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Summary 
One of the central aims of biology and biomedicine has been the characterisation and 

understanding of genetic variation across humans, to answer important evolutionary questions 

and to explain phenotypic variability concerning the diseases. Understanding genetic variability, 

is key to study this relationship (through imputation and GWASs) and to translate the results into 

improved clinical protocols. Different initiatives have emerged around the world to systematically 

characterise the genetic variability of specific human populations from whole-genome sequences, 

usually by selecting geographical regions. Examples such as 1000 Genomes (1000G)1, GoNL2, 

HRC, UK10K3 or Estonian population4, have already identified and characterised millions of 

genetic variants across different populations. In combination with imputation analysis, these 

sequenced-based projects allow increasing the statistical power and resolution of Genome-Wide 

Association Studies (GWAS), identifying and discovering new disease-associated variants5. 

Additionally, genetic variability among population groups is associated with geographic ancestry 

and can affect the disease risk or treatment efficacy differently6,7. For this reason, population-

specific reference panels are necessary to characterise their genetic diversity and to assess its 

effect on human phenotypes, improving GWAS studies, as one of the cornerstones of precision 

medicine7. 

Existing genetic variability panels include Single Nucleotide Variants (SNVs) and indels 

(<50bp) but are limited in large Structural Variants (SV) (≥50bp). Technical and methodological 

limitations hindered the discovery of SVs using Next-generation Sequencing (NGS) technologies, 

as it produced False-Discovery Rates between 9-89% and recall 10-70%, depending on the SV 

type and size8. On average, the genomic variation between two human genomes is around 0.1%, 

but this difference increases to 1.5% with SVs8. The SVs also affect 3-10 times more nucleotides 

than SNVs9 (4M SNVs per genome10), showing their potential effect on human phenotypes. For 

this reason, including a complete catalogue of SVs in reference panels will increase the power in 

GWAS studies and provide opportunities to find new disease-associated variants. 

To overcome these limitations, in this thesis, we have generated the first genome-wide 

Iberian haplotype reference panel, mainly focused on Structural Variants, using 785 samples 

whole-genome sequenced (WGS) at high coverage (30X) from the GCAT-Genomics for life 

project. We designed a complete strategy, including an extensive benchmarking of multiple 

variant calling programs and by building specific Logistic Regression Models (LRM) for SV types, 

as well as phasing strategies to come up with a high quality and comprehensive genetic variability 

panel. This strategy was benchmarked using different controlled sets of variants, showing high 

precision and recall values across all variant types and sizes. 

The application of this strategy to our GCAT whole-genome samples resulted in the 

identification of 35,431,441 genetic variants, classified as 30,325,064 SNPs, 5,017,19 small 

indels (< 50bp), and 89,178 larger SV (≥ 50bp). The latter group was further subclassified into 

33,244 deletions, 6,269 duplications, 12,782 insertions, 10,115 inversions, 18,779 transposons 

and 7,989 translocations, covering all ranges of frequencies and sizes. Besides, 60% of the 

discovered SVs were not catalogued in any repository, thus increasing the insights of SV in 

humans. Additionally, 52.44% of common and 71.63% of low-frequency SVs were not included 

in any haplotype reference panel. Thus, new SVs could be used in GWAS, adding more value to 

the Iberian-GCAT catalogue.  
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The prediction of the functional impact of the SVs shows that these variants might have a 

central role in several diseases. Of all SVs included in the Iberian-GCAT catalogue, 46% 

overlapped in genes (both protein-coding genes and non-protein-coding genes), highlighting their 

potential impact on human traits. Besides, 92.7% of protein-coding genes were located outside 

low-complexity (repeated) genomic regions, expecting short-reads from NGS to capture the most 

interpretable SVs in humans11. Moreover, 32.93% of SVs affected protein-coding genes with a 

predicted loss of function intolerance (pLI) effect, further supporting the potential implication of 

these variants on complex diseases and therefore enabling a better explanation of missing 

heritability. 

Importantly, taking advantage of high coverage (30X), we accurately determine the 

genotypes of SVs, enabling to phase together with SNVs and indels, and increasing the SV 

phasing accuracy, in contrast to 1000G and GoNL. Besides, high coverage allowed to use 

Phasing Informative Reads (PIRs), increasing the phasing performance. The overall strategy 

enables the community to expand and improve the imputation possibilities within GWAS.  

The Iberian-GCAT haplotype reference panel created in this thesis, imputes accurately 

common SVs, with near ~100% of agreement with sequencing results. Although the Iberian-

GCAT haplotype reference panel can be used in all populations from different continental groups, 

due to closer ancestries, the imputation performance is high in European and Latin American 

populations, reflected in the amount of low-frequency (1% ≤ MAF < 5%)  and rare (1% > MAF) 

variants imputed at high info scores. These results demonstrated the versatility of our resource, 

increasing their performance in closer ancestries. In general, we observed that when the allele 

frequency decreases, the imputation accuracy drops too, highlighting the necessity to include 

more samples in reference panels, to impute low-frequency and rare variants efficiently, which 

normally are expected to have more functional impact on diseases.  

Finally, we compared the imputation possibilities of the 1000G and GoNL reference panels, 

with our Iberian-GCAT reference panel. We observed that the Iberian-GCAT reference panel 

outperformed the imputation of high-quality SVs by 2.7 and 1.6-fold compared to 1000G and 

GoNL, respectively. Also, the overall imputation quality is higher, showing the value of this new 

resource in GWAS as it includes more SVs than previous reference panels. The combination of 

different reference panels will improve the resolution and statistical power of GWAS, thus 

increasing the chances to find more risk variants in complex diseases, and ultimately, translated 

this insight to precision medicine.  
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Abbreviations and acronyms 
1000G: 1000 Genomes 

1KJPN: Japanese population reference panel 

ACMG: American College of Medical Genetics and Genomics 

AJ: Ashkenazi Jewish 

ALT: Alternative Allele 

AS: De Novo Assembly 

BAM: Binary Alignment File 

BND: Break-end 

bp: Base Pair 

BQSR: Base Quality Score Recalibration 

BSC: Barcelona Supercomputing Center 

BWA: Burrows-Wheeler Aligner 

CDS: Coding Sequencing regions 

CGH array: Array Comparative Genomic Hybridization Array 

CI: Confidence Interval 

CIGAR: Concise Idiosyncratic Gapped Alignment Report 

chrY: Chromosome Y 

CNV: Copy Number Variation 

ddNTPs: Dideoxynucleotides 

ENCODE: The Encyclopedia of DNA Elements Project 

DEL: Large Deletions 

DGV: Database of Genomic Variants 

dNTPs: Deoxyribonucleotides 

DR: Discordant reads 

DUP: Duplications 

EMBL-EBI: European Molecular Biology Laboratory-European Bioinformatics Institute 

ERRBKP: Breakpoint-error 

FDR: False-Discovery Rate 
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FN: False-Negative 

FoSTeS: Fork Stalling and Template Switching 

FP: False-Positive 

GA4GH: Global Alliance for Genomics and Health 

GATK: Genome Analysis Toolkit 

GCAT: GCAT-Genomics for life 

GIAB: Genome In A Bottle 

GL: Genotype likelihood 

GoNL: Genome of the Netherlands 

GRC: Genome Reference Consortium 

GSA: Genome Sequencing and Analysis 

GTEx: Genotype-Tissue expression 

GWAS: Genome-Wide Association Studies 

HGP: Human Genome Project 

HGSVC: Human Genome Structural Variant Consortium 

HI: Haploinsufficiency 

HMM: Hidden Markov Model 

HPRC: Human Pangenome Reference Consortium 

HRC: Haplotype Reference Consortium 

HWE: Hardy-Weinberg Equilibrium 

IBD: Identity by Descent 

IBS: Iberian ethnicity 

IHGSC: International Human Genome Sequencing Consortium 

Indels: Small Insertions and Deletions (size 1 to 30 bp) 

INS: Insertions 

INV: Inversions 

LCRs: Low-copy repeats 

LD: Linkage Disequilibrium 

LRM: Logistic Regression Model 

LTR: Long Terminal Repeat 

MAF: Minor Allele Frequency 
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mCNV: Multiple Copy Number Variants 

mtDNA: Mitochondrial chromosome 

MEI: Mobile Element Insertion 

ML: Machine Learning 

MMBIR: Microhomology-Mediated Break-Induced Replication 

MMEJ: Microhomology-Mediated End Joining 

MNP: Multi-nucleotide Polymorphism 

MNV: Multiple Nucleotide Variant 

NAHR: Non-Allelic Homologous Recombination 

NCBI: National Center for Biotechnology Information 

NGS: Next-Generation Sequencing 

NH: Non-Homologous 

NHEJ: Non-Homologous End Joining 

OEA: One End Anchored 

OMIM: Online Mendelian Inheritance in Man 

ORF: Open Reading Frame 

PacBio: Pacific Biosciences 

PANCAN: PanCancer Project 

PAR: Pseudo-Autosomal Regions 

PCA: Principal Component Analysis 

PCR: Polymerase Chain Reaction 

PIRs: Phase Informative Reads 

PL: Phred-scaled likelihoods 

pLOF: Predicted loss-of-function 

pLI: Predicted loss-of-function intolerance 

POPRES: Population Reference Sample 

POPVAR: Population Variation 

PSG: Pseudogenes 

QC: Quality Control 

RD: Read-depth 

REF: Reference Allele 
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RG: Reference Genome 

RO: Reciprocal-overlap 

SAM: Sequence Alignment Map 

SD: Segmental Duplication 

SMRT: Single Molecule Real-Time 

SNP: Single Nucleotide Polymorphism 

SNV: Single Nucleotide Variants 

SR: Split-reads 

SV: Large Structural Variants 

SVM: Super Vector Machine 

TAD: Topologically Associating Domains 

TGS: Third-Generation Sequencing 

TopMED: The Trans-Omics for Precision Medicine program 

TP: True-Positive 

TRA: Translocations 

TRP: Transposons 

UCSC: University of California and Santa Cruz 

UK10K: The UK10K project 

UTR: Untranslated regions 

VCF: Variant Calling Format 

VIR: Viruses 

VQSR: Variant Quality Score Recalibration 

WGS: Whole Genome Sequencing 
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Thesis trajectory 
Before exposing my thesis's content, I wanted to provide an overview of the trajectory and 

working environment of this PhD. I started this PhD with limited knowledge of bioinformatics, 

because I specialised in Ecology during my degree. Thus, during my first year, I invested most of 

my time learning genomics in general, as well as entering into programming with Bash, Python 

and R language. During this time, I have been involved in the study of transposon activity in 

cancer samples, within other ongoing projects in the group. First, I developed an in-silico sample 

genome for benchmarking, which enabled me to understand and apply my insights on python 

programming. Then, this in-silico sample was used to evaluate the benchmarking of variant 

callers.  During this period, most of my groupmates, such as Alex Barberà and Montse Puiggròs, 

helped me with this learning curve, which was key for my real thesis project. 

During my second year, I started my thesis project: The generation of the Iberian-GCAT 

haplotype reference panel using 785 WGS samples from GCAT biobank. The first part consisted 

of finding and collecting the methodology for analysis. Because little information about the 

different programs were available, I contacted with developers of these tools to try to learn how 

to best use them, or how to use them at all. This activity has helped me to understand and to use 

the existing information and the scientific environment. During this time, Iván Galván Femenía 

and Daniel Matías Sánchez incorporated into the project, contributing centrally in different parts 

of the study. Iván has been centred in the design of different Logistic Regression Models, with 

support for sample filtering and evaluation of the Iberian-GCAT reference panel's performance at 

imputation level. Dani has been mainly involved in the validation part, by comparing results with 

other panels and by analysing array validation data. Overall, without the Ivan Galván and Dani 

Matías collaboration, this project could not have been done. Besides, Jon Lerga-Jaso has also 

been involved in the validation of the inversions, and Montse Puiggròs helped with technical 

support and data managing issues when working with the Supercomputing MareNostrum4. 

In conclusion, this thesis is the result of the efforts of many people, where under the 

supervision of David Torrents, I have been able to finish this thesis, obtaining the first Iberian 

reference panel. 
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1.1 The genetic variability contribution to precisi on medicine 

1.1.1.  The importance of precision medicine in the  healthcare system 

The human life expectancy has increased over the years, being in 2,020 on average of 72.63 

years (Figure 1A), thanks to the advances in science, medicine and technology and the promotion 

of healthy lifestyles. Living longer lives also implies that age-related diseases, such as cancer, 

heart failure, and other complex and degenerative diseases, will increase12, making it 

unsustainable to maintain the current healthcare system with continuously growing elderly 

populations. Estimations point to a 29% increase of European people at ages of 65 years in 

2,07013. For this reason, particular attention has to be focused on identifying ways of predicting 

and understanding these diseases, ultimately generating new prognosis and treatment protocols, 

and lowering the personal and economic burden of complex diseases in developed countries.  

In this context, precision medicine is opening new insights on disease prevention12, helping 

to reduce the treatment costs without losing quality. Current medicine relies on treating the 

diseases after their clinical intervention, being expensive and hard to maintain by healthcare 

systems. For this reason, a transition to modern medicine by using genomic, metabolomic, 

proteomic, and epigenomic data is of paramount interest in order to prevent, delay, or predict 

disease offset and development12,14. In the last decade, the interest in precision medicine on 

humans has increased exponentially in the scientific community, publishing in 2,019 nearly 5,000 

articles on this field (Figure 1B). In Spain, this interest rose, publishing 255 articles in the same 

year. However, in 2,020, the publications dropped dramatically during the COVID-19 pandemic, 

truncating this progress (Figure 1B). A key concept in precision medicine is the individual's genetic 

background, which can increase or decrease the relative risk to develop particular diseases, 

improving the diagnosis, and treatments15. For this reason, understanding the relationship 

between genetic variability and phenotype is one of the central goals in molecular biology and 

biomedicine. 

1.1.2.  Genetic variability across populations 

The human genome is a diploid organism composed of 3.2 billion nucleotides, codified by 

four bases A, T, C, and G (Adenine, Thymine, Cytosine, and Guanine). Each position is 

determined as a locus, and each form of this locus is referred to as an allele. The genome between 

two individuals is not identical due to aberrant rearrangements produced in germ cell line linage, 

contributing to population genetic variability. This variability is usually classified according to their 

B) A) 

Figure 1. Evolution of life expectancy and Precision medicine. A) Life expectancy evaluation across the 
years. Data from https://www.macrotrends.net.  B) Papers published about precision medicine in humans. 
Data from Pubmed/MEDLINE, using the topics “precision medicine”, “human” and “Spain” filters. 
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sizes: Single Nucleotide Variants (SNVs) which are the exchange of one nucleotide by another, 

small Insertions and Deletions (<50bp) commonly referred as indels, and larger aberrant 

rearrangements referred as Structural Variants (SVs) (normally larger than 50 bp). The majority 

of SNVs and indels derive from DNA replication errors16,17, due to incorporating an incorrect base 

(SNVs), generating mutations at 1.16×10−8 per site per generation16. The slippage of the DNA 

polymerase, with a rate of 0.20×10−9 per site per generation16, is the origin of indels.  

On the other hand, SVs are generated through different mechanisms18: 1) Errors in DNA 

recombination, such as Non-Allelic Homologous Recombination (NAHR) in meiosis or mitosis, 

where highly-homologous sequences (10Kb or higher with more than 95% of homology) are 

misaligned from different genome regions, producing SVs such as deletions, duplications, 

inversions, and translocations. For this reason, some SVs are located in highly repetitive regions. 

2) Errors in the DNA repair mechanisms, such as Non-Homologous End Joining (NHEJ) or 

Microhomology-Mediated End Joining (MMEJ). The NHEJ is the DNA repair mechanism 

preferred in mammals, which does not require homologous sequences between break ends to 

fuse the double-strand breaks (DBS), generating short insertions and deletions in the breakpoint 

junction. The difference between NHEJ and MMEJ repair methods mainly resides in 

microhomology sequences' usability to repair the DNA. MMEJ generates more SVs than NHEJ, 

such as deletions and translocations. Finally, the other mechanism which produces SVs is related 

to 3) Errors in DNA replication, such as Fork Stalling and Template Switching (FoSTeS) or 

Microhomology-Mediated Break-Induced Replication (MMBIR). During the replication, the active 

polymerase is stalled and switches templates by microhomology of another active replication fork. 

This polymerase switch can affect from a few kilobases to megabases, generating complex 

rearrangements, as well as inversions, tandem duplications and translocations. 

Although most of these variants are expected to be functionally silent, a fraction of them could 

affect some traits, such as eye, hair, or skin colour, and even be related to disease, such as 

cancer, diabetes, neurodegenerative, heart diseases, among others. For this reason, the 

identification of the genetic variation behind diseases, as well as the interpretation of its functional 

impact within each pathology, is key to identify markers to improve diagnosis and treatment 

protocols.  

1.1.2.1. The heritability of variants and traits 

Since Gregor Johann Mendel (1822-1884) published in 1866, his study of pea plants (Pisum 

sativum) "Experiments on Plant Hybridization" and postulated "Mendelian Laws of Inheritance," 

where specific traits are inherited to offspring following certain rules, much research has been 

done. In 1936, J.L.Lush used the term "heritability" to formally describe the proportion of variation 

in a particular trait attributable to genetic factors19. For this reason, following the genetic 

inheritance rules, the offsprings tend to be phenotypically similar to progenitors (mostly driven by 

additive genetic variance), where each half of parents genetic material is passed to the offspring, 

acquiring their genetic variability (germinal variants) in 23 pairs of chromosomes and the maternal 

mitochondrial chromosome (mtDNA).  

In this direction, as the genetic variability is transmitted, the variants associated with diseases 

(i.e., complex diseases) could be passed across the generations and expanded in populations, 

making it crucial to understand the genetic background of populations in order to establish the 

bases of precision medicine. In addition, the environmental factors also contribute to human traits; 

for this reason, the phenotype has to be considered as a combination of genotype and 
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environment factors, where the heritability allows to compare the genetic contribution in different 

human traits19. 

1.1.2.2. Population genetic variability  

Variant distribution is not equal across all populations. The African ancestry populations are 

the groups with the highest number of variant sites1,11,20, coincident with the out-of-Africa model 

of human origin, and additionally, they conserve genetic substructures correlated to geography, 

language, and culture20. When humans spread within Africa and subsequently over the world, the 

adaptation to new environmental conditions and the local pathogenic environment, produced a 

selective pressure on individuals20,21. Additionally, new cultural innovations, such as animal 

domestication and fishing, helped to expand and establish humans in different world regions 

(founding events), losing genetic variability compared to those in Africa. These migrations and 

posterior environmental adaptations directly affect genome variability, where selective pressures 

stratified the variants across populations20,21. For example, the skin colour is an adaptation to sun 

exposure and is expressed according to the geographical region20. The dark skin protects from 

ultraviolet rays in African populations, in contrast to populations established at high latitudes 

where the sun exposure is lower, selecting variants favouring lighting the skin20. In addition, the 

effect of some population-specific variants can vary across populations, such as a deletion 

detected in American populations, which removes an exon of the MS4A1 gene and is associated 

with lymphoma, leukaemia, and autoimmune treatment response21, or a duplication in the HCAR2 

gene present in Asians, which has been proposed as a therapeutic target for mediating anti-

inflammatory effects in diseases21. These particularities indicate that one treatment could be 

effective in one ethnic group and not in others, demonstrating the relevance of populations' 

genetic background in precision medicine. 

 In this direction, Sirugo et al.6 highlighted the necessity to study the genetic variability of 

different populations because the under-representation of different ethnic groups impedes the 

understanding of the genetic architecture of human diseases fully. For example, the allele 

frequencies of structural variants generated by NAHR fluctuate across populations16, limiting the 

complete understanding of genetic variability and diseases. 

The genetic particularities across ethnic groups could tag the causative variants of a diseased 

differently, highlighting the necessity to include different ethnic groups in association tests6. 

Nowadays, predominantly European ancestry populations are used to characterise human 

genetic diseases. This factor could drive to misinterpretations in identifying the genetic risk factors 

in rare or complex diseases in non-European populations due to incomplete genetic information. 

Additionally, different populations can have different responses to treatments. For example, the 

warfarin dosage varies considerably between patients due to variants in CYP2C9, VKORC1, 

CYPAF2, and CYP2C genes. In Europeans, these variances explained up to 30% of warfarin's 

metabolism, but in African descendants, the same variants explained less variance6. 

In summary, most of the genetic differences between individuals and populations are a 

combination of genetic rearrangements and adaptive pressures to the environment. The 

heritability plays an important role in transmitting the variants across generations, maintaining the 

background genetic in populations19,20. The majority of these variants are neutral and do not affect 

human traits or diseases22. However, some variants could be related to diseases susceptibility, 

where the genetic variability of populations plays a key role in diagnostic or treatment efficiency6,7. 

For this reason, studying the genetic background of populations will be determinant in precision 
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medicine, allowing to understand the genetic architecture of diseases and determine the best 

prevention, diagnostic or treatment for each patient, and ultimately improve the healthcare 

system. 

1.1.3. The Human Genome Project 

The irruption of the Human Genome Project (HGP) has been crucial in biomedicine, as it has 

established a new paradigm of research, based on large scale genome sequencing and analysis. 

The possibility of understanding the landscape of our genome and having a clear functional map 

of the different regions, allows translating this knowledge into medical decisions, which constitutes 

the basis for personalised medicine. The first complete version of the reference genome (NCBI 

Build 34 or UCSC hg16) was presented in 2003 by the International Human Genome Sequencing 

Consortium (IHGSC), after an investment of around ~$450 million (https://www.genome.gov 

/about-genomics/fact-sheets/Sequencing-Human-Genome-cost). This version was obtained by 

sequencing several volunteers with hierarchical shotgun sequencing, enabling the decodification 

of the human genome, given that more than 50% of the genome consist of repeat sequences.  

The following release in 2004 (NCBI Build 35 or UCSC hg17) contained 2.85 billion nucleotides 

interrupted by 341 gaps, covering 99% of the euchromatic genome and predicting around 20,00-

25,000 protein-coding genes23.  

Since then, three new versions have been generated, improving and completing further the 

previous version, mostly in repetitive regions such as segmental duplications (SD), centromeres, 

and telomeres. In 2009 the Genome Reference Consortium (GRC) launched the version GRCh37 

(UCSC hg19), derived from 13 people24, at the same time that the Illumina high throughput 

sequencing technology started to be used in biomedical research25, including 3.32 billion 

nucleotides, 20,805 protein-coding genes, 22,966 non-protein-coding genes, and 14,181 

pseudogenes (https:/grch37.ensembl.org/Homo_sapiens/Info/Annotation), and only 250 gaps. As 

a result, the GRCh37 is a mosaic haploid genome, where the common alleles were included in 

the consensus reference genome24. Usually, the diploidy of the human genome was not 

represented in the reference sequence until GRCh37, which included nine alternate loci in six 

haplotypes on the MHC region of chromosome 6, better representing the extent of structural 

variation and population genomic diversity in the locus26 (https://grch37.ensembl.org/info/ 

genome/genebuild/assembly.html).  

Additionally, the GRCh37 reference genome has different versions, according to the 

additional sequences included, which can be used to reduce the sequence misalignments. In this 

context, the hs37d5 reference genome generated by 1000 Genomes Phase II is the most used, 

including GRCh37 primary assembly, the rCRS mitochondrial sequence, Human herpesvirus 4 

type1, and decoy sequences5. Decoy sequences are repetitive regions, of which 50% are satellite 

or tandem repeats, and 23% are interspersed repeats (SINE/LINE/Long Terminal Repeats 

(LTR)); it includes BAC/fosmid clones, HuRef contigs, NA12878 ALLPATH-LG assembly, and 

Epstein-Barr Virus genome. Thus, the inclusion of the decoy sequences allows for a better SNV 

discovery and SV as well5.  

Finally, the GRCh38.p13 (UCSC hg38) is the newest reference genome version constructed 

from many donors in 2,013. This version modified the genome coordinates since 200926, hindering 

making it difficult to compare variant coordinates between projects. The GRC determined that this 

version is the most complete and accurate compared to GRCh37, correcting different 
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misassembled regions, decoding sequences from centromeres and telomeres, filling in gaps, and 

including more diversity in the reference genome, with 261 alternate loci across 178 regions25,26.  

Nowadays, hs37d5 is still in use, such as in the gnomAD11 or Pan-cancer27 projects. There 

are different reasons for the hesitation to switch to the latest reference build; for example, all tools 

used to detect genome variability are tested with this genome or the resistance to altering the 

working pipelines by researchers25. Besides, changing the reference genome version implies 

additional work and efforts to update coordinates of previous projects. For example, liftover tools 

such as liftOverPlink, allowed to switch the variants coordinates to reference genome required. 

However, liftover tools had problems to convert the coordinates of GRCh38 to hs37d5, losing 5% 

of genetic information in SNVs28. In addition, 1.5% of discrepancies between successfully 

converted variants and sequencing information of those variants were observed in SNVs, 

suggesting caution when converting genomic variants between assembly versions28. 

Despite these advances, all versions of the reference genome are still incomplete because 

they are generated using a few individuals, limiting the representation of genetic variability across 

populations21,29–31. Nearly 10% of the total genome is not represented in the reference genome32. 

Besides, there is evidence of insertional sequences from human populations not represented in 

the reference genome (GRCh38)29–31, with potential functional population-specific implications. 

For this reason, adding these sequences in the reference genome will improve the sequencing 

alignments and population-specific variant detection29,32. In this direction, the Human Pangenome 

Reference Consortium (HPRC) (https://humanpangenome.org/), is borne with establishing a 

human reference genome, including the genetic variability of 350 individuals from different 

populations, in order to capture the whole genetic variability and generate a reference pan-

genome. Thus, generating catalogues of genomic variation across populations and assembling 

them in a human pan-genome will be relevant in precision medicine, improving variant detection, 

and performing accurate treatments29,32. However, technical challenges will emerge due to 

alternative loci of the reference pan-genome33. The current tools, such as alignment or variant 

discovery programs, expect sequences to have a single location in a haploid assembly model33, 

so new strategies will be necessary to facilitate the use of alternative loci in many bioinformatic 

tools. 

1.1.3.1. Annotation of the human reference genome 

 The availability of a reference genome, helped the scientific community to annotate 

functional regions and to share these annotations with the community. A complete gene mapping 

in the human genome will facilitate the interpretation of genome variability on the human 

phenotype. The latest release from the UCSC refGene database harboured 19,412 protein-

coding genes, representing 1-2% of the genome34 and 11,579 non-protein-coding genes. 

However, ~90% of variants identified in disease association tests (Genow-Wide Association 

Studies (GWAS)) are located outside of protein-coding regions35, such as regulatory or intergenic 

regions, hindering the understanding of their functional impact. 

Besides, identifying gene regulatory elements, such as enhancers and promoters, is 

paramount of interest, due to their role in gene expression modulation. The alteration of these 

regulatory elements has been involved in several diseases36,37, such as thalassemia, highlighting 

the importance of annotating these non-protein-coding regions to facilitate the functional 

interpretation of genome variability. It is estimated that more than 399,124 regions in the genome 

have enhancer-like features, and 70,292 regions have promoter-like features38, more than the 
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number of genes. Thus, connecting the regulatory regions to their target genes is a challenging 

task. Generally, promoters are located between 1-2 Kb of the transcription start site37. However, 

enhancers are located dozens of Kb away from genes, and can even influence multiple genes, 

making it difficult to determine the link to their target gene. For example, the GeneHancer37 

database integrated human known enhancers with associated genes, facilitating the enhancer 

functional interpretation.  

On the other hand, nearly 50% of the human genome is covered by repetitive regions that 

are involved in numerous processes, such as the generation of rearrangements (ex: Structural 

Variants) and variation in general39. The repetitive sequences can be classified as Mobile Element 

Insertions (MEIs), pseudogenes, tandem repeats (particularly in centromeres, telomeres, 

ribosomal gene clusters, and the short arm of acrocentric chromosomes), simple repeats, and 

low-copy repeats (LCRs) such as segmental duplications (SD), characterised by DNA sequences 

≥ 1 Kb with 90-95% of identity in the reference haploid genome, constituting nearly 4-5% of the 

human genome39.   

In addition, many more annotations are included in the reference genome, such as DNA 

methylation, chromatin structure information, such as Topological Associating Domains (TAD), 

expression analyses, among others, showing the complexity and the high amount of data 

generated in human research. Different initiatives emerged to generate different genomic 

annotations, such as the Encyclopedia of DNA Elements Project (ENCODE)38, Genotype-Tissue 

expression (GTEx)40, Roadmap Epigenomics41 or GeneCards42, resulting in an invaluable 

resource for variant interpretation.  Each of these databases has its particularities. The ENCODE 

project grouped all functional elements encoded in the human genome38 or GTEx, provided 

relevant information about the effects of genetic variation on gene expression in multiple human 

tissues40. Different web browsers, such as the UCSC Genome Browser43 or EMBL-EBI ensemble, 

manage to display this amount of data efficiently, facilitating the observation and analysis of 

relevant genomic information, for example, the functional impact of variants in human traits. 

1.2 The identification and characterisation of huma n genome variability 

Genome variability can be classified into two main groups, depending on the cell type they 

affect: 1) Somatic variants accumulated in somatic (non-sexual) cells during life which are not 

transmitted to the offspring, and 2) Germline variants, occurring in germline (sexual) cells, which 

are passed onto the offspring, as part of their genetic background. In terms of disease 

implications, somatic variants are mostly related to the onset of non-familiar tumours, covering 

around 80-90% of total cancer cases, while germline variants can be implied in rare and complex 

diseases such as Cystic fibrosis or diabetes, respectively. Rare diseases are associated with few 

low-frequency variants with a high penetrance44, affecting mainly individuals and families. On the 

other hand, complex diseases are the result of multiple factors, and each genomic variant, 

generally with high prevalence in the population, contributes a small fraction to overall disease 

risk44. Besides, the interaction between some germline and somatic variants and its effect on 

disease has also been described45; for example, the penetrance of some germline variants in the 

BRCA1 gene increases breast cancer risk. For this reason, the characterisation of genetic 

background in humans by detecting risk variants (germline variants) could improve the diagnosis, 

prevention, and treatment of diseases.  
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1.2.1.  The landscape of germline variation 

  As previously described, germline variants are catalogued according to their size: A) Single 

Nucleotide Variants (SNVs), which change one nucleotide by another, B) Insertions and Deletions 

smaller than < 50 base pairs (bp) (INDELs), and C) variants ≥ 50 bp, classified as Structural 

Variants (SVs)5,9,11 (Figure 2).  

The SVs can be classified into two categories18,46, 1) Unbalanced SVs if they modify the copy 

number of the genome, such as deletions (loss of genetic material) (Figure 2C), duplications (copy 

a variable number of DNA segments) (Figure 2D), which can be in tandem (segment inserted 

contiguous to the original one) or interspersed (segment inserted in elsewhere of the genome), 

and the insertion of novel sequences (Figure 2F). Then, 2) balanced SVs are those in which the 

genetic material is not altered, such as inversions (the DNA segment change the orientation) 

(Figure 2E) or translocations (exchange the genetic material between different chromosomes) 

(Figure 2G). Additionally, the complexity of SVs is increased if different SVs types are combined 

in a single event11,47,48, such as inverted duplications, inversions flanked by duplications or 

deletions, insertion of new segments interposed at the breakpoints (genomic shards)49, with 

chromothripsis (large chromosome segments shattered and imprecise repaired and combined ) 

as one of the mero extreme cases of complex SVs. 

As previously mentioned, two human genomes are never equal. Considering SNVs, the 

genomic variation between genomes is around 0.1%, and the proportion increased to 1.5% when 

also considering SVs8,50. For this reason, the allele frequencies of variants fluctuate across 

populations, providing a way to classify the genetic variability at the population level. In population 

genetics, when each allele is above 1%, it is considered as a polymorphic, cataloguing the SNV 

variants as Single Nucleotide Polymorphisms (SNPs). Besides, according to the minor allele 

frequency (MAF), the variants are classified as common (MAF ≥ 5%), low-frequency (1% ≤ MAF 

< 5%), rare (0.1% < MAF ≤ 1%), and when the allele is shared in two or one individuals, as 

doubletons and singletons respectively. The allele frequency provides relevant information about 

A) B) 

Figure 2. Classification of germline variants according to their size. A) Single Nucleotide variants. B) Small 
insertions and deletions (INDELs) < 50 bp. The structural variants (SVs) ≥ 50 bp are the largest genomic 
rearrangements in the genome. They can be unbalanced, such as C) Deletions, D) Duplications and F) Insertions, 
or balanced, such as E) Inversions and G) Translocations.  



 

24 
 

populations' genetic architecture, where the low-frequency and rare variants could have arisen 

recently in populations, making them population-specific, or in the case of the natural selection 

affecting the variant negatively in a specific population region4,50,51. Besides, low-frequency and 

rare variants could increase the risk of rare or complex diseases in specific populations6,7,52, 

showing the necessity to improve each population's genetic characterisation individually.  

1.2.2.  The generation of genomic data for variant detection 

The strategies to detect and classify genome variability have evolved during the past 

decades, gaining accuracy, sensitivity and decreasing the costs. Considering the variant 

detection as one of the final goals of genome analysis in biomedicine, there are two major 

strategies to approach and read the genome: 1) Genotyping arrays and 2) Sequencing 

technologies. The genotyping arrays provide a cheap, fast and direct way to characterise specific 

variants within large cohorts. Although the genotyping arrays are expected to capture major 

variability positions (through Linkage Disequilibrium (LD) (section 1.2.7)), they still miss a large 

fraction of variants, such as the low-frequency and rare variants, as well as SVs. This technology 

has been the basis for practically all the genetic studies, where combined with imputation, 

attempts to predict and populate the samples with inferred variants (section 1.3.2). Here we 

describe the strengths and weaknesses of each methodology in the context of genome analysis 

and variant detection and classification. 

1.2.2.1. The array technology: SNP and Comparative Genomic 

Hybridisation arrays (CGH array) 

The SNP array is the most popular and cheapest technology to detect genome variability 

across multiple samples. This technology consists of a solid support with hundreds of thousands 

of oligonucleotides (probes), where the DNA sample is hybridised with probes to detect SNPs or 

copy number variants (CNVs)53,54. The array is then subjected to laser confocal scanning, where 

the intensities of fluorescence signal determine the variant detection. The main difference with 

the CGH array is the comparison of the problem and reference samples' intensities to detect the 

CNVs. When the probe intensity of the problem sample indicated a gain, the SV is a duplication; 

otherwise, it is a deletion. 

An important characteristic of this technology is that researchers have to predefine the 

genomic positions and the type of variation to be interrogated. Different commercially available 

arrays are restricted to a limited preselected number of variants (in the order of 10K to 5M per 

array), mainly focused on common variants, limiting the detection of whole genome variability. 

Particularly, in SV detection, the SNP array data is restricted to large CNVs (>25 Kb) in non-

repetitive regions, with a bias towards deletions, avoiding the identification of balanced SVs, such 

as translocations or inversions54. Nevertheless, the SNP arrays are still in use, due to a reported 

> 99% genotype accuracy55, and a price substantially cheaper than sequencing technologies, 

allowing the analysis of thousands of individuals, required for instance Genome-Wide Association 

Studies (GWAS). 

HapMap project phase II constitutes an example, which genotyping with SNP array 270 

samples, obtained 3.8M SNPs from different populations, collecting the common variants across 

different geographic zones56. Despite their importance in GWAS studies, the HapMap project only 

included SNPs in their catalogue, overlooking the inclusion of indels and SVs. Thus, a different 
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technology is necessary to analyse the full spectrum of genome variability, to create a complete 

genetic variability map of humans, which would help to improve the GWAS resolution. 

1.2.2.2. DNA sequencing technologies 

The irruption of sequencing technologies to decodify the whole genome revolutionised 

biomedicine, allowing us to evaluate humans' whole-genome variability, including large genome 

rearrangements (SVs). This approach expands the possibilities of finding associations between 

genetic variants and diseases. However, computational and bioinformatic challenges, such as the 

large space requirements to store all genetic data or the software able to detect the genetic 

variability produced with this technology, brought new lines of research.  

The sequencing methodologies have evolved over the years, resulting in faster, cheaper, 

and more accurate DNA sequencing. The first generation of DNA sequencing appears in 1977, 

where the Sanger sequencing methodology based on chain-termination technique improved all 

previously designed strategies57. This technique used the analogues of deoxyribonucleotides 

(dNTPs) and the DNA polymerase enzyme to synthesise the DNA chain. The particularity of 

Dideoxynucleotides (ddNTPs) lacks 3'hydroxyl, necessary for elongation of DNA chain, besides 

are tagged by fluorescent dyes. The key feature was the inclusion of the dNTPs and ddNTPs in 

DNA synthesis. When the DNA polymerase incorporated ddNTPs, it inhibits the strand extension, 

obtaining DNA fragments at different lengths. Then, these fragments were then distributed by size 

using electrophoresis and revelated, resolving the DNA sequence. 

The main limitation of Sanger sequencing was the amount of DNA sequenced. This method 

needed to amplify and sequence each DNA fragment individually, making it hard to detect the 

whole variants from a genome58. In addition, the high costs of this method and its high manual 

labour requirements, limited its scalability to a high number of samples. However, Sanger 

sequencing is still being used, for example, to sequence single genes or for validation purposes. 

A significant breakthrough was able to overcome the Sanger sequencing limitations, with the 

emergence of the high-throughput technologies named Next-Generation Sequencing (NGS). NGS 

could generate a high quantity of data in parallel from a small DNA amount. For example, the 

Hiseq4000 machine from Illumina could sequence six human genomes, producing 250-400 M of 

short sequences (reads) of 150 bp per run in three days. This improvement allowed the sequence of 

more genomes at lower costs, favouring and making possible the analysis of multiple genomes in 

different types of studies. This technology has also been key to improve genetic studies by exploring 

millions of variants throughout thousands of individuals, improving genetic variants' insights on 

diseases.  

The first steps of NGS consisted of preparing the library, by randomly fragmenting the DNA 

into short fragments, selecting the size of the DNA fragment to be sequenced (insert size). Then, 

the insert size is anchored in solid support by adaptors and amplified through Polymerase chain 

reaction (PCR). The library properties are of interest because the tools which detect genome 

variability (variant callers) are influenced by coverage, insert size, and read length. Once the 

library is prepared,  the sequencing reaction is performed into cycles in a flow cell and parallelised 

massively. The sequencing reaction terminates when the whole DNA fragment is read, generating 

millions of short sequences (reads)57,59. 
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Moreover, the Solexa/Illumina platform had the advantage that it could sequence both ends 

of an insert size by generating paired-end reads (Figure 3). The paired-end reads information is 

crucial to detect structural variants and determine their type46,60. For example, the distance 

between two reads, named "inner mate distance," allows detecting the structural variants such as 

deletions or insertions. When the inner mate distance is shorter than expected, the SV is an 

insertion, and the opposite is a deletion. For this reason, using NGS with paired-ends allows 

uncovering large genomic rearrangements. Nowadays, most software to detect SVs uses paired-

end information to improve the performance of variant discoveries. However, NGS still has 

limitations, such as the length of the sequencing reads, from 100 to 300 bp, since the sequencing 

errors rise with increasing read length. For this reason, the detection of SVs using short reads is 

a challenging problem due to (i) the read mapping issues, which cannot detect SVs in repetitive 

regions, extreme cytosine-guanine (CG) content or homologous regions in the genome61, (ii) the 

sample coverage, which fluctuates across the genome, and (iii) chimeric molecules in the library 

preparation62.  

Different projects, such as 1000G or GoNL, used NGS to sequence cohorts of individuals, 

by generating the first panels of haplotypes, including the genetic variability of a wide range of 

individuals. However, the low sequencing depth (coverage) of 7.4X and 14.5X challenges the 

detection of SV efficiently. Particularly, with higher coverage, more SVs can be detected, 

ameliorating the detection of heterozygous variants9,46,63,64. Nowadays, sequencing at high 

coverage (30X) is cost-effective in large populations, enhancing the odds of SV discoveries. For 

example, there are new catalogues, such as Abel et al.65 and gnomAD-SV11, which detect SVs in 

large cohorts, improving SVs' insights in the human genome. 

Finally, the Third-Generation Sequencing (TGS) approaches allowed an increase in the 

length of reads to 10-20 Kbps (long-reads), allowing the analysis of low complex genome regions, 

such as repetitive or segmental duplications, improving the discovery of SVs. The TGS leading 

platforms are Pacific Biosciences (PacBio), and Oxford Nanopore, which uses different 

approaches to generate reads with similar length. PacBio, for example, uses the Single Molecule 

Real-Time (SMRT) approach, where the ligation of both ends circularises the dsDNA fragment, 

generating the SMRTbell. Then, the SMRTbell is loaded in an SMRT cell, which contains a 

polymerase immobilised in a bottom, allowing to perform the DNA synthesis. On the other hand, 

the Oxford Nanopore platform uses a Nanopore sequencing approach. When the DNA fragment 

moves through the nanopore by a current channel, it produces changes in this current, which are 

Figure 3. Structure of pair-end reads. The insert size is a single strand of DNA (ssDNA) selected 
to sequence. The fragment size includes the adapters, needed to anchor the insert size in the solid 
support. The paired-end reads are the terminal sequences of the insert size, which depending on 
the number of cycles, has a read length ranging from 100 to 300 bp. Read1 is sequenced in the 
forward strand, and their mate is synthesised in the reverse strand. The distance between reads is 
referred to as inner mate distance. 
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measured by a semiconductor sensor. Each nucleotide disrupts the electric field differently, 

allowing to codify of the DNA fragment59. 

The high expectations of both platforms to improve variant detection in low-complexity 

genome regions and SVs are promising. However, the costs and high sequencing error rate (1 

error every 10 nucleotides) still limits the use of this technology at a large scale8,59. For example, 

the Human Genome Structural Variant Consortium (HGSVC) sequenced 15 samples with this 

technology, demonstrating the capacities of long-reads on SV detection66,67. 

1.2.2.3. Read alignment using the reference genome 

 NGS and TGS sequencing technologies generate a high amount of genomic data, saving all 

reads in FASTQ files without a priori information of the position that they represent in the genome. 

The alignment or mapping tools of these sequences onto a human reference genome must be 

interpreted and evaluated in the right genomic context. BAM files included all reads aligned in the 

reference genome. The information of these alignments can be translated into genome variability, 

using complex bioinformatic methods that aim to identify differences within sequencing reads. For 

example, an SNV can be detected if a nucleotide position in the read does not match with the 

reference sequence, or an SV can be identified using the paired-end read information after 

mapping step8 (Figure 4). There are different software to align the DNA data; the most used in 

NGS are based on index-based algorithms, such as Burrows-Wheeler Aligner (BWA) and 

Bowtie268. 

However, mapping algorithms are not exempt from errors. One of the main limitations is the 

correct alignment of short reads (NGS) in repetitive or complex polymorphic regions, such as 

regions with high CG content, or the impossibility to align reads in absent regions of the reference 

genome, such as gaps or structural variants8,69. In such cases, short reads cannot map or map 

incorrectly to the reference genome, leading to false-positive detections by software (variant 

callers). For these reasons, different tools, such as Biobambam270, Picard, or Alfred71, are used 

to evaluate the quality of the alignment. 1000G and GoNL, for example, evaluated different 

parameters, such as the fraction of reads aligned in pairs or mean insert size, among others, 

providing an idea about the alignment quality1,2. 

In this direction, the Genome Analysis Toolkit (GATK) development team, and the Genome 

Sequencing and Analysis (GSA) group of the Broad Institute, developed Best Practices 

recommendations in order to improve the BAM file construction to decrease the False Discovery 

Rate (FDR) derived from (i) duplicated reads in PCR amplification and (ii) systematic errors 

produced by sequencing machines to calibrate base quality scores72. These recommendations 

consisted of marking the duplicated reads and recalibrating the base quality scores (BQSR) 

produced by the sequencing machine. Besides, selecting a reference genome for the alignment 

step is also key to depurate read misalignments or artefact reads. For example, the hs37d5 

reference genome allows the filtering of conflictive reads by including decoy sequences, such as 

BAC/fosmid clones, HuRef contigs, Epstein-Barr Virus genome, and microsatellites, facilitating 

the variant detection by variant callers. 

Additionally, the alignment of short reads onto sex chromosomes is a challenge due to the 

high similarity between X and Y chromosomes, producing technical artefacts and affecting 

downstream analyses on variant calling73. Nowadays, all reference genomes include both sex 

chromosomes in sequencing studies, making this approach not accurate to detect variants in the 
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X chromosome due to the scavenger effect of the Y chromosome in female samples73,74. For this 

reason, generating two reference genomes based on sample gender will improve the alignment 

and variant detection in these chromosomes. 

Overall, Genotyping or CGH arrays identify SNPs, indels and CNVs. In combination with 

imputation analysis, this approach improved the statistical power of GWAS. On the other hand, 

high through sequencing methodologies can detect the whole genome variability, increasing the 

computational requirements, due to space and aligning/mapping steps. However, sequencing 

approaches overcome the limitations of genotyping arrays, enabling to detect all variant types, 

and increasing human genome variability insights. 

1.2.3.  Variant calling in the sequencing era 

In variant calling using whole-genome sequencing (WGS) data, BAM files play a key role 

in the detection of genome variability. The accuracy of variant detections is influenced by variant 

properties, such as the type and size8,9,34,46 or library particularities, such as coverage, read 

length, insert size, among others9,34,46. These particularities also affect the accuracy and the 

possibilities of variants characterisation (i.e. the resolution of variant position, variant size and 

type). Nowadays, more than 150 variant identification programs (variant callers)75, having a wide 

range of possibilities to detect the genome variability.  

Few variant callers are able to detect SNVs, indels, and SVs. For SNVs, the strategy 

followed consists of looking for discordant sequences when comparing them with the reference 

genome. The read and paired-end information are key to detect indels (< 50 bp) and large 

structural variants (SVs). Based on the anomalously mapped reads and coverage, five 

approaches are developed to detect the genome rearrangements18,46,76,77 (Figure 4). (1) Split read 

strategy (SR) detected all SVs at base-pair resolution by using the reads broken in multiple parts 

and aligned to both breakpoint sides. Nevertheless, there are difficulties in aligning these reads 

to the reference genome, resulting from the split read, limiting the detection of large SVs. To solve 

this barrier, sequencing the samples at high coverage (30X) could improve the SR signals, 

allowing them to detect large SVs. 2) Discordant-read strategy (DR) uses the inner mate distance 

and paired-end information to detect the genome rearrangements. All anomalous mapped paired-

end read information, such as the distance between reads, the read orientation, the order of 

reads, or the mapped reads in different chromosomes. The breakpoint resolution is influenced by 

the coverage, the insert size mean, and its standard deviation. In contrast to SR strategy, this 

method is less accurate to report the exact breakpoint. The DR strategy limitations are related to 

the read mapping issues, such as the mapping in repetitive regions or the impossibility to map 

reads in de novo insertions larger than insert size average. 3) Read-depth (RD) strategy divides 

the genome in bins and uses the sample coverage to detect abnormal RD, where higher and 

lower RD are then classified as DUP and DEL, respectively. Despite the breakpoint resolution 

being poor, this method is able to detect large CNVs in detriment of small ones. 4) de novo 

Assembly strategy (AS) is a sophisticated method of building long DNA chains by assembling 

contiguous reads to generate contigs. These contigs are then aligned to the reference genome 

to detect all SV types. This approach tries to solve the alignment deficiencies by constructing 

longer stretches than read lengths, improving the mapping ambiguities near SVs. However, this 

approach is highly computationally demanding and requires high-coverage data to construct 

contigs accurately, avoiding assembly errors18,76,78–80. Finally, 5) the new generation of variant 

callers apply Machine Learning algorithms (ML) to detect genome variants. One of the most 
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popular is Deepvariant81, a new TensorFlow machine learning-based, used to improve the 

detection of detect SNVs and indels.  

 

However, each of these strategies has its own strengths and weaknesses, limiting the 

whole genome variability detection efficently18,76,77. For example, the AS and SR can detect the 

breakpoints and all SV types accurately, as well as SNVs and indels, while DR gives approximate 

breakpoint positions, and it is appropriate for variants with median sizes. RD is recommended for 

large deletions and duplications, detecting the breakpoint positions with poor resolution, where 

AS can be used to detect de novo insertions longer than insert size. For these reasons, the new 

variant caller updates combine different detection signals in a single caller in order to improve the 

recall and precision. 

1.2.3.1. The identification of SNV and small indels 

SNVs and indels (< 50bp) are the most prevalent across the human genome, estimated 

to reach a median of ~3.3-4M SNVs and 492K-851K indels per genome10,82,83. The majority of 

A) 

B) 

C) 

D) 

E) 

Figure 4. Strategies to detect structural variants and indels. RD uses the sequencing coverage to detec 
low or high depths, after coverage normalisation. In SR, the read covers the breakpoint junction. When this 
read is mapped to the reference genome, both read segments are aligned flanking the breakpoint. In DR, the 
orientation distribution, and inner mate distance of paired-ends allow for the detection of structural variants 
and their type. In AS, after constructing contigs, they are aligned to the reference genome. The disposition 
of contig segments in the reference genome allows the detection of SVs or indels. Each block of the figure 
illustrates which features are used to discove A) Deletions, B) Insertions, C) Inversions, D) Tandem 
duplications and E) Translocations. 

 Figure adapted from Tattini et al77. 

Legend 
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these variants do not likely affect any function and are not reflected in specific phenotypes (i.e. 

they are neutral). However, some of them are clinically relevant. For example, 3% of all cancer 

cases have a hereditary component84. SNPs close to the TERT gene confer low risks in some 

cancers, such as breast, colorectal, and testicular. Besides, the SNVs and indels are key in 

GWAS studies in order to find associations of variants to complex diseases, such as diabetes. 

The resolution of GWAS studies could improve by using panels of genetic variability, where the 

samples are sequenced with NGS technologies, detecting the whole genome variability of a 

sample. 

Variant callers focused on SNVs detection are highly accurate, thanks to small sizes, 

facilitating read mapping. Besides, the lower costs of sequencing at high coverage provide more 

signals to detect those events correctly8,85,86. On the other hand, the indel detection presents more 

difficulties due to low concordance between sequencing platforms, alignment errors in repetitive 

regions, indel size, or different representations between variant callers87,88. For example, GoNL 

reported that the power to detect the alternative allele correctly decreases with indel length 

increases, concluding as short indels the insertions and deletions ≤ 20 bp2. Besides, HRC 

constructed the reference panel using SNPs since they estimated indels to be very inconsistent 

across projects. For this reason, the normalisation of indels is required. The Global Alliance for 

Genomics and Health (GA4GH) designed a pipeline to standardise the SNP and indel 

representations, allowing the comparison of the outputs of different variant callers88. 

Several variant callers detect SNVs and indels. The most popular is Haplotype caller89, 

which uses a combination of SR and AS strategies to detect genetic variants. Others widely used 

are Freebayes90, Platypus91, VarScan292,93, Strelka294, or Deepvariant81. These tools used 

different approaches to detect genetic variants; for example, Strelka2 and Platypus use AS 

strategy, Deepvariant use a deep learning model or VarScan2, use the SR. However, not all 

variant callers exposed have the same capabilities to detect indels, for example, Strelka2 is able 

to detect indels up to 50 bp, and Haplotype caller can detect indels bigger than 100 bp, indicating 

that the variant caller selection is of paramount interest, in order to cover all indel sizes accurately. 

1.2.3.2. Structural Variant detection 

Structural Variants (SVs) are the major source for biological variability within 

populations9–11,75,95. These variants are largely responsible for the evolution as well as numerous 

phenotypes in humans9. Besides, SVs can modify gene expression, topological associating 

domains (TAD), or disrupt protein-coding genes, producing an impact on gene function or 

resulting in different rare or complex diseases5,11,65,66,95. Notwithstanding its importance on human 

diseases, SV analysis compared to SNV is lagging, mainly because of technical limitations. Since 

the first Copy Number Variant (CNV) detected in the 2000s by genotyping array, the SV discovery 

has evolved in conjunction with sequencing technologies95. A substantial improvement appeared 

in 2007 with the Next-Generation Sequencing (NGS), allowing for the detection of SVs in whole 

genomes, with a bias towards in non-repetitive regions. Finally, the Third-Generation Sequencing 

(TGS) appeared in 2015 and allowed the detection of SVs in all the genomic genome8,95 (Figure 

5). During the NGS and TGS period, different public databases such as dbVar96 or Database of 

Genomic Variants (DGV)96,97 collected validated SVs, gathering 18,366,594 SVs in DGV and 

36,126,123 SVs in dbVar. Recently, new SV catalogues have appeared, such as gnomAD-SV11 

and one from the Ira M.Hall lab65. In addition, some samples have been characterised using long-

reads, such as in the Human Genome Structural Variant consortium (HGSV)66,67.  
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Current challenges in SV detection by NGS have raised multiple questions regarding the 

number of SVs per genome. From the first estimation done in 2015 by 1000G, which consisted 

of 2,100-2,5000 SVs per genome1,95, to more recent results of the gnomAD-SV project that 

reaches 7,439 SV per individual11, the sequencing technologies have evolved (higher coverages 

and long-read sequencing, for example), allowing the discovery of more SVs. The TGS studies 

estimated that a typical genome has > 20,000 SVs per genome66,67,95, showing the NGS 

limitations for accurate SV detection. 

Nowadays, NGS technologies contributed vastly to SV detection progress due to their 

lower costs as compared to TGS. However, variant callers used to detect SVs with NGS vary in 

recall and precision due to SV features, library properties, or the genomic context9,34,46, generating 

a wide range of 9 to 89% False Discovery Rate (FDR), and a recall rate between 10 and 70% for 

some SV types and sizes48,64,86,87.  

Currently, no single variant caller is considered standard because they cannot cover all 

SV types and sizes9,46,76. In this direction, multiple variant callers have been developed in the 

scientific community, that detect different types of variants, including SVs subtypes such as 

deletions, duplications, insertions, inversions, translocations and transposons, using paired-end 

read and alignment information46 (Figure 4). For example, one of the most popular is Delly2101, 

which combines SR, DR, and RD strategies to detect the whole SV spectrum. Other variant callers 

used multiple SV detection signals, such as Lumpy102, SvABA79, Pindel103, or Whamg78, taking 

advantage of different combinations in SV analysis. However, other variant callers such as 

Manta104 or Popins80 only used the AS strategy, since it is one of the most accurate strategies to 

detect SVs, thanks to constructing contigs based on paired-end reads. Nevertheless, this 

approach requires high computational resources and coverage, limiting their use in specific 

projects105. Besides, some variant callers are specialised to detect specific SVs, such as 

Figure 5 . Evolution of Structural variant detection across sequencing technologies.       
The SV detection is correlated with technical improvements, where deeper coverages (30X) of 
Next-Generation Sequencing and higher lengths of Third-Generation Sequencing enabled to 
discover more SVs per genome.  Figure from Ho et al.85. 
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CNVnator106, mainly focused on deletions and duplications, Popins, in de novo insertions, 

MELT107, in transposon detection or ViFi108 and VERSE109, designed to detect viruses (detailed 

description in Table 13).  

Despite the wide variety of variant callers and combinations of multiple strategies, SV 

detection is still not accurate. For this reason, there has been an increase in interest in integrating 

the outputs of individual variant callers, improving their strengths, and reducing the false-positive 

detections, without losing recall5,9,46,76,95,110 (further details in section 1.2.6).  

1.2.4. Genotype the variants using sequencing reads  

Most of the studies are focused on variant detection of variant callers, but limited 

information is about the process to determine the genotype of those variants. The variant callers 

perform two processes: 1) The variant discovery (see section 1.2.3), and 2) the genotyping of 

these candidate variants (genotype calling), which corresponds to their characterisation as to their 

homo or heterozygous state. For this reason, it is important to note the distinction between variant 

and genotype calling54,86,111–115. For example, hard filters are applied in variant calling because it 

has to reduce the false-positive detections86,114. In contrast, genotype calling characterises the 

allelic state of the variant, having more relaxed filters. Genotype calling is thus key in population-

genomic studies; for example, an accurate genotype can improve the statistical power of GWAS 

studies by finding more variants in linkage disequilibrium (LD), especially for rare variants116,117. 

Besides, improving the genotyping provides more realistic information about the variant allele 

frequency in a population, correcting the estimation of population size and allowing to determine 

the relatedness grade between relatives. For these reasons, accurate genotypes are necessary 

to increase the performance of genetic variability panels for GWAS studies117. 

The uncertainty to report the genotype accurately is correlated to coverage86,118. Based 

on this factor, there are two approaches to genotype the variants using NGS: the genotyping can 

be classified as 1) low-medium coverage (7-12X) methods, which use a probabilistic approach to 

report the genotypes, and 2) high coverage methods (>20X), which count the reads and 

determine with high precision the ploidy of the sample118. 

The genotype likelihood (GL) is used to genotype variants from samples sequenced at 

low-medium coverage (7X-14X). The GL is computed by the p(X|G) formula, where G is the 

genotype, and X are all reads of an individual at a particular site. Then, in conjunction with 

genotype priors (a group of genotypes from databases), the posterior genotype probabilities are 

calculated, providing for each variant three probabilities, regarding each allele state (0/0, 0/1, or 

1/1). The highest probability is considered the correct state. The genotype priors are necessary 

to improve the genotype accuracy, correcting the genotype probabilities with the allele 

frequencies of populations or multi-samples. For this reason, to increase the genotype accuracy, 

more samples are necessary for the genotyping step. However, when the coverage is increased 

to >20X, the uncertainty to report the genotype decreases because more reads are evaluated, 

determining a heterozygous variant if the proportion of non-reference reads is between 20% to 

80%; otherwise, the genotype is deemed homozygous86. For example, in SNV detection, to call 

a homozygous variant, the coverage required is 15X; however, the heterozygous requires 33X, 

showing the importance of coverage to genotype the variants correctly63,64. 

Currently, the strategy to report the genotype between SNVs and indels differs slightly 

from SVs. The SNVs and indels record in a genome Variant Calling Format (gVCF) file the whole 
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genome positions, and whether there is a variant or not (ex: Haplotype caller, Deepvariant)8,115. 

All samples can then be combined and re-genotyped, recovering some variants missed in the 

variant calling step, due to the hard filters of variant discovery. However, this approach is not 

followed in structural variants due to the imprecision to report the breakpoint position, which does 

not allow the combination of different samples115. Some variant callers such as Delly or Lumpy 

(SVTyper119), after the variant calling step, are able to combine all samples in a multi-sample 

VCFs, enabling the posterior re-genotyping of whole samples, using the positions reported in the 

VCF, allowing to recover SVs not accepted in variant calling step. Nevertheless, because this 

strategy is computationally demanding, it is challenging to implement for most studies. 

On the other hand, a new generation of tools emerged to genotype SVs, such as 

BayesTyper120, SVJedi114, or Vg121. These tools require a VCF file with all the SV candidates. 

Then, the genotyping is performed using the BAM file of each sample and evaluating the sample 

ploidy using the VCF. In this direction, different new catalogues can be used to genotype SVs, 

such as gnomAD-SV, Ira M Hall resource, or even the dbVar catalogue. This strategy allows the 

SV genotyping in whole samples from VCF, obtaining the allele frequencies for each SV in the 

cohort. However, it can not detect new SVs, limiting the insights into human genome variability 

and losing the rare and low-frequency variants from specific populations.   

In summary, genotype calling is of paramount interest in population studies, where an 

accurate genotype could ameliorate the quality of genetic variability panels, improving the 

imputation analysis for GWAS. Sequencing the samples at high coverage enabled the genotyping 

of the variants without GL, improving the genotyping resolution. Finally, genotype the variants 

using an SV catalogue as a template,  could evaluate the SV candidates in each sample, obtaining 

the allele frequencies in the cohort. However, this approach limits the detection of new SVs. 

1.2.5.  Benchmarking variant identification of vari ant callers 

Although NGS technology can be used to detect any germline variant, no single variant 

caller is able to detect the whole variability landscape accurately, having different strengths and 

weaknesses, when facing different variant types9. Many factors influence the accuracy of variant 

calling, such as coverage, insert size, and read length from library sequencing or variant features, 

for example, type, length, and frequency46. For this reason, golden samples (reference samples) 

are necessary to compare the efficiency and accuracy of variant callers. 

Currently, the Genome In a Bottle (GIAB) consortium is investing efforts in generating 

different reference samples to benchmark variant callers, with NA12878 sample the first reference 

sample launched by GIAB122 and one of the most used. This consortium applied multiple 

sequencing platforms, aligners, and variant callers to correct the variant detection errors, 

producing an accurate data set for SNV and indel122. In 2016, GIAB provided six more samples 

(trios from Ashkenazi Jewish (AJ) and Han Chinese ancestry) sequenced with different platforms, 

covering NGS to TGS technologies123. Besides, the last updates provide 17% new SNVs and 

176% new indels, compared to older releases, generating a complete catalogue for benchmarking 

analyses124. Recently, GIAB has focused on including an SV golden set of large deletions and 

insertions (≥50bp),  which allows, for the first time, the benchmarking of germline SVs125. 

However, these reference samples have some limitations. The variants recommended for 

benchmarking are in high evolutionary sequence conservation regions (conservative regions) that 

may be easier to detect and genotype120, overestimating variant detection and genotyping 
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accuracy. Besides, the SV dataset does not cover the broad spectrum of SVs, being thus 

insufficient to perform a complete benchmark. 

Given that no real sample is thoroughly characterised, it is necessary to generate artificial 

samples (in-silico) that can cover these limitations, controlling the variants included in the 

genome, and allowing the evaluation of the variant caller accuracy under the desired 

conditions126. The majority of simulators require a reference sequence to create an in-silico. Then, 

to generate the sequencing library, many parameters can be included, such as the insert size, 

the read length, coverage, the sequencing platform, even the sequencing errors allowed by the 

sequencing machine. This versatility can lead to simulated data that can then be used to evaluate 

the performance of variant calling closer to reality. Alternatively, several simulators can generate 

synthetic variants directly into the BAM file, such as BAMSurgeon. However, this strategy cannot 

evaluate the variant effect of the alignment step. In contrast, other simulators, such as ART127, 

can create the in-silico samples by sequencing. This tool requires a reference sequence with all 

variants inserted; then, ART emulates the sequencing machine generating FASTQ files. This 

approach controls all sequencing parameters and includes all variant types, from SNVs to all SV 

types and sizes.  

Independently of the reference sample used, the variant caller benchmark is performed 

evaluating the following metrics: recall, precision, and F-score. True-Positive (TP), False-

Negative (FN), and False-Positive (FP) variant detections are used to calculate these metrics. 

The recall is the fraction of TP variants detected among all sample variants. Then, the precision 

is the proportion of TP that are positives. Finally, the F-score is a harmonic mean of precision and 

recall. 

 

 

 

Different benchmark analyses have been conducted, demonstrating the capabilities of 

different variant callers in many variant types. In SNVs, the F-scores are similar in medium (15X) 

and high (30X) coverages83. For example, using the NA12878 sample sequenced at 30X, the      

F-scores obtained from Deepvariant, Haplotype caller, and Strelka2 were similar, at 0.98 and 0.98 

and 0.99 (using Illumina Hiseq4000 machine), respectively, demonstrating that high coverage 

improves the in SNV detections83,128,129. However, with variant size increase, the accuracy of 

variant detection decreases. For example, in indels (< 50bp), the F-scores of previous variant 

callers were 0.94, 0.90, and 0.90128,129, respectively, showing a reduction between 4-8%. These 

results indicated that variant detection of small variants was highly accurate; however, they were 

not exempt from a small proportion of false discoveries.  

On the other hand, compared to SNVs and indels, the accuracy of SVs discoveries 

manifested larger divergencies. The accuracy is influenced by many factors, such as the SV type, 

size, coverage, among others9,130. For example, the precision and recall in the deletion discovery 

of Manta are 95.9% and 83.1%, respectively. These values change in the case of inversion 

discovery, at 97.6% and 80.9%, or in the detection of large insertions, where the precision is 

96.5% and recall 11.9%9. These divergences increased across different variant callers, finding 

more variability in their metrics. Kosugi et al.9 performed a benchmark of 69 algorithms, 
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determining that Delly, Manta, Lumpy, SvABA, Pindel, and Wham, were among the most accurate 

callers to detect SVs. However, size is an important factor in detecting SVs. With increases in the 

SV size, the mapping quality of reads decreased, leading to misinterpretations and increasing 

false-positives8. Besides, it is known that all variant callers do not detect all variant size ranges 

equally9, varying their recall and precision depending on the SV size, or detection method, among 

other features. For example, CNVnator is useful to detect large CNVs (>1Kb)112, demonstrating 

that many factors have to be considered to perform an accurate SV calling. 

Besides, the reference samples can be used in innumerable analyses, for example, in 

the correct determination of the SV size, which is crucial to reach consensus and consider an SV 

the same across different variant callers. In this direction, Lumpy, Manta, and SvABA are able to 

report accurately deletions and duplications, thanks to using the DR strategy9. On the other hand, 

to determine the position where the SV has occurred is another relevant feature, because it allows 

improving: 1) the variant classification and annotation, 2) the evaluation of the functional impact 

of the SV, 3) the construction of personal diploid genomes131, and 4) the merging of redundant 

SVs between different samples or across variant callers. For example, Delly and SvABA are 

highly accurate to report the breakpoint in deletions and duplications, and Manta and Wham for 

insertions9. These particularities indicate that no single variant caller can accurately detect whole 

SVs and sizes, highlighting that more than one variant caller has to be used to detect all SVs 

accurately. 

In conclusion, reference samples are needed to evaluate the variant caller performance, 

to adapt the variant detection with the sequencing data, to improve the strengths of each 

approach, and to reduce false-positive detections.  

1.2.6.  Variant caller integration: Improving the a ccuracy of variant 
detection 

Given that, as previously discussed, the variant discovery has an FDR between 9-89% 

and recall 10-70%, depending on the SV type, having ample room to improve. Until the NGS 

improvements, offering, for instance, a decrease in sequencing errors, or an increase in the 

coverage and read length, or until the integration of different read signals (RD, DR, SR, or AS) is 

ingrained into the variant callers, a different approach is needed to improve variant discovery 

accuracy. For this reason, recently, there has been an increased interest in integrating the outputs 

of individual variant callers to improve the strengths of different approaches reducing the false-

positive detections and without losing recall8,9,46.  

The difficulty of integrating different variant callers increases proportionally with variant 

size and complexity. For example, for SNVs, merging the outputs of different variant callers is not 

a challenge, because the position and alternative allele (ALT) have to be the same, filtering the 

redundant SNVs. In the case of indels, the size and breakpoint resolution increase the complexity. 

GoNL classified the indels by small < 20bp or mid-deletions between 20 and 100bp. The merging 

strategy for small indels was the same as for SNVs. In contrast, the mid-deletion positions did not 

have a base-pair resolution, so a breakpoint error of ±10bp had to be included to consider mid 

deletions the same across variant callers110. However, if the variant is included within the read 

size, the errors due to variant length only affect breakpoint resolution and thus are not critical. 

The main challenge is then to integrate the variant caller outputs for SVs, where the 

variant size and type, breakpoint, or even the strategies to detect the SV, are key to consider an 
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SV as the same across different variant callers9,110,132. Firstly, the SVs are classified by their type. 

Secondly, the position is determined by the most accurate strategy (for example, SR and AS), 

ensuring that the final breakpoint is as precise as possible. However, there needs to be a 

breakpoint-error margin in order to group the redundant SVs. Finally, the SV size is used to 

consider an SV as the same across different variant callers. Depending on the study, if the lengths 

are between 50-80% in reciprocal overlap (RO), the SV is redundant, allowing their merge through 

variant callers5,9,110. Besides, combining algorithms based on different detection methods could 

improve the SV discovery, increasing the precision and recall instead of combining just the same 

methods due to the incorporation of different signals9. 

In this direction, independent integrating tools such as SVmerge133, MetaSV134, 

SURVIVOR135, or Parliament136, have demonstrated an improvement of recall and precision 

compared to single callers. However, these tools combine the variant caller outputs using different 

heuristic decision rules and validate the SVs applying an assembly-based method95, which is not 

the optimal way to obtain the best merge results because the particular strengths of each variant 

caller are not taken into account, losing power in recall and precision130. GoNL is an example of 

combining variant callers using heuristic rules, in which an SV is true-positive if at least two variant 

callers detect it. This approach is inaccurate because, depending on the precision of the pair of 

algorithms, it could include more false-positives for a determined size9. 

To overcome the heuristic methods limitations and provide specific relevance in each 

variable, such as different variant callers, sizes, number of strategies, among others, creating 

sophisticated machine learning models could improve the precision and recall values. There are 

different machine learning strategies, such as Logistic Regression Model (LRM), Support Vector 

Machine (SVM), random forest, or convolutional neural networks. For example, LRM is one of the 

basic machine learning models, where the result of the outcome variable using multiple predictor 

variables is a binomial response (ex: PASS/NO PASS). LRM will model the chance of an event 

based on different factors137. The following formula is applied in the LRM model: 

   

where π is the event probability (ex: variant is true-positive of false-positive), β are the 

coefficients associated with the golden group (in our case the in-silico) and X are the explanatory 

variables of each query. In this direction, FusorSV132,95 applies a random forest model which uses 

the size, and SV type as discriminative variables, maximising the SV discovery without losing 

precision. Compared to MetaSV, FusorSV outperformed SV detection, demonstrating that 

machine learning algorithms increase SV discovery performance. However, FusorSV just 

includes two variables in their model, suggesting that incorporating more signals could maximise 

the variant detection accurately130. In the currently published reference panels, only the 1000 

Genomes used a machine learning algorithm (Support Vector Machine (SVM)) to merge and filter 

indels as well as SV1. 

Finally, variant caller integration could reduce the false-positive detections and the 

genotyping errors as well. For example, the Genome Strip decreased genotype errors by using 

different strategies to detect and genotype the CNVs54,62. In this context, in the same way as 

variant discovery, by combining the genotypes obtained from calling, which could decrease 

genotype errors. For example, Manta, Lumpy, and Pindel genotypes are highly accurate in 

reporting the genotypes9, so combining their decisions should decrease genotype errors. 
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1.2.7.  The correlation of variants across the huma n genome 

It is known that different human traits are influenced by genetic factors, such as hair or 

eye colour, or our risk to develop certain diseases. SVs seems to have a similar evolutionary 

history as SNPs and indels, being ancestral, appearing in human history and being shared across 

individuals by inherited factors rather than sporadic events22. It is estimated that ~4M of SNVs10 

and > 20K SV66,67,95 are included in a typical genome; however, the genome structure is modelled 

by population genetic forces, such as genetic drift, genetic flow, natural selection, among others, 

generating correlation patterns between genome variants138. This idea is taken by linkage 

disequilibrium (LD), where the variants integrated into the same genomic interval are often 

correlated22,138,139. 

Besides, LD depends on local recombination rates. The recombination is done in meiosis 

and consists of exchanging the genetic material between chromosomes, breaking the 

chromosomes by genomic segments (haplotype block). Each haplotype block includes several 

alleles, which are inherited together, so one variant could tag another just by LD. Thanks to 

haplotype blocks, the LD patterns can be used to cover longer chromosome segments, enabling 

the test of one variant in each block, and recovering significant information able to associate a 

haplotype block to a trait or disease138,139. The variants that capture the genomic segment's 

variation are named tag variants (tag SNPs). 

However, recurrent recombinations tend to break the haplotype blocks, reducing their 

sizes and driving the segregation of the variants independently across generations (linkage 

equilibrium)22. The LD segments in African populations are shorter than in populations of 

European or Asian descent, due to the accumulation of recombination events. The founder events 

in European and Asian populations altered their genetic structure, reducing genetic variability, the 

population size and generational age, and increasing the length of the LD segments22,139. For this 

reason, the LD patterns are population-specific, reflecting their demographic evolution; as such, 

not all casual variants are tagged by the same SNPs across all populations6,139 (Figure 6), 

demonstrating the importance to characterise the genetic background of specific geographic 

regions, in order to understand the genetic architecture of diseases in a single population. 

Besides, SNP arrays are built using tag SNPs139,140, thanks to the genomic characterisation of the 

HapMap project, which determined that most common SNPs (MAF ≥ 5%) could be reduced to 

550,000 SNPs in European and Asian ancestries and to 1,100,000 SNPs in African ancestries22. 

Tag SNPs allowed the capture of the majority of common genetic variability in humans, enabling 

the evaluation of large genomic segments, and ultimately, to improve GWAS.  

 

 

 

 

 

 

 

Figure 6 . Linkage disequilibrium (LD) patterns are particular of 
populations. Casual variants can be tagged by different SNPs in different 
populations, due to LD patterns, highlighting the importance to characterise 
the genetic background of specific populations. This is one factor which 
explains the difficulties to replicate GWAS studies across populations. Figure 
from Sirugo et al.6. 
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Particularly, SVs are non-randomly distributed across the genome; for example, 

structural variants can be generated in segmental duplications by NAHR procedures, determining 

that SV presence depends on the local genome architecture67. However, LD patterns between 

tag SNPs and SVs are hard to determine. SVs are enriched in segmental duplications, exhibiting 

low LD due to the paucity of the genotyped SNPs, reducing the chances to tag SVs compared to 

other genomic regions. Nevertheless, common SVs in segmental duplications and those in unique 

regions are in LD with neighbouring SNPs22,141, allowing the use of tag SNPs to recover common 

SVs for association tests. Further SNP characterisation across segmental duplications is 

necessary to improve the LD between SNPs and SVs. For this reason, generating panels of 

genetic variability using TGS technology could improve the SNP characterisation in low 

complexity regions, increasing the tag SNPs chances to find LD patterns between SNPs and 

indirectly to recover more SVs from haplotype blocks. 

1.2.8.  The functional impact of variants on the hu man genome 

The germline variants are implicated in the evolutionary adaptations and heritable 

diseases; thus, the characterisation of their functional impact on humans is one of the main goals 

in biomedicine17. Even though SNPs and indels are the most common genetic variability source, 

SVs due to their sizes are responsible for the majority genetic diversity between two human 

genomes8. Consequently, SVs affect more DNA stretches than SNVs and indels, with potential 

implications for gene function8,9. For this reason, further annotations are needed in SVs, in order 

to increase the insights of SVs on human phenotypes. 

Different annotations were applied to characterise the functional impact of SVs on gene 

function in humans, for instance, evaluating overlaps with intergenic or intragenic regions. 

Nowadays, functional interpretation is attributed to protein-coding genes. Depending on the 

variant location, the gene could be disrupted, losing their function and affecting human phenotype. 

Most SVs overlapped intronic regions, limiting their understanding and implication on traits. On 

the other hand, variants located in CoDing Sequencing (CDS) regions could modify the protein, 

affecting the gene function directly142,143. However, most variants associated with traits (90%) are 

located outside of protein-coding regions, such as regulatory elements. Enhancers, promoters, or 

untranslated regions (UTRs), among others, could perturb the gene expression or indirectly 

modifying the function of other genes35,144. These appreciations are based on predictions, helping 

to interpret the variant effect on human traits or diseases; however, all predictions have to be 

validated in the wet lab, in order to confirm these hypotheses. 

Besides, some genes are less tolerant to variation than others, increasing the risk to 

affect their function. The predicted loss of function (pLoF) is the probability of a gene to be 

deleterious due to a variant, with a likelihood of clinical significance145. A   pLoF is  ≥ 0.9 indicates 

low variation tolerance; these cases are named as predicted loss of function intolerance (pLI). 

The pLI is widely used in population genetics to predict the gene intolerance under a particular 

variant75,145,146. The extreme case is haploinsufficiency (HI), where the heterozygous genes are 

insufficient to maintain the function145,147. These measures do not provide information about 

variant dominance145. For example, one disease could develop a stronger effect in homozygous 

patients than heterozygous.  

Rare and complex diseases are two major groups with a heritable component due to 

germline variants. Rare diseases also are referred to as monogenic or Mendelian diseases, and 
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are characterised to develop the disease as a result of a single or few variants, with a negligible 

contribution of environmental factors44. A great example is the Haploinsufficiency A20 (HA20) 

monogenic disease, caused by heterozygous variants in the TNFAIP3 gene, producing a 

systemic inflammation in multiple organs148. Therefore, the high penetrance of those variants in 

diseased individuals tends to decrease their prevalence in populations, given that these are rare 

and restricted in particular families52 (Figure 7). However, not all deleterious traits are negatively 

selected; for example, variants in particular populations are highly frequent, such as G6PD 

deficiencies and thalassemias. 

On the other hand, complex (or common) diseases are influenced by environmental and 

polygenic factors, and it is difficult to detect causal variants. Many common variants are suspected 

of contributing a small fraction to disease risk, conferring low penetrance, and modulating the 

disease susceptibility44,52. As a result, the weak variant selecting pressures increase the allele 

frequencies into the population (Figure 7). Besides, population migrations could interfere with 

modelling the genetic architecture of diseases between different geographic regions. The founder 

events could particularly increase the allele frequencies of weakly deleterious alleles, facilitating 

the introduction of multiple low-frequency variants in specific populations, resulting in different risk 

variants for the same disease across populations6,44. Different diseases are described as 

complex, such as type II diabetes or schizophrenia, directly impacting to healthcare system 

costs149. For this reason, GWAS tried to identify these risk variants in order to design new 

prevention and treatment strategies139. In this direction, large catalogues of causal and risk 

variants were created such as Online Mendelian Inheritance in Man (OMIM)150 or Genome-Wide 

Association Studies (GWAS) Catalogue151, collecting variants of rare and complex diseases44. 

Currently, to obtain a functional interpretation, different software are used to annotate 

genetic variability; for example, the most popular tools are SnpEff152 and Annovar153, specialising 

in SNVs and indels. However, they are of limited use to characterise the wide spectrum of SVs. 

Recently, a new annotation tool named AnnotSV75 improved on these limitations, using different 

repositories, such as OMIM150, DGV97, 1000G5, dbVar96, GeneHancer37, among others (further 

details in Table 12), helping the prediction of the pathogenic effect of SVs on humans. 

 

 

 

Figure 7. Genetic architecture of rare and complex diseases. In rare 
diseases (Mendelian), the penetrance of rare variants is high, thus, the allele 
frequency in a population is low (MAF < 1%). While the penetrance 
decreases, polygenic risk variants contribute to the complex (common) 
disease susceptibility, increasing the allele frequency in the population. 
Figure from Teri et al.52 
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1.3 Genetic variability panels (reference panels): An invaluable resource in 

Genome-Wide Association Studies (GWAS) 

Genome-Wide Association Studies (GWAS) have identified thousands of risk variants 

and their biological function, revolutionising the biomedicine field154. In comparison to rare 

diseases, complex diseases are influenced by multiple risk variants, as well as social and 

environmental factors. Through the interrogation of hundreds of thousands of SNPs, GWAS 

allows associating thousands of risk variants to complex diseases, such as diabetes or coronary 

heart diseases, elucidating their genetic architecture52,154,155. Thus, GWAS open new 

opportunities to find new therapeutic targets in order to treat heritable diseases139. 

The rationale behind GWAS is the comparison of the genetic background between cases 

(diseases) and controls (healthy), providing statistically significant associations at each 

polymorphic site between variants and disease susceptibility52,155 (Figure 8). GWAS rely on exploit 

the LD principle, where the statistical power to find associations between variants and traits 

depends on the allele frequency of variants, sample size, the distribution of effect size of causal 

genetic variants in the population, and the LD between genotyped variants and unknown causal 

variants146. 

As expected, the degree of LD between tagSNPs and rare casual variants is according 

to allele frequency, limiting the GWAS analysis to common variants (MAF ≥ 5%). In brief, the LD 

is linear to sample size. Thus, due to the allele frequency of rare variants (MAF < 1%), the power 

of common variants to detect associations between rare casual variants is negligible155. For this 

reason, increasing the sample size will improve the GWAS resolution, increasing the chances to 

find new risk variants in complex diseases. 

 

Figure 8. Workflow of GWAS analysis. The GWAS approach consists in comparing the 
genetic background between cases and controls, in order to find risk variants of the disease. 
To improve the statistical power and resolution of GWAS, the imputation analysis based on 
LD, allows recovering unobserved variants, by inferring genotyped tagSNPs to the haplotypes 
from a fully sequenced reference panels (see further details in section 1.3.2). 
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Despite the GWAS contribution to improving the genetic architecture insights of complex 

diseases, associating more than 50,000 risk variants154, different constraints are involved in this 

type of studies. For example, the GWAS studies explain a small proportion of complex diseases 

heritability, mainly due to the low capacity of genotyping arrays to detect rare variants 

(hypothesised to be highly penetrant in diseases), limitations in evaluating structural variants, 

incapacity to detect gene-gene interactions, and the influence of environmental factors52. 

However, the main objective of GWAS is to explain the contribution of genetic variability to 

complex diseases, instead of to explain the whole heritability. To decrease the missing heritability 

in GWAS, increase the sample size is necessary. For example, in 2009, one locus was related to 

schizophrenia using 3,000 cases. Then, in 2014, the number of loci increased to 108, using 

35,000 cases, explaining a substantial proportion of heritability155. 

On the other hand, the majority of GWAS has been conducted on individuals of European 

descent (52%) or Asian (21%). Notwithstanding the growing number of studies including African, 

and Hispanic descent, these disparities are unacceptable in GWAS6,155. The main reason is that 

GWAS is based on LD, and this factor is closely related to the population evolution of each 

geographic region, each with its specific LD patterns, which influences how well a tag SNP 

captures a casual variant. Thus, the risk variants for complex diseases can differ between 

populations, complicating GWAS replication across different ethnic groups6. For example, in type 

2 diabetes, GWAS identified different loci with high risk in East Asian (KCNQ1), Mexican 

(SLC16A11) and Greenlandic (TBC1D4) populations, evidencing differences in risk allele 

frequencies among populations154. Nevertheless, common variants contribute in small fraction to 

the genetic architecture of complex diseases, and are expected to be evolutionarily old and 

shared across different populations, which is encouraging to find common patterns between 

ethnicities154,155. Despite this, some common risk loci still differ in allele frequency or effect size 

across populations. In summary, there is a need to characterise specific populations155 in order 

to find particular risk variants, which will enable the improvement of the diagnostic, prevention 

and treatment of complex diseases, contributing to the implementation of precision medicine. 

Besides, the imputation of SNP arrays using panels of genetic variability (reference 

panels), allows to include unobserved variants in GWAS, and to lift the restriction to SNP array 

data, which only probes a small fraction of genome variability154–156 (see the detailed explanation 

of imputation in section 1.3.2). For this reason, the creation of panels of genetic variability is of 

paramount interest, allowing for the evaluation of more variants in GWAS, and thus, increasing 

the chances to find new associations between genetic variants and complex diseases.  

In brief, a reference panel is a subset of human haplotypes (cohort), which are highly 

genetically characterised, by having detected their genetic variability by multiple means and 

reconstructed their haplotypes by phasing approaches. Since the HapMap project facilitated the 

design of first SNP arrays used for GWAS156, the improvements in creating complete reference 

panels using NGS technologies, have allowed the analysis of the whole genome variability from 

different cohorts to detect rare, low-frequency and structural variants52,156. 1000G was the first 

reference panel which sequenced 2,504 individuals from multiple ethnicities, detecting a wide 

spectrum of genetic variability5. Since then, several more reference panels have been created, 

focusing on a specific population (ex: GoNL110) or larger multi-ethnic panels (ex: Haplotype 

Reference Consortium (HRC)157),  increasing their sample size and coverage (Table 1).  

Therefore, by using reference panels in GWAS, the statistical power of the analyses will increase, 
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and they will be able to include more untyped variants, with a special emphasis on rare and low-

frequency variants, which are normally not captured by SNP arrays154,156.  

However, most reference panels do not include SVs in their catalogues, despite their 

importance in complex diseases (Table 1). For example, in neurodevelopmental diseases, such 

as schizophrenia or autism, specific deletions are involved in both diseases22. The main reasons 

are the false-positive detections using short reads, low coverage, and the high computational 

requirements, increasing the complexity of SV discoveries. Currently, 1000G phase3 is the only 

reference panel available with SVs. Nevertheless, the project used low coverage, hindering 

variant detection and genotyping. Thus, sequencing samples at high coverage (30X) could 

improve the imputation performance, and help to include more SVs with an accurate genotype, a 

necessary step to find more variants in LD116,117. Besides, including SVs in GWAS could explain 

more heritability in complex diseases52,132,158. 

Finally, generating more reference panels is necessary to include more samples and 

variants in GWAS. Hence, performing variant calling in specific populations could increase the 

variant discoveries from particular geographic regions, and help find different risk variants across 

populations. Besides, including SVs in reference panels could improve the GWAS resolution, 

increasing the chances of finding new risk variants in complex diseases. 

Reference 

panel 

Last 

Releas

e 

Sample 

size 

Coverage 

WGS 

Number of SNPs 

and indels 

Number of 

SVs 

Ancestry 

HapMap2 2007 270 Genotyped 3.8M None Multi-ethnic 

HapMap3 2008 1,115 Genotyped 1.6M (SNPs) None Multi-ethnic 

1KJPN* 2014 1,070 32,4X 24.6M 82,620 (del, 

Ins, CNVs) 

Japanese 

1000G 

phase3 

2015 2,504 7.4X 88M 68,818 Multi-ethnic 

UK10K▲ 2015 3,781 7X 45.5M 18,739   

(large del) 

British 

GoNL-SV▲ 2016 769 14.5X 21.6M 35,510 Deutch 

HRC 2016 32,488 Diverse 39.2M (SNPs) None Multi-ethnic 

Iceland 2017 15,220 34X 31.1M None Icelandic 

Estonian 2017 2,244 30X 16.5M None Estonian 

SG10K 2019 4,819 13.7X 98.3M None Multi-ethnic Asian 

TOPMed# 2019 53,831 38X 410M None Multi-ethnic 

Table 1. Reference panels available. The main limitations of reference panels were the sample size and 
coverage. Including more samples, the performance to impute rare variants increases; thus, the new 
generation of reference panels increase the sample size. Besides, increase the coverage, improving the variant 
detection and genotyping. The majority of reference panels do not detect SVs; just two panels characterise all 
SV types, being 1000G the unique catalogue with these variants. 

* Reference panel not available; ▲ Public panels do not include SVs; # Not published, Paper in bioRxiv 
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1.3.1. The role of phasing in reference panel creat ion 

The haplotype is a combination of alleles from different loci, along a single chromosome, 

which tend to be inherited together (Figure 9A). The haplotype information is not trivial and has 

relevant applications, such as detecting positive variant selection by looking for long haplotypes 

common in the population, estimating the recombination rate, understanding gene function, 

allowing to decipher the compound heterozygosity cases, or performing disease association 

studies, among others159,160. Besides, the haplotypes can be used to generate haplotype 

reference panels, necessary to improve the statistical power of GWAS, by including more untyped 

variants by the imputation analysis5,139,157,161,162.  

DNA is currently sequenced, ignoring the haplotypes from parents; thus, the variant 

callers only provide the genotype of variants, and not their relative phasing. To generate a 

reference panel, we have to resolve the human haplotypes as well, from the genotype information. 

This technique is named haplotype phasing technique, and it aims to recover the two possible 

haplotypes of an individual159,160,162. 

The phasing is only relevant for heterozygous variants, where the nucleotide content 

differs between homologous chromosomes. Many strategies are designed to phase the 

genotypes, in which can be catalogued as 1) experimental techniques, 2) population-based 

strategies, and 3) those who use a combination of population-based strategies with sequencing 

reads or parental information159,160. The experimental approaches determine the haplotypes 

directly. However, these are more expensive and labour intensive than population-based 

strategies, hindering their application in populational studies. The population-based strategies are 

widely used; their objective is to decipher the most likely set of haplotypes given the input 

genotypes, using the haplotypes from a population159,162 (Figure 9B). Shapeit2163, Beagle164 and 

Eagle2165 use this approach, based on a Hidden Markov Model (HMM), in which the mutation rate 

(emission probability) and recombination rate (transition probability) are applied to the phasing, 

to predict the haplotype159,160,162. The transition probability is used to determine the sequence 

changes between different recombination points, and then the emission probability evaluates the 

haplotype mutability with respect to haplotypes already resolved162. In other words, the HMM has 

different nodes, understood as a group of haplotypes. Each node has its mutation rate, and is 

related to others by recombination points (transition probability). So, when a genotyping dataset 

is phased, each node solves a haplotype stretch using the haplotypes, the emission and transition 

probabilities, obtaining the most likely set of haplotypes (Figure 9B). Beagle and ShapeIt2 were 

used to generate the 1000G and GoNL haplotype reference panels.  

Besides, when sequencing coverage is high, the reads can be used to improve the 

population-based strategy. The reads can be thought of as mini-haplotypes, containing phase 

information, and so could to improve the phasing performance159,162,163. The read or paired-ends 

which cover at least two heterozygous alleles are named Phase Informative Reads (PIRs)163. 

Besides, it was found that 33% of heterozygous variants were covered by PIRs in a single 

sample163, highlighting the potential of PIRs in haplotype estimation, and improving the phasing 

of rare and singleton variants162. The new ShapeIt4166 update uses the WhatsHap167 tool to 

recover the PIRs, and then this information is used to improve the phasing of genotypes. 

However, WhatsHap cannot capture PIRs for SVs, limiting their use in SNVs and indels. This last 
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approach has not yet been applied to generate a haplotype reference panel, due to the low 

coverages used or the computational resources requirements. 

Although phasing can be applied for structural variants as well, a few studies are available 

about their accuracy. Nowadays, different studies use long reads to phase SVs168, but these 

approaches are not cost-effective to reproduce at a large scale. Besides, the haplotype reference 

panels, such as 1000G or GoNL (Table 1) used the MVNcall169 tool to include SVs in their 

catalogues5,161. The MVNcall is an imputation software, which genotypes and phases the SVs 

obtained from low coverage (7-15X) sequencing approaches, using a haplotype scaffold, 

constituted by biallelic SNVs and indels162,169. So, using a haplotype scaffold, MVNcall imputes 

the SVs obtained from sequencing calling, obtaining their genotypes, and then phased those 

genotypes following LD patterns169. This approach tries to reduce the genotype limitations from 

low coverage in SVs. Thus, to ameliorate SVs' phasing performance, increasing the sequencing 

coverage will improve the genotype accuracy, allowing the SV inclusion of current phasing tools, 

instead of inferring their genotypes by imputation approaches. 

1.3.2.  Genotype imputation in GWAS studies 

Genotype imputation is used to predict the variants not directly assayed in a sample of 

individuals, enabling to inexpensively approximate whole-genome sequence data from SNP array 

data156,170. This statistical approach facilitates meta-analysis studies, combining the results of 

different studies, equating the set of variants obtained from different SNP array data. Moreover, 

the imputation also improves the resolution of a genetic region, increasing the chances to find a 

casual variant (fine-mapping). Finally, in combination with haplotype reference panels, imputation 

A) B) 

Figure 9. Phasing description . A) Phasing consists of resolving the haplotypes of individuals, grouping 
the alleles which tend to be inherited together. For example, using the genetic information from parents, 
the haplotype of offspring can be deciphered. The exception rappears when parents and offspring are all 
heterozygous at a locus. In those cases, the population haplotypes can be used to resolve the ambiguous 
regions. B) The Hidden Markov Model (HMM) is used to estimate the haplotypes from an individual. 
Shapeit2, first divided by chunks the individual genotype data, englobing a specific number of 
heterozygotes. Then, a HMM based on the haplotype frequencies from a population grouped in a node, 
transition probabilities (solid black arrows) and emission probabilities (mutation rate of each position into 
the node), are used to estimate the most likely haplotype . (0= homozygote reference; 1= heterozygote; 
2= Homozygote alternative). Figure 9A obtained from https://www.plob.org/article/11643.html. Figure 9B. 
Adapted from Marchini et al.162. 
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increases the power of GWAS, including untyped variants such as structural variants or low-

frequency and rare variants (MAF < 5%), normally not captured by SNP arrays156,170. 

The rationale behind imputation is that two unrelated individuals can share different DNA 

stretches, derived from a common ancestor. Thus, the variants detected by commercial arrays 

(usually genotyping SNP arrays) can be used to identify haplotype blocks (DNA segments) shared 

between genotyping arrays (sample) and haplotype reference panels (Figure 10). So, the 

haplotypes of a sample can be understood as a mosaic of short segments of related haplotypes 

found in the reference panels, enabling to impute unobserved variants in the study sample by LD 

patterns156,162,170.   

 

Different imputation tools have been developed, which MINIMAC, IMPUTE2 or BEAGLE 

among the most popular156. New updates of these tools focus on decreasing the computational 

requirements and increasing the execution speed. On the other hand, MVNcall infers the 

genotypes using the genotype likelihoods (GL), estimated from SNP array or low-coverage 

sequence data156,162. This approach includes complex rearrangements and SVs in haplotype 

reference panels5,161. However, imputation is computationally demanding due to the high rate of 

missing data. For this reason, pre-phasing the genotyping data before imputation allows a 

reduction of the computational burden, without compromising the accuracy. This decreases the 

complexity of the imputation step because two haplotypes can be contrasted directly, rather than 

against all pairs of haplotypes156,170.  

The quality of variants imputed is affected by several factors156,162,170, such as the allele 

frequency of imputed variants, genomic context or the size of reference panels. Imputing rare 

variants (MAF < 1%) is harder than common ones, due to the low chances to observe those 

alleles in the reference panel. This complicates finding LD patterns, and the set of template 

Figure 10. Genotype imputation description. The pre-phased tagSNPs from SNP array 
data (top) are used to match short segments from a reference haplotypes set (middle). 
Therefore, the haplotypes from the study sample can be represented as a mosaic of segments 
of a haplotype reference panel. Consequently, untyped variants can be inferred, generating 
the final haplotype of the sample, including the observed and unobserved variants.                        
Figure adapted from Marchini et al.162. 
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haplotypes available for matching decreases, resulting in lower imputation accuracy. For this 

reason, increasing the sample size of reference panels could improve the imputation of low-

frequency and rare variants, which are more likely to be related to diseases154. For example, HRC 

or TOPMed increased the imputation accuracy of rare variants as compared to 1000G, where the 

sample size was small. Besides, an increase in the coverage of sequencing will improve the 

genotypes from reference panels, which in turn correlates with the accuracy of inferred 

haplotypes156. In addition, including more SNPs in a SNP array, could improve the chances to 

find shared haplotype segments between sample study and reference panels, improving the 

GWAS.  

To evaluate the imputation accuracy, IMPUTE2171 uses the “info score” metric, and 

MINIMAC or BEAGLE the r2. These two measures are correlated and can be interpreted similarly. 

The value ranges between 0 and 1, indicating the precision of variant imputed. Usually, all variants 

with an info score < 0.3 are discarded for association tests156. 

Besides, demographic properties could affect the imputation performance139,156,162. If the 

study sample has the same ancestry as the reference panel, the probability of matching different 

haplotypes increases. In this direction, the low haplotype number of each population in multi-

ethnic reference panels decreased the power to impute low-frequency, rare, and that population-

specific variants4,6,156. For this reason, the generation of population-specific reference panels, 

including more haplotypes of a specific demographic region, could increase the chances to impute 

low-frequency and rare variants, more likely related to diseases. 

Overall, combining population-specific and multi-ethnic reference panels could help for 

disease studies, increasing the chances to impute casual variants, since a hybrid panel is 

enriched with rare alleles156,161. In this direction, IMPUTE2 can combine two different reference 

panels, improving the imputation performance (mainly for rare and low-frequency variants)161. 

However, many more reference panels are already built (Table 1), increasing the need for 

methods able to perform imputation using several whole reference panels, to obtain more variants 

for GWAS. In this context, GUIDANCE172 is able to impute the study sample against multiple 

reference panels independently in one run, recovering the most accurate set of variants imputed 

from each panel, and thus improving the GWAS resolution.   

In conclusion, imputation analysis is useful to increase the number of variants in GWAS, 

opening new opportunities to find causal variants in complex diseases. Therefore, creating more 

haplotype reference panels will help increase the sample size, ameliorating the imputation 

analysis. In addition, generating more population-specific reference panels will increase the 

chances to find causal variants in particular populations, filling a crucial need in precision 

medicine. 

1.4 The rationale of this thesis 

Genome Wide Association Studies (GWAS) have revolutionized biomedicine, 

associating more than 216K causal and risk variants in multiple diseases or human traits. The 

imputation of SNP array data to haplotype reference panels has allowed the inclusion of more 

variants in GWAS, increasing their statistical power and chances to find more disease-associated 

variants156. However, more samples and haplotypes from specific populations are needed in order 

to increase the imputation of low-frequency and rare variants156,162. Besides, generating 
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population-specific panels could help understand the genetic bases in complex diseases, finding 

specific risk variants across populations6. This is particularly interesting in precision medicine, 

because the diagnostic, prevention and treatment efficacy could differ depending on the ethnic 

group. 

Nowadays, sequencing a cohort at high coverage (30X) is possible due to the decreasing 

costs over the years, improving the accuracy of genome variability detection, genotyping and 

phasing. For example, de novo assembly strategies require high coverage to detect variants 

correctly18,76,80. Besides, high coverage allows the detection of SVs with more accuracy than low 

coverage, providing new genomic rearrangements in SV catalogues9,34. In addition, high 

coverage allows the genotyping of SNVs, indels and SVs correctly, thanks to more available 

signals (reads) to determine their allele dosage. This results in more variants in LD, essential to 

building a haplotype reference panel of quality86,117,118. Finally, phasing can be improved using 

the reads as mini-haplotypes, enabling the generation of sample haplotypes more precisely, and 

thus, to built a much more accurate haplotype reference panel162,163. 

Structural Variants are the main source of genetic variability across populations, and are 

implicated in several human traits or complex diseases8,9, such as neurodevelopmental ones, 

highlighting the importance to include these rearrangements in haplotype reference panels. 

Currently, just GoNL and 1000G include the majority of SVs types5,110, where 1000G is the unique 

dataset available. These projects detect SVs at low and medium coverage, limiting the SV 

detection performance. Besides, the SV genotypes are inferred using a haplotype 

scaffold5,110,156,162, evidencing the genotype limitations of low coverages. Since the costs of TGS 

technologies does not decrease, the best option to characterise SVs is to increase the coverage 

of NGS sequencing, and to combine different variant callers to obtain accurate catalogues of 

SVs9,11,95. Ultimately, this will lead to the generation of new haplotype reference panels that 

include a more precise SVs genotypes.  

In this context, this thesis has been performed in collaboration with the GCAT-Genomics 

for life (GCAT) project173. The GCAT project is a prospective long-term study that tries to evaluate 

the effects of epidemiological, environmental, and omic factors such as genomics, metabolomics, 

epigenomics, and proteomics on chronic diseases173,174. GCAT sequenced 808 volunteers using 

NGS at high coverage (30X) from the North-east region of Spain (Catalonia) at ages between 40-

65 years, grouping all samples as Iberian ethnicity (IBS). This data enabled us to generate a 

population-specific panel of genetic variability of the Iberian population, improving the detection 

of SVs as well as their genotypes. This resource is of paramount interest for many reasons: 1) 

This represents the first population-specific Iberian reference panel. 2) This panel includes a 

detailed characterisation of genomic rearrangements in the Iberian population, improving the 

imputation of SVs and population-specific variants. 3) The combination of this novel reference 

panel with others previously published, will help improve the performance and resolution of GWAS 

studies. Finally, 4) This resource provides information on novel genomic rearrangements, which 

will be useful to improve the insights of genetic variability in humans. 

The Iberian population has a complex demographic history, unusual across European 

regions, mainly influenced by Muslim rule, with estimated proportions of north-west African-like 

DNA in the Iberian population ranging from 2.4-10.6%175. Besides, the genetic footprint of Iberians 

is present in the Latin American populations, due to colonisation, sharing DNA segments between 

these ethnic groups176. These particularities could be beneficial for GWAS because many 
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haplotypes could be shared across different continental groups139,156. Hence, generating a 

haplotype reference panel from the Iberian population could contribute to perform better GWAS 

in these communities, normally underrepresent6. In Europe, the Iberian population differs 

genetically within populations, clustering ethnic groups by geographic regions, demonstrating 

different genetic particularities as a result of demographic evolution175,177. In addition, the genetic 

structure in the Iberian Peninsula is not homogeneous; for example, there are isolated populations 

such as Basque Country175,177, increasing the complexity to applies an accurate GWAS in this 

population.  

Besides, several studies have revealed different particularities of inherited diseases in 

the Iberian population, finding a high prevalence of some rare diseases178, such as mild 

phenylketonuria phenotypes or high variant heterogeneity causing cystic fibrosis in comparison 

to central and northern European populations. However, the allele frequencies of risk variants of 

complex diseases, such as type 2 diabetes, neurodegenerative or cancer are not different from 

other European populations178. Despite this, the characterisation of the genetic background of the 

Iberian population could help to find private risk variants, improving the diagnosis, prevention and 

treatments of complex diseases. Thus, generating a panel of genetic variability of the Iberian 

population could improve precision medicine in Spain, helping to maintain the current healthcare 

system.  
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The main objective of this thesis has been to generate an haplotype reference panel of 

genetic variability for the Iberian population, mainly focused on Structural Variants, for which our 

knowledge is still lacking. This resource will provide new opportunities to understand the effect of 

SVs on diseases and improve the comprehension of genetic variability effects on humans. 

Additionally, other objectives were derived from the main one:  

1) The generation of a strategy to characterise the landscape of germline variation from 

whole-genome sequenced cohorts, especially for structural variants. 

2) The generation of filtering strategies to minimise the fractions of false-positives 

among raw calls. 

3) The application of this strategy to 785 genomes from the GCAT cohort to catalogue 

and annotate their genetic variation. 

4) The construction of haplotype blocks using phasing strategies and generate an 

haplotype-based reference panel, capturing a wide spectrum of Iberian genetic 

variability. 

5) The comparison and evaluation of the possibilities of this panel for variant imputation 

and interpretation for GWAS. 
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This chapter can be divided into two blocks. The first block, including sections from 3.1 to 3.4, 

describes the strategy designed to characterise all genome variability  of the GCAT samples. 

The second block, from sections 3.5 to 3.12, is focused on creating the Iberian reference panel , 

which comprises the BAM file construction, goes through the building of the haplotype reference 

panel, and terminates with the functional implications of Structural Variants (SVs).  

3.1 Creation of in-silico sample 

In this section, we describe in detail the in-silico sample (artificial sample) created in–house. 

The paragraph is divided into three blocks: the first one describes the in-silico sample and its 

content. In the second one, we summarise the process of creating their BAM file. Finally, we 

illustrate the benchmarking of the different software for variant detection (variant callers), which 

allowed us to make a preliminary draft of which tools were the most suitable to build a reference 

panel of the Iberian population, including 808 GCAT-Genomes for life (GCAT) samples173. 

The artificial sample (in-silico) has been generated for mainly two reasons: 1) to understand 

the functionality of the variant callers used  to characterise human genetic variability, and 

additionally to calibrate the parameters of these tools. 2) To our knowledge, there is currently 

no real sample with a well characterisation of large SVs well characteri sed . Thus, we 

generate an in-silico sample containing the following known variant types: Single Nucleotide 

Variants (SNVs), small Insertions-Deletions (Indels, size from 1 to 30 bp), and SVs. 

There are different ways to generate an artificial sample using simulations126. We used the 

ART127 (ART-illumina) strategy , simulating the Illumina sequencing, the same Next-Generation 

Sequencing (NGS) platform used to sequence the real samples from the GCAT project. Using 

the FASTQ files generated with ART-Illumina, we evaluated the alignment errors produced by the 

variants. In the following subsections, we detail the steps to generate our artificial sample. 

3.1.1.  In-silico sample description 

To generate an in-silico similar to a real sample, we inserted in the reference genome 

(hg19) some real variants known in humans . These variants were obtained from popular projects 

such as the 1000 Genomes1 (1000G) and the PanCancer project179. Additionally, we inserted 

artificial SVs not present in these projects , using python scripts (version 2.7.13) developed in-

house.  

The in-silico sample includes SNVs, Point Mutations, Indels and different types of SVs 

such as large Deletions (DELs), Insertions (INSs), Inversions (INVs), Duplications (DUPs), Copy 

Number Variants (CNVs), Translocations (TRAs), Transposons (TRPs), Viruses (VIRs) and 

Pseudogenes (PSGs), covering the broad spectrum of genome rearrangements. Below we 

describe the particularities of each rearrangement. Table 2 overviews all variant label information 

from in-silico. 

SNVs and small indels  were selected from 37 samples of 1000G (complete sample list 

in Supplementary Table 1). We mixed different alleles of these samples to create one new 

haplotype with real variants. Table 2 shows all variants obtained from 1000G labelled with the 

flag “Germline.” Additionally, we included Point Mutations and small Deletions and Insertions 

(“indels” flag name) from the PanCancer project to complete the selection.    



 

53 
 

We consider different types of DELs , according to 1) The size; 2) If the variant was 

obtained from a project; 3) if it was associated with a TRA; 4) and  associated with a 

complex event . The flags for the different DEL types were: 

- “no_indels”: Were obtained from indel files of the PanCancer project and had a size 
larger than 100 bp.  

- “consensus”: Were obtained from SV files of the PanCancer project. The sizes rank 
from 101 to 9000 bp. 

- “big_del”: These were the nine largest Deletions in the in-silico obtained from the 
PanCancer Project, with a size more than 10000 bp. 

- There were two random DEL types related to complex events:  

- “random_transDel_IDtranslocation” was a non-reciprocal TRA. The 
IDtranslocation was a number that connects the DEL with their related TRA. 
The size of these DELs and TRA is the same.  

- “random_SVtype_flank”: These were small DELs (larger than ten bp) 
flanking another SV. Usually, these DELs were not detected by the variant 
callers. 

 INSs were catalogued in different groups. Below, all INS type are described (Table 2): 

- “random_ins_new”: The INSs with these flags were not obtained from any 

project mentioned before . These sequences were created randomly using a python 

script developed in-house (version 2.7.13).  

- “random_SVtype_shard”: These INS were genomic shards49, small fragments 

interposed between breakpoints. These events were inserted between both 

breakpoints or on one side of INVs, TRAs, DUPs, VIRs, and PSGs. The genomic 

shard events only appear in variants larger than 200 bp. 

 INVs were obtained from two different sources: 

- “consensus_inv”: Obtained from the PanCancer project. 

- “random_inv”: INV randomly generated using an in-house script.  

DUPs were classified using the different labelling listed below. Besides, we included 

some mCNVs, mainly tandem duplications: 

- “random_dup”: These DUPs were generated randomly. These events were inserted 

near to the original fragment, so they were considered tandem duplications. 

- “random_dup_inv”: These DUPs were generated randomly and inserted in inverted 

mode near the original fragment. 

- “Variant_in_chr12_dup”: We duplicated the whole allele1 from chromosome 12. This 

duplicated allele include the same variants as allele1. In addition, we inserted 57 new 

variants in it. 

- “consensus_tran”: These were dispersed DUPs. These DUPs were inserted in a 

different location of the in-silico genome and obtained from the PanCancer project. 
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- “random_dup_inv_tandemnumber” / “random_dup_tandemnumber”: These events 

were mCNVs generated randomly. Those DUPs were repeated more than two times. 

The number after the word “tandem” indicated the number of tandem repeats 

composing a CNV (ex: random_dup_tandem3). 

There were different TRAs . The different types of TRAs were catalogued as reciprocal 

and non-reciprocal:  

- Using a python script, we generated the non-reciprocal TRA randomly. As we 

mentioned for the DEL variants, these TRAs contain an IDtranslocation. Here we 

show an example:  

 

 

The numerical string indicates the relationship between the DEL and TRA. This link 

allows the identification of all TRA and their respective DEL. Both inter- and intra-

chromosomal TRAs were generated. 

- There were four reciprocal TRA. The steps to construct these events were described 

in section 3.1.2. The flags related to these events were "translocation_chr15_chr9" / 

"translocation_chr9_chr15", "translocation_chr16_chr8”, and "translocation_chr8_ 

chr16, respectively. 

VIRs are events related to the insertion of an exogenous viral sequence into the human 

genome. We selected retroviruses described in the NCBI database for humans. There were two 

parameters to catalogue the VIRs, 1) the genomic region where the VIRs were inserted and 2) if 

the VIR sequence was completely inserted or truncated. At least 10% of viruses wherein intronic 

regions. 

- “virus_intron”: Related to VIRs inserted in the intronic regions, and the sequence was 

truncated.  

- “virus_intron_complete”: The VIRs were inserted in the intronic region, and the 

sequence was completed. 

- “virus_random”: The VIRs were inserted randomly in the genome. 

We included in the in-silico PSGs described in the literature and included in humans from the 

NCBI database. All PSGs had the same flag, “random_GEN.” The GEN is the gene-name related 

to the PSG (ex: random_MYH11).  

TRPs were of different types, such as ALUs, LINES, and SVAs. All TRPs were obtained from 

the Repbase database180. The flag associated with these events is 

“random_retrotransposon_nametransposon.” 

All variants were randomly distributed between two files, one for each chromosome 

haplotype (1 and 2 respectively) , excluding the telomeric and centromeric regions. This 

procedure generated heterozygous SVs only. To obtain homozygous ones , we copied some 

variants to the homologous haplotype. The word “Homozygotic” in the label indicates that a variant 

was homozygous (ex: random_inv_Homozygotic). The homozygous and tandem duplications 

were the unique variants repeated, and they have to be considered as one variant . 

Translocation flag= random_trans_547091 

Deletion flag= random_transDel_547091 
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FLAG VARIANT TYPE PROJECT TOTAL 

EVENTS 

Germline SNV 1000G 4,871,660 

Germline Insertion/deletion 1000G 454,963 

PointMutation SNV PanCancer 723 

indel Insertion/deletion PanCancer 3,084 

no_indel Deletion PanCancer 269 

consensus Deletion PanCancer 26 

random_transDel_IDtranslocation Deletion Random with python 674 

big_del Deletion PanCancer 9 

random_SVtype_flank (Flanked Deletions) Deletion Random with python  8 

random_ins_new Insertion Random with python 440 

random_SVtype_shard (Genomic shard) Insertion Random with python  9 

consensus_inv Inversion PanCancer 14 

random_inv Inversion Random with python 241 

random_dup Duplication Random with python 458 

random_dup_inv Duplication Random with python 17 

random_dup_inv_tandemnum, 

random_dup_tandemnum (mCNV) 

Duplication Random with python 62 

consensus_tran Duplication PanCancer  14 

random_trans_num Translocation Random with python 604 

translocation_chr8_chr16, 

translocation_chr16_chr8 

Translocation Random with python 2 

virus_intron, virus_intron_complete, 

virus_random  

Virus Random with python 89 

random_GEN Pseudogene Random with python 9 

random_retrotransposon_nametransposon Transposon Random with python 100 

random_SVtype_Homozygotic All SV Variants Random with python 1,150 

Variant_in_chr12_dup All Variants Random with python 56 

 

 

 

Table 2. Description of variant types inserted in the in-silico  generated sample.  All variants obtained 

from the 1000G or PanCaner projects have the flag consensus, Germline, PointMutation, indel, or no_indel. 

Python scripts generated the variants with the random flag. The transposons and viruses were obtained from 

the NCBI or Repbase databases and were inserted randomly in the genome. 
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3.1.2.  Procedure to insert variants into the refer ence genome and create 
the in-silico sample 

Once all in-silico variants were listed, a human genome reference sequence was selected 

to insert the variants into them. All FASTA files were downloaded of the hg19 reference genome 

assembly by chromosome (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/chromosomes/). A 

Perl script developed by our group was used to add the variants to the FASTA files (v5.18.2). 

For each chromosome, we generated two haplotypes with their respective variants. We 

started to insert the variants at the end of the chromosome, to avoid the alteration of positions 

from the reference sequences. Using this strategy, all variants were inserted in the FASTA files 

at base-pair resolution. Next, we generated the reciprocal translocations. These events were 

created using a python (version 2.7.13) script. In this way, we had an in-silico sample ready to 

use for simulating sequence. 

We used ART127 (version 2.5.8) to simulate the sequencing and create synthetic NGS 

sequencing reads. This approach allowed the evaluation and benchmark tools for variant 

discovery and read alignment. In our simulation, we used the Illumina platform to replicate the 

sequencing of GCAT samples (section 3.5.1). The sequencing description is detailed in Table 3. 

The command used to run ART-Illumina is the following:  

 

 

 We sequenced each haplotype 

separately; for this reason, the coverage of 

sequencing (15X) is half of the total coverage 

in the in-silico (30X). On the other hand, the 

GCAT samples were sequenced with a read 

length of 150 bp, in contrast to the in-silico, 

where the simulated length was 100 bp. This 

feature is important to detect SVs, because 

when the read length increases, variant callers 

can more easily find SVs67,181, so reducing the 

read length increases the complexity of 

detecting the SVs by variant callers. 

The ART-Illumina produced two FASTQ files per chromosome, one for each allele. 

Finally, with the FASTQ files, we constructed the BAM files using the following pipeline: 

1- Converting the FASTQ to SAM 

We used the BWA tool (version 0.7.15-r1140) with the new algorithm called 

“mem” to get these files. We aligned the in-silico to the Reference Genome 

(RG) “decoy” (hs37d5). 

In this step, for each allele, we merged the two paired-end reads generated 

by ART-Illumina. 

 

Features of sequencing  Parameters  

Sequencing system  HiSeq 2000 

Read length  100 bp 

Insert size  500 bp 

Inner mate distance  300 bp 

Simulation  Paired-end 

Coverage per allele  15 X 

art_illumina -ss HS20 -i input.fa -rs 4 -qs 1 -qs2 1 -d _idallele_ -p 

-l 100 -f 15 --mflen 500 --sdev 20 -o out 

Table 3. Sequencing description of in-silico. 
bp = Base Pair  
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Converting SAM to BAM and sorting the BAM files 

To convert the SAM files to BAM files, we used Samtools (version 1.5): 

 

 

2- Merging the BAM files and filtering it following the Best Practices of GATK 

We used Samtools (version 1.5) to combine all alleles and chromosomes in 

a single BAM file: 

 
We applied some data clean-up operations in order to correct some technical 

biases and make the data suitable for downstream analyses. Otherwise, we 

would have increased the risk of false-positives in the variant calling step. In 

Scheme 1, we illustrate the steps to carry out 

the Best Practices of GATK72. 

We marked the duplicated reads as 

recommended by the Best Practices of 

GATK 72, using PICARD (version 1.108). 

After marking the duplicated reads, we indexed 

the BAM file using Samtools (version 1.5). 

Finally, we recalibrated the Base Quality 

Scores (BQSR) of the BAM file using two 

modules (VariantRecalibrator and 

Apply VQSR ) of the GATK4 package (version 

4.0.11). We recalibrated the bases considering 

1) the base cycle, 2) the original quality score 

from the NGS platform, and 3) the dinucleotide context. 

3.2  Benchmarking of different variant callers 

To select/optimise the variant callers to analyse the genome variability of the GCAT samples, 

we tested different tools on the in-silico, classified into tools for SNPs/Indels and tools for SVs. 

We used different software and combined its results in order to improve the accuracy of variant 

bwa mem -M -t 4 hs37d5.fa  input_first_pairend.fq.g z 

input_second_pairend.fq.gz | gzip > allele_output.s am.gz 2> 

allele_output.sam.err  

samtools view -uS allele_input.sam.gz | samtools so rt -m 

4000000000 -o  allele_output.bam  2> allele_otuput. bam.err  

 

samtools merge –rh header_bamfile output_insilico.b am 

input_allele_chromosome.bam1 input_allele_chromosom e.bam2 …   

 

Scheme 1.  Pipeline followed 
to create the BAM files . 
Figure taken from of GATK 
consortium. 
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detection and reduce false discoveries. An overview of variant callers described below can be 

found in Table 13. 

All software explained below was installed and executed in the Marenostrum4 

supercomputer from the Barcelona Supercomputing Center (BSC). This machine is composed of 

48 racks housing 3,456 nodes, with a total of 165,888 processor cores and 390 Terabytes of main 

memory. Compute nodes are equipped with:  

- Each node includes 48 cores. 

- L1d 32K; L1i cache 32K; L2cache 1024K; l3 cache 3,3792. 

- 96 GB of main memory 1,880 GB/core, 12x 8GB 2667Mhz DIMM (216 special nodes 

with high memory, 10,368 cores with 7,928 GB/core). 

The processors were supported by vectorisation instructions such as SSE, AVX up to AVX-

512. 

3.2.1.  SNV and Indel calling 

3.2.1.1. Haplotype Caller (GATK4 version 4.0.2.0) 

We ran Haplotype caller89 (HC) to detect SNVs, indels (1 to 30 bp), mid-size deletions 

(31 to 150 bp), and INSs. The strategies used to identify the variants were Split-read (SR) and de 

novo Assembly (AS). We used java version 8u131 to run HC following three steps: 1) Run the 

Haplotype caller in gvcf mode; 2) Run the GenotypeGVCF  module, and 3) apply a variant 

filtering with VariantFiltration module. For all the steps, we used the default parameters 

and 16 CPUs. 

3.2.1.2. Deepvariant (version 0.6.1) 

We ran Deepvariant81 to detect SNVs, indels, and mid-size deletions. This program uses 

a Machine Learning (ML) algorithm based on a deep neural network, which accurately improves 

genome variability detection. This tool was executed following three steps by default parameters: 

1) Run make_examples.zip , 2) Run call_variants.zip,  and 3) Run the 

postprocess_variants.zip . The first step was parallelised in order to improve their 

performance. We used 48 cores for all the executions. 

3.2.1.3. Strelka2 (version 2.9.2) 

We used Strelka294 to discover SNVs, Indels, mid-size deletions, and INS. This caller 

uses the de novo assembly (AS) strategy. This tool requires two main steps: 1) Run the 

configureStrelkaGermlineWorkflow.py  using default parameters, and 2) Run the 

runWorkflow.py  with –m local flag. To execute Strelka2, we required 48 cores to reserve an 

entire node memory for each execution. 

3.2.1.4. Platypus (version 0.8.1) 

Platypus91 was used to detect SNVs, Indels, MNPs, and DELs up to 300 bp. This tool 

uses the strategy of local de novo assembly (AS). Before running Platypus, we imported Bcftools 

(version 1.6), python (version 2.7.13) and htslib (version 1.5). We ran Platypus using default 

parameters, including the following flags: --assemble=1 --assembleBrokenPairs=1      

--mergeClusteredVariants=1 –nCPU 16 . These flags allowed the detection of DELs with 
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lengths between 50bp to 2kb and INS between 50-500 bp. To run Platypus, we used 16 CPUs, 

for two main reasons: 1) to parallelise the execution to improve the performance and 2) for 

memory issues. 

Platypus was discarded in the calling of the GCAT samples for two reasons: 1) the flag 

–-assemble=1 , produced different computational errors. 2) The values of recall in the in-silico 

and GIAB sample (section 3.3) were the lowest of all callers, that detect SNPs and Indels (Table 

14 and Table 15). Also, the inclusion of this caller in the Logistic Regression Model (LRM) 

produced no improvements in the precision and recall values of the model (Table 14 and Table 

15).  

3.2.1.5. VarScan2 (version 2.4.3) 

VarScan293 was used to detect SNVs and indels. This tool uses the SR strategy plus the 

information of map quality, coverage, and base quality. We ran Varscan2 in germline mode, as 

follows: 1) we executed the mpileup module from Samtools (version 1.5) by default, including the 

following parameters --no-BAQ --min-MQ 1 . Then, 2) we ran VarScan2 using the modes 

mpileup2snp  and mpileup2indel  to detect SNVs and Indels, respectively. Besides, we used 

the following flags (--min-coverage 10 --min-var-freq 0.20 --p-value 0.0 5) to 

remove the low-quality variants detected by this variant caller. For memory requirements, we used 

16 CPUs. 

VarScan2 was discarded in the calling step on real samples for the following reasons: 1) 

As this caller can be run in a multiple sample mode to improve calling and genotyping, we did a 

pilot study to run four samples altogether, generating in the first step a mpileup file of 753G in 

eight hours. However, the time consuming to process this file in the second step was more than 

48 hours. For space and time reasons; thus, the analysis of the 808 GCAT samples with this 

caller was not computationally feasible. 2) Besides, we included this caller in the LRM without 

improving the accuracy results of SNVs and Indels (Table 14 and Table 15).  

3.2.2. Large Structural Variant (SV) calling 

Currently, there is no available tool able to find all types of SVs and lengths accurately. 

It is mainly due to the strategies used by the variant callers, which have strengths and 

weaknesses. Furthermore, the sequencing read length and coverage are also fundamental 

factors for the proper detection of SVs. For these reasons, we used different tools to improve the 

detection of SVs and to filter out false-positives. This section will explain which callers we 

run/evaluated in the in-silico sample to select the optimal SV detection in the GCAT samples. 

3.2.2.1. Delly2 (version 0.7.7) 

Delly2101 was used to detect DELs, DUPs, INVs, INSs, and TRAs. The recent version 

combines different strategies to improve variant detection, like split-read (SR), Discordant-Reads 

(DR), and Read-depth (RD). We ran this tool with default parameters. We modified the –t 

parameter to DEL, DUP, INV, INS, and TRA, depending on the variant type to analyse. 

We excluded the telomere and centromere regions with –x flag, because they are known to be 

prone to false-positives. For memory requirements, we needed 24 CPUs to execute Delly2 on 

Marenostrum4.  
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3.2.2.2. Manta (version 1.2) 

Manta104 was used to detect DELs, DUPs, INVs, INSs, and TRAs. This tool combines 

SR, DR, and de novo assembly (AS) strategies. To run Manta, we followed two steps: 1) we ran 

the configManta.py , which scans the genome to find SV associated regions. 2) We ran the 

runWorkflow.py,  obtained from the previous step to provide a score and the VCF output of 

genome variability in the sample. We executed the steps using default parameters and 24 CPUs 

for memory issues. 

3.2.2.3. Pindel (version 0.2.5b9) 

Pindel103 was used to detect DELs, DUPs, INVs, INSs, and TRAs. Initially, this caller used 

the SR strategy, but recent updates used DR too. Some Pindel parameters were modified to 

improve SV detection, allowing the detection of interchromosomal events and long insertions. 

Pindel was executed by chromosome using the following flags:  (-a 3 -C -k -l -I -M 8 -

T 6 -x 5 -v 10 -c 1 -R hs37d5 -d Feb2009 ). In the required config file, we included 

the insert size of 300 bp Table 3, needed for variant identification. We converted the BCF to VCF, 

using the pindel2vcf module using default parameters. To run Pindel on MareNostrum, we 

used 8 CPUs, 6 were used to parallelise the execution, and the other 2 CPUs were needed for 

memory issues. 

The output of Long Insertions does not provide the genotype, that is crucial for developing 

a reference panel of genetic variation. For this reason, we generated a custom script to obtain the 

genotypes from the variants reported by Pindel, using the read from the BAM. To obtain accurate 

genotypes from a variant calls, we needed the total coverage of the position where Pindel 

detected an INS together with the altered reads. All reads were selected in a window of 10 bp 

from the breakpoint. We filtered all reads with mapping quality ≤ 20. The final genotype was 

determined with the following formula: 

 

If the proportion of altered reads was ≤ 20%, the genotype was 0/0, if the fraction was 

between 0.20 and 0.80, assigned a 0/1 genotype, and if the fraction was ≥ 0.80, we assigned 1/1 

genotype. 

3.2.2.4. Lumpy (version 0.2.13)  

Lumpy 102 was used to detect DELs, DUPs, INVs, and BNDs (break-end orientation). This 

variant caller uses SR, DR, and a generic module (like RD). Before running Lumpy, we pre-

processed the in-silico BAM file, following the recommendations of Lumpy developers. We 

extracted from the BAM file the split reads with extractSplitReads_BwaMem  module provided 

by Lumpy and discordant reads with Samtools (version 1.5). Next, the BAMs were sorted using 

Samtools. We used Lumpyexpress with default parameters after the pre-processing stage, 

including the –P label. Finally, we used SVTyper119 to genotype. We ran it according to the 

developer recommendations. After the genotyping step, we filtered out those variants whose 

quality was ≤ 20. Also, we discarded variants with SVTYPE = BND and if the two chromosomes 

reported by the variant caller were the same. We used 12 CPUs to extract discordant and split 

reads and 24 CPUs and one CPU for Lumpyexpress and SVTyper tools, respectively. 
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3.2.2.5. Whamg (version v1.7.0-311-g4e8c) 

Wham78 is a variant caller used to detect DELs, DUPs, INSs, and INVs. The detection 

strategy is SR and DR, plus and additional Machine Learning algorithm (ML) to classify the SVs 

by type. We used the Whamg version as recommended by the developers, and with default 

parameters. Finally, we used SVTyper to obtain genotypes, as Whamg cannot produce them. To 

run Whamg, we parallelised the execution by 48.  

3.2.2.6. SvABA (version 7.0.2) 

SvABA79 classifies all SV types by breakpoint orientation using the de novo Assembly 

(AS), SR, and DR strategy. We ran SvABA in germline mode, as recommended by the 

developers. We applied an internal validation of the SV type reported by SvABA in the in-silico, 

and it was discordant. Thus, we did not use the SV type information to catalogue the SVs. To 

improve their performance, we parallelised the execution by 16 CPUs. 

3.2.2.7. CNVnator (version v0.3.3) 

CNVnator106 was used to discover Copy Number Variations (CNV), such as DEL and 

DUP. This caller applies the RD strategy, and detects CNVs larger than 200 bp. We ran the 

CNVnator following all the steps recommended by the developers, using a bin size of 100, which 

corresponds to the read length of the sequencing. Finally, we converted the .root file to VCF using 

a Perl script, “cnvnator2VCF.pl”, from the CNVnator toolkit. We used 12 CPUs to execute this tool 

for memory reasons. 

3.2.2.8. Popins (version damp_v1-151-g4010f61) 

Popins80 was used to discover de novo insertions (INSs). This tool uses the AS strategy, 

improving the detection of exogenous sequences, and is able to detect INSs ≥ 100 bp. To run this 

variant caller, we followed different steps: 1) assembly , 2) merge  (skipped due to we used just 

in-silico sample), 3) contigmap  (generate the supercontigs file), 4) place-refalign , 5) 

place-splitalign , 6) place-finish,  and 7) genotyping. All steps were done using the 

default parameters. 

The NONANCHOR variants were discarded as recommended by the Popins developers. 

In all steps, we used 48 CPUs to reserve all the memory of a node for each execution and to 

parallelise steps 1 and 3 by 48. 

3.2.2.9. MELT (version 2.1.4) 

MELT107 was used to detect Mobile Element Insertions (MEIs) such as Transposons 

(TRPs).  The strategy applied to identify the TRPs were SR and DR. This variant caller was 

executed in a SINGLE mode. The following flags were used to run MELT (–bamfile –c –e -

t –h –r –k –w ). We adapted the MELT execution to each type of TRP, divided by ALUs, 

LINE1s, and SVAs. MELT requires high computational resources, so we used 24 particular CPUs 

with high memory. 

3.2.2.10. ViFi (no version reported) 

ViFi108 was designed to detect viruses (VIRs). This tool uses SR and DR to detect the 

viruses inserted in the human genome. Before running ViFi, we applied two pre-processing steps. 
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1) We build a new database that incorporated all viral sequences from NCBI “ftp://ftp.ncbi.nih.gov/ 

refseq/release/viral/”. First, we downloaded (at date 07/01/19) and merged all the files 

(*.genomic.fna). Second, we adapted the “merge.fna” file to the .fas file format, using a script 

developed in-house. Finally, we included the reference genome (hg19) provided by ViFi to obtain 

the final database. We indexed this file using the BWA tool. 2) We converted the in-silico BAM 

file to a FASTQ file using Biobambam2 (version 2-20.65) to spread the FASTQ files by pair-ends 

1 and 2, respectively. Before executing ViFi, we imported python (version 2.7.13), BWA (version 

0.7.15), and Samtools (version 1.5). Then, we ran the ViFi in a basic mode, as recommended by 

developers. To run ViFi, we required 24 particular CPUs of high memory and more than ten days 

to process the in-silico. This tool requires a high amount of computational resources; for this 

reason, we discarded it for variant detection in the GCAT samples. 

3.2.2.11. VERSE (VirusFinder2) (version 2.0) 

VERSE109 was used to detect VIRs in the human genome. The strategy to identify the 

viral integrations is a combination of SR, AS and DR. We imported the following programs to run 

VERSE properly: CREST (version 1.0), SVDetect (version r0.8_threads), BLAST (version 2.6.0), 

BOWTIE2 (version 2.3.2) and BWA (version 0.7.15). Then, we generated a viral database to run 

VERSE; for this reason, we downloaded the same files as ViFi (section 3.2.2.10), and we 

combined and produced the FASTA file using a python script developed in-house. Finally, we 

generated all remaining data of our database using the following command of BLAST: 

 

 

To run VERSE, we modified the template-config.txt file. We included the paths of FASTQ 

files of in-silico (described in section 3.2.2.10), as well as all other remaining routes needed to 

run the variant caller properly. We used 24 CPUs to run VERSE in MareNostrum4. 

Due to problems in the execution of VERSE in real samples, we discarded it. 

3.2.2.12. Genome Strip (Version 2.0) 

Genome Strip98 was designed to detect DELs, DUPs, and multiple Copy Number Variants 

(mCNVs) in cohorts. This tool uses various strategies such as SR, DR, and RD. This variant caller 

requires different tools and a specific computational environment: a) Java version 1.7, b) R tool 

(version 3 or newer), c) Samtools and Htslib, d), and the LSF environment. We followed three 

steps to run the Genome Strip: 1) SVPreprocess, 2) SVDiscovery, and 3) SVGenotyper. All steps 

were run using default parameters, as developers recommended. We used 48 CPUs to run each 

step of the Genome Strip against the in-silico. 

We could not run the package designed to detect DUPs and mCNVs in the in-silico 

sample due to incompatibilities between the Supercomputer Nord3 and this package. In addition, 

when we ran the Genome Strip with real samples, we were not able to finish the executions for 

the detection of DELs, DUPs, and mCNVs. For this reason, we discarded it from the project. 

 

 

 

makeblastdb -in ncbi_virus.fa -dbtype nucl -out ncb i_virus 
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3.2.2.13. Pamir (version 1.2.2) 

Pamir182 was designed to detect INSs. This tool combines the SP, DR, AS, and One End 

Anchored (OEA) strategies. We ran Pamir in default mode, including the flag –p , to report the 

name of the sample, that we process. Finally, the output was genotyped using a python script 

provided by Pamir developers: 

 

It took us 48 CPUs for more than ten days to analyse the in-silico sample, also a test with 

a real sample, generating a size file of 881Gb after 22 days. Given these high computational 

requirements, we discarded this tool from future analyses. 

3.2.2.14. AsmVar (version 2.0) 

AsmVar183 is able to detect DELs, DUPs, INSs, INVs, and TRAs. This tool uses the AS 

strategy to detect all SVs. Before variant detection, we realigned the in-silico using the LAST 

aligner (de novo aligner), as developers recommended. This software required the following 

steps: 1) Variant detection, 2) Altalignemt, 3) Genotyping, 4) RecalibrationVg, and 5) a Variant 

Quality Score Recalibration (VQSR). AsmVar was further discarded from future steps due to its 

high memory requirements. 

3.2.3.  Recall, Precision, and F-score 

Recall, precision, and F-score are the metrics used to determine the accuracy of 

detecting variants for each caller in our in-silico sample. These metrics were calculated using 

True-Positive (TP), False-Negative (FN), and False-Positive (FP) variant calls. These parameters 

were evaluated for each SV type, SNVs, and indels independently. 

 

For indels and SVs, we used these metrics to evaluate the breakpoint resolution reported 

by the callers. Besides, for indels and SVs, we used recall and precision to analyse the accuracy 

to report the breakpoint correctly.  

We applied a variant filtering to the whole VCFs obtained by each software. We selected 

the variants which PASS all variant caller filters . We also discarded all variants detected in 1) 

Decoy sequences, 2) Y chromosome, 3) MT chromosome, and 2) variants with genotypes 

reported as “0/0” or “./.”. 

3.2.3.1. Evaluation of breakpoint-error for Indels 

Indel detection usually occurs at base-pair resolution. However, the larger the length of 

the variant, the worst is the resolution of breakpoint reported by variant callers. For this reason, 

we studied the breakpoint-error using as a gold standard the in-silico sample. First, we normalised 

the outputs obtained by each caller (section 3.2.1) following the recommendations of the Global 

Alliance for Genomics and Health (GA4GH) (detailed documentation in section 3.6.1.4). We 

compared the outputs with the in-silico at a base-pair resolution to obtain TP and FP rates. 

python genotyping.py input.vcf  genome.fa.masked  f astq_pair_1.fq.gz 

fastq_pair_2.fq.gz name_file 0 1 path_all_files_gen erated_by_pamir 1000 1 
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Second, we calculated recall and precision based on the indel size. When indels larger than 30 

bp, we grouped them by batches of 10 bp. Finally, using R (version 3.3.1), we plotted the 

distribution of recall and precision based on the Indel size (Figure 15).  

Variants between 1 and 30 bp were classified as small Indels, with no breakpoint-error. 

When the size was between 31-150 bp, we catalogued variants as mid-size deletions, for which 

we reported an associated a breakpoint-error of ±10bp. Insertions were not catalogued due to the 

size was not reported by variant callers. 

3.2.3.2. The categorisation of in-silico variants 

Before performing the analysis of recall, precision, and F-score of all variant callers, we 

used the in-silico sample list to compare the outputs of each algorithm. We divided all the genome 

variability of the in-silico by variant type, and we used this classification to calculate the metrics. 

To avoid duplicates from each variant type, we filtered out from the in-silico list the 

variants with the “Homozygotic” flag and taken the duplications with the “tandem” flag once. 

Besides, some callers could fail to report the type of SV, but not their breakpoint, so we grouped 

these inconsistencies into the SV type group reported by variant callers. In Scheme 2, we 

illustrated how we arrange and filter different variants by type: 

Of note in the de novo insertion (INS) group, small variants from other variant types were 

further included; these additional variants were 32 Duplications, 2 Inversions, 1 Pseudogene, 47 

Translocations and 37 small insertions (indels) (all numbers are obtained after filtering 

homozygous and duplicate variants), which were misclassified by variant callers, and were 

therefore added to the INS group, obtaining a total of 727 variants for INS benchmarking. 

 

 

Scheme 2.   Classification and filtering of the in-silico variants by type of variant .  Each dashed line
colour  (          ;           ;          ) indicates the grouping and filtering steps, and different variant type respectively. 
The white boxes  of grouping and filtering, indicate the criteria used to obtain the unique variants of each 
variant type. The blue boxes  shows the number of variants after grouping and filtering step. In the grouping 
step, we also included those variants where the callers detect the breakpoint, but fail the variant type. 
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3.2.3.3. Determination of SV breakpoint-error  

Reporting the position of a structural variant with high definition in the genome is one of 

the challenges in the calling step. As the length of variants increased, discrepancies between 

callers reporting of the same variant in the same position also increased. For this reason, we 

studied the error in breakpoint definition associated with each caller, in order to know which 

algorithms were able to report the concordant variants.  

We evaluated which breakpoint-error was the most accurate to use, based on the F-score 

metric and type of SV. If we used large ranges, we could combine different SVs wrongly. The 

breakpoint-error allowed us to establish a range of positions where the variant can be considered 

the same among variant callers; even more, it gave information about how accurate a caller is 

reporting a breakpoint position correctly. The thresholds were calculated as follows: 

�����_���	
  

�����_���	
  

We used as a reference the positions of variants in the in-silico. We evaluated different 

breakpoint-errors for each algorithm and SV type (10, 20, 50, 100, 200, and 300 bp) to know 

which produced the best F-scores. The breakpoint-error has been selected according to 

sequencing particularities, coinciding the largest with the insert-size of the in-silico (300 bp).  

The outputs obtained from “section 3.2.2” (except MELT, ViFi, VERSE, Genome Strip, 

and AsmVar) were used to generate the range intervals for each variant. We considered a variant 

as a TP if the position in the in-silico overlapped with the breakpoint-error of the caller. Otherwise, 

it was classified as an FP. We repeated the same analysis for each SV type, and all breakpoint-

error considered. Table 16 shows which window breakpoint-error was selected for each variant 

caller and SV type. 

3.2.3.4. Evaluation of variant caller metrics 

We estimated and evaluated recall, precision, F-score for each variant caller, and variant 

type (except for MELT, ViFi, VERSE, Genome Strip, Pamir, and AsmVar (see section 3.2.2)). 

This section describes how we calculated the metrics for SNVs, small indels, and SVs. 

3.2.3.4.1 SNV and Indel metrics 

For each variant caller, we used as a gold standard the list of in-silico variants (Scheme 

2). We classified the variants as TP according to the following criteria: (i) If the chromosome 

reported by algorithms were the same as the in-silico; (ii) If the positions overlapped at a base-

pair resolution between the algorithms and gold standard; (iii) The Reference and the alternative 

alleles were the same. All three criteria had to be met to obtain a TP classification. In all the other 

cases variants were classified as FP. All the variants not detected by variant callers but present 

in the in-silico were classified as FN. Finally, we calculated the metrics, as mentioned in section 

3.2.3. 

We generated four datasets (including TP and FP to calculate recall, precision and F-

score), following the same criteria exposed before. Two datasets included SNV variants and the 

other two the indel variants. The difference between both SNV and indel datasets were the 

number of variant callers included, were two used the outputs from Haplotype caller, Deepvariant, 
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and Strelka2, and the other two included all callers mentioned in section 3.2.1. Besides, all 

datasets contained the in-silico information. These datasets will be used to validate the Logistic 

Regression Model (section 3.4.1.1). 

3.2.3.4.2 SV metrics 

To evaluate the metrics of each algorithm and SV type, we used the in-silico sample as 

the gold standard. The criteria to classify the variants as TP were: 1) The chromosome reported 

by algorithms coincided with the in-silico; 2) The SV type was the same as the in-silico; 3) The in-

silico position overlapped in the breakpoint-error of variant callers evaluated in section 3.2.3.3; 4) 

The length of the variant reported by algorithm was 80% Reciprocal Overlap (RO) with the variant 

length of the in-silico. If one or more of those criteria was not met, the variant was classified as 

FP. The variants in the in-silico sample that were not detected by variant callers were classified 

as FN. Then, recall, precision, and F-score were calculated as previously described in section 

3.2.3. 

Following the criteria mentioned previously, we generated a dataset for each type of SV 

(just TP and FP to calculate recall, precision and F-score), combining all outputs from callers 

selected. Besides, the variant list of the in-silico has been included in each dataset. These 

datasets were used to create/validate the SVs Logistic Regression Model (LRM) (section 3.4.2.1). 

3.2.3.4.3 Recall and Precision to detect SVs by size 

Size is a determinant factor for detecting SVs. The larger the SV size, the lower the 

mapping quality of the reads in the region; this leads to misinterpretations and increases false-

positive detections. Therefore, for each SV type, we calculated the F-score by intervals of length 

((30-50], (50-75], (75-100], (100-125], (125-150], (150-300], (300-500], (500-1000], (1000-2000], 

(2000-3000], >3000) and SV type. This analysis allowed to include the variant length as a 

covariate in the Logistic regression model (section 3.4) to filter out the potential false-positive 

detections (Figure 16). 

3.2.3.5. Evaluation of genotype errors 

The callers reported a genotype for each variant. This parameter is important to generate 

a reference panel because a good genotype will improve imputation. For this reason, we 

evaluated the genotype error of variant callers for each SV type, using the in-silico sample as a 

gold standard.  

For the in-silico files, we reported as “1/1” all the variants with the “Homozygous” flag  

(Table 2) and all the other variants as and “0/1”. Finally, we calculated the genotype error of each 

variant caller for heterozygous, homozygous, and the combination between them, using the 

following formula: 

 

All variants with a called genotype matching the in-silico sample were defined as “Correct 

Genotype”. “All Genotypes” refers to all the genotypes of variants introduced and reported by the 

variant caller. The same formula was applied for heterozygous (0/1) and homozygous alternative 

(1/1) genotypes individually. 
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3.2.3.6. Selection of a strategy to construct all the BAM files of GCAT 

samples 

To improve variant detection, we evaluated and selected the best strategy to obtain the 

BAM files for the GCAT samples. Table 4 illustrates the three analysed strategies analysed:  

 

 

 

 

The FASTQ files of the in-silico sample were used to construct a BAM file for each 

strategy. First, these files were created following the steps explained in section 3.1.2, but 

considering Table 4 differences. Second, we ran all the variant callers explained above (except 

for VarScan2, Platypus, Genome Strip, AsmVar, Melt, VIFI, Verse, Pamir, and Popins) using each 

generated BAM file. Finally, we calculated recall, precision, and F-score (section 3.2.3), and we 

applied the Wilcoxon test to analyse if there were significant differences between these strategies 

(Figure 19, Figure 20).  

3.3 Genome in a Bottle sample 

The benchmarking analyses explained in the previous section were performed on an artificial 

sample built in-silico. To further explore the behaviour of algorithms in a real sample, we used the 

NA12878123 from the Genome in a Bottle Consortium (GIAB) to validate the calling of SNVs and 

indels. We could not do a similar evaluation for the calling of SVs, because there is currently no 

real sample to validate whole SV types. 

Firstly, we downloaded the down-sampling 30X BAM file of NA12878 (RMNISTHS_30xdown        

sample.bam) from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG0 

01_HiSeq_300x/. Secondly, we converted the BAM file to a FASTQ file using Biobambam2 

version 2-2.0-65, and we applied the strategy2 (section 3.2.3.6) to reconstruct it. Finally, we ran 

all callers from section 3.2.1 on the NA12878 sample.  

To evaluate recall, precision, and F-score, we used as a gold standard the 

“HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1X_v.3.3.2_hi 

ghconf_PGandRTGphasetransfer.vcf.gz” file of the NA12878 sample. We downloaded it from ftp: 

//ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh37, which contained 

all the variants validated by the GIAB consortium. We normalised this file using the pre.py tool 

from the Global Alliance for Genomics and Health (GA4GH), obtaining the same representation 

in the vcf for SNVs as well as indels. The accuracy metrics were evaluated following the steps of 

3.2.3 section. 

Finally, we generated four databases (divided by SNVs and indels), two with Haplotype 

Caller, Deepvariant and Strelka2, and others two combining all algorithms from section 3.2.1. To 

create them, we merged all the outputs from callers and gold standard file following the criteria of 

 Human genome  GATK Best Practices  

Strategy 1  Hs37d5 Not applied 

Strategy 2  Hs37d5 Applied 

Strategy 3  Hg19 Not applied 

Table 4. Strategies that were explored to obtain th e BAM files of the GCAT 
project.  Each colour is related to Figure 19 and Figure 20 strategies. 



 

68 
 

section 3.2.3.4.1. Those datasets were used to create a Logistic Regression Model for SNVs and 

indels (section 3.4.1.1). 

3.4 Increasing accuracy detection using a machine l earning algorithm 

One of the variant calling challenges is increasing precision and recall, mainly for SVs. For 

this reason, we developed a Logistic Regression Model (LRM) for each variant type to improve 

the performance of the calling through different patterns and discriminative variables. The LRM 

was suitable because of the small number of features and the large number of variants 

considered. Furthermore, the LRM allowed to estimate parameters indicating the accuracy of 

each caller and to make predictions based on the sum of the estimates in the logistic regression 

equation. This section explains the strategy followed to create the LRM for each variant type. 

3.4.1.  Logistic Regression Model for SNVs and smal l Indels 

3.4.1.1. Training and Testing of the model 

The LRM for SNVs and INDELs was trained using the GIAB sample (section 3.3) and 

tested using the in-silico sample (3.2.3.4.1). The input of the LRM was a merged dataset of the 

VCF outputs from the callers following the same criteria to calculate the TP, FP, and FN section 

3.2.3.4.1. We developed a specific LRM for SNVs and Indels independently using the R software 

(version 3.3.1) and the ISLR package. The function to fit the LRM was: 

 

The outcome of the LRM was a binary variable (PASS), indicating if the variant was predicted 

to be present in the GIAB sample. The independent predictor variables were the genotypes 

reported by the variant callers indicating their detection pattern. 

3.4.1.2. Genotype reported by LRM for SNVs and small Indels 

The consensus genotype between Haplotype caller, Deepvariant, and Strelka2 was 

considered as the genotype of the LRM.  

3.4.2.  Logistic Regression Model for SVs 

3.4.2.1. Training and Testing of the LRM for SVs 

For SVs, the LRM was trained using 10-fold cross-validations for a random subset of 

variants (70%) from the in-silico and was tested using the remaining subset of variants (30%) of 

the in-silico. The input of the LRM is a merged dataset of the VCF outputs from the callers 

following the same criteria to calculate the TP, FP, and FN (section 3.2.3.4.2). We developed a 

specific LRM for each SV type independently using the caret (version 6.0-85) and e1071 (version 

1.7-3) R packages. The function to train the LRM was:  

The outcome of the LRM was a binary variable (PASS), indicating if the variant was predicted to 

be present in the in-silico. Next, for each SV type, we generated a specific LRM. We studied which 
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independent variables were discriminative versus non-discriminative or redundant. Table 5 shows 

the variables included for each SV type to fit the best LRM.

3.4.2.2. Strategy to report the position and length of variants by LRM  

The software methodology and variant type are factors associated with breakpoint and length 

accuracy of called variants. We used the in-silico sample as a gold standard to evaluate the 

accuracy of the algorithms to report breakpoints and lengths by SV type. Then we merged the 

different variant caller outputs in a multi-sample VCF consensus file. 

 The breakpoint definition of the consensus regions was determined by 1) the precision of 

each caller to report the position within a breakpoint-error of ±10 base pairs, and 2) the number 

of variants detected by each algorithm (Supplementary Figure 1). Table 6 describes the priority 

to report the breakpoint by SV type in the consensus multi-sample VCF.On the other hand, the 

variant length was consistent between tools; thus, we considered the median length reported by 

the callers, excluding CNVnator, which got the worst predictions (Supplementary Figure 2). 

Mid-size Deletion  DEL INS 

Deepvariant, Haplotype Caller, 
Strelka2, Manta, Whamg, 

Delly2, Lumpy, Pindel, SvABA, 
Num of callers detected,  
Reciprocal overlap ≥ 0.8 

Manta, Whamg, Delly2, 
Lumpy, Pindel, SvABA, 
CNVnator, Variant size,  

Strategy 

 

Manta, Whamg, Delly2, Pindel, 

SvABA, Popins, Haplotype 

caller, Strelka2, Num of callers 

detected 

INV DUP TRA 

Manta, Whamg, Delly2, Pindel, 
SvABA, Lumpy, Variant size 

 

Manta, Whamg, Delly2, 

Lumpy, Pindel, SvABA, 

CNVnator, Variant size, 

Reciprocal overlap ≥ 0.8 

Manta, Delly2, Pindel, SvABA, 
Lumpy 

 

Structural Variant Type Order 

Mid-Deletion/Deletion Pindel > Whamg > Delly2 > Manta > Median of remaining callers 

Insertion Pindel > Delly2 > Strelka2 > SvABA > Manta > Median of 

remaining callers 

Duplication SvABA > Pindel > Delly2 > Whamg > Median of remaining 

callers 

Inversion Lumpy > Pindel > Delly2 > Median of remaining callers 

Translocation Manta > Median of remaining callers 

Table 5. Independent predictor variables used to tr ain the Logistic Regression Model for each SV 
type.  Variant caller variables are the genotypes indicating the presence or the absence of the variant. The 
variant size  is divided into different ranges, example (500-1000, 1000-2000 bp, 2000-3000, > 3000), each 
range is a predicted variable. The number of  detection callers, indicates the number of different 
algorithms detecting each variant, (for example 2, 3, 4-5), each number is a predicted variable. The 
reciprocal overlap ≥ 0.8, is a numerical variable indicating the size of the overlapping between two different 
algorithms. The strategy , is the number of different strategies used by callers to detect a variant. 

Table 6. Order to report the breakpoint.   The most precise algorithm was used to report the breakpoint by 
the merge algorithm. When the breakpoint-error was large, we reported the median.  
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3.4.2.3. Genotype reported by LRM for SVs 

The LRM predicted the variant as a true-positive or false-positive. However, it still needed 

to define the genotype. The genotype for each SV type was defined following specific strategies. 

Below we show the strategy applied. 

1. Mid-size Deletion and DEL strategy 

As the genotype error between callers was relatively low (Supplementary Figure 4A), we 

reported the most frequent genotype between them. When the consensus genotype was not 

possible to report, we included a missing “./.”. 

2. INS strategy 

We reported the most frequent genotype between algorithms. For variant sizes between 

30 and 50 bp, we did not use Manta and Whamg detections, because they do not report any 

genotype. When the consensus genotype was not possible to report, we included a missing “./.”. 

3. DUP strategy 

The genotyping error of callers is high for this type of SVs (Supplementary Figure 4E); 

for this reason, we developed a genotyping method using the BAM information of the in-silico 

sample. To obtain the total coverage  of each DUP, we reported the median from all the reads 

that covered twice the length of the variant, in both upstream and downstream directions of the 

breakpoint reported by the LRM. The altered reads  were obtained from the breakpoint reported 

by LRM as follows. We counted the split reads in a window of ±10 bp, discarding the Hard-clipped 

reads and those containing INSs or DELs in the CIGAR. Finally, we calculated the proportion of 

altered reads over the total coverage. 

 

If the proportion of altered reads was ≤ 20 %, we genotyped as homozygous reference 

(0/0) (no variant present); if the proportion was between 0.20 and 0.80, we genotyped as 

heterozygous (0/1), and if the proportion was ≥ 0.80, we genotyped as homozygous alternative 

(1/1). 

4. INV strategy 

The genotype of INV reported by LRM was selected based on the order of best callers to 

genotype, excluding SvABA, due to the large error rates (Supplementary Figure 4D). The order 

is shown below: 

1. Lumpy 2. Pindel 3. Whamg 4. Delly2 5. Manta 

5. TRA strategy 

The genotype error displayed by the callers in TRA detection was high (Supplementary 

Figure 4F). Then, we re-genotyped the variants using the BAM information of the in-silico. The 

total coverage  was obtained by counting all the reads covering the breakpoint reported by the  

LRM in a window of 4bp. The altered reads  were obtained by discarding (i) Hard-clipped reads, 

(ii) counting all reads with map quality ≥ 20, and (iii) reads with a label different from 151M in the 

CIGAR. Finally, to report the genotype, we applied the same formula described for DUP. 
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3.4.2.4. Filtering out the SVs following the GoNL strategy 

The GoNL project built a panel of genetic variability including SVs161. As a filtering 

strategy, GoNL retained the SVs that were detected by at least two variant callers. We extended 

this strategy to three and four different algorithms and calculated recall and precision, considering 

all these criteria (Figure 17, Supplementary Figure 3).  

3.5 The GCAT project 

The previous sections describe how we succeed in understanding, 1) the best way to 

construct the BAM files, 2) selecting and improving the performance of callers use it to detect 

SNVs, Indels, and SVs, and 3) building for each variant type a Logistic Regression Model to 

increase recall and precision of calling. We then applied this knowledge to analyse samples from 

the GCAT project. This section will explain the characteristics of the GCAT samples, the BAM 

files construction, the quality control, and coverage analysis.  

3.5.1. Genomic data features 

The GCAT project is designed to associate genetic and environmental factors to complex 

diseases, such as diabetes or respiratory diseases. In this context, 19,267 GCAT volunteers were 

recruited from the general population of the Northeast region of Spain (Catalonia) in different 

areas such as coastal, mountain, rural, or urban areas. The unrelated participants  had an age 

between 40-65 years 173 with 16% non-Caucasian , mostly of American-Hispanic origin. The 

complete protocol for the settings of the GCAT cohort is detailed in Obon-Santacana et al.173. 

Table 7 describes how the sampling has been done: 

For this thesis, we used SNP array (of 5,459 volunteers) and Whole Genome Sequencing 

(WGS) data (808 volunteers) from the genomic analyses. Below we detailed the features of each 

dataset. 

 

 

 

 

Study purpose Fraction 

sample 

Vacutainer 

tube 

Volume 

mL 

Transport 

TºC 

Time to 

PMPPC 

Aliquots 

n (TºC) 

Control 

assay 

Genomic/ 

epigenomic 

Buffy coat EDTA 10 4 max 

24 hours 

2 (−80) SNP array, 

qPCR, PCR, 

STR 

Highly 
concentra

ted 

buffy coat 

Blood bag 480 18 max 

48 hours 

2 (−80) SNP array, 

qPCR, PCR, 

STR 

Table 7. Description of sampling for Genomic analys is in the GCAT project.  This table is adapted from 
Obón-Santacana et al.173. 
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3.5.2.  BAM file generation 

Before analysing the samples obtained from the WGS platform, we pre-processed the 

FASTQ files of 808 volunteers to obtain the BAM files, which we used for downstream analyses. 

The BAM files were created following the strategy2 as described in section 3.2.3.6, but with some 

differences. In this section, we will explain these particularities. 

3.5.2.1. Selection of the Reference Genome, based on the sample gender 

The majority of sequencing projects align all reads from FASTQ files against a Reference 

Genome (RG) to obtain the BAM files. The RG includes chromosome Y (chrY), so in our opinion, 

the variant detection in chromosome X for female samples was not well-curated because they do 

not contain in their karyotype the chrY. For this reason, we wanted to know the effect of chrY in 

female and male samples in the read alignment and variant detection.  

The GCAT samples included 409 Female and 399 Male samples. We selected two male 

(JID259, JID439) and two female samples (JID250, JID297) to perform this study. For these 

samples, we constructed the BAM files following the strategy2 described in section 3.2.3.6. We 

repeated the process twice for each sample, using the RG with and without chromosome Y. We 

removed the chromosome Y from the hs37d5 decoy RG, using an in-house script. Finally, we 

counted all reads mapped on chromosome X, and we compared the results of these two RG. 

We ran Haplotype caller to detect SNVs and Indels, as mentioned in section 3.2.1.1, for 

the different BAM files created. Finally, we evaluated the differences between them, using variants 

with genotype 0/1 and 1/1.  

3.5.2.2. Data structure of the WGS samples of the GCAT project 

The FASTQ files of the 808 GCAT samples were generated in batches. Four batches 

included 192 samples, one batch included 24 samples, and the remaining batch included 16 

samples. Each sample contained multiple LANEs grouped by the Multiplex index. Furthermore, 

the paired-end was generated in separate files: 

 

 Table 8. Summary of Genomic data for this thesis. This table is adapted from Obón-Santacana et al. paper173. 

Study purpose 
Number of 

participants 
Fraction 

sample 

Platform Machine Analysed 

Genotype 5,459 Buffy coat 
Infinium Multi-Ethnic 
Global (MEGAEX2) 

array 

HiScan confocal 

scanner (Illumina) 
2×10⁶ SNPs, 

InDels 

Whole-genome 

Sequencing (WGS) 
808 Buffy coat 

Illumina TruSeq PCR 
free/Illumina paired-

end SBS 

HiSeq 4000 

sequencer (Illumina) 
30X coverage 

Read length 150 

bp Insert size 600 

    FASTQ paried-end 1             FASTQ paired-end 2  

H52MCDSXX_1_60idt_1.fastq.gz  H52MCDSXX_1_60idt_2.fastq.gz 

H52MCDSXX_2_60idt_1.fastq.gz  H52MCDSXX_2_60idt_2.fastq.gz 
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3.5.2.3. The construction of BAM files in the GCAT project 

The BAM files were constructed using the hs37d5 reference genome (without chrY in 

female samples) and following the GATK Best Practices. Firstly, we aligned each pair-end FASTQ 

file. Then, we merged the BAM file for each sample according to the LANE. A scheme of the 

procedure is illustrated in Figure 11:  

 

 

 

 

 

 

 

 

 

 

 

 

3.5.3.  Quality Control (QC) of the BAM files and s ample ancestry analyses 

Checking the quality of the 808 BAM files allowed us to determine if the samples were 

well constructed or contained inter-sample contamination produced from a bad manipulation of 

DNA material. Obtaining a good quality of alignment was necessary to improve the variant calling, 

decreasing the false-positive detections . In addition, as we mentioned in section 3.5.1, some 

GCAT samples had an American-Hispanic origin, so to create an Iberian reference panel, we 

filtered out those samples genetically non-Iberian related.  Finally, we evaluated the level of 

relatedness between samples. 

3.5.3.1. Alignment quality 

To evaluate the alignment quality, we ran Picard (version 2.18.11), Biobambam (version 

2-2.0.65) and Alfred71 (version 0.1.16). The statistics evaluated are described in Table 9: 

Figure 11. Steps followed to construct the BAM files of the 
GCAT project. The reference genome used to create the SAM 
files depended on the sample gender. We cleaned the BAM files 
following the Best Practices of GATK. Detailed documentation in 
section 3.1.2. 

* BQSR: Base Quality Score Recalibration 
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In total, 75.4% of samples fulfilled the QC metrics described in Table 9. 24.6% of samples 

which no pass the thresholds were further inspected. Besides, the variant callers were executed 

correctly across samples, determining that they passed the QC. However, the JID748 sample  

was discarded from downstream analyses due to irregularities observed when executing the 

variant callers.  Figure 12 shows some descriptive measures of the samples based on QC metrics: 

QC metrics and Inclusion criteria  

Fraction purified reads > 0.90 

Fraction reads aligned in pairs > 0.95 

0.495 < Strand Balance < 0.505 

250 bp < Mean insert size < 350 bp 

Standard deviation of insert size < 50 bp 

*Fraction of duplicated reads < 0.1 

 27X < Mean Coverage < 37X 

+ Fraction of paired reads mapped in the same chromosome > 0.88 

Table 9. Alignment Quality control metrics . 

 * Biobambam2 tool; + Alfred tool 

C) 
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D) 

A) B) 

Figure 12. Sample distribution based on QC metrics.  A) Mean coverage. 29 samples exceeded the 
threshold. B) Insert size distribution. 112 samples exceeded the threshold. C) Fraction of duplicated reads. 
58 samples exceeded the threshold. D) Fraction of mapped reads in the same chromosome. 7 samples 
exceeded the threshold. One sample exceeded the threshold of coverage mean > 40 and the fraction of 
mapped reads in the same chromosome. This sample was discarded for variant calling irregularities. 

The (         ) indicates the Table 9 thresholds. 
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3.5.3.2. Contamination analysis 

We used VerifyBamID184 to determine inter-sample contamination or swapped ID 

samples. We used this tool with genotyping data (array-based) and array-free approaches. The 

thresholds to determine if the sample was contaminated are shown in Table 10. For this purpose, 

we selected 570 GCAT samples from the array data that were also sequenced. Using this array 

data and all 807 WGS BAM files, we ran VerifyBamID with -–best --ignoreRG --maxDepth 

30 -–precise arguments. All the metrics obtained from VerifyBamID showed that none of the 

GCAT samples were contaminated (Figure 13). 

 

 

 

 

 

 

 

 

 

 

 

3.5.3.3. Population structure using reference ancestries 

We evaluated the population structure of GCAT cohort, based on Principal Component 

Analysis (PCA). As we mentioned in section 3.5.1, 16% of the GCAT samples were of American-

Hispanic origin, so we discarded from the 807 WGS samples those who were non-Iberian 

representative. 

Firstly, we ran the Haplotype Caller tool and selected the PASS filter variants from the 

VCF file. Secondly, we used PLINK (version 1.90b6.7 64-bit) to keep ~1 million of SNVs with a 

Minor Allele Frequency (MAF) > 1% (discarding rare and monomorphic variants) and Linkage 

Disequilibrium (LD) r² < 0.2 (obtaining independent variants). Finally, we applied two PCAs based 

on a different population of known ancestries: 1) the first PCA discarded the non-European 

samples from GCAT, using the SNVs from 1000G and GCAT. We filtered out 16 GCAT samples  

(Figure 21A, Figure 21B) according to the high euclidean distance of PC1, PC2 and PC3 from the 

Threshold contamination array-based  Threshold contamination array-free  

[CHIPMIX]>> 0,02 and/or [FREEMIX] >> 0,02 [FREEMIX] ≥ 0.03 and [FREELK1]-[FREELK0] 
is large 

Table 10. Thresholds to determine the contamination /ID swap from GCAT samples.   When the array 
data was provided, if ≥ 2% of non-reference bases were present in reference sites, the sample was 
contaminated. The array-free strategy used the allelic frequency estimations to determine if a sample was 
contaminated or not.  

A) 
Array -based  

Figure 13. Contamination analysis of GCAT samples. A) Contamination 
distribution of 570 samples with array and Whole Genome Sequencing 
analysis. B) Contamination Distribution of 237 samples with Whole Genome 
Sequencing analysis.  

The (         ) indicates the Table 10 thresholds. 

B) 
Array -free  
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center of the distribution of GCAT samples.  2) The second PCA was performed to get only the 

Iberian samples. We used the webserver from the LASER185 project (https://laser.sph.umich.edu/) 

with variants from European samples of the 1000G and the Population Reference Sample 

(POPRES177) projects, and GCAT samples. 2 GCAT samples  were discarded, according to the 

mean ± 4sd criteria (Figure 21C). After performing these two PCAs, we discarded 18 samples  

for genetic discrepancies of Iberian ethnicity. 

3.5.3.4. Identity by Descent analysis (IBD) 

Discarding samples with a high level of relatedness allowed us to remove population 

frequency biases for variants in the reference panel. We used PLINK (version v2.00a2LM) to 

estimate Identity by Descent (IBD probabilities) in 789 GCAT samples. We identified one full-

sibling pair and one first-cousin relationship. These pairs of individuals showed probabilities of 

sharing 0, 1 and 2 IBD alleles equal to (0.3,0.48,0.22) and (0.78,0.22,0), which are close to the 

theoretical values (0.25,0.5,0.25) and (0.75,0.25,0) for full-siblings and first-cousins, 

respectively186. For each of the related pairs, we discarded the sample with the highest 

proportion of missing genotypes (Figure 21D).  

3.5.3.5. Population structure without reference ancestries 

We applied an additional PCA without reference ancestries to obtain an homogenous 

sample within the GCAT cohort, avoiding the stratification between volunteers in the same 

population. We discarded from this analysis two additional GCAT samples  (Figure 21E). After 

all the QC steps applied, we used 785 samples to construct the panel of genetic variability 

of the Iberian population . Supplementary Table 2 shows the 23 GCAT samples discarded. 

3.5.4.  The impact coverage on SV calling  

Whole-Genome Sequencing (WGS) of the 808 GCAT cohort samples was performed at 

high coverage (30X). We evaluated the coverage effect on SV discovery as follows. Using Picard 

(version 2.18.11), we downsampled ten randomly selected samples at different coverages: 5X, 

10X, 15X, 20X, and 25X. Then, we performed the variant calling for each sample and coverage 

(section 3.2.2). Finally, we filtered the calls, selecting from each VCF the variants that passed 

(PASS flag in VCF file) all the software filters (Figure 22). 

3.6 Variant calling in the GCAT samples 

In section 3.2, we described how we ran all variant callers for a single sample. Many 

algorithms are known to improve the detection and genotyping of variants when running multiple 

samples simultaneously.  This section reviews how to execute the algorithms in a multi-sample 

mode. 

3.6.1.  SNV and Indel calling 

SNVs and indels were called with Haplotype caller, Deepvariant, and Strelka2. We 

normalised the indel and SNV VCF files, to obtain the same variant alternative representation 

among these tools, which is needed to apply an efficient merge between variant callers (section 

3.7). 
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3.6.1.1. Haplotype Caller 

Haplotype Caller was run by sample and 

chromosome as mention in section 3.2.1.1, including the 

flags --ERC GVCF , --dbsnp dbsnp_ 138.b37.vcf , 

--L chrm --G Standard Annotation , and --G 

StandardHCAnnoation . We used the ♂ or ♀ Reference 

Genome (section 3.5.2.1) based on the sample gender.  

We combined all the 785 samples using the 

GenomicsDBimport module and default parameters. 

Next, we parallelised the execution by chromosome and 

batches of 1 MB. Also, we included the label --batch-

size 50  to decrease the computational time of each 

execution. Then, we re-genotyped all sample variants with 

the GenotypeGVCF module, including the flags –V 

gendb://merge , --G StandardAnnotation , --

new-qual . Finally, we combined together all batches and 

chromosomes again, in-house developed script. To detect chromosome Y variants, we followed 

the same steps using the 388 male samples only.   

We applied the Variant Quality Score Recalibration (VQSR) as recommended by GATK 

developers, to reduce false-positive calls. We ran the VariantRecalibrator (using the label  –AS)  

and ApplyVQSR modules in default mode. These modules were executed separately for SNPs 

and Indels, using the –module  flag.  

These steps were repeated for chromosome Y independently. We also applied the VQSR 

for SNVs in the mitochondrial (MT) chromosome. 

To improve the quality SNV genotypes, we executed a genotype refinement using the 

CalculateGenotyePosteriors and VariantFiltration modules with default mode. Variants with a 

genome quality below 20 were filtered out. In Scheme 3, we illustrate all the steps to execute the 

Haplotype Caller properly. 

3.6.1.2. Strelka2 

Strelka2 was run sample by sample, as described in section 3.2.1.3, as this tool is not 

able to run in a multi-sample mode if the chromosome number is different between samples. 

Therefore, we could not run all the samples at the same time because male and female samples 

differ in the presence of the Y chromosome in the BAM file. 

Scheme 3. Steps to run Haplotype caller 
in multi-sample mode. 
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3.6.1.3. Deepvariant 

Deepvariant was run as described in section 3.2.1.2. After 

applying the three Deepvariant modules, we genotyped all variants 

together using two GATK modules, as recommended by the 

developers. First, we combined the 785 samples by chromosome 

and batches of 1 MB, with the CombineGVCFs module. Next, we 

genotyped all the detected variants using the GenotypeGVCF 

module and default parameters. The genotyping step was 

performed for chromosome Y separately. In Scheme 4, we illustrate 

the steps followed to run Deepvariant in the 785 GCAT samples. 

Finally, we merged all chromosomes and batches in a single VCF 

file. 

 

 

3.6.1.4. SNV/Indel VCF Normalisation 

Callers use different rules to report calls, especially in the case of indels and Multiple 

Nucleotide Variants (MNVs). Standardising the outputs of the variant callers is therefore required 

to merge of Deepvariant, Haplotype Caller, and Strelka2 correctly. 

We used the GATK module SelectVariants to split each multi-sample VCF obtained from 

Haplotype Caller and Deepvariant by sample. Default parameters were used to execute the 

SelectVariants module, including the following labels: --exclude-filtered , --remove-

unused-alternates . Then, using an in-house script, we first separated the MNPs from biallelic 

variants, and then we split biallelic variants into SNVs and indels. Next, the VCF normalisation 

was accomplished with the pre.py tool, designed by the Global Alliance for Genomics and Health 

(GA4GH). We ran pre.py as recommended by developers, including the flags --L , --

decompose , --pass-only,  and –-threads . Finally, we created a final VCF per sample and 

chromosome, discarding MNVs and variants for which the ALT allele was not specified. 

3.6.2.  Mid-size and Structural Variant calling 

Structural Variant (SV) detection was carried out with Delly2, Manta, Pindel, Lumpy, 

SvABA, Whamg, CNVnator, Popins, and MELT. These tools allowed us to cover a variety of SVs 

types, except for mCNVs. The obtained outputs were used in section 3.7. 

3.6.2.1. Delly2 

Delly2 CALL (Scheme 5) was run as described in section 3.2.2.1, using the ♂ or ♀ 

reference genome based on sample gender. We could not apply the entire Delly2 pipeline for 

samples JID673, JID748, and JID727 to find TRA events due to time and computational resources 

issues. For this reason, we applied the first step for TRA detection. For the remaining SV types, 

we ran the MERGE and CALL bcf modules of Delly to combine and re-genotype all variants, using 

the default parameters as recommended by developers. Next, we used Bcftools MERGE to 

Scheme 4 . Steps to run 
Deepvariant in multi-
sample mode. 
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combine all the bcfs obtained from the re-genotyping 

step. We executed it following the recommendations of 

Delly developers. Finally, we used the FILTER module of 

Delly to delete redundant variants and find confident 

germline SVs. 

We repeated the same pipeline for each SV type. 

Also, we ran the Delly2 pipeline to detect chromosome Y 

variants independently, using the male samples only. 

The Delly FILTER module provides a multi-

sample vcf. In order to apply our custom merge, we split 

the VCF by sample. We used the GATK module 

SelectVariants, as described in section 3.6.1.4, obtaining 

5 VCF files per sample, one for each of the SV type 

analysed. 

3.6.2.2. Manta 

Manta was run as described in section 3.2.2.2. For BAM construction issues (section 

3.6.1.2), we could not execute all samples in multi-sample mode. 

3.6.2.3. Pindel 

Pindel was run by chromosome and sample, as described in section 3.2.2.3. In the config 

file, we included the insert size information, obtained from the Picard tool section 3.5.3.1. We 

could not execute the pipeline in chromosome 2 for samples JID272, JID278, JID286, JID309, 

JID541, JID673, JID727, and JID748 due to computational requirements. Then, we converted the 

Pindel format files to VCF with the pindel2vcf module, in exception for translocations, due to 

format incompatibilities. Finally, to genotype large insertions, we applied our custom genotyper, 

described in section 3.2.2.3. 

3.6.2.4. Lumpy  

Lumpy and SVTYPER were run as described 

in section 3.2.2.4. We re-genotyped all the samples 

together to improve the genotype quality and recall of 

Lumpy. Firstly, we used the lsort and lmerge modules 

of SVTOOLS to combine the VCFs and merge the 

redundant variants. In module lmerge, we used a 

breakpoint-error of 50 bp (-f 50 ) to consider a variant 

as the same between different samples. Next, to 

improve the re-genotyping performance of SVTYPER, 

we divided the VCF obtained from lmerge into batches 

of 15K variants. 

We repeated the same pipeline with 

chromosome Y, using the male samples. 

 

Scheme 5 . Steps to run Delly2 in 
Germline and mult-sample mode.  

Scheme 6. Steps to run Lumpy in mult -
sample mode. 
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3.6.2.5. SvABA 

SvABA was run sample by sample, as described in section 3.2.2.6. The SV type 

classification of SvABA was not used in SV detection, so we used the variant detection to reinforce 

the variant prediction as true-positive or false-positive with the Logistic Regression Model.  

3.6.2.6. Whamg 

Whamg was run sample by sample, as described in section 3.2.2.5. This tool is able only 

to call SVs and not SV genotypes. The reference genomes used to detect the variants differed 

depending on the sample gender. Then, we used the SVTYPER tool described in section 3.2.2.4 

to genotype all variants detected by Whamg.  

3.6.2.7. CNVnator 

CNVnator was run sample by sample, as described in section 3.2.2.7. We used the read-

length (150) in the bin size parameter. 

3.6.2.8. Popins 

Popins was run as described in section 3.6.2.8, with some additional steps, allowing the 

execution in a multi-sample mode. All steps were executed as recommended by developers. We 

executed the following steps for each sample: 1) assembly , 3) contigmap , and 7) genotype . 

Then, steps 2) merge , 4) place-refaling , 5) place-splitalign , and 6) place-finish , 

were executed with all samples together. To genotype the samples, we used the -m RANDOM 

label.  

3.6.2.9. Melt 

Melt was run in multi-sample mode using the MELT-SPLIT pipeline. This pipeline is 

composed of (i) Pre-processing BAM files, (ii) MEI discovery by sample; (iii) Merge all samples to 

determine the breakpoint accurately; (iv) Genotype the variants together; (v) MakeVCF file. 

3.7 Variant Calling integration 

The integration of multiple variant callers allowed us to improve the performance of variant 

calling and increase precision and recall. This section describes the pipeline followed to integrate 

the variant caller outputs in a consensus VCF file and filter it. 

3.7.1.  VCF pre-processing 

Before merging the outputs from variant callers for each sample, we applied some filters 

to clean up the detected variants. We normalised the VCFs and discarded the MNPs and those 

SNPs and indels which the alternative allele was not specified. Next, for the VCFs of SV set, we 

filtered out the low quality/NO_PASS variants, the 0/0 and ./. variants and those not mapped in 

autosomal and sexual chromosomes. In addition, we removed the variants catalogued as 

NOANCHOR in the VCFs from Popins and the BNDs variants that had both the breakpoints in 

the same chromosome in the VCFs from Lumpy. Finally, the variants were grouped by SV type 

in independent files. 
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In the files obtained for SNPs and indels after the pre-processing step the chromosome, 

we included position, reference allele, alternative allele, and genotype information. The 

information of SVs files (with the exception of INSs and TRAs) included chromosome, position 

initial, position final, SV length, and genotype. The TRA variants included the second 

chromosome, while the length was not provided. The INS variants included chromosome, 

position, and genotype. 

3.7.2.  Merging all VCFs per sample and per variant  type 

After the pre-processing step, we merged the VCF outputs from the variant calling for 

each sample as follows. For SNVs and Indels, we merged variants by (i) chromosome, (ii) position 

at base-pair resolution, and (iii) same REF/ALT alleles. For SVs, we merged variants by (i) variant 

type, (ii) chromosome, (iii) overlapping breakpoint-error of the variant (section 3.2.3.3), and (iv) 

reciprocal overlap ≥ 80% between callers (this filter was not applied for INS and TRA SVs). Using 

these merged databases, we applied the LRM (section 3.4.2) by variant type and sample. Based 

on the LRM results, we considered as a TP if the LRM prediction was ≥ 0.5. Otherwise, we 

considered the variant as a FP. For SNVs, we considered a variant as TP if at least two callers 

had detected it. On the other hand, for SVs, we reported the maximum breakpoint-error, the 

number of callers and number of strategies that had detected the variant, the breakpoint position, 

genotype, and length of the variant, following the strategies described in section 3.4.1.2 and 

sections 0, 3.4.2.3 for each SV type.  

3.7.3.  Combining all samples in a single VCF 

For each variant type, we combined the 785 GCAT samples as follows. For SNPs and 

indels, we merged individuals by (i) chromosome, (ii) position at base-pair resolution, and (iii) 

REF/ALT alleles. For SVs, we merged individuals by (i) variant type, (ii) chromosome, (iii) 

maximum breakpoint-error of the merged variant (Table 16), and (iv) reciprocal overlap ≥ 80% 

(with the exception of INS and TRA) between individuals. Using these merged databases, we 

calculated the TP proportion for each variant as determined by LRM in the 785 GCAT samples. 

This proportion is referred to as the quality score of the merged variant . Then, we 

considered a variant as PASS if the quality score was ≥ 0.5. Besides, we reported the length and 

position of each SV as the median length and median position of all the samples that had the SV. 

Additionally, we used the sample alleles to provide populational information for each variant, such 

as the allelic count (AC), the Minor Allelic count (MAC), the Allele Frequency (AF), the Minor Allele 

Frequency (MAF), or the population variation (POPVAR) which indicates if the variant was 

common, low-frequency, rare, a doubleton or a singleton in the cohort. Then, we also reported 

variant-specific features, such as breakpoint-error (ERRBKP), SVTYPE, among others. All 

information was organised in a VCF file. 

3.7.4.  Variant Quality Control 

The final set of variants was obtained as follows. We considered PASS, the variants of 

quality score ≥ 0.5  and discarded the monomorphic ones. Next, we used PLINK to remove 

variants in Hardy-Weinberg Disequilibrium (Bonferroni correction p-value < 5x10-8) and those with 

≥ 10% of missings. 
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3.8  New discoveries and validation of the GCAT var iants 

The genetic characterisation of a specific population genetic allowed us to discover new 

variant rearrangements and their effect on diseases. However, variant calling is known to produce 

false discoveries, and if variant filtering is not well applied, it could introduce noise in the dataset, 

driving misinterpretations, and results with questionable quality. In this section, we describe how 

we evaluated the new discoveries obtained from the GCAT cohort and the quality of the dataset. 

3.8.1.  Comparative studies with different datasets  

3.8.1.1. SNVs and indels 

We compared the GCAT final set of SNVs and indels (section 3.7.4) with the NCBI 

dbSNP Build (version 153) dataset downloaded from https://ftp.ncbi.nlm.nih.gov/. We considered 

dbSNP as the gold standard, and we merged it with the GCAT set in two different ways. First, 

merging by (i) chromosome, (ii) position at base-pair resolution, and (iii) REF/ALT alleles. Second, 

merging by (i) chromosome and (ii) position. Finally, we determined the number of variants shared 

in both databases and the number of unique variants in the GCAT set.  

3.8.1.2. Structural Variants 

We compared the final set of SVs with (i) The Genome Aggregation Database (gnomAD.v.2) 

(https://gnomad.broadinstitute.org/downloads), (ii) the Database of Genomic Variants (DGV) 

(http://dgv.tcag.ca/dgv/app/downloads?ref=GRCh37/hg19), (iii) the Human Genome Structural 

Variation Consortium set (HGSVC) (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/ 

hgsv_sv_discovery/) (iv) the Ira M Hall dataset (https://github.com/hall-lab/sv_paper_042020), (v) 

the 1000G project (Phase3) (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/) and (vi) GoNL 

(release 6.2) as reference datasets.  We matched each of the reference datasets and the GCAT 

variant set by (i) variant type, (ii) chromosome, (iii) 1000 bp breakpoint-error and (iv) reciprocal 

overlap ≥ 80% between datasets. We determined the number of variants shared in at least one 

dataset, and the number of variants unique to the GCAT variant set (Figure 25).  

The same procedure was further applied considering the 1000G (Phase3) and GoNL 

datasets to estimate the number of new imputable SVs (Figure 25). For translocations, de novo 

insertions and transposons, the reciprocal overlap filter was not applied, due to the SV length 

being unavailable. 

3.8.2. Experimental validations 

3.8.2.1. Validation of SNVs and indels using the GCAT SNP-array 

We compared the SNV/indel final set (section 3.7.4) with the GCAT SNP array (Table 8). 

First, we selected 570 GCAT samples that had both WGS and SNP-array data. Then, we merged 

both datasets by (i) chromosome, (ii) position at base-pair resolution, and (iii) REF/ALT alleles. 

Finally, we calculated recall and genotype concordance for each sample based on 732,978 SNPs 

and 1,168 indels in the SNP array, considering 1-23 chromosomes (Figure 34). 
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3.8.2.2. Copy Number Variation (CNV) validation using Comparative 

Genomic Hybridization (CGH) 

We hybridised five GCAT samples in a CGH array, using as a reference the GIAB sample 

NA12878. We used the silver standard CNV set187 (downloaded from https://bmcgenomics. 

biomedcentral.com/articles/10.1186/s12864-017-3658-x#Sec21) of NA12878 to validate large 

deletions and duplications (>20 Kb), corresponding to a minimum of 5 consecutive CGH probes 

for variant detection. The CGH technique does not validate small sizes due to their resolution and 

the distance between probes (3 Kb). The probe intensity changes between GCAT and reference 

samples indicated duplications (intensity gain) or deletions (intensity loss). When no intensity 

change was appreciated, both samples included the same variant or was a true negative. We 

validated large deletions and duplications (>20 Kb) detected by variant callers in two different 

ways: (i) variants present in silver CNV list and GCAT samples, overlapping in a window of 1 Kb, 

with no differences in probe intensities and; (ii) variants in GCAT samples with probe intensity 

changes. 

3.8.2.3. Inversions validation using a verified dataset 

To check the GCAT dataset's accuracy, we used a set of inversions experimentally 

validated from the InvFEST project (Lerga-Jaso et al., in preparation). Each validated variant 

included the GRCh37 coordinates, the allelic frequency among different continents, and the 

length. We considered 64 Non-Homologous (NH) inversions and inverted duplications because 

variants generated by Non-Allelic Homologous Recombination (NAHR) procedures are located in 

repetitive regions, making them harder to detect by short reads, as performed in the GCAT 

samples. Then, we matched this InvFEST project subset with the GCAT final inversion set 

(section 3.7.4) considering an overlapping a window of ±1000 bp. Finally, we calculated recall, 

allele frequency (using European frequencies) and length concordances of inversions from the 

GCAT and InvFEST datasets (Figure 35).  

In parallel, as described in (Lerga-Jaso et al., in preparation), the accuracy of GCAT 

inversion calling and genotyping was evaluated using 51 NH InvFEST inversions. We selected 

the SNVs discovered from variant calling in the GCAT samples (section 3.7.4) in a window of 

±100 Kb from 51 NH inversion breakpoints. Then, following the protocol of Lerga-Jaso et al., we 

imputed inversions using the reference panel of experimentally-validated inversions provided by 

the InvFEST Project (Lerga-Jaso et al., in preparation), and the SNPs previously recovered. 

Inversion genotypes were called with a posterior probability higher than 0.8 and were classified 

as missing otherwise. Besides, if the inversion had perfect tag SNPs (r2= 1) present in the GCAT 

calling, those missing genotypes were recovered based on the tag SNP genotypes. Then, 

genotype concordance and variant calling accuracy were estimated by comparing the genotypes 

obtained from GCAT calling and InvFEST imputation for all the 785 GCAT samples (Figure 35). 

3.9 Creation and integration of haplotypes sets 

We processed the consensus vcf files (section 3.7) to create a haplotype-resolved panel to 

perform imputation. The sequencing of the GCAT samples at high coverage (30X) decreased the 

level of uncertainty of genotyping86,118, allowing us to avoid the use of genotype likelihoods (GL) 

or Phred-scaled likelihoods (PL) in the phasing step. This section describes the benchmarking of 

different phasing strategies and the pipeline to construct the GCAT haplotype panel.  
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3.9.1.  Benchmarking of different phasing strategie s 

Since the initial SV-resolved panels5,110, phasing technology has evolved, producing new 

program updates and strategies, making it more efficient, and improving haplotype estimation. 

Unfortunately, little is known about the efficacy to phase SVs by these tools. This section analyses 

the benchmarking of different phasing strategies to select the most accurate to generate the 

Iberian-GCAT panel. To benchmark different phasing strategies, we evaluated the imputation 

accuracy of SVs in a subsample of 95 individuals characterised by having both WGS and SNP-

array data available. We considered the quality of imputed variants as a metric to determine the 

best phasing strategy. 

3.9.1.1. Sample pre-processing 

We used the GCAT SNP-array data (Table 8) to perform imputation after applying a 

Quality Control (QC)174 to filter the data. The gcat_core array includes 756,773 SNVs for 

4,988 samples before applying the AT-CG and Minor Allele Frequency (MAF) > 0.1% filters. To 

benchmark the phasing strategy, we used 7,146 SNVs on chromosome 22 for a subset of 95 

samples from GCAT (Supplementary Table 3), having both SNP-array data and WGS data, in 

order to evaluate the amount and the genotype concordance between variants imputed from SNP-

arrays and called from WGS. 

To create a pilot reference panel, we used the variants from chromosome 22, obtained 

in the variant calling integration step (see section 3.7). This combined subset included 195,106 

SNVs, 24,321 indels, and 128 large Deletions (>150 bp). In building the panel, we used 690 

individuals, after discarding the 95 samples previously selected for the benchmarking. Finally, 

with PLINK2, we re-tested for Hardy-Weinberg Equilibrium (HWE) (--hwe 1.639629e-07 midp 

(Bonferroni Correction)), we filtered out all variants with ≥ 10% of missings (--geno 0.1 ), and 

removed all singletons and doubletons (--maf 0.0026 ) from the vcf.  

3.9.1.2. Phasing strategies   

There are different possible strategies to create a panel of genetic variability. We 

analysed the accuracy to generate the phased set using ShapeIt2188 (version v2.r904), ShapeIt2 

plus MVNcall169 (version 1.0), ShapeIt4166 (version 4.1.3), ShapeIt4 plus MVNcall, and Shapeit4 

plus WhatsHap167 (version 0.18).  

3.9.1.2.1 ShapeIt2 (with SVs) 

ShapeIt2 is a tool mainly used to phase SNVs and indels, and it has been used in projects 

similar to GCAT, such as 1000G and GoNL, to create haplotype sets. For this reason, we 

evaluated the capacity of Shapeit2 to phase all variant types, including SVs. We executed 

ShapeIt2 as follows: 

Finally, using an R script developed in-house, we adapted the .haps  and created the 

.legend  files needed to run IMPUTE2 for the subsequent imputation. 

Shapeit --input-vcf snps_indels_del_to_phase_HWE_no _double_single 

QC01.vcf --input-map genetic_map_chr22_combined_b37 .txt --output-max 

snps_indels_del_to_phase_HWE_no_double_singleQC01.h aps snps_indels_ 

del_to_phase_HWE_no_double_singleQC01.legend --thre ad 48 
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3.9.1.2.2 ShapeIt2 and MVNcall 

This strategy has been considered to create an SV-resolved haplotype set in the 1000G 

and GoNL projects5,110. We reproduced their pipeline to estimate its accuracy to phase SVs. 

MVNcall is used to phase MNPs (Multiple Nucleotide Polymorphism), complex indels and SVs, 

and it requires a pre-built haplotype scaffold. We constructed this haplotype scaffold by selecting 

SNPs and indels from chromosome 22 filtered previously described and by analysing it with 

ShapeIt2 as described in section 3.9.1.2.1.  

MVNcall requires a Genotype Likelihood (GL) or a Phred-scaled Genotype Likelihoods 

(PL) for each variant. The LRM did not report GL and PL, so taking advantage of high coverage, 

we introduced for each variant the PL as 0 in the genotype reported by variant calling integration 

step (section 3.7), and 225 for the remaining genotype probabilities. Variants with “./.” genotypes 

were discarded. We executed MNVcall as follows: 

 

Finally, we combined the ShapeIt2 and MVNcall outputs and generated the final .hap, 

.legend, and .sample with an in-house script. 

3.9.1.2.3 ShapeIt2, MVNcall with PIRs 

ShapeIt2 can use sequencing reads to improve the phasing of rare and singleton variants 

for samples with high coverage (30X). Reads that spanned two heterozygous sites were labelled 

as Phase Informative Reads (PIRs) and considered as mini-haplotypes163.  

 We downloaded the PIR module (extractPIRs.v1.r68.x86_64.tgz) from the official          

ShapeIt2 web page. We executed this module only for SNPs as recommended by the developers. 

Then, we ran ShapeIt2 as described in section 3.9.1.2.1, including the –input-pir flag. Finally, 

we executed MVNcall, as described in section 3.9.1.2.2. 

3.9.1.2.4 ShapeIt4 

The new ShapeIt4 (version 4.1.3) uses the Positional Burrows-Wheeler Transform 

(pBWT) algorithm.  The method stores the haplotypes at each iteration in a pBWT data structure, 

facilitating locally matching haplotypes to be identified in a given window. This ShapeIt version is 

highly accurate and computationally efficient compared to other phasing algorithms. Before 

running ShapeIt4, we compressed with bgzip  and indexed with tabix  the pre-processing file 

(section 3.9.1.1) as developers recommended. Then, we ran Shapeit4 as follows: 

 

mvncall --int 1 51304566 --sample-file SNP_indels_G CAT1.sample                

--glfs Del_final_to_phase_nodots_no_singleton_doubl eton_hwe.vcf --sca 

ffold-file SNPs_indels_final_to_phase_HWE_no_doubl e_singleQC01.haps  

--lambda= 0.1 --o Del_final_to_phase_mvncall_1_5130 4566_all.vcf 

shapeit4 --input snps_indels_del_to_phase_HWE_no_do uble_singleQC01.vcf.gz 

--map genetic_map_chr22_combined_b37.txt --output S NP_indels_SV_GCAT_all 

.vcf --pbwt-depth 8 --seed 123456 --region 22 --thr ead 48 –- sequencing    

--log SNP_indels_SV_GCAT_all_ok.log 
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Finally, we executed Bcftools (convert -–haplegendsample ) to convert the vcf 

into.hap , .legend, and .sample  files, required to run IMPUTE2. 

3.9.1.2.5 ShapeIt4 and MVNcall 

To improve SV phasing, we applied the same strategy developed in section 3.9.1.2.2 but 

changing the ShapeIt version. 

3.9.1.2.6 ShapeIt4 and WhatsHap 

 ShapeIt4 uses the WhatsHap tool to extract PIRs, by grouping heterozygous genotypes 

into phased sets when overlapped by the same sequencing reads. However, this tool is able to 

recover this type of reads from SNPs and indels only.  

With the current WhatsHap version, it's not possible to parallelise multiple executions, so 

to increase the performance, we divided the multi-sample VCF file (pre-processed) into individual 

VCF files, one for each sample. We ran WhatsHap as follows: 

 

Once we got all outputs, we combined all the individual VCFs in a new multi-vcf file with 

an in-house script, including in the column FORMAT the “GT:PS” string, only for SNVs and indels, 

because is the information obtained from WhatsHap. Finally, we executed Shapeit4, including the 

--use-PS 0.0001  flag, and Bcftools as described in section 3.9.1.2.4. 

3.9.1.3. Imputation using different phasing strategies 

We imputed SNP array data for the 95 GCAT individuals using the different reference 

panels obtained with the strategies described in the previous sections. Before imputation, we 

applied a “pre-phasing” step to the array data to reduce the computational costs without 

compromising accuracy189. We used the --input-ref  and -H  flags for Shapeit2 and Shapeit4, 

respectively, to pre-phase the array with the reference panels created in section 3.9.1.2. 

IMPUTE2171 (version 2.3.2) was used to impute the phased array data. We applied the 

same command for all the different reference panels, dividing by batches of 5 Mb. We executed 

IMPUTE2 as follows:  

 

Finally, we merged all the batches and converted the .gen files to VCF using PLINK. 

 

whatshap phase -o sample_snps_indels_SV_filtered_fi nal_to_phase_QC01_ 

shapeti4_whatshap.vcf.gz --tag PS --reference genom e.fa --indels             

--chromosome 22 snps_indels_SV_filtered_final_to_ph ase_QC01_shapeit4_ 

sample_ok.vcf.gz 

impute2 -use_prephased_g -m geneti c_map_chr22_combined_b37.txt   

–h reference_panel.hap.gz –l all_snps_ reference_pa nel.legend.gz 

-known_haps_g gcat_test_imputation.hap.gz -int 5 Mb  batch -o 

output _file .gen - o_gz  
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3.9.1.4. Selecting the strategy to phase the GCAT samples 

The phasing strategy is one of the key factors determining imputation quality. We 

assessed the best phasing strategy by counting the number of variants of high quality imputed 

variants (info score ≥ 0.7) and calculating the genotype concordance between imputed and WGS 

data. In our hands, the best results were obtained using ShapeIt4, with slight differences between 

the ShapeIt4 and ShapeIt4 + WhatsHap strategies, in which the latter one recovered 85 SVs 

compared to 81 with ShapeIt4 alone (Figure 36A). The differences came from rare variant 

imputation, where ShapeIt4+WhatsHapshowed an improved imputation quality (Supplementary 

Figure 8A). For this reason, we used ShapeIt4+WhatsHap  to phase the GCAT samples. 

3.9.2.  Pipeline to construct the Iberian-GCAT hapl otype panel 

 We followed the strategy described in section 3.9.1.2.6 to create a haplotype-resolved 

panel of GCAT using the 785 samples. We generated a haplotype panel for each autosomal 

chromosome and the X chromosome. The pipeline is illustrated in Figure 14: 

 

 

 

 

 

 

 

 

 

 

 

 

To generate the haplotype-resolved panel of chromosome X, we separated chromosome 

X into Pseudo-Autosomal Regions 1 and 2 (PAR1 and PAR2) and non-Pseudo-Autosomal 

Regions (NOPAR). Then, we coded the heterozygous genotypes in NOPAR as “./.” for male 

samples. On the other hand, to improve the imputation of chromosome X, we included two specific 

flags, –chrX  and -sample_g , and we grouped by gender the samples from the array. Finally, 

we executed the pipeline described in Figure 14. 

3.10 Imputation using the Iberian-GCAT reference pa nel 

Once the Iberian-GCAT reference panel was created, we validated its performance in 

imputation with different SNP-genotyping arrays. We considered the same 95 samples of the 

GCAT array (section 3.9.1.1), as well as, the array data from 1000G, as an alternative, non-

Figure 14. Pipeline followed to construct the Iberian- GCAT phase 
haplotype set. 

       Step executed sample by sample. 

                  Step executed with all the 785 GCAT samples together. 
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population-specific dataset. We evaluated different aspects of imputation, such as 1) the 

genotype concordance between imputation and calling, 2) the imputation differences using a 

reference panel the PIRs information, 3) the relevance of including the A/T-C/G variants in the 

array for imputation resolution, and 4) the SV effect in the imputation quality. 

3.10.1. Imputation analyses using the GCAT SNP-geno typing array 

Similar to section 3.9, we created a whole-genome pilot reference panel of 690 GCAT 

individuals using the VCF files obtained in the merge step (section 3.7.4). The variants included 

in this panel were obtained after filtering out variants with ≥ 10% of missing and removing 

monomorphic variants with PLINK. Using this pilot reference panel, we evaluated the imputation 

accuracy on 95 independent GCAT individuals using 754,593 whole-genome SNVs from the SNP 

array (Table 8) that passed a strict Quality Control174. Before performing imputation for the GCAT 

array of 95 samples (section 3.9.1.1), we converted the GCAT SNP-array data to VCF format 

using PLINK, fixing the ALT and REF alleles as A1 and A2, respectively, with the --a2-allele  

flag. We filtered out all indels and further 36 SNPs with a REF allele discordant from the reference 

genome.  

The following analysis was done to improve imputation performance. 1) All variants in the 

array were in the forward strand174, thus overcoming the typical strand issues arising from real 

array data for variants with A/T or C/G alleles. For this reason, we evaluated the impact of those 

type of variants in imputation, compared to the exclusion that is commonly applied.  2) To evaluate 

the effect of PIRs in the panel, we constructed two reference panels, as described in sections 

3.9.1.2.4 and 3.9.1.2.6, respectively. Imputation was executed as described in section 3.9.1.3 

(Supplementary Figure 8). 

To evaluate the genotype concordance, we selected the variants with an info score ≥ 0.7 

from the imputation results. Then, we compared the imputed genotypes with those from WGS 

calling. The genotype concordance was evaluated by sample. When both genotypes were 

identical, we considered the variant as well imputed (Figure 37). Additionally, using PLINK, we 

evaluated the number of variants with linkage disequilibrium (LD) r2 > 0.2 in a window of 1 MB for 

each common SV type (MAF > 5%) to find a correlation between genotype concordance and low 

LD (Figure 38A). Finally, we assessed the effect of SVs for SNP and indel imputation by                       

1) exploring the info score in a window of 100 bp from the reported SV breakpoint (Supplementary 

Figure 9), and 2) the number of SNPs and Indels recovered without SVs (Figure 38B).  

3.10.2. Imputation quality using the array data of 1000G 

To evaluate the efficiency of imputing variants in different populations, we download the 

1000G array data from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd 

_genotype_chip/ALL.chip.omni_broad_sanger_combined.20140818.snps.genotypes.vcf.gz. The 

SNP array data was available for 2,318 samples (48.1% males) from 19 populations and 5 

continental groups with 2,458,861 SNPs111. 

3.10.2.1. Sample filtering and Quality control of the 1000G array 

The array data were filtered for samples or markers of low quality. To evaluate the sample 

gender, we downloaded the igsr_samples.tsv file from https://www.internationalgenome.org/ 

data-portal/sample. From this, we filtered out 41 samples with unknown gender. We further 
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discarded 395 related samples (≥2nd degree relatedness), using the 2013606_g1k.ped file 

downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample 

_info/. Finally, we discarded two Masai samples due to low sample size, obtaining an array of 

1,880 samples. The array samples were divided into the 19 populations included in the 1000G 

study.  

We then used PLINK to perform a QC in the 19 population subsets individually, to filter 

out low quality and non-informative variants, and re-analyse sample relatedness. Below we list 

the filters applied: 

- Variant filtering: 

- Discard variants in LD --indep-pairwise 50 5 0.2  

- Discard variants with MAF ≤ 0.4 --maf 0.4  

- HWE equilibrium  with              

Bonferroni correction 

--hwe Bonferroni 

correction  

- Missingness call rate ≥ 10%  

- Discard all A/T and C-G variants  

In contrast to the GCAT array, we discarded the A/T and C/G variants because the strand 

direction was unknown in the 1000G array. 

- Sample filtering: 

- Discard related samples  --rel-cutoff 0.05  

- Excess of heterozygosity ± 2 sd --het  

- Missingness call rate ≥ 0.1  

We split males from females using the gender information from igsr_samples.tsv file for 

chromosome X. Finally, chromosome X was divided into PAR and NOPAR regions. 

3.10.2.2. Imputation of non-Iberian samples with the Iberian-GCAT panel 

Using the Iberian-GCAT reference panel (section 3.9.2), we imputed the 19 populations 

from 1000G separately (section 3.9.1.3), and we evaluated imputation accuracy using as a 

reference the SV characterisation performed by Audano et al.67. We download the EEE_SV-

Pop_1. ALL.sites.20181204.vcf file from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collectio 

ns/hgsv_sv_discovery/working/20181025_EEE_SV-Pop_1/VariantCalls_EEE_SV Pop_1/. This 

file contained 15 samples sequenced with PacBio, aligned against the GRCh38 genome and SV-

characterised with the SMRT-SV tool. We applied a liftover to convert the VCF GRCh38 genomic 

coordinates to GRCh37 with the liftOverPlink.py tool. Nine samples included in 1000G SNP-array 

(HG00514, HG00733, NA19240, NA19434, HG01352, HG02059, NA12878, HG02106 and 

HG00268) were used to evaluate the precision and recall of imputation. For SVs, we compared 

imputed variants with an info score ≥ 0.7 with the reference SVs67, considering a window of ±50bp 

to determine overlap between the two datasets. The Audano dataset was used in this case in 

terms of variant presence/absence only. We evaluated the concordance of SVTYPE and variant 

length between Audano characterisation and GCAT dataset. Additionally, we discarded the 

variants with genotypes 0/0 and “./.”. (Figure 39). 
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To calculate SV genotype concordance, we used instead data reported by Hickey et al.121 

as reference. This project genotyped three samples from Audano et al.67 (HG00514, HG00733, 

and NA19240), using short reads and applying a variation graph implemented in the vg toolkit. 

We download the svpop-vg-HG00514.vcf.gz, svpop-vg-HG00733.vcf.gz, svpop-vg-

NA19240.vcf.gz files from https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html 

?prefix=vgsv2019/vcfs/. We converted the VCF GRCH38 genomic coordinates to GRCh37 

coordinates with the liftOverPLink.py tool. All variants with “./.” in the reference were discarded. 

Also, the genotypes of imputed TRAs, TRPs, INSs, and DUPs were compared against the INSs 

reported by Hickey et al. (Figure 40). 

3.11 Benchmarking the reference panels 

To demonstrate that the GCAT panel was an invaluable resource for population studies or 

Genome-Wide Association Studies (GWASs), we imputed the GCAT SNP- genotyping array data 

with different reference panels. The GCAT array data contain 756,773 SNPs for 4,988 samples 

(detailed description in section 3.9.1.1). We checked the percentage of missings genotypes by 

sample and chromosome using PLINK, and we discarded three samples (JIDraw1, JIDraw3, 

JIDraw3), showing ≥ 10% of missings. Finally, we filtered out the 537 samples present in the array 

and the GCAT panel, obtaining an SNP-genotyping array of 4,448 samples.  

To reduce the time to perform the imputation with different reference panels, we used 

GUIDANCE172. This tool can pre-phase haplotypes and impute genotypes using multiple 

reference panels in a single execution, making the analysis faster and lower computational 

resources demanding than running all panels individually. We used an update of GUIDANCE, 

which executes ShapeIt4 to pre-phase the array and IMPUTE2 to perform the imputation. This 

algorithm was executed as developers recommended. 

The benchmarking imputation was performed with the Iberian-GCAT and the five most 

popular reference panels. Table 11 shows all panels used: 

Reference Panel Release Variant Information 

GoNL Release 5.4 SNVs and Indels 

GoNL SV* Release 1_20161013 SNVs, Indels, and SVs (exception INS) 

1000G phase 3, v5a.20130502 SNVs, Indels, and SVs (exception INS 

and TRA) 

Haplotype Reference 

Consortium (HRC)* 

Release 1.1 SNVs 

UK10K Release 2012-06-02, 

updated on 15 Feb 2016 

SNVs and Indels 

GCAT Release 1 SNVs, Indels, and SVs 

Table 11.  Panels used to bechmark the imputation a nalysis.   The benchmarking was performed using 
different reference panels. GoNL SV, 1000G and GCAT were used to evaluate the imputation accuracy of 
SVs. 

   *  Database not avaliable for open acces  
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To be consistent with all projects, we considered as SVs variants with lengths ≥ 50 bp. The 

remaining variants were SNVs and indels. After imputation, we retained imputed variants with an 

info score >0.7 and MAF > 0.001, and evaluated which panel gave better imputation values. 

Results were divided by variant type. To highlight the importance of using different panels in 

imputation for downstream analyses, we evaluated the number of unique variants recovered by 

different panels as follows. For SNVs and indels, we considered a variant being the same between 

panels if the position and ALT allele coincided. For SVs, variants had to be of the same SV type 

and overlapping in a window ±1,000 bp to be considered the same across different panels (Figure 

44A, B).  

To evaluate the quality of imputation by variant frequency, we calculated the average the info 

score (r²) for rare, low-frequency, and common variants (Figure 44C, D). 

3.12 Biological impact of Structural variants 

SVs are an essential source of genetic variability in the human genome, but little is known 

about their effect on human phenotypes. Recently, several initiatives have appeared, trying to 

elucidate it, and showing the importance of SVs in diseases10,11,65. This section describes the SV 

distribution in different populations and how we annotate the SVs to characterise their potential 

effects on human phenotypes. 

3.12.1.  Structural Variant distribution in the wor ldwide populations 

We evaluate allele frequency, distribution of variant type, and quality of imputed SVs in 

different human populations. We imputed each 1000 Genomes population separately with the 

Iberian-GCAT reference panel (section 3.10.2). We used ShapeIt4 to pre-phase the array data 

and IMPUTE2 to impute the variants. 

Imputing each population independently, allowed us to evaluate if some population was 

genetically too distant from Iberians, discouraging the use of the Iberian-GCAT panel for 

imputation studies. IMPUTE2 evaluates the imputation quality applying different cross-validations 

between array and imputed genotypes. To evaluate the imputation quality by population, we 

considered the most confident imputed genotypes (max prob ≥ 0.9), which shows the percentage 

of imputed genotypes that match with genotypes from the array. This information was used to 

calculate the median score of all max prob per each population (Figure 41). 

The SV distribution among different populations was determined using the .gen_info 

file provided by IMPUTE2. This file contains information on frequency (exp_freq_a1 ) and 

certainty (info ) of imputed variants. We evaluated SVs with info score ≥ 0.7 and the length ≥ 50 

bp. The singletons and doubletons were not evaluated because each population dataset 

contained around 100 samples, so there were no variants with allele frequency below 0.01. All 

variant types and allele frequencies (we used the exp_freq_a1 values) distributions were 

plotted with an R script developed in-house, using the following libraries (dplyr, data.table, 

ggplot2, viridis, ggrepel, forcats, RColorBrewer, g gmap, maps, ggforce, 

scatterpie ) (Figure 42). 
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3.12.2.  Functional impact of Structural Variants 

The functional impact of SVs was performed with AnnotSV75 (version 2.3.3). In addition, we 

used the GWAS catalog to evaluate how many SVs were tagged by SNVs (LD ≥ 0.8) and their 

effect on diseases/traits. 

3.12.2.1. Structural variant annotation using AnnotSV 

We used AnnotSV to obtain functional, regulatory, and clinical information of SVs. This tool 

uses multiple datasets to evaluate the effect of SVs in humans. Table 12 shows the datasets used 

to annotate the GCAT SVs. 

Dataset Release 

Refseq GRCh37 Feb. 2009 assembly 

Deciphering Developmental 

Disorders (DDD) 

DDG2P.csv.gz version 12_7_2020 

OMIM (Online Mendelian 

Inheritance in Man)  

genemap2.txt and morbidmap.txt 

American College of Medical 

Genetics and Genomics (ACMG) 

ACMG SF v2.0 

Gene intolerance annotations from 

the ExAC 

fordist_cleaned_nonpsych_z_pli_rec_null_data.txt and 

exac-final-cnv.gene.scores071316 

Haploinsufficiency annotations 

(DDD) 

HI_Predictions_Version3.bed.gz 

ClinGen Consortium Rating System ClinGen_gene_curation_list_GRCh37.tsv 

Database of Genomic Variants 

(DGV)  

The version of date 20190322 

DDD frequency annotations 20191219_DDD_population_cnv.sorted.bed 

1000 Genomes Project ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz 

Genome build GRCh38: 

gnomAD-SV gnomad_v2_sv.sites.bed.gz 

Ira M. Hall’s lab Supplementary_File_1.zip and 

Supplementary_File_2.zip 

dbVar non-redundant SV (dbVar NR) GRCh37.nr_deletions.tsv.gz 

Topologically Associating Domains 

(TAD) 

20171024_boundariesTAD.sorted.bed 

GeneHancer* GeneHancer_V4_14_for_annotsv.zip 

GC content GRCh37 FASTA genome 

Repeated sequences annotations Last version 
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AnnotSV was executed using default parameters. To be consistent with our merge algorithm 

(section 3.7), we changed the reciprocal overlap parameter to 80% (-overlap 80 ). SnpEff152 

was used in parallel to AnnotSV. SnpEff was executed using default parameters, limiting the 

annotation to DELs, DUPs, INVs. Then, to characterise the SVs, we divided the variants detected 

in our calling by frequency (common (MAF ≥ 5%), low-frequency (1% ≤ MAF < 5%), rare (MAF < 

1%), and doubleton or singleton and SV type, in order to predict the functional impact of SVs in 

human phenotypes. Finally, we evaluated: 1) the estimated pathogenicity of variants, 2) the SV 

distribution in human genes, 3) the impact of SVs in Topologically Associating Domains (TAD) 

regions, 4) The Haploinsufficiency (HI) and predicted Loss of Function Intolerance (pLI) effect of 

genes in human and 5) The Top 10 diseases related to detected SVs. 

We followed the American College of Medical Genetics and Genomics (ACMG) criteria190 to 

predict the level of pathogenicity of SVs: 1) If an SV overlaps with morbid/candidates genes,           

2) the pLI scores, and 3) if SV was already described as pathogenic. Based on these criteria, 

AnnotSV ranked the variants as: 

1) Benign SV 

2) Likely Benign SV 

3) Variant of unknown significance 

4) Likely pathogenic 

5) Pathogenic 

A detailed description of the pathogenic ranking can be found in 

https://lbgi.fr/AnnotSV/ranking. 

We compared the number of SVs affecting genes in the gnomAD-SV, in Audano et al., and 

in the GCAT project. We ran AnnotSV for the VCFs obtained from gnomAD-SV11                                                      

(gnomad_v2.1_sv.sites.vcf.gz file) and Audano et al.67 (EEE_SV-Pop_1.ALL.sites.20181204.vcf 

file). 

3.12.2.2. Evaluation of SVs using the GWAS catalog 

Genome Wide Association Studies (GWASs) usually are performed to investigate the link 

between variants and complex diseases/traits. Nowadays, this technique is applied in numerous 

studies, finding relations between variants and phenotypes. Significant associations identified by 

GWASs are deposited in the GWAS catalog. 

This invaluable repository allowed us to determine whether the variants detected in our study 

had been previously associated with a phenotype. We downloaded the GWAS catalog version 

1.0 (e98 r2020-03-08) from https://www.ebi.ac.uk/gwas/docs/file-downloads, and we filter the 

data as follows. First, from the total 179,364 variant-phenotype associations, we selected 106,906 

variants of 72,849 unique autosomal  entries identified in European ancestry. Second, we 

intersected 68,323 SNVs by chromosome and breakpoint with minor allele frequency > 1% in our 

GCAT dataset (~30M SNPs). Then, using PLINK, we identified 4,733 associations (2,669 

Table 12. Detailed list of databases used to annota te the SVs detected in the GCAT project. 

A detailed description of AnnotSV can be found in https://lbgi.fr/AnnotSV/ 

* No open acces 
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unique SNVs)  having at least one structural variant in strong linkage disequilibrium r2 > 0.80  

(Figure 33).  From these 4,733 SNVs, we evaluated the following distributions: 1) the type of SVs 

tagged by SNVs and 2) the gene function impact using GWAS catalog information.  

Finally, 72 SNVs (51 unique SNVs) of 4,733 associations from the GWAS catalog were linked 

with SVs, which in turn affected the extreme loss of function intolerant genes, according to 1) 

Haploinsufficiency, 2) pLI ≥ 0.9, and SVs with 4) the pathogenic level ≥ 4 values provided by 

AnnotSV. 
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The results have been divided into three blocks. According to the major findings of the thesis, 

these are; 2.1) Strategy to identify and classify different software (variant calling), to improve the 

variant filtering and the merging of their outputs, 2.2) Characterisation the variants/genotypes of 

the GCAT cohort, and 2.3) Building, validation and annotation of the haplotype-resolved panel of 

the Iberian cohort for GWAS. 

4.1 Identification and classification of Variant Ca llers using the Genome In A 

Bottle (GIAB) and in-silico samples 

It is known that genome variability is related to human evolution and phenotype, such as 

anthropometric particularities or human diseases. There are different ways to discover/analyse 

this variability, such as Polymerase chain reaction (PCR), array analysis, mainly focused on 

SNPs, and Whole Genome Sequencing (WGS). This last technique requires the use of a specific 

piece of software known as a variant caller, to detect these genomic changes, by using different 

strategies such as Split-Read (SR), Discordant-reads (DR), de novo assembly (AS), Read Depth 

(RD), sophisticated Machine Learning algorithms (ML), or a combination of them.  

Unfortunately, the variant callers designed to discover genome rearrangements produce 

False-Positives (FP) detections, especially in the case of Structural Variants (SVs). Their 

accuracy depends on the genomic region, variant type, length of variant, and read depth34. This 

bias towards small variants is also seen in the newly generated HRC panel, which was 

constructed using only SNVs, since indels were found to be very inconsistent across projects157, 

highlighting the difficulties of detecting SVs correctly. It has been recently documented that the 

combination of outputs from different variant callers allows for an improved calling accuracy8,9, 

highlighting the importance of understanding each tool's strengths and weaknesses to merge their 

outputs efficiently. 

Currently, several initiatives are trying to characterise variants from real samples124 to use as 

a golden set, to perform benchmarking analyses of these tools. The Genome In a Bottle 

Consortium (GIAB) is dedicated to this aim; currently, they provide a golden set to validate SNVs 

and indels, and are working on a new sample to characterise SVs, focused on deletions and 

insertions ≥ 50 bp191. These sets have different limitations: 1) the validated SNVs and indels are 

only located in conservative regions of the genome, and 2) they do not provide all the broad 

spectrum of SVs, limiting the benchmarking to deletions and insertions. An alternative to 

compensate for this lack of information is to create an in-silico sample, which is a simulated 

genome where the user can introduce known variants and choose their genotype length and 

properties. 

All the results presented in this section have been obtained from two samples: 1) An in-silico 

sample generated by our group (detailed description in section 3.1), and 2) the GIAB sample 

(NA12878) with validated SNVs and indels (detailed description in section 3.3). We used the 

hs37d5 reference genome to create the BAM files, and processed them following the GATK Best 

Practices (further details in section 3.1.2, and 3.3 for in-silico and GIAB sample, respectively). 
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4.1.1.  The software selected to perform the varian t detection in GCAT 
samples 

 Currently, no variant caller can detect all genome variability, due to different deterministic 

factors, such as the size, variant type, coverage, and the strategy of detection, among others. So, 

in order to have a complete calling, a thorough characterisation of tools has to be performed. In 

this project, different variant callers were selected based on the strategy applied to detect genome 

variability (Split-read (SR), Read-depth (RD), Discordant-Reads (DR), de novo assembly (AS), 

Machine Learning (ML) or a combination), and the variant type. A description of the 19 tools can 

be found in Table 13. 

 

All tools mentioned in Table 13 were executed with the in-silico or GIAB samples. In 

section 3.2, we detail how these tools were executed. We designed a methodology to improve 

Variant Caller Strategy Variant type 

Haplotype Caller SR, AS SNVs, Indels, Mid DEL 

Deepvariant ML SNVs, Indels, Mid DEL 

Strelka2 AS SNVs, Indels, Mid DEL 

Delly2 SR, DR, RD Mid DEL, DEL, DUP, INS, INV, TRA 

Manta AS Mid DEL, DEL, DUP, INS, INV, TRA 

Pindel SR, DR Mid DEL, DEL, DUP, INS, INV, TRA 

Lumpy SR, DR, RD Mid DEL, DEL, DUP, INV, TRA 

Whamg SR, DR, ML Mid DEL, DEL, DUP, INS, INV 

SvABA AS, SP, DR Mid DEL, NO SV TYPE 

CNVnator RD DEL, DUP 

Popins AS INS 

MELT DR TRP 

ViFi SR, DR VIR 

VERSE SR, AS VIR 

Platypus AS SNVs, Indels, Mid DEL 

VarScan2 SR SNVs, Indels 

Genome Strip SR, DR, RD DEL, DUP, mCNV 

Pamir SR, DR, OEA INS 

AsmVar AS DEL, DUP, INS, INV, TRA 

Table 13. Variant callers evaluated to analyse the genome variability. To perform an accurate variant 
detection, we evaluated different variant callers based on their strategy and variant detection, covering all 
genome variability. SR= Split read; DR= Discordant Read; RD= Read Depth; AS= de novo Assembly;   ML= 
Machine Learning; OEA; One End Anchored. The variant callers coloured in red were discarded for variant 
detection in GCAT samples. 
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the variant detection accuracy, combining the outputs of multiple variant callers outputs (section 

3.2.3.4). We discarded eight tools for three reasons: 1) The number of variants detected (Figure 

15), 2) Inability to improve the results of the Logistic Regression Model (LRM) (Table 14 and Table 

15), and 3) Computational limitations (further details can be found in section 3.2). Finally, we used 

12 algorithms to detect genome variability . 

4.1.2.  Variant classification according to size 

The variant and library properties can affect the variant breakpoint resolution. SNV and 

indels detections can be combined at base-pair resolution from different samples in a multi-

sample VCF file. However, as a general remark, the larger the size of the variant detected, more 

difficult it is to determine with high-resolution its breakpoint, which increases the difficulty to 

properly identify redundant variants among samples. For example, GoNL determined that indels 

< 20 bp could be combined at base-pair resolution across different samples. Meanwhile, larger 

sizes need to include a breakpoint-error.  

Following the GoNL criteria, we evaluated the accuracy of indel detection of all variant 

callers (section 3.2.1), considering the variant positions at base-pair resolution and matching 

alternative alleles (detailed methodology in section 3.2.3.1). The library properties of the in-silico 

sample (Table 3) and GCAT samples were the same, except for read length (Table 8). Figure 15 

shows the recall and precision distribution of variant calling tools divided by indel size. 

 

 

B) 

A) 

Figure 15. Variant caller indel detection benchmark: Accuracy to report at base- pair 
resolution with the same alternative allele. A) Recall distributed by indel size. While indel size 
increased, the recall decreased. Haplotype Caller detect around 80% of all indels independently 
of size. B) Precision of variant callers distributed by indel size. The precision was around 90% up 
to 20 bp, then this parameter decreased. 
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The recall decreased as the indel size increased (Figure 15A), showing the difficulties of 

variant callers to report the position at base-pair resolution, except for Haplotype Caller. In 

addition, Platypus detected a lower fraction of indels within all indel sizes as compared to other 

software, showing its inconsistency to report indels. The precision was around 90% until 20 bp 

for all variant callers (except Platypus) (Figure 15B), then it decreased, showing that the tools 

could work accurately to report variants with a size up to 20% of the read length . When the size 

surpassed this threshold, the variant callers included more false-positives (FP). Following these 

results, since the read length of GCAT samples was 150 bp: 1) Indels were considered until 30 

bp . 2) Deletions smaller than read length  (31 and 150 bp) were considered as mid-deletions 

(mid DEL). Mid insertions were not catalogued, because the variant callers did not report the 

length. 4) The remaining variant types > 30 bp were classified as Structural Variants (SVs), with 

the exception of large deletions, which were > 150 bp.  

4.1.3.  Benchmarking of variant callers and the Log istic Regression Model 
(LRM) 

Variant callers that focus on the detection of SNVs and indels are highly accurate, due to 

small variant sizes, which facilitate a correct the read mapping compared to larger events8,85. The 

challenge resides on the SVs, for which the accuracy varies between different detection methods, 

mainly due to the variant and library properties8,9,34,46, showing inconsistencies across SV 

detections. 

There are different studies that have performed benchmarking analyses of different 

variant callers9,46,128,130,192, evaluating their detection properties, such as variant type and size, 

performance using different sequencing platforms, genomic context, and effect of NGS or TGS 

(Third Generation Sequencing) technologies. Usually, these studies also provide a ranking of 

variant callers showing the strengths and weaknesses of each caller in variant detection. These 

studies determined that there is not a single tool that can detect all structural variant types and 

sizes accurately. 

Merging SV results from individual variant callers is a good strategy to increase the 

precision and recall of variant detection; in addition, the improvement is accentuated if each 

software applies independent detection methodologies (SR, DP, AS, RD, ML)9,46,76. Currently, 

there are different tools to combine redundant SVs from different variant callers. SVmerge133, 

SURVIVOR135, Parliament2136, or MetaSV134 are tools that combine the outputs of variant callers 

by using unrelated decision logical rules, which usually are not optimal to obtain the best merge 

results, since the combination of imprecise callers could include noise in SV catalogues. For 

example, GoNL applied a logical rule-set to merge and filter the outputs161.  

 Alternatively, using machine learning approaches in the merging and filtering steps can 

improve the performance, since these methods analyse which variables are sufficiently 

“discriminative” to classify the variant as a true or false-positive, With better performance than 

simple logical rules. In this direction, FusorSV132 can merge and filter variants from independent 

tools, but unfortunately, it only uses two pre-set variables (SV type and size) for this purpose. 

Among the currently published panels, only the 1000 Genomes project used a machine-learning 

algorithm (Support Vector Machine model) to merge and filter indels and SVs1.  

In this context, we have performed a benchmark analysis by variant type, to evaluate the 

strengths and weaknesses of the variant detection software, and their accuracy in reporting SV 
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length and genotype. Finally, we created a machine learning model (Logistic Regression Model) 

using different discriminative features (detailed documentation in section 3.4.1.1 for SNVs/Indels 

and section 3.4.2.1 for SVs) to filter out the potential false-positive detections derived from 

inconsistent variant calling. 

4.1.3.1. Benchmark analyses of SNVs and small Indels 

 Currently, variant calling tools can accurately detect SNVs and indels with a higher 

precision in SNVs128,129. Although one of the most used variant callers is the Haplotype caller from 

the GATK consortium, new studies recommend other variant callers with better recall and 

precision results128,129. 

We performed a benchmarking of variant callers (section 3.2.1) for SNV and indel 

detections using an in-silico (artificial sample) and a GIAB (real sample) as golden samples. We 

classified/merged the results of the tools based on; 1) Variant type (SNV or Indel), 2) Position, 

and 3) Alternative allele (further details in section 3.2.3.4.1). Finally, we created with the GIAB 

data set, two versions of the Logistic Regression Model (LRM1, LRM2) for each variant type, 

including different variant callers. Finally, the models were validated using the in-silico dataset  

(details in section 3.4.1.1). For SNVs, Table 14 shows the recall and precision scores of each 

variant caller and LRM. 

 As reported in previous studies129, SNV detection was highly accurate, with >96% 

precision . The recall was slightly lower in the GIAB sample than the in-silico sample, but the 

trend was similar between the two samples. The recall and precision results from LRM1 and 2 

(Table 14) indicated no correlation between the number of variant callers and accuracy 

improvement, mainly due to the high precision reported by variant callers individually.  Due to 

irregularities in LRM decisions, the LRM2 only accepted the variants detected by Deepvariant, 

reflected by the same recall and precision results (Table 14). For this reason, these models were 

Variant caller metrics from GIAB 
sample (SNVs) 

Variant caller 
Recall 

(%) 
Precision 

(%) 

Deepvariant 95.50 96.93 

Haplotype caller 81.90 96.92 

Strelka2 95.30 96.88 

VarScan2 95.49 96.76 

Platypus 84.86 97.10 

LRM1 95.68 96.93 

LRM2 95.50 96.93 

Table 14. SNV benchmark using different software an d LRM combinations. To fit the model, we used 
the GIAB sample as the training dataset, then to validate the model, we used the in-silico sample (further 
details in section 3.4.1)  A) Benchmark results using the GIAB sample as a gold standard. The models were 
trained with the GIAB sample. Haplotype Caller and Platypus had the worst recall values. B) Benchmark 
results using the in-silico sample as a gold standard. The models are tested with the in-silico sample. The 
validation results from the LRM1 and LRM2 models showed no differences in recall and precision. 

LRM1: Deepvariant + Haplotype Caller + Strelka + Varscan2 + Platypus 

LRM2: Deepvariant + Haplotype caller + Strelka2 

 

Variant caller metrics from in-silico 
sample (SNVs) 

Variant caller 
Recall 

(%) 
Precision 

(%) 

Deepvariant 99.08 99.86 

Haplotype caller 97.38 99.85 

Strelka2 99.07 99.55 

VarScan2 99.15 99.20 

Platypus  87.40 99.59 

LRM1 99.22 99.86 

LRM2 99.08 99.86 

A) B) 
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not used to filter the SNVs from GCAT samples. However, to validate more variants in the SNV 

calling and improve the accuracy, we selected those variants supported by two or more callers in 

the GCAT calling (detailed description in section 3.7.2). 

Indel detection accuracy was similar to SNVs. Precision in the GIAB sample was higher 

(>95%) than the in-silico sample (>88%) (Table 15); this could be due to the location where the 

variants were inserted. As mentioned in section 3.3, the variants evaluated in the GIAB sample 

were located in conservative regions, facilitating their detection. In contrast, in the in-silico sample, 

where indels were randomly distributed across the genome.  

The LRM1 and LRM2 slightly improved the values obtained from the individual callers, 

with the exception of Strelka2 and VarScan2, which showed a higher precision by themselves 

(Table 15B). They had better precision than LRMs because most of the complex indels (ex: two 

contiguous indels) detected by Deepvariant and Haplotype caller were badly called. Also, the 

differences in recall and precision between LRM1 and LRM2 were not significant enough, which 

means that the inclusion of VarScan2 and Platypus in the LRM did not significantly improve indel 

detection (Table 15B). Thus we used LRM2 to depurate the indel detection in the GCAT variant 

calling.  

Chromosome X was analysed separately from the autosomes. For example, in X 

chromosome, Deepvariant resulted in noisy indel identification, producing downstream errors in 

the LRM2 decisions. For this reason, in X chromosome, we accepted those indels detected by at 

least two software. 

After evaluating the benchmarking results, only Haplotype caller, Deepvariant and 

Strelka2, were selected to detect the SNVs and indels in the GCAT samp les  for two major 

reasons: 1) They were the best callers in SNV detection, and 2) in indels, the LRM2 generated 

with those callers improved the precision and recall detection in autosomal chromosomes  

slightly, in comparison to the callers individually. 

Variant caller metrics from in-silico 
sample (Indels 1-30 bp) 

Variant caller 
Recall 

(%) 
Precision 

(%) 

Deepvariant 82.43 88.76 

Haplotype caller 83.65 89.01 

Strelka2 84.46 92.78 

VarScan2 82.76 91.99 

Platypus 46.11 86.46 

LRM1 83.79 89.11 

LRM2 85.31 88.89 

Variant caller metrics from GIAB 
sample (Indels 1-30 bp) 

Variant caller 
Recall 

(%) 
Precision 

(%) 

Deepvariant 89.16 96.02 

Haplotype caller 88.15 95.82 

Strelka2 88.00 95.93 

VarScan2 83.27 58.22 

Platypus 66.91 70.05 

LRM1 89.17 96.00 

LRM2 89.25 95.94 

A) B) 

Table 15. Indel benchmark using different software and Logi stic Regression Model (LRM) 
combinations.  A) Benchmark of indels using the GIAB sample. The models were trained with the GIAB 
sample. The precision of Haplotype caller, Deepvariant and Strelka2 was >95%, showing a high accuracy 
in variant detection. B) Benchmark results of indels using the in-silico sample. The models were tested with 
the in-silico sample. The recall was lower than in the GIAB results, decreasing to >83%. The precision 
decreased until >88%, evidencing the effect of size in variant detection.  

LRM1:  Deepvariant + Haplotype Caller + Strelka + Varscan2 + Platypus 

LRM2: Deepvariant + Haplotype caller + Strelka2                                                                                                                                                                                                           
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4.1.3.2. Measuring the breakpoint-error of each variant caller in SV 

discovery 

The detection strategies applied by variant callers determined the breakpoint resolution 

of SVs. Those strategies can be categorized into four principal groups: 1) Split-Read (SR), 2) de 

novo Assembly (AS), 3) Discordant-Reads (DR) and 4) Read-depth (RD). Thus, determining a 

breakpoint-error of variant callers is paramount of interest, because it helps to combine redundant 

SVs of different variant callers.   

 We evaluated the resolution to report the breakpoint of several SV types, by using the in-

silico sample, since the exact position of the SVs was known. A breakpoint-error was estimated 

for each variant caller, using the F-score metrics, an harmonic mean of precision and recall 

values, which provides the variant detection quality. The highest F-scores determined the 

breakpoint-error used for each variant caller (detailed description in section 3.2.3.3). Table 16 

shows the breakpoint-errors selected for each variant caller. 

 Selecting the most accurate breakpoint-error by each variant caller allows combining 

redundant SVs efficiently. Table 16 demonstrated that CNVnator was the variant caller with the 

worst breakpoint resolution, consistent with previous studies77,193. On the other hand, all variant 

callers that used SR, AS, or both, showed high breakpoint resolution , with translocations as 

the SV type which was reported with less resolution. The tool which reported breakpoints more 

accurately in every SV type was Pindel , proving the superiority of combining different detection 

strategies (Table 16).  

4.1.3.3. Accuracy of detection of SVs by size 

The SV size is a factor that plays a key role in its ability to detect the SVs. As the SV size 

increases, the mapping quality of the reads decreases, leading to misinterpretations and false-

positive detections8. For example, the de novo Assembly (AS) and Discordant-Reads (DR) 

Table 16. Selected Breakpoint-error of each variant  caller by SV type. SV detections did not have base-
pair resolution. To combine different variant callers, we first determined the accuracy to correctly report the SV 
position. The breakpoint-error allowed us to determine if a SV detected by different tools as the same since 
the breakpoint-errors overlapped. 

 None: The software does not detect this variant type. 

Callers Strategy Breakpoint 

Resolution 

(31-150 bp) 

Mid DEL 

Breakpoint 

Resolution 

(150 bp ≥) 

DEL 

Breakpoint 

Resolution 

(50 bp ≥) 

DUP 

Breakpoint 

Resolution 

(50 bp ≥) 

INV 

Breakpoint 

Resolution 

(50 bp ≥) 

INS 

Breakpoint 

Resolution 

(50 bp ≥) 

TRA 

Delly2 SR+DR+RD ±10 ±100 ±10 ±10 ±10 ±300 

SvABA AS+SR+DR ±10 ±100 ±10 ±10 ±10 ±10 

Manta AS ±10 ±50 ±20 ±10 ±10 ±200 

CNVnator RD None ±300 ±100 None None None 

Whamg SR+DR+ML ±10 ±10 ±10 ±10 ±10 None 

Lumpy SR+DR+RD ±10 ±100 ±50 ±10 None ±200 

Popins AS None None None None ±10 None 

Pindel SR+DR ±10 ±10 ±10 ±10 ±10 ±10 



 

103 
 

strategies can detect a broader range of SV sizes than others9. Therefore, each variant caller is 

better suited to detect specific size ranges of SVs, depending on the strategy used.  

To obtain a representation of variant caller performance for each SV size, we evaluated 

the F-score of each caller, grouped by SV type and size. We divided the SVs from the in-silico 

sample by sizes ((30-50], (50-75], (75-100], (100-125], (125-150], (150-300], (300-500], (500-

1000], (1000-2000], (2000-3000], >3000), and evaluated their F-score by each size (further details 

in sections 3.2.3.4.2 and 3.2.3.4.3) (Figure 16). 

Figure 16 reveals that variant callers exhibited their best performance in detecting 

variants with sizes between 100-150 bp . Besides, Delly2 and Manta showed the F-scores at 

sizes ≥ 500 bp, highlighting their efficacy to detect large SVs. Lumpy demonstrated high accuracy 

to detect SVs at sizes between 75 to > 3000 bp, covering efficiently all size ranges (Figure 16). 

CNVnator detected deletions and duplications of at least 125 bp, mainly due to the Read Depth 

strategy. Overall, considering the size as a variable, the Logistic Regression Model 

outperformed each of the individual tools in SV detection acro ss all SV sizes, obtaining          

F-scores > 90%  (Figure 16). These results showed the relevance of size in SV discovery 

performance. 

Particularly, the variant callers showed different performances according to the SV type 

(Supplementary Figure 11). Regarding Deletions, the variant callers detected all size ranges 

efficiently. For Deletions > 150 bp, Pindel, SvABA and Whamg, had decreasing F-scores as size 

increased. Lumpy and Delly2 maintained their F-scores above 90%, except for largest sizes 

(Supplementary Figure 11). For Duplications and Inversions, depending on the size, the variant 

callers experimented different performances. For example, for duplications, Whamg had an F-

score of 76% between 500-1000 bp, and of just 4% for size ranges of 150-300 bp (Supplementary 

Figure 11). However, the LRM outperformed all variant callers individually in SV d iscovery 

across all SV types and size ranges,  highlighting the importance of building the LRM by 

including different size ranges as a variable (Supplementary Figure 11). 

Figure 16. Overview of Structural Variant (SV) discovery distributed by size. The F-score is calculated 
using the recall and precision of each algorithm grouped by sizes. The F-score of variant callers fluctuated 
across SV sizes, improving their detection at size ranges betweem 100-150 bp. 
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4.1.3.4. Benchmarking analyses of SVs between variant callers, GoNL 

strategy and Logistic Regression Model 

The properties of variants (i.e. size, type) or sequencing libraries (i.e. read length, 

coverage, insert size)9,46, affect the recall and precision in SV detection algorithms, reaching up 

to 89% of false-positive in some SV types and sizes8. Combining the variant caller outputs could 

thus improve SV detection accuracy, obtaining better SV catalogues. For example, SVmerge or 

FusorSV demonstrated an improvement in recall and precision by combining the output of 

different callers. Nevertheless, these results could be further improved in performance by 

including more variant and algorithm properties. 

To improve the variant detection accuracy of our calling, we designed a custom merge 

of different variant callers for each SV type based on; 1) The variant detected was located in the 

same chromosome between variant callers, 2) The overlapping breakpoint-error positions, and 3) 

An SV size in reciprocal overlap (RO) of at least 80% between algorithms (further details in section 

3.2.3.4.2). Finally, to filter potential false-positive detections, a specific Logistic Regression Model 

(LRM) was developed for each SV type (section 3.4.2), including discriminative variables such as 

the size, the number of tools that detected the same variant, among others (complete description 

of discriminative variables in Table 5). Figure 17 illustrates the recall, precision and F-score 

distribution of each variant caller, the Logistic Regression Model, and logical rules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 . Overview of the Variant callers and Logistic Regression Model (LRM) 
benchmarking. General description of all variant discovery, evaluating the precision 
and recall of the algorithms and strategies considered in the project. The LRM 
outperformed all variant callers and logical rules strategies, obtaining an F-score of 
0.9 and precision up to 0.95, without losing recall.  

>=: Logical rules (ex: >= 2 callers, at least two callers and methods detect the same 
variant).; LRM: Logistic Regression Model.;       Shaded Area : Confidence interval 
(CI) area of each algorithm.; F= : F-score. 
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These results demonstrated the LRM improvement in contrast to variant  callers 

individually or using simple logical rules  (Figure 17). Considering all variants together, the 

LRM obtained an F-score of 0.9 and precision of 0.95, without losing recall,  showing that 

LRM increased the strengths of all variant callers individually (Figure 17). The combination 

strategies by logical rules (>=), such as >= 1 caller, improved the recall to 0.91 but at the cost of 

a heavy decrement of precision, to near ~0.5. Besides, the >= 2 caller strategy followed by the 

GoNL project increased just 2% in recall, but obtained ~14% less precision than the LRM model, 

(Figure 17). This result suggested that GoNL included a large number of false-positives in their 

catalogue. However, in this analysis, the recalls for SV type-specific software, such as CNVnator 

or Popins, and those that detect small SVs (average length between 30-150 bp) were markedly 

lower, due to their inability to detect all variant types. 

Particularly, the LRM accuracy varied across SV types  (Supplementary Figure 3). For 

Deletions and Insertions, the LRM outperformed all strategies and callers individually, highlighting 

the relevance of building LRMs to improve variant discovery (Supplementary Figure 3A, B, C). 

For example, for insertions, the F-score of LRM was 18% larger than the >=3 callers rule , the 

second largest F-score obtained. However, for inversions, duplications and translocations, the 

LRM performance was similar to the individual variant callers and logical rules (Supplementary 

Figure 3D, E, F). A particular instance of this is that to duplications, the LRM and the >=2 caller 

strategy obtained similar accuracy values, with the LRM only 1.3% more precise. For inversions, 

the LRM performed better than the most accurate variant caller, highlighting that logical rule 

combinations decreased the recall and precision compared to variant callers individually 

(Supplementary Figure 3D). Finally, for translocations, no difference was appreciated between 

strategies, showing that while variant callers improved the variant discovery, the model filtered 

fewer SVs. 

4.1.3.5. Benchmarking of genotyping between variant callers and Logistic 

Regression Model 

Reporting an accurate genotype is necessary for population studies such as GWAS, 

phasing, and linkage disequilibrium analysis116–118,194. For this reason, we analysed the 

genotyping precision of each caller and Logistic Regression Model (LRM), using as a gold 

standard the genotype reported by the in-silico sample (further details in section 3.2.3.5 and 

section 3.4.2.3). Figure 18 illustrates the genotype error of the tools and LRM. 

Figure 18 . Genotype benchmarking between Logistic regression model (LRM) and 
variant callers. The genotype strategy of LRM proportionally, outperformed the accuracy 
compared to all variant callers, considering the number of variants genotyped, including 
2,999 variants with only 5.6% of genotype errors. 

Total SVs in-silico= 3,536 
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The LRM genotyped ~85% of all in-silico sample SVs, with a genotype error of only 

5.6% (Figure 18). Proportionally, the LRM genotype strategy was the most precise in 

comparison to variant callers individually . Besides, evaluating the genotype accuracy across 

SV type, the genotype concordance of LRM was higher than other variant callers (Supplementary 

Figure 4). Although compared with the >=2 caller strategy, the LRM did not improve the variant 

discovery in duplications (Supplementary Figure 3E), the LRM was able to reduce the genotype 

error to under 20%, suggesting that our custom genotype strategy was well-designed. Moreover, 

for duplications, the genotype error of Manta and Pindel was 100% for heterozygous 

variants , which indicates a bias in their genotyping procedure. In the same way, Whamg did not 

report heterozygous insertions or Pindel in translocations. SvABA generated high genotype errors 

in all SV types (Figure 18), suggesting that their genotyping strategy had room to improve. These 

results demonstrated that the combination of variant callers' genotypes was the best strategy to 

reduce genotype errors. 

4.1.3.6. Evaluation of the strategy used to generate the BAM files of the 

GCAT samples 

Variant discovery using NGS can produce false discoveries62,113,195, which drive to 

misinterpretation of the results obtained from variant callers. In this direction, BAM file generation 

plays an important role in decreasing the FDR. There are different error-prone steps in the 

generation of the data and BAM file, such as the production of duplicated reads in the PCR 

amplification step, the presence of not well-calibrated base quality scores due to systematic errors 

of sequencing machines, read misalignments, or artefact reads mapping to the reference 

genome72. Thus, the GATK Best Practices recommendations and the hs37d5 reference genome 

could decrease the false-positive detections without affecting the recall of variant callers. 

Figure 19 . Accuracy in detecting SNVs and indels using different strategies to construct the BAM 
files . In the x axis there are the strategies followed to construct the BAM files. Then, we evaluated the 
precision and recall of indel and SNV for Haplotype caller, Deepvariant and Strelka2.  

        Dotted line: Difference of Recall and Precision of a Variant caller between independent BAM file 

constructions. 
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To evaluate the best strategy to construct the BAM files in GCAT samples, we 

constructed the in-silico BAM file as follows: 1) Following the Best Practices of GATK using the 

hs37d5 genome, 2) Aligning the reads against the hs37d5 or 3) Aligning the sequences against 

the hg19 reference genome. Finally, we calculated the precision and recall for each variant caller 

and condition analysed (further details in section 3.2.3.6). Figure 19 and Figure 20 show the recall 

and precision categorized by variant type. 

Figure 19 shows the effect of different BAM file constructions on SNV and indel 

detections. Using the hg19 reference genome improved indel recall , mainly for Haplotype 

caller, producing a better recall without losing precision. Nevertheless, the differences were not 

considerable between the different BAM file construction strategies. On the other hand, the recall 

of SNV discovery was near 100%, with an improvement of precision when using the 

hs37d5+GATK Best Practices strategy .  

Overall, the accuracy of  SVs discovery did not vary when using different strategies 

in the construction of BAM files (Figure 20). Mainly, the recall and precision results were 

constant in all SV types and variant callers, except for Delly2, for which the recall for inversions 

was lower when the BAM file using the hs37d5 reference genome. Besides, the strategy of 

hs37ds+GATK Best Practices improved the overall precision of translocation detection slightly. 

 

Figure 20. Structural Variant accuracy using different strategies to construct the in-silico BAM files.   

         Dashed line: Difference of recall and precision of a Variant caller between independent BAM file 

constructions. ; • Black dots: Outlayers. 
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These results (Figure 19, Figure 20) showed no difference in recall and precision when 

using different BAM file constructions in the in-silico sample. However, the most conservative 

results were obtained with the BAM file generated with hs37d5+GATK Best Practices 

strategy . Thus, to obtain accurate results in variant calling of real samples, we decided to create 

the GCAT BAM files applying the hs37d5+GATK Best Practices strategy. 

4.2 Characterisation of the GCAT samples  

Genetic variability is related to evolution and diseases/traits on humans8,9,113, with a higher 

impact on the phenotypes from the Structural Variants (SV) than SNVs8,9. The patterns of genetic 

variability among population groups are associated with geographic ancestry and can affect the 

disease risk or treatment efficacy differently6,7. For this reason, more population-specific studies 

are necessary to characterise better this genetic diversity.  

In this direction, this thesis was elaborated in collaboration with the GCAT-Genomics for life 

(GCAT) project, which provided the samples necessary to characterise at a genetic level the 

Iberian population with the aim of understanding the effect of genetic variability on Iberian-

phenotypes. The data was collected from 19,267 participants at ages between 40-64 years in 

Northeast region of Spain (Catalonia). Of these, 16 % were self-reported as non-Caucasians, 

mainly from American-Hispanic origins (further description of the GCAT project in section 3.53.5.1 

and in Obón-Santacana et al.173). 

From the variety of data collected, genomic data was utilized to understand and characterise 

the effect of genome variability on human-Iberian phenotypes. The GCAT Project produced two 

types of genomic data: 1) In 5,489 participants, the genomic profile was characterised using a 

genotyping array (Multi-Ethnic Global (MEGAEX2), and 2) In 808 participants, it was obtained 

genome-wide at high coverage (30X)  (with HiSeq4000 machine) (detailed genomic data 

description in Table 8 and Obón-Santacana et al.173). This second resource is highly important 

for two major reasons: 1) Whole-Genome Sequencing (WGS) allows for the study of the entire 

genome variability of the samples, including SNVs to large Structural Variants, and 2) The high 

coverage allows for a more robust variant discovery process and genotyping, making the SV 

detection more feasible. 

In this section, we classify the results in four main blocks: 1) Sample filtering based on 

population and genetic features in order to obtain a set of representative Iberian samples, and 

the importance of high coverage in SV detection, 2) Relevance of integrating different variant 

caller outputs and depurate the variants using a Logistic Regression Model (LRM), 3) A detailed 

description of SVs in humans and their functional impact, and finally, 4) Validation of all variants 

recovered in the variant calling pipeline. 

4.2.1.  Filtering of GCAT samples and features of B AM files 

The characterisation of the genetic architecture by different ethnic/population origins is 

essential for two reasons: 1) Each population has genetic particularities, mainly due to low-

frequency (0.01 < MAF ≤  0.05) and rare (MAF ≤ 0.01) variants, because those variants appeared 

recently in the population or natural selection affected the variant negatively in a specific 

population region2–4,50,110.  Besides, rare variants could increase the prevalence of rare or complex 

diseases in specific populations4,6,7, which indicates the necessity to improve the genetic 
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characterisation of each population individually. In addition, 2) Generating population-specific 

panels of genetic variability improves the imputation of rare variants, in contrast to global panels, 

which impute mainly common (0.05 ≤ MAF) and low-frequency variants accurately2–4,110. 

On the other hand, the sequencing coverage is determinant to perform accurate variant 

discovery and genotyping, improving variant detection of low-frequency and rare variants51,63,196. 

Thus, sequencing at high coverage improves variant detection, mainly for Structural Variants 

(SV), where the mapping errors are frequent8,46. 

In this section, we explained the sample filtering of GCAT in order to obtain an Iberian-

specific cohort. Next, we study the relevance of coverage in SV detection. Finally, we analyse the 

importance of generating a reference panel without chromosome Y in female samples.  

4.2.1.1. Filtering the non-Iberian representative samples 

The samples in the GCAT project were obtained in different areas such as rural, coastal 

or mountain, and in big cities of the Northeast region of Spain (Catalonia). We classified our 

samples as Iberian (IBS) following the definition in the 1000G project, which referenced this 

population as the “Iberian Population in Spain”1.  

To characterise the Iberian samples in the GCAT project, we first filtered the samples by 

quality to decrease false discovery rates, and select the Iberian population representatives. From 

808 GCAT samples, one sample  was discarded for not meeting all quality controls (further details 

in section 3.5.3). Secondly, we discarded all samples which were genetically different from the 

Iberian population. This was done by applying a Principal Component Analysis (PCA), in addition 

with the samples from the 1000G and Genomes and the Population Reference Sample 

(POPRES) samples (further details in section 3.5.3.3). Figure 21 shows the observed genetic 

variation between all analysed populations. 

As previously mentioned in the features of the GCAT samples, 16% of participants were 

self-reported as non-Caucasian, mainly of American-Hispanic origin. Figure 21A and Figure 21B 

confirmed this information, showing that the vast majority of discarded samples was from Latin 

American populations. Besides, we also discarded participants with the birthplace in Spain, 

showing the importance to analyse the genetic background of participants, even when their self-

reported as Iberians. Otherwise, we could include noise in the population-specific studies. After 

applying the PCAs, we discarded 18 samples from another population . Figure 21C confirmed 

that the remaining GCAT samples overlapped with the Iberian samples from the 1000G and 

POPRES projects, indicating that sample selection was made correctly. 

 Finally, two additional filtering steps were performed. First, we evaluated the family 

relatedness between the GCAT samples, by applying the Identity by Descent (IBD) test (detailed 

documentation in section 3.5.3.4), identifying two relationships, one full-sibling, and other first-

cousin, respectively. One of each pair was discarded (further details in section 3.5.3.4) (Figure 

21D). Second, we applied a PCA with all remaining GCAT samples, and we filtered out two 

extra samples , according to the mean ± 4sd criteria (section 3.5.3.5) (Figure 21E). 

After these filtering steps, 785 of 808 samples  were used to characterise the genetic 

variability of the Iberian population and perform a panel of genetic variability Iberian-specific. 
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4.2.1.2. Importance of coverage in variant detection 

Library properties, such as insert size, read length, or coverage, influenced SV 

detection9,46. Particularly, high coverage allows for a better genotype in heterozygous 

variants46,63,64 (section 1.2.4). Besides, de novo assembly algorithms require high coverage to be 

executed correctly, showing the relevance of coverage in variant and genotype calling 

approaches8,105. 
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Figure 21. Evaluation of the homogeneity in the GCAT cohort. A)  Distribution of the GCAT samples 
among 1000 Genomes, with PCA1 and PCA2. B) Distribution of the GCAT samples among 1000 
Genomes, with PCA1 and PCA3. C) GCAT samples distribution among 1000 Genomes European 
samples and PROPES project using PCA1 and PCA2. D) Identity by Descent test (IBD). E) GCAT 
homogeneity, with PCA1 and PCA2. 
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 In this context, the effect of coverage on SV detection has been evaluated. This study 

was performed using 10 GCAT samples selected randomly, that was later downsampled at 

different coverages: 5X, 10X, 15X, 20X and 25X (Figure 22) (further details in section 3.5.4).  

 

 

 

 

 

 

 

 

 

 

 

Variant caller capacities are influenced by coverage, up until seven times more 

variants can be found using a coverage of 30X in comparison to one of  5X  (Figure 22). 

However, not all variant caller strategies were equally affected by coverage . For example, 

de novo assembly tools, such as Manta, SvABA and Popins, did not benefit from coverages 

higher than 30X to detect more variants, as opposed to the Discordant-Read (DR) or Split-Read 

(SR) strategies, used by Delly2, Lumpy, Pindel, and Whamg. Besides, using high coverages, 

improves the accuracy of variant detection by Read Depth (RD) strategies  (ex: CNVnator), 

filtering potential false-positives (Figure 22). 

Finally, the detection of different SV types was differently affected by th e coverage ; 

for example, the performance of Whamg in detecting inversions was profoundly affected by 

coverage. The same happened with the detection of translocations by Lumpy, or de novo 

insertions with Pindel, evidencing a possible room of improvement in SV detection 

(Supplementary Figure 5). However, increasing the number of SV discoveries is not correlated to 

true-positive (TP) variants. For this reason, to obtain an accurate SV catalogue, combining 

different variant callers could decrease false-positives, enabling the correction of FP due to high 

coverages.  

4.2.1.3. Improving variant detection in chromosome X 

The study of sex chromosomes has been a challenge in next-generation sequencing 

studies. One of the major problems is the short-read alignment to the reference genome given 

that the X and Y chromosomes have high similarity in some regions such as PseudoAutosomal 

Regions (PARs). This can produce technical artefacts, affecting downstream analyses on variant 

calling73. 

By default, all reference genomes include both the X and Y chromosomes in sequencing 

studies74. However, including the Y chromosome in read alignment from female samples, can 

Figure 22. Variant calling performance at different coverages. High coverage 
(30X) allows detecting more SVs due to the number of signals available. Specific 
strategies, such as Read depth (RD), used by CNVnator, detected fewer variants at 
30X, mainly due to their recall on coverage changes, discarding more potential false-
positives. On the other hand, de novo assembly strategies (AS) used by Manta, 
SvABA and Popins, stabilize their detections at 30X. 
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have a negative impact on the variant detection of the X chromosome, due to the scavenger effect 

of the Y chromosome73,74. In order to verify these statements, the X chromosome coverage was 

evaluated in four GCAT samples (two female and two male samples), by constructing the BAM 

files with two hs37d5 reference genome versions, one including the chromosome Y and another 

without it (Table 17). In addition, the performance of variant detection in X chromosome was 

evaluated with Haplotype caller using three female samples (further details in section 3.5.2.1). 

 

 

 

 

 

 

 

The coverage distribution in the X chromosome was not equal across samples gender. 

The female samples included nearly double of reads than male samples (Table 17). Besides, the 

scavenger effect of the Y chromosome on female samples was not critical ; only 0.1% of 

reads were aligned in another genome region. In contrast, if we discarded the Y chromosome in 

the alignment of the male samples, the X chromosome increased the number of reads by 

around 4.2%  (Table 17). 

  

 

 

 

 

Thus, variant detection in female samples improved slightly without the Y 

chromosome  (Table 18), allowing a better variant characterization on the X chromosome.  Due 

to improvements of the coverage and variant detection of the X chromosome, these analyses 

suggested that variant calling could benefit from aligning samples to their gender-based reference 

genome, in the cases where the gender of the sample is known. 

4.2.2.  A general description of the variants recov ered after applying the 
merge strategy and the Logistic regression model   

Variant detection using short-reads data (100-300 bp) has been applied widely to analyse 

human genome61. The three major variant groups associated with genome variability are SNVs, 

Indels (< 50 bp), and Structural Variants (SVs) (≥ 50 bp). Fortunately, the variant callers designed 

to detect SNVs and Indels are accurate due to the small variant sizes, which do not affect critically 

the read mappability on the reference genome, in contrast, the larger SVs. 

Total Coverage in X Chromosome 

Sample and gender   With ChrY  Without ChrY  Difference  

JID250 (female) 40,510,267 40,558,146 0.11 % 

JID259 (male) 22,805,867 23,786,713 4.12 % 

JID297 (female) 40,741,933 40,784,267 0.10 % 

JID439 (male) 20,244.035 21,141,948 4.24 % 

Total Variants in X Chromosome 

Sample and gender   With ChrY  Without ChrY  Difference  

JID250 (female) 123,785 124,185 0.32 % 

JID297 (female) 119,278 119,616 0.28 % 

JID436 (female) 97,080 97,312 0.23 % 

Table 17. Distribution of X chromosome coverage by sample gender.  

Table 18. SNV and indel detected by generating a BAM file w ith a 
gender-based reference genome.  
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The detection of SVs using short-reads is a challenging problem, producing high False-

Discovery Rate (FDR) of 9-89% and recall between 10-70%8,61,62,77,99,100. Different studies 

recommended integrating multiple variant callers for SV detection to improve both the FDR and 

recall, showing the possibility to obtain a curated SV set5,8,9,46,76,95,161. 

In this context, to improve the variant calling of the GCAT samples, we performed a multi-

variant calling. The calling of SNV and small indels (1-30 bp) were performed by sample with 

Haplotype caller, Strelka2, and Deepvariant (section 3.6.1). We considered that a SNV or indel 

was consistent between these callers if they shared the same position and reference-alternative 

alleles. Next, for SNVs, we determined as false-positive all variants detected by one caller. For 

indels, we applied a Logistic Regression Model (LRM), classifying the variants as true-positive 

(TP) and false-positive (FP) (further details in section 3.7.2). The calling of mid deletions (31-150 

bp) and SVs was performed by the callers described in section 3.6.2. We carried out output 

integration by sample and SV type. Redundant mid-size deletions and SVs were combined if they 

fulfilled the following conditions: 1) Same SV type, 2) The breakpoint-error overlapped between 

software, 3) The variant size had at least 80% reciprocal overlap between callers. Then, to 

determine if the variant was a TP, we applied a specific LRM for mid dels and SVs (detailed 

documentation in section 3.7.2). 

After integrating all variant caller outputs by sample and variant type, we generated a 

multi-sample VCF, grouping all samples by each variant type independently. Then, for each 

variant, if the proportion of TP determined by LRM was ≥ 50% in the GCAT cohort, we classified 

it as a TP; otherwise, the variant was an FP (further details in section 3.7.3). Finally, we discarded 

(i) the variants which were not in Hardy-Weinberg Equilibrium (HWE), (ii) all variants with more 

than 10% of missingness, and (iii) monomorphic variants (section 3.7.4). Figure 23 shows the 

variant filtering results. 

 

 

 

Figure 23 was obtained discarding PARs and Y chromosome variants due to the high 

homology with chromosome X regions, prone to false discoveries. The variants were classified 

by sizes, with SNVs as the change of a single nucleotide; Indels, all variants of sizes 1-49 bp, 

short indels; and Structural Variants (SV) ≥ 50 bp.   

VARIANT RAW FINAL 

SNVs 58,529,907 30,325,064 
 Indels        

(1-49 bp) 10,452,204 5,017,199 

DEL 1,359,594 33,244 

DUP 674,817 6,269 

INS 352,939 12,782 

INV 228,091 10,115 

MEI 170,735 18,779 

TRA 117,048 7,989 

A) 
B) 

Figure 23. Properties of variant calling in the Ibe rian cohort. A) Pass rate after variant caller integration and 
Filtering with a Logistic Regression Model. B) All Variants detected by variant callers and recovered after the 
variant filtering. 

A) 

Total variants accepted in GCAT cohort after filtering= 35,431,441

51.81% 
48% 

2.45% 
0.93% 

3.62% 4.43% 

11% 
6.83% 
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We detected 71,885,335 variants . After filtering, we accepted 49.3%  of them, 

highlighting a better PASS rate in smaller sizes (Figure 23A). Our approach accepted around 50% 

of variants discovered in SNVs and indels, showing the necessity to use more than one caller to 

increase the recall and precision (Figure 23A). Besides, we estimated that 3.5M SNVs and 606K 

indels  were present in a single typical genome. Particularly, we accepted 3.07% of detected 

SVs, demonstrating a hard filter by our LRMs, which was particularly strict with DUPs  (Figure 

23). Also, the FDR in SV discovery using short-reads could be higher than 89%. Next, the 0.25% 

(89,178 variants) of 35,431,441 variants accepted were SVs , demonstrating less recurrence in 

the genomes than SNVs and indels.  

The assembly errors produced by short-reads 

are known. In inversions, 24 genome locations of hg19 

were described as prone to false-positive 

detections197. In our variant calling, 13 regions of 

these 24 were detected . After the filtering process, 

those 13 regions were discarded, demonstrating that 

the LRM model was highly accurate to filter false-

positives. 

Analysing the genetic architecture of 

population-specific regions allowed us to better 

understand the genome variability effect on phenotype between different populations6. Rare and 

low-frequency variants are usually associated with population-specific phenotypes, highlighting 

the importance of characterizing populations in detail3. Concretely, in the GCAT samples, 78.92% 

of all recovered variants had a MAF < 5%, with 50.18% of singleton and doubleton variants 

(Figure 24). This amount of variants could provide new insights into the genetic effect on 

phenotype in the Iberian population. 

4.2.3.  A detailed description and characterisation  of Structural Variants 
into the Iberian cohort  

In the last decade, variant discovery and genotyping using short-read sequencing has 

been applied in numerous population projects and studies. Unfortunately, the technology 

limitations could not accurately detect Structural variants (>50 bp) due to the coverage and read-

length limitations. Considering SNVs, the genomic variation between two human genomes is 

around 0.1% (4M SNVs per genome10), a difference that increases to 1.5% with SVs8,50,198. Also, 

the SVs affected between 3-10 times more nucleotides than SNVs9–11,105, showing their potential 

effect on human phenotypes. 

Nowadays, the sequencing costs of samples at high depth (30X) using NGS (short-reads) 

have decreased, allowing for the improvement of SV detection in populational studies9,51,64,196. 

However, these methods have some limitations, such as an underrepresentation of SVs 

discoveries in repetitive regions. These limitations could probably be ameliorated with the long-

reads generated with Third-Generation sequencing technologies (TGS)8,21,61. However, these 

technologies are expensive and cannot be used at large-scale or in population studies. Thus, the 

use of sequencing technologies has resulted in SV characterisation lagging, in contrast with SNVs 

and indels. 

Figure 24 . GCAT variants distributed  
by allele frequency.  
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For this reason, a recent publication in Nature Reviews “the SV in the sequencing era”95, 

suggested to generate complete catalogues of SVs11,65 and to find new relations of SVs with 

diseases. In this context, different initiatives such as gnomAD-SV or Ira M.Hall labs provided novel 

SV catalogues11,65, describing their effects on the human genome. On the other hand, Almarri et 

al.21 tried to characterize the distribution of SVs in different populations. In this direction, we 

focused on the characterisation of the 89,178 SVs discovered in the GCAT cohort in order to (i) 

provide new variants not already discovered by the community, and (ii) to improve the functional 

insights of the impact of SVs in humans. 

4.2.3.1. Comparison of variants detected against different repositories 

Since the first Copy Number Variant (CNV) detected in the 2000s, the SV discovery has 

been limited due to technological limitations95. Different public archives such as dbVar96 and 

Database of Genomic Variants (DGV)96,97 collected all SVs validated by the scientific community. 

Besides, new projects such as gnomad-SV, Human Genome Structural Variant Consortium 

(HGSV) or Ira M.Hall lab characterised more SVs, generating new catalogues.  

In order to evaluate the number of new SVs detected by our project, we used the 

databases mentioned before, considering an SV as the same if positions overlapped in a window 

of ±1000 bp, the SV type was coincident and there was at least 80%  of length overlap across the 

projects (further details in section 3.8.1.2). Besides, we used the dbSNP database to evaluate the 

number of new SNPs and Indels detected by our project (further details in section 3.8.1.1). 

Unique GCAT variants 

Variants shared across projects 
Unique SV GCAT variants 
SV Shared with 1000G and GoNL 

A) B) 

D) C) 

Figure 25. New variant contribution in comparison to popular repositories. A) The SNVs B) and indels 
compared with dbSNP. The majority of new SNVs and indels discovered were Singletons, demonstrating that 
the variants with MAF > 1% were already discovered. However, 12.84% of common SNVs from the Iberian 
catalogue were not already catalogued, indicating possible population-specific variants C) In SVs, the 
contribution of new SV discovered was greater than SNVs and indels, being rare SVs (MAF < 1%) as the 
lesser characterised (Translocations were discarded). D) Considering the SVs included in reference panels, 
52.44% of common SVs and 71.63% of low-frequency SVs from Iberian catalogue were not already included.
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19.18% of SNVs and indels included in the Iberian catalogue (35.3M) were not 

already classified in dbSNP ,  84.32% of which variants (MAF < 1%). Besides, singletons from 

SNVs and indels, 34.25% and 22.32% respectively, comprised most of the new variants (Figure 

25A, B). However, 12.84% of common SNVs were not already included in dbSNP  (Figure 

25A), possibly due to population-specific variants. Notwithstanding, evaluating SNVs that 

overlapped only by position but that not match the alternative allele, resulted in less than 1% 

SNVs with MAF > 1%  (Supplementary Table 9), indicating that most of MAF > 1% not described 

were polymorphic variants. 

On the other hand, 61% of SVs from the Iberian catalogue were new , a majority of 

which with MAF < 1% (88.31%). 21.22% and 44.32% of common and low-frequency variants 

were new (Figure 25C) , demonstrating that SV discovery was skewed compared to SNVs and 

indels. Nevertheless, all catalogued SVs were not included in reference panels, and thus, were 

not available for GWAS studies. In this context, 14.60% of SV from the Iberian catalogue were 

shared in 1000G and GoNL. 52.44% of common and 71.63% of low-frequency SVs were 

unique from the Iberian catalogue  (Figure 25D), highlighting the interest to convert this 

catalogue to a reference panel, in order to increase the chances to include more SVs in GWAS 

studies. 

4.2.3.2. Variant size ranges detected by our methodology 

Detecting large SVs using short-reads is challenging due to alignment limitations, leading 

to false-positive detections and misinterpretations. For example, discovering large inversions is 

not feasible because many of them are inserted between repetitive regions and segmental 

duplications, hindering their detection67. Different projects such as 1000G or gnomAD-SV 

distributed the SVs by sizes, showing variant discovery limitations in some ranges. Figure 26 

shows the SV distribution by sizes in our project. 

 

 

 

 

 

 

 

 

 

 

 

The median size of SVs discovered in the Iberian cohort was of 291 bp , which was 

consistent with gnomAD-SV, suggesting that SV detection using short-reads was favourable at 

Figure 26. Structural Variant distribution by length. The bulk of SVs 
detected was between 100 bp and 10K. At large sizes, the SV 
discoveries decreased. The three peaks observed in MEIs 
corresponds to ALUs, SVA and LINE1, respectively. MEI: Mobile 
Element Insertion; DEL: Deletion; DUP: Duplication; INV: Inversion 

S
V

 d
is

co
ve

re
d 

(lo
g 1

0)
 

S
V

 d
is

co
ve

re
d 

(lo
g 1

0)
 

ALU 

SVA 

LINE1 



 

117 
 

small sizes. The median size of SVs type discovered was categorised as follows: 312 bp DEL , 

584 bp DUP , 1,531 bp INV, and 279 bp MEIs .  

The size distribution between all SVs detected showed a larger number at small sizes 

(Figure 26), in contrast to other projects, such as 1000G or dataset of Ira M. Hall lab. We detected 

more inversions at sizes between 1-1.6 Kbp (Figure 26) than 1000G, gnomAD-SV and dataset 

of Ira M.Hall lab, highlighting the relevance to use different variant callers to improve the recall. 

However, we detected duplications and inversions bigger than 10M bp, with a duplication of 197 

MB located in chromosome 2 position 33,141,357, as the largest SV. These uncommonly large 

sizes suggested that these were false-positives or miss classified variants; however, these 

represented just 0.086 % of all SVs . Finally, the length analysis elucidated that the three peaks 

in MEI discoveries  were associated with the three main groups of transposons, such as ALU 

(250-350 bp), SVA (1-1.3 Kbp), and LINE1 (6 Kbp) (Figure 26). Overall, we could detect SVs at 

different sizes, which allowed us to improve the SV characterisation in the Iberian cohort. 

The median of nucleotides affected by SVs (without including INS and TRA) in a genome 

was around 211M bp.  This represented 6% of all nucleotides in humans , in contrast to 4M with 

SNPs. These results reinforced the theory that SV had a large influence on human phenotypes 

due to the large number of bases altered in a single genome. Common variants (MAF ≥ 5%) 

affected 66.89% of nucleotides , with the only 0.27% of  rare variants (MAF< 1%) the group 

in which fewer nucleotides altered in a single genome. Besides, 97.87% of 211M bp were 

affected by duplications , followed by deletions with 1.65% . This suggested that CNVs could 

be the SV type with a larger impact on human phenotypes. 

4.2.3.3. Structural Variant distribution in the Iberian cohort 

The number of SVs per genome and its distribution in a population has been updated as 

the sequencing technologies evolved. The gnomAD project, using NGS technology estimated 

around 7,439 SVs per genome. However, studies which used TGS technology estimated more 

than 20,000 SVs per genome66,67,95. These results highlighted the difficulties in determining the 

SV number per genome and their distribution in a cohort accurately.  

In this direction, we analysed the allele frequency distribution into the GCAT cohort and 

the median number of SVs per genome using short-reads, considering that SVs in inserted 

repetitive and homologous regions were under-represented in this dataset due to NGS technology 

limitations.  

A) B) 

Figure 27. Structural Variant (SV) distribution in the GCAT cohort. A) Allele frequency distribution in the 
GCAT cohort. B) SV categorized by type and distributed by allele frequency in the GCAT cohort. 
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76,79% of detected SVs were rare variants  (MAF < 1%), of which 58,63% were 

sample-specific  (singletons and doubletons) (Figure 27A). However, gnomAD-SV identified 

around 92% of SVs as rare. These results suggested the necessity to characterise SVs in a  

specific population, in contrast to global projects such as gnomAD or 1000G, to improve the allele 

frequency particularities of each population individually. The predominantly variant type were 

deletions with 37.3%  of all variants, followed by MEI (21.1%), insertions (14.3%) , inversions 

(11.4%), translocations (8.8%) , and duplications (7.1%)  (Figure 27B). In all SV types, the 

singletons were predominant; besides, 91.3% of all inversions  were singletons and 

doubletons  (Figure 27B). These results showed the difficulties of detecting recurrent inversions 

in human genomes using short-reads. This result was consistent with previous studies, where the 

bulk of inversions were located in repetitive regions66, limiting their detection with NGS 

technologies. 

We estimated that 6,393 SVs were included in a single genome . The allele frequency 

in a genome was opposite to its population distribution, with common variants as the most 

represented at 85.28% , followed by low-frequency variants at 8.43%  and rare variants (MAF 

< 1%) at 5.21% (Figure 28A). This distribution was concordant with the observations of the 

1000G, in which 1-4% of variants per genome had a MAF < 5%1. Deletions were the most 

represented SVs and inversions, the less recurrent (Figure 28B). 

4.2.3.4. Functional impact of Structural Variants 

Structural Variants (SVs) are the major biological variability source both at a population 

and at individual level9–11,75,95. Besides, SVs can modify gene expression, topological associating 

domains (TAD) or disrupt protein-coding genes, producing an impact on gene function or 

developing different rare or complex diseases and developmental disorders5,11,65,66,95. 

In this context, we evaluated the functional impact of the SVs detected in the GCAT 

project (89,178 SVs) using the AnnotSV75 tool, focused on annotating all SVs using different 

repositories such as Refgene, Online Mendelian Inheritance in Man (OMIM), GeneHancer 

database37 (all databases detailed in Table 12) and provided the pathogenicity levels of SVs, 

based on morbid genes described in the literature (section 3.12.2.1). Also, AnnotSV provided the 

pLI and HI values to evaluate the loss of function intolerance of genes (further details in section 

Allele 
Frequency  DEL INS INV DUP TRA MEI 

Common 2,973 1,334 47 247 147 700 
Low 

frequency 212 134 9 49 42 85 

Rare 160 95 4 33 10 25 

Doubleton 7 2 1 1 1 3 

Singleton 20 7 6 4 4 6 
Median SV 

type per 
genome 3,372 1,573 68 335 207 821 

A) B) 

Figure 28. Structural Variant (SV) distribution in a human genome. A) Allele frequency distribution 
per genome. B) Median of SVs per genome, categorized by SV type and distributed by allele 
frequency. 
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3.12.2.1). We benchmarked the annotation using SnpEff152, which can annotate DEL, INV, and 

DUP (section 3.12.2.1).  

  

The pathogenic effect of SVs on humans is mostly unknown. The majority of SVs (87.7%) 

are reported as “likely benign” or “likely pathogenic”  (Figure 29), demonstrating ambiguity 

in their classification. Besides, deletions and duplications were better characterised, because 

more research was done in these SV types (Figure 29A). Similarly, as the allele frequency 

increased, the SVs knowledge roses too, reflected in an increase of the “benign SVs” predictions 

for common variants (Figure 29B). It should be noted that 17% of discovered SVs were 

classified as “likely pathogenic” , showing opportunities to associate new SVs to different 

diseases. However, the datasets used to annotate these SVs still have room for improvement. 

For example, the inversion 11q13.2 is strongly associated with obesity and common diseases199, 

and AnnotSV reported this variant as likely benign, demonstrating that some likely benign SVs 

could, in fact, be related to diseases. We found that ~16% of all SVs per genome, 

independently of allele frequencies, could be associated with a pa thogenic effect , 

evidencing a deleterious effect of SVs also at high allele frequencies (ex: common, low frequency) 

(Supplementary Table 4).  

The functional interpretation of genome variability is related to protein-coding genes. 

However, the variants in intronic or intergenic regions, such as regulatory regions could also affect 

the gene function. In this context, we annotated the SVs to know their potential effect on gene 

function (section 3.12.2.1). 

 

A) B) 

Figure 29. Pathogenic predictions of SVs. A) Pathogenic distribution by SV type. B) Pathogenic distribution 
by allele frequency. 
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46% (41,672) of detected SVs in the GCAT project overlapped with geneti c regions . 

The deletions (36.64%) was the most predominant, followed by Mobile Element Insertions (MEI) 

(21.2%), de novo Insertions (14.4%), inversions (11.34%), translocations (8.8%), and duplications 

(7.62%). Similar results were obtained with SnpEff, showing the concordance between different 

annotation tools (Figure 30D). Besides, the detected SVs in the gnomAD-SV and Audano et al 67 

projects overlapped with genetic regions in 47.7% and 46.6%, respectively, in concordance with 

the GCAT results. Also, for gnomAD-SV, 49.89% of SVs that modified genes were deletions, 

followed by MEIs (26%), similar to the GCAT catalogue. However, duplications and inversions 

represented 15.54% and 0.26% respectively, differing from our results, showing the importance 

of using more variant callers to improve variant discovery. On average, we estimated that 

2,868.36 SVs overlapped with genes per genome . 

The number of genes modified by SV was correlated to the SV length. As we mentioned 

in section 4.2.3.2, the duplications and inversions were the types with the largest SVs (Figure 26), 

so one SV could overlap with multiple genes. In this context, 5.42% of SVs (2,260 SVs) were 

involved in multiple gene modifications. In the whole GCAT project, the SVs affected 21,003 

genes  (protein-coding and non-protein-coding genes), and inversely, SVs overlapped gene 

77,666 times  (Figure 30A). Duplications were the most predominant, affecting 46% of 77,666 

times that a SV overlapped a gene, in contrast to insertions (8%) and translocations (4.24%) 

(Figure 30A). More than 88% of SVs overlapped only intronic regions , highlighting that 

Figure 30. Structural Variant annotation in the human genome. A) Structural Variant location in protein-
coding and non-protein-coding genes. B) Structural Variant location in protein-coding genes. C) Structural 
Variant distribution in Topologically Associated Domains (TAD) boundaries. D) Proportion of SVs annotated in 
genes, using AnnotSV and SnpEff. By SV type, deletions overlapped more gene regions than other SV types. 

Tx = Transcript; UTR = untranslated regions 
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Total SVs in GCAT without TRA, INS, MEI n= 49,628
Total SVs overlapped in Genes by AnnotSV= 23,096

Total SVs overlapped in Genes by SnpEff= 22,771

TAD boundary regions affected by SVs n= 6,657 

Number of times the SVs overlaps in genes n= 77,666 Number of times the SVs overlaps in protein-coding genes n= 60,027 

A) B) 
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duplications and inversions, due to their sizes, modified a large number of transcripts (Figure 

30A).  

Concretely, the modifications of protein-coding genes by SVs could lead to larger 

phenotypical consequences than those of non-protein-coding genes; for this reason, we further 

characterised coding genes. Our dataset included 15,246 protein-coding genes modified by 

35,359 SVs (39.6% of all SVs from the GCAT catalogue) . From those, a SV overlapped a gene 

60,027 times (Figure 30B). As previously described, duplications modified more genes, and the 

majority of SVs overlapped intronic regions (Figure 30B). Besides, 7,695 SVs affected UTR 

regions , with an enrichment of 10-18% in 5’UTR , except for duplications (Figure 30B). On 

average, per genome, 464 SVs affected UTRs , which were distributed as 387.73 SVs common 

SVs (MAF > 5%), 45.54 low-frequency SVs (1% ≥ MAF > 5%) and 33.34 rare SVs (MAF < 1%). 

Particularly, the coding gene regions (CDS) were modified less by SVs, only between 5-10% with 

the exception of duplications (93.52%) and inversions (36.05%) (Figure 30B). In the GCAT 

project, 3,135 SVs modified CDS regions , with deletions as the predominant (32.72%), followed 

by duplications (27.36%), inversions (23.6%), MEIs (13.3%), and a small fraction of the other SV 

types. Also, disregarding singletons and doubletons, 659 SVs remained modifying CDS regions, 

showing selective pressure on the SVs in those locations. Finally, on average, 69.75 SVs 

modified CDS in a single genome , distributed by 54.25 common SVs, 8.37 low-frequency 

SVs, 3.72 rare SVs, 0.54 doubletons, and 2.85 singletons .  

The SVs also affected the 3D structure of chromatin by modifying the topologically 

associating domains (TAD) and their boundaries, potentially leading to different diseases. In the 

GCAT dataset, 6,657 SVs affected TAD boundaries , with enrichment of insertions (57.65%) 

and translocations (33.72%)  (Figure 30C). Besides, MEIs were not found in overlap with TAD 

boundaries (Figure 30C), indicating that these events were underrepresented in those genome 

regions. 

To determine the deleterious effect of variants is one of the main biomedicine goals. The 

predicted loss of function intolerance (pLI) is one of the more widely measure used for this aim. 

In order to know the deleterious effect of SVs in the human genome and their representation in 

the Iberian cohort, we evaluated the loss of function in protein-coding genes and its distribution 

in a single genome, taking into account the pLI and haploinsufficiency (HI) parameters provided 

by AnnotSV (section 3.12.2.1). 

32.96% of 35,359 SVs modified protein-coding genes with high predict ion loss of 

function intolerance (pLI)  (Figure 31), corroborating the high impact of SVs on gene function. 

Deletions and Mobile Element Insertions (MEIs) were more deleterious than duplications and 

translocations (Figure 31A). Besides, as expected, SVs with MAFs < 1% represented 79% of 

all pLI genes , demonstrating selective pressure to variants with high gene function impact (Figure 

31B). However, 21% of SV were MAF ≥ 1%, indicating different pathogenic levels (Figure 31B). 

On average, 746.6 SVs per genome were related to genes with the pLI effect . They were 

divided into 623.50 common variants, followed by 65.70 low-frequency variants, 47.37 rare 

variants, 2.37 doubletons and 7.66 singletons. These results suggested different penetrance for 

SVs, with rare variants (MAF < 1%), found less predominantly in a genome, could have larger 

diseases implications. Additionally, 1,416 heterozygous variants predicted a 

haploinsufficiency (HI) effect on gene function , predominantly deletions and MEIs (Figure 

31C). As in Figure 31B, the majority of the HI resulted from SVs with MAF < 1%, reinforcing the 
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hypothesis of their deleterious effect on gene function and their contribution to human diseases 

(Figure 31D). On average, per genome, 93.32 SVs were associated with a predicted HI effect , 

with common variants as the most represented at a count of 77.97, followed by 9.54 low-

frequency, 4.55 rare, 0.3 doubletons, and 0.94 singletons.  

  

Genes with pLI ≥ 0.9 and HI were “extremely loss of gene function intolerant” 

(Supplementary Figure 10). For this reason, associate which SVs affected these genes, we could 

improve GWAS, facilitating the identification of causal variants in complex diseases and improve 

the knowledge of SV effects on human complex diseases. In this direction, we evaluated the 

implication on phenotypes of the SVs with the most deleterious predictions (pathogenicity ≥ 4, pLI 

≥ 0.9, and HI) on protein-coding genes. Additionally, we analysed which SVs were tagged by 

SNPs with high LD of r2 
≥ 0.8 using the GWAS catalog, in order to find alternative interpretations 

of variants associated with diseases and traits (Figure 33). Singletons and doubletons were 

discarded in both analyses (section 3.12.2.2). 

Mental and muscular diseases were the top 10 diseases related to deleterious SVs  

(581 variants) (Supplementary Table 5), with deletions as the predominant at 40.97% (Figure 

32A). Further research is necessary to understand the phenotypical effect of all SV types on 

diseases in order to enrich the OMIM database with new disease-associated variants.  

 

Total SV with pLI= 11,646 Total SV with pLI= 11,646 

Total SV with HI effect = 1,416  Total SV with HI effect = 1,416  

A) 

C) 

B) 

D) 

Figure 31. Deleterious effects of SVs in GCAT cohort. A) Prediction of loss of function intolerance (pLI), 
categorised by SV type. Predictions ≥ 0.9 indicate SVs with a high deleterious effect. B) Prediction of loss of 
function intolerance, categorised by allele frequency. C) Prediction of Haploinsufficiency (HI) effect, 
categorised by SV type. D) Prediction of Haploinsufficiency (HI) effect, categorised by allele frequency. 
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Then, we evaluated the phenotypic effect of SVs tagged by SNPs and their distribution 

in the genome in order to predict the effect of SVs as casual variants. For this reason, we used 

the SVs tagged by SNPs with an LD r2 ≥ 0.8. 

The SNPs from the GWAS catalog tagged with high LD were 3.72%  of the SV in the 

GCAT dataset (36,887 SVs (MAF ≥ 1%)) (Figure 33A). The predominant type variants were 

deletions, insertions, and MEIs. Besides, most SNPs overlapped intronic and intergenic regions 

(Figure 33B). Finally, 51 (8.77%) of 581 SVs disease-related  (Figure 33A) were tagged by 51 

SNPs in the GWAS catalog (Supplementary Table 6), showing the importance of using panels of 

genetic variability including SVs, to improve the performance of GWAS studies. 

4.2.4.  Validation of Iberian dataset  

We performed different validations in all variant types to estimate the accuracy of our 

strategy to detect the genome variability. 

4.2.4.1. Validation of SNVs and indels using the GCAT genotyping array 

data 

Validation of SNV and indel detection with our WGS pipeline was performed by 

comparing WGS variant calling results with SNP-array calls in 570 samples, for which both WGS 

and GCAT SNP-genotyping array data were validated. Additionally, we assessed the genotype 

of matched  SNVs and indels between both detection methods (section 3.8.2.1). 

A) B) 

Unique SVs tagged by SNPs (r2 ≥ 0.8)=1,374 Unique Tag SNPs (r2 ≥ 0.8) =2,669 

Figure 33.  Structural variants tagged by GWAS catalog SNPs with high Linkage disequilibrium ( LD ≥
0.8). A) Structural variants tagged by SNPs, categorised by SV type. B) Tag SNP distribution by genome 
regions. 

SVs related to phenotypes=581 

Figure 32.  Prediction of the effect of Structural variants on phenotype using OMIM  database . A) 
Structural variants related with a diseases in OMIM database. The SVs selected were those with pLI ≥ 0.9 
and HI and pathogenicity ≥ 4.  
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96.14% of SNVs  from SNP-genotyping array matched with WGS variant calling, 

indicating that variant calling was highly precise to detect SNVs. Besides, few discrepancies were 

observed between genotypes, being concordant for > 96% of all the genotype types  and 

frequencies, with the exception of low frequency (0.01, 0.05] homozygous alternative SNVs, 

where the concordance decreased to < 94% (Figure 34A). These results show that our SNV 

calling strategy, characterised by a high coverage (30X) WGS and an optimised variant calling 

pipeline, was able to produce accurate and precise variant detection.  

86.8% of 1,168 indels ( ≤ 30bp with MAF > 1%) from SNP-genotyping array matched 

with WGS variant calling. Further, more than 90% of alleles  reported by variant calling were 

concordant with array genotypes, independently of allele frequency (Figure 34B). These results 

demonstrate that variant calling was highly efficient to detect and genotype indels. 

4.2.4.2. Experimental validations of Structural Variants 

4.2.4.2.1 Validation of deletions and duplications using Comparative 

Genomic Hybridization array (CGH array) 

Large deletions and duplications (>20 Kb) detected by variant callers were validated 

using a Comparative Genomic Hybridization array (CGH array). The NA12878 sample from GIAB 

project was used as a reference sample to find probe intensity changes in 5 GCAT samples 

(further details in section 3.8.2.2). The results are presented in Table 19. 

Figure 34. Genotype concordance between WGS variant calling and GCAT -
genotyping array for SNVs and indels.  We compared the genotypes obtained from 
our variant calling pipline with those from SNP-genotyping array, in order to estimate 
the genotype accuracy of variant callers. A) Genotype concordance of SNVs between 
variant calling and GCAT SNP-array. B) Genotype concordance of indels between 
variant calling and GCAT SNP-array.  

A) 

B) 

Genotype (SNVs) 
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On average, we validated 34.5% of large duplications and deletions , and specifically, 

76% of large deletions and 19.5% of large duplications . This difference between the number 

of validated deletions and duplications could be ascribed to known CGH array limitations in 

detecting duplications. 

4.2.4.2.2 Validation of inversions using the InvFEST dataset 

 

Sample  

All detected 
Del and Dup 

(>20 Kb) CGH  
All validated  
Del and Dup  

Deletions 
from  variant 

calling  
Validated 
Deletions  

Duplications 
from variant 

calling  
Validated 

Duplications  

JID054 53 22 (41%) 13 12 (92%) 40 10 (25%) 

JID258 40 11 (27%) 14 11 (79%) 26 0 (0%) 

JID398 36 18 (50%) 13 11 (85%) 23 7 (30%) 

JID404 36 9 (25%) 13 8(61%) 23 1 (4%) 

JID486 41 13 (32%) 14 9 (64%) 27 4 (15%) 

Average  41 14 (34.1%) 13 10 (77%) 28 4 (19%) 

Total  206 73 (34.5%) 67 51 (76%) 139 22 (19.5%) 

Table 19. Large Duplications and Deletions (>20kb) validated in 5 samples using a Comparative 
Genomic Hybridization array (CGH array). The CGH array assay allowed us to validate large (>20 Kb) 
Duplications and Deletions, where at least five probes are giving the signal for variant detection.  

A) B) C)

D) 

Figure 35. Inversion validation. A) I nversions shared between InvFEST and Iberian-GCAT catalogue. The 
non-homologous (NH) inversions from InvFEST were 64, classified into 45 common (MAF > 5%), 9 low 
frequency (1% > MAF > 5%) and 10 Rare (MAF < 1%) variants. We detected 84% of them, showing a high 
capacity to detect inversions by our variant calling. B) Allele frequency differencies between the InvFEST 
and Iberian-GCAT catalogues. The allele frequencies between catalogues are similar in European 
populations, indicating that allele frequency estimations reported by our pipeline were precise.   C) Length 
discordance between the InvFEST and Iberian catalogues. D) Genotype comparison between variant calling 
and imputation calls with InvFEST experimental panel (Lerga-Jaso et al., in preparation). Genotype 
agreement between the 51 NH inversions in common with the InvFEST dataset of validated inversions for 
the 785 sequenced GCAT individuals (with percentage indicated at the top). Individuals that have extra 
alleles with the same orientation as the reference genome in the GCAT calls are labelled as GCAT Ref 
(orange) whereas extra alternative orientation alleles in GCAT are indicated as GCAT Alt (blue). For the 
seven inversions that showed most discrepancies, the reference genome orientation was assigned to
virtually all allele discordances, whereas InvFEST imputation calls the alternative. NA, individuals with 
unknown imputation call from InvFEST panel (not considered in the comparison). 
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The validation of inversions was performed using the InvFEST dataset, which 

experimentally validated inversions from 1000G. The coincident inversions between the GCAT 

and InvFEST dataset could provide an idea about the Iberian-GCAT catalogue's inversion 

accuracy (section 3.8.2.3). We evaluated the length and allele frequency concordance between 

the two projects, and the recall of our variant calling using the imputation results from 785 GCAT 

samples imputed using the InvFEST as a reference panel. 

On average, 84% of Non-Homologous methods (NH) inversions in the InvFest 

project were detected by our variant calling , and >80% in all allele frequency categories 

(Figure 35A). Besides, the allele frequency and length reported by our calling was 

concordant  with InvFEST for the majority of inversions, demonstrating high precision in inversion 

characterisation (Figure 35B, C). Finally, considering the NH imputation results of InvFEST as a 

reference, genotypes in imputation and variant calling were the same for 94.7% of the 

comparisons  (Figure 35D), with a 100% genotype agreement in all individuals for 23 inversions 

and less than 5% genotype discrepancy for 21 inversions. Only seven inversions gathered 91.4% 

of the genotype discordances, consisting of 99.8% of the cases of the reference genome in the 

GCAT samples (Figure 35D). This excess of missed inverted alleles leads to an underestimation 

of the inversion frequency, although these errors do not have a clear cause. 

4.3 A Haplotype-resolved panel of the Iberian Cohor t 

Current Whole-Genome Sequencing (WGS) projects are unable to distinguish the parental 

origin of produced sequences, as both the homologous chromosomes are analysed 

simultaneously159,160,162. For this reason, phasing process is required, consisting of resolving the 

phase of variant genotypes to produce haplotypes159.  Haplotypes are of paramount interest, to 

answer questions about human evolution, or improve GWAS resolution through 

imputation159,160,200. 

In this direction, different projects such as 1000G5, GoNL2 and HRC157 estimated haplotypes 

using different phasing algorithms, among which ShapeIt188 and Beagle164 are the most 

recognised, to generate haplotype-resolved panels (reference panels), mainly used in GWAS. 

Current reference panels have managed to well characterise and phase SNPs and indels; 

however, they are still limited in Structural Variants (SVs) (≥50bp)5,161 due to the current 

sequencing library properties (ex: read length)34. Only the 1000G, GoNL, and 1KJPN51 projects 

have included SVs in their sets, among these, 1000G is the unique publicly available set with 

SVs, even if lacking translocations and de novo insertions5. Additionally, resolving the haplotypes 

with SVs is a challenge; for example, 1000G and GoNL firstly generated a haplotype scaffold with 

SNPs and indels using ShapeIt, then used MVNcall169 to infer SV genotypes in the haplotype 

scaffold, which was conditioned to a flank set of phased SNP sites5,161,162. Hence, the SVs were 

not appropriately phased, calling for the development of improved strategies. 

SVs play a pivotal role in genetic diseases, and steady improvements in sequencing 

technologies and phasing algorithms have better characterised these variant types. For this 

reason, we generated an Iberian-GCAT reference panel with special emphasis on SVs, using the 

dataset obtained from the variant calling of GCAT samples (section 3.7). In this section, we 

evaluated the performance of different phasing strategies to generate a reference panel including 

SVs; even more, we evaluated and validated the imputation performance of the Iberian-GCAT 

reference panel, using samples from different ancestries. Finally, we carried out an imputation 



 

127 
 

benchmarking using different reference panels to show the advantages of using the Iberian-GCAT 

reference panel in GWAS studies. 

4.3.1.  Evaluating different phasing strategies to create the Iberian-GCAT 
reference panel  

As mentioned in section 1.3.1, various phasing algorithms are available to obtain 

haplotypes from genotyping data. Unfortunately, no algorithm has been specifically evaluated to 

phase SVs. To address this limitation, we evaluated the SV phasing performance of ShapeIt, 

using different versions and in combinations with other algorithms.  

We generated different pilot reference panels of chromosome 22, including SNVs, indels, 

and large deletions (≥50bp), using the following phasing strategies: Shapeit2, Shapeit2+MVNcall, 

Shapeit2+PIRs+MVNcall, Shapeit4 (version 4.1.3), Shapeit4+MVNcall and Shapeit4+WhatsHap 

(section 3.9.1.2), to evaluate the best strategy to phase the Iberian-GCAT catalogue. Then, we 

imputed the GCAT SNP-array data of chromosome 22 using IMPUTE2. Finally, we evaluated the 

reference panel efficacy, in terms of the number of SNVs, indels, and large deletions imputed with 

a high quality (info score ≥0.7) (further details in section 3.9). 

As shown in Figure 36A, the phasing strategies affected the imputation of large SVs , 

with Shapeit2 generally producing fewer high-quality SVs with info scores ≥ 0.7. The best 

imputation results were obtained using phasing informative reads ( PIRs) with WhatsHap , 

where 85 out of 128 SVs reached an info score ≥ 0.7 (Figure 36A), and increasing the imputation 

quality of rare variants (Supplementary Figure 4A). Finally, the genotypes reported by calling and 

imputation were concordant, determining that the phasing strategy does not influence the 

imputation genotype (Figure 36A). Also, 93% of all common SVs (59 common SVs in pilot 

reference panel on chromosome 22) were imputed with Shapeit4.1.3+WhatsHap. This 

percentage decreased with the allele frequency, being 80% for low-frequency variants (20 low-

frequency SVs in pilot reference panel on chromosome 22) and 28.57% for rare variants (49 rare 

SVs in pilot reference panel on chromosome 22) (Supplementary Figure 6A). On the other hand, 

the Shapeit2+MVNcall strategy improved SNV and indel imputation  only 0.7% compared 

with Shapeit4.1.3+WhatsHap; the differences between both strategies wer e thus negligible  

(Figure 36B). 

Figure 36. Phasing benchmarking. The left Y axis showed the number of imputed variants, the right Y axis 
showed the percentage of concordant genotypes between WGS and imputation. A) Large deletions (≥ 50 
bp) on chromosome 22 imputed with an info score ≥ 0.7, obtained from pilot reference panels built with 
different phasing strategies. B) SNVs and indels on chromosome 22 imputed with an info score ≥ 0.7, 
obtained from pilot reference panels built with different phasing strategies.  PIR: Phasing Informative Reads

A) B) 
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Furthermore, Shapeit4.1.3 and Shapeit4.1.3+WhatsHap imputed more rare variants, 

for SVs as well as for SNVs and indels , demonstrating that the new Shapeit4 version could 

include more rare variants in GWAS (Supplementary Figure 6B). These results suggested that 

the Shapeit4.1.3+WhatsHap strategy was the best combination to improve the imputation efficacy 

for SVs. We thus selected it to build the Iberian-GCAT reference panel. 

4.3.2.  Imputation performance using the Iberian-GC AT reference panel 

  To evaluate the Iberian-GCAT reference panel performance for imputation, we imputed 

SNP genotyping data obtained from both the GCAT (95 samples) and the 1000G project (1,880 

samples), using IMPUTE2. We discarded all imputed variants with an info score < 0.7. The 

remaining variants were used to assess the imputation accuracy of the reference panel, including 

SVs (further details section 3.10). 

4.3.2.1. Evaluation of imputation on the GCAT genotyping array 

To assess the imputation accuracy of the Iberian-GCAT reference panel, especially for 

SVs, we selected a subset of 95 GCAT samples for which SNP-genotyping array and NGS data 

were available. We built a reference panel following the phasing strategy of Shapeit4+WhatsHap 

(including PIRs information) using the 690 remaining GCAT samples to avoid imputation bias. 

Then, with this panel, we imputed the SNP-genotyping data from the 95 GCAT samples. Finally, 

we determined the SV imputation performance and genotype concordance for each variant type, 

by comparing the imputation genotypes with those from NGS variant calling, considering as 

reference the variant calling genotypes (further details in section 3.10.1). Furthermore, we 

evaluated the effect to include A/T and C/G variants obtained from SNP-genotyping array and the 

effect of PIRs to generate the reference panel on imputation performance (see section 3.10.1). 
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Figure 37. Imputation performance of the Iberian- GCAT panel for different 
variant types. A) Variants imputed with info score ≥ 0.7 grouped by frequency.
B) Genotype concordance for 95 samples, grouped by variant type and allele 
frequency. Each dot is the percentage of genotype concordance between 
genotype imputation and genotype reported by Iberian-GCAT dataset, 
considering all variants per sample. The genotype concordance was calculated 
for each genotype state independently. When a dot  is in a vertex, it means 
high genotype concordance. 

Genotypes 
Homozygous refernece variants per sample           Heterozygous variants per sample 
Homozygous alternative variants per sample     Heterozygous variants per sample (no    

                                                                                         homozygous alternative in allele frequency) 
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Increasing the number of SNVs and indels in the SNP-array data is rel evant to 

improve the SV imputation ; however, using PIRs to create a reference panel did not improved 

SV imputation significatively, in contrast with SNVs, where the quality improved slightly 

(Supplementary Figure 8). Imputation performance strongly depended on the variant frequency, 

with common variants (MAF ≥ 0.05) showing the best imputation results . Besides, only ~5% 

of all singletons and doubletons were imputed with high info scores (Figure 37A). On the other 

hand, duplications and translocations were the SV types with lower imputation (Figure 37A).  

Similarly,  genotype concordance between variant calling and imputation indicated high 

concordance for common variants, being ~100% in all variant types , with the exception of 

duplications and translocations, for which dropped to ~80% and ~60%, respectively (Figure 37B). 

Again, genotype concordance decreased wit h the allele frequency . For low-frequency 

variants (0.01 ≤ MAF <  0.05), the homozygous alternative genotypes showed a concordance 

of ~40-60% , with the exception of SNVs, where concordance was ~90% for both heterozygous 

and homozygous alternative genotypes. Finally, for rare variants (MAF < 0.01), concordance for 

heterozygous genotypes was ~60-86% , and dropped to ~35% for homozygous alternative 

genotypes (Figure 37B). These results suggest a correlation between the haplotype frequency of 

homozygous alternative variants and imputation accuracy, where the homozygous alternative 

variants were less frequent than heterozygous variants, as well as happens with rare variants. 

Taken together, these results indicate that imputation would allow enriching GWAS with 

common SVs at high quality ; however, imputation for duplications and translocations, as well 

as for homozygous alternative genotypes at MAFs < 0.05, is less accurate, and would require 

larger samples sizes for building reference panels.  

Then, we assessed the impact of SVs in phasing algorithms, in order to determine if the 

inclusion of SVs affected the subsequent imputation quality of SNVs and indels (methodology in 

section 3.10.1). Besides, we evaluated the relationship between SNVs in high linkage 

disequilibrium (LD)(r2 ≥ 0.8) with SVs and the imputation quality of SVs, in order to decipher the 

reasons of the lower genotype concordance in common duplications and (further details in section 

3.10.1).  

 

 

The imputation quality of SNVs and indels was not influenced  by the inclusion of 

SVs in the Iberian-GCAT reference panel (Figure 38B), neither in terms of genotype concordance. 

Additionally, the info score of SNVs and indels around SVs was not decreased (Supplementary 

Figure 9). On the other hand, duplications and translocations were the SV types with the lowest 

Variant 
type 

Iberian-GCAT 
panel 

Genotype 
concordance 
(imputation 
vs calling) 

Variants 
imputed 
with info 
score ≥ 0.7 

INDEL Panel with SV 93.97% 44.5% 

INDEL Panel without SVs 93.96% 44.5% 

SNV Panel with SVs 97.75% 39.13% 

SNV Panel without SVs 97.75% 39.13% 

Figure 38. Impact of structural variants on imputat ion. A) Proportion of SNVs and indels in LD with 
common SVs. B) SV effect on SNV and indel imputation quality. 

A) B) 
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proportion of SNVs and indels in r2 
≥ 0.9 (Figure 38A), demonstrating that these low proportions 

could be the reason of the lower imputation performance, difficulting their imputation using this 

SNP-genotyping array data. Besides, for duplications, the imputation genotypes of common 

variants were grouped in their respective allele states with an error in genotype concordance of 

20% (Figure 37), showing that at least ~10% of SNVs and indels with r 2 ≥ 0.7 were necessary  

to impute SVs accurately (Figure 38A). However, we needed ~15% of SNVs and indels with 

r2 ≥ 0.9 to decrease the imputation errors below 1% (Figure 38A). 

4.3.2.2. Evaluation of imputation on the 1000G genotyping array 

The Iberian-GCAT reference panel was build with 785 GCAT samples and following the 

Shapeit4+WhatsHap strategy (section 3.9.2), this resource was used to evaluate the imputation 

performance across different populations. We used the SNP-genotype array data from 1000G, 

which includes 1,880 samples from 19 populations worldwide (full list of populations in 

Supplementary Table 7) (section 3.10.2.1). We imputed each population individually; then, we 

used all SVs with an info score ≥ 0.7 for downstream analyses (further details in section 3.10.2).  

We assessed the precision and recall of SV imputation, by comparing imputation results 

with validated SV sets from 1000G samples, obtained from Audano et al.67 (nine samples), and 

from Hickey et al.121 (three samples) (section 3.10.2.2). We evaluated length, position, and SV 

type errors of imputed SV using the Audano et al. dataset (section 3.10.2.2). Also, we assessed 

genotype concordance using Hickey dataset (section 3.10.2.2). 

Audano et al. characterised 93,852 SVs for nine samples, classified into deletions, 

insertions, and inversions. 17.8% of them were shared with the GCAT SV dataset, the majority 

of which were common (54.5%), followed by singletons+doubleton s (18.9%), rare (13.3%), 

and low-frequency (13.3%)  (Figure 39A). First, we evaluated the imputation performance 

A) B) 

C) D) E) 

Figure 39. Imputation performance of the Iberian-GCAT reference panel. A)  Allele frequency distribution 
of the 16,704 SVs shared between the Audano et al and GCAT SV dataset. B) Imputation accuracy results 
using Iberian-GCAT reference panel for SVs, compared to third-generation sequencing (TGS; Audano et 
al.) and genotyping (Hickey et al.). C) Length discrepancies between the GCAT SV dataset and Audano et 
al. D) Breakpoint resolution discrepancies between the GCAT SV dataset and Audano et al. E) Structural 
Variant type concordance between the GCAT dataset and Audano et al. 

Allele Frequency  
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considering the whole Audano et al. dataset, which showed low precision (~35%) and recall 

(~10%). Thus, we discarded singletons and doubletons, due to their known low imputation 

accuracy, and compared once again the variants shared between both projects; recall showed 

a substantial increase (64-81%) (Figure 39B). Three of the nine samples analysed by Audano 

et al. were genotyped using short reads by Hickey et al. 121. A comparison with this second dataset 

showed better accuracy for imputed SVs, with a precision of ~80% and a recall between ~79-

89% (Figure 39B). These results drive to relevant conclusions, such as that imputation allows 

detecting about ~10% of whole SVs of non-Iberian samples , using an Iberian-GCAT reference 

panel. SV detection with long-reads followed by genotyping with sh ort-reads could 

improve the SV detection, increasing to ~80% the precision results . Additionally, breakpoint 

resolution, length, and variant type reported by the Iberian SV catalogue and Audano et al. was 

consistent in all categories (Figure 39C, D, E). 

 

Finally, we evaluated the SV genotype concordance using three 1000G samples, 

imputed with the Iberian-GCAT reference panel and genotyped by Hickey et al. Genotype 

concordance across all samples was ~80%  (Figure 40A), indicating that the Iberian-GCAT 

reference panel could be used in different populations, reporting accurate genotypes of imputed 

SVs. More in detail, deletions were the SVs imputed with highest concordance (~90%)  

(Figure 40B). The insertion genotypes obtained from imputation with the Iberian-GCAT reference 

panel, comprising TRAs, DUPs, TRPs and INSs, were ~70% concordant in heterozygous and 

~95% in homozygous  with those reported by Hickey et al. (Figure 40C), showing a good 

B) Deletions 

C) Insertions 

A) All variants 

Figure 40 . Genotype concordance of structural variants between imputation and 
Hickey et al genotyping. Genotype concordance was calculated using all variants for each 
sample, obtaining proportion of concordance between SV imputation results and Hickey et 
al. A) Genotype concordance of all SVs imputed in three samples from different populations. 
B) Genotype concordance of Deletions (n=17,205). C) Genotype concordance of Insertions 
(n=8,903). D) Genotype concordance of Inversions (n=141). 

D) Inversions 
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genotype concordance. Unfortunately, only a small number of inversions (n=141) were shared 

between the two projects (Figure 40D), hampering the possibility of obtaining deeper insights into 

this poorer concordance. Additionally, the sample with lowest SV genotype concordance was 

of African (YRI) , suggesting that the Iberian-GCAT reference panel includes fewer variants with 

high LD in African populations (Figure 40). 

4.3.2.3. Structural variant worldwide distribution 

Imputation quality is relevant to determine if a reference panel can be used to impute a 

cohort originally genotyped with SNP-genotyping array data. For this reason, we evaluated the 

imputation quality reported by IMPUTE2 in different populations, using the Iberian-GCAT 

reference panel (section 3.12.1). Additionally, we determined the SV distribution across all 

populations of 1000G (further details in section 3.12.1), in terms of the allele frequency distribution 

and, SVs sharing between populations, to obtain an overview of SV distribution worldwide. 

 

 

 

 

 

 

 

 

 

Imputation quality was overall high in all populations, suggesting that the Iberian-GCAT 

reference panel could be used in all populations for imputation anal ysis, even in African 

populations, where the imputation quality is lower (Figure 41). As expected, imputation quality 

was strongly correlated with the genetic similarity between population s and Iberians.  

Indeed, European ancestries showed a genotype discordance ≤ 1% in European ancestries, 

followed by Latin American ancestries (and Indian population (GIH)) (< 2% discordance), Asian 

ancestries (< 3% discordance) and African ancestries, which genotype discordance increased to 

> 6% (Figure 41). Surprisingly, the highest genotype discordance among European populations 

was observed in the GCAT cohort. This result could be explained by the fact that, for the GCAT 

cohort imputation, we built a reference panel with 690 samples only (section 3.10.1), while for all 

the other populations, the Iberian-GCAT reference panel included 785 samples (section 3.9.2). 

However, genotype discordance was only 1%, demonstrating high imputation quality. 

After imputation in each population, we recovered a total of 49,724 SVs with an info score 

≥ 0.7. Below, we describe the SV distribution in each population. 

Figure 41. Imputation quality grouped by population s. The imputation quality was 
determined comparing the inpute SNP-genotype array with with the best-guess 
imputed genotypes and reporting the concordance. IMPUTE2 reported this metric 
in summary table (further details in section 3.12.1). 
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For the Asian populations (with the exception of the Indian ones (GIH)), we were able to 

recover fewer SVs than other continents (~25%). Between 35 and 40% of all the imputed SVs 

were instead present in the African and Latin American populations (Figure 42). The 

European populations carried (with the exception of Finnish (F IN)) > 40% of the imputed 

SVs (Figure 42). Additionally, the majority of imputed variants were common  (MAF ≥ 5%), 

with ~70% in Asian and African populations, and ~50% in Europeans and Latin Americans. Also, 

in both Latin American and European populations more low-frequency and rare variants with info 

scores ≥ 0.7 were imputed, showing the Iberian-GCAT reference panel efficacy to recover more 

low-frequency variants in closer ancestries (Figure 42). Finally, deletions were the most 

imputed SVs across all populations (~50%), followed by inserti ons (~22%) and ALUs 

(~17%), where the other SVs represented ~10% of all imputed SVs per population 

(Supplementary Figure 7). These results indicate that imputation performance is correlated with 

ancestries. 

The SV distribution shows different patterns of recurrence. For example, 30% of all SVs 

imputed were shared across all continents (Figure 43A), with 5,055 common SVs (Figure 

43B), demonstrating that SVs could have an inheritance component  (Figure 43A). Besides, 

21% of all imputed SVs were representative in European populations, suggesting that the 

Iberian-GCAT reference panel recovered more SVs with high quality in Europeans  (Figure 

43A). On the other hand, 14,013 SVs were imputed in a single population; these private SVs 

were predominantly rare (Figure 43C).  

Summarizing, the Iberian-GCAT reference panel could be used for imputation analysis 

in all the analysed populations due to the high-quality imputation scores. The ancestry component 

is relevant to improve the imputation of SVs, with the Asian populations the community with lower 

info scores, in contrast to Europeans and Latin Americans. The SVs could have an inherited 

nature, where 30% of all SVs are shared across all populations, showing the importance of 

including the Iberian-GCAT reference panel for GWAS to find new disease-variants associations. 

 

Figure 42. Structural variant distribution by population and allele frequency.  
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4.3.3.  Comparing imputation performance of multipl e reference panels 

Currently, different reference panels were generated from WGS data (Table 1). In this 

context, we compared the imputation performance of the Iberian-GCAT reference panel, with the 

most popular reference panels. However, not all reference panels included SVs, for example, 

GoNL has two versions, one including SV (GoNL-SV) and discarding indels, and another including 

only SNVs and indels (GoNL), HRC only includes SNVs or 1000G phase 3 covering SNVs to 

SVs. To compare the imputation performance between reference panels, we used GUIDANCE, 

a tool developed in our group that is able to impute with multiple reference panels in a single 

execution (further details in section 3.11). We imputed SNP-genotyping array data from 4,448 

GCAT samples using five reference panels, and we then selected, for each panel, variants with 

and info score  > 0.7 and MAF > 0.001 (further details in section 3.11). 

The imputation performance for SNVs and indels were similar bet ween 1000G and 

Iberian-GCAT panels , with the Iberian-GCAT reference panel recovering more indels, and 

1000G more SNVs (Figure 44A). HRC and 1000G recovered more rare SNVs than GCAT due to 

their larger sample size (Table 1). However, the majority of rare indels were recovered by 

GCAT (Figure 44A). Population-specific panels such as GoNL and UK10K were able to impute 

fewer SNVs and indels than Iberian-GCAT panel, suggesting that the ancestry component of 

GCAT SNP-genotyping array facilitated to recover more variants in the Iberian-GCAT reference 

panel. Finally, combining all the reference panels allowed us to obtain more SNVs an d 

A) B) 

C) 

Figure 43. Structural variants (SVs) particularities across all populations. A) Structural variants 
shared across all continents. We selected SVs with an info score  ≥ 0.7. B) Common SVs (MAF ≥
5%) shared across all populations grouped by SV type. C) Structural variants imputed in a single 
population divided by allele frequency.  

Common SVs shared across 

populations: 5,055 
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indels than each of the panel individually  (Figure 44A), demonstrating that even smaller panels 

can contribute to increasing the imputation performance, and this justifies the building of new and 

population-specific panels. Besides, increasing the haplotype number is crucial to improve 

the imputation, specifically in rare variants, as shown in Figure 44C, where HRC imputed 

high-quality SNVs and indels. 

On the other hand, the Iberian-GCAT was the reference panel that recovered more 

SVs, 2.7 and 1.6 times more than 1000G and GoNL-SVs, respectively.  Besides, the GCAT-

reference panel overcome by 1.3 times the SV recovery, compared with the co mbination 

of those two panels (Figure 44B). However, the introduction of the Iberian-GCAT reference 

panel ameliorated SV recovery nearly of 50% compared to the combinatio n of 1000G and 

GoNL alone (Figure 44B). Additionally, the imputation quality between panels was similar, 

indicating the necessity to include more haplotypes to raise the quality of rare SVs (Figure 

A) B) 

D) C) 

Allele frequency Allele frequency 

 Figure 44. Imputation performance using different reference panels. A) SNVs and indels imputed using 
reference panels, covering different allele frequencies (info score ≥ 0.7). Combining all reference panels increased 
the number of imputed variants well-imputed. Particularly, Iberian-GCAT panel imputed more indels than others, 
mainly due to high coverage used, as mentioned Byrsika-Bishop et al.206. B) Structural variants recovered using 
different reference panels, considering all SV types and allele frequencies (info score ≥ 0.7). C) Imputation 
accuracy of SNVs and indels at different allele frequencies. HRC obtained the best results due to the panel sample 
size, allowing to impute also rare variants with  high quality. D) Imputation accuracy of Structural variants for 
different allele frequencies. The imputation accuracy among different panels were slightly different. However, the 
Iberian-GCAT panel showed a higher  imputation quality for common SVs in comparison to other panels. 
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44D). The Iberian-GCAT panel improved the imputation accuracy of common SVs  (Figure 

44D), paving the way for their inclusion in GWAS. However, these results could be upwardly 

biased due to the same ancestry between SNP-genotyping array and Iberian-GCAT haplotype 

reference panel, where the similarity of haplotypes between array and Iberian-GCAT reference 

panel facilitated the imputation. 

 Briefly, the Iberian-GCAT reference panel is a great resource to impute variants, 

especially SVs (≥50bp). The imputation allowed to recover of more SVs at high quality, so 

including this resource in GWAS will improve their statistical power and resolution, allowing them 

to discover new disease-association variants, and deciphered the SV effect on human diseases. 
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Panels of genetic variability (reference panels) are widely used in Genome-Wide Association 

Studies (GWAS), because they can help to improve their resolution and statistical power, by 

enabling imputation approaches. Current reference panels cover SNVs and indels, but they are 

limited in Structural Variants (SVs) (≥ 50bp). The main challenges in SV discovery are linked to 

library properties, such as coverage, insert size and read length, and SV particularities, hampering 

the discoveries by the variant callers. In this context, this thesis focused on building the first 

haplotype reference panel of the Iberian population, including an accurate characterisation of 

SVs, which is still lacking in our knowledge. Besides, generating population-specific reference 

panels opens new opportunities to find variants related to diseases in specific ethnic groups, 

improving the imputation of rare and low-frequency variants, of paramount interest in precision 

medicine, as to optimise the diagnosis, prevention and treatment of complex diseases. 

In this section, results are discussed in three main blocks. 1) Variant caller benchmarking, 

covering from the strategy to generate the BAM files to the comparison of the variant caller and 

Logistic Regression Model accuracy. 2) The genetic characterisation of Iberian-GCAT catalogue, 

describing the recovered variants and their distribution within the cohort, and the functional 

implications of SVs. Finally, 3) the Iberian-GCAT Haplotype reference panel performance, 

especially discussing the strategy to create the reference panel, and the results obtained from 

imputation. 

5.1 Variant caller benchmarking 

Currently, more than 150 variant callers75 are used to detect the genome variability from WGS 

data. However, no single algorithm is able to detect the whole spectrum of variants accurately9, 

increasing the chances to produce false-positives in variant detection. Thus, evaluate the 

strengths and weaknesses of variant callers is necessary to perform a variant discovery precisely. 

The precision, recall and F-score are metrics to evaluate the variant callers performance. These 

metrics are determined by several factors, such as library properties (read length, coverage or 

insert size)9,46. For this reason, before applying variant calling in real samples, we used golden 

samples such as NA12787 (only for SNVs and indels) and an in-silico sample, to evaluate the 

best pipeline to perform accurate variant and genotype calling.  

Different approaches were designed to construct the aligned BAM files, for instance, applying 

the GATK best practices and using the hs37d5 or hg19 reference genome (Figure 19 and Figure 

20). The results of testing these approaches demonstrated that building the BAM files following 

the GATK best practices, and aligning the reads using the hs37d5 ref erence, improved 

SNVs detection accuracy . However, we did not appreciate relevant differences between SVs, 

only low recalls for inversion discoveries by Delly2 using only hs37d5 reference genome, and a 

better precision in translocations was appreciated using hs37d5 reference genome and GATK 

best practices in all variant callers. Several hypotheses could explain these results. One was the 

high coverage (30X) of these golden samples, since more signal could be used to detect the 

variants, facilitating the discoveries. Another was that the most recent variant callers updates, 

enabled a more precise depuration of false-positive. In summary, although the differences in 

variant detection were not relevant, we constructed the BAM files applying GATK best practices 

recommendations and using the hs37d5 reference genome, to obtain BAM files of a better quality. 

Besides, breakpoint resolution was influenced by variant length, and by the strategies used 

by variant callers. For example, the GoNL project is a unique resource that distinct indels by their 
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sizes, determining as indels all variants at sizes ≤ 20 bp161, because the resolution of breakpoint 

was at base-pair resolution, such as SNVs, in contrast to other projects (i.e. 1000G) where trivially 

indels are < 50 bp. Besides, GoNL project, for variants of a length that could be within the read 

length (100 bp), only deletions were classified as mid deletions, because their breakpoint 

resolution was higher than other SVs. Following this criteria, we found similar results than the 

GoNL project (Figure 15), where precision was around 90% until indel sizes of 20 bp. However, 

the read length of the in-silico sample (100 bp) was smaller than that of the GCAT samples (150 

bp), concluding that breakpoint resolution and variant characterisation was highly accurate if the 

variant size did not overcome 20% of read length, allowing us to increase the definition of indels 

to 30 bp. These results allowed grouping the variants by length, as follows: SNVs, indels (1-30 

bp), mid-deletions (31-150 bp) and SVs (>30 bp) (in exception of deletions > 150 bp). This 

classification enabled the design of specific filtering and merging strategies as well as 

benchmarking analyses, considering each variant type independently. 

5.1.1.  Benchmarking of SNVs and indels 

NGS technologies allowed us to detect SNVs and indels accurately. Currently, SNV 

detection can be done precisely (99%) with a coverage of ~15X83. Different benchmarking studies 

used the NA12787 sample as a reference set, determining that, for SNVs, the Haplotype caller, 

Strelka2 and Deepvariant had a >99% precision and >96% recall128,129. In our hands, the results 

were lower using the same sample, with a precision of ~96% and recall between 82-95% (Table 

14). On the other hand, using the in-silico sample, the values were similar to the studies. These 

discrepancies in precision and recall between both samples could be produced by the filters 

applied. In some cases, the reference allele from the GIAB sample and variant callers did not 

match, decreasing the metrics slightly. For this reason, better comparisons had to be performed, 

to improve the variant filtering. Overall, these results showed high accuracy of SNV detection 

across the majority of variant callers. Thus, there was no need to generat e a Logistic 

Regression Model (LRM) to filter potential false-positives  since it would lead to similar values 

(Table 14). For example, the LRM2 only predict as true-positive the variants detected by 

Deepvariant, showing inconsistencies in these predictions  (Table 14). For this reason, in order 

to clean-up the potential false-positive detections from the GCAT samples, and to decrease the 

bias obtained from anyone variant caller, we decided to filter out all SNVs detected only by one 

caller, because the recall and precision metrics indicated that all callers had to detect the same 

SNVs. 

On the other hand, indel detection required higher coverage to achieve an accurate 

detection. For this reason, Deepvariant, Haplotype caller and Strelka2 had lower values in 

comparison to SNVs, with precisions around 93%-96% and recalls between 85%-92%128,129. Our 

analyses showed precisions of ~96% and recalls of ~88% using the same tools and sample (Table 

15). However, the precision decreased to 88-92% and recall to 82-84%, when using the in-silico 

sample (Table 15). These results demonstrated that the NA12787 GIAB sample could overfit 

the metrics. This could likely be due to an abundance of variants locat ed in conservative 

genome regions , which were easy to detect in comparison to repetitive or polymorphic genome 

regions120. Besides, the LRM2 created using the Deepvaraint, Haplotype Caller and Strel ka2 

outputs, improved the accuracy of indel detection slightly  (Table 15). Thus, we used the 

LRM2 to filter potential false-positives for indel detection. 
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In conclusion, the LRM was not effective to improve variant detections when variant 

callers were already highly precise, as demonstrated in SNV detection . However, to reduce 

variant caller bias and potential false-positives, combining different variant callers could still 

improve variant detection. Besides, knowing the reference sample features, a better 

benchmarking could be designed. For example, using the NA12787, we only evaluated the 

conservative genome regions, limiting the insights of variant caller performance in low complexity 

and polymorphic regions. Considering this information and until no real sample will be fully 

characterised, we could perform other approaches to benchmark polymorphic or low complex 

regions, by building an in-silico sample, where we could evaluate the performance of variant 

callers in those regions.  

5.1.2.  Benchmarking mid Deletions and large Struct ural Variants 

The detection of SVs using NGS technologies is a challenge, due to library and variant 

particularities. Thus, no single variant caller can efficiently detect all SV types and lengths, 

producing errors in SV identification.  

In this context, several strategies have been applied by variant callers to detect SVs, such 

as Split-read (SR), Discordant read (DR), de novo assembly (AS), or Read Depth strategies (RD) 

(Figure 4). These strategies have their strengths and weaknesses, SR and AS with higher 

accuracy in breakpoint identification and DR in SV length identification. RD strategies are useful 

to detect large deletions and duplications, in decrement to worst breakpoint and length 

resolution76. However, recent variant caller updates combined those signals improving SV 

detection, breakpoint and lengths resolution18,76,77. The Variant callers used in this project 

combined different strategies (Table 13), showing high breakpoin t accuracy , allowing an 

error of ± 10bp, with the exception of CNVnator, which used the RD strategy and had a breakpoint 

error > 100 bp (Table 16) (Supplementary Figure 1). Besides, large deletions > 150 bp and 

translocations had worse breakpoint resolution, showing that while the size and complexity of a 

variant increased, its breakpoint accuracy decreased (Table 16).  

This information was used by the LRM, which converged to selecting the position of the most 

accurate variant caller for each SV type (Table 6). This strategy produced better results than 

simply using the median of all variant callers (Supplementary Figure 1). On the other hand, the 

length reported by the LRM was the median between all variant callers, due to the consistency of 

their results (Supplementary Figure 2). Using this approach, we expected to correct the 

position and length bias due to short reads misalignments, o btaining an accurate SV 

catalogue . 

SV detection by NGS technology produces high FDR (9-89%) and low recall (10-70%), 

depending on the size and SV type8. Better SV discoveries can be performed using TGS 

technologies, with increased read lengths to 10-20 Kb. However, due to their costs and high 

sequencing error rate (8-20%)8 their applicability in population studies remains a challenge, 

leaving NGS as the unique realistic technology to discover SVs. For this reason, in order to 

increase the precision and recall of SVs, one possible approach consi sts in combining 

different variant callers, preferably those which use different detect ion methods 9,95. In this 

direction, two main approaches were designed to combine variant caller detections. One 

combined the SV calls detected by at least two variant callers (logical rules), which increased the 

chances of merging two “bad” pairs of algorithms, giving a small precision increase, but reducing 
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the recall9. This approach was used by the GoNL project, which filtered all SV detected by one 

variant caller or one strategy. A second approach consisted in creating machine learning 

methods, giving different discriminative power to all variables introduced in those algorithms, 

increasing the strengths of each variant caller to filter the potential false-positives132. For example, 

1000G generated a Support Vector Machine (SVM) method to depurate the calls with 

questionable quality. 

In this direction, we performed an exhaustive variant caller benchmarking for each SV type 

and contrasted the results against a Logistic Regression Model (LRM) trained to detect each SV 

type. Figure 17 showed that the LRM improved SV discovery, with an F-score of 0.9 , recall 

of 0.85 and precision of 0.95 . However, not all variant callers detected all SV types and sizes 

equally, which was a feature considered in the LRM decision process. In some SV types, the 

metrics differences between LRMs and logical rules or variant callers individually were no higher 

than expected. For example, for duplications, the LRM and the >=2 callers strategy performed 

accuracy similarly (Supplementary Figure 3E). In de novo insertions, the LRMs outperformed all 

logical rules and variant callers (Supplementary Figure 3C), showing the relevance of using 

machine learning algorithms for SV filtering. This approach allowed to filter the potential false-

positive detections in real samples for each variant type, providing an avenue to obtain an 

accurate catalogue of SVs in the Iberian population.  

Besides, a depurated catalogue of variants is not the unique barrier to build a resolutive 

haplotype reference panel. An accurate genotype is also crucial, in order to find more variants in 

linkage disequilibrium, and thus, enable the imputation of more variants with high quality116. The 

genotyping strategy of the LRM had a genotype error of 5.6% , overcoming the genotype 

performance of all variant callers individually (Figure 18), demonstrating that combining the 

genotypes from different outputs is the best strategy to reduce the errors. For deletions, insertions 

and inversions, the genotype concordance was highly accurate (92%), probably due to  the 

high coverage (30X) of the in-silico sample (Supplementary Figure 4).  

However, for duplications and translocations, the genotypes obtained by different variant 

callers were highly discordant of those of the in-silico sample. For example, in duplications, Manta 

and Pindel reported only heterozygous variants, with > 99% errors in homozygous 

(Supplementary Figure 4E). These discrepancies drove us to perform custom genotyping, using 

the BAM file (section 3.4.2.3). Our strategy outperformed the genotype concordance for 

duplications and translocations , with 20% of genotype error for duplications and 5.16% for 

translocations (Supplementary Figure 4E, F). This disparity indicated that variant callers used 

different assumptions to determine the genotype of variants, and maybe should reconsider 

specific genotyping strategies for each SV type, once the variant is discovered. A more promising 

strategy for future variant callers, would thus consider the SV particularities for genotyping, 

instead to genotype all SV types following the same strategy. For example, the coverage for 

duplications is at least two times higher than other genome regions, and this amount of signal 

could produce the homozygous alternative alleles bias in Manta or Pindel.  

 Finally, as previously mentioned, not all variant callers could detect all SV sizes accurately9. 

For this reason, we included the variant size as a discriminative variable in LRM. Figure 16 and 

Supplementary Figure 11 show that the F-score of variant callers fluctuated across variant sizes. 

This information allowed us to filter potentially false-positi ve variants, increasing the 
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accuracy of the LRMs . These findings indicated that accurate variant calling selection was of 

paramount importance, in order to cover all SV size ranges efficiently. 

In conclusion, this exhaustive benchmarking allowed us to design a pipeline to improve the 

strengths and decrease the weaknesses of all variant callers, generating different LRMs, one for 

each SV type. Besides, we decreased the genotype error reported by variant callers, customising 

and using all information available to be accurate in our decisions. These LRMs were used to 

classify the variant detections as potentially true-positive or false-po sitive in real samples, 

indispensable for a comprehensive catalogue of variants and ultimately necessary for 

building the Iberian-GCAT haplotype reference panel . The LRMs were designed to solve the 

reads misalignments produced by their short sizes (100-150bp), which increased the false-

positive detections. In the future, when TGS technology decreases its costs and sequencing error 

rates, better SV detections will be done, enabling the discovery of more SVs, mainly in repetitive 

regions. 

5.2 Processing 808 Whole-Genome Sequencing samples from GCAT biobank 

The GCAT biobank sequenced 808 samples using whole-genome sequencing. The sampling 

was performed in different geographic regions within Catalonia, including volunteers with ages 

between 40-65 years. However, 16% were non-Caucasian, mostly from American-Hispanic 

origin173,174. For this reason, we discarded 20 samples with non-Iberian representative genetic 

background (Figure 21A, B, C, E). This was of paramount interest, because variants from other 

ethnicities in the reference panel could include noise in downstream imputation analyses, 

resulting in variants not present in the main ethnic group. Besides, the remaining 788 samples 

overlapped with other Iberian samples across PROPES and 1000G projects, reaffirming the 

Iberian origin of our cohort (Figure 21C). 

Additionally, we discarded two samples due to first and second grade of family relatedness 

(Figure 21D). This analysis allowed us to obtain approximate allele frequencies in our cohort, 

avoiding bias produced by particular family variants. Finally, we discarded one sample due to 

irregularities in variant callers executions. At the end of sample filtering, we used 785 of the 

808 GCAT samples to perform the Iberian-GCAT reference panel . Although this sample size 

is smaller than other reference panels, such as HRC or 1000G, which hampering the imputation 

of rare variants. This resource could elucidate the genetic architecture of the Iberian population, 

and in turn, improve the imputation of variants from this population, which in our knowledge is still 

lacking. 

The 785 GCAT samples were sequenced at high coverage (30X), opening new opportunities 

to increase the recall of SVs9 and genotype accuracy156. In Figure 22, we evaluated the number 

of SVs detected at different coverages, appreciating that 30X coverage allowed for the 

discovery of seven times more SVs than 5X coverages . This provided the means to find more 

variants and create a haplotype reference panel with more SVs than both 1000G and GoNL, 

which used 7.4X and 14.5X coverages, respectively. However, not all detection methods were 

affected equally at different coverages. At 30X, de novo Assembly strategies (AS), used by callers 

such as SvABA, Manta and Popins, were able to detect most SVs. In contrast, the variant 

detection of CNVnator decreased while the coverage increased, mainly due to at high coverages. 

This tool was able to detect more accurately deletions and duplications, enabling the improvement 

of calling accuracy (Supplementary Figure 5). Despite an increase in SVs recall (Figure 22), high 
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coverages resulted in low precisions (in exception of Read-Depth methods), due to the increasing 

number of read misalignments9. For this reason, in order to take advantage of the high coverage 

of the project, we combined the variant caller outputs in the LRM, filtering out potential false-

positive detections without affecting the recall. 

However, high coverage implied computational challenges, such as data storing and 

processing. For example, the 785 BAM files required 100 Terabytes of space , requiring a 

supercomputer such as MareNostrum4. Besides, with an increased coverage, variant callers 

needed more computational resources to manage all read information, highlighting those software 

that re-genotype whole variants into the cohort (ex: Lumpy, Delly2), which took more time to 

execute their pipeline (Supplementary Table 8). Currently, performing variant calling in hundreds 

of samples is not trivial, and requires a supercomputer to parallelise several executions and solve 

the computational requirements. Therefore, just considering time, we needed ~766,663.37 hours 

to obtain variants from 785 samples using 12 variant callers, spending t he equivalent of 

~820,329€ in electricity  (Supplementary Table 8). This results demonstrated that a 

supercomputer was necessary to detect the genome variability of multiple samples sequenced at 

high coverage. For this reason, future variant callers will need to address these challenges with 

more efficient strategies to implement these analyses routinely. 

5.3 The Iberian-GCAT catalogue description 

Initially, the Iberian-GCAT catalogue included 71,885,335 variants. After applying the LRM 

model and all filtering steps (section 3.7.4), we obtained a final set of 35,431,441 variants, 

accepting 49.3% of all discoveries. As expected, 85.58% of variants were SNVs, followed by 

indels (14.16%) and finally, Structural Variants (0.25%) (Figure 23B). Also, 78.92% of all variants 

had a MAF < 5%, with 28.74% of rare and low-frequency variants (Figure 24) (discarding 

doubletons and singletons). Low-frequency and rare variants are more likely to be associated 

with diseases. Thus, this catalogue provides new opportunities to find risk variants, and 

understand the Iberian genetic architecture. 

5.3.1.  SNV and indel description in the Iberian-GC AT catalogue 

Previous studies demonstrated that SNV detections were accurate using single variant 

callers, obtaining precisions higher than 99% and recalls higher than 96%128,129. However, we 

accepted 51.81% of all detected SNVs , given that nearly half of all variants were detected by at 

least two variant callers (Figure 23A). We choose to follow this rule based on state of the art and 

results obtained in benchmarking, were all callers had precisions and recalls above 95%, so we 

were conservative, deciding that if two callers detected the same SNV was more likely a true-

positive than only one. Evaluating this number in detail, we discovered that Deepvariant included 

the majority of single SNVs calls, maybe due to the re-genotyping step (section 3.6.1.3), 

increasing the potential false-positive detections. Besides, we accepted 48% of all indels (1-49 

bp) , showing that the LRM was conservative (Figure 23A). Finally, we estimated a median of 

3.5M SNVs and 606K indels per genome , which was consistent with previous estimations, of 

per genome ranges between ~3.3-4M SNVs and 492K-851K10,82,83 indels. The consistency of 

these results demonstrated that the filter of two variant callers for SNVs, and LRM designed in 

indels were effective in cleaning-up the potential false discoveries. 
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Currently, different reference panels included in their sets SNVs and indels. The most recent 

panels, such as Estonian and Iceland, recovered 16.5M and 31.1M of SNVs and indels, at similar 

sequencing coverages as our samples but higher sample sizes (Table 1). Overall, we detected 

35.3M of SNVs and indels in 785 samples, which is similar to the Iceland reference panel, and 

nearly the double of variants in comparison to the Estonian reference panel. These results could 

be explained by the methodology used to detect SNVs and indels by these projects: the Estonian 

panel used Haplotype caller4, and the Iceland reference panel used the Unified GATK 

genotyper201, limiting the variant detection to a single variant caller. For this reason, we increased 

the chances to detect more SNVs and indels by using multiple variant  callers, highlighting 

the necessity to use multiple variant callers even in SNVs and indels.  

Finally, after comparing all SNVs and indels of the Iberian catalogue against dbSNP, 19.18% 

of them were unique, with 84.32% of them were rare variants (MA F < 1%). Besides, the 

majority of new SNVs discovered were singletons (Figure 25A), indicating that variants at high 

MAFs were well-covered by previous datasets. Particularly, without considering the alternative 

allele, 9.36% of SNVs were new (Supplementary Table 10), with only 0.11% with a MAF ≥ 1%, 

suggesting that even though it looks like SNVs are widely characterised, there is still room to find 

novel variants at MAFs < 1%, and polymorphic variants in specific genome positions were not 

already characterised. Besides, our validation tests confirmed this assumption, showing that 

>96% of SNVs and their genotypes obtained directly from the SNV-genotyping array (Figure 34A) 

were concordant with variant calling. For indels, 86.8% of those directly reported by the SNP-

genotyping array were concordant with the output of variant calling, with more than 90% of 

genotype coincidences (Figure 34B). These results indicated that our variant calling and 

filtering were applied correctly, obtaining an accurate catalogue of SNVs and indels, 

recovering novel variants at MAFs < 1% .  

5.3.2. Structural variant description in the Iberia n catalogue 

As previously mentioned, variant callers produced high FDRs in SV detection8. This was 

corroborated in our calling of SVs, with our LRMs accepting only 3.07% of all detected SVs . 

For this reason, the LRMs improved SV filtering, resulting in an accurate SV catalogue . 

These results suggested that false-positive detections using NGS could be greater than expected.  

Particularly, the LRM generated for duplications was the most conservative, accepting less 

than 1% of all detected duplications (Figure 23A). This was due to CNVnator, which detected a 

high amount of deletions and duplications compared to other callers (Supplementary Figure 5), 

many of which were potential false-positives. Besides, several misalignments and artefacts that 

produce false-positives have been previously described197 (section 4.2.2). For example, our initial 

dataset detected 13 of these inversions, filtering all of them after our clean-up procedure (section 

3.7.4). These results suggested that our SV catalogue was well-curated. 

After the filtering step, we obtained a dataset of 89,178 SVs, larger than other reference 

panels such as 1000G or GoNL  (Table 1), highlighting the benefits of high-coverage for SV 

discovery, and of using our LRM filtering method . Deletions were the most recurrent with 

37.3%, followed by MEI (21.1%), insertions (14.3%), inversions (11.4%), translocations (8.8%), 

and duplications (7.1%) (Figure 27B). This distribution was consistent with 1000G, GoNL and 

gnomAD-SV projects, except inversions were we recovered a higher number. However, 91.3% of 

all inversions were singletons and doubletons, which are mostly irrelevant to incorporate in 
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GWAS. Besides, 76.79% of all SVs were rare variants (MAF < 1%), in contrast to 92% of  

gnomAD-SV . This result suggested the necessity to increase the sample size of specific 

populations, instead of global projects such as gnomAD or 1000G, where the low number of 

samples from different ethnic groups, could modify the allele frequency particularities of each 

population. Besides, characterise specific populations, opens new opportunities to find particular 

common genetic variants that could be hidden in global projects. However, the proportion of 

singletons and doubletons in the Iberian-GCAT catalogue (58,63%) was consistent with the 

gnomAD-SV catalogue (49.8%), indicating that 50% of variants in a cohort of these sample sizes 

were sample-specific. On the other hand, 23.21% of Iberian catalogue SVs had a MAF ≥ 1%, 

and could be relevant for future imputation analyses  (Figure 27A). 

Nevertheless, common variants (MAF ≥ 5%) constituted the majority of observed 

variants in any single genome (85.28%) (Figure 28A), consistent with 1000G1, who reported 

that between 1-4% of variants per genome wherein MAFs < 5%. Besides, deletions (3,327 dels 

per genome) were the most representative SV type in a single genome, as opposed to inversions 

(68 inversions per genome) (Figure 28B), consistent with gnomAD-SV11, who reported a median 

of 3,505 deletions and 14 inversions per genome. The enrichment of deletions discoveries 

could be related to the methodological particularities, such as th e alignment process and 

the properties of their genomic regions.  In contrast, inversions were mainly inserted in 

repetitive regions, hampering their detection. Chaisson et al66 reported around 156 inversions per 

genome, thanks to using long reads on their detections. Therefore, our median inversion 

estimation per genome could increase using TGS technologies. 

The median number of detected SVs per genome has increased with the improvement of 

sequencing technologies (Figure 5). Our study estimated ~6,393 SVs per genome , nearly the 

double than 1000G (3,441 SVs per genome). However, gnomaAD-SV estimated 7,439 SVs per 

genome, due to the higher sample size, increasing the chances of finding more SVs. Besides, the 

filtering strategy also affected the number of detected SVs per genome. For example, 1000G and 

gnomAD-SV use machine learning algorithms. In contrast, GoNL estimated 7,006 SVs per 

genome, using simple logical rules (more than two callers (>= callers) detect the same SV) to 

filter them161. This was above their expected count of SVs per genome, given their project’s 

coverage (14.5X). Hence, GoNL SVs could probably include some false-positives, due to the 

combination of “bad” variant callers, as we can see in Supplementary Figure 3, where the 

precision of combining >= 2 callers was lower than LRM, inflating the SV number in their 

catalogue. Currently, TGS technologies estimated >20,000 SVs per genome66,67, highlighting the 

lack of proper characterisation of SVs in the human genome. 

The SV median size detected in the Iberian cohort was of 291 bp , consistent with 

gnomAD-SV (331 bp)11. Further, the bulk of SVs was between 100 bp to 10 Kbp (Figure 26), 

suggesting that SV detection using short-reads was favourable for small sizes . The median 

size distributed by SV type was 312 bp for deletions, 584 bp for duplications, 1,531 bp for 

inversions, and 279 bp for MEIs. For 1000G, the median size was 2,455 bp for deletions, 35,890 

bp for duplications, 1,697 bp for inversions and 297 bp for MEIs5. Overall, the median size of 

inversions and MEIs was highly concordant between both projects , showing for MEIs the 

three peaks of size distributions, corresponding with ALUs, SVAs and LINEs (Figure 26); thus, 

corroborating that the calling has been performed correctly. Besides, the short-read improved the 

inversion discoveries at sizes < 2 Kbp66, which is consistent with our results, where the bulk of 

inversions was at sizes between 1 Kbp - 1.6 Kbp (Figure 26). However, the median size of 
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deletions and duplications was discrepant when compared with 1000G, mainly due to the low 

coverage used in the project, which could result in limitations in the accuracy of size 

reporting . Finally, the sizes of de novo insertions and translocations could not be evaluated due 

to the technical limitations of variant callers. For example, for de novo insertions, the reads that 

come from exogenous sequences cannot be mapped in the reference genome, hampering the 

size estimation. The challenge for translocations was determining both the start and end 

breakpoints. 

 Then, we estimated that 211 MB per genome were affected by SVs , representing 6% of 

the genome. Audano et al.67 estimated 11 MB without considering duplications, which in our study 

where the biggest ones (Figure 26), explaining why the higher number of bases affected. 

However, as mentioned in Manta’s documentation, intrachromosomal translocations could be 

misclassified as large duplications due to read signals errors. Therefore, in future variant caller 

updates, more signals or strategies would be necessary to use, in order to classify the duplications 

better. 

Finally, we compared the Iberian-GCAT SV catalogue against the most popular SV 

databases (section 3.8.1.2). ~60% of the SVs were novel , highlighting that SVs are not yet well 

characterised. Notwithstanding the efforts to obtain complete SV catalogues, such as gnomAD-

SV11 or Abel et al.65, further SVs analyses and better sequencing technologies will be needed to 

obtain more comprehensive SV catalogues. Besides, 21.22% of all common and 44.32% of all 

low-frequency SVs described in the Iberian-GCAT catalogue were new (Figure 25C),  

demonstrating that SV discovery is skewed compared to SNVs and indels. 

Although 21.22% of common and 44.32% of low-frequency SVs were not catalogued, this 

proportion was not equal if we consider only haplotype reference panels. GoNL and 1000G were 

the two other projects that included SVs using low-medium coverage. Thus, the proportion of 

imputable SVs was lower than all SVs discovered by the scientific community. In this context, 

when compared against the 1000G and GoNL reference panels, 85.40% of the SVs from the 

Iberian-GCAT catalogue were new, distributed as 52.55% common,  71.63% low-frequency 

and 93.05% rare SVs (Figure 25D). Thus, by generating a new reference panel with those SVs, 

we could enrich the future GWAS analyses with novel SVs, enabling the search for new 

associations between genetic variants and complex diseases. 

We used different approaches to validate the SV discovered by our pipeline. To validate large 

deletions and duplications (>20Kb), which normally are harder to detect by short-reads, we used 

the CGH array, validating 76% of deletions and 19.5% of duplications  (Table 19) (section 

3.8.2.2). Recall limitations of CGH arrays could explain the low percentage of duplications 

validated54, thus, considering the high percentage of deletions validated, and hard filters applied 

to consider duplications as true-positive (we accepted less than 1% of all duplications detected in 

calling step (Figure 23A)), we expected that duplication catalogue was well defined. Besides, 44 

of 54 inversions generated by non-homologous recombinations from the Iberian-GCAT catalogue, 

showed 94.7% of concordance  with experimentally validated inversions from the InvFEST 

catalogue (Figure 35D), indicating that the calling was performed accurately. In summary, 

considering the number of variants validated, we consider that our Iberian-GCAT catalogue was 

well generated.  

Overall, most SNVs and indels from our catalogue were already characterised, indicating that 

our calling was performed correctly, enriching the previous datasets with SNVs and indels with 
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MAFs < 1%. Besides, we increased the variant detection by performing a variant calling of SNVs 

and indels using more than one algorithm, improving the genetic characterisation of our cohort. 

On the other hand, we detected 60% of new SVs , as a result of the deep WGS and applying 

multiple variant callers, covering whole SV types and sizes. 85.40% of SVs were not already 

included in previous haplotype reference panels, with 52.55% and  71.63% of new common 

and low-frequency SVs . Thus, by generating the Iberian-GCAT haplotype reference panel using 

this catalogue, we could increase the chances of finding more associations between variants and 

human traits and help explain more of the missing heritability of complex diseases.  

5.3.3. The impact of the Structural Variants on hum an traits 

Although Structural Variants (SVs) alter more nucleotides than SNVs and indels, little is 

known about their functional impact on human traits. In our study, 87.7% of SVs were predicted 

as “likely benign” or “likely pathogenic”  (Figure 29), showing the limitations of annotation 

tools.  For example, the pathogenicity value developed by ACMG was designed to evaluate highly 

penetrant variants in rare disorders202. Thus, variants that contribute in small fraction to disease 

are hard to interpret, due to different levels of penetrance and gene expressivity, which are 

associated with environmental factors or epistatic mechanisms203. Those variants are involved in 

complex diseases, and could be catalogued as benign. This could explain why the inversion 

associated with metabolic disorders (11q13.2), included in our dataset, was catalogued as likely 

benign SV199. Besides, most studies are focused on the functional interpretation of deletions and 

duplications due to the confidence of their detections, in contrast to other SV types, which is still 

a challenge to call and validate204. For this reason, deletions and duplications were the most 

interpretable variants in our catalogue (Figure 29A). However, thanks to high coverage of NGS 

and TGS sequencing approach, the calling of all SVs will improve, enabling to define better the 

functional role of all SVs in the future.  

SVs could functionally impact genes through mainly two mechanisms, gene expression 

or gene function loss (predicted loss of function (pLoF)). A general overview of our dataset 

demonstrated that 46% (41,672) of all SVs overlapped a gene . This result was consistent with 

gnomAD-SV catalogue, where 47.7% of SVs overlapped in gene regions. This number can be 

partially explained by the current NGS technology based on short reads, which performs poorly 

in low-complexity regions. Therefore, we were better at characterising SVs outside those regions, 

where 92.7% of all known autosomal protein-coding nucleotides are localised11. This could thus 

introduce a bias towards the discovery of SVs overlapping genes. On average, 2,868 SVs 

overlapped protein and non-protein-coding genes, highlightin g the potential impact of SVs 

on gene function . However, most SVs overlapped intronic regions (88%), suggesting that SVs 

implied on loss of gene function could be selected negatively (Figure 30A), resulting in a high 

number of SVs in introns than exons. This hypothesis was corroborated in Coding Sequencing 

regions (CDS), where 659 SVs overlapped in those regions (discarding singletons and 

doubletons). On average, ~70 SVs modified CDS regions per genome , the majority being 

common variants (MAF ≥ 5%) (average 54 SVs per genome). This result suggested that common 

SVs which overlapped in CDS regions could have low penetrance to diseases in comparison to 

rare variants, explaining this high proportion of common variants in a single genome.  

Not all genes tolerate equally sequence alterations. In this context, we evaluated which 

SVs overlapped genes with a predicted loss of function intolerance (pLI), finding that 32.9% of 

35,359 SVs were affecting pLI protein-coding genes . However, 79% of these SVs had a MAF 
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< 1% (Figure 31B), indicating that deleterious SVs could be under selection. Overall, it is expected 

that SVs which modify pLI genes could be penetrant variants in diseases, resulting in rare in 

populations due to selective pressures, in contrast to common SVs, were their contribution to 

diseases could be smaller. For this reason, the imputation of rare variants by reference panels is 

important. However, the challenge remains to increase the sample sizes or combine different 

reference panels, in order to obtain more haplotypes, which will enable to impute rare variants at 

high quality, increasing the chances to associate more variants to diseases by GWAS 

approaches.  

Considering the most deleterious SVs (pathogenicity ≥ 4) and their overlap in genes 

extremely pLI145 (pLI > 0.9 and Haploinsufficientcy), we found that 581 SVs were associated 

with diseases using the OMIM database , being especially deletions (Figure 32A). These results 

indicated that further research is needed to increase the insights of SVs on human diseases, 

because deletions are the SVs most studied, maybe due to they are easier to detect by current 

approaches18,204. Besides, top 10 diseases were related to mental and muscular diseases  

(Supplementary Table 5), highlighting the potential role of SVs in human diseases. These results 

make sense in the context of the studies developed in mental and muscular diseases, where large 

deletions and duplications play a key role in Autism and Schizophrenia204,205. Besides, on 

average, the genes expressed in brain are longer and evolutionary conservatives than others. 

This is a particular feature of Haploinsufficent genes147,203, explaining why the effect of SVs on 

developmental diseases was better documented than other diseases.   

Besides the direct effects on coding sequences, SVs can affect the 3D structure of 

chromatin, modifying the TADs and their boundaries206. Therefore, to evaluate this hypothesis, 

we attempted to perform more extensive SV interpretation, beyond simple gene functions. Our 

results showed that 6,657 SVs potentially modified TAD boundaries, with an enrichm ent for 

insertions and translocations . As TAD regions are located in unfolded chromatin regions, this 

could increase the chances of producing translocations207 or even could be one way to integrate 

viruses into DNA208. Surprisingly, we did not detect any MEIs in these genomic regions (Figure 

30C), suggesting that MEIs did not insert in those regions or due to a variant caller bias. 

Finally, taking advantage of our catalogue, we evaluated if the SVs were in LD with SNVs 

from the GWAS catalog, to understand if they could be the causal variants underlying an 

association signal. 3.7% SVs of 36,887 SVs (MAF ≥ 1%) were in strong LD (r 2 ≥ 0.8) with SNVs 

from the GWAS catalogue , demonstrating that an SV could be the casual variant from a human 

trait. Besides, most tag SNPs were located in intronic and intergenic regions, suggesting that the 

causal variants could be associated with SVs instead of SNVs (Figure 33B), due to their size, 

which affected more DNA than SNVs, increasing the chances to modify regulatory regions or 

genes. In addition, 51 of 581 SVs related to diseases (Supplementary Table 6) were tagged by 

SNPs from the GWAS catalog. These results demonstrate the necessity to impute SVs in 

GWAS, increasing their statistical power and finding new disease-assoc iated variants . 

In conclusion, 46% of SVs included in the Iberian-GCAT catalogue overlapped gene 

regions. However, the vast majority overlapped introns, hampering their functional interpretation. 

Besides, 35,359 SVs affected protein-coding genes, increasing the chances to find new variants 

associated with diseases. 
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5.4 The Iberian-GCAT haplotype panel 

One of the central goals of biomedicine is to understand the genetic variability effect in 

humans, finding risk variants which increase the predisposition to develop a disease. A complete 

characterisation of risk variants would open a new era in personalised medicine, enabling to 

design specific treatments for each patient. Genome-Wide Association Studies (GWAS) identified 

thousands of risk variants, increasing the insights of the genetic architecture on complex 

diseases154. Besides, imputing unobserved variants using haplotype reference panels has 

allowed to include more variants in GWAS, increasing the chances of finding risk variants for 

diseases156. However, despite their hypothesised importance on diseases, SVs are 

underrepresented in reference panels , and only 1000G and GoNL included all the SV types 

(Table 1), but still limited by low-medium coverages. 

In this context, we generated the Iberian-GCAT haplotype reference panel using the 

catalogue of 35,431,441 variants from 785 GCAT samples previously characterised. This 

reference panel could find variants associated with diseases, increasing the imputation quality of 

low and rare frequency variants4,6, particularly from the Iberian population, highlighting their 

relevance in precision medicine. Although SVs can be phased, few studies have shown the 

performance of phasing tools160,162 for these variant types. For this reason, we evaluated the best 

strategy to phase SVs, determining that Shapeit4+WhatsHap strategy could recover more 

SVs of high quality (Figure 36). Besides, thanks to high coverage, we could use the Phasing 

Informative Reads (PIRs), improving the imputation quality of rare variants (MAF <1%) 

(Supplementary Figure 6). When we analysed the effect of PIRs in imputation quality considering 

all SV types, little improvements were appreciated (Supplementary Figure 8), mainly due to PIRs 

being currently used to improve imputation of rare SNVs. Overall, the Iberian-GCAT reference 

panel was the first resource that includes PIR information. However,  in the near future, the large 

read lengths obtained with TGS sequencing technologies will enable the improvement of phasing 

of variants by using the reads as haplotypes, avoiding the current limitations derived from short 

reads. 

Overall, we took advantage of high coverage to phase SVs together with biallelic  SNVs 

and indels, obtaining a reference panel with accurate haplotypes, especially for SVs . For 

example, 1000G and GoNL obtained SV genotypes using MVNcall, inferring SVs into a haplotype 

scaffold (constituted of biallelic SNVs and indels), because low coverages do not allow to 

genotype these genomic rearrangements correctly162. Then, MVNcall phased the SVs, obtaining 

the final reference panel. This approach was forced to exclude the non-inferred SVs, causing a 

loss of SVs. Consequently, it is expected that the imputation quality using these panels to be 

decreased, due to the low quality of genotypes, mainly for lower variant frequencies162. For this 

reason, our strategy offers the possibility to increase the quality of SV imputation, providing a 

valuable resource in GWAS.  

5.4.1.  Performance of the Iberian-GCAT haplotype r eference panel  

We analysed the Iberian-GCAT reference panel imputation capabilities, mainly for SVs, in 

order to know its strengths and possible impact on GWAS. Although variants imputed with an info 

score > 0.3 are commonly included in most association tests156,  we filtered out all variants with 

an info score < 0.7, which corresponds to an allelic dosage (R2) of 0.5, as recommended 

GUIDANCE172 and MaCH209 software, in order to carefully select well-imputed variants210,211.  Our 
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results demonstrate that more than 80% of common variants included in the Iberian-GCAT 

reference panel were recovered after imputing the GCAT SNP-genotypi ng array data, with 

the exception of duplications (48%) and translocations (19%)  (Figure 37A). However, the 

imputation quality decreased with the allele frequency, confirming the necessity to increase the 

sample size of the reference panel, in order to impute at high-quality the variants with MAF < 5%.  

The genotypes of imputed variants were concordant (nearly ~100%) w ith the 

genotypes reported by our LRM models in common variants , except for duplications (~80%) 

and translocations (~60%) (Figure 37B). These results demonstrated that our calling and 

genotyping strategy was highly accurate, because erroneous genotypes and false-positive 

variants decrease the chances of finding LD patterns between variants116, also affecting the 

imputation performance156. However, for low-frequency and rare variants, the genotype accuracy 

was greater in heterozygous than homozygous alternative variants (Figure 37B), confirming that 

the allele frequency of homozygous alternative variants were lower than heterozygous, reflecting 

this decrement in the genotype accuracy. 

To understand the low imputation quality for common duplications and translocations, we 

evaluated the number of SNVs and indels in LD across all SV types, finding that duplications and 

translocations were those with a lower number of short variants with r2 > 0.9 (Figure 38A). We 

estimated that at least 10% of SNVs and indels must be in r 2 ≥ 0.7 with SVs to obtain good 

imputation values . This result demonstrates the importance of performing accurate SNV and 

indel calling, increasing the chances to obtain more short variants in high LD with SVs, improving 

SV imputation. Particularly, genotype concordance in imputed duplications was high enough to 

advise their use in GWAS. However, the genotypes of imputed translocations were not consistent 

with those reported by WGS calling, discouraging their use (Figure 37B). The low imputation 

quality for translocations could be produced due to the imputation methodology currently adopted, 

where all variants evaluated in 1 Mb must be into the same chromosome, losing LD power to 

impute these events correctly. Besides, the imputation performance of SNVs and indels were not 

affected by SVs (Figure 38B, Supplementary Figure 9), allowing the use of the Iberian-GCAT 

reference panel with the majority of variants, with special attention to translocations and 

duplications. 

5.4.1.1. Imputation performance using non-Iberian samples 

The genetic structure of populations could affect imputation performance. If the ancestry of 

both the sample study and the reference panel is the same, the chances to find matching 

haplotypes increase139,156, improving imputation. Conversely, if ancestries are too distant, the 

imputation quality could decrease, discouraging the use of the reference panel to impute with an 

specific population. In this context, we evaluated the imputation quality on populations from 

different continents (detailed population names in Supplementary Table 7), finding that the 

Iberian-GCAT reference panel can be used to impute SNP-genotyping array from different 

continental groups , obtaining an imputation quality >95% in European, Latin American and 

Asian populations (understanding the imputation quality as a percentage of imputed genotypes 

matched with input SNP-genotyping array), and >92% for African (Figure 41).  

The imputation quality grouped different ethnic groups by con tinents, suggesting that 

European and Latin American populations were closer genetically fro m Iberians, in 

contrast to Asian and African  (Figure 41). This was consistent with demographic movements, 

where Latin American populations, due to colonisation, the genetic background is closer to 
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Iberians176. However, Africans have more genetic variants than other populations11 and smaller 

haplotype blocks due to the high amount of recombinations139, hampering the imputation. These 

results demonstrated that sample filtering was done correctly, showing the consistency between 

the imputation quality of populations and the ancestry of the Iberian-GCAT reference panel. 

Conversely, if we added samples representative from other populations, the imputation quality 

could decrease in European ones. 

After imputation analysis, we recovered 49,724 SVs (info score ≥ 0.7), with only ~25% of 

them included in Asian populations (Figure 42). This result demonstrates that Asian populations 

require their own reference panels212, to include more SVs in GWAS. Besides, the ancestry 

distance between populations further affected the imputation of r are variants 156,212, showing 

that both Iberian populations from 1000G and GCAT imputed the highest amount of SVs with 

MAFs < 5% (Figure 42). European populations carried more than 40% of imputed SVs (49,724 

SVs), with 50% of them having MAF < 5% (Figure 42). In Latin American and African populations, 

between 35-40% SVs were imputed, with less rare and low-frequency variants recovered in 

African populations (Figure 42). These results demonstrate that imputation performance is 

affected by ancestry diversity , showing the importance of generating population-specific 

reference panels, in order to increase the chances to impute at high-quality variants with MAF < 

5%. 

Additionally, 5,055 of 14,884 SVs shared across all populations were common, with deletions 

the most representative (Figure 43B). These results suggest that the other SV types could be 

more population-specific or affected differently by selection pressures; alternatively, this could be 

a result of variant calling bias derived from short reads, which facilitated the deletion detection, 

and the limitation to detect variants in segmental duplications, which are enriched of inversions 

for example67. Besides, most population-specific SVs were rare (Figure 43C), highlighting 

the necessity to build reference population-specific panels , to increase the chance of 

imputing rare variants that tend to have functional consequences213.  

Overall, considering the genetic background of populations, different SNVs could tag 

causative/risk variants related to diseases, even different risk/causative variants could be 

population-specific, showing that not all SVs are equally imputed across populations. For this 

reason, population genetic information could be the cornerstone of preci sion medicine 214, 

detecting genetic particularities of each population, which could be used to improve the diagnosis 

and treatments of diseases. 

5.4.1.2.  Accuracy of imputed structural variants 

We demonstrated that the Iberian-GCAT reference panel was able to impute SVs in different 

populations. However, due to ancestry disparities, it does not mean that they are correctly 

imputed6,214. Therefore, we evaluated the SV imputation accuracy, using nine samples from 

different populations well characterised with TGS technology from Audano et al. dataset67. The 

majority of SVs shared between projects were common variants because they were the most 

recurrent across populations (Figure 39A). Imputation recovered ~10% of all the SVs 

characterised by TGS sequencing (Figure 39B), which was consistent with SV recalls from NGS 

sequencing8 (10-70%), demonstrating that the generation of reference panels using TGS 

technology could increase the chances to impute more SVs. However, recall increased between 

64-81% (Figure 39B), evaluating only the shared variants across projects. This result indicated 

high imputation performance, because most of variants were recovered.    
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Surprisingly, the precision of both analyses was critically low (~35%), indicating that the 

imputation could include false-positives (Figure 39B). However, Hickey et al. 121 using short-reads, 

genotyped three samples from Audano et al. VCF dataset67. This factor enabled to increase the 

precision up to ~80% and recalls between 79-89% (Figure 39B), demonstrating that the 

combination of sequencing technologies could increase the accuracy of SV discoveries. This 

assumption was consistent with results of genotyping tools, where genotyping the SVs with short-

reads is a robust method to decrease the false-positive detections113,114,121. Besides, 80% of 

imputed genotypes matched with those reported by Hickey et al. (Figure 40), reaffirming the 

Iberian-GCAT reference panel capacities to impute SVs using SNP arrays from different 

populations. The variant differences between TGS and NGS from Audano and Hickey et al. 

datasets, could be explained by sequencing errors obtained from TGS technologies, with an 

estimation of ~1 error every 10 nucleotides, compared to NGS, which it is ~1 error every 1,000 

nucleotides59. Thus, hard filters in SV discovery for TGS were applied. Overall, applying TGS 

sequencing technologies to discover SVs, and genotype using NGS, w ill result in a better 

characterisation of SVs . 

In conclusion, the Iberian-GCAT haplotype reference panel will open new opportunities to 

include SVs in GWAS studies, thanks to their accuracy in imputation analysis, recovering SVs in 

populations from all continents. However, due to their European ancestry origin, the Iberian-

GCAT reference panel enabled the recovery of more SVs in European popu lations than in 

Asian , recommending the generation of new population-specific reference panels, adding SVs to 

understand the genetic architecture of diseases in each population.  

5.4.2.  Benchmarking of multiple haplotype referenc e panels 

We demonstrated that the Iberian-GCAT reference panel is a great resource to impute SVs 

accurately without losing SNV and indel performance(Figure 37, Figure 38). However, to know 

the value of this new resource in GWAS, we compared the imputation performance across 

different reference panels (Figure 44). For SNVs and indels, both the 1000G and the Iberian-

GCAT reference panels showed similar imputation performances, where the Iberian-GCAT 

imputed more indels (Figure 44A), mainly due to high coverage, as reported the new 1000G 

release215. Nevertheless, for rare and low-frequency variants (MAF < 5%), the quality of SNVs 

and indels was greater in HRC (Figure 44C), showing the value to generate haplotype reference 

panels with high sample sizes.   

On the other hand, the Iberian-GCAT reference panel outperformed the SV imputatio n 

compared to 1000G and GoNL, showing a 2.7 and 1.6-fold increase, resp ectively (Figure 

44B). Besides, even combining the SV results of 1000G and GoNL did not overcome the SV 

imputation performance of the Iberian-GCAT reference panel alone (Figure 44B). These results 

demonstrate the value of the Iberian-GCAT reference panel in SV imputation, being a great 

resource to improve the resolution of GWAS. The Iberian reference panel outperformed 

imputation quality for common variants (MAF ≥ 5%) compared to 1000G and GoNL, 

highlighting the potential of this resource in GWAS (Figure 44D). However, for low frequency 

variants (MAF < 5%), the imputation quality was similar between reference panels, showing the 

worst values for rare variants (MAF < 1%) (Figure 44D). These results showed the necessity to 

include more samples in reference panels to obtain good imputation for variants with MAFs < 5%. 
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In conclusion, we generated the first reference panel of the Iberian population , including 

a complete and accurate catalogue of SVs . This resource will improve future GWAS, adding 

more SVs than previous reference panels, especially for European and Latin American 

populations. For this reason, this population-specific reference panel will allow a better 

understanding of the genetic disease architecture, helping to find new disease-variant 

associations, and ultimately to improve precision medicine and patient care. 
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6. CONCLUSIONS 
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I. We have first generated a comprehensive strategy to identify and classify all types of 

detectable germline variants from high-coverage short read sequencing samples, 

covering from small nucleotide variants to large structural variation. This strategy includes 

extensive benchmarking and the generation of different Logistic Regression Models that 

can be used in other similar studies. Estimations using a controlled environment, show 

overall high precision and recall values for the calling and genotyping of all variant types 

and sizes.  

 

II. The application of this strategy to 785 whole-genome sequencing samples from the 

GCAT-biobank allowed us to identify 35,4 Million variants, corresponding to 30,3 Million 

Single Nucleotide Variants (SNVs), 5 Million indels (< 50bp) and 89 thousand larger 

structural variants (≥50bp). This represents a median of 3.5M SNVs, 606K indels and 

6,393 SVs per individual in our cohort. This catalogue of variants covers populations 

frequencies with MAF estimations ranging from singletons to common variants (MAF ≥ 

5%). 

 

III. The use of different experimental and comparative validation strategies show an overall 

high accuracy in the calling and genotyping of our variants, across all variant types and 

sizes. SNP-genotyping array approaches validated more than 95% of SNVs and 90% 

indels. The multiple comparisons of our Iberian-GCAT catalogue with existing catalogues 

of human structural variability, show high consistency and high recall, and demonstrates 

that the added value of this catalogue, which is centred in SVs, lies on top of consolidated 

and supported background.  

 

IV. Of all the SVs from the Iberian-GCAT catalogue, a fraction showed strong gene-related 

functional impact, compatible with potential roles in diseases and reinforcing their value 

to identify the missing heritability of complex diseases. 

 

V. We benchmarked and applied haplotype estimation protocols to build the first genome-

wide and haplotype-based reference panel of the Iberian population. This panel was 

proved to be also useful to impute and predict variants accurately within Iberians, or 

European populations, but also across a wide range of different ethnicities.  

 

VI. Finally, as an overall measure of the real value that the Iberian-GCAT reference panel 

can add to current genetic studies, we have observed a 2.7-fold increase in SV imputation 

when compared with 1000G.  
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Supplementary Table 1. Samples form 1000G used to c onstruct the in-silico haplotype. 

 

 

 

 

 

 

 

 

 

 

 

JID025 JID139 JID445 JID556 JID663 JID795 

JID037 JID146 JID455 JID557 JID667 JID797 

JID049 JID151 JID456 JID559 JID669 JID803 

JID051 JID154 JID457 JID565 JID682 JID815 

JID070 JID155 JID463 JID568 JID683 JID836 

JID075 JID171 JID467 JID571 JID686 

JID076 JID173 JID470 JID600 JID705 

JID081 JID187 JID473 JID602 JID708 

JID084 JID193 JID477 JID607 JID717 

JID090 JID200 JID481 JID620 JID736 

JID093 JID205 JID492 JID622 JID750 

JID103 JID208 JID494 JID628 JID753 

JID105 JID217 JID495 JID629 JID764 

JID110 JID223 JID532 JID632 JID767 

JID111 JID226 JID541 JID634 JID768 

JID115 JID229 JID543 JID637 JID783 

JID119 JID230 JID546 JID654 JID789 

 

 

HG00096   HG00099   HG00101   HG00103   HG00106   HG00109   HG00113   HG00173   HG00176   
HG00178   HG00180   HG00183   HG00186   NA06986   NA06994   NA07037   NA07051   NA07346   
NA07357   HG00097   HG00100   HG00102   HG00104   HG00108   HG00110   HG00171   HG00174   
HG00179   HG00182   HG00185   NA06984   NA06989   NA07000   NA07048   NA07056   NA07347 
HG00177   

Sample discarded BAM low 
quality 

Non-Iberian 
representative 

Familiar relatedness 

JID047  X  
JID144  X  
JID164  X  
JID239  X  
JID270  X  
JID368   X 
JID399  X  
JID438  X  
JID441   X 
JID466  X  
JID499  X  
JID511  X  
JID533  X  
JID639  X  
JID643  X  
JID645  X  
JID698  X  
JID712  X  
JID744  X  
JID748 X   
JID773  X  
JID777  X  

Supplementary Table 2. Samples discarded from the G CAT cohort after 
sample filtering. 

Supplementary Table 3. 95 GCAT Samples used to impu te the pilot 
haplotype reference panel.  
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Allele 
frequency  Benign SV  Likely benign SV  

Variant of 
unknown 

significance  
SV likely 

pathogenic  SV pathogenic  

Common 2299 (42.2%) 2206 (40.49%) 62 (1.14%) 877 (16.1%) 4 (0.07%) 

Low Frequency 157 (29.57%) 288 (54.24%) 4 (0.75%) 86 (16.2%) 1 (0.19%) 

Rare 121 (37%) 153 (46.79%) 6 (1.83%) 50 (15.29%) 0 

Doubleton 1 (6.25%) 12 (75%) 0 3 (18.75%) 0 

Singleton 2 (4.26%) 37 (78.72%) 0 9 (19.15%) 0 

 

 

 

Phenotypes  num SVs  % 

Cardiomyopathy, dilated, 3B, 302045 (3)/ Becker muscular 
dystrophy, 300376 (3)/ Duchenne muscular dystrophy, 
310200 (3) 26 4.48 

Epileptic encephalopathy, early infantile, 12, 613722 (3) 25 4.30 

Mental retardation, AD 33, 616311 (3)/ (Ventricular 
fibrillation, paroxysmal familial, 2), 612956 (3) 24 4.13 
Acrodysostosis 2, with or without hormone resistance, 
614613 (3) 20 3.44 

Mental retardation, XL 21/34, 300143 (3) 15 2.58 

Pitt-Hopkins-like syndrome 2, 614325 (3)/ (Schizophrenia, 
susceptibility to, 17), 614332 (3) 15 2.58 

Mental retardation, AD 39, 616521 (3) 13 2.24 

Mental retardation, AR, 6, 611092 (3) 12 2.07 
Cerebellar ataxia, nonprogressive, with mental retardation, 
614756 (3) 10 1.72 

Koolen-De Vries syndrome, 610443 (3) 10 1.72 

 

 

 

 

 

 

 

 

Supplementary Table 4 . Number of Structural variants per genome, grouped  by pathogenicity 
grade.  

Supplementary Table 5. Top 10 diseases related to S Vs using the OMIM database.  The 
SVs evaluated for this analysis where 581 SVs with high pLI, HI and pathogenicity ≥ 4. The 
diseases are related to mental and muscular diseases. 
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Phenotype  Num SNPs  % 

Heel bone mineral density 8 11.11 

Body mass index 7 9.72 
Highest math class taken 
(MTAG) 4 5.55 

Blood protein levels 3 4.16 

Height 3 4.16 

Menarche (age at onset) 3 4.16 

Schizophrenia 3 4.16 
Cognitive performance 
(MTAG) 2 2.77 

HDL cholesterol 2 2.77 

Monocyte count 2 2.77 

SV type  Num SVs  % 

DEL 41 86.11 

INS 10 13.89 

Population 
Code Population Description 

Super 
Population 

ACB African Caribbeans in Barbados AFR 

ASW Americans of African Ancestry in SW USA AFR 

CDX Chinese Dai in Xishuangbanna, China EAS 

CEU 
Utah Residents (CEPH) with Northern and 
Western European Ancestry EUR 

CHB Han Chinese in Beijing, China EAS 

CHS Southern Han Chinese EAS 

CLM Colombians from Medellin, Colombia AMR 

FIN Finnish in Finland EUR 

GBR British in England and Scotland EUR 

GIH Gujarati Indian from Houston, Texas SAS 

IBS Iberian Population in Spain EUR 

JPT Japanese in Tokyo, Japan EAS 

KHV Kinh in Ho Chi Minh City, Vietnam EAS 

LWK Luhya in Webuye, Kenya AFR 

MXL Mexican Ancestry from Los Angeles, USA AMR 

PEL Peruvians from Lima, Peru AMR 

PUR Puerto Ricans from Puerto Rico AMR 

TSI Toscani in Italia EUR 

YRI Yoruba in Ibadan, Nigeria AFR 

A) B) 

Supplementary Table 6 . 51 unique SVs with disease effect tagged by SNPs in the GWAS 
catalogue. A) Structural variant type tagged by SNPs. Just deletions and insertions are tagged by 
SNPs, showing an underrepresentation of other SVs in GWAS catalog. B) Phenotypes related to 
SNPs tagged by SVs in the GWAS catalog. 

Supplementary Table 7 . Populations used in imputation study from 
1000G. 
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Variant Caller Total Time 
(hour) CPU/h % 

CNVnator 977.03 11,724.34 0.34 

Whamg +SVTyper 2,122.87 24,384.13 0.71 

SvABA 1,867.2 29,875.18 0.87 

strelka2 999.05 49,414.24 1.45 

Popins 4,201.68 69,094.31 2.02 

Manta 3,194.05 153,314.4 4.48 

Deepvariant 13,184.25 336,301.2 9.84 

Haplotype Caller 72,152.83 609,258.2 17.82 

Lumpy 416,645.28 627,228.5 18.35 

Pindel 107,925.77 647,554.6 18.94 

Delly2 143,393.36 860,375.3 25.17 

Total computational 
time consumed 766,663.37 3,418,524 100 

 
Unique 
SNVs 

Low 
frequency Common 

Total SNVs 
MAF > 1% 

Percentage of 
SNVs MAF > 1% 

Same position 3,308,128 63 129 192 0.01 

Same position and 
alternative 6,409,906 260,645 798,536 10,59,181 16.52 

 
Total SNV and 

indels  
Unique 
SNVs 

Percentage of 
unique SNVs 

(%) 

Total unique 
SNVs and 

indels  

Percentage of 
unique SNVs 

and indels (%) 

Same position 35,342,263 3,308,128 9.36 3,678,023 10.41 

Same position and 
alternative 35,342,263 6,409,906 21.14 6,779,801 19.18 

Supplementary Table 8 . The Computational time to perform the 
variant calling of 785 GCAT samples. The computational 
resources are a bottleneck of variant calling. For example, Delly, 
Lumpy, Haplotype caller and Deepvariant are executed using all 
samples together, investing a high amount of time in their 
executions. The electricity costs needed to perform this variant 
calling is around 820,329 €, indicating that nowadays, generate a 
variant calling in current labs is not still available. 

Supplementary Table 9. Number of unique SNVs with M AF > 1%. 

Supplementary Table 10. SNVs and indels in the Iber ian-GCAT catalogue. The table shows the number 
of unique SNVs and indels in Iberian-GCAT catalogue, considering the same position or same position and 
alternative allele. These results showed that the majority of SNVs and indels are alredy described, however 
our panel. Besides, the alternative forms of SNVs are not already included in dbSNP. 
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A) 

C) 

B) 

D) 

E) 

Supplementary Figure 2. Length accuracy allowing 10% of error. To Evaluate the variant caller accuracy 
to report the length, we allowed 10% of the error to consider the length well predicted. Finally, we calculated 
the percentage of variants with length well predicted. CNVnator was the worst caller to report the length. 
Thus, we discarded their predictions to perform the median lengths. A) Mid-Deletion. B) Large Deletion.                        
C) Inversion. D) Duplication. E) Translocation. Model: Use the median to report the length. 

A) B) 

D) C) 

E) F) 

Supplementary Figure 1. Position accuracy allowing a breakpoint error of ± 10 bp.  The analysis has 
been performed using the variants detected in the in-silico, restricting a breakpoint error of ±10 bp. Then, we 
evaluated the percentage of positions in this range. A) Mid-Deletions. B) Large Deletions. C) De novo
insertions. D) Inversions. E) Duplications. F) Translocations. Model: Report the position using the most 
accuracte variant caller (Table 6). Model median: Using the median value to report the position. 
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A) B) 

C) D) 

E) F) 

Supplementary Figure 3. Benchmarking analysis classified by variant type. The 
performance of LRM varies across SV types. A) Mid-Deletions (30-150 bp). The LRM 
outperformed the variant discovery obtaining an F-score 0.93 and precision > 90% compared 
to logical rules or variant callers individually. B) Large Deletions (> 150 bp). The LRM 
outperformed the variant discovery with an f-score > 0.95 and precision > 98%. C) Insertions. 
The LRM is the most accurate strategy to detect insertions, obtaining an f-score 0.82 with 
high precision 93%. D) Inversions. The LRM improved the discovery of callers slightly 
individually with 0.93 of f-score. However,  the LRM is better than logical rules.                             
E) Duplications. No difference is appreciated between LRM and >=2 callers strategies. 
However, the LRM is 1.3% more precise than >= 2 callers. F) Translocations. No difference 
is appreciated between the most accurate variant caller and LRM. 

>=: Logical rules (ex: >= 2 callers, at least two callers and methods detect the same variant. 
This strategy is followed by GoNL project).; LRM: Logistic Regression Model.;       : 
Confidence interval (CI) area of each algorithm.;  F= : F-score. 
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A) B) 

D) C) 

E) F) 

Supplementary Figure 4.  The LRM reduced the genotype error in all SV types, highlighting duplications, 
where the genotyping strategy designed decreased the genotype error < 25%. A) Mid-deletions. B) Large 
deletions. SvABA generated errors in heterozygous, being ~75%. C) Insertions. Whamg is not able to 
genotype homozygous variants. D) Inversions. SvABA is not able to genotype heterozygous variants being 
near to ~100%. E) Duplications. Manta and Pindel, are not able to genotype homozygous variants. 
F) Translocations. SvABA is not able to genotype homozygous variants and Pindel heterozygous ones. 
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Supplementary Figure 5. Structural variant detectio n categorised by coverage.  While the 
coverage increases the number of variants discovered rise too. However, CNVnator decreased their 
detections, mainly in duplications, showing that at high coverages Read Depth (RD) strategies could 
be more accurate in SV detection. Besides, Popins require at leas 30X to be executed, highlighting the 
importance of coverage in de novo insertion discoveries. These result shows the mean of SVs detected 
at different coverages using 10 samples from GCAT. For this reason, combining all variant callers, the 
accuracy of SV discoveries could increase. 

Structural Variants imputed (DEL) SNPs and indels imputed A) B) 

Supplementary Figure 6. Variants imputed in chromosome 22 with info score ≥ 0.7, 
using different phasing strategies. A) Large deletions imputed (>150 bp). Using Shapeit4 
and phasing informative reads (WhatsHap) improves the imputation of Common variants. 
Besides, the most improvement is in rare SV variants, where 28.57% of 49 rare SVs were 
imputed. These results demonstrated that Shapeit4+WhatsHap improves the SV imputation 
performance. B) SNP and indels imputed. There are no remarkably differences between  
Shapeit2+MVNcall and all Shapeit4 combinations, indicating that the imputation quality of 
SNPs and indels are not influenced by phasing strategy. 
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A) B) C) 

D) E) F) 

G) H) I) 

J) K) 

Supplementary Figure 8. Strategies to improve imput ation performance. The study evaluated the 
effect of complementary nucleotides from genotyping SNP array and imputing with a haplotype reference 
panel generated using phase informative reads (PIRs (WhatsHap)). In conclusion, if the SNP array strand 
is known, including complementary nucleotides improves the imputation performance. However, 
generating a reference panel using PIRs do not seem to be related to imputation performance, just 
improve slightly in SNPs. 

45% 

35% 

25% 

Supplementary Figure 7. Structural Variant (SV) imputed with info score ≥ 0.7 distributed 
by population and SV type.  The majority of SVs imputed are deletions, insertions and Alus. 
The other SV types are less imputable. 
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Supplementary Figure 9 . Structural Variant effect on imputation performance of SNVs and 
indels. The analysis has been performed evaluating by chuncks of 100 bp the SNV and indels quality 
around different SVs. In figures the center of X axis is the region where the SVs is located, the extrems 
are the SNVs and indels most far. The imputation of SNVs and indels are not influenced by SVs and 
their length, as we can see in common (MAF ≥ 5%), low-frequency (1% ≤ MAF < 5%) and rare (MAF 
< 1%) variants, just the allele frequency indicated that rare variants are the group with less imputation 
quality. 

SNPs and indels imputed grouped by MAF 
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Supplementary Figure 10 . Structural Variants which modify genes with 
extremetly loss of function intolerance effect.   

Supplementary Figure 11 . Variant discovery grouped by SV type and classified by SV size.                       
The F-score of variant callers and Logistic Regression Model (LRM) fluctuated across SV sizes, 
demonstrating different accuracy in specific size ranges. In deletions, the F-score of the Logistic regression 
model is between 97-99%, depending on the SV size, demonstrating that the variable size improved SV 
discoveries' accuracy in specific size ranges. In Duplications and Inversions, the F-score of variant callers 
fluctuated across  SV sizes. However, including the SV size in LRM improve the SV discovery of variant 
callers individually, increasing the SV discovery performance. 
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