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ABSTRACT  

     Moving towards Internet-of-Things (IoT) era, hardware security becomes a crucial 

research topic, because of the growing demand of electronic products that are remotely 

connected through networks. Novel hardware security primitives based on 

manufacturing process variability are proposed to enhance the security of the IoT 

systems. As a trusted root that provides physical randomness, a physically unclonable 

function is an essential base for hardware security. 

SRAM devices are becoming one of the most promising alternatives for the 

implementation of embedded physical unclonable functions as the start-up value of 

each bit-cell depends largely on the variability related with the manufacturing process. 

Not all bit-cells experience the same degree of variability, so it is possible that some cells 

randomly modify their logical starting value, while others will start-up always at the 

same value. However, physically unclonable function applications, such as identification 

and key generation, require more constant logical starting value to assure high reliability 

in PUF response. For this reason, some kind of post-processing is needed to correct the 

errors in the PUF response. 

Unfortunately, those cells that have more constant logic output are difficult to be 

detected in advance. This work characterizes by simulation the start-up value 

reproducibility proposing several metrics suitable for reliability estimation during design 

phases. The aim is to be able to predict by simulation the percentage of cells that will be 

suitable to be used as PUF generators. We evaluate the metrics results and analyze the 

start-up values reproducibility considering different external perturbation sources like 
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several power supply ramp up times, previous internal values in the bit-cell, and 

different temperature scenarios. The characterization metrics can be exploited to 

estimate the number of suitable SRAM cells for use in PUF implementations that can be 

expected from a specific SRAM design. 
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RESUM 

     En l’era de la Internet de les coses (IoT), garantir la seguretat del hardware ha 

esdevingut  un tema de recerca crucial, en especial a causa de la creixent demanda de 

productes electrònics que es connecten remotament a través de xarxes. Per millorar la 

seguretat dels sistemes IoT, s’han proposat noves solucions hardware basades en la 

variabilitat dels processos de fabricació. Les funcions físicament inclonables (PUF) 

constitueixen una font fiable d’aleatorietat física i són una base essencial per a la 

seguretat hardware. 

Les memòries SRAM s’estan convertint en una de les alternatives més prometedores per 

a la implementació de funcions físicament inclonables encastades. Això és així ja que el 

valor d’encesa de cada una de les cel·les que formen els bits de la memòria depèn en 

gran mesura de la variabilitat pròpia del procés de fabricació. No tots els bits tenen el 

mateix grau de variabilitat, així que algunes cel·les canvien el seu estat lògic d’encesa de 

forma aleatòria entre enceses, mentre que d’altres sempre assoleixen el mateix valor 

en totes les enceses. No obstant això, les funcions físicament inclonables, que s’utilitzen 

per generar claus d’identificació, requereixen un valor lògic d’encesa constant per tal 

d’assegurar una resposta fiable del PUF. Per aquest motiu, normalment es necessita 

algun tipus de postprocessament per corregir els possibles errors presents en la resposta 

del PUF. Malauradament, les cel·les que presenten una resposta més constant són 

difícils de detectar a priori. 

Aquest treball caracteritza per simulació la reproductibilitat del valor d’encesa de cel·les 

SRAM, i proposa diverses mètriques per estimar la fiabilitat de les cel·les durant les fases 
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de disseny de la memòria. L'objectiu és ser capaç de predir per simulació el percentatge 

de cel·les que seran adequades per ser utilitzades com PUF. S’avaluen els resultats de 

diverses mètriques i s’analitza la reproductibilitat dels valors d’encesa de les cel·les 

considerant diverses fonts de pertorbacions externes,  com diferents rampes de tensió 

per a l’encesa, els valors interns emmagatzemats prèviament en les cel·les, i diferents 

temperatures. Es proposa utilitzar aquestes mètriques per estimar el nombre de cel·les 

SRAM adients per ser implementades com a PUF en un disseny d‘SRAM específic. 
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RESUMEN 

     En la era de la Internet de las cosas (IoT), garantizar la seguridad del hardware se ha 

convertido  en un tema de investigación crucial, en especial a causa de la creciente 

demanda de productos electrónicos que se conectan remotamente a través de redes. 

Para mejorar la seguridad de los sistemas IoT, se han propuesto nuevas soluciones 

hardware basadas en la variabilidad de los procesos de fabricación. Las funciones 

físicamente inclonables (PUF) constituyen una fuente fiable de aleatoriedad física y son 

una base esencial para la seguridad hardware. 

Las memorias SRAM se están convirtiendo en una de las alternativas más prometedoras 

para la implementación de funciones físicamente inclonables empotradas. Esto es así, 

puesto que el valor de encendido de cada una de las celdas que forman los bits de la 

memoria depende en gran medida de la variabilidad propia del proceso de fabricación. 

No todos los bits tienen el mismo grado de variabilidad. Así pues, algunas celdas cambian 

su estado lógico de encendido de forma aleatoria entre encendidos, mientras que otras 

siempre adquieren el mismo valor en todos los encendidos. Sin embargo, las funciones 

físicamente inclonables, que se utilizan para generar claves de identificación, requieren 

un valor lógico de encendido constante para asegurar una respuesta fiable del PUF. Por 

este motivo, normalmente se necesita algún tipo de posprocesado para corregir los 

posibles errores presentes en la respuesta del PUF. Desafortunadamente, las celdas que 

presentan una respuesta más constante son difíciles de detectar a priori. 

Este trabajo caracteriza por simulación la reproductibilidad del valor de encendido de 

celdas SRAM, y propone varias métricas para estimar la fiabilidad de las celdas durante 
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las fases de diseño de la memoria. El objetivo es ser capaz de predecir por simulación el 

porcentaje de celdas que serán adecuadas para ser utilizadas como PUF. Se evalúan los 

resultados de varias métricas y se analiza la reproductibilidad de los valores de 

encendido de las celdas considerando varias fuentes de perturbaciones externas,  como 

diferentes rampas de tensión para el encendido, los valores internos almacenados 

previamente en las celdas, y diferentes temperaturas. Se propone utilizar estas métricas 

para estimar el número de celdas SRAM adecuadas para ser implementadas como PUF 

en un diseño de SRAM específico. 
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CHAPTER 1 

INTRODUCTION 

     The Internet of Things (IoT) is an innovation with industrial, commercial and 

consumer applications. The IoT allows a massive number of devices to be connected 

remotely with an affordable price. This innovation can provide many benefits, like a 

more efficient and eco-friendly industry, and make daily life more convenient. 

Unfortunately, alongside with all the advantages the IoT comes with, the security of the 

communication systems is a serious challenge. In addition, this problem gets worse due 

to the fast growth of the number of IoT devices. As a consequence, a massive amount 

of data is collected and being transferred between the IoT devices. The data 

communicated through IoT networks can contain important information that might lead 

to threats to user’s privacy if the security is compromised and data is leaked. Therefore, 

communication networks between devices must be highly secure, which is specifically 

challenging because of the large number of devices and the resource limitation of many 

IoT devices. It is difficult to reliably protect most IoT devices, as most of them cannot 

afford robust cryptographic systems within the restricted budget for both power 

consumption and manufacturing cost. 

This chapter introduces the motivation of this work in Section 1.1. The achieved 

objectives and major contributions of the thesis are explained in Section 1.2. Finally, 

Section 1.3 presents the outlines of the thesis.   
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1.1 Motivation  

     The digital revolution that happened over the past decades allowed that transferring 

enormous amount of data across the world at high speed has become something 

normal. This uprising has demanded the usage of applications that need a large amount 

of online connections. From the essential online banking, to the entertainment of online 

gaming; from restraining the access to an administration facility, to supporting full 

access to a laboratory and research facility. Nearly each application utilized nowadays 

needs such interconnections. The data which is exchanged through these nets could be 

anything varying from user personal information to accounts with massive amount of 

money. Consequently, in order to protect the authenticity and confidentiality of these 

interconnections it is compulsory to consider some degree of security to be included in 

the systems. The information exchanged in these systems needs to be protected from 

theft while allowing them to be productive and accessible only by the intended users. 

However, the Information Security of IoT is the field where all techniques and tools are 

dedicated to protecting systems information. 

The common practice is to utilize cryptographic methods such as signing algorithms, 

encryption, and decryption, to secure the transported and stored information. The 

cryptographic algorithms implemented for these methods are available for the public, 

nevertheless the secret key generated by them is securely saved into the device. Based 

on that, it is important to ensure the security of the generated key. The classical security 

systems that are available in the market rely on storing the secret key or the crucial 

information in a Non-Volatile Memory (NVM). Smart Cards, Credit Card and TV channels 

Card are examples for the application of these classical systems. However, the main 
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goals of these systems are to stop cloning and theft of service [1]. These methods, even 

though secure, cannot be protected against some of the adversary’s attacks.  As the 

secret key generated from these systems is stored permanently somewhere in the 

device, and hence, any person that can access the device and knows how the security is 

implemented can attack this system. Therefore, security solutions should improve to 

become more secure against these threats. 

New hardware security solutions should be developed to compensate for the growing 

privacy and security risks in the IoT systems. Recent approach to overcome the 

drawbacks of the classical security system is the use of embedded physical unclonable 

functions (PUFs). The main idea of a PUF is to generate a secret key from unclonable and 

unpredictable physical features related to the variability related to the manufacturing 

process technology of Integrated Circuit (IC) of IoT devices. Taking profit form this 

process variation, PUF can generate a unique and unclonable fingerprint for each IC. 

Therefore, to secure the communications between IoT devices, the secret key 

generation scheme based on PUF can be a more secure and lightweight method to 

generate a unique non-stored key for the devices. This key is generated whenever 

needed without requiring storing it in the device. These properties present the PUFs as 

an ideal candidate for hardware security of IoT [2]. However, the main issue in PUF 

implementation is to assure that the generated key is always the same under different 

operational and environmental conditions.    

There are different approaches to introduce PUF solutions in IoT devices. However, 

SRAM devices are gaining attention because its presence is very common in many IoT 

devices and the start-up value (SUV) of each individual bit-cell depends to a greater or 
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lesser extent on the variability of the IC manufacturing process [3]. Remember that the 

SUV defines the logical value that the cell acquires by itself when it is polarized from 0V 

to its nominal value Vdd, before any data is written in it. Depending on how the 

variability affects each bit-cell transistor, we will have suitable-PUF SRAM cells whose 

SUV will always be the same, with a value that is unclonable and unpredictable a priori, 

on the other hand, other cells present an SUV that can be different in each star-up 

process. However, achieving acceptable reliability of SRAM-based PUF output usually 

requires some additional intervention, since not all cells in a memory can be suitable for 

that application [78].  

In the literature, a huge amount of works has proposed and evaluated different SRAM 

methodologies using specific laboratory equipment to estimate the impact on reliability 

and robustness of bit-cells designs when process variation, temperature, and other 

factors are also involved [61, 79-80], but there are few works related to estimate the 

suitability of a given SRAM design to be used in PUF applications. One reason lies in the 

difficulty of simulating the different external processes involved in determining the SUV 

of a given symmetrical bit-cell affected by process variations with certain start-up 

conditions that are not fully known. Although it is completely unpredictable to know a 

priori the position of the suitable cells, or what their starting value will be, due to what 

has been previously commented, it will be very useful to have some indication in the 

design stage what percentage of suitable cells to expect, or if an optimization of the 

bit-cell design is possible to increase that value, or if it is advisable to use additional help 

modules.  
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1.2 Objectives and Major Contributions 

     SRAM-PUFs are becoming a popular solution. The reliability of this PUF by performing 

constant SUVs under internal noise and different environmental conditions is 

considered the main challenge [4]. Understanding several parameters that influence the 

SUV, and quantifying their influence is crucial for designing robust and reliable security 

systems based on SRAM-PUF. Therefore, this thesis aims to characterize the reliability 

of SRAM bit-cell in terms of its SUV reproducibility against external perturbations and 

internal noise. The impact of internal parameters (such as Threshold Voltage), and the 

external parameter (such as Temperature) are also investigated.  

In this line, this work is focused in the characterization of the percentage of cells of a 

given SRAM cell design that are suitable to be used as PUFs. These cells should show 

more constant SUVs under different simulated perturbations. This is performed by 

electrical simulation and thus the percentage of suitable cells can be obtained at an early 

stage of the design phase. To achieve this, the SUVs of SRAM cells are simulated and a 

series of metrics based on Monte Carlo simulations involving process variation 

implemented using 65nm CMOS commercial technology, are proposed to contribute in 

quantifying the strength of the cell start-up behavior to the impact of the process 

variability, then, by correlating the distribution of each metric with the corresponding 

SUV of each SRAM cell. These metric based evaluations may be used at the design stages 

to adapt and change the SRAM implementation design to match the predicted number 

of PUF-suitable cells to the needs of the PUF. Of conversely, the PUF design can be 

modified to adapt to the expected SRAM performance.  
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Finally, some of these proposed metrics and other contents of this thesis have been 

published in a well-known conferences: 

1. Alheyasat, A., Torrens, G., Bota, S. and Alorda, B., 2019, November. Weak and 

Strong SRAM cells analysis in embedded memories for PUF applications. In 

2019 XXXIV Conference on Design of Circuits and Integrated Systems (DCIS) (pp. 

1-6). IEEE. (The main contributions and results of this paper are included in 

Subsections 2.1.1, 2.2.2 and 3.2.1 of this thesis). 

2. Alheyasat, A., Torrens, G., Bota, S. and Alorda, B., 2020, October. Bit-Cell 

Selection Analysis for Embedded SRAM-Based PUF. In 2020 IEEE International 

Symposium on Circuits and Systems (ISCAS) (pp. 1-4). IEEE. (The main 

contributions and advanced results of this paper are presented in the following 

subsections of this thesis: 3.2.1, 3.4.1.1, 3.4.1.2, 3.4.3) 

3. Alheyasat, A., Torrens, G., Bota, S. and Alorda, B., 2020, November. Selection 

of SRAM Cells to Improve Reliable PUF implementation using Cell Mismatch 

Metric. In 2020 XXXV Conference on Design of Circuits and Integrated Systems 

(DCIS) (pp. 1-6). IEEE. (Subsection 3.5.1 and Section 4.5 of this thesis are mainly 

based on the content of this conference paper) 

Additionally, the last conference paper (Selection of SRAM Cells to Improve Reliable PUF 

implementation using Cell Mismatch Metric) is invited for publication in “Special Issue 

on Innovation in Computing, Engineering Science & Technology organized by Advances 

in Science, Technology and Engineering Systems Journal (ASTESJ)” and the Manuscript 

has been submitted with title “Selection of SRAM Cells to improve Reliable PUF 

implementation using Separatrix and Mismatch metrics”. However, the main content 
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and construction of this thesis have been based on Article Manuscript that have been 

submitted to “Integration - Journal - Elsevier” with title of “SRAM-cells Reproducibility 

Characterization for Physical Unclonable Function Applications” and it is under review 

process. 

 

1.3 Thesis Outline 

     Chapter 2 provides an overview of the literature and the important background 

related to the work in this thesis. The definition of PUFs and the common application, 

such as cheap identification, authentication, cryptographic key generation and true 

random number generator, are discussed. The PUF classifications based on the location 

of physical process variation is summarized to finish the first part of this chapter. The 

principle of SUV as Source for SRAM-PUF will be discussed in the second part, where the 

process variation and mismatch are presented as a reason behind the entropy of SUV. 

Then, we present a state of the art of some techniques to enhance the reliability of 

SRAM-PUF. Finally, we introduce the preselection methods where the reliable SRAM 

cells can be detected and selected to increase the PUF reproducibility.     

Chapter 3 presents the main contribution of the thesis. We characterize the SUV 

reproducibility proposing several mismatch metrics suitable to estimate reliability 

during design phases. The evaluation of the proposed metrics is based on a Monte Carlo 

simulations methodology. These metrics can be categorized based on the parameter 

they are based on: Inherent Mismatch-based metrics, Static Noise Margin (SNM) based 

metrics, Voltage Noise injection-based metrics and some metrics based on the dynamic 

start-up behavior.  
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Chapter 4 describes the other main contribution, which is exploring the potential 

influences of external and internal perturbations on the start-up behavior of SRAM cells, 

and hence on the reliability of PUF cell under these perturbations. Firstly, we 

characterize the impact of power supply Ramp-Up Time (RUT) on the SRAM-PUF. 

Similarly, the influence of Previously Stored Values (PSVs) into SRAM cells will be 

studied. We also analyze how the ambient temperature affect the SUV of the cells. These 

three perturbations are used to distinguish between the stable and unstable cells. 

Additionally, we present the impact of internal noise on start-up behavior to achieve the 

probability of memory cells to have a repeatable SUV under the induced voltage noise. 

Finally, all the proposed metrics in chapter 3 will be studied under these perturbations. 

Chapter 5 correlates both obtained results in Chapter 3 and 4 and their implications in 

terms of SRAM cell characterization. In other words, this chapter studies the robustness 

of the metrics in identifying the suitable PUF cells. Firstly, we define the most reliable 

SRAM cells, denoted as Strong cells, that tolerate all the perturbations described in 

Chapter 4. Secondly, we present and compares the ability of proposed metrics in 

identifying the Strong cells, also we describe the methodology of selecting those cells. 

Using the metrics, we explore the influence of selected cells length on the reliability of 

PUF operation in the last section. Where we finally present the methodology to estimate 

the percentage of suitable cells for PUF application. 

Chapter 6 concludes the findings and contributions of the work in this thesis. It also 

suggests some recommendations for future work. 
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CHAPTER 2 

BACKGROUND 

     The growing demand of IoT devices and applications increases the challenges in 

systems security. As a trusted root for these IoT devices, the embedded PUFs in the 

integrated circuits (ICs) are crucial for securing the devices and communication systems 

of IoT. By taking the advantage of random process variations, which are inherently 

produced during the manufacturing, PUFs can produce unique and unpredictable bits 

that can be used for various security applications. 

This chapter presents an overview of the literature and subject background. In section 

2.1 we discuss the definition of PUFs and its common application. Also, the PUF 

classifications to either extrinsic or intrinsic PUFs will be summarized. Section 2.2 explains 

the principle of SUV as Source for SRAM-PUF, discussing reasons behind the process 

variation and mismatch. Finally, we present a state of art on some techniques and 

preselection methods to enhance the reliability of SRAM-PUF, presenting the same goal 

where our approach is briefly introduced. 

 

2.1 Physical Unclonable Function (PUF) 

     PUF is an emerging technology that provides a promising security solution with a 

relatively low complexity and cost. It operates by mapping a set of responses that 

corresponds to a set of challenges. Challenge-Response Pairs (CRPs) correlation are 

mainly determined by the inherent process variations in a silicon chip. These process 

variations are caused by uncontrollable manufacturing variations in the chip process. 
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These deviations are unpredictable and unique between different dies and wafers. 

Hence, a PUF can be implemented to provide a unique and unpredictable CRPs. 

Additionally, the randomness and complexity of inherent process variations makes a 

PUF physically and practically impossible to clone [5]. 

2.1.1 Definition of a PUF 

PUF is basically used to provide a signature from a physical device, so the definitions of 

PUF may change based on the purpose it is utilized for. Generally, a PUF can be defined 

by the words it contains from as follows [4]: Physical means it is not purely a 

mathematical function, but a physical object, and its output generated from physical 

interaction. Unclonable indicates how hard to predict or replicate its output. And 

Function means that it has an input (Challenge) to produce output (Response) based on 

physical parameters. 

Recently, PUFs are becoming more popular in the area of semiconductor security. As 

semiconductor manufacturing processes have intrinsic variations. A circuit fabricated in 

silicon shows slightly different electrical behavior from one sample to another even 

though the wafer mask and design are identical. This is the basis of PUF, which in turn 

allows to improve the security level of several IC-based systems. The operation of a PUF 

is based on applying a challenge and measure its response. For each challenge, there 

should be a valid response to have an authenticated operation. In 2001, the concept of 

Physical One-Way Functions (POWFs) was proposed by Pappu for the first time [2]. Using 

challenge-response setup, the physical object can be exposed to many challenges, all of 

which generate an unpredictable response that is unique between different objects.  
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2.1.2 PUF Application 

Security applications can rely on silicon implemented PUFs due to the unique and 

inherent features of each IC that are derived from process variations. The first 

application is Cryptographic Key Generation [6-8], which draws out the keys from the 

unique bits generated by embedded PUF. The second application is the device 

Authentication [9-10], which saves the unique PUF feature of each chip and it uses them 

later on to check if a chip can be authenticated or not. Finally, an important base block 

for many cryptographic security systems is the True Random Number Generator (TRNG), 

that can be based on the noise properties of PUFs [11-14].   

2.1.2.1 Cryptographic Key Generation 

To improve the cryptographic key generation and storage applications, an alternative 

method based on PUFs can be exploited. Generally, Memory-based PUFs such as 

SRAM-PUF is typically applied for generating cryptographic keys [15 -16]. 

The principle of key generation based on PUF is summarized in Fig. 2.1. Firstly, a PUF 

array, that include entropy created from process variation, is readout using an interface 

circuit to convert the PUF output to digital bits, then these output bits are directed to 

the helper-data algorithm [6]. This algorithm usually operates off-chip to produce a 

sequent of helper data that will be used in the field to generate the key. The helper-data 

is then stored into an embedded NVM, where the data can be read without the ability 

to write, and this data is later-on utilized to reconstruct the required key for 

cryptographic application [7]. 

However, outputs from these PUF array are noisy because of environmental condition 

variations and ageing [17]. Therefore, direct PUF implementation for the cryptographic 
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key generation is not feasible; as this security application necessitates that the 

generated key is highly stable [8]. Based on that, there are two core functions that 

should be added to the PUF-based key generation scheme; the Error Correction Codes 

(ECCs) and fuzzy extractor in Fig. 2.1. The ECCs are needed to correct the noisy PUF 

readouts. While the purpose of the fuzzy extractors is to counteract the impact of 

non-uniformity of PUF bits, ensuring that the generated key will be in line with the 

specification required by this application. Next section (section 2.2) provides more 

details about these techniques. 

Using PUF for cryptographic key generation has many advantages compared to 

traditional key generation using a secure NVM. Mainly, the feature of physical security 

is changed from NVM to the PUF, that is more immunized against physical attacks 

because it is very hard to measure the inherent process variations.  

Unfortunately, using ECCs requires to increase area overheads as the bit error rate rises 

from noisy PUF [18-19]. This increase in the area overhead can reduce the interest of 

PUFs as a low-cost security object. As a motivation, we propose a bit-selection metric 

methodology in Chapter 3 to identify a subset of most reliable cells that has very low bit 

 
Fig.2.1: Embedded PUF-based key generator. 
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error rate. Selecting only these cells for key generation can reduce the need for ECCs 

and hence the needed area overhead for such security application. 

2.1.2.2 Low-Cost Authentication 

As another well-known application, the object authentication based on PUF is becoming 

more popular. The authors in [10] propose a lightweight object authentication structure 

implementing the so-called “strong PUF”, their method relies on the well-known 

challenge-response authentication technique in [20]. The object authentication in these 

works consists of two stages as shown in Fig.2.2, the enrollment stage and the 

authentication stage. 

In the enrollment stage, the server will randomly produce many challenges for each 

device that have the same embedded PUF. The devices will receive these challenges and 

they will send the responses to the server matching to each challenge, these CRPs will 

be stored as authentication references. Note that the enrollment stage should be done 

in a secure environment. 

In the authentication stage, to verify if a device is registered in the server database, the 

server will select one of the challenges from the database and direct it to the device that 

requests authentication. Corresponding to the arrived challenge, the device will 

 

 
 

Fig.2.2: Illustration of object authentication scheme based on PUF [10]. 
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generate a response and send it back to be verified. This process may be repeated many 

times. If the server received enough verified responses, the device will be authenticated; 

else the device will be rejected. 

As the remote connection between the devices and the server may have a public 

communication channel, the server should delete the used CRPs immediately after the 

authentication process; avoiding replay attack. 

2.1.2.3 True Random Number Generation (TRNG) 

In this section, we will mention the possibility of implementing a PUF for random 

number generation [11-12,14]. Process variation can result in two kinds of PUF bit 

behavior. The static bit behavior, this behavior is related to the PUF circuits that are 

highly mismatched under the impact of process variations.  Some designs may have 

well-matched elements, such as SRAM cell. These designs can work as a TRNG because 

they can be highly affected by internal circuit noise and very small variations in operating 

conditions. This is a variable bit behavior, that causes errors in the response of PUF.  

Most often PUF designers assume that errors in the response are not useful. 

Alternatively, these errors can be used as a source of random numbers. However, the 

authors in [13] combined both behaviors to create a circuit that achieves both as a PUF 

and an RNG functions. This design provides the main two requirements for any 

cryptographic security systems: key and random number generation. 

2.1.3 PUF Classification 

The PUFs can be classified based on the location of the physical randomness to Extrinsic 

based PUFs or Intrinsic based PUFs [21]. 
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2.1.3.1 Extrinsic based PUFs 

Extrinsic based PUFs use the randomness that is explicitly shown in a physical system. 

To produce this randomness, the user or the manufacturer can have different choices 

of materials or size of particles; but the randomness distribution and their end location 

are out of control. Thus, these PUFs still have unique and random response. The main 

benefit of these types of PUFs that provide an extrinsic randomness, their parameters 

can be controlled and optimized in such a way to improve the uniqueness and reliability 

for these PUFs. The main examples of these types of PUF are the Coating-PUFs [22] and 

Optical PUFs [23]. The coating-PUF is based on the random sized dielectric particles that 

contained in the protective opaque coating at the top layer of an IC, while the 

optical-PUF is based on a transparent medium like glass, where light scattering particles 

are explicitly brought in. The position of light scattering particles in the medium is totally 

unpredictable providing a unique unpredictable property for this PUF.  

2.1.3.2 Intrinsic based PUFs 

Different from Extrinsic based PUFs, the Intrinsic based PUFs utilize the randomness that 

exist intrinsically in them to function. This intrinsic randomness is a result of process 

variation throughout the fabrication process that is uncontrollable and naturally 

random.  Recently, such type of PUF has been more popular and attractive, as they can 

be implemented without needing any modifications to PUF circuit and manufacturing 

process. Another benefit of intrinsic based PUFs is that most of these PUFs provide a 

digital output (“1” or “0” response) reducing the need for quantization process before 

implementing them in security application. Mainly, there are three types of Intrinsic 

based PUFs [21]: Silicon-PUFs operates based on the random variations in transistor gate 

and wire delays in a circuit [24], Buttery-PUFs is mainly used to protect the Intellectual 
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Property (IP) in FPGAs that do not have integrated memories by creating structures 

within the FPGA matrix which behave similarly to an SRAM bit-cell during the power-up 

phase[25], and SRAM-PUF [26] that have utilized for this thesis work.  

2.2 SRAM-PUF 

     A PUF instance can be contained within an IoT devices using two main approaches: 

adding a specialized primitive designed to offer the unclonable function, or reusing a 

non-specific and pre-existing circuit. Following the second approach, SRAM circuits were 

proposed for PUF implementation as its possible to take benefit of the positive feedback 

loop inherent of SRAM bit-cells to generate a unique, stable and unclonable binary 

response. As these memories are widely included in digital systems, power consumption 

and costs requirements can be minimized while creating embedded security resources 

for IoT systems.   

2.2.1 SRAM Cell Architecture 

A six transistors (6T) memory cell topology is very common to use among different SRAM 

cell topologies (such as 7T, 8T, 10T). Although, this work uses 6T memory cell, the same 

methodologies, that will be explained, can be extrapolated to rest cell topologies. The 

6T cell consists of two access transistors controlled by the word-line (WL), and two 

cross-feedback inverters creating a latch circuit, see Fig 2.3 (a). The 6T-SRAM cell has 

three equilibrium points: two stable points corresponding to logic ‘0’ and logic ‘1’, and 

a third meta-stable point corresponding to the cross point of the voltage transfer 

characteristics (VTC) plot of the latch as in Fig 2.3 (b). The SRAMs are intended to work 

in three modes: Hold operation (as in Fig 2.3 (a) when WL=0 V, then the internal nodes 

are isolated), Read and Write operations. For stable operation, depending on which 
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combination, a logic “1” or “0” is stored. One of the internal nodes (Q and QB nodes, see 

Fig 2.3 (a)) should be at low voltage (0 V) and the other at high voltage (Vdd).  

To read logic ‘0’ and logic ‘1’ from SRAM cell, the read operation is done by firstly 

pre-charging the bit-lines (BLQ, BLQb). A pre-charge circuit is implemented to control the 

bit-lines ensuring the same voltage at both bit-lines. When both the bit-lines have the 

same voltage, the Word Line of the selected cell is activated. Depending on the stored 

value in the cell, one of the bit-lines will remain the voltage and the other one will be 

discharged. The voltage difference between bit-lines is detected and amplified by a 

sense amplifier to evaluate the read output. 

The write operation is achieved by pulling one of the bit-lines (BLQ, BLQb) to low level and 

the other to high level. The write driver is implemented to pull down either BLQ or BLQb 

based on the value that is intended to be written into the cell. Then, the Word Line of 

the selected cell is activated. The feedback of the cross-coupled inverters will oppose to 

the write process. Despite of that, each of the internal nodes ends up having the same 

voltage logical level of the bit-line value it is connected to through pass transistors.  

                     
(a)                                                                                                                   (b) 

 

Fig.2.3: (a) 6T SRAM cell schematic in hold mode. (b) Latch voltage transfer characteristics; 

 the dashed line represents the transient start-up behavior (assuming the final output is logic ’1’). 
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 An ideal 6T-cell is designed to keep the data during read accesses and permit modifying 

the stored logic value during write operations, independently of the stored content 

(logic ‘0’ or logic ‘1’). Thus, the two inverters of the SRAM cell should be as identical as 

possible to produce symmetrical performance during both write and read operations.  

In Hold-operation configuration (see Fig 2.3 (a)), the word line is set to a low voltage 

level and both the internal nodes are isolated from the bit-lines. Using this setup, in 

addition to controlling the cell voltage supply (VSRAM), allows SRAM circuit to operate as 

a PUF; as it will be discussed in the next section.   

2.2.2 SRAM SUV as Source for SRAM PUF 

At power-up, the internal nodes of the cells are discharged (Q = 0V and Qb = 0V, see Fig 

2.3 (a)), setting the Word Line to low voltage, these nodes are isolated from the bit-lines 

as the access transistors are in the cut-off region. Once the power is ramping up, at first, 

the voltages of the internal nodes increase equally. Through this period, the memory 

cell stays in its meta-stable point until the supply voltage exceeds a certain threshold 

value (different for each cell), from this moment, the effect of the feedback, together 

with the influence of the mismatch between inverters, will cause the cell to transition 

towards one of the two stable states as shown in Fig.2.4. Therefore, for a perfectly 

symmetrical SRAM cell, the final state will only be determined by the noise and 

environmental conditions, which are unknown. Fig.2.4 shows start-up behavior during 

ramping-up of the power supply voltage for 50 memory cells, these curves are obtained 

using Monte Carlo simulation to mimic the mismatch inside the cell and the process 

variation between the proposed cells. 
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The SRAM PUF primitive is based on the circumstance that, even though the cell design 

is symmetrical, the manufacturing process variations generates mismatch between 

cross-coupled inverters reducing the intrinsic symmetry of the cell, and leading it to one 

of the two stable states with more probability than the other [27]. The variation in the 

final SUV of the cells in Fig.2.4 is mainly caused by the non-controlled physical variations 

that are inherently produced in each cell during their manufacturing process. Hence, the 

response of a set of SRAM cells will be unpredictable, unique, and unclonable.  

Based on that, implementing an SRAM PUF in a circuit only needs to control the power 

supply of the SRAM core cells. So, the needs to modify the SRAM are minimal and thus 

it can be applied to any non-specific embedded memories. 

Designing SRAM requires the cell to be as symmetric as possible aiming to decrease any 

bias to a preferred value. Highly symmetrical cells, which are less affected by process 

variability, will be characterized by varying their SUV between different start-ups. If a 

cell is started-up N times, it will choose n1 times a logical ‘1’ SUV, and n0 times a logical 

‘0’ SUV. Then, the probability that the cell has a logical ‘1’ SUV (or to logical ‘0’) is 

 

 
Fig.2.4: Start-up behavior for 50 cells when the power supply is ramped up. 
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presented in the following equations:                                                           𝑝1 = 𝑛1𝑁                                                         (2.1) 

 

                                                    𝑝0 = 𝑛0𝑁 = 1 − 𝑝1                                                           (2.2) 

From here, we can define the SUV reproducibility of a cell as: 

                                                    𝑟𝑆𝑈𝑉 = |𝑝1 − 𝑝0|                                          (2.3)    

 

For reliable PUF implementation, it is essential to select those cells that have significant 

inherent-mismatch to achieve rSUV to be one or near one. These cells are typically 

denoted as strong cells from a PUF point of view. However, applying SRAM for TRNG 

applications requires that cells that are highly symmetrical with rSUV around zero. 

2.2.3 State of Art on SRAM-PUF Reliability Enhancement 

Knowing the SUV reproducibility distribution at early design stages is essential to decide 

if a proposed memory scheme is suitable for specific application that requires PUF 

implementation. Additionally, the early knowledge of the percentage of strong cells will 

be useful to decide whether the SRAM-PUF can be implemented as it is without 

modification, or if it will be necessary to apply some reliability techniques.  Among the 

available reliability techniques, we can find the inclusion of error correction codes 

[28-33], or Majority Voting techniques [4, 34-36]. Applying some of them implies the 

acceptance of some drawbacks like increasing the design complexity, or increasing 

power consumption and response time. Another method that can be used to improve 

SUV reproducibility is based on taking advantage of long period degradation 

mechanisms of the devices. These mechanisms, known as Burn-in Enhancement, aim to 
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increase the mismatch within cells and can, hence, producing more reproducible PUF 

data [38-40]. The next sections will discuss these methods and techniques and their 

feasibility. 

2.2.3.1 Error Correcting Codes (ECCs) 

As mentioned previously, PUF outputs are noisy because of environmental condition 

variations and ageing [17]. Therefore, direct PUF implementation for applications such 

key generation is normally not feasible. Several methodologies for ECC have been 

proposed, and most of them have a drawback of an extra cost overhead when being 

physically implemented. 

Some recent designs of ECC for PUF-based key generation suggested the usage of 2-D 

Hamming Codes [10] [28]. The 2-D Hamming Code reformats the PUF response into a 

matrix having rows and columns. These codes are applied to generate redundant data 

for each column and row of the matrix. This data as well as parity bits is utilized to 

correct these errors in the noisy PUF responses. The main disadvantage of this code is 

that the generated matrix for PUF cannot contain more than two errors within one row 

to have a successful operation.   

A more improved ECC technique for PUFs uses Bose-Chaudhuri-Hocquenghem (BCH) 

codes [29]. The implementation of this technique was able to correct 30 errors in a 255 

PUF-bits response. Unfortunately, this implementation exposed 192 bits to be used as a 

Helper Data, so it limited the key size to 63 bits.  

Some other approaches for improving PUFs error correction have been proposed. 

Index-Based-Syndrome (IBS) [28] is more immunized to data leak than conventional 

ECCs that utilize bitwise XOR-masks. Other enhancements involve soft decision data to 
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be included within Helper Data Algorithm to reduce the number of PUF bits needed to 

generate one bit for secure key generation [3]. To reduce the complexity of ECC, the 

authors in [30] introduce two stage coding that consist of using a syndrome generation 

based on XOR-mask and repetition coding, more details about these coding will be 

described in the next section. 

As all the previously mentioned methods focus on ECC itself, other researches 

recommend reducing ECC overhead which is the main drawback this technique. The 

required Helper Data to produce a secret key increases with increasing the errors in the 

PUF response exposing more data about the PUF response. Therefore, to ensure a 

secure key generation, the number of response bits have to be increased to correct as 

much as possible the errors in the response and reducing the need to expose more data. 

The area overhead needed for ECC, associated with the increment in the number of PUF 

response bits, grows linearly with the error rate [31]. The area overhead can be reduced 

as the PUF reliability increases. Such as in PUF implementation based on FPGA, reducing 

the error rate from 10% to 3% can save up to 40% of the area overhead [32]. Similarly, 

ASIC applications using PUFs demonstrate that 60% of area is saved as the error rate 

decreases from 20% to 5% [33]. 

2.2.3.2 Majority Voting Methods 

Majority voting has been proposed as a useful technique to enhance the reliability of a 

PUF cell [34-35]. This technique could effectively improve PUF reliability If the response 

is highly affected by environmental and transient noise.  

Majority voting can be divided into two types: space majority voting or temporal 

majority voting. In temporal majority voting, each bit in the PUF response is challenged 
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several times and the final output of this bit is defined as the majority of the outputs 

[35]. Implementing this method, the error rate could be effectively reduced [34]. 

However, it is only useful for correcting the error rate up to 8% [36]. The main drawback 

of this type of majority voting is the extra runtime. In addition, its reliability cannot be 

assured, because some PUF bit-cells might either vary its output under environmental 

conditions, but others might be well-matched bit-cell, in such case, the majority is near 

to even [37].  

On the other hand, the space Majority voting, also denoted as repetition coding, 

produces one reliable bit voting between a few unreliable PUF cells. The drawback is 

that it requires extra area, power, and more PUF cells [4]. 

2.2.3.3 Post-Fabrication Burn-in Enhancement 

The post-fabrication burn-in technique is based on using a mechanism to degrade the 

devices for long-terms. The idea of this technique is to intentionally take advantage of 

specific aging effects, and induce them into the PUF circuit.  This is done by providing 

additional run time while the circuit is subjected to temperature and voltage stress, with 

the goal to cause a time-based variability in addition to the pre-existing variability 

generated by process variations. Once these time-based variabilities are produced in the 

planned direction, they can increase mismatch inside the cells, and thus can produce 

more reliable PUF outputs. 

As an example, exploring the Bias Temperature Instability (BTI) degradation in the 

SRAM-PUFs is explained in [38], where the process variation is only considered for 

P-MOS transistors. As the SRAM PUF keeps storing the SUVs in the cells, the transistors 

will display the stress condition. P-MOS transistor that have higher threshold voltage 
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(Vth) will be affected more by the stress, and its Vth will decrease as long as the same 

stress condition is applied. As the higher Vth is decreasing, the mismatch between the 

P-MOS pair will also decrease; which reduces the reproducibility of this PUF, and makes 

it less immunized against noise. To solve this issue, the authors of [38] also proposed a 

solution. The method is to store the opposite of the SUVs by re-programming the whole 

SRAM-PUF array aiming to increase the mismatch in the cells, and thus their reliability. 

It is important to mention that It needs long time for these BTI stresses to be effective 

under nominal conditions, and hence, this method requires to be accelerated by 

increasing the temperature and voltage. This process still needs many hours up to days 

to produce a good result. 

The burn-in enhancement methods are also proposed for specific PUF implementations. 

A method is presented in [39], implementing a sense-amplifier PUF (SA-PUF) including 

burn-in function to explore the HCI degradation mechanism. Another method is the 

hybrid-PUF that uses BTI mechanism for burn-in improvement [34, 40].  

PUF implementations using these burn-in methods have resulted in improving the 

stability of the generated data. Besides their advantage, the main drawback is the 

required time and cost, as discussed in [38].  

2.2.4 Direct and Indirect Preselection Approaches 

To overcome some of the drawbacks of the previous methods, PUF-bit preselection 

approaches have been proposed [18,41-44]. In these approaches, the unreliable 

PUF-bits are identified in the PUF array and then masked out from the PUF response. 

However, these methods can be divided into direct and indirect PUF-bit preselection. In 

case of direct preselection, during the testing stage, the PUF-bit array is challenged 
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several times under wide range of operational and environmental conditions, such as 

different power supply and temperatures variations. The cells that display unstable 

behavior are directly marked and their pattern in the array is saved, to be excluded from 

PUF response. The disadvantage of this type of preselection that it requires massive 

tests and thus it will be expensive in test time, also it will be not totally reliable as its 

impossible to predict all the operational and environmental conditions. In the works [34, 

40], results show that implementing this method can improve reliability of PUF 

response, especially when increasing the number of the PUF test preformed at different 

conditions, as it may detect more unstable cells.  

The indirect PUF-bit preselection method is based on a test that indirectly detects the 

unstable PUF-bits; this test is done for each of the PUF bits [4].  If a PUF-bit passes the 

test, it will be classified as stable and could be implemented to generate the PUF 

response. The indirect preselection may detect all the unstable PUF-bit, but it may 

classify some of the stable PUF-bits as unstable, decreasing the number of suitable bits 

in the response [44]. The preselection pattern of those stable cells can be saved in NVM, 

as in [18] and [45-46]. 

2.2.4.1 Our Approach 

Tacking profit of the indirect preselection approaches, we propose a metric-based 

methodology obtained by simulation to characterize the reproducibility of SUV (rSUV) for 

SRAM-PUF implementation. The simulated metrics are evaluated based on internal 

SRAM parameters affected by process variation and mismatch.  The proposed metrics 

can be simulated under any single operational and temperature conditions. The idea of 

our metric methodology is to assign a value for each SRAM cell in the proposed memory 

to represent how reliable the cell will be under the impact of internal and external 
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perturbations. Such that, the cells that have higher values of a metric are considered 

more reliable and its SUV will be more reproducible under these perturbations. Including 

only this type of cells in the PUF will improve the quality of its response. By contrast, 

lower metric values will expose the cells that have low reproducibility in their SUVs. Even 

though these cells should be ignored and masked out for PUF applications such key 

generation, some of them could be useful as a source of randomness for TRNG 

applications, however, this fact is out of the scope of this thesis and it has not been 

studied. The next chapter will provide the detailed methodology of these metrics.  
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CHAPTER 3 

METRICS METHODOLOGY FOR IMPROVING 

SRAM-PUF RELIABILITY 

     SRAM PUFs use the start-up value (SUV) of an SRAM cell for PUF application such as 

cryptographic key generation as discussed in previous chapter. The reliability and the 

stability of this start-up behavior is a crucial issue that requires to be ensured when using 

SRAM cells as a PUF. This chapter uses several simulation-based metrics to investigate 

the parameters affecting the reliability of SUV based SRAM PUFs. Additionally, we 

characterize the SUV reproducibility proposing several mismatch metrics suitable for 

reliability estimation during design phases.  

3.1 Simulation Environment Setup 

     The proposed metrics are applied to the common 6T SRAM design using Cadence 

Environment, see the schematic in chapter 2 in Fig.2.3 (a).  The Virtuoso Schematic 

Editor is utilized to draw the circuit and Spectre Simulator is used to simulate the 

proposed SRAM design implemented on commercial 65nm CMOS technology. This 

technology provides three types of transistor based on threshold voltage parameter, 

such as Low Power Standard Threshold Voltage CMOS (lpsvt), Low Power High Threshold 

Voltage CMOS (lphvt) and Low Power Low Threshold Voltage CMOS (lpsvt); while in this 

work the lpsvt CMOS is used.  However, the SRAM cell Schematic is powered utilizing a 

Voltage Piecewise linear (Vpwl) source, as obtaining the SUV of SRAM cell (see section 
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2.2) requires controlling the source ramp-up voltage and time. Similarly, both Bit-Lines 

(BL, BLB) and Word-Line (WL) are controlled by same type of voltage source. The Vpwl 

source allows us to adjust the magnitude and the speed of ramp-up voltage (Vdd) and 

to turn on and off the BL, BLB, WL. 

AL the simulations in this chapter utilize Monte Carlo analysis provided by Spectre 

Simulator to mimic the inherent mismatch between the transistors inside SRAM cell, 

also we applied Process Variation feature to mimic different SRAM cells. In this work, 

we propose 1000 cells SRAM array represented by 1000 Monte Carlo iterations. To have 

a fixed Monte Carlo iteration order for all simulations in this thesis, the location of the 

simulated transistors on the Schematic is fixed through this work simulations, as we 

observed that changing only the transistor location can highly affect the distribution of 

Monte Carlo; such that a new random parameter values are generated for each 

iteration. In the following sections, we introduce the new metrics methodology where 

some of them are evaluated implementing DC-Monte Carlo Simulations while the rest 

of metrics by Transient-Monte Carlo Simulations. Based on that, the chapter simulations 

are divided into:  

1-DC Monte Carlo Simulations 

Section.3.2 presents two metrics to model the inherent-cell mismatch. A metric based 

on the threshold voltage differences is proposed. In this sense, the Spectre Simulator 

provides three types of threshold voltage to be calculated: Model Vth, Transient Vth and 

DC Vth. However, the Model Vth is utilized for this metric calculation, as it has a fixed 

value regardless the type of simulation. The other metric is based on the distance 

between VTCs for the individual inverters of the SRAM cell. The DC Simulation is mainly 
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utilized to draw the VTCs, as proposed in [47], for both inverters; where the voltage 

switching points are calculated. Similarly, the metrics in Section.3.3 are based on the 

SNM concept and are evaluated using the same DC-VTCs methodology to draw the 

SNM-based butterfly diagram.  

2- Transient Monte Carlo Simulations 

The SUV for each cell is evaluated using transient simulation. At power-up, the cell 

remains in retention operation, that is, the access transistors are cut-off (WL = 0 V) and 

the memory cell is isolated from the bit-lines. In this sense, we found that starting-up 

the cell either with discharged bit-lines (BL=0 V, BLB=0 V) or with fully charged bit-lines 

(BL=Vdd, BLB=Vdd) will slightly affect the final SUV for the cells in the proposed memory; 

as only 0.24% of the cells have different SUV for both cases. 

This chapter uses a reference SUVs set for the proposed SRAM array to validate the 

prediction ability of the proposed metrics. While the internal nodes of the memory cell 

are discharged by setting the initial nodes conditions to Q = 0 V and QB = 0 V, this 

reference SUV is obtained by ramping the cell power supply from 0 V to 1.2 V in 5ns 

under nominal temperature (27o C).  

Using similar Transient simulations settings, we obtained the metrics in Section.3.4 and 

Section.3.5. But, in Section.3.4, two Vpwl sources are utilized to inject voltage noise at 

different locations of SRAM cell aiming to estimate inherent-cell mismatch. While in 

Section.3.5, the SID metric methodology is based on varying the initial nodes conditions 

from the reference values (VQ=0 V, VQB=0V). 

Finally, the resulting data from both type of simulations are collected and organized 

using Open Command Environment for Analysis (OCEAN) Script. This tool is a powerful 
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programming language that can automate the simulations within Cadence. It is a subset 

of SKILL language and uses this language to configure the design environment. Then all 

the resulting data are transferred to MATLAB environment, where we analyzed them to 

produce the results and figures in this chapter.  

3.2 Reliability Metrics based on Inherent-Cell Mismatch 

     All SRAM cells have inherent mismatch caused by fabrication process variations. In 

this work, the mismatch in SRAM cell is calculated based on two different transistors 

and inverters parameters. Generally, the mismatch metric is based on Parameter 

distance (Pd) defined as the difference between some parameter values, S, that 

accounts for the trend that an inverter has in attaining one of the two possible logic 

states.  

                                                               𝑃𝑑 = 𝑆(𝑖𝑛𝑣𝑄) − 𝑆(𝑖𝑛𝑣𝑄𝐵)                                                    (3.1) 

This section introduces two mismatch metrics based on selecting the S to be related to: 

firstly, the transistors Threshold Voltage parameter. Secondly, the inverters Switching 

Voltage Point.  

3.2.1 Threshold Voltage Distance Between the Individual Transistors 

There are several transistor parameters that may contribute to SUV behavior. When 

power is applied to the memory, the SRAM cells will reach a final SUV that depends 

primarily on threshold voltage (Vth) mismatch of the constituent transistors [48], [49], 

[50]. In [49], the authors apply Vth mismatch to define the adequate cells for PUF 

application. Their definition of the mismatch only considers the Vth mismatch of N-MOS 

transistors while the mismatch in P-MOS transistors is neglected. However, the Vth 
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mismatch of N-MOS transistors is controlled by the transistor area; a smaller area 

generates higher mismatch. On the other hand, the work in [50] only considers the 

process variation and mismatch in P-MOS transistors to select SRAM cells to be used as 

a TRNG. In this work, both P-MOS and N-MOS Vth mismatch are implemented to define 

the Threshold Voltage Parameter Distance (PdVtho).  

Firstly, Monte Carlo simulation is applied to mimic the process variation and mismatch 

and then a DC simulation in Spectre simulator is utilized to observe and save the Vth for 

the transistors (Mp3, Mp2, Mn0, Mn1), see Fig.3.1. Secondly, the SUV for each cell of 

the memory is obtained by transient simulation under the reference conditions as 

discussed in Section 3.1. 

After studying and comparing both simulations, the SUV could be determined by the 

random Vth variation of the four transistors in each SRAM memory cell as follows:  

• A slow transistor means that it has high Vth so its current will be slow. 

Conversely, a fast transistor means that it has low Vth so its current will be 

fast. 

• A cell will have “0” SUV (Q = 0 and QB = 1 in Fig.3.1 (a)) if Mp3 and Mn1 are 

slower transistors than Mp2 and Mn0. 

Fig.3.1:  6T SRAM Cell showing transistors contribution to SUV. 
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• A cell will have “1” SUV (Q = 1 and QB = 0 in Fig.3.1 (b)) if Mp3 and Mn1 are 

faster transistors than Mp2 and Mn0. 

In order to estimate this misalliance between transistor pairs, the PdVtho could be defined 

as the subtraction of Vth attributes from both (Mp3, Mn1) and (Mp2, Mn0) pairs as 

follows: 

                             𝑃𝑑𝑉𝑡ℎ 𝑜 = (𝑉𝑡ℎ𝑀𝑝3 + 𝑉𝑡ℎ𝑀𝑛1) − (𝑉𝑡ℎ𝑀𝑝2 + 𝑉𝑡ℎ𝑀𝑛0)                           (3.2) 

If PdVtho is negative, the SUV is expected to be “1”, while if PdVtho is positive, the SUV will 

be “0”. In addition, if N-MOS transistors are matched and equal to the matched P-MOS 

transistors in cell, the PdVtho will be equal to 0 which indicates that cell is matched.  

However, the PdVtho can be described in terms of differences between the P-MOS and 

N-MOS transistors. Equation (3.5) rewrites equation (3.2) considering the differences 

between types of transistors in the cell: 

                                                       ∆𝑃 = 𝑉𝑡ℎ𝑀𝑝3 − 𝑉𝑡ℎ𝑀𝑝2                                                         (3.3) 

                                                             ∆𝑁 = 𝑉𝑡ℎ𝑀𝑛0 − 𝑉𝑡ℎ𝑀𝑛1                                                          (3.4) 

                                                          𝑃𝑑𝑉𝑡ℎ 𝑜 = ∆𝑃 − ∆𝑁                                                              (3.5) 

As we mentioned in the previous section, the Spectre simulator provides three types of 

Vth (Model Vth, Transient Vth, DC Vth). Even though they have different values for the 

same transistor, ∆P and ∆N are equal using all these types as the difference is cancelled. 

As a result, all of them can be used to calculate PdVtho.  

The new equations define the mismatch space where the differences between P-MOS 

transistors (∆P) and the differences between N-MOS transistors (∆N) could explain the 

SUV of the cell.  Fig.3.2 represents this mismatch space where ∆P and ∆N results 
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obtained for each cell from the proposed memory. Cells starting at Q = “1” have been 

represented in red, while cells starting at Q = “0” are in black.  

In Fig.3.2, most cells with PdVtho >0 start at logic “0”, The diagonal line where the colors 

are separated , equivalent to PdVtho = 0, divides the mismatch space in two planes: the 

plane where (∆P, ∆N) pairs results in PdVtho > 0, then the SUV is “0” , and the plane where 

PdVtho < 0 and the SUV will be “1”. However, there are cells (19% of the memory cells) 

that show the opposite behavior close to the diagonal line. These cells have an PdVtho 

value whose absolute value is low. In this sense, all cells having a large enough |PdVtho| 

are well classified considering its start-up value. 

The histogram distribution of PdVtho values has been shown in Fig.3.3, where the cells 

located at the leftmost (red bars) will start-up with “1” while the cells located at the 

rightmost (black bars) will start with “0”. The rest of the cells are found to have an 

unpredictable SUV. As a result, the farther the cells are from PdVtho = 0, the more 

predictable SUV the cells will have. We can define the predictable SUV cells as reliable 

PUF cells and the unpredictable SUV cells as unreliable PUF cells. Actually, a PdVtho 

 

Fig.3.2: Distribution of Mismatch Parameter between N-MOS and P-MOS. 
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threshold range using Fig.3.3 can be established to differentiate between those reliable 

and unreliable cells based on a comparison between the SUVs using transient 

simulations and the sign of PdVtho which obtained by DC simulation. 

The threshold can be defined from histogram overlaps as [-0.06v, +0.06v]. All cells 

located outside of this range can be predicted correctly and agree with SUV prediction 

using PdVtho sign. 

In general, cells that have low PdVtho values produce a high unpredictability in their 

start-up outputs, unpredictability decreases as PdVtho values increases. We observed 

that cells near PdVtho = 0 can’t be predicted which may indicate that inverters are highly 

matched, and it is expected to be the higher number of cells in a non-specific SRAM 

design. These cells may be useful in TRNG applications as it is expected that their outputs 

will be random. 

On the other hand, P-MOS and N-MOS transistors are not equivalent due to structural 

differences, i.e electron mobility, current drain or internal capacitances. According to 

previous works [4], [51] and [52], it was reported that P-MOS and N-MOS transistors 

 

Fig.3.3:  Histograms of Mismatch Metric (PdVtho) values depending on the SUV. 

 



35 

 

have different contribution on the SUV of SRAM cell. Specifically, their results show that 

the P-MOS transistors dominate more in deciding the SRAM-PUF final output.  

Based on that, we include a Weighting factor (w) comprised between 0 and 1, to account 

for this difference in contribution. So, equation (3.5) can be written as: 

                                            𝑃𝑑𝑉𝑡ℎ = 𝑤 ∗ ∆𝑃 − (1 − 𝑤) ∗ ∆𝑁                                      (3.6) 

where w is defined by implementing an optimization process to adjust the PdVtho 

(obtained by DC Monte Carlo simulation) based on the SUV (which obtained by transient 

Monte Carlo simulation). This optimization process aims to maximize the number of cells 

that have SUV agree with the sign of PdVtho. After the optimization fitting process, the w 

value is optimized equal to 0.76. As a result, This PdVth will combine both DC and 

Transient simulation, which can be useful to study and compare the mismatch with any 

other transient simulations. The histogram of PdVth values is presented in Fig.3.4, it can 

be noticed that the overlap range ([-0.005v, +0.005v]) decreases where the percentage 

of unpredictable cells decreases from 19% to only 5% of the memory cells. These results 

 

Fig.3.4: Histograms of Mismatch Metric (PdVth) values including the Weighting 

Factors (w=0.76). 
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agree with previous mentioned works, as if the P-MOS transistors have higher 

contribution (w=0.76) than N-MOS contribution (1-w=0.24) the SUV predictability will 

be higher. And thus P-MOS will be more dominant on SUV for SRAM-PUF.   

In this thesis, PdVtho and PdVth will be implemented as a key factor to explain different 

SRAM-PUF behavior under internal noise effects, such as thermal noise, and external 

conditions effects, such as ramp-up time and internal nodes initial conditions.  Also, they 

will be used as a reference-metrics to be compared with other proposed metrics in the 

next sections.    

3.2.2 Switching Voltage Point Distance between Inverters 

The previous PdVtho only considers the threshold voltage to evaluate the mismatch in 

SRAM cells. In order to include the contribution of all physical parameters to obtain the 

cell mismatch, a novel-method is proposed for the first time to calculate the cell 

mismatch. This method implements the Inverter Switching Point (VM) for both cell’s 

inverters.  

VM is defined as the point where VQ = VQB (Vin = Vout). At this point, both P-MOS and N-

MOS transistors are always saturated, because VDS = VGS. An analytical expression for VM 

is calculated by equating the currents passing through the transistors in the inverter. 

The final expression for VM is shown in the following equation [53]: 

                                                   𝑉𝑀 = √𝛽𝑛𝛽𝑝  𝑉𝑡ℎ,𝑁 + 𝑉𝑑𝑑 − 𝑉𝑡ℎ,𝑃
1 + √𝛽𝑛𝛽𝑝                                                         (3.7) 

Where                                                     𝛽 = µ𝑜 ∗ 𝐶𝑜𝑥 ∗ 𝑊𝐿                                                                  (3.8) 
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In the last equation, µ0 is the average carrier mobility, Cox is the gate oxide capacitance 

per unity area, W is the channel width and L is the channel length. 

The proposed methodology will implement VM for both cell’s inverter, where VM1 is 

defined for the first inverter, which include Mp3 and Mn0 transistors (see Fig.3.1), while 

VM2 is defined for the second inverter that include Mp2 and Mn1 transistors (see Fig.3.1). 

The following equations show both VM: 

                                           𝑉𝑚1 = √𝛽𝑛𝛽𝑝  𝑉𝑡ℎ𝑀𝑁0 + 𝑉𝑑𝑑 − 𝑉𝑡ℎ𝑀𝑃3
1 + √𝛽𝑛𝛽𝑝                                                    (3.9) 

                                            𝑉𝑚2 = √𝛽𝑛𝛽𝑝  𝑉𝑡ℎ𝑀𝑁1 + 𝑉𝑑𝑑 − 𝑉𝑡ℎ𝑀𝑃2
1 + √𝛽𝑛𝛽𝑝                                                 (3.10) 

The novel mismatch metric (PdVm) is defined for each cell as the difference between both 

inverters VM as follows: 

                                                            𝑃𝑑𝑉𝑚 =   𝑉𝑚2 − 𝑉𝑚1                                                        (3.11) 

To observe the analytical relation between this factor and the previous PdVtho, equation 

(3.11) is rewritten in terms of ∆P and ∆N (equations (3.3), (3.4)) as follows: 

                                                PdVm = 11 + √𝛽𝑛𝛽𝑝  ∆𝐏 − √𝛽𝑛𝛽𝑝 
1 + √𝛽𝑛𝛽𝑝 ∆𝐍                                            (3.12) 
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On one hand, we can notice that this equation is similar to PdVtho (equation (3.5)) in 

terms of Vth mismatch. On the other hand, PdVm includes the effect of other physical 

parameters mismatch, such as carrier mobility, gate oxide capacitance and area of the 

transistors. 

A graphical technique to obtain VM value for an inverter is presented in [54], where its 

value can be obtained graphically by finding the intersection of the inverter VTC with 

the line given by Vin = Vout. In this work, we have obtained VM1 and VM2 graphically for 

both inverters in the cell; while the feedback between the inverters is disconnected. 

Fig.3.5 shows two VTCs for one SRAM cell where the intersection points with VQ=VQB line 

is labeled with VM1 and VM2. The distance between these two points is defined as our 

novel PdVm.  

The PdVm values for each cell of our proposed memory are achieved by DC Monte Carol 

simulation to draw the VTCs. Also, we have used the same Reference SUV for the 

memory to compare it with the sign of PdVm. The comparison shows that most of the 

 

Fig.3.5: Graphical technique to obtain Mismatch Metric (PdVm) values by using 

VTCs for the cell’s inverters. 
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cells that have negative PdVm value start-up with logic “1” while the cells with positive 

PdVm value will start with logic “0”.   

This SUV behavior agrees with the previous PdVtho SUV-assumption, where the histogram 

of PdVm values has been shown in Fig.3.6 , we can see that the cells placed at the leftmost 

(red bars) will start-up with ‘1’, while the cells placed at rightmost (black bars) will start 

with ‘0’. The rest of the cells have an unpredictable SUV (represent 20.8% of whole 

proposed memory).  

As a result, the farther the cells are from PdVm = 0, the SUV of the cells will be more 

predictable. Similar to PdVtho, We will define the predictable SUV cells as reliable PUF 

cells and the unpredictable SUV cells as unreliable PUF cells while the threshold value 

that differentiate between those reliable and unreliable cells can be defined from 

histogram overlaps as [-0.03v, +0.03v]. All cells located outside of this range can be 

predicted correctly. 

 

Fig.3.6: Histograms of Novel Mismatch Metric (PdVm) values depending on the 

SUV. 
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3.2.3 Summary 

The inherent mismatch in SRAM cell can highly affect the SUV of SRAM-PUF. 

Implementing both PdVtho and PdVm to study the cell mismatch reflects in that both 

metrics are able to predict the PUF-SUV behavior. The highest value of these metrics 

means that the cell is highly mismatched and thus will be more reliable. On the other 

hand, PdVtho has slightly better predicting ability (81%) than PdVm (79.2%) which indicates 

that only the Vth of the cell’s transistor can significantly control the cell SUV. 

The relation between both metrics has been shown in Fig.3.7. Where each “o” 

represents one cell while the cells that colored black have “0” SUV and red cells have 

“1” SUV. Also, the threshold value between reliable and unreliable cells for each metric 

is shown in this figure. We can observe that both metrics are correlated together where 

the correlation factor between them equals to 0.967. Finally, both PdVtho and PdVm 

metrics can be obtained easily by DC simulation, while obtaining PdVth (PdVtho with 

weighting factors) requires implementing both DC and Transient simulations. This PdVth 

will be very useful to study and analyze the relations between the inherent mismatch 

 

Fig.3.7: The Relationship between PdVtho and PdVm. 
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and other external perturbations and internal noise that can be only achieved by 

Transient simulations.  

3.3 Reliability Metrics Based on SNM Concept 

     This section describes the implementation of the Static Noise Margin (SNM) concept 

to provide a representation for the SUV behavior of SRAM-PUF. Firstly, the SNM concept 

is discussed. Secondly, two SNM-based metrics are proposed to estimate inherent-cell 

mismatch. Thirdly, the relation between the proposed metrics and the previous metric 

in the literature will be discussed. Finally, the mismatch relation with the SNM proposed 

metrics will be studied. 

3.3.1 SNM Concept 

The SNM of 6T SRAM cells is typically utilized to describe a cell internal node noise 

immunity. Specifically, this metric is used to quantify the maximum noise voltage that 

could be tolerated by SRAM cell without changing its logic state. SNM can be determined 

by measuring the side length of the largest square that can fit inside the butterfly curve 

of the VTCs for the SRAM-cell’s back-to-back inverters. Fig.3.8. shows both inverters 

VTCs for two SRAM cells. Each cell is shown by a different color, and the intersection of 

those curves create the butterfly curve (eyes shape). The side length of the biggest 

square that could be located inside both eyes of this curve (see Fig.3.8) is the SNM value 

[55]. The size of each eye of the butterfly curve can vary between cells (see Fig.3.8), as 

this variation could be caused by mismatch and process variation in the SRAM cells [56]. 
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For normal SRAM operation (Read, Write, Hold), the SNM model in [55] considers the 

effect of all cell’s transistors on the stability of SRAM cell. The model in [55] calculates 

the SNM based on Read Mode because it’s the worst mode scenario in normal SRAM 

applications.  

3.3.2 Proposed Metric 

Modeling the SUV behavior for SRAM-PUF using SNM was introduced as a reliable PUF 

metric in [43], also the same model is utilized and discussed in [57-58]. The authors in 

[43] claim that the previous SNM model cannot be directly implemented to analyze the 

SUVs behavior, as the SUV is generated when the cell is in hold mode and not in read 

mode. Thus, they defined two metrics based on obtaining the noise margins (NM and 

NM’) of the VTCs. The NM and NM’ metrics are calculated by the values of four critical 

points, located on VTCs, where the derivative of Q node voltage with respect to QB node 

voltage is equal to -1 [43]: 

 

 
Fig.3.8: Static Noise Margin definition using VTCs curves. 
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• PSNM ratio defined as the ratio between noise margins (NM / NM’). 

• PSNM noise defined as the minimum value of both noise margins (min (NM, 

NM’)). 

Where the preferred SUV of the cell is logic “1” if PSNM ratio is higher than 1, and logic 

“0” if PSNM ratio is lower than 1. As the cells have values of PSNM ratio are higher than 

1, they will have higher asymmetry between their back-to-back inverters; and thus, their 

SUV will be more reliable. 

Although the traditional SNM (as described in the previous section) in [55] is evaluated 

utilizing read mode conditions, the way how it is evaluated can also be applied in hold 

mode configuration to study the SUV for PUF; in other words, when Word Line (WL) = 0. 

Therefore, the noise margins can also be defined using both length sides of both squares 

that can fit inside the butterfly curve of the VTCs. 

3.3.2.1 SNM Distance (SNMd) Metric 

Recently, the work in [47] implements DC simulation method to calculate SNM. This 

method is based on rotating the VTCs of the memory cells 45o to obtain the diagonals of 

each largest squares that fit inside the butterfly curve (D1 and D2 in Fig.3.8). Taking 

profit of this method, our work introduces a new metric, denoted as SNM Distance 

(SNMd), to represent the start-up behavior of the SRAM cell. Therefore, the VTCs in 

Fig.3.8 is rotated 45o by multiplying each VTC by a rotating vector to become like in 

Fig.3.9. Hence, the SNMd is defined as the subtraction of both diagonals D1 and D2 (see 

Fig.3.9) as follows: 

                                                                     𝑆𝑁𝑀𝑑 = 𝐷1 − 𝐷2                                                              (3.13) 
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The SNMd values for each cell of our proposed memory are achieved by DC Monte Carlo 

simulation to draw the VTCs, while MATLAB platform is implemented to rotate these 

curves and evaluate the maximum diagonals as in Fig.3.9. Also, we have used the same 

reference SUV to compare it with the sign of SNMd. The comparison shows that most of 

the cells that have negative SNMd value start-up with logic “0” while most of the cells 

with positive SNMd value will start with logic “1”. 

The assumption of SUV direction (logic “0” or “1”) using this metric is reversed when it 

is compared with parameter distance metrics (PdVtho and PdVm in section.3.2); a positive 

value of parameter distance metrics defines the cell that start-up at logic “0”, and a 

negative value for the cell that start-up at logic “1”. The histogram of SNMd values has 

been shown in Fig.3.10 , where we can see that the cells placed at the leftmost (black 

bars) will start-up with ‘0’, while the cells placed at rightmost (red bars) will start with 

‘1’. The rest of the cells have an unpredictable SUV (representing 22.4% of the proposed 

memory).  

 

Fig.3.9: 45o rotated VTCs. 
 



45 

 

It is noticeable that, the farther the cells are from SNMd = 0, the SUV of the cells will be 

more predictable. Similar to the parameter distance metrics, the cells that have 

predictable SUV will be defined as reliable PUF cells, while the cells that have 

unpredictable SUV as unreliable PUF cells. Also, a threshold range from histogram 

overlaps can be established to differentiate between those reliable and unreliable cells 

as [-0.05v, +0.05v]. All cells located outside of this range can be predicted correctly. 

Our results agree with the works in [21, 43], where they found that a totally symmetrical 

eyes of butterfly curve indicates that the cell inverters are symmetrical and thus the cell 

will not has a preferred logic state (“0” or “1”). While large butterfly curve eyes 

asymmetry indicates a high tendency towards one of the preferred logic states. Hence, 

the proposed SNMd evaluates these asymmetries. 

 

 
Fig.3.10: Histogram of SNMd values considering the reference SUV. 
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3.3.2.2 VTCs Intersection Distance (INTd) Metric 

The Butterfly diagram of an SRAM cell can provide much information about the start-up 

behavior of SRAM. In this section anther novel metric to classify the SRAM cells strength 

is proposed based on the intersection points between the VTCs of the cell. Generally, 

both cell VTCs intersect in three points: stable state “1”, stable state “0” and meta stable 

point; as shown in Fig.3.8. On the one hand, for a perfectly symmetrical cell, the meta 

stable point is located on the line VQ=VQB, which represents the ideal value of 

meta-stable state where the cell inverters are fully matched. On the other hand, for 

non-symmetrical cells, the farther that the meta-stable point is from the VQ=VQB line, 

the more asymmetrical the cell will be, and thus the cell’s inverters are more 

mismatched. Based on that, our novel metric, denoted as INTd (see Fig.3.11) is defined 

as the distance between the meta-stable point (VTCs intersection point) and the 

VQ=VQB line. Fig.3.11 represents the VTCs of two different SRAM cells including a 

detailed picture for their intersection points where our novel metric is shown. On one 

 

 
Fig.3.11: Intersection Distance metric (INTd) definition using VTCs curves. 
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hand, the red curves in this figure represent a cell that has a logic “1” SUV, where the its 

intersection point is located above the line VQ=VQB. On the other hand, the black curves 

present a cell start-up at logic “0”, where the intersection point of this cell is located 

under the line VQ=VQB.  

Based on these observations, we define positive INTd value for the cells with intersection 

point located above the VQ=VQB line (see Fig.3.11), while a negative INTd value is be 

assigned for the cells with intersection point located below the VQ=VQB line (see 

Fig.3.11). In addition, from a reliability point of view, the INTd magnitude is related to 

the cell’s asymmetry. A higher INTd magnitude means that the cell will be more 

mismatched and thus more reliable; where in Fig.3.11, the cell represented by the black 

curves (the cell with INTd2) is more reliable than the red curves cell (the cell with INTd1).  

The INTd values for each cell in the proposed memory are achieved by using similar 

procedure as in SNMd metric to obtain the VTCs, while the intersection of these curves 

is calculated in MATLAB platform. Again, the same Reference SUV set for the proposed 

memory is utilized to compare the SUV for each cell with the sign of INTd. 

The histogram of INTd values is shown in Fig.3.12, we can observe, similar start-up 

behavior to SNMd metric. The cells located at the leftmost (red bars) will start-up with 

‘1’, while the cells placed at rightmost (black bars) will start with ‘0’. The rest of the cells 

that are located near to INTd =0 have an unpredictable SUV (represent 20.9% of all cells). 

The results in this histogram are in line with our reliability assumption using INTd metrics. 

The farther the cells are from INTd = 0, the SUV of the cells will be more predictable, and 

they can be defined as reliable PUF cells. while the cells with low INTd absolute value 

have unpredictable SUV and they can be defined as unreliable PUF cells. Also, a 
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threshold range that differentiates between those reliable and unreliable cells can be 

defined as [-0.03v, +0.03v], where all cells located outside of this range can be predicted 

correctly. 

3.3.3 Correlation with Previous Metric in literature (PSNM ratio) 

SNM is typically applied to study a cell’s internal node noise immunity. The variation of 

the size of the butterfly curve of a SRAM cell is utilized to evaluate the SNM. In this work, 

two proposed metrics (SNMd and INTd) based on SNM are implemented to study the 

reliability of SUV of SRAM-PUF. A high absolute value of these metrics means that the 

cell is highly asymmetrical and thus will has high tendency to one of preferred SUV, also 

it will be more reliable PUF cell. 

 Based on our simulations, we noticed that INTd has better SUV predicting ability (79.1%) 

than SNMd metric (77.6%). The relation between these two metrics has been shown in 

Fig.3.13. Where each “*” represents one cell, while the cells colored in black also have 

“0” SUV and red cells have “1” SUV. Also, in this figure, the threshold range between 

 

 
Fig.3.12: Histogram of INTd values considering the reference SUV. 
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reliable and unreliable cells is presented by the vertical lines for SNMd metric, while the 

horizontal lines represent the threshold range for INTd. We can observe that most of the 

reliable cells are common between both metrics. Additionally, the proposed metrics are 

highly correlated where the correlation factor between them reaches up to 0.9987.  

Finally, the correlations between our proposed metrics SNMd and INTd with the PSNM 

ratio metric in [43,57-58] are presented in Fig.3.14(a) and Fig.3.14(b), respectively. 

Where the PSNM ratio metric was the only metric in literatures applied to model the 

reliability of SUV for SRAM-PUF. In these figures, it is remarkable that our proposed 

metrics demonstrate good correlation with PSNM ratio by achieving linear coefficients 

superior to 0.99. Therefore, the new proposed metrics appear to be suitable for 

SRAM-PUF cell classification. 

 

 
Fig.3.13: Correlation between values of SNM-based metrics. 
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3.3.4 Correlation with Inherent-Cell Mismatch 

SNM is typically utilized to describe a cell’s internal node noise immunity, while the 

mismatch of the cells describes the effect of manufacturing variability on the cell’s 

transistors and thus their relative strength. In this section, the relation between the 

mismatch and the SNM metrics will be studied. The PdVm metric will be utilized to study 

this relation; as PdVm metric is also evaluated by implementing VTCs of the cell.  

The relation between SNMd metric and the mismatch is presented in Fig.3.15, where the 

reversed correlation coefficients between them R2 equals to -0.9987.  Also, a slightly 

better relation is shown in Fig.3.16 between INTd and the mismatch, where the reversed 

correlation coefficients between them is very high and equals to -0.9998.  In Fig.3.15 

and Fig.3.16, each “*” represents one cell, while the cells that colored black have “0” 

SUV and red cells have “1” SUV. Also, in these figures, the reliable and unreliable cells 

threshold ranges for the metrics are shown.  

                
(a) (b)   

        

              Fig.3.14: Correlation between our proposed metrics and PSNM ratio. 
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 Additionally, we have observed that the percentage of common reliable cells between 

INTd metric and the mismatch is slightly higher than the common reliable cells between 

SNMd and the mismatch. Finally, the reverse in the linearity relation between the SNM 

 

 
Fig.3.15: Correlation between values of SNMd and the mismatch metric. 

  

 
Fig.3.16: Correlation between values of INTd and the mismatch metric. 
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metrics and the mismatch represents only the direction of the SUV (preferred “0” or 

“1”). However, the cells with high absolute value of SNM metrics have a high absolute 

value of mismatch metric. This indicates that a highly mismatched cell can tolerate high 

level of noise and thus it will be considered as a reliable cell.  

3.4 Voltage Noise Injection Methodology as Reliability Metrics 

     There are many researches that focus on improving and implementing test strategies 

for SRAM-PUF in order to enhance the reliability of the response produced by the PUF 

cells. Those researches also try to minimize cost, time and hardware of the tests [42], 

[44] and [59]. 

In this work, the start-up behavior of SRAM-PUF has been widely studied and we have 

observed that threshold voltage variations have very high impact on the SUV. An 

important factor that causes inconstant behavior in SUV is the bit-induced noise voltage 

such as thermal noise [52]. The work in [59] proposes a preprocessing algorithm to 

overcome this inconstant start-up behavior that is caused by the noise-induced in the 

SRAM cells. Also, postprocessing fuzzy extractors can be implemented as in [60] to 

reduce the effect of that behavior. However, these solutions aren’t practical as the 

complexity and cost will be increased [42].  

A proposed SRAM-PUF design that could be used to identify the unreliable cells that are 

highly affected by bit-induced noise is presented in [42]. In this design, low cost 

modifications for the SRAM cell are required. This work relies on injecting a certain level 

voltage noise at the ground of the proposed memory to identify the cells that show 

inconstant SUV. Those cells will be masked out from the PUF response while the rest of 

the cells in the memory will be considered as reliable cells for PUF application.  



53 

 

In this Section, a metric-based methodology, based on injecting a DC voltage at different 

location of the SRAM cell, is proposed to classify the immunity of the memory cells 

against the induced noise. This work proposes three metrics that aim to evaluate the 

maximum voltage noise that can be tolerated by each cell in the proposed memory. On 

one hand, the three proposed metrics are evaluated using the same methodology. On 

the other hand, the location of the injected voltage noise between those metrics is 

different.  

Firstly, we will present the methodology of evaluating the maximum tolerated noise by 

the cells according to the following locations: (i) The injected noise at the ground node 

of the cell, (ii) The injected noise between the cell’s storage nodes and (iii) The injected 

noise at the power supply node of the cell. Then, the relation between those proposed 

metrics will be discussed. Finally, the noise injection-based metrics will be studied with 

respect to the inherent cell-mismatch, where we will show that the proposed metrics 

can provide a significant indication on cell’s mismatch.   

3.4.1 Metric Methodology 

3.4.1.1 Noise Injection at Ground of the cell 

The injection of DC noise voltage into SRAM memory is proposed in [42], as a technique 

to characterize the reliability of the cells for PUF applications. In that method, two 

voltage noise sources are added to the ground terminals of the SRAM array as it can be 

seen in Fig.3.17. The goal of that work is to obtain a ratio for those cells that change its 

start-up value under certain level of the injected noise. 

However, our approach also consists in adding two DC voltage noise sources, but they 

will be added to each cell ground node of the proposed memory. Therefore, we will be 
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able to find the maximum DC noise voltage value that can be tolerated by each cell 

without changing its start-up value. Fig.3.17 shows the SRAM cell setup with DC noise 

voltage sources, Vn0 and Vn1, connected to the ground nodes of the cell. The first 

observations regarding to SUV are: 

• The cells that originally start-up at logic “0” (VQ=0, VQB=1) require varying 

Vn1 source to change their SUV to logic “1”; see Fig.3.17. 

 

• The cells that originally start-up at logic “1” (VQ=1, VQB=0) require varying 

Vn0 source to change their SUV to logic “0”; see Fig.3.17. 

To achieve a specific value for each cell that determines the ability to tolerate the 

maximum injected voltage noise, we utilized transient-Monte Carlo simulations to 

mimic the process variation between cells and the mismatch inside each cell. The 

procedure that we have implemented is described as follows: 

• On one hand, if the cell starts-up at logic “0”, the voltage of Vn1 source will 

be increased starting from 0 V in steps of 5 mV until the value where the cell 

 

 
Fig.3.17: 6T SRAM cell with noise injection at the ground nodes [42]. 
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flips its SUV. Meanwhile, the voltage of Vn0 source will be kept to 0 V; as 

varying Vn0 voltage in this case will not cause a flip in the SUV. 

• On the other hand, if the cell start-up at logic “1”, the voltage of Vn0 source 

will be increased similarly until the value where the cell flips its SUV. 

Meanwhile the voltage of Vn1 source will be kept to 0 V; as varying Vn1 

voltage in this case will not cause a flip in the SUV. 

• For each simulation set in each previous case, we have determined the 

lowest noise voltage level which is able to change the start-up value for each 

cell. Therefore, the maximum noise that can be tolerated by each cell, 

denoted as Vng, is defined as: 

                                                                                      𝑉𝑛𝑔 = 𝑉𝑛1 − 𝑉𝑛0                                           (3.14) 

Note that, a positive Vng values are assigned to the cells that have an original SUV at 

logic “0” (minimum noise voltage that applied to Vn1 source to flip the SUV to ”1” ), and 

a negative Vng value to the cells that have an original SUV at logic ”1” (minimum noise 

voltage that applied to Vn0 source to flip the SUV to ”0”). 

Fig.3.18 shows the histogram of the Vng values, for the proposed memory, computed by 

Monte Carlo simulations. Implementing the Vng definition and observing the histogram, 

all cells represented by the bars at the positive x-axis have logic “0” SUV while the cells 

represented by the bars at the negative x-axis will start-up at logic ‘1’. However, cells 

located at the leftmost and rightmost bars of this histogram have high absolute Vng 

values, and thus they can tolerate higher amount of noise level without changing their 

SUV, so they will be defined as reliable cells. 
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3.4.1.2 Noise Injection at Storage Nodes of the cell 

In this section, another metric based on injecting a DC voltage noise between the 

internal storage nodes of SRAM cell will be proposed for the first time to classify the 

immunity of the PUF cells against internal noise. The location of the injected noise is 

based on well-known SRAM stability metrics measurement, where the Read Noise 

Margin (RNM) in [55] and the Write Noise Margin (WNM) in [61] have utilized similar 

noise injection location to be evaluated. The goal of our proposed metric is to investigate 

if the location of the injected noise has any impact on the classification of the memory 

cells for PUF application. Fig.3.19 presents the SRAM cell setup, where the same DC 

noise voltage sources that have been used in the previous Vng metric, Vn0 and Vn1, are 

connected between the cell’s internal nodes. 

This metric also assigns a specific value to each cell in the memory by implementing a 

similar procedure as in the previous Vng metric. One of the noise sources is varied while 

the other is kept at 0 V. In this case, the maximum DC noise voltage that can be tolerated 

 

 
Fig.3.18: The histogram distribution of Vng metric. 
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by each cell, when the noise is injected between its internal nodes, denoted as Vni, is 

defined as follows: 

                                                                        𝑉𝑛𝑖 = 𝑉𝑛1 − 𝑉𝑛0                                                          (3.15) 

An injected voltage higher than this Vni value, will change the cell SUV. Similar to Vng 

definition, positive Vni values are associated with the cells that originally have logic “0” 

SUV, and a negative Vni values with those cells that have logic “1” SUV.  

The histogram for Vni values for the proposed memory is presented in Fig.3.20.  Again, 

the reliable cells that are identified by Vni are the cells placed on the rightmost and 

 

Fig.3.19: 6T SRAM cell with noise injection between storage nodes. 
 

 

 
Fig.3.20: The histogram distribution of Vni metric. 
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leftmost bars on this histogram. Those cells have high absolute values of Vni and thus 

can tolerate high level of the injected noise at the storage nodes. 

3.4.1.2 Noise Injection at Cell Power Supply Nodes 

The variation in the power supply voltage can slightly affect the start-up behavior of an 

SRAM cell [62-63]. While in [44], the authors separate the power supply (Vdd) of the 

cells into two power supplies (VddL, VddR) for each inverter in the memory’s cells. In 

their methodology, they introduce a small DC voltage difference (positive and negative) 

between the two power supplies, the cells that show unstable start-up behavior will be 

masked out from the PUF response. Their method can only define a ratio for the 

unreliable cells in the memory under specific value of voltage difference between the 

sources, but it can’t classify the reliability of the individual cells.  

In this section, the third metric, based on injecting a voltage noise at the power supply 

nodes, will be proposed to classify the reliability of the individual cells. Also, this metric 

will allow us to compare and study the effect of injected noise location with the previous 

two locations (at the ground and between the internal nodes of the cell). In this case, 

we have covered three possible locations where the voltage noise could be injected, 

with goal to compare between impact of P-MOS and N-MOS transistors on cells noise 

immunity; as we will discuss in the next section. 

Similar voltage noise sources (Vn0, Vn1) are utilized to evaluate the third metric, where 

the SRAM cell setup with the two noise sources located at the power supply nodes is 

shown in Fig.3.21. Also, similar simulations are utilized to assign a value to each cell, 

where this value presents the maximum voltage noise that can be injected into the 
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power supply nodes of a cell without changing its start-up behavior. This metric is 

denoted as Vnps and it is defined as follows: 

                                                                         𝑉𝑛𝑝𝑠 = 𝑉𝑛1 − 𝑉𝑛0                                                      (3.16) 

Similarly, the cells that have logic “0” SUV are assigned with positive Vnps values, and the 

logic “1” SUV with negative Vnps values. Fig.3.22 shows the histogram of Vnps values for 

also 1000 memory cells. The farther the Vnps values are from Vnps=0 V, the higher 

immunity against noise the cells will be; those cells that have high absolute Vnps values 

will be considered as reliable cells for PUF application.  

 

 
Fig.3.22: The histogram distribution of Vnps metric. 

 

 

Fig.3.21: 6T SRAM cell with noise injection at power supply nodes. 
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3.4.2 Correlations Between Noise Injection Locations 

All the proposed noise injection metrics are presented to study the immunity of 

SRAM-PUF cells against the internal noise. For this reason, some correlation between 

them is expected. However, the degree of correlation could be different based on the 

location of the injected noise. Injecting the noise at the ground of the cell can focus on 

the contribution of N-MOS transistors in the immunity against noise; as the injected 

voltage noise will act as an added offset (bias) to those transistors. Conversely, injecting 

the noise at the power supply node focuses on P-MOS transistors contribution. On the 

other hand, the N-MOS transistors will have an equal noise immunity contribution to 

the P-MOS transistors when the noise is injected between the internal nodes of the cell; 

as the added offset (noise) will be divided between them.  

Fig.3.23 presents the relation between the noise injected at the ground (Vng) and the 

noise injected at the power supply (Vnps), where each star in this figure represents one 

simulated SRAM cell. Those two metrics achieve a liner correlation factor of 0.92. While 

 

 
Fig.3.23: The relation between Vng and Vnps metrics. 
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the linearity in this relation means the cells that can tolerate high voltage noise injected 

at ground of the cell, can also tolerate high voltage noise injected at the power supply 

nodes. 

Slightly better linearity is shown in Fig.3.24, where the relation between the noise 

injected at the ground (Vng) is compared with the noise injected between the storage 

nodes (Vni). The linear correlation factor can reach up 0.95. Again, this linear relation 

also justifies the definition of the injected noise metrics, where a cell with high absolute 

value of Vng metric will also has high absolute value of Vni metric and thus it will be 

immunized against injected noise at both locations.  Finally, the relation between Vni 

and Vnps metrics is presented in Fig.3.25, where a high linearity relation is shown 

between them. The linear correlation factor in this relation is very high and equals to 

0.99. Based on that, to classify the noise immunity of the cells for PUF implementation, 

injecting the noise at power supply nodes is approximately similar to injecting the noise 

between the internal nodes.  

 

 
Fig.3.24: The relation between Vni and Vng metrics. 
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In case of Vnps metric, the injected noise will add a full voltage offset (bias) to the P-MOS 

transistors. While in case of Vni metric the offset will be divided between P-MOS and 

N-MOS transistors. In this sense, adding a full offset or a divided offset to the P-MOS 

transistors will not highly affect the classification of the cells; as the relation between 

both cases has high linearity with R2 equal to 0.998. On the other hand, adding a full 

offset to N-MOS transistors, in case of Vng metric, can slightly affect the classification; 

as the relation between adding a full offset and adding the same divided offset (in case 

of Vni metric) has R2 equals to 0.950. 

As a result, these observations can indicate a higher influence of the P-MOS transistors 

on the classification of cells in terms of noise immunity rather than N-MOS transistors. 

This result also agrees with mismatch metric (PdVth) results (see Equation (3.6), Section 

3.2.1) and the work in [52], where the P-MOS transistors are more dominant in deciding 

the SUV and thus the reliability of the cell.    

 

 
Fig.3.25: The relation between Vni and Vnps metrics. 
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3.4.3 Correlation with Inherent-Cell Mismatch 

The implementation of SRAM circuits for PUF application requires that the selected cells 

should be immunized against transient electrical noise at cell’s start-up stage. On the 

other hand, the cell’s start-up behavior is mainly depended on the relative strength 

between the cell’s transistors, that could be represented by inherent cell-mismatch. 

Therefore, a highly mismatched cell should tolerate high amount of injected noise at any 

location in the cell. 

Even though the proposed noise injection-based metrics can assign a specific value to 

each cell which describes the maximum voltage noise that can be tolerated by the cell, 

they cannot provide a threshold range to distinguish between the reliable and unreliable 

cells. To solve this issue, we will utilize the mismatch metric (PdVth in Equation (3.6), 

Section 3.2.1) to define a threshold range for noise injection-based metrics. PdVth metric, 

that includes the weighting factors, is specifically used here as it is evaluated by DC and 

Transient simulations which allow us to compare it with the proposed metrics that 

obtained by Transient simulations; while the rest of the mismatch metrics (PdVtho, PdVm) 

are only evaluated by DC simulations.  

To define a threshold range for noise injected-based metrics, a similar percentage of 

reliable cells that identified by PdVth threshold range (see Fig.3.4, Section 3.2.1, Page) 

will be applied to define the threshold ranges for the three proposed metrics. In that 

case, we have selected 70% of the cells starting from the highest absolute values of the 

three metrics Vng, Vni and Vnps. 

The relation between Vng and PdVth is shown in Fig.3.26. Where each “o” represents one 

SRAM cell. The cells that are colored blue represent the reliable cells identified by PdVth, 
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while the red ones are the unreliable cells. The calculated threshold range for Vng metric 

is shown in this figure, where it is represented by the two vertical lines in Fig.3.26 to 

distinguish between the reliable and unreliable cells. The linear correlation factor for 

this relation equals 0.921, also we observed that around 91% of the selected reliable 

cells are common between Vng and mismatch metrics. So, a highly mismatched cell can 

tolerate high level of the noise injected at the ground of that cell.   

A slightly better relation is shown in Fig.3.27, where the Vni metric is studied with 

respect to the inherent mismatch. The reliable cells that are identified by PdVth are also 

represented by the blue “o” while the red “o” represents the unreliable cells. The 

vertical lines in this figure also show the calculated threshold range for Vni metric, where 

the cells located outside those lines are the reliable ones. In addition, the linear 

correlation factor between Vni and PdVth equals to 0.965 while around 93% of the 

reliable cells are common between them.  

 

 
Fig.3.26: The relation between Vng metric and inherent mismatch. 
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Finally, Fig.3.28 shows the relation between Vnps and PdVth, this relation is almost similar 

to Vni and PdVth relation in Fig.3.27. Where the linear correlation factor between the 

metrics in Fig.3.28 equals to 0.963 and the common reliable cells between them equals 

to 93%.  

The similarity between the relations in Fig.3.27 and Fig.3.28 means that injecting the 

voltage noise either at the power supply nodes or between the storage nodes will not 

 

 
Fig.3.27: The relation between Vni metric and inherent mismatch. 

 

 

 
Fig.3.28: The relation between Vnps metric and inherent mismatch. 
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affect to a great extent the classification of the reliable cells. However, this similarity 

also supports our conclusion in the previous section, where the P-MOS transistors are 

more dominant in the noise immunity and start-up behavior of the cell rather than the 

N-MOS transistors. 

3.5 Dynamic Start-up Behavior as Reliability Metrics 

     Many approaches based on the dynamic behavior have been presented to improve 

and evaluate the SRAM-cell reliability [64-66]. In SRAM-PUF applications, the behavior 

of the cell at power-up stage is the main interest. However, the basic 6T SRAM-cell can 

be represented as a non-linear time variant system [64], thus the cell’s start-up behavior 

is determined by dynamic (transient) behavior. Based on that, a dynamic analysis is 

required to study the reliability of SRAM-PUF. 

In this Section, the reliability of the memory cells will be classified based on their 

dynamic behavior. Firstly, we will graphically utilize the transient start-up behavior of 

the memory cells to obtain a value for each cell which represents the cell reliability in 

PUF applications. Secondly, a state space representation for SRAM start-up behavior will 

be proposed. In the state space, the separatrix of the SRAM cells is utilized to define a 

new metric that can efficiently classify the cells for PUF implementations.  

3.5.1 Graphical Representation of SUV 

When cells power-up, some of those cells have tendency to stabilize at the stable logic 

state ”1” (VQ=Vdd, QB=0 V) and the others prefer to stabilize at “0” (Q=0 V, QB=Vdd). 

This different tendencies between the cells can be evaluated utilizing Transient Monte 

Carlo analysis to graphically represent the evolution of output voltages of Q and QB 

nodes with respect to time throughout the start-up stage. 
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Fig.3.29 presents the voltage evolution of the internal nodes for several SRAM cells. 

Those cells are powered-up with initial nodes values, VQo=0 V, VQBo=0 V, and power 

supply ramp-up time equal to 5ns. The cells that converge to Q-axis, prefer to have SUV 

towards logic “1”. In contrary, the cells that prefer to start-up at logic “0” will converge 

to QB-axis. By comparing the resulting curves in both cases, the output nodes of memory 

cells experiment dissimilar curves evolution; while the reason is mainly due to the 

inherent mismatch between cell’s inverters. On the one hand, if the cell is mismatched. 

The stronger inverter in the cell, that has the highest current gain, will decide the final 

SUV. On the other hand, if the cell’s inverters are highly symmetrical (well matched), the 

final SUV will require higher time and voltage levels for Q and QB nodes to be decided. 

Therefore, we can notice in Fig.3.29, that SRAM cells that have higher peak (denoted as 

M in Fig.3.29) in their curves usually correspond to well-matched memory cells. 

Conversely, the curves have lower peaks, correspond to highly mismatched cells. 

The peak point for each cell (M) represents the coordinate (Qmax, QBmax) of the curve. 

The M point defines the voltages of internal nodes that are required by the memory cell 

 

 
Fig.3.29: Q versus QB voltages during start-up for several SRAM cells. 
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feedback at moment of deciding the final SUV. In case of memory cell that starts-up at 

logic “0”, the maximum voltage at moment of deciding the final SUV is higher in value 

for Q-node (Qmax). While in case of memory cells that have SUV at logic “1” the higher 

node’s voltage is the value of QB-node (QBmax). These maximum voltage values for both 

cases are representative of the tendency to the final preferred SUV for the memory cell. 

Utilizing this assumption, the proposed maximum voltage value for each cell can be 

defined as follow: 

                                                               𝑉𝑚𝑎𝑥 = 𝑀𝑖𝑛(𝑄𝑚𝑎𝑥 , 𝑄𝐵𝑚𝑎𝑥)                                                (3.17) 

The previous equation evaluates the minimum voltage required by in the internal SRAM 

cell nodes to decide the final preferred SUV.  

As a result, high Vmax values correspond to highly matched memory cells, while low 

Vmax values correspond to highly mismatched memory cells. The Vmax values for the 

memory cell, are obtained by implementing Transient Monte Carlo simulation to draw 

the curves, while OCEAN is used to define the peak points as in Fig.3.29. However, the 

histogram distribution for Vmax indicator is shown in Fig.3.30, the lower X-axis values 

(Vmax) are the more mismatched cell and thus more reliable. So, the cells located at the 

leftmost side of this histogram are defined as reliable cells, and they will be selected to 

produce the PUF response. The proposed indicator is studied with respect to the 

inherent cell-mismatch. In this sense, we have used PdVth metric to represent the 

inherent cell-mismatch. The relationship between Vmax and PdVth, is shown in Fig.3.31. 

Where each star represents one SRAM cell. In addition, the coloring is based on the cell 

final SUV; the cells that have logic “0” are colored in black, and logic “1” cells are colored 

in red. The best fitting curve for this relation, added in Fig.3.31, indicates an inverse 
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non-linear relation, as it is expected by our assumption:  the majority of the proposed 

memory cells which have high absolute PdVth values also have low Vmax values and vice 

versa. On the other words, the cells that have low Vmax values don’t necessitate to 

reach to a high voltage at their nodes to decide the final SUV, and this means that they 

are identified as highly mismatched. Conversely, the cells that have higher Vmax need 

 

 
Fig.3.30: The histogram distribution of Vmax indicator. 

 
 

 
Fig.3.31: The relation between the graphical Vmax and mismatch metric. 

 



70 

 

to reach high node’s voltage to decide the final SUV, so they will be considered more 

matched and thus unreliable in PUF implementation.  

Another indicator that can be defined, based on transient start-up behavior, by also 

utilizing Q and QB voltages evolution behavior that is presented in Fig.3.29. In this case, 

we have observed that the moment when the SRAM cell decides the final SUV, the (Q, 

QB) transient curves pulls away from the 45o line (VQ = VQB). The reason is that the 

voltage of one of cell nodes starts to increase, meanwhile the voltage of the other cell 

node falls-down to 0 V. Based on this observation, we define the new indicator to 

represent the difference between the slope of Q-QB curve at peak point (M) and the 

slope of the VQ=VQB line (equals to 1). In other words, the value of this indicator, 

denoted as ∆Slope, is considered as the non-return value toward the final SUV, as the 

feedback in the memory cell after this value will force the cell to the final preferred SUV. 

For each cell in the proposed memory, the ∆Slope indicator is defined as follows: 

                                                                ∆𝑆𝑙𝑜𝑝𝑒 = 1 − 𝑄𝑚𝑎𝑥𝑄𝐵𝑚𝑎𝑥                                                          (3.18) 

In this sense, positive values for ∆Slope represent the cells that start-up at logic “0”, and 

negative values represent the cells with logic “1”. However, ∆Slope describes how far 

the mismatch of cell’s inverters is from the ideal perfectly matched (balanced) case, 

which is represented by the slope of VQ=VQB line.  So, lower ∆Slope values refer to the 

cells that decide their final SUV due to small differences between the cell’s inverters and 

thus are more matched cells. On the contrary, the higher values of ∆Slope refer to highly 

mismatched cells. Similarly, to support the assumption of ∆Slope indicator, we present 

the relation between PdVth and ∆Slope in Fig.3.32.  The cells that have higher absolute 
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∆Slope values also have higher absolute PdVth values and thus they are highly 

mismatched cells. 

Finally, it can be also noticed from Q-QB curves in Fig.3.29, that the cells have different 

areas under their curves. The area under those curves, is related to the maximum 

required time and voltage at the internal nodes (Q, QB) of each cell to reach the final 

preferred SUV. Based on that, we define the last indicator in this section, denoted as 

Area(Q-QB). The definition of Area(Q-QB) indicator is almost similar to the previous 

Vmax indicator.  

In this sense, the cells that have larger area under their curves, require longer time and 

higher node voltage to decide their final SUV. Those cells are more balanced or matched 

cells. On the other hand, the cells that will be useful for PUF implementation are the 

ones with smaller area under the curve. However, Fig.3.33 shows the relation between 

 

 
Fig.3.32: The relation between the graphical indicator ∆Slope and Mismatch 

metric. 
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the area under the curves and Vmax indicator with linear correlation factor equals to 

0.957.  

The relation between Area(Q-QB) and PdVth, is approximately similar to the relation 

between Vmax and PdVth, as shown in Fig.3.34. A cell with larger area under its curve is 

more matched cell while a cell with smaller area refers to highly mismatched cell. 

 

 
Fig.3.33: The relation between Area(Q-QB) and Vmax indicators. 

 

 
Fig.3.34: The relation between the Area (Q-QB) and Mismatch metric. 
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However, the Vmax indicator still show better relationship with inherent mismatch 

rather than the Area indicator, as we can notice when the both relations in Fig.3.34and 

Fig.3.31 are compared. 

3.5.2 SRAM Separatrix as Reliability Metrics 

The SRAM dynamic noise margins (DNMs) have been proposed in [67]. The concepts of 

stability boundary, state-space separatrix, are implemented to define and evaluate the 

write and read DNMs, with the goal to ensure successful write and read operations. 

However, in the similar dynamic aspects, the authors suggest that the state-space 

separatrix could also be implemented in hold operation.   

The state-space analysis is utilized to describe the behavior of the memory cell under 

their dynamic evolution [68], while a second order nonlinear time invariant system is 

used in [69] to represent this state-space analysis. A state-space analysis is a 

representation of a physical system through a mathematical model that is based on 

inputs, outputs and state variables that are correlated by differential equations. The 

system state can be characterized as a vector inside the state-space. A phase-space is a 

space in where all potential states of the system are presented, with each potential state 

of the system refers to one of different points in the phase-space. The non-forced 

evolution of each potential state to the way to the equilibrium point is named as 

trajectory (black doted lines in Fig.3.35).  

As we mentioned previously, SRAM cell has three equilibrium points, two of them are 

stable representing logic ' 0' (VQ=0 V, VQB=Vdd) and logic' 1' (VQ=Vdd V, VQB=0 V) 

states, S0 and S1 in Fig.3.35, respectively. The other one is a meta-stable state, the point 

M in Fig.3.35. Each one of the stable points has its own area of attraction in the 
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state-space, the border between these areas is called SRAM separatrix; red dashed lines 

in Fig.3.35. If a memory cell is started-up from any initial node conditions (VQo, VQBo) in 

the area of attraction, the state-trajectory of this cell will tend towards one of the 

stable-state points as the time grows.  

On the other hand, in an ideal cell, the state-trajectory will go to the meta-stable state, 

if the cell is started-up from any initial condition located on the separatrix line.  However, 

in real memory cell, the impact of process variation and mismatch will force its 

state-trajectory towards one of the stable states. 

 
(a) 

 
                                            (b)                                                                                           (c) 

 

Fig.3.35: The Phase-space of SRAM memory evolution at start-up stage: a) for an ideal symmetrical cell, 

b) for an asymmetrical cell with tendency towards logic “0”, c) for an asymmetrical cell with tendency 
towards logic “1”. 
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Based on that, the dynamic start-up behavior of memory cell, can be determined by 

exploring: the internal nodes initial conditions, the location of the separatrix boundary 

in the state-space, and the ramp-up time and voltage of the input power supply. 

However, the separatrix line of a perfectly symmetrical (matched) memory cell goes 

along with the diagonal line, VQ=VQB, as show in Fig.3.35 (a). In case of asymmetrical 

memory cell, the separatrix line location will be far from the ideal position, as shown in 

Fig.3.35 (b) and Fig.3.35 (c).  

The presented phase-state in Fig.3.35 (b), refers to a mismatched SRAM cell, this cell has 

area of attraction towards S0 state (shadowed area) bigger than the area of attraction 

toward S1 state (logic “1”). Therefore, it will prefer to star-up at logic “0”. By contrast, 

Fig.3.35 (c) represents a cell that has a bigger area of attraction towards S1 state 

(unshadow area) and thus it will prefer to start-up at logic “1”. However, the size 

difference between the areas of attraction for each case, determines the strength of the 

inherent mismatch of the memory cell. In other words, the level of inherent cell 

mismatch can be described as how far the separatrix line from the ideal location, at 

VQ=VQB line. 

Recently, a stability test has been proposed in [70], that relies on the dynamic evaluation 

of memory-cell stability for PUF applications. The authors in this work implement a 

2-step test procedure described as follows: 

• The memory is started-up with initial condition of the cells tilted towards the 

stable state S1. This is done by setting the initial value for node QBo = 0 V and 

for node Qo= Vskew. 
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• The memory is started-up another time but with initial condition of the cells 

tilted towards the stable state S0. This is done by setting the initial value for 

node QBo= Vskew and for node Qo= 0 V.  

If the SUV of a cell in the first test is S1, while the SUV in the second test for this cell is 

S0, the cell is considered highly matched. Conversely, if the SUV of a cell is the same for 

both tests, the cell is considered as mismatched cell, and thus it will be very stable to be 

used in PUF applications. Even though this stability test is able to classify the highly 

symmetrical cells, if the selected value for Vskew is low, selecting the initial condition 

value (Vskew) is the main drawback of this method. A very low value of Vskew can cause 

that some of the unreliable cells are not detected by the test. While a high value of 

Vskew can lead to oversizing the required memory for PUF implementation, as more 

reliable cells will be eliminated and defined as unreliable cells.    

In this section, we propose a new metric-based methodology to classify the SRAM-PUF 

cells based on their reliability. The position of the separatrix line will be utilized to assign 

a value for each cell in the proposed memory. In this sense, for a mismatched cell, if the 

separatrix line is located above the ideal line (symmetrical cell) as in Fig.3.35 (b), the cell 

will have tendency to power-up at logic “0”. In contrary, if the separatrix is below the 

ideal line the cell will prefer to power-up at logic “1” as in Fig.3.35 (c).  

However, the proposed metric aims to calculate how far the separatrix is from the 

symmetric position. The farther the separatrix of a cell is from ideal position, the larger 

the area of attraction towards one of stable states the cell will have, and thus the more 

reliable it will be. Specifically, we aim to find the intersection of the separatrix with 

Q-axis or QB-axis; the separatrix of a cell with tendency to logic “0” state will only 
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intersect the Q-axis (see Fig.3.36 (a)) while for a cell with tendency to logic “1” the 

separatrix will only intersect the QB-axis (see Fig.3.36 (b)). The new metric, denoted as 

Separatrix Intersection Distance (SID), will be defined as the distance between those 

intersections and the intersection of the ideal separatrix at (VQo=VQBo=0 V), this 

distance is shown in Fig.3.36.   

Transient Mote Carlo analysis is utilized to evaluate the new metric SID. However, the 

methodology that we have used can be divided into two parts. The first part will be 

dedicated to observing the direction of the SUV tendency (either to logic “0” or logic 

“1”) and thus we will be able to decide where the separatrix intersects the phase-state 

axis (either at Q-axis or QB-axis). While the second part aims to find the intersection 

value. The procedure that we have used is summarized as follows: 

• To find which axis the separatrix will intersect, we implement three tests for 

each cell in the proposed memory: 

1. Test 1: the cell is started-up with neutral initial conditions, where 

VQBo=0 V and VQ0=0 V, see Fig.3.36.   

 

 
                                              (a)                                                                                         (b) 

                           

Fig.3.36: The Phase-space of memory cells evolution where the proposed testes and SID metric is 

presented: a) for an asymmetrical cell with tendency towards logic “0”, b) for an asymmetrical cell with 
tendency towards logic “1”. 

 



78 

 

2. Test 2: the cell is started-up with initial condition highly tilted towards 

the stable state S0 (logic “0”), where VQBo=0.6 V and VQ0=0 V, see 

Fig.3.36. We have chosen the value 0.6 V as it is half of the supply 

voltage, which allows to detect the tendency towards S0 even for highly 

symmetrical cells; low value of initial condition doesn’t allow detecting 

the low mismatched cells [70].  

3. Test 3: the cell is started-up with initial condition highly tilted towards 

the stable state S1 (logic “1”), where VQBo=0 V and VQ0=0.6 V, see 

Fig.3.36. Also, we have chosen the value 0.6 V which allows to detect 

the tendency towards S1. 

After implementing those tests in the proposed memory, we found that if the 

final SUV of a cell in Test 1 is similar to the final SUV in Test 2 the cell will have a 

tendency toward S0, and thus its separatrix will intersect the Q-axis as shown in 

Fig.3.36 (a). On the other hand, if the final SUV of a cell in Test 1 is similar to the 

SUV in Test 3, the cell will tend to start-up at S1 and thus the separatrix 

intersection will be on QB-axis as presented in Fig.3.36 (b).  

 

• After knowing the location of the separatrix intersection for each cell, we will 

find the value of intersection on the detected axis. This value, SID in both 

Fig.3.36 (a) and (b), represents when a cell starts changing its tendency towards 

one stable state to the other stable state. In this sense, we have implemented 

a search algorithm in Ocean platform to evaluate the value of separatrix 

intersection. This algorithm will control the initial condition (starting from the 

point VQo=VQBo=0 V) for the detected node (Q-node or QB-node that is decided 
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in the previous step), in steps of 5 mV. The algorithm will keep changing this 

initial condition meanwhile checking the SUV until the start-up behavior 

changes. The value of the initial condition for the detected node where the 

start-up behavior changes is defined as SID.     

Finally, we have assigned a positive SID values for the cells have tendency towards logic 

“0” state (the cells that have intersection at Q-axis as in Fig.3.36 (a)), while a negative 

sign is assigned to those cells with tendency towards logic “1” (the cells that have 

intersection at QB-axis as in Fig.3.36 (a)). The histogram distribution of the SID values 

for the memory is shown in Fig.3.37, the cells that represented by the right bars will 

have more tendency to start-up at logic “0” while the cells represented by the left bars 

will have more tendency to stabilize at logic “1”.  However, the most reliable cells are 

located at the rightmost and leftmost bars, because their separatrix are far from the 

ideal position; so, they have bigger area of attraction towards one of the stable states. 

Based on the assumption of SID metric, the cells that have high absolute value of SID 

should also be highly mismatched cells, while the matched cells should have low 

 

 Fig.3.37: The histogram distribution of separatrix metric (SID). 
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absolute value of SID. Fig.3.38 presents the relation between the proposed SID metric 

and the inherent mismatch represented by PdVth metric. Each star in the figure 

represents one cell of the memory, where the black color represents the tendency 

towards logic “0” state and the red one represents the tendency of the cells towards 

logic “1”. We can notice that the cells that have high value of SID metric also have high 

value of PdVth. Which means that the farther is the distance of the separatrix from ideal 

location, the cell will be more mismatched. This relationship has linear coefficient equal 

to 0.965 that shows the agreement of the both metrics on classifying the memory cells 

for PUF implementation.  

 

 
 
 
 
 
 
 
 

 

 
Fig.3.38: The relation between the separatrix metric (SID) and Mismatch Metric. 
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CHAPTER 4 

EXPLORING EXTERNAL AND INTERNAL 

PERTURBATIONS IMPACT 

     A reliable PUF security scheme is the one that generates more constant response 

pattern, SUV pattern in SRAM-PUF, regardless of external and internal perturbations; 

such as environmental temperature variations. In other words, the reliability of an 

SRAM-PUF depends on how sensitive the SUV is to these perturbations. 

SRAM cell uniformity and reliability for PUF implementations has been studied by 

applying comprehensive electrical experiments with suitable equipment in the research 

laboratory. Hence, many works like [43, 47] propose to classify memory cells by 

exploring the changes in the cell’s reliability due to different external conditions: power 

supply ramp up voltage and time, and temperature. Also, the repeatability of SUV 

pattern of memory cells under the internal induced noise, such as thermal noise in [71], 

is used to study the cell’s reliability in [72]. Using the methodologies in [43,47,72], the 

SRAM-PUF reliability is evaluated by exploring a wide range of operational conditions at 

test period during post-manufacturing process. Those exhaustive methods may classify 

and identify SRAM cells that generate repeatable SUVs under different external and 

internal conditions and propose to include these memory cells in PUF applications [40]. 

In [26], indirect preselection approaches are presented, where massive tests for 

memory cells under wide range of perturbations are performed. The cells that pass the 



82 

 

tests are identified as reliable and included to produce the PUF response. The main 

disadvantage is the needs for large number of tests which will increase the time and 

costs.  

This chapter explores the potential influence of external and internal perturbations on 

the start-up behavior of SRAM cells, and hence on the stability of PUF cell. The 

unperturbed cells will be classified as stable cells due to their high tolerance. Firstly, we 

introduce the simulation setup designed to explore the impact of external perturbations 

in section 4.1, then we show the simulation results of the impact of power supply 

Ramp-Up Time (RUT) on the SRAM-PUF reliability in section 4.2.  In section 4.3, the 

influence of previously stored values into SRAM cells will be studied, where the impact of 

these values will be used to classify cell stability. Section 4.4 analyzes how temperature 

affects SUV of the cells, and how it could be used to distinguish between stable and 

unstable cells. The probability of memory cells to have a repeatable SUV under the 

induced voltage noise will be presented in section 4.5. Finally, in each section, all the 

proposed metrics in the previous chapter will be studied under these perturbations. 

4.1 Simulation Setup 

     The impact of external perturbations analysis is performed in this chapter to observe 

the SUV under several perturbations. The SUV is evaluated using a similar simulation 

setup and a similar 6-T SRAM cell schematic as described in Section 3.1. However, in 

section 4.2, the RUT is swept from 1ns to 1ms. In section 4.3 and 4.4, the initial node 

conditions and temperature of the cell are varied; respectively. A modified SRAM cell 

schematic is introduced for Section 4.5, modeling the internal cell noise to mimic a more 
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realistic stat-up behavior. In this sense, two Transient Random Voltage Sources are used 

as shown in Fig.4.1. The values of these sources are generated randomly with respect to 

time using MATLAB.  

4.2 Impact of Power Supply Ramp-Up Time (RUT) on Start-Up      

Behavior 

     An important issue that has been explored in a few of prior works on SRAM start-up 

behavior is the role of voltage supply RUT [73-74]. Where the SUVs of the memory cells 

has been proved to be affected by RUT variations. The RUT was proposed in [73] as an 

optimization parameter to improve the reliability and reproducibility of SRAM-PUF 

response under wide range of extreme temperatures, demonstrating the effect of RUT 

in varying the SUVs. The authors in [74] study the relationship between internal cell 

parameters, like transistors threshold voltages, and SUV at different RUTs. They claim 

that, as the RUT becomes faster, the threshold voltage mismatch of the P-MOS 

transistor pair will dominate the SUV of memory cells more than the N-MOS pair. This 

result is exploited to identify robustly strong SRAM cells for PUF application. By contrast, 

the authors in [52] consider RUT as a factor that affects the difference between both 

 

 
Fig.4.1: 6T SRAM cell including two random noise sources. 
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P-MOS and N-MOS contributions to SUV. In this sense, they claim that slow RUT makes 

the P-MOS transistors more dominant in deciding the final SUV; while this result doesn’t 

agree with the work in [74]. Next section will provide more details about the impact of 

RUT on the difference between P-MOS and N-MOS pairs contributions to SUV of 

memory cells, where the presented results agree more with the work in [74].    

4.2.1 RUT Test Methodology and Impact Explanation 

In this section, we perform a RUT approach to classify the memory cells with the goal of 

studying the ability of our proposed metrics in selecting the most reliable cells. In theory, 

the voltage supply of an SRAM cell can be powered-up very quickly, like raising the 

voltage from 0 V to Vdd in range of nanoseconds. Also, it can be powered-up very slowly 

in range of seconds [74]. Therefore, the RUT values are evaluated for 1000 transient 

start-up, using Monte Carlo simulations, to explore from 1ns to 1ms ramp-up time with 

steps of 10x. Fig.4.2 presents the percentage of memory cells that have changed their 

SUV with respect to the reference SUV obtained at 5ns RUT. Similar to the work in [75], 

 

 
Fig.4.2: percentage of cells that change the SUV at 5ns for several 

RUTs. 
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where the author used this value of RUT as a reference to evaluate the SUV for PUF 

implementations. 

When RUT value increases (becomes slower), the percentage of cells that change their 

SUV also increases, which indicates that memory cells are affected by RUT variation. 

Those cells can be identified as unstable cells; because the strength of inherent 

mismatch is not sufficient to tolerate the noise cause by the variation in RUT. On the 

other hand, the cells that have strong inherent-mismatch can reliably start-up at the 

same logic state, even in the existence of significant impacts of slow or fast transient 

RUT [74]. In this sense, we will define an SRAM-cell as stable, if the SUV of the cell is 

constant under all RUT range. Otherwise, if at any RUT, the cell changes the SUV, it will 

be defined as unstable cell due to the variation in its start-up states. 

The percentages of the stable and unstable cells are shown in Fig.4.3. The stable cells 

represent around 60% of the proposed memory; as shown in green bar in Fig.4.3. 

However, the rest of the bars represent the unstable memory cells. When the RUT is 

 

 
Fig.4.3: percentage of stable cells and unstable cells that change their SUV at specific 

RUT value. 
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increased (from 1ns to 1ms), most of cells start changing their SUV at specific RUT and 

keep the SUV constant for rest of the RUT range. In this sense, the low bars in Fig.4.3 

represents the percentage of these cells when the SUV is started to change at specific 

RUT value. We can notice that, small percentages of the unstable cells (represented by 

the lowest bars) will start changing their output at slower or faster RUT values. However, 

most of the unstable cells change their SUV at 1us RUT and keep the same SUV until 1ms 

RUT. It means that, this value of RUT (1us) is critical as most of the unstable cells will 

change the final SUV. In the following discussion, we mention the reason behind this 

behavior and why this RUT value is critical.  

According to previous works [4], [51] and mismatch metric (PdVth, in section 3.2.1), it 

was reported that P-MOS transistor pair are more dominant than the N-MOS pair in 

deciding the SUVs of SRAM cells. The works [52], [74] consider RUT as a factor that 

changes the different P-MOS and N-MOS contributions to decide the SUV. However, 

both works have different results. In [74], if the voltage supply is ramped-up very fast 

(nanoseconds range), the raised voltage will initially all drop at the drain and source of 

the P-MOS transistors as the inherent capacitances at output nodes will take time to 

charge. Hence, with the gates of the P-MOS transistors initially held low because of this 

inertia of the inherent node capacitances, the P-MOS transistor pair will turn on strongly 

to dominate more the final SUV. Therefore, they claim that as the RUT becomes faster, 

the P-MOS transistors will dominate more the SUV of memory cells than the N-MOS 

pair. While in [52], using a slow RUT (250us), makes the inherent node capacitances less 

able to keep node voltage lower than VDD/2 at the first stage of evaluation. This will 

bring larger VGS to P-MOS than the N-MOS pair, and makes P-MOS dominates more the 

SUV.  
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In order to understand this misalliance between both transistor type contributions 

under the existence of RUT effect, we computed the threshold voltage mismatch 

distribution between the same type of transistors (∆P and ∆N introduced in section 

3.2.1). Fig.4.4 shows the distribution of ∆P and ∆N results obtained for each cell in the 

proposed memory, while the coloring in those figures is based on SUVs of memory cells 

at different RUT values; Fig.4.4 (a) with SUVs at 1ns, Fig.4.4 (b) with SUVs at 1us and 

Fig.4.4 (c) with SUVs at 1ms. The red stars represent the cells with SUV at logic “1”, while 

 

(a) At 1ns RUT  

  
                                  (b) At 1us RUT                                                                       (c) At 1ms RUT 

                           

Fig.4.4: Distribution of threshold voltage variation of P-MOS and N-MOS transistors and the difference 

between their contributions on the SUVs at different RUTs (from fast to slow).  
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the cells that start-up at logic “0” are represented by black stars. We can notice from 

these figures that, as the RUT changes, the difference between P-MOS and N-MOS 

contributions to decide the SUV also changes.  

In Fig.4.4 (a), the fast RUT reflects that both P-MOS and N-MOS pairs are involved in 

deciding the SUVs of the memory cells. Specifically, P-MOS pair has more contribution, 

as the line that divides most of SUVs (the dashed blue line) is located between ∆P and 

∆N axis while this line is more near to ∆P=0V. As the RUT becomes slower as in Fig.4.4 

(b), the slope of the line that divides cell SUVs increases toward ∆P axis (∆N=0V); this 

means that N-MOS gains more domination on SUV. Reaching to 1us RUT (see Fig.4.4 

(b)), both type of transistor have almost similar contributions, as the dashed blue line is 

diagonal (with slope around 45o). In this sense, P-MOS and N-MOS pairs will fight to 

decide the final SUV, and this makes most of the unstable cells start changing their SUV 

at 1us as presented in Fig.4.3.            

However, N-MOS transistors play a major role in deciding cell’s SUVs in Fig.4.4 (c) when 

RUT is very slow, as most of the cells with positive ∆N start-up at logic “1” while negative 

∆N values start-up at logic “0”; regardless of ∆P values. 

To summarize the relation between P-MOS and N-MOS contributions with respect to 

RUT, we have used Equation 3.6 (PdVth=W*∆P – (1-W)*∆N). As we mentioned in section 

3.2.1, the added weighting factor (W) can represent contribution of P-MOS pair to final 

SUV, while (1-W) can represent contribution of N-MOS pair. Using similar procedure, the 

W is optimized based on the SUVs at each RUT in the proposed range. The resulting W 

at each RUT value is shown in Fig.4.5, where the red line corresponds to W values and 

the blue line for (1-W) values. As expected, a faster RUT causes that P-MOS transistor 
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pair dominates the cell SUVs more than the N-MOS pair, agreeing with result in [74]. By 

contrast, as the RUT becomes slower, the N-MOS will become more dominant; 

disagreeing the result in [52]. 

On the other hand, the intersection of these two lines (see Fig.4.5) represents the RUT 

where both type of transistors have an equal contribution to SUV. This RUT is very close 

to 1us, verifying our assumption that 1us is critical RUT for the proposed memory.      

4.2.2 Proposed Metrics Robustness Considering RUT Variations 

In the previous chapter, we defined several metrics to characterize the cell mismatch. 

The definition of the proposed mismatch metrics assumes that the cells which have high 

metric magnitude values are more reliable under all operational and noise conditions, 

while the cells with low metric magnitude values are less reliable, and thus their final 

SUV will change with small variations of these operational and noise conditions. In this 

sense, the extreme RUT variation can be considered as a noise that affects the reliability 

 

 
Fig.4.5: The relation between P-MOS and N-MOS contributions with respect to RUT, 

using optimized Weighting Factor methodology as in equation (3.6). 
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of SRAM-PUF cells. So, in order to implement our metric based methodology for PUF 

applications, the proposed metrics should be able to identify those cells that are stable 

with respect to RUT variation (denoted as Stable-RUT Cells). 

To study the ability of the parameter distance-based metrics in identifying the 

Stable-RUT cells, the relation between PdVm metric (calculated by utilizing inverter’s 

VTCs in section 3.2.2) and PdVtho (calculated by obtaining the threshold voltages of the 

individual cell transistors in section 3.2.1) is presented in Fig.4.6. The Stable-RUT cells 

are colored in green while the cells in blue are unstable during RUT variation. We notice 

that most of the cells that have high absolute values of both mismatch metrics are stable 

under RUT variation; meaning that they have enough inherent mismatch to tolerate a 

significant noise caused by slow or fast RUT variation. On the other hand, low absolute 

values of PdVm and PdVtho metrics correspond to the cells that have sufficient mismatch 

to tolerate the variation in RUT, where most of these cells located closer to PdVm =0 V 

and PdVtho =0 V are identified as unstable RUT cells as shown in Fig.4.6. 

 

 
Fig.4.6: Proposed parameter distance-based metrics relation indicating the 

Stable-RUT cells. 
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In the same direction, the SNM-based metrics, SNMd and INTd in section 3.3.2, are 

proposed to characterize SRAM-PUF cell mismatch based on their static noise tolerance. 

High magnitude of these metrics indicates a more reliable. In this sense, the extreme 

variation of power supply RUT was considered as a noise, and the proposed SNM-based 

metrics should identify the cells that are immunized against this noise. Fig.4.7 shows the 

distribution of stable-RUT cells through the relation between SNMd and INTd metrics. 

Also, the stable-RUT cells (green colored) are located at both far ends of this plot, where 

both metrics have high absolute values. On the other hand, the cells with low absolute 

metric values (blue colored) cannot sustain the noise caused by RUT variations and are 

identified as unstable-RUT cells. 

Similarly, we study the ability of detecting the stable-RUT cells for injected noise-based 

metrics (the transient metrics Vng, Vni and Vnps in section 3.4.1), where DC voltage noise 

is injected at different locations of the SRAM cell to evaluate the maximum noise that 

can be tolerated at these locations. Also, a high magnitude of those metric means that 

the cells can tolerate high amount of injected DC noise. To observe the metrics ability in 

 

 
Fig.4.7: Proposed SNM-based metrics relation indicating the Stable-RUT 

cells. 
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tolerating RUT variations, a 3D plot showing the distribution of stable-RUT cells among 

the relation between those metrics is presented in Fig.4.8. The highest absolute values 

of injected noise-based metrics can identify the stable cells during RUT changes, but the 

unstable cells are not well classified by lower metric magnitude; compared with the 

previous metrics.  

As we mentioned, the start-up of SRAM cells is a dynamic behavior, and we proposed 

several metrics to classify PUF cells reliability based on this behavior. The SRAM 

separatrix metric (SID in section 3.5.2) seems the most promising one, as it is highly 

correlated with inherent cell-mismatch. The SID metric represents the tendency of the 

cells towards the final SUV, and hence, the cell mismatch. A higher tendency towards 

the preferred SUV means a higher magnitude of SID. Fig.4.9 presents the histogram of 

SID values where the percentage of the cells that show stable-RUT behavior are 

highlighted in green. It can be seen that as the magnitude of SID metric increases the 

percentage of Stable-RUT cells also increases with respect to the unstable ones; the 

 

Fig.4.8: Proposed injected noise-based metrics relation indicating the Stable-RUT cells. 
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highest SID magnitude corresponds to the stable-RUT cells. The reason is that a cell with 

a high absolute value of SID has a high tendency towards the preferred SUV (highly 

mismatched), and thus the RUT variations will not affect its SUV, and it keeps stable. On 

the other hand, lower magnitudes of SID have lower percentage of Stable-RUT cells. 

Although a higher metric magnitude is able to identify most of the stable cells, some of 

these cells are identified by lower metric magnitude.  

4.3 Impact of Previously Stored Value (PSV) on Start-Up Behavior 

     The data remanence effect is used as an approach in [76] to identify the highly stable 

bit-cells with minimum test time and hardware. This approach proposes to store a value 

into a SRAM cell and then reduce the time between two power-down cycles resulting 

that the SUV of this cell can be reverted to the previous stored values. On the one hand, 

if the memory cell is powered-down slowly enough to make the effect of data 

remanence comparable to the inherent cell-mismatch, then some cells will flip their 

SUV, while other cells will revert to the previous SUV [76]. On the other hand, if the 

 

Fig.4.9: The histogram of Proposed SID metric indicating the percentage of 

Stable-RUT cells. 
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power-down cycle is too long, the data stored in the memory cells is entirely collapsed 

and their start-up behavior will remain unaffected by the Previous Stored Values (PSVs). 

4.3.1 PSV Test Methodology and Impact Explanation 

The impact of PSVs on start-up behavior has been evaluated by powering-up the 

memory cells with different initial voltages at the internal cell nodes. The Q and QB 

nodes (see the SRAM cell in Fig 4.1 in section 4.1) have been initiated with different 

voltage to mimic different power-down cycle times to observe if the cells will keep the 

PSVs. As the voltage of PSVs is higher, the power-down time is lower, and thus the data 

remembrance will have more impact on SUVs compared to inherent mismatch. The PSVs 

effect on SUVs has been explored by performing transient Monte Carlo simulations to 

obtain the SUVs using PSVs from initial values Q = 0V and QB = 0V, until to values of Q = 

1.2V and QB = 1.2V. The range of PSVs is explored in equal steps of 0.2V for both nodes. 

However, we have used a DC voltage power supply to ignore the RUT impact and only 

focus on the PSVs effect on the start-up behavior. 

Fig.4.10 reports the percentage of memory cells that change their SUVs with respect to 

the reference SUV generated with discharged initial conditions, where Qo = 0V and QBo 

= 0V. it can be noticed that, as the PSVs increase, the percentage of cells affected by 

shorter power-down times also increases. After performing the PSVs test, the 

percentage of memory cells that show unstable behavior in their SUVs is around 34% 

from the proposed memory. 

However, the case when both internal nodes are initiated with Vdd may seem too 

extreme for a realistic exploration for PSVs range, nevertheless in [72] the authors 

suggest that the SUVs for SRAM-PUF could be evaluated by discharging the cells from 
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Vdd to 0V, and that is why we considered this case in the PSVs range. In this sense, the 

memory cells that can tolerate all PSVs in the proposed range will be defined as 

Stable-PSVs cells, while the memory cells that vary their SUVs at any value of the PSVs 

range will be identified as unstable-PSVs cell. 

Similar to RUT variation, we found that a variation in PSVs can change the different 

contributions of P-MOS and N-MOS to decide the final SUV. A higher PSVs provide more 

domination to N-MOS transistor pair than the P-MOS pair; as in SRAM cell a higher PSVs 

mean that all the cross-coupled transistors will have a high voltage at their gates, and 

hence N-MOS pair will operate faster to decide the SUV, and thus more domination for 

N-MOS transistors.  

Fig.4.11 shows the same ∆P and ∆N distribution as in Fig.4.4, but the coloring in Fig.4.11 

is based on SUVs of memory cells at different PSVs; Fig.4.11 (a) with PSVs 

(VQBo=VQo=0V), Fig.4.11 (b) with PSVs (VQBo=VQo=0.6V) and Fig.4.11 (c) with PSVs 

(VQBo=VQo=1.2V). It can be noticed that, low PSVs (as in Fig.4.11(a)) reflect that both 

 

 
Fig.4.10: percentage of cells that change the SUV for PSVs variation 

compared to reference (VQo=0V, VQBo=0V). 
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P-MOS and N-MOS pairs are involved in deciding the SUVs. Specifically, the P-MOS pair 

has more contribution than the N-MOS pair; as the line that divides most of SUVs (to 

logic “0” or “1”) is located near ∆P=0V. As we increase PSVs as in Fig.4.11 (b), the slope 

of the line that divides cell SUVs increases toward ∆N=0V; this indicates that N-MOS pair 

becomes more dominant on SUV. Finally, in Fig.4.11 (c), N-MOS transistors play a main 

role, regardless of ∆P values, in deciding cell’s SUVs when the PSVs is very high. 

 

(a) With PSVs (VQBo=VQo=0V)  

  

    (b) With PSVs (VQBo=VQo=0.6V)                         (c) With PSVs (VQBo=VQo=1.2V) 

                           

Fig.4.11: Distribution of threshold voltage variation of P-MOS and N-MOS transistors and the difference 

between their contributions on the SUVs at different PSVs (from low to high).  
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 Finally, these results could be useful to understand the SUV at different node 

conditions, like starting-up the cells with fully charged nodes as in [72]. Additionally, by 

controlling these PSVs, the impact of RUT variation could be canceled; as both have 

similar effect on SRAM cell SUV.       

4.3.2 Proposed Metrics Robustness Considering PSV Variations 

Again, the goal of this stress test is to support the ability of the proposed metrics in 

characterizing the mismatch of SRAM cells for PUF applications. Here, we present the 

same figures, as Figs.4.6-4.9 in the previous section, to study the reliability of our metrics 

in selecting the Stable-PSVs cells. Fig.4.12 shows the distribution of those Stable-PSVs 

cells (dark yellow colored). Fig.4.12 (a) for parameter distance-based metrics, Fig.4.12 

(b) for SNM-based metrics, and Fig.4.12 (c) for injected noise-based metrics. The 

histogram in Fig.4.12 (d) shows the percentage of those cells with respect to SRAM 

separatrix metric.  All of these sub-figures in Fig.4.12, the Stable-PSVs cells are identified 

by the higher metrics absolute values. While, the lower absolute values of DC-based 

metrics in Fig.4.12 (a) and (b) can identify the unstable-PSVs cells, better than the lower 

absolute values of Transient-based metrics in Fig.4.12 (c) and (d).      

As a result, selecting the memory cells that have the highest metrics magnitudes for PUF 

implementations will improve PUF reliability. As those cells have high strength features 

to tolerate, with high repeatability of SUVs, the data remanence effect.     
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4.4 Impact of Temperature on Start-Up Behavior and Robustness 

of Metrics 

     Another well-known external perturbation that affects the stability of SUVs is the 

temperature. The effect of this parameter on the reliability of SRAM-PUF has been 

widely explored in the literature [27], [73]. In these works, the authors reported that 

 

    (a) Ability of parameter distance-based metrics                  (b) Ability of SNM-based metrics                        

  
                           

          (C) Ability of injected noise-based metrics                                     (d) Ability of SID metric  

 

Fig.4.12: Studying the ability of the proposed metric against PSVs impact.  
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temperature variations affect the start-up behavior of memory cells, where the selected 

PUF cells should show stable SUVs under those variations.   

In this work, the temperature impact is explored to identify the stable and unstable cells 

with the main goal to support the ability of our proposed metrics in classifying those 

cells. We define the unstable-temperature cells as the cells that change their SUVs at 

any temperature in the simulated range, while the Stable-Temperature cells will be 

defined as the memory cells that tolerate the variations in all temperature range without 

changing their SUVs. 

The range of temperature that we have explored starts from -40o C and reaching up to 

120o C; in steps of 20o C. In Fig.4.13 the percentage of cells in the proposed memory that 

change their SUVs at any temperature in the range, is compared with the SUVs achieved 

at typical corner technology and nominal temperature (27o C). Note that the ratio of 

changed memory cells is higher where the temperature is higher than nominal 

temperature, with comparison to the ratio of cells at lower temperatures.  

 

 
Fig.4.13: Percentage of cells that change the SUV for temperature 

variations compared to nominal 27oC 
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Note that the percentage of cells influenced by temperature is lower than the 

percentage of cells affected by the previous analyzed perturbations. This work pretends 

to analyze the implementation of non-specific SRAM design to achieve high reliability 

cells for PUF applications. For this reason, the memory can experiment an increase in 

temperature caused by long runtime periods, and the cells that will change their SUVs 

due to this increment in temperature should be identified as unstable and masked out 

from PUF response. Useful cells keep their SUVs unaltered, and they will be considered 

as stable. 

 Fig.4.14 highlights the Stable-Temperature cells (pink colored) in the relations between 

our metrics similar as in the previous perturbations. Although, the number of memory 

cells affected by temperature is lower than with the perturbations considered in 

previous sections (only 11% are unstable-temperature cells), the range of DC metrics (in 

Fig.4.14 (a) and (b)) where the cells should be identified as unstable is longer than in 

previous cases. Thus, the parameter distance and SNM based metrics have some issues 

to correctly identify the Stable-Temperature cells. Despite of this, higher metric values 

continue corresponding to most Stable-Temperature cells. On the other hand, the 

Transient-based metrics (in Fig.4.14 (c) and (d)) show better performance in identifying 

both the stable and unstable-Temperature cells.  
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4.5 Impact of Internal Noise on Start-Up Behavior and 

Robustness of Metrics 

    PUF circuits must be implemented to offer as higher reliability as possible. Specifically, 

the start-up output should be, with high probability, the same each time the SRAM-PUF 

is challenged. One possible method to statistically evaluate the SRAM SUV performance 

 

          (a) Ability of parameter distance metrics                                  (b) Ability of SNM metrics  

  
                            

                   (C) Ability of injected noise metrics                                      (d) Ability of SID metrics  

  

Fig.4.14: Studying the ability of the proposed metric against Temperature impact.  
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for PUF applications is to fabricate one or several instances of the circuit and 

experimentally measure the reliability [63]. However, in this section we will use another 

approach and model the internal thermal noise in the SRAM-PUF evaluating the 

statistical behavior of memory cells by performing transient simulations [72]. 

The internal thermal noise that exists in SRAM cells can significantly modify the SUV. To 

emulate a real SRAM start-up behavior, thermal noise can be modeled in memory cells 

by inserting transient random voltage sources between the cross-coupled inverter 

storage nodes of the cells with similar setup described in [72]. The schematic of the 

modeled noise was shown in Fig.4.1, also the setup was described in section 4.1. The 

magnitude of thermal noise at any node can be characterized in terms of a normal 

distribution with 0 mean. The standard deviation of this noise is mainly based on the 

node capacitance (C) and temperature (T), as the following equation [33, 72]: 

                                                              𝜎𝑛𝑜𝑖𝑠𝑒 = √𝐾𝐵 𝑇 𝐶                                                         (4.1) 

KB is Boltzmann constant. In [72], the standard deviation of internal thermal noise for 

each cell node in the memory was set to 4.5mV in 90 nm CMOS technology to produce 

enough SUVs variability level. Accordingly, we set  𝜎𝑛𝑜𝑖𝑠𝑒 to 8.5mV for each cell node. 

When noise is present, some cells change their SUVs each time they started-up while, 

others have more constant SUV. To observe the repeatability of SUVs, the SRAM cells 

have been sequentially powered-up 200 times by utilizing Monte Carlo simulations. 

Before each power-up, we have ensured that both Q and QB nodes are completely 

discharged. So, the impact of PSVs is not considered. The statistical SUV for each cell is 

calculated and represented as the probability to start-up at either logic “0” or logic “1” 
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states. Fig.4.15 displays a visualization of probability of SUVs achieved by implementing 

this methodology. Where the color variations describe the preferred SUV probability. 

The memory cells with greener color have higher probability to start-up towards logic 

“0” while the cells with darker blue have higher probability to start-up towards logic “1”. 

On the other hand, the cells that have around 50% of SUV probability are represented 

by colors located at the middle of color legend in Fig.4.15. The start-up behavior of these 

cells is extremely affected by the internal noise and thus may be considered as random 

SUV.  

The repeatability of SUVs may describe the immunity of SRAM against internal noise and 

reflect the strength of inherent cell-mismatch. A highly mismatched cell is able to repeat 

its SUV at every power-up. To support that, we have studied that relation between the 

probability to repeat the SUV (probability to start-up at logic “0” or logic “1”) and 

inherent cell-mismatch (see PdVth at section 3.2.1). We have found that well-matched 

 

 
Fig.4.15: Visualization of the used SRAM array showing the probability to start-up to a 

preferred SUV. 
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cells, low absolute PdVth values, have very low repeatability, and their probability to 

start-up at “0” or “1” is around 50% (random SUV). While the strongly mismatched cells 

can have full repeatability considering the existence of the modeled noise. This result 

can be seen in Fig.4.16, where the correlation between the SUV probability and the MF 

is calculated for each memory cell. Each cell is represented by two stars: the blue star 

for probability of SUV towards logic “1”, P(“1”), and the green one for probability of SUV 

towards logic “0”, P(“0”). Where P(“1”) = 1-P(“0”). So, both probability sets are 

complementary, and they are assigned to the same memory cells and highly related to 

PdVth.  

We also notice from Fig.4.16, that the cells with higher P(“1”) have the more negative 

PdVth, while the cells with higher P(0) have more positive PdVth. This correlation between 

the probability of SUV and the sign of the PdVth is in line with the proposed metric 

assumption in section 3.2.1, where higher absolute value of mismatch-based metrics 

indicates more repeatable SUV and thus more reliable cells.  

 

 
Fig.4.16: The relation between inherent cell-mismatch and the probability 

of the cell to start-up to a preferred SUV. 
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The most repeatable cells will be selected when they present a 100% of probability to 

repeat the SUV. A percentage of 31,5% cells from the proposed memory achieve this 

probability with the existence of the modeled noise. In the next chapter, we will use this 

set of cells (denoted as Repeatable Cells) in defining the strong cell set with the goal to 

correlate the characterization set using our proposed mismatch metrics.  

Finally, to observe the ability of all the proposed metrics in classifying cells repeatability 

against internal noise, we preset Fig.4.17 with relations similar to Figs.4.12 and 4.14 in 

the previous external perturbations. Where, Fig.4.17 (a) is for parameter distance-based 

metrics, Fig.4.17 (b) is for SNM-based metrics, Fig.4.17 (c) is for injected noise-based 

metrics. While in Fig.4.17 (d), we present the relation of SRAM separatrix metric (SID) 

with respect to PdVth instead of SID histogram distribution; to clearly see the cells with 

colored probability distributed in SID relation.  

Generally, the metrics achieved by transient simulations (see Fig.4.17 (c) and Fig.4.17 

(d)) show better classification for cells repeatability than the metrics obtained by DC 

simulations (see Fig.4.17 (a)  and Fig.4.17 (b)), this means that Transient-based metrics 

are more efficient to study the impact of internal noise. However, for all the metrics in 

Fig.4.17, the memory cells which have high SUVs repeatability (darker blue and green 

colored) correspond to the metrics high absolute values. While the memory cells with 

lower probability to repeat the same SUV correspond to lower metric magnitudes.  
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This shows the ability of the metrics in identifying most of cells that have repeatable 

SUVs to be implemented in PUF response. Additionally, the cells that have very low SUV 

probability (around 50%) may be useful for application such TRNG; as their SUVs are 

physically random.   

 

 

         (a) Ability of parameter distance metrics.                             (b) Ability of SNM metrics.                             

  
                           

                 (C) Ability of injected noise metrics.                                (d) Ability of SID metrics. 

 

Fig.4.17: The performance of the proposed metrics in classifying cells repeatability considering the 

modeled internal noise.  
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CHAPTER 5 

REPRODUCIBILITY CHARACTERIZATION AND 

PROPOSED METRICS DISCUSSION 

     Physically unclonable function assists to store and generate a secret key using SRAM 

circuit by taking profit of manufacturing process variation that occurs in its 

semiconductor devices. The secret key property of PUF is a unique regeneratable key, 

that makes it hard to predict or characterize the uncontrollable manufacturing 

variations. However, the main problem of SRAM-PUF is to assure its reliability under the 

external and internal conditions [4].  

We have defined new metrics, in Chapter 3, to characterize the impact of different 

parameters on SUV repeatability of SRAM-PUF cells. The proposed metrics are obtained 

either using DC electrical simulations for both parameter distance and SNM based 

metrics, or using transient electrical simulations for both injected noise-based metrics 

and SRAM separatrix metric. Monte Carlo analysis is used to evaluate the metrics values 

for each memory cell with the main goal of predicting the percentage of suitable cells 

for PUF implementation at design phases. The obtained results are analyzed to 

characterize the strength of 65nm SRAM CMOS technology, when comparing SRAM-PUF 

behavior with noisy environment and considering different perturbation scenarios; as 

described in Chapter 4.  
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Based on the assumptions that cells with high metric values present a more stable and 

repeatable SUV, it is possible to identify the most suitable cells for PUF applications of a 

given set of cells in presence of process variations. As it is expected that these suitable 

cells can generate a more reliable PUF operation with wide range of operational 

conditions and more tolerance to noisy environments.  

This chapter introduces a methodology that aims to predict by simulation the percentage 

of cells that will be suitable to be used as PUF generators. Firstly, we define the most 

suitable SRAM cells, denoted as Strong cells, that tolerate all the perturbations described 

in Chapter 4. Second section presents and compares the validity of proposed metrics in 

identifying the Strong cells, where the methodology of selecting those cells is also 

presented. Finally, using the metrics, we discuss the influence of selected response length 

on the reliability of PUF operation, where we estimate the percentage of cells that will 

be suitable for PUF applications.  

5.1 Strong SRAM Cells to Improve PUF reliability 

     In the previous chapter, the results of several external perturbations and the modeled 

internal-noise indicate how the strength of SRAM-cell can be characterized by 

implementing the proposed reliability metrics that were defined in Chapter.3. In fact, 

the metrics showed good classification for the memory cells at each individual external 

perturbation. In this sense, if the SUV of a cell remains unchanged withstanding for all 

range of an individual perturbation, the cell was defined as stable respecting to this 

perturbation (Stable-RUT cell, Stable-PSVs cell and Stable-Temperature cell). By contrast, 

a cell was defined as unstable for an individual perturbation (unstable-RUT cell, 
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unstable-PSVs cell and unstable-Temperature cell), if its SUV varies due to this external 

perturbation within the considered range.  

In this section, we define a cell as Stable cell if and only if it shows a constant SUV with 

all ranges of all external perturbations (RUT, PSVs and temperature), this type of cells 

should be selected for PUF applications. While a cell is defined as Unstable cell if it 

changes its SUV at any of the external perturbations.  

In addition to the Stable cell , the most repeatable memory cells that have high SUV 

probabilities when internal noise was introduced (Repeatable Cells), that were also 

defined in the previous chapter (section 4.5), will complete the identification of best 

candidate for PUF applications. Hence, based on the results, the cells can be classified 

as follows:  

• Strong SRAM cells: a memory cell is defined as strong cell if and only if it is 

considered as Stable cell (has stable SUV against RUT, PSVs and temperature), 

and if it is included in Repeatable cells set (has repeatability probability equal to 

100% against internal noise variability). 

 

• Partial skewed SRAM cells: The rest of the memory cells which are not classified 

as strong, will be defined as partial skewed cells. Therefore, all cells that have 

unstable SUV at any external perturbation (Unstable cells) and all cells that are 

not included in Repeatable cell set.  

In order to improve PUF response reliability, only strong cells should be included to 

insure the reproducibility of the response under all conditions. Which will reduce the 
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need for Post-fabrication burn-in enhancement (see section 2.2.3.3) and for post 

process coding (see sections 2.2.3.1 and 2.2.3.2) to correct the reproducibility errors. 

5.2 Selection of Strong Cells Using Mismatch Metrics 

     In this section, we present a methodology to implement the proposed metrics to 

select suitable memory cells for PUF and predict the percentage of cells available. 

Therefore, we can observe and compare the ability of proposed metrics in identifying 

the strong cells. Also, the results from previous work methodologies in the literature will 

be compared with this work metrics methodology to support the strength of our metrics 

in improving the reliability of SRAM-PUF. 

5.2.1 Parameter Distance-Based Metrics Discussion 

The start-up behavior of SRAM-PUF is mainly controlled by threshold voltage (Vth) 

mismatch of the transistors in cross-coupled inverters of SRAM cell, a highly mismatched 

cell is stronger and more reliable for PUF implementation [48-50]. In this work, both 

P-MOS and N-MOS voltage threshold mismatches are considered to study the 

cell-mismatch. We have implemented two parameter distance to evaluate the mismatch 

inside SRAM cell. Either by implementing a DC simulation to obtain either the threshold 

voltages for each individual transistor in cross coupled inverters to calculate parameter 

distance metric ( PdVtho in section 3.2.1), or utilizing the VTCs of cross coupled inverters 

to define the second novel parameter distance where both P-MOS and N-MOS threshold 

voltage mismatch are also included in this model (PdVm) as shown in equation (3.12), 

section 3.2.2.  

On the other hand, in [49], the authors use voltage threshold mismatch to define the 

suitable cells for PUF application. Their definition of the mismatch only considers the 
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voltage threshold mismatch of N-MOS transistors (∆N as in equation (3.4) in section 

3.2.1) while the mismatch in P-MOS transistors is neglected. By contrast, the work in 

[50] only considers the process variation and mismatch in P-MOS transistors ((∆P as in 

equation (3.3), section 3.2.1) to classify memory cells. 

The histogram distributions for ∆N and ∆P as proposed by [49] and [50] are shown in 

Fig.5.1 (a) and Fig.5.1 (b), respectively. Where the strong and the partial skewed cells 

are classified on ∆N and ∆P distributions. The red bars represent the percentage of the 

strong cells while the blue bars show the percentage of partial skewed cells. The 

methodology of using only ∆N results, see Fig.5.1 (a), in this is not able to classify the 

strong cells among its values; high or low absolute ∆N values will not indicate a high 

percentage of strong cells. In case of using only ∆P to classify the strength of memory 

cells, slightly better distribution of strong cells is shown in Fig.5.1 (b). As Lower absolute 

∆P values (closer to ∆P=0 V) may indicate lower percentages of strong cell compared 

with higher absolute values. However, it can be noticed that some of the highest ∆P 

magnitudes correspond to partial skewed cells, disagreeing with the goal of this 

methodology and reducing the characterization efficiency.  

 

 
                                             (a)                                                                                        (b) 

Fig.5.1: The histograms for literature methodologies showing strong cells distribution: a) for ∆N 
methodology, b) for ∆P methodology. 
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Similarly, the histogram for the two proposed parameter distance-based metrics is 

presented in Fig.5.2, where both ∆P and ∆N are considered by the metrics. Fig.5.2 (a) 

shows the distribution of PdVtho values, while Fig.5.2 (b) shows the distribution of PdVm 

values. Also, the percentage of strong cells is highlighted in red color in these figures. It 

can be noticed that partial skewed cells are concentrated near the low absolute values 

of the metrics, while the strong cells correspond to higher metrics absolute values. 

These observations support that the parameter distance-based metrics can characterize 

and estimate the cells strength. In addition, the highest magnitude values of these 

metrics can identify robustly the strong cells that have high tolerance to external and 

internal perturbations. 

The proposed strength characterization can efficiently detect the most suitable PUF cells 

based on the assumption that higher absolute values of parameter distance-based 

metrics can significantly improve the reliability of SRAM-PUF. In this sense, we select 64 

bits to create PUF challenge-response pairs from the whole proposed memory. The 

selection of those 64 PUF-bits is done by choosing the cells that have the highest metric 

 

  
                                          (a)                                                                                           (b) 

Fig.5.2: The histograms for the parameter distances showing strong cells distribution: a) for PdVtho 

metric, b) for PdVm metric. 
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magnitudes. Table.5.1 summarizes the selection results for proposed metrics compared 

to the methodologies in [49] (∆N) and [50] (∆P), we also have introduced a random cells 

selection to support the effectiveness of the metrics. Each column of this table shows 

the number and percentage of cells that are selected as Stable (stable against external 

perturbations), Repeatable (100% repeatable SUV considering internal noise), and last 

column as Strong cells (Stable and Repeatable). 

Table 5.1 Number of cells stable, repeatable and strong identified by Parameter distances metrics 

selecting 64 PUF-bits 

Selection Method STABLE CELLS REPEATABLE 

CELLS 

STRONG CELLS 

∆N as in [49] 49 (76.6%)       36 (56.3%) 34 (53.1%) 

∆P as in [50] 30 (46.9%) 56 (87.5%) 30 (46.9%) 

PdVM 64 (100%) 56 (87.5%)  56 (87.5%) 

PdVtho 62 (96.9%)       60 (93.8%) 60 (93.8%) 

Random Cells Selection 23 (35.9%) 20 (31.3%) 13 (20.3%) 

 

It can be noticed that using only ∆P or only ∆N to classify cell strength is not efficient, as 

the selected PUF response has low percentage of strong cells (around 53% for ∆N and 

47% for ∆P). However, the parameter distance-metrics show a good classification with 

high strong cells percentage in the selected PUF cells. The best identification results are 

achieved by PdVtho metric, although the PdVm metric is quite close. Comparing the 

achieved results with random cell selection, we observe how the metric methodology 

improves the reliability of SRAM-PUF when the cells that show better metric are the 

ones selected. 
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5.2.2 SNM-Based Metrics Discussion 

To classify the reliability of PUF cells, the SNM concept is implemented to explain the 

SUV behavior of SRAM-PUF (section 3.3). In this sense, we have proposed two metric 

methodologies. These metrics are evaluated using DC simulations to obtain inverters 

VTC, where the intersection of those curves create the butterfly curve. The difference 

between the diagonal lengths of both biggest squares that could be fitted inside both 

eyes of the butterfly curve defines the first metric (SNMd in section 3.3.2.1), while the 

distance between the intersection point of VTCs and the diagonal line (VQ=VQB line) 

defines the second novel metric (INTd  in section 3.3.2.2). From a reliability point of view, 

a high absolute value of these metrics defines the most reliable PUF cells. However, 

modeling the SUV behavior for SRAM-PUF using SNM was also introduced as a reliable 

PUF metric (PSNM ratio) in [43, 57-58]. This metric is defined as the ratio between both 

noise margin diagonals used to calculate the first metric (SNMd). The cells that have 

higher or lower ratio than 1 are considered more reliable.    

The histogram distribution for PSNM ratios is shown in Fig.5.3. Where the strong and 

the partial skewed cells are highlighted on PSNM ratio values. Similarly, red bars 

represent the percentage of the strong cells, while the blue bars show the percentage 

of partial skewed cells. Highest and lowest PSNM ratios correspond to the strong cells, 

indicating a good ability of this metric in classifying PUF cells. 

To see the effectiveness of the SNM-based metric, we present similar histograms in 

Fig.5.4. Where Fig.5.4 (a) shows the strong cells classification ability for SNMd metric and 

Fig.5.4 (b) present the ability for INTd metric. In both figures, the percentage of strong 
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cells is highlighted in red color. We can see that the strong cells are identified by higher 

metrics absolute values, while the partial skewed cells are concentrated near to the low 

absolute values (slightly better concentration than PSNM ratio in Fig.5.3). Based on 

these observations, the proposed SNM-based metrics can efficiently estimate the cells 

strength for PUF implementations.  

Similarly, we selected 64 bits creating PUF challenge-response pairs from the proposed 

memory, to characterize the strength of the proposed SNM-based metrics and compare 

 
Fig.5.3: The histogram distribution for literature PSNM ratio 

identifying the strong cells. 
 

 

  
                                              (a)                                                                                         (b) 

Fig.5.4: The histograms for the proposed SNM metrics showing strong cells distribution: a) for SNMd 

metric, b) for INTd metric. 
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it with PSNM ratio [43]. These 64 PUF-bits are selected by choosing also the cells that 

have highest absolute values of the proposed metrics, while choosing the lowest 32 

ratios and the highest 32 ratios to create the 64 PUF-bits using PSNM ratio. The summary 

of the selection results for proposed metrics compared to PSNM ratio is presented in 

Table.5.2, where we also compare the results with 64 random cells selection. In the 

same way, the columns of this table represent the number of cells that are Stable, 

Repeatable, and Strong cells (Stable and Repeatable); respectively. 

Table5. 2 Number of cells stable, repeatable and strong identified by SNM-based metrics selecting 64 

PUF-bits 

Selection Method STABLE CELLS REPEATABLE 

CELLS 

STRONG CELLS 

PSNM ratio as in [43] 63 (98.4%) 54 (84.4%) 54 (84.4%) 

SNMd 63 (98.4%) 54 (84.4%) 54 (84.4%) 

INTd         64 (100%)         57 (89.1%)         57 (89.1%) 

Random Cells Selection 35 (54.7%) 23 (35.9%) 19 (29.7%) 

 

Here, both PSNM ratio and SNMd have similar identification percentage results. 

Additionally, the novel INTd metric achieves the best strong cell selection, despite the 

results of INTd and SNMd metrics are quite close and good; specially if the results are 

compared with random cell selection. Therefore, the proposed SNM-based metrics 

shows a good classification for the strength of SRAM cells and implementing these 

metrics in SRAM-PUF can also improve its the reliability. 
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5.2.3 Voltage Noise Injection-Based Metrics Discussion 

The metrics in this section are based on injecting a DC voltage noise at the SRAM cells 

to classify the immunity of the cells against this injected noise. The proposed metrics are 

obtained using transient simulations to evaluate the maximum voltage noise that can 

be tolerated by each cell in the memory. The difference between these metrics rely on 

the location of injected noise. Vng metric injects the noise at the ground node, Vni metric 

injects the noise between the cell’s storage nodes, and Vnps injects the noise at the 

power supply nodes. Fig.5.5 shows the distribution of strong cells on the values of these 

metrics: Fig.5.5 (a) is for Vng metric, Fig.5.5 (b) is for Vni metric and Fig.5.5 (c) is for Vnps 

metric. In all of these figures, the partial skewed cells are highly concentrated at low 

absolute values of the metrics, with longer range of concentration is provided by Vni and 

Vnps metrics. Additionally, most of the strong cells are associated with higher metrics 

absolute values. So, the noise injection as a metric methodology is useful to classify the 

strength of SRAM cells for PUF applications. 

Similar to the previous sections, Table 5.3 summarizes the selection results for proposed 

metrics, where the three metrics are implemented to select 64 bits for PUF 

challenge-response pairs.      

All the metrics in this table are able to select 100% repeatable cells, this agrees with 

definition of these metrics; as they describe the immunity of cells against internal noise. 

Therefore, higher metric magnitude corresponds to highly repeatable cell. Finally, all 

metrics show a decent classification with high percentages of strong cells in the selected 

PUF response. The best identification result is achieved by Vng metric, where the noise 

is injected at the ground of SRAM cell.  



118 

 

Table 5.3 Number of cells stable, repeatable and strong identified by injected noise-based metrics 

selecting 64 PUF-bits 

Selection method STABLE CELLS REPEATABLE 

CELLS 

STRONG CELLS 

Vng 57 (89.1%) 64 (100%) 57 (89.1%) 

Vni 54 (84.4%) 64 (100%)  54 (84.4%) 

Vnps        55 (85.9%)        64 (100%) 55 (85.9%) 

Random Cells Selection 28 (43.8%) 21 (32.8%) 17 (26.6%) 

 

                                                                                              (a) 

 
                                               (b)                                                                                           (C) 

Fig.5.5: The histograms for the proposed injected noise-based metrics showing strong cells distribution: a) for 

Vng metric, b) for Vni metric and c) for Vng metric 
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5.2.4 SRAM Separatrix-Based Metrics Discussion 

We proposed several indicators to classify the SRAM cells reliability based on their 

dynamic start-up process (see section 3.5). However, the SRAM separatrix metric (SID) 

seems the most promising one (subsection 3.5.2), as it highly correlates with inherent 

cell-mismatch compared to rest dynamic-based indicators. The SID metric describes cell 

mismatch in term of the cell tendency towards its final SUV; higher magnitudes of SID 

correspond to highly mismatched cells that have higher tendency towards the preferred 

SUV. 

The distribution of the strong cells on the SID metric histogram is shown in Fig.5.6. 

Similar to the previous metrics, the percentage of the strong cells is represented in red 

bars and those cells are associated with highest magnitudes of SID. This reflects the 

strength of this metric in selecting the best PUF cells. The partially skewed cells (blue 

bars) are significantly identified by low magnitude of the metric, especially if we 

  
Fig.5.6: The histogram distribution for dynamic SID metric identifying the 

strong cells. 
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compare it with the partially skewed cells identification using the previous DC-based 

metrics.    

We have applied SID metric to detect the most suitable PUF cells based on the definition 

that higher absolute values of SID metric can improve the reliability of SRAM-PUF. In this 

sense, we select 64 bits to create PUF challenge-response pairs similar to the previous 

metrics. The selection of these 64 PUF-bits is done starting from the cells that have the 

highest metric magnitudes.  

The results show that this metric is able to select 59 Stable cells (92.2%), while all the 

selected PUF cells are identified as Repeatable (100%). However, the Strong cells 

represent 92.2% of the selected cells. Similarly, this result shows the classification 

strength of SID metric, as it can identify the cells that highly protected against internal 

noise with high tolerance to extreme external perturbations. Therefore, the transient 

SID metric is one of the best metrics in this work to estimate the reliability of SRAM-PUF.  

5.2.5 Summary 

The strength characterization using the proposed metrics presents high performance in 

identifying the suitable memory cells for PUF applications. The results that achieved by 

the metrics are quite close between them, but there are some differences. Among the 

proposed parameter distance metrics, PdVtho is the best metric in classifying the strong 

cells (93.8%). The INTd is the best metric to represent the SNM metrics, this metric is 

able to identify 89.1% of the strong cells in the selected response. While Vng metric 

identifies the highest number of strong cells (89.1%) among the three injected noise 

locations. Finally, the dynamic SID metric can select up to (92.2%) of the strong cells. 
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Based on that, the best metric obtained by DC simulations is the parameter distance 

(PdVtho), while the SRAM Separatrix (SID) is the best metric obtained by transient 

simulations. However, the DC simulations are much faster than transient ones. 

Additionally, the PdVtho achieves the best selection results between all the proposed 

metrics.    

5.3 Influence of Selected PUF Response Length 

     Reducing the length of the selected PUF-response, by selecting minimum required 

number of PUF-cells, can improve the overall PUF operation time [59]. Additionally, the 

memory addresses used for PUF operation must remain uninitialized until the 

PUF-response is generated, and cannot be used for other purposes, as claimed in [77].  

However, the reliability of selected PUF-response using the proposed metrics is highly 

affected by the response length. As we mentioned in the previous section, the strong 

cells are more concentrated at highest metric values and the concentration of these cells 

 

 
Fig.5.7: Percentage of strong cells identified by each best metric approach 

considering different response lengths. 
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decreases with metric values reduction. The PUF-response is selected starting from 

highest metric absolute values. Therefore, if the response length decreases, higher 

percentage of strong cells will be included in the response, and thus the reliability of this 

PUF-response increases. Fig.5.7 represents the percentages of strong cells identified by 

each best metric approach with respect to several length of bits (16, 32, 64 and 128 bits) 

creating the response of the SRAM-PUF. It is clear that the percentage of identified 

strong cells increases when the response length is reduced. In all cases, the PdVtho metric 

achieves the maximum percentage, despite the SID metric is quite close. Generally, all 

the proposed metrics in Fig.5.7 that based on characterize the cell strength are the 

author recommendation. Finally, a percentage of strong cells over 90% is achieved if 

only a subset of 32 cells is selected. In this case, those cells represent roughly a 3% of 

the total 1000 cells. If only 16 cells are selected, all of them are strong cells, which is a 

1,5% of the 1000 cells.  

The main benefit of this selection technique is allowing the designer to make this kind 

of predictions by simulation, I.E. the overall percentage of PUF suitable cells that will be 

available in a certain memory design. In addition, this methodology allows determining, 

the minimum size of the memory array needed if a fixed number of strong cells is 

necessary for given PUF application. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusions 

     SRAM memories are becoming one of the most attractive alternatives for the 

implementation of PUFs. To ensure their SUV reliability it is necessary to quantify the 

impact produced by temperature, previously stored values, thermal noise or ramp-up 

characteristics. In this sense, some cells are more affected by these perturbations than 

the others. The SUV of well-matched (more symmetrical) cell is more affected, while the 

highly mismatched cell has more constant SUV under the disturbances. To avoid the 

effects of these disturbances, it has been proposed as a solution to implement PUFs 

using only a subset composed of the most reliable memory bit-cells; those that have the 

most reproducible SUV.DC and transient simulated metric methodologies to 

characterize SRAM cells for PUF applications are implemented on 65nm CMOS 

technology node. These methodologies are used to study the reliability of cell SUV based 

on either the dynamic cell behavior or the static cell parameters, like transistor threshold 

voltage.  The metrics implementation is further extended for the percentage estimation 

of strong cells. Additionally, external perturbations and internal noise techniques are 

implemented to support the strong cell identification capability of the proposed metrics. 

The threshold voltage distance (PdVth) metric shows the best results, indicating that the 

mismatch in transistors threshold voltage parameter is crucial in operation and 

reliability of SRAM as a PUF. Also, based on DC simulation, the SNM-based metrics show 
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excellent correlation between them and between previous published metric (PSNM 

ratio). However, the characterization result of INTd metric is slightly better. On the other 

hand, the SRAM separatrix implementation (SID metric) shows the best result between 

all the transient metrics.  

In general, all achieved results show good agreement between metrics-based 

percentage estimation methodology and strong cells. The mismatch characterization of 

SRAM cells using either the DC simulated metrics or the transient simulated metrics can 

reduce the need for massive test simulations to achieve substantial statistics for SRAM 

reliability analysis. Furthermore, by only implementing the strongest cells as PUF, it will 

generate more repeatable and consistent output each time it is challenged, reducing the 

need for postprocessing ECCs. In contrary, the weakest skewed cells are highly affected 

by environmental and operational conditions and their SUVs are expected to be more 

random. Therefore, selecting only these cells can contribute to applications like true 

random number generators. 

The characterization of bit-cells using the proposed metrics can be exploited to explore 

the tolerance margins and evaluate the benefits and drawbacks of different SRAM PUF 

implementations against different scenarios, such as temperature. 

6.2 Future Work 

Based on the findings offered in this thesis, some directions for future research are 

proposed and described in this section: 

1. Some of the metrics, Such as PdVth, consider only the variation in one parameter 

in one of the cell transistors at a time. But, in real scenario, there are many 
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parameters can be affected by process variation. Even though, the threshold 

voltage variation will dominate the SUV as shown by the metrics, these metrics 

can be extended to study the variation in more than one parameter. However, 

these parameters can have conflicted impacts on the SUV reliability; the impact 

of some of them may increase the reliability while others may decrease it. To 

achieve the optimum reliability of SRAM-PUF, an optimization algorithm could 

be used to optimize the values of these parameters at design phase.   

2. Different technology nodes will have different impacts on SRAM-PUFs, as 

reducing the technology scaling will increase the influence of process variation. 

The metrics developed can be implemented to explore the effect of technology 

scaling on SUV of SRAM cell, also to explore the percentage estimation of strong 

cells among these technology nodes. Additionally, different memory structures, 

such as 8-T and 10-T SRAM cell, could be studied using similar metric 

methodology.  

3. The characterization of SRAM cell reproducibility for PUF application using the 

developed metrics has several benefits for pre-design and design stages. 

Although, measuring the metric parameters experimentally is quite difficult. This 

work can be extended by experimentally validating the estimated percentage of 

strong cells for an SRAM design.  

 

 
 
 
 
 



126 

 

REFERENCES 

[1] Skorobogatov, S.P., 2005. Semi-invasive attacks: a new approach to hardware 

security analysis. 

[2] Pappu, R.S., 2001. Physical one-way functions [Ph. D. thesis]. Massachusetts 

Institute of Technology, Cambridge, Mass, USA. 

[3] Maes, R., Tuyls, P. and Verbauwhede, I., 2009, June. A soft decision helper data 

algorithm for SRAM PUFs. In 2009 IEEE international symposium on information 

theory, pp. 2101-2105.  

[4] Böhm, C. and Hofer, M., 2012. Physical unclonable functions in theory and practice. 

Springer Science & Business Media. 

[5] Gao, Y., Ranasinghe, D.C., Al-Sarawi, S.F., Kavehei, O. and Abbott, D., 2016. Emerging 

physical unclonable functions with nanotechnology. IEEE access, 4, pp.61-80. 

[6] Delvaux, J., Gu, D., Schellekens, D. and Verbauwhede, I., 2014. Helper data 

algorithms for PUF-based key generation: Overview and analysis. IEEE Transactions 

on Computer-Aided Design of Integrated Circuits and Systems, 34(6), pp.889-902. 

[7] Maes, R., Van Herrewege, A. and Verbauwhede, I., 2012, September. PUFKY: A fully 

functional PUF-based cryptographic key generator. In International Workshop on 

Cryptographic Hardware and Embedded Systems (pp. 302-319). Springer, Berlin, 

Heidelberg. 

[8] Suh, G.E. and Devadas, S., 2007, June. Physical unclonable functions for device 

authentication and secret key generation. In 2007 44th ACM/IEEE Design 

Automation Conference (pp. 9-14). IEEE. 

[9] Delvaux, J., Peeters, R., Gu, D. and Verbauwhede, I., 2015. A survey on lightweight 

entity authentication with strong PUFs. ACM Computing Surveys (CSUR), 48(2), pp.1-

42. 

[10] Gassend, B., Van Dijk, M., Clarke, D. and Devadas, S., 2007. Controlled physical 

random functions. In Security with Noisy Data (pp. 235-253). Springer, London. 



127 

 

[11] Holcomb, D.E., Burleson, W.P. and Fu, K., 2008. Power-up SRAM state as an 

identifying fingerprint and source of true random numbers. IEEE Transactions on 

Computers, 58(9), pp.1198-1210. 

[12] Van der Leest, V., Van der Sluis, E., Schrijen, G.J., Tuyls, P. and Handschuh, H., 2012. 

Efficient implementation of true random number generator based on sram pufs. 

In Cryptography and security: from theory to applications (pp. 300-318). Springer, 

Berlin, Heidelberg. 

[13] Varchola, M., Drutarovsky, M. and Fischer, V., 2013, December. New universal 

element with integrated PUF and TRNG capability. In 2013 International Conference 

on Reconfigurable Computing and FPGAs (ReConFig) (pp. 1-6). IEEE. 

[14] Van Der Sluis, E., Schrijen, G.J. and Handschuh, H., Intrinsic ID BV, 2016. Random 

number generating system based on memory start-up noise. U.S. Patent 9,383,969. 

[15] Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S. and Schmidhuber, J., 2010, 

October. Modeling attacks on physical unclonable functions. In Proceedings of the 

17th ACM conference on Computer and communications security (pp. 237-249). 

[16] Handschuh, H., 2012. Hardware-anchored security based on SRAM PUFs, Part 1. IEEE 

Security & Privacy, 10(3), pp.80-83. 

[17] Maiti, A. and Schaumont, P., 2013. The impact of aging on a physical unclonable 

function. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(9), 

pp.1854-1864. 

[18] Bhargava, M. and Mai, K., 2014, March. An efficient reliable PUF-based 

cryptographic key generator in 65nm CMOS. In 2014 Design, Automation & Test in 

Europe Conference & Exhibition (DATE) (pp. 1-6). IEEE. 

[19] Lao, Y., Yuan, B., Kim, C.H. and Parhi, K.K., 2016. Reliable PUF-based local 

authentication with self-correction. IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, 36(2), pp.201-213. 

[20] Rhee, K., Kwak, J., Kim, S. and Won, D., 2005, April. Challenge-response based RFID 

authentication protocol for distributed database environment. In International 

Conference on Security in Pervasive Computing (pp. 70-84). Springer, Berlin, 

Heidelberg. 



128 

 

[21] Dargar, A., 2011. Modeling SRAM Start-up Characteristics for Physical Unclonable 

Functions (Master's thesis, Delft University of Technology). 

[22] Skoric, B., Schrijen, G.J., Ophey, W., Wolters, R., Verhaegh, N. and van Geloven, J., 

2007. Experimental hardware for coating PUFs and optical PUFs. In Security with 

Noisy Data (pp. 255-268). Springer, London. 

[23] Lu, X., Hong, L. and Sengupta, K., 2018. CMOS optical PUFs using noise-immune 

process-sensitive photonic crystals incorporating passive variations for 

robustness. IEEE Journal of Solid-State Circuits, 53(9), pp.2709-2721. 

[24] Zhang, J.L., Qu, G., Lv, Y.Q. and Zhou, Q., 2014. A survey on silicon PUFs and recent 

advances in ring oscillator PUFs. Journal of computer science and technology, 29(4), 

pp.664-678. 

[25] Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J. and Tuyls, P., 2008, June. The 

butterfly PUF protecting IP on every FPGA. In 2008 IEEE International Workshop on 

Hardware-Oriented Security and Trust (pp. 67-70). IEEE. 

[26] Böhm, C., Hofer, M. and Pribyl, W., 2011, September. A microcontroller sram-puf. 

In 2011 5th International Conference on Network and System Security (pp. 269-273). 

IEEE. 

[27] Holcomb, D.E., Burleson, W.P. and Fu, K., 2007, July. Initial SRAM state as a 

fingerprint and source of true random numbers for RFID tags. In Proceedings of the 

Conference on RFID Security (Vol. 7, No. 2, p. 01). 

[28] Yu, M.D. and Devadas, S., 2010. Secure and robust error correction for physical 

unclonable functions. IEEE Design & Test of Computers, 27(1), pp.48-65. 

[29] Suh, G.E., O'Donnell, C.W. and Devadas, S., 2007. Aegis: A single-chip secure 

processor. IEEE Design & Test of Computers, 24(6), pp.570-580. 

[30] Bösch, C., Guajardo, J., Sadeghi, A.R., Shokrollahi, J. and Tuyls, P., 2008, August. 

Efficient helper data key extractor on FPGAs. In International workshop on 

cryptographic hardware and embedded systems (pp. 181-197). Springer, Berlin, 

Heidelberg. 

[31] Islam, M.N., Patil, V.C. and Kundu, S., 2017. On enhancing reliability of weak PUFs via 

intelligent post-silicon accelerated aging. IEEE Transactions on Circuits and Systems 

I: Regular Papers, 65(3), pp.960-969. 



129 

 

[32] Usmani, M.A., Keshavarz, S., Matthews, E., Shannon, L., Tessier, R. and Holcomb, 

D.E., 2018. Efficient PUF-based key generation in FPGAs using per-device 

configuration. IEEE Transactions on very large scale integration (VLSI) systems, 27(2), 

pp.364-375. 

[33] Patil, V.C., Vijayakumar, A., Holcomb, D.E. and Kundu, S., 2017, May. Improving 

reliability of weak PUFs via circuit techniques to enhance mismatch. In 2017 IEEE 

International Symposium on Hardware Oriented Security and Trust (HOST) (pp. 146-

150). IEEE. 

[34] Mathew, S.K., Satpathy, S.K., Anders, M.A., Kaul, H., Hsu, S.K., Agarwal, A., Chen, 

G.K., Parker, R.J., Krishnamurthy, R.K. and De, V., 2014, February. 16.2 A 0.19 pJ/b 

PVT-variation-tolerant hybrid physically unclonable function circuit for 100% stable 

secure key generation in 22nm CMOS. In 2014 IEEE International Solid-State Circuits 

Conference Digest of Technical Papers (ISSCC) (pp. 278-279). IEEE. 

[35] Guajardo, J., Kumar, S.S., Schrijen, G.J. and Tuyls, P., 2007, August. Physical 

unclonable functions and public-key crypto for FPGA IP protection. In 2007 

International Conference on Field Programmable Logic and Applications (pp. 189-

195). IEEE. 

[36] Sklavos, N., Chaves, R., Di Natale, G. and Regazzoni, F., 2017. Hardware security and 

trust. Cham, Switzerland: Springer. 

[37] Li, J., Yang, T. and Seok, M., 2017, May. A technique to transform 6T-SRAM arrays 

into robust analog PUF with minimal overhead. In 2017 IEEE International 

Symposium on Circuits and Systems (ISCAS) (pp. 1-4). IEEE. 

[38] Maes, R. and Van Der Leest, V., 2014, May. Countering the effects of silicon aging on 

SRAM PUFs. In 2014 IEEE International symposium on hardware-oriented security 

and trust (HOST) (pp. 148-153). IEEE. 

[39] Bhargava, M. and Mai, K., 2013, August. A high reliability PUF using hot carrier 

injection based response reinforcement. In International Conference on 

Cryptographic Hardware and Embedded Systems (pp. 90-106). Springer, Berlin, 

Heidelberg. 

[40] Satpathy, S., Mathew, S.K., Suresh, V., Anders, M.A., Kaul, H., Agarwal, A., Hsu, S.K., 

Chen, G., Krishnamurthy, R.K. and De, V.K., 2017. A 4-fJ/b delay-hardened physically 



130 

 

unclonable function circuit with selective bit destabilization in 14-nm trigate 

CMOS. IEEE Journal of Solid-State Circuits, 52(4), pp.940-949. 

[41] Baturone, I., Prada-Delgado, M.A. and Eiroa, S., 2015. Improved generation of 

identifiers, secret keys, and random numbers From SRAMs. IEEE Transactions on 

Information Forensics and Security, 10(12), pp.2653-2668. 

[42] Pandey, S., Deyati, S., Singh, A. and Chatterjee, A., 2016, November. Noise-resilient 

SRAM physically unclonable function design for security. In 2016 IEEE 25th Asian Test 

Symposium (ATS) (pp. 55-60). IEEE. 

[43] Cortez, M., Dargar, A., Hamdioui, S. and Schrijen, G.J., 2012, October. Modeling 

SRAM start-up behavior for physical unclonable functions. In 2012 IEEE International 

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems 

(DFT) (pp. 1-6). IEEE. 

[44] Shifman, Y., Miller, A., Keren, O., Weizmann, Y. and Shor, J., 2018. A Method to 

Improve Reliability in a 65-nm SRAM PUF Array. IEEE Solid-State Circuits Letters, 1(6), 

pp.138-141. 

[45] Karpinskyy, B., Lee, Y., Choi, Y., Kim, Y., Noh, M. and Lee, S., 2016, January. 8.7 

Physically unclonable function for secure key generation with a key error rate of 2E-

38 in 45nm smart-card chips. In 2016 IEEE International Solid-State Circuits 

Conference (ISSCC) (pp. 158-160). IEEE. 

[46] Böhm, C., Bucci, M., Hofer, M. and Luzzi, R., 2016. A reliable low-area low-power 

PUF-based key generator. 

[47] Rajput, A.S., Pattanaik, M. and Tiwari, R.K., 2018. Estimation of static noise margin 

by butterfly method using curve-fitting technique. Journal of Active and Passive 

Electronic Devices, 13(1), pp.1-9. 

[48] Chellappa, S., 2011, September. Improved circuits for microchip identification using 

SRAM mismatch. In 2011 IEEE Custom Integrated Circuits Conference (CICC) (pp. 1-

4). IEEE. 

[49] Hofer, M. and Boehm, C., 2010, August. An alternative to error correction for SRAM-

like PUFs. In International Workshop on Cryptographic Hardware and Embedded 

Systems (pp. 335-350). Springer, Berlin, Heidelberg. 



131 

 

[50] Kiamehr, S., Golanbari, M.S. and Tahoori, M.B., 2017, March. Leveraging aging effect 

to improve SRAM-based true random number generators. In Design, Automation & 

Test in Europe Conference & Exhibition (DATE), 2017 (pp. 882-885). IEEE. 

[51] Okumura, S., Yoshimoto, S., Kawaguchi, H. and Yoshimoto, M., 2012. A 128-bit Chip 

Identification Generating Scheme Exploiting Load Transistors' Variation in SRAM 

Bitcells. IEICE Transactions on Fundamentals of Electronics, Communications and 

Computer Sciences, 95(12), pp.2226-2233. 

[52] Shinohara, H., Zheng, B., Piao, Y., Liu, B. and Liu, S., 2017, April. Analysis and 

reduction of SRAM PUF bit error rate. In 2017 International Symposium on VLSI 

Design, Automation and Test (VLSI-DAT) (pp. 1-4). IEEE. 

[53] Baker, R.J., 2019. CMOS: circuit design, layout, and simulation. John Wiley & Sons. 

[54] Rabaey, J.M., Chandrakasan, A.P. and Nikolić, B., 2003. Digital integrated circuits: a 

design perspective (Vol. 7). Upper Saddle River, NJ: Pearson education. 

[55] Seevinck, E., List, F.J. and Lohstroh, J., 1987. Static-noise margin analysis of MOS 

SRAM cells. IEEE Journal of solid-state circuits, 22(5), pp.748-754. 

[56] Pavlov, A. and Sachdev, M., 2008. CMOS SRAM circuit design and parametric test in 

nano-scaled technologies: process-aware SRAM design and test (Vol. 40). Springer 

Science & Business Media. 

[57] Roelke, A. and Stan, M.R., 2018. Controlling the reliability of SRAM PUFs with 

directed NBTI aging and recovery. IEEE Transactions on Very Large Scale Integration 

(VLSI) Systems, 26(10), pp.2016-2026. 

[58] Lee, J., Jee, D.W. and Jeon, D., 2019. Power-up control techniques for reliable SRAM 

PUF. IEICE Electronics Express, 16(13), pp.20190296-20190296. 

[59] Eiroa, S., Castro, J., Martínez-Rodríguez, M.C., Tena, E., Brox, P. and Baturone, I., 

2012, December. Reducing bit flipping problems in SRAM physical unclonable 

functions for chip identification. In 2012 19th IEEE International Conference on 

Electronics, Circuits, and Systems (ICECS 2012) (pp. 392-395). IEEE. 

[60] Yin, C.E. and Qu, G., 2009, July. Temperature-aware cooperative ring oscillator PUF. 

In 2009 IEEE International Workshop on Hardware-Oriented Security and Trust (pp. 

36-42). IEEE. 



132 

 

[61] Guo, Z., Carlson, A., Pang, L.T., Duong, K.T., Liu, T.J.K. and Nikolic, B., 2009. Large-

scale SRAM variability characterization in 45 nm CMOS. IEEE Journal of Solid-State 

Circuits, 44(11), pp.3174-3192. 

[62] Schrijen, G.J. and Van Der Leest, V., 2012, March. Comparative analysis of SRAM 

memories used as PUF primitives. In 2012 Design, Automation & Test in Europe 

Conference & Exhibition (DATE) (pp. 1319-1324). IEEE. 

[63] Claes, M., van der Leest, V. and Braeken, A., 2011, October. Comparison of SRAM 

and FF PUF in 65nm technology. In Nordic Conference on Secure IT Systems (pp. 47-

64). Springer, Berlin, Heidelberg. 

[64] Zhang, B., Arapostathis, A., Nassif, S. and Orshansky, M., 2006, November. Analytical 

modeling of SRAM dynamic stability. In Proceedings of the 2006 IEEE/ACM 

international conference on Computer-aided design (pp. 315-322). 

[65] Vatajelu, E.I., Panagopoulos, G., Roy, K. and Figueras, J., 2010, May. Parametric 

failure analysis of embedded SRAMs using fast & accurate dynamic analysis. In 2010 

15th IEEE European Test Symposium (pp. 69-74). IEEE. 

[66] Vătăjelu, E.I., Gómez-Pau, Á., Renovell, M. and Figueras, J., 2014. Sram cell stability 

metric under transient voltage noise. microelectronics Journal, 45(10), pp.1348-

1353. 

[67] Dong, W., Li, P. and Huang, G.M., 2008, November. SRAM dynamic stability: Theory, 

variability and analysis. In 2008 IEEE/ACM International Conference on Computer-

Aided Design (pp. 378-385). IEEE. 

[68] Zhang, Y., Li, P. and Huang, G.M., 2010, June. Separatrices in high-dimensional state 

space: System-theoretical tangent computation and application to SRAM dynamic 

stability analysis. In Proceedings of the 47th Design Automation Conference (pp. 567-

572). 

[69] Sharifkhani, M. and Sachdev, M., 2009. SRAM cell stability: A dynamic 

perspective. IEEE Journal of Solid-State Circuits, 44(2), pp.609-619. 

[70] Vatajelu, E.I., Di Natale, G. and Prinetto, P., 2016, March. Towards a highly reliable 

SRAM-based PUFs. In 2016 Design, Automation & Test in Europe Conference & 

Exhibition (DATE) (pp. 273-276). IEEE. 

[71] Lundberg, K.H., 2002. Noise sources in bulk CMOS. Unpublished paper, 3, p.28. 



133 

 

[72] Holcomb, D.E. and Fu, K., 2014, September. Bitline PUF: building native challenge-

response PUF capability into any SRAM. In International Workshop on Cryptographic 

Hardware and Embedded Systems (pp. 510-526). Springer, Berlin, Heidelberg. 

[73] Cortez, M., Hamdioui, S., Kaichouhi, A., van der Leest, V., Maes, R. and Schrijen, G.J., 

2015. Intelligent voltage ramp-up time adaptation for temperature noise reduction 

on memory-based PUF systems. IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, 34(7), pp.1162-1175. 

[74] Wang, W., Singh, A., Guin, U. and Chatterjee, A., 2018, March. Exploiting power 

supply ramp rate for calibrating cell strength in SRAM PUFs. In 2018 IEEE 19th Latin-

American Test Symposium (LATS) (pp. 1-6). IEEE. 

[75] Ho, A., 2017. Circuit Design of SRAM Physically Unclonable Functions (Master's 

thesis, University of Waterloo). 

[76] Liu, M., Zhou, C., Tang, Q., Parhi, K.K. and Kim, C.H., 2017, July. A data remanence 

based approach to generate 100% stable keys from an sram physical unclonable 

function. In 2017 IEEE/ACM International Symposium on Low Power Electronics and 

Design (ISLPED) (pp. 1-6). IEEE. 

[77] Saxena, N. and Voris, J., 2009, July. We can remember it for you wholesale: 

Implications of data remanence on the use of RAM for true random number 

generation on RFID tags. In Proceedings of the Conference on RFID Security. 

[78] Yang, K., Blaauw, D. and Sylvester, D., 2017. Hardware designs for security in ultra-

low-power IoT systems: An overview and survey. IEEE Micro, 37(6), pp.72-89. 

[79] Toh, S.O., Guo, Z., Liu, T.J.K. and Nikolic, B., 2011. Characterization of dynamic SRAM 

stability in 45 nm CMOS. IEEE journal of solid-state circuits, 46(11), pp.2702-2712. 

[80] Alorda, B., Carmona, C., Torrens, G. and Bota, S., 2016. An affordable experimental 

technique for SRAM write margin characterization for nanometer CMOS 

technologies. Microelectronics Reliability, 65, pp.280-288. 

 




