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Introduction

Galois theory has its roots in the beginning of the 19th century when E. Galois
determined group theoretic conditions under which polynomial equations are
solvable by radicals. Given a field F and a separable polynomial f € F[X],
there exists an extension field E over F, the so called splitting field of f, which
is generated over F by the roots of f. The group G = Aut(E/F), consisting
of all field automorphisms of E fixing F, acts on the set of zeros of f in E. It
consists of those permutations of the set of roots of f that respect algebraic
relations over F among the roots of f. There exists an inclusion-reversing
bijection between the set of subgroups of G and the set of intermediate fields
between E and F.

It was the goal of S. Lie to develop a Galois theory for differential equa-
tions in place of algebraic equations. The first step was done by E. Picard
and E. Vessiot, who developed a Galois theory for linear differential equa-
tions, nowadays called Picard-Vessiot theory. Then E. Kolchin extended this
theory by developing the differential Galois theory of strongly normal ex-
tensions, which include certain extensions of differential fields arising from
non-linear differential equations ([Kol76]). Inspired by the work of E. Ves-
siot ([Ves46]), H. Umemura developed a Galois theory to deal with non-linear
algebraic differential equations ([Ume96a]). B. Malgrange developed a the-
ory with a similar aim using the language of differential geometry ([Mal01],
[Mal02]). This theory was further studied and applied by G. Casale ([Cas04],
[Cas07], [Cas08]). Recently, H. Umemura compared his theory with the one
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INTRODUCTION

of B. Malgrange and showed that they are closely connected ([Ume08]).

There exist analog theories for difference equations. First, C. H. Franke
developed a Picard-Vessiot theory for difference equations ([Fra63]). Later,
R. Infante defined strongly normal extensions of difference fields and devel-
oped a Galois theory for them ([Inf80b], [Inf80a]). Recently, S. Morikawa and
H. Umemura developed an analogue of the differential Galois theory of the
latter for extensions of difference fields ([Mor09], [MUQ9]). Following B. Mal-
grange’s approach, G. Casale and A. Granier set up Galois theories for non-
linear (g-)difference equations ([Cas06], [Gra09]).

The theories mentioned so far were restricted to fields of characteristic
zero. In positive characteristic, derivations turn out not to be adequate and
H. Hasse and F. K. Schmidt introduced iterative derivations as a replacement
for them when working with fields of arbitrary characteristic ([HS37]). Later,
K. Okugawa, B. H. Matzat and M. van der Put developed differential Galois
theories in positive characteristic using iterative derivations ([Oku87], [Mat01],
[MvdP03]). The theory of B. H. Matzat and M. van der Put was further devel-
oped by A. Maurischat and the author ([R6s07], [Hei07], [Maul0a], [MaulOb]).
But at least the theories of B. H. Matzat, M. van der Put and the followers are
restricted to linear iterative differential equations.

M. Takeuchi gave a Hopf-algebraic approach to Picard-Vessiot theory that
unifies the differential Picard-Vessiot theory in characteristic zero and the it-
erative differential Picard-Vessiot theory in arbitrary characteristic ([Tak89])
using so called C-ferential fields, where C is a certain coalgebra. Recently,
K. Amano and A. Masuoka extended the approach of M. Takeuchi using the
language of D-module algebras, where D is a certain Hopf-algebra ([Ama05],
[AMO5], [AMTO09]). Their theory unifies the Picard-Vessiot theory of differ-
ential equations in characteristic zero, the Picard-Vessiot theory of iterative
differential equations in arbitrary characteristic and the Picard-Vessiot theory
of difference equations when the difference operator is an automorphism.

To summarize, development in differential and difference Galois theory



went into two directions. On the one hand, H. Umemura and S. Morikawa
developed Galois theories that allow the investigation of non-linear differen-
tial and difference equations. On the other hand, M. Takeuchi, K. Amano and
A. Masuoka developed a unified Galois theory for Picard-Vessiot extensions,
i.e. for linear equations (although their approach is more general and does
not emphasize the equations).

This thesis has two main purposes. The first is to develop a general Ga-
lois theory by combining the capacity of the theories of H. Umemura and
S. Morikawa to allow the treatment of very general field extensions with the
advantage of the formulation of the theory of M. Takeuchi, K. Amano and
A. Masuoka to unify different structures like derivations, iterative derivations
and automorphisms. The second purpose is to remove the restriction to char-
acteristic zero from the theories of H. Umemura and S. Morikawa.

We realize our aim by using the language of D-module fields, where D is a
cocommutative bialgebra, and iterative derivations and obtain a Galois theory
for separable and finitely generated extensions of D-module fields without
restrictions on the characteristic. For certain choices of the bialgebra D one
recovers the theories of H. Umemura and S. Morikawa, but without the re-
striction to fields of characteristic zero.

The main tool in the theory of H. Umemura is the homomorphism of

differential rings
o (a
(R,9) — (R[t],0¢), ar— Z #tk
keIN ’

associated to a differential ring (R,d) containing Q, which he calls universal
Taylor homomorphism. Similarly, in the theory of S. Morikawa the homomor-

phism of difference rings
(R,0) = (RN,%), aw (k— o*(a))

associated to a difference ring (R,c), where X is the shift operator on RN

plays a central role. This homomorphism is called universal Euler homo-
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INTRODUCTION

morphism there. Given a commutative ring C, a C-bialgebra D and a C-
algebra R, a D-module algebra structure on R is a homomorphism of C-modules
Y: D ®c R — R with certain properties. Given a D-module algebra structure

Y on R, we obtain a homomorphism of C-algebras
R — Mod¢(D,R), a+— (d— ¥(d®a))

having analogous properties as the universal Taylor and universal Euler ho-
momorphisms mentioned before. Given a separable and finitely generated
extension of D-module fields L/K, we define the normalization of this ex-
tension, namely an extension £/K of D-module algebras similar to the nor-
malizations defined by H. Umemura and S. Morikawa. Using this normal-
ization, we introduce an infinitesimal Galois group functor attached to the
extension L/K. This functor is a Lie-Ritt functor, i.e. isomorphic to a group
functor of infinitesimal transformations fulfilling certain partial differential
equations. As Lie-Ritt functors are in general formal group schemes, we see
that the infinitesimal Galois group we defined turns out to be a formal group
scheme defined over the field L. In order to define the normalization L//C,
H. Umemura and S. Morikawa use a basis of the L-vector space Derg (L) con-
sisting of commuting derivations and a Taylor development with respect to
this set of derivations. They need to assume that the characteristic is zero. In
order to avoid this restriction, we use a multivariate iterative derivation with
respect to a separating transcendence basis of L/K instead. In the case of a
separable and finitely generated Picard-Vessiot extension of D-module fields
L/K in the sense of K. Amano and A. Masuoka ([AMO05]), we show that if K
is perfect, then after an extension of scalars our infinitesimal Galois group be-
comes isomorphic to the formal group scheme associated to the Galois group
scheme of K. Amano and A. Masuoka.

This thesis is organized as follows: In the first chapter we introduce higher
and iterative derivations. Although they can be understood in the framework
of module algebras, which we introduce in the second chapter, we devote an

own chapter to them due to their importance for this thesis. For the later
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use we do not restrict us to the ordinary case, but define multivariate higher
and iterative derivations as introduced in ([Hei07]), which are equivalent to
a finite set of commuting higher and iterative derivations, respectively. We
prove basic properties of higher and iterative differential rings. Some of these
properties also hold for module algebras, but others do not hold in the general
framework of module algebras anymore.

In the second chapter we first state our convention concerning algebras,
coalgebras, and bialgebras and then cover module algebras. Module algebras
are used in this thesis as a framework to describe a large family of struc-
tures such as derivations, iterative derivations, endomorphisms and automor-
phisms in a unified way. In section 2.2, we first recall their definition and
prove some of their basic properties. At the end of this section, we focus on
simple module algebras, which behave particularly well. We close this chap-
ter with examples illustrating the concept of module algebras by defining a
number of bialgebras D and explaining D-module algebras in these cases.
Most of the bialgebras we explain there are cocommutative, but we also give
two examples of non-cocommutative bialgebras. In chapter 3 we make the as-
sumption that the bialgebra is cocommutative. This excludes these bialgebras
to be used in our theory, but they are important to describe theories like those
of Y. André and C. Hardouin ([And01], [Har10]). Finally, we show how one
can associate a bialgebra D to a given iterative Hasse system D in the sense of
R. Moosa and T. Scanlon ([MS10], [MS09]). Then an iterative D-ring poses a
canonically associated D-module algebra structure and conversely every com-
mutative D-module algebra becomes an iterative D-ring.

Chapter 3 is the heart of this thesis. We generalize and unify the theories
of H. Umemura and M. Morikawa. First, we define the normalization £/ of
a separable and finitely generated extension of extension of D-module fields
L/K. Then we introduce the functor of deformations F} /x and the infinitesi-
mal Galois group Inf-Gal(L/K) unifying the definitions of H. Umemura and
M. Morikawa. We also define Lie-Ritt functors, which have been introduced



INTRODUCTION

by H. Umemura in [Ume96a]. Our treatment of Lie-Ritt functors differs in two
points from the one of H. Umemura. First, we use iterative differential rings
instead of differential rings to define Lie-Ritt functors in order not to pose
unnecessary restrictions on the characteristic. Secondly, certain series appear
in the definition of Lie-Ritt functors in [Ume96a] that do not converge. We
change the definition in order to avoid this problem.

In the last chapter we compare our general theory with the Picard-Vessiot
theory of K. Amano and A. Masuoka. We show that in the case of a separable
and finitely generated Picard-Vessiot extension of D-module fields the nor-
malization £/K has a particularly easy form and show how the infinitesimal
Galois group Inf-Gal(L/K) is related to the Galois group scheme Gal(L/K)
defined by K. Amano and A. Masuoka if the field K is perfect.

Since we do not know an adequate reference that covers all we need, we
added appendix A on linear topological rings and completed tensor products.

The literature on formal group schemes seems not to be consistent. So
we added appendix B about formal schemes, formal group schemes and for-
mal group laws, stating the definitions that we use and showing the relations
between the concepts mentioned.

At the end a summary in Spanish is included.

Finally, we mention that we consider the development of the theory that
we present here not to be completed. There are several directions for general-
izations. To begin with, in their Picard-Vessiot theory, K. Amano and A. Ma-
suoka assume that the bialgebra D is a pointed cocommutative Hopf algebra
and that the irreducible component D! is of Birkhoff-Witt type. Therefore,
theories like those of Y. André ([And01]) and C. Hardouin ([Har10]) are not in
the scope of their theory, since the corresponding bialgebras are not cocom-
mutative. It is an interesting question whether a Picard-Vessiot theory using
non-cocommutative bialgebras can be developed in order to integrate the the-
ories of Y. André and C. Hardouin. In our theory we do not assume that the
bialgebra D is a Hopf algebra, so in contrast to the theory of K. Amano and



A. Masuoka, for example non-inversive difference fields are within our scope.
But in this thesis we restrict ourselves to cocommutative bialgebras. The main
reason for this is that in this case the dual of the bialgebra becomes a commu-
tative algebra. The algebra £ that we define is a subalgebra of Mod¢ (D, L). If
we do not assume that the bialgebra is cocommutative, the latter is in general
not commutative anymore. However, if the extension L/K is a Picard-Vessiot
extension (though, strictly speaking, there is no definition of Picard-Vessiot
extensions in this situation yet), then it is easy to see that L is still commuta-
tive and we can proceed. In the general case this is not at all clear and £ may
become non-commutative. H. Umemura shows in [Ume08] that in the case
of finitely generated field extensions of C, one can construct the Malgrange
groupoid using the spectrum of an algebra that is defined similarly as £. If
this algebra is not longer commutative, this is not possible and one can expect
objects of a new type. Finally, we would like to mention that the restriction to
field extensions in our theory is unpleasant, since for example Picard-Vessiot
extensions of difference equations are not, in general, fields. We expect that

our theory can be generalized in this direction too.



INTRODUCTION

Notation: We denote by IN, Z, Q and C the natural numbers (including zero),
integers, rational numbers and complex numbers, respectively. We use standard mul-
tiindex notation, namely if n € N and k = (k;i)i=1, 1 = (li)iz1,.n € Z" we
write
n
k| = Zki and k+1:= (ki+1;)iz1, n
i=1

For k,1 € IN" we define

k! = ﬁ(ki)!, (’;) = ﬁ (?) and  3; = (0i)j=1,..n/

i=1 i=1
where for any set A and any i,j € A the symbol 6; ; is the Kronecker-6, i.e. 6;j = 1 if
i=jand 6;; =0ifi #].

All rings and algebras are assumed to be associative and unital. We denote by
N(A) the nilradical of a commutative ring A, i.e. the ideal consisting of all elements
a € A such that there exists a natural number n > 0 with a" = 0, and by 774 the
canonical projection A — A/N(A). The units of a ring A are denoted by A*. If
Alw] = Afwy, ..., wy] and Blw] = Blw, ..., w,] are the formal power series
rings over commutative rings A and B, respectively, and if ¢: A — B is a ring

homomorphism, then we denote by p[w]: AJw] — Blw] the homomorphism defined

by ¢[w](Tkenn axw") == Tgenn ¢ (ar)w*.

If Cis a category and A and B are objects in C, then we denote the set of morphisms
from A to B in C by C(A,B). We use the following abbreviations for some basic

categories:

Set Sets
Grp Groups
Rng Rings

CRng  Commutative rings

Modgr  R-modules, where R is a commutative ring

Algr  R-algebras, where R is a commutative ring

CAlgr  Commutative R-algebras, where R is a commutative ring



Chapter 1

Higher and iterative derivations

In this chapter we recall the definition of higher and iterative derivations.
In the univariate case they were introduced by H. Hasse and F. K. Schmidt
([HS37]). In [Hei07] the author defined higher and iterative derivations in
the multivariate case, which serve as an alternative for systems of commuting
derivations in positive characteristic (see also [R6s07] for another generaliza-
tion of higher and iterative derivations). H. Matsumura proved that univariate
higher and iterative derivations extend to 0-étale extensions. We generalize
this result to multivariate higher and iterative derivations and show some
applications. At the end of this chapter we discuss linearly non-degenerate

higher derivations.

Notation: In this chapter we assume all rings and algebras to be commutative. Let C

be a (commutative) ring.

1.1 Higher and iterative differential rings

Definition 1.1.1. Let n be a positive natural number and f: R — R be a homo-

morphism of C-algebras. An n-variate higher derivation from R to R over C is a

9



1. HIGHER AND ITERATIVE DERIVATIONS

homomorphism of C-algebras
0: R — R[t,...,tn] =: R[t]

such that e 0 0 = f, where e is the homomorphism of R-algebras R[t] — R defined
by e(t;) =0fori=1,...,n. Forall k € N" we denote by py: R[t] — R the map
sending ¥ jenn art! to ay and we define 0%) := p, o 0. If there is risk of confusion,
we will denote 6 also by 8 in order to indicate the variables of the ring R[t]. An n-
variate higher derivation : R — R[t] from R to R over C is an n-variate iterative

derivation on R over C if the diagram

R— R[]

tGl J{ue[[t]]

R[] —2=22 Rt u].

commutes, where the homomorphism 0[t]: R[t] — R[t, u] is defined by

u@ﬂtﬂ < Z Clktk> = Z u@(ﬂk)tk.

keN™ keN™
We denote by HDE (R, R) the set of all n-variate higher derivations from R to R over
C, by HD{(R) the set of all n-variate higher derivations from R to R over C and by
IDE(R) the set of all n-variate iterative derivations on R over C.

Example 1.1.2. On every C-algebra R there exists for all n € IN an n-variate itera-
tive derivation
6o: R — R[ty,...,ta], r+—r

that we call the trivial n-variate iterative derivation.
Example 1.1.3. If R is a C-algebra containing the rational numbers Q and d4, . ..,y
is a set of commuting C-derivations on R, then

alflo...oaﬁn(a)

k
K t

0:R— R[t], ar— Y
k=(ky,». k) ENT

is an n-variate iterative derivation on R over C.

10



1.1. Higher and iterative differential rings

Definition 1.1.4. (1) A pair (R,0), where R is a C-algebra and 6 € HD{(R),
is called an (n-variate) higher differential ring (or HD-ring) over C. If 0 is
iterative, (R, 0) is called an (n-variate) iterative differential ring (or ID-ring)

over C.
(2) Given a HD-ring (R, 6) over C, the set
R% = {a e R|6(a)=a}
is a C-subalgebra of R and is called the ring of constants of (R, 6).!

(3) If (R,0r) is a HD-ring (ID-ring) over C and (A,60,) is another HD-ring
(ID-ring) over C, then we say that (A,04) is a HD-subring (ID-subring) of
(R,6R) if A is a C-subalgebra of R and if 0 4 is the restriction of O to A.

Definition 1.1.5. If (R,0r) and (S,0s) are HD-rings, then a homomorphism of
C-algebras ¢: R — S is called a homomorphism of HD-rings over C (or a HD-
homomorphism) if 85 o ¢ = @[t] o O holds.

Definition 1.1.6. Let (R,0) be a HD-ring over C.

(1) An ideal A of R is a higher differential ideal (or HD-ideal) of (R,0) if
6(A) C A[t] holds.

(2) The HD-ring (R, 0) is a simple HD-ring if (0) and R are its only HD-ideals.

Definition 1.1.7. Let (S,0) be a HD-ring, R a HD-subring of S and A C S a subset.
Then we define the HD-ring generated by A over R as the smallest HD-subring of
S containing R and A and denote it by R{A}g (or also by R{A} if 0 is clear from
the context). We denote the smallest HD-ideal of S containing A by [A](sg) (or also
by [Alg or [A] if there is no risk of confusion).

1There are alternative definitions of constants (see for example [MW95], [Zie03]). Our defi-
nition coincides with the more general definition of constants in the context of module algebras
(see definition 2.2.12).

11



1. HIGHER AND ITERATIVE DERIVATIONS

Remark 1.1.8. In the situation of definition 1.1.7 it is easily seen that if S is iterative,
then R{A}g is generated as C-algebra over R by 8\)(a) for all a € A and k € N",
i.e we have R{A}g = R[]0 (a) | a € A,k € N"|.

Example 1.1.9. Let (R, 0) be an n-variate HD-ring and I be a set. Then we define
the ring of differential polynomials in variables (X;)ic over (R,0) as

k

R{X;|i€ I}p = R[Xl-( Vi€l keN"

and extend the higher derivation 6 to R{X; | i € I}ypn by

0 (Xi(k)) . Z <k;:l> Xi(l-&-k)tz

IeIN"

foralli € I and all k € IN". If the higher derivation 6 on R is iterative, then the
extension to R{X; | i € I}pn is iterative too.

1.2 Extension of higher and iterative derivations

We first recall the following definition of 0-smooth, 0-unramified and 0-étale

extensions in terms of the infinitesimal lifting property from [Mat89, p. 193].2

Definition 1.2.1. Let K be a ring. A K-algebra A is called 0-smooth over K if for
every K-algebra S and every ideal N of S that satisfies N> = 0, every K-algebra
homomorphism w: A — S/N has a lifting v: A — S, i.e. for every commutative

diagram

A—2S/N
K S

2These definitions correspond to the formally smooth, formally unramified and formally étale
extensions of discrete topological rings, as defined by A. Grothendieck in [Gro64, Définition 19.3.1
and Définition 19.10.2]

—_
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1.2. Extension of higher and iterative derivations

there exists a homomorphism v: A — S making the diagram

—%3S/N

L

—

commutative. The K-algebra A is called O-ramified if there is at most one such v. It
is called 0-étale if it is O-smooth and O-ramified.

The following two propositions specialize to [Mat89, Theorem 27.2] in the

casen = 1.

Proposition 1.2.2. Let C — A 5, B be ring homomorphisms and assume that B is
0-étale over A. Let further R be a B-algebra.

(1) If0: A — R[t1,...,ta] is an n-variate higher derivation from A to R over C,
then there exists a unique n-variate higher derivation 6': B — R[ty, ..., tx]
from B to R over C such that 6’ o g = 6.

(2) If0: A — Altq, ..., ta] is an n-variate iterative derivation on A over C, then
the unique extension 6': B — Bty ..., ty] of g[t] o 0 is also iterative.
Proof. For all m = (my,...,m,) € IN" we construct iteratively a compatible
family of homomorphisms
B — R[t,... ta]/ (£, .., 0 T)
making the diagram

B——R[ty, ..., 0]/ (07, et (1.2.1)

]

A— L R[H,.. ]

13



1. HIGHER AND ITERATIVE DERIVATIONS

commutative. For m = 0 we note that R[t{,...,t;]/(t1,...,tn) = R and we
take the structure homomorphism of the B-algebra R. In this case the dia-

gram (1.2.1) becomes

B—R (1.2.2)
81\ ET
A—LS R, ],
which is commutative, since 6 is a higher derivation from A to R. If such

a homomorphism is already constructed for some m € IN”, then, since B is

0-étale over A, for every i € {1,...,n} there exists a unique homomorphism

B — Rty ..., 0] /(£ 672 gty

1

making the diagram

R[t4, .. .,tn]]/(t’1"1+1’, LR

— S RIt ta —— Rt ]/ (E0F, T2 T

ot
commutative. By induction we obtain compatible homomorphisms
B — R[ty,... ta] /(£ trmtT)

for all m € IN" and thus a homomorphism 6': B — R[ty, ..., t,] fulfilling our
conditions.

To prove the second part, we consider both, ,0[t] 0 +6: A — A[t,u] and
t+ub: A — A[t,u], as higher derivations on A. By the first part, they uniquely
extend to higher derivations on B. Since ,0[t] o +f = 4,60, the homomor-
phisms ,0'[t] 0 ¢6': B — B[t,u] and ¢14,0': B — B[t,u] coincide as well, i.e.
0’ is iterative. O

Example 1.2.3. (1) If Aisaring and S C A a multiplicative subset of A, then
S—1A is 0-étale over A (see [Gro64, Chap. 0, 19.10.3 (ii)]).

14



1.2. Extension of higher and iterative derivations

(2) IfK'/K is a finite separable field extension, then K’ is 0-étale over K (see [Gro64,
Chap. 0, 21.7 4 (iii)]).

Example 1.2.4. Let K be a ring.
(1) The homomorphism of K-algebras
H(xl,...,xn): K[x1,...,x4) = K[x1,...,x0)[F1, - tn], Xi+—=> xi+ 1
defines an n-variate iterative derivation on K[xq, ..., x,] over K.

(2) If Kis a field, then the n-variate iterative derivation 0y, .y on Klxy, ..., x4
over K extends to K(x1,...,x,) = Quot(K[xy,...,x,]) by example 1.2.3 (1)
and proposition 1.2.2. We denote this n-variate iterative derivation again by

(X1,0eXn)*

(3) If K is a field and L/K is a separably and finitely Qenerated field ex-
tension with separating transcendence basis {x1,...,x,}, then by exam-
ple 1.2.3 (2) and proposition 1.2.2 the n-variate iterative derivation 0, . €

IDg (K(x1,...,xn)) constructed above extends uniquely to L and we denote

this extension again by 0, ..
In every case we will denote 0, .y also by Ox.

Example 1.2.5. (1) On R = C[[x] := C[x1, ..., x,,] we define an n-variate itera-
tive derivation 0y, .yt R — R[t1,... ta] over Cby 0y .\ (xi) = xi + 1t

forie{1,...,n}.

Xn)

(2) By proposition 1.2.2 and example 1.2.3 (1) the iterative derivation 0(,, ) ex-
tends uniquely to R = C[[x][x~!]. We denote this extension again by O(x,,...xn)-
In both cases the constants are C and we denote 6y, .y also by .

Lemma 1.2.6. If (R, 0) is an n-variate higher differential ring over C, then 0 extends
to an n-variate higher derivation 6 on R[w] = R[wy, ..., wy], defined by

0: R[w] — Rlw,u], w;w— w;+u; forallic{l,...,n}.
If 0 is iterative, then 6 is iterative too.

15



1. HIGHER AND ITERATIVE DERIVATIONS

Proof. Since R[w, u] is complete with respect to the (w, u)-adic topology, there
exists a unique continuous homomorphism of R-algebras 8: R[w] — R[[u, w],
sending w; to w; + u; for all i = 1,...,n, where we consider R[w] as R-
algebra via the inclusion as constants with respect to w and R[w, u] as R-
algebra via the composition of 6: R — R[u] with the inclusion of R[u] into
R[w,u] as constants with respect to w. Thus, 0 restricts to  on R. Since
0 is a homomorphism of C-algebras, it is an n-variate higher derivation on
Rfw] over C. Finally, if € is iterative, then vé[[uﬂ 040 and ;1,0 coincide by
the universal property of the formal power series ring R[w], since both are
continuous homomorphisms of R-algebras sending w; to w; + u; + v; for i =
1,...,n with respect to the (w)-adic and (w,u,v)-adic topologies on R[w]

and R[w, u, v], respectively. O
The following proposition is well-known, at least in the univariate case.
Proposition 1.2.7. Let (R, 0r) be a simple HD-ring, then
(1) the ring R is an integral domain and

(2) if L = Quot(R) is the quotient field of R, then O can be extended to a higher

derivation 0; on L and we have R%r = L.

Proof. Let P be a prime ideal of R. We define a HD-homomorphism
Or: (R,0r) — ((R/P)[t],6¢)

as Ogr = 7[t] o +0r, where m: R — R/P is the canonical projection. The
kernel of g is a HD-ideal not equal to (1) and, since (R, fg) is simple, it has
to be trivial. Therefore, 0 is a monomorphism from R to the integral domain
(R/P)[t] and thus the ring R does not contain non-trivial zero-divisors.

By example 1.2.3 (1) and proposition 1.2.2, the higher derivation 0y extends
to L. For a € L% we define I, :== {b € R | ab € R}. Since for b € I, we also
have a - 0g(b) = Or(a-b) € R[t], the ideal I, <R is a HD-ideal and, since I, is

non-trivial, it is equal to (1). In particular, we obtain a € R. O
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1.2. Extension of higher and iterative derivations

Proposition 1.2.8. Let R be a linear topological ring with respect to the I-adic topol-
ogy on R, where I is an ideal in R, and 8: R — R[t] be an n-variate higher derivation
on R that is continuous with respect to the I-adic topology on R and the (I, t)-adic
topology on R[t].

(1) The n-variate higher derivation 6 extends uniquely to an n-variate higher

derivation §: R — R[t] on the completion R, which is again continuous.

(2) If 0 is iterative, then 0 is iterative too.

Proof. The unique extension 8 of 6 to the completion (see lemma A.1.2) is a
higher derivation, since the property e o = idg holds analogously for the
extension 0 by the uniqueness of the extension. To prove the second part, we

consider the diagram

0

N

R— R[]

R R[]

0 0 O8] L]

R[] =5 R, ]

/ o

t—t+u IA{[[t, u]]'

R[t]

All arrows are continuous homomorphisms and the outer arrows are the
unique extensions of the inner ones to the completions. Thus, the commutativ-
ity of the outer square follows from the one of the inner square by the unique-

ness of the extension of continuous homomorphisms to completions. O
The following proposition was shown already in [Hei07].

Proposition 1.2.9. Let (R, 0) be a simple n-variate ID-ring with ring of constants
RY and x1,...,xm € R. Then the following conditions are equivalent:

17



1. HIGHER AND ITERATIVE DERIVATIONS

(1) x1,...,xy are linearly independent over RY,
(2) 6(x1),...,0(xm) € R[t] are linearly independent over R.

(3) Therearedy, ..., dyn € N", such that det ((G(di)(xj))l] 1) € R*.

In addition, the implications (3) <= (2) == (1) also hold if (R, ) is not simple
as HD-ring.

Proof. We show by induction on m that the second condition follows from
the first. This is clear for m = 1, so let m > 1 and x1,...,x; be linearly
independent over C. Then xy,...,x,_; are also linearly independent over C
and by the induction hypothesis 0(x1),...,0(x,_1) are linearly independent
over R. By proposition 1.2.7 the ring R is an integral domain and 6 extends
to an iterative derivation on L := Quot(R). Suppose 6(x1),...,0(xy) were
linearly dependent over R, then they would also be linearly dependent over
L and we can assume without loss of generality that 6(x,,) = Z}’:ll a;0(x;)
with a; € L. Then 00 (x) = Z;’:ll aj9(k>(xj) for all k € IN" and for k = 0
we obtain the L-linear combination x,, = 2}”2_11 a;xj. We will show that a; are
constants of L and thus also of R by proposition 1.2.7 for j =1,...,m — 1. For
i,k € IN" we have

(ﬁ;k) 00+R)(x,) = 0) 6 09 ()
— ¥y ol (aje(k)(xj))

3
R

Tl
I

3
iR

0™ (2;)00 =) o oK) (x;)

0<m<i
(U o4 5 L o)™ty

j=10<m<i

Z)ewk +E r (™ )om o)

j=1 0<m<i

-.
Il
—_

S
L

Il
i

I
A
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1.2. Extension of higher and iterative derivations

and thus
m=1 i+k—m e
Y ( ) )9<m>(aj)9(l+" ™) (x;) = 0. (1.2.3)
j=1 0<m<i

In the next step we show inductively
" (s k
)6 W (a;)0%) (xj) =0 (1.2.4)

forallk e N", ] € Nand p € {1,...,n}. Wefixp € {1,...,n}. Forl =1
equation (1.2.4) follows immediately from (1.2.3). Now we assume that for
some [ € IN equation (1.2.4) holds for all 0 < [ < I, all k € N" and all
u € {1,...,n} and show that it also holds for [ + 1, all k € N" and all u €
{1,...,n}. From (1.2.3) we obtain for i = (I + 1)J, in particular

—114+1 N
2 Z ( (5 +k> (15”)(aj)9((l+1_l)5”+k) (xj) —0.

j=11=1

In this sum all partial sums over j with fixed I € {1,...,I} are zero by as-
sumption and we obtain 2;71:]1 9((”1)‘5")(11])9(") (xj) = 0 for all k € N". Thus,
inductively we obtain (1.2.4) for all I € N, u € {1,...,n} and all k € IN".

Since 6(x1),...,0(xy—1) € R[t] are linearly independent over R, we obtain
(%) (a aj) = 0foralll € Nand all u € {1,...,n}, and thus a; € R for
j=1,...,m—1. Consequently, xi,...,x, are linearly dependent over R? in

contradiction to our assumption.

To show the converse, suppose that there exist ay,...,a, € RY, not all
zero, such that }/" ; a;x; = 0. Then 0 = 6 (/" a;x;) = Y./*1 a;0(x;) and thus
0(x1),...,0(x,) are linearly dependent over R and in particular over R.

The equivalence of the second and the third condition is clear. O

Using this characterization of linear independence over constants we ob-
tain the following result, which, in the case of classical derivations and where
A is a field, is due to Kolchin ([Kol76, Ch. 2, Corollary 1 to Theorem 1])

19



1. HIGHER AND ITERATIVE DERIVATIONS

Corollary 1.2.10. Let (R, 6r) be a simple ID-ring and (A, 6 ) an ID-ring extension
of R. Then R and A%4 are linearly disjoint over RO%.

Proof. Let ay,...,an € R be linearly independent over R%. Then by proposi-
tion 1.2.9 there are dy, ..., d;; € IN" such that det((?(di)(aj))i,]-:L“_,m € R* and
by the same proposition we obtain that a; . .., a,, are linearly independent over
AP, m

1.3 Linearly non-degenerate higher derivations

The following lemma seems to be well known.

Lemma 1.3.1. Let L/K be a separable and finitely generated field extension of tran-
scendence degree n and M be an L-algebra. Then the M-module Derg (L, M) of
K-derivations from L to M is isomorphic to M". If {x1,...,x,} is a separating tran-
scendence basis of L/ K, then the K-derivations dy,, .. .,0x, from L to M, defined by
Ox;(xj) = 6;; fori,j € {1,...,n}, form an M-basis of Derg (L, M).

Proof. Let x1,...,x, be a separating transcendence basis of L/K and (dy,: L —

M);—1,..n be the K-derivations defined by dy,(x;) = d;; fori,j € {1,...,n}. We

define two maps
®: Derg(L,M) — M", 9+ (d(x1),...,9(xn))

and .
Y. M" — Derg(L, M), (ai,...,a,) — Zaiaxi.
i=1

Then for all 0 € Derg(L, M) we have (¥ o ®)(d) = Y./'; 9(x;)9dy; and thus
((Fo@)(9))(xj) = 9(x;) forall j € {1,...,n}. Since L/K(x1,...,x,) is finite
separable, we obtain (¥ o ®)(d) = 9 (derivations extend uniquely to finite

separable field extensions). It is clear that ® o ¥ = idp. O

Lemma 1.3.2. Let L/K be a separable and finitely generated field extension with
trdeg(L/K) = n and M be an L-algebra. Then for derivations 91,...,0, €
Derk (L, M) the following conditions are equivalent:
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1.3. Linearly non-degenerate higher derivations

(1) For all separating transcendence bases {x1, ..., xy} of L/K we have

det((0;(x}))ij=1,..n) € M™.

(2) There exists a separating transcendence basis {x1, ..., x,} of L/K such that

det((9;(x}))ij=1,..n) € M™.

(3) The derivations 01, .. .,0, form an M-basis of Derg (L, M).

Proof. Trivially the first condition implies the second.
Now we assume that there is a separating transcendence basis {x1,...,x,}
of L/K such that
det((9;(xj))ij=1,..n) € M™.

Since the K-derivations dy,,...,dy, defined by axl.(x]-) =¢jfori,j=1,...,n
form an M-basis of Derg (L, M) by lemma 1.3.1 and since 0; = 2;7:1 8i(x]-)8x].
fori=1,...,n, the derivations 9y, ..., 9, form an M-basis of Derg (L, M) too.

If we assume (3) to be true and let {xy,...,x,} be a separating tran-
scendence basis of L/K, then the derivations 9y, ...,dy, form an M-basis of
Derg(L, M) by lemma 1.3.1. Thus, there exists a matrix A € GL,(M) such
that (91,...,0x)" = A(9x,,...,0x,)". So we obtain (9;(xj));j-1,.» = A and
thus det((9;(x;));j=1,.,.n) = det(A) € M*. O

Definition 1.3.3. Let K be a ring, L a K-algebra and M an L-algebra. An n-variate
higher derivation 6 € HD% (L, M) is called linearly non-degenerate if the deriva-
tions 00V, .., 00 ¢ Derk (L, M) are linearly independent over M.

In the case of n-variate iterative derivations, this definition coincides with

the one given by A. Maurischat in [Maul0b].
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1. HIGHER AND ITERATIVE DERIVATIONS

Example 1.3.4. If L/K is a separable and finitely generated field extension with
separating transcendence basis {x1,...,x,}, then the n-variate iterative derivation
0

L) O L oover K defined in example 1.2.4 is linearly non-degenerate.

The following proposition is essentially a concrete version of the formal in-
verse function theorem (cf. [Haz78, Appendix A, Proposition A.4.5] or [vdEQO,
Theorem 1.1.2]).

Proposition 1.3.5. Let R be a ring, n € IN be a natural number and forv=1,...,n
let

Y a8, Y bVE € R[] = R[t, ..., 1]
icIN" icIN"

be formal power series such that a((,v) = b(()V> and such that det(a‘(;lt))l,,y:lwn € R*.

Then there exist formal power series Y ;cn c§” It e R[t] with c(()” ) =0 for all
u=1,...,nsuchthatforv=1,...,n

n i]l
LAz ) =z s

ieN" p=1 (]'EJN” jEN?
If in addition det(bg))v,yzlwn € R*, then det(cg;)),,/yzlwn € R* holds too.

Proof. Equation (1.3.1) holds if and only if forall v € {1,...,n} and all j € N"

n lu

b]§v> =y Y Y I1 Hc%. 1.3.2)

icIN" k1,1+"‘+k1,,'1 +otkp otk i, =i p=1A=1

For j = 0 this equation is fulfilled by assumption. We can determine c](.y )
iteratively from this equation. In fact, the equations for v = 1,...,n and

j =90y, A=1,...,n are equivalent to the system of linear equations

bg? = 21 cg’;)ag) Av=1,...,n (1.3.3)

for (Cfsi ))lelwn. Since the matrix of coefficients (aé’;))vf},zll._.,n is regular by

(

assumption, there exists a unique solution (c 5’: )) Ap=1,..n € Mu(R). Now let
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1.3. Linearly non-degenerate higher derivations

j € N" and assume by induction that c](,” ) are already determined for all

p=1,...,nand j < j Then the equations (1.3.2) for jand v = 1,...,n
form a system of linear equations in the unknowns c](.v) (v=1,...,n) and the

coefficients are again given by the matrix (“((slvl))v,uzl,..‘,n- So c](.v) (v=1,...,n)
are uniquely determined too. The last statement is clear by equation (1.3.3).
O

Proposition 1.3.6. Let L/K be a separable and finitely generated field extension of
transcendence degree n, let M be an L-algebra and 64,0, € HDg (L, M) be such
that 01 is linearly non-degenerate. Then there exists a homomorphism of M-algebras
¢: M[w] — M[w] such that ¢(w)y—g = 0 and such that the diagram

L —)91 M[w]

BN,

M[w]
commuites.

Proof. Let {x1,...,x,} be a separating transcendence basis of L/K and L :=
K(x1,...,x,). We define 61(xy) =: ¥ ;e al(.v)wi and 6;(xy) =: Yienn bl(v)wi
for v =1,...,n. By lemma 1.3.2 and proposition 1.3.5, there exist formal
power series Y ;o CE”)wi € M[w] with C((]P‘) =0for u =1,...,n such that for

alv=1,...,n

ot AR
Yoo JT| X ¢w ) =} b w

icIN" u=1 \jEN" icIN"

Since M[w] is complete with respect to the (w)-adic topology and since the

)

series Y jennc; w' lie in (w) for p = 1,...,n, by the universal property of the

formal power series ring M[w] (see [Bou81, Chapter IV, §4.3, Proposition 4])
there exists a homomorphism of M-algebras ¢: M[w] — M[w] with ¢(w,,) =
()

Yienn ¢; w' for y =1,...,n. Since ¢ 0 6; and 6, are K-homomorphisms and
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1. HIGHER AND ITERATIVE DERIVATIONS

@po6i(xy) = 02(xy) forv=1,...,n, the homomorphisms ¢ o 6; and 6, coincide
on L, i.e. the diagram

TS
L —— M[w]

N

M[w]

commutes. The extension L/L is 0-étale by example 1.2.3 (2). Since ¢ o 6; and
6, are both higher derivations from L to M that extend 021 = @by, they
have to be equal by proposition 1.2.2. O

Corollary 1.3.7. Let L/K be a separable and finitely generated field extension of
transcendence degree n and let 61,0, € HDY(L). If 6; is linearly non-degenerate,
then for all 1 € IN" the component 9&” of 0 is an L-linear combination of {951 ) | 7] <

|21}

Proof. By proposition 1.3.6, there exists a homomorphism ¢ € Alg (L[w], L]w])

SuCh that 92 = q)O 91 and q)(ZU)‘wZO = 0 If we Write q)(wl) — ZIEN" Cgl)wl

with cgi) €Lfori=1,...,n,thenforallaec L

62(a) = ¢(61(a))
= Y 09 @)p(w)1 - p(wy)n

jeIN"
- nojioo.
= (7) T oD gphate byt
6;" (a) c; w i j
= 1 1’.,].
jEN" 11,1,...,11,/‘1 r-'-rln,lr--'rl)1,jn eN" i=1 j:1

Thus, by noting that c((,i) =0fori=1,...,n, we see that the QY ) (a) occurring
in the coefficient of w' for I € IN" need to fulfill |j| < ||, i.e. 951) is a linear

combination of the GY ) with l7l < |1]. O
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Chapter 2

Module algebras

Since there are different conventions concerning the definition of algebras,
coalgebras and bialgebras in the literature, we start this chapter by stating
the definitions we use. Next, we recall the definition of module algebras,
introduce some new notation concerning them, and prove some of their basic
properties. At the end of the chapter we illustrate these concepts by giving
several examples, including a comparison to the iterative Hasse systems that

have been recently defined by R. Moosa and T. Scanlon.

Notation: Let C be a commutative ring.

2.1 Algebras, coalgebras and bialgebras

Although these terms are well known, we recall the notion of C-algebras, C-

coalgebras and C-bialgebras as defined in [Bou70] and fix our convention.

Definition 2.1.1. A C-algebra (or algebra over C) is a pair (A, m) consisting of a
C-module A together with a homomorphism of C-modules

m: ARcA— A,
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2. MODULE ALGEBRAS

called the multiplication of A. A C-algebra A is associative if the diagram

A®cA®cAM>A®cA

\kd®m Jm

AQcA—"—— A
commutes. A C-algebra A is commutative if the diagram

ARcA—T S A®RCA

e

T:AQcA— ARcA (2.1.1)

commutes, where
denotes the homomorphism defined by T(a ® b) = b®a for all a,b € A. A unital
C-algebra is a triple (A, m,n) where (A, m) is a C-algebra and
n:C— A
is a homomorphism of C-modules, called the unit, such that the diagram

id id
CocAl S Awc A AgcC

b

A

commutes, where C @c A — A is the canonical isomorphism.
If (A,mp) and (B, mp) are C-algebras, a homomorphism of C-algebras from
Ato Bisamap ¢: A — B such that the diagram

A®cA@>B®CB

lmA ¢ ng

A—B
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2.1. Algebras, coalgebras and bialgebras

commutes. If (A,ma,14) and (B, mp,yg) are unital C-algebras, then a homomor-
phism of unital C-algebras from (A,ma,na) to (B,mp,ng) is a homomorphism of
C-algebras such that the diagram

A%B

C

commutes.

Convention: We assume that every C-algebra is associative and unital if not men-
tioned otherwise explicitly.

Definition 2.1.2. A C-coalgebra (or coalgebra over C) is a pair (A, A) consisting
of a C-module A together with a homomorphism of C-modules

At A— A®c A,

called the comultiplication of A. A C-coalgebra (A, A) is coassociative if the dia-

gram

A—bD s A®CA

lA lA@id
id ®A

ARQcA——ARCARCA
commutes. A C-coalgebra (A, A) is cocommutative if the diagram
A
-
AQcA——— ARCA

commutes, where T is the homomorphism (2.1.1). A counital C-coalgebra is a tuple
(A, A, e) where (A, A) is a C-coalgebra and

et A—C

27



2. MODULE ALGEBRAS

is a homomorphism of C-modules, called the counit, such that the diagram

A

~ ~

A

CocA Agealde As.C

commutes.

If (A,An) and (B,Ap) are C-coalgebras, then a homomorphism of C-
coalgebras from (A,A4) to (B, Ap) is a homomorphism of C-modules ¢: A — B
such that the diagram

A—2r B

[ [

Aoc A BoeB

commutes; if (A, Aa,€4) and (B, Ap, ep) are counital C-coalgebras, then a homomor-
phism from the counital C-coalgebra (A,Ap,e4) to (B, Ap,ep) is a homomorphism
of C-coalgebras ¢ such that the diagram

commuites.

Convention: We assume that every C-coalgebra is coassociative and counital if not

mentioned otherwise explicitly.

Notation: We use the Sweedler X-notation. If A is a C-coalgebra and a € A, then

we write

A(IZ) = Z{l(l) (9 11(2)
(a)

(see [Swe69, Section 1.2]).
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Definition 2.1.3. A C-bialgebra is a C-module D with a structure of a (unital,
associative) C-algebra (m, 1) and a structure of a (counital, coassociative) C-coalgebra
(A, €) such that the comultiplication A: D — D ®c D and the counit e: D — C are
homomorphisms of C-algebras.

A C-bialgebra is commutative (cocommutative) if the underlying C-algebra is
commutative (the underlying C-coalgebra is cocommutative).

A homomorphism of C-bialgebras is a map that is a homomorphism of C-
algebras and of C-coalgebras.

Remark 2.1.4. The condition in definition 2.1.3 that the comultiplication A and the
counit e are homomorphisms of C-algebras is fulfilled if and only if the multiplication
m: A®c A — A and the unit y: C — A are homomorphisms of C-coalgebras (cf.
[Swe69, Proposition 3.1.1]).

Lemma 2.1.5. If (D, A) is a cocommutative C-coalgebra, then we have

(A®A)oA = (idp ®T®idp) o (A®A) 0 A.

Proof. We have

(A®A)oA = (A®idp ®idp) o (idp ®A) o A
A®idD)OA

ToA®idp)oA

= ( (
= (A®idp ®idp) o (
= (A®idp ®idp) o (
= (A®idp®idp)o (t®idp) o (A®idp) oA
= (idp ®A ®idp) o (A®idp) o A

and so we obtain

(A®A)OA (ldD®A®ldD)O(A®1dD)OA

(idD RT R idD) ¢} (idD RA ® idD) o (A ® idD) oA
(idp ®T ®idp) o (AR A) o A.
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Notation: For n € IN, C-modules A1, ..., An and a permutation
1 ... n
i1 ... iy
of the numbers {1,...,n} we denote by (iy,...,iy) the homomorphism

A1®C"'®CAn—>Ai1®C"'®CAin

defined by
(i, o) (@ @ Qay) =a; @---Qa,
forallay € Ay,...,a, € Ay

Lemma 2.1.6. If (D1,Aq,e1) and (D, Ay, €2) are C-coalgebras, then Dy ®c Dy
carries a natural C-coalgebra structure with comultiplication and counit given by

A = (idp, ® T®idp,) o (A; ® Ap) and  e=¢1 ey,

respectively. If both, D1 and D,, are cocommutative, so is D1 ®c Ds. If in addition
D1 and D; are C-bialgebras, then the C-coalgebra D1 ®c Dy becomes a C-bialgebra
with the usual C-algebra structure on the tensor product.

Proof. Since
(e®idp,ep,) 0 A = (&1 ® &2 ®idp, ®idp,) o (idp, ®T ®idp,) o (A1 ® A2)
= ((e1®idp,) 0 A1) ® ((e2 ®idp,) 0 Ap)
=idp, ®idp,,

the homomorphism ¢ is a counit for A. Using the coassociativity of D; and D;

we have
(A ® idD1®D2) oA =(1,4,2,5, 3,6) o (Al Y ile XA ® idDz) o (M ® Az)
= (1,4,2,5, 3,6) o (ile RN ® idD2 ®A2) o (Al ® Az)
= (idD1®D2 ®A) oA.
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Thus, the comultiplication A is coassociative. If D; and D; are cocommutative,

we have

TD;®D, © A= (3,4, 1,2)0 ile ®T®idD2) o (Al (%9 Az)

)o(
= (2,4,1,3) o (Ap, ® Ap)
=(2,4,1,3) o (tp, o Ap, ® Tp, © A7)
= (1,3,2,4) 0 (A ® Ay)

= A,

where T denotes the twist homomorphism interchanging the factors of D; ®
D; and Tp, gp,, Tp, and Tp, denote the twist homomorphisms on (D; ® D;) ®
(D1 ® Dy), D1 ® Dy and Dy ® D,, respectively. Thus, the comultiplication A
on Dq ®c Dy is cocommutative.

If Dy and D; are C-bialgebras, then obviously A and e are homomorphisms
of C-algebras and thus D; ®¢ D; is a C-bialgebra. O

2.2 Module algebras

Next, we recall some definitions and results concerning measuring and mod-
ule algebras. A standard reference for this material is [Swe69], although there
the theory is only developed over fields. Some of the results that we present
here might be well known, but since we do not know a reference, we include
proofs. Module algebras are fundamental for the formulation of our Galois
theory in chapter 3. The usage of module algebras is inspired by the work
of M. Takeuchi, K. Amano and A. Masuoka ([Tak89], [AMO5]), in which they

present generalizations of Picard-Vessiot theory.
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2.21 Module algebras

We recall that for C-modules A,B and D there is an isomorphism of C-

modules

Mod¢ (D ®c A, B) — Modc(A,Modc(D,B)), ¥+ (a— (d— ¥(d®a))),
(2.2.1)
which plays a key role in the theory of module algebras and is also fundamen-
tally used in the formulation of our Galois theory in chapter 3 (see [Bou70,
Chapter 11, §4.1, Proposition 1 a)]).

Lemma 2.2.1. If (D, Ap,ep) is a C-coalgebra and (B, mp, np) is a C-algebra, then
the C-module Modc (D, B) becomes a C-algebra with respect to the convolution
product, defined by

frg=mpo(f@g)ohp
for f,g € Modc(D, B), and unit element given by the composition

D c ™ B,

Furthermore, D is cocommutative if and only if Mod¢ (D, B) is commutative for every

commutative C-algebra B.
Proof. See for example [BWO03, 1.3] O

Proposition 2.2.2. Let D be a C-coalgebra and let A and B be C-algebras. If ¥ is
an element of Modc (D ®c A, B) and p € Modc (A, Mod¢ (D, B)) is the image of ¥

under the isomorphism (2.2.1), then the following are equivalent:
(1) p is a homomorphism of C-algebras,
(2) foralld € Dandalla,bc A

a) Y(d®ab) =Y 45 ¥Y(dn) ®@a)¥(dp ®b) and
b) T(d@ 1A> = S(d)lg,

hold and
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(3) the diagrams

D&cA®cA dp ma D&cA
JAD@idA ®idy J/‘I’
D@eDocAoc AT o Age Do a T,
and
DocC 2", cocB
Jidp @1 J~
D@cA—r B
commute.

Proof. The equivalence between (1) and (2) can be proven as in [Swe69, Propo-
sition 7.0.1] and the one between (2) and (3) is clear. O

Definition 2.2.3. Let D be a C-coalgebra and A and B be C-algebras. If ¥ €
Modc (D ®c A, B), then we say that ¥ measures A to B if the equivalent conditions
in proposition 2.2.2 are satisfied.

Definition 2.2.4. Let D be a C-bialgebra and A be a C-algebra. If ¥ € Mod¢c (D ®c¢
A, A), we say that ¥ is a D-module algebra structure on A if

(1) ¥ makes A into a D-module and
(2) ¥ measures A to A.

The pair (A,Y) then is called a D-module algebra. We will also refer to the D-
module algebra (A,Y) as (A, p), where p is the homomorphism of C-algebras asso-
ciated to Y via the isomorphism (2.2.1). If there is no risk of confusion, then we will
denote the D-module algebra (A, Y) also by A. A D-module algebra (A,Y) is called
commutative if the C-algebra A is commutative.
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If A'is a D-module algebra and B is a C-subalgebra of A, we say that B is a D-
module subalgebra of A if the restriction of ¥ to D ®¢ B induces a homomorphism
D ®c B — B of C-modules that defines a D-module algebra structure on B.

If B is a D-module subalgebra of A and A’ is a subset of A, the D-module
subalgebra of A generated by A’ over B is defined as the smallest D-module
subalgebra of A containing B and A’ and we denote it by B{A'}y. If A is a D-
module algebra and B C A a D-module subalgebra, then we say that A is finitely
generated over B as D-module algebra if there is a finite subset A’ of A such that
A =B{A'}y.

A D-module field is a D-module algebra (A,Y) such that the C-algebra A is
a field. If A is a D-module algebra, then a D-module subfield of A is a D-module
subalgebra of A that is a D-module field.

Section 2.3 contains examples of bialgebras illustrating this definition,
among them a bialgebra D;,, such that D,,,-module algebras are differential
rings over C, a bialgebra Djp» such that Djp»-module algebras are n-variate
iterative differential rings over C and a bialgebra D,,; such that D,,;-module
algebras are difference rings over C.

We use the isomorphism (2.2.1) a second time in the form
Modc(Dl Qc Dz, A) % Modc(Dz, Modc(Dl,A)) (2.2.2)

for C-modules Dy, D; and A. If D; and D, are C-coalgebras and A is a
C-algebra, then this is in fact a homomorphism of C-algebras with respect
to the C-algebra structures induced by lemma 2.2.1 (D ®¢ D, carries the C-
coalgebra structure defined in lemma 2.1.6). In the following we sometimes

implicitly use this isomorphism.

Lemma 2.2.5. Let D be a C-algebra, A be a C-module and ¥ € Modc (D @¢ A, A).
Then Y makes A into a D-module if and only if the homomorphism of C-modules
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p: A — Modc(D, A) associated to ¥ via the isomorphism (2.2.1) makes the diagrams

A—" Modc(D, A) (2.2.3)
\‘ J{eV1D
A
and
%
A Modc(D, A)
Jp lModc(D,p)
MOdc(mD,A) ~
Modc (D, A) Modc(D®¢ D, A) —=— Mod¢ (D, Mod¢ (D, A)).
(2.2.4)

commutative, where the isomorphism at the bottom right is (2.2.2).

Proof. The first diagram commutes if and only if ¥(1p ® a) = a holds for
all 2 € A and the second diagram commutes if and only if ¥(didy, ® a) =
¥ (d1 ® ¥(dy @ a)) holds for all d1,d, € D and all a € A. O

Corollary 2.2.6. Let D be a C-bialgebra, A be a C-algebra and ¥ € Mod¢ (D ®c
A, A). Then'Y is a D-module algebra structure on A if and only if the homomorphism
p: A — Modc(D, A) associated to ¥ via the isomorphism (2.2.1) is a homomorphism
of C-algebras and makes the diagrams (2.2.3) and (2.2.4) commutative.

Proof. This follows immediately from lemma 2.2.5. O

Lemma 2.2.7. Let D be a C-bialgebra, A a C-algebra and let ¥ € Modc (D ®c A, A)
make A into a D-module algebra. If A’ is a subset of A, then the D-module subalgebra
of A generated by A’ over C is the C-subalgebra of A generated by ¥ (D ®@¢ A’) over
C, ie.

C{A'}y =C[¥(D®c A")].
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Proof. Certainly C[¥(D ®@c A’)] is contained in C{A’}y. For all ¢1,¢3,d € D
and a1,a, € A’ we have

d((c1.m1)(c2.a2)) =Y _d()(crar) - dpy(ca-aa) =Y (d(zyc1)-a1 - (dpyc2)-a2
(d) (d)
and so d.(ab) € C[¥(D ®c A’)] for alla,b € C[¥(D ®c A’)]. Thus, C[¥(D ®c
A’)] is a C-subalgebra and a D-submodule of A, i.e. a D-module subalgebra
of A. O

Notation: If D is a C-bialgebra, A a C-algebra and ¥ € Mod¢ (D, A) is a D-module
algebra structure on A, then we write also d.a or d(a) instead of ¥(d ® a) for d € D
and a € A if no confusion is possible. If X = (xi,j)fj:1 € Myxm is a matrix with
coefficients in A, we denote the matrix (d.x;;) by ¥ (d ® X) and also by d.X,

d(X) or dX if there is no risk of confusion.

n
ij=1

2.2.2 Homomorphisms, ideals and constants of module algebras

Definition 2.2.8. Let D be a C-bialgebra. A homomorphism of D-module alge-
bras is a map that is a homomorphism of D-modules and of C-algebras. Homomor-

phisms of D-module fields are homomorphisms of D-module algebras.

Remark 2.2.9. If (A1,¥1) and (A, ¥2) are D-module algebras and py and p, are
the homomorphisms of C-algebras associated to Y1 and Y, via the isomorphism 2.2.1,
respectively, then a homomorphism of C-algebras f: Ay — Ay is a homomorphism of
the D-module algebra (A1, Y1) to (Az,¥2) if and only if the diagram

Aq ! Aj

b
Modc(D,f)

Modc (D, A7) ———% Modc (D, Ay)

commutes.
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Definition 2.2.10. If D is a C-bialgebra, (A,Y) a D-module algebra and I an ideal
in A, then I is called D-stable if ¥(d ® a) € I foralla € I and all d € D.

Lemma 2.2.11. Let D be a C-bialgebra and A be a D-module algebra. If I is a
D-stable ideal in A, then there exists a unique D-module algebra structure on A/
such that the canonical projection A — A/ I becomes a homomorphism of D-module

algebras.

Proof. If (A,¥) is a D-module algebra and I a D-stable ideal in A, it is clear
that
Y:DA/I—A/I, do(a+])—Yd®a)+1

is the unique D-module algebra structure on A/I such that A — A/I becomes

a homomorphism of D-module algebras. O

Definition 2.2.12. For a C-coalgebra D, a C-module V and ¥ € Modc(D ®@c V, V)
we define the constants of V with respect to ¥ as

Vi={veV|¥(dov)=¢e(d)v foralldc D}

If p € Mod¢(D,Modc(D, V)) is the element corresponding to ¥ under the isomor-
phism (2.2.1), then we denote V¥ also by V°.1

Remark 2.2.13. K. Amano defines in [Ama05, p. 31] constants for D-modules V,
where D is a C-bialgebra. In this case our definitions coincide, when we equip V with
the induced C-module structure and defineY: D @c V — V by sending d @ v to dv.

Lemma 2.2.14. Let D be a C-coalgebra, A be a C-algebra and let ¥ € Modc (D ®c
A, A) measure A to A.

(1) Then AY is a C-subalgebra of A.

(2) If moreover A is a field, then AY is a subfield of A.

!The constants V¥ are the equalizer in V of p and po, where py is the homomorphism defined
in lemma 2.2.15.
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Proof. For a,b € AY we have
Yd®((a+b)=Yd®a)+¥Y(db) =¢(d)(a+D)
and, since D measures A to A,

¥ (d ® ab) Z‘I’ di) ®b) =) ¢ d(1y)ae(d )b = e(d)ab
(d)

If A is a field and a is a non-zero element in A, then we have p(a~!) =

p(a)™' = po(a)~! = po(a~'), so that a~! is constant too. O

Lemma 2.2.15. Let D be a C-bialgebra and A be a C-algebra.

(1) There exists a D-module algebra structure Y9 € Modc(D ®c A, A) on A,
defined by
Y: D®CA — A, d®a '—>£D(d)a.
We denote the homomorphism of C-algebras associated to Yo via the isomor-

phism (2.2.1) by pg and call call ¥ the trivial D-module algebra structure
on A.

(2) We have for all a € A and all f € Mod¢(D, A)
pola) s f =af and
fxpola) = fa,

where af and fa are the scalar multiplications of f with a from the left and

from the right, respectively, i.e. (af)(d) = a(f(d)) and (fa)(d) = f(d)a for
all d € D. In particular, po(A) lies in the center of (Modc(D, A),-) if Ais

commutative.

(3) The constants of (A, ¥o) are equal to A.
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Proof. We note that ep: D — C is the unique homomorphism of C-bialgebras
from D to the trivial C-bialgebra C. The C-module homomorphism py associ-

ated to ¥ via the isomorphism (2.2.1) is given as the composition

MOdC (SD,A)
—_—

A ——— Modc(C, A) Modc (D, A).

Obviously pg makes the diagrams

A" Modc(D, A)
X leVlD
A

and

A i Modc (D, A)

JPO JModc(D,Po)
Modc (mp,A)

Modc(D, A) — " Mod¢ (D ®¢ D, A) ——— Modc (D, Modc (D, A))

commutative and thus ¥y is a D-module algebra structure on A. Part (2)

follows from

(po(a) * f)(d) = ) e(dqy)af(dn)) = af (Zs(du))d(z)) = af(d)

(@) (d)
and
(f*po(a))(d) =) f(du)e(dp))a = f (Zdu)s(d(z))) a=f(d)a
() ()
for all d € D. The last assertion is clear by definition. O

2.2.3 The module algebra structure ¥;,;

Lemma 2.2.16. If D is a C-bialgebra and A a C-algebra, then Mod¢ (D, A) becomes
a D-module algebra by the homomorphism of C-modules

Y¥i: D ®c Modc(D, A) — Modc (D, A)
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which sends d ® f € D @c Mod¢ (D, A) to the homomorphism of C-modules
Yiu(d®f): D — A, cw f(ed) forallc € D.

Furthermore, for any homomorphism of C-algebras ¢: A — B the induced homomor-

phism of C-algebras
Modc (D, ¢): Mod¢c(D, A) — Modc(D, B)

is a homomorphism of D-module algebras with respect to the D-module algebra struc-
tures on Modc (D, A) and Mod¢ (D, B) given by ¥;,;. Thus, Modc (D, ) is a functor
from the category of C-algebras to the category of D-module algebras.

The constants Modc (D, A)Yint are equal to pg(A), where pg: A — Modc (D, A)
is the homomorphism associated to the trivial D-module algebra structure ¥y on A
(see lemma 2.2.15).

Proof. We note that the homomorphism of C-modules
Pint: Mod¢ (D, A) — Modc (D, Modc (D, A))

corresponding to ¥;,;; via the isomorphism (2.2.1) corresponds to Mod¢(mp, A)
under the isomorphism of C-algebras (2.2.2) between Mod¢ (D, Mod¢(D, A))
and Modc(D ®c D, A). Since mp is a homomorphism of C-coalgebras,
Modc(mp, A) and so also pj,; are homomorphisms of C-algebras. The dia-

gram

Modc(D, A) 25 Modc (D, Mod¢ (D, A))

evy
x} J/ D

MOdC (D, A)
obviously commutes. Using again the isomorphism
Modc (D, Mod¢ (D, A)) = Modc (D ®¢ D, A),
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under which p;,,; corresponds to Modc (mp, A), the commutativity of the dia-

gram
Modc(D, A) i Modc (D, Mod¢ (D, A))
mer lMOdC(D/Pim)
Mod ,Modc(D,A
Modc (D, Modc (D, A)) wodctmoMode ANy 4 (D e D, Modc (D, A))
follows from the one of
Mod JA
Modc (D, A) ode(mpA) Modc (D ®c D, A)
JMOdc(mD,A) J/Modc(mD(ﬁcidD,A)
Mod¢(idp ® LA
Modc (D @¢ D, A) wdcidp Al i (D@ D ®c D, A).

Therefore, ¥;,; is in fact a D-module algebra structure on Mod¢ (D, A). For a
homomorphism of C-algebra ¢: A — B, the big rectangle and the rectangle
on the right in the diagram

Modc(mp,A)
Modc (D, A) —— Modc (D, Modc (D, A)) —=— Modc (D ®cD, A)
lModC(D,(p) lModc(D,Modc(Dmp)) lModdD@cD,(p)
Modc (D, B) —2— Modc (D, Modc (D, B)) —~— Modc (D ®c D, B)
T Modc(mpB)

commute and thus the rectangle on the left commutes too, i.e. Modc (D, ¢)
is a D-module algebra homomorphism with respect to the D-module algebra
structures given by ¥;,; on Mod¢(D, A) and Mod¢ (D, B).

Finally, if f € Mod¢ (D, A) is constant with respect to ¥;;,;, then we obtain

f(d) = (Yin(d® f))(1) = e(d)f(1) for alld € D, ie. f = po(f(1)). [
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Remark 2.2.17. With the notation of lemma 2.2.16 the diagram

Pint MOdC(D’ele)
Modc (D, A) Modc (D, Modc (D, A)) ————2 Modc (D, A)
}d f }d
Mod LA Mod ®idp,A
Modc (D, A) —229<DA) |y (D @e D, A) 1oy (D, A)

commutes. Since the composition of the sequence at the bottom is the identity, the

composition of the sequence at the top is the identity too.

The following lemma generalizes [Ume96b, Proposition 1.4] and [Mor09,
Propositions 2.5 and 2.7].

Lemma 2.2.18. If D is a C-bialgebra, A a C-algebra and ¥ € Modc(D ®c A, A)
makes A into a D-module algebra, then the homomorphism of C-algebras

p: A— Modc(D,A),

canonically associated to Y by (2.2.1), is a homomorphism from the D-module
algebra (A,Y) to the D-module algebra (Modc (D, A), ¥in:), where ¥y is the
D-module algebra structure on Modc(D, A) introduced in lemma 2.2.16. The
homomorphism p is universal among all homomorphisms of D-module algebras
A: (AY) — (Modc(D,B),¥iyt), where B is a C-algebra, in the sense that for
every such A there exists a unique homomorphism of C-algebras A: A — B such that
A = Modc(D,A) op.

Proof. By lemma 2.2.5, we have that Mod¢ (D, p) o p and Mod¢(mp, A) o p cor-
respond to each other under the isomorphism (2.2.2) and since Mod¢ (mp, A)
corresponds under the isomorphism of C-algebras (2.2.2) to the C-algebra
morphism p;;,; associated to ¥;,;; via the isomorphism (2.2.1), we see that p is
in fact a D-module algebra homomorphism from (A, ¥) to (Modc(D, A), ¥int)-
To show the universality of p, let A: (A,¥) — (Modc (D, B), ¥;,;) be a homo-
morphism of D-module algebras. We define A: A — B as A := evy,oA. Then,
using the fact that Mod¢ (D, A) is a homomorphism of D-module algebras and
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remark 2.2.17, we have Mod¢(D,A) o p = Modc (D, evy,) o Modc(D,A) op =
Modc (D, evy,) 0 pins 0 A = A. O

224 Commuting module algebra structures

Definition 2.2.19. Let D and D' be C-bialgebras and A a be C-algebra. If ¥ €
Modc(D ®c A, A) and ¥’ € Modc (D' ®c A, A) are D and D'-module algebra

structures on A, respectively, we say that these structures commute if the diagram

idp ®c¥’
DocD @c A2 D®cA

%’
idpy ®@cY

Dl®cA

T®cidg

D/®CD®CA

commutes, where T: D ®c D' — D' ®¢ D denotes the twist homomorphism defined
byt(d®d)=d ®dforalld € Dand d' € D'.

Remark 2.2.20. Let D and D' be C-bialgebras and A a C-algebra. If ¥ €
Mod¢c (D ®c A, A) and ¥’ € Modc (D' ®c A, A) are D and D'-module algebra
structures on A with associated homomorphisms p and p’, respectively, then they

commute if and only if the diagram

Modc (D,o’ ~
Modc (D, 4) Y24 Mo (D, Modc (D', A)) 5 Modc (D' @ D, A)
e
A , Modc(7,A)
P
\ Modc (D' )

Modc (D', A) ———% Modc (D', Modc (D,A)) = Mod¢ (D ®c D', A)

commutes, where T: D @c D' — D' ®¢ D is the twist homomorphism defined by
T(d®d)=d ®dforalld € Dand d' € D'.

Lemma 2.2.21. Let D1 and D, be C-bialgebras and A be a C-algebra.
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(1)

(2)

If ¥1 € Modc(Dy ®@c A, A) and ¥, € Modc(Dy @c A, A) are commut-
ing D1- and Dy-module algebra structures on A, respectively, then there is a
canonical D1 @c Dp-module algebra structure

Y. D1®CD2®CA—>A

on A, defined by

Y =Y0 (ile ®C‘I'r2) =%Y50 (iClD2 ®C‘Y1) o (T Xc idA). (2.2.5)

Conversely, a D1 ®c Dy-module algebra structure ¥ on A induces commuting

D1- and Dy-module algebra structures
Y1 :D1®cA—A and Y:DyQcA— A
on A, defined by
Yi(d1®@a) =¥(d1®1®4a) and Yy(dr®a)=Y(1R0dy®a),

respectively, for dy € Dy, dy € Dy and a € A.

Proof. To prove (1), let p;: A — Modc(D;, A) be the homomorphisms associ-
ated to ¥; for i = 1,2 and let p: A — Mod¢(D; ®¢ D, A) be the homomor-

phism associated to the homomorphism ¥ defined in (2.2.5) via the isomor-

phism (2.2.1). We note that p is given as the composition

A2 Modc(Dy, A)
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and thus is a homomorphism of C-algebras. Since ¥; and ¥, are D;- and D;-

module algebra structures, respectively, the two small triangles in the diagram

M de(D
A 2 Modc (D2, A odc(Poty) ———— Modc (D2, Modc(Dy, A))

id eV1D id Modc(D2,eV1D1)

OdC Dy, A)

\ evy D,
A

(2.2.6)

commute and thus the big triangle commutes too. In the following diagram

we abbreviate the homomorphism

Modc (M, p;): Modc (M, A) — Modc (M, Modc (D, A))

as p; for any C-module M and for i = 1,2. For any homomorphism ¢: M — N
of C-modules we abbreviate the homomorphism Mod¢ (¢, A): Mod¢c (N, A) —
Modc (M, A) as ¢. We also implicitely use the isomorphism (2.2.2). All tensor
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products are over C and we write Mod instead of Modc.
% P
T —_— T
AZ Mod(D,,A) P4 Mod(D1®D5,A) P Mod(Dy®D1®D5, A) 4 Mod(D1®D,®@D1®D5,A)
id id J(z,l,ej) (13,24)
ABMod(D2,4)% Mod(Dy@ D2, 4)% Mod(D1® Dy® Da, A)% Mod(D1® D@ Dy@ Dy, A)
id id id
02 mp. 01 mD1®idD2®D
A— MOd(Dz,A) M Od(Dz@Dz,A) — MOd(D1®D2®D2,A) - MO&(D1®D1®D2®D2,A)

id (13,24)

Mpy @D,

AZMod(Dy, 4% Mod(D12D,, A) Mod(D:®D>@D1®D5, A)
\’/

o

The rectangle at the top center commutes since ¥; and ¥, commute. The
two rectangles in the middle row commute since ¥ and ¥, are D;- and D;-
module algebra structures on A, respectively, and the rectangle at the bottom
row trivially commutes too. Therefore, the big rectangle commutes and to-
gether with the commutativity of the big triangle in (2.2.6) and the fact that
p is a homomorphism of C-algebras we obtain by corollary 2.2.6 that ¥ is a
D-module algebra structure on A.

To prove part (2), we denote by p the homomorphism of C-algebras
A — Modc(D, A) associated to ¥ via the isomorphism (2.2.1). We define
homomorphisms p;: A — Modc(D1,A) and pp: A — Modc (D, A) as the
compositions

Modc (idp, ®cip,,A)
priA—— i Modc(Dy ®c Dy, A) — P Modc (Dy, A)

and

Modc (7p, ®cidp,,A)
o A——F Modc(Dy ®c Da, A) — 2" Modc (Da, A),

respectively. Since #p, ®c idp,: Do — D; ®c D2 and idp, ®c#p,: D1 —

D; ®¢ Dy are homomorphisms of C-coalgebras, we see that p; and p; are in
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fact homomorphisms of C-algebras. For all d,d’ € D; we have ¥1(d ® ¥1(d' ®
1)) =¥(d®1p, ®¥(d' @ 1p, ®a)) = ¥(dd' ® 1p, ®a) = ¥1(dd’ ® a) and
Yi(1p, ®a) = ¥Y(1p, ® 1p, ® a) = a. Thus, ¥; makes A into a Dj-module
and so ¥, is a D;-module algebra structure on A. Analogously, one sees that
¥, gives rise to a Dy-module algebra structure on A. Since ¥ is a (D1 ®¢ Dy)-
module algebra structure on A, we have

Yi1(d1 @¥2(d2®0a)) =¥ ((d1®1) @¥((1®d2) ®a))
=Y¥((d1 ®dz) ®a)
=Y((1®d) @¥((d1®1)®a))
= Y2 (da ® ¥1(dy ®a))

forall d;y € D1,dy € Dy and a € A, ie. ¥1 and ¥, commute. O

Lemma 2.2.22. Let D and D’ be two C-bialgebras, A a C-algebra and ¥' €
Modc (D' ®c A, A) be a D'-module algebra structure on A. Then Modc(D, A)
carries a natural D'-module algebra structure defined by>

D’ ®c Mod¢ (D, A) — Mod¢ (D, A)

(2.2.7)
d'@fr (d—¥(def(d))
foralld" € D" and all f € Modc(D, A).

Proof. If we denote by p': A — Modc(D’, A) the homomorphism of C-
algebras corresponding to ¥/, then the homomorphism corresponding to

(2.2.7) via the isomorphism (2.2.1) is the composition

Mod¢(D,o’ ~
Modc (D, 4) %P Modc (D, Modc (D', A)) —— Modc (D', Modc (D, A)),

2In the case D = D’ this D-module algebra structure must not be confused with the one
defined in lemma 2.2.16.
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which clearly is a homomorphism of C-algebras. Using implicitly the last

isomorphism, Mod¢ (D, p’) makes the diagrams

Modc¢ (Do’
Modc (D, A) —22<PE)_\1odc (D', Mode (D, A))
\ JeVlDl
Modc (D, A)
and
Modc(D,o’
Modc (D, A) ode (D) Modc (D', Modc(D, A))
JModc(D,p’) JModC(D’,ModC(D,p’))
MOdc(mD/,MOdc(D,A)
Modc(D’,Modc (D, A)) Modc (D' ®@cD’,Mod¢(D, A))

commutative. Thus, (2.2.7) defines in fact a D’-module algebra structure on
Modc(D, A). O

Lemma 2.2.23. Let D and D' be C-bialgebras, A a C-algebra and let ¥' €
Modc (D' ®c A, A) be a D'-module algebra structure on A. Then the D-module
algebra structure ¥;,,; on Modc (D, A) defined in lemma 2.2.16 and the D'-module
algebra structure induced by ¥’ on Mod¢ (D, A) via lemma 2.2.22 commute, i.e. the

diagram®
idp @Y
D&cD' ©cModc (D, A) 2% D @ Modc(D, A)
‘Pinf
tecid Modc(D, A)
/
idD/®C‘Yint

D'®cD®cModc(D,A) ——— D' @c Modc (D, A)

commutes, where T: D @c D' — D' ®@¢ D denotes the twist map, defined by t(d @
d):=d @dforalld € Dandalld € D'

3By abuse of notation we denote the induced D’-module algebra structure on Modc (D, A),
introduced in lemma 2.2.22, again by ¥’.
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2.2. Module algebras

Proof. The claim follows from

(@d(d".f))(c) = (d.f)(cd) = d'(f(cd)) = d'((d.f)(c)) = (d'(d-f))(c)
forallc,d € D,d € D' and f € Modc (D, A). O

Lemma 2.2.24. Let D and D’ be two C-bialgebras and A be a D'-module alge-
bra via ¥' € Modc (D' @c A, A), then the homomorphism pg: A — Modc (D, A)
associated to the trivial D-module algebra structure Yo on A (see lemma 2.2.15)
is a D'-module algebra homomorphism, where we equip Modc (D, A) with the D'-
module algebra structure induced by ¥’ via lemma 2.2.22. In particular, po(A) is a
D’-module subalgebra of Modc (D, A).

Proof. Foralla € A, d € D and d' € D’ we have

(d".po(a))(d) = d'(po(a)(d)) = d'(ep(d)a) = ep(d)d'(a) = (po(d".a))(d).

2.2.5 Extensions of module algebra structures

Proposition 2.2.25. Let D be a cocommutative C-bialgebra. If
(5, ¥s) — (R, ¥r) — (T, ¥1)

is a diagram in the category of commutative D-module algebras, then S @r T car-
ries a unique D-module algebra structure such that S @ T becomes the coproduct of
(S, ¥s) with (T,¥1) over (R,¥YR) in the category of commutative D-module alge-

bras. This D-module algebra structure on S @g T is given as

¥:DRcSORT — ST, d@s@t—) ¥s(dq)®s)@¥r(dy @1).
(d)
(2.2.8)

If ps and pr are the homomorphisms corresponding to ¥ s and Y under the isomor-
phism (2.2.1), respectively, then ¥ corresponds to ps ® pr under this isomorphism
when we identify Modc (D, S) ®modc (p,r) Modc(D, T) with Modc (D, S ®@r T).
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Proof. Since D is cocommutative and R, S and T are commutative C-algebras,
the C-algebras Modc(D,R), Mod¢(D,S) and Modc(D,T) are commutative.
We denote the C-algebra homomorphisms corresponding to the D-module
algebra structures on R, S and T by pr, ps and pr, respectively. By the univer-
sal property of the tensor product S ®g T in the category of commutative C-
algebras, there exists a unique homomorphism p: S®@gr T — Modc(D,S®r T)
of C-algebras that makes the diagram

Modc(D, S ®g T)

] T

Modc (D, S) e Modc (D, T)
Ps S®rT eT
s / \ T
\ R /
commutative. This homomorphism gives rise to a D-module algebra structure

on S ®g T, since the diagrams

S®r T —— Modc(D, S ® T)

evy
\hD

Sox T
and
S@r T p Modc (D, S @g T)
lp JModC(D,p)
Modc (D, S @ T) 2ot EkT) 1o i (D, Modc (D, S @ T))
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commute (which also follows from the universal property of S ®g T). Using
the universal property of S ®g T in the category of commutative C-algebras
again, we see that S ®g T is in fact the coproduct of S and T over R in the
category of commutative D-module algebras.

For any D-module algebra structure ¥ on S ®g T such that S — S ®g
T,s—s®land T — S®grT,t — 1®t are homomorphisms of D-module
algebras, we have ¥ (d ® s ®1) = ¥Y5(d®@s)®@1land ¥(d®1®t) =10 ¥r(d®
t). Since ¥ measures S @ T to itself, it follows ¥(d ® s ® t) = } (4 ¥s(dn) ®
s) ® ¥r(d(y) @ t). Therefore, (2.2.8) is the unique D-module algebra structure
on SR T such that S — S®rT and T — S ®gr T are D-module algebra

homomorphisms. O

Proposition 2.2.26. Let D be a cocommutative C-bialgebra and (R;,"¥;);c; be an
inverse system of commutative C-algebras that are measured by D into themselves

such that the homomorphism between the R; are compatible with the measurings.

(1) Then D measures the inverse limit R = lim,  R; (in the category of commu-
tative C-algebras) to itself such that the projections 7;: R — R; are compatible
with the measurings.

(2) If in addition all (R;,Y;) are D-module algebras, then R is also a D-module
algebra, the projections m;: R — R; are homomorphisms of D-module algebras
and R is the inverse limit of (R;,¥;)icy in the category of commutative D-

module algebras.

Proof. We denote by p;: R; — Mod¢(D, R;) the homomorphism of C-algebras
associated to ¥;: D ®c R; — R;. By the universal property of the inverse

limit lim, _, Modc (D, Ry) there exists a unique homomorphism of C-algebras
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R — lim, _, Modc (D, R) such that the diagram

R; Pi Modc (D, R))
v _—
S R »lim, _, Modc (D, Ry)
R i Modc (D, R;)

commutes for all j — i. Since Modc(D,-) preserves inverse limits of C-
modules, we have an isomorphism of C-modules lim,_ Mod¢(D,Ry) =
—kel
Modc (D, R). This is in fact a homomorphism of C-algebras. Thus, we ob-
tain a homomorphism pg: R — Modc (D, R) of C-algebras, i.e. D measures R
to itself.
If in addition ¥; is a D-module algebra structure on R; for all i € I, then

the outer rectangle in the diagram

Pi

Modc (D, R;)

R——™  Modc(D,R)
pi JPR JMOdC(D/PR) Modc (D,p;)
Modc( p.R

MOdc(D,R) — “Odc(D@cD,R)

dc(D,m;
/(C(n,) Modc (p,R;)

Modc (D, R;)

Modc (D®cD,R;)

commutes for all i € I. The trapezoids commute, since the projections
mt;: R — R; are compatible with the measurings. Thus, by the universal prop-
erty of liinie ; Modc (D ®c D, R;), the inner rectangle also commutes and we
see that R is a D-module algebra.

If ¢;: S — R; are compatible homomorphisms of D-module algebras, then,

by the universal property of R = lim,  R; in the category of commutative

52



2.2. Module algebras

C-algebras, there exists a homomorphism of C-algebras ¢: S — R such the

triangles at the left in the diagrams

S bs Modc(D, S)
Yi
o odc (D)
¥ R; —— Modc (D, R;) Modc (D,9)
Tt
MOdC(D,TL',‘
PR
R Modc(D, R)

commute for all i € I. Thus, the triangle at the right commutes too and
the two trapezoids at the top and bottom commute by assumption and by
the first part, respectively. By the universal property of Modc(D,R) =
lim, | Modc (D, R;) we obtain Modc(D, ) o ps = pro i, ie. ¢ is a homo-

morphism of D-module algebras. O

Corollary 2.2.27. Let D be a cocommutative C-bialgebra, I and | be two small cat-
egories and F and G be two diagrams in the category of commutative D-module
algebras of type I and |, respectively. If ¢: I — ] is a functor from I to |, then
every natural transformation from G o ¢ to F induces a homomorphism of D-module
algebras from the limit of G to the limit of F in the category of commutative D-module

algebras.

2.2.6 Simple module algebras

Definition 2.2.28. Let D be a C-bialgebra and R be a commutative D-module al-
gebra. Then R is simple (as D-module algebra) if (0) and R are its only D-stable

ideals.
We recall the definition of the smash product (cf. [Swe69, Section 7.2])

Definition 2.2.29. Let D be a C-bialgebra and R be a commutative D-module alge-
bra. We define the smash product of R with D, denoted by R#cD (or R#D if there is
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no danger of confusion), as the C-algebra with underlying C-module R ®¢c D, whose
elements a ® d will be denoted by a#d, and with multiplication given by

(attc) (b#d) = Za(c(l)b)#cmd
(©)

for all a#c, b#d € R#cD and with unit 1#1.

Proposition 2.2.30. Let D be a commutative C-bialgebra and (R,"¥R) be a simple
commutative D-module algebra. Then for every R#D-module Y the homomorphism

R ®p¥y Y -y, rey—ry

is injective, where Yy : D ® Y — Y is the D-module structure on Y induced from the
R#D-module structure on Y by ¥y (d @ y) == (1#d)y.

Proof. See [AMO5, Corollary 3.2] or [Ama05, Corollary 3.1.4]. O

Corollary 2.2.31. If D is a cocommutative C-bialgebra, (R, ¥R) a simple commu-
tative D-module algebra and (S, ¥Ys) a commutative D-module algebra extension of
(R,¥R), then R and S¥s are linearly disjoint over R¥R and we obtain an injective

homomorphism of D-module algebras
R®pwg ST5 — S,
induced by the multiplication homomorphism in S.

Lemma 2.2.32. Let D be a C-bialgebra, and (R, ¥ r) a commutative D-module alge-
bra. Then Mod¢ (D, R) is an R#cD-module with scalar multiplication

R#cD x Modc(D,R) — Modc(D,R), (a#d, f) — p(a) - ¥ (d® f) (2.2.9)
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Proof. Obviously (2.2.9) is linear in both arguments. It is also associative, since
for attc, b#td € R#cD and f € Modc (D, R) we have

((a#tc)(b#d))f = (Zac )f

#c) ((b#d) f)
O

Proposition 2.2.33. Let D be a cocommutative C-bialgebra such that D is free as
C-module and (R,Y) be a commutative D-module algebra. Then for ay,...,a, € R

the following are equivalent:
(1) ay,...,ay are linearly independent over RY,

(2) p(ay),...,p(an) are linearly independent over R, where we consider Mod¢(D, R)
as R-module via the map

R x Mod¢(D,R) — Modc(D,R), (a, f) — po(a) - f.

If R is a field, this is further equivalent to

(3) there exist dy, ..., dy € D such that (dj(a;))];_; € GLa(R)

Proof. To show that (1) implies (2), we note that by lemma 2.2.32 Mod¢ (D, R)
is a (R#D)-module via (a#d)f = p(a) - ¥i,;(d ® f). By proposition 2.2.30, the
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homomorphism
R ®@g¥ Modc (D, R)¥int — Modc(D, R) (2.2.10)

is injective. Let aj,...,4, € R be linearly independent over RY and
suppose that there are by,...,b;, € R, not all equal to zero, such that
Y po(bi)p(a;) = 0. Since Y' 1 po(bi)p(a;) is the image of the non-zero ele-
ment Y ; a; ®po(b;) € R@gy Modc (D, R) under the injective homomorphism
(2.2.10), this is not possible.

If p(aq),...,p(an) are linearly independent over R and there arecy, ..., c, €
RY such that Y, c;a; = 0, then it follows Y-"_; po(c;)o(a;) = 0 and thus ¢; = 0
foralli =1,...,n. Thus, (2) implies (1).

If R is a field, the equivalence of (1) and (3) is proven in [Ama05, Proposi-
tion 3.1.6]. O

Definition 2.2.34. Let D be a C-bialgebra and R be a commutative D-module alge-
bra. Then R is Artinian simple (or AS) if R is simple as D-module algebra and

Artinian as a ring.

Definition 2.2.35. Let D be a C-bialgebra and S/ R be an extension of commutative

Artinian simple D-module algebras.

(1) If B is a subset of S, we denote by R(B) the smallest Artinian simple D-module
subalgebra of S containing R and B.

(2) We say that S is finitely generated over R as Artinian simple D-module alge-
bra if there exists a finite subset B of S such that S = R(B).
2.3 Examples

We close this chapter with a list of examples of bialgebras, which illustrate the
introduced concepts. The cocommutative ones serve as a pool giving rise to

particular instances of our Galois theory (see chapter 3).
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2.3.1 Endomorphisms

Endomorphisms on algebras can be considered as module algebra structures
for the bialgebra generated as algebra by one groupe-like element. This ap-
peared already in [Swe69, Section 7.0, Example a) on page 139].

Proposition 2.3.1. (1) The polynomial algebra C|t] over C becomes a C-bialgebra
with the usual C-algebra structure and with comultiplication

A:Clt] = C[t]®@c C[t], At) =t

and a counit
e:Clt] = C, e(t) =1

We denote this C-bialgebra by D, .

(2) For every C-algebra A there is a bijection between the set Algc (A, A) of endo-
morphisms of the C-algebra A and the set of D, z-module algebra structures on
A.

Proof. The assertion of the first part is easy to verify. The bijection in the
second part is given as follows: If o € Algc(A, A) we define a homomorphism
of C-modules ¥y: D,y ®c A — A by ¥Yo(t"®a) = 0"(a) for all n € N
and all a € A. Since ¥ (" ® ab) = ¢"(ab) = 0" (a)c"(b) = L) Yo ((t")1 @
a)¥s((t"), @) forall a,b € A and n € N, the homomorphism of C-modules
Y, defines in fact a D,,;-module algebra structure on A. Conversely, for a
D,,s-module algebra structure ¥: D,,;; ®c A — Aon Awe definecy: A — A
by oy (a) =¥ (t®a) foralla € A. From oy (ab) =¥(t®ab) =¥ (t®a)¥(t®
b) = oy (a)oy(b) we see that oy is an endomorphism of the C-algebra A. The

maps defined by these assignments give rise to the desired bijection. O

We note that for any C-algebra A the set AN of maps from IN to A becomes
a C-algebra with componentwise addition and multiplication and that there

exists a natural endomorphism . of AN defined by

(Z())(n) = f(n+1) (2.3.1)
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for all f € AN and all n € N. By proposition 2.3.1, the D,,;-module algebra
structure ¥;,; on Mod¢(D,,4, A) defined in lemma 2.2.16 gives rise to a C-
algebra endomorphism ¢ of Modc(D,,4, A) which is given by (¢(f))(¢") =
f(t"*1) for f € Modc(Dgyg, A) and n € IN when we identify D,,; with C[t]
as in proposition 2.3.1. It is easily seen that there is an isomorphism of C-
algebras Modc (D,pq, A) — AN given by sending f € Modc (D,pg, A) to (n +—
f(t")) € AN, This isomorphism is in fact an isomorphism of difference rings*,

i.e. the diagram

Modc (Dpna, A) —— AN

bk

MOdC(Dend/ A) — AN

commutes. From proposition 2.3.1 together with lemma 2.2.18 we obtain
for any endomorphism ¢ of A a homomorphism of D,,;-module algebras
p: A — Modc(Dgpg, A). The composition A LR Modc (Dppg, A) = AN is the
so called universal Euler homomorphism, defined by a — (n +— 0¢"(a)), that
S. Morikawa and H. Umemura use in their general difference Galois theory
(Mor09], [MUO09)).

2.3.2 Automorphisms

Automorphisms can be described as module algebra structures in a similar
way as endomorphisms. We replace the bialgebra D,,; = C[t] by the localiza-
tion C[t,t 1] where t is still a group-like element (and thus ¢! is group-like

too).

Proposition 2.3.2. We denote by Dy, the C-bialgebra underlying the Hopf algebra
structure on the coordinate ring C[Gy,] of the multiplicative group scheme Gy, over
C (see for example [Wat79, Section 1.4]). For every C-algebra A there is a bijection

A difference ring is defined as a pair consisting of a ring and an endomorphism of this ring.
Morphisms between difference rings are homomorphisms between rings that commute with the
endomorphisms on them.
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between the set of C-algebra automorphisms of A and the set of Dgy-module algebra

structures on A.

Proof. We recall that the C-bialgebra structure on Dyt = C[Gp] =2 C[t, t71] is
given by the usual C-algebra structure on C[t,t 1] and the C-coalgebra struc-
ture defined by A(t) := t ® t and ¢(t) := 1. If ¢ is an automorphism of the
C-algebra A, we define a homomorphism of C-modules ¥Y,: Dyt @c A — A
by ¥(#" ®a) := ¢"(a) for all n € Z and all a € A. As in the proof of propo-
sition 2.3.1 we see that ¥, defines a D,,;-module algebra structure on A.
Conversely, for a D;,;-module algebra structure ¥: Dyt ®c A — A on A we
define oy: A — A by oy(a) := ¥(t®a) for all a € A. Then oy is an auto-
morphism of the C-algebra A with inverse given by oy !(a) = ¥(t~! ® a) for
all a € A. The maps defined by these assignments give rise to the desired

bijection. 0

For any C-algebra A, the set AZ becomes a C-algebra with componentwise
addition and multiplication and there exists a natural automorphism X of
AZ defined by (%(f))(n) = f(n+1) for all f € AZ and all n € Z. By
proposition 2.3.2, the Dgy-module algebra structure ¥;,; on Modc(Daut, A)
gives rise to an automorphism ¢ on the C-algebra Modc(Dgayt, A) given by
(p())(t") = f(t"1) for all f € Modc(Daut, A) and all n € Z when we
identify Dgyu with C[t,¢t7!] as in proposition 2.3.2. There is an isomorphism
of C-algebras with automorphism (Modc(Dayt, A),¢) — (A%,%) given by
sending an f € Modc(Dgut, A) to (n — f(t")) € A%. By proposition 2.3.2
together with lemma 2.2.18, we obtain for any automorphism ¢ of a C-algebra
A a homomorphism of D,y-module algebras p: A — Modc(Dgaut, A). The
composition A LN Modc (Daut, A) = A% sends an element a € A to the map
from Z to A that sends n € Z to 0" (a).

2.3.3 Groups acting as algebra endomorphisms

Proposition 2.3.3. Let G be a group.
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(1) The group algebra CG over C becomes a cocommutative bialgebra with comulti-
plication A: CG — CG ®c CG and counit e: CG — C given as the C-module
homomorphisms defined by

Alg) =g®g and &(g) =1
for every g € G.

(2) For any commutative C-algebra A the set of CG-module algebra structures on
A is in bijection with the set of left actions of G as automorphisms on the C-
algebra A (i.e. homomorphisms of groups G — Algc (A, A)).

Proof. The first statement is trivial. For the second, we note that if ¥: CG ®c
A — A is a CG-module algebra structure on A, then g.1 = ¥(g®a) for
g € G and a € A defines a left action of G on A as automorphisms of C-
algebras. If conversely G x A — A,(g,a) — g.a is a left action of G on
A as automorphisms of C-algebras, then the homomorphism of C-modules
¥: CG®cA — A defined by ¥(¢g®a) :=gaforge Ganda € Aisa CG-
module algebra structure on A. These assignments are inverse to each other
and yield the bijection. O

We note that for every commutative C-algebra A there is a natural action
of G from the left on the C-algebra [[;cc A (with componentwise addition

and multiplication) given by

Gx[TA—=TIA (g(an)nec) = (ang)nec-
geG g€G

Considering the CG-module algebra (Mod¢(CG, A), ¥;,;) as C-algebra with
left action of G as automorphisms of C-algebras via proposition 2.3.3, one

immediately sees that

Modc(CG,A) — [T A, fr— (f(8))gec (2.3.2)
geG
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is an isomorphism of C-algebras with left G-action. If a left action of G as
automorphisms on the C-algebra A is given, then the composition of the ho-
momorphism p: A — Modc(CG, A), associated to the corresponding CG-
module algebra structure on A via the isomorphism (2.2.1), with the isomor-

phism (2.3.2) is the homomorphism of C-algebras A — [],cc A sendinga € A
to (g.a) ¢€G-

Remark 2.3.4. In the case G = Z the C-bialgebra CZ is isomorphic to C[G].
Since left Z-actions on a commutative C-algebra A correspond to automorphisms of
the C-algebra A, proposition 2.3.3 specializes to proposition 2.3.2 in this case.

2.3.4 Derivations

Derivations can be seen as module algebra structures for a certain bialgebra.
This idea appeared in [Swe69, Section 7.0, Example b) on page 139], where the
author defined more generally so called g-derivations, where g is a group-like

element.

Proposition 2.3.5. We denote by D,,, the C-bialgebra underlying the Hopf-algebra
structure on the coordinate ring C[G,| of the additive group scheme G, over C (see for
example [Wat79, Section 1.4] or [DG70, Chapitre 11, §1, 2.2]). For every C-algebra
A, there is a bijection between the set Derc(A) of C-derivations on A and the set of
D 4.,-module algebra structures on A.

Proof. We recall that the C-bialgebra structure on D, = C[G,] = C]t] is given
by the usual C-algebra structure on C[t] and the C-coalgebra structure with
comultiplication A: C[t] — C[t] ®¢ C[t] defined by A(t) :=t®1+1®t and
counit : C[t] — C defined by ¢(t) := 0. If 9 is a C-derivation on A, then we
define

Yy: Dger @c A — A, Yy(t" ®a) :=9"(a)
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foralln € N and all 2 € A. Then obviously A is a Dj,,-module via Y5 and

Y5 measures A to A since

Y5 (t" @ ab) = " (ab)

5 (e

- ¥ <n>‘i’a(t”1®a)‘l’a(t”2®b)

ni+ny=n ny
and
Yot ©1) = 0"(1) = b0 = e(t")1.

If, conversely, ¥ € Mod¢ (D, A) defines a Dy,,-module algebra structure on
A, then we define dy: A — A by dy(a) := ¥(t®a) for all a € A. Then
dy is C-linear and fulfills the Leibniz rule since A(t) = t® 1+ 1® t. These

assignments give rise to the asserted bijection. O

Recall that for every commutative C-algebra A the formal power se-
ries ring A[x] carries a natural derivation 9y defined by 9x(},cn anx") :
= Yen annx" ! for all ¥, anx™ € A[x]. By proposition 2.3.5, the D~
module algebra structure ¥;,;; on Mod¢(Dg,,, A) gives rise to a C-derivation
dint on Modc(Dg,,, A), which is given by (3;,:(f))(t") = f(t"*1) for all
f € Mod¢c(Dger, A) and all n € IN. If A includes Q, there is an isomorphism
of differential C-algebras

(Modc (Dger, A), dint) — (Alx], 9x),  f = Z]Nf(t)

By proposition 2.3.5 together with lemma 2.2.18, every C-derivation d on a
C-algebra A gives rise to a homomorphism of D ,,-module algebras from
(A, ¥y) to (Modc(Dyey, A), Yint)- Thus, if Q C A, the composition

(4,8) —2— (Mod¢ (Dyger, A),3is) —— (A[x], 3x)

62



2.3. Examples

9" (a) X",

is a homomorphism of differential C-algebras given by a +— } e =

This is the iterative derivation associated to d, which H. Umemura calls uni-
versal Taylor homomorphism in his differential Galois theory [Ume96a].

If, however, A is of positive characteristic p, then Modc(Dy,,, A) is not
reduced. For example f € Mod¢(Dg,,, A) defined by f(t/) =1 and f(#") =0
for m # p fulfills f7 = 0.

2.3.5 Higher derivations

Higher derivations can also be understood as module algebra structures. In
the univariate case (n = 1) this idea already appears in [Swe69, Section 7.0,

Exercises 1) and 2) on page 140].

Proposition 2.3.6. (1) For n € IN we denote by Dypn the free associative (non-
commutative) C-algebra with generators 8% for k € IN" \ {0} and denote
1 € Dypn also by 0©). Then Dypn becomes a cocommutative C-bialgebra
with comultiplication A: Dypn — Dypn ®c Dypn and counit e: Dgpn — C
defined as the homomorphisms of C-algebras such that

A0 = Y o) @ok)  and (0K =60 forall k € N
k=ki+kz
(2.3.3)
(2) For every commutative C-algebra A there is a bijection between the set HD{:(A)
of n-variate higher derivations on A over C (see chapter 1) and the set of Dypn-
module algebra structures on A.

Proof. By the universal property of the free associative algebra C({(¥) | k €
IN"\ {0}}) (see [Bou70, IIL.2, p. 22, Proposition 7]) there exist unique homo-
morphisms of C-algebras A: Dypn — Dypr ®c Dypr and €: Dypr — C such
that (2.3.3) holds. It is easily seen that A and &€ make Dypr into a coassocia-
tive, counital and cocommutative C-coalgebra. Since by definition A and ¢ are
homomorphisms of C-algebras, Dyp» becomes a cocommutative C-bialgebra.

For the proof of the second part, we note that we obtain such a bijection
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by assigning to an n-variate higher derivation 6 on A over C with compo-
nents® (%) the homomorphism of C-modules ¥: Dypn ®c A — A defined by
0%) @ a+— (k) (a) for all k € N" and all a € A, and by assigning conversely to
a Dypn-module algebra structure ¥: Dypr ®c A — A on A a higher deriva-
tion 8: A — A[t] on A over C defined by 8(a) := Yenr ¥ (0K @ a)tk for all
ac A. O

Remark 2.3.7. For every i € {1,...,n} the sequence (§(9)) o in Dypn is a
divided power sequence over 8(°) € Dypn, as defined for example in [Haz78,
38.2.1].

2.3.6 Iterative derivations

Iterative derivations can also be regarded as module algebras. The bialgebra
used here appears in the univariate case (n = 1) for example in [Mon93,
Example 5.6.8], where the author shows that this bialgebra is in fact a Hopf
algebra.

Proposition 2.3.8. (1) For n € N we define Dipn as the free C-module with basis
{6%) | k € N"}. On Dypn a C-algebra structure can be defined by

1:=00 (2.3.4)

o) g(l) (" Z l>g<k+l> (2.3.5)

for all k,1 € IN". Furthermore, Dipn carries a C-coalgebra structure with
comultiplication A and counit € given as the homomorphisms of C-modules
defined by

A(O%)) = Y g(k1) g glk2)
ki+ki=k

and
5(9(k>) = 0k

5By abuse of notation we use the symbol () for both, the components of the n-variate higher
derivation 6 and for certain elements in Dypn.
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for all k € IN". In this manner Dipn becomes a commutative, cocommutative
C-bialgebra.

(2) For every commutative C-algebra A there exists a bijection between the set
IDE(A) of n-variate iterative derivations on A over C and the set of Dipn-

module algebra structures on A.

Proof. We first note that the multiplication (2.3.5) is associative, since

plkn) (glka) glka)) — <k2k+ k3) p(ko) plkz +ks)

2
_ k1 + ko + k3 ko + k3 9(k1+k2+k3)
k1 k>
_ k1 + k2 + k3 9(k1+k2+k3)
k1'ky'ks!

_ k1 + ko ki1+ky + ks 9(k1+k2+k3)

k1 ks
= ki + ko g(k1tkz) g(ks)

k1
— (9("1)9("2))9("3)‘

Obviously Djpr is commutative and 0 is a unit for this multiplication. So
Dip» becomes a commutative C-algebra. It is easily seen that A and ¢ make
Dipr into a coassociative, counital and cocommutative C-coalgebra. We show

that A and ¢ are C-algebra homomorphisms. For ¢ this is clear and for A this
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follows from

A(@(k))A(Q(l)) - 2 Z (g(kl) Q g(kz))((g(h) ® g(lz))
ki1+tky=k l1+1>,=1

R (TR
1 2

ki t+ko=k i +Io=1

_ ("“) Y o) g gl
k pmt+pa=k+lI

_ (kLY et

= ("¢ )

_ A(p® g1

for all k,I € IN". Therefore, D;p» is a commutative and cocommutative C-
bialgebra.

Let 0 be an n-variate iterative derivation on a commutative algebra A over
C with components (8(%));cnn.® We define a homomorphism of C-modules
Y: Dipn @c A — A by ¥(0%) @a) := 6K)(a) for all k € N” and a € A.
One immediately checks that ¥ defines a Djp»-module algebra structure on
A. Conversely, given a Djp»-module algebra structure ¥: Dipn ®c A — A on
A, we define an n-variate iterative derivation 6: A — A[t] on A over C by
0(a) = Ypene F(0W) @ a)tk foralla € A. O

We recall that for any commutative C-algebra A there is a natural n-variate
iterative derivation 6; on A[t] = A[ts,...,ta] over C (cf. example 1.2.5).
Considering the Djpr-module algebra (Modc(Dipn, A), ¥int) as an n-variate
iterative differential ring over C via proposition 2.3.8, we note that there is an
isomorphism

(Modc(Dipr, A), ¥int) — (Alt].6), fr Y f6®)EF (236)
kelN"
of n-variate iterative differential rings over C. Using proposition 2.3.8 and

lemma 2.2.18, we obtain for every n-variate iterative derivation 6 € ID{:(A) on

6Again, by abuse of notation we use the symbol 0" for both, the components of the n-variate
iterative derivation 0 and for certain elements in Dpn.
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A over C a homomorphism of Djpr-module algebras p: A — Mod¢(Djpn, A)

and the composition
A—" Modc(Dipn, A) —— A[#]
is again the iterative derivation 6 itself. By abuse of notation we sometimes

identify p and 6 using the isomorphism (2.3.6)

2.3.7 o-derivations

We can also describe o-derivations in terms of module algebra structures.

First, we recall their definition (see for example [And01, 1.4.1]).

Definition 2.3.9. If A is a C-algebra and o an endomorphism of A, then a map

0: A — Ais a o-derivation on A over C if

d(a+b)=0(a)+a(b),
d(ab) = 9d(a)b+ o (a)d(b) and
o(Aa) = Ad(a)

hold for all a,b € Aand A € C.
Proposition 2.3.10. (1) The free associative (non-commutative) C-algebra
Dy-der = C<U/a>

with generators o and d becomes a C-bialgebra with coproduct A and counit
e given by the C-algebra homomorphisms A: Dy gop — Dy ger ©c Dyger and
€: Dy_gey — C defined by

Aloc)=0c®0, A0Q)=0®14+0®09, e(c)=1 and €(d)=0.
2.3.7)

The C-bialgebra D, _4,, is neither commutative nor cocommutative.
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(2) If Ais a C-algebra, then there is a bijection between the set of pairs (,d), where
o is an endomorphism of the C-algebra A and 9 is a o-derivation on A over C,
and the set of D_g,,-module algebra structures on A.

Proof. We first note that by the universal property of the free associative
(non-commutative) C-algebra C(c,d) (see for example [Bou70, IIL.2, p. 22,
Proposition 7]) there exist unique homomorphisms of C-algebras A: D,_j,, —
Dy ger ©c Dyger and e: Dy, — C fulfilling (2.3.7). Because of

(A®id)oA(Q) =0R1®1+0®IR1+0R0®d = (id ®A) o A(J)
(A®id)oA(r) =0 @0 @0 = (Id®A) o A0),

the comultiplication A is coassociative. From the equations

(e®id)oA(d) =€(0) ®1+¢(r) R =1®0,
(id®e) o A(d) =0®e(l) +o®e(d) =0®1,
(e®id)oA(r) =¢(0) @0 =1® 0 and
(id®e)oA(r) =0®e(0) =0c®1

we see that ¢ is a counit with respect to A on C(c,d). But if 7 is the twist
homomorphism on D, 4, ®¢ Dy_ger interchanging the factors, then T o A(9) =
TO0®1+0®0d) =1®0+0®0c # A(d), so the C-bialgebra C(c,d) is not
cocommutative.

To prove part (2), let o be an endomorphism of the C-algebra A and
d a o-derivation on A over C.” We define a C-module homomorphism
Y¥: Dygor @c A — A by ¥([T, o%icti @ a) = ([T, 9%c"i)(a) foralla € A
and m,ky,...,ky,nq,...,n, € N. Then it is clear that ¥ measures A to A and
that A becomes a D,_j,,-module via ¥. If conversely ¥: D, 4, c A — A
is a Dy ge,-module algebra structure on A, then 0: A — A, defined by

o(a) =Y¥(c®a) for all a € A, is an endomorphism of the C-algebra A and

7By abuse of notation, we use the symbols ¢ and 9 for both, the elements of D4, and the
endomorphism ¢ and the o-derivation 9.
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d: A — A, defined by d(a) := ¥(0®a) for all 4 € A, is a o-derivation on A
over C. O

Later, when defining the infinitesimal Galois group of an extension of D-
module fields, where D is a C-bialgebra, we assume that D is cocommutative.

This assumption excludes D, _g,,.

2.3.8 g-skew iterative o-derivations

C. Hardouin introduced so called iterative g-difference operators and developed
a Picard-Vessiot for iterative g-difference equations in [Har10]. We show how
these operators can be understood in the context of D-module algebras. More
precisely, we introduce a bialgebra describing g-skew iterative o-derivations. It
turns out that the iterative g-difference operators introduced in [Har10] are a
special case of g-skew iterative o-derivations.

We first recall some g-arithmetical notation. We define in the polynomial
algebra C[4] over C for n € N

lg=14q+ -+ =

The g-factorial of n will be defined as
[O]q! =1 and [n]q! = H[’]q for n > 0.

Finally, we define §-binomial coefficients for natural numbers m,n € IN by

[]! _
<n> :: WM if m<n,
AR if m > .

They are in fact polynomials in § with integer coefficients (see [Kas95, Propo-
sition IV.2.1 (a)])
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Lemma 2.3.11 (4-Vandermonde identity). For k,1,i € IN with i < k41 the

identity
SIREARIIS
P g =i N/ \R/g
holds.
Proof. See for example [Kas95, Proposition IV.2.3]. O

For every commutative C-algebra A and every g € A there is a unique
homomorphism of C-algebras from C[4] to A sending 4 to q. We denote by
i respectively.

We recall the definition of iterative g-difference operators given in [Har10,

Definition 2.4].

[nlg, [n],! and (Z)q the images in A of [n];, [n],! and (;,)

Definition 2.3.12. Let 0 be the endomorphism of C(t) defined by

(aq(f)) () = f(qt)

for all f € C(t) and let (A,0y) be a commutative difference extension ring of
(C(t),05).8 An iterative g-difference operator on A is a family (61));cn of maps
from A to itself fulfilling the following properties for all i,j € N and all a,b € A

(1) 6© =id,

oy —id

1) _
(2) 07 = gy

(3) 69 (a+b) =50 (a)+60(b),
(4) 89 (ab) = Ty i1 077 (600 (2))00) (1),

(5) 810 060 = (777) ),

8By abuse of notation, we denote the endomorphisms of A and of C(t) both by o;.
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Actually, iterative g-difference operators are a special instance of the
more general g-skew iterative o-derivations, which generalize both g-skew o-
derivations and iterative derivations. These are a special case of g-skew
higher derivations, which again are a special case of higher c-derivations (see
[Hay08]). Here we restrict ourselves to g-skew iterative o-derivations, which

cover many interesting cases. We first recall the definition (cf. [Hay08]).

Definition 2.3.13. If A is a commutative C-algebra and q € C, then a g-skew
iterative o-derivation of A consists of a C-algebra endomorphism o € CAlgc(A, A)
and a family of maps 6%): A — A for all k € N such that

1) 60 =id

2) 00)g = gioh)

(3) 6 is C-linear

4) 60 (ab) = Y5, 4i,—; 02 (600 (a))612) (b)
(1) 0 g = (I17y gli+))

(5) 00 00U) = (*17) gli+)

forall i,j € IN and all a,b € A. A homomorphism of commutative C-algebras
with g-skew iterative o-derivations from (A, oy, (91(41))1‘611\1) to (B, o, (Gg))ieN) is
a homomorphism of C-algebras f: A — B such that f(ca(a)) = op(f(a)) and
f(GS)(a)) = Gg)(f(a))for alla € Aandalli € N.

Remark 2.3.14. (1) For any g-skew iterative o-derivation we obtain from the C-
linearity of 0\ and o that 0 (q) = 0 for all i > 0 and o(q) = q, respectively.

(2) If (6W);cp is an iterative g-difference operator with respect to 0y such that all
50 are C-linear, then this is a g-skew iterative Uq—derivation. This follows from
[Har10, Lemma 2.6].

(3) There are different definitions of q-skew (iterative) o-derivations. For example
in [Cau03] the condition (2) in definition 2.3.13 is replaced by the relation
a0 = g0Wq (though only classical q-skew o derivations are treated there
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and not g-skew iterative o-derivations). Having the example of a q-skew oy-

derivation associated to a g-difference operator oy in mind (i.e. the map oMW in

definition 2.3.12), we prefer our convention.

Proposition 2.3.15. For every q € C the following hold:

(1) Let Dip,, be the quotient of the free associative (non-commutative) C-algebra
C{o}y U {0 | i € N}) generated by o and 6\ for i € N modulo the ideal I

that is generated by
00 -1,
6o — qiae(i)
and
)gl) _ (iﬂ) oli+)
q

1

foralli,j € IN. It becomes a C-bialgebra with comultiplication

A: Dip,, — Dmp,, ®c Dip,,

and counit
& DIDLW — C
defined by’
Alo) =00
A(OD) = Y o29(i1) g g(i2)
i+ip=i
and
e(o) =1
(01 == 6;9

for all i € IN, respectively.
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(2) For any commutative C-algebra A, the set of q-skew iterative o-derivations on

A is in bijection with the set of Dip, ,-module algebra structures on A.

Proof. We first define homomorphisms of C-algebras

A: CHoyu{e¥ i e N}) — c({e}u{s¥ |ie NY)ocC{otu{e®|iecN})

and
e: C{o}u{) |ieN}) —C
by
Alo)=c®0, AOY):= ) o200 ©92)  forallie N
iy +ip=i
and

eo) =1, €)= dip forallie N,
respectively. We show that the image of I under the composition of
C({ehu{o [ieN}) — C{{eyu{e? |ie N}) @c Cl{o}u{e" | i€ N})
with
C{{eyu{e? |ieN}) @cC{eyu{? |ie N}) — D, ® D,
which we denote by A, and under
e: C{rru{0¥|ie N}) —C

is zero and thus these homomorphisms factor through Dip,,. In fact, using
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lemma 2.3.11, we have

A(eMgl)y = A(s
= ( o2 ®9(12)> ( Y o2l ®9(]2)))
iy ip=i j1tj2=]j
Z gi2giath (ll +]1> gliiti) g (iz—'kj2> gliz+72)
iy +ip=i q 2 q
Jiti=]
. qz‘laiz)(?‘) <? ) oo® & 0
k+I=i+j h/q\12/4
iy Hig=i
= Y <kﬂ> oo @ oM
k+l=i+j N b /q

—A <<l+]) 9(i+j)> ,
/g

Agio) = giA()A(6)
=q(c®o) Y o29(i) g gli2)
i=iy+ip
2 qi1gi2+1g(i1) ® qizgg(l’z)
i1 +ip=i
i1+ip=i

= A(0%0)

and
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We also have
e(0000)) = e(00)e(81)) = 8,080 = (ZT j>q5i+j,0 —¢ ((1 jj)qeﬁﬂ')) ,
s(qio.g(i)) _ qig(a)g(g(i)) = 5o = s(g(i))g(g) - g(g(i)g)
and
e(00) =1=¢(1)

and so A and ¢ factor through Djp oo We denote the induced homomorphisms
of C-algebras Dip,, — DID,W ®c DIDM and DIDM — C again by A and ¢,

respectively. Because of

(A®id) o A(G(i)) = (A®id) < Z o2p(i) ®9(i2)>

i +ip=i

— Z Alo26()) @ §(2)

i]+i2:i
_ Z (a-iz ®¢Ti2) ( Z oi2glin) g 9(i12)> ® 0i2)
i1 +ip=i i1 +ip=i
_ 2 oi3tiagli) g oi3g(i2)  glis)
i1+i2+i3:i
_ Z o2pi) & ( Z oizglia1) ®9(i22)>
i1 +ip=i iy=ip +ip
— (id ®A) ( Z oi20() ®9(i2)>
i1 +ip=i

= (id @A) o A(81))
foralli € N and

(A®id)oA(r) =0@0c Q0
= (id ®A) o A(0),
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the comultiplication A is coassociative. Furthermore,
(e@id)oABD) = Y e(c200))p)

i1 +ip=i

= Yy 5i],09(i2)
i1t+ir=i

— g0

= Z (Tize(il)‘siz,o
i1 +ip=i

= (id ®e) o A(6\)

and
(e®@id) o A(0) = e(0)o = 0 = ve(0) = (id ®e) o A(0),
so that £ is a counit for A. This completes the proof of the first part.

The proof of part (2) is analogous to other structures treated before. We
just note that the properties (1), (2) and (5) in definition 2.3.13 correspond to
the relations (2.3.8), (2.3.9) and (2.3.10), respectively, while the property (4)
and the fact that ¢ is an endomorphism of C-algebras are expressed by the

C-coalgebra structure on D Do O

Proposition 2.3.16. For any commutative C-algebra A and any q € C, let AN[x] be
the ring of non-commutative formal power series ¥ ;o X' f; with coefficients f; € AN
and with relations fx = x¥L.(f) for f € AN, where ¥. denotes the shift endomorphism
on AN (see equation (2.3.1)). On AN[x] a g-skew iterative o-derivation is given by
the endomorphism = on AN[x] defined by

) (Z x"fn) =) X"q"S(fn).
n>0 n>0
and maps 019 from AN[x] to itself defined by
A (Z x%) = (1)
n>0 n>0 4 q

foralli € Nand ¥,~0x"f, € AN[x].

76



2.3. Examples

Proof. Letn,m € N and f,¢ € AN, First, the map £ is multiplicative, since
S(x"fx"g) = T(x"TME"(f)g)
= "R (£)Z(g)
= x"q"2(f)x"q"L(g)
= (") (x"g)-
Using lemma 2.3.11 we have for all i,j € N
2 21‘2(9(i1)(xnf))9(iz)(xmg): 2 iiz ((7’1) xni1f> <m> xmfizg
= i i1 ip
11+1p=1 11+i=1 q q

— 2 (n) <m> q(”*il)izxﬂ*ilzizU)xm*izg
q

i1)\1i2/,
_ (Vl —L_ m) anrm*iZm(f)g
q

=0 (¢ (f)g)
=00 (x" fx™g)

il +i2:l

and

and so we see that £ together with (§()),c is a g-skew iterative o-derivation
on AN[x]. O

Proposition 2.3.17. For any q € C and any commutative C-algebra A there is
an isomorphism of C-algebras with g-skew iterative o-derivations (with AN[x] as
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defined in proposition 2.3.16)
Q: MOdC(DIDWﬂA> EEAAN AIN[[x]],

defined by @(f) = Yo x'(n — F(e0D)Y) forall f e Modc(Dip,,, A)-

Proof. Obviously ¢ is C-linear. It is also multiplicative since for f,g €
Modc (D, A) we have

p(fle(g) = (Z X (n f(a”e(il)))> (Z X2 (n — g(U"Q(iZ)))>

i1>0 ip >0

= 2 xi1+i22i2(n N f(U'nQ(il)))(n s g(a”Q(iZ)))

i1,i>0

=) X142 (g f(o" 290 (00(R)))

i1,ip>0

=) x(n— (fg)(e"6"))

i>0

= ¢(fg)-

From

¢(o.f) = ;xi(n — f(o"0"0))

K (n = f(o"H100))

v
o

|
M

¢(f))
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and

6 (p(f)) = 6V (Z X (n f(0'”9(i)))>

ingl

—@()l (n— f(e"09))
(

ingl

l+]) n»—>f( n91+]))

i>0

= Y xi(n e f(o” <i4jr]'>q9(i+j)))

i>0

=Y ¥(n— f(c"0Pe0)))

i>0

=9(0.)

for all f € Modc(Dip,,, A) we obtain that ¢ is a homomorphism of C-algebras
with g-skew iterative o-derivation. It is clear that ¢ is an isomorphism since
Dip,, is a free C-module with basis {0 | i,n € N}. O

The composition
AL Modc(Dip,,, A) —— AN[x]

is a homomorphism of C-algebras with g-skew iterative o-derivations that
generalizes the corresponding homomorphisms in subsection 2.3.4 (in the case
of characteristic 0) and in subsubsection 2.3.6. When we compose this homo-
morphism with the homomorphism

AN — Alx], Yo x'fi— ) xfi(0)

i>0 i>0

we obtain a homomorphism A — A[x], which in the case of iterative g-
difference operators is closely related to the homomorphism T defined in
[Har10, Definition 2.15].
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2.3.9 D-rings

In [MS09] R. Moosa and T. Scanlon introduce Hasse systems D and, given
such a Hasse system, they define D-rings, generalizing rings with higher
derivation as introduced in chapter 1. They also introduce iterative Hasse
systems and, given such an iterative Hasse system D, they define iterative
Hasse rings. We show that to every iterative Hasse system D there is canon-
ically associated a cocommutative C-bialgebra D such that iterative D-rings
and D-module algebras are in bijection to each other. We refer to [MS10] and
[MS09] for notation concerning Hasse systems D and D-rings.

Remark 2.3.18. Although the authors do not specify it, we assume that all ring
schemes occurring in the definition of Hasse systems are commutative.

Proposition 2.3.19. Let D = (Dy),eN be an iterative Hasse system over C with
respect to A = (Agy )t Dimsn — Din))mpnenN (see [MS09, Definition 2.1 and
2.13]). Then
D = lim D,(C)",
nelN

where we denote by D, (C)* the dual Modc (D, (C),C) of the C-module D, (C),
becomes naturally a cocommutative C-bialgebra and for every commutative C-algebra
R there is an isomorphism of C-algebras

Modc (D, R) 2 lim Dy (R). (2.3.11)
nelN

Proof. We denote the transition maps of D by 71y, : Dy — Dy, forall m,n € IN
with m > n. The structure of a commutative C-algebra on D,(C) induces a
structure of a cocommutative C-coalgebra on the dual D, (C)* for all n € IN
and the homomorphisms of C-algebras 77, (C): D;,(C) — D, (C) induce ho-
momorphisms of C-coalgebras 7, ,(C)*: Dy (C)* — D,,(C)* forming a direct

system in the category of C-coalgebras. These C-coalgebra structures induce a
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C-coalgebra structure on D = lim D, (C)*, which again is cocommutative.
—n

EN
We recall that there is a canonical isomorphism

D(n,n)(C) = D (C) @c Du(C) 23.12)
(cf. [MS10, Remark 4.10]). The homomorphisms of C-algebras

A(m,n)(c> ~
Dern(C) E— D(m,n) (C) _— Dm(c) ®c Dn(c)

induce homomorphisms of C-coalgebras

~ * A mn (C)*
Din(C)* ©c Du(C)* — Dy (€)F —5 Dy (C)*

for all m,n € IN. These give rise to a homomorphism of C-coalgebras
m: D®cD — D,
which makes the diagram

m

D ®&cD D

I A(m,n) (C)* [

Dim(C)* @¢c Du(C)* ——— Dyyn(C)*

commutative for all m,n € IN. The homomorphisms of C-algebras
7Tn,0(C): Du(C) — Dy(C) =C

give rise to homomorphisms of C-coalgebra C — D, (C)* and thus ton: C —
Dy, (C)* — D (this composition does not depend on n € IN). From the prop-
erties of iterative Hasse systems (cf. [MS09, Definition 2.13 (b)]) we see, using
implicitely the isomorphisms (2.3.12), that the diagram

Anm(C)®cid
Dy (C) @c Dy (C) @¢ Dy(C) ¢+~ Dyim(C) @c Dy (C)

An+m,1(c)1\
(©

Dn+m+l(c)

id ®CAm,l (C)W

D (C) @c Dyu11(C)

An,erl
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commutes for all m,n,I € N and thus dually the inner rectangle of

m®id

D®D®D D®D
* * * Ann(C) @id * /
Dy(C)* @D(C) @DY(C)* ~—— Dy m(C)*@DY(C)
id ®@m J{id ®Am,l (C)* J{Arwm,l (C)* m
* * A",m+l (C)* "
Dy (C)* @Dy 41(C) Dy m41(C)
/ " \

D®D D

commutes too (all tensor products are over C). From the universal property of
the direct limit we obtain that the outer rectangle also commutes, i.e. that m
is associative. Again by the properties of iterative Hasse systems (cf. [MS09,
Definition 2.13 (a) and (c)]), the diagram

~ A(O,m) (C):id
C ®c Dm(c) D D(O,m) (C> —— Dm(c)
nn,O(C)®C7rm,m(C)W n(;z,m),([),m)(c)w 7T11+m,m(c)[
A(n m) (C)

Dn(C) K¢ Dm(c) % D(n,m) (C) — Dn+m(c)‘
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commutes for all m,n € IN. Therefore, dually the inner rectangles of

~

C®D D

\ (C)*=id /

~ Q(O,m) "
CR®Dy(C)* ———— D(gm)(C)" —— Dy (C)

—
o

n®id ‘/nrl,O(C)*@)Cnm,m(C)* Jn(n,m),(o,m)(c)* ‘/ﬂn+m,m(c)*
)*

~ A n,m (C
Dy (C)* @Dy (C)* — D) (C)F 5 D,y (C)F

~

D®D D

commute and, again by the universal property of the direct limit, the outer
rectangle commutes too. This means that # is a left unit for the multiplication
m. Similarly, one can show that # is a right unit. Finally, for every commuta-

tive C-algebra R we have

Modc(D, R) = Modc(lim D,(C)*, R)
nelN
= Jim Modc (D, ()", R)
nelN
= lim D,(C) @ R
nelN
o lin Dy (R).
nelN

O

Remark 2.3.20. Let D = (Dy)neN be a Hasse system over C. Then there is a
bijection between the set of D-rings as defined in [MS09, Definition 2.2] and the set

of pairs (R, E) where R is a C-algebra and E: R — lim _ Dy(R) is a C-algebra

N
homomorphism such that the composition R 5 lim _ Dn(R) — Do(R) = Ris
the identity on R.
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Proposition 2.3.21. Let D be an iterative Hasse system over C and D =
lim D, (C)* the associated C-bialgebra (see proposition 2.3.19).

“—neN""
(1) If (R,E) is an iterative D-ring over C with E = (E,: R — Dy(R))nenN (see
[MSO09, Definition 2.2 and 2.13]), then to E there is associated canonically a
D-module algebra structure p: R — Modc (D, R) on R and the diagram

lim . Dy(R)

—neN "

R%

T

Modc (D, R)

is commutative, where the vertical arrow is the isomorphism (2.3.11) from
proposition 2.3.19 and the homomorphism E: R — lim _ Dy (R) is induced
by the homomorphisms E,: R — Dy (R) (see remark 2.3.20).1°

(2) Conwversely, to every commutative D-module algebra (R, p) there is canonically

associated an iterative D-ring structure on R.
The constructions in (1) and (2) are inverse to each other.

Proof. Given an iterative D-ring (R, E), we define p: R — Mod¢(D, R) as the
composition
E .. ~
R £ 1im Dy(R) = Modc (D, R).

neN
Then the diagram
R —E—slim _ Du(R) —>— Modc (D, R)

Dy(R) ————=— Modc (D, (C)*,R)
J{ﬂn,o(R) J{MOdc(ﬂn,o(C)*rR)
R d R

10By abuse of notation we use E for both, the homomorphism R — lim _ Dyu(R) induced by
the E,, and for the family (E;),eN-
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commutes. Furthermore, by the definition of the multiplication m of D, the

diagram
R lim Du(R) __~__, Mod(D, R)
r\ meN
En /
R —— Dp(R)
E J/Ener D(En) lim D (E) Mod (D, E)
A(m § meN
Dn+m % (m, n)(R)
!iLnD (R) lln D(m,n) (R) ~ Mod (D, lim Dy (R))
nelN n,meN nelN
~ yLan(R)(@R,Dn(R) ~
n,meN
Mod (m,R ~
Mod(D,R) od(m k) Mod(D®cD,R) —+ Mod(D,Mod (D,R))

commutes, where we denote Mod¢ by Mod for short. From the commutativity

of these diagrams we obtain that p: R — Mod¢ (D, R) is a D-module algebra

structure on R.

If, conversely, p: R — Mod¢(D, R) is a D-module algebra structure on R,

then for every n € IN we define a homomorphism of C-algebras E,: R —

Sy [ ~ .
Dy(R) as the composition R — Modc(D,R) — lim _

N Du(R) — Dy(R).

Then by definition the maps E, fulfill the relations E,;, = 7y,,(R) o E;, for

all m > n and Ey = evy, op = idg. Consequently, the family E = (E;),eN

defines a D-ring structure on R. Since p defines a D-module algebra structure,
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the inner rectangle in the diagram

R D (R)
R b Modc (D, R)
Entm lp lMOdC(D/P) D (En)
Modc(m,R)

Modc (D, R) ——Modc (D, Modc (D, R))

/ Dmn \
() D

Dy+m(R)

(m,n) (R)

commutes, and thus also the outer for all n,m € IN. This means that (R, E) is
an iterative D-ring.

Using the identification described in remark 2.3.20, we see that the passage
between the iterative D-ring structure E on R and the D-module algebra struc-

en Pr (R) =

Modc (D, R) and its inverse. Therefore, the constructions in (1) and (2) are

ture p on R is given by composition with the isomorphism lim

inverse to each other. O

In [MS09] the authors do not define morphisms between D-rings over C.
Though, if D = (Dy),en is a Hasse system over C and (R,E) and (S, F)
are D-rings, then a morphism from (R,E) and (S,F) can be defined as a
homomorphism of C-algebras ¢: R — S such that D, (¢) o E, = F, o ¢ holds
for all n € IN. Then a homomorphism of C-algebras ¢ is a morphism of D-
rings if and only if the induced morphism lim _ Dy(¢): lim . Dy(R) —
lim o Dy (S) fulfills Fo ¢ = lim Du(¢) o E.

If D is an iterative Hasse system over C and D is the C-bialgebra associated
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to D by proposition 2.3.19, then the diagram

lim _ Du(R) —~— Mod¢(D, R)

——ne

JI}EM Dale) JModdD,w
lim . Du(S) —— Modc(D,S),

commutes, where the horizontal arrows are the isomorphisms from propo-

sition 2.3.19. So we see that there is a bijection between homomorphisms

between the iterative D-rings (R, E) and (S, F) and homomorphisms between

the D-module algebras R and S. Together with proposition 2.3.21 we see that

the category of D-rings and the category of commutative D-module algebras

are isomorphic.
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Chapter 3

The infinitesimal Galois group

In this chapter we define a normalization £/K for a given extension of D-
module fields with certain properties. Using this normalization, we define
a functor of infinitesimal deformations and the infinitesimal Galois group
functor. The former turns out to be a principal homogeneous space for the
infinitesimal Galois group. We also give a definition of Lie-Ritt functors and
show that the infinitesimal Galois group is a Lie-Ritt functor and thus a formal

group scheme.

Notation: Let C be a commutative ring and D be a cocommutative C-bialgebra.
Let L be a D-module field via ¥ € Modc(D ®c L, L) and K a D-module subfield
such that the field extension L/K is separable and finitely generated'. We denote
the homomorphism of D-module algebras associated to ¥ via the isomorphism (2.2.1)
by p: L — Modc(D,L). Let u = (uy,...,u,) be a separating transcendence ba-
sis of L/K, 0, be the associated n-variate iterative derivation on L over K (see ex-
ample 1.2.4) and ¥, € Modc(Djpr @c L, L) the corresponding Dipn-module field
structure on L (see proposition 2.3.8). Furthermore, we denote the trivial D-module
algebra structure on L (see lemma 2.2.15) by Yo and the homomorphism associated to

Y via the isomorphism (2.2.1) by po. If nothing else is mentioned, then we consider

1Under these conditions a separating transcendence basis of L/K exists (see for example
[Bou81, Chapitre V, §16.7, Theorem 5]).
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3. THE INFINITESIMAL GALOIS GROUP

Modc (D, L) as a D- and Djpn-module algebra with the D-module algebra structure
Yt introduced in lemma 2.2.16 and the Dpn-module algebra structure induced from
Y, on Mod¢(D, L) by lemma 2.2.22, which we also denote by ¥ ,,.

3.1 The rings £ and K associated to L/K

In this section we define two rings, £ and K, which are associated to the
extension of D-module fields L/K. The passage from L/K to £/K can be
interpreted as a normalization process. The motivation for this is explained in
the articles [Ume06] and [Ume07].

Lemma 3.1.1. The Djpn-module subalgebra po(L){p(L)}w, of Modc(D, L), gen-
erated by p(L) over po(L), is independent of the separating transcendence basis u of
L/K.

Proof. Let v = (vy,...,v,) be another separating transcendence basis of L/K
and ¥, be the Djp»-module algebra structure corresponding to the n-variate

iterative derivation 8, on L (see example 1.2.4). We have

po(L){o(L) }¥, = po(L)[Yu(Dipr @c p(L))]

and
po(L){p(L) b, = po(L)[¥o(Dipn @c p(L))]

by lemma 2.2.7. Thanks to corollary 1.3.7 there exist for every k € IN"
elements ¢; € L for all I € IN", almost all equal to zero, such that
Qi(,k) =Y leNn ck,19,(,l). Therefore, we obtain pg(L){p (L) }¥, = po(L)[¥o(Dpr ®
p(L))] € po(L)[¥u(Dipr ® p(L))] = po(L){p(L)}¥,. By symmetry, the claim
follows. O

Definition 3.1.2. We define KC as the subalgebra po(L)[p(K)] of Mod¢ (D, L), gen-
erated by po(L) and p(K), and L as the Dpn-module subalgebra po(L){p(L) }w, of
Modc (D, L), generated by po(L) and p(L).
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Lemma 3.1.3. The L-algebras K and L are D ®c Dipn-module subalgebras of
Modc(D,L).

Proof. Since K is a D-module subfield of L, the image p(K) of K under
the homomorphism of D-module algebras p: (L,'¥) — (Mod¢(D,L), ¥iu)
is a D-module subalgebra of (Modc(D, L), ¥;,;). The image po(L) of L un-
der the homomorphism pg is a D-module subalgebra of (Modc(D, L), ¥;,),
since it consists of constants. Since the elements of K are constant with
respect to ¥, and K is a D-module subfield of L, the image p(K) con-
sists of constants with respect to ¥, and is thus a Djp»-module subalgebra
of (Modc(D,L),¥y). By lemma 2.2.24, the image po(L) is a Djps-module
subalgebra of (Mod¢(D,L),¥,). Since D ®c Djp» measures Modc(D,L) to
itself, we see that K is a D ®c Djpn-module subalgebra of Modc(D,L).
Furthermore, it is clear that the C-subalgebra of Modc(D, L) generated by
¥, (Dipr @c p(L)) is a Djprn-module subalgebra and it is also a D-module
subalgebra by lemma 2.2.23. Therefore, £ is also a D ®c Djp»-module subal-
gebra of Mod¢ (D, L), since D ®¢ Djpr measures Mod¢ (D, L) to itself. O

Lemma 3.1.4. The subalgebras po(L) and p(K) of K are linearly disjoint over
po(KY) and the multiplication homomorphisms of K induces an isomorphism of

D ®¢ Dipn-module algebras

pO(L) ®po(KW) p(K) — K.

Proof. We consider the extension of D-module algebras p(K) C K. Corol-

lary 2.2.31 implies that the multiplication homomorphism

p(K) X O(K‘}’) ICIY"” — ’C

o

is injective. Since KC¥int = po(L) by lemma 2.2.16, we obtain the injection

P (K) @ (k¥y po(L) — K, (3.1.1)
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which is surjective by definition of K. We note that in the tensor product
p(K) ®,, (k¥ po(L) the left factor consists of constants with respect to ¥4, and
the right, with respect to ¥;,;. Both factors are D ®@c Djp»-module algebras.
Obviously (3.1.1) is a homomorphism of D ®¢ Djp»-module algebras. O

3.2 Lie-Ritt functors

Lie-Ritt functors have been introduced by H. Umemura in [Ume96a]. The
infinitesimal Galois group that we define below turns out to be a Lie-Ritt
functor, like those defined by H. Umemura and S. Morikawa. Since we do
not restrict the characteristic to be zero, we have to adapt the definition of
H. Umemura by using iterative derivations instead of classical derivations.
We state some basic properties of Lie-Ritt functors, most of which are stated
in [Ume96a]. For the sake of simplicity, proofs there are sometimes just given

in the case n = 1, so we include complete proofs here.

Definition 3.2.1. Let A be a commutative ring and n € IN. We define the set of all

infinitesimal coordinate transformations of n variables over A as
Tu(A)={®=(9)i1,..n € (Alx])" | ¢ = xi mod N(A)[x] ¥ i=1,...,n},
where we denote (x1,...,x,) by x.
In the following we show that I',(A) carries a group structure.

Lemma 3.2.2. Let A be a commutative ring. For elements ® = (¢1,...,¢n) and
Y = (¢1,...,¢n) in Ty(A) the composition ®o¥ = (¢1(F),..., ¢n(¥)) is well
defined and an element of T',,(A).

Proof. Since ¥(0) and ®(0) are both elements of N(A)", the elements i; and
@; are topologically nilpotent in A[x] fori =1,...,n (see [Bou81, Chapter IV,
4.2, Corollary]). Thus, by [Bou81, Chapter IV, §4.3, Proposition 4], ¥ and &

define homomorphisms

Alx] = Alx],  xi— ¢i(x) and  Alx] — Alx],  xi— ¢i(x),
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respectively, which are continuous with respect to the (x)-adic topology and
are congruent to the identity modulo N(A)[x]. Therefore, their composition,
sending x; to ¢;(¥) for i = 1,...,n, is also a continous homomorphism of
A-algebras, which is congruent to the identity modulo N(A)[x]. In particular,
¢;i(¥) is well defined and congruent to x; modulo N(A)[x] fori =1,...,n. O

Lemma 3.2.3. Let A be a commutative ring and n € IN. Then for all ,¥,0 €
I'h(A) we have ®o (Fo®) = (Po¥)o0.

Proof. See [Bou81, Chapter 1V, §4, 3.]. O

We often make use of the following well-known fact, which we recall for

the reader’s convenience.

Lemma 3.2.4. Let A be a commutative ring, u € A* a unit and a € A such that

a=u mod N(A), then a is also a unit in A.

Proof. There exists an m € N such that (a — u)" = 0. Therefore,

"o . . m . .
0= Z < ‘>al(_u)m—1 — (_u)m +a Zaz—l(_u)m—z
i—o \'! i—1
and we see that a is invertible in A. O

The following lemma is similar to proposition 1.3.5. It is a restricted, but

also refined version of the formal inverse function theorem.

Lemma 3.2.5. For any commutative ring A and any ® € T',(A) there exists ¥ €
T, (A) such that ¥ o ®(x) = x.

Proof. Writing

®(x) = (p1(x), ..., @n(x)) = ( ) allkxk,..., ) an,kxk>

keIN" keN"

we see that (x1 —a19,..., X —an0) 0P = (Li=o allkxk, e Y ks0 an,kxk), and
so by lemma 3.2.3 we can assume that a;o = 0 fori=1,...,n. Since ai5; = 0ij
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mod N(A) fori,j=1,...,n we have det((ai,(gj)?jzl) =1 mod N(A) and thus
det((ai,‘;j)?]«zl) € A*. We are looking for an element

Y= (¢1,...,9n) = ( Z cllkxk,..., Z cn,kxk> ely(A)

keIN”" keN"
such that forallA =1,...,n

l
n g
2 C)l ( Z ap,,kxk> = X\. (3.2.1)
H

IeIN" =1 \kelN"

This is equivalent to the following system of linear equations in the unknowns
{ear [ TeN"}

n 1 ifi=Jy,

X, cal D TTTT ok, = (3.22)

1eN" k1,1+""k1,ll +“'+kn,1+”'+kn,ln =ipu=1v=1 0 otherwise

for alli € N" and all A € {1,...,n}. Note that in this sum only terms with
1| < |i] occur, since if |I| > |i| then in the decomposition ki + - - - + ky ;, +
<+ +ky1+- -+ kyy, of i at least one k,, must be zero and 4,9 was assumed
to be zero. Therefore, we can construct a solution for (3.2.1) by solving by
induction on « the equations (3.2.2) in the unknowns {c,; | |I| = x} for all i
with |i| =k and all A € {1,...,n}. From (3.2.2) for i = 0 we obtain cj o = 0
for all A = 1,...,n. By induction we assume that for some x the elements
(eA1) 1)<k A=1,..,n are solutions of (3.2.2) for [i] < k. We have to solve the
equations (3.2.2) for all i with |i| = x in the unknowns c, ; with |I| = x and
A € {1,...,n}. This is a system of linear equations with coefficient matrix D =
. 1
(Di) il = 1=« 81ven by Dyt = Y ooty 4tk g 4ot =i L=t Ty Bk
for all 4,1 € N" with |i| = |I| = . Since
1 mod N(A) ifky, = dy
Ay k » =
o 0 mod N(A) otherwise,
we have D;; = 6;; mod N(A) for all i, € IN" with |i| = |l|] = x. So
det ((Di,l)\i\:|l|:x) =1 mod N(A) and thus det(D) € A%, i.e. D € GL,(A).
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So we can uniquely solve this system of linear equations and obtain by induc-

tion on x a solution for (3.2.1). O

Proposition 3.2.6. Let A be a commutative ring and n € IN. Then the set T),(A)
carries a group structure with composition given by

Yo® = (¢i(e1,---, Pn))i=1,n (3.2.3)

for elements ¥ = (¢;)i=1, n and ® = (@;)i=1,n of Tn(A) and identity element
xeT,(A) C (Alx])™

Proof. By lemma 3.2.2, equation (3.2.3) defines a composition law on I',(A).
Since x o ® = & = P ox, the tuple x is a left- and right-unit and the lem-
mas 3.2.3 and 3.2.5 show that this composition law is associative and has left
inverses. Since the left inverses are also right inverses, the composition law
(3.2.6) makes I',(A) into a group. O

Definition 3.2.7. Let R be a commutative ring and n € IN. We define the Lie-Ritt
functor of all infinitesimal transformations of n variables defined over R as the
functor

I',r: CAlgr — Grp,

that has T, (A) as A-points for every commutative R-algebra A and for every ho-
momorphism ¢: A — B of commutative R-algebras we define T,z (¢): Tyr(A) —
I',r(B) to be the map induced by (¢[w])": (Alw])" — (Blw])".

Let R be a commutative ring and A a commutative R-algebra. We equip the
ring Afx] = A[xy,...,x,] with the n-variate iterative derivation 6: A[x] —
Afx][w] over A defined by

9(2 ajxj> . (I{)ajxfkwk

jEN™ k,jEN"

for all } ;e ajxj € Afx] (see example 1.2.5). We extend it to
Al{y} = Alx, - xa ™ i =1,k € N7
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and finally to the completion
AlI{{y}} = Alxy, .., x| i=1,...,n,k € N"].

with variables y(k) forie {1,...,n} and k € N" by

i
(M) . k+l> (k1) 1
0ly; )= ( y; w.
)= Ui )

We denote by A[x]{A[y]} the HD-subring of A[x]{{y}} generated by
Alx,y]. For F € A[x[{Aly]} and ® = (¢1,...,¢n) € T,r(A) C Alx]" we
) in F with 0 (), ie. if

i

define F|y:q> by replacing y

. k(i)
F= ¥ ad  JT (W) e Al{Al}
jeN" (i,0)€{1,....n} xN"
keN Loty XN
then
. k(i)
Fypoo= Y ¥ 1 (9“)(@)) € Alx].  (3.2.4)

{{EN:}xN" (i,1)e{1,...n}xIN"
keNtl

Definition 3.2.8. Let R be a commutative ring. A Lie-Ritt functor over R is a group
functor G on the category CAlgr isomorphic to a subfunctor of I'yg for some n € IN
that is defined by a HD-ideal of R[x]|{R[y]}, i.e. there is a HD-ideal I < R[x[{R[y]}
such that G(A) = Z(I)(A), where Z(1) is defined by

Z(I)(A) == {® € T,r(A) | Fyg = OV F € [}

for all commutative R-algebras A, where 14 denotes the HD-ideal generated by I in
Alx]{Aly]}?

Example 3.2.9. We define a subgroup functor G4 of 1z as

G (A) ={ap+x|ape NA)}

2In [Ume96a] Lie-Ritt functors over R are defined using ideals in R[x]{{y}}. Since the term
in (3.2.4) is not well defined for elements F € R[x]{{y}} in general, we change the definition.
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3.2. Lie-Ritt functors

for all commutative rings A. Let I be the HD-ideal in Z[x]{Z]y]} generated by
vy — 1 and y® for all k > 2. Then G is the Lie-Ritt functor over Z. defined by the
ideal 1. Furthermore, G is isomorphic to G, (see example B.2.5).

Proof. If A is a commutative ring and ¢(x) = Y;>ga;x’ € Z(I)(A), then 1 =
0 (p) = Yi>14;ix' !, and thus a1 = 1. For all k > 2 the ideal I contains y),
So we obtain 0 = 8 (¢) = Yisk (,i)al-xi_k and thus a; = 0. Since there are no
restrictions on ap € N(A), the claim follows. O

The analog of this example in the setting of H. Umemura appeared in
[Ume96a, Example 1.9 (i)]. Since he works over Q, it is sufficient to consider
the equation y(!) — 1. In the general case we have to add the equations y¥) for
k> 2.

Similarly, the result corresponding to the following proposition in the set-
ting of H. Umemura (which means in particular that the characteristic is zero)

can be found in [Ume%6a, p. 71].

Proposition 3.2.10. Let R be a commutative ring and n € IN. Given an n-
dimensional formal group law F over R, the associated group functor F (see re-
mark B.2.4) is isomorphic to the Lie-Ritt functor Z(1) C T'g defined by the HD-ideal

Ii= (00 (E(y, ¥ (2)) | k € N"\ {0} rpagaiyi)- (325)
where ¥ is as in lemma B.2.3.

Proof. Let A be a commutative R-algebra and ® € T';r(A). If H),_¢ = 0 for
all H € I, then we have in particular for all k € N" \ {0}

60 (F(®(x), ¥ (x))) = (60 (F(y, ¥(x)))) i)

This implies that there exists an a € A" such that

F(®(x),¥(x)) = a.

Since
a=F(®(x),¥(x)) =F(x,¥(x)) =0 mod N(A)[x],
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3. THE INFINITESIMAL GALOIS GROUP

it follows a € N(A)". Thus, we obtain a map 7 : Z(I)(A) — N(A)" by
sending @ to a.

Conversely, for a € N(A)" we define ®(x) = F(a,x). Then ®(x) =
F(a,x) = F(0,x) = x mod N(A)[x], i.e. ® € T,;g(A) and we have

F(®(x),¥(x)) = F(F(a,x),¥(x)) = F(a,F(x,¥(x))) = F(a,0) = a.

It follows (6%) (F(y, ¥(x))))|y=ax) = 00 (F(d(x),¥(x))) = 0 for all k €
IN"\ {0} and thus also H(®(x)) = 0 for all H € I4. Consequently, we obtain
amap N(A)" — Z(I)(A) that sends a € N(A)" to P.

Since F(F(a,x),¥(x)) = F(a,F(x,¥(x))) = F(a,0) = a for all a € N(A)"
and F(F(®(x),¥(x)),x) = F(®(x), F(¥(x),x)) = F(®(x),0) = ®(x) for all
®(x) € T,r(A), this map is inverse to 71 and we obtain a bijection N(A) =
Z(I)(A).

Finally, 7t is a group homomorphism: For ®;,®, € Z(I)(A) there are
a; € N(A)" such that F(®;,¥) = a; and thus ®;(x) = F(a;,x) fori = 1,2.
Consequently, we obtain (®1 0 ®,)(x) = F(ay, F(ay,x)) = F(F(ay,az),x), i.e.
(P10 Dy) = F(ay, az). O

It is easy to see that in the case of example 3.2.9 the generators of the ideal
I'in (3.2.5) are exactly y(l) —1and y(k) for k > 1.

Proposition 3.2.11. Every Lie-Ritt functor over a commutative ring R is isomorphic

to a formal group scheme over R.

Proof. First, we consider the Lie-Ritt functor I';r of all infinitesimal transfor-
mations of n variables defined over R. For every commutative R-algebra A we

have an isomorphism
~{1,..., IN"
Tur(A) —’A}{z ks (A), ( D ”i,kxk> '_’(”i,k_‘5k,5i)(i,k)e{1,...,n}x]1\fn
keIN™ i=1,...n

so that I',r is isomorphic to the formal scheme AI{{L"""}XN .
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3.3. The functor Fp /x of infinitesimal deformations

Let A be a commutative R-algebra and let ¥ = (¢,...,¢,) and ® =
(¢1,...,¢n) be elements of T,r(A). We write ¢; = Yenn a;xxF and 9; =
Ykeny bigx* foralli € {1,...,n}. Then for all I € IN" the coefficient of ! in

$i(P) is

n ky
2 bik X [T1Ta.s.,
keIN" 11,1,..4,11’]{1 oy 1oy fo ENT p=1v=1

k
Ty S

Thus, there exist formal power series (fi1)ie(1,.,n},1en in variables u;, v;k
with j € {1,...,n} and k € IN", coefficients in Z and constant term equal
to zero such that ¢;(®) = Yienn fi1((aj bj,k)(j,k)e{l,u.,n}x]l\l”)xl‘ The for-
mal power series (ﬁ,l>(i,l)€{1,...,n}><]N" give rise to a morphism Al{g""’n}XN X
A A{1,...n}xN" AL, n}xIN"
Ay — Ay

L} xIN?

of formal schemes over R, which defines a group
A1, n}pxIN"

such that Ay

over R. Then by construction the group functor I';r is isomorphic to the for-

) xIN?

law on AI{; becomes a formal group scheme
mal group scheme [’\g""

Now let G C T,r be an arbitrary Lie-Ritt functor over R and I <
R[x]{R[y]} be such that G(A) = Z(I)(A) for all commutative R-algebras
A Let® = (¢1,...,¢n) € Tur(A) and ¢; = Ygenn a;xx* foralli € {1,...,n}.
For h € I the condition h(®) = 0 is equivalent to a system of polynomial
equations (/1)) cp, among the coefficients a; ;. Thus, G is isomorphic to the

~A{1,...n}pxIN"
AR

closed formal subgroup scheme of defined by the polynomials

hy forallh € [ and A € Ay, O

3.3 The functor F} ,x of infinitesimal deformations

In the following we often consider subalgebras of the completed tensor prod-
uct
Mod¢ (D, L)®p Alw]

for commutative L-algebras A. If not mentioned otherwise, the L-algebra
structure on Mod¢ (D, L) is given by pg: L — Modc(D, L) and the one on
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3. THE INFINITESIMAL GALOIS GROUP

Alw] is given by the composition of ,: L — L]w] and L[w] — AJw] and
the completion is with respect to the topology on the tensor product induced
by the discrete topology on Modc (D, L) and the (w)-adic topology on Afw]
(see proposition A.2.1).

Lemma 3.3.1. Let A be a commutative L-algebra.

(1) There exists a D-module algebra structure on the completed tensor product
Mod¢ (D, L)® A[w] induced by the D-module algebra structure on the tensor
product Modc (D, L) ®p, A[w] that is induced by

(MOdC(D/ L)lTiﬂt) <p;0 (L/TO) L (A[[ZUH,\P()) (331)
via proposition 2.2.25.

(2) There exists a Dipn-module algebra structure on the completed tensor product
Mod¢ (D, L)®p Alw] induced by the Dipn-module algebra structure on the
tensor product Modc (D, L) ®1 A[w] that is induced by

(Modc(D, L), Modc (D, 8)) <2 (L, 64) — (A[w], 6)  (3.32)
via proposition 2.2.25.

These D- and Dipn-module algebra structures commute with each other so that we
obtain a D ®¢ Dpn-module algebra structure on Modc (D, L) & Alw].

Proof. By proposition 2.2.25, there is a unique D-module algebra structure on
Mod¢(D, L) ® Afw] such that this tensor product becomes the coproduct of
the diagram (3.3.1) in the category of commutative D-module algebras. The
ideals in Mod¢ (D, L) ®1 A[w] generated by (1 ® wk) for k € N" are D-stable
and thus ((Modc (D, L) ®1 AJw])/ (1 ® w*))renn forms an inverse system of

D-module algebras. By proposition 2.2.26, the inverse limit

Modc (D, L)& Alw] = lim (Modc(D, L) @1 Alw])/ (1 w*)
keN"
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3.3. The functor Fp /x of infinitesimal deformations

becomes a D-module algebra.

The proof of the second part is similar using the fact that continuous n-
variate iterative derivations extend to completions (see proposition 1.2.8).

It is clear the the D- and Djpr-module algebra structures commute with
each other. O

Lemma 3.3.2. For any commutative L-algebra A there exists an injective homomor-

phism of D ®c Dpn-module algebras

Jau: Modc(D,L)& AJw] — Modc (D, AJw]) (3.3.3)

Y. fi®aw' — Y Modc(D,6.)(fi) - po(aiw’),
icIN" icIN"

where we consider Mod¢ (D, A[w]) as D-module algebra via ¥;,; and as Dipn-

module algebra via the Dipn-module algebra structure induced by 6, on Alw] to
Modc (D, Alw]) via lemma 2.2.22.

Proof. We first consider the homomorphism
Mod¢ (D, L) @ A[w] — Modc(D, AJw]) (3.3.4)
that is given as the composition of

Modc (D/9u)®Po
s

Modc (D, L) ®; AJw] Modc (D, L[w]) ®1 Modc (D, A[w])

and the restriction of the multiplication map on Mod¢ (D, A[w])
Modc (D, L[w]) ®1 Modc (D, AJw]) —— Modc¢ (D, A[w]).

Since
Modc (D, 0,): Modc (D, L) — Modc (D, L[w])

and
po: Alw] — Modc (D, AJw])

are homomorphisms of D ®¢ Djp»-module algebras, where A[w] is equipped
with the trivial D-module algebra structure, Mod¢(D, 6,) ® po is one too by
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3. THE INFINITESIMAL GALOIS GROUP

proposition 2.2.25. Since D ®¢ Djp» measures Mod¢ (D, A[w]) to itself, m is
also a homomorphism of D ®c Djpr-module algebras. Therefore, (3.3.4) is a
homomorphism of D ®¢ Djpr-module algebras too. Using proposition 2.2.26
(2) we extend (3.3.4) to (3.3.3). Note that by corollary 2.2.31 the subalgebras
Modc (D, 6,)(Modc(D, L)) and po(A[w]) are linearly disjoint over po(6,(L)).
Thus, the homomorphism (3.3.4) is injective and so is (3.3.3). O

Notation: We denote by i: L — L& Aw] the homomorphism sending a € L to
a®1e L& Alw].

Definition 3.3.3. We define the functor
-7:L/K,u: CA|g|_ — Set

of infinitesimal deformations of i as follows: For a commutative L-algebra A we
define Fy ;x4 (A) to be the set of all homomorphisms

f: L — L& A[w]
of D ®c Dipn-module algebras such that the diagram

Modc(D,weu)

K€ L Modc (D, AJw])
1
L& Afw] Mode(D, 4 [w])
lﬂ/‘s,u
Modc (D, Afew]) 22PN s 4 (D, A/ N(A)[w])

commutes, where 7t4: A — A/N(A) denotes the canonical projection. If ¢: A — B

is a homomorphism of commutative L-algebras, we define

Friku(@): Friku(A) = Fryku(B)
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3.3. The functor Fp /x of infinitesimal deformations

by sending an f € Fy jk ,(A) to (idg ®pe[w]) o f. This is well-defined, since the
diagram

. Modc (Dseof) ModC(D,A[[w]])MM)MOdC(D'Bﬂwﬂ)
f kModc(D/ﬂAﬂwﬂ)

£ ALl OV g 0, AN Y)Y
id; &plw] i

L&, Bfw] Modc (D, 7 [w])opp,y

Modc (D, B/N(B)[w])

commutes, where p: A/N(A) — B/N(B) is the homomorphism of L-algebras in-
duced by ¢.

Our definition of the functor F} ,x of infinitesimal transformations differs
slightly from the definition of H. Umemura. Mainly, the target of the ho-
momorphisms we consider is L& A[w], while H. Umemura considers the
composition with 4 .

The functor Fi /k , is essentially independent of the separating transcen-
dence basis u of L over K. In fact, we have the following lemma, which
specializes to [Ume96a, Proposition 4.1] and [Mor09, Lemma 2.14] in the case
where the characteristic of K is zero and where the C-bialgebra D is equal to

D, (see subsection 2.3.4) and D,,; (see subsection 2.3.1), respectively.

Lemma 3.3.4. If u and v are separating transcendence bases of L/ K, then Fy k ,
and F /k » are naturally isomorphic.

Proof. By proposition 1.3.6, there is an automorphism ¢ of the L-algebra L[w]
such that ¢(w)—o = 0 and 906, = 6,. Then ¢ = ¢! also fulfills
$(w)|w—o, ie. @ is continous with respect to the (w)-adic topology. For
every commutative L-algebra A we extend 1 first A-linearly to an automor-
phism ¢4 of AJw] and then further Mod¢(D, L)-linearly to an automorphism
of Modc (D, L)&AJw], which we denote by idwoq. (p,r) @L¥a- It is easy to
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3. THE INFINITESIMAL GALOIS GROUP

see that this automorphism restricts to an automorphism of L& A[w], which
we denote by id; ®rpa. If f € F/k,(A), then the diagram

LR Alw] Modc Dralol)omns Modc (D, A/N(A)[w]).
id; &rya Modc (D, $a/n(a))

L& Alw] VS RGEN T Modc (D, A/N(A)[w])
f Modc (D, 4[w]) Modc (D, 7t [w])
L Mode(Dat) Modc (D, L[w]) y

/

id Modc (D,¢) /
L TR Modc (D, L[w])

commutes.®> We note that (id; @r¢4)o f: L — L& AJw] is a D ®c Dipn-
homomorphism, where the Djp»-module algebra structure on £ is given by
6, and the one on L& AJw] by 6,&0y. From the commutativity of the big
rectangle we obtain that (id; &) o f € Fr/x,(A) and thus a natural trans-
formation from Fj /g, to Fy /g ,. Similarly, by sending an f € F /x,(A) to
(idz ®r@a) o f € FL/ko(A), we obtain a natural transformation from Fp sk,
to F1/k», which is inverse to the other. O

If the characteristic of K is zero, the following proposition specializes to
[Ume96a, Lemma 4.5] and [Mor(09, Lemma 2.15] in the case where D = Dy,
and D = D, , respectively.

Proposition 3.3.5. For every commutative L-algebra A and every f € F x ,(A)
there exists a unique ® € T’y (A) such that for alla € L

flp(a) = k%ﬂ Modc (D, 85 (p(a)) ® (@ — w).

3Note that the L-algebra structures on the right factors in the two completed tensor products
at the top left are different. The one at the very top is given by 6,, while the one at second from
the top is given by 0.
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3.3. The functor Fp /x of infinitesimal deformations

Thus, we obtain an injective map Fk ,(A) — T,r(A) giving rise to a natural

transformation Fp ;g — Tpr.

Proof. Fori =1,...,n, we define
@i = evi,opay o fop(u;) —u; € Alw],

where evy,, : Modc (D, A[w]) — A[w] denotes the evaluation map at 1p € D.
Then @ = (¢1,..., ¢,) is an element of T',;; (A), since

@i = evy, oModc (D, wbu) 0 p(u;) — u; = w; mod N(A)[w].
We define two homomorphisms of C-algebras F,G: L — A[w] by
F:=evi,opuauofop
and
G = evy, oModc (D, o0y) © p.
Fora € Kwe have F(a) =a = G(a) and fori=1,...,n

G(Mi) = €evVi, OMOdc(D, @6,4) Op(l/li)
=ui+ @i
=uj+evy, opay o fop(u;) —u;

= F(u;).

So F and G coincide on K(u) and, since L is 0-étale over K(u), they also
coincide on L.

Finally, we show i4 , 0 fop = Mod¢(D, ¢0y) o p. Using that f, p, p4 , and
Modc (D, 8y) are homomorphisms of D-module algebras (see lemma 2.2.18
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and lemma 3.3.2) and that F and G are equal, we obtain

d.(pauofop(a)))(lp)
pauo fop(da))(lp)

(Hauo fop(a))(d) = (
= (
= (Mod¢(D, ¢04)(p(d.a)))(1p)
= (
= (

d.(Modc(D, 96u)(p(a))))(1p)
Modc (D, 96u)(p(a)))(d)-

Since

Hau ( Y Modc(D, 60 (p(a) ® (@ — w)") = Modc(D, o0u)(p(a))
keN"

and since 14 4, is injective, the claim follows. O

Lemma 3.3.6. Let A be a commutative L-algebra and f € Fp k., (A). If we denote
by e: AJlw] — A the homomorphism of A-algebras sending w; toQ fori=1,...,n,
then for any 0 # a € L the element Modc (D, €) o piay 0 f(a) € Modc (D, A) is not

zero. In particular, f is injective.
Proof. For 0 # a € L there exists ¢ € Mod¢ (D, N(A)[w]) such that
(Hau© f)(a) = Modc(D, wbu)(a) + ¢

and thus for any d € D we have (44, 0 f)(a)(d)p—0 = a(d) + c(d)|—o- If

Modc(D, €) o pay o f(a) would be zero, we would obtain a(d) = —c(d)|y—g €

LNN(A) = {0} for alld € D, i.e. a = 0 in contradiction to our assumption.
O

3.4 The infinitesimal Galois group

Definition 3.4.1. We define a functor

Inf-Gal(L/K): CAlg. — Grp
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as follows. For any commutative L-algebra A we define Inf-Gal(L/K)(A) to be the
group of automorphisms ¢ of the of D ®c Dpn-module algebra of L& Alw] that
make the diagram

K& Alw]— LELAw] —— 9 £&, A[w]

lid lfp ‘idﬁ Smalw]
id; &maw]

K& Alw]————— L& Alw] ———— L& (A/N(A))[w],
commutative. If A: A — B is a homomorphism of commutative L-algebras, we define
Inf-Gal(L/K)(A): Inf-Gal(L/K)(A) — Inf-Gal(L/K)(B)

by sending ¢ € Inf-Gal(L/K)(A) to ¢& Afw] 1dB[w], Where we consider B[w] as
Alw]-algebra via the homomorphism Aw]: AJw] — Blw].

Definition 3.4.2. For any commutative L-algebra A and any f € Fp/x,(A) we
define

Py L& AJw] — LEOLA[w]
as the extension of the homomorphism of D ®c Dipn-module algebras
(idg ®Lmyfp) © (f ®ridape)): £ @1 Alw] — LELAlw]

to the completion with respect to the (1 ® w)-adic topology, which again is a homo-
morphism of D ®c Dpn-module algebras (see corollary 2.2.27).

Lemma 3.4.3. For any commutative L-algebra A and any f € Fy ;i (A) the homo-
morphism
1/]f2 £®LA[[ZUH — £®LA[[W]]

is injective.

Proof. Let ¥ jenn §i ® a;w' be a non-zero element of £L&; AJw] and let ip € IN”
be minimal among all i € N" with the property that ¢; ® a;w’ # 0. We write

107



3. THE INFINITESIMAL GALOIS GROUP

Pr(Lient & ® a;w') = Y;enn hi ® byw', where the term of smallest possible
order that can occur is h;, ® b;,w". From lemma 3.3.6 we know that there
exists a d € D such that (Modc(D,€) o g o f(gi,))(d) # 0, where e: AJw] —
A is the homomorphism sending all w; to 0. In fact, this element is given as
the sum of g;,(d) and a nilpotent element from A and thus it is invertible in A.
Thus, we see that p4 (hi, ® a;,w™)(d) = (Modc (D, ) 0 pa © f(iy))(d) - aiyw'™
is non-zero in A[w]. In particular, h;, ® a;,w™ cannot be zero and thus Py is

injective. O
In order to prove lemma 3.4.6, we first need some other lemmata.

Lemma 3.4.4. Let A be a commutative ring and 6y, be the canonical n-variate
iterative derivation on A[w] with respect to w. Then for ¢(w) € A[w] and
P (w) € Afw]" with ®(0) € N(A)" we have

g@w)) = Y 0% (g(w))(@(w) — w)*.
keIN"

Proof. Since ®(0) € N(A)", the components of ®(w) are topologically nilpo-
tent in AJw] with respect to the (w)-adic topology. So writing ¢(w) =

Y jenn ayw! we have

Y 04 ((w)) (@(ew) — w)* = - ol ( D azw'> (®(w) —w)*

keIN" kelN” IeIN"

- & (£ afg) ) ot -wr

keN" \leIN"

=) ﬂl( D (,lc)wl_"(@(w)—W)")

leIN" keN"

= ) u(@(w))

leIN"
= §(P(w)).
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Corollary 3.4.5. For any commutative L-algebra A and any ® = & +w, ¥ =
Y +w € T, (A) we have for all | € N"

(¥'(@)' = ¥ o (et
keN"

Proof. By lemma 3.4.4 we have
1
(¥'(@)) = ( Y o (*Y’)df") = (o (¥) = arbo(¥) = 1 0 (¥
keN" keN"

O

Lemma 3.4.6. Let A be a commutative L-algebra. If f € Fp/k,(A) and ® €
T, (A) is such that

flo(@) = 1 Modc(D, 0 (p(a)) ® (@~ w)*

holds for all a € L (see proposition 3.3.5) and g: p(L) — L& A[w] is a map such
that

glp(a) = k%ﬂ Modc (D, 0) (0 (a)) ® (¥ — w)¥,

holds for some ¥ € Ty (A) and all a € L, then

proglp(a)) = I;Nn Modc(D,65)(p(a)) @ (D(¥) — w)'!

holds for all a € L.

Proof. With the notation ® = ® —w and ¥/ = ¥ — w, we have foralla € L,
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using ®(¥) —w =¥ + ®'(¥) and corollary 3.4.5,

(¥rog)(p(a) =y ( Y~ Modc(D,85)(p(a)) w’k)

keIN"

=y oW < Y ModC(D,e,S”)(p(a))@@”) 12¥")

keN”" 1eIN"
= L (Mode(D, 0 o 0 (p(a) @ ols® (@) ) iR
k1,kp,1€IN"

— Z <<k1;‘ l> Modc (D,()L(lkfrl)) (0 (11))@91(52)((1)’1)) (1®1Ir/k1+k2>
k1 kpleIN"

r (7
m,kz,IG]N” l

= ¥ Modc(D, 6 p(a) o ('} )yml@l )

m,leIN"

) Modc (D, 64™)(p(a)) ® 615 (@)™ ~'+1)

= ¥, Modc(D,0")(p(a)) @ (®(¥) — w)™.

nelN™

O

Corollary 3.4.7. Let A be a commutative L-algebra. If f,g € Fr x,(A) are such
that

flp(a)) = k%« Modc (D, 605) (0(a)) @ @'

and

glp(a)) = k%ﬂ Modc (D, 0$) (p(a)) © ¥

hold for all a € L with some ® = &' +w, ¥ = ¥Y' +w € I,1(A) (see proposi-
tion 3.3.5), then we have
k
(7o) (p(a) 1) = Y Modc(D,04)(p(a)) ® (B(¥) — w)*
keN”
foralla € L.

Theorem 3.4.8. For any commutative L-algebra A, the set Fy ;g ,,(A) is a principal
homogeneous space for the group Inf-Gal(L/K)(A).
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Proof. We define a map
Inf-Gal(L/K)(A) X Fr/ku(A) = Fr/xu(A)

by sending a pair (¢, f) € Inf-Gal(L/K)(A) x Fp/ku(A) to ¢ o f. This is in
fact well-defined: Since f and ¢ are D ®c Dip»-module algebra homomor-

phisms, so is ¢ o f. We consider the diagram

. ’ Modc(D,w0y) MOdC(DrA[[wH)

f Modc(D,7afw])

Modc (D, [w])opa,
—

Modc(Duwb)  LEpA[w] Modc (D, A/ N(A)[w])

9 id

Modc (D, taw])op
— %

Modc (D, A[w]) <2 L& Alw] Modc (D, A/N(A)[w]).

By definition of Fy g ,(A) and Inf-Gal(L/K)(A), the two squares on the
right commute. Since f(a) € K& AJw] for a € K and ¢ is a K& AJw]-
homomorphism, we have p4, 0@ o f(a) = pa, o f(a) = Modc(D, wbu)(a)
for all a € K, i.e. the rectangle at the left commutes too. Thus, ¢ o f is also
an element of 7 /k,(A). It is clear that this defines in fact an operation of
Inf-Gal(L/K)(A) on Fp k 4(A) from the left.

In order to show that this operation makes Fy ,x,(A) into a principal
homogeneous space for Inf-Gal(L/K)(A), we have to prove that for any
f € Fr/ku(A) there exists a unique automorphism ¢r € Inf-Gal(L/K)(A)
such that

Yroi=f, (3.4.1)
wherei: L — L& Alw] is the homomorphism defined before definition 3.3.3.
The automorphism ¥y of the D ®¢ Dps-module algebra L& Alw] in defini-
tion 3.4.2 fulfills (3.4.1) by definition and by lemma 3.4.3 it is injective. It

remains to show that ¢ is unique and that it is an automorphism. By propo-
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3. THE INFINITESIMAL GALOIS GROUP

sition 3.3.5, there exists a ® € I';;(A) such that foralla € L

k
flp(@) = 3 Mode(D,0.)(p(a)) @ (& —w)*
keN"
We define ¥ as the inverse @1 of ® in the group I',;; (A). We claim that the

assignment

pla) — kz Modc (D, 04)) (p(a)) @ (¥ — w)*
cN"

defines a K-homomorphism g: £ — L& Alw] of D ®c Djpr-module alge-
bras. Since L is differentially generated by p(L) over K with respect to the
n-variate iterative derivation 6,, we only have to show that this is well-defined,
ie. thatif F € K{Xy,...,Xm}D o 18 a differential polynomial with coefficients
in K such that F(p(ay),...,0(am)) = O for certain elements ay,...,a, € L,
then F(g(p(a1)),...,8(p(am))) vanishes too. By lemma 3.4.6, we have

proglp(a)) =pa)®1

foralla € L. Since s isa K& Alw]-homomorphism of D ®¢ Djps-module

algberas, we obtain

Yr(F(g(p(ar)), ..., 8(p(am)))) = F(prog(p(ar)), ..., prog(p(am)))
=F(p(m)®1,...,p(am)®1)
=0

Because ¢ is injective by lemma 3.4.3, it follows

F(g(p(a1)),...,8(p(am))) =0

and thus g: £ — L& A[w] is a well-defined homomorphism of K-algebras.
It is clear that g is a homomorphism of D ®¢ Dipr-module algebras. By corol-
lary 3.4.7, i, is the inverse of Py, ie Py isan automorphism. The homomor-
phism ¢ is unique with the property that ¢s(a ® 1) = f(a) foralla € L, since
elements of Inf-Gal(L/K)(A) are determined by their values on £ ® 1. O
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3.4. The infinitesimal Galois group

Remark 3.4.9. In [Ume96a, Theorem 5.10] the author shows that F| ;i is a principal
homogeneous space for Inf-Gal(L/K). The operation defined there is an operation
from the right, while ours is from the left.

Corollary 3.4.10. For any commutative L-algebra A there is an isomorphism
Inf-Gal(L/K)(A) < Fr,xu(A)
given by
¢ poi
Yr—f

This isomorphism is functorial in A, i.e. we obtain a natural isomorphism of Set-

functors on the category CAlg

Inf—Gal(L/K) = */TL/K,u-

Proposition 3.4.11. There exists an ideal I < L[x]{L[y]} such that
Frrku(A) = Z(1)(A)
for any commutative L-algebra A.

Proof. Proposition 3.3.5 provides for every commutative L-algebra A a map
from Fy /g ,(A) to Ty (A). We have to show that there exists an ideal I such
that its image is of the form Z(I)(A). Since £ = K{p(a) | a € L}v,, we have

£2K{X,|a€Lyp/]
with
J = {F(Xa ., Xa,) € K{Xa | @ € Lhpy | Fp(ar), ., p(an)) = 0}.
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3. THE INFINITESIMAL GALOIS GROUP

Elements f € Fj,k,(A) are determined by their values on p(a) with
a € L. If ® € T, (A), then there exists an f € Fp/k,(A) such that
f(o(a)) = Lgenn Modc(D,05)(o(a)) @ (® — w)k for all a € L if for all
F(Xa,---,Xa,) € ] we have

pMedc(Dwbu) (Modc (D, 64) (p(a1)), - .., Modc (D, o84 ) (0 (am))) = 0.
We define for F(Xg,,...,X,,) € J and d € D an element F; € L[w]{L[®]} as
Fyi= FMOcDt) Modc (D, o6,) (0 (1)), ., Modc (D, o) (0 (an) ().

Then the image of F /x, in T, is given as Z(I), where I is the ideal generated
by F; for all F € | and all d € D. In the notation of definition 3.2.8, the
variables w; correspond to x; and ¢; corresponds to y; foralli € {1,...,n}. O

Corollary 3.4.12. The functor Inf-Gal(L/K) is a Lie-Ritt functor over L.

Proof. For any commutative L-algebra A we obtain from corollary 3.4.10 and
proposition 3.4.11 an ideal I < L[x]{[y]} and isomorphisms

Inf-Gal(L/K)(A) = Frxu(A) = Z(I)(A).
The composition is a group homomorphism by corollary 3.4.7. O

Corollary 3.4.13. The infinitesimal Galois group Inf-Gal(L/K) is a formal group

scheme.
Proof. This follows from corollary 3.4.12 and proposition 3.2.11. O

Example 3.4.14. If Y is the trivial D-module algebra structure on L, then L = K =
po(L) and both Fy ;g and Inf-Gal(L/K) are trivial.
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Chapter 4

Picard-Vessiot theory

In this chapter we consider finitely generated Picard-Vessiot extensions L/K
of D-module fields in the sense of K. Amano and A. Masuoka (JAMO5]). For
such an extension we give a description of the extension of algebras £/K
associated to L/K, as defined in chapter 3, and show that there is a close
connection between the Galois group scheme Gal(L/K) of the Picard-Vessiot
extension L/K, as defined by K. Amano and A. Masuoka, and the infinitesimal
Galois group Inf-Gal(L/K) of the extension L/K.

Notation: Let C be a commutative ring and D be a cocommutative C-bialgebra.
Although many results hold more generally, we assume additionally, as in [AMO5],
that D is a pointed Hopf-algebra and that the irreducible component D' is of Birkhoff-
Witt type. Given an extension of commutative D-module algebras R C S, we denote
by Autp(S/R) the group of automorphisms of the D-module algebra S that leave R
fixed.
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4. PICARD-VESSIOT THEORY

4.1 Picard-Vessiot extensions of Artinian simple module

algebras

We recall the definition of Picard-Vessiot extensions of commutative Artinian
simple module algebras and basic properties of finitely generated Picard-
Vessiot extensions from [AMO5]. Alternative references for this material are
[Ama05] and [AMTO09].

Definition 4.1.1. An extension of commutative Artinian simple D-module algebras
(L,pr)/ (K, pk) is Picard-Vessiot if the following hold:

(1) The constants LPL of L coincide with the constants KPX of K.

(2) There exists an intermediate D-module algebra (R, pr) of K C L such that the
total quotient ring Q(R) of R is equal to L and such that the KPK-subalgebra

H = (R Rk R)PR@PR
of R ®k R generates R ®k R as left (or equivalently right) R-algebra, i.e.

R-H=R®gR (orH-R=R®gR).

Proposition 4.1.2 ([AMO5, Proposition 3.4]). Let (L,pr)/(K,pk) be a Picard-
Vessiot extension of commutative Artinian simple D-module algebras with constants
k:= LPL = KPK and (R, pr) and H be as in definition 4.1.1. Then the following hold:

(1) The intermediate D-module algebra (R, pr) satisfying condition (2) in defini-

tion 4.1.1 is unique.
(2) The homomorphism
#: (ReyH,pr ®po) — (R®k R,pr @ pr), a®@h— (a®1)-h (4.1.1)
is an isomorphism of D-module algebras.
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4.1. Picard-Vessiot extensions of Artinian simple module algebras

(3) The k-algebra H carries a Hopf-algebra structure induced by the R-coalgebra
structure on R ®k R, given by the counit

&:R®KkR —R, a®bw— ab
and the comultiplication
A: Rk R — (R R)@g (R®kR), a®@b— (a®1)®(1®Db).
The antipode S on H is induced by the twist map

T: R R —> R®kR, a®b—bRa.

Definition 4.1.3. If L/K is a Picard-Vessiot extension of commutative Artinian sim-
ple D-module algebras, then R and H in definition 4.1.1 are called the principal
D-module algebra and the Hopf algebra of a Picard-Vessiot extension L/K, re-
spectively. If we want to indicate R and H, we denote the Picard-Vessiot extension
L/Kalsoby (L/K,R, H).

Definition 4.1.4. If (L/K,R,H) is a Picard-Vessiot extension of commutative
Artinian simple D-module algebras, then we define the Galois group scheme
Gal(L/K) of L/K to be the affine group scheme Spec H over the constants K¥ = LY.

Remark 4.1.5. Let (L/K, R, H) be a Picard-Vessiot extension of commutative Ar-
tinian simple D-module algebras with constants k = LY = K¥. Then for any
commutative k-algebra A the A-points of Gal(L/K) = Spec H are isomorphic to the
group of automorphisms of the D-module algebra (R ®y A, p & po) that leave K @y A
fixed (see [AMO05, Remark 3.11]).

Theorem 4.1.6 ([AMO5, Theorem 4.6]). If (L, p1)/ (K, px) is a Picard-Vessiot ex-
tension of commutative Artinian simple D-module algebras that is finitely generated
as Artinian simple D-module algebra, then there exists a matrix X € GL, (L) such
that L = K(X) := K{{x;; | i,j € {1,...,n}}) and for every d € D the coefficients

117



4. PICARD-VESSIOT THEORY

of (X)X~ are in K. Furthermore, the principal D-module algebra R of L/K is of
the form
R=K[X, X Y]

and the Hopf algebra H of L/K is of the form
H=kX'o1)(1eX),(12X ) (Xx1),

where k.= 1¥ = K¥.1

4.2 The general Galois theory in the linear case

In this section we examine the extension £/K defined in chapter 3 in the
case where L/K is a finitely generated Picard-Vessiot extension of D-module
fields and compare the infinitesimal Galois group Inf-Gal(L/K) with the Ga-
lois group scheme Gal(L/K) of L/K as defined by K. Amano and A. Masuoka
in [AMO5].

Lemma 4.2.1. Let (L/K, R, H) be a Picard-Vessiot extension of D-module fields such
that L/ K is separable and finitely generated as a field extension. Let u = (uq, ..., uy)
be a separating transcendence basis of L/ K. Then the subring of Mod¢ (D, L) gener-
ated by po(L) and p(L) is closed under the extension Modc (D, 6,,) of the n-variate
iterative derivation 0, from L to Modc(D, L) (via lemma 2.2.22) and po(L) and
(L) are linearly disjoint over the field of constants k := LY = K. We thus have an
isomorphism

L =po(L)[p(L)] = po(L) @k p(L) (4.2.1)

of D-module algebras. Similarly, po(L)[p(R)] is closed under the extension of 0, and
po(L) and p(R) are linearly disjoint over k, i.e.

o(L)[o(R)] = po(L) ® p(R). (422)

1Usually such a matrix X € GL, (L) is called fundamental solution matrix.
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4.2. The general Galois theory in the linear case

Proof. By theorem 4.1.6, there exists a matrix X € GL, (L) such that L = K(X),
R = K[X,X"!] and such that d(X)X~! € M,(K) for all d € D. Thus,
the element Z := p(X)po(X)~! lies in GL,(Modc(D,K)). Therefore, and
since K[o(X),0(X)7!] = K[Zpo(X),00(X)"1Z71] = K[Z,Z71], we see that
po(L)[p(R)] = K[p(R)] = K[p(X),p(X) 1] is closed under the Djpr-module
algebra structure on Mod¢ (D, L) induced by 6,,.

Since p(L) = Quot(p(R)), it is sufficient to show that the images
Modc(D, 0,)(a) of non-zero elements a of p(R) are invertible in (po(L)[o(L)]) [w].
Since formal power series are invertible if and only if their constant term is
invertible and since the constant term of Mod¢ (D, 6,)(a) is the non-zero (and
hence invertible) element a € p(L), we see that Mod¢ (D, 0, )(a) is invertible in
(po(L)[p(L)])[w]. Thus, po(L)[p(L)] is closed with respect to the Djp»-module
algebra structure induced by 0,,.

We consider p(L) as subalgebra of L. It follows from corollary 2.2.31 that
p(L) and po(L) are linearly disjoint over k and thus that £ and po(L) ®¢ p(L)
are isomorphic as D-module algebras. The linear disjointness of po(L)
and p(R) over k and thus the isomorphism (4.2.2) also follows from corol-
lary 2.2.31. O

The following lemma is well-known in the Picard-Vessiot theories of dif-

ferential and difference equations.

Lemma 4.2.2. Let (L,p)/ (K, px) be a finitely generated Picard-Vessiot extension of
commutative Artinian simple D-module algebras with field of constants k := LPL =
KPK. If X € GL,(L) is such that L = K(X) and (dX)X~! € M,(K) forall d € D
(see theorem 4.1.6), then for all commutative k-algebras A and all automorphisms
o of the D-module algebra (L ® A, pr ® po) fixing K @y A there exists a matrix
Cy € GL,((L ®f A)PLEP0) such that
r(X®1)=(X®1)C,s
and the map

Autp(L @y A/K®; A) — GL,((L @ A)PLEP), 7 Cy (4.2.3)
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is a homomorphism of groups.

Proof. For every ¢ € Autp(L ®; A, K ®) A) we define C; == (X® 1) lo(X®
1). Then C, is constant with respect to p; ® o, since with Z := p(X)po(X)

we have

(o ®00)(Co) = (pL ® po) (X '@ 1) r(X®1))
=(eL(X)®@1) ! (oL @ po)(r(X®1))
o(X

(po(X)'Z1 ®1) - Modc (D, o) (Zpo(X) ® 1)
=po(X'®1)-po(c(X®1))
= po(Co)-

Because of
Cor=XD (o) (X®1) = (X'®1)-0((X®1)C;) = C,Cy,
the map (4.2.3) is a homomorphism of groups. O

For a finitely generated Picard-Vessiot extension (L/K, R, H) of commuta-
tive Artinian simple D-module algebras and a commutative L-algebra A the
groups Autp (L ® A/K ®; A) and Autp(R ®x A/K ®; A) are in general not

isomorphic. But the following is still true:

Lemma 4.2.3. Let (L, p1)/ (K, px) be a finitely generated Picard-Vessiot extension of
commutative Artinian simple D-module algebras with field of constants k := LPL =
KPk and let (R,pRr) be the principal D-module algebra of L/K. On the category
CAlgy two group functors G and H are defined by

G(A) = Ker (AutD(L Rk A/K®r A) — Autp(L @ A/N(A) /K @4 A/N(A)))
and
H(A):= Ker (AutD(R Rk A/K®r A) — Autp(R @ A/N(A)/K A/N(A))),

respectively, for all commutative k-algebras A, where the homomorphisms between the

automorphism groups are induced by the natural projection 7tg: A — A/N(A) and
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4.2. The general Galois theory in the linear case

where the D-module algebra structures on L @y A and R ®y A are given by p; ® po
and pr ® po, respectively. Then the functors G and H are naturally isomorphic.

Proof. We first recall that by theorem 4.1.6 there exists a matrix X € GL, (L)
such that (dX)X ™! € M, (K) for all d € D and such that L = K(X) and R =
K[X, X~ !]. By lemma 4.2.2, there exists for every ¢ € Autp(L ®; A/K @y A)
a matrix C; € GL,((L ®; A)PL®P) = GL,(k ®; A) such that (X ® 1) =
(X ®1)Cy. It follows

c(R@ A) = o(K[X, X ] @ A)
=c(Kep A)lr(X©1),0(X " @1)]
= (K& A)[(X©1)Cr, G 1 (X 1))
= R®y A.

Thus, o restricts to an automorphism of the D-module algebra (R ®; A, pr ®
po) and trivially the image of it in Autp(R ®x A/N(A)/K ®; A/N(A)) is the
identity. Therefore, we obtain a homomorphism of groups G(A) — H(A).
Let, conversely, ¢ € H(A) and a € R be a non-zero divisor. Then (a2 ® 1)
is congruent to a ® 1 modulo R ®; N(A) and thus also with respect to N(L ®j
A) D N(R®; A) 2 R®; N(A). Therefore, 0(a ® 1) is invertible in L ®; A and
consequently ¢ extends to an automorphism & on L ®; A. If a/a’ € L = Q(R)
and b € A, then d(a/a’ ®b) = c(a®@b)/c(a’ ®1). Since c(a®@b) = a®b
mod R ®; N(A) we also have &(a/a’ @ b) =a/a’ @b mod L ®; N(A) and so
we obtain a homomorphism of groups from H(A) to G(A).
It is clear that these homomorphisms of groups are inverse to each other.
O

We have the following similar result for the infinitesimal Galois group.

Lemma 4.2.4. Let (L/K,R, H) be a Picard-Vessiot extension of D-module fields
with field of constants k such that the field extension L/K is separable and finitely
generated. Similarly as in definition 3.4.1 we define a group functor Inf-Gal(R/K)
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on the category CAlg, by defining Inf-Gal(R/K)(A) for every commutative L-
algebra A to be the group of automorphisms ¢ of the D ®c Dipn-module algebra
po(L)[p(R)]&L Alw] that make the diagram

K& Afw]——— po(L) [o (R)] &1 Alw] ——2— po(L)[p(R)] &1 Alw]
Jid lq’ ‘ml Qmalw]
K& Alw]—— po(L)[o(R)] &1 Afw] 00(L) [0 (R)] &L (A/N(A)) [w],

commutative. Then the functors Inf-Gal(L/K) and Inf-Gal(R/K) are naturally

isomorphic.

id @7 [w]
—

Proof. Let A be a commutative L-algebra. Using the isomorphism (4.2.2) in

lemma 4.2.1, we obtain an isomorphism of algebras
po(L)[p(R)]&LAw] = (R @ A)[w]. (42.4)
Similarly, from the isomorphism (4.2.1) we obtain an isomorphism
LOLA]w] = (L @ A)[w]. (4.2.5)
If ¢ is an element of Inf-Gal(R/K)(A), then

p(p(a) ©1) =p(a) ®1 mod po(L)[o(R)]OLN(A)[w]

for all a € R. Therefore, the element ¢(p(a) ® 1) corresponds under the
isomorphism (4.2.4) to an element in (R ®; A)[w] congruent to a ® 1 mod-
ulo (R ®; N(A))[w] and thus is invertible in (L @4 A)[w]. Using the iso-
morphism (4.2.5), we see that ¢ can be extended to an automorphism on
L& Alw].

Conversely, given an element ¢ € Inf-Gal(L/K)(A), one easily sees from
the formulas in lemma 3.4.6 and lemma 4.2.1 that ¢ restricts to an automor-
phism of the D ®¢ Djps-module algebra po(L)[p(R)]&L Alw]. O
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4.2. The general Galois theory in the linear case

Lemma 4.2.5. Let (L/K,R, H) be a finitely generated Picard-Vessiot extension of
D-module fields with field of constants k and X € GL, (L) be as in theorem 4.1.6.
Then there exists a finite field extension K’ of K, a matrix A € GL,(K') and a left
K-linear and right R @ K'-linear automorphism v of the D-module algebra (R @y
R®x K, p ®po® po), defined by

YX®1e1)=(X121)(1eX 'e1)(121 A). (4.2.6)

Proof. Let8: (R,pr) — (R®¢ H, pr ® po) be the homomorphism of D-module
algebras defined by 6(a) :== y~'(1®a) for all a € R, where u: (R®; H,pr ®
po) — (R®k R,pr ® pr) is the isomorphism of D-module algebras (4.1.1)
defined in proposition 4.1.2. Then 6 fulfills

0(X)=(X2(1l)(le (X 'el)(1eX)). (4.2.7)

Let I be a maximal ideal of R and let 7t: R — R/ I be the canonical projection
from R to K’ := R/I. Since R is a finitely generated K-algebra, K’ = R/I is a
finite field extension of K by Hilbert’s Nullstellensatz (see for example [Wat79,
Appendix 8]). We extends the composition

0 idR @kidR QK7
—_—

R— s R&H— sR®R®xR R®; R @ K’

right R @k K'-linearly to an endomorphism 1 of R ®; R @ K’ and we define
A € GL,(K') to be the image of X under the homomorphism 7t. Then from
equation (4.2.7) the defining identity (4.2.6) for 7 follows and clearly 7 is a
homomorphism of D-module algebras. The antipode S of the Hopf algebra H
fulfills S(X ' ®1)(1® X)) = (1® X~ 1)(X ®1). The inverse of v is given by
the right R ®k K'-linear extension of

id ®;S idr ®kidgr ®
R—2 R&rH "5 Ry H——— R@y R@g R R o Rog K,

to an endomorphism of R ®; R ®k K/, which sends X®1®1to (X®1®
NI1IegAH1eX®1).
O
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Theorem 4.2.6. Let (L, p)/ (K, px) be a Picard-Vessiot extension of D-module fields
with principal D-module algebra (R, pr) and field of constants k := LPL = KPK such
that the field L is finitely generated and over K and such that K is perfect. Then
there exists a finite separable field extension L' of L such that for any commutative

L'-algebra A there is an isomorphism of groups
Ker (Gal(L/K)(A) — Gal(L/K)(A/N(A))) = Inf-Gal(L/K)(A),

where the homomorphism Gal(L/K)(A) — Gal(L/K)(A/N(A)) is induced by the
canonical projection To: A — A/N(A).

Proof. First, we recall the isomorphism
Gal(L/K)(A) 2 Autp(R®; A/K®; A)

for every commutative k-algebra A (remark 4.1.5). By lemma 4.2.4, we know
that Inf-Gal(L/K) is isomorphic to the functor Inf-Gal(R/K) defined there.
We will thus show that there exists a finite separable field extension L’ of L
such that Inf-Gal(R/K)(A) is isomorphic to

Ker (Autp (R @ A/K @ A) — Autp(R ¢ A/N(A)/K @ A/N(A))) (4.2.8)

for every commutative L'-algebra A. Let X € GL, (L) be as in theorem 4.1.6,
so that R = K[X,X"!]. By lemma 4.2.5, there exists a finite field extension
K’ over K and a right R @k K'-linear and left K-linear automorphism v of the
D-module algebra (R ®; R @k K, p ® pg ® po) defined by

YX®1®1)=(X11)1eX 11119 A)

for a certain matrix A € GL,(K’). Since K is perfect, the field K’ is fi-
nite separable over K and thus there exists a finite separable field exten-
sion L’ of L containing K’. Then 7 induces a left K-linear and right L'-
linear automorphism % of the D-module algebra (R ®; L', pr ® po) defined
by ¥(X®1) := (X®1)(1® X~ 1A). We denote the unique extension of the
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4.2. The general Galois theory in the linear case

n-variate iterative derivation 6, from L to L’ again by 6,. The ring R ®; L’
is generated by ¥(R ®x 1) and 1 ®; L', which are linearly disjoint over k by

corollary 2.2.31; we have an isomorphism of D-module algebras
RepL'=7(R@p D)[1@ L= y(R@x 1) @ (1@, L),

where the D-module algebra structure on (R ®; 1) ® (1 ®¢ L') is pr @k po @k
PR @k po- By lemma 4.2.1, we have isomorphisms of D-module algebras

P kP
R @ L —23 p(R) & po(L) — po(L)[o(R)], (4.2.9)
which extend L'-linearly to

Rep L' 22 o (R) @y polL') — pol L) [p(R)], (4.2.10)
where R ®; L' carries the D-module algebra structure pg ® po and m
is the restriction of the multiplication homomorphism in po(L')[p(R)] C
Modc (D, L"). The image of 7(R ® 1) under this isomorphism in po(L’)[o(R)]
is p(K)[Z,Z71] with Z == p(X)po(X) 'po(A) and the image of 1 ®; L’ under
this isomorphism is po(L"). Thus, we obtain an isomorphism

(yoir)®iy _

o(p®pp) @mo(p&)
Rl 5y Ry 1) @1y L LR

p(K)(Z,Z @rpo(L) = po(L)p(R)],
4.2.11)

where the homomorphism i;: R — R ®y L' is defined by i1(a) = a ® 1 for all
a € Rand ip: L' — R®y L' is defined by iy(a) = 1®a for all a € L'. Note
that the isomorphism (4.2.11) is different from (4.2.10). Since p(K)[Z,Z ] is a
subring of Mod¢ (D, K'), it is constant with respect to the Djpr-module algebra
structure 6, on Mod¢ (D, L'). At the other hand, po(L') is trivial with respect to
the D-module algebra structure ¥;,,; on Mod¢ (D, L"). Thus, the isomorphisms
in (4.2.11) are isomorphisms of D ®c Djpr-module algebras, where the D-
module algebra structure on R ® L' is given by pr ® po, on ¥(R @4 1) ®
(1®k L") by pr @4 po @k PR @ po, on p(K)[Z, Z71] @4 po(L) by pint © po (Which
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is equal to pjy; ® pins there) and on po(L’)[p(R)] by pins, and the Djpr-module
algebra structure on R ®; L is given by 6y ® 6y, on 7(R @ 1) ®; (1 @4 L)
by (60 @k 60) @ (6o ©x 6u), on p(K)[Z, Z7'] @4 po(L') by 6o ©x b (which is
equal to 0, ®y 0y there) and on po(L')[p(R)] by 8, where 6y denotes the trivial
n-variate iterative derivations on the corresponding rings.

For every commutative L'-algebra A, the isomorphism (4.2.11) gives rise

to an isomorphism of D ®¢ Djp»-module algebras

po(L)[p(R)]@LA[w]—po (L) [0 (R)]@pAlw] —» (R&x L) & Alw] = (R @k A)[w].
(4.2.12)

Given a commutative L'-algebra A and a ¢ € Inf-Gal(R/K)(A), we obtain
by composition with the vertical isomorphisms of D ®¢ Djp»-module alge-
bras, given by (4.2.12), in the diagram

po(L)[o(R)] &1 Alw] —— po(L)[o(R)]&1 Alw]

(R&A) [w] — L, (ReyA) [u],

an automorphism of the D ®¢ Djpn-module algebra (R @ A)[w], where the
D-module algebra structure is given by p ®; pg on the coefficients with respect
to w (as in lemma 2.2.22) and the Djp»-module algebra structure is given
by the n-variate iterative derivation 6. This automorphism restricts to an
automorphism ¢ of the D-module algebra R ®; A of Djpr-constants of (R ®
A)[w], so that the automorphism of the D ®¢ Djps-module algebra (R @y
A)[w] is given as o[w]. Since under the vertical isomorphisms K& A[w] is
isomorphic to (K ®; A)[w] and since ¢ is congruent to the identity modulo
po(L)[p(R)]&LN(A)[w], we see that ¢ lies in fact in the kernel (4.2.8).

If, conversely, ¢ is an element of the kernel (4.2.8), then cfw] is an
automorphism of the D ®¢ Djpr-module algebra (R ®; A)[w] and using
the vertical isomorphisms in the diagram above we obtain an element of
Inf-Gal(R/K)(A).
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It is clear that these constructions are inverse to each other, yielding an
isomorphism of groups between Inf-Gal(R/K)(A) and (4.2.8). O

Corollary 4.2.7. Let L/K be a Picard-Vessiot extension of D-module fields such that
K is perfect and such that the field L is finitely generated over K. We denote the field
of constants by k and by G := Gal(L/K) the Galois group scheme of L/K. Then
there exists a finite separable field extension L' of L such that Inf-Gal(L/K) x L’
is isomorphic to the formal group scheme G/ associated to the base extension Gy =
G % L' of G.

Proof. This follows from theorem 4.2.6 and proposition B.3.2. O

Corollary 4.2.8. Under the assumptions of corollary 4.2.7 there exists a finite sepa-

rable field extension L' of L and an isomorphism

Inf-Gal(L/K)(L'[¢]/ (€?)) = Lie(Gal(L/K)) ® L.

Proof. This follows immediately from theorem 4.2.6 by taking A = L'[¢]/(¢?),
noting that

Lie(Gal(L/K)) ®; L' = Ker (Gal(L/K)(L'[¢e]/(¢*)) — Gal(L/K)(L')).
O

In the case where D = D, , the statement of corollary 4.2.8 is similar
to the one of [Mor09, Theorem 3.3]. The statement of the latter is stronger,
namely the claim is that Inf-Gal(L/K)(L[e]/(€?)) is isomorphic to the Lie al-
gebra of Gal(L/K) ®j L, but the proof given there is difficult to follow. Taking
D = Dy, it provides a similar result as [Ume96a, Theorem 5.15] in the case
of finitely generated Picard-Vessiot extensions of differential fields in charac-

teristic zero.
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Appendix A

Linear topological rings

Since we do not know an adequate reference that covers all we need, we
give a short introduction to linear topological rings, their completions and

(completed) tensor products of these rings here.

Notation: In this appendix we assume that all rings are commutative.

A.1 Linear topological rings and their completion

First, we recall the definition of topological rings (see [Bou71, Chapitre III,
§6.3]) and linear topological rings (see [Bou85, Chapitre III, §4.2] or [Gro60,
Chapitre 0, 7.1.1]).

Definition A.1.1. A topological ring is a set A carrying a ring structure and a
topology such that the maps
AxXxA—A (xy)—x+y,
A—A x— —x
and

AxXA—A (xy)— 2y
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are continuous. A topological ring A is said to be linearly topologized (and then A
is called a linear topological ring) if there exists a fundamental system of neighbor-
hoods of O consisting of ideals of A.

Let A be a linear topological ring and B a fundamental system of neighborhoods
of 0 consisting of ideals of A. Then the elements of B are open and closed in A (see
[Bou71, Chapter I1I, §2.1, Corollaire to Proposition 4]) and the system (A/I)ep
together with the canonical homomorphisms A/1 — A/] for I C | forms an inverse
system of discrete topological rings (where B is ordered by inclusion). With this
notation, the inverse limit

A=1imA/I
IeB
is the completion of A.

There exists a canonical homomorphism A — A such that for every open ideal
I < A the composition A — A — A/l is the canonical projection A — A/I. So
there exists an ideal T < A such that A/I =2 A/1. The ideals I form a filtered system
and we give A the linear topology such that they form a base of neighborhoods of zero.
We say that A is complete (or a formal ring, cf. [Str99]) if the homomorphism
A — A is an isomorphism.

We denote by LRng the category of linear topological rings with morphisms the
continuous ring homomorphism and by FRng the full subcategory of LRng consisting
of formal rings.

Lemma A.1.2. For every morphism f: R — S in LRng there exists a unique f: R —
S such that the diagram

I
R——5$
R~

—

(A.1.1)

commutes.

Proof. Since f is continuous, for every open ideal | < S there exists an open
ideal I < R such that f(I) C J and thus we obtain a homomorphism R/ —
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S/]. By composition with the canonical projection R — R/I we obtain a
family of compatible homomorphisms R — S/] for every open ideal | in S.
By the universal property of the inverse limit § = lim S/] we obtain a unique
homomorphism f: R — § such that the compositions R — § — S/] and

R—R/I—S/ J coincide for all open ideals ] in S. For every openideal ] < S

the composition R EA S — § — S/] coincides with R — R EA S — S/] by

definition of f. Thus, by the universal property of $ = lim S/] both families

give rise to the same morphism from R to S. But these are exactly the two

morphisms R — R L Sand R L S —Sin diagram A.1.1. O

Proposition A.1.3. The functor LRng — FRng sending R to R and f to f is left
adjoint to the inclusion of FRng in LRng.

Proof. See for example [Str99, Proposition 4.21 (d)]. O

A.2 The completed tensor product of linear topological rings

Next, we treat tensor products of linear topological rings and their comple-
tions. References for this material include [BH96] and [Gro60, Chapitre 0,
§7.71.

Proposition A.2.1. If S «— R — T is a diagram in LRng, the tensor product S @r T
has a structure of a linear topological ring with a fundamental system of neighbor-
hoods of O given by the ideals ] Qg T + S ®g | for open ideals I < Sand | < T.
Furthermore, S ®g T is the coproduct of S and T over R in LRng.

Proof. This can be proven as in [Gro60, Chapitre 0, 7.7.6]. O

Proposition A.2.2. The tensor product of linear topological rings defined in propo-
sition A.2.1 is associative.

Proof. Let S; « Ry — Sy + Ry — S3 be a diagram in LRng. It is well known
that (S; ®g, S2) ®g, S3 and S; ®g, (S2 ®r, S3) are isomorphic as rings. They
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are also homeomorphic since if a; < 51, ap < Sp and az < S3 run through
bases of neighborhoods of 0 of the corresponding linear topological rings,
then the systems of ideals given by (a7 ® Sp + 51 ® a2) ® S3+ (51 ® S2) ® a3
and a1 ® (S2 ® S3) + S1 ® (ap ® S3 + Sy ® a3) are bases of neighborhoods of 0
in (S1 ®g, S2) ®R, S3 and S1 ®R, (S2 @R, S3) respectively. O

Definition A.2.3. For a diagram S — R — T in LRng we define SQRT as the
completion of the linear topological ring S @g T defined in proposition A.2.1 and call

it the completed tensor product.

Proposition A.2.4. For a diagram S «— R — T in FRng the completed tensor
product SQRT is the coproduct of S and T over R in FRng.

Proof. Let U € FRng and let S — U and T — U be two morphisms in FRng
such that the compositions R — T — U and R — S — U coincide. By
proposition A.2.1 the tensor product S ®g T is the coproduct of S «+— R — T in
LRng and so there exists a unique homomorphism f: S @gr T — U such that

N
N

commutes. By lemma A.1.2 there exists a unique extension f: S&rT — U of

the diagram
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A.2. The completed tensor product of linear topological rings

N
N /

commutes. Using the uniqueness of the extension of continuous homomor-

f such that the diagram

phisms to completions again, we see that S — S&gT « T in fact becomes the
coproduct of S and T over R in FRng. O

Lemma A.2.5. For a diagram S < R — T in LRng we have SORT = S&RT =
S&RT.

Il

Proof. The claim follows from the isomorphisms S& rT = hm S JIQrT/]
1_1&1”5/1 QrT/] = SQRT = mI’]_S/I QrT/] = S®RT,AwheAre I (resp. I, ],
J) runs through a base of neighborhoods of 0 in S (resp. S, T, T). O

Proposition A.2.6. The completed tensor product is associative, i.e. given a diagram

Sy« Ry — Sy «+ Ry — S3 in LRng we have
(51®R,S2)®R,S3 = 510k, (52Qr,S3)
Proof. Using lemma A.2.5 and proposition A.2.2 we have
(519R,52)®R,S3 = (S1 @R, S2)&r,S3
= (51 ®r, S2) ®R, S3
= 51®g, (52®r, S3)
= 518R,(S2 ®r, S3)
= 518R,(520R,S53)-
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Lemma A.2.7. Let S «+— R — T be a diagram in CRng, then
S&rT[w] = (S @R T)[w] = S[w]@rT,

where we consider S and T as discrete topological rings and S[w], T[w] and (S ®g
T)[w] as topological rings with their (w)-adic topologies.

Proof. Since lim (S ®@r T)[w]/(w)" = (S @ T)[w] the claim follows from

the isomorphisms

S&RTIw] = lim (S @g Tw])/ (S @r (w)")
nelN

= 1im (S ®g T) [w] / (w)"
nelN

= lim (S[w] @& T)/ ((w)" @& T)
nelN

]

Remark A.2.8. We make frequent use of the following fact: If S < R — Sy and
Ty < R — T, are diagrams in LRng and f; : S; — T; are morphisms in LRng over
R, then there exists a morphism f : S1QrSy; — TiQgrTa such that the following

diagram

. f .
S10rS2, — T1®RTL

|,

Si—i>Ti

commutes for i = 1,2. This is clear since we have a homomorphism of R-algebras
51 ®r S2 — Ty ®r To, which we can extend by lemma A.1.2 to a morphism
S1®rSs — T1®Rr T in LRng over R.
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Appendix B

Formal schemes, formal group

schemes and formal group laws

In this appendix we recall some basic definitions and facts concerning formal
schemes, formal group schemes and formal group laws. We follow mainly
[Str99].

B.1 Formal schemes and formal group schemes

Definition B.1.1. A formal scheme is a functor X: CRng — Set that is a small
filtered colimit of affine schemes. Morphisms between formal schemes are natural
transformations. We denote by FSch the category of formal schemes. Given a formal
scheme S, we define the category of formal schemes over S by taking as objects all
morphisms X — S of formal schemes and as morphisms between X — Sand Y — S

all morphisms X — Y of formal schemes such that

X—Y

NS

S
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commutes. We denote the category of formal schemes over X by FSchx. We call
formal schemes over Spec R also formal schemes over R and denote the category of

formal schemes over R by FSchg.

Example B.1.2. Let R be a commutative ring and I be a set. For a € IN! we define
Ry :=Rlx;|ie€ I]/(x?‘(l)Jrl | i € I). Then the filtered colimit

AL = lim Spec Ry
aeN!
exists and is given by A{Q(A) = N(A)! for any commutative R-algebra A. Therefore,

AIIQ is a formal scheme over Spec R. In the special case I = {1,...,n} for n € IN we
denote Al{;""’"} also by Aﬁ.

Definition B.1.3. A morphism of formal schemes f: X — Y is a closed inclusion
if it is a reqular monomorphism in FSch (i.e. the equalizer of two arrows Y = Z). A
closed formal subscheme of a formal scheme Y is a subfunctor X of Y such that X

is a formal scheme and such that the inclusion X — Y is a closed inclusion.

Definition B.1.4. A formal group scheme over a formal scheme S is a group object
in FSChS.

Proposition B.1.5. Let R be a commutative ring and f: X x A" — X x A™
be a morphism of formal schemes over X = SpecR. Then there exist unique for-
mal power series f1,..., fm € R[x1,...,xn] such that for all R-algebras A and all
(u,a1,...,a,) € X(A) x A"(A) we have

flu,ay,...,a0) = (u, (ufr)(ar,...,an), ..., (Ufm)(az, ..., an)) (B.1.1)

such that f;(0,...,0) are nilpotent fori =1,...,n.
Conwversely, given f1,..., fm € R[x1,..., x,] with nilpotent constant terms the
formula (B.1.1) defines a morphism X x A" — X x A™ of formal schemes over X.

Proof. See [Str06, Prop. 5.6] O
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Remark B.1.6. Let R be a commutative ring. Then there is a natural equivalence
between the category CAlgrSet of functors from CAlgr to Set and the category
(CRngSet)spec r 0f objects of CRngSet over Spec R.

Proof. See for example [DG70, I, §1, 6.2] O

B.2 Formal groups laws and their associated formal group

schemes

Definition B.2.1. Let n € N U {oo}. An n-dimensional formal group law on a

commutative ring R is an n-tuple
F=(f1,-..,fu) € Ruy, ..., un,v1,...,04]"
if n € N or an element of (R[u;,v; | i € N])N if n = co such that
(1) F(u,0) =u, F(0,v) = v and
(2) F(u,F(v,w)) = F(F(u,v),w),

where u, v and w denote the tuples (uy, ..., uy), (v1,...,04) and (wy, ..., wy) if
n € Nand (4;)ieN, (0)ien and (w;)jeN if 1 = oo, respectively.

Example B.2.2. For every natural number n € IN an n-dimensional formal group

law is given over every commutative ring R by
fi(u,0) =u;+v; foralli={1,...,n}.

This formal group law is called the additive formal group law of dimension n over
R.

Lemma B.23. If n € N and F is an n-dimensional formal group law on a
commutative ring R, there exists ¥ € Rluy, ..., un]" such that ¥(0) = 0 and
F(u,¥(u)) =0=F(¥(u),u).

Proof. See [Ser65, LG 4.15-4.16]. O
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Remark B.2.4. To an n-dimensional formal group law F on a commutative ring
R we associate a formal group scheme over Spec R as follows: We define a functor
F: CAlgr — Grp by F(A) := N(A)" for every commutative R-algebra A. The group
multiplication on N(A)" is defined by ab := F(a,b) for a,b € N(A)" and the unit
is given by 0 € N(A)". Note that this defines in fact a morphism F x F — F of formal
schemes over Spec R by proposition B.1.5 and F becomes a group object in FSchg. As
a formal scheme F is isomorphic to A?{.

Example B.2.5. Let R be a commutative ring. We define the additive formal group
scheme of dimension n, denoted by @Z r to be the formal group scheme over Spec R
induced by the additive formal group law in example B.2.2 via remark B.2.4. Then for
every commutative R-algebra A the group multiplication on @Z,R(A) = N(A)"is
given by componentwise addition and the unit is given by 0 € N(A)". If the ring R
is equal to Z or clear from the context, we will denote G, g also by G,.

B.3 The formal group scheme attached to a group scheme

Definition B.3.1. Let R be a commutative ring and G be an affine group scheme over
R. We define a formal scheme G over R as

G = lim SpecC[G]/m},
nelN

where C[G] is the coordinate ring of G and m, is the kernel of the counit e: C[G] — R.

Proposition B.3.2. Let R be a commutative ring and G be a Noetherian affine group
scheme over R. Then for the formal scheme G associated to G there is an isomorphism

G(A) =2 Ker(G(A) — G(A/N(A)))

for every commutative R-algebra A.
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Proof. For all commutative R-algebras A we have
G(A) = lim Spec(C[G]/m!)(A)
ne€N

= lim CAlgg(C[G]/m}, A)
nelN

= lim {f € CAlgr(C[G], A) | f(m;) = 0} (B.3.1)
neN

= {f € CAlgr(C[G, A) [ 3n € N : f(mg) = 0}
= {f € CAlgr(C[G], A) | 3n € N : f(m.)" = 0}.

At the other side, for every commutative R-algebra A the kernel of G(A) —
G(A/N(A)) consists of all elements f of CAlgr(C[G], A) that make the dia-

gram
clGl—L— 4
lg
R TTA
A——T2 S A/N(A),

commutative, where €: C[G] — R denotes the counit of C[G]|. Thus, it remains
to show that for f € CAlgg(C[G], A) this diagram commutes if and only if
f(me)" = 0 for some n € N. Since C[G]/m, = R, we have an isomorphism
of R-modules C[G]| = R & m,. The compositions of the homomorphisms in
the diagram coincide when restricted to R C C[G]. Since 714 o ¢(m,) = 0, the
diagram commutes if and only if 774 o f(m,) = 0, i.e. if f(m,) C N(A). Since
C[G] is Noetherian, the ideal i, is finitely generated and thus f(m.) C N(A)
if and only if f(m,.)" = 0 for some n € IN. O

Proposition B.3.3. If R is a commutative ring and G an affine group scheme over
R, then G is a formal group scheme over R and we call it the formal group scheme

associated to G.
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Proof. We only have to show that G is a group object in FSchg. From proposi-
tion B.3.2 one easily sees that G(A) is a group for all commutative R-algebras
A. Since finite fiber products exist in FSchgr and coincide with those in RngSet
by [Str99, Proposition 4.12], we see that (G xg G)(A) = G(A) xgr G(A) for
all R-algebras A and from the group multiplication in G(A) we obtain a mor-
phism m: G xg G — G. From the unit in G(A) for all R-algebras A we obtain
a morphism e: Spec R — G. Then (G, m, e) is easily seen to be a group object
in FSchg. U

Example B.3.4. For every commutative ring R and every n € IN, the formal group
scheme associated to the n-dimensional additive affine group scheme G[} over R is
isomorphic to the additive formal group scheme that is associated to the n-dimensional
additive formal group law over R (cf. examples B.2.2 and B.2.5).
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Resumen en castellano

Introduccion

La teorfa de Galois se remonta a principios del siglo XIX cuando E. Galois
determiné condiciones en términos de teoria de grupos para la resolubilidad
por radicales de ecuaciones polinomiales. Dado un cuerpo K y un polinomio
separable f € K[X] existe un cuerpo L, extension de K, llamado cuerpo de
descomposicion de f, que estd generado sobre K por las raices de f. El grupo
G = Aut(L/K) de los automorfismos del cuerpo L que dejan fijo el cuerpo K
opera sobre el conjunto de las raices de f. Se pueden interpretar los elementos
de G como permutaciones de las raices de f que respetan las relaciones alge-
braicas sobre K entre las raices de f. Existe una biyeccién entre los subgrupos
de G y los cuerpos intermedios de la extensiéon L/K.

El desarrollo de una teoria de Galois para ecuaciones diferenciales andloga
a la de ecuaciones polinomiales fue ya un objectivo de S. Lie. El primer paso en
esta direccién, debido a E. Picard y E. Vessiot, fue el desarrollo de una teoria de
Galois para ecuaciones diferenciales lineales. Desde los afios cuarenta del siglo
XX se desarroll6 esta teoria que figura ya en libros de texto como [vdPS03] o
[CHO7], por mencionar sélo los dos ultimos publicados. A mediados del siglo
pasado E. Kolchin defini6 extensiones fuertemente normales de cuerpos dife-
renciales y desarrollé una teoria de Galois para estas extensiones, que incluyen
ciertas extensiones de cuerpos diferenciales que provienen de ecuaciones di-

ferenciales no lineales ([Kol76]). Inspirado en el trabajo de E. Vessiot ([Ves46]),
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H. Umemura desarroll6 una teoria de Galois para tratar ecuaciones diferen-
ciales algebraicas no lineales ([Ume96a]). Unos afios mads tarde, B. Malgrange,
con un fin parecido, publicé su propia teoria de Galois diferencial usando el
lenguaje de la geometria diferencial ([Mal01], [Mal02]). G. Casale sigui6 desa-
rrollando y aplicando esta teorfa ([Cas04], [Cas07], [Cas08]). Recientemente,
H. Umemura comparé su teoria con la de B. Malgrange y mostré que estan
estrechamente relacionadas ([Ume08]).

Existen también teorias analogas para ecuaciones en diferencias. Su elabo-
racién fue iniciada por C. H. Franke, quien desarroll6 una teorfa de Galois
para ecuaciones lineales en diferencias ([Fra63]), llamada también teoria de
Picard-Vessiot.! Mas tarde, R. Infante definié extensiones fuertemente nor-
males de cuerpos en diferencias y desarrollé una teoria de Galois para estas
extensiones ([Inf80b], [Inf80a]). Ultimamente, S. Morikawa y H. Umemura ela-
boraron una teoria andloga a la de éste tltimo para ecuaciones algebraicas no
lineales en diferencias ([Mor09], [MU09]). Siguiendo el enfoque de B. Malgran-
ge, G. Casale y A. Granier desarrollaron teorias de Galois para ecuaciones no
lineales en (g-)diferencias ([Cas06], [Gra09]).

Las teorias mencionadas hasta ahora se restringian a cuerpos de carac-
teristica cero. En caracteristica positiva las derivaciones clasicas no se com-
portan bien. H. Hasse y FE. K. Schmidt introdujeron derivaciones iterativas
([HS37]) como alternativa a las derivaciones clasicas. Posteriormente, K. Oku-
gawa, B. H. Matzat y M. van der Put desarrollaron teorias de Galois para
ecuaciones diferenciales en caracteristica positiva usando derivaciones itera-
tivas ([Oku87], [Mat01], [MvdP03]). Recientemente, A. Maurischat y el au-
tor ampliaron la teorfa de B. H. Matzat y M. van der Put ([R6s07], [Hei07],
[MaulOa], [MaulOb]). Estas teorias se restringen a ecuaciones diferenciales
iterativas lineales.

M. Takeuchi desarroll6 una teoria de Picard-Vessiot que unifica las teorias

de Picard-Vessiot para ecuaciones diferenciales en caracteristica cero y pa-

1Se suele llamar a las teorias de Galois en situaciones “lineales” teorias de Picard-Vessiot.
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ra ecuaciones diferenciales iterativas en caracteristica arbitraria usando cuer-
pos C-ferenciales, donde C es una cierta codlgebra ([Tak89]). Recientemen-
te, K. Amano y A. Masuoka ampliaron la teorfa de M. Takeuchi usando
D-médulo élgebras, donde D es cierta dlgebra de Hopf ([Ama05], [AMO5],
[AMTO09]). Su teoria unifica las teorias de Picard-Vessiot para ecuaciones di-
ferenciales en caracteristica cero y para ecuaciones diferenciales iterativas en
caracteristica arbitraria, asf como también para ecuaciones en diferencias en el
caso en que el operador en diferencias es un automorfismo.

En resumen, el desarrollo de la teoria de Galois diferencial y en diferencias
tomo6 dos direcciones. Por un lado se crearon teorias para tratar extensiones
de cuerpos mads generales debido a H. Umemura y S. Morikawa. Por otro lado
M. Takeuchi, K. Amano y A. Masuoka unificaron las teorias de Picard-Vessiot
de extensiones de cuerpos (y ciertos anillos) diferenciales, dotados de una
derivacion iterativa y dotados de un automorfismo.

Esta tesis tiene dos objetivos principales. El primero es el desarrollo de
una teorfa de Galois mds general que combine la capacidad de las teorias
de H. Umemura y S. Morikawa, que permite tratar extensiones de cuerpos de
gran generalidad, con la ventaja de la formulacién de K. Amano y A. Masuoka
que unifica estructuras como las derivaciones y los automorfismos. El segundo
objetivo es el de eliminar la restriccién a cuerpos de caracteristica cero de las

teorias de H. Umemura y S. Morikawa.

Resumen de los contenidos

Capitulo 1

En el primer capitulo introducimos derivaciones superiores y derivaciones
iterativas. H. Hasse y F. K. Schmidt definieron derivaciones superiores y de-
rivaciones iterativas sobre un anillo R como una sucesién de aplicaciones
d®): R — R para cada k € IN que cumplen ciertas propiedades. Estas aplica-

ciones dan lugar a un homomorfismo de anillos 8: R — R[t] que envia a € R
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a la serie formal ) ;g 0 (a)tk. De hecho, dar una derivacién superior en R

es equivalente a dar un homomorfismo de anillos
6: R — R[t], 1)

y dar una derivacion iterativa es equivalente a dar un homomorfismo de ani-
llos : R — R[t] que cumple condiciones adicionales. Si R contiene Q, las
derivaciones iterativas (X)), < estan determinadas por o) y el homomor-
fismo correspondiente es
nk
0:R—R[t], a— Y, a()k!(”)tk )
kelN

Definimos derivaciones superiores n-variadas como homomorfismos de anillos
R — Rty,...t,] v derivaciones iterativas n-variadas como derivaciones superio-
res n-variadas que cumplen condiciones adicionales que generalizan las con-
diciones del caso univariado. Mostramos propiedades fundamentales de estas
derivaciones superiores e iterativas n-variadas. Por ejemplo demostramos que
se extienden a extensiones étales. De esto se deduce que las derivaciones ite-
rativas con respecto a las variables de los anillos de polinomios se extienden
al cuerpo de funciones racionales y por tanto obtenemos una derivacién ite-
rativa 6, para cada base de trascendencia separable u = (uy,...,u,) de una

extension separable y finitamente generada de cuerpos.

Capitulo 2

En el segundo capitulo introducimos el concepto de moédulo algebras. Sea
C un algebra conmutativa, D una bidlgebra y R una C-adlgebra conmutativa.

Recordemos que se tiene la biyeccion

Modc (D ®c R, R) — Modc (R, Modc (D, R)), ¥ — (a+ (d— ¥(d®a))).

€)
Si ¥ € Modc(D ®c R,R) y p es el elemento en Modc (R, Modc(D,R)) que

corresponde a ¥ por esta biyeccion, p es un homomorfismo de C-algebras (con
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respecto a la estructura de dlgebra en Mod¢ (D, R) inducida por la estructura
de coélgebra de D) si y solo si ¥ cumple para cadad € Dy a,b € R las dos

condiciones siguientes
(1) "I"(d & ﬂb) = Z(d) ‘P(d(l) ® H)T(d(z) X b)
(2 ¥(d®1)=¢(d)1.

Si ademds ¥ induce una estructura de D-médulo en R, decimos que ¥ es
una estructura de D-médulo dlgebra en R. La C-algebra Modc (D, R) posee una
estructura de D-médulo 4lgebra

Yini: D ®c Mod¢ (D, R) — Mod¢ (D, R)
definida por
¥iut(d® f): D — R, c+ f(cd) paracadace D

para cada d ® f € D ® Modc (D, R).

Ejemplo: Si Dy, es la C-bidlgebra subyacente al dlgebra de Hopf C[G,] =: Cl[x],
entonces dotar a R de una estructura de D 4,,-mddulo dlgebra es equivalente a dotarla
de una C-derivacién. Dada una C-derivacion o en R, se obtiene una estructura de
D jor-médulo dlgebra ¥ en R, definida por ¥(x ® a) = d(a) para a € R. Si R

contiene Q, entonces Modc (Dge,, R) es isomorfo a R[t] y la composicion
R —"— Modc (Dypr, R) —— R[1]

es la derivacion iterativa (2) inducida por la derivacién 0.

También se pueden describir derivaciones superiores, derivaciones iterati-
vas, endomorfismos de algebras, automorfismos de dlgebras, o-derivaciones
y otras estructuras en términos de médulo élgebras.

Mostramos propiedades de médulo dlgebras que usamos en el capitulo 3 y

damos una lista de bidlgebras que dan lugar a médulo algebras interesantes.

147



RESUMEN EN CASTELLANO

Capitulo 3

El tercer capitulo es la parte principal de la tesis. Dada cierta extensién de
moédulo cuerpos (es decir, médulo algebras, que son cuerpos) definimos una
normalizacién de esta extension y un grupo de Galois infinitesimal.

Sea C un élgebra conmutativa, D una C-bialgebra coconmutativa y L/K
una extensiéon de D-médulo cuerpos tal que L/K sea finitamente genera-
da y separable. Entonces L posee una base de transcendencia separante
u = (uy,...,uy). Sea 6, la derivacién iterativa n-variada con respecto a esta
base de transcendencia separante. Entonces 6, induce una derivacién iterati-
va n-variada en Mod¢ (D, L). Definimos K como la subalgebra de Mod¢ (D, L)
generada por pg(L) y p(K) (donde pp: L — Modc(D, L) esta definido por
(po(a))(d) = e(d)a para cada d € D y a € L). Entonces K es una D-médulo
subélgebra de Mod¢ (D, ¥;,,;) estable por la derivacion iterativa n-variada 6.
Definimos también £ como subdélgebra diferencial iterativa de Mod¢(D, L)
generada por po(L) y p(L). La extensién L/K es la normalizacién menciona-
da anteriormente. Definimos el grupo de Galois infinitesimal como el funtor
Inf-Gal(L/K): CAlg. — Grp que tiene como A-puntos el grupo de automor-
fismos ¢ de la D ®¢ Djpr-médulo dlgebra? L& AJw] que hacen conmutativo
el diagrama

K& Alw]——— L& A[w] ——— % £&, Alw]

id ¢ idE ®7‘[A[[w]]

idg &mafw]
—_

K& Alw]——— L& A[w] L&1(A/N(A))[w].

Demostramos que el funtor Inf-Gal(L/K) es un funtor de Lie-Ritt y por tanto
un esquema formal en grupos.
Nuestros resultados recuperan los de H. Umemura y S. Morikawa al res-

tringirse a las situaciones correspondientes.

2Dipn es una C-bidlgebra tal que las Djpr-médulo dlgebras son equivalentes a derivaciones
iterativas n-variadas sobre C.
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Capitulo 4

En el cuarto capitulo describimos explicitamente el dlgebra £ y comparamos
el esquema en grupos de una extensién de Picard-Vessiot de médulo cuerpos
con el grupo de Galois infinitesimal definido anteriormente.

Sea L/K una extensién de D-moédulo cuerpos separable, finitamente ge-
nerada y de Picard-Vessiot en el sentido de Amano-Masuoka ([AMO5]) con

algebra principal R y cuerpo de constantes k. Mostramos lo siguiente:

(1) El algebra po(L)[p(L)] es cerrada por 6y, es decir L = po(L)[p(L)], y las
subdlgebras pg(L) y p(L) son linealmente disjuntas sobre k; se tiene por

tanto un isomorfismo de D-médulo algebras
L= po(L)[p(L)] = po(L) ®k p(L). )

(2) Analogamente po(L)[p(R)] es cerrado por 6, y las é&lgebras po(L) y
p(R) son linealmente disjuntas sobre k; tenemos un isomorfismo de D-

modulo algebras

po(L)[p(R)] = po(L) @k p(R). ©)

(3) Sea G := Gal(L/K) el esquema en grupos de Galois de la extension
de Picard-Vessiot L/K. Si K es perfecto, entonces existe un cuerpo L/,
extension finita separable de L, tal que Inf-Gal(L/K) ®, L' es isomorfo
al esquema en grupos formal G;, asociado a la extensién de base G;; =
G x; L' de G.

Apéndices

En el apéndice A recopilamos definiciones sobre anillos topolégicos lineales y
productos tensoriales completados y en el apéndice B fijamos las definiciones
concernientes a esquemas formales, esquemas formales en grupos, y leyes

formales de grupos.
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