the Singer Independent Network

proposed in Chapter 7 to model the linguistic content from the unison signal.

To model the melodic content, we try to emulate the single perceived pitch of the uni-

son, which was noted by Ternstöm (Ternström, 1991). Intuitively, this perceived pitch,

denoted by ηU , must be a function of the fundamental frequencies of the individual

signals that comprise it. We hypothesize that the simplest possible function, the mean,

of the individual f0’s can be used as a representation of the perceived pitch of the uni-

son signal. The mean f0 value, η̃U is adjusted for timing differences, discussed in the

next section, between the individual singers. To this end, we define the average to be

zero (unvoiced frame) if and only if all individual values for that frame are zero. for all

other cases, the average is calculated only accounting for the non-zero values.

To extract a representation of this pitch from a unison signal, we use a deep learning

based monophonic pitch estimation algorithm, known as Convolutional Representation

for Pitch Estimation (CREPE) (Kim et al., 2018b). Since the algorithm estimates a

single pitch, it can be expected to estimate the single perceived pitch, η̂U , of the unison

signal. We compare the extracted pitch with the theoretical perceived pitch in Section

10.5.

We use the SIN model presented in Chapter 7 to model the linguistic content of the sig-

nal and to generate the compressed spectral envelope corresponding to the prototypical

representative signal for the unison signal, xU . As discussed in Chapter 8, we assume
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that the linguistic content for each of the individual signals is the same and is that of the

unison signal, i.e.: Z j = ZU∀ j. To this end, we use the linguistic encoder, encling() to

extract ZU from the input, xU . The singer encoder, encsinger(), is used to derive a rep-

resentation of the perceived singer identity from the unison signal, ψU . The linguistic

content and the perceived singer identity are passed through the SIN decoder, decSIN(),

to generate the compressed spectral envelope for the prototypical single voice signal

pertaining to the unison, X̂S
voc

ψ
U = downsample(encsinger(|XU |))

ZU = downsample(encling(|XU |))

X̂S
voc = decSIN(upsample(ZU),upsample(ψU))

(10.1)

Finally, we use the extracted pitch, η̂U and the generated compressed spectral envelope,

X̂U
voc to synthesize the prototypical voice signal, x̂S, as shown in Figure 10.1.
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Figure 10.1: The framework for synthesizing a prototypical single voice signal from a unison
mixture.
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10.3 Timing and pitch deviations in unison singing

To analyze the pitch deviation within the unison, we build a statistical model for the

individual contours in the unison, as suggested by (Ternström, 1991). In our model, the

framewise f0 of an individual singer, ηi, can be represented as a distribution of values

around the mean ηU
m with a deviation of ηdevi, as shown in Equation 10.2

ηi = η̃
U +ηdevi (10.2)

This also allows us to define the ηi+1 of a singer in terms of the ηi of another singer in

the unison as shown in Equation 10.3.

ηi+1 = η̃
U +ηdevi+1

ηi+1−ηi = ηdevi+1−ηdevi

ηi+1 = ηi +ηdevi+1−ηdevi

ηi+1 = ηi +∆η

(10.3)

We define ∆η as the inter-singer deviation, represented by Equation 10.4. For each

pair of singers in the unison, we compute the frame-wise difference between the cor-

responding f0 contours in cents. For this calculation, only voiced frames were con-

sidered. We average these inter-singer deviations across time and songs, and obtain a

single value for each part in soprano, alto, tenor and bass.

∆ηh =
∑

n
i=1 ∑

n
j=i+1 ηi−η j(n

2

) (10.4)

where the sub-index h indicates the choir section, h ∈ [So,Al,Te,Ba], and n is the

number of singers. In our use case, n = 4.

Pitch deviations across the singers in the unison mixtures calculated using this method-

ology are shown in Figure 10.4. We see that the calculated inter-singer deviation, ∆ηh,
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Figure 10.2: Inter-singer deviations in cents averaged across the whole dataset for each choir
section. Deviations are calculated using Equation 10.4.

is in the range of 0 cents to 50 cents, with a mean of around 20 cents. This value is com-

parable to the pitch dispersion studied by (Cuesta et al., 2018). While the methodology

for modelling is different, these results are in accordance with the reported per-section

pitch dispersion: larger in the bass section, smaller in the sopranos, and very similar

for altos and tenors.

To measure timing deviations, we focus on the transitions from voiced frames to un-

voiced frames across the individual signals within the unison. The voiced frames are

the frames where a positive f0 is annotated for the individual singer whereas unvoiced

frames are those which have a 0 value for the f0 annotated. These transition regions oc-

cur at the start and end of phrases where some singers might have start or stop singing

earlier than others and might not be completely synchronized. We measure the length

of all the transition regions in every unison from the CSD, and average the time value

across choir sections.

Timing deviations calculated in this manner are shown in Table 10.1 We observe an

average timing deviation of 0.1 s between the voices in the unison for all parts of the

choir.
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Section Average Timing Deviation ±
Standard Deviation

Soprano 0.134±0.039 sec

Alto 0.093±0.0024 sec

Tenor 0.100±0.021 sec

Bass 0.124±0.021 sec

Table 10.1: Timing deviations averaged across the CSD. These values measure the time span
in which all singers in the unison transition from voiced to unvoiced, and vice-versa, averaged
across all transitions in each song.

10.4 Solo to unison

For synthesizing a unison signal from an a capella singing voice input, we create voice

clones of the signal with pitch and timing deviations as well as variations in timbre us-

ing the Singer Dependent Network (SDN) described in Chapter 7. To this end, we use

the linguistic encoder, encling(), to extract the linguistic content ZSi from the input sig-

nal xSi. Timbre changes are emulated by using Voice Conversion using the SDN model,

wherein singers of the male gender from the training set are used for the Tenor and Bass

parts. For the Soprano and Alto voices, we use Female singers from the training set.

We create 4 clones of each voice with singer identity ψ ′i , where i ∈ 1,2,3,4. These

are passed through the SDN decoder, decSIN(), to generate the compressed spectral

envelope X̂U
voci, as shown in Equation 10.5.

ZSi = downsample(encling(|XSi|))

X̂U
voci = decSDN(upsample(ZSi),upsample(ψ ′i ))

(10.5)

To model inter-singer deviations, ∆η , we add noise sampled from a normal distribution

with a mean of 0 and a standard deviation represented by the parameter std to the f0 of

the input a cappella signal, ηS as η̂U
i = ηS +∆ηi.

We shift the voiced portions of the input signal between two successive blocks of si-
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Figure 10.3: The framework for synthesizing a prototypical unison signal from an a capella
input.

lence of more than 80 ms by a variable amount for each of the clones. The shift is

randomly sampled from a normal distribution of mean 0 and standard deviation ts. The

framework for this methodology is shown in Figure 10.3.

The individually synthesized signals, x̂U
i are summed to generate the output unison

signal, x̂U = ∑
4
i=1 x̂U

i

10.5 Experiments

We use the CSD for evaluation of the proposed methodologies for UTS and STU. We

used the proprietary dataset, presented in Section 7.4.2, for training the SDN and SIN

models used in the STU and UTS models. To the best of our knowledge, there was no

overlap in the singers used for training and those involved in CSD.

For the UTS model, we evaluate the accuracy of the monophonic pitch extraction sys-

tem, the remseblance of the perceived singer of the synthesized prototypical signal to

the individual singers in the unison. These evaluations are presented in Section 10.5.1

and Section 10.5.2, respectively. To evaluate other perceptual aspects of the STU and
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Figure 10.4: Resemblance of the estimated unison η̂U estimation to each individual ηi contour
(green) and the average (blue) using pitch evaluation metrics averaged across each choir section.

UTS models like adherence to melody, intelligibility and quality, we used subjective

listening tests, presented in Section 10.5.3.

10.5.1 Pitch accuracy

We evaluate the accuracy of the monophonic pitch estimation system, compared to

the theoretical mean f0 of the unison signal. We also measure the resemblance of the

estimated f0, η̂U , to f0 annotations of each of the tracks. This is done using standard

evaluation metrics for melody extraction including Raw Pitch Accuracy (RPA), Overall

Accuracy (OA), Voicing Recall (VR) and Voicing False Alarm (VFA) between the ex-

tracted f0, η̂U , the average the mean, η̃U , and each individual singer curve, ηi. We use

the mir_eval library (Raffel et al., 2014) for this evaluation, with a pitch tolerance

of 30 cents. The results of this analysis are shown in Figure 10.4.

We observe that all sections follow the same pattern with similar metric values, and the

unison f0 estimated by CREPE, η̂U , is closer to the average η̃U ,than to the individual

contours. In addition, all metrics improve when we compare the average f0 curve to
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the extracted f0 contour from the unison: RPA, VR and OA are higher in the blue

plots, while VFA is lower. We can thus use the pitch estimated by CREPE, η̂U , as a

representative of the mean single pitch contour perceived in a unison mixture.

10.5.2 Singer analysis

We evaluate the resemblance of the perceived singer of the synthesized single voice

prototypical signal, ψU , to the individual singers within the unison, ψi. To this end, we

use the GE2E speaker representation embeddings (Wan et al., 2018), described in Sec-

tion 2.5.3. For visualization, we use the t-Distributed Stochastic Neighbor Embedding

(t-SNE) (Van der Maaten & Hinton, 2008), which is a commonly used dimensional-

ity reduction methodology used for visualization of high-dimensional data. We reduce

the dimensions of the embedding from 256 to 2, to allow for a 2-D visualization. This

visualization is shown in Figure 10.5. Within the figure, the dimension-reduced speaker

embedding extracted from each individual singer from all songs within the CSD dataset

for each of the parts of the SATB choir are shown along with the dimension-reduced

embeddings for the synthesized prototype signals for each of the songs.

It can be seen that reduced embeddings from the various parts form clusters along the

two dimensions plotted. The rembeddings extracted from the synthesized prototpye

signals fall within the clusters in the plot. However, we note that the speaker embedding

extracted as such might not completely represent the timbre of the singers as it is also

influenced by the f0 of the singing voice. The shown clusters might also be influenced

by the f0, which consistently falls within the same range for a given part in the choir,

regardless of the singer in question.

10.5.3 Subjective evaluation

We use a subjective MOS based listening test to evaluate the final synthesized proto-

typical voice signal based on three criteria:
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Figure 10.5: The t-SNE plots for the reduced dimension spekar embeddings. The different
parts of the SATB choir are shown with different colours, as indicated by the key. The speaker
embedding extracted from the synthesized. protopytical signal is labelled as h− out, where
h ∈ [soprano,alto, tenor,bass].

Adherence to melody and lyrics: We wanted to see the similarity of the per-

ceived pitch contour of the output to that of a ground truth unison mixture. We

provide a ground truth unison reference sample made by summing the corres-

ponding four individual singers of a part to form a unison mixture. We term

this reference as REFU. The participants were asked to rate test samples which

included the single voice prototype of the unison as output by the UTS system,

referred to as UTS. We also evaluated the output of STU with a pitch deviation

with parameter std set to 50 cents, the acceptable limit of pitch deviations, as

shown by our analysis and suggested by (Ternström, 1991). Four singers were

used for generating this test case, with parameter ns set to 4, and it is referred to

as STU_PS. We also evaluated the output of the UTS system with both pitch and

timing deviations with parameter ts set to 40 ms. While our analysis suggests

that higher values of ts could have been used, we found that increasing the value
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beyond 40 ms leads to a unacceptable level of degradation in output quality. We

refer to this test case as STU_PTS. In addition, we provided a lower anchor of a

sample of the same length from another vocal part.

Perception of unison: We aim to study the perception of unison in this study,

using a ground truth unison reference sample, REFU. Participants in the listening

test were asked to rate outputs from the STU system based on their similarity to

the reference in terms of the perception of unison. In addition to the STU_PTS

and STU_PS cases with pitch, timing and timbre variance, we also tested the case

for just timing and singer variation, referred to as STU_TS and a case with just

pitch and timing deviations, referred to as STU_PT. Timbral changes were not

done for the voice clones used for creating the STU_PT samples. We provided a

lower anchor of an a cappella sample of a single singer singing the same example

as the reference.

Audio Quality: For the evaluation of audio quality, we set an upper limit of

audio quality to the re-synthesis of a single voice recording with the WORLD

vocoder. We term this as REFS. We also use a lower anchor with re-synthesis

of a unison mixture with the WORLD vocoder, termed as RESSYNTHU. The

examples provided to the participants were the same as those provided for the

adherence to melody case, with the exception of the lower anchor.

The listening test consisted of 4 questions for each aspect, each pertaining to a part

of the SATB choir. The participants were asked to rate the presented samples in the

question on a continuous scale of 1to5 with respect to a presented reference. The test

samples and references provided pertained to the the same section of the song and were

between 7sto10s each.

There were 17 participants in our evaluation, of which 10 had prior musical training.

To account for inter-participant variance in subjective evaluation, the opinion score for

each question was normalized over ratings for the reference and the lower anchor before
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Test Adherence To Unison Audio
Case Melody Perception Quality

UTS 3.6±0.93 2.1±0.65

STU_PS 3.3±0.83 2.6±0.85 2.8±0.45

STU_PTS 2.9±1.14 3.2±0.96 3.1±0.63

STU_TS 2.3±1.11

STU_PT 3.0±1.23

Table 10.2: Mean Opinion Score (MOS)± Standard Deviation for the perceptual listening tests
across the test cases provided. The models shown correspond to the Unison to Solo (UTS),
the Solo to Unison with pitch, timing and singer variations, indicated by the addition of the
letters P,T and S as suffixes to the abbreviation, respectively. The scores for each question were
normalized by the responses to the upper and lower limits for the responses defined in Section
10.5.3.

calculating the mean opinion scores (MOS) and the standard deviations in opinion

scores, presented in Table 10.2.

We can see that a higher preference was given for the UTS model over the STU model,

with regards to the perceived adherence to melody. This shows that the synthesized

prototypical with the adjusted mean f0 does indeed follow the perceived melody as

hypothesized. For the STU model, we note that variations in both timing and pitch

together are important for the perception of the unison effect, although timbre vari-

ations are not as influential. We note that there is room for improvement in terms of

audio quality, this can be addressed by using alternative neural synthesis techniques,

as discussed in Section 2.4.2 instead of the WORLD vocoder. The subjective nature

of the perceptual aspects evaluated must be taken into account for the evaluation and

the mean opinion scores are indicative of preferences rather than absolute measures of

quantity.

10.6 Conclusions

We analyzed the unison mixtures within the Choral Singing Dataset, building on the

work done by (Ternström, 1991) and (Cuesta et al., 2018). We observe that the devi-
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ation between the f0 contours of the individual singers in the unison mixtures in the

dataset is in the range of 0centsto50cents, while the timing deviation is around 0.1 s.

We use the mean of the pitch of the individual singers within a unison to represent the

perceived itch of the unison signal. We compare this pitch to the pitch curve extracted

by a deep learning based monophonic pitch extraction system. We observe that thee

extracted pitch is closer to the mean of the pitches than it is to any of the individual

pitches in the signal. The methodology proposed in Chapter 7 is used along with the

pitch extracted by the monophonic extraction system to synthesize a single voice pro-

totype signal representing the melodic and linguistic content of a unison mixture input.

Through subjective listening tests, we support our hypothesis that the single perceived

pitch can be represented by the mean of the individual pitches.

We also use the methodology to synthesize a unison mixture from a single voice input,

introducing timing, pitch and timbre variations. Based on these systems, we were

able to conduct a perceptual evaluation of the unison, further supporting the claim of

(Ternström, 1991) that the a mixture of different voices singing in unison is perceived

to have a single pitch. In addition, we found that pitch and timing deviations together

are important for the perception of the unison, and that variations in either aspect alone

is insufficient for such. However, timbre variations were not found to be as relevant.

We are now in a position to answer the research questions presented in the introduction

of the chapter:

Is it possible to separate a single voice from within the unison singing signal?

We believe that the individual signals mixed together in a unison singing signal

are too similar to be separated via TF mask based methodologies. However, we

propose a novel methodology to synthesize a single voice signal representative

of the perceived content of the unison signal.

What are the perceptual qualities of a unison signal that distinguish it from a

signal voice singing signal? Through our experiments, we can confirm with past
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findings that the single perceived pitch of a unison signal is closely related to the

mean of the pitches of the individual singers in the unison. We also. note that

pitch and timing deviations contribute more to the perception of a unison than

variance in the timbre of the singers involved.
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Chapter 11
Applications

We discuss some potential applications of the research and methodologies proposed in

this thesis. The proposed methodology for singing voice extraction via synthesis can

be applied for creative use as well as for transcription and pedagogical use. We also

apply the analysis-synthesis approach followed in this thesis to other musical elements

like single-shot percussive sounds and loops.

11.1 Processing and re-mixing

The methodology proposed in Part II has several practical applications, including lyrics

transcription and artistic remxing. Since the methodology synthesizes a clean version

of the vocals, without effects that might have been added during processing, it can

be easier for automatic lyrics transcription (ALT) algorithms (Mesaros, 2013; Kruspe

& Fraunhofer, 2016; Gupta et al., 2018a,b; Demirel et al., 2020; Tsai et al., 2018)

to extract interpretable linguistic representations like phonemes from the synthesized

vocals than it would be from processed vocals. This can be particularly useful for

commercial applications since most contemporary popular music contains vocals with

processed effects, as discussed in Section 1.2.1.

Other applications could be for remixing the synthesized clean vocal signal. Since

the proposed methodology synthesizes a clean vocal signal, we believe it can also be

187



188 APPLICATIONS

applied in conjunction with TF mask based source separation methods. This would

further mimic the human perception pipeline wherein the incoming audio is first filtered

and then processed. Such a process. would eliminate artifacts that are carried. over

from the TF mask filtering and generate a clean vocal signal. The synthesized voice

signal can then be processed through tools like Melodyne 19 to allow for remixing and

creative applications.

The artificial intelligence for music production research group, DADABOTS20, has used

this methodology for creating a clean voice mixture of the Opeth song, Ghost of Perdi-

tion, available on the streaming channel, YouTube: https://www.youtube.com/watch?

v=XC8XDuT0RBE. The original song uses growling vocals, discussed in Section

1.2.1, while the remixed song uses a clean synthesized version of the same vocals,

extracted through the proposed methodology. We note that growling based vocals do

not have an inherent f0 and a single tone f0 corresponding to the note middle D or

293.665 Hz. We believe that generative modelling can be used for generating the f0

curve for such signals and plan to investigate this in the future.

11.2 Choral transcription and practice tool

We propose the framework for transcription and remixing of a full choir, with unison

singing. Shown in Figure 11.1, our proposed framework allows for modulations of the

individual parts of the choir, which can be used for practice, along with pitch estima-

tion for each of the parts. To this end, we combine the research presented in Chapters

9 and 10. We propose to use the Open-Unmix (Stöter et al., 2019) model trained on

all four datasets for separating the individual parts from an input. On a full choral re-

cording, this would result in 4 parts with possible unison singing within each of the

parts. We use the CREPE (Kim et al., 2018a) model to extract a representation of the

single perceived pitch of the unison, as explained in Chapter 10 and use the STU model

19https://www.celemony.com/en/melodyne/what-is-melodyne
20https://dadabots.com/

https://www.youtube.com/watch?v=XC8XDuT0RBE
https://www.youtube.com/watch?v=XC8XDuT0RBE
https://www.celemony.com/en/melodyne/what-is-melodyne
https://dadabots.com/


11.3 APPLICATION TO OTHER MUSICAL ELEMENTS 189

Multi-singer  
choral recording

Source 
Separation

Soprano, ̂xU
S

Alto, ̂xU
A

Tenor, ̂xU
T

Bass, ̂xU
B

Separated unison stems

xC

Content 
Estimation

̂zS, ̂F0S

̂zA, ̂F0A

̂zT, ̂F0T

̂zB, ̂F0B

Linguistic and  
melodic content

Synthesis 
f ( ̂zv, ̂F0v)

yS

yA

yT

yB

Single singer  
synth stemsTransformation

Time stretching

Pitch shifting

Remixing

y′ 
U
S

y′ C

Remixed multi-singer 
choral recording

Solo to unison

y′ S

y′ A

y′ T

y′ B

y′ 
U
A

y′ 
U
T

y′ 
U
B

Figure 11.1: The proposed framework for the choir practice tool.

presented in the same chapter to synthesize a single voice signal representative of the

content present in the unison. This signal can be modified, time-stretched or pitch-

shifted according to the needs to the user and remixed using the STU methodology. We

present the code for this application on a GitHub repository, https://github.com/MTG/

SingingChoralSepAnalyzeSynthRemix, as well as a GoogleCollab notebook at https://

colab.research.google.com/drive/1VnB2gtIDZIy31sZIt0PMeokcvIgaRafT?usp=sharing.

11.3 Application to other musical elements

We apply the analysis and synthesis framework to propose generative models for single

shot percussive sounds (Ramires et al., 2020) and loops (Chandna et al., 2021). Per-

cussive sounds are an important inharmonic component of modern music and are gen-

erally created by striking a hard surface. We present a feedforward model using the

Wave-U-Net (Stoller et al., 2018) model to map intuitive control parameters to the

waveform of percussive sounds. The control parameters are based on a set of timbrel

features. These features were identified by user queries, used used for searching for

https://github.com/MTG/SingingChoralSepAnalyzeSynthRemix
https://github.com/MTG/SingingChoralSepAnalyzeSynthRemix
https://colab.research.google.com/drive/1VnB2gtIDZIy31sZIt0PMeokcvIgaRafT?usp=sharing
https://colab.research.google.com/drive/1VnB2gtIDZIy31sZIt0PMeokcvIgaRafT?usp=sharing
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Figure 11.2: The architecture used for percussive synthesis.

sounds in large audio databases (Pearce et al., 2017). These features include hardness,

depth, brightness, roughness, boominess, warmth and sharpness. We map these fea-

tures, along with the envelope of the sound to the waveform of the sound. For this study,

we curated a set of 10000 percussive one-shot sounds collected from Freesound (?).

The source code for our model is available online21, as are sound examples22, show-

casing the robustness of the models. We used a Wave-U-Net based architecture to map

the input features directly to the waveform of the percussive sound, as shown in Figure

11.2.

Loops are seamlessly repeatable musical segments that are typically used in mod-

ern music production, that have lowered the barrier to entry into music making. We

present a model similar to the one-shot percussive sound generator to generate loops

using the same timbrel features along with Harmonic Pitch Class Profiles (HPCP)

(Gómez Gutiérrez, 2006) and rhythm features extracted using an Automatic Drum

Transcription algorithm (Southall et al., 2017). We curated a set of 8838 loops from

21https://github.com/pc2752/percussive_synth
22https://pc2752.github.io/percussive_synth/

https://github.com/pc2752/percussive_synth
https://pc2752.github.io/percussive_synth/
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Figure 11.3: The architecture used for loop synthesis.

a community database, Looperman23, for this task. The source code for this applica-

tion is available at github.com/aframires/drum-loop-synthesis. The architecture for this

model is shown in Figure 11.3

23looperman.com

github.com/aframires/drum-loop-synthesis
looperman.com




Chapter 12
Conclusions

This thesis presents research on processing the singing voice signal in monaural poly-

phonic music signals in two contexts; contemporary popular music that contains pro-

cessed vocals with instrumental accompaniment and ensemble choral singing that con-

tains multiple voices singing in harmony and unison. Our research exploits recent ad-

vancements in data-driven deep learning based methodologies that provide a powerful

tool for data modelling.

In Part II, we observe that deep learning unsupervised learning via autoencoders can

be used to learn abstract yet useful representations of linguistic content from a voice

signal. Such representations are often used for voice conversion, which involves con-

verting the perceived speaker of a voice signal while retaining the perceived linguistic

content. The melodic content of a singing voice signal is often represented by the

fundamental frequency f0 curve, which encapsulates both the pitch and rhythm of the

melody. We propose the framework for a methodology to extract these features from

a musical mixture and use these, along with a representation of the singer identity to

synthesize the clean singing voice signal. We use a one-hot representation of the singer

identity and also train a network to extract the singer identity directly from the mix-

ture signal. We note that the presented methodology is quite robust, even for examples

outside the training set and with extreme vocal effects like growls, which completely
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change the harmonic structure of the voice signal. However, we also note that the

synthesis quality can be improved further.

Part III of the thesis explores part separation for one of the most popular formats of

choral singing, the soprano, alto, tenor and bass (SATB) format. This format has four

parts, each of which might have multiple singers singing in unison, while the parts

themselves are arranged in harmony. The four parts in harmony are usually a linear

mixture and can thus be separated using mask based filtering algorithms such as those

commonly used for musical and source separation.

We curate data, combing multiple recently recorded datasets and cleaning them. We

note that even after this consolidation, the data we have is quite limited when compared

to the data used for musical or speech source separation. We then adapt four state-of-

the-art deep learning based algorithms to separate the individual parts from an SATB

mixture. We note that waveform based models perform as well as spectrogram based

source separation models and that quartet based data is effective for data augmentation

for training the models to separate the parts, even when they contain multiple voices

in unison. We also observe that algorithms proposed for the task of music source

separation are better suited to part separation for SATB choirs than algorithms proposed

for asynchronous speech source separation.

While the unison is a linear mix of individual voices, the singers in the unison are

singing the same content simultaneously and are hard to distinguish. Past research has

shown that a single pitch is perceived from this unison signal. As such, it is impossible

to separate the individual singers within the unison signal using filter based methods.

However, since the perceived content of the unison signal is consistent, we propose

a framework to synthesize a prototypical single voice signal from the unison that can

encapsulate the linguistic and melodic content of the signal. We use our previously

proposed methodology to this end. We also extend the methodology to synthesize a

unison signal from an a capella singing voice input, based on the analysis of real world

choral singing examples. We note that both timing and pitch deviations are necessary
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to generate the perception of unison.

Given the presented research, we are now in a position to answer the research questions

presented in Section 1.3.

Can a singing voice signal be synthesized from a musical mixture by using lan-

guage independent representations of the perceived content of the signal?

Part II presents a framework for singing voice synthesis given a polyphonic mix-

ture signal containing a single voice that can be processed with effects or a uni-

son of multiple voices singing simultaneously. This framework is inspired by the

pipeline a human listener would follow while trying to replicate the singing voice

signal in a song. To this end, we note that the singing voice signal comprises of

three elements; the singer-independent linguistic and melodic content and the

singer-specific timbre. We also note that low-dimensional invertible represent-

ations called vocoder parameters are commonly used for analysis and synthesis

of the singing voice signal. In this thesis, we use the WORLD (Morise et al.,

2016) vocoder, with the dimensions of the harmonic and aperiodic components

reduced to 60 and 4, respectively. Such compressed features have been shown

to be effective for synthesis of a singing voice signal (Blaauw & Bonada, 2016)

and are referred to as the compressed spectral envelope throughout this thesis.

• Is it possible to extract synthesis parameters pertaining to the singing voice

from a polyphonic contemporary music mixture?

In Chapter 5, we propose a deep learning based methodology to estimate

synthesis parameters from the magnitude component of the spectrogram of

a musical mixture. We use a non-autoregressive WaveNet based temporal

convolutional neural network to estimate the compressed spectral envelope

from a polyphonic mixture of popular music containing vocals. We use

the magnitude component of the spectrogram of the mixture signal as input

to the network, which is optimized to minimize the mean absolute error
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(MAE) loss between the target compressed spectral envelope and the output

of the network. The estimated spectral envelope is fed, along with the

magnitude component of the spectrogram of the mixture, to another non-

autoregressive TCN, to estimate the f0 of the singing voice present in the

mixture signal. The f0 is representative of the melodic content of the voice

signal and the target is expressed in a logarithmic format. The output of

these two networks is used to compute the voiced or unvoiced nature of

each frame corresponding to the voice signal. The estimated compressed

spectral envelope, f0 and voiced/unvoiced parts are used to synthesize the

clean singing voice signal present in the mixture.

We compare the proposed algorithm to an NMF based algorithm as well

as a deep learning based algorithm for TF mask estimation proposed by

us earlier, through both objective and subjective evaluation. We observe

that the proposed algorithm surpasses both the NMF and the deep learning

based algorithms in terms of isolation of the voice signal from the source.

Although we note that the quality of the synthesized voice signal leaves

room for improvement, the presented methodology should that neural net-

works can be used to estimate voice synthesis parameters from a musical

mixture.

• How can the voice signal extracted using such a methodology be evaluated?

The signal generated by the proposed methodology is synthesized and is

dependent on the accuracy of the parameter and f0 algorithms. While the

perceptual qualities of the synthesized voice signal are quite similar to that

of the signal used in the mixing process, the signals themselves are quite

different. On objective evaluation of our proposed methodology, we found

that typically used objective metrics for source separation (Vincent et al.,

2006), particularly the SDR and SAR metrics, did not agree with the sub-

jective evaluation we carried out via listening tests. As discussed in Sec-
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tion 3.3.2, a number of perceptually motivated evaluation metrics have been

proposed for both source separation and voice synthesis. However, the cor-

relation of these metrics with subjective evaluation is still a matter of debate

(Cano et al., 2016). Also, some of the metrics, particularly for evaluation

of voice synthesis were proposed during the later stages of our research

and are tailored to speech signals rather than the singing voice signal. We

believe that such metrics can be adapted for the evaluation of our proposed

methodology in the future, but for the context of this thesis, we continue

with the use of subjective evaluation via listening tests.

• How can a feedforward neural network be used for singing voice synthesis

given an input of linguistic content, singer identity and the f0 curve?

In Chapter 6, we propose a feedforward U-Net based architecture (Ron-

neberger et al., 2015) to generate the compressed spectral envelope from an

input consisting of the linguistic information, in the form of phonetic an-

notations, melodic information, in the form of the f0 curve and the identity

of the singer as a one-hot vector representation. Randomly sampled noise

is concatenated along with this input and the network is optimized via the

Wasserstein GAN (Arjovsky et al., 2017) adversarial training methodology.

We use the NUS corpus (Duan et al., 2013) for training the model, which

is a relatively small dataset compared to those typically used for speech

synthesis.

We compare the proposed methodology to a state-of-the-art singing voice

synthesizer, the NPSS (Blaauw & Bonada, 2016), that uses an autoregress-

ive framework to generate vocoder features similar to the ones we use for

our model. Through subjective and objective evaluation, we find that the

methodology we propose is comparable to the autoregressive singing voice

synthesizer. We note that since we proposed the singing voice synthesis

system, a number of methodologies for singing voice synthesis based on
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feedforward neural networks have been proposed (Hono et al., 2019; Lee

et al., 2019a; Blaauw et al., 2019). Some of these methodologies use

seq2seq modelling to generate the singing voice signal end to end, without

the need for aligned phonetic annotations.

• Can the linguistic content of a singing voice signal be represented in a lan-

guage independent manner from which a voice signal can be synthesized?

While synthesis of a singing voice signal is possible given a phonetic rep-

resentation of linguistic content, extracting such a representation from a

polyphonic music mixture is a challenging task. Deep learning based meth-

odologies proposed for the extraction require a large amount of annotated

training data (Demirel et al., 2020). Furthermore, the use of such a rep-

resentation imposes a language constraint on the system. Exploring zero

resource synthesis and voice conversion, we find that voice synthesis is pos-

sible using an abstract representation of the linguistic content in a voice sig-

nal. Autoencoder based models are used in both fields to extract meaning-

ful representations from the voice representations by imposing constraints

like domain confusion, bottleneck restriction and vector quantization on the

latent embedding of the autoencoder. Such constraints force the encoder

of the autoencoder to disentangle speaker specific information like timbre

from speaker independent information like prosody and the linguistic con-

tent.

We adapt one such autoencoder based voice conversion methodology, the

AutoVC (Qian et al., 2019), for singing voice conversion. The AutoVC

model uses a bottleneck constraint to force the latent embedding of the au-

toencoder to learn linguistic and prosodic content from the mel-spectrogram

of a speech signal. We adapt the model for singing voice conversion by

using the compressed spectral envelope as input. Doing so allows us to dis-

entangle the f0 from the timbre of the voice signal. This allows the system
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to retain the melody of the signal while converting the timbre. By doing so,

the adapted model is able to disentangle the singer independent linguistic

content from the singer specific timbre and the melody. This provides us

with an abstract representation of the linguistic content from which the

compressed spectral envelope can be regenerated. This also averts the lin-

guistic limitations that are imposed by the use of explicit phoneme annota-

tions. Such abstract representations provide a useful medium for analysis

and synthesis.

• Is it possible to extract such a representation of the linguistic content from

a polyphonic contemporary music mixture?

In Chapter 7, we use the AutoVC model, adapted for singing voice conver-

sion, to train a network to extract the abstract linguistic content derived by

the AutoVC from a mixture signal. The input to the model is the magnitude

component of the spectrogram and it is trained to replicate the linguistic

content derived by the adapted AutoVC model in a singer-independent

manner. The decoder of this network uses the linguistic content and a

one-hot representation of the singer identity to generate the compressed

spectral envelope corresponding to the voice signal. Since the decoder net-

work uses a representation of the singer identity, we term this model the

singer dependent network (SDN).

• How can we derive a representation of the singer identity for the voice

synthesis process?

We further explore various methodologies for representation of the iden-

tity of the singer, proposing our own methodology for such. Our proposed

methodology exploits the bottleneck constraint that is used by voice con-

version systems for disentangling speaker independent content from the

speaker specific content of a voice signal. Through subjective and objective

evaluation, we observe that both the SDN and SIN networks improve over
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the previously proposed model for extracting synthesis parameters from

a mixture signal, particularly in terms of audio quality and intelligibility.

This shows that the SDN is able to replicate the linguistic content derived

by the adapted AutoVC model. The SIN surpasses the SDN in terms of

audio quality, suggesting that the singer encoder used in this network de-

rives more than just the singer identity from the mixture signal. However,

we believe this to be acceptable for the use case in question. We also note

that all three synthesis based models outperform one of the state-of-the-art

TF mask based algorithms in terms of isolation of the voice signal from the

instrumental accompaniment.

• What are the potential applications of such a methodology?

We present a methodology to synthesize clean singing voice signals from

contemporary popular music mixtures containing processed vocals. Do-

ing so overcomes one of the biggest limitations of State-of-the-Art (SOTA)

source separation algorithms that use TF masks to filter out the vocal sig-

nal from polyphonic mixtures. The proposed framework is agnostic to the

specific algorithms used for the individual components, which draw from

the fields of voice synthesis, polyphonic f0 estimation, singer identity rep-

resentation and voice conversion. We believe that components within the

framework can be easily replaced with newer, better components as re-

search in the individual fields advances.

As listed in Chapter 11, we believe the proposed methodology. can be

used for artistic applications such as remixing, particularly when used in

conjunction with TF mask based source separation algorithms. The meth-

odology can also lead to improvements in automatic lyrics transcription

(ALT) as a pre-processing step for removing hindering effects and artifacts

from processed vocal signals to be transcribed. We also use the analysis-

synthesis approach for synthesis of other musical elements like drums and
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loops.

Can the individual voices in an ensemble choral singing recording be separated,

given limited training data?

In Part III of the thesis, we adapt and evaluate some of the SOTA source separ-

ation algorithms proposed for musical and speech source separation to separate

the individual parts of an SATB mixture. This research is presented in Chapter 9.

We adapt two spectrogram based model, the U-Net (Jansson et al., 2017) and the

Open-Unmix (Stöter et al., 2019) and two waveform based models, the Wave-

U-Net (Stoller et al., 2018) and Conv-TasNet (Luo & Mesgarani, 2019) to sep-

arate the individual soprano, alto, tenor and bass parts from an SATB mixture.

The first three models listed were originally proposed for musical source separa-

tion, i.e., to separate the vocals, drums, bass and other instruments stems from a

contemporary popular music mixture. Conv-TasNet was originally proposed for

separating asynchronous speech signals from a mixture of the same.

In addition, we propose analyze unison singing recordings within the choral

singing dataset (CSD) (Cuesta et al., 2019) and use the insight gained to pro-

pose a methodology for synthesizing a single voice signal representative of the

content of the unison singing signal.

• Can waveform based source separation algorithms work as well as spectro-

gram based models for choral part separation?

Through objective evaluation of the adapted models, using the blind source

separation evaluation (BSS Eval) (Vincent et al., 2006), we observe that the

performance of the spectrogram based U-Net (Jansson et al., 2017) model

is quite similar to that of its waveform based equivalent, the Wave-U-Net

(Stoller et al., 2018). The hyperparameters used for training the model

were quite similar and we used a single model to predict all four parts to

be separated, allowing for a direct comparison between the two. As source
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separation methodologies evolve towards end-to-end waveform based sep-

aration (Lluís et al., 2019), we believe that advanced models proposed we

can effectively be used for part separation in choral SATB recordings, even

with the dearth of data available for this domain.

• Are music source separation algorithms better suited to choral part separa-

tion or should speech source separation algorithms be used?

Objective evaluation for the algorithms showed that the source separation

algorithms proposed originally for music source separation performed bet-

ter than the Conv-TasNet (Luo & Mesgarani, 2019), which was originally

proposed for speech source separation. In particular, we note that the Open-

Unmix (Stöter et al., 2019) model outperformed the other models. This was

expected as the Open-Unmix model has shown superior performance to the

other algorithms even for music source separation. We note that an ad-

aptation of the Conv-TasNet model has been proposed for music source

separation (Samuel et al., 2020; Défossez et al., 2019). However, in this

study we use the version originally proposed for speech source separation.

• How can we curate data from varied datasets which has been recorded un-

der different conditions?

We note that the proposed models for source separation required large

amounts of training data, while we had access to limited data in the form of

the choral singing dataset (CSD) (Cuesta et al., 2019), Bach chorales data-

set (BCD), ESMUC dataset and the Daghstuhl dataset (DSD) (Rosenzweig

et al., 2020). Each of these datasets had been recorded in different settings

and had different formats and leakage for the individual stems present. We

note that the BCD had only single singer per part for the SATB songs, while

the other datasets had multiple singers per part.

We trained the models using two forms of data; case_1 wherein we used

all possible combinations of quartets, i.e. limiting the number of singers to
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1 per part, and case_2 where we removed the restriction on the number of

singers per part and used all possible combinations for training. We also

tested the models for data augmentation by first training with just the CSD

dataset and then with the CSD and BCD datasets. On preliminary analysis,

we found the Open-Unmix model trained on case_2 data to be the best

performing of all the models and used this to clean the ESMUC dataset,

which had a high amount of inter-singer leakage in the tracks. We used this

cleaned ESMUC dataset for objective evaluation of the models.

• Can quartet based data with a single singer per part be used to train deep

learning based algorithms for part separation even with multiple singers per

part in unison?

We evaluated the adapted models on the full choir songs from the ESMUC

dataset, i.e. with unison singing present within the parts. Through object-

ive evaluation, we note that there was a significant improvement in per-

formance when the multiple combinations of singer from the CSD were

augmented with quartet based single singer per part data from the BCD, in-

dicating that additional quartet based data would be sufficient for improving

the performance of the models in the future. This is significant, because re-

cording quartets is an easier task than recording individual singers for the

full choir. We believe that for future studies a combination of data from

quartet based data and multiple singers per voice data can be used for train-

ing the source separation algorithms. We also note that pre-trained models

can effectively be used for data cleaning, particularly for removing inter-

singer leakage than might be encountered during the recording process.

• What are the perceptual qualities of a unison signal that distinguish it from

a signal voice singing signal?

In Chapter 10 we analyze unison signing. Unison singing involves mul-

tiple singers simultaneously singing the same linguistic and melodic con-
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tent. Past research has shown that even though there are slight timing

and pitch deviations amongst the singers in a unison, a listener listening

to the unison will perceive a single pitch (Ternström, 1991). We analyze

the unison signals present within the CSD and model the single perceived

pitch by using the mean of the individual pitches. We use a deep learning

based monophonic pitch extraction system to extract the perceived pitch

of the unison signal and measure the accuracy of this extracted pitch to

the theoretical pitch represented by the mean using the Raw Pitch Accur-

acy (RPA), Overall Accuracy (OA), Voicing Recall (VR) and Voicing False

Alarm (VFA) metrics from the mir_eval library (Raffel et al., 2014). We

observe that the extracted pitch is closer to the mean than to any of the in-

dividual pitches. We also measure the pitch and timing deviation between

the singers in the unison and find an average timing deviation of 0.1 s and

a pitch deviation in the range of 0centsto50cents, with a mean of around

20 cents.

• Is it possible to separate a single voice from within the unison singing sig-

nal?

We propose a framework to synthesize a prototypical single voice signal

representative of the linguistic and melodic content of the unison signals,

using the methodology proposed in Chapter 7 to extract the linguistic con-

tent and a single singer identity from the unison and the mean pitch as the

perceived pitch. Using subjective analysis of the synthesized prototypical

signal, we find that the mean is indeed representative of the perceived pitch

of the unison. Through t-SNE visualisation, we observe that the singer

identity extracted by our model falls within the cluster of singer identities

for the target group.

We also propose the framework for synthesize a unison signal from an a

capella singing voice input by creating voice clones using voice conversion
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with the same gender as the input. We also add timing and pitch deviations

using the analysis described above. Using subjective evaluation we find

that timing and pitch deviations together are necessary for creating the per-

ception of unison whereas timbre variations do not change the perception

much.

• How can choral source separation be useful in this context?

Part separation as presented in Chapter 9 can be useful for remxining choir

recordings for emphasis of a particular part. It can also be used for de-

emphasizing a particular part for practice. Further, in Section 11.2, we

explore the use of part separation for transcription of the individual parts

of the choir. In conjunction with the methodology proposed in PartII, we

propose a framework for analysis and modified synthesis of the individual

parts of the choir. Modifications like time-stretching and pitch-shifting can

be done on the re-synthesized signal allowing a student to practice parts

within their capabilities.

12.1 Future work

In Part II of the thesis, we present the framework for synthesis of the singing voice

signal from the underlying perceptual content present in a mixture. The framework

consists of several components including; a singing voice f0 extraction system, a lin-

guistic content representation and extraction component, representation of the singer

identity and the vocoder parameters used for synthesis. We believe that improvements

can be made to each of these individual components to improve on the quality and in-

telligibility of the synthesized signal generated. However, the framework proposed is

agnostic to the exact methodology used in each component and each component can be

supplemented by advancement models as research in the respective fields progresses.

We also believe that a singing voice activity detection model can be used as a pre-

processing step for the model, although on primary heuristic analysis, we have found
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that the model outputs silence when a singing voice is not present in the input mixture

signal.

TF mask based source separation algorithms can also be used in conjunction with the

proposed methodology to allow for a more robust synthesis of the clean singing voice

signal. We also plan to study the robustness of the proposed approach in various set-

tings including different effects applied to the voice signal, varying mixing gains while

creating the mixture and different languages. Further, we note that for many singing

voice signals, particularly those mixed with effects such as those shown on our example

website 24, there is no discernible f0. However, a human listener is still able to perceive

a sense of a melody from the song. We believe that for such cases, generative models

can be used to generate an f0 contour taking into account the harmonic features of the

back track used.

In Part III of the thesis dissertation, we apply source separation algorithms for part

separation in SATB choirs. We believe that these models can further be improved with

more training data as further recordings of SATB choirs are produced. We also note

that quartet data, which is easier to record than full choirs, is sufficient to improve

system performance by data augmentation. We also observe that inter-singer leakage

can be cleaned effectively by using one of the pre-trained models. This cleaned data

can further be used for training the models.

As field music source separation algorithms continues to evolve towards end to end

waveform based source separation, we believe that such models can effectively be ad-

apted towards part separation for ensemble choir singing. As shown in our study, pre-

trained models can be used for data cleaning of future datasets that might have either

quartet based data or full choir data with inter singer leakage.

We also plan to explore further applications of the proposed framework for remixing

of the re-synthesized prototypical signals, which can be modified and used for practice

and training purposes.

24https://pc2752.github.io/sep_content/

https://pc2752.github.io/sep_content/
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Appendix B
Resources

The research presented in this thesis broadly follows the principles of research re-

produciblity (Cannam et al., 2012). We provide open source code for each of the

methodologies proposed in the thesis and trained models for the same. While we

have tried to use public datasets and evaluation methodologies for our research, we

note that some of the models have been trained on proprietary datasets that can be

distributed freely. We also note that the listening tests used for evaluation of some

of the algorithms are highly subjective and reflect the opinion of the participants,

taking into account their biases and knowledge.

Code and Tools

The Python implementations of the methodologies presented in this thesis are made

available through GitHub repositories, along with audio examples. The following

list presents the various models presented during this thesis, along with the source

code and sound examples for the same.

• Separation-via-synthesis (SS): A vocoder based method for singing voice ex-

traction, presented in Chapter 5.

Source code:https://github.com/pc2752/ss_synthesis
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Audio examples:https://ronggong.github.io/projects/pritish_mlslp_2018/demo.

html

• WGANSing: A multi-voice singing voice synthesizer based on the wasserstein-

gan, presented in Chapter 6.

Source code: https://github.com/MTG/WGANSing

Audio examples: https://pc2752.github.io/sing_synth_examples/

• Singer dependent content based synthesis (SDN) and Singer independent

content based synthesis (SIN): Models for content based singing voice ex-

traction from a musical mixture, presented in Chapter 7.

Source code: https://github.com/MTG/content_choral_separation

Audio examples: https://pc2752.github.io/sep_content/

• Solo to unison (STU) and unison to solo (UTS): Models for synthesizing a

single voice signal from an unison input and vice versa, presented in Chapter

10.

Source code: https://github.com/MTG/content_choral_separation

Audio examples: https://pc2752.github.io/unison_analysis_synthesis_examples/

• SATB processing: A framework for source separation, moelodic estimation

and re-synthesis of SATB recordings, presented in Chapter 11

Source code: https://github.com/MTG/SingingChoralSepAnalyzeSynthRemix

GoogleCollab notebook: https://tinyurl.com/43c2yv4s

https://ronggong.github.io/projects/pritish_mlslp_2018/demo.html
https://ronggong.github.io/projects/pritish_mlslp_2018/demo.html
https://github.com/MTG/WGANSing
https://pc2752.github.io/sing_synth_examples/
https://github.com/MTG/content_choral_separation
https://pc2752.github.io/sep_content/
https://github.com/MTG/content_choral_separation
https://pc2752.github.io/unison_analysis_synthesis_examples/
https://github.com/MTG/SingingChoralSepAnalyzeSynthRemix
https://tinyurl.com/43c2yv4s


Appendix C
Singing voice conversion

subjective evaluation results

We compared the modified AutoVC (Qian et al., 2019) models explained in Sec-

tion 7.2 against the Unsupervised Singing Voice Conversion (USVC) (Nachmani

& Wolf, 2019) methodology proposed for singing voice conversion. This model

uses an autoencoder based on the WaveNet (van den Oord et al., 2016a) architecture

and imposes a domain confusion (Ganin et al., 2016) constraint pertaining to the

singer identity on the latent embedding of the autoencoder. This allows the model

to perform non-parallel singing voice conversion. However, the use of the WaveNet

vocoder imposes some undesirable changes to the melody of the output signal.

The AutoVC models with GE2E and JE embeddings as well as the VQVC+ model

can be used for Zero-Shot voice conversion, i.e. the source and target singers used

for conversion do not necessarily have to be in the training set. The AutoVC model

trained with one-hot vector encoding of singer representation and the USVC model

do not fulfill this criteria and can only perform conversion within the singers used

for training.

We used a proprietary dataset, described in Section 3.4, to train the Zero-Shot models

and the NUS corpus (Duan et al., 2013) for evaluation. The USVC and the AutoVC
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Figure C.1: MOS for subjective evaluation comparing the modified AutoVC (Qian et al., 2019)
architecture using one-hot (OH) vector representations for singer identity with the same archi-
tecture using JE and GE2E embeddings for singer identity representation.

model with one-hot singer representation were trained and evaluated on the NUS

dataset. We used a MOS based listening test to evaluate these models on four criteria

including; the conversion of timbre between the source and target, the retention of

melody, the intelligibility of the output and the overall audio quality of the output.

This work is published as the Masters’ thesis of Pavlo Apisov (Apisov, 2020), carried

out under the supervision of the author in 2020.
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Figure C.2: MOS for subjective evaluation comparing the modified AutoVC architecture using
JE and GE2E embeddings for singer identity representation with the modified VQVC+(Wu
et al., 2020; Wu & Lee, 2020) model
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Figure C.3: MOS for subjective evaluation comparing the modified AutoVC architecture using
one-hot (OH) vector representations for singer identity with the USVC model



Appendix D
Choral part separation

conditioned on f0

We propose an adaptation of the conditioned U-Net model (Meseguer-Brocal &

Peeters, 2019) for the task of part separation for SATB choirs. For evaluation of

this model, we use the Oracle f0 values for each of the parts in an SATB choir, with

the mean f0 of the individual singers used as the representative f0 in the case of uni-

son mixture, as described in Section 10. We propose three variants of the model, as

shown in Figure D.1 with local conditioning and global conditioning of the f0 using

one-hot encoding. We train these models on the CSD and BCD datasets and evaluate

them on a subset of the same that was withheld from training. The model is com-

pared with the Wave-U-Net (Stoller et al., 2018) model, the U-Net (Jansson et al.,

2017) model, the Open-Unmix (Stöter et al., 2019) and the original conditioned U-

Net model (Meseguer-Brocal & Peeters, 2019).

The evaluation of these models with the BSS eval set of metrics is shown in Tables

D.1, D.3 and D.1. Further evaluation with the PEASS set of metrics (Vincent, 2012;

Emiya et al., 2011) is shown in Table D.4.

This work is published as the Masters’ thesis of Darius Peterman (Pétermann, 2020),

carried out under the supervision of the author in 2020.

215



216 CHORAL PART SEPARATION CONDITIONED ON F0

Figure D.1: The three variants of the control model architecture for three of our four proposed
models. The convolution is performed across the frequency bins (treated as feature channels)
for each time-step. At the output stage the dense layer(s) provides various numbers of scalars.
Local conditioning embeds the target source’s f0 into 2 scalars per time-step. Global condi-
tioning codifies the f0 into a set of scalars for each frequency bin per input time-step. Lastly
Global x2 conditioning does it at both input and output levels.
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Model Test Use-Case 1 - SDR (dB)
Soprano Alto Tenor Bass Avg.

Wave-U-Net 2.03±2.2 4.59±2.7 0.92±2.9 2.72±2.5 2.56±2.3
U-Net 3.78±2.1 5.15±3.7 2.29±2.7 3.22±1.5 3.61±2.5

C-U-Net D-A 3.57±2.0 2.05±2.1 -1.25±2.6 1.96±2.2 1.58±2.2
Open-Unmix 5.61±2.1 5.70±2.3 1.60±1.7 3.66±2.2 4.14±2.1

C-U-Net D-S L 3.70±1.3 6.99±1.9 3.82±1.6 3.74±1.7 4.56±1.6
C-U-Net D-S G 5.76±1.2 7.67±1.5 5.39±1.4 4.07±1.8 5.73±1.5

C-U-Net D-S G x2 3.46±1.4 5.30±1.6 1.81±1.7 1.56±1.5 3.03±1.6
C-U-Net D-S Enc 3.05±1.4 5.97±2.1 3.35±1.9 2.99±1.3 3.84±1.7

Model Test Use-Case 2 - SDR (dB)
Soprano Alto Tenor Bass Avg.

Wave-U-Net 3.30±1.6 4.73±0.8 2.09±2.0 1.24±1.4 2.84±1.5
U-Net 5.14±1.5 6.63±1.0 4.74±1.7 3.12±1.6 4.91±1.4

C-U-Net D-A 4.61±1.8 2.67±2.7 0.52±2.8 1.98±1.6 2.45±2.2
Open-Unmix 6.67±2.1 6.49±1.3 2.70±1.6 3.49±2.0 4.83±1.7

C-U-Net D-S L 4.34±0.9 7.06±1.2 4.77±1.6 3.48±1.5 4.91±1.3
C-U-Net D-S G 5.34±1.2 6.44±1.4 4.93±1.5 3.18±1.1 4.97±1.3

C-U-Net D-S G x2 4.58±1.4 5.51±1.1 3.45±2.1 2.62±1.2 4.04±1.4
C-U-Net D-S Enc 4.53±1.5 6.57±1.3 4.65±1.6 2.98±1.5 4.68±1.5

Table D.1: SDR (signal-to-distortion) results mean±std on the four SATB parts and their over-
all average for the four domain-agnostic architectures as well as for our four proposed domain-
specific models. The top table depicts the results obtained from the first use-case test set while
the bottom ones are from the second use-case test set.



218 CHORAL PART SEPARATION CONDITIONED ON F0

Model Test Use-Case 1 - SIR (dB)
Soprano Alto Tenor Bass Avg.

Wave-U-Net 5.99±2.4 9.19±2.9 4.62±2.1 8.49±3.5 7.07±2.7
U-Net 10.28±2.4 10.77±4.1 6.70±3.2 9.45±2.0 9.30±2.9

C-U-Net D-A 10.09±2.6 7.81±1.6 3.32±2.2 7.61±2.4 7.21±2.4
Open-Unmix 12.36±2.7 13.19±2.9 6.43±2.0 11.41±2.6 10.85±2.6

C-U-Net D-S L 9.71±1.7 12.37±1.5 9.89±2.2 9.71±1.7 10.42±1.8
C-U-Net D-S G 12.72±1.8 14.04±1.5 11.79±2.1 9.78±2.1 12.08±1.7

C-U-Net D-S G x2 10.03±2.5 11.01±1.1 8.22±1.8 7.60±2.1 9.21±1.9
C-U-Net D-S Enc 9.41±1.9 11.95±1.5 9.86±1.8 9.74±2.1 10.24±1.8

Model Test Use-Case 2 - SIR (dB)
Soprano Alto Tenor Bass Avg.

Wave-U-Net 8.13±2.1 10.02±0.9 6.80±2.2 7.45±2.0 8.10±1.8
U-Net 12.41±1.8 13.11±1.2 10.26±1.1 8.50±2.3 11.07±1.6

C-U-Net D-A 11.99±1.8 9.08±2.8 5.65±3.1 7.60±2.0 8.58±2.4
Open-Unmix 14.71±2.8 14.40±1.5 7.95±2.4 10.67±1.8 11.93±2.1

C-U-Net D-S L 10.32±1.1 13.06±1.7 10.77±1.5 8.89±2.2 10.76±1.6
C-U-Net D-S G 12.08±1.5 13.50±2.5 12.05±1.3 8.91±2.1 11.63±1.8

C-U-Net D-S G x2 10.86±1.7 11.22±2.3 10.20±2.2 8.30±2.6 10.15±2.2
C-U-Net D-S Enc 11.15±1.6 13.43±2.0 11.62±1.3 9.19±2.7 11.28±1.9

Table D.2: SIR (signal-to-interference) results mean±std on the four SATB parts as well as
their overall average for the four domain-agnostic architectures as well as for our four proposed
domain-specific models. The top table depicts the results obtained from the first use-case test
set while the bottom ones are from the second use-case test set.
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Model Test Use-Case 1 - SAR (dB)
Soprano Alto Tenor Bass Avg.

Wave-U-Net 5.36±1.7 7.11±2.4 4.79±1.4 4.89±1.4 5.50±1.7
U-Net 5.35±1.8 7.13±3.0 5.32±1.8 4.94±1.1 5.69±1.9

C-U-Net D-A 5.19±1.6 4.41±2.8 2.65±1.2 4.12±2.0 4.09±1.9
Open-Unmix 7.00±1.8 6.84±2.0 4.43±1.2 4.83±1.9 5.75±1.7

C-U-Net D-S L 5.44±1.0 8.75±2.0 5.58±1.3 5.51±1.7 6.32±1.5
C-U-Net D-S G 7.02±1.1 9.02±1.6 6.86±1.5 5.93±1.6 7.21±1.4

C-U-Net D-S G x2 5.08±0.9 7.02±1.7 3.65±1.7 3.58±1.1 4.83±1.4
C-U-Net D-S Enc 4.74±1.0 7.55±2.2 4.94±1.9 4.54±0.9 5.43±1.5

Model Test Use-Case 2 - SAR (dB)
Soprano Alto Tenor Bass Avg.

Wave-U-Net 5.75±1.0 6.73±1.0 4.79±1.5 3.23±0.9 5.13±1.1
U-Net 6.31±1.4 7.97±1.0 6.59±1.8 5.27±1.1 6.54±1.3

C-U-Net D-A 5.77±1.7 4.60±2.9 3.39±1.8 4.15±1.1 4.48±1.9
Open-Unmix 7.60±1.8 7.43±1.3 5.01±1.1 4.80±1.8 6.21±1.5

C-U-Net D-S L 6.02±0.9 8.59±1.2 6.45±1.7 5.50±1.1 6.66±1.2
C-U-Net D-S G 6.68±1.2 7.70±1.3 6.17±1.6 5.17±0.8 6.43±1.2

C-U-Net D-S G x2 6.12±1.1 7.45±1.4 4.97±2.0 4.79±0.5 5.83±1.3
C-U-Net D-S Enc 5.95±1.4 7.84±1.2 6.04±1.7 4.82±1.0 6.16±1.3

Table D.3: SAR (signal-to-artifacts) results mean±std on the four SATB parts as well as their
overall average for the four domain-agnostic architectures as well as for our four proposed
domain-specific models. The top table depicts the results obtained from the first use-case test
set while the bottom ones are from the second use-case test set.
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Model PEASS Scores
OPS TPS APS IPS

Wave-U-Net 27.50±6.00 51.14±14.24 0.16±0.16 84.46±2.62
U-Net 19.54±3.17 48.87±12.68 0.53±0.51 82.07±2.39

C-U-Net D-A 22.69±5.50 4.65±3.70 1.71±2.18 79.91±2.79
Open-Unmix 22.58±4.05 52.42±11.93 0.42±0.41 83.52±2.13

C-U-Net D-S L 17.67±2.66 11.07±6.68 5.91±4.86 80.23±2.21
C-U-Net D-S G 16.23±2.64 11.00±5.55 5.67±4.42 81.21±1.80

C-U-Net D-S G x2 18.70±3.05 8.53±5.38 4.47±3.87 81.34±1.75
C-U-Net D-S Enc 17.80±3.08 8.92±5.53 4.67±4.44 80.96±1.98

Table D.4: Overall TPS, IPS, OPS, and APS means±std across all parts and use-cases.
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