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Summary 
 
 
 
Efficient discovery of bioactive molecules is an essential goal of Computer-Aided Drug            
Design (CADD). The molecules can be used as chemical probes, to validate novel targets,              
or as starting points for drug discovery. This endeavour is particularly challenging in the case               
of proteins that are considered undruggable or for which no ligands are known. These are               
precisely the type of proteins that must be targeted in order to expand the “druggable               
genome” and extend the range of therapeutic opportunities.  
 
CADD tools available nowadays are numerous but have limitations that must be overcome in              
order to improve the efficacy and efficiency of drug discovery. Particularly because they             
should also be able to exploit non-standard sites, such as protein-protein interfaces,            
allosteric sites or cryptic pockets. They should also be adapted to address specific needs in               
the drug discovery process. Finally, they can be used to gain a fundamental understanding              
of the behaviour of molecular systems and the rules of molecular recognition that govern the               
recognition of a drug by its target. In this thesis, I have explored each one of these aspects. 
 
Initially, I developed an automatic pipeline that can be used in Fragment-Based Drug             
Discovery (FBDD) to navigate the “fragment chemical space”. Starting from a fragment hit             
with a known binding mode to its target, the platform automatically seeks non-obvious             
analogues (scaffold hops) within large chemical collections, delivering fragment hits, with           
novel structures that would, otherwise, be missed. I validated the platform using a fragment              
hit of the first bromodomain of the Bromodomain-containing protein 4 (BRD4) taken from the              
literature as a starting point. The platform identified multiple fragments with novel scaffolds             
and excellent ligand efficiencies. For some, their binding modes could be corroborated            
experimentally. 
 
The optimized fragment identified in the first study allowed us to investigate the unusual              
behaviour of structural water molecules in BRD4(1) and their role in molecular recognition.             
Paradoxically, a hydrophobic binding hot spot of BRD4(1) is lined with water molecules. A              
series of compounds were derived to probe the preference of this site for chemical groups               
with various degrees of polarity. Molecular dynamics (MD) and free energy calculations            
allowed us to rationalize the experimental results.  
 
I have then used de novo design (DND) methods to further grow the most active fragment                
into a very potent and efficient drug-like BRD4 ligand. 
  
Finally, I have discovered the first ever described inhibitors of the Three Prime Repair              
Exonuclease 2 (TREX2) protein. …………………………………………………………………..     
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
………………………………………………………………..  
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“Everything should be made as simple as possible, but not simpler” 
 
Albert Einstein 
 
 

1.1. The Quest For A New Drug 
 
When one considers the transformation of drug discovery from the ancient world – when it               
was only possible to randomly test raw materials and observe if they have an effect on the                 
specific illness – to modern medicine, the progress is astounding. Yet, we are still far away                
from the point where, for any disease, it is possible to find the proper treatment in a short                  
period of time. This has been made painfully clear during the on-going COVID-19 crisis.              
Even though science has made great strides in recent years, scientists around the world are               
still struggling to understand and address the molecular basis of unsolved biomedical            
problems. The consequence is that there are still major unmet medical needs to be              
addressed. To name but a few, orphan diseases, deadly tropical diseases, new upcoming             
conditions, and the replacement of life-saving drugs with severe side-effects, are a case in              
point. A strong desire to ameliorate and prolong life are at the base of the search for new,                  
more effective and safer drugs.  
In this arduous quest, the tools available to the “drug hunters” nowadays are numerous, but               
still have limitations due to insufficient understanding about the “small world” where the             
molecules inhabit. Research and innovation are paramount to bridge this gap. The discovery             
of computers at the beginning of last century, and their application to drug discovery in the                
1980’s, brought a great advancement in the field. In spite of rapid and continuous progress,               
these methods still suffer from important limitations and better tools are needed to improve              
the efficacy and efficiency of drug discovery.  
 
In this introduction I am going to discuss the importance of Computer-Aided Drug Design              
(CADD) in the drug discovery process and describe some important computational tools            
available to drug discovery practitioners. I will also present the importance of expanding the              
“druggable genome” and the application of CADD in challenging therapeutic targets. 
 

1.1.1 The Druggable Genome 
 
After the sequencing of the human genome in the early 2000, it was estimated that about                
30,000 genes can express proteins [1,2] and scientists began to ask how many of them               
could be considered potential therapeutic targets.  
With the seminal paper of 2002 by Hopkins and Groom [3] a first attempt to calculate this                 
number led to the estimate that 10-14% of the predicted proteome could be considered              
druggable and that the proteins targeted until that point represented only about the 1% of the                
total (399 over 30,000), of which only 0,5% led to a marketed drug (120 over 30,000). While                 
approximate, this assessment made it clear that there was room for improvement and a race               
towards increasing the number of druggable proteins has since taken place. Three great             
initiatives have appeared recently (Illuminating the Druggable Genome, Open Targets and           
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Target 2035 [4,5,6]) with the specific objective to expand the druggable genome. In a recent               
paper [4] the number of targeted proteins is increased to 9%, but still 40% of the proteome is                  
underexplored and may include new opportunities for therapeutic targets. 
But what makes a protein druggable? If we know the rules that define a drug (Lipinski’s rule                 
of 5 [7], for example), we can expect to have the exact complementary properties on the                
protein [8], like a negative film. Some proteins are considered difficult to drug or even               
undruggable due to the lack of these properties (i.e. a deep cavity, for shape              
complementarity, or specific features for functional interactions). For example, transcription          
factors and protein-protein interactions are usually considered undruggable because their          
surfaces are rather flat. In other cases, the ‘undruggable’ label is earned after many drug               
discovery attempts fail (for example MYC [9]). 
Other authors place the focus on the “ability to bind anything” from very small (fragments) to                
lead-like size compounds, that can be used as a biological tool to understand cellular              
mechanisms [10] (chemical probes). Under this perspective, we should talk about           
“bindability” instead of “druggability”. In any case, the challenge nowadays is not only to find               
new druggable targets but also to succeed in finding binders for these intractable targets              
(making the ‘undruggable’ ‘druggable’) because many such targets have a role in important             
pathways and cellular mechanisms involved in disease.  
This is a first and fundamental step to validate the target and open the way for drug                 
discovery. Yet, finding a chemical compound that binds the target, is only the beginning of a                
long and expensive process to develop a new drug. 
 

1.1.2 The Drug Discovery Process 
 
The path to a drug is usually depicted as a linear track like in Figure 1.1, where a                  
consecutive application of different approaches inevitably leads to success.  
 
 

 
 
Figure 1.1: Phases of Drug Discovery. 
 
 
In reality it is more likely a tortuous road with many obstacles to overcome and barriers that                 
obligate you to retrace your steps (Figure 1.2), particularly in the preclinical stage.  
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Figure 1.2: The tortuous path of preclinical drug discovery. Reproduced from [11] 
 
 
The most expensive failures happen in the clinical stage. They could be a consequence of               
an inadequate design from the beginning or to the unpredictable nature of some biological              
responses. “Fail early, fail fast” is the mantra of the pharmaceutical industry to avoid loss of                
money and time on a project with a dead end. 
In fact, it is estimated that the path from the first identification of a disease-related target to                 
the release of a drug in the market lasts an average of 12 years [12] and costs more than $1                    
billion [13,14]. For this reason, the largest effort should be concentrated in the preclinical              
stage, as it has the responsibility to deliver an optimal candidate that facilitates development              
and minimises the risk of future failures. In consequence, advances and improvements in             
any step of the preclinic are extremely important.  
It is possible to define 5 different phases in the preclinical stage, following the linear               
representation of Figure 1.1:  
1) Target Identification and Validation: once a disease is recognized, the most important             
targets involved in the development of the disease are identified. By means of different              
techniques, the mechanisms of action in the cell and the biological pathway/s involved are              
described and it is proved that a perturbation on a selected target (e.g. by deletion,               
overexpression or modulation) can be beneficial for the condition. 
2) Hit Identification and Validation: During this phase a series of compounds (hits) are              
identified through experimental (e.g. high-throughput screening) or virtual screening of          
libraries of molecules. The efficacy of the hits on the target are validated with different               
assays. Among them, biophysical assays like Differential Scanning Fluorimetry (DSF),          
Surface Plasmon Resonance (SPR), Isothermal Calorimetry (ITC), Nuclear Magnetic         
Resonance (NMR) or those based on fluorescence (e.g. FP, TR-FRET) are preferred to             
assess the binding. Confirmation of the binding pose by X-ray crystallography is ideal.             
Biochemical and biological assays (i.e. phenotypic assays) can also be performed. 
3) Hit-to-Lead: The potency, selectivity or other particular properties of the validated hits are              
improved through iterative steps of chemical modifications and biological tests until a            
successful outcome is obtained. 
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4) Lead Optimization: The ADMET properties (Absorption, Distribution, Metabolism,         
Excretion and Toxicity) of the selected lead are improved to obtain a candidate drug. 
5) Preclinical Development: formulation studies and more in-depth effectivity tests are           
carried out in vitro and in vivo. The resulting drug candidate will be filed for clinical trials in                  
humans (clinical phases I, II and III). 
 
The work described in this thesis can be related to the first 3 steps of the drug discovery                  
process, namely target validation, hit identification and hit-to-lead.  
 
In many of these steps, it is possible to use computer programs to facilitate some tasks,                
significantly reducing the preclinical time length and increasing the chances of obtaining a             
successful candidate drug. From its first appearance more than 30 years ago, this field of               
research is called Computer-Aided Drug Design (CADD). 
 

1.1.3. Computer-aided Drug Design (Cadd) 
 
In the early 1980s there was an increased interest in “designing drugs by computers”[15]. At               
the time it was believed that drugs could be designed atom by atom, but the initial hype led                  
to disappointment. In the early 1990s the paradigm changed to “design as many molecules              
as possible and screen them” thanks to technologies like combinatorial chemistry and            
high-throughput screening. 
From then, a series of different computational methodologies have emerged to help in             
different parts of the drug discovery process. Several of them have been used here: 

● The first step to any drug design project is to be sure that a target can properly bind a                   
small molecule and determine where (target “bindability” assessment). Mixed-solvent         
molecular dynamics and programs for cavity detection can be used for this purpose             
(Section 3.3.1).  

● In Hit Identification and Validation, chemoinformatics methods can be applied for           
chemical space navigation (Section 3.1), docking programs can be used for screening            
a virtual library of compounds (Section 3.2), dynamic undocking can help remove false             
positives (Section 3.3.2) and molecular dynamics can validate the binding of the hits             
found (Section 3.3). 

● In Hit-to-Lead, chemical space is explored with the aim to increase the activity of the               
hits. The most straightforward method is simply search molecules with similar           
structures in vendor databases (“SAR-by-catalogue”). With de novo drug design, novel           
molecules that are not present in any databases can be created. Free energy             
calculations can be used to predict the affinity of the hits (Section 3.3.3). 

 
All the previous methods are applicable when a structure of the target is known              
(Structure-based drug design). Structures can be obtained experimentally by X-ray          
Crystallography, NMR or cryo-EM.  
If ligands of the target are known, they can be used to guide the drug design (Ligand-based                 
drug design). Similarity methods, Quantitative Structure-Activity Relationships (QSAR),        
including the modern machine-learning approaches, and pharmacophore-based       
approaches, belong to this class of CADD. 
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1.2. Principles Of Molecular Recognition In Protein-ligand       
Binding 
 
When we administer a drug to treat a medical condition, we can see a visible effect of                 
amelioration. This effect is the global result of the intricate voyage of the drug through the                
body. In this microscopic world, the active principle of the drug is crossing compartments              
and making countless interactions with many proteins, until it reaches the final destination,             
namely the therapeutic target for that medical condition. At that point, drug and target bind               
with each other, leading to an alteration of the target function and a biological response. 
In the development of a drug, it is important to consider all these events, but the first and                  
foremost is the binding with the target protein, without which the effect would not be present.  
 
At the basis of any binding event, there are mechanisms of molecular recognition between a               
protein and a ligand. Molecular recognition refers to the complementarity of protein and             
ligand by matching electronic properties and shape [16]. This is a dynamic process where              
different events may occur and have different weights. We can, though, recognize three             
main structural factors that are important: the specific interactions, the shape and the             
flexibility of the system. These three structural factors affect enthalpy and entropy in different              
ways and the outcome of the combination of them will determine the free energy of binding                
and if a favourable interaction can happen. 
 

1.2.1 Protein-ligand Interactions 
 
If the chemical world offers infinite possibilities, the interactions in proteins correspond to             
only 20 basic units, the aminoacids. All the possible interactions that a protein can do with its                 
counterpart, being a natural substrate, a natural product or a synthetic drug, are a mere               
recombination of those units. While the number of possible 3D arrangements and particular             
variations is still infinite, we can organize the molecular interactions in a few classes (Table               
1.1). This knowledge helps understanding the properties that a drug must have to engage              
with the appointed protein. 
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Table 1.1: Reproduced from “Rationalizing tight ligand binding through cooperative          
interaction networks. Bernd Kuhn, Julian E. Fuchs, Michael Reutlinger, Martin Stahl, and            
Neil R. Taylor. J. Chem. Inf. Model. 2011, 51, 3180–3198. dx.doi.org/10.1021/ci200319e”           
[17] 
 
Of the favourable interactions shown in Table 1.1, the most frequent non-covalent            
interactions occurring between a ligand and a protein are hydrophobic interactions, hydrogen            
bonds (standard or weak), π-stacking and salt-bridge interactions (Figure 1.3). 
 

 
 
Figure 1.3: Frequency distribution of interactions observed in protein–ligands extracted from           
the PDB. Reproduced from Ferreira de Freitas, R. & Schapira, M. A systematic analysis of               
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atomic protein–ligand interactions in the PDB. Med. Chem. Commun. 8, 1970–1981 (2017)            
[18] 
Hydrogen bonds will be discussed more extensively in paragraph 1.2.1.1. Apart from oxygen             
and nitrogen of the backbone, aminoacids with hydrogen donors or acceptors in the side              
chain (Asparagine, Glutamine, Serine, Threonine, Tyrosine and weakly Cysteine) can make           
hydrogen bonds. Salt-bridge are charge-reinforced hydrogen bonds that occur between a           
positively charged nitrogen and a negatively charged oxygen [18] with a median distance of              
2.79 Å [19]. Negatively (Aspartate and Glutamate) and positively (Arginine, Lysine, Histidine)            
charged aminoacids can make salt-bridges with the respective opposite charges present in            
the ligand.  
Hydrophobic interactions can occur between aliphatic carbons, between aliphatic and          
aromatic carbons and between carbon and sulphur atoms with distances between 3.7 and             
4.4 Å [19]. Aminoacids with hydrophobic side chains (Alanine, Leucine, Isoleucine,           
Methionine, Proline, Valine, Phenylalanine and Tryptophan) and carbon atoms in the           
backbone are involved in this type of interactions. π-stacking occurs between aromatic rings             
and can be considered a special case of hydrophobic interaction. Three types of geometries              
are possible (face-to-face, edge-to-face and parallel displaced) and distances can range           
from 3.4 to 3.8 Å [19]. Phenylalanine, Tyrosine, Tryptophan and Histidine can make this              
interaction with aromatic rings in the ligand. 
The energetic yield that ligands can extract from the protein surface is unevenly distributed.              
Some residues (or interaction points), also called “binding hotspots”, are particularly           
important in drug design because they contribute the most to the free energy of binding [20].                
In fact, in some cases, a small change in one substituent interacting in these areas can                
provide major differences in activity called “activity cliffs” [21]. 
The main interactions can be simplified to 6 pharmacophoric features: Hydrogen-Bond           
Donor (HBD), Hydrogen-Bond Acceptor (HBA), Anionic, Cationic, Hydrophobic and         
Aromatic. The binding site can be represented by a 3D ensemble of these features, or a                
“pharmacophore model” that should emphasize the binding hot spots. A pharmacophore can            
also be obtained from ligand-based methods, and the matching of the corresponding            
features in the two models implies an excellent understanding of the interaction properties of              
the target [22]. 
 

1.2.1.1 A Focus On Hydrogen Bonds 
 
Hydrogen Bonds are the most important polar interactions involved in protein-ligand           
molecular recognition. They follow strict geometric rules with the distance between the            
hydrogen bond donor and acceptor in the range of 2.5 and 3.5 Å and an angle very close to                   
linearity.  
They are particularly important hotspots and can contribute to the binding energy up to 1.8               
kcal/mol for one hydrogen bond [23], but there is a huge variability that depends on the                
environment around the hydrogen bond. In particular, it has been calculated that in             
hydrophobic environments, which is usual in a druggable cavity [24], the contribution to the              
free energy of binding is 1.2 kcal/mol more than in other environments [25]. 
 
It has been found that hydrogen bonds are especially important for structural stability of the               
complex, with water-shielded hydrogen bonds acting as kinetic traps [26], slowing down the             
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release of the ligand (koff) from the complex. Strong hydrogen bonds and clusters of              
hydrogen bonds are usually robust anchors for the ligands [27]. For example, the conserved              
Asparagine in most bromodomains is making an important anchoring hydrogen bond inside            
the cavity. For these reasons, it is common to use hydrogen bonds as reference points (or                
pharmacophoric restraints) in VS/SBDD studies. 
Hydrogen bonds can also occur between the ligand and water molecules present in the              
cavity and this is particularly important when structural waters play a major role. 
 

1.2.1.2  The Role Of Structural Waters 
 
Structural waters are, by definition, water molecules that have an important role in the              
stabilization of the tridimensional structure of proteins. Those waters are frequently found in             
crystal structures of proteins and can be difficult to displace by ligands. They can also play a                 
role in the recognition of substrates and ligands [28].  
A single water molecule can make up to 4 hydrogen bonds with other molecules, 2 as a                 
hydrogen donor (through the hydrogens) and 2 as a hydrogen acceptor (through the lone              
pairs of the oxygen). This number of interactions is found in the structure of ice. In bulk                 
water, the average number of hydrogen bonds per water molecule is lower than the              
theoretical maximum (between 2 and 4 depending on the experimental technique [29,30])            
because water molecules can interact dynamically in different ways.  
When interacting with a solute, they have to rearrange and this can cause an increase or                
loss of free energy. The role of water in solution is of major importance for the                
thermodynamics of protein-ligand binding. This is usually called the “solvation effect”. The            
hydrophobic effect is the most fundamental solvation effect and can be captured with a              
statistical approach (i.e. 25 cal/Å2 for apolar surfaces)[31], but aqueous solvation causes            
many more effects that are difficult to predict. For example, Klebe et al. discovered that               
waters present in the first layer of solvation of ligand-protein complexes can have a role in                
the energy of binding [32]. Displacing water molecules that occupy unfavourable positions            
(colloquially referred to as “unhappy waters”) can yield significant binding free energy, but             
predicting this effect is not easy [33]. 
 
In a study it has been discovered that structural waters can create networks of different               
polygon shapes [34], in the same way they do in solution. The interactions that they make in                 
these polygons can affect the free energy of the water molecules and can determine the               
structural stability of networks of conserved waters in proteins. Restrained water molecules            
can behave like ice molecules and make highly favourable interactions [35]. The breaking of              
this interaction by a ligand can thus create a loss of enthalpy that is not compensated by the                  
increase of entropy for the liberation of water molecules in the bulk. For this reason, the                
interaction with the ligand is not favoured and only ligands that do not disrupt this perfect                
network are accepted, like hydrophobic ligands.  
 
In section 1.4.1 I will discuss the specific case of structural water molecules in BRD4 and                
how they affect ligand binding.  
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1.2.2 Ligand Architecture 
 
As explained above, not all the interactions that a protein can make with a given ligand have                 
the same importance. Some interactions drive the binding because they contribute           
disproportionately to the binding free energy. Without these key interactions, it is not             
possible to form tight protein-ligand complexes. For this reason, when searching for new             
ligands, it is imperative to satisfy these key interactions. Then, the ligand must branch out to                
form secondary interactions that improve overall complementarity and binding free energy.           
Optimising these interactions is important for potency and selectivity of the ligand. The             
“ligand architecture”, understood as a molecular framework that enables the positioning of            
interacting atoms in the correct position to form optimal interactions with the protein, plays a               
major role in ligand optimization. 
On one hand, the size and shape of the ligand should be adequate to fit the cavity, but on                   
the other hand, the spatial distribution of the different interactions is as important as the               
interactions themselves. The most active compound should both have adequate shape and            
match precisely the geometric arrangement of features in the cavity (Figure 1.4 A). A ligand               
with perfect shape but that does not match the features of the protein (Figure 1.4 B) is as                  
inactive as a ligand with wrong shape (Figure 1.4 D). The shape a ligand must have does                 
not have to be unique for a specific cavity but different options are usually possible if the                 
feature arrangement is maintained (Figure 1.4 C). 
 

 
Figure 1.4: Importance of scaffolds in molecular recognition. A) Perfect match B) Ligand             
shape fits perfectly in the cavity but the spatial distribution of the features doesn’t match the                
features in the cavity. C) Scaffold hopping: even though the scaffold is not a perfect match, it                 
still fits the cavity and provides an adequate spatial distribution of the features that can               
match the ones of the cavity. D) complete mismatch of features and shape doesn’t fit in the                 
cavity. 
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In drug discovery the shape of the ligand and the position of the features is largely                
dominated by its scaffold. This is the “core structure” of the ligand that serves as a skeleton                 
from where the substituents that are making the interactions are “hanging”. 
 
Scaffolds are extremely important in drug discovery. They largely dictate the synthetic            
procedures and the type of structural modifications that can be introduced with relative ease.              
This has a major impact on the investigation of Structure-Activity Relationships (SAR), i.e.             
the effect of structural changes on the activity. In turn, it also affects the possibility of                
obtaining a New Chemical Entity (NCE) that belongs to a novel “chemotype”. Chemical             
novelty is the basis for intellectual property in the actual pharmaceutical regulation. Without a              
solid intellectual property position, usually in the form of a patent, it is not possible to fund                 
the clinical studies that lead to the market. Specifically, pharmaceutical patents describe a             
Markush formula that defines the essential scaffold and R-groups needed for activity.            
Furthermore, the scaffold also dominates in vivo off-target effects, and a change of scaffold              
(or re-using a known scaffold for a different target) may be necessary to attain adequate               
ADMET properties. 
 
The formal definition of scaffold in computational drug design was given by Bemis and              
Murcko (BM scaffolds) 20 years ago [36]. It consists in the removal of all substituents until                
only ring systems and frameworks (rings connected by a linker) are obtained (Figure 1.5).              
The concept of BM scaffold has been further extended to generate hierarchies of scaffolds              
[37]. 

 
Figure 1.5: BM scaffolds. Adaptation from Bemis, G. W.; Murcko, M. A. The Properties of                       
Known Drugs. 1. Molecular Frameworks. J. Med. Chem. 1996, 39, 2887−2893. [36] 
 

24 



If a ligand for a target is already known, a change in the scaffold while maintaining the                 
correct spatial distribution of features (Figure 1.4 C) or “Scaffold Hopping” can be beneficial              
for many reasons like facilitate the synthesis, simplify a complex natural product, improve             
some pharmacokinetics properties (e.g. metabolism) of active molecules, increase selectivity          
or circumvent pre-existing intellectual property [38]. 
From an analysis in 2014 [39], it was detected that, from all the drugs in the market until                  
2013, the number of unique framework and ring systems were only 1197 and 351,              
respectively. Considering that the number of carbon-based ring systems up to 14 atoms has              
been estimated to be 916,130 [40], it is clear that there are still plenty of possibilities for                 
scaffold exploration and scaffold hopping. 
 

1.2.3. Protein Flexibility  
 
Protein flexibility also plays an important role in the mechanisms of molecular recognition.             
Proteins are not static bodies but rather dynamic, constantly rearranging their structure in             
response to their local environment and to exert their intrinsic functions [41,42].  
The old model of Lock and Key (where a rigid cavity matches a rigid ligand) has been                 
already overcome by two other models (Figure 1.6): conformational selection and induced fit             
[43,44]. 
In conformational selection, it is hypothesized that the ligand preferably binds one conformer             
from an ensemble, stabilizing said conformation and shifting the equilibrium of the ensemble.             
In induced fit, the cavity undergoes a reorganization and opening determined by the arrival              
of the ligand so that binding can occur. There is still controversy on which is the correct                 
model but it is mostly accepted that it is in fact a combination of both mechanisms. 

 
Figure 1.6: Types of models of molecular recognition. A) Lock & Key B) Conformational              
selection: there is an equilibrium between different conformations of the protein, the ligand             
selects the one that matches, shifting the equilibrium towards that conformations. C) Induced             
fit: the ligand adapts the cavity conformation upon arrival/union. 
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Programs for cavity detection or for binding assessment (like docking programs) that            
consider the protein rigid can often incur in errors due to this simplification. Methods that               
take into account protein flexibility (e.g. molecular dynamics) are more accurate but usually             
more computationally expensive. Nonetheless, a proper exploration of the protein flexibility           
should be considered mandatory before starting any drug discovery project. This can help             
assess the risk of considering the protein as a rigid body, and open other options, for                
example using an ensemble of structures taken from different crystal structures or from             
snapshots of a molecular dynamics simulation [45]. 
 
But if protein flexibility poses difficulties for structure-based drug design, it also brings about              
substantial opportunities. When dealing with proteins that lack a suitably druggable binding            
site, conformational changes may open cavities that remain hidden in the basal            
(experimentally observed) structure. These hidden cavities, called “cryptic pockets'', can bind           
ligands and modulate the activity of the protein. Several examples are known [46,47]. 
 
Proteins may contain, apart from the main functional binding site, additional or allosteric             
binding sites. These sites are involved in other important functions of the protein such as               
signaling in cellular pathways, auto-regulation, protein-protein interactions and complex         
formation [48,49]. A binding event in the allosteric site affects the activity on the main (or                
another) site through a conformational change. Targeting allosteric binding site can expand            
the “druggable” genome in case of proteins previously considered undruggable [50].           
Particularly interesting is the case of hidden (cryptic) allosteric binding sites, as they may              
enable modulation of difficult targets whose main catalytic site is not druggable and they lack               
any visible allosteric site [51]. 
This type of cavities cannot be easily detected both experimentally and computationally.            
Fragment screening (section 1.3.3.1) can help identify these pockets. Computational          
methods such as Molecular dynamics might fail to explore the conformational landscape and             
more specialized techniques are needed [47]. One technique that has become useful in this              
problem is Mixed-solvent molecular dynamics (section 3.3.1).  
 

1.3 Finding Binders 
 

1.3.1 High-throughput Screening 
 
With the genomic revolution in the 1990s, there was an acceleration on the discovery of               
novel targets and new diseases. The rational drug design approach that was used until then,               
where drugs were created starting from natural products, could not work for targets without a               
known structure or whose natural ligands are unknown [52]. At that time high-throughput             
screening (HTS) started to increase its application, helped also by the advent of             
combinatorial chemistry and faster assay technologies. The focus was on screening larger            
and larger libraries as fast as possible, with the promise of obtaining NCEs in a really short                 
time. But the expectations were frustrated when it was realized that it was very difficult, if not                 
impossible, to discover a ready-to-use drug directly from HTS. Instead, HTS hits also             
needed long cycles of drug discovery and development [52,53]. It was also noticed that the               
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success rates of the screening were different according to the target class with no hits at all                 
for some targets, considering this an evidence for “undruggability” of the whole class. Drug              
discovery practitioners started to consider the idea that these results were instead a             
consequence of the library design and that maybe the target was not undruggable but the               
library lacked the right compounds[52]. Then, the focus shifted on more properly designed             
libraries with higher diversity of compounds to increase the probability to find the correct one               
and increase the success rate. However, diversity should be balanced with other factors, like              
novelty, intellectual property potential, synthetic vectors, price and target focus [53].           
Combinatorial chemistry relies on a few reactions and, even though they can produce large              
numbers of compounds, their diversity is limited [53]. Diversity-oriented synthesis approach           
can be used, but an upfront cost for the synthesis should be considered [54]. 
In spite of these limitations, nowadays high-throughput screening (HTS) is still the gold             
standard in pharmaceutical industry to find new binders.[55] The automatization of HTS by             
means of robots has led to the possibility to screen more than 100.000 compounds per day                
(ultra-high-throughput screening, uHTS) [56]. Big pharma companies can screen in-house          
libraries of millions compounds in a few days. Nonetheless, increasing the number of             
compounds present in the libraries means increasing costs for purchase, storage and            
screening. For this reason, the size of a library normally wouldn’t exceed 3 million              
compounds [53], and only few organizations, apart from “Big pharma” companies, can afford             
it. [57] 
 
To solve these issues, two options are available:  

- “Going larger” by expanding the chemical space. DNA-encoded libraries are one           
possibility.[58] But navigation of virtual screening collections by computational means          
offers a more systematic approach (section 1.3.2) 

- “Going smaller” by using Fragment Screening and Fragment-based Drug Design,          
where computation also plays a prominent role (section 1.3.3) 

 

1.3.2 Chemical Space Navigation And Virtual Screening 
 
Libraries from pharma companies are not usually accessible by outside scientists. For this             
reason, many chemical vendors offer selected libraries of purchasable compounds for           
screening [57]. However, the number of molecules included in these libraries rarely is more              
than 2 million compounds. Even combining them in databases of commercially-available           
compounds like ZINC [59] the maximum number achieved for unique readily available            
purchasable compounds is about 17 million (in March 2017[57]).  
A seminal paper from Bohacek estimated that the size of the Chemical Space (the set of all                 
possible enumerated compounds according to some property rules) of compounds with           
drug-like features is 1060 [60]. A more recent paper estimates that it can be much less,                
around 1033 [61]. In any case, it is an unmanageable number of compounds, more than the                
stars in the Universe. 
Even though the screening libraries contain in the region of 106 compounds, thus covering              
an incredibly small part of the drug-like chemical space, the intention is that they should               
maximise coverage, with the inclusion of diverse compounds to represent less-explored           
areas of chemical space. The hope is that these molecules can make enough suboptimal              
interactions that, as a whole, can still display good affinity, and this initial hit, even if                
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imperfect, can be optimized in subsequent phases of the drug development process. But a              
good outcome is not always achievable if the starting molecule is not the most appropriate.               
Moreover, for targets deemed undruggable the compounds available in the libraries could            
not be good enough to obtain hits. For these reasons, it is important to expand the                
accessible chemical space to discover unexplored areas. 
The bottom-up systematic virtual enumeration of all the compounds was initiated by            
Reymond’s group [62] using a topology-based method (unlike the reaction-based method           
used by combinatorial libraries until then), but the exponential combinatorial explosion of            
new compounds for each heavy atom added forced them to stop enumerating at 17 heavy               
atoms [62d]. In order to enumerate compounds with increased numbers of heavy atoms             
(more “drug-like”), the recent trends have shifted again to a reaction-based focus, virtually             
assembling compounds from commercial building blocks using a set of trusted reactions.            
Therefore, these “virtual libraries” contain compounds with “high probability of being           
synthesized”, but that don’t physically exist and they will be only synthesized when they are               
purchased [63,64]. The most comprehensive case, which is Merck MASSIV library, contains            
1020 molecules, that is still far from the estimated “drug-like chemical space”. This can be               
due to prediction limitations or to a lack of new reaction rules. However, this is still a                 
proprietary database and it is not available to everyone. The most comprehensive available             
library is ENAMINE REAL with 1.36x109 enumerated compounds and ENAMINE REAL           
SPACE with 15.5x109 virtually synthesizable compounds.[65] Even though this library can           
theoretically be entirely purchased, physically screening this enormous number of molecules           
is a Herculean task that is not profitable. Besides, it is supposed that only a small                
percentage of the molecules contained in these libraries would be active on the target of               
study. For this reason, computational methods can be applied to filter out inactive             
compounds and reduce the number of molecules to eventually test experimentally. This            
option is especially important for “possible synthesizable compounds”, to avoid a costly and             
time-consuming synthesis of inactive molecules [66].  
In this context, a very important computational technique is Virtual Screening (VS). It             
consists in predicting the binding and affinity of molecules by means of computational tools,              
like a machine learning classifier or a docking program. Standard VS methods            
(docking-based) can be applied to the scale of 109 [67,68], but with larger collections, these               
methods face other limitations like the calculation time, disk space or bandwidth, that             
depends on the capability of the research lab and is impractical even for supercomputing              
centres. Adapted VS protocols could be introduced in these cases. This will be further              
discussed in the “Docking” section (3.2). 
 

1.3.3 Fragment-based Drug Discovery 
 
The other solution to the problem of increasing chemical diversity without having to deal with               
combinatorial explosion is to decrease the molecular size of the compounds in the libraries.              
The idea that it is possible to partition the whole energy of binding into some discrete                
contribution given by structural building blocks was stated in 1981 by Jencks [69]. In a               
seminal paper of Hann et al [16] it was demonstrated that as molecular complexity              
increases, the chances to see a binding event of a specific type decrease. Smaller              
compounds, called “fragments”, contain a limited number of interaction points and less            
rotatable bonds which make them suitable for more efficient interactions leading to perfect             
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match in subpockets or smaller parts of the cavity. When combined through a linking or               
merging approach, this would lead to improved affinity and selectivity [70]. On the contrary,              
bigger molecules such as standard HTS hits contain interactions that are suboptimal due to              
the increased molecular complexity that increases the probability of mismatch [16]. 
According to the Rule-of-Three (Ro3) [71], inspired by Lipinski’s Rule of Five (Ro5) for                           
drug-like molecules [7], it is considered that a fragment is a molecule with molecular weight                             
between 150 and 300 Da, a number of hydrogen bond donors ≤3, a number of hydrogen                               
bond acceptors ≤3 and ClogP ≤3.  
 

1.3.3.1  Fragment Screening 
 
The use of fragments in a screening campaign can offer several advantages over a standard               
HTS. Of note, fragments can cover a bigger part of the corresponding chemical space. If we                
consider GDB-17 [62d] as the closer equivalent of the fragment chemical space, we can              
conclude that the typical fragment screening collection (ca. 1000 molecules) represents only            
a tiny fraction of the total number of theoretical molecules or even graphs (Table 1.2). Yet,                
we can also observe that the chemical space grows exponentially with the number of atoms.               
Thus, screening 1000-fold more compounds (106), as done in HTS, does not even start to                        
compensate the gigantic increase in size of the drug-like chemical space (≤35 heavy atoms)                           
relative to the fragment space (≤22 heavy atoms).  
 

 
 
Table 1.2: Statistics of GDB17. Reproduced from [62d]. 
 
A second factor in favour of fragments is their promiscuity, resulting in hit rates of 1% to 10%                  
[72] meaning that the method can identify meaningful starting points for almost any target. In               
fact, fragment screening can help identify allosteric or cryptic pockets in difficult targets,             
previously considered undruggable or help develop small inhibitors for PPI. Indeed, the            
average protein presents 2.2 fragment binding sites. [73] 
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But, obviously, fragment hits should be seen as probes highlighting privileged areas of             
chemical space, from where a deeper exploration can be applied. Indeed, since a fragment              
can only satisfy a limited number of interactions with the protein, the binding affinities are in                
the high micromolar or millimolar range [74]. More sensitive techniques are thus needed to              
detect the binding of fragments. In 1996 Abbott Laboratories were the first to use biophysical               
techniques for this purpose with their SAR-by-NMR [75], where it was possible to identify the               
weak binding of fragments to a target with nuclear magnetic resonance. Nowadays the             
methods of choice for Fragment Screening are biophysical techniques like DSF, SPR,            
FRET, ITC, NMR and XRAY. They display different sensitivity and throughput levels. For this              
reason, often a cascade of screening assays is considered. In a primary assay for example               
DSF, FRET and SPR have higher throughput, while ITC and NMR can be used as               
secondary assays to confirm the binding. Generally, X-ray is the last but essential step of the                
cascade. It gives very valuable information on the binding mode of the fragment. 
 
Another important consideration is the efficiency of binding. The average atomic contribution 
to the binding free energy, called Ligand Efficiency (LE) is defined as follows: 
 
∆Gbind =−RTlnKd 

 
LE =∆Gbind/Nnon-hydrogen atoms 

 
It has been observed that LE has a maximum of -1.5kcal/mol,[76] and tends to decrease as                
the size of the ligand increases.[77] For this reason, fragment hits are more efficient than               
HTS hits. This metric is used to compare the fragment hits, but also to guide the fragment                 
evolution process, with the aim that fragment-derived drugs are smaller than the HTS             
counterparts.  
 
There are also some limitations of FBDD. First, it is not possible to apply the method when                 
the target is not known (for example in cellular assays)[54]. Second, structural data are              
mandatory for the fragment hits because the following “fragment-to-lead” process cannot           
occur without knowing how the fragment binds. Third, combining or optimizing these            
fragment hits into leads can be cumbersome in some cases and computational tools are              
needed. 
 

1.3.3.2 Computational Approaches For Fragment-to-lead  
 
If various fragments are bound to the same cavity but in different subpockets, or if a known                 
inhibitor binds differently, linking or merging approaches, where parts of various molecules            
are joined together can be an efficient way of jumping in potency [78]. The main limitation is                 
how to combine these ligands preserving the optimal orientation of each component. A             
different strategy, known as fragment growing, consists of sequential additions of moieties to             
the initial fragment to capture additional interactions. This “Fragment-to-Lead (F2L)”          
approach must be strictly supervised by measuring LE, which should not decrease too much              
during growing. 
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F2L can be quite time consuming for medicinal chemists if no other tool can come to help.                 
For this reason, in the last 15 years, several groups have developed computational tools              
especially designed for fragment growing and optimization and it has increased the number             
of fragment-to-lead applications [79].  
 
Considering that, we have developed a computational platform that aims to exploit the             
available chemical space around a particular fragment hit, exploring non-obvious scaffold           
hops that may confer advantages in terms of potency, novelty, synthetic feasibility or             
accessible growth vectors. In order to facilitate experimental follow up, we only navigate             
commercial chemical space either in stock (from ZINC database [59]) or on demand (e.g.              
Enamine Real or Real Space[65]). In section 4.1.1 I will present the development and              
application of this computational platform. 
 
Another option for F2L is to create new chemical space. De novo drug design methods are a                 
useful computational tool in this endeavour. Born some 30 years ago, these programs             
generate novel molecules from an initial ligand whose binding mode is known. Generally, the              
binding mode of the fragment is determined experimentally, but when that is not the case,               
docking programs or molecular dynamics simulations [80] can help place the fragment in the              
cavity. The target structure is used as a template to build the molecules directly inside the                
cavity, calculating the affinity on the fly. Scoring functions can be force field [81], empirical               
[82], or knowledge-based [83]. Sometimes, ligand-based restraints can also be applied. In            
particular, if active ligands are known, they can be used to generate 2D [84] or 3D                
pharmacophores [85] that are compared to the novel molecules to maintain some important             
features.  
 
Two main classes of de novo programs can be considered, depending on how they grow the                
initial molecule: Atom-based or Fragment-based. The first programs of DND were using            
mainly the atom-by-atom approach, but even though it has advantages such as the             
theoretically infinite possible molecules that can be generated and the fine-tuning due to the              
small step size [86], the big disadvantages are that the chemical space increases             
enormously and that many of the solutions are impossible to synthesize. The last             
atom-based program was published in 1996. It was clear that different building blocks had to               
be used. For this reason, all recent programs are Fragment-based. Fragments can include             
anything, from atoms to functional groups or rings. The fragments can be generated by              
breaking down known drugs [87] or by using commercial building blocks [85]. The cleavage              
of the molecules can be done at single bond [88] or with retrosynthetic rules [89]. Sometimes                
generated building blocks can contain chemical handles useful for the following           
recombinations. Likewise, different ways of adding portions are possible. The most           
straightforward is to join fragments by single bond, but some additional rules on how to join                
them are needed. For example, in FOG [90] and its fragment-focused successor            
OpenGrowth[91] the frequency of connections between fragments extracted by a database           
of known drugs are used to combine the building blocks. If the building blocks are generated                
by retrosynthetic cleavage, the same rules can be used to combine them [92]. Another              
option is “in silico synthesis” where a set of rules mimicking real reactions obtained from               
literature are used to join functionalized building blocks, usually from commercial collections            
[84,93]. This is particularly interesting, because in this way not only it is ensured that the                
resulting molecules are synthetically accessible, but also a synthetic route can be described.  
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Due to the combinatorial explosion problem, it is impossible to do an exhaustive search.              
Heuristic algorithms are usually a good compromise between optimal solutions and fast            
runtime [94]. Depth-first search (DFS) strategy retains only one of the possible solutions at              
each iteration, reducing the search space but it is not expected to be the most optimal                
solution. A breadth-first search (BFS) strategy, on the other hand, explores systematically all             
the possible solutions. A possible application is to first use DFS to reduce the search space                
and then apply BFS to the best solutions [83]. Monte Carlo search (random sampling) can               
be used [81], also in addition to a Metropolis criterion [95]. But, probably the most used and                 
useful algorithms are the evolutionary ones [87, 92, 93, 96, 97]. Candidate compounds are              
generated in a first run. Those compounds are then evaluated and the best ones are               
considered parents of a next generation of compounds. Small changes to a parent molecule              
(“mutations”) or recombination between parents (“crossover”) are creating children         
molecules, which in turns will be selected to be parents in another iteration. The process is                
repeated for a number of iterations or until a condition is reached [98]. A problem of                
stochastic algorithms is that two runs can give different solutions, with each solution not              
being the most optimal to the problem of interest. 
 
To help further reduce the search space, secondary constraints can be considered.            
Properties like the Lipinski rules, aqueous solubility, ADMET properties, or synthetic           
accessibility influence the clinical development and should be calculated for the candidate            
molecules either after the runs, or even better, during the search. Scoring considering both              
the primary and secondary constraints can be included with multi-objective optimization           
(MOO) tools [97,99] 
In particular, one of the most important properties that has to be considered is synthetic               
accessibility. Novel molecules that cannot be synthesized are of no use. It is possible to               
assess synthetic accessibility of the candidate molecules after the runs according to different             
scores (for example: SYLVIA [100]). However, the most useful way is to consider synthetic              
accessibility during the building runs, to help guide the search. Programs can consider             
synthetic accessibility in an implicit or explicit way. The implicit way uses knowledge from              
drugs, like the frequency of fragment connections [90], to ensure that the resulting molecules              
are synthesizable. Another way to implicitly consider synthesizability that is gaining ground in             
the last years is the use of Deep Neural Network. If the model is trained on known drugs and                   
fine-tuned to compounds active to the target of interest, the generated molecules not only              
are active to the target but also synthesizable. The model implicitly learns the synthetic rules               
from the training set and there is no need to explicitly provide them. [101] 
 
The explicit way makes use of rules to add the building blocks. TOPAS uses the RECAP                
rules to retrosynthetically break molecules and uses the same rules to join them [87]. Other               
methods use “in silico synthesis” to replicate the synthesis process by adding building blocks              
with real reaction rules [84,93]. Programs that perform virtual synthetic reactions [102] as a              
growing strategy include Autocouple [103], DOTS [104], PINGUI [105] and NAOMInext           
[106]. Those programs not only suggest new molecules to synthesize based on binding             
prediction, but also the possible synthetic reactions that can be performed to obtain those              
molecules.  
 
An explanation of NAOMInext program is in section 3.6. An application of this program to               
grow a fragment hit into a potent ligand is presented in section 4.1.3. 
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1.4. Application To Therapeutic Targets 
 

1.4.1. BRD4  
 
In 1992 brahma protein was identified in Drosophila [107]. From then, more and more              
analogue proteins began to appear in yeast, mice and human [108, 109], and from the name                
of this first protein, the family of bromodomains was identified. They were first discovered as               
an independent domain in HAT (Histone Acetyl Transferase) proteins like P/CAF [110] that             
are important proteins in transferring acetyl-coA to lysines in Histone Tails. Nonetheless            
bromodomains don’t catalyze this reaction. In 1999 it was recognized that bromodomains            
are acetyl lysine “readers”[111]: they bind selectively to acetyl-lysine and can distinguish            
from not acetylated lysine [110]. They also bind acetylated small molecules like            
acetyl-histamine [110].  
There are 61 known bromodomains present in 46 proteins in the human genome that can be                
grouped in 8 families (Figure 1.8) based on their structure similarity [112, 113] .  
 
 

 
Figure 1.8: Phylogenetic tree of human bromodomains. Reproduced from [113]  
 
 
Bromodomains are important in epigenetics because they are selective readers of the            
histone code. In fact, in a study [112] it was demonstrated that each bromodomain              
recognizes (more or less selectively depending on the bromodomain) specific modification in            
Histone tails. These tails are lysine-rich and can show different patterns of acetylation (and              
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other modifications like methylation, phosphorylations, etc…). Bromodomains anchor the         
acetyllysine of the histones tails but the flanking amino acids present in the sequence of the                
tails are what is recognized selectively by the different bromodomains. 
Despite the high difference in sequence, the 3D structure is really conserved. It consists of 4                
alpha-helices A, B, C, Z, connected by 2 loops ZA and BC (Figure 1.9).  
 

 
Figure 1.9: Three-dimensional structure of bromodomains. Adapted from [113] 

 
 
The alpha-helices are more conserved across bromodomains than the loops. The histone            
peptides are laying in a cavity formed by the 2 loops and the lesser conservation in these                 
points can explain the selectivity for different histone peptides in different bromodomains. 
Almost all bromodomains contain a conserved asparagine in the BC loop that is in charge of                
anchoring the carbonyl of the acetyl lysine. A network of waters at the bottom of the cavity is                  
well-conserved in all bromodomains. [114] 
 
In 2010 the first potent ligands for bromodomains were identified (JQ1 [115], IBET [116]), in               
particular they were selective binders of the BET family. From that moment an increased              
number of bromodomain binding molecules appeared every year (reviews [113, 117, 118]),            
motivated by the growing discovery of bromodomain-disease associations and the          
interesting challenge of targeting epigenetics mechanisms. In the most recent years the            
efforts were committed to finding ligands selective for BD1 over BD2 and viceversa, and for               
other families of bromodomains over BET family. 
 
Bromodomain-containing protein 4 (BRD4) is part of the BET family of bromodomains. BRD4             
has a role in the regulation of genes and it is dysregulated in cancer [119]. It contains 2                  
bromodomains (BD1 and BD2) that are less similar. In the first bromodomain, ASN140 is the               
anchoring aminoacid for acetyl lysine and 7 structural waters are present at the bottom of the                
cavity.  
 
After all the attempts to target BRD4 over the years, finding new chemotypes for BRD4(1)               
can be challenging, but the high number of possibilities in chemical space suggest that there               
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can be many opportunities for scaffolds neglected in previous studies. As such, this system              
represents an ideal test bed for novel computational methods. In section 4.1.1 I will present               
the application of a computational pipeline to mine chemical space and discover new BRD4              
ligands.  
 
All bromodomains contain a conserved network of structural water molecules at the bottom             
of the acetyllysine-binding cavity. Superimposing all the crystal structures of BRD4(1)           
present in the PDB, it is possible to recognize at least 7 water molecules in this site that are                   
conserved. Ligands of BRD4 contain a methyl or similar substituent in contact with these              
water molecules, mimicking the methyl part of the acetyl lysine, with few exceptions [120].              
Even though some efforts in SAR analysis have been made to study other substituents              
[121], none improves the activity. It is not clear why hydrophobic substituents are preferred              
in a polar environment. In order to understand this behaviour, we have carried out multiple               
computational studies and designed a series of substituents to the novel scaffold discovered             
for BRD4(1). These will be presented in section 4.1.2.  
 

1.4.2 TREX2 
 
During the life of a cell, DNA replication, repair and recombination are essential tasks.              
Several proteins participate in the process and, among those, 3’-5’-exonuclease have an            
important role in 3’-excision of impaired or damaged nucleotides. The 3’ terminus is then              
ready for next steps of DNA metabolism [122, 123]. 3’-5’ exonuclease activity has been              
recognized in several proteins. Human polymerases γ, δ and ε have an intrinsic proofreading              
3’-5’ exonuclease activity that remove wrong nucleotides during DNA synthesis [124]. p53            
also contains 3’-5’-exonuclease activity. Independent 3’-5’ exonucleases have also been          
found, in eukaryotic cells some examples are Mre11, WRN, RAD1, RAD9, APE1 and TREX1              
and TREX2. They have a role of support for polymerases that do not have intrinsic               
proofreading activity and it was proved that they enhance accuracy of polymerases in             
error-prone conditions [125]. However, the diversity of proteins suggest that they may have             
more specific functions in the cells and they can help in different types of external genotoxic                
stress [124]. 
 
The major non-processive, autonomous 3’-5’ exonucleases in humans are TREX1 and           
TREX2 proteins. They are homologous proteins pertaining to the DnaQ-like family or DEDDh             
family (from the type of aminoacids in the catalytic site), that account also proteins in               
bacteria and yeast (Figure 1.10) [126]. 
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Figure 1.10: DEDDh exonuclease family. TREX2 belongs to this family of proteins with a              
conserved catalytic site. Reproduced from [126] 
 
 
In this family the catalytic site contains 4 conserved anionic residues (aspartate and             
glutamate) that coordinate 2 metal ions (Mg2+) (Figure 1.11). In the TREX proteins a              
histidine at the catalytic site deprotonates a water molecule, creating the nucleophile that will              
attack the phosphodiester bond, provoking the hydrolysis  [127, 128]. 
 

   
Figure 1.11: The catalytic site of TREX2. Adapted from [126] 
 
 
TREX1 and TREX2 only share 40% of the sequence even though they have a similar               
structure that they share also with bacterial exonucleases. This suggests a similar evolution             
in the 3’-5’ exonuclease function but a different specific cellular function for the 2 proteins               
[128]. The preferred substrate of both is DNA over RNA, and it can be single-stranded DNA                
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(ssDNA) or double stranded DNA (dsDNA). Both of the proteins are homodimers, and the              
dimerization positions the 2 DNA binding sites on the same face of the dimer but in opposite                 
edges [127]. 
 
In TREX2 three arginines in a mobile loop next to the catalytic site are responsible for DNA                 
binding. The dimer shows cooperation in DNA binding and catalysis between the two             
protomers [129]. Expression studies of TREX2 in tissues and cell lines show a higher              
expression in squamous epithelial tissues like the skin [130]. In particular TREX2 is             
specifically expressed in keratinocytes [130]. This suggests a specific function in skin            
homeostasis.  
Trex2 knockout mice are healthy and do not develop spontaneous tumors, but they are more               
susceptible to skin carcinogenesis with respect to wild type when they are exposed to              
carcinogenic chemicals or UVB light [130,131]. This suggests that TREX2 is involved in DNA              
repair mechanisms, degrading damaged DNA, that will affect keratinocytes apoptosis and           
activation of an inflammatory immune response to remove damaged cells, to avoid skin             
carcinogenesis [130,131,132]. This is confirmed by the discovery of polymorphisms and           
abnormal expression of TREX2 in samples of human squamous cell carcinomas [131].  
It has also been found that TREX2 is highly expressed in psoriatic skin lesions with respect                
to normal skin [133]. In murine models of psoriasis, with imiquimod or IL-23 induced              
inflammation, it has been detected that trex2 knockout mice show a significant reduction of              
psoriatic inflammation signs such as erythema or epidermal thickness [131, 132]. Also,            
decreased transcription of inflammation-related genes, like IL-23 or tumor necrosis          
factor-alpha, and inhibition of keratinocytes apoptosis were observed. All these observations           
suggest that TREX2 has a pro-inflammatory role and can be a new therapeutic target for               
psoriasis.  
Psoriasis is a chronic, noncommunicable, painful, disfiguring and disabling disease for which            
there is no cure [134]. It consists of skin lesions with a higher turnover of keratinocytes. It is                  
also associated with comorbidities and psychological disorders. Current treatments only aim           
to control symptoms and usually are lifelong. There is no complete remission of the disease               
and relapses are common. Side effects, low adherence, non-responders and loss of efficacy             
of treatments are common issues. As a result, new, better and safer treatments are needed. 
Finding a drug-like molecule that binds in the main catalytic site can be challenging, not only                
because it would have to compete with a much larger molecule (the DNA substrate), but also                
due to the magnesium ions present and the four negatively charged aminoacids, which             
would necessarily involve the development of a constitutively charged ligand [8].           
Furthermore, the active site is conserved across similar proteins, and the development of             
selective inhibitors would be very difficult.  
With our methods, ……………………………………………………………………………………. 

giving rise to the first TREX2 inhibitors ever described.           
This will be presented in section 4.2.  
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General Objectives 
 
The main objective of this work is to extend the capabilities of state-of-the-art             
computer-aided drug discovery, and to apply these tools to biological systems of            
pharmacological interest. In particular, we aim to apply and improve our understanding of the              
principles of molecular recognition, create new tools to explore chemical space and discover             
novel bioactive molecules that can create therapeutic opportunities and expand the           
druggable proteome. 
 

Specific Objectives 
 
1. Explore the fragment-size chemical space to unravel new chemical scaffolds that can be              
used as starting points for drug discovery. This can be broken down into the following               
secondary objectives: 

1.1. Develop a computational pipeline for mining the fragment chemical space           
around a selected fragment hit, delivering novel chemotypes with a very high            
probability of being active. 
1.2. Test the computational pipeline on a prospective study, discovering active           
compounds for BRD4(1) starting from a pre-existing fragment.  
1.3. Reach objective success criteria: high hit rates and scaffold novelty through            
scaffold hopping. 

 
2. Use the novel series of ligands to investigate the unusual behaviour of structural water               
molecules in BRD4(1). Secondary objectives are:  

2.1. Probe, experimentally and computationally, a hydrophobic hotspot in BRD4(1)          
lined by structural water molecules. 
2.2. Demonstrate the correlation between experimental and computational free         
energy of binding of the different compounds to the protein 
2.3. Provide a molecular explanation for the counterintuitive molecular recognition          
properties of the structural water molecules.  

 
3. Develop the most active fragment of the novel series with de novo virtual synthesis.               
Secondary objectives are: 

3.1. Apply the NAOMInext program to the BRD4(1) ligand, to increase potency            
through formation of additional protein-ligand interactions. 
3.2. Validate experimentally the predictions and learn strength and limitations of the            
method. 
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4. Rational discovery of potent inhibitors of the TREX2 protein, to investigate their             
application in psoriatic disease. This can be broken down into the following secondary             
objectives: 

4.1. Investigate TREX2 druggability    ……………………………………………………. 
 ……………………………………………………………………………... 
4.2.  Virtual screening to obtain the first binders of this novel target. 
4.3. Experimental determination of compound activities. 
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In this thesis I have used a variety of computational tools. In this section I will first provide                  
some background about these methods, then I will proceed to provide a detailed account of               
how the methods have been used to attain the specific objectives.  
 

3.1 Background – Chemoinformatics 
 
Chemoinformatics are a range of methods for efficient manipulation of chemical data in             
electronic format.[135]. They can handle large data volumes and are ideally suited to             
navigate the chemical space. Given a molecule of reference (e.g. a binder to the target of                
interest), a substructural search can rapidly identify molecules containing the query           
substructure but with different substituents or additional parts. This is particularly useful            
when one wants to navigate the chemical space around a specific scaffold (like in SAR               
analysis). When scaffold hopping is sought, other computational approaches can help,           
especially methods based on molecular similarity (Figure 3.1). The fastest and most            
common for conventional applications are fingerprint-based methods (presence or absence          
of particular substructure encoded in a linear vector).[136]In a similarity search, features of             
the molecules are annotated as bits in a vector (fingerprint). If a feature is present is coded                 
as 1, if not it’s a 0. One of the most known fingerprints is MACCS (Molecular ACCess                 
System) fingerprints [137]. Fingerprints of 2 molecules can be compared bitwise and a score              
assessing the number of matching features can be calculated (for example the Tanimoto             
similarity index). Molecules within a library with a score higher than a determined cut-off can               
be selected for further analysis. The selection of the cut-off is very important because it will                
determine if molecules are too similar to the original query (and maybe they are not adding                
any useful information to the analysis) or too different (and they do not contain the features                
of the original molecules that are important for the binding).  
Simple changes like atomic substitutions can be considered scaffold hopping but, in this             
sense, the detection of more distantly related compounds while retaining the activity is more              
meaningful, especially if the change is impossible to predict by a medicinal chemistry expert              
[38]. This is better achieved with methods that sit at the edge between chemoinformatics and               
computational chemistry, such as pharmacophore searches (molecules with similar         
pharmacophoric features are obtained),[138] shape similarity,[139] and machine learning         
methods trained on 3D descriptors.[140] Ultimately, molecular docking can also be           
considered as a reverse similarity search, since it assesses structural complementarity to a             
common template (the receptor). 
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Figure 3.1: Computational approaches for scaffold hopping. Reproduced from Recent          
Advances in Scaffold Hopping. Ye Hu, Dagmar Stumpfe, and Jürgen Bajorath. Journal of             
Medicinal Chemistry 2017 60 (4), 1238-1246. DOI: 10.1021/acs.jmedchem.6b01437 [38] 
 
 

3.2 Background – Docking  
 
Docking programs try to fit a ligand in a binding site of a target, giving it a score to quantify                    
this fitness. The majority of docking applications consider the target rigid, so the dynamics of               
binding is not considered. The structure has to be cautiously selected from experimental             
structures or from molecular dynamics snapshots according to the best solution for the             
considered problem (for example if the target has open or closed conformations). It has to be                
prepared by eliminating/maintaining water molecules and protonating at biological pH. If           
ligands in a library are given with a 2D structure, they also have to be prepared considering                 
all the possible stereoisomers, tautomers, ring conformations and protonation states of the            
3D structure. Docking programs cannot do that on-the-fly.[141] 
The specific binding site where to dock should be chosen beforehand. If a ligand is known, it                 
can be used to identify the binding site. If no information is known (for example in the case of                   
a new target or allosteric binding site), the location of a cavity can be extrapolated from                
cavity detection methods. 
There are multiple docking programs, each using specific scoring functions and search            
algorithms.[142] In this thesis I have used rDock, [143] a docking program supported in our               
group. It uses a genetic algorithm to generate poses in the binding site and an empirical                
scoring function to score protein-ligand goodness of fit. Ligands can be docked freely or can               
be guided by tethered docking (maintain some atoms fixed and explore conformations of the              
rest) or with pharmacophore restraints (an atom with a specific feature should be placed in a                
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definite position with a distance-dependent penalty if the restraint is not fulfilled).            
Pharmacophoric restraints can be derived from known ligands or from hotspots of MDmix             
(see below). The docking program generates a certain number of poses per ligands (50 is               
recommended for convergence when docking drug-like molecules), but the process can be            
accelerated using the HTVS (High-throughput virtual screening) mode, which discards          
molecules on-the-fly if they do not pass some predetermined score filters.  
 
Like all docking methods, rDock shows some limitations of accuracy that stem from the              
compromise between speed and accuracy [141]. The main limitations are due to the rigid              
body approximation (i.e. protein flexibility is not properly accounted for) and the scoring             
functions, which take a statistical approach that does not consider the effect of the local               
environment and is particular error prone for polar, ionic and metal interactions which have a               
large entropic and solvation component.  
In a virtual screening, post-filtering of wrong poses and reranking of ligands are needed to               
overcome these limitations.This is possible applying other orthogonal methods to obtain           
consensus score (Dynamic Undocking), to confirm the poses (Molecular Dynamics) or to            
calculate energy of binding more accurately (Free Energy Calculations) 
 

3.3. Background – Molecular Dynamics 
 
Classical molecular dynamics (MD) simulate motion and interactions of atoms according to            
Newton’s laws. Universal parameters for proteins and molecules, such as mass, bond,            
angles, dihedral angles, improper angles and non-bonded terms, are annotated in a            
“forcefield”. A very used forcefield is AMBER and the homologous software can be used to               
conduct a series of different simulations and analysis [144]. 
Simulations are very useful in structure-based drug design as they can reproduce real             
events in ligand-targets interactions. Since the binding of a ligand to a protein is not a static                 
event, protein and ligand flexibility is very important [145]. Even though the whole binding              
event of a ligand has been described [146,147], its routine implementation as a screening              
tool remains unfeasible due to the long simulation time. For this reason, unbiased MD to               
compute binding free energy from the observation of binding and unbinding events is rarely              
used. More common uses are observation of movements (e.g. conformational          
rearrangement upon ligand binding) and the extraction of conformational ensembles that can            
be used to compute properties, including binding free energies with end-state methods such             
as MM-PBSA.[148] It can also be used to confirm the binding pose of a ligand predicted by                 
docking. After a few nanoseconds, it is already possible to see changes in the binding pose                
(to another more stable pose with more affinity) or even the unbound event (ligand leaving               
the cavity). In those cases, the initial binding pose suggested by docking cannot be              
considered reliable.  
MD has given rise to a plethora of SBDD methods that rely on its ability to explore the                  
energetic landscape of the system and generate meaningful ensembles. Some such           
methods have been used in this thesis with different purposes and they will be described in                
the next sections. 
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3.3.1. Mixed-Solvent Molecular Dynamics 
 
Given the 3D structure of a target, it is important to determine which chemical moieties can                
form optimal interactions at particular sites. In particular, one should detect the “binding             
hotspots”, that is, regions on the protein surface where residues make the strongest             
interactions with the ligand and contribute considerably to the energy of binding [149]. In              
1985 the program GRID first considered the use of probe molecules to map the surface of                
protein [20]. In Multiple Copy Simultaneous Search (MCSS), many copies of solvent            
molecules are minimized on the protein surface, in a similar way as GRID, and density maps                
can be obtained [150]. Subsequently, with Multiple Solvent Crystal Structure (MSCS) it was             
proved experimentally that, when co-soaked in crystal structure, multiple organic solvents           
overlap in regions of biological importance [151].  
Inspired by these methods, in Mixed-Solvent Molecular Dynamics the protein is solvated in             
water and a co-solvent. Unbiased MD simulations allow the co-solvent molecules to compete             
with waters and density maps can be obtained [152]. The method, unlike the others, takes               
into account protein flexibility and water effects[153,154]. Mixed-solvent molecular dynamics          
can also give an estimate of the free energy associated with fulfilling each hotspot. This is                
possible thanks to the fast diffusion rates of very small molecules like solvents, which allow               
to observe a high number of binding-unbinding events in a relatively short MD simulation              
time range (tens to hundreds of nanoseconds). 
 
In 2014 our group developed MDMix, a software for Mixed-solvent MD and it’s been used               
successfully in a series of proteins [152,153,154]. One of the most straightforward            
applications is the creation of protein-based pharmacophore, particularly useful when no           
additional knowledge on the protein is available except its structure. Pharmacophores are            
generated from the given hotspots (which represent desired features in a ligand). The             
created pharmacophores can then be used in virtual screening and they have been applied              
with success [155]. Since the first description of the method in 2009 by Seco et al., new                 
methods and approaches have appeared [156,157] and they have been applied to a variety              
of problems. A way of detecting druggable binding sites of a protein is by identifying sites                
where hotspots cluster together [8]. Given the physics-based nature of mixed-solvent MD,            
druggability predictions based on this method are non-parametric and can be used to detect              
non-standard binding sites, such as allosteric binding sites [158,159] and protein-protein           
surfaces [160]. In proteins that were never studied before, the identification of clusters of              
hotspots provides the most robust druggability assessment. 
 
Apart from druggability assessment and protein-based pharmacophore creation [161],         
Mixed-solvent Molecular Dynamics can be used for binding energy prediction [156] and            
water displacement prediction [154,162]. In the last years, it has grown importance the             
application of Mixed-Solvent Molecular Dynamics for the detection of cryptic pockets [163].            
These are pockets that open in the presence of a ligand and it is thought that the underlying                  
mechanism of opening can be a mixture of induced fit and conformational selection [163e].              
These pockets may be too lipophilic to open spontaneously in aqueous solvation, but can              
open in the presence of apolar solvent molecules, mimicking the ligand effect.[163a] 
 
…………………………………………………………………………………………………………... 
…………………………………………………………………………………………………………... 
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…………………………………………………………………………………………………………... 
……………………………………………………………………………………………………………
………………………….. 
 

3.3.2. Dynamic Undocking 
 
Dynamic Undocking (DUck) is a special form of steered MD developed in our group [165]               
in which a key protein-ligand hydrogen bond is pulled with a certain force from an initial                
distance of 2.5Å to a final distance of 5Å where the hydrogen bond is broken. From there,                 
one determines the quasi-bound state as the point where the work has the highest value and                
defines WQB as the work necessary to take the hydrogen bond from the optimal position               
(usually around 3.0Å) to the quasi-bound state. This parameter provides an assessment of             
the structural stability of the investigated hydrogen bond. Surprisingly, it was found that WQB              
can be used as a measure to differentiate between binders and non-binders. Thus, DUck is               
used as a post-docking method that filters out a large proportion of docking false positives.               
To do so, a clear hydrogen bond donating or accepting moiety in the binding site of the                 
protein must be chosen beforehand as the anchoring point. This is usually derived from              
MDmix simulations and will be used during docking as a pharmacophoric restraint, to ensure              
that the predicted binding poses of the selected ligands fulfil the key interaction. WQB values               
above 6 kcal mol–1 have been associated with robust complexes[27] and true actives [165],              
so ligands with values around this cut-off can be progressed and ligands with very low WQB                
(below 2 kcal/mol) are indicative of unstable binding mode and can be discarded as false               
positives. 
Docking scores do not correlate with WQB so a consensus score between the 2 scores               
(docking score and DUck WQB) can help to identify highly probable true ligands. 
 

3.3.3 Free Energy Calculations  
 
The Holy Grail of computer simulations is the calculation of free energy of binding, which has                
a direct relationship with the experimentally observable binding constant:  
ΔGbind =− RTln KD 
To be useful, the prediction should be very accurate, as even a small error in the binding                 
free enegy value causes a very high error in KD owing to the exponential relationship               
between them. Even though the idea behind free energy methods was proposed almost a              
century ago [166], it was not until the 1980’s that it was applied to real molecular systems                 
[167,168]. Nowadays there is a new increased interest in the topic thanks to recent              
advances with GPUs that can speed up the calculation and have results in much shorter               
times [169, 170]. At the same time, researchers continue to develop new and more accurate               
methods [171]. 
 
Free energy is a state function, so it depends only on the final state, not the path between                  
them. For this reason it is possible to calculate the free energy of binding from a closed                 
thermodynamic cycle (Figure 3.2). 
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Figure 3.2: Thermodynamic cycles for the calculation of free energies of ligand binding.             
Adapted from [172] 
 
Even though unbiased MD cannot be used routinely to calculate free energy of binding,              
enhanced sampling methods like Steered Molecular Dynamics, Umbrella Sampling,         
Alchemical Transformations, Replica-Exchange Molecular Dynamics and Metadynamics can        
be used. [172] In Alchemical Transformation, an initial ligand is mutated through            
non-physical states into another one (or making it “disappear”) (Figure 3.3).  
 

 
Figure 3.3: Alchemical Transformations. Adapted from [172] 
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The energy of binding (relative or absolute) is then calculated considering the            
thermodynamic cycle with different formulas (FEP, MBAR, TI, etc) [173]. 
Other methods to calculate binding free energies, so called end state methods, only take into               
account the bound and unbound states. The most common methods in this category are the               
molecular mechanics generalized Born surface area (MMGBSA) and molecular mechanics          
Poisson-Boltzmann surface area (MMPBSA). They both rely on implicit continuum solvation           
models and tend to provide mixed results. [148] 
Free Energy Calculation can be especially important when you have ligands that differ only              
in a very small part, to understand the importance that that part has in the binding. This has                  
application in Structure-Activity Relationship analysis, particularly for activity cliffs [21]. The           
method can accurately predict the difference in free energy of binding and used for the               
selection of new ligands. Extensive evaluation on diverse datasets shows the potential but             
also the limitation of the method, which routinely delivers root-mean square errors in the 1.0               
to 2.0 kcal/mol range, depending on the target or specific chemical series[174]) It is thought               
that thanks to recent advances it may become possible to use Free Energy Calculations as a                
Virtual Screening tool [175] but this is far from practical yet. 
 

3.4 A Computational Pipeline to Explore Fragment       
Chemical Space 
 
Ligand selection. After collecting all the fragments co-crystalized with BRD4(1) in PDB, we             
choose fragment 1XA (PDB code 4LR6)[176]. The scaffold of this fragment is an isoxazole              
and derivatives are contained in some known binders of BRD4 [113] 
 
Protein structure selection and preparation. The PDB structure of BRD4 (PDB code            
4LR6) was prepared with MOE program [177] and set the protonation states at pH 7.0. From                
an internal study of conserved waters carried out overlapping the PDB structure of BRD4(1)              
we decided to maintain 7 water molecules in the cavity (HOH 302, 305, 311, 322, 327, 331,                 
332). The final structure was saved in the standard Tripos MOL2 format.  
 
Database preparation. We downloaded ZINC15 (version of October 2015) database [59]           
filtering by reactivity (“clean” was selected) and purchasability (“in-stock” was selected,           
meaning that only the molecules ready to be delivered are included). The database was              
downloaded as SMILES. It contained 15,662,223 molecules. Then it was divided into            
subsets based on the number of heavy atoms (HA) in order to allow a quicker search (from 4                  
to 36 HA) Molecules containing more than 36 atoms were discarded because their size is               
not optimal for a lead-like compound (number after filtering: 15,247,008 ). After            
categorization by HA, the MACCS fingerprints [137] were generated using Openbabel [178]            
(see “Similarity search, MCS and superposition”).  
 
The 3D conformations were calculated with LigPrep [179] (see “Compound preparation”) and            
stored as SDF files. For 0.17% of molecules it was not possible to obtain the 3D structure.                 
The final number of molecules included in the database is 21,192,046 states (tautomers,             
protonation states, stereoisomers for racemic mixtures and ring conformations) for          
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15,220,882 unique molecules. All the states of the same unique molecule are contained in a               
single SDF file identified by the molecule ZINC ID. 
 
Compound preparation. Each compound was prepared with Ligprep [179]. The protocol we            
applied generates a maximum of 8 stereoisomers, 6 tautomers, ring conformations up to 8              
kJ/mol more than the lowest energy conformer, and creates all the structures present at pH               
7 (± 1) for each molecule. 
 
Similarity search, MCS and superposition. For the similarity search we used MACCS            
fingerprints [65]. We used Openbabel fastsearch format [178, 180] to store precalculated            
MACCS fingerprint to speed up the search. To grow a few atoms at a time, the protocol                 
searches only for molecules with a number of atoms ± 2 relative to the query. The similarity                 
index used was Tanimoto. The similar molecules found must be superposed to the initial              
fragment to ensure that the binding mode is preserved. In order to have a correct alignment,                
we first calculate the Maximum Common Substructure (MCS) between the similar molecule            
and a predefined rigid block of the fragment. As this block does not comprise rotatable               
bonds, there is no need to perform a flexible alignment. We have chosen the isoxazole               
structure as a fixed part in the MCS in the first iteration. MCS is calculated with RDkit [181].                  
The definition of the rigid block is updated at each iteration, as it may incorporate significant                
chemical modifications. From this step we obtain the SMARTS of the common and             
continuous atoms that form the rigid block, which will be fed to sdtether script (part of                
rDock)[182] to obtain a superposition that preserves the original binding mode. If there is              
more than one possible SMARTS match, sdtether generates all the possible superpositions. 
 
Docking. For docking we used rDock [143] an open source program. The cavity was defined               
with rbcavity using the “reference ligand method” with the co-crystalized ligand as reference             
with 6Å radius. We applied the “tethered docking” function of rDock, which consists in              
restricting a selected part of the ligand and to optimize the rest. This fixed part will be the                  
one superposed to the initial fragment. We allowed translation and rotation of the             
constrained part of just 0.01 Å per iteration in the genetic algorithm. Also we added a                
pharmacophore restraint for H-bond acceptor at 2 Å from the Nδ of Asn140, which is known                
to interact with BRD4 ligands[113], with a tolerance of 1 Å around it. 
We applied the high-throughput mode of rDock: any ligand is discarded after the first run if                
SCORE.INTER is greater than -5 or the pharmacophore penalty score is greater than 2. If               
the first filter is passed, then after 3 additional runs, the program will check again the two                 
scores with more restricted filters, discarding any ligand with SCORE.INTER greater than            
-10 and pharmacophore score greater than 1. All molecules passing this filter complete a              
total of 20 runs, which is sufficient to ensure convergence in the tethered docking mode. 
After docking, the poses of all the states of the same molecules are ranked together and the                 
best pose (lowest SCORE value) is selected and minimized without constraints in order to              
improve the match with the receptor while still preserving the binding mode. At this point we                
have one minimized pose per molecule. All molecules are then ranked by SCORE.INTER. 
From the first iteration we noticed that the majority of the molecules showing good scores in                
the docking step contained a quaternary nitrogen that binds in the pocket where the              
structural water molecules are present. The cost of burying a charge often exceeds the gain               
of forming intermolecular interactions. In this case, as the interaction is formed with             
interfacial water molecules, the net result of placing a charge is difficult to predict and well                
beyond the capabilities of a docking score. For this reason, and noting that all ligands in the                 
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literature present a hydrophobic group in this position rather than a charged group, we              
decided to filter out molecules containing the quaternary nitrogen at the bottom of the cavity. 
The first molecule (ranked by SCORE.INTER) is chosen, then the rest of the molecules are               
chosen following the same ranking if they have a Tanimoto similarity less than 0.9 with the                
all the previously chosen molecules. This is done to discard very similar molecules, keeping              
only the best-scoring molecule as representative. When 500 molecules are selected, the            
selection program stops and the molecules are sent to the next step. 
 
DUck. DUck (Dynamic Undocking) is a method developed in our group[165]. It consists in              
calculating the work necessary to break an H-bond important for the binding. The             
parameters used are the same as in the original paper: energy minimization for 1,000 cycles,               
4 steps of gradual warming to 300 K in NVT for 400 ps and 1 step of equilibration at 300K                    
for 1 ns in NPT (1atm), 5 runs of MD, each followed by 2 runs of SMD at 2 temperatures                    
(300 and 325K). The cutoff for the Wqb was set to 4 kcal/mol. After minimization, heating                
and equilibration the compliance of this cutoff is checked at every run of Molecular Dynamics               
(MD) and Steered Molecular Dynamics (SMD) and if the Wqb of that simulation is below this                
cutoff no more runs are performed. Only molecules with Wqb greater or equal to 4 Kcal/mol                
will complete all the runs. The simulations were performed at the Barcelona Supercomputing             
Center using NVIDIA Tesla M2090GPUs. 
Only a subset of the protein (hereinafter referred to as “chunk”) is used as receptor in DUck                 
calculation. Specifically, for BRD4 the chunk was prepared manually selecting residues           
within 6Å from ASN140    
(TRP81-PRO82-PHE83-GLN84-GLN85-PRO86-VAL87-ASP88-ALA89, 
LYS91-LEU92-ASN93-LEU94, TYR97, ILE101, PRO104-MET105,    
THR131,ASN135-CYS136-TYR137,TYR139-ASN140, ASP144-ASP145-ILE146, MET149,   
HOH 302,305,311,322,327,331,332 ). 
ASN 140 was chosen as the H-bond donor on the protein side, and the DUck set-up scripts                 
automatically identify the partner H-bond acceptor on the ligand side, based on distance.             
The final Wqb is the lowest value of all the SMD, as explained [165]. Since WQB and                 
SCORE.INTER scoring terms are orthogonal and complementary [165], a consensus          
scoring was implemented. Each score was ranked in ascending order and an index was              
assigned to each molecule. The consensus score was the sum of both indexes. 
 
Spawning. From the ranking of the consensus score, we select the top 50 molecules. Each               
of the 50 molecules is used subsequently as query molecule for the similarity search              
calculation. Many of the query molecules (“parents”) can have some similar molecules            
(“children”) in common. The similar molecules undergo a refinement process: duplicates are            
removed and only unique molecules are kept, the molecules that were already docked in              
previous iterations are filtered out and the remaining ones are ranked by number of parents.               
Among these, the 100.000 children molecules that have the highest number of parent             
molecules in common are selected. The rigid core of the parent molecules that interacts with               
the target (close to the original fragment no more than 0.7 Å) is calculated with a MOE script                  
and its SMILES code is used to identify the MCS with their respective children molecules.               
The parent with the largest MCS is selected and used as reference to superpose with               
sdtether. Then, the top 100,000 molecules are sent to the docking and all subsequent steps               
using exactly the same protocol as for the first iteration.  
 
The process was repeated until reaching the fourth generation of molecules.  
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3.5 Analysis Of The Molecular Recognition Properties Of        
Brd4 Structural Water Molecules 
 
Unbiased molecular dynamics. 
Ligand ETH was co-crystallized in the previous study with PDB code 6ZF9. The ligand pose               
was extracted from the PDB and missing hydrogens were added. Ligands MEH, OHH, NHH,              
NH3, OCH and SHH were prepared from this pose using the “Build” tool in MOE [183]. The                 
coordinates were maintained, changing only the position of the particular substituent. This            
part was minimized with MOE and each ligand was saved as a MOL2 file. 
The protein was extracted from the PDB and it was prepared with MOE (“Protein              
Preparation” tool). Seven water molecules were maintained (301, 304, 316, 320, 322, 324,             
331). It was saved as MOL2 with AMBER nomenclature. 
Gaussian optimization (Gaussian 09 [184]) was applied to each of the ligands and             
Antechamber [185] RESP method was used to obtain the partial charges. Parameterization            
with the GAFF force field was applied. Some parameters needed manual intervention. 
Each ligand, the APO protein) and the seven protein-ligand complexes were neutralized and             
solvated in an octahedral box of TIP3P water with tleap [185]. Topology (prmtop) and              
coordinates (prmcrd) Amber files were obtained for each of them. 
The same molecular dynamics steps were applied in all cases with pmemd.cuda of Amber18 
[185]: 
1) A first step of energy minimization for 1,000 cycles (maxcyc). The default algorithm is               
used with 10 cycles of steepest descent method and then conjugate gradient is switched on.               
Energy information is printed every 100 steps (ntpr). Atoms of the ligands and the protein are                
restrained using an harmonic potential with a force constant of 25 kcal/mol·Å2 (ntr). Constant              
volume (ntb 1). 
2) A second step of minimization for 1,000 cycles. Energy information is printed every 100               
steps. Atoms of the ligands and the protein are restrained using an harmonic potential with a                
force constant of 5 kcal/mol·Å2. Constant volume (ntb 1). 
3) Four steps of progressive heating in NVT. Energy information is printed every 2000 steps.               
The coordinates are written every 2000 steps (ntwx). Atoms of the ligands and the protein               
are restrained using an harmonic potential with a force constant of 5 kcal/mol·Å2. 100,000              
MD-steps are performed (nstlim) with a time step of 0.002 psec (dt), using SHAKE (ntc). In                
the NVT ensemble the Langevin thermostat (ntt 3) was used with a collision frequency γ of                
4.0 (gamma_ln) with a random seed generator (ig=-1). The initial temperature was set to              
100K and was increased by 50K in 4 steps (150K, 200K, 250K, 300K). Constant volume (ntb                
1). 
4) Two steps of equilibration in NPT. Energy information is printed every 2000 steps. The               
coordinates are written every 2000 steps. Atoms of the ligands and the protein are restrained               
using an harmonic potential with a force constant of 5 kcal/mol·Å2. In the NPT ensemble the                
Langevin thermostat (ntt 3) was used with a collision frequency γ of 4.0 (gamma_ln) with a                
random seed generator (ig=-1). The temperature was set to 300K. Constant pressure (ntb 2)              
periodic boundary conditions are used with isotropic position scaling (ntp 1) with a             
Berendsen barostat for a pressure of 1.0 atm and a Pressure relaxation time of 2.0 ps. In the                  
first step 10,000 MD-steps are performed (nstlim) with a time step of 0.002 psec (dt), using                
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SHAKE (ntc). In the second step 490,000 MD-steps are performed (nstlim) with a time step               
of 0.002 psec (dt), using SHAKE (ntc). 
5) Five steps of progressive release of the restraints in NVT. Energy information is printed               
every 2000 steps. The coordinates are written every 2000 steps. Atoms of the ligands and               
the protein are restrained using an harmonic potential with a force constant of 5, 4, 3, 2 & 1                   
kcal/mol·Å2 for the first, second, third, fourth & fifth simulation, respectively. 100,000            
MD-steps are performed (nstlim) with a time step of 0.002 psec (dt), using SHAKE (ntc). In                
the NVT ensemble the Langevin thermostat (ntt 3) was used with a collision frequency γ of                
4.0 (gamma_ln) with a random seed generator (ig=-1). The temperature was set to 300K.              
Constant volume (ntb 1) 
6) A final step of equilibration in NVT without restraints. Energy information is printed every               
2000 steps. The coordinates are written every 2000 steps. 100,000 Number of MD-steps are              
performed (nstlim) with a time step of 0.002 psec (dt), using SHAKE (ntc). In the NVT                
ensemble the Langevin thermostat (ntt 3) was used with a collision frequency γ of 4.0               
(gamma_ln) with a random seed generator (ig=-1). The temperature was set to 300K.             
Constant volume (ntb 1) 
The restraints were applied to both the protein and the ligand in the case of complexes. 
7) 200 production steps of 1ns in NVT (total 200ns). Energy information is printed every               
5000 steps. The coordinates are written every 5000 steps. 500,000 MD-steps are performed             
(nstlim) with a time step of 0.002 psec (dt), using SHAKE (ntc). In the NVT ensemble the                 
Langevin thermostat (ntt 3) was used with a collision frequency γ of 4.0 (gamma_ln) with a                
random seed generator (ig=-1). The temperature was set to 300K. Constant volume (ntb 1). 
For the ligands in water only 20ns were performed. Nonbonded cutoff was 8.0 Å for free                
ligand simulation and 9.0 Å for APO and complex simulations. For each element (apo,              
ligand, complex), 3 replicas were performed. 
 
 
Free Energy Calculations. 
Minimization, heating and equilibration were performed following the protocol described          
above. The restart file after the last equilibration step was used to prepare the prmtop and                
prmcrd files for the alchemical transformations.  
For each transformation the “START” ligand coordinates were obtained from the restart file.             
The coordinates for the common atoms were used for the “END” ligand. The atoms of the                
different substituent attached to the heterocycle were considered unique. tleap added them            
in the end ligand from the OFF file. Prmtop and prmcrd with both ligands in the same file                  
were obtained (needed for pmemd). The same procedure was applied for ligands and             
complexes.  
21 lambdas were used: 0.0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50, 0.60,                
0.70, 0.80, 0.85, 0.90, 0.92, 0.94, 0.96, 0.98, 1.00. Each lambda is run in parallel. For each                 
lambda, it is performed 1 step of equilibration of 1ns and 20 steps of production of 1ns each                  
(total 20ns). 
Energy information is printed every 4000 steps (ntpr). The coordinates are written every             
4000 steps (ntwx). 1,000,000 MD-steps are performed (nstlim) with a time step of 0.001              
psec (dt), without using SHAKE (ntc). The Langevin thermostat (ntt 3) was used with a               
collision frequency γ of 4.0 (gamma_ln) with a random seed generator (ig=-1). The             
temperature was set to 300K. NVT was used in the equilibration step (ntb 1) while the                
production step was in the NPT ensemble (ntb 2). Constant Pressure periodic boundary             
conditions are used in production with isotropic position scaling (ntp 1) with a Monte Carlo               
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barostat (barostat 2) for a pressure of 1.0 atm and a Pressure relaxation time of 2.0 ps.                 
Nonbonded cutoff was 10.0 Å. 
timask1 was the starting ligand, timask2 the ending ligand. softcore potential was applied to              
the unique atoms. ∂V/∂ λ values and the Bennett acceptance ratio scheme were calculated                         
at every step. For some transformation to avoid using unnecessary space, the coordinates                
are written every 10,000 steps. Amber18 was used with the patch update.16 [186]. 
A scheme of the protocol is shown in Figure 3.4. For the analysis , a program from the                  
Mobley lab was used (https://github.com/MobleyLab/alchemical-analysis)[173]. 
 

 
Figure 3.4: Workflow used for the Alchemical Transformation to calculate the Relative Free 
Energies of Binding. 
 

3.6 Application of NAOminext to the BRD4 Ligand. 
 
De novo techniques have been extensively used in fragment-based drug design, particularly            
in the Fragment-to-Lead (F2L) step [79]. Synthetic accessibility is still a common issue of              
these programs and various solutions have appeared (Section 1.3.3.1). NAOMInext [106] is            
a program developed in the group of Matthias Rarey at the University of Hamburg in               
Germany, where I did a research stay of 3 months in 2019. NAOMInext performs              
“constrained synthetically feasible fragment growing”. Building Blocks (BB) are virtually          
attached to a fragment in situ in his crystallized structure within the protein. The new bonds                
are formed according to a set of 58 virtual reactions [102] that are annotated in the program                 
as “Reaction SMARTS”. By means of the “Reaction SMARTS” the program is able not only               
to recognize compatible reactions with the query fragment but also compatible BBs from the              
given library. Once the “virtual reaction” is made, a series of conformations of the new added                
part are generated and evaluated with a score. The conformation with the best score is               
taken as the final pose. The new generated compounds can be ranked by this score and the                 
top ranking can be considered for lab synthesis. In this way 3 objectives are achieved at the                 
same time: (1) Growth of the fragment, (2) Synthetic accessibility is considered by using a               
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set of rules (3) The best conformation per molecule is obtained by the cavity-constrained              
conformational search. 
NAOMInext has been used in section 4.1.3 to grow a fragment hit into a potent ligand.The 
following specific NAOMInext parameters were used: 

● Number of start pose to use(default 50): 30  
● Number of poses to write: 10 
● number of automatic growing steps 1 
● Number of parallel threads 10 
● user info update interval 10 secs 
● ligand result chunk size 10 
● thread timeout 300secs 
● level of info output 4 
● minimum allowed building block size (e.g. size of 1 allows attaching atoms) 1 
● angle used to rotate start pose (default 15.0): 15.0 
● active site radius (default 6.5): 6.5 
● show additional ligands 
● SASA element coloring 
● Sampling method 
● skip input molecules on write 
● number of molecules to write 2147483647 
● number of poses to write (for each result molecule): 10 

 

3.7 Discovery of TREX2 Inhibitors 
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4.1 BRD4(1) 
 

4.1.1 Fragment-size Chemical Space Exploration For New Scaffold        
Opportunities 
 
Herein, we devise an automated platform that navigates the chemical space around any             
specific fragment, rapidly evolving the initial hit into novel fragments that share a binding              
motif but are structurally diverse, including non-obvious scaffold changes.This will help           
discover neglected fragments that can display improved efficiency, good starting points for            
growing or represent novel patentable chemical matter.  
In a prospective application on BRD4, we recycle a known fragment to obtain active              
compounds with scaffolds that are different from the initial fragment.Due to their therapeutic             
interest, they have been thoroughly investigated and a large number of inhibitors exist,             
covering a multitude of chemical scaffolds [113,117,118]. As such, it is a challenging test to               
investigate if deeper exploration of the available fragment space can unearth novel chemical             
matter. 
 

4.1.1.1 Development Of The Computational Pipeline  
 
In this work a new pipeline was developed for mining the fragment chemical space to find                
more efficient fragments with novel scaffolds while at the same time increase the size and               
evaluate the binding by docking and dynamic undocking. The algorithm can repeat the             
search in subsequent iteration using the previously found molecules as “parents” for the new              
generation of molecules.  
We devised a fragment mining tool with the following key characteristics:  
1) efficient and scalable exploration of chemical collections; 2) performs scaffold hopping, in             
order to explore the diversity around a fragment hit; 3) maximises the probability of finding               
active compounds by exploiting the structural information; 4) performs iterative and           
step-wise fragment growing in order to increase potency while maintaining or improving            
ligand efficiency; 5) automatic and unsupervised process. 
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FIGURE 3.1. Steps of the fragment evolution platform. For the first iteration 5 steps are               
performed. For the next iterations 3 steps (on the right) are added between the first and the                 
second step. See text for explanation. i=iteration. 
 
Figure 3.1 provides a visual summary of the platform.The process starts with an initial              
fragment, for which the binding mode is known. An essential interaction for binding,             
generally a hydrogen bond, will be preserved throughout the optimisation process to            
increase the chance of selecting active compounds. Then, a permissive similarity search            
(50% similarity cutoff) is performed on a chemical collection of choice. For convenience,             
here we use the ZINC15 “in-stock” subset.[59]. The search is limited to molecules of a               
similar size (+/- 2 heavy atoms). The size limit rewards ligand efficiency and avoids biasing               
the search towards larger molecules, which are more abundant and attain better absolute             
scores. 
The retrieved molecules are then superposed to the query molecule in a two-step process to               
ensure that the key interaction and binding mode is maintained: i) identification of the              
Maximum Common Substructure (MCS) with the original fragment, which must include the            
key interaction point; ii) superimposition of the atoms in the MCS followed by optimisation of               
intermolecular interactions formed by the rest of the molecule by means of tethered             
docking.[143] The 500 top-scoring molecules are selected, always ensuring that no two            
molecules are more than 90% similar. 
Dynamic undocking (DUck) is then applied to filter out docking false positives that cannot              
form structurally robust interactions.[165]. The 50 top-scoring molecules are selected and           
can be used for another iteration.This number is considered sufficient for a hit-optimisation             
exercise and, as the molecules are ranked by score, generating a shorter list is trivial.  

63 



If bigger molecules are sought, the process can be repeated iteratively, always using the              
diverse set of 50 hits from the previous iteration as starting point. In this case, a similarity                 
search is performed for each of the parent compounds. An important point is that the number                
of molecules to consider can grow rapidly at each step. This is caused by multiple factors.                
First and foremost, the expansion of the chemical space as bigger molecules are             
considered. 
The number of theoretical molecules increases exponentially with the number of heavy            
atoms.[62a] In commercial catalogues the increase is far less pronounced but still important             
(Figure 3.2). A second factor adding to this trend is the natural tendency of the Tanimoto                
index to increase as more complex (bigger) molecules are considered (Figure 3.3). Finally,             
the use of 50 query (parent) molecules instead of 1 also multiplies the number of candidate                
molecules. To ensure that the protocol remains computationally efficient, all similarity hits            
are rank ordered by the number of common parents (out of 50) and only the 100,000                
top-ranking compounds are further considered (the value can be adapted to match the             
available computational resources). This approach is important to focus the search towards            
the most promising areas of the chemical space and prevent excessive scattering. 
 

 

 
Figure 3.2. (a) Extrapolation of the compounds number (M) as a function of the number of                
heavy atoms (N) based on data taken from GDB-17. Adapted from [56] (b) Number of               
compounds present in ZINC15 database (version October 2015) by number of heavy atoms             
(HAC=Heavy Atoms Counts) 
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Figure 3.3. Expected Tanimoto similarity value as a function of the % bits set in the                
fingerprint of the molecules that are being compared (assuming an equal number of bits set               
in both molecules). As the number of bits set increases with the size of the molecule, the                 
probability of finding molecules above a given threshold also increases for bigger (and more              
complex) molecules. 
 

4.1.1.2 Scaffold Exploration for BRD4(BD1) 
 
The initial fragment (1XA, an amino-isoxazole) was taken from the literature [176] and was              
selected for optimization. The binding mode was available (PDB code 4LR6), and its             
structure had already been used in a fragment evolution exercises, in this case, merging              
1XA with a pre-existing ligand, (+)-JQ1, as shown in Figure 3.4. 

 
FIGURE 3.4. Merging approach described in Gehling et al. (2013)[176]. Two features of             
compound 1XA (crystal structure shown) were substituted in the structure of the known             
BRD4 inhibitor (+)-JQ1 giving the merged compound. Blue: substructure coming from 1XA;            
Magenta: Substructure coming from (+)-JQ1; Green: substructure common to 1XA and           
(+)-JQ1; Grey: substructure of (+)-JQ1 not present in the merged compound. 
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The computational protocol was applied for 4 iterations. At the end of each iteration, 50               
molecules are selected (Figure 3.5).  
 
Figure 3.5. Chemical structures of compounds selected by the computational platform,           
sorted by consensus score. Those purchased are indicated by red squares. 
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Figure 3.5. (continued) 
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Figure 3.5. (continued) 
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Figure 3.5. (continued). Yellow squares indicate members of a family with a common             
thiazolo[2,3-c]-1,2,4-triazole scaffold, all of which share a common predicted binding mode. 

 
Table 3.1 summarises the number of molecules considered at each step. In order to validate               
the computational predictions, we proceeded to buy and test a sample of compounds (Table              
3.2). Though ZINC15 contains compounds that are, in principle, available for purchase, in             
fact only a subset could be acquired and tested. We applied two orthogonal experimental              
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methods to measure binding: Differential Scanning Fluorimetry (DSF) at a single           
concentration (10uM) and a substrate displacement assay by TR-FRET at a range of             
concentrations, to attain an IC50 value. DSF measures protein stabilisation caused by ligand             
binding. It can be very sensitive and give clear signals even for weak-binding compounds,              
but is relatively prone to false positives and false negatives.[187] TR-FRET is a competitive              
displacement assay. It is more quantitative than DSF, but also very sensitive to             
environmental conditions.[188] Both methods have been abundantly used in bromodomain          
research.[189] We consider compounds as active if they give a clear signal by either              
method, but will focus on those where the methods coincide. 
 
TABLE 3.1. Statistics of the molecules obtained in each iteration and each step of the                
computational platform. HAC= Heavy Atom Count. 

a values in brackets represent the minimum, median and maximum number of common 
parents 
b Bemis-Murcko (BM) Scaffolds: unique scaffolds using Schuffenhauer fragmentation 
[36,37], taking into account the “least-pruned” fragment. Carbonyl groups are not removed in 
the fragmentation and elements are kept. 
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  Iteration 1 
≤15 HAC 

Iteration 2 
≤17 HAC 

Iteration 3 
≤19 HAC 

Iteration 4 
≤21 HAC 

Molecules in DB  986,524 2,141,996 3,779,575 5,037,693 

Similar molecules 
(%) 

40,231 
(4.1%) 

587,699 
(27.4%) 

1,306,135 
(34.6%) 

2,334,865 
(46.3%) 

Docked molecules 
(no. of parents)a 

40,231 
(1) 

100,000 
(7,11,37) 

100,000 
(8,10,28) 

100,000 
(13,15,34) 

Molecules passing 
docking (%) 

9,622 
(24 %) 

12,656 
(13%) 

16,066 
(16%) 

11,023 
(11%) 

DUcked 
molecules 

500 500 500 500 

Molecules passing 
DUck (%) 

58 
(12%) 

86 
(17%) 

114 
(23%) 

90 
(18%) 

Selected 50 50 50 50 

BM Scaffoldsb 33 43 39 32 

AG Scaffoldsc 18 26 35 29 

Tested 5 8 7 3 

Actived (%) 4 (80%) 5 (63%) 3 (43%) 3 (100%) 



c Atom-Generic (AG) Scaffolds: Considering the unique scaffolds as formed only by carbons 
but maintaining the hybridization [37]. Tautomers are grouped together. 
d In any experimental assay. 
 
 
Results of first iteration 
 
As 1XA has 13 non-hydrogen (“heavy”) atoms (HA), the protocol considered molecules in                         
ZINC15 ranging from 11 to 15 HA. This represents almost 1 million molecules, of which only                               
4% were ≥ 50% similar to 1XA (MACCS fingerprints and Tanimoto similarity)[137] and were                         
considered in the next steps. After superimposition of the MCS and tethered docking, 9,622              
molecules (24%) presented a docking score as good or better than 1XA (-16.2 Kj/mol; Table               
3.2). The top 500 were then subjected to DUck,[165] to calculate the work needed to break                
the key hydrogen bond with Asn140 (WQB). A WQB threshold of 4 Kcal/mol was chosen               
according to the value obtained by 1XA (4.5 Kcal/mol) and because it is a value most ligands                 
fulfil.[27] 
Only 58 of the 500 molecules passed this threshold (Table 3.1). Interestingly, the final list of                
50 molecules (Figure 3.5) represents 33 different Bemis-Murcko (BM) scaffolds and 18            
Atom-Generic (AG) scaffolds. The original scaffold is well represented in this list, with 7              
members (14%), increasing to 18 members (36%) if we consider AG scaffolds [37]. But, as               
intended, a wide range of alternative scaffolds is also present (Table 3.2). 
Only five compounds in the final list were available from the vendors and could be tested.                
Luckily, each represented a different scaffold. Pleasingly, 4 of these compounds (80%) were             
active (Table 3.2). The predicted binding mode of these compounds is shown in Figure S4.               
Compound 3, presented an IC50 value of 72 µM, which makes it more potent and ligand                
efficient than the parent compound. The binding mode of this compound was also confirmed              
by X-ray crystallography (Figure 3.6). Of note, compound 3 preserves two adjacent            
hydrogen bond acceptors that interact with Asn140, but the 5-membered ring (isoxazole) is             
replaced by a 6-membered ring (pyridazine). At the same time, the exocyclic amine of 1XA               
(which donates a hydrogen bond to Asn140) is now cyclised into a pyrazole ring. This radical                
change of scaffold is possible thanks to the high tolerance in the similarity search (50%               
similarity cutoff). This result encapsulates all the features that we wanted from the             
computational platform: a non-obvious transformation using chemical matter that is          
immediately available, excellent ligand efficiency, and a novel scaffold (never reported for            
BRD4 ligands) with completely different development potential compared to its parent           
compound.  
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FIGURE 3.6. Crystal binding mode of 3 compared with 1XA (left) and with the binding mode 
predicted by the computational platform (right). 
 
 
 
TABLE 3.2: Summary of the experimental results for the molecules tested shown by             
Iteration and ordered by consensus score. Number of heavy atoms (HAC= Heavy Atoms             
Count), similarity with reference, Docking and DUck scores and values of the different             
assays are shown. 
 

72 

ID HAC sim 
with 
1XA 

rDock 
(Score
.inter) 

DUck 
(Wqb) 

DSF  
(ΔT at 
10µM) 

TR-F
RET 
( IC50) 

XRAY LE 

1XA 13 1  -16.2  4.5 4.55 ± 
0.62 

91µM 4LR6 0.52 

Iteration 1 

1 
(SPF17) 

15 0.7  -17.7 5.1 2.64 ± 
0.47 

n.s.    

2 
(SPF18) 

15 0.57  -18.1 4.9 3.41 ± 
0.38 

n.s.    

3 
(SPF1) 

12 0.53 -19.7 4.5 0.89 ± 
0.22 

72 
µM  

6ZED 0.58 

4 
(SPF19) 

15 0.57 -19.6  4.4 3.09 ± 
1.10 

n.s.    

5 
(SPF2) 

12 0.55 -19.4 4.3  n.s. n.s.    
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Iteration 2 

6 
(SPF3) 

16 0.5 -23.4 5.0 n.s.  191µ
M 

  0.45 

7 
(SPF4) 

17 0.5 -23.4 4.4  0.83 ± 
0.27 

79µM   0.4 

8 
(SPF20) 

14 0.39  -22.1 4.0  n.s. n.s.    

9 
(SPF5) 

16 0.5 -21.6 4.1  1.83 ± 
0.27 

30 
µM 

6ZEL 0.38 

10 
(SPF6) 

16 0.43  -21.5 4.2  n.s. n.s.    

11 
(SPF7) 

14 0.46 -21.4 4.2 n.s.  644µ
M 

  0.57 

12 
(SPF8) 

15 0.46 -21.3  4.1  1.59 ± 
0.24 

n.s.    

13 
(SPF15) 

16 0.51  -21.1 4.3 n.s.  n.s.    

Iteration 3  

14 
(SPF9) 

18 0.65 -24.6 4.9 n.s.  192 
µM  

  0.4 

15 
(SPF21) 

18 0.43 -23.4 6.3 n.s. n.s.    

16 
(SPF22) 

18 0.4 -23.1 6.6  2.36 ± 
0.52 

491µ
M  

  0.43 

17 
(SPF10) 

18 0.56 -23.9 4.5  0.88 ± 
0.19 

n.s.    

18 
(SPF11) 

18 0.42 -22.6 6.1 n.s.  n.s.    

19 
(SPF12) 

18 0.58  -22.6  5.8  n.s. n.s.    

20 
(SPF13) 

18 0.42 -22.6  5.4  n.s. n.s..    

Iteration 4  

21 
(SPF23) 

20 0.43  -26.6 7.3  2.88 ± 
0.16 

n.s.    



 n.s. No signal 
 
 
Results of successive iterations. 
 
The platform offers the possibility to continuously grow the virtual hits in a stepwise manner.               
Thus, we also assessed this functionality prospectively. This option faces multiple           
challenges. Ideally, one would like to perform experimental testing after each cycle, to             
identify true binders and remove the false positives (i.e. molecules that receive a good score               
but turned out to be inactive). But this would not be practical, as it would take a long time.                   
Thus, the platform should be able to execute multiple iterations in one go. This means that                
the parent compounds after iteration 1 are virtual hits that might be false positives. This               
implies a risk of error propagation that we will be investigating in this prospective study.  
 
Finally, we obtained 50 molecules per iteration (Figure 3.5). For prospective validation,            
again we face the handicap of a very low procurement success rate, with only 8, 7 and 2                  
molecules available for purchase in iteration 2, 3 and 4, respectively (Table 3.2 and Figure               
3.7). We noticed that the last iteration is converging to a family of compounds with a                
common 5-phenylthiazolo[2,3-c]-1,2,4-triazole scaffold (17 out of 50 molecules), but none of           
the compounds were available for purchase. Thus, we decided to synthesize 23 as a              
representative member of the family (Figure 3.8), making a total of 18 tested compounds. 11               
of those (61%) are active, breaking down into 5 out of 8 (63%), 3 out of 7 (43%) and 3 out of                      
3 (100%) active at iterations 2, 3 and 4 respectively. The excellent hit rate confirms that the                 
evolution process has not drifted into an area of spurious hits. 
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22 
(SPF14) 

19 0.43  -26.1  5.1  0.85 ± 
0.12 

n.s.    

23 
(SPF16; SSR4; 

ETH) 
16 0.37 -20.1 6.8 3.32 ± 

0.4 
26µM 6ZF9 0.38 



 
 
Figure 3.7: Compounds found with the platform and tested with biophysical techniques. 
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Figure 3.8: Compound 23 in the center was synthesized as a representative of the family of                
compounds found in iteration 3 (E) and iteration 4 (A-D) with scaffold n.10 (Table 3->5). In                
iteration 4 the compounds can be grouped by the substituent (A: CN, B: NH2, C: C=O, D:                 
OH)  
 
 
The predicted binding mode of the active compounds (Figure 3.9) preserves the expected             
interaction pattern while changing the chemical scaffold sometimes quite significantly.  
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Figure 3.9. Predicted pose with docking for the purchased compounds of the 4 iterations. 
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Of note, the binding mode of the two most potent compounds 9 (IC50 = 30 µM) and 23 (IC50 =                    
26 µM) could be determined by X-ray crystallography (Figure 3.10; PDB codes 6ZEL and              
6ZF9) and is in agreement with the predicted binding mode (Figure 3.11). Compound 23 is               
of particular interest because, like compound 3 in the first iteration, it represents a drastic               
scaffold transformation that is far from obvious, presents an excellent ligand efficiency (0.38)             
and has never been described as bromodomain ligand. As such, it opens the opportunity to               
develop a whole new family of compounds against this target. 
 

 
FIGURE 3.10. X-ray crystallography binding mode of 9 (left) and 23 (right) compared with 
1XA. 
 

  
 
FIGURE 3.11. X-ray crystallography binding mode of 9 (left; yellow) and 23 (right; pink),              
compared to their respective computational predictions (in orange and fuchsia, respectively).           
As compound 23 was synthesized as a representative example of an abundant family of              
virtual hits (but was not itself present in the virtual collection), the binding mode is compared                
to a representative of this family (I4_8). 
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Structural drift and chemical navigation. 
 
As discussed, one of the salient features of our pipeline is the ability to identify non-obvious                
analogues of the initial fragment hit. As expected, the similarity of the selected molecules              
with the reference decreases from iteration to iteration. Notably, compound 23 is only 37%              
similar to 1XA, and could not be found in a standard search for analogues. Another common                
strategy to evolve fragments consists in performing substructural searches, which may           
enable larger modifications.  
 
To study the ability of our protocol to explore non-obvious changes also from a substructural               
perspective, we considered the scaffolds of the selected molecules, primarily as Bemis and             
Murcko (BM) scaffolds (where terminal side chains are removed)[36] and as Atom-Generic            
(AG) scaffolds (atoms replaced by carbons)[37]. (Table 3.3 and Figure 3.12). 
 
 
TABLE 3.5: AG scaffolds found 4 or more times in the 200 selected molecules.              
Occurrences of the scaffolds are shown by iterations, total and on the molecules that have               
been tested experimentally.  
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Cluster i1 i2 i3 i4 Total Tested (cpd 
ID) 

1 24 6 10 2 42 2 (1XA, 11) 

2 6 4   10 1 (5) 

3 3 5 4  12 0 

4 2 2   4 1(12) 

5 1 4   5 2 (2, 6) 

6  14 3 3 20 4 (7, 9, 13, 
20) 

7  2 1 2 5 0 

8   3 17 20 1 (23) 

9   2 2 4 2 (14, 17) 



 
Figure 3.12: Clusters of AG scaffolds with the highest number of members. In red is shown                
the difference of the scaffold from the original one. 
 
 
The topology of the original fragment (5-membered ring directly bound to a 6-membered             
ring) is the most prevalent, with 33 cases (17%) (Figure 3.13), of which 18 cases in the first                  
iteration. But only 8 molecules retain the specific molecular framework of 1XA (isoxazole             
directly bound to benzene). The remaining distribute into 10distinct heterocyclic          
arrangements. Such isosteric replacements already represent significant scaffold hops, but          
the majority of the selected molecules (83%) represent larger transformations. In the first             
iteration, 16 cases (32%) correspond to moderate topological transformations, such as           
change of ring size (from 5-6 to 5-5 and 6-6) or extension of the ring-ring connection by 1                  
atom. The 16 remaining molecules (including compound 3) represent individual topological           
scaffolds, with a notable presence of fused ring systems. This analysis confirms that a              
substantial proportion of the selected molecules can be considered remote analogues that            
would not be retrieved in a typical search based on the original fragment. Furthermore, our               
protocol selects a very diverse set of molecules (52 AG scaffolds), thus maximizing the              
probability of finding suitable novel scaffolds. 
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Figure 3.13: Ensemble of different molecules obtained from the AG scaffold of 1XA. 11 BM               
scaffolds are found and a total of 33 molecules derived from them. 
 
Successive iterations take the search even further away. The 5 more frequent topological             
scaffolds in iteration 1 remain in iteration 2, but with decreased frequency (70% vs 34%).               
Interestingly, in iteration 2 the most populated topology, with 14 cases (28%), contains a              
two-atom linker between the aromatic rings (compound 9 belongs to this category),            
confirming a gradual drift into more substantial topological modifications. The trend           
continues in iteration 3, which represents an exploratory step, with 28 compounds (56%)             
corresponding to topological singletons. This highlights that in the absence of any            
constraints, independent walkers exploring a large chemical space from the same starting            
point would finally lead to a scatter of unrelated molecules. We curb this tendency by               
considering only those molecules with a larger number of parents in common. In this way,               
the number of topological singletons in iteration 4 retains a similar proportion (48%). But in               
this case the algorithm has identified a privileged topology, represented by compound 23,             
with 17 members (34%). In terms of molecular frameworks, our protocol explores distinct             
structures in iterations 2, 3 and 4, respectively. Again, confirming the scaffold diversity of the               
selected set. Albeit the number of compounds that could be purchased is relatively low, they               
are representative of the overall set of selected compounds, with 11 molecules covering 6              
out of the 9 most populated topological scaffolds (Table 3.5) and 11 additional singleton              
topological scaffolds.   
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4.1.2 Analysis of Water Network of BRD4(1) with a Novel Series of            
Ligands 
 
In the 4th iteration of the previous study, we noticed that rDock program and the DUck                
method score well those molecules containing a polar or positively charged substituent close             
to the waters at the bottom of the cavity of BRD4(1). While, in principle, this makes sense                 
(water molecules should favour polar interactions), the majority of known BRD4(1) ligands,            
starting with the natural substrate (acetyl-lysine) contain a hydrophobic substituent in that            
position (Figure 3.14).  
 

 
Figure 3.14: Brd4(1) binding to a H4 peptide with two acetyl lysine. 
 
This indicates that, while counter-intuitive, these water molecules create a hydrophobic           
environment. As the synthetic protocol used to synthesize compound 23 allows for the             
introduction of various functional groups in that position, we decided to synthesize            
derivatives of 23 with different substituents near the waters (Figure 3.15). Salvo Scaffidi and              
Carmen Escolano’s group carried out the synthesis. 
 

 
Figure 3.15: Ligand series with the different substituents interacting with the network of 
waters. Ethyl: ETH; Methyl: MEH; Ammine: NHH; Ammonium: NH3; Thiol: SHH. 
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If we hypothesize that the molecules will have the same binding mode as 23/ETH, the               
different substituents would be close to the waters of the cavity and we can analyze if a polar                  
substituents can in fact stay there, and if it will provide more stability to the specific                
compound. 
The amine derivatives can exist in mainly two states at physiological pH (Figure 3.16). The               
protonation gives to the nitrogen different electronical properties that influence the           
environment around it, in the specific case they could influence the waters of the cavity. For                
this reason the two states are considered as different molecules in this study. 

 
 
Figure 3.16: Protonation of compound NH2-NH3 as a function of pH (source: 
https://chemicalize.com) 
 
We run docking calculation with both rDock and Glide to see if the scoring problem was only                 
related to rDock. The results was that both programs preferred the polar (hydroxyl and              
amine) derivatives and charged (ammonium) derivatives close to the water molecules           
(Figure 3.17). 

 
 
Figure 3.17: docking pose of OHH and NH3 
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We could obtain the crystals of the Ethyl (ETH), Methyl (MET) and Hydroxyl (OH)              
substituents. The Methyl- and Ethyl-substituted molecules place the hydrophobic substituent          
as it was expected but the Hydroxyl-substituted molecules prefer instead a reversed pose             
(Figure 3.18). 
 

 

 
 
Figure 3.18: Crystal structures of ETH (left) and MEH (right) and OHH (below) 
 
 
 
This demonstrates not only that a polar substituent in that position is not favourable, but that                
it’s even repulsed, changing completely the position of the molecule. From this result we can               
predict that the ammonium-substituted molecule will have the same preferred pose as the             
Hydroxyl molecules. As a proof, a simulation of Methylammonium starting from the position             
near the waters showed that the molecule rapidly leaves the cavity (data not shown).  
 

4.1.2.1 Prediction Of Relative Affinity 
 
We could assess the experimental IC50 of ETH as 26uM. To predict the relative affinity of 
the derivatives we decided to perform free energy calculations. The comparison of these 
results with experimental analysis will also be a confirmation that it is not a problem of 
forcefield but only of docking score approximations.  
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After the free energy calculations studies of the molecules were performed, it was confirmed 
that the preferred substituents in vicinity to the waters are hydrophobic ones (Figure 3.19). 
 

 
Figure 3.19: Relative Free Energies of the series. 
 
According to these studies we can also prepare a ranking of affinity where hydrophobic              
substituents (ETH, MET, SH) have higher affinity than polar (OH and NH2) and that NH3+               
can be considered inactive (Figure 3.20). From these results we can also predict the relative               
Kd outcome of the experimental results (Figure 3.21). 
 

 
Figure 3.20: Order of affinity of the series according to the calculated energies. 
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Figure 3.21: Prediction of relative Kd 
 
Salvo Scaffidi from our group performed TR-FRET of this series and the results are in Table 
3.6.  
 
Table 3.6: TR-FRET results  

 
 
From these results we can see that the predicted affinity order of the series is confirmed, but                 
that polar substituents present more affinity than predicted. This could be due to the different               
binding mode (as stated by the crystal structure of OH). To study this free energy               
calculations starting from the other binding mode can be performed in the future. 
But the question we want to answer is not why polar derivatives have good affinity, but                
instead why hydrophobic derivatives have so good affinity. 
Another analysis that can be performed is how these water molecules behave in different              
environments. 
 

4.1.2.2 Structural Changes Influence Water Occupancy 
 
In free energy calculation the focus is centered on the behaviour of the ligands when               
interacting with the protein in a dynamic situation. But in these types of calculations the               
physical properties don't reflect a real situation (“alchemical calculations”) so in order to             
understand the real behaviour of water molecules we have to run “real world” simulation, that               
is Molecular dynamics simulations.  
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Compound IC50 

SSR4/ETH 26 uM 

SSR3/MET 54 uM 

SSR2/OHH 65 uM 

SSR6/NH2-NH3+ 157 uM 



In this case we will focus on the behaviour of the water molecules in the cavity of BRD4(1)                  
and the ligands are just considered as a disruption in the environment around them. 
 
From the analysis of the trajectories we can see that the binding of hydrophobic ligands               
stabilizes the BC and ZA loops of BRD4, while polar and charged ligands destabilize these               
loops as it happens in the apo structure (Figure 3.17), with the charged ligand with a more                 
similar behaviour to the apo (trajectories of the charged group are analysed until the ligand               
remains in the cavity) 
 
 

 
 
Figure 3.22: RMSF per residue for all the ligands and the apo protein (a); only ETH and 
polar ligands (b); only hydrophobic ligands (c). 
 
 
To understand how this destabilization influences the water, we can analyse the interchange             
of waters in the cavity. Only water closed to the aminoacids of the cavity (Figure 3.23) were                 
considered. 
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Figure 3.23: Aminoacids composing the cavity of BRD4(1) 
 
 
We can see that when a ligand like ETH is bound, some of the water molecules are                 
interchanging less with the bulk (they are present during more frames) with respect to the               
apo protein. When the ligand is charged (NH3+), the behaviour is similar to the apo protein                
(Figure 3.24 and Table 3.7). 
 
 
 

 
 
Figure 3.24: Interchange of water molecules in the cavity in the presence of the ligands and 
in the apo protein during 200ns of MD simulation. With the charged ligand (NH3). only the 
first 170ns are considered because the ligand is leaving the cavity afterwards. 
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Table 3.7. Measure of “water trapping”: how many frames in the MD trajectory , the same 
water molecule is found in the cavity. For the APO protein simulation, in presence of the 
ligands (200ns), and in presence of NH3+ (before the ligand leaves the cavity, 170ns). 

 
 
If we analyse the trajectories of these interchanging water we can see that there are mainly                
two directions of interchange: from the top of the cavity (mainly from the ZA channel               
direction when a ligand is bound) and from a small tunnel directly connecting the bottom of                
the cavity to the side of the protein. When a ligand is tightly bound the interchange from the                  
top is limited and the only direction is from the other tunnel. This tunnel is so small that only                   
1 molecule of water can fit in the diameter. This means that in order to have interchange                 
between the water of the cavity and the exterior, the waters have to go away orderly one by                  
one. The waters closer to the asparagine have in fact the more occupancy. When the ligand                
is hydrophobic there is no disruption of this mechanism because the tunnel is maintained              
and the interchange mechanism from this side is kept. When the ligand is polar the water                
molecules are obligated to interact with the polar substituent, disrupting the network of             
interactions between them and obligating the protein to move also its loop to fit. This               
mechanism is less energetic favourable and the ligand prefers to change position instead             
(hydroxyl case). This “water trap” works like a magnet for hydrophobic substituents,            
explaining also the high specificity of bromodomains for acetyl lysine and not for lysine or               
other polar aminoacids. 
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Water 
Ranking 

Number of Frames 

APO ETH MET SH OH NH2 NH3 

1 2296  19414  14045 16367 16191  17810  5359  

2 1813  8408 13761 10356 15994 10802  4483  

3 1731 7601 11247 8516 9224 6937  3792 

4 1587 6176 9020 7502 8849 4244  2800 

5 1568 5622 6131 6932 8045 4103  2373 

6 1550 5422 4940 4771  6404 2856 2350  

7 1535 5196 4917 4142  5908 2789  2251  

8 1521 4272 3910 3448  5065 2574 1945  

9 1471 4046 3527 3346  5051 2566  1864  

10 1392  3309  3205 3283  3370 2372  1525  



4.1.3 Fragment Growing Of A Novel Scaffold For Brd4(1) With De           
Novo Virtual Synthesis 
 
After confirming that 23 is the most active substituent of the series, we want to grow this                 
fragment to increase the affinity by adding more functional substituents.  
During a stay in Matthias Rarey’s Lab in the University of Hamburg I used their program                
NaomiNext to do fragment growing with a de novo approach. NaomiNext [106] uses a list of                
58 known reactions stored as “Reaction Smarts”. When given a ligand bound to a structure               
and a database of building blocks, the program automatically defines the possible reactions             
to apply to the ligand and the respective building blocks that are possible to use. Once the                 
“virtual reaction” is made, a series of conformations of the new added part are generated               
and evaluated with a score. The conformation with the best score is taken as the final pose                 
and afterwards the new generated compounds can be ranked by this score. 
 
 

 
Figure 3.25: Bromide “decoration” added in position ortho (left) and meta (right) of the              
phenyl ring. 
 
The crystal obtained in the previous study (6ZF9) was used for the correct pose of the                
ligand. 23/ETH was not recognized directly as “reactive” by the program, so a Bromide was               
added as a “decoration” to the phenyl group to obtain the following compatible reactions:              
Suzuki, Negishi, Heck, Stille, Grignard, Sonogashira, Buchwald-Hartwig, decarboxylative        
coupling. All of them have a halide as one of the reactants. Consulting with the medicinal                
chemists that are performing the synthesis of the final compounds (Carmen Escolano’s            
group), they confirmed that this intermediate could be synthesized with the same            
methodology used to obtain 23, because the bromine was not expected to interfere in the               
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previous reaction steps. Two vectors of growing, ortho and meta, were found considering the              
crystal pose, whereas the other vectors are blocked by a tryptophan or by the wall of the                 
cavity. The Br-derivatives of ETH in ortho and meta (Figure 3.20) were prepared with              
MOE[183]. 
 
NAOMInext [106] installation includes a set of building blocks from ChembridgeBB [190] in             
SMILES. This set includes 17998 molecules and was used for the calculation. The database              
was divided in 9 files of 2000 molecules to ease the calculation.  
 
All the 10 reactions compatible with Bromide were enabled (Figure 3.26) 
 

 
Figure 3.26: Reactions compatible with Bromide. 
 

4.1.3.1 Rescoring and Selection 
 
The program generated 10 poses per BB. I used KNIME workflow [191] to sort the results                
from NAOMInext by score in ascending order (nodes: SDF reader, Sorter, GroupBy) and             
select the top scoring pose for each BB. Some BB were quite big so only resulting molecules                 
below 30 heavy atoms were considered and only molecules with a score below -28 (the               
score of SSR4/ETH/23).  
The resulting number of molecules are shown in the Table 3.8. At the end I had 7346                 
resulting molecules for the ortho-Br and 7508 for the meta-Br.  
The program Seesar was used to rescore the results. SeeSar [192] is a program developed               
by BioSolveIT for visual compound evaluation in ligand optimization. It contains different            
scores for affinities, physicochemical properties and torsional analysis of the bonds. It uses             
some tools developed in Matthias Rarey’s Lab, among them the Hyde scoring function [193].              
It is a function based on physical properties like hydrogen bond and dehydration energies              
and it gives scores of affinities either by atom or for the whole molecule. 
After selecting only the molecules below a Hyde score of 1000nM and visual inspection, a               
final number of 53 compounds for the ortho-Br and 38 for the meta-Br were selected. Of                
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these, 85 compounds were obtained with Buchwald-Hartwig reaction, 4 with Negishi, 1 with             
Grignard and 1 with Sonogashira reaction. 
 
 
Table 3.8: Results from NaomiNext run. 

*10 poses x BB. Theoretical number= 200.000 
** better than the original mol. 
 
 
Considering the number of compounds and the convenience of using a single synthetic             
procedure, only compounds from the Buchwald-Hartwig reaction were selected to be           
synthesized. After specific searches in Scifinder [194] to confirm the feasibility of the reaction              
with the specific building blocks, 3 molecules for the ortho-Br and 4 for the meta-Br were                
selected for synthesis (Figure 3.27). 

92 

 original smi ORTHO  META2  

TOT 17998 133054* 135198* 

Top score conf. x mol  12126 12353 

<30 HAC  7481 7562 

< -28 Score**   7346 7508 



Figure 3.27:  Final Building Blocks for the synthesis de novo of derivatives of 23 
 

4.1.3.2 Experimental Results 
 
Two compounds were synthetized (SSR11 from BB MW13 and SSR12 from BB MW18)             
(Figure 3.28 and 3.29) 
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Figure 3.28: Predicted pose of compound SSR11 from BB MW13.  
 

 
 
Figure 3.29: Predicted pose of compound SSR12 from BB MW18. 
 
From the TR-FRET experiment, it was measured an IC50 of 9.7uM for SSR11 (comparable              
to 23) and 40nM for SSR12 (650-fold better than 23). 
 
 
 
 
  

94 



4.2 TREX2 
 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
………. 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
…………………………………….. 
 

4.2.1 …………………….. 
 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
………………………………………………………………………………… 
 

 
Figure 3.30: ……………………………………………………... 
 
 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………... 
…………………………………………………………………………………………………………... 
…………………………………………………………………………………………………………… 

95 



………………………………………………………………………………………………………….. 
………………………………………………… 
 
………………………………………………………………………………………………………….. 
………………………………………………………………………………………………………….. 
………………………………………………………………………………………………………….. 
………………………………………………………………………………………………………….. 
……………… 
 
 

4.2.2 ……………………….. 
 
…………………………………………………………………………………………………………. 
…………………………………………………………………………………………………………. 
………………………………………………………………………………………………… 
 

 
Figure 3.31:.……………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………….. 
 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………… 
 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
………… 
 
 
 

96 



4.2.3 ………………………………………………… 
 
 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………... 

 

 
 
Figure 3.32:………………………………………………………………………………………... 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………… 
 

97 



……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
…………………………………………………………………………………………… 
 

 
 
Figure 3.33:.....…………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
…………………………………………………………. 
 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
……………………………………………………………………………………………………….. 
…………………………………… 
 
  

98 



 
  

99 



 
 

 
 
 
 
 
 
 
 
 
 

Chapter 5 

Discussion 
 
 
 
 

100 



  

101 



The expansion of the “druggable genome” is a difficult task but is absolutely important to               
extend the knowledge of biological functions and create new therapeutic opportunities. The            
study of molecular recognition mechanisms can help to understand how unusual proteins,            
like BRD4 (with its functional waters) and TREX2 ……………….…….........., work.          
Understanding the molecular recognition mechanism is important in designing new drugs. In            
particular, Understanding the role of structural waters in BRD4, either in the bottom of the               
cavity for the main “anchoring” of the ligand, or the ones present in the ZA channel that is an                   
obvious vector of growing, is crucial to design more active and selective compounds.………. 
…………………………………………………………………………………………………………... 
………………………………………………………………………………... 
 
Navigation of chemical space is paramount in the quest of New Molecular Entities (NME) for               
known targets like BRD4 as well as to determine the “druggability” of new targets (TREX2).               
Different methodology can be used: 1) A Fragment-based Drug Design approach, where            
fragments discovered by experimental methods are used as starting points for a            
computational drug design strategy 2) …………………………………………………………….. 
………………………………………………………………………………………………………….. 
In both cases, computational tools (docking, dynamic undocking) help discriminate active           
molecules from inactive ones, facilitating the navigation of chemical space to areas of             
activity. 
 
The two projects are very different and need different approaches. In TREX2 the protein has               
never been targeted for small binders and a study of bindability was needed previously. …...   
……………………………………………………………………….. BRD4 inhibitors, instead, are     
known and can be used to define the cavity and the pharmacophore. 
In TREX2 a virtual screening was done ……………………………………………………………. 
………………………………………………………………………………………………………….. 
……………………………………………………....In the case of BRD4 many inhibitors are        
already found so a more spread search is needed to find novel compounds. Novelty is what                
is searched. This can be achieved with bigger databases of compounds but a compromise              
for only commercial compounds has to be done due to the resources of the lab (no synthetic                 
resources available). For this reason ZINC15 can be used. It contains the double of              
compounds than our in-house library (15M compounds). Fragment mining and growing are            
useful in this case. Afterward, hit compounds are chosen and tested with different assays for               
the two proteins ……………………………………………………………………………………….. 
…………………………………………………………………………….. 
………………………………………………………………………………………………………….. 
………………………………………………………………………………………………………….. 
………………………………………………………………………………………………………….. 
………………………………………………………………...For BRD4 the crystal structure of      
the hits was available and to understand the SAR of the substituent close to the water in the                  
cavity, Free energy calculations were carried out. Since the hit compound chosen for BRD4              
was found not available to buy (sometimes it happens that a vendor discharges compounds              
that don't have high demand, or any other reasons. If it was in ZINC, at some moment it was                   
in-stock) and any derivatives of that were not available, de novo design was carried out.  
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As we can see there is not a defined pathway for a drug design project but it depends on                   
many reasons. CADD programs can help and guide the different steps. Many limitations that              
influence the projects are Docking Score, Library chosen, Computational resources          
availability, Laboratory resources. Some of these are not major problems in pharma            
companies but can be big issues in academia. For this reason an accurate selection of               
complementary methods is necessary. 
 

5.1 Navigation Of The Fragment Chemical Space 
 
Fragment screening has emerged in the last decades as a very effective and cost efficient               
hit identification method for drug discovery. The infrastructure and technical requisites are            
relatively low, enabling its implementation in big pharma, biotech and academic institutions            
alike. However, the evolution of fragment hits into suitable leads remains challenging and             
largely artisanal. 
A general FS collection of typical size is 103 and, frequently, great importance is given to a                 
diversity-based design of FS collections[72], which aims to provide uniform coverage of the             
fragment chemical space. But what these collections have in breadth, they lack in depth,              
meaning that hits should be seen as beacons indicating privileged areas of chemical space,              
to be further explored. Instead, the diversity around a fragment hit is rarely exploited, and the                
decision to progress a fragment is generally based on the chemical structure of the particular               
hit, rather than on the potential of the chemical space that it is meant to represent.  
The pressure to attain rapid improvements in potency, combined with the natural bias             
towards convergent synthesis and scaffold-centric optimisation favours conservative growing         
strategies over deeper exploration of the privileged chemical space represented by the            
fragment hit. Indeed, most of the fragment-evolution processes described in the literature            
preserve or introduce only minor changes to the scaffold of the initial fragment[79] , meaning               
that the outcome depends crucially on the chemical structure of the starting fragment. Such              
practices represent a dire loss of opportunities because each fragment in the screening             
collection is a mere sample of the 105 fragments available for immediate purchase,[192] 107              
fragments that can be synthetized on demand [193] and up to 109 theoretically possible              
fragments.[194] Furthermore, the fragments in a screening collection are often selected           
based on pragmatic reasons such as commercial availability or cost rather than their             
potential to deliver leads.[72] Also, fragments in general screening collections must comply            
with certain physical and chemical properties, such as the “rule-of-three” [718] or high             
solubility[72], as well as be amenable to synthesis, provide adequate vectors for growth, and              
lead to a patentable series of compounds, meaning that certain chemical structures that             
could be perfectly good starting points are not even considered.  
We argue that hits should be seen as probes highlighting privileged areas of the chemical               
space rather than actual starting points. A systematic exploration of the chemical space             
around each fragment hit could afford novel and non-obvious analogues (including scaffold            
change) with increased probabilities of being active. Such fragment mining process could be             
invaluable, because the progression of a fragment into a lead is the slowest and most               
expensive part of FBDD, and its success depends largely on the quality of the initial hit.                
Exploring the fragment space in this way could potentially exploit many fragment hits that are               
considered sub-optimal in terms of ligand efficiency, growth vectors or synthetic accessibility            
but can ultimately generate better lead compounds. Even for an already grown fragment,             
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such approach could reveal unexplored venues that are neglected in more traditional            
(synthesis-oriented) fragment evolution processes, which can help finding new chemical          
matter even for  well-studied targets. 
 
We have presented our platform for navigating the fragment chemical space around any             
specific fragment, rapidly evolving the initial hit into novel fragments that share a binding              
motif but are structurally diverse. The platform is able to mine a library of compounds for                
growing at the same time of doing scaffold hopping in an automatic and scalable way.               
Ideally, the platform starts from a fragment with a known binding mode and uses the               
structural information given to ensure the main interaction is not lost during the process,              
giving more probability that the selected molecules will be active.Application of this fast and              
inexpensive procedure has the potential to uncover many hidden opportunities and improve            
the overall performance of FBDD. 
 
On a prospective application on a famous fragment target, BRD4(1), we have evolved a              
known fragment to obtain an array of compounds that are novel and more potent, displaying               
non-obvious scaffold changes. We carried out 4 iterations and obtained 50 molecules from             
each of them with a total of 200 molecules. Of this, only 22 were purchasable, even though                 
we used ZINC15 as a library, which contains commercial compounds. In fact, vendors could              
have removed from their catalogues molecules that were once available, probably for end of              
stock or less demand or maybe they were not real compounds, but “virtual”. This is an                
important issue in CADD since a library is usually downloaded and prepared only once, at               
the beginning of a project, and can be used for many years and different projects. The                
downloaded version can be a simple photograph of that time and updates should be              
considered regularly, which is a significant effort. This was specifically dramatic in the case              
of the family of compounds obtained in iteration 4, of which none of them was available to                 
buy. The high number of members of the family (34% of iteration 4) made clear that we had                  
to test some of them. We decided to synthesize a compound containing the “minimal”              
scaffold of phenylthiazolo[2,3-c]-1,2,4-triazole. 
 
We tested the 23 compounds with 2 experimental methods. 12 molecules were active in              
DSF assay, 8 in TR-FRET, and 3 could be confirmed by X-ray crystallization. The total active                
molecules were 15 which gives a total hit rate of 65%, which is very promising considering                
that the 22 molecules were chosen by commercial availability, which is close to random.              
The analysis of the scaffolds of the 200 molecules shows a movement into “islands of               
chemical space” as can be seen by the family of compounds of scaffold 1 in iteration 1 and 3                   
with 24 and 10 members, respectively, of scaffold 6 in iteration 2 with 14 members, and                
scaffold 8 in iteration 4 with 17 members. This may correspond to a “lake of activity” as can                  
be seen for compound 9 in representation of scaffold 6 and compound 23 in representation               
of scaffold 8. It may be worth exploring these “activity lakes” further by testing more               
compounds with active scaffolds. We didn’t buy any compounds for scaffold 1 but 1XA is a                
representative of the family. We were also able to obtain crystal structures for three diverse               
ligands, confirming the binding mode predicted by the platform which led to the selection of               
the compounds. After the analysis of known brd4 inhibitors it was also possible to show that                
many of the active compounds correspond to novel scaffolds for this target, confirming the              
objective of this study to obtain novel chemical series. 
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One important limitation of the method is the library selection, that is up to the user. Ideally                 
the library should have a high procurement rate, and databases of commercial collections             
(Zinc15, Molport, Enamine) are the most adequate. The drawback is that purchasable            
compounds are dynamic and maybe not purchasable after a while, so the library to use for                
the platform should always be the most up to date possible. The platform was also designed                
to theoretically scale up to any library of compounds, including multi-billion libraries            
e.g.Enamine REAL. In addition, the database should be diverse, or the search will be biased               
towards the scaffolds that are more numerous in the database. 
The platform is also limited by the inherent issues of the docking program and for the                
iterative feature of the platform, this can lead to error propagation. Consensus scoring using              
additional programs e.g. DUck or MMGBSA, can overcome this issue. Also, some very             
interesting scaffolds are not further explored in subsequent iteration (compound 3 as            
example). The automatic nature of the platform prevents the user to choose which scaffold              
weighs more in the search. This issue will be addressed in future implementations. 
The step-wise approach (1 iter at a time) is useful in the exploration maintaining ligand               
efficiency, but we would be missing the opportunity of more drastic jumps. In further              
implementation this can be decided by the user. In future implementation we will also apply               
to other targets.  
 

5.2 Hydrophobic Behaviour Of Structural Waters In Brd4 
 
It is known that bromodomains contain a network of 4-7 structural waters in contact with the                
methyl of Acetyl-lysine and with the hydrophobic moiety of ligands. Drug design efforts in              
the last 10 years have been either to acknowledge the preference for hydrophobic             
substituents from SAR analysis or try to displace them with little success [121]. Some              
researchers have tried to understand the behaviour of these waters in the Apo protein with               
computational methods [195], focusing on the displaceability of the single waters or the             
network as a whole but not taking into account the effect upon ligand binding. 
We have analyzed with a series of compounds the bizarre hydrophobic behaviour of the              
structural water molecules of BRD4(1) by computational methods. The compounds          
contained different substituents that were selected according to the electronic nature,           
namely hydrophobic (Ethyl, Methyl, Thiol), polar (Hydroxyl, Amine) and positively charged           
(Ammonium). Free energy calculations confirmed the preference for hydrophobic ligands          
instead of polar or charged. Within the hydrophobic group Ethyl was preferred to Methyl and               
to Thiol, meaning that a complete hydrophobic substituent (Ethyl) which fill the hollow             
created between the waters and the wall of the cavity is more suitable in this case, while                 
Methyl fill only partially and the thiol has a mix behaviour. Longer chains were proved to be                 
also suitable (Propionylated, Butyrylated and Crotonylated Lysine) [196] but are less active            
than the Acetyl lysine for BRD4. In another SAR exercise also unsaturated chains in a               
different scaffold [33] were tested and none showed better affinity than the methyl. So we               
can consider that the Ethyl with our scaffold is the perfect match for BRD4 cavity and longer                 
chains won’t improve the affinity.  
Hydroxyl and Amine substituents have similar affinity, with hydroxyl slightly better, maybe            
because the electronic similarity with the water molecules favour more stable interactions            
with the network, and also the single hydrogen bond can favour a geometrical stability, while               
for the amine more rearrangement is needed by the water network to fit both hydrogens. The                
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charged amine has a very low affinity that can even be considered inactive. The burial of the                 
charge is not favoured and the water network doesn't compensate for the loss of the solvent                
layer present in the bulk. In fact, in molecular dynamics simulations the ligand leaves quickly               
the cavity. 
With Molecular dynamics simulation it was possible to understand that the presence of             
ligands with hydrophobic substituents were stabilizing the ZA loop and “trapping” the waters             
in the cavity, while polar and moreover charged ligands were disrupting the network of water               
and allowing the loop to move, shifting the equilibrium to an apo-like structure of the protein. 
It seems that the increased entropy from the loop movement is not enough to justify the loss                 
of enthalpy from the break of the interaction of the water network. In fact it is a strange                  
behaviour that in order to have a more favourable binding for the ligand the water must lose                 
some degrees of freedom to remain more or less still in the cavity.  
 
The combination of all these events is favoring hydrophobic substituents instead of polar             
ones in the cavity of BRD4. 
 

5.3 Virtual Synthesis Of New Compounds For Brd4 
 
Once we have proved that the Ethyl-substituted fragment 23 is the most active ligand of the                
series, in order to increase the affinity we needed to grow this optimized fragment to a                
lead-size ligand. Since there are no commercial derivatives available, we needed to            
synthetize them. For this task we decided to use a program for virtual synthesis to create                
molecules from de novo.  
The program NaomiNext allowed to grow fragment 23 from two different vectors in the              
phenyl ring (ortho and meta) adding commercial building blocks by means of a set of known                
reactions, thus considering synthetic accessibility, while, at the same time, it was predicting             
the binding pose of the newly created molecules and assessing the score of binding. Seven               
Building blocks were chosen at the end of the exercise and 2 molecules were synthesised.               
SSR11 showed similar affinity as the original fragment but SSR12 was 650-fold more active.              
The binding modes of the two molecules were quite different, with SSR11 displacing 2 water               
molecules (W1,W2) present in the ZA channel, substituting one interaction of W1 to the              
protein with the oxygen of the methoxy group, and interacting with another water molecule              
(W3). SSR12, instead, is interacting with W1 and W2 and displacing W3. The 2 molecules               
contain very similar chemical parts but distributed in a different way, and this distribution is               
extremely significant for the affinity, confirming the importance of the ligand architecture            
explained in the section 1.2.2.  
The importance of the water molecules in the ZA channel was already assessed [197] and               
our study confirms that it is preferable to use these water molecules as a bridge between the                 
ligand and the protein instead of displacing them. This confirms the importance of             
considering not only “proper” structural water molecules in the design of ligands but also the               
first layer of solvation of the protein even though they are solvent exposed, especially if they                
are interacting with protein hotspots, contributing most to the free energy. 
Additional discussion should be made on the affinity of SSR12. From our experiments we              
could assess an IC50 of 91uM for 1XA, and compound 23 was 3.5-fold more active (IC50                
26uM) and with only 1-step structure change with NAOMInext, we have a compound             
650-fold more active (~40nM) than compound 23 and 2275-fold more active than 1XA,             
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placing the compound in a similar range than the standard BET inhibitor (+)-JQ1 (29nM from               
our experiment) and the isoxazole azepine final compound of Gehling et al (26nM according              
to their paper) resulting from the merging approach of 1XA (Figure 3.2).  
In a future effort we are trying to join substituents either in ortho and in meta to further                  
increase the affinity. 
 

5.4 First Binders of TREX2 
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General Conclusions 
 
This thesis described the study and application of principles of molecular recognition and             
exploration of chemical space to improve the drug discovery process and help expand the              
druggable proteome. 
 

Specific Conclusions 
 
1. The exploration of the fragment-size chemical space, starting from a known fragment, with              
a computational pipeline was able to deliver chemical entities from completely novel            
chemical series, which have been confirmed experimentally.  
 
2. The series of ligands obtained with a novel scaffold for BRD4 could be used to investigate                 
the unusual behaviour of structural water molecules in BRD4(1) and their role in molecular              
recognition of ligands. 
 
3. The further growth of the ethyl-derivative of this series with de novo virtual synthesis               
allowed it to explore new points of interactions in BRD4(1) and the role of waters in the ZA                  
channel, delivering a large jump in potency and a 40nM inhibitor. 
 
4.  Compounds capable of inhibiting the exonuclease activity of TREX2 have been found. 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
…………………………………………………………………………………………………………… 
………………………. 
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