New algorithmic contributions for large scale

multiple sequence alignments of protein sequences

Edgar Garriga Nogales

Tesi Doctoral UPF / 2021

Universitat Pompeu Fabra - Barcelona

DIRECTOR DE LA TESI
Dr. Cédric Notredame

BIOINFORMATICS AND GENOMICS PROGRAMME
CENTRE FOR GENOMIC REGULATION (CRG)

DEPARTMENT OF EXPERIMENTAL AND HEALTH SCIENCES
UNIVERSITAT POMPEU FABRA

Universitat
Pompeu Fabra
Barcelona

upy.

Acknowledgments

The last four years have been challenging, a path of learning and feeding curiosity.

This adventure has been incredible, thanks to the priceless help of Cedric Notredame.
None of this would have been possible without him.

Four years of maturity, of exploring new worlds and enjoying this experience with those
who share time or knowledge with me.

The environment created at the CRG and the facilities to focus only on your work are also
appreciated, a unique location with incredible human and material resources. Being able to
work in a place where it offers to satisfy your curiosity is the best thing that has happened
to me. I would like to add some words to Evan and Paolo, to be always there. To Leila and
Athanasios to suffer with me this adventure. And last but not least, Romina, if a Ph.D. is
hard, I don’t want to imagine how this would be without her. From traveling to printing or
organizing seminars.

Thanks to Cedric and friends of this trip. For allowing me to combine this adventure with
the world outside the laboratory. Sometimes it is needed to go outside this bubble and see
the real world.

I don’t want to forget all the brave people who risk their lives trying to cross a border. They
teached me things I would not be able to learn by reading books or manuscripts.

Finally, I also want to thank my parents for supporting me on this path, which has not been
easy or quict. They allowed me to study and go abroad whenever I asked for it. Without

them, their sacrifice and support would never be possible. Gracias

“Si los derechos que yo tengo no lo tienen los demas,

entonces no son derechos, son privilegios”

Abstract

A multiple sequence alignment (MSA) describes the connection between biological
sequences by using columns to represent a shared ancestry based on an assumed set of
evolutionary events.

Keeping up with the growth of biological data is one of modern biology's most relevant
and recent challenges.

Unfortunately, MSA approaches have a well-known weakness when dealing with extremely
large datasets that could endanger any downstream analysis. Therefore, the most common
approach to the MSA analysis is the progressive solution.

Another of the challenges in the MSAs due to the rapid increase of data is the scalability of
the alignments. That’s why a new methodology will be proposed to perform the MSAs with
the ability of higher scalability and the possibility of deciding how the guide-tree is used,
and the combination of guide-tree and alignment works better for each study.

This study, taken together, can be considered as providing both conceptual and technical

innovations that significantly improve existing MSA methods and a new paradigm.

Resum

Els alineaments multiples de sequencies descriuen la conexio entre sequencies biologiques
fent us de les columnes per representar una ascendencia en comu basat en la asumpcio de
uns fets evolutius.

Mantenir-se al dia amb la creixent de les dades biologiques és un dels reptes més rellevants i
recents de la biologia moderna.

Malauradament, els enfocaments MSA tenen una debilitat ben coneguda quan es tracta de
treballar amb conjunts de dades extremadament grans que poden posar en perill qualsevol
analisi posterior. L'enfocament més comu en l'analisi MSA és la metodologia progressiva.
Un altre dels reptes en els MSA degut al rapid augment de dades és l'escalabilitat dels
alineaments. Es per aixd que aquf es proposara una nova metodologia per realitzar els MSA
amb la capacitat d'una major escalabilitat i la possibilitat de decidir com s'utilitza el
“guide-tree” 1 la combinaci6 “guide-tree” i alineament que funcioni millor per a cada cas.
Aquest estudi, en conjunt, es pot considerar que proporciona innovacions tant conceptuals
com tecniques que milloren significativament els metodes MSA existents i un nou

paradigma.

Preface

The document is organized so that the introduction chapter provides background
information for readers who may not be familiar with multiple sequence alignment
methods and a small introduction to the following topics of this thesis. Following that,
there is a manuscript in each of the three key chapters. The reader will discover further
background information for the individual subject covered in each chapter here. Except for
the introductory and discussion chapters, each chapter's references, figures, and tables are
self-contained to avoid confusion. The purpose of the discussion chapter is to put the

outcomes of each chapter into context.

Contents

5N 0 1] 5 Y o1 4
J S T T 8
Chapter 1: INtroductionoiuiiiiiti i 12

Chapter 2: Large multiple sequence alignments with a root-to-leaf regressive method ... 26
2.2: Supplementary Informationoooiiiiiiiiiiiii i 34

Chapter 3: Multiple Sequence Alignment Computation Using the T-Coffee

Regressive Algorithm Implementation.............cooiiiiiiiiiiiiiiiiii i 46
Chapter 4: Nextflow integration for the Research Object Specification 58
Chapter 5: DISCUSSION.uiii i 62
Bibliography ... 66

10

11

Chapter 1: Introduction

Comparisons provide us with some of our most fundamental biological insights. Moreover,
it is not without reason. Comparative biology takes advantage of the single most significant
fact in biology: that all life is interconnected. Through the fabric of our developments,
relatedness has remained the core principle, weaved with ever-changing technologies. The
concept of shared ancestry is at the heart of most of our biology, and when Darwin created
the iconic tree of life, he originally conceived homology through anatomical comparisons,
such as those of bones, beaks, and barnacles. Comparative anatomy was also valuable for

quantifying the degree of similarity across species.

Sequences play a particular role in bioinformatics and therefore deserve considerable
attention. For example, our measures of similarity are quantified at single-molecule
resolution using a sequence. Nevertheless, more critically, the sequence representation
enabled biology to stand on the shoulders of computer scientists and mathematicians by
providing a toolkit of quantification tools. Strings of characters lend themselves to
computation in a variety of ways, from simple edit distances to complicated machine

learning techniques.

Sequence comparison is one of the most extensively studied fields of computer science,
where it is generally referred to as string matching (Apostolico & Galil, 1997; Baeza-Yates
& Navarro, 1996, 1998; Boytsov, 2011; Gusfield, 1997; G. Myers, 1999). The necessity of
matching sequences expressed as strings is so pressing that as early as 1970, biologists felt
the urge to develop their own algorithm and came out with an independent formulation of
the Dijkstra dynamic programming algorithm (Dijkstra, 1959). This algorithm, commonly
referred as Needleman and Wunsch (Needleman & Waunsch, 1970), remains the
cornerstone of evolutionary-based sequence alignments in biology. It is worth noting,
however, noting that this string matching approach was recently complemented by a new
generation of string matching techniques built on the Burrow Wheeler transform (Burrows
& Wheeler, 1994). However, these highly efficient algorithms remain limited to
non-evolutionary ultra-fast string matching, such as the one required for mapping reads
onto a genome or carrying out assemblies.

Over the years, the Needleman and Wunsch (NW) algorithm has undergone many

significant evolutions. When first introduced, it was meant to align sequences that one

12

https://www.zotero.org/google-docs/?hY48Ov
https://www.zotero.org/google-docs/?hY48Ov
https://www.zotero.org/google-docs/?zm3Dxw
https://www.zotero.org/google-docs/?zf32cA
https://www.zotero.org/google-docs/?4wnGp4
https://www.zotero.org/google-docs/?4wnGp4

expected to be homologous across their entire length, yet, with new sequences coming in, it
became rapidly clear that more complex matching schemas were required taking into
account the frequent need for partial matches, that to say aligning two sequences whose
homology does not span the full length. This adaptation of NW is known as the Smith and
Waterman algorithm (Smith & Waterman, 1981) and uses a modified version of NW to
identify the highest-scoring common segment between two homologous sequences. The
solution initially devised by Needleman and Wunsch is generalizable using Levenshtein's

approach, which aims to reduce edit distance (Sellers, 1974).

The main idea behind Needleman-Wunsch is that it effectively eliminates comparisons that
cannot contribute to the best possible score alignment. The algorithm was then improved
significantly in terms of performance and memory utilization. A significant breakthrough
was the Gotoh algorithm that provides a way to estimate the matching cost in linear space
and in quadratic time (Gotoh, 1982). Gotoh also provided the first quadratic solution for
estimating alignments with affine gap penalty schemes, that is to say, gaps whose cost could
be modeled as
cost = Gap Opening Penalty + Gap Extension Penalty * Length. Under
Gotoh, the actual resolution of the alignhments remained quadratic in space, thus limiting
the algorithm to relatively short sequences. A few years later, Myers and Miller (E. W.
Myers & Miller, 1988), building on the connection that had been made between Needleman
and Wunsch and the Dijkstra algorithm, proposed a divide-and-conquer linear space
algorithm for the alighment computation. This algorithm adapts Hirschberg (Hirschberg,
1975) to recursively compute middle points until the complete alignment has been
achieved. Each middle point is obtained by applying the Gotoh algorithm in a forward and
backward manner.

Multiple sequence alignment was a natural follow-up of pairwise sequence alignments. The
problem of aligning a set of evolutionarily related sequences was initially theorized by
Sankoff (Sankoff, 1975), who proposed a complete albeit impractical algorithm for the
simultaneous estimation of an MSA and its underlying phylogenetic tree. Unfortunately,
this problem is NP-Hard under any realistic formulation, and the Sankoff formulation
remains limited to very few short sequences. Even when the evolutionary relationship
between the sequences is provided (i.e., phylogenetic tree), the problem of assembling an

MSA that would minimize the evolutionary cost remains NP-Hard under its most common

13

https://www.zotero.org/google-docs/?2DlMEE
https://www.zotero.org/google-docs/?TcyrWo
https://www.zotero.org/google-docs/?K1bXo5
https://www.zotero.org/google-docs/?AuDnsP
https://www.zotero.org/google-docs/?AuDnsP
https://www.zotero.org/google-docs/?xS4KcQ
https://www.zotero.org/google-docs/?xS4KcQ
https://www.zotero.org/google-docs/?CFq30R

formulations (J. Kececioglu, 1993; J. D. Kececioglu et al., 2000; Wang & Jiang, 1994). This
probably explains why such a large number of heuristics have been applied to the MSA
problem. The NP-Hard nature of the problem also explains the rapid deprecation of
heuristics, whose sensitivity to sequence number and length is a recurring problem. The
genesis of these algorithms have been extensively reviewed in (Chatzou et al., 2016; Edgar
& Batzoglou, 2006; Kemena & Notredame, 2009; Thompson et al., 2011), and going
through them in detail would be beyond the scope of this introduction. We will simply
provide a couple of milestones. Today, the most commonly used algorithms such as the
Clustal series, T-Coffee (Notredame et al., 2000), or Mafft (Katoh et al., 2002) rely on the
progressive algorithm. This algorithm that involves aligning the sequences two by two
following the order imposed by a guide tree was initially described by Paula Hoggeweg and
later re-implemented in a variety of software, the most popular being by far the ClustalW
(Thompson et al., 1994) algorithm that ranking in the position 10 of the most widely cited
scientific papers ever (Van Noorden et al., 2014).

The explicit goal of an MSA approach is to align a set of biological sequences (RNA,
proteins, and DNA) in a way that reflects their evolutionary, structural, or functional
relationship. This is accomplished by adding gaps of varying lengths inside the sequences,
allowing homologous places to be aligned with one another, much to how an abacus aligns
beads of the same hue. These gaps in the genome are assumed to result from insertions
and deletions (indels) that occurred during the evolution of a common ancestor in an
evolutionary environment.

A scoring function (objective function) capable of quantifying the relative benefits of every
alternative alighment concerning the modeled relationship is required to construct an MSA.
After that, the MSA can be calculated using an optimal scoring model. Thus, the objective
function is a crucial parameter since it specifies the modeling accuracy and prediction
capacity of an MSA. The most common goal functions used in evolutionary
reconstructions are to maximize weighted similarities (as supplied by a PAM (Dayhoff &
Schwartz, 1978) or BLOSUM (Henikoff & Henikoff, 1992) substitution matrix) while
calculating indels costs using an affine gap penalty.

The substitution cost can be changed using tree-based weighting systems that reflect each
sequence's independent information contribution, and the column score is derived by
taking into account the overall all-against-all (sums-of-pairs) substitution cost. The

sum-of-pairs functions are widely recognized for their inability to reflect biological

14

https://www.zotero.org/google-docs/?B3E6Yb
https://www.zotero.org/google-docs/?Az0Vyr
https://www.zotero.org/google-docs/?Az0Vyr
https://www.zotero.org/google-docs/?WyEN5T
https://www.zotero.org/google-docs/?30m3vl
https://www.zotero.org/google-docs/?fIqgrl
https://www.zotero.org/google-docs/?MYIRQY
https://www.zotero.org/google-docs/?iagLfA
https://www.zotero.org/google-docs/?iagLfA
https://www.zotero.org/google-docs/?oJkIzT

relationships precisely. However, they have been demonstrated to give a good trade-off
between structural accuracy and computability, that is, the ability to estimate a reasonable
MSA quickly.

The optimization of sums-of-pairs evaluation systems is NP-complete in their most
popular formulations. As a result, one must rely on heuristics. One of the first solutions
proposed is Hogeweg and Hespet's progressive alignment algorithm.

The input sequences are incorporated into the final model one by one, following an
inclusion order determined by a pre-computed guide tree. Then a pairwise alignment is
performed at each node between two sequences, a sequence and a profile, or two profiles.
More or less sophisticated modifications of the Needlman and Wunsch global dynamic
programming alighment algorithm are used to estimate the pairwise alignments at each
node. The backbone of most accessible approaches, such as T-Coffee, ClustalW, and
ProbCons (Do et al,, 2005), combines a tree-based progressive strategy and a global
pairwise alignment algorithm.

The guide tree estimation technique is the key algorithmic component of the progressive
alignment, aside from the objective function. This tree, which determines which sequences
will be included in which order, can be generated using a variety of methods, the most
common of which being Neighbor-Joining (NJ) (Saitou & Nei, 1987) and Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) (Michener & Sokal, 1957).

In theory, an MSA would have to be evaluated based on a true underlying phylogenetic
tree. If such a tree were available, it would then become possible to estimate a model
minimizing the number of mutational events accounting for the differences among the
sequences being considered. However, this tree is not usually available, and the most
commonly used scoring schemes involve an all against all comparison known as Sums of
Pairs. However, initially speculated by Hogeweg that aligning the sequences two by two
following an order as close as possible to the correct phylogenetic tree could lead to
reasonable solutions. This heuristic is purely greedy and does not provide any guarantee. It
is well known to be sensitive to local minima effects. Furthermore, the correctness of the
final MSA depends on the correctness of the initial guide tree. Moreover, even if this tree is
correct, our limited capacity to match distantly related sequences can hamper the alignment
process. Indeed the pairwise algorithm accuracy drops rapidly when matching protein

sequences less than 20% identical (or DNA sequences less than 80% identical) (Rost,

15

https://www.zotero.org/google-docs/?cvHp8H
https://www.zotero.org/google-docs/?JjSz54
https://www.zotero.org/google-docs/?huDuBS
https://www.zotero.org/google-docs/?ca8onp

1999), as a consequence, if the guide tree directs the alignment of two very distantly related
sequences, the gap insertion patterns are likely to be incorrect and will possibly lead to
severe effects when incorporating the remaining sequences. This problem could only be
alleviated if one could simultaneously consider all the sequences, a formulation known to
be NP-Hard. There exist two alternatives to address this issue. The most natural one is
using an iterative approach where the guide tree is re-estimated on the first MSA. This
strategy has been implemented in a large variety of algorithms, and albeit it clearly leads to
improvements, these tend to be limited. The second alternative is the use of consistency.
The consistency-based algorithm, initially described by Notredame, Higgins and Heringa
(Notredame et al, 2000), aims to collect dataset-wide information to generate a
position-specific scoring scheme considering the entire dataset, even when doing a pairwise
alighment of any of its members. This algorithm currently forms the basis of the most
accurate small-scale aligners (T-Coffee, Probcons, MSAProb (Liu et al., 2010)).

Until about ten years ago, when the largest datasets would hardly feature more than 500
sequences, these heuristics were able to provide entirely satisfying MSA models. However,
the surge in sequencing capacity has brought these algorithms to their limits. The tilting
point was probably the analysis carried out in ClustalO (Sievers et al., 2011), in which it was
shown for the first time that the alignment accuracy decreases when aligning 1,000
sequences or more. This result, later confirmed by one of the studies presented here
(Garriga et al.,, 2019), came as a shock as it suggested a behavior totally opposite to the
expectation. It was also challenging the notion that acquiring more data would lead to

richer, more informative models.

Clustal®2 HomFam
0.78 :

Default—e—
0.76 1 Iteration—e
2 Iterations —e

0.74 -
0.72
0.7
0.68 -
0.66 -
0.64 -
0.62r
06

0.58 ')
10 100 1000 10000 100000

#Sequences

TC score (running average)

Stevers et al., 2011, Mol Syst Bio

16

https://www.zotero.org/google-docs/?ca8onp
https://www.zotero.org/google-docs/?7x8UEN
https://www.zotero.org/google-docs/?kGGvJu
https://www.zotero.org/google-docs/?po5e7A
https://www.zotero.org/google-docs/?98fera

There are numerous reasons for the scaling up to fail so drastically. The first is most likely
the accuracy of the guide-tree. The most widely used distance-based tree-building
algorithms (NJ and UPGMA), which determine the order in which sequences are aligned,
have computational complexity ranging from O(N?) to ON’), depending on the
implementation. As a result, these methods become impractical beyond a few thousand
sequences, and generating a guide-tree with 100,000 sequences would necessitate the

computation of nearly 5 billion distances.

Reducing the number of comparisons conducted is the most obvious technique to decrease
tree building time and memory needs. This was initially effectively applied with the
PartTree algorithm (Katoh & Toh, 2007), which selects a subset of sequences and clusters
them recursively. The longest sequence, the sequence with the lowest resemblance to the
longest, and n - 2 random sequences are selected starting at the top and then at each
recursion level, where n is the group size defined by the user. The remaining non-seed
sequences are then paired with one of the seed sequences to form a new group, and the
seed sequences are utilized to construct a UPGMA tree. The same technique is repeated
for each group until all sequences have reached the tree's leaf. Then, the extended trees can
be used to make the final tree. This leads to a significant increase in speed and a reduction
in time complexity to quasilinear O (N log N). PartTree is able to align 60,000 sequences
in a matter of minutes, according to the authors, using a conventional desktop.

Another guide-tree method that avoids full distance matrix calculation is the mBed
algorithm (Blackshields et al., 2010)(Blackshields et al., 2010). mBed starts by selecting a set
of seed sequences, similar to PartTree, but this time based on a constant stride selection
from the length sorted dataset. These seed sequences can be refined or not, but the
distance between each sequence and the reference sites is determined in either case. These
distances are then transformed into a vector for each sequence, containing the reference
sites' coordinates. The vectors are approximations for sequence distance, allowing us to
develop an embedded distance matrix that may be used to build UPGMA guide-trees. In
addition, for big datasets, k-means clustering can be used to cluster the vectors directly
without the need for an embedded distance matrix (over 100,000 sequences). The software

package for Clustal Omega contains mBed (Sievers et al., 2013).

17

https://www.zotero.org/google-docs/?wHGAqo
https://www.zotero.org/google-docs/?FMWB90
https://www.zotero.org/google-docs/?byFiEB

Nevertheless, these large-scale guide tree-based methods all proved equally unable to scale
up when evaluated in the Clustal Omega paper, and it can be speculated that the guide-tree
was the culprit.

This led to a new generation of large-scale aligners in which, rather than being hierarchized
and classified, the MSA is built from a small core of sequences gradually expanded.
MAFFT Sparsecore (Yamada et al., 2016) was one of the first methods to use this strategy.
The sequences are first sorted by length, and then a random selection of 500 sequences
from the longest 50% of the sequences is chosen. These are the sequences that make up
the core. The remaining sequences are added to the core using a progressive alignment
method once the MSA is produced using the correct G-INS-i method. We later proposed a
generalized version of this approach that we named the regressive alignment. This solution
will be described in chapter 2. 1t is based on a radically new way of using the guide-tree to
resolve the final MSA

Its global strategy can be defined in 4 points. The first step consists of dressing the tree and

filling the internal nodes with a “representative” sequence (by default, the longest among

children leaves). This step is a bottom-up process.

The next step starts from the root and involves collecting subgroups of size N by collecting
node representatives and expanding nodes one generation at a time. In other words, all
nodes of a given generation are expanded into their children nodes before expanding any
child. Expanding means replacing a node representative with the two representatives
associated with its children. For example, in the figure below, N was set to 3, and one can
see that the first set featured sequences 11 and 14. Because this set was smaller than N=3,
node 11 was expanded into the (6, 11) set thus yielding the set (6, 11, and 14). If that set

had featured less than N sequences, for instance, N=4, then node 14 would have been

18

https://www.zotero.org/google-docs/?405KEo

expanded into (13, 14). Once this first set has been gathered, each collected node is treated
as a root so that an extra subset can be individually gathered. While this recursive process
advances toward the root, the datasets become increasingly homogenous. The process

stops when all the leaves have been collected.

root

Garriga ¢t al., 2019

Once all the subgroups have been collected, the alignhment step can take place. The
independence of the subgroups makes the whole process an embarrassingly parallel
operation. Furthermore, the homogenous size of the largest MSA makes it relatively easy to
have optimally balanced loads. The process is entirely agnostic concerning the MSA
method one should apply to the subgroups, and as we show in the paper, one is free to
choose any method that would appear relevant. On top of this, the control one has on N
makes it possible to adjust this value with the MSA method one wants to use (i.e., small
values for slow accurate methods and higher values for coarser and faster aligners.

The fourth and final step involves the subMSAs. It does not require any alignment, thanks
to the common sequences threading through the subgroups. For instance, one can see on
the above figure that sequence 11 will be part of the root group (6,11,14), then that same
sequence is part of the child group of this node (5,3,11) and is also part of the terminal
child (11,8). Sequence 11 is therefore incorporated in these three independent MSAs, and it
is suitable for the three MSAs to be threaded onto one another using the indexes of
sequence 11 residues to match corresponding columns. This process does not require any
kind of scanning or exploration as would be required by a standard alignhment procedure
since the equivalences are already set with no possible ambiguity. As such, it can be
implemented in linear time with the length of the considered sequence. Furthermore, the
memory footprint can be further decreased by storing the stretches of gaps as indexes

rather than strings.

19

parent sub-MSA

B merged MSA

[==] — K== L—KL

child sub-MSA

Garriga et al., 2019

The regressive algorithm is a versatile framework that lends itself to a wide variety of
variations. First of all, it is not restricted to using guide trees, and any suitable hierarchical
clustering approach could provide a support data structure. The most obvious would be
hierarchical k-means, in which the centroids would play the role of nodes labels, but in
theory, one could explore any similar clustering procedure. Secondly, the method lends
itself to combining data at all possible levels, and with structural data now routinely
available thanks to AF2 (Jumper et al., 2021), one could consider using structural aligners
such as 3D-Coffee (O’Sullivan et al., 2004) to use structural information at various levels,
and typically when aligning the root subset that is expected to be the most challenging
owing to its high level of variability. Finally, the procedure would need to come along with a
reliability index, similar to the TCS index developed in the realm of T-Coffee (Chang et al.,
2014). At the scale targeted by the regressive algorithm, such indexes are essential for
systematically removing non-trustworthy sequences. However, the high complexity of the
TCS estimator precludes its systematic use in the regressive framework, and if that index is
to be used, it will need to be adapted so as to allow the efficient flowing of lower scale TCS
information onto a large number of sequences.

Nevertheless, before exploring these important algorithmic follow up, it was critical to
ensure the usability and deployability of the regressive algorithm. Therefore, we initially
implemented the method within the T-Coffee framework and made it part of the T-Coffee
distribution. T-Coffee is both an aligner and a meta-aligner. Given a dataset, its alignment
mode involves generating all the possible pairwise alignments using an internal Myers and
Millers implementation. This collection is known as a library, and it is stored in a data
structure that declares all the pairs of residues that have been found aligned in the
collection of pairwise alignments. The consistency transformation is then used to turn this

data structure into a position-specific scoring scheme. In broad terms, given two residues x

20

https://www.zotero.org/google-docs/?GCA1BV
https://www.zotero.org/google-docs/?S49f5M
https://www.zotero.org/google-docs/?2F0jsN
https://www.zotero.org/google-docs/?2F0jsN

and y from sequences A and B, labeled by their index in their respective sequences, the
consistency transformation involves collecting from the library all the supporting pairs x-z
and z-y, with z being any residue from a third sequence that is neither A or B. These
supporting peairs are collected along with their non-supporting pairs, where a set of
non-supporting pairs would be x-k and I-y, with k and 1 being different residues belonging
to the same sequence. The supporting and non-supporting pairs can then be weighted, and
the final consistency score for the alignment of x and y is obtained by combining all this
information. This definition of T-Coffee corresponds to the latest implementation and
differs slightly from the original publication in which the non-supporting pairs were not

directly taken into account.

The main advantage of the library is its versatility. The lack of constraints regarding its
completeness and redundancy means that any procedure able to populate it will be suitable
for the computation of T-Coffee alignments. The most obvious adaptation involved
generating the pairs with third-party MSA packages (Wallace et al., 2000) or even replacing
the sequences with adequate protein structure templates (O’Sullivan et al., 2004) or RNA
templates (Wilm et al., 2008), in which the pairwise alighments are carried out using
suitable third party structural aligners. These developments that took place over nearly two
decades gradually turned T-Coffee into a meta MSA package, and in the latest release, the
program claims to be able to interact with a total of 73 third-party packages. Building the
regressive algorithm in this framework allowed us to effectively use these existing
connectors to effectively evaluate the regressive algorithm to combine various tree

estimation methods with existing aligners.

Unfortunately, the original T-Coffee implementation had been carried out with single users
in mind and with little provision for high-level parallelization. I, therefore, had to put
significant effort into the design of portable and reproducible pipelines. For this purpose, I
have used the Nextflow framework. Nextflow is built on containerization technology (like
Docker (Merkel, 2014) or Singularity (Kurtzer et al., 2017)) or the package manager Conda.
One of the examples can be found in ¢hapter 3 where I show how it was possible to build a
portable environment for the regressive method and all its companion packages. By
allowing the seamless installation of a large number of packages, most of which have been

developed as research software rather than production software, I believe that our

21

https://www.zotero.org/google-docs/?icG3bz
https://www.zotero.org/google-docs/?X5BKtZ
https://www.zotero.org/google-docs/?auUJly
https://www.zotero.org/google-docs/?1x0EeD
https://www.zotero.org/google-docs/?aW97Ov

approach has contributed to the democratization of computational bioinformatics, that is

to say, making available a large number of alternative methods with less technical barriers.

These practices (containerization and reproducibility workflow managers) allow running
the analysis independently of where one is based. The availability of cloud-based resources
also makes it very straightforward to carry out complex development, even when the local
economic status does not allow the maintenance of a complex IT infrastructure. In such a
context, the software can be used to buffer some of the hardware limitations. These
practices can save much money, and often enough, they are the only way to allow key
analysis to be carried out locally. This manuscript shows how it is possible to install and use
the regressive method to perform very large multiple sequence alignments independently of
selected hardware. In the publication, we put much effort into ensuring that all the results
could be reproduced using clear Nextflow command lines that would go and teach the
software on GitHub and deploy it on data stored in Zenodo. For instance, the docker
container with the environment configured and ready to run can be downloaded with the
following command:

docker pull cbcrg/tcoffee_protocols

Then, once the image is in our system, you can run the Regressive algorithm with the
TCoffee command:

t_coffee -reg -seq INPUT.fasta -reg_nseq 1000 -reg_tree mbed
-reg_method clustalo _msa -outfile OUT.aln -outtree OUT.mbed

Furthermore, thanks to the workflow manager Nextflow, it is possible to run an analysis of
Regressive using the containers provided (Docker, Conda, or Singularity) and run the
pipeline in the local machine or move the computation to an HPC with the flag
-executor=slurm/sge or the engine of your HPC system. If you want to launch the
analysis directly to AWS cloud will be something like:

nextflow run cbcrg/dpa-analysis -executor=aws --seqgs

'seqs/*.fasta’

A significant issue when doing large-scale computation is to keep track of data origin. For

instance, if a diagnostic and treatment are proposed based on an exome analysis based on a

22

regressive MSA, one may ask where the MSA was carried out, which software version, and
where the data was coming from. The traceability of these operations is a central
engineering question, but it goes well beyond this. For example, if the treatment being
offered appears to be sub-optimal, one should be entitled to know how the decision was
reached to propose this treatment. This involves the decision-making process is based on
open-source software. However, it also requires that software to be written in such a way
that it be readable by trustworthy organizations, and even further, it also implies that any
result having an impact on the life of a citizen should come along with some form of
traceability, including an accurate description of the underlying resource. This issue is well
known in computer science and relates to the concept of provenance, the notion that any
computational result can be traced to its source.

Chapter 4 of this thesis reports our attempt to integrate Nextflow and the ResearchObject
(RO) specification (Belhajjame et al., 2015). Our main goal was to implement in Nextflow
the ability to produce a RO with a specific flag and add the extra information needed. This
project has been supported by the Google Summer of Code (GSOC). The work is merely
preliminary and involves the maintenance of informative tags passed by Nexftlow across
successive computation steps. In its current form, it is not of direct use because it would
require a suitable visualization tool for the practical exploitation of this meta-information.
The idea of a need for provenance in the scientific analysis is not new (Davidson et al.,
2007). This metadata adds more value and robustness to the pipeline.

This project triggered an interesting reflection in the Nextflow community and opened up
the door for further development, mainly focused on provenance and its power with some
discussion on the community (Ewels et al, 2020) to discuss how to deal with this

implementation.

Adding an extra level allows the analysis to be more robust. The definition of provenance is
“the history of ownership of a valued object or work of art or literature” and this is the
main idea, recording the metadata and the valuable information of the analysis. This
provenance aims to include who ran the pipeline, when it started and when it finished. All
the software versions were used to perform the analysis. This feature will record the
relationship between files (who created the file and what was the input data). This should
be easier to track with the new version of Nextflow DSL2. The modularity is in the same

idea of keeping the I/O data of each process and this can be used to debug the analysis and

23

https://www.zotero.org/google-docs/?y0fykc
https://www.zotero.org/google-docs/?hofE4b
https://www.zotero.org/google-docs/?hofE4b
https://www.zotero.org/google-docs/?rtjSO4

detect anomalous behavior in the pipeline. This provenance will try to capture all the
available information, which can be used to double-check parameters or who was

responsible for the analysis.

Domain-specific annotations

Multiple retrospective provenance logs
Execution details of steps

Content-addressable data artifacts
Workflow run provenance profile
Executable workflow

Workflow and Command Line tool
specification
Actual parameter configuration files

Garriga et al., 2018

24

25

Chapter 2

Large multiple sequence alignments with a root-to-leaf regressive method

Edgar Garriga, Paolo Di Tommaso, Cedrik Magis, Ionas Erb, Leila Mansouri, Athanasios
Baltzis, Hafid Laayouni, Fyodor Kondrashov, Evan Floden, Cedric Notredame

Nat Biotechnol 37, 1466-1470 (2019). https://doi.org/10.1038/s41587-019-0333-6

26

27

LETTERS

https://doi.org /10.1038/541587-019-0333-6

nature
biotechnology

Large multiple sequence alignments with a
root-to-leaf regressive method

Edgar Garriga', Paclo Di Tommaso', Cedrik Magis’, lonas Erb ®, Leila Mansouri®?,
Athanasios Baltzis @, Hafid Laayouni®?, Fyodor Kondrashov*, Evan Floden®™™

and Cedric Notredame®15*

Multiple sequence alignments (MSAs) are used for struc-
tural'? and evolutionary predictions'?, but the complexity
of aligning large datasets requires the use of approximate
solutions?, including the progressive algorithm®. Progressive
MSA methods start by aligning the most similar sequences
and subsequently incorporate the remaining sequences, from
leaf to root, based on a guide tree. Their accuracy declines
substantially as the number of sequences is scaled up®. We
introduce a regressive algorithm that enables MSA of up to
1.4 million sequences on a standard workstation and sub-
stantially improves accuracy on datasets larger than 10,000
sequences. Our regressive algorithm works the other way
around from the progressive algorithm and begins by aligning
the most dissimilar sequences. It uses an efficient divide-and-
conquer strategy to run third-party alignment metheds in lin-
ear time, regardless of their original complexity. Our approach
will enable analyses of extremely large genomic datasets such
as the recently announced Earth BioGenome Project, which
comptrises 1.5 million eukaryotic genomes®,

Until the first benchmarking of large-scale MSAs, analyses made
on smaller datasets suggested that scale-up would result in increased
accuracy’. However, it has now been established that alignments
with more than a thousand sequences are less accurate than smaller
alignments®. It has been speculated* that this fall in accuracy is due
to the inability of progressive methods to deal with the large number
of gaps accumulated during intermediate alignment steps’. Recent
attempts to address this problem have included SATé" and its fol-
low-up PASTA'"", a progressive algorithm in which the guide tree
is splitinto subsets that are independently aligned and later merged.
This divide-and-conquer strategy allows computationally inten-
sive methods to be deployed on large datasets but does not allevi-
ate the challenge of merging very large intermediate MSAs. More
recent alternatives include the MSA algorithms UPP"* and MAFFT-
Sparsecore' (Sparsecore). Both of these methods rely on selecting a
subset of ‘seed’ sequences and turning them into a Hidden Markov
model (HMM) using either PASTA or the slower, more accurate
version of MAFFT. The HMM is used to incorporate all the remain-
ing sequences one by one. The downside of this approach is that the
seed sequences are insufficiently diverse and therefore preclude the
accurate alignment of distantly related homologs to the seed HMM.

We considered that a regressive algorithm would address this
problem by combining the benefits of a progressive approach
when incorporating distant homologs with the improved accuracy
of seeded methods. We needed to fulfill two simple constraints:

the splitting of the sequences across sub-MSAs each containing a
limited number of sequences and their combination into a MSA
without the requirement of an alignment procedure. The main dif-
ference between our approach and existing ones lies in the order in
which sequences are aligned, starting with the most diverse.

Given M sequences, the sub-MSAs are collected as follows.
A clustering algorithm is first used to identify N nonoverlapping
sequence groups of unspecified size—the children. N defines both
the maximum number of children at any level and the maximum
size of each sub-MSA. It constitutes the only free parameter of the
algorithm. The first sub-MSA, the parent, is computed by selecting
a representative sequence from each child group and by aligning
theses N representatives with an MSA algorithm such as Clustal
Omega (ClustalO), MAFFT or any suitable third-party software.
The clustering algorithm is then re-applied onto every child group
in which N new representatives are collected and multiply aligned
to yield one child sub-MSA for each sequence in the parent. In each
child group, the N new representatives are selected in such a way
that the corresponding child MSA has exactly one sequence in com-
mon with its parent—the common representative. The procedure
runs recursively by treating each child as a parent for the next gen-
eration until every sequence has been incorporated. The final MSA
is produced by merging all the sub-MSAs. The merging of a child
with its parent is done without additional alignment thanks to the
common representative sequence. This sequence, present in both
the child and its parent, enables the stacking of the corresponding
positions (Fig. 1a). When doing so, insertions occurring within the
representative, either in the child or in its parent, are projected as
deletions (that is, gaps) in the other. Because of the way they are
projected during merging, these insertions and their corresponding
gap symbols do not need to be allocated in memory. They can be
kept as counts and merely expanded while the MSA is written onto
disk, thus dramatically decreasing the memory footprint.

A key step of this recursion is the clustering method and the
subsequent selection of the N representative sequences. Our bench-
marking suggests N= 1,000 to be a sensible choice (Supplementary
Fig. 1a,b). This value is in agreement with a previous report on the
largest number of sequences that can be directly aligned without
accuracy loss’. The clusters were estimated from binary guide trees
produced by existing large-scale MSA algorithms such as Clustal
Omega (ClustalO) and MAFFT. The use of a binary tree to extract
the most diverse sequences was inspired by an existing taxon sam-
pling procedure". In our implementation (Supplementary Note 1),
every node gets labeled with the longest sequence among its

'Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. ZInstitut de Biologia Evolutiva (UPF-CSIC),
Universitat Pompeu Fabra, Barcelona, Spain. *Bicinformatics Studies, ESCI-UPF, Barcelona, Spain. “Institute of Science and Technology, Klosterneuburg,
Austria. *Universitat Pompeu Fabra (UPF), Barcelona, Spain. *e-mail: evan floden@crg eu; cedric.notredame @crg.eu

1466

NATURE BIOTECHNOLOGY | VOL 37 | DECEMBER 2019 [14661470 | wv

28

rnature.com/Maturebiotechn

NATURE BIOTECHNOLOGY LETTERS
a Parent sub-MSA
= Merged MSA
— | == —K == —K L— = e ' —
— | —K e —k L —
—_) L — L — =Y il
Child sub-MSA
b Guide-tree c
Sub-MSAs

13 9 7 12

€ 45 3 11 8

Parent €6 11 14

Children 2 1 6 5 311 1312 14

Grandchildren 8 4 118 139 712 1410

Fig. 1| Regressive algorithm overview. a, Parent and children sub-MSAs are merged via their common sequence (blue) whose indels are projected from
child to parent (green) and parent to child (red). b, The sub-M3SAs are produced after collecting sequences from a binary guide tree with each node
labeled with the name of its longest descendant sequence. Sequences are collected by traversing the tree in a breadth-first fashion. Pale red color blocks
indicate how the N parent sequences (N=3) are collected by recursively expanding nodes. The same process is then applied to gather the children (green)
and the grandchildren (blue). €, In the nine resulting sub-MSAs that are displayed, one should note the presence of a common representative sequence

between each child and its parent.

Table 1| TC score and average CPU time (s) on the 20 HomFam datasets containing over 10,000 sequences

TC score (%) CPU time (s)
Tree method MSA algorithm Nonregressive Regressive Reference Nonregressive Regressive
PartTree Fitns1 29.64 3516 47.84 334 18
mBed Fftns1 41.33 3794 52.03 277 156
PartTree ClustalO 2694 2.2 5054 3,017 377
mBed ClustalO 39.03 41.91 53.71 570 338
Average 34.24 39.31 51.03 1,050 247
default/mBed UPP 4493 4715 49.78 8354 7186
default/mBed Sparsecore 4498 51.06 53.50 2,313 3,184
PartTree Ginsl - 4754 49 45 - 12,478
mBed Ginsl - 50.20 53.07 - 10,834

descendants. Given a fully labeled tree, the sequences of the first par-
ent sub-MSA are collected by the breadth-first traversal of the tree,
starting from the root through as many generations as required to
collect N sequences (Fig. 1b). Because of the way they are collected
along the tree, these N first sequences are as diverse as possible.
Within the resulting sub-MSA every sequence is either a leaf or the
representative of an internal node ready to be processed (Fig. 1c).
Our algorithm does not depend on specific alignment or guide-
tree methods and therefore lends itself to be combined with any
third-party software. This property enabled us to run various
alignment software both directly and in combination with the
regressive algorithm. A combination involves estimating a guide
tree with an existing method, collecting sequences with the regres-
sive algorithm and then computing the sub-MSAs with an existing
MSA algorithm. By doing so we were able to precisely quantify

NATURE BIOTECHNOLOGY | VOL 37 | DECEMBER 2019 | 1466-1470 | www.nature.com/naturebiotechnology

the impact of our algorithm on both accuracy and computational
requirements. We used as a benchmark the HomFam protein data-
sets” in which sequences with known structures—the references—
are embedded among large numbers of homologs. Accuracy is
estimated by aligning the large dataset and then comparing the
induced alignment of the references with a structure-based align-
ment of these same references'. We started by benchmarking the
Clustal0 and MAFFT-FFTNS-1 (Fftns1) MSA algorithms using
two guide-tree methods: ClustalO embedded k-means trees”
(mBed) and MAFFT-PartTree' (PartTree). These widely adopted
software packages were selected because they support large-scale
datasets, are strictly progressive and allow the input and output of
binary guide trees.

In three out of four combinations of guide tree and MSA algo-
rithms, the regressive combination outperformed the progressive

1467

LETTERS NATURE BIOTECHNOLOGY

a
10 +

o
L

L
=)
L

Average differential total column score (%)
A i
(=] [=]

== Regressive Gins1 with mBed trees

=0 == Regressive ClustalO with mBed trees
== Nonregressive ClustalO with mBed frees
50 4
T T T T T
1,000 2,500 10,000 25,000 100,000
Number of sequences
b CCA
-3 -2 - 0 1 2
1 1 1 1 1 I
Ginsi
-1 —]
PariTree " eqressive
ClustalO
Ffths1
Sparsecore
0 -
P
i Nonregressive
— Sparsecore Tree
=<
(3]
g
T Assembler
T Tree II.I ure
\
i) Aligner \
-3 T g \
© Regressive alignments R'.
O Nonregressive alignments Ill‘
4 \
UPP Tree
T T T T T
20 30 40 50 €0

Accuracy (%)

Fig. 2 | Relative performances of alternative MSA algorithm combinations. a, Average differential accuracy of datasets larger than number of sequences
(horizontal axis). The differences of accuracy are measured between the reference sequence MSAs and their embedded projection in the large datasets.
For each combination, n=75 independent MSA samples. The envelope is the standard deviation. b, In this CCA, the first component (horizontal axis, 14.1%
of the variance) is constrained to be the TC score accuracy as measured on datasets larger than 10,000. The best unconstrained component (vertical axis)
explains 20.8% of the remaining variance. Combinations (dots with their accuracy on the lower horizontal axis) are categorized by their guide tree (blue),
MSA algorithms (gray) and regressive/nonregressive procedure (red). Vectors indicate the contributions to variance of each category from the three
variables. Their projection onto the upper horizantal axis quantifies the contribution to variance of overall accuracy. For each combination, represented

with a dot, N=20 independent M5A samples.

one. When considering the most discriminative measure (total
column score (TC) in Table 1) on the datasets with over 10,000
sequences, the regressive combination delivered MSAs that
were on average 5.13 percentage points more accurate than
when computed progressively (39.31 and 34.24, respectively). These
differences remained comparable, albeit reduced, when considering

1468

the contribution of smaller datasets (Supplementary Tables 1
and 2). Within this first set of analyses, the regressive combina-
tion of ClustalO with PartTree was the most accurate and on the
large datasets it outperformed its progressive counterpart by

15.27 percentage points (42.21 and 26.94, respectively, Wilcoxon
Pvalue<0.001).

NATURE BIOTECHNOLOGY | VOL 37 | DECEMBER 2019 | 14661470 | www.nature.com/nhaturebiotechnology

30

NATURE BIOTECHNOLOGY

LETTERS

We also tested the seed-based nonprogressive MSA algorithms
Sparsecore' and UPP“. In both cases, their accuracy improved
when combined with the regressive algorithm. For instance, the
regressive combination of Sparsecore with mBed guide trees yielded
the best readouts of this study on the very large alignments, and
a clear improvement over the default Sparsecore (TC score 51.07
versus 44.98, Wilcoxon P < 0.1). Comparable results were observed
when extending this analysis to the sum-of-pair metrics or to
smaller datasets (Supplementary Tables 1 and 2). The regressive
algorithm is especially suitable for the scale-up of computationally
expensive methods. For instance, the consistency-based variant of
MAFFT named MAFFT-G-INS-1 (Gins1)"”, was among the most
accurate small-scale MSA algorithms on the reference sequences.
Ginsl cannot, however, be deployed on the HomFam datasets
because its computational requirements are cubic with the number
of sequences thus restricting it to a few hundred sequences. By com-
bining Ginsl with the regressive algorithm we overcame this limi-
tation and produced the most accurate readouts on datasets larger
than 1,000 sequences (Supplementary Tables 1 and 2).

We complemented these measures of absolute accuracy with an
estimate of accuracy degradation when scaling up. The effect of
extra homologous sequences degrading the alignment accuracy of
an MSA can be quantified by comparing the small MSAs of the ref-
erence sequences alone with their corresponding large-scale data-
sets. With the default progressive MSA algorithms ClustalO and
Ffinsl, the large datasets were on average 16.79 percentage points
less accurate than when aligning the reference sequences on their
own (Table 1, 34.24 and 51.03, respectively) with the trend being
amplified on the larger alignments (Fig. 2a). Yet, on this same com-
parison, the regressive combinations were only affected by 11.72
points (Supplementary Fig. 2). The improved stability of the regres-
sive combination was especially clear when considering Ginsl
(Fig. 2a and Supplementary Fig. 2a) that was merely degraded by
2.87 percentage points thus achieving on the large datasets a level
of accuracy close to the one measured on the reference sequences
alone (Table 1, 50.20 and 53.07, respectively).

Identifying the factors driving accuracy improvement can be
challenging considering that each alignment procedure relies on
different combinations of algorithmic components (that is, regres-
sive/nonregressive, tree method, MSA algorithm). For this purpose,
we used constrained correspondence analysis (CCA)*, a dimen-
sionality reduction method adapted for categorical variables. When
applied to Table 1 data, CCA allowed us to estimate the relative
impact of each method’s algorithmic component with respect to a
constraining variable—accuracy in this case. As one would expect,
the MSA algorithm is the most influential variable with respect to
accuracy but CCA confirmed the general benefits of switching from
a nonregressive to a regressive combination (Fig. 2b).

The most counterintuitive property of the regressive algorithm is
its dependency on an initial parent MSA whose level of identity is
imposed by the guide tree. Given an optimal guide tree, the level of
identity of this initial parent is expected to be aslow as possible. This
first step is central to the algorithms divide-and-conquer strategy,
but it is unclear whether so much diversity at this early stage would
harm accuracy prospects. We addressed this question by using
HomFam to generate several alternative parent MSAs with different
levels of identity for each dataset (that is, the same MSA algorithm
and dataset but different guide trees). We then computed the final
MSA corresponding to each parent and did not find any signifi-
cant relationship between parent identity and final MSA accuracy
(Supplementary Table 3). By contrast, a similar comparison across
datasets (that is, same MSA algorithm and guide-tree method but
different dataset) shows a strong positive dependency between par-
ent identity and final MSA accuracy (Supplementary Table 4). This
analysis confirms that, when using the regressive algorithm, the
choice of very diverse sequences as a starting point does not incur

NATURE BIOTECHNOLOGY | VOL 37 | DECEMBER 2019 | 1466-1470 | www.nature.com/naturebiotechnology

31

a
@ Gins1-mBed
50] [
’
Sparsecore-mBed Gins1-PartTree
I
; ®
[
UPP-mBed ",
g 45 B &
g ClustalO-mBed o
g BTG
@ Ffinsi-mBed » S
I 40 + A
$ 4
e . \\
E .
3 s ClustalO-PartTi
§] e, i u artTree
8 ¥ *
=] ~ ‘ﬁmm—PartTree % @ Regressive
Yy “ B Nonregressive
30 b R
|| L
.
A
|]
T T T
100,000 1,000,000 10,000,000
CPU iime (ms)
b
3,000
H
W
w
@
o
£
8 o000 4
E
o
E
w
=]
[&]
8
€ 1,000
g
o
o
[&]
[

T T T
0 1,000 2,000 3,000

CPU time (s) for ClustalO/mBed/nonregressive

Fig. 3 | CPU requirements of the regressive algorithm on HomFam
datasets containing more than 10,000 sequences. a, The total CPU
requirements (horizontal axis) and average TC score accuracies (vertical
axis). The corresponding nonregressive (blue square) and regressive

(red circles) combinations are connected by a dashed line with the exception
of Gins1 for which the nonregressive computation costs are prohibitive.
For each combination, represented as a circles and squares, N=20
independent MSA samples. b, Comparison of CPU time requirements

for ClustalQ using mBed trees using a regressive and a nonregressive
procedure on HomFam datasets containing more than 10,000 sequences.
Each point represents an independent MSA. N=20 independent MSA
samples. A linear regression (gray) was fitted on the resulting graph
(R?=0.89, P=69x10-7).

a penalty while, as one would expect, datasets with lower identity
result in MSAs with lower accuracy.

When using the same guide tree for the regressive and nonregres-
sive alignment combinations, improved accuracy comes along with
substantially improved computational performance. On average,

1469

LETTERS

NATURE BIOTECHNOLOGY

the regressive combinations require about fourfold less central pro-
cessing unit (CPU) time than their nonregressive equivalent on data-
sets larger than 10,000 sequences (Table 1). Seeded methods such as
UPP or Sparsecore appear to benefit less from the regressive deploy-
ment with marginal differences in CPU requirements (Fig. 3a).
When considering MSA algorithms such as ClustalO or Ftnsl
that scale linearly with the number of sequences, the improvement
yielded by the regressive combination was roughly proportional to
the original nonregressive CPU requirements. For instance, in the
case of ClustalO using mBed trees, the regressive combination was
about twice as fast as the progressive alignment and appeared to have
alinear complexity (Fig. 3b). The situation was even more favorable
when considering CPU intensive MSA algorithms such as Gins1 for
which the nonregressive computation had been impossible.

‘We further explored the scaling up capacities of our algorithm
using 45 Pfam 28.0 families” containing between 100,000 and
1.4 million sequences for the largest (ABC transporter family,
PF00005). Although they lack a structural reference, these families
were selected among the largest entries so as to provide a biologically
realistic benchmark for scalability. When using a standard work-
station (48 Gb of RAM, 160 CPU hours), the regressive methods
were the only ones able to process all 45 datasets while the non-
regressive methods tend to fail above 240,000 sequences and can
only align a maximum of 500,000 sequences for the most robust
(Supplementary Tables 5 and 6).

The ability to use slow and accurate MSA algorithms in linear
time regardless of their original computational complexity is the
most important feature of the regressive algorithm. It allows the
application of any of these methods—natively—onto extremely
large sequence datasets. This linearization isan inherent property of
the regressive procedure in which all the sequences are split across
sub-MSAs of a bounded size (that is, N=1,000 sequences). This
bounding in size results in a bounded computational cost. Since the
total number of sub-MSAs is proportional to the initial number of
sequences, the resulting complexity for the final MSA computation
is linear. Furthermore, owing to the computational independence
of the sub-MSAs, the regressive algorithm turns MSA computation
into an embarrassingly parallel problem™.

Our regressive algorithm provides a practical and generic solu-
tion to the critical problem of MSA scalability. It is a versatile algo-
rithm that lends itself to further improvements—for instance, by
exploring the impact of more sophisticated clustering structures,
such as m-ary guide trees, or by testing different ways of selecting
the representative sequences. The regressive algorithm is nonethe-
less a mature development framework that will enable a clean break
between the improvement of highly accurate small-scale MSA algo-
rithms—such as Gins1 —and the design of more efficient large-scale
clustering algorithms, such as PartTree and mBed. This divide will
help potentiate the large body of work carried out in the cluster-
ing and alignment communities over the last decades and hopefully
speed up the development of new improved methods. Achieving
this goal is not optional. There is a Red Queen’s race going on in
genomics. It started the day omics’ data growth overtook computing
power and it shows no signs of slowing™.

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, extended data, supplementary information,

1470

32

acknowledgements, peer review information; details of author
contributions and competing interests; and statements of data and
code availability are available at https://doi.org/10.1038/541587-
019-0333-6.

Received: 26 February 2019; Accepted: 29 October 2019;
Published online: 2 December 2019

References

1. Uguzzoni, G. et al. Large-scale identification of coevolution signals across
homo-oligomeric protein interfaces by direct coupling analysis. Proc. Natl
Acad. Sci. USA 114, E2662-E2671 (2017).

2. Mirarab, S., Bayzid, M. S., Boussau, B. & Warnow, T. Statistical binning
enables an accurate coalescent-based estimation of the avian tree. Science 346,
1250463 (2014).

. Wang, L. & Jiang, T. On the complexity of multiple sequence alignment.

I Comput. Biol 1, 337-348 (1994).

4. Hogeweg, P. & Hesper, B. The alignment of sets of sequences and the
construction of phylogenetic trees. An integrated method. [Mol. Evol. 20,
175-186 (1984).

5. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple
sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

6. Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of
life. Proc. Natl Acad. Sci. USA 115, 4325-4333 (2018).

7. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for
mpid mulliple sequence alignmenl based on fast Fourier transform. Nucleic
Acids Res. 30, 3059-3066 (2002).

8. Chatzou, M. et al. Multiple sequence alignment modeling: methods and
applications. Brief. Bioinform. 17, 1009-1023 (2015).

9. Breen, M. S, Kemena, C., Vlasov, P. K., Notredame, C. & Kondrashov, F. A.
Epistasis as the primary factor in molecular evolution. Nature 490,
535-538 (2012).

10. Liu, K., Raghavan, S., Nelesen, 5., Linder, C. R. & Warnow, T. Rapid and
accurate large-scale coestimation of sequence alignments and phylogenetic
trees. Science 324, 15611564 (2009).

. Mirarab, S. et al. PASTA: ultra-large multiple sequence alignment for

nucleotide and amino-acid sequences. J. Comput. Biol. 22, 377-386 (2015).

Collins, K. & Warnow, T. PASTA for proteins. Bioinformatics 34,

3939-3941 (2018).

Nguyen, N.-P. D., Mirarab, S., Kumar, K. & Warnow, T. Ultra-large

alignments using phylogeny-aware profiles. Genome Biol. 16, 124 (2015).

14. Yamada, K. D., Tomii, K. & Katoh, K. Application of the MAFFT sequence

alignment program to large data-reexamination of the usefulness of chained

guide trees. Bivinformatics 32, 3246-3251 (2016).

Minh, B. Q, Klaere, S. & von Haeseler, A. Phylogenetic diversity within

seconds. Syst. Biol. 55, 769-773 (2006).

16. Stebbings, L. A. & Mizuguchi, K. HOMSTRAD: recent developments of the
homologous protein structure alignment database. Nudeic Acids Res. 32,
D203-D207 (2004).

17. Blackshields, G., Sievers, E, Shi, W., Wilm, A. & Higgins, D. G. Sequence
embedding for fast construction of guide trees for multiple sequence
alignment. Algorithms Mol. Biol. 5, 21 (2010).

18. Katoh, K. & Toh, H. PartTree: an algorithm to build an approximate
tree from a large number of unaligned sequences. Bioinformatics 23,
372-374 (2007).

19. Katoh, K., Kuma, K.-1,, Toh, H. & Miyata, T. MAFFT version 5: improvement
in accuracy of multiple sequence alignment. Nucleic Acids Res. 33,

511-518 (2005).

20. Greenacre, M. . Biplots in Practice (Fundacion BBVA, 2010).

21, Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42,
D222-D230 (2013).

22, Hedihy, M. & Shavit, N. The Art of Multiprocessor Programming 1st edn
(Morgan Kaufmann, 2012).

23. Kahn, S. D. On the future of genomic data. Science 331, 728-729 (2011).

[

1

—

1

[

1

ool

1

o

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

NATURE BIOTECHNOLOGY | VOL 37 | DECEMBER 2019 | 1466-1470 | www.nature.com/haturebiotechnelogy

NATURE BIOTECHNOLOGY LETTERS

Methods

Reference datasets. The HomFam dataset was downloaded from the Clustal
Omega website (http://www.clustal.org/omega/homfam-20110613-25.tar.gz). It
features 94 families that contain homologous sequences extracted from Pfam 25.
Each dataset is associated with a smaller set of reference sequences for which a
structure-based alignment is available. For each family, the large-scale datasets are
produced by merging the reference and the homologous sequences into a single
file. The very large datasets were assembled by selecting 45 Pfam families whose
sizes range between 100,000 and 1.4 million sequences. Summary statistics of the
very large datasets are provided in Supplementary Table 7.

Multiple alignments and guide trees. The regressive algorithm is implemented in
T-Coffee (hash cd5090c in the GitHub repository) and uses third-party methods
for guide tree and sub-MSA computation. The sub-MSAs were produced using
Clustal Omega (v.1.2.4), UPP (v.4.3.4) and MAFFT (v.7.397) for Ginsl, Fftns1

and Sparsecore. The mBed and PartTree guide trees were estimated using the
-guidetree-out option of Clustal Omega and the -parttree option of MAFFT.
Random trees were generated by shuffling the taxa on the original mBed trees
(+newick_randomize option in T-Coffee/seq_reformat). Parent MSAs were
collected using a specific T-Coffee flag triggering their output as intermediate files
(DUMP_ALN_BUCKET=1).

Benchmarking, Benchmarking was carried out by aligning either the reference

or the large-scale datasets, and by comparing the projection of the reference
sequences with their reference alignment using the aln_compare option of the
T-Coffee package. This option supports the sum-of-pairs (fraction of pairs of
residues in the reference alignment found in the benchmark) and the TC score
(fraction of columns in the reference alignment found in the benchmark) metrics™.

Constrained correspondence analysis. Each alignment procedure (for example,
regressive ClustalO using mBed tTrees) is represented in the form of a string of
zeros and ones encoding its categorical variables (guide-tree method, aligner,
assembler). Within this string, each variable is encoded in a substring whose
length is equal to the number of levels (for example, number of alternative
guide-tree methods). These substrings therefore contain a single entry so that
the entire string sums to the number of variables for any given procedure (that
is, three in our case). Once encoded this way alignment procedures become

the rows of an indicator matrix that can be analyzed with dimensionality
reduction techniques such as multiple correspondence analysis. In constrained
correspondence analysis (CCA; also known as canonical correspondence
analysis) dimensionality reduction is guided by additional information about
each observation. In our case, this information is the accuracy (TC score) of
each alignment procedure averaged across the 20 datasets containing over 10,000
sequences. The application of CCA involves projecting the indicator matrix onto
a linear space defined by the accuracy vector”. The technique makes it possible to
then perform a singular value decomposition and displayed in the form of a biplot
as in Fig. 2b. Calculations were carried out using the R package Vegan (https://
cran.r-projectorg/package=vegan). Percentage variance explained is obtained by
dividing the eigenvalue of the respective axis with the sum of all the eigenvalues,
multiplied by 100.

Relationship between parent MSA identity and accuracy. The 75 HomFam
datasets containing more than 1,000 sequences were regressively aligned using
three guide-tree methods (mBed, PartTree and randomized mBed) along with
four MSA algorithms (ClustalO, Fftnsl, UPP and Sparsecore). For a given dataset,
the use of different guide trees usually results in different parent MSAs. We
therefore collected all 900 pairs of combinations involving the same dataset, the
same MSA algorithms and two different guide trees. Results were compiled in a
contingency table counting increase or decrease of the parent MSA percent identity
as well as increase or decrease of the MSA accuracy (as measured by TC score).

A two-sided Fisher test (implemented in R) was used to test the null hy pothesis

of no association (that is, odds ratio 1). The ratio of the odds of increasing
accuracy versus decreasing accuracy was 0.85 times higher for the cases where
identity increased than for the cases where identity decreased (P < 0.29). To do

a comparable analysis across different datasets, we collected all the 33,000 pairs

of combinations involving a different dataset, the same MSA algorithms and the
same guide trees. Here, the odds of increasing versus decreasing accuracy were 4.1
times higher in the cases where identity increased than in the cases where identity
decreased (P<10-9).

NATURE BIOTECHNOLOGY | www.nature.com/naturebiotechnology

33

Computation. All computation was carried out on a cluster running Scientific
Linux release 7.2 with all guide trees, alignments and evaluations carried out within
a container based on the Debian (Jessie) operating system. The computational
pipeline (see the Code availability section) was implemented in the Nextflow
language* and was deployed in a containerized form using Singularity. Computation
was limited to 48 Gb of memory and 160 CPU hours. Given a HomFam family,
this pipeline generates the mBed and PartTree guide trees for both the reference
and the large-scale dataset. It then combines the selected aligners (ClustalO, Gins1,
Fftns1, Sparsecore and UPP) and the precomputed guide trees to generate
(1) a default alignment of the reference sequences (2) a default (that is,
nonregressive) alignment of the large-scale dataset and (3) a regressive alignment
of the large-scale dataset. Note that UPP and Sparsecore do not support external
guide trees and that their default alignments were therefore produced using the
default guide-tree procedures of these methods. A Docker image has been created
that contains all the pipeline dependencies. It is available from DockerHub
(https://hub.docker.com) and is available via the following command:

docker pull cherg/regressive-msa:cd5090c

The Dockerfile is also provided in the Git repository to allow for reuse and
addition of new tools. All command lines used by the pipeline are also provided in
the dedicated Supplementary Materials section (Supplementary Note 2).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
All data, analyses and results are available from Zenodo (https://doi.org/10.5281/
zenodo.3271452).

Code availability

The regressive alignment algorithm has been implemented in T-Coffee and

is available at the T-Coftee website (http://www.tcoffee.org) and on GitHub
(https://github.com/cberg/teoffee). A GitHub repository containing the Nextflow
workflow’ and Jupyter notebooks™ to replicate the analysis are available at
https://github.com/cbcrg/dpa-analysis (release v.1.2).

References

24. Thompson, J. D., Plewniak, F. & Poch, O. BABASE: a benchmark alignment
database for the evaluation of multiple alignment programs. Bioinformatics
15, 87-88 (1999).

25. Di Tommaso, P. et al Nextflow enables reproducible computational
workflows. Nat. Biotechnol. 35, 316-319 (2017).

26. Perkel,]. M. Why Jupyter is data scientists’ computational notebook of choice.
Nature 563, 145-146 (2018).

Acknowledgements

We thank G. Riddihough for revisions and comments on the manuscript and O. Gascuel
for suggestions. This project was supported by the Centre for Genomic Regulation, the
Spanish Plan Nacional, the Spanish Ministry of Economy and Competitiveness, ‘Centro
de Excelencia Severo Ochoa’ (EG., PT,, CM,, LE,,L.M,, AB.,EK, EF and CN.) and an
ERC Consolidator Grant from the European Commission, grant agreement no. 771209
ChrFL (EK.).

Author contributions

C.N. designed and implemented the algorithm. EE,E.G., L. M., A.B. and PD.T designed
the validation procedure and carried out the validation. LE. performed statistical and
CCA analyses. EE, CN,, E.G, CM, LM, A.B, PD.T, LE, FK. and H.L. wrote and
edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://dol.org/10. 1038/

s41587-019-0333-6.
Cor d ts for materials should be addressed to E.E or CN.

Reprints and permissions information is available at www.nature.com/reprints.

and

i

2.2: Supplementary Information

Supplementary Information for “Large multiple sequence alignments with a
root-to-leaf regressive method”

Supplementary Notes

Supplementary Note 1: Regressive algorithm pseudocode. The exact implementation is
available on the GitHub repository as part of the T-Coffee latest distribution
(https://github.com/cbcrg/tcoffee). The following pseudo-code provides a simplified
overview of a serial version of the algorithm assuming a binary tree in which every node is
labelled with the name of the longest sequence among its descendant leaves. The symhol
node refers to three-ways nodes in this binary tree where each node has a parent, a left
child, a right child and a label, with the exception of leaves that have no child and the root
thathas no parent. The regressive algorithm traverses the binary tree in a recursive fashion,
when doing so, it collects N sequences, multiply align them and merges the resulting sub-
MSAs. The code is initiated with the node=root of the labelled tree.

node2subMSA (node)
// expands node into a linked list
// start->nodel->...->nodeN->end
// Turns the linked list into a parent MSA
// recursively expand each parent MSA sequence into a child MSA
// merges every child MSA within the parent MSA
// returns the parent MSA
// gets initialized with node2subMSA (root)

i1f (node is leaf) return node->seqg

start = declare node() //empty start node
end = declare node ()} //empty end node

//define the linked list: start->node->end

node->next = end; end-> prev = node
node->prev = start; start-> next = node
n=1 / /sequences counter
nleaf=0 //leaf counter

//Expand all the nodes, one generation at a time
while (n<lN and ! (node==end and n==nleaves))

//rewind if all the nodes if
//the current generation has been expanded
if (node==end)node=start->next

//replace current node with its left and right children
//Turn pnode->node->nnode into pnode->left->right->nnode
if (node is not leaf)

pnode=node->previous

nnode=node->next

pnode->next=node->left
node->left->prev=pnode
node->left->next=node->right
node->right->prev=node->left

34

node->left->next=nnode
nnode->prev=node->left

//the sequence list is now one sequence longer
n=n+1

//keep advancing one node at a time
node=nnode

else
//keep track of the leaf nodes
nleaves=nleaves+tl

//Collect all the sequences from start->nodel->node2.. ->end
node=start->next
while (node !=end)

add node->label to Seglist

node=node->next

//Send collected sequences to a third party aligner
parent MSA=MSA Algorithm(SeqList)

//Treat each internal node in parent MSA as a start node
//collect each child MSA and merge it with parent MSA
node=start->next
while (node!=end)
child MSA=node2subMSA (node)
parent MSA=merge subMSAs (node->seq, parent MSA, child MSA)
node=node->next

//parent MSA contains ALL descendant sequences of node
//if node is the root, parent MSA is the final MSA
return parent MSA

MSA Algorithm (SeqgList)
subMSA=system (Run third party MSA Algorithm on SegList)
return subMSA

merge subMSAs (seqg, parent MSA,child MSA)
//seq is the representative sequence
//seq is present in parent MSA and in child MSA

foreach residues i of seq
parent gap=number of ‘-’ between i and i+l in parent MSA

child gap=number of ‘-’ between i and i+l in child MSA

columnP=parent MSA column containing residue i of seq
for each sequence in parent MSA

Insert child gap ‘-’ after columnP

columnC=child MSA column containing residue i of seq
for each sequence in child MSA

Insert parent gap ‘-’ after columnC
//parent MSA and Child MSA now have the same length

Replace seqg in parent MSA with all sequences of child MSA
Return parent MS3SA 35

Supplementary Note 2: Command Lines. The following section lists all the command
lines used for data generation.

Workflow deployment. [n order to carry out a reproducible deployment of guide tree and
alignments, the Nextflow workflow manager was used to deploy containerized versions of
the software using Docker or Singularity. Procedures described in the following section can
be reproduced by downloading the Nextflow software (www.nextflow.io) and running the
following command on the Homfam dataset:

nextflow run cbcrg/dpa-analysis --segs="./data/seqs/*.fa” --refs="./data/refs/*.ref’ -
with-singularity

The individual commands within the workflow are described below.

Large scale tree generation.
mBed and PartTree trees were generated as follows:

mBed:

clustalo -i ${seqgs} --guidetree-out ${id}.${tree_method}.dnd --force

PartTree:
t_coffee -other pg seq reformat -in ${segs} -action +seqg2dnd parttree -output newick >>
${id}.${tree_method}.dnd

This procedure is a wrapper for the MAFFT-PartTree command that produces a coded
binary tree, that must be recoded into a standard newick tree

mBed Random:
clustalo -i ${segs} --guidetree-out ${id}.CLUSTALO.dnd

t_coffee -other pg seq reformat -in ${id}.CLUSTALO.dnd -action +newick randomize 1 >>
${id}.${tree_method}.dnd

rm ${id}.CLUSTALO.dnd

Non-regressive MSA generation.
The following commands were used to generate non-regressive MSAs.

Clustal Omega:

clustalo —-infile=${segs} --guidetree-in=${guide tree} --outfmt=fa
—0 ${id}.std.${align method}.with.$5{tree method}.tree.aln
MAFFT-FFT-NS-1:

t_coffee -other pg seq reformat -in ${guide tree} -input newick -in2 ${segs} -input2
fasta_seq -action tnewickZmafftnewick >> ${id}.mafftnewick

newickZmafft.rb 1.0 ${id}.mafftnewick > ${id}.mafftbinary

/mafft/bin/mafft --retree 1 --anysymbol --treein ${id}.mafftbinary ${segs} >
${id}.std.${align_method}.with.${tree method}.tree.aln

MAFFT-G-INS-1:
t_coffee -other pg seq reformat -in ${guide tree} -input newick -in2 ${segs} -input2
fasta_seqg -action

+newick2mafftnewick >> ${id}.mafftnewick

newickZmafft.rb 1.0 ${id}.mafftnewick > ${id}.mafftbinary

ginsi —--treein §${id}.mafftbinary ${segs}
>${id}.std.${align method}.with.${tree method}.tree.aln

36

MAFFT-Sparsecore:

replace U.pl ${segs} // This is a Mafft pre-processing routine

/mafft/bin/mafft-sparsecore.rb -i ${segs} > ${id}.default.${align method}.aln

LIPE:

replace U.pl ${seqgs}

run_upp.py -s ${segs} -m amino -x 1 -o ${id}.default.${align method}

mv ${id}.default.${align method} alignment.fasta ${id}.default.${align method}.aln

Regressive MSA generation.

In the following command lines, the flag -dpa method refers to the alignment method
deployed by the T-Coffee. The exact command lines corresponding to these modes are
available from the file /ib/util lib/util constraints_list.c in the T-Coffee distribution and
are identical to the ones used for the non-regressive method in the previous section.

Regressive Clustal Omega:

t coffee -dpa -dpa method clustaloc msa —dpa_tree ${guide_tree} -seq ${segs} -dpa nseg
${bucket size} —outfile
${id}.dpa_${bucket size}.${align method}.with.${tree method}.tree.aln

Regressive MAFFT-FFT-NS-1:

t coffee -dpa -dpa method mafftfftnsl msa -dpa tree ${guide tree} -seqg ${segs} -dpa nseg
${bucket size} —outfile
${id}.dpa_${bucket size}.${align method}.with.${tree method}.tree.aln

Regressive MAFFT-G-INS-1:

t coffee -dpa -dpa method mafftginsi msa -dpa tree ${guide tree} -seqg ${segs} -dpa nseg
${bucket_size} —outfile
${id}.dpa_${bucket size}.${align method}.with.${tree method}.tree.aln

Regressive MAFFT-Sparsecore:

t_coffee -dpa -dpa method mafftsparsecore msa -dpa tree ${guide tree} -seq ${segs} -
dpa_nseg

${bucket size} -outfile

${id}.dpa ${bucket size}.${align method}.with.${tree method}.tree.aln

Regressive UPP:

t coffee -dpa -dpa method upp msa -dpa tree ${guide tree} -seg ${segs} -dpa_nseqg
${bucket size} -outfile

${id}.dpa_${bucket_size}.${align method}.with.${tree_method}.tree.aln

Benchmarking.
The commands used for the MSA evaluation using the metrics implemented with the T-
Coffee package using aln_compare were executed as follows:

Sum Of Pairs (SoP):

t _coffee -—other pg aln compare -all ${ref alignment} -al2? ${test alignment}.compare mode
sp | grep —v "seql" |grep -v '*' | awk '{ print \$4}' ORS="\t" >
"${id}.${align_type}.S${bucket size}.${align method}.${tree_method}.sp"

Total Column Score (TC):

t_coffee -other pg aln compare -all ${ref alignment} -al2 ${test _alignment} -
compare mode tec | grep -v "seqgl" |grep -v '*' | awk '{ print \$4}' ORS="\t" >
"${id}.${align_type}.${bucket size}.5{align method}.${tree_method}.tc”

37

Supplementary Tables
Supplementary Table 1. Summary of SoP and TC values collected over HomFam datasets
of various sizes.

A Over 10.000 sequences - 20 Datasets
Sums of Pairs (SoP) Total Column Score (TC) CPU (5)
Non Non Non
Tree Method MSA Algorithm|regressive| Regressive | Referenceregressive | Regressive| Reference Jregressive | Regressive
Score (%0)| Score (%) | Score (%) Score (%0) | Score (%) | Score (%)

PartTree Ffins1 56.34 | 59.74 ‘ 77.10 29.64 ‘ 35.16 | 47.84 334 ‘ 118
mBed Ffins1 68.71 | 64.00 ‘ 78.20 4133 ‘ 3794 | 52.03 277 ‘ 155
PartTree ClustalO 50.13 | 66.58 ‘ 78.14 26.94 ‘ 4221 | 50.54 3,016 ‘ 377
mBed ClustalO 64.97 71.11 80.54 39.03 4191 5371 570 338

Average 60.04 65.36 78.50 34.24 39.31 51.03 1,049 247
defaultmBed UPP 70.95 72.39 80.27 43.80 47.15 49.88 8,353 7,186
defaultmBed Sparsecore 72.31 77.28 81.67 4498 51.06 5351 2,313 3,184
PartTree Ginsl - 71.51 78.20 - 47.54 4946 - 12477
mBed Ginsl - 77.14 81.66 - 50.20 53.07 - 10,833

B Between 1,000 and 10,000 sequences - 55 Datasets
Sums of Pairs (SoP) Total Column Score (TC) CPU (s)
Non Non Non
Tree Method MSA Algorithm]regressive | Regressive | Referenceregressive | Regressive | Reference Jregressive | Regressive
Score (%0)| Score (%) | Score (%)) Score (%0) | Score (%) | Score (%)

PartTree Ffins1 72.89 | 72.51 ‘ 84 .41 44381 ‘ 4743 | 60.33 9 ‘ 17
mBed Ffins1 80.77 | 78.29 ‘ 85.93 56.38 ‘ 5375 | 63.73 7 ‘ 28
PartTree ClustalO 74.44 | 78.25 ‘ 87.25 50.50 55.15 | 66.08 367 ‘ T
mBed ClustalO 83.15 83.17 87.91 6145 60.33 67.62 138 82

Average 71.81 78.06 86.38 53.29 54.16 64.44 130 51
defaultmBed UPP 80.13 80.83 85.67 59.01 5734 62.79 2,380 1,740
default'mBed Sparsecore 85.24 86.84 87.69 60.10 65.10 65.86 633 1,091
PartTree Ginsl - 83.53 ‘ 86.87 - ‘ 61.04 | 64.15 - ‘ 3,974
mBed Ginsl - | 87.44 ‘ 87.53 - ‘ 66.00 | 65.57 - ‘ 3,878

38

C Over 92 sequences - 94 Datasets

Sums of Pairs (SoF) Total Column Score (TC) CPU (s)
Non Non Non
Tree Method MSA Algorithm]regressive| Regressive | Referenceregressive | Regressive | Reference Jregressive | Regressive
Score (%0)| Score (%) | Score (%0)}Score (%) | Score (%0) | Score (%0)

PartTree Ffins1 70.95 | 71.71 ‘ 83.64 4411 ‘ 47.13 | 5943 76 ‘ 35
mBed Ffins1 78.46 | 75.99 ‘ 84.94 53.89 ‘ 5142 | 62.82 63 ‘ 49
PartTree ClustalO 71.28 | 77.89 ‘ 85.77 4781 5524 | 63.66 858 ‘ 126
mBed ClustalO 80.41 81.73 86.67 5825 5821 65.19 203 121

Average 75.28 76.83 85.26 51.02 53.00 62.78 300 83
defaultmBed UPP 78.44 79.25 85.04 5536 55.50 61.06 3,211 2,590
defaultmBed Sparsecore 82.86 84.92 ‘ 86.77 57.81 ‘ 62.14 | 64.06 880 ‘ 1,333
PartTree Gmsl - 81.66 ‘ 85.21 - ‘ 58.89 | 6143 - ‘ 5,021
mBed Ginsl - 85.14 ‘ 86.68 - ‘ 62.36 | 63.68 - ‘ 4,579

(A) Scores measured on the 20 HomFam datasets containing more than 10,000 sequences.
On each line, an Alignment algorithm is deployed in non-regressive and regressive mode
using a Tree Method. Reference indicates the score of the seed alignment using the non-
regressive method (note that seed alignments contain less than 10 sequences and are
identically aligned by regressive and non-regressive protocols). The Central Processing Unit
Time column (CPU) indicates the amount of time (seconds) used by the regressive and non-
regressive protocols respectively averaged by the number of datasets. Data displayed for
TC score is the same as used for Table 1 in the main text. In the SoP and TC sections, the best
scoring regressive readout is highlighted in yellow and the best non-regressive is framed in
red. The same layout is used on (B) where measures relate to the 55 datasets having
between 1,000 and 10,000 sequences and (C) for all the 94 HomFam datasets containing 92
sequences or more.

39

Supplementary Table 2. Wilcoxon signed-rank test p-values for differences between the
regressive and non-regressive readouts.

Clustal)

Finsl Fhinsl Spumecore Clustald ClassalO

MSA Algorithm Tree method PanTree mBed ParTree mBed mBed

MSA Algorithm Tree method Part Tree

Clustal0 mbd Clasealty

Clustalty Par(Tree 28 ClustalQ

Ffins] mbed L2 0miE Fimsl o
Finsl PartTree I Ffimsl 247E-
G

Ginsl Par(Tree

Clustald ClustalO Fiinal Ffnsl Sparsceste upp

ParTree mBed PanTree mBed mBed

p-value

(A) The p-value estimates the probability of the regressive and non-regressive having the
same accuracy distribution while using the alternative hypothesis of systematically higher
accuracies in the regressive mode (one-sided Wilcoxon signed-rank test, n=20 independent
MSA samples). The test was made on datasets larger than 10,000 and using the Total
Column score as a readout. Non-significant cells are colored in dark red (0.1<P<1), low
significance cells are in light green (0.01<P<0.1), green (0.001<P<0.01) and dark green
(P<0.001). The cells with bold borders contain p-values of the difference between directly
comparable protocols (i.e. analysis displayed in the same line in Table 1). Similar analyses
were made using SoP as a readout (B), TC and SoP for datasets containing between 1,000
and 10,000 sequences (C, D) respectively (n=55 independent MSA samples), and SoP and
TC on all the 92 HomFam datasets (E,F)(n=94 independent MSA samples).

40

Supplementary Table 3. Contingency table summarizing the accuracy impact of identity
variation in the parent MSA across alternative MSAs of the same dataset.

Contingency Table Across Replicates -
Same MSA algorithm, Different Tree Method, Same Dataset (%)

Delta TC>0 (%) |Delta TC=0 (%)|Delta TC<0 (%)
Delta ID>0 (%) 30.44 2.33 16.56
Delta ID=0 (%) 6.44 0 2.44
Delta ID<0 (%) 27.78 1.22 1278
SUM: 44.33 SUM: 43.22
Total Counts 900

Pairs of alternative alignments of the same dataset carried out with the same aligner but
different types of guide trees. On each MSA the accuracy was measured (TC) as well as the
identity level of the parent MSA. These accuracies and identities were then compared (Delta
TC and Delta ID) and the resulting variations were counted so as to fill up the matrix. The
entries highlighted in red and green correspond to the cases in which the variation in
identity and accuracy follow the same trend. The bottom left and right values provide the
sum of these entries respectively.

41

Supplementary Table 4. Contingency table summarizing the accuracy impact of identity
variation in the parent MSA across different datasets.

Contingency Table Across Datasets -
Same MSA Algorithm, Same Tree Method, Different Dataset (%)

Delta TC>0 (%)|Delta TC=0 (%)|Delta TC<0 (%)
Delta ID>0 (%) 46.26 0.09 12.56
Delta ID=0 (%) 2.01 0 1.29
Delta ID<0 (%) 17.86 0.07 19.87
SUM: 30.42 SUM: 66.13
Total Count 33300

Pairs of MSA of different datasets aligned regressively with the same MSA algorithm and the
same guide tree method. On each MSA the accuracy was measured (TC) as well as the
identity level of the parent MSA. These accuracies and identities were then compared (Delta
TC and Delta ID) and the resulting variations were counted so as to fill up the matrix. The
entries highlighted in red and green correspond to the cases in which the variation in
identity and accuracy follow the same trend. The bottom left and right values provide the
sum of these entries respectively.

42

Supplementary Table 5. Maximum number of sequences alighed before failure.

Maximum number of sequences aligned before failure

MSA Algorithm Tree Method Non-Regressive Regressive
ClustalO mBed 231,015 547,587
ClustalO PartTree 111,802 1,466,247

Fftns1 mBed 239,488 547,587
Fftns1 PartTree 231,015 1,466,247
UPP Internal 102,112 -
UPP mBed - 547,587
UPP PartTree - 1,466,247
Sparsecore Internal 102,112 -
Sparsecore mBed - 547,587
Sparsecore PartTree - 547,587

The 45 Pfam datasets were aligned while allowing for a maximum of 48 Gb RAM and 160
CPU hours. Instances were sorted by number of input sequences and the size of the first one
before failure was recorded. The largest value in this table corresponds to the largest
instance and no failure was recorded in the cases when this instance was computed.

43

Supplementary Table 6. Maximum number of sequences aligned.

Maximum number of sequences aligned

MSA Algorithm Tree Method Non-Regressive Regressive
ClustalO mBed 547,587 547,587
ClustalO PartTree 328,784 1,466,247

Fftns1 mBed 328,784 547,587
Fftns1 PartTree 328,784 1,466,247
UPP Internal 547,587 -
UPP mBed - 547,587
UPP PartTree - 1,466,247
Sparsecore Internal 239,488 -
Sparsecore mBed - 547,587
Sparsecore PartTree - 547,587

The 45 Pfam datasets were aligned while allowing for a maximum of 48 Gb RAM and 160
CPU hours. Instances were sorted by number of input sequences and the size of the largest
instance computed was recorded. The largest value in this table (1,466,247) corresponds to
the largest instance and no failure was recorded in the cases when this instance was

computed.

44

Supplementary Table 7. Summary Statistics of the 45 Pfam very large datasets.

Pfam 28.0 Number of Number of Pfam 28.0 Number of Number of
Family sequences residues Family sequences residues
PF00109 101,410 22,178,337 PF00534 149,489 24,374,699
PF00905 102,112 29,424,276 PF00441 150,307 22,687,171
PF00582 103,451 14,218,061 PF00990 150,766 23,128,632
PF00300 104,359 16,171,897 PF12796 153,445 14,522,139
PF02775 107,283 15,693,134 PF00196 164,479 9,256,339
PF01047 107,718 6,321,363 PF03989 164,807 7,773,328
PF08241 107,758 10,138,914 PF01381 167,775 9,003,662
PF00563 108,082 24,522,343 PF00077 168,023 15,697,587
PF00593 108,668 28,476,247 PF00550 181,816 12,094,854
PF00202 110,266 42,269,614 PF00575 190,207 14,166,906
PF02321 111,802 20,897,073 PF00171 194,683 81,211,833
PF00067 114,258 35,047,017 PF00270 200,180 33,127,148
PF00248 120,944 31,729,009 PF00583 204,075 16,632,252
PF00378 123,859 28,325,852 PF13193 209,971 16,068,392
PF13414 123,888 8,403,414 PF00392 231,015 14,526,574
PF01370 127,456 27,264,279 PF00069 232,632 54,927,145
PF03144 129,814 9,044,608 PF00486 239,488 18,215,882
PF07715 132,540 14,480,124 PF00501 284,906 110,619,523
PF13855 135,318 7,952,879 PF00571 286,447 16,639,225
PF02770 136,802 13,413,041 PF00440 328,784 15,284,061
PF01380 137,800 17,567,327 PF00072 547,587 61,076,537
PF00291 137,827 40,668,471 PF00005 1,466,247 216,811,560

PF02771 145,639 16,227,629

45

Chapter 3

Multiple Sequence Alignment Computation Using the T-Coffee Regressive Algorithm

Implementation

Edgar Garriga, Paolo Di Tommaso, Cedrik Magis, Ionas Erb, Leila Mansouri, Athanasios

Baltzis, Evan Floden, Cedric Notredame

Multiple Sequence Alignment. Methods in Molecular Biology, vol 2231. Humana, New York, NY.
https:/ | doi.org/ 10.1007/978-1-0716-1036-7_6

46

47

Check for
updates

Multiple Sequence Alignment Computation Using
the T-Coffee Regressive Algorithm Implementation

Edgar Garriga, Paolo Di Tommaso, Cedrik Magis, lonas Erb,
Leila Mansouri, Athanasios Baltzis, Evan Floden, and Cedric Notredame

Abstract

Many ficlds of biology rely on the inference of accurate multiple sequence alignments (MSA) of biological
sequences. Unfortunately, the problem of assembling an MSA is NP-complete thus limiting computation to
approximate solutions using heuristics solutions. The progressive algorithm is one of the most popular
frameworks for the computation of MSAs. It involves pre-clustering the sequences and aligning them
starting with the most similar ones. The scalability of this framework is limited, especially with respect to
accuracy. We present here an alternative approach named regressive algorithm. In this framework, sequences
are first clustered and then aligned starting with the most distantly related ones. This approach has been
shown to greatly improve accuracy during scale-up, especially on datasets featuring 10,000 sequences or
more. Another benefit is the possibility to integrate third-party clustering methods and third-party MSA
aligners. The regressive algorithm has been tested on up to 1.5 million sequences, its implementation is
available in the T-Coffee package.

Key words Sequence alignment, MSA, Guide tree, Progressive alignment

1 Introduction

Multiple sequence alignment (MSA) is an NP-complete problem
whose computation relies on approximate heuristic solutions. The
most common solution is the progressive method [1]. This method
starts by aligning the most similar sequences following a
pre-computed guide tree, but the accuracy drops when dealing
with a large number of sequences.

The regressive method [2] works the other way around and
starts by aligning the most diverse sequences going from the root of
the guide tree to the leaves. MSAs are constructed through a divide
and conquer process during which smaller MSAs — named
sub-MSAs — encompassing the more diverse sequences are gradu-
ally expanded until all sequences have been incorporated within the
final model. Extensive benchmark analyses carried out on Homfam

Kazutaka Katoh (ed.), Multiple Sequence Alignment: Methods and Protocols, Methods in Molecular Biology, vol. 2231,
https://doi.org/10.1007/978-1-0716-1036-7_6, © Springer Science+Business Media, LLC, pant of Springer Nature 2021

89

48

90 Edgar Garriga et al.

[3] and Pfam [4] have shown that the regressive algorithm is both
more scalable than regular methods — it was shown to align 1.5
million sequences — and also more accurate, especially when dealing
with datasets larger than 10,000 sequences.

An important characteristic of the T-Coffee implementation of
this algorithm is its modularity. It allows several third-party meth-
ods to be used in order to both estimate the guide tree and to apply
the most commonly used alignment algorithms — including the
consistency-based version of T-Coffee [5] — to perform the
sub-MSAs during the divide and conquer stage.

2 Materials

2.1 Equipment Setup

2.2 Procedure

221 Binary

e Computer: Any computer running Linux or Mac OSX with
access to the internet.

e Software: T-Coffee can be downloaded from http://teoftee.
org/Packages/Stable /Latest. It is distributed as a set of pre-
compiled binaries for Linux and Mac OSX platforms (32-bit or
64-bit) with a guided install procedure. This is the smoothest
and quickest way to install T-Coffee on a local machine, as it
comes with all the required components and does not require
any special user privileges. It is also possible to download the
source code from GitHub or use it from Conda or Docker
containers.

e Sequence to align: www.tcoffec.org/Projects/regressive/
datasets /protocols.tar.gz.

T-Coffee: obtaining and installing t-coffee

Install T-Coffee by following one of the following options,
some of them are possible to run on both Linux and MacOSX
operating systems (OS), and others are specific to each OS.

Linux
1. Download the installer package from http://tcoffec.org/
Packages/Stable /Latest /linux/

2. Grant execution permission to the downloaded file with the
following command:
chmod +x T-COFFEE_installer_<version_xxx>.bin

3. Launch the installation wizard with
./T-COFFEE _installer_<version_xxx>.bin

4. Follow the wizard instructions and complete the installation.

5. Open a new terminal session to be sure that your environment
is updated.

49

2.22 Compilation from
Source

223 Docker

2.24 Conda

T-Coffee Regressive Algorithm Implementation 91

6. Type the following command to verify that the installation was
successtul:
t_coffee -version

MacOSX
1. Download the T-COFFEE_distribution_Version <version>.
tar.gz package from http://tcoffee.org/Packages/Stable /Lat
est/.

. tar -ovf T-COFFEE_distribution_Version_<version>.tar.gz.

. ¢d T-COFFEE_distribution_Version_<version>_.

. type . /install all.

oo b

. Follow the instructions of the installer to update your
environement.

>

. Type the following command to verify that the installation is
successful:
t_coffee —version.

1. Follow the instructions from the T-Coffee GitHub page: www.
github.com/cberg /teoffee

2. Go inside the source folder
cd t_coffee/src

3. Compile the package with
make t_coffee

4. Add the compile folder in your path.
mv t_coffee /bin/
From the command line, you can download the docker container
with the following command:

docker pull cberg/teoffee_protocols

You can use the container with any of the workflow managers,
or run it in an iterative mode using the command:

docker run -ti --mount type=bind,source=/<path_to_data>/,
target=/<container_data_folder> /cbcrg/tcoffee_protocols

To install the conda package, you should download from bioconda
channel with the following command:

conda create --name tcoffee_protocols -¢ bioconda t-coffee
conda activate tcoffee_protocols.

This package includes all the third-party software needed for
this protocol, but we can always generate an environment combin-
ing T-Coffee with other software.

50

92 Edgar Garriga et al.

3 Methods

The T-Coftee regressive algorithm has been developed to allow the
computation of ultra-large MSAs. The algorithm’s main steps are as
follows:

— 1: Computation of a rooted guide tree using any relevant
method, including mBed [6] and PartTree [7] (see Note 1).

— 2:Label each node with the label of the longest sequence among
its progeny (see Fig. 1), (i.e., the root will be labeled with the
longest sequence), Fig. 1.

— 3: Starting from the root node (parent node), and going one
generation at a time, collect N nodes— N is a free parameter. In
Fig. 2, Nisset to 3 but in practice, N is set to 1000. Its value can
be changed via the parameter -reg_nseq

Fig. 1 From the naked guide tree, the algorithm starts from the leaf until the root labeling the internal nodes
with the longest sequence of the children

Fig. 2 From the root of the guide tree, N sequences are collected, (W = 3 in this example.) This is repeated
recursively on the remaining nodes until all the leaf nodes are included in one of the subMSAs

51

T-Coffee Regressive Algorithm Implementation 93

5 a il o

9 e by

12

1

5 8.

9 O,DL."'L’,

3 o D &) LIg —
& q Q)

12 y o

2 Any Multipler Aligner

8

Fig. 3 Once all the small groups are defined, itis possible to generate the subMSAs in a parallel way using any
third-party alignment software

5
9
12 P QR S R G e . I i
12 =P @R Q =R S =R S
12 = P Q=R §8S =R &8 S — :::- ::
2
8

Fig. 4 Parent and children subMSAs are merged using the common sequence (12) projecting indels from
parent to child and from child to parent

— 4: Carry out an MSA of the N Sequences that label the N nodes.
For instance, in Fig. 2, with N = 3 this will involve sequences
5,9, and 12 (blue envelope). This MSA is named a parent
subMSA, and it can be computed using any third-party aligner.

— 5: Run steps 3—4 on every node selected in #3 that is not a leaf,
the resulting subMSAs will be the children MSAs of the parent
subMSA computed one step carlier. For instance, in Fig. 3, the
children subMSAs will be made of sequences (1,5), (9,3), and
(12,2,8). The procedure stops once every leaf node has been
incorporated in an MSA.

— 6: Since every MSA shares the sequence of its parent node with
its parent MSA| the children and their parent subMSAs can be
combined through these common sequences without the need
of an extra alignment step, as shown in Fig. 4. Combining the
subMSAs merely involves stacking the columns linked by their
common sequence (see Notes 2 and 3).

The regressive algorithm has been shown to have exceptional
scalability [2]. One of the reasons for this is the reliance on a strict
divide and conquer procedure that never involves aligning more
than N sequences. As a consequence, for M input sequences, the

52

94 Edgar Garriga et al.

3.1 Validated Method
Combinations

3.1.1 Fast and Accurate

3.1.2 Slower and More
Accurate

deployment of any third-party method — regardless of its original
complexity — becomes linear in time and memory as it merely
involves carrying out M/N individual MSAs. Moreover, the inde-
pendence of these MSAs makes their computation an embarrass-
ingly parallel problem.

Aside from its algorithmic properties, the regressive implemen-
tation of the T-Coffee algorithm also brings many added benefits
through the seamless integration of a large number of third-party
clustering and alignment methods. Overall, five clustering methods
are supported along with five multiple sequence aligners. The
package comes along with an extensive documentation allowing
non-supported alignment methods to be incorporated via simple
configuration files.

In the next section we explore various combinations of cluster-
ing methods and alignment algorithms that allow users to explore
different trade-offs between accuracy and efficiency. For instance, it
is possible to very rapidly estimate ultra-large models by combining
the fastest clustering method (PartTree) with the fastest MSA
method (MAFFT default). The same framework makes it possible
to combine a slower but more accurate tree method (like mBed)
with a very accurate MSA method (like MAFFT-ginsi) that only
allows aligning a few hundred sequences but can be massively
scaled-up by the regressive framework.

The following combinations of pre-clustering and alignment meth-
ods were validated in the original paper for their relative speed and
accuracy. They are recommended for large scale analysis.

This mode offers the best trade-off between speed and accuracy. It
relies on the Clustal Omega (ClustalO; Chapter 1) [3] mBed trees
that were found to yield the highest accuracy on large datasets,
while the combination of these guide trees with the ClustalO
aligner results in alignments of reasonable accuracy.

t_coffee -reg -seq glutsfasta -reg_nseq 1000 -veg_tree mbed
-req_method clustalo_msa -outfile gluts.aln -outtree gluts.mbed

As discussed earlier, the regressive algorithm framework can be
used to deploy methods that would be prohibitive on any dataset
larger than 1000 sequences. In the example below, we show how
the MAFFT-ginsi method can be deployed on large datasets. On
the HomFam dataset, this protocol required about 4.7 times more
CPU time (as compared with the fast approximate mode using
fftnsl), but resulted in a 21% improvement in the number of
correctly aligned columns.

t_coffee -reg -seq glutsfasta -reg_nseq 1000 -veg_trvee mbed
-reg_method mafftginsi_msa -outfile gluts.aln -outtree gluts.
mbed

53

3.1.3 \ery Fast
and Approximate

3.1.4 Further Method
Combinations

T-Coffee Regressive Algorithm Implementation 95

On the other end of the spectrum, the combination of the fastest
aligner with the fastest clustering method provides the most effi-
cient alignment method currently available. This combination is
about 3 times faster than the fast and accurate ClustalO
combination.

t_coffee -reg -seq glutsfasta -veg_nseq 1000 -reqg_tree parttree
-reg_method maffiffinsi_msa -outfile gluts.aln -outtree gluts.
parttree

A major strength of the regressive algorithm is its capacity to
support any method combination of interest to the user. All these
combos have not been validated so far, but they are nonetheless
supported and available for exploration.

One of the main limitations of both the progressive and the
regressive procedures is the generation of the guide tree because
not all the clustering methods are able to handle a large number of
sequences.

The Regressive method has the advantage that it allows to use
any clustering method from which a tree can be obtained, making it
possible to use algorithms that work well with big data.

T-Coffee offers some built-in options for building trees from a
range of clustering algorithms, and they can be used with the -
reg_tree flag.

- mbed: use mBed mode of ClustalO — Default
- cwdnd: use the quicktree mode of Clustal W

- parttree: parttree method of MAFFT—fastest option. Does not support
sequences less than 6 AA long

- dpparttree: MAFFT fast clustering method

- fastparttree: MAFFT fast clustering method

- mafftdnd: default MAFFT tree—slower than the parttree modes

- ffinsldnd: Tree produced after the first iteration MAFFT fftns mode

- ffins2dnd: Tree produced after the second iteration MAFFT fftns mode

- upgma: upgma tree—warning cubic time computation
- nj: Neighbour Joining tree
- #<command=>: Runs command <seq> > <tree>.

- filename: Any file in newick format. The seq file and the tree file must
match

Thanks to the possibility to freely combine guide trees and
alignment methods, the regressive algorithm allows the usage of
highly accurate methods (limited to a small set of sequences) or less

54

96

Edgar Garriga et al.

accurate but faster methods. Users can create and explore their own
combinations via the flag -reg_method that makes T-Coffee use a
set of built-in aligners.

ktup_msa

blastp_msa

clustalo_msa

clustaloNF_msa

clustalw2_msa

clustalw_msa

uppNF_msa

upp_msa

msa_msa

dca_msa

mafftsparsecore_msa

maffitest_msa

mafft_msa

The -reg_nseq flag is the only free parameter. This parameter

defines the maximum number of sequences in the subMSAs. It
allows to use more accurate methods that can only handle a limited
number of sequences. There is also a tradeoff between the size of
the subMSAs and the CPU time. Based on results in [3], we have
defined this size to 1.000 sequences as a default value.

The optimal value may change somewhat depending on the

guide tree and the alignment methods as well as the type of
sequences to be aligned.

4 Notes

1. One of the possible issues of this method occurs in step #1,
where the guide tree computation is required. Some of the
classic methods are not able to handle large amounts of
sequences and they may fail at delivering a guide tree. Yet,
provided a guide tree is available, most methods can be
deployed using the regressive mode of T-Coffee.

2. An important contribution to scalability results from the way

the final MSA is assembled. Because it results from the combi-
nation of sub-MSAs containing a common sequence, the gaps
do not need to be stored in memory, and they can be kept as

55

T-Coffee Regressive Algorithm Implementation 97

counts and eventually written on disc once the computation is
finished. This allows the computation of models larger than the
available RAM without any disk swapping,_.

. It is worth mentioning that the regressive implementation of

T-Coffee explicitly avoids aligning non-homologous indels
(i.e., indels having occurred independently according to the
guide tree). These indels are concatenated rather than aligned.
This process has two consequences: it can result in rather large
MSAs (i.e. large number of columns), and it means that given
two alternative guide trees (i.c., mBed and PartTree), the one
producing the MSA containing the smallest number of gaps is

probably the most accurate.

We acknowledge Des Higgins and Olivier Gascuel for useful dis-

Acknowledgments

cussions and feedback.
References
1. Hogeweg P, Hesper B (1984) The alignment of

sets of sequences and the construction of phy-
letic trees: an integrated method. J Mol Evol
20:175-186. https: //doi.org,/10.1007 /
bf02257378

. Garriga E, Di Tommaso P, Magis C etal (2019)

Large multiple sequence alignments with a root-
to-leaf regressive method. Nat Biotechnol 37
(12):1466-1470

. Sievers F, Wilm A, Dineen D et al (2011) Fast,

scalable generation of high-quality protein mul-
tiple sequence alignments using Clustal omega.
Mol Syst Biol 7:539. https: //doi.org,/10.1038 /
msb.2011.75

. Finn RD, Bateman A, Clements J ct al (2014)

Pfam: the protein families database. Nucleic

56

Acids Res 42:D222-D230. https://doi.org/
10.1093 /nar/gkt1223

. Notredame C, Higgins DG, Heringa J (2000)

T-coffee: a novel method for fast and accurate
multiple sequence alignment.] Mol Biol
302:205-217. https: //doi.org/10.1006/jmbi.
2000.4042

. Blackshiclds G, Sicvers F, Shi W et al (2010)

Sequence embedding for fast construction of
guide trees for multiple sequence alignment.
Algorithms Mol Biol 5:21. https: //doi.org/10.
1186,/1748-7188-5-21

. Katoh K, Toh H (2007) PartTree: an algorithm

to build an approximate tree from a large num-
ber of unaligned scquences. Bioinformatics
23:372-374. https: //doi.org,/10.1093/bioin
formatics /btl592

57

Chapter 4

Nextflow integration for the Research Object Specification

Edgar Garriga, Paolo Di Tommaso, Cedric Notredame

Zenodo https:/ [doi.org/ 10.5281/ zenodo. 1323831

58

59

Nextflow integration for the

Research Object Specification

Edgar Garriga Nogales
Centre for Genomic Regulation (CRG)
The Barcelona Institute for Science and
Technology
Barcelona, Spain
edgar.garriga@crg.eu

Keywords—
provenance

nextflow, research object, reproducibility,

I INTRODUCTION

For reproducibility criteria to be met in a scientific
context an increasing number of conditions need to be
fulfilled. These conditions, explicited by the FAIR principle
include traceability, reusability and data/methods permanent
availability (findable). The challenge is not only to keep the
right elements bundled together, but also to keep track of
each component individual history (including individual
updates) while associating every computational analysis
with a transparent source. This issue, known as provenance,
is the one we have been addressing in the context of this
proposal. It is increasingly critical, at a time when a growing
number of computational procedures are used to assess
medical risks and take therapeutic decision. Our solution
involves using the Research Object (RO)[1] specification
that have allowed us to implement a method that enables the
creation of a package collecting all provenance metadata of
a computational experiment, so that it can be easily shared,
archived and reproduced when needed.

In practice, keeping all the required information bundled
together (paper, slides, methods, pipelines, etc) can be
challenging, especially when adding the constraint of fine
grain querying. The aim of this this proposal is to create a
package based on the Research Object specification. Thanks
to this procedure, all the provenance information of a
computation experiment that can be easily collected, shared
and archived

We show here how a slight adaptation of a workflow
tool like Nextflow[2] can allow for the seamless transfer of
unique ID tags to various elements of data thus making it

60

Paolo Di Tommaso
Centre for Genomic Regulation (CRG)
The Barcelona Institute for Science and
Technology
Barcelona, Spain
paolo.ditommaso(@crg.eu

Cedric Notredame
Centre for Genomic Regulation (CRG)
The Barcelona Institute for Science and
Technology
Barcelona, Spain
cedric.notredame@crg.eu

easier to trace the data and its associated objects for citation
purposes.

1I. MEeTHOD

Nextflow is a framework based on the dataflow
programming model, which simplifies the writing of parallel
and distributed pipelines. Given a multi-step pipeline,
Nextflow allows explicit dependencies to be declared
between tasks thus allowing output and input to be piped
across the workflow, with specific operation possibly carried
out between tasks (merge, sort, split, etc...). The tasks
themselves are usually encapsulated in containers and
deployed by Nextflow across computational platforms
(Amazon cloud, legacy batch schedulers,Kubernetes, etc.).
Being able to decompose a pipeline into multiple processes,
possibly written in different scripting languages (Bash, Perl,
Python, etc.) simplifies the pipeline development. A major
advantage of Nextflow is its ability to deploy the execution
of a pipeline across multiple platforms.

Research Object is a method for the identification,
aggregation, and exchange of information. The primary goal
is to provide a way of associating together related resources
from the same project, (i.e. the pipeline, auxiliar scripts,
data, slides or the final article).

The Research Object concept is motivated by a desire to
improve the reproducibility of computational methods and
experiments. Its main three principles are: Identity,
providing a unique identifier to the project, as the DOI for
the publication or the ORCID for the scientist. Aggregation,
allowing the author to wrap all the elements used for the
project (i.e. slides, article, scripts, etc.). With the Research
Object, we can share all the elements of a project together
with the same ID. Finally, the last main principle of

Research Object is the Annotation, a specific layer of
metadata that explicitly defines the relation between
clements, as well as their time and mode of production[3].
As such, the RO technology allows having in the same
package human and computer readable data while making
the projects traceable and FAIR compliant.

1I1. IMPLEMENTATION

The integration will make Nextflow able to produce a zip
file with the following structure:

-A Data folder, with all the input files of our pipeline.

-The Workflow folder containing all the files of the
pipeline base directory (e.g. the main Nextflow script or the
config file of the pipeline).

-The Snapshot folder is the one used re-execute the
pipeline with the same parameters if its needed.

-The Metadata folder contains the log file of the past
executions, the metadata file with information about the
container used and the Nextflow version. The metadata
folder contains the provenance file too. With this file we can
see how and when the intermediate files where generated,
and which process used them as an input.

-The Output folder, where the output of the execution is
stored.

-The RO folder, containing RO’s manifest with
information about the author and the creation of the RO.

IV. REesuLTs

The Nextflow-RO integration allows the creation of an
RO package when executing a Nextflow workflow. The
result is a single package with a unique identification

61

(identity) containing all the important files of the project
(aggregation) like the metadata, logs, results and the
workflow directory. Another important value of this
integration is the generation of the provenance annotation.
This information makes it easier to share and reproduce an
analysis. It also increases the transparency on the procedure
behind the analysis. These three elements contribute towards
the three core principles of RO.

The main current limitation involve capturing all the
relevant data in a non-user dependent way. Another issue is
the burden of metadata capture on the user side, since even
small scale analysis can easily generate metadata with a size
larger than both the raw data and the final analysis. In a
future work we plan to continue developing this feature,
evolving as much as possible with the community's
feedback, we will try to increase the provenance level and
make the generation process as user-friendly as possible.

REFERENCES

[1] Khalid Belhajjame, Jun Zhao, Daniel Garjo, Matthew Gamble,
Kristina Hettne, Raul Palma, Eleni Mina, Oscar Corcho, José Manuel
Gomez-Pérez, Sean Bechhofer, Graham Klyne, Carole Goble (2015)
Using a suite of ontologies for preserving workflow-centric research
objects, Web Semantics: Science, Services and Agents on the World
Wide Web, https://do1org/10.1016/). websem 2015.01.003

[2] P. D1 Tommaso, et al. Nextflow enables reproducible computational
workflows. Nature Biotechnology 35, 316319 (2017)

[3] Farah Zaib Khan, Stian Soiland-Reyes, Michael R. Crusoe, Andrew
Lonie, & Richard O. Sinnott (2018). CWLProv - Interoperable
Retrospective Provenance capture and its challenges. Zenodo.
http://do1.org/10.528 1/zenodo. 1215611

Chapter 5: Discussion

- Large multiple sequence alignments with a root-to-leaf regressive method
Multiple sequence alignments are required for various biological tasks such as functional
predictions, structural modeling, and phylogenetic inference. As the size of the datasets
utilized in these applications grows, so must the methodologies used to analyze them. A
novel agglomerative multiple sequence alignment technique is described whose scaling up
capacities beat all known methods in terms of accuracy in chapter 2, regressive computing
of large scale multiple sequence alignments.

The challenge of calculating proper multiple sequence alignments is NP-complete. Because
there is no guarantee of a precise result, all known solutions are based on approximate
heuristics. The use of heuristics necessitates revisiting and readapting these procedures
whenever the nature of the problem changes, even if only a little. For example, the growing
demand for progressively massive datasets has revealed an unanticipated restriction of the
current alignment architecture, known as progressive alignment, in recent years. When the
number of sequences exceeds a thousand homologs, contrary to popular belief, alignment
accuracy declines.

This discovery came as a complete surprise because it had long been known that its relative
alignhment accuracy would improve when a set of sequences was embedded within a bigger
dataset. This constraint is significant since it pulls the existing MSA scaling paradigm to a
dead-end road. Furthermore, it raises substantial issues about our ability to properly
integrate the biological data generated by the new genome projects.

I provide a straightforward and incredibly successful way to scale-up MSA modeling
methods referred to as regressive by referring to the progressive algorithm. Sequences are
clustered using a guide tree that dictates the order in which they will be aligned when
executing a progressive (or regressive) alignment. The progressive alignhments begin with
the most similar sequences - sister leaves - and work their way down to the root. The
regressive solution uses the same guide-tree, but instead of going from leaf to root, we
employ it to collect the most diverse sequences and then start aligning them; the same
algorithm is then reapplied as we get closer to the root. All subsequent alignments are
grafted onto the scaffold of the initial alignment, which contains the most varied sequences.

The implemented technique enables the usage of typical large-scale aligners such as Mafft

(Katoh et al., 2002), ClustalO (Sievers et al., 2011), and UPP (Nguyen et al., 2015) in both a

62

https://www.zotero.org/google-docs/?rj5s7p
https://www.zotero.org/google-docs/?igC44w
https://www.zotero.org/google-docs/?YIh1X0

regressive and progressive manner for validation purposes. This strategy allows us to
separate each algorithmic component's contribution and conclude that the regressive
solution is preferable to the progressive option. On the 20 biggest reference datasets in
HOMFAM, the regressive method outperforms the progressive approach by around 6.5
percentage points on average (10,000 to 93,000 sequences). More crucially, the regressive
framework's improved scalability allowed us to use small-scale, very accurate approaches
like mafft-ginsi on huge datasets for which they were not designed. The alignments
produced are the most precise ever reported on these datasets. This result is of immediate
practical utility to the community because it comes with a mature production software

created in T-Coffee (Notredame et al., 2000), and it is available on GitHub.

On the other hand, the regressive algorithm is much more than a new piece of software.

By clearly separating the guide-tree and the aligners, the regressive method redefines the
scope of research in multiple sequence alignment computing. It permits the
implementation of an apparent contradiction between the development of increasingly
faster and more exact clustering algorithms on the one hand, and the construction of very
accurate small scale aligners on the other. The two independent groups will contribute their
distinct strengths and develop fresh approaches whose availability is crucial for the future
of biology, it is claimed, by explicitly severing the relationship between alighment and

clustering,

- Multiple Sequence Alignment Computation Using the T-Coffee Regressive
Algorithm Implementation

Complex pipelines containing multiple third-party tools, with many dependencies on
external scripts, libraries, environmental variables, etc., must be built to undertake
large-scale comparative bioinformatics analyses. Due to the volume of data they must
process, these pipelines demand high-performance computing (HPC) resources, which
means they must frequently be transported from a laptop to a powerful desktop computer,
a cluster, or even a cloud or supercomputer. Routine bioinformatics analysis is difficult to
reproduce due to these reasons plus a mix of difficult-to-control factors.
Developing a new paradigm to perform MSAs where the target is the alignment of millions
of sequences is great, but it’s better to allow people to use it. And this is the goal of this

project of chapter 3. The idea is to build solutions for easy usage of the Regressive method

63

https://www.zotero.org/google-docs/?5BWAbk

and add the extra value of reproducibility, portable, and with the capacity to scale with zero
effort thanks to the workflow manager Nextflow (Di Tommaso et al., 2017).

One of the learnings of this project is the necessity of good maintenance of the software.
During the process of building the containers and standardization of the methods, some
problems appeared. Software without maintenance, incompatibility of some programs with
today’s technologies, or software without documentation or behind paywalls have become
unusable. For example, the Regressive methodology opens the door to use aligners very
accurately but only with the ability to align a few sentences. These aligners were developed
decades ago, and they were a bit “forgotten in a drawer”. Now it’s time to explode their
accuracy. Still, it has been impossible or very hard during this project. These difficulties go
beyond the idea of the need for this effort of containers and good documentation or a

manuscript as the one published.

- Nextflow integration for the Research Object Specification

The concept of reproducible genomic analysis becomes more important than ever at a time
when the precision medicine program is about to introduce the systematic use of -omics
data in our daily lives. Unfortunately, wet lab experiment variation is frequently thought to
be the cause of reproducibility concerns. Nextflow is a mechanism for managing
computational workflows that offers a simple and efficient solution to this issue. It is
demonstrated how Nextflow allows current pipelines to be deployed efficiently and stably,
providing a long-awaited solution to the problem of ensuring computational reproducibility
when doing -omics data processing,

Thanks to the Google Summer of Code, it was possible to add some functionality to
Nextflow. The project is explained in chapter 4, and the idea is to produce a Research
Object (RO) (Belhajjame et al., 2015). Once finished the project, the most exciting part was
not only the RO by itself. The idea of provenance in Nextflow is quite interesting, Adding
this extra value thanks to the metainformation is desirable. It is being able to know ‘who’
ran the analysis, in which environment, when, and the exact version of the software and the
parameters. This adds a level to the reproducibility schema and can be helpful in
personalized medicine.

One of the needs discovered in this project was the GUI for provenance. RO was not
meant to show the data and file in a friendly way. But provenance needs a bit of work

because Nextflow can produce a massive amount of metainformation (for each process,

64

https://www.zotero.org/google-docs/?FyvqFy
https://www.zotero.org/google-docs/?xc2QD7

cach task, workflow run, etc.) a. Itld be very useful/powerful with an appropriate interface.
It could be a web interface thanks to the functionality of Tower (tower.nf) or the great

community of nf-core (Ewels et al., 2020)

65

https://www.zotero.org/google-docs/?EmWK4w

Bibliography

Apostolico, A., & Galil, Z. (Eds.). (1997). Pattern Matching Algorithms. Oxford
University Press. https://doi.org/10.1093/0s0/9780195113679.001.0001

Baeza-Yates, R., & Navarro, G. (1996). A faster algorithm for approximate string
matching. In D. Hirschberg & G. Myers (Eds.), Combinatorial Pattern Matching
(pp. 1-23). Springer. https://doi.org/10.1007/3-540-61258-0_1

Baeza-Yates, R., & Navarro, G. (1998). Fast approximate string matching in a
dictionary. Proceedings. String Processing and Information Retrieval: A South
American Symposium (Cat. No.98EX207), 14-22.
https://doi.org/10.1109/SPIRE.1998.712978

Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma, R., Mina, E.,
Corcho, O., Gomez-Pérez, J. M., Bechhofer, S., Klyne, G., & Goble, C. (2015).
Using a suite of ontologies for preserving workflow-centric research objects.
Journal of Web Semantics, 32, 16-42.
https://doi.org/10.1016/j.websem.2015.01.003

Blackshields, G., Sievers, F., Shi, W., Wilm, A., & Higgins, D. G. (2010). Sequence
embedding for fast construction of guide trees for multiple sequence alignment.
Algorithms for Molecular Biology, 5(1), 21.
https://doi.org/10.1186/1748-7188-5-21

Boytsov, L. (2011). Indexing methods for approximate dictionary searching:
Comparative analysis. ACM Journal of Experimental Algorithmics, 16,
1.1:1.1-1.1:1.91. https://doi.org/10.1145/1963190.1963191

Burrows, M., & Wheeler, D. (1994). A block-sorting lossless data compression

algorithm. Digital SRC Research Report.

66

https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u

Chang, J.-M., Di Tommaso, P., & Notredame, C. (2014). TCS: A new multiple sequence
alignment reliability measure to estimate alignment accuracy and improve
phylogenetic tree reconstruction. Molecular Biology and Evolution, 31(6),
1625—-1637. https://doi.org/10.1093/molbev/msu117

Chatzou, M., Magis, C., Chang, J.-M., Kemena, C., Bussotti, G., Erb, I., & Notredame,
C. (2016). Multiple sequence alignment modeling: Methods and applications.
Briefings in Bioinformatics, 17(6), 1009—1023.
https://doi.org/10.1093/bib/bbv099

Davidson, S., Cohen-Boulakia, S., Eyal, A., Ludascher, B., McPhillips, T., Bowers, S.,
Anand, M. K., & Freire, J. (2007). Provenance in Scientific Workflow Systems.
7.

Dayhoff, M. O., & Schwartz, R. M. (1978). A model of evolutionary change in proteins.
In Atlas of Protein Sequence and Structure.

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., & Notredame,
C. (2017). Nextflow enables reproducible computational workflows. Nature
Biotechnology, 35(4), 316—319. https://doi.org/10.1038/nbt.3820

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik. https://doi.org/10.1007/BF01386390

Do, C. B., Mahabhashyam, M. S. P, Brudno, M., & Batzoglou, S. (2005). ProbCons:
Probabilistic consistency-based multiple sequence alignment. Genome
Research, 15(2), 330-340. https://doi.org/10.1101/gr.2821705

Edgar, R. C., & Batzoglou, S. (2006). Multiple sequence alignment. Current Opinion in
Structural Biology, 16(3), 368-373. https://doi.org/10.1016/j.sbi.2006.04.004

Ewels, P. A., Peltzer, A, Fillinger, S., Patel, H., Alneberg, J., Wilm, A., Garcia, M. U., Di
Tommaso, P., & Nahnsen, S. (2020). The nf-core framework for
community-curated bioinformatics pipelines. Nature Biotechnology, 38(3),

276-278. https://doi.org/10.1038/s41587-020-0439-x

67

https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u

Garriga, E., Di Tommaso, P., Magis, C., Erb, |., Mansouri, L., Baltzis, A., Laayouni, H.,
Kondrashov, F., Floden, E., & Notredame, C. (2019). Large multiple sequence
alignments with a root-to-leaf regressive method. Nature Biotechnology, 37(12),
1466-1470. https://doi.org/10.1038/s41587-019-0333-6

Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of
Molecular Biology, 162(3), 705—-708.
https://doi.org/10.1016/0022-2836(82)90398-9

Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press.
https://doi.org/10.1017/CB0O9780511574931

Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences of the United States
of America, 89(22), 10915—-10919. https://doi.org/10.1073/pnas.89.22.10915

Hirschberg, D. S. (1975). A linear space algorithm for computing maximal common
subsequences. Communications of the ACM, 18(6), 341-343.
https://doi.org/10.1145/360825.360861

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer,
C., Kohl, S. A. A,, Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S.,
Jain, R., Adler, J., ... Hassabis, D. (2021). Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873), 583-589.
https://doi.org/10.1038/s41586-021-03819-2

Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic Acids

Research, 30(14), 3059—-3066. https://doi.org/10.1093/nar/gkf436

68

https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://doi.org/10.1093/nar/gkf436

Katoh, K., & Toh, H. (2007). PartTree: An algorithm to build an approximate tree from a
large number of unaligned sequences. Bioinformatics (Oxford, England), 23(3),
372-374. https://doi.org/10.1093/bioinformatics/btl592

Kececioglu, J. (1993). The maximum weight trace problem in multiple sequence
alignment. Combinatorial Pattern Matching - 4th Annual Symposium, CPM
1993, Proceedings, 106—119. https://doi.org/10.1007/bfb0029800

Kececioglu, J. D., Lenhof, H. P., Mehlhorn, K., Mutzel, P., Reinert, K., & Vingron, M.
(2000). A polyhedral approach to sequence alignment problems. Discrete
Applied Mathematics, 104(1-3), 143—-186.
https://doi.org/10.1016/S0166-218X(00)00194-3

Kemena, C., & Notredame, C. (2009). Upcoming challenges for multiple sequence
alignment methods in the high-throughput era. Bioinformatics, 25(19),
2455-2465. https://doi.org/10.1093/bioinformatics/btp452

Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for
mobility of compute. PloS One, 12(5), e0177459.
https://doi.org/10.1371/journal.pone.0177459

Liu, Y., Schmidt, B., & Maskell, D. L. (2010). MSAProbs: Multiple sequence alignment
based on pair hidden Markov models and partition function posterior
probabilities. Bioinformatics (Oxford, England), 26(16), 1958—1964.
https://doi.org/10.1093/bioinformatics/btq338

Merkel, D. (2014). Docker: Lightweight Linux containers for consistent development
and deployment. Linux Journal, 2014(239), 2:2.

Michener, C. D., & Sokal, R. R. (1957). A Quantitative Approach to a Problem in
Classification. Evolution, 11(2), 130-162.

https://doi.org/10.1111/j.1558-5646.1957.tb02884 .x

69

https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://doi.org/10.1111/j.1558-5646.1957.tb02884.x

Myers, E. W., & Miller, W. (1988). Optimal alignments in linear space. Computer
Applications in the Biosciences: CABIOS, 4(1), 11-17.
https://doi.org/10.1093/bioinformatics/4.1.11

Myers, G. (1999). A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM, 46(3), 395-415.
https://doi.org/10.1145/316542.316550

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3), 443—453. https://doi.org/10.1016/0022-2836(70)90057-4

Nguyen, N. D., Mirarab, S., Kumar, K., & Warnow, T. (2015). Ultra-large alignments
using phylogeny-aware profiles. Genome Biology, 16(1), 124.
https://doi.org/10.1186/s13059-015-0688-z

Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-Coffee: A novel method for fast
and accurate multiple sequence alignment. Journal of Molecular Biology,
302(1), 205-217. https://doi.org/10.1006/jmbi.2000.4042

O’Sullivan, O., Suhre, K., Abergel, C., Higgins, D. G., & Notredame, C. (2004).
3DCoffee: Combining protein sequences and structures within multiple
sequence alignments. Journal of Molecular Biology, 340(2), 385-395.
https://doi.org/10.1016/j.jmb.2004.04.058

Rost, B. (1999). Twilight zone of protein sequence alignments. Protein Engineering,
12(2), 85-94. https://doi.org/10.1093/protein/12.2.85

Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4),
406—425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Sankoff, D. (1975). Minimal Mutation Trees of Sequences. SIAM Journal on Applied

Mathematics, 28(1), 35—42.

70

https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u

Sellers, P. H. (1974). On the Theory and Computation of Evolutionary Distances. SIAM
Journal on Applied Mathematics, 26(4), 787—793.
https://doi.org/10.1137/0126070

Sievers, F., Dineen, D., Wilm, A., & Higgins, D. G. (2013). Making automated multiple
alignments of very large numbers of protein sequences. Bioinformatics, 29(8),
989-995. https://doi.org/10.1093/bioinformatics/btt093

Sievers, F., Wilm, A,, Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R.,
McWilliam, H., Remmert, M., S6ding, J., Thompson, J. D., & Higgins, D. G.
(2011). Fast, scalable generation of high-quality protein multiple sequence
alignments using Clustal Omega. Molecular Systems Biology, 7, 539.
https://doi.org/10.1038/msb.2011.75

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular
subsequences. Journal of Molecular Biology, 147(1), 195-197.
https://doi.org/10.1016/0022-2836(81)90087-5

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic
Acids Research, 22(22), 4673-4680.

Thompson, J. D., Linard, B., Lecompte, O., & Poch, O. (2011). A Comprehensive
Benchmark Study of Multiple Sequence Alignment Methods: Current
Challenges and Future Perspectives. PLOS ONE, 6(3), e18093.
https://doi.org/10.1371/journal.pone.0018093

Van Noorden, R., Maher, B., & Nuzzo, R. (2014). The top 100 papers. Nature,
514(7524), 550-553. https://doi.org/10.1038/514550a

Wallace, I. M., O’Sullivan, O., Higgins, D. G., & Notredame, C. (2006). M-Coffee:
Combining multiple sequence alignment methods with T-Coffee. Nucleic Acids

Research, 34(6), 1692—1699. https://doi.org/10.1093/nar/gkl091

71

https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u

Wang, L., & Jiang, T. (1994). On the complexity of multiple sequence alignment.
Journal of Computational Biology: A Journal of Computational Molecular Cell
Biology, 1(4), 337-348. https://doi.org/10.1089/cmb.1994.1.337

Wilm, A., Higgins, D. G., & Notredame, C. (2008). R-Coffee: A method for multiple
alignment of non-coding RNA. Nucleic Acids Research, 36(9), e52.
https://doi.org/10.1093/nar/gkn174

Yamada, K. D., Tomii, K., & Katoh, K. (2016). Application of the MAFFT sequence
alignment program to large data-reexamination of the usefulness of chained
guide trees. Bioinformatics (Oxford, England), 32(21), 3246—3251.

https://doi.org/10.1093/bioinformatics/btw412

72

https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u
https://www.zotero.org/google-docs/?5uDI1u

