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Abstract

The formulation of quantum physics stands among the most revolutionary the-
ories of the twentieth century. During the first decades of this century, many
phenomena concerning the microscopic world were unexplained or had ad-hoc
descriptions. The theory of quantum physics introduced a framework that al-
lowed predicting these phenomena with unprecedented precision. While quan-
tum mechanics offered counter-intuitive explanations for these experimental
results, it predicted unexpected quantum phenomena which were considered
symptoms of an ill-defined theory.

Decades passed and more and more empirical evidences sustained the exis-
tence of purely quantum effects and therefore the validity of this theory. Hence,
it became a solid branch of science and physicists started to engineer scenarios
where quantum effects could provide improvements if compared with classi-
cal scenarios. This approach gave birth to quantum information science, where
quantum particles are manipulated to perform information tasks. Several inno-
vative protocols, e.g. concerning state teleportation, dense coding, cryptogra-
phy and integer factorization algorithms, proved that quantum physics allowed
performances unattainable in classical settings.

The formulation of quantum protocols able to provide substantial speed-ups
raised wide interest of the academic world and private companies. Nonetheless,
the implementation of more and more complex quantum protocols became an
increasingly harder task. Indeed, manipulating a large number of quantum par-
ticles with a level of noise that is small enough to obtain quantum advantages
is, even nowadays, a demanding goal. The purely-quantum features essential
for these speed-ups are fragile when noise influences experimental apparatus.
Hence, in order to access the full potential of quantum theory, the ability to
handle noisy environments is a fundamental goal.

This thesis is devoted to the study of open quantum systems (OQS), namely
those where the interaction between the target quantum system and its sur-
rounding environment is taken under consideration during the evolution. In-
deed, isolated systems cannot provide realistic descriptions of dynamics. Un-
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derstanding how to exploit and manipulate environments in order to obtain dy-
namics that are less aggressive with the information stored in our OQS is there-
fore an essential goal to achieve quantum advantages. There are two possible
dynamical regimes for the information encoded in an OQS. We call an evolu-
tion Markovian when there is a one-way flow of information from the OQS to
the environment. Instead, the non-Markovian regime is distinguished by one
or more time intervals when this flow is reversed. In this case, we say that we
witness information backflows. A characterization based on the different types
of information quantifiers that can be considered in this context is fundamental
to exploit these phenomena in information processing scenarios.

The main goal of this thesis is to examine the potential of correlation mea-
sures to show backflows when the OQS dynamics is non-Markovian. The first
three works that we expose are devoted to this topic. First, we study how entan-
glement and quantum mutual information behave under non-Markovian evolu-
tions. We follow with the formulation of a correlation measure that is able to
witness almost-all non-Markovian evolutions. The last work along this topic
provides the first one-to-one relation between correlation backflows and non-
Markovian evolutions.

The last work in this thesis adopts a different point of view under which we
can characterize OQS evolutions. We quantify non-Markovianity through the
minimal amount of Markovian noise that has to be added in order to make an
evolution Markovian.



Resumen

La formulación de la física cuántica se encuentra entre las teorías más rev-
olucionadoras del siglo XX. Durante las primeras décadas de siglo, muchos
fenómenos asociados al mundo microscópico yacían sin una descripción clara,
o bien ésta era ad-hoc. La física cuántica introdujo un marco que permitió ex-
plicar estos fenómenos con una precisión sin precedentes. Si bien sus explica-
ciones eran contraintuitivas, los inesperados fenómenos cuánticos que predijo
se consideraron síntomas de una teoría mal definida.

Pasaron los años y cada vez más evidencias empíricas sostuvieron la exis-
tencia de efectos puramente cuánticos, validando esta teoría. La física cuán-
tica se convirtió en una sólida rama de la ciencia, y los físicos comenzaron
a diseñar escenarios en los que sus efectos pudieran proporcionar mejoras en
comparación con sus alternativas clásicas. Este enfoque dio origen al campo
de la información cuántica, donde las partículas cuánticas se manipulan para
realizar tareas de información. Varios innovadores protocolos, como la tele-
transportación de estados cuánticos, la “codificación densa”, la criptografía y
los algoritmos de factorización de enteros, demostraron el potencial de la física
cuántica frente a estrategias clásicas.

La formulación de protocolos cuánticos capaces de proporcionar consider-
ables mejoras despertó un gran interés en el mundo académico y en las empre-
sas privadas. No obstante, la implementación de protocolos cuánticos cada vez
más complejos se convirtió en una tarea sustancialmente más difícil. De hecho,
manipular una gran cantidad de partículas cuánticas con un nivel de ruido lo
suficientemente pequeño como para obtener ventajas cuánticas es, incluso a día
de hoy, un objetivo exigente. Las características puramente cuánticas vitales
para obtener estas mejoras son frágiles al ruido que afecta los instrumentos ex-
perimentales. Por lo tanto, para acceder a todo el potencial subyacente a la
teoría cuántica, la capacidad de manejar ambientes ruidosos resulta un objetivo
fundamental.

Esta tesis está dedicada al estudio de los sistemas cuánticos abiertos (SCA),
es decir, aquellos en los que se tiene en cuenta la interacción entre el sis-
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tema cuántico objeto y su ambiente circundante durante la evolución. De he-
cho, los sistemas aislados no pueden proporcionar descripciones realistas de
la dinámica. Entender cómo explotar estos ambientes para obtener dinámicas
menos agresivas con la información almacenada en nuestro SCA, es un obje-
tivo primordial para conseguir ventajas cuánticas. Hay dos posibles regímenes
dinámicos para la información codificada en un SCA. Decimos que una evolu-
ción es Markoviana cuando hay un flujo de información unidireccional desde
el SCA al medio ambiente. Por contra, en el régimen no Markoviano se dis-
tinguen unos intervalos temporales en los que este flujo se invierte. En este
caso, decimos que somos testigos de reflujos de información. Una caracter-
ización basada en los diferentes tipos de cuantificadores de información que
pueden considerarse en este contexto es fundamental para explotar estos fenó-
menos en escenarios de procesamiento de información.

El objetivo principal de esta tesis es examinar el potencial de las medi-
das de correlación para mostrar reflujos cuando la dinámica es no Markoviana.
Los tres primeros trabajos que exponemos están dedicados a este tema. En
primer lugar, estudiamos los potenciales del entanglement entrelazamiento y la
información mutua cuántica. Seguidamente presentamos la formulación de una
medida de correlación capaz de presenciar casi todas las evoluciones no Marko-
vianas. Por último, proponemos la primera relación de equivalencia entre los
reflujos de correlación y la no Markovianidad.

Concluimos proponiendo un punto de vista diferente bajo el cual pode-
mos caracterizar las evoluciones de SCA. Cuantificamos la no Markovianidad
a través de la mínima cantidad de ruido Markoviano que debe agregarse para
tornar una evolución en Markoviana.
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Chapter 1

Introduction

We start by introducing the basic topics that are used in this thesis, namely
quantum information theory and open quantum system dynamics. We conclude
the chapter with the motivations and our main results.

1.1 Quantum information theory

Quantum physics acquired more and more importance during the twentieth cen-
tury and nowadays it constitutes a fundamental building block of our scientific
knowledge. This theory allowed predicting outcomes and describe phenom-
ena of the atomic-sized world that until that time were described by different
inconsistent theories. The accuracy and the generality allowed by this new
framework were so unparalleled that it influenced several branches of science
at that time. Immediately after the first seminal works, several new phenomena
were predicted and perfectly described.

Two main properties of quantum particles had a deep impact that allowed
making this theory so successful. First, superposition of quantum states in-
troduced a new paradigm under which systems could be studied. Quantum
particles can be prepared in a superposition of different states that cannot be re-
produced by mere statistical mixing. Secondly, the concept of non-local corre-
lations were introduced. Rightly, entanglement is the most popular feature that
people inside and outside the scientific world associate with quantum physics.
This particular type of correlation between quantum particles allows experi-
menters to influence correlated systems even at macroscopic distances without
violating the no-signaling principle.

The interplay between these features made possible to engineer quantum
protocols where quantum particles were considered as carriers of information
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and the quantum bits, namely the qubits, replaced ordinary bits of information.
Quantum information theory studied how to wisely apply quantum transforma-
tions, or quantum gates, on qubits. The main difference between a classical
and a quantum bit is that, while the former assumes either the value 0 or 1, the
latter can be considered in a coherent superposition of the two logical states.
These concepts paved the way to quantum computation, where protocols were
designed in a revolutionary fashion. This new framework allowed speed-ups in
many computational tasks, if compared with their classical counterparts. The
derivation of quantum protocols that provided improvements or even scenar-
ios where only quantum computing could lead to a result in a feasible time
(quantum advantage) became a central research topic.

The potential of quantum information theory was enriched by other phe-
nomena with no classical analogue. Quantum teleportation and super-dense
coding are two fundamental examples to show how the quantum realm pro-
vides many counter-intuitive and unexpected tools. Quantum cryptography is
another field of quantum information theory that generated wide interest. In-
deed, the whole new toolbox of techniques provided by quantum physics al-
lowed theoretically-secure secret key distribution and communication among
users that share entangled particles at large distances.

During the last decades quantum systems have been exploited more and
more to fulfill information processing tasks. Research groups from the aca-
demic world and worldwide known companies such as Google, Amazon and
IBM opened quantum branches in order to implement quantum technologies
that aim to exploit the quantum potential in the near future. Nowadays, quan-
tum devices that operates with larger numbers of qubits are being realized and
the quantum advantage starts to be considered a reachable goal.

1.2 Open quantum systems dynamics

The easiest way to store and process quantum information starts with encoding
information in qubits or higher-dimensional systems, namely qudits. Several
quantum systems degrees of freedom can be exploited for this task, e.g. by con-
sidering photon polarization, particle spins or electron configurations of excited
ions. In terms of quantum information processing tasks, the ideal framework
would be given by quantum units that, once initialized, interact among them-
selves while being isolated from the environment. This scenario would lead to
a unitary evolution of the whole system where the total information is constant
in time. Unfortunately, quantum systems cannot be considered completely iso-
lated from the surrounding environment and therefore they have to be treated
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Figure 1.1: In the Markovian regime (left) the information encoded in the OQS
S is lost in the environment E and never recovered during the dynamics. In this
case we have a one-way flow of information from S to E. In the non-Markovian
regime (right) there are one or more time intervals when this information flux
is reversed from E to S . These phenomena characterize non-Markovian evolu-
tions and are called information backflows.

as open quantum systems (OQS). The characterizing feature of these systems is
that their evolution is not only described by their own Hamiltonian, but also by
the interaction with the environment. In general this interaction leads to non-
unitary transformations that make the information contained in our OQS not
constant in time. As a consequence, we often obtain a very strict limiting fac-
tor in terms of coherence time, namely the time-scale that has to be considered
before the quantum information becomes too poor to be processed faithfully.
Therefore, an important objective is to understand how to choose and manipu-
late the environment that surrounds our OQS in order to make the information
processing task under consideration feasible.

We can distinguish two different phenomenological regimes for the infor-
mation encoded in our evolving OQS (see Fig. 1.1). In the Markovian regime,
the interaction between the system and the environment establishes a one-way
flow between the two parts: the information is monotonically lost in the envi-
ronment and never recovered later in time. In these cases the environment is
called memoryless. Indeed, no sign of the information lost by the OQS is shown
by the environment during the evolution. On the contrary, we call an evolution
non-Markovian when the information lost by the system is partially or com-
pletely recovered in one or more time intervals during the evolution, namely
when a quantifier of the encoded information is non-monotonic in time. We
say that a non-Markovian evolution shows a backflow of information when-
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ever a temporary increase of the OQS information occurs. While these are
the phenomenological differences between the Markovian and non-Markovian
regimes, the mathematical framework used to make this distinction is based
on a divisibility property of the maps describing OQS evolutions. According
to this structure, an evolution is considered Markovian when this divisibility
property is satisfied and non-Markovian when violated. The connection be-
tween the phenomenology and the mathematical description of Markovian and
non-Markovian evolutions is a central topic in the study of OQS dynamics. As
a general rule, we simply say “non-Markovian evolution” when the dynam-
ics is non-Markovian according to our mathematical description, while we talk
about “information backflows” when we want to emphasize the expected phe-
nomenology.

1.3 Motivation and main contribution

The study of OQS dynamics offers several challenges. First, a complete char-
acterization of this type of evolutions is still missing. Secondly, given a non-
Markovian evolution and an initial state for the system, it is not well-understood
which forms of information quantities provide backflows. Moreover, many ef-
forts are devoted to design protocols where the exploitation of non-Markovian
dynamics is crucial to obtain specific advantages that would not be possible in
the Markovian regime.

The realization of quantum circuits where the corresponding environments
either are as less destructive as possible or can provide backflows with useful
timings is of fundamental importance for complex computations. Indeed, the
study of Markovian and non-Markovian dynamics plays a central role to ob-
tain sufficiently long coherence times needed to realize quantum protocols that
include many qubits and gates.

The main target of this thesis is to study different quantifiers of informa-
tion that can show backflows when finite-dimensional OQS evolve under non-
Markovian evolutions. We explore the possibility to consider different initial
states and ancillary systems in order to obtain the maximum non-Markovian
witnessing potential of the information quantifier. To be more specific, we say
that an information quantifier and an evolving OQS witness a non-Markovian
dynamics when we obtain an information backflow that only non-Markovian
evolutions can produce. Moreover, we characterize this regime of evolution in
fundamentally different manners by introducing functionals, namely measures
of non-Markovianity, that estimate the non-Markovian degree of evolutions.
Point-by-point, we describe our main contributions.
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1.3.1 Quantum correlations as non-Markovianity witnesses

Quantum correlations are provably one of the most important resources needed
to accomplish many quantum protocols, where often highly correlated multi-
partite systems are indispensable. Entanglement measures and quantum mutual
information (QMI) are two widely used correlation measures. For instance, the
use of the former is well-known in scenarios where non-local effects generated
by correlated systems are exploited to perform protocols between distant users,
e.g. quantum teleportation or quantum key distribution. Instead, the latter is
widely used in quantum communication tasks, for example in coding/decoding
scenarios when we want to quantify the capacity of a given channel.

The use of these two correlation measures has already been considered in
literature to quantify non-Markovianity [RHP10, LFS12]. Indeed, correlation
measures can be used to quantify the amount of information shared between
two systems and no Markovian evolution can increase these quantities if ap-
plied to one side of a bipartition. As a consequence, these quantities are per-
fectly suited to measure non-Markovianity. Indeed, any increase of a correla-
tion measure is uniquely attributable to a non-Markovian dynamics. The goal of
finding the initial states that are able to witness backflows for any time allowed
by a non-Markovian evolution falls under the non-Markovian witnessing prob-
lem. This question is highly non-trivial and is the key to understand if a given
quantifier is a good witness of non-Markovianity. Indeed, there are quantifiers
of non-Markovianity that have an easy interpretation and are easy to calculate
but fail to witness many evolutions. Given this scenario, we ask: are entangle-
ment measures and QMI able to witness all non-Markovian evolutions?

Contribution

Our main results are the following:

• Entanglement measures cannot show backflows for a class of entangle-
ment breaking non-Markovian evolutions and OQS-ancilla configura-
tions;

• QMI cannot show backflows for a class of non-Markovian qubit evolu-
tions and OQS-ancilla configurations;

• We study the interplay between the non-Markovian witnessing potential
of QMI and the initial entanglement of OQS-ancilla states.

We therefore obtained several results regarding the potential of correlation
measures to witness non-Markovianity. In particular, we first consider the class
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of single parameter evolutions for which we derive a non-Markovianity con-
dition and results valid for differentiable correlation measures. Paradigmatic
examples included in this class are depolarization, as well as dephasing and
amplitude damping. Moreover, we consider random unitary evolutions and
in particular we introduce the class of quasi-eternal non-Markovian (QENM)
qubit evolutions, a generalization of the well-known eternal non-Markovian
model [HCLA14, BCF17, MCPS17].

We show in which cases entanglement measures fail to witness a class of
entanglement breaking non-Markovian evolutions. Moreover, we examine a
QENM evolution belonging to this class. We follow by studying the more com-
plex case of QMI. Among the various results that we derive, we explore how the
QMI non-Markovian witnessing potential depends on the entanglement of ini-
tial states. Interestingly, we show cases where maximally entangled states are
not the most useful choices. Moreover, we provide conditions for qubit non-
Markovian evolutions under which QMI fails to show backflows when qubit
ancillas are considered. Finally, we show how to build QENM evolutions sat-
isfying these conditions.

1.3.2 A correlation measure witnessing almost-all non-Markovian
evolutions

The goal of finding the explicit construction of a non-Markovian witness for
any evolution, namely by proposing an information quantifier and an initial
state, is of central interest. As discussed before, the absence and presence
of information backflows provide the phenomenological descriptions for, re-
spectively, Markovian and non-Markovian evolutions. Instead, the mathemati-
cal framework used to distinguish these two regimes is based on a divisibility
property of the evolution maps. Hence, by proving the occurrence of back-
flows whenever this divisibility property is violated we confirm that the adopted
mathematical definition of non-Markovianity corresponds to the expected phe-
nomenology. On the contrary, in case an evolution that is non-Markovian ac-
cording to our mathematical framework does not show any information back-
flow, the mathematical definition of non-Markovianity would be compromised.
Secondly, this topic shades light on the possibility to exploit non-Markovianity
as a resource in quantum information protocols: we must know what kind of
information can be retrieved when specific evolutions are exploited and, corre-
spondingly, which initial states have to be considered.

A constructive method that allows detecting non-Markovianity for almost-
all finite-dimensional evolutions has been proposed in [BJA17]. This approach
considers the distance between states defined over the evolving OQS and an
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ancillary system as witness of non-Markovianity. For almost-all evolutions
they provide a class of pairs of initial states that are able to show an increasing
distance if and only if the evolution is non-Markovian. Similarly, we ask: can
correlation measures witness almost-all non-Markovian evolutions?

Contribution

Our main results in this direction are the following:

• We introduce a correlation measure which is able to witness almost-all
non-Markovian evolutions;

• We provide a constructive method to build initial states useful for this
task.

This new correlation measure quantifies the possibility to distinguish between
different states obtained on one side of a bipartition if the other side is subjected
to a maximally entropic measurement. We introduced these measurements as
those such that the outcomes have the same occurrence probabilities. We con-
struct a set of evolution-dependent initial states that suit for the non-Markovian
witnessing task, namely provide a backflow of the newly introduced correla-
tion, where the help of ancillary systems is exploited. Indeed, in order to in-
crease the witnessing potential of initial states, we discuss how to enlarge one
share of the bipartite system by introducing ancillary systems in different man-
ners. Since this witness of non-Markovianity is highly asymmetric between
the two shares, we propose a symmetrized version with the same witnessing
potential. Finally, we show the details of this technique by studying an explicit
example.

1.3.3 Equivalence between non-Markovianity and correlation
backflows

The possibility to find an information quantifier that, given a wisely-chosen ini-
tial state that in general can be shared between the OQS and ancillary systems,
allows providing a backflow for any non-Markovian evolution is of central in-
terest. First, this result would provide a proof that the mathematical definition
of non-Markovianity is indeed adherent to the phenomenological description
used to describe it, namely through information backflows. Secondly, we would
obtain a biunivocal connection between the particular information quantifier
backflow and the non-Markovian nature of dynamics. In [BD16] the authors
show how this result can be obtained by considering the guessing probability
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of ensembles of states defined among the evolving OQS and an ancillary sys-
tem. This quantity represents the possibility to rightly guess which state has
been randomly picked from an ensemble of states by performing an optimal
measurement. The results in [BD16] can be used to show that also a quantity
called singlet fraction [KRS09] can be exploited similarly. Therefore, we ask:
can correlation measures provide backflows for all non-Markovian evolutions?

Contribution

In this direction, our main result is the following:

• We introduce a class of correlation measures that shows the first one-
to-one relation between non-Markovian dynamics and correlation back-
flows.

This class of correlations is obtained through a generalization of work presented
in Section 1.3.2. We propose a set of initial states shared between the OQS and
ancillas and prove that for any evolution there exists a continuum of states from
this set that show a backflow if and only if the evolution is non-Markovian. Fi-
nally, we build a non-Markovianity measure that collects the maximal backflow
that can be provided by our correlation measure. While its computation can be
in general very demanding, it is proved to be positive for any non-Markovian
evolution.

1.3.4 Measuring non-Markovianity via incoherent mixing with
Markovian dynamics

Non-Markovianity measures are often associated to the possibility to obtain
backflows from dynamics. In this way we define a hierarchy trough the max-
imal amount of information that evolutions can provide for a precise observ-
able. As a consequence, different non-Markovianity measures of this kind pro-
vide different properties of the evolution. In [ABCM14] it is shown that in
general this order highly depends on the measure chosen. It follows that the
introduction of several measures on the one hand permits to study the multi-
faceted potential of non-Markovian evolutions. For instance, it may happen
that an evolution provides large correlation revivals and small entropy back-
flows while a different evolution is characterized by a reversed behavior. On
the other hand this approach may result confusing if we want to measure non-
Markovianity with an objective scale. This problem suggests the introduction
of a measure of non-Markovianity similar to the well-known robustness mea-
sure for entanglement, namely by considering the minimal distance between the
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given evolution and the Markovian set. The main difficulty implied by this ap-
proach is given by the non-convex geometry of the Markovian set of evolutions
[WECC08]. Moreover, this feature is the main obstacle for the formulation of a
resource theory of non-Markovianity. Hence, is it possible to introduce a mea-
sure of non-Markovianity by studying convex combinations of non-Markovian
and Markovian evolutions?

Contribution

Our results are the following:

• We introduce a non-Markovianity measure through the minimal Marko-
vian noise that has to be incoherently mixed with a non-Markovian evo-
lution in order to make the resulting evolution Markovian;

• We show how to apply this technique for depolarizing and dephasing
non-Markovian evolutions;

• We obtain analytical results for all continuous and regular-enough non-
continuous depolarizing evolutions in any finite dimension.

This measure is not connected to any particular information backflow but it
is strongly linked with the set of evolutions and its geometry. Therefore, given
the non-convexity of the Markovian and non-Markovian sets, this approach is
highly non-trivial. We conjecture that, given a non-Markovian evolution be-
longing to a convex set characterized by a precise symmetry, the most effective
evolution needed to make it Markovian via incoherent mixing is characterized
by the same symmetry.

In order to show how to use this technique, we propose an in-depth study
of depolarizing evolutions in any finite dimension: for any non-Markovian de-
polarizing dynamics we find the optimal Markovian evolution that makes the
mixture Markovian and therefore provides the value of our non-Markovianity
measure. First, we derive the analytical values of this measure and the corre-
sponding intuitive interpretations for regular-enough depolarizing evolutions.
Then, we illustrate why non-continuous evolutions are highly non-trivial to
measure. For this purpose, we provide a simple example that shows the in-
trinsic ambiguity for the choice of the optimal Markovian depolarizing evolu-
tion. Nonetheless, we design a numeric approach that singles out this solution
and provides a value for the measure of non-Markovianity. Finally, in order to
prove the applicability of our technique to other structured sets of evolutions,
we generalize our approach to qubit dephasing evolutions.
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Chapter 2

Preliminaries

In this chapter we introduce some fundamental tools of quantum information
theory and open quantum systems dynamics. Moreover, we review various
results concerning the characterization of Markovian and non-Markovian evo-
lutions. In order to do so, we start in Section 2.1 by describing density operators
defined over one or more parties and generalized quantum measurements. In
Section 2.3 we show how closed and open quantum systems evolve, where we
also discuss the definition of Markovianity adopted throughout this thesis. We
follow in Section 2.4 by describing the main recent results concerning the char-
acterization of non-Markovianity. In Section 2.5 we study several techniques
that can be used to witness non-Markovianity, where we put particular empha-
sis on the possibility to observe information backflows for any non-Markovian
evolution. Finally, in Section 2.6 we describe an exemplary class of evolu-
tions, namely random unitary, which include several commonly studied mod-
els. Interestingly, for this class we can consider compact conditions that easily
discriminate Markovian from non-Markovian evolutions.

2.1 Quantum states and measurements

We introduce those mathematical tools needed to define quantum systems, bi-
partitions and measurement processes. A particularly useful scenario that we
describe in this section is obtained when we measure one share of a bipartite
system in order to generate an ensemble of output states on the other side of the
system.
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2.1.1 Density operators

Consider a finite-dimensional quantum system S with d degrees of freedom.
When there is a complete (statistical) certainty of the status of S , we say that our
quantum system is in a pure state. These states are represented by vectors |φ〉S ,
often called kets, in a d-dimensional Hilbert spaceHS , which is isomorphic to
Cd. Given an orthonormal basis {|i〉S }di=1 forHS , any pure state |φ〉S ∈ HS can
be written as |ψ〉S =

∑d
i=1 ai|i〉S , where we require the coordinates ai ∈ C to be

normalized
∑d

i=1 |ai|
2 = 1. We can also define the dual space of HS , namely

H∗S , where the corresponding elements are called bra vectors 〈φ|S : HS → C,
namely linear forms fromHS toC. Hence, the action of 〈φ|S on |ψ〉S is written
〈φ|ψ〉S ∈ C. We say that 〈ψ|S is the Hermitian conjugate of |ψ〉S if 〈ψ|ψ〉S = 1
and we define the inner product between two kets |φ〉S , |ψ〉S ∈ HS as 〈φ|ψ〉S .

We define B(HS ) to be the set of linear operators X : HS → HS . Moreover,
the state space S (HS ) is the subset of B(HS ) of Hermitian, non-negative and
trace-one operators ρS , namely such that:

ρS = ρ†S , ρS ≥ 0 , Tr
[
ρS

]
= 1. (2.1)

The elements ρS ∈ S (HS ) are called density operators. In the state space
S (HS ), pure state are represented by operators |φ〉〈φ|S . If S is in a pure state,
we know that our system is in a given state ρS = |φ〉〈φ|S with probability p = 1.
Instead, in case we do not have this certainty, we can only provide probabilities
{pi}i that our system is in one of the pure states {|φi〉〈φi|S }i (not necessarily
orthogonal), where {pi}i is a probability distribution. Hence, if S is not in a
pure state we say that it is in a mixed state, where the corresponding density
operator ρS ∈ S (HS ) can always be written as:

ρS =
∑

i

pi|φi〉〈φi|S . (2.2)

Hence, mixed states are statistical mixtures between different pure states of the
system. Naturally, a density operator describing an intrinsically mixed state has
to be characterized by an ensemble {pi, |φi〉〈φi|S }i with at least two probabilities
different from zero. A functional that quantifies the mixing degree of quantum
states is the purity, defined as Tr[ρ2

S ] ∈ [1/d, 1], which is equal to 1 if and only
if ρS is pure and equal to 1/d only for the maximally mixed state ρS = 1S /d,
where 1S =

∑d
i=1 |i〉〈i|S ∈ B(HS ) is the identity operator on HS and {|i〉S }di=1 is

an orthonormal basis ofHS .
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Bloch representation

A geometrical approach to describe the state space is given by the Bloch repre-
sentation, where each state ρS is associated to a real vector. In case of a qubit
system, namely for d = 2, mixed and pure states in S (HS ) can be represented
by three-dimensional Bloch vectors r = (rx, ry, rz) ∈ BB(1) as follows

ρS =
1S + r · σ

2
, (2.3)

where BB(R) ⊂ R3 consists on the vectors inside the sphere of radius R and
σ = (σx, σy, σz) is the vector containing Pauli matrices. In order to evaluate
the Bloch vector r corresponding to a state ρS , we simply have to evaluate the
expectation values of the Pauli operators: ri = Tr

[
ρSσi

]
. BB2=BB(1) is called

the Bloch ball and corresponds to the qubit state space, namely there is a one-
to-one relation between qubit states ρS ∈ S (HS ) and vectors r ∈ BB2. We
call BS2 the Bloch sphere given by the unit vectors in BB2, namely the border
of the radius-1 sphere. These vectors represent the set of qubit pure states.
Indeed, there is a one-to-one relation between qubit pure states |ψ〉〈ψ|S ∈ S (HS )
and unit vectors r ∈BS2. The definition that identifies mixed states as those
resulting from convex combinations of pure states (see Eq. (2.2)) is particularly
evident in this representation: any vector in BB2 can be represented as a convex
combinations of elements in its border BS2. As we see in the following, this
representation is very useful to visualize the effects of quantum transformations
in terms of the geometry of their actions.

In the case of a qutrit, namely for d = 3, we have 8-dimensional vectors
r representing density operators, where the Pauli operators in Eq. (2.3) are re-
placed by Gell-Mann matrices. Instead, given a generic d-dimensional system
S , any density operator ρS ∈ S (HS ) can be represented by a d2−1-dimensional
real vector r as follows

ρS =

d2−1∑
i=0

Tr
[
ρS Gi

]
Gi =

1S

d
+

d2−1∑
i=1

riGi , (2.4)

where the operators Gi (for i = 1, . . . , d2 − 1) are the traceless Hermitian gen-
erators of SU(d) such that Tr

[
GiG j

]
= δi j, G0 = 1S /

√
d and ri = Tr

[
ρS Gi

]
are the corresponding expectation values for i = 1, . . . , d2 − 1. The set BBd of
physical vectors r, namely the subset ofRd2−1 that represents any qudit state in
S (HS ), is defined by [Kim03]

BBd = {r ∈ Rd2−1 | (−1) ja j(r) ≥ 0 ( j = 1, . . . d)}, (2.5)
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where a j(r) is the j-th coefficient of the characteristic polynomial det(x1S −

(1S /d +
∑d2−1

i=1 riGi)).

2.1.2 Generalized measurements

Quantum measurements are the main instruments used in quantum physics to
obtain information from a quantum system. Given an experimental apparatus
that measures our system, while on the one hand it provides partial information
about the system, on the other hand the system is perturbed. In the following
sections, we never consider a scenario where preserving the state after the mea-
surement is needed and therefore we consider the system discarded after the
output is obtained. Any measurement process on a quantum state ρS ∈ S (HS )
can be represented by a positive-operator valued measure (POVM), namely an
indexed set of Hermitian and positive semi-definite operators {PS ,i}

n
i=1 of B(HS )

that sum up to the identity, namely such that

PS ,i = P†S ,i , PS ,i ≥ 0 , for i = 1, . . . , n , (2.6)
n∑

i=1

PS ,i = 1S , (2.7)

where n is the number of possible measurement outcomes and 1S : B(HS ) →
B(HS ) is the identity operator in B(HS ). The i-th output of the measurement is
represented by the POVM element PS ,i and the Born rule states that

pi = Tr
[
ρS PS ,i

]
, (2.8)

is the corresponding occurrence probability. In case a POVM is composed by
d = dim(HS ) rank-one projectors of the form Pi = |ψi〉〈ψi|S , where {|ψi〉S }

d
i=1 is

an orthonormal basis of HS , we say that {|ψi〉〈ψi|S }
d
i=1 is a projective measure-

ment. Notice that, while for any set of projectors {|ψi〉〈ψi|S }
d
i=1 the correspond-

ing elements are mutually orthogonal, namely |ψi〉〈ψi|S · |ψ j〉〈ψ j|S = δi j|ψi〉〈ψi|S ,
this is not the case for generic POVM elements.

2.2 Bipartite quantum systems

We showed how to define states and measurements for a d-dimensional system,
which is considered as a single localized entity. This is the case of e.g. parti-
cles, spins or photons that are controlled by a single user. We call a system
bipartite when it is shared between two parties, let say Alice and Bob. Both
Alice and Bob posses a quantum particle, let say A and B, described by Hilbert
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spaces HA and HB, respectively. Bipartite systems A − B are characterized by
states that, in general, cannot be described only by the states ρA ∈ S (HA) and
ρB ∈ S (HB) that Alice and Bob own, respectively, but by more general states.
Moreover, different measurement scenarios are possible for bipartite systems:
we can either measure the complete system or only one of the two shares.

2.2.1 Bipartite mixed states

The Hilbert space describing a bipartite system A − B is given by the tensor
product of the Hilbert spaces of its components: HAB ≡ HA ⊗ HB, which
implies dim(HAB) = dAdB. Consider the correlated A− B system such that A is
Alice’s system and B is Bob’s system. A particularly useful characterizations
of bipartite quantum states ρAB ∈ S (HAB) is given by the correlation between
its subsystems. We say that Alice and Bob share a product state if there exist
ρA ∈ S (HA) and ρB ∈ S (HB) such that ρAB can be written in the following form

ρAB = ρA ⊗ ρB . (2.9)

Product states represent uncorrelated systems: any action performed on A does
not influence B and vice versa. Instead, if A − B is in a probabilistic mixture
of product states, we say that the system is in a separable state. This scenario
implies the existence of the set {pi, ρA,i, ρB,i}

m
i=1, where {pi}

m
i=1 is a probability

distribution, ρA,i ∈ S (HA) and ρB,i ∈ S (HB), such that

ρAB =

m∑
i=1

pi ρA,i ⊗ ρB,i . (2.10)

These states are classically correlated and can be prepared by local operations
(LO) on A and B assisted by classical communication (CC) between Alice and
Bob. Bipartite states that cannot be written as in Eq. (2.10) are non-separable,
or entangled. These states are correlated in a non-classical way: they cannot
be prepared through LOCC and provide effects not reproducible with classical
systems. A particularly useful class of non-separable states are those called
maximally entangled. A formulation for these states that we often use in this
thesis when dim(HA) = dim(HB) = d is |φ+〉AB = d−1/2 ∑d

i=1 |i〉A ⊗ |i〉B, where
{|i〉A}di=1 and {|i〉B}di=1 are orthonormal basis of HA and HB, respectively. The
corresponding density matrix is:

φ+
AB = |φ+〉〈φ+|AB =

1
d

d∑
i, j=1

|i〉〈 j|A ⊗ |i〉〈 j|B =
1
d

d∑
i, j=1

|ii〉〈 j j|AB . (2.11)
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Finally, we note that we use the symbol “−” when we want to underline
which is the bipartition under study. For instance, by writing AB − C we em-
phasize that we are interested in studying the correlations shared between AB
and C, where A and B are considered as a unique system. Indeed, given a state
ρABC ∈ S (HA ⊗HB ⊗HC), the type of bipartite correlations in AB −C may be
completely different form those present in A − BC or AC − B.

2.2.2 Measurements and bipartitions

A straightforward generalization of the measurement processes introduced in
Section 2.1.2 leads us to define measurements for bipartite systems as those
sets {PAB,i}

n
i=1 of operators PAB,i ∈ B(HAB) that satisfy conditions (2.6) and

(2.7). Hence, by measuring the complete system described by ρAB, we obtain
outputs i = 1, . . . , n with corresponding probabilities pi = Tr

[
ρABPAB,i

]
.

A different approach is given when we choose to measure only one of the
two parties that constitute the bipartite system A − B. Consider the scenario
where Alice and Bob share a mixed state ρAB ∈ S (HAB) and Alice applies a
POVM {PA,i}

n
i=1 on her side of ρAB. While with probability pi Alice obtains

the i-th output, Bob’s share of the state is transformed into a (in general differ-
ent) state ρB,i. In this case, we say that an output ensemble E(ρAB, {PA,i}

n
i=1) ≡

{pi, ρB,i}
n
i=1 is generated on Bob’s side. It is possible to see that

pi = Tr
[
ρABPA,i ⊗ 1B

]
, ρB,i = TrA

[
ρABPA,i ⊗ 1B

]
/pi . (2.12)

where TrA [ · ] is the partial trace over the degrees of freedom of A. We call
{pi}

n
i=1 and {ρB,i}

n
i=1 respectively the output probability distribution and the out-

put states of Alice’s measurement {PA,i}
n
i=1.

The transformation of Bob’s system is due to the correlations in A − B. In-
deed, if Alice and Bob share a product state ρA ⊗ ρB, namely an uncorrelated
state, we see that Bob’s state is not influenced by any measurement performed
by Alice. Instead, if they share the maximally entangled state, the output en-
semble can be made of orthogonal states, namely perfectly distinguishable.
For instance, in the two-qubit case, a maximally entangled state is given by
ρAB = |φ+〉〈φ+|AB, where |φ+〉AB = (|00〉AB + |11〉AB)/

√
2 (see Eq. (2.11)). We

see that Alice can apply the projective measurement {PA,i}
2
i=1 = {|0〉〈0|A, |1〉〈1|A}

on her share and Bob obtains the orthogonal output states ρB,1 = |0〉〈0|B and
ρB,2 = |1〉〈1|B with probability p1,2 = 1/2.
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2.3 Evolution of open quantum systems

In this section we describe the evolution of open quantum systems (OQS),
namely those having an evolution determined by the internal degrees of the
system and the interaction with the surrounding environment. This approach
is more general than the closed-system case, but it requires the introduction
of some necessary mathematical tools. We start by describing the evolution
of closed systems, then we follow by considering an evolving S E system as
a composite closed system. Finally, in the same scenario, we show how to
describe the evolution of the OQS S alone, while it interacts with E.

An isolated system S defined on a d-dimensional Hilbert space HS has a
dynamics that is completely characterized by the Hamiltonian HS (t). In general
this Hermitian operator in B(HS ) is time-dependent. If the system S is initial-
ized in a particular state ρS (0) ∈ S (HS ) at time 0, the evolution to a generic
final time t, namely

ρS (t) = US
t ρS (0) (US

t )† , (2.13)

is obtained trough the unitary transformation

US
t = T exp

[
−i

∫ t

0
HS (τ)dτ

]
, (2.14)

where we fixed ~ = 1 for the reduced Planck constant and T is the time-ordering
operator.

Completely isolated systems cannot be considered to faithfully describe re-
alistic scenarios. In general, in order to precisely reproduce the evolution of
a quantum system, we have to include the influence of the surrounding envi-
ronment. Therefore, being S the OQS that interacts with its environment E,
we consider those scenarios where S is initialized in ρS (0) ∈ S (HS ) and is
uncorrelated with the environment E. This situation is justified by consider-
ing t = 0 the time when S and E are put in contact. Hence, the initial state
of the complete S E system is ρS (0) ⊗ σE(0) which belongs to the state space
S (HS E) = S (HS ⊗HE). The complete system S E can be considered a compos-
ite closed system and we can describe its evolution by generalizing Eq. (2.13)
to this composite scenario. In order to do so, we have to consider the unitary
evolution generated by the S E Hamiltonian

HS E(t) = HS (t) ⊗ 1E + 1S ⊗ HE(t) + Hint
S E(t) , (2.15)

where 1S (1E) is the identity operator on HS (HE), HE(t) ∈ B(HE) describes
the internal degrees of freedom dynamics of the environment E and the term
Hint

S E(t) ∈ B(HS E) represents the interaction between S and E. The evolution
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of the interacting bipartite system S − E initialized in ρS E(0) = ρS (0) ⊗ σE(0)
is described by the unitary operator US E

t , where, similarly to Eqs. (2.13) and
(2.14), we have

ρS E(t) = US E
t (ρS (0) ⊗ σE(0)) (US E

t )† , (2.16)

where

US E
t = T exp

[
−i

∫ t

0
HS E(τ)dτ

]
. (2.17)

2.3.1 Dynamical maps and evolutions

We implemented the environment in this scenario in order to obtain a precise
description of the OQS dynamics. Indeed, the term HS E(t) generates a mutual
influence between S and E and in general its effect on the OQS cannot be re-
produced in any closed system. We underline that here we are not interested in
the particular evolution of the degrees of freedom of E but only in its effective
influence on S . At the same time, the calculations needed to describe the en-
vironmental dynamics may require impracticable computations. We can obtain
the evolution of the OQS alone by tracing out the degrees of freedom of the
environment, namely obtaining

ρS (t) = Λt(ρS (0)) ≡ TrE
[
US E

t (ρS (0) ⊗ σE(0)) (US E
t )†

]
. (2.18)

Notice that US E
t obtained through Eq. (2.17) is continuous and differentiable in

time. Therefore, since the tracing operator is continuous but not invertible, the
operators Λt are continuous and differentiable in time but may not be invertible.

The superoperator Λt : B(HS ) → B(HS ) is the linear operator that de-
scribes the evolution of S from the initial time to time t and is called dynamical
map. In order to understand the properties of these superoperators, we start by
noticing that, if Λt describes a physical evolution, it must map any initial state
into a valid final state, namely

ρS (0) ∈ S (HS ) −→ Λt(ρS (0)) = ρS (t) ∈ S (HS ), for any t ≥ 0 . (2.19)

This condition requires Λt to be positive (P) and trace preserving (TP). These
properties can be expressed as follows:

Λt is P ←→ Λt(XS ) ≥ 0, for any XS ≥ 0, (2.20)

Λt is TP←→ Tr [Λt(XS )] = Tr [XS ] , (2.21)

for any XS ∈ B(HS ).
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Nonetheless, we notice that a more general scenario where Λt acts can oc-
cur. If S is initially correlated with an ancillary system A, which is not influ-
enced by the evolution generated by the interaction between S and E, a physi-
cal transformation Λt must also preserve the physicality of these S − A states.
Hence, for any ancillary system with Hilbert spaceHA, we require

ρS A(0) ∈ S (HS A) −→ Λt ⊗ IA(ρS A(0)) = ρS A(t) ∈ S (HS A), for any t ≥ 0 .
(2.22)

This condition generalizes Eq. (2.19) and requires Λt to be completely positive
(CP) and trace preserving, (CPTP). The CP property can be expressed as:

Λt is CP ←→ Λt ⊗ IA(XS A) ≥ 0, for any XS A ≥ 0 , (2.23)

where XS A ∈ B(HS A) and the ancillary system A has dimension dA = d, namely
the same dimension as S . Indeed, it can be show that, if condition (2.23) is
satisfied for dA = d, then the same is true for any dA > d. We conclude that the
evolution of an OQS between the initial time and the final time t is described
by a CPTP operator Λt, namely the dynamical map.

We define Λ to be the whole family of dynamical maps Λt for any t ≥ 0,
namely

Λ ≡ {Λt}t≥0. (2.24)

Notice that from Eqs. (2.17) and (2.18) it follows that the dynamical map at
the initial time corresponds to the identity map IS : B(HS ) → B(HS ). As a
consequence, all evolutions are characterized by

Λ0(·) = IS (·). (2.25)

Given the physical interpretation of Eq. (2.18), it is clear that any map
ΛS : B(HS ) → B(HS ) obtained by tracing out the environment from a S − E
unitary evolution is a valid dynamical map and therefore CPTP. Is the opposite
also true? In other words, given a CPTP map ΛS , is it always possible to
engineer an environment E interacting with S such that ΛS is generated by Eq.
(2.18)? The answer is given by the Stinespring-Kraus representation theorem
[Sti55, Kra71]. It states that for any CPTP map ΛS : B(HS ) → B(HS ), there
exist: an environment E, a state σE ∈ S (HE) and a unitary transformation
US E such that ΛS can be simulated through the application of US E on the
uncorrelated S − E, where E is initialized in σE , namely

ΛS (ρS ) = TrE
[
US E(ρS ⊗ σE)(US E)†

]
. (2.26)

This result can be generalized to the case of evolutions. Indeed, given a
continuous and differentiable in time family of CPTP maps Λ = {Λt}t≥0 where
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Λt : B(HS ) → B(HS ) and Λ0 = IS , we can always find an environment E, an
initial state σE(0) ∈ S (HE) and continuous and differentiable in time unitary
transformations {US E

t }t≥0 such that the evolution to time t is given by

Λt(ρS (0)) = TrE
[
US E

t (ρS (0) ⊗ σE(0))(US E
t )†

]
. (2.27)

Although we said that any S − E interaction leads to a continuous and
differential family of CPTP maps Λ, we relax this condition by allowing at
most a countable set of discontinuity times. This condition is physically well
motivated when considering external interventions, namely not due to the S E
dynamics. Hence, having in mind this observation and the Stinespring-Kraus
representation theorem, we are not interested in defining a particular physical
realization, namely US E

t and σE(0), for each almost-always continuous evolu-
tion Λ. Therefore, we follow by simply considering S as the system on which
Λ acts, while we are not interested to define the corresponding environment E.

2.3.2 Image and Kernel of evolutions

We call set of accessible states, or image, of Λt all the states of S that can be
obtained by applying the map Λt to an initial state ρS (0), that is:

Im(Λt) ≡ {σS ∈ S (HS ) | ∃ρS (0) ∈ S (HS ) s.t. σS = Λt(ρS (0))} ⊆ S (HS ) .
(2.28)

We underline that, while we defined Λt as a map over B(HS ), we defined Im(Λt)
to be only the collection of states that can be obtained after an application of
Λt. We notice that only open system dynamics can cause a shrinking of the set
of accessible states during the evolution, namely Im(Λt) ⊂ S (HS ). Indeed, in
case of a unitary evolution (2.13), the inverse (US

t )−1 = (US
t )† always exists.

Therefore, for any σS ∈ S (HS ) there exists ρS (0) = (US
t )†σS US

t ∈ S (HS )
which is mapped into σS by Eq. (2.13). Hence, Im(US

t ) = S (HS ) for any
unitary evolution. Instead, for generic dynamical maps Λ−1

t may not be CPTP
or even not exist and therefore the same reasoning cannot be used.

A particular class of evolutions is given by those such that the image at any
time t is contained in the images at any earlier time:

Definition 1. An evolution Λ is called image non-increasing if, for any s ≤ t,

Im(Λs) ⊇ Im(Λt) . (2.29)

If Λ is image non-increasing and ρS ∈ Im(Λt), then the same state belongs
also to Im(Λs) for any earlier time, namely ρS ∈ Im(Λs) for all s ≤ t. Hence,
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for any s ∈ [0, t] there exists an initial state ρS (0) ∈ S (HS ) such that ρS =

Λs(ρS (0)).
We follow by defining invertible evolutions:

Definition 2. An evolution Λ is called invertible if the inverse transformation
Λ−1

t : B(HS )→ B(HS ) such that Λt ◦ Λ−1
t = Λ−1

t ◦ Λt = IS exists for all t ≥ 0.

If an evolution Λ is non-invertible, there must be a time t and at least two
(different) states ρ′S (0), ρ′′S (0) ∈ S (HS ) that are mapped into the same state
ρS (t), namely Λt(ρ′S (0)) = Λt(ρ′′S (0)) = ρS (t). This property implies that Λt

maps the Hermitian and traceless operator X = ρ′S (0) − ρ′′S (0) ∈ B(HS ) into the
null operator 0. This is a particularly useful example of an operator X ∈ B(HS )
belonging to the Kernel of a map. Indeed, we define the Kernel of a map
Λt : B(HS )→ B(HS ) as

Ker(Λt) ≡ {Y ∈ B(HS ) |Λt(Y) = 0} , (2.30)

In other words, Ker(Λt) is the space of operators that Λt maps into the null
operator 0. The linearity of Λt implies that 0 ∈ Ker(Λt) for any dynamical
map Λt. Notice that, due to the trace-one property of states, TP maps, e.g. any
dynamical map, cannot transform a state into the null operator. As a result,
Ker(Λt) ∩ S (HS ) = ∅ for any Λ and t ≥ 0, where ∅ is the empty set. Nonethe-
less, as we saw before, when Λt is not invertible we can define Hermitian and
traceless operators X ∈ Ker(Λt) from the states that are mapped into the same
final state. On the other hand, if we find an Hermitian and traceless element
Y ∈ Ker(Λt), we can always put it in the form Y = a(ρ′S (0) − ρ′′S (0)) for some
scalar a , 0 and states ρ′S (0), ρ′′S (0) and therefore certify the non-invertibility
of Λt.

An interesting class of evolutions is given by the following definition.

Definition 3. An evolution Λ is called Kernel non-decreasing if, for any s ≤ t,

Ker(Λs) ⊆ Ker(Λt) . (2.31)

We notice that that the Kernel non-decreasing property does not imply
the evolution to be image non-increasing, but only [CRS18] dim(Im(Λs)) ≥
dim(Im(Λt)) for any s ≤ t.

2.3.3 Markovian and non-Markovian evolutions

Markovian and non-Markovian quantum evolutions have been defined in dif-
ferent ways and in this thesis we adopt a definition that gained large consensus
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[RHP14, WECC08, HYYO11, CM14, HCLA14]. We underline that it is not
trivial to formulate a unique quantum version of a concept that was originally
introduced in classical physics. Classical mechanics is contained in quantum
mechanics as a special case and therefore there is not a unique path to extend
an idea that was originally introduced for classical systems. Our approach to
define quantum Markovianity starts by considering that classical Markov pro-
cesses are not influenced by past configurations of the system and therefore,
once some encoded information is lost, it cannot be recovered. We focus on
this feature by requiring that quantum Markovian evolutions have to show sim-
ilar memoryless phenomenological properties: no information backflow from
the environment E to the OQS S can occur. Hence, we discuss the framework
used in this thesis to define quantum Markovianity by providing solid mathe-
matical and phenomenological reasonings. Before doing so, we first introduce
some indispensable mathematical properties of evolutions.

We start by formulating the concept of divisibility. An evolution, namely
a family of CPTP maps Λ = {Λt}t≥0, whereas it describes the evolution of S
for any final time t, it does not provide the operators that evolve S between two
times s and t such that 0 < s < t. Therefore, we adopt the common approach
(see e.g. Ref. [CRS18]) that defines as divisible those evolutions for which
such a linear operator can be defined:

Definition 4. An evolution Λ = {Λt}t≥0 is divisible if and only if for any 0 ≤
s ≤ t there exists a linear map Vt,s : B(HS )→ B(HS ) such that

Λt(·) = (Vt,s ◦ Λs)(·) ≡ Vt,s(Λs(·)) . (2.32)

We also call Vt,s the intermediate map of Λ between the times s and t.

Notice that any invertible evolution is divisible. Indeed, in this case the
intermediate map always exists and is given by

Vt,s = Λt ◦ Λ−1
s . (2.33)

Notice that the inverse is not true: an evolution could be divisible but not invert-
ible. In Ref. [CC21] the authors discuss how to construct intermediate maps of
divisible non-invertible evolutions through the use of generalized inverse oper-
ations. Interestingly, the possibility to divide an evolution is characterized by
the Kernel non-decreasing property given in Definition 3:

Proposition 1 ([CRS18]). An evolution Λ is divisible if and only if it satisfies
the Kernel non-decreasing property (2.31).
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The CPTP nature of dynamical maps Λt implies that Vt,s is TP for all the
states in S (HS ). Nonetheless, Vs,t may not be TP for every operator in B(HS ).
Similarly, in order for Λt = Vt,s ◦ Λs to be CP, Vt,s is not forced to be CP.
Indeed, a legitimate intermediate map could be only P or even characterized
by negative eigenvalues. When the evolution can be divided in time intervals
where the intermediate maps are TP operators that are also P (CP), we say that
Λ is P-divisible (CP-divisible). Hence, we adopt the following definition:

Definition 5. An evolution Λ = {Λt}t≥0 is P/CP-divisible if and only if for any
0 ≤ s ≤ t there exists a PTP/CPTP linear map Vt,s : B(HS )→ B(HS ) such that

Λt(·) = (Vt,s ◦ Λs)(·) = Vt,s(Λs(·)) . (2.34)

We underline that a CP-divisible evolution of course is also P-divisible,
while the opposite in general is not true. Hence, in order to avoid any misunder-
standing, if we say that Λ is P-divisible, we take for granted that the evolution
is not CP-divisible.

Finally, we introduce the evolutions satisfying the semi-group property.

Definition 6. An evolution Λ = {Λt}t≥0 is a dynamical semi-group if and only
if for any t1, t2 ≥ 0 the following relation is verified

Λt1+t2(·) = Λt1(Λt2(·)) . (2.35)

It is easy to prove that any evolution satisfying the semigroup property is
CP-divisible, while the inverse is not true.

Definition of Markovian evolutions

In this thesis we adopt the approach that identifies Markovian evolutions with
CP-divisible evolutions. We provide two arguments that sustain this definition,
where the first derives from a comparison with classical Markov processes,
while the second apparently independent explanation has a purely phenomeno-
logical derivation.

We start by describing classical Markovian processes and therefore we de-
rive a natural quantum counterpart [CRS18]. In classical information theory
the topic of Markov chains is introduced as follows. Suppose X is a stochastic
variable that can assume different values xi at each time ti. Hence, p(x1, t1|x0, 0)
is the conditional probability that at time t1 the random variable X assumes the
value x1, given that x0 was its initial value at time 0. The process is called
Markovian if this process satisfies [van07]

p(xi, ti|xi−1, ti−1, . . . , x0, 0) = p(xi, ti|xi−1, ti−1), (2.36)
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for each 0 ≤ t1 ≤ · · · ≤ ti−1 ≤ ti. A physical consequence of this condition is
that the process that is generating the evolution of X does not take into account
its past history, but only its last configuration. Hence, the memoryless nature of
this type of processes comes out explicitly. Notice that condition (2.36) implies
that, for any intermediate time s such that 0 < s < t, we have

p(x, t|x0, 0) =
∑

y

p(x, t|y, s)p(y, s|x0, 0), (2.37)

where y can be seen as the output of a measurement process performed on X
at an intermediate time s. While in the classical case a measurement of a sys-
tem does not necessarily influence its state and therefore we can always assume
to know the value of X at time s without influencing the dynamics, in general
measurements alter quantum systems. Indeed, there is no straightforward gen-
eralization of this approach to quantum evolutions [VSL+11]. Nonetheless, an
approach that focuses on the operators generating the evolution is possible.

Consider a finite-dimensional classical system, where at each time t the
stochastic variable X can assume one value from {i}di=1. Then, for the start-
ing time we have a probability vector p(0) = (p1(0), p2(0), . . . , pd(0)), such
that pi(0) is the initial probability that X is in the i-th configuration. The evo-
lution to a later time t is given by a (row) stochastic matrix λ(t, 0) such that
p(t) = λ(t, 0)p(0), where the i j-th component of λ(t, 0) is the transition proba-
bility from i to j between the initial time and t. Markovian processes, namely
satisfying Eq. (2.36), are distinguished by P-divisible stochastic matrices which
can be divided into intermediate stochastic matrices λ(t, s) [VSL+11]

λ(t, 0) = λ(t, s)λ(s, 0) , (2.38)

for any s < t. We say that these processes are stochastically P-divisible since the
matrices λ(t, s) are required to preserve the physical meaning of the evolving
probability distributions, whereas no extended scenario with ancillary systems
is considered. We use the term “stochastically” in order to distinguish this
property from P-divisibility of quantum channels. The generalization of (2.38)
to the quantum domain is given by requiring that between any two times s and
t the evolution Λ can be divided as Λt = Vt,s ◦Λs, where Vt,s is a valid evolving
operator by its own, namely it has the same properties as Λt. Hence, as in
the classical case this property required the matrices λ(t, s) to be stochastic, in
the quantum case we require Vt,s to be CPTP. Hence, this analogy suggests to
define quantum Markovian evolutions as those being CP-divisible.

The second reason that we consider for the identification of Markovian evo-
lutions with CP-divisible evolutionsΛ is the following. Consider a CP-divisible
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evolution Λ and its intermediate evolution between two generic times s and t.
Being Λs and Vt,s CPTP maps, we apply the Stinespring-Kraus representation
theorem and simulate their action as in Eq. (2.26). The consecutive applica-
tion of these two maps that define ρS (t) = Vt,s(Λs(ρS (0))) can be simulated as
follows. We consider a first environment E initialized in σE that interacts with
S until time s, where the S − E initial state is ρS E(0) = ρS (0) ⊗ σE . Hence,
between the initial time and time s, S − E evolves with a unitary operator US E

s
that simulates the action of Λs on S as in Eq. (2.26). At time s the environment
E is discarded and a second environment E is initialized in σE and coupled
with S , where ρS E(s) = ρS (s) ⊗ σE and ρS (s) = Λs(ρS (0)) = TrE

[
ρS E(s)

]
.

Similarly as before, between times s and t, S − E evolves with a unitary op-
erator US E

t,s that simulates the action of Vt,s on S . As shown in Fig. 2.1, the
information released by S in E before time s cannot be recovered later in time
when S interacts with E: no information lost in the time interval [0, s] can be
recovered in [s, t]. If we extend this approach to an infinitesimal subdivision
of the time axis, we obtain the connection between CP-divisibility and the ex-
pected Markovian phenomenology. Indeed, if CP-divisibility is satisfied, no
information backflows can occur between any two (even infinitesimally close)
times. Notice that the evolutions satisfying the semi-group property have inter-
mediate maps Vt,s that solely depend on the length t− s of the time interval [s, t]
and not on the specific s and t. Indeed, due to this constancy of the information
rate loss, these evolutions are often considered as the “most” memoryless.

While our definition of Markovianity is based on the idea that a Markovian
evolution can be simulated through the subsequent interaction with different
environments uncorrelated with the OQS, other proposals have been explored.
A second approach defines as Markovian those evolutions that cannot show
backflows of a given quantifier Q for the information encoded in the system.
For instance, the first approach in this direction [BLP10] defined Markovianity
through the decrease of distinguishability of any pair of S states, namely such
that

d
dt
||Λt(ρ′S (0) − ρ′′S (0))||1 ≤ 0 for any ρ′S (0), ρ′′S (0) ∈ S (HS ) , (2.39)

As a consequence, any violation of this condition represents an information
backflow caused by the non-Markovian nature of the evolution. Nevertheless,
there exist evolutions that satisfy condition (2.39) but show backflows for other
quantifiers Q. Hence, this definition strongly depends on the particular Q cho-
sen. Moreover, it is possible to prove condition (2.39) is not equivalent to
CP-divisibility: there exist evolutions that contracts the trace distance between
any two S states but are not CP-divisible. Actually, this condition is weaker
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Figure 2.1: Consider an evolution Λ with a CPTP intermediate map Vt,s. The
CPTP map Λs induces the transformation ρS (0) → ρS (s) and the CPTP map
Vt,s transforms ρS (s) → ρS (t) (above). The Stinespring-Kraus representation
theorem allows simulating any CPTP map through a unitary interaction be-
tween S and an uncorrelated environment. This result can be applied both for
Λs and Vt,s, namely through the subsequent interaction of S with E and E (be-
low). Since E can be discarded after time s, no information lost by S in the
time interval [0, s] can be recovered later in [s, t]. By applying this result to
a CP-divisible evolution, we see that no information can be retrieved between
any two times.

than P-divisibility. We discuss this topic in Sections 2.4.2 and 2.5.3.
Markovianity can also be defined in a third radically different manner (see

e.g. Ref. [Bud18, PRRF+18, MKPM19]). This approach considers the possi-
ble temporal memory effects arising from scenarios where the evolving OQS is
discarded and replaced with a newly prepared OQS state. Hence, it may happen
that the environment keeps track of the discarded state and therefore at a later
time some information concerning the initial state can be retrieved. While we
do not discuss the meaning and the possibility to perform such an operation, we
want to underline that the main reason why we do not consider this approach is
that we are interested in the study of families of CPTP maps Λ defined solely
on S, while we do not focus on the particular S − E unitary dynamics that gen-
erates the target evolution. Indeed, this approach, in order to decide whether an
evolution is non-Markovian, examines also the structure of E and the particular
unitary interaction US E

t that generates the evolution Λ.
In many occasions we consider non-Markovian evolutions characterized by

time intervals where we expect to observe information backflows, whereas in
other time intervals we know that these phenomena cannot occur. For instance,
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this is the case when we know that the infinitesimal intermediate maps Vt+ε,t

are not CPTP if and only if t ∈ (tNM
1 , tNM

2 ). Indeed, for any time not in this
set, the evolution behaves as Markovian. Since in the following this situation is
considered several times, we use the following definition.

Definition 7. An evolution Λ = {Λt}t≥0 is Markovian in the time interval [t1, t2]
if and only if for any t1 ≤ s ≤ t ≤ t2 there exists a linear CPTP intermediate
map Vt,s : B(HS )→ B(HS ) such that

Λt(·) = (Vt,s ◦ Λs)(·) = Vt,s(Λs(·)) . (2.40)

Similarly, we say that Λ is non-Markovian (P-divisible) in the time interval
[t1, t2] if the CP-divisibility (P-divisibility) condition is violated (satisfied) for
any t1 ≤ s ≤ t ≤ t2. We underline that, if the evolution is Markovian in a time
interval [t1, t2], it does not necessarily mean that the evolution is Markovian.
Indeed, in order for Λ to represent a Markovian dynamics, Vt,s has to be CPTP
for any 0 ≤ s ≤ t. On the contrary, if Λ is non-Markovian in at least one time
interval [t1, t2], then Λ is non-Markovian and moreover [t1, t2] is a time interval
when information backflows can occur.

2.3.4 The master equation

We discussed how dynamical maps can be used to express the time evolution
of OQSs, where we can obtain the state at time t by applying Λt directly on
the initial state. A second approach to express the same evolution is given by
studying the dynamical differential equation for d

dtρS (t). Whereas the solution
of this differential equation is the same obtained with dynamical maps, there
are some insights concerning the information flows between the OQS and the
environment that can be easily deduced from this differential form. Indeed, for
some classes of evolutions, it is much easier to express Markovianity conditions
in this framework rather than with dynamical maps.

We refer to the master equation of the dynamics every time it is possible
to derive the generator Lt that describes the following dynamical differential
equation

d
dt
ρS (t) = Lt(ρS (t)) . (2.41)

Gorini et. al. [GK76], Lindblad [Lin76] and Franke [Fra76] formulated the
form of Lt for any evolution satisfying the semi-group property, where the gen-
erator Lt = L is not time-dependent:

L(ρS (t)) ≡ i[H, ρS (t)] +
∑

k

γk

(
GkρS (t)G†k −

1
2

{
G†kGk, ρS (t)

})
, (2.42)
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where H is a Hermitian operator representing the effective Hamiltonian of S ,
γk ≥ 0 are non-negative rates and Gk are called Lindblad or jump operators.
This equation had been generalized to CP-divisible, namely Markovian, dif-
ferentiable evolutions. In these cases, the master equation is called Lindblad
equation and the generator Lt assumes the following standard form

Lt(ρS (t))≡ i[H(t), ρS (t)]

+
∑

k

γk(t)
(
Gk(t)ρS (t)G†k(t) −

1
2

{
G†k(t)Gk(t), ρS (t)

})
, (2.43)

where operators and rates are in general time-dependent. While H(t) gener-
ates the unitary component of the dynamics, the term generated by the time-
dependent operators Gk(t) is called dissipator and characterizes the typical fea-
tures of OQS evolutions, namely those given by the interaction with an environ-
ment. Indeed, master equations with no dissipator Lt(ρS (t)) ≡ i[HS (t), ρS (t)]
are in the form of the Schrödinger equation for (closed) mixed states which al-
ways lead to unitary evolutions, namely Eqs. (2.13) and (2.14). We say that Lt

is in the Lindblad form whenever it can be casted as Eq. (2.43), where γk(t) ≥ 0
for all k. We say that Lt is in the generalized Lindblad form when it can be
casted as Eq. (2.43) and at least one of the rates {γk(t)}k is negative in one or
more time intervals.

An important feature of the rates γk(t) is that, if they are finite, Lt gives
rise to a Markovian evolution if and only if it can be written in a form where
γk(t) ≥ 0 for all k and t ≥ 0 (see e.g. Theorem 5.1 of Ref. [RH11] for a
proof). Differentiable Markovian evolutions allow time-ordered exponential
representations for dynamical maps Λt and intermediate maps Vt,s as follows

Λt = Texp
[∫ t

0
Lτdτ

]
, (2.44)

Vt,s = Texp
[∫ t

s
Lτdτ

]
. (2.45)

Usually, an evolution Λ is considered Markovian if and only if the corre-
sponding generator Lt is in the Lindblad form. Indeed, from this property it fol-
lows the CP-divisibility of Λ in CPTP intermediate maps (2.45). Nonetheless,
this statement is true only in the case of invertible evolutions [CRS18], while
there exist non-invertible CP-divisible (Markovian) evolutions with generators
in the generalized Lindblad form. Moreover, while any evolution generated by
a generalized Lindblad master equation where one or more γk(t) is negative
for some times is non-Markovian, not every non-Markovian evolution can be
represented as the solution of a generalized Lindblad master equation.
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Finally, we notice that a master equation in the generalized Lindblad form
with non-negative rates γk(t) ≥ 0 in a time interval [t1, t2] generates an evolution
that is Markovian in the same time interval. This result can be deduced from
Eq. (2.45), where Vt+ε,t is determined solely by Lt for t ∈ [t, t + ε] and therefore
it is not influenced by γk(t) being negative at different times.

2.3.5 Non-convexity of Markovian and non-Markovian evolutions

We define E to be the collection of all the possible evolutions for a system S
defined over a d-dimensional Hilbert space, whereEM andENM are the respec-
tive Markovian and non-Markovian subsets of evolutions. Here, we discuss the
following statements:

• E is convex;

• EM and ENM are non-convex.

The first point follows directly from the convexity of the state space. Taken any
pair of evolutions Λ(1,2), their convex combination Λ(p) = (1 − p)Λ(1) + pΛ(2)

is a valid evolution, namely the maps Λ
(p)
t = (1 − p)Λ(1)

t + pΛ
(2)
t are CPTP for

any t ≥ 0 and p ∈ [0, 1]. Indeed, Λ
(1,2)
t are CPTP and for any ρS A(0) ∈ S (HS A)

and t ≥ 0 we have ρ(1,2)
S A (t) = Λ

(1,2)
t ⊗ IA(ρS A(0)) ∈ S (HS A). Therefore, the

convexity of the state space implies that Λ
(p)
t ⊗ IA(ρS A(0)) = ρ

(p)
S A(t) = (1 −

p)ρ(1)
S A(t) + pρ(2)

S A(t) ∈ S (HS A) for any t ≥ 0, ρS A(0) ∈ S (HS A) and p ∈ [0, 1].
It follows that, for any ancilla A, the maps Λ

(p)
t transforms the states of S − A

into valid output states and therefore Λ(p) is a valid quantum evolution.

Non-convexity of the Markovian set

Intuitively, one may think that the same approach used for E can be used to
show that alsoEM is a convex set. Interestingly, this is not the case: Markovian
evolutions define a non-convex set [WECC08]: it is possible to generate non-
Markovianity from the manipulation of Markovian evolutions. Moreover, the
Markovian evolutions that can be considered in this process can also be taken
satisfying the semi-group property, as show in Ref. [CW15]. The explicit
example that they propose is given by qubit evolutions ΛM,1 and ΛM,2 defined
by Lindblad generators LM,1

t and LM,2
t of the form:

LM,1
t (ρS (t)) = γ(σxρS (t)σx − ρS (t)) , (2.46)

LM,2
t (ρS (t)) = γ(σyρS (t)σy − ρS (t)) , (2.47)
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where γ > 0 and σx,y,z are the Pauli matrices. The Lindblad generator of the
evolution ΛNM = (ΛM,1 + ΛM,2)/2 assumes the form:

LNM
t (ρS (t)) =

∑
i=x,y,z

γi(t)(σiρS (t)σi − ρS (t)) , (2.48)

where {γi(t)}i=x,y,z = {γ, γ,−γ tanh(2γt)}. Notice that γz(t) < 0 for all t > 0. In-
deed, these evolutions are called eternal non-Markovian evolutions [HCLA14]
and are characterized by intermediate maps VNM

t,s that are not CPTP for any
0 < s < t.

Under certain conditions, the evolution Λ(p) = (1 − p)Λ(1) + pΛ(2) is char-
acterized by the generator obtained through the convex combination L(p)

t =

(1 − p)L(1)
t + pL(2)

t , where L(1)
t (L(2)

t ) is the Lindblad generator of Λ(1) (Λ(2)).
Nonetheless, Eq. (2.48) shows that in general this is not the case: LNM

t ,

(1 − p)LM,1
t + pLM,2

t . Moreover, if we consider two evolutions with generic
generators L(1)

t and L(2)
t , the operator L(p)

t = (1− p)L(1)
t + pL(2)

t does not always
generate a physical evolution. This topic is studied in e.g. Ref. [KBPLB18].

Non-convexity of the non-Markovian set

The non-convexity of ENM is more intuitive. Without getting into the details
of these cases, we briefly describe a scenario that explains the physical sense
of this phenomenon. Consider two evolutions ΛNM,1 and ΛNM,2 that are non-
Markovian during non-overlapping time intervals. If the environment simu-
lated by ΛNM,2 is particularly dissipative when ΛNM,1 shows backflows and
vice-versa, it is easy to imagine a Markovian evolution obtained from a convex
combination of the form (1− p)ΛNM,1 + pΛNM,2. Moreover, the Markovian evo-
lutions that can be obtained thorugh convex combinations of non-Markovian
evolutions can also be considered satisfying the semi-group property [WC16].

2.4 Characterization of non-Markovian evolutions

In this section we want to collect those results concerning criteria that help to
characterize and detect non-Markovian evolutions. We start by introducing a
formalism, called k-divisibility, that helps to categorize non-Markovian evolu-
tions thanks to a precise hierarchy. We follow by reviewing different contrac-
tivity criteria for Markovian evolutions that show how ancillary systems have
to be implemented in order to fully determine the non-Markovian potential of
evolutions. We end by discussing a reference approach to detect and measure
non-Markovianity.
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2.4.1 k-divisibility

We introduced Markovian evolutions as those families of CPTP maps that are
divisible in intermediate CPTP maps for any two times s ≤ t (see Definition
5). In case an evolution is not Markovian, many different scenarios may occur.
Indeed, consider a non-Markovian evolution Λ applied on S , which is initially
correlated with an ancilla A. The dynamics of the complete system is given by
Λ ⊗ Ik = {Λt ⊗ Ik}t≥0, where k is the dimension of the ancillary system. Since
the evolution is non-Markovian, namely Λ is not CP-divisible, Λ ⊗ Id is not P-
divisible. Nonetheless, Λ ⊗ Ik may be P-divisible for some different dimension
of the ancilla k ∈ {0, . . . , d − 1}. This observation provides a straightforward
hierarchy for the non-Markovianity of Λ [CM14].

We say that a map Φ : B(HS ) → B(HS ) is k-positive if Φ ⊗ Ik is PTP.
Similarly, the evolution Λ is k-divisible if, for any s ≤ t, it admits k-positive
intermediate maps Vt,s. These definitions allow identifying a non-Markovianity
degree NMD(Λ) as follows:

• d-divisibility corresponds to Markovianity: NMD(Λ) = 0;

• (d − 1)-divisible evolutions have PTP Vt,s ⊗ Id−1, while some Vt,s ⊗ Id are
not PTP: NMD(Λ) = 1;

• 2-divisible evolutions have PTP Vt,s ⊗ I2, while some Vt,s ⊗ I3 are not
PTP: NMD(Λ) = d − 2 ;

• 1-divisible, or P-divisible, evolutions have PTP Vt,s, while some Vt,s ⊗ I2
are not PTP: NMD(Λ) = d − 1;

• If Λ is not even P-divisible, some Vt,s are not even PTP, namely it is
characterized by one or more negative eigenvalues: NMD(Λ) = d.

We can identify as “more” non-Markovian those evolutionsΛ that are k-divisible
for smaller values of k: the larger is k, the larger has to be an ancilla to be used
to show the non-CP-divisible nature of Λ. Taken a non-Markovian Λ, we say
that it is: weakly non-Markovian if 1 ≤NMD(Λ) ≤ d − 1 and essentially non-
Markovian if NMD(Λ) = d.

2.4.2 Contractivity criteria

The phenomenology that we expect from Markovian evolutions corresponds
to the lack of information backflows. As a consequence, if we use our sys-
tem to encode information, a Markovian Λ cannot cause the increase of any
information quantifier between any two times s ≤ t. This picture explains why
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many of the Markovianity criteria that we show in this section require Λ to
satisfy particular monotonicity relations, either by imposing conditions on Λt

or Vt,s. We start with theorems that connect the PTP/CPTP property of maps
Φ : B(H) → B(H) and their ability to contract the trace-norm of Hermitian
operators.

Theorem 1 ([Kos72a][Rus94]). Any TP linear map Φ is P if and only if

||Φ(X)||1 ≤ ||X||1 ,

for any Hermitian X ∈ B(H).

Hence, it easily follows that

Theorem 2. Any TP linear map Φ is CP if and only if

||Φ ⊗ I(X)||1 ≤ ||X||1 ,

for any Hermitian X ∈ B(H ⊗H), where I is the identity map onH .

Notice that Theorems 1 and 2 can be considered to study the contractivity
properties of dynamical maps Φ = Λt and intermediate maps Φ = Vt,s.

Now, we focus on evolutions Λ and in particular on conditions that char-
acterize their degree of non-Markovianity, namely through the k-divisibility
criterion, where d-divisibility corresponds to Markovianity. We start with the
following theorem:

Theorem 3 ([CM14]). If Λ is k-divisible, then

d
dt
||Λt ⊗ Ik(X)||1 ≤ 0 , (2.49)

for all Hermitian in X ∈ B(HS ⊗ Hk), where dim(Hk) = k.

Since in this theorem k-divisibility is a sufficient but not necessary condi-
tion, it may happen that an evolution Λ satisfies Eq. (2.49) for any Hermitian X
while not being k-divisible. In order to formulate necessary and sufficient cri-
teria for Markovianity, we show a fundamental result for invertible evolutions.
Indeed, in these cases we can provide a necessary and sufficient relation that
connects a monotonicity relation with k-divisibility.

Theorem 4 ([CM14]). Given an invertible evolution Λ, it is k-divisible if and
only if

d
dt
||Λt ⊗ Ik(X)||1 ≤ 0 ,

for all Hermitian in X ∈ B(HS ⊗Hk), where dim(Hk) = k.
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Now we review some results concerning non-invertible evolutions. As de-
fined in Section 4, an evolution is divisible if the linear intermediate map Vt,s

exists for any s ≤ t. We saw that an evolution is divisible if and only if it sat-
isfies the Kernel non-decreasing property (see Proposition 1). Nonetheless, a
sufficient, but not necessary, condition for divisibility that involves a contrac-
tivity criteria is given by:

Proposition 2 ([CRS18]). If an evolution Λ is such that

d
dt
||Λt(X)||1 ≤ 0 , (2.50)

for all Hermitian X ∈ B(H) and t ≥ 0, then it is divisible.

We remember that, invertibility implies the Kernel non-decreasing property
(in this case Ker(Λt) = Ker(Λs) = ∅) and divisibility (see Eq. (2.33)). More-
over, the Kernel non-decreasing property implies dim(Im(Λs)) ≥ dim(Im(Λt))
for any s ≤ t. The following theorem, instead, provides a necessary condi-
tion for evolutions to be divisible with CP, but not necessarily TP, intermediate
maps.

Theorem 5 ([CRS18]). If an evolution Λ satisfies

d
dt
||Λt ⊗ Id(X)||1 ≤ 0 , (2.51)

for any Hermitian X ∈ B(HS ⊗ HA), where dim(HA) = d, then it is divisible
with CP intermediate maps Vt,s.

Notice that the existence of Vt,s implies its TP property on Im(Λs), but
not for any element in B(HS ). Indeed, Eq. (2.51) provides a slightly weaker
condition than Markovianity, which instead requires Vt,s to be CP and TP for
any element in B(HS ).

If Λ satisfies the same conditions of Theorem 5 and is also image non-
increasing (see Definition 1), we can certify the Markovian nature of the evolu-
tion with the following contractivity criteria:

Theorem 6 ([CRS18]). If an image non-increasing evolution Λ satisfies

d
dt
||Λt ⊗ Id(X)||1 ≤ 0 , (2.52)

for any Hermitian X ∈ B(HS ⊗HA), where dim(HA) = d, then it is Markovian.
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Nonetheless, notice that an evolution can be Markovian while not being
image non-increasing. Indeed, while Markovian evolutions must have a de-
creasing volume of Im(Λt) (see Section 2.5.6), this is not the only condition
that characterizes image non-increasing evolutions. A Markovian evolution Λ
can be characterized by a decreasing volume of Im(Λt) while at the same time
some states become accessible again after a finite time interval, and therefore
leading to a violation of (2.29).

It is natural to ask whether Markovian evolutions are those satisfying the
contractivity criteria required by Theorem 5, namely the evolutions that con-
tract in trace-norm all Hermitian operators in an extended setup. Whereas this
problem is still open in the general case of d-dimensional systems, it has been
proved that this result is true for qubit evolutions:

Theorem 7 ([CC19]). A qubit evolution Λ is Markovian if and only if

d
dt
||Λt ⊗ I2(X)||1 ≤ 0 , (2.53)

for any Hermitian X ∈ B(HS ⊗HA), where dim(HA) = 2.

Notice that in this case we do not require the evolution to be invertible or
image non-increasing: any violation of (2.53) implies non-Markovianity and
any non-Markovian qubit evolution provides a violation of (2.53).

2.5 Witnesses of non-Markovianity

We defined Markovian evolutions as those satisfying the CP-divisibility condi-
tion and we showed that, thanks to the Stinsespring-Kraus representation theo-
rem, this property allows considering these evolutions as memoryless, namely
they do not allow information backflows from the environment back to the sys-
tem. Nonetheless, this picture does guarantee that all non-CP-divisible evo-
lutions show information backflows that can be witnessed in an experimental
setup, namely confirming the phenomenology that is expected. Indeed, one
may argue that the CP-divisibility condition is too restrictive and that some
non-CP-divisible evolutions may not able to provide information revivals for
any S or S − A initial setup, where A is an ancillary system. In order to get the
exact correspondence between the phenomenological and the mathematical de-
scription of Markovian and non-Markovian dynamics, we look for one-to-one
relations between non-Markovian dynamics and observable information back-
flows.

We follow by describing a generic non-Markovian witnessing scenario,
where our goal is to observe characteristic phenomena through the evolution
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of a properly initialized system, if and only if Λ is non-Markovian (see Fig.
2.2). Whenever we say that we want to witness a non-Markovian evolution, we
ask to define:

• Initial condition: an initial state ρS A(0) shared between S and possibly
an ancilla A which is evolved by the target evolution Λ as follows:

ρS A(t) = Λt ⊗ IA(ρS A(0)). (2.54)

The initial condition can also be an ensemble ES A(0) = {pi, ρS A,i(0)}i,
where the evolved ensemble is obtained considering Eq. (2.54) for each
state ρS A,i(0):

ES A(t) = {pi, ρS A,i(t)}i. (2.55)

• Information quantifier or non-Markovian witness: it is given by a func-
tional Q that associates a real number to the evolved condition and is
decreasing for any Markovian evolution. The value of Q(ρS A(t)) quanti-
fies a particular type of information contained in ρS A(t). We have a valid
non-Markovianity witness Q if, for any ρS A ∈ S (HS A), it satisfies the
following properties:

Q : S (HS A) −→ R s.t. (2.56)

Q(ΦS ⊗ IA(ρS A)) ≤ Q(ρS A) for any CPTP ΦS . (2.57)

Similar conditions can be formulated when we consider evolving state
ensembles.

The last two relations corresponds to the data processing inequality: the infor-
mation content of S − A cannot increase through the application of local oper-
ations either on S or A. Any Q is monotonically decreasing when S is evolved
by a Markovian evolution Λ. Indeed, since in these cases the corresponding
Vt,s are CPTP for all s ≤ t, from Eq. (2.57) it follows that:

Q(ρS A(t)) = Q(Vt,s ⊗ IA(ρS A(s))) ≤ Q(ρS A(s)) , (2.58)

and therefore the absence of an information backflow between any two times:

Q(ρS A(t)) − Q(ρS A(s)) ≤ 0 . (2.59)

In case of differentiable evolutions, Eq. (2.59) can be written for infinitesi-
mally close times and the Markovian condition assumes the following differen-
tial form

d
dt

Q(ρS A(t)) ≤ 0 . (2.60)
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Figure 2.2: We study the information encoded in evolving states ρS A(t) defined
over S A, where the initial states ρS A(0) evolves due to the interaction between
the OQS S and the environment E, while the ancillary system A does not take
part in the evolution. Notice that the information quantifiers Q that we consider
are defined over the complete system S A. Our goal is to witness the non-
Markovian nature of evolutions through backflows of Q(ρS A(t)).

We want to underline the operational role that Q plays in the character-
ization of non-Markovianity. Given a non-Markovian evolution Λ, a non-
Markovian witness Q and an initial state ρS A(0) (or ensemble ES A(0)), a back-
flow of Q can either occur or not. Indeed, while for Markovian evolutions
condition (2.59) is always satisfied, it is not obvious if it is always possible
to find an initial condition and an information quantifier that show a backflow
when Λ is non-Markovian. In other words, the non-trivial goal is to under-
stand whether, for any non-Markovian evolution and any time interval [s, t] for
which there is no CPTP intermediate map Vt,s, there exist Q and ρS A(0) (or
ES A(0)) that show a backflow in the same time interval, namely that violate
Eq. (2.59). Despite the most interesting witnessing techniques are those offer-
ing equivalencies between backflows and non-Markovian evolutions, we also
discuss scenarios offering weaker conditions that however expand our knowl-
edge of possible non-Markovian effects that can be observed and exploited.

2.5.1 Measures of non-Markovianity

A different goal connected with the characterization of non-Markovian evo-
lutions is given by studying the degree of non-Markovianity of evolutions.
Hence, measures of non-Markovianity provide methods to compute which non-
Markovian evolutions provide larger information backflows, hence defining a
hierarchy. A common method to introduce such measures is given by fixing a
quantifier Q and considering the maximum total backflow that the target evolu-
tion can provide when an optimization over the initial conditions is performed.
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In order to describe this procedure, we start by introducing the information flux

σQ(ρS A(t)) ≡
d
dt

Q(ρS A(t)) . (2.61)

It is clear that, given condition (2.57), for any t such that the infinitesimal in-
termediate map Vt+ε,t is CPTP, we have σQ(ρS A(t)) ≤ 0 for any Q and ρS A(0).
Indeed, we say that the information Q of the system initialized in ρS A(0) flows
out of the system at time t when σQ(ρS A(t)) ≤ 0. On the other hand, any viola-
tion of the differential Markovianity condition (2.60) corresponds to a positive
flux σQ(ρS A(t)) > 0 and we say that a backflow of Q from the environment to
the system is shown. These simple observations allow introducing measures
of non-Markovianity NQ(Λ) that are equal to zero for all Markovian evolutions
and positive only if Λ is non-Markovian

NQ(Λ) ≡ max
ρS A(0)

∫
σQ(ρS A(t))>0

σQ(ρS A(t)) dt, (2.62)

where the states ρS A(0) could be replaced by ensembles ES A(0). Even if NQ is
not expressed in a compact form, its physical sense is very direct: we collect
the information flux (2.61) whenever it flows back from the environment. The
values of NQ(Λ) for different Q represent different features of the same evolu-
tion Λ, namely its potential to provide backflows of Q. Nonetheless, one may
think that, ifΛ1 is “more” non-Markovian thanΛ2 when the hierarchy provided
by a precise Q is considered, namely NQ(Λ1) > NQ(Λ2), then the same is true
for any other Q. In [ABCM14] the authors propose an exhaustive comparative
study to show that the ordering provided by a measure of non-Markovianity
can be inverted if a different measure is considered. The measures that we in-
troduce below in Sections 2.5.2, 2.5.3 and 2.5.7 are among those compared in
[ABCM14].

Alternative approaches to quantify the non-Markovian degree of evolutions
can be considered. A first strategy [PGD+16] consists in the evaluation of the
maximum revival of Q that can be observed during a single time interval

Nmax
Q (Λ) ≡ max

s≤t, ρS A(0)
Q(ρS A(t)) − Q(ρS A(s)) . (2.63)

A second alternative [PGD+16] can be defined through the maximum differ-
ence between Q(ρS A(t)) and the time-average of the same quantity, namely
〈Q(ρS A(t))〉, during the previous times

N〈·〉Q (Λ) ≡ max
ρS A(0)

{
0,max

t
Q(ρS A(t)) − 〈Q(ρS A(t))〉

}
, (2.64)



54 Preliminaries

where 〈Q(ρS A(t))〉 =
(∫ t

0 Q(ρS A(t′)) dt′
)
/t is the time average of Q in the time

interval [0, t] when the system is initialized in ρS A(0). It is easy to prove that,
for any Q and Λ

N〈·〉Q (Λ) ≤ Nmax
Q (Λ) ≤ NQ(Λ) . (2.65)

Moreover, while
Nmax

Q (Λ) > 0 ←→ NQ(Λ) > 0 , (2.66)

a similar relation does not hold for N〈·〉Q (Λ), namely NQ(Λ) > 0 do not imply

N〈·〉Q (Λ) > 0. Nonetheless, it can be shown [PGD+16] that N〈·〉Q (Λ) has a very
specific operational meaning connected with the probability to store and faith-
fully retrieve information, as measured by Q, by state preparation and measure-
ment, where an attack performed by an eavesdropper may occur. Larger values
of N〈·〉Q (Λ) implies higher probabilities to succeed in this task. Hence, even if

N〈·〉Q (Λ) is not as accurate as NQ(Λ), namely it may be equal to zero even if Λ is
non-Markovian, its value has a precise operational meaning.

This discussion suggests an interesting starting point to explore the advan-
tages that only non-Markovian evolutions can provide in quantum protocols,
where the occurrence of information backflows are exploited to obtain perfor-
mance improvements. Whereas this topic is particularly interesting and it is
connected with the possibility to formulate a resource theory of non-Markovian
evolutions [RHP14], it goes beyond the purposes of this thesis.

2.5.2 Rivas-Huelga-Plenio measure of non-Markovianity

We gave three formulations of non-Markovianity measures, namely NQ, Nmax
Q

and N〈·〉Q , based on the possibility to obtain backflows of an information quanti-
fier Q. Nonetheless, the procedure given in Ref. [RHP10] by Rivas, Huelga and
Plenio was one of the first methods able to detect all non-Markovian evolutions
but it cannot be expressed through backflows of a specific Q. The idea behind
their method exploits the Choi-Jamiołkowski isomorphism [Cho75, Jam72],
which states that a map ΦS defined for an arbitrary finite-dimensional sys-
tem S is CPTP if and only if ΦS ⊗ IA maps the maximally entangled state
φ+

S A = d−1 ∑d
i j=1 |i〉〈 j|S ⊗ |i〉〈 j|A into a physical state, where S and A have the

same dimension, namely dim(HA) = d = dim(HS ). As a consequence, if ΦS is
TP, then it is CP if and only if ΦS ⊗ IA(φ+

S A) ≥ 0, namely

ΦS is CP ↔ ||ΦS ⊗ IA(φ+
S A)||1 = 1 . (2.67)

Consider a differentiable quantum evolution Λ with intermediate maps Vt+ε,t

for the infinitesimal time intervals [t, t + ε]. We can define the functional fΛ(t +
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ε, t) ≡ ||Vt+ε,t⊗IA(φ+
S A)||1, which is equal to 1 if and only if Vt+ε,t is CP, otherwise

fΛ(t + ε, t) > 1. Therefore, by defining

gΛ(t) ≡ lim
ε→0+

fΛ(t + ε, t) − 1
ε

, (2.68)

we can measure the non-Markovian degree of Λ with

NRHP(Λ) =

∫
gΛ(t) dt . (2.69)

This measure of non-Markovianity is equal to zero if and only ifΛ is divisible in
CP intermediate maps, namely is Markovian. This approach can be problematic
for non-divisible evolutions that do not allow the evaluation of fΛ(t + ε, t) for
some t.

Finally, we want to discuss another subtle detail of this technique. The
straightforward operational scenario suggested by the definition of fΛ(t + ε, t)
for its evaluation in a laboratory would be given by applying Vt+ε,t on φ+

S A,
which is a maximally entangled (pure) state. Therefore, to do so, one may con-
sider to find an1 initial state φS A(0) such that Λt ⊗ IA(φS A(0)) = φ+

S A. Indeed, in
this way the following infinitesimal intermediate map Vt+ε,t would be applied
on φ+

S A. In general, this approach cannot be followed for two reasons: (i) φ+
S A

may not be inside Im(Λt) and, most importantly, (ii) even if this first condition is
verified, we would obtain that φS A(t+ε) = Vt+ε,t⊗IA(φ+

S A) would not be physical
because ||φS A(t + ε)||1 = fΛ(t + ε, t) > 1. This result is indeed not acceptable be-
cause evolutions (Markovian and non-Markovian) map initial (physical) states
into (physical) states. Hence, if Vt,s is not CPTP, φ+

S A < Im(Λs ⊗ IA). Similarly,
if φ+

S A ∈ Im(Λs ⊗ IA), then Vt,s must be CPTP. Therefore, even if NRHP(Λ) > 0
if and only if Λ is non-Markovian, this principle does not prove if it is possible
to witness the non-Markovian nature of Λ by evolving an initial state which
is later in time measured. Nonetheless, this measure of non-Markovianity is
easily evaluable in many instances and quantifies non-Markovianity without
considering the observation of a particular observable. This property gives to
NRHP an absolute meaning and is often considered as a reference measure.

2.5.3 Distinguishability of states

A measure of non-Markovianity is given by considering as witness Q the dis-
tance between pairs of states of S [BLP10], where no ancilla is exploited. Con-
sider the measure QBLP defined as the trace distance between two evolving

1There may exist more than one initial state if the evolution is not bijective.
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states of the system

QBLP({ρ′S (t), ρ′′S (t)}) =
1
2

(
1 +
||ρ′S (t) − ρ′′S (t)||1

2

)
. (2.70)

The value of QBLP({ρ′S (t), ρ′′S (t)}) represents the distinguishability between ρ′S (t)
and ρ′′S (t): its maximum value 1 is obtained when the states are orthogonal,
namely perfectly distinguishable with a quantum measurement, and the mini-
mal value 1/2 is obtained when the states are identical and the best strategy to
distinguish them is to randomly guess. In other words, it is the probability of
distinguishing ρ′S (t) from ρ′′S (t) in an optimal measurement scenario. Indeed,
this quantity can be evaluated as

QBLP({ρ′S (t), ρ′′S (t)}) = max
{P′S ,P

′′
S }

1
2

(
Tr

[
ρ′S (t)P′S

]
+ Tr

[
ρ′′S (t)P′′S

])
, (2.71)

where the maximization is performed over POVMs {P′S , P
′′
S } on S . We define

the flux of information

σBLP({ρ′S (t), ρ′′S (t)}) =
d
dt

QBLP({ρ′S (t), ρ′′S (t)}) , (2.72)

where we are assuming the evolution to be differentiable. In case of a Marko-
vian evolution

σBLP({ρ′S (t), ρ′′S (t)}) ≤ 0 (2.73)

and we can interpret this as a flux of information going from S to E. On the
other hand, σS A({ρ′S (t), ρ′′S (t)}) > 0 represents a flux from E back to S , namely
a backflow. The measure of non-Markovianity for evolutions based on QBLP

is given by collecting the maximum backflow that Λ can provide when we
maximize over the possible initial pairs, namely

NBLP(Λ) = max
{ρ′S (0), ρ′′S (0)}

∫
σBLP({ρ′S (t), ρ′′S (t)})>0

σBLP({ρ′S (t), ρ′′S (t)}) dt . (2.74)

We have a positive value NBLP(Λ) > 0 only if Λ is non-Markovian, but the
converse is not true. We remember that, while any PTP Vt,s maps S (HS ) into it-
self, this is no longer true if Vt,s⊗ IA is applied on states in S (HS A) for a generic
ancilla (see Section 2.3). If Vt,s is PTP, the distinguishability between any two
states cannot increase during [s, t], namely ||ρ′S A(t) − ρ′′S A(t)||1 ≤ ||ρ′S A(s) −
ρ′′S A(s)||1. Indeed, as we explained in detail in Section 2.4.2, a PTP map ap-
plied on an Hermitian operator, e.g. X = ρ′S A(s) − ρ′′S A(s) ∈ B(HS ), cannot in-
crease its trace-one norm. It follows that we cannot observe backflows of QBLP
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in a given time interval if the corresponding intermediate map is PTP. Hence,
P-divisible (non-Markovian) evolutions are characterized by NBLP(Λ) = 0 and
therefore this measure cannot detect this class of non-Markovian evolutions. In
the following section we see how this picture drastically changes when initial
states defined over S and supplementary ancillary systems are considered.

2.5.4 Distinguishability of states assisted by an ancilla

The results shown in Section 2.4.2 can be translated from the ability of Λt to
contract the trace-norm of Hermitian operators to its potential to decrease the
distinguishability of mixed states. We start by noticing a useful property of
Hermitian matrices. Any Hermitian X ∈ S (HS ⊗ HA), up to a normalizing
factor, can be written as [Hel76] X = pρ′S A− (1− p)ρ′′S A for some p ∈ [0, 1] and
ρ′S A, ρ′′S A ∈ S (HS A). An Hermitian matrix written in this form is often called
Helstrom matrix. The quantity ||X||1 = ||pρ′S A − (1 − p)ρ′′S A||1 describes the
possibility to distinguish ρ′S A from ρ′′S A when they are prepared with a-priori
probabilities p and 1− p, respectively. Indeed, the probability to success in this
task when an optimal measurement is performed is given by

P(p)
g (ρ′S A, ρ

′′
S A) =

1
2

(1 + ||pρ′S A − (1 − p)ρ′′S A||1) , (2.75)

which is indeed maximal if the states are orthogonal and minimal if they are
identical. We call this quantity p-distinguishability and, if p = 1/2, we simply
call it distinguishability. Indeed, for p = 1/2 the two states are prepared with
the same probability and P(1/2)

g corresponds to QBLP introduced in Eq. (2.70).
Similarly to Eq. (2.71), the operational meaning of P(p)

g is made explicit by the
following formulation:

P(p)
g (ρ′S A, ρ

′′
S A) = max

{P′S A,P
′′
S A}

(
pTr

[
P′S Aρ

′
S A

]
+ (1 − p)Tr

[
P′′S Aρ

′′
S A

])
, (2.76)

where the maximization is performed over 2-output POVMs {P′S A, P
′′
S A} on S −

A.
We start by considering Theorem 2 and we show that it can be exploited to

connect increases in p-distinguishability with the presence of non-CPTP inter-
mediate maps during an evolution. Hence, instead of a generic TP map ΦS , we
consider the non-CPTP Vt,s. The problem that we encounter in adopting The-
orem 2 to operationally witness non-Markovianity with p-distinguishability is
that we should be certain that ρ′S A and ρ′′S A belong to the image of the preceding
evolution Im(Λs). In [BJA17] the authors show that, if Λs is invertible, then the
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existence of at least one Helstrom matrix X = pρ′S A − (1 − p)ρ′′S A with a de-
creasing trace-norm in the time interval [s, t] implies the existence of a second
Helstrom matrix X = pρ′S A−(1− p)ρ′′S A where ρ′S A and ρ′′S A belong to I(Λs⊗ IA).
Hence, if Λ−1

s exists, there exist initial states ρ′S A(0) and ρ′′S A(0) such that their
p-distinguishability increases in the time interval [s, t] if and only if Vt,s is not
CPTP.

This approach can be considered also to study k-divisibility: an evolution
Λ is k-divisible if Λ⊗ Ik (Φ⊗ Ik) is P-divisible, where Ik is the identity operator
on a k-dimensional ancillary system (see Section 2.4.1).

Theorem 8 ([BJA17]). Given an invertible evolution Λ, the intermediate map
Vt,s is k-positive if and only if

||Vt,s ⊗ Ik
(
pρ′S A(s) − (1 − p)ρ′′S A(s)

)
||1 ≤ ||pρ′S A(s) − (1 − p)ρ′′S A(s)||1 , (2.77)

for any p ∈ (0, 1) and pair of states {ρ′S A(0), ρ′′S A(0)}, where dim(HA) = k.

We remember that Markovianity, namely CP-divisibility, corresponds to
d-divisibility of the evolution, namely the d-positivity of the corresponding in-
termediate maps. We notice that, in case of differentiable evolutions, Theorem
4 can be casted as follows

Theorem 9 ([CM14, CKR11]). Given an invertible evolutionΛ, it is k-divisible
if and only if

d
dt
||Λt ⊗ Ik(pρ′S A(0) − (1 − p)ρ′′S A(0))||1 ≤ 0 , (2.78)

for any p ∈ (0, 1) and pair of states {ρ′S A(0), ρ′′S A(0)}, where dim(HA) = k.

Therefore, given any invertible non-Markovian evolution, there exist two
initial S −A states and a p ∈ (0, 1) such that their p-distinguishability increases
during at least one time interval. Similarly, also the results concerning non-
invertible evolutions, namely Theorems 5, 6 and 7, can be formulated in terms
of p-distinguishabilities. In particular, the latter can be written as

Theorem 10 ([CC19]). A qubit evolution Λ is Markovian if and only if

d
dt
||Λt ⊗ I2(pρ′S A(0) − (1 − p)ρ′′S A(0))||1 ≤ 0 , (2.79)

for any p ∈ (0, 1) and pair of two-qubit states {ρ′S A(0), ρ′′S A(0)}.
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The price we have to pay in order to be able to detect any non-Markovian
evolution without the need to check all p-distinguishabilities, but only the ordi-
nary (p = 1/2) distinguishability, is to increase the dimension of the ancillary
system from d to d + 1 [BJA17]. Indeed, the contractivity criteria of the type
d
dt ||Λt(X)||1 ≤ 0 for Hermitian X ∈ S (HS ⊗ HA) with a d-dimensional ancilla
can be replaced by d

dt ||Λt ⊗ Id+1(ρ′S A(0) − ρ′′S A(0))||1 ≤ 0 for any pair of S − A
states, where dim(HA) = d + 1.

This result can be casted in differential or non-differential forms:

Theorem 11 ([BJA17]). Given an invertible or point-wise non-invertible evo-
lution Λ such that Λ−1

s exists, Vt,s is CPTP if and only if

||Vt,s ⊗ Id+1
(
ρ′S A(s) − ρ′′S A(s)

)
||1 ≤ ||ρ

′
S A(s) − ρ′′S A(s)||1 , (2.80)

for any pair of states {ρ′S A(0), ρ′′S A(0)}, where dim(HA) = d + 1.

Theorem 12 ([BJA17]). Given an invertible or point-wise non-invertible evo-
lution Λ, it is Markovian if and only if

d
dt
||Λt ⊗ Id+1(ρ′S A(0) − ρ′′S A(0))||1 ≤ 0 , (2.81)

for any pair of states {ρ′S A(0), ρ′′S A(0)}, where dim(HA) = d + 1.

A constructive method for the initial witnessing pair of states

We saw several criteria that connects non-Markovianity with the increase of the
evolving p-distinguishability of ρ′S A(t) and ρ′′S A(t). Nonetheless, only [BJA17]
proposes a method to construct the initial states ρ′S A(0) and ρ′′S A(0) needed for
this task. In particular, they study Theorem 11 and provide initial states to
witness any invertible or point-wise non-bijective evolutions characterized by a
non-CPTP intermediate map Vt,s. The states provided by this method depends
solely on the initial time s. These states can also be used for Theorem 12,
where the same states would violate Eq. (2.81) during at least one time interval
contained in [s, t] if and only if Vt,s is not CPTP.

Any p-distinguishability is a functional satisfying the non-Markovian wit-
nesses conditions (2.56) and (2.57) for ensembles. Hence, we simply define

QBJA({ρ′S A(t), ρ′′S A(t)}) ≡ P(1/2)
g (ρ′S A(t), ρ′′S A(t)) , (2.82)

where dA = d + 1 and the corresponding initial condition is given by the pair
of S − A states ρ′S A(0) and ρ′′S A(0). Now, we show the details of the construc-
tive method that provides the initial witnessing pair of states. Given a non-
Markovian evolution, we can always individuate a time interval when there is
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no CPTP intermediate map Vt,s. Now, we consider those states that at time s
assume the form

ρ′S A(s) = (1 − p)σS A + pφ+
S A , (2.83)

ρ′′S A(s) = (1 − p)σS A + pρS ⊗ |d + 1〉〈d + 1|A , (2.84)

where φ+
S A = d−1 ∑d

i j=1 |i〉〈 j|S ⊗ |i〉〈 j|A is the maximally entangled state between
S and the first d degrees of freedom of A, σS A is an arbitrary state in the interior
of Im(Λs ⊗ IA), namely not in its border, and ρS is an arbitary state in S (HS ).
It is straightforward to see that, for small-enough values of p > 0, we have
ρ′S A(s), ρ′′S A(s) ∈ Im(Λs ⊗ IA). Notice that ρ′S A(s) − ρ′′S A(s) = p(φ+

S A − ρS ⊗ |d +

1〉〈d+1|A). Since φ+
S A has no support on the d+1−th degree of freedom of A, this

state is orthogonal to ρS ⊗|d+1〉〈d+1|A. Hence, ||ρ′S A(s)−ρ′′S A(s)||1 = p||φ+
S A||1 +

p||ρS ⊗ |d + 1〉〈d + 1|A||1 = 2p. The orthogonality between these components
is preserved after the action of the intermediate map Vt,s ⊗ IA and at time t we
obtain ||ρ′S A(t)−ρ′′S A(t)||1 = p||Vt,s⊗IA(φ+

S A)||1+p||Vt,s(ρS )⊗|d+1〉〈d+1|A||1. While
p||Vt,s(ρS ) ⊗ |d + 1〉〈d + 1|A||1 ≥ 1, we focus on ||Vt,s ⊗ IA(φ+

S A)||1. This quantity,
due to the Choi-Jamiołkowski isomorphism [Cho75, Jam72], is greater than 1
if and only if Vt,s is not CPTP. Therefore, a non-CPTP intermediate map Vt,s

causes an increase of the distinguishability between these two states during the
time interval [s, t]. Finally, notice that the initial states ρ′S A(0) and ρ′′S A(0) can
be obtained by applying Λ−1

s ⊗ IA on Eqs. (2.83) and (2.84). Moreover, σS A,
ρS and p can be chosen such that ρ′S A(0) and ρ′′S A(0) are arbitrary close and/or
separable.

In summary, this method provides a pair of initial states ρ′S A(0) and ρ′′S A(0)
such that, if the evolution in [s, t] is described by a non-CPTP intermediate map
Vt,s, then the witness QBJA provide a backflow

QBJA({ρ′S A(t), ρ′′S A(t)}) − QBJA({ρ′S A(s), ρ′′S A(s)}) > 0 . (2.85)

Notice that the authors in [BJA17] show that also point-wise non-invertible
evolutions can be considered. These evolutions are those Λ for which the in-
verse map Λ−1

t does not exist only for a discrete set of times {ti}i. In case s is
a time when Λ is non-invertible, in order to recover Eq.(2.85) it is enough to
find a pair of states ρ′S A(0) , ρ′′S A(0) that are mapped by Λs into the same state
ρ′S A(s) = ρ′′S A(s). Indeed, this condition implies that QBJA({ρ′S A(s), ρ′′S A(s)}) =

1/2 and, when the invertibility is recovered for some later time t, these two
states ρ′S A(t) , ρ′′S A(t) become distinguishable again, QBJA({ρ′S A(t), ρ′′S A(t)}) >
1/2 and the backflow (2.85) is recovered. Finally, they notice that evolu-
tions that are not invertible or point-wise non-bijective are contained in a zero-
measure set in the space of quantum evolutions. Hence, any random infinitesi-
mal perturbation of any evolution is either invertible or point-wise non-invertible.
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2.5.5 Guessing probability of ensembles

The approach followed by Buscemi and Datta in [BD16] is slightly differ-
ent and requires the introduction of the guessing probability of ensembles, a
generalization of P(p)

g to ensembles of any number of states. Consider the
task of identifying a state that we randomly choose from a known ensemble
E = {pi, ρi}

n
i=1 of states of S (H). The guessing probability Pg(E) is the av-

erage probability to successfully identify the extracted state with an optimal
measurement, that is

Pg(E) ≡ max
{Pi}

n
i=1

n∑
i=1

pi Tr
[
ρi Pi

]
, (2.86)

where the maximization is performed over the n-output POVMs of B(H) (com-
pare it with Eq. (2.76)). We say that the larger is Pg(E), the more E is dis-
tinguishable. Notice that the maximum value Pg(E) = 1 is obtained for or-
thogonal state ensembles. Moreover, Pg(E) can be used to define witnesses of
non-Markovianity: under the action of any CPTP map Φ : B(HS ) → B(H)
on the states of E = {pi, ρi}i, the guessing probability Pg(E) is non-increasing:
Pg({pi, ρi}i) ≥ Pg({pi,Φ(ρi)}i).

Now we explain how we can use the guessing probability to witness any
non-Markovian dynamics. We consider a finite-dimensional system S − A,
where the d-dimensional system S is evolved by a generic evolution Λ and
A is an ancillary system. Given an initial ensemble ES A(0) = {pi, ρS A,i(0)}i,
we consider its evolution ES A(t) = {pi,Λt ⊗ IA(ρS A,i(0))}i. Therefore, if Λ is
Markovian,

Pg(ES A(t)) − Pg(ES A(s)) ≤ 0 , (2.87)

for any time interval [s, t]. Hence, the quantifier of information considered in
this scenario is

QBD(ES A(t)) = Pg(ES A(t)) ,

where the initial condition is given by ES A(0). The authors of [BD16] show
that, for any evolution Λ and time interval [s, t], there exist an ancillary system
A and an initial ensemble ES A(0) of separable states of S (HS A)

ES A(0) ≡ {pi, ρS A,i}
n
i=1 , (2.88)

such that we have a backflow

Pg(ES A(t)) − Pg(ES A(s)) > 0 , (2.89)

if and only if there exists no CPTP intermediate map Vt,s, and therefore a viola-
tion of the Markovian condition (2.59). Moreover, the probability distribution



62 Preliminaries

P ≡ {pi}
n
i=1 has a finite size of n ≤ d4 elements and dim(HA) ≤ d. Notice that,

even if we do not make it explicit, ES A(0) depends on Λ and [s, t]. This result is
completely general, applies to any finite-dimensional evolution and, while it is
not able to provide the explicit states needed to define ES A(0), it proves the first
one-to-one relation between information backflows and non-Markovianity.

2.5.6 Volume of accessible states

A way to characterize and study non-Markovianity is given by the study of
Im(Λt) and the temporal evolution of its volume V(t) [LPP13]. Indeed, we can
see that it is contractive under CPTP maps and therefore it can be used to study
non-Markovianity. In order to discuss this technique, we briefly introduce the
technique used. Given a d-dimensional system S , any density operator ρS ∈

S (HS ) can be represented by a d2 − 1 dimensional real vector r in the Bloch
representation (see Section 2.1.1). Therefore, any state ρS (t) evolving under
the dynamics defined by Λ can be represented by a time dependent vector r(t).
In this formalism, the action of the dynamical map Λt induces the following
affine transformation

r(0)→ r(t) = A(t)r(t) + q(t)/
√

d , (2.90)

where A(t) is a (d2 − 1) × (d2 − 1) real matrix. This matrix can be decomposed
as A(t) = O(1)(t)D(t)O(2)(t), where O(i)(t) are orthogonal matrices and D(t) is
positive semi-definite and diagonal. It follows that the action of Λt on the space
of state vectors r corresponds to a first rotation O(1)(t) (possibly composed with
an inversion), then a shrink of the vectors D(t) followed by a second rotation
O(2)(t) and a translation q(t)/

√
d. The contraction factor of the available state

vectors is given by det A(t) = det D(t). Indeed, it can be shown that V(t) =

| det A(t)|V(0). Moreover, | det A(t)| is monotonically decreasing for P-divisible
evolutions [WC08] and therefore, if Λ is P-divisible,

dV(t)
dt

=
d| det A(t)|

dt
≤ 0 . (2.91)

This result implies that whenever an increase of V(t) occurs in a time interval
[t1, t2], we can infer that Vt2,t1 is not even P and Λ is essentially non-Markovian,
namely not even P-divisible. The following measure can be considered

NLPP(Λ) =
1

V(0)

∫
dV(t)/dt>0

dV(t)
dt

dt =

∫
d| det A(t)|/dt>0

d| det A(t)|
dt

dt .

We have that NLPP(Λ) > 0 only if Λ is essentially non-Markovian.
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The authors of [LPP13] show that this measure of non-Markovianity is also
connected to the amount of classical information that can be retrieved from
the environment. Indeed, if we perform an encoding of classical information
by preparing quantum states according to a probability distribution pr and we
evolve such states with the dynamical map Λt, we can see that change in entropy
of the probability distribution is

S C(pr(t)) − S C(pr(0)) = log2 | det A(t)| ,

where S C(pr) = −
∫

pr log(pr)dr. It follows that a contraction of the volume
of accessible states corresponds to a loss of classical information.

In [CMM17] this vectorial approach is applied to the Breuer-Laine-Piilo
non-Markovianity measure [BLP10](see Section 2.5.3), where Λt(ρ′S (0)−ρ′′S (0))
is studied to witness non-Markovianity. This quantity, in the representation in-
troduced here, assumes the form A(t)(r′(0) − r′′(0)), where r′(0) (r′′(0)) is the
vectorial representation of ρ′S (0) (ρ′′S (0)) obtained through Eq. (2.4). There-
fore, the BLP condition depends on A(t) but not on q(t). The P-divisibility of
Λ and therefore of the evolution induced by Eq. (2.90), relies on both A(t) and
q(t) and therefore both the BLP condition (2.73) and the condition (2.91) are
weaker than P-divisibility. Notice this is not true for unital evolutions, namely
such that Λt(1S ) = 1S for any t ≥ 0, where q(t) = 0.

It may seem unfeasible to perform an experiment that estimates V(t) for
a generic evolution of a d-dimensional systems. Nonetheless, the authors of
[LPP13] show that, in order to evaluate V(t), it is enough to perform state
tomography on d2 − 1 states that initially correspond to an orthogonal ba-
sis of Bloch vectors in Rd2−1 and the maximally mixed state. Hence, in the
context introduced at the beginning of this section, we can consider the wit-
ness QLPP(t) = V(t), where the initial condition is given by an orthogonal set
{ρS ,i(0)}d

2−1
i=1 .

Additional results concerning commutative evolutions, namely such that
Λt ◦ Λs = Λs ◦ Λt for any s ≤ t, normal commutative evolutions, namely com-
mutative evolutions such that Λt ◦Λ∗t = Λ∗t ◦Λt for any t ≥ 0 with Λ∗t being the
dual of Λt, and Hermitian commutative evolutions, namely commutative evo-
lutions such that Λt = Λ∗t for any t ≥ 0, are presented together with examples
in [CMM17].

2.5.7 Correlation measures

The higher performance that quantum protocols can achieve, if compared with
the corresponding classical counterparts, are often due to quantum correlated
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multipartite system. Indeed, quantum correlations are among the most rep-
resentative type of information that can be considered for quantum systems.
Hence, scenarios that admit backflows of these quantities are of great interest.

In Section 2.2 we described three types of bipartite A − B states, namely
product states (no correlations), separable states (classical correlations) and en-
tangled states (quantum correlations), as those having increasing degrees of
shared correlation. In this section we give precise rules to define functionals to
measure correlations over a bipartition. Given a bipartite system A−B, a corre-
lation measure M quantifies correlations shared between the subsystems A and
B. Several different measures have been formulated, where each one studies
qualitatively different types of correlations. In order for M : S (HAB) → R to
be considered an operationally meaningful correlation measure, we require it
to satisfy the following properties:

• M(ρAB) is non-increasing under local operations on A and B;

• M(ρAB) ≥ 0 for any state ρAB;

• M(ρAB) = 0 if ρAB is a product state ρA ⊗ ρB.

The first condition encapsulates the natural requirement that correlations can-
not be created by local operations. Notice that, while for generic Q we im-
posed contractivity under local operations only for one subsystem (see condi-
tion (2.57)), correlation measures require contractivity under local operations
for both subsystems. This property implies that in general M decreases when
we apply CPTP maps on A and/or B, while it has to be invariant under unitary
local transformations. Indeed, for any bipartite system state ρAB ∈ S (HAB) and
local unitaries UA ∈ B(HA) and UB ∈ B(HB), we have M(ρAB) ≥ M((UA ⊗

UB)ρAB(UA ⊗ UB)†) = M(ρ′AB) ≥ M((UA ⊗ UB)†ρAB(UA ⊗ UB)) = M(ρAB),
where ρ′AB = (UA ⊗UB)ρAB(UA ⊗UB)†. Notice that since any product state can
be prepared by local operations, all these states should give the same value of
M, which also corresponds to the minimum of M over all quantum states. We
obtain the second and third conditions if, without loss of generality, we impose
this minimal value to be equal to zero. Indeed, the first of these three conditions
is the central property that characterizes correlation measures and distinguishes
them from other functionals.

Non-Markovian evolutions and correlation measures

Notice that the monotonicity of correlation measures under CPTP local maps
implies that any Markovian evolution on S monotonically decrease correlations
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Figure 2.3: Left: in the first setting, an initial state between system S and ancilla
A is used. An increase of correlations between these two parts witnesses the
presence of non-Markovian effects. Right: in our second extended setting, the
whole setup consists of three parts, the systems S and A as before, plus an extra
ancilla A′. An increase of the correlations over the bipartition S A′ versus A can
be used to witness non-Markovian evolutions. By taking an initial product state
along the bipartition A′ − AS , we recover the first scenario of S − A states.

shared in S−A systems. In fact, consider the scenario of Fig. 2.3 left, where S is
evolved byΛ and is correlated with an ancillary system A, namely ρS A(t) = Λt⊗

IA(ρS A(0)). If there is a correlation backflow between S and A in a time interval
[s, t], the evolution Λ is non-Markovian and more precisely the corresponding
intermediate map Vt,s cannot be CPTP.

Given the definition of correlation functionals, these quantities automat-
ically satisfy the conditions for non-Markovian witnesses Q. Indeed, differ-
ent correlation measures have been proposed to witness and quantify non-
Markovian effects, e.g. quantum entanglement [RHP10] and quantum mutual
information (QMI) [LFS12].

From an OQS perspective, a decrease in correlations between S and A dur-
ing the dynamics may be caused by a non-recoverable loss of S −A correlations
but it may also be that these correlations have been transformed into potentially
recoverable correlations of the environment-OQS-ancilla. A revival can there-
fore be seen as a flow of correlations lost during the previous evolution back to
S − A.

In what follows we also consider a slightly more complex setting with two
ancillas A and A′, where the evolution is again applied only on S but we are
interested in the correlations shared between S A′ and A (see Fig.2.3 right). It is
straightforward to see that any correlation measure of this kind cannot increase
under Markovian dynamics. Notice that the previous setting can be recovered
by taking an initial state which is product along the bipartition A′ − AS .
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Entanglement measures

We start by describing an exemplary correlation measure widely used in quan-
tum information theory: entanglement. It is exploited in different areas, e.g.
as a fundamental tool in quantum protocols and resource theories [HHHH09,
PV07, CG19]. Entanglement ME , being typically a non-local correlation, was
originally constructed to capture only non-classical correlations. The idea of
LOCC was originally introduced to describe the effects that distant experi-
menters can induce on a correlated states by using local operations. It was
later understood that entanglement can be defined to be that correlation that is
non-increasing under any LOCC applied by the parties that share the state. This
implies that ME(ρS A) = 0 if ρS A is a separable state. A widely used measure of
entanglement is negativity:

NEG(ρS A) =
||ρTA

S A||1 − 1
2

≥ 0 , (2.92)

where TA, a PTP transformation, represents the partial transposition of A. We
have that NEG(ρS A) = 0 for any separable states, while NEG(ρS A) > 0 im-
plies that S and A share quantum correlations. This measure derives from the
positivity of the partial transpose (PPT) condition [Per96], which states that
ρTA

S A ≥ 0 is a necessary condition for the separability of ρS A. The PPT crite-
rion is also a sufficient condition only for qubit-qubit and qubit-qutrit bipartite
systems [HHH96]. Hence, for these systems, NEG(ρS A) > 0 if and only if ρS A

is entangled. Instead, this is no longer true for larger subsystems [HHH98],
where there exist entangled states satisfying the PPT condition and therefore
NEG(ρS A) = 0.

Rivas-Huelga-Plenio, in Ref. [RHP10], first introduced the idea of using
entanglement measures to witness non-Markovianity as follows. The authors
considered a S − A bipartite system prepared in the maximally entangled state
|φ+〉〈φ+|S A = d−1 ∑d

i j=1 |i〉〈 j|S ⊗ |i〉〈 j|A, where S is evolved with the target evolu-
tion Λ. In the context introduced in this section, our non-Markovianity witness
can be any entanglement measure ME , e.g. negativity, and the initial condi-
tion is given by φS A(0) = |φ+〉〈φ+|S A. The evolution induces the transformation
φS A(t) = Λt⊗ IA(|φ+〉〈φ+|S A) and any increase of ME(φS A(t)) has to be attributed
to a non-CPTP intermediate map and therefore to a non-Markovian evolution.
Finally, a measure of non-Markovianity NE(Λ) similar to Eq. (2.74) can be
formulated once we consider the flux of entanglement σE(t) = d

dt ME(φS A(t)).
Notice that in this case no maximization over initial states is required and we
obtain

NE(Λ) =

∫
σE(t)dt .
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Quantum mutual information

Classical mutual information quantifies the amount of mutual dependence be-
tween two random variables. It evaluates the bits of information we gain about
one variable if we observe the other variable and vice versa. Its formulation is
inherently connected with the entropy of a random variable, where the larger is
the Shannon entropy of X, namely S C(X), the less we know about the random
variable X. Given X with possible outcomes xi and occurrence probabilities pi,
the Shannon entropy of X is defined as

S C(X) ≡ −
∑

i

pi log pi . (2.93)

The mutual information shared between two random variables X and Y is there-
fore given by

IC(X; Y) ≡ S C(X) + S C(Y) − S C(X,Y) , (2.94)

where S (X,Y) is calculated with the joint probability distributions for the out-
comes of X and Y . The quantum generalization of Eq. (2.93) is given by the
von Neumann entropy

S (ρ) ≡ −Tr
[
ρ log ρ

]
, (2.95)

where, in this context, log denotes the matrix logarithm. Similarly, we can
define I(ρS A) as the information shared between the quantum systems S and A

I(ρS A) ≡ S (ρS ) + S (ρA) − S (ρS A) , (2.96)

where ρS A is the state of the bipartite system S − A and ρS = TrA
[
ρS A

]
(ρA =

TrS
[
ρS A

]
) is the corresponding reduced state of S (A). The QMI is a continuous

function on the set of states and is analytic on the interior of the set of states,
namely it is infinitely differentiable and equals its Taylor series in a neighbor-
hood of any point. Moreover, I(ρS A) measures both classical and non-classical
correlations. Indeed, this measure in general is not null for separable states.
In the following we describe how this feature distinguishes the non-Markovian
witnessing potential of entanglement and QMI.

In Ref. [LFS12] the authors used QMI to witness non-Markovianity and
constructed a corresponding measure obtained by the scheme given in Section
2.5, where a maximization over ancillary systems A and initial states ρS A(0) is
performed

NLFS (Λ) ≡ sup
A,ρS A(0)

∫
σLFS (ρS A(t))>0

σLFS (ρS A(t)) dt , (2.97)

where ρS A(t) = Λt ⊗ IA(ρS A(0)) and

σLFS (ρS A(t)) ≡
d
dt

I(ρS A(t)) . (2.98)
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2.5.8 Entropic quantities

Several entropic quantities have been taken in consideration in the context of
witnessing non-Markovianity. See Ref. [ABC18] for a review on this topic.
The monotonicity of the relative entropy evaluated between two evolving S
states can be connected with a divisibility property of Λ [Uhl77, OP04]. Being
the relative entropy between two density operators in S (H) defined as S (ρ||σ) ≡
Tr

[
ρ(log ρ − logσ)

]
, we have:

Proposition 3 ([MHR17]). If Λ is k-divisible, then

d
dt

S (ρ′S A(t)||ρ′′S A(t)) ≤ 0 , (2.99)

for any pair of states ρ′S A(0) and ρ′S A(0) in S (HS A), where dim(HA) = k and
S − A states are evolved by Λ ⊗ Ik,

Hence, a violation of Eq. (2.99) implies that the target evolution is either
P-divisible or essentially non-Markovian. Results similar to Proposition 3 can
be obtained with other entropic quantities, such as: the Rényi-α divergence
[OP04, HMPB11, MHR17], the sandwiched Rényi divergences [MLDS+13,
FL13, MO14, MHR17] and the conditional Rényi entropy [Tom15].

Finally, by defining the entropic quantity called min-entropy as follows

Hmin(ρS A) = min
σS ∈S (HS )

− log ||(σ−1/2
S ⊗ 1A)ρS A(σ−1/2

S ⊗ 1A)||∞ , (2.100)

we can also consider the quantum correlation qcorr(ρS A) = 2−Hmin(ρS A) [KRS09,
ABC18]. This quantity can be related to the singlet fraction of ρS A, namely:

qcorr(ρS A) = dA max
ΦS
〈φ+|(ΦS ⊗ 1A)(ρS A)|φ+〉2S A, (2.101)

that is the maximum fidelity with a maximally entangled state |φ+〉S A optimized
over local operations ΦS . It is easy to see that this measure cannot increase by
local operations on the first system, as any further local processing can always
be adsorbed in the optimization in (2.101).

For quantum-classical states ρS A(t) =
∑

i piρS ,i(t) ⊗ |i〉〈i|A, where |i〉A ∈ HA

are orthogonal states, qcorr(ρS A(t)) = Pg({pi, ρS ,i(t)}) and the results of Section
2.5.5 can be recovered. Notice that, while the name of this quantity contains
the word “correlation”, it is not monotonic under CPTP maps on the ancillary
system and therefore we do not consider qcorr a proper correlation measure.

Each one of the entropic quantities introduced in this section can be used
to define a witness Q and therefore a corresponding flux σQ and a measure of
non-Markovianity NQ, e.g. as in Section 2.5.3. Notice that these procedures
always imply maximizations over the possible initial states or pair of states.
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2.5.9 Channel discrimination

Consider the task of distinguishing a channel between different possible CPTP
maps ΦS ,i : B(HS ) → B(HS ), where each channel on S is given with a-priori
probability pi. In this scenario, we have the freedom to choose on which state
ρS A we apply the unknown channel, where S is transformed by one channel
from {ΦS ,i}

n
i=1 while the k-dimensional ancilla A is left untouched. The i-th

channel transforms ρS A in ρS A,i = ΦS ,i⊗IA(ρS A) and therefore the task of distin-
guishing the channel ensemble {pi,ΦS ,i}i can be translated into the evaluation of
Pg({pi, ρS A,i}i), namely the distinguishability of the state ensemble {pi, ρS A,i}i.
Indeed, if we use a k-dimensional ancilla A, we define the distinguishability of
the channel ensemble {pi,ΦS ,i}i as follows

P(k)
g ({pi,ΦS ,i}i) ≡ max

ρS A∈S (HS A)
Pg({pi, ρS A,i}i) . (2.102)

The presence of an ancillary system used to define initial correlations among S
and A helps in this witnessing task. Indeed, one finds that:

P(2)
g ({pi,ΦS ,i}i) ≤ P(3)

g ({pi,ΦS ,i}i) ≤ · · · ≤ P(d)
g ({pi,ΦS ,i}i) . (2.103)

Now, consider the scenario where, after the application of a channel from
{pi,ΦS ,i}i on the initial state ρS A(0), we evolve the system to time t with an evo-
lution Λ. Hence, in this case the initial ρS A(0) is transformed with probability
pi into ρS A,i(t) = Λt ◦ΦS ,i⊗ IA(ρS A(0)). As expected, distinguishing the ensem-
ble {pi, ρS A,i(0)}i is easier than for {pi, ρS A,i(t)}i (see Section 2.5.5). Therefore,
the same can be said comparing {pi,ΦS ,i}i and {pi,Λt ◦ ΦS ,i}i. Indeed, for any
k ≥ 2 and CPTP map ΛS :

P(k)
g ({pi,ΦS ,i}i) ≥ P(k)

g ({pi,ΛS ◦ ΦS ,i}i) .

Actually, it can be proven that:

Proposition 4 ([BC16]). If Λ is k-divisible, then

d
dt

P(l)
g ({pi,Λt ◦ ΦS ,i}i) ≤ 0 , (2.104)

for any l ≤ k.

Consider the case of two channels {ΦS ,1,ΦS ,2} which are respectively ap-
plied with a-priori probabilities p and 1 − p on states ρS A ∈ S (HS A), where A
is a k-dimensional ancilla. We can define their distinguishability as

P(k,p)
g (ΦS ,1,ΦS ,2) ≡ max

ρS A

1
2

(
1 + ||(pΦS ,1 − (1 − p)ΦS ,2) ⊗ IA(ρS A)||1

)
, (2.105)
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where A is a k-dimensional ancilla. Notice that, for fixed values of p, P(k,p)

satisfies Eq. (2.103) when different dimensions of the ancilla are considered.
The following necessary and sufficient relation connects invertible Marko-

vian evolutions and the monotonic decrease of channels dinstinguishability:

Proposition 5 ([BC16]). If Λ is invertible, then it is k-divisible if and only if

d
dt

P(k,p)
g (Λt ◦ ΦS ,1,Λt ◦ ΦS ,2) ≤ 0 , (2.106)

for any p ∈ (0, 1) and pair of CPTP maps {ΦS ,1,ΦS ,2}.

In practice, detecting a non-Markovian evolution with the procedure sug-
gested here can be demanding in the general case. Indeed, Theorem 5 requires
to consider every pair of CPTP maps {ΦS ,1,ΦS ,2}, p ∈ (0, 1) and a maximization
over the set of initial states ρS A(0) (see Eq. (2.105)).

2.6 Random unitary evolutions

In this section we introduce an exemplary set of quantum evolutions that are
considered throughout this thesis. The wide interest that it attracted is due to its
simple formulation and the possibility to easily characterize some properties,
e.g. P-divisibility, by checking simple conditions on the parameters that define
this set.

We start by defining unital evolutions as those that preserve the identity
operator during the dynamics, namely Λ is unital if and only if Λt(1S ) = 1S

for any t ≥ 0. In other words, unital evolutions are those having the maximally
mixed state 1S /d as steady state, where d is the dimension of S . Notice that
this property has not to be true only for 1S /d, other steady states different from
1S /d may exist.

We follow by defining as random unitary those maps ΦS : S (HS )→ S (HS )
that can be written as

Φ(ρS ) =
∑

k

pkUkρS U†k , (2.107)

where {pk}k is a probability distribution and {Uk}k a set of unitary transforma-
tions [CW15]. Therefore, Λ is a random unitary evolution if the corresponding
Λt can be written in this form for any t ≥ 0. If d = 2, that is for qubit evolutions,
any unital channel is random unitary [LS93]. However, when d ≥ 3, the set of
random unitary channels is strictly included in the set of unital channels.

A particularly handy subset of random unitary evolutions is given by Pauli
evolutions, which are defined as those where the dynamical maps assume the
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form

Λt(ρS (0)) =

d2−1∑
k=0

pk(t)σkρS (0)σ†k , (2.108)

where the unitary operators σk, for k = 1, . . . , d2 − 1, are such that σ0 = 1S

and Tr
[
σiσ

†

j

]
= dδi j for i, j = 0, 1, . . . , d2 − 1 . This class is studied in Ref.

[CW15], where the operators σk are given by the set of unitary generalized
spin Weyl operators. Since {pk(t)}k is a probability distribution, we have that∑d2−1

k=0 pk(t) = 1 and pk(t) ≥ 0 for any k. Notice that from the initial condition
Λ0 = IS we get p0(0) = 1.

2.6.1 Qubit Pauli evolutions

In the case that S is a qubit, namely for d = 2, the Pauli dynamical maps (2.108)
assume the form

Λt(ρS (0)) = p0(t)ρS (0) +
∑

k=x,y,z

pk(t)σkρS (0)σk , (2.109)

where the operatorsσx, σy andσz are the Pauli operators. Now we show how to
connect Pauli evolutions with the dynamics generated by the following master
equation in the generalized Lindblad form (2.43)

Lt(ρS (t)) =
∑

k=x,y,z

γk(t)(σkρS (t)σk − ρS (t)) , (2.110)

where γx,y,z(t) are real valued time-dependent functions. We consider Eq. (2.44)
to construct Λt and we study its action on the Pauli operators.

Λt(σx) = exp
[
−

∫ t

0
(γz(τ) + γy(τ))dτ

]
σx,

Λt(σy) = exp
[
−

∫ t

0
(γz(τ) + γx(τ))dτ

]
σy,

Λt(σz) = exp
[
−

∫ t

0
(γx(τ) + γy(τ))dτ

]
σz,

Λt(1S ) = 1S , (2.111)

Remember that, as we saw in Eq. (2.3), any qubit state can be written in terms
of components proportional to σx,y,z. Note that if we allow the rates to take
values in the extended realsR∪{−∞,+∞}we can have non-bijective dynamical
maps Λt since exp [−∞] = 0. Therefore, any qubit random unitary dynamical
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map generated by finite rates is bijective. In these cases, Λ−1
t exists for all t ≥ 0

(the exponential function is always non-zero) and the intermediate maps are
given by considering Eqs. (2.111) in Eq. (2.33), namely:

Vt,s(σx) = exp
[
−

∫ t

s
(γz(τ) + γy(τ))dτ

]
σx,

Vt,s(σy) = exp
[
−

∫ t

s
(γz(τ) + γx(τ))dτ

]
σy,

Vt,s(σz) = exp
[
−

∫ t

s
(γx(τ) + γy(τ))dτ

]
σz,

Vt,s(1S ) = 1S . (2.112)

Any Pauli evolution can be defined either by the time-dependent probability
distribution p0,x,y,z(t) (see Eq. (2.109)) or by the time-dependent set of rates
γx,y,z(t) that defines the generator Lt and the dynamical map Λt through Eqs.
(2.111) and (2.110). In order to derive Λt from Lt and vice-versa, the following
equations can be considered [CW13]

p0(t) =
1
4

(
1 + Axy(t) + Axz(t) + Ayz(t)

)
,

px(t) =
1
4

(
1 − Axy(t) − Axz(t) + Ayz(t)

)
,

py(t) =
1
4

(
1 − Axy(t) + Axz(t) − Ayz(t)

)
,

pz(t) =
1
4

(
1 + Axy(t) − Axz(t) − Ayz(t)

)
. (2.113)

We end this section by showing some simple conditions on γx,y,z(t) that
allows understanding whether the generated evolution is physical, P-divisible
or Markovian. We start by defining:

Ai j(t) ≡ exp
[
−2

∫ t

0
(γi(τ) + γ j(τ)) dτ

]
≥ 0 , (2.114)

for i , j and i, j ∈ x, y, z. From Eqs. (2.111) and (2.114), we obtain

Λt(σi) = λi(t)σi , where λi(t) =

√
A jk(t) , (2.115)

where (i, j, k) = (x, y, z), (y, z, x), (z, x, y). Notice that the i-th eigenoperator of
Λt is σi, where λi is the corresponding eigenvalue, while 1S is an eigenoper-
ator with eigenvalue 1 at any time. In case γx,y,z(t) ≥ 0 is finite for any t ≥ 0
we know from Section 2.3.4 that Eq. (2.110) defines a Markovian evolution.
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Instead, if one or more of these rates assume negative values, we use the fol-
lowing conditions in order to understand whether the given set of rates defines
an evolution that is physical (Λt is CPTP at any time) or P-divisible:

• Λt is CPTP if and only if

Bi jk(t) ≡ 1 + Ai j(t) − A jk(t) − Aki(t) ≥ 0 , (2.116)

for (i, j, k) = (x, y, z), (y, z, x), (z, x, y) [HCLA14];

• Λ is P-divisible if and only if, for any t ≥ 0,

γx(t) + γy(t) ≥ 0,

γy(t) + γz(t) ≥ 0, (2.117)

γz(t) + γx(t) ≥ 0,

since the intermediate maps are then contractive in trace norm [Kos72b,
Kos72a, Rus94, CW13];

• Λ is Markovian if and only if γx,y,z(t) ≥ 0 for any t ≥ 0.

2.6.2 Depolarizing evolutions

We gave conditions to distinguish Markovian from non-Markovian Pauli evo-
lutions based on the behavior of the rates γx,y,z(t). In this section we introduce a
widely studied subclass of Pauli evolutions called depolarizing evolutions. An
evolution D = {Dt}t defined on a d-dimensionalHS is depolarizing if and only
if at any time t ≥ 0 the corresponding dynamical map Dt can be written as
a linear combination of the identity transformation IS and the map that sends
every input state into the completely mixed state. Specifically, we have

Dt(·) = f (t) IS (·) + (1 − f (t))Tr [·]
1S

d
, (2.118)

with the characteristic function f (t) being a real quantity belonging to the in-
terval

JD ≡
[
−

1
d2 − 1

, 1
]
, (2.119)

where this last property is necessary and sufficient for Dt to be CPTP [Kin03].
We defineD to be the set of depolarizing evolutions, where the specific dimen-
sion of the corresponding Hilbert space is left unspecified. It is easy to verify
thatD is a closed set [Hol12, Wil13, Kin03]. Indeed, given any two depolariz-
ing evolutions D(1) = {D(1)

t }t and D(2) = {D(2)
t }t, we have that D(p)

t = (1−p)D(1)
t +



74 Preliminaries

pD(2)
t assumes the form (2.118) with characteristic function f (p)(t) ∈ JD. It is

possible to prove that, for any d, the depolarizing evolutions are random uni-
tary. From Eq. (2.118) it is clear that we can use the function f (t) to uniquely
characterize the elements ofD.

Depolarizing evolutions for qubits

We show how to connect the characteristic function f (t) to the parameters used
in the previous sections to describe evolutions, namely the probabilities px,y,z(t)
given in Eq. (2.109) and the rates γx,y,z(t) given in Eq. (2.110). The dynam-
ical map Dt is in the Pauli form. Indeed, the channel (2.109) is equal to the
depolarizing map (2.118) when

p0(t) =
3 f (t) + 1

4
and px(t) = py(t) = pz(t) =

1 − p0(t)
3

. (2.120)

Notice that, if f (t) assumes its maximum value 1, namely when Dt acts as the
identity map, p0(t) = 1. On the contrary, if f (t) assumes its minimal value
−1/3, we obtain p0(t) = 0. Now we show the connection between D and the
corresponding master equation Lt that generates the same evolution.

Given the symmetric action of Dt, it is straightforward to see that the three
rates γx,y,z(t) are identical: γx,y,z(t) = γ(t). Therefore, if we compare Eq.
(2.110), which now assumes the form

d
dt
ρS (t) = γ(t)

∑
i=x,y,z

(σiρS (t)σi − ρS (t)) . (2.121)

with the time derivative of Eq. (2.118), namely

d
dt

Dt(ρS (0)) = ḟ (t)
(
ρS (0) −

1S

2

)
, (2.122)

we obtain

γ(t) = −
ḟ (t)

4 f (t)
. (2.123)

Hence, Eqs. (2.120) provides the connection between p0,x,y,z(t) and f (t) and
(2.123) provides the connection between γ(t) and f (t). In the following we
characterize Markovian and non-Markovian depolarizing evolutions in terms
of the behavior of f (t). Nonetheless, we can notice that

• A qubit depolarizing evolution can be either Markovian or non-Markovian,
but not P-divisible. Indeed, if γx,y,z(t) = γ(t) < 0 for some time, the P-
divisibility conditions (2.117) cannot be satisfied.



2.6 Random unitary evolutions 75

• The times for which the infinitesimal intermediate maps Vt+ε,t are CPTP
are characterized by γ(t) ≥ 0. For the same times, the characteristic
function f (t) is either positive and non-increasing or negative and non-
decreasing. If f (t) behaves differently, the evolution is non-Markovian,
γ(t) < 0 and Vt+ε,t is not CPTP.

2.6.3 Eternal non-Markovian model

This particular non-Markovian model [HCLA14, BCF17] is a Pauli evolution
with a generator (2.110) defined by the following rates{

γx(t), γy(t), γz(t)
}

=
α

2
{1, 1,− tanh t} , for α ≥ 1 . (2.124)

It is straightforward to see these evolutions are P-divisible for any α > 0 (see
Eqs. (2.117)). Nonetheless, the physicality condition (2.116) is violated for
α ∈ (0, 1). Indeed, in these cases, the corresponding dynamical map Λt would
not be CPTP for all t ≥ 0. Hence, we restrict to those P-divisible evolutions
defined by α ≥ 1.

The notable feature of these evolutions is given by the behavior of the rate
γz(t), which is negative at any t > 0. As a consequence, any intermediate map
Vt2,t1 with t1 > 0 is P but not CP. Hence, for any time interval [t1, t2] with
t1 > 0, we expect to be able to witness an information backflow. A counterin-
tuitive consequence is given by the possibility to obtain a backflow even after
the evolution started from an infinitesimal time. Indeed, one could expect that
any S requires a minimal amount time to lose information before that it can
be recovered from the environment. Hence, consider Vt,s defined for a s very
close to zero. The data processing inequality applied on Λs and Λt implies
that Q(ρS A(s)) ≤ Q(ρS A(0)) and Q(ρS A(t)) ≤ Q(ρS A(0)) for any information
quantifier Q monotonic under CPTP maps. Now, if Q is continuous and it in-
creases in the time interval (s, t), there is a narrow time-window for a backflow:
Q(ρS A(s)) < Q(ρS A(t)) ≤ Q(ρS A(0)), where Q(ρS A(s)) and Q(ρS A(0)) are in-
finitesimally close. Hence, by fixing t, as s approaches 0, Q(ρS A(s)) approaches
Q(ρS A(0)) and the possible backflows Q(ρS A(t)) − Q(ρS A(s)) > 0 become in-
creasingly smaller. Therefore, we both have the intuitive scenario where large
backflows are possible only after a minimum elapsed time from the beginning
of the evolution and the possibility to obtain (infinitesimal) backflows for time
intervals with starting times infinitesimally close to zero.

Finally, we mention that in Ref. [MCPS17] the authors show how to obtain
non-Markovian evolutions with rates similar to Eq. (2.124) through the con-
vex combination of Markovian Pauli evolutions with non-negative and constant
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rates, namely satisfying the semi-group property. Therefore, this work studies
the non-convexity of the Markovian set by showing that even the peculiar eter-
nal non-Markovian model can be obtained by mixing evolutions satisfying the
semi-group property (2.35).



Chapter 3

Witnessing non-Markovianity
through correlations

Non-Markovian effects in an open-system dynamics are usually associated to
information backflows from the environment to the system. However, the way
these backflows manifest and how to detect them is unclear. A natural ap-
proach is to study the backflow in terms of the correlations the evolving system
displays with another unperturbed system during the dynamics. In this chap-
ter, we study the power of this approach to witness non-Markovian dynamics
using different correlation measures. We identify simple dynamics where the
failure of CP-divisibility is in one-to-one correspondence with a correlation
backflow. We then focus on specific correlation measures, such as those based
on entanglement and the mutual information, and identify their strengths and
limitations. The results exposed in this chapter are contained in the original
work [DJB+20].

3.1 Introduction

The dynamics of open quantum systems [BP07, Wei00, RH11] has been in-
vestigated extensively in recent years for both fundamental and applicative rea-
sons. In particular the problem of understanding and characterizing memory-
less dynamics, the so-called Markovian regime, and dynamics exhibiting mem-
ory effects, the non-Markovian regime, have been considered in a wide range of
different ways (for extended reviews see [RHP14, BLPV16]). Intuitively, one
expects that non-Markovian effects are associated to a backflow of information
from the environment to the system. Several approaches have been pursued
to put this intuition in rigorous terms. A standard procedure, see for exam-
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ple [BLP10, LFS12, BD16, BJA17], consists of considering operational quan-
tities Q that are monotonically non-increasing under CP maps (see Section 2.5).
An increase of any such quantities implies that the evolution is non-Markovian,
although the converse is not true in general. One of the quantities considered
in the context of non-Markovian characterization is correlations, a fundamental
concept for our understanding of quantum theory and also a resource for many
quantum information protocols. The general idea of this approach consists of
monitoring the evolution of the correlations between a system subjected to a
dynamics and an additional system that does not take part in the evolution. If at
some point a correlation backflow, that is, an increase in the correlations quan-
tified by a given correlation measure, is observed, then the dynamics must be
non-Markovian.

Non-Markovian evolutions show advantages in different quantum informa-
tion processing protocols; for example in quantum metrology [CHP12], quan-
tum teleportation [LBP14], entanglement generation [HRP12], and quantum
communication [BCM14]. An increase of correlations such as entanglement
and quantum mutual information (QMI) between system and an ancilla maybe
in many of these examples responsible for these achievements. Therefore, un-
derstanding for which measures and channels a correlation backflow appears
is not only a fundamental question but may also clarify how non-Markovianity
can be helpful for quantum information processing protocols.

In this chapter we focus on the first side of this problem and our main goal is
to understand the power of correlations to witness non-Markovian evolutions.
In particular, we study the strengths and weaknesses of several well-known
correlation measures for this task and we derive several results that improve
our understanding of this question. First, we introduce the quasi-eternal non-
Markovian model and we study how to tune its parameters in order to delay the
appearance of its non-Markovian effects. Then, it is shown how for a class of
differentiable evolutions termed single parameter, which includes relevant ex-
amples such as depolarization, dephasing, and amplitude damping, any contin-
uously differentiable correlation measure increases during non-Markovian dy-
namics unless it is time independent on the whole image of the preceding evo-
lution. Secondly, we focus on two fundamental quantum correlation measures:
entanglement measures and QMI. For the first, we provide a simple argument
explaining how it fails to witness non-Markovianity in many situations. For the
second, we study its behavior in different scenarios. We first show that QMI
witnesses the non-Markovianity of any bijective unital and non-P-divisible dy-
namics on a qubit. We then provide several examples of non-Markovian dy-
namics where no QMI backflow is observed when using maximally entangled



3.2 Non-Markovian dynamics 79

states. For some of these examples, we demonstrate that a backflow in the
QMI does appear when using non-maximally entangled states, in some cases
even arbitrarily weakly entangled pure states. This highlights how a high de-
gree of initial correlations is not necessarily beneficial for the detection of non-
Markovianity when using the QMI as a witness. Lastly, we discuss conditions
under which the QMI shared between an evolving system and an ancilla can-
not show backflows. Moreover, we show how to construct examples of quasi-
eternal non-Markovian dynamics that do not display any these QMI backflows.

3.2 Non-Markovian dynamics

In Section 2.3.4 we saw that, for a differentiable evolution Λ, any dynamical
map Λt and any intermediate map Vt,s can be expressed as time-ordered expo-
nentials

Λt(ρ) = Te
∫ t

0 Lτdτ, Vt,s = Te
∫ t

s Lτdτ , (3.1)

where Lt is the generator of the evolution. We say that Lt is casted in the
generalized Lindblad form when it can be written as

Lt(ρS (t))≡ i[H(t), ρS (t)]

+
∑

k

γk(t)
(
Gk(t)ρS (t)G†k(t) −

1
2

{
G†k(t)Gk(t), ρS (t)

})
, (3.2)

where γk(t) are real time-dependent functions, Gk(t) are time-dependent opera-
tors and H(t) a Hermitian possibly time-dependent operator. The Hamiltonian
term of the generator describes the unitary part of the dynamics generated by
H(t) and the second term describes the dissipative part of the dynamics gener-
ated by the operators Gk(t).

The generator Lt can be defined in terms of the intermediate map as Lt =
dVt,s
ds

∣∣∣
s=t. Often, it is convenient to describe the intermediate map Vt,s ⊗ IA and

the generator Lt by how they act on a basis of B(HS A). Such a basis can be
constructed from operators of the form χS ⊗ χA where χS is an operator onHS

and χA is an operator onHA. Let the dimension ofHS be d and let χS k be d2−1
traceless Hermitian operators such that Tr[χS kχS l] = δkld. Likewise let dA be
the dimension of HA and let χAk be d2

A − 1 traceless Hermitian operators such

that Tr[χAkχAl] = δkldA. Then one can choose an orthonormal basis {ei}
d2

Ad2−1
i=0

for B(HS A) by constructing the basis vectors ei as the tensor products χS j⊗χAi,
1S ⊗ χAi, χS j ⊗ 1A, and 1S ⊗ 1A for all i, j. Since there are d2 − 1 traceless
χS i and d2

A − 1 traceless χAi, one obtains (d2 − 1)(d2
A − 1) traceless elements of

the form χS j ⊗ χAi, (d2 − 1) traceless elements of the form 1A ⊗ χS j, (d2
A − 1)
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traceless elements of the form χAi⊗1S and a single element with trace 1S ⊗1A.
We denote e0 ≡ 1S ⊗1A. A state ρS A ∈ S (HS A) can be represented in this basis
by coordinates given by the real numbers ai = 1

ddA
Tr(ρS Aei), namely

ρS A =
1

ddA
1S ⊗ 1A +

d2d2
A−1∑

i=1

aiei. (3.3)

We can now describe the intermediate map Vt,s ⊗ IA by how it acts on each
basis elements ei. For this purpose we define

Vi j(t, s) ≡ Tr
[
eiVt,s ⊗ IA(e j)

]
. (3.4)

Note that Vi j(t, s) is real for all i, j since Vt,s is hermiticity preserving. More-
over, since the map Vt,s is trace preserving it follows that V00(t, s) = 1 and
V0 j(t, s) = 0 for j , 0. Let the coordinates ā ≡ {ai}, where a0 = 1/dAd,
describe a state at time t. This state is mapped by Vt,s ⊗ IA to coordinates
ā(s) = {ai(s) ≡

∑
jVi j(t, s)a j}. Analogously to Eq. (3.4), we define the time

derivatives of the componentsVi j(t, s) as

dVi j(t, s)
ds

∣∣∣∣
s=t
≡ Tr

[
ei

dVt,s

ds
⊗ IA(e j)

] ∣∣∣∣
s=t
. (3.5)

3.2.1 The quasi-eternal non-Markovian model

We present a class of non-Markovian Pauli evolutions that generalizes the eter-
nal non-Markovian model shown in Section 2.6.3. We analyze the evolutions
Λ(tNM ,α), defined by Eqs. (2.111), with parameterized time-dependent rates{

γx(t), γy(t), γz(t)
}

=
α

2

{
1, 1,−tanh(t − tNM)

}
, (3.6)

where α > 0 and tNM ≥ 0. Whether Λ
(tNM ,α)
t generated by Eqs. (2.111) define

a physical evolution, namely they are CPTP maps for every t ≥ 0, depends on
the values of α and tNM. We saw that, if tNM = 0, the maps Λ

(0,α)
t are CPTP if

and only if α ≥ 1. Otherwise, if α ∈ (0, 1), the map Λ
(0,α)
t is not CP for every

t ≥ 0.
We define as quasi-eternal non-Markovian evolution any physical evolution

generated by Eq. (3.6) where tNM > 0. First, Λ(tNM ,α) represents an evolution
for all α ≥ 1. Instead, if 0 < α < 1, in order for Λ

(tNM ,α)
t to be CPTP for every

t ≥ 0, we have to consider wisely-chosen values of tNM. In order to satisfy the
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physicality condition (2.116), we calculate the quantities A(tNM ,α)
i j (t) that define

Λ
(tNM ,α)
t through Eq. (2.115) and we obtain

A(tNM ,α)
xy (t) = e−2αt , (3.7)

A(tNM ,α)
yz (t) = A(tNM ,α)

zx (t) =

(
e−t cosh(t − tNM)

cosh(tNM)

)α
. (3.8)

Now, we derive the physicality conditions for α and tNM. In order to satisfy the
CPTP conditions given in Eq. (2.116), we notice that B(tNM ,α)

yzx (t) = B(tNM ,α)
zxy (t) =

1 − A(tNM ,α)
xy (t) = 1 − e−2αt ≥ 0 for any α > 0 and t ≥ 0. It is straightforward

to verify that the last condition B(tNM ,α)
xyz (t) = 1 + A(tNM ,α)

xy (t) − 2A(tNM ,α)
yz (t) ≥ 0

is satisfied for any t ≥ 0 if and only if limt→∞ B(tNM ,α)
xyz (t) ≥ 0. Therefore, the

relation between α > 0 and tNM ≥ 0 that implies Λ
(tNM ,α)
t to be CPTP for any

t ≥ 0 is 1 − 2(e2tNM
+ 1)−α ≥ 0, namely

tNM ≥ tNM(α) ≡
1
2

log
(
21/α − 1

)
, (3.9)

or equivalently

α ≥ α(tNM) ≡
1

log2(e2tNM
+ 1)

. (3.10)

After having described how to construct quasi-eternal evolutions Λ(tNM ,α),
we discuss their properties. We start by noticing that, while γx(t) and γy(t)
are positive and constant, γz(t) < 0 for any t > tNM. Hence, the negativity of
γz(t) implies the non-Markovianity of these evolutions. It is easy to show that
the P-divisibility conditions given by Eqs. (2.117) are satisfied for any α > 0,
tNM ≥ 0 and t ≥ 0. It follows that the evolutions of this class are non-Markovian
and P-divisible. Indeed, the intermediate maps V (tNM ,α)

t,s are P (but not CP) for
any time interval (t, s) such that tNM < s < t. Notice that the non-Markovian
evolutions Λ(tNM ,α) behave as a Markovian evolution for t ∈ [0, tNM], namely
during those times when γx,y,z(t) are non-negative.

3.2.2 Tuning of the quasi-eternal non-Markovian model

We show how we can use the quasi-eternal model to tune when non-Markovian
effects take place. We fix α = 2/5 and we consider the evolutionsΛ(tNM) defined
by different values of tNM, namely generated by the rates{

γx(t), γy(t), γ(tNM)
z (t)

}
=

1
5

{
1, 1,−tanh(t − tNM)

}
. (3.11)
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In this section we show that, by increasing the value of tNM, we can arbitrarily
delay the time when the evolution starts to be not CP-divisible. Let Λ

(tNM)
t

be the qubit dynamical map at time t of the evolution Λ(tNM) and V (tNM)
t′′,t′ be

corresponding intermediate map for the time interval [t′, t′′]. The parameters
tNM = 1 and α = 2/5 define a physical evolution: from Eq. (3.9), Λ

(tNM)
t is a

CPTP map for any t ≥ 0 and tNM ≥ tNM(2/5) ' 0.769. Moreover, the same is
true for any larger value of tNM > 1.

Before going through the technical details of these evolution, we explain the
structure of this section. We start by picking a first value of tNM, namely tNM

1 ,
to define the quasi-eternal evolution Λ(tNM

1 ). Then we consider a P (but not CP)
intermediate map V that occurs in the time interval (t′1, t

′′
1 ), where tNM

1 < t′1 <

t′′1 , namely V = V
(tNM

1 )
t′′1 ,t
′
1

. Therefore, we consider a second evolution defined by

a different tNM
2 , namely Λ(tNM

2 ), characterized by tNM
1 < tNM

2 . We show that the
same intermediate map V considered for Λ(tNM

1 ) occurs for Λ(tNM
2 ) in a different

time interval (t′2, t
′′
2 ) = (t′1 + ∆tNM, t′′1 + ∆tNM), where ∆tNM = tNM

2 − tNM
1 > 0.

In other words V
(tNM

2 )
t′′2 ,t
′
2

= V
(tNM

1 )
t′′1 ,t
′
1

= V . Therefore, both the evolutions Λ(tNM
1 ) and

Λ(tNM
2 ) have V as intermediate map during their evolutions but, while for the

first evolution V occurs in the time interval (t′1, t
′′
1 ), the second evolution has

V as intermediate map in the later time interval (t′2, t
′′
2 ), namely with a delay

∆tNM = tNM
2 − tNM

1 > 0. Hence, by considering increasing values of tNM we
obtain evolution Λ(tNM) for which the same intermediate map V occurs later and
later in time. We follow by studying the image of the dynamics at the time t′,
namely the time when V occurs. Notice that t′ increases together with tNM. The
final purpose is to show that, by increasing enough the value of tNM, Im(Λ(tNM)

t′ )
is contained in an arbitrarily small neighbor of the stationary state ρS = 1S /2.

Following the steps we have described, we start by considering the evolu-
tions Λ(tNM

1 ) and Λ(tNM
2 ), where 1 ≤ tNM

1 < tNM
2 and ∆tNM ≡ tNM

2 − tNM
1 > 0.

From Eqs. (2.111) and (2.112) we see that the rates that defines the two evo-
lutions differ by a simple time-shift (see Eq. (3.11)). Hence, for t ≥ ∆tNM, we
can express the intermediate maps of Λ(tNM

2 ) starting at time ∆tNM in terms of
the dynamical maps of Λ(tNM

1 ). Indeed, for t > ∆tNM

V
(tNM

2 )
t,∆tNM = Λ

(tNM
1 )

t−∆tNM . (3.12)

As a consequence, if t > ∆tNM, the dynamical map Λ
(tNM

2 )
t itself can be ex-
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Figure 3.1: Plots of the quasi-eternal non-Markovian model rate γ
(tNM

1,2 )
z (t) =

− tanh(t − tNM
1,2 )/5 for tNM

1 = 1 (blue) and tNM
2 = 4 (orange). The differences

between Λ(1) and Λ(4) are given by the different values of the integral of γ(1)
z (t)

and γ(4)
z (t) (see Eqs. (2.111) and (3.11)). Let V be the P intermediate map

of Λ(1) in the time interval (t′1, t
′′
1 ) = (2, 3) (left pink region). V is also the

intermediate map of Λ(4) that occurs in a time interval shifted by ∆tNM = tNM
2 −

tNM
1 = 3, namely in (t′2, t

′′
2 ) = (5, 6) (right pink region). The difference between

the images of the two maps before the action of V is given by the contractive
action of Λ

(4)
∆tNM (orange region). This result follows from γ(1)

z (t) = γ(4)
z (t +

∆tNM), Eqs. (2.111) and (3.11).

pressed as the composition of Λ
(tNM

2 )
∆tNM and Λ

(tNM
1 )

t−∆tNM

Λ
(tNM

2 )
t = Λ

(tNM
1 )

t−∆tNM Λ
(tNM

2 )
∆tNM . (3.13)

Indeed, by composing Eqs. (3.12) and (3.13), Λ
(tNM

2 )
t = V

(tNM
2 )

t,∆tNM Λ
(tNM

2 )
∆tNM . From

these equations we should convince ourselves that, for t ≥ tNM, the dynami-
cal maps of Λ(tNM

2 ) are exactly the ones given by Λ(tNM
1 ) shifted by −tNM and

composed with the time independent-map Λ
(tNM

2 )
∆tNM .

Now, we consider a time interval [t′1, t
′′
1 ] such that tNM

1 < t′1 < t′′1 . In this

time interval, γ
(tNM

1 )
z (t) < 0 and the intermediate map V ≡ V

(tNM
1 )

t′′1 ,t
′
1

is P but not CP
(see Section 3.2.1). From the results obtained above, it is clear that the action
of V can also be obtained as the intermediate map of Λ(tNM

2 ) that occurs in the
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time interval (t′2, t
′′
2 ) ≡ (t′1 + ∆tNM, t′′1 + ∆tNM). Hence, we have the identity

V = V
(tNM

1 )
t′′1 ,t
′
1

= V
(tNM

2 )
t′′2 ,t
′
2
. (3.14)

Therefore, in order to witness the non-Markovian effect of V while considering
Λ(tNM

1 ), its action starts at time t′1. Instead, by considering Λ(tNM
2 ), V occurs from

the delayed time t′2 = t′1 + ∆tNM. In summary, for both Λ
(tNM

1 )
t′1

and Λ
(tNM

2 )
t′2

, V is
the intermediate map of the evolution that follows for a time interval that lasts
t′1 − t′′1 = t′2 − t′′2 (see Fig. 3.1).

We proceed by checking the images of the respective preceding evolutions,

namely Im(Λ
(tNM

1 )
t′1

) and Im(Λ
(tNM

2 )
t′2

). The difference between the two images is

given by the CP map Λ
(tNM

2 )
∆tNM (see Eq. (3.13)). In order to understand the action of

this map, since ∆tNM < tNM
2 , the rates that define Λ

(tNM
2 )

∆tNM through Eqs. (2.111)
are strictly positive in the time interval [0,∆tNM]. Therefore, the action of

Λ
(tNM

2 )
∆tNM is CPTP and behaves as a "global" contraction, namely it contracts the

state space in every direction. Indeed, by using Eq. (2.115) for Λ
(tNM

2 )
∆tNM ,

Λ
(tNM

2 )
∆tNM (σi) = λ

(tNM
2 )

i (∆tNM)σi , (3.15)

where λ
(tNM

2 )
i (∆tNM) < 1 for i = x, y, z. Moreover, since Λ

(tNM
1 )

t′1
is CPTP, we can

write
Λ

(tNM
1 )

t′1
(σi) = λ

(tNM
1 )

i (t′1)σi , (3.16)

where λ
(tNM

1 )
i (t′1) < 1 for i = x, y, z. Considering Eqs. (3.15) and (3.16) in Eq.

(3.13), we obtain

Λ
(tNM

2 )
t′2

(σi) = λ
(tNM

2 )
i (t′2)σi = λ

(tNM
1 )

i (t′1)λ
(tNM

2 )
i (∆tNM)σi , (3.17)

where we remember that t′2 = t′1+∆tNM. Since λ
(tNM

1 )
i (t′1) < 1 and λ

(tNM
2 )

i (∆tNM) <

1, we get λ
(tNM

2 )
i (t′2) < min{λ

(tNM
1 )

i (t′1), λ
(tNM

2 )
i (∆tNM)} and we conclude that

Im(Λ
(tNM

2 )
t′2

) = Im(Λ
(tNM

1 )
t′1

Λ
(tNM

2 )
∆tNM ) ⊂ Im(Λ

(tNM
1 )

t′1
) . (3.18)

Therefore, both Λ(tNM
1 ) and Λ(tNM

2 ) have V as intermediate map starting, respec-
tively, from time t′1 and t′2, but in the latter case the space of accessible states

Im(Λ
(tNM

2 )
t′2

) is strictly included in Im(Λ
(tNM

1 )
t′1

) obtained with the first map.
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The next step is to fix tNM
1 = 1 and increase tNM

2 . Notice that, as a con-
sequence, ∆tNM = tNM

2 − tNM
1 increases. In this way, at the same time, we

delay the occurrence of V for Λ(tNM
2 ) and show that we can make the evolution

that precedes its action more and more contractive, in the sense that Im(Λ
tNM
2

t′2
)

becomes smaller and smaller (see Fig. 3.2). From Eq. (3.18) we notice that

Im(Λ
(tNM

2 )
t′2

) is obtained by contracting Im(Λ
(tNM

1 )
t′1

) with Λ
(tNM

2 )
∆tNM , where the action

of this map is more and more contractive as ∆tNM, or equivalently tNM
2 , in-

creases. Indeed, now we prove that for any ε > 0 there exists a value of tNM
2

such that λ
(tNM

2 )
i (t′2) < ε for each i = x, y, z. From Eqs. (2.111) and (3.11) it is

easy to check that λ
(tNM

2 )
x (t) = λ

(tNM
2 )

y (t) > λ
(tNM

2 )
z (t) for any t > 0. Indeed,

λ
(tNM

2 )
x (t′2) =

e−t′2
cosh(t′2 − tNM

2 )

cosh(tNM
2 )

1/5

<
(
2e−2tNM

2
)1/5

, (3.19)

λ
(tNM

2 )
z (t′2) =

(
2e−2tNM

2
)1/5

(
e−2(t′1−1)

2

)1/5

. (3.20)

Therefore, for any ε > 0, if the following condition is satisfied

tNM
2 > log

√
2/ε5 , (3.21)

we have λ
(tNM

2 )
z (t′2) < λ

(tNM
2 )

x (t′2) = λ
(tNM

2 )
y (t′2) < ε.

We want to understand the effects on the set of accessible states of Λ
(tNM

2 )
t′2

that we obtain when tNM
2 is increased over the bound given by Eq. (3.21).

Therefore, we consider a generic initial state ρS (0) = (1S + v(0) · σ)/2, rep-
resented by the Bloch vector v(0) = (vx(0), vy(0), vz(0)), where in the vec-
tor σ = (σx, σy, σz) we collect the Pauli operators. We evolve this qubit

state with the dynamical map Λ
(tNM

2 )
t , where the condition of Eq. (3.21) is

satisfied for some ε > 0. At time t = t′2 the Bloch vector is evolved to
v(t′2) = (vx(t′2), vy(t′2), vz(t′2)). From Eq. (3.19) and (3.20), it is straightforward
to show that maxi vi(t′2) < ε max vi(0). In particular

||ρS (t′2) − 1S /2||1 =
1
2

√∑
i

v2
i (t′2) <

ε

2
. (3.22)

In other words, if the condition of Eq. (3.21) is satisfied, Im(Λ
(tNM

2 )
t′2

) is inside a
neighbor of radius ε centered in the maximally mixed state 1S /2, namely the



86 Witnessing non-Markovianity through correlations

Figure 3.2: Plots of Im(Λ(tNM)
t ) for different tNM and t as subsets of the Bloch

sphere (the qubit state space). First, we set (purple) tNM = tNM
1 = 1, (a) t =

t′1 = 2 and (b) t = t′′1 = 3. The map that transforms Im(Λ(1)
2 ) into Im(Λ(1)

3 ) is
the P intermediate map V (1)

3,2 = V . By considering (pink) tNM = tNM
2 = 4, (c)

t = t′2 = 5 and (d) t = t′′2 = 6, the map that transforms Im(Λ(4)
5 ) into Im(Λ(4)

6 )
is again V , namely V (4)

6,5 = V (1)
3,2 = V (see Eq. (3.14)). While the map that

transforms (a) into (b) and (c) into (d) is V in both cases, in the first case (a)
the starting set where V acts is larger than in the second case (c). The more we
increase tNM, the smaller is Im(Λ(tNM)

t′ ) at the time t′ when V starts to act.
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stationary state of these evolutions. Hence, we can make Im(Λ
(tNM

2 )
t′2

) fit in an

arbitrary small sphere of radius ε by increasing tNM
2 .

3.2.3 Single parameter evolutions

A simple family of open-system dynamics is given by those differentiable evo-
lutions such that, for t ≥ 0, the generator Lt can be expressed as

Lt(ρS (t)) = i[H(t), ρS (t)] + γ(t)
∑

k

(
GkρS (t)G†k −

1
2

{
G†kGk, ρS (t)

})
, (3.23)

where Gk are time-independent operators and γ(t) is a continuous function of
time. We call those evolutions with this property single parameter since γ(t)
alone describes the time dependence of the dissipative part. Paradigmatic ex-
amples of single parameter evolutions are depolarization, as well as dephasing
and amplitude damping in a time independent basis. Using the representation
defined in Eq. (3.5) we can state the single parameter property as

dVi j(t, s)
ds

∣∣∣∣
s=t

= gi jγ(t) + hi j(t), (3.24)

where hl j(t) ≡ Tr
[
i[H(t) ⊗ IA, e j]el

]
and the time independent

gi j ≡ Tr

ei

∑
k

(
Gk ⊗ IAe jG

†

k ⊗ IA −
1
2

{
G†kGk ⊗ IA, e j

}) .
An important property of single-parameter evolutions is that they can be

divided into CP-divisible and not P-divisible time intervals, that is, for suffi-
ciently small time intervals they never present intermediate maps that are not
CP but P.

Proposition 6. Let Λ be a single parameter evolution. Then the corresponding
intermediate map Vt+ε,t is either CP or not P for any t and sufficiently small
ε > 0.

Proof. An intermediate map Vt,s is CP if the Choi matrix CVt,s has non-negative
eigenvalues [Cho75, Jam72]. Moreover, Vt,s is P if Vt,s(ρS ) is positive semidefi-
nite for all ρS ∈ S (HS ). In particular, if Vt,s is P, Vt,s(ρS ) is positive semidefinite
for any positive semidefinite rank one ρS .

The eigenvalues of Vt,s(ρS ) for a rank-one pure state ρS and the eigenvalues
of CVt,s are functions of the parameters ā and Vi j(t, s). Since we assumed that
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γ(t) is continuous it follows that Vt,s(ρS ) and CVt,s are both continuously differ-
entiable. This in turn implies that the eigenvalues of Vt,s(ρS ) and CVt,s can be
described by continuously differentiable functions [Rel54].

If γ(t) , 0, so that Vt,s is not unitary, there always exists at least one eigen-
value λC(Vt,s) of the Choi matrix that is zero and has a nonzero time derivative
at s = t. There also exists at least one rank-one state ηS with eigenvalue λ(η)
that is zero and its evolution λ(ηS (t − s)), defined by ηS (t − s) ≡ Vt,s ⊗ IA(ηS ),
has a nonzero time derivative at s = t (see Appendix A.1).

Consider the temporal derivatives dλC(Vt,s)
ds

∣∣∣
s=t =

∑
i j
∂λC(Vt,s)
∂Vi j(t,s)

∣∣∣
s=tgi jγ(t) and

dλ(η(t−s))
ds

∣∣∣
s=t =

∑
i j
∂λ(η(t−s))
∂Vi j(t,s)

∣∣∣
s=tgi jγ(t). Here we used the invariance of eigen-

values under continuous unitary evolution. Therefore,
∑

i j
∂λC(Vt,s)
∂Vi j(t,s)

∣∣∣
s=thi j(t) = 0

and
∑

i j
∂λ(η(t−s))
∂Vi j(t,s)

∣∣∣
s=thi j(t) = 0. Since the time derivatives are non-zero, they

are proportional to γ(t). If Vt+ε,t is CP for any sufficiently small ε it fol-
lows that λC(Vt+ε,t) and λ(Vt+ε,t(η)) are positive and that dλC(Vt,s)

ds

∣∣∣
s=t > 0 and

dλ(η(t−s))
ds

∣∣∣
s=t > 0. Then if a t′ exists such that sign[γ(t′)] = −sign[γ(t)], there

exists an ε′ such that Vt′+ε′,t′ is neither CP or P since dλC(Vs′ ,t′ )
ds′

∣∣∣
s′=t′ < 0 and

dλ(η(s′−t′))
ds′

∣∣∣
s′=t′ < 0. From this follows that it is impossible for Vt′+ε′,t′ to be P

but not CP for sufficiently small ε′.
�

Thus, if the assumptions of Proposition 6 hold, we can conclude that the
evolution can be divided into closed time intervals where γ(t) ≥ 0 and open
intervals for which γ(t) < 0. In the closed intervals where γ(t) ≥ 0 the dynamics
is CP-divisible and in the open intervals where γ(t) < 0 the dynamics is not P-
divisible.

3.3 Correlations as witnesses of non-Markovianity

In this section we see how correlations can be used for the detection of non-
Markovian dynamics. In Section 2.5.7 we defined the minimal requirements for
the functionals of bipartite systems that we call correlations. In this chapter we
show several results, where some are focused on particular correlation measures
or evolutions.

We start by noticing the following result valid for generic correlation mea-
sures M(ρS A) that are continuously differentiable on the state space S (HS A) of
bipartite systems S − A. If the intermediate map Vt,s ⊗ IA is differentiable with
respect to t, the time derivative d

ds M(ηS A(t − s))|s=t ≡
d
ds M(Vt,s ⊗ IA(ηS A))|s=t
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for any ηS A ∈ S (HS A) can be expressed as∑
i

∂M(ηS A(t − s))
∂ai(s)

dai(s)
ds

∣∣∣∣
s=t

=
∑

i j

∂M(ηS A)
∂ai

a j
dVi j(t, s)

ds

∣∣∣∣
s=t
, (3.25)

where ai (ai(s)) are the coordinates of ηS A (ηS A(t−s)). We see that d
ds M(ηS A(t−

s))|s=t depends only on ai and the time derivatives of the components Vi j(t, s)
of the intermediate map. As long as ∂M(ρS A)

∂ai
a j , 0 for some i, j and ρS A, there

exists some intermediate map that will induce either a decrease or increase of
M(ρS A). However, it is not always the case that a given measure M satisfies
∂M(ρS A)
∂ai

a j , 0 for a ρS A in the image of the dynamical map Λt. In Section 3.4
we show that entanglement measures and entanglement breaking evolutions
[HSR03] can provide examples of this situation.

3.3.1 Single parameter evolutions

Consider a generic single-parameter evolution and any correlation measure that
is continuously differentiable. For these evolutions, the sign of any non-zero
time derivative of a continuously differentiable correlation measure is deter-
mined by the sign of γ(t). Therefore any non-Markovian effect leads to a cor-
relation backflow, no matter which measure of this kind is used for the quan-
tification as long as it is not time independent on the whole Im(Λt). That is, it
witnesses non-Markovianity as long as it is capable of witnessing any change
in correlations at all.

Proposition 7. Let M be a continuously differentiable correlation measure and
let Λ be a single parameter evolution. Then,

sign
[

d
ds

M(Vt,s ⊗ IA(ηS A))
∣∣∣∣
s=t

]
= −sign[γ(t)] , (3.26)

for all ηS A ∈ S (HS A) such that d
ds M(Vt,s ⊗ IA(ηS A))|s=t , 0.

Proof. For a continuously differentiable correlation measure M the time deriva-
tive d

ds M(Vt,s ⊗ IA(ηS A))|s=t under an evolution of this type can be expressed,
using Eqs. (3.24) and (3.25), as F(ηS A)γ(t), where F(ηS A) ≡

∑
i j
∂M(ηS A)
∂ai

a jgi j

is a time independent function. Here we used that
∑

i j
∂M(ηS A)
∂ai

a jhi j(t) = 0 since
M is invariant under unitary evolution. Thus, d

ds M(Vt,s ⊗ IA(ηS A))|s=t is propor-
tional to γ(t).

If γ(t) > 0, so that Vτ,t is a non-unitary CP map for sufficiently small
τ − t, the time derivative d

dτM(Vτ,t ⊗ IA(ηS A))|τ=t is non-positive for all ηS A.
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This implies that F(ηS A) is non-positive for all ηS A. Assume that F(ζS A) , 0
for some ζS A ∈ S (HS A). Then it follows that sign[ d

dτM(Vτ,t ⊗ IA(ζS A))|τ=t] =

−sign[γ(t)]. �

It follows from Proposition 7 that a continuously differentiable correlation
measure M shows an increase in the time intervals where Λ is not P-divisible
as long as d

dt M(ρS A(t)) , 0 for some ρS A(t) ∈ Im(Λt).

Example: Dephasing evolution

Dephasing in a fixed basis is an example of a random unitary and single-
parameter evolution that satisfies the conditions in Propositions 6 and 7. The
pure qubit dephasing dynamics is described by the dynamical maps

Λt(σx) = e−
∫ t

0 γ(τ)dτσx,

Λt(σy) = e−
∫ t

0 γ(τ)dτσy,

Λt(σz) = σz,

Λt(1S ) = 1S . (3.27)

The dynamical maps are bijective for all times and the intermediate maps Vt,s

are therefore given by Vt,s = ΛtΛ
−1
s . Explicitly Vt,s is given by

Vt,s(σx) = e−
∫ t

s γ(τ)dτσx,

Vt,s(σy) = e−
∫ t

s γ(τ)dτσy,

Vt,s(σz) = σz,

Vt,s(1S ) = 1S . (3.28)

The generator Lt is given by

Lt(ρS (t)) = γ(t)(σzρS (t)σz − ρS (t)), (3.29)

where γ(t) is the time dependent dephasing rate. The dynamics is Markovian if
and only if the dephasing rate γ(t) ≥ 0. Furthermore, the dephasing dynamics
is not P-divisible when γ(t) < 0 (see Proposition 6).

We can see from Eq. (3.28) that for all i, j such that Vi j(t, s) has non-zero
time derivatives it holds that dVi j(t,s)

ds

∣∣∣
s=t = −γ(t). Thus for any continuously

differentiable correlation measure M(ρS A(t)) the dephasing rate γ(t) determines
the sign of d

dt M(ρS A(t)) and d
dt M(ρS A(t)) ≥ 0 for γ(t) ≤ 0.
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Example: Generalized amplitude damping evolution

Generalized amplitude damping evolution in a fixed basis is a second example
that is single-parameter and satisfies the conditions in Propositions 6 and 7
except where it is non-differentiable. The dynamics of generalized amplitude
damping on a qubit is described by the dynamical maps

Λt(σx) = G(t)σx,

Λt(σy) = G(t)σy,

Λt(σz) = G2(t)σz,

Λt(1S ) = 1S + (2p − 1)(1 −G2(t))σz, (3.30)

where 0 ≤ G(t) ≤ 1 and 0 ≤ p ≤ 1. For G(t) > 0 the dynamical maps are
bijective and the intermediate maps are given by

Vt,s(σx) =
G(t)
G(s)

σx,

Vt,s(σy) =
G(t)
G(s)

σy,

Vt,s(σz) =

(
G(t)
G(s)

)2

σz,

Vt,s(1S ) = 1S + (2p − 1)

1 − (
G(t)
G(s)

)2σz. (3.31)

For s and t such that G(s) = 0 the intermediate map only exists if G(t) = 0 and
can be defined as the identity map. If G(s) = 0 and G(t) , 0 the intermediate
map does not exist since the evolution is many-to-one. For t where Lt is well
defined, it is given by

Lt(ρS (t)) = pγ(t)(σ−ρS (t)σ+ − 1/2{σ+σ−, ρS (t)})

+(1 − p)γ(t)(σ+ρS (t)σ− − 1/2{σ−σ+, ρS (t)}), (3.32)

where σ± = 1/2(σx ± iσy) and γ(t) is given by

γ(t) = −2
d
ds

G(t)
G(s)

∣∣∣∣∣
s=t

= −
2

G(t)
d
dt

G(t), (3.33)

whenever G(t) > 0 and differentiable. The dynamics is Markovian in a generic
time interval [t1, t2] when γ(t) ≥ 0 for any t ∈ [t1, t2]. Furthermore, the am-
plitude damping dynamics is not P-divisible in [t1, t2] when γ(t) < 0 for any
t ∈ [t1, t2].
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Figure 3.3: Depiction of the trajectory of the evolution of a maximally en-
tangled state φ+

S A , where the system S evolves under an entanglement break-
ing ΛEB

t . Therefore, if t > tEB, any initial state ρS A(0) ∈ QS A = S (HS A)
is evolved into a separable state ρS A(t) ∈ S S A. Suppose that ΛEB

t is non-
Markovian but CP-divisible in [0, tEB] and with a non-CP intermediate map
VEB

t,s for s > t > tEB. In this case, it is not possible to witness backflows of
any entanglement measure. Indeed, entanglement is zero in the set of separable
states S S A.

We can easily see that when G(t) > 0 and differentiable, all non-zero time
derivatives of the components of the intermediate map are proportional to γ(t).
Thus γ(t) determines the sign of d

dt M(ρS A(t)) for any continuously differen-
tiable correlation measure M.

3.4 Entanglement measures

It is relatively straightforward to see that entanglement measures ME cannot
detect all non-Markovian dynamics when we consider S − A correlated sys-
tems. In fact, consider the situation in which a dynamics ΛEB

t becomes and
remains entanglement breaking (EB) after a given time tEB, see Fig. 3.3. Any
entanglement measure evaluated over S − A remains equal to zero for t ≥ tEB

and will therefore be unable to detect any non-Markovian effect taking place for
t ≥ tEB. This is for instance the case of non-Markovian P-divisible evolutions
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that are EB for any t ≥ tEB. Indeed, in these cases, all the states in Im(ΛtEB ⊗ IA)
are separable, and remain separable after tEB since local P maps do not create
any entanglement when acting on separable states. Note that, from Prop. 7,
it follows that a continuously differentiable entanglement measure can detect
non-Markovian single-parameter evolutions unless it is time independent on
the whole image of the evolution at the time where non-Markovianity occurs.
However, no single-parameter evolution is P-divisible unless CP-divisible since
the intermediate maps of single-parameter evolutions are either CP or not P for
sufficiently small time intervals.

For the sake of clarity, in what follows we provide an example of a non-
Markovian qubit dynamics ΛEB

t which is CP-divisible in [0, tNM], while it is
only P-divisible for t > tNM. We show that the time tEB(ΛEB

t ) when the dynam-
ics starts to be EB precedes tNM and therefore we prove that this non-Markovian
dynamics does not display any backflow of the entanglement shared between S
and A.

3.4.1 Example: the quasi-eternal non-Markovian model

We consider a bipartite system, where A and S are qubits. We consider the
evolution Λ(2/5,2) that belongs to the class of quasi-eternal non-Markovian P-
divisible evolutions introduced in Section 3.2.1. The corresponding rates are

{
γx(t), γy(t), γz(t)

}
=

1
5
{1, 1,− tanh(t − 2)} , (3.34)

where we fixed α = 2/5, tNM = 2 and the condition of physicality (3.9) is
satisfied. This evolution is not single parameter (see Eq. (3.24)) and the results
of Prop. 7 do not apply. As explained in Section 2.6.1, γz(t) implies that the
evolution is non-Markovian for any t ≥ tNM = 2 and moreover the intermediate
maps V (2/5,2)

t,s of this evolution are P but not CP for any tNM < s < t.
This temporal evolution becomes entanglement breaking. Indeed, con-

sider φ+
S A(t) = Λ

(2/5,2)
t ⊗ IA(φ+

S A), namely the temporal evolution of the maxi-
mally entangled state φ+

S A = |φ+〉〈φ+|S A, where |φ+〉S A = (|00〉S A + |11〉S A)/
√

2.
We obtain the separability of φ+

S A(t), namely NEG(φ+
S A(t)) = 0, for any t ≥

tEB(Λ(2/5,2)
t ) ' 1.47, where NEG(·) is negativity, an entanglement measure in-

troduced in Section 2.5.7. Therefore, since tEB(Λ(2/5,2)
t ) < tNM, we conclude

that it is not possible to observe a non-Markovian backflow of negativity, and
more generally of any entanglement measure, for any initial state ρS A(0).
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3.5 Quantum mutual information

A commonly used correlation measure is QMI: the entropic measures based on
the von Neumann entropy introduced in Section 2.5.7. We recall that, given a
bipartite quantum system S − A, it assumes the form

I(ρS A) = S (ρS ) + S (ρA) − S (ρS A). (3.35)

In the following, we present many different scenarios where the QMI witnesses
non-Markovian effects, but we conclude by identifying a situation where it fails
in this task.

• In Section 3.5.1 we show that an increase in the QMI can be witnessed
for any qubit random unitary non-Markovian dynamics that is not P-
divisible.

• In Section 3.5.2 we continue by considering non-Markovian random uni-
tary dynamics that are P-divisible. In particular, we provide examples
that prove that maximally entangled states are not always optimal to de-
tect backflows of QMI.

• In Section 3.5.3 we turn our attention to an evolution that is not random
unitary, namely a generalized amplitude damping channel. We provide
a class of initial states that efficiently witness the non-Markovian nature
of this evolution. Similarly to Section 3.5.2, we show that maximally
entangled initial states are not optimal to witness backflows of QMI.

• In Sections 3.5.4 and 3.5.5, we study non-Markovian evolutions for which
the QMI does not provide backflows for any initial state, where we ex-
ploit the results of Section 3.2.2.

3.5.1 Non-Markovian non-P-divisible random unitary qubit dy-
namics

Several commonly studied dynamics, including dephasing and random unitary
dynamics, are unital, namely they preserve the identity through the evolution.
We now show that for bijective unital dynamical maps acting on a qubit an
increase of the QMI can be observed for any non-P intermediate map Vt,s.

Theorem 13. Let Λ be a unital bijective qubit evolution. Furthermore, assume
that the intermediate map Vt,s is analytic and non-P for some t. Then there exist
states ρS A ∈ B(HS A) in the image of Λt for which I(Vt,s ⊗ IA(ρS A)) > I(ρS A).
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Proof. Assume that Vt,s is not P. Then there exists a pure state |φ〉S ∈ HS such
that Vt,s(|φ〉〈φ|S ) has a negative eigenvalue. Let the eigenvalues of Vt,s(|φ〉〈φ|S )
be 1 + ε(s) and −ε(s), where ε(t) = 0 and ε(s) ≥ 0. Consider the state at time s

ρS A(s) ≡
1
2

(
p|φ〉〈φ|S + (1 − p)

1S

2

)
⊗ |0〉〈0|A

+
1
2

(
p|φ⊥〉〈φ⊥|S + (1 − p)

1S

2

)
⊗ |1〉〈1|A , (3.36)

where |φ⊥〉S is the pure state orthogonal to |φ〉S , and |0〉〈0|A and |1〉〈1|A are
orthogonal states in S (HA). Notice that, since Λs is bijective and unital: (i)
there always exists a sufficiently small p such that ρS A(s) is in the image of Λs

and (ii) the eigenvalues of Vt,s(|φ⊥〉〈φ⊥|S ) are 1 + ε(s) and −ε(s). Note also that
the reduced density matrices of both the system and the ancilla are maximally
mixed. Therefore, the reduced states are unchanged by a unital map Vt,s. The
difference in QMI between time s and time t for a unital map is thus

I(ρS A(t)) − I(ρS A(s)) = −S (Vt,s ⊗ IA(ρS A(s))) + S (ρS A(s)) , (3.37)

where I(ρS A(t)) = I(Vt,s ⊗ IA(ρS A)) reads

I(ρS A(t)) =

(
1 + p

2
+ pε(s)

)
ln

(
1 + p

2
+ pε(s)

)
+

(
1 − p

2
− pε(s)

)
ln

(
1 − p

2
− pε(s)

)
+ ln 2. (3.38)

Its time derivative at s = t is

−
d
ds

S (Vt,s ⊗ IA(ρS A(s)))|s=t =
dε(t)

dt
p (ln(1 + p) − ln(1 − p)) . (3.39)

Note that p(ln(1 + p) − ln(1 − p)) > 0 for 0 < p < 1. Therefore, for dε(t)
dt > 0

the time derivative of the QMI is positive for ρS A(t). Moreover, since ε(t) is
assumed to be analytic dε(t)

dt > 0 implies that the map Vt,t−δt is non-P for a
sufficiently small δ. �

3.5.2 Non-Markovian random unitary dynamics and maximally
entangled states

We provide a condition for the QMI not to show backflows when a maximally
entangled state is evolved by a random unitary dynamical map. Thereafter,
we formulate a version of this condition that applies to qubits, where the P-
divisibility of the dynamical map is implied.
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We consider the bipartite scenario where the systems S and A are qudits
(dS = dA = d), S is evolved by a random unitary evolution Λ and the ancillary
system A is left untouched. We study the evolution of a maximally entangled
state φS A = |φ〉〈φ|S A, where

|φ〉S A =
1
√

d

d∑
i=1

|si〉S ⊗ |ai〉A , (3.40)

and {|si〉S }i ({|ai〉A}i) is an orthonormal basis of HS (HA). First, we show that
the evolved state is diagonal in a Bell basis with eigenvalues given by the same
probability distribution {pk(t)}k that defines Λt. Indeed

φS A(t) =

N∑
k=1

pk(t)(1A ⊗ σk)|φ〉〈φ|S A(1A ⊗ σk) ≡
N∑

k=0

pk(t)|φk〉〈φk|S A, (3.41)

where N = d2 − 1. The set of states {|φk〉S A}k ≡ {(σk ⊗ 1A)|φ〉S A}k define
a Bell basis and are orthonormal since: 〈φi|φ j〉S A = Tr

[
φS A(σiσ j ⊗ 1A)

]
=

TrS
[
TrA

[
φS A

]
σiσ j

]
= 1

d TrS
[
σiσ j

]
= δi j. It follows that the von Neumann

entropy of φS A(t) is defined by the distribution pk(t)

S (φS A(t)) = −

N∑
k=0

pk(t) ln pk(t) . (3.42)

The reduced states of φS A(t) to the subsystems S and A are maximally mixed:
ρS (t) = TrA

[
φS A(t)

]
= 1S /d and ρA(t) = TrS

[
φS A(t)

]
= 1A/d. Thus, the

only evolving component of the QMI of φS A(t) is given by (3.42): I(φS A(t)) =

2 log2 d − S (φS A(t)). The time derivative of this quantity is

d
dt

I(φS A(t)) =

N∑
k=0

dpk(t)
dt

(ln pk(t) + 1)

=
dp0(t)

dt
(ln p0(t) + 1) +

N∑
k=1

dpk(t)
dt

(ln pk(t) + 1)

=

N∑
k=1

dpk(t)
dt

ln
pk(t)
p0(t)

. (3.43)

It follows that, the conditions d
dt pk(t) ≥ 0 and p0(t) ≥ pk(t) for k = 1, 2, . . . ,N

implies d
dt I(φS A(t)) ≤ 0, namely we cannot witness any backflow of QMI with

a maximally entangled state.
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Finally, we consider the qubit case, namely when d = 2. From Eqs. (2.114)
and (2.113) it follows that the conditions p0(t) ≥ pk(t), for k = x, y, z and t ≥ 0,
are always satisfied. We conclude that, when S and A are qubits, if d

dt pk(t) ≥ 0
for any k = x, y, z and t ≥ 0, we cannot obtain any backflow of QMI if the initial
state is maximally entangled.

We notice that in a time interval where d
dt pk(t) ≥ 0 the dynamics is P-

divisible, but not necessarily CP-divisible. Thus, there are some cases of non-
Markovian P-divisible qubit dynamics that cannot be witnessed by the QMI of
an evolved maximally entangled state. In order to prove this result, we write
the time derivative of px(t)

d
dt

px(t) = 1
2

(
(γx(t) + γy(t))Axy(t) + (γz(t) + γx(t))Azx(t)

− (γy(t) + γz(t))Ayz(t)
)
. (3.44)

Similarly, we can write d
dt py(t) and d

dt pz(t). We notice that d
dt px(t) + d

dt py(t) =

(γx(t) + γy(t))Axy(t). Therefore, given the positivity of Axy(t), Ayz(t) and Azx(t)
(see Eq. (2.114)), if d

dt pk(t) ≥ 0 for k = x, y, z, the dynamics is P-divisible
(in this case the conditions given in Eqs. (2.117) are automatically satisfied).
However, in general the converse is not true. Indeed, in Section 3.5.2 we study
two similar P-divisible evolutions for qubits where in the first the conditions
d
dt pk(t) ≥ 0 for k = x, y, z are not satisfied, while in the second they are.

In order to obtain an intuitive meaning of the conditions presented in this
section, we look at the definition given in Eq. (2.108) for random unitary evolu-
tions. We notice that p0(t) represents the fraction of Λt that acts as the identity
map on ρS (0). Therefore, if the value of p0(t) is increasing for some t, namely
d
dt p0(t) > 0, it is reasonable to expect that at time t the system S is getting closer
to its initial configuration ρS (0) and therefore evolving under a non-Markovian
evolution that can be witnessed. Conversely, since

∑N
k=0 pk(t) = 1, if d

dt pk(t) ≥ 0
for any k , 0, it follows that d

dt p0(t) ≤ 0. We expect that in this situation, where
the overlap of ρS (t) with its initial configuration decreases, S undergoes an evo-
lution that cannot be distinguished from a Markovian one.

Example: the quasi-eternal non-Markovian model

In the previous section we gave a set of conditions for random unitary dynam-
ics such that, if satisfied, the QMI is never increasing when evolving maximally
entangled states. In the case of qubits, these conditions are given in terms of the
time derivative of the probability distribution {pk(t)}k that defines Eq. (2.108).
In this section we consider two examples. First, we consider a non-Markovian
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model that does not satisfy the conditions given in Section 3.5.2 and we check
if, apart from the maximally entangled states, the evolution of random pure
states can provide any backflow. Secondly, we consider another non-Markovian
model that satisfies these conditions, namely cannot be witnessed by any ini-
tially maximally entangled state, and we perform numerical tests showing that
the evolution of random pure initial states does not provide any backflow of
QMI either.

First of all, we consider the qubit random unitary quasi-eternal evolution
defined by α = 2/5 and tNM = 1 (see Section 3.2.1), which is non-Markovian
for all t > tNM = 1. This example satisfies the condition of physicality given by
Eq. (3.9), as limt→∞ B(2/5,1)

xyz (t) ' 0.146 > 0. The time-dependent distribution
{pk(t)}k, that defines the corresponding random unitary evolution is

px(t) = py(t) =
1
4

(
1 − e−4t/5

)
,

pz(t) =
1
4

1 + e−4t/5 − 2e−2t/5
(
cosh(t − 1)

cosh(1)

)2/5 ,
where p0(t) = 1 − px(t) − py(t) − pz(t) ≥ 0 and p0(0) = 1.

We define tMI(ρS A(0)), the time when the backflow of QMI starts if the
initial state considered is ρS A(0). We evaluated tMI(ρS A(0)) for 2 · 104 pure
random states ρS A(0) = |ψ〉〈ψ|S A of the form

|ψ〉S A = a1|00〉S A + a2|01〉S A + a3|10〉S A + a4|11〉S A ,

where the parameters ai are normalized complex random numbers. The min-
imum value of tMI(ρS A(0)) obtained has been tMI(ρS A(0)) ' 2.404, where the
values of the parameters that generates ρS A(0) are characterized by: |a1| '

|a3| ' |a4| ' 0 and |a2| ' 1 up to local unitary operations on A. Our numer-
ical analysis does not give any insight about the possible existence of a class
of initial states for which the corresponding tMI(ρS A(0)) is arbitrarily close to
tNM = 1, namely the earliest time for which the intermediate map Vt+ε,t is P but
not CP. If there exist pure states with tMI closer to tNM = 1, they must belong to
a small subset that we did not sample. We point out that for this model, while
d
dt px(t) ≥ 0 and d

dt py(t) ≥ 0 for any t ≥ 0, d
dt pz(t) < 0 for t > 1.3254. Indeed, the

evolution of a maximally entangled state |φ+〉S A = (|00〉S A + |11〉S A)/
√

2 shows
a backflow of QMI with tMI(|φ+〉〈φ+|S A) ' 2.741, larger than what obtained for
some initial non-maximally entangled states.

As a second example, we study the standard eternal non-Markovian model
given by α = 1 and tNM = 0. Interestingly, in this case d

dt px(t) ≥ 0, d
dt py(t) ≥ 0
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and d
dt pz(t) ≥ 0 for any t ≥ 0. Therefore, this model satisfies the conditions

given in Section 3.5.2, namely maximally entangled states that are evolved by
this dynamics never show backflow of QMI. Then, we study the evolution of
the QMI for 103 different random pure initial states that are not maximally
entangled. Interestingly, also for these initial states no backflow of QMI is
observed.

In summary, for a random unitary evolution that can be witnessed with
maximally entangled states (α = 2/5 and tNM = 1), we have been able to
find different initial states that provide backflow of QMI at earlier times than
maximally entangled states, namely such that tMI(ρS A(0)) < tMI(|φ+〉〈φ+|S A).
Instead, for a non-Markovian dynamics for which maximally entangled states
do not show any backflow of QMI (α = 1 and tNM = 0), we could not find any
other state able to do so either.

3.5.3 Non-maximally entangled states improve the detection preci-
sion of non-Markovianity

The purpose of this section is to examine, through a concrete example, how the
use of non-maximally entangled states can be highly beneficial for the detection
of non-Markovian effects. In fact, we see that in some situations, to detect
a backflow in the QMI, one has to use initial states with an arbitrarily small
amount of pure-state entanglement. This example also serves as an illustration
of the witnessing potential of the QMI for non-Markovian dynamics that are
neither random unitary nor P-divisible.

The model Λ that we consider here is a generalized amplitude damping
channel (GADC) with two time dependent parameters, defined by the following
set of Kraus operators

K1(t) =
√

s(t)
(

1 0
0
√

r(t)

)
,

K2(t) =
√

s(t)
(

0
√

1 − r(t)
0 0

)
,

K3(t) =
√

1 − s(t)
( √

r(t) 0
0 1

)
,

K4(t) =
√

1 − s(t)
(

0 0
√

1 − r(t) 0

)
, (3.45)

where s(t) = cos2(5t) and r(t) = e−t. The evolution induced by these operators
is equivalent to that described by a generator Lt of the form given in Eq.(2.43)
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with G− = σ− and G+ = σ+ and the respective time-dependent rates

γ−(t) = cos2(5t) − 5(1 − e−t) sin(10t) , (3.46)

γ+(t) = sin2(5t) + 5(1 − e−t) sin(10t) , (3.47)

for which the following equality holds

γ−(t) + γ+(t) = 1 . (3.48)

In order to understand the non-Markovian behavior of this model, it is possible
to calculate the function gΛ(t) introduced in Section 2.5.2

gΛ(t) = lim
ε→0+

||(Vt+ε,t ⊗ IA)(φAS )||1 − 1
ε

,

where φAS is the maximally entangled state (3.40). Through the value of this
quantity we can understand if the intermediate map Vt+ε,t is CP or not and
therefore if the evolution is Markovian or non-Markovian. Indeed, a CPTP
intermediate map Vt+ε,t implies that g(t) = 0, while g(t) > 0 if and only if Vt+ε,t

is not CPTP. In our case g(t) > 0 if and only if either γ−(t) or γ+(t) is negative

g(t) =
1
2

∑
i=±

|γi(t)| − γi(t) =


−γ−(t) t ∈ T−

−γ+(t) t ∈ T +

0 otherwise
,

where T± ≡ {t : γ±(t) < 0} are two non-overlapping sets of time intervals.
Indeed, we define T− as the union of the time intervals T−k ≡ (t−in,k, t

−
f in,k) when

the rate γ−(t) is negative

T− ≡
∞⋃

k=1

T−k ≡
∞⋃

k=1

(
t−in,k, t

−
f in,k

)
.

Similarly, we define the time intervals T +
k and the collection T +. In Ref.

[HKS+14] the authors compare the ability of QMI and entanglement of for-
mation, namely an entanglement measure, to witness non-Markovianity when
a maximally entangled state is shared between S and A for the considered dy-
namics. They note that the QMI does not show any backflow during the first
time interval where the dynamics is not CP-divisible, namely for t ∈ T−1 , while
the entanglement of formation shows a backflow in a time interval that is a
proper subset of T−1 . However, in order to fairly compare the witnessing poten-
tial of two different correlation measure, we must consider any possible initial
state.
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Figure 3.4: The QMI relative to its value at t = 0.1, I(ρ−S A(t, ε))/I(ρ−S A(0.1, ε))
as a function of t for values of ε between 10−3 and 10−500 (black curves).
With successively smaller ε the QMI increases in a larger part of the inter-
val 0.13437 . t . 0.31416 where the dynamics is non CP-divisible (light blue
area), and the t where the QMI begins to increase approaches the beginning of
the interval (grey vertical lines). For ε = 10−500 the increase in QMI begins at
t ' 0.1352.

From now on we focus on detecting backflows of QMI during the first time
interval when γ−(t) < 0, i.e., for t ∈ T−1 ' (0.13437, 0.31416). We give nu-
merical results indicating that the QMI, depending on the chosen initial state,
can provide backflows for any t ∈ T−1 . In fact, we consider the following initial
state

|ψ−(ε)〉S A ≡
√

1 − ε2|00〉S A + ε|11〉S A , (3.49)

and provide strong evidence that these state provides backflows of QMI for any
time t ∈ T−1 for ε → 0+. More precisely, we have observed backflows in the
QMI for t ∈ T̃−1 ⊂ T−1 , where T̃−1 ≡ (t−in,1 + δτ, t−f in,1 − δτ) and δτ = 10−10. That
is, we have strong evidence that by taking initial pure states with an arbitrarily
small amount of entanglement a backflow of QMI is observed in the whole
range where the evolution is not CP-divisible.

We consider ρ−S A(0, ε) = |ψ−(ε)〉〈ψ−(ε)|S A as the initial state of our complete
system and we study its evolution ρ−S A(t, ε) = Λt ⊗ IA(ρ−S A(0, ε)), where Λt

represents the GADC described above. In Fig. 3.4 we show the behavior of
I(ρ−S A(t, ε)) for several values of ε. We notice that as ε approaches zero, the time
interval where I(ρ−S A(t, ε)) is increasing widens and approaches T−1 , while the
amplitude of the QMI decreases. The latter effect, and the increasingly small
values of ε, makes it difficult to numerically verify the possibility to witness a



102 Witnessing non-Markovianity through correlations

Figure 3.5: The coefficients α(δτ) (dark blue curve) and β(δτ) (black curve) of
the leading order of the series expansion of d

dt I(ρ−S A(t, ε)) in ε as functions of δτ
for −10−6 ≤ δτ ≤ 10−6. The dynamics is non-Markovian for δτ > 0 (light blue
area). For δτ ≤ 0 the coefficient β(δτ) is non-negative while α(δτ) is negative
and therefore the leading order term of the expansion is negative for any ε. For
δτ > 0 both β(δτ) and α(δτ) are negative and therefore, for sufficiently small
ε the leading order term of the expansion is positive. For δτ = 0 the value of
β(δτ) is zero to within numerical precision.

backflow of QMI for t ∈ T−1 arbitrarily close to t−in,1 and t−f in,1.
To better understand the behavior of I(ρ−S A(t, ε)) when t ' t−in,1, we consider

a series expansion in ε of the time derivative of this quantity for times close to
the beginning of T−1 , namely for |δτ| ≡ |t − t−in,1| ≤ 10−6. We find

d
dt

I(ρ−S A(t−in,1 + δτ, ε)) = (α(δτ) + β(δτ) ln(ε))ε2 + O(ε3) .

This expansion, see Fig. 3.5, is characterized by α(δτ) < 0 and the relation
sign(β(δτ)) = − sign(δτ), which has been verified up to δτ = ±10−10. An
analogous result is obtained when t ' t−f in,1. For this case α(δτ) is negative
and sign(β(δτ)) = sign(δτ). In summary, the numerical analysis indicates that
for any value of t ∈ T−1 there exists a positive number εt such that, if ρS A(0) =

ρ−S A(0, ε), we have a backflow of QMI at time t, namely d
dt I(ρ−S A(t, ε)) > 0, for

any 0 < ε < εt.
We focused just on the first time interval of non-Markovianity, namely T−1 ,

because in this case QMI does not show any backflow for the maximally en-
tangled state. Indeed, given a value of ε > 0, the fraction of the time interval
of T−1 for which d

dt I(ρ−S A(t, ε)) > 0 is smaller than the one that we have for T−k
when k ≥ 2. Similarly, to observe backflows of QMI in the time intervals T +

k ,
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we can consider a different class of initial states ρ+
S A(0, ε) ≡ |ψ+(ε)〉〈ψ+(ε)|S A,

where ε > 0 approaches zero and |ψ+(ε)〉S A ≡ ε|00〉S A +
√

1 − ε2|11〉S A. We
underline that we cannot perform this numerical analysis for each time interval
T±k since there is an infinite number of such intervals.

The results in this section demonstrate that it appears difficult to fully deter-
mine when a given non-Markovian dynamics experiences correlation backflow
in terms of the QMI, as one needs to consider all possible initial states. In fact,
to our knowledge, it is not even clear if one can restrict the study to initial pure
states. Despite all these difficulties, in the next sections we construct examples
of non-Markovian dynamics where it can be proven that no backflow in the
QMI takes place.

3.5.4 Taylor expansion of the quantum mutual information time
derivative

To study the time dependence of the QMI perturbatively, we here outline how
the time derivative of the QMI d

dt I(ρS A(t)) ≡ d
ds I(ā,Vt,s)

∣∣∣
s=t in a neighborhood

of a state that a time t is ρS A(t) can be described by a Taylor expansion in
the coordinates ai. In particular we consider Taylor expansions as a tool to
investigate the neighborhoods of stationary states.

The QMI as a function on the set of states S (HS A) is analytic for all states
ρS A of full rank, namely everywhere in the interior of the set of states, here
denoted int[S (HS A)]. Thus, in any open neighborhood U ⊂ int[S (HS A)] of a
state ρS A the QMI equals its Taylor series and we can use Taylor expansions
to analyze it perturbatively around ρS A. Moreover, if the dynamics is differ-
entiable the time derivative of any analytic correlation measure is analytic as
well.

Proposition 8. Let M be a correlation measure that is analytic at ā. If dVt,s
ds

∣∣∣
s=t

is well defined it follows that d
dt M(ā, t) ≡ d

ds M[ā,Vt,s]
∣∣∣
s=t is analytic at ā.

Proof. We can write the time derivative d
dt M(ā, t) ≡ d

ds M[ā,Vi j(t, s)]
∣∣∣
s=t as

d
dt M(ā, t) =

∑
i, j a j

dVi j(t,s)
ds

∣∣∣
s=t

∂
∂ai

M(ā, t). Assume that dVi j(t,s)
ds

∣∣∣
s=t is well defined

for each i, j. Then, since products, linear combinations, and derivatives of ana-
lytic functions are analytic it follows that d

dt M(ā, t) is analytic as a function of
ā. �

Thus, in particular, if Vt,s is differentiable, d
dt I(ρS A(t)) can be described

perturbatively in any open neighborhood of a state in int[S (HS A)] by a Taylor
expansion. On the other hand, for states of less than full rank, namely states on
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the boundary of S (HS A), the partial derivatives in the coordinates ai need not
even be well defined to all orders.

Now consider a full-rank stationary state ρ0
S A of a divisible evolution Λ. It

follows that ρ0
S A ∈ int[S (HS A)]. Since d

dt I(ρ0
S A(t)) = 0 the sign of d

dt I(ρS A(t))
for a ρS A(t) in a neighborhood of ρ0

S A is determined by the terms of order greater
than zero in the Taylor expansion of d

dt I(ρS A(t)).
In general d

dt I(ρS A(t)) may take both positive and negative values for ρS A(t)
in a neighborhood of ρ0

S A. If a neighborhood of ρ0
S A exists where d

dt I(ρS A(t))
is everywhere non-negative, or alternatively everywhere non-positive, depends
only on ρ0

S A and d
ds Vt,s

∣∣∣
s=t. In particular, the properties of the neighborhood is

independent of the previous dynamic Λt and the properties of Im(Λt) since we
assumed linear divisibility of the dynamics.

This last observation allows us to make the following two statements about
the change of the QMI. If there is a neighborhood of ρ0

S A such that d
dt I(ρS A(t))

is somewhere positive, and this neighborhood is contained in Im(Λt), we can
observe an increase of the QMI. If there is some neighborhood of ρ0

S A where
d
dt I(ρS A(t)) is non-positive, and Im(Λt) is contained in this neighborhood, we
cannot observe any increase of QMI.

Neighborhoods of critical points

In the case that one or more first derivatives are zero one must consider higher
order terms of the Taylor expansion to study how the sign of d

dt I(ρS A(t)) be-
haves in a neighborhood of a stationary state ρ0

S A. In particular this is true if
all first derivatives with respect to the ai are zero, namely if ρ0

S A is a critical
point of d

dt I(ρS A(t)). The relevance of considering critical points in relation to
stationary states can be understood from the following two observations. For
any continuously differentiable evolution, a product state in the interior of the
set of states is a critical point of d

dt M, if M is analytic.

Proposition 9. Let M be a correlation measure that is analytic at a state ρS A.
Assume that Vt,s is continuously differentiable. Then if ρS A ∈ int[S (HS A] and
is a product state it is a critical point of dM

dt .

Proof. See Appendix A.2. �

Thus, in particular, all product states in int[S (HS A)] are critical points of
d
dt I(ρS A(t)). Note the product states at the boundary of the set of states, namely
product states of less than full rank, are not necessarily critical points of d

dt M
because M is not necessarily constrained to be non-negative outside the set of
states.
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For qubit evolutions a stationary state in the interior of the set of states is a
critical point of d

dt M, if M is analytic.

Proposition 10. Let M be a correlation measure that is analytic at ρS A and
let Λ be a continuously differentiable dynamical qubit evolution. If ρS A ∈

int[S (HS A)] and is a stationary state of Λ, it is a critical point of d
dt M.

Proof. See Appendix A.3. �

Thus, for qubit evolutions all stationary states in int[S (HS A)] are critical
points of d

dt I(ρS A(t)).
The nature of a critical point ρ0

S A can be analyzed by obtaining the eigen-
values of the Hessian matrix, namely the matrix of second derivatives Hi, j =
∂2

∂ai∂a j

d
dt I(ρS A(t)). However, for any stationary state, the Hessian Hi, j is of less

than full rank since d
dt I(ρS A(t)) = 0 on the set of stationary states of Vt,s, de-

noted S s, and on the set of product states, denoted S p. From this follows that
any eigenvector of the Hessian that is tangent to S s ∪ S p corresponds to a zero
eigenvalue. Thus, the sign of d

dt I(ρS A(t)) in the part of the neighborhood of ρ0
S A

that coincides with the zero-eigenspace E0 of Hi, j cannot be determined from
the Hessian matrix alone since it depends on higher order derivatives.

On the overlap of the neighborhood of ρ0
S A with the complement of E0,

namely with EC
0 ≡ B(HS A)\E0, the Hessian can be used to determine the sign

of d
dt I(ρS A(t)), if the neighborhood is sufficiently small. In particular, if all

non-zero eigenvalues of the Hessian, which correspond to eigenvectors tangent
to EC

0 , are negative there exists a neighborhood U−
ρ0

S A
of ρ0

S A where d
dt I(ρS A(t))

is negative in U−
ρ0

S A
∩ EC

0 . If all the non-zero eigenvalues of the Hessian are

positive there exists a neighborhood U+

ρ0
S A

of ρ0
S A where d

dt I(ρS A(t)) is positive

in U+

ρ0
S A
∩ EC

0 .

Since the stationary states of a particular evolution Λ are always in the im-
age of Λt for any t, the behavior of a correlation measure or other witness of
non-Markovianity in a neighborhood of such a state may be more relevant than
its ability to witness correlation backflows for states that are outside the image
during the non-Markovian part of the dynamics. In particular this is true for
evolutions where the image shrinks to a small neighborhood of the stationary
states. For the case of correlation measures M that are locally analytic func-
tions the stationary states are in many cases critical points of d

dt M. Thus the
behavior of d

dt M in a neighborhood of the stationary states can be investigated
by calculating second order or higher partial derivatives at the stationary states.
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Calculating partial derivatives

Directly calculating the derivatives of d
dt I(ρS A(t)) with respect to the coordi-

nates ai can be demanding since the eigenvalues of ρ are the roots of a polyno-
mial with degree equal to dim(HS A). However, even if the general expression
of ρS A as a function of the coordinates ai is difficult to diagonalize, the eigen-
values and eigenvectors may be known in the point where the derivatives have
to be calculated. In this case one may circumvent the difficulty of diagonal-
izing the general expression and instead calculate the derivatives and second
derivatives at a state ρS A using a method adapted from Ref. [TFV94]. The
method described in this reference is valid for real symmetric matrices but gen-
eralizing it to Hermitian complex matrices is very straightforward. We present
the version of this method that works for Hermitian matrices in the following
paragraphs.

Let f be a spectral function defined on a set of n × n Hermitian matrices
A which are parameterized by real numbers ai. By spectral function we refer
to a function that only depends on the eigenvalues {λk}

n
k=1 of A but not on the

ordering of the eigenvalues. Furthermore, assume that f is analytic in a given
point ā and let λk(ā) be the eigenvalue of A(ā) with corresponding normalized
eigenvector uk(ā). Then the first and second order partial derivatives of f with
respect to the parameters ai in the point ā can be expressed as

∂ f (ā)
∂ai

=
∑

k

∂ f [λ(ā)]
∂λk

hk
i (ā) , (3.50)

and

∂2 f (ā)
∂ai∂a j

=
∑
k,l

∂2 f [λ(ā)]
∂λk∂λl

hk
i (ā)hl

j(ā) +
∑

k

∂ f [λ(ā)]
∂λk

hk
i j(ā) + ηi j(ā) , (3.51)
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respectively, where

hk
i (ā) = u†k

∂A(ā)
∂ai

uk,

hk
i j(ā) = u†k

∂2A(ā)
∂ai∂a j

uk +
∑

l|λk,λl

αkl
i j(ā)

λk(ā) − λl(ā)
,

αkl
i j(ā) =

(
u†k(ā)

∂A(ā)
∂ai

ul(ā)
) (

u†l (ā)
∂A(ā)
∂a j

uk(ā)
)

+

(
u†k(ā)

∂A(ā)
∂a j

ul(ā)
) (

u†l (ā)
∂A(ā)
∂ai

uk(ā)
)
,

ηi j(ā) =
∑

k,l|λk=λl,k<l

αkl
i j(ā)

∂2 f [λ(ā)]
∂2λk

. (3.52)

When two or more eigenvalues coincide, the corresponding eigenvectors cannot
be uniquely defined. Nevertheless, the method here can still be used since,
while the expressions given in Eq. 3.52, namely hk

i , may depend on the choice
of eigenvectors, the partial derivatives themselves are independent and can be
evaluated using any such choice.

If the diagonal form of A in the point ā and the corresponding eigenvectors
uk(ā) are known, the method described here can greatly simplify the computa-
tion of the partial derivatives.

3.5.5 Non-Markovian dynamics that the quantum mutual infor-
mation cannot witness

We analyzed several situations where correlation backflows as measured by the
QMI detect non-Markovianity, including explicit examples of non-P-divisible,
P-divisible, unital and non-unital non-Markovian evolutions. We now show that
the QMI is non-increasing for some cases of random unitary qubit dynamics
that are P-divisible but not CP-divisible by studying a neighborhood of the
stationary states using the methods described in Section 3.5.4.

We consider an ancilla that is also a qubit and explicitly introduce coordi-
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nates ai for B(HS A) with respect to an orthonormal basis {ei}
15
i=0 defined by

e0 = 1S ⊗ 1A, e8 = σy ⊗ 1A,

e1 = 1S ⊗ σx, e9 = σy ⊗ σx,

e2 = 1S ⊗ σy, e10 = σy ⊗ σy,

e3 = 1S ⊗ σz, e11 = σy ⊗ σz,

e4 = σx ⊗ 1A, e12 = σz ⊗ 1A,

e5 = σx ⊗ σx, e13 = σz ⊗ σx,

e6 = σx ⊗ σy, e14 = σz ⊗ σy,

e7 = σx ⊗ σz, e15 = σz ⊗ σz, (3.53)

where all operators are of the form χS ⊗ χA for χS ∈ B(HS ) and χA ∈ B(HA).
A state ρS A is represented as

ρS A =
1
4
1S ⊗ 1A +

15∑
i=1

aiei , (3.54)

where ai = 1
4 Tr(ρS Aei).

The analysis of d
dt I(ρS A(t)) in the neighborhood of the stationary states is

done by first considering the states of full rank, namely the states in int[S (HS A)],
where d

dt I(ρS A(t)) is analytic. There we calculate the second derivatives of
d
dt I(ρS A(t)) at the stationary states and find the eigenvalues of the Hessian ma-
trix. On the subset of states that fall in the zero eigenspace of the Hessian we
then directly evaluate d

dt I(ρS A(t)). Finally, we consider the states of less than
full rank and describe the neighborhood of the intersection of the stationary
states with the boundary of the set of states.

The stationary states are of the form 1S /2 ⊗ ρA for arbitrary ρA. Since the
stationary states in int[S (HS A)] are critical by Propositions 9 and 10 and such
that d

dt I(ρS A(t)) = 0, there exists some sufficiently small neighborhood of the
set of stationary states where the second order terms of the Taylor expansion
in the ai determine the sign of d

dt I(ρS A(t)), in all directions where the second
derivative is non-zero. To simplify the calculation of these derivatives we note
that unitary transformations on the ancilla do not change the QMI and it is
therefore sufficient to consider diagonal ρA. In other words, the purity of the
state of the ancilla is the only parameter that is relevant for our analysis. The
diagonal stationary states are of the form 1

41S ⊗ 1A + a121S ⊗ σz for −1/4 ≤
a12 ≤ 1/4. The states for which −1/4 < a12 < 1/4 are in int[S (HS A)] and the
states with coordinates a12 = ±1/4 are at the boundary of the set of states.
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The second derivatives at the diagonal stationary states of full rank were
calculated using the method described in Section 3.5.4 and the eigenvalues of
the Hessian matrix were obtained.The Hessian has six eigenvalues that are zero
for all stationary states in int[S (HS A)], and for all values of the parameters
γk(t). The remaining nine eigenvalues are functions of the parameters γk(t) and
of a12, and are given by

32[γy(t) + γz(t)]
16a2

12 + 1

16a2
12 − 1

 , −8[γy(t) + γz(t)]
atanh(4a12)

a12
,

32[γx(t) + γz(t)]
16a2

12 + 1

16a2
12 − 1

 , −8[γy(t) + γz(t)]
atanh(4a12)

a12
,

32[γx(t) + γy(t)]
16a2

12 + 1

16a2
12 − 1

 , −8[γx(t) + γz(t)]
atanh(4a12)

a12
,

−8[γx(t) + γz(t)]
atanh(4a12)

a12
, −8[γx(t) + γy(t)]

atanh(4a12)
a12

,

−8[γx(t) + γy(t)]
atanh(4a12)

a12
. (3.55)

These nine eigenvalues are all non-positive if and only if the conditions in Eq.
(2.117) are satisfied, namely if and only if the dynamics is P-divisible. In par-
ticular, they are all strictly negative if γi(t) + γ j(t) > 0 for all i, j. In this
case there thus exists a sufficiently small neighborhood of the stationary states
where d

dt I(ρS A(t)) is negative in the intersection of the neighborhood with the
complement of the zero eigenspace of the Hessian.

Next, we need to investigate d
dt I(ρS A(t)) on the intersection of a neighbor-

hood around a stationary state with the zero eigenspace of the Hessian. Here
we would need higher order terms in the Taylor expansion to determine the
sign of d

dt I(ρS A(t)), however on this eigenspace we can evaluate it directly.
The zero eigenspace E0(a12) as a function of a12, is spanned by the six eigen-
vectors σi ⊗ (1A + 4a12σz) and 1S ⊗ σi for i = x, y, z. These eigenvectors
are tangent to the set of product states for all a12, but the plane they span,
namely E0(a12), also contains correlated states. For a given stationary state
ρ0

S A = 1
41S ⊗ 1A + a01S ⊗ σz we can parameterize E0(a0). The states in the

E0(a0) are of the form

1
4
1S ⊗ 1A + (a1σx + a2σy + a3σz) ⊗ (1A + 4a0σz)

+1S ⊗ (a4σx + a8σy + a12σz). (3.56)

Note that E0(a0) is an invariant subspace of Vt,s for all a0 since the evolu-
tion is unital. Thus any state in E0(a0) is mapped into a state also belonging to
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E0(a0). Furthermore, a4, a8 and a12 are time independent. Therefore, the time
derivative of the QMI I as a function on E0(a0) depends only on the coordi-
nates a1, a2 and a3. Since the QMI is independent of unitary transformations
on the system we can diagonalize a1σx + a2σy + a3σz without changing its

value. Let ±λ(s) = ±

√
a2

1(s) + a2
2(s) + a2

3(s) be the corresponding eigenvalues
as functions of time where

a1(s) = a1 exp
[
−

∫ s
t (γz(τ) + γy(τ))dτ

]
,

a2(s) = a2 exp
[
−

∫ s
t (γz(τ) + γx(τ))dτ

]
,

a3(s) = a3 exp
[
−

∫ s
t (γx(τ) + γy(τ))dτ

]
. (3.57)

Since the only time dependence of I is its dependence on λ(t) we can express
the time derivative of the QMI as

dI[ρS A(t))]
dt

=
dI[ρS A(s)]

dλ(s)
dλ(s)

ds

∣∣∣
s=t

for any ρS A(t) ∈ E0(a0), where dλ(s)
ds

∣∣∣
s=t is given by

−
a2

1[γz(t) + γy(t)] + a2
2[γx(t) + γz(t)] + a2

3[γx(t) + γy(t)]√
a2

1 + a2
2 + a2

3

.

When the conditions in Eq. (2.117) are satisfied, namely when the evolution is
P-divisible, dλ(s)

ds

∣∣∣
s=t is non-positive for all a1, a2 and a3. This is equivalent to

stating that the length of the Bloch vector of the reduced state of the system does
not increase when the dynamics is P-divisible. Moreover, we see that for all
states in E0(a0) except those of the form 1S /2⊗ρA, for which a1 = a2 = a3 = 0,
there exists some CP-divisible random unitary dynamics such that dλ(s)

ds

∣∣∣
s=t < 0.

Since we know that dI[ρS A(t)]
dt ≤ 0 for all ρS A(t) ∈ E0(a0) when the evolution is

CP-divisible it follows that dI[ρS A(s)]
dλ(s)

∣∣∣
s=t is non-negative for all ρS A(s) ∈ E0(a0)

not of the form 1S /2 ⊗ ρA. Therefore we can conclude that dI[ρS A(t)]
dt ≤ 0 for all

ρS A(t) ∈ E0(a0) when Vt,s is P-divisible.
In the above analysis we have seen that there exists random unitary non-

Markovian P-divisible evolutions for which no increase of the QMI occurs in
a sufficiently small neighborhood of the stationary states in int[S (HS A)]. It
remains to consider the neighborhood of the stationary states of less than full
rank, namely of stationary states in the boundary of the set of states. For these
stationary states a12 = ±1/4 and they are thus of the form 1S ⊗ (1A + σz)/4
and 1S ⊗ (1A − σz)/4. It is sufficient to consider restricted neighborhoods of
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these states where the coordinate a12 is held fixed at 1/4 or −1/4 respectively.
Any other point in their neighborhoods either belongs to a neighborhood of a
stationary state in int[S (HS A)], or is unphysical. The physical states in these
restricted neighborhoods for which a12 = ±1/4 are product states of the form
ρS ⊗ (1A ± σz)/4, where ρS ∈ B(HS ). This can be seen by noting that if
a12 = ±1/4, one must choose a4 = a8 = 0 to ensure non-negative eigenvalues
of the reduced state on HA. Therefore, for all physical states in the restricted
neighborhoods the reduced state of the ancilla is pure and of the form (1A ±

σz)/4, which implies that all such states are product states. Since any product
state has zero QMI and remains a product state during the evolution it follows
that d

dt I(ρS A(t)) is zero for all states in any neighborhood of 1S ⊗ (1A ± σz)/4
where a12 = ±1/4.

Finally we can conclude that for random unitary evolutions where the non-
Markovian dynamics is P-divisible and all initial states have been mapped to a
sufficiently small neighborhood of the stationary states by the preceding Marko-
vian evolution no increase in the QMI occurs. Moreover, the neighborhood
where no increase of the QMI occurs only depends on Vt,s and is indepen-
dent of the preceding dynamics. Therefore, for any random unitary P-divisible
evolution subsequent to time t, it is always possible to find a random unitary
evolutionΛ that is CP-divisible in [0, t] such that Im(Λt⊗IA) is contained in this
neighborhood by appropriately choosing the rates γk(τ) > 0 for 0 ≤ τ ≤ t. Now
we discuss how to obtain quasi-eternal non-Markovian evolutions that cannot
show backflows of the QMI shared between S and A.

Example: the quasi-eternal non-Markovian model

In Section 3.2.2 we studied the dependence of quasi-eternal evolutions Λ(tNM
2 )

from the parameter tNM
2 when α = 2/5. We showed that we can make the image

of the evolution at the time when it starts to be non-Markovian, namely t = tNM
2 ,

as small as we want, or, in other words, as close as desired to the stationary state
of the evolution. Now we show how to obtain non-Markovian evolutions that
cannot show backflows of QMI.

Consider two qubits S and A, where S is evolved by Λ(tNM
2 ) (see Section

3.2.2) and A is an ancilla. In this scenario, we want to witness a backflow of the
QMI I shared between S and A in the time interval [t′2, t

′′
2 ], namely when the P

intermediate map V evolves S . Hence, we increase the value of tNM
2 until the

image Im(Λ
(tNM

2 )
t′2
⊗ IA) of the evolution that precedes the action of V ⊗ IA is in a

neighbor of radius ε of the stationary states of the dynamics, namely ρA⊗1S /2,
where ρA is any state of S (HA). Therefore, at time t′2 we have that
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• The states in Im(Λ
(tNM

2 )
t′2

⊗ IA) are ε-close to the stationary state of the
evolution;

• The evolution of S − A in the following time interval [t′2, t
′′
2 ] is described

by the intermediate map V ⊗ IA;

where these properties are valid for any t′′2 − t′2 > 0.
Hence, this method provide examples of random unitary P-divisible evolu-

tions in which non-Markovian effects take place only for states arbitrarily close
to the stationary states. For these cases, we can apply the perturbative analysis
of Sections 3.5.4 and 3.5.5 and conclude that these non-Markovian evolutions
do not allow QMI revivals for any initial state in S (HS A).

3.6 Discussion

Understanding the operational consequences of non-Markovian effects in terms
of information backflow is a fundamental question. In this chapter, we focused
on correlations and studied how they can be used to detect the failure of CP-
divisibility. We identified strengths and weaknesses of several known correla-
tion measures. In particular, we have shown that:

• Non-Markovian effects in single-parameter dynamics, such as depolar-
ization, dephasing or amplitude damping, always lead to correlation back-
flows for any continuously differentiable measure that is time-dependent
on the image of the preceding evolution;

• Measures of entanglement between S and an ancilla A cannot provide
any backflow in those cases where the non-Markovian dynamics is P-
divisible and appear only after the dynamics has become entanglement
breaking;

• It is possible to detect backflows in the QMI for any qubit unital non-P-
divisible dynamics;

• Maximally entangled states are not necessarily optimal for observing
backflows in the QMI;

• There exist quasi-eternal non-Markovian dynamics with no backflow in
the QMI evaluated between S and an ancilla A.
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Our results clarify many issues but also point to several open questions. The
most obvious one is to construct a correlation measures able to detect all non-
Markovian evolutions, either by adapting the results in [BD16] to our approach,
or by considering a novel approach. A second open question is to understand
if the use of the second additional system can be of use for existing correlation
measures, such as those based on entanglement or QMI.
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Chapter 4

Correlation measure witnessing
almost-all non-Markovian
evolutions

We study the ability of correlation measures to witness non-Markovian open
quantum system dynamics. A correlation measure is introduced, and it is
proven that, in an enlarged setting with two ancillary systems, this measure
detects almost all non-Markovian dynamics, except possibly a zero-measure
set of dynamics that is non-bijective in finite time-intervals. Our proof is con-
structive and provides different initial states detecting the non-Markovian evo-
lutions. These states are all separable and some are arbitrarily close to a product
state. The results exposed in this chapter are contained in the original works
[DJB+19] and [DJB+20].

4.1 Introduction

The dynamics of open quantum systems [BP07, Wei00, RH11] has been in-
vestigated extensively in recent years for both fundamental and applicative rea-
sons. In particular the phenomenon of reservoir memory effects has been stud-
ied since such effects can induce a recovery of correlations or coherence and
are therefore viewed as a potential resource for the performance of quantum
technologies. The problem of characterizing memoryless dynamics, the so-
called Markovian regime, and dynamics exhibiting memory effects, the non-
Markovian regime, has been considered in a wide range of different ways (for
extended reviews see [RHP14, BLPV16]). Markovianity is frequently identi-
fied with the property of CP-divisibility (see Section 2.3.3): an evolution Λ is
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CP-divisible if between any two times it can be described by a CPTP-map. This
idea generalizes the concept of classical Markovian processes [GK76, Lin76].

A complementary way of addressing memory effects consists of identify-
ing operational quantities that can detect the information backflow expected in
non-Markovian evolutions [RHP10, LFS12, BD16, BJA17, CKR11]. A com-
mon approach is to study functions that are monotonically non-increasing un-
der local CP-maps, namely the witnesses of non-Markovianity Q introduced in
Section 2.5. An increase of such a quantity implies that the evolution is not
CP-divisible, hence non-Markovian, although the converse may not be true in
general. Investigating under what conditions a non-increase of these quantities
is in one-to-one correspondence with CP-divisibility is relevant for evaluating
current methods for non-Markovianity detection, finding new ones, and under-
stand the operational consequences of non-Markovianity. It is also relevant
to understand how these different detection methods are related, and to what
extent they are equivalent. In particular, it has been shown that the guessing
probability of minimum error state discrimination can be used to witness any
non-Markovian dynamics [BD16]. However, no method for constructing state
ensembles required for this is known. A constructive method to witness any bi-
jective non-Markovian dynamics using an ensemble of two equiprobable states
has subsequently been proposed [BJA17].

In this chapter we investigate the relation between non-Markovianity and
correlations. As we saw in Chapter 3, the quantum mutual information (QMI)
between system and ancilla as well as any entanglement measure are unable
to witness all non-Markovian dynamics. The next natural question is to under-
stand whether there exists a correlation measures that is able to provide back-
flows for any non-Markovian evolution. To investigate this, we first introduce a
bipartite correlation measure based on the distinguishability of an ensemble of
remotely prepared states. We then use this measure in an extended setting con-
sisting of the system and two ancillary systems and prove that the non-increase
of this measure is in one-to-one correspondence with CP-divisibility for almost
all evolutions. More precisely, we show how to detect a correlation backflow
for all non CP-divisible evolutions that are bijective or at most point-wise non-
bijective. Our method is constructive and provides a family of initial states able
to detect the correlation backflow. The states in this family are all separable
and include states that are arbitrarily close to uncorrelated.
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4.2 Introduction of a correlation measure

In Chapter 3 we provided examples of non-Markovian dynamics that could not
be detected with ordinarily used correlation measures. Now, one may won-
der if this limitation applies to any correlation measure or, on the contrary, if
there exists a correlation measure that witnesses all non-Markovian dynamics.
Motivated by this question we introduce a correlation measure based on the
distinguishability of the ensembles one party prepares for the other party by
performing local measurements on half of a bipartite state. For this, we first
need to discuss several concepts related to the distinguishability of quantum
states.

4.2.1 Maximally entropic measurements

In Section 2.1.2 we showed that an n-outcome measurement on a quantum sys-
tem ρ ∈ S (H) is represented by a positive-operator valued measure (POVM),
namely a collection of positive semi-definite operators {Pi}

n
i=1 in B(H) such

that
∑n

i=1 Pi = 1. Each Pi represents a possible outcome with the probability of
occurrence pi = Tr

[
ρPi

]
.

We say that an n-output POVM is maximally entropic (ME-POVM) for ρ
if, when applied on ρ, each outcome has the same probability of occurrence:
pi = 1/n. Indeed, if S C({pi}i) = −

∑
i pi logn pi is the Shannon entropy of the

resulting n-outcome probability distribution, where we take as the basis of the
logarithm in the entropy the number of outputs, S C({pi}i) = 1 if and only if
pi = 1/n. We define the set of n-output ME-POVMs for ρ as

Definition 8. The set of n-output ME-POVMs onH for ρ ∈ S (H) is defined as

Πn (ρ) ≡
{
{Pi}

n
i=1 : Tr

[
ρPi

]
=

1
n

}
, (4.1)

where {Pi}
n
i=1 is a generic n-output POVM.

Moreover, we can define the whole set ME-POVMs as follows

Definition 9. The set of ME-POVMs onH for ρ ∈ S (H) is defined as

Π (ρ) ≡
⋃
n≥2

Πn(ρ) . (4.2)

For any state ρ, this collection is non-empty and contains measurements
with any number of outputs (see Appendix B.1).
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Notice that each state in ρ ∈ S (H) defines a different set of ME-POVMs
Π(ρ). Indeed, if {Pi}i is a ME-POVM for ρ, namely {Pi}i ∈ Π(ρ), in general the
same is not true for a state ρ′ different from ρ, namely {Pi}i < Π(ρ′). The only
POVMs that belong to Π(ρ) for any ρ are the trivial measurements {1/n}ni=1
for n ≥ 2, which provide equiprobable outcomes for any ρ. Indeed, pi =

Tr
[
ρ1/n

]
= 1/n for any ρ and n ≥ 2.

Consider a bipartite state ρAB defined on a finite dimensional state space of
a composed system S (HA ⊗ HB). A measurement with an arbitrary number
of outcomes {PA,i}i performed on system A prepares on B the output ensemble
E(ρAB, {PA,i}i) ≡ {pi, ρB,i}i defined by (see Section 2.1.2)

pi = Tr
[
ρAB PA,i

]
, ρB,i =

TrA
[
ρAB PA,i ⊗ 1B

]
pi

, (4.3)

where ρA = TrB
[
ρAB

]
is the reduced state on A. From Eq. (4.3) it follows that

a ME-POVM for ρAB of the form {PA,i ⊗ 1B}
n
i=1 implies that {PA,i}

n
i=1 is a ME-

POVM for ρA = TrB
[
ρAB

]
. Indeed, it is easy to show that {{PA,i}i : {PA,i⊗1B}i ∈

Π(ρAB)} = Π(ρA).
Now we restrict the previous analysis to ME-POVMs for the reduced state

on system A, namely for ρA = TrB
[
ρAB

]
. If the n-output {PA,i}

n
i=1 is a ME-

POVM for ρA, from Eqs. (4.2) and (4.3) it follows that,

E(ρAB, {PA,i}i) =

{
pi =

1
n
, ρB,i = n TrA

[
ρABPA,i ⊗ 1B

]}n

i=1
. (4.4)

Therefore, Alice measures ρAB with {PA,i}
n
i=1 ∈ Π(ρA) and Bob obtains an

equiprobable ensemble of states (EES), namely an n-state output ensemble
where the probability distribution of occurrence of each state ρB,i is uniform
(see Fig. 4.1).

As we saw in Section 2.5.5, the average probability to correctly identify a
state extracted from an ensemble E = {pi, ρi}

n
i=1 when we maximize over all

possible measurements, is the guessing probability of the ensemble

Pg(E) ≡ max
{Pi}i

n∑
i=1

piTr
[
ρi Pi

]
, (4.5)

where the maximization is performed over the space of the n-output POVMs.
Using the definition p ≡ maxi{pi}

n
i=1 ≥ 1/n, it follows that Pg(E) ≥ p , where

the equality holds if E is made of identical states. Hence, Pg({pi = 1/n, ρi =

ρ}ni=1) = 1/n. Note that when the target ensemble is an EES of two states,
namely for Eeq = {{p1,2 = 1/2}, {ρ1, ρ2}}, the quantity Pg(Eeq) can be expressed
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Figure 4.1: The measurement scenario where Alice, measuring her side of ρAB

with an n-ouput ME-POVM {PA,i}
n
i=1, produces on Bob’s side the EES given by

Eq. (4.4).

in terms of the distinguishability QBLP(ρ1, ρ2) = 1
4 (2 + ||ρ1 − ρ2||1) between ρ1

and ρ2 given in Eq. (2.70) and we write

Pg(Eeq) =
1
4

(2 + ||ρ1 − ρ2||1) , (4.6)

4.2.2 Definition of the correlation measure

We now have all the ingredients needed to define our correlation measure. A
correlation measure C(2)

A : S (HAB) → R+ that satisfies the properties men-
tioned in Section 2.5.7 is obtained by maximizing the guessing probability of
these ensembles of B over the 2-output ME-POVMs on A, namely

C(2)
A (ρAB) ≡ max

{PA,1,PA,2}∈Π2(ρA)
Pg

(
E

(
ρAB,

{
PA,1, PA,2

}))
−

1
2
, (4.7)

where ρA = TrB
[
ρAB

]
is the reduced state on A. The scenario that reproduces

the value of C(2)
A (ρAB) is described in Fig. 4.1, where Alice chooses a 2-output

ME-POVM that maximizes the guessing probability of the output ensemble
generated on Bob’s side. Moreover, we can use Eq. (4.6) to rewrite C(2)

A (ρAB)
in the following way

C(2)
A (ρAB) = max

{PA,1,PA,2}∈Π2(ρA)

||ρB,1 − ρB,2||1

4
, (4.8)

where ρB,1 and ρB,2 are the two output states obtained when Alice applies the
ME-POVM {PA,1, PA,2} (see Eq. (4.4)).
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Alternatively, we can perform 2-output ME-POVMs on the system B and
obtain another measure

C(2)
B (ρAB) ≡ max

{PB,1,PB,2}∈Π2(ρB)
Pg

(
E

(
ρAB,

{
PB,1, PB,2

}))
−

1
2
, (4.9)

where ρB = TrA
[
ρAB

]
is the reduced state on B. We underline that the guessing

probabilities that appear in Eq. (4.7) and (4.9) can be evaluated using Eq. (4.6).
A natural way to construct a symmetric measure with respect to A and B is the
following

C(2)(ρAB) ≡ max
{
C(2)

A (ρAB), C(2)
B (ρAB)

}
. (4.10)

Operationally, C(2)
A (ρAB) (C(2)

B (ρAB)) corresponds to the largest distinguishabil-
ity between the pairs of equiprobable states of B (A) that we can obtain from
ρAB by performing measurements on A (B).

Similar correlation measures C(n) can be obtained by fixing the number of
outputs of the ME-POVMs to any integer n ≥ 3 and replacing the term 1/2 in
Eqs. (4.7) and (4.9) by 1/n. We define CA(ρAB) (CB(ρAB)) as the correlation
measure obtained without fixing the number of outputs of the ME-POVMs

CA(ρAB) ≡ max
{PA,i}i∈Π(ρA)

Pg
(
E

(
ρAB,

{
PA,i

}
i

))
−

1
2
. (4.11)

We define CB(ρAB) similarly. Finally, we define

C(ρAB) ≡ max {CA(ρAB), CB(ρAB)}, (4.12)

which represents the maximum distinguishability of the output ensembles that
can be generated by measuring either A or B with ME-POVMs.

We give two examples that provide an intuitive idea of the meaning of the
correlation measures C(2)

A , C(2)
B and C(2). First, we consider a generic prod-

uct state ρA ⊗ ρB, which is a completely uncorrelated state (classically and
quantumly). In this case, if Alice measures her side of ρAB with a 2-output
ME-POVMs {PA,i}

2
i=1, the ensemble generated on Bob’s side consists of the

two states: ρB,i = 2 TrA
[
ρA ⊗ ρB · PA,i ⊗ 1B

]
= ρB, which are identical and

equal to ρB. The corresponding guessing probability is Pg = 1/2 and therefore
C(2)

A (ρA ⊗ ρB) = 0. In fact, the 1/2 factor is chosen just to make the value of
the correlation measure equals to zero for product states, which are therefore
uncorrelated also with respect to C(2)

A . It is straightforward to show ρA ⊗ ρB is
uncorrelated also respect to C(2)

B and C.
The second example is given by the two-qubit maximally entangled state

φ+
AB = |φ+〉〈φ+|AB, where |φ+〉AB = (|00〉AB + |11〉AB)/

√
2. In order to evalu-

ate C(2)
A (φ+

AB), it is easy to realize that the projective measurement {P(proj)
A,i }

2
i=1 =
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{|0〉〈0|A, |1〉〈1|A} is the ME-POVM obtained by the maximization of Eq. (4.7).
Indeed, in this case, Alice generates on Bob’s side an orthogonal ensemble
of two states: ρB,i = 2 TrA

[
φ+

AB · |i〉〈i|A ⊗ 1B
]

= |i〉〈i|B, which is perfectly dis-
tinguishable: Pg({pi = 1/2, |i〉〈i|B}2i=1) = 1. It follows that, since the guessing
probability of an ensemble cannot be greater than 1, maximally entangled states
are maximally correlated states with respect to C(2)

A and, as it is straightforward
to prove, also to C(2)

B and C(2). Note however that the same maximum value
can be obtained by a maximally correlated classical bit, defined by the equal
mixture of states |00〉 and |11〉.

We remember that, in order to show that these functionals are proper cor-
relation measures, we must prove that they are (i) monotone under local op-
erations (see Section 2.5.7). In Appendix B.2 we prove that this fundamental
monotonicity property holds for C and C(n), for any n ≥ 2. Moreover, we can
prove that these correlations are (ii) zero-valued for product states and (iii) non-
negative. First, we prove that property (ii) holds for C(2)

A . For any product state
ρAB = ρA⊗ρB and ME-POVM on A, the equiprobable output states ρB,1 and ρB,2
are identical. Hence, ρB,1 = ρB,2 = ρB and C(2)

A (ρA ⊗ ρB) = ||ρB,1 − ρB,2||/4 = 0.
The generalizations to prove that (ii) is valid also for C(n) for any n ≥ 2 and C
are obvious. Consequently, property (iii) is trivial.

While we have defined a whole class of correlation measures, in the fol-
lowing we focus on the potential of C(2) to witness non-Markovian dynamics.
Therefore, unless otherwise specified the correlation measure referred to is C(2).

4.3 Witnessing non-Markovian dynamics

We now show how to use the correlation measures introduced above to de-
tect non-Markovian evolutions. We prove that for any evolution that is at
most point-wise non-bijective, we can find an initial state ρ(τ)

AB(0) such that
C(2)(ρ(τ)

AB(t)) increases between time t = τ and t = τ+∆t if and only if there is no
CP intermediate map Vτ+∆t,τ. By “at most point-wise non-bijective” evolutions
we refer to evolutions where multiple initial states are mapped to the same state
by Λt for at most a discrete set of times t ∈ {ti}i. Although our method applies to
any bijective or pointwise non-bijective evolution, at the moment we are unable
to extend the proof to non-Markovian evolutions that are non-bijective in finite
time intervals. Note however that the set of non-Markovian evolutions not cov-
ered by our result has zero measure in the space of evolutions. More precisely,
if we take an evolution that is non-bijective in a finite time interval and add a
perturbation chosen at random with respect to a Borel measure, this yields an
at most point-wise non-bijective evolution with probability one [OY05].
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To take full advantage of this measure, we extend the standard setting and
consider a scenario where A is an ancillary qubit and B = S A is composed of
the system S undergoing evolution and a suitably chosen ancilla A′, see Fig.2.3.
Hence, following the scheme introduce in Section 2.5, in this chapter we focus
on the non-Markovian witness Q = C(2) and its potential to show backflows
once that the bipartite system A − B is initialized in a precise state ρ(τ)

AB(0).
First, we show how to construct the state ρ(τ)

AB(0) to be used as a probe, namely
the initial condition. Second, we show that for the class of non-Markovian
dynamics specified above, C(2)(ρ(τ)

AB(t)) provides a correlation backflow every
time an at most pointwise non-bijective non-Markovian Λ evolves ρ(τ)

AB(0).

4.3.1 The probe

Let Λ represent a bijective or pointwise non-bijective non-Markovian evolution
that acts on the system S and introduce an ancillary system A′. Hence, we call
B the complete A′S system, where the corresponding Hilbert space is HB =

HA′ ⊗ HS . As we discussed in Section 2.5.4, for any of these dynamics we
can construct a class of pairs of initial states in B, namely {ρ′(τ)

B (0), ρ′′(τ)
B (0)} ∈

S (HB) = S (HA′ ⊗ HS ), that show an increase in distinguishability between
time t = τ and t = τ + ∆t∣∣∣∣∣∣ρ′(τ)

B (τ + ∆t) − ρ′′(τ)
B (τ + ∆t)

∣∣∣∣∣∣
1 >

∣∣∣∣∣∣ρ′(τ)
B (τ) − ρ′′(τ)

B (τ)
∣∣∣∣∣∣

1 , (4.13)

if and only if there is no CP intermediate map Vτ+∆t,τ, where the evolution of
the system B is given by the IA′ ⊗ Λ = {IA′ ⊗ Λt}t≥0 and IA′ is the identity
map on A′. We underline that the parameter τ that appears in the definition
of ρ′(τ)

B (0) and ρ′(τ)
B (0) corresponds to the time for which its proved to witness

non-Markovianity through Eq. (4.13), namely in the time interval [τ, τ + ∆τ].
Indeed, a different construction of these states is needed for each τ.

The particular initial bipartite separable states ρ(τ)
AB(0) for which we examine

the correlation C(2) are classical-quantum states that belong to S (HA ⊗ HB),
where A is an ancillary qubit. Indeed, we define our initial probe state with the
following “flagged” structure

ρ(τ)
AB(0) ≡

1
2

(
|0〉〈0|A ⊗ ρ

′(τ)
B (0) + |1〉〈1|A ⊗ ρ

′′(τ)
B (0)

)
, (4.14)

where BA ≡ {|0〉A, |1〉A} is an orthonormal basis for the Hilbert space HA of
the qubit A and ρ′(τ)

B (0) and ρ′′(τ)
B (0) are the corresponding initial states of those

appearing in Eq. (4.13). Notice that, since we are considering bijective or
pointwise non-bijective evolutions, we can always obtain those states through
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the application of IA′ ⊗ Λ−1
τ (see Section 2.5.4 for a discussion about the cases

where τ is a time of non-invertibility).
The system B is the only component involved in the evolution. Therefore,

ρ(τ)
AB(t) assumes the same flagged structure of ρ(τ)

AB(0) at any t ≥ 0:

ρ(τ)
AB(t) ≡

1
2

(
|0〉〈0|A ⊗ ρ

′(τ)
B (t) + |1〉〈1|A ⊗ ρ

′′(τ)
B (t)

)
, (4.15)

where ρ(τ)
AB(t) = IA ⊗ IA′ ⊗ Λt(ρ

(τ)
AB(0)). Note that from Eq. (4.15) it follows that

ρ(τ)
AB(t) does not contain any entanglement for all t ≥ 0. Moreover, the state can

be chosen arbitrarily close to an uncorrelated state since, as shown in [BJA17],
one can always choose states ρ′(τ)

B (0) and ρ′′(τ)
B (0) to be arbitrarily close to each

other.

4.3.2 Detecting the correlation backflow

We now show how the correlation measure C(2)
A (ρ(τ)

AB(t)) witnesses bijective or
pointwise non-bijective non-Markovian dynamics. Moreover, we show that the
same result can be obtained also for C(2)(ρ(τ)

AB(t)).
To evaluate C(2)

A (ρ(τ)
AB(t)), we have to find a ME-POVM {PA,1, PA,2} that,

once applied on ρ(τ)
AB(t), generates an output ensemble of states {{p1,2 = 1/2},

{ρB,1(t), ρB,2(t)}} with the largest value of ||ρB,1(t) − ρB,2(t)||1. Let λ ∈ [0, 1] and
η ∈ [0, 1] be the diagonal elements of PA,1 in the basis BA. It is easy to show
that λ + η = 1 is a necessary condition for ME-POVMs. The corresponding
output states parameterized by λ and η are

ρB,1(t) = λρ′(τ)
B (t) + ηρ′′(τ)

B (t) , (4.16)

ρB,2(t) = (1 − λ)ρ′(τ)
B (t) + (1 − η)ρ′′(τ)

B (t) . (4.17)

It follows that

||ρB,1(t) − ρB,2(t)||1 = |λ − η| ||ρ′(τ)
B (t) − ρ′′(τ)

B (t)||1 . (4.18)

Since 0 ≤ |λ − η| ≤ 1, the maximum is obtained when either λ or η is equal to
1. In both cases the equiprobable output states are exactly the states ρ′(τ)

B (t) and
ρ′′(τ)

B (t) and we can consider Eq. (4.8) in order to write C(2)
A (ρ(τ)

AB(t)) in following
simple form

C(2)
A (ρ(τ)

AB(t)) =
||ρ′(τ)

B (t) − ρ′′(τ)
B (t)||1

4
. (4.19)
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In Appendices B.3 and B.5 we prove the following relation C(2)(ρ(τ)
AB(t)) =

C(2)
A (ρ(τ)

AB(t)) ≥ C(2)
B (ρ(τ)

AB(t)). Therefore, using Eqs. (4.13) and (4.19), we ob-
tain the main result of this chapter, namely a correlation backflow

C(2)
(
ρ(τ)

AB(τ + ∆t)
)
> C(2)

(
ρ(τ)

AB(τ)
)
, (4.20)

if and only if there is no CPTP intermediate map Vτ+∆t,τ.
In Appendices B.4 and B.5 we prove that CB(ρ(τ)

AB(t)) = C(2)
B (ρ(τ)

AB(t)) and
CA(ρ(τ)

AB(t)) = C(2)
A (ρ(τ)

AB(t)). From these additional results it follows that for
this initial probe state C(2)(ρ(τ)

AB(t)) = C(ρ(τ)
AB(t)) at any time t ≥ 0. Hence,

once the system is initialized in ρ(τ)
AB(0), the correlation C(ρ(τ)

AB(t)) witnesses
non-Markovianity with the same efficiency as C(2)(ρ(τ))

AB (t).

Example: the quasi-eternal non-Markovian model

For the sake of clarity, we illustrate the previous general results through a spe-
cific evolution. Let us consider the example introduced in Section 3.2.1, where
the corresponding dynamical maps Λ

(tNM ,α)
t are characterized by some α > 0

and tNM ≥ 0 that satisfty the relations (3.9) and (3.10). Moreover, we recall that
in Section 3.5.5 we showed that the QMI fails to detect some non-Markovian
evolutions belonging to this class.

The parameter tNM represents the time when the evolution Λ(tNM ,α) starts
to be non-Markovian, namely such that the intermediate maps Vτ+∆t,τ are not
CPTP for any tNM < τ < τ + ∆t. Hence, we focus on the construction of the
initial states ρ′(τ)

B (0) and ρ′′(τ)
B (0) that appear in Eqs. (4.13) when the evolution

is given by Λ(tNM ,α). We pick τ > tNM so that ρ(τ)
AB(0) given by Eq. (4.14) is

able to witness non-Markovian phenomena for time intervals [τ, τ + ∆t] when
the evolution has no CPTP intermediate maps. By following the construc-
tive method given in [BJA17], we have to consider, together with the qubit
S evolved by Λ(tNM ,α), an ancillary qutrit A′: S (HB) = S (HA′ ⊗ HS ). Now,
being {|0〉A′ , |1〉A′ , |2〉A′} and {|0〉S , |1〉S } orthonormal basis respectively forHA′

andHS , we have:

ρ′(τ)
A′S (τ) = (1 − p)σA′S + pφ+

A′S , (4.21)

ρ′′(τ)
A′S (τ) = (1 − p)σA′S + p|2〉〈2|A′ ⊗ ρS , (4.22)

where φ+
A′S ≡ |φ

+〉〈φ+|A′S is the maximally entangled state, |φ+〉A′S ≡ (|00〉A′S +

|11〉A′S )/
√

2 and σA′S is a state in the interior of Im(Λ(tNM ,α)
τ ).
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In order to define completely ρ′(τ)
A′S (τ) and ρ′′(τ)

A′S (τ), we fix their free compo-
nents: σA′S ≡ (|0〉〈0|A′ + |1〉〈1|A′)/2 ⊗ 1S /2 and ρS ≡ 1S /2 and we get:

ρ′(τ)
A′S (τ) =

(|0〉〈0|A′ + |1〉〈1|A′) ⊗ 1S

4
+ p

σx ⊗ σx − σy ⊗ σy + σz ⊗ σz

4
, (4.23)

ρ′′(τ)
A′S (τ) =

(
(1 − p)

|0〉〈0|A′ + |1〉〈1|A′
2

+ p|2〉〈2|A′
)
⊗
1S

2
. (4.24)

Considering the rates given in Eq. (3.11), the evolution induced by the
dynamical map Λ

(tNM ,α)
τ (see Eqs. (2.111)) that precedes the action of V (tNM ,α)

τ+∆t,τ ,
can be written as:

Λ
(tNM ,α)
τ (σx) =

(
e−τ

cosh(τ − tNM)
cosh(tNM)

)α/2
σx ≡ λ

(tNM ,α)
xy (τ)σx ,

Λ
(tNM ,α)
τ (σy) =

(
e−τ

cosh(τ − tNM)
cosh(tNM)

)α/2
σy ≡ λ

(tNM ,α)
xy (τ)σy ,

Λ
(tNM ,α)
τ (σz) = e−ατσz ≡ λ

(α)
z (τ)σz ,

Λ
(tNM ,α)
τ (1S ) = 1S , (4.25)

where, for τ > tNM, we have λ(tNM ,α)
xy (τ) > λ(α)

z (τ). The state ρ′′(τ)
A′S (τ) assumes

the form ρA′ ⊗ 1S /2 and therefore, since the evolution is random unitary, it is
stationary for IA′ ⊗Λ

(tNM ,α). Therefore, ρ′′(τ)
A′S (0) = (IA′ ⊗Λ

(tNM ,α)
t )−1(ρ′′(τ)

A′S (τ)) =

ρ′′(τ)
A′S (τ). Conversely, ρ′(τ)

A′S (τ) is not stationary and (IA′ ⊗ Λ
(tNM ,α)
τ )−1(ρ′(τ)

A′S (τ)) is
not physical for every p ∈ [0, 1]. Indeed, we can write the operator ρ′(τ)

A′S (0)

obtained by (Λ(tNM ,α)
τ )−1(ρ′(τ)

A′S (τ)) as follows

ρ′(τ)
A′S (0) =

(|0〉〈0|A′ + |1〉〈1|A′) ⊗ 1S

4
+

p

λ(tNM ,α)
xy (τ)

σx ⊗ σx − σy ⊗ σy

4

+
p

λ(α)
z (τ)

σz ⊗ σz

4
, (4.26)

which represents physical state for p/λ(tNM ,α)
xy (τ) < p/λ(α)

z (τ) ≤ 1 (see Section
3.5.5). Therefore, if p satisfies the condition p < λ(α)

z (τ), the operator given by
Eq. (4.26) represents a physical initial state ρ′(τ)

A′S (0) ∈ S (HA′ ⊗ HS ) which at
time τ is evolved to the state given in Eq. (4.23), and therefore, together with
ρ′′(τ)

A′S (0), fulfills the requirements of the constructive method given in [BJA17].
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The construction of the state ρ(τ)
AB(0) through Eq. (4.14) is now straightfor-

ward. Being A an ancillary qubit for which we adopt the orthonormal basis
{|0〉〈0|A, |1〉〈1|A}, we have

ρ(τ)
AB(0) =

1
2

(
|0〉〈0|A ⊗ ρ

′(τ)
B (0) + |1〉〈1|A ⊗ ρ

′′(τ)
B (0)

)
, (4.27)

where ρ′(τ)
B (0) is given in Eq. (4.26) and ρ′′(τ)

B (0) in Eq. (4.24).

4.3.3 Quasi-correlation measures

We would like to conclude our study by discussing the use of what we called
quasi-correlation measures in the context of non-Markovian detection (see Sec-
tion 2.5.8). Note that while for a correlation measure it is demanded that it does
not increase by local operations, for the detection of non-Markovianity it suf-
fices to consider functions that do not increase under the action of operations
by one of the parties (the one evolving through the dynamics). An increase on
the value of these measures is enough to detect non-Markovian evolutions. We
name quasi-correlation measures those functions of a bipartite state that do not
increase when applying operations on only one share of the state.

An example of such measures is the quantum correlation (or singlet frac-
tion) qcorr(ρS A) [KRS09]. As we saw in Section 2.5.8, given a bipartite state
ρS A, it is defined as

qcorr(ρS A) = dA max
ΦS
〈φ+|ΦS ⊗ 1A(ρS A)|φ+〉2S A. (4.28)

This quantity detects all non-Markovian dynamics. Indeed, in [KRS09] the
authors showed that for classical-quantum correlated states of the form

ρS A =
∑

i

pi ρS ,i ⊗ |i〉〈i|A, (4.29)

qcorr is equal to the guessing probability of the ensemble ES = {pi, ρS ,i}i. There-
fore, we can combine this with the results in Ref. [BD16] (see Section 2.5.5),
proving the existence of an ensemble with increasing guessing probability for
any non-Markovian dynamics to conclude that this version of the singlet fidelity
also detects all such dynamics (see also Ref. [Bus17]).

4.4 Discussion

The main motivation of this chapter is to understand the power of correlations
to witness non-Markovian evolutions. We introduced a correlation measure and
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showed that, in an extended setting with a second ancilla, it displays backflow
for almost all non-Markovian evolutions. More precisely, it displays backflows
for all non-Markovian evolutions that are bijective or at most point-wise non-
bijective. For a given evolution we described how probe states that exhibit such
an increase in correlations can be constructed. These states have no entangle-
ment across the given bipartition and can be chosen to be arbitrarily close to
an uncorrelated state. We showed how to apply our method to a set of evolu-
tions, namely eternal and quasi-eternal non-Markovian evolutions, by explic-
itly constructing all the components of the probe states. Finally, we reviewed
quasi-correlation measures that can be used for non-Markovianity detection and
always show a backflow.

The question if there exists a measure of correlation with the property of
being non-increasing if and only if the dynamics is CP-divisible, without any
restrictions on the dynamics, is still open, both in the case of system-ancilla
correlations and in the extended setting with a second ancilla. A possible av-
enue consists of understanding how to adapt the results in [BD16], valid for any
non-Markovian evolution, to our correlation measure.
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Chapter 5

Equivalence between
non-Markovianity and
correlation backflows

The information encoded into an open quantum system evolving with a Marko-
vian dynamics is always monotonically non-increasing. Nonetheless, for a
given quantifier of the information contained in the system, it is in general
not clear if for all non-Markovian dynamics it is possible to observe a non-
monotonic evolution of this quantity, namely a backflow. We address this prob-
lem by considering correlations of finite-dimensional bipartite systems. For
this purpose, we consider a class of correlation measures and prove that if the
dynamics is non-Markovian there exists at least one element from this class
that provides a correlation backflow. Moreover, we provide a set of initial
probe states that accomplish this witnessing task. This result provides the first
one-to-one relation between non-Markovian quantum dynamics and correlation
backflows. Finally, we introduce a new measure of non-Markovianity. The re-
sults exposed in this chapter are contained in the original works [DJB+20] and
[DJ20].

5.1 Introduction

The study of open quantum systems dynamics [BP07, RH11] is of central inter-
est in quantum mechanics. Since there are no experimental scenarios where a
quantum system can be considered completely isolated, this approach provides
a more realistic description of quantum evolutions.

The interaction between an open quantum system S and its environment E
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leads to two possible regimes of evolution. The phenomena associated with the
Markovian regime are characterized by the monotonic non-increase of the in-
formation contained in the open system. Instead, in the non-Markovian regime,
part of the information lost is recovered in one or more subsequent time inter-
vals. This phenomenon is called backflow of information. For some detailed
reviews on non-Markovian evolutions, see Refs. [BLPV16, dVA17, RHP14,
LHW18].

It is nonobvious what mathematical structure is better suited to reproduce
the backflow phenomenology. A framework based on a notion of divisibil-
ity of dynamical maps, namely the operators describing the dynamical evo-
lution of the system, has achieved a promising consensus [RH11, TLSM18,
ABCM14, CKR11, RHP10, BLP10, BD16, BJA17, LFS12]. A characteriza-
tions of non-Markovian evolutions based on divisibility is proposed in Ref.
[CM14], where the authors introduce a degree of non-Markovianity to clas-
sify evolutions. Many efforts are presently directed towards testing this mathe-
matical definition by studying the characteristic backflows that different phys-
ical quantities show when the evolution is non-Markovian. Once we consider
a quantity that is non-increasing under Markovian evolutions, we can study
its potential to show a backflow when the dynamics is non-Markovian. Dis-
tinguishability between states [BLP10, BD16, BJA17], correlation measures
[LFS12, DJB+19, DJB+20, KRS20], channel capacities [BCM14] and the vol-
ume of accessible states [LPP13] and quantum Fisher information [LWS10] are
some quantities that have been studied in this scenario. The non-trivial point
that has to be analyzed is if it is possible to obtain one-to-one relations be-
tween backflows of these quantities and non-Markovian evolutions. Indeed,
this result would imply a correspondence between the phenomenological and
the mathematical description of non-Markovianity that we have presented. In
Ref. [CKR11] it was suggested that for bijective evolutions there is a one-
to-one correspondence between backflow of the distinguishability of two-state
ensembles and non-Markovianity. This correspondence follows from the re-
sults of [Kos72a, Rus94] together with an addendum given in Ref. [BJA17].
Later it was shown in Ref. [BD16] that for general evolutions a one-to-one
correspondence exists between non-Markovianity and backflow of the guess-
ing probability for some ensemble of states. Furthermore, it was shown in Ref.
[BJA17] that for evolutions that are non-bijective for at most a discrete set of
times there is a one-to-one correspondence between backflows of the distin-
guishability of an equiprobable two-state ensemble and non-Markovianity.

In this chapter we focus on the connection between revivals of bipartite cor-
relation measures and non-Markovian evolutions on S . Several measures have
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been considered in this scenario, e.g. quantum mutual information [LFS12,
DJB+20] and entanglement measures [RHP10, KRS20]. In the previous chap-
ter we showed how to introduce a correlation that witnesses almost all non-
Markovian dynamics. However, it is unknown if any of these correlations can
witness all non-Markovian dynamics [DJB+20].

The main result of this chapter is the first one-to-one relation between corre-
lation backflows and non-Markovian dynamics. We consider a class of bipartite
correlation measures that provides backflows if and only if the dynamics is not
Markovian. For this purpose, we exploit supplementary ancillary systems to
define initial probe states that succeed in this witnessing task. Finally, by con-
sidering the maximum backflow that these correlation measures can show when
bipartite states evolve, we introduce a class of non-Markovianity measures. We
prove that for any non-Markovian evolution there exists at least one measure
from this class that is positive.

5.2 Measurements having fixed output probability dis-
tributions

As we discussed in Section 2.1.2, any measurement process on a quantum state
ρ ∈ S (H) is defined by a positive-operator valued measure (POVM), namely an
indexed set of Hermitian and positive semi-definite operators {Pi}

n
i=1 of B(H)

such that
∑n

i=1 Pi = 1, where 1 ∈ B(H) is the identity operator on H and
n is the number of possible outcomes. The i-th output of the measurement
is represented by Pi, where pi = Tr

[
ρPi

]
is the corresponding occurrence

probability.
We consider (normalized) finite probability distributionsP = {pi}

n
i=1, where∑n

i=1 pi = 1 and define the set of n-output POVMs that, if applied on ρ ∈ S (H),
provide P-distributed outcomes.

Definition 10. Given the finite probability distribution P = {pi}
n
i=1, the set of

P-POVMs {Pi}
n
i=1 onH for ρ ∈ S (H) is defined as

ΠP(ρ) ≡ {{Pi}
n
i=1 : Tr

[
ρ Pi

]
= pi,∀i = 1, ... , n} .

These sets of POVMs generalize the idea of ME-POVMs presented in Chap-
ter 4, where only uniform distributions P = {pi = 1/n}ni=1 were considered. We
prove that ΠP(ρ) , ∅ for all P and ρ in Appendix C.1.

Now we consider a bipartite scenario where Alice and Bob share a state
ρAB ∈ S (HA ⊗ HB). If Alice applies a POVM {PA,i}

n
i=1 on her side of ρAB,
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Figure 5.1: Given a probability distribution P = {pi}
n
i=1, {PA,i}

n
i=1 is a P-POVM

for ρAB if and only if the output probability distribution of this measurement
is P. The correlation CPA (ρAB) considers the scenario where ρAB is measured
with a P-POVM {PA,i}

n
i=1 that generates the most distinguishable P-distributed

ensemble on B.

an output ensemble E(ρAB, {PA,i}
n
i=1) ≡ {pi, ρB,i}

n
i=1 is generated on Bob’s side,

where each state ρB,i ∈ S (HB) occurs with probability pi as follows

E
(
ρAB, {PA,i}

n
i=1

)
=

{
pi =Tr

[
ρABPA,i ⊗1B

]
, ρB,i =

TrA
[
ρABPA,i ⊗1B

]
pi

}
.

(5.1)
In particular, with probability pi, Alice obtains the i-th outcome of the mea-
surement and Bob’s side of the shared state is transformed into ρB,i. We call
{pi}

n
i=1 and {ρB,i}

n
i=1 respectively the output probability distribution and the out-

put states of the measurement.
Similarly to ΠP(ρ), we define the measurements that Alice can perform on

ρAB to generate P-distributed output ensembles on Bob’s side (see Fig. 5.1).

Definition 11. Given the finite probability distribution P = {pi}
n
i=1, the set of

P-POVMs {PA,i}
n
i=1 onHA for ρAB ∈ S (HAB) is defined as

ΠPA(ρAB) ≡ {{PA,i}
n
i=1 : Tr

[
ρAB PA,i ⊗ 1B

]
= pi,∀i = 1, . . . , n} .

Analogously, we can define ΠPB(ρAB). We notice that ΠPA(ρAB) = ΠP(ρA)
for any P and ρAB, where ρA = TrB

[
ρAB

]
. Moreover, ΠP(ρ) (ΠPA(ρAB)) is a

non-empty convex set for any ρ (ρAB) and P.
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5.3 Non-Markovianity and the guessing probability

We consider the task of identifying a state that we randomly extract from a
known ensemble E = {pi, ρi}

n
i=1 of states of S (H). The guessing probability

Pg(E) is the average probability to successfully identify the extracted state with
an optimal measurement, that is

Pg(E) ≡ max
{Pi}

n
i=1

n∑
i=1

pi Tr
[
ρi Pi

]
, (5.2)

where the maximization is performed over the n-output POVMs of B(H). No-
tice that Pg(E) ≥ pmax ≡ maxi pi. Indeed, the best strategy that can be adopted
when no measurement is performed corresponds to guess on the most probable
state. Therefore, when we collect information from a measurement, we can
only improve our knowledge about the extracted state. We discussed this quan-
tity and its potential to witness non-Markovianity in Section 2.5.5, while here
we remind some aspects that are needed in this chapter. Note that Pg(E) can
be used to define a witness of non-Markovianity. Indeed, it is non-increasing
under the action of any CPTP map Φ acting on the states ρi: Pg({pi, ρi}i) ≥
Pg({pi,Φ(ρi)}i).

Now we explain how we can use the guessing probability to witness any
non-Markovian dynamics [BD16]. We consider a finite-dimensional system
S − A, where the d-dimensional system S is evolved by a generic evolution
Λ and A is an ancillary system. By evolving an initial ensemble ES A(0) =

{pi, ρS A,i(0)}i of states ρS A,i ∈ S (HS A), we obtain ES A(t) = {pi,Λt⊗IA(ρS A,i(0))}i.
Therefore, if the evolution Λ is Markovian, Pg(ES A(t)) − Pg(ES A(s)) ≤ 0 , for
any time interval [s, t].

The authors of [BD16] show that, for any evolution Λ and time interval
[s, t], there exist an ancillary system A and an initial ensemble ES A(0) of sepa-
rable states of S (HS A)

ES A(0) ≡ {pi, ρS A,i}
n
i=1 , (5.3)

such that we have a backflow

Pg(ES A(t)) − Pg(ES A(s)) > 0 , (5.4)

if and only if there exists no CPTP intermediate map Vt,s for the time inter-
val [s, t]. Notice that Eq. (5.4) corresponds to a violation of the Markovian
condition (2.59). Regarding the details of ES A(0), the probability distribution
P ≡ {pi}

n
i=1 has a finite size of n ≤ d4 elements and dim(HA) ≤ d. Notice
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that, even if we do not make it explicit, ES A(0) depends on Λ and [s, t]. This
result is completely general, it applies to any finite-dimensional evolution and,
while it does not provide the explicit states and probabilities needed to define
ES A(0), it proves the first one-to-one relation between information backflows
and non-Markovianity.

5.4 A class of correlation measures

In this section we define the correlation measures that we use to prove that
correlation backflows occur for all non-Markovian evolutions. Let P ≡ {pi}i

be a generic probability distribution and ρAB ∈ S (HA ⊗HB) a generic bipartite
system state. We consider the correlation measure

CPA (ρAB) ≡ max
{PA,i}i∈Π

P
A (ρAB)

Pg
(
ρAB, {PA,i}i

)
− pmax , (5.5)

where the maximization is performed over the P-POVMs on A for ρAB and
we defined Pg(ρAB, {PA,i}i) ≡ Pg(E(ρAB, {PA,i}i)) and pmax = maxi pi (see Fig.
5.1). Therefore, we can consider the class of correlation measures where each
element is defined by a different distribution P. Notice that, if P1 can be trans-
formed into P2 by a permutation and an addition or removal of one or more
zero-valued probabilities, CP1

A (ρAB) = CP2
A (ρAB) for any ρAB.

The operational meaning of this correlation measure for a given P is the
following. The value of CPA (ρAB) corresponds to the guessing probability of the
most distinguishable P-distributed state ensembles of B that Alice can generate
measuring her side of ρAB. We apply the −pmax correction in order to remove
the contribution coming from the no-measurement strategy discussed above.
Then, CPA (ρ(1)

AB) > CPA (ρ(2)
AB) implies that the largest distinguishability of the P-

distributed output ensembles of B that Alice can generate measuring ρ(1)
AB is

greater than the largest distinguishability of the P-distributed output ensembles
of B that Alice can generate measuring ρ(2)

AB.
As pointed out in the previous chapter and in Section 2.5.7, in order to

consider CPA a proper correlation measure, in Appendix C.2 we prove that (i)
it is non-increasing under local operations. Moreover, we can also prove that
it is (ii) zero-valued for product states and (iii) non-negative. In order to prove
the former property, given a generic product state ρAB = ρA ⊗ ρB, the output
ensemble E(ρA⊗ρB, {PA,i}i) = {pi, ρB}i is made of identical states for any POVM
{PA,i}i and Pg({pi, ρB}i) = pmax. Therefore, CPA (ρAB) ≥ 0 is now trivial.

Similarly to CPA , we define

CPB (ρAB) ≡ max
{PB,i}i∈Π

P
B (ρAB)

Pg
(
ρAB, {PB,i}

n
i=1

)
− pmax . (5.6)
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Figure 5.2: The initial probe state ρ(λ)
AB(0) belongs to the bipartite system S (HA⊗

HB), where HB = HS ⊗ HA′ ⊗ HA′′ . We consider the correlation CPA (ρ(λ)
AB(t))

given by the bipartition between the subsystems A and B, where S is evolved
by Λ and A, A′ and A′′ are ancillary systems.

Since in general CPA (ρAB) , CPB (ρAB), we can consider the symmetric class of
measures

CPAB(ρAB) ≡ max
{
CPA (ρAB),CPB (ρAB)

}
. (5.7)

Finally, we notice that Eqs. (5.5), (5.6) and (5.7) are generalizations of the
correlation measures introduced in Chapter 4. Moreover, we proved that by
considering CPAB with P = {1/2, 1/2} it is possible to witness any bijective
or pointwise non-bijective evolution, while a proof for generic non-Markovian
evolutions was not provided.

5.4.1 The probe states

The goal of this chapter is to prove a one-to-one correspondence between non-
Markovian evolutions and correlation backflows. Therefore, we consider the
most general evolutionΛ and we focus on a generic time interval [τ, τ+∆τ]. We
provide an initial probe state shared between Alice and Bob and a distribution
P for which the correlation measure CPA shows a backflow between τ and τ+∆τ

if and only if there is no CPTP intermediate map Vτ+∆τ,τ.
First, we introduce the bipartition and the state space needed to consider

CPA and the initial probe state. We define the bipartite system S (HA ⊗ HB)
such that dim(HA) = n and HB ≡ HS ⊗ HA′ ⊗ HA′′ , where dim(HS ) =

dim(HA′) = dS and dim(HA′′) = n + 1. We fix the following orthonormal basis
forHA andHA′′ : MA ≡ {|i〉A}ni=1 = {|1〉A, |2〉A, ... , |n〉A} andMA′′ ≡ {|i〉A′′}n+1

i=1 =

{|1〉A′′ , |2〉A′′ , ... , |n+1〉A′′}. Notice that the ancillas A′ and A′′ can be considered
as a single ancilla with Hilbert spaceHA′ ⊗HA′′ (see Fig. 5.2).

We define ρB,i ≡ ρS A′,i ⊗ |n + 1〉〈n + 1|A′′ ∈ S (HB), for i = 1, . . . , n, where
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we made use of the elements of ES A′(0) = {pi, ρS A′,i}
n
i=1 (see Eq. (5.3)). We

introduce a class of initial probe states ρ(λ)
AB(0) ∈ S (HA ⊗HB) parameterized by

λ ∈ [0, 1)

ρ(λ)
AB(0) ≡

n∑
i=1

pi |i〉〈i|A ⊗
(
λσS A′ ⊗ |i〉〈i|A′′ + (1 − λ) ρB,i

)
, (5.8)

where σS A′ is a generic state of S (HS ⊗HA′). Notice that the index i runs from
1 to n, while dim(HA′′) = n + 1. Since the ancillary systems do not evolve, the
action of the dynamical map of the evolution on the probe state preserves the
initial classical-quantum separable structure for any t ≥ 0

ρ(λ)
AB(t) =

n∑
i=1

pi |i〉〈i|A ⊗
(
λσS A′(t) ⊗ |i〉〈i|A′′ + (1 − λ) ρB,i(t)

)
, (5.9)

where ρB,i(t) = Λt ⊗ IA′A′′ (ρB,i) and σS A′(t) = Λt ⊗ IA′(σS A′). Finally, since
TrB[ρ(λ)

AB(t)] =
∑n

i=1 pi|i〉〈i|A, the set ofP-POVMs ΠPA(ρ(λ)
AB(t)) = ΠP(TrB[ρ(λ)

AB(t)])
does not depend on t and λ.

5.4.2 Witnessing non-Markovianity with correlations

In the case of bijective or pointwise non-bijective Λ, we can witness correla-
tion backflows with the technique described in Section 4. Moreover, in Ref.
[KRS20] it is proved that negativity, the entanglement measure given in Eq.
(2.92), witnesses any non-Markovian qubit evolution. Now, we provide a proof
for the possibility to witness any non-Markovian dynamics with a correlation
backflow. If we consider the formalism introduced in Section 2.5, we can de-
fine the class of witnesses of non-Markovianity QA,P with the correlations CPA ,
where the corresponding initial conditions are provided by the probe states
ρ(λ)

AB(0). Later, we also introduce an associated measure of non-Markovianity
NP, which we prove to be positive for any non-Markovian evolution.

In order to witness non-Markovianity through revivals of CPA , the evolution
of the initial state ρAS A′ =

∑n
i=1 pi|i〉〈i|A⊗ρS A′,i is an intuitive choice. Indeed, we

have that {|i〉〈i|A}ni=1 ∈ ΠPA(ρAS A′(t)) for all t ≥ 0 and Pg(ρAS A′(t), {|i〉〈i|A}ni=1) =

Pg(ES A′(t)) (see Eq. (5.4)). Nonetheless, in general {|i〉〈i|A}ni=1 is not selected

by the maximization that defines CPA (ρAS A′(t)). In Appendix C.8 we study an
explicit example where this situation is encountered.

We are now able to present the main result of this chapter.
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Theorem 14. For any evolution Λ defined on a finite-dimensional system S
and time interval [τ, τ + ∆τ] there exist at least one ancillary system H , one
bipartite system HA ⊗ HB, where HB = HS ⊗ H , a correlation measure for
bipartite systems CAB and an initial state ρAB(0) ∈ S (HA ⊗ HB) such that a
backflow

CAB (ρAB(τ + ∆τ)) − CAB (ρAB(τ)) > 0 ,

occurs if and only if there is no CPTP intermediate map Vτ+∆τ,τ, where S is the
only system that evolves during the evolution.

Proof. We consider the ancillary systemH = HA′ ⊗HA′′ , the correlation mea-
sure CAB = CPA and the initial probe states ρ(λ)

AB(0). We prove that, for wisely
chosen values of λ, we obtain the backflow

∆CPA ≡ CPA
(
ρ(λ)

AB(τ + ∆τ)
)
−CPA

(
ρ(λ)

AB(τ)
)
> 0 , (5.10)

if and only if there is no CPTP intermediate map Vτ+∆τ,τ. As stated before, in
Appendix C.2 we prove that CPA is monotonically decreasing under local oper-

ations. It follows that CPA (ρ(λ)
AB(τ)) cannot increase in case of CPTP intermediate

maps Vτ+∆τ,τ acting on ρ(λ)
AB(τ). Moreover, any correlation measure CAB is by

definition monotonically decreasing under local operations. Therefore, in order
to prove Theorem 14, we follow by studying the cases where there is no CPTP
intermediate map Vτ+∆τ,τ.

First, ΠPA ≡ ΠPA(ρ(λ)
AB(t)) does not depend on λ or t, and {|i〉〈i|A}ni=1 ∈ ΠPA . In

the following, if not specified otherwise, the index i runs from 1 to n. Moreover,
we omit the dependence on τ of some quantities to increase readability.

By applying {|i〉〈i|A}i on ρ(λ)
AB(t), we get the output ensemble

E(ρ(λ)
AB(t), {|i〉〈i|A}i)= {pi, λσS A′(t) ⊗ |i〉〈i|A′′ + (1 − λ)ρB,i(t)}i,

and (see Appendix C.3)

Pg
(
ρ(λ)

AB(t), {|i〉〈i|A}i
)

= λ + (1 − λ) Pg
(
ES A′(t)

)
. (5.11)

For a {PA,i}i ∈ ΠPA different from the projective measurement {|i〉〈i|A}i we obtain
(see Appendix C.3): E(ρ(λ)

AB(t), {PA,i}i) = {pi, λσ
⊥
B,i(t) + (1 − λ)σ‖B,i(t)}i. Here

σ⊥B,i(t) ≡ σS A′(t) ⊗ ρ⊥A′′,i, where ρ⊥A′′,i is a convex combination of {|k〉〈k|A′′}nk=1.
Analogously, σ‖B,i(t) ≡ ρ‖S A′,i(t) ⊗ |n + 1〉〈n + 1|A′′ , where ρ‖S A′,i(t) is a convex
combination of {ρS A′,k(t)}nk=1 (see Appendix C.3). The corresponding guessing
probability is

Pg
(
ρ(λ)

AB(t), {PA,i}i
)
=λPg

(
{pi, ρ

⊥
A′′,i}i

)
+(1 − λ)Pg

(
{pi, ρ

‖

S A′,i(t)}i
)
. (5.12)
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Next consider the following lower bound for Eq. (5.10)

∆CPA ≥ Pg
(
ρ(λ)

AB(τ + ∆τ), {|i〉〈i|A}i
)
− Pg

(
ρ(λ)

AB(τ), {P(λ)
A,i}i

)
, (5.13)

where we define {P(λ)
A,i}i to be one of the optimalP-POVMs for the maximization

that defines CPA (ρ(λ)
AB(t)) at t = τ, namely

CPA (ρ(λ)
AB(τ)) = Pg(ρ(λ)

AB(τ), {P(λ)
A,i}i) − pmax.

Consider Eq. (5.12) for {P(λ)
A,i}i and define E⊥({P(λ)

A,i}i) and E‖({P(λ)
A,i}i), such that

Pg
(
ρ(λ)

AB(τ), {P(λ)
A,i}i

)
=λPg(E⊥({P(λ)

A,i}i)) + (1 − λ)Pg(E‖({P(λ)
A,i}i)). (5.14)

In order to evaluate ∆CPA , we analyze the two possible scenarios for the
quantity Pg(ρ(λ)

AB(τ), {P(λ)
A,i}i):

(A): {|i〉〈i|A}i is an optimal P-POVMs for some λ ∈ [0, 1);

(B): {|i〉〈i|A}i is not an optimal P-POVMs for any λ ∈ [0, 1).

We start by studying case (A): if {|i〉〈i|A}i is an optimal P-POVM for some λ∗,
then the same is true for any λ ∈ (λ∗, 1) (see Appendix C.4). From Eqs. (5.4),
(5.11) and (5.13), for λ ∈ (λ∗, 1)

∆CPA ≥ (1 − λ)
(
Pg(ES A′(τ + ∆τ)) − Pg(ES A′(τ))

)
> 0 , (5.15)

if and only if there is no CPTP intermediate map Vτ+∆τ,τ.
Case (B): we start by noting thatPg(ρ(λ)

AB(τ), {PA,i}i) is Lipschitz continuous
in λ, Pg(ρAB, {PA,i}i) is Lipschitz continuous in {PA,i}i and the unique optimal
P-POVM for λ = 1 is {|i〉〈i|A}i (see Appendix C.5). Therefore, the set of opti-
mal P-POVMs is contained in a neighborhood of {|i〉〈i|A}i with size decreasing
towards zero as λ → 1. This in turn implies that the values of Pg(E‖({P(λ)

A,i}i))

for different {P(λ)
A,i}i are inside an interval that converges on Pg(ES A′(τ)) (see

Appendix C.5). If we define P‖(λ)
g ≡ max

{P(λ)
A,i}i

Pg(E‖({P(λ)
A,i}i)) and P⊥(λ)

g ≡

max
{P(λ)

A,i}i
Pg(E⊥({P(λ)

A,i}i)), it holds that

∀δ > 0, ∃λδ > 0 : P‖(λ)
g − Pg(ES A′(τ)) < δ , ∀λ ∈ (λδ, 1) . (5.16)

Hence, for δ ≡ Pg(ES A′(τ + ∆τ)) − Pg(ES A′(τ)) > 0, there exists λ ∈ [0, 1) such
that P‖(λ)

g − Pg(ES A′(τ)) < Pg(ES A′(τ + ∆τ)) − Pg(ES A′(τ)) for any λ ∈ (λ, 1),
namely

Pg(ES A′(τ + ∆τ)) − P‖(λ)
g > 0 , ∀λ ∈ (λ, 1) . (5.17)
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We consider inequalities (5.13) and (5.17) for λ ∈ (λ, 1) and obtain a backflow

∆CPA ≥λ
(
1 − P⊥(λ)

g

)
+ (1 − λ)

(
Pg(ES A′(τ + ∆τ)) − P‖(λ)

g

)
> 0, (5.18)

if and only if there is no CPTP intermediate map Vτ+∆τ,τ. �

We proved that any non-Markovian evolution can be witnessed with back-
flows of CPA by considering the probe states ρ(λ)

AB(0). These backflows are ro-
bust, namely, if we add sufficiently small perturbations to ρ(λ)

AB(0) and the opti-
mal P-POVMs obtained by the maximization in Eq. (5.5) for any given non-
Markovian dynamics, we still obtain a backflow of CPA . Hence, there exists
a set of initial states with the same dimension as S (HA ⊗ HB) that provide a
backflow of CPA in the scenario described above (see Appendix C.6 for more
details).

We did not take advantage or made assumptions about any particular struc-
ture of the components of ES A′(0). As a consequence, it is straightforward to
adapt our technique to any other ensemble. In particular, if the evolution of an
initial ensemble {pi, φS A′,i}

n
i=1 provides a backflow of Pg({pi, φS A′,i(t)}ni=1) in a

time interval [τ, τ + ∆τ], we can consider CPA (ψ(λ)
AB(0)), where P = {pi}

n
i=1, and

ψ(λ)
AB(0)=

n∑
i=1

pi |i〉〈i|A ⊗
(
λσS A′ ⊗ |i〉〈i|A′′ + (1−λ) φS A′,i ⊗ |n + 1〉〈n + 1|A′′

)
,

which provide a backflow of CPA (ψ(λ)
AB(t)) in [τ, τ+∆τ]. We make some examples

of ensembles (different from ES A′(0)) that can be considered to witness partic-
ular classes of non-Markovian evolutions. A constructive method that provides
ensembles of two equiprobable states that witness any bijective or pointwise
non-bijective non-Markovian dynamics is given in Ref. [BJA17], namely the
technique described in Section 2.5.4. The existence of two-state ensembles that
detect any image non-increasing evolution, namely such that Im(Λt) ⊆ Im(Λs)
for any s < t, is proven in Ref. [CRS18] (see Theorem 6). Finally, two-state
ensembles suffices to witness any non-Markovian qubit evolution [CC19] (see
Theorem 7).

5.4.3 A measure of non-Markovianity

Similarly to prior measures of non-Markovianity NQ described in Sections 2.4
and 2.5 for different information quantifiers Q, we can introduce a measure
associated to the non-Markovian witness QA,P defined by CPA (ρAB) as follows

NP(Λ) ≡ sup
ρAS A′ (0)

∫
d
dt C

P
A (ρAS A′ (t))>0

d
dt

CPA (ρAS A′(t))dt , (5.19)
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where the sup is over the possible ancillary systems (A and A′) and the initial
states ρAS A′(0) ∈ S (HA ⊗ HS ⊗ HA′), where we impose dim(HA) ≤ d4 and
dim(HA′) ≤ d. As a consequence of Theorem 14, if CPA (ρAS A′(t)) is differen-
tiable, N

P
(Λ) > 0 if and only if the evolution is non-Markovian (see Appendix

C.7 for details and a discussion of the non-differentiable case). Indeed, for any
time interval where the evolution cannot be described by a CPTP intermediate
map, we proved the existence of a set of initial states that show an increase
of CPA in the same time interval. We notice that, if we fix P = {1/2, 1/2},
NP(Λ) > 0 for any bijective or pointwise non-bijective non-Markovian evolu-
tion Λ. Indeed, in Chapter 4 we saw that two-ouput ME-POVMs are sufficient
to provide backflows of C(2)

A for these evolutions.
The measure of non-Markovianity NRHP described in Section 2.5.2 and the

class NP are the only measures that are proved to be positive for any non-
Markovian evolution. Notice that the value of NP(Λ), differently from NRHP(Λ),
represents the backflow of a physical quantity, namely CPA , shown by a state that
undergoes the target evolution. Nonetheless, while NRHP is easy to compute in
many different cases, the computation of the class NP may be difficult in the
general case, since it involves a supremum over initial states.

5.5 Discussion

In this chapter we showed that any non-Markovian dynamics can be witnessed
through backflows of the correlation measure CPA . For this purpose, we intro-
duced a class of initial probe states ρ(λ)

AB(0) that allows us to accomplish this task.
Hence, we proved the first one-to-one correspondence between CP-divisibility
of evolutions, namely Markovianity, and the absence of correlation backflows.

It would be useful to obtain a constructive method that provides the ele-
ments of ES A′(0) that we used to define the initial probe state. Moreover, since
the class of bipartite correlations that we studied does not consider the subsys-
tems A and B symmetrically, an open question is to understand if also CPAB (see
Eq. (5.7)) is able to witness any non-Markovian evolution.

Different approaches that manipulate and evolve two-state ensembles de-
fined over S and particular ancillary systems are proved to witness any bijec-
tive or alternatively at most point-wise non-bijective non-Markovian evolution
[BJA17, KRS20, DJB+19]. On the other hand, methods that allow witnessing
any non-Markovian evolution, e.g. [BD16] and the one presented in this chap-
ter, make use of ensembles that in general are made by more than two states.
We therefore find it interesting to know if the use of larger ensembles in [BD16]
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and in this chapter is necessary to witness any non-Markovian evolution. Find-
ing an example of a non-Markovian evolution that two-state ensembles cannot
witness would prove this in the positive. Such an example, if it exists, could
perhaps also help elucidate how to explicitly construct the elements of ES A′(0).

We consider interesting the possibility to formulate simplified versions of
the non-Markovianity measures NP that permit simplified computations while
still being positive for any non-Markovian evolution.
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Chapter 6

Non-Markovianity measure via
mixing with Markovian
dynamics

We introduce a non-Markovianity measure based on the minimal amount of
extra Markovian noise we have to add to the process via incoherent mixing, in
order to make the resulting transformation Markovian at all times. We show
how to evaluate this measure by considering the set of depolarizing evolutions
in arbitrary dimension and the set of dephasing evolutions for qubits. The re-
sults exposed in this chapter are contained in the original work [DG21].

6.1 Introduction

In open quantum system dynamics [BP07] Markovian evolutions are charac-
terized by the existence of a one-way flow of information from the system to
its environment. While approximately valid in many contexts of physical rele-
vance (in particular for system-environment weak-coupling conditions), in the
vast majority of settings the Markovianity of the dynamical evolution is lost
and one witnesses backflows of information from the environment to the sys-
tem [Bre12, RHP14, BLPV16, LGP19]. The study of these non-Markovian
effects is a central topic of quantum information theory both because they arise
almost everywhere, but also because, when properly exploited, they may show
advantages in different quantum information processing tasks, such as quan-
tum metrology [CHP12], quantum key distribution [VOPM11], quantum tele-
portation [LBP14], entanglement generation [HRP12], quantum communica-
tion [BCM14] and quantum thermodynamics [WGE16, LWEG18, PLWR+18,
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AG19].

The standard procedure to characterize and measure the non-Markovianity
of a given evolution is to target functionals that are guaranteed to be monotonic
under arbitrary Markovian evolutions and to check for violations of such be-
havior. Many quantities have been studied in this framework: the distance be-
tween pair of states [BLP10, LPB10], channel capacities [BCM14], the guess-
ing probability of evolving ensembles of states [BD16], the volume of the ac-
cessible states [LPP13] and correlation measures [LFS12, DJB+19]. In this
chapter we introduce a conceptually different approach to the problem which
tries to quantify non-Markovian character of a dynamical evolution by comput-
ing the minimal amount of extra noise that one has to inject into the system
dynamics in order to stop the information backflow at all times. Specifically
we consider the minimum value of the probability needed to introduce Marko-
vianity for the entire temporal evolution of the system by incoherently mixing
it with an arbitrary extra process which is already Markovian. Our measure has
a clear operational meaning due to the fact that creating stochastic convolutions
of processes is a well defined physical procedure.

We remark however that since neither the set of Markovian evolutions, nor
its complementary counterpart, are convex [WECC08] the explicit evaluation
of the proposed measure is typically hard to comply. At variance with the
approaches presented in Refs. [BBM20, AB19] which discuss similar ideas
focusing on infinitesimal Markovian evolutions [Kos72b, Lin76, GK76], non-
convexity also prevents us from framing our proposal in the context of a con-
ventional (convex) resource theory of evolutions where Markovian dynamics
constitute the resource-free set [RBTL20, BG15].

After introducing the procedure in the general case of arbitrary open quan-
tum evolutions we focus on the special subset of depolarizing transformations
of arbitrary dimension and for qubit dephasing channels [Hol12, Wil13, Kin03]
which, thanks to their highly symmetric character, allow for an explicit analyt-
ical treatment. Depolarizing channels represent an important error model in
quantum information theory. Indeed by pre- and post- processing and classical
communication via twirling [HHH99], any other open quantum dynamics can
be mapped into a depolarizing channel whose efficiency in protecting the infor-
mation stored into the system is lower than or equal to the corresponding one
of the original process. Accordingly the study of the non-Markovian character
of this special set of open quantum evolutions is an important task in its own.

The chapter is organized as follows. In Section 6.2 we introduce the de-
polarizing evolutions set. In addition, we describe its Markovian and non-
Markovian subsets (Section 6.2.1), we discuss some geometrical properties
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of these subsets (Section 6.2.2) and we characterize continuous depolarizing
evolutions (Section 6.2.3). In Section 6.3 we present the measure of non-
Markovianity that we study throughout this chapter and we describe how to
apply it to non-Markovian depolarizing evolutions (Section 6.3.1). We follow
in Section 6.4 by evaluating this measure of non-Markovianity for continuous
depolarizing evolutions. Section 6.5 is dedicated to show that, considering the
task of making continuous depolarizing evolutions Markovian by mixing them
with Markovian evolutions, non-continuous Markovian evolutions are less ef-
ficient than continuous Markovian evolutions. From Section 6.6 we start to
study non-continuous non-Markovian depolarizing evolutions. In particular,
we show that in some particular cases the approaches considered for contin-
uous non-Markovian evolutions are still valid to evaluate the degree of non-
Markovianity of these evolutions. In Section 6.7 we consider our measure of
non-Markovianity applied to generic non-continuous non-Markovian depolar-
izing evolutions. We start by noticing some features of these evolutions that
imply an ambiguity for the identification of the optimal Markovian evolution
that makes a generic non-Markovian depolarizing evolution Markovian (Sec-
tion 6.7.1). Hence, in Section 6.7.2, we propose a strategy to calculate our
measure of non-Markovianity for any non-continuous depolarizing evolutions.
Finally, in Section 6.8 we extend the analysis to the case of dephasing channels
for qubits. The chapter ends in Section 6.9 with the conclusions. Technical
material is presented in the appendices.

6.2 Depolarizing evolutions

Let S (HS ) be the set of density matrices on a d-dimensional Hilbert spaceHS .
As we defined in Chapter 2, an evolution on S (HS ) is a one-parameter family
Λ = {Λt}t≥0 of CPTP maps Λt : B(HS ) → B(HS ), namely dynamical maps.
Moreover, we imposed that for t = 0 the dynamical map should correspond to
the identity map, namely

Λ0(·) = IS (·) , (6.1)

and require the family Λ to be continuous and differentiable almost always,
allowing at most a countable set of discontinuity times. In Section 2.3.1 we
showed why these assumptions are well motivated. We hence defined E ≡ {Λ}
to be the set of all the evolutions on S (HS ) that obey the above constraints.
One can easily verify that such set is closed under convex combination. As
discussed in Section 2.3.3, we identify Markovian evolutions with those being
CP-divisible. Therefore, we identify the Markovian and non-Markovian subsets
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EM and ENM of E. As already mentioned in the Section 2.3.5, neither EM nor
ENM are closed under convex combinations.

In Section 6.2 we saw that depolarizing evolutions D form a closed con-
vex subset of E [Hol12, Wil13, Kin03]. We remember that an evolution D =

{Dt}t≥0 belongs toD if and only if at any time t ≥ 0 the corresponding dynam-
ical map Dt can be written as

Dt(·) = f (t) IS (·) + (1 − f (t))Tr [·]
1S

d
, (6.2)

where f (t) is a real quantity belonging to the interval

JD ≡
[
−

1
d2 − 1

, 1
]
. (6.3)

From Eq. (6.2) it is clear that we can use the function f (t) to uniquely character-
ize the elements of D. In order to comply with the structural requirements we
imposed on E in the previous section, we focus on the collection of functions
f (t) : R+ → JD that

1. are continuous for almost-all t;

2. admit right and left time derivatives ( ḟ (t±) ≡ limε→0±
f (t+ε)− f (t)

ε );

3. satisfy f (0) = 1;

the last property being introduced to enforce Eq. (6.1). We define F to be the
set of characteristic functions f (t) that satisfy the above conditions and use
Eq. (6.2) to establishing a one-to-one relation between such set and D. We
also introduce the special subset of continuous depolarizing evolutions DC as
the collection of depolaring evolutions (6.2) whose functions f (t) belong to the
subset FC ⊂ F formed by continuous characteristic functions.

To fix the notation, if {ti}i is the discrete collection of times when f (t) is
discontinuous, we have that f (t+i ) ≡ limε→0+ f (ti + ε) is different from f (t−i ) ≡
limε→0+ f (ti − ε). To describe the discontinuous behavior of f (t) we hence
introduce the quantity

ξ( f (t)) ≡
f (t+)
f (t−)

, (6.4)

which assumes values in [−∞,+∞], where we fix ξ( f (t)) = ±∞ when we have
sign( f (t+)) = ±1 and f (t−) = 0. Moreover, when f (t+) = f (t−) = 0 we
define ξ( f (t)) = 1. From Eq. (6.4) it follows that f (t) is continuous at time t if
ξ( f (t)) = 1 and that f (t) ∈ FC if and only if ξ( f (t)) = 1 for any t ≥ 0. On the
contrary, from Eq. (6.4) it also follows that
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• ξ( f (t)) > 1: the discontinuity distances f (t) from zero, namely depending
on the sign of f (t−) we either have 0 < f (t−) < f (t+) or 0 > f (t−) >
f (t+);

• ξ( f (t)) < 0: f (t) changes sign;

• ξ( f (t)) = 0: f (t+) = 0 and f (t−) , 0.

6.2.1 Markovian and non-Markovian depolarizing evolutions

In view of the one-to-one correspondence between D and F, we define the
Markovian and non-Markovian depolarizing subsetsDM ≡ D∩EM andDNM ≡

D∩ENM = D\DM by assigning the corresponding sets of the associated char-
acteristic functions FM and FNM.

We start by observing that, if the characteristic function of an element D of
D assumes a zero value at s (namely f (s) = 0), then Ds becomes the complete
depolarizing channel Tr [·] 1S

d , loosing memory of the input state of the system.
Accordingly the only possibility we have to fulfill the CP-divisibility given in
Definition 5 for Markovianity is that Dt correspond to Tr [·] 1S

d too, namely

f (s) = 0 =⇒ f (t) = 0 , ∀t ≥ s . (6.5)

On the contrary, if f (s) , 0, Markovianity can be enforced by observing that
the intermediate map Vt,s assumes the same form of Eq. (6.2), namely

Vt,s(·) =
f (t)
f (s)

IS (·) +

(
1 −

f (t)
f (s)

)
Tr [·]

1S

d
, (6.6)

which is CPTP if and only if

f (t)
f (s)
∈ JD , (6.7)

with JD the interval defined in Eq. (6.3). This includes also the case (6.5) by
noticing that only with f (t) = 0 we prevent f (t)/ f (s) from diverging when
f (s) = 0. As shown in Appendix D.1, Eq. (6.7) can be conveniently casted in
the following inequality that in some case is easier to handle, namely

C(t, s) ≡
∣∣∣2(d2 − 1) f (t) − (d2 − 2) f (s)

∣∣∣ − d2| f (s)| ≤ 0 . (6.8)

From Definition 5 we have hence that D ∈ DM if and only if its characteristic
function f (t) is such that (6.7) (or equivalently (6.8)) holds true for any t ≥ s ≥
0, namely

F
M ≡ { f (t) ∈ F |C(t, s) ≤ 0 , ∀t ≥ s ≥ 0} . (6.9)
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Considering the property (6.5) and that for f (t) ∈ F we must have f (0) = 1, it
is easy to verify that all continuous elements of FM are non-negative and non-
increasing (more on this in Section 6.2.3). Markovian characteristic functions
can however change their sign through discontinuities. Indeed according to
(6.7) a non continuous element f (t) of FM can jump either to a value f (t+) with
the same sign and | f (t+)| < | f (t−)|, namely ξ( f (t)) ∈ [0, 1), or to a value with
opposite sign and | f (t+)| ≤ | f (t−)|/(d2 − 1), namely ξ( f (t)) ∈ [−1/(d2 − 1), 0].
These facts can be formalized by saying that a generic f (t) ∈ F exhibits a
Markovian behavior at time τ ≥ 0 if one of the two conditions applies

CM1(τ) : ξ( f (τ)) = 1 and d
dτ | f (τ)| ≤ 0;

CM2(τ) : ξ( f (τ)) ∈ JD \ 1;
(6.10)

where CM1(τ) has to be replaced by ḟ (τ±) f (τ) ≤ 0 when ḟ (τ) is non-continuous,
namely ḟ (τ−) , ḟ (τ+). Notice that the conditions given in Eq. (6.10) do not
explicitly exclude the cases for which ḟ (t) , 0 and f (t) = 0. Nonetheless, the
properties of F would imply that ∃δ > 0 such that ḟ (t + δ) f (t + δ) > 0, which
would exclude f (t) from FM. It is worth stressing that imposing (6.10) for all
τ ≥ 0 is equivalent to enforce (6.7) (or (6.8)) for all couples 0 ≤ s ≤ t. Hence,
Eq. (6.9) can be casted in the form

F
M = { f (t) ∈ F |CM1(τ) or CM2(τ) = TRUE,∀τ ≥ 0} , (6.11)

which involves only local properties of f (t). By construction any f (t) ∈ F that
fails to fulfill both the constraints of Eq. (6.10) at least for one τ, or the inequal-
ity (6.8) for some couple s and t, defines an element of the non-Markovian
characteristic function set FNM ≡ F \ FM which describes the non-Markovian
depolarizing evolutions DNM. At variance with the elements of FM a char-
acteristic function f (t) which is non-Markovian can show any increasing or
decreasing continuous behavior and discontinuities with ξ( f (t)) ∈ [−∞,+∞].
In Fig. 6.1 we show the typical behavior of characteristic functions in FM and
FNM.

We notice that any element of FNM can still obey the constraints (6.10) on
some part of the real axis. In particular we say that f (t) ∈ FNM has a Marko-
vian behavior in (t1, t2) if the function satisfies at least one of the conditions of
Eq. (6.10) for any τ ∈ (t1, t2). Finally, we say that τ is a time when f (t) ∈ F
shows a Markovian discontinuity if ξ( f (τ)) ∈ JD \ 1. Instead, if ξ( f (τ)) < JD,
we say that τ is a time when f (t) shows a non-Markovian discontinuity.

6.2.2 Border and geometry of the depolarizing evolutions

It is possible to show that the following properties hold:
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Figure 6.1: Example of a non-continuous Markovian characteristic function
(above) f M(t) ∈ FM and a non-continuous non-Markovian characteristic func-
tion (below) f NM(t) ∈ FNM for d = 2. Given Eq. (6.3), any characteristic func-
tion has to assume values in JD = [−1/3, 1]. Discontinuities are underlined
by dotted dashed lines. f M(t), when continuous, satisfies CM1(τ), namely it
does not increase its distance from zero. When f M(t) is not continuous it sat-
isfies CM2(τ): for the times τ = 1, 2, 5 and 8, we have ξ( f M(1)) = 0.83,
ξ( f M(2)) = −0.33, ξ( f M(5)) = −0.27 and ξ( f M(8)) = 0. Since f M(8+) = 0,
f M(t) has to be equal to 0 for any t > 8. The times when f NM

C (t) has a non-
Markovian behavior are colored in purple. This characteristic function shows
both time intervals and times of discontinuity when, respectively, CM1(τ) and
CM2(τ) are violated. Indeed, for τ = 7 and 9 we have non-Markovian dis-
continuities ξ( f NM(7)) = 2.39 and ξ( f NM(t)) = −∞, while at τ = 8 we have
ξ( f NM(8)) = 0, namely a Markovian discontinuity. The temporal parameter t
in the plots is expressed in arbitrary units.
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• D is convex,

• DM is closed, non-convex, and border(DM) = DM,

• DNM is open, non-convex, and dense.

The non convexity of DM and DNM (and hence FM and FNM) can be easily
proven by presenting some explicit counter-examples (see Appendix D.2). In
order to prove the non-convexity ofDNM, we mix two depolarizing evolutions
that show non-Markovian features in non-overlapping time intervals (see Ap-
pendix D.2.1). The example that we study for the non-convexity ofDM under-
lines the important role played by discontinuities: we mix an evolution defined
by f M,1(t) = 1 for all t ≥ 0 and a second Markovian characteristic function
f M,2(t) with two Markovian discontinuities. We show that for all p ∈ (0, 1) the
resulting f (p)(t) shows a non-Markovian discontinuity (see Appendix D.2.2).

To show that DM coincides with its border we proceed as follows: given
a generic Markovian depolarizing evolution DM ∈ DM, consider a time s >
0 where the associated characteristic function f M(t) is continuous, namely
ξ( f M(s)) = 1 (of course such s can always be found since the set of discon-
tinuity points for a generic element of F is at most countable). Take then a non-
Markovian depolarizing evolution DNM ∈ DNM with characteristic function
f NM(t) which instead has ξ( f NM(s)) > 1 and sign( f NM(s−)) = sign( f M(s+))
(such an element can always be identified). It is then straightforward to verify
that the whole family of elements ofD defined as D(p) = (1 − p)DNM + pDM

for p ∈ [0, 1) is non-Markovian: indeed for all such values, at t = s the charac-
teristic function

f (p)(t) = (1 − p) f NM(t) + p f M(t) , (6.12)

of D(p) has a non-Markovian discontinuity (ξ( f (p)(s)) > 1). Notice also that
as p → 1, D(p) gets arbitrarily close to DM in any conceivable norm one can
introduce on E orD (indeed ‖D(p) − DM‖ = (1 − p)‖DNM − DM‖). The above
argument shows that any neighbor of a Markovian depolarizing trajectory con-
tains non-Markovian processes, namely that DM is a set of measure zero, or
equivalently, that almost-all depolarizing evolutions are non-Markovian. On
the contrary, for any non-Markovian depolarizing evolution DNM one can show
that there exists no Markovian DM such that the convex combination D(p) =

(1 − p)DNM + pDM is Markovian for any p ∈ (0, 1]. More precisely, it is pos-
sible to identify a probability value p∗(DNM) ∈ (0, 1] such that, independently
from the choice of DM, we have

D(p) ∈ DNM ∀p < p∗(DNM) . (6.13)
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Indeed, since DNM is explicitly non-Markovian, there must exist times t ≥ s ≥
0 such that its the characteristic function violate the constraint (6.8) which we
rewrite here as

ANM(t, s) ≡
∣∣∣2(d2 − 1) f NM(t) − (d2 − 2) f NM(s)

∣∣∣ > d2| f NM(s)| . (6.14)

On the contrary, if D(p) is Markovian, its characteristic function must fulfill
(6.8), namely∣∣∣2(d2 − 1) f (p)(t) − (d2 − 2) f (p)(s)

∣∣∣ ≤ d2| f (p)(s)| . (6.15)

Using (6.12) we notice however that the left-hand-side of the above expression
can be lower bounded as follows∣∣∣2(d2 − 1) f (p)(t) − (d2 − 2) f (p)(s)

∣∣∣
≥ (1 − p)ANM(t, s) − p

∣∣∣2(d2 − 1) f M(t) − (d2 − 2) f M(s)
∣∣∣

≥ (1 − p)ANM(t, s) − p(3d2 − 4) , (6.16)

where in the last inequality we exploit the fact that all characteristic functions
must have modulus smaller or equal to 1. Similarly the right-hand-side of (6.15)
can be upper bounded as∣∣∣ f (p)(s)

∣∣∣ ≤ (1 − p)
∣∣∣ f NM(s)

∣∣∣ + p
∣∣∣ f M(s)

∣∣∣ ≤ (1 − p)
∣∣∣ f NM(s)

∣∣∣ + p . (6.17)

Hence a necessary condition for (6.15) is to have

4p(d2 − 1) ≥ (1 − p)CNM(t, s) , (6.18)

where CNM(t, s) ≡ ANM(t, s) − d2| f NM(s)|. Due to the strict positivity of the
rightmost term of Eq. (6.18) (see (6.14)), it cannot be fulfilled for all p ∈ (0, 1].
Eq. (6.13) finally follows from (6.18), e.g. by setting

p∗(DNM) =
CNM(t, s)

CNM(t, s) + 4(d2 − 1)
. (6.19)

It is easy to show that this value of p∗(DNM) belongs to (0, 1] if and only if
CNM(t, s) violates Eq. (6.8).

6.2.3 Continuous depolarizing evolutions

Important subsets of DM and DNM are obtained by considering their intersec-
tions with the continuous subsetDC ofD, namely

D
M
C ≡ DC ∩D

M , D
NM
C ≡ DC ∩D

NM . (6.20)



152 Non-Markovianity measure via mixing with Markovian dynamics

By construction DM
C and DNM

C are composed by depolarizing process whose
associated characteristic functions f (t) belong respectively to the intersections
FM

C ≡ FC ∩ F
M and FNM

C ≡ FC ∩ F
MN . From Eq. (6.10) we deduce that

the elements of FM
C are monotonically non increasing, continuous functions

f M
C (t) ∈ [0, 1]. In particular, since any convex combination of two continuous

functions in FM
C belongs to FM

C , we have

• DC is convex,

• DM
C is closed and convex,

• DNM
C is open and non-convex.

Furthermore, if f M
C (t′) = 0 for some time t′, the time derivative of f M

C (t) cannot
be different from zero for any t > t′ without violating the first condition of
Eq. (6.10). Instead the elements of FNM

C are continuous functions f NM
C (t) that

can assume any value in JD such that f NM
C (0) = 1. In Fig. 6.2 we show the

typical behavior of continuous characteristic functions in FM
C and FNM

C .
In Appendix D.3 we introduce another convex subset of D given by the

positive depolarizing evolutions, namely defined by, in general non-continuous,
positive characteristic functions. The Markovian subset of these evolutions is
convex and, as we show, it contains the set of continuous Markovian evolutions.

6.3 A measure of non-Markovianity by noise addition

In this section we introduce our measure of non-Markovianity. Given Λ ∈ E
the quantum process we are interested in, consider the quantum trajectories
Λ(p) ∈ E defined by the convex sums

Λ(p) = (1 − p)Λ + pΛM, p ∈ [0, 1] , (6.21)

one gets by incoherently mixing the original evolution with an element ΛM of
the Markovian subset EM with time-independent weights 1 − p and p. It is
worth stressing that the dynamical evolution (6.21) can be physically imple-
mented, at least in principle, by a simple random event taking place at time
t = 0 which decides whether to transform the state of the system under the
action of Λ or under the action of ΛM. Implementations of this kind of dy-
namical evolutions has been theoretically proposed in Ref. [FPMZ17] within
the collisional model setting, and in Ref. [UWS+20] using a photonic platform
in which different optical paths that simulates the alternative evolutions of the
system are incoherently recombined at the output of the setup.
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Figure 6.2: Example of a continuous Markovian characteristic function (above)
f M
C (t) ∈ FM

C and a continuous non-Markovian characteristic function (below)
f NM
C (t) ∈ FNM

C for d = 2. Given Eq. (6.3), any characteristic function has to
assume values in JD = [−1/3, 1]. f M

C (t) is non-increasing and assumes values
in [0, 1]. f NM

C (t) assumes values in JD = [−1/3, 1] (horizontal lines) and vio-
lates the Markovian condition CM1(τ) in the time intervals colored in purple,
namely when it increases its distance from zero. Dahsed lines underline the
times when the respective time derivatives are non-continuous. The temporal
parameter t in the plots is expressed in arbitrary units.
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We introduce a measure of non-Markovianity p(Λ) by considering the small-
est p that enables us to makeΛ(p) Markovian, namely CP-divisible, for someΛM,
namely

p(Λ) ≡ min
p
{p | ∃ΛM ∈ EM s.t. Λ(p) ∈ EM} , (6.22)

and call optimal a Markovian evolution ΛM that allows us to attain such value.
In other contexts, e.g. resource theories [NBC+16, TRB+19], the measure of
non-Markovianity p(Λ) is after referred to as a robustness measure. The value
p(Λ) is always well defined since the set of p entering the optimization con-
tains at least the point 1. âĂćThe rational of this choice is that, the greater is
p, the stronger is the perturbation we add into the system by the mixing oper-
ation (6.21): indeed, for fixed ΛM, the distance between Λ(p) and the original
trajectory Λ is always proportional to p. For instance, at any given time t we
can write ‖Λ(p)

t − Λt‖ = p‖ΛM
t − Λt‖ where ‖ · ‖ stands for (say) the diamond

norm for super-operators [KSV02]. As a consequence, p(Λ) is the minimum
perturbation one needs to introduce via the mixing procedure (6.21) to enforce
Markovianity into the system evolution. The maximum value of this quantity
has a precise meaning: p(Λ) = 1 implies that Λ cannot be made Markovian by
any non-trivial mixture (6.21). On the contrary, since p(Λ) = 0 if and only if
Λ ∈ EM, it is clear that (6.22) is a faithful measure of non-Markovianity.

We can consider the case where in Eq. (6.21) Λ(p) is asked to belong to a
specific Markovian target subset TM of EM, while at same time ΛM belongs
to a particular set AM of TM (namely AM ⊆ TM ⊆ EM). This leads to the
functional

p(Λ|AM,TM) ≡ min
p
{p | ∃ΛM ∈ AM s.t. Λ(p) ∈ TM} , (6.23)

which by construction provides a bound for (6.22)

p(Λ|AM,TM) ≥ p(Λ|AM,EM) ≥ p(Λ) , (6.24)

A typical situation where p(Λ|AM,TM) can be considered is given when AM

represents the accessible Markovian evolutions that we are able to reproduce in
our laboratory and mix with Λ, while TM represents a particular subset of EM

for which Markovianity is easy to certify, or which possesses some additional
features that we demand. From this perspective Eq. (6.24), besides being an up-
per bound for Eq. (6.22) can also be seen as a different approach to quantify the
degree of non-Markovianity of the process Λ. A case of special interest is pro-
vided by the scenario where the subsets AM and TM entering (6.23) coincide
and correspond to the Markovian part of a convex subset of the system evolu-
tions B ⊂ E, namely AM = TM = BM ≡ B ∩ EM. Under these conditions
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from (6.21) it follows that we can write

p(Λ|BM) ≡ p(Λ|BM,BM) = p(Λ|BM,EM) , ∀Λ ∈ B , (6.25)

showing that for the elements ofB, at least the first of the inequalities in (6.24)
closes (of course this does not necessarily hold if B is not convex, as in this
case there could be maps Λ(p) in EM which are not necessarily in BM).

Furthermore, while we have no explicit evidence in support of this claim, if
B is a sufficiently "structured" set as in the case of the depolarizing evolutions
addressed in the following subsection, it is also tempting to conjecture that the
second gap in (6.24) should collapse too, implying that in this case p(Λ|B)
should coincide with p(Λ) for all Λ ∈ B, or equivalently that

(CONJECTURE) p(Λ) = p(Λ|BM) , ∀Λ ∈ B . (6.26)

In order to discuss this conjecture, we notice that the dynamical maps and the
intermediate maps (see respectively Eqs. (6.2) and (6.6)) that define depolar-
izing evolutions transform the state space with the same spherical symmetry.
Therefore, non-Markovian effects arising from these evolutions are character-
ized by the same property. As a result, it is reasonable to conjecture that, in
order to contrast the non-Markovian effects of a generic DNM in the most ef-
ficient manner, namely by finding a Markovian evolution ΛM that allows the
minimum value of p in Eq. (6.22), it is enough to consider only Markovian
depolarizing evolutionsDM. We expect that the same argument can be applied
to other convex sets of evolutions with analogous symmetries, e.g. dephasing
evolutions (see Section 6.8).

6.3.1 Measuring the non-Markovianity of depolarizing evolutions

To study the non-Markovian behavior of depolarizing evolutions D ∈ D we
shall focus on the case where the set B entering in Eq. (6.25) corresponds to
D itself, namely the quantity p(D|DM). While for elements of the Markovian
subset p(D|DM) is clearly equal to 0, in the case DNM ∈ DNM we can invoke
(6.13) to claim the following lower bound

p(DNM |DM)≥p∗(DNM) , (6.27)

which is non trivial due to the fact that p∗(DNM) is strictly larger than 0. Since
DC is a proper subset ofD, it is also clear that in general the following ordering
holds

p(D|DM
C ,D

M)≥p(D|DM) , ∀D ∈ D . (6.28)
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In particular if the channel we test is an element of the continuous subset ofD,
the inequality in Eq. (6.28) closes, leading to

p(DC |D
M
C ) = p(DC |D

M) , ∀DC ∈ DC . (6.29)

Notice that we used the fact that, due to the convexity of DC , one has that
p(DC |D

M
C ,D

M) corresponds to p(DC |D
M
C ) ≡ p(DC |D

M
C ,D

M
C ) when evaluated

on DC ∈ DC . The proof of Eq. (6.29) is rather cumbersome and we postpone it
to Section 6.5, focusing first on the explicit computation of p(DC |D

M
C ), which

we present in Section 6.4.

6.4 Non-Markovianity measure for continuous depolar-
izing evolutions

In this section we evaluate our measure of non-Markovianity

p(DC |D
M
C ) , (6.30)

for the cases where DC is an arbitrary element of the continuous subset DC

of the depolarizing evolutions, under the assumption that also the transforma-
tions DM of (6.31) are elements of DC . Before entering into the details of the
analysis it is worth clarifying that in computing p(DC |D

M
C ) the map Λ(p) of

Eq. (6.21) has the form

D(p)
C = (1 − p)DC + pDM

C , (6.31)

where DM
C ∈ D

M
C and DC ∈ DC . Thus, sinceDC is convex, for any p, DC and

DM
C , we have that D(p)

C ∈ DC with characteristic function f (p)
C (t) ∈ FC given by

the convex sum of the characteristic functions fC(t) and f M
C (t) associated with

DC and DM
C respectively, namely

f (p)
C (t) = (1 − p) fC(t) + p f M

C (t) . (6.32)

In order to evaluate p(DC |D
M) our goal is hence to obtain the optimal choice

of f M
C (t) ∈ FM

C that allows the minimum value of p such that f (p)
C (t) ∈ FM

C .
As notice before, if DC is an element ofDM

C then we can simply take p = 0,
namely p(DM

C |D
M
C ) = 0. For the depolarizing evolutions which instead have a

continuous characteristic function f NM
C (t) that possesses some degree of non-

Markovianity, the computation of (6.30) requires instead some non trivial work.
In this case Eq. (6.32) becomes

f (p)
C (t) = (1 − p) f NM

C (t) + p f M
C (t) . (6.33)
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While the continuity of f (p)
C (t) is automatically ensured by construction, finding

the minimum p that forces this function into FM
C (namely that allows it to be

also positive and non-increasing) is not a simple task. In order to tackle this
problem we start by illustrating the relatively simple case of non-Markovian
depolarizing evolutions with positive f NM

C (t) ∈ FNM
C (see Section 6.4.1). Next

we discuss the slightly more complex scenario of f NM
C (t) ∈ FNM

C having a non
definite sign, but which exhibit their non-Markovian character exclusively on
the time intervals where they are negative (Section 6.4.2). Finally we conclude
by addressing the general case of a non-Markovian continuous characteristic
functions f NM

C (t) ∈ FNM
C in Section 6.4.3.

6.4.1 Positive non-Markovian continuous characteristic functions

In this section we study depolarizing processes DNM
C characterized by f NM

C (t) ∈
FNM

C which are positive and which have a number L > 0 of intervals T +
k ≡

(t(in)
k , t( f in)

k ) of non-Markovianity where ḟ NM(t±) > 0, namely
f NM
C (t) ≥ 0, ḟ NM

C (t±) ≤ 0, ξ( f NM
C (t)) = 1 t < T NM ,

f NM
C (t) ≥ 0, ḟ NM

C (t±) > 0, ξ( f NM
C (t)) = 1 t ∈ T NM ,

(6.34)

with T NM ≡
⋃L

k=1 T +
k being the collection of the intervals T +

k . As we shall see,
in this case the quantity (6.30) is a monotonically increasing function of the
gaps

∆NM
k ≡ f NM

C (t( f in)
k ) − f NM

C (t(in)
k ) > 0 , (6.35)

which certify the non-Markovian character of f NM
C (t) on the intervals T +

k . Specif-
ically, given

∆NM ≡

L∑
k=1

∆NM
k , (6.36)

we have

p(DNM
C |DM

C ) =
∆NM

1 + ∆NM , (6.37)

which saturates to its upper bound 1 in the case where ∆NM diverges, e.g. when
f NM
C (t) exhibit infinite, not properly dumped, oscillations. In order to derive

(6.37) we first address the simple case of a single non-Markovian interval (L =

1), and then generalize it to the case of arbitrary (possibly infinite) L, where
this last case is studied in Appendix D.4.
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One time interval of non-Markovianity for positive characteristic functions

Let DNM
C be an element of DNM

C with characteristic function f NM
C (t) ∈ FNM

C
that is always positive and which has positive derivative (hence non-Markovian
character) in a single time interval T +

1 = (t(in)
1 , t( f in)

1 ) (t( f in)
1 being possibly infi-

nite), i.e, 
f NM
C (t) ≥ 0, ḟ NM

C (t±) ≤ 0, ξ( f NM
C (t)) = 1 t < T +

1 ,

f NM
C (t) ≥ 0, ḟ NM

C (t±) > 0, ξ( f NM
C (t)) = 1 t ∈ T +

1 .

(6.38)

Our goal is to determine the minimum value of p which allows f (p)
C (t) of (6.33)

to be an element of FM
C , namely to obey to the first of the constraints (6.10) –

the function being already continuous by construction. Since both f NM
C (t) and

f M
C (t) are non-negative, this is equivalent to impose

ḟ (p)
C (t±) = (1 − p) ḟ NM

C (t±) + p ḟ M
C (t±) ≤ 0 , (6.39)

which is automatically verified for t < T +
1 . A necessary condition for (6.39)

can then be obtained by imposing that f (p)
C (t) experiences a negative gap at the

extreme points of T +
1 , namely

∆
(p)
1 ≡ f (p)

C (t( f in)
1 ) − f (p)

C (t(in)
1 ) ≤ 0 . (6.40)

From (6.33) we can cast this into the condition

∆
(p)
1 = (1 − p)∆NM

1 + p∆M
1 ≤ 0 , (6.41)

where ∆NM
1 is the positive gap defined as in Eq. (6.35) and

∆M
1 ≡ f M

C (t( f in)
1 ) − f M

C (t(in)
1 ) , (6.42)

is the associated gap of f M
C (t). Notice that from the properties of f M

C (t) it fol-
lows that the latter quantity is non-negative and larger than −1 (which is the
minimum allowed gap for an element of FM

C ), namely

∆M
1 ∈ [−1, 0] =⇒ |∆M

1 | ≤ 1 . (6.43)

From Eq. (6.41) it follows that a necessary condition for p is

p ≥
∆NM

1

|∆M
1 | + ∆NM

1

≥
∆NM

1

1 + ∆NM
1

≡ p1 , (6.44)
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where the last inequality follows from (6.43).
To show that (6.44) is also a sufficient condition for (6.39), we provide a

particular example of f M
C (t) such that ḟ (p)

C (t) ≤ 0 for p ≥ p1. For this purpose
consider gM

C (t) ∈ FM
C such that

gM
C (t) =


1 t ≤ t(in)

1 ,

1 −
(

f NM(t) − f NM(t(in)
1 )

)
/∆NM

1 t ∈ T +
1 ,

0 t ≥ t( f in)
1 .

(6.45)

This function, for t ∈ T +
1 , is a linear manipulation of f NM

C (t), where its slope
is stretched and inverted. Moreover, in this case ∆M

1 = −1 and ∆
(p)
1 ≤ 0 for

p ≥ p1. Finally, if we consider gM
C (t) in f (p)(t), for p = p1, we obtain

f (p1)(t) =
f NM(t( f in)

1 )

1 + ∆NM
1

, for t ∈ T +
1 , (6.46)

which is a constant. Hence, in this case ḟ (p1)(t) ≤ 0 for any t ≥ 0. Putting all
together we can hence claim that

p(DNM
C |DM

C ) = p1 =
∆NM

1

1 + ∆NM
1

, (6.47)

which proves the validity of (6.37) at least for the functions we are considering
here, namely when L = 1. In Appendix D.4 we show how to extend these
results to any L > 1.

6.4.2 Characteristic functions that exhibit non-Markovianity only
when negative

Here we consider elements ofDNM
C with f NM

C (t) such that their non-Markovian
nature is shown only in a number m > 0 of time intervals T−j ≡ (t(in)

j , t( f in)
j )

where it assumes negative values while being strictly decreasing, namely vio-
lating CM1(τ) while being negative, as notified by the following negative gaps

ΘNM
j ≡ f NM

C (t( f in)
j ) − f NM

C (t(in)
j ) < 0 . (6.48)

It is worth observing that under the above assumption f NM
C (t) cannot be positive

after that it becomes negative for the first time. Otherwise, for some time we
would have f NM

C (t) ≥ 0 and ḟ NM
C (t+) > 0, which contradicts our premise.

Therefore, we have that

f NM
C (t) ≤ 0 , ∀t ≥ t(in)

1 . (6.49)
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We shall see that in this scenario the measure of non-Markovianity (6.30) re-
duces to

p(DNM
C |DM

C ) =
|ΘNM |

1 + |ΘNM |
, (6.50)

with

ΘNM ≡

m∑
j=1

ΘNM
j . (6.51)

As in the previous section, to derive the above identity first we obtain a nec-
essary condition for f (p)(t) to belong to FM

C and then we provide an explicit
example that saturates this value. In this case however we find it useful to
treat separately the case of finite m from those where m is unbounded which
introduce some technicalities which have to be dealt carefully. The study for
unbounded values of m is given in Appendix D.5.

The m finite case

If m is finite the function f NM
C (t) cannot exhibit infinite oscillations. Therefore,

lim
t→∞

f NM
C (t) = f NM

C (∞) ≤ 0 . (6.52)

Define now T j = (t(in)
j , t( f in)

j ) to be the time intervals when f NM
C (t) ≤ 0 and

ḟ NM
C (t±) ≥ 0, namely the times when the Markovian condition CM1(τ) is sat-

isfied while f NM
C (t) is negative. We notice that, since f NM

C (t) is continuous, for
any T−j there exists a T j such that t( f in)

j = t(in)
j , the only case when it does not

happen is for t( f in)
j = ∞: accordingly the total number m of the intervals T j is

either equal to m or to m − 1 and is hence also finite by assumption.
We consider now the associated gaps of the functions f NM

C (t), f M
C (t), and

f (p)
C (t), namely the quantities

δNM
j ≡ f NM

C (t( f in)
j ) − f NM

C (t(in)
j ) , (6.53)

δM
j ≡ f M

C (t( f in)
j ) − f M

C (t(in)
j ) , (6.54)

δ
(p)
j ≡ f (p)

C (t( f in)
j ) − f (p)

C (t(in)
j ) = (1 − p)δNM

j + pδM
j . (6.55)

By definition we have that the δNM
j must be non-negative, while the δM

j must
be non-positive, namely

δNM
j ≥ 0 , δM

j ≤ 0 , ∀ j. (6.56)
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If f (p)
C (t) is Markovian it has to be positive and non-increasing. Therefore, we

should also have

δ
(p)
j ≤ 0 , ∀ j. (6.57)

Therefore a necessary condition for the Markovianity of f (p)
C (t) is given by the

following inequality

δ(p) ≡

m∑
j=1

δ
(p)
j = (1 − p)δNM − p|δM | ≤ 0 , (6.58)

where δM ≡
∑m

j=1 δ
M
j ≤ 0 and δNM ≡

∑m
j=1 δ

NM
j ≥ 0.

Observe that since f M
C (t) and f (p)

C (t) are both elements of FM
C their limiting

values for t → ∞ exist and fulfill the following constraints

f M
C (t) ≥ f M

C (∞) ≥ 0 , f (p)
C (t) ≥ f (p)

C (∞) ≥ 0 , (6.59)

for all t ≥ 0. Notice finally that since f M
C (t) is non increasing and upper

bounded by 1, its limiting value must fulfill the constraint

1 ≥ f M
C (∞) + |δM | . (6.60)

Accordingly from (6.52) we can write

f (p)
C (∞) = (1 − p) f NM

C (∞) + p f M
C (∞) ≥ 0 , (6.61)

or equivalently

−(1 − p)(δNM + ΘNM) − p f M
C (∞) ≤ 0 , (6.62)

where we used

f NM
C (∞) = δNM + ΘNM , (6.63)

with ΘNM as in Eq. (6.51). Summing up (6.62) with (6.58) term by term, the
following necessary constraint for p can finally be obtained

−(1 − p)ΘNM − p( f M
C (∞) + |δM |) ≤ 0 , (6.64)

which implies

p ≥
|ΘNM |

f M
C (∞) + |δM | + |ΘNM |

≥
|ΘNM |

1 + |ΘNM |
≡ pm , (6.65)
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where in the last passage we used the inequality (6.60). Accordingly we can
conclude that the quantity pm is lower bound for the value p(DNM

C |DM
C ) associ-

ated with the evolutions DNM
C we are considering here.

In order to show that pm does indeed correspond to p(DNM
C |DM

C ) we now
present a example of f M

C (t) which makes f (p)
C (t) an element of FM

C for p = pm.
To do so we define gM

C (t) ∈ FM
C to be equal to

1 t ≤ t( f in)
1

1 −
(

f NM(t) − f NM(t(in)
1 )

)
/|ΘNM | t ∈ T 1

1 − δNM
1 /|ΘNM | t ∈ T−2

(1 − δNM/|ΘNM |) −
(

f NM(t) − f NM(t(in)
2 )

)
/|ΘNM | t ∈ T 2

. . .

gM
C (t( f in)

j−1 ) −
(

f NM(t) − f NM(t(in)
j )

)
/|ΘNM | t ∈ T j

1 −
∑ j

i=1 δ
NM
i /|ΘNM | t ∈ T−j+1
. . .

1 − δNM/|ΘNM | t → ∞

. (6.66)

The temporal derivative of gM
C (t) assumes the simple form

ġ
M
C (t±) =

{
− ḟ NM

C (t±)/|ΘNM | t ∈ T j

0 otherwise
. (6.67)

It is easy to show that f (p)
C (t) = (1 − p) f NM

C (t) + pgM
C (t) Markovian for p ≥ pm.

Therefore, for any f NM
C (t) that shows a non-Markovian behavior while being

negative, we have that

p(DNM
C |DM

C ) = pm =
|ΘNM |

1 + |ΘNM |
, (6.68)

which proves (6.50). We study the cases where we have unbounded values of
m in Appendix D.5.

6.4.3 Multiple time intervals of non-Markovianity for continuous
characteristic functions: the general case

Building up from the previous sections here we compute p(DNM
C |DM

C ) for the
general case of a non-Markovian depolarizing processes with continuous char-
acteristic function f NM

C (t). At variance with the examples discussed before,
now f NM

C (t) may possess both a collection of time intervals T +
k ≡ (t(in)

k , t( f in)
k )

where it is positive and increasing, and also time intervals T−j ≡ (t(in)
j , t( f in)

j )



6.4 Non-Markovianity measure for continuous depolarizing evolutions163

where instead it is negative and decreasing (namely it may exhibit all the non-
Markovian features detailed separately in Section 6.4.1 and Section 6.4.2).

In this case we can show that Eqs. (6.37) and (6.50) get replaced by the
more general formula

p(DNM
C |DM

C ) =
ΓNM

1 + ΓNM , (6.69)

with ΓNM being given by the expression

ΓNM ≡ ∆NM + |ΘNM | , (6.70)

where ∆NM and ΘNM, defined as in Eqs. (6.36) and (6.51), are the sums of the
non-Markovian increments the function f NM

C (t) experiences on the intervals T +
k

and T−j , respectively.
Since f NM

C (t) may not admit a limiting value for t → ∞, to prove (6.69)
we shall proceed as in Appendix D.5, determining first the conditions under
which the associated f (p)

C (t) is guaranteed to be Markovian at least in the time
interval [0,T ] with T finite. Under this condition the numbers L(T ) and m(T ) of
intervals T +

k and T−j of f NM
C (t) that fit on the considered domain, are both finite.

We introduce also the time intervals T j ≡ (t(in)
j , t( f in)

j ) of [0,T ] where f NM
C (t)

is negative and non decreasing (their number m(T ) being finite too), and define
the gaps ∆NM

k (T ), ∆M
k (T ), ∆

(p)
k (T ), ΘNM

j (T ), δNM
j (T ), δM

j (T ) and δ(p)
j (T ) as in

Eqs. (6.35), (D.21), (D.22), (6.48), (6.53), (6.54), and (6.55). By construction
we have the following conditions

∆NM
k (T ) > 0 , ΘNM

j (T ) < 0 , δNM
j (T ) ≥ 0 ,

∆M
k (T ) ≤ 0 , δM

j (T ) ≤ 0 ,

∆
(p)
k (T ) = (1 − p)∆NM

k (T ) + p∆M
k (T ) , (6.71)

δ
(p)
j (T ) = (1 − p)δNM

j (T ) + pδM
j (T ) , (6.72)

for all k and j. A necessary condition for f (p)(t) being Markovian on the con-
sidered domain is that all its gaps ∆

(p)
k (T ) and δ(p)

j (T ) are non-positive, namely

(1 − p)∆NM
k (T ) + p∆M

k (T ) ≤ 0 , (6.73)

(1 − p)δNM
j (T ) + pδM

j (T ) ≤ 0 . (6.74)

By summing up term by term, all contributions from (6.73) and (6.74) we get

(1 − p)(∆NM(T ) + δNM(T )) − p(|∆M(T )| + |δM(T )|) ≤ 0 , (6.75)
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where

∆NM(T ) ≡
L(T )∑
k=1

∆NM
k (T ) > 0 , ∆M(T ) ≡

L(T )∑
k=1

∆M
k (T ) ≤ 0 ,

δNM(T ) ≡
m(T )∑
k=1

∆NM
k (T ) > 0 , δM(T ) ≡

m(T )∑
k=1

∆M
k (T ) ≤ 0 .

Suppose now that f NM
C (T ) is a non-negative quantity, namely f NM

C (T ) ≥ 0.
Under this condition it is easy to verify that the sum of gaps this function expe-
riences on the interval where it is negative must nullify, namely

δNM(T ) = |ΘNM(T )| , (6.76)

with

ΘNM(T ) ≡
m(T )∑
j=1

ΘNM
j (T ) < 0 . (6.77)

Replacing this into (6.75) we hence get the condition

p ≥
∆NM(T ) + |ΘNM(T )|

|∆M(T )| + |δM(T )| + ∆NM(T ) + |ΘNM(T )|

≥
∆NM(T ) + |ΘNM(T )|

1 + ∆NM(T ) + |ΘNM(T )|
, (6.78)

where in the second line we used the fact that the sum over the gaps of a con-
tinuous Markovian function cannot cannot be larger than 1, namely |∆M(T )| +
|δM(T )| ≤ 1.

If f NM
C (T ) is negative, namely f NM

C (T ) < 0, we can still show that (6.78)
holds, but we need to change the derivation. In this case we observe that
Eq. (6.76) is substituted by the constraint

f NM
C (T ) = δNM(T ) + ΘNM(T ) , (6.79)

which allows us to rewrite positivity of f (p)
M (t) for t = T (a necessary condition

for f (p)(t) to be Markovian on [0,T ]) as

(1 − p)(δNM(T ) + ΘNM(T )) + p f M
C (T ) ≥ 0 . (6.80)

Together with (6.75) the above expression finally leads to

(1 − p)(∆NM(T ) − ΘNM(T )) ≤ p(|∆M(T )| + |δM(T )| + f M
C (T )) ≤ p , (6.81)
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Figure 6.3: Plots of f NM
C (t) = e−2t/5 cos(t) (yellow), the corresponding optimal

Markovian characteristic function hM
C (t) (blue) and f (p)(t) for different values

of p (dashed lines) in the time interval t ∈ [0, 7π/2]. The inset shows their
behavior for t ≥ 5.90. In this example T−1 ' (π/2, 2.76), T +

1 ' (3π/2, 5.90)
and T−2 ' (5π/2, 9.04) are the time intervals of non-Markovianity of f NM(t)
and ΘNM

1 ' −0.31, ∆NM
1 ' 0.09 and ΘNM

2 ' −0.02 are the correspond-
ing non-Markovian gaps. The value of the measure of non-Markovianity is
p(DNM

C |DM) ' 0.30. If p = 0.5 > p(DNM
C |DM

C ), f (p)(t) ∈ FM
C is monotonically

decreasing (green dashed line). If p = p(DNM
C |DM

C ) ' 0.30, f (p)(t) ∈ FM
C is

monotonically decreasing and constant when ḟ NM(t) > 0 (red dashed line). If
p = 0.15 < p(DNM

C |DM
C ), f (p)(t) ∈ FNM

C is not monotonic nor positive in more
than one time interval (purple dashed line).
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where in the last passage we used the fact that continuous Markovian charac-
teristic function cannot have drops larger than 1, namely |∆M(T )| + |δM(T )| +
f M
C (T ) ≤ 1. Eq. (6.81) coincides with (6.78) which hence holds true inde-

pendently from the sign of f NM
C (T ). Taking the limit T → ∞ we can finally

conclude that a necessary condition for f (p)
C (t) to be Markovian is

p ≥
ΓNM

1 + ΓNM , (6.82)

with ΓNM as in (6.70) with ∆NM and ΘNM formally given by

∆NM = lim
T→∞

∆NM(T ) , ΘNM = lim
T→∞

ΘNM(T ) . (6.83)

To show that the inequality (6.82) is also a sufficient condition for the Marko-
vianity of f (p)

C (t) we now provide an explicit example that saturates it – in Ap-
pendix D.6 we also prove that the solution we present here is unique.

It is intuitive to understand that the function hM
C (t) ∈ FM

C that we are looking
for must be a combination of gM

C (t) (see Eq. (D.26)) and gM
C (t) (see Eq. (6.66)).

In order to simplify its complicated formulation, we express hM
C (t) only through

its temporal derivative

ḣM
C (t±) =


− ḟ NM

C (t±)/ΓNM t ∈ T +
k

− ḟ NM
C (t±)/ΓNM t ∈ T j

0 otherwise
, (6.84)

which can be rewritten in a particularly simple form

ḣM
C (t±) =

{
− ḟ NM

C (t±)/ΓNM if ḟ NM
C (t) > 0

0 otherwise
, (6.85)

(see Figure 6.3 for an example). After a long but straightforward calculation,
it is possible to show that f (p)(t) = (1 − p) f NM

C (t) + phM
C (t) belongs to the

Markovian set for all p fulfilling (6.82). Therefore, this proves that

p(DNM
C |DM) =

ΓNM

1 + ΓNM , (6.86)

and therefore (6.69).

6.5 Continuity of the optimal characteristic functions
for continuous non-Markovian evolutions

In this section we prove the identities (6.29) showing that in the case of con-
tinuous characteristic functions fC(t), non-continuous Markovian characteristic
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functions f M(t) < FM
C cannot make their convex combination f (p)(t) Marko-

vian for values of p smaller than p(DC |D
M
C ). This is trivial if fC(t) is already

Markovian as in this case p(DC |D
M
C ) saturates to the minimum allowed value

0. For characteristic functions which are explicitly non-Markovian in Sec-
tion 6.4.1 we analyze the simple scenario of positive functions which exhibit
non-Markovianity only in a single interval. Then in Section 6.5.2 we discuss
the case of functions that have non-Markovian behavior when negative, and
conclude in Section 6.5.3 with the general case.

6.5.1 Single non-Markovian time interval with f NM
C (t) ≥ 0

We start by studying the cases discussed in Section 6.4.1, where f NM
C (t) has a

single time interval (t1, t2) of non-Markovianity when f NM
C (t) ≥ 0 and ḟ NM

C (t) >
0. In this case the optimal continuous Markovian function gM

C (t) which makes
the corresponding f (p)(t) Markovian for the smallest p is given in Eq. (6.45)
and leads to

p ≥ p(DNM
C |DM

C ) =
∆NM

1 + ∆NM , (6.87)

where ∆NM = f NM
C (t2) − f NM

C (t1) > 0. To show that Eq. (6.87) cannot be
improved by allowing f M(t) being non continuous, we start noticing that in this
scenario also f (p)(t) will be non-continuous. We distinguish then six possible
cases:

(i) f M(t1) > 0 and f M(t2) ≥ 0 with a discontinuity at T ∈ (t1, t2);

(ii) f M(t1) ≥ 0 and f M(t2) < 0 with a discontinuity at T ∈ (t1, t2);

(iii) f M(t1) < 0 and f M(t2) ≤ 0 with f M(t) continuous in (t1, t2);

(iv) f M(t1) < 0 and f M(t2) ≤ 0 with a discontinuity at T ∈ (t1, t2);

(v) f M(t1) < 0 and f M(t2) > 0 with a discontinuity at T ∈ (t1, t2);

(vi) f M(t1) > 0 and f M(t2) ≥ 0 with f M(t) showing discontinuities before t1.

Notice that in the cases (iii) and (v) where f M(t1) < 0 implicitly imply a dis-
continuity ξ( f M(T0)) ∈ [−1/(d2 − 1), 0) at some T0 < t1.

In case (i) we have that at time T ∈ (t1, t2) a discontinuity is shown such that
f M(T +) − f M(T−) = −ε < 0, where ε ∈ (0, 1). Notice that ε = 1 implies that
f M(T−) = 1 and f M(T +) = 0, and therefore this choice does not make sense if
our purpose is to make f (p)(t) Markovian. Fixed this ε-jump for f M(t), we build
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the optimal behavior that makes f (p)(t) Markovian for the smallest p possible.
Using the same technique used to obtain Eq. (6.85), we see that this function
is characterized by f M(t1) = 1 and ḟ M(t) = − ḟ NM(t)(1 − p)/p for t ∈ (t1, t2)
and the smallest value of p for which f M(t) is Markovian in (t1, t2). Indeed,
with this structure f (p)(t) is non-increasing for any p ≥ p and ḟ (p)(t) = 0 for
t ∈ (t1, t2). By studying the condition of Markovianity f M(t2) ≥ 0, we obtain

p ≥
∆NM/(1 − ε)

1 + ∆NM/(1 − ε)
> p(DM

C |DC) ,

where the last inequality holds for any ε ∈ (0, 1), namely for any discontinuity
of this type.

Cases (ii), (iii) and (iv) can be proven to be inefficient to make f (p)(t)
Markovian thanks to the following argument. Since ḟ NM(t) > 0 for t ∈ (t1, t2),
in order to make f (p)(t) Markovian, we have to require that f (p)(t2) ≤ 0, namely
it has to assume the same sign of f M(t2). It implies that

p ≥
f M(t2)/| f M(t2)|

1 + f M(t2)/| f M(t2)|
≥

∆NM/| f M(t2)|
1 + ∆NM/| f M(t2)|

≥
(d2 − 1)∆NM

1 + (d2 − 1)∆NM > p(DC |D
M
C ) , (6.88)

where we used f NM(t2) ≥ ∆NM and | f M(t2)| ≤ 1/(d2 − 1).
For case (v) we start by noticing that the discontinuity at time T may lead

to a non-Markovian discontinuity for f (p)(t). Therefore, we parameterize the
discontinuity of f M(t) in the following way: f M(T +) = | f M(T−)| λ/(d2 − 1),
where λ ∈ [0, 1]. Moreover, in order for f M(t) to make f (p)(t) Markovian,
f (p)(T−) < 0. Hence, f (p)(t) shows a Markovian discontinuity at time t = T if
and only if ξ( f (p)(T )) ≥ −1/(d2 − 1). This condition can be written as

λ ≤ 1 −
(1 − p)d2

p

f NM
C (T )

| f M(T−)|
. (6.89)

If we consider this bound for p = p(DNM
C |DM

C ), we have that the difference
hM

C (T ) − f M(T +) becomes

hM
C (T ) − f M(T +) ≥

1
∆NM

 f NM
C (T )

d2 − 1
+ f NM

C (t1)
 > 0 , (6.90)

where hM
C (T ) = 1− ( f NM(T )− f NM(t1))/∆NM (see Eq. (6.45)) and we used that

in the optimal case f M(T−) = −1/(d2 − 1). By considering the Markovianity
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of f (p)(t) in the time interval (T, t2), the optimal strategy imposes that ḟ M(t) =

− ḟ NM
C (t)(1 − p)/p for t ∈ (T, t2) and some p < 1. In analogy to what we found

in case (i), Eq. (6.90) implies that f M(t) cannot make f (p)(t) Markovian for
p = p(DNM

C |DM
C ).

The last case we need to check is (vi), where f M(t) is continuous (hence
non increasing) in (t1, t2) but exhibits some discontinuities before t1. Since by
construction f (p)(t) is continuous in (t1, t2), it can be Markovian only if it is non
increasing in this interval, which in particular implies

0 ≥ f (p)(t−2 ) − f (p)(t+1 )

= (1 − p)( f NM(t2) − f NM(t1)) − p( f M(t+1 ) − f M(t−2 ))

= (1 − p)∆NM − p( f M(t+1 ) − f M(t−2 )) , (6.91)

that leads to

p ≥
∆NM

f M(t+1 ) − f M(t−2 ) + ∆NM>p(DNM
C |DM

C ) , (6.92)

where in the last passage we used the fact that f M(t) is positive, continuous in
(t1, t2) and, since it shows discontinuities before t1, f M(t+1 ) < 1 and therefore
f M(t+1 ) − f M(t−2 ) ∈ [0, 1).

6.5.2 Single non-Markovian time interval with f NM(t) < 0

Let us consider a non-Markovian f NM
C (t) such that it has a single time inter-

val of non-Markovianity (t1, t2) when f NM
C (t) < 0 and ḟ NM

C (t) < 0. An im-
portant difference from discontinuous non-Markovian characteristic functions
is that f NM

C (t) can become negative if and only if it shows a time interval of
non-Markovianity of this type. Indeed, f NM

C (t1) = 0. Notice that in the non-
continuous case a characteristic function can change its sign without being non-
Markovian.

The optimal continuous Markovian characteristic function hM
C (t) is constant

and equal to 1 for any t ∈ [0, t2] and it decreases depending on the behavior of
f NM
C (t) (see Eq. (6.66) or (6.85)) for t ≥ t2. It can make the corresponding

f (p)(t) Markovian for p ≥ p(DNM
C |DM

C ) = |ΘNM |/(1 + |ΘNM |), where ΘNM =

f NM
C (t2) − f NM

C (t2) < 0.
Now we consider non-continuous Markovian characteristic functions f M(t)

and we study which scenarios could potentially make f (p)(t) Markovian for
some p < p(DNM

C |DM
C ). We have to study the following scenarios:

(i) f M(t2) ∈ (0, 1);
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(ii) f M(t) jumps at time T ≤ t1 to some negative value and f M(t2) < 0;

(iii) f M(t) jumps at time T ∈ (t1, t2) to negative values and f M(t2) < 0.

In case (i) we include all those situations where f M(t) shows discontinuities
with or without changes of sign for one or more times prior to t2 and such that
f M(t2) > 0. A necessary condition for f M(t) to make f (p)(t) Markovian is
f (p)(t2) ≥ 0. The non-negativity of f (p)(t2) holds if and only if

p ≥
|ΘNM |/ f M(t2)

1 + |ΘNM |/ f M(t2)
.

Since f M(t2) = 1 if and only if f M(t) = 1 for any t ∈ [0, t2] we have that all
the f M(t) with discontinuities of this type cannot perform better than hM

C (t) in
making f (p)(t) Markovian.

Considering case (ii), we start by noticing that, if f M(t1) < 0 and f M(t) is
continuous for any t ∈ (t1, t2), the optimal f M(t) of this type can make f (p)(t)
Markovian for

p ≥
|ΘNM |/ f M(t1)

1 + |ΘNM |/ f M(t1)
≥

(d2 − 1)|ΘNM |

1 + (d2 − 1)|ΘNM |
> p(DNM

C |DM
C ) ,

where p(DNM
C |DM

C ) = |ΘNM |/(1+|ΘNM |). In the case of a discontinuity of f M(t)
(without change of sign) during the time interval (t1, t2), in analogy with case (i)
of the previous section, we conclude that f M(t) cannot make f (p)(t) Markovian
for p < p(DNM

C |DM
C ) also in this scenario.

In case (iii) f M(T−) > 0 and f M(T +) < 0 for some T ∈ (t1, t2). We have
to make f (p)(t) Markovian in (t1, t2) and in order to obtain this result we need
that f (p)(t) and f M(t) have the same sign. As a consequence, f (p)(t) shows a
discontinuity at time T such that ξ( f (p)(T )) < 0. If we study the condition of
Markovianity ξ( f (p)(T )) ≥ −1/(d2 − 1), we obtain

ξ( f (p)(T )) =
(1 − p) f NM(T ) + p f M(T +)
(1 − p) f NM(T ) + p f M(T−)

=
−(1 − p)| f NM(T )| − pλ f M(T−)/(d2 − 1)

−(1 − p)| f NM(T )| + p f M(T−)
≥
−1

d2 − 1
, (6.93)

where we used f NM(T ) = −| f NM(T )| and | f M(T +)| = f M(T−)λ/(d2 −1), where
λ ∈ (0, 1). We can use Eq. (6.93) to find a p-dependent bound for the values
of λ that make ξ( f (p)(T )) ≥ −1/(d2 − 1). By doing so we obtain λ ≤ 1 − (1 −
p)d2| f NM(T )|/(p f M(T−)). Now we check if the f M(t) of this case can make
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f (p)(t) Markovian for p = p(DNM
C |DM

C ) = |ΘNM |/(1 + |ΘNM |). The optimal
scenario is obtained when f M(T−) = 1 and therefore we get

f M(T +) =
−λ

d2 − 1
≥
−1

d2 − 1
+

d2| f NM(T )|
(d2 − 1)|ΘNM |

,

where we used (1 − p(DNM
C |DM

C ))/p(DNM
C |DM

C ) = 1/|ΘNM |. The optimal be-
havior of f M(t) that makes the derivative ḟ (p)(t) ≥ 0 for the smallest increase of
f M(t) in (T, t2) is achieved by considering ḟ M(t) = − ḟ NM(t)(1 − p)/p, for the
smallest p that allows a Markovian f M(t). Therefore, for p = p(DNM

C |DM
C ) =

|ΘNM |/(1 + |ΘNM |), we get ḟ M(t) = − ḟ NM(t)/|ΘNM |. This implies that at time
t2 we have

f M(t2) ≥
(

d2| f NM(T )|
(d2 − 1)|ΘNM |

−
1

d2 − 1

)
+
| f NM(t2)| − | f NM(T )|

|ΘNM |

= | f NM(T )|
(

d2

(d2 − 1)|ΘNM |
−

1
|ΘNM |

)
+ 1 −

1
d2 − 1

> 0 , (6.94)

where we used f NM(t2) = ΘNM < 0. In summary, we proved that a f M(t)
that jumps at T ∈ (t1, t2) to some negative value such that f (p)(t) does not
show a non-Markovian jump at time t = T , cannot make f (p)(t) Markovian
in the time interval (T, t2) for p = p(DNM

C |DM
C ). Indeed, the Markovianity

of f p(DNM
C |DM

C )(t) in this time interval implies that f M(t2) > 0, namely f M(t)
should change sign while being continuous (this behavior is not allowed for
Markovian characteristic functions). We underline that Markovian functions
of case (iii) can make f (p)(t) Markovian but only for values of p larger than
p(DNM

C |DM
C ), namely by imposing ḟ M(t) = − ḟ NM(t)(1 − p)/p in (T, t2) with

some p > p(DNM
C |DM

C ) that allows f M(t2) ≤ 0.
From the results obtained in this section it is clear that, if we add to cases (i),

(ii) and (iii) any additional discontinuity in (t1, t2), we cannot reduce the value
of p for which f (p)(t) can be made Markovian with a discontinuous f M(t) ∈ FM.

6.5.3 General case

In order to prove (6.29) for any DC ∈ D
NM
C represented by a f NM

C (t) ∈ FNM
C ,

we notice that the same technique that we used to derive the optimal continuous
solution hM

C (t) given in Eq. (6.85) can be generalized to the case where we
fix the discontinuities that the Markovian characteristic function has to show.
Indeed, the rules given in Eq. (6.85) can be generalized to the cases where f M(t)



172 Non-Markovianity measure via mixing with Markovian dynamics

jumps with or without a change of sign and we obtain

hM
NC(t) =


− ḟ NM

C (t)/Γ′ if ḟ NM
C (t) > 0 and hM

NC(t) > 0
0 if ḟ NM

C (t) ≤ 0 and hM
NC(t) > 0

− ḟ NM
C (t)/Γ′ if ḟ NM

C (t) < 0 and hM
NC(t) < 0

0 if ḟ NM
C (t) ≥ 0 and hM

NC(t) < 0

, (6.95)

where the sign of hM
NC(t) depends on the discontinuities ξ(hM

NC(t)) ∈ JD that we
impose and Γ′ > 0 has to be chosen such that hM

NC(t) is Markovian and f (p)(t)
is made Markovian for the smallest possible p.

The main difference between hM
C (t) and hM

NC(t) is that ΓNM is replaced
by Γ′, which in general depends on the particular jumps that hM

NC(t) has to
show. Notice that in the previous two sections we used Γ′ = p/(1 − p).
Our goal is to prove that in every scenario Γ′ > ΓNM. Indeed, hM

NC(t) makes
f (p)(t) Markovian for p ≥ Γ′/(1 + Γ′) = p and Γ′ > ΓNM implies that p >

p(DNM
C |DM

C ) = ΓNM/(1 + ΓNM).
We consider those cases where the discontinuities of hM

NC(t) do not take
place during time intervals of non-Markovianity of f NM

C (t). We show that, even
if we ignore possible non-Markovian discontinuities of f (p)(t) caused by the
discontinuities of hM

NC(t) (which may increase the minimum p for which f (p)(t)
can be made Markovian by hM

NC(t)), Γ′ > ΓNM. We use the following notation
for the intervals of non-Markovianity of f NM

C (t): the i-th interval (t(in)
i , t( f in)

i ) can
either be a time interval where f NM

C (t) shows a non-Markovian behavior while
being positive or negative. The i-th gap ΓNM

i ≡ | f NM
C (t( f in)

i ) − f NM
C (t(in)

i )| > 0 is
therefore the non-Markovian gap shown in the time interval (t(in)

i , t( f in)
i ). Notice

that ΓNM =
∑

i ΓNM
i (see Eq. (6.70)). Let start with the case of a hM

NC(t) that
shows a single discontinuity at time T1 < t(in)

1 , where ξ1 = ξ(hM
NC(T1)) ∈ {JD \

1}. It is easy to prove that the minimum probability p for which hM
NC(t) can

make f (p)(t) Markovian satisfies the following lower bound p ≥ (ΓNM/|ξ1|)/(1+

ΓNM/|ξ1|). Therefore, in these cases

Γ′ = ΓNM/|ξ1| > ΓNM. (6.96)

Now, suppose that a discontinuity characterized by ξ1 = ξ(hM
NC(T1)) ∈ {JD \ 1}

is verified for t( f in)
k1
≤ T1 ≤ t(in)

k1+1, namely between the k1-th and the k1 + 1-th
non-Markovian time interval. It is easy to show that in this case

Γ′ =

k1∑
i=1

ΓNM
i +

∑N
i=k1+1 ΓNM

i

|ξ1|
> ΓNM , (6.97)
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where N (which may be infinite) is the number of non-Markovianity intervals
of f NM

C (t). In the case of an additional discontinuity ξ2 = ξ(hM
NC(T2)) ∈ {JD \1}

that is shown at time t( f in)
k2
≤ T2 ≤ t(in)

k2+1, we have

Γ′ =

k1∑
i=1

ΓNM
i +

∑k2
i=k1+1 ΓNM

i

|ξ1|
+

∑N
i=k2+1 ΓNM

i

|ξ1 ξ2|
> ΓNM . (6.98)

We notice that, the presence of two Markovian discontinuities for hM
NC(t) pro-

vides a value of Γ′ that is strictly larger than the value obtained with only
the first or the second discontinuity (see Eq. (6.97)). The generalization of
Eq. (6.98) to any number of this type of discontinuities is trivial. We conclude
that the hM

NC(t) obtained by any number of discontinuities {ξ j} j of this type are
always characterized by Γ′ > ΓNM.

In the previous sections we proved that the presence of any discontinu-
ity that takes place during a single time interval of non-Markovianity (t1, t2)
does not allow making f (p)(t) Markovian for p ≤ p(DNM

C |DM
C ). It is clear

that Eq. (6.95) provides an optimal non-continuous Markovian solution for
any set of discontinuities that takes place inside or outside the time intervals
(t(in)

i , t( f in)
i ). Moreover, combining the previous results together we obtain that

in every scenario Γ′ = p/(1 − p) is larger than ΓNM = p(DNM
C |DM

C )/(1 +

p(DNM
C |DM

C )) hence proving Eq. (6.29).

6.6 A special subset of non-continuous depolarizing dy-
namics

As we shall see in details in the next section, computing our measure of non-
Markovianity for depolarizing trajectories which are explicitly non continuous
is rather demanding. For this reason we find it useful to remark that the con-
struction presented in Section 6.4 can however be shown to generalize beyond
the domain DNM

C allowing us to compute p(DNM |DM
C ,D

M) at least for some
non continuous elements DNM. In particular, following the same approach we
used in Section 6.4.1, the function gM

C (t) of Eq. (6.45) can be shown to provide
the optimal choice for the computation of p(DNM |DM

C ,D
M) for the whole set

of non-Markovian evolutions DNM ∈ DNM with characteristic functions of the
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form 

f NM(t) ≥ 0, ḟ NM(t±) ≤ 0, ξ( f NM(t)) ∈ [0, 1] t < t(in)
1

f NM(t) ≥ 0, ḟ NM(t±) > 0, ξ( f NM(t)) = 1 t ∈ T +
1

“Markovian” t > t( f in)
1 .

(6.99)

Notice that differently from the case addressed in Eq. (6.38) this new set of
functions (i) can show Markovian discontinuities without changing their sign
for any t < t(in)

1 , and (ii) can follow any behavior allowed by the Markovian
conditions (see Eq. (6.10)), even changing sign, for t > t( f in)

1 . Since DM is
non-convex (see Appendix D.2.2), the mixture between f NM(t) and gM

C (t) may
in principle make f (p)(t) non-Markovian for one or more times when f NM(t)
behaves as a Markovian characteristic function. Nonetheless, this is not the
case. Indeed, for t > t( f in)

1 , we have gM
C (t) = 0 and therefore f (p)(t) = (1 −

p) f NM(t) is always Markovian. Instead, for t < t(in)
1 , since gM

C (t) and f NM(t) are
positive, f (p)(t) cannot behave as a non-Markovian characteristic function. As
a result of this observation one has that for the functions of the form (6.99) we
have

p(DNM |DM
C ,D

M) =
∆NM

1

1 + ∆NM
1

, (6.100)

with ∆NM
1 being the gap associated with the non-Markovian character of the

function on T +
1 .

Analogously, the function gM
C (t) given in Eq. (D.26) can be shown to pro-

vide the value of p(DNM |DM
C ,D

M) also for the following class of not neces-
sarily continuous, non-Markovian characteristic functions f NM(t) of the form

f NM(t) ≥ 0, ḟ NM(t) ≤ 0, ξ( f NM(t)) ∈ [0, 1] t < T NM

f NM(t) ≥ 0, ḟ NM(t) > 0, ξ( f NM(t)) = 1 t ∈ T NM

“Markovian” t > t( f in)
N ,

(6.101)

where, if t( f in)
N < τ for some τ > 0, the latter of Eq. (6.101) is the condition that

we consider for t > t( f in)
N . Therefore, also for the depolarizing evolutions DNM

defined by Eq. (6.101), we have

p(DNM |DM
C ,D

M) =
∆NM

1 + ∆NM . (6.102)
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By the same token one can show that hM
C (t) of Eq. (6.84) yields the measure

of non-Markovianity p(DNM |DM
C ,D

M) also for the class of characteristic func-
tions of the form

f NM(t) ≥ 0, ḟ NM(t) ≤ 0, ξ( f NM(t)) ∈ [0, 1] t < T NM

f NM(t) ≤ 0, ḟ NM(t) ≥ 0, ξ( f NM(t)) = 1 t < T NM

f NM(t) ≥ 0, ḟ NM(t) > 0, ξ( f NM(t)) = 1 t ∈ T NM

f NM(t) ≤ 0, ḟ NM(t) < 0, ξ( f NM(t)) = 1 t ∈ T NM

“Markovian” t > t( f in) ,

(6.103)

with T NM = (∪kT +
k )∪ (∪ jT−j ) being the same intervals defined in Section 6.4.3

and where, if there exits a time t( f in) such that f NM
C (t) does not show any non-

Markovian behavior for t ≥ t( f in), the last condition replaces the first two for
t ≥ t( f in). In this case we get

p(DNM |DM
C ,D

M) =
ΓNM

1 + ΓNM , (6.104)

where again ΓNM is defined as in (6.70).

6.7 Non-continuous depolarizing evolutions

It is rather complex to extend the results of the previous sections to the general
case of non-Markovian depolarizing evolutions DNM which are not necessarily
continuous. This has to due with the fact that in computing p(DNM |DM) we
have to perform an optimization with respect to all the elements ofDM, which
as discussed in Section 6.2.2 is not convex. As we shall see in Section 6.7.1
this introduces an ambiguity in the definition of the optimal Markovian element
which is hard to handle. Nonetheless, in Section 6.7.2 we propose a solution
to the problem which, even though it does not allow deriving a closed formula
for p(DNM |DM), it leads in principle to the exact results for any assigned non-
Markovian depolarizing evolution DNM.

Before entering into the details of the analysis we define two sets of times:
WC is the set of times when f NM(t) is continuous, namely ξ( f NM(t)) = 1 if
and only if t ∈ WC and WNC ≡ {tNC,i}i = R+ \ WC is the discrete set of times
when f NM(t) is discontinuous, namely ξ( f NM(t)) , 1 if and only if t ∈ WNC .
Moreover, we divide WNC in W M

NC and WNM
NC , namely the times when f NM(t)
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shows Markovian (ξ( f NM(tM
NC,i)) ∈ JD) and non-Markovian (ξ( f NM(tNM

NC,i)) <
JD) discontinuities, respectively.

6.7.1 Ambiguity for the choice of the optimal Markovian evolution

In Section 6.4, while evaluating p(DNM
C |DM) for continuous evolutions, we

never assumed any particular shape for f NM
C (t) and ḟ NM

C (t) in order to provide
the optimal f M

C (t) needed to calculate this measure. In the following example,
instead, we show that for non-continuous evolutions there is an ambiguity for
the choice of the times when the optimal f M(t) shows discontinuities. This
ambiguity is solved only if we know exactly the shape of f NM(t). Moreover,
in these cases the value of the measure of non-Markovianity does not depend
solely from ΓNM.

We consider the non-Markovian characteristic function for qubits f NM
Θ

(t) ∈
FNM with a single Markovian discontinuity at time tNC , namely W M

NC = {tNC},
and a single time interval of non-Markovianity T− = (t(in), t( f in)) when the char-
acteristic function and its time derivative are negative. More in details

f NM
Θ (t) =



1 t ∈ [0, tNC]
−1/3 t → t+NC

f NM
Θ

(t) ≤ 0, ḟ NM
Θ

(t) ≥ 0 t ∈ [tNC , t(in)]
Θ − 1/3 t = t(in)

f NM
Θ

(t) ≤ 0, ḟ NM
Θ

(t) < 0 t ∈ (t(in), t( f in))
−1/3 t ≥ t( f in)

, (6.105)

where Θ ∈ (0, 1/3]. It is clear that this function is characterized by a null pos-
itive non-Markovian gap ∆NM = 0 and a negative non-Markovian gap ΘNM =

−Θ that is shown in the time interval T− = (t(in), t( f in)). This example can
be easily generalized to the qudit case: if we have a d-dimensional system,
we have to replace the following conditions f NM

Θ
(t+NC) = −1/(d2 −1), f NM

Θ
(t) =

−1/(d2−1) for any t ≥ t( f in), f NM
Θ

(t(in)) = Θ−1/(d2−1) and Θ ∈ (0, 1/(d2−1)].
We can adopt two non-equivalent f M,1(t) and f M,2(t) in order to make

f (p)(t) = (1− p) f NM
Θ

(t)+ p f M(t) Markovian. We show that the form of the opti-
mal Markovian characteristic function needed for the evaluation of p(DNM

Θ
|DM)

depends on the particular value of Θ. Indeed, consider

f M,1(t) =


1 t ∈ [0, tNC]
−1/3 t ∈ (tNC , t(in)]

f M,2(t) ≤ 0, ḟ M,2(t) > 0 t ∈ (t(in), t( f in)]
0 t ≥ t( f in)

, (6.106)
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or

f M,2(t) =


1 t ∈ [0, t(in)]

f M,1(t) > 0, ḟ M,1(t) < 0 t ∈ (t(in), t( f in)]
f M,1(t) > 0, ḟ M,1(t) = 0 t ≥ t( f in)

, (6.107)

where, when the time derivative of the characteristic function is different from
zero, we impose it to be equal to − f NM

Θ
(t)/∆e f f

1 and − f NM
Θ

(t)/∆e f f
2 , respec-

tively. In Fig. 6.4 and 6.5 we provide an example of this situation. We find that
f (p)(t) can be made Markovian for

• p ≥ 3Θ
1+3Θ

, if we consider f M,1(t) with ∆
e f f
1 = 3Θ;

• p ≥ 1/3+Θ
4/3+Θ

, if we consider f M,2(t) with ∆
e f f
2 = Θ + 1

3 .

It follows that, depending on the value of Θ ∈ (0, 1/3], the optimal Markovian
characteristic function needed to evaluate the measure of non-Markovianity is
different, namely it is f M,1(t), if Θ ∈ (0, 1/6] and f M,2(t), if Θ ∈ [1/6, 1/3]. As
a consequence

p(DNM
Θ |D) =

{ 3Θ
1+3Θ

Θ ∈ (0, 1
6 ]

1/3+Θ
4/3+Θ

Θ ∈ [ 1
6 ,

1
3 ]

. (6.108)

We notice that, differently from the continuous case, given the signs of
f NM(t) and ḟ NM(t), it is not possible to know a-priori which are the signs of the
optimal f M(t) and ḟ M(t) that make f (p) Markovian for the smallest value of p.
Indeed, we have to consider all the possible alternatives for the optimal f M(t)
and evaluate the minimum p for which each one make the corresponding f (p)(t)
Markovian. This ambiguity is generated by the sign that we decide to assign to
f M(t) during its evolution. Notice that in the continuous case f M

C (t) could not
change its sign and we had no ambiguity in the definition of the optimal Marko-
vian characteristic function. For instance, as we concluded studying f NM

Θ
(t),

the difference between f M,1(t) and f M,2(t) is obtained solely by the choice of
making the Markovian characteristic function change its sign at time tNC with
a discontinuity or not. The remaining part of their definitions are analogous to
the optimal solution obtained for continuous evolutions (see Eq. (6.95))

In the following, we describe how to evaluate the non-Markovianity mea-
sure for generic non-Markovian depolarizing evolutions, where we pay partic-
ular attention to all the possible choices for the signs of the Markovian charac-
teristic function during its evolution.
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Figure 6.4: Plots of f M
1 (t), f NM

Θ
(t) and f (p)(t) for a non-Markovian gap

Θ = −ΘNM = 0.1 and p = p(DNM
Θ
|D) ' 0.77. The time interval of non-

Markovianity T− = (2, 3) of f NM
0.1 (t) is colored in purple. Since Θ < 1/6, the

optimal Markovian characteristic function is f M
1 (t).

Figure 6.5: Plots of f M
2 (t), f NM

Θ
(t) and f (p)(t) for a non-Markovian gap

Θ = −ΘNM = 0.2 and p = p(DNM
Θ
|D) ' 0.65. The time interval of non-

Markovianity T− = (2, 3) of f NM
0.2 (t) is colored in purple. Since Θ > 1/6, the

optimal Markovian characteristic function is f M
2 (t).
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6.7.2 Measure of non-Markovianity for non-continuous depolariz-
ing evolutions

In this section we propose a technique to evaluate the non-Markovianity mea-
sure for any non-Markovian depolarizing channel. For this purpose, we collect
the results of the previous sections in order to find a strategy that singles out the
optimal DM needed to evaluate this measure.

Given the previous results, we consider two rules

• If t′ ∈ WC , the f M(t) that are discontinuous at t = t′ do not provide larger
values of p (if compared with the f M(t) that are continuous for t = t′);

• If t′ ∈ WNC , the f M(t) that are discontinuous at t = t′ may provide larger
values of p.

Therefore, the optimal Markovian evolution needed to evaluate p(DNM |DM) is
continuous at least for any t ∈ WC .

Vector of signs

We define TC,i = (tNC,i−1, tNC,i) to be the time intervals defined between the
times in WNC = {tNC,i}

N
i=1, where we fix tNC,0 = 0 and, if N is finite, tNC,N+1 =

∞. With this procedure we define N + 1 time intervals such that ∪iTC,i = WC .
We consider a dichotomic variable σi ∈ {−1, 1} that we attach to each time

interval TC,i. Therefore, we obtain a vector σ = (σ1, σ2, . . . ) of values equal
to +1 or -1. We have a countable number of combinations for this vector. We
label each combinationσa = (σa,1, σa,2, . . . ) with a different value of an integer
number a = 1, 2, . . . . We impose σa,0 = +1 for each combination and we fix a
labeling scheme, for instance

σ1 = (+1,+1,+1,+1, . . . ), σ5 = (+1,+1,+1,−1, . . . ),

σ2 = (+1,−1,+1,+1, . . . ), σ6 = (+1,−1,+1,−1, . . . ),

σ3 = (+1,+1,−1,+1, . . . ), σ7 = (+1,+1,−1,−1, . . . ),

σ4 = (+1,−1,−1,+1, . . . ), σ8 = (+1,−1,−1,−1, . . . ), . . .

We call each σa a vector of signs for the following reason. We call f M
a (t)

the Markovian characteristic functions such that their sign is defined by σa as
follows

sign( f M
a (t)) =


σa,1 = +1 t ∈ [0, tNC,1]
σa,2 t ∈ (tNC,1, tNC,2]
σa,3 t ∈ (tNC,2, tNC,3]
. . . . . .

. (6.109)
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We underline that, as noticed in Section 6.2.1, a Markovian characteristic func-
tion can change its sign only with discontinuities such that ξ( f M(t)) ∈ [−1/(d2−

1), 0). Indeed, we imposed that f M
a (t) is continuous at least for any t ∈ WC . In-

deed, f M
a (t) can show a discontinuity only when f NM(t) shows a discontinuity.

Therefore,

• σa,i = σa,i+1: f M
a (t) can either be continuous or show a discontinuity at

t = tNC,i;

• σa,i = −σa,i+1: f M
a (t) must show a discontinuity ξ( f M(tNC,i)) ∈ [−1/(d2−

1), 0) while it changes sign.

The Markovian characteristic functions with these features define the set FM
a .

Consider the convex sum f (p)(t) = (1 − p) f NM(t) + p f M
a (t). First, it is

continuous for any t ∈ WC . Second, if it is Markovian for some p and f M
a (t),

it also has to belong to FM
b for some vector of signs σb, namely such that

sign( f (p)(t)) = σb,i for any t ∈ TC,i. Notice that σb may be different from σa.
Therefore, in order to obtain p(DNM |DM) we proceed as follows. We fix a
vector σa for f M

a (t) and we make f (p)(t) ∈ FM
b for the smallest p

pa,b ≡ min{p | ∃ f M
a (t) ∈ FM

a s.t. f (p)(t) ∈ FM
b } , (6.110)

Therefore, we get
p(DNM |DM) = min

a,b
pa,b . (6.111)

The procedure to evaluate pa,a is given in Section 6.7.2, while the evaluation
of pa,b for a , b is given in Appendix D.7. In both cases, we simplify the
minimization over a functional space given in Eq. (6.110) with a minimization
over a discrete set of real parameters.

Optimal Markovian function for a generic vector of signs

In this section we evaluate pa,a. We fix a vector of signs σa that describes the
signs of f M

a (t) and f (p)(t), namely σa,i = sign( f M
a (t)) = sign( f (p)(t)) for any

t ∈ TC,i. A generic f NM(t) ∈ FNM is characterized by:

• Time intervals TC,i = (tNC,i−1, tNC,i) when f NM(t) is continuous, namely
∪iTC,i = WC .

• Discrete set of times W M
NC = {tM

NC,i}i when f NM(t) shows Markovian
discontinuities ξ( f NM(t)) ∈ JD for any t ∈ W M

NC . We define WNC =

WNM
NC ∪W M

NC .
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• Discrete set of times WNM
NC = {tNM

NC,i}i when f NM(t) shows non-Markovian
discontinuities ξ( f NM(t)) < JD for any t ∈ WNM

NC .

Our goal is not only to make f (p)(t) Markovian during the times when f NM(t)
behaves as a non-Markovian characteristic function, but we also have to take
care of the possible non-Markovianity generated from the convex sum of two
characteristic functions, namely f NM(t) and f M

a (t), that for for some times be-
have as Markovian functions (see the example in Appendix D.2.2).

We adopt the following strategy. First, we generalize the technique intro-
duced in Section 6.4 in order to make f (p)(t) behave as a Markovian character-
istic function for any t ∈ WC (Section 6.7.2). Second, we make sure not to gen-
erate non-Markovianity for those times t ∈ W M

NC when f NM(t) shows Marko-
vian discontinuities (Section 6.7.2). Finally, we study the cases of those times
t ∈ WNM

NC when f NM(t) shows non-Markovian discontinuities (Section 6.7.2).

Times of continuity

Consider those times t ∈ WC when f NM(t) is continuous. Following what we
saw in Section 6.4.3, it is straightforward to obtain the behavior of the opti-
mal f M

a (t) that allows obtaining pa,a. The definition of f M
a (t) has to change

depending on (i) the Markovian/non-Markovian behavior of f NM(t) at time t,
(ii) the sign of f NM(t) at time t and (iii) the sign of f M

a (t) at time t. Therefore,
we focus on a generic TC,i = (tNC,i−1, tNC,i) when sign( f M

a ) = σa,i. Then, the
definition of the time derivative of f M

a (t) is given in Table 6.1. The adopted
strategy has the following purpose. We have ḟ M

a (t) = 0 for all those times
when a non-zero derivative is not needed to make f (p)(t) Markovian. This strat-
egy cannot be used when the sign of the time derivative of f NM(t) is such
that sign( ḟ NM(t))sign( f (p)

a (t)) = +1. Indeed, if we have ḟ M
a (t) = 0, then

sign( ḟ (p)(t))sign( f (p)
a (t)) = +1 and f (p)(t) would not satisfy the first Markovian

condition (6.10). The condition ḟ (p)(t) = 0 is given in analogy to the contin-
uous case. In order to apply it, we introduce a parameter ∆ > 0 as follows:
ḟ M
a (t) = − ḟ NM(t)/∆1, which indeed makes f (p)(t) Markovian in these time in-

tervals for p ≥ ∆/(1 + ∆). We notice that not all values of ∆ > 0 are allowed.
Indeed, if ∆ is not large enough, f M

a (t) could violate the Markovian conditions
of Eq. (6.10). The introduction of this parameter imposes to consider f M

a (t) as
a function of t and ∆:

f M
a (t) = f M

a (t,∆) . (6.112)

If not necessary, we omit this dependence on ∆.
1 We introduce this parameter in analogy with Eq. (6.84). If f NM(t) does not show any

discontinuity, ∆ = ΓN M.
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t ∈ TC,i t ∈ T M t ∈ T NM

sign( f NM(t)) = σa,i ḟ M
a (t) = 0 ḟ (p)(t) = 0

sign( f NM(t)) = −σa,i ḟ (p)(t) = 0 ḟ M
a (t) = 0

Table 6.1: The conditions for time derivative of the optimal f M
a (t) for t ∈ TC,i

depends on σa,i, f NM(t) and ḟ NM(t). T M (T NM) is the set of times when f NM(t)
behaves as a Markovian (non-Markovian) characteristic function.

t ∈W M
NC

σa,i = +1
σa,i+1 = +1

σa,i = +1
σa,i+1 = −1

sign( f NM(t−NC,i)) = +1
sign( f NM(t+NC,i)) = +1

(a) (b)

sign( f NM(t−NC,i)) = +1
sign( f NM(t+NC,i)) = −1

(a) (b)

sign( f NM(t−NC,i)) = −1
sign( f NM(t+NC,i)) = +1

(c) (d)

sign( f NM(t−NC,i)) = −1
sign( f NM(t+NC,i)) = −1

(c) (d)

Table 6.2: Discontinuities of f M
a (t) depending of σa,i, σa,i+1, sign( f NM(t−NC,i))

and sign( f NM(t+NC,i)) in the case that tNC,i is a Markovian discontinuity for
f NM(t). The remaining combinations are obtained by flipping all the signs of
this table, where the optimal strategies are the same.

Markovian discontinuities

In this section we define the behavior of the optimal f M
a (t) for those times when

f NM(t) shows Markovian discontinuities, namely we consider times tNC,i ∈

W M
NC such that ξ( f NM(tNC,i)) ∈ JD. Having fixed the vector of signs σa =

(σa,1, . . . , σa,i, σa,i+1, . . . ), we know the sign of f M
a (t) and f (p)

a (t) before and
after tNC,i. Moreover, we need to decide what value has to assume f M

a (t+NC,i),
while we consider f M

a (t−NC,i) fixed by its behavior in the time interval TC,i =

(tNC,i−1, tNC,i).
If σa,i = σa,i+1, for f M

a (t) the time t = tNC,i can be either (i) a time of
continuity ξ( f M

a (t)) = 1 or (ii) a time of discontinuity when it does not change
its sign, namely ξ( f M

a (tNC,i)) ∈ [0, 1)2. Instead, if σa,i = −σa,i+1, for f M
a (t) the

2We remember that ξ( f M
a (tNC,i)) if and only if f M

a (t+
NC,i) = 0 and f M

a (t) = 0 for any t ≥
tNC,i. Therefore, we can pick this value if and only if f NM(t) does not show any non-Markovian
behavior for t ≥ tNC,i.
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time t = tNC,i is a time of (Markovian) discontinuity ξ( f NM(t)) ∈ [−1/(d2−1), 0)
when its sign changes.

Straightforward calculations show that, if the starting sign of f NM(t) and
f M
a (t) are the same and they are both showing a Markovian discontinuity, f (p)(t)

shows a Markovian discontinuity independently from their final signs. In order
to illustrate the discontinuities that f M

a (t) has to show for any combination of
σa,i, σa,i+1, sign( f NM(t−NC,i)) and sign( f NM(t+NC,i)), we follow the scheme of
Table 6.2.

(a) f M
a (t) preserves its sign and, independently from the final value and sign

of f NM(t+NC,i), the time tNC,i is not a non-Markovian discontinuity for
f (p)(t). Therefore, the best strategy is to consider f M

a (tNC,i) continuous:
ξ( f M

a (tNC,i)) = 1.

(b) Similarly to (a), tNC,i is never a non-Markovian discontinuity for f (p)(t).
Since f M

a (t) has to change sign, the best strategy is to maximize the final
distance from zero. Therefore, we impose ξ( f M

a (tNC,i)) = −1/(d2 − 1).

(c) From ξ( f M
a (tNC,i)) = 1 it follows a non-Markovian discontinuity for

f (p)(tNC,i) for any p < 1. Since ξ( f M
a (tNC,i)) < 1 makes f M

a (tNC,i) and
f (p)(tNC,i) closer to zero, we need the minimal intervention to make f (p)(t)
Markovian and positive. Due to this ambiguity, we introduce the param-
eter Ξi = ξM( f M

a (tNC,i)) ∈ [0, 1)3.

(d) ξ( f M
a (t)) = −1/(d2 − 1) implies ξ( f (p)(tNC,i)) < −1/(d2 − 1) for any

p < 1. In this case, we define the parameter Ξi = ξM( f M
a (tNC,i)) ∈

(−1/(d2 − 1), 0].

Therefore, these conditions fix the behavior of f M
a (t) when f NM(t) shows a

Markovian discontinuity.

Non-Markovian discontinuities

In this section we define the behavior of the optimal f M
a (t) for those times when

f NM(t) shows non-Markovian discontinuities, namely we consider times tNC,i ∈

WNM
NC when ξ( f NM(tNC,i)) < JD. Having fixed σa = (σa,1, . . . , σa,i, σa,i+1, . . . ),

3For each value of Ξi we have a different interval of p such that f (p)(t) is Markovian and with
the same sign of f M

a (t). If ξ( f NM(tNC,i)) > 0, the choice Ξi = ξ( f NM(tNC,i)) allows the largest
value of p for which we can make f (p)(t) Markovian and with the same sign of f M

a (t), but it
implies that f (p)(t+

NC,i) = 0 and it denies any further possibility to make f (p)(t) Markovian for
t > t+

NC,i. Therefore, chosen a value of Ξi, we obtain some conditions p ≤ p(Ξi) for which f (p)(t)
is Markovian and with the same sign of f M

a (t).
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t ∈WNM
NC

σa,i = +1
σa,i+1 = +1

σa,i = +1
σa,i+1 = −1

sign( f NM(t−NC,i)) = +1
sign( f NM(t+NC,i)) = +1

(e) (g)

sign( f NM(t−NC,i)) = +1
sign( f NM(t+NC,i)) = −1

(f) (h)

sign( f NM(t−NC,i)) = −1
sign( f NM(t+NC,i)) = +1

(e) (g)

sign( f NM(t−NC,i)) = −1
sign( f NM(t+NC,i)) = −1

(f) (h)

Table 6.3: Discontinuities of f M
a (t) depending of σa,i, σa,i+1, sign( f NM(t−NC,i))

and sign( f NM(t+NC,i)) in the case that tNC,i is a non-Markovian discontinuity for
f NM(t). The remaining combinations are obtained by flipping all the signs of
this table, where the optimal strategies are the same.

we know the sign of f M
a (t) and f (p)

a (t) before and after tNC,i. Moreover, we need
to decide what value has to assume f M

a (t+NC,i).
In order to illustrate the discontinuities that f M

a (t) has to show for any com-
bination of σa,i, σa,i+1, sign( f NM(t−NC,i)) and sign( f NM(t+NC,i)), we follow the
scheme of Table 6.3.

(e) Similarly to case (c), we define the parameter Ξi = ξ( f M
a (tNC,i)) ∈ [0, 1).

(f) Calculations show that the optimal f M
a (t) is obtained when f M

a (t) is con-
tinuous at time t = tNC,i, namely by imposing ξ( f M

a (tNC,i)) = 1.

(g) Calculations show that the optimal f M
a (t) is obtained for ξ( f M

a (tNC,i)) =

−1/(d2 − 1).

(h) Similarly to case (d), we define parameters Ξi = ξ( f M
a (tNC,i)) ∈ (−1/(d2−

1), 0].

Therefore, these conditions fix the behavior of f M
a (t) when f NM(t) shows a

non-Markovian discontinuity.

Evaluation of pa,a

We show the procedure to define the optimal f M
a (t) until t = tNC,2.
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• First interval of continuity [0, tNC,1): we start by imposing the condition
f M
a (0) = 1. We have sign( f M

a (t)) = sign( f (p)(t)) = +1. The evolution of
f M
a (t) for t ∈ TC,1 = (0, tNC,1) is given in Table 6.1;

• First time of discontinuity tNC,1: the behavior of f M
a (t) for t = tNC,1 is

given by Table 6.2 if tNC,1 is a Markovian discontinuity for f NM(t) and
by Table 6.3 if tNC,1 is a non-Markovian discontinuity for f NM(t);

• Second interval of continuity TC,2 = (tNC,1, tNC,2): we have sign( f M
a (t)) =

sign( f (p)(t)) = σa,2. The evolution of f M
a (t) is given in Table 6.1.

The definition of this characteristic function for any t ≥ tNC,2 is now obvious.
We saw that in order to define f M

a (t) for t ∈ (tNC,i−1, tNC,i) it may be nec-
essary to introduce a parameter ∆ > 0 that allows making ḟ (p)(t) = 0 when
the cross-diagonal conditions of Table 6.1 occur (see Eq. (6.112)). Moreover,
for each time of discontinuity tNC,i ∈ WNC we have to define ξ( f M

a (tNC,i)). For
each discontinuity of type (a) or (f), we impose ξ( f M

a (tNC,i)) = 1. For each dis-
continuity of type (b) or (g), we impose ξ( f M

a (tNC,i)) = −1/(d2 − 1). For each
discontinuity of type (e) or (c), we introduce a parameter Ξi ∈ [0, 1). For each
discontinuity of type (d) or (h), we introduce a parameter Ξi = ξ( f M

a (tNC,i)) ∈
(−1/(d2 − 1), 0]. Therefore, in general, we introduce a set of parameters that
defines f M

a (t):
f M
a (t) = f M

a (t,∆, {Ξi}i) . (6.113)

We seek a combination of ∆ and {Ξi}i that minimizes the value of p for
which f (p)(t) ∈ FM

a . Eq. (6.110) becomes

pa,a = min
∆,{Ξi}i

{p | f M
a (t,∆, {Ξa}i) and f (p)(t) ∈ FM} . (6.114)

This relation provides a drastic simplification of the minimization required in
Eq. (6.110). Indeed, to calculate pa,b, we formally need to perform a minimiza-
tion over the elements of FM

a , which have infinite degrees of freedom. Instead,
thanks to this procedure, we only need to perform a minimization over ∆ and
{Ξi}i. Notice that, if the discontinuities of type (c), (d), (e) and (h) are finite, the
total number of parameters over which we need to optimize pa,a is finite.

6.8 Dephasing evolutions

In this section we show that the class of dephasing evolutions for qubits Z
requires a method to evaluate the corresponding non-Markovianity measure
p(ZNM |ZM) similar to the depolarizing case. A dephasing evolution Z =
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{Zt}t≥0 ∈ Z corresponds to a family of dynamical maps Zt that at any time
t ≥ 0 assumes the form

Zt(·) = φ(t) IS (·) + (1 − φ(t))σz · σz , (6.115)

with σz = diag(1,−1) being the diagonal z-Pauli matrix . We have that φ(t) ∈
[0, 1] is a necessary and sufficient condition to ensure Zt to be CPTP. We rewrite
Eq. (6.115) making use of ϕ(t) ≡ 2φ(t) − 1, namely considering

Zt(·) =
1 + ϕ(t)

2
IS (·) +

1 − ϕ(t)
2

σz · σz , (6.116)

where ϕ(t) belonging to
JZ ≡ [−1, 1] , (6.117)

is the necessary and sufficient condition to ensure Zt to be CPTP.
In order to characterize Markovian dephasing evolutions, similarly to the

case of depolarizing channels, if ϕ(s) = 0 for some s > 0, then the intermediate
map Zt,s from s to t ≥ s of a dephasing channel can be CPTP if and only if
ϕ(t) = 0 for any t ≥ s, namely Zt,s(·) = IS (·) for any t ≥ s. In the case of a
non-zero value of φ(s), the parameterization given in Eq. (6.118) allows us to
write the intermediate map Zt,s for t ≥ s in the following convenient form

Zt,s(·) =
1 + ϕ(t)/ϕ(s)

2
IS (·) +

1 − ϕ(t)/ϕ(s)
2

σz · σz , (6.118)

which is a dephasing channel characterized by the value of ϕ(t)/ϕ(s). As a
consequence, Zt,s is CPTP if and only if ϕ(t)/ϕ(s) ∈ JZ.

From Eq. (6.118) it is clear that we can use ϕ(t) to uniquely characterize Z.
We define the set of dephasing characteristic functionsS by requiring the same
conditions of regularity considered in Section 6.2 for depolarizing evolutions.
As a result, we have a one-to-one correspondence between dephasing evolu-
tions Z ∈ Z and “regular” (in general non-continuous) characteristic functions
that take values in JZ, namely ϕ(t) ∈ S.

In analogy to Eq. (6.4), the non-continuous behavior of ϕ(t) can be studied
by considering the quantity

ξ(ϕ(t)) =
ϕ(t+)
ϕ(t−)

. (6.119)

Similarly to the depolarizing case, we have a Markovian discontinuity when
ξ(ϕ(t)) ∈ JZ \ 1, a non-Markovian discontinuity when ξ(ϕ(t)) < JZ and a time
of continuity when ξ(ϕ(t)) = 1.
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The similarities between the CPTP conditions for dephasing and depolariz-
ing channels and the role of the corresponding characteristic functions allow us
to conclude that a dephasing evolution Z with characteristic function ϕ(t) ex-
hibits a Markovian behavior at time τ ≥ 0 if one of the two conditions applies

CM1(τ) : ξ(ϕ(τ)) = 1 and d
dτ |ϕ(τ)| ≤ 0;

CM2(τ) : ξ(ϕ(τ)) ∈ JZ \ 1;
(6.120)

where CM1(τ) has to be replaced by ϕ̇(τ±)ϕ(τ) ≤ 0 when ϕ̇(τ) is non-continuous,
namely ϕ̇(τ−) , ϕ̇(τ+). We define the set of Markovian dephasing characteristic
functions as

S
M = {ϕ(t) ∈ S |CM1(τ) or CM2(τ) = TRUE,∀τ ≥ 0} , (6.121)

which involves only local properties of ϕ(t). Consequently, we can define
SNM ≡ S \SM, ZM and ZNM.

We can summarize the behavior of Markovian dephasing functions as fol-
lows. ϕM(t) ∈ SM, when continuous (ξ(ϕ(t)) = 1), does not increase its dis-
tance from zero, namely its modulus is non-increasing. Therefore, in the time
intervals where it is positive (negative) and it is continuous, it is monotonically
non-increasing (non-decreasing). As a consequence, ϕM(t) cannot change sign
while being continuous, namely if ϕM(s) = 0 for some s ≥ 0, then ϕM(t) = 0 for
any t ≥ s. Discontinuities of Markovian characteristic functions cannot make
ϕM(t) increase its modulus. Therefore, ϕM(t) can change its sign at a generic
time τ (only) with a discontinuity, where |ϕM(τ+)| ≤ |ϕM(τ−)|. Non-Markovian
characteristic functions ϕNM(t) ∈ SNM, instead, can show any discontinuity
and non-monotonic behavior, with the only constraint of assuming values in
JZ = [−1, 1] at any time.

We notice that the characterizations of Markovian dephasing evolutions
and depolarizing evolutions are analogous. Given the similarities between the
Markovian conditions (6.10) and (6.120) and the dependence of the intermedi-
ate maps (6.6) and (6.119) from the respective characteristic functions f (t) and
ϕ(t), we obtain a very similar procedure needed to evaluate the measure of non-
Markovianity p(ZNM |ZM). Indeed, in this case we need to find a ZM ∈ ZM that
allows making Z(p) = (1 − p)ZNM + pZM Markovian for the smallest value of
p ∈ [0, 1], where the Markovian condition for Z(p) can be studied by imposing
ϕ(p) = (1 − p)ϕNM(t) + pϕM(t) to satisfy the Markovian conditions (6.120).
The main difference between the evaluations of p(ZNM |ZM) and p(DNM |DM)
for generic ZNM ∈ ZNM and DNM ∈ DNM is given by the fact that JD , JZ,
which in particular implies that Markovian and non-Markovian characteristic
functions of dephasing and depolarizing evolutions have different freedoms to
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assume values and show discontinuities (compare Eqs. (6.3) and (6.117) for
the values of physicality of characteristic functions and CM2(τ) of Eqs. (6.10)
and (6.120) for the definition of Markovian discontinuities). Nonetheless, the
evaluation of p(ZNM |ZM) does not require any particular additional technique
compared to the depolarizing case.

Generalizing this approach to convex set of dynamics of similar forms
is straightforward. Some examples are (i) X and Y obtained by replacing
in Eq. (6.115) σz with the Pauli matrix, respectively, σx and σy and, more
in general, (ii) N obtained by replacing in Eq. (6.115) σz with any σn =

nxσx + nyσy + nzσz where (nx, ny, nz) is a unit real vector.
Finally, we discuss the option of evaluating p(ZNM |DM,EM), namely the

minimum value of p in Eq. (6.23) for which it is possible to make a non-
Markovian dephasing evolution a Markovian evolution through the incoherent
mixing with a Markovian depolarizing evolution. We notice that while Z and
D are convex sets, this is not the case for Z ∪ D. Indeed, it is easy to check
that (1 − p)ZNM + pDM is neither a dephasing nor a depolarizing evolution.
Studying the Markovian conditions that apply to the evolutions coming from
convex sums of this type, namely the evolutions in the convex hull of Z∪D, is
beyond the scope of this chapter.

6.9 Discussion

We introduced a non-Markovianity measure inspired by the intuitive concept
for which, in order to consider an evolution highly non-Markovian, it has to be
difficult to make it Markovian via incoherent mixing with Markovian dynamics.
We showed how to evaluate this measure in the case of depolarizing evolutions
in arbitrary dimensions and we discussed the case of dephasing evolutions for
qubits.

Analytical results are derived for evolutions that satisfy precise continuity
and regularity criteria, while we proposed a numerical approach for generic
depolarizing evolutions. In particular, in case of a continuous non-Markovian
depolarizing evolution DNM

C with characteristic function f NM
C (t):

• The measure of non-Markovianity p(DNM
C |DM) can be obtained by only

considering continuous Markovian depolarizing evolutions, namely

p(DNM
C |DM) = p(DNM

C |DM
C ) ;

• There is an analytical relation between p(DNM
C |DM) and ΓNM = ∆NM +

|ΘNM |, where ∆NM and ΘNM are the sums of the non-Markovian gaps
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that f NM
C (t) shows while being, respectively, positive and negative. We

showed that

p(DNM
C |DM) =

ΓNM

1 + ΓNM ;

• We derived the form of the optimal Markovian characteristic function
hM

C (t) that makes the incoherent mix f (p)(t) = (1 − p) f NM
C (t) + p hM

C (t)
Markovian for p = p(DNM

C |DM) (see Eqs. (6.84) and (6.85)).

In case of non-continuous depolarizing evolutions DNM:

• We identified a class of non-continuous depolarizing evolutions for which
p(DNM |DM) is given by the same relation derived in the continuous case
(see Section 6.6);

• We provided a numerical procedure that allows to evaluate p(DNM |DM)
for any non-continuous depolarizing evolution DNM (see Section 6.7.2).

Finally, we studied dephasing evolutions for qubits and showed that the evalu-
ation of our non-Markovianity measure is similar to the depolarizing case (see
Section 6.8).

It would be interesting to generalize this analysis to other (even non-convex)
classes of evolutions with particular symmetries, e.g. generalized amplitude
damping channels, higher-dimensional dephasing evolutions and non-unital evo-
lutions. Moreover, a proof for conjecture (6.26) is missing. In this direction,
it would be interesting to study the value of p(ZNM |DNM,EM) for generic de-
phasing non-Markovian evolutions and compare it with p(ZNM |ZM).
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Chapter 7

Conclusions and outlook

A realistic approach to the description of evolving quantum systems has to
include the interaction with the corresponding surrounding environment. We
saw that there exist two dynamical regimes for open quantum systems (OQS),
namely Markovian and non-Markovian. Differently from the Markovian regime,
non-Markovian evolutions allow obtaining a variety of information backflows,
where we put particular emphasis on the possibility to witness bipartite corre-
lation backflows. The study of these phenomena is fundamental for different
reasons. From a theoretical point of view, it is needed to understand the precise
relation between observables and initializations, e.g. particular initial states
or ancillary systems, that have to be considered in order to obtain backflows
whenever a generic class of non-Markovian evolutions is studied. Moreover,
also the advantages that can be obtained in experimental setups are relevant.
Indeed, non-Markovian effects can be particularly useful in many branches of
quantum information technologies, from the possibility to achieve longer co-
herence times to the formulation of security protocols. Hence, the possibility
to precisely engineer environments and the corresponding interactions with our
quantum systems is a major challenge that needs to be tackled.

We analyzed a technique to quantify the potential of non-Markovian evolu-
tions to provide different information backflows, namely through the introduc-
tion of non-Markovianity measures. As we saw, this technique can be also used
to study other features, such as the non-convex geometries of Markovian and
non-Markovian evolutions.

While in this thesis we contributed to the study of non-Markovian evolu-
tions defined over finite-dimensional quantum systems, we did not consider
infinite-dimensional cases. The study of generic non-Markovian evolutions for
continuous variable systems results particularly difficult to approach. Neverthe-
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less, the relevant subset of Gaussian evolutions recently proved to be a promins-
ing and prolific starting point to tackle this topic.

In this chapter we review our main contributions to these topics and we
individuate possible future research lines.

Witnessing non-Markovianity through correlations

We addressed the characterization of non-Markovian backflows from the point
of view of correlation measures revivals in bipartite systems. The bipartition
considered throughout this analysis consisted in the evolving OQS and an an-
cillary system. We approached this topic by deriving properties common to
a vast class of measures. We showed that non-Markovian effects in single-
parameter evolutions, e.g. depolarization, dephasing or amplitude damping,
always provide backflows for continuously differentiable correlations that are
not time-independent on the image of the preceding evolution.

We followed by focusing on two of the mostly used quantum correlations:
entanglement and quantum mutual information (QMI). We started by showing
that a class of entanglement breaking evolutions do not allow entanglement
backflows and we provided a corresponding dynamical example. For what
concerns QMI, we showed that we can always obtain QMI backflows when
the qubit evolution is essentially non-Markovian, namely not even P-divisible.
Then, we followed by studying the relation between entanglement in the ini-
tial bipartition and the potential of QMI to provide backflows and we proved
that maximally entangled states are not always optimal. Finally, we showed
in which cases non-Markovian evolutions cannot be witnessed through back-
flows of QMI and we gave an explicit example of such an evolution. Among
the different evolutions studied, we made use of the newly introduced quasi-
eternal non-Markovian evolutions, which generalize the well-known eternal
non-Markovian model.

There are many possible paths that could lead to interesting extensions of
our results. A first interesting topic consists in studying the witnessing potential
of correlations when the ancilla has a dimension larger than the OQS. While
this approach cannot lead to any improvement when entanglement measures
are studied, QMI may provide backflows for a wider class of non-Markovian
evolutions.

A final goal is to exploit these correlation backflows in computational and/or
communication quantum protocols and quantify the advantages over the Marko-
vian strategies. Indeed, one of the major recent lines of research is given by the
formulation of quantum protocols where backflows are exploited to obtain per-
formance advantages.
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A correlation measure witnessing almost-all non-Markovian evolutions

We introduced a new correlation measure that provides backflows for almost-all
non-Markovian evolutions. The definition of this measure enforces the intuitive
idea that, if Alice an Bob share a poorly correlated state, the former can only
induce scarcely distinguishable effects on the latter system and vice-versa. We
show that maximally entangled states are maximally correlated also with re-
spect to this measure and at the same time classically correlated systems do not
necessarily show minimal values. The actions allowed by one party to influ-
ence the second share of the bipartition are the newly introduced maximally
entropic measurements, where each outcome has the same occurrence proba-
bility. We showed that this measure is able to provide backflows for almost-all
non-Markovian evolutions, where Alice owns an ancillary qubit and Bob’s sys-
tem consists in the evolving OQS and an ancilla. In order to do so, we also
showed how to construct the initial probe states that have to be considered in
this witnessing process. Interestingly, these initial states are separable and as
close an needed to uncorrelated states. Finally, we showed how to apply our
technique to a quasi-eternal non-Markovian evolution.

A major challenge is to explore the non-Markovian witnessing potential of
other correlation measures when two ancillas are deployed together with the
OQS, namely as we did in this work. Recently, it has been shown that this set-
ting allows entanglement to witness almost-all non-Markovian evolutions and
all qubit non-Markovian evolutions [KRS20]. Since QMI quantifies both clas-
sical and quantum correlations, we expect that similar results can be obtained
also with this measure. Moreover, whether these correlations are able to wit-
ness all non-Markovian evolutions is still unknown.

In the case we choose our probe states as initializations of the bipartite
system, the computation of our correlation measure is straightforward. Hence,
interesting goals consist in finding: (i) other classes of states for which our
measure is easily computable and (ii) an efficient algorithm for generic states.

A second interesting question is whether this correlation measure can be
considered as a figure of merit in an information protocol. Our interest in its
usability come from the similarities between our correlation measure and a
form of quantum correlations called steering.

Equivalence between non-Markovianity and correlation backflows

We presented the first one-to-one relation between backflows of correlations
and non-Markovian evolutions. In other words, for every time interval where
the evolution cannot be formulated as the action of a CPTP map, there exist
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initial states and at least one correlation measure for which it is possible to
observe a correlation revival in the same time interval. In many cases this
result can be obtained by considering correlations such as QMI, entanglement
or our previously introduced measure. Nonetheless, in case of generic non-
bijective evolutions, there is no proof that these measures are able to provide
backflows. Hence, we introduced a new set of correlations that succeed also
in the non-bijective case. In order to prove their potential to witness all non-
Markovian evolutions, we formulate a class of initial states that can be used in
this procedure. We exploited a bipartition where the first share consists in the
evolving OQS and an ancilla and the second share is another ancilla.

We proved the existence of initial states that, together with our correlation
measures, are able to show backflows for any non-Markovian evolutions. Nev-
ertheless, we could not provide a constructive procedure to prepare these states.
Once we attain their form, we could understand how hard is to compute these
backflows and how we can experimentally implement this technique.

A future goal could be to extend this approach to other information quan-
tifiers. The observables that should receive the main attention are those easy
to compute and with intuitive and feasible physical realizations. An interesting
example that goes in this direction is the quantum Fisher information.

Measuring non-Markovianity via incoherent mixing with Markovian dy-
namics

In this work we showed how to measure non-Markovianity through the minimal
amount of Markovian noise that needs to be incoherently mixed with an evolu-
tion in order to make it Markovian. While this approach mimics the concept of
robustness used to measure entanglement, in this case the non-convexity of the
Markovian set makes this approach more intricate. Indeed, whenever we add
some Markovian noise to an evolution that is Markovian in a particular time in-
terval, we have to take care not to generate new non-Markovian features in the
same time interval. Notice that the non-convexity of this set is also the reason
why a resource theory of non-Markovian evolutions cannot be formulated as
for other resources, e.g. entanglement.

We focused on the study of depolarizing evolutions and we showed how
to evaluate our measure by making the assumption that the Markovian depo-
larizing evolutions are those that can make Markovian a non-Markovian de-
polarizing evolution with the highest efficiency. We obtained analytical results
for all continuous (or with discontinuities of a certain class) depolarizing evolu-
tions, where the value of the measure assumes an intuitive meaning. We tackled
the generic case of non-continuous depolarizing evolutions and we provided a
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computational procedure that reduces a minimization problem defined over an,
in general, infinite dimensional set into a minimization over a finite number of
parameters. Finally, we discussed the dephasing case in order to show how to
generalize our approach to other classes of evolutions.

In this work we studied how to make a non-Markovian evolution belong-
ing to a well-structured set Markovian via incoherent mixing with Markovian
evolutions. We conjectured that in different instances the Markovian evolution
that accomplishes this task with the maximum efficiency belongs to the same
structured set. A first interesting goal would be to prove our conjecture, namely
understand for which classes of evolutions it can be considered valid. It is in-
tuitive that non-convex sets of evolutions, such as amplitude damping, cannot
satisfy this conjecture. Moreover, it is also plausible that the convexity of a
given set of evolutions cannot be enough to consider this conjecture true. For
instance, by considering a convex subset inside the depolarizing evolutions it
seems intuitive that our conjecture would not hold true. Hence, it would be
interesting to find minimal conditions for convex sets of evolutions for which
this conjecture can be confirmed.

The measure of non-Markovianity that we introduced is not a proper dis-
tance in the set of evolutions. Indeed, instead of finding the minimal distance
between our non-Markovian evolution and Markovian evolutions, we look for
the Markovian evolution that has the largest distance from our non-Markovian
evolution which at the same time makes it Markovian through a minimal mix-
ing. Hence, an interesting approach would be to formulate a non-Markovianity
measure that is purely geometrical in the set of evolutions.
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Appendix A

Appendix of Chapter 3

A.1 Nonzero time derivatives of initially zero eigenval-
ues of rank one matrices for non-unitary single pa-
rameter maps

Let ρ(t) be a positive semidefinite Hermitian matrix. Consider an eigenvalue
λk(t) of ρ(t) and its corresponding normalized eigenvector uk(t) in a scenario
where ρ(t) evolves in time. In order to make the notation lighter, the time-
dependence of these quantities will not be made explicit in the following equa-
tions. By definition it holds that λk = u†kρuk. The time derivative of λk is

dλk

dt
=

du†k
dt

ρuk + u†kρ
duk

dt
+ u†k

dρ
dt

uk = λk

du†k
dt

uk + u†k
duk

dt

 + u†k
dρ
dt

uk.

(A.1)

Since uk is normalized, namely u†kuk = 1 for all t, it follows that
du†k
dt uk +

u†k
duk
dt = 0. If the evolution of ρ is described by a continuously differentiable

family of dynamical maps so that dρ
dt = d

ds Vt,s(ρ)|s=t = Lt(ρ) it follows that
dλk
dt = u†k Lt(ρ)uk.

Next consider the special case where ρ is a rank one positive semidefinite
trace one n × n matrix and consider its block diagonal form.

ρ =

(
1 0
0 0

)
, (A.2)
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where 1 represents the 1 × 1 block corresponding to the nonzero eigenvalue 1
and 0 represents the n × 1, 1 × n, and n × n zero blocks. We want to investigate
d
ds Vt,s(ρ)|s=t = Lt(ρ) for the case of single parameter evolution. In particular we
want to study the projection of Lt(ρ) onto the zero-eigenspace of ρ.

First we consider the unitary part of Lt. Let P0 be the projector onto the
zero eigenspace of ρ. One easily finds that P0[H, ρ]P0 = 0 for any H.

Then we consider (GkρG†k −
1
2 {G

†

kGk, ρ}) and express the matrix Gk on the
same block form as ρ, namely

Gk =

(
Ak Bk

Ck Dk

)
, (A.3)

where Ak is the 1 × 1 block. The projection of (GkρG†k −
1
2 {G

†

kGk, ρ}) onto the
zero eigenspace of ρ is then

P0

(
GkρG†k −

1
2

{
G†kGk, ρ

})
P0 = CkC

†

k . (A.4)

The matrix CkC
†

k is clearly Hermitian and positive semidefinite. It follows that

P0LtP0 = γ(t)
∑

k

CkC
†

k , (A.5)

is also a positive semidefinite matrix if γ(t) > 0 and negative semidefinite if
γ(t) < 0. Moreover, P0LtP0 is zero if and only if Ck is zero for every k. Hence,
if and only if for each k the lower off-diagonal n×1 block of Gk is zero in every
basis will there be no rank one ρ such that P0LtP0 is nonzero. In this case Gk is
proportional to the identity which implies (GkρG†k −

1
2 {G

†

kGk, ρ}) = 0 for every
ρ. Thus, for any Lt with non-zero dissipative part there exist at least one rank
one ρ such that the time derivative of the initial zero-eigenspace is nonzero.

To analyze the special case when ρAB = φ+
AB where φ+

AB is the maximally
entangled state on HA ⊗ HB and dim(HA) = dim(HB) = n we note that the
condition Ck = 0 can be formulated as GkρAB = ρABGkρAB. In the following,
in order to make the notation lighter, we simply write ρ and φ+. We write
φ+ = (1/n)

∑
i j Ei j ⊗ Ei j where Ei j is the matrix with the i j-th element equal to

1 and all other elements equal to zero. We write Gk = 1 ⊗ Fk where Fk is any
matrix. Then

Gkρ =
1
n

∑
i j

Ei j ⊗ FkEi j

ρGkρ =
1
n2

∑
i jl

EliEi j ⊗ EliFkEi j =
Tr(Fk)

n2

∑
jl

El j ⊗ El j.

(A.6)
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These two expressions are equal if and only if FkEi j = Tr(Fk)/nEi j for each
i j. Since the matrices Ei j form a basis for the matrix space it follows that this
relation is satisfied for all Ei j if and only if Fk ∝ 1. Thus, Gkρ = ρGkρ if and
only if Gk ∝ 1 ⊗ 1. As noted before this implies (GkρG†k −

1
2 {G

†

kGk, ρ}) = 0
for every ρ. Considering Vt,s(φ+

n ) we can now conclude that for any Lt with
non-zero dissipative part there is an eigenvalue of Vt,s(φ+) that is zero for s = t
but has a non-zero time derivative.

A.2 Proof of Proposition 9

Let M(ā) be a correlation measure that is an analytic function of the coordinates
ai in a point ā corresponding to a state that at time t is in a product state ρS A and
let Vt,s be a continuously differentiable intermediate map for all s ≤ t. In order
to make the notation lighter, we simply write ρ. Consider a family of states
ρε = ρ + εχ where χ is Hermitian. The Taylor expansion of M(ρε) in ε around
ε = 0 is

M(ρε) =
∂M(ρε)
∂ε

∣∣∣∣∣∣
ε=0
ε +

∂2M(ρε)
2∂ε2

∣∣∣∣∣∣
ε=0
ε2 + . . . ,

(A.7)

where we have used that M(ρε)|ε=0 = 0. Since M ≥ 0 on S (HS A) it follows that
the first order term of the expansion must be zero if ρ ∈ int[S (HS A)]. Otherwise
there would be a sufficiently small ε for which both ρε , ρ−ε ∈ int[S (HS A)] and
either M(ρε) or M(ρ−ε) was negative. Note that if ρ is not in int[S (HS A)] this
argument cannot be made since M could be negative outside S (HS A).

Assume that ρ ∈ int[S (HS A)] and consider the Taylor expansion of M[Vt,s⊗

I(ρε)] in ε around ε = 0

M[Vt,s ⊗ I(ρε)] =
∂M[Vt,s ⊗ I(ρε)]

∂ε

∣∣∣∣∣∣
ε=0
ε +

∂2M[Vt,s ⊗ I(ρε)]
2∂ε2

∣∣∣∣∣∣
ε=0
ε2 + . . . , (A.8)

where we have used that M(Vt,s ⊗ I(ρε))|ε=0 = 0. Since M ≥ 0 it follows again
that the first order term of the expansion must be zero. Thus ∂M[(Vt,s⊗I(ρε )]

∂ε

∣∣∣
ε=0 =

0 for all s. Next, consider the Taylor expansion of the derivative d
ds M[Vt,s ⊗
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I(ρε)]|s=t in ε

d
ds

M[Vt,s ⊗ I(ρε)]

∣∣∣∣∣∣
s=t

= ε
∂

∂ε

d
ds

M[Vt,s ⊗ I(ρε)]

∣∣∣∣∣∣
s=t

∣∣∣∣∣∣
ε=0

+ε2 ∂2

2∂ε2

d
ds

M[Vt,s ⊗ I(ρε)]

∣∣∣∣∣∣
s=t

∣∣∣∣∣∣
ε=0

+ . . . ,

(A.9)

where we have used that d
ds M(Vt,s ⊗ I(ρε))

∣∣∣
ε=0 = 0.

From the analyticity of M and the continuous differentiability of Λt it fol-
lows that d

dt M, d
dε M and d

dt
d
dε M exist and that d

dt
d
dε M is continuous as a function

of ε and t. Therefore, it holds that d
dε

d
dt M exist and d

dε
d
dt M = d

dt
d
dε M [Rud76].

It follows that the first order term in the Taylor expansion is zero. Since this
holds for every χ, it follows that every product state in int[S (HS A)] is a critical
point of M.

A.3 Proof of Proposition 10

We begin by considering the following two propositions.

Proposition 11. Let Λ be a qubit evolution. If the set of stationary states in
S (HS ) is of non-zero dimension, Λ is unital.

Proof. Assume that Λt(1S ) = 1S + θ and Λt(ρ1) = ρ1, Λt(ρ2) = ρ2 where
ρ1 , ρ2 belong to S (HS ). It follows that Λt(1S +x(ρ1−ρ2)) = 1S +x(ρ1−ρ2)+θ.
Note that x can be chosen such that 1S ± x(ρ1 − ρ2) are rank one. Since these
rank one qubit states are antipodal points on the Bloch ball S (HS ) it follows
that unless θ = 0 at least one of 1S + x(ρ1−ρ2) + θ and 1S − x(ρ1−ρ2) + θ is not
positive semidefinite. Thus if the set of stationary states has dimension greater
than zero, it follows that Λt is unital. �

Proposition 12. The set of stationary states of any qubit evolution Λ has a
dimension different from 2.

Proof. Assume that the dimension of the set of stationary states in S (HS )
is 2. From Prop. 11 follows that Λt is unital. Without losing generality
we assume that Λt(σz) = σz and Λt(σy) = σy and Λt(σx) = aσx + bσy +

cσz. The Choi matrix of Λt has eigenvalues ±
√

1 − 2a + a2 + b2 + c2 and
2 ±

√
1 + 2a + a2 + b2 + c2. Therefore, Λt is CP if and only if a = 1 and

b = c = 0, namely if an only if Λt = IS . In this case the set of stationary states
has dimension 3, contradicting the assumption. �
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Next, consider a family of continuously differentiable dynamical qubit maps
Λ and a correlation measure M. If the set of stationary states in S (HS ) is non-
empty its dimension is either zero or non-zero. If the dimension is zero, the set
of stationary states in S (HS A) is a set of product states. Then it follows from
Prop. 9 that such a stationary state is a critical point if M is analytical at the
state and the state is in the interior of S (HS A). If the dimension is 3 all states
are stationary points and dM

dt = 0 on all of S (HS A). Thus all states are critical
points. Moreover, by Prop. 12 the dimension is never 2. The remaining case
is a one-dimensional set of stationary states. Without loss of generality, we can
express any state in this set as ρS A = 1S ⊗ρA+σz⊗χA for some ρA, χA ∈ B(HA).

Now, assume that ρS A is in the interior of S (HS A) and that the correlation
measure M is an analytic function at ρS A. Then consider the family of states
ρε = ρS A + εχA ⊗ χS parameterized by ε, where χS , χA are Hermitian and
Tr(χS ⊗ χA) = 0. If χS = σz or χS = 1S , it follows that ρε is also a stationary
state and thus ∂

∂ε
d
dt M(ρε , t)

∣∣∣
ε=0 = 0. If χS = σx or χS = σy there exists a local

unitary operation, σz ⊗ 1A, that commutes with ρS A but anticommutes with
χS ⊗ χA. Since M(ā, t) is invariant under local unitary operations it follows
that M(ρε) = M(ρ−ε). Thus M(ρε) is an even analytic function in ε and it
follows that ∂

∂ε M(ρε , t)
∣∣∣
ε=0 = 0. Since the σx, σy, σz and 1S span B(HS ) we can

conclude that ∂
∂ε M(ρε , t)

∣∣∣
ε=0 = 0 for every χS ⊗ χA. Moreover, ∂

∂ε M(ρε , t)
∣∣∣
ε=0 =

0 holds for any t. Therefore, we can conclude that d
dt

∂
∂ε M(ρε , t)

∣∣∣
ε=0 = 0. By

the analyticity of M and the continuous differentiability of Λt, it follows that
d
dt M, d

dε M and d
dt

d
dε M exist and that d

dt
d
dε M is continuous as a function of ε and

t. Therefore, it follows that d
dε

d
dt M exist and d

dε
d
dt M = d

dt
d
dε M [Rud76]. We

can conclude that all first derivatives of d
dt M(ā, t) with respect to ā equal zero

for states in the interior of S (HS A) that are stationary under a continuously
differentiable Λ.
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Appendix B

Appendix of Chapter 4

B.1 The set of maximally entropic measurements is non-
empty

We explicitly construct an element {Pi}i of Π(ρ) for an arbitrary state ρ. The
method that we use should convince the reader that there are innumerable other
ways to construct a ME-POVM with any number of outputs.

By definition {Pi}
n
i=1 ∈ Π(ρ) if the output ensemble E(ρ, {Pi}i) = {pi, ρi}i

is characterized by pi = 1/n. In general, we have that pi = Tr
[
ρPi

]
. Using

an orthogonal decomposition of ρ, we can always write it as ρ =
∑d

i=1 πi|i〉〈i|,
where {|i〉}i is an orthonormal basis of the Hilbert space H . The condition∑d

i=1 πi = 1 implies that there exist an i, such that S (i) ≡
∑i

i=1 πi > 1/2 and
S (i − 1) ≡

∑i−1
i=1 πi ≤ 1/2. We consider the following class of 2-output POVM

that depends on a real parameterω ∈ [0, 1]: P1(ω) =
∑i−1

i=1 |i〉〈i|+ω|i〉〈i| , P2(ω) =

(1−ω)|i〉〈i|+
∑d

i=i+1
|i〉〈i| .We evaluate p1 for a general value of ω and we obtain:

p1(ω) =
∑i−1

i=1 πi +ωπi = S (i−1)+ωπi . It is clear that, since p1(0) = S (i−1) ≤
1/2 and p1(1) = S (i) > 1/2, the value ω = ω ≡ (1/2 − S (i − 1))/πi, gives the
uniform distribution p1,2(ω) = 1/2 and consequently {Pi(ω)}i ∈ Π(ρ), i.e„ is a
ME-POVM for ρ.

Finally, we point out that in Appendix C.1 we tackle this problem by con-
sidering a different approach that allows to obtain the same result. In particular,
we show that for any ρ and n there always exist a mapping that allows to obtain
a n-output ME-POVM from a generic n-output POVM.
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B.2 Monotonic behavior of C and C(n) under local op-
erations

Firstly, we prove that CA is monotone under local operations of the form ΛA ⊗

IB, and secondly we consider the case where the local operation is IA ⊗ ΛB,
where ΛA (ΛB) is a CPTP map on A (B) and IA (IB) is the identity map on A
(B). The proof for CA easily generalizes to CB and C. Finally, we prove that
the same monotonicity property holds for C(n) for any n ≥ 2. We denote the set
of ME-POVMs acting on A for the state ρAB by ΠA(ρAB) and similarly for B.

In order to show the effect of the application of a local operation of the form
ΛA⊗IB on CA(ρAB), we look at ΠA(ρAB) in a different way. Each element of this
collection is a ME-POVM for ρAB, namely they generate sets of equiprobable
ensembles of states (EES) from ρAB. In fact

CA(ρAB) ≡ max
{PA,i}i∈ΠA(ρA)

Pg
(
E

(
ρAB,

{
PA,i

}
i

))
−

1
2
. (B.1)

is a maximization over all the possible EES that we can generate from ρAB with
a measurement procedure on A.

The effect of the first local operation that we consider is: ρ̃AB = ΛA ⊗

IB (ρAB) =
∑

k (Ek ⊗ 1B) · ρAB · (Ek ⊗ 1B)† , where {Ek}k is the set of the
Kraus operators that defines ΛA. What is the relation between ΠA(ρAB) and
ΠA(ρ̃AB)? Given an n-output ME-POVM for ρ̃AB, namely {PA,i}i ∈ ΠA(ρ̃AB),
the probabilities and the states of the output ensemble E

(
ρ̃AB, {PA,i}i

)
are p̃i =

Tr
[
ρ̃AB · PA,i

]
= 1/n and ρ̃B,i = TrA

[
ρ̃AB · PA,i

]
/p̃i. Now we look at the term

TrA
[
ρ̃ABPA,i

]
= Tr

[
ΛA ⊗ IB (ρAB)PA,i

]
= TrA

∑
k

(Ek ⊗ 1B)ρAB(E†k ⊗ 1B)PA,i


= TrA

ρAB

∑
k

(E†k ⊗ 1B)PA,i(Ek ⊗ 1B)

 = TrA
[
ρABΛ∗A(PA,i)

]
= TrA

[
ρABP̃A,i

]
,

and we rewrite the output ensemble elements as: p̃i = Tr[ρABP̃A,i] = 1/n
and ρB,i = TrA[ρABP̃A,i]/p̃i. This ensemble is an EES. Next we show that:
{P̃A,i}i = {Λ∗A(PA,i)}i = {

∑
k E†k PA,iEk}i is a POVM. The elements of {P̃A,i}i

sum up to the identity:
∑

i P̃A,i =
∑

k,i E†k PA,i Ek =
∑

k E†k
(∑

i PA,i
)

Ek =∑
k E†k Ek = 1B , and they are positive operators: P̃A,i =

∑
k E†k PA,i Ek =∑

k E†k M†A,i MA,i Ek = M̃†A,iM̃A,i , where the decomposition PA,i = M†A,iMA,i

exists since PA,i is positive-semidefinite and M̃A,i =
∑

k MA,i Ek. It follows
that, {P̃A,i}i is a ME-POVM for ρAB, namely {P̃A,i}i ∈ ΠA(ρAB). Thus, for
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every ME-POVM {PA,i}i ∈ ΠA(ρ̃AB) for ρ̃AB, there is a ME-POVM {P̃A,i}i ∈

ΠA(ρAB) for ρAB, such that the output ensembles are identical: E(ρ̃AB, {PA,i}i) =

E(ρAB, {P̃A,i}i). Thus, any EES that can be generated from ρ̃AB, is obtainable
from ρAB as well ⋃

{PA,i}i∈ΠA(ρ̃AB)

E
(
ρ̃AB, {PA,i}i

)
⊆

⋃
{PA,i}i∈ΠA(ρAB)

E
(
ρAB, {PA,i}i

)
. (B.2)

Finally, because CA(ρAB) could be thought as the maximum guessing probabil-
ity of the EESs that can be generated from ρAB (see Eq. (B.1)), we conclude
that

CA (ρAB) ≥ CA (ΛA ⊗ IB (ρAB)) , (B.3)

for any state ρAB and CPTP map ΛA.
Fixing the number n of outputs of the ME-POVMs considered in (B.1), Eq.

(C.5) becomes: ⋃
{PA,i}

n
i=1∈ΠA(ρ̃AB)

E
(
ρ̃AB, {PA,i}i

)
⊆

⋃
{PA,i}

n
i=1∈ΠA(ρAB)

E
(
ρAB, {PA,i}i

)
. (B.4)

Therefore, it follows that:

C(n)
A (ρAB) ≥ C(n)

A (ΛA ⊗ IB (ρAB)) , (B.5)

for any integer n ≥ 2, state ρAB and CPTP map ΛA.
Next we show the property of monotonicity of CA(ρAB) under the action of

local operations of the form IA ⊗ ΛB. We find that the collection of the ME-
POVMs for ρ̃AB = IA ⊗ ΛB (ρAB), namely ΠA(ρ̃AB), coincides with ΠA(ρAB).

In order to prove this, we apply a general POVM {PA,i}i on both ρAB and ρ̃AB

and we show that the respective output ensembles are defined by the same prob-
abilities. We can write pi = Tr

[
ρABPA,i

]
and p̃i = Tr

[
IA ⊗ ΛB (ρAB)PA,i

]
=

Tr
[
ρABPA,i

]
, where the last step uses the trace-preserving property of the su-

peroperator IA ⊗ ΛB. Consequently, pi = 1/n if and only if p̃i = 1/n and
{PA,i}i ∈ ΠA(ρAB) if and only if {PA,i}i ∈ ΠA(ρ̃AB)

ΠA(ρAB) = ΠA(ρ̃AB) . (B.6)

Given a ME-POVM for both ρAB and ρ̃AB, we relate the output states

ρ̃B,i = ΛBTrA
[
ρABPA,i

]
/pi = ΛB(ρB,i) . (B.7)

From Eq. (C.8) and the definition of the guessing probability, it follows that

Pg
({

pi, ρB,i
}
i

)
≥ Pg

({
pi, ΛB(ρB,i)

}
i

)
, (B.8)
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and, considering Eq. (C.7), Eq. (C.8) and Eq. (C.9)

CA (ρAB) ≥ CA (IA ⊗ ΛB (ρAB)) , (B.9)

that is true for any state ρAB and CPTP map ΛB.
From Eq. (C.7) it follows the collection of the n-output ME-POVMs does

not change if we apply a CPTP map ΛB on ρAB. Therefore, since Eq. (C.9) is
true for any number of outputs:

C(n)
A (ρAB) ≥ C(n)

A (IA ⊗ ΛB (ρAB)) , (B.10)

for any integer n ≥ 2, state ρAB and CPTP map ΛB.
We underline that from this proof we automatically obtain the invariance

under local unitary transformations of C and C(n) for any n ≥ 2.

B.3 Proof that CA(ρ(τ)
AB) ≥ C(2)

B (ρ(τ)
AB)

In this appendix (where from now on we omit the time dependence of ρ(τ)
AB(t),

ρ′(τ)
B (t) and ρ′′(τ)

B (t)) we show that CA(ρ(τ)
AB) ≥ C(2)

B (ρ(τ)
AB), where C(2)

B (ρ(τ)
AB) is

defined by

C(2)
B (ρ(τ)

AB) = max
{PB,i}i∈Π

(2)
B

(
ρ(τ)

AB

)Pg
(
E

(
ρ(τ)

AB,
{
PB,i

}
i

))
−

1
2
,

where Π
(2)
B (ρ(τ)

AB) is the set of the 2-output ME-POVMs acting on B. In Ap-
pendix B.4 we show that C(2)

B (ρ(τ)
AB) = CB(ρ(τ)

AB) and this completes the proof that
CA(ρ(τ)

AB) ≥ CB(ρ(τ)
AB).

We apply a general but fixed 2-output ME-POVM for ρ(τ)
AB, where now the

measured system is B: {P(2)
B,i}i = {PB, PB} ∈ ΠB(ρ(τ)

AB), where PB = 1B − PB.

The output ensemble E(ρ(τ)
AB, {P

(2)
B,i}i) = {pA,i, ρA,i}i is composed by an uniform

distribution (by definition of ME-POVM) and states in the following form

pA,1 =
1
2

TrB
[(
ρ′(τ)

B + ρ′′(τ)
B

)
PB

]
=

1
2
, (B.11)

pA,2 =
1
2

TrB
[(
ρ′(τ)

B + ρ′′(τ)
B

)
PB

]
=

1
2
, (B.12)

ρA,1 = |0〉〈0|ATrB
[
ρ′(τ)

B PB
]

+ |1〉〈1|ATrB
[
ρ′′(τ)

B PB
]
, (B.13)

ρA,2 = |0〉〈0|ATrB
[
ρ′(τ)

B PB
]

+ |1〉〈1|ATrB
[
ρ′′(τ)

B PB
]
. (B.14)
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Since E(ρ(τ)
AB, {P

(2)
B,i}i) is an equiprobable ensemble of two states, we obtain that

Pg(E(ρ(τ)
AB, {P

(2)
B,i}i)) = (2 + ||ρA,1 − ρA,2||1)/4. Hence, with Eqs. (B.11)-(B.14),

we can write it as∣∣∣∣∣∣∣∣ |0〉〈0|ATrB
[
ρ′(τ)

B ∆PB
]

+ |1〉〈1|ATrB
[
ρ′′(τ)

B ∆PB
]∣∣∣∣∣∣∣∣

1

=
∣∣∣∣TrB

[
ρ′(τ)

B ∆PB
]
| + |TrB

[
ρ′′(τ)

B ∆PB
]∣∣∣∣ ,

where ∆PB = PB − PB. Hence

||ρA,1 − ρA,2||1 = max
±

∣∣∣∣TrB
[
(ρ′(τ)

B ± ρ′′(τ)
B )∆PB

]∣∣∣∣ .
Using Eq. (B.11) and Eq. (B.12) we see that |TrB

[
(ρ′(τ)

B + ρ′′(τ)
B )∆PB

]
| =

|TrB
[
(ρ′(τ)

B + ρ′′(τ)
B )PB

]
− TrB

[
(ρ′B + ρ′′(τ)

B )PB
]
| = 2|pA,1 − pA,2| = 0 . Hence,

we have that ||ρA,1 − ρA,2||1 is equal to∣∣∣∣ TrB
[
(ρ′(τ)

B − ρ′′(τ)
B )(2PB − 1B)

]∣∣∣∣ = 2
∣∣∣∣TrB

[
(ρ′(τ)

B − ρ′′(τ)
B )PB

]∣∣∣∣ ,
from which follows that

C(2)
B (ρ(τ)

AB) = max
{P(2)

B,i}i∈ΠB(ρ(τ)
AB)

∣∣∣∣TrB
[
(ρ′(τ)

B − ρ′′(τ)
B )PB

]∣∣∣∣
2

. (B.15)

To compare C(2)
B (ρ(τ)

AB) with CA(ρ(τ)
AB), we write

CA(ρ(τ)
AB) = Pg({{pA,1,2 = 1/2}i, {ρ

′(τ)
B , ρ′′(τ)

B }}) −
1
2

= max
{PB,i}i

TrB
[
ρ′(τ)

B PB + ρ′′(τ)
B PB

]
2

−
1
2

= max
{PB,i}i

TrB
[
(ρ′(τ)

B − ρ′′(τ)
B )PB

]
2

= max
{PB,i}i

∣∣∣∣TrB
[
(ρ′(τ)

B − ρ′′(τ)
B )PB

]∣∣∣∣
2

.

The only difference between C(2)
B (ρ(τ)

AB) and CA(ρ(τ)
AB) is in the maximization

procedure: in the former we maximize only over the 2-output ME-POVMs
ΠB(ρ(τ)

AB), while in the latter we can pick any 2-output POVM: CA(ρ(τ)
AB(t)) ≥

C(2)
B (ρ(τ)

AB(t)) follows as a natural consequence.
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B.4 Proof that CB(ρ(τ)
AB) = C(2)

B (ρ(τ)
AB)

In this Appendix, in contrast to Appendix B.3, we consider the action of any
ME-POVM over B for ρ(τ)

AB. We want to show that for each ME-POVM {P(n)
B,i}i

that we can consider in CB(ρ(τ)
AB), where i runs from 1 to n > 2, we can al-

ways find at least one 2-output ME-POVM acting on B, namely {PB,1, PB,2} ∈

ΠB(ρ(τ)
AB), that provides an ensemble with a higher value of Pg(·). We recall that,

if E = {pi, ρi}i is a generic ensemble of n states defined on S (H), whereH is a
generic finite dimensional Hilbert space, the guessing probability of E is

Pg(E) ≡ max
{Pi}i

n∑
i=1

piTr
[
ρiPi

]
, (B.16)

where the maximization is performed over the space of the n-output POVMs
{Pi}i on S (H). Starting from a general n-output ME-POVM {P(n)

B,i}i, we con-

struct the corresponding 2-output ME-POVM {PB,1, PB,2} ∈ ΠB(ρ(τ)
AB) that ac-

complishes this task.
For every given n-output ME-POVM {P(n)

B,i}i for ρ(τ)
AB, we can generate an

equiprobable ensemble of states (EES) of the form E(ρ(τ)
AB, {P

(n)
B,i}i) = {{pi =

1/n}, {ρA,i}}i. The guessing probability of this ensemble, which we denote by
P(n)

g = Pg(E(ρ(τ)
AB, {P

(n)
B,i}i)), is

P(n)
g = Tr

ρ(τ)
AB

 n∑
i=1

P
(n)
A,i ⊗ P(n)

B,i

 , (B.17)

where {P
(n)
A,i}i is a POVM that provides the maximum in Eq. (B.16). If n is even

we consider the following 2-output POVM

P(2)
B,1 =

∑
i∈E1

P(n)
B,i , P(2)

B,2 =
∑
i∈E2

P(n)
B,i , (B.18)

where E1 and E2 are any two sets of n/2 indices such that E1∪E2 = {1, 2, . . . , n}.
This structure guarantees that Eq. (B.18) is a 2-output ME-POVM for ρ(τ)

AB. We
compare Eq. (B.17) with the guessing probability of the output ensemble that
we obtain applying Eq. (B.18) on ρ(τ)

AB

P(2)
g = max

{PA,i}i=1,2
Tr

ρ(τ)
AB

 2∑
i=1

PA,i ⊗ P(2)
B,i


 ≥ Tr

ρ(τ)
AB

 2∑
i=1

P(2)
A,i ⊗ P(2)

B,i


 , (B.19)



B.4 Proof that CB(ρ(τ)
AB) = C(2)

B (ρ(τ)
AB) 209

where the POVM {P(2)
A,i}i is defined by

P(2)
A,1 =

∑
i∈E1

P
(n)
A,i , P(2)

A,2 =
∑
i∈E2

P
(n)
A,i . (B.20)

P(2)
g ≥ Tr

[
ρ(τ)

AB

(
P(2)

A,1 ⊗ P(2)
B,1 + P(2)

A,2 ⊗ P(2)
B,2

)]
= Tr

ρ(τ)
AB

 n∑
i=1

P
(n)
A,i ⊗ P(n)

B,i + Pmix
AB


= P(n)

g + Tr
[
ρ(τ)

ABPmix
AB

]
≥ P(n)

g , (B.21)

where Pmix
AB is a sum of mixed terms of the form P

(n)
A,i ⊗ P(n)

B, j with i , j, and it
provides a non-negative contribution.

On the other hand, if n is odd, we define

P(2)
B,k =

1
2

P(n)
B,x +

∑
i∈Ox

k

P(n)
B,i (k = 1, 2) (B.22)

P(2)
A,k =

1
2

P
(n)
A,x +

∑
i∈Ox

k

P
(n)
A,i (k = 1, 2) (B.23)

where Ox
1 and Ox

2 are any two sets of (n − 1)/2 indices such that Ox
1 ∪ Ox

2 =

{1, 2, . . . , n}\x (the value of x will be fixed later). We consider again Eq. (B.19),
where {P(2)

B,i}i is now given by Eq. (B.22) and and P(2)
A,i is now given by Eq.

(B.23). Since P(2)
A,i is not necessarily a POVM that maximizes Eq. (B.16) we

have the following inequality for P(2)
g

P(2)
g ≥ Tr

ρ(τ)
AB

∑
i,x

P
(n)
A,i ⊗ P(n)

B,i +
1
2

P
(n)
A,x ⊗ P(n)

B,x +
1
2

∑
i,x

P
(n)
A,i

 ⊗ P(n)
B,x + Pmix

AB


 ≥

≥ Tr

ρ(τ)
AB

 n∑
i=1

P(n)
A,i ⊗ P(n)

B,i −
1
2

P
(n)
A,x ⊗ P(n)

B,x +
1
2

∑
i,x

P(n)
A,i

 ⊗ P(n)
B,x


 =

= P(n)
g + Tr

ρ(τ)
AB

−P
(n)
A,x

2
⊗ P(n)

B,x +

∑
i,x P(n)

A,i

2
⊗ P(n)

B,x




= P(n)
g + Tr

ρ(τ)
AB

1A − 2P
(n)
A,x

2
⊗ P(n)

B,x

 ,
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where Pmix
AB represents terms that provide positive contributions to P(2)

g . We have
to find a value of x that makes the second term of the last relation positive. Let
ax and bx be the diagonal elements of P

(n)
A,x in the orthonormal basis {|0〉A, |1〉A}.

We recall that ρ(τ)
AB = (|0〉〈0|A ⊗ ρ

′(τ)
B + |1〉〈1|A ⊗ ρ

′′(τ)
B )/2 and we obtain

P(2)
g ≥P(n)

g + TrB

[(
1 − 2ax

4
ρ′B

(τ)
+

1 − 2bx

4
ρ′′(τ)

B

)
P(n)

B,x

]
, (B.24)

where the second term on the right-hand side of the inequality is definitely
positive when ax, bx ≤ 1/2. From

∑
i P

(n)
A,i = 1A follows that

∑n
i=1 ai = 1 and∑n

i=1 bi = 1. Therefore, if ax > 1/2 (bx > 1/2), then ay ≤ 1/2 (by ≤ 1/2)
for any y , x. In order to fix the value of x, we must consider that ax and bx

could be bigger than 1/2 for two different values of x: let’s say xa and xb. Even
in this “worst-case” scenario we still have n − 2 other possible choices for x
such that (1 − 2ax), (1 − 2bx) ≥ 0. We pick one of these values, and we call
it x ∈ {1, . . . , n} \ {xa, xb}. Finally, if we use x in the definition of the POVMs
{P(2)

A,i}i and {P(2)
B,i}i, from Eq. (B.24) we obtain

P(2)
g ≥ P(n)

g . (B.25)

Eqs. (B.21) and (B.25) show that, when we evaluate CB(ρ(τ)
AB), the guess-

ing probability of the ensembles generated by the n-output ME-POVMs is
never bigger than the one that we obtain if we only consider the 2-output ME-
POVMs: C(2)

B (ρ(τ)
AB) = CB(ρ(τ)

AB) . Thanks to this result we can finally say that
CA(ρ(τ)

AB(t)) ≥ CB(ρ(τ)
AB(t)) and C(ρ(τ)

AB(t)) = CA(ρ(τ)
AB(t)). This result is valid if we

consider ρ(τ)
AB, but in general it is not true.

B.5 Proof that CA(ρ(τ)
AB) = C(2)

A (ρ(τ)
AB)

When we considered CA(ρ(τ)
AB), we have seen that if the maximization over the

ME-POVMs is considered only over the 2-output ones, the maximum is ob-
tained for {Ppro j

A,i }i = {|0〉〈0|A, |1〉〈1|A}. In order to complete the proof, we need
to show that even if we consider general n-output ME-POVMs (as in the def-
inition (B.1)), we don’t get higher guessing probabilities of the corresponding
output ensembles. In other words, if we use the definition

C(2)
A (ρ(τ)

AB) = max
{PA,i}i∈Π

(2)
A

(
ρ(τ)

AB

)Pg
(
E

(
ρ(τ)

AB,
{
PA,i

}
i

))
−

1
2
,
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where Π
(2)
A (ρ(τ)

AB) contains only the 2-output ME-POVMs of ρ(τ)
AB, then CA(ρ(τ)

AB) =

C(2)
A (ρ(τ)

AB).
To see this we can make the same analysis as done in Appendix B.4 for

CB(ρ(τ)
AB) but we switch the role of A and B in Eq. (B.18) and Eq. (B.20) when n

is even and Eq. (B.22) and Eq. (B.23) when n is odd. The definitions for P(n)
g ,

P(2)
g , E1,2 and Ox

1,2 are preserved.

The guessing probability of an EES generated by a ME-POVM {P(n)
A,i}i with

an even number of outputs is

P(n)
g = Tr

ρ(τ)
AB

 n∑
i=1

P(n)
A,i ⊗ P

(n)
B,i

 ,
where {P

(n)
B,i}i is a POVM that maximizes the guessing probability in Eq. (B.16).

The 2-output ME-POVM that provides a higher guessing probability is

P(2)
A,1 =

∑
i∈E1

P(n)
A,i , P(2)

A,2 =
∑
i∈E2

P(n)
A,i . (B.26)

We define the following POVM on the system B

P(2)
B,1 =

∑
i∈E1

P
(n)
B,i , P(2)

B,2 =
∑
i∈E2

P
(n)
B,i . (B.27)

Consequently, we consider the following inequality

P(2)
g ≥ Tr

ρ(τ)
AB

∑
i=1,2

P(2)
A,i ⊗ P(2)

B,i

 = P(n)
g + Tr

ρ(τ)
AB

2∑
k=1

i, j∈Ek∑
i, j

P(n)
A,i ⊗ P

(n)
B, j

 ,
which shows that P(2)

g ≥ P(n)
g . If n is odd, we use again the technique from

Appendix B.4, where we switch the role of A and B, to obtain the inequality

P(2)
g ≥ P(n)

g + Tr

ρ(τ)
AB

1A − 2P(n)
A,x

2
⊗ P

(n)
B,x

 ,
where the right-hand side is greater than P(n)

g if x is suitably chosen. We under-
line that the results given in this section and Appendix B.3 suffice to state that
C(2)(ρ(τ)

AB) = C(2)
A (ρ(τ)

AB) ≥ C(2)
B (ρ(τ)

AB).
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Appendix C

Appendix of Chapter 5

C.1 The set of P-POVMs is non-empty

In this section we prove that ΠP(ρ) , ∅ for all states ρ and distributions P.
First, we notice that the POVM {π11, π21, . . . , πn1} is a P-POVM for all ρ.
Nonetheless, we can prove this result also by realizing a mapping that provides
a P-POVM from any given POVM {Pi}

n
i=1 outside ΠP(ρ), where in general the

outcome is different from {π11, π21, . . . , πn1}.
We start by fixing the generic distribution studied as P = {πi}

n
i=1. Hence,

suppose that pi = Tr
[
ρPi

]
, πi for two or more values of i = 1, . . . n. We

can always consider a n× n left-stochastic matrix Mi j that maps the probability
distribution {pi}

n
i=1 into P = {πi}

n
i=1 through the relation

πi =

n∑
j=1

Mi j p j for i = 1, . . . , n . (C.1)

Since Mi j is a left-stochastic matrix, Mi j ∈ [0, 1] for all i, j = 1, . . . , n and∑
i Mi j = 1 for all j = 1, . . . , n, where the latter implies that Mi j has columns

that sum up to 1. Hence, if we use Mi j to map the POVM {Pi}
n
i=1 into the set of

operators {P̃i}
n
i=1 through the relation

P̃i =

n∑
j=1

Mi jP j for i = 1, . . . , n , (C.2)

we can verify that it is a POVM. Indeed, from the property
∑n

i=1 Mi j = 1 for all
j = 1, . . . , n, it follows that

∑n
i=1 P̃i =

∑n
i=1 Pi = 1. Moreover, form Mi j ∈ [0, 1]

it follows that the operators P̃i are positive semi-definite. Now, if the left-
stochastic matrix used in Eq. (C.2) is the same that appears in Eq. (C.1), we
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can also prove that {P̃i}
n
i=1 ∈ ΠP(ρ), namely that it is a P-POVM. We can show

this result by noticing that

Tr
[
ρP̃i

]
= Tr

ρ n∑
j=1

Mi jP j

 =

n∑
j=1

Mi jTr
[
ρP j

]
=

n∑
j=1

Mi j p j = πi . (C.3)

Hence, we proved that the POVM {P̃i}
n
i=1 obtained from a generic POVM {Pi}

n
i=1

through the combinations given by the left-stochastic matrix Mi j satisfying Eq.
(C.1) is a P-POVM.

Notice that the approach shown here can be used to generate ME-POVMs
(see Chapter 4) just by considering {πi = 1/n}ni=1 for some n ≥ 2. Therefore,
this section generalizes the results of Appendix B.1.

In general, this procedure allows to obtain P-POVMs different from the
trivial measurement {π11, π21, . . . , πn1}. Notice that the transformation that
maps any n-output POVM into the P-POVM {π11, π21, . . . , πn1} through Eq.
(C.2) is given by the Mi j having columns equal to {πi}

n
i=1, namely

M =


π1 π1 . . . π1
π2 π2 . . . π2
...

...
. . .

...

πn πn . . . πn

 .

Example We apply this technique to the following example. We consider the
qubit state ρ ∈ S (H) that with respect to the basis {|0〉, |1〉} of H assumes the
following matrix form

ρ =
1
2

(
1 1/2

1/2 1

)
.

Consider the POVM {Pi}
3
i=1 which, in the same basis, is given by

P1 =

(
1/2 0
0 0

)
, P2 =

(
1/2 0
0 1/4

)
, P3 =

(
0 0
0 3/4

)
.

The output probabilities pi = Tr
[
ρPi

]
that we obtain by measuring ρ with

{Pi}
3
i=1 are {pi}

3
i=1 = {1/4, 3/8, 3/8}. Now, imagine that our target probability

distribution is {πi}
3
i=1 = {1/

√
5, 1/

√
5, 1− 2/

√
5}. A 3× 3 left-stochastic matrix

Mi j mapping {pi}
3
i=1 into {πi}

3
i=1 through Eq. (C.1) is given by

M =

 a b 0
0 1 − b c
0 0 1 − c

 ,
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where a = 1, b = (8
√

5 − 10)/15 ' 0.52590 and c = (16 − 5
√

5)/(3
√

5) '
0.71847 (the property of left-stochastic matrices for which columns sum up to
1 is particularly evident in this case). If we use the matrix Mi j and the POVM
{Pi}

3
i=1 of this example in Eq. (C.2) we obtain the P-POVM {P̃i}

3
i=1 given by

P̃1 = P1 + bP2, P̃2 = (1 − b)P2 + cP3, P̃3 = (1 − c)P3 .

We can verify that Tr
[
ρP̃i

]
= πi and that {P̃i}

3
i=1 is different from the trivial P-

POVM {π11, π21, π31}. For instance, we have that P̃1 = diag((1 + b)/2, b/4) '
diag(0.76295, 0.13148) , π1diag(1, 1), where π1 = 1/

√
5 = 0.44721. The

technique used to construct the matrix M of this example is inspired by the
results explained in Appendix B.1 for ME-POVMs.

C.2 Monotonic behavior of CPA under local operations

We consider a general bipartite finite-dimensional quantum system with Hilbert
space HAB = HA ⊗ HB. Therefore, the states that we consider are ρAB ∈

S (HAB). We consider a generic finite probability distribution P = {pi}
n
i=1 and

we prove that CPA is monotone under local operations of the form ΛA ⊗ IB and
IA ⊗ ΛB on ρAB, where ΛA (ΛB) is a CPTP map on A (B) and IA (IB) is the
identity map on S (HA) (S (HB)).

In order to show the effect of the application of a local operation of the form
ΛA ⊗ IB on CPA (ρAB), we look at ΠPA(ρAB) in a different way. Each element of
this collection is a P-POVM for ρAB, namely they generate output ensembles
where the output probability distribution is P = {pi}i. In fact, we can consider
CPA (ρAB) as the maximization over all the possible output ensembles with output
probability distribution P that we can generate measuring the subsystem A of
ρAB.

The effect of the first local operation that we consider is: ρ̃AB = ΛA ⊗

IB (ρAB) =
∑

k (Ek ⊗ 1B) ρAB (Ek ⊗ 1B)† , where {Ek}k is a set of Kraus oper-
ators that corresponds to ΛA. Now we analyze the relation between ΠPA(ρAB)
and ΠPA(ρ̃AB). Given a P-POVM for ρ̃AB, namely {PA,i}i ∈ ΠPA(ρ̃AB), the out-
put ensemble E

(
ρ̃AB, {PA,i}i

)
is defined by Tr

[
ρ̃ABPA,i ⊗ 1B

]
= pi and ρ̃B,i =

TrA
[
ρ̃ABPA,i ⊗ 1B

]
/pi. Now we write the i-th element of the output probabil-

ity distribution that we obtain applying {PA,i}i on ρ̃AB, namely the probabilities
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pi = Tr
[
ΛA ⊗ IB (ρAB) PA,i ⊗ 1B

]
, as follows

pi = Tr

∑
k

(Ek ⊗ 1B)ρAB(E†k ⊗ 1B)PA,i ⊗ 1B


= Tr

ρAB

∑
k

(E†k ⊗ 1B)PA,i(Ek ⊗ 1B)

 = Tr
[
ρABΛ∗A(PA,i) ⊗ 1B

]
= Tr

[
ρABP̃A,i ⊗ 1B

]
, (C.4)

where we have defined P̃A,i ≡ Λ∗A(PA,i) =
∑

k(E†k ⊗1B)PA,i(Ek ⊗1B). Similarly,
we can write ρ̃B,i = TrA[ρ̃ABPA,i]/pi = TrA[ρABP̃A,i]/pi. Therefore, since pi =

Tr[ρABP̃A,i] and ρ̃B,i = TrA[ρABP̃A,i]/pi, if we apply {P̃A,i}i on ρAB we obtain the
sameP-distributed output ensemble {pi, ρ̃B,i}i that we obtain applying {PA,i}i on
ρ̃AB. Next we show that: {P̃A,i}i =

{
Λ∗A

(
PA,i

)}
i

= {
∑

k E†k PA,iEk}i , is a proper
n-output POVM. First, the elements of {P̃A,i}i sum up to the identity:

∑
i P̃A,i =∑

k,i E†k PA,i Ek =
∑

k E†k
(∑

i PA,i
)

Ek =
∑

k E†k Ek = 1B . Moreover, we show
that they are positive semi-definite operators. Indeed, for any |ψ〉A ∈ HA, we
have

〈ψ|AP̃A,i|ψ〉A =
∑

k

(〈ψ|AE†k ) PA,i (Ek|ψ〉A) =
∑

k

〈ψk|APA,i|ψk〉A ≥ 0,

where each element of the last sum is non-negative because PA,i is positive
semi-definite. It follows that {P̃A,i}i is a POVM and in particular a P-POVM for
ρAB, namely {P̃A,i}i ∈ ΠPA(ρAB). Thus, for every P-POVM {PA,i}i ∈ ΠPA(ρ̃AB) for
ρ̃AB, there is a P-POVM {P̃A,i}i ∈ ΠPA(ρAB) for ρAB, such that the output ensem-
bles are identical: E(ρ̃AB, {PA,i}i) = E(ρAB, {P̃A,i}i). Hence, any P-distributed
ensemble of B that can be generated from ρ̃AB can also be obtained from ρAB.
Therefore, we obtain the following inclusion⋃

{PA,i}i∈Π
P
A (ρ̃AB)

E
(
ρ̃AB, {PA,i}i

)
⊆

⋃
{PA,i}i∈Π

P
A (ρAB)

E
(
ρAB, {PA,i}i

)
. (C.5)

Finally, since as we said above CPA (ρAB) is the maximum guessing probability
of the P-distributed output ensembles that can be generated from ρAB, from
Eq. (C.5) we conclude that CPA (ρAB) is defined as a maximization over a set
that includes the set over which maximization defines CPA (ρ̃AB). Hence, for any
state ρAB and CPTP map ΛA, we obtain

CPA (ρAB) ≥ CPA (ΛA ⊗ IB (ρAB)) . (C.6)
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Next we show that CPA (ρAB) is monotonic under local operations of the
form IA ⊗ ΛB. We find that the collection of the P-POVMs for ρ̃AB = IA ⊗

ΛB (ρAB), namely ΠPA(ρ̃AB), coincides with ΠPA(ρAB). In order to prove this,
we apply a general POVM {PA,i}i both on ρAB and ρ̃AB and we show that
the respective output ensembles are defined by the same probability distribu-
tion. Indeed, being Tr

[
ρABPA,i

]
(Tr

[
IA ⊗ ΛB (ρAB)PA,i

]
) the probability for

the i-th output of the POVM considered when it is applied on ρAB (ρ̃AB), we
have Tr

[
IA ⊗ ΛB (ρAB)PA,i

]
= Tr

[
ρABPA,i

]
, where this identity uses the trace-

preserving property of the superoperator IA ⊗ ΛB. Consequently, if {PA,i}i is
a P-POVM for ρAB, which means that Tr

[
ρABPA,i

]
= pi, in the same way

Tr
[
IA ⊗ ΛB (ρAB)PA,i

]
= pi. Hence, {PA,i}i ∈ ΠPA(ρAB) if and only if {PA,i}i ∈

ΠPA(ρ̃AB), namely
ΠPA(ρAB) = ΠPA(ρ̃AB) . (C.7)

Given a P-POVM {PA,i}i both for ρAB and ρ̃AB, we compare the corresponding
output states

ρ̃B,i = ΛB (TrA
[
ρABPA,i ⊗ 1B

]
/pi) = ΛB(ρB,i) . (C.8)

From Eq. (C.8) and the definition of the guessing probability, it follows that

Pg
({

pi, ρB,i
}
i

)
≥ Pg

({
pi, ΛB(ρB,i)

}
i

)
. (C.9)

The consequence of the last relation is that for any P-distributed output en-
semble ensemble that we can generate from ρ̃AB there exists at least one P-
distributed output ensemble that we can generate from ρAB for which the guess-
ing probability is equal or greater. Hence, considering the definition of CPA , Eqs.
(C.7) and (C.9), we conclude that

CPA (ρAB) ≥ CPA (IA ⊗ ΛB (ρAB)) , (C.10)

for any state ρAB and CPTP map ΛB.

C.3 Performing P-POVMs on the probe state

In this section we prove that, if we apply the projective P-POVM {|i〉〈i|A}i on A
for ρ(λ)

AB(t), we obtain

Pg
(
ρ(λ)

AB(t), {|i〉〈i|A}i
)

= λ + (1 − λ) Pg
(
ES A′(t)

)
. (C.11)

Moreover, for a general P-POVM on A for ρ(λ)
AB(t) different from {|i〉〈i|A}i, we

have

Pg
(
ρ(λ)

AB(t), {PA,i}i
)
=λPg

(
{pi, ρ

⊥
A′′,i}i

)
+ (1 − λ)Pg

(
{pi, ρ

‖

S A′,i(t)}i
)
, (C.12)
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for some {ρ⊥A′′,i}i and {ρ‖S A′,i(t)}i that we define. First, we notice that the projec-

tive measurement {|i〉〈i|A}ni=1 is a P-POVM on A for ρ(λ)
AB(t) for any t and λ. We

consider E(ρ(λ)
AB(t), {|i〉〈i|A}i), namely the ensemble of B that we obtain measuring

ρ(λ)
AB(t) with {|i〉〈i|A}i:

E(ρ(λ)
AB(t), {|i〉〈i|A}i) =

{
pi, λ σS A′(t) ⊗ |i〉〈i|A′′ + (1 − λ)ρB,i(t)

}n

i=1
, (C.13)

where ρB,i = ρS A′,i ⊗ |n + 1〉〈n + 1|A′′ . We evaluate the guessing probability of
this ensemble and we obtain

Pg(ρ(λ)
AB(t), {|i〉〈i|A}i) = max

{PB,i}i

n∑
i=1

pi TrB
[

(λσS A′(t) ⊗ |i〉〈i|A′′

+(1 − λ)ρS A′,i(t) ⊗ |n + 1〉〈n + 1|A′′
)

PB,i
]

= max
{PB,i}i

n∑
i=1

pi

(
λTrB

[
σS A′(t) ⊗ |i〉〈i|A′′ PB,i

]
+(1 − λ)TrB

[
ρS A′,i(t) ⊗ |n + 1〉〈n + 1|A′′ PB,i

])
. (C.14)

We notice that, for any i = 1, . . . , n, every state that belongs to the set
{σS A′(t) ⊗ |i〉〈i|A′′}i is orthogonal to every state of the set {ρS A′,i(t) ⊗ |n + 1〉〈n +

1|A′′}i. It follows that, for any i = 1, . . . , n, TrB
[
σS A′(t) ⊗ |i〉〈i|A′′ PB,i

]
depends

only on the components of PB,i that belong to span({|i〉〈 j|B}i j), where |i〉B and
| j〉B belong to the tensor product between the elements of MS A′ , namely an
orthonormal basis ofHS ⊗HA′ , and {|k〉A′′}nk=1 (notice that dim(HA′′) = n + 1).
Similarly, for any i = 1, . . . , n, the value of TrB

[
ρS A′,i(t) ⊗ |n + 1〉〈n + 1|A′′ PB,i

]
depends only on the components of PB,i that belong to span({|i′〉〈 j′|B}i′ j′), where
|i′〉B and | j′〉B belong to the tensor product between the elements ofMS A′ and
the vector |n+1〉A′′ . We further note that no operator defined on span({|i〉〈 j|B}i j)⊕
span({|i′〉〈 j′|B}i′ j′) that is not positive semidefinite can be made positive semidef-
inite by adding something outside span({|i〉〈 j|B}i j)⊕span({|i′〉〈 j′|B}i′ j′). There-
fore, we can limit the maximization in Eq. (C.14) to be over POVMs PB,i that
are defined on span({|i〉〈 j|B}i j)⊕span({|i′〉〈 j′|B}i′ j′), without affecting the optimal
value. Since span({|i〉〈 j|B}i j) is orthogonal to span({|i′〉〈 j′|B}i′j′), the maximiza-
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tion in Eq. (C.14) can be divided in two independent maximizations

Pg(ρ(λ)
AB(t),{|i〉〈i|A}i) = λ max

{PB,i}i

n∑
i=1

piTrB
[
σS A′(t) ⊗ |i〉〈i|A′′PB,i

]
+(1 − λ) max

{PB,i}i

n∑
i=1

piTrB
[
ρS A′,i(t) ⊗ |n + 1〉〈n + 1|A′′PB,i

]
= λPg({pi, σS A′(t) ⊗ |i〉〈i|A′′}i)

+(1 − λ)Pg({pi, ρS A′,i(t) ⊗ |n + 1〉〈n + 1|A′′}i)

= λPg({pi, |i〉〈i|A′′}i) + (1 − λ)Pg({pi, ρS A′,i(t)}i)

= λ + (1 − λ)Pg(ES A′(t)) , (C.15)

where we have used Pg({pi, |i〉〈i|A′′}i) = 1, namely the possibility to perfectly
distinguish orthonormal states, Pg({pi, σS A′(t) ⊗ |i〉〈i|A′′}i) = Pg({pi, |i〉〈i|A′′}i)
and Pg({pi, ρS A′,i(t) ⊗ |n + 1〉〈n + 1|A′′}i) = Pg({pi, ρS A′,i(t)}i) = Pg(ES A′(t)).

The output ensemble that we obtain applying a generic P-POVM {PA,i}i on
A for ρ(λ)

AB(t) different from {|i〉〈i|A}i is E(ρ(λ)
AB(t), {PA,i}i). The k-th state of this

ensemble is

ρ(λ)
B,k(t) =

TrA
[
ρ(λ)

AB(t)PA,k ⊗ 1B
]

pk

=

n∑
i=1

pi

pk
TrA

[
|i〉〈i|APA,k

] (
λσS A′(t) ⊗ |i〉〈i|A′′ + (1 − λ)ρB,i(t)

)
=

n∑
i=1

pi
(
PA,k

)
ii

pk

(
λσS A′(t) ⊗ |i〉〈i|A′′ + (1 − λ)ρB,i(t)

)
, (C.16)

where (PA,k)ii = 〈i|APA,k|i〉A ≥ 0 is the i-th diagonal element of PA,k in the basis
MA = {|i〉A}ni=1. Keeping in mind that P is a finite probability distribution and
pk > 0 for any k, we define the parameters eik ≡ (PA,k)ii pi/pk ≥ 0. Since ρ(λ)

B,k(t)
and the states λσS A′(t) ⊗ |i〉〈i|A′′ + (1 − λ)ρB,i(t) are trace one operators for any
i = 1, . . . , n , we conclude that

∑
i eik = 1 for any k = 1, . . . , n. Therefore,

{eik}
n
i=1 is an n-element probability distribution for any value of k = 1, ..., n. We
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write:

ρ(λ)
B,k(t) =

n∑
i=1

eik
(
λσS A′(t) ⊗ |i〉〈i|A′′ + (1 − λ)ρB,i(t)

)
= λ

n∑
i=1

eikσS A′(t) ⊗ |i〉〈i|A′′ + (1 − λ)
n∑

i=1

eikρB,i(t)

= λσ⊥B,k(t) + (1 − λ)σ‖B,k(t), (C.17)

where we have used the definitions

σ⊥B,k(t) ≡ σS A′(t) ⊗

 n∑
i=1

eik|i〉〈i|A′′

 ≡ σS A′(t) ⊗ ρ⊥A′′,k , (C.18)

σ‖B,k(t) ≡

 n∑
i=1

eik ρS A′,i(t)

⊗|n+1〉〈n+1|A′′ ≡ ρ
‖

S A′,k(t)⊗|n+1〉〈n+1|A′′ . (C.19)

Each state ρ⊥A′′,k (ρ‖S A′,k(t)) is a convex combination of the states {|i〉〈i|A′′}ni=1

({ρS A′,i(t)}
n
i=1) that does not depend on λ but depends on the P-POVM {PA,i}i

chosen. From Eq. (C.17) it follows that, if we consider a generic P-POVM
{PA,i}i for ρ(λ)

AB(t), we obtain

E(ρ(λ)
AB(t), {PA,i}i) = {pi, λσ

⊥
B,i(t) + (1 − λ)σ‖B,i(t)}i , (C.20)

and therefore, similarly to Eq. (C.15), now we can write

Pg(ρ(λ)
AB(t), {PA,i}i) = λPg({pi, ρ

⊥
A′′,i}i) + (1 − λ)Pg({pi, ρ

‖

S A′,i(t)}i) . (C.21)

C.4 Analysis of case (A)

Let assume that for some α ∈ [0, 1) we have that {P(α)
A,i }i = {|i〉〈i|A}i, namely

this projective measurement is one of the optimal P-POVM that accomplishes
the maximization for CPA (ρ(α)

AB(τ)), and that for some β > α instead we have
that {|i〉〈i|A}i is not optimal. In this section we show that these two assump-
tions are incompatible and lead to a contradiction. The first condition implies
that, when λ = α the optimal P-POVM that provides the greatest value of
Pg(ρ(α)

AB(τ), {PA,i}i) is {P(α)
A,i }i = {|i〉〈i|A}i and therefore

α + (1 − α)Pg(ES A′(τ)) ≥ αPg(E⊥(β)) + (1 − α)Pg(E‖(β)) ,
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α
(
1 − Pg(E⊥(β))

)
+ (1 − α)

(
Pg(ES A′(τ)) − Pg(E‖(β))

)
≥ 0 , (C.22)

where we also considered the cases where {P(β)
A,i}i is optimal both for λ = α and

λ = β. On the other hand, for λ = β > α we have that {|i〉〈i|A}i is not an optimal
P-POVM for the maximization needed for CPA (ρ(β)

AB(τ)) and

βPg(E⊥(β)) + (1 − β)Pg(E‖(β)) > β + (1 − β)Pg(ES A′(τ)) , (C.23)

which can be written as

β
(
Pg(E⊥(β)) − 1 + Pg(ES A′(τ)) − Pg(E‖(β))

)
> Pg(ES A′(τ))−Pg(E‖(β)) , (C.24)

and therefore, by subtracting α
(
Pg(E⊥(β)) − 1 + Pg(ES A′(τ)) − Pg(E‖(β))

)
from

each side of inequality (C.24), we obtain

(β − α)
(
Pg(E⊥(β)) − 1 + Pg(ES A′(τ)) − Pg(E‖(β))

)
> α

(
1 − Pg(E⊥(β))

)
+ (1 − α)

(
Pg(ES A′(τ)) − Pg(E‖(β))

)
. (C.25)

If inequality (C.23) holds, then Pg(E‖(β)) > Pg(ES A′(τ)). Therefore, we have
Pg(ES A′(τ)) − Pg(E‖(β)) < 0 and we conclude that the left-hand side of in-
equality (C.25) is negative. The right-hand side of the same inequality is in-
stead non-negative for inequality (C.22). This contradiction shows that if for
some value of the parameter λ the orthogonal measurement {|i〉〈i|A}i maximizes
Pg(ρ(λ)

AB(τ), {PA,i}i), then it is also the case for any greater value of λ. In conclu-
sion, if one of the optimal measurement is {|i〉〈i|A}i for λ = α, the same is true
for any β ∈ [α, 1).

C.5 Study of the limit λ→ 1 in case (B)

First, we notice that the set of P-POVMs on A for ρ(λ)
AB(t) is a set that does not

depend on λ and t. Indeed, we use the notation ΠPA = ΠPA(ρ(λ)
AB(τ)). Now we

prove that the only optimal P-POVM for CPA (ρ(1)
AB(τ)) is the projective measure-

ment {|i〉〈i|A}i. In the case of an optimal {PA,i}i ∈ ΠPA for ρ(1)
AB(τ) we obtain the

output ensemble (see Eq. (C.18))

E(ρ(1)
AB(τ), {PA,i}i) = {pi, σS A′(τ) ⊗

∑
j

e ji| j〉〈 j|A′′}i , (C.26)

where
∑

j e ji = 1 for any i = 1, . . . , n. Since Pg(ρ(1)
AB(τ), {|i〉〈i|A}i) = 1, an

optimal P-POVM different from {|i〉〈i|A}i must provide an output ensemble of
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orthogonal states E(ρ(1)
AB(τ), {PA,i}i). Given the identity Pg(E(ρ(1)

AB(τ), {PA,i}i) =

Pg({pi,
∑

j e ji| j〉〈 j|A′′}i), we have to check if, for some ei j, the following ensem-
ble {pi,

∑
j e ji| j〉〈 j|A′′}i can be an orthogonal ensemble of states different from

{pi |i〉〈i|A′′}i. Each state ρ⊥A′′,i =
∑

j e ji| j〉〈 j|A′′ is defined as a convex combination
of the states {|i〉〈i|A′′}i. Two such states are orthogonal only if the respective
convex combinations do not have any element |i〉〈i|A′′ in common. Therefore,
the only way to have n̄ orthogonal output states is if for each i the state is of
the form ρ⊥A′′,i = | j〉〈 j|A′′ for some j = j(i) exclusively assigned to i. Thus,
each PA,i has only one nonzero diagonal element (PA,i) j j = 〈 j|APA,i| j〉A. Since∑

i PA,i = 1A this is only possible if {PA,i}i = {|i〉〈i|A}i.
We proved that {|i〉〈i|A}i ∈ ΠPA is the only optimal P-POVM for the evalu-

ation of CPA (ρ(1)
AB(τ)). Therefore, for any P-POVM {PA,i}i , {|i〉〈i|A}i we have

that Pg(ρ(1)
AB(τ), {PA,i}i) < 1. We notice that the set ΠPA is closed and bounded,

namely it is compact. Indeed, it is a subset ofB(HA) that is defined through lin-
ear constraints involving identities and relations of semi-positivity. The guess-
ing probability Pg(ρ(1)

AB(τ), {PA,i}i) is a continuous function on this compact set
of P-POVMs.

We now show that Pg(ρ(λ)
AB(τ), {PA,i}i) is Lipschitz continuous in λ. In other

words we construct a bound on the change of the guessing probability for a
given change in λ. To do so we first show that Pg(ρAB, {PA,i}i) is Lipschitz
continuous on the set of states. Consider Pg(ρAB, {PA,i}i) as a function of ρAB.
We consider a pair ρ1

AB, ρ2
AB and observe that

max
{PB,i}i

∑
i

Tr[PA,i ⊗ PB,iρ
1
AB] = max

{PB,i}i

∑
i

Tr[PA,i ⊗ PB,i(ρ2
AB + (ρ1

AB − ρ
2
AB)]

≤ max
{PB,i}i

∑
i

Tr[PA,i ⊗ PB,iρ
2
AB] + max

{PB,i}i

∑
i

Tr[PA,i ⊗ PB,i(ρ1
AB − ρ

2
AB)].

(C.27)

Let ∆ be a diagonal matrix such that ∆ = U(ρ1
AB − ρ

2
AB)U† for a unitary U.

Let ∆+ and ∆− be the two diagonal positive semidefinite matrices such that
∆ = ∆+ − ∆−. Note that U†∆+U and U†∆−U are positive semidefinite. This
implies

max
{PB,i}i

∑
i

Tr[PA,i ⊗ PB,i(ρ1
AB − ρ

2
AB)] = max

{PB,i}i

∑
i

Tr[PA,i ⊗ PB,iU†(∆+ − ∆−)U]

≤ max
{PB,i}i

∑
i

Tr[PA,i ⊗ PB,i(U†∆+U)] + max
{PB,i}i

∑
i

Tr[PA,i ⊗ PB,i(U†∆−U)]. (C.28)



C.5 Study of the limit λ→ 1 in case (B) 223

Since POVM elements are positive semidefinite Tr[PA,i⊗PB, j(U†∆+U)] is posi-
tive for each pair PA,i, PB, j. Therefore Tr[

∑
i PA,i⊗PB,i(U†∆+U)] ≤ Tr[

∑
i PA,i⊗∑

j PB, j(U†∆+U)] = Tr[U†∆+U] = Tr[∆+]. Likewise, we have
∑

i Tr[PA,i ⊗

PB,i(U†∆−U)] ≤ Tr[∆−]. Thus,

max
{PB,i}i

∑
i

Tr[PA,i ⊗ PB,i(ρ1
AB − ρ

2
AB)] ≤ Tr[∆+ + ∆−] = ||ρ1

AB − ρ
2
AB||1. (C.29)

Considering Eqs. (C.27) and (C.29) we can now conclude that

Pg(ρ1
AB, {PA,i}i) − Pg(ρ2

AB, {PA,i}i) ≤ ||ρ1
AB − ρ

2
AB||1. (C.30)

By exchanging the 1 and 2 in the above derivation we obtain

Pg(ρ2
AB, {PA,i}i) − Pg(ρ1

AB, {PA,i}i) ≤ ||ρ1
AB − ρ

2
AB||1. (C.31)

Thus,
|Pg(ρ1

AB, {PA,i}i) − Pg(ρ2
AB, {PA,i}i)| ≤ ||ρ1

AB − ρ
2
AB||1. (C.32)

Note that this bound is independent of {PA,i}i. Thus we see that Pg(ρAB, {PA,i}i)
is Lipschitz continuous on the set of states. Next we consider the pair of states
ρ(λ1)

AB (τ), ρ(λ2)
AB (τ) and note that the trace norm ||ρ(λ1)

AB (τ) − ρ(λ2)
AB (τ)||1 = 2|λ1 − λ2|.

Therefore,

|Pg(ρ(λ1)
AB (τ), {PA,i}i) − Pg(ρ(λ2)

AB (τ), {PA,i}i)| ≤ 2|λ1 − λ2|. (C.33)

Thus we see that Pg(ρ(λ)
AB(τ), {PA,i}i) is Lipschitz continuous in λ.

We next consider how the set of optimal P-POVMs converges to {|i〉〈i|A}i
as λ → 1 using the bound in Eq. (C.33). Consider a semi-open neighbor-
hood O1 of the projective P-POVM {|i〉〈i|A}i such that the set S 1 ≡ ΠPA − O1

of P-POVMs not in O1 is closed. Since the set S 1 is closed and bounded and
Pg(ρ(1)

AB(τ), {PA,i}i) is a continuous function on ΠPA there exists a maximum value
m1 < 1 of Pg(ρ(1)

AB(τ), {PA,i}i) on S 1, namely

m1 ≡ max
{PA,i}i∈S 1

Pg(ρ(1)
AB(τ), {PA,i}i) < 1.

Then, due to Eq. (C.33), for ε > 0 and λ = 1 − ε we get Pg(ρ(1−ε)
AB (τ), {PA,i}i) ≤

m1 + 2ε on S 1 and the maximum value of Pg(ρ(1−ε)
AB (τ), {PA,i}i) on O1 is larger

or equal to 1 − 2ε. There exists a sufficiently small ε1 > 0 such that 1 − 2ε1 =

m1 + 2ε1. For all ε < ε1 the set of optimal P-POVMs belongs to O1.
We next consider a sequence of semi-open sets Oi which all contain {|i〉〈i|A}i

and are such that Oi+1 ⊂ Oi. There is a corresponding sequence of closed sets
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S i ≡ ΠPA − Oi and non-decreasing sequence of maximal values mi < 1 of
Pg(ρ(1)

AB(τ), {PA,i}i) on S i. For each mi there is an εi such that for all ε < εi the
optimal P-POVMs, namely the P-POVMs that maximize Pg(ρ(1−ε)

AB (τ), {PA,i}i),
belong to Oi. The sequence of εi is non-increasing since the sequence of mi is
non-decreasing.

Let us consider a distance measure d(·, ·) on B(HA) and define a sequence
O(δi) of semi-open sets as theP-POVMs {PA,i}i such that we get d(PA,i, |i〉〈i|A) <
δi for any i = 1, ..., n, for a strictly decreasing sequence δi+1 < δi where δi → 0
as i→ ∞.

Then from the above argument we can conclude that, for any δ > 0 there
exists a value λδ ∈ (0, 1) such that, if λ ∈ (λδ, 1), any optimal P-POVM {P(λ)

A,i}i

for this λ is such that d(P(λ)
A,i, |i〉〈i|A) < δ for any i = 1, ..., n.

Next we show that Pg(ρAB, {PA,i}i) is Lipschitz continuous as a function of
{PA,i}i. In other words, we construct a bound on the change of the guessing
probability proportional to a distance measure quantifying the change of the
POVM {PA,i}i, valid for any ρAB ∈ S (HA ⊗HB). We select a pair {P1

A,i}i, {P
2
A,i}i

and observe that

max
{PB,i}i

∑
i

Tr[P1
A,i ⊗ PB,iρAB]

= max
{PB,i}i

∑
i

Tr[P2
A,i ⊗ PB,iρAB + (P1

A,i − P2
A,i) ⊗ PB,iρAB]

≤ max
{PB,i}i

∑
i

Tr[P2
A,i ⊗ PB,iρAB] + max

{PB,i}i

∑
i

Tr[(P1
A,i − P2

A,i) ⊗ PB,iρAB]. (C.34)

Let ∆i be a diagonal matrix such that ∆i = Ui(P1
A,i − P2

A,i)U
†

i for a unitary
Ui. Let ∆i+ and ∆i− be the two diagonal positive semidefinite matrices such that
∆i = ∆i+−∆i−. Note that U†i ∆i+Ui and U†i ∆i−Ui are positive semidefinite. This
implies

max
{PB,i}i

∑
i

Tr[(P1
A,i − P2

A,i) ⊗ PB,iρAB]= max
{PB,i}i

∑
i

Tr[U†i (∆i+ − ∆i−)Ui ⊗ PB,iρAB]

≤max
{PB,i}i

∑
i

Tr[U†i (∆i+)Ui ⊗ PB,iρAB]+max
{PB,i}i

∑
i

Tr[U†i (∆i−)Ui ⊗ PB,iρAB]. (C.35)

Since POVM elements are positive semidefinite Tr[U†i (∆i+)Ui⊗PB,iρAB] is pos-
itive for each PB, j. Therefore, Tr[U†i (∆i+)Ui ⊗ PB,iρAB] ≤ Tr[U†i (∆i+)Ui ⊗
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∑
j PB, jρAB] = Tr[U†i (∆i+)Ui⊗1BρAB]. Likewise, we can write Tr[U†i (∆i−)Ui⊗

PB,iρAB] ≤ Tr[U†i (∆i−)Ui ⊗ 1BρAB]. Using this we find that

max
{PB,i}i

∑
i

Tr[(P1
A,i − P2

A,i) ⊗ PB,iρAB] ≤

≤
∑

i

Tr[U†i (∆i+ + ∆i−)Ui ⊗ 1BρAB] ≤
∑

i

Tr[U†i (∆i+ + ∆i−)Ui ⊗ 1B]

= (n + 1)d2
S

∑
i

Tr[∆i+ + ∆i−] = (n + 1)d2
S

∑
i

||P1
A,i − P2

A,i||1. (C.36)

where we used that Tr[1B] = (n + 1)d2
S and for the second inequality we have

used von Neumann’s trace inequality and that the largest eigenvalue of ρAB is
smaller or equal to 1. By combining Eq. (C.34) and Eq. (C.36) we can now
conclude that

Pg(ρAB, {P1
A,i}i) − Pg(ρAB, {P2

A,i}i) ≤ (n + 1)d2
S

∑
i

||P1
A,i − P2

A,i||1. (C.37)

By exchanging the {P1
A,i}i and {P2

A,i}i in the above derivation we obtain

Pg(ρAB, {P2
A,i}i) − Pg(ρAB, {P1

A,i}i) ≤ (n + 1)d2
S

∑
i

||P1
A,i − P2

A,i||1. (C.38)

Therefore

|Pg(ρAB, {P1
A,i}i) − Pg(ρAB, {P2

A,i}i)| ≤ (n + 1)d2
S

∑
i

||P1
A,i − P2

A,i||1. (C.39)

Thus we have shown that Pg(ρAB, {PA,i}i) is Lipschitz continuous as a function
of {PA,i}i for any ρAB ∈ S (HA ⊗HB).

We now study the guessing probability of the ensemble that we obtain ap-
plying {PA,i}i ∈ ΠPA on ρ(λ)

AB(t) given by

Pg
(
ρ(λ)

AB(t), {PA,i}i
)
=λPg

(
{pi, ρ

⊥
A′′,i}i

)
+ (1 − λ)Pg

(
{pi, ρ

‖

S A′,i(t)}i
)
. (C.40)

We consider Eq. (C.40) when an optimal {P(λ)
A,i}i is chosen. We define the

corresponding ensembles that appear in this expression E⊥({P(λ)
A,i}i) ≡ {pi, ρ

⊥
A′′,i}i

and E‖({P(λ)
A,i}i) ≡ {pi, ρ

‖

S A′,i(t)}i, so that

Pg
(
ρ(λ)

AB(τ), {P(λ)
A,i}i

)
= λPg(E⊥({P(λ)

A,i}i)) + (1 − λ)Pg(E‖({P(λ)
A,i}i)) . (C.41)
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The ensembles E⊥({P(λ)
A,i}i) and E‖({P(λ)

A,i}i) are functions on the set of optimal

P-POVMs {P(λ)
A,i}i for a given λ. Thus the image of the function Pg(E⊥({P(λ)

A,i}i))

over the set of optimal P-POVMs {P(λ)
A,i}i for a given λ, denoted Im(P(λ)

g (E⊥)) ≡

{Pg(E⊥({P(λ)
A,i}i)) : {P(λ)

A,i}i is optimal}, is a subset of the interval [0, 1], namely

Im(P(λ)
g (E⊥)) ⊂ [0, 1]. Likewise, the function Pg(E‖({P(λ)

A,i}i)) takes values in a

set Im(P(λ)
g (E‖)) ⊂ [0, 1] for a given λ.

Using Eq. (C.39) we can construct bounds on Im(P(λ)
g (E⊥)) and Im(P(λ)

g (E‖))
for a given λ. First, based on the above argument we make the following ob-
servation: for any η > 0 there exists a value λη ∈ (0, 1) such that, if λ ∈ (λη, 1),
any optimal P-POVM {P(λ)

A,i}i for this λ is such that ||P(λ)
A,i − |i〉〈i|A||1 < η for any

i = 1, ..., n. Thus, by Eq. (C.39) the values in the image of Pg(E⊥({P(λ)
A,i}i))

for λ ∈ (λη, 1) differ from Pg(E⊥({|i〉〈i|A}i)) = 1 by less than n(n + 1)d2
S η,

namely |Pg(E⊥({P(λ)
A,i}i)) − 1| < n(n + 1)d2

S η for all optimal {P(λ)
A,i}i : λ ∈ (λη, 1)

. Likewise, the values in the range of Pg(E‖({P(λ)
A,i}i)) for λ ∈ (λη, 1) differ from

Pg(E‖({|i〉〈i|A}i)) = Pg(ES A′(τ)) by less than the quantity n(n + 1)d2
S η, namely

|Pg(E‖({P(λ)
A,i}i))−Pg(ES A′(τ))| < n(n + 1)d2

S η for all optimal {P(λ)
A,i}i : λ ∈ (λη, 1).

Using this we can state the following

∀δ>0, ∃λδ>0: Pg(E‖({P(λ)
A,i}i)) − Pg(ES A′(τ))<δ,∀{P(λ)

A,i}i : λ ∈ (λδ, 1) .
(C.42)

C.6 Lipschitz continuity of CPA on the set of states

Consider a POVM {PA,i}i and two states ρAB, ρ̃AB. Let pi = Tr[PA,iρAB] and
p̃i = Tr[PA,iρ̃AB]. Let ∆ be a diagonal matrix such that ∆ = U(ρ̃AB−ρAB)U† for
a unitary U. Let ∆+ and ∆− be the two diagonal positive semidefinite matrices
such that ∆ = ∆+−∆−. Note that U†∆+U and U†∆−U are positive semidefinite.
Then

p̃i − pi = Tr[PA,i(ρ̃AB − ρAB)] = Tr[PA,i(U†∆+U − U†∆−U)]

≤ Tr[PA,iU†∆+U] + Tr[PA,iU†∆−U]. (C.43)

Since POVM elements are positive semidefinite Tr[PA, jU†∆+U] is positive for
each PA, j. Therefore Tr[PA,iU†∆+U] ≤ Tr[

∑
j PA, jU†∆+U] = Tr[U†∆+U] =

Tr[∆+]. Likewise Tr[PA,i(U†∆−U)] ≤ Tr[∆−]. Thus,

Tr[PA,iU†∆+U]+Tr[PA,iU†∆−U]≤Tr[∆+ + ∆−]= ||ρ̃AB − ρAB||1. (C.44)
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It follows that

p̃i − pi ≤ ||ρ̃AB − ρAB||1. (C.45)

By exchanging pi and p̃i in the above derivation we obtain

pi − p̃i ≤ ||ρ̃AB − ρAB||1. (C.46)

From this we can conclude that

|p̃i − pi| ≤ ||ρ̃AB − ρAB||1. (C.47)

Assume now that {PA,i}i is a P-POVM for ρAB but not necessarily for ρ̃AB.
We can create a P-POVM for ρ̃AB from {PA,i}i in the following way. If p̃i− pi >

0 we subtract (1− pi/p̃i)PA,i from PA,i to create a new element P̃A,i ≡ pi/p̃iPA,i.
Let Pr ≡

∑
i∈{i+}(1− pi/p̃i)PA,i where the {i+} is the set of all i such that p̃i− pi >

0 and let pr ≡ Tr[Prρ̃AB] =
∑

i∈{i+} p̃i− pi. If p̃i− pi < 0 we add (pi− p̃i)/(pr)Pr

to PA,i to create a new element P̃A,i ≡ PA,i + (pi − p̃i)/(pr)Pr.
Next consider the trace distance between {P̃A,i}i and {PA,i}i.∑

i

||P̃A,i − PA,i||1 =
∑

i∈{i+}

∣∣∣∣∣ p̃i − pi

p̃i

∣∣∣∣∣ ||PA,i||1 +
∑

i<{i+}

∣∣∣∣∣ pi − p̃i

pr

∣∣∣∣∣ ||Pr ||1

=
∑

i∈{i+}

∣∣∣∣∣ p̃i − pi

p̃i

∣∣∣∣∣ ||PA,i||1 + ||Pr ||1, (C.48)

where we used that
∑

i<{i+} pi − p̃i = pr. Since each PA,i is positive semidefi-
nite with all eigenvalues less or equal to 1 it follows that ||PA,i||1 ≤ nA where
nA ≡ dim(HA). Moreover, ||Pr ||1 = ||

∑
i∈{i+}(1 − pi/p̃i)PA,i||1 ≤

∑
i∈{i+} |1 −

pi/p̃i|||PA,i||1. Therefore,∑
i

||P̃A,i − PA,i||1 ≤ 2
∑

i∈{i+}

∣∣∣∣∣ p̃i − pi

p̃i

∣∣∣∣∣ ||PA,i||1 ≤ 2nA

∑
i∈{i+}

∣∣∣∣∣ p̃i − pi

p̃i

∣∣∣∣∣ . (C.49)

We further note that p̃i > pi for i ∈ {i+} and thus if pmin ≡ mini pi we have that
p̃i > pmin for i ∈ {i+}. It follows that |( p̃i − pi)/p̃i| < |( p̃i − pi)/pmin| for i ∈ {i+}.
Hence,

∑
i

||P̃A,i − PA,i||1 <
2nA

pmin

∑
i∈{i+}

|p̃i − pi| ≤
2nA

pmin

∑
i∈{i+}

||ρ̃AB − ρAB||1

<
2nA|P|

pmin
||ρ̃AB − ρAB||1, (C.50)
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where |P| is the number of elements of P and we have used Eq. (C.47). Thus
if {PA,i}i is a P-POVM for ρAB the minimum trace distance between {PA,i}i

and a P-POVM for ρ̃AB is upper bounded by 2nA|P|||ρ̃AB − ρAB||1/pmin. By an
analogous argument if {P̃A,i}i is a P-POVM for ρ̃AB the minimum trace distance
between {P̃A,i}i and a P-POVM for ρAB is upper bounded by 2nA|P|||ρ̃AB −

ρAB||1/pmin

We now recall Eq. (C.32) and Eq. (C.39) from C.5 showing that the guess-
ing probability Pg(ρAB, {PA,i}i) is Lipschitz continuous on the set of states for a
fixed {PA,i}i

|Pg(ρ̃AB, {PA,i}i) − Pg(ρAB{PA,i}i)| ≤ ||ρ̃AB − ρAB||1, (C.51)

and Lipschitz continuous on the set of POVMs for a fixed ρAB

|Pg(ρAB, {P̃A,i}i) − Pg(ρAB, {PA,i}i)| ≤ nB

∑
i

||P̃A,i − PA,i||1, (C.52)

where nB ≡ dim(HB).
We are now ready to show Lipschitz continuity of CPA on the set of states.

When ρAB changes to ρ̃AB the minimum trace distance between any P-POVM
for ρ̃AB and a P-POVM for ρAB is upper bounded by 2nA|P|||ρ̃AB − ρAB||1/pmin.
From this and Eq. (C.52) follows that the difference between the maximum
of Pg(ρAB, {PA,i}i) evaluated on the set ΠPA(ρ̃AB) of P-POVMs for ρ̃AB and the
maximum of Pg(ρAB, {PA,i}i) evaluated on the set ΠPA(ρAB) of P-POVMs for
ρAB is upper bounded by 2nAnB|P|||ρ̃AB − ρAB||1/pmin. Moreover, by Eq. (C.51)
the difference between Pg(ρAB, {PA,i}i) and Pg(ρ̃AB, {PA,i}i) for any given {PA,i}i

in the union ΠPA(ρAB) ∪ ΠPA(ρ̃AB) of the set of P-POVMs for ρ̃AB and the set of
P-POVMs for ρAB is upper bounded by ||ρ̃AB−ρAB||1. In conclusion the change
of CPA when ρAB changes to ρ̃AB is upper bounded by (1+2nAnB|P|/pmin)||ρ̃AB−

ρAB||1 , namely

|CPA (ρ̃AB) −CPA (ρAB)| <
(
1 +

2nAnB|P|

pmin

)
||ρ̃AB − ρAB||1, (C.53)

Thus CPA is Lipschitz continuous on the set of states.
Using Eq. (C.53) we can make some observations about the robustness of

correlation backflows. If we have a backflow in the interval [τ, τ+∆τ] for an ini-
tial state ρAB(0), namely CPA (ρAB(τ+ ∆τ))−CPA (ρAB(τ)) > 0, any state ρ′AB such
that the quantity ||ρ′AB − ρAB(τ + ∆τ)||1 < pmin/(pmin + 2nAnB|P|)|CPA (ρAB(τ +

∆τ)) − CPA (ρAB(τ))| satisfies CPA (ρ′AB) − CPA (ρAB(τ)) > 0. Likewise, if we have
CPA (ρAB(τ+ ∆τ))−CPA (ρAB(τ)) > 0 any state ρ′′AB such that the quantity ||ρ′′AB −

ρAB(τ)||1 < pmin/(pmin + 2nAnB|P|)|CPA (ρAB(τ + ∆τ)) − CPA (ρAB(τ))| satisfies
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CPA (ρAB(τ+∆τ))−CPA (ρ′′AB) > 0. Moreover, if CPA (ρAB(τ+∆τ))−CPA (ρAB(τ)) > 0
any pair of states ρ′AB and ρ′′AB such that ||ρ′AB − ρAB(τ + ∆τ)||1 + ||ρ′′AB −

ρAB(τ)||1 < pmin/(pmin + 2nAnB|P|)|CPA (ρAB(τ + ∆τ)) − CPA (ρAB(τ))| satisfies
CPA (ρ′AB) −CPA (ρ′′AB) > 0.

Thus a backflow can be seen also for evolution of a perturbed initial state
ρAB(0) +χ where χ is traceless Hermitian if ||Λ(τ+∆τ, 0)⊗1B(χ)||1 + ||Λ(τ, 0)⊗
1B(χ)||1 < pmin/(pmin + 2nAnB|P|)|CPA (ρAB(τ+∆τ))−CPA (ρAB(τ))|. Since Λ(t, 0)
is CPTP for every t it holds that ||Λ(τ + ∆τ, 0) ⊗ 1B(χ)|| ≤ ||χ|| and ||Λ(τ, 0) ⊗
1B(χ)|| ≤ ||χ||. Thus there is a neighborhood of ρAB(0) such that all states in
this neighborhood show a backflow in the interval [τ, τ+ ∆τ] and it includes all
states ρAB(0) + χ such that 2||χ||1 < pmin/(pmin + 2nAnB|P|)|CPA (ρAB(τ + ∆τ)) −
CPA (ρAB(τ))|. Hence, this neighborhood has the same dimension as S (HA⊗HB).

C.7 The non-differentiable case

Here we discuss the non-Markovianity measure

NP(Λ) ≡ sup
ρAS A′ (0)

∫
d
dt C

P
A (ρAS A′ (t))>0

d
dt

CPA (ρAS A′(t))dt , (C.54)

and how it can be extended to work for almost-everywhere differentiable func-
tions CPA (ρAS A′(t)). We also comment on how one may construct measures of
non-Markovianity based on CPA (ρAS A′(t)) using finite differences.

First we consider the case where CPA (ρAS A′(t)) is differentiable. Consider
the non-Markovianity measure introduced in Eq. (C.54) and let [t1, t2] be a
closed time interval for which it holds that d

dtC
P
A (ρAS A′(t)) > 0. In Eq. (C.54)

the type of integration used is not specified, but if the Henstock-Kurzweil inte-
gral is used it holds that

∫ t2

t1

d
dt

CPA (ρAS A′(t))dt = CPA (ρAS A′(t2)) −CPA (ρAS A′(t1)) , (C.55)

if CPA (ρAS A′(t)) is differentiable in [t1, t2]. If the Riemann or Lebesgue integral
is used there would be the additional request that d

dtC
P
A (ρAS A′(t)) is Riemann or

Lebesgue integrable, respectively.
Next we consider the case where CPA (ρAS A′(t)) is almost everywhere differ-

entiable, namely CPA (ρAS A′(t)) is non-differentiable for at most a countable set
of times ti. At the times where CPA (ρAS A′(t)) fails to be differentiable, it is either
non-differentiable but continuous or has a discontinuity. Since CPA (ρAS A′(t)) is
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a continuous function on the set of states it has a discontinuity only if the evolu-
tion of ρAS A′(t) is discontinuous. To deal with these non-differentiability points,
we can define a function d

dtC
P
A (ρAS A′(t))∗ that is equal to d

dtC
P
A (ρAS A′(t)) for all

t for which CPA (ρAS A′(t)) is differentiable, and is equal to zero otherwise. If we
use the Henstock-Kurzweil integral in the definition of the measure NP(Λ) it
is insensitive to how we define d

dtC
P
A (ρAS A′(t))∗ in the countable set of ti where

CPA (ρAS A′(t)) is not differentiable. Thus, we can define the measure

NP(Λ) ≡ sup
ρAS A′ (0)

∫
d
dt C

P
A (ρAS A′ (t))∗>0

d
dt

CPA (ρAS A′(t))∗dt +
∑

ti

∆+(ti) , (C.56)

where ∆+(ti) is the value of a discontinuous increase of CPA (ρAS A′(t)) at a time ti.
This definition reduces to that of Eq. (C.54) when CPA (ρAS A′(t)) is differentiable.

For the case when CPA (ρAS A′(t)) is not almost everywhere differentiable the
measure in Eq. (C.56) is not well defined. In this case one can resort to fi-
nite difference methods to estimate the amount of non-Markovianity in a given
interval. A simple measure of this kind is

NP, f inite(Λ) ≡ sup
ρAS A′ (0),ti<t f

{0,CPA (ρAS A′(t f )) −CPA (ρAS A′(ti))}, (C.57)

where ti and t f and belong to the interval of interest. We know that if the
evolution is non-Markovian there always exists at least one P, some ancil-
las A and A′, an initial state ρAS A′(0) and a pair of times ti and t f such that
CPA (ρAS A′(t f )) −CPA (ρAS A′(ti)) > 0 (see Theorem 14). Therefore, NP, f inite(Λ) >
0 if and only if the evolution Λ is non-Markovian.

C.8 Problems to witness any non-Markovian dynamics

In Section 2.5.5 we showed that for any non CP-divisible intermediate map Vt,s

an ensemble of states ES A = {pi, ρS A,i} exists such that the guessing probability
Pg(ES A) increases in the time interval [s, t]. A natural question is therefore if
a correlation measure of the type defined in Eq. (5.5), namely CPA , can show
revivals when Pg(ES A) increases.

A first attempt in this direction could go as follows. The idea would be to
mimic the previous results for C(2)

A by using as initial probe a state consisting
of the ensemble states ES A = {pi, ρS A,i}i for systems S and A′ correlated with
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orthogonal states on A according to the probabilities in the ensemble. Unfor-
tunately, this approach does not work. In fact, we show that for a classical-
quantum state ρAB of the type

ρAB =
∑

i

pi|i〉〈i|A ⊗ ρS A′,i. (C.58)

the ensemble that maximizes Pg(ρAB, {PA,i}i) is not defined by the projection
{|i〉〈i|A}i in system A. We show this by constructing a counterexample. Consider
the state

ρAB = p1|1〉〈1| ⊗ ρ1 + p2|2〉〈2| ⊗ ρ2 + p3|3〉〈3| ⊗ ρ3, (C.59)

where 2p3 > p1 > 2p2 and

ρ1 =

( 1
2 0
0 1

2

)
, ρ2 =

(
1 0
0 0

)
, ρ3 =

(
0 0
0 1

)
. (C.60)

For this example we can directly find Pg. To do so, we use that Pg is the
solution to a convex optimization problem where strong duality holds, namely
Pg is the solution to the dual optimization problem [YKL75, EMV03]. The
dual formulation of Pg is

Pg = min
K

Tr K s.t. K ≥ piρi ∀i. (C.61)

For the output ensemble E = {{p1, p2, p3}, {ρ1, ρ2, ρ3}}, achieved by the P-
POVM {|1〉〈1|, |2〉〈2|, |3〉〈3|}, it can be seen that Pg = p1/2 + p3 by directly con-
structing the optimal K. However, for the output ensemble {{p1, p2, p3}, {(1 −
p2/p1)ρ1 + p2/p1ρ2, ρ1, ρ3}} achieved by a non-projectiveP-POVM of the form
{(1− p2/p1)|1〉〈1|+ |2〉〈2|, p2/p1|1〉〈1|, |3〉〈3|} the construction of the optimal K
gives Pg = p1/2 + p2/2 + p3. Thus, in general the maximization of Pg over
Π

p
A(ρA) does not produce the desired ensemble for systems S and A′.
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Appendix D

Appendix of Chapter 6

D.1 Derivation of Eq. (6.8)

To cast inequality (6.7) into the equivalent form (6.8) let us first consider the
case where f (s) > 0. Under this condition (6.7) forces f (t) to belong to the
interval [− f (s)

d2−1 , f (s)] which is centred on the point

fM ≡
1
2

(
f (s) −

f (s)
d2 − 1

)
=

d2 − 2
2(d2 − 1)

f (s) , (D.1)

and has width

W ≡ f (s) +
f (s)

d2 − 1
=

d2

d2 − 1
f (s) . (D.2)

Accordingly imposing f (t) ∈ [− f (s)
d2−1 , f (s)] is equivalent to require

| f (t) − fM | ≤ W/2 , (D.3)

that is

|2(d2 − 1) f (t) − (d2 − 2) f (s)| ≤ d2 f (s) , (D.4)

which corresponds to (6.8). Similarly if f (s) ≤ 0, Eq. (6.7) forces f (t) to
belong to the interval [ f (s),− f (s)

d2−1 ] which can still be expressed as in (D.3) by
observing that fM is still as in (D.1) while W becomes

W ≡ −
f (s)

d2 − 1
− f (s) = −

d2

d2 − 1
f (s) . (D.5)

In this case hence we get

|2(d2 − 1) f (t) − (d2 − 2) f (s)| ≤ −d2 f (s) , (D.6)

which corresponds to (6.8) for nonpositive values of f (s).
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D.2 Non-convex geometries of the Markovian and non-
Markovian sets

From the results of Ref. [WECC08] it follows that neither the Markovian sub-
setEM nor its complementENM are convex (or equivalently thatEM is neither
convex nor concave). In Sections D.2.1 and D.2.2 we show that the same prop-
erty holds also for the Markovian and non-Markovian parts of the depolarizing
trajectoriesD.

D.2.1 Non-convexity ofDNM

Consider the pair of non-Markovian depolarizing evolutions DNM,1 and DNM,2

with characteristic functions

f NM,1(t) ≡ θH(1 − t) + θH(t − 1) cos2(t − 1) , (D.7)

f NM,2(t) ≡ θH(1 − t) + θH(t − 1) sin2(t − 1) , (D.8)

where θH(τ) = 1 for τ ≥ 0 and θH(τ) = 0 for τ < 0. The characteristic func-
tions f NM,1(t) and f NM,2(t) belong to F but fail to fulfill the conditions (6.10)
for all t, hence they are elements of FNM. Interestingly these two evolutions are
maximally non-Markovian. Indeed, they show infinitely many non-Markovian
gaps ∆NM

k = 1 while being positive and continuous. f NM,1(t) is continuous
at any time and f NM,2(t), even if it is not continuous at t = 1, belongs to
the family described in Eq. (6.101). Hence, since for both of them we have
∆NM =

∑
k ∆NM

k = +∞, they assume the maximal value for the measure of non-
Markovianity p(DNM,1|DM) = p(DNM,2|DM) = 1 (see Eq. (D.28)). Nonethe-
less, the convex combination f (p)(t) = (1− p) f NM,1(t)+ p f NM,2(t) is Markovian
for p = 1/2. Indeed, we have

f (1/2)(t) = θH(1 − t) +
θH(t − 1)

2
=


1 t ∈ [0, 1] ,

1
2 t > 1 ,

(D.9)

which is an element of FM with a Markovian discontinuity at t = 1 (indeed
ξ( f (1/2)(1)) = 1/2 ∈ JD). Accordingly the process (DNM,1 + DNM,2)/2 is an
element ofDM proving thatDNM is not closed under convex combination.

D.2.2 Non-convexity ofDM

Focusing on the qubit case d = 2, we show an example where any non-trivial
convex combination of two Markovian depolarizing evolutions provide a non-
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Markovian depolarizing evolution, with the generalization for d > 2 being triv-
ial. Therefore, this proves that the Markovian set of depolarizing channels is
non-convex and that the two Markovian evolutions used in this example belong
to the border of the Markovian set EM.

Consider two Markovian qubit evolutions DM,1 and DM,2 defined by the
characteristic functions f M,1(t) and f M,2(t), respectively. First, we fix f M,1(t) =

1 for all t ≥ 0. Notice that DM,1
t (·) = IS (·) is the identical map for any t ≥ 0.

Secondly we take

f M,2(t) ≡


1 t ≤ tNC,1
−1/3 t ∈ (tNC,1, tNC,2]
1/9 t > tNC,2

, (D.10)

which exhibits Markovian discontinuities

ξ( f M,2(tNC,1)) = ξ( f M,2(tNC,2)) = −
1

d2 − 1
= −

1
3
. (D.11)

The convex combination D(p) = (1 − p)DM,1 + pDM,2 is characterized by
f (p)(t) = (1 − p) f M,1(t) + p f M,2(t). While the discontinuity that f (p)(t) shows
at t = tNC,1 is always Markovian, at t = tNC,2 we have

ξ( f (p)(tNC,2)) =
9 − 8p
9 − 12p

< JD , ∀p ∈ (0, 1) . (D.12)

Indeed, ξ( f (p)(tNC,2)) > 1 for any p ∈ (0, 3/4), ξ( f (p)(tNC,2)) < −1/3 for any
p ∈ (3/4, 1) and it diverges for p = 3/4: limp→3/4∓ ξ( f (p)(tNC,2)) = ±∞ (see
Fig. D.1). Therefore, any depolarizing evolution D(p) obtained by the non-
trivial convex combination of the Markovian depolarizing evolutions DM,1 and
DM,2 is non-Markovian.

D.3 Markovian and non-Markovian positive depolariz-
ing evolutions

We define D+ ⊂ D to be the class of positive depolarizing evolutions which is
defined by non-negative characteristic functions, namely the set F+ ⊂ F made
by the elements of F that are non-negative for any t ≥ 0. Given the defining
feature of the elements of the F+, it is clear that the positive depolarizing evo-
lutions form a convex set. We define DM

+ to be the Markovian subset of D+

which is in one-to-one correspondence with the set of characteristic functions
FM

+ ⊂ F
M. Similarly, we defineDNM

+ and FNM
+ .
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Figure D.1: Plots of f M
1 (t) = 1 (orange), f M

2 (t) (purple) and f (p)(t) = p f M
1 (t) +

(1 − p) f M
2 (t) for p = 0.75 (red), where tNC,1 = 1 and tNC,2 = 2. While f M

1,2(t)
satisfy the conditions (6.10) at any time, this is not the case for f (0.75)(t): it
shows a non-Markovian discontinuity at tNC,2 = 2 when CM2(2) is violated.
Indeed, f (0.75)(2−) = 0, f (0.75)(2+) > 0 and ξ( f (0.75)(2)) = +∞.

The characteristic functions of F+ are in general non-continuous. Indeed,
we require that ξ( f M(t)) ∈ [0, 1] for any f M

+ (t) ∈ FM
+ and t ≥ 0. Analogously,

ξ( f NM(t)) ∈ [0,+∞] for any f NM
+ (t) ∈ FNM

+ and t ≥ 0. A negative value of
ξ( f (t)) implies that f (t) changes sign at time t and this circumstance cannot
occur for positive f (t). A straightforward calculation shows that f (p)(t) = (1 −
p) f M,1

+ (t) + p f M,2
+ (t) cannot show non-Markovian discontinuities and more in

general cannot be non-Markovian. Hence,

• D+ is convex,

• DM
+ is closed and convex,

• DNM
+ is open and non-convex.

We remember that the set of continuous depolarizing evolutions DC has a
convex Markovian subset that we called DM

C . The set of characteristic func-
tions that corresponds to DM

C is FM
C , which is the collection of non-increasing

continuous non-negative functions f M
C (t). Therefore, we can conclude that

D
M
C ⊂ D

M
+ , (D.13)

where DM
+ \ D

M
C is given by those evolutions of DM

+ that show at least one
(Markovian) discontinuity. Moreover, since no f NM

+ (t) ∈ FNM
+ can assume
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negative values, it is easy to see that DNM
C 1 DNM

+ , DNM
+ 1 DNM

C and DNM
+ ∩

DNM
C , ∅, namely the intersection is not empty.

D.3.1 Positive non-Markovian characteristic functions

We study the value of p(DNM
+ |DM

+ ) when DNM
+ ∈ DM

+ , namely a non-Markovian
depolarizing evolution with a positive characteristic function f NM

+ (t) ∈ FNM
+ .

Therefore we have to consider the convex combination f (p)(t) = (1−p) f NM
+ (t)+

p f M
+ (t) and evaluate the smallest p for which there exists a f M

+ (t) ∈ FM
+ that

makes f (p)(t) Markovian, more precisely an element of FM
+ .

Similarly to the previous sections, we define T NM
+ and ∆NM exactly as in the

continuous case, namely the collection of the time intervals T +
k = (t(in)

k , t( f in)
k )

where a non-Markovian gap ∆NM
k > 0 is shown while the non-negative f NM

+ (t)
is continuous. Analogously to Appendix D.4, we introduce

∆M
k ∈ [−1, 0] , ∆M ≡

L∑
k=1

∆M
k ∈ [−1, 0] , (D.14)

where ∆M
k = f M

+ (t( f in)
k ) − f M

+ (t(in)
k ) ≤ 0 is the gap that f M

+ (t) describes when
f NM
+ (t) is increasing.

Moreover, we introduce WNM
+ ≡ {τi}i as the discrete set of times when

f NM
+ (t) shows a non-Markovian discontinuity, namely such that ξ( f NM

+ (τi)) ∈
(1,∞] (remember that ξ( f NM

+ (t)) and f NM
+ (t) itself cannot be negative). Analo-

gously to ∆NM
k , we introduce the quantities

πNM
i ≡ f NM

+ (τ+
i ) − f NM

+ (τ−i ) > 0 , (D.15)

πM
i ≡ f M

+ (τ+
i ) − f M

+ (τ−i ) < 0 , (D.16)

respectively the non-Markovian gaps shown by f NM
+ (t) and the Markovian gaps

shown by f M
+ (t) at the times when f NM

+ (t) has non-Markovian discontinuities.
Moreover,

πNM =
∑

i

πNM
i > 0 , (D.17)

πM =
∑

i

πM
i ∈ [−1, 0] , (D.18)

are respectively the sum of all the non-Markovian jumps shown by f NM
+ (t) and

all the Markovian jumps shown by f M
+ (t). Notice that, since f M

+ (t) is non-
increasing, ∆M + πM ∈ [−1, 0]1. Indeed, it is easy to show that, in order to

1This quantity can be equal to -1 if and only if f M
+ (t) is constant for those times when f NM

+ (t)
behaves as a Markovian characteristic function.
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calculate p(DNM
+ |DM

+ ), by considering f M
+ (t) with (Markovian) discontinuities

for some t < WNM
+ we do not obtain an advantage. More precisely, we have to

consider f M
+ (t) that show Markovian discontinuities if and only if t ∈ WNM

+ .
A necessary condition to make f (p)(t) Markovian is that p ≥ p+ ≡ (∆NM +

πNM)/(1 + ∆NM + πNM). This relation is obtained as Eq.(D.25), where we also
require that π(p)

i = (1 − p)πNM
i + pπM

i ≤ 0, namely that the discontinuities of
f (p)(t) are Markovian.

In order to evaluate the measure of non-Markovianity of f NM
+ (t), we adapt

the tools introduced in Appendix D.4 (where we studied non-negative contin-
uous non-Markovian characteristic functions) to implement the cases where
f NM
+ (t) shows non-Markovian discontinuities. We define gM

+ (t) as the follow-
ing function

1 t ≤ t1 ,
· · ·

gM
+ (t( f in)

k−1 ) −
(

f NM(t) − f NM(t(in)
k )

)
/(∆NM + πNM) t ∈ T +

k ,

· · ·

gM
+ (τ−i ) − πNM

i /(∆NM + πNM) t = τi .

(D.19)

where t1 ≡ min{τ1, t
(in)
1 }. It is easy to see that Eq. (D.19) is obtained from

Eq. (D.26) by replacing ∆NM with ∆NM +πNM and by implementing the Marko-
vian gaps πM

i ≡ −π
NM
i /(∆NM + πNM) that gM

+ (t) shows when f NM
+ (t) shows a

non-Markovian discontinuity. Moreover, we notice that by considering gM
+ (t)

we have ∆M + πM = −1. The function f (p)(t) = (1 − p) f NM
+ (t) + pgM

+ (t) be-
longs to FM

+ for any p ≥ p+, where f (p+)(t) is constant for any t ∈ T NM and
continuous for any t ∈ WNM

+ . Finally, we can state that

p(DNM
+ |DM

+ ) =
∆NM + πNM

1 + ∆NM + πNM , (D.20)

and therefore this measure of non-Markovianity depends on the non-Markovian
gaps shown by the non-Markovian characteristic function (in this case ∆NM +

πNM) as in the continuous case.
We notice that, while for continuous depolarizing evolutions p(DNM

C |DM) =

p(DNM
C |DM

C ) (see Section 6.5), in the case of positive depolarizing evolutions
we have p(DNM

+ |DM) ≤ p(DNM
+ |DM

+ ). We present a simple example that shows
this feature. Consider f NM

+ (t) with (i) a single non-Markovian discontinu-
ity WNM

+ = {τ}, (ii) no non-Markovian intervals of non-Markovianity T NM
k

and (iii) such that ḟ NM
+ (t) = 0 for any t ≥ τ. In this case we have that

gM
+ (t) = 1 for any t ≤ τ and gM

+ (t) = 0 for any t > τ. Therefore, we obtain
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p(DNM
+ |DM

+ ) = πNM/(1 + πNM), where πNM = f NM
+ (τ+) − f NM

+ (τ−). By con-
sidering the non-positive Markovian characteristic function gM(t) = 1 for t ≤ τ
and gM(t) = −1/(d2 − 1) for t ≥ τ we have2

p(DNM
+ |DM) =

πNM

1 + 1
d2−1 + πNM

< p(DNM
+ |DM

+ ) .

D.4 Multiple non-Markovianity time intervals for pos-
itive characteristic functions

Here we extend the construction of Section 6.4.1 to address the general case of
continuous non-Markovian characteristic functions of the form (6.38), namely
which are positive and which have an arbitrary (possibly infinite) number L > 0
of intervals T +

k ≡ (t(in)
k , t( f in)

k ) of non-Markovianity. As in the previous section
for each of the intervals T +

k we introduce the gaps

∆M
k ≡ f M

C (t( f in)
k ) − f M

C (t(in)
k ) , (D.21)

∆
(p)
k ≡ f (p)

C (t( f in)
k ) − f (p)

C (t(in)
k ) = (1 − p)∆NM

k + p∆M
k , (D.22)

with ∆NM
k the positive quantities defined in (6.35). Observe that, due to the fact

that f M
C (t) is in FM

C , the ∆M
k are all non-positive while their global sum is larger

than −1, namely

∆M
k ∈ [−1, 0] , ∆M ≡

L∑
k=1

∆M
k ∈ [−1, 0] . (D.23)

This is just a consequence of the fact that the maximum gap of a continuous
Markovian characteristic function is at most equal to −1. A necessary condition
for the Markovianity of f (p)

M (t) can then be obtained by imposing that ∆
(p)
k ≤ 0

for all k, which in turn implies

0 ≥
L∑

k=1

∆
(p)
k = (1 − p)∆M + p∆NM (D.24)

=⇒ p ≥
∆NM

|∆M | + ∆NM ≥
∆NM

1 + ∆NM ≡ pL , (D.25)

2 We think that it is not necessary to prove that there are no f M(t) ∈ FM that are able to make
f (p)(t) Markovian for smaller values of p.
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where D.25 we used (6.36) and (D.23).
Now we show that a gM

C (t) ∈ FM
C that makes f (p)

C (t) Markovian for any
p ≥ pL exists. We consider the following monotonically decreasing function

gM
C (t) =



1 t ≤ t(in)
1

1 −
(

f NM(t) − f NM(t(in)
1 )

)
/∆NM t ∈ T +

1

gM
C (t( f in)

1 ) −
(

f NM(t) − f NM(t(in)
2 )

)
/∆NM t ∈ T +

2
· · ·

gM
C (t( f in)

k−1 ) −
(

f NM(t) − f NM(t(in)
k )

)
/∆NM t ∈ T +

k
· · ·

, (D.26)

that we define constant and equal to gM
C (t( f in)

k−1 ) in the intervals [t( f in)
k−1 , t

(in)
k ], for

k = 1, . . . , L. Therefore, the temporal derivative of gM
C (t) is particularly simple

ġM
C (t±) =


− ḟ NM

C (t±)/|∆NM | t ∈ T +
k ,

0 otherwise.
(D.27)

As a consequence, for t ∈ T +
k , the function gM

C (t) decreases by a factor pro-
portional to the increase of f NM(t) in the same time interval, namely ∆M

k =

−∆NM
k /∆NM < 0. An intuitive explanation for the form of gM

C (t) is the fol-
lowing. The “resource” of a continuous Markovian characteristic function
to contrast the non-Markovianity of f NM

C (t) is its distance from zero. Once
that f NM

C (t) decreases, it cannot increase again. Therefore, to efficiently use
the maximum available gap allowed for Markovian characteristic functions,
namely ∆M = −1, gM

C (t) is constant whenever f NM
C (t) behaves as a Markovian

characteristic function. Instead, when this behavior is non-Markovian, gNM
C (t)

decreases accordingly to the increase of f NM
C (t) in order to make their convex

sum f (p)
C (t) = (1 − p) f NM

C (t) + pgM
C (t) constant for the smallest value of p. This

proves that, for the continuous depolarizing evolutions defined as in Eq. (6.38),
p(DNM

C |DM
C ) = pL. Therefore, the corresponding non-Markovianity measure

(6.30) is equal to

p(DNM
C |DM

C ) = pL =
∆NM

1 + ∆NM , (D.28)

which corresponds to Eq. (6.37).

D.5 Removing the finite m constraint

In Section 6.4.2 we have assumed m to be explicitly finite, a useful hypothesis
which allowed us to assume the existence of (6.52) and to express its value
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as in (6.63). It turns out however that this assumption is not fundamental and
that Eq. (6.50) holds true also if we drop it. In order to show this, instead of
studying the Markovian character of f (p)

C (t) for all t ≥ 0, we limit the analysis
for just all t ≤ T with T being finite quantity. Observe then that the number
m(T ) of time intervals T−j = (t(in)

j , t( f in)
j ) contained into domain [0,T ], where

the characteristic function f NM
C (t) is negative and decreasing, is by construction

finite. Same considerations holds for the total number m(T ) of the time intervals
T j = (t(in)

j , t( f in)
j ) when f NM

C (t) ≤ 0 and ḟ NM
C (t±) ≥ 0 and which fit on [0,T ].

Following the same reasoning we adopted in the previous section, the following
relations can then be derived

f NM
C (T ) = δNM(T ) + ΘNM(T ) , (D.29)

1 ≥ f M
C (T ) + |δM(T )| , (D.30)

with

δM(T ) ≡
∑m(T )

j=1 δM
j ≤ 0 , δNM(T ) ≡

∑m(T )
j=1 δNM

j ≥ 0 ,

ΘNM(T ) ≡
∑m(T )

j=1 ΘNM
j < 0 . (D.31)

Furthermore Eqs. (6.58) and (6.62) get replaced by

(1 − p)δNM(T ) − p|δM(T )| ≤ 0 , (D.32)

−(1 − p)(δNM(T ) + ΘNM(T )) − p f M
C (T ) ≤ 0 , (D.33)

that summed up term by term lead to

p ≥
|ΘNM(T )|

1 + |ΘNM(T )|
, (D.34)

which is a necessary condition to have f (p)
C (t) Markovian at least on [0,T ].

Following then a construction which is analogous to the one given in (6.66) we
can also show that indeed the right-hand-side term of (D.34) is the minimum
value for p to ensure the Markovianity of f (p)

C (t) on [0,T ]. The final result thus
can be derived by taking the limit T → ∞ which leads to (6.50) where now
ΘNM is properly computed as ΘNM = limT→∞ΘNM(T ). Notice in particular
that having extend (6.50) to the case of infinite m it is now possible that |ΘNM |

will diverge (a case that for instance happen whenever f NM
C (t) has infinitely

many – not properly dumped – oscillations) leading to the maximum value for
the measure of non-Markovianity, namely p(DNM

C |DM
C ) = 1.
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D.6 Uniqueness of the optimal continuous Markovian
characteristic function

We consider the evaluation of p(DNM
C |DM

C ) when DNM
C ∈ DNM

C and f NM
C (t)

is the corresponding continuous characteristic function. For the purpose of
evaluating this quantity, in Section 6.4.3 we saw that its value is given by
ΓNM/(1 + ΓNM) and a continuous characteristic function that makes the cor-
responding f (p)(t) Markovian for p = p(DNM

C |DM
C ) is hM

C (t) (see Eq. (6.85)). In
this section we show that hM

C (t) is the only continuous Markovian characteristic
function that makes f (p)(t) Markovian for any p ≥ p(DNM

C |DM
C ).

Any continuous Markovian characteristic function f M
C (t) assumes values in

[0, 1] and is non-increasing. Let start noticing that, if f M
C (t) decreases while

hM
C (t) is constant, given what we discussed in Section 6.4 we conclude that the

former has no chance to perform better than the latter. Therefore, consider a
time interval (t1, t2) of non-Markovianity where ḣM

C (t) < 0 and ḟ NM(t) > 0.
If for some t ∈ (t1, t2) we have ḣM

C (t) < ḟ M
C (t) ≤ 0, the f (p)(t) obtained with

f M
C (t) has a time derivative that can be made non-positive for larger values of

p if compared with the f (p)(t) obtained with hM
C (t). Therefore, in this situation

f M
C (t) is less efficient than hM

C (t) to make f (p)(t) Markovian.
Consider a time interval of non-Markovianity (t(in)

k , t( f in)
k ) where we have

ḟ M
C (t) < ḣM

C (t) < 0 for some t ∈ (t(in)
k , t( f in)

k ) and ḟ M
C (t) ≤ ḣM

C (t) < 0 for every
t ∈ (t(in)

k , t( f in)
k ). Assume that f NM(t) ≥ 0 and therefore limt→∞ hM

C (t) = 0.
Using the notation introduced in Eqs. (6.35), (D.21) and (D.22), we see that by
using hM

C (t) all the ∆
(p)
k are non-positive for p ≥ p(DNM

C |DM
C ), while they are all

positive for p < p(DNM
C |DM

C ). In the case of the f M
C (t) described above, we may

have that some∆
(p)
k (t) can be made non-positive for some p < p(DNM

C |DM
C ).

Since
∑

k ∆M
k ∈ [−1, 0] and by considering that with hM

C (t) we have
∑

k ∆M
k =

−1, there must be a k′ , k such that the value of |∆M
k′ | obtained with f M

C (t) is
smaller than the one obtained with hM

C (t). Hence, while hM
C (t) can make f (p)(t)

Markovian for p = p(DNM
C |DC), f M

C (t) cannot do the same. A similar argument
can be used for f NM(t) that assume positive and negative values.

Finally, since any characteristic function f M
C (t) that makes f (p)(t) Marko-

vian for p = p(DNM |DM
C ) cannot have a time derivative different from ḣM

C (t),
hM

C (t) is the only continuous Markovian characteristic function that is opti-
mal to make f (p)(t) Markovian, namely f (p)(t) can be made Markovian for
p = p(DNM

C |DC) with a continuous characteristic function if and only if we
consider hM

C (t). In particular, given the results of Section 6.5, we can state that
the optimal Markovian evolution needed to evaluate p(DNM

C |DM) is unique and
defined by hM

C (t).
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D.7 Different vectors of signs for f M
a (t) and f (p)(t)

We consider f (p)(t) ∈ FM
b for some σb, where f M

a (t) ∈ FM
a for some σa , σb.

In the following, b is always the index attached to f (p)(t) and a is always the
index attached to f M

a (t).
First, we make the following consideration. In the case that f NM(t) violates

the conditions of Markovianity given in Eq. (6.10) in a time interval in TC,i,
then we must consider σa,i = σb,i. Indeed, if sign( f M(t)) = −sign( f NM(t))
and f NM(t) shows a non-Markovian behavior while being continuous at time t,
f (p)(t) can be made Markovian at time t if and only if sign( f (p)(t)) = sign( f M(t)).
Therefore:

(A) If TC,i is a time interval when f NM(t) behaves as a non-Markovian char-
acteristic function, then σa,i = σb,i.

Therefore, if σa and σb do not satisfy (A) for at least one time interval TC,i we
set pa,b = 1 because f M

a (t) cannot make f (p)(t) ∈ FM
b .

D.7.1 Times of continuity

Let us consider σa and σb that satisfy (A) for each TC,i and define the optimal
f M
a (t) for a generic time interval TC,i when σa,i , σb,i. During this time interval

f NM(t) behaves as a continuous Markovian characteristic function and there-
fore cannot change its sign. As a consequence, we must be in a situation where
σa,i = −σb,i while sign( f M

a (t)) = σa,i and sign( f NM(t)) = sign( f (p)(t)) = σb,i.
Therefore, with opposite signs, f M

a (t) and f NM(t) are approaching continuously
zero and we need to make their convex combination be of the same sign of
f NM(t).

We study the scenario where σa,i = +1 and σb,i = −1, where sign( f M
a (t)) =

+1 and sign( f NM(t)) = sign( f (p)(t)) = −1 for any t ∈ [tNC,i−1, tNC] (the same
results can be derived for sign( f M

a (t)) = −1 and sign( f NM(t)) = sign( f (p)(t)) =

+1). We write f M
a (tNC,i) = | f M

a (tNC,i)| = | f M
a (tNC,i−1)| − δM,i and moreover we

have f NM(tNC,i) = −| f NM(tNC,i)| = −| f NM(tNC,i−1)| + δNM
i , where δM

i , δ
NM
i ≥

0. Indeed, between tNC,i−1 and tNC,i, f M
a (t) ≥ 0 decreases and f NM(t) ≤ 0

increases. Therefore, if we consider the value of f M
a (tNC,i−1) fixed by the study

of the time interval [tNC,i−2, tNC,i−1], we have to study for which values of p
the function f (p)(t) in negative and non-decreasing in [tNC,i−1, tNC,i], when δM

i
varies. These two conditions can be respectively written as:

p ≤
| f NM(tNC,i)|

| f NM(tNC,i)| + | f NM(tNC,i)| − δM
i

≤ 1 , (D.35)
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p ≤
δNM

i

δNM
i + δM

i

≤ 1 , (D.36)

which are upper bounds for p. This is the first time that we obtain upper bounds
on p rather than lower bounds. The reason of this new situation is given by the
fact that we impose f (p)(t) to have the same sign of f NM(t) and the opposite
sign of f M

a (t). Hence, this condition cannot be satisfied if p is too large and it is
surely verified when p is small enough. Notice that (D.35) provides the largest
interval of validity when δM

i is as large as possible, namely | f NM(tNC,i)| − δM
i =

0, while for (D.36) we have the opposite situation. Since they are both upper
bounds, δM

i = 0 may seem the best choice. Nonetheless, we have to consider
that (D.35) have to be consistent with the lower bounds on p that we obtain
when we impose Markovianity for f (p)(t) in the other time intervals and times
of discontinuity. As a consequence, the choice of δM

i is not obvious, and we
have to implement a variable δM

i that we fix when we calculate pa,b. Therefore,
for each time interval where σa,i , σb,i we introduce a parameter δM

i and f M
a (t)

has to be parameterized by this set, namely f M
a (t) = f M

a (t, {δM
i }i).

Notice that, for the time intervals when instead we have σa,i = σb,i, we use
the conditions introduced in Table 6.1. Therefore, we defined the behavior of
f M
a (t) for all the times t ∈ WC .

D.7.2 Discontinuities

Let us consider those discontinuities that cannot be described by Tables 6.2 and
6.3, namely those times tNC,i such that:

σa,i−1 = −σb,i−1 and σa,i = σb,i

σa,i−1 = σb,i−1 and σa,i = −σb,i

σa,i−1 = −σb,i−1 and σa,i = −σb,i

. (D.37)

These discontinuities, analogously to (D.35) and (D.36), often provide upper-
bounds for p. Consider that, if there is just one time interval where the cross-
diagonal conditions of Table 6.1 occur, we obtain a lower-bound p ≥ pup =

∆/(1 + ∆). Moreover, lower-bound conditions are obtained when we consider
Tables 6.2 and 6.3 (while (D.37) does not apply). Moreover we notice that
we must have at least one lower-bound condition, otherwise p = 0 would be
consistent with f (p)(t) being Markovian, which is a contradiction. Therefore,
we may be interested to maximize plim as a function of ξ( f M

a (t)) in order to
make it compatible with one or more lower-bound conditions. In several cases
given by Eq. (D.37) this result is obtained for ξ( f M

a (t)) = 0. Therefore, there is
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a trade-off between plim and the ability of f M
a (t) to make f (p)(t) for later times.

We conclude that, for each Markovian and non-Markovian discontinuity of type
(D.37), we introduce a parameter Ξi that defines the value of ξ( f M

a (tNC,i)).

D.7.3 Evaluation of pab

Therefore, having σa , σb such that condition (A) is satisfied, in general we
need to consider an f M

a (t) that depends on the parameters ∆ (see Section 6.7.2),
{Ξi}i (see Sections 6.7.2 and 6.7.2), δM

i (see Section D.7.1) and {Ξi}i (see Sec-
tion D.7.2) and pa,b is obtained by the optimization

pa,b = min
∆,{δM

i }i,{Ξi}i,{Ξi}i

{p | f M
a (∆, {δM

i }i, {Ξi}i, {Ξi}i) ∈ FM
a , f (p)(t) ∈ FM

b }. (D.38)

It is plausible that, even if condition (A) holds, the maximization required for
pa,b has no solution. Indeed, the upper-bound and lower-bound conditions dis-
cussed above may not be made compatible for any f M

a (t) ∈ FM
a .
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[CM14] D. Chruściński and S. Maniscalco. Degree of non-markovianity
of quantum evolution. Phys. Rev. Lett., 112:120404, 2014.

[CMM17] D. Chruściński, C. Macchiavello, and S. Maniscalco. Detecting
non-markovianity of quantum evolution via spectra of dynamical
maps. Phys. Rev. Lett., 118:080404, 2017.
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