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want to thank them, Guy Casale and Hiroshi Umemura for several interesting

discussions in Paris.

I am grateful to Shigeyuki Kondo and Hiroshi Umemura for making my

research stay in Nagoya possible. I would like to thank the latter and Kat-

sunori Saito for interesting discussions during my stay in Nagoya. I profited

from discussions with Hiroshi Umemura by obtaining a better understanding

of his theory. He also provided me with the idea for the proof of lemma 3.1.1.

Also, I would like to thank him and Yukari Ito for inviting me to speak about

my work in their Algebraic Geometry seminars at Nagoya University. I thank

Shuji Morikawa for providing me with a preliminary version of his article on

v



the general difference Galois theory, which motivated parts of my research.

My thanks also go to Katsutoshi Amano and Akira Masuoka for inviting

me to Tsukuba University to give lectures there.

I am grateful to Paloma Bengoechea and Teresa Crespo for their help with

the preparation of the Spanish summary.

I would also like to thank all the other persons I had fruitful mathematical

discussions with during several meetings in the last years, especially Michael

Wibmer.

After all, I would like to thank my friends at Barcelona, Heidelberg, Paris

and Nagoya for their support and for making my stays at the corresponding

places each time very enjoyable. Finally, I would like to thank my family for

their constant support.

This work was supported by the European Commission under contract

MRTN-CT-2006-035495 and by the Japan Society for the Promotion of Science

with a JSPS Postdoctoral Fellowship (short-term) for North American and

European Researchers. I thank those institutions for financial support.

vi



Contents

Contents vii

Introduction 1

1 Higher and iterative derivations 9

1.1 Higher and iterative differential rings . . . . . . . . . . . . . . . 9

1.2 Extension of higher and iterative derivations . . . . . . . . . . . 12

1.3 Linearly non-degenerate higher derivations . . . . . . . . . . . . 20

2 Module algebras 25

2.1 Algebras, coalgebras and bialgebras . . . . . . . . . . . . . . . . 25

2.2 Module algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Module algebras . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Homomorphisms, ideals and constants of module algebras 36

2.2.3 The module algebra structure Ψint . . . . . . . . . . . . . 39

2.2.4 Commuting module algebra structures . . . . . . . . . . 43

2.2.5 Extensions of module algebra structures . . . . . . . . . 49

2.2.6 Simple module algebras . . . . . . . . . . . . . . . . . . . 53

2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3.1 Endomorphisms . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.2 Automorphisms . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.3 Groups acting as algebra endomorphisms . . . . . . . . 59

vii



Contents

2.3.4 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.5 Higher derivations . . . . . . . . . . . . . . . . . . . . . . 63

2.3.6 Iterative derivations . . . . . . . . . . . . . . . . . . . . . 64

2.3.7 σ-derivations . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.3.8 q-skew iterative σ-derivations . . . . . . . . . . . . . . . . 69

2.3.9 D-rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3 The infinitesimal Galois group 89

3.1 The rings L and K associated to L/K . . . . . . . . . . . . . . . 90

3.2 Lie-Ritt functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 The functor FL/K of infinitesimal deformations . . . . . . . . . 99

3.4 The infinitesimal Galois group . . . . . . . . . . . . . . . . . . . 106

4 Picard-Vessiot theory 115

4.1 Picard-Vessiot extensions of Artinian simple module algebras . 116

4.2 The general Galois theory in the linear case . . . . . . . . . . . . 118

Appendices 129

A Linear topological rings 131

A.1 Linear topological rings and their completion . . . . . . . . . . 131

A.2 The completed tensor product of linear topological rings . . . . 133

B Formal schemes, group schemes and group laws 137

B.1 Formal schemes and formal group schemes . . . . . . . . . . . . 137

B.2 Formal groups laws and their associated formal group schemes 139

B.3 The formal group scheme attached to a group scheme . . . . . 140

Resumen en castellano 143

Bibliography 151

Index 159

viii



Introduction

Galois theory has its roots in the beginning of the 19th century when E. Galois

determined group theoretic conditions under which polynomial equations are

solvable by radicals. Given a field F and a separable polynomial f ∈ F[X],
there exists an extension field E over F, the so called splitting field of f , which

is generated over F by the roots of f . The group G = Aut(E/F), consisting

of all field automorphisms of E fixing F, acts on the set of zeros of f in E. It

consists of those permutations of the set of roots of f that respect algebraic

relations over F among the roots of f . There exists an inclusion-reversing

bijection between the set of subgroups of G and the set of intermediate fields

between E and F.

It was the goal of S. Lie to develop a Galois theory for differential equa-

tions in place of algebraic equations. The first step was done by E. Picard

and E. Vessiot, who developed a Galois theory for linear differential equa-

tions, nowadays called Picard-Vessiot theory. Then E. Kolchin extended this

theory by developing the differential Galois theory of strongly normal ex-

tensions, which include certain extensions of differential fields arising from

non-linear differential equations ([Kol76]). Inspired by the work of E. Ves-

siot ([Ves46]), H. Umemura developed a Galois theory to deal with non-linear

algebraic differential equations ([Ume96a]). B. Malgrange developed a the-

ory with a similar aim using the language of differential geometry ([Mal01],

[Mal02]). This theory was further studied and applied by G. Casale ([Cas04],

[Cas07], [Cas08]). Recently, H. Umemura compared his theory with the one
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Introduction

of B. Malgrange and showed that they are closely connected ([Ume08]).

There exist analog theories for difference equations. First, C. H. Franke

developed a Picard-Vessiot theory for difference equations ([Fra63]). Later,

R. Infante defined strongly normal extensions of difference fields and devel-

oped a Galois theory for them ([Inf80b], [Inf80a]). Recently, S. Morikawa and

H. Umemura developed an analogue of the differential Galois theory of the

latter for extensions of difference fields ([Mor09], [MU09]). Following B. Mal-

grange’s approach, G. Casale and A. Granier set up Galois theories for non-

linear (q-)difference equations ([Cas06], [Gra09]).

The theories mentioned so far were restricted to fields of characteristic

zero. In positive characteristic, derivations turn out not to be adequate and

H. Hasse and F. K. Schmidt introduced iterative derivations as a replacement

for them when working with fields of arbitrary characteristic ([HS37]). Later,

K. Okugawa, B. H. Matzat and M. van der Put developed differential Galois

theories in positive characteristic using iterative derivations ([Oku87], [Mat01],

[MvdP03]). The theory of B. H. Matzat and M. van der Put was further devel-

oped by A. Maurischat and the author ([Rös07], [Hei07], [Mau10a], [Mau10b]).

But at least the theories of B. H. Matzat, M. van der Put and the followers are

restricted to linear iterative differential equations.

M. Takeuchi gave a Hopf-algebraic approach to Picard-Vessiot theory that

unifies the differential Picard-Vessiot theory in characteristic zero and the it-

erative differential Picard-Vessiot theory in arbitrary characteristic ([Tak89])

using so called C-ferential fields, where C is a certain coalgebra. Recently,

K. Amano and A. Masuoka extended the approach of M. Takeuchi using the

language of D-module algebras, where D is a certain Hopf-algebra ([Ama05],

[AM05], [AMT09]). Their theory unifies the Picard-Vessiot theory of differ-

ential equations in characteristic zero, the Picard-Vessiot theory of iterative

differential equations in arbitrary characteristic and the Picard-Vessiot theory

of difference equations when the difference operator is an automorphism.

To summarize, development in differential and difference Galois theory

2



went into two directions. On the one hand, H. Umemura and S. Morikawa

developed Galois theories that allow the investigation of non-linear differen-

tial and difference equations. On the other hand, M. Takeuchi, K. Amano and

A. Masuoka developed a unified Galois theory for Picard-Vessiot extensions,

i.e. for linear equations (although their approach is more general and does

not emphasize the equations).

This thesis has two main purposes. The first is to develop a general Ga-

lois theory by combining the capacity of the theories of H. Umemura and

S. Morikawa to allow the treatment of very general field extensions with the

advantage of the formulation of the theory of M. Takeuchi, K. Amano and

A. Masuoka to unify different structures like derivations, iterative derivations

and automorphisms. The second purpose is to remove the restriction to char-

acteristic zero from the theories of H. Umemura and S. Morikawa.

We realize our aim by using the language of D-module fields, where D is a

cocommutative bialgebra, and iterative derivations and obtain a Galois theory

for separable and finitely generated extensions of D-module fields without

restrictions on the characteristic. For certain choices of the bialgebra D one

recovers the theories of H. Umemura and S. Morikawa, but without the re-

striction to fields of characteristic zero.

The main tool in the theory of H. Umemura is the homomorphism of

differential rings

(R, ∂)→ (RJtK, ∂t), a 7→ ∑
k∈N

∂k(a)
k!

tk

associated to a differential ring (R, ∂) containing Q, which he calls universal

Taylor homomorphism. Similarly, in the theory of S. Morikawa the homomor-

phism of difference rings

(R, σ)→ (RN, Σ), a 7→ (k 7→ σk(a))

associated to a difference ring (R, σ), where Σ is the shift operator on RN,

plays a central role. This homomorphism is called universal Euler homo-
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Introduction

morphism there. Given a commutative ring C, a C-bialgebra D and a C-

algebra R, a D-module algebra structure on R is a homomorphism of C-modules

Ψ : D⊗C R → R with certain properties. Given a D-module algebra structure

Ψ on R, we obtain a homomorphism of C-algebras

R→ ModC(D, R), a 7→ (d 7→ Ψ(d⊗ a))

having analogous properties as the universal Taylor and universal Euler ho-

momorphisms mentioned before. Given a separable and finitely generated

extension of D-module fields L/K, we define the normalization of this ex-

tension, namely an extension L/K of D-module algebras similar to the nor-

malizations defined by H. Umemura and S. Morikawa. Using this normal-

ization, we introduce an infinitesimal Galois group functor attached to the

extension L/K. This functor is a Lie-Ritt functor, i.e. isomorphic to a group

functor of infinitesimal transformations fulfilling certain partial differential

equations. As Lie-Ritt functors are in general formal group schemes, we see

that the infinitesimal Galois group we defined turns out to be a formal group

scheme defined over the field L. In order to define the normalization L/K,

H. Umemura and S. Morikawa use a basis of the L-vector space DerK(L) con-

sisting of commuting derivations and a Taylor development with respect to

this set of derivations. They need to assume that the characteristic is zero. In

order to avoid this restriction, we use a multivariate iterative derivation with

respect to a separating transcendence basis of L/K instead. In the case of a

separable and finitely generated Picard-Vessiot extension of D-module fields

L/K in the sense of K. Amano and A. Masuoka ([AM05]), we show that if K

is perfect, then after an extension of scalars our infinitesimal Galois group be-

comes isomorphic to the formal group scheme associated to the Galois group

scheme of K. Amano and A. Masuoka.

This thesis is organized as follows: In the first chapter we introduce higher

and iterative derivations. Although they can be understood in the framework

of module algebras, which we introduce in the second chapter, we devote an

own chapter to them due to their importance for this thesis. For the later

4



use we do not restrict us to the ordinary case, but define multivariate higher

and iterative derivations as introduced in ([Hei07]), which are equivalent to

a finite set of commuting higher and iterative derivations, respectively. We

prove basic properties of higher and iterative differential rings. Some of these

properties also hold for module algebras, but others do not hold in the general

framework of module algebras anymore.

In the second chapter we first state our convention concerning algebras,

coalgebras, and bialgebras and then cover module algebras. Module algebras

are used in this thesis as a framework to describe a large family of struc-

tures such as derivations, iterative derivations, endomorphisms and automor-

phisms in a unified way. In section 2.2, we first recall their definition and

prove some of their basic properties. At the end of this section, we focus on

simple module algebras, which behave particularly well. We close this chap-

ter with examples illustrating the concept of module algebras by defining a

number of bialgebras D and explaining D-module algebras in these cases.

Most of the bialgebras we explain there are cocommutative, but we also give

two examples of non-cocommutative bialgebras. In chapter 3 we make the as-

sumption that the bialgebra is cocommutative. This excludes these bialgebras

to be used in our theory, but they are important to describe theories like those

of Y. André and C. Hardouin ([And01], [Har10]). Finally, we show how one

can associate a bialgebra D to a given iterative Hasse system D in the sense of

R. Moosa and T. Scanlon ([MS10], [MS09]). Then an iterative D-ring poses a

canonically associated D-module algebra structure and conversely every com-

mutative D-module algebra becomes an iterative D-ring.

Chapter 3 is the heart of this thesis. We generalize and unify the theories

of H. Umemura and M. Morikawa. First, we define the normalization L/K of

a separable and finitely generated extension of extension of D-module fields

L/K. Then we introduce the functor of deformations FL/K and the infinitesi-

mal Galois group Inf-Gal(L/K) unifying the definitions of H. Umemura and

M. Morikawa. We also define Lie-Ritt functors, which have been introduced

5



Introduction

by H. Umemura in [Ume96a]. Our treatment of Lie-Ritt functors differs in two

points from the one of H. Umemura. First, we use iterative differential rings

instead of differential rings to define Lie-Ritt functors in order not to pose

unnecessary restrictions on the characteristic. Secondly, certain series appear

in the definition of Lie-Ritt functors in [Ume96a] that do not converge. We

change the definition in order to avoid this problem.

In the last chapter we compare our general theory with the Picard-Vessiot

theory of K. Amano and A. Masuoka. We show that in the case of a separable

and finitely generated Picard-Vessiot extension of D-module fields the nor-

malization L/K has a particularly easy form and show how the infinitesimal

Galois group Inf-Gal(L/K) is related to the Galois group scheme Gal(L/K)
defined by K. Amano and A. Masuoka if the field K is perfect.

Since we do not know an adequate reference that covers all we need, we

added appendix A on linear topological rings and completed tensor products.

The literature on formal group schemes seems not to be consistent. So

we added appendix B about formal schemes, formal group schemes and for-

mal group laws, stating the definitions that we use and showing the relations

between the concepts mentioned.

At the end a summary in Spanish is included.

Finally, we mention that we consider the development of the theory that

we present here not to be completed. There are several directions for general-

izations. To begin with, in their Picard-Vessiot theory, K. Amano and A. Ma-

suoka assume that the bialgebra D is a pointed cocommutative Hopf algebra

and that the irreducible component D1 is of Birkhoff-Witt type. Therefore,

theories like those of Y. André ([And01]) and C. Hardouin ([Har10]) are not in

the scope of their theory, since the corresponding bialgebras are not cocom-

mutative. It is an interesting question whether a Picard-Vessiot theory using

non-cocommutative bialgebras can be developed in order to integrate the the-

ories of Y. André and C. Hardouin. In our theory we do not assume that the

bialgebra D is a Hopf algebra, so in contrast to the theory of K. Amano and

6



A. Masuoka, for example non-inversive difference fields are within our scope.

But in this thesis we restrict ourselves to cocommutative bialgebras. The main

reason for this is that in this case the dual of the bialgebra becomes a commu-

tative algebra. The algebra L that we define is a subalgebra of ModC(D, L). If

we do not assume that the bialgebra is cocommutative, the latter is in general

not commutative anymore. However, if the extension L/K is a Picard-Vessiot

extension (though, strictly speaking, there is no definition of Picard-Vessiot

extensions in this situation yet), then it is easy to see that L is still commuta-

tive and we can proceed. In the general case this is not at all clear and L may

become non-commutative. H. Umemura shows in [Ume08] that in the case

of finitely generated field extensions of C, one can construct the Malgrange

groupoid using the spectrum of an algebra that is defined similarly as L. If

this algebra is not longer commutative, this is not possible and one can expect

objects of a new type. Finally, we would like to mention that the restriction to

field extensions in our theory is unpleasant, since for example Picard-Vessiot

extensions of difference equations are not, in general, fields. We expect that

our theory can be generalized in this direction too.
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Notation: We denote by N, Z, Q and C the natural numbers (including zero),

integers, rational numbers and complex numbers, respectively. We use standard mul-

tiindex notation, namely if n ∈ N and k = (ki)i=1,...,n, l = (li)i=1,...,n ∈ Zn we

write

|k| :=
n

∑
i=1

ki and k + l := (ki + li)i=1,...,n.

For k, l ∈Nn we define

k! :=
n

∏
i=1

(ki)!,
(

k
l

)
:=

n

∏
i=1

(
ki
li

)
and δi := (δi,j)j=1,...,n,

where for any set A and any i, j ∈ A the symbol δi,j is the Kronecker-δ, i.e. δi,j = 1 if

i = j and δi,j = 0 if i 6= j.

All rings and algebras are assumed to be associative and unital. We denote by

N(A) the nilradical of a commutative ring A, i.e. the ideal consisting of all elements

a ∈ A such that there exists a natural number n > 0 with an = 0, and by πA the

canonical projection A → A/N(A). The units of a ring A are denoted by A×. If

AJwK := AJw1, . . . , wnK and BJwK := BJw1, . . . , wnK are the formal power series

rings over commutative rings A and B, respectively, and if ϕ : A → B is a ring

homomorphism, then we denote by ϕJwK : AJwK→ BJwK the homomorphism defined

by ϕJwK(∑k∈Nn akwk) := ∑k∈Nn ϕ(ak)wk.

If C is a category and A and B are objects in C, then we denote the set of morphisms

from A to B in C by C(A, B). We use the following abbreviations for some basic

categories:

Set Sets

Grp Groups

Rng Rings

CRng Commutative rings

ModR R-modules, where R is a commutative ring

AlgR R-algebras, where R is a commutative ring

CAlgR Commutative R-algebras, where R is a commutative ring

8



Chapter 1

Higher and iterative derivations

In this chapter we recall the definition of higher and iterative derivations.

In the univariate case they were introduced by H. Hasse and F. K. Schmidt

([HS37]). In [Hei07] the author defined higher and iterative derivations in

the multivariate case, which serve as an alternative for systems of commuting

derivations in positive characteristic (see also [Rös07] for another generaliza-

tion of higher and iterative derivations). H. Matsumura proved that univariate

higher and iterative derivations extend to 0-étale extensions. We generalize

this result to multivariate higher and iterative derivations and show some

applications. At the end of this chapter we discuss linearly non-degenerate

higher derivations.

Notation: In this chapter we assume all rings and algebras to be commutative. Let C

be a (commutative) ring.

1.1 Higher and iterative differential rings

Definition 1.1.1. Let n be a positive natural number and f : R → R̃ be a homo-

morphism of C-algebras. An n-variate higher derivation from R to R̃ over C is a

9



1. Higher and iterative derivations

homomorphism of C-algebras

θ : R→ R̃Jt1, . . . , tnK =: R̃JtK

such that ε ◦ θ = f , where ε is the homomorphism of R̃-algebras R̃JtK → R̃ defined

by ε(ti) = 0 for i = 1, . . . , n. For all k ∈ Nn we denote by pk : R̃JtK → R̃ the map

sending ∑l∈Nn altl to ak and we define θ(k) := pk ◦ θ. If there is risk of confusion,

we will denote θ also by tθ in order to indicate the variables of the ring R̃JtK. An n-

variate higher derivation θ : R → RJtK from R to R over C is an n-variate iterative

derivation on R over C if the diagram

R
tθ

//

tθ

��

RJtK

uθJtK
��

RJtK t 7→t+u
// RJt, uK.

commutes, where the homomorphism uθJtK : RJtK→ RJt, uK is defined by

uθJtK

(
∑

k∈Nn
aktk

)
:= ∑

k∈Nn
uθ(ak)tk.

We denote by HDn
C(R, R̃) the set of all n-variate higher derivations from R to R̃ over

C, by HDn
C(R) the set of all n-variate higher derivations from R to R over C and by

IDn
C(R) the set of all n-variate iterative derivations on R over C.

Example 1.1.2. On every C-algebra R there exists for all n ∈ N an n-variate itera-

tive derivation

θ0 : R→ RJt1, . . . , tnK, r 7→ r

that we call the trivial n-variate iterative derivation.

Example 1.1.3. If R is a C-algebra containing the rational numbers Q and ∂1, . . . , ∂n

is a set of commuting C-derivations on R, then

θ : R→ RJtK, a 7→ ∑
k=(k1,...,kn)∈Nn

∂k1
1 ◦ · · · ◦ ∂kn

n (a)
k!

tk

is an n-variate iterative derivation on R over C.

10



1.1. Higher and iterative differential rings

Definition 1.1.4. (1) A pair (R, θ), where R is a C-algebra and θ ∈ HDn
C(R),

is called an (n-variate) higher differential ring (or HD-ring) over C. If θ is

iterative, (R, θ) is called an (n-variate) iterative differential ring (or ID-ring)

over C.

(2) Given a HD-ring (R, θ) over C, the set

Rθ := {a ∈ R | θ(a) = a}

is a C-subalgebra of R and is called the ring of constants of (R, θ).1

(3) If (R, θR) is a HD-ring (ID-ring) over C and (A, θA) is another HD-ring

(ID-ring) over C, then we say that (A, θA) is a HD-subring (ID-subring) of

(R, θR) if A is a C-subalgebra of R and if θA is the restriction of θR to A.

Definition 1.1.5. If (R, θR) and (S, θS) are HD-rings, then a homomorphism of

C-algebras ϕ : R → S is called a homomorphism of HD-rings over C (or a HD-

homomorphism) if θS ◦ ϕ = ϕJtK ◦ θR holds.

Definition 1.1.6. Let (R, θ) be a HD-ring over C.

(1) An ideal A of R is a higher differential ideal (or HD-ideal) of (R, θ) if

θ(A) ⊆ AJtK holds.

(2) The HD-ring (R, θ) is a simple HD-ring if (0) and R are its only HD-ideals.

Definition 1.1.7. Let (S, θ) be a HD-ring, R a HD-subring of S and A ⊆ S a subset.

Then we define the HD-ring generated by A over R as the smallest HD-subring of

S containing R and A and denote it by R{A}θ (or also by R{A} if θ is clear from

the context). We denote the smallest HD-ideal of S containing A by [A](S,θ) (or also

by [A]S or [A] if there is no risk of confusion).

1There are alternative definitions of constants (see for example [MW95], [Zie03]). Our defi-
nition coincides with the more general definition of constants in the context of module algebras
(see definition 2.2.12).
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1. Higher and iterative derivations

Remark 1.1.8. In the situation of definition 1.1.7 it is easily seen that if S is iterative,

then R{A}θ is generated as C-algebra over R by θ(k)(a) for all a ∈ A and k ∈ Nn,

i.e we have R{A}θ = R[θ(k)(a) | a ∈ A, k ∈Nn].

Example 1.1.9. Let (R, θ) be an n-variate HD-ring and I be a set. Then we define

the ring of differential polynomials in variables (Xi)i∈I over (R, θ) as

R{Xi | i ∈ I}IDn := R[X(k)
i | i ∈ I, k ∈Nn]

and extend the higher derivation θ to R{Xi | i ∈ I}IDn by

θ
(

X(k)
i

)
:= ∑

l∈Nn

(
k + l

k

)
X(l+k)

i tl

for all i ∈ I and all k ∈ Nn. If the higher derivation θ on R is iterative, then the

extension to R{Xi | i ∈ I}IDn is iterative too.

1.2 Extension of higher and iterative derivations

We first recall the following definition of 0-smooth, 0-unramified and 0-étale

extensions in terms of the infinitesimal lifting property from [Mat89, p. 193].2

Definition 1.2.1. Let K be a ring. A K-algebra A is called 0-smooth over K if for

every K-algebra S and every ideal N of S that satisfies N2 = 0, every K-algebra

homomorphism u : A → S/N has a lifting v : A → S, i.e. for every commutative

diagram

A
u // S/N

K //

OO

S

OO

2These definitions correspond to the formally smooth, formally unramified and formally étale
extensions of discrete topological rings, as defined by A. Grothendieck in [Gro64, Définition 19.3.1
and Définition 19.10.2]
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1.2. Extension of higher and iterative derivations

there exists a homomorphism v : A→ S making the diagram

A
u //

v

!!

S/N

K //

OO

S

OO

commutative. The K-algebra A is called 0-ramified if there is at most one such v. It

is called 0-étale if it is 0-smooth and 0-ramified.

The following two propositions specialize to [Mat89, Theorem 27.2] in the

case n = 1.

Proposition 1.2.2. Let C // A
g

// B be ring homomorphisms and assume that B is

0-étale over A. Let further R be a B-algebra.

(1) If θ : A → RJt1, . . . , tnK is an n-variate higher derivation from A to R over C,

then there exists a unique n-variate higher derivation θ′ : B → RJt1, . . . , tnK
from B to R over C such that θ′ ◦ g = θ.

(2) If θ : A → AJt1, . . . , tnK is an n-variate iterative derivation on A over C, then

the unique extension θ′ : B→ BJt1, . . . , tnK of gJtK ◦ θ is also iterative.

Proof. For all m = (m1, . . . , mn) ∈ Nn we construct iteratively a compatible

family of homomorphisms

B→ RJt1, . . . , tnK/(tm1+1
1 , . . . , tmn+1

n )

making the diagram

B // RJt1, . . . , tnK/(tm1+1
1 , . . . , tmn+1

n )

A
θ //

g

OO

RJt1, . . . , tnK

OO
(1.2.1)

13



1. Higher and iterative derivations

commutative. For m = 0 we note that RJt1, . . . , tnK/(t1, . . . , tn) ∼= R and we

take the structure homomorphism of the B-algebra R. In this case the dia-

gram (1.2.1) becomes

B // R

A
θ //

g

OO

RJt1, . . . , tnK,

ε

OO
(1.2.2)

which is commutative, since θ is a higher derivation from A to R. If such

a homomorphism is already constructed for some m ∈ Nn, then, since B is

0-étale over A, for every i ∈ {1, . . . , n} there exists a unique homomorphism

B→ RJt1, . . . , tnK/(tm1+1
1 , . . . , tmi+2

i , . . . , tmn+1
n ),

making the diagram

B //

,,

RJt1, . . . , tnK/(tm1+1
1 , . . . , tmn+1

n )

A
θ //

g

OO

RJt1, . . . , tnK // RJt1, . . . , tnK/(tm1+1
1 , . . . , tmi+2

i . . . , tmn+1
n )

OO

commutative. By induction we obtain compatible homomorphisms

B→ RJt1, . . . , tnK/(tm1+1
1 , . . . , tmn+1

n )

for all m ∈ Nn and thus a homomorphism θ′ : B → RJt1, . . . , tnK fulfilling our

conditions.

To prove the second part, we consider both, uθJtK ◦ tθ : A → AJt, uK and

t+uθ : A→ AJt, uK, as higher derivations on A. By the first part, they uniquely

extend to higher derivations on B. Since uθJtK ◦ tθ = t+uθ, the homomor-

phisms uθ ′JtK ◦ tθ ′ : B → BJt, uK and t+uθ ′ : B → BJt, uK coincide as well, i.e.

θ ′ is iterative.

Example 1.2.3. (1) If A is a ring and S ⊆ A a multiplicative subset of A, then

S−1 A is 0-étale over A (see [Gro64, Chap. 0, 19.10.3 (ii)]).
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1.2. Extension of higher and iterative derivations

(2) If K′/K is a finite separable field extension, then K′ is 0-étale over K (see [Gro64,

Chap. 0, 21.7.4 (iii)]).

Example 1.2.4. Let K be a ring.

(1) The homomorphism of K-algebras

θ(x1,...,xn) : K[x1, . . . , xn]→ K[x1, . . . , xn][t1, . . . , tn], xi 7→ xi + ti

defines an n-variate iterative derivation on K[x1, . . . , xn] over K.

(2) If K is a field, then the n-variate iterative derivation θ(x1,...,xn) on K[x1, . . . , xn]
over K extends to K(x1, . . . , xn) = Quot(K[x1, . . . , xn]) by example 1.2.3 (1)

and proposition 1.2.2. We denote this n-variate iterative derivation again by

θ(x1,...,xn).

(3) If K is a field and L/K is a separably and finitely generated field ex-

tension with separating transcendence basis {x1, . . . , xn}, then by exam-

ple 1.2.3 (2) and proposition 1.2.2 the n-variate iterative derivation θ(x1,...,xn) ∈
IDn

K(K(x1, . . . , xn)) constructed above extends uniquely to L and we denote

this extension again by θ(x1,...,xn).

In every case we will denote θ(x1,...,xn) also by θx.

Example 1.2.5. (1) On R := CJxK := CJx1, . . . , xnK we define an n-variate itera-

tive derivation θ(x1,...,xn) : R→ RJt1, . . . , tnK over C by θ(x1,...,xn)(xi) = xi + ti

for i ∈ {1, . . . , n}.

(2) By proposition 1.2.2 and example 1.2.3 (1) the iterative derivation θ(x1,...,xn) ex-

tends uniquely to R = CJxK[x−1]. We denote this extension again by θ(x1,...,xn).

In both cases the constants are C and we denote θ(x1,...,xn) also by θx.

Lemma 1.2.6. If (R, θ) is an n-variate higher differential ring over C, then θ extends

to an n-variate higher derivation θ̃ on RJwK := RJw1, . . . , wnK, defined by

θ̃ : RJwK→ RJw, uK, wi 7→ wi + ui for all i ∈ {1, . . . , n}.

If θ is iterative, then θ̃ is iterative too.
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1. Higher and iterative derivations

Proof. Since RJw, uK is complete with respect to the (w, u)-adic topology, there

exists a unique continuous homomorphism of R-algebras θ̃ : RJwK→ RJu, wK,

sending wi to wi + ui for all i = 1, . . . , n, where we consider RJwK as R-

algebra via the inclusion as constants with respect to w and RJw, uK as R-

algebra via the composition of θ : R → RJuK with the inclusion of RJuK into

RJw, uK as constants with respect to w. Thus, θ̃ restricts to θ on R. Since

θ̃ is a homomorphism of C-algebras, it is an n-variate higher derivation on

RJwK over C. Finally, if θ is iterative, then v θ̃JuK ◦ u θ̃ and u+v θ̃ coincide by

the universal property of the formal power series ring RJwK, since both are

continuous homomorphisms of R-algebras sending wi to wi + ui + vi for i =
1, . . . , n with respect to the (w)-adic and (w, u, v)-adic topologies on RJwK
and RJw, u, vK, respectively.

The following proposition is well-known, at least in the univariate case.

Proposition 1.2.7. Let (R, θR) be a simple HD-ring, then

(1) the ring R is an integral domain and

(2) if L = Quot(R) is the quotient field of R, then θR can be extended to a higher

derivation θL on L and we have RθR = LθL .

Proof. Let P be a prime ideal of R. We define a HD-homomorphism

θ̄R : (R, θR)→ ((R/P)JtK, θt)

as θ̄R := πJtK ◦ tθR, where π : R → R/P is the canonical projection. The

kernel of θ̄R is a HD-ideal not equal to (1) and, since (R, θR) is simple, it has

to be trivial. Therefore, θ̄R is a monomorphism from R to the integral domain

(R/P)JtK and thus the ring R does not contain non-trivial zero-divisors.

By example 1.2.3 (1) and proposition 1.2.2, the higher derivation θR extends

to L. For a ∈ LθL we define Ia := {b ∈ R | ab ∈ R}. Since for b ∈ Ia we also

have a · θR(b) = θR(a · b) ∈ RJtK, the ideal Ia E R is a HD-ideal and, since Ia is

non-trivial, it is equal to (1). In particular, we obtain a ∈ R.
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1.2. Extension of higher and iterative derivations

Proposition 1.2.8. Let R be a linear topological ring with respect to the I-adic topol-

ogy on R, where I is an ideal in R, and θ : R→ RJtK be an n-variate higher derivation

on R that is continuous with respect to the I-adic topology on R and the (I, t)-adic

topology on RJtK.

(1) The n-variate higher derivation θ extends uniquely to an n-variate higher

derivation θ̂ : R̂→ R̂JtK on the completion R̂, which is again continuous.

(2) If θ is iterative, then θ̂ is iterative too.

Proof. The unique extension θ̂ of θ to the completion (see lemma A.1.2) is a

higher derivation, since the property ε ◦ θ = idR holds analogously for the

extension θ̂ by the uniqueness of the extension. To prove the second part, we

consider the diagram

R̂

t θ̂

��

t θ̂
// R̂JtK

u θ̂JtK

��

R

tθ

��

bbEEEEEEEEEE
tθ

// RJtK

uθJtK
��

::ttttttttt

RJtK t 7→t+u
//

||yyyyyyyy
RJt, uK

$$JJJJJJJJJ

R̂JtK
t 7→t+u

// R̂Jt, uK.

All arrows are continuous homomorphisms and the outer arrows are the

unique extensions of the inner ones to the completions. Thus, the commutativ-

ity of the outer square follows from the one of the inner square by the unique-

ness of the extension of continuous homomorphisms to completions.

The following proposition was shown already in [Hei07].

Proposition 1.2.9. Let (R, θ) be a simple n-variate ID-ring with ring of constants

Rθ and x1, . . . , xm ∈ R. Then the following conditions are equivalent:
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1. Higher and iterative derivations

(1) x1, . . . , xm are linearly independent over Rθ .

(2) θ(x1), . . . , θ(xm) ∈ RJtK are linearly independent over R.

(3) There are d1, . . . , dm ∈Nn, such that det
(
(θ(di)(xj))m

i,j=1

)
∈ R×.

In addition, the implications (3) ⇐⇒ (2) =⇒ (1) also hold if (R, θ) is not simple

as HD-ring.

Proof. We show by induction on m that the second condition follows from

the first. This is clear for m = 1, so let m > 1 and x1, . . . , xm be linearly

independent over C. Then x1, . . . , xm−1 are also linearly independent over C

and by the induction hypothesis θ(x1), . . . , θ(xm−1) are linearly independent

over R. By proposition 1.2.7 the ring R is an integral domain and θ extends

to an iterative derivation on L := Quot(R). Suppose θ(x1), . . . , θ(xm) were

linearly dependent over R, then they would also be linearly dependent over

L and we can assume without loss of generality that θ(xm) = ∑m−1
j=1 ajθ(xj)

with aj ∈ L. Then θ(k)(xm) = ∑m−1
j=1 aj θ(k)(xj) for all k ∈ Nn and for k = 0

we obtain the L-linear combination xm = ∑m−1
j=1 ajxj. We will show that aj are

constants of L and thus also of R by proposition 1.2.7 for j = 1, . . . , m− 1. For

i, k ∈Nn we have(
i+k

k

)
θ(i+k)(xm)= θ(i) ◦ θ(k)(xm)

=
m−1

∑
j=1

θ(i)
(

ajθ
(k)(xj)

)
=

m−1

∑
j=1

∑
0≤m≤i

θ(m)(aj)θ(i−m) ◦ θ(k)(xj)

=
m−1

∑
j=1

aj

(
i+k

k

)
θ(i+k)(xj)+

m−1

∑
j=1

∑
0<m≤i

θ(m)(aj)
(

i+k−m
k

)
θ(i+k−m)(xj)

=
(

i+k
k

)
θ(i+k)(xm)+

m−1

∑
j=1

∑
0<m≤i

(
i+k−m

k

)
θ(m)(aj)θ(i+k−m)(xj)
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1.2. Extension of higher and iterative derivations

and thus
m−1

∑
j=1

∑
0<m≤i

(
i + k−m

k

)
θ(m)(aj)θ(i+k−m)(xj) = 0. (1.2.3)

In the next step we show inductively

m−1

∑
j=1

θ(lδµ)(aj)θ(k)(xj) = 0 (1.2.4)

for all k ∈ Nn, l ∈ N and µ ∈ {1, . . . , n}. We fix µ ∈ {1, . . . , n}. For l = 1

equation (1.2.4) follows immediately from (1.2.3). Now we assume that for

some l̃ ∈ N equation (1.2.4) holds for all 0 ≤ l ≤ l̃, all k ∈ Nn and all

µ ∈ {1, . . . , n} and show that it also holds for l̃ + 1, all k ∈ Nn and all µ ∈
{1, . . . , n}. From (1.2.3) we obtain for i = (l̃ + 1)δµ in particular

m−1

∑
j=1

l̃+1

∑
l=1

(
(l̃ + 1− l)δµ + k

k

)
θ(lδµ)(aj)θ((l̃+1−l)δµ+k)(xj) = 0.

In this sum all partial sums over j with fixed l ∈ {1, . . . , l̃} are zero by as-

sumption and we obtain ∑m−1
j=1 θ((l̃+1)δµ)(aj)θ(k)(xj) = 0 for all k ∈ Nn. Thus,

inductively we obtain (1.2.4) for all l ∈ N, µ ∈ {1, . . . , n} and all k ∈ Nn.

Since θ(x1), . . . , θ(xm−1) ∈ RJtK are linearly independent over R, we obtain

θ(lδµ)(aj) = 0 for all l ∈ N and all µ ∈ {1, . . . , n}, and thus aj ∈ Rθ for

j = 1, . . . , m− 1. Consequently, x1, . . . , xm are linearly dependent over Rθ in

contradiction to our assumption.

To show the converse, suppose that there exist a1, . . . , am ∈ Rθ , not all

zero, such that ∑m
i=1 aixi = 0. Then 0 = θ (∑m

i=1 aixi) = ∑m
i=1 aiθ(xi) and thus

θ(x1), . . . , θ(xm) are linearly dependent over Rθ and in particular over R.

The equivalence of the second and the third condition is clear.

Using this characterization of linear independence over constants we ob-

tain the following result, which, in the case of classical derivations and where

A is a field, is due to Kolchin ([Kol76, Ch. 2, Corollary 1 to Theorem 1])
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1. Higher and iterative derivations

Corollary 1.2.10. Let (R, θR) be a simple ID-ring and (A, θA) an ID-ring extension

of R. Then R and AθA are linearly disjoint over RθR .

Proof. Let a1, . . . , am ∈ R be linearly independent over RθR . Then by proposi-

tion 1.2.9 there are d1, . . . , dm ∈ Nn such that det(θ(di)(aj))i,j=1,...,m ∈ R× and

by the same proposition we obtain that a1 . . . , am are linearly independent over

Aθ .

1.3 Linearly non-degenerate higher derivations

The following lemma seems to be well known.

Lemma 1.3.1. Let L/K be a separable and finitely generated field extension of tran-

scendence degree n and M be an L-algebra. Then the M-module DerK(L, M) of

K-derivations from L to M is isomorphic to Mn. If {x1, . . . , xn} is a separating tran-

scendence basis of L/K, then the K-derivations ∂x1 , . . . , ∂xn from L to M, defined by

∂xi (xj) = δi,j for i, j ∈ {1, . . . , n}, form an M-basis of DerK(L, M).

Proof. Let x1, . . . , xn be a separating transcendence basis of L/K and (∂xi : L→
M)i=1,...,n be the K-derivations defined by ∂xi (xj) = δi,j for i, j ∈ {1, . . . , n}. We

define two maps

Φ : DerK(L, M)→ Mn, ∂ 7→ (∂(x1), . . . , ∂(xn))

and

Ψ : Mn → DerK(L, M), (a1, . . . , an) 7→
n

∑
i=1

ai∂xi .

Then for all ∂ ∈ DerK(L, M) we have (Ψ ◦ Φ)(∂) = ∑n
i=1 ∂(xi)∂xi and thus

((Ψ ◦Φ)(∂))(xj) = ∂(xj) for all j ∈ {1, . . . , n}. Since L/K(x1, . . . , xn) is finite

separable, we obtain (Ψ ◦ Φ)(∂) = ∂ (derivations extend uniquely to finite

separable field extensions). It is clear that Φ ◦Ψ = idMn .

Lemma 1.3.2. Let L/K be a separable and finitely generated field extension with

trdeg(L/K) = n and M be an L-algebra. Then for derivations ∂1, . . . , ∂n ∈
DerK(L, M) the following conditions are equivalent:
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1.3. Linearly non-degenerate higher derivations

(1) For all separating transcendence bases {x1, . . . , xn} of L/K we have

det((∂i(xj))i,j=1,...,n) ∈ M×.

(2) There exists a separating transcendence basis {x1, . . . , xn} of L/K such that

det((∂i(xj))i,j=1,...,n) ∈ M×.

(3) The derivations ∂1, . . . , ∂n form an M-basis of DerK(L, M).

Proof. Trivially the first condition implies the second.

Now we assume that there is a separating transcendence basis {x1, . . . , xn}
of L/K such that

det((∂i(xj))i,j=1,...,n) ∈ M×.

Since the K-derivations ∂x1 , . . . , ∂xn defined by ∂xi (xj) = δi,j for i, j = 1, . . . , n

form an M-basis of DerK(L, M) by lemma 1.3.1 and since ∂i = ∑n
j=1 ∂i(xj)∂xj

for i = 1, . . . , n, the derivations ∂1, . . . , ∂n form an M-basis of DerK(L, M) too.

If we assume (3) to be true and let {x1, . . . , xn} be a separating tran-

scendence basis of L/K, then the derivations ∂x1 , . . . , ∂xn form an M-basis of

DerK(L, M) by lemma 1.3.1. Thus, there exists a matrix A ∈ GLn(M) such

that (∂1, . . . , ∂n)t = A(∂x1 , . . . , ∂xn)t. So we obtain (∂i(xj))i,j=1,...,n = A and

thus det((∂i(xj))i,j=1,...,n) = det(A) ∈ M×.

Definition 1.3.3. Let K be a ring, L a K-algebra and M an L-algebra. An n-variate

higher derivation θ ∈ HDn
K(L, M) is called linearly non-degenerate if the deriva-

tions θ(δ1), . . . , θ(δn) ∈ DerK(L, M) are linearly independent over M.

In the case of n-variate iterative derivations, this definition coincides with

the one given by A. Maurischat in [Mau10b].
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1. Higher and iterative derivations

Example 1.3.4. If L/K is a separable and finitely generated field extension with

separating transcendence basis {x1, . . . , xn}, then the n-variate iterative derivation

θ(x1,...,xn) on L over K defined in example 1.2.4 is linearly non-degenerate.

The following proposition is essentially a concrete version of the formal in-

verse function theorem (cf. [Haz78, Appendix A, Proposition A.4.5] or [vdE00,

Theorem 1.1.2]).

Proposition 1.3.5. Let R be a ring, n ∈N be a natural number and for ν = 1, . . . , n

let

∑
i∈Nn

a(ν)
i ti, ∑

i∈Nn
b(ν)

i ti ∈ RJtK = RJt1, . . . , tnK

be formal power series such that a(ν)
0 = b(ν)

0 and such that det(a(ν)
δµ

)ν,µ=1,...,n ∈ R×.

Then there exist formal power series ∑i∈Nn c(µ)
i ti ∈ RJtK with c(µ)

0 = 0 for all

µ = 1, . . . , n such that for ν = 1, . . . , n

∑
i∈Nn

a(ν)
i

n

∏
µ=1

(
∑

j∈Nn
c(µ)

j tj

)iµ

= ∑
j∈Nn

b(ν)
j tj. (1.3.1)

If in addition det(b(ν)
δµ

)ν,µ=1,...,n ∈ R×, then det(c(ν)
δµ

)ν,µ=1,...,n ∈ R× holds too.

Proof. Equation (1.3.1) holds if and only if for all ν ∈ {1, . . . , n} and all j ∈Nn

b(ν)
j = ∑

i∈Nn
a(ν)

i ∑
k1,1+···+k1,i1

+···+kn,1+···+kn,in =j

n

∏
µ=1

iµ

∏
λ=1

c(µ)
kµ,λ

. (1.3.2)

For j = 0 this equation is fulfilled by assumption. We can determine c(µ)
j

iteratively from this equation. In fact, the equations for ν = 1, . . . , n and

j = δλ, λ = 1, . . . , n are equivalent to the system of linear equations

b(ν)
δλ

=
n

∑
µ=1

c(µ)
δλ

a(ν)
δµ

λ, ν = 1, . . . , n (1.3.3)

for (c(µ)
δλ

)µ,λ=1,...,n. Since the matrix of coefficients (a(ν)
δµ

)ν,µ=1,...,n is regular by

assumption, there exists a unique solution (c(µ)
δλ

)λ,µ=1,...,n ∈ Mn(R). Now let
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1.3. Linearly non-degenerate higher derivations

j ∈ Nn and assume by induction that c(µ)
j̃

are already determined for all

µ = 1, . . . , n and j̃ < j. Then the equations (1.3.2) for j and ν = 1, . . . , n

form a system of linear equations in the unknowns c(ν)
j (ν = 1, . . . , n) and the

coefficients are again given by the matrix (a(ν)
δµ

)ν,µ=1,...,n. So c(ν)
j (ν = 1, . . . , n)

are uniquely determined too. The last statement is clear by equation (1.3.3).

Proposition 1.3.6. Let L/K be a separable and finitely generated field extension of

transcendence degree n, let M be an L-algebra and θ1, θ2 ∈ HDn
K(L, M) be such

that θ1 is linearly non-degenerate. Then there exists a homomorphism of M-algebras

ϕ : MJwK→ MJwK such that ϕ(w)|w=0 = 0 and such that the diagram

L
θ1 //

θ2 !!CCCCCCCCC MJwK

ϕ

��

MJwK

commutes.

Proof. Let {x1, . . . , xn} be a separating transcendence basis of L/K and L̃ :=
K(x1, . . . , xn). We define θ1(xν) =: ∑i∈Nn a(ν)

i wi and θ2(xν) =: ∑i∈Nn b(ν)
i wi

for ν = 1, . . . , n. By lemma 1.3.2 and proposition 1.3.5, there exist formal

power series ∑i∈Nn c(µ)
i wi ∈ MJwK with c(µ)

0 = 0 for µ = 1, . . . , n such that for

all ν = 1, . . . , n

∑
i∈Nn

a(ν)
i

n

∏
µ=1

(
∑

j∈Nn
c(µ)

j wj

)iµ

= ∑
i∈Nn

b(ν)
i wi.

Since MJwK is complete with respect to the (w)-adic topology and since the

series ∑i∈Nn c(µ)
i wi lie in (w) for µ = 1, . . . , n, by the universal property of the

formal power series ring MJwK (see [Bou81, Chapter IV, §4.3, Proposition 4])

there exists a homomorphism of M-algebras ϕ : MJwK→ MJwK with ϕ(wµ) =

∑i∈Nn c(µ)
i wi for µ = 1, . . . , n. Since ϕ ◦ θ1 and θ2 are K-homomorphisms and
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1. Higher and iterative derivations

ϕ ◦ θ1(xν) = θ2(xν) for ν = 1, . . . , n, the homomorphisms ϕ ◦ θ1 and θ2 coincide

on L̃, i.e. the diagram

L̃
θ1|L̃

//

θ2|L̃ !!CCCCCCCCC MJwK

ϕ

��

MJwK

commutes. The extension L/L̃ is 0-étale by example 1.2.3 (2). Since ϕ ◦ θ1 and

θ2 are both higher derivations from L to M that extend θ2|L̃ = ϕ ◦ θ1|L̃, they

have to be equal by proposition 1.2.2.

Corollary 1.3.7. Let L/K be a separable and finitely generated field extension of

transcendence degree n and let θ1, θ2 ∈ HDn
K(L). If θ1 is linearly non-degenerate,

then for all l ∈Nn the component θ
(l)
2 of θ is an L-linear combination of {θ(j)

1 | |j| ≤
|l|}.

Proof. By proposition 1.3.6, there exists a homomorphism ϕ∈AlgL(LJwK, LJwK)
such that θ2 = ϕ ◦ θ1 and ϕ(w)|w=0 = 0. If we write ϕ(wi) = ∑l∈Nn c(i)

l wl

with c(i)
l ∈ L for i = 1, . . . , n, then for all a ∈ L

θ2(a) = ϕ(θ1(a))

= ∑
j∈Nn

θ
(j)
1 (a)ϕ(w1)j1 · · · ϕ(wn)jn

= ∑
j∈Nn

θ
(j)
1 (a) ∑

l1,1,...,l1,j1
,...,ln,1,...,ln,jn∈Nn

n

∏
i=1

ji

∏
j=1

c(i)
li,j

wl1,1+···+l1,j1
+···+ln,1+···+ln,jn

Thus, by noting that c(i)
0 = 0 for i = 1, . . . , n, we see that the θ

(j)
1 (a) occurring

in the coefficient of wl for l ∈ Nn need to fulfill |j| ≤ |l|, i.e. θ
(l)
2 is a linear

combination of the θ
(j)
1 with |j| ≤ |l|.
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Chapter 2

Module algebras

Since there are different conventions concerning the definition of algebras,

coalgebras and bialgebras in the literature, we start this chapter by stating

the definitions we use. Next, we recall the definition of module algebras,

introduce some new notation concerning them, and prove some of their basic

properties. At the end of the chapter we illustrate these concepts by giving

several examples, including a comparison to the iterative Hasse systems that

have been recently defined by R. Moosa and T. Scanlon.

Notation: Let C be a commutative ring.

2.1 Algebras, coalgebras and bialgebras

Although these terms are well known, we recall the notion of C-algebras, C-

coalgebras and C-bialgebras as defined in [Bou70] and fix our convention.

Definition 2.1.1. A C-algebra (or algebra over C) is a pair (A, m) consisting of a

C-module A together with a homomorphism of C-modules

m : A⊗C A→ A,
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2. Module algebras

called the multiplication of A. A C-algebra A is associative if the diagram

A⊗C A⊗C A m⊗id
//

id⊗m
��

A⊗C A

m
��

A⊗C A m // A

commutes. A C-algebra A is commutative if the diagram

A⊗C A τ //

m

##GGGGGGGGG A⊗C A
m

{{wwwwwwwww

A

commutes, where

τ : A⊗C A→ A⊗C A (2.1.1)

denotes the homomorphism defined by τ(a⊗ b) = b⊗ a for all a, b ∈ A. A unital

C-algebra is a triple (A, m, η) where (A, m) is a C-algebra and

η : C → A

is a homomorphism of C-modules, called the unit, such that the diagram

C⊗C A
η⊗id

//

%%LLLLLLLLLLL A⊗C A

m
��

A⊗C C
id⊗η
oo

yyrrrrrrrrrrr

A

commutes, where C⊗C A→ A is the canonical isomorphism.

If (A, mA) and (B, mB) are C-algebras, a homomorphism of C-algebras from

A to B is a map ϕ : A→ B such that the diagram

A⊗C A
ϕ⊗ϕ

//

mA

��

B⊗C B

mB

��

A
ϕ

// B
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2.1. Algebras, coalgebras and bialgebras

commutes. If (A, mA, ηA) and (B, mB, ηB) are unital C-algebras, then a homomor-

phism of unital C-algebras from (A, mA, ηA) to (B, mB, ηB) is a homomorphism of

C-algebras such that the diagram

A
ϕ

// B

C
ηA

__??????? ηB

??�������

commutes.

Convention: We assume that every C-algebra is associative and unital if not men-

tioned otherwise explicitly.

Definition 2.1.2. A C-coalgebra (or coalgebra over C) is a pair (A, ∆) consisting

of a C-module A together with a homomorphism of C-modules

∆ : A→ A⊗C A,

called the comultiplication of A. A C-coalgebra (A, ∆) is coassociative if the dia-

gram

A
∆ //

∆
��

A⊗C A

∆⊗id
��

A⊗C A id⊗∆
// A⊗C A⊗C A

commutes. A C-coalgebra (A, ∆) is cocommutative if the diagram

A
∆

##GGGGGGGGG
∆

{{wwwwwwwww

A⊗C A τ // A⊗C A

commutes, where τ is the homomorphism (2.1.1). A counital C-coalgebra is a tuple

(A, ∆, ε) where (A, ∆) is a C-coalgebra and

ε : A→ C
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2. Module algebras

is a homomorphism of C-modules, called the counit, such that the diagram

A
∼

yyrrrrrrrrrrr
∼

%%LLLLLLLLLLL

∆
��

C⊗C A A⊗C Aε⊗id
oo

id⊗ε
// A⊗C C

commutes.

If (A, ∆A) and (B, ∆B) are C-coalgebras, then a homomorphism of C-

coalgebras from (A, ∆A) to (B, ∆B) is a homomorphism of C-modules ϕ : A → B

such that the diagram

A
ϕ

//

∆A
��

B

∆B
��

A⊗C A
ϕ⊗ϕ

// B⊗C B

commutes; if (A, ∆A, εA) and (B, ∆B, εB) are counital C-coalgebras, then a homomor-

phism from the counital C-coalgebra (A, ∆A, εA) to (B, ∆B, εB) is a homomorphism

of C-coalgebras ϕ such that the diagram

A
ϕ

//

εA
��

??????? B

εB
���������

C

commutes.

Convention: We assume that every C-coalgebra is coassociative and counital if not

mentioned otherwise explicitly.

Notation: We use the Sweedler Σ-notation. If A is a C-coalgebra and a ∈ A, then

we write

∆(a) =: ∑
(a)

a(1) ⊗ a(2)

(see [Swe69, Section 1.2]).
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2.1. Algebras, coalgebras and bialgebras

Definition 2.1.3. A C-bialgebra is a C-module D with a structure of a (unital,

associative) C-algebra (m, η) and a structure of a (counital, coassociative) C-coalgebra

(∆, ε) such that the comultiplication ∆ : D → D⊗C D and the counit ε : D → C are

homomorphisms of C-algebras.

A C-bialgebra is commutative (cocommutative) if the underlying C-algebra is

commutative (the underlying C-coalgebra is cocommutative).

A homomorphism of C-bialgebras is a map that is a homomorphism of C-

algebras and of C-coalgebras.

Remark 2.1.4. The condition in definition 2.1.3 that the comultiplication ∆ and the

counit ε are homomorphisms of C-algebras is fulfilled if and only if the multiplication

m : A⊗C A → A and the unit η : C → A are homomorphisms of C-coalgebras (cf.

[Swe69, Proposition 3.1.1]).

Lemma 2.1.5. If (D, ∆) is a cocommutative C-coalgebra, then we have

(∆⊗ ∆) ◦ ∆ = (idD ⊗τ ⊗ idD) ◦ (∆⊗ ∆) ◦ ∆.

Proof. We have

(∆⊗ ∆) ◦ ∆ = (∆⊗ idD ⊗ idD) ◦ (idD ⊗∆) ◦ ∆

= (∆⊗ idD ⊗ idD) ◦ (∆⊗ idD) ◦ ∆

= (∆⊗ idD ⊗ idD) ◦ (τ ◦ ∆⊗ idD) ◦ ∆

= (∆⊗ idD ⊗ idD) ◦ (τ ⊗ idD) ◦ (∆⊗ idD) ◦ ∆

= (idD ⊗∆⊗ idD) ◦ (∆⊗ idD) ◦ ∆

and so we obtain

(∆⊗ ∆) ◦ ∆ = (idD ⊗∆⊗ idD) ◦ (∆⊗ idD) ◦ ∆

= (idD ⊗τ ⊗ idD) ◦ (idD ⊗∆⊗ idD) ◦ (∆⊗ idD) ◦ ∆

= (idD ⊗τ ⊗ idD) ◦ (∆⊗ ∆) ◦ ∆.
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2. Module algebras

Notation: For n ∈N, C-modules A1, . . . , An and a permutation(
1 . . . n

i1 . . . in

)
of the numbers {1, . . . , n} we denote by (i1, . . . , in) the homomorphism

A1 ⊗C · · · ⊗C An → Ai1 ⊗C · · · ⊗C Ain

defined by

(i1, . . . , in)(a1 ⊗ · · · ⊗ an) := ai1 ⊗ · · · ⊗ ain

for all a1 ∈ A1, . . . , an ∈ An.

Lemma 2.1.6. If (D1, ∆1, ε1) and (D2, ∆2, ε2) are C-coalgebras, then D1 ⊗C D2

carries a natural C-coalgebra structure with comultiplication and counit given by

∆ := (idD1 ⊗ τ ⊗ idD2) ◦ (∆1 ⊗ ∆2) and ε := ε1 ⊗ ε2,

respectively. If both, D1 and D2, are cocommutative, so is D1 ⊗C D2. If in addition

D1 and D2 are C-bialgebras, then the C-coalgebra D1 ⊗C D2 becomes a C-bialgebra

with the usual C-algebra structure on the tensor product.

Proof. Since

(ε⊗ idD1⊗D2) ◦ ∆ = (ε1 ⊗ ε2 ⊗ idD1 ⊗ idD2) ◦ (idD1 ⊗τ ⊗ idD2) ◦ (∆1 ⊗ ∆2)

= ((ε1 ⊗ idD1) ◦ ∆1)⊗ ((ε2 ⊗ idD2) ◦ ∆2)

= idD1 ⊗ idD2 ,

the homomorphism ε is a counit for ∆. Using the coassociativity of D1 and D2

we have

(∆⊗ idD1⊗D2) ◦ ∆ = (1, 4, 2, 5, 3, 6) ◦ (∆1 ⊗ idD1 ⊗∆2 ⊗ idD2) ◦ (∆1 ⊗ ∆2)

= (1, 4, 2, 5, 3, 6) ◦ (idD1 ⊗∆1 ⊗ idD2 ⊗∆2) ◦ (∆1 ⊗ ∆2)

= (idD1⊗D2 ⊗∆) ◦ ∆.
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2.2. Module algebras

Thus, the comultiplication ∆ is coassociative. If D1 and D2 are cocommutative,

we have

τD1⊗D2 ◦ ∆ = (3, 4, 1, 2) ◦ (idD1 ⊗τ ⊗ idD2) ◦ (∆1 ⊗ ∆2)

= (2, 4, 1, 3) ◦ (∆D1 ⊗ ∆2)

= (2, 4, 1, 3) ◦ (τD1 ◦ ∆D1 ⊗ τD2 ◦ ∆2)

= (1, 3, 2, 4) ◦ (∆1 ⊗ ∆2)

= ∆,

where τ denotes the twist homomorphism interchanging the factors of D1 ⊗
D2 and τD1⊗D2 , τD1 and τD2 denote the twist homomorphisms on (D1⊗D2)⊗
(D1 ⊗ D2), D1 ⊗ D1 and D2 ⊗ D2, respectively. Thus, the comultiplication ∆

on D1 ⊗C D2 is cocommutative.

If D1 and D2 are C-bialgebras, then obviously ∆ and ε are homomorphisms

of C-algebras and thus D1 ⊗C D2 is a C-bialgebra.

2.2 Module algebras

Next, we recall some definitions and results concerning measuring and mod-

ule algebras. A standard reference for this material is [Swe69], although there

the theory is only developed over fields. Some of the results that we present

here might be well known, but since we do not know a reference, we include

proofs. Module algebras are fundamental for the formulation of our Galois

theory in chapter 3. The usage of module algebras is inspired by the work

of M. Takeuchi, K. Amano and A. Masuoka ([Tak89], [AM05]), in which they

present generalizations of Picard-Vessiot theory.
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2. Module algebras

2.2.1 Module algebras

We recall that for C-modules A, B and D there is an isomorphism of C-

modules

ModC(D⊗C A, B)→ ModC(A, ModC(D, B)), Ψ 7→ (a 7→ (d 7→ Ψ(d⊗ a))),

(2.2.1)

which plays a key role in the theory of module algebras and is also fundamen-

tally used in the formulation of our Galois theory in chapter 3 (see [Bou70,

Chapter II, §4.1, Proposition 1 a)]).

Lemma 2.2.1. If (D, ∆D, εD) is a C-coalgebra and (B, mB, ηB) is a C-algebra, then

the C-module ModC(D, B) becomes a C-algebra with respect to the convolution

product, defined by

f ∗ g := mB ◦ ( f ⊗ g) ◦ ∆D

for f , g ∈ ModC(D, B), and unit element given by the composition

D
εD−→ C

ηB−→ B.

Furthermore, D is cocommutative if and only if ModC(D, B) is commutative for every

commutative C-algebra B.

Proof. See for example [BW03, 1.3]

Proposition 2.2.2. Let D be a C-coalgebra and let A and B be C-algebras. If Ψ is

an element of ModC(D⊗C A, B) and ρ ∈ ModC(A, ModC(D, B)) is the image of Ψ

under the isomorphism (2.2.1), then the following are equivalent:

(1) ρ is a homomorphism of C-algebras,

(2) for all d ∈ D and all a, b ∈ A

a) Ψ(d⊗ ab) = ∑(d) Ψ(d(1) ⊗ a)Ψ(d(2) ⊗ b) and

b) Ψ(d⊗ 1A) = ε(d)1B,

hold and
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2.2. Module algebras

(3) the diagrams

D⊗C A⊗C A
idD ⊗mA //

∆D⊗idA ⊗ idA

��

D⊗C A

Ψ

��

D⊗C D⊗C A⊗C A
idD ⊗τ⊗idA// D⊗C A⊗C D⊗C A

mB◦(Ψ⊗Ψ)
// B

and

D⊗C C
εD⊗ηB

//

idD ⊗ηA

��

C⊗C B

∼

��

D⊗C A Ψ // B

commute.

Proof. The equivalence between (1) and (2) can be proven as in [Swe69, Propo-

sition 7.0.1] and the one between (2) and (3) is clear.

Definition 2.2.3. Let D be a C-coalgebra and A and B be C-algebras. If Ψ ∈
ModC(D⊗C A, B), then we say that Ψ measures A to B if the equivalent conditions

in proposition 2.2.2 are satisfied.

Definition 2.2.4. Let D be a C-bialgebra and A be a C-algebra. If Ψ ∈ ModC(D⊗C

A, A), we say that Ψ is a D-module algebra structure on A if

(1) Ψ makes A into a D-module and

(2) Ψ measures A to A.

The pair (A, Ψ) then is called a D-module algebra. We will also refer to the D-

module algebra (A, Ψ) as (A, ρ), where ρ is the homomorphism of C-algebras asso-

ciated to Ψ via the isomorphism (2.2.1). If there is no risk of confusion, then we will

denote the D-module algebra (A, Ψ) also by A. A D-module algebra (A, Ψ) is called

commutative if the C-algebra A is commutative.
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2. Module algebras

If A is a D-module algebra and B is a C-subalgebra of A, we say that B is a D-

module subalgebra of A if the restriction of Ψ to D⊗C B induces a homomorphism

D⊗C B→ B of C-modules that defines a D-module algebra structure on B.

If B is a D-module subalgebra of A and A′ is a subset of A, the D-module

subalgebra of A generated by A′ over B is defined as the smallest D-module

subalgebra of A containing B and A′ and we denote it by B{A′}Ψ. If A is a D-

module algebra and B ⊆ A a D-module subalgebra, then we say that A is finitely

generated over B as D-module algebra if there is a finite subset A′ of A such that

A = B{A′}Ψ.

A D-module field is a D-module algebra (A, Ψ) such that the C-algebra A is

a field. If A is a D-module algebra, then a D-module subfield of A is a D-module

subalgebra of A that is a D-module field.

Section 2.3 contains examples of bialgebras illustrating this definition,

among them a bialgebra Dder such that Dder-module algebras are differential

rings over C, a bialgebra DIDn such that DIDn -module algebras are n-variate

iterative differential rings over C and a bialgebra Dend such that Dend-module

algebras are difference rings over C.

We use the isomorphism (2.2.1) a second time in the form

ModC(D1 ⊗C D2, A) ∼ // ModC(D2, ModC(D1, A)) (2.2.2)

for C-modules D1, D2 and A. If D1 and D2 are C-coalgebras and A is a

C-algebra, then this is in fact a homomorphism of C-algebras with respect

to the C-algebra structures induced by lemma 2.2.1 (D1 ⊗C D2 carries the C-

coalgebra structure defined in lemma 2.1.6). In the following we sometimes

implicitly use this isomorphism.

Lemma 2.2.5. Let D be a C-algebra, A be a C-module and Ψ ∈ ModC(D⊗C A, A).

Then Ψ makes A into a D-module if and only if the homomorphism of C-modules
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2.2. Module algebras

ρ : A→ ModC(D, A) associated to Ψ via the isomorphism (2.2.1) makes the diagrams

A
ρ

//

idA
%%KKKKKKKKKKKK ModC(D, A)

ev1D
��

A

(2.2.3)

and

A
ρ

//

ρ

��

ModC(D, A)

ModC(D,ρ)
��

ModC(D, A)
ModC(mD ,A)

// ModC(D⊗C D, A) ∼ // ModC(D, ModC(D, A)).

(2.2.4)

commutative, where the isomorphism at the bottom right is (2.2.2).

Proof. The first diagram commutes if and only if Ψ(1D ⊗ a) = a holds for

all a ∈ A and the second diagram commutes if and only if Ψ(d1d2 ⊗ a) =
Ψ(d1 ⊗Ψ(d2 ⊗ a)) holds for all d1, d2 ∈ D and all a ∈ A.

Corollary 2.2.6. Let D be a C-bialgebra, A be a C-algebra and Ψ ∈ ModC(D ⊗C

A, A). Then Ψ is a D-module algebra structure on A if and only if the homomorphism

ρ : A→ ModC(D, A) associated to Ψ via the isomorphism (2.2.1) is a homomorphism

of C-algebras and makes the diagrams (2.2.3) and (2.2.4) commutative.

Proof. This follows immediately from lemma 2.2.5.

Lemma 2.2.7. Let D be a C-bialgebra, A a C-algebra and let Ψ ∈ ModC(D⊗C A, A)
make A into a D-module algebra. If A′ is a subset of A, then the D-module subalgebra

of A generated by A′ over C is the C-subalgebra of A generated by Ψ(D⊗C A′) over

C, i.e.

C{A′}Ψ = C[Ψ(D⊗C A′)].
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2. Module algebras

Proof. Certainly C[Ψ(D ⊗C A′)] is contained in C{A′}Ψ. For all c1, c2, d ∈ D

and a1, a2 ∈ A′ we have

d((c1.a1)(c2.a2)) = ∑
(d)

d(1)(c1.a1) · d(2)(c2.a2) = ∑
(d)

(d(1)c1).a1 · (d(2)c2).a2

and so d.(ab) ∈ C[Ψ(D⊗C A′)] for all a, b ∈ C[Ψ(D⊗C A′)]. Thus, C[Ψ(D⊗C

A′)] is a C-subalgebra and a D-submodule of A, i.e. a D-module subalgebra

of A.

Notation: If D is a C-bialgebra, A a C-algebra and Ψ ∈ ModC(D, A) is a D-module

algebra structure on A, then we write also d.a or d(a) instead of Ψ(d⊗ a) for d ∈ D

and a ∈ A if no confusion is possible. If X = (xi,j)n
i,j=1 ∈ Mn×m is a matrix with

coefficients in A, we denote the matrix (d.xi,j)n
i,j=1 by Ψ(d ⊗ X) and also by d.X,

d(X) or dX if there is no risk of confusion.

2.2.2 Homomorphisms, ideals and constants of module algebras

Definition 2.2.8. Let D be a C-bialgebra. A homomorphism of D-module alge-

bras is a map that is a homomorphism of D-modules and of C-algebras. Homomor-

phisms of D-module fields are homomorphisms of D-module algebras.

Remark 2.2.9. If (A1, Ψ1) and (A2, Ψ2) are D-module algebras and ρ1 and ρ2 are

the homomorphisms of C-algebras associated to Ψ1 and Ψ2 via the isomorphism 2.2.1,

respectively, then a homomorphism of C-algebras f : A1 → A2 is a homomorphism of

the D-module algebra (A1, Ψ1) to (A2, Ψ2) if and only if the diagram

A1
f

//

ρ1

��

A2

ρ2

��

ModC(D, A1)
ModC(D, f )

// ModC(D, A2)

commutes.
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2.2. Module algebras

Definition 2.2.10. If D is a C-bialgebra, (A, Ψ) a D-module algebra and I an ideal

in A, then I is called D-stable if Ψ(d⊗ a) ∈ I for all a ∈ I and all d ∈ D.

Lemma 2.2.11. Let D be a C-bialgebra and A be a D-module algebra. If I is a

D-stable ideal in A, then there exists a unique D-module algebra structure on A/I

such that the canonical projection A → A/I becomes a homomorphism of D-module

algebras.

Proof. If (A, Ψ) is a D-module algebra and I a D-stable ideal in A, it is clear

that

Ψ̄ : D⊗ A/I → A/I, d⊗ (a + I) 7→ Ψ(d⊗ a) + I

is the unique D-module algebra structure on A/I such that A→ A/I becomes

a homomorphism of D-module algebras.

Definition 2.2.12. For a C-coalgebra D, a C-module V and Ψ ∈ ModC(D⊗C V, V)
we define the constants of V with respect to Ψ as

VΨ := {v ∈ V | Ψ(d⊗ v) = ε(d)v for all d ∈ D}.

If ρ ∈ ModC(D, ModC(D, V)) is the element corresponding to Ψ under the isomor-

phism (2.2.1), then we denote VΨ also by Vρ .1

Remark 2.2.13. K. Amano defines in [Ama05, p. 31] constants for D-modules V,

where D is a C-bialgebra. In this case our definitions coincide, when we equip V with

the induced C-module structure and define Ψ : D⊗C V → V by sending d⊗ v to dv.

Lemma 2.2.14. Let D be a C-coalgebra, A be a C-algebra and let Ψ ∈ ModC(D⊗C

A, A) measure A to A.

(1) Then AΨ is a C-subalgebra of A.

(2) If moreover A is a field, then AΨ is a subfield of A.

1The constants Vρ are the equalizer in V of ρ and ρ0, where ρ0 is the homomorphism defined
in lemma 2.2.15.
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Proof. For a, b ∈ AΨ we have

Ψ(d⊗ (a + b)) = Ψ(d⊗ a) + Ψ(d⊗ b) = ε(d)(a + b)

and, since D measures A to A,

Ψ(d⊗ ab) = ∑
(d)

Ψ(d(1) ⊗ a)Ψ(d(2) ⊗ b) = ∑
(d)

ε(d(1))aε(d(2))b = ε(d)ab

If A is a field and a is a non-zero element in AΨ, then we have ρ(a−1) =
ρ(a)−1 = ρ0(a)−1 = ρ0(a−1), so that a−1 is constant too.

Lemma 2.2.15. Let D be a C-bialgebra and A be a C-algebra.

(1) There exists a D-module algebra structure Ψ0 ∈ ModC(D ⊗C A, A) on A,

defined by

Ψ0 : D⊗C A→ A, d⊗ a 7→ εD(d)a.

We denote the homomorphism of C-algebras associated to Ψ0 via the isomor-

phism (2.2.1) by ρ0 and call call Ψ0 the trivial D-module algebra structure

on A.

(2) We have for all a ∈ A and all f ∈ ModC(D, A)

ρ0(a) ∗ f = a f and

f ∗ ρ0(a) = f a,

where a f and f a are the scalar multiplications of f with a from the left and

from the right, respectively, i.e. (a f )(d) = a( f (d)) and ( f a)(d) = f (d)a for

all d ∈ D. In particular, ρ0(A) lies in the center of (ModC(D, A), ·) if A is

commutative.

(3) The constants of (A, Ψ0) are equal to A.
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Proof. We note that εD : D → C is the unique homomorphism of C-bialgebras

from D to the trivial C-bialgebra C. The C-module homomorphism ρ0 associ-

ated to Ψ0 via the isomorphism (2.2.1) is given as the composition

A
∼ // ModC(C, A)

ModC(εD ,A)
// ModC(D, A).

Obviously ρ0 makes the diagrams

A
ρ0

//

id
%%KKKKKKKKKKKK ModC(D, A)

ev1D
��

A

and

A
ρ0

//

ρ0

��

ModC(D, A)

ModC(D,ρ0)
��

ModC(D, A)
ModC(mD ,A)

// ModC(D⊗C D, A) ∼ // ModC(D, ModC(D, A))

commutative and thus Ψ0 is a D-module algebra structure on A. Part (2)

follows from

(ρ0(a) ∗ f )(d) = ∑
(d)

ε(d(1))a f (d(2)) = a f

∑
(d)

ε(d(1))d(2)

 = a f (d)

and

( f ∗ ρ0(a))(d) = ∑
(d)

f (d(1))ε(d(2))a = f

∑
(d)

d(1)ε(d(2))

 a = f (d)a

for all d ∈ D. The last assertion is clear by definition.

2.2.3 The module algebra structure Ψint

Lemma 2.2.16. If D is a C-bialgebra and A a C-algebra, then ModC(D, A) becomes

a D-module algebra by the homomorphism of C-modules

Ψint : D⊗C ModC(D, A)→ ModC(D, A)
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which sends d⊗ f ∈ D⊗C ModC(D, A) to the homomorphism of C-modules

Ψint(d⊗ f ) : D → A, c 7→ f (cd) for all c ∈ D.

Furthermore, for any homomorphism of C-algebras ϕ : A→ B the induced homomor-

phism of C-algebras

ModC(D, ϕ) : ModC(D, A)→ ModC(D, B)

is a homomorphism of D-module algebras with respect to the D-module algebra struc-

tures on ModC(D, A) and ModC(D, B) given by Ψint. Thus, ModC(D, ·) is a functor

from the category of C-algebras to the category of D-module algebras.

The constants ModC(D, A)Ψint are equal to ρ0(A), where ρ0 : A→ ModC(D, A)
is the homomorphism associated to the trivial D-module algebra structure Ψ0 on A

(see lemma 2.2.15).

Proof. We note that the homomorphism of C-modules

ρint : ModC(D, A)→ ModC(D, ModC(D, A))

corresponding to Ψint via the isomorphism (2.2.1) corresponds to ModC(mD, A)
under the isomorphism of C-algebras (2.2.2) between ModC(D, ModC(D, A))
and ModC(D ⊗C D, A). Since mD is a homomorphism of C-coalgebras,

ModC(mD, A) and so also ρint are homomorphisms of C-algebras. The dia-

gram

ModC(D, A)
ρint

//

id
))SSSSSSSSSSSSSS

ModC(D, ModC(D, A))

ev1D
��

ModC(D, A)

obviously commutes. Using again the isomorphism

ModC(D, ModC(D, A)) ∼= ModC(D⊗C D, A),
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under which ρint corresponds to ModC(mD, A), the commutativity of the dia-

gram

ModC(D, A)
ρint

//

ρint

��

ModC(D, ModC(D, A))

ModC(D,ρint)
��

ModC(D, ModC(D, A))
ModC(mD ,ModC(D,A))

// ModC(D⊗C D, ModC(D, A))

follows from the one of

ModC(D, A)
ModC(mD ,A)

//

ModC(mD ,A)
��

ModC(D⊗C D, A)

ModC(mD⊗CidD ,A)
��

ModC(D⊗C D, A)
ModC(idD ⊗CmD ,A)

// ModC(D⊗C D⊗C D, A).

Therefore, Ψint is in fact a D-module algebra structure on ModC(D, A). For a

homomorphism of C-algebra ϕ : A → B, the big rectangle and the rectangle

on the right in the diagram

ModC(D, A)
ρint

//

ModC(D,ϕ)
��

ModC(mD ,A)

,,

ModC(D, ModC(D, A))

ModC(D,ModC(D,ϕ))
��

∼ // ModC(D⊗C D, A)

ModC(D⊗C D,ϕ)
��

ModC(D, B)
ρint

//

ModC(mD ,B) 22
ModC(D, ModC(D, B)) ∼ // ModC(D⊗C D, B)

commute and thus the rectangle on the left commutes too, i.e. ModC(D, ϕ)
is a D-module algebra homomorphism with respect to the D-module algebra

structures given by Ψint on ModC(D, A) and ModC(D, B).

Finally, if f ∈ ModC(D, A) is constant with respect to Ψint, then we obtain

f (d) = (Ψint(d⊗ f ))(1) = ε(d) f (1) for all d ∈ D, i.e. f = ρ0( f (1)).
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Remark 2.2.17. With the notation of lemma 2.2.16 the diagram

ModC(D, A)

id
��

ρint
// ModC(D, ModC(D, A))

∼
��

ModC(D,ev1D )
// ModC(D, A)

id
��

ModC(D, A)
ModC(mD ,A)

// ModC(D⊗C D, A)
ModC(ηD⊗idD ,A)

// ModC(D, A)

commutes. Since the composition of the sequence at the bottom is the identity, the

composition of the sequence at the top is the identity too.

The following lemma generalizes [Ume96b, Proposition 1.4] and [Mor09,

Propositions 2.5 and 2.7].

Lemma 2.2.18. If D is a C-bialgebra, A a C-algebra and Ψ ∈ ModC(D ⊗C A, A)
makes A into a D-module algebra, then the homomorphism of C-algebras

ρ : A→ ModC(D, A),

canonically associated to Ψ by (2.2.1), is a homomorphism from the D-module

algebra (A, Ψ) to the D-module algebra (ModC(D, A), Ψint), where Ψint is the

D-module algebra structure on ModC(D, A) introduced in lemma 2.2.16. The

homomorphism ρ is universal among all homomorphisms of D-module algebras

Λ : (A, Ψ) → (ModC(D, B), Ψint), where B is a C-algebra, in the sense that for

every such Λ there exists a unique homomorphism of C-algebras λ : A→ B such that

Λ = ModC(D, λ) ◦ ρ.

Proof. By lemma 2.2.5, we have that ModC(D, ρ) ◦ ρ and ModC(mD, A) ◦ ρ cor-

respond to each other under the isomorphism (2.2.2) and since ModC(mD, A)
corresponds under the isomorphism of C-algebras (2.2.2) to the C-algebra

morphism ρint associated to Ψint via the isomorphism (2.2.1), we see that ρ is

in fact a D-module algebra homomorphism from (A, Ψ) to (ModC(D, A), Ψint).

To show the universality of ρ, let Λ : (A, Ψ)→ (ModC(D, B), Ψint) be a homo-

morphism of D-module algebras. We define λ : A→ B as λ := ev1D ◦Λ. Then,

using the fact that ModC(D, Λ) is a homomorphism of D-module algebras and
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remark 2.2.17, we have ModC(D, λ) ◦ ρ = ModC(D, ev1D ) ◦ModC(D, Λ) ◦ ρ =
ModC(D, ev1D ) ◦ ρint ◦Λ = Λ.

2.2.4 Commuting module algebra structures

Definition 2.2.19. Let D and D′ be C-bialgebras and A a be C-algebra. If Ψ ∈
ModC(D ⊗C A, A) and Ψ′ ∈ ModC(D′ ⊗C A, A) are D and D′-module algebra

structures on A, respectively, we say that these structures commute if the diagram

D⊗C D′ ⊗C A

τ⊗CidA

��

idD ⊗CΨ′
// D⊗C A

Ψ

))RRRRRRRRRRR

A

D′ ⊗C D⊗C A
idD′ ⊗CΨ

// D′ ⊗C A

Ψ′
55lllllllllll

commutes, where τ : D⊗C D′ → D′ ⊗C D denotes the twist homomorphism defined

by τ(d⊗ d′) = d′ ⊗ d for all d ∈ D and d′ ∈ D′.

Remark 2.2.20. Let D and D′ be C-bialgebras and A a C-algebra. If Ψ ∈
ModC(D ⊗C A, A) and Ψ′ ∈ ModC(D′ ⊗C A, A) are D and D′-module algebra

structures on A with associated homomorphisms ρ and ρ′, respectively, then they

commute if and only if the diagram

ModC(D,A)
ModC(D,ρ′)

// ModC(D, ModC(D′,A)) ∼ // ModC(D′⊗C D,A)

ModC(τ,A)

��

A

ρ ::ttttttt
ρ′

$$JJJJJJJ

ModC(D′,A)
ModC(D′ ,ρ)

// ModC(D′, ModC(D,A)) ∼ // ModC(D⊗C D′,A)

commutes, where τ : D ⊗C D′ → D′ ⊗C D is the twist homomorphism defined by

τ(d⊗ d′) = d′ ⊗ d for all d ∈ D and d′ ∈ D′.

Lemma 2.2.21. Let D1 and D2 be C-bialgebras and A be a C-algebra.
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(1) If Ψ1 ∈ ModC(D1 ⊗C A, A) and Ψ2 ∈ ModC(D2 ⊗C A, A) are commut-

ing D1- and D2-module algebra structures on A, respectively, then there is a

canonical D1 ⊗C D2-module algebra structure

Ψ : D1 ⊗C D2 ⊗C A→ A

on A, defined by

Ψ := Ψ1 ◦ (idD1 ⊗CΨ2) = Ψ2 ◦ (idD2 ⊗CΨ1) ◦ (τ ⊗C idA). (2.2.5)

(2) Conversely, a D1 ⊗C D2-module algebra structure Ψ on A induces commuting

D1- and D2-module algebra structures

Ψ1 : D1 ⊗C A→ A and Ψ2 : D2 ⊗C A→ A

on A, defined by

Ψ1(d1 ⊗ a) := Ψ(d1 ⊗ 1⊗ a) and Ψ2(d2 ⊗ a) := Ψ(1⊗ d2 ⊗ a),

respectively, for d1 ∈ D1, d2 ∈ D2 and a ∈ A.

Proof. To prove (1), let ρi : A → ModC(Di, A) be the homomorphisms associ-

ated to Ψi for i = 1, 2 and let ρ : A → ModC(D1 ⊗C D2, A) be the homomor-

phism associated to the homomorphism Ψ defined in (2.2.5) via the isomor-

phism (2.2.1). We note that ρ is given as the composition

A
ρ2

// ModC(D2, A)
ModC(D2,ρ1)

// ModC(D2, ModC(D1, A)) ∼ // ModC(D1⊗C D2, A)
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and thus is a homomorphism of C-algebras. Since Ψ1 and Ψ2 are D1- and D2-

module algebra structures, respectively, the two small triangles in the diagram

A
ρ2

//

ρ

++

id

))TTTTTTTTTTTTTTTTTTTTTTTTTT ModC(D2, A)
ModC(D2,ρ1)

//

ev1D2

��

id

))TTTTTTTTTTTTTTTTTTT
ModC(D2, ModC(D1, A))

ModC(D2,ev1D1
)

��

A

id

))TTTTTTTTTTTTTTTTTTTTTTTTTT ModC(D2, A)

ev1D2

��

A
(2.2.6)

commute and thus the big triangle commutes too. In the following diagram

we abbreviate the homomorphism

ModC(M, ρi) : ModC(M, A)→ ModC(M, ModC(D, A))

as ρi for any C-module M and for i = 1, 2. For any homomorphism ϕ : M→ N

of C-modules we abbreviate the homomorphism ModC(ϕ, A) : ModC(N, A)→
ModC(M, A) as ϕ. We also implicitely use the isomorphism (2.2.2). All tensor

45
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products are over C and we write Mod instead of ModC.

A

id
��

ρ2
//

ρ

**

Mod(D2,A)

id
��

ρ1
// Mod(D1⊗D2,A)

ρ2
//

ρ

,,

Mod(D2⊗D1⊗D2,A)

(2,1,3)
��

ρ1
// Mod(D1⊗D2⊗D1⊗D2,A)

(1,3,2,4)
��

A
ρ2

//

id
��

Mod(D2,A)
ρ2

// Mod(D2⊗D2,A)

id
��

ρ1
// Mod(D1⊗D2⊗D2,A)

ρ1
// Mod(D1⊗D1⊗D2⊗D2,A)

id
��

A
ρ2

//

id
��

Mod(D2,A)
mD2// Mod(D2⊗D2,A)

ρ1
// Mod(D1⊗D2⊗D2,A)

mD1⊗idD2⊗D2// Mod(D1⊗D1⊗D2⊗D2,A)

(1,3,2,4)
��

A

ρ

44

ρ2
// Mod(D2,A)

ρ1
// Mod(D1⊗D2,A)

mD1⊗D2 // Mod(D1⊗D2⊗D1⊗D2,A)

The rectangle at the top center commutes since Ψ1 and Ψ2 commute. The

two rectangles in the middle row commute since Ψ1 and Ψ2 are D1- and D2-

module algebra structures on A, respectively, and the rectangle at the bottom

row trivially commutes too. Therefore, the big rectangle commutes and to-

gether with the commutativity of the big triangle in (2.2.6) and the fact that

ρ is a homomorphism of C-algebras we obtain by corollary 2.2.6 that Ψ is a

D-module algebra structure on A.

To prove part (2), we denote by ρ the homomorphism of C-algebras

A → ModC(D, A) associated to Ψ via the isomorphism (2.2.1). We define

homomorphisms ρ1 : A → ModC(D1, A) and ρ2 : A → ModC(D2, A) as the

compositions

ρ1 : A
ρ

// ModC(D1 ⊗C D2, A)
ModC(idD1 ⊗CηD2 ,A)

// ModC(D1, A)

and

ρ2 : A
ρ

// ModC(D1 ⊗C D2, A)
ModC(ηD1⊗CidD2 ,A)

// ModC(D2, A),

respectively. Since ηD1 ⊗C idD2 : D2 → D1 ⊗C D2 and idD1 ⊗CηD2 : D1 →
D1 ⊗C D2 are homomorphisms of C-coalgebras, we see that ρ1 and ρ2 are in
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fact homomorphisms of C-algebras. For all d, d′ ∈ D1 we have Ψ1(d⊗Ψ1(d′ ⊗
a)) = Ψ(d ⊗ 1D2 ⊗ Ψ(d′ ⊗ 1D2 ⊗ a)) = Ψ(dd′ ⊗ 1D2 ⊗ a) = Ψ1(dd′ ⊗ a) and

Ψ1(1D1 ⊗ a) = Ψ(1D1 ⊗ 1D2 ⊗ a) = a. Thus, Ψ1 makes A into a D1-module

and so Ψ1 is a D1-module algebra structure on A. Analogously, one sees that

Ψ2 gives rise to a D2-module algebra structure on A. Since Ψ is a (D1⊗C D2)-

module algebra structure on A, we have

Ψ1(d1 ⊗Ψ2(d2 ⊗ a)) = Ψ((d1 ⊗ 1)⊗Ψ((1⊗ d2)⊗ a))

= Ψ((d1 ⊗ d2)⊗ a)

= Ψ((1⊗ d2)⊗Ψ((d1 ⊗ 1)⊗ a))

= Ψ2(d2 ⊗Ψ1(d1 ⊗ a))

for all d1 ∈ D1, d2 ∈ D2 and a ∈ A, i.e. Ψ1 and Ψ2 commute.

Lemma 2.2.22. Let D and D′ be two C-bialgebras, A a C-algebra and Ψ′ ∈
ModC(D′ ⊗C A, A) be a D′-module algebra structure on A. Then ModC(D, A)
carries a natural D′-module algebra structure defined by2

D′ ⊗C ModC(D, A)→ ModC(D, A)

d′ ⊗ f 7→ (d 7→ Ψ′(d′ ⊗ f (d)))
(2.2.7)

for all d′ ∈ D′ and all f ∈ ModC(D, A).

Proof. If we denote by ρ′ : A → ModC(D′, A) the homomorphism of C-

algebras corresponding to Ψ′, then the homomorphism corresponding to

(2.2.7) via the isomorphism (2.2.1) is the composition

ModC(D,A)
ModC(D,ρ′)

// ModC(D, ModC(D′,A)) ∼ // ModC(D′, ModC(D,A)),

2In the case D = D′ this D-module algebra structure must not be confused with the one
defined in lemma 2.2.16.
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which clearly is a homomorphism of C-algebras. Using implicitly the last

isomorphism, ModC(D, ρ′ ) makes the diagrams

ModC(D, A)
ModC(D,ρ′ )

//

id

++VVVVVVVVVVVVVVVVVV
ModC(D′, ModC(D, A))

ev1D′
��

ModC(D, A)

and

ModC(D, A)
ModC(D,ρ′ )

//

ModC(D,ρ′ )
��

ModC(D′, ModC(D, A))

ModC(D′ ,ModC(D,ρ′ ))
��

ModC(D′, ModC(D, A))
ModC(mD′ ,ModC(D,A)

// ModC(D′⊗C D′, ModC(D, A))

commutative. Thus, (2.2.7) defines in fact a D′-module algebra structure on

ModC(D, A).

Lemma 2.2.23. Let D and D′ be C-bialgebras, A a C-algebra and let Ψ′ ∈
ModC(D′ ⊗C A, A) be a D′-module algebra structure on A. Then the D-module

algebra structure Ψint on ModC(D, A) defined in lemma 2.2.16 and the D′-module

algebra structure induced by Ψ′ on ModC(D, A) via lemma 2.2.22 commute, i.e. the

diagram3

D⊗C D′⊗C ModC(D, A)

τ⊗Cid

��

idD⊗CΨ′
// D⊗C ModC(D, A)

Ψint

))SSSSSSSSSSSSSS

ModC(D, A)

D′⊗C D⊗C ModC(D, A)
idD′⊗CΨint

// D′⊗C ModC(D, A)

Ψ′
55kkkkkkkkkkkkkk

commutes, where τ : D⊗C D′ → D′ ⊗C D denotes the twist map, defined by τ(d⊗
d′) := d′ ⊗ d for all d ∈ D and all d′ ∈ D′.

3By abuse of notation we denote the induced D′-module algebra structure on ModC(D, A),
introduced in lemma 2.2.22, again by Ψ′.
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Proof. The claim follows from

(d(d′. f ))(c) = (d′. f )(cd) = d′( f (cd)) = d′((d. f )(c)) = (d′(d. f ))(c)

for all c, d ∈ D, d′ ∈ D′ and f ∈ ModC(D, A).

Lemma 2.2.24. Let D and D′ be two C-bialgebras and A be a D′-module alge-

bra via Ψ′ ∈ ModC(D′ ⊗C A, A), then the homomorphism ρ0 : A → ModC(D, A)
associated to the trivial D-module algebra structure Ψ0 on A (see lemma 2.2.15)

is a D′-module algebra homomorphism, where we equip ModC(D, A) with the D′-

module algebra structure induced by Ψ′ via lemma 2.2.22. In particular, ρ0(A) is a

D′-module subalgebra of ModC(D, A).

Proof. For all a ∈ A, d ∈ D and d′ ∈ D′ we have

(d′.ρ0(a))(d) = d′(ρ0(a)(d)) = d′(εD(d)a) = εD(d)d′(a) = (ρ0(d′.a))(d).

2.2.5 Extensions of module algebra structures

Proposition 2.2.25. Let D be a cocommutative C-bialgebra. If

(S, ΨS)← (R, ΨR)→ (T, ΨT)

is a diagram in the category of commutative D-module algebras, then S ⊗R T car-

ries a unique D-module algebra structure such that S⊗R T becomes the coproduct of

(S, ΨS) with (T, ΨT) over (R, ΨR) in the category of commutative D-module alge-

bras. This D-module algebra structure on S⊗R T is given as

Ψ : D⊗C S⊗R T → S⊗R T, d⊗ s⊗ t 7→∑
(d)

ΨS(d(1) ⊗ s)⊗ΨT(d(2) ⊗ t).

(2.2.8)

If ρS and ρT are the homomorphisms corresponding to ΨS and ΨT under the isomor-

phism (2.2.1), respectively, then Ψ corresponds to ρS ⊗ ρT under this isomorphism

when we identify ModC(D, S)⊗ModC(D,R) ModC(D, T) with ModC(D, S⊗R T).
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Proof. Since D is cocommutative and R, S and T are commutative C-algebras,

the C-algebras ModC(D, R), ModC(D, S) and ModC(D, T) are commutative.

We denote the C-algebra homomorphisms corresponding to the D-module

algebra structures on R, S and T by ρR, ρS and ρT , respectively. By the univer-

sal property of the tensor product S⊗R T in the category of commutative C-

algebras, there exists a unique homomorphism ρ : S⊗R T → ModC(D, S⊗R T)
of C-algebras that makes the diagram

ModC(D, S⊗R T)

ModC(D, S)

66mmmmmmmmmmmmm
ModC(D, T)

hhQQQQQQQQQQQQQ

S⊗R T

ρ

OO

S

ρS

OO

55llllllllllllllll T

ρT

OO

iiRRRRRRRRRRRRRRRR

R

iiRRRRRRRRRRRRRRRRRR

55llllllllllllllllll

commutative. This homomorphism gives rise to a D-module algebra structure

on S⊗R T, since the diagrams

S⊗R T
ρ

//

id
&&NNNNNNNNNNNNN ModC(D, S⊗R T)

ev1D

��

S⊗R T

and

S⊗R T
ρ

//

ρ

��

ModC(D, S⊗R T)

ModC(D,ρ)

��

ModC(D, S⊗R T)
ModC(mD ,S⊗RT)

// ModC(D, ModC(D, S⊗R T))
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commute (which also follows from the universal property of S⊗R T). Using

the universal property of S⊗R T in the category of commutative C-algebras

again, we see that S ⊗R T is in fact the coproduct of S and T over R in the

category of commutative D-module algebras.

For any D-module algebra structure Ψ on S ⊗R T such that S → S ⊗R

T, s 7→ s ⊗ 1 and T → S ⊗R T, t 7→ 1⊗ t are homomorphisms of D-module

algebras, we have Ψ(d⊗ s⊗ 1) = ΨS(d⊗ s)⊗ 1 and Ψ(d⊗ 1⊗ t) = 1⊗ΨT(d⊗
t). Since Ψ measures S⊗R T to itself, it follows Ψ(d⊗ s⊗ t) = ∑(d) ΨS(d(1) ⊗
s)⊗ΨT(d(2) ⊗ t). Therefore, (2.2.8) is the unique D-module algebra structure

on S ⊗R T such that S → S ⊗R T and T → S ⊗R T are D-module algebra

homomorphisms.

Proposition 2.2.26. Let D be a cocommutative C-bialgebra and (Ri, Ψi)i∈I be an

inverse system of commutative C-algebras that are measured by D into themselves

such that the homomorphism between the Ri are compatible with the measurings.

(1) Then D measures the inverse limit R := lim←−i∈I
Ri (in the category of commu-

tative C-algebras) to itself such that the projections πi : R→ Ri are compatible

with the measurings.

(2) If in addition all (Ri, Ψi) are D-module algebras, then R is also a D-module

algebra, the projections πi : R→ Ri are homomorphisms of D-module algebras

and R is the inverse limit of (Ri, Ψi)i∈I in the category of commutative D-

module algebras.

Proof. We denote by ρi : Ri → ModC(D, Ri) the homomorphism of C-algebras

associated to Ψi : D ⊗C Ri → Ri. By the universal property of the inverse

limit lim←−k∈I
ModC(D, Rk) there exists a unique homomorphism of C-algebras
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R→ lim←−k∈I
ModC(D, Rk) such that the diagram

Rj
ρj

//

��

ModC(D, Rj)

��

R

πj
@@��������

πi

��
========

// lim←−k∈I
ModC(D, Rk)

66lllllllllllll

((RRRRRRRRRRRRR

Ri
ρi

// ModC(D, Ri)

commutes for all j → i. Since ModC(D, ·) preserves inverse limits of C-

modules, we have an isomorphism of C-modules lim←−k∈I
ModC(D, Rk) ∼=

ModC(D, R). This is in fact a homomorphism of C-algebras. Thus, we ob-

tain a homomorphism ρR : R→ ModC(D, R) of C-algebras, i.e. D measures R

to itself.

If in addition Ψi is a D-module algebra structure on Ri for all i ∈ I, then

the outer rectangle in the diagram

Ri
ρi

//

ρi

��

ModC(D,Ri)

ModC(D,ρi)

��

R
ρR

//

πi

ffMMMMMMMMMMMMM

ρR

��

ModC(D,R)

66mmmmmmmmmmmmm

ModC(D,ρR)
��

ModC(D,R)

ModC(D,πi)xxqqqqqqqqqq

ModC(mD,R)
// ModC(D⊗C D,R)

((QQQQQQQQQQQQQ

ModC(D,Ri)
ModC(mD ,Ri) // ModC(D⊗C D,Ri)

commutes for all i ∈ I. The trapezoids commute, since the projections

πi : R→ Ri are compatible with the measurings. Thus, by the universal prop-

erty of lim←−i∈I
ModC(D ⊗C D, Ri), the inner rectangle also commutes and we

see that R is a D-module algebra.

If ψi : S→ Ri are compatible homomorphisms of D-module algebras, then,

by the universal property of R = lim←−i∈I
Ri in the category of commutative

52



2.2. Module algebras

C-algebras, there exists a homomorphism of C-algebras ψ : S → R such the

triangles at the left in the diagrams

S
ρS

//

ψi

��
>>>>>>>>

ψ

��

ModC(D, S)

ModC(D,ψ)

��

ModC(D,ψi)wwnnnnnnnnnnnn

Ri
ρi

// ModC(D, Ri)

R

πi

@@�������� ρR
// ModC(D, R)

ModC(D,πi)

ggPPPPPPPPPPPP

commute for all i ∈ I. Thus, the triangle at the right commutes too and

the two trapezoids at the top and bottom commute by assumption and by

the first part, respectively. By the universal property of ModC(D, R) =
lim←−i∈I

ModC(D, Ri) we obtain ModC(D, ψ) ◦ ρS = ρR ◦ ψ, i.e. ψ is a homo-

morphism of D-module algebras.

Corollary 2.2.27. Let D be a cocommutative C-bialgebra, I and J be two small cat-

egories and F and G be two diagrams in the category of commutative D-module

algebras of type I and J, respectively. If ϕ : I → J is a functor from I to J, then

every natural transformation from G ◦ ϕ to F induces a homomorphism of D-module

algebras from the limit of G to the limit of F in the category of commutative D-module

algebras.

2.2.6 Simple module algebras

Definition 2.2.28. Let D be a C-bialgebra and R be a commutative D-module al-

gebra. Then R is simple (as D-module algebra) if (0) and R are its only D-stable

ideals.

We recall the definition of the smash product (cf. [Swe69, Section 7.2])

Definition 2.2.29. Let D be a C-bialgebra and R be a commutative D-module alge-

bra. We define the smash product of R with D, denoted by R#CD (or R#D if there is
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no danger of confusion), as the C-algebra with underlying C-module R⊗C D, whose

elements a⊗ d will be denoted by a#d, and with multiplication given by

(a#c)(b#d) := ∑
(c)

a(c(1)b)#c(2)d

for all a#c, b#d ∈ R#CD and with unit 1#1.

Proposition 2.2.30. Let D be a commutative C-bialgebra and (R, ΨR) be a simple

commutative D-module algebra. Then for every R#D-module Y the homomorphism

R⊗RΨR YΨY → Y, r⊗ y→ ry

is injective, where ΨY : D⊗Y → Y is the D-module structure on Y induced from the

R#D-module structure on Y by ΨY(d⊗ y) := (1#d)y.

Proof. See [AM05, Corollary 3.2] or [Ama05, Corollary 3.1.4].

Corollary 2.2.31. If D is a cocommutative C-bialgebra, (R, ΨR) a simple commu-

tative D-module algebra and (S, ΨS) a commutative D-module algebra extension of

(R, ΨR), then R and SΨS are linearly disjoint over RΨR and we obtain an injective

homomorphism of D-module algebras

R⊗RΨR SΨS → S,

induced by the multiplication homomorphism in S.

Lemma 2.2.32. Let D be a C-bialgebra, and (R, ΨR) a commutative D-module alge-

bra. Then ModC(D, R) is an R#CD-module with scalar multiplication

R#CD×ModC(D, R)→ ModC(D, R), (a#d, f ) 7→ ρ(a) ·Ψint(d⊗ f ) (2.2.9)
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Proof. Obviously (2.2.9) is linear in both arguments. It is also associative, since

for a#c, b#d ∈ R#CD and f ∈ ModC(D, R) we have

((a#c)(b#d)) f =

∑
(c)

ac(1)(b)#c(2)d

 f

= ∑
(c)

ρ(a · c(1)(b)) · (c(2)d)( f )

= ρ(a) ·∑
(c)

c(1)(ρ(b)) · c(2)(d( f ))

= ρ(a) · c(ρ(b) · d( f ))

= (a#c)(ρ(b) · d( f ))

= (a#c)((b#d) f )

Proposition 2.2.33. Let D be a cocommutative C-bialgebra such that D is free as

C-module and (R, Ψ) be a commutative D-module algebra. Then for a1, . . . , an ∈ R

the following are equivalent:

(1) a1, . . . , an are linearly independent over RΨ,

(2) ρ(a1), . . . , ρ(an) are linearly independent over R, where we consider ModC(D, R)
as R-module via the map

R×ModC(D, R)→ ModC(D, R), (a, f ) 7→ ρ0(a) · f .

If R is a field, this is further equivalent to

(3) there exist d1, . . . , dn ∈ D such that (dj(ai))n
i,j=1 ∈ GLn(R)

Proof. To show that (1) implies (2), we note that by lemma 2.2.32 ModC(D, R)
is a (R#D)-module via (a#d) f = ρ(a) · Ψint(d⊗ f ). By proposition 2.2.30, the
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homomorphism

R⊗RΨ ModC(D, R)Ψint → ModC(D, R) (2.2.10)

is injective. Let a1, . . . , an ∈ R be linearly independent over RΨ and

suppose that there are b1, . . . , bn ∈ R, not all equal to zero, such that

∑n
i=1 ρ0(bi)ρ(ai) = 0. Since ∑n

i=1 ρ0(bi)ρ(ai) is the image of the non-zero ele-

ment ∑n
i=1 ai⊗ ρ0(bi) ∈ R⊗RΨ ModC(D, R) under the injective homomorphism

(2.2.10), this is not possible.

If ρ(a1), . . . , ρ(an) are linearly independent over R and there are c1, . . . , cn ∈
RΨ such that ∑n

i=1 ciai = 0, then it follows ∑n
i=1 ρ0(ci)ρ(ai) = 0 and thus ci = 0

for all i = 1, . . . , n. Thus, (2) implies (1).

If R is a field, the equivalence of (1) and (3) is proven in [Ama05, Proposi-

tion 3.1.6].

Definition 2.2.34. Let D be a C-bialgebra and R be a commutative D-module alge-

bra. Then R is Artinian simple (or AS) if R is simple as D-module algebra and

Artinian as a ring.

Definition 2.2.35. Let D be a C-bialgebra and S/R be an extension of commutative

Artinian simple D-module algebras.

(1) If B is a subset of S, we denote by R〈B〉 the smallest Artinian simple D-module

subalgebra of S containing R and B.

(2) We say that S is finitely generated over R as Artinian simple D-module alge-

bra if there exists a finite subset B of S such that S = R〈B〉.

2.3 Examples

We close this chapter with a list of examples of bialgebras, which illustrate the

introduced concepts. The cocommutative ones serve as a pool giving rise to

particular instances of our Galois theory (see chapter 3).
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2.3.1 Endomorphisms

Endomorphisms on algebras can be considered as module algebra structures

for the bialgebra generated as algebra by one groupe-like element. This ap-

peared already in [Swe69, Section 7.0, Example a) on page 139].

Proposition 2.3.1. (1) The polynomial algebra C[t] over C becomes a C-bialgebra

with the usual C-algebra structure and with comultiplication

∆ : C[t]→ C[t]⊗C C[t], ∆(t) := t⊗ t

and a counit

ε : C[t]→ C, ε(t) := 1.

We denote this C-bialgebra by Dend.

(2) For every C-algebra A there is a bijection between the set AlgC(A, A) of endo-

morphisms of the C-algebra A and the set of Dend-module algebra structures on

A.

Proof. The assertion of the first part is easy to verify. The bijection in the

second part is given as follows: If σ ∈ AlgC(A, A) we define a homomorphism

of C-modules Ψσ : Dend ⊗C A → A by Ψσ(tn ⊗ a) := σn(a) for all n ∈ N

and all a ∈ A. Since Ψσ(tn ⊗ ab) = σn(ab) = σn(a)σn(b) = ∑(tn) Ψσ((tn)1 ⊗
a)Ψσ((tn)2 ⊗ b) for all a, b ∈ A and n ∈ N, the homomorphism of C-modules

Ψσ defines in fact a Dend-module algebra structure on A. Conversely, for a

Dend-module algebra structure Ψ : Dend⊗C A→ A on A we define σΨ : A→ A

by σΨ(a) := Ψ(t⊗ a) for all a ∈ A. From σΨ(ab) = Ψ(t⊗ ab) = Ψ(t⊗ a)Ψ(t⊗
b) = σΨ(a)σΨ(b) we see that σΨ is an endomorphism of the C-algebra A. The

maps defined by these assignments give rise to the desired bijection.

We note that for any C-algebra A the set AN of maps from N to A becomes

a C-algebra with componentwise addition and multiplication and that there

exists a natural endomorphism Σ of AN defined by

(Σ( f ))(n) = f (n + 1) (2.3.1)
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2. Module algebras

for all f ∈ AN and all n ∈ N. By proposition 2.3.1, the Dend-module algebra

structure Ψint on ModC(Dend, A) defined in lemma 2.2.16 gives rise to a C-

algebra endomorphism φ of ModC(Dend, A) which is given by (φ( f ))(tn) =
f (tn+1) for f ∈ ModC(Dend, A) and n ∈ N when we identify Dend with C[t]
as in proposition 2.3.1. It is easily seen that there is an isomorphism of C-

algebras ModC(Dend, A) → AN given by sending f ∈ ModC(Dend, A) to (n 7→
f (tn)) ∈ AN. This isomorphism is in fact an isomorphism of difference rings4,

i.e. the diagram

ModC(Dend, A) ∼ //

φ

��

AN

Σ
��

ModC(Dend, A) ∼ // AN

commutes. From proposition 2.3.1 together with lemma 2.2.18 we obtain

for any endomorphism σ of A a homomorphism of Dend-module algebras

ρ : A → ModC(Dend, A). The composition A
ρ→ ModC(Dend, A) ∼→ AN is the

so called universal Euler homomorphism, defined by a 7→ (n 7→ σn(a)), that

S. Morikawa and H. Umemura use in their general difference Galois theory

([Mor09], [MU09]).

2.3.2 Automorphisms

Automorphisms can be described as module algebra structures in a similar

way as endomorphisms. We replace the bialgebra Dend = C[t] by the localiza-

tion C[t, t−1] where t is still a group-like element (and thus t−1 is group-like

too).

Proposition 2.3.2. We denote by Daut the C-bialgebra underlying the Hopf algebra

structure on the coordinate ring C[Gm] of the multiplicative group scheme Gm over

C (see for example [Wat79, Section 1.4]). For every C-algebra A there is a bijection
4A difference ring is defined as a pair consisting of a ring and an endomorphism of this ring.

Morphisms between difference rings are homomorphisms between rings that commute with the
endomorphisms on them.
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between the set of C-algebra automorphisms of A and the set of Daut-module algebra

structures on A.

Proof. We recall that the C-bialgebra structure on Daut = C[Gm] ∼= C[t, t−1] is

given by the usual C-algebra structure on C[t, t−1] and the C-coalgebra struc-

ture defined by ∆(t) := t ⊗ t and ε(t) := 1. If σ is an automorphism of the

C-algebra A, we define a homomorphism of C-modules Ψσ : Daut ⊗C A → A

by Ψ(tn ⊗ a) := σn(a) for all n ∈ Z and all a ∈ A. As in the proof of propo-

sition 2.3.1 we see that Ψσ defines a Daut-module algebra structure on A.

Conversely, for a Daut-module algebra structure Ψ : Daut ⊗C A → A on A we

define σΨ : A → A by σΨ(a) := Ψ(t ⊗ a) for all a ∈ A. Then σΨ is an auto-

morphism of the C-algebra A with inverse given by σ−1
Ψ (a) = Ψ(t−1 ⊗ a) for

all a ∈ A. The maps defined by these assignments give rise to the desired

bijection.

For any C-algebra A, the set AZ becomes a C-algebra with componentwise

addition and multiplication and there exists a natural automorphism Σ of

AZ defined by (Σ( f ))(n) = f (n + 1) for all f ∈ AZ and all n ∈ Z. By

proposition 2.3.2, the Daut-module algebra structure Ψint on ModC(Daut, A)
gives rise to an automorphism φ on the C-algebra ModC(Daut, A) given by

(φ( f ))(tn) = f (tn+1) for all f ∈ ModC(Daut, A) and all n ∈ Z when we

identify Daut with C[t, t−1] as in proposition 2.3.2. There is an isomorphism

of C-algebras with automorphism (ModC(Daut, A), φ) → (AZ, Σ) given by

sending an f ∈ ModC(Daut, A) to (n 7→ f (tn)) ∈ AZ. By proposition 2.3.2

together with lemma 2.2.18, we obtain for any automorphism σ of a C-algebra

A a homomorphism of Daut-module algebras ρ : A → ModC(Daut, A). The

composition A
ρ→ ModC(Daut, A) ∼→ AZ sends an element a ∈ A to the map

from Z to A that sends n ∈ Z to σn(a).

2.3.3 Groups acting as algebra endomorphisms

Proposition 2.3.3. Let G be a group.
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(1) The group algebra CG over C becomes a cocommutative bialgebra with comulti-

plication ∆ : CG → CG⊗C CG and counit ε : CG → C given as the C-module

homomorphisms defined by

∆(g) := g⊗ g and ε(g) := 1

for every g ∈ G.

(2) For any commutative C-algebra A the set of CG-module algebra structures on

A is in bijection with the set of left actions of G as automorphisms on the C-

algebra A (i.e. homomorphisms of groups G→ AlgC(A, A)).

Proof. The first statement is trivial. For the second, we note that if Ψ : CG⊗C

A → A is a CG-module algebra structure on A, then g.a := Ψ(g ⊗ a) for

g ∈ G and a ∈ A defines a left action of G on A as automorphisms of C-

algebras. If conversely G × A → A, (g, a) 7→ g.a is a left action of G on

A as automorphisms of C-algebras, then the homomorphism of C-modules

Ψ : CG ⊗C A → A defined by Ψ(g⊗ a) := g.a for g ∈ G and a ∈ A is a CG-

module algebra structure on A. These assignments are inverse to each other

and yield the bijection.

We note that for every commutative C-algebra A there is a natural action

of G from the left on the C-algebra ∏g∈G A (with componentwise addition

and multiplication) given by

G× ∏
g∈G

A→ ∏
g∈G

A, (g, (ah)h∈G) 7→ (ahg)h∈G.

Considering the CG-module algebra (ModC(CG, A), Ψint) as C-algebra with

left action of G as automorphisms of C-algebras via proposition 2.3.3, one

immediately sees that

ModC(CG, A)→ ∏
g∈G

A, f 7→ ( f (g))g∈G (2.3.2)
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is an isomorphism of C-algebras with left G-action. If a left action of G as

automorphisms on the C-algebra A is given, then the composition of the ho-

momorphism ρ : A → ModC(CG, A), associated to the corresponding CG-

module algebra structure on A via the isomorphism (2.2.1), with the isomor-

phism (2.3.2) is the homomorphism of C-algebras A→ ∏g∈G A sending a ∈ A

to (g.a)g∈G.

Remark 2.3.4. In the case G = Z the C-bialgebra CZ is isomorphic to C[Gm].
Since left Z-actions on a commutative C-algebra A correspond to automorphisms of

the C-algebra A, proposition 2.3.3 specializes to proposition 2.3.2 in this case.

2.3.4 Derivations

Derivations can be seen as module algebra structures for a certain bialgebra.

This idea appeared in [Swe69, Section 7.0, Example b) on page 139], where the

author defined more generally so called g-derivations, where g is a group-like

element.

Proposition 2.3.5. We denote by Dder the C-bialgebra underlying the Hopf-algebra

structure on the coordinate ring C[Ga] of the additive group scheme Ga over C (see for

example [Wat79, Section 1.4] or [DG70, Chapitre II, §1, 2.2]). For every C-algebra

A, there is a bijection between the set DerC(A) of C-derivations on A and the set of

Dder-module algebra structures on A.

Proof. We recall that the C-bialgebra structure on Dder = C[Ga] ∼= C[t] is given

by the usual C-algebra structure on C[t] and the C-coalgebra structure with

comultiplication ∆ : C[t] → C[t]⊗C C[t] defined by ∆(t) := t⊗ 1 + 1⊗ t and

counit ε : C[t] → C defined by ε(t) := 0. If ∂ is a C-derivation on A, then we

define

Ψ∂ : Dder ⊗C A→ A, Ψ∂(tn ⊗ a) := ∂n(a)
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for all n ∈ N and all a ∈ A. Then obviously A is a Dder-module via Ψ∂ and

Ψ∂ measures A to A since

Ψ∂(tn ⊗ ab) = ∂n(ab)

= ∑
n1+n2=n

(
n
n1

)
∂n1(a)∂n2(b)

= ∑
n1+n2=n

(
n
n1

)
Ψ∂(tn1 ⊗ a)Ψ∂(tn2 ⊗ b)

= ∑
(tn)

Ψ∂(tn
(1) ⊗ a)Ψ∂(tn

(2) ⊗ b)

and

Ψ∂(tn ⊗ 1) = ∂n(1) = δn,0 = ε(tn)1.

If, conversely, Ψ ∈ ModC(Dder, A) defines a Dder-module algebra structure on

A, then we define ∂Ψ : A → A by ∂Ψ(a) := Ψ(t ⊗ a) for all a ∈ A. Then

∂Ψ is C-linear and fulfills the Leibniz rule since ∆(t) = t ⊗ 1 + 1⊗ t. These

assignments give rise to the asserted bijection.

Recall that for every commutative C-algebra A the formal power se-

ries ring AJxK carries a natural derivation ∂x defined by ∂x(∑n∈N anxn) :

= ∑n∈N annxn−1 for all ∑n∈N anxn ∈ AJxK. By proposition 2.3.5, the Dder-

module algebra structure Ψint on ModC(Dder, A) gives rise to a C-derivation

∂int on ModC(Dder, A), which is given by (∂int( f ))(tn) = f (tn+1) for all

f ∈ ModC(Dder, A) and all n ∈ N. If A includes Q, there is an isomorphism

of differential C-algebras

(ModC(Dder, A), ∂int)→ (AJxK, ∂x), f 7→ ∑
n∈N

f (tn)
n!

xn.

By proposition 2.3.5 together with lemma 2.2.18, every C-derivation ∂ on a

C-algebra A gives rise to a homomorphism of Dder-module algebras from

(A, Ψ∂) to (ModC(Dder, A), Ψint). Thus, if Q ⊆ A, the composition

(A, ∂)
ρ

// (ModC(Dder, A), ∂int)
∼ // (AJxK, ∂x)
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is a homomorphism of differential C-algebras given by a 7→ ∑n∈N
∂n(a)

n! xn.

This is the iterative derivation associated to ∂, which H. Umemura calls uni-

versal Taylor homomorphism in his differential Galois theory [Ume96a].

If, however, A is of positive characteristic p, then ModC(Dder, A) is not

reduced. For example f ∈ ModC(Dder, A) defined by f (tp) = 1 and f (tm) = 0

for m 6= p fulfills f p = 0.

2.3.5 Higher derivations

Higher derivations can also be understood as module algebra structures. In

the univariate case (n = 1) this idea already appears in [Swe69, Section 7.0,

Exercises 1) and 2) on page 140].

Proposition 2.3.6. (1) For n ∈ N we denote by DHDn the free associative (non-

commutative) C-algebra with generators θ(k) for k ∈ Nn \ {0} and denote

1 ∈ DHDn also by θ(0). Then DHDn becomes a cocommutative C-bialgebra

with comultiplication ∆ : DHDn → DHDn ⊗C DHDn and counit ε : DHDn → C

defined as the homomorphisms of C-algebras such that

∆(θ(k)) = ∑
k=k1+k2

θ(k1) ⊗ θ(k2) and ε(θ(k)) = δk,0 for all k ∈Nn.

(2.3.3)

(2) For every commutative C-algebra A there is a bijection between the set HDn
C(A)

of n-variate higher derivations on A over C (see chapter 1) and the set of DHDn -

module algebra structures on A.

Proof. By the universal property of the free associative algebra C〈{θ(k) | k ∈
Nn \ {0}}〉 (see [Bou70, III.2, p. 22, Proposition 7]) there exist unique homo-

morphisms of C-algebras ∆ : DHDn → DHDn ⊗C DHDn and ε : DHDn → C such

that (2.3.3) holds. It is easily seen that ∆ and ε make DHDn into a coassocia-

tive, counital and cocommutative C-coalgebra. Since by definition ∆ and ε are

homomorphisms of C-algebras, DHDn becomes a cocommutative C-bialgebra.

For the proof of the second part, we note that we obtain such a bijection
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by assigning to an n-variate higher derivation θ on A over C with compo-

nents5 θ(k) the homomorphism of C-modules Ψ : DHDn ⊗C A→ A defined by

θ(k)⊗ a 7→ θ(k)(a) for all k ∈Nn and all a ∈ A, and by assigning conversely to

a DHDn -module algebra structure Ψ : DHDn ⊗C A → A on A a higher deriva-

tion θ : A → AJtK on A over C defined by θ(a) := ∑k∈Nn Ψ(θ(k) ⊗ a)tk for all

a ∈ A.

Remark 2.3.7. For every i ∈ {1, . . . , n} the sequence (θ(k·δi))k∈N in DHDn is a

divided power sequence over θ(0) ∈ DHDn , as defined for example in [Haz78,

38.2.1].

2.3.6 Iterative derivations

Iterative derivations can also be regarded as module algebras. The bialgebra

used here appears in the univariate case (n = 1) for example in [Mon93,

Example 5.6.8], where the author shows that this bialgebra is in fact a Hopf

algebra.

Proposition 2.3.8. (1) For n ∈N we define DIDn as the free C-module with basis

{θ(k) | k ∈Nn}. On DIDn a C-algebra structure can be defined by

1 := θ(0) (2.3.4)

θ(k) · θ(l) :=
(

k + l
k

)
θ(k+l) (2.3.5)

for all k, l ∈ Nn. Furthermore, DIDn carries a C-coalgebra structure with

comultiplication ∆ and counit ε given as the homomorphisms of C-modules

defined by

∆(θ(k)) := ∑
k1+k1=k

θ(k1) ⊗ θ(k2)

and

ε(θ(k)) := δk,0

5By abuse of notation we use the symbol θ(k) for both, the components of the n-variate higher
derivation θ and for certain elements in DHDn .
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for all k ∈ Nn. In this manner DIDn becomes a commutative, cocommutative

C-bialgebra.

(2) For every commutative C-algebra A there exists a bijection between the set

IDn
C(A) of n-variate iterative derivations on A over C and the set of DIDn -

module algebra structures on A.

Proof. We first note that the multiplication (2.3.5) is associative, since

θ(k1)(θ(k2)θ(k3)) =
(

k2 + k3

k2

)
θ(k1)θ(k2+k3)

=
(

k1 + k2 + k3

k1

)(
k2 + k3

k2

)
θ(k1+k2+k3)

=
k1 + k2 + k3

k1!k2!k3!
θ(k1+k2+k3)

=
(

k1 + k2

k1

)(
k1 + k2 + k3

k3

)
θ(k1+k2+k3)

=
(

k1 + k2

k1

)
θ(k1+k2)θ(k3)

= (θ(k1)θ(k2))θ(k3).

Obviously DIDn is commutative and θ(0) is a unit for this multiplication. So

DIDn becomes a commutative C-algebra. It is easily seen that ∆ and ε make

DIDn into a coassociative, counital and cocommutative C-coalgebra. We show

that ∆ and ε are C-algebra homomorphisms. For ε this is clear and for ∆ this
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follows from

∆(θ(k))∆(θ(l)) = ∑
k1+k2=k

∑
l1+l2=l

(θ(k1) ⊗ θ(k2))(θ(l1) ⊗ θ(l2))

= ∑
k1+k2=k

∑
l1+l2=l

(
k1 + l1

k1

)(
k2 + l2

k2

)
(θ(k1+l1) ⊗ θ(k2+l2))

=
(

k + l
k

)
∑

µ1+µ2=k+l
θ(µ1) ⊗ θ(µ2)

=
(

k + l
k

)
∆(θ(k+l))

= ∆(θ(k) · θ(l))

for all k, l ∈ Nn. Therefore, DIDn is a commutative and cocommutative C-

bialgebra.

Let θ be an n-variate iterative derivation on a commutative algebra A over

C with components (θ(k))k∈Nn .6 We define a homomorphism of C-modules

Ψ : DIDn ⊗C A → A by Ψ(θ(k) ⊗ a) := θ(k)(a) for all k ∈ Nn and a ∈ A.

One immediately checks that Ψ defines a DIDn -module algebra structure on

A. Conversely, given a DIDn -module algebra structure Ψ : DIDn ⊗C A→ A on

A, we define an n-variate iterative derivation θ : A → AJtK on A over C by

θ(a) := ∑k∈Nn Ψ(θ(k) ⊗ a)tk for all a ∈ A.

We recall that for any commutative C-algebra A there is a natural n-variate

iterative derivation θt on AJtK := AJt1, . . . , tnK over C (cf. example 1.2.5).

Considering the DIDn -module algebra (ModC(DIDn , A), Ψint) as an n-variate

iterative differential ring over C via proposition 2.3.8, we note that there is an

isomorphism

(ModC(DIDn , A), Ψint)→ (AJtK, θt), f 7→ ∑
k∈Nn

f (θ(k))tk (2.3.6)

of n-variate iterative differential rings over C. Using proposition 2.3.8 and

lemma 2.2.18, we obtain for every n-variate iterative derivation θ ∈ IDn
C(A) on

6Again, by abuse of notation we use the symbol θ(k) for both, the components of the n-variate
iterative derivation θ and for certain elements in DIDn .
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A over C a homomorphism of DIDn -module algebras ρ : A → ModC(DIDn , A)
and the composition

A
ρ

// ModC(DIDn , A) ∼ // AJtK

is again the iterative derivation θ itself. By abuse of notation we sometimes

identify ρ and θ using the isomorphism (2.3.6)

2.3.7 σ-derivations

We can also describe σ-derivations in terms of module algebra structures.

First, we recall their definition (see for example [And01, 1.4.1]).

Definition 2.3.9. If A is a C-algebra and σ an endomorphism of A, then a map

∂ : A→ A is a σ-derivation on A over C if

∂(a + b) = ∂(a) + ∂(b),

∂(ab) = ∂(a)b + σ(a)∂(b) and

∂(λa) = λ∂(a)

hold for all a, b ∈ A and λ ∈ C.

Proposition 2.3.10. (1) The free associative (non-commutative) C-algebra

Dσ-der := C〈σ, ∂〉

with generators σ and ∂ becomes a C-bialgebra with coproduct ∆ and counit

ε given by the C-algebra homomorphisms ∆ : Dσ-der → Dσ-der ⊗C Dσ-der and

ε : Dσ-der → C defined by

∆(σ) = σ⊗ σ, ∆(∂) = ∂⊗ 1 + σ⊗ ∂, ε(σ) = 1 and ε(∂) = 0.

(2.3.7)

The C-bialgebra Dσ-der is neither commutative nor cocommutative.
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(2) If A is a C-algebra, then there is a bijection between the set of pairs (σ, ∂), where

σ is an endomorphism of the C-algebra A and ∂ is a σ-derivation on A over C,

and the set of Dσ-der-module algebra structures on A.

Proof. We first note that by the universal property of the free associative

(non-commutative) C-algebra C〈σ, ∂〉 (see for example [Bou70, III.2, p. 22,

Proposition 7]) there exist unique homomorphisms of C-algebras ∆ : Dσ-der →
Dσ-der ⊗C Dσ-der and ε : Dσ-der → C fulfilling (2.3.7). Because of

(∆⊗ id) ◦ ∆(∂) = ∂⊗ 1⊗ 1 + σ⊗ ∂⊗ 1 + σ⊗ σ⊗ ∂ = (id⊗∆) ◦ ∆(∂)

(∆⊗ id) ◦ ∆(σ) = σ⊗ σ⊗ σ = (id⊗∆) ◦ ∆(σ),

the comultiplication ∆ is coassociative. From the equations

(ε⊗ id) ◦ ∆(∂) = ε(∂)⊗ 1 + ε(σ)⊗ ∂ = 1⊗ ∂,

(id⊗ε) ◦ ∆(∂) = ∂⊗ ε(1) + σ⊗ ε(∂) = ∂⊗ 1,

(ε⊗ id) ◦ ∆(σ) = ε(σ)⊗ σ = 1⊗ σ and

(id⊗ε) ◦ ∆(σ) = σ⊗ ε(σ) = σ⊗ 1

we see that ε is a counit with respect to ∆ on C〈σ, ∂〉. But if τ is the twist

homomorphism on Dσ-der ⊗C Dσ-der interchanging the factors, then τ ◦∆(∂) =
τ(∂ ⊗ 1 + σ ⊗ ∂) = 1⊗ ∂ + ∂ ⊗ σ 6= ∆(∂), so the C-bialgebra C〈σ, ∂〉 is not

cocommutative.

To prove part (2), let σ be an endomorphism of the C-algebra A and

∂ a σ-derivation on A over C.7 We define a C-module homomorphism

Ψ : Dσ-der ⊗C A → A by Ψ(∏m
i=1 ∂ki σli ⊗ a) := (∏m

i=1 ∂ki σli )(a) for all a ∈ A

and m, k1, . . . , km, n1, . . . , nm ∈N. Then it is clear that Ψ measures A to A and

that A becomes a Dσ-der-module via Ψ. If conversely Ψ : Dσ-der ⊗C A → A

is a Dσ-der-module algebra structure on A, then σ : A → A, defined by

σ(a) := Ψ(σ⊗ a) for all a ∈ A, is an endomorphism of the C-algebra A and

7By abuse of notation, we use the symbols σ and ∂ for both, the elements of Dσ-der and the
endomorphism σ and the σ-derivation ∂.
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∂ : A → A, defined by ∂(a) := Ψ(∂⊗ a) for all a ∈ A, is a σ-derivation on A

over C.

Later, when defining the infinitesimal Galois group of an extension of D-

module fields, where D is a C-bialgebra, we assume that D is cocommutative.

This assumption excludes Dσ-der.

2.3.8 q-skew iterative σ-derivations

C. Hardouin introduced so called iterative q-difference operators and developed

a Picard-Vessiot for iterative q-difference equations in [Har10]. We show how

these operators can be understood in the context of D-module algebras. More

precisely, we introduce a bialgebra describing q-skew iterative σ-derivations. It

turns out that the iterative q-difference operators introduced in [Har10] are a

special case of q-skew iterative σ-derivations.

We first recall some q-arithmetical notation. We define in the polynomial

algebra C[q̂] over C for n ∈N

[n]q̂ := 1 + q̂ + · · ·+ q̂n−1 =
q̂n − 1
q̂− 1

.

The q̂-factorial of n will be defined as

[0]q̂! := 1 and [n]q̂! :=
n

∏
i=1

[i]q̂ for n > 0.

Finally, we define q̂-binomial coefficients for natural numbers m, n ∈N by

(
n
m

)
q̂

:=


[n]q̂ !

[n−m]q̂ ![m]q̂ ! if m ≤ n,

0 if m > n.

They are in fact polynomials in q̂ with integer coefficients (see [Kas95, Propo-

sition IV.2.1 (a)])
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Lemma 2.3.11 (q-Vandermonde identity). For k, l, i ∈ N with i ≤ k + l the

identity (
k + l

i

)
q̂

= ∑
i1+i2=i

(
k
i1

)
q̂

(
l
i2

)
q̂
q̂i2(k−i1)

holds.

Proof. See for example [Kas95, Proposition IV.2.3].

For every commutative C-algebra A and every q ∈ A there is a unique

homomorphism of C-algebras from C[q̂] to A sending q̂ to q. We denote by

[n]q, [n]q! and (n
m)q the images in A of [n]q̂, [n]q̂! and (n

m)q̂, respectively.

We recall the definition of iterative q-difference operators given in [Har10,

Definition 2.4].

Definition 2.3.12. Let σq be the endomorphism of C(t) defined by

(σq( f ))(t) = f (qt)

for all f ∈ C(t) and let (A, σq) be a commutative difference extension ring of

(C(t), σq).8 An iterative q-difference operator on A is a family (δ(i))i∈N of maps

from A to itself fulfilling the following properties for all i, j ∈N and all a, b ∈ A

(1) δ(0) = id,

(2) δ(1) = σq−id
(q−1)t

(3) δ(i)(a + b) = δ(i)(a) + δ(i)(b),

(4) δ(i)(ab) = ∑i1+i2=i σi2
q (δ(i1)(a))δ(i2)(b),

(5) δ(i) ◦ δ(j) = (i+j
i )qδ(i+j).

8By abuse of notation, we denote the endomorphisms of A and of C(t) both by σq.
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Actually, iterative q-difference operators are a special instance of the

more general q-skew iterative σ-derivations, which generalize both q-skew σ-

derivations and iterative derivations. These are a special case of q-skew

higher derivations, which again are a special case of higher σ-derivations (see

[Hay08]). Here we restrict ourselves to q-skew iterative σ-derivations, which

cover many interesting cases. We first recall the definition (cf. [Hay08]).

Definition 2.3.13. If A is a commutative C-algebra and q ∈ C, then a q-skew

iterative σ-derivation of A consists of a C-algebra endomorphism σ ∈ CAlgC(A, A)
and a family of maps θ(k) : A→ A for all k ∈N such that

(1) θ(0) = id

(2) θ(i)σ = qiσθ(i)

(3) θ(i) is C-linear

(4) θ(i)(ab) = ∑i1+i2=i σi2(θ(i1)(a))θ(i2)(b)

(5) θ(i) ◦ θ(j) = (i+j
i )qθ(i+j)

for all i, j ∈ N and all a, b ∈ A. A homomorphism of commutative C-algebras

with q-skew iterative σ-derivations from (A, σA, (θ
(i)
A )i∈N) to (B, σB, (θ

(i)
B )i∈N) is

a homomorphism of C-algebras f : A → B such that f (σA(a)) = σB( f (a)) and

f (θ
(i)
A (a)) = θ

(i)
B ( f (a)) for all a ∈ A and all i ∈N.

Remark 2.3.14. (1) For any q-skew iterative σ-derivation we obtain from the C-

linearity of θ(i) and σ that θ(i)(q) = 0 for all i > 0 and σ(q) = q, respectively.

(2) If (δ(i))i∈N is an iterative q-difference operator with respect to σq such that all

δ(i) are C-linear, then this is a q-skew iterative σq-derivation. This follows from

[Har10, Lemma 2.6].

(3) There are different definitions of q-skew (iterative) σ-derivations. For example

in [Cau03] the condition (2) in definition 2.3.13 is replaced by the relation

σθ(i) = qθ(i)σ (though only classical q-skew σ derivations are treated there
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and not q-skew iterative σ-derivations). Having the example of a q-skew σq-

derivation associated to a q-difference operator σq in mind (i.e. the map δ(1) in

definition 2.3.12), we prefer our convention.

Proposition 2.3.15. For every q ∈ C the following hold:

(1) Let DIDq,σ be the quotient of the free associative (non-commutative) C-algebra

C〈{σ} ∪ {θ(i) | i ∈N}〉 generated by σ and θ(i) for i ∈N modulo the ideal I

that is generated by

θ(0) − 1, (2.3.8)

θ(i)σ− qiσθ(i) (2.3.9)

and

θ(i)θ(j) −
(

i + j
i

)
q
θ(i+j) (2.3.10)

for all i, j ∈N. It becomes a C-bialgebra with comultiplication

∆ : DIDq,σ → DIDq,σ ⊗C DIDq,σ

and counit

ε : DIDq,σ → C

defined by9

∆(σ) := σ⊗ σ

∆(θ(i)) := ∑
i1+i2=i

σi2 θ(i1) ⊗ θ(i2)

and

ε(σ) := 1

ε(θ(i)) := δi,0

for all i ∈N, respectively.
9By abuse of notation, we denote the images of σ and θ(i) in DIDq,σ by the same symbols.
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(2) For any commutative C-algebra A, the set of q-skew iterative σ-derivations on

A is in bijection with the set of DIDq,σ -module algebra structures on A.

Proof. We first define homomorphisms of C-algebras

∆ : C〈{σ}∪{θ(i) | i ∈N}〉 → C〈{σ}∪{θ(i) | i ∈N}〉⊗C C〈{σ}∪{θ(i) | i ∈N}〉

and

ε : C〈{σ} ∪ {θ(i) | i ∈N}〉 → C

by

∆(σ) := σ⊗ σ, ∆(θ(i)) := ∑
i1+i2=i

σi2 θ(i1) ⊗ θ(i2) for all i ∈N

and

ε(σ) := 1, ε(θ(i)) := δi,0 for all i ∈N,

respectively. We show that the image of I under the composition of

C〈{σ} ∪ {θ(i) | i ∈N}〉 → C〈{σ} ∪ {θ(i) | i ∈N}〉 ⊗C C〈{σ} ∪ {θ(i) | i ∈N}〉

with

C〈{σ} ∪ {θ(i) | i ∈N}〉 ⊗C C〈{σ} ∪ {θ(i) | i ∈N}〉 → DIDq,σ ⊗C DIDq,σ ,

which we denote by ∆̃, and under

ε : C〈{σ} ∪ {θ(i) | i ∈N}〉 → C

is zero and thus these homomorphisms factor through DIDq,σ . In fact, using
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lemma 2.3.11, we have

∆̃(θ(i)θ(j)) = ∆̃(θ(i))∆̃(θ(j))

=

(
∑

i1+i2=i
σi2 θ(i1) ⊗ θ(i2)

)(
∑

j1+j2=j
σj2 θ(j1) ⊗ θ(j2))

)

= ∑
i1+i2=i
j1+j2=j

qi1 j2 σi2+j2
(

i1 + j1
i1

)
q
θ(i1+j1)⊗

(
i2 + j2

i2

)
q
θ(i2+j2)

= ∑
k+l=i+j
i1+i2=i

qi1(l−i2)
(

k
i1

)
q

(
l
i2

)
q
σlθ(k) ⊗ θ(l)

= ∑
k+l=i+j

(
k + l

i

)
q
σlθ(k) ⊗ θ(l)

= ∆̃

((
i + j

i

)
q
θ(i+j)

)
,

∆̃(qiσθ(i)) = qi∆̃(σ)∆̃(θ(i))

= qi(σ⊗ σ) ∑
i=i1+i2

σi2 θ(i1) ⊗ θ(i2)

= ∑
i1+i2=i

qi1 σi2+1θ(i1) ⊗ qi2 σθ(i2)

=

(
∑

i1+i2=i
σi2 θ(i1) ⊗ θ(i2)

)
(σ⊗ σ)

= ∆̃(θ(i)σ)

and

∆̃(θ(0)) = 1⊗ 1 = ∆̃(1).
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We also have

ε(θ(i)θ(j)) = ε(θ(i))ε(θ(j)) = δi,0δj,0 =
(

i + j
i

)
q
δi+j,0 = ε

((
i + j

i

)
q
θ(i+j)

)
,

ε(qiσθ(i)) = qiε(σ)ε(θ(i)) = δi,0 = ε(θ(i))ε(σ) = ε(θ(i)σ)

and

ε(θ(0)) = 1 = ε(1)

and so ∆ and ε factor through DIDq,σ . We denote the induced homomorphisms

of C-algebras DIDq,σ → DIDq,σ ⊗C DIDq,σ and DIDq,σ → C again by ∆ and ε,

respectively. Because of

(∆⊗ id) ◦ ∆(θ(i)) = (∆⊗ id)

(
∑

i1+i2=i
σi2 θ(i1) ⊗ θ(i2)

)
= ∑

i1+i2=i
∆(σi2 θ(i1))⊗ θ(i2)

= ∑
i1+i2=i

(σi2 ⊗ σi2)

(
∑

i11+i12=i1

σi12 θ(i11) ⊗ θ(i12)

)
⊗ θ(i2)

= ∑
i1+i2+i3=i

σi3+i2 θ(i1) ⊗ σi3 θ(i2) ⊗ θ(i3)

= ∑
i1+i2=i

σi2 θ(i1) ⊗
(

∑
i2=i21+i22

σi22 θ(i21) ⊗ θ(i22)

)

= (id⊗∆)

(
∑

i1+i2=i
σi2 θ(i1) ⊗ θ(i2)

)
= (id⊗∆) ◦ ∆(θ(i))

for all i ∈N and

(∆⊗ id) ◦ ∆(σ) = σ⊗ σ⊗ σ

= (id⊗∆) ◦ ∆(σ),
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the comultiplication ∆ is coassociative. Furthermore,

(ε⊗ id) ◦ ∆(θ(i)) = ∑
i1+i2=i

ε(σi2 θ(i1))θ(i2)

= ∑
i1+i2=i

δi1,0θ(i2)

= θ(i)

= ∑
i1+i2=i

σi2 θ(i1)δi2,0

= (id⊗ε) ◦ ∆(θ(i))

and

(ε⊗ id) ◦ ∆(σ) = ε(σ)σ = σ = σε(σ) = (id⊗ε) ◦ ∆(σ),

so that ε is a counit for ∆. This completes the proof of the first part.

The proof of part (2) is analogous to other structures treated before. We

just note that the properties (1), (2) and (5) in definition 2.3.13 correspond to

the relations (2.3.8), (2.3.9) and (2.3.10), respectively, while the property (4)

and the fact that σ is an endomorphism of C-algebras are expressed by the

C-coalgebra structure on DIDq,σ .

Proposition 2.3.16. For any commutative C-algebra A and any q ∈ C, let ANJxK be

the ring of non-commutative formal power series ∑i∈N xi fi with coefficients fi ∈ AN

and with relations f x = xΣ( f ) for f ∈ AN, where Σ denotes the shift endomorphism

on AN (see equation (2.3.1)). On ANJxK a q-skew iterative σ-derivation is given by

the endomorphism Σ̃ on ANJxK defined by

Σ̃

(
∑
n≥0

xn fn

)
:= ∑

n≥0
xnqnΣ( fn).

and maps θ(i) from ANJxK to itself defined by

θ(i)

(
∑
n≥0

xn fn

)
:= ∑

n≥0

(
n
i

)
q
xn−i fn

for all i ∈N and ∑n≥0 xn fn ∈ ANJxK.
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Proof. Let n, m ∈N and f , g ∈ AN. First, the map Σ̃ is multiplicative, since

Σ̃(xn f xmg) = Σ̃(xn+mΣm( f )g)

= xn+mqn+mΣm+1( f )Σ(g)

= xnqnΣ( f )xmqmΣ(g)

= Σ̃(xn f )Σ̃(xmg).

Using lemma 2.3.11 we have for all i, j ∈N

∑
i1+i2=i

Σ̃i2(θ(i1)(xn f))θ(i2)(xmg)= ∑
i1+i2=i

Σ̃i2

((
n
i1

)
q
xn−i1 f

)(
m
i2

)
q
xm−i2g

= ∑
i1+i2=i

(
n
i1

)
q

(
m
i2

)
q
q(n−i1)i2 xn−i1 Σi2( f)xm−i2g

=
(

n + m
i

)
q
xn+m−iΣm( f )g

= θ(i)(xn+mΣm( f )g)

= θ(i)(xn f xmg)

and

θ(i)θ(j)(xn f ) = θ(i)

((
n
j

)
q
xn−j f

)

=
(

n
j

)
q

(
n− j

i

)
q
xn−j−i f

=
(

i + j
i

)
q

(
n

i + j

)
q
xn−j−i f

=
(

i + j
i

)
q
θ(i+j)(xn f )

and so we see that Σ̃ together with (θ(i))i∈N is a q-skew iterative σ-derivation

on ANJxK.

Proposition 2.3.17. For any q ∈ C and any commutative C-algebra A there is

an isomorphism of C-algebras with q-skew iterative σ-derivations (with ANJxK as
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defined in proposition 2.3.16)

ϕ : ModC(DIDq,σ , A) ∼ // ANJxK,

defined by ϕ( f ) := ∑i≥0 xi(n 7→ f (σnθ(i))) for all f ∈ ModC(DIDq,σ , A).

Proof. Obviously ϕ is C-linear. It is also multiplicative since for f , g ∈
ModC(D, A) we have

ϕ( f )ϕ(g) =

(
∑

i1≥0
xi1(n 7→ f (σnθ(i1)))

)(
∑

i2≥0
xi2(n 7→ g(σnθ(i2)))

)
= ∑

i1,i2≥0
xi1+i2 Σi2(n 7→ f (σnθ(i1)))(n 7→ g(σnθ(i2)))

= ∑
i1,i2≥0

xi1+i2(n 7→ f (σn+i2 θ(i1))g(σnθ(i2)))

= ∑
i≥0

xi(n 7→ ( f g)(σnθ(i)))

= ϕ( f g).

From

ϕ(σ. f ) = ∑
i≥0

xi(n 7→ f (σnθ(i)σ))

= ∑
i≥0

xiqi(n 7→ f (σn+1θ(i)))

= Σ̃(ϕ( f ))
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and

θ(j)(ϕ( f )) = θ(j)

(
∑
i≥0

xi(n 7→ f (σnθ(i)))

)

= ∑
i≥0

(
i
j

)
q
xi−j(n 7→ f (σnθ(i)))

= ∑
i≥0

(
i + j

j

)
q
xi(n 7→ f (σnθ(i+j)))

= ∑
i≥0

xi(n 7→ f (σn
(

i + j
j

)
q
θ(i+j)))

= ∑
i≥0

xi(n 7→ f (σnθ(i)θ(j)))

= ϕ(θ(j). f )

for all f ∈ ModC(DIDq,σ , A) we obtain that ϕ is a homomorphism of C-algebras

with q-skew iterative σ-derivation. It is clear that ϕ is an isomorphism since

DIDq,σ is a free C-module with basis {σnθ(i) | i, n ∈N}.

The composition

A
ρ

// ModC(DIDq,σ , A) ∼ // ANJxK

is a homomorphism of C-algebras with q-skew iterative σ-derivations that

generalizes the corresponding homomorphisms in subsection 2.3.4 (in the case

of characteristic 0) and in subsubsection 2.3.6. When we compose this homo-

morphism with the homomorphism

ANJxK→ AJxK, ∑
i≥0

xi fi 7→ ∑
i≥0

xi fi(0)

we obtain a homomorphism A → AJxK, which in the case of iterative q-

difference operators is closely related to the homomorphism T defined in

[Har10, Definition 2.15].
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2.3.9 D-rings

In [MS09] R. Moosa and T. Scanlon introduce Hasse systems D and, given

such a Hasse system, they define D-rings, generalizing rings with higher

derivation as introduced in chapter 1. They also introduce iterative Hasse

systems and, given such an iterative Hasse system D, they define iterative

Hasse rings. We show that to every iterative Hasse system D there is canon-

ically associated a cocommutative C-bialgebra D such that iterative D-rings

and D-module algebras are in bijection to each other. We refer to [MS10] and

[MS09] for notation concerning Hasse systems D and D-rings.

Remark 2.3.18. Although the authors do not specify it, we assume that all ring

schemes occurring in the definition of Hasse systems are commutative.

Proposition 2.3.19. Let D = (Dn)n∈N be an iterative Hasse system over C with

respect to ∆ = (∆(m,n) : Dm+n → D(m,n))m,n∈N (see [MS09, Definition 2.1 and

2.13]). Then

D := lim−→
n∈N

Dn(C)∗,

where we denote by Dn(C)∗ the dual ModC(Dn(C), C) of the C-module Dn(C),

becomes naturally a cocommutative C-bialgebra and for every commutative C-algebra

R there is an isomorphism of C-algebras

ModC(D, R) ∼= lim←−
n∈N

Dn(R). (2.3.11)

Proof. We denote the transition maps of D by πm,n : Dm → Dn for all m, n ∈N

with m ≥ n. The structure of a commutative C-algebra on Dn(C) induces a

structure of a cocommutative C-coalgebra on the dual Dn(C)∗ for all n ∈ N

and the homomorphisms of C-algebras πm,n(C) : Dm(C)→ Dn(C) induce ho-

momorphisms of C-coalgebras πm,n(C)∗ : Dn(C)∗ → Dm(C)∗ forming a direct

system in the category of C-coalgebras. These C-coalgebra structures induce a
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C-coalgebra structure on D := lim−→n∈N
Dn(C)∗, which again is cocommutative.

We recall that there is a canonical isomorphism

D(m,n)(C) ∼→ Dm(C)⊗C Dn(C) (2.3.12)

(cf. [MS10, Remark 4.10]). The homomorphisms of C-algebras

Dm+n(C)
∆(m,n)(C)

// D(m,n)(C) ∼ // Dm(C)⊗C Dn(C)

induce homomorphisms of C-coalgebras

Dm(C)∗ ⊗C Dn(C)∗ ∼ // D(m,n)(C)∗
∆(m,n)(C)∗

// Dm+n(C)∗

for all m, n ∈N. These give rise to a homomorphism of C-coalgebras

m : D⊗C D → D,

which makes the diagram

D⊗C D m // D

Dm(C)∗ ⊗C Dn(C)∗

OO

∆(m,n)(C)∗
// Dm+n(C)∗

OO

commutative for all m, n ∈N. The homomorphisms of C-algebras

πn,0(C) : Dn(C)→ D0(C) = C

give rise to homomorphisms of C-coalgebra C → Dn(C)∗ and thus to η : C →
Dn(C)∗ → D (this composition does not depend on n ∈ N). From the prop-

erties of iterative Hasse systems (cf. [MS09, Definition 2.13 (b)]) we see, using

implicitely the isomorphisms (2.3.12), that the diagram

Dn(C)⊗C Dm(C)⊗C Dl(C) Dn+m(C)⊗C Dl(C)
∆n,m(C)⊗Cid
oo

Dn(C)⊗C Dm+l(C)

id⊗C∆m,l(C)

OO

Dn+m+l(C)
∆n,m+l(C)

oo

∆n+m,l(C)

OO
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commutes for all m, n, l ∈N and thus dually the inner rectangle of

D⊗D⊗D
m⊗id

//

id⊗m

��

D⊗D

m

��

Dn(C)∗⊗Dm(C)∗⊗Dl(C)∗

id⊗∆m,l(C)∗

��

ggOOOOOOOOOOOOOO
∆n,m(C)∗⊗id

// Dn+m(C)∗⊗Dl(C)∗

::uuuuuuuuuuu

∆n+m,l(C)∗

��

Dn(C)∗⊗Dm+l(C)∗

wwoooooooooooooo

∆n,m+l(C)∗
// Dn+m+l(C)∗

$$IIIIIIIIIIII

D⊗D m // D

commutes too (all tensor products are over C). From the universal property of

the direct limit we obtain that the outer rectangle also commutes, i.e. that m

is associative. Again by the properties of iterative Hasse systems (cf. [MS09,

Definition 2.13 (a) and (c)]), the diagram

C⊗C Dm(C) D(0,m)(C)∼oo Dm(C)
∆(0,m)(C)=id

oo

Dn(C)⊗C Dm(C)

πn,0(C)⊗Cπm,m(C)

OO

D(n,m)(C)

π(n,m),(0,m)(C)

OO

∼oo Dn+m(C).
∆(n,m)(C)

oo

πn+m,m(C)

OO
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commutes for all m, n ∈N. Therefore, dually the inner rectangles of

C⊗D ∼ //

η⊗id

��

D

id

��

C⊗Dm(C)∗

ddJJJJJJJJJJJJ

πn,0(C)∗⊗Cπm,m(C)∗

��

∼ // D(0,m)(C)∗

π(n,m),(0,m)(C)∗

��

∆(0,m)(C)∗=id
// Dm(C)∗

??���������

πn+m,m(C)∗

��

Dn(C)∗⊗Dm(C)∗

zztttttttttttt

∼ // D(n,m)(C)∗
∆(n,m)(C)∗

// Dn+m(C)∗

��
?????????

D⊗D m // D

commute and, again by the universal property of the direct limit, the outer

rectangle commutes too. This means that η is a left unit for the multiplication

m. Similarly, one can show that η is a right unit. Finally, for every commuta-

tive C-algebra R we have

ModC(D, R) = ModC( lim−→
n∈N

Dn(C)∗, R)

∼= lim←−
n∈N

ModC(Dn(C)∗, R)

∼= lim←−
n∈N

Dn(C)⊗C R

∼= lim←−
n∈N

Dn(R).

Remark 2.3.20. Let D = (Dn)n∈N be a Hasse system over C. Then there is a

bijection between the set of D-rings as defined in [MS09, Definition 2.2] and the set

of pairs (R, E) where R is a C-algebra and E : R → lim←−n∈N
Dn(R) is a C-algebra

homomorphism such that the composition R E→ lim←−n∈N
Dn(R) → D0(R) = R is

the identity on R.
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Proposition 2.3.21. Let D be an iterative Hasse system over C and D =
lim←−n∈N

Dn(C)∗ the associated C-bialgebra (see proposition 2.3.19).

(1) If (R, E) is an iterative D-ring over C with E = (En : R → Dn(R))n∈N (see

[MS09, Definition 2.2 and 2.13]), then to E there is associated canonically a

D-module algebra structure ρ : R→ ModC(D, R) on R and the diagram

lim←−n∈N
Dn(R)

R

E
66mmmmmmmm

ρ ((RRRRRRRRR

ModC(D, R)

OO

is commutative, where the vertical arrow is the isomorphism (2.3.11) from

proposition 2.3.19 and the homomorphism E : R → lim←−n∈N
Dn(R) is induced

by the homomorphisms En : R→ Dn(R) (see remark 2.3.20).10

(2) Conversely, to every commutative D-module algebra (R, ρ) there is canonically

associated an iterative D-ring structure on R.

The constructions in (1) and (2) are inverse to each other.

Proof. Given an iterative D-ring (R, E), we define ρ : R → ModC(D, R) as the

composition

R E→ lim←−
n∈N

Dn(R) ∼→ ModC(D, R).

Then the diagram

R

E0=id

��
;;;;;;;;;;;;;;;;;;

En

&&LLLLLLLLLLLL
E // lim←−n∈N

Dn(R)

��

∼ // ModC(D, R)

��

Dn(R) ∼ //

πn,0(R)
��

ModC(Dn(C)∗, R)

ModC(πn,0(C)∗ ,R)
��

R
id // R

10By abuse of notation we use E for both, the homomorphism R→ lim←−n∈N
Dn(R) induced by

the En and for the family (En)n∈N.
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commutes. Furthermore, by the definition of the multiplication m of D, the

diagram

R
E //

E

��

lim←−
m∈N

Dm(R)

lim←−
m∈N

Dm(E)

��

∼ // Mod(D, R)

Mod(D,E)

��

R

id

``@@@@@@@@@@

En+m

��

Em // Dm(R)

Dm(En)
��

::ttttttttt

Dn+m(R)
∆(m,n)

//

����������
D(m,n)(R)

$$IIIIIIIII

lim←−
n∈N

Dn(R)

∼

��

// lim←−
n,m∈N

D(m,n)(R)

∼
��

∼ // Mod(D, lim←−
n∈N

Dn(R))

∼

��

lim←−
n,m∈N

Dm(R)⊗RDn(R)

∼
��

Mod(D,R)
Mod(m,R)

// Mod(D⊗C D,R) ∼ // Mod(D,Mod(D,R))

commutes, where we denote ModC by Mod for short. From the commutativity

of these diagrams we obtain that ρ : R → ModC(D, R) is a D-module algebra

structure on R.

If, conversely, ρ : R → ModC(D, R) is a D-module algebra structure on R,

then for every n ∈ N we define a homomorphism of C-algebras En : R →
Dn(R) as the composition R

ρ→ ModC(D, R) ∼→ lim←−n∈N
Dn(R) → Dn(R).

Then by definition the maps En fulfill the relations En = πm,n(R) ◦ Em for

all m ≥ n and E0 = ev1D ◦ρ = idR. Consequently, the family E = (En)n∈N

defines a D-ring structure on R. Since ρ defines a D-module algebra structure,
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the inner rectangle in the diagram

R
Em //

En+m

��

Dm(R)

Dm(En)

��

R
id

eeLLLLLLLLLLLLL

ρ

��

ρ
// ModC(D, R)

ModC(D,ρ)
��

66mmmmmmmmmmmm

ModC(D, R)

yyssssssssss

ModC(m,R)
// ModC(D, ModC(D, R))

((PPPPPPPPPPPP

Dn+m(R)
∆(m,n)

// D(m,n)(R)

commutes, and thus also the outer for all n, m ∈ N. This means that (R, E) is

an iterative D-ring.

Using the identification described in remark 2.3.20, we see that the passage

between the iterative D-ring structure E on R and the D-module algebra struc-

ture ρ on R is given by composition with the isomorphism lim←−n∈N
Dn(R) ∼→

ModC(D, R) and its inverse. Therefore, the constructions in (1) and (2) are

inverse to each other.

In [MS09] the authors do not define morphisms between D-rings over C.

Though, if D = (Dn)n∈N is a Hasse system over C and (R, E) and (S, F)
are D-rings, then a morphism from (R, E) and (S, F) can be defined as a

homomorphism of C-algebras ϕ : R → S such that Dn(ϕ) ◦ En = Fn ◦ ϕ holds

for all n ∈ N. Then a homomorphism of C-algebras ϕ is a morphism of D-

rings if and only if the induced morphism lim←−n∈N
Dn(ϕ) : lim←−n∈N

Dn(R) →
lim←−n∈N

Dn(S) fulfills F ◦ ϕ = lim←−n∈N
Dn(ϕ) ◦ E.

If D is an iterative Hasse system over C and D is the C-bialgebra associated
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to D by proposition 2.3.19, then the diagram

lim←−n∈N
Dn(R)

lim←−n∈N
Dn(ϕ)

��

∼ // ModC(D, R)

ModC(D,ϕ)
��

lim←−n∈N
Dn(S) ∼ // ModC(D, S),

commutes, where the horizontal arrows are the isomorphisms from propo-

sition 2.3.19. So we see that there is a bijection between homomorphisms

between the iterative D-rings (R, E) and (S, F) and homomorphisms between

the D-module algebras R and S. Together with proposition 2.3.21 we see that

the category of D-rings and the category of commutative D-module algebras

are isomorphic.
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Chapter 3

The infinitesimal Galois group

In this chapter we define a normalization L/K for a given extension of D-

module fields with certain properties. Using this normalization, we define

a functor of infinitesimal deformations and the infinitesimal Galois group

functor. The former turns out to be a principal homogeneous space for the

infinitesimal Galois group. We also give a definition of Lie-Ritt functors and

show that the infinitesimal Galois group is a Lie-Ritt functor and thus a formal

group scheme.

Notation: Let C be a commutative ring and D be a cocommutative C-bialgebra.

Let L be a D-module field via Ψ ∈ ModC(D ⊗C L, L) and K a D-module subfield

such that the field extension L/K is separable and finitely generated1. We denote

the homomorphism of D-module algebras associated to Ψ via the isomorphism (2.2.1)

by ρ : L → ModC(D, L). Let u = (u1, . . . , un) be a separating transcendence ba-

sis of L/K, θu be the associated n-variate iterative derivation on L over K (see ex-

ample 1.2.4) and Ψu ∈ ModC(DIDn ⊗C L, L) the corresponding DIDn -module field

structure on L (see proposition 2.3.8). Furthermore, we denote the trivial D-module

algebra structure on L (see lemma 2.2.15) by Ψ0 and the homomorphism associated to

Ψ0 via the isomorphism (2.2.1) by ρ0. If nothing else is mentioned, then we consider
1Under these conditions a separating transcendence basis of L/K exists (see for example

[Bou81, Chapitre V, §16.7, Theorem 5]).
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ModC(D, L) as a D- and DIDn -module algebra with the D-module algebra structure

Ψint introduced in lemma 2.2.16 and the DIDn -module algebra structure induced from

Ψu on ModC(D, L) by lemma 2.2.22, which we also denote by Ψu.

3.1 The rings L and K associated to L/K

In this section we define two rings, L and K, which are associated to the

extension of D-module fields L/K. The passage from L/K to L/K can be

interpreted as a normalization process. The motivation for this is explained in

the articles [Ume06] and [Ume07].

Lemma 3.1.1. The DIDn -module subalgebra ρ0(L){ρ(L)}Ψu of ModC(D, L), gen-

erated by ρ(L) over ρ0(L), is independent of the separating transcendence basis u of

L/K.

Proof. Let v = (v1, . . . , vn) be another separating transcendence basis of L/K

and Ψv be the DIDn -module algebra structure corresponding to the n-variate

iterative derivation θv on L (see example 1.2.4). We have

ρ0(L){ρ(L)}Ψu = ρ0(L)[Ψu(DIDn ⊗C ρ(L))]

and

ρ0(L){ρ(L)}Ψv = ρ0(L)[Ψv(DIDn ⊗C ρ(L))]

by lemma 2.2.7. Thanks to corollary 1.3.7 there exist for every k ∈ Nn

elements ck,l ∈ L for all l ∈ Nn, almost all equal to zero, such that

θ
(k)
v = ∑l∈Nn ck,lθ

(l)
u . Therefore, we obtain ρ0(L){ρ(L)}Ψv = ρ0(L)[Ψv(DIDn ⊗

ρ(L))] ⊆ ρ0(L)[Ψu(DIDn ⊗ ρ(L))] = ρ0(L){ρ(L)}Ψu . By symmetry, the claim

follows.

Definition 3.1.2. We define K as the subalgebra ρ0(L)[ρ(K)] of ModC(D, L), gen-

erated by ρ0(L) and ρ(K), and L as the DIDn -module subalgebra ρ0(L){ρ(L)}Ψu of

ModC(D, L), generated by ρ0(L) and ρ(L).
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Lemma 3.1.3. The L-algebras K and L are D⊗C DIDn -module subalgebras of

ModC(D,L).

Proof. Since K is a D-module subfield of L, the image ρ(K) of K under

the homomorphism of D-module algebras ρ : (L, Ψ) → (ModC(D, L), Ψint)
is a D-module subalgebra of (ModC(D, L), Ψint). The image ρ0(L) of L un-

der the homomorphism ρ0 is a D-module subalgebra of (ModC(D, L), Ψint),

since it consists of constants. Since the elements of K are constant with

respect to Ψu and K is a D-module subfield of L, the image ρ(K) con-

sists of constants with respect to Ψu and is thus a DIDn -module subalgebra

of (ModC(D, L), Ψu). By lemma 2.2.24, the image ρ0(L) is a DIDn -module

subalgebra of (ModC(D, L), Ψu). Since D ⊗C DIDn measures ModC(D, L) to

itself, we see that K is a D ⊗C DIDn -module subalgebra of ModC(D, L).

Furthermore, it is clear that the C-subalgebra of ModC(D, L) generated by

Ψu(DIDn ⊗C ρ(L)) is a DIDn -module subalgebra and it is also a D-module

subalgebra by lemma 2.2.23. Therefore, L is also a D⊗C DIDn -module subal-

gebra of ModC(D, L), since D⊗C DIDn measures ModC(D, L) to itself.

Lemma 3.1.4. The subalgebras ρ0(L) and ρ(K) of K are linearly disjoint over

ρ0(KΨ) and the multiplication homomorphisms of K induces an isomorphism of

D⊗C DIDn -module algebras

ρ0(L)⊗ρ0(KΨ) ρ(K)→ K.

Proof. We consider the extension of D-module algebras ρ(K) ⊆ K. Corol-

lary 2.2.31 implies that the multiplication homomorphism

ρ(K)⊗ρ0(KΨ) KΨint → K

is injective. Since KΨint = ρ0(L) by lemma 2.2.16, we obtain the injection

ρ(K)⊗ρ0(KΨ) ρ0(L)→ K, (3.1.1)
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which is surjective by definition of K. We note that in the tensor product

ρ(K)⊗ρ0(KΨ) ρ0(L) the left factor consists of constants with respect to Ψu, and

the right, with respect to Ψint. Both factors are D ⊗C DIDn -module algebras.

Obviously (3.1.1) is a homomorphism of D⊗C DIDn -module algebras.

3.2 Lie-Ritt functors

Lie-Ritt functors have been introduced by H. Umemura in [Ume96a]. The

infinitesimal Galois group that we define below turns out to be a Lie-Ritt

functor, like those defined by H. Umemura and S. Morikawa. Since we do

not restrict the characteristic to be zero, we have to adapt the definition of

H. Umemura by using iterative derivations instead of classical derivations.

We state some basic properties of Lie-Ritt functors, most of which are stated

in [Ume96a]. For the sake of simplicity, proofs there are sometimes just given

in the case n = 1, so we include complete proofs here.

Definition 3.2.1. Let A be a commutative ring and n ∈ N. We define the set of all

infinitesimal coordinate transformations of n variables over A as

Γn(A) :={Φ = (ϕi)i=1,...,n ∈ (AJxK)n | ϕi ≡ xi mod N(A)JxK ∀ i = 1, . . . ,n},

where we denote (x1, . . . , xn) by x.

In the following we show that Γn(A) carries a group structure.

Lemma 3.2.2. Let A be a commutative ring. For elements Φ = (ϕ1, . . . , ϕn) and

Ψ = (ψ1, . . . , ψn) in Γn(A) the composition Φ ◦ Ψ = (ϕ1(Ψ), . . . , ϕn(Ψ)) is well

defined and an element of Γn(A).

Proof. Since Ψ(0) and Φ(0) are both elements of N(A)n, the elements ψi and

ϕi are topologically nilpotent in AJxK for i = 1, . . . , n (see [Bou81, Chapter IV,

§4.2, Corollary]). Thus, by [Bou81, Chapter IV, §4.3, Proposition 4], Ψ and Φ

define homomorphisms

AJxK→ AJxK, xi 7→ ψi(x) and AJxK→ AJxK, xi 7→ ϕi(x),
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respectively, which are continuous with respect to the (x)-adic topology and

are congruent to the identity modulo N(A)JxK. Therefore, their composition,

sending xi to ϕi(Ψ) for i = 1, . . . , n, is also a continous homomorphism of

A-algebras, which is congruent to the identity modulo N(A)JxK. In particular,

ϕi(Ψ) is well defined and congruent to xi modulo N(A)JxK for i = 1, . . . , n.

Lemma 3.2.3. Let A be a commutative ring and n ∈ N. Then for all Φ, Ψ, Θ ∈
Γn(A) we have Φ ◦ (Ψ ◦Θ) = (Φ ◦Ψ) ◦Θ.

Proof. See [Bou81, Chapter IV, §4, 3.].

We often make use of the following well-known fact, which we recall for

the reader’s convenience.

Lemma 3.2.4. Let A be a commutative ring, u ∈ A× a unit and a ∈ A such that

a ≡ u mod N(A), then a is also a unit in A.

Proof. There exists an m ∈N such that (a− u)m = 0. Therefore,

0 =
m

∑
i=0

(
m
i

)
ai(−u)m−i = (−u)m + a

(
m

∑
i=1

ai−1(−u)m−i

)

and we see that a is invertible in A.

The following lemma is similar to proposition 1.3.5. It is a restricted, but

also refined version of the formal inverse function theorem.

Lemma 3.2.5. For any commutative ring A and any Φ ∈ Γn(A) there exists Ψ ∈
Γn(A) such that Ψ ◦Φ(x) = x.

Proof. Writing

Φ(x) = (ϕ1(x), . . . , ϕn(x)) =

(
∑

k∈Nn
a1,kxk, . . . , ∑

k∈Nn
an,kxk

)

we see that (x1 − a1,0, . . . , xn − an,0) ◦Φ = (∑k>0 a1,kxk, . . . , ∑k>0 an,kxk), and

so by lemma 3.2.3 we can assume that ai,0 = 0 for i = 1, . . . , n. Since ai,δj ≡ δi,j
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3. The infinitesimal Galois group

mod N(A) for i, j = 1, . . . , n we have det((ai,δj)
n
i,j=1) ≡ 1 mod N(A) and thus

det((ai,δj)
n
i,j=1) ∈ A×. We are looking for an element

Ψ = (ψ1, . . . , ψn) =

(
∑

k∈Nn
c1,kxk, . . . , ∑

k∈Nn
cn,kxk

)
∈ Γn(A)

such that for all λ = 1, . . . , n

∑
l∈Nn

cλ,l

n

∏
µ=1

(
∑

k∈Nn
aµ,kxk

)lµ

= xλ. (3.2.1)

This is equivalent to the following system of linear equations in the unknowns

{cλ,l | l ∈Nn}

∑
l∈Nn

cλ,l ∑
k1,1+...,k1,l1

+···+kn,1+···+kn,ln =i

n

∏
µ=1

lµ

∏
ν=1

aµ,kµ,ν =

1 if i = δλ,

0 otherwise
(3.2.2)

for all i ∈ Nn and all λ ∈ {1, . . . , n}. Note that in this sum only terms with

|l| ≤ |i| occur, since if |l| > |i| then in the decomposition k1,1 + · · ·+ k1,l1 +
· · ·+ kn,1 + · · ·+ kn,ln of i at least one kµ,ν must be zero and aµ,0 was assumed

to be zero. Therefore, we can construct a solution for (3.2.1) by solving by

induction on κ the equations (3.2.2) in the unknowns {cλ,l | |l| = κ} for all i

with |i| = κ and all λ ∈ {1, . . . , n}. From (3.2.2) for i = 0 we obtain cλ,0 = 0

for all λ = 1, . . . , n. By induction we assume that for some κ the elements

(cλ,l)|l|<κ,λ=1,...,n are solutions of (3.2.2) for |i| < κ. We have to solve the

equations (3.2.2) for all i with |i| = κ in the unknowns cλ,l with |l| = κ and

λ ∈ {1, . . . , n}. This is a system of linear equations with coefficient matrix D =
(Di,l)|i|=|l|=κ given by Di,l = ∑k1,1+···+k1,l1

+···+kn,1+···+kn,ln =i ∏n
µ=1 ∏

lµ
ν=1 aµ,kµ,ν

for all i, l ∈Nn with |i| = |l| = κ. Since

aµ,kµ,ν ≡

1 mod N(A) if kµ,ν = δµ

0 mod N(A) otherwise,

we have Di,l ≡ δi,l mod N(A) for all i, l ∈ Nn with |i| = |l| = κ. So

det
(
(Di,l)|i|=|l|=κ

)
≡ 1 mod N(A) and thus det(D) ∈ A×, i.e. D ∈ GLn(A).
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So we can uniquely solve this system of linear equations and obtain by induc-

tion on κ a solution for (3.2.1).

Proposition 3.2.6. Let A be a commutative ring and n ∈ N. Then the set Γn(A)
carries a group structure with composition given by

Ψ ◦Φ = (ψi(ϕ1, . . . , ϕn))i=1,...,n (3.2.3)

for elements Ψ = (ψi)i=1,...,n and Φ = (ϕi)i=1,...,n of Γn(A) and identity element

x ∈ Γn(A) ⊆ (AJxK)n.

Proof. By lemma 3.2.2, equation (3.2.3) defines a composition law on Γn(A).

Since x ◦ Φ = Φ = Φ ◦ x, the tuple x is a left- and right-unit and the lem-

mas 3.2.3 and 3.2.5 show that this composition law is associative and has left

inverses. Since the left inverses are also right inverses, the composition law

(3.2.6) makes Γn(A) into a group.

Definition 3.2.7. Let R be a commutative ring and n ∈ N. We define the Lie-Ritt

functor of all infinitesimal transformations of n variables defined over R as the

functor

ΓnR : CAlgR → Grp,

that has Γn(A) as A-points for every commutative R-algebra A and for every ho-

momorphism ϕ : A → B of commutative R-algebras we define ΓnR(ϕ) : ΓnR(A) →
ΓnR(B) to be the map induced by (ϕJwK)n : (AJwK)n → (BJwK)n.

Let R be a commutative ring and A a commutative R-algebra. We equip the

ring AJxK := AJx1, . . . , xnK with the n-variate iterative derivation θ : AJxK →
AJxKJwK over A defined by

θ

(
∑

j∈Nn
ajxj

)
:= ∑

k,j∈Nn

(
j
k

)
ajxj−kwk

for all ∑j∈Nn ajxj ∈ AJxK (see example 1.2.5). We extend it to

AJxK{y} := AJx1, . . . , xnK[y(k)
i | i = 1, . . . , n, k ∈Nn]
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3. The infinitesimal Galois group

and finally to the completion

AJxK{{y}} := AJx1, . . . , xnKJy(k)
i | i = 1, . . . , n, k ∈NnK.

with variables y(k)
i for i ∈ {1, . . . , n} and k ∈Nn by

θ
(

y(k)
i

)
:= ∑

l∈Nn

(
k + l

k

)
y(k+l)

i wl .

We denote by AJxK{AJyK} the HD-subring of AJxK{{y}} generated by

AJx, yK. For F ∈ AJxK{AJyK} and Φ = (ϕ1, . . . , ϕn) ∈ ΓnR(A) ⊆ AJxKn we

define F|y=Φ by replacing y(k)
i in F with θ(k)(ϕi), i.e. if

F = ∑
j∈Nn

k∈N{1,...,n}×Nn

aj,kxj ∏
(i,l)∈{1,...,n}×Nn

(
y(l)

i

)k(i,l)
∈ AJxK{AJyK}

then

F|y=Φ = ∑
j∈Nn

k∈N{1,...,n}×Nn

aj,kxj ∏
(i,l)∈{1,...,n}×Nn

(
θ(l)(ϕi)

)k(i,l)
∈ AJxK. (3.2.4)

Definition 3.2.8. Let R be a commutative ring. A Lie-Ritt functor over R is a group

functor G on the category CAlgR isomorphic to a subfunctor of ΓnR for some n ∈ N

that is defined by a HD-ideal of RJxK{RJyK}, i.e. there is a HD-ideal IERJxK{RJyK}
such that G(A) ∼= Z(I)(A), where Z(I) is defined by

Z(I)(A) := {Φ ∈ ΓnR(A) | F|y=Φ = 0 ∀ F ∈ IA}

for all commutative R-algebras A, where IA denotes the HD-ideal generated by I in

AJxK{AJyK}.2

Example 3.2.9. We define a subgroup functor G+ of Γ1Z as

G+(A) := {a0 + x | a0 ∈ N(A)}
2In [Ume96a] Lie-Ritt functors over R are defined using ideals in RJxK{{y}}. Since the term

in (3.2.4) is not well defined for elements F ∈ RJxK{{y}} in general, we change the definition.
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3.2. Lie-Ritt functors

for all commutative rings A. Let I be the HD-ideal in ZJxK{ZJyK} generated by

y(1) − 1 and y(k) for all k ≥ 2. Then G+ is the Lie-Ritt functor over Z defined by the

ideal I. Furthermore, G+ is isomorphic to Ĝa (see example B.2.5).

Proof. If A is a commutative ring and ϕ(x) = ∑i≥0 aixi ∈ Z(I)(A), then 1 =
θ(1)(ϕ) = ∑i≥1 aiixi−1, and thus a1 = 1. For all k ≥ 2 the ideal I contains y(k).

So we obtain 0 = θ(k)(ϕ) = ∑i≥k ( i
k)aixi−k and thus ak = 0. Since there are no

restrictions on a0 ∈ N(A), the claim follows.

The analog of this example in the setting of H. Umemura appeared in

[Ume96a, Example 1.9 (i)]. Since he works over Q, it is sufficient to consider

the equation y(1) − 1. In the general case we have to add the equations y(k) for

k > 2.

Similarly, the result corresponding to the following proposition in the set-

ting of H. Umemura (which means in particular that the characteristic is zero)

can be found in [Ume96a, p. 71].

Proposition 3.2.10. Let R be a commutative ring and n ∈ N. Given an n-

dimensional formal group law F over R, the associated group functor F (see re-

mark B.2.4) is isomorphic to the Lie-Ritt functor Z(I) ⊆ ΓnR defined by the HD-ideal

I := [θ(k)(F(y, Ψ(x))) | k ∈Nn \ {0}]RJxK{RJyK}, (3.2.5)

where Ψ is as in lemma B.2.3.

Proof. Let A be a commutative R-algebra and Φ ∈ ΓnR(A). If H|y=Φ = 0 for

all H ∈ IA, then we have in particular for all k ∈Nn \ {0}

θ(k)(F(Φ(x), Ψ(x))) =
(

θ(k)(F(y, Ψ(x)))
)
|y=Φ(x)

= 0.

This implies that there exists an a ∈ An such that

F(Φ(x), Ψ(x)) = a.

Since

a = F(Φ(x), Ψ(x)) ≡ F(x, Ψ(x)) = 0 mod N(A)JxK,
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3. The infinitesimal Galois group

it follows a ∈ N(A)n. Thus, we obtain a map π : Z(I)(A) → N(A)n by

sending Φ to a.

Conversely, for a ∈ N(A)n we define Φ(x) := F(a, x). Then Φ(x) =
F(a, x) ≡ F(0, x) = x mod N(A)JxK, i.e. Φ ∈ ΓnR(A) and we have

F(Φ(x), Ψ(x)) = F(F(a, x), Ψ(x)) = F(a, F(x, Ψ(x))) = F(a, 0) = a.

It follows (θ(k)(F(y, Ψ(x))))|y=Φ(x) = θ(k)(F(Φ(x), Ψ(x))) = 0 for all k ∈
Nn \ {0} and thus also H(Φ(x)) = 0 for all H ∈ IA. Consequently, we obtain

a map N(A)n → Z(I)(A) that sends a ∈ N(A)n to Φ.

Since F(F(a, x), Ψ(x)) = F(a, F(x, Ψ(x))) = F(a, 0) = a for all a ∈ N(A)n

and F(F(Φ(x), Ψ(x)), x) = F(Φ(x), F(Ψ(x), x)) = F(Φ(x), 0) = Φ(x) for all

Φ(x) ∈ ΓnR(A), this map is inverse to π and we obtain a bijection N(A) ∼=
Z(I)(A).

Finally, π is a group homomorphism: For Φ1, Φ2 ∈ Z(I)(A) there are

ai ∈ N(A)n such that F(Φi, Ψ) = ai and thus Φi(x) = F(ai, x) for i = 1, 2.

Consequently, we obtain (Φ1 ◦Φ2)(x) = F(a1, F(a2, x)) = F(F(a1, a2), x), i.e.

π(Φ1 ◦Φ2) = F(a1, a2).

It is easy to see that in the case of example 3.2.9 the generators of the ideal

I in (3.2.5) are exactly y(1) − 1 and y(k) for k > 1.

Proposition 3.2.11. Every Lie-Ritt functor over a commutative ring R is isomorphic

to a formal group scheme over R.

Proof. First, we consider the Lie-Ritt functor ΓnR of all infinitesimal transfor-

mations of n variables defined over R. For every commutative R-algebra A we

have an isomorphism

ΓnR(A)→ Â
{1,...,n}×Nn

R (A),

(
∑

k∈Nn
ai,kxk

)
i=1,...,n

7→
(
ai,k − δk,δi

)
(i,k)∈{1,...,n}×Nn

so that ΓnR is isomorphic to the formal scheme Â
{1,...,n}×Nn

R .
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Let A be a commutative R-algebra and let Ψ = (ψ1, . . . , ψn) and Φ =
(ϕ1, . . . , ϕn) be elements of ΓnR(A). We write ϕi = ∑k∈Nn ai,kxk and ψi =

∑k∈Nn bi,kxk for all i ∈ {1, . . . , n}. Then for all l ∈ Nn the coefficient of xl in

ψi(Φ) is

∑
k∈Nn

bi,k ∑
l1,1,...,l1,k1

,...,ln,1,...,ln,kn∈Nn

∑n
µ=1 ∑

kµ
ν=1 lµ,ν=l

n

∏
µ=1

kµ

∏
ν=1

aµ,lµ,ν

Thus, there exist formal power series ( fi,l)i∈{1,...,n},l∈Nn in variables uj,k, vj,k

with j ∈ {1, . . . , n} and k ∈ Nn, coefficients in Z and constant term equal

to zero such that ψi(Φ) = ∑l∈Nn fi,l((aj,k, bj,k)(j,k)∈{1,...,n}×Nn)xl . The for-

mal power series ( fi,l)(i,l)∈{1,...,n}×Nn give rise to a morphism Â
{1,...,n}×Nn

R ×
Â
{1,...,n}×Nn

R → Â
{1,...,n}×Nn

R of formal schemes over R, which defines a group

law on Â
{1,...,n}×Nn

R such that Â
{1,...,n}×Nn

R becomes a formal group scheme

over R. Then by construction the group functor ΓnR is isomorphic to the for-

mal group scheme Â
{1,...,n}×Nn

R .

Now let G ⊆ ΓnR be an arbitrary Lie-Ritt functor over R and I E

RJxK{RJyK} be such that G(A) ∼= Z(I)(A) for all commutative R-algebras

A. Let Φ = (ϕ1, . . . , ϕn) ∈ ΓnR(A) and ϕi = ∑k∈Nn ai,kxk for all i ∈ {1, . . . , n}.
For h ∈ I the condition h(Φ) = 0 is equivalent to a system of polynomial

equations (hλ)λ∈Λh among the coefficients ai,k. Thus, G is isomorphic to the

closed formal subgroup scheme of Â
{1,...,n}×Nn

R defined by the polynomials

hλ for all h ∈ I and λ ∈ Λh.

3.3 The functor FL/K of infinitesimal deformations

In the following we often consider subalgebras of the completed tensor prod-

uct

ModC(D, L)⊗̂L AJwK

for commutative L-algebras A. If not mentioned otherwise, the L-algebra

structure on ModC(D, L) is given by ρ0 : L → ModC(D, L) and the one on
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3. The infinitesimal Galois group

AJwK is given by the composition of θu : L → LJwK and LJwK → AJwK and

the completion is with respect to the topology on the tensor product induced

by the discrete topology on ModC(D, L) and the (w)-adic topology on AJwK
(see proposition A.2.1).

Lemma 3.3.1. Let A be a commutative L-algebra.

(1) There exists a D-module algebra structure on the completed tensor product

ModC(D, L)⊗̂L AJwK induced by the D-module algebra structure on the tensor

product ModC(D, L)⊗L AJwK that is induced by

(ModC(D, L), Ψint) (L, Ψ0)
ρ0

oo
θu // (AJwK, Ψ0) (3.3.1)

via proposition 2.2.25.

(2) There exists a DIDn -module algebra structure on the completed tensor product

ModC(D, L)⊗̂L AJwK induced by the DIDn -module algebra structure on the

tensor product ModC(D, L)⊗L AJwK that is induced by

(ModC(D, L), ModC(D, θu)) (L, θu)
ρ0

oo
θu // (AJwK, θw) (3.3.2)

via proposition 2.2.25.

These D- and DIDn -module algebra structures commute with each other so that we

obtain a D⊗C DIDn -module algebra structure on ModC(D, L)⊗̂LAJwK.

Proof. By proposition 2.2.25, there is a unique D-module algebra structure on

ModC(D, L)⊗L AJwK such that this tensor product becomes the coproduct of

the diagram (3.3.1) in the category of commutative D-module algebras. The

ideals in ModC(D, L)⊗L AJwK generated by (1⊗wk) for k ∈Nn are D-stable

and thus ((ModC(D, L)⊗L AJwK)/(1⊗wk))k∈Nn forms an inverse system of

D-module algebras. By proposition 2.2.26, the inverse limit

ModC(D, L)⊗̂L AJwK = lim←−
k∈Nn

(ModC(D, L)⊗L AJwK)/(1⊗wk)
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3.3. The functor FL/K of infinitesimal deformations

becomes a D-module algebra.

The proof of the second part is similar using the fact that continuous n-

variate iterative derivations extend to completions (see proposition 1.2.8).

It is clear the the D- and DIDn -module algebra structures commute with

each other.

Lemma 3.3.2. For any commutative L-algebra A there exists an injective homomor-

phism of D⊗C DIDn -module algebras

µA,u : ModC(D, L)⊗̂L AJwK→ ModC(D, AJwK) (3.3.3)

∑
i∈Nn

fi ⊗ aiwi 7→ ∑
i∈Nn

ModC(D, θu)( fi) · ρ0(aiwi),

where we consider ModC(D, AJwK) as D-module algebra via Ψint and as DIDn -

module algebra via the DIDn -module algebra structure induced by θw on AJwK to

ModC(D, AJwK) via lemma 2.2.22.

Proof. We first consider the homomorphism

ModC(D, L)⊗L AJwK→ ModC(D, AJwK) (3.3.4)

that is given as the composition of

ModC(D, L)⊗L AJwK
ModC(D,θu)⊗ρ0

// ModC(D, LJwK)⊗L ModC(D, AJwK)

and the restriction of the multiplication map on ModC(D, AJwK)

ModC(D, LJwK)⊗L ModC(D, AJwK)
m

// ModC(D, AJwK).

Since

ModC(D, θu) : ModC(D, L)→ ModC(D, LJwK)

and

ρ0 : AJwK→ ModC(D, AJwK)

are homomorphisms of D⊗C DIDn -module algebras, where AJwK is equipped

with the trivial D-module algebra structure, ModC(D, θu)⊗ ρ0 is one too by
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proposition 2.2.25. Since D ⊗C DIDn measures ModC(D, AJwK) to itself, m is

also a homomorphism of D ⊗C DIDn -module algebras. Therefore, (3.3.4) is a

homomorphism of D⊗C DIDn -module algebras too. Using proposition 2.2.26

(2) we extend (3.3.4) to (3.3.3). Note that by corollary 2.2.31 the subalgebras

ModC(D, θu)(ModC(D, L)) and ρ0(AJwK) are linearly disjoint over ρ0(θu(L)).

Thus, the homomorphism (3.3.4) is injective and so is (3.3.3).

Notation: We denote by i : L → L⊗̂L AJwK the homomorphism sending a ∈ L to

a⊗ 1 ∈ L⊗̂L AJwK.

Definition 3.3.3. We define the functor

FL/K,u : CAlgL → Set

of infinitesimal deformations of i as follows: For a commutative L-algebra A we

define FL/K,u(A) to be the set of all homomorphisms

f : L → L⊗̂L AJwK

of D⊗C DIDn -module algebras such that the diagram

K � � //

i
))SSSSSSSSSSSSSSSSS L

ModC(D,wθu)
//

f
��

ModC(D, AJwK)

ModC(D,πAJwK)

��

L⊗̂L AJwK

µA,u

��

ModC(D, AJwK)
ModC(D,πAJwK)

// ModC(D, A/N(A)JwK)

commutes, where πA : A→ A/N(A) denotes the canonical projection. If ϕ : A→ B

is a homomorphism of commutative L-algebras, we define

FL/K,u(ϕ) : FL/K,u(A)→ FL/K,u(B)
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3.3. The functor FL/K of infinitesimal deformations

by sending an f ∈ FL/K,u(A) to (idL ⊗̂L ϕJwK) ◦ f . This is well-defined, since the

diagram

L
ModC(D,wθu)

//

f

��

ModC(D, AJwK)

ModC(D,πAJwK)

��

ModC(D,ϕJwK)
// ModC(D, BJwK)

ModC(D,πBJwK)

��

L⊗̂L AJwK
ModC(D,πAJwK)◦µA,u

//

idL ⊗̂L ϕJwK

��

ModC(D, A/N(A)JwK)
ModC(D,ϕ̄JwK)

))RRRRRRRRRRRRRRRRR

L⊗̂LBJwK
ModC(D,πBJwK)◦µB,u

// ModC(D,B/N(B)JwK)

commutes, where ϕ̄ : A/N(A) → B/N(B) is the homomorphism of L-algebras in-

duced by ϕ.

Our definition of the functor FL/K of infinitesimal transformations differs

slightly from the definition of H. Umemura. Mainly, the target of the ho-

momorphisms we consider is L⊗̂L AJwK, while H. Umemura considers the

composition with µA,u.

The functor FL/K,u is essentially independent of the separating transcen-

dence basis u of L over K. In fact, we have the following lemma, which

specializes to [Ume96a, Proposition 4.1] and [Mor09, Lemma 2.14] in the case

where the characteristic of K is zero and where the C-bialgebra D is equal to

Dder (see subsection 2.3.4) and Dend (see subsection 2.3.1), respectively.

Lemma 3.3.4. If u and v are separating transcendence bases of L/K, then FL/K,u

and FL/K,v are naturally isomorphic.

Proof. By proposition 1.3.6, there is an automorphism ϕ of the L-algebra LJwK
such that ϕ(w)|w=0 = 0 and ϕ ◦ θu = θv. Then ψ := ϕ−1 also fulfills

ψ(w)|w=0, i.e. ψ is continous with respect to the (w)-adic topology. For

every commutative L-algebra A we extend ψ first A-linearly to an automor-

phism ψA of AJwK and then further ModC(D, L)-linearly to an automorphism

of ModC(D, L)⊗̂L AJwK, which we denote by idModC(D,L) ⊗̂LψA. It is easy to
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see that this automorphism restricts to an automorphism of L⊗̂L AJwK, which

we denote by idL ⊗̂LψA. If f ∈ FL/K,v(A), then the diagram

L

id

OO

ModC(D,wθu)
//

L

f

OO

ModC(D,wθv)
//

L⊗̂L AJwK
ModC(D,πAJwK)◦µA,v

//

idL ⊗̂LψA

OO
L⊗̂L AJwK

ModC(D,πAJwK)◦µA,u

//

ModC(D,LJwK)

ModC(D,ϕ)

OO

ModC(D,πAJwK)

ee

ModC(D,LJwK)

ModC(D,πAJwK)

OO
ModC(D,A/N(A)JwK)

ModC(D,ψA/N(A))

OO
ModC(D,A/N(A)JwK).

commutes.3 We note that (idL ⊗̂LψA) ◦ f : L → L⊗̂L AJwK is a D ⊗C DIDn -

homomorphism, where the DIDn -module algebra structure on L is given by

θu and the one on L⊗̂L AJwK by θu⊗̂θw. From the commutativity of the big

rectangle we obtain that (idL ⊗̂LψA) ◦ f ∈ FL/K,u(A) and thus a natural trans-

formation from FL/K,v to FL/K,u. Similarly, by sending an f ∈ FL/K,u(A) to

(idL ⊗̂L ϕA) ◦ f ∈ FL/K,v(A), we obtain a natural transformation from FL/K,u

to FL/K,v, which is inverse to the other.

If the characteristic of K is zero, the following proposition specializes to

[Ume96a, Lemma 4.5] and [Mor09, Lemma 2.15] in the case where D = Dder

and D = Dend, respectively.

Proposition 3.3.5. For every commutative L-algebra A and every f ∈ FL/K,u(A)
there exists a unique Φ ∈ ΓnL(A) such that for all a ∈ L

f (ρ(a)) = ∑
k∈Nn

ModC(D, θ
(k)
u )(ρ(a))⊗ (Φ−w)k.

3Note that the L-algebra structures on the right factors in the two completed tensor products
at the top left are different. The one at the very top is given by θu, while the one at second from
the top is given by θv.
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3.3. The functor FL/K of infinitesimal deformations

Thus, we obtain an injective map FL/K,u(A) → ΓnL(A) giving rise to a natural

transformation FL/K → ΓnL.

Proof. For i = 1, . . . , n, we define

ϕi := ev1D ◦µA,u ◦ f ◦ ρ(ui)− ui ∈ AJwK,

where ev1D : ModC(D, AJwK)→ AJwK denotes the evaluation map at 1D ∈ D.

Then Φ := (ϕ1, . . . , ϕn) is an element of ΓnL(A), since

ϕi ≡ ev1D ◦ModC(D, wθu) ◦ ρ(ui)− ui = wi mod N(A)JwK.

We define two homomorphisms of C-algebras F, G : L→ AJwK by

F := ev1D ◦µA,u ◦ f ◦ ρ

and

G := ev1D ◦ModC(D, Φθu) ◦ ρ.

For a ∈ K we have F(a) = a = G(a) and for i = 1, . . . , n

G(ui) = ev1D ◦ModC(D, Φθu) ◦ ρ(ui)

= ui + ϕi

= ui + ev1D ◦µA,u ◦ f ◦ ρ(ui)− ui

= F(ui).

So F and G coincide on K(u) and, since L is 0-étale over K(u), they also

coincide on L.

Finally, we show µA,u ◦ f ◦ ρ = ModC(D, Φθu) ◦ ρ. Using that f , ρ, µA,u and

ModC(D, Φθu) are homomorphisms of D-module algebras (see lemma 2.2.18
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3. The infinitesimal Galois group

and lemma 3.3.2) and that F and G are equal, we obtain

(µA,u ◦ f ◦ ρ(a))(d) = (d.(µA,u ◦ f ◦ ρ(a)))(1D)

= (µA,u ◦ f ◦ ρ(d.a))(1D)

= (ModC(D, Φθu)(ρ(d.a)))(1D)

= (d.(ModC(D, Φθu)(ρ(a))))(1D)

= (ModC(D, Φθu)(ρ(a)))(d).

Since

µA,u

(
∑

k∈Nn
ModC(D, θ

(k)
u )(ρ(a))⊗ (Φ−w)k

)
= ModC(D, Φθu)(ρ(a))

and since µA,u is injective, the claim follows.

Lemma 3.3.6. Let A be a commutative L-algebra and f ∈ FL/K,u(A). If we denote

by ε : AJwK→ A the homomorphism of A-algebras sending wi to 0 for i = 1, . . . , n,

then for any 0 6= a ∈ L the element ModC(D, ε) ◦ µA,u ◦ f (a) ∈ ModC(D, A) is not

zero. In particular, f is injective.

Proof. For 0 6= a ∈ L there exists c ∈ ModC(D, N(A)JwK) such that

(µA,u ◦ f )(a) = ModC(D, wθu)(a) + c

and thus for any d ∈ D we have (µA,u ◦ f )(a)(d)|w=0 = a(d) + c(d)|w=0. If

ModC(D, ε) ◦ µA,u ◦ f (a) would be zero, we would obtain a(d) = −c(d)|w=0 ∈
L ∩ N(A) = {0} for all d ∈ D, i.e. a = 0 in contradiction to our assumption.

3.4 The infinitesimal Galois group

Definition 3.4.1. We define a functor

Inf-Gal(L/K) : CAlgL → Grp
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3.4. The infinitesimal Galois group

as follows. For any commutative L-algebra A we define Inf-Gal(L/K)(A) to be the

group of automorphisms ϕ of the of D ⊗C DIDn -module algebra of L⊗̂L AJwK that

make the diagram

K⊗̂L AJwK � � //

id

��

L⊗̂L AJwK id //

ϕ

��

L⊗̂L AJwK

idL ⊗̂πAJwK

��

K⊗̂L AJwK � � // L⊗̂L AJwK
idL ⊗̂πAJwK

// L⊗̂L(A/N(A))JwK,

commutative. If λ : A→ B is a homomorphism of commutative L-algebras, we define

Inf-Gal(L/K)(λ) : Inf-Gal(L/K)(A)→ Inf-Gal(L/K)(B)

by sending ϕ ∈ Inf-Gal(L/K)(A) to ϕ⊗̂AJwK idBJwK, where we consider BJwK as

AJwK-algebra via the homomorphism λJwK : AJwK→ BJwK.

Definition 3.4.2. For any commutative L-algebra A and any f ∈ FL/K,u(A) we

define

ψ f : L⊗̂L AJwK→ L⊗̂L AJwK

as the extension of the homomorphism of D⊗C DIDn -module algebras

(idL⊗L mAJwK) ◦ ( f ⊗L idAJwK) : L⊗L AJwK→ L⊗̂L AJwK

to the completion with respect to the (1⊗w)-adic topology, which again is a homo-

morphism of D⊗C DIDn -module algebras (see corollary 2.2.27).

Lemma 3.4.3. For any commutative L-algebra A and any f ∈ FL/K(A) the homo-

morphism

ψ f : L⊗̂L AJwK→ L⊗̂L AJwK

is injective.

Proof. Let ∑i∈Nn gi⊗ aiwi be a non-zero element of L⊗̂L AJwK and let i0 ∈Nn

be minimal among all i ∈ Nn with the property that gi ⊗ aiwi 6= 0. We write
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3. The infinitesimal Galois group

ψ f (∑i∈Nn gi ⊗ aiwi) = ∑i∈Nn hi ⊗ biwi, where the term of smallest possible

order that can occur is hi0 ⊗ bi0 wi0 . From lemma 3.3.6 we know that there

exists a d ∈ D such that (ModC(D, ε) ◦ µA ◦ f (gi0))(d) 6= 0, where ε : AJwK→
A is the homomorphism sending all wi to 0. In fact, this element is given as

the sum of gi0(d) and a nilpotent element from A and thus it is invertible in A.

Thus, we see that µA(hi0 ⊗ ai0 wi0)(d) = (ModC(D, ε) ◦ µA ◦ f (gi0))(d) · ai0 wi0

is non-zero in AJwK. In particular, hi0 ⊗ ai0 wi0 cannot be zero and thus ψ f is

injective.

In order to prove lemma 3.4.6, we first need some other lemmata.

Lemma 3.4.4. Let A be a commutative ring and θw be the canonical n-variate

iterative derivation on AJwK with respect to w. Then for g(w) ∈ AJwK and

Φ(w) ∈ AJwKn with Φ(0) ∈ N(A)n we have

g(Φ(w)) = ∑
k∈Nn

θ
(k)
w (g(w))(Φ(w)−w)k.

Proof. Since Φ(0) ∈ N(A)n, the components of Φ(w) are topologically nilpo-

tent in AJwK with respect to the (w)-adic topology. So writing g(w) =

∑l∈Nn alwl we have

∑
k∈Nn

θ
(k)
w (g(w))(Φ(w)−w)k = ∑

k∈Nn
θ
(k)
w

(
∑

l∈Nn
alw

l

)
(Φ(w)−w)k

= ∑
k∈Nn

(
∑

l∈Nn
al

(
l
k

)
wl−k

)
(Φ(w)−w)k

= ∑
l∈Nn

al

(
∑

k∈Nn

(
l
k

)
wl−k(Φ(w)−w)k

)
= ∑

l∈Nn
al(Φ(w))l

= g(Φ(w)).
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3.4. The infinitesimal Galois group

Corollary 3.4.5. For any commutative L-algebra A and any Φ = Φ′ + w, Ψ =
Ψ′ + w ∈ ΓnL(A) we have for all l ∈Nn

(Ψ′(Φ))l = ∑
k∈Nn

θ
(k)
w (Ψ′l)Φ′k.

Proof. By lemma 3.4.4 we have

(Ψ′(Φ))l =

(
∑

k∈Nn
θ
(k)
w (Ψ′)Φ′k

)l

= (Φ′θw(Ψ′))l = Φ′θw(Ψ′l) = ∑
k∈Nn

θ
(k)
w (Ψ′l)Φ′k.

Lemma 3.4.6. Let A be a commutative L-algebra. If f ∈ FL/K,u(A) and Φ ∈
ΓnL(A) is such that

f (ρ(a)) = ∑
k∈Nn

ModC(D, θ
(k)
u )(ρ(a))⊗ (Φ−w)k

holds for all a ∈ L (see proposition 3.3.5) and g : ρ(L) → L⊗̂L AJwK is a map such

that

g(ρ(a)) = ∑
k∈Nn

ModC(D, θ
(k)
u )(ρ(a))⊗ (Ψ−w)k,

holds for some Ψ ∈ ΓnL(A) and all a ∈ L, then

ψ f ◦ g(ρ(a)) = ∑
l∈Nn

ModC(D, θ
(l)
u )(ρ(a))⊗ (Φ(Ψ)−w)l

holds for all a ∈ L.

Proof. With the notation Φ′ = Φ−w and Ψ′ = Ψ−w, we have for all a ∈ L,
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3. The infinitesimal Galois group

using Φ(Ψ)−w = Ψ′ + Φ′(Ψ) and corollary 3.4.5,

(ψ f◦g)(ρ(a))=ψ f

(
∑

k∈Nn
ModC(D, θ

(k)
u )(ρ(a))⊗Ψ′k

)

= ∑
k∈Nn

θ(k)

(
∑

l∈Nn
ModC(D, θ

(l)
u )(ρ(a))⊗Φ′l

)
(1⊗Ψ′k)

= ∑
k1,k2,l∈Nn

(
ModC(D, θ

(k1)
u ◦ θ

(l)
u )(ρ(a))⊗θ

(k2)
w (Φ′l)

)
(1⊗Ψ′k1+k2)

= ∑
k1,k2,l∈Nn

((
k1+l

l

)
ModC(D,θ(k1+l)

u )(ρ(a))⊗θ
(k2)
w (Φ′l)

)
(1⊗Ψ′k1+k2)

= ∑
m,k2,l∈Nn

(
m
l

)
ModC(D, θ

(m)
u )(ρ(a))⊗ θ

(k2)
w (Φ′l)Ψ′m−l+k2)

= ∑
m,l∈Nn

ModC(D, θ
(m)
u )(ρ(a))⊗

(
m
l

)
Ψ′m−l(Φ′(Ψ))l

= ∑
n∈Nm

ModC(D, θ
(n)
u )(ρ(a))⊗ (Φ(Ψ)−w)m.

Corollary 3.4.7. Let A be a commutative L-algebra. If f , g ∈ FL/K,u(A) are such

that

f (ρ(a)) = ∑
k∈Nn

ModC(D, θ
(k)
u )(ρ(a))⊗Φ′k

and

g(ρ(a)) = ∑
k∈Nn

ModC(D, θ
(k)
u )(ρ(a))⊗Ψ′k

hold for all a ∈ L with some Φ = Φ′ + w, Ψ = Ψ′ + w ∈ ΓnL(A) (see proposi-

tion 3.3.5), then we have

(ψ f ◦ ψg)(ρ(a)⊗ 1) = ∑
k∈Nn

ModC(D, θ
(k)
u )(ρ(a))⊗ (Φ(Ψ)−w)k

for all a ∈ L.

Theorem 3.4.8. For any commutative L-algebra A, the set FL/K,u(A) is a principal

homogeneous space for the group Inf-Gal(L/K)(A).
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3.4. The infinitesimal Galois group

Proof. We define a map

Inf-Gal(L/K)(A)×FL/K,u(A)→ FL/K,u(A)

by sending a pair (ϕ, f ) ∈ Inf-Gal(L/K)(A)× FL/K,u(A) to ϕ ◦ f . This is in

fact well-defined: Since f and ϕ are D ⊗C DIDn -module algebra homomor-

phisms, so is ϕ ◦ f . We consider the diagram

K //

ModC(D,wθu)

��

L

f

��

ModC(D,wθu)
// ModC(D, AJwK)

ModC(D,πAJwK)

��

L⊗̂L AJwK

ϕ

��

ModC(D,πAJwK)◦µA,u
// ModC(D, A/N(A)JwK)

id

��

ModC(D, AJwK) L⊗̂L AJwK
µA,u

oo
ModC(D,πAJwK)◦µA,u

// ModC(D, A/N(A)JwK).

By definition of FL/K,u(A) and Inf-Gal(L/K)(A), the two squares on the

right commute. Since f (a) ∈ K⊗̂LAJwK for a ∈ K and ϕ is a K⊗̂LAJwK-

homomorphism, we have µA,u ◦ ϕ ◦ f (a) = µA,u ◦ f (a) = ModC(D, wθu)(a)
for all a ∈ K, i.e. the rectangle at the left commutes too. Thus, ϕ ◦ f is also

an element of FL/K,u(A). It is clear that this defines in fact an operation of

Inf-Gal(L/K)(A) on FL/K,u(A) from the left.

In order to show that this operation makes FL/K,u(A) into a principal

homogeneous space for Inf-Gal(L/K)(A), we have to prove that for any

f ∈ FL/K,u(A) there exists a unique automorphism ψ f ∈ Inf-Gal(L/K)(A)
such that

ψ f ◦ i = f , (3.4.1)

where i : L → L⊗̂L AJwK is the homomorphism defined before definition 3.3.3.

The automorphism ψ f of the D⊗C DIDn -module algebra L⊗̂L AJwK in defini-

tion 3.4.2 fulfills (3.4.1) by definition and by lemma 3.4.3 it is injective. It

remains to show that ψ f is unique and that it is an automorphism. By propo-
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3. The infinitesimal Galois group

sition 3.3.5, there exists a Φ ∈ ΓnL(A) such that for all a ∈ L

f (ρ(a)) = ∑
k∈Nn

ModC(D, θ
(k)
u )(ρ(a))⊗ (Φ−w)k.

We define Ψ as the inverse Φ−1 of Φ in the group ΓnL(A). We claim that the

assignment

ρ(a) 7→ ∑
k∈Nn

ModC(D, θ
(k)
u )(ρ(a))⊗ (Ψ−w)k

defines a K-homomorphism g : L → L⊗̂L AJwK of D ⊗C DIDn -module alge-

bras. Since L is differentially generated by ρ(L) over K with respect to the

n-variate iterative derivation θu, we only have to show that this is well-defined,

i.e. that if F ∈ K{X1, . . . , Xm}DIDn is a differential polynomial with coefficients

in K such that F(ρ(a1), . . . , ρ(am)) = 0 for certain elements a1, . . . , am ∈ L,

then F(g(ρ(a1)), . . . , g(ρ(am))) vanishes too. By lemma 3.4.6, we have

ψ f ◦ g(ρ(a)) = ρ(a)⊗ 1

for all a ∈ L. Since ψ f is a K⊗̂L AJwK-homomorphism of D⊗C DIDn -module

algberas, we obtain

ψ f (F(g(ρ(a1)), . . . , g(ρ(am)))) = F(ψ f ◦ g(ρ(a1)), . . . , ψ f ◦ g(ρ(am)))

= F(ρ(a1)⊗ 1, . . . , ρ(am)⊗ 1)

= 0

Because ψ f is injective by lemma 3.4.3, it follows

F(g(ρ(a1)), . . . , g(ρ(am))) = 0

and thus g : L → L⊗̂L AJwK is a well-defined homomorphism of K-algebras.

It is clear that g is a homomorphism of D⊗C DIDn -module algebras. By corol-

lary 3.4.7, ψg is the inverse of ψ f , i.e. ψ f is an automorphism. The homomor-

phism ψ f is unique with the property that ψ f (a⊗ 1) = f (a) for all a ∈ L, since

elements of Inf-Gal(L/K)(A) are determined by their values on L⊗ 1.
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Remark 3.4.9. In [Ume96a, Theorem 5.10] the author shows that FL/K is a principal

homogeneous space for Inf-Gal(L/K). The operation defined there is an operation

from the right, while ours is from the left.

Corollary 3.4.10. For any commutative L-algebra A there is an isomorphism

Inf-Gal(L/K)(A) ∼←→ FL/K,u(A)

given by

ϕ 7→ ϕ ◦ i

ψ f ← [ f

This isomorphism is functorial in A, i.e. we obtain a natural isomorphism of Set-

functors on the category CAlgL

Inf-Gal(L/K) ∼= FL/K,u.

Proposition 3.4.11. There exists an ideal I E LJxK{LJyK} such that

FL/K,u(A) ∼= Z(I)(A)

for any commutative L-algebra A.

Proof. Proposition 3.3.5 provides for every commutative L-algebra A a map

from FL/K,u(A) to ΓnL(A). We have to show that there exists an ideal I such

that its image is of the form Z(I)(A). Since L = K{ρ(a) | a ∈ L}Ψu , we have

L ∼= K{Xa | a ∈ L}IDn /J

with

J =
{

F(Xa1 , . . . , Xam) ∈ K{Xa | a ∈ L}IDn | F(ρ(a1), . . . , ρ(am)) = 0
}

.
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Elements f ∈ FL/K,u(A) are determined by their values on ρ(a) with

a ∈ L. If Φ ∈ ΓnL(A), then there exists an f ∈ FL/K,u(A) such that

f (ρ(a)) = ∑k∈Nn ModC(D, θ(k))(ρ(a)) ⊗ (Φ − w)k for all a ∈ L if for all

F(Xa1 , . . . , Xam) ∈ J we have

FModC(D,wθu)(ModC(D, Φθu)(ρ(a1)), . . . , ModC(D, Φθu)(ρ(am))) = 0.

We define for F(Xa1 , . . . , Xam) ∈ J and d ∈ D an element Fd ∈LJwK{LJΦK} as

Fd := FModC(D,wθu)(ModC(D, Φθu)(ρ(a1)),. . ., ModC(D, Φθu)(ρ(am)))(d).

Then the image of FL/K,u in ΓnL is given as Z(I), where I is the ideal generated

by Fd for all F ∈ J and all d ∈ D. In the notation of definition 3.2.8, the

variables wi correspond to xi and ϕi corresponds to yi for all i ∈ {1, . . . , n}.

Corollary 3.4.12. The functor Inf-Gal(L/K) is a Lie-Ritt functor over L.

Proof. For any commutative L-algebra A we obtain from corollary 3.4.10 and

proposition 3.4.11 an ideal I E LJxK{JyK} and isomorphisms

Inf-Gal(L/K)(A) ∼→ FL/K,u(A) ∼→ Z(I)(A).

The composition is a group homomorphism by corollary 3.4.7.

Corollary 3.4.13. The infinitesimal Galois group Inf-Gal(L/K) is a formal group

scheme.

Proof. This follows from corollary 3.4.12 and proposition 3.2.11.

Example 3.4.14. If Ψ is the trivial D-module algebra structure on L, then L = K =
ρ0(L) and both FL/K and Inf-Gal(L/K) are trivial.
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Chapter 4

Picard-Vessiot theory

In this chapter we consider finitely generated Picard-Vessiot extensions L/K

of D-module fields in the sense of K. Amano and A. Masuoka ([AM05]). For

such an extension we give a description of the extension of algebras L/K
associated to L/K, as defined in chapter 3, and show that there is a close

connection between the Galois group scheme Gal(L/K) of the Picard-Vessiot

extension L/K, as defined by K. Amano and A. Masuoka, and the infinitesimal

Galois group Inf-Gal(L/K) of the extension L/K.

Notation: Let C be a commutative ring and D be a cocommutative C-bialgebra.

Although many results hold more generally, we assume additionally, as in [AM05],

that D is a pointed Hopf-algebra and that the irreducible component D1 is of Birkhoff-

Witt type. Given an extension of commutative D-module algebras R ⊆ S, we denote

by AutD(S/R) the group of automorphisms of the D-module algebra S that leave R

fixed.
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4. Picard-Vessiot theory

4.1 Picard-Vessiot extensions of Artinian simple module

algebras

We recall the definition of Picard-Vessiot extensions of commutative Artinian

simple module algebras and basic properties of finitely generated Picard-

Vessiot extensions from [AM05]. Alternative references for this material are

[Ama05] and [AMT09].

Definition 4.1.1. An extension of commutative Artinian simple D-module algebras

(L, ρL)/(K, ρK) is Picard-Vessiot if the following hold:

(1) The constants LρL of L coincide with the constants KρK of K.

(2) There exists an intermediate D-module algebra (R, ρR) of K ⊆ L such that the

total quotient ring Q(R) of R is equal to L and such that the KρK -subalgebra

H := (R⊗K R)ρR⊗ρR

of R⊗K R generates R⊗K R as left (or equivalently right) R-algebra, i.e.

R · H = R⊗K R (or H · R = R⊗K R).

Proposition 4.1.2 ([AM05, Proposition 3.4]). Let (L, ρL)/(K, ρK) be a Picard-

Vessiot extension of commutative Artinian simple D-module algebras with constants

k := LρL = KρK and (R, ρR) and H be as in definition 4.1.1. Then the following hold:

(1) The intermediate D-module algebra (R, ρR) satisfying condition (2) in defini-

tion 4.1.1 is unique.

(2) The homomorphism

µ : (R⊗k H, ρR ⊗ ρ0)→ (R⊗K R, ρR ⊗ ρR), a⊗ h 7→ (a⊗ 1) · h (4.1.1)

is an isomorphism of D-module algebras.

116



4.1. Picard-Vessiot extensions of Artinian simple module algebras

(3) The k-algebra H carries a Hopf-algebra structure induced by the R-coalgebra

structure on R⊗K R, given by the counit

ε : R⊗K R→ R, a⊗ b 7→ ab

and the comultiplication

∆ : R⊗K R→ (R⊗K R)⊗R (R⊗K R), a⊗ b 7→ (a⊗ 1)⊗ (1⊗ b).

The antipode S on H is induced by the twist map

τ : R⊗K R→ R⊗K R, a⊗ b 7→ b⊗ a.

Definition 4.1.3. If L/K is a Picard-Vessiot extension of commutative Artinian sim-

ple D-module algebras, then R and H in definition 4.1.1 are called the principal

D-module algebra and the Hopf algebra of a Picard-Vessiot extension L/K, re-

spectively. If we want to indicate R and H, we denote the Picard-Vessiot extension

L/K also by (L/K, R, H).

Definition 4.1.4. If (L/K, R, H) is a Picard-Vessiot extension of commutative

Artinian simple D-module algebras, then we define the Galois group scheme

Gal(L/K) of L/K to be the affine group scheme Spec H over the constants KΨ = LΨ.

Remark 4.1.5. Let (L/K, R, H) be a Picard-Vessiot extension of commutative Ar-

tinian simple D-module algebras with constants k := LΨ = KΨ. Then for any

commutative k-algebra A the A-points of Gal(L/K) = Spec H are isomorphic to the

group of automorphisms of the D-module algebra (R⊗k A, ρ⊗ ρ0) that leave K⊗k A

fixed (see [AM05, Remark 3.11]).

Theorem 4.1.6 ([AM05, Theorem 4.6]). If (L, ρL)/(K, ρK) is a Picard-Vessiot ex-

tension of commutative Artinian simple D-module algebras that is finitely generated

as Artinian simple D-module algebra, then there exists a matrix X ∈ GLn(L) such

that L = K〈X〉 := K〈{xi,j | i, j ∈ {1, . . . , n}}〉 and for every d ∈ D the coefficients
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of (dX)X−1 are in K. Furthermore, the principal D-module algebra R of L/K is of

the form

R = K[X, X−1]

and the Hopf algebra H of L/K is of the form

H = k[(X−1 ⊗ 1)(1⊗ X), (1⊗ X−1)(X⊗ 1)],

where k := LΨ = KΨ.1

4.2 The general Galois theory in the linear case

In this section we examine the extension L/K defined in chapter 3 in the

case where L/K is a finitely generated Picard-Vessiot extension of D-module

fields and compare the infinitesimal Galois group Inf-Gal(L/K) with the Ga-

lois group scheme Gal(L/K) of L/K as defined by K. Amano and A. Masuoka

in [AM05].

Lemma 4.2.1. Let (L/K, R, H) be a Picard-Vessiot extension of D-module fields such

that L/K is separable and finitely generated as a field extension. Let u = (u1, . . . , un)
be a separating transcendence basis of L/K. Then the subring of ModC(D, L) gener-

ated by ρ0(L) and ρ(L) is closed under the extension ModC(D, θu) of the n-variate

iterative derivation θu from L to ModC(D, L) (via lemma 2.2.22) and ρ0(L) and

ρ(L) are linearly disjoint over the field of constants k := LΨ = KΨ. We thus have an

isomorphism

L = ρ0(L)[ρ(L)] ∼= ρ0(L)⊗k ρ(L) (4.2.1)

of D-module algebras. Similarly, ρ0(L)[ρ(R)] is closed under the extension of θu and

ρ0(L) and ρ(R) are linearly disjoint over k, i.e.

ρ0(L)[ρ(R)] ∼= ρ0(L)⊗k ρ(R). (4.2.2)

1Usually such a matrix X ∈ GLn(L) is called fundamental solution matrix.
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4.2. The general Galois theory in the linear case

Proof. By theorem 4.1.6, there exists a matrix X ∈ GLn(L) such that L = K〈X〉,
R = K[X, X−1] and such that d(X)X−1 ∈ Mn(K) for all d ∈ D. Thus,

the element Z := ρ(X)ρ0(X)−1 lies in GLn(ModC(D, K)). Therefore, and

since K[ρ(X), ρ(X)−1] = K[Zρ0(X), ρ0(X)−1Z−1] = K[Z, Z−1], we see that

ρ0(L)[ρ(R)] = K[ρ(R)] = K[ρ(X), ρ(X)−1] is closed under the DIDn -module

algebra structure on ModC(D, L) induced by θu.

Since ρ(L) = Quot(ρ(R)), it is sufficient to show that the images

ModC(D,θu)(a) of non-zero elements a of ρ(R) are invertible in (ρ0(L)[ρ(L)])JwK.
Since formal power series are invertible if and only if their constant term is

invertible and since the constant term of ModC(D, θu)(a) is the non-zero (and

hence invertible) element a ∈ ρ(L), we see that ModC(D, θu)(a) is invertible in

(ρ0(L)[ρ(L)])JwK. Thus, ρ0(L)[ρ(L)] is closed with respect to the DIDn -module

algebra structure induced by θu.

We consider ρ(L) as subalgebra of L. It follows from corollary 2.2.31 that

ρ(L) and ρ0(L) are linearly disjoint over k and thus that L and ρ0(L)⊗k ρ(L)
are isomorphic as D-module algebras. The linear disjointness of ρ0(L)
and ρ(R) over k and thus the isomorphism (4.2.2) also follows from corol-

lary 2.2.31.

The following lemma is well-known in the Picard-Vessiot theories of dif-

ferential and difference equations.

Lemma 4.2.2. Let (L, ρ)/(K, ρK) be a finitely generated Picard-Vessiot extension of

commutative Artinian simple D-module algebras with field of constants k := LρL =
KρK . If X ∈ GLn(L) is such that L = K〈X〉 and (dX)X−1 ∈ Mn(K) for all d ∈ D

(see theorem 4.1.6), then for all commutative k-algebras A and all automorphisms

σ of the D-module algebra (L ⊗k A, ρL ⊗ ρ0) fixing K ⊗k A there exists a matrix

Cσ ∈ GLn((L⊗k A)ρL⊗ρ0) such that

σ(X⊗ 1) = (X⊗ 1)Cσ

and the map

AutD(L⊗k A/K⊗k A)→ GLn((L⊗k A)ρL⊗ρ0), σ 7→ Cσ (4.2.3)
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is a homomorphism of groups.

Proof. For every σ ∈ AutD(L⊗k A, K ⊗k A) we define Cσ := (X ⊗ 1)−1σ(X ⊗
1). Then Cσ is constant with respect to ρL ⊗ ρ0, since with Z := ρ(X)ρ0(X)−1

we have

(ρL ⊗ ρ0)(Cσ) = (ρL ⊗ ρ0)((X−1 ⊗ 1) · σ(X⊗ 1))

= (ρL(X)⊗ 1)−1 · (ρL ⊗ ρ0)(σ(X⊗ 1))

= (ρ0(X)−1Z−1 ⊗ 1) ·ModC(D, σ)(Zρ0(X)⊗ 1)

= ρ0(X−1 ⊗ 1) · ρ0(σ(X⊗ 1))

= ρ0(Cσ).

Because of

Cστ = (X⊗ 1)−1 · (στ)(X⊗ 1) = (X−1 ⊗ 1) · σ((X⊗ 1)Cτ) = CσCτ ,

the map (4.2.3) is a homomorphism of groups.

For a finitely generated Picard-Vessiot extension (L/K, R, H) of commuta-

tive Artinian simple D-module algebras and a commutative L-algebra A the

groups AutD(L⊗k A/K ⊗k A) and AutD(R⊗k A/K ⊗k A) are in general not

isomorphic. But the following is still true:

Lemma 4.2.3. Let (L, ρL)/(K, ρK) be a finitely generated Picard-Vessiot extension of

commutative Artinian simple D-module algebras with field of constants k := LρL =
KρK and let (R, ρR) be the principal D-module algebra of L/K. On the category

CAlgk two group functors G and H are defined by

G(A) := Ker
(

AutD(L⊗k A/K⊗k A)→ AutD(L⊗k A/N(A)/K⊗k A/N(A))
)

and

H(A) := Ker
(

AutD(R⊗k A/K⊗k A)→ AutD(R⊗k A/N(A)/K⊗k A/N(A))
)
,

respectively, for all commutative k-algebras A, where the homomorphisms between the

automorphism groups are induced by the natural projection πA : A→ A/N(A) and
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4.2. The general Galois theory in the linear case

where the D-module algebra structures on L⊗k A and R⊗k A are given by ρL ⊗ ρ0

and ρR ⊗ ρ0, respectively. Then the functors G and H are naturally isomorphic.

Proof. We first recall that by theorem 4.1.6 there exists a matrix X ∈ GLn(L)
such that (dX)X−1 ∈ Mn(K) for all d ∈ D and such that L = K〈X〉 and R =
K[X, X−1]. By lemma 4.2.2, there exists for every σ ∈ AutD(L⊗k A/K ⊗k A)
a matrix Cσ ∈ GLn((L ⊗k A)ρL⊗ρ0) = GLn(k ⊗k A) such that σ(X ⊗ 1) =
(X⊗ 1)Cσ. It follows

σ(R⊗k A) = σ(K[X, X−1]⊗k A)

= σ(K⊗k A)[σ(X⊗ 1), σ(X−1 ⊗ 1)]

= (K⊗k A)[(X⊗ 1)Cσ, C−1
σ (X−1 ⊗ 1)]

= R⊗k A.

Thus, σ restricts to an automorphism of the D-module algebra (R⊗k A, ρR ⊗
ρ0) and trivially the image of it in AutD(R⊗k A/N(A)/K ⊗k A/N(A)) is the

identity. Therefore, we obtain a homomorphism of groups G(A)→ H(A).

Let, conversely, σ ∈ H(A) and a ∈ R be a non-zero divisor. Then σ(a⊗ 1)
is congruent to a⊗ 1 modulo R⊗k N(A) and thus also with respect to N(L⊗k

A) ⊇ N(R⊗k A) ⊇ R⊗k N(A). Therefore, σ(a⊗ 1) is invertible in L⊗k A and

consequently σ extends to an automorphism σ̃ on L⊗k A. If a/a′ ∈ L = Q(R)
and b ∈ A, then σ̃(a/a′ ⊗ b) = σ(a ⊗ b)/σ(a′ ⊗ 1). Since σ(a ⊗ b) ≡ a ⊗ b

mod R⊗k N(A) we also have σ̃(a/a′ ⊗ b) ≡ a/a′ ⊗ b mod L⊗k N(A) and so

we obtain a homomorphism of groups from H(A) to G(A).

It is clear that these homomorphisms of groups are inverse to each other.

We have the following similar result for the infinitesimal Galois group.

Lemma 4.2.4. Let (L/K, R, H) be a Picard-Vessiot extension of D-module fields

with field of constants k such that the field extension L/K is separable and finitely

generated. Similarly as in definition 3.4.1 we define a group functor Inf-Gal(R/K)
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on the category CAlgL by defining Inf-Gal(R/K)(A) for every commutative L-

algebra A to be the group of automorphisms ϕ of the D ⊗C DIDn -module algebra

ρ0(L)[ρ(R)]⊗̂L AJwK that make the diagram

K⊗̂L AJwK � � //

id

��

ρ0(L)[ρ(R)]⊗̂L AJwK id //

ϕ

��

ρ0(L)[ρ(R)]⊗̂L AJwK

id ⊗̂πAJwK

��

K⊗̂L AJwK � � // ρ0(L)[ρ(R)]⊗̂L AJwK
id ⊗̂πAJwK

// ρ0(L)[ρ(R)]⊗̂L(A/N(A))JwK,

commutative. Then the functors Inf-Gal(L/K) and Inf-Gal(R/K) are naturally

isomorphic.

Proof. Let A be a commutative L-algebra. Using the isomorphism (4.2.2) in

lemma 4.2.1, we obtain an isomorphism of algebras

ρ0(L)[ρ(R)]⊗̂L AJwK ∼= (R⊗k A)JwK. (4.2.4)

Similarly, from the isomorphism (4.2.1) we obtain an isomorphism

L⊗̂L AJwK ∼= (L⊗k A)JwK. (4.2.5)

If ϕ is an element of Inf-Gal(R/K)(A), then

ϕ(ρ(a)⊗ 1) ≡ ρ(a)⊗ 1 mod ρ0(L)[ρ(R)]⊗̂LN(A)JwK

for all a ∈ R. Therefore, the element ϕ(ρ(a) ⊗ 1) corresponds under the

isomorphism (4.2.4) to an element in (R ⊗k A)JwK congruent to a ⊗ 1 mod-

ulo (R ⊗k N(A))JwK and thus is invertible in (L ⊗k A)JwK. Using the iso-

morphism (4.2.5), we see that ϕ can be extended to an automorphism on

L⊗̂L AJwK.

Conversely, given an element ϕ ∈ Inf-Gal(L/K)(A), one easily sees from

the formulas in lemma 3.4.6 and lemma 4.2.1 that ϕ restricts to an automor-

phism of the D⊗C DIDn -module algebra ρ0(L)[ρ(R)]⊗̂L AJwK.
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Lemma 4.2.5. Let (L/K, R, H) be a finitely generated Picard-Vessiot extension of

D-module fields with field of constants k and X ∈ GLn(L) be as in theorem 4.1.6.

Then there exists a finite field extension K′ of K, a matrix A ∈ GLn(K′) and a left

K-linear and right R⊗K K′-linear automorphism γ of the D-module algebra (R⊗k

R⊗K K′, ρ ⊗ ρ0 ⊗ ρ0), defined by

γ(X⊗ 1⊗ 1) := (X⊗ 1⊗ 1)(1⊗ X−1 ⊗ 1)(1⊗ 1⊗ A). (4.2.6)

Proof. Let θ : (R, ρR)→ (R⊗k H, ρR⊗ ρ0) be the homomorphism of D-module

algebras defined by θ(a) := µ−1(1⊗ a) for all a ∈ R, where µ : (R⊗k H, ρR ⊗
ρ0) → (R ⊗K R, ρR ⊗ ρR) is the isomorphism of D-module algebras (4.1.1)

defined in proposition 4.1.2. Then θ fulfills

θ(X) = (X⊗ (1⊗ 1))(1⊗ (X−1 ⊗ 1)(1⊗ X)). (4.2.7)

Let I be a maximal ideal of R and let π : R→ R/I be the canonical projection

from R to K′ := R/I. Since R is a finitely generated K-algebra, K′ = R/I is a

finite field extension of K by Hilbert’s Nullstellensatz (see for example [Wat79,

Appendix 8]). We extends the composition

R
θ // R⊗k H � � // R⊗k R⊗K R

idR⊗k idR⊗Kπ
// R⊗k R⊗K K′

right R⊗K K′-linearly to an endomorphism γ of R⊗k R⊗K K′ and we define

A ∈ GLn(K′) to be the image of X under the homomorphism π. Then from

equation (4.2.7) the defining identity (4.2.6) for γ follows and clearly γ is a

homomorphism of D-module algebras. The antipode S of the Hopf algebra H

fulfills S((X−1 ⊗ 1)(1⊗ X)) = (1⊗ X−1)(X⊗ 1). The inverse of γ is given by

the right R⊗K K′-linear extension of

R
θ // R⊗k H

id⊗kS
// R⊗k H � � // R⊗k R⊗K R

idR⊗k idR⊗Kπ
// R⊗k R⊗K K′,

to an endomorphism of R ⊗k R ⊗K K′, which sends X ⊗ 1 ⊗ 1 to (X ⊗ 1 ⊗
1)(1⊗ 1⊗ A−1)(1⊗ X⊗ 1).
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Theorem 4.2.6. Let (L, ρL)/(K, ρK) be a Picard-Vessiot extension of D-module fields

with principal D-module algebra (R, ρR) and field of constants k := LρL = KρK such

that the field L is finitely generated and over K and such that K is perfect. Then

there exists a finite separable field extension L′ of L such that for any commutative

L′-algebra A there is an isomorphism of groups

Ker
(

Gal(L/K)(A)→ Gal(L/K)(A/N(A))
) ∼= Inf-Gal(L/K)(A),

where the homomorphism Gal(L/K)(A)→ Gal(L/K)(A/N(A)) is induced by the

canonical projection πA : A→ A/N(A).

Proof. First, we recall the isomorphism

Gal(L/K)(A) ∼= AutD(R⊗k A/K⊗k A)

for every commutative k-algebra A (remark 4.1.5). By lemma 4.2.4, we know

that Inf-Gal(L/K) is isomorphic to the functor Inf-Gal(R/K) defined there.

We will thus show that there exists a finite separable field extension L′ of L

such that Inf-Gal(R/K)(A) is isomorphic to

Ker
(

AutD(R⊗k A/K⊗k A)→ AutD(R⊗k A/N(A)/K⊗k A/N(A))
)

(4.2.8)

for every commutative L′-algebra A. Let X ∈ GLn(L) be as in theorem 4.1.6,

so that R = K[X, X−1]. By lemma 4.2.5, there exists a finite field extension

K′ over K and a right R⊗K K′-linear and left K-linear automorphism γ of the

D-module algebra (R⊗k R⊗K K′, ρ ⊗ ρ0 ⊗ ρ0) defined by

γ(X⊗ 1⊗ 1) := (X⊗ 1⊗ 1)(1⊗ X−1 ⊗ 1)(1⊗ 1⊗ A)

for a certain matrix A ∈ GLn(K′). Since K is perfect, the field K′ is fi-

nite separable over K and thus there exists a finite separable field exten-

sion L′ of L containing K′. Then γ induces a left K-linear and right L′-

linear automorphism γ̄ of the D-module algebra (R ⊗k L′, ρR ⊗ ρ0) defined

by γ̄(X ⊗ 1) := (X ⊗ 1)(1⊗ X−1 A). We denote the unique extension of the
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n-variate iterative derivation θu from L to L′ again by θu. The ring R ⊗k L′

is generated by γ̄(R ⊗k 1) and 1⊗k L′, which are linearly disjoint over k by

corollary 2.2.31; we have an isomorphism of D-module algebras

R⊗k L′= γ̄(R⊗k 1)[1⊗k L′]∼= γ̄(R⊗k 1)⊗k (1⊗k L′),

where the D-module algebra structure on γ̄(R⊗k 1)⊗k (1⊗k L′) is ρR⊗k ρ0⊗k

ρR ⊗k ρ0. By lemma 4.2.1, we have isomorphisms of D-module algebras

R⊗k L
ρ⊗kρ0

// ρ(R)⊗k ρ0(L) m // ρ0(L)[ρ(R)], (4.2.9)

which extend L′-linearly to

R⊗k L′
ρ⊗kρ0

// ρ(R)⊗k ρ0(L′) m // ρ0(L′)[ρ(R)], (4.2.10)

where R ⊗k L′ carries the D-module algebra structure ρR ⊗k ρ0 and m

is the restriction of the multiplication homomorphism in ρ0(L′)[ρ(R)] ⊆
ModC(D, L′). The image of γ̄(R⊗k 1) under this isomorphism in ρ0(L′)[ρ(R)]
is ρ(K)[Z, Z−1] with Z := ρ(X)ρ0(X)−1ρ0(A) and the image of 1⊗k L′ under

this isomorphism is ρ0(L′). Thus, we obtain an isomorphism

R⊗kL′
(γ̄◦i1)⊗i2

// γ̄(R⊗k1)⊗k(1⊗kL′)
m◦(ρ⊗ρ0)⊗m◦(ρ⊗ρ0)

// ρ(K)[Z,Z−1]⊗kρ0(L′)
m // ρ0(L′)[ρ(R)],

(4.2.11)

where the homomorphism i1 : R → R⊗k L′ is defined by i1(a) = a⊗ 1 for all

a ∈ R and i2 : L′ → R⊗k L′ is defined by i2(a) = 1⊗ a for all a ∈ L′. Note

that the isomorphism (4.2.11) is different from (4.2.10). Since ρ(K)[Z, Z−1] is a

subring of ModC(D, K′), it is constant with respect to the DIDn -module algebra

structure θu on ModC(D, L′). At the other hand, ρ0(L′) is trivial with respect to

the D-module algebra structure Ψint on ModC(D, L′). Thus, the isomorphisms

in (4.2.11) are isomorphisms of D ⊗C DIDn -module algebras, where the D-

module algebra structure on R ⊗k L′ is given by ρR ⊗k ρ0, on γ̄(R ⊗k 1) ⊗k

(1⊗k L′) by ρR⊗k ρ0⊗k ρR⊗k ρ0, on ρ(K)[Z, Z−1]⊗k ρ0(L) by ρint⊗ ρ0 (which
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is equal to ρint ⊗ ρint there) and on ρ0(L′)[ρ(R)] by ρint, and the DIDn -module

algebra structure on R ⊗k L′ is given by θ0 ⊗k θu, on γ̄(R ⊗k 1) ⊗k (1⊗k L′)
by (θ0 ⊗k θ0) ⊗k (θ0 ⊗k θu), on ρ(K)[Z, Z−1] ⊗k ρ0(L′) by θ0 ⊗k θu (which is

equal to θu⊗k θu there) and on ρ0(L′)[ρ(R)] by θu, where θ0 denotes the trivial

n-variate iterative derivations on the corresponding rings.

For every commutative L′-algebra A, the isomorphism (4.2.11) gives rise

to an isomorphism of D⊗C DIDn -module algebras

ρ0(L)[ρ(R)]⊗̂LAJwK // ρ0(L′)[ρ(R)]⊗̂L′AJwK // (R⊗k L′)⊗̂L′AJwK // (R⊗k A)JwK.

(4.2.12)

Given a commutative L′-algebra A and a ϕ ∈ Inf-Gal(R/K)(A), we obtain

by composition with the vertical isomorphisms of D ⊗C DIDn -module alge-

bras, given by (4.2.12), in the diagram

ρ0(L)[ρ(R)]⊗̂L AJwK
ϕ

//

∼
��

ρ0(L)[ρ(R)]⊗̂L AJwK

(R⊗kA)JwK
σJwK

// (R⊗kA)JwK,

∼
OO

an automorphism of the D⊗C DIDn -module algebra (R⊗k A)JwK, where the

D-module algebra structure is given by ρ⊗k ρ0 on the coefficients with respect

to w (as in lemma 2.2.22) and the DIDn -module algebra structure is given

by the n-variate iterative derivation θw. This automorphism restricts to an

automorphism σ of the D-module algebra R⊗k A of DIDn -constants of (R⊗k

A)JwK, so that the automorphism of the D ⊗C DIDn -module algebra (R ⊗k

A)JwK is given as σJwK. Since under the vertical isomorphisms K⊗̂L AJwK is

isomorphic to (K ⊗k A)JwK and since ϕ is congruent to the identity modulo

ρ0(L)[ρ(R)]⊗̂LN(A)JwK, we see that σ lies in fact in the kernel (4.2.8).

If, conversely, σ is an element of the kernel (4.2.8), then σJwK is an

automorphism of the D ⊗C DIDn -module algebra (R ⊗k A)JwK and using

the vertical isomorphisms in the diagram above we obtain an element of

Inf-Gal(R/K)(A).
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It is clear that these constructions are inverse to each other, yielding an

isomorphism of groups between Inf-Gal(R/K)(A) and (4.2.8).

Corollary 4.2.7. Let L/K be a Picard-Vessiot extension of D-module fields such that

K is perfect and such that the field L is finitely generated over K. We denote the field

of constants by k and by G := Gal(L/K) the Galois group scheme of L/K. Then

there exists a finite separable field extension L′ of L such that Inf-Gal(L/K)×L L′

is isomorphic to the formal group scheme ĜL′ associated to the base extension GL′ =
G×k L′ of G.

Proof. This follows from theorem 4.2.6 and proposition B.3.2.

Corollary 4.2.8. Under the assumptions of corollary 4.2.7 there exists a finite sepa-

rable field extension L′ of L and an isomorphism

Inf-Gal(L/K)(L′[ε]/(ε2)) ∼= Lie(Gal(L/K))⊗k L′.

Proof. This follows immediately from theorem 4.2.6 by taking A = L′[ε]/(ε2),

noting that

Lie(Gal(L/K))⊗k L′ ∼= Ker
(

Gal(L/K)(L′[ε]/(ε2))→ Gal(L/K)(L′)
)
.

In the case where D = Dend, the statement of corollary 4.2.8 is similar

to the one of [Mor09, Theorem 3.3]. The statement of the latter is stronger,

namely the claim is that Inf-Gal(L/K)(L[ε]/(ε2)) is isomorphic to the Lie al-

gebra of Gal(L/K)⊗k L, but the proof given there is difficult to follow. Taking

D = Dder, it provides a similar result as [Ume96a, Theorem 5.15] in the case

of finitely generated Picard-Vessiot extensions of differential fields in charac-

teristic zero.
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Appendix A

Linear topological rings

Since we do not know an adequate reference that covers all we need, we

give a short introduction to linear topological rings, their completions and

(completed) tensor products of these rings here.

Notation: In this appendix we assume that all rings are commutative.

A.1 Linear topological rings and their completion

First, we recall the definition of topological rings (see [Bou71, Chapitre III,

§6.3]) and linear topological rings (see [Bou85, Chapitre III, §4.2] or [Gro60,

Chapitre 0, 7.1.1]).

Definition A.1.1. A topological ring is a set A carrying a ring structure and a

topology such that the maps

A× A→ A (x, y) 7→ x + y,

A→ A x 7→ −x

and

A× A→ A (x, y) 7→ xy
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are continuous. A topological ring A is said to be linearly topologized (and then A

is called a linear topological ring) if there exists a fundamental system of neighbor-

hoods of 0 consisting of ideals of A.

Let A be a linear topological ring and B a fundamental system of neighborhoods

of 0 consisting of ideals of A. Then the elements of B are open and closed in A (see

[Bou71, Chapter III, §2.1, Corollaire to Proposition 4]) and the system (A/I)I∈B

together with the canonical homomorphisms A/I → A/J for I ⊆ J forms an inverse

system of discrete topological rings (where B is ordered by inclusion). With this

notation, the inverse limit

Â := lim←−
I∈B

A/I

is the completion of A.

There exists a canonical homomorphism A → Â such that for every open ideal

I E A the composition A → Â → A/I is the canonical projection A → A/I. So

there exists an ideal Ī E Â such that Â/ Ī ∼= A/I. The ideals Ī form a filtered system

and we give Â the linear topology such that they form a base of neighborhoods of zero.

We say that A is complete (or a formal ring, cf. [Str99]) if the homomorphism

A→ Â is an isomorphism.

We denote by LRng the category of linear topological rings with morphisms the

continuous ring homomorphism and by FRng the full subcategory of LRng consisting

of formal rings.

Lemma A.1.2. For every morphism f : R→ S in LRng there exists a unique f̂ : R̂→
Ŝ such that the diagram

R̂
f̂

// Ŝ

R

OO

f
// S

OO
(A.1.1)

commutes.

Proof. Since f is continuous, for every open ideal J E S there exists an open

ideal I E R such that f (I) ⊆ J and thus we obtain a homomorphism R/I →
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S/J. By composition with the canonical projection R̂ → R/I we obtain a

family of compatible homomorphisms R̂ → S/J for every open ideal J in S.

By the universal property of the inverse limit Ŝ = lim←− S/J we obtain a unique

homomorphism f̂ : R̂ → Ŝ such that the compositions R̂ → Ŝ → S/J and

R̂→ R/I → S/J coincide for all open ideals J in S. For every open ideal J E S

the composition R
f→ S → Ŝ → S/J coincides with R → R̂

f̂→ Ŝ → S/J by

definition of f̂ . Thus, by the universal property of Ŝ = lim←− S/J both families

give rise to the same morphism from R to Ŝ. But these are exactly the two

morphisms R→ R̂
f̂→ Ŝ and R

f→ S→ Ŝ in diagram A.1.1.

Proposition A.1.3. The functor LRng → FRng sending R to R̂ and f to f̂ is left

adjoint to the inclusion of FRng in LRng.

Proof. See for example [Str99, Proposition 4.21 (d)].

A.2 The completed tensor product of linear topological rings

Next, we treat tensor products of linear topological rings and their comple-

tions. References for this material include [BH96] and [Gro60, Chapitre 0,

§7.7].

Proposition A.2.1. If S← R→ T is a diagram in LRng, the tensor product S⊗R T

has a structure of a linear topological ring with a fundamental system of neighbor-

hoods of 0 given by the ideals I ⊗R T + S ⊗R J for open ideals I E S and J E T.

Furthermore, S⊗R T is the coproduct of S and T over R in LRng.

Proof. This can be proven as in [Gro60, Chapitre 0, 7.7.6].

Proposition A.2.2. The tensor product of linear topological rings defined in propo-

sition A.2.1 is associative.

Proof. Let S1 ← R1 → S2 ← R2 → S3 be a diagram in LRng. It is well known

that (S1 ⊗R1 S2)⊗R2 S3 and S1 ⊗R1 (S2 ⊗R2 S3) are isomorphic as rings. They
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are also homeomorphic since if a1 E S1, a2 E S2 and a3 E S3 run through

bases of neighborhoods of 0 of the corresponding linear topological rings,

then the systems of ideals given by (a1 ⊗ S2 + S1 ⊗ a2)⊗ S3 + (S1 ⊗ S2)⊗ a3

and a1 ⊗ (S2 ⊗ S3) + S1 ⊗ (a2 ⊗ S3 + S2 ⊗ a3) are bases of neighborhoods of 0

in (S1 ⊗R1 S2)⊗R2 S3 and S1 ⊗R1 (S2 ⊗R2 S3) respectively.

Definition A.2.3. For a diagram S ← R → T in LRng we define S⊗̂RT as the

completion of the linear topological ring S⊗R T defined in proposition A.2.1 and call

it the completed tensor product.

Proposition A.2.4. For a diagram S ← R → T in FRng the completed tensor

product S⊗̂RT is the coproduct of S and T over R in FRng.

Proof. Let U ∈ FRng and let S → U and T → U be two morphisms in FRng

such that the compositions R → T → U and R → S → U coincide. By

proposition A.2.1 the tensor product S⊗R T is the coproduct of S← R→ T in

LRng and so there exists a unique homomorphism f : S⊗R T → U such that

the diagram

U

S⊗R T

f

OO

S

<<xxxxxxxxx

EE���������������
T

ccFFFFFFFFF

YY4444444444444444

R

ccFFFFFFFFFF

;;wwwwwwwww

commutes. By lemma A.1.2 there exists a unique extension f̂ : S⊗̂RT → U of
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f such that the diagram

U

S⊗̂RT

f̂

OO

S

<<zzzzzzzzz

EE���������������
T

bbEEEEEEEE

YY222222222222222

R

bbEEEEEEEEE

<<xxxxxxxxx

commutes. Using the uniqueness of the extension of continuous homomor-

phisms to completions again, we see that S→ S⊗̂RT ← T in fact becomes the

coproduct of S and T over R in FRng.

Lemma A.2.5. For a diagram S ← R → T in LRng we have Ŝ⊗̂RT ∼= S⊗̂RT ∼=
S⊗̂RT̂.

Proof. The claim follows from the isomorphisms Ŝ⊗̂RT = lim←− Ī,J
Ŝ/ Ī⊗R T/J ∼=

lim←−I,J
S/I ⊗R T/J = S⊗̂RT ∼= lim←−I, J̄

S/I ⊗R T̂/ J̄ = S⊗̂RT̂, where I (resp. Ī, J,

J̄) runs through a base of neighborhoods of 0 in S (resp. Ŝ, T, T̂).

Proposition A.2.6. The completed tensor product is associative, i.e. given a diagram

S1 ← R1 → S2 ← R2 → S3 in LRng we have

(S1⊗̂R1 S2)⊗̂R2 S3 ∼= S1⊗̂R1(S2⊗̂R2 S3)

Proof. Using lemma A.2.5 and proposition A.2.2 we have

(S1⊗̂R1S2)⊗̂R2S3 = (S1⊗R1 S2)⊗̂R2S3

= ̂(S1⊗R1 S2)⊗R2 S3

= ̂S1⊗R1 (S2⊗R2 S3)

= S1⊗̂R1(S2⊗R2 S3)

= S1⊗̂R1(S2⊗̂R2S3).
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Lemma A.2.7. Let S← R→ T be a diagram in CRng, then

S⊗̂RTJwK ∼= (S⊗R T)JwK ∼= SJwK⊗̂RT,

where we consider S and T as discrete topological rings and SJwK, TJwK and (S⊗R

T)JwK as topological rings with their (w)-adic topologies.

Proof. Since lim←−n∈N
(S⊗R T)JwK/(w)n ∼= (S⊗R T)JwK the claim follows from

the isomorphisms

S⊗̂RTJwK ∼= lim←−
n∈N

(S⊗R TJwK)/(S⊗R (w)n)

∼= lim←−
n∈N

(S⊗R T)JwK/(w)n

∼= lim←−
n∈N

(SJwK⊗R T)/((w)n ⊗R T)

∼= SJwK⊗̂RT.

Remark A.2.8. We make frequent use of the following fact: If S1 ← R → S2 and

T1 ← R → T2 are diagrams in LRng and fi : Si → Ti are morphisms in LRng over

R, then there exists a morphism f : S1⊗̂RS2 → T1⊗̂RT2 such that the following

diagram

S1⊗̂RS2
f̂

// T1⊗̂RT2

Si

OO

fi
// Ti

OO

commutes for i = 1, 2. This is clear since we have a homomorphism of R-algebras

S1 ⊗R S2 → T1 ⊗R T2, which we can extend by lemma A.1.2 to a morphism

S1⊗̂RS2 → T1⊗̂RT2 in LRng over R.
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Appendix B

Formal schemes, formal group

schemes and formal group laws

In this appendix we recall some basic definitions and facts concerning formal

schemes, formal group schemes and formal group laws. We follow mainly

[Str99].

B.1 Formal schemes and formal group schemes

Definition B.1.1. A formal scheme is a functor X : CRng → Set that is a small

filtered colimit of affine schemes. Morphisms between formal schemes are natural

transformations. We denote by FSch the category of formal schemes. Given a formal

scheme S, we define the category of formal schemes over S by taking as objects all

morphisms X → S of formal schemes and as morphisms between X → S and Y → S

all morphisms X → Y of formal schemes such that

X //

��
??????? Y

���������

S
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commutes. We denote the category of formal schemes over X by FSchX . We call

formal schemes over Spec R also formal schemes over R and denote the category of

formal schemes over R by FSchR.

Example B.1.2. Let R be a commutative ring and I be a set. For α ∈ NI we define

Rα := R[xi | i ∈ I]/(xα(i)+1
i | i ∈ I). Then the filtered colimit

ÂI
R := lim−→

α∈NI

Spec Rα

exists and is given by ÂI
R(A) = N(A)I for any commutative R-algebra A. Therefore,

ÂI
R is a formal scheme over Spec R. In the special case I = {1, . . . , n} for n ∈N we

denote Â
{1,...,n}
R also by Ân

R.

Definition B.1.3. A morphism of formal schemes f : X → Y is a closed inclusion

if it is a regular monomorphism in FSch (i.e. the equalizer of two arrows Y ⇒ Z). A

closed formal subscheme of a formal scheme Y is a subfunctor X of Y such that X

is a formal scheme and such that the inclusion X ↪→ Y is a closed inclusion.

Definition B.1.4. A formal group scheme over a formal scheme S is a group object

in FSchS.

Proposition B.1.5. Let R be a commutative ring and f : X × Ân → X × Âm

be a morphism of formal schemes over X = Spec R. Then there exist unique for-

mal power series f1, . . . , fm ∈ RJx1, . . . , xnK such that for all R-algebras A and all

(u, a1, . . . , an) ∈ X(A)× Ân(A) we have

f (u, a1, . . . , an) = (u, (u f1)(a1, . . . , an), . . . , (u fm)(a1, . . . , an)) (B.1.1)

such that fi(0, . . . , 0) are nilpotent for i = 1, . . . , n.

Conversely, given f1, . . . , fm ∈ RJx1, . . . , xnK with nilpotent constant terms the

formula (B.1.1) defines a morphism X× Ân → X× Âm of formal schemes over X.

Proof. See [Str06, Prop. 5.6]
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Remark B.1.6. Let R be a commutative ring. Then there is a natural equivalence

between the category CAlgRSet of functors from CAlgR to Set and the category

(CRngSet)Spec R of objects of CRngSet over Spec R.

Proof. See for example [DG70, I, §1, 6.2]

B.2 Formal groups laws and their associated formal group

schemes

Definition B.2.1. Let n ∈ N ∪ {∞}. An n-dimensional formal group law on a

commutative ring R is an n-tuple

F = ( f1, . . . , fn) ∈ RJu1, . . . , un, v1, . . . , vnKn

if n ∈N or an element of (RJui, vi | i ∈NK)N if n = ∞ such that

(1) F(u, 0) = u, F(0, v) = v and

(2) F(u, F(v, w)) = F(F(u, v), w),

where u, v and w denote the tuples (u1, . . . , un), (v1, . . . , vn) and (w1, . . . , wn) if

n ∈N and (ui)i∈N, (vi)i∈N and (wi)i∈N if n = ∞, respectively.

Example B.2.2. For every natural number n ∈ N an n-dimensional formal group

law is given over every commutative ring R by

fi(u, v) = ui + vi for all i = {1, . . . , n}.

This formal group law is called the additive formal group law of dimension n over

R.

Lemma B.2.3. If n ∈ N and F is an n-dimensional formal group law on a

commutative ring R, there exists Ψ ∈ RJu1, . . . , unKn such that Ψ(0) = 0 and

F(u, Ψ(u)) = 0 = F(Ψ(u), u).

Proof. See [Ser65, LG 4.15–4.16].
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Remark B.2.4. To an n-dimensional formal group law F on a commutative ring

R we associate a formal group scheme over Spec R as follows: We define a functor

F : CAlgR → Grp by F(A) := N(A)n for every commutative R-algebra A. The group

multiplication on N(A)n is defined by ab := F(a, b) for a, b ∈ N(A)n and the unit

is given by 0 ∈ N(A)n. Note that this defines in fact a morphism F× F→ F of formal

schemes over Spec R by proposition B.1.5 and F becomes a group object in FSchR. As

a formal scheme F is isomorphic to Ân
R.

Example B.2.5. Let R be a commutative ring. We define the additive formal group

scheme of dimension n, denoted by Ĝn
a,R, to be the formal group scheme over Spec R

induced by the additive formal group law in example B.2.2 via remark B.2.4. Then for

every commutative R-algebra A the group multiplication on Ĝn
a,R(A) = N(A)n is

given by componentwise addition and the unit is given by 0 ∈ N(A)n. If the ring R

is equal to Z or clear from the context, we will denote Ĝa,R also by Ĝa.

B.3 The formal group scheme attached to a group scheme

Definition B.3.1. Let R be a commutative ring and G be an affine group scheme over

R. We define a formal scheme Ĝ over R as

Ĝ := lim−→
n∈N

Spec C[G]/mn
e ,

where C[G] is the coordinate ring of G and me is the kernel of the counit ε : C[G]→ R.

Proposition B.3.2. Let R be a commutative ring and G be a Noetherian affine group

scheme over R. Then for the formal scheme Ĝ associated to G there is an isomorphism

Ĝ(A) ∼= Ker(G(A)→ G(A/N(A)))

for every commutative R-algebra A.
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Proof. For all commutative R-algebras A we have

Ĝ(A) = lim−→
n∈N

Spec(C[G]/mn
e )(A)

∼= lim−→
n∈N

CAlgR(C[G]/mn
e , A)

∼= lim−→
n∈N

{ f ∈ CAlgR(C[G], A) | f (mn
e ) = 0}

∼= { f ∈ CAlgR(C[G], A) | ∃n ∈N : f (mn
e ) = 0}

= { f ∈ CAlgR(C[G], A) | ∃n ∈N : f (me)n = 0}.

(B.3.1)

At the other side, for every commutative R-algebra A the kernel of G(A) →
G(A/N(A)) consists of all elements f of CAlgR(C[G], A) that make the dia-

gram

C[G]
f

//

ε

��

A

πA

��

R

��

A
πA // A/N(A),

commutative, where ε : C[G]→ R denotes the counit of C[G]. Thus, it remains

to show that for f ∈ CAlgR(C[G], A) this diagram commutes if and only if

f (me)n = 0 for some n ∈ N. Since C[G]/me ∼= R, we have an isomorphism

of R-modules C[G] ∼= R ⊕ me. The compositions of the homomorphisms in

the diagram coincide when restricted to R ⊆ C[G]. Since πA ◦ ε(me) = 0, the

diagram commutes if and only if πA ◦ f (me) = 0, i.e. if f (me) ⊆ N(A). Since

C[G] is Noetherian, the ideal me is finitely generated and thus f (me) ⊆ N(A)
if and only if f (me)n = 0 for some n ∈N.

Proposition B.3.3. If R is a commutative ring and G an affine group scheme over

R, then Ĝ is a formal group scheme over R and we call it the formal group scheme

associated to G.

141



B. Formal schemes, group schemes and group laws

Proof. We only have to show that Ĝ is a group object in FSchR. From proposi-

tion B.3.2 one easily sees that Ĝ(A) is a group for all commutative R-algebras

A. Since finite fiber products exist in FSchR and coincide with those in RngSet

by [Str99, Proposition 4.12], we see that (Ĝ ×R Ĝ)(A) = Ĝ(A) ×R Ĝ(A) for

all R-algebras A and from the group multiplication in Ĝ(A) we obtain a mor-

phism m : Ĝ×R Ĝ → Ĝ. From the unit in Ĝ(A) for all R-algebras A we obtain

a morphism e : Spec R → Ĝ. Then (Ĝ, m, e) is easily seen to be a group object

in FSchR.

Example B.3.4. For every commutative ring R and every n ∈ N, the formal group

scheme associated to the n-dimensional additive affine group scheme Gn
a over R is

isomorphic to the additive formal group scheme that is associated to the n-dimensional

additive formal group law over R (cf. examples B.2.2 and B.2.5).
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Resumen en castellano

Introducción

La teorı́a de Galois se remonta a principios del siglo XIX cuando E. Galois

determinó condiciones en términos de teorı́a de grupos para la resolubilidad

por radicales de ecuaciones polinomiales. Dado un cuerpo K y un polinomio

separable f ∈ K[X] existe un cuerpo L, extensión de K, llamado cuerpo de

descomposición de f , que está generado sobre K por las raı́ces de f . El grupo

G = Aut(L/K) de los automorfismos del cuerpo L que dejan fijo el cuerpo K

opera sobre el conjunto de las raı́ces de f . Se pueden interpretar los elementos

de G como permutaciones de las raı́ces de f que respetan las relaciones alge-

braicas sobre K entre las raı́ces de f . Existe una biyección entre los subgrupos

de G y los cuerpos intermedios de la extensión L/K.

El desarrollo de una teorı́a de Galois para ecuaciones diferenciales análoga

a la de ecuaciones polinomiales fue ya un objectivo de S. Lie. El primer paso en

esta dirección, debido a E. Picard y E. Vessiot, fue el desarrollo de una teorı́a de

Galois para ecuaciones diferenciales lineales. Desde los años cuarenta del siglo

XX se desarrolló esta teorı́a que figura ya en libros de texto como [vdPS03] o

[CH07], por mencionar sólo los dos últimos publicados. A mediados del siglo

pasado E. Kolchin definió extensiones fuertemente normales de cuerpos dife-

renciales y desarrolló una teorı́a de Galois para estas extensiones, que incluyen

ciertas extensiones de cuerpos diferenciales que provienen de ecuaciones di-

ferenciales no lineales ([Kol76]). Inspirado en el trabajo de E. Vessiot ([Ves46]),
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H. Umemura desarrolló una teorı́a de Galois para tratar ecuaciones diferen-

ciales algebraicas no lineales ([Ume96a]). Unos años más tarde, B. Malgrange,

con un fin parecido, publicó su propia teorı́a de Galois diferencial usando el

lenguaje de la geometrı́a diferencial ([Mal01], [Mal02]). G. Casale siguió desa-

rrollando y aplicando esta teorı́a ([Cas04], [Cas07], [Cas08]). Recientemente,

H. Umemura comparó su teorı́a con la de B. Malgrange y mostró que están

estrechamente relacionadas ([Ume08]).

Existen también teorı́as análogas para ecuaciones en diferencias. Su elabo-

ración fue iniciada por C. H. Franke, quien desarrolló una teorı́a de Galois

para ecuaciones lineales en diferencias ([Fra63]), llamada también teorı́a de

Picard-Vessiot.1 Más tarde, R. Infante definió extensiones fuertemente nor-

males de cuerpos en diferencias y desarrolló una teorı́a de Galois para estas

extensiones ([Inf80b], [Inf80a]). Últimamente, S. Morikawa y H. Umemura ela-

boraron una teorı́a análoga a la de éste último para ecuaciones algebraicas no

lineales en diferencias ([Mor09], [MU09]). Siguiendo el enfoque de B. Malgran-

ge, G. Casale y A. Granier desarrollaron teorı́as de Galois para ecuaciones no

lineales en (q-)diferencias ([Cas06], [Gra09]).

Las teorı́as mencionadas hasta ahora se restringı́an a cuerpos de carac-

terı́stica cero. En caracterı́stica positiva las derivaciones clásicas no se com-

portan bien. H. Hasse y F. K. Schmidt introdujeron derivaciones iterativas

([HS37]) como alternativa a las derivaciones clásicas. Posteriormente, K. Oku-

gawa, B. H. Matzat y M. van der Put desarrollaron teorı́as de Galois para

ecuaciones diferenciales en caracterı́stica positiva usando derivaciones itera-

tivas ([Oku87], [Mat01], [MvdP03]). Recientemente, A. Maurischat y el au-

tor ampliaron la teorı́a de B. H. Matzat y M. van der Put ([Rös07], [Hei07],

[Mau10a], [Mau10b]). Estas teorı́as se restringen a ecuaciones diferenciales

iterativas lineales.

M. Takeuchi desarrolló una teorı́a de Picard-Vessiot que unifica las teorı́as

de Picard-Vessiot para ecuaciones diferenciales en caracterı́stica cero y pa-

1Se suele llamar a las teorı́as de Galois en situaciones ”lineales” teorı́as de Picard-Vessiot.
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ra ecuaciones diferenciales iterativas en caracterı́stica arbitraria usando cuer-

pos C-ferenciales, donde C es una cierta coálgebra ([Tak89]). Recientemen-

te, K. Amano y A. Masuoka ampliaron la teorı́a de M. Takeuchi usando

D-módulo álgebras, donde D es cierta álgebra de Hopf ([Ama05], [AM05],

[AMT09]). Su teorı́a unifica las teorı́as de Picard-Vessiot para ecuaciones di-

ferenciales en caracterı́stica cero y para ecuaciones diferenciales iterativas en

caracterı́stica arbitraria, ası́ como también para ecuaciones en diferencias en el

caso en que el operador en diferencias es un automorfismo.

En resumen, el desarrollo de la teorı́a de Galois diferencial y en diferencias

tomó dos direcciones. Por un lado se crearon teorı́as para tratar extensiones

de cuerpos más generales debido a H. Umemura y S. Morikawa. Por otro lado

M. Takeuchi, K. Amano y A. Masuoka unificaron las teorı́as de Picard-Vessiot

de extensiones de cuerpos (y ciertos anillos) diferenciales, dotados de una

derivación iterativa y dotados de un automorfismo.

Esta tesis tiene dos objetivos principales. El primero es el desarrollo de

una teorı́a de Galois más general que combine la capacidad de las teorı́as

de H. Umemura y S. Morikawa, que permite tratar extensiones de cuerpos de

gran generalidad, con la ventaja de la formulación de K. Amano y A. Masuoka

que unifica estructuras como las derivaciones y los automorfismos. El segundo

objetivo es el de eliminar la restricción a cuerpos de caracterı́stica cero de las

teorı́as de H. Umemura y S. Morikawa.

Resumen de los contenidos

Capı́tulo 1

En el primer capı́tulo introducimos derivaciones superiores y derivaciones

iterativas. H. Hasse y F. K. Schmidt definieron derivaciones superiores y de-

rivaciones iterativas sobre un anillo R como una sucesión de aplicaciones

∂(k) : R → R para cada k ∈ N que cumplen ciertas propiedades. Estas aplica-

ciones dan lugar a un homomorfismo de anillos θ : R→ RJtK que envı́a a ∈ R
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a la serie formal ∑k∈N ∂(k)(a)tk. De hecho, dar una derivación superior en R

es equivalente a dar un homomorfismo de anillos

θ : R→ RJtK, (1)

y dar una derivación iterativa es equivalente a dar un homomorfismo de ani-

llos θ : R → RJtK que cumple condiciones adicionales. Si R contiene Q, las

derivaciones iterativas (∂(k))k∈N están determinadas por ∂(1) y el homomor-

fismo correspondiente es

θ : R→ RJtK, a 7→ ∑
k∈N

∂(1)k
(a)

k!
tk (2)

Definimos derivaciones superiores n-variadas como homomorfismos de anillos

R→ RJt1, . . . tnK y derivaciones iterativas n-variadas como derivaciones superio-

res n-variadas que cumplen condiciones adicionales que generalizan las con-

diciones del caso univariado. Mostramos propiedades fundamentales de estas

derivaciones superiores e iterativas n-variadas. Por ejemplo demostramos que

se extienden a extensiones étales. De esto se deduce que las derivaciones ite-

rativas con respecto a las variables de los anillos de polinomios se extienden

al cuerpo de funciones racionales y por tanto obtenemos una derivación ite-

rativa θu para cada base de trascendencia separable u = (u1, . . . , un) de una

extensión separable y finitamente generada de cuerpos.

Capı́tulo 2

En el segundo capı́tulo introducimos el concepto de módulo álgebras. Sea

C un álgebra conmutativa, D una biálgebra y R una C-álgebra conmutativa.

Recordemos que se tiene la biyección

ModC(D⊗C R, R)→ ModC(R, ModC(D, R)), Ψ 7→ (a 7→ (d 7→ Ψ(d⊗ a))).

(3)

Si Ψ ∈ ModC(D ⊗C R, R) y ρ es el elemento en ModC(R, ModC(D, R)) que

corresponde a Ψ por esta biyección, ρ es un homomorfismo de C-álgebras (con
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respecto a la estructura de álgebra en ModC(D, R) inducida por la estructura

de coálgebra de D) si y solo si Ψ cumple para cada d ∈ D y a, b ∈ R las dos

condiciones siguientes

(1) Ψ(d⊗ ab) = ∑(d) Ψ(d(1) ⊗ a)Ψ(d(2) ⊗ b)

(2) Ψ(d⊗ 1) = ε(d)1.

Si además Ψ induce una estructura de D-módulo en R, decimos que Ψ es

una estructura de D-módulo álgebra en R. La C-álgebra ModC(D, R) posee una

estructura de D-módulo álgebra

Ψint : D⊗C ModC(D, R)→ ModC(D, R)

definida por

Ψint(d⊗ f ) : D → R, c 7→ f (cd) para cada c ∈ D

para cada d⊗ f ∈ D⊗ModC(D, R).

Ejemplo: Si Dder es la C-biálgebra subyacente al álgebra de Hopf C[Ga] =: C[x],
entonces dotar a R de una estructura de Dder-módulo álgebra es equivalente a dotarla

de una C-derivación. Dada una C-derivación ∂ en R, se obtiene una estructura de

Dder-módulo álgebra Ψ en R, definida por Ψ(x ⊗ a) := ∂(a) para a ∈ R. Si R

contiene Q, entonces ModC(Dder, R) es isomorfo a RJtK y la composición

R
ρ

// ModC(Dder, R) // RJtK

es la derivación iterativa (2) inducida por la derivación ∂.

También se pueden describir derivaciones superiores, derivaciones iterati-

vas, endomorfismos de álgebras, automorfismos de álgebras, σ-derivaciones

y otras estructuras en términos de módulo álgebras.

Mostramos propiedades de módulo álgebras que usamos en el capı́tulo 3 y

damos una lista de biálgebras que dan lugar a módulo álgebras interesantes.
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Resumen en castellano

Capı́tulo 3

El tercer capı́tulo es la parte principal de la tesis. Dada cierta extensión de

módulo cuerpos (es decir, módulo álgebras, que son cuerpos) definimos una

normalización de esta extensión y un grupo de Galois infinitesimal.

Sea C un álgebra conmutativa, D una C-biálgebra coconmutativa y L/K

una extensión de D-módulo cuerpos tal que L/K sea finitamente genera-

da y separable. Entonces L posee una base de transcendencia separante

u = (u1, . . . , un). Sea θu la derivación iterativa n-variada con respecto a esta

base de transcendencia separante. Entonces θu induce una derivación iterati-

va n-variada en ModC(D, L). Definimos K como la subálgebra de ModC(D, L)
generada por ρ0(L) y ρ(K) (donde ρ0 : L → ModC(D, L) está definido por

(ρ0(a))(d) = ε(d)a para cada d ∈ D y a ∈ L). Entonces K es una D-módulo

subálgebra de ModC(D, Ψint) estable por la derivación iterativa n-variada θu.

Definimos también L como subálgebra diferencial iterativa de ModC(D, L)
generada por ρ0(L) y ρ(L). La extensión L/K es la normalización menciona-

da anteriormente. Definimos el grupo de Galois infinitesimal como el funtor

Inf-Gal(L/K) : CAlgL → Grp que tiene como A-puntos el grupo de automor-

fismos ϕ de la D⊗C DIDn -módulo álgebra2 L⊗̂L AJwK que hacen conmutativo

el diagrama

K⊗̂L AJwK � � //

id

��

L⊗̂L AJwK id //

ϕ

��

L⊗̂L AJwK

idL ⊗̂πAJwK

��

K⊗̂L AJwK � � // L⊗̂L AJwK
idL ⊗̂πAJwK

// L⊗̂L(A/N(A))JwK.

Demostramos que el funtor Inf-Gal(L/K) es un funtor de Lie-Ritt y por tanto

un esquema formal en grupos.

Nuestros resultados recuperan los de H. Umemura y S. Morikawa al res-

tringirse a las situaciones correspondientes.

2DIDn es una C-biálgebra tal que las DIDn -módulo álgebras son equivalentes a derivaciones
iterativas n-variadas sobre C.
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Capı́tulo 4

En el cuarto capı́tulo describimos explı́citamente el álgebra L y comparamos

el esquema en grupos de una extensión de Picard-Vessiot de módulo cuerpos

con el grupo de Galois infinitesimal definido anteriormente.

Sea L/K una extensión de D-módulo cuerpos separable, finitamente ge-

nerada y de Picard-Vessiot en el sentido de Amano-Masuoka ([AM05]) con

álgebra principal R y cuerpo de constantes k. Mostramos lo siguiente:

(1) El álgebra ρ0(L)[ρ(L)] es cerrada por θu, es decir L = ρ0(L)[ρ(L)], y las

subálgebras ρ0(L) y ρ(L) son linealmente disjuntas sobre k; se tiene por

tanto un isomorfismo de D-módulo álgebras

L = ρ0(L)[ρ(L)] ∼= ρ0(L)⊗k ρ(L). (4)

(2) Análogamente ρ0(L)[ρ(R)] es cerrado por θu y las álgebras ρ0(L) y

ρ(R) son linealmente disjuntas sobre k; tenemos un isomorfismo de D-

módulo álgebras

ρ0(L)[ρ(R)] ∼= ρ0(L)⊗k ρ(R). (5)

(3) Sea G := Gal(L/K) el esquema en grupos de Galois de la extensión

de Picard-Vessiot L/K. Si K es perfecto, entonces existe un cuerpo L′,

extensión finita separable de L, tal que Inf-Gal(L/K)⊗L L′ es isomorfo

al esquema en grupos formal ĜL′ asociado a la extensión de base GL′ =
G×k L′ de G.

Apéndices

En el apéndice A recopilamos definiciones sobre anillos topológicos lineales y

productos tensoriales completados y en el apéndice B fijamos las definiciones

concernientes a esquemas formales, esquemas formales en grupos, y leyes

formales de grupos.
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In Algebraic, analytic and geometric aspects of complex differential equa-

tions and their deformations. Painlevé hierarchies, RIMS Kôkyûroku
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langage des schémas. Inst. Hautes Études Sci. Publ. Math., (4):228,

1960.
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différentielles générales. C. R. Math. Acad. Sci. Paris, 346(21-

22):1155–1158, 2008.

[vdE00] Arno van den Essen. Polynomial automorphisms and the Jacobian con-

jecture, volume 190 of Progress in Mathematics. Birkhäuser Verlag,
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