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Abstract
A multiple sequence alignment (MSA) describes the connection between biological

sequences by using columns to represent a shared ancestry based on an assumed set of

evolutionary events.

Keeping up with the growth of biological data is one of modern biology's most relevant

and recent challenges.

Unfortunately, MSA approaches have a well-known weakness when dealing with extremely

large datasets that could endanger any downstream analysis. Therefore, the most common

approach to the MSA analysis is the progressive solution.

Another of the challenges in the MSAs due to the rapid increase of data is the scalability of

the alignments. That’s why a new methodology will be proposed to perform the MSAs with

the ability of higher scalability and the possibility of deciding how the guide-tree is used,

and the combination of  guide-tree and alignment works better for each study.

This study, taken together, can be considered as providing both conceptual and technical

innovations that significantly improve existing MSA methods and a new paradigm.
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Resum
Els alineaments multiples de sequencies descriuen la conexio entre sequencies biologiques

fent us de les columnes per representar una ascendencia en comu basat en la asumpcio de

uns fets evolutius.

Mantenir-se al dia amb la creixent de les dades biològiques és un dels reptes més rellevants i

recents de la biologia moderna.

Malauradament, els enfocaments MSA tenen una debilitat ben coneguda quan es tracta de

treballar amb conjunts de dades extremadament grans que poden posar en perill qualsevol

anàlisi posterior. L'enfocament més comú en l'anàlisi MSA és la metodologia progressiva.

Un altre dels reptes en els MSA degut al ràpid augment de dades és l'escalabilitat dels

alineaments. És per això que aquí es proposarà una nova metodologia per realitzar els MSA

amb la capacitat d'una major escalabilitat i la possibilitat de decidir com s'utilitza el

“guide-tree” i la combinació “guide-tree” i alineament que funcioni millor per a cada cas.

Aquest estudi, en conjunt, es pot considerar que proporciona innovacions tant conceptuals

com tècniques que milloren significativament els mètodes MSA existents i un nou

paradigma.
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Preface

The document is organized so that the introduction chapter provides background

information for readers who may not be familiar with multiple sequence alignment

methods and a small introduction to the following topics of this thesis. Following that,

there is a manuscript in each of the three key chapters. The reader will discover further

background information for the individual subject covered in each chapter here. Except for

the introductory and discussion chapters, each chapter's references, figures, and tables are

self-contained to avoid confusion. The purpose of the discussion chapter is to put the

outcomes of  each chapter into context.
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Chapter 1: Introduction

Comparisons provide us with some of our most fundamental biological insights. Moreover,

it is not without reason. Comparative biology takes advantage of the single most significant

fact in biology: that all life is interconnected. Through the fabric of our developments,

relatedness has remained the core principle, weaved with ever-changing technologies. The

concept of shared ancestry is at the heart of most of our biology, and when Darwin created

the iconic tree of life, he originally conceived homology through anatomical comparisons,

such as those of bones, beaks, and barnacles. Comparative anatomy was also valuable for

quantifying the degree of  similarity across species.

Sequences play a particular role in bioinformatics and therefore deserve considerable

attention. For example, our measures of similarity are quantified at single-molecule

resolution using a sequence. Nevertheless, more critically, the sequence representation

enabled biology to stand on the shoulders of computer scientists and mathematicians by

providing a toolkit of quantification tools. Strings of characters lend themselves to

computation in a variety of ways, from simple edit distances to complicated machine

learning techniques.

Sequence comparison is one of the most extensively studied fields of computer science,

where it is generally referred to as string matching (Apostolico & Galil, 1997; Baeza-Yates

& Navarro, 1996, 1998; Boytsov, 2011; Gusfield, 1997; G. Myers, 1999). The necessity of

matching sequences expressed as strings is so pressing that as early as 1970, biologists felt

the urge to develop their own algorithm and came out with an independent formulation of

the Dijkstra dynamic programming algorithm (Dijkstra, 1959). This algorithm, commonly

referred as Needleman and Wunsch (Needleman & Wunsch, 1970), remains the

cornerstone of evolutionary-based sequence alignments in biology. It is worth noting,

however, noting that this string matching approach was recently complemented by a new

generation of string matching techniques built on the Burrow Wheeler transform (Burrows

& Wheeler, 1994). However, these highly efficient algorithms remain limited to

non-evolutionary ultra-fast string matching, such as the one required for mapping reads

onto a genome or carrying out assemblies.

Over the years, the Needleman and Wunsch (NW) algorithm has undergone many

significant evolutions. When first introduced, it was meant to align sequences that one
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expected to be homologous across their entire length, yet, with new sequences coming in, it

became rapidly clear that more complex matching schemas were required taking into

account the frequent need for partial matches, that to say aligning two sequences whose

homology does not span the full length. This adaptation of NW is known as the Smith and

Waterman algorithm (Smith & Waterman, 1981) and uses a modified version of NW to

identify the highest-scoring common segment between two homologous sequences. The

solution initially devised by Needleman and Wunsch is generalizable using Levenshtein's

approach, which aims to reduce edit distance (Sellers, 1974).

The main idea behind Needleman-Wunsch is that it effectively eliminates comparisons that

cannot contribute to the best possible score alignment. The algorithm was then improved

significantly in terms of performance and memory utilization. A significant breakthrough

was the Gotoh algorithm that provides a way to estimate the matching cost in linear space

and in quadratic time (Gotoh, 1982). Gotoh also provided the first quadratic solution for

estimating alignments with affine gap penalty schemes, that is to say, gaps whose cost could

be modeled as

. Under𝑐𝑜𝑠𝑡 =  𝐺𝑎𝑝 𝑂𝑝𝑒𝑛𝑖𝑛𝑔 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 +  𝐺𝑎𝑝 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 *  𝐿𝑒𝑛𝑔𝑡ℎ

Gotoh, the actual resolution of the alignments remained quadratic in space, thus limiting

the algorithm to relatively short sequences. A few years later, Myers and Miller (E. W.

Myers & Miller, 1988), building on the connection that had been made between Needleman

and Wunsch and the Dijkstra algorithm, proposed a divide-and-conquer linear space

algorithm for the alignment computation. This algorithm adapts Hirschberg (Hirschberg,

1975) to recursively compute middle points until the complete alignment has been

achieved. Each middle point is obtained by applying the Gotoh algorithm in a forward and

backward manner.

Multiple sequence alignment was a natural follow-up of pairwise sequence alignments. The

problem of aligning a set of evolutionarily related sequences was initially theorized by

Sankoff (Sankoff, 1975), who proposed a complete albeit impractical algorithm for the

simultaneous estimation of an MSA and its underlying phylogenetic tree. Unfortunately,

this problem is NP-Hard under any realistic formulation, and the Sankoff formulation

remains limited to very few short sequences. Even when the evolutionary relationship

between the sequences is provided (i.e., phylogenetic tree), the problem of assembling an

MSA that would minimize the evolutionary cost remains NP-Hard under its most common
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formulations (J. Kececioglu, 1993; J. D. Kececioglu et al., 2000; Wang & Jiang, 1994). This

probably explains why such a large number of heuristics have been applied to the MSA

problem. The NP-Hard nature of the problem also explains the rapid deprecation of

heuristics, whose sensitivity to sequence number and length is a recurring problem. The

genesis of these algorithms have been extensively reviewed in (Chatzou et al., 2016; Edgar

& Batzoglou, 2006; Kemena & Notredame, 2009; Thompson et al., 2011), and going

through them in detail would be beyond the scope of this introduction. We will simply

provide a couple of milestones. Today, the most commonly used algorithms such as the

Clustal series, T-Coffee (Notredame et al., 2000), or Mafft (Katoh et al., 2002) rely on the

progressive algorithm. This algorithm that involves aligning the sequences two by two

following the order imposed by a guide tree was initially described by Paula Hoggeweg and

later re-implemented in a variety of software, the most popular being by far the ClustalW

(Thompson et al., 1994) algorithm that ranking in the position 10 of the most widely cited

scientific papers ever (Van Noorden et al., 2014).

The explicit goal of an MSA approach is to align a set of biological sequences (RNA,

proteins, and DNA) in a way that reflects their evolutionary, structural, or functional

relationship. This is accomplished by adding gaps of varying lengths inside the sequences,

allowing homologous places to be aligned with one another, much to how an abacus aligns

beads of the same hue. These gaps in the genome are assumed to result from insertions

and deletions (indels) that occurred during the evolution of a common ancestor in an

evolutionary environment.

A scoring function (objective function) capable of quantifying the relative benefits of every

alternative alignment concerning the modeled relationship is required to construct an MSA.

After that, the MSA can be calculated using an optimal scoring model. Thus, the objective

function is a crucial parameter since it specifies the modeling accuracy and prediction

capacity of an MSA. The most common goal functions used in evolutionary

reconstructions are to maximize weighted similarities (as supplied by a PAM (Dayhoff &

Schwartz, 1978) or BLOSUM (Henikoff & Henikoff, 1992) substitution matrix) while

calculating indels costs using an affine gap penalty.

The substitution cost can be changed using tree-based weighting systems that reflect each

sequence's independent information contribution, and the column score is derived by

taking into account the overall all-against-all (sums-of-pairs) substitution cost. The

sum-of-pairs functions are widely recognized for their inability to reflect biological
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relationships precisely. However, they have been demonstrated to give a good trade-off

between structural accuracy and computability, that is, the ability to estimate a reasonable

MSA quickly.

The optimization of sums-of-pairs evaluation systems is NP-complete in their most

popular formulations. As a result, one must rely on heuristics. One of the first solutions

proposed is Hogeweg and Hesper's progressive alignment algorithm.

The input sequences are incorporated into the final model one by one, following an

inclusion order determined by a pre-computed guide tree. Then a pairwise alignment is

performed at each node between two sequences, a sequence and a profile, or two profiles.

More or less sophisticated modifications of the Needlman and Wunsch global dynamic

programming alignment algorithm are used to estimate the pairwise alignments at each

node. The backbone of most accessible approaches, such as T-Coffee, ClustalW, and

ProbCons (Do et al., 2005), combines a tree-based progressive strategy and a global

pairwise alignment algorithm.

The guide tree estimation technique is the key algorithmic component of the progressive

alignment, aside from the objective function. This tree, which determines which sequences

will be included in which order, can be generated using a variety of methods, the most

common of which being Neighbor-Joining (NJ) (Saitou & Nei, 1987) and Unweighted Pair

Group Method with Arithmetic Mean (UPGMA) (Michener & Sokal, 1957).

In theory, an MSA would have to be evaluated based on a true underlying phylogenetic

tree. If such a tree were available, it would then become possible to estimate a model

minimizing the number of mutational events accounting for the differences among the

sequences being considered. However, this tree is not usually available, and the most

commonly used scoring schemes involve an all against all comparison known as Sums of

Pairs. However, initially speculated by Hogeweg that aligning the sequences two by two

following an order as close as possible to the correct phylogenetic tree could lead to

reasonable solutions. This heuristic is purely greedy and does not provide any guarantee. It

is well known to be sensitive to local minima effects. Furthermore, the correctness of the

final MSA depends on the correctness of the initial guide tree. Moreover, even if this tree is

correct, our limited capacity to match distantly related sequences can hamper the alignment

process. Indeed the pairwise algorithm accuracy drops rapidly when matching protein

sequences less than 20% identical (or DNA sequences less than 80% identical) (Rost,
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1999), as a consequence, if the guide tree directs the alignment of two very distantly related

sequences, the gap insertion patterns are likely to be incorrect and will possibly lead to

severe effects when incorporating the remaining sequences. This problem could only be

alleviated if one could simultaneously consider all the sequences, a formulation known to

be NP-Hard. There exist two alternatives to address this issue. The most natural one is

using an iterative approach where the guide tree is re-estimated on the first MSA. This

strategy has been implemented in a large variety of algorithms, and albeit it clearly leads to

improvements, these tend to be limited. The second alternative is the use of consistency.

The consistency-based algorithm, initially described by Notredame, Higgins and Heringa

(Notredame et al., 2000), aims to collect dataset-wide information to generate a

position-specific scoring scheme considering the entire dataset, even when doing a pairwise

alignment of any of its members. This algorithm currently forms the basis of the most

accurate small-scale aligners (T-Coffee, Probcons, MSAProb (Liu et al., 2010)).

Until about ten years ago, when the largest datasets would hardly feature more than 500

sequences, these heuristics were able to provide entirely satisfying MSA models. However,

the surge in sequencing capacity has brought these algorithms to their limits. The tilting

point was probably the analysis carried out in ClustalO (Sievers et al., 2011), in which it was

shown for the first time that the alignment accuracy decreases when aligning 1,000

sequences or more. This result, later confirmed by one of the studies presented here

(Garriga et al., 2019), came as a shock as it suggested a behavior totally opposite to the

expectation. It was also challenging the notion that acquiring more data would lead to

richer, more informative models.

Sievers et al., 2011, Mol Syst Bio
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There are numerous reasons for the scaling up to fail so drastically. The first is most likely

the accuracy of the guide-tree. The most widely used distance-based tree-building

algorithms (NJ and UPGMA), which determine the order in which sequences are aligned,

have computational complexity ranging from O(N2 ) to O(N3 ), depending on the

implementation. As a result, these methods become impractical beyond a few thousand

sequences, and generating a guide-tree with 100,000 sequences would necessitate the

computation of  nearly 5 billion distances.

Reducing the number of comparisons conducted is the most obvious technique to decrease

tree building time and memory needs. This was initially effectively applied with the

PartTree algorithm (Katoh & Toh, 2007), which selects a subset of sequences and clusters

them recursively. The longest sequence, the sequence with the lowest resemblance to the

longest, and n - 2 random sequences are selected starting at the top and then at each

recursion level, where n is the group size defined by the user. The remaining non-seed

sequences are then paired with one of the seed sequences to form a new group, and the

seed sequences are utilized to construct a UPGMA tree. The same technique is repeated

for each group until all sequences have reached the tree's leaf. Then, the extended trees can

be used to make the final tree. This leads to a significant increase in speed and a reduction

in time complexity to quasilinear O ( N log N ). PartTree is able to align 60,000 sequences

in a matter of  minutes, according to the authors, using a conventional desktop.

Another guide-tree method that avoids full distance matrix calculation is the mBed

algorithm (Blackshields et al., 2010)(Blackshields et al., 2010). mBed starts by selecting a set

of seed sequences, similar to PartTree, but this time based on a constant stride selection

from the length sorted dataset. These seed sequences can be refined or not, but the

distance between each sequence and the reference sites is determined in either case. These

distances are then transformed into a vector for each sequence, containing the reference

sites' coordinates. The vectors are approximations for sequence distance, allowing us to

develop an embedded distance matrix that may be used to build UPGMA guide-trees. In

addition, for big datasets, k-means clustering can be used to cluster the vectors directly

without the need for an embedded distance matrix (over 100,000 sequences). The software

package for Clustal Omega contains mBed (Sievers et al., 2013).
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Nevertheless, these large-scale guide tree-based methods all proved equally unable to scale

up when evaluated in the Clustal Omega paper, and it can be speculated that the guide-tree

was the culprit.

This led to a new generation of large-scale aligners in which, rather than being hierarchized

and classified, the MSA is built from a small core of sequences gradually expanded.

MAFFT Sparsecore (Yamada et al., 2016) was one of the first methods to use this strategy.

The sequences are first sorted by length, and then a random selection of 500 sequences

from the longest 50% of the sequences is chosen. These are the sequences that make up

the core. The remaining sequences are added to the core using a progressive alignment

method once the MSA is produced using the correct G-INS-i method. We later proposed a

generalized version of this approach that we named the regressive alignment. This solution

will be described in chapter 2. It is based on a radically new way of using the guide-tree to

resolve the final MSA

Its global strategy can be defined in 4 points. The first step consists of dressing the tree and

filling the internal nodes with a “representative” sequence (by default, the longest among

children leaves). This step is a bottom-up process.

The next step starts from the root and involves collecting subgroups of size N by collecting

node representatives and expanding nodes one generation at a time. In other words, all

nodes of a given generation are expanded into their children nodes before expanding any

child. Expanding means replacing a node representative with the two representatives

associated with its children. For example, in the figure below, N was set to 3, and one can

see that the first set featured sequences 11 and 14. Because this set was smaller than N=3,

node 11 was expanded into the (6, 11) set thus yielding the set (6, 11, and 14). If that set

had featured less than N sequences, for instance, N=4, then node 14 would have been
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expanded into (13, 14). Once this first set has been gathered, each collected node is treated

as a root so that an extra subset can be individually gathered. While this recursive process

advances toward the root, the datasets become increasingly homogenous. The process

stops when all the leaves have been collected.

Garriga et al., 2019

Once all the subgroups have been collected, the alignment step can take place. The

independence of the subgroups makes the whole process an embarrassingly parallel

operation. Furthermore, the homogenous size of the largest MSA makes it relatively easy to

have optimally balanced loads. The process is entirely agnostic concerning the MSA

method one should apply to the subgroups, and as we show in the paper, one is free to

choose any method that would appear relevant. On top of this, the control one has on N

makes it possible to adjust this value with the MSA method one wants to use (i.e., small

values for slow accurate methods and higher values for coarser and faster aligners.

The fourth and final step involves the subMSAs. It does not require any alignment, thanks

to the common sequences threading through the subgroups. For instance, one can see on

the above figure that sequence 11 will be part of the root group (6,11,14), then that same

sequence is part of the child group of this node (5,3,11) and is also part of the terminal

child (11,8). Sequence 11 is therefore incorporated in these three independent MSAs, and it

is suitable for the three MSAs to be threaded onto one another using the indexes of

sequence 11 residues to match corresponding columns. This process does not require any

kind of scanning or exploration as would be required by a standard alignment procedure

since the equivalences are already set with no possible ambiguity. As such, it can be

implemented in linear time with the length of the considered sequence. Furthermore, the

memory footprint can be further decreased by storing the stretches of gaps as indexes

rather than strings.
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The regressive algorithm is a versatile framework that lends itself to a wide variety of

variations. First of all, it is not restricted to using guide trees, and any suitable hierarchical

clustering approach could provide a support data structure. The most obvious would be

hierarchical k-means, in which the centroids would play the role of nodes labels, but in

theory, one could explore any similar clustering procedure. Secondly, the method lends

itself to combining data at all possible levels, and with structural data now routinely

available thanks to AF2 (Jumper et al., 2021), one could consider using structural aligners

such as 3D-Coffee (O’Sullivan et al., 2004) to use structural information at various levels,

and typically when aligning the root subset that is expected to be the most challenging

owing to its high level of variability. Finally, the procedure would need to come along with a

reliability index, similar to the TCS index developed in the realm of T-Coffee (Chang et al.,

2014). At the scale targeted by the regressive algorithm, such indexes are essential for

systematically removing non-trustworthy sequences. However, the high complexity of the

TCS estimator precludes its systematic use in the regressive framework, and if that index is

to be used, it will need to be adapted so as to allow the efficient flowing of lower scale TCS

information onto a large number of  sequences.

Nevertheless, before exploring these important algorithmic follow up, it was critical to

ensure the usability and deployability of the regressive algorithm. Therefore, we initially

implemented the method within the T-Coffee framework and made it part of the T-Coffee

distribution. T-Coffee is both an aligner and a meta-aligner. Given a dataset, its alignment

mode involves generating all the possible pairwise alignments using an internal Myers and

Millers implementation. This collection is known as a library, and it is stored in a data

structure that declares all the pairs of residues that have been found aligned in the

collection of pairwise alignments. The consistency transformation is then used to turn this

data structure into a position-specific scoring scheme. In broad terms, given two residues x
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and y from sequences A and B, labeled by their index in their respective sequences, the

consistency transformation involves collecting from the library all the supporting pairs x-z

and z-y, with z being any residue from a third sequence that is neither A or B. These

supporting pèairs are collected along with their non-supporting pairs, where a set of

non-supporting pairs would be x-k and l-y, with k and l being different residues belonging

to the same sequence. The supporting and non-supporting pairs can then be weighted, and

the final consistency score for the alignment of x and y is obtained by combining all this

information. This definition of T-Coffee corresponds to the latest implementation and

differs slightly from the original publication in which the non-supporting pairs were not

directly taken into account.

The main advantage of the library is its versatility. The lack of constraints regarding its

completeness and redundancy means that any procedure able to populate it will be suitable

for the computation of T-Coffee alignments. The most obvious adaptation involved

generating the pairs with third-party MSA packages (Wallace et al., 2006) or even replacing

the sequences with adequate protein structure templates (O’Sullivan et al., 2004) or RNA

templates (Wilm et al., 2008), in which the pairwise alignments are carried out using

suitable third party structural aligners. These developments that took place over nearly two

decades gradually turned T-Coffee into a meta MSA package, and in the latest release, the

program claims to be able to interact with a total of 73 third-party packages. Building the

regressive algorithm in this framework allowed us to effectively use these existing

connectors to effectively evaluate the regressive algorithm to combine various tree

estimation methods with existing aligners.

Unfortunately, the original T-Coffee implementation had been carried out with single users

in mind and with little provision for high-level parallelization. I, therefore, had to put

significant effort into the design of portable and reproducible pipelines. For this purpose, I

have used the Nextflow framework. Nextflow is built on containerization technology (like

Docker (Merkel, 2014) or Singularity (Kurtzer et al., 2017)) or the package manager Conda.

One of the examples can be found in chapter 3 where I show how it was possible to build a

portable environment for the regressive method and all its companion packages. By

allowing the seamless installation of a large number of packages, most of which have been

developed as research software rather than production software, I believe that our
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approach has contributed to the democratization of computational bioinformatics, that is

to say, making available a large number of  alternative methods with less technical barriers.

These practices (containerization and reproducibility workflow managers) allow running

the analysis independently of where one is based. The availability of cloud-based resources

also makes it very straightforward to carry out complex development, even when the local

economic status does not allow the maintenance of a complex IT infrastructure. In such a

context, the software can be used to buffer some of the hardware limitations. These

practices can save much money, and often enough, they are the only way to allow key

analysis to be carried out locally. This manuscript shows how it is possible to install and use

the regressive method to perform very large multiple sequence alignments independently of

selected hardware. In the publication, we put much effort into ensuring that all the results

could be reproduced using clear Nextflow command lines that would go and teach the

software on GitHub and deploy it on data stored in Zenodo. For instance, the docker

container with the environment configured and ready to run can be downloaded with the

following command:

docker pull cbcrg/tcoffee_protocols

Then, once the image is in our system, you can run the Regressive algorithm with the

TCoffee command:

t_coffee -reg -seq INPUT.fasta -reg_nseq 1000 -reg_tree mbed

-reg_method clustalo_msa -outfile OUT.aln -outtree OUT.mbed

Furthermore, thanks to the workflow manager Nextflow, it is possible to run an analysis of

Regressive using the containers provided (Docker, Conda, or Singularity) and run the

pipeline in the local machine or move the computation to an HPC with the flag

-executor=slurm/sge or the engine of your HPC system. If you want to launch the

analysis directly to AWS cloud will be something like:

nextflow run cbcrg/dpa-analysis -executor=aws --seqs

'seqs/*.fasta'

A significant issue when doing large-scale computation is to keep track of data origin. For

instance, if a diagnostic and treatment are proposed based on an exome analysis based on a
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regressive MSA, one may ask where the MSA was carried out, which software version, and

where the data was coming from. The traceability of these operations is a central

engineering question, but it goes well beyond this. For example, if the treatment being

offered appears to be sub-optimal, one should be entitled to know how the decision was

reached to propose this treatment. This involves the decision-making process is based on

open-source software. However, it also requires that software to be written in such a way

that it be readable by trustworthy organizations, and even further, it also implies that any

result having an impact on the life of a citizen should come along with some form of

traceability, including an accurate description of the underlying resource. This issue is well

known in computer science and relates to the concept of provenance, the notion that any

computational result can be traced to its source.

Chapter 4 of this thesis reports our attempt to integrate Nextflow and the ResearchObject

(RO) specification (Belhajjame et al., 2015). Our main goal was to implement in Nextflow

the ability to produce a RO with a specific flag and add the extra information needed. This

project has been supported by the Google Summer of Code (GSOC). The work is merely

preliminary and involves the maintenance of informative tags passed by Nexftlow across

successive computation steps. In its current form, it is not of direct use because it would

require a suitable visualization tool for the practical exploitation of this meta-information.

The idea of a need for provenance in the scientific analysis is not new (Davidson et al.,

2007). This metadata adds more value and robustness to the pipeline.

This project triggered an interesting reflection in the Nextflow community and opened up

the door for further development, mainly focused on provenance and its power with some

discussion on the community (Ewels et al., 2020) to discuss how to deal with this

implementation.

Adding an extra level allows the analysis to be more robust. The definition of provenance is

“the history of ownership of a valued object or work of art or literature” and this is the

main idea, recording the metadata and the valuable information of the analysis. This

provenance aims to include who ran the pipeline, when it started and when it finished. All

the software versions were used to perform the analysis. This feature will record the

relationship between files (who created the file and what was the input data). This should

be easier to track with the new version of Nextflow DSL2. The modularity is in the same

idea of keeping the I/O data of each process and this can be used to debug the analysis and
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detect anomalous behavior in the pipeline. This provenance will try to capture all the

available information, which can be used to double-check parameters or who was

responsible for the analysis.

Garriga et al., 2018
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Chapter 5: Discussion

- Large multiple sequence alignments with a root-to-leaf  regressive method

Multiple sequence alignments are required for various biological tasks such as functional

predictions, structural modeling, and phylogenetic inference. As the size of the datasets

utilized in these applications grows, so must the methodologies used to analyze them. A

novel agglomerative multiple sequence alignment technique is described whose scaling up

capacities beat all known methods in terms of accuracy in chapter 2, regressive computing

of  large scale multiple sequence alignments.

The challenge of calculating proper multiple sequence alignments is NP-complete. Because

there is no guarantee of a precise result, all known solutions are based on approximate

heuristics. The use of heuristics necessitates revisiting and readapting these procedures

whenever the nature of the problem changes, even if only a little. For example, the growing

demand for progressively massive datasets has revealed an unanticipated restriction of the

current alignment architecture, known as progressive alignment, in recent years. When the

number of sequences exceeds a thousand homologs, contrary to popular belief, alignment

accuracy declines.

This discovery came as a complete surprise because it had long been known that its relative

alignment accuracy would improve when a set of sequences was embedded within a bigger

dataset. This constraint is significant since it pulls the existing MSA scaling paradigm to a

dead-end road. Furthermore, it raises substantial issues about our ability to properly

integrate the biological data generated by the new genome projects.

I provide a straightforward and incredibly successful way to scale-up MSA modeling

methods referred to as regressive by referring to the progressive algorithm. Sequences are

clustered using a guide tree that dictates the order in which they will be aligned when

executing a progressive (or regressive) alignment. The progressive alignments begin with

the most similar sequences - sister leaves - and work their way down to the root. The

regressive solution uses the same guide-tree, but instead of going from leaf to root, we

employ it to collect the most diverse sequences and then start aligning them; the same

algorithm is then reapplied as we get closer to the root. All subsequent alignments are

grafted onto the scaffold of  the initial alignment, which contains the most varied sequences.

The implemented technique enables the usage of typical large-scale aligners such as Mafft

(Katoh et al., 2002), ClustalO (Sievers et al., 2011), and UPP (Nguyen et al., 2015) in both a
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regressive and progressive manner for validation purposes. This strategy allows us to

separate each algorithmic component's contribution and conclude that the regressive

solution is preferable to the progressive option. On the 20 biggest reference datasets in

HOMFAM, the regressive method outperforms the progressive approach by around 6.5

percentage points on average (10,000 to 93,000 sequences). More crucially, the regressive

framework's improved scalability allowed us to use small-scale, very accurate approaches

like mafft-ginsi on huge datasets for which they were not designed. The alignments

produced are the most precise ever reported on these datasets. This result is of immediate

practical utility to the community because it comes with a mature production software

created in T-Coffee (Notredame et al., 2000), and it is available on GitHub.

On the other hand, the regressive algorithm is much more than a new piece of  software.

By clearly separating the guide-tree and the aligners, the regressive method redefines the

scope of research in multiple sequence alignment computing. It permits the

implementation of an apparent contradiction between the development of increasingly

faster and more exact clustering algorithms on the one hand, and the construction of very

accurate small scale aligners on the other. The two independent groups will contribute their

distinct strengths and develop fresh approaches whose availability is crucial for the future

of biology, it is claimed, by explicitly severing the relationship between alignment and

clustering.

- Multiple Sequence Alignment Computation Using the T-Coffee Regressive

Algorithm Implementation

Complex pipelines containing multiple third-party tools, with many dependencies on

external scripts, libraries, environmental variables, etc., must be built to undertake

large-scale comparative bioinformatics analyses. Due to the volume of data they must

process, these pipelines demand high-performance computing (HPC) resources, which

means they must frequently be transported from a laptop to a powerful desktop computer,

a cluster, or even a cloud or supercomputer. Routine bioinformatics analysis is difficult to

reproduce due to these reasons plus a mix of  difficult-to-control factors.

Developing a new paradigm to perform MSAs where the target is the alignment of millions

of sequences is great, but it’s better to allow people to use it. And this is the goal of this

project of chapter 3. The idea is to build solutions for easy usage of the Regressive method
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and add the extra value of reproducibility, portable, and with the capacity to scale with zero

effort thanks to the workflow manager Nextflow (Di Tommaso et al., 2017).

One of the learnings of this project is the necessity of good maintenance of the software.

During the process of building the containers and standardization of the methods, some

problems appeared. Software without maintenance, incompatibility of some programs with

today’s technologies, or software without documentation or behind paywalls have become

unusable. For example, the Regressive methodology opens the door to use aligners very

accurately but only with the ability to align a few sentences. These aligners were developed

decades ago, and they were a bit “forgotten in a drawer”. Now it’s time to explode their

accuracy. Still, it has been impossible or very hard during this project. These difficulties go

beyond the idea of the need for this effort of containers and good documentation or a

manuscript as the one published.

- Nextflow integration for the Research Object Specification

The concept of reproducible genomic analysis becomes more important than ever at a time

when the precision medicine program is about to introduce the systematic use of -omics

data in our daily lives. Unfortunately, wet lab experiment variation is frequently thought to

be the cause of reproducibility concerns. Nextflow is a mechanism for managing

computational workflows that offers a simple and efficient solution to this issue. It is

demonstrated how Nextflow allows current pipelines to be deployed efficiently and stably,

providing a long-awaited solution to the problem of ensuring computational reproducibility

when doing -omics data processing.

Thanks to the Google Summer of Code, it was possible to add some functionality to

Nextflow. The project is explained in chapter 4, and the idea is to produce a Research

Object (RO) (Belhajjame et al., 2015). Once finished the project, the most exciting part was

not only the RO by itself. The idea of provenance in Nextflow is quite interesting. Adding

this extra value thanks to the metainformation is desirable. It is being able to know ‘who’

ran the analysis, in which environment, when, and the exact version of the software and the

parameters. This adds a level to the reproducibility schema and can be helpful in

personalized medicine.

One of the needs discovered in this project was the GUI for provenance. RO was not

meant to show the data and file in a friendly way. But provenance needs a bit of work

because Nextflow can produce a massive amount of metainformation (for each process,
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each task, workflow run, etc.) a. Itld be very useful/powerful with an appropriate interface.

It could be a web interface thanks to the functionality of Tower (tower.nf) or the great

community of  nf-core (Ewels et al., 2020)
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